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Abstract 

One of the important scientific research focuses worldwide has been on the study 

of behavior of materials at micro and nano-scales. Continuing theoretical and 

technological development in this area has led to the development of many 

biological and engineering devices and systems which involve fluid flow through 

micro-channels, referred to microflows. Typical examples include fuel cells, drug 

delivery systems and energy conversion devices. 

As the functional characteristics of micro-systems depend, to a large degree, on 

the behavior of fluid flow in the micro-channels, it is extremely important to study 

microflows. In recent years, many investigations were carried out to study various 

flow problems of Newtonian and non-Newtonian fluids under the steady state 

condition. However exact solutions to many flow problems of Newtonian fluids in 

micro-channels under the unsteady condition have not been developed and 

investigated. Hence, in this project, we study the unsteady flow of incompressible 

Newtonian fluids through rectangular and elliptic micro-channels with boundary 

slip.  

For the unsteady flow through micro-channels of rectangular cross-section, the 

governing equations are constructed and formulated in the rectangular coordinate 

system. Then by using Fourier series expansion and separation of variables, the 

governing partial differential equation for the velocity field is successfully  

reduced to two simpler families of boundary value problems which are then 

solved analytically. From the derived exact solution of the velocity field, the 

transient flow rate and the stress field in the fluid are subsequently derived. An 

investigation is then conducted to study the behaviour of microflows in 
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rectangular channels. Various interesting results, showing the influence of 

boundary slip and cross-section geometry (width to depth ratio) on the flow 

behaviour and efficiency, have been obtained and presented in the thesis. 

For the unsteady flow through micro-channels of elliptic cross section, the 

complete set of governing equations, including the partial differential equation 

and the boundary conditions, are formulated in elliptic cylindrical coordinates. 

Then by using Fourier series expansion and separation of variables, the partial 

differential equation for the velocity field is successfully reduced to two families 

of Mathieu type equations which are then solved analytically subject to the 

symmetric condition and the slip boundary condition. Exact solutions for the 

transient flow rate and the stress field in the fluid are then derived subsequently. 

The solutions are expressed in terms of the Mathieu functions and the modified 

Mathieu functions, which are in series form and are determined by computing 

their characteristic numbers and the coefficients of the series. A numerical 

investigation is then conducted to demonstrate the flow behavior of fluids in 

elliptic micro-channels. 
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Chapter 1 

Introduction 
 

1.1  Background 

 

Fluid flow in micro-channels has emerged as an important research area. This has 

been motivated by its various applications such as medical and biomedical use, 

computer chips, and chemical separation. The advent of Micro-Electro-

Mechanical Systems (MEMS) has opened up a new research area where non-

continuum behaviour is important. MEMS are one of the major advancements of 

industrial technologies in the past decades. Micron-size mechanical and 

biochemical devices become more familiar both in commercial applications and in 

scientific research. Micro-channels are the fundamental part of microfluidic 

systems. In addition to connecting different devices, micro-channels have also 

been used in biochemical reaction chambers, physical particle separation, inkjet 

print heads, infrared detectors, diode lasers, miniature gas chromatographs, or as 

well as heat exchangers for cooling computer chips [13].  
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Many investigations have been carried out to study various flow problems of 

Newtonian and non-Newtonian fluids in micro-channels with Navier slip 

boundary conditions over the recent years [7, 9, 10, 16, 17, 27, 33, 34, 35, 36]. 

Some attempts have also been made to emerge alternative formulae for the 

determination of the slip length [4, 30, 35]. Although exact and numerical 

solutions to various flow problems of Newtonian fluids under the no-slip 

assumption have been obtained [2, 3, 24, 39], very few exact solutions for the slip 

case are available. Recently, some steady state slip solutions for the flows through 

a pipe, a channel and an annulus have been derived [4, 20, 27, 35]. 

 

Advancement from the research community in sciences at microscale and 

nanoscale led to the development of many biological and engineering devices and 

systems [12]. Most of these devices and systems involve fluid flow through 

micro-channels, referred to as microflows [1, 5, 11, 12]. Typical examples 

include fuel cell devices, drug delivery systems [32], biological sensing and 

energy conversion devices [15]. As the behaviour of fluid flow in these systems 

determines the functional characteristics of the systems, the study of microflows 

is attracting more and more attention from the science and engineering 

communities in order to derive a better understanding of the mechanism of 

microflows and develop better models [19]. 
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To describe the slip characteristics of fluids on the solid surface, Navier 

introduced a more general boundary condition. This condition attracts significant 

attention of the science and engineering communities for the study of flows in 

micro-scale. Recent advancement in the manufacture of micro devices enable 

experimental investigation of fluid flows in micro-scale, and many experimental 

results have provided evidence to support the Navier slip condition [22, 23, 31]. 

Some attempts have also been made to use nanotechnologies for the surface 

treatment of micro-channels so as to achieve large slip for maximizing the 

transport efficiency of fluids through micro-channels.  

 

Many experimental results were shown to support the no-slip boundary 

conditions. However, it has been established that the interaction of fluids with the 

solid surface of micro-channels is very different from that in large systems, due to 

the large ratio of surface area with volume for the microsystems. The flow of 

fluids in microsystems is granular and slip can occur [2, 24, 31, 35, 36 ]. Hence, 

the no-slip condition is not acceptable for fluid flows in micro-channels although 

it is applicable to fluid flow in large systems [35] 

 

There are many analytical results for the steady state flow of Newtonian fluid. 

Duan and Muzychka [36, 37] examined the solution for slip flows through  

rectangular ducts and elliptical ducts. The velocity distribution satisfies the slip 

boundary condition at the walls.  
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Duan and Muzychka [36] investigated slip flows in elliptic micro-channels. An 

analytical solution of Poiseuille number was obtained using the method of  

separation of variables in elliptic cylindrical coordinates. A simple model was 

developed for predicting the Poiseuille number for the slip flow in elliptic micro-

channels.  They also investigated the slip flow in non-circular micro-channels. A 

simple model was developed for predicting the friction factor Reynolds product 

for the  slip flow in noncircular micro-channels.   

 

Wu et al. [35] examined transient flows of Newtonian fluids through microtubes,  

and B. Wiwatanapataphee et al. [4] studied transient flows through micro-annuals 

with slip boundary. They assumed that the fluid flow is driven by the pressure 

field with a pressure gradient which can be expressed by a Fourier series but their 

work is limited to the cases where the pressure gradient varies with time only. 

Based on the solutions, they analysed the influence of the slip parameter on the 

velocity and the flow rate as well as the stress field in the fluid.   

 

1.2  Objectives 

 

Although a significant advancement in the study of velocity profile of slip flows 

in rectangular and elliptical micro-channels have been made, there are still many 

problems which require further investigation. 

This research mainly studies the exact solutions for the unsteady flows in 

rectangular and elliptical micro-channels with slip boundary. The main objective 
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of this research is develop and investigate the analytical solutions for fluid flows 

in rectangular micro-channels and elliptical micro-channels with slip boundary. 

The specific objectives are as follows. 

(1) Construct a complete set of equations for fluid flows in micro-channels of 

rectangular cross-section with slip boundary. This includes construction of the 

governing field equation and the slip boundary conditions.  

(2) Derive analytical solutions for the slip flows in rectangular micro-channels, 

including exact solution for the velocity field, the flow rate and the stress field. 

(3) Investigate the velocity profile and the behaviour of fluid flows in micro-

channels of rectangular cross-section as well as the influence of slip parameter. 

(4) Formulate the governing equations for unsteady slip flows in elliptic micro-

channels, including transforming the governing partial differential equations and 

boundary conditions to elliptic cylindrical coordinates. 

(5) Develop analytical solutions for unsteady slip flows in micro-channels of 

elliptic cross-section. 

(6) Investigate the flow behaviour of fluids in elliptic micro-channels and 

investigate the influence of the slip parameter on the flow behaviour. 

 

1.3  Outline of the Thesis 

This thesis develops various theoretical results for transient flows of Newtonian 

fluids through micro-channels with slip boundary conditions. The thesis is 

organized as follows: 

 Chapter 1 introduces the background of the research, and presents the objectives 

of the research. 
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Chapter 2 reviews previous research results relevant to the field of study, 

including review of fundamental field equations, boundary conditions, methods of 

solutions, and some relevant solutions. 

Chapter 3 develops analytical solutions for the unsteady slip flow in rectangular 

micro-channels, including the exact solutions for the velocity field, the flow rate 

and the stress field. Flow behaviour for two special cases, corresponding to 

constant and wave form pressure gradient respectively, are investigated. The 

influence of the slip parameter on the flow behaviour is also investigated. 

Chapter 4 develops analytical solutions for the unsteady slip flow in elliptical 

micro-channels. The work is restricted to investigation for wave form pressure 

gradient only as the result for constant pressure gradient has been found earlier. 

Chapter 5 concludes the research project and discuss some problems for further 

research. 
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Chapter 2 
Literature Review 

 
 

   

2.1 An Overview 

 

Fluid dynamics are concerned with the motion of liquids and gases. At macros-

copic studies, fluids and gases are assumed to be continuous in structure. All the 

variables are considered to be continuous functions of the spatial coordinates and 

time. The equations governing the fluid flow include the continuity equations and 

the Navier-Stokes equations. They can be used to model the movement of air in 

the atmosphere, ocean currents, water flow in pipes, and many other fluid flow 

phenomena. 

 

The general equations for fluid flows are time-dependent and consist of a 

continuity equation for conservation of mass, three conservation of momentum 

equations and a conservation of energy equation. Usually, these equations, in real 

world applications, cannot be solved in a closed form. However, in some special 

cases, the equations can be simplified and analytical solutions may be obtained. 

 

Over the past decades, various studies have been carried out to investigate steady 

and unsteady flows through micro-channels under slip or no-slip boundary 

conditions. Wu et al. [35] considered the transient flow of an incompressible 

Newtonian  fluid through a circular micro-tube with the z-axis being in the axial 

direction. They formulated the field equations governing the flow including the 
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continuity equation and the Navier–Stokes equations, then derived an exact 

solution for the transient velocity field, the flow rate and the stress field by using 

Fourier series expansion.  

 
A method similar to that in [35] is then applied to derive an exact solution for the 

transient flow of a Newtonian fluid through a micro-annulu with a slip boundary 

involving two parameters respectively for the inner surface and the outer surface. 

Analytical results are derived for the transient flow in a circular annual of inner 

radius a and outer radius R with the z-axis being in the axial direction.  However 

the results are limited to the fully developed flow and to the case in which the slip 

length does not change along the flow direction.  

 

Duan and Muzychka [36] studied the steady slip flow in elliptic micro-channels. 

They examined the momentum equations and considered the various force 

balances between the friction and pressure forces for a long micro-channel by 

using the method of scale analysis. In the elliptic cross-section, they compare the 

scale between friction and inertial forces. The solution has been found by using 

the method of separation of variables and the method of Fourier expansion in 

elliptic cylindrical coordinates.  

 

In [52], Ebert and Sparrow analysed the velocity and pressure drop characteristics 

of the moderately rarefied gas flow in rectangular and annular ducts. The density 

level is such that a velocity slip may occur on the duct walls. In general, it is 

found that the effect of slip is to flatten the velocity distribution for a continuum 

flow; furthermore, the axial pressure gradient is diminished under the slip flow 

condition. The effect of compressibility on the axial pressure drop was also 

investigated. It was found that compressibility increases the pressure drop 

primarily through an increase in viscous shear rather than through an increase in 

momentum flux. 
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Duan and Muzychka [37] studied the slip flow in non-circular micro-channels. 

They examined the solution for steady slip flow in rectangular ducts. The solution 

for rectangular ducts was derived by using the method of eigenfunction 

expansions and following Ebert and Sparrow [52]. A simple model was developed 

for predicting the friction factor Reynolds product for slip flows in non-circular 

micro-channels. This developed model may be used to predict mass flow rate and 

pressure distribution of slip flows and could be extended to the early transition 

regime by employing the second order slip boundary conditions. 

 

In this chapter, we will give a comprehensive review on the fundamental theories 

for fluid dynamics, the basic methods for the solution of fluid dynamics problems 

and some analytical results relevant to this project. In section 2.2, the fundamental 

field equations are presented. In section 2.3, two types of boundary conditions are 

given, including the no-slip boundary condition and the slip boundary condition. 

In section 2.4, some methods for finding exact solutions under no-slip boundary 

conditions are reviewed. In section 2.5, some methods for finding exact solutions 

under slip boundary conditions are given. In section 2.6, a brief introduction of 

numerical studies in the field is given. 

 

2.2 Fundamental Field Equation 

The basic variables in continuum mechanics include velocity vector v, density  , 

deformation rate d, and stress tensor . These variables are related by a set of 

equations derived from the principles of continuum mechanics, including the 

continuity equation, the stress equations of motion, the geometric equations, and 

the constitutive equations. 
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2.2.1 Stress Equations of Motion 

To determine the stress field, one needs to construct a set of differential equations 

with stress components as unknown functions [107].  

 

Figure 2.1:  Free body diagram showing the forces acting on a differential element 

 

Consider a differential element as shown in figure 2.1. Assume that the material is 

continuous and the stresses are continuous in space, then the stress acting in the 

surfaces of the differential element (to a first order approximation) are as shown in 

figure 2.1. 

From Newton’s second law, the stress and acceleration of the differential element 

must satisfy: 

yyyx  

xx
xx dx

x

 




xy
xy dx

x








 

yx
yx dy

y








 

yy
yy dy

y








 

xy  

xx  

dx 

dy
X 

Y

O 

X 

Y 
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yxxx
xx xx yx yx

x

dy dx dy dy dx dx Xdxdy
x y

dxdya

    



              


             (2.1) 

yy xy
yy yy xy xy ydy dx dx dx dy dy dxdya

y x

 
    

    
            

,            (2.2) 

where 
Dv v v

a v
Dt t x

 
  

 
. 

After simplification, we have 

yxxx
x

xy yy
y

X a
x y

Y a
x y

  

 
 


  

 
 

  
 

,                                       (2.3)                            

Using index notation, we can write the above equations as 

ji
i i

j

X a
x


 


 


,                                               (2.4) 

where  i, j = 1, 2 for two dimensional problems. For three dimensional problems, 

equations (2.5) are still applicable with i, j= 1, 2, 3, which can be written in 

unbridged form by 

yxxx zx
xX a

x y z

   
 

   
  

, 

xy yx zy
yY a

x y z

  
 

  
   

  
,                               (2.5) 

yzxz zz
zZ a

x y z

   
 

   
  

, 
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2.2.2 Geometric Equations 

When an object is subject to external forces, stresses will develop within the 

material of the object. The stresses will cause the material to deform including 

change in size and shape of the object. To measure the deformation, we consider a 

differential element of material within a continuum as shown in figure 2.2. In 

general, under the action of an applied force system, the element will be displaced 

and deformed as shown in figure 2.2 [107]. 

 

Figure 2.2: Diagram for the derivation of strain-displacement relations 

 

Suppose the displacement of the point A, located initially at (x,y) is ( , )A Au v with  

( , , )Au u x y t , ( , , )Av v x y t .                                    (2.6)                          

 

A

v
v dx

x





 

A

u
u d x

x




Au  

Av

A

u
v dy

y





A

u
u d y

y





 

B

d  

A  

A

D  

B

d  

O   x

y  
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From the continuum  assumption, the displacement of point B is ( , )B Bu v  and its 

first order Taylor approximation is 

( , , ) ( , , ) ,

,

B A

B A

u u
u u x dx y t u x y t dx u dx

x x
v

v v dx
x

 
     

 


 


                  (2.7)      

and the displacement of point D is ( , )D Du v  with 

( , , ) ( , , ) ,

.

D A

D A

u u
u u x y dy t u x y t dy u dy

y y

v
v v dy

y

 
     

 


 


                 (2.8) 

As d  is small, the stretch of the line AB is 

( ) B A

u
dx u u dx

x


   


.                                                          (2.9) 

Remark: 

d  and d  are small change of angles in x and y direction respectively. 

 

Definition Normal Strain in the x- direction 

The change in the length of AB divided by its original length, representing the 

change in length for per unit length in the x-direction, is known as normal strain in 

the x-direction and can be determined by 

xx

u
dx ux

dx x



 


.                                           (2.10)              
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 Similarly, the normal strain in the y- direction measures the change in length for 

per unit length in the y-direction and can be determined by 

yy

v

y
 




 .                                           (2.11) 

The change of shape can be measured by the change of angle from the original 

right angle at point A, that is, 

2xy xy

u v
d d

y x
    

    
 

,                       (2.12) 

which is called the angular or shear strain. 

The strain displacement relation (2.10) – (2.12) are called geometric equations and 

can be expressed in index notation by 

1

2
ji

ij
j i

uu

x x


 
     

.                                 (2.13)                             

Note that the above equations are also applicable to the 3-dimensional case for 

which i, j= 1, 2, 3. 

 

2.2.3 Continuity Equation 

Based on the mass conservation principle, namely mass cannot be created or 

destroyed, one has another fundamental equation, namely the continuity equation.  

Consider a closed surface S, fixed in space, enclosing a fixed volume . Let dS be 

a differential surface element (on S) with area dS and an outward unit normal 

vector n, and let the velocity of the fluid on the element be v, then the velocity 

component in the outward normal direction is nv  v . n. 
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In a unit time, the fluid originally on the surface element dS will move a distance 

dl   v . n and thus the volume of the fluid flowing out of   through dS per unit 

time is 

ndQ v dS   v . n dS.                                      (2.14) 

Integrating dQ  over the entire surface leads to a total mass efflux 

S

Q   v . n dS.                                            (2.15)                

As material can be neither created nor destroyed, the mass efflux out of   can 

only be achieved at the expense of a decrease in density within  . The rate of 

decrease of mass within   due to the change in density is given by 

0

( ) ( )
lim

t

t t t
d d

t t

  
 

 

   
   

   .                        (2.16)   

From (2.15) and (2.16), by equating the mass rate of flow out of   and the rate of 

decrease of mass within , we have 

S

d
t

 



  

  v . n dS.                                    (2.17) 

Using the divergence theorem, we have from (2.17) that 

div( ) 0v d
t

 


      .                                (2.18) 

Finally, since   may be chosen arbitrarily, by assuming the integrand is 

continuous, we derive 

div( v) 0
t

 
 


,                                      (2.19) 



16 

 

which is the equation of conservation of mass expressed in differential form. The 

equation above is also known as the equation of mass balance or equation of 

continuity. 

For incompressible materials, 0t    and thus the continuity equation 

becomes  

div v = 0.                                           (2.20) 

In the  x,y,z coordinate, the continuity equation is 

31 2 0
vv v

x y z

 
  

  
.                                 (2.21) 

In the cylindrical polar coordinate  , ,r z , the continuity equation is 

 1 1
0z

r

u u
ru

r r r z



 

  
  

.                               (2.22) 

 

2.2.4 Constitutive Equations 

Fluids are classified into Newtonian fluids and non-Newtonian fluids. A 

Newtonian fluid is a viscous fluid for which the shear stress is linearly 

proportional to the rate of deformation. For an isotropic, Newtonian fluid, the 

stress-strain relationship is specified by the equations 

2ij ij kk ij ijp d d        ,                              (2.23) 

where  1
, ,2ij i j j id v v   is the rate of deformation tensor and v  1 2 3, ,v v v  

denotes the velocity vector,  is the coefficient of viscosity, and p is the fluid 

pressure. 
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 For incompressible fluids,  0kkd   and thus  

2ij ij ijp d     ,                                            (2.24) 

which, in the rectangular xyz coordinate system,  can be written as 

2 , 2 , 2 ,

, , .

xx yy zz

xy yz zx

u v w
p p p

x y z

u v v w w u

y x z y x z

     

     

  
        

  

                            

              (2.25) 

For non-Newtonian fluids, the viscosity   is not a constant. Various non- 

Newtonian models have been proposed including the Carreau model, the 

Walburn-Scneck model, the Power Law model, the Casson model and the 

generalised power law model.         

For the Carreau model [108], the effective viscosity is  

   
 1 /22

0 1
n

    


 
      , 

where [108],  

0 0.56 , 0.0345 , 3.313 , and =0.3568P P s n     . 

For the Walburn-Schneck model [108], the effective viscosity is  

   
4 2

32
/

1

C TPMA H C HC HC e e      
 , 

where [108],  

1 2 30.00797, 0.0608, 0.00499,C C C        

1 1
4 14.585 g , 40% and 25.9C l H TPMA gl    . 
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For the Power Law model [108], the effective viscosity is   1

0

n       where  

[108], 0 0.035, and =0.6n  . 

For the Casson model [108], the effective viscosity is  

 
21/42 1/2 1/2 1/2

2 22 yJ J       
, 

 where     3 2.5

2 0 02 , 0.1 0.625 , 1 , 0.012 and =0.37yJ H H H             

For the Generalised Power Law model [108], the effective viscosity is   

 1n     , 

where 

 

 

exp 1 exp ,

exp 1 exp ,

b

a

d
n n

a


   




 







    
              

    
              











 

and 0.035, 1.0, 0.25,n        0.45, 50, 3, 50, and 4n a b c d      . 

                                                                                                                                                                 

2.2.5  Navier Stokes Equations for Incompressible Newtonian                       

Fluids 

Substituting the constitutive equations (2.24 ) into the stress equations of motion 

 (2.4), we obtain  

22
ji i

i ij
j j j i j

vDv vp
X

Dt x x x x x
   

 
          

 .                      (2.26) 



19 

 

 

Using the continuity equation (2.20),  we have  

21i
i i

i

Dv p
X v

Dt x


 


   


,                                      (2.27) 

which are the so called Navier-Stokes equations for incompressible Newtonian 

fluids. 

The Navier- Stokes equations, written out in unbridged form, are 

21
,

Du p
X u

Dt x


 


   


 

21
,

Dv p
Y v

Dt y


 


   


                                    (2.28) 

21Dw p
Z w

Dt z


 


   


. 

In the rectangular coordinate (x, y, z) system, (2.28) becomes 

2 2 2

2 2 2
x x x x x x x

x y z x

v v v v v v vp
v v v g

t x y z x x y z
  

        
                    

,     (2.29) 

2 2 2

2 2 2

y y y y y y y
x y z y

v v v v v v vp
v v v g

t x y z y x y z
  

         
                      

,     (2.30) 

2 2 2

2 2 2
z z z z z z z

x y z z

v v v v v v vp
v v v g

t x y z z x y z
  

        
                    

 ,       (2.31) 

 

In the cylindrical polar coordinate  , ,r z  system, the Navier Stokes equations 

are 
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 

2

2 2

2 2 2 2

1 1 2
           ,

r r r r
r z

r r
r r

v vv v v v
v v

t r r z r

vv vp
rv g

r r r r r z r

 






 
 

    
         

                   

                  (2.32) 

 
2 2

2 2 2 2

1 1 1 2
                         ,

r
r z

r

v v v v v v v
v v

t r r z r

v v vp
rv g

r r r r r z r

     

 
 




 
  

             
                    

                           (2.33) 

2 2

2 2 2

1 1
                        .

z z z z
r z

z z z
z

vv v v v
v v

t r r z

v v vp
r g

z r r r r z




 


            
                  

                         (2.34) 

 

2.3 Boundary conditions 

Two different types of boundary conditions have been used in fluid mechanics, 

namely the no-slip and slip boundary conditions. The no-slip boundary condition 

in fluid mechanics states that the velocity of a liquid at the solid wall equals the 

velocity of the wall (Koplik and Banavar, 1998). In other words, the fluid at a 

solid surface has no relative velocity to it (Zhu and Granick, 2002). When a 

viscous fluid flows over a solid surface, there is no relative motion between the 

fluid and the solid on the interface (Richardson, 1973). 

The slip and the no-slip boundary conditions can be explained physically here. In 

[72], the authors consider gas molecules as they strike and reflect from a solid 

wall. If the wall is perfectly smooth, the particles reflect at exactly the same angle 

θ as light rays from a mirror would. This is termed as specular reflection. The 
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molecules conserve their tangential momentum and thus exert no shear on the 

wall; i.e., perfect slip flow at the wall. Specular reflection is unrealistic on a 

molecular scale, where even the most highly polished wall appears rough. It is 

more probable that the impinging particles view the wall as extremely rough and 

reflect at some random angle uncorrelated with their entry angle. This is termed as 

diffuse reflection. Equilibrium across a plane y adjacent to the wall requires that 

the lack of reflected tangential momentum be balanced by a finite slip velocity 

wu to provide the shear transmitted to the wall. For perfectly diffuse reflection, this 

balance leads to the expression  

  w

w

du
u

dy

 

  
 

                                           (2.35) 

where  denotes the mean free path of the gas and the subscript w stands for wall. 

If we assume that only a fraction f of the molecules are reflected diffusely, the slip 

velocity becomes (Kennard ,1938) 

2
1w

w

du
u

f dy


   
    
   

.                                    (2.36) 

The slip is not important at high Reynold numbers and possibly at low Reynold 

numbers. At high Reynolds numbers, the flow near the wall is turbulent where the 

no-slip happens, i.e., 0wu  . On the other hand, it is possible to have significant 

slip at high Mach numbers and low Reynolds numbers, where the boundary layer 

is laminar [72]. 

Under normal situation, the no-slip condition provides a realistic restriction on 

solutions of the Navier-Stokes equation, except for rarefied gases. Under certain 

low density condition, it is still possible to presume these as continua with 

Newtonian properties but a slip condition has to be assumed. Confidence in the 

relevance of this boundary condition stems from both direct experimental 
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evidence and the success achieved by theories which incorporate this assumption 

[87]. 

Let us inquire the origin of the no-slip condition.  Kinetic theory and thermo-

dynamic arguments can be called upon to give an explanation of the no-slip 

condition for the gas, where the molecules of gas are required to remain chemical-

ly adsorbed onto a solid surface for a sufficiently long time to attain a thermal 

equilibrium. A similar explanation in molecular terms is possible for liquids.  It 

can be stated that intermolecular forces between the liquid and a solid wall cause a 

ligament in the no-slip condition [87]. 

An alternative explanation of the origin of the no-slip condition relies on the fact 

that all solid surfaces are, in practice, rough on microscopic scale (Pearson & 

Petrie, 1968). They consider the boundary conditions  which are applied at solid 

surface in the observation of  a polymer melt does, which show a slip velocity, 

while a no-slip condition seems to be relevant for moderate values of the shear 

rate at the solid boundary. Richardson (1973) elaborated the original physical 

ideas of Pearson & Petrie (1968) and the flow of an incompressible Newtonian 

fluid over a particular family of models for a rough wall was examined in detail.  

The no slip boundary condition has been used over the last decades, that is, the 

fluid velocity relative to the solid is assumed to be zero on the fluid solid interface 

[58]. However, evidence of slip of a fluid on a solid surface has been reported 

[57]. Recent experiments in micrometer scale and molecular dynamic simulations 

have shown that the flow of fluids in microsystem is granular and slip can occur 

on the fluid-solid interface [53, 54, 59, 63, 65]. Therefore for the study of 

microflows, it is important to take into account the boundary slip of fluids on the 

fluid solid interfaces.  

On the other hand, the no-slip condition is not acceptable for fluid flows in micro-

channels under certain conditions such as those investigated in [61, 62] . Many 

experimental results have provided evidence to support the Navier slip boundary 
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condition [55, 57, 64], namely the fluid velocity tangential to the solid surface, 

relative to the solid surface, is proportional to the shear stress on the fluid-solid 

surface. The proportionality is called the slip length [56, 64]. Some attempts have 

also been made to derive alternative formula for the determination of the slip 

length [4, 60]. In this condition, we have the linear slip boundary conditions and 

the nonlinear slip boundary conditions. 

 

In [35], to completely define the problem, the authors use the linear Navier slip 

boundary condition. That is, on the solid-fluid interface r = R, the axial fluid 

velocity, relative to the solid surface, is proportional to the shear stress on the 

interface. Assume that the rigid micro-tube moves with an axial velocity ( )tv t , 

then the Navier slip condition can be written as                                                                                     

( , )
( , ) ( ) rz

t

R t
u R t v t




   ,                                  (2.37) 

where   is the fluid viscosity, R is radial outer surface and   is the so-called slip 

length, the negative sign on the right-hand side of the above equation is to reflect 

that the shear stress on the interface is always in the opposite direction of the axial 

fluid velocity, as any tangential momentum of a fluid particle relative to the solid 

surface will always be restricted by a resistance force acting on the opposite 

direction of the relative movement; ( , )rz R t  is the shear stress on the interface 

between the fluid and the wall of the micro-tube. For   = 0, the above condition 

reduces to the no-slip boundary condition, while for  →∞, the above equation 

gives a surface traction condition for a perfectly smooth surface, i.e. ( , ) 0rz R t  . 

For the problem considered in [35], the authors assume that the micro-tube is 

fixed spatially, i.e. ( ) 0tv t  . Thus by noting that ( , )rz

u
R t

r
  




, it results   

( , )
( , )

u R t
u R t

r


 


 .                                  (2.38) 
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In [4], with slightly different boundary conditions, by adding inner surface with 

radius a, the Navier slip boundary conditions are written in the form of 

1

( , )
( , )

u a t
u a t

r


 


 , 2

( , )
( , )

u R t
u R t

r


 


 ,                   (2.39) 

where 1 and 2 denote the slip parameters of the inner surface and the outer 

surface, respectively. It is assumed that the slip parameters do not change along 

the flow. 

 

Wiwatanapataphe et al. [4] have given argument concerning the signs for the 

terms on the right-hand sides of the above equation, while in the other literature, 

all the four possible cases are considered and the physically feasible cases are 

determined based on the solution derived. 

 

In [37], the authors examined the solution for the steady slip flow in a rectangular 

duct.  With similar reason, the velocity distribution must satisfy the linear slip 

boundary condition on the wall. The local slip velocity is proportional to the local 

velocity gradient normal to the wall. Due to symmetry, the boundary conditions 

are 

 

2
on , 0 ,

2
on , 0 ,

0 on 0, 0 ,

0 on 0, 0 ,

u
u y b x a

y

u
u x a y b

x
u

y x a
y

u
x y b

x







 
    


 

    



   




   


                     (2.40) 

where  λ  is the molecular mean free path. The constant σ denotes the tangential 

momentum accommodation coefficient, which is usually between 0.87 and 1 

(Rohsenow , 1961). The most usual conditions correspond to σ  ≈ 1; therefore, σ  

may be assumed to have a value of unity. The same procedure is valid even if  

σ ≠ 1 by defining a modified Knudsen number as  
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(2 )* KnKn 


 ,                                   (2.41) 

where Kn is an original Knudsen number. This boundary condition will be used in 

conjunction with finding analytical solution of transient slip flows in rectangular 

micro-channels, which will be described in chapter 3. 

 

In [36], the local slip velocity is proportional to the local velocity gradient normal 

to the wall. In elliptic cylindrical coordinates, the boundary conditions, for a one 

quarter basic cell, are 

2

2

2

2

0

1

1
0 on 0,

1
0 on ,

1
0 on 0,

2

on ,

u

g

u

g

u

g

u
u

g













  




 




 




 






  


                             (2.42) 

             2 2 2
1 2 cosh cosg g c     , 

where  is the molecular mean free path, and the constant   denotes the 

tangential momentum accommodation coefficient which has values typically 

being between 0.87 and 1. Although the nature of the tangential momentum 

accommodation coefficients is still an active research problem, almost all 

evidence indicates that for most gas-solid interactions the coefficients are 

approximately 1. The same procedure is valid even if 1  , defining a modified 

Knudsen number as * (2 ) / .Kn Kn     

The parameter 0  is related to the major and minor axes through 
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 
0 2

1

1

b a
n

b a
 




  .                                (2.43) 

The half focal length of ellipses c is defined by  

0 0cosh sinh

a b
c

 
  .                                 (2.44) 

This boundary condition will be utilized  in conjunction with finding analytical 

solutions for the transient slip flow in elliptical micro-channels, which will be 

described in chapter 4. 

In [20] the standard no-slip boundary condition is replaced by the nonlinear 

Navier boundary condition, where the slip velocity is assumed to be proportional 

to the tangential viscous stress and the degree of slip is measured by a non-

constant slip length. For an incompressible Newtonian fluid the viscous portion of 

the stress tensor  is given by 2S  d where  is the viscosity and d is the rate of 

deformation tensor. On a solid surface, the tangential component of the velocity is 

assumed to satisfy the Navier boundary condition 

* *2v  d  ,                                              (2.45) 

where *  is the slip length with the same sign as d, since it is always assumed that 

the tangential component of the velocity  v* is positive in the direction of flow. 

For the nonlinear Navier boundary condition, it is assumed that the slip length 

* depends on the tangential viscous stress on the solid surface through the 

following relation 

 
1
2* * *1 2 


  d  ,                                (2.46) 

where  

  1* 2 .critical  d                                      (2.47) 
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In some critical (maximum) shear rate with the same sign as d,  the value is such 

that the inverse square root does not become negative. It should be noted here that 

when * 0   we have * * , that is *  corresponds to the constant slip length of 

the boundary condition. 

As an example, consider the steady flow of an incompressible Newtonian fluid 

through an infinite pipe with radius R along the  z-direction. The nonlinear Navier 

boundary condition for the case where 0   and 0   on the inner surface of 

the pipe is 

1

2
1, 1 z z

z

dv dv
r v

dr dr
 


      

,                       (2.48)            

where 
*

R

   and *4 / AR  .  

2.4 Existing Exact Solutions for No-Slip Boundary Conditions 

Not every non-linear partial differential equation can be solved analytically. Some 

of them are difficult to solve. In the case that the equation cannot be solved 

analytically, there are  methods available to solve the problem numerically. On the 

other hand, a direct search for exact solutions is now much more viable. In this 

section, we will introduce some popular methods which have been employed to 

derive exact solutions for Navier-Stokes equations and review some previous 

results. 

 

The fundamental governing equations for fluid mechanics are the Navier-Stokes 

equations. This inherently nonlinear set of partial differential equations has no 

general solution, and only a small number of exact solutions have been found. 
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Exact solutions of Navier-Stokes equations are very important. As pointed out in 

[46], the following are two reasons: 

1. The solutions represent fundamental fluid dynamic flows. Hence, due to the 

uniform validity of exact solutions, the basic phenomena described by the 

Navier- Stokes equations can be more closely studied. 

2. The exact solutions can be used for checking the accuracies of approximate 

methods, such as numerical, asymptotic, or empirical. The complete numerical 

integration of the Navier-Stokes equations can be made more feasible due to 

current advancement in computer technology. However, the accuracy of the 

results can only be convinced through a rigorous error analysis. 

 

Now, let us define an exact solution of the Navier-Stokes equations.  Let q(x, t) be 

the velocity vector, a function of space x and time t. Let p(x, t) be the pressure. 

The density    and the kinematic viscosity   are constants. Conservative body 

forces may be absorbed into the pressure term. Although   can be eliminated by 

taking the curl of the Navier-Stokes Equations, the constant   (or, in non-

dimensional form, the Reynolds number) is a basic parameter. An exact solution 

is defined as the functions satisfying the Navier-Stokes equations and the 

continuity equation for all x, t. Obviously, all closed-form solutions of these 

equations are exact solutions. 

 

Direct numerical solutions of the partial differential equations are not exact 

solutions,  no matter how accurate, because the value of   has to be assigned for 

each solution. On the other hand, similarity solutions, where     is implicit in the 

similarity transforms, and where universal curves can be obtained once and for all, 

are exact solutions. The definition of infinite-series solutions obtained from 

expansion or separation of variables is excluded from this discussion. The reason 

is that the series could not be exact unless summed to infinity. The degenerate 
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potential-flow solutions, although satisfying the Navier-Stokes equations, are also 

not an exact solution (Wang, 1991). 

 

The existing exact solutions have been published in a wide variety of journals. 

Most of the exact solutions are obtained by a variety of methods and address 

specific fluid-dynamic problems. In some cases, it is difficult for a researcher in 

fluid mechanics to know, for a certain problem, whether an exact solution exists 

or not. A notable example is the oblique stagnation flow on a plate, which was 

solved independently three times within a span of 47 years [Wang, 1991]. 

 

Generally, after the fluid dynamic  model is simplified by some assumptions, the 

equations can be solved subject to some boundary conditions. For flows in micro-

channels, many methods have been applied such as the direct methods, the Fourier 

Series Solution methods, the Variation methods, the Laplace Transform 

Technique and the Series Solution method. 

 

2.4.1 Laplace Transform Technique 

In [79], Das and Arakeri give a procedure to obtain analytical solutions for the 

unsteady laminar flow in an infinitely long pipe with circular cross section, and in 

an infinitely long two dimensional channel, created by an arbitrary but given 

volume flow rate. 

The governing equation in [79] is derived by the assumption that the flow is 

incompressible and bidirectional in an infinitely long circular pipe with zero swirl, 

i.e,, 0,v   0rv   and ( , )zv u u r t  . The condition of incompressibility implies 

that any pressure change is felt instantaneously everywhere. After substituting 
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these into the Navier Stokes equation (2.32), the governing equation of motion in 

the x-direction is  

2

2

1 1u P u u

t x r r r



    

        
.                                 (2.49) 

The boundary condition is no-slip boundary condition and initial condition is also 

needed for the velocity, u(r,0), which depends on the problem under 

consideration. The solution of these equations is possible if the pressure, as a 

function of time, is known. In this case, however, the pressure is unknown and is 

determined indirectly by the volume rate, which is given. The velocity is related 

to the volume rate by 

  2

0

2 ( , ) ( ) ( )
R

pru r t dr u t R Q t   ,                                 (2.50) 

where pu  is the velocity averaged over the cross section; it can be considered as 

the velocity of a piston which would give the flow rate Q.  

Additional conditions required are 0
P

r





, as required by the radial momentum 

equation in the absence of any body force. The boundary conditions are  

( , ) 0u R t     and   
(0, )

0
u t

r





.                                (2.51) 

The analytical solution of equation (2.49) is found in [79] by using the Laplace 

transform technique.   

The Laplace transform  of  Eqs.(2.49), (2.50) and (2.51) are shown to be  

2

2

( , ) 1 ( , ) 1 ( , ) 1
( , ) ( ,0)

d u r s du r s s dP x s
u r s u r

dr r dr dx  
    ,                      (2.52) 
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( , ) 0u R s   ,                                                            (2.53) 

0

0
r

du

dr 

  ,                                                            (2.54) 

2

0

2 ( )
g

prudr u s R  ,                                                (2.55) 

where  u and P  are Laplace transform of u and P, i.e.,  

0 0
( , ) ( , ) , ( , ) ( , )st stu r s e u r t dt P r s e P r t dt

     .                 (2.56) 

The equation (2.52) is a second order inhomogeneous ordinary differential 

equation with solution of the form 

1 0 2 0( , ) ( , ) ( , ) pu r s C I p r C K p r    ,                           (2.57) 

where p  is the particular solution, /p s  , 0I  and 0K  are modified Bessel 

functions of the first and second kind respectively, 1C  and 2C  are arbitrary 

constants. By using boundary conditions (2.53) and (2.55), the authors of [79]  

eventually obtained 

( , ) ( ). ( , )pu r s u s G r s ,                                          (2.58) 

where 
0 0

1
0

( ) ( )
( , )

2 ( )
( )

I B s I A s
G r s

I B s
I B s

B s

  
 

 
 

 and ( )pu s  comes from Laplace transform 

of ( )pu t .   The velocity solution is then obtained using convolution theorem 

1
( , ) ( ). ( , )

2

i st
pi

u r t u s G r s e ds
i




 

 
   .                       (2.59) 
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As examples, the solutions for various cases have been investigated, including the  

trapezoidal piston motion, constant acceleration case, impulsively started flow, 

impulsively blocked fully developed flow, oscillatory flow and flow in a two 

dimensional channel [79] .       

                                                                                                                                                                

2.4.2 Direct Solution 

In [97], the pressure drop of the fully developed laminar flow in smooth arbitrary 

cross-section channels is studied. Consider the fully developed steady state, 

laminar flow in a channel with boundary  , constant cross sectional A and 

constant perimeter P. The flow is assumed to be incompressible and have constant 

properties. Moreover, body force such as gravity, centrifugal, coriolis, and 

electromagnetic do not exist. Also the rear faction and surface effects are assumed 

to be negligible and the fluid is considered to be a continuum. For such a flow, the 

Navier Stokes equations reduces to the Poison’s equation with the source  term 

representing the pressure gradient along the length of the duct, namely 

2 1 dp
w

dz
   with 0w   on  ,                            (2.60) 

where w and z are the fluid velocity and the flow direction respectively. The 

boundary condition for the velocity is the no-slip condition on the wall. Since w 

does not vary with z, it follows from the z-momentum equation that the gradient 

dp

dz
 must only be a constant.  Equation (2.60) has been solved subject to no-slip 

condition for various cases of cross-sections [41, 72]. To examine the exact 

solutions, Bahrami et al. [97] compare the value of the Reynolds number Fanning 

friction factor product Re
A

f  between the approximate model and the exact 
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solution for selected cross sections, where  f  is the Fanning friction factor and 

Re
A

is the Reynolds number, defined by  

 
 

2

2

2 1
Re

1
A

f
E

  

 





.                                    (2.61) 

where   0 1    and 
/2

2 2

0

( ) 1 sinE x x tdt


  .  

A compact approximate model is proposed that predicts the pressure drop of the 

fully developed, laminar flow in channels of arbitrary cross section, i.e., arbitrary 

in area, perimeter, and polar moment of inertia. The proposed model is compared 

with analytical and numerical solutions for several shapes. Except for the 

equilateral triangular channel (with 14% difference), the present model 

successfully predicts the pressure drop for a wide variety of shapes with a 

maximum difference in the order 8%. Moreover, a compact model is developed 

using a mapping approach, which predicts the Re
A

f  for isosceles triangular 

channels with a maximum difference of less than 3.5%. Comparison of Re
A

f  

for elliptical and rectangular micro-channels shows good agreement.  

The proposed model is also validated with either experimental data or exact 

analytical solutions for rectangular, trapezoidal, triangular (isosceles), square, and 

circular cross sections collected by several researchers and shows good agreement 

[97]. 

 

2.4.3  Fourier Series Solution 

In [98] the author conducted a theoretical and numerical study of the fully 

developed forced convection in various rectangular ducts. Each duct is filled with 
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porous materials and the Brinkman model describes the laminar fluid flow inside 

this fully saturated porous passage. 

Modelling fluid flow in porous heterogeneous materials with more than one 

typical pore size (e.g.,  concrete, micro porous rocks and fractured materials) 

presents a challenge because it is difficult to simultaneously resolve all the 

microstructural features of the porous medium that are at different length scales. 

One possible approach is to divide the porous medium into two regions: the larger 

pores and homogeneous regions of smaller pores. In the larger pores, the Stokes' 

equation for incompressible flow is applicable.  

Regions with the smaller pores are treated as a permeable medium and the flow is 

described by Darcy's law. The two boundary conditions to be satisfied on the 

pore/ permeable medium interface are continuity of the fluid velocity and the 

shear stress. Darcy's law alone is not sufficient to satisfy these boundary 

conditions. The Brinkman equation is a generalization of Darcy's law that 

facilitates the matching of boundary conditions on the interface between the larger 

pores and the permeable medium.  

 

For a steady and hydrodynamically fully developed flow passing through an 

impermeable rectangular channel, the Brinkman momentum equation is  

2 2

2 2
0e

u u p
u

y z K x


   

       
,                           (2.62) 

with a constant pressure gradient 
p

x


  


 , the effective viscosity is e , the fluid 

viscosity is  , and the permeability is K. 
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The formulation of velocity distribution begins by selecting a functional relation 

in the form of Fourier series 

   
1 1

cos cosmn n m
n m

u a y z 
 

 

 .                         (2.63) 

The boundary conditions are  

0u   on 1y   and /z b b a    ,      

            0u y    on 0y  and 

0u z    on 0z  . 

The value of mna is found by applying the orthogonality condition [98, 75]. 

The average velocity is

 2 2 21 10 0

1 4
1

a b

n my z
n m n m

U u dzdy
ab b

MDa
   

 

  

 
   
 

  , 

where eM



  and 
2

K
Da

a
  is the Darcy number. 

 

2.4.4  Infinite Series Form  

In [75], Chakraborty discussed the methods for the analysis of flow through 

micro-channels. One of the methods is the infinite series solution method. The 

flow problem within a straight micro-channel of arbitrary cross section is 

analyzed. Based on exact analytical solutions for the flow profile for some simple 

geometries of channel section, a number of problems with relative more 

complicated geometries are solved either exactly or approximately in [75].  
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Consider incompressible flow within a straight micro-channel of uniform cross 

section. Following the Navier-Stokes equation (2.29), the steady flow velocity 

u(y,z) along the axial direction is  governed by the equation 

2 2

2 2

u u dp

y z dx

  

    
,                                         (2.64) 

where 
dp

dx
  is the constant pressure gradient along the  x- axis. The y and z axes 

are orthogonal to the x- axis and the x-y-z axes form a right handed co-ordinate 

system. The no-slip boundary condition on the boundary is given by 

( , ) 0u y z   on ( , ) 0y z   or 0
u

s





on ( , ) 0y z  , 

where  s is the length measured along the boundary represented by ( , ) 0y z  . 

The boundary curve is assumed to be rectifiable. 

 

The solution in infinite series form is found by exploiting the analogy between the 

flow problem and the problem of vibration of a taut membrane where the equation 

of motion of the free transverse vibration of a membrane having uniform unit 

tension in all sides and unit thickness and material density is given by 

2 2 2

2 2 2
0

w w w

t y z

   
      

,                                  (2.65) 

where w is the transverse deflection of any point within the membrane. The 

deflection vanishes on the boundary. 

 

The normal modes possess orthogonal property and form a complete set in the 

sense that any function  f(y,z) satisfying the boundary conditions can be expressed 

in terms of the normal modes as 

1

( , ) ( , )n n
n

f y z a W y z




 .                                    (2.66) 
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The constants na  can be obtained by using the orthogonality relation [75, 98], 

while the fluid flow profile can be obtained in two steps. In the first step, the eigen 

modes for the given cross section are calculated using the membrane analogy. In 

the second step, the true flow profile is calculated as summation of the normal 

modes whose contribution is obtained from the flow equation. 

 

As an example, consider a rectangular channel with dimensions of 2a and 2b 

along the y and z axes, respectively. Taking the origin at the center of cross 

section,  the normal modes of the rectangular can be easily shown as ( , )mnW y z  

and the corresponding natural frequency is mn . The flow profile in the 

rectangular channel can be written as 
, 1

( , ) ( , )mn mn
m n

u y z a W y z




  . 

Substituting this equation into equation (2.64) and finding the unknown constants 

using orthogonality relation, we have 

      2 2
,

16 1
1 1

2 1 2 1
m n

mn
m n

dp
a

m n dx  
 

       
 ,  

2 1 2 1
( , ) cos cos

2 2mn

m n
W y z y z

a b
         

   
,                        (2.67) 

2 2
2 1 2 1

2 2mn

m n

a b
         

   
. 

 

 

2.4.5  Variational Method 

 

As shown in [75], solving a given flow problem in term of an infinite series may 

not be possible if the channel cross section is very complicated. In that case, 

approximate solutions are to be sought. A variational formulation of the flow 
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problem is given in [75] that can be used to obtain approximate flow profile for 

any channels, namely the velocity profile is obtained by minimizing the functional 

  

2 2

[ ]
2

u u dp
J u u dA

y z dx

                          
   ,                  (2.68) 

where u(y,z) is a function that satisfies the essential boundary condition. The 

functional attains the optimal value when the equation (2.64) is satisfied. As an 

example, consider the problem of flow through a channel of elliptical cross 

section whose boundary is given by
2 2

2 2
( , ) 1 0

y z
y z

a b
     .  Let the trial 

function be 
2 2

2 2
( , ) 1

y z
u y z m

a b

 
   

 
. The unknown quantity m can be obtained if  
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 is minimized with respect to m. Hence the flow profile becomes  

 
2 2 2 2

2 22 2

1
( , ) 1

2

a b dp y z
u y z

dx a ba b 
  

       
                    (2.70) 

In this case, the result obtained by the approximate method is also exact because 

the trial function satisfies the boundary condition as well as the governing 

equation. 

 

2.5 Existing Exact Solutions for Slip Boundary Conditions 

The governing field equations for the flow of incompressible Newtonian fluids 

consist of the incompressible continuity equation, the Navier-Stokes equations, 

and a set of boundary conditions. Some methods have been utilized to solve the 

Navier- Stokes equation supplemented by slip boundary conditions, including the 
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Fourier Series Expansion method, the Direct Solution method and the Integral 

Transform Technique. 

 

 

2.5.1  Fourier Series Expansion 

 

Wu et al. [35] considered the transient flow of an incompressible Newtonian fluid 

through a circular micro-tube with the z-axis being in the axial direction. They 

formulate the field equation by assuming that the flow is axial symmetric so that 

there is no swirling flow in the channel and the velocity components in the radial 

and transverse directions vanish, namely 0rv   , 0v  . 

Substituting the above into the continuity equation yields 

0
u

z





,                                              (2.71) 

which gives rise to  ,u u r  . Because the flow is horizontal, 0zg  . By 

substituting these into equation (2.34), which zu v  yields 

 

2

2

1 1u u u p

r r r t z


 
    

       
.                              (2.72) 

 

The authors then consider the fluid flow driven by the pressure field with a 

pressure gradient ( )q t  in the form of the Fourier series, namely 

   0
1

( ) cos sinn n
n

p
q t a a n t b n t

z
 






       .                  (2.73) 

 

As a wide range of functions can be expressed in terms of Fourier series, the 

assumption of the form of pressure gradient above will not lose generality. 

However, it is noted that their work is limited to the cases where the pressure 

gradient varies with time only. 
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Flow of fluids driven by non-constant pressure gradient occurs in many natural 

and industrial processes. A typical example is the pulsatile blood flow through 

arteries in which the pressure gradient driving the flow of blood is in pulsatile 

form [3]. Various methods can also be used to generate pulsatile flows, such as 

those by using reciprocating pistons, servo valves or air pulsation [66, 67]. 

 

For convenient in deriving analytical solutions of the field equations, the complex 

number is used to express (2.73) by exponential functions, namely 

0

Re in t
n

n

p
c e

z






      
 ,                                  (2.74) 

where 

n n nc a b i  ,     cos sinin te n t i n t    .                   (2.75) 

 

Exact solutions for the velocity field and stress field have been derived. The 

authors also show that boundary slip on the flow behaviour is qualitatively 

different for different types of pressure fields driving the flow. For pressure fields 

with a constant pressure gradient, the boundary slip does not alter the interior 

material deformation and stress field. But for pressure fields with a wave form 

pressure gradient, the boundary slip is found to cause the change of interior 

material deformation and consequently the velocity profile and stress field. The 

asymptotic expressions for the exact solutions  are also derived through a 

parameter  which is identified to dominate the behaviour of the flow driven by 

the wave form pressure gradient, establishing an explicit formulae for the critical 

slip parameter leading to the maximum transient flow rate. 

 

Wiwatanapataphe et al. [4] considered the transient flow of an incompressible 

Newtonian liquid through a circular annual of inner radius a and outer radius R 

with the z-axis being in the axial direction. The field equations governing the flow 
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include the continuity equation and the Navier–Stokes equations where u 

satisfying equation (2.72), derived by similar ways, but supplemented by different 

boundary conditions. Their analysis is limited to the fully developed flow and to 

the case that the slip length does not change along the flow direction.  

 

The analytical solutions in [4] show that the influences of boundary slip on the 

flow behaviour are qualitatively different for different types of pressure fields 

driving the flow. For pressure fields with a constant pressure gradient, the flow 

rate increases with the increase of the slip parameter   almost linearly when  is 

large; while, for pressure fields with a wave form pressure gradient within a 

certain frequency range, as the slip parameter  increases, the amplitude of the 

flow rate increases first and then approaches a  constant value when  becomes 

sufficiently large. The authors also found that to achieve a given flow rate, one 

could have different designs. 

 

Duan and Muzychka [36] studied the steady slip flow in elliptic micro-channels. 

They examined the momentum equations and considered the various force 

balances between the friction and pressure forces for a long micro-channel by 

using the method of scale analysis. In the elliptic cross-section, they compare the 

scale between friction and inertial forces to obtain  

2

22

2 Re
h

h

h D

Uu
D Ly

L
u U Du
x L








  



 .                          (2.76) 

The starting point of the analysis is the law of conservation of momentum. 

When 1L  , the continuum flow momentum equation reduces to the form 

2 2

2 2

1u u dp

x y dz
 

 
 

 .                                             (2.77) 

In elliptic micro-channels, it is convenient to use elliptic cylinder coordinates to 

facilitate the solution process. Then, the momentum equation becomes 
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 
2 2 2

2 2
2 2

cosh cos
u u c dp

dz
 

  
 

  
 

.                                 (2.78) 

This equation can be solved by using the separation of variables method. In order 

to overcome the difficulty caused by metric coefficient, a binomial series is used 

to approximate the metric coefficient. Some constants are found by applying the 

orthogonality principles.  

 

After lengthy derivation, the velocity distribution is found. In the limit of 0Kn  , 

the velocity distribution reduces to its continuum flow solution: 

       
2 1

cosh 2 cos 2 cosh 2 cosh 2 cos 2
8 cosh 2o

o

c dp
u

dz
    

 
 

     
 

(2.79) 

 

The mean velocity is then found by integration of the velocity on the cross-

section.  The Poiseuille number is then defined by h
h

D
PoD

u




  where  hD  is the 

hydraulic diameter and u  denotes the mean velocity. It can be demonstrated that 

the limit of hPoD  as / 1b a  corresponding to circular tubes is: 

/ 1

8
lim

2
1 8

hb a
PoD

Kn









.                                         (2.80) 

The accuracy of the proposed simple model was found to be within 3 % of the 

exact values. 

 

 

In [52], Ebert and Sparrow analysed the velocity and pressure drop characteristics 

of the moderately rarefied gas flow in rectangular and annular ducts. The density 

level is such that a velocity slip may occur on the duct wall. For rectangular ducts, 

the momentum equation takes the form (2.77) where u is the axial velocity 

distribution, and p is the static pressure. 
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For annular ducts, the governing equations are similar to those in [35] but for 

steady case, the momentum equation reduces to 

1 1w dp
r

r r r dz
      

.                                    (2.81) 

It is found that the effect of slip is to flatten the velocity distribution for a 

continuum flow. Furthermore, the axial pressure gradient is diminished under the 

slip flow conditions. The effect of compressibility on the axial pressure drop was 

also investigated. It was found that compressibility increases the pressure drop 

primarily through an increase in viscous shear rather than through an increase in 

momentum flux. 

 

Ebert and Sparrow [52] also suggested a method of solution. In rectangular ducts, 

a solution for the velocity distribution may be proposed as  

  
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2
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 ,                              (2.82) 

in which the i  are a set of eigenvalues, and the i  are a set of ξ-dependent 

functions. This form of solution has to satisfy the boundary conditions. On the 

other hand, in annular ducts, a direct solution yields 
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where  
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. 

 

To solve the equation supplemented by boundary condition, single Fourier series 

proposed by Ebert and Sparrow does not converge with second-order boundary 

condition. Therefore, Aubert and Colin proposed a new form based on the double 

Fourier series, namely 

2

, 1

* 9
*( *, *) cos cos( *)

4ij ij i j
i j

x
W x y A N y Kn

a
 





   
 

  .       (2.84) 

 

2.5.2 Direct Solution 

In [74], Arkilic et al. studied slip flow in micro-channels. The effect of the 

boundary slip on the velocity is investigated and compared with the measured 

flow results. It is found that the no-slip solution of the Navier-Stokes equations 

fails to adequately model the momentum transferred from the fluid to the channels 

wall and therefore under-estimates the mass flow for a given inlet and outlet 

pressures. However, by including a slip flow boundary condition on the wall, 

which is derived from a momentum balance, we can accurately model the mass 

flow pressure relationship. 

They assumed that  the flow is steady  and isothermal, the pressure drop 

associated with the inlet and outlet contraction/expansion can be ignored, and that  

the fluid pressure is solely a function of z, i.e. P = P(z). Based on the assumptions, 

the constant viscosity momentum equation (Navier-Stokes equation) in the z-

direction is 
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The non-dimensional slip velocity boundary condition on the wall is 

2 /

/
w

n

w

u F du c
K

c F dy H


 .                                 (2.86) 

After integrating the momentum equation above, the result is obtained as follows 
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Re H dP F
u y Kn

Ma L dx F
     

 
.                     (2.87) 

By comparing the analytical solution with experimental results, the authors of [74] 

concluded that although the outlet Knudsen number,  Kn, is within the flow 

regime usually characterized as transitional flow, the results of the slip model with 

a specular reflection coefficient  F=1,  seem to fit the data nicely.  

 

In [71],  Aubert and Colin proposed an analytical model of steady gaseous flow 

through rectangular micro-ducts with second-order boundary conditions.  The 

influence of the second-order terms and the geometric parameters is analysed. It is 

shown that the mass flow rate is underestimated when the second-order terms are 

not taken into account and these terms become more significant when the cross 

section of the micro-duct tends to a square cross section.  

 

The field equations are formulated by the following assumptions: 

i. The flow is steady, laminar, and isothermal, and the gas is ideal. 

ii. The transverse velocities are negligible compared with the axial velocity W. 

iii. The duct is long: h<<L and b<<L. 



46 

 

iv. The flow is locally fully developed, i.e. the density ρ and the pressure P are 

constant within a cross section. The axial distribution of the velocity is due to 

the axial pressure and density gradients. 

Under these assumptions, the steady compressible gaseous flow in a cross section 

of the rectangular micro-duct is governed by the conservation equations for mass 

and momentum, namely   
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The boundary conditions are as follows 
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The solution is found in the form 
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where i  and j  are respectively the solution of 
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In order to determine the terms ijA , the solution (2.90) is substituted into the 

momentum equation and yields 
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To show the existence of the exact solution in [71], mass flow rate simulations 

from the rectangular second order model are compared with experimental data. 

There are two types of inaccuracy in the experiments: the inaccuracies in the mass 

flow measurement and the inaccuracies in the measurement of the section 

dimensions (depth and wide). Considering only an inaccuracy in the depth, good 

agreement is found between the experimental data of Shih et al. [111]  and this 

second order model with  =1, for a channel  with 1.145 µm in depth, 4.8% 

lower than the 1.2 µm depth given by the authors. Concerning the data of Arkilic 

[74] the agreement is found if the depth is changed from 1.33 to 1.31 µm, which 

corresponds to a difference of 1.5%. So, a decrease of the depth of 0.02 µm has 

the same importance as an increase for   of 10%. Although there is a problem in 

comparing the different models with experimental data which lies in the difficulty 

in determining   independently from the model itself, a good correlation 

between a first order model or a second order model and experiments can be 

obtained by fitting the coefficient  . 
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In the existing exact solutions for Poiseuille flow through ducts, as Couette flow, 

the Poiseuille number makes a lot more sense in laminar tube flow, 

2
0 Re 16w

f D

D
P C

u




   . This classic laminar flow solution is in good 

agreement with experiment. 

 

2.5.3 Integral Transform Technique 

Morini and Spiga (1998) considered slip flow in Rectangular micro-channels. The 

Navier Stokes equations reduce to equation (2.77)  with 
p

z


 


 . This equation, 

combined with the boundary conditions, can be solved by the integral transform 

method, resorting to the following kernel: 
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where the eigenvalues n  and n  are obtained by the transcendental equation 
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The inversion formula provides the velocity distribution 
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The results show that for different aspect ratios ( 0.25  and 1  ) and Kn=0.1, 

in square duct, the fluid velocity experiences a slow and gradual increase from the 

walls to the center; in slip conditions the jump at the wall is well evident and the 

velocity distribution is more uniform over the cross section. In rectangular duct, 

there is a strong increase near the walls and an extended central core with high 

velocity. As the Knudsen number increases, the velocity profile becomes more 

flattered. In circular duct, the shear stress decreases rapidly as the Knudsen 

number increases, as expected since the slug flow condition is well approximated 

when the Knudsen number is large. It is noted that the corner stress increases as 

the Knudsen number increases up to 0.1, then decreases. 

 

2.6 Numerical Studies in the Field 

In general, it is very difficult to solve a fluid dynamics problem analytically to 

yield exact solutions. Thus  one usually need to solve a flow problem numerically. 

The subject which concerns the numerical solutions of fluid dynamics problems is 

computational fluid dynamics. 

 

Various numerical methods such as the finite difference method, the finite 

element method and the boundary element method have been used for solving 

flow problems approximately. Among these methods, the finite element method is  

the most widely used method. 

Solving a fluid dynamic problem using the finite element method usually involves 

the following steps [107]: 

1. Variational formulation to transform the partial differential equations to integral 

equations; 
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2. Numerical approximation of the variational problem to transform the integral 

equations to algebraic or ordinary differential equations; 

3. Solve the algebraic or ordinary differential equations by iterations and time 

stepping. 

As an example, In [100], Arulanandam and Li studied the liquid transport in 

rectangular micro-channels by electro osmotic pumping. Consider a rectangular 

micro-channel of width 2W, height 2H and length L. There are two models which 

can be applied, electrical double layer (EDL) and velocity distribution in 

rectangular micro-channels. The first model leads to the non-dimensional Poisson 

Boltzmann equation:  
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,                        (2.97) 

where  is the Debye-Huckle parameter and  hD  is the hydraulic diameter. 

This equation is a non-linear two-dimensional partial differential equation that 

must be solved numerically subject to the non-dimensional boundary condition 

given by 
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 on * *0y z   ,                         (2.98) 
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y z

D
  . 

A numerical finite difference scheme is used in [100] to discretise the governing 

differential equation, and the resulting system of algebraic equations is solved 

using the Gauss Seidel iterative technique with successive over relaxation 

employed to improve the convergence time. Since the electrical potential field in 

the EDL varies greatly within a small distance of the channel walls, variable grid 
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spacing was employed to ensure that as the surface was approached, the grid 

spacing was refined enough to capture the sharp gradient. Once the electrical 

potential distribution * * *( , )y z  has been found, the net charge density at any 

point in the channel can be found by using 2 sinhe
b

ze
n ze

k T
 

 
   

 
. 

For the second model, by assuming that the flow is steady, two dimensional and 

fully developed, the velocity components can be described by:  u = u(y,z), v=0 

and w = 0. The Navier-Stokes equations in dimensionless form with electrical 

force per unit volume x e xF E  reduce to 

 
2 * 2 *

* *
*2 *2

sinhx

u u
ME

y z
 

 
 

,                               (2.99) 

where *
u

u
U

 , * x
x

E L
E


 and M  is a new dimensionless group, which is a ratio of 

the electrical to frictional forces per unit volume, given by    
22 hn ze D

M
UL



 . 

This equation is a 2D linear partial differential equation that can be solved 

numerically using a finite difference scheme, once a solution for * * *( , )y z  has 

been obtained. The performance of an electro-osmotic pumping system can be 

characterized using the volumetric flow rate  

0 0

4 ( , )
H W

volQ u y z dydz   ,                             (2.100) 

and the average velocity  

4
vol volQ Q

u
A HW

  .                                  (2.101) 
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The results of the study show the significance of geometry effects on the electro-

osmotic force, namely the EOF is enhanced as the aspect ratio of the channel 

varies away from 1:1.  It was also found that the increase in hD  leads to the 

increase in the volumetric flow rate but has little impact on the average velocity. 

Variations in zeta potential and concentration affect the flow rates significantly 

due to their impact on the formation of the double layer. Finally, while the 

volumetric flow rate was shown to vary linearly with the applied voltage field, 

there are upper limits to the electrical field strength because of the potential 

increase in the temperature of the fluid which has not been included in this model. 
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Chapter 3 

Unsteady Slip Flow in Rectangular 
Microchannels 
 
 

3.1 General 

In recent years, one of the important scientific research focuses worldwide has been 

on the study of behavior of materials at micro and nanoscales [22, 24]. Advancement 

from the research community in this area have led to the development of many 

biological and engineering devices and systems which involve fluid flow through 

micro-channels, referred to as microflows [1, 6, 5, 7, 22, 24]. Typical examples 

include fuel cell devices, drug delivery systems [16], biological sensing and energy 

conversion devices [11]. As the behavior of fluid flow in these systems determines 

the functional characteristics of the systems, the study of microflows is attracting 

more and more attention from the science and engineering communities in order to 

derive a better understanding of the mechanism of microflows and consequently 

better devices and systems [4, 22, 24]. 

 

The governing field equations for the flow of incompressible Newtonian fluids are 

the incompressible continuity equation, the Navier-Stokes equations, and a set of 

boundary conditions. Traditionally the no-slip boundary condition is used, namely the 

fluid velocity relative to the solid is assumed to be zero on the fluid-solid interface 

[29]. However, evidence of slip of a fluid on a solid surface have been reported [25]. 
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Recent experiments in micrometer scale and molecular dynamic simulations have 

shown that the flow of fluids in microsystems is granular and slip can occur on the 

fluid-solid interface [3, 4, 31, 40, 45]. Hence for the study of microflow, it is 

important to take into account the boundary slip of fluids on the fluid solid interfaces. 

 

Over the last couple of decades, many investigations have been made to study various 

flow problems of Newtonian and non-Newtonian fluids with the no slip boundary 

condition or a slip boundary condition [5, 8, 10, 20, 21, 24, 27, 28, 43, 44]. Exact and 

numerical solutions to many flow problems of Newtonian fluids under the no-slip 

assumption have been obtained and are available in the literature [29, 36-38], but very 

few exact solutions for the slip case are available in the literature. Steady-state slip 

solutions for the transient flow through circular microtubes and circular micro 

annuals have been derived and discussed in the papers [4, 35, 39]. 

 

For micro-channels with rectangular cross section, a no-slip solution has been 

obtained [52, 74, 75, 83, 97]. For the slip case steady state solution has also been 

obtained [37, 71, 77, 80, 82]. However, so far no exact solution has been derived for 

the transient flow of fluids through rectangular channel under pulsatile pressure. As 

many micro-systems and devices have mico-channels of rectangular cross section, it 

is important to derive exact solutions for the behavior of transient flow through 

rectangular micro channels with slip boundary. 

 

Motivated by the previous work, we study the transient flow of an incompressible 

Newtonian liquid through a rectangular micro-channel with a slip boundary. The rest 
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of the study is organized as follows. In the following section, we first define the 

problem and then present its mathematical formulation. In section 3.3, we solve the 

underlying boundary value problem to derive the exact solution for the velocity field 

and show that the solution includes some existing known solutions as special cases. 

In section 3.4, we interpret the exact solutions for some special cases. In section 3.5, 

an analysis is carried out to study the influence of the slip parameter on the flow 

behavior. Finally, a conclusion is given in section 3.6 

 

3.2 Problem Description and Mathematical Formulation 

Consider the transient flow of incompressible Newtonian liquid through a rectangular 

channel of cross-section dimension a × b with the  z-axes being in the axial direction 

as shown in figure 3.1. The field equations governing the flow include the continuity 

equation and the Navier–Stokes equations. As the flow is symmetric about the xz-

plane and the yz-plane and fully developed, there is no cross-sectional flow and the 

velocity components in the x and y directions vanish, namely v =  , ,x y zv v v  = ( 0, 0, 

u ) 

 

 

 

 

 

Figure 3.1: The flow channel and the coordinate system used 

 

z 

x 

y 
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Thus, from the continuity equation (2.21) and the Navier-Stokes equation (2.31), u 

must satisfy the following equation: 

2 2

2 2

1u u u p

x y t z


 
    

       
.                                                  (3.1) 

Since a wide range of functions can be expressed in terms of Fourier series, in this 

work, we consider the fluid flow driven by the pressure field with a pressure gradient 

p

z




 that can be expressed by the Fourier series 

   0
1

cos sinn n
n

p
a a n t b n t

z
 






      .                                     (3.2) 

To completely define the problem, the field equations must be supplemented by the 

boundary condition. In this work, we use the Navier slip boundary condition. That is, 

on the solid fluid interface x a   and  y b  , the axial fluid velocity, relative to the 

solid surface, is proportional to the shear stress on the interface. Let the unit outward 

normal vector of the surface S of the fluid be n =  1 2 3, ,n n n , and the positive 

tangential direction be t =  1 2 3, ,t t t . Also let the fluid velocity in the tangential 

direction be tu , and the velocity of the solid surface in the tangential direction be stu . 

As shown in [4], the Navier –type boundary condition for Newtonian fluids can be 

written as 

   ji j i

i st i

n t
u u t




  


.                                            (3.3) 

The negative sign in the above equations is to indicate that the direction of the surface 

traction force exerted on the fluid by the solid surface is opposite to the tangential 
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velocity of fluid relative to the solid surface. Now for our problem in the  , ,x y z  

system, v =  0,0,u , (0,0,0)sv . For the surface x a , n =  1,0,0  and  t =  0,0,1 , 

and so t st i i iu u t v t u    and t xz

u
f

x
  

 


 and consequently (3.3) for the surface 

x = a takes the following form: 

( , , ) ( , , )
u

u a y t a y t
x


 


 .                                          (3.4) 

On the surface x a  , n =  1,0,0  and  t =  0,0,1 , and so t st i i iu u t v t u    and 

t xz

u
f

x
  

   


 and consequently (3.3) on the surface takes the following form: 

( , , ) ( , , )
u

u a y t a y t
x


  


  .                                       (3.5) 

Similarly, the boundary condition on the surface y b   are 

( , , ) ( , , )
u

u x b t x b t
y


  


 .                                      (3.6) 

It should be addressed here that for 0 , conditions (3.4) – (3.6) reduces to the no-

slip boundary condition; while, for  , equations (3.4) and (3.5) give the surface 

traction conditions for perfectly smooth surfaces, i.e,    , , , , 0xz yza y t x b t     . 

 

 

 

 



58 
 

3.3  Exact Solutions for the Transient Velocity and Stress Field 

To solve equation (3.1), first we use complex number to express the above Fourier 

series by exponential functions, namely 

0

Re in t
n

n

p
c e

z






      
  ,                                                (3.7) 

where n n nc a b i   and    cos sinin te n t i n t    . 

From the linear property of equation (3.1), we have  
0
Re nn

u u



 , where 

nu  is defined by 

2 2

2 2
in tn n n nu u u c

e
x y t


 
   

      
.                                       (3.8) 

Let  

( , ) in t
n nu f x y e  ,                                                 (3.9) 

then we have 

2 2

2 2
n n n

n

f f c
in f

x y

 
 
  

     
  .                                 (3.10) 

 

For 1n  , it can be proved that the above governing equation for  ,nf x y  admits 

solution of the form 

   , , n
n n n

c
f U x y V x y

in
   ,                                   (3.11) 
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with  ,nU x y  and  ,nV x y  being defined respectively by the following two 

boundary value problems: 

     

   

2 2

2 2
0 ,                                                          (3.12)

1 0, 0, ,0 0 ,                                                         (3.13)

, ,

n n
n

n n

n
n

U U n
i U

x y

U U
BVP y x

x y

U c
U a y a y

x




 
  

 
 

 
 


 


    , , , 0,               (3.14)n n

n

U
U x b x b

in y







 

 




 

     

   

2 2

2 2
0 ,                                                           (3.15)

2 0, 0, ,0 0,                                                         (3.16)

, , 0

n n
n

n n

n
n

V V n
i V

x y

V V
BVP y x

x y

V
V a y a y

x




 
  

 
 

 
 


 


    , , , .                 (3.17)n n

n

V c
V x b x b

y in







 

 




 

Thus, the problem becomes simple and the remaining work for finding nf  is to solve 

the two BVPs. 

 

We first solve (BVP1) to obtain  ,nU x y  by the separation of variables. For this 

purpose, let 

( ) ( )nU X x Y y .                                                    (3.18) 

Then from (3.12) and the homogeneous boundary conditions in (3.13) and (3.14), we 

have 

0, (0) 0, ( ) ( ) 0Y Y Y Y b Y b       ,                              (3.19) 

0, (0) 0
n

X i X X
 


      
 

.                                          (3.20) 
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It can be proved that non-trivial solutions exist only for 2 0   . From the 

ordinary differential equations, we have 

   1 2cos sin ,Y C y C y                                        (3.21) 

   1 2cosh sinhX D x D x   ,                                        (3.22) 

where 
n

i
 


   . 

The boundary conditions (3.19)2 and (3.20)2 require that 2 2 0C D  ; while the 

boundary condition (3.19)3 implies  

 cot b     or   cot b    .                                   (3.23) 

 

 

Figure 3.2: Diagram showing graphic solution of eq (3.23) 
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As shown graphically in figure 3.2, equation (3.23) has infinite number of solutions 

1 2 3, , ,   being the value of the intersections of the graphs y    and 

 coty b . Consequently there exist an infinite number of corresponding 

eigenvalues and eigenfunctions as follows 

 2 , cos , 1,2,3.m m m m y m       .                          (3.24) 

Thus, the solution of (BVP1) can be written as 

   
1

cosh cos ,n nm nm m
m

U A x y 




                                     (3.25) 

where 2
nm m

n
i
 


   .                                                                                     (3.26) 

To meet the nonhomogeneous boundary condition for nU , i.e (3.14)1, it requires 

     
1

cosh sinh cos n
nm nm nm nm m

m

c
a a A y i

n
   







       .                 (3.27) 

The eigen functions  cos , ( 1, 2,3. )m m y m     are orthogonal on [0,b] with 

   
0

2

0 0

0 and

2 sin 2
cos .

4

b

m n

b b
m m

mm m m m
m

dy for n m

b b
M dy y dy

 




   


    



 
                (3.28) 

 
To show  n  are orthogonal set, let  cosn m nY y    and  cosm m mY y   . 

 
As  mY  and nY  are solutions of (3.19), we have 

0n nY Y                                                     (3.29) 

0m mY Y                                                    (3.30) 
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Multiplying (3.29) by mY  and (3.30) by nY then adding them together yield 

0m n n m n n m m n mY Y Y Y Y Y Y Y      , 

 
which gives 
 

 

       

       

       

0 0 0

0

0

                              = 0 0

                             0 0

                             

      

b b b

n m n m n m m n

b

n m n m m n

b

m n m n n m

n m m n

Y Y dy Y Y dy Y Y dy

Y b Y b Y Y Y dY

Y b Y b Y Y Y dY

Y b Y b Y b Y b

     

   

    

  

  



       

       

1 1
                        =

1
                              =

                              =0.

n m m n

n m m n

Y b Y b Y b Y b

Y b Y b Y b Y b

        
   

   

 



 

 

Hence , for n m  , 
0 0

( ) ( ) 0
b b

n m n mY Y dy y y dy     . 

 

 

Thus, the coefficients of nmA  can be determined by 

     

 
     

0

cos
cosh sinh

4 sin
.

2 sin 2 cosh sinh

b
n

nm m
mm nm nm nm

n m

m m nm nm nm

c
A i y dy

n M a a

c b
i

n b b a a


   


     

 
  

 
       





             (3.31) 

 

Similarly, the solution nV  of the (BVP2) is 

   
1

cosh cos ,n nm nm m
m

V B y x 




                                 (3.32) 
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where  m  are the roots of the equation 

 cot a   ,                                                     (3.33) 

and  

2 ,nm m

n
i
 


                                                                       (3.34) 

   2

0

2 sin 2
cos ,

4

a
m m

mm m
m

a a
M x dx

 





                                 (3.35) 

     

 
     

0

cos
cosh sinh

4 sin
.

2 sin 2 cosh sinh

a
n

nm m
mm nm nm nm

n m

m m nm nm nm

c
B i x dx

n M b b

c a
i

n a a b b


   


     

 
  

 
       





            (3.36) 

Substituting (3.25) and (3.32) into (3.11) yields the solution 

     

    
1

, , cosh cos

                                       cosh cos .

in t n
n nm nm m

m

nm nm m

c
u x y t e i A x y

n

B y x

  


 






   



 


                     (3.37) 

For n = 0, proceeding as for finding  , ,nu x y t , we obtain 

       

   

2 20
0 0 0

1

0 0

, , cosh cos
4

                                        cosh cos ,

m m m
m

m m m

c
u x y t x y A x y

B y x



 


 


   

 


                  (3.38) 

where  0m and 0m  are as defined in (3.28) and (3.34) with n = 0, i.e., 0m m   and 

0m m  ; 0mA and 0mB  are determined as follows. 
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       

         

     
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2 sin 2 cosh sinh

b

m m
mm m m m

m
m m m

m m

m m m m m

c
A a y a y dy

M a a

b
c a a b b b b b

b b a a


   


  

 
     


  

  
  
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   (3.39) 
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Hence collecting all solutions of the subproblems, we have 
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(3.41) 

where m  and m are determined respectively by (3.23)2 and (3.33); nm  and nm  are 

defined by (3.26) and (3.34) respectively, 0mA  and 0mB  are defined by (3.39) and 

(3.40), and nmA  and nmB  , 1m n   are defined by (3.31) and (3.36) respectively. 

 

Now we determine the exact solutions of the flow rate and the stress field. From the 

axial velocity solution (3.41), the flow rate can be determined by 

0
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( ) 4 ( , , )
b a

n
n

Q t u x y t dx dy Q Q




    ,                                 (3.42) 
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where 0Q  and nQ  are respectively, the flow rate corresponding to the constant 

component and the nth harmonic component of the pressure gradient and  
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(3.44) 

The stress in the fluid is related to the velocity field by the following constitutive 

equations: 

2p   I d ,                                                    (3.45) 

while the rate of the deformation tensor is related to the velocity vector by 

   1

2
T

v v   d ,                                                (3.46) 

where  ij   and d  ijd  denote respectively, the second order stress tensor and 

the rate of the deformation tensor, I is an identity matrix. As v = ( 0, 0, u(x,y,t) ), we 

have 

0 0 /
1

0 0 /
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/ / 0

u x

u y

u x u y

  
    
     

d .                                     (3.47) 

From the above formula and using (3.19), we obtain 0xx yy zz xyd d d d     and 
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Hence from the constitutive equation (3.43), we obtain 

0( ) ( ), 0,xx yy zz xyp q t z p t          2 , 2xz xz yz yzd d     ,           (3.50) 

where q(t) is the pressure gradient 
p

z




 while 0 ( )p t  is arbitrary and can be chosen to 

meet certain pressure condition. 

 

 

3.4 Interpretation of Solutions for some Special Cases 

 

With the exact solutions obtained in the previous sections, the solutions for a general 

pressure field given by (3.2) is the superposition of the solution due to the constant 

pressure gradient and the solutions due to the sine and cosine wave form pressure 

gradients. Without loss of generality, we consider here two different cases of driving 

pressure fields in this discussion. The first case is for a pressure field with a constant 

pressure gradient, while the second one is for pressure field with a sine wave form 

pressure gradient. For convenience in the discussion, we introduce the following 

dimensionless variables: 

* * *; , , .
2

x y t b
x y t

a b a

 


                                       (3.51) 
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3.4.1 Case 1: 0

p
a

z





  

For this case, 0 0c a and 0nc  for all 1n  . The constant pressure gradient means 

that the pressure gradient does not depend on time. The shear stress in the fluid is 

independent of the slip length . From (3.41), (3.43), (3.49) and (3.50), we obtain the 

following normalized velocity, normalized flow rate and shear stressed 
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As pressure gradient does not depend on time, the normalized velocity, normalized 

flow rate and shear stress are influenced by slip length   only, which is implicitly 

contained in m and m  . 
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3.4.2 Case 2:  1 sin
p

b t
z





 

The pressure gradient is sinusoidal with amplitude 1b .  For this case 0 1 10, ,a c b i    

0 for 2nc n   . 

 

 

From (3.41), we have 
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


 
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then 

         1 1 1 1 1cosh cosh cos sinh sinm m m m ma a a i a a      , 

         1 1 1 1 1sinh sinh cos cosh sinm m m m ma a a i a a      . 
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Using (3.31) and (3.36), through a lengthy derivation, we obtain 
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For convenience in discussion, transform (3.57) into the following form 
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where *
mu  and m  are respectively the amplitude and phase angles of the normalized 

velocity defined by  
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The flow rate is 
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Using real arithmetic, through lengthly calculation, we obtain the normalized flow 

rate 
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Thus we have 
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is the amplitude of the flow rate, and 
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As the pressure gradient depends on time, the normalized velocity, normalized flow 

rate and shear stress are influenced by the slip length and time. 

 

Figures 3.3 and 3.4 show the 3D and 2D velocity profiles on the cross-section at 

various instants of time. 
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t*=0 

 

t*=0.125 t*=0.250 

 

 

t*=0.5 t*=0.75 t*=1 

Figure 3.3: 3D graphs showing the axial velocity profiles on the cross-section of the 
channel at various instants of time: (a) t* = 0, (b) t* = 0.125, (c) t* = 0.25, 
(d) t* = 0.5,  (e) t* = 0.75, (f) t* = 1.0. 
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(a) 

 
(b) 

  
Figure 3.4: 2D graphs showing the axial velocity along the x-axis and y-axis at 
various instants of time: dot line t* = 0; dash line t* = 0.125, dash dot line 
t*=0.250, solid line t*=0.5, long dash line t*=0.75, long dash dot line t*=1.0.            

 

Figures 3.3 and 3.4 show that the profiles along x-axis and y-axis are similar due to 

choosing a = b =1. The profiles for * 0t   and * 1t   are similar. They are also 

similar to the profile for * 0.5t   with having opposite in sign. The axial velocity at 

* 0.75t  is similar to * 0.250t   with having opposite in sign. 

 

3.5  Investigation of the Influence of Slip Parameter 

 

In this section, we discuss the influences of the slip length on velocity, flow rate and 

stresses in the fluid.  

Case 1: 0

p
a

z





. For this case, 0 0c a and 0nc  for all 1n  . 
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To demonstrate the influence of the slip length in the flow behaviour, we analyze the 

solutions graphically in figures 3.5 – 3.6 which show the 3D and 2D velocity profiles 

on the cross-section of the channel for various different values of  . Figure 3.7 shows 

the influence of the slip length  on the flow rate *Q  

Figure 3.5: 3D graphs showing the axial velocity profiles on the cross-section of the  

                channel for various different value of  : (a)   = 0.1; (b)   = 0.5 ; (c)   =      

                1.0  

 

(a) 
(b) 

 

Figure 3.6: 2D graphs showing the axial velocity profiles along the x- axis and y- axis 

for different   values (a) along the x – axis; (b) along the y - axis. 
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Figure 3.7: Variation of flow rate with slip length  . 

 

Figure 3.8 shows the influence of the geometry ( a x b ) of the cross-section on the 

flow rate for two different  value. 
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l=0.01
l=0.1

 

Figure 3.8: Flow rate of fluid through channel with the same cross-section area size 
but different ratios of width to depth (a/b) for two different slip length. In the 
diagram, ab = a2 = constant but  = b/a take different values:  = 1, 0.75, 0.5, 0.25, 
0.1. 
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It can be concluded from figures 3.6 – 3.8  that the flow rate is linear in slip length 

and the axial velocity increases when the slip length increases. For constant (ab) and 

different fraction b/a, the flow rates have similar profile for different slip length . 

 

Case 2:  1 sin
p

b t
z





. For this case 0 1 10, , 0 for 2na c b i c n      . 

Figures 3.9 – 3.10 shows the influence of slip length   on the velocity profile and 

flow rate. 

 

 

 

(a) (b) (c) 

Figure 3.9: Influence of slip length on velocity profile at various instants of time  

               (a) t* = 0, (b) t* = 0.125, (c) t* = 0.25, _____   = 0.01; -------  =  0.1 ; 

                    __.__.__  = 0.50 ; _._._   = 0.75. 
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Figure 3.10: Influence of slip length on flow rate at various instants of time 

         (a) t* = 0, (b) t* = 0.125, (c) t* = 0.25, (d) t* = 0.5,  (e) t* = 0.75, (f)  t*=1.0 

 

Figure 3.11 shows the influence of   on the transient solution *
mQ  under different 

frequencies 2a    with five different  values:  = 0.005  ,  = 0.025  ,  

=0.06   ,  =  0.08 ,  =  0.10. 

 

Figure 3.12 shows the influence of the geometry  a b  of the cross-section on the 

flow rate for different slip length   under the same cross-sectional area size. 
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Figure 3.11: Influence of   on the transient solution  *
mQ  under different frequencies          

2a    with five different  values: -o-  =0.005, -x-  = 0.025, -+- = 0.06, 

 -*- = 0.08 , -.- = 0.1. 
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Figure 3.12: Flow rate of fluid through channel with the same cross-sectional area 
size but  different ratios of width to depth (a/b) for two different slip lengths (a)   = 
0.01, (b)   = 0.1.  
 

 

Remark 3.1. For t* = 0, the axial velocity has similar profile with t* = 1, as 2 * 1i te    

is constant on the velocity equation (3.54) so that the curves coincide (figure 3.4). 

The profiles are similar on figure 3.4 (a) and (b) as the width (a) is the same as the 

depth (b). When (ab) is constant but with different width shown by the 

fraction b a  , the flow rates appear like parabolic (figure 3.10 and 3.12). It shows 

that the flow rates are influenced not only by the slip length, but also by the 

fraction b a  . The figure 3.10 shows that for similar width and depth, the flow 

rates seem to be parabolic for different    and t*. For t*=0 and t*=1, the flow rates 

are similar. The axial velocity also changes significantly when t* and   change 

(figure 3.9). The amplitudes of the flow rate initially increase significantly as the slip 

length   increases but tend to a constant when   becomes sufficiently large for 

various  values (figure 3.11). 
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3. 6 Concluding Remarks 

 

In this chapter, we derive exact solutions for the transient flow of an incompressible 

Newtonian fluid through a rectangular micro-channel with a Navier slip boundary. 

From the analytical expressions of the velocity and flow rate solutions, we investigate 

the influence of the slip parameter   and the geometry of the cross-section on the 

flow rate of fluid through the channel. The investigation shows that 

 

(i)  For flow through rectangular micro-channels with constant pressure gradient, the 

axial velocity increases faster in the center of the cross section than other area as the 

slip length increases; while for the flows driven by the wave form pressure gradient, 

the velocity changes significantly as the slip length increases. 

 

(ii) For flow driven by a constant pressure gradient, the flow rate is linear, and  for 

different values of  = b/a with constant ab, the flow rate is parabolic. While for the 

flows driven by the wave form pressure gradient, the flow rates are parabolic for 

different slip length.  

(iii) The amplitudes of flow rate initially increase significantly as the slip length   

increases but tend to a constant when   becomes sufficiently large for various  

values. This profile is similar to the case shown in [4] 
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Chapter 4 

Unsteady Slip Flow in Elliptic Microchannels 
 

4.1 General 

Micro-channels are the fundamental part of microfluidic systems. In addition to 

connecting different devices, micro-channels are also utilized as biochemical 

reaction chambers, in infrared detectors, in diode lasers, in miniature gas 

chromatographs, or as heat exchangers for cooling computer chips. Understanding 

the flow characteristics of micro-channel flows is very important in determining 

pressure distribution, heat transfer, and transport properties of the flow. 

 

The elliptic cross-section is one useful channel shape that may be produced by 

micro-fabrication. Elliptic micro-channels have potential practical application in 

Micro-Electro-Mechanical Systems (MEMS). Ghosh et al. [104] studied an 

unsteady flow of an incompressible viscous fluid with embedded small inert 

spherical particles contained in a tube of elliptic cross-section due to a periodic 

pressure gradient acting along the length of the tube. Haslam & Zamir [103] 

considered a long tube of elliptic cross section as an idealization of the geometry 

of a compressed blood vessel. An exact solution of the governing equations for 

the pulsatile flow in a tube of elliptic cross section involves Mathieu functions 

which are considerably more difficult to evaluate than the Bessel functions in the 

case of a circular cross section. Hsu et al. [102] studied theoretically the 

electrokinetic flow of an electrolyte solution through an elliptical micro-channel 

and simulate the flow of fluid in veins. Hsu et al. [102] described the 

electrokinetic flow of an electrolyte solution in an elliptical micro-channel 
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covered by an ion-penetrable and charged membrane layer theoretically. Steady 

slip flow in elliptic micro-channels has been examined and a detailed theoretical 

analysis has been performed. A solution is obtained in elliptic cylindrical 

coordinates by using the method of separation of variables [36]. For the non-slip 

case, Bahrami et al. [97] investigated analytical solutions for various types of  

cross-sections and compared Re
A

f  for selected cross sections. Chakraborty [75] 

studied some methods for the analysis of fluid flows through micro-channels.  A 

variational method is applied to solve the problem of flow through a channel of 

elliptical cross section.  

 

As pressure gradient is defined in the form of (3.7), if n = 0 then 0 0

p
c a

z


 


. For 

this case, the solution has been found by Duan & Muzychka [36]. Therefore, in 

this chapter, we will focus only on unsteady slip flows for the wave pressure 

gradient, namely 0n  . 

 

The major aim of this chapter is to develop and study analytical solutions for the 

unsteady slip flows in elliptic micro-channels. The rest of this chapter is organized 

as follows. In the following section, we first review the Mathieu equation, the 

modified Mathieu equations and their solution. In section 4.3, we formulate the 

underlying boundary value problem in elliptic cylindrical coordinates. Then in 

section 4.4, we derive the exact solutions for the velocity and stress fields. It will 

be shown that the solution processes involve the solution of the modified Mathieu 

equation and that the solution obtained includes some existing known solutions as 

special cases. In section 4.5, we carry out some numerical investigations to study 

the velocity profile and the flow behavior. Finally, a conclusion is given in section 

4.6. 
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4.2  The Mathieu Equations and Solution 

 

Solving field problems in domain with elliptical geometries requires the 

computation of Mathieu and modified Mathieu functions. These are the 

eigensolutions of the wave equation in elliptical coordinates. Mathieu functions 

were introduced in 1868 when Mathieu determined the vibrational modes of a 

stretched membrane having an elliptical boundary [110]. The two dimensional 

wave equation 

2 2
2

12 2
0

V V
k V

x y

 
  

 
                                                    (4.1) 

was transformed to the elliptic cylindrical coordinates and then split up into two 

ordinary differential equations. If 
1
2 1

12q k h  with h being the semi interfocal 

distance, and a being an arbitrary separation constant, the split equations take the 

form 

 
2

2
2 cos 2 0

d u
a q z u

dz
                                                    (4.2) 

 
2

2
2 cosh 2 0

d u
a q z u

dz
   ,                                              (4.3) 

where the parameters a and q are real with q > 0. 

Eq. (4.2) is called the Mathieu equation and Eq. (4.3) is termed the modified 

Mathieu equation. The appropriate solutions of equation (4.2) are called 

(ordinary) Mathieu functions, being periodic in z with period π or 2π. For 

periodicity, a must take special values called characteristic numbers. The 

corresponding solutions of (4.3) for the same value of a as in (4.2) are called 

modified Mathieu functions.  
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This Mathieu equation (4.2) has periodic solution of the first kind in the form 

   1 2 2 2, ,n nu C ce z q C se z q                                    (4.4) 

where  2 ,nce z q  and  2 ,nse z q  are Mathieu functions with period  , defined by  

   (2 )
2 2

0

, cos 2n
n r

r

ce z q A rz




  ,                                  (4.5) 

   (2 )
2 2

0

, sin 2n
n r

r

se z q B rz




 ,                                 (4.6) 

corresponding to characteristic numbers 2na a  and 2na b  respectively for n =0, 

1, 2, …. The 2na and 2nb  are respectively characteristic numbers of the Mathieu 

functions   2 ,nce z q  and  2 ,nse z q , and depend on q; while (2 )
2

n
rA   and (2 )

2
n

rB   are 

functions of q. Since  2 ,nce z q  and  2 ,nse z q  do not correspond to the same 

value of a, their linear combination (4.4) does not express the general solution of 

the Mathieu equation. Either  2 ,nce z q  or  2 ,nse z q  may be used if a series of 

such terms satisfies the boundary conditions. If neither satisfy the boundary 

conditions, one must introduce Mathieu functions of the second kind which are 

non-periodic [105].  

  

The other Mathieu functions are 

   (2 1)
2 1 2 1

0

, cos 2 1n
n r

r

ce z q A r z



 



   ,                             (4.7) 

   (2 1)
2 1 2 1

0

, sin 2 1n
n r

r

se z q B r z



 



  ,                             (4.8) 

which correspond to characteristic number 2 1na a  , 2 1na b  respectively, n = 0, 

1, 2, … and have period 2 . 

 

Obviously, the Mathieu functions are given in series form. For example, for n = 0, 

the Mathieu function corresponding to characteristic number 0a  is given by 
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 0 0 2 4, cos 2 cos 4 ...ce z q A A z A z     .                         (4.9) 

 

Writing Mathieu function in the series form is to calculate the function 

approximately or numerically. Thus formula for finding characteristic numbers 

2na and 2nb , and the coefficients A and B are required, which are available in [110] 

and one also given in appendix. A numerical procedure based on the formula has 

been established for the solution of our problems.  

 

The functions  ,mce z q  and  ,mse z q  are orthogonal, namely 

   
2

0
, , 0m pce z q se z q dz


 , m and p positive integers. 

     
2

0
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
  ,  and                       (4.10) 
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2

0
, , 0,m pse z q se z q dz m p


  . 

 

If we write iz for z on the Mathieu equation (4.2), it becomes 
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2
2 cosh 2 0

d u
a q z u

dz
   ,                                            (4.11) 

which is called the Modified Mathieu equation. For the values of a corresponding 

to  ,mce z q  and  ,mse z q , the solution of (4.11) are derived by substituting iz for 

z in the solution of the Mathieu equations [110], namely 

     (2 )
2 2 2

0

, , cosh 2n
n n r

r

Ce z q ce iz q A rz




   ;                     (4.12) 

     (2 2)
2 2 2 2 2

0

, , sinh 2 2n
n n r

r

Se z q i se iz q B r z



 



                     (4.13) 

which have characteristic numbers 2na a , 2 2nb b   and period i . A and B are 

functions of q.  
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The other modified Mathieu functions are 

     (2 1)
2 1 2 1 2 1

0

, , cosh 2 1n
n n r

r

Ce z q ce iz q A r z



  



                  (4.14)             

     (2 1)
2 1 2 1 2 1

0

, , sin 2 1n
n n r

r

Se z q i se iz q B r z



  



                  (4.15) 

which have characteristic numbers 2 1na a  , 2 1na b   and period 2 i . These are 

defined to be modified Mathieu functions of the first kind of integral order for 

0q  . Similar procedures are used to calculate the coefficients of A  and B on the 

modified Mathieu functions.  

 

4.3 Formulation of Governing Equations in Elliptic Cylindrical  

Coordinates 

 

Consider the unsteady Navier-Stokes equation (3.8) in rectangular coordinates 

derived in section 3.3: 

2 2

2 2

, 0.

in tn n n n

n n n

u u u c
e

x y t

c a b i n


 
   

      
  

                              (4.16) 

In elliptic micro-channels, it is convenient to use elliptic cylindrical coordinates 

(Moon & Spencer, 1971). 

 

We let the orthogonal coordinates be  1 2 3, ,u u u , rectangular coordinates be 

 1 2 3, ,x x x =  , ,x y z , and elliptic cylindrical coordinates be  , , z  . Then we 

have the following coordinate transformation 

 

cosh cos

sinh sin ; 0 , 0 2

; .

x c

y c

z z z

 
    


     
    

                      (4.17) 
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To understand the elliptic coordinate system, we get from the coordinate 

transformation (4.17) that 

2 2

2 2 2 2

2 2

2 2 2 2

1,
cosh sinh

1.
cos sin

x y

c c

x y

c c

 

 

 

 
                                       (4.18) 

Thus i   gives a family of confocal ellipses for different i  values; while 

i   gives a family of confocal hyperbolas with the same foci, as shown in 

figure 4.1. The two families of curves intersect orthogonally, and each intersection 

defines a point with coordinates cosh cosx c   and sinh siny c   . 

Figure 4.1:  Elliptic cylindrical coordinate system  

 

From (4.17), we have 

sinh cos ; cosh sin ;

cosh sin ; sinh cos .

x y
c c

x y
c c

   
 

   
 

 
 

 
 

  
 

                  (4.19) 

 

C 

0   

3 / 2   

/ 2   

 

const 

0 

1.0 

2.0 

40o 
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The metric coefficients are defined by [36] 

2 2 21 2 3

ii i i i

x x x
g

u u u

       
              

                               (4.20) 

and the distance is  

       2 2 22 1 2 3
11 22 33ds g du g du g du   .                (4.21) 

Therefore we have 

   
 
 
 

2 2 2 2 2 2
11

2 2 2 2 2 2

2 2 2

2 2 2

2 2 2

sinh cos cosh sin

sinh 1 sin 1 sinh sin

sinh sin

cosh 1 1 cos

cosh cos ,

g c c

c c

c

c

c

   

   

 

 

 

 

   

 

   

 

                (4.22) 

   

 
 

 

2 2

22

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

11

cosh sin sinh cos

cosh sin sinh cos

cosh sin cosh 1 cos

cosh sin cos cos

cosh cos

,

g c c

c c

c c

c c

c

g

   

   

   

   

 

  

 

  

  

 



                    (4.23) 

        2
33 0 0 1

z
g

z

      
,                                                      (4.24) 

so that 

   24 2 2
11 22 33. . cosh cosg g g g c      ,                                   (4.25) 

 1/2 2 2 2cosh cosg c    .                                   (4.26) 

 

The Laplacian of v in elliptic cylinder coordinates is defined by [36] 

   
1/23

2 1/2 1 2 3

1

; , , , ,
i i

i ii

g v
v g u u u z

u g u
 



  
     

 .              (4.27) 
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Thus 

 

 

 

 

1/2 1/2 1/2
2

2 2 2
11 22 33

2 2 2

2 2 2

2

2 2 2

1

cosh cos

1
1. 1.

cosh cos

         cosh cos

1

cosh cos

g v g v g v
v

g g z g zc

v v

c

v
c

z z

v

c

    

    

 

 

          
                     

       
            

       






2 2

2 2 2
.

v v

z
  

    

(4.28) 

In rectangular coordinates, as there is no swirling flow, we have 0
v

z





. Thus the 

momentum equation (4.16) written in elliptic cylindrical coordinates   is 

 
2 2

2 22 2 2

1

cosh cos
in tn nv cv v

e
tc


    

   
       

.                   (4.29) 

 

The velocity distribution must satisfy the slip boundary condition on the walls. 

The local slip velocity is proportional to the local velocity gradient normal to the 

wall. In elliptic cylindrical coordinates, the boundary conditions (Duan and 

Muzychka, 2007), assuming a one quarter basic cell, are    

(i)  
22

1
,0 0

v

g








 ,                                       (4.30) 

(ii) 
22

1
, 0

2

v

g



      

, 

(iii)  
11

1
0, 0

v

g








, 

 
 

0 0 2
11

0 0

1 /
(iv) , 0; ln ;

1 /

                                      ,
cosh sinh

v b a
v

g b a

a b
c

  


 

 
  

 

 


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where  is slip length.  The slip length is defined by 
2 



   in [36], where   

is the molecular mean free path and   denotes the tangential momentum 

accommodation coefficient, which has values that typically lie between 0.87 and 1 

[101]. It should be addressed here that for 0 , conditions (4.32) reduces to the  

no-slip boundary condition. 

 

 

 

 

 

 

 

 

Figure 4.2: An elliptic duct 

 

 

4.4 Solution of Velocity and Stress Fields 

 

We let  ; ,in t
n n n nv f e f f    , so that 

2 2

2 2
in tn nv f

e 

 
 


 

, 

2 2

2 2
in tn nv f

e 

 
 


 

,                                          (4.31) 

in tn
n

v
in f e

t





. 

Substituting (4.31) into the momentum equation (4.29) yields 

y 

b

x

a

-b 

-a
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 
2 2

2 22 2 2cosh cos

in t
in t in tn n n

n

f f ce in
f e e

c


 

    
  

      
,         (4.32) 

which gives 

 
2 2

2 22 2 2

1

cosh cos
n n n

n

f f cin
f

c


    

  
      

 .              (4.33) 

 

For 0n  , let  , ,n
n n

c
f W

in
 


   then we have  

2 2 2 2

2 2 2 2
,n n n nf W f W

   
   

 
   

.                                (4.34) 

The momentum equation now becomes 

 
2 2

2 22 2 2

1

cosh cos
n n n n

n

W W c cin
W

inc


     

    
          

,    (4.35) 

or  

 
2 2

2 22 2 2

1
0

cosh cos
n n

n

W W in
W

c


   

  
      

.               (4.36) 

To solve this equation, we let      ,n n nW F G    , then 

2 2 2 2

2 2 2 2
;n n n n

n n

W F W G
G F

   
   

 
   

.                           (4.37) 

Because    2 21 1
cosh 1 cosh 2 ; cos 1 cos 2

2 2
       , we have from (4.36) 

that 

 
2 2

2 2 2

2
0

cosh 2 cos 2
n n

n n n n

F G in
G F F G

c


    

  
      

,        (4.38) 

or 

 
2 2 2

2 2
cosh 2 cos 2 0

2
n n

n n n n

F G in c
G F F G

  
  

  
      

.       (4.39) 

Dividing both sides of the above equation by n nF G , we have 
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 

2 2

2 2 2

cosh 2 cos 2 0
2

n n

n n

F G

in c

F G

    


    
           ,               (4.40) 

which gives 

2 2

2 2 2 2

cosh 2 cos 2
2 2

n n

n n

F G

in c in c

F G

    
 

    
                        (4.41) 

or 

2 2

2 2

cosh 2 cos 2 ,

n n

n n
n n

F G

iq iq k
F G

 
 

    
                              (4.42) 

where 
2

2n

n c
q




 . Hence we obtain 

 
2

2
cosh 2 0n

n n

F
k iq F




  


 ,                                       (4.43) 

 
2

2
cos 2 0n

n n

G
k iq G




  


 ,                                        (4.44) 

where k is separator constant. 

 

Remark 4.1. The number k refers to the characteristic number as derived in (4.42) 

and can be chosen as a function of nq . 

 

Let 2 np iq  , then equations (4.43) and (4.44) become 

 
2

2
2 cosh 2 0n

n

F
k p F




  


 ,                               (4.45) 

 
2

2
2 cos 2 0n

n

G
k p G




  


 ,                               (4.46) 

which admit solutions 

     1 2 1 2, ,n n nF A ce i p B se i p                              (4.47) 
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     2 2 2 2, ,n n nG A ce p B se p                             (4.48) 

where  2 ,nce i p ,  2 ,nse p ,  2 ,nse i p  and   2 ,nce p  are Mathieu 

functions of the first kind.  

 

By using boundary conditions 4.30(i) and 4.30(iii), we get 1 0B   and 2 0B  . 

As the characteristic number k is a function of nq , there exist an infinite number of 

k, so that the solution has the following general form 

     2 2
0

, , ,n mn m m
m

W A ce i p ce p   




                     (4.49) 

where   

   (2 )
2 2

0

, cos 2m
m r

r

ce p A r 




  and                      (4.50)         

   (2 )
2 2

0

, cosh 2m
m r

r

ce i p A r 




 .                        (4.51) 

The coefficients (2 )
2

m
rA  are found through a recurrence relation which depend on 

the order of the function, 2m, and on the parameter p.  

 

Now from (4.51), we have 

    

 

(2 )
2 2

0

(2 )
2

1

, cosh 2

                           2 sinh 2 .

m
m r

r

m
r

r

ce i p A r

r A r

 
 











        






                     (4.52) 

In order to overcome the difficulty in calculating the metric coefficient, we use a 

binomial series to approximate the metric coefficient and take the first three terms: 

      
0

1 2 1
1 1 ; 1 1

!
n

n

n
x x x

n

    



   
     


.       (4.53) 

The metric coefficient at  0   may now be written as: 
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 1/22 2
22 0

1/22

0 2
0

2 4

2 4
0 0

0

1 1

cosh cos

1
          =

cos
cosh 1

cosh

1 cos 3 cos
1

2 cosh 8 cosh
         .

cosh

g c

c

c

 




 
 






 
 

 

 


                          (4.54) 

 

2 4

2 4
0 0

022

2 4

2 4
0 0

1 cos 3 cos
1

2 cosh 8 cosh

cosh

1 cos 3 cos
1

2 cosh 8 cosh
         

          = ,

       

cg

a

g
a

 
 



 
 



 
  

 
 
 
 
 
  

 
 
 
 

 





                       (4.55) 

where  
2 4

2 4
0 0

1 cos 3 cos
1

2 cosh 8 cosh
g

 
 

   , 
0

.
cosh

a
c


  

 

By differentiating (4.49) with respect to η, we have 

       (2 )
0 2 2 0

1

, , 2 1 sinh 2 .
r mn

mn m r
r

W
A ce p r A r   








 

   

 

Because  , ,n
n n

c
f W

in
 


   and ,in t

n nv f e   we have 

   2 2
0

   , ,

in tn
n n

in tn
mn m m

m

c
v W e

in

c
A ce i p ce p e

in







 






 
  
 
 

  
 


               (4.56) 
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Thus, from the superposition principle, we have 

   

   

1

2 2
1 0

, Re

             = Re , , .

n
n

in tn
mn m m

n m

v v

c
A ce i p ce p e

in


 

 






 

 



  
  

  


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By differentiating v with respect to  , we have 
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where    (2 )
2

1

2 sinh 2m
r

r

f r A r 




 . 

Applying boundary condition 4.30(iv), namely 
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we have  
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that is 
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                       (4.61)  

For the above equation, to hold for any instant of time t, we require that  
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A solution for mnA may be obtained by means of a Fourier Expansion. 

Multiplying both sides with  2 ,mce p , by orthogonality properties, we have 
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Obviously, the boundary condition 4.30(ii) is automatically satisfied.  

 

The mean velocity is found by integration of Eq. (4.54) across the cross-section of 

the duct, namely 
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             (4.64) 

 

Now we determine the exact solutions of the stress field. The stress in the field is 

related to the velocity field by the constitutive equations (3.43). The rate of 

deformation tensor related to the velocity vector is shown by formula (3.45). As  

v = (0, 0, v(η , ψ, t)), we obtain  
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From the above formula and using (3.43), (3.44) and (4.53), we have  

0zzd d d d d        .                               (4.66) 

Hence 

0( ) ( ), 0zzd d p q t z p t                              (4.67) 

where ( )q t  is the pressure gradient, while 0 ( )p t  is arbitrary and can be chosen to 

meet certain pressure condition, and 
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4.5 Numerical Investigations 

 

We have already shown the analytical solutions for n ≠ 0 which correspond to 

wave form pressure gradient. We choose 1 1 1 5c a b i i    ,  and 0nc   for n > 1, 

then  

   1Re 5sin 4i tdp
c e t

dz
  . 

For the case of wave pressure gradient, the velocity depends on time t and the slip 

length  . The solution has been derived from the Navier-Stokes equations in 

elliptic cylindrical coordinates. The velocity solution has to be arranged into series 

in q in order to present the profile. As consequence, a smooth velocity profile is 

not visible. 

                                                                                                                                                                 

To demonstrate the velocity profile of the wave pressure gradient, we take  

0.1, 0.05, 21, 4, 10, 0.1a b         ,  

so that we have  

 
0 2

1 /
ln 0.549306446           

1 /

b a

b a
 

 


 

and 

q = -0.066 I. 

We calculate the velocity profiles at various instants of time in the range of  

0 2 , 0 0.549       for the elliptic cylindrical coordinates. Using Maple 

v.10 , the results are displayed in figures 4.4. 



102 
 

0 0.5 1 1.5 2
-5

0

5

t time

p
/ 

z

 

 

p/z = 5sin(4t)

 

Figure 4.3:  Pressure gradient driving the flow of the fluid 

 

Calculation of the Mathieu equation and the modified Mathieu equation were 

based on the formula explained in section 4.2. We apply  q = -0.066 i as small as 

required, fluid density 21  ,  slip length 0.1  , fluid viscosity 10  , 

frequency 4  ,  and ellipticity of the tube 0.5  . The velocity profiles at the 

instants of times t = 0, 0.131, 0.393, 0.785, 0.92, 1.178 corresponding to  

0 0 0 0 00 , 45 , 90 ,180 , 225 , 270ot   during a full wave cycle are displayed in figure 

4.4. When 0
dp

dz
  and increases, the velocity decreases (decelerated flow) as t 

increases; while when 0
dp

dz
 , the velocity increases (accelerated flow) as t 

increases. For t = 0 and t = 0.785, 0
dp

dz
  so that they have similar profile. 
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t = 0 

 

t = 0.131 

 

t = 0.393 

 

t = 0.785 
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t = 0.92 

 

t = 1.178 

Figure 4.4:  Velocity profiles at various instants of times during a full wave cycle  
(a) t=0, (b) t = 0.131, (c) t = 0.393, (d) t = 0.785, (e) t = 0.92, (f) t = 1. 178. 
 

   

To demonstrate the influence of the slip on length in the flow behaviour, we 

analyze the solutions graphically in figures 4.5 which show the 3D velocity 

profiles on the cross-section of the channel for various different values of   and t. 
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(a)    = 10, t = 0  (b)    = 10, t = 0.393  

 

 

(c)    =  10, t = 1.178 

 

(d)    = 100, t = 0 
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(e)    = 100, t = 0.393 

 

(f)    = 100, t = 1.178 

 

(g)    = 1000, t = 0 

 

(h)    = 1000, t = 0.393 
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(i)    = 1000, t = 1.178 

Figure 4.5: 3D graphs showing the axial velocity profiles on the cross-section of 
the channel for various different value of   and t: (a)   = 10, t = 0; (b)   = 10, t = 
0.393 ; (c)   =  10, t = 1.178; (d)   = 100, t = 0; (e)   = 100, t = 0.393; (f)   = 
100, t = 1.178; (g)   = 1000, t = 0; (h)   = 1000, t = 0.393; (i)   = 1000, t = 
1.178. 
 

The velocity profiles show that for t = 0, the velocity increases when the slip 

length increases. For t = 0.393 and t = 1.178, the axial velocity changes 

significantly. As 
1.178 0.393t t

dp dp

dz dz 

  , the profiles are similar but in the opposite 

directions. 

 

To demonstrate the influence of pressure gradient on the flow and the stress 

behaviour, we show the solutions graphically in figures 4.6 which show the 3D 

stress field profiles on the cross-section of the channel for various instants of time 

t. 
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(a) t = 0 

 

(b) t = 0.131 

 

 

(c) t = 0.393 

 

(d) t = 0.785 
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(e) t = 0.92 

 

(f) t = 1.178 

 

Figure 4.6: 3D graphs showing the stress field z profiles on the cross-section 

of the channel for various instants of time t: (a) t = 0; (b) t = 0.131 ; (c)  t = 0.393; 

(d) t = 0.785; (e)  t = 0.92; (f) t = 1.178. 

 

4.6 Concluding Remarks 

This chapter expressed analytical solutions of unsteady fluid flow through elliptic 

micro-channels with boundary slip. The Navier-Stokes equation in rectangular 

coordinates is converted to the equation in elliptic cylindrical coordinates. The 

boundary conditions are formulated as in [36] but with simplifying
2 



  . 

For 0n  , the analytical solution is derived in this chapter by using Fourier series 

expansion. To demonstrate the analytical solution for the case of wave form 

pressure gradient, we convert the Mathieu and the modified Mathieu function into 

series of q. The velocity profile is determined for full wave cycle for 0.1   in 
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figure 4.4. When the pressure gradient increases, the velocity increases 

(accelerated flow); while when the pressure gradient decreases, the velocity 

decreases (decelerated flow). For t = 0 and t = 0.785, 0
dp

dz
  so that they have 

similar profile but with the opposite direction. For t = 0, the axial velocity 

increases when the slip length increases. For t = 0.393 and t = 1.178, the profiles 

are similar but in the opposite directions. The stresses on the  -plane along the z 

direction show that the profiles are similar for 0
dp

dz
 and 0

dp

dz
  but in the 

opposite directions. 
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Chapter 5 

Summary and Further Research 

 

5.1 Summary 

In this thesis, we study the analytical solutions of unsteady slip flows in 

rectangular and elliptical micro-channels. Based on previous work in the field, we 

have derived some important results. The main results achieved are in two aspects 

which are summarized below. 

(1) Analytical results for unsteady slip flow in rectangular micro-channels  

(i)  The governing equations for the problem have been formulated and 

established based on the Navier-Stokes equations and the continuity equation in 

rectangular coordinates. By assuming that the flow is symmetric about the xz-

plane and the yz- plane and is fully developed, the field equations for velocity 

field have reduced to a second order time-dependent partial differential equations 

in rectangular coordinates. The complete set of boundary conditions based on the 

Navier slip model has also been developed.  

(ii)  The governing partial differential equations subject to the slip boundary 

conditions have been solved successfully to yield the velocity field solutions. The 

basic method is to express the pressure gradient by the Fourier series and  obtain 

the solution by using the superposition principle, that is, if nu  is the solution for 

in t
np z c e    , then the complete solution for  0

Re in t
nn

p z c e 


     is 
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 
0
Re nn

u u



 . Then the solution is found by the separation of variables. Based 

on the velocity solutions, the complete set of solutions for the flow rate and the 

stress fields have also been obtained. 

(iii)  Based on the mathematical model constructed and the solutions obtained, a 

number of investigations have been carried out to study the dynamic flow 

phenomena and the influence of the slip parameter on the flow behaviour. It has 

been found that: 

a. For the flow through rectangular micro-channels with constant pressure 

gradient, the axial velocity increases faster in the center of the cross section than 

other area when the slip length increases; while for the flows driven by the wave 

pressure gradient, the velocity changes significantly when the slip length 

increases. 

b. For the flow driven by a constant pressure gradient, the flow rate is linear, and 

for different values of ɛ=b/a, the flow rate is parabolic. While for the flows driven 

by the wave form pressure gradient, the flow rates are parabolic for different slip 

length. 

c. The amplitudes of flow rate initially increase significantly as the slip length 

increases but tend to a constant when the slip length becomes sufficiently large for 

various α values.  

 (2) Analytical results for unsteady slip flow in elliptical micro-channels  

(i)  The governing equations for the problem, including the Navier-Stokes 

equations and the continuity equation, have been formulated in elliptic cylindrical 

coordinates. The complete set of boundary conditions based on the Navier slip 

model in elliptical cross section has also been developed. In order to calculate the 

Mathieu and the modified Mathieu functions as a part of solution and to display 

the solutions, these functions are converted to the series of a and q. 
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(ii) Using methods similar  to that used for the study of rectangular micro-

channels, the complete set of solutions for the velocity and the stress fields have  

been derived. The solution process involves splitting of the partial differential 

equation into the Mathieu equation and the modified Mathieu equation, and part 

of the solutions are expressed in terms of the Mathieu functions and the modified 

Mathieu functions. To demonstrate the results, the coefficients of the Mathieu 

functions and the modified Mathieu functions have been converted to the series of 

the function parameters a and q, and a numerical procedure is applied to 

determine the coefficients. 

(iii)  Based on the mathematical model constructed and the solutions obtained, an 

investigation has been carried out to study the influence of the slip parameter on 

the flow behavior in elliptic micro-channels. It has been found that, as the 

pressure gradient increases, the velocity increases (accelerated flow); while as the 

pressure gradient decreases, the velocity decreases (decelerated flow). The 

profiles are similar for t = 0 and t = 0.785, as 0
dp

dz
  but in the opposite 

directions. For t = 0, the axial velocity increases when the slip length increases. 

For t = 0.393 and t = 1.178, the profiles are similar but in the opposite directions. 

The stresses on the  -plane along the z direction show that the profiles are similar 

for 0
dp

dz
 and 0

dp

dz
  but in the opposite directions. 

 

5.2 Further Research 

In this project, we use Fourier series expansion to develop and investigate 

analytical solutions for unsteady slip flows in rectangular and elliptical micro-

channels. Although some important results have been obtained, there are still 

problems for further research.  In elliptic micro-channels, the form of the solution 

obtained is complicated and thus it is useful to search for solutions of simpler 
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form. Further work is still needed to study the influence of boundary slip on the 

velocity profile, the flow rate and the stress field. Analytical solution of unsteady 

slip flows for non-Newtonian fluids in elliptic micro-channels is still a challenge. 

Study of unsteady slip flows for Newtonian or non-Newtonian fluids in other 

cross sections such as triangular, trapezoidal, semi-circle, circular sector is another 

challenge. 
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Appendix  

 

To demonstrate the solutions which have been found in chapter 4, we require 
some formulas to calculate the Mathieu  functions and the modified Mathieu 
functions as in Ref [110]. 

 

A.1  Formula for a 

 

We designate the characteristic numbers for  ,mce z q  and  ,mse z q  by ma  and 

mb r espectively. Following the results in [110], we have  

 2 4 6 8 9
0

1 7 29 68687
.

2 128 2304 18874368
a q q q q O q                                          (A.1) 

 

2 3 4 5
1

6 7 8 9

1 1 1 11
1

8 64 1536 36864
49 55 265

       .
589824 9437184 113246208

b q q q q q

q q q O q

     

   
                             (A.2) 

The characteristic number 1a can be found by replacing –q for q in 1b . 

 2 4 6 8 10
2

1 5 289 21391
4 .

12 13824 79626240 458647142400
b q q q q O q               (A.3) 

 2 4 6 8 10
2

5 763 1002401 1669068401
4 .

12 13824 79626240 458647142400
a q q q q O q              (A.4) 

 

2 3 4 5
3

6 7 8

1 1 13 5
9

16 64 20480 16384
1961 1109

                     .
23592960 104857600

b q q q q

q q O q

    

  
                                  (6.5) 

The characteristic number 3a can be found by replacing –q for q in 3b . 
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 2 4 6 8
4

1 317 10049
16 .

30 864000 1728000
b q q q O q                                             (A.6) 

 2 4 6 8
4

1 433 5701
16 .

30 864000 1728000
a q q q O q                                             (A.7) 

 2 4 5 6 7
5

1 11 1 37
25 .

48 774144 147456 891813888
b q q q q O q                      (A.8) 

The characteristic number 5a can be found by replacing –q for q in 5b . 

 2 4 6 8
6

1 187 5861633
36 .

70 43904000 92935987200000
b q q q O q                           (A.9) 

 2 4 6 8
6

1 187 6743617
36 .

70 43904000 92935987200000
a q q q O q                          (A.10) 

When 7m  , the following formula is used.  

     

    

2
2 2 4

32 2 2

4 2
6

52 2 2

1 5 7
,

2 1 32 1 4

9 58 29
                                         

64 1 4 9

m m

m
a b m q q

m m m

m m
q

m m m


  

  

 
 

  


                    

(A.11) 

These formula may be used to calculate a when q is sufficiently small and of 

either sign. For equal accuracy, q may increase as m increases. For 7m  , it must 

not be inferred that m ma b . As 0, m mq a b  , but for  0, 0m mq a b   , 

although it is very small near q = 0. 

 

A.2  Coefficients Formula 

 

In the equation (4.2), if y is substituted by each series (4.5) – (4.8) in turn, and the 

coefficients for cos 2 ,rz   cos 2 1 ,r z   sin 2 1 ,r z   sin 2 2r z  are equated 

to zero for r = 0, 1, 2,…, the following recurrence relations are obtained [110]: 
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for  2 ,nce z q     
   

0 2

2 4 0

2
2 2 2 2 2

0

4 2 0

4 2 0; 2r r r

aA qA

a A q A A

a r A q A A r 

  
    
     

                            (A.12) 

for  2 1 ,nce z q  
 

   
1 3

2

2 1 2 3 2 1

1 0

2 1 2 0; 1r r r

a q A qA

a r A q A A r  

    
       

                (A.13) 

 

for  2 1 ,nse z q  
 

   
1 3

2

2 1 2 3 2 1

1 0

2 1 0; 1r r r

a q B qB

a r B q B B r  

    
       

                  (A.14) 

for  2 2 ,nse z q  
 

   
2 4

2
2 2 2 2 2

4 0

4 0; 2r r r

a B qB

a r B q B B r 

   


    
                           (A.15) 

For simplicity the superscripts 2n, 2n+1, 2n+2 for A and B have been omitted. 

Normalization of  ,mce z q  and  ,mse z q are: 

   2 22 2
0 2

1

2 1n n
r

r

A A




         for m = 2n , and                       (A.16) 

     2 2 22 1 2 1 2 1
2 1 2 1 2 2

0 0 0

1 n n n
r r r

r r r

A B B
  

  
  

  

                for m = 2n+1             (A.17) 

 

A.3  Calculation of A 

If q is sufficiently small, the formula for a given in (A.1) – (A.10) may be used.  

Suppose we have to find the coefficients of the series for the function  2 ,nce z q . 

We commence with finding 2 , 0,1, 2,na n  by using the formula of a. 

Writing  0 2 0 2 4 2 4 6 4 2 2 2 2 2 2 2 2 2/ , / , / , , / , /r r r r r rv A A v A A v A A v A A v A A        

0 2 4 0 0 2 4 6 0/ , / ,v v A A v v v A A    and 0 2 0/ /v A A a q   from the first formula. 

Dividing the second formula by 0A and making these substitutions, gives 

   0 0 24 2 0a v q v v                                       (A.18) 
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so     0 2

1 1
1

2 4
v q a qv      

.     

                         (A.19) 

In the same way, from the equation (A.12)3, we get 

   2
2 2 2 2 24 1 0r r rr a v q v v     ,                             (A.20) 

   

           2 2
2 2 24 1 1 4 ; 2.r rv q r r a qv r

                         (A.21) 

which may be regarded as an alternative form of the recurrence relation. 

To simplify calculation, we use a reasonable approximation and neglect 2
2 4rqv r  

due to the term 2
2 4 1rqv r   , and thus we have 

 2 2
2 2 4 1 4 ; 2rv q r a r r      ,                           (A.22) 

provided r is large enough. Otherwise we use formula (A.21). 

Since the values of mv  have been found, we may calculate 2nA  after finding 0A  

using the Normalization formula: 

2 2 2 2
0 2 4 61 2A A A A     .                                   (A.23) 

Dividing by 2
0A  on both sides, we have 

2 2 2 2 2 2 2
0 2 0 4 0 6 01 2A A A A A A A                              (A.24) 

so                       2 2 22
0 2 0 4 0 6 01 2A A A A A A A                      (A.25) 

To have positive root, we use formula 

     2 2 2

0 2 0 4 0 6 01 2A A A A A A A     ,                (A.26) 

where  

2 0 0 4 0 2 0 6 0 4 2 0, , ,A A v A A v v A A v v v                         (A.27) 

Finally, putting all 2nA  on the series of function  2 ,nce z q , we have  

       2 2 2
2 0 2 4 6, cos 2 cos 4 cos 6n n n

nce z q A A z A z A z                (A.28) 

 



128 

 

A.4 Solution of the Mathieu Equation when q is negative 

imaginary 

 

In the condition that q takes the form –is where s being real and positive, in 

numerical work, it is preferable to work with q=+is and then obtain the solution 

for q=-is by writing  1
2 z   for z. The value of a is real or complex depending 

on conditions. For q moderate, the series for ,m ma b in (A1.1) are convergent, and 

may be used for computation. The series for 2 2,n na b  are proceeded in powers 

of 2q , while those for 2 1 2 1,n na b   are proceeded in power of q. Hence 2 2,n na b  are 

real, but 2 1 2 1,n na b   are complex. When 0s s , with 0s  depending upon n and the 

function, 2 2,n na b  are complex. 

 

 

 


