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Abstract 

 

Albedo breakdown known as creasing, a physiological disorder, due to abnormal 

separation of cells leading to the formation of irregular fractures in the white tissue 

(albedo) causing the creases of sweet orange rind. It causes serious economic losses 

to the sweet orange growers in Australia and in other orange producing areas of the 

world.  

Fruit quality, particularly albedo breakdown has been influenced by various factors 

such as plant water relations, genetic factors, plant nutritional status and plant growth 

regulators. My research investigated the development of the incidence and the 

severity of albedo breakdown during fruit maturation and ripening, the effects of 

severity of albedo breakdown on fruit quality among locations and cultivars of 

‘Navel’ sweet orange. I also elucidated the influence of deficit regulated irrigation, 

exogenous application of surfactants added in calcium solution, exogenous 

application of boron and the role of ethylene in the incidence of albedo breakdown, 

textural properties of the rind and fruit quality of ‘Navel’ sweet oranges. 

The incidence and the severity of albedo breakdown increased rapidly after 

commercial harvest. The incidence and severity of albedo breakdown in ‘Washington 

Navel’ orange differed from location to location, with the lowest at Harvey as 

compared to three other locations. Regardless of locations and cultivars, the severity 

of albedo breakdown did not affect juice content, soluble solids concentration, 

titratable acidity, ascorbic acid, citric acid and malic acid except for decreasing 

succinic acid and increasing tartaric acid. Locations and cultivars significantly 

influenced these fruit quality parameters.  

The application of deficit irrigation (50% and 75% water supply of control trees) 

improved fruit quality in terms of increased soluble solids concentrations and acidity 

levels without affecting percentage of juice, pH of juice, ascorbic acid and individual 

organic acids in ‘Navelina’ sweet orange. The enhancement of the uptake of Ca in 

leaf, rind, and pulp of the fruit and the reduction in the incidence of albedo 

breakdown were obtained with the application of different surfactants added into 

aqueous solutions of 2% Ca(NO3)2 starting from  81 days after full bloom (DAFB) at 

10-day intervals. Among four tested surfactants, ‘Tween 20’ (0.05%) was the most 

Abstract 



 

 vii 
 
 

effective in enhancing Ca uptake, reducing albedo breakdown and improving textural 

properties of rind and fruit firmness while maintaining the other important fruit 

quality attributes in ‘Washington Navel’ sweet orange.  

The foliar application of boron enhanced the concentration of boron and calcium in 

the leaf, rind and pulp. The single spray application of boron in early summer at 600 

mg·L-1 was the most effective in increasing boron concentration in the leaf, rind and 

pulp of fruit, reducing the incidence of albedo breakdown and improving textural 

properties of rind and fruit firmness without affecting any the other fruit quality 

attributes in ‘Washington Navel’ sweet orange. 

Rind of fruit with albedo breakdown produced the higher ethylene production than 

the normal fruit. The exogenous application of ethylene inhibitors including AVG 

(200 mg·L-1) and CoSO4 (300 mg·L
-1) reduced the incidence of albedo breakdown 

and improved the rind textural properties in ‘Washington Navel’ sweet orange. 

Ethylene seems to be involved in the incidence of albedo breakdown.  

In conclusion, the severity of albedo breakdown did not affect the major attributes of 

fruit quality in ‘Navel’ sweet oranges. The applications of deficit irrigation, 

exogenous 2% Ca(NO3)2 containing ‘Tween 20’ as a surfactant and the exogenous 

spray application of boron (600 mg·L-1) influenced the incidence and severity of 

albedo breakdown without affecting other fruit quality parameters. Ethylene seems to 

be associated with the incidence of albedo breakdown in ‘Washington Navel’ sweet 

orange. 
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CHAPTER 1  

General introduction 

 

Oranges (Citrus sinensis [L.] Osb.) are one of the major fruit crops in the world with 

an estimated production of 63,906,064 tonnes in 2007 (FAOSTAT, 2009). In 

Australia, oranges are the second most important fruit crop after grapes with an 

estimated production of 585,000 tonnes which accounted for approximately 49% of 

the Australian total fruit production in 2007 (FAOSTAT, 2009). ‘Navel’ oranges 

contribute to 46% of Australian orange production and the supply for fresh fruit 

market is available in winter from June to August.  The citrus exports had the largest 

total volume (24%) as compared to the other horticultural products exports from 

Australia (Horticulture Australia Limited, 2008). Oranges are grown in New South 

Wales, Victoria, South Australia, Queensland and Western Australia, but New South 

Wales has the largest share in orange production (Australian Bureau of Statistics, 

2009). Citrus industry of Western Australia contributed 15,000 tones to the 

Australian citrus production. Oranges are grown from Gingin in the North to 

Bunbury in the South of Perth where there is a temperate Mediterranean climate, 

suitable soils and availability of good quality irrigation water (Foord et al., 2004; 

Hancock, 2008). There was an increase of 25% in production from 2000 to 2004 in 

Western Australia (Foord et al., 2004). 

Sweet oranges probably originated from central China and North- East India 

including ‘Navel’ oranges, common oranges, pigmented oranges and acidless or 

sugar oranges. Among them, ‘Navel’ oranges are mainly produced for fresh market. 

They are known as the large, seedless and earlier maturing type as compared to the 

other types of oranges. Late season ‘Navel’ oranges are designated for export leading 

to the expansion of ‘Navel’ areas (Horticulture Australia Limited, 2004). However, 

the recurring incidence of albedo breakdown is a major problem affecting the fruit 

quality in ‘Navel’ oranges particularly the appearance of fruit.   

Albedo breakdown also known as creasing is a physiological disorder due to cracks 

in the internal white tissue (albedo) causing puffiness of orange peel (Treeby and 

Storey, 2002). The development of crease is connected to the degradation of pectin 

that is an important component in cell walls of fruit tissue. The loosening of the 

connections between cells is the result of this degradation.  
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Albedo breakdown causes considerable losses to the growers due to the dramatic 

reduction in price by the down-grading of orange value for fresh market in Australia 

(Pellizo, 1997; Sneath, 1987; Storey and Treeby, 1994) and other citrus producing 

areas in the world (Ali et al., 2000; Bower, 2004; Gambetta et al., 2000; Jones et al., 

1967; Li et al., 2009; Monselise et al., 1976). A very high proportion of fruit (from 

50 % to 90%) could be influenced by albedo breakdown in some localities in South 

Africa and Australia, respectively (Goldie, 1998). It is estimated that with each 1% 

of reduction in albedo breakdown, producers’ income will increase by 1 to 2 million 

dollars in Australia and Israel (Gilfillan et al., 1981; Goldie, 1998; Monselise et al., 

1976; Pellizo, 1997; Sneath, 1987; Treeby and Storey, 1994).  

The relationship between albedo breakdown and fruit quality has been established by 

those who reported that higher specific gravity, a thinner peel, a higher percentage of 

juice, a lower acid content, and especially a lower ascorbic acid content were 

associated with albedo breakdown in comparison to normal fruit (Jones and 

Embleton, 1967; Jones et al., 1967; Sneath, 1987). Higher total soluble solids and 

acid ratio in fruit with albedo breakdown indicated that fruit with albedo breakdown 

matured earlier than normal fruit at the same time on the same tree (Jones and 

Embleton, 1967). Similarly, Treeby and Storey (1994) reported that albedo 

breakdown adversely affected fruit quality. In contrast, Goldie (1998) reported that 

internal fruit quality parameters were not affected by albedo breakdown. The 

research work reported on the effects of albedo breakdown on fruit quality is 

sporadic and inconclusive thus warrants further investigation. 

Various factors affecting incidence of albedo breakdown in sweet oranges have been 

reported such as plant water relations (Agustí et al., 2004; Gonzalez-altozano and 

Castel, 1999; Sneath, 1987; Treeby et al., 2007), genetic factors (Agusti et al., 2003; 

Bevington et al., 1993; Moulds et al., 1995; Treeby et al., 1995), plant nutritional 

status (Ali et al., 2000; Bower, 2004; Jones et al., 1967; Storey et al., 2002; Treeby 

and Storey, 2002) and plant growth regulators (Dick, 1995; Embleton et al., 1973; 

Jona et al., 1989; Treeby and Storey, 1994; Tugell et al., 1993). 

It has been reported that albedo breakdown may be due to water stress during the late 

dry summer and autumn periods (Sneath, 1987). However, Treeby (1996) claimed 

that it is not associated with water stress. Albedo breakdown incidence seems to be a 

result of the rapid increase in fruit size after the first eight weeks of fruit 
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development (Tugell et al., 1993).  Medium fruit size (62 – 79 mm in diameter) were 

to be more prone to the albedo breakdown than the smaller fruit (less than 62 mm in 

diameter) and the bigger fruit (more than 80 mm in diameter) (Storey et al., 2003). 

Deficit irrigation has been reported as being a very good method for controlling fruit 

growth in ‘Navel’ oranges (Hutton et al., 2007). It has been reported that a reduction 

in the incidence of albedo breakdown occurred with the application of regulated 

deficit irrigation and partial rootzone drying (water applied at 50% of control trees) 

over the whole growing seasons in `Bellamy’ navel oranges (Treeby et al., 2007). 

The application of deficit irrigation in the second year at the flowering and fruit set 

phases reduced incidence of albedo breakdown in mandarins (Gonzalez-altozano and 

Castel, 1999). However, no research work has been reported on the effects of deficit 

irrigation on albedo breakdown and fruit quality in sweet orange grown under 

Mediterranean climate of Western Australia.  

A limited success in the reduction of albedo breakdown in sweet oranges has been 

reported with application of potassium nitrate, potassium sulphate as well as 

phosphorous (Bevington et al., 1993; Jones et al., 1967). Nutritional factors which 

result in thicker rind reduced the incidence of albedo breakdown in sweet orange  

(Ali et al., 2000; Bevington et al., 1993; Embleton et al., 1973; Jones et al., 1967; 

Monselise et al., 1976). Some authors reported that lower levels of Ca in oranges are 

associated with albedo breakdown (Storey et al., 2002; Treeby and Storey, 2002). 

Treeby and Storey (2002) showed that the application of five foliar sprays of either 

0.11% or 0.33% calcium starting in December – January period or the January - 

February period at an early stage of ‘Navel’ orange fruit growth resulted in decreased 

albedo breakdown as calcium sprays increased the Ca levels in the rind and albedo of 

the fruit. However, increased calcium concentration in fruit does not always 

eventuate with the foliar applications of calcium solution as calcium is xylem mobile 

(Schonherr, 2001; Treeby and Storey, 2002) and cuticles are the first barriers to 

prevent the penetration of calcium into fruit (Schonherr, 2001). Therefore, the 

attempt to enhance the uptake of calcium into fruit with different surfactants has been 

reported in apples (Roy et al., 1996) and mango (Singh et al., 2000). Whilst, no 

information is available on the effects of different surfactants on improving the 

uptake of calcium with the foliar spray application of calcium and relating this to the 

incidence of albedo breakdown in sweet oranges. 
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Boron has been reported to be involved in increasing the soluble forms of calcium 

and stimulating its movement into the apple fruit (Shear, 1975; Zude et al., 1997). 

The binding calcium to the cell walls was associated with the presence of boron. 

Smith and Reuther (1950) reported that the absorption of calcium was reduced with 

the high boron concentration in the leaves and fruit of citrus. The foliar application of 

boron have been reported to increase fruit size, soften the rind of fruit, decrease the 

rind thickness and increase the percentage of juice and the ascorbic acid content in 

sweet orange (Tariq et al., 2007). However, Smith (1955), Boaretto et al. (1997) and 

Maurer and Truman (2000) reported that yield, fruit size, rind thickness and fruit 

quality parameters such as juice content, soluble solids concentration and titratable 

acidity were not affected with the foliar application of boron in ‘Navel’ and 

‘Valencia’ oranges. No research work has been reported on the effects of foliar 

application of boron on the incidence of albedo breakdown in oranges.  

The role of ethylene, a plant hormone, is well known in basic plant processes such as 

fruit maturity, ripening, and senescence (Ladaniya, 2007; Rath and Prentice, 2004). 

Ethylene has been reported to regulate fruit colour, flavour, chemical composition 

and texture in citrus fruits (Ladaniya, 2007; Oetiker and Yang, 1995). Monselise et 

al. (1976) reported that fruit with albedo breakdown produced higher concentrations 

of ethylene in the internal atmosphere of the fruit (0.09 mL·kg-1) than the normal 

fruit (0.04 mL·kg-1) in ‘Valencia Late’ orange. Exogenous application of ethylene 

has been reported to increase respiration rate, stimulate ripening, and enhance colour 

in citrus fruits (Agusti et al., 2002; Al-Mughrabi et al., 1989; Burg, 2004; Ladaniya, 

2007; Monselise et al., 1976; Porat et al., 1999). An increase in peel puffing in 

Satsuma mandarin was observed with the exogenous application of ethephon (250 

mg·L-1) seven days before harvest (Burg, 2004; Ladaniya, 2007). The research work 

reported on the role of ethylene in causing albedo breakdown in sweet oranges is not 

known.  

To date the research work conducted on the effects of severity of albedo breakdown 

on fruit quality, management of this disorder with deficit irrigation and exogenous 

application of Ca containing different surfactants and B are sporadic and 

inconclusive. Therefore in the current investigations, the effects of severity of albedo 

breakdown on fruit quality of ‘Navel’ sweet oranges were investigated. I also 

investigated the effects of regulated deficit irrigation, exogenous application of Ca 
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containing different surfactants and B on the incidence of albedo breakdown, textural 

properties of the rind and fruit quality of ‘Navel’ sweet oranges.  

The main objectives of my research were to:  

1. Determine the influence of severity of albedo breakdown on fruit quality in 

‘Navel’ oranges. 

2. Investigate the effects of deficit irrigation on plant water relations, yield, 

incidence of albedo breakdown and fruit quality in ‘Navelina’ orange. 

3.  Elucidate the effects of different surfactants on uptake of calcium, fruit 

quality, incidence of albedo breakdown and the textural properties of rind and 

fruit in ‘Washington Navel’ orange.  

4. Explore the influence of foliar application of boron on the incidence of 

albedo breakdown and the textural properties of rind and fruit in ‘Washington 

Navel’ orange. 

5. Investigate the role of ethylene in albedo breakdown, textural properties of 

rind and fruit in ‘Washington Navel’ orange. 
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CHAPTER 2  

General literature review 

 

2.1. Introduction 

Sweet oranges (Citrus sinensis [L.] Osb.) are probably native to central China and 

North East India. Sweet oranges are the most widely grown group and contribute to 

the largest production of all commercial citrus species in the world. Orange was first 

introduced from Brazil into Australia by colonists of the First Fleet and planted in 

New South Wales in 1788 (Davies and Albrigo, 1994; Spiegel-Roy and 

Goldschmidt, 1996). Based on the morphological characteristics, chemical 

constituents, and for convenience, sweet oranges are divided into four distinct groups 

including the common or round oranges, the ‘Navel’ oranges, the pigmented (red) 

oranges and the acidless (sugar) oranges. The round oranges are the most important 

commercial group of sweet oranges and are mainly used for processing. The second 

group of sweet oranges in the planted area and in the production are the ‘Navel’ 

oranges which are primarily planted for the fresh fruit market (Davies and Albrigo, 

1994; Godden, 1988; Spiegel-Roy and Goldschmidt, 1996).  

Orange production increased slightly in Asia, Europe and Oceania while it decreased 

in America and remained relatively stable in Africa from 2005 to 2007 (Table 2.1). 

Table 2.1. Orange production (tonnes) by different continents during 2005 – 2007 
(FAOSTAT, 2009)  

Continents Year 

 2005 2006 2007 

America 34,724,403 34,321,385 34,045,552 

Asia 16,231,571 17,005,493 17,419,153 

Europe 5,827,226 6,044,901 6,199,986 

Africa 5,585,416 5,666,007 5,647,433 

Oceania 507,351 580,365 593,940 

World 62,875,967 63,618,151 63,906,064 

 

Major orange producing countries and their total orange production (%) in 2007 are 

shown in Fig. 2.1. Brazil was the largest orange producer which accounted for 28% 
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of world orange production, followed by the United State of America that 

contributed about 12% to world orange production (FAOSTAT, 2009). 

               

India
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Mexico
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Brazil

28%

Spain

4%
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Italy

4%

Others

38%

Australia

1%

 

Figure 2.1. Orange production in different countries of the world in 2007 
(FAOSTAT, 2009) 

 

In 2006, approximately 2.76 million tonnes of fresh oranges were exported from 

different countries (Table 2.2).  

Table 2.2. Fresh oranges exports by principal countries in the world in 2006 
(FAOSTAT, 2009) 

Countries Quantity (tonnes) Value (1000  $) 

Spain 1,311,605 958,301 

South Africa 1,006,917 317,233 

United State of America 546,503 370,693 

Egypt 282,698 65,272 

Morocco 262,612 117,771 

Greece 227,298 107,659 

Turkey 219,401 89,651 

Argentina 177,703 59,774 

Netherlands 176,912 119,600 

Australia 127,536 100,306 

Italy 100,633 68,742 

World 5,317,682 2,762,121 

 

Spain contributed to the largest exporting quantities of oranges in the world with the 

production of 1,311,605 tonnes. South Africa and United State of America were also 
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the major exporters for fresh fruit export markets (FAOSTAT, 2009) although the 

United States is known for orange production mainly for processing due to their 

climatic and industrial capacity to produce high-quality, processed, frozen 

concentrate orange juice (Davies and Albrigo, 1994). In 2006, Australia ranked the 

eleventh among the other orange exporting countries with 127,536 tonnes which 

accounted 23.33% of total world orange exports (Table 2.2).  

The import of fresh oranges was approximately 5.5 million tonnes by different 

countries in 2006 (Table 2.3). Russian Federation led the world in importing fresh 

oranges. Western European countries were significant orange importing countries 

including The Netherlands, France, Germany and United Kingdom (Table 2.3). 

Canada and China also imported major amounts of fresh oranges.  

Table 2.3. Major orange importing countries in the world in 2006 (FAOSTAT, 2009)  

Countries Quantity (tonnes) Value (1000$) 

Russian Federation 509,842 281,359 

Netherlands 438,794 271,067 

Germany 438,101 302,265 

France 407,991 316,597 

United Kingdom 346,711 214,823 

Saudi Arabia 323,842 111,922 

Canada 209,189 137,875 

China, Hong Kong SAR 174,117 144,301 

Belgium 148,425 128,435 

World 5,504,652 3,315,632 

SAR = Special Administrative Region  

 

In Australia, oranges are the second important fruit crop after grapes with its 

production estimated at 585,000 tonnes from harvested area of 28,500 ha in 2006. 

The Australian orange production contributed to only 1% of the total world orange 

production (Fig. 2.1). 

Oranges are grown in New South Wale, South Australia, Queensland, Victoria and 

Western Australia but the most Australian orange production comes from New South 
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Wale (224,800 tonnes) in 2006 – 2007, followed by South Australia (167,400 tonnes) 

(Australian Bureau of Statistics, 2009).  

Although citrus industry of Western Australia contributes to only 5% of the total 

Australian citrus production, oranges in Western Australia have a good colour and 

taste leading to top grade in Australia. In Western Australia, oranges are grown from 

Gingin in the North to Bunbury in the South of Perth where soils and  climate are 

suitable and a good quality of irrigation water is available (Foord et al., 2004).  

2.2. Fruit growth 

Citrus fruit consists of two morphological regions: the pericarp (peel or rind) and the 

endocarp (pulp). The external layer of pericarp is called flavedo and the white 

internal layer is known as the albedo (Godden, 1988; Iglesias et al., 2007; Ladaniya, 

2007; Spiegel-Roy and Goldschmidt, 1996). According to the characteristics of the 

fruit growth, the development of the citrus fruit can be divided into three stages 

(Bain, 1958; Godden, 1988; Iglesias et al., 2007; Ladaniya, 2007; Spiegel-Roy and 

Goldschmidt, 1996). The length of the stages can be slightly changed depending on 

the citrus fruit variety and location. Generally, the length of stage I is from about 4 to 

9 weeks. This stage is the cell division period lasting from full bloom to cell division 

completed in all tissues except the outermost cell layers. The pericarp grows very 

quickly and the albedo can reach 90% of the fruit volume at this fruit development 

stage (Iglesias et al., 2007; Ladaniya, 2007; Spiegel-Roy and Goldschmidt, 1996). In 

‘Valencia’ oranges, this period can be longer depending on the date of the blossom 

(Bain, 1958; Godden, 1988). In Australia, this stage normally lasts from October 

(full bloom) to about mid December in ‘Navel’ oranges (Hutton et al., 2007). Stage 

II, a critical growth period, is the cell enlargement with the rapid morphological and 

physiological changes of fruits. At this stage the endocarp growth becomes very 

active and the volume percentage of the albedo is decreased (Godden, 1988; Iglesias 

et al., 2007; Ladaniya, 2007; Spiegel-Roy and Goldschmidt, 1996). In Australia, this 

stage lasts about 29 weeks and starts from mid December to mid July in ‘Valencia’ 

oranges (Bain, 1958) and to mid May in ‘Navel’ oranges (Hutton et al., 2007). Stage 

III is the fruit maturation period in which morphological, anatomical, and 

physiological changes are decreased. The flavedo colour also changes from yellow to 

orange in this stage (Bain, 1958; Iglesias et al., 2007; Ladaniya, 2007; Spiegel-Roy 

and Goldschmidt, 1996). This stage starts after the growth period (Stage II) 
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completion and finishes at the end of the harvest. In ‘Navel’ oranges in Western 

Australia, the stage III starts from mid May to November (Hutton et al., 2007).  

2.2.1. Fruit weight, volume and size 

The typical changes in weight, volume and size of the orange fruit during fruit 

growth were reported as indicated in Fig. 2.2 (Bain, 1958). During stage I the fruit 

size increased mainly because of the growth of the pericarp. The data in the Fig. 2.2 

shown clearly that the stage II was the most important stage of the citrus fruit 

growth.  

 

                       

Figure 2.2. Growth in fruit volume and fresh weight during fruit development in 
1954 (Bain, 1958). 

 

The maximum increase in fresh fruit weight and fruit size occurred during stage II 

due to the rapid growth of the pulp segments (Bain, 1958; Godden, 1988; Spiegel-

Roy and Goldschmidt, 1996). During stage III the growth rate of volume, fresh 

weight and radius of orange fruit decreased significantly. It has been reported that 

some factors affected the fruit size and fresh weight. Firstly, water stress can cause a 

reduction in fruit size, as the application of deficit irrigation decreased the fruit 

weight in mandarins (Gonzalez-altozano and Castel, 1999; Verreynne et al., 2001), 

grapefruits (Ritenour et al., 2003), oranges (Hutton et al., 2007; Treeby et al., 2007), 

lemons (Domingo et al., 1996) and pears and apples  (Behboudian and Mills, 1997). 

Secondly, nutrition is an important factor, which affects the fruit size and weight. 

Koo and Reese (1977) applied N and K treatment to ‘Temple’ orange tree for six 
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years and found that the K-treatment had a positive effect on fruit size and weight, 

while the N-treatment had the significantly negative effect on these fruit parameters. 

2.2.2. Rind weight and thickness 

In Valencia oranges, rind reached to the maximum in thickness at the end of the cell 

division stage. The rind became thinner during the cell enlargement and rind 

thickness slightly increased during the stage III with the expanding pulp (Fig. 2.3) 

(Bain, 1958; Spiegel-Roy and Goldschmidt, 1996).  

                    
 

Figure 2.3. Growth of rind thickness and fruit volume in the developing fruit of 
Valencia oranges (Spiegel-Roy and Goldschmidt, 1996)  

 

It has been reported that the rootstock is the main factor affecting the fruit rind 

thickness (Hutton et al., 2007; Treeby et al., 2007). The association of nutritional 

factors with rind thickness is also well known. Fruit with high phosphorous levels 

had thinner rind while rind was thicker in fruit with high levels of nitrogen and 

potassium (Bevington et al., 1993; Dick, 1995; Jones et al., 1967; McIntosh, 1998; 

Moulds et al., 1995; Sneath, 1987). Tariq et al. (2007) reported that rind was softer 

and thinner with the boron foliar application in sweet orange. It is well known that 

water deficit generally results in decreased fruit size (Davies and Albrigo, 1994; 

Kriedemann and Barrs, 1981) which may lead to an increase of rind thickness 

(Kriedemann and Barrs, 1981). Similarly, an application of water stress during fruit 

growth resulted in thicker fruit rind at maturation in oranges (Domingo et al., 1996; 

Ritenour et al., 2003; Treeby et al., 2007). Physiological disorders may be other 

factors affecting rind thickness. Jones and Embleton (1967), Jones et al. (1967) and 
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Sneath (1987) reported that rind was thinner in fruit with albedo breakdown than rind 

in normal fruit. 

2.2.3. Juice content 

Juice content reached at maximum during the enlarging cell phase and then reduced 

till fruit maturation (Fig. 2.4) (Bain, 1958; Spiegel-Roy and Goldschmidt, 1996).  

                        

Figure 2.4. Changes of juice content, soluble solids concentration and citric acid 
during fruit development (Bain, 1958). 

 

The effect of fertilizers on the juice content of the orange fruit was studied by 

different research groups, but unfortunately the reported results did not show 

agreement. The most intensive study on the ‘Temple’ orange had shown that K and P 

treatments did not have any significant effect on juice content whilst, the N treatment 

reduced this fruit parameter. These results are contrary to those reported on “Round” 

oranges (Koo and Reese, 1977). A relationship between irrigation and juice content 

has been reported. Lower juice content may be associated with water stress anytime 

during fruit growth and development in citrus (Ritenour et al., 2003). In contrast, 

Verreynne et al. (2001) and Velez et al. (2007) indicated that juice content was not 

affected with the application of deficit irrigation in citrus. Physiological disorders 

may contribute to the changes of juice content, as juice content was significantly 

higher in fruit with albedo breakdown than that in normal fruit (Jones and Embleton, 

1967; Jones et al., 1967; Sneath, 1987). 

2.2.4. Phytohormones 

It is well known that phytohormones play important roles in regulating the growth, 

development, maturity, ripening and senescence of citrus fruit during fruit growth 
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and development. Levels of auxins, gibberellins and cytokinins were high in young 

fruitlets while the levels of abscisic acid (ABA) and other growth inhibitors were 

higher during fruit maturation and senescence (Bain, 1958; Spiegel-Roy and 

Goldschmidt, 1996). 

The involvement of gibberellic acid in set and development of citrus fruit has been 

reported (Iglesias et al., 2007). The role of gibberellic acid in promoting cell division 

and cell enlargement indicated the association of gibberellic acid with the initial 

growth of fruit. A number of previous studies reported that the foliar application of 

gibberellic acid (20 mg·L-1) during an early stage of fruit growth (30 to 40 mm in 

diameter) significantly reduced albedo breakdown in sweet oranges (Dick, 1995; 

Gambetta et al., 2000; Gilfillan et al., 1981; Jona et al., 1989; Monselise et al., 1976; 

Moulds et al., 1995; Treeby and Storey, 1994; Tugwell et al., 1996). This suggested 

that gibberellic acid is also a factor influencing the compactness of albedo tissues, 

reducing cuticle permeability and delaying senescence (Agusti et al., 2002; Embleton 

et al., 1973; Iglesias et al., 2007; Ladaniya, 2007; Zaragoza et al., 1996).  

Cytokinins are involved in cell division as high levels of cytokinins were observed in 

developing ovaries at anthesis in citrus (Iglesias et al., 2007). 

It has been reported that auxins play a role in activation of cell enlargement as the 

levels of auxins were high during the beginning of phase II of citrus fruit growth 

(Iglesias et al., 2007; Ladaniya, 2007). The significant increase in final fruit size with 

the application of auxins including 2,4-DP and 3,5,6-TPA at the cell enlargement 

stage of fruit development indicated that auxins contribute to the controlling fruit 

size during the rapid growth phase of citrus fruit development (Agusti et al., 2002). 

The relationship of ethylene and fruit growth and development has been reported in 

the literature. The enhancement of colour in citrus fruit with the application of 

exogenous ethylene or ethephon indicated an important role of ethylene in fruit 

maturity, ripening, and senescence (Agusti et al., 2002; Al-Mughrabi et al., 1989; 

Burg, 2004; Ladaniya, 2007; Monselise et al., 1976; Porat et al., 1999). The increase 

in peel puffing in Satsuma mandarin with the application of ethephon (250 mg·L-1) 

seven days before harvest suggested that ethylene is also a factor responding to 

wounding or aging (Burg, 2004; Ladaniya, 2007). 
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2.3. Fruit quality 

2.3.1. Soluble solids concentration 

Soluble solids in orange fruit are mainly made of carbohydrates and organic acids 

which are recognised as the stable compounds and can reach 85% of the total soluble 

solids. The other chemical compounds (about 15 percent of the total soluble solids) 

contributing to the  soluble solids concentration of orange juice are inorganic 

compounds, amino acids, ascorbic acid, and small amount of pectins, essential oils, 

esters, glucosides, and other organic compounds which are relatively unstable 

(Sinclair, 1961). Soluble solids concentration in the orange fruit is varied from 10% 

to 20% of the fruit fresh weight (Davies and Albrigo, 1994). Soluble solids 

concentration is affected by fruit size. Sinclair (1961) reported that an increase of 

soluble solids concentration was obtained with a decrease in size of fruit. Irrigation 

management has been reported to be related to soluble solids concentration. The 

significantly higher soluble solids concentration was observed in fruit under deficit 

irrigation in mandarins (Gonzalez-altozano and Castel, 1999), oranges (Hutton et al., 

2007; Treeby et al., 2007) and ‘Marisol’ Clementine (Verreynne et al., 2001). The 

possible effect of fertility on the soluble solids concentration in orange fruit has been 

studied. It was found that P fertilization decreased the soluble solids concentration 

slightly, while the N and K fertilization did not show any effect on this parameter in 

‘Temple’ orange (Koo and Reese, 1977). Moss and Higgins (1975) found that the Ca 

concentration in the leaf contributed to the brix/acid ratio in ‘Late Valencia’ oranges 

in New South Wales. Location may be another factor influencing soluble solids 

concentration. Titratable acidity in ‘Autumn Gold’ varied from 0.74% to 0.92% 

depending on locations in California (Kahn et al., 2007). Genetic factor is well 

known to be associated with fruit quality. Pretel et al. (2004) found that soluble 

solids concentration was significantly different among orange varieties. Percentage 

of total soluble solids acid ratio was significantly higher in fruit with albedo 

breakdown than in normal fruit (Jones et al., 1967).  

2.3.2. Titratable acidity 

Acidity is the main factor which affects the orange fruit taste. Total acidity in the 

fresh orange juice includes the major amount of citric acid, followed by malic acid, 

oxalic acids and lesser amounts of other related acids (Davies and Albrigo, 1994; 

Iglesias et al., 2007). It was proposed that the citric acid formation during fruit 
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development occurred with the tricarboxylic acid cycle simultaneously. The total 

acid content of the orange juice could reach 5 volume percent (Spiegel-Roy and 

Goldschmidt, 1996). Soluble solids concentration increased and the acidity reduced 

at the end of stage II and toward to maturation in ‘Valencia’ oranges (Bain, 1958; 

Davies and Albrigo, 1994). It was found that the titratable acidity in orange fruit was 

affected by soil fertility. N and K fertilization increased the acid content in ‘Temple’ 

orange juice, while P fertilization showed the reverse effect (Koo and Reese, 1977). 

Irrigation is another factor that affects the titratable acidity in orange juice. Treeby et 

al. (2007) found that deficit irrigation increased the titratable acidity in orange juice 

at maturity. 

2.3.3. Organic acids 

Organic acids are principle source of acidic taste in fruit. The major acid attributed to 

the organic acids is citric acid in fruit juice, followed by malic acid. Succinic, oxalic 

and tartaric acids are in low concentrations in citrus juice (Clements, 1964a; Davies 

and Albrigo, 1994; Iglesias et al., 2007; Karadeniz, 2004; Matsumoto and Shiraishi, 

1981; Pretel et al., 2004; Shaw and Wilson, 1938). It has been reported that seven 

organic acids including citric, malic, quinic, tartaric, succinic, oxalic and ascorbic 

acids were found in the pulp of citrus fruit in acidless and acidic varieties. Oxalic, 

quinic and citric acids changed during fruit development whilst malic, tartaric, 

succinic and ascorbic acids remained stable. Quinic acid was the major organic acid 

and accounted from 46% to 64% of the total organic acids during the first 50 days of 

fruit development. Citric acid constituted 45% of the total organic acids in the pulp 

of mature fruit (Albertini et al., 2006). Clements (1964b) found that there was a 

tendency of reduction in citric and malic acids in juice in early season to prior to 

maturity during fruit development in ‘Valencia’ sweet oranges. Malic acid was the 

second major organic acid and accounted approximately 20% of the total organic 

acids in juice of ‘Valencia’ and ‘Navel’ oranges. Concentration of citric acid was low 

(0.01 – 0.02 meq·g-1) in both albedo and flavedo of fruit while the higher 

concentration of malic acid was observed in albedo and flavedo (0.01 -0.03 meq·g-1 

and 0.03 -0.07 meq·g-1, respectively) in ‘Valencia’ and ‘Navel’ oranges. 

2.3.4. Concentrations of total sugars  

Three well known sugars including glucose, fructose and sucrose were found in most 

mature orange fruit. In orange fruit, the amount of sucrose was much higher than 
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fructose and glucose. The sugar content in orange fruit increased more rapidly at 

ripening stage than rapid growth period. It was reported that the sugar concentration 

in orange juice (87.8 – 110.6 mg·mL juice-1) was higher than in the orange rind (67.4 

– 83.4 mg·g fresh weight-1) (Ladaniya, 2007). 

2.3.5. Ascorbic acid 

Ascorbic acid or vitamin C has been well known as an important part of the human 

nutrition. Citrus fruit is known as a major dietary source of ascorbic acid, although 

the precise biosynthetic pathway of this compound has not been identified. The 

ascorbic acid concentration in citrus juice increased at early fruit development stage 

and decreased at rapid growth period and ripening stage (Ladaniya, 2007). The 

concentration of ascorbic acid has been reported to be attributed to some factors. 

Ascorbic acid was attributed to genetic factor. Pretel et al. (2004) worked on 

‘Navelina’ and other sixteen traditional orange varieties and found that the 

concentration of ascorbic acid was highest (77.99 mg·100g-1) in ‘Capuchina’ variety 

and lowest (29.47 mg·100g-1) in ‘Blanca’ variety. The ascorbic acid content in the 

orange peel (1.3 – 2.2 mg·g fresh weight-1) was much higher than in the orange juice 

(0.4 – 0.6 mg·mL juice-1) (Eaks, 1969; Sinclair, 1984). It has been suggested that 

irrigation management was associated with the ascorbic acid concentration in citrus. 

Ascorbic acid was higher in lemon under deficit irrigation (Domingo et al., 1996). 

Significantly lower ascorbic acid was found in fruit with albedo breakdown than in 

normal fruit (Jones et al., 1967). However, the ascorbic acid content in citrus fruit 

was almost unchanged after harvest and during storage (Spiegel-Roy and 

Goldschmidt, 1996). 

2.3.6. Total antioxidants 

Antioxidants have been known as the anti carcinogenic agents. Antioxidant content 

and activity in the fresh orange juice become a major topic for some research groups 

(Huang et al., 2007; Rapisarda et al., 2008; Rapisarda et al., 1999). Unfortunately, 

very limited data are reported in the literature to date. The antioxidant content in the 

fresh orange juice is changed significantly depending on cultivars, environmental 

conditions of growing and fruit maturity (Rapisarda et al., 1999). The five main 

antioxidant groups including phenols, anthocyanins, flavanones, hydroxycinnamic 

and ascorbic acid in different orange juices were monitored and the experimental 

results showed that the antioxidant content varied in a very wide range in the orange 
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juice. The maximum total phenols (1147.2 µg·mL-1), anthocyanins (278,42 µg·mL-1) 

and flavanones (444.52 µg·mL-1) were found in Moto IV orange juice and the 

minimum concentrations of these antioxidant groups (total phenols (361.4 µg·mL-1), 

anthocyanins (not detectable) and flavanones (202.3 µg·mL-1) were found in 

‘Washington Navel’ orange juice. The maximum total hydroxycinnamic acid (140.2 

µg·mL-1) was found in the ‘Moro III’ orange juice. Like the other antioxidants, 

ascorbic acid concentration in orange juices changed significantly. The maximum 

concentration of this compound (781.4 µg·mL-1) was found in the ‘Tarocco II’ 

orange juice, while the minimum (417 µg·mL-1) was found in the ‘Washington 

Navel’ orange juice again. 

The effect of storage time at 6ºC on the antioxidant profile of five orange varieties 

(‘T. Messina’, ‘T. Meli’, ‘Moro’, ‘Ovale’ and ‘Valencia’) was studied. The research 

results suggested that in ‘T. Messina’, ‘T. Meli’ and ‘Moro’ oranges, the 

anthocyanins, flavanones and hydroxycinnamic acids concentration increased with 

storage time, but ascorbic acid had reverse effect slightly. In ‘Ovale’ and ‘Valencia’ 

oranges, the effect of storage time on the antioxidant profile had different trend, the 

flavanone concentration decreased with the storage time, while the ascorbic acid 

increased slightly (Rapisarda et al., 2008).   

2.4. Albedo breakdown 

2.4.1. Physiology of albedo breakdown 

Albedo breakdown, also known as creasing, is a physiological disorder with cracks 

in the internal white tissue (albedo) causing puffiness of orange peel (Bevington et 

al., 1993; Jones et al., 1967; Monselise et al., 1976; Sneath, 1987; Treeby and Storey, 

1994; Treeby and Storey, 2002; Tugell et al., 1993). Albedo breakdown was 

recognised and reported in the literature as an old problem to the citrus industry 

(Jones and Embleton, 1967). After that, this problem has been studied by many 

scientists to identify the factors or combinations of the factors, which cause this 

serious problem of orange fruit production. The albedo breakdown is extremely 

difficult to study because there is no visual symptom observed before its appearance 

(Jones et al., 1967).  Jones et al. (1967) suggested that albedo breakdown is a result 

of water stress. Monselise et al. (1976) reported that albedo breakdown can be 

recognised as a natural aging process of the orange fruit as it is associated with an 

earlier senescence of albedo due to the higher pectolytic activity (PE) and the content 
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of water-soluble pectin in affected fruit. As a consequence, the development of 

creases is connected to the degradation of pectin leading to the loosening of the 

connection between cells (Monselise et al., 1976). Later on, Li et al. (2009) found 

that albedo breakdown is a result of increased loss of pectin in the cellular walls of 

rind tissue of sweet oranges. These results are consistent with the findings of those 

who suggested the association of the activity of a pectin gelling enzyme and albedo 

breakdown (Bower, 2000). The results of Jones et al. (1967), Monselise et al. (1976) 

and Bower (2000) reported a contrary to the findings of Storey and Treeby (1994) 

who proposed that albedo breakdown is a result of the formation of fractures in 

albedo tissue during the post colour-break period. Albedo breakdown is greatly 

caused by changes in cell wall cohesion of adjoining cells at the middle lamella 

leading to the separation of white albedo cells (Moulds et al., 1995; Treeby and 

Storey, 1994). A number of previous studies reported that mineral nutrition including 

P, B, Ca, Mn, S, K and Mo in the trees and fruit was involved in albedo breakdown 

(Bower, 2004; Gambetta et al., 2000; Jones et al., 1967; Moulds et al., 1995; Treeby 

and Storey, 1994). Tugell et al. (1993) suggested that rapid increases in fruit size 

after first eight weeks of fruit development can cause albedo breakdown due to 

forming cracks in albedo tissue underneath the rind. Although albedo breakdown 

commonly observed visibly after colour break, it is well known that albedo 

breakdown develops at an early stage of fruit growth (in the first two months after 

petal-fall) (Bower, 2000; Monselise et al., 1976; Treeby and Storey, 1994). 

2.4.2. Economic loss 

Albedo breakdown causes a serious economic losses to the Australian citrus industry 

(Pellizo, 1997; Sneath, 1987; Treeby and Storey, 1994) and other citrus producing 

areas in the world including California (Ali et al., 2000; Jones et al., 1967), Israel 

(Monselise et al., 1976), Uruguay (Gambetta et al., 2000), South Africa (Bower, 

2004) and China (Li et al., 2009). It can affect up to 50% to 90% of fruit in some 

localities in South Africa and Australia, respectively, and the potential returns to 

Australian and Israeli citrus producers is estimated at 1 to 2 million dollars for each 

percentage reduction of albedo breakdown (Gilfillan et al., 1981; Goldie, 1998; 

Monselise et al., 1976; Pellizo, 1997). More than 60% of fruit were discarded 

because of albedo breakdown which was the most dominant single cause (followed 

by hail and mechanical bruises) in Israel (Monselise et al., 1976). It is a huge cost for 
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the citrus industry as it causes fruit being rejected at the packing shed after the most 

money investment in fruit has been done including irrigation, fertilizer application, 

pesticides, harvest and grading (Pellizo, 1997). Approximately 15% to 30% or more 

of ‘Navel’ orange fruit were eliminated from packing due to albedo breakdown in 

Australia and Uruguay, respectively, in some years (Gambetta et al., 2000; Tugell et 

al., 1993). 

2.4.3. Factor affecting incidence of albedo breakdown  

The factors affecting albedo breakdown of citrus fruit can be divided into three 

groups. 

2.4.3.1. �atural conditions of the orchard 

2.4.3.1.1 Climate 

2.4.3.1.1.1 Temperature 

Albedo breakdown incidence is not consistent from year to year, so that temperature 

during the season becomes one of the most interesting climate factors of albedo 

breakdown. Ali et al. (2000) reported that the temperature at an early stage of the 

orange fruit development is involved in the albedo breakdown incidence as the 

average maximum and minimum temperatures in February prior to flowering have 

been correlated with creasing problem at harvest. Treeby’s research results agreed 

with the above conclusion as he found that the summer temperature has a strong 

influence on albedo breakdown incidence in orange fruit (Treeby et al., 1995). It has 

been reported that the radial temperature gradient across the fruit is related to the 

albedo breakdown incidence as initial development of creasing occurs on the shaded 

side of the fruit toward the trunk (Jones et al., 1967). Albedo breakdown increased 

with the increasing range of temperature between maximum and minimum during the 

season (Shear, 1975; Sneath, 1987). In the Uruguay conditions, however, the albedo 

breakdown has not been influenced by the mean temperature (Gambetta et al., 2000). 

2.4.3.1.1.2 Light 

The incidence of albedo breakdown was more serious on the shaded side of the fruit 

than the exposed side. This means that lack of sun light may cause the albedo 

breakdown in sweet orange (Bevington et al., 1993; Treeby, 1996). 

2.4.3.1.1.3 Relative humidity 
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Another important climatic factor, which affects the albedo breakdown, is the 

humidity. The albedo breakdown has been reported to be related to the sudden 

changes in relative humidity at fruit colour break (Gonzalez-altozano and Castel, 

1999). Agusti et al. (2001) reported that the sudden changes in relative humidity at 

fruit colour break seem to be responsible for the development of albedo breakdown. 

Moisture stress is greatly associated with increased incidence of albedo breakdown 

(Dick, 1995; McIntosh, 1998). These results are opposite to the findings of Gambetta 

et al. (2000) who concluded that neither the relative humidity nor the rainfall may 

contribute to albedo breakdown incidence.  

2.4.3.1.2 Water stress 

Water stress is one of the most commonly discussed topics in the albedo breakdown 

literature. Albedo breakdown has been blamed on water stress during the late dry 

summer and autumn periods (Sneath, 1987). In contrast, Treeby (1996) found that 

the water stress does not seem to contribute to albedo breakdown.  

2.4.3.1.3 Location 

It has been reported that the albedo breakdown incidence varies from location to 

location in a given year. Unfortunately the specifications of the location (soil types, 

latitude, altitude) could not be found in the literature (Jones et al., 1967). 

2.4.3.2. Tree factors 

2.4.3.2.1 Rootstocks and scion cultivars 

‘Navel’ orange is more likely susceptible to albedo breakdown than ‘Valencia’ and 

other sweet orange varieties (Sneath, 1987). Rootstock plays a major part in the 

incidence and severity of albedo breakdown in ‘Navel’ oranges (Agusti et al., 2003; 

Moulds et al., 1995; Treeby et al., 1995). The difference of the uptake of water or 

nutrient in rootstocks and scions might be a factor influencing the incidence of 

albedo breakdown (Treeby et al., 1995). Incidence of albedo breakdown was lower 

on ‘Bellamy Navel’ orange trees grafted on sweet orange and ‘Cleopatra’ mandarin 

rootstock than those on citranges and trifoliate orange (Moulds et al., 1995; Treeby et 

al., 1995). Additionally, the highest proportion of fruit with albedo breakdown came 

from trees on rough lemon and Rangpur lime in ‘Bellamy Navel’ oranges (Moulds et 

al., 1995). Agusti et al. (2003) showed that the lower incidence of albedo breakdown 

was recorded on the tree grafted on sour orange than that on Carrizo citrange.  
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2.4.3.2.2 Crop loads and fruit size 

It has been reported that albedo breakdown incidence are associated with fruit size 

(Jones et al., 1967; McIntosh, 1998; Moulds et al., 1995; Sneath, 1987; Treeby et al., 

2000) and crop loads (Jones and Embleton, 1967; Sneath, 1987; Tugell et al., 1993). 

Albedo breakdown was greater in the smaller fruit (Jones et al., 1967). The higher 

incidence of albedo breakdown was observed in the trees which had higher yield 

(Jones and Embleton, 1967; Sneath, 1987). Consistent with this result, Jones et al. 

(1967) reported that albedo breakdown incidence was positively related to the 

number of fruit per tree as the percentage of smaller fruit is higher on the trees which 

produce higher yield (McIntosh, 1998). The results obtained on fruit size were 

opposite to the findings in Australia where the medium fruit (62-79 mm) were more 

likely to be susceptible to albedo breakdown than the smaller fruit (<62 mm) and the 

very large fruit (>79 mm) (McIntosh, 1998; Moulds et al., 1995; Treeby et al., 1995). 

Crop loads and the fruit number per tree do not contribute to incidence of albedo 

breakdown (Gambetta et al., 2000; Treeby et al., 2000).  

2.4.3.2.3 Fruit position 

Albedo breakdown was generally more severe on the fruit which were on the south 

half than those on the north half of the tree. The visual symptoms of albedo 

breakdown has also observed first on the fruit on the south half of the tree under 

southern California conditions (Jones et al., 1967). Creasing is more prevalent on the 

fruit, which are inside the canopy. It has been reported that albedo breakdown is 

often detected on the shaded side of a single fruit (Bevington et al., 1993; Jones et 

al., 1967; Treeby et al., 2000). 

2.4.3.2.4 Tree age 

It has been reported that the albedo breakdown incidence increased with the age of 

the tree (Moulds et al., 1995; Tugell et al., 1993). Treeby et al. (2000) suggested that 

tree age may contribute to incidence of albedo breakdown. Unfortunately, no related 

data has been reported. 

2.4.3.2.5 Fruit age 

Albedo breakdown is often worse when fruit remain longer on the tree in ‘Navel’ 

oranges (Dick, 1995; Jones et al., 1967; McIntosh, 1998; Moulds et al., 1995; Storey 

and Treeby, 2002). 

Chapter 2: General literature review 



 

 22 
 
 

2.4.3.2.6 +utrients 

2.4.3.2.6.1 Nitrogen, potassium, phosphorous and magnesium 

Nutritional factors which affect the rind thickness are highly associated with albedo 

breakdown. A number of previous studies reported that fruit with high phosphorous 

levels were more likely to be susceptible to albedo breakdown as these fruit had 

thinner rind. High levels of nitrogen and potassium in fruit increased rind thickness 

resulting in the lower albedo breakdown incidence (Bevington et al., 1993; Dick, 

1995; Jones et al., 1967; McIntosh, 1998; Moulds et al., 1995; Sneath, 1987). Ali et 

al. (2000) and Lovatt (2000) reported that both peel K and P concentrations at 

maximum rind thickness showed significantly positive correlation with rind 

thickness in October and significantly negative correlation with albedo breakdown 

incidence at harvest. The relationship of rind thickness in October and rind K 

concentration at maximum rind thickness explained 75% of the variation in albedo 

breakdown at harvest in ‘Valencia’ sweet oranges in California. Gambetta et al. 

(2000) found that concentrations of P and K were higher in the fruit with albedo 

breakdown than that in the normal fruit but there was no relationship between N 

concentration and albedo breakdown. However, albedo breakdown still develops on 

the fruit in which the levels of N, P and K are optimal. These results indicated that 

other factors are more important than N, P and K (Bevington et al., 1993; Jones et al., 

1967). Mg did not contribute to albedo breakdown (Gambetta et al., 2000). In 

contrast, Mg concentration was lower in fruit with albedo breakdown than in the 

normal fruit, although there were no differences in Mg concentration in the rind of 

fruit with albedo breakdown and normal fruit (Storey and Treeby, 2002). 

2.4.3.2.6.2 Calcium and Boron 

Calcium and boron affect the albedo breakdown incidence as discussed below in this 

chapter.  

2.4.3.3. Cultural practises 

2.4.3.3.1 Irrigation and water management 

Treeby et al. (2007) found that albedo breakdown incidence was significantly lower 

(48%) with the application of deficit irrigation (DI) and partial rootzone drying 

(PRD) over the whole growing seasons of 1999 and 2000 to `Bellamy’ Navel orange 

grafted on five rootstocks in comparison to control (60%) in New South Wales, 
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Australia. Similarly, Gonzalez-altozano and Castel (1999) concluded that reduced 

irrigation (by replacing 25% and 50% of potential evapotranspiration) at flowering 

and fruit set stage of fruit growth in 1995 and 1996 on ‘Clementina de Nule’ 

mandarin (Citrus clementina Hort. ex Tan.) resulted in the higher albedo breakdown 

incidence in the 25% treatment than in the 50% treatment in 1995. Both reduced 

irrigated treatments reduced the incidence of albedo breakdown (less than 1%) in 

1996. 

2.4.3.3.2 +utrition 

Jones et al. (1967) reported that N and K interaction and nitrogen rate influence 

albedo breakdown incidence. A significantly reduced incidence of albedo breakdown 

was a result of the soil application of increased N rate without application of K; 

however, albedo breakdown was not significantly affected with increased N rate or 

the high rate of K in ‘Valencia’ oranges during 4 year period from 1953 to 1956. The 

application of N in summer resulted in the lower incidence of albedo breakdown than 

the spring application. The soil application of only K reduced albedo breakdown 

(Jones and Embleton, 1967; Jones et al., 1967). Jones et al. (1967) also reported that 

two foliar sprays of KNO3 solution at 40 lb·100 gal. water
-1 commencing on March  

and on May, 1964 significantly reduced albedo breakdown from 42.6% to 27.2% in 

‘Valencia’ orange. Five foliar sprays of 2% Ca (NO3)2 starting at early stage of fruit 

development decreased albedo breakdown incidence in ‘Washington Navel’ oranges 

(Treeby and Storey, 2002). 

2.4.3.3.3 Plant growth regulators 

Many previous reports have indicated the involvement of gibberellins in albedo 

breakdown. The foliar application of GA3 (20 mg·L
-1) at an early fruitlet stage (30 to 

40 mm in diameter) significantly reduced incidence of albedo breakdown in 

‘Valencia’ and ‘Navel’ sweet oranges in Israel (Jona et al., 1989; Monselise et al., 

1976), South Africa (Gilfillan et al., 1981), Uruguay (Gambetta et al., 2000) and 

Australia (Dick, 1995; Moulds et al., 1995; Treeby and Storey, 1994; Tugwell et al., 

1996). The foliar sprays of a combined solution of GA3 (20 mg·L
-1) and a mixture of 

ammonium mono and di-phosphate (4%) and ammonium hydroxide (1%) in 

November was more effective in reducing albedo breakdown than spray GA3 alone 

but it delayed colour development (Monselise et al., 1976). The spray application of 

GA3 (20 mg·L
-1), acidified to pH 4, during cell expansion resulted in the significantly 
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lower incidence and severity of albedo breakdown than those during cell division 

(Bevington et al., 1993; Dick, 1995; Moulds et al., 1995; Treeby and Storey, 1994; 

Tugell et al., 1993). In Uruguay, spray application of GA3 (20 mg·L
-1) alone were 

equally effective with the foliar sprays of the combination of GA3 and potassium 

nitrate (2%) or mono-amonium phosphate (2%) commencing at fruit of 40 mm to 55 

mm in diameter (Gambetta et al., 2000). 

2.5. Regulated deficit irrigation 

2.5.1. Concept of regulated deficit irrigation 

Deficit irrigation term has been used since 1970 for a practical irrigation method, at 

which the plant water status is kept below the maximum water potential for any part 

of the plant during their development. Deficit irrigation can be used to control the 

growth of the tree over the critical period. Moreover, deficit irrigation can be applied 

to control the growth of citrus fruit at any development stage. Due to the quick 

response of this method, deficit irrigation is widely used for citrus (Domingo et al., 

1996; Gonzalez-altozano and Castel, 1999; Hutton et al., 2007; Pérez-Pérez et al., 

2009; Treeby et al., 2007), apple, peach, pear (Behboudian and Mills, 1997; 

Kriedemann and Goodwin, 1988) and olive (Rouina et al., 2007). Deficit irrigation 

effectiveness depends on the time of application during the year. Generally, deficit 

irrigation is most effective at the active growth phase of the organs of the tree. The 

application of deficit irrigation in early season or during flowering will inhibit the 

fertilization while deficit irrigation applied at late season will reduce fruit size and 

yield. The application of deficit irrigation after harvest will increase the flower 

density in the next season and reduce the shoot and radial trunk growth. For long 

time application of deficit irrigation, it is difficult to establish the relationship 

between deficit irrigation and fruit growth as different effects between glasshouse 

and field experiment were observed (Behboudian and Mills, 1997). The other 

advantage of deficit irrigation is the improvement of water use efficiency. This is 

very important for the region, where water supply is limited (Kriedemann and 

Goodwin, 1988). 
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2.5.2. Regulated deficit irrigation and soil, plant water status 

2.5.2.1. Soil water content 

Soil water content is one of the most important parameters for the irrigation planning 

as it affects the root development and water up-take to the tree directly (Hutton et al., 

2007). As consequence, the photosynthetic and stomatal conductance was 

significantly affected by the soil water availability (Rouina et al., 2007). The relative 

water content values were used in the praxis of irrigation planning as there is no 

optimum volumetric soil water content for different types of tree and soil types. 

Rouina et al. (2007) reported that under the same irrigation conditions for different 

types of soil such as: sandy soil and sandy loam clay soil, the leaf water potential and 

the tree growth were differently affected. The application of deficit irrigation has 

strong effect on the plant water status on the ‘Fino’ lemon trees under low water 

retention capacity soil (Domingo et al., 1996). 

2.5.2.2. Leaf water potential 

Leaf water potential is sensitive with the deficit irrigation, especially at the late 

season application. It has been reported that stopping of irrigation in phase III of the 

fruit growth significantly reduced the leaf water potential (Pérez-Pérez et al., 2009). 

Domingo et al. (1996) reported that the leaf water potential decreased during deficit 

irrigation periods for both applied methods (reducing water all year except rapid fruit 

growth period and reducing at the rapid fruit growth period) on the Fino lemon tree. 

Similarly, Rouina et al. (2007) found that the leaf water potential for irrigated tree 

was -1.95 MPa while for the deficit irrigation trees were in the range of -3.2 MPa and 

-4.71 MPa in olives. 

2.5.2.3. Transpiration and stomatal conductance 

Plant water relation is mainly controlled by transpiration. Through transpiration 

process water escapes from the plant in the form of vapour through the stomata on 

the leaf. A high percentage of water in the plant will be lost and will affect the plant 

water status due to the large surface of the leaves (Kriedemann and Barrs, 1981).  

Transpiration process is affected by many factors. One of the major factors is the 

CO2 absorption. Water vapour diffuse from the evaporating surface of the leaf, but 

through this surface the CO2 is absorbed in the plant. This process will add a 
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significant resistance to the water diffusion rate (Kramer and Boyer, 1995; 

Kriedemann and Barrs, 1981).  

The rate of transpiration depends firstly on the plant condition itself and secondly on 

the leaf surrounding environment. The major factors of the plant conditions affecting 

the transpiration rate are the supply of water to the evaporating surfaces, the energy 

for water vaporisation and the resistances in the vapour path way. Temperature, 

absolute humidity and wind velocity around the plant are the main environmental 

factors because they affect vapour pressure different between the leaf surfaces and 

the outside air. As a consequence, it affects the driving for the water diffusion 

through the leaf directly (Kramer and Boyer, 1995).  

Stomata, located on the leaf, are the most important organ of the plant for the 

transpiration process. Stomata can open and close to control the plant water status. 

Normally, they open during day time and close in the night (Kriedemann and Barrs, 

1981). Under water deficit conditions, stomata will close to stop the transpiration 

process. Through this action the plant can reduce the water loss. The response of the 

stomata to the water deficit is different depending on varieties. ‘Valencia’ orange 

trees can sustain severe water stress with minimal or no detrimental effects (Hutton 

et al., 2007). 

2.5.2.4. Photosynthetic rate  

It is well-known that citrus plants have lower photosynthetic rates than other fruit 

trees, such as apple and peach. This may be due to the high stomatal resistance to 

CO2 diffusion which restricts its access to carboxylation sites (Papadakis et al., 

2004). 

Deficit irrigation strongly affects the photosynthetic of the tree as the shoot growth 

will be reduced by low xylem water potential. If the activity of water potential 

reduces further, the stomata will close and transpiration process will stop 

(Kriedemann and Goodwin, 1988). 
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2.5.3. Impact of regulated deficit irrigation on the vegetative and reproduction 

growth of plants 

2.5.3.1. Vegetative growth 

Deficit irrigation affects the plant growth throughout the year but the organs of the 

plant will be affected differently depending on the time of its application. Generally, 

the application at the more active stage of the organ does the stronger effects on them 

(Behboudian and Mills, 1997). Similarly, Kriedemann and Goodwin (1988) reported 

that deficit irrigation can be used over the critical growth period of the targeted 

organs to get the strongest impacts. The response of the plant under deficit irrigation 

depends on the genetic factors. It has been reported that the plants react differently 

under deficit irrigation (Hutton et al., 2007). Treeby et al. (1995) reported that the 

‘Bellamy’ Navel orange trees grafted on the Trifoliate orange rootstock had the 

strongest effect as compared to the other four rootstock tested. Furthermore, it has 

been suggested that ‘Valencia’ orange trees can handle water stress better than the 

other sweet orange tree varieties (Hutton et al., 2007). 

2.5.3.2. Shoot growth 

Behboudian and Mills (1997) reported that deficit irrigation significantly reduces the 

shoot growth of the plant because shoot is one of the most active parts of the plant. 

The shoot growth is reduced when the xylem water potential in the plant is lower 

than -0.6MPa (Hutton et al., 2007). 

2.5.3.3. Root growth 

It has been reported that the deep-rooted plants have less effect of deficit irrigation 

than the other plant types as the roots can access water from the wet lower soil layers 

(Kriedemann and Barrs, 1981). It is well known that orange tree has relatively 

shallow root system. The root system is  reduced further by deficit irrigation, the 

very strong effect of the deficit irrigation on the orange tree can be expected (Hutton 

et al., 2007). The root to shoot ratio increased under deficit irrigation leading to the 

plant more tolerant to cope with the deficit of soil moisture (Behboudian and Mills, 

1997). 
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2.5.3.4.  Trunk growth 

A part of a tree in the slowest response to the deficit irrigation is trunk (Kriedemann 

and Barrs, 1981). It has been reported that the trunk growth has been reduced under 

deficit irrigation and has very little impact from the time of application (Behboudian 

and Mills, 1997). 

2.5.3.5. Leaf growth 

Perez-Perez et al.  (2009) reported that under deficit irrigation, not only the number 

of the leaves was reduced through the reduction of the shoot but also the size of the 

leaves was significantly reduced. As the final result, the total leaf area of the tree was 

strongly reduced.  

2.5.3.6. Fruit yield and quality 

The relationship between yield and deficit irrigation has been reported in the 

literature. Kriedemann and Barrs (1981) concluded that an increase of water stress in 

the tree canopy may be associated with a high crop loads in citrus. Gonzalez-

altozano and Castel (1999) reported that the application of deficit irrigation (25% and 

50% of water control treatment) at flowering and fruit set reduced yield 62% and 

28%, respectively, while the application of these irrigation treatments at initial fruit 

enlargement reduce yield from 25% to 11%, respectively, due to fewer fruit number 

per tree in ‘Clementina de Nule’ mandarin in 1995. Yield was decreased 17% due to 

smaller fruit size with these irrigation treatments in 1996. Treeby et al. (2007) found 

that reduced water volumes by applied deficit irrigation and partial rootzone drying 

decreased crop loads in ‘Bellamy Navel’ oranges. In contrast, Ortuno et al. (2008) 

reported that deficit irrigation applied based on the maximum daily trunk shrinkage 

did not affect total yield and total number of fruit per tree in adult ‘Fino’ lemon tree. 

Similarly, Perez-Perez et al. (2009) concluded that deficit irrigation applied by cut-

off irrigation in phase III of fruit growth did not affect fruit yield in ‘Lane Late’ 

sweet oranges.  

It is well known that deficit irrigation greatly influences the fruit quality parameters 

in citrus. Riternour et al. (2003) reported that juice content was lowered with the 

water stress anytime during fruit growth and development in citrus. Gonzalez-

altozano and Castel (1999) and Verreynne et al. (2001) reported that the application 

of deficit irrigation increased the total soluble solids, acids in the juice and the ratio 
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of total soluble solids and titratable acidity in mandarins. Significant increase in 

soluble solids concentration due to deficit irrigation was observed in oranges (Treeby 

et al., 2007; Hutton et al., 2007). Domingo et al. (1996) found that deficit irrigation 

improved concentration of ascorbic acid in lemon fruit. Verreynne et al. (2001) and 

Velez et al. (2007) indicated that peel and juice content was not affected with water 

deficit in citrus. 

It has been reported that the rapid increase in fruit size after the first eight weeks of 

fruit development can cause the albedo breakdown incidence (Tugell et al., 1993) 

and deficit irrigation is a very good method to control the growth of the orange fruit 

(Hutton et al., 2007). Therefore, deficit irrigation should be a good tool for 

controlling albedo breakdown in sweet oranges. Treeby et al. (2007) reported that 

deficit irrigation reduced the incidences of moderate and severe albedo breakdown at 

the end of the season in ‘Bellamy Navel’ oranges. Gonzalez-altozano and Castel 

(1999) applied deficit irrigation at the flowering and fruit set phases, which are the 

critical periods of citrus fruit development and reduced the incidence of albedo 

breakdown.  

2.6. ;utrients 

2.6.1. Calcium 

2.6.1.1. Physiology and functions of calcium in plants 

Calcium is one of the essential macro-nutrients for plant growth and development. It 

builds the structure and permeability of cell membrane and stimulates cell division 

and elongation. Ca formes cross-links within the pectin polysaccharide matrix 

resulting in the strong structural rigidity of the cell wall (Easterwood, 2002). Calcium 

is a major part of cell wall as cell wall, especially in the middle lamella, stores 60% 

of calcium and the rest of calcium is in the cell membrane (Poovaiah, 1988; Huang et 

al., 2008). Therefore, the calcium deficiency in the cell walls during ripening results 

in solubilization of pectin and acceleration of senescence (Zaragoza et al., 1996). 

Calcium is released from the pectins in the middle lamella by the interaction of the 

pectinesterase and polygalacturonase leading to loosening and separating the cell 

wall. In addition, the leak in the membrane occurred, when calcium outside the 

cytosol decreased (Poovaiah, 1988).  
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2.6.1.2. The involvement of Ca in albedo breakdown 

It has been reported that the lower Ca concentration in rind and pulp has been 

associated with albedo breakdown in ‘Bellamy Navel’ sweet oranges in Australia 

(Treeby et al., 1995; Storey et al., 2002; McIntosh, 1998). Contrarily, Lovatt (2000) 

reported that albedo breakdown was significantly attributed to higher Ca 

concentration in rind in ‘Valencia’ sweet oranges in California. Inconsistent with 

these results, Ca does not seem to influence albedo breakdown in ‘Washington 

Navel’ oranges in Uruguay (Gambetta et al.,, 2000) or Ca seems to be less important 

in contributing to albedo breakdown than Mo or S in ‘Washington Navel’ sweet 

oranges in South Africa (Bower, 2004). Interestingly, albedo breakdown seems to be 

the results of non-uniform distribution of Ca within the albedo tissue as Ca 

concentration in the leaves of the tree on which fruit were affected by albedo 

breakdown were adequate (Treeby, 1996; McIntosh, 1998). Storey and Treeby 

(2002) reported that the ratios of K/Ca and Mg/Ca in albedo and pulp tissues were 

positively correlated with the albedo breakdown incidence in ‘Bellamy Navel’ sweet 

oranges in New South Wales. It has also been suggested that the ratios of K/Ca and 

Mg/Ca in the fruit were better indices than the Ca, K and Mg concentration alone. 

2.6.1.3. Absorption of calcium 

Foliar applications of calcium solution have not always significantly increased the 

calcium concentration in fruit as calcium is xylem mobile (Schonherr, 2001; Treeby 

and Storey, 2002) and cuticles are the first barriers to prevent the penetration of 

calcium into fruit (Schonherr, 2001). Saure (2005), Harker and Ferguson (1991) and 

Schlegel and Schonherr (2002) reported that Ca needs to be applied directly to the 

fruit surface to improve the penetration of Ca into apple fruit because the position of 

spray droplets affects the penetration of calcium chloride and trichomes, stomata and 

lenticels were also involved in penetration of all inorganic salts including CaCl2 

through the apple fruit cuticles (Schlegel and Schonherr, 2002; Manganaris et al., 

2005). These authors also claimed that the calcium penetration is highly correlated to 

a large number of trichomes which densely covered fruitlet surface in ‘Golden 

Delicious’ and ‘Cox Orange Pippin’ apple cultivars during this period. Therefore, 

spraying foliar calcium salt solution before June drop resulted in the highest rates of 

calcium penetration into apple fruits. Various factors have been reported to 

contribute to the increased calcium in the fruit such as the proportion of the fruit 
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surface, the velocity of penetration and the concentration of salt solution. High rate 

of calcium penetration during droplet drying on stomatous surfaces may be 

associated with rapid penetration into guard cells and stomatal infiltration in apple 

and pear leaves (Schlegel and Schonherr, 2002; Schonherr, 2001). In addition, 

calcium can be penetrated through cracks and discontinuous surface of fruits. The 

higher penetration rate of calcium chloride is associated with higher humidity in pear 

leaf cuticles as increased swelling of cuticles was highly correlated with increasing 

humidity (Schmitz-Eiberger et al., 2002; Schonherr, 2001 and Schonherr, 2000). 

2.6.1.4. Improvement of calcium uptake 

2.6.1.4.1 Chemicals used to enhance calcium uptake 

Calcium uptake can be improved with the application of the soluble form such as 

calcium nitrate or calcium chloride (Easterwood, 2002). It has also been reported that 

surfactant is an important factor involving the enhancement of the calcium uptake. 

Surfactant is known as a surface-active agent to improve physico-chemical 

characteristics of a spray solution and consequently to increase the efficiency of 

foliage-applied agrochemicals. Surfactants, which have hydrophilic and lipophilic 

groups, create the bridges between the aqueous solution and lipophilic waxes. The 

value of hydrophilic-lipophilic balance (HLB) mainly affected the improvement of 

mineral nutrient absorption by leaves. Ethoxylated alcohols, alkylphenols, sorbitant 

and alkylamines are the most frequently applied surfactants in agriculture. In theory, 

the surfactants which have the higher HLB value are more effective in the 

penetration of nutrients through the cuticular membrane. Wojcik (2004) reported that 

in practice absorption of leaf-applied nutrients is very effective when the optimal 

HLB values of the used non-ionic surfactants are ranged within 15-17. No research 

work has been reported on the effects of different surfactants in improving uptake of 

calcium in citrus fruits and warrants to be investigated. 

2.6.1.4.2 The pathway of surfactants to improve the calcium uptake 

 It has been reported that surfactants can enhance the uptake of calcium into plant 

tissues through five pathways. Firstly, surfactants enhanced the uptake of Ca ions 

due to improving a distribution of Ca ions as surfactants resulted in the lower contact 

angles of spray solution on the leaf surface (Schmitz-Eiberger et al., 2002; Harker 

and Ferguson, 1991; Schlegel and Schonherr, 2002). Greene and Bukovac (1974) 

Chapter 2: General literature review 



 

 32 
 
 

found that the stomatal penetration of NAA and silver nitrate into pear leaves was 

more effective with surfactants due to a decreased surface tension between the 

surface of solution drop and leaf surface. Similalry, Schonherr (2000) and Schonherr 

(2001) used astomatous isolated pear leaf cuticular membranes and found that the 

rate constants of Ca2+ penetration was highly increased by surfactants as retention 

and wetting of leaves can be improved due to a sufficiently low reduction of the 

surface tension between the liquid and leaf. These results are in agreement with those 

who found that surfactant should be added into the foliar spray solution of iron in 

citrus because the decreased surface tension of spray solution resulted in a good 

wetting of the waxy citrus leaves which are hard to wet. Therefore, stomatal 

penetration was more effective (Neumann and Prinz, 1974). Secondly, surfactants 

also induce the penetration of solutes through the stomata, cuticular membranes and 

the cell wall, eliminate or decrease the air layer between the liquid and leaf surfaces 

(Wojcik, 2004). Thirdly, an increase in binding capacity of the cuticle to Ca2+ was as 

a result of surfactants in improving the calcium uptake due to a reduction in the 

drying of droplets (Wojcik , 2004). Stock et al. (1992) reported that the foliar uptake 

of organic compound was improved with surfactant ‘Tween 20’ which had 

humectant properties to remain moist throughout the uptake in field beans and peas. 

Roy et al. (1996) and Saftner et al. (1997) demonstrated that pre-treatment of apple 

fruit with ‘Tween 20’, ‘Tween 80’ and ‘Tergitol 15-S-9’ enhanced Ca uptake as long 

alkyl chains in these surfactants are the moiety agents. Roy et al. (1996) pointed out 

that ‘Triton X-100’ resulted in a higher Ca uptake compared to ‘Tween 20’ or 

‘Tergitol 15-S-9 as ‘Triton X-100 had an alkylbenzen moiety which was more 

effective in absorbing Ca due to having better wetting agents. Harker and Ferguson 

(1991) reported that the rate of Ca2+ transport was increased with the addition of 

‘Armoblen T25’ and ‘Tween 20’ due to the increased binding capacity of the cuticle 

to Ca2+. Therefore, Ca2+ was removed from the solution. The Ca2+ contents in apple 

fruit were also increased with the application of ‘Armoblen NPX’ or ‘Tween 20’. 

Fourthly, the interaction between the added surfactants and the cuticles by diffusing 

into the cuticle along hydrophilic-lipophilic interfaces was also important pathways 

to induce the foliar uptake of organic compound. This process caused the dilation of 

hydrophilic pores leading to the decreased resistance of the cuticle by increasing in 

permeability of the cuticle to polar solutes. Finally, surfactants also removed sites of 

adsorption by damaging and extracting cuticle wax. In consequence, the mobility of 
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solutes was increased (Stock et al., 1992; Harker and Ferguson, 1991). Harker and 

Ferguson (1991) claimed that the adsorption of Ca ions was increased with added 

‘Armoblen T25’ but decreased with applied ‘Tween 20’ in apple fruit. 

2.6.2. Boron 

2.6.2.1. Physiology and functions of boron in plants 

Boron is an essential micronutrient for plant growth and fruit quality (Dong et al., 

1997; Maurer and Truman, 2000; Papadakis et al., 2003). Boron plays important 

roles in the citrus tree (Haas, 1929; Matoh, 1997; Haas, 1945; Zekri and Obreza, 

2003). Firstly, boron involves in sugar translocation and carbohydrate metabolism to 

keep the tree growth processes active and normal. Secondly, boron plays an 

important role in plant cell wall formation. As consequence, boron is required at the 

site of active cell division. Thirdly, boron plays a key role in flowering, pollen-tube 

growth, fruit fertilisation processes, N-metabolism and hormone activity. Boron also 

interacts with the other nutrients to control the tree growth, for example, transports 

potassium to guard cells for the proper control of internal water balance and 

maintains calcium in a soluble form to insure its proper utilization (Zekri and 

Obreza, 2003). The relationships between B and Ca are well established. Boron 

assists in binding calcium to the cell walls. Shear (1975) and Zude et al. (1997) 

reported that boron increased the soluble forms of calcium and promoted calcium 

movement into the apple fruit. High boron concentration in the citrus trees depresses 

calcium absorption (Smith and Reuther, 1950). 

2.6.2.2. Boron mobility in the citrus trees 

Most of the total boron content (50.9-92.2%) of the citrus plant is retained in the 

leaves and boron distribution within the citrus tree follows the following order: Basal 

leaf > top leaf > bark > root > stems > wood (Papadakis et al., 2003). Boron is found 

in the tree in two forms: boric acid (water soluble) and B-rhamnogalacturonan II 

complex (water insoluble) (Matoh, 1997). Boron is not redistributed from the old to 

the young organs in citrus plant (Boaretto et al., 2007). In orange fruit, the rind 

contains more boron than the pulp. The boron concentration in the orange fruit is 

related to the ratio between fruit and leaf number (Haas, 1945).  

It has been reported that boron absorption and distribution in the citrus tree depend 

on the citrus genotype and boron mobility mechanisms within the tree remain unclear 
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(Papadakis et al., 2003). It is well known that xylem mobility of boron is the main 

pathway within the tree and phloem mobility of boron is limited in the citrus tree due 

to the B-status of the tree (Boaretto et al., 2006; Boaretto et al., 2007). This 

conclusion is derived from two important research results. Firstly, for boron xylem 

translocation, the formation of Polyol-B-Polyol complexes in the photosynthetic 

tissue is necessary. Polyols (sorbitol, manitol, dulcitol) are found in many green trees 

but not in the citrus trees (Boaretto et al., 2006). Secondly, Papadakis et al. (2003) 

watered six boron concentrations with two-day intervals during 3-month period into 

two-year-old seedlings of sour orange and ‘Swingle’ citrumelo and found that the 

movement of boron is not in phloem as boron concentration in the leaf was much 

higher than that in other parts of the tree and boron concentration in the young leaves 

is much lower than in the old leaves for both genotypes. In contrast, Storey and 

Treeby (2000) analysed fruit nutrients during a period of 34 weeks with fortnight 

intervals on the ‘Bellamy Navel’ orange grafted on trifoliate orange rootstock and 

firstly found that manganese mobility is in the xylem. Therefore, boron should be 

translocated in phloem as boron and manganese move into fruits by different 

pathways. Secondly, the lower concentration of boron in citrus fruit than those in the 

leaf reflected the result of a significant movement of boron within citrus plant via 

phloem. Thirdly, boron can form complexes with fructose and myo-inositol, which 

involve in the boron transport in the phloem. Fructose and myo-inositol are present 

in citrus trees.   

Three other boron mobility mechanisms are proposed in the literature without any 

clear or direct evidences. Papadakis et al. (2003) proposed two different boron 

mobility mechanisms in the citrus trees: firstly, boron mobility can occur in xylem 

through transpiration processes and secondly, boron transport can follow the 

plasmalemma permeability through the cell wall mechanism. Furthermore, it has 

been reported that boron can form B-chelating compounds, which involve in the 

boron mobility in the rhizosphere (Papadakis et al., 2003). 

2.6.2.3. Boron deficiency 

Boron deficiency is more common than deficiency of any other micronutrients in 

citriculture and it affects all species of the citrus trees (Boaretto et al., 2008). The 

boron deficiency symptoms of the citrus trees appear when the boron concentration 

in the leaf is lower than 21 mg·kg-1 (Maure and Taylor., 1999; Hardy and Huett, 
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2005). Boron deficiency leads to the slight thickening of the leaves, chlorosis, curl 

downward and premature shedding of the leaves (Zekri and Obreza, 2003). The 

boron deficient trees have the splits in the bark of the branches, trunk and rootstock. 

Gum is often found in the vessels of the branches (Haas, 1945). Boron deficiency is 

easy to detect by citrus fruit observations. The fruits are hard and dry. The albedo is 

thicker than normal and has brownish discolorations (Zekri and Obreza, 2003). In 

oranges, the fruit are undersized, lumpy and misshapen (Foroughi et al., 1973). Gum 

deposit around the fruit axis and in the albedo of the rind is often detected (Haas, 

1945). The grapefruit shows clearly brown discolorations in the albedo (Haas, 1945). 

Under the boron deficient condition, citrus trees have limited flowering and gum can 

be seen at the tip of the flower. High fruit premature abscission is observed due to 

boron deficiency. 

2.6.2.4. Boron toxicity 

High boron concentration in the soil can injure citrus trees seriously (Haas, 1929). 

Boron toxicity of citrus tree occurs when the boron concentration in the leaf is higher 

than 260 mg·kg-1 (Hardy and Huett, 2005). The boron toxicity symptoms appear on 

the leaves clearer than any other parts of the tree. Firstly, the leaves become mottled 

between the veins near the tip, then this part turn to yellow, followed by a slight tip 

burn. Finally, the leaves become chlorotic and drop prematurely (Haas, 1929; Haas, 

1945). The boron toxicity is not equal for all citrus varieties, for example, leaves of 

‘Eureka’ lemon seedlings have boron toxicity symptoms clearly at the boron 

concentration of 2 mg·kg-1, while the leaves of ‘Valencia’ orange seedlings are 

unaffected under similar conditions (Haas, 1929). High boron concentration damages 

the leaf tissues and reduces the calcium absorption. As a consequence, the growth 

processes of the tree are stopped. 

2.6.2.5. Boron fertilizer applications 

In commercial fertilizer alkalimetal Borates (borax, potassium borate (K2B4O7.4H2O) 

are the most common boron source for boron soil application as known as granubor. 

Solubor, which contains boric acid and sodium borates (Na2B8O13.4H2O, 

Na2B4O7.5H2O, Na2B10O16.10H2O) is formulated for boron foliar application with its 

high solubility. Manganese borate (MnB4O7) has been used as boron source as well. 

Although manganese borate is water insoluble compound, but it can cause boron 

toxicity or treat boron deficiency successfully (Haas, 1929). Boron is leached easily 
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by high rainfall and leads to a temporary low boron concentration in the soil due to 

the water solubility of borax. 

The most common boron source in the commercial fertilizers is borax and boric acid. 

Boron fertilizer can be applied to the foliage or soil as citrus tree absorbs boron 

through roots and leaves (Boaretto et al., 2006). For foliar application, boric acid is 

the most common boron source due to its high water solubility (5.7g·100mL water-1) 

(Zekri and Obreza, 2003). Boron is applied to the citrus plants usually as foliar spray 

(Tariq et al., 2007; Zekri and Obreza, 2003; Abd-Allah, 2006; Maurer and Taylor, 

1999; Nguyen and Nguyen, 2006). This favourite method for boron application 

offers two important advantages. Firstly, foliar spray is more effective than soil 

application in correcting boron deficiency in citrus (Tariq et al., 2007). Secondly, 

foliar spray is safer than soil application as it provides better practical control in the 

field. Furthermore, boron soil application is not effective during dry springs and 

causes boron toxicity if applied during the summer rainy season (Zekri and Obreza, 

2003). Nguyen and Nguyen (2006) reported that the foliar application of boron to 

citrus trees should be done before flowering to get the maximum yield improvement. 

Boron application to the citrus trees must be carried out frequently due to the low 

mobility and restricted redistribution from the old to the young tree parts (Hardy and 

Huett, 2005). 

2.6.2.6. Effects of boron on plant yield and fruit quality 

Boron deficiency in orange production is reported very often. This problem causes 

citrus fruit yield reduction around the world (Foroughi et al., 1973; Boaretto et al., 

2006; Haas, 1945). Hard fruit, small fruit size and low yield are the major causes of 

boron deficiency resulting in economic loss. An inadequate level of boron in the fruit 

resulted in poor fruit quality in apple (Shorrocks and Nicholson, 1980). Rajput et al. 

(1976) found that foliar application of boron can improve growth, flowering, fruiting 

and fruit quality in mango. It has been reported that foliar boron application at the 

concentrations from 100 - 250 mg·L-1 on six-year-old ‘Cam sanh’ orange trees 

(Citrus nobilis var. typical Hassk) before flowering improved the yield (Nguyen and 

Nguyen, 2006). In combination with zinc, boron foliar spray increased the yield of 

orange trees up to 83.02%. This result clearly showed positive interactions among 

the micro-nutrients. Foliar application of boron on citrus trees can cure the “hard 

fruit” problem and eliminate the lumps formation in the albedo and increase the fruit 
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size, soften the rind and decrease the rind thickness. An increase of the percentage of 

juice and the ascorbic acid content was a result of boron foliar application (Tariq et 

al., 2007). In contrast, Smith and Reuther (1950), Boaretto et al. (1997) and Maurer 

and Truman (2000) reported that foliar application of boron did not improve yield, 

fruit size, rind thickness and fruit quality parameters such as juice content, soluble 

solids concentrations and titratable acidity in ‘Navel’ and ‘Valencia’ oranges. 

Apparently, no research work has been reported on the effects of B application on 

albedo breakdown in sweet oranges. 

2.7. Ethylene 

2.7.1. Role of ethylene 

Ethylene is well known as a ripening hormone involved in the basic process of fruit 

maturity, ripening, and senescence. Ethylene occurs naturally in fruit and accelerates 

the fruit softening due to disintegrating cell membranes making them leakier (Rath 

and Prentice, 2004; Ladaniya, 2007). The role of ethylene in changing fruit colour, 

flavour, chemical composition and texture in citrus fruits has been reported 

(Ladaniya, 2007; Oetiker and Yang, 1995). Based on the ethylene production 

patterns during fruit maturation, citrus fruit are known as non-climacteric (Porat et 

al., 1999). 

Ethylene is produced in the citrus tissues from a methionine amino acid by following 

three enzymatic reactions. The simplified scheme for ethylene biosynthesis pathway 

in plants can be described in Fig. 2.5. 

Second reaction of this ethylene synthesis process is the slowest reaction and is 

affected by the gene expression of the citrus tissues. S-adenosyl-l-methionine (SAM) 

simultaneously forms polyamines, which negatively affects the ethylene production 

in several plant tissues and retards senescence process in excised leaves and 

protoplast (Ladaniya, 2007; Wang and Joseph, 2002; Even-Chen et al., 1982). 1-

aminocyclopropane-1-carboxylic acid (ACC) is an intermediate compound in 

ethylene biosynthesis. The ACC is higher in wounding tissues than the fresh fruit 

tissues which contain a very low amount of ACC. The ethylene production is 

continuously maintained by protein as the inhibitors of protein synthesis reduce the 

ethylene biosynthesis in aged albedo tissue (Ladaniya, 2007). 
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Figure 2.5. The simplified biosynthesis pathway of ethylene in plant 

 

2.7.2. Endogenous ethylene 

The rate of ethylene evolution is very low in citrus fruits (<0.1 µL·kg-1·h-1). A large 

amount of ethylene was observed in the young, immature citrus fruits during the June 

drop (Hyodo, 1977; Ladaniya, 2007). Endogenous concentration of ethylene in citrus 

fruits has been reported to be very low (2 nL·h-1·fruit-1) (Ladaniya, 2007). The 

smaller and green oranges and grapefruits produced the higher amount of ethylene 

than the bigger and mature ones during the fruit growth. The amount of ethylene in 

grapefruits, ‘Valencia’ and ‘Navel’ oranges decreased to 0.4, 0.3 and 0.2 µL·kg-1·h-1, 

respectively, when the fruit weight increased to 62, 50 and 70 g, respectively, in the 

harvest of August 16. All those fruit produced no detectable ethylene (less than 0.01 

µL·kg-1·h-1) at harvest on September 4 when the fruit weight increased to 120, 64 

and 87 g for grapefruits, ‘Valencia’ and ‘Navel’ oranges, respectively (Eaks, 1970). 

Rasmussen (1975) monthly measured the ethylene in internal atmosphere of fruit in 

four citrus cultivars during seven months from December to July and reported that 

amount of ethylene was higher in the fruit of two early maturing orange ‘Hamlin’ 

and ‘Pineapple’ (up to 95 nL·L-1) than the late maturing ‘Valencia’ and ‘Lam 

Summer’ (less than 25 nL·L-1). He also reported that cellulase activity and loosening 

were increased as ethylene and abscisic acid increased at the fruit maturity in four 
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citrus cultivars. Wounding due to fungal attacks, insect damage or freezing injury 

increased the amount of ethylene and changed the metabolism in harvested citrus 

fruit tissues (Ladaniya, 2007; Hyodo, 1997). The increase of endogenous 

concentration of ethylene in excised albedo tissue of citrus fruit indicated the 

response of ethylene to wounding and aging (Hyodo and Nishino, 1981). Hyodo 

(1977) worked on the isolated albedo tissues of ‘Satsuma’ mandarin fruit and 

reported that ethylene evolution increased dramatically and peaked at maximum after 

incubation of 30 hours and then decreased steady in sliced albedo tissues.  Ethylene 

concentration was higher in late maturity fruit with albedo breakdown (0.09 mL·kg-1) 

than the normal fruit (0.04 mL·kg-1) on the same day in ‘Valencia Late’ orange 

(Monselise et al., 1976). 

2.7.3. Exogenous application of ethylene 

The citrus fruit can respond to exogenously applied ethylene by an increased 

respiration and promoting ripening although they produce a very low amount of 

ethylene (Porat et al., 1999, Ladaniya, 2007). Earlier research work indicated that 

exogenously applied ethylene or ethephon significantly improved colour in citrus 

fruits (Agusti et al. 2002; Ladaniya, 2007; Porat et al., 1999; Burg, 2004; Monselise 

et al., 1976; Al-Mughrabi et al., 1989). Porat et al. (1999) placed fruits in various 

concentrations of 1-methylcyclopropene (1-MCP) (0 – 100 nL·L-1) and then exposed 

them to 10 µL·L-1 ethylene for 60 hours and found that both 1-MCP and ethylene did 

not affect the loss of fruit weight and fruit firmness on green or orange ‘Shamouti’ 

oranges. The association of ethylene and wounding or aging has been reported by 

Burg (2004) and Ladaniya (2007) who concluded that the application of ethephon 

(250 mg·L-1) seven days before harvest increased peel puffing in ‘Satsuma’ 

mandarin. Ladaniya (2007) also stated that application of exogenous ethylene or 

ethephon increased amount of nootkatone which is an indicator of ripening or 

senescence in the rind of ‘Star Ruby’ grapefruit.  In contrast, Al-Mughrabi et al. 

(1989) reported that the application of two foliar sprays of either 100 mg·L-1 or 200 

mg·L-1 ethrel commencing before colour break of the fruit did not affect fruit 

physical characteristics such as fruit weight, rind thickness, rind weight and juice 

percentage in ‘Balady’ orange. Soluble solids concentration, acidity and ascorbic 

acid were also not affected with the foliar application of ethrel. Similarly, exposure 

of fruit to ethylene or ethephon did not increase pectolytic activity (PE) which is 
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involved in promoting senescence in sound mature ‘Valencia Late’ orange fruit 

(Monselise et al., 1976). 

2.7.4. Regulation of ethylene 

Ethylene biosynthesis is regulated by various factors of plant development and 

environment such as germination, fruit ripening, flower senescence, low temperature 

(Yang and Hoffman, 1984). The mechanical wounding and auxin and other 

regulators are also known to promote the ethylene production but the ethylene 

biosynthesis is blocked by ethylene biosynthesis inhibitors such as 

aminoethoxyvinyglycine (AVG) or Co2+ ion (Yang and Hoffman, 1984; Yu and 

Yang, 1979; Ladaniya, 2007). AVG is an effective inhibitor of ethylene production 

in plant tissues (Hyodo and Nishino, 1981; Ladaniya, 2007; Yang and Hoffman, 

1984). It is also reported that AVG blocked the conversion of SAM to ACC resulting 

in the inhibition of the ethylene biosynthesis (Hyodo and Nishino, 1981; Even-Chen 

et al., 1982). However, a combination of AVG (0.2 mM) and ACC (0.5 mM) did not 

inhibit ethylene production in the aged albedo tissue of citrus fruit indicating that 

wounding and aging promote the formation of ACC and the conversion of ACC to 

ethylene in the citrus albedo tissue (Hyodo and Nishino, 1981). Contrarily, Yu and 

Yang, (1979) reported that AVG inhibits the ethylene synthesis due to inhibition of 

the IAA-induced ethylene production. Burg (2004) reported that treatment of fruit 

with AVG reduced peel puffing in ‘Satsuma’ mandarin.      

It has been reported that cobalt is an ethylene action blocker which inhibits the 

conversion of ACC to ethylene (Lau and Yang, 1976; Yu and Yang, 1979; Yang and 

Hoffman, 1984). Lau and Yang (1976) treated apple tissues with CoCl2 at 1 or 10 

µM and found that application of Co
2+ (0.1 mM) strongly inhibited the ethylene 

production. The application of Co+2 at concentration of 50 µM inhibited 75% of the 

ethylene formation while the ethylene synthesis was abolished in the presence of 1 

mM Co+2 in mung bean hypocotyl (Yu and Yang, 1979). Even-Chen et al. (1982) 

worked on aged peel discs in ‘Mature Shamouti’ orange fruit and found that the 

combination of 2 mM Co2+ and 100 mM Na-phosphate inhibited 80% ethylene 

production due to inhibition of the conversion of ACC to ethylene. The exact role of 

ethylene in causation of albedo breakdown is not known and yet to be investigated. 
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CHAPTER 3  

General materials and methods 

  

3.1. Plant and fruit materials 

Sweet orange trees growing in commercial orchards at different locations in Western 

Australia were used for the experiments as described below.  

1. A commercial Niela orchard located in Bindoon (Latitude 31° 23' S, 

longitude 116° 06' E): the `Navelina’ sweet orange trees [(Citrus sinensis 

(L.) Osbeck] were 12 years old and grafted on ‘Swingle citrumelo’  

(Poncirus trifoliata [L]. Raf.) x (Citrus paradisi Macf.) rootstock and were 

used for deficit irrigation experiment. They were spaced 6.00 m x 2.00 m 

with a north-south row direction. The soil is gravely pale sandy loam with 

poor water holding capacity. 

2. A commercial Westralian Fruits orchard located in Gingin (Latitude 31° 

21' S, longitude 155° 55' E): twenty- two years old ‘Washington Navel’ 

orange trees [Citrus sinensis (L.) Osbeck] grafted on [Poncirus trifoliata 

(L.) Raf.] rootstock were used for the experiments of the development of 

albedo breakdown during fruit maturation, surfactants added into Ca spray 

solution and boron spray.  The trees were spaced 7.50 m between rows and 

2.70 m within rows and rows directed north-south. Trees were irrigated by 

micro sprinkler system installed under trees in each row. The soil is a 

sandy loam. 

3. A commercial orchard located in Gingin, Western Australia: three sweet 

orange varieties from ‘Navel’ orange group [Citrus sinensis (L.) Osbeck] 

including ‘Leng Navel’, ‘Autumn Gold’ and ‘Washington Navel’, were 

used for the experiments of the effects of the severity of albedo breakdown 

on fruit quality among locations and the role of ethylene in albedo 

breakdown. The soil is a sandy loam. All selected sweet orange trees were 

22 years old grafted on ‘Troyer citrange’ hybrid rootstock [Citrus sinensis 

(L.) x Poncirus trifoliata (L.) Raf.]. Trees were planted in a north-south 

row direction (6.50 m between rows and 1.50 m within rows). 

Chapter 3: General materials and methods 



 

 42 
 
 

4. Rosy Reds, the commercial orange orchard located in Chittering (Latitude 

31° 28' 60S; longitude 116° 5' 60E): twelve-year-old ‘Washington Navel’ 

sweet orange trees were grafted on ‘Troyer citrange’ hybrid rootstock 

[Citrus sinensis (L.) x Poncirus trifoliata (L.) Raf.] and used for the 

experiment on the effects of the severity of albedo breakdown on fruit 

quality among cultivars. The trees were spaced 6.00 m x 2.00 m and 

planted in north-south row direction. The soil texture is red loam.  

5. Harvey Citrus located at Harvey (Latitude 33° 05' S; longitude 115° 54' E): 

thirty-year-old ‘Washington Navel’ sweet orange trees were grafted on 

‘Troyer citrange’ hybrid rootstock [Citrus sinensis (L.) x Poncirus 

trifoliata (L.) Raf.] and used for the experiment on the effects of the 

severity of albedo breakdown on fruit quality among cultivars.  Trees were 

spaced 6.00 m x 2.50 m and rows directed north-south. The orchard soil is 

clay loam.  

6. A commercial Fawcett Orchards at Serpentine (Latitude 33° 22' S; 

longitude 115° 59' E): thirtynine-year-old ‘Washington Navel’ sweet 

orange trees were grafted on ‘Troyer citrange’ hybrid rootstock [Citrus 

sinensis (L.) x Poncirus trifoliata (L.) Raf.] and used for  the experiment on 

the effects of the severity of albedo breakdown on fruit quality among 

cultivars. Trees were spaced 7.60 m x 3.80 m and planted in north-south 

row direction. The soil is clay loam. 

For fruit quality experiment, similar cultural practices including irrigation, 

fertilization, weed control and pest management were applied to all the experimental 

trees at Gingin, Chittering, Serpentine and Harvey.  

3.2. Determination of soil volumetric water content 

Soil volumetric water content (θ) was determined at depths of 300 mm and 600 mm 

within the main rootzone where 80% of orange roots was distributed (Kriedemann 

and Barrs, 1981; Mikhail and El-Zeftawi, 1979) using a MPM 160 moisture probe 

(ICT International Pty Ltd, Armidale, New South Wales, Australia). Two 

measurements were done at 50 cm away from the tree trunk on both sides of each 

orange tree (Mikhail and El-Zeftawi, 1979) when the orchard was irrigated after six 

hours (four measurements per treatment unit) (Kriedemann and Barrs, 1981). Soil 

volumetric water content was expressed as percentage. 
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3.3. Measurement of midday stem water potential (ψψψψmd) 

Midday stem water potential (ψmd) was determined from 11.00 to 13.00 using a 

pressure chamber (Model 3000, Soil Moisture Equip. Corp, Santa Barbara, CA, 

USA) and expressed as MPa. Measurements were monitored on two fully exposed 

mature leaves per tree from the middle third of the tree (four leaves per treatment 

unit). Leaves were covered with aluminium foil at least two hours before taking 

reading and carefully excised at the petiole using a surgical blade (Paramount 

Surgimed Ltd., Okhla Pahse-II, New Delhi, India) and then placed in chamber within 

20 seconds of collection. High purity nitrogen gas (concentration 1.4 sm3, U.N. No. 

1066, BOC Gases Australia Ltd., Lismore, NSW, Australia) was used to apply 

pressure into the chamber until leaf sap appeared at the cut cross-sectional area of 

vascular tissue.   

3.4. Measurement of stomatal conductance  

Stomatal conductance was determined from 11.00 to 13.00 using a leaf porometer 

AP4 [(Model Sc-1 (Steady State Diffusion Porometer), Decagon Devices Inc., 

Pullman, WA, USA]. Measurements were taken on two fully exposed mature leaves 

and one mature leaf at the shade side of canopy (three leaves per tree).  

3.5. Estimation of endogenous ethylene  

Endogenous ethylene concentration of the orange rind was determined following the 

procedure described below.  

3.5.1. Extraction of endogenous ethylene  

Endogenous ethylene from fruit rind was extracted following a partial vacuum 

method as discussed by Saltveit (1982). The system to extract internal ethylene 

consisted of a plastic desiccator filled to 75% capacity with the saturated ammonium 

sulphate aqueous solution. The outlet located on the desiccator head, was connected 

to a vacuum pump. This system consisted of a pressure indicator and a small pump 

(model 2107 CD18-194A, Dynapumps, Perth, Australia). A small glass container 

with the internal volume of 200 mL collection flask was used to collect ethylene. The 

collection container was filled with the saturated ammonium sulphate solution and 

placed in the desiccator with the small opening faced upward. The small opening of 

funnel shape container was sealed with a rubber septum (Altech Associates, Inc. 

Illinois, USA). Orange rind was carefully removed from normal fruit and fruit with 
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albedo breakdown. Two fruit of each group (normal and albedo breakdown fruit) 

were used for ethylene determination. The rind samples were put into a small net 

bag. The peel net bag was first dipped into ‘Tween ‘20 solution (0.01%) for 20 

seconds at room temperature and then placed in the collection container. The air-

bubbles-free collection container sat in the desiccator fairly stable. The desiccator 

was vacuumed and the pressure was kept constant at 85 p.s.i for six minutes. At the 

end of this process, one mL gas was collected from the collection container through 

the rubber septum using a 5 mL gas tight syringe (SGE, International Pvt. Ltd., 

Victoria, Australia) and immediately injected into a gas chromatograph (Agilent 

Technologies, 6890 N Network GC system, Palo Alto, CA, USA).  

3.5.2. Specifications of Gas Chromatograph 

A gas chromatograph (Agilent Technologies, 6890 N Network GC system, Palo 

Alto, CA, USA) was used for determining concentrations of endogenous ethylene.  

 

 

 

 

 

 

 

Figure 3.1 A typical chromatogram of 8.0 µL·L-1 ethylene standard (A) and ethylene 
in orange rind (B). 

 

It was fitted with a 2 m-long stainless steel Supelco Porapapak-Q column (outer 

diameter 1/8 inches, mesh size 80/100) and a flame ionization detector. The carrier 

gas was nitrogen. The GC-Column, injector and detector temperature were kept 

constant at 110°C, 100°C and 250°C, respectively. 

Endogenous ethylene peak was identified by comparing the retention time with 

standard ethylene. The ethylene production was calculated by using ethylene peak 

area and calibration curve and expressed as µL·kg-1·hour-1. 
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3.6. ;utrient analysis 

3.6.1. Sample preparation 

Fully developed six - month old spring flush leaves (25 /tree) from non-fruiting shoot 

and five fruit per tree were randomly collected for nutrient analysis. The leaves and 

fruit from each tree were collected from unshaded position at about 1.50 m height at 

the north, east, south and west points of the tree. All leaves and fruit collected were 

free of damage from insects or diseases. 

3.6.2. Measurement of mineral concentrations 

Following washing, the leaves, rind and pulp of fruit were dried in an oven at 60°C ± 

2°C for 72 hours and milled and sieved through a 1 mm screen.   

 

 Leaf, rind or pulp of orange (approximately 0.2 g) 

       + 2 kerosene drops + 4 mL of 1 + 1 nitric/perchloric acid mixture 

    

    The pre-digested solution  

        

    The digested solution 1 

 

        

    The digested solution 2 

 

       .    

   The blanks (Colourless digested solution 3) 

 

       . 

   The digested solution 4 (remaining 8% acid) 

       

                             Final solution 

 

    Recorded reading on the ICP-AES  

Figure 3.2 Flow chart of mineral analysis from leaf, rind and pulp of oranges 
(McQuaker et al., 1979). 

Overnight pre-digestion 

Heating at 70°C  

Heating at 110°C for 60 min 

Increasing to 140°C for 2 hours 

Heating at 160°C for 30 min 

Increasing to 200°C for 30 min 

Heating at 250°C for 17 min 

Cooling at 150°C for 30-40 min 

+ Distilled water (19.5 mL) 
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Powered samples were digested by heating for 5 hours with a mixture of nitric acid 

(70% w/w) and perchloric acid (70% w/w) (ratio 1:1 in volume). After cooling 

period, the digest solutions were diluted with distilled water to form the final 

solutions. Mineral concentrations were analysed by using Radial Inductively 

Coupled Plasma Optical Emission Spectrometry (VISTA – PRO, CCD Simultaneous 

ICP-OES, VARIAN, Australia) which operated in simultaneous mode (McQuaker et 

al., 1979). 

3.7. Determination of albedo breakdown incidence and severity 

The incidence of albedo breakdown was examined on the fruit from whole tree. 

Following the recommendation of Treeby and Storey (2002), based on the 

appearance of fruit surface, three categories of albedo breadown were assigned: none 

(no albedo breadown), moderate (0% to 50 % of fruit surface affected) and severe 

(more than 50% of fruit surface affected). The incidence of albedo breakdown was 

expressed as percentage of fruit affected with albedo breakdown. The following 

formula was used to calculate the albedo breakdown (AB) severity based on using a 

rating scales described above by multiplying the number of fruit scored with the 

same value of the hedonic scale with the corresponding scale number. Finally, the 

resultant number was divided by the total number of fruit. 

 

( )[ ]
100 x 

 valueratinghighest  x assesedfruit  of Total

category ratingin fruit  ofnumber number x  Rating
  (%)severity  AB
∑

=  

 

      

 

 

 

 

 

 

 Figure 3.3. A normal fruit (A), typical appearance of fruit with albedo breakdown 
(B) and cracks in the albedo (C) 

Chapter 3: General materials and methods 

(B) (C) (A) 



 

 47 
 
 

3.8. Texture profile analysis   

Textural properties of rind such as hardness, adhesiveness, cohesiveness, springiness, 

fracture, tensile strength force and fruit firmness from normal fruit and fruit with 

albedo breakdown were determined using a texture analyser as described in details 

below (TA Plus, AMETEK Lloyd instruments Ltd., Hampshire, UK).  A personal 

computer with Nexygen® software was interfaced to a texture analyser. A 5/16 

Magness-Taylor probe, with a 500 N load cell was used for the measurement of 

textural parameters.   

3.8.1. Rind puncture test 

Rind sample from two fruit groups (normal and fruit with albedo breakdown) were 

cut in the size of 2.5 cm wide x 0.6 cm thick using a slicer (Zyliss Easy slice 2” 

folding Mandolin slicer, Swiss) to give uniform sections for determining rind 

puncture test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. A typical curves for puncture test of normal fruit rind (A) and fruit rind 
with albedo breakdown (B) from a textural analyser (TA Plus, AMETEK Lloyd 
instruments Ltd., Hampshire, UK) 

(A) 

(B) 
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Two rinds samples were dissected 90 degrees apart per fruit. Ten fruit of each 

mentioned fruit group were tested from each tree. The rind sample was placed onto 

the flat plate. A cylinder probe of 4.00 mm diameter attached to the load cell was 

used. The speed of probe was 50 mm/min. Hardness is the maximum force of the 

first penetration when the rind sample is contacted to the probe at 70% of rind 

sample thickness. Cohesiveness was measured as the ratio of the work area during 

the second compression and the work area during the first compression. Springiness 

(mm) was measured as the ratio of the detected height of the product on the second 

compression and the original compression distance. Fracture force (N) is the force at 

the first significant peak during the first compression of product. 

3.8.2. Rind tensile strength test 

The rind tensile test was determined to measure the behaviour of the orange peel up 

to the rind deflection of 10 mm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. A typical curves for tensile strength test of normal fruit rind (A) and 
albedo breakdown fruit rind (B) from a textural analyser (TA Plus, AMETEK Lloyd 
instruments Ltd., Hampshire, UK) 

(A) 

(B) 
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A rind sample section was carefully removed from each fruit in the size of 2.5 cm 

wide x 5.0 cm length x 0.6cm thick using a slicer to give uniform sections. Ten fruit 

of each fruit group (normal and albedo breakdown fruits) were used for each test. A 

sample section of orange rind was held using two clamps. One clamp was fixed to 

the base of the machine while another one was attached to the moveable load cell. 

The rind sample was subjected to axial tensile loading until rind deflection of 10.0 

mm at the crosshead speed of 100 mm/min and preload of 10 N. The rind tensile 

strength force was calculated at the maximum load and limit points where the rind 

deflection occurred. 

3.8.3. Fruit compression test 

The fruit with the height of about 8.5 cm were used for each compression test. Each 

fruit was placed between two flat plates with the stem axis perpendicular to the plate. 

The crosshead speed was 200 mm/min. This test was completed at strain of 25% of 

fruit height. Ten fruit of each fruit group (normal and albedo breakdown fruits) were 

sampled for each test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. A typical curves for burst test of normal fruit rind (A) and albedo 
breakdown fruit rind (B) from a textural analyser (TA Plus, AMETEK Lloyd 
instruments Ltd., Hampshire, UK) 

(A) 

(B) 
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3.9.  Determination of rind, flavedo and albedo thickness 

Ten mature fruit collected at north, east, west and south points of each tree at about 

1.5 m high were sampled to determine rind, flavedo and albedo thickness using an 

electronic digital calliper. The measurements were done at the equatorial region of 

each fruit. 

3.10. Determination of rind and pulp dry matter contents  

Ten mature fruit collected at north, east, west and south points of each tree at about 

1.5 m high were sampled to determine dry matter contents. Fruit were first washed 

with tap water and then in distilled water twice to remove soil or dust. Rind was 

carefully removed from the pulp. Rind and pulp were separately cut into small pieces 

and dried in an oven at 600C ± 20C to constant weight. Dry matter was expressed as 

g·100 g-1 fresh sample. 

3.11. Determination of fruit quality parameters 

Five mature fruit selected at north, east, west and south sides of each tree at about 1.5 

m high were weighed and the juice was squeezed using a citrus juicer (Sunbeam 

citrus juicer, TE 2600, Sunbeam Co. Ltd., made in China to Sunbeam’s 

specification). The freshly extracted juice was used for determining fruit quality 

parameters including percentage of juice content, juice pH, soluble solids 

concentration, titratable acidity, ascorbic acid and organic acids. 

3.11.1. Juice content 

Juice content was calculated using the formula below and expressed as percentage.  

100 x 
htFruit weig

 weightJug - weight Juice
Juice % =  

3.11.2. pH of juice 

Juice pH was assessed using a digital pH meter (Cyberscan pH 510, Eutech 

Instrumnet Pte Ltd., Singapore). The electrode probe was dipped into 20 mL of 

freshly extracted juice. The reading was taken when the output stabilized. 

3.11.3. Soluble solids concentration 

Soluble solid concentrations (SSC) were recorded by measuring the refractive index 

using an infrared digital refractometer (Atago-Palette PR 101, Atago Co. Ltd, 

Itabashi-Ku, Tokyo, Japan) at 20°C and expressed as percentage.  
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3.11.4. Titrable acidity 

Titratable acidity (TA) was determined by titration to phenolphthalein endpoint. 0.1 

N NaOH was added into a mixed solution including 5 mL freshly extracted juice, 10 

mL neutral water (pH = 7) and six drops of phenolphthalein until the solution just 

started to change colour to pink. This was the end point of titration. The following 

formula was used to calculate titratable acidity which was expressed as gram per 100 

mL citric acid.  

 
sample of Volume

64 x NaOH ofmolarity  x  valueTitre
  )-mL 100 (gacidity  Titratable 1 =⋅  

 

3.11.5. Ascorbic acid 

Ascorbic acid concentration was determined following the combined method of 

Jagota and Dani (1982) and Malik and Singh (2005).  

 

Freshly extracted orange juice (5 mL) 

      + 25 mL 6% metaphosphoric acid 

   containing EDTA disodium salt (0.18%) 

      

            Mixed – well solution 

 

       

       Supernatant 

 

           Ascorbic acid extract 

          (400 µL) 

  

          

     

Recorded absorbance at 760 nm 

 

Figure 3.7. Flow chart of determining ascorbic acid from freshly orange juice. 

 

 Homogenised 

Centrifuged at 3000 rpm for 15 min 

Extracted 

+ 1400 µL distilled water 
+ 200µL 3% metaphosphoric acid 

+ 200 µL diluted folin reagent 
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Freshly extracted juice (5 mL) was mixed well in 25 mL of 6 % metaphosphoric acid 

containing 0.18% (w/v) of ethylenediamine tetraacetic acid disodium salt (EDTA). 

The solution was then centrifuged at 3000 rpm for 15 minutes using a centrifuge 

(Eppendorf Centrifuge 5810R, Hamburg, Gemany).The sample was prepared by 

mixing of 400 µL supernatant, 200 µL (3%) metaphosphoric acid, 1.4 mL distilled 

water and 200 µL diluted folin reagent (5 mL deionised water : 1 mL folin reagent). 

After 10 minutes, the absorbance of sample was taken at 760 nm using a UV-vis 

spectrophotometer (Jenway 6405, Dunmow, Essex, U.K.). Ascorbic acid 

concentration was calculated using a standard curve of L-ascorbic acid and expressed 

as mg ascorbic acid per 100 mL fresh juice. 

3.11.6. Individual organic acids 

3.11.6.1. Chemicals 

Citric, malic and tartaric acids purchased from Sigma-Aldrich, St. Louis, U.S.A and 

succinic acid purchased from Fluka, Buchs SG, Swizeland.  

3.11.6.2. HPLC analysis 

Organic acid concentrations were determined by using the high performance liquid 

chromatograph (HPLC Waters 1525 Binary HPLC Pump, Model code 5CH, Model; 

Waters 2414 Refractive Index Detector, Model code 487 and Waters 717 plus Auto 

sampler, Model code 71P). Freshly extracted juice (1 mL) was diluted with 19 mL 

mQ water. The diluted juice was centrifuged at 5000 rpm for 10 minutes using a 

centrifuge (Eppendorf Centrifuge 5810R, Hamburg, Gemany).  The juice sample (20 

µL) was injected into HPLC system after being filtered through a 0.22-µm nylon 

syringe filter (Altech Associates, Baulkham Hills, New South Wales, Australia). A 

Bio Rad Aminex HPX – 87 ion exclusion column (300 x 7.8 mm) preceded by a 

Cation-H Bio Rad Micro-Guard column (30 x 4.6 mm) was installed in a high 

performance liquid chromatograph system. The degassed mobile phase was 0.005 M 

H2SO4. The flow rate of the mobile phase was 0.6 mL/min. The temperature for the 

operation of the column and the column guard was 65°C. Absorbance of the column 

effluent at the wavelength of 210 nm was recorded for individual organic acids 

analysis purpose. Organic acids concentration was calculated using a standard curve 

of citric acid, malic acid, succinic acid and tartaric acid and expressed as g.L fresh 

juice-1. 
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3.11.6.3. Standard preparation 

Standard solutions of individual organic acids were prepared as following: both citric 

and malic acids (1 g·L-1); succinic and tactaric acids (0.1 g·L-1). The standard 

solutions volume of 4, 8, 12, 16 and 20 µL were injected into the HPLC system 

following the same procedure conditions as described in Section 3.11.6.2. The 

calibration curve for each organic acid was generated using Water Breeze Software 

(Version 3.30) by plotting the peak areas from the chromatogram against the injected 

weight of the related organic acid. The UV detector was set at 210 nm for the 

calibration works for the mentioned organic acids. The relationship between the peak 

area and amount is shown by ‘a’ (slope), ‘b’ (intercept) and r values in Table 3.2. ‘a’ 

and ‘b’ represent the coefficients of the regression equation y = ax + b, where x is 

amount of the organic acid, y is peak area and r is correlation coefficient of the 

equation. The ‘r’ values for all individual organic acids were very high showing 

almost perfect linearity (r = 0.999). 

3.11.6.4. Elution orders and retention times 

The elution order and retention times of the various organic acids identified in 

‘Navel’ sweet orange juice sample are shown in Table 3.1. The characteristics of the 

calibration curves for organic acids are shown in Table 3.2. The chromatogram in 

Fig. 3.6 (A) and Fig. 3.6 (B) show the organic acids peak in the standard solution and 

‘Navel’ sweet orange juice, respectively. 

Table 3.1. Elution order and retention times of different organic acids used for 
identifying the organic acids concentration in ‘Navel’ sweet orange juice.  

Elution order Standard Retention time (min) Detection wavelength (nm) 

1 Citric 15.88 210 

2 Tartaric 17.09 210 

3 Malic 18.85 210 

4 Succinic 23.46 210 
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Table 3.2. Analytical characteristic of the calibration curves of the mentioned organic 
acids. 

Standard Slope (a) Intercept (b) r 

Citric 2.13e+005 -1.46e+004 0.999 

Tartaric 2.56e+005 -4.31e+003 0.999 

Malic 1.63e+005 -4.71e+004 0.999 

Succinic 1.10e+005 -2.14e+003 0.999 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.8. HPLC chromatograms of the standard solution (A) and ‘Navel’ sweet 
orange juice (B) at 210 nm. Peak 1: Citric acid; peak 2: Tartaric acid; peak 3: Malic 
acid; peak 4: Succinic.  
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3.12. Statistical analysis 

The data from Experiments 1, 2 and 3 were subjected to one-way ANOVA and data 

from Experiments 4 and 5 were subjected to two-way ANOVA using Genstat 9 

release 9.1 (Lawes Agricultural Trust, Rothamsted Experimental Station, UK). The 

least significant difference (Fisher’s protected LSD) was calculated at P≤ 0.05. To 

ensure the validity of statistical analysis, all the variables of ANOVA were checked.   
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CHAPTER 4  

Development of albedo breakdown during fruit maturation, the relation 

between location and the incidence of albedo breakdown and the severity of 

albedo breakdown among locations and cultivars influencing  fruit quality in 

‘;avel’ sweet oranges [Citrus sinensis (L.) Osbeck.] 

 

 

Abstract 

During fruit maturation, the incidence of albedo breakdown was recorded four times 

(at 265 ± 5, 286 ± 5, 323 ± 5 and 332 ± 5 days after full bloom) in ‘Washington 

Navel’ sweet orange in 2007 and 2008. It was also recorded at four different 

locations in Western Australia (Gingin, Chittering, Serpentine and Harvey) and the 

effects of its severity on fruit quality were investigated in 2006. The effects of the 

severity of albedo breakdown on fruit quality in three different cultivars of ‘Navel’ 

oranges (‘Leng Navel’, ‘Autumn Gold’ and ‘Washington Navel’) were also studied 

in 2005. Sampled fruit were classified in three categorises of albedo breakdown 

incidence in 2005 and four categorises in 2006 based on the surface of fruit being 

affected. The incidence and severity increased slowly after colour break but they 

increased quickly after commercial harvest in 2007 and 2008. The significantly 

lowest incidence and the severity in ‘Washington Navel’ sweet orange were observed 

at Harvey in comparison to three different locations in 2006. Regardless of locations 

and cultivars, the severity of albedo breakdown did not affect the major internal fruit 

quality attributes such as juice content, titratable acidity, concentration of soluble 

solids, ascorbic acid, citric, and malic acids whilst it significantly decreased 

concentration of succinic acid in 2005 and 2006 and increased tartaric acid in 2005. 

Location and cultivar significantly affected fruit quality parameters in ‘Navel’ sweet 

oranges. 

4.1. Introduction 

Albedo breakdown is a physiological disorder of sweet orange fruit characterised by 

the cracking of white albedo tissues due to an abnormal separation of cells 

underneath the rind resulting in a weak rind. The initial development of albedo 

breakdown occurs at the early fruit growth period after the completion of cell 

division (Jona et al., 1989; Storey and Treeby, 1994). However, it is usually only 
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visible at the colour break stage during fruit development and tends to increase 

during fruit maturation (Bower, 2004; Dick, 1995; Jones et al., 1967; Moulds et al., 

1995; McIntosh, 1998). Albedo breakdown has been responsible for dramatic 

economic losses to the Australian citrus industry with an estimation of $20 to $40 

millions each year due to 20% or more of fruit being lost from export market for 

‘Navel’ oranges (Pelizzo, 1997). 

Climatic, cultural practices, genotype, and nutritional conditions have been reported 

to be associated with the incidence of albedo breakdown. The incidence and severity 

varies form year to year and from location to location and among cultivars (Sneath, 

1987; Treeby et al., 1995). Treeby et al. (1995) reported that trees grafted on sweet 

orange had significantly lowest incidence of albedo breakdown than those grafted on 

Carrizo citrange or Troyer citrange. Mediterranean sweet oranges had higher 

incidence of albedo breakdown than other midseason varieties or ‘Navel’ or 

‘Valencia’ oranges (Le Roux and Crous, 1938). Hearn (1988) reported that ‘Sunstar’ 

and ‘Midsweet’ cultivars grafted on ‘Carrizo citrange’ had no incidence of albedo 

breakdown while ‘Pineapple’ cultivar was susceptible with albedo breakdown in 

Florida. 

Fruit produced from highly productive trees, small fruit and fruit with thin peel will 

increase susceptibility to albedo breakdown (Moulds et al., 1995; Jones et al., 1967; 

Tugell et al., 1993; Ali et al., 2000). Thus, nutritional factors which increase peel 

thickness are negatively correlated with albedo breakdown in sweet oranges The 

higher levels of nitrogen and potassium in the tree reduce albedo breakdown as they 

increase the fruit rind thickness whilst, high levels of phosphorus in the fruit increase 

albedo breakdown due to thinner fruit rind (McIntosh; 1998, Tugell et al., 1993; 

Jones et al., 1967). In contrast, Treeby et al. (1995) found no relationship between 

crop load, small fruit and albedo breakdown in sweet orange. Tree physiological 

factors are associated with albedo breakdown as fruit held longer on the tree after 

commercial harvest stage results in higher incidence of albedo breakdown (Tugell et 

al., 1993; Dick; 1995; Moulds et al., 1995; McIntosh, 1998; Sneath, 1987; Jones et 

al., 1967). Old tree is positively correlated to the albedo breakdown (Tugell et al., 

1993).  

Fruit with albedo breakdown had significantly higher specific gravity, thinner peel, 

higher percentage of juice, lower acid content, including ascorbic acid, as compared 
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to normal fruit (Jones et al., 1967; Jones and Embleton, 1967; Sneath, 1987). It has 

also been reported that fruit with albedo breakdown was more mature as they had a 

significantly higher percentage of total soluble solids and acid ratio than normal fruit 

(Jones and Embleton, 1967). In contrast, Goldie (1998) reported that internal fruit 

quality parameters were not affected with albedo breakdown.  

 Information on the influence of severity of albedo breakdown on fruit quality or the 

effects of locations on albedo breakdown incidence and fruit quality is sporadic and 

inconclusive. These observations prompted to investigate the effects of fruit maturity 

on development of albedo breakdown and have also investigated whether fruit 

quality parameters are affected by severity of albedo breakdown among different 

locations and sweet orange cultivars for ‘Navel’ oranges. 

4.2. Materials and methods 

4.2.1. Experimental site, plant materials 

4.2.1.1. Experiment 1: Development of albedo breakdown during fruit growth and 

maturation  

The experiment was carried out in 2005 to 2008 at a commercial orchard located in 

Gingin, Western Australia (Latitude 31° 21' S, longitude 155° 55' E). Twenty-two 

years old orange trees grafted on ‘Troyer citrange’ hybrid rootstock [Citrus sinensis 

(L.) x Poncirus trifoliata (L.) Raf.] with a 7.5 m by 2.7 m spacing were used for the 

experiment. The row direction was north – south. The soil was a sandy loam. All the 

experimental trees received similar cultural practices. 

Fruit diameter was measured on ten fruit tagged per tree during fruit development 

and maturation period from 97 ± 5 DAFB to commercial harvest with three weeks 

interval by using an electronic digital calliper. After commercial harvest (286 ± 5 

DAFB), fruit diameter was still measured two times at 323 ± 5 and 332 ± 5 DAFB. 

The albedo breakdown incidence was determined four times at 265 ± 5 DAFB (when 

albedo breakdown can be visibly observed), 286 ± 5 DAFB (at commercial harvest), 

323 ± 5 and 332 ± 5 DAFB (after commercial harvest). The incidence was 

determined by assessment of all fruit on the tree based on the appearance of fruit 

surface as described in Section 3.7. Percent fruit with albedo breakdown was 

calculated. The experimental design was a randomised block design with four 

replications. Two uniform trees were treated as an experimental unit.  
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4.2.1.2. Experiment 2: Incidence of albedo breakdown in ‘Washington �avel’ at 

different locations and the effects of its severity on fruit quality  

The experiment was carried out in July 2006. ‘Washington Navel’ sweet orange trees 

grafted on Troyer citrange hybrid rootstock [Citrus sinensis (L.) x Poncirus trifoliata 

(L.) Raf.] were used at four commercial orchards located in four distinct locations 

including Gingin, Chittering, Serpentine and Harvey, Western Australia. In Gingin, 

the soil is sandy loam. Twenty-five years old orange trees were used for the 

experiment. Planting distance is 6.50 m x 1.50 m. In Chittering, the soil texture is red 

loam. Trees were 12-years old spaced at 6.0 m x 2.0 m. In Serpentine, the soil is clay 

loam. Thirty-nine years old trees with a 7.60 m by 3.80 m spacing were selected. In 

Harvey, the orchard soil is clay loam. Trees were thirty years old and spaced at 6.00 

m x 2.50 m. The row direction was north – south in all the orchards at the locations. 

All the experimental trees at all the locations received similar cultural practices 

including irrigation, fertilizers, weed control and pest management. 

One hundred fruit were harvested from 2 metre-squares from one side throughout 

another side of each tree from the middle canopy. Two hundred fruit were from each 

replication and albedo breakdown incidence was recorded. Following the method of 

Treeby and Storey (2002) with some modifications, based on the appearance of fruit 

surface, four categories of albedo breakdown were determined: nil (no albedo 

breakdown), slight (less than 25% of fruit surface affected), moderate (from more 

than 26% to less than 50% of fruit surface affected) and severe (more than 51% of 

fruit surface affected).  The albedo breakdown incidence and severity was calculated 

as described in Section 3.7. 

Ten fruit in similar size of each albedo breakdown category of two trees from each 

location were chosen to form a replication for determination of fruit quality 

parameters. 

The experimental design was two-factor completely randomised block design with 

four replications. At each location, two uniform trees were treated as an experimental 

unit. 
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4.2.1.3. Effect of severity of albedo breakdown on fruit quality for different 

cultivars of ‘�avel’ oranges  

The experiment conducted in July 2005. Three cultivars of ‘Navel’ sweet orange 

group [Citrus sinensis (L.) Osbeck] including ‘Leng Navel’, ‘Autumn Gold’ and 

‘Washington Navel’, were selected at the commercial orchard located in Gingin, 

Western Australia. ‘Leng Navel’, ‘Washington Navel’ and ‘Autumn Gold’ are early, 

mid and late maturing cultivars, respectively (Lacey and Foord, 2006). The soil was 

a sandy loam. All selected sweet orange trees were twenty-two years old grafted on 

‘Troyer citrange’ hybrid rootstock [Citrus sinensis (L.) x Poncirus trifoliata (L.) 

Raf.]. Tree spacing was 6.00 m between rows and 1.50 m within rows planted in 

north – south row direction. All the experimental trees received similar cultural 

practices during the growing season. 

Four uniform trees of each cultivar mentioned above were selected for this 

experiment. Forty fruit from each tree of each cultivar were randomly collected and 

classified according to the albedo breakdown severity at the commercial harvest 

maturity. Based on the affected surface of fruit, the albedo breakdown grade was 

divided into three categorises: nil (no albedo breakdown), moderate (1-50 % of fruit 

surface affected) and severe (>50% of fruit surface).  

Single tree was treated as an experimental unit and included four replications for 

determination of fruit quality parameters. The experimental layout was two-factor 

completely randomised block design. 

4.2.1.4. Determination of other fruit quality parameters 

Five fruit of each albedo breakdown category of each tree from each cultivar were 

sampled for determination of other parameters of fruit quality. Juice was squeezed by 

using a citrus juicer (Sunbeam citrus juicer, TE 2600, Sunbeam Co. Ltd., China) for 

determination of juice content, juice pH, soluble solids concentration, titratable 

acidity, ascorbic acid and individual organic acids as mentioned in Section 3.11. 

4.2.1.5. Ascorbic acid 

Ascorbic acid concentration was determined following the combined method of 

Jagota and Dani (1982) and Malik and Singh (2005) as detailed in Section 3.11.5. 

Ascorbic acid concentration was expressed as mg ascorbic acid·100 mL fresh juice-1. 
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4.2.1.6. Individual organic acids 

Organic acid concentration was determined by using the high performance liquid 

chromatograph (HPLC) as described in Section 3.11.6. 

4.2.2. Statistical analysis 

The data from Experiment 1 were subjected to one-way ANOVA and those from 

Experiments 2 and 3 to two-way ANOVA using Genstat 9 release 9.1 (Lawes 

Agricultural Trust, Rothamsted Experimental Station, UK). The least significant 

difference (Fisher’s protected LSD) was calculated at P≤ 0.05. To ensure the validity 

of statistical analysis, all the assumptions of ANOVA were checked. 

4.3. Results 

4.3.1. Incidence of albedo breakdown during fruit development and 

maturation 

The fruit diameter increased rapidly from 97 ± 5 DAFB to 244 ± 5 DAFB and then 

the growth rate became moderate until commercial harvest. Later on, the fruit 

diameter was unchanged until 332 ± 5 DAFB (Fig. 4.1A). The trends of fruit growth 

recorded as diameter in 2005-2006 and 2006-2007 were similar. 

The first visible symptom of albedo breakdown appeared after colour break at 244 ± 

5 DAFB when fruit have almost developed to full size in 2007 and 2008. Later on, 

the albedo breakdown incidence dramatically increased until 332 ± 5 DAFB during 

both years. The severity of albedo breakdown increased steadily after 244 ± 5 DAFB 

to commercial harvest (286 ± 5 DAFB). After this period, it increased markedly at 

later stages of harvest up to 332 ± 5 DAFB (Fig. 4.1B). 
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Figure 4.1. Changes in fruit diameter (mm) in 2005-2006 and 2006-2007, the 
incidence of albedo breakdown in 2007 and 2008 during fruit development in 
‘Washington Navel’ (A) and severity of albedo breakdown (B) during fruit 
development and maturation in 2007. Commercial harvest was at 286 ± 5 DAFB. 

 

4.3.2. Incidence of albedo breakdown in ‘Washington ;avel’ at different 

locations 

The albedo breakdown incidence and severity were significantly lowest in 

‘Washington Navel’ orange at Harvey as compared to Gingin, Chittering and 

Serpentine in 2006. The incidence and severity of albedo breakdown in ‘Washington 

Navel’ orange did not differ significantly at Gingin, Chittering and Serpentine in 

2006 (Fig. 4.2). 

4.3.3. Effects of severity of albedo breakdown on fruit quality at different 

locations 

Fruit weight was not significantly affected by the different levels of severity of 

albedo breakdown at all the locations (Table 4.1). The different levels of severity 

of albedo breakdown did not significantly affect juice content, its pH, soluble 

solids concentration (SSC), titratable acidity, ascorbic acid and individual organic 
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acids except decreasing succinic acid at Gingin, Chittering, Serpentine and 

Harvey in 2006 (Tables 4.1 and 4.2). 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.  Incidence of albedo breakdown (%, A) and albedo breakdown severity 
(%, B) in ‘Washington Navel’ sweet orange at different locations in 2006. Different 
letters on means indicate significant differences at P ≤ 0.05. n = 4 replications. 
Vertical bars represent standard error of differences of means. 

 

Different locations significantly affected the juice content, juice pH, soluble solids 

concentration, titratable acidity, ascorbic acid and individual organic acids (Tables 

4.1 and 4.2). The interactions between different levels of severity of albedo 

breakdown and location were found to be non-significant for fruit weight, juice 

content, pH, SSC, titratable acidity, ascorbic acid and all individual organic acids 

except succinic acid (Tables 4.1 and 4.2). 
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Table 4.1. Effect of different severities of albedo breakdown on fruit weight, juice 
content (%), pH, soluble solids concentration (SSC) (%) and acidity (mg·100 mL 
fresh juice-1) in “Washington Navel” orange at different locations in 2006. Within 
each column, means followed by different letters are significantly different at P ≤ 
0.05. 

Location Tree 
age 

Severity 
of AB 

Fruit 
weight (g) 

Juice 
content 

Juice 
pH 

SSC Acidity 

Gingin 25 Nil 237.0 42.05 3.17 13.80 1.06 
  Slight 231.4 42.89 3.14 13.55 1.01 
  Moderate 221.5 42.14 3.11 13.55 1.04 
  Severe 211.4 41.98 3.12 13.48 1.07 
Mean   225.3A 42.27C 3.13C 13.59A 1.05C 

Chittering 12 Nil 220.4 47.37 3.43 12.78 1.42 
  Slight 217.1 48.35 3.41 13.30 1.46 
  Moderate 211.5 47.42 3.40 13.23 1.49 
  Severe 217.0 45.92 3.33 12.98 1.40 
Mean   216.5A 47.26B 3.39A 13.07B 1.44A 

Serpentine 39 Nil 166.3 39.77 3.16 12.38 1.34 
  Slight 159.7 39.52 3.17 12.38 1.34 
  Moderate 182.5 41.30 3.16 12.75 1.28 
  Severe 174.0 41.82 3.13 12.50 1.33 
Mean   170.6B 40.60C 3.15C 12.50C 1.25B 

Harvey 30 Nil 224.7 47.29 3.24 12.25 1.22 
  Slight 215.1 49.92 3.24 12.55 1.24 
  Moderate 216.5 50.42 3.25 12.78 1.21 
  Severe 205.5 51.39 3.21 13.05 1.23 
Mean   215.4A 49.75A 3.23B 12.66C 1.26B 

ns  
(4.41) 

ns  
(0.64) 

ns 
(0.02) 

ns 
(0.11) 

ns 
(0.03) 

12.6 1.82 0.05 0.31 0.07 

LSD  
(P ≤ 0.05)  
 

AB Severity  
 
Location 
SOAB x Location ns  

(8.81) 
ns  
(1.28) 

ns  
0.03) 

ns 
(0.21) 

ns 
(0.05) 

AB = albedo breakdown. SOAB = Severity of albedo breakdown. Nil = no albedo 

breakdown. Slight = < 25% of fruit surface affected with AB. Moderate = 25% - 

<50% of fruit surface affected with AB. Severe = ≥ 50 of fruit surface affected with 

AB. n = 4 replications. ns = not significant at P ≤ 0.05. Values within the bracket 

represent standard errors of means (SEM). 
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Table 4.2. Effect of different severities of albedo breakdown on levels of ascorbic 
acid (mg·100 mL fresh juice-1) and individual organic acids including citric, malic, 
succinic and tartaric acids (g·L fresh juice-1) in ‘Washington Navel’ orange at 
different locations in 2006. Within each column, means followed by different letters 
are significantly different at P ≤ 0.05. 

Organic acids Location Tree 
age 

Severity 
of AB 

Ascorbic 
acid Citric Malic Succinic Tartaric 

Gingin  Nil 61.85   9.35 3.90 0.90 0.40 
 25 Slight 58.11   9.21 3.88 0.88 0.40 
  Moderate 58.52   9.57 3.89 0.87 0.41 
  Severe 55.60   9.29 3.86 0.83 0.43 
Mean   58.52C   9.35D 3.88C 0.87D 0.41D 

Chittering 12 Nil 61.52 14.71 4.91 1.14b 0.59 
  Slight 62.27 14.94 4.90 1.13b 0.62 
  Moderate 63.44 15.25 5.17 1.27ab 0.66 
  Severe 62.05 15.02 5.27 1.35a 0.68 
Mean   62.32B 14.98A 5.06B 1.22C 0.64A 

Serpentine 39 Nil 68.04 13.02 5.44 2.53a 0.45 
  Slight 68.50 12.51 5.32 2.07b 0.48 
  Moderate 69.77 13.60 5.21 1.95b 0.53 
  Severe 66.68 13.21 5.19 1.54c 0.56 
Mean   68.25A 13.08B 5.29A 2.02B 0.51C 

Harvey 30 Nil 67.88 11.99 5.44 3.56a 0.50 
  Slight 68.67 12.33 5.39 3.39ab 0.50 
  Moderate 67.86 12.09 4.99 2.73c 0.59 
  Severe 67.60 12.37 5.06 2.23d 0.62 
Mean   68.00A 12.19C 5.22AB 2.98A 0.55B 

ns  
(0.70) 

ns  
(0.19) 

Ns 
(0.06) 

0.21 ns 
(0.01) 

1.98 0.57 0.17 0.21 0.05 

 
LSD  
(P ≤ 0.05)  
 

AB severity 
 
Location 
SOAB x Location ns  

(1.39) 
ns  
(0.39) 

Ns 
(0.35) 

0.42 ns 
(0.04) 

AB = albedo breakdown. SOAB = Severity of albedo breakdown. Nil = no albedo 

breakdown. Slight = < 25% of fruit surface affected with AB. Moderate = 25% - 

<50% of fruit surface affected with AB. Severe = ≥ 50 of fruit surface affected with 

AB. n = 4 replications. ns = not significant at P ≤ 0.05. Values within the bracket 

represent standard errors of means (SEM). 

4.3.4.  Effect of the severity of albedo breakdown on fruit quality in different 

cultivars of ‘;avel’ orange  

The different levels of severity of albedo breakdown did not significantly affect juice 

content, its pH, soluble solids concentration, titratable acidity, and  ascorbic acid in 

‘Leng Navel’, Golden Atum’ and ‘Washington Navel’ cultivars (Tables 4.3 and 4.4).  
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Amongst all individual organic acids detected in the fruit juice, different levels of 

severity of albedo breakdown have significantly affected concentrations of succinic 

acid and tartaric acid in all the three cultivars. The higher levels of severity of albedo 

breakdown have reduced the concentrations of succinic acid while it has increased 

tartaric concentration in the fruit juice (Table 4.4). The juice content, its pH, soluble 

solids concentration, ascorbic acid and succinic acid and tartaric acid differed 

significantly among different cultivars. The interactions between different levels of 

severity of albedo breakdown and cultivars were found to be non-significant for juice 

content, pH, SSC, titratable acidity, and all the individual organic acids whereas it 

was significant for ascorbic acid (Tables 4.3 and 4.4).  

Table 4.3. Effect of different severities of albedo breakdown on percentage of juice, 
juice pH, soluble solids concentration (%) (SSC) and acidity (mg·100 mL fresh juice-
1) in different cultivars of ‘Navel’ orange in 2005. Within each column, means 
followed by different letters are significantly different at P ≤ 0.05. 

Cultivar Severity of AB Juice 
(%) 

Juice pH SSC Acidity 

Leng Navel Nil  54.90 3.44 14.61 0.91 
 Moderate 54.99 3.48 14.67 0.83 
 Severe 55.37 3.47 14.66 0.90 
Mean  55.09A 3.46B 14.65A 0.88 

Autumn Gold  Nil  42.42 3.40 12.98 0.86 
 Moderate 44.10 3.41 12.95 0.77 
 Severe 43.31 3.38 12.61 0.80 
Mean  43.28C 3.39C 12.85B 0.81 

Washington Navel Nil  49.48 3.69 14.46 0.84 
 Moderate 50.10 3.69 14.47 0.81 
 Severe 49.42 3.67 14.38 0.88 
Mean  49.67B 3.68A 14.44A 0.84 

Severity of AB ns (0.67) ns (0.02) ns (0.12) ns (0.02) 
Cultivar 1.95 0.05 0.36 ns (0.02) 

LSD  
(P ≤ 0.05)  
 SOAB x 

Cultivar 
ns (1.63) ns (0.03) ns (0.21) ns (0.04) 

AB = albedo breakdown. SOAB = Severity of albedo breakdown. Nil = no albedo 

breakdown. Slight = < 25% of fruit surface affected with AB. Moderate = 25% - 

<50% of fruit surface affected with AB. Severe = ≥ 50 of fruit surface affected with 

AB. n = 4 replications. ns = not significant at P ≤ 0.05. Values within the bracket 

represent standard errors of means (SEM). 
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Table 4.4. Effect of different severities of albedo breakdown on ascorbic acid 
(mg·100 mL fresh juice-1) and individual organic acids including citric, malic, 
succinic and tartaric acids (g·L fresh juice-1) in different cultivars of ‘Navel’ oranges 
in 2005. Within each column, means followed by different letters are significantly 
different at P ≤ 0.05. 

Organic acids Cultivar Severity of 
AB 

Ascorbic 
acid Citric Malic  Succinic  Tartaric 

Leng Navel Nil  59.0 5.69 2.06 1.14a 0.32b 
 Moderate 60.4 5.90 2.14 0.90b 0.37b 
 Severe 60.1 6.84 2.44 0.84b 0.47a 
Mean  60.7A 6.14 2.21 0.96B 0.39A 

Autumn Gold  Nil  43.6 5.05 1.96 1.27a 0.21b 
 Moderate 45.6 5.45 2.11 1.18ab 0.29a 
 Severe 43.5 5.17 2.06 1.05b 0.26ab 
Mean  44.3B 5.23 2.04 1.17A 0.25B 

Washington Navel Nil  64.9 4.97 1.66 0.88 0.34 
 Moderate 57.1 6.02 1.95 0.80 0.36 
 Severe 54.4 7.05 2.22 0.75 0.38 
Mean  58.8A 6.01 1.94 0.81C 0.36A 

AB 
Severity  

ns (0.90) ns (0.32) ns (0.10) 0.14 0.05 

Cultivar 2.63 ns (0.32) ns (0.10) 0.14 0.05 

LSD (P ≤ 0.05)  
 

SOAB x 
Variety 

4.56 ns (0.55) ns (0.16) ns (0.24) ns (0.09) 

AB = albedo breakdown. SOAB = Severity of albedo breakdown. Nil = no albedo 

breakdown. Slight = < 25% of fruit surface affected with AB. Moderate = 25% - 

<50% of fruit surface affected with AB. Severe = ≥ 50 of fruit surface affected with 

AB. n = 4 replications. ns = not significant at P ≤ 0.05. Values within the bracket 

represent standard errors of means (SEM). 

 

4.4. Discussion 

Fruit diameter increased rapidly from 97 ± 5 DAFB to 244 ± 5 DAFB. Then a slow 

increase in fruit diameter was recorded until commercial harvest during 2005-06 and 

2006-07 (Fig. 4.1). Similarly, Bain (1958) reported that in general, orange fruit under 

subtropical conditions develop in a long period of eight to ten months for ‘Navel’ 

oranges depending on cultivars. In Western Australia, stage of cell division from mid 

September to mid November, the fruit grow and develop until mid-winter in July. 

The orange fruit growth shows a typical sigmoid growth curve which is divided into 

three stages including cell division, expansion and ripening (Bain, 1958, Iglesias et 

al., 2007; Hutton et al, 2007).  
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Albedo breakdown incidence was visible after colour break (244 ± 5 DAFB) and 

increased slowly until at commercial harvest. Later on, it increased rapidly during 

2007 and 2008 (Fig. 4.1). The severity of albedo breakdown also increased with 

advancement of fruit maturation, ripening and over-ripening. Similarly, higher 

incidence of albedo breakdown was observed in the tree whose fruit was harvested 

after the commercial harvest period had lapsed (Jones et al., 1967; Tugell et al., 

1993; Dick, 1995; McIntosh, 1998). The total pectin and water-soluble pectin 

decrease during fruit ripening in sweet orange affecting the fruit texture (Ladaniya, 

2007). It has been proposed that degradation of pectin is partially contributing to an 

increase in albedo breakdown incidence during fruit maturation and fruit over 

ripening as fruit held on the tree beyond commercial harvest typically soften and are 

prone to drop (Davies and Albrigo, 1994).  

The albedo breakdown incidence and severity in ‘Washington Navel’ orange varied 

significantly at different locations within Western Australia. The incidence and 

severity was lowest at Harvey as compared to other three locations (Fig. 4.2). 

Possibly, the variation in incidence may be ascribed to the variable climatic factors in 

these agro-climatic zones of Western Australia. Similarly, the incidence and severity 

varied from year to year and from location to location and among cultivars of sweet 

oranges (Jones et al., 1967; Sneath, 1987; Treeby et al., 1995).  

Severity of albedo breakdown did not significantly affect fruit quality attributes such 

as juice content, juice pH, soluble solids concentration, titratable acidity, ascorbic 

acid and individual organic acids except for a reduction in succinic acid at all the 

locations in 2005 whilst, location had significantly affected the fruit quality variables 

in ‘Washington Navel’ orange.  

Various fruit quality variables as mentioned above were not significantly affected in 

cultivars ‘Leng Navel’, Autumn Gold’ and ‘Washington Navel’ with the severity of 

albedo breakdown (Tables 4.3 and 4.4).  The higher levels of severity of albedo 

breakdown have reduced the concentrations of succinic acid in the fruit juice and the 

trend was reverse for tartaric acid (Table 4.4). Citric acid is a major acid contributing 

to the organic acids in fruit juice, following malic acid. Succinic and tartaric acid are 

in minor quantities in citrus juice (Davies and Albrigo, 1994; Iglesias et al., 2007; 

Ladaniya, 2007; Pretel et al., 2004; Clements 1964a; Matsumoto and Shiraishi, 

1981). Succinic acid concentration was 5 - 7 folds lower than citric acid in fruit juice 
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among cultivars at the same location in 2005 (Table 4.4) and it was 4 – 12 folds 

lower than citric acid in ‘Washington Navel’ among locations in 2006 (Table 4.2). 

Citric acid concentration was 16 – 20 folds higher than tartaric acid concentration 

among cultivars in 2005 (Table 4.4). Therefore, succinic acid and tartaric acid are not 

major acids affecting the fruit quality in ‘Navel’ sweet oranges. Earlier it has also 

been reported that the albedo breakdown did not affect internal fruit quality in sweet 

orange (Pelizzo, 1997; Goldie, 1998).  Contrarily, Jones and Embleton (1967), Jones 

et al. (1967) and Sneath (1987) reported that fruit with albedo breakdown had a 

higher specific gravity, a thinner peel and a significantly higher juice content and 

lower total acid and ascorbic acid concentration than normal fruit. The exact 

mechanism of regulation of production of succinic acid and tartaric acid with albedo 

breakdown is not yet known and warrants further investigations. 

The juice content, its pH, soluble solids concentration, ascorbic acid, succinic acid 

and tartaric acid differ significantly among different cultivars. Similarly, Pretel et al. 

(2004) reported that significant differences in fruit weight, soluble solids content and 

titratable acidity among sweet orange cultivars as genetic factors associated with fruit 

quality.  

In conclusion, albedo breakdown incidence and severity was visible and developed 

slowly after colour break and was coupled with the gradual fruit growth. They then 

increased rapidly after commercial harvest until 332 ± 5 DAFB in 2005 and 2006. 

The significantly lowest incidence of albedo breakdown and severity were observed 

in Harvey as compared to three locations (Gingin, Chittering and Serpentine) in 

2006. Irrespective of locations and cultivars, the severity of albedo breakdown did 

not affect the major fruit quality attributes such as juice content, juice pH, soluble 

solids concentration, titratable acidity, ascorbic acid, citric and malic acid whilst it 

reduced succinic acid in 2005 and 2006 and enhanced tartaric acid in 2005. 

Locations and cultivars significantly contributed to fruit quality attributes in ‘Navel’ 

sweet oranges in 2005 and 2006.  
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CHAPTER 5  

Responses of ‘;avelina’ orange to irrigation levels: water relations, growth, 

yield and fruit quality with an emphasis on albedo breakdown 

 

 

Abstract 

 

Albedo breakdown (creasing) is a serious physiological disorder in citrus. I explored 

its incidence as affected by water status of the tree. I irrigated `Navelina’ orange, in 

Western Australia, with the following percentages of commercial irrigation: 100% 

(T100, Control), 125% (T125), 75% (T75), and 50% (T50). T50 had significantly 

lower incidence of albedo breakdown than the other treatments. I attributed this to a 

slower growth of endocarp with albedo not being overstretched. Reduced irrigation 

did not affect rind thickness, dry matter content of rind and pulp although there was a 

tendency for thicker rind in T50. The improvement in fruit quality was obtained in 

deficit irrigation in terms of increased soluble solids concentration and acidity levels. 

Percentage of juice, pH of juice, ascorbic acid and individual organic acids were not 

affected with irrigation management.  

5.1. Introduction 

Albedo breakdown in sweet orange [Citrus sinensis (L.) Osbeck.] is a physiological 

disorder with cracks in the internal white tissue (albedo) causing the overlying 

flavedo to collapse forming random grooves over the surface of the fruit. Sometimes 

it affects up to 90% of the crop (Bower, 2000). It is triggered by a multitude of 

environmental and plant factors and their complex interactions. Considering the 

profound effects of water on plant growth and development, it is expected that 

albedo breakdown may be affected by water status of the plant and fruit. The 

published results are so far contradictory and information is needed for clarification. 

Treeby et al. (2007) applied deficit irrigation (DI) and partial rootzone drying (PRD), 

over the whole growing seasons of 1999 and 2000, to `Bellamy’ Navel orange 

grafted on five rootstocks in an orchard at Dareton Primary Industries Institute in the 

south-western New South Wales, Australia. Both DI and PRD treatments received 

ca. 50% of water given to the control. For DI, irrigation water was applied to the 

entire rootzone and for PRD to only one side of the tree row at each irrigation time. 

Albedo breakdown ranged from 20% to 80% in this experiment and was influenced 
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by water supply, season, and rootstock. There was a significant interaction between 

rootstock and irrigation treatment. Both DI and PRD resulted in significantly less 

incidence of albedo breakdown compared to the control. Thickness of the fruit rind 

was similar among the treatments. Both DI and PRD treatments significantly reduced 

yield and fruit size and significantly increased soluble solids concentration and 

titratable acidity.  

While Treeby et al. (2007) did not measure plant water status in their research, 

Gonzalez-altozano and Castel (1999) did for their work on `Clementina de Nule’ 

mandarin (Citrus clementina Hort. ex Tan.). No relationship could be established 

between leaf water potential and incidence of albedo breakdown in their experiment. 

They applied reduced irrigation (by replacing 25% and 50% of potential 

evapotranspiration) at different stages of fruit growth and for the entire growing 

seasons of 1995 and 1996. For most of the time, leaf water potential in reduced 

irrigated trees was similar to the fully irrigated control. However, in 1996 the 

reduced irrigated trees experienced more water stress as evident by a lower leaf water 

potential. Yet, it was in 1995 that albedo breakdown occurred in 25% of the fruit and 

was more severe, as assessed visually, in the 25% treatment than in the 50% 

treatment. In 1996, less than 1% of the fruit experienced albedo breakdown in either 

of the two reduced irrigated treatments. They also found that yield and fruit quality 

were not affected by application of reduced irrigation in summer for both 1995 and 

1996. However, trees irrigated with applications of 25% and 50% of potential 

evapotranspiration in autumn produced more small fruit (by 25% and 11%, 

respectively) than that in control treatment for both seasons. Soluble solids 

concentration and titratable acidity, without affecting percentage of juice 

significantly increased with application of 50% potential evapotranspiration in 

autumn in both 1995 and 1996. 

Hutton et al. (2007) applied reduced irrigation up to 33% as compared to full 

irrigation with three irrigation intervals (3 days, 10 days and 17 days) during summer 

and autumn in two seasons 1992/1993 and 1993/1994 to ‘Valencia’ orange trees. 

Reduced irrigation decreased fruit size and increased both soluble solids 

concentration and titratable acidity. 

In an attempt to resolve the inconclusive results in the literature, I developed the 

following hypothesis as the basis of our experiment. If development of albedo 
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breakdown is assumed to be due to a fast growth of endocarp in Stage III 

(Holtzhausen, 1981), reduced irrigation should slow this growth and decrease the 

incidence of albedo breakdown if albedo had not been already weakened for some 

other reasons. I therefore applied DI to `Navelina’ orange, monitored plant water 

status, and measured albedo breakdown in the fruit as well as other fruit quality 

attributes.   

5.2. Materials and methods 

5.2.1. Experimental site and plant material  

The experiment was carried out in a commercial orchard located in Bindoon, 

Western Australia (Latitude 31° 23', longitude 116° 06'). The climate is described as 

wet winters and hot, dry summers. Total rainfall was 328.4 mm during the 

experiment (January – July 2006). The soil is gravely pale sandy loam with poor 

water holding capacity. Except for irrigation, all other cultural practices including 

nutrition, insect and weed control in all the blocks were the same as the commercial 

orchard housing the experiment. 

Twelve years old ‘Navelina’ sweet orange trees [Citrus sinensis (L.) Osbeck] grafted 

on ‘Swingle citrumelo’ (Poncirus trifoliata [L]. Raf.) x (Citrus paradisi Macf.) 

rootstock were used for the experiment. They were spaced 6.0 m between rows and 

2.0 m within rows with row direction of north - south. 

5.2.2. Treatments and experimental design 

 Four irrigation treatments were applied during the experiment. Control trees 

received 100% of commercial irrigation (T100) while T50, T75 and T125 received 

50%, 75% and 125%, respectively, of the water applied to T100. The drip irrigation 

lines were installed on both sides of each row. In the commercial orchard, irrigation 

was applied when tensiometer readings were between 50 and 70 centibars. 

Approximately 77 litters of water were given daily to each control tree. The 

experiment started in February 2006 and stopped in July after harvesting. 

The experimental design was a randomized block design with four replications. Four 

trees were irrigated as an experimental unit in which the centre two trees were 

sampled for measurements. 
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5.2.3. Parameters determined 

Soil volumetric water content, midday stem water potential and stomatal 

conductance were determined. Albedo breakdown incidence was recorded. Rind, 

albedo and flavedo thickness and dry matter content of rind and pulp were measured. 

Fruit growth, fruit drop and trunk diameter were recorded. Average fruit weight, fruit 

size and yield were measured. Percentage of juice, juice pH, soluble solids 

concentration, titratable acidity, ascorbic acid and organic acids were determined as 

fruit quality parameters. 

5.2.3.1. Measurement of soil volumetric water content, midday stem water 

potential and stomatal conductance 

Soil volumetric water content (θ) was measured biweekly at depths of 300 mm and 

600 mm using a MP 406 moisture probe (ICT International Pty Ltd, Australia). Two 

measurements were recorded at 50 cm away from the tree trunk on both sides of each 

orange tree (four measurements per treatment unit). Soil volumetric water content 

was expressed as percent. The procedure for monitoring soil volumetric water 

content was described in more details in Section 3.2. 

Midday stem water potential (ψmd) was determined from 11.00 to 13.00 using a 

pressure chamber (Soil Moisture Equip. Corp, Santa Barbara, CA, USA) and 

expressed as MPa. The detailed procedure for determination of midday stem water 

potential has been mentioned in Section 3.3.  

Stomatal conductance was determined from 11.00 to 13.00 five times (93, 107, 128, 

142 and 156 days after full bloom) using a leaf porometer AP4 [(Model Sc-1 (steady 

state diffusion porometer)] as mentioned in more details in Section 3.4. 

5.2.3.2. Determination of albedo breakdown incidence and severity 

Albedo breakdown in percent was recorded, on a sample of 100 fruit harvested from 

2 metre-squares from one side throughout other side of each tree from the middle 

canopy. The albedo breakdown incidence and the severity of albedo breakdown were 

expressed as percentage of fruit.  The procedure for determining the incidence and 

severity of albedo breakdown have been described in more details in Section 3.7. 
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5.2.3.3. Determination of rind, flavedo and albedo thickness 

Ten mature fruit collected at north, east, west and south points of each tree at about 

1.5 m high were sampled to measure rind, flavedo, and albedo thickness (mm) as 

mentioned in more details in Section 3.9. 

5.2.3.4. Determination of rind and pulp dry matter content 

Five mature fruit collected at north, east, west and south points of each tree at about 

1.5 m high were sampled to determine dry matter content. The detailed procedure for 

determination of dry matter contents of rind and pulp has been described in Section 

3.10.  

5.2.3.5. Measurement of fruit growth, fruit drop and trunk diameter 

Fruit diameter was measured biweekly on 8 fruit marked per tree using an electronic 

digital calliper (16 fruits per treatment). Fruit drop was determined at two week 

intervals from five tagged branches per tree (10 branches per treatment unit) and 

expressed as percent. Trunk diameter was measured at 30 cm above the soil line on 

two occasions before and after the application of irrigation treatments (73 and 240 

days after full bloom, respectively). Two trees per treatment unit were sampled. 

5.2.3.6. Determination of average fruit weight, fruit size and yield 

Fruit from 2 metre-squares from one side throughout the other side of each tree from 

middle canopy were harvested and weighed. Fruit size in percent was classified 

according to fruit diameter into three categorises: small (< 64 mm), medium (64-88 

mm) and large (>88 mm). All fruit from two whole trees were weighed to measure 

fruit yield per tree.  

5.2.3.7. Determination of other fruit attributes 

Five mature fruit selected at north, east, west and south sides of each tree at about 1.5 

m high were weighed and juiced using a citrus juicer (Sunbeam citrus juicer, TE 

2600, Sunbeam Co. Ltd., China). The freshly extracted juice was used for calculating 

juice content and determining juice pH, soluble solids concentration, titratable 

acidity, ascorbic acid and organic acids. 

5.2.3.7.1 Juice contents 
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Juice content was calculated by dividing juice weight by fruit weight as mentioned in 

more details in Section 3.11.1.     

5.2.3.7.2 Juice pH 

Juice pH was measured using a bench digital pH meter (Cyberscan pH 510, Eutech 

Instrumnet Pte Ltd., Singapore) as described in more details in Section 3.11.2.  

5.2.3.7.3 Soluble solids concentration 

Soluble solids concentration (SSC) in percent was recorded using an infrared digital 

refractometer (Atago-Palette PR 101, Atago Co. Ltd, Itabashi-Ku, Tokyo, Japan) as 

mentioned in Section 3.11.3.  

5.2.3.7.4 Titratable acidity 

Titratable acidity (TA) was determined by following the titration method to 

phenolphthalein endpoint as described in more details in Section 3.11.4. Titratable 

acidity was expressed as mg citric acid ·100 mL fresh juice-1.  

5.2.3.7.5 Ascorbic acid  

Ascorbic acid concentration was determined as described in more details in Section 

3.11.5. Ascorbic acid concentration was calculated using a standard curve of L-

ascorbic acid and expressed as mg ascorbic acid·100 mL fresh juice-1.  

5.2.3.7.6 Individual organic acids 

Organic acid concentration was determined by using the high performance liquid 

chromatography (HPLC) technique. Organic acids concentration was calculated 

using a standard curve of citric acid, malic acid, succinic acid and tartaric acid and 

expressed as g·L fresh juice-1. The detailed procedure for determination of individual 

organic acids has been mentioned in Section 3.11.6. 

5.2.4. Statistical analysis 

 The data were subjected to one way ANOVA using Genstat 9 release 9.1 (Lawes 

Agricultural Trust, Rothamsted Experimental Station, UK). The least significant 

difference (Fisher’s protected LSD) was calculated at P≤ 0.05. To ensure the validity 

of statistical analysis all the variables of ANOVA were checked. 
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5.3. Results 

5.3.1. Soil water content 

Irrigation treatments significantly affected the soil volumetric water content at 300 

mm depth on six occasions (128, 142, 156, 171, 184 and 211 DAFB) (Fig. 5.1A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Effect of irrigation treatments on volumetric soil water content at soil 
depth of 300 mm (A) and 600 mm (B) in ‘Navelina’ orange. Vertical bars represent 
LSD at P < 0.05. n = 4 replications 

 

The highest soil volumetric water content at 300 mm was recorded in T125 during 

the experimental period while T50 had significantly lowest soil volumetric water 

content. The values of soil volumetric water content at 300 mm depth decreased 
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rapidly from 107 DAFB reaching the lowest values of 8.74%, 16.03% and 19.96% in 

T50, T75 and T100 at 128 DAFB, respectively. It then started to rapidly increase 

until 184 DAFB. After this time, it slowly increased to harvest in T50, T75 and T100 

except T125 (Fig. 5.1A). Soil volumetric water content was significantly affected at 

600 mm soil depth with the application of irrigation treatments (Fig. 5.1B). It 

steadily increased from 143 DAFB to 211 DAFB in T50. Such a trend was not 

observed for T100 and T125. The soil volumetric water content was significantly 

lowest in T50 at a soil depth of 600 mm. The values in T50 at 600 mm depth 

increased slowly from 5.90% at 143 DAFB to 14.75% at 211 DAFB (Fig. 5.1B). 

5.3.2. Plant water status 

Midday stem water potential was significantly affected with the application of 

irrigation treatments on five occasions (Table 5.1).   

Table 5.1. Effect of irrigation treatments on midday stem water potential (MPa) in 
‘Navelina’ orange. Within each column, means followed by different letters are 
significantly different at P ≤ 0.05. 

 Midday stem water potential (MPa) 

Treatment  Days after full bloom   

 91 107 130 142 157 171 186 217 

T125 -0.96 -0.77 -1.00a -1.36a -1.68a -1.35a  -1.62a -2.36 

T100 -0.96 -0.78 -0.99a -1.71b -1.78a -1.48ab -1.69a -2.45 

T75 -0.94 -0.88 -1.04a -1.85b -2.01a -1.63bc  -1.74ab -2.43 

T50 -0.91 -0.89 -1.35b -2.26c -2.53b -1.83c  -1.85b -2.32 

LSD 

(P≤0.05) 

  ns 

(0.08) 

  ns 

(0.06) 

  0.19   0.18   0.35   0.24   0.13  ns 

(0.19) 

n = 4 replications. ns = not significant at P ≤ 0.05. Values within the bracket 

represent standard errors of means (SEM). 

 

The values were lower in T50 at 91, 107 and 217 DAFB (-0.91 MPa, -0.89 MPa and 

-2.32 MPa, respectively) although there were not significant differences among the 

treatments. Significantly lowest midday stem water potentials were recorded in T50 

at 130, 142, 157, 171 and 186 DAFB (-1.35 MPa, -2.26 MPa, -2.53 MPa, -1.83 MPa 

and -1.85 MPa, respectively) as compared to T125 and T100. T125 had the highest 
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midday stem water potential during experimental period although there were no 

significant differences between T125 and T100 (Table 5.1). 

Stomatal conductance was significant lowest in T50 at 107 DAFB (29.17 mmol·m-

2·s-1) as compared to other treatments. However, stomatal conductance was non-

significant at 93, 128, 142 and 156 DAFB among the treatments (Table 5.2). 

Table 5.2. Effect of irrigation treatments on stomatal conductance (mmol·m-2
·s
-1) in 

‘Navelina’ orange. Within each column, means followed by different letters are 
significantly different at P ≤ 0.05. n = 4 replications 

 Stomatal conductance (mmol·m-2s-1) 

Days after full bloom Treatment 

93     107 128      142     156 

T125 42.29 39.43a 38.31 33.91 33.53 

T100  39.20 34.50b 32.26 30.70 30.68 

T75 33.70 34.26b 30.76 29.20 28.43 

T50 33.08 29.17c 32.82 31.13 27.03 

LSD (P≤0.05)  ns (4.65)     4.08    ns (2.77) ns (4.38) ns (2.48) 

ns = not significant at P ≤ 0.05. Values within the bracket represent standard errors 

of means (SEM). 

 

5.3.3. Albedo breakdown incidence and severity  

Percentage of fruit with moderate incidence of albedo breakdown was significantly 

lowest (4.8%) in T50 (Table 5.3). There was no significant difference in percentage 

of fruit with moderate incidence of albedo breakdown among T75, T100 and T125 

(24.9%, 29.2% and 24.5%, respectively). Percentage of fruit with severe incidence of 

albedo breakdown was significantly lower in T50 and T125 (2.8% and 8.8%, 

respectively) as compared to that in T75 (21.1%) and T100 (16.0%).  

The percentage of total albedo breakdown incidence was significantly affected by 

irrigation treatments. T50 resulted in the significantly lowest percentage of total 

albedo breakdown incidence (7.5%). There were no significant differences in 

percentage of total albedo breakdown incidence among T75, T100 and T125 (33.6%, 

30.6% and 21.0%, respectively). The severity of albedo breakdown was significantly 

affected by application of different irrigation treatments. T50 resulted in the 

Chapter 5: Deficit irrigation and albedo breakdown  



 

 79 
 
 

significantly lowest severity of albedo breakdown (5.1%) while there were no 

significant differences in the severity of albedo breakdown among T75, T100 and 

T125 (33.6%, 30.6% and 21.0%, respectively) (Table 5.3). 

Table 5.3. Effect of irrigation treatments on moderate incidence of albedo breakdown 
(MAB, % of fruit), severe incidence (SAB), total AB incidence (TAB), and the 
severity of albedo breakdown (ABS, %) in ‘Navelina’ orange. Within each column, 
means followed by different letters are significantly different at P ≤ 0.05. n = 4 
replications.  

   Incidence of albedo breakdown(% of fruit) 

Treatment MAB SAB    TAB 

ABS 

T125 24.5a   8.8bc 33.2a 21.0ab 

T100 29.2a 16.0ab 45.2a 30.6a 

T75 24.9a 21.1a 46.0a 33.6a 

T50   4.8b   2.8c   7.5b   5.1b 

LSD (P≤0.05) 13.69 12.26 23.09 17.17 

 

5.3.4. Thickness of rind, flavedo and albedo 

Thickness of rind was higher in T50 and T125 as compared to T75 and T100. 
Flavedo was thicker in T50, T75 and T125 as compared to T100. 

Table 5.4. Effect of irrigation treatments on thickness (mm) of rind, flavedo and 
albedo and dry matter content of rind and pulp (g·100 g fresh sample-1) at harvest in 
‘Navelina’ orange. n = 4 replications. 

Thickness (mm) Dry matter content Treatment 

Rind Flavedo Albedo Rind Pulp 

T125 6.6 2.0 4.7 26.55 21.08 

T100 6.4 1.8 4.6 27.59 21.81 

T75 6.4 1.9 4.6 28.10 23.09 

T50 6.5 1.9 4.6 28.49 22.43 

LSD (P≤0.05) ns (0.17)  ns (0.09)  ns (0.10) ns (1.13) ns (0.56) 

ns = not significant at P ≤ 0.05. Values within the bracket represent standard errors 

of means (SEM). 
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However, the differences in rind, flavedo and albedo thickness among all treatments 

were non-significant (Table 5.4). 

5.3.5. Dry matter content of rind and pulp 

Dry matter content of rind was higher in T50 as compared to control and other 

treatments. The highest pulp dry matter content was obtained in T75. However, there 

were no significant differences in rind and pulp dry matter content among all 

treatments (Table 5.4). 

5.3.6. Fruit growth  

The application of reduced irrigation significantly decreased fruit diameter at harvest. 

Fruit diameter was significantly lowest in T50 (75.19 mm) as compared to that in 

T100 (79.52 mm) (Fig. 5.2). 
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Figure 5.2. Effect of irrigation treatments on fruit diameter (mm) in ‘Navelina’ 
orange during fruit development and maturation. Vertical bars represent LSD at P ≤ 
0.05. n = 4 replications. 

 

Proportion of fruit drop at harvest was higher in T50 (8.97%) than other treatments. 

However, the percentage of fruit drop was not significantly different among the 

treatments (Table 5.5). 
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5.3.7. Trunk diamater 

Trunk diameter was not significant different among the treatments. Trunk diameter 

was 14.39 cm, 13.95 cm, 13.92 cm and 13.28 cm in T100, T50, T75 and T125, 

respectively, at 240 DAFB. 

Table 5.5. Effect of irrigation treatments on fruit drop in ‘Navelina’ orange.   

 

 Fruit drop (%) 

Treatment Days after full bloom 

  106 129 143 157 170 186 196 212 226 

T125 0 0.00 0.00 0.00 0.00 0.00 0.42 0.42 0.42 

T100 0 0.27 0.27 0.27 0.27 0.91 3.27 3.27 3.54 

T75 0 0.00 0.00 0.00 0.00 0.00 3.49 3.49 6.27 

T50 0 0.79 1.09 1.38 1.38 1.38 5.80 5.80 8.97 

    LSD 

(P≤0.05) 

  ns 

(0.00) 

  ns 

(0.37) 

   ns 

(0.44) 

   ns 

(0.57) 

   ns 

(0.59) 

 ns 

(0.77) 

 ns 

(3.19) 

ns 

(3.19) 

 ns 

(3.76) 

n = 4 replications. ns = not significant at P ≤ 0.05. Values within the bracket 

represent standard errors of means (SEM). 

 

5.3.8. Yield, average fruit weight and fruit size 

The application of reduced irrigation treatments significantly decreased the yield 

(Table 5.6). T50 resulted in the significantly lowest yield (45.50 kg·tree-1). The yield 

was higher in T125 (68.63 kg·tree-1) compared to yield in T100 (66.38 kg·tree-1). 

However, there were no significantly differences in yield between T100 and T125 

(Table 5.6). Average fruit weight was significantly decreased with reduced irrigation. 

T50 resulted in significantly lowest average fruit weight (183 g·fruit-1) while the 

highest average fruit weight was obtained in T125 (220 g·fruit-1) (Table 5.6). 

Deficit irrigation significantly increased percentage of fruit with small size. T50 

significantly increased the percentage of small fruit (28.0%) while T125 significantly 

reduced the proportion of small fruit (8.7%). There were no significant differences in 

percentage of fruit with medium size among irrigation treatments. T125 resulted in 
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the significantly highest percentage of large fruit as compared to other treatments 

(Table 5.6). 

Table 5.6. Effect of irrigation treatments on the total yield (kg·tree-1), average fruit 
weight (AFW, g), and distribution of fruit size (%) into small (<64 mm diameter), 
medium (64-88 mm diameter) and large (>88 mm diameter) for ‘Navelina’ orange. 
Within each column, means followed by different letters are significantly different at 
P ≤ 0.05. 

Treatment Total yield AFW Size 

   Small Medium Large 

T125 68.63a 220a   8.7c 52.6 38.7a 

T100  66.38ab 197b 21.6b 54.0 24.4ab 

T75 55.00c 197b 24.1ab 59.7 16.2b 

T50 45.50d 183b 28.0a 55.5 16.5b 

LSD (P≤0.05) 9.04 0.02 5.98 ns (7.52) 16.50 

n = 4 replications. ns = not significant at P ≤ 0.05. Values within the bracket 

represent standard errors of means (SEM). 

 

5.3.9. Fruit quality 

Table 5.7. Effect of irrigation treatments on percentage and pH of the juice in 
‘Navelina’ orange.   

      

Treatment Juice (%) Juice pH 

T125 47.3 3.4 

T100 45.7 3.4 

T75 45.9 3.3 

T50 45.4 3.3 

LSD (P≤0.05) ns (0.76) ns (0.08) 

n = 4 replications. ns = not significant at P ≤ 0.05. Values within the bracket 

represent standard errors of means (SEM). 
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Soluble solids concentration and titratable acidity were significantly increased in T50 

as compared to control while T125 significantly decreased the soluble solids 

concentration at harvest (Table 5.8).  

Percentage of juice, juice pH, ascorbic acid as well as individual organic acids were 

not significantly affected by the application of irrigation treatments (Tables 5.7, 5.8 

and 5.9). 

Table 5.8. Effect of irrigation treatments on soluble solids concentration (SSC, %), 
titrable acidity (TA, mg·100 mL fresh juice-1) and ascorbic acid (mg·100 mL fresh 
juice-1) in ‘Navelina’ orange. Within each column, means followed by different 
letters are significantly different at P ≤ 0.05. 

 

Treatment SSC  TA Ascorbic acid 

T125 13.4c 1.30bc 61.32 

T100 14.0bc 1.27c 61.32 

T75 14.8ab 1.49ab 65.55 

T50 15.2a 1.51a 63.82 

LSD (P≤0.05) 1.05 0.20 ns (2.74) 

n = 4 replications. ns = not significant at P ≤ 0.05. Values within the bracket 

represent standard errors of means (SEM). 

Table 5.9. Effects of irrigation treatments on individual organic acids (g·L-1 fresh 
juice) in ‘Navelina’ orange.  

 

 Organic acids 

Treatment Citric Malic Succinic Tartaric 

T125 15.70 5.43 1.28 0.50 

T100 14.62 5.10 1.28 0.55 

T75 17.77 5.63 1.28 0.53 

T50 17.25 5.38 1.28 0.58 

LSD (P≤0.05) ns (0.88) ns (0.14) ns (0.06) ns (0.02) 

n = 4 replications. ns = not significant at P ≤ 0.05. Values within the bracket 

represent standard errors of means (SEM). 
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5.4. Discussion 

For most of the measurement occasions, stomatal conductance was lower in T50 and 

T 75 than in T125 and T100. However, a significant difference occurred only at 107 

DAFB (Table 5.2). But on this occasion there were no differences in midday stem 

water potential among the treatments (Table 5.1). Stomatal closure could therefore 

have been brought about by chemical signals, such as abcisic acid, originating from 

the drying soil (Tardieu et al., 1992). Lowering of stomatal conductance and midday 

stem water potential could have had an impact on photosynthetic rate (not measured) 

with subsequent reduction of fruit growth as reflected in Fig. 5.2 and discussion 

below. 

Application of reduced irrigation resulted in a significant decrease in total albedo 

breakdown incidence and the severity of albedo breakdown (Table 5.3). The lower 

stem water potential was reflected in the development of lower albedo breakdown; in 

terms of moderate, severe, total albedo breakdown incidence and the severity of 

albedo breakdown; in T50 than in the other treatments (Table 5.3). Smaller fruit, 

arising from a large crop load, have been found more susceptible to albedo 

breakdown because of a thinner rind (Ali et al., 2000; Jones et al., 1967). In my study 

the crop load, in terms of yield, was lower (P<0.05) in T50 than the other treatments. 

Rind thickness was the same among the treatments with an average of 6.5 mm. I 

suggest that the significantly lower albedo breakdown incidence in T50 was not a 

result of differences in rind thickness but was due to a higher proportion of smaller 

fruit whose endocarp grew slower in Stage III because of a lower plant water status. 

This confirms my working hypothesis. I also expect that the medium and large fruit 

of T50 would have grown at a slower rate in achieving their respective final sizes and 

therefore being less prone to albedo breakdown. I assumed that there were no 

significant differences in incidence of albedo breakdown in T75 and T100 due to the 

same percentage of fruit size, in terms of proportion of small fruit and medium fruit. 

Rind thickness was not different for these treatments.  

Rind thickness at harvest was not significantly affected by deficit irrigation although 

there was a tendency for thicker rind in T50 (Table 5.4). Similar results were 

observed by Treeby et al. (2007), Domigo et al. (1996) and Riternour et al. (2003) 

who reported that an application of water stress during fruit growth resulted in 

thicker fruit rinds at maturation in oranges. A slight increase of dry matter content of 
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rind and pulp was obtained in deficit irrigation treatments although there were no 

significant differences in dry matter content among treatments (Table 5.4). It may be 

argued that deficit irrigation may contribute to decreased cellular hydration leading 

to a reduction of water volume in fruit (Mpelasoka et al., 2001). Similarly, Kilili et 

al. (1996) reported that deficit irrigation improved the dry matter content in apple 

fruit at harvest. 

Trunk diameter was not affected by irrigation treatments. It may be suggested that 

trunk diameter will be influenced when soil water potential in tree root zone becomes 

lower than a certain value that might not have reached in our experiment. A decrease 

of trunk growth may occur after an application of deficit irrigation in apple, peach 

and pear (Behboudian and Mills, 1997). Domingo et al. (1996) also reported the 

same results in “Fino” lemon tree. 

Fruit drop was not significantly affected by irrigation treatments. Possibly, the deficit 

irrigation in this study resulted in the moderate water stress which sufficiently 

supplied water and nutrients to maintain fruit number on the trees (Kriedemann and 

Barrs, 1981; Spiegel-Roy and Goldschmidt, 1996). Similarly, a reduction of water 

supply up to 33% of full irrigation in summer and autumn did not affected the fruit 

number per tree in ‘Valencia’ orange (Hutton et al. 2007). In contrast, Gonzalez-

altozano and Castel (1999) reported that an application of reduced water with 25% 

and 50% of full irrigation in spring increased ‘June drop’ in ‘Clementina de Nules’ 

citrus trees.  

The significant decrease in fruit weight among irrigation treatments suggested that 

water stress can cause a decrease in fruit size. Apparently, soil moisture status was 

highly associated with fruit growth (Kriedemann and Barrs, 1981). Maotani et al. 

(1977) reported that low levels of dawn leaf water potential (<-0.8 MPa) affect 

significantly fruit growth in sweet orange. Previous studies have reported that 

application of deficit irrigation resulted in the smaller fruits in mandarins (Gonzalez-

altozano and Castel-altozano, 1999; Verreynne et al., 2001), citrus (Riternour et al., 

2003), oranges (Treeby et al., 2007) and pears and apples (Behboudian and Mills, 

1997). Similarly, Hutton et al. (2007) found that water stress reduced fruit growth 

and fruit size by an application of extended irrigation intervals in summer and 

autumn in oranges. However, it is important to note that a reduction of fruit size as a 

result of water stress might be advantage for a decrease of albedo breakdown as 
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albedo breakdown was less likely to occur in fruit of the smaller size (Treeby et al., 

1995).  

With regard to fruit quality, it is worth mentioning that deficit irrigation did not 

affect juice content. This confirms previous findings by Verreynne et al. (2001) and 

Velez et al. (2007) who indicated that water deficit did not influence peel and juice 

content in citrus. In contrast, Riternour et al. (2003) reported that water stress 

anytime during fruit growth and development in citrus may reduce juice content. 

Significant increase of soluble solids concentration due to deficit irrigation was 

reported for mandarins (Gonzalez-altozano and Castel, 1999), oranges (Treeby et al., 

2007, Hutton et al., 2007) and ‘Marisol’ Clementine (Verreynne et al., 2001). The 

decrease of water content in fruit may be associated with an increase of SSC after 

deficit irrigation (Dorji et al., 2005). Therefore, the lower SSC in full irrigation may 

be due to an effect of solute dilution (Behboudian and Mills, 1997; Kilili et al., 1996; 

Kramer and Boyer, 1995; Mpelasoka et al., 2001; van Hooijdonk et al., 2004). It is 

also suggested that higher SSC in DI fruit may be associated with an increase of 

conversion of starch into sugar as sugar mainly contributes to SSC (Mpelasoka et al., 

2001; Kramer and Boyer, 1995). Mpelasoka et al. (2001) reported that SSC was 

increased in all DI treatments before early fruit ripening in apples. In this study, 

deficit irrigation significantly increased acidity in fruit in comparison to control 

treatment. Gonzalez-altozano and Castel (1999) and Velez et al. (2007) reported that 

the sugars and acidity ratios were not affected by an application of deficit irrigation 

in citrus. In contrast, deficit irrigation has advanced fruit maturity in apples and pears 

(Behboudian and Mills, 1997). Reduction of irrigation water did not affect ascorbic 

acid at harvest. In contrast, Domingo et al. (1996) reported that deficit irrigation 

improved ascorbic acid in lemon. 

In conclusion, T75 and T50 significantly decreased total yield due to reduced fruit 

size and resulted in significantly decreased albedo breakdown incidence and the 

severity of albedo breakdown.  The improvement in fruit quality was obtained in 

deficit irrigation in terms of increased SSC and acidity. Juice content, rind thickness, 

dry matter content of rind and pulp, ascorbic acid and individual organic acids were 

not influenced by deficit irrigation.  
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CHAPTER 6  

Different surfactants improve calcium uptake into leaf and fruit of ‘Washington 

;avel’ sweet orange [Citrus sinensis (L.) Osbeck.] and reduce albedo breakdown  

 

 

Abstract 

Albedo breakdown or creasing in sweet oranges is a physiological disorder with 

cracks in the albedo resulting in puffiness of orange peel causing serious economic 

losses. Insufficient calcium has been implicated in albedo breakdown development. I 

tested the efficacy of different surfactants added to aqueous solutions of Ca(NO3)2 for 

spraying onto the leaves and fruit to  reduce albedo breakdown. A solution of 2% 

Ca(NO3)2 was sprayed either alone or with one of the following surfactants: 0.05% 

‘Tween 20’, 0.05% ‘Tween 80’, 0.05% ‘Triton X100’, and 0.05% ‘Tergitol’. 

Spraying was done five times at intervals of 10 days starting from 81 days after full 

bloom (DAFB) on ‘Washington Navel’ sweet orange grown in Gingin (Western 

Australia). Unsprayed trees were treated as control. A randomized block design was 

used with four replications. Concentrations of Ca in the leaf, rind, and pulp of fruit 

were determined on 182 and 276 DAFB.  The incidence of albedo breakdown was 

recorded for each tree as a percentage of the fruit. Surfactants enhanced the uptake of 

Ca in leaf, rind, and pulp of the fruit and reduced albedo breakdown compared to the 

calcium-only treatment. ‘Tween 20’ was the most effective surfactant in improving 

Ca uptake and reducing incidence of albedo breakdown as well as improving rind 

hardness and tensile strength. In conclusion, five foliar sprays of 2% Ca(NO3)2  and 

‘Tween 20’ starting from  81 DAFB at 10-day intervals improved Ca uptake in leaf, 

rind and pulp of fruit and reduced the incidence of albedo breakdown in ‘Washington 

Navel’ orange while maintaining the other important fruit quality attributes.  
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6.1. Introduction 

Albedo breakdown, also known as creasing, is a physiological disorder with cracks 

in the internal white tissue (albedo) causing puffiness of orange peel (Treeby and 

Storey, 2002). The development of albedo breakdown is related to the degradation of 

pectin that is an important component in the cell walls of plant tissues. The loosening 

of the connections between cells is the result of this degradation (Jona et al., 1989). 

Albedo breakdown causes considerable economic losses to the citrus industry as an 

increase of every one percent albedo breakdown contributes to a decrease in return to 

orange producers estimated at $1 million to $2 million dollars (Goldie, 1998).  Up to 

15% of fruit was found to be affected by albedo breakdown at some locations in 

South Africa (Goldie, 1998).  

A limited success in reduction of albedo breakdown in sweet oranges has been 

reported with regulated deficit irrigation (Treeby et al., 2007) and exogenous spray 

application of gibberellic acid in summer (Embleton et al., 1973; Jona et al., 1989), 

potassium nitrate, and soil application of potassium sulphate as well as phosphorous 

(Jones et al., 1967; Bevington et al., 1993). Nutritional factors such as N and K 

which result in thicker rind reduced incidence of albedo breakdown in sweet oranges 

(Ali et al., 2000; Bevington et al., 1993; Jones et al., 1967; Embleton et al., 1973; 

Monselise et al., 1976).  

Some authors reported that lower levels of Ca in oranges are associated with albedo 

breakdown (Storey et al., 2002; Treeby and Storey, 2002). Treeby and Storey (2002) 

showed that the application of five foliar sprays of either 0.11% or 0.33% calcium 

starting in December – January period; or the January - February period at an early 

stage of ‘Navel’ orange fruit growth resulted in a significant decrease of albedo 

breakdown as calcium sprays increased the Ca levels in the rind and albedo of fruit.  

However, the foliar application of Ca has not always increased Ca levels in tissue 

because Ca is not phloem mobile (Treeby and Storey, 2002). Apparently, the cuticles 

are the first barrier to penetration of Ca (Harker and Ferguson, 1991; Schonherr, 

2001). Calcium penetration into leaf and fruit tissues can be improved with 

surfactants depending on the concentration and type of a surfactant (Harker and 

Ferguson, 1991; Schonherr, 2001). 
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No research work has been reported on the effects of different surfactants in 

enhancing the uptake of Ca into the leaf and fruit tissues of sweet orange. Thus, the 

objective of this study was to investigate whether selected surfactants with varying 

hydrophile-lipophile balance number (HLB) added to an aqueous solution containing 

Ca(NO3)2 enhance  up take of Ca  into leaf and fruit tissues and reduce albedo 

breakdown and affect  fruit quality in ‘Navel’ sweet orange. 

6.2. Materials and methods 

6.2.1. Experimental site and plant material  

The experiment was carried out in a commercial orchard located in Gingin, Western 

Australia (Latitude 31° 21' S, longitude 155° 55' E).  The climate is described as a 

winter dominant with wet winters and hot, dry summers. Total rainfall was 518 mm 

during experimental period. The soil is a sandy loam. All the cultural practices 

including irrigation, insect and weed control in all the blocks were the same except 

for the experimental treatments. 

Twenty-two years old uniform ‘Washington Navel’ orange trees [Citrus sinensis (L.) 

Osbeck] grafted on [Poncirus trifoliata (L.) Raf.] rootstock were used in the 

experiment.  The trees were spaced 7.5 m between rows and 2.7 m within rows with 

row direction of north – south. 

6.2.2. Treatments and experimental design 

 An aqueous solution containing 2% Ca(NO3)2 was sprayed either alone or with one 

of the following surfactants: 0.05% ‘Tween 20’, 0.05% ‘Tween 80’, 0.05% ‘Triton 

X100’, and 0.05% ‘Tergitol’. Spraying onto fruit and leaves of the whole tree was 

applied five times at intervals of 10 days starting from 81 days after full bloom 

(DAFB) from Dec 5, 2006 to  Jan 17, 2007. Unsprayed trees were treated as control. 

An aqueous solution containing 2% Ca(NO3)2 with or without surfactants was 

sprayed with a sprayer (The Selecta Trolleypak Mk II, Australia) at the rate of 1000 

L.ha-1 till run off. The rate of a nozzle (Chierici Titisrl, Italy) was 70 L/min under the 

pressure of 300 KPa. 

The experimental design was randomised block with four replications. Single tree 

was treated as an experimental unit. 
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6.2.3. Chemicals 

Four tested surfactants described below including ‘Tween 20’, ‘Tween 80’, 

‘Tergitol’ and ‘Triton X100’ were purchased from Sigma Chemical Company, 

Missouri, USA. 

Table 6.1. Description of various surfactants with varying hydrophile-lipophile 
balance number (HLB) used in the experiment 

Trade name of a 

surfactant 

HLB Chemical name of a surfactant 

Tween 20 16.7 Polyoxyethylene (20) sorbitan monolaurate 

Tween 80 15.0 Polyoxyethylene (20) sorbitan mono-oleate 

Triton X100 13.5 Polyoxyethylene (10) tetra-methyl-

buthylbenzene 

Tergitol 15-S-9 13.3 Polyoxyethylene (9) sec-dodecyl ether 

 

6.2.4. Observation recorded 

Concentration of Ca in leaf, fruit rind and pulp were determined. Albedo breakdown 

incidence was recorded. Rind hardness, cohesiveness, adhesiveness, springiness, 

fracture force, stiffness, rind tensile strength force and fruit compression test were 

recorded as texture profile analysis. Rind, albedo and flavedo thickness, dry mater 

content of rind and pulp were measured. Percentage of juice, juice pH, soluble solids 

concentration, titratable acidity, ascorbic acid and individual organic acids were 

accessed as fruit quality parameters. 

6.2.4.1. Determination of calcium concentrations from leaf, rind and pulp 

Fully developed six - month old spring flush leaves (25 /tree) from non-fruiting shoot 

and five fruit per tree were collected for nutrient analysis. The leaves and fruit from 

each tree were collected from unshaded position at about 1.5 m height at the north, 

east, south and west points of tree at 101 days after sprays (182 DAFB) and 195 days 

after sprays (286 DAFB) during the experimental period. All leaves and fruit 

collected were free of damage from insects or diseases.  

Calcium concentrations in leaf, rind and pulp of fruit were analysed by using Radial 

Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) which 

operated in simultaneous mode as described in Section 3.6. 
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6.2.4.2. Determination of albedo breakdown incidence 

Fruit from each experimental tree were examined for albedo breakdown. The albedo 

breakdown incidence was expressed as percentage of fruit. The procedure for 

determination albedo breakdown incidence has been mentioned in more details in 

Section 3.7. 

6.2.4.3. Texture profile analysis 

Textural properties of rind such as hardness, cohesiveness, adhesiveness, springiness, 

fracture, stiffness, tensile strength and fruit firmness from normal fruit and fruit with 

albedo breakdown were determined using a texture analyser (TA Plus, AMETEK 

Lloyd instruments Ltd., Hampshire, UK) as explained in Section 3.8.   

6.2.4.3.1 Rind puncture test 

Rind sample were cut in the size of 2.5 cm wide x 0.6 cm thick using a slicer 

(Zyliss Easy slice 2” folding Mandolin slicer, Swiss) to give uniform sections for 

determining rind puncture test. Two rinds samples were dissected 90 degree apart per 

fruit. Ten fruit of each fruit group (normal and albedo breakdown fruits) were tested 

from each tree. Hardness, cohesiveness, adhesiveness, springiness and fracture were 

determined as detailed in Section 3.8.1.  

6.2.4.3.2 Rind tensile strength test 

The rind tensile test was carried out to measure the behaviour of the orange 

rind up to the rind deflection of 10 mm. The rind tensile strength force was 

calculated at the maximum load and limit points where the rind deflection occurred 

as mentioned in Section 3.8.2. 

6.2.4.3.3 Fruit compression test 

Ten fruit of each fruit group (normal or albedo breakdown) with the height of 

about 8.5 cm were used for each compression test as described in more details in 

Section 3.8.3.  

6.2.4.4. Determination of rind, flavedo and albedo thickness 

Ten mature fruit collected at north, east, west and south points of each tree at 

about 1.5 m high were sampled to determine rind, flavedo and albedo thickness as 

detailed in Section 3.9.  
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6.2.4.5. Measurement of fruit quality parameters 

Five mature fruit selected at north, east, west and south sides of each tree at 

about 1.5 m high were weighed and juice squeezed using a citrus juicer (Sunbeam 

citrus juicer, TE 2600, Sunbeam Co. Ltd., made in China to Sunbeam’s 

specification). The freshly extracted juice was used for determining fruit quality 

parameters including juice content, juice pH, soluble solids concentration, titratable 

acidity, ascorbic acid and organic acids as mentioned in Section 3.11.  

6.2.5. Statistical analysis 

 The data were subjected to ANOVA using Genstat 9 release 9.1 (Lawes Agricultural 

Trust, Rothamsted Experimental Station, UK). The least significant difference 

(Fisher’s protected LSD) at level of P≤ 0.05 was used to compare the treatment 

means for all experimental parameters. 

6.3. Results 

6.3.1. Ca concentration in leaf, fruit rind and pulp 

The spray applications of an aqueous solution containing 2% Ca(NO3)2  and ‘Tween 

20’ resulted in significantly higher leaf Ca concentration (2.74%) at 101 days after 

sprays (DAS) as compared to all other treatments. Other surfactants along with 2% 

Ca(NO3)2 increased leaf Ca concentration as compared to control and Ca-only 

treatment but the higher differences among these surfactants were not significant at 

101 DAS. The leaf Ca concentration did not differ significantly among treatments at 

195 DAS (Table 6.2).  

The foliar spray applications of 2% Ca(NO3)2  and all surfactants  increased rind Ca 

concentration as compared to both the calcium-only treatment and control at 101 

DAS. Ca concentration in rind was significantly higher with applications of an 

aqueous solution containing 2% Ca(NO3)2  and ‘Tween 20’, ‘Tween 80’ or ‘Tergitol’ 

than that in the control and Ca-only treatment at 101 DAS. The spray applications of 

an aqueous solution containing 2% Ca(NO3)2  and ‘Tween 20’ almost doubled rind 

Ca concentration (0.76%) as compared to the control (0.38%) although it was not 

significantly different from ‘Tergitol’ treatment (0.66%) at 101 DAS. The rind Ca 

concentration was higher with the foliar application of 2% Ca(NO3)2  and all 

surfactants than that in the control and Ca-only treatment at 195 DAS. Among all the 

surfactants, 2% Ca(NO3)2 application along with ‘Tween 20’ and ‘Tergitol’ resulted 
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in significantly higher rind Ca concentration as compared to control and Ca-only at 

195 DAS (Table 6.2). 

An aqueous spray solution containing 2% Ca(NO3)2 and any surfactants significantly 

increased pulp Ca concentration at 101 DAS as compared to control treatment. The 

significantly highest pulp Ca concentration was observed with the spray application 

of 2% Ca(NO3)2 and ‘Tween 20’ (0.25%) although it was not significantly different 

from other surfactants and Ca-only treatment at 101 DAS. Pulp Ca concentration was 

higher with an aqueous spray solution containing 2% Ca(NO3)2  and all surfactants 

than that with the control at 195 DAS (Table 6.2). An aqueous spray solution 

containing 2% Ca(NO3)2  and ‘Tween 20’ resulted in the significantly highest pulp 

Ca concentration (0.14%) as compared to control (0.11%), Ca-only (0.12%) and 

other surfactants except ‘Tergitol’ (0.13%) at 195 DAS (Table 6.2). 

An aqueous spray solution containing 2% Ca(NO3)2 and ‘Tween 20’ resulted in the 

highest Ca concentration in the leaf, rind and pulp at 101 DAS and 195 DAS in 

‘Washington Navel’ orange (Table 6.2). 
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6.3.2. Albedo breakdown incidence 

An aqueous spray solution containing 2% Ca(NO3)2 and all surfactants except 

‘Triton X100’ significantly reduced albedo breakdown incidence as compared to 

both the calcium-only treatment and control at harvest. The trees sprayed with an 

aqueous spray solution containing 2% Ca(NO3)2 and ‘Tween 20’ resulted in the 

lowest albedo breakdown (43.8%) but this was not significantly higher from 

‘Tergitol’ (44.1%), ‘Tween 80’ (53.8%) and ‘Triton X100’ (61.3%) (Fig.6.1). 
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Figure 6.1. Effects of different surfactants added into an aqueous spray solution 
containing 2% Ca(NO3)2 on the percentage of albedo breakdown incidence (AB, % 
of fruit) in ‘Washington Navel’ orange. Means followed by different letters on bars 
are significantly different at P ≤ 0.05. n = 4 replications. 

 

6.3.3. Relationship between leaf, rind and pulp Ca concentration and albedo 

breakdown incidence 

The concentration of Ca in leaf, rind and pulp at 101 DAS showed significant 

negative correlation (r = - 0.780; - 0.947 and - 0.891, respectively) with albedo 

breakdown incidence at the harvest. There was not a significantly negative 

correlation between Ca concentrations in the leaf at 276 DAFB and albedo 

breakdown incidence at harvest (r = - 0.279). Albedo breakdown incidence at the 

harvest was significantly negatively correlated with Ca concentration in rind and 

pulp (r = - 0.891 and - 0.905, respectively) at 195 DAS (Table 6.3). 
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Table 6.3. Relationship between Ca concentrations in the leaf, rind and pulp tissues 
and albedo breakdown (AB) incidence at harvest  

Independent variables Correlation (r) 

Leaf vs. AB incidence 

Rind vs. AB incidence 

101 DAS  

(182 DAFB) 

Pulp vs. AB incidence 

Leaf vs. AB incidence 

Rind vs. AB incidence 

195 DAS  

(276 DAFB) 

Pulp vs. AB incidence 

- 0.780 ** 

- 0.947** 

- 0.891** 

- 0.279 ns 

- 0.891** 

- 0.905** 

DAS = days after spray, DAFB = days after full bloom. AB = albedo breakdown. n = 

24. ns = not significant at P ≤ 0.05. * * = significantly different at P ≤ 0.01. 

 

6.3.4.  Texture profile analysis of the rind and the fruit 

6.3.4.1. Rind hardness and cohesiveness 

Rind hardness of normal fruit was higher than that of albedo breakdown fruit. The 

foliar spray applications of an aqueous solution containing 2% Ca(NO3)2 and all 

surfactants resulted in the higher rind hardness of normal and albedo breakdown fruit 

than that with Ca-only treatment or control (Table 6.4). An aqueous spray solution 

containing 2% Ca(NO3)2 and ‘Tween 20’ resulted in the significantly highest rind 

hardness for both normal and albedo breakdown fruit as compared to all other 

surfactant treatments, control and Ca-only treatment. The rind hardness of the normal 

fruit was significantly increased with an aqueous spray solution containing 2% 

Ca(NO3)2 and ‘Tween 20’ (35.35 N), ‘Tween 80’ (26.81 N) and ‘Tergitol’ (27.04 N) 

as compared to control and Ca-only treatment (Table 6.4). The foliar applications of 

an aqueous solution containing 2% Ca(NO3)2 and ‘Tween 20’ (18.83 N) and ‘Tween 

80’ (15.01 N) significantly increased rind hardness of fruit with albedo breakdown as 

compared to ‘Triton X100’, control and Ca-only treatment in ‘Washington Navel’ 

orange (Table 6.4).  
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Table 6.4. Effects of different surfactants added into an aqueous spray solution 
containing 2% Ca(NO3)2 on rind hardness (N) and cohesiveness in ‘Washington 
Navel’ orange. Within each column, means followed by different letters are 
significantly different at P ≤ 0.05. 

 Rind hardness (N) Rind cohesiveness 

Treatment Normal AB Normal AB 

Control 19.88e 11.62d 0.06e 0.06d 

Ca(NO3)2 2% 21.88e 13.40d 0.08e 0.06d 

Ca(NO3)2 2% and Tween 20 35.35a 18.83a 0.14a 0.15a 

Ca(NO3)2 2% and Tween 80 26.81cd 15.01bc 0.10cd 0.11cd 

Ca(NO3)2 2% and Triton X100 24.20de 13.52d 0.09de 0.08d 

Ca(NO3)2 2% and Tergitol 27.04bc 15.00cd 0.10bc 0.12bc 

LSD (P≤0.05) 2.95 1.96 0.02   0.03 

AB = albedo breakdown. n = 4 replications.  

 

The foliar applications of an aqueous solution containing 2% Ca(NO3)2 and all 

surfactants resulted in the higher rind cohesiveness of normal and albedo breakdown 

fruit than that with Ca-only treatment or control. An aqueous spray solution 

containing 2% Ca(NO3)2 and ‘Tween 20’ resulted in the significantly highest rind 

cohesiveness in both normal and albedo breakdown fruit as compared to all other 

treatments (Table 6.4). The rind cohesiveness of the normal fruit was significantly 

increased with an aqueous spray solution containing 2% Ca(NO3)2 and ‘Tween 20’ 

(0.135), ‘Tween 80’ (0.098) and ‘Tergitol’ (0.100) as compared to control and Ca-

only treatment (Table 6.4). The foliar applications of an aqueous solution containing 

2% Ca(NO3)2 and ‘Tween 20’ (0.151) and ‘Tergitol’ (0.117) significantly increased 

rind hardness of albedo breakdown fruit as compared to control and Ca-only 

treatment in ‘Washington Navel’ orange (Table 6.4). 

6.3.4.2. Rheological properties of rind 

Among various parameters of rheological properties of rind, only the adhesiveness of 

rind of normal and albedo breakdown fruit was significantly affected with the 

treatments. The spray applications of an aqueous solution containing 2% Ca(NO3)2 

with any surfactant resulted in higher rind adhesiveness in both normal and albedo 

breakdown fruits as compared to untreated and Ca-only treatments (Table 6.5). The 

spray applications of 2% Ca(NO3)2 along ‘Tween 20’ significantly increased rind 
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adhesiveness (0.34 N and 0.22 N, respectively) in both normal and albedo 

breakdown fruit as compared to control and Ca alone. Rind adhesiveness in normal 

fruit was higher than in albedo breakdown fruit (Table 6.5). The spray applications of 

an aqueous solution containing 2% Ca(NO3)2 with ‘Tween 20’ resulted in the highest 

springiness, fracture force and stiffness of rind in both normal and albedo breakdown 

fruit (Table 6.5). There were no significant differences in springiness, fracture force 

and stiffness of rind in both normal and albedo breakdown fruits among treatments. 

Springiness and stiffness of rind in normal fruit were higher in albedo breakdown 

fruit (Table 6.5). 

 

6.3.4.3. Rind tensile strength force 

The spray applications of an aqueous solution containing 2% Ca(NO3)2 and all 

surfactants increased rind tensile strength force of both normal and albedo 

breakdown fruits as compared to control and Ca-only treatment (Fig. 6.2). The rind 

tensile strength force of normal fruit was higher than that of fruit with albedo 

breakdown. 
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Figure 6.2. Effects of different surfactants added into an aqueous spray solution 
containing 2% Ca(NO3)2 on rind tensile strength force (N) in ‘Washington Navel’ 
orange. Means followed by different letters on bars are significantly different at P ≤ 
0.05. n = 4 replications. NTSF: normal tensile strength force. ABTSF = albedo 
breakdown tensile strength force.  
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An aqueous spray solution containing 2% Ca(NO3)2 and ‘Tween 20’ resulted in the 

significantly highest rind tensile strength force in both normal and albedo breakdown 

fruit (43.97 N and 35.03 N, respectively) as compared to all other treatments (Fig. 

6.2). All surfactants except ‘Tween 80’ along with 2% Ca(NO3)2 significantly 

increased rind tensile strength force of normal fruit as compared to control and Ca-

only treatment but the differences between ‘Triton X100’ (37.63 N) and ‘Tergitol’ 

(39.50 N) were not significant (Fig. 6.2). The spray application of an aqueous 

solution containing 2% Ca(NO3)2  and ‘Tween 20’, ‘Triton X100’ and ‘Tergitol’ 

resulted in significantly higher tensile strength force of rind of albedo breakdown 

fruit as compared to both the calcium-only treatment and control. There was no 

significantly higher difference in tensile strength force of rind of albedo breakdown 

fruit with ‘Triton X100’ (27.41 N) and ‘Tergitol’ (29.68 N) in ‘Washington Navel’ 

orange (Fig. 6.2). 

6.3.4.4. Fruit compression test 

Firmness of fruit sprayed with an aqueous spray solution containing 2% Ca(NO3)2 

and ‘Tween 20’ was significantly highest in both normal and albedo breakdown fruit 

(352.5 N and 317.1 N, respectively) as compared to all other treatments (Fig. 6.3).  
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Figure 6.3. Effects of different surfactants added into an aqueous spray solution 
containing 2% Ca(NO3)2 on fruit firmness (N) in ‘Washington Navel’ orange. Means 
followed by different letters on bars are significantly different at P ≤ 0.05. n = 4 
replications. FCF = fruit compression force. NCF = normal compression force. 
ABCF = albedo breakdown compression force. 
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The spray applications of an aqueous solution containing 2% Ca(NO3)2 and any 

surfactant resulted in higher fruit firmness in both normal fruit and fruit with albedo 

breakdown as compared to unsprayed treatment. 

6.3.5. Rind, flavedo and albedo thickness 

The spray applications of an aqueous solution containing 2% Ca(NO3)2 and any 

surfactant except ‘Triton X100’ resulted in an increase in fruit rind and albedo 

thickness as compared to untreated and Ca-only treatments (Table 6.6). The spray 

applications of 2% Ca(NO3)2 along with ‘Tween 20’ significantly increased rind 

thickness (5.6 mm) as compared to control (4.3 mm) and Ca-only treatment (4.6 

mm). 

Table 6.6. Effects of different surfactants added into an aqueous spray solution 
containing 2% Ca(NO3)2 on rind, flavedo and albedo thickness (mm) in ‘Washington 
Navel’ orange. Within each column, means followed by different letters are 
significantly different at P ≤ 0.05. 

Treatment Rind (mm) Flavedo 

(mm) 

Albedo (mm) 

Control 4.3c 1.3 3.0c 

Ca(NO3)2 2% 4.6bc 1.2 3.4bc 

Ca(NO3)2 2% and Tween 20 5.6a 1.5 4.1ab  

Ca(NO3)2 2% and Tween 80 5.2ab  1.2 4.0b 

Ca(NO3)2 2% and Triton X100 4.6bc 1.2 3.4bc 

Ca(NO3)2 2% and Tergitol 5.1ab 1.4 3.7bc 

 LSD (P≤0.05) 0.6 ns (0.1) 0.7 

n = 4 replications. ns = not significant at P ≤ 0.05. Values within the bracket 

represent standard errors of means (SEM). 

 

The spray applications of 2% Ca(NO3)2 with any surfactant did not significantly 

affect the flavedo thickness as compared to untreated or Ca alone treatment (Table 

6.6). An aqueous solution containing 2% Ca(NO3)2  with ‘Tween 20’ or ‘Tween 80’ 

resulted in significantly thicker albedo (4.1 mm and 4.0 mm, respectively) as 

compared to control (3.0 mm) (Table 6.6). 
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6.3.6. Dry matter content of rind and pulp 

The spray applications of an aqueous solution containing 2% Ca(NO3)2  and any 

surfactant resulted in increased dry matter content of both exposed and shade rind as 

compared to control and Ca alone (Table 6.7). The spray applications of 2% 

Ca(NO3)2 containing  ‘Tween 20’ significantly increased dry matter content of 

exposed side of the rind (35.1%) and shaded side of the pulp (19.9%) as compared to 

other treatments. An aqueous spray solution containing 2% Ca(NO3)2 and ‘Tween 

20’ resulted in higher dry matter of shaded rind and exposed pulp but there were not 

significant differences in dry matter content of shade rind and exposed pulp among 

treatments (Table 6.7).  

Table 6.7. Effects of different surfactants added into an aqueous spray solution 
containing 2% Ca(NO3)2 on dry matter content of rind and pulp (g·100 g

-1) in 
‘Washington Navel’ orange. Within each column, means followed by different letters 
are significantly different at P ≤ 0.05. 

Dry matter content 

Rind Pulp 

 

Treatment 

Exposed Shaded Exposed Shaded 

Control 32.0b 30.9 16.4 14.4b 

Ca(NO3)2 2% 32.7b 31.0 16.5 14.5b 

Ca(NO3)2 2% and Tween 20 35.1a  33.7 17.2 19.9a 

Ca(NO3)2 2% and Tween 80 33.3b 31.7 16.9 15.6b 

Ca(NO3)2 2% and Triton X100 33.3b 31.9 17.1 15.2b 

Ca(NO3)2 2% and Tergitol 33.4b 32.8 17.1 16.6b 

 LSD (P≤0.05)   1.4 (ns) 0.7     (ns) 0.3         2.7 

n = 4 replications. ns = not significant at P ≤ 0.05. Values within the bracket 

represent standard errors of means (SEM). 

 

6.3.7. Fruit quality 

Percentage of juice, juice pH,  soluble solids concentration (SSC), titratable acidity, 

ascorbic acid as well as individual organic acids were not significantly affected with 

the spray applications of an aqueous solution containing 2% Ca(NO3)2 and any 

surfactant (Tables 6.8 and 6.9). 
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Table 6.8. Effects of different surfactants added into an aqueous spray solution of 
Ca(NO3)2 on percentage of juice (%), juice pH, soluble solids concentration (%) 
(SSC), titrable acidity (mg citric·100 mL fresh juice-1) (TA) and ascorbic acid 
(mg·100 mL fresh juice-1) in ‘Washington Navel’ orange.  

Juice Treatment 

% pH 

SSC TA Ascorbic 

acid 

Control 52.8 3.50 13.2 0.95 64.3 

Ca(NO3)2 2% 53.6 3.54 12.8 0.98 63.5 

Ca(NO3)2 2% and Tween 20 54.4 3.52 13.0 0.95 64.3 

Ca(NO3)2 2% and Tween 80 55.6 3.49 12.6 0.95 60.5 

Ca(NO3)2 2% and Triton X100 53.2 3.59 12.5 0.83 64.8 

Ca(NO3)2 2% and Tergitol 54.3 3.55 13.0 0.95 65.4 

LSD (P≤0.05) ns 

(1.34) 

ns (0.05) ns 

(0.43) 

ns 

(0.06) 

ns (2.58) 

n = 4 replications. ns = not significant at P ≤ 0.05. Values within the bracket 

represent standard errors of means (SEM). 

 

Table 6.9. Effects of different surfactants added into an aqueous spray solution of 
Ca(NO3)2 on individual organic acids (g·L fresh juice

-1) in ‘Washington Navel’ 
orange.  

Organic acids Treatment 

Citric Malic Succinic Tartaric 

Control 11.14 4.26 1.76 0.68 

Ca(NO3)2 2% 12.09 4.67 1.97 0.67 

Ca(NO3)2 2% and Tween 20 10.84 4.21 1.85 0.63 

Ca(NO3)2 2% and Tween 80 11.50 4.21 1.66 0.62 

Ca(NO3)2 2% and Triton X100 10.56 4.04 1.69 0.56 

Ca(NO3)2 2% and Tergitol 10.88 4.26 1.68 0.67 

LSD (P≤0.05) ns (0.38) ns (0.13) ns (0.13) ns (0.07) 

n = 4 replications. ns = not significant at P ≤ 0.05. Values within the bracket 

represent standard errors of means (SEM). 
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6.4. Discussion 

Pre-harvest spray applications of 2% Ca(NO3)2 containing different surfactants 

increased Ca concentration in leaf, fruit rind and pulp tissues at 101 and 195 days 

after sprays  (Table 6.2). Amongst four surfactants tested, pre-harvest spray 

applications of 2% Ca(NO3)2 containing ‘Tween 20’ significantly increased Ca 

concentration in leaf, fruit rind and pulp tissues at 101 and 195 days after sprays, 

except for leaf Ca concentration at 195 days after sprays (Table 6.2). The enhanced 

Ca uptake into leaf, rind and pulp tissues with surfactants may be ascribed to the 

lower surface tension as previously reported that Ca ions were distributed better on 

the surface of leaf and fruit due to the lower contact angles of spray solution 

(Neumann and Prinz, 1974). It may also be argued that surfactants added into the 

spray solution may have increased the binding capacity of the cuticle for Ca ions 

consequently improving Ca uptake.  The surfactants containing long alkyl chains 

were known as moiety agents contributing to the improved wetting on the leaf and 

fruit surfaces and increased the uptake of Ca ions (Harker and Ferguson, 1991; Roy 

et al., 1996; Saftner at al. 1997). Possibly, the pre-harvest spray applications of 2% 

Ca(NO3)2 containing different surfactants enhanced Ca uptake into leaf, rind and 

pulp tissues may be due to the  altered sites of adsorption by changing, partially 

damaging or extracting cuticle wax. The diffusion of the surfactants into the cuticle 

along hydrophilic-lipophilic interfaces caused the dilation of hydrophilic pores 

leading to the decreased resistance and increased permeability of the cuticles has 

earlier been reported (Roy et al., 1996; Harker and Ferguson, 1991).  

The efficiency of improving Ca uptake into leaf, rind and pulp tissues varied among 

surfactants (Table 6.2). The pre-harvest spray applications of 2% Ca(NO3)2 

containing ‘Tween 20’, ‘Tween 80’ and ‘Tergitol’ resulted in  higher Ca 

concentration in fruit rind and pulp tissues as compared to all other surfactants (Table 

6.2). The value of hydrophilic-lipophilic balance (HLB) mainly contributed to the 

enhanced concentrations of Ca in leaf and fruit tissues. The penetration of a nutrient 

through the cuticular membrane was more effective when the optimal HLB values 

are ranged within 15-17. The higher HLB value of the surfactants was a pathway to 

enhance the penetration of a nutrient through the cuticular membrane (Wojcik, 2004) 

as the HLB values of ‘Tween 20’ and ‘Tween 80’ were higher than of ‘Tergitol’ and 

‘Triton X100’.  ‘Tergitol’ containing alkylbenzen which is a hydrophobic agent 
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resulted in increased absorption of Ca into fruit (Roy et al., 1996; Saftner et al., 

1997).  

Pre-harvest spray applications of 2% Ca(NO3)2 containing some surfactants resulted 

in the higher Ca concentration in the leaf tissue than fruit rind and pulp tissue (Table 

6.2). As Ca is not phloem mobile (Treeby and Storey, 2002) and hence the foliar 

applications of Ca solution did not contribute to the fruit Ca concentration (Saure, 

2005). Therefore, an aqueous Ca solution should be sprayed directly to the fruit 

surface to improve the penetration of Ca into the fruit as reported in apples (Saure, 

2005; Harker and Ferguson, 1991; Schlegel and Schonherr, 2002).  

The spray applications of an aqueous 2% Ca(NO3)2 solution containing ‘Tween 20’, 

‘Tween 80’ and ‘Tergitol’ decreased albedo breakdown incidence compared to the 

calcium-only treatment and control (Fig. 6.1) mainly due to the increased Ca 

concentrations in  rind and pulp tissues (Table 6.2). My experimental data also show 

negative significant correlations (r = - 0.947** and - 0.891**, respectively) between 

Ca concentrations in the rind at 101 and 195 days after spray and albedo breakdown 

incidence at harvest. There was significant negative correlations (r = - 0.891** and - 

0.905**, respectively) between pulp Ca concentrations at 101 and 195 days after 

spray with albedo breakdown incidence at harvest (Table 6.3). Similarly, other 

researchers have reported that there was lower Ca concentration in the albedo and 

flavedo of fruit with albedo breakdown than normal fruit of sweet oranges (Storey 

and Treeby, 2002; Treeby and Storey, 2002; Jone et al., 1967; Bevington et al., 1993; 

Moulds et al., 1995). In contrast, Lovatt (2000) reported that there was a significant 

positive correlation between rind N and Ca concentration and albedo breakdown 

incidence at harvest in ‘Valencia’ orange in California. Bower (2004) reported that 

the role of calcium was less important in reducing the albedo breakdown than that of 

molybdenum or sulphur.    

It may also be argued that spray applications of an aqueous 2% Ca(NO3)2 solution 

containing surfactants has significantly improved textural properties of the rind such 

as hardness, cohesiveness, adhesiveness, tensile strength and fruit firmness (Tables 

6.4, 6.5 and 6.6; Figures 6.2 and 6.3) that consequently contributed to decreased 

albedo breakdown. The disconnection of the adjoining cells in the cell wall at the 

middle lamella and the lower levels of pectins and hemicellulose in the cell wall 

seem to be associated with fracture in albedo tissue during the end of stage II in the 
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fruit development (Storey and Treeby, 1994; Storey and Treeby, 2002; Bower, 2004; 

Jona et al., 1989).  

It is also suggested that significantly increased rind thickness with sprays of an 

aqueous solution containing 2% Ca(NO3)2 and surfactants may also have partially 

contributed to the significant reduction of  albedo breakdown incidence (Table 6.6). 

Ali et al. (2000) monitored the relationships among the severity of albedo 

breakdown, leaf, and rind nutrient concentrations, rind thickness and temperature for 

two years at eight ‘Navel’ and ‘Valencia’ orange orchards in California and found 

that rind thickness in October showed a significant negative correlation with albedo 

breakdown incidence at harvest. Similarly, it has been reported that albedo 

breakdown is more likely to occur on the fruits with thin rind (Bevington et al., 1993; 

Jones et al., 1967 and Moulds et al., 1995). 

The spray applications of an aqueous solution containing 2% Ca(NO3)2 and 

surfactants resulted in the improved textural properties of the rind such as hardness, 

cohesiveness, adhesiveness, tensile strength force and fruit firmness as well as the 

thicker rind, and albedo of fruit (Tables 6.4, 6.5 and 6.6; Figures 6.2 and 6.3) in both 

normal and albedo breakdown fruits. There was also a significantly increased dry 

matter content in fruit rind and pulp with sprays of an aqueous solution containing 

2% Ca(NO3)2 and surfactants as compared to control and Ca-only treatment (Table 

6.7). It may be argued that increased Ca concentration in fruit resulted in the higher 

cell wall strength and thickness as Ca formed cross-links within the pectin 

polysaccharide matrix resulting in the strong structural rigidity in the cell wall 

(Easterwood, 2002) and contributing to the fruit firmness (Tucker, 1993; Singh et al., 

2007). The maintenance of the cell wall stabilisation and membrane integrity is 

known to be the roles of calcium in the plant cell (Saure, 2005; Singh et al., 2007). 

Therefore, increased calcium concentration in fruit resulted in the higher fruit 

firmness due to the improved fruit texture (Tucker, 1993; Singh et al., 2007; Roy et 

al., 1996). Similarly, the foliar application of calcium nitrate just before or during 

fruit colour-break increased the rind resistance to puncturing in ‘Fortune’ mandarin 

(Zaragoza et al., 1996). Similar results were recorded by El-Hilali et al. (2004) who 

demonstrated that the foliar spray solutions containing 1% or 2% of calcium nitrate 

applied four weeks prior to harvest increased the flesh firmness in ‘Fortune’ 

mandarin.  
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Percentage of juice , juice pH,  soluble solids concentration (SSC), titrable acidity, 

ascorbic acid as well as individual organic acids were not significantly affected with 

the spray applications of an aqueous solution containing 2% Ca(NO3)2  and 

surfactants (Tables 6.8 and 6.9). Similarly, El-Hilali et al. (2004) reported that pre-

harvest spray of 1% or 2% calcium nitrate applied four weeks before harvest did not 

affect juice content, soluble solids concentration (SSC) and SSC and titrable acidity 

ratio in the ‘Fortune’ mandarin. Contrarily, Moss and Higgins (1975) found that the 

brix and acid ratio was associated with leaf Ca (r = 0.46*) in ‘Late Valencia’ oranges 

in New South Wales. 

In conclusion, ‘Tween 20’ was the most efficient surfactant in enhancing Ca uptake 

into leaf, rind and pulp tissues and reducing albedo breakdown. Pre-harvest five 

spray applications of 2% Ca(NO3) containing Tween 20’ commencing from 81 

DAFB at 10-day intervals increased Ca concentrations in leaf, fruit rind and pulp 

tissues, decreased albedo breakdown incidence and improved textural properties of 

the rind such as hardness, cohesiveness, adhesiveness, tensile strength force, fruit 

firmness and the thicker rind, and albedo of fruit without affecting the fruit quality 

attributes as compared to the calcium-only treatment and control.  
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CHAPTER 7  

 Foliar application of boron reduces albedo breakdown and improves rind 

textural properties in ‘Washington ;avel’ sweet orange [Citrus sinensis (L.) 

Osbeck.] 

 

 

Abstract 

 

Albedo breakdown in sweet oranges is a rind disorder, which is caused by the cracks 

in the internal white tissues (albedo). I investigated the efficacy of different 

concentrations and time of foliar application of boron in reducing albedo breakdown 

and improving textural properties of rind on ‘Washington Navel’ sweet orange. 

Boron was sprayed at different concentrations (0, 200, 400 and 600 mg·L-1) in 2007 

and (0, 200, 400, 600 and 800 mg·L-1) in 2008. The spray was applied as (a) single 

spray in early summer only (81 days after full bloom) (DAFB), (b) two sprays one in 

early summer (81 DAFB) and followed by second spray in early winter (233 DAFB) 

and (c) single spray in early winter only (233 DAFB) in 2007. In 2008, The boron 

spray was applied as (a) single in early summer (80 DAFB) and (b) two sprays one in 

early summer (80 DAFB) and followed by second spray in early winter (232 DAFB). 

The experiment was set out as a randomized block design and included four 

replications. Concentrations of boron in the leaf, rind, and pulp of fruit were 

determined on 182 and 276 DAFB in 2007 and 182 and 272 DAFB in 2008.  The 

incidence of AB was recorded for each tree as a percentage of the fruit. Boron 

concentration in leaf, rind and pulp was increased with the two foliar boron sprays in 

2007 while single boron spray in early summer resulted in the significantly higher 

boron concentration in leaf at 182 DAFB and in fruit rind and pulp at 182 and 272 

DAFB in 2008. The foliar boron spray application significantly decreased albedo 

breakdown incidence and improved rind hardness, cohesiveness, tensile strength 

force and fruit firmness. In conclusion, the one foliar spray of boron (600 mg·L-1) in 

early summer significantly increased boron concentration in leaf, rind and pulp of 

fruit, reduced the incidence of albedo breakdown and improved the rind textural 

properties in ‘Washington Navel’ while maintaining the other important fruit quality 

attributes.  
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7.1. Introduction 

Albedo breakdown is a physiological disorder with cracks in the internal white tissue 

(albedo) causing puffiness in the rind of sweet oranges. The development of albedo 

breakdown is related to the disconnection of the adjoining cells in the cell wall at the 

middle lamella. The lower levels of pectins and hemicellulose in the cell wall have 

been indicated to involve in albedo breakdown due to causing irregular fractures in 

albedo tissue at the end of stage II in fruit development (Storey and Treeby, 1994; 

Storey et al., 2002; Bower, 2004; Jona et al., 1989). Albedo breakdown causes a 

marked economic loss to the citrus industry as it affects 35% - 45% of the total area 

planted to sweet orange in the world (Monselise et al., 1976). Albedo breakdown 

also affects up to 15% to 90% of fruit at some locations in South Africa and 

Australia, respectively (Goldie, 1998). 

The incidence of albedo breakdown has been reported to be influenced by rootstock, 

(Agusti et al., 2003; Treeby et al., 1995; Moulds et al., 1995), regulated deficit 

irrigation (Treeby et al., 2007), a foliar application of gibberellic acid in summer 

(Embleton et al., 1973; Jona et al., 1989) and mineral nutrition (Ali et al., 2000; 

Bevington et al., 1993; Jones et al., 1967; Embleton et al., 1973; Monselise et al., 

1976). Jones et al. (1967) reported that the increased soil application rate of N in 

summer resulted in the significantly lower incidence of albedo breakdown than 

spring application in ‘Valencia’ oranges. Albedo breakdown incidence was 

significantly reduced with the soil phosphorus application to the P-deficient trees 

(Jone et al., 1967). Two foliar sprays of KNO3 solution in summer also significantly 

reduced albedo breakdown from 42.6% to 27.2% in ‘Valencia’ orange (Jone et al., 

1967). 

Ali et al. (2000) reported that both rind K and P concentrations were significantly 

positively correlated with rind thickness in October whilst, there was significant 

negative correlation with albedo breakdown incidence at harvest on ‘Navel’ and 

‘Valencia’ oranges in California.  

Lower levels of Ca in oranges are associated with albedo breakdown (Storey et al., 

2002; Treeby and Storey, 2002) as calcium plays an important role in building the 

structure and permeability of cell membranes and preserving cell wall stability 

(Manganaris et al., 2005; Tuna et al., 2007). Treeby and Storey (2002) reported that 
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albedo breakdown was significantly decreased from 83% to 53% with the application 

of five foliar sprays of either 0.11% or 0.33% calcium commencing in summer at an 

early stage of ‘Navel’ orange fruit growth due to increased Ca levels in the rind and 

albedo of fruit.  

Boron plays an important role in cell wall formation in citrus tree (Haas, 1929; 

Matoh, 1997; Haas, 1945; Zekri and Obreza, 2003). Physical quality parameters of 

citrus fruit, especially the rind thickness and smoothing are very sensitive to boron 

supply as boron also assists in binding calcium to the cell walls (Foroughi et al., 

1973; Haas, 1929; Smith and Reuther, 1950, Matoh, 1997). “Hard fruit” is named for 

the affected citrus fruit which has thick and lumpy rind at boron deficiency level. 

Tariq et al. (2007) also reported that the rind of citrus fruit softened with the foliar 

application of boron but no related data to support this observation were published. 

Most of the research on the role of boron in the citrus trees has been reported in 

terms of fruit yield and fruit quality (Tariq et al., 2007; Abd-Allah, 2006; Maurer and 

Taylor, 1999; Nguyen and Nguyen, 2006; Smith, 1955). Smith and Reuther (1950) 

reported that the foliar application of boron did not significantly affect the yield, fruit 

size, rind thickness, juice content, percentage of total soluble solids concentration 

and citric acid in the juice except the ascorbic acid content of the juice in the low 

boron trees in oranges. In contrast, Tariq et al. (2007) found that foliar application of 

boron significantly increased the fruit yield, the percentage of juice, fruit size and 

decreased the rind thickness in sweet oranges. 

Apparently, no research work has been reported on the effects of boron on albedo 

breakdown incidence and textural properties of the rind in citrus. Therefore, I 

investigated the effects of different boron concentrations and time of its application 

on incidence of albedo breakdown, textural properties of rind and fruit and fruit 

quality in ‘Washington Navel’ orange.  

7.2. Materials and methods 

7.2.1. Experimental site and plant materials  

The experiment was carried out in a commercial orchard located at Gingin, Western 

Australia (Latitude 31° 21' S, longitude 155° 55' E).  The climate is described as 

winter dominant with wet winters and hot, dry summers. The soil is a sandy loam. 

All the cultural practices including irrigation, fertiliser application, insect and weed 
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control in all the blocks were the same except for the experimental treatments of 

boron. 

Twenty two years old uniform ‘Washington Navel’ orange trees [Citrus sinensis (L.) 

Osbeck] grafted on [Poncirus trifoliata (L.) Raf.] rootstock were used in the 

experiment. The trees were spaced 7.50 m between rows and 2.70 m within rows 

with north-south row direction.  

7.2.2. Treatments and experimental design 

7.2.2.1. Experiment 1: 2006-2007 

An aqueous solution containing four different concentrations of boron (0, 200, 400, 

or 600 mg·L-1) and a non-ionic surfactant: ‘Tween 20’ (0.05%) was sprayed onto 

fruit and leaves of the whole tree. The spray was applied (a) single spray in early 

summer only (December 5, 2006), 81 days after full bloom (DAFB), (b) two sprays,  

one in early summer (December 5, 2006), 81 DAFB and followed by second in early 

winter (May 6, 2007), 233 DAFB and (c) single spray in  early winter only (May 6, 

2007), 233 DAFB.  

7.2.2.2. Experiment 2: 2007-2008 

The foliar sprays of five different concentrations of boron (0, 200, 400, 600 or 800 

mg·L-1) and a non-ionic surfactant: ‘Tween 20’ (0.05%) was applied onto fruit and 

leaves of the whole tree. Single spray was applied in early summer (December 5, 

2007), 80 DAFB and two sprays; first in early summer (December 5, 2007), 80 

DAFB and second in early winter (May 6, 2008), 232 DAFB.  

For both Experiments 1 and 2, the aqueous solution of boron with surfactant was 

sprayed using a sprayer (The Selecta Trolleypak Mk II, Victoria, Australia) at the 

rate of 1000 L·ha-1 till run off. The nozzle (Chierici Titisrl, Rubiera Italy) was used 

under the pressure 250 KPa. The rate of nozzle was 70 L/min. 

Both experiments were laid out by following a randomised block design with four 

replications. Single tree was treated as an experimental unit. Unsprayed trees were 

treated as control. 
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7.2.3. Chemicals 

Solubor (Disodium octaborate tetrahydrate) was purchased from Incitec Pivot 

Limited, Victoria, Australia.  The white powder solubor (B8Na2O13.4H2O) contains 

20.5% w/w B. 

7.2.4. Parameters measured 

Boron and calcium concentration in leaf, fruit rind and pulp were determined twice 

in 2007 (182 and 286 DAFB) and twice in 2008 (182 and 272 DAFB). Albedo 

breakdown incidence was recorded. Rind hardness, cohesiveness, fracture, 

springiness, rind tensile strength force and fruit compression were recorded as 

texture profile analysis. Rind, albedo and flavedo thickness was determined. 

Percentage of juice, juice pH, soluble solids concentration, titratable acidity and 

ascorbic acid were assessed as fruit quality parameters. 

7.2.4.1. Determination of B and Ca concentrations from leaf, rind and pulp 

Fully developed six months old spring flush leaves (25 /tree) from non-fruiting shoot 

and five fruit per tree were collected for nutrient analysis. The leaves and fruit from 

each tree were collected from unshaded position at about 1.50 m height at the north, 

east, south and west points of tree. The leaves and fruits sampled twice in 2007 (182 

and 286 DAFB) and twice in 2008 (182 and 272 DAFB). All leaves and fruit 

sampled were free from damage of insects or diseases.  

Boron and calcium concentrations were analysed by using Radial Inductively 

Coupled Plasma Optical Emission Spectrometry (VISTA – PRO, CCD Simultaneous 

ICP-OES, VARIAN, Australia) which operated in simultaneous mode as described 

in more details in Section 3.6.  

7.2.4.2. Determination of albedo breakdown incidence 

All fruit from each tree were harvested and examined for albedo breakdown. The 

albedo breakdown incidence was expressed as percentage of fruit as mentioned in 

Section 3.7. 

7.2.4.3. Texture profile analysis 

Textural properties of rind such as hardness, cohesiveness, springiness, fracture 

force, tensile strength force and fruit firmness from normal fruit and fruit with albedo 

breakdown were determined using a texture analyser (TA Plus, AMETEK Lloyd 
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instruments Ltd., Hampshire, UK).  A personal computer with Nexygen® software 

was interfaced to a texture analyser. A 5/16 Magness-Taylor probe, with a 500 N 

load cell was used for the measurement of textural parameters.  

7.2.4.3.1 Rind puncture test 

Rind sample from two groups (normal and albedo breakdown fruits) were cut 2.5 cm 

wide x 0.6 cm thick using a slicer (Zyliss Easy slice 2” folding Mandolin slicer, 

Swiss) to give uniform sections for determining rind puncture test. Two rinds 

samples were dissected 90 degree apart per fruit. Ten fruit of each mentioned fruit 

group were tested from each tree. The detailed procedure for determination of rind 

puncture test has been mentioned in Section 3.8.1.  

7.2.4.3.2 Rind tensile strength test  

The rind tensile strength test was determined to measure the behaviour of the orange 

rind up to the rind deflection of 10 mm. The rind tensile strength force was 

calculated at the maximum load and limit points where the rind deflection occurred 

as detailed in Section 3.8.2. 

7.2.4.3.3 Fruit compression test 

The fruit with the height of about 8.5 cm were used for each compression test. Each 

fruit was placed between two flat plates with the stem axis perpendicular to the plate. 

The crosshead speed was 200 mm/min. This test was completed at strain of 25% of 

fruit height as described in Section 3.8.3.  

7.2.4.4. Determination of rind, flavedo and albedo thickness 

Ten mature fruits from north, east, west and south points of each tree at about 1.5 m 

high were sampled to determine rind, flavedo, albedo thickness as mentioned in 

Section 3.9.  

7.2.4.5. Estimation of fruit quality parameters 

Five mature fruit selected around the canopy of each tree at about 1.5 m high were 

weighed. Fruit juice was extracted using a juicer (Sunbeam citrus juicer, TE 2600, 

Sunbeam Co. Ltd., made in China to Sunbeam’s specification). The freshly extracted 

juice was used for determining fruit quality parameters including juice content, juice 

pH, soluble solids concentration, titratable acidity and ascorbic acid as detailed in 

Section 3.11. Juice content was calculated and expressed as percentage. Juice pH was 
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recorded using a digital pH meter (Cyberscan pH 510, Eutech Instrumnet Pte Ltd., 

Singapore). Soluble solids concentrations (SSC) in percent were recorded by 

measuring the refractive index at 20°C using an infrared digital refractometer (Atago-

Palette PR 101, Atago Co. Ltd, Itabashi-Ku, Tokyo, Japan). Titratable acidity (TA) 

was determined by following the titration method to phenolphthalein endpoint and 

calculated in milligram citric acid per 100 mL fresh juice. Ascorbic acid 

concentration was determined following the combined method of Jagota and Dani 

(1982) and Malik and Singh (2005). Ascorbic acid concentration was calculated 

using a standard curve of L-ascorbic acid and expressed as mg ascorbic acid per 100 

mL fresh juice. 

7.2.5. Statistical analysis 

 The data were analysed by two way analysis of variance (ANOVA) using Genstat 9 

release 9.1 (Lawes Agricultural Trust, Rothamsted Experimental Station, UK). The 

least significant difference (Fisher’s protected LSD) was calculated at P≤ 0.05. All 

the assumptions of ANOVA were checked to ensure the validity of statistical 

analysis.  

7.3. Results   

7.3.1. Boron concentration in leaf, fruit rind and pulp 

The increase in leaf boron concentration at 182, 276 and 272 DAFB was increased 

with increased boron spray application in 2007 and 2008, respectively (Table 7.1).  

The increase in leaf boron concentrations was more pronounced in 2008 than 2007. 

Two boron sprays (summer and winter) resulted in significantly higher leaf boron 

concentration at 276 DAFB than single spray in winter or summer in 2007 and 2008 

(Table 7.1).  The single or two foliar spray(s) of boron (600 mg·L-1 and 800 mg·L-1) 

resulted in highest leaf boron concentration in 2007 and 2008, respectively (Table 

7.1). Two boron sprays first in early summer followed by the second spray in early 

winter resulted in the highest leaf boron concentration (174.4 mg·kg-1) at 276 DAFB 

in 2007 and 192.0 mg·kg-1 at 272 DAFB in 2008. However, the two boron sprays did 

not
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significantly increase leaf boron concentration at 182 DAFB as compared to single 

spray in summer or winter during 2008 (Table 7.1). The interaction between the 

number of sprays and different boron concentrations applied for leaf boron 

concentration was not significant for both years (Table 7.1). 

 Rind boron concentration was significantly increased with the application of 

increased boron concentration for both 2007 and 2008. The spray application of 

boron (600 mg·L-1) in 2007 and (800 mg·L-1) in 2008 resulted in the highest boron 

concentration in fruit rind with either single boron spray or two boron sprays (Table 

7.1). There were no significant differences in rind boron concentration between 

single boron spray and two boron sprays in 2007, while single boron spray in early 

summer significantly increased rind boron concentration as compared to two boron 

sprays in 2008 (Table 7.1). The interaction between the number of boron spray 

applications and boron concentration was not significant for rind boron concentration 

at 276 DAFB in 2007 (Table 7.1).  In 2008, the interaction between the number of 

boron spray applications and boron concentration at 182 and 272 DAFB was 

significant. 

Pulp boron concentration significantly increased with the increased boron applied in 

2007 and 2008 except at 182 DAFB in 2007 (Table 7.1). The spray application of 

boron (600 mg·L-1) resulted in the highest pulp boron concentration for both single 

and double boron sprays for over two years of 2007 and 2008 (Table 7.1). One or 

two boron sprays resulted in similar values of pulp boron concentration in 2007 

while single boron spray  in early summer significantly increased pulp boron 

concentration as compared to two boron sprays in 2008 (Table 7.1). The interaction 

between the number of boron sprays and boron concentration applied for pulp boron 

concentration was found to be non-significant in 2007 and 2008 (Table 7.1). 

7.3.2. Calcium concentration in leaf, fruit rind and pulp 

The exogenous spray application of boron irrespective of concentrations and number 

of sprays did not significantly influence leaf Ca concentrations at 182 and 276 DAFB 

in 2007 (Table 7.2). In 2008, spray application of boron (600 mg·L-1) as a single and 

double sprays resulted in highest concentrations of Ca in leaf at 182 and 272 DAFB 

(Table 7.2). The leaf Ca concentration did not differ significantly between a single 

and two boron sprays in 2007 and at 272 DAFB in 2008 (Table 7.2). The interaction 
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between the boron spray number and boron concentration was found to be non-

significant for leaf Ca concentration in 2007 and 2008 (Table 7.2).  

Rind Ca concentration were significantly increased with increased single B spray 

application (200 mg·L-1 to 600 mg·L-1) in 2007 and 2008 (Table 7.2). Rind Ca 

concentration at 276 DAFB did not vary significantly with double or single boron 

spray(s) in summer or winter in 2007 whilst, single boron spray in early summer 

significantly increased rind Ca concentration as compared to two boron sprays in 

2008 (Table 7.2). The interaction between boron concentrations and the number of 

sprays was found to be non-significant for rind calcium concentration at 276 DAFB 

in 2007, however, the interaction was significant in 2008 (Table 7.2). 

Pulp Ca concentration at 182 DAFB was not significantly increased with different 

foliar boron spray treatments during 2007 (Table 7.2).  The single spray application 

of B (600 mg·L-1) in early summer resulted in significantly increased Ca 

concentration in pulp at 182 and 272 DAFB as compared to control and double 

sprays and single spray in winter (Table 7.2). Pulp Ca concentration significantly 

increased with the increased boron concentrations up to 600 mg·L-1. The interaction 

between different boron concentrations and spray number was not significant for 

pulp Ca concentration at 276 DAFB in 2007 and significant for 2008 (Table 7.2). 

 

7.3.3. Albedo breakdown incidence 

All the spray treatments of B as single spray in early summer, winter or two 

spays, first in early summer followed by second in winter reduced the incidence of 

albedo breakdown in 2007 and 2008 (Table 7.3). The single boron spray (600 mg·L-

1) in early summer resulted in the significantly lowest albedo breakdown incidence 

(37.6% and 18.0%)  as compared to control (70.4% and 51.8%) and other treatments 

in 2007 and 2008, respectively (Table 7.3). Summer spray application of B was more 

effective in reducing albedo breakdown incidence as compared to single spray in 

winter and double sprays. The interaction between the number of boron spray 

application and concentration was significant for incidence of albedo breakdown in 

2007 only (Table 7.3). 
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Table 7.3. Incidence of albedo breakdown influenced by different concentrations and 
time of application of B in ‘Washington Navel’ orange in 2007 and 2008. Within 
each column, means followed by different letters are significantly different at P ≤ 
0.05. 

Albedo breakdown incidence (% of fruit) B  
(mg·L-1) 

Spray time 

    2007 2008 

0 Summer 70.4b 51.8c 
200 (only) 43.3a 33.2b 
400  41.1a 26.8ab 
600  37.6a 18.8a 
800  - 18.0a 
Mean  48.1 29.7 

0 Summer 70.4b 51.8b 
200 Winter 57.2b 38.8a 
400  65.9b 36.8a 
600  27.9a 29.2a 
800  - 32.8a 
Mean  55.4 37.8 

0 Winter 70.4b - 
200 (only) 45.4a - 
400  47.9a - 
600  40.2a - 
Mean       51.0 - 

LSD P≤0.05 B con.       8.96 10.7 
 Time ns (2.70) 3.30 
 B con. x Time     15.51 ns (5.2) 

n = 4 replications. (-) = not available. Con. = concentration. ns = not significant at P 

≤ 0.05. Values within the bracket represent standard errors of means (SEM). 

 

7.3.4. Texture profile analysis of the rind and the fruit 

7.3.4.1. Rind hardness 

All the spray treatments of B as single spray in early summer, winter or two sprays, 

first in early summer followed by second in winter significantly increased rind 

hardness of both normal and fruit with albedo breakdown in 2007 and 2008 (Table 

7.4). The single spray of boron (600 mg·L-1) in early summer resulted in higher rind 

hardness of normal fruit (29.00 N and 33.53 N) and with albedo breakdown (18.34 N 

and 29.11 N) during 2007 and 2008, respectively. The single spray application of B 

in early summer was more effective in increasing the rind hardness of both normal 

and fruit with albedo breakdown than single spray in winter and double sprays during 

both years. In general, normal fruit showed higher rind hardness than fruit with 
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albedo breakdown in both years, irrespective of the treatments (Table 7.4). There 

were no significant interactions between time application and boron concentration 

for rind hardness in 2007 and 2008 except for fruit with albedo breakdown in 2008 

(Table 7.4). 

Table 7.4. Rind hardness influenced by different concentrations and time of 
application of B in 2007 and 2008 in ‘Washington Navel’ orange. Within each 
column, means followed by different letters are significantly different at P ≤ 0.05. 

Rind hardness (N) 

            Normal Albedo breakdown 

B  
(mg·L-1) 

Spray time 

  2007 2008 2007 2008 

0 Summer 21.85b 21.31c 12.90b 12.85d 
200 (only) 27.16a 24.56bc 14.64b 15.14d 
400  25.38ab 25.58b 14.09b 17.51cd 
600  29.00a 33.53a 18.34a 29.11a 
800  - 27.18b - 21.99b 
Mean  25.85 26.43 14.99 19.32 

0 Summer 21.85b 21.31c 12.90b 12.85b 
200 Winter 26.16a 25.16ab 14.61ab 14.71b 
400  24.31ab 26.62a 14.00ab 14.04b 
600  28.62a 26.40ab 15.43a 18.25a 
800  - 24.39abc - 15.59ab 
Mean  25.23 24.78 14.24 15.09 

0 Winter 21.85b - 12.90b - 
200 (only) 25.42ab - 14.54ab - 
400  23.33b - 13.45ab - 
600  28.55a - 14.70a - 
Mean  24.79 - 13.90 - 

LSD  B con.     4.65    3.79   1.77   3.48 
P≤0.05 Time      ns (1.4) ns (0.83)  ns (0.53)   2.20 
 B con. x Time      ns (2.8) ns (1.85)  ns (1.06)   4.93 

n = 4 replications. (-) = not available. Con. = concentration. ns = not significant at P 

≤ 0.05. Values within the bracket represent standard errors of means (SEM). 

 

7.3.4.2. Rind cohesiveness 

The foliar spray treatments of boron resulted in the significantly increased rind 

cohesiveness in 2007 and 2008 except for normal fruit in 2008 (Table 7.5). Rind 

cohesiveness was higher in 2008 than that in 2007. The significantly highest values 

of rind cohesiveness were observed with the foliar spray application of boron (600 

mg·L-1) in both normal and fruit with albedo breakdown in two years of 2007 and 

2008 (Table 7.5).  
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Table 7.5. Rind cohesiveness influenced by different concentrations and time of 
application of B in 2007 and 2008 in ‘Washington Navel’ orange. Within each 
column, means followed by different letters are significantly different at P ≤ 0.05. 

Rind cohesiveness 

            Normal Albedo breakdown 

B  
(mg·L-1) 

Spray time 

2007 2008 2007 2008 

0 Summer 0.05b 0.12a 0.04d 0.08c 
200 (only) 0.06a 0.12a 0.05c 0.09bc 
400  0.06a 0.11b 0.07b 0.07c 
600  0.09a 0.13a 0.09a 0.12a 
800  - 0.10b - 0.11ab 
Mean  0.06 0.11 0.06 0.09 

0 Summer 0.05b 0.12a 0.04c 0.08b 
200 Winter 0.05ab 0.11a 0.05b 0.08b 
400  0.06a 0.11a 0.06b 0.08b 
600  0.08a 0.09b 0.09a 0.09b 
800  - 0.08b - 0.11a 
Mean  0.06 0.10 0.06 0.09 

0 Winter 0.05b - 0.04b - 
200 (only) 0.05b - 0.05a - 
400  0.06a - 0.05a - 
600  0.06a - 0.07a - 
Mean  0.05 - 0.05 - 

LSD  B con. 0.01 0.02 0.01 0.02 
P≤0.05 Time ns (0.004) ns (0.003) ns (0.004) ns (0.004) 
 B con.x Time ns (0.01) ns (0.01) ns (0.01) ns (0.01) 

n = 4 replications. (-) = not available. Con. = concentration. ns = not significant at P 

≤ 0.05. Values within the bracket represent standard errors of means (SEM). 

 

The rind cohesiveness of both normal and fruit with albedo breakdown was not 

significantly affected by number of B sprays in 2007 and 2008. The interaction of 

number of sprays and B concentration was found to be not significant for rind 

cohesiveness of both normal and fruit with albedo breakdown in 2007 and 2008 

(Table 7.5). 

7.3.4.3. Rind fracture force 

Rind fracture force was significantly increased in both normal and fruit with albedo 

breakdown with the increased concentration of boron in spray solution in 2007. 

Whilst, in 2008, spray application of B increased rind fracture force as compared to 

control, but the difference was not significant (Table 7.6).  
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Table 7.6. Rind fracture force influenced by different concentrations and time of 
application of B in 2007 and 2008 in ‘Washington Navel’ orange. Within each 
column, means followed by different letters are significantly different at P ≤ 0.05. 

Rind fracture force (N) 

           Normal Albedo breakdown 

B  
(mg·L-1) 

Spray time 

2007 2008 2007 2008 

0 Summer 1.05c 2.95 1.01bc 2.16 
200 (only) 3.48b 2.84 1.51b 2.17 
400  5.25b 3.41 2.79ab 3.24 
600  7.95a 2.61 4.07a 3.23 
800  - 3.11 - 2.74 
Mean  4.43 2.99 2.35 2.71 

0 Summer 1.05c 2.95 1.01c 2.16 
200 Winter 2.69c 2.91 1.72bc 1.85 
400  4.02bc 6.93 2.57ab 1.78 
600  9.72a 3.48 3.75a 1.85 
800  - 2.18 - 2.71 
Mean  4.37 3.69 2.26 2.07 

0 Winter 1.05b - 1.01c - 
200 (only) 2.24b - 1.43bc - 
400  5.02a - 2.57ab - 
600  5.17a - 3.48a - 
Mean  3.37 - 2.12 - 

LSD  B con. 1.94 ns (0.74) 1.42 ns (0.41) 
P≤0.05 Time ns (0.58) ns (0.47) ns (0.43) ns (0.26) 
 B con.x Time ns (1.17) ns (1.05) ns (0.85) ns (0.58) 

n = 4 replications. (-) = not available. Con. = concentration. ns = not significant at P 

≤ 0.05. Values within the bracket represent standard errors of means (SEM). 

 

The foliar spray application of boron (600 mg·L-1) resulted in significantly highest 

rind fracture force for both normal fruit and fruit with albedo breakdown in 2007. 

The single boron spray in early summer was more effective in increasing rind 

fracture force than single spray in winter and double sprays in 2007 or 2008. The 

interaction between the time of sprays and boron concentration was found to be non-

significant for rind fracture force for normal and fruit with albedo breakdown in 2007 

and 2008 (Table 7.6). 

7.3.4.4. Rind springiness 

 Rind springiness in normal and fruit with albedo breakdown increased with the 

spray solution as compared to control in 2007 and 2008 (Table 7.7).  
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Table 7.7. Rind springiness influenced by different concentrations and time of 
application of B in 2007 and 2008 in ‘Washington Navel’ orange. Within each 
column, means followed by different letters are significantly different at P ≤ 0.05. 

Rind springiness (mm) 

          Normal             AB 

B  
(mg·L-1) 

Spray time 

2007 2008 2007 2008 

0 Summer 1.61b 1.62b 1.37b 1.70b 
200 (only) 1.85a 1.63b 1.43b 1.71b 
400  1.92a 1.51b 1.65a 1.68b 
600  2.02a 1.88a 1.72a 1.85a 
800  - 1.79a - 1.59b 
Mean  1.85 1.69 1.54 1.71 

0 Summer 1.61b 1.62b 1.37b 1.70a 
200 Winter 1.78ab 1.67ab 1.41b 1.63b 
400  1.92a 1.65b 1.64a 1.66b 
600  1.99a 1.71ab 1.73a 1.62b 
800  - 1.79a - 1.42b 
Mean  1.82 1.69 1.54 1.60 

0 Winter 1.61c - 1.37b - 
200 (only) 1.74bc - 1.38b - 
400  1.87ab - 1.47b - 
600  1.93a - 1.66a - 
Mean  1.79 - 1.47 - 

LSD  B con.  0.19 0.12 0.16 0.05 
P≤0.05 Time ns (0.06) ns (0.03) ns (0.05) 0.03 
 B con. x Time ns (0.12) ns (0.06) ns (0.10) ns (0.06) 

n = 4 replications. (-) = not available. AB = albedo breakdown. Con. = concentration. 

ns = not significant at P ≤ 0.05. Values within the bracket represent standard errors 

of means (SEM). 

 

The single spray application of B (600 mg·L-1) in early summer was more effective 

in increasing the rind springiness of normal fruit in 2007 and fruit with albedo 

breakdown in 2008 than single spray in winter and double sprays during both years. 

Rind springiness in albedo breakdown fruit in 2007 and in normal fruit in 2008 was 

not significantly different between two boron sprays and single spray in early 

summer or early in winter. The interaction between the boron concentration and the 

time of application was found not to be significant for rind springiness in both 

normal and albedo breakdown fruits in 2007 and 2008 (Table 7.7).   
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7.3.4.5. Rind tensile strength force 

The spray application of boron (200 mg·L-1 to 600 mg·L-1) has increased rind tensile 

strength force in normal and fruit with albedo breakdown than control in 2007 and 

2008 (Fig. 7.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. Rind tensile strength force influenced by difference concentrations and 
the time of boron application in 2007 (A) and 2008 (B) in ‘Washington Navel’ 
orange. Means followed by different letters on bars are significantly different at P ≤ 
0.05. n = 4 replications. NTSF = normal tensile strength force. ABTSF = albedo 
breakdown tensile strength force. 

 

The significantly highest rind tensile strength force was observed with boron (600 

mg·L-1) spray in early summer and double sprays first in summer and second in 

winter for both normal fruit and fruit with albedo breakdown in 2007 and 2008 (Fig. 

7.1). Rind tensile strength force was not significantly different between two boron 

sprays and single spray in 2007 while rind tensile strength force was higher with 
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single boron spray in early summer than two sprays for either normal or fruit with 

albedo breakdown in 2008 (Fig. 7.1). 

7.3.4.6. Fruit compression test 

Fruit firmness was significantly improved in both normal fruit and fruit with albedo 

breakdown with the foliar spray application of boron as compared to control 

treatment in 2007 and 2008, except for fruit with albedo breakdown in 2008 (Fig. 

7.2).  

 

 

   

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 7.2. Fruit firmness influenced by difference concentrations and the time of 
boron application (N) in 2007 (A) and 2008 (B) in‘Washington Navel’ orange. 
Means followed by different letters on bars are significantly different at P ≤ 0.05. n = 
4 replications. NCF = normal compression force. ABCF = albedo breakdown 
compression force. 

Fruit firmness was not significantly different between single boron spray (early 

summer or early winter) and two sprays for normal fruit and fruit with albedo 

breakdown in 2007 and for normal fruit in 2008 while double boron sprays were 

more effective in fruit firmness than single spray in early summer in albedo 
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number of boron sprays was not significantly different for fruit firmness for either 

normal fruit or fruit with albedo breakdown in 2007 and 2008 (Fig. 7.2) 

7.3.5. Rind thickness 

Table 7.8. Rind, flavedo and albedo thickness influenced by different concentrations 
and time of application of B in 2007 and 2008 in ‘Washington Navel’ orange. Within 
each column, means followed by different letters are significantly different at P ≤ 
0.05. 

 

  B  Spray time Thickness 

(mg·L-1)    Rind (mm) Flavedo (mm)   Albedo (mm) 

  2007 2008 2007 2008 2007 2008 

0 Summer 5.23c 5.24c 1.58 1.16c 3.64c 4.08 
200 (only) 5.74b 5.27bc 1.51 1.22c 4.23b 4.05 
400  5.97b 5.61ab 1.57 1.52a 4.40b 4.09 
600  6.52a 5.87a 1.66 1.48a 4.86a 4.38 
800  - 5.87a - 1.32b - 4.55 
Mean  5.86 5.57 1.58 1.34 4.28 4.23 

Summer 5.23b 5.24b 1.58 1.16cd 3.64bc 4.08 0 
200 Winter 5.00b 5.25b 1.52 1.13d 3.48c 4.13 
400  5.67ab 5.36ab 1.69 1.23c 3.98b 4.13 
600  5.77a 5.61a 1.77 1.52a 4.00a 4.09 
800  - 5.51a - 1.41b - 4.10 
Mean  5.42 5.39 1.64 1.29 3.78 4.11 

0 Winter 5.23c - 1.58 - 3.64b - 
200 (only) 5.48b - 1.58 - 3.90b - 
400  5.68b - 1.60 - 4.08ab - 
600  6.02a - 1.64 - 4.38a - 
Mean  5.60 - 1.60 - 4.00 - 

LSD  B con.  
0.46 0.36 

ns 
(0.07) 0.09 0.42 

ns 
 (0.12) 

P≤0.05 Time ns 
(0.14) 

ns 
(0.08) 

ns 
(0.06) 

ns 
(0.02) 

0.36 ns 
 (0.08) 

 B con. x 
Time 

ns 
(0.28) 

ns 
(0.18) 

ns 
(0.12) 

0.13 ns 
(0.25) 

ns  
(0.18) 

n = 4 replications. (-) = not available. Con. = concentration. ns = not significant at P 

≤ 0.05. Values within the bracket represent standard errors of means (SEM). 

 

The rind thickness was increased with the increased concentration of boron (200 

mg·L-1 to 600 mg·L-1) applied as compared to control in 2007 and 2008 (Table 7.8). 

The foliar application of boron (600 mg·L-1) resulted in the significantly highest rind 

thickness in 2007 and 2008 (Table 7.8). The single spray application of B (600 mg·L-

1) in early summer was more effective in increasing the rind thickness than single 
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spray in winter and double sprays during both years. The interaction between the 

time of sprays and boron concentration was found to be non-significant for rind 

thickness in 2007 and 2008. 

The foliar spray application of B significantly increased the thickness of flavedo in 

2008 but did not show any significant effects in 2007. The single foliar spray 

application of boron (400 or 600 mg·L-1) in early summer and two B sprays (600 

mg·L-1) (in early summer and followed by winter) resulted in thicker flavedo than 

control (Table 7.8). Both treatments were equally effective in increasing thickness of 

flavedo in 2008. The interaction between the time of sprays and boron concentration 

was not significant for thickness of flavedo in 2007 (Table 7.8). 

The foliar spray application of B significantly increased the thickness of albedo in 

2007 but did not show any significant effects in 2008 (Table 7.8). The B single spray 

in summer, winter and two sprays (600 mg·L-1) resulted in thicker albedo than 

control and all other treatments in 2007.  All these three treatments were equally 

effective in increasing thickness of albedo during 2007 but early summer application 

resulted in thickest rind (Table 7.8). There was non-significant interaction between 

boron concentrations and the time of boron application for albedo thickness during 

2007 and 2008 (Table 7.8). 

7.3.6. Fruit quality 

Percentage of juice, juice pH, soluble solids concentration (SSC), titratable acidity 

and ascorbic acid were not significantly affected with the different treatments of 

foliar spray application of boron in 2007 and 2008 (Table 7.9). 

7.4. Discussion 

The boron concentration in the leaf, rind and pulp increased with the 

increased boron concentration in the spray solution (Table 7.1).  Papadakis et al. 

(2003) reported that boron concentration in all parts of the citrus trees increased 

linearly with the increasing boron supply. Contrarily, Haas (1945) reported that there 

was no relation between the boron applied to the soil and the rind boron 

concentration although the pulp boron concentration may be associated with the soil 

application of boron. 

Chapter 7: Boron and albedo breakdown  



  
1
2
8
 

T
ab
le
 7
.9
. 
P
er
ce
n
ta
g
e 
o
f 
ju
ic
e 
(%
),
 j
u
ic
e 
p
H
, 
so
lu
b
le
 s
o
li
d
s 
co
n
ce
n
tr
at
io
n
 (
%
) 
(S
S
C
) 
an
d
 t
it
ra
b
le
 a
ci
d
it
y
 (
m
g
 c
it
ri
c·
1
0
0
 m
L
 f
re
sh
 j
u
ic
e-
1
) 
(T
A
) 

in
fl
u
en
ce
d
 b
y
 d
if
fe
re
n
t 
co
n
ce
n
tr
at
io
n
s 
an
d
 t
im
e 
o
f 
ap
p
li
ca
ti
o
n
 o
f 
B
 i
n
 2
0
0
7
 i
n
 ‘
W
as
h
in
g
to
n
 N
av
el
’ 
o
ra
n
g
e.
  

P
er
ce
n
ta
g
e 
o
f 
ju
ic
e 

Ju
ic
e 
p
H
 

S
S
C
 

  
  
  
  
T
A
 

A
sc
o
rb
ic
 a
ci
d
 

  
 B
  

(m
g
·L

-1
) 

S
p
ra
y
  

ti
m
e 

2
0
0
7
 

2
0
0
8
 

2
0
0
7
 

2
0
0
8
 

2
0
0
7
 

2
0
0
8
 

2
0
0
7
 

2
0
0
8
 

2
0
0
7
 

2
0
0
8
 

0
 

S
u
m
m
er
 

5
3
.9
3
 

5
3
.1
8
 

3
.5
6
 

3
.5
4
 

1
3
.0
9
 

1
3
.1
8
 

0
.9
1
 

0
.9
4
 

6
0
.2
3
 

6
0
.9
2
 

2
0
0
 

(o
n
ly
) 

5
2
.9
0
 

5
1
.7
6
 

3
.6
8
 

3
.6
3
 

1
2
.7
8
 

1
3
.2
8
 

0
.7
9
 

0
.9
3
 

5
6
.5
2
 

5
8
.6
1
 

4
0
0
 

 
5
1
.7
2
 

5
2
.4
2
 

3
.6
2
 

3
.6
3
 

1
3
.2
5
 

1
2
.9
3
 

0
.8
6
 

0
.8
7
 

5
9
.1
9
 

5
8
.8
7
 

6
0
0
 

 
5
3
.9
3
 

5
0
.3
1
 

3
.7
5
 

3
.5
8
 

1
3
.0
5
 

1
2
.9
3
 

0
.7
6
 

0
.9
3
 

5
9
.3
8
 

5
9
.6
9
 

8
0
0
 

 
- 

5
2
.3
7
 

- 
3
.7
0
 

- 
1
3
.1
3
 

- 
0
.8
1
 

- 
5
3
.4
5
 

M
ea
n
 

 
5
3
.1
3
 

5
2
.0
1
 

3
.5
8
 

3
.6
1
 

1
2
.9
8
 

1
3
.0
9
 

0
.9
0
 

0
.8
9
 

6
0
.1
7
 

5
8
.3
1
 

0
 

S
u
m
m
er
 

5
3
.9
3
 

5
3
.1
8
 

3
.5
6
 

3
.5
4
 

1
3
.0
9
 

1
3
.1
8
 

0
.9
1
 

0
.9
4
 

6
0
.2
3
 

6
0
.9
2
 

2
0
0
 

W
in
te
r 

5
3
.3
4
 

5
2
.3
3
 

3
.5
6
 

3
.6
1
 

1
3
.1
5
 

1
3
.3
3
 

0
.9
0
 

0
.9
1
 

6
0
.2
7
 

5
9
.6
6
 

4
0
0
 

 
5
2
.0
0
 

5
2
.6
5
 

3
.6
2
 

3
.6
3
 

1
2
.9
3
 

1
3
.3
3
 

0
.8
7
 

0
.8
8
 

5
9
.7
5
 

5
8
.0
6
 

6
0
0
 

 
5
3
.2
6
 

5
2
.9
4
 

3
.6
0
 

3
.5
7
 

1
2
.7
5
 

1
3
.3
0
 

0
.9
0
 

0
.9
0
 

6
0
.4
1
 

6
0
.1
9
 

8
0
0
 

 
- 

5
4
.3
0
 

- 
3
.6
0
 

- 
1
3
.0
5
 

- 
0
.8
3
 

- 
6
0
.7
9
 

M
ea
n
 

 
5
3
.4
8
 

5
3
.0
8
 

3
.5
8
 

3
.5
9
 

1
3
.2
1
 

1
3
.2
4
 

0
.9
1
 

0
.8
9
 

6
0
.4
6
 

5
9
.9
2
 

0
 

W
in
te
r 

5
3
.9
3
 

- 
3
.5
6
 

- 
1
3
.0
9
 

- 
0
.9
1
 

- 
6
0
.2
3
 

- 
2
0
0
 

(o
n
ly
) 

5
4
.6
7
 

- 
3
.5
8
 

- 
1
3
.2
3
 

- 
0
.9
4
 

- 
6
2
.2
3
 

- 
4
0
0
 

 
5
4
.0
8
 

- 
3
.5
8
 

- 
1
3
.3
0
 

- 
0
.8
5
 

- 
6
0
.3
2
 

- 
6
0
0
 

 
5
1
.2
5
 

- 
3
.5
9
 

- 
1
3
.2
3
 

- 
0
.9
2
 

- 
5
9
.0
4
 

- 
M
ea
n
 

 
5
3
.1
2
 

- 
3
.6
5
 

- 
1
3
.0
4
 

- 
0
.8
3
 

- 
5
8
.8
3
 

- 

L
S
D
 

P
≤
0
.0
5
 

B
 c
o
n
. 

n
s 
(0
.8
1
)  
n
s 
 

(1
.5
4
) 

n
s 
(0
.0
2
) 

n
s 
 (
0
.0
3
) 

n
s 
 

(0
.1
2
) 

n
s 
 

(0
.1
3
) 

n
s 
(0
.0
3
) 

n
s 
(0
.0
4
) 

n
s 
 (
1
.0
5
) 

n
s 
(1
.6
2
) 

 
T
im
e 

n
s 
(0
.7
0
) 
n
s 
 (
0
.9
7
) 

n
s 
(0
.0
2
) 

n
s 
 

(0
.0
2
) 

n
s 
 

(0
.1
1
) 

n
s 
 

(0
.0
8
) 

n
s 
(0
.0
3
 

n
s 
(0
.0
3
) 

n
s 
 (
0
.9
1
) 

n
s 
(1
.0
2
) 

 
B
 
co
n
. 

x
 

T
im
e 

n
s 
(1
.4
0
)  
n
s 
(2
.1
7
) 
n
s 
(0
.0
4
) 

n
s 
 

(0
.0
5
) 

n
s 
 

(0
.2
1
) 

n
s 
 

(0
.1
8
) 

n
s 
(0
.0
5
) 

n
s 
(0
.0
6
) 

n
s 
 

(1
.8
2
) 

n
s 
(2
.2
9
) 

n
 =
 4
 r
ep
li
ca
ti
o
n
s.
 (
-)
 =
 n
o
t 
av
ai
la
b
le
. 
C
o
n
. 
=
 c
o
n
ce
n
tr
at
io
n
. 
n
s 
=
 n
o
t 
si
g
n
if
ic
an
t 
at
 P
 ≤
 0
.0
5
. 
V
al
u
es
 w
it
h
in
 t
h
e 
b
ra
ck
et
 r
ep
re
se
n
t 
st
an
d
ar
d
 e
rr
o
rs
 

o
f 
m
ea
n
s 
(S
E
M
).
 

C
h
ap
te
r 
7
: 
B
o
ro
n
 a
n
d
 a
lb
ed
o
 b
re
ak
d
o
w
n
  



 

 129 

Boron concentration in leaf was higher than that in the rind and pulp with boron 

foliar application here (Table 7.1). Possibly, the citrus leaf has ability to retain boron 

in it after absorption process as the mobilisation of boron from leaf to the other 

organs is limited (Papadakis et al., 2003). Although the boron absorption and 

distribution mechanism have not been clearly identified yet, the large difference in 

boron concentration between leaves and fruits may indicate that the translocation of 

boron in phloem within the citrus tree may be limited (Boaretto et al., 2006; Boaretto 

et al., 2008).  

The increased boron concentration in leaf with two boron sprays in early summer and 

early winter as compared to one boron spray in early summer or in early winter in 

2007 and 2008 (Table 7.1) suggests that redistribution of boron is restricted in orange 

trees. As consequence, boron should be applied to the new vegetative parts of the 

tree (Boaretto et al., 2006). The boron concentration in rind and pulp were similar or 

higher with single boron spray in early summer or early winter than that with double 

boron sprays in 2007 and 2008, respectively (Table 7.1). It is proposed that the boron 

absorption of old fruit was not effective with the foliar application of boron solution. 

The results of this work are in agreement with the previous results of Boaretto et al. 

(2006) and Boaretto et al. (2007) who reported that boron should be applied 

whenever the new vegetative organs are developed as boron is an immobile element.  

The calcium concentration in the leaf, rind and pulp increased with the increasing 

boron concentration (200 mg·L-1 to 600 mg·L-1) in 2007 and 2008 (Table 7.2). Two 

boron sprays (early summer and early winter) resulted in higher leaf Ca 

concentration than one spray in early summer or early winter. Ca concentrations in 

rind and pulp were similar between single spray (early summer or early winter) and 

double sprays in 2007, whereas, single spray in early summer was more effective in 

increasing Ca concentration in rind and pulp than double sprays in 2008 (Table 7.2). 

It has been well known that the boron concentration in the leaf, rind and pulp affect 

the calcium absorption into these organs of the citrus tree (Haas, 1929; Smith and 

Reuther, 1950; Papadakis et al., 2003; Haas, 1945). After the calcium concentration 

in the leaf, rind and pulp reached the maximum value, the calcium absorption 

declined with the higher boron concentration in the spray solution (Table 7.2). It may 

be argued that the calcium absorption into the tree was depressed at high boron 

supply levels (Haas, 1929; Smith and Reuther, 1950). Contrarily, Papadakis et al. 

Chapter 7: Boron and albedo breakdown  



 

 130 

(2003) reported that there was no consistent effect of boron supply on the calcium 

absorption into the citrus trees. The reason for the declining of the calcium uptake at 

high boron supply level still remains unclear. However, my results suggest that the 

boron concentration in the spray solution can not be higher than 600 mg·L-1 in order 

to avoid the reducing of calcium absorption, which can cause the paralysing action 

on the growth process of the trees (Haas, 1929) and increases the albedo breakdown 

problem of the fruit as discussed below. 

The albedo breakdown incidence reduced with the increasing boron supply levels 

(200 mg·L-1 to 600 mg·L-1). Single boron spray in early summer was more effective 

in reducing albedo breakdown incidence than one boron spray in early winter in 2007 

or double sprays for both 2007 and 2008 (Table 7.3). It may be argued that the 

significantly higher boron concentration in leaf, rind and pulp may have partially 

contributed to the reduction of albedo breakdown. It is known that boron is a 

structural element of the plant cell walls as it plays the key role to form the 

complexes with rhamnogalacturonan II (RG-II). As a consequence, boron crosslinks 

two chains of pectic polysaccharides and creates a pectic polysaccharides system in 

the cell walls. This process improves the cell wall integrity (Matoh, 1997; Goldbach 

and Wimmer, 2007; Dong et al., 2009).  

Calcium concentration in leaf, rind and pulp increased with the increased boron 

concentration applied (200 mg·L-1 to 600 mg·L-1) resulting in reducing albedo 

breakdown incidence than control. It is well known that high calcium concentration 

in the fruit reduces the albedo breakdown incidence (Storey et al, 2002; Treeby and 

Storey, 2002; Jone et al., 1967; Bevington et al., 1993; Moulds et al., 1995) as 

mentioned in Chapter 6. The reduction of calcium concentration in the fruit should 

be the major factor to explain the increasing albedo breakdown incidence at the 

boron concentration of 800 mg·L-1 in the spray solution (Table 7.3). These results 

show that the strong interaction between B and Ca can significantly impact the 

albedo breakdown incidence in orange fruit.  

The significantly improved textural properties of the rind such as hardness, 

cohesiveness, adhesiveness, fracture force, tensile strength force and fruit firmness 

(Tables 7.4 and 7.5, Figures 7.1 and 7.2) with the foliar application of boron solution 

may have contributed to the significantly decreased albedo breakdown as the changes 

in cell wall cohesion of adjoining cells at the middle lamella result in the formation 
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of fracture in fruit albedo tissue during the post colour-break period causing albedo 

breakdown (Storey and Treeby, 1994; Storey et al., 2002).  

Possibly, the significantly increased rind thickness with the foliar spray of boron 

solution is also suggested to be associated with the significant reduction of albedo 

breakdown (Table 7.5) as discussed in Chapter 6. It has been reported that rind 

thickness in October significantly and negatively correlated with albedo breakdown 

incidence at harvest in ‘Navel’ and ‘Valencia’ oranges in California (Ali et al., 

2000). Similarly, Bevington et al. (1993), Jones et al. (1967) and Moulds et al. 

(1995) also reported that the fruit with thin rind are more susceptible to albedo 

breakdown than the fruits with thick rind. 

Textural properties of the rind such as hardness, cohesiveness, adhesiveness, fracture 

force, tensile strength force and fruit firmness were significantly improved with the 

spray applications of an aqueous boron solution for both normal fruit and fruit with 

albedo breakdown. Single boron spray in early summer resulted in the highest rind 

hardness, rind fracture force, rind tensile strength force as compared to single spray 

in early winter in 2007 or double sprays in 2007 and 2008  (Tables 7.4, 7.5 and 7.6, 

Figures 7.1 and 7.2). It has been reported that boron may play a part in building 

structures of the cell walls as B-diester bonding is connecting site for pectic 

polysaccharides chains (Matoh, 1997; Dong et al., 2009). As a consequence, the 

integrity, elasticity and tensile strength of cell wall are maintained (Goldbach and 

Wimmer, 2007; Dong 2009). In contrast, Tariq et al. (2007) reported that the boron 

foliar application resulted in the softer and thinner rind while Maurer and Taylor 

(1999) found that rind thickness was not improved with the foliar application of 

boron in sweet oranges.  

It may be argued that increased Ca concentration in fruit with the foliar application 

of boron may partially have attributed to the improvement of textural properties of 

rind, fruit firmness and rind thickness. It is well known that the strong structural 

rigidity in the cell wall is a result of the formation of Ca and B bridges within the 

pectin polysaccharide chains in the cell wall (Easterwood, 2002; Dong et al., 2009). 

This process maintains cell wall stabilisation and membrane integrity leading to 

improvement of the fruit firmness (Tucker, 1993; Singh et al., 2007; Saure, 2005; 

Dong et al., 2009). Dong et al. (2009) reported that the tissue structure of segment 

membrane was improved by the foliar combined application of calcium and boron in 
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‘Cara Cara’ Navel orange. The resistance to puncture of rind and the flesh firmness 

was improved with the foliar application of calcium nitrate solution just before fruit 

colour break or four week before harvest in ‘Fortune’ mandarin fruit (El-Hilali et al., 

2004; Zaragoza et al., 1996).  

Percentage of juice, juice pH, soluble solids concentration (SSC), titrable acidity and 

ascorbic acid were not significantly affected with the foliar boron application at 

different concentrations and the number of sprays. These results agree with those 

who reported that no systematic changes were found in chemical fruit quality 

parameters such as, juice content, percentage of total soluble solids and citric acid in 

the juice with the boron application (Smith and Reuther, 1950).  

In conclusion, the foliar application of boron resulted in increased boron and Ca 

concentrations in leaf, rind and pulp. The one foliar boron spray in early summer 

(600 mg·L-1) significantly increased boron and Ca concentrations in leaf, rind and 

pulp of fruit, reduced the incidence of albedo breakdown and improved textural 

properties of the rind such as hardness, cohesiveness, fracture force, springiness, 

tensile strength force as compared to single spray in early winter or double sprays 

(early summer and early winter) in 2007 and 2008. Rind was significantly thicker 

while the fruit quality parameters were not affected with one spray in early summer 

(600 mg·L-1) in comparison to one spray in early winter or two sprays in 

‘Washington Navel’ for both years.  
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CHAPTER 8  

Albedo breakdown and rind textural properties of ‘Washington ;avel’ sweet 

orange [Citrus sinensis (L.) Osbeck.]: the role of  ethylene 

 

 

Abstract  

The role of ethylene in albedo breakdown of Washington Navel’ orange [Citrus 

sinensis (L.) Osbeck] was investigated by determining amount of endogenous 

ethylene production in normal fruit and those with albedo breakdown during 

maturation and ripening, and the effects of exogenous applications of ethephon and 

inhibitors of ethylene biosynthesis. The effects of ethephon and inhibitors of ethylene 

biosynthesis were also investigated on textural properties of the rind and fruit. 

Endogenous ethylene production in rind of normal and fruit with albedo breakdown 

were determined four times during fruit development and maturation (at 263, 269, 

283 and 321 days after full bloom (DAFB). To determine the effects of exogenously 

applied ethephon and inhibitors of ethylene biosynthesis on albedo breakdown and 

textural properties of rind and fruit, whole trees (22 years old) were sprayed with 

different concentrations (0, 100, 200 and 300 mg·L-1) of ethephon and ethylene 

inhibitors (AVG and CoSO4) on 227 DAFB. The production of endogenous ethylene 

was higher in rind of fruit with albedo breakdown than in normal fruit at 269 and 321 

DAFB (by 45.00 % and 4.48 %, respectively). The incidence of albedo breakdown 

was slightly increased (by 5.7%) over control with the exogenous spray application 

of ethephon (300 mg·L-1). The foliar spray application of AVG (200 mg·L-1) and 

CoSO4 (300 mg·L
-1) significantly reduced albedo breakdown incidence (by 21.9% 

and 22.7%, respectively) as compared to control, and improved rind textural 

properties and fruit firmness. Exogenous application of ethephon did not 

significantly affect rind hardness, adhesiveness, springiness, fracture force, tensile 

strength force and fruit firmness as compared to control. Exogenous spray 

application of AVG was more effective in improving hardness and adhesiveness, 

springiness of rind and firmness of the normal fruit and those with albedo breakdown 

than spray application of CoSO4. Ethylene therefore seems to play a role in incidence 

of albedo breakdown and the rind textural properties of citrus fruit.  

Chapter 8: Ethylene and albedo breakdown  



 

 134 

8.1. Introduction 

Albedo breakdown, a physiological disorder, causes cracks in the albedo tissues 

resulting in puffiness of orange peel. The development of albedo breakdown is 

connected with the increase in content of water-soluble pectins which is associated 

with an earlier senescence of albedo tissue (Monselise et al., 1976). Albedo 

breakdown causes serious economic losses in the production of citrus fruit. In Israel, 

throughout the season a large percentage (from 26% to 60%) of the produced orange 

did not meet the standards of the fresh market because of this physiological disorder. 

The sweet oranges planted in different parts of the world are affected by this disorder 

by 35% to 45% (Monselise et al., 1976). In Australia, albedo breakdown can affect 

90% of the citrus fruit in some locations (Goldie, 1998).  

Albedo breakdown incidence has been reported to be influenced by rootstocks 

(Agusti et al., 2003; Treeby et al., 1995; Moulds et al., 1995), plant nutritional status 

(Jones et al., 1967; Ali et al., 2000;  Treeby and Storey, 2002; Storey et al., 2002; 

Bower, 2004), plant water relations (Sneath, 1987; Agusti et al., 2004; Gonzalez-

altozano and Castel, 1999), climate (Ali et al., 2000; Treeby et al., 1995; Shear, 

1975; Sneath, 1987),  tree age (Moulds et al., 1995), fruit position on the tree 

(Bevington et al., 1993), and plant growth regulators (Monselise et al., 1976; Jona et 

al., 1989). 

It has also been reported that endogenous levels of gibberellins in the rind of the 

developing fruit are associated with albedo breakdown (Jones et al., 1967; Monselise 

et al., 1976). Monselise et al. (1976) and Jona et al. (1989) reported that exogenous 

spray application of gibberellic acid (20 mg·L-1) at an early stage of fruit 

development (30 to 40 mm in diameter) in July significantly reduced incidence of 

albedo breakdown. It was subsequently reported that GA3 (20 mg·L
-1) applied 

weekly during cell separation from mid January to mid February at fruit sizes of 30 – 

40 mm or during cell division from mid June to mid July when fruit were 60 - 80 mm 

reduced albedo breakdown more than 50% as compared to untreated treatment 

(Treeby and Storey, 1994; Bevington et al., 1993; Moulds et al., 1995; Tugell et al., 

1993; Dick, 1995; Treeby, 1996). Bevington et al. (1993) and Treeby and Storey 

(1994) reported that the foliar application of GA3 (20 mg·L
-1) during cell separation 

was more effective in reducing albedo breakdown incidence (by 17%) than the GA3 
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sprays during cell division (by 46%) than control in ‘Valencia’ and ‘Navel’ oranges 

in Australia. 

It is well known that ethylene is a plant hormone that plays an important role in basic 

plant processes such as fruit maturity, ripening, and senescence. Ethylene occurs 

naturally in fruit and accelerates the fruit softening due to disintegrating cell 

membranes  making  them leakier (Rath and Prentice, 2004; Ladaniya, 2007). 

Ethylene has been reported to regulate fruit colour, flavour, chemical composition 

and texture in citrus fruits (Ladaniya, 2007; Oetiker and Yang, 1995). The 

concentrations of ethylene in the atmosphere of internal fruit were higher in late 

maturing fruit with albedo breakdown (0.09 mL·kg-1) than the normal fruit (0.04 

mL·kg-1) on the same day in ‘Valencia Late’ orange (Monselise et al., 1976).  

Exogenous application of ethylene has been reported to increase respiration rate, 

promote ripening, and improve colour in citrus fruit (Porat et al., 1999; Ladaniya, 

2007; Agusti et al., 2002; Burg, 2004; Monselise et al., 1976; Al-Mughrabi et al., 

1989). Porat et al. (1999) reported that exogenous application of ethylene (10 µL·L-1) 

for 60 hours to ‘Shamouti’ oranges did not affect the fruit weight and fruit firmness. 

The exogenous application of ethephon (250 mg·L-1) seven days before harvest 

increased rind puffing in ‘Satsuma’ mandarin (Burg, 2004, Ladaniya, 2007). In 

contrast, fruit weight, rind thickness, rind weight, juice percentage, soluble solids 

concentration, acidity and ascorbic acid were not affected with the foliar application 

of ethrel (Al-Mughrabi et al., 1989). Moreover, the exogenous application of 

ethephon did not promote the activity of pectolytic enzyme (PE), which is involved 

in promoting senescence in sound mature ‘Valencia Late’ orange fruit (Monselise et 

al., 1976).  

Monselise et al. (1976) reported higher levels of endogenous ethylene in the 

‘Valencia Late’ orange fruit with albedo breakdown than in normal fruit at late 

maturity stage. This indicated involvement of ethylene in albedo breakdown of sweet 

orange fruit. Although their research indicated a role of ethylene in albedo 

breakdown in sweet orange fruit, but the available information is sporadic and 

inconclusive. I investigated the endogenous concentrations of ethylene in the rind of 

normal fruit and those with albedo breakdown during maturation and fruit ripening 

period as related to development of albedo breakdown. I also investigated the effects 
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of the ethylene and its inhibitors on the albedo breakdown incidence, rind textural 

properties and fruit firmness in ‘Washington Navel’ sweet orange.  

8.2. Materials and methods 

8.2.1. Experimental site, plant materials  

Three experiments were carried out in a commercial orchard located at Gingin, 

Western Australia (Latitude 31° 21' S, longitude 155° 55' E) in 2008.  The climate is 

described as winter dominant with wet winters and hot, dry summers. The soil is a 

sandy loam. All the cultural practices including irrigation, fertiliser application, 

insect and weed control in all the blocks were uniform except for the experimental 

treatments described below. 

8.2.1.1.  Experiment 1: Endogenous ethylene in the rind of normal and fruit with 

albedo breakdown during fruit maturation 

‘Washington Navel’ orange [Citrus sinensis (L.) Osbeck] trees of uniform size 

grafted onto ‘Troyer citrange’ hybrid rootstock [Citrus sinensis (L.) x Poncirus 

trifoliata (L.) Raf.] were used in this experiment. The tree age was 22 years old 

which were planted in a north – south direction (6.5 m between rows and 1.5 m 

within rows). Two fruit of each fruit group (normal and albedo breakdown) per tree 

were collected to determine the production of endogenous ethylene in the rind of the 

fruit during fruit maturation and ripening (236-321 DAFB). The experimental design 

was randomised block design with four replications. Single tree was treated as an 

experimental unit. 

8.2.1.2. Experiment 2: Effect of exogenous application of ethephon on the albedo 

breakdown incidence, rind textural properties and fruit firmness 

Aqueous solutions containing various concentrations of ethephon at 0, 100, 200, or 

300.mg·L-1 and a surfactant ‘Tween 20’ (0.05%) were sprayed onto the fruit of 

whole trees at 227 DAFB.  The trees were selected from the same block as 

experiment 1 and sprayed with a sprayer (The Selecta Trolleypak Mk II, Victoria, 

Australia) was used at the spraying rate of 1000 L.ha-1 till run off. The nozzle 

(Chierici Titisrl, Rubiera, Italy) discharged at rate of 70 L/min. under a pressure of 

250 KPa. Fruit showing symptoms of albedo breakdown were counted after 

harvesting the whole tree.  Rind hardness, adhesiveness, cohesiveness, springiness, 

fracture force and rind tensile strength force and fruit firmness were recorded from 
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normal fruit and with albedo breakdown as the major parameters of the texture 

profile analysis.  

8.2.1.3. Experiment 3: Effects of ethylene inhibitors on the albedo breakdown 

incidence, rind textural properties and fruit firmness 

Exogenous applications of inhibitors of ethylene including aminoethoxyvinylglycine 

(AVG), and cobalt sulphate (CoSO4), at 0, 100, 200 and 300 mg·L
-1 with ‘Tween 20’ 

(0.05%) were tested. The treatments were applied as a spray onto the fruit of whole 

trees which were selected from the same block as experiment 1 at 227 DAFB. The 

experimental design was completely randomised including two factors viz. chemicals 

and concentrations. Single tree was treated as an experimental unit and included 

three replications. All other experimental conditions and observations recorded were 

similar to Experiment 2.  

8.2.2. Chemicals 

Ethrel® containing 480 g·L-1 ethephon was purchased from Rhone-Poulenc Rural 

Australia Pty. Ltd, NSW, Australia. Retain® containing 15% w/w 

aminoethoxyvinylglycine (AVG) was purchased from Valent BioSciences, 

Sumitomo Chemical Australia Pty. Ltd., NSW, Australia. Cobalt sulphate 

(Heptahydrate) (CoSO4) was purchased from Sigma Chemical Company, Missouri, 

USA.  

8.2.3. Parameters measured 

Endogenous ethylene production in fruit rind from two fruit groups (normal fruit and 

with albedo breakdown) was determined as described in details below. Albedo 

breakdown incidence was recorded at harvest. Rind hardness, adhesiveness, 

cohesiveness, springiness, fracture force and rind tensile strength force and fruit 

firmness were recorded from normal and fruit with albedo breakdown as the major 

variables of the rind texture profile analysis.  

8.2.3.1. Determination of endogenous ethylene production 

In Experiment 1, two fruit of each group (normal and with albedo breakdown) from 

one tree were randomly sampled for determination of ethylene from their rind. Fruit 

were collected four times (263, 269, 283 and 321 DAFB).  
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Endogenous ethylene was extracted from fruit rind following a partial vacuum 

method as described by Saltveit (1982). Endogenous ethylene was determined using 

a gas chromatograph (Agilent Technologies, 6890 N Network GC system, Palo Alto, 

CA, USA) as described in Section 3.5 and expressed as µL·kg-1·hour-1. 

8.2.3.2. Determination of albedo breakdown incidence 

Fruits from each whole tree were examined for albedo breakdown as mentioned in 

Section 3.7. The albedo breakdown incidence was expressed as percentage of fruit. 

8.2.3.3. Texture profile analysis 

Textural properties of rind such as hardness, adhesiveness, cohesiveness, springiness, 

fracture force, tensile strength force and  firmness from normal fruit and fruit with 

albedo breakdown were determined using a texture analyser (TA Plus, AMETEK 

Lloyd instruments Ltd., Hampshire, UK) as described in Section 3.8.   

8.2.3.3.1 Rind puncture test 

Rind samples from two fruit groups (normal and fruit with albedo breakdown) were 

cut 2.5 cm wide x 0.6 cm thick using a slicer (Zyliss Easy slice 2” folding Mandolin 

slicer, Swiss) to give uniform sections for determining rind puncture parameters as 

detailed in Section 3.8.1.  

8.2.3.3.2 Rind tensile strength test 

The rind tensile test was carried out to measure the behaviour of the orange rind up 

to the rind deflection of 10 mm. A rind sample section was carefully removed from 

each fruit in the size of 2.5 cm wide x 5.0 cm length x 0.6 cm thick using a slicer to 

give uniform sections. Ten fruit of each fruit group (normal and albedo breakdown) 

were used for each test. The rind tensile strength force was calculated at the 

maximum load and limit points where the rind deflection occurred as described in 

Section 3.8.2. 

8.2.3.3.3 Fruit compression test 

Ten fruit of each fruit group (normal and albedo breakdown) with the height of about 

8.5 cm were used for each compression test as mentioned in Section 3.8.3.  

Chapter 8: Ethylene and albedo breakdown  



 

 139 

8.2.4. Statistical analysis 

 The data were subjected to one way or two way ANOVA using Genstat 9 release 9.1 

(Lawes Agricultural Trust, Rothamsted Experimental Station, UK). The least 

significant difference (Fisher’s protected LSD) was calculated at P ≤ 0.05. To ensure 

the validity of statistical analysis all the assumptions of ANOVA were checked. 

8.3. Results 

8.3.1. Experiment 1: Ethylene production during fruit maturation and 

ripening and development of albedo breakdown 

Endogenous concentrations of ethylene were higher in rind of fruit with albedo 

breakdown at 269 and 321 DAFB (45.00 % and 4.48 %, respectively) than in the rind 

of normal fruit (Fig. 8.1).  
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Figure 8.1. Ethylene production in rind of normal fruit and fruit with albedo 
breakdown and the development of albedo breakdown during fruit growth in 
‘Washington Navel’ orange in 2008. Vertical bars represent LSD at P ≤ 0.05. n = 4 
replications. The commercial harvest was at 283 DAFB. AB = albedo breakdown. 

 

The production of endogenous ethylene in rind of fruit with albedo breakdown was 

lower (4.80 µL·kg-1·hour-1) at 283 DAFB than in the rind of normal fruit (9.18 

µL·kg-1·hour-1) (Fig. 8.1). In general, the ethylene production decreased rapidly in 

rind of normal and albedo breakdown fruit from 263 DAFB to 283 DAFB and 

commenced to increase after commercial harvest at 321 DAFB. 
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8.3.2. Experiment 2: Effect of ethephon on albedo breakdown incidence and 

textural properties of the rind and fruit 

8.3.2.1. Albedo breakdown incidence 

All the treatments involving exogenous spray application of ethephon at 227 DAFB 

did not significantly affect the incidence of albedo breakdown (Table 8.1).  

Table 8.1. Incidence of albedo breakdown, rind hardness and adhesiveness as 
influenced by the foliar application of Ethephon in normal fruit and fruit with albedo 
breakdown in ‘Washington Navel’ orange. Within each column, means followed by 
different letters are significantly different at P ≤ 0.05. 

Rind hardness (N) Rind adhesiveness (N) Concentration 

(mg·L-1) 

AB  

(% of fruit) Normal AB Normal AB 

0 65.0 22.86 14.77 0.41 0.27 

100 58.3 26.89 13.76 0.22 0.10 

200 53.3 21.64 13.71 0.22 0.13 

300 68.7 22.72 14.14 0.25 0.16 

LSD (P≤0.05)  ns (14.1) ns (1.09) ns (1.94) 0.13 ns (0.09) 

AB = albedo breakdown. n = 3 replications, ns = not significant at P ≤ 0.05. Values 

within the bracket represent standard errors of means (SEM). 

 

8.3.2.2. Texture profile analysis of the rind and the fruit 

8.3.2.2.1 Rheological properties of rind 

Ethephon foliar application at 227 DAFB did not significantly affect the  

adhesiveness, hardness, cohesiveness, springiness, fracture force and tensile strength 

force of the rind of normal fruit and fruit with albedo breakdown except for rind 

adhesiveness in normal fruit (Tables 8.1 and 8.2). Exogenous application of ethephon 

(100 and 200 mg·L-1) at 227 DAFB significantly decreased the rind adhesiveness in 

normal fruit as compared to all other treatments. 
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Table 8.2. Rind cohesiveness, springiness and fracture force as influenced by the 
foliar application of Ethephon in normal fruit and fruit with albedo breakdown in 
‘Washington Navel’ orange. Within each column, means followed by different letters 
are significantly different at P ≤ 0.05. 

Rind cohesiveness Rind springiness 

(mm) 

Rind fracture force 

(N) 

Concentration 

(mg·L-1) 

Normal AB Normal AB Normal AB 

0 0.08 0.09 1.61 1.59 3.17 3.35 

100 0.10 0.10 1.84 1.65 3.77 2.53 

200 0.10 0.13 1.87 1.72 3.15 3.50 

300 0.08 0.08 1.85 1.40 2.28 3.24 

LSD (P≤0.05) ns (0.01) ns (0.02) ns (0.06) ns (0.13) ns (1.15) ns (0.63) 

AB = albedo breakdown. n = 3 replications, ns = not significant at P ≤ 0.05. Values 

within the bracket represent standard errors of means (SEM). 

 

Table 8.3. Rind tensile strength force and fruit firmness as influenced by the foliar 
application of Ethephon in normal fruit and fruit with albedo breakdown in 
‘Washington Navel’ orange. Within each column, means followed by different letters 
are significantly different at P ≤ 0.05. 

Rind tensile strength force (N) Fruit firmness (N) Concentration 

(mg·L-1) Normal AB Normal AB 

0 30.32 21.31 335.0 241.6 

100 32.54 25.07 287.6 240.5 

200 29.83 22.05 292.0 227.1 

300 33.38 23.91 300.3 220.2 

LSD (P≤0.05) ns (1.33) ns (1.76) ns (19.4) ns (13.4) 

AB = albedo breakdown. n = 3 replications, ns = not significant at P ≤ 0.05. Values 

within the bracket represent standard errors of means (SEM). 

8.3.2.2.2 Fruit compression test 

The firmness of normal and fruit with albedo breakdown was decreased with the 

exogenous application of different concentrations of ethephon at 227 DAFB as 

compared to control, however the differences were not significant among treatments 

(Table 8.3). 
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8.3.3. Experiment 3: Effect of ethylene inhibitors on incidence of albedo 

breakdown and textural properties of rind and fruit 

8.3.3.1. Incidence of albedo breakdown 

Incidence of albedo breakdown was significantly decreased with exogenous 

application of ethylene inhibitors at 227 DAFB.  

Table 8.4. Incidence of albedo breakdown, rind hardness and adhesiveness as 
influenced by the foliar application of ethylene inhibitors in ‘Washington Navel’ 
orange. Within each column, means followed by different letters are significantly 
different at P ≤ 0.05. 

Chemical Concentration 

(mg·L-1) 

AB (% of 

fruit) 

Rind hardness (N) Rind adhesiveness 

(N) 

   Normal AB Normal AB 

AVG 0 88.0b 24.00b 11.78c 0.04 -0.02 

 100 71.7a 24.09b 14.54bc 0.14 0.17 

 200 68.7a 27.58a 20.62a 0.12 0.05 

 300 69.3a 26.78a 16.38b 0.08 0.08 

 Mean 74.4 25.61A 15.83 0.09A 0.07A 

CoSO4 0 88.0b 18.32c 11.78c 0.06 -0.02 

 100 81.0b 20.10bc 13.36bc 0.03 -0.01 

 200 80.0b 21.33b 15.50b 0.03 0.06 

 300 68.0a 25.08a 18.60a 0.05 0.02 

 Mean 79.4 21.21B 14.81 0.04B 0.01B 

Chemical ns (2.83) 1.70 ns (0.46) 0.02 0.06 LSD 

(P≤0.05) Concentration 12.12 2.40 1.97 ns (0.01) ns 

(0.03) 

 Chem x Cont  ns (5.65) ns 

(1.12) 

2.79 0.05 ns 

(0.04) 

AB = albedo breakdown. Chem = chemical. Cont = concentration. n = 3 replications, 

ns = not significant at P ≤ 0.05. Values within the bracket represent standard errors 

of means (SEM). 
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All the treatments of exogenous spray application of AVG at 227 DAFB 

significantly reduced the incidence of albedo breakdown as compared to control.  

The exogenous spray application of AVG (200 mg·L-1) at 227 DAFB resulted in the 

lowest albedo breakdown incidence (68.7%) as compared to control and all other 

treatments. Amongst various spray treatments of CoSO4, the spray application of 

CoSO4 (300 mg·L
-1) at 227 DAFB resulted in significantly lowest incidence of 

albedo breakdown (68.0%) as compared to control (88.0%) (Table 8.4). Both 

chemicals (AVG and CoSO4) were equally effective in the reducing albedo 

breakdown incidence. The interaction between chemical and chemical concentration 

was found not to be significant for incidence of albedo breakdown (Table 8.4). 

8.3.3.2. Texture profile analysis of the rind and the fruit 

8.3.3.2.1 Rheological properties of rind 

Rind hardness of the normal fruit and with albedo breakdown was significantly 

improved with the exogenous spray application of AVG 227 DAFB (Table 8.4). The 

spray of AVG (200 mg·L-1) 227 DAFB resulted in the highest rind hardness in both 

normal and albedo breakdown fruit (27.58 N and 20.62 N, respectively) than all 

other treatments of AVG. Amongst CoSO4 treatments, the 300 mg·L
-1 spray 227 

DAFB resulted in the significantly highest rind hardness (25.08 N and 18.60 N) for 

both normal and albedo breakdown fruit, respectively. AVG spray application was 

more effective in improving rind hardness of normal fruit than foliar spray of CoSO4 

whereas both chemicals did not show significant differences in improving rind 

hardness of fruit with albedo breakdown (Table 8.4).  

Rind adhesiveness was significantly higher with spray application of AVG than 

CoSO4 for both normal fruit and fruit with albedo breakdown (Table 8.4). The effects 

of different concentrations of both chemicals on the rind harness were not significant. 

The interaction between chemical and chemical concentration for rind adhesiveness 

were found to be significant in normal fruit whilst it was non-significant for fruit 

with albedo breakdown (Table 8.4). 

Rind cohesiveness remained stable with the exogenous application of ethylene 

inhibitors in normal fruit whereas it was significantly decreased in fruit with albedo 

breakdown as compared to control (Table 8.5).  
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Rind springiness was significantly increased with the spray application of AVG or 

CoSO4 in fruit with albedo breakdown in comparison to control (Table 8.5). There 

were no significant differences in rind springiness with the sprays of ethylene 

inhibitors among treatments in normal fruit although these sprays resulted in higher 

rind springiness than control (Table 8.5).  

The exogenous application of ethylene inhibitors did not significantly affect rind 

fracture force in both normal and albedo breakdown fruit (Table 8.5). 

Rind tensile strength force was significantly increased with the increased 

concentrations of AVG or CoSO4 foliar application in normal and albedo breakdown 

fruit than control (Table 8.6). The significantly highest rind tensile strength force was 

found with AVG spray or CoSO4 (300 mg·L
-1) in normal fruit while spray of AVG 

(200 mg·Lt-1) or CoSO4 (300 mg·L
-1) resulted in the significantly highest rind tensile 

strength force in fruit with albedo breakdown (Table 8.6). The interaction between 

chemical and chemical concentration was found to be non-significant for rind tensile 

strength force for both normal and fruit with albedo breakdown (Table 8.6).
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Table 8.6. Rind tensile strength force and fruit firmness as influenced by the foliar 
application of ethylene inhibitors in normal fruit and fruit with albedo breakdown in 
‘Washington Navel’ orange. Within each column, means followed by different letters 
are significantly different at P ≤ 0.05. 

Rind tensile strength force (N) Fruit firmness (N) Chemical Concentration 

(mg·L-1) Normal AB Normal AB 

AVG 0 40.4b 27.5b 304.0 265.8bc 

 100 42.1b 29.7b 324.2 256.9c 

 200 46.5b 32.4a 331.7 303.2a 

 300 50.0a 31.4b 320.0 296.8ab 

 Mean 44.7 30.15 320.0A 280.7 

CoSO4 0 33.55c 25.65b 261.8b 255.5b 

 100 36.61bc 28.74b 275.5b 265.3b 

 200 42.17b 29.96b 282.3b 271.7ab 

 300 50.14a 36.39a 320.0a 291.5a 

 Mean 40.6 30.19 284.9B 271.0 

Chemical ns (1.88) ns (0.91) 19.7 ns (4.83) 

Concentration 8.06 3.92 ns (9.12) 20.7 

LSD 

(P≤0.05) 

Chem x Cont ns (3.76) ns (1.83) ns (12.9) ns (9.65) 

AB = albedo breakdown. Chem = chemical. Cont = concentration. n = 3 replications, 

ns = not significant at P ≤ 0.05. Values within the bracket represent standard errors 

of means (SEM). 

 

8.3.3.2.2 Fruit compression test 

Exogenous spray application of ethylene inhibitors significantly improved fruit 

firmness as compared to control except for AVG spray in normal fruit (Table 8.6). 

Fruit firmness was highest with the foliar spray application of AVG (200 mg·L-1) in 

normal fruit and fruit with albedo breakdown (331.7 N and 303.2 N, respectively) 

(Table 8.6). The spray of CoSO4 (300 mg·L
-1) resulted in the significantly highest 

fruit firmness in normal fruit and fruit with albedo breakdown (320.0 N and 291.5 N, 

respectively) (Table 8.6). AVG spray resulted in the significantly higher fruit 

firmness than CoSO4 application in normal fruit. But such effects of this chemical 

were not recorded on firmness of fruit with albedo breakdown. The interaction 
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between chemical and chemical concentration was found to be non-significant for 

fruit firmness of normal and albedo breakdown fruit (Table 8.6). 

8.4. Discussion 

The ethylene production was higher in rind of the fruit with albedo breakdown than 

in normal fruit, particularly at 269 DAFB (Fig. 8.1) when albedo breakdown was 

already visible. This implicates ethylene in albedo breakdown incidence. It may be 

argued that increased activities of 1-aminocyclopropane-1-carboxylase synthase 

(ACC synthase) and ACC oxidase may be contributing to the higher concentration of 

endogenous ethylene in the rind of fruit with albedo breakdown. The activities of 

ACC synthase and ACC oxidase in the rind of normal and albedo breakdown fruit 

warrant investigation. Monselise et al. (1976) reported higher concentrations of 

ethylene in the internal atmosphere of the fruit with albedo breakdown (0.09 mL·kg-

1) than the normal fruit (0.04 mL·kg-1) of ‘Valencia Late’ orange. Earlier, the 

positive relationship of ethylene production and wounding or stress in citrus fruit has 

been reported by Burg (2004) and Ladaniya, (2007). The production of endogenous 

ethylene markedly increased in the rind of albedo breakdown and normal fruit after 

commercial harvest coupled with increased incidence of albedo breakdown further 

suggesting the role of ethylene in albedo breakdown. Ethylene production in rind of 

fruit with albedo breakdown was significantly lower than in the rind of normal fruit 

at commercial harvest (283 DAFB, Fig. 8.1). It is likely that the association of 

advanced fruit maturity and albedo breakdown may have contributed to the lower 

production of endogenous ethylene in the rind of fruit with albedo breakdown than in 

normal ones at commercial harvest maturity. It has been reported that fruit with 

albedo breakdown are more mature than normal fruit on the same tree as indicated by 

higher ratio of soluble solids concentration to acidity (Jones and Embleton, 1967). 

My data also support the above hypothesis because there was a higher production of 

endogenous ethylene in the rind of the developing orange fruit than in the mature 

fruit (Fig. 8.1).  

Spray application of ethephon at 227 DAFB slightly increased the incidence of 

albedo breakdown without any significant effects on rind textural properties and fruit 

firmness (Tables 8.1, 8.2 and 8.3). My results suggest auto inhibition of the ethylene 

production with the exogenous application of ethephon. Similarly, Yang and 

Hoffman (1984) found that the exogenous application of ethylene significantly 
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inhibited the ethylene production in flavedo tissue in grapefruit. The exogenous 

application of ethephon (250 mg·L-1) seven days before harvest has also been 

reported to increase peel puffing in ‘Satsuma’ mandarin (Burg, 2004; Ladaniya, 

2007).  

Foliar spray of ethylene inhibitors (AVG and CoSO4) significantly reduced albedo 

breakdown incidence and improved the rind textural properties and fruit firmness 

(Tables 8.4, 8.5 and 8.6). As expected, the ethylene biosynthesis and its action are 

involved in albedo breakdown and textural properties of sweet orange fruit. It is well 

known that AVG and Co2+ are inhibitors of ethylene biosynthesis at the conversion 

of S-adenosylmethionine (SAM) to ACC or from ACC to ethylene through the action 

of the ACC oxidase enzyme (Even-Chen et al., 1982; Hyodo and Nishino, 1981; 

Ladaniya, 2007). It has also been reported that ethylene is involved in the fruit 

softening process and stimulates fruit maturation and ripening (Burg, 2004; Oetiker 

and Yang, 1995; Rath and Prentice, 2004). Possibly, the reduction in the incidence of 

albedo breakdown and improvement of rind textural properties and fruit firmness 

with the exogenous spray application of ethylene inhibitors may be attributed to the 

reduced endogenous ethylene  production (not determined) through  inhibiting the 

activities of enzymes involved in ethylene biosynthesis (ACC synthase and ACC 

oxidase). 

In conclusion, the increased ethylene production in the rind of fruit with albedo 

breakdown than normal fruit at 269 DAFB and reduction of the incidence of albedo 

breakdown in sweet oranges with the exogenous application of ethylene inhibitors at 

227 DAFB suggest the involvement of ethylene in albedo breakdown of sweet 

orange.  
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CHAPTER 9  

General discussion, conclusion and future research 

 

 

9.1. Introduction 

Albedo breakdown is the rind disorder due to abnormal separation of cells leading to 

the formation of irregular fractures in the white tissue (albedo) causing the cracks of 

orange rind (Treeby and Storey, 2002; Jones et al., 1967; Bevington et al., 1993; 

Sneath, 1987; Storey and Treeby, 1994; Tugell et al., 1993). The development of 

albedo breakdown was thought to be associated with the increased loss of pectin and 

in the cellular walls of rind tissue causing the loosening of the connection among 

cells in sweet oranges (Monselise et al., 1976; Li et al., 2009; Bower, 2000). Albedo 

breakdown has resulted in significant economic losses to citrus industry in Australia 

(Sneath, 1987; Treeby and Storey, 1994; Pelizzo, 1997), California (Jones et al., 

1967, Ali et al, 2000), Israel (Monselise et al., 1976), Uruguay (Gambetta et al., 

2000), South Africa (Bower, 2004) and China (Li et al., 2009) as it causes 

approximately 15% to 30 % or more of ‘Navel’ orange fruit rejected at the time of 

packing.  

Fruit quality, particularly albedo breakdown has been attributed to plant water 

relations (Sneath, 1987; Agusti et al., 2004; Gonzalez-altozano and Castel, 1999; 

Treeby et al., 2007), genetic factors (Agusti et al., 2003; Treeby et al., 1995; Moulds 

et al., 1995; Bevington et al., 1993), plant nutritional status (Jones et al., 1967; Ali et 

al., 2000; Treeby and Storey, 2002; Storey et al., 2002; Bower, 2004) and plant 

growth regulators (Embleton et al., 1973; Jona et al., 1989; Treeby and Storey, 1994; 

Tugell et al., 1993; Dick, 1995). However, the research work on the fruit quality with 

an emphasis on albedo breakdown in sweet oranges is sporadic and inconclusive. 

The general aim of my research work was to investigate the effects of pre-harvest 

factors on fruit quality with an emphasis on albedo breakdown in sweet oranges. 
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9.2. The development of the incidence and the severity of albedo breakdown 

during fruit maturation and ripening, the effects of severity of albedo 

breakdown on fruit quality among locations and cultivars of ‘;avel’ sweet 

oranges  

Albedo breakdown has been reported to influence fruit quality (Jones et al., 1967; 

Jones and Embleton, 1967; Sneath 1987; Treeby and Storey, 1994). In contrast, 

Goldie (1998) reported that internal fruit quality parameters were not affected by 

albedo breakdown. I investigated the development of albedo breakdown incidence 

coupled with fruit maturation and ripening, the influence of location on the incidence 

and severity of albedo breakdown and the effects of the severity of albedo 

breakdown among locations and cultivars to fruit quality in ‘Navel’ sweet oranges. 

In the first experiment, the incidence of albedo breakdown was determined by 

assessment of all fruit on the twenty-two years old ‘Washington Navel’ orange trees. 

The incidence and severity of albedo breakdown became visible after colour break 

and coupled with the slow growth of fruit and then increased rapidly after the 

commercial harvest due to the degradation of pectin. Similarly, the incidence of 

albedo breakdown was higher on the tree in which fruit held longer (McIntosh, 1998; 

Tugell et al., 1993; Dick, 1995; Jones et al., 1967). 

In the second experiment, fruit from ‘Washington Navel’ sweet orange cultivar 

grown at four commercial orchards at Gingin, Chittering, Serpentine and Harvey, in 

Western Australia were classified into four categories of albedo breakdown. The 

lowest incidence and severity of albedo breakdown at Harvey as compared to three 

different locations proposed the association of climate factors in these agro-climate 

zones in albedo breakdown. Similarly, the difference of incidence and severity of 

albedo breakdown was from year to year and from location to location and among 

cultivars of sweet oranges (Jones et al., 1967; Sneath, 1987; Treeby et al., 1995). The 

severity of albedo breakdown did not affect fruit quality in terms of juice content, 

juice pH, soluble solids concentration, titratable acidity, ascorbic acid and the 

individual organic acids except for the reduction in succinic acid. The highest soluble 

solids concentration, the lowest titratable acidity, ascorbic acid and the individual 

organic acids of fruit collected in Gingin have been suggested as being the results of 

climatic, physiological trees and soil characteristics (Davies and Albrigo, 1994; 

Pretel et al., 2004). 
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In the third experiment, fruit from three ‘Navel’ sweet orange cultivars including 

‘Leng Navel’, ‘Autumn Gold’ and ‘Washington Navel’ at the Westralian Fruits in 

Gingin was classified into three categorises of the albedo breakdown.  The major 

fruit quality attributes such as juice content, juice pH, soluble solids concentration, 

titratable acidity, ascorbic acid and the individual organic acids were not affected by 

the severity of albedo breakdown among three cultivars while the decreased succinic 

acid and the increased tartaric acid were observed with the increased severity of 

albedo breakdown. However, succinic and tartaric acid contributed to the minor 

amount of organic acids in citrus juice (Karadenis, 2004; Shaw and Wilson, 1983). 

The lowest pH juice, soluble solids concentration, titratable acidity and ascorbic acid 

in ‘Autumn Gold’ orange cultivar as compared to ‘Leng Navel’ and ‘Washington 

Navel’ suggested genetic factor mainly contributed to fruit quality. Similarly, the 

fruit weight, soluble solids concentration and titratable acidity were significantly 

different among sweet orange cultivars (Pretel et al., 2004; Kahn et al., 2007). 

9.3. Responses of ‘;avelina’ oranges to irrigation levels: water relations, 

growth, yield and fruit quality with an emphasis on albedo breakdown  

The water management has been reported to be associated with the water status of 

plant and fruit, the average fruit weight and other quality attributes (Gonzalez-

altozano and Castel, 1999; Verreynne et al., 2001; Riternour et al., 2003; Hutton et 

al., 2007) and the albedo breakdown incidence (Treeby et al., 2007; Gonzalez-

altozano and Castel, 1999). In order to improve the inconclusive results in the 

literature, I investigated the effects of application of deficit irrigation on plant water 

status, albedo breakdown incidence and fruit quality parameters in ‘Navelina’ sweet 

oranges. 

Twelve years old ‘Navelina’ sweet orange trees were irrigated at an early stage of 

fruit development with the following percentages of commercial irrigation including 

100% (T100, control), 125% (T125), 75% (T75) and 50% (T50). T50 resulted in the 

significantly lowest fruit diameter, average fruit weight and yield in ‘Navelina’ sweet 

oranges. My data indicated that the application of deficit irrigation decreased 

volumetric soil water content at soil depths of 300 mm and 600 mm, the midday stem 

water potential and also the stomatal conductance leading to the reduction in fruit 

growth as reflected the impact on photosynthesis rate. 
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The significantly lowering of albedo breakdown; in terms of moderate, severe, total 

albedo breakdown and the severity of albedo breakdown, in T50 as compared to 

other irrigation treatments may be the results of the higher proportion of smaller fruit 

in which slower growth of endocarp in stage III occurred due to a lower plant water 

status. Consistent with my results, albedo breakdown was highly associated with the 

smaller fruit which had a thinner rind than medium and large fruit (Jones et al., 1967, 

Ali et al., 2000). A slower rate of fruit growth in medium and large fruit in T50 to 

reach their respective final fruit sizes may partially contribute to the reduction in 

albedo breakdown. My data were in the agreement with the findings of those who 

reported that albedo breakdown seems to be attributed to the formation of cracks in 

white albedo tissues underneath the rind due to the quick increases in fruit size after 

first eight weeks of fruit development (Tugell et al., 1993). The same percentage of 

small fruit and medium fruit in T75 and T100 may be suggested contributing to non-

significant differences in the incidence of albedo breakdown between two treatments. 

The tendencies of a slight increase in rind thickness and the dry matter content of 

rind and pulp with the application of deficit irrigation were observed in my 

investigation. These results were proposed due to a reduction in water volume in fruit 

causing the decreased cellular hydration (Mpelasoka et al., 2001; Kilili et al., 1996).  

The highest proportion of small fruit in T50 in comparison to other irrigation 

treatments indicated that the decreased irrigation application was highly associated 

with the plant water status resulting in the reduction of fruit size. Similarly, fruit was 

smaller with the application of deficit irrigation in madarins (Gonzalez-altozano and 

Castell, 1999; Verrenynne et al., 2001), sweet oranges (Treeby et al., 2007; Hutton et 

al., 2007) and pears and apples (Behboudian and Mills, 1997). However, slower rate 

of fruit growth at stage III of fruit development to reach the probably final fruit sizes 

was possible a benefit of decreased irrigation application to reduce albedo 

breakdown as small fruit were less likely to be susceptible with albedo breakdown 

than medium fruit (Treeby et al., 1995). 

The reduction in irrigation water volume applied increased soluble solids 

concentration and titratable acidity in ‘Navelina’ sweet oranges. It proposed that the 

conversion of starch to sugar was increased due to water stress during fruit 

maturation (Mpelasoka et al., 2001; Kramer and Boyer, 1995). Possibly, the dilution 

of solute also may involve to the increase in soluble solids concentration with the 

Chapter 9: General discussion  



 

 153 

application of full irrigation (Bebhoudian and Mills, 1997; Kilili et al., 1996; Kramer 

and Boyer, 1995). Consistent with my data, higher soluble solids concentration was 

observed due to the application of deficit irrigation in sweet oranges (replacing 50% 

of water applied to control) (Treeby et al., 2007) and mandarins (water supply at 

25% and 50% of potential evaporation) (Gonzalez-altozano and Castel, 1999) and 

partial root zone drying applied cover the whole growing season to ‘Bellamy’ Navel 

oranges (Treeby et al., 2007). In my investigation, the application of deficit irrigation 

did not affect ascorbic acid concentration in the juice. In contrast, ascorbic acid was 

increased with the decreased water volume applied in lemons (Domingo et al., 1996). 

9.4. Different surfactants improve calcium uptake into leaf and fruit of 

‘Washington ;avel’ sweet orange [Citrus sinensis (L.) Osbeck.] and reduce 

albedo breakdown  

The involvement of calcium in albedo breakdown has also been indicated in some 

previous reports (Treeby and Storey, 1995; McIntosh, 1998; Lovat, 2000). The foliar 

application of 2% Ca(NO3)2 aqueous solution starting at an early stage of fruit 

development reduced albedo breakdown. However, the Ca uptake into fruit with the 

foliar spray of calcium solution was limited as Ca is not a mobile element (Treeby 

and Storey, 2002). Using surfactants to improve the Ca penetration into fruit has 

been reported in apples (Saure, 2005; Harker and Ferguson, 1991; Schlegel and 

Schonherr, 2002) and mango (Singh et al., 2000). In this experiment, I explored the 

role of different surfactants added to the foliar spray aqueous solutions containing 

2% Ca(NO3)2 in the enhancement of Ca uptake into leaf and fruit, the reduction in 

albedo breakdown and the improvement of the rind textural properties and fruit 

firmness in ‘Washington Navel’ sweet orange. 

Twenty-two years old uniform ‘Washington Navel’ trees were sprayed with an 

aqueous solution of 2% Ca(NO3)2 either alone or with one of the following 

surfactants: ‘Tween 20’ (0.05%), ‘Tween 80’ (0.05%), ‘Triton X100’ (0.05%) and 

‘Tergitol’ (0.05%). Higher Ca concentration in leaf, rind and pulp tissues was the 

results of five sprays of 2% Ca(NO3)2 solutions containing different surfactants 

commencing at 81 DAFB with 10 day intervals. This suggested surfactants added to 

an aqueous solution of Ca(NO3)2 can be used to enhance the Ca uptake into leaf and 

fruit due to the lower surface tension between droplet and surface of leaf and fruit 

leading to better distribution of Ca ion on the surface of leaf and fruit. The efficiency 
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of surfactants on enhancing the Ca uptake into leaf and fruit may partially attribute to 

increased binding capacity of the cuticle for Ca ion due to the improved wetting on 

the leaf and fruit of surfactants. Similarly, the Ca uptake into fruit was increased by 

first dipping apples into different surfactants and followed with pressure-infiltrating 

with a 2% CaCl2 solution (Roy et al., 1996). The efficiency among four tested 

surfactants to enhance the Ca uptake was different. The concentration of Ca in leaf, 

rind and pulp was higher with the foliar sprays of 2% Ca(NO3)2 containing ‘Tween 

20’, ‘Tween 80’ and ‘Tergitol’. This suggested that the efficiency of improving the 

Ca uptake was greatly associated with the value of hydrophilic-lipophilic balance 

(HLB) of surfactants. My data were in agreement with those who reported that 

surfactants which have a higher HLB value were more effective on the Ca uptake 

into leaf and fruit (Wojcik, 2004). Among four used different surfactants, I found 

that ‘Tween 20’ was the most effective in enhancing the uptake of Ca into leaf and 

fruit in ‘Washington Navel’ sweet orange. 

The reduced incidence of albedo breakdown with the spray applications of 2% 

Ca(NO3)2 solution containing ‘Tween 20’, ‘Tween 80’ or ‘Tergitol’ in comparison to 

the calcium-only treatment and control was mainly due to the increased Ca 

concentrations in leaf, rind and pulp. The Ca concentration in rind and pulp showed a 

significant negative correlation with the albedo breakdown incidence. Similarly, it 

has been reported that the albedo and flavedo of fruit with albedo breakdown had the 

lower Ca concentration than those in normal fruit of sweet oranges (Storey et al, 

2002; Treeby et al., 2002; Jone et al., 1967). In contrast, the albedo breakdown 

incidence was highly associated with the higher Ca concentration in rind of 

‘Valencia’ sweet orange (Lovatt, 2000). Improving textural properties of rind and 

fruit with the sprays of different surfactants added into an aqueous solution 

containing 2% Ca(NO3)2 may partially contribute to the lower incidence of albedo 

breakdown. The lower albedo breakdown incidence may be due to the increased rind 

thickness with the foliar application of 2% Ca(NO3)2 containing different surfactants. 

My data were in agreement with those who reported that fruit with thinner rind were 

more susceptible with albedo breakdown than fruit with thicker rind (Bevington et 

al., 1993; Jones et al., 1967; Ali et al., 2000; Moulds et al., 1995).  

The addition of different surfactants into aqueous solutions of 2% Ca(NO3)2 

increased the textural properties of rind and fruit, rind thickness and the dry matter 
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content in ‘Washington Navel’ sweet orange. These data suggest that increased Ca 

concentration in rind and pulp resulted in the higher cell wall strength and thickness 

as Ca contributes to the strong structural rigidity in the cell wall and maintains the 

cell wall stabilisation because of the Ca cross-link bridge within the pectin poly 

saccharide matrix. Similarly, increased Ca concentration in fruit with the foliar 

application of Ca solution resulted in the higher fruit firmness (Tucker, 1993; Singh 

et al., 2007; Roy et al., 1996; Zaragoza et al., 1996; El-Hilali et al., 2004). 

The foliar applications of 2% Ca(NO3)2 containing different surfactants did not affect 

fruit quality parameters such as percentage of juice, juice pH, soluble solids 

concentration, ascorbic acid and individual organic acids in ‘Washington Navel’ 

sweet orange. Consistent with my data, juice content and soluble solids concentration 

and titrable acidity ratio was unchanged with the foliar spray of calcium nitrate 

solution (1% or 2%) in the ‘Fortune’ mandarin (El-Hilali et al., 2004). 

‘Tween 20’ added into an aqueous solution containing 2% Ca(NO3)2 was the most 

effective in increasing the Ca concentration in leaf, rind and pulp, reducing albedo 

breakdown and improving textural properties of rind and fruit in ‘Washington Navel’ 

sweet orange. 

9.5. Boron foliar application reduces albedo breakdown and improves rind 

textural properties in ‘Washington ;avel’ sweet orange [Citrus sinensis 

(L.) Osbeck.] 

Boron plays a key role in forming plant cell and maintaining the calcium in a soluble 

form to insure its proper utilizations in citrus trees (Zekri and Obreza, 2003). The 

thickness and firmness of rind were negatively attributed to the exogenous boron 

application (Foroughi et al., 1973; Haas, 1929; Tariq et al., 2007; Matoh, 1997). In 

contrast, fruit size, rind thickness, juice content, soluble solids concentration and 

citric acid was not affected with the foliar application of boron (Smith and Reuther, 

1950). I investigated the effects of the boron foliar application on the incidence of 

albedo breakdown, the textural properties of rind and fruit and fruit quality in 

‘Washington Navel’ sweet orange. 

 In the first experiment, different concentrations of boron (0, 200, 400 or 600 mg·L-1) 

were sprayed on twenty-two years old ‘Washington Navel’ orange uniform trees. 

The single spray was applied in early summer at 81 DAFB or in early winter at 233 
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DAFB. Two sprays were applied first in early summer and followed by second in 

early winter. In the second experiment, boron sprays (0, 200, 400, 600 or 800 mg·L-

1) were applied on twenty-two years old ‘Washington Navel’ orange uniform trees. 

The single spray was applied in early summer at 80 DAFB. Two sprays were applied 

first in early summer and second in early winter (232 DAFB). 

The increased concentration in spray solution of boron resulted in the increased 

boron concentration in leaf, rind and pulp. Similarly, the increased linearly boron 

concentration in all parts of the citrus tree has been reported to be the results of the 

increasing boron supply (Papadakis et al., 2003). I found that the higher boron 

concentration in leaf than those in rind and pulp may be partially attributed to the 

limited mobilisation of boron from leaf to other organs. Boaretto et al. (2006) and 

Boaretto et al. (2008) reported that the movement of boron within citrus tree was 

mainly via the xylem. Two boron sprays increased the boron concentration in leaf as 

compared to the single spray in early summer or in early winter while one boron 

spray in early summer or in early winter resulted in the similar or higher boron 

concentration in rind and pulp in comparison to two boron sprays. My experimental 

results suggest the limited mobility of boron within organs of citrus trees. As 

consequence, boron should be applied frequently to the new vegetative parts of the 

tree (Boaretto et al., 2006 and Boaretto et al., 2008). 

The Ca concentration in the leaf, rind and pulp was also increased with the foliar 

application of the increased boron concentration (200 mg·L-1 to 600 mg·L-1) in 2007 

and 2008. Two boron sprays increased the Ca concentration in the leaf, rind and pulp 

than one boron spray in early summer or in early winter. My data suggest that the 

absorption of calcium was highly associated with the boron concentration in the leaf, 

rind and pulp of sweet oranges. Similarly, the binding of calcium to the cell wall and 

the movement of calcium into the apple fruit was improved with the assistance of 

boron (Shear, 1975; Zude et al., 1997).  

The foliar sprays of boron (200 mg·L-1 to 600 mg·L-1) decreased the incidence of 

albedo breakdown. The single boron spray in early summer resulted in the lower 

incidence of albedo breakdown than one boron spray in early winter or two sprays. 

This proposed that the reduction in the albedo breakdown with the range of boron 

supply was attributed to the increased boron concentration in leaf, rind and pulp as 

boron plays a key role in improving the cell wall integrity (Matoh, 1997; Goldbach 
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and Wimmer, 2007; Dong et al., 2009). Possibly, the increased Ca concentration in 

rind and pulp within this range of boron supply partially contributes to the lower 

incidence of albedo breakdown as mentioned earlier in Section 9.4. The higher 

incidence of albedo breakdown at the higher concentration of boron (800 mg·L-1) 

may be associated with the reduction in the Ca concentration in the fruit. My 

experimental data suggest a strong effect of relationship between Ca and B on the 

albedo breakdown incidence in sweet oranges. Improving the textural properties of 

rind and fruit and increasing rind thickness with the foliar application of boron may 

have contributed to reduce the incidence of albedo breakdown as discussed in 

Section 9.4. 

The spray application of an aqueous solution containing boron increased the textural 

properties of rind and fruit in ‘Washington Navel’ sweet orange. The rind hardness, 

rind fracture force and rind tensile strength force were highest with one boron spray 

in early summer in comparison to one boron spray in early winter or two sprays. 

Possibly, boron may be involved in the maintaining the integrity, elasticity and 

tensile strength of cell wall due to the B-diester bonding within pectic polysaccharide 

chains (Matoh, 1997; Goldbach and Wimmer, 2007; Dong et al., 2009). My results 

were contrary to those who reported that the foliar boron sprays decreased the 

thickness and firmness of rind (Tariq et al., 2007) or did not affect rind thickness 

(Maurer and Taylor, 1999). Possibly, the increased Ca concentration in fruit due to 

spray of boron may have contributed to the improving the textural properties of rind 

and fruit as mentioned earlier in Section 9.4. 

The foliar application of boron sprays did not affect the fruit quality attributes such 

as juice content, juice pH, soluble solids concentration, titratable acidity and ascorbic 

acid. Similarly, juice content, soluble solids concentration and citric acid were not 

affected with the boron application in sweet oranges (Smith and Reuther, 1950). 

In conclusion, one spray of boron (600 mg·L-1) in early summer significantly 

increased boron concentration in leaf, rind and pulp of fruit, reduced the incidence of 

albedo breakdown and improved textural properties of the rind such as hardness, 

cohesiveness, fracture force, springiness, tensile strength force and fruit firmness 

with unsignificant effects on other fruit quality parameters. 
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9.6. Albedo breakdown and rind textural properties of ‘Washington ;avel’ 

sweet orange [Citrus sinensis (L.) Osbeck.]: the role of ethylene  

Ethylene has been reported to be involved in regulating fruit senescence, chemical 

composition and texture in citrus fruit. Exogenous application of ethylene did not 

affect fruit weight and fruit firmness in ‘Shamouti’ oranges (Porat et al., 1999) 

whereas rind puffing was increased with the foliar spray of ethephon solution in 

‘Satsuma’ mandarin (Burg, 2004; Ladaniya, 2007). The preliminary results showed 

increased endogenous concentration of ethylene in fruit with albedo breakdown than 

normal fruit suggested an association of ethylene with albedo breakdown. I 

investigated the role of ethylene in albedo breakdown and its effects on textural 

properties of rind and fruit in ‘Washington Navel’ sweet orange. 

In the first experiment, endogenous ethylene was determined in the rind of fruit with 

albedo breakdown and normal fruit and the incidence of albedo breakdown was also 

monitored during fruit maturation. Higher endogenous production of ethylene in rind 

of fruit with albedo breakdown than those in the rind of normal fruit suggested the 

involvement of ethylene in albedo breakdown. Similarly, fruit with albedo 

breakdown produced higher ethylene production than normal fruit in ‘Valencia’ 

sweet orange (Monselise et al., 1976). The lower endogenous production of ethylene 

in rind of the fruit with albedo breakdown than the rind of normal fruit at commercial 

harvest implicated ethylene in ripening and senescence. The rind of the developing 

orange fruit showed the higher production of endogenous ethylene than the rind of 

the mature fruit in my experiment. Fruit with albedo breakdown have been reported 

to be more mature than normal fruit on the same tree (Jones and Embleton, 1967). 

In the second experiment, the spray applications of ethephon (0, 100, 200 or 300 

mg·L-1) were applied on the whole twenty-two years old ‘Washington Navel’ orange 

trees at 227 DAFB. The slightly increased incidence of albedo breakdown without 

affecting any rind textural properties and fruit firmness with the application of 

ethephon seems to implicate the auto inhibition of ethylene production. Similarly, the 

inhibition of the ethylene production in flavedo tissue of grapefruit was associated 

with the exogenous application of ethylene (Yang and Hoffman, 1984). 

In the third experiment, ethylene inhibitors including AVG and CoSO4 (0, 100, 200 

or 300 mg·L-1) were sprayed onto the whole twenty-two years old ‘Washington 
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Navel’ orange trees at 227 DAFB. The decreased incidence of albedo breakdown and 

the improved rind textural properties and fruit firmness suggested the involvement of 

ethylene in albedo breakdown. The elevated levels of ethylene in the rind of fruit 

with albedo breakdown and reduction of albedo breakdown with inhibitors of 

ethylene suggest its association with albedo breakdown 

9.7. Conclusions 

• The incidence and the severity of albedo breakdown increased rapidly after 

commercial harvest. The albedo breakdown incidence and severity was 

lowest in the fruit harvested from Harvey in comparison to among four 

selected locations. Irrespective of cultivars and locations, the severity of 

albedo breakdown did not affect the major fruit quality parameters such as 

juice content, soluble solids concentration, titratable acidity, ascorbic acid, 

citric acid and malic acid except for decreasing succinic acid and increasing 

tartaric acid. 

• The application of reduced water supply (50% and 75% water supply of 

control trees) decreased the incidence and the severity of albedo breakdown 

due to the reduction in fruit size and yield. 

• The application of deficit irrigation increased soluble solids concentration and 

titratable acidity and did not affect the rind thickness, the dry matter content 

of fruit as well as the other fruit quality parameters such as juice content, 

ascorbic acid and the individual organic acids in ‘Navelina’ sweet orange. 

• Different surfactants added into aqueous solutions containing 2% Ca(NO3)2 

increased the Ca concentration in leaf and fruit, reduced the incidence of 

albedo breakdown and improved the rind textural properties and fruit 

firmness of sweet oranges without affecting the fruit quality parameters 

including juice content, juice pH, soluble solids concentration, titratable 

acidity, ascorbic acid and the individual organic acids.  

• Among four tested surfactants, ‘Tween 20’ was the most effective in reducing 

albedo breakdown and improving the rind textural properties and fruit 

firmness without affecting the other fruit quality parameters.  

• Single spray of boron (600 mg·L-1) in early summer increased the 

concentration of boron and calcium in leaf, rind and pulp, reduced the 

incidence of albedo breakdown and improved rind textural properties and 
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fruit firmness without affecting any fruit quality parameters as compared to 

the one boron spray in early winter or two sprays in ‘Washington Navel’ 

sweet orange. 

• The higher ethylene production in the rind of fruit with albedo breakdown 

than normal fruit and the reduced incidence of albedo breakdown with the 

exogenous application of ethylene inhibitors suggest the association of 

ethylene with albedo breakdown in sweet oranges. 

 

• Recommendations to the citrus industry: 

1. The surfactant ‘Tween 20’ (0.05%) should be added into pre-harvest 

five spray applications of 2% Ca(NO3) aquoues solution commencing 

from 81 DAFB at 10-day intervals under Western Australian 

conditions due to its beneficial effects on increasing Ca concentrations 

in leaf, fruit rind and pulp tissues, decreasing albedo breakdown 

incidence and improving textural properties of the rind.   

2. The one foliar spray of boron (600 mg·L-1) in early summer should be 

applied to control albedo breakdown under Western Australian 

conditions due to the increased boron concentration in leaf, rind and 

pulp of fruit, the reduced incidence of albedo breakdown and the 

improved textural properties of the rind . 

 

9.8. Future research 

This research provides basic information on the development of albedo breakdown 

during fruit maturation and ripening, the severity of albedo breakdown and the pre-

harvest factors affecting fruit quality in sweet oranges with an emphasis on albedo 

breakdown. Future research work on albedo breakdown may focus on the following 

areas: 

1. The application of deficit irrigation has been shown to reduce albedo breakdown. 

It has been proposed that the higher proportion of small fruit is important 

involving in the reduction in albedo breakdown. However, the reduction in yield 

was a disadvantage of the method. It also has been suggested that the rate of fruit 

growth in first eight weeks during fruit development is contributed to the initial 

of the albedo breakdown development than final fruit size. Therefore, the 
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application of deficit irrigation in reducing albedo breakdown without affecting 

yield in Western Australian conditions need to be investigated in more detail. 

2. Exogenous ethylene inhibitors including AVG and CoSO4 have been shown to 

reduce the incidence of albedo breakdown. This implicates the involvement of 

ethylene in albedo breakdown. However, I did not determine the endogenous 

production of ethylene and the levels of ACC synthase and ACC oxidase along 

with the application of AVG and CoSO4. Therefore, the study of the relation 

among endogenous production of ethylene, the activities of these enzymes and 

the foliar application of the ethylene inhibitors will provide a better 

understanding on the role of ethylene in albedo breakdown. 

3. Several pectolytic and cellulolytic enzymes such as polygalacturonase (PG), 

pectin methylesterase (PME), pectinlyase (PL) appear involving in albedo 

breakdown development. Therefore, the activities of these enzymes during fruit 

development, matuarion and ripening in relation of albedo breakdown needs to 

be investigated. 
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