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Abstract 

Value-at-Risk (VaR) is an important area connecting academic 

researchers with the practitioners due to its critical role in financial risk 

management as required by the Basel Accord. While both academic 

researchers and the practitioners recognize that VaR models provide a 

convenient method for quantifying market risk, their objectives and 

interests in VaR can be quite different. Academic researchers are 

primarily interested in the accuracy of VaR models in forecasting market 

risk. These results are of interest to the regulator to ensure adequate risk 

mitigation is undertaken by banks as a result of inadequate capital 

reserves. Banks, however, can choose to use standardized or the 

internally designed VaR models to measure market risk.  

The thesis aims to demonstrate the differences in approaches and 

objectives to VaR modelling and forecasting by academic researchers and 

the practitioners. In theory, the more complex VaR models may be 

preferred by the academic researchers for risk forecasting as these 

models capture volatility structures of asset returns that are usually not 

directly observable. However, these models raise some difficulties in 

practice. For an ADI who trades large and complex portfolios of financial 

assets and derivatives daily, these models require continuous 

constructing and updating new volatility forecasts that come with high 

transaction costs. Therefore, combining these different objectives is 

crucial to developing a more practical approach that can satisfy both the 

literature and regulatory objectives.  
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The thesis begins with the background of the banking system in Australia 

and critically reviews the impact of the Basel Accord in Australian 

Authorized Deposit-taking Institutions (ADIs) over time. The thesis also 

investigates the precision of VaR models to measuring market risk and 

the regulatory role played by Australian Prudential Regulation Authority 

(APRA) in supervising these ADIs.  

Models of time-varying volatility can be used to forecast VaR for the 

purpose of financial risk management. This thesis proposes developing 

more appropriate models that may assist Australian ADIs to calculate 

capital adequacy charges as a protection against market risk. This thesis 

also provides the first empirical comparison of the impact of model 

specification in estimating tail index and VaR. A consistent estimator of 

the tail index for the asymmetric extension of Generalized 

Autoregressive Conditional Heteroskedasticity (GJR-GARCH) error is used 

as an alternate method to forecast VaR. The empirical results suggest 

that the proposed method performs well against the more traditional 

approaches based on conditional and unconditional variances. Given that 

the regulator prefers ADIs to use VaR models that display appropriate 

statistical properties, the performance of these models is evaluated by 

various tests to assess the quality of VaR forecasts. In addition to these 

tests, the market risk capital charges are also calculated to capture the 

opportunity costs of using each model. 

This thesis then analyses the importance of accommodating time-varying 

conditional correlations in forecasting VaR. The performance of VaR 

forecasts produced by Constant Conditional Correlation (CCC) model of 

Bollerslev (1990) is compared with the Dynamic Conditional Correlation 

(DCC) model of Engle (2002) and the Time-Varying Conditional 
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Correlation (TVC) model of Tse and Tsui (2002). The results find that VaR 

forecasts based on the DCC models are superior to VaR forecasts based 

on the CCC models. The results also suggest that the selection of an 

underlying distribution is more important than the choice of a model to 

forecast VaR. 

The final section of this thesis examines the adequacy of reported VaR 

forecasts. This section focuses on whether the reported VaR forecasts 

provide any new information to investors and the bank regulators to 

assessing the differences in market risk exposures for each ADI. One of 

the main objectives for Basel III is to strengthen banks’ transparency and 

disclosures. The thesis finds that the current financial reporting 

environment in Australia does not provide academic researchers and the 

regulator enough information to assess the quality of VaR forecasts 

reported by ADIs. It is worth noting that the requirements for banks to 

disclose information more completely can sometimes be very costly and 

may not necessary increase transparency. 
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INTRODUCTION 

Charles Dickens began his Tale of Two Cities with the lines: 

“It was the best of times, it was the worst of times, it was the age of 

wisdom, it was the age of foolishness, it was the epoch of belief, it was 

the epoch of incredulity, it was the season of Light, it was the season of 

Darkness, it was the spring of hope, it was the winter of despair, we had 

everything before us, we had nothing before us, we were all going direct 

to Heaven, we were all going direct the other way. . . .” 

These famous lines hint at the novel’s central tension between love and 

family, and on the one hand, oppression and hatred, on the other. The 

opening quotation characterizes the tension between academic 

researchers and the practitioners including investors, banks and the 

regulator in the use and application of Value-at-Risk (VaR) to model and 

forecast market risk.  

An academic research is often quantitative with sophisticated methods 

and statistical details that are unfamiliar to the practitioners. Sometimes, 

the results can be inconsistent and lack a normative conclusion. Hence, 

the practitioners may be constrained in pursuing increased engagement 

with academic researchers due to lack of belief. This could lead to a less 

tolerant view and serious scepticism as to the ability of academic 

research to provide insights that are of relevance. Academic researchers, 

on the other hand, may not engage with the practitioners for different 

reasons. For a researcher, the academic system does not explicitly 
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encourage strong research-related practitioner communication, but 

strongly supports the publications in peer-reviewed academic journals. 

Therefore, the academic researchers would rather engage their work 

through conferences and journals. These academic articles are 

exclusively read and assessed by a group of fellow academics. Hence, this 

restricts the ability of the academic researchers to connect with the 

practitioners.  

In a regulatory capacity, the relationship between banks and the 

regulator with the academic researchers is not without tension and 

disagreement. They are more like separate entities pursuing their own 

agendas and concerns. The general society requires the regulator to 

regulate banks adequately, yet the nature of the regulation in practice is 

diverse. Banks are meant to follow the regulatory requirements of which 

the Basel Committee is deemed to be authorized. However, there is a 

tendency that banks are likely to comply with the regulatory requirement 

minimally. In practice, banks cannot ignore the regulator and its 

regulation without serious repercussion, but often do ignore academic 

research. Likewise, the regulator attempts to look to its resources and 

thinks in the name of research to regulate the banks. Typically, banks and 

the regulator design, develop and publish their regulatory framework 

first, then leave to the academic researchers to access and influence the 

framework proposed by publishing in academic articles. The lack of 

connection between the academic researchers with banks and the 

regulator in nature and the design of a strong regulatory framework is a 

good illustration of the differences in interests highlighted previously. 

The aim of this thesis is to examine these different objectives by carrying 

out an empirical investigation on the extent of, and the type of, and the 
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importance of VaR as a market risk measure across academic literature 

and banking practices. 

The emphasis on the definitions of ‘risk’, ‘market risk’, and ‘volatility’ is 

important and needs clarification before proceeding. 

Risk could be roughly explained as an uncertainty of the changes of future 

returns, such that the greater is the uncertainty, the greater is the risk. 

Market risk represents the uncertainty of the future returns due to 

changes in market conditions. The direct impact of market risk is that 

adverse changes in market conditions may result in severe losses. 

However, volatility is not the same as risk. Financial markets often display 

high levels of volatility, which is reflected in the pricing of financial assets. 

Volatility can be characterized as the conditional variance of the 

underlying asset returns (see Tsay 2010, 109). This volatility evolves over 

time in a continuous manner and has many other financial applications. 

It also plays a significant role in the portfolio selection under the mean-

variance analysis (Markowitz 1959, 1991). Volatility may be high for 

certain periods and low for other periods. However, volatility is not 

directly observable. Statistically, volatility is often stationary, and it does 

not diverge to infinity (see Poon and Granger 2003). In this thesis, the 

term ‘volatility’ is used loosely in a descriptive sense rather than the 

precise notion often implied in financial econometrics. 

Since Basel I was first introduced in 1988, followed by the 1996 

amendment of the Basel Capital Accord to apply minimum capital 

requirements for market risk, Value-at-Risk (VaR) is becoming an 

internationally accepted risk measure for the banking industry to manage 

market risk, capital adequacy and regulatory reporting. VaR is described 
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as a procedure to measure the probability of maximum loss over a target 

horizon within a given confidence level (Jorion 1996, 2007). In particular, 

each bank has to set aside an amount of risk capital of at least three times 

that of VaR. The Basel Accord allows banks to design their own internal 

VaR models to determine their regulatory capital requirements for 

market risk. On one hand, banks must consider how much risk they are 

taking, and whether they have enough capital to cover for that risk. On 

the other hand, the regulator is concerned with whether banks have set 

aside sufficient capital to meet large unexpected losses in the event of 

financial market distress. The recent financial events, particularly the 

Global Financial Crisis (GFC), have led to a great deal of attention to 

providing more sophisticated and statistically justifiable VaR models. 

During the crisis, many international banks not only experienced a sharp 

increase in the level of VaR but also faced higher regulatory capital 

charges.  

This thesis aims to demonstrate the differences in approaches and 

objectives to VaR modelling and forecasting by academic researchers and 

the practitioners. In theory, more complex VaR models may be preferred 

by academic researchers for risk forecasting as these models capture 

volatility structures of asset returns that are usually not directly 

observable. However, these models raise some difficulties in practice. 

For a bank which trades large and complex portfolios of financial assets 

and derivatives daily, these models require continuous constructing and 

updating new volatility forecasts that come with high transaction costs. 

Therefore, combining these different objectives is crucial to developing a 

more practical approach that can satisfy both the literature and 

regulatory objectives. This thesis proposes developing more appropriate 
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models that may assist banks and the regulator to calculate capital 

charges as a protection against market risk. 

This thesis is organized into six chapters. 

Chapter 1 introduces the thesis, provides the necessary background and 

motivation of the study. It also explains in further detail the contributions 

of the following chapters into the literature. 

Chapter 2 begins with some background on the banking system in 

Australia and critically reviews the impact of the Basel Accord in 

Australian ADIs over time. This chapter examines the extent to which 

Basel III had been implemented in Australian banking system and if new 

aspects in the treatment of market risk are adopted in Basel III. The 

chapter also investigates the precision of VaR models to measuring 

market risk and the regulatory role played by Australian Prudential 

Regulation Authority (APRA) in supervising these ADIs. 

The Basel Committee on Banking Supervision has continued to improve 

the quality of worldwide banking supervision since the introduction of 

Basel I in 1988. Subsequently, Basel II was introduced in 2004, and Basel 

III in 2010 (see Basel Committee on Banking Supervision 2014a). Under 

Basel II and III, a new set of capital requirement is introduced to allow 

banks to manage their liquidity more prudently. This chapter evaluates 

the regulatory framework proposed by the Basel Accord and highlights 

any deficiencies that may exist and suggests ways in which such 

deficiencies may be addressed to promote higher quality and efficient 

banking system. 
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In Australia, the Australian Prudential Regulation Authority (APRA) is the 

prudential regulator for Australian financial services industry and is 

responsible for the supervision of all Australian ADIs including banks, 

building societies, credit unions and specialist institutions. The Banking 

Act 1959 has allowed APRA to implement prudential standards on 

Australian ADIs to enforce relevant regulation and to act in the interests 

of depositors. This chapter analyses the existing prudential standards in 

the Australian ADIs. This includes an investigation of the precision of VaR 

models to measuring market risk and the role played by APRA in 

regulating these ADIs. It also discusses some crucial facts of VaR 

implementation and its potential significance to Australian ADIs.  

Chapter 2 provides the first empirical comparison of the impact of model 

specifications in estimating tail index and VaR. A consistent estimator of 

the tail index for the asymmetric extension of Generalized 

Autoregressive Conditional Heteroskedasticity (GJR-GARCH) error by 

Glosten, Jagannathan, and Runkle (1993) is proposed as an alternate 

method to forecast VaR. The chapter then applies the proposed 

estimator to forecast VaR for a portfolio of AUD with twelve other 

currencies. It also investigates the performance of the two conditional 

volatility models under two different distributional assumptions, namely 

normal distribution and student-t distribution. The empirical results 

suggest that the proposed method performs well against the more 

traditional approaches based on conditional and unconditional variances.  

Given that the regulator prefers banks to use VaR models that display 

appropriate statistical properties, the performance of these models is 

evaluated by some statistical tests to assess the quality of VaR forecasts. 

The tests include Kupiec (1995) Test Until the First Failure (TUFF), 
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followed by Christoffersen (1998) and Christoffersen, Hahn, and Inoue 

(2001) Serial Independence (IND) and Conditional Coverage (CC) tests. 

Also, the performance of VaR forecasts is evaluated by the backtesting 

procedures required by the Basel Committee. Backtesting procedures 

are where the actual returns are compared with VaR forecasts to assess 

the quality of banks’ internal model. This has an important implication 

for banks and the regulator. If banks are conservative in estimating 

market risk by reporting a lower VaR, the amount of capital charges that 

a bank holds will be higher. A higher capital charge will have a direct 

impact on the bank’s profitability. On the other hand, the regulator is 

concerned with minimizing the risk of default that may be due to large 

unexpected losses in the event of financial distress such as the GFC. If 

banks use VaR models that display the correct statistical properties, the 

chance to which they go into default is minimal.   

Models of time-varying volatility can be used to forecast VaR for the 

purpose of financial risk management. Many researchers believe that by 

incorporating time-varying volatility in VaR models may provide early 

warnings of changing market conditions. These models provide volatility 

estimates of asset returns that are usually not directly observable.  

Chapter 4 analyses the importance of accommodating time-varying 

conditional correlations in forecasting VaR. The performance of VaR 

forecasts produced by Constant Conditional Correlation (CCC) model of 

Bollerslev (1990) is compared with the Dynamic Conditional Correlation 

(DCC) model of Engle (2002) and the Time-Varying Conditional 

Correlation (TVC) model of Tse and Tsui (2002). These models are chosen 

as they entail a more manageable and parsimonious multivariate 

volatility forecasting model. The chapter then applies these models to 
Page | 7  

 



 

forecast VaR for a portfolio of AUD with twelve other currencies. Some 

statistical tests and the backtesting procedures required by the Basel 

Committee are conducted to evaluate the performance of VaR forecasts. 

Incorporating time-varying volatility in VaR models is not straightforward. 

Notice that these models raise some difficulties in practice, where banks 

are to trade with relatively large and complex portfolios that are unlikely 

to change daily. This implies that each day, the banks will have to 

compute a series of historical data for the new portfolios to estimate VaR. 

Consequently, this may create additional costs to the banks. Instead of 

using these models, banks appear to be taking less computationally 

demanding alternatives. Banks prefer to use a simple VaR measure that 

aggregates all of the risks of a trading portfolio into a single number, 

which is suitable for use in the boardroom, reporting to the regulator and 

disclosure in their financial reports. 

Chapter 5 examines the adequacy of reported VaR forecasts for 

Australian ADIs. This chapter focuses on whether the reported VaR 

forecasts provide any new information to investors and the bank 

regulators to assessing the differences in market risk exposures for each 

ADI. The chapter uses a series of published data in electronic form, 

provided by APRA under the APRA Research Grant Program (the 

Program)1. This dataset contains the reported quarterly VaR forecasts 

from nine Australian ADIs from the year of 2008 to 2010. This study 

1 The agreement of confidentiality for undertaking the Program is committed where APRA requires 
the Recipient(s) to preserve and maintain the confidentiality of information and documents (see 
Appendix I). This dataset is subjected to the secrecy provisions of Section 56 of the Australian 
Prudential Regulation Authority Act 1998 (the Act). To comply with this requirement, the Recipient(s) 
has applied and obtained ethics approval from Curtin Human Research Ethics Committee for the 
Program (see Appendix II). Access to data are limited only to the Recipient(s) of the Program, Thesis 
Committee and APRA. 
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follows the approach as proposed in Jorion (2002) and examines the 

relationship between the reported VaR forecasts with ADIs’ future 

operating revenues in a simple linear regression framework. One of the 

main objectives for Basel III is to strengthen banks’ transparency and 

disclosures. The findings in Chapter 5 suggest the current financial 

reporting environment in Australia does not provide academic 

researchers and the regulator enough information to assess the quality 

of VaR forecasts reported by ADIs. It is worth noting that the 

requirements for banks to disclose information more completely can 

sometimes be very costly and may not necessary increase transparency. 

Finally, Chapter 6 concludes the thesis and discusses further work for 

future research. 
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RISK MANAGEMENT PRACTICES IN AUSTRALIAN 

AUTHORIZED DEPOSIT-TAKING INSTITUTIONS (ADIS) 

2.1 INTRODUCTION 

The Basel Committee on Banking Supervision aims to improve the quality 

of worldwide banking supervision under the Basel Framework. Following 

the collapse of Bretton Woods system in 1973 and the default of the 

German Bank Herstatt in 1974, the Basel Committee has set minimum 

standards for the regulation and supervision of international banks. The 

first Basel Accord was introduced in 1988 where a minimum capital ratio 

of 8 percent to total risk-weighted assets was set, followed by the 1996 

Amendment to the Basel Capital Accord to include market risk. The Basel 

Framework is periodically revised, highlighting the constant need for 

establishing more prudent capital requirements to strengthen the 

international banking system and improve market confidence in 

regulation. Subsequently, Basel II was introduced in 2004, and Basel III in 

2010 (see Basel Committee on Banking Supervision 2014a).  

Since 1998, Australian Prudential Regulation Authority (APRA) is the 

prudential regulator and supervisor of all Australian authorized deposit-

taking institutions (ADIs), including banks, building societies, credit 

unions, and specialist institutions. The Banking Act 1959 has allowed 

APRA to implement prudential standards on ADIs, to enforce the relevant 

regulation, and to act in the interests of depositors, insurance policy 
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holders, and other members. The purpose is to promote the stability and 

market confidence in the Australian financial system (Australian 

Prudential Regulation Authority 2011a, 2011b). APRA has played a sound 

supervisory role in implementing Basel II from 1 January 2008, and the 

Basel III from 1 January 2013 (Basel Committee on Banking Supervision 

2014e).  

Under Basel III, a new set of capital requirements was introduced to allow 

international banks to manage their risk exposure more prudently. To 

ensure sufficient capital reserves against large unexpected losses in 

banks’ trading portfolios of financial assets and derivatives, the 

prudential regulation of minimum capital requirements is used. 

Minimum capital requirements are designed to mitigate the 

Government’s role as the lender of last resort. Hence, by requiring the 

banks to set aside an amount of capital, there is reduced financial burden 

borne by the Government. In particular, the total capital ratio to risk-

weighted assets is maintained at 8 percent with at least 6 percent in Tier 

1 capital and 2 percent in Tier 2 capital. Tier 1 capital or ‘core’ capital 

consists of equity and disclosed reserves from after-tax retained earnings. 

Tier 2 capital or ‘supplementary’ capital consists of undisclosed reserves, 

revaluation reserves, general loan-loss reserves, perpetual securities, 

and subordinated debt with more than five years maturity. While, banks 

must hold at least 4.5 percent of the common equity in their total risk-

weighted assets. These ratios are phasing in gradually from the beginning 

of 2013 and becoming fully effective by 1 January 2019 (Basel Committee 

on Banking Supervision 2011a). In Australia, the proportion of common 

equity in ADIs’ total risk-weighted assets had increased from 7.5 percent 

to 9.1 percent, and the total capital ratio had increased from 11.5 percent 
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to 12.5 percent, from December 2008 to December 20142. These ratios 

show that ADIs have strengthened their capital positions considerably in 

the last eight years. It also highlights the fact that ADIs are holding larger 

proportions of common equity in their trading portfolios of financial 

assets and derivatives. Such exposure means that ADIs are becoming 

increasingly subject to market risk. APRA (2014a) claimed that ADIs 

particularly Australian banks have consistently held capital well above 

the minimum requirements since Basel I. APRA has continuously taken a 

more conservative approach to capital than the minimum requirements 

and that it becomes an important contributing factor to mitigate against 

the GFC of 2008.  

The GFC reviewed that many international banks had built up excessive 

leverage and had a capital level that was inadequate to withstand 

unexpected losses without becoming insolvent. As part of Basel III, banks 

are also be required to maintain a non-risk-based leverage ratio of 3 

percent on Tier 1 capital. This ratio measures the size of banks’ Tier 1 

capital relative to their total on- and off-balance sheet exposures. A 

bank’s total exposure measure includes on-balance sheet exposures, 

derivative exposures, securities financing transaction exposures, and off-

balance sheet items (Basel Committee on Banking Supervision 2014b). 

The leverage ratio is measured by two liquidity standards, namely 

Liquidity Coverage Ratio (LCR) and Net Stable Funding Ratio (NSFR). LCR 

is the ratio of highly liquid assets to net cash flows over a 30-day period. 

This ratio ensures that the banks will have current assets such as cash to 

withstand short-term liquidity disruptions. While, NSFR is the ratio of 

2 Data obtained from Australian Prudential Regulation Authority. 2015. “Statistics: Quarterly 
Authorized Deposit-taking Institution Performance." 
http://www.apra.gov.au/adi/Publications/Pages/adi-quarterly-performance-statistics.aspx 
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longer-term funding such as deposits or wholesale funding to banks’ 

asset holdings. Banks will have to meet these standards by repositioning 

their capital level to make them less vulnerable to unexpected shocks. If 

the capital levels are too low, banks may be unable to absorb high levels 

of losses. Excessively low levels of capital increase the risk of bank failures, 

which in turn, may put depositors’ funds at risk.  The introduction of a 

leverage ratio in Tier 1 capital is a step forward in Basel III. However, the 

effectiveness of leverage ratio in detecting the probability of financial 

default is yet to be empirically supported. Hlatshwayo et al. (2013) found 

that a higher LCR ratio is usually associated with a higher rate of 

bankruptcy. Also, it is not clear as to how LCR and NSFR ratios can be 

merged to the total capital ratio to risk-weighted assets (Moosa and 

Burns 2013). The implementation of leverage ratio will be reviewed in 

2017 and gradually calibrated into Pillar 1 (Basel Committee on Banking 

Supervision 2014a). 

This leads to the central issue of this chapter. Since Basel I was first 

introduced in 1988, followed by the 1996 amendment of the Basel 

Capital Accord to apply minimum capital requirements for market risk, 

Value-at-Risk (VaR) has become a standard market risk measure for many 

international banks including Australian banks. In particular, each bank 

has to set aside an amount of capital of at least three times that of VaR. 

The original amendment required ADIs to adopt a standardized approach 

when calculating the risk capital. The standardized approach assigns a 

common risk factor for each type of risk exposure, including interest rate 

risk, equity risk, foreign exchange risk and commodity risk. The amount 

of capital is calculated by the arithmetic sum of each risk factor. However, 

this attracted great criticism from the international community for its 
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inability to capture highly adverse conditions in the financial market. 

Furthermore, the standardized approach does not allow banks to 

disintegrate and analyse the risk of their trading portfolios separately 

(Soczo 2002). A series of unpredicted financial events that caused 

significant financial losses suggested that the necessity of establishing 

robust VaR techniques to manage banks’ exposure to market risk is 

critical. In response to the criticism, the Basel Accord was amended to 

allow banks to design their VaR models, provided these met some 

regulatory criteria. The Basel Committee also required banks to perform 

a series of backtesting procedures to test and improve the accuracy of 

their models for measuring market risk. The aim of this chapter is to 

provide an overview of the regulatory changes on Basel III with an 

emphasis on the influence of these regulations on market risk exposure.  

The plan of this chapter is organized as follows. Section 2.2 describes the 

background of the Basel Accord in the Australian banking system. It 

outlines the limitations with current regulations and discusses how they 

may be addressed by the new proposals from the Basel Committee. 

Section 2.3 describes the use of VaR as a standard market risk measure 

to the regulatory process. It also provides the theoretical framework for 

VaR measures. Section 2.4 describes the backtesting procedures that are 

used by the Basel Accord to validate a VaR model. Banks may have a 

tendency to provide conservative VaR forecasts. Conservative VaR 

forecasts lead to a greater number of violations than reasonably 

expected given a confidence level. Subsequently, a penalty charge that is 

a function of the number of violations on the previous 250 trading days 

is imposed. The structure and impact of these penalty charges on banks 

are also discussed. Section 2.5 concludes the chapter.  
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2.2 BACKGROUND OF THE BASEL ACCORD IN THE AUSTRALIAN BANKING 

SYSTEM 

Since the 1980s, Australian banks have experienced several major 

merger and acquisitions, which has led to the privatisation of large 

Australian banks including Commonwealth Bank in the early 1990s 

(Wright 1999). Deregulation has led to a more conservative business 

approach by the Australian banking sector, considering possible adversity 

in global financial markets. In contrast to major international banks in 

other countries, Australian banks performed relatively strongly during 

the Global Financial Crisis (GFC) (see Figure 2.1). The Australian four pillar 

banks, Commonwealth Bank, Westpac Banking Corporation, Australia 

and New Zealand Banking Group and National Australia Bank, had proven 

to be more resilient to the impact of the GFC. They were ranked among 

the world’s top 20 safest banks in 2009 (see Keeler 2009) and continued 

to hold this position in 2014 (see Fiano 2014).  

Figure 2.1 3  shows the impact of GFC on selected major banks from 

different countries relative to the Australian major banks. It can be seen 

that Australian banks have continuously generated the highest 

percentage of pre-tax profits to total assets relative to their peers in 

other countries during the GFC in 2008. In particular, the Australian 

major banks showed the highest pre-tax profits of 0.99 percent to total 

assets, followed by Canada at 0.45 percent and the US at 0.28 percent. 

In contrast, the major banks in Switzerland reported the pre-tax losses of 

1.75 percent to total assets. Similarly, the major banks in Germany, Japan, 

3 Data obtained from the annual reports of Bank for International Settlements. “Profitability of Major 
Banks from Bank for International Settlements.” http://www.bis.org/publ/ 
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and the United Kingdom also reported the pre-tax losses of 0.45 percent, 

0.16 percent and 0.05 percent to total assets, respectively. This could be 

because Australian banks benefited from a strong global demand for 

commodity products and an appreciating Australian dollar (International 

Monetary Fund 2012). Likewise, the banking system in Australia is highly 

concentrated and had been re-regulated before the GFC (Davis 2007). 

Reserve Bank of Australia (RBA) claimed that the relatively strong 

performance of Australian banks was a consequence of prudent 

regulation and tighter lending standards compared to those in the US 

(Reserve Bank of Australia 2009). Overall, there were 167 ADIs in 

Australia with total assets amounting to AUD4.15 trillion in September 

2014, with the four pillar banks contributing 78.2 percent, i.e. AUD3.25 

trillion, of the total assets4.  

4 Data obtained from Australian Prudential Regulation Authority. 2015. “Monthly Banking Statistics." 
http://www.apra.gov.au/adi/Publications/Pages/monthly-banking-statistics.aspx 
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Figure 2.1 Pre-tax Profits of Major Banks (% of Total Assets) 

 

When Basel I was introduced in 1988, one of the main problems 

highlighted was the requirement of a minimum 8 percent capital ratio on 

risk-weighted assets for credit risk only. Credit risk arises from an inability 

or unwillingness by borrowers to meet their obligations to an institution, 

such as repaying a loan (Australian Prudential Regulation Authority 

2011c). While there was no capital requirement for market risk, the 

regulator soon realized that banks were not providing sufficient amount 

of capital to absorb large unexpected trading losses for excessive market 

risk and moved to rectify this issue. And so, Basel I was amended in 1996, 

requiring banks to apply minimum capital requirements for market risk. 

The Basel Accord defines market risk as the “risk of loss in on- and off-

balance sheet positions arising from movements in market prices” (Basel 

Committee on Banking Supervision 1996, 1). The four market risks 

identified in the Basel Accord included interest rate risk, equity risk, 
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foreign exchange risk and commodity risk. The prudential regulation of 

market risk requires banks to hold at least three times that of VaR as a 

risk capital to mitigate against large unexpected trading losses. The 

market risk capital requirements comprise of two separate charges, i.e. 

‘specific risk’ and ‘general market risk’. Specific risk is the “risk that the 

value of a security will change due to issuer-specific factors” regardless 

of whether it is short or long position and general market risk is the “risk 

of loss due to the changes in market interest rates” (Basel Committee on 

Banking Supervision 1996, 9).  

Market risk is measured by Value-at-Risk (VaR). VaR is described as a 

procedure to measure the probability of maximum loss over a target 

horizon within a given confidence level (Jorion 1996, 2007). For example, 

an Australian bank holds a trading portfolio with the daily VaR of AUD 3 

million at 99 percent confidence level. It can be interpreted as there is 

one percent chance that a loss is exceeding AUD 3 million for the next 

day. So, the bank has to hold at least AUD 9 million as risk capital over 

the next day. J.P. Morgan introduced the RiskMetrics method to calculate 

VaR (see RiskMetrics Group 1996). They argued that this method reduces 

computational burdens in measuring market risk and can be used for any 

asset in a bank’s trading portfolio. Since then, the use of more 

sophisticated and complex VaR models in banks has escalated. The 

techniques of calculating VaR and their criticisms are discussed in Section 

2.3.  

As set out in Basel III, banks are required to follow a standardized 

approach to measuring each of the four market risk identified above. The 

standardized approach was set by the original 1996 Basel Capital Accord. 

It is acknowledged that the “one-size-fits-all” approach may not be 
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adequate to capture the risks inherent in large and complex trading and 

derivative portfolios (Basel Committee on Banking Supervision 2013). 

Hence, an internal models approach is introduced to the banks with large 

and complex trading and derivative portfolios. The use of internal models 

allows banks to set capital charges that closely conform to their actual 

market risk exposures. The internal models incorporate two criteria, 

namely qualitative and quantitative standards. The qualitative standards 

include the appointment of an independent risk control unit to regulate 

day-to-day risk management process. The board of directors and senior 

managers should be actively involved in the risk controlling process. The 

unit is also responsible for conducting a rigorous and comprehensive 

stress-testing programme on the bank’s trading positions daily. Most 

importantly, the bank’s internal risk measurement model must be fully 

integrated with other risk management systems. An independent review 

of the bank’s risk measurement system should also be carried out 

regularly for audit and control purposes. Quantitative standards involve 

the specification on estimating day-to-day VaR model, and the risk 

assessment for large and complex portfolios. Banks are to calculate the 

VaR on a daily basis with 99 percent of confidence level and report the 

VaR over a 10-day holding period. The standards also require banks to 

describe the backtesting procedures that are used to validate a VaR 

model and the impact of backtesting results to daily capital charges. The 

procedures for backtesting are presented in Section 2.4. Other 

requirements include the need for frequently updating the bank’s 

datasets and a minimum length of the historical observation period. A 

detailed description of the qualitative and quantitative standards is 
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available from the report of Basel Committee on Banking Supervision 

(2011a). 

To date, the Australian four pillar banks have adopted the internal 

models approach. Basel III has allowed these banks to design and 

implement their own procedures, within the approval of APRA, in 

measuring and managing their risk (Basel Committee on Banking 

Supervision 2014e). It is worth noting that the internal models approach 

is hard to monitor and usually expensive to administer. However, the use 

of internal models can provide unintended incentives to banks to 

underestimate minimum capital requirements. 

Recent research has been attempted to assess the specification of the 

internal models approach and the extent to which the approach is 

operated in Australian ADIs. In particular, Rutkowski and Tarca (2014) 

explored the implementation of the internal models approach in 

Australian major banks to assess the adequacy of capital requirements 

relative to credit risk. Their findings were limited by the access of internal 

bank datasets that are highly confidential and not publically available. 

Hence, they adopted a practical modification using readily available data 

to evaluate the model specification of the internal models approach 

implemented by Australian major banks. Their results supported the 

notion that the Australian banking system was able to withstand severe 

shocks during the GFC, although some banks fell below the minimum 

threshold of capital requirements. They complimented APRA for its 

efforts in protecting the Australian banking sector against bankruptcy. 

They also suggested that a higher capital requirement is desirable to 

improve the stability of the financial system in Australia. In a recent Basel 

Committee on Banking Supervision (2014c) report, the internal models 
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approach adopted by Australian ADIs had been described to be 

substantively in line with the Basel Accord. However, Moosa and Burns 

(2013) argued that the regulatory capital requirements under Basel III 

will not make Australian ADIs more resilient against the future financial 

crisis. They claimed that the probability of future financial crisis occurring 

and the severity of its consequences could not be reduced by merely 

imposing a greater amount of capital charges. Hence, they questioned as 

to whether the proposed regulatory changes in Basel III contribute to 

better risk management practice for Australian ADIs, or it is merely a 

compliance exercise. 

Under Basel II, the emphasis on the accuracy of risk assessment relies on 

a three-pillar structure, namely minimum capital requirements, 

supervisory review process, and market discipline (Basel Committee on 

Banking Supervision 2006). The structure was revised in the Basel III 

when major international banks suffered large unexpected trading losses 

from the subsequent crises in the financial market. Figure 2.2 illustrates 

the three-pillar structure of Basel III (Basel Committee on Banking 

Supervision 2006, 2011a). Pillar 1 was a direct replacement of Basel I and 

requires banks to assess their regulatory capital requirements for the 

market, credit, and operational risk. This is to allow banks to determine 

the amount of capital requirements more adequately based on data and 

formal techniques to reduce regulatory arbitrary. 
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Figure 2.2 Structure of Basel III  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Apart from market risk as explained above, credit risk has been 

implemented to account for the probability of default in contractual 

obligations such as loans on a bank’s lending book. If borrowers failed to 

repay their loans, a bank might experience credit losses. These credit 

losses will reduce a bank’s profitability and affect a bank’s capital ratio. 

A comprehensive study on the Australian banks’ large credit losses was 

conducted by Rodgers (2015) over two decades from 1980 to 2013. The 

large credit losses in Australia can be categorized into two episodes. One 

was the credit losses around the early 1990s recession, and the other was 

during and after the GFC. His findings showed that the Australian banks’ 
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large credit losses appear to closely related to large unexpected trading 

losses for excessive market risk during both episodes. Likewise, Allen and 

Powell (2012) showed that Australian banks’ credit risk increased 

dramatically during the GFC.  

One of the problems with the Basel I was that it focused on credit risk at 

the expense of the Australian banks’ total risk (Hogan and Sharpe 1990). 

At the same time, the classification of credit risk also encouraged banks 

to transfer their risky assets off their balance sheets through 

securitization. As a result, banks were not holding sufficient amount of 

capital against risky assets (Santos 2001). Under Basel III, three methods 

are introduced in measuring the credit risk capital requirements, namely, 

the use of credit-ratings by external credit-rating agencies (the 

Standardized Approach); Foundation Internal Ratings Basis (FIRB) on the 

probability of loan default; and Advanced Internal Ratings Basis (AIRB) on 

loss given default (Basel Committee on Banking Supervision 2011a). FIRB 

and AIRB allow banks to assess credit risk capital requirements based on 

their credit exposures and internal credit-ratings on different asset 

classes. The Basel Committee is continually seeking to improve the 

design of the Standardized Approach for credit risk (Basel Committee on 

Banking Supervision 2014f). A several key aspects were proposed, 

including reduced the reliance on the use of external credit-ratings, 

increased credit risk sensitivity, increased comparability of capital 

requirements between banks using the standardized approach and the 

internal ratings-based approach and better clarity on the application of 

the standards. 
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Operational risk arises due to human acts of fraud and technical errors in 

a bank’s day-to-day business activities, processes, and system (Gregoriou 

2009). The initial work related to operational risk was carried out by the 

Basel Committee in 1998 (Basel Committee on Banking Supervision 1998). 

Later, operational risk was included in Basel II. A famous example of 

operational risk in practice is Nick Leeson, the rogue trader who brought 

down Barings Bank in February 1995 (Power 2005). Similarly, one of the 

most notorious events in Australian banking history was the large trading 

losses of AUD360 million incurred by the National Australia Bank (NAB) 

in January 2004. The losses occurred due to an increase of risk-taking in 

large and complex foreign currency options portfolio combined with the 

adverse expectation of currency movements. The traders were aware 

that the trading losses had been incurred and concealed losses by 

entering into false transactions (Hamer and Rivett 2004). As a result, 

APRA was called to investigate and review the circumstances associated 

with the trading losses. The investigation revealed that the losses were 

caused by the negligence of the Board and inadequacies in risk 

management systems. The investigation had led to the improvement in 

the design and implementation of NAB’s risk management framework 

(Australian Prudential Regulation Authority 2004). Moosa and Silvapulle 

(2012) conducted a study of 54 operational loss events for 8 Australian 

banks during the period from 1990 to 2007. Their findings showed that 

operational losses would have a great negative impact on the banks’ 

market values.  

Operational risk has been treated as identical to market and credit risk 

where banks are required to set a minimum capital charge to cover for 

operational risk. Three methods are introduced to measure operational 
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risk capital requirements, including Basic Indicator Approach (BIS); 

Standardized Approach (TSA); and Advanced Measurement Approach 

(AMA) (Basel Committee on Banking Supervision 2011b). A bank may use 

one of the above approaches to measuring their operational risk. The 

simplest method is the BIA by which the capital charge is calculated as a 

percentage of gross income, a proxy for operational risk exposure, at 15%. 

This method does not require the supervisory approval. Under the AMA, 

a bank is allowed to develop its own internal models to calculate the 

capital requirements for operational risk. The minimum capital ratio for 

a typical AMA bank is set at 10.8% of its gross income. This method 

involves a rigorous risk management framework and subjects to the 

supervisory approval. Whereas, the TSA requires banks to divide their 

total gross income into eight different business lines, including corporate 

finance, trading and sales, retail banking, commercial banking, payment 

and settlement, agency services, asset management and retail brokerage. 

The capital charges are calculated as a sum of the products of the gross 

income for each business line and a specific regulatory coefficient, known 

as beta, is assigned to each line. The use of TSA requires compliance with 

a set of qualitative criteria relating to operational risk management 

systems, and banks are required to obtain approval from the supervisory 

authority. A variant of the TSA, the Alternative Standardized Approach 

(ASA) allows banks with high interest margins to calculate their 

operational risk capital requirements by replacing the gross income for 

two business lines, retail banking, and commercial banking, with a fixed 

percentage of their loans and advances. In 2014, the Basel Committee 

proposed revisions to the TSA for measuring operational risk capital 

requirements (Basel Committee on Banking Supervision 2014d). The 
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revised TSA would replace the existing approaches, BIA, and TSA, 

including its variant the ASA. The Business Indicator (BI) would be used 

to replace gross income in determining operational risk capital 

requirements. BI consists of three major components, interest, service, 

and financial components. The use of BI was proposed on the basis that 

it has a greater predictive power to capture a bank’s business volume, 

hence more sensitive to operational risk. According to the International 

Monetary Fund (2010) report, Australian ADIs have been accredited as a 

low operational risk. This is due to vigilant political stability, well-

regulated legal system, low security risk, steady economic growth and 

international trades. 

Pillar 2 of Basel III focuses on the role of supervisors in evaluating each 

bank’s overall risk exposure and assesses the regulatory capital 

requirements against additional risk. Supervisors are allowed to seek 

clarification from banks and propose immediate actions to prevent 

capital from falling below the minimum levels. The primary objective is 

to strengthen the soundness and stability of the international banking 

system. In Australia, APRA is responsible on ensuring the compliance with 

all regulatory requirements as set by the Basel Accord. Despite the 

increasing capital requirements resulting from the GFC, the Australian 

banking system continues to exhibit high performance apart from capital 

pressures due to global liquidity contraction (Australian Prudential 

Regulation Authority 2007a, 2007b). Arguably, APRA has played a sound 

supervisory role in enforcing Basel III requirements and has built robust 

regulatory and supervisory guidelines by promoting a well-capitalized 

banking system in the current financial environment. However, it is 

important to recognize that the APRA’s effectiveness as a prudential 
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regulator for dealing with financial distressed ADIs depends on having a 

clear mandatory and operational independence, a strong prudential 

framework, an active risk management programme, and adequate 

staffing and financial resources to meet its statutory objectives 

(Australian Prudential Regulation Authority 2014b). 

As a response to the extreme events over the past decades, the Basel 

Committee has undertaken desperate measures in requiring banks to 

disclose comprehensive capital guidelines in their trading books. Under 

Basel II, Pillar 3 - Market Discipline, was introduced as a supervisory and 

regulatory tool for monitoring and controlling banking risk. Subsequently, 

new disclosure requirements were greatly increased in Basel III. Pillar 3 

seeks to promote market discipline through the public disclosure of every 

detail of each bank’s regulatory capital requirements. In particular, Pillar 

3 requires banks to report the nature, frequency and types of risk 

exposure including market, credit, operational risk. It also outlines 

general and specific disclosure requirements on the banks’ trading books. 

The disclosure as suggested in Pillar 3 can be extensive such that the 

implementation of internal models by banks to accurately capturing the 

regulatory capital requirements can be onerous and sometimes costly to 

administer. 

Given that banks are allowed by the Basel Accord to design their own VaR 

models, the extent to which VaR models are reported, and the accuracy 

of reported VaR measures raise some concerns to the regulator. Hirtle 

(2003) found that the market risk capital charges provide useful 

information about banks’ future trading risk. An earlier study by Jorion 

(2002) analysed the informativeness of quarterly VaR forecasts disclosed 

in the financial reports of 8 major banks in the US. He showed that VaR 
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measures appear to be useful in forecasting the variability of banks’ next 

quarter trading revenues. Liu, Ryan, and Tan (2004) examined the 

technical complication on VaR models across 17 banks in the US. 

Consistent with Jorion (2002), they stated that banks with better 

information and complex VaR models are informative in predicting banks’ 

future trading risk. A study by Pérignon and Smith (2010a), using a 

sample of 60 large US and international banks, argued that banks provide 

very little useful information about banks’ future trading risk. 

Consequently, they commented that the level and quality to which VaR 

measures is disclosed is indifferent to the regulator.  

In Australia, APRA is responsible for collecting data for its own purposes 

and acts as a national statistical agency for the financial sector, collecting 

data on behalf of the Reserve Bank of Australia (RBA) and the Australian 

Bureau of Statistics. ADIs are required to follow the prudential standard 

as set by APRA, particular on capital adequacy on public disclosure and 

market risk (Australian Prudential Regulation Authority 2013a, 2013b, 

2013c). Most of the ADIs in Australia do report their VaR forecasts in their 

financial reports; however only a small number of ADIs provide detail 

information about their risk models and measurement results. Instead of 

presenting their risk positions on each of the components of market risk, 

ADIs frequently present only a general discussion of their overall trading 

risk in their reports. Perhaps, due to the confidentiality and loss of 

competitive advantage, ADIs may be unwilling to disclose complete 

information that potentially unveil their weaknesses and improprieties 

to other competitors in the same industry. In spite these criticisms, APRA 

completed the implementation of Basel III disclosure requirements in 

2013, and the level of public disclosures by Australian ADIs was regarded 
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as satisfactory by the Basel Committee (Basel Committee on Banking 

Supervision 2014e).  

It is worth noting that the requirements for banks to disclose information 

more completely can sometimes be very costly and may not necessary 

increase transparency. The content and format of disclosure and the 

need to manipulate numerical data to make it more meaningful may 

hinder the purpose of VaR disclosure. In some instances, banks may 

report only quarterly instead of daily VaR numbers. Some banks are more 

forthcoming and include daily time-series plots for their trading risk and 

revenues. Establishing the requirements for VaR disclosure alone cannot 

ensure an efficient and robust banking system.  However, combined with 

other forms of efforts including the role of supervising authorities in 

assessing and validating VaR models may reinforce regulatory exertions 

to improve the current banking system.  

2.3 WHAT IS VALUE-AT-RISK (VAR), AND WHY IS IT IMPORTANT? 

According to Frey and McNeil (2002), VaR is defined as follows: 

Let 
LF  denote the distribution of loss L  such that ( ) ( )LF l P L l= ≤ . Given 

some confidence level (0,1)α ∈ , the VaR of a portfolio is given by the 

smallest number l  such that the probability that the loss L  exceeds l is 

no larger than α . Formally, 

{ }sup , ( )VaR l P L lα α= ∈ < ≤   

Alternatively, VaRα
 can be defined as the lower -quantile of the loss 

distribution
LF . Then, VaRα

can be computed using the quantile function

1
LF − . 
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1( ) L
LVaR F qα αα−= =    

where Lqα
 is the lower α -quantile of the loss distribution of asset returns 

of a portfolio. Typically, α is set at 0.01. 

Under current regulations, banks are required to calculate VaR on a daily 

basis at 99 percent confidence level, i.e. 0.01α = , and report VaR over a 

10-day holding period. Based on the square-root-of-time rule, the 10-day 

VaR can be represented through 1-day VaR at 

10 -  10   1-  day VaR day VaRα α= ×  

This rule assumes that the daily returns are normal and iid. Banks are 

allowed to scale 1-day VaR to longer horizons depending on the liquidity 

of a bank’s trading portfolios. For example, a time horizon of 10 days will 

be used for a foreign currency portfolio while a time horizon of 120 days 

will be used for the credit spreads of an options portfolio. Typically, a 

bank rebalances its portfolios very frequently, and the assumption that 

the risk of a portfolio remains unchanged over a longer horizon is 

questionable. Hence, to extrapolate 1-day VaR to 250-day VaR using a 

square-root-of-time rule is meaningless. Similarly, the rule does not hold 

when the asset returns are modelled with a GARCH(1,1) process. Drost 

and Nijman (1993) derived the temporal aggregation for GARCH(1,1) 

processes and showed that GARCH(1,1) is not closed under temporal 

aggregation. The best approximation to h-day volatility is unlikely to 

produce similar parameters by aggregating the approximation to 1-day 

volatility. Hence, the square-root-of-time rule is inappropriate, and the 

scaling of time-varying volatility into longer horizon does not work. See 

also Christoffersen, Diebold, and Shuermann (1998) and Wang, Yeh, and 

Cheng (2011). The square-root-of-time rule is simple and easy to 
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calculate, but it has some serious drawbacks. Nonetheless, the square-

root-of-time rule has been widely used and accepted by banks and the 

regulator. 

One of the biggest criticisms regarding the use of VaR is that it is not 

subadditive. Artzner et al. (1999) demonstrated that VaR fails 

subadditivity, i.e. a property that is desirable for a risk measure. 

Following the principle of diversification in modern portfolio theory, a 

subadditivity measure should reduce the risk for a diversified portfolio. 

Subadditivity can be illustrated by using a simple example. Consider two 

assets which returns are independent and identically distributed (iid). If 

VaR is homogeneity,  

1 2 1 2( ) ( ) ( )VaR L VaR L VaR L Lα α α+ ≥ +   

However, Artzner et al. (1999) proved that VaR does not satisfy the 

subadditivity property since 

1 2 1 2( ) ( ) ( )VaR L VaR L VaR L Lα α α+ < +   

The property of subadditivity is of particular importance for the regulator 

in unexpected events such as the GFC. The purpose of VaR is to calculate 

the amount of capital required to protect against unexpectedly large 

trading losses. Intuitively, if the regulator uses a non-subadditive risk 

measure in determining the regulatory capital needed, then banks have 

an incentive to use VaR to reduce their capital charges. Therefore, banks 

may not, in fact, have an adequate amount of capital to mitigate against 

unexpectedly large trading losses. The study by Basak and Shapiro (2001) 

supports this intuition, and they found that VaR risk managers who 

optimized their portfolios to minimize VaR may intentionally or 

unintentionally choose an allocation that is of larger exposure to risky 
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assets than non-VaR risk managers. As a result, VaR risk managers 

consequently incur greater losses when unexpected adverse market 

events occur. By definition, VaR only represents one quantile of the profit 

and loss distribution and disregards the tail loss beyond the quantile (see 

Danıélsson 2002). An alternative method to calculate the conditional 

expectation of loss beyond VaR at a confidence level is the Expected 

Shortfall (ES) proposed by Artzner et al. (1999) and introduced by 

Rockafellar and Uryasev (2002) as Conditional Value-at-Risk (CVaR). A 

more general definition of ES is given by Acerbi and Tasche (2002a, 

2002b). ES not only accounts for the severity of losses beyond VaR, but it 

is also a coherent risk measure that displays the property of subadditivity. 

These desirable properties have been shown by Artzner et al. (1999), 

Acerbi and Tasche (2002a, 2002b), and Rockafellar and Uryasev (2002).  

Despite the main criticism of VaR not having subadditivity, Garcia, 

Renault, and Tsafack (2007), Ibragimov (2009) and Daníelsson et al. (2013) 

found that VaR can be subadditive in circumstances when asset returns 

have a fatter tail distribution than the normal distribution. These studies 

showed that VaR violates subadditivity when assets are subjected to 

occasional very large returns and when the tails of distributions are super 

fat. In reality, asset returns are found to be non-normal and have been 

shown to produce fat tails in the return distributions (see, for example, 

Mandelbrot 1963, Fama 1965, Bollerslev 1987). Therefore, VaR is still 

relevant given that asset returns are moderately fat-tailed at the lower 

tail of the distribution and VaR displays subadditive property in these 

regions.  

Currently, a debate is going on whether the use of ES should be 

recommended in the future proposition of the Basel Framework. So far, 
Page | 32  

 



 

VaR is still prescribed by the regulator because of its superior statistical 

performance and its simplicity in mathematical application. Yamai and 

Yoshiba (2005) found that VaR estimates are more accurate than ES 

estimates when the loss distributions have fat tails. A larger number of 

observations is required to reduce the estimation error of ES. Hence, ES 

is computationally more complex under fat-failed distribution. Intuitively, 

VaR models are statistically more stable than ES thus lead to a superior 

out-of-sample forecasting performance. Consequently, the quality of 

VaR models is easier to verify than ES.  

Theoretically, ES has some advantages over VaR models. In practice, 

banks and the regulator use VaR extensively, and its importance as a risk 

measure is, therefore, unlikely to diminish. From the perspective of 

industry practice, they are looking for a simple and robust risk measure. 

A notable survey conducted by EDHEC Risk-Institute for 229 financial 

institutions based in Europe in 2008 showed that VaR continued to be 

one of the most commonly used risk measures by the industry. However, 

the survey found that most of the risk managers failed to measure risk 

optimally due to lack of sufficient knowledge in VaR techniques. They 

ignored the fact that VaR primarily focuses on the tail of return 

distribution under the assumption that asset returns are normally 

distributed. Whereas, it is widely documented that the probability 

distribution of asset returns is fat-tailed. This means that the extreme 

price movements occur more often than normally predicted. After all, 

the choice of the best performing risk measure depends on the 

complexity of mathematical procedures and the stability of statistical 

assumptions. Hence, more advanced and sophisticated risk 

measurement methods are less likely to be used by the financial industry 
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due to lack of practical applications and difficulties in assessing the 

quality of these models by the regulator.     

2.4 BACKTESTING 

The current regulatory framework requires banks that use their own 

internal risk models to calculate the VaR on a daily basis at 99 percent 

confidence level and report the VaR over a 10-day holding period. 

Backtesting procedures have been used to evaluate the performance of 

VaR models, where the actual returns are compared with the VaR 

forecasts to assess the quality of banks’ internal models. Specifically, the 

market risk capital charge is determined as the lower of either the bank’s 

current assessment of 99 percent VaR over the next 10 trading days or a 

multiple of the bank’s average reported 99 percent VaR over the previous 

60 trading days plus an additional amount that reflects the underlying 

market risk of the bank’s trading portfolios (Basel Committee on Banking 

Supervision 2011a). 

According to the Basel Accord, banks are allowed to backtest their VaR 

models using actual or hypothetical profit and loss from their trading 

portfolios (Basel Committee on Banking Supervision 2006). Hypothetical 

profit and loss for banks’ trading portfolios are calculated by applying the 

current day’s price movements to the previous day’s end-of-day 

portfolios. If banks are using the actual profit and loss of their trading 

portfolios, they must exclude fees, commissions, and net interest 

incomes, which are not directly related to market risk. Hypothetical 

backtesting may be more realistic, but it imposes substantial 
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computational burdens given that the banks’ trading positions and the 

composition of their portfolios change daily. 

A violation is recorded when an actual loss on a portfolio exceeds the 

forecasted VaR. Banks using VaR models that lead to a significant number 

of violations are required to hold a higher level of capital charges. 

Subsequently, if they violate more than 1 percent in a financial year, they 

may be required to adopt the standardized approach (Basel Committee 

on Banking Supervision 2011a). The imposition of such penalty can be 

inappropriate as it affects banks’ profitability and exposes banks to high 

default risk. Particularly, in situations of severe market conditions. A 

large number of violations may signal that the bank is undergoing serious 

financial difficulties. Imposing a high penalty charge will add additional 

financial burdens to the bank (Lucas 2001). 

A procedure is used to calculate the number of times that the actual 

losses exceed VaR forecasts on the previous 250 trading days. Hence, 

,

,

1 if 
0 if 

t t
t

t t

L VaR
V

L VaR
α

α

>
=  ≤

                 (2.1) 

The total number of violations on the previous 250 trading days is 

calculated as: 

250
250

1
t t

t
V V

=

= ∑                    (2.2) 

The percentage of violations on the previous 250 trading days is given by: 

250250

1

1 t
T t

t

VV V
T T=

= =∑   where T = 250 in the Basel Accord           (2.3) 
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Ideally, a good model will have a percentage of violation that is very close 

to one percent. 

0.01:  VaR model correctly forecasts market risk
0.01:  VaR model overesimates market risk
0.01:  VaR model underesimates market risk

T

T

T

V
V
V

=
<
>

  

The market risk capital charges (MRCC) on each bank must be set either 

at the lower VaR of the previous day, or the average reported 99 percent 

VaR over the previous 60 days trading days, multiplied by a scaling factor 

of (3+k) for a violation penalty. The scaling factor calculates the 

probability that a violation occurs for a given day over the previous 250 

trading days. Formally, it can be written as:   

    
60

, ,
1

1min , (3 )
60t t t t

i
MRCC VaR k VaRα α

=

 
= + × 

 
∑               (2.4) 

where, 

250
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0.50 6( )
0.65 7( )
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0.85 9( )
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t

t
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t
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 ≤
 =
 =


= =
 =
 =
 ≥

                (2.5) 

A bank is categorized in the green zone if its VaR model is adequately 

accurate with no additional capital charge required. While, if a bank falls 

into the yellow zone, an additional capital charge will be imposed to 

justify the excessive number of violations. Finally, a bank is categorized 

in the red zone if its VaR model is not appropriate, and will be required 

to include a greater amount of capital charge. This penalty factor will only 
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be reduced when the bank can demonstrate that there is an 

improvement made to its model.  

Pérignon, Deng, and Wang (2008) showed that banks are likely to be 

cautious when reporting their VaR forecasts. This could be due to the 

difficulties for banks to aggregate VaR forecasts across different business 

lines, or banks do not want to put their reputation at risk. Similarly, in the 

earlier study by Berkowitz and O'Brien (2002) indicated that banks prefer 

to report high VaR forecasts to avoid the structural complication and the 

possibility of regulatory intervention in their risk models. If too many 

numbers of VaR violations are reported, a greater amount of penalty 

charges is imposed. The banks may be required to adopt the standardized 

approach for VaR estimation (Basel Committee on Banking Supervision 

2011a). Lucas (2001) found that the current penalty structure is unlikely 

to provide a strong incentive for banks to design VaR models that provide 

good estimates to reflect their actual market risk exposure. It is profitable 

for banks to underreport their actual VaR forecasts. Consequently, da 

Veiga, Chan, and McAleer (2011) showed that a more severe penalty 

structure is probably desirable to discourage banks from choosing 

forecasting models that underestimate VaR. In particular, they proposed 

a new penalty structure that is based on the magnitude of violations 

instead of the current penalty structure that is based on the number of 

violations. An appropriate penalty structure may encourage banks to 

improve their risk models in forecasting VaR more precisely. Santos et al. 

(2012) proposed an alternative approach to determining the minimum 

capital requirements based on an optimal portfolio strategy. They 

applied Sharpe ratio to find the optimal weights of portfolios. By 

comparing the level of VaR forecasts and the number of VaR violations 
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based on the optimal portfolio approach, a lower level of capital 

requirements can be achieved. 

Even though the Basel Accord does not require banks to test their VaR 

models statistically, some formal statistical procedures are desirable, and 

many tests are proposed in the academic literature. These tests reflect 

mostly the concerns of the regulator who prefers banks to use VaR 

models that display correct statistical properties. While, most statistical 

tests focus on the number of violations, they give a low power of testing 

(see, for example, Kupiec 1995). Other tests looking at the timing and 

magnitude of violations have demonstrated to be more useful (see, for 

example, Christoffersen, Hahn, and Inoue 2001). A detailed description 

of the techniques of the statistical tests is presented in Chapter 3. 

Ideally, banks should be able to report their VaR forecasts based on 

different models to minimize daily capital charges and to manage the 

number of violations strategically. In which case, banks can adopt 

different strategies depending on the current and future expectation of 

market conditions. In the study by McAleer, Jimenez-Martin, and Pérez-

Amaral (2010), they proposed an alternative decision rule that allows 

adjustment of the penalty structure based on the past period violations 

in calculating daily capital charges. They showed that during periods of 

adverse market conditions when the number of violations is expected to 

be high, a higher capital charge can be imposed to cover the worst 

possible loss. While, in periods of low market volatility, when the number 

of violations is expected to be small, banks are allowed to pay a lower 

capital charge. Hence, more funds can be invested in assets at a lower 

marginal cost to increase banks’ profitability.  
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2.5 CONCLUSION 

The level of capital a bank holds indicates the future ability of the bank 

to grow, as well as its ability to withstand unexpected losses without 

becoming insolvent. The Basel Accord framework has undergone several 

revisions to address the inadequacy of minimum capital requirements to 

accommodate risk. The 1988 Basel Accord considered only the credit risk 

of bank assets and was not explicitly accounted for market and 

operational risk. Basel I was amended in 1996 to include market risk 

capital requirements given that banks were increasing exposed to market 

risk from their trading activities of financial assets and derivatives. This 

amendment is also allowed banks to use either the standardized 

approach or their own internal models to determine their regulatory 

capital requirement for market risk. This is to accommodate the original 

Basel Accord of “one-size-fits-all” approach which may not be adequate 

to capture the risks inherent in banks’ large and complex trading and 

derivative portfolios. Basel II was reformed in 2004 to improve the 

modelling approaches to risk management, particularly the regulatory 

capital requirement for operation risk. Basel II also established the 

supervisory review process (Pillar 2) and the role of disclosure and 

market discipline (Pillar 3). However, the GFC showed that many 

international banks had built up excessive leverage and had a capital 

level that was inadequate and of insufficient quality. Hence, the Basel II 

regulatory framework was revised as it was clear that there was an 

insufficient amount of capital held to withstand large unexpected trading 

losses. As a result, Basel III has extended the scope of its regulatory 

framework to accommodate more sophisticated risk factors in the 
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current financial environment. Basel III considers new aspects of risk 

management, in particular, the responsibility of supervisory authority in 

monitoring and controlling the current risk management system in Pillar 

2 and the stringent disclosure requirements in Pillar 3 (Basel Committee 

on Banking Supervision 2011a). The framework also introduced a non-

risk-based leverage ratio with two liquidity standards, namely LCR and 

NSFR. These ratios are intended to strengthen banks’ short-term liquidity 

position and to ensure banks to maintain a stable funding level.  

While it is too soon to determine the success of Basel III, some insights 

could be drawn from the implementation of the previous Basel Accord. 

Australia may have avoided the GFC; however, this does not rule out a 

future crisis. APRA needs to be prepared for future bank failures and to 

consider options for minimizing the risk of failure. Perhaps, a contingency 

plan is critical in the case of a major event, for example, the decision to 

bailout banks in the period of crisis. Nonetheless, APRA has the 

responsibility to improve supervision and prudential standards, by 

ensuring that banks meet regulatory capital requirements, provision for 

bad loans, and publish informative financial information timely. Under 

the direction of APRA, Australian banks have extended these efforts by 

evaluating their capital positions to cover for market risk exposure. 

Stress-testing techniques have been used to identify the probability at 

which a large unexpected trading loss may occur beyond the minimum 

level of capital requirements. It requires banks to keep enough amount 

of capital even under highly adverse market conditions. Even though the 

stress-testing was useful as part of a risk management process, the 

difficulties of the application of these tests were often too restrictive. 

Banks may decide not to publish the full specification of their models that 
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frustrate the efforts of the supervising authority in validating the 

accuracy of the models. At the same time, banks are worried that, with 

the increased level of disclosure, they may potentially unveil their 

weaknesses to other competitors in the same industry. Practically, the 

implementation of a fully integrated VaR model can be very costly, and 

the ability to model VaR accurately may be constrained by limited data 

availability and computational burdens. Note that banks may wish to 

select models that not only satisfy the regulatory requirements by the 

Basel Committee but also minimize capital costs. These arguments will 

be highlighted in the next chapters.  
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TAIL INDEX OF MAJOR CURRENCIES TRADED IN AUSTRALIA 

3.1 INTRODUCTION 

In recent years, extreme events, such as the Global Financial Crisis (GFC), 

have caused large unexpected losses in financial institutions. The 

necessity of central banks to continuously bail out financially distressed 

firms has cast doubt on the adequacy of current risk management 

strategies. Hence, establishing robust risk evaluation techniques to 

manage losses during extreme events become increasingly critical. In 

particular, Value-at-Risk (VaR) has become an important risk 

measurement tool in finance. Despite its popularity, the major challenge 

of VaR concerns with its robust construction to provide an accurate 

forecast of extreme events without knowing the exact dynamics in 

portfolio’s returns. A detailed discussion of VaR is presented in Chapter 

2. 

This study proposes an alternative method to forecast VaR. From a 

probabilistic viewpoint, asset returns can be modelled as the outcomes 

of a sequence of continuous random variables. In that case, extreme 

observations belong to the tail of associated probability distribution. 

Therefore, an understanding of the tail behaviour is crucial where the 

measurement of risk are mostly referred to the observations located at 

the lower tail (Hols and De Vries 1991). The tail index can be 

characterized as the rate at which probability mass decays in the tail of a 
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distribution (Kearns and Pagan 1997). Let 1, 2 ,..., nX X X be iid random 

variables that represent returns from a distribution, f , 

( ) ( ) 1 k
if x P X x Ax−= > = −                 (3.1) 

where 0A > is a constant and 1 0k
λ

= >  is the tail index. 

The seminal work of Hill (1975) proposed an estimator of tail index based 

on a sample of independently and identically distributed (iid) random 

variables. Hill (2010) extended the Hill (1975) estimator further to 

accommodate a much wider class of data generating processes. Mikosch 

and Starica (2000) and Berkes, Horváth, and Kokoszka (2003) applied 

those estimators for tail index under the assumption that the conditional 

variances of asset returns follow a Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) process. This study generalised 

Hill (1975) estimator to the case of asymmetric extension of GARCH 

model (GJR-GARCH) by Glosten, Jagannathan, and Runkle (1993). 

Empirical studies using the tail index in foreign exchange returns are 

numerous. A notable study by Wagner and Marsh (2005) performed a 

simulation analysis of tail index on foreign exchange returns in a small 

sample setting to estimate the tail of a distribution. While, Payaslioǧlu 

(2009) investigated potential regime switching behaviours of the 

exchange rate in Turkey.  More importantly, the relationship between 

the tail index and VaR of the unconditional distribution was explored in 

the studies of Iglesias and Linton (2009), Iglesias (2012), and Iglesias and 

Lagoa Varela (2012). Their results suggested that tail index provides an 

important avenue to estimate VaR.  
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The contribution of this study is threefold. Firstly, the study extends the 

results found in Mikosch and Starica (2000) and Berkes, Horváth, and 

Kokoszka (2003) to accommodate the presence of asymmetric GARCH 

error in the estimation of a tail index. Secondly, it forecasts VaR of foreign 

exchange returns by the proposed estimator with daily exchange rate 

data for an equally-weighted portfolio of AUD with twelve other 

currencies. This approach is based on Iglesias (2012), and Iglesias and 

Lagoa Varela (2012), which apply the tail index estimator proposed in 

Mikosch and Starica (2000), and Berkes, Horváth, and Kokoszka (2003). 

This study provides the first empirical comparison on the impact of model 

specifications in estimating tail index and VaR for the case of GJR-GARCH. 

It is worth noting that the VaR obtained by tail index is unconditional to 

past information. This study will then compare the empirical 

performance of this unconditional VaR forecasts by tail index with the 

unconditional VaR forecasts as suggested by Jorion (1996, 2007) in 

addition to conditional VaR forecasts that incorporate time-varying 

volatility information. An unconditional VaR model provides an overview 

of market risk over long periods, hence, it is appropriate for calculating 

large loss forecasts. Even when the time horizon is shorter, banks often 

prefer unconditional models to avoid frequent undesirable changes in 

market risk limits (Danielsson and de Vries 2000). For a bank which 

rebalances its large and complex portfolios very frequently, the 

conditional models may not be feasible since this requires continuous 

constructing and updating new volatility forecasts that associate with 

high transaction costs. Nevertheless, conditional volatility forecasts are 

important in many situations. When the investment horizon is short, e.g. 

intra-day, conditional models may be preferred for risk forecasting to 
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accommodate for very large extreme returns in a high volatility period. 

Hence, conditional models imply more volatile risk forecasts than 

unconditional models given that they can quickly adapt to recent 

volatility in the market. Notice that the use of conditional models may 

lead to capital requirements that fluctuate extremely over time. Hence, 

it is impossible for a bank to rapidly adjust its capital base to 

accommodate changing market conditions. A bank may very well use 

unconditional models for market risk capital charges. While, conditional 

and unconditional models give banks different but beneficial information 

about market risk, the choice of the models mainly depends on a bank’s 

trading strategy and its trading environment. Since foreign exchange 

returns are known to be fat-tailed, this study also suggests the use of 

student-t distribution as an alternative to the normal distribution to 

make the comparison between VaR forecasts (see Bollerslev 1987, and 

Angelidis, Benos, and Degiannakis 2004). 

Finally, the robustness of VaR forecasts is also investigated. Some 

statistical tests are conducted to evaluate the quality of VaR forecasts. 

These tests include Kupiec (1995) Test Until the First Failure (TUFF), 

followed by Christoffersen (1998) and Christoffersen, Hahn, and Inoue 

(2001) Unconditional Coverage (UC), Serial Independence (IND) and 

Conditional Coverage (CC) tests. In addition, the performance of VaR 

forecasts is also evaluated by the backtesting procedure required by the 

Basel Committee. A violation is recorded when an actual loss exceeds the 

VaR forecast. This metric is important because a good VaR model should 

lead to a correct estimation of market risk at every point in time. At the 

same time, the regulator can obtain an idea about how well a bank’s VaR 

model predicts its actual market risk exposure. Furthermore, the amount 
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of capital charges that a bank holds depends on its reported VaR. If banks 

are conservative in estimating risk, higher capital charges are 

subsequently required. Banks are therefore allocated too much capital 

to their trading activities. Nevertheless, the accuracy of VaR forecasts 

and the discipline of risk-sensitive capital charges have crucial 

repercussions for banks and the regulator to improve current risk 

management practices.  

This chapter is organized as follows: Section 3.2 presents the new 

estimator for a tail index. A selection of adaptive methods to test the 

models is described in Section 3.3. Section 3.4 provides a review of 

market risk capital requirements by the Basel Committee. Data and main 

results are presented in Section 3.5. Finally, a conclusion is drawn in 

Section 3.6.  

3.2 NEW ESTIMATOR FOR TAIL INDEX 

This section provides a concise overview of the estimation of tail index 

under the assumption that the data generating process follows the 

GARCH model of Bollerslev (1986) and its asymmetric extension by 

Glosten, Jagannathan, and Runkle (1993). 

Let tr denotes the exchange rate return at time t such that: 

1

log t
t

t

sr
s −

 
=  

 
           (3.2) 

where, ts denotes the exchange rate of an Australian dollar to foreign 

currency at time t for t = 2, …, T. 
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Consider the GARCH(1,1) model of Bollerslev (1986), 

           (3.3) 

            (3.4) 

with 0ω > , 0α ≥ , and 0β ≥ . The parameters of the model can be 

estimated by Maximum Likelihood Estimator (MLE) under normality, 

which becomes Quasi-MLE (QMLE) if does not follow a normal 

distribution. Bougerol and Picard (1992) showed that if the log-moment 

condition,  

,           (3.5) 

is satisfied, then GARCH(1,1) is stationary and ergodic. Moreover, under 

the same condition, Jeantheau (1998) and Boussama (2000) showed that 

QMLE is consistent and asymptotically normal, respectively. Ling and 

McAleer (2003) provided necessary and sufficient conditions for 

stationarity and ergodicity as well as sufficient conditions for consistency 

and asymptotic normality of QMLE for GARCH( ) but their results 

require slightly stronger assumptions than the log-moment condition in 

the case of GARCH(1,1).  

Glosten, Jagannathan, and Runkle (1993) proposed an alternative 

specification for the conditional variance equation aiming to capture the 

asymmetric effects of shocks on the conditional variance. The GJR-

GARCH(1,1) model can be written as: 

         (3.6) 

with 0ω > , 0α ≥ , 0α γ+ ≥  and 0β ≥ ,  
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where 

 

McAleer, Chan, and Marinova (2007) showed that the log-moment 

condition for GJR-GARCH(1,1) model, namely  

          (3.7) 

is sufficient for consistency and asymptotic normality of QMLE.  

Note that by Jensen’s inequality, 

  

and similar argument holds for the GJR-GARCH case. That is 

.   

Let  be consistent estimates of , respectively. Define

and , then Mikosch and Starica (2000) and Berkes, 

Horváth, and Kokoszka (2003) proposed to estimate the tail index, κ, by 

solving:  

           (3.8) 

where  

         (3.9) 

When , equation (3.6) can be viewed as the sample estimate of the 

log-moment condition. Moreover, if equation (3.5) is true when , it 

implies that the log-moment condition does not hold. Thus, equation (3.8) 
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provides an alternative way to test the validity of the log-moment 

condition given the fact that is consistent and asymptotically normal as 

shown in Berkes, Horváth, and Kokoszka (2003). Similar results can be 

obtained for GJR-GARCH(1,1) model as demonstrated in the following 

proposition.  

Proposition 1. Let follows the dynamics as defined in equations (3.3) 

and (3.6) with  such that for all . Let 

 denotes the true parameter vector governing the dynamic 

of tr  with and be an estimator of  

based on observations. Define  and 

 with their empirical counterparts 

 and , respectively. If 

(i)  

(ii)  

(iii)  for some 0δ κ>  

then  

, 

where  is the smallest positive number satisfying . 

Proof of Proposition 1. Under conditions (i)-(iii), it is straightforward to 

show there exists decompositions analogue to equations (3.8) and (3.9) 

in Berkes, Horváth, and Kokoszka (2003) GJR-GARCH model as defined in 
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equations (3.3) and (3.6) This means there is an integer  where 

 and  such that  

  

Using the fact that convergence of monotone functions to a limit is 

uniform over finite intervals, the strong law of large number implies: 

 

and  

. 

Combining these equations give  

 

and this implies 

 

and  

.  
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Following the same arguments as in the proof of Theorem 2.1 in Berkes, 

Horváth, and Kokoszka (2003) using the results above gives 

. This completes the proof.  

Remark 1. The proposition above extends the consistency result in 

Berkes, Horváth, and Kokoszka (2003) to GJR-GARCH(1,1) model. When 

0γ = , the result above reduces to Theorem 2.1 in Berkes, Horváth, and 

Kokoszka (2003). 

In practice, κ̂ can be obtained by solving  

      

where  

     

Iglesias and Linton (2009) also demonstrated the relationship between 

and VaR for a given significant level, . Formally,  

 [ ] 0
0tP r VaR c VaR κ

ν νν −= > ≡          (3.10) 

which implies  

     .         (3.11) 

Furthermore, Iglesias and Linton (2009) showed that  

     (3.12) 

is a consistent estimator for 0c .  
Page | 51  

 



 

Therefore, VaR can be estimated as  

         (3.13) 

If the portfolio returns follow a normal distribution, VaRα
 can be 

estimated by: 

          (3.14) 

where tr  is the forecast of the portfolio return at time t , ,dqα  is the 

quantile at 0.01α =  of the density of MLE, d , and tσ   is the estimated 

standard deviation of tr with m  denotes the model used. Alternatively, 

if the portfolio returns follow a student-t distribution, ,dqα  is the quantile 

at 0.01α =  of t-density with δ  degrees of freedom. Noted that the 

superscripts “std” and “norm” denotes estimates assuming a normal-

distributed return and a t-distributed return. 

If tr  follows the dynamics as defined in equations (3.3), (3.4) and (3.6), 

VaR can be estimated from the conditional mean and variance from the 

GARCH(1,1) and GJR-GARCH(1,1) models. Similarly, if the returns have a 

conditional student-t distribution, the estimates for the degree of 

freedom, δ  , and tσ  can be obtained from the fitted GARCH(1,1) and GJR-

GARCH(1,1) models.  
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3.3 BACKTESTING VAR MODELS 

As proposed by Berkowitz and O'Brien (2002) and Pérignon and Smith 

(2008), a backtesting procedure is included to verify if the number of 

actual violations is in line with the forecasted violations over a period of 

time. A violation is recorded when an actual loss on a portfolio exceeds 

the estimated VaR.  

Accordingly, a violation is defined as follows:  

     t t
t

t t

r VaR
I

r VaR




<
=

≥
         (3.15) 

Hence, the probability of observing x  violations in a sample size, T, under 

the null hypothesis, is given by: 

1( ) (1 )T x
t t tP r VaR I pπ −

−< = − =         (3.16) 

where π  is the desired proportion of observations that should be lower 

than the estimated VaR, which is typically set at 1%. Given that , 

the unconditional coverage test statistic is defined to be 

        (3.17) 

Asymptotically, ucLR  is distributed at 𝜒𝜒2  with one degree freedom. In 

which case, Kupiec (1995) showed that if the proportion of  increases 

then the VaR model underestimates the portfolio’s risk. While, if the 

proportion of  decreases then the VaR model understates the 

probability of large losses in a portfolio, thus, the VaR model becomes 

overly conservative.  

ˆ x
T

π =

ˆ ˆ(1 )2 log
(1 )

x T x

uc x T xLR π π
π π

−

−

 −
=  − 

π̂

π̂
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Kupiec (1995) also introduced TUFF test that is based on the number of 

observations until the first violation. Under the null hypothesis, TUFFLR  is 

asymptotically distributed at 2χ with one degree freedom.  

          (3.18) 

where τ  denotes the number of observations before the first violation. 

Christoffersen (1998) highlighted that the accuracy of a VaR model can 

be further identified by finding if violations are serially dependent. If 

violations are independent, the probability of a violation should be equal 

to the probability of violation conditional on the previous state. More 

formally, define a sequence of binary random variables  such that  

t t
t

t t

r VaR
x

r VaR




≥
=

<
          (3.19) 

with  and  for . If the violation is 

independent then . In order to test this, Christoffersen (1998) 

proposed the  𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖  test statistic as follows: 

               (3.20) 

where ijn  is the number of times that the event “  and ” 

occurred with 01

0
1

10
0

0

ˆ n
n n

π =
+

 and 11
11

10 11

ˆ n
n n

π =
+

. 

It is possible to test the hypotheses of serial independent and 

unconditional coverage jointly by combining the two test statistics. The 
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test for conditional coverage as proposed in Christoffersen (1998) and 

Christoffersen, Hahn, and Inoue (2001) defined the test statistic, 
ccLR , 

as  

cc uc indLR LR LR= +           (3.21) 

which is distributed asymptotically as 2χ with two degrees of freedom. 

3.4 THE MARKET RISK CAPITAL REQUIREMENTS 

The use of VaR models was officially sanctioned by the Basel Committee 

on Banking Supervision, which amended the 1996 Basel Capital Accord 

to include a capital charge for market risk (Basel Committee on Banking 

Supervision 1996). Banks have a choice between using a standardized 

approach, or their own internal VaR models as the basis for their capital 

charges for market risk (Basel Committee on Banking Supervision 2011a). 

In practice, the internal models approach leads to lower capital charges 

than the standardized approach, hence, banks prefer to set up their own 

internal VaR models to hold less amount of capital. Consequently, the 

regulator faces an important task of determining the quality of internal 

VaR models that banks use to measure market risk. The performance of 

banks’ internal VaR models and the market risk capital requirements can 

be evaluated as follows (Basel Committee on Banking Supervision 2011a): 

1. A backtest VaR model at time t  with 0.01α =  is used. 

2. A bank must backtest its internal VaR models over the previous 250 

trading days and update its dataset at least once a quarter. 

3. To monitor the frequency of violations, the number of times that the 

actual losses exceed VaR forecasts are calculated. Subsequently, the 
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percentage of violations can also be calculated. A good model will 

have a percentage of violation that is very close to one percent and 

should lead to a correct estimation of risk at every point in time. A 

VaR model that overestimates risk in a period of low volatility will lead 

to insufficient violations and requires a large amount of capital. On 

the other hand, a VaR model that underestimates risk in a period of 

high volatility will be penalized by the regulator due to excessive 

violations. 

4. The magnitude of a violation is assessed given that large violations are 

of greater concerns than small violations; the actual losses are 

compared with the VaR forecasts. 

5. The market risk capital charge (MRCC) is set either at the lower VaR 

of the previous day or the average VaR of the previous 60 days trading 

days, multiplied by a scaling factor of (3+k). The scaling factor 

calculates the probability that a violation occurs for a given day over 

the previous 250 trading days. It can be written as: 
60

, ,
1

1min ,(3 )
60t t t t

i
MRCC VaR k VaRα α

=

 
 
 

= + × ∑         (3.22) 

 

where, 

250

250

250

250

250

250

250

0 4( )
0.40 5( )
0.50 6( )
0.65 7( )
0.75 8( )
0.85 9( )

1 10( )

t

t

t

t t

t

t

t

V Green
V Yellow
V Yellow

k V Yellow
V Yellow
V Yellow
V Red

 ≤
 =
 =


= =
 =
 =
 ≥

           (3.23) 

6. The proportion of each color zone based on equation (3.23) is also 

indicated. A bank is categorized in the green zone if its VaR model is 
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adequately accurate with no additional capital charge required. 

While, if a bank falls into the yellow zone, an additional capital charge 

will be imposed to justify the excessive number of violations. Finally, 

a bank is categorized in the red zone if its VaR model is not 

appropriate, and will be required to include a greater amount of 

capital charges.  

3.5 RESULTS 

Daily exchange rates on Australian dollar (AUD) with twelve other 

currencies, namely US Dollar (USD), Japanese Yen (JPY), Pound Sterling 

(GBP), New Zealand Dollar (NZD), Korean Won (KRW), Singapore Dollar 

(SGD), Swiss Franc (CHF), Chinese Renminbi (CNY), Hong Kong Dollar 

(HKD), Indian Rupee (IDR), Malaysian Ringgit (MYR), and New Taiwan 

Dollar (TWD) are collected from Thomson Reuters DataStream 

Professional, from the period of 2 January 1984 to 31 December 2013. 

This time is chosen to capture as many major financial events as possible. 

This includes US stock market crash in 1987, European Monetary System 

(EMS) crisis in 1992, Asian currency crisis in 1997, 9/11 events in 2001, 

and the GFC in 2008.  

Using the data above, an equally-weighted portfolio of twelve currencies 

is constructed. This portfolio composition has been widely used in the 

empirical literature, see, for example, DeMiguel, Garlappi, and Uppal 

(2009). The conditional variance of portfolio returns is modelled through 

GARCH(1,1) and GJR-GARCH(1,1) under normal distribution which lead 

to two sets of conditional VaR forecasts and two sets of unconditional 

VaR forecasts by the tail index estimator as proposed in the study. The 
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study also investigates the performance of the two conditional volatility 

models under student-t distribution. The degrees of freedom set by t-

density are estimated from the standardized residuals that follow a 

normal distribution or a student-t distribution with four critical values 

that leads to four sets of conditional VaR forecasts. In addition, two sets 

of unconditional VaR forecasts derived directly from the mean and 

standard deviation of portfolio returns will also be calculated (see Jorion 

1996, 2007). All VaR forecasts are constructed at 1% level. A total ten sets 

of VaR forecasts is presented for comparison purposes. The sample size 

used for estimation is from 2 January 1984 to 31 December 2002 with 

4,950 observations and the forecasting period is from 2 January 2003 to 

31 December 2013 with 2,871. 

Table 3.1 Summary Statistics 

 
Estimation Period 

(4,950 observations) 

Forecast Period 

(2,871 observations) 

Mean -0.003917 0.010600 

Median 0.001514 0.009578 

Standard Deviation 0.596796 0.659199 

Minimum -4.105 -6.331 

Maximum 4.760 5.998 

Skewness -0.34603*** -0.56366*** 

Kurtosis 8.18774*** 13.35082*** 

Jacque-Bera 5649.52*** 12968.60*** 

Asterisks indicate ***1% significant, **5% significant, *10% significant 
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The daily returns of the portfolio for both estimation and forecast periods 

are summarized in Table 3.1. The means of the portfolio returns for both 

estimation and forecast periods are close to zero. The standard deviation 

of portfolio returns during estimation period is slightly larger than that of 

the forecast period, indicating the portfolio returns during forecast 

period was more volatile than the portfolio returns during the estimation 

period. The skewness of the portfolio returns for both estimation and 

forecast periods are negative. While, the portfolio returns display high 

kurtosis and fat-tailed. 

Figure 3.1 Histograms of Portfolio Returns 

 

Figure 3.1 presents the histograms of the normal density for portfolio 

returns for both estimation and forecast periods. 
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Table 3.2 Parameter Estimates 

Density 

in MLE 
Model 

Parameter Estimates 

   
 

 

Second 

moment 

Log-

moment 

Normal 

GARCH(1,1) 
0.0057*** 

(0.0012) 

0.0560*** 

(0.0062) 

0.9299*** 

(0.0080) 
  0.9859 -0.0207 

GJR-GARCH(1,1) 
0.0064*** 

(0.0013) 

0.0310*** 

(0.0066) 

0.9314*** 

(0.0079) 

-0.0386*** 

(0.0087) 
 0.9817 -0.0256 

Student-t 

GARCH(1,1) 
0.0069*** 

(0.0017) 

0.0834*** 

(0.0112) 

0.9050*** 

(0.0118) 
 

4.2317*** 

(0.2676) 
0.9884 -0.0239 

GJR-GARCH(1,1) 
0.0076*** 

(0.0018) 

0.0519*** 

(0.0118) 

0.9057*** 

(0.0119) 

-0.0516*** 

(0.0154) 

4.2465*** 

(0.2698) 
0.9834 -0.0293 

Asterisks indicate ***1% significant, **5% significant, *10% significant 

Standard errors are in parentheses 

  

Table 3.2 reports the parameter estimates in the GARCH(1,1) and GJR-

GARCH(1,1) models. For GARCH(1,1) model, the estimates for ω�, α�, and 

𝛽̂𝛽 are positive. This satisfies the sufficient condition to ensure 𝜎𝜎𝑡𝑡2 > 0 in 

both cases. Notice that α� + 𝛽̂𝛽 < 1, indicating that the second moment 

condition is satisfied as well as the log-moment condition, so the QMLE 

is consistent and asymptotically normal. For GJR-GARCH(1,1) model, the 

estimates for ω�, α�, and 𝛽̂𝛽 are also positive. Moreover, 0 < α� + 𝛽̂𝛽 + 𝛾𝛾�
2

<

1, thus the sufficient conditions to ensure 𝜎𝜎𝑡𝑡2 > 0 are satisfied in both 

cases. Interestingly, the asymmetric coefficient, , is smaller under 

student-t distribution than the normal distribution. The asymmetric 

ω̂ α̂ β̂ γ̂ λ̂
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effect presented in the student-t distribution has a greater impact on 

conditional variance than the one in the normal distribution. As the 

second moment condition is satisfied, the log-moment condition is 

necessarily satisfied, so the QMLE is consistent and asymptotically 

normal.  

Table 3.3 Estimated Values of 𝜿𝜿�, and  𝒄𝒄� with α = 0.01 

Density in MLE Model 𝑘𝑘� 𝑐̂𝑐 

Normal 
GARCH(1,1) 4.2119 0.2654 

GJR-GARCH(1,1) 4.8762 0.5906 

 

Table 3.3 shows the estimated values for 𝜅̂𝜅  and 𝑐̂𝑐  obtained from 

equations (3.8), (3.9) and (3.12). It can be observed that 𝜅̂𝜅  present 

estimated values of greater than 4 in both GARCH(1,1) and GJR-

GARCH(1,1) models. In particular, 𝜅̂𝜅 obtained under the GJR-GARCH(1,1) 

model shows a greater value of 4.8762 compared to 4.2119 from the 

GARCH(1,1) model. Whereas, the estimated values of 𝑐̂𝑐  from GJR-

GARCH(1,1) and GARCH(1,1) models are positive. These results are 

consistent with the literature when describing the tail behaviour of 

foreign exchange returns, see, for example, Iglesias and Linton (2009). 
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Table 3.4 Critical Values 

Model 

GARCH N
stdVaR

−  

GJR N
stdVaR

−  

GARCH t
stdVaR

−  

GJR t
stdVaR

−  

Standard-t
stdVaR  

Degrees of Freedom 11.3969 11.3969 11.8123 11.9033 3.4566 

 

Table 3.4 presents the critical values for conditional VaR forecasts by 

GARCH(1,1) and GJR-GARCH(1,1) models estimated from the 

standardized residuals under normal and t-densities. While, the critical 

value for unconditional VaR forecasts by the Standardized Approach is 

estimated from the t-distribution of portfolio returns. 

Table 3.5 VaR Forecasts at 1% level 

Model 
Conditional 

Unconditional 
Mean Median Minimum Maximum Standard deviation 



GARCH N
normVaR

−  -1.3999 (2) -1.2480 -5.8300 -0.7841 0.5987 -2.1780 (1) 



GJR N
normVaR

−  -1.3906 (2) -1.2250 -5.8070 -0.8195 0.5947 -2.3081 (1) 



GARCH N
stdVaR

−  -1.6262 (3) -1.4490 -6.7720 -0.9108 0.6955 

 


GJR N
stdVaR

−  -1.6154 (3) -1.4230 -6.7460 -0.9520 0.6908 



GARCH t
stdVaR

−  -1.6495 (4) -1.4670 -7.6580 -0.8670 0.7531 



GJR t
stdVaR

−  -1.6396 (4) -1.4380 -7.6460 -0.8850 0.7587 



Standard N
normVaR

−  
  

-1.3884 (2) 



Standard-t
stdVaR  -1.6567 (4) 

(1) VaR forecasts are estimated from equation (3.13) 
(2) VaR forecasts are estimated from equation (3.14) based on normal distribution 
(3) VaR forecasts are estimated from equation (3.14) based on normal distribution at δ degrees of 

freedom set by t-density 
(4) VaR forecasts are estimated from equation (3.14) based on student-t distribution at δ  degrees of 

freedom set by t-density 
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Table 3.5 summarizes the results for the ten sets of conditional and 

unconditional VaR forecasts. The importance of unconditional VaR 

forecasts by Tail Index Estimator is evident by comparing unconditional 

VaR forecasts by the Standard Approach and conditional VaR forecasts. 

The unconditional VaR forecasts by Tail Index Estimator are lower 

compared to all other VaR forecasts, given that greater estimated values 

of 𝜅̂𝜅 and  𝑐̂𝑐 are shown in Table 3.3. Likewise, the means of conditional 

VaR forecasts constructed under the Student-t distribution appear to be 

lower than the means of conditional VaR forecasts under the normal 

distribution. This should not be surprising as the critical values under the 

student-t distribution are greater than the normal distribution in 

absolute value (see Table 3.4). These results suggest that the 

distributional assumptions are far more important than the choice of 

models in forecasting VaR since foreign exchange returns are non-normal 

with fat-tailed.  
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Figure 3.2 Portfolio Returns and VaR Forecasts at 1% level 
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Figure 3.3 Portfolio Returns and Unconditional VaR Forecasts at 1% level 

 

The time series of the daily portfolio returns together with conditional 

VaR forecasts using GARCH(1,1) and GJR-GARCH(1,1) models are 

illustrated in Figure 3.2. As can be seen, the portfolio returns were found 

to be non-normal and appeared to be volatility clustering. The significant 

spikes indicated the events at which high volatility occurred. The 

conditional VaR forecasts from student-t distribution are lower than the 

conditional VaR forecasts from the normal distribution. 

Figure 3.3 presents unconditional VaR forecasts by the Standard 

Approach and Tail Index Estimator. Unconditional VaR forecasts remain 

stable over long periods. While, unconditional VaR forecasts by Tail Index 

Estimator are lower than unconditional VaR forecasts by the Standard 

Approach.  
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Table 3.6 Number and Percentage of Violations for VaR Forecasts at 1% 
Level 

Model 
Conditional Unconditional 

No. of violation % of violation No. of violation % of violation 

 56 1.95% 20 0.70% 

 59 2.06% 15 0.52% 

 32 1.11% 

 
 30 1.04% 

 28 0.98% 

 26 0.91% 

 
 

71 2.47% 

 50 1.74% 

 

Table 3.6 reports the number and percentage of violations for VaR 

forecasts. Ideally, a good model would have a percentage of violation 

that is very close to one percent. A model that underestimates market 

risk gives a percentage of violation that is more than one percent. A 

model that overestimates market risk gives a percentage of violation that 

is less than one percent. For the conditional VaR forecasts from 

GARCH(1,1) and GJR-GARCH(1,1) models under normal distribution, 

namely and , high percentages of violation are 

presented at 1.95% and 2.06%, respectively. In contrast, the conditional 

VaR forecasts from GARCH(1,1) and GJR-GARCH(1,1) models that utilized 

student-t distribution, namely , , , and 

 appear to perform well with each of the percentage of violation 

very close to one percent. Likewise, the unconditional VaR forecasts 

modelled through the Standard Approach provide more conservative 

estimation in student-t distribution than the normal distribution. These 

results suggest that the VaR forecasts under normality assumption are 
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inappropriate for measuring portfolio risk. It also implies that the 

probability for large losses is expected under the normality assumption. 

Note that the unconditional VaR forecasts by Tail Index Estimator, 

 and , have the lowest and second-lowest number and 

percentage of violations among all models. These results imply that no 

excessive violation occurred during periods of low volatility in the foreign 

exchange market, with an exception of the extreme financial event in 

2008 due to GFC. Another interesting comparison is the unconditional 

VaR forecasts by the Standard Approach,   and  that 

consistently underestimate market risk with high percentages of 

violation. 

Figures 3.4 to 3.6 illustrate the time series of the daily portfolio returns 

during the forecast period and the time at which VaR violations occurred. 

A violation is recorded when an actual loss exceeds the VaR forecast. The 

episodes of VaR violations are often centralized during the periods of 

high volatility. The events of VaR violations under student-t distribution 

give fewer violations than VaR violations under the normal distribution. 

Note that the unconditional VaR forecasts by Tail Index Estimator provide 

the lowest number of VaR violations (see Table 3.6) and can capture the 

events of violations during periods of high volatility. This model is 

computationally more attractive given that it incorporates time-varying 

conditional information into unconditional VaR forecasts. 
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Figure 3.4 Portfolio Returns and VaR Violations for GARCH(1,1) and GJR-
GARCH(1,1) models  
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Figure 3.5 Portfolio Returns and VaR Violations for Tail Index Estimator  
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Figure 3.6 Portfolio Returns and VaR Violations for Standard Approach  

 

The magnitude of violations can be assessed by the ratios of absolute 

deviation between the actual returns and VaR forecasts. The regulator is 

concerned with whether the VaR forecasts are large enough to cover 

banks’ unexpected trading losses. Hence, the size of large losses can be 

determined by the magnitude of violations. Table 3.7 summarizes the 

ratios of actual losses to the length of VaR forecasts for all models. The 

conditional VaR forecasts under student-t distribution, GARCH N
stdVaR

− , 



GJR N
stdVaR

− ,GARCH t
stdVaR

− , and GJR t
stdVaR

− , consistently provide a mean ratio of 1.012. 

Whereas, a mean ratio of 1.019 is shown by conditional VaR forecasts 

from the normal distribution, GARCH N
normVaR

− and GJR N
normVaR

− . The unconditional 

VaR forecasts by Tail Index Estimator appear to provide the lowest mean 

ratio. While, the unconditional VaR forecasts by the Standard approach 

provide the highest mean ratio. 
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Table 3.7 Ratios for Absolute Deviation between Portfolio Returns and VaR 
Forecasts at 1% level 

Model 

Conditional Unconditional 

Mean 
Media

n 

Minimu

m 

Maximu

m 
Mean 

Media

n 

Minimu

m 

Maximu

m 



GARCH N
normVaR

−  1.01
9 1.008 0.0015 2.651 1.01

1 1.006 0.0050 3.754 



GJR N
normVaR

−  1.01
9 1.008 0.0005 2.570 1.00

9 1.006 0.0011 3.599 



GARCH N
stdVaR

−

 
1.01

2 1.007 0.0024 2.421 

 


GJR N
stdVaR

−  1.01
2 1.007 0.0041 2.352 



GARCH t
stdVaR

−  1.01
2 1.007 0.0049 2.415 



GJR t
stdVaR

−  1.01
2 1.007 0.0012 2.334 



Standard N
normVaR

−

  

1.03
4 1.012 0.0011 5.320 



Standard-t
stdVaR  1.02

1 1.010 0.0050 4.620 

(1) The ratio is calculated by (VaR Forecast minus Actual Return) divided by Actual Return 

 

Figures 3.7 and 3.8 plot the ratios of actual returns to the length of VaR 

forecasts during the forecast period. A smaller magnitude of violations 

can be seen during periods of low volatility. Whereas, the highest 

magnitude of violations, i.e. the largest size of losses, was observed in 

the year of 2008. 
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Figure 3.7 Absolute Deviations between Portfolio Returns and VaR Forecasts 
at 1% level 
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Figure 3.8 Absolute Deviations between Portfolio Returns and Unconditional 
VaR Forecasts at 1% level 
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Table 3.8 Backtesting Results for VaR Forecasts at 1% level 

Model 

Conditional Unconditional 

TUFF 
(1) 

UC (1) Ind (2) CC (2) TUFF (1) UC (1) Ind (2) CC (2) 



GARCH N
normVaR

−  
0.3715 

20.510

8 

11.536

1 

32.046

9 
2.3128 2.9861 2.2959 5.2820 



GJR N
normVaR

−  
0.3715 

24.738

4 
4.2482 

28.986

6 

17.187

0 
8.0102 0.1576 8.1678 



GARCH N
stdVaR

−

 
0.3523 0.3672 0.8013 1.1685 

 

GJR N
stdVaR

−  0.3715 0.0577 4.2348 4.2925 



GARCH t
stdVaR

−  0.3715 0.0179 4.7303 4.7482 



GJR t
stdVaR

−  0.3715 0.2668 5.2757 5.5425 



Standard N
normVaR

−

 
 0.3523 

44.624

1 

24.491

1 

69.115

2 



Standard-t
stdVaR  

 0.3523 
13.057

6 
3.3508 

16.408

5 
(1) The Unconditional Coverage (UC) and Time Until First Failure (TUFF) tests are asymptotically 

distributed as χ2 (1). 
(2) The Serial Independence (Ind) and Conditional Coverage (CC) tests are asymptotically 

distributed as χ2 (2). 
(3) Entries in bold denote rejection of the tests. 

 

The results from the TUFF, UC, Ind and CC tests are given in Table 3.8. For 

the conditional VaR forecasts, GARCH N
normVaR

−  and GJR N
normVaR

− , the models fail the 

UC, Ind and CC tests due to excessive violations with an exception for Ind 

test in the GJR-GARCH(1,1) model. This suggests that the conditional VaR 

forecasts from those models under normality have serial dependent 

violations. Similarly, the unconditional VaR forecasts modelled by the 

Standard Approach also fail the UC, Ind and CC tests with an exception 

for Ind test in the Standard-t
stdVaR model. Ironically, the unconditional VaR 
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forecasts by Tail Index Estimator under GARCH(1,1) pass TUFF, UC, IND 

and CC tests. While, the unconditional VaR forecasts from GJR-

GARCH(1,1) model did not pass TUFF, UC and CC tests. This result 

suggests that the unconditional VaR forecasts by the Tail Index Estimator 

using the GARCH(1,1) model provide a more precise estimation of market 

risk. 

For the conditional VaR forecasts modelled through the GARCH(1,1) and 

GJR-GARCH(1,1) that follow a student-t distribution, namely GARCH N
stdVaR

− , 



GARCH t
stdVaR

− , GARCH t
stdVaR

− , and GJR t
stdVaR

− , pass TUFF, UC, IND and CC tests. This 

implies that the violations are likely to be independent and the models 

are accurate in estimating the conditional VaR forecasts. Finally, the TUFF 

test results of conditional and unconditional VaR forecasts using normal 

and student-t distributions suggest that all models perform well with an 

exception for the unconditional GJR N
normVaR

−  by Tail Index Estimator fails the 

TUFF test. 

Table 3.9 VaRmin at 1% level 

Model 
Conditional 

Mean Median Minimum Maximum Standard Deviation 



GARCH N
normVaR

−  -1.506 -1.314 -5.830 -0.854 0.662 



GJR N
normVaR

−  -1.500 -1.292 -5.807 -0.877 0.656 



GARCH N
stdVaR

−  -1.749 -1.534 -6.772 -0.992 0.769 



GJR N
stdVaR

−  -1.742 -1.510 -6.746 -1.019 0.762 



GARCH t
stdVaR

−  -1.792 -1.564 -7.658 -0.959 0.827 



GJR t
stdVaR

−  -1.789 -1.548 -7.646 -0.975 0.829 
(1) VaRmin is calculated as the lower VaR of the previous day or the average VaR on the 

previous 60 days 
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Table 3.9 summarizes the results for VaRmin at 1% level. It represents the 

lower VaR of the previous day or the average VaR on the previous 60 days. 

These VaR values are used to verify the VaR forecasts from Table 3.5. The 

market risk capital charges can then be calculated as the product of 

VaRmin multiplied by a scaling factor from equation (3.22).  

Table 3.10 Number and Percentage of Violations for VaRmin at 1% level 

Model No. of Violation % of Violation 



GARCH N
normVaR

−  50 1.74% 



GJR N
normVaR

−  48 1.67% 



GARCH N
stdVaR

−  28 0.97% 



GJR N
stdVaR

−  27 0.94% 



GARCH t
stdVaR

−  23 0.80% 



GJR t
stdVaR

−  21 0.73% 

 

Table 3.10 reports the number and percentage of VaRmin violations on the 

previous 250 days. The regulator is concerned with whether the internal 

VaR models adopted by banks provide correct coverage for losses. The 

best model presented is GARCH N
stdVaR

− at 0.97%, given that it is the closest to 

one percent, followed by GJR N
stdVaR

− at 0.94%. While, GARCH N
normVaR

− and GJR N
normVaR

−  

show percentages of greater than one percent of 1.74% and 1.67%, 

respectively. An excessive number of VaR violations is undesirable as it 

indicates that the models underestimate market risk over time. At the 

same time, the capital charges implied by these models may not be 

sufficient to cover the losses. According to the Basel Accord, if too many 

violations are reported, a greater amount of penalty charges is imposed. 

Page | 77  
 



 



GJR t
stdVaR

− model leads to the lowest number and percentage of VaR 

violations at 0.73%. 

Table 3.11 Scaling Factors 

Model 
Conditional 

Mean Median Minimum Maximum Standard Deviation 



GARCH N
normVaR

−  3.27 3 3 4 0.3149 



GJR N
normVaR

−  3.23 3 3 4 0.2994 



GARCH N
stdVaR

−  3.06 3 3 3.65 0.1477 



GJR N
stdVaR

−  3.04 3 3 3.50 0.1138 



GARCH t
stdVaR

−  3 3 3 3 0 



GJR t
stdVaR

−       

 
Unconditional 

Mean Median Minimum Maximum Standard Deviation 



GARCH N
normVaR

−  3.08 3 3 4 0.2417 



GJR N
normVaR

−  3.07 3 3 3.85 0.2143 



Standard N
normVaR

−  3.32 3 3 4 0.3909 



Standard-t
stdVaR  3.19 3 3 4 0.3380 

(1) The scaling factor is calculated as 3+k, where k is the violation penalty 

 

Table 3.11 shows the scaling factors as required by the Basel Committee. 

Of particular interest, Standard N
normVaR

− gives the highest mean of scaling factor 

at a level of 3.32, while GARCH t
stdVaR

− always give a consistent scaling factor of 

3. While, the maximum scaling factor of 4 is observed for GARCH N
normVaR

− , 



GJR N
normVaR

− ,GARCH N
normVaR

− ,Standard N
normVaR

− , and Standard-t
stdVaR .  
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Table 3.12 Capital Charges for VaRmin at 1% level 

Model 
Conditional 

Mean Median Minimum Maximum Standard Deviation 



GARCH N
normVaR

−  -5.043 -4.235 -23.070 -2.562 2.7555 



GJR N
normVaR

−  -4.978 -4.112 -23.230 -2.632 2.7290 



GARCH N
stdVaR

−  -5.420 -4.614 -23.450 -2.976 2.7124 



GJR N
stdVaR

−  -5.307 -4.552 -22.940 -3.057 2.4032 



GARCH t
stdVaR

−  -5.424 -4.706 -22.970 -2.876 2.5049 



GJR t
stdVaR

−  -5.367 -4.645 -22.940 -2.926 2.4881 

 
Unconditional 

Mean Median Minimum Maximum Standard Deviation 



GARCH N
normVaR

−  -6.698 -6.534 -8.712 -6.534 0.5264 



GJR N
normVaR

−  -7.077 -6.924 -8.886 -6.924 0.4947 



Standard N
normVaR

−  -4.604 -4.165 -5.553 -4.165 0.5426 



Standard-t
stdVaR  -5.279 -4.970 -6.627 -4.970 0.5599 

(1) The  capital charge is calculated as the lower VaR of the previous day or the average 

VaR on the previous 60 days (VaRmin), multiplied by a scaling factor of (3+k), where k is 

the violation penalty 

 

A major reason for the implementation of VaR models by the Basel 

Committee is the determination of market risk capital requirements. If 

the banks underestimate the VaR forecasts, they are penalized by an 

increase in the scaling factor. If, however, the banks overestimates the 

VaR forecasts, a constant scaling factor of 3 is imposed.  Table 3.12 shows 

the market risk capital charges that are a product of VaRmin (Table 3.9) 

multiplied by a scaling factor (Table 3.11). For the case of conditional VaR 
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models, it can be seen that GARCH t
stdVaR

−  gives the lowest mean of capital 

charge at -5.424 and GJR N
normVaR

− gives the highest mean of capital charge at -

4.978. While, the lowest capital charge is given by GARCH N
stdVaR

−  at -23.45, 

followed by GJR N
normVaR

− at -23.23, and GARCH N
normVaR

− at -23.07. These capital costs 

are mostly charged during the GFC, where sharp negative spikes of 

capital charges are shown in Figure 3.9. On the other hand, the highest 

capital charge is given by GARCH N
normVaR

−  at -2.562, followed by GJR N
normVaR

− at -

2.632. These charges occur during periods of low volatility in the foreign 

exchange market. For the case of unconditional VaR models, the lowest 

mean of capital charge is presented by unconditional GJR N
normVaR

− by Tail 

Index Estimator at -7.077 and the highest mean of capital charge is 

presented by unconditional Standard N
normVaR

− by the Standard Approach at -

4.604. Likewise, unconditional GJR N
normVaR

−  by Tail Index Estimator has the 

lowest capital charge at -8.886, followed by unconditional GARCH N
normVaR

−  by 

Tail Index Estimator at -8.712, unconditional Standard-t
stdVaR at -6.627 and 

unconditionalStandard N
normVaR

− at -5.553.  

A higher amount of capital charge is undesirable by banks as it increases 

the capital costs in their trading activities. Banks prefer to maintain 

capital charges as low as possible with a scaling factor of 3. More 

importantly, banks can now design their own internal models and make 

decisions by focusing on the current volatility levels by applying past 

information. These volatility levels can assist banks to select the most 

appropriate VaR model for periods of high or low volatility. For a bank 

which rebalances its large and complex portfolios very frequently, the 

conditional models may not be feasible since this requires continuous 

constructing and updating new volatility forecasts that associates with 

high transaction costs. Notice that the use of conditional models may 
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lead to capital charges that fluctuate extremely over time. It is impossible 

for a bank to adjust its capital base rapidly to accommodate changing 

market conditions. A bank may very well use unconditional models for 

market risk capital charges during periods of high volatility. On the other 

hand, a bank may apply conditional models during periods of low 

volatility to avoid high market risk capital charges. The use of 

unconditional VaR forecasts by Tail Index Estimator is evident in this case 

as it has the lowest potential for large extreme losses given that it has 

the lowest number and percentage of violations. This situation is 

desirable by banks since the capital charges can be maintained at a 

consistent level without suffering from additional capital costs (see 

Figure 3.10). 

Figure 3.9 demonstrates the episodes at which capital charges are most 

likely to occur. It can be seen that due to extreme negative returns during 

the GFC of 2008, the capital charges are imposed at the highest costs. 

Figures 3.10 and 3.11 show that capital charges can be maintained at a 

constant level during periods of low volatility with an exception of 

additional capital charges during periods of high volatility. 
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Figure 3.9 Capital Charges and VaRmin at 1% level 
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Figure 3.10 Capital Charges and Unconditional VaRmin for Tail Index 
Estimator 
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Figure 3.11 Capital Charges and Unconditional VaRmin for Standard 
Approach  
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Table 3.13 Proportion of Time Staying in a Color Zone 

Model 
Conditional Unconditional 

Green Yellow Red Green Yellow Red 



GARCH N
normVaR

−  56.16% 43.45% 0.38% 90.91% 6.90% 2.19% 



GJR N
normVaR

−  59.19% 39.66% 1.15% 91.19% 8.81% 0% 



GARCH N
stdVaR

−  85.61% 14.42% 0% 

 


GJR N
stdVaR

−  91.29% 8.74% 0% 



GARCH t
stdVaR

−  93.97% 6.06% 0% 



GJR t
stdVaR

−  100.00% 0.00% 0% 



Standard N
normVaR

−  
 

56.77% 28.21% 15.01% 



Standard-t
stdVaR  73.42% 16.13% 10.45% 

 

Table 3.13 provides the proportion of time staying in green, yellow and 

red zones as indicated by the Basel Accord. The green zone is desirable 

by all banks, as this shows the number of violations is within the limit set 

by the Basel Accord. A bank is categorized in the red zone if its VaR model 

is not appropriate, and will be required to pay a greater amount of capital 

charges. Figures 3.12, 3.13 and 3.14 exhibit the periods of when green, 

yellow and red zones are likely to occur for all VaR models. Conditional 



GJR t
stdVaR

− model spends most of the time in the green zone. Conditional 



GARCH t
stdVaR

− , GJR N
stdVaR

− , and GARCH N
stdVaR

− models under student-t distribution 

represent a proportion of time above 80% in the green zone, and 

substantially spending less time in the yellow zone. Similarly, 

unconditional GJR N
normVaR

−  by Tail Index Estimator appears to stay in the 

green zone more often than yellow zone. However, conditional GARCH N
normVaR

−  

and GJR N
normVaR

− , and unconditional GARCH N
normVaR

− by Tail Index Estimator models 
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under normal distribution tend to stay in the red zone due to excessive 

losses during the GFC (see Figures 3.12 and 3.13). Unconditional 



Standard N
normVaR

− and 

Standard-t
stdVaR models by the Standard Approach have 

performed poorly with 15.01% and 10.45% stay in the red zone, 

respectively (see Figure 3.14). It can be concluded that during periods of 

low volatility, VaR violations are expected to be less, all models tend to 

stay in the green zone. During periods of high volatility, more VaR 

violations are expected hence, there is a tendency to stay in the red zone. 
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Figure 3.12 VaR Violations and VaRmin at 1% level 
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Figure 3.13 VaR Violations and Unconditional VaRmin for Tail Index Estimator 
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Figure 3.14 VaR Violations and Unconditional VaRmin for Standard Approach  
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3.6 CONCLUSION 

By extending the results in Berkes, Horváth, and Kokoszka (2003), this 

study proposes a consistent estimator of the tail index for GJR-GARCH 

error. The performance of VaR forecasts under the GARCH(1,1) and GJR-

GARCH(1,1) models following different distributional assumptions are 

also investigated. Also, this study provides the first empirical comparison 

of the impact of model specifications in estimating tail index and VaR. 

This study adds to the literature in several important directions. Firstly, 

when the student-t distribution is used, VaR forecasts lead to more 

accurate number and percentage of violations compared to the normal 

distribution. The result suggests that VaR forecasts under normal 

distribution are more conservative in estimating portfolio risk. Secondly, 

even though modelling unconditional VaR forecasts using the Standard 

Approach is widely accepted and used by the financial industry, the 

results are overly conservative as compared to the unconditional VaR 

forecasts by Tail Index Estimator as proposed in the study. This study also 

provides a significant input where banks can assess the likelihood of 

trading losses parsimoniously and efficiently and able to develop trading 

strategies according to their trading environments. Finally, the 

conditional VaR forecasts from GJR-GARCH(1,1) model represents the 

most appropriate model given that it ranks the best among all models 

with a percentage of violation that is very close to one percent. Besides, 

the model has correctly accepted all statistical tests including TUFF, UC, 

Ind and CC tests.  

Theoretically, conditional models that incorporate time-varying volatility 

information are more desirable than unconditional models that consider 

Page | 91  
 



 

the conditional distribution of asset returns. In practice, unconditional 

models are more desirable by banks given that it is less complicated and 

easy to calculate. In addition, capital charges can be maintained at a 

constant level during periods of low volatility without additional 

transaction costs. Nevertheless, an accurate VaR measure relying on 

appropriate modelling is necessary to correctly estimate the market risk 

as such that the risk management process is aided considerably by the 

backtesting procedures described in this study. As capital charges 

represent a significant cost to the banks, this study shows that banks 

should exercise great care in selecting an optimal VaR model. In risk 

forecasting, VaR is often concerned with multivariate return series. The 

empirical applications of conditional correlations across different assets 

in a portfolio are presented in Chapter 4. 
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A TALE BETWEEN UNIVARIATE AND MULTIVARIATE 

VOLATILITY MODELS 

4.1 INTRODUCTION 

Modelling volatility in financial time series has been an important 

research area in the past decades. The family of Autoregressive 

Conditional Heteroskedasticity (ARCH) model was first introduced by 

Engle (1982) who laid the foundation for a new approach to describe and 

forecast conditional variance for financial time series. Subsequently, 

numerous variants and extensions of ARCH models have been proposed. 

See for examples, the Generalized ARCH (GARCH) model of Bollerslev 

(1986) and its asymmetric extension by Glosten, Jagannathan, and 

Runkle (1993). Some of the details of these models can be found in 

preceding chapter that has a specific focus on Value-at-Risk (VaR) 

forecasting.  

In many financial applications, conditional covariance and correlations 

play a direct and important role in volatility forecasting. A bank is very 

likely to trade with large and complex portfolios daily. It is unlikely that 

the asset returns in a portfolio would move independently of each other. 

Therefore, understanding their correlation structures is essential in 

deriving sensible investment strategies to maximize returns while 

minimizing risk. Most of the existing univariate volatility models focus on 

the dynamics of a single time series, and they do not provide any 
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information on the potential dependency between asset returns within 

a portfolio. It is worth noting that the correlation between asset returns 

may be driven by individual heterogeneity as well as any potential 

common factors. This implies that the correlation structures may be 

time-varying. For example, the correlation between Standard & Poor's 

500 (S&P 500) and Nikkei 225 is likely to be different before and after the 

Global Financial Crisis (GFC). The correlation before the crisis may be 

driven by normal market condition whereas the GFC forms a single factor 

that caused significant changes in the correlation between the two 

indices.  

To capture the conditional covariance and correlations for the different 

type of assets in a portfolio, many researchers expanded the univariate 

to multivariate volatility models. McAleer (2005) pointed out that one 

important aspect of modelling financial volatility is to study multivariate 

extensions of the conditional volatility models. Bollerslev, Engle, and 

Wooldridge (1988) proposed the diagonal vector ARCH (DVEC) model 

that is a direct extension of the univariate Generalized ARCH (GARCH) 

model to multivariate model. Other alternative approaches for achieving 

more parsimonious and empirically tractable multivariate volatility 

models are the Constant Conditional Correlation (CCC) model of 

Bollerslev (1990); Baba, Engle, Kraft and Kroner (BEKK) model described 

by Engle and Kroner (1995); the Dynamic Conditional Correlation (DCC) 

model of Engle (2002); the Time-Varying Correlation (TVC) model of Tse 

and Tsui (2002); the Vector ARMA-GARCH (VARMA-GARCH) model of 

Ling and McAleer (2003); and the VARMA-asymmetric GARCH (VARMA-

AGARCH) model of McAleer, Hoti, and Chan (2009). However, the 

practical usefulness of these models can be affected by ‘the curse of 
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dimensionality’ (see Caporin and McAleer 2014). That is, the number of 

parameters increases dramatically in these models as the number of 

asset increases. 

The CCC model of Bollerslev (1990) assumed that the conditional 

covariance is driven solely by the corresponding conditional variances so 

that the conditional correlations are constant. This assumption greatly 

reduces the number of parameters and thus simplifies the multivariate 

estimation problem. The model follows a 2-step estimation procedure: 

in the first step, univariate models are estimated for each of the asset 

returns and then, in the second step, the conditional correlations are 

estimated from the standardized residuals for each of the univariate 

series provided by the first step. An advantage of CCC model is that when 

the conditional variances are positive, and the conditional correlation 

matrix is positive definite, the conditional covariance matrix is 

guaranteed to be positive definite. The specification for CCC model is 

explained the subsequent section. 

Even though CCC model has been widely used in the empirical literature 

because of its computational simplicity, several empirical studies have 

shown that the assumption of constant conditional correlation may not 

hold in practice. In particular, Longin and Solnik (1995) performed 

Likelihood Ratio (LR) tests with a CCC-GARCH(1,1) model to assess the 

conditional covariance and conditional correlations for a  set of cross-

country stock market returns from the year of 1960 to 1990. They found 

evidence in support of strong correlations between cross-country stock 

market returns during periods of extreme market conditions but weak or 

no correlations outside of these events. Similarly, Tse (2000) applied 

Lagrange Multiplier (LM) tests for three datasets with daily frequency on 
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spot-future returns, foreign exchange returns, and stock market returns. 

While, Nakatani and Teräsvirta (2009) extended LM tests with a CCC-

GARCH(1,1) model and the Extended Constant Conditional Correlation 

(ECCC) GARCH model of Jeantheau (1998) to daily foreign exchange 

returns and stock market returns. On the other hand, Bera and Kim (2002) 

conducted Information Matrix (IM) tests for the constancy of the 

conditional correlation on selected stock market returns in a bivariate 

GARCH model. These researchers showed that the structure of 

conditional correlations between asset returns is time-varying, hence, 

CCC model is inappropriate for some empirical applications. 

To accommodate possible time-varying conditional correlations, Engle 

(2002) and Tse and Tsui (2002) proposed alternative approaches to 

model time-varying conditional correlations by extending the CCC model. 

Similar to the CCC model, the DCC model of Engle (2002) and the TVC 

model of Tse and Tsui (2002) follow a 2-step estimation procedure. First, 

univariate models for each of the asset returns are estimated. In contrast 

to the CCC model, the second step estimation in the DCC and TVC models 

require the use of numerical optimization techniques to estimate the 

parameters of the time-dependent conditional correlations matrix. The 

DCC and TVC models are useful in high dimensional financial time series 

and are likely to provide additional information regarding the correlation 

structures between the time series. 

Some alternatives to the DCC and TVC models have been proposed to 

allow for greater flexibility to capture different dependencies in the 

correlations across different types of assets and different responses to 

the past negative and positive returns. One such alternative is the 

Generalized Autoregressive Conditional Correlation (GARCC) model of 
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McAleer et al. (2008). It provides a more general representation in which 

the standardized residuals follow Vector Autoregressive (VAR) process 

with random coefficients. Other multivariate models that allow for 

greater reduction of the dependencies in the correlation across different 

types of assets by selecting a reasonability small numbers of factors are 

Factor ARCH models proposed by Diebold and Nerlove (1989) and Engle, 

Ng, and Rothschild (1990); Orthogonal GARCH model of Alexander (2001); 

and Generalized Orthogonal GARCH (GO-GARCH) model of van der 

Weide (2002). Another approach in modelling conditional covariance and 

correlations is the use of copulas proposed by Patton (2002) and Jondeau 

and Rockinger (2006).  

There are a huge number of studies that estimate VaR forecasts using 

multivariate GARCH models. Hsu Ku and Wang (2008) examined the 

performance of multivariate GARCH models, namely the CCC, DCC and 

BEKK models, regarding VaR violations on a portfolio of foreign exchange 

rates. They found that time-varying conditional correlation is an 

important consideration for portfolio risk management. The DCC model 

is considered to be the best model that offers a better forecasting 

performance among the other two models in estimating VaR.  

da Veiga, Chan, and McAleer (2011) also examined the importance of 

accommodating time-varying conditional correlation when forecasting 

VaR. They used both CCC and DCC models on the portfolios of Chinese A 

and Chinese B stock returns. On one hand, DCC model provides a lower 

number of violations than the CCC model. On the other hand, CCC model 

tends to generate a lower amount of daily capital charges than the DCC 

model. Consequently, they showed that a more severe penalty structure 

is probably desirable to discourage banks from choosing forecasting 
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models that underestimate VaR. In particular, they proposed a new 

penalty structure that is based on the magnitude of violations instead of 

the current penalty structure that is based on the number of violations. 

An appropriate penalty structure may encourage banks to improve their 

risk models in forecasting VaR more precisely.  

Santos, Nogales, and Ruiz (2013) compared the performance of VaR 

forecasts using univariate and multivariate GARCH models, namely the 

GARCH model of Bollerslev (1986), the asymmetric extension of GARCH 

(GJR) model by Glosten, Jagannathan, and Runkle (1993), the Exponential 

GARCH (EGARCH) model of Nelson (1991), the Asymmetric Power ARCH 

(APARCH) model of Ding, Granger, and Engle (1993), CCC and DCC models 

on a portfolio of the US stock returns. Their results showed that the 

multivariate GARCH models particularly DCC-GJR model under student-t 

distribution improves VaR estimation. Nevertheless, these studies 

showed that accommodating time-varying conditional correlations 

improve the forecasting performance of VaR. 

There are some studies in the literature that considered the use of 

different distributional assumptions in multivariate GARCH models to 

forecast VaR. In particular, Bauwens and Laurent (2005) proposed a 

multivariate skewed-t distribution for multivariate GARCH models on the 

portfolios of the US stock returns and foreign exchange rates. They found 

that the multivariate GARCH models under multivariate skewed-t 

distribution improve the performance of VaR forecasts. Similarly, 

Rombouts and Verbeek (2009) evaluated the performance of VaR 

forecasts at the 1-percent, 2.5-percent and 5-percent significance levels 

using multivariate GARCH models, namely the DVEC, TVC and DCC 

models, on a portfolio of stock market returns. These models consider 
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three different distribution assumptions including normal, student-t and 

non-parametric distributions. Their results showed that the multivariate 

GARCH models under a non-parametric distribution obtained using a 

kernel density technique improves VaR estimation. Pesaran and Pesaran 

(2010) examined the DCC model, assuming a student-t distribution 

instead of a normal distribution of the portfolios of foreign exchange 

rates, bonds and stock index futures. They found that the DCC model with 

a student-t distribution gives a more robust estimation of VaR forecasts 

than the DCC model with a normal distribution, given that the financial 

time series exhibit heavy tails (see also, Lee, Chiou, and Lin 2006). Hence, 

these studies suggested that the choice of density assumptions is critical 

to improving the performance of VaR forecasts. 

This chapter is outlined as follows. The structural properties of VARMA-

GARCH, VARMA-AGARCH, CCC and DCC models are given in Section 4.2. 

Section 4.3 describes the data and presents some summary statistics. 

Subsequently, the empirical results and the performance of VaR 

forecasts based on CCC and DCC models are discussed. Section 4.4 

concludes the chapter. 

4.2 CONDITIONAL VOLATILITY MODELS AND VAR FORECASTS 

This section provides a brief discussion of conditional volatility models 

for purposes of their estimation and the relationship between 

conditional volatility and VaR forecasts. 
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Consider the following model:  

1
2

1
2

1

( ) ( )

~ (0, )

( ,..., )

t t

t t t t

t t kt

L r L

D MV I

D diag h h

ε

ε η η

Φ = Θ

=

=

            (4.1) 

where ( )1 ,..., 't t ktrr r=  is a 1k ×  vector of asset returns and 1,...,t T= , with 

L  denotes the lag operator such that for any time series ty , 1t tLy y −= . 

1
( )

p
i

i
i

L I Lφ
=

Φ = − ∑  and 
1

( )
q

i
i

i
L I Lθ

=

Θ = + ∑  are the lag polynomials of order p  

and q , respectively. tη  is a 1k ×  independently and identically distributed 

multivariate random vector with zero mean and identity variance-

covariance matrix.  

Following the model as defined in equation (4.1), McAleer, Hoti, and 

Chan (2009) proposed the VARMA-AGARCH model, namely, 

1 1 1

r r s

t i t i i t i t i j t j
i i j

H W A C I B Hε ε− − − −
= = =

= + + +∑ ∑ ∑             (4.2) 

where ( )1 ,..., 't t ktH h h=  and ( )2 2
1 ,..., 't t ktε ε ε=

 . W  is a 1k ×  vector; iA  , iB  and 

iC are k k×  matrices with 1,...,i r=  and ; ( )1 ,...,t t ktI diag I I= with

0,  0
 1,  0 .

it
it

it

I
ε
ε

≥
=  <

This model assumes that the positive and negative shocks 

have differential impacts on the conditional variance, 
ith , 1,...,i k= .  

If 0iC = , equation (4.2) reduces to the VARMA-GARCH model of Ling and 

McAleer (2003). In that case, 

1 1

r s

t i t i j t j
i j

H W A B Hε − −
= =

= + +∑ ∑            (4.3) 
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This model assumes that a positive shock has the same impact on the 

conditional variance as a negative shock. 

By setting 1k =  and ( ) ( ) 1L LΦ = Θ =  or by specifying
iA  and 

jB  are diagonal 

matrices for all i  and j , equation (4.3) reduces to the CCC model of 

Bollerslev (1990). The CCC model assumes that the conditional variance 

follows a univariate GARCH process. If 
iC , 

iA  and 
jB  are diagonal 

matrices for all i  and j , equation (4.2) reduces to the asymmetric GARCH 

(GJR) model of Glosten, Jagannathan, and Runkle (1993). 

Following equation (4.1), the conditional variance and covariance matrix 

of tr  is
1 1
2 2

t t t tD DΓΩ = , where ( )'t t t tη ηΓ =   denotes k k× matrix of the 

conditional correlations between the conditional shocks.   and 
t  

denotes the unconditional and conditional expectation with respect to 

the information set at time t , respectively. The CCC model assumes that 

the conditional correlations are constant over time. In that case, 

{ }ijρΓ = is a constant conditional correlation matrix with
ij jiρ ρ= . Engle 

(2002) and Tse and Tsui (2002) proposed the DCC model and the TVC 

model, respectively, to allow the conditional correlations to be time-

varying, so that the conditional variance and covariance matrix of tr  is 

time-varying. Hence, the dynamic of volatility depends on the 

specification of  
iΩ  . 

An alternative model is represented by Engle and Kroner (1995) who 

introduced the Baba, Engle, Kraft and Kroner (BEKK) model. Following the 

specification of conditional mean in equation (4.1), 

1 1
' '' '

r s

t i t i t i t j
i j

i j jε ε− − −
= =

Ω Μ Μ= Π Π + + ΩΝ Ν∑ ∑         (4.4) 

Page | 101  
 



 

where Π , 
iM  and 

jN  are k k×  matrices, 1,...,i r=  and 1,..., .j s=  In the case 

of BEKK, the number of parameters is 2( 1) ( )
2

k k r s k+  + + 
 

. An advantage 

of this specification is that the conditional covariance matrix is positive 

definite as long as Π  also is. Caporin and McAleer (2012) provides a 

comprehensive discussion of the empirical applications between BEKK 

and DCC models. 

The parameters in these models are typically estimated by Quasi-

Maximum Likelihood Estimator (QMLE), which is defined to be: 

1

1

ˆ arg max log '
2

T

t t t t
t

T H H
θ

θ ε ε−

∈Λ =

 = − + 
 

∑           (4.5) 

where 

, with 

 denotes the vec operator such  converts a matrix  into 

a  vector by stacking the columns of . tH  denotes the 

determinant of tH  . See McAleer (2005) and McAleer et al. (2008) for 

more technical discussions on this class of models, including the 

sufficient conditions for the existence of moments and the sufficient 

conditions for consistency and asymptotic normality of QMLE. 

Under the assumption of equation (4.1), the VaR forecast at 0.01α =  for 

asset i  at time 1t +  can be obtained as: 



, 1 , 1, 1 ,( ) m
t i t

m
i it tdVaR r q hα ++ += +          (4.6) 

where , 1( )t i tr +  is the forecast of the asset i ’s return based on the 

information at time t , 
,dqα

 is the critical value based on the significant 
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level of VaR and the distribution of 
tη . Although 

tη  is typically assumed 

to be normally distributed, a student-t distribution with δ  degrees of 

freedom can be used an alternative.  , 1
m
i th + is the estimated standard 

deviation of , 1( )t i tr +  with m  denotes the model used. Noted that the 

superscripts “std” and “norm” denotes estimates assuming a normal 

distributed return and a t-distributed return. 

4.3 RESULTS 

This section describes the data used and presents some summary 

statistics. The empirical results for VaR forecasts based on the CCC and 

DCC models are also discussed. The analysis of some statistical tests and 

the backtesting procedures set by the Basel Accord to evaluate the 

performance of VaR forecasts are also presented. The details of 

backtesting procedures can be found in the preceding chapters. 

A dataset of daily exchange rates on Australian dollar (AUD) with twelve 

other currencies is used. The exchange rates are US Dollar (USD), 

Japanese Yen (JPY), Pound Sterling (GBP), New Zealand Dollar (NZD), 

Korean Won (KRW), Singapore Dollar (SGD), Swiss Franc (CHF), Chinese 

Renminbi (CNY), Hong Kong Dollar (HKD), Indian Rupee (IDR), Malaysian 

Ringgit (MYR), and New Taiwan Dollar (TWD). These exchange rates are 

collected from Thomson Reuters DataStream Professional, for the period 

of 2 January 1984 to 31 December 2013. Using the data above, an 

equally-weighted portfolio of twelve currencies is constructed.  

A rolling window approach is used to estimate the parameter estimates 

for the CCC models. In that case, the patterns for changing conditional 

correlations and the possibility of structural breaks between each pair of 
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currencies can also be observed. The entire period ranges from 2 January 

1984 to 31 December 2013, with a total of 7,821 observations. Rolling 

conditional correlations are estimated with a window size set to 4,950 

observations. The estimation sample is then rolled over the entire period. 

By keeping the estimation period constant, the estimation sample starts 

at the beginning of the data period until the sample ends on the last day 

of the data period. In this case, the estimation period starts from 2 

January 1984 to 31 December 2002, with observations from the 1st to the 

4,950th observation. Then, the window is rolled 1-day forward from 3 

January 1984 to 1 January 2003, with observations from the 2nd to the 

4,951th observation, until the last rolling window with observations from 

the 2,871th to the 7,821th. Each rolling window size is constantly kept at 

4,950 observations. The result of this procedure will cover all the 

consecutive rolling sample periods, with a total of 2,871 observations. 

There are four sets of VaR forecasts estimated from the CCC-GARCH(1,1), 

CCC-GJR(1,1), DCC-GARCH(1,1) and DCC-GJR(1,1) models for normal 

distribution. The study also investigates the performance of these 

models under a student-t distribution with δ  degrees of freedom. The 

degrees of freedom set by t-density are estimated from the standardized 

residuals that follow GARCH(1,1) and GJR(1,1) processes utilized under 

normal and student-t distributions. This gives eight critical values that 

lead to eight sets of VaR forecasts (see Table 4.1). Another approach is 

used where the degrees of freedom set by t-density are estimated from 

the standardized residuals that follow GARCH(1,1) and GJR(1,1) 

processes utilized under normal and student-t distributions for every 

rolling window (see Figure 4.1). This leads to additional eight sets of VaR 
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forecasts. A total 20 sets of VaR forecasts are presented for comparison 

purposes. All VaR forecasts are constructed at 1% level. 

Table 4.1 Critical Values for CCC and DCC models 

Degrees of 

Freedom 
CCC-GARCH(1,1) CCC-GJR(1,1) DCC-GARCH(1,1) DCC-GJR(1,1) 

N
stdδ   11.2305 11.2961 13.2883 13.2979 

t
stdδ  11.9481 11.9791 13.2691 13.2724 

 

Figure 4.1 Rolling Critical Values for CCC and DCC models 

 

Figure 4.1 plots the critical values estimated from the standardized 

residuals that follow GARCH(1,1) and GJR(1,1) processes utilized under a 

normal distribution or a student-t distribution for every rolling window. 

It can be seen that the critical values based on student-t distribution are 

lower than the critical values from the normal distribution. There is a very 

sharp increase in critical values after the year 2012. This implies that as 

the estimation sample is rolled over towards the end of the sample 

period, the degrees of freedom increase to the normal distribution. 
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Tables 4.2 and 4.3 show the daily returns of each currency during the 

estimation and forecast periods. All currencies display means and 

medians that are very close to zero. CNY has the highest return at 42.04 

and KRW has the lowest return at -23.13 during the estimation period. 

Whereas, CHF has the highest return at 9.527 and JPY has the lowest 

return at -10.06 during the forecast period. 

All currencies, except NZD, CNY, IDR, and MYR, are negatively skewed 

during the estimation period. While during the forecast period, all 

currencies, except NZD and CHF, are negatively skewed. All currencies 

exhibit excess kurtosis during estimation and forecast periods. Of 

particular interest, CNY, NZD, KRW, and IDR have extreme excess kurtosis 

at 760.7898, 269.3207, 121.0553 and 109.4368, respectively, during the 

estimation period. Finally, all currencies are found to be non-normal 

according to Jarque-Bera test statistic with CNY, NZD, KRW, and IDR 

display extreme non-normalities during estimation period. While during 

the forecast period, CHF, KRW, JPY, MYR, and SGD display extreme non-

normalities. 

Figure 4.2 and 4.3 illustrate the histograms of normal density for each 

currency during estimation and forecast periods. NZD, KRW, CNY, and 

IDR show greater dispersions at a mean of zero during the estimation 

period.  While, the distributions of all foreign exchange returns during 

the forecast period are asymmetric. This is established by the minimum 

and maximum returns in Table 4.3. 
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Table 4.2 Summary Statistics for Each Currency Returns during the Estimation Period 

 USD JPY GBP NZD KRW SGD CHF CNY HKD IDR MYR TWD 

Mean -
0.0092 

-
0.0229 

-
0.0114 -0.0049 -0.0011 -

0.0133 
-

0.0184 0.0197 -
0.0092 0.0352 0.0006 -

0.0122 

Median 0.0000 0.0000 0.0000 0.0000 0.0035 0.0000 0.0000 0.0000 0.0016 0.0000 0.0000 0.0000 

Standard 

Deviation 0.6331 0.8307 0.7815 0.6545 0.9755 0.6343 0.8868 0.9819 0.6318 1.6488 0.7639 0.6661 

Minimum -
4.5610 

-
5.1920 

-
4.4780 -7.7680 -23.1300 -

4.4940 
-

5.1370 -5.9050 -
4.5290 -16.2500 -6.4320 -

4.8940 

Maximum 3.3870 4.9690 5.7070 6.5440 9.5550 3.6230 5.3520 42.0400 3.3770 38.2900 11.4900 4.3430 

Skewness -
0.5007 

-
0.4224 

-
0.0148 7.6332 -2.8596 -

0.4230 
-

0.2362 19.3925 -
0.5090 4.2672 0.5852 -

0.4147 

Kurtosis 7.4198 5.7410 5.9273 269.3207 121.0553 6.6482 5.4427 760.7898 7.4370 109.4368 21.6650 7.8994 

Jacque-Bera 4235.7
3 

1696.7
1 

1767.5
6 

14676698.9
9 

2881261.6
3 

2892.6
9 

1276.6
5 

118748380.6
0 

4274.1
3 

2351586.4
4 

72135.9
7 

5092.6
6 

(1) Entries in bold denote 1% significant 
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Table 4.3 Summary Statistics for Each Currency Returns during the Forecast Period 

 USD JPY GBP NZD KRW SGD CHF CNY HKD IDR MYR TWD 

Mean 0.0158 0.0117 0.0146 0.0003 0.0115 0.0047 0.0005 0.0049 0.0156 0.0265 0.0107 0.0105 

Median 0.0000 0.0338 0.0150 0.0000 0.0041 0.0000 0.0000 0.0000 0.0043 0.0132 0.0110 0.0000 

Standard Deviation 0.8586 1.0831 0.6813 0.4686 0.7390 0.6642 0.8349 0.8448 0.8545 0.8022 0.7326 0.7725 

Minimum -7.7370 -10.0600 -6.6950 -3.1750 -7.9620 -6.7860 -6.3480 -7.8180 -7.7750 -6.6590 -7.4810 -7.0960 

Maximum 7.1560 9.3060 4.0670 3.0930 5.2250 6.0390 9.5270 7.3090 7.1460 5.6660 6.4780 6.9060 

Skewness -0.3687 -0.5873 -0.5313 0.0233 -1.0796 -0.6229 0.1513 -0.3758 -0.3838 -0.4495 -0.4984 -0.4244 

Kurtosis 11.2852 14.5525 9.3842 6.7236 15.7178 14.3853 16.4509 11.9349 11.5793 9.4866 14.5438 12.0706 

Jacque-Bera 8276.71 16130.25 5010.73 1658.89 19906.05 15692.03 21654.26 9617.45 8875.33 5130.10 16060.08 9928.35 

(1) Entries in bold denote 1% significant 
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Figure 4.2 Histograms for Each Currency Returns during the Estimation 
Period 
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Figure 4.3 Histograms for Each Currency Returns during the Forecast Period 
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Figure 4.4 Daily Returns for Each Currency 
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Figure 4.4 shows the daily returns for each respective currency. The 

volatility clustering of foreign exchange returns can be seen. All 

currencies displayed extreme movements during the periods of 2008 to 

2009 due to the GFC. With exceptions for KRW for the periods from 1997 

to 1998 due to Asian Financial Crisis, NZD in the year of 1984 due to 

constitutional crisis5, IDR in the year of 1986 due to severe devaluation 

against USD; and CNY in the years of 1987 due to US stock market crash, 

1990 and 1994 due to devaluation against USD. 

Tables 4.4 and 4.5 report the parameter estimates of CCC models follow 

the GARCH(1,1) process. While Tables 4.6 and 4.7 report the parameter 

estimates of CCC models follow the GJR(1,1) process. These tables also 

provide the estimates under normal and student-t distributions. It is 

worth noting that the parameter estimates are not significantly different 

between normal and student-t distributions. The estimates for ω  , α  

and β  are positive for CCC-GARCH(1,1) and CCC-GJR(1,1) models. 

Moreover, the volatility persistence,  ˆ 1α β+ <  for CCC-GARCH(1,1) model 

and 0 1
2
ˆˆ γβα< + + <  for CCC-GJR(1,1) model indicating the sufficient 

conditions to ensure 𝜎𝜎𝑡𝑡2 > 0 are satisfied in these models. All currencies 

satisfy the second moment and the log-moment conditions, which are 

sufficient conditions for the QMLE to be consistent and asymptotically 

normal (see Ling and McAleer 2003). 

 

5 Prior 1984, NZD was pegged to a basket of currencies including USD, GBP, AUD, JPY and Deutsche 
Mark. In January 1984, NZD was allowed to float and suffered great devaluation against other major 
currencies. Source: Reserve Bank of New Zealand, http://www.rbnz.govt.nz 
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Table 4.4 Parameter Estimates for CCC-GARCH(1,1) model 

 
Normal Distribution 

USD JPY GBP NZD KRW SGD CHF CNY HKD IDR MYR TWD 

 
0.0055 0.0205 0.0190 0.0101 0.0067 0.0081 0.0482 0.0135 0.0057 0.0150 0.0117 0.0139 

(0.0017) (0.0067) (0.0059) (0.0015) (0.0017) (0.0025) (0.0250) (0.0051) (0.0016) (0.0055) (0.0042) (0.0046) 

 
0.0715 0.1008 0.0656 0.1208 0.0903 0.0847 0.0900 0.1323 0.0724 0.1669 0.1142 0.0796 

(0.0138) (0.0181) (0.0110) (0.0106) (0.0121) (0.0170) (0.0265) (0.0282) (0.0071) (0.0367) (0.0259) (0.0150) 

 
0.9175 0.8746 0.9033 0.8478 0.9013 0.8990 0.8493 0.8519 0.9159 0.8321 0.8693 0.8916 

(0.0150) (0.0230) (0.0183) (0.0087) (0.0114) (0.0201) (0.0560) (0.0310) (0.00970 (0.0325) (0.0290) (0.0204) 

Second Moment 0.9889 0.9754 0.9689 0.9686 0.9916 0.9837 0.9394 0.9842 0.9883 0.9990 0.9835 0.9712 

Log-Moment -0.0194 -0.0390 -0.0377 -0.0515 -0.0213 -0.0272 -0.0736 -0.0430 -0.0203 -0.0419 -0.0358 -0.0408 

(1) Entries in bold denote 1% significant 
(2) Standard errors are in parenthesis 

 

 

 

ω̂

α̂

β̂
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Table 4.5 Parameter Estimates for CCC-GARCH(1,1) model 

 
Student-t Distribution 

USD JPY GBP NZD KRW SGD CHF CNY HKD IDR MYR TWD 

 
0.0056 0.0126 0.0173 0.0161 0.0080 0.0070 0.0372 0.0238 0.0057 0.0183 0.0100 0.0116 

(0.0021) (0.0045) (0.0045) (0.0044) (0.0019) (0.0019) (0.0135) (0.0018) (0.0017) (0.0036) (0.0029) (0.0030) 

 
0.0774 0.0890 0.0624 0.1409 0.0952 0.0783 0.0768 0.1236 0.0785 0.1775 0.0921 0.0884 

(0.0150) (0.0147) (0.0091) (0.0250) (0.0117) (0.0124) (0.0168) (0.0180) (0.0133) (0.0174) (0.0140) (0.0142) 

 
0.9151 0.9010 0.9102 0.8143 0.8969 0.9094 0.8777 0.8402 0.9138 0.8215 0.8955 0.8933 

(0.0148) (0.0172) (0.0139) (0.0334) (0.0117) (0.0140) (0.0311) (0.0224) (0.0137) (0.0174) (0.0184) (0.0164) 

 
4.4859 4.9669 6.1737 4.5052 4.4168 4.9232 6.3549 3.6847 4.4850 3.5207 4.2945 4.2950 

(0.2323) (0.3380) (0.4958) (0.3436) (0.2794) (0.3303) (0.5232) (0.1601) (0.2565) (0.1698) (0.3248) (0.2812) 

Second Moment 0.9925 0.9899 0.9726 0.9552 0.9921 0.9877 0.9545 0.9638 0.9923 0.9990 0.9876 0.9817 

Log-Moment -0.0215 -0.0455 -0.0346 -0.0512 -0.0214 -0.0310 -0.0553 -0.0186 -0.0227 -0.0413 -0.0367 -0.0418 

(1) Entries in bold denote 1% significant 
(2) Standard errors are in parenthesis 

 

 

ω̂

α̂

β̂

λ̂
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Table 4.6 Parameter Estimates for CCC-GJR(1,1) model 

 
Normal Distribution 

USD JPY GBP NZD KRW SGD CHF CNY HKD IDR MYR TWD 

 
0.0060 0.0235 0.0174 0.0101 0.0067 0.0091 0.0363 0.0074 0.0063 0.0147 0.0119 0.0142 

(0.0019) (0.0081) (0.0055) (0.0016) (0.0018) (0.0030) (0.0183) (0.0021) (0.0018) (0.0052) (0.0043) (0.0047) 

 
0.0619 0.0707 0.0444 0.1180 0.0895 0.0676 0.0456 8.35E-06 0.0607 0.1567 0.1053 0.0723 

(0.0136) (0.0154) (0.0120) (0.0191) (0.0147) (0.0145) (0.0210) (9.03E-
05) (0.0093) (0.0413) (0.0282) (0.0169) 

 
0.9157 0.8709 0.9103 0.8482 0.9011 0.8958 0.8827 0.9373 0.9140 0.8335 0.8681 0.8910 

(0.0163) (0.0257) (0.0180) (0.0091) (0.0117) (0.0218) (0.0435) (0.0102) (0.0098) (0.0324) (0.0295) (0.0207) 

 
-0.0183 -0.0531 -0.0329 -0.0053 -0.0018 -0.0327 -0.0488 -0.0956 -0.0221 -0.0175 -0.0184 -0.0135 

(0.0153) (0.0213) (0.0121) (0.0241) (0.0182) (0.0197) (0.0146) (0.0175) (0.0143) (0.0380) (0.0218) (0.0180) 

Second Moment 0.9867 0.9682 0.9711 0.9688 0.9915 0.9798 0.9527 0.9851 0.9857 0.9990 0.9826 0.9701 

Log-Moment -0.0193 -0.0234 -0.0340 -0.0773 -0.0245 -0.0232 -0.0556 -0.0678 -0.0197 -0.0491 -0.0288 -0.0338 

(1) Entries in bold denote 1% significant 
(2) Entries in bold and Italic denote 10% significant 
(3) Standard errors are in parenthesis 

 

ω̂

α̂

β̂

γ̂
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Table 4.7 Parameter Estimates for CCC-GJR(1,1) model 

 
Student-t Distribution 

USD JPY GBP NZD KRW SGD CHF CNY HKD IDR MYR TWD 

 
0.0058 0.0136 0.0165 0.0017 0.0083 0.0074 0.0339 0.0086 0.0060 0.0183 0.0102 0.0117 

(0.0022) (0.0051) (0.0048) (0.0003) (0.0020) (0.0021) (0.0121) (0.0048) (0.0016) (0.0035) (0.0024) (0.0030) 

 
0.0724 0.0702 0.0470 5.35E-09 0.0904 0.0688 0.0491 8.68E-10 0.0722 0.1779 0.0856 0.0846 

(0.0131) (0.0144) (0.0114) (0.0002) (0.0125) (0.0119) (0.0158) (0.0002) (0.0127) (0.0230) (0.0129) (0.0160) 

 
0.9144 0.9008 0.9141 0.9719 0.8958 0.9081 0.8891 0.9390 0.9129 0.8215 0.8945 0.8931 

(0.0148) (0.0185) (0.0158) (0.0004) (0.0124) (0.0143) (0.0286) (0.0230) (0.0134) (0.0175) (0.0165) (0.0163) 

 
0.0093 0.0297 0.0245 0.0481 0.0099 0.0180 0.0369 0.0890 0.0118 -0.0008 0.0129 0.0068 

(0.0149) (0.0158) (0.0114) (0.0036) (0.0165) (0.0144) (0.0139) (0.0283) (0.0129) (0.0246) (0.0153) (0.0157) 

 
4.4918 5.0298 6.2416 4.3169 4.4151 4.9359 6.4812 3.7383 4.4933 3.5211 4.2977 4.2953 

(0.2185) (0.3481) (0.5066) (0.3311) (0.2787) (0.3308) (0.5438) (0.1972) (0.2344) (0.1702) (0.3134) (0.2800) 

Second Moment 0.9914 0.9858 0.9733 0.9960 0.9912 0.9858 0.9566 0.9835 0.9910 0.9990 0.9866 0.9811 

Log-Moment -0.0203 -0.0266 -0.0326 -0.0057 -0.0255 -0.0250 -0.0514 -0.0221 -0.0209 -0.0491 -0.0299 -0.0343 
(1) Entries in bold denote 1% significant 
(2) Entries in bold and Italic denote 10% significant 
(3) Standard errors are in parenthesis 

ω̂

α̂

β̂

γ̂

λ̂
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Table 4.8 Parameter Estimates for DCC-GARCH(1,1) and DCC-GJR(1,1) 
models 

 
Normal Distribution Student-t Distribution 

DCC-GARCH(1,1) DCC-GJR(1,1) DCC-GARCH(1,1) DCC-GJR(1,1) 

  
0.0468 0.0479 0.0382 0.0373 

(0.0105) (0.0109) (0.0011) (0.0010) 

 
0.8984 0.8997 0.9617 0.9626 

(0.0281) (0.0276) (0.0011) (0.0010) 

 

1 2θ θ+  0.9452 0.9476 0.9999 0.9999 

λ   
4.6796 4.5697 

(0.1389) (0.1304) 

  (1) Entries in bold denote 1% significant 
  (2) Standard errors are in parenthesis 

 

Table 4.8 summarizes the results for DCC estimates for all currencies. The 

estimated DCC parameters, 1θ  and  2θ , are statistically significant for all 

currencies, suggesting that the conditional correlations are not constant 

over time. Given that  

1 2 1θ θ+ <  , the second moment condition is satisfied. 

Tables 4.9 to 4.12 provide the conditional correlations estimated by CCC-

GARCH(1,1) and CCC-GJR(1,1) models under normal and student-t 

distributions. Most of the time, all currencies are positively correlated 

and give similar estimates of conditional correlations between normal 

and student-t distributions. It can be seen that the currency pair of USD 

vs HKD displays the highest correlation at 0.9957, given that the 

currencies are pegged to each other, followed by USD vs TWD within a 

range of 0.9153 to 0.9158. While, the currency pair of NZD vs CNY has 

the lowest correlation within a range of 0.1955 to 0.2173.
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Table 4.9 Conditional Correlations estimated by GARCH(1,1) model under Normal Distribution 

 USD JPY GBP NZD KRW SGD CHF CNY HKD IDR MYR TWD 

USD 1 0.5900 0.5816 0.3704 0.8778 0.8816 0.5028 0.4817 0.9957 0.5500 0.8537 0.9157 

JPY - 1 0.6217 0.3271 0.5839 0.7019 0.6716 0.3144 0.5930 0.3527 0.5958 0.5842 

GBP - - 1 0.3159 0.5105 0.6428 0.7737 0.3010 0.5877 0.3016 0.5550 0.5532 

NZD - - - 1 0.3533 0.3837 0.2971 0.1955 0.3735 0.2378 0.3504 0.3507 

KRW - - - - 1 0.8240 0.4526 0.4337 0.8787 0.5380 0.7965 0.8457 

SGD - - - - - 1 0.6058 0.4328 0.8840 0.5403 0.8645 0.8441 

CHF - - - - - - 1 0.2625 0.5094 0.2504 0.5084 0.4887 

CNY - - - - - - - 1 0.4829 0.2725 0.3585 0.4365 

HKD - - - - - - - - 1 0.5476 0.8521 0.9133 

IDR - - - - - - - - - 1 0.5372 0.5261 

MYR - - - - - - - - - - 1 0.8148 

TWD - - - - - - - - - - - 1 
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Table 4.10 Conditional Correlations estimated by GARCH(1,1) model under Student-t Distribution 

 USD JPY GBP NZD KRW SGD CHF CNY HKD IDR MYR TWD 

USD 1 0.5894 0.5813 0.3718 0.8771 0.8817 0.5032 0.5181 0.9957 0.5471 0.8528 0.9153 

JPY - 1 0.6221 0.3283 0.5833 0.7023 0.6723 0.3363 0.5924 0.3508 0.5954 0.5821 

GBP - - 1 0.3168 0.5107 0.6433 0.7744 0.3258 0.5873 0.3000 0.5560 0.5523 

NZD - - - 1 0.3544 0.3854 0.2984 0.2087 0.3750 0.2386 0.3517 0.3523 

KRW - - - - 1 0.8238 0.4533 0.4644 0.8779 0.5350 0.7952 0.8451 

SGD - - - - - 1 0.6071 0.4649 0.8841 0.5371 0.8642 0.8433 

CHF - - - - - - 1 0.2851 0.5098 0.2496 0.5094 0.4886 

CNY - - - - - - - 1 0.5194 0.2890 0.3887 0.4709 

HKD - - - - - - - - 1 0.5447 0.8511 0.9128 

IDR - - - - - - - - - 1 0.5326 0.5236 

MYR - - - - - - - - - - 1 0.8130 

TWD - - - - - - - - - - - 1 
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Table 4.11 Conditional Correlations estimated by GJR(1,1) model under Normal Distribution 

 USD JPY GBP NZD KRW SGD CHF CNY HKD IDR MYR TWD 

USD 1 0.5886 0.5791 0.3696 0.8776 0.8814 0.5021 0.5392 0.9957 0.5485 0.8530 0.9158 

JPY - 1 0.6192 0.3260 0.5834 0.7008 0.6713 0.3504 0.5916 0.3509 0.5947 0.5839 

GBP - - 1 0.3153 0.5087 0.6407 0.7717 0.3409 0.5852 0.2990 0.5528 0.5510 

NZD - - - 1 0.3531 0.3824 0.2966 0.2173 0.3725 0.2371 0.3494 0.3503 

KRW - - - - 1 0.8233 0.4527 0.4849 0.8784 0.5366 0.7955 0.8455 

SGD - - - - - 1 0.6057 0.4860 0.8838 0.5387 0.8635 0.8440 

CHF - - - - - - 1 0.2999 0.5087 0.2485 0.5078 0.4885 

CNY - - - - - - - 1 0.5408 0.2995 0.4090 0.4885 

HKD - - - - - - - - 1 0.5461 0.8515 0.9135 

IDR - - - - - - - - - 1 0.5357 0.5243 

MYR - - - - - - - - - - 1 0.8140 

TWD - - - - - - - - - - - 1 
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Table 4.12 Conditional Correlations estimated by GJR(1,1) model under Student-t Distribution 

 USD JPY GBP NZD KRW SGD CHF CNY HKD IDR MYR TWD 

USD 1 0.5887 0.5794 0.3503 0.8765 0.8816 0.5022 0.5486 0.9957 0.5473 0.8519 0.9154 

JPY - 1 0.6204 0.3135 0.5831 0.7016 0.6718 0.3563 0.5917 0.3505 0.5946 0.5821 

GBP - - 1 0.3068 0.5087 0.6418 0.7726 0.3479 0.5854 0.2992 0.5542 0.5507 

NZD - - - 1 0.3331 0.3648 0.2883 0.2059 0.3529 0.2211 0.3316 0.3313 

KRW - - - - 1 0.8231 0.4524 0.4927 0.8774 0.5350 0.7940 0.8449 

SGD - - - - - 1 0.6066 0.4939 0.8840 0.5372 0.8635 0.8433 

CHF - - - - - - 1 0.3059 0.5087 0.2489 0.5086 0.4881 

CNY - - - - - - - 1 0.5502 0.3024 0.4164 0.4980 

HKD - - - - - - - - 1 0.5450 0.8504 0.9130 

IDR - - - - - - - - - 1 0.5326 0.5236 

MYR - - - - - - - - - - 1 0.8124 

TWD - - - - - - - - - - - 1 
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Figure 4.5 CCC Conditional Correlations for Each Pair of Currency 
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Figure 4.5 illustrates the conditional correlations for all 66 pairs of 

currencies from 2 January 2003 to 31 December 2013 with 2,871 

observations. All currency pairs exhibit positive conditional correlations. 

The differences between normal and student-t distributions are barely 

distinguishable for all currency pairs. A constant perfect positive 

correlation is given by USD vs HKD since the currency pair is pegged. 

There are 12 currency pairs, namely, HKD vs MYR, HKD vs TWD, KRW vs 

HKD, KRW vs SGD, KRW vs TWD, MYR vs TWD, SGD vs HKD, SGD vs MYR, 

SGD vs TWD, USD vs KRW, USD vs MYR and USD vs SGD which display 

conditional correlations of higher than 0.8 consistently over the 

forecasting period. Some currency pairs, particularly those currency pairs 

with CNY, IDR, KRW, and NZD, include structural breaks that can also be 

seen at different points in time. Interestingly, those break points often 

shift to higher correlations after the structural breaks.  
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Figure 4.6 DCC Conditional Correlations for Each Pair of Currency 
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Figure 4.6 presents the dynamic conditional correlations for all 66 pairs 

of currencies. Each currency pair shows the different and dynamic 

structure of conditional correlations over the entire forecasting period, 

thereby suggesting that the assumption of constant conditional 

correlations may not be appropriate. This result is in line with the other 

empirical studies, see, for examples, Longin and Solnik (1995), Tse (2000), 

and Nakatani and Teräsvirta (2009). Similarly, all currency pairs exhibit 

positive time-varying conditional correlations. However, the conditional 

correlations assuming student-t distribution are smoother than those 

obtained under the normal distribution. While, a constant perfect 

positive correlation is given by USD vs HKD since the currency pair is 

pegged. Nevertheless, most currency pairs show sharp declines in 

conditional correlations during the periods of GFC, from 2008 to 2009.  
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Figure 4.7 Conditional Correlations for the Equally-weighted Portfolio  
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Figure 4.7 shows the conditional correlations for the equally-weighted 

portfolio derived from CCC and DCC models that follow GARCH(1,1) and 

GJR(1,1) processes. It can be seen that the portfolio exhibits positive 

conditional correlations. On average, the CCC conditional correlation is 

constantly estimated at 0.56. While, DCC conditional correlations are 

very erratic. The empirical evidence suggests that the conditional 

correlation is not constant over time which justifies the use of a model 

such as DCC to capture the time-varying conditional correlation 

structures in foreign exchange returns. 

Figure 4.8 plots the conditional variances for the equally-weighted 

portfolio derived from CCC-GARCH(1,1), CCC-GJR(1,1), DCC-GARCH(1,1), 

and DCC-GJR(1,1) models. All models show similar dynamics of volatility. 

The GFC has a pronounced effect on the volatility of the portfolio returns, 

where a significant spike can be seen in the year 2008. Likewise, the level 

of volatility by DCC model displays a higher magnitude of 8 compared to 

CCC model at a magnitude of 6 during the GFC. 
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Figure 4.8 Conditional Variances for the Equally-weighted Portfolio 
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Table 4.13 VaR Forecasts at 1% level 

Model Mean Median Minimum Maximum 
Standard 

Deviation 



CCCGARCH N
normVaR

−  -1.2943 (1) -1.1560 -5.6650 -0.7386 0.5336 


CCCGJR N
normVaR

−  -1.2956 (1) -1.1520 -5.6090 -0.7479 0.5386 


CCCGARCH N
stdVaR

−  -1.5071 (2) -1.3460 -6.5960 -0.8601 0.6214 


CCCGJR N
stdVaR

−  -1.5072 (2) -1.3400 -6.5250 -0.8700 0.6265 


CCCGARCH N
stdVaR η

−  -1.4636 (3) -1.3060 -6.4560 -0.7665 0.6098 


CCCGJR N
stdVaR η

−  -1.4635 (3) -1.2980 -6.3890 -0.7811 0.6150 


CCCGARCH t
stdVaR

−  -1.5199 (4) -1.3560 -6.5840 -0.8696 0.6287 


CCCGJR t
stdVaR

−  -1.5179 (4) -1.3500 -6.4680 -0.8738 0.6326 


CCCGARCH t
stdVaR η

−  -1.4877 (5) -1.3250 -6.4870 -0.7814 0.6230 


CCCGJR t
stdVaR η

−  -1.4853 (5) -1.3200 -6.3890 -0.7860 0.6271 


DCCGARCH N
normVaR

−  -1.3336 (1) -1.1860 -6.3490 -0.7172 0.5896 


DCCGJR N
normVaR

−  -1.3353 (1) -1.1800 -6.2380 -0.7264 0.5952 


DCCGARCH N
stdVaR

−  -1.5148 (2) -1.3470 -7.2110 -0.8146 0.6697 


DCCGJR N
stdVaR

−  -1.5166 (2) -1.3400 -7.0850 -0.8250 0.6761 


DCCGARCH N
stdVaR η

−  -1.5080 (3) -1.3370 -7.2360 -0.7530 0.6732 


DCCGJR N
stdVaR η

−  -1.5085 (3) -1.3310 -7.1050 -0.7654 0.6792 


DCCGARCH t
stdVaR

−  -1.6029 (4) -1.4300 -7.4590 -0.7922 0.7249 


DCCGJR t
stdVaR

−  -1.6001 (4) -1.4200 -7.2630 -0.8075 0.7288 


DCCGARCH t
stdVaR η

−  -1.5929 (5) -1.4200 -7.4760 -0.7818 0.7286 


DCCGJR t
stdVaR η

−  -1.5891 (5) -1.4110 -7.2800 -0.7931 0.7324 
(1) VaR forecasts are estimated from equation (4.6) based on a normal distribution 
(2) VaR forecasts are estimated from equation (4.6) based on a normal distribution at the 

degrees of freedom set by t-density 
(3) VaR forecasts are estimated from equation (4.6) based on a normal distribution at 

rolling degrees of freedom set by t-density 
(4) VaR forecasts are estimated from equation (4.6) based on a student-t distribution at 

the degrees of freedom set by t-density 
(5) VaR forecasts are estimated from equation (4.6) based on a student-t distribution at 

rolling degrees of freedom set by t-density 
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Table 4.13 summarizes the results for the 20 sets of VaR forecasts 

estimated by the CCC and DCC models. The means of VaR forecasts for 

the CCC and DCC models that utilized under student-t distribution appear 

to be lower than the means of VaR forecasts for the CCC and DCC models 

under the normal distribution. Hence, the student-t distribution provides 

more conservative VaR forecasts than a normal distribution. It can also 

be seen that the means of VaR forecasts estimated by the DCC models 

are mostly lower than the means of VaR forecasts estimated by the CCC 

models. In particular,  DCCGARCH t
stdVaR

− shows the lowest mean of VaR 

forecasts at -1.6029 while CCCGARCH N
normVaR

− shows the highest mean of VaR 

forecasts at -1.2943. Hence, VaR forecasts estimated by the DCC models 

are crucial to improving the performance of VaR forecasts to 

accommodate the dynamic conditional correlations among foreign 

exchange returns.  

The time series of the daily portfolio returns together with VaR forecasts 

estimated by the CCC and DCC models are illustrated in Figure 4.9. It can 

be seen that the VaR forecasts based on student-t distribution are lower 

than the VaR forecasts based on normal distribution. The significant 

spikes of the portfolio returns indicated the events at which high 

volatility occurred, particularly in the periods from 1985 to 1987, from 

1992 to 1994, from 1998 to 2000, from 2001 to 2002, and from 2008 to 

2009 due to the US stock market crashes, EMS crisis, 9/11 events, Asian 

currency crisis and GFC, respectively. 
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Figure 4.9 Portfolio Returns and VaR Forecasts at 1% Level 
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Table 4.14 Number and Percentage of Violations for VaR Forecasts at 1% 
Level 

Model No. of Violation % of Violation Ranking 



CCCGARCH N
normVaR

−  71 2.47% 20 



CCCGJR N
normVaR

−  69 2.40% 19 



CCCGARCH N
stdVaR

−  41 1.43% 8 



CCCGJR N
stdVaR

−  39 1.36% 5 



CCCGARCH N
stdVaR η

−  47 1.64% 16 



CCCGJR N
stdVaR η

−  45 1.57% 12 



CCCGARCH t
stdVaR

−  41 1.43% 8 



CCCGJR t
stdVaR

−  40 1.39% 7 



CCCGARCH t
stdVaR η

−  45 1.57% 12 



CCCGJR t
stdVaR η

−  45 1.57% 12 



DCCGARCH N
normVaR

−  68 2.37% 18 



DCCGJR N
normVaR

−  64 2.23% 17 



DCCGARCH N
stdVaR

−  41 1.43% 8 



DCCGJR N
stdVaR

−  39 1.36% 5 



DCCGARCH N
stdVaR η

−  41 1.43% 8 



DCCGJR N
stdVaR η

−  41 1.43% 8 



DCCGARCH t
stdVaR

−  35 1.22% 2 



DCCGJR t
stdVaR

−  33 1.15% 1 



DCCGARCH t
stdVaR η

−  37 1.29% 4 



DCCGJR t
stdVaR η

−  35 1.22% 2 
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Table 4.14 reports the number and percentage of violations for VaR 

forecasts. The ranking starts from 1 is the best model, i.e., the model that 

correctly forecasts market risk, and 20 is the worst model with a 

percentage of violation more than one percent, i.e., the model that 

underestimates market risk. High percentages of violations for 



CCCGARCH N
normVaR

−  and CCCGJR N
normVaR

− are given at 2.47% and 2.40%, respectively. 

Similarly, 

DCCGARCH N
normVaR

−  and 

DCCGJR N
normVaR

− present high percentages of 

violations at 2.37% and 2.23%, respectively. The best model is given by 



DCCGJR t
stdVaR

− at 1.15%, followed by  DCCGARCH t
stdVaR

− and  DCCGJR t
stdVaR η

− at 1.22%. The 

highest percentage of violations at the lowest ranking is given by 



CCCGARCH N
normVaR

− at 2.47%. It is worth noting that among the student- 

distribution models, the DCC models are preferred to the CCC models 

with the DCC models present the percentages of VaR violations that are 

closer to one percent.  

Figure 4.10 shows the time series of the daily portfolio returns during the 

forecast period and the time at which VaR violations occurred. A violation 

is recorded when an actual loss exceeds the VaR forecast. The episodes 

of VaR violations are often centralized during the periods of high volatility. 

The events of VaR violations under student-t distribution always give 

fewer violations than VaR violations under the normal distribution. 
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Figure 4.10 Portfolio Returns and VaR Violations 
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Table 4.15 Ratios for Absolute Deviation between Portfolio Returns and VaR 
Forecasts at 1% level 

Model Mean Median Minimum Maximum 



CCCGARCH N
normVaR

−  1.024 1.009 0.00095 2.747 



CCCGJR N
normVaR

−  1.024 1.009 0.00271 2.683 



CCCGARCH N
stdVaR

−  1.015 1.008 0.00229 2.500 



CCCGJR N
stdVaR

−  1.015 1.008 0.00103 2.447 



CCCGARCH N
stdVaR η

−  1.017 1.008 0.00017 2.550 



CCCGJR N
stdVaR η

−  1.016 1.008 0.00073 2.494 



CCCGARCH t
stdVaR

−  1.016 1.008 0.00496 2.478 



CCCGJR t
stdVaR

−  1.015 1.008 0.00164 2.447 



CCCGARCH t
stdVaR η

−  1.016 1.008 0.00049 2.512 



CCCGJR t
stdVaR η

−  1.016 1.008 0.00245 2.480 



DCCGARCH N
normVaR

−  1.022 1.009 0.00271 2.734 



DCCGJR N
normVaR

−  1.022 1.009 0.00356 2.667 



DCCGARCH N
stdVaR

−  1.015 1.008 0.00315 2.441 



DCCGJR N
stdVaR

−  1.015 1.007 0.00183 2.467 



DCCGARCH N
stdVaR η

−  1.015 1.008 0.00114 2.539 



DCCGJR N
stdVaR η

−  1.015 1.007 0.00087 2.480 



DCCGARCH t
stdVaR

−  1.013 1.007 0.00046 2.527 



DCCGJR t
stdVaR

−  1.013 1.007 0.01378 2.399 



DCCGARCH t
stdVaR η

−  1.013 1.007 0.00065 2.452 



DCCGJR t
stdVaR η

−  1.013 1.007 0.00707 2.410 

(1) The ratio is calculated by (VaR Forecast minus Actual Return) divided by Actual Return 
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The magnitude of violations can be assessed by the ratios of absolute 

deviation between the actual returns and VaR forecasts. The regulator is 

concerned with whether the VaR forecasts are large enough to cover 

banks’ unexpected trading losses. Hence, the size of large losses can be 

determined by the magnitude of violations. Table 4.15 summarizes the 

ratios of actual losses to the length of VaR forecasts for all models. The 

highest mean ratio at 1.024 is given by  CCCGARCH N
normVaR

− and CCCGJR N
normVaR

− , 

followed by  DCCGARCH N
normVaR

− and  DCCGJR N
normVaR

− at a mean ratio of 1.022. While, 

the lowest mean ratio is shown by  DCCGARCH t
stdVaR

− ,  DCCGJR t
stdVaR

−  ,  DCCGARCH t
stdVaR η

−

and  DCCGJR t
stdVaR η

− at a mean ratio of 1.013.  

Figure 4.11 plots the ratios of actual returns to the length of VaR 

forecasts during the forecast period. A smaller magnitude of violations 

can be seen during periods of low volatility. Whereas, the highest 

magnitude of violations, i.e. the largest size of losses, occurred in the year 

of 2008. 
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Figure 4.11 Absolute Deviation between Portfolio Returns and VaR 
Forecasts 
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Table 4.16 Backtesting Results for VaR Forecasts at 1% level 

Model TUFF (1) UC (1) Ind (2) CC (2) 



CCCGARCH N
normVaR

−  0.3715 44.6241 12.9469 57.5710 



CCCGJR N
normVaR

−  0.3715 41.0007 13.7388 54.7394 



CCCGARCH N
stdVaR

−  0.3715 4.6920 5.2691 9.9611 



CCCGJR N
stdVaR

−  0.3715 3.3500 2.4869 5.8368 



CCCGARCH N
stdVaR η

−  0.3715 9.8707 7.1900 17.0607 



CCCGJR N
stdVaR η

−  0.3715 7.9611 4.3391 12.3002 



CCCGARCH t
stdVaR

−  0.3715 4.6920 5.2691 9.9611 



CCCGJR t
stdVaR

−  0.3715 3.9956 2.3324 6.3280 



CCCGARCH t
stdVaR η

−  0.3715 7.9611 7.7980 15.7591 



CCCGJR t
stdVaR η

−  0.3715 7.9611 7.7980 15.7591 



DCCGARCH N
normVaR

−  0.3715 39.2333 10.6979 49.9312 



DCCGJR N
normVaR

−  0.3715 32.4696 8.7800 41.2496 



DCCGARCH N
stdVaR

−  0.3715 4.6920 2.1846 6.8766 



DCCGJR N
stdVaR

−  0.3715 3.3500 2.4869 5.8368 



DCCGARCH N
stdVaR η

−  0.3715 4.6920 2.1846 6.8766 



DCCGJR N
stdVaR η

−  0.3715 4.6920 2.1846 6.8766 



DCCGARCH t
stdVaR

−  0.3715 1.3011 3.1780 4.4791 



DCCGJR t
stdVaR

−  0.3715 0.6178 3.5724 4.1901 



DCCGARCH t
stdVaR η

−  0.3715 2.2160 2.8172 5.0331 



DCCGJR t
stdVaR η

−  0.3715 1.3011 3.1780 4.4791 
(1) The Unconditional Coverage (UC) and Time Until First Failure (TUFF) tests are 

asymptotically distributed as χ2 (1). 
(2) The Serial Independence (Ind) and Conditional Coverage (CC) tests are asymptotically 

distributed as χ2 (2). 
(3) Entries in bold denote rejection of the tests. 
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The results from TUFF, UC, Ind and CC tests are presented in Table 4.16. 

The TUFF results for all models lead to correct acceptance of the test at 

a constant value of 0.3715. It can be seen that both CCC and DCC models 

under a normal distribution, fail UC, Ind and CC tests. This suggests that 

the VaR violations performed by these models are serially dependent. On 

the other hand,CCCGJR N
stdVaR

− , DCCGJR N
stdVaR

− , DCCGARCH t
stdVaR

− ,  DCCGJR t
stdVaR

− ,  DCCGARCH t
stdVaR η

−  

and  DCCGJR t
stdVaR η

− pass UC, Ind and CC tests. This shows that the VaR 

violations are likely to be independent and that a VaR violation today 

should not provide any information about whether or not a VaR violation 

will occur tomorrow. While, 

CCCGARCH N
normVaR

− , CCCGJR N
stdVaR η

− , CCCGARCH t
stdVaR

− ,



CCCGJR t
stdVaR

− ,  DCCGARCH N
stdVaR

−  ,  DCCGARCH N
stdVaR η

− , and  DCCGJR N
stdVaR η

−  fail the UC and CC 

tests but pass Ind test.  

Table 4.17 summarizes the results for VaRmin at 1% level. It represents 

the lower VaR of the previous day or the average VaR on the previous 60 

days. These VaR values are used to verify the VaR forecasts from Table 

4.13. 
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Table 4.17 VaRmin at 1% level 

Model Mean Median Minimum Maximum 
Standard 

Deviation 



CCCGARCH N
normVaR

−  -1.3913 -1.2220 -5.6650 -0.8125 0.5869 



CCCGJR N
normVaR

−  -1.3949 -1.2170 -5.6090 -0.8183 0.5921 



CCCGARCH N
stdVaR

−  -1.6201 -1.4230 -6.5960 -0.9461 0.6834 



CCCGJR N
stdVaR

−  -1.6227 -1.4150 -6.5250 -0.9520 0.6964 



CCCGARCH N
stdVaR η

−  -1.5741 -1.3790 -6.4560 -0.9067 0.6704 



CCCGJR N
stdVaR η

−  -1.5767 -1.3730 -6.3890 -0.9035 0.6759 



CCCGARCH t
stdVaR

−  -1.6335 -1.4340 -7.0850 -0.9096 0.6919 



CCCGJR t
stdVaR

−  -1.6330 -1.4340 -7.0850 -0.9096 0.6964 



CCCGARCH t
stdVaR η

−  -1.5998 -1.4000 -6.4870 -0.9120 0.6853 



CCCGJR t
stdVaR η

−  -1.5990 -1.3910 -6.3890 -0.9042 0.6899 



DCCGARCH N
normVaR

−  -1.4454 -1.2620 -6.3490 -0.7953 0.6460 



DCCGJR N
normVaR

−  -1.4496 -1.2630 -6.2380 -0.8009 0.6518 



DCCGARCH N
stdVaR

−  -1.6418 -1.4340 -7.2110 -0.9034 0.7337 



DCCGJR N
stdVaR

−  -1.6464 -1.4340 -7.0850 -0.9096 0.7402 



DCCGARCH N
stdVaR η

−  -1.6355 -1.4280 -7.2360 -0.8912 0.7373 



DCCGJR N
stdVaR η

−  -1.6386 -1.4250 -7.1050 -0.8877 0.7434 



DCCGARCH t
stdVaR

−  -1.7400 -1.5300 -7.4590 -0.9254 0.7947 



DCCGJR t
stdVaR

−  -1.7382 -1.5190 -7.2630 -0.9356 0.7993 



DCCGARCH t
stdVaR η

−  -1.7303 -1.5200 -7.4760 -0.8934 0.7984 



DCCGJR t
stdVaR η

−  -1.7274 -1.5070 -7.2800 -0.8877 0.8030 
(1) VaRmin is calculated as the negative of the higher VaR of the previous day or the 

average VaR over the past 60 days 
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Table 4.18 Number and Percentage of Violations for Rolling VaR Violations  

Model No. of Violation % of Violation Ranking 



CCCGARCH N
normVaR

−  60 2.09% 20 



CCCGJR N
normVaR

−  58 2.02% 19 



CCCGARCH N
stdVaR

−  36 1.25% 8 



CCCGJR N
stdVaR

−  34 1.18% 5 



CCCGARCH N
stdVaR η

−  43 1.50% 16 



CCCGJR N
stdVaR η

−  38 1.32% 13 



CCCGARCH t
stdVaR

−  36 1.25% 8 



CCCGJR t
stdVaR

−  35 1.22% 7 



CCCGARCH t
stdVaR η

−  40 1.39% 14 



CCCGJR t
stdVaR η

−  40 1.39% 14 



DCCGARCH N
normVaR

−  52 1.81% 18 



DCCGJR N
normVaR

−  50 1.74% 17 



DCCGARCH N
stdVaR

−  36 1.25% 8 



DCCGJR N
stdVaR

−  34 1.18% 5 



DCCGARCH N
stdVaR η

−  36 1.25% 8 



DCCGJR N
stdVaR η

−  36 1.25% 8 



DCCGARCH t
stdVaR

−  28 0.97% 2 



DCCGJR t
stdVaR

−  29 1.01% 1 



DCCGARCH t
stdVaR η

−  32 1.11% 3 



DCCGJR t
stdVaR η

−  32 1.11% 3 
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Table 4.18 reports the number and percentage of VaRmin violations on 

the previous 250 days. The regulator is concerned with whether the 

internal VaR models adopted by banks provide correct coverage for 

losses. Notice that the ranking presented in Table 4.18 is similar to the 

ranking listed in Table 4.14. The best model presented in this case is 



DCCGJR t
stdVaR

− at 1.01%, given that it is the closest to one percent, followed 

by  DCCGARCH t
stdVaR

− at 0.97%. While,  DCCGARCH t
stdVaR η

−  and  DCCGJR t
stdVaR η

−  show similar 

percentages of violations at 1.11%. The highest percentage of VaR 

violations is given by CCCGARCH N
normVaR

− at 2.09%. These results have an 

important consequence in forecasting VaR as the normal distribution can 

potentially underestimate market risk with the higher amount of capital 

charges. This may substantially increase a bank’s cost that cannot be 

used for other profitable purposes. An alternative solution is to use other 

distributions such as student-t distribution to accommodate large 

movements of asset returns in the market (see, for example, Bauwens 

and Laurent 2005). 

Table 4.19 shows the scaling factors as required by the Basel Committee. 

Of particular interest, CCCGARCH N
normVaR

− gives the highest mean of scaling factor 

at a level of 3.4, while  DCCGJR t
stdVaR

− and  DCCGJR t
stdVaR η

− give the lowest mean of 

scaling factor at a level of 3.0. It can be seen that the median and the 

minimum scaling factor for all models present at a level of 3.0. While, a 

maximum level of 4.0 is observed for CCCGARCH N
normVaR

− , CCCGJR N
normVaR

− , and 



DCCGARCH N
normVaR

− . 
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Table 4.19 Scaling Factors 

Model Mean Median Minimum Maximum 
Standard 

Deviation 



CCCGARCH N
normVaR

−  3.4 3.4 3.0 4.0 0.3450 



CCCGJR N
normVaR

−  3.3 3.4 3.0 4.0 0.3364 



CCCGARCH N
stdVaR

−  3.1 3.0 3.0 3.8 0.2321 



CCCGJR N
stdVaR

−  3.1 3.0 3.0 3.7 0.1944 



CCCGARCH N
stdVaR η

−  3.2 3.0 3.0 3.9 0.2691 



CCCGJR N
stdVaR η

−  3.1 3.0 3.0 3.7 0.2159 



CCCGARCH t
stdVaR

−  3.1 3.0 3.0 3.8 0.2321 



CCCGJR t
stdVaR

−  3.1 3.0 3.0 3.8 0.2208 



CCCGARCH t
stdVaR η

−  3.2 3.0 3.0 3.8 0.2478 



CCCGJR t
stdVaR η

−  3.2 3.0 3.0 3.8 0.2478 



DCCGARCH N
normVaR

−  3.3 3.0 3.0 4.0 0.3193 



DCCGJR N
normVaR

−  3.2 3.0 3.0 3.9 0.2860 



DCCGARCH N
stdVaR

−  3.1 3.0 3.0 3.7 0.1997 



DCCGJR N
stdVaR

−  3.1 3.0 3.0 3.7 0.1776 



DCCGARCH N
stdVaR η

−  3.1 3.0 3.0 3.7 0.1976 



DCCGJR N
stdVaR η

−  3.1 3.0 3.0 3.7 0.1776 



DCCGARCH t
stdVaR

−  3.1 3.0 3.0 3.7 0.1548 



DCCGJR t
stdVaR

−  3.0 3.0 3.0 3.5 0.1245 



DCCGARCH t
stdVaR η

−  3.1 3.0 3.0 3.7 0.1742 



DCCGJR t
stdVaR η

−  3.0 3.0 3.0 3.5 0.1245 
(1) The scaling factor is calculated as 3+k, where k is the violation penalty 
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Table 4.20 Capital Charges for VaRmin at 1% level 

Model Mean Median Minimum Maximum Standard Deviation 



CCCGARCH N
normVaR

−  -4.79 -4.06 -22.66 -2.44 2.5215 



CCCGJR N
normVaR

−  -4.77 -4.01 -22.43 -2.46 2.5406 



CCCGARCH N
stdVaR

−  -5.18 -4.38 -24.74 -2.84 2.6551 



CCCGJR N
stdVaR

−  -5.12 -4.36 -23.82 -2.86 2.5406 



CCCGARCH N
stdVaR η

−  -5.13 -4.32 -24.86 -2.72 2.6680 



CCCGJR N
stdVaR η

−  -5.01 -4.28 -23.32 -2.71 2.4855 



CCCGARCH t
stdVaR

−  -5.22 -4.41 -24.61 -2.84 2.6874 



CCCGJR t
stdVaR

−  -5.19 -4.38 -24.26 -2.88 2.6821 



CCCGARCH t
stdVaR η

−  -5.15 -4.36 -24.31 -2.74 2.6518 



CCCGJR t
stdVaR η

−  -5.15 -4.35 -23.96 -2.71 2.6684 



DCCGARCH N
normVaR

−  -4.87 -4.05 -25.39 -2.39 2.7387 



DCCGJR N
normVaR

−  -4.81 -4.01 -24.02 -2.40 2.6061 



DCCGARCH N
stdVaR

−  -5.19 -4.45 -26.32 -2.71 2.6897 



DCCGJR N
stdVaR

−  -5.15 -4.34 -25.86 -2.73 2.7088 



DCCGARCH N
stdVaR η

−  -5.15 -4.38 -26.41 -2.67 2.6938 



DCCGJR N
stdVaR η

−  -5.13 -4.31 -25.93 -2.66 2.7201 



DCCGARCH t
stdVaR

−  -5.41 -4.63 -26.10 -2.78 2.7875 



DCCGJR t
stdVaR

−  -5.31 -4.59 -24.69 -2.81 2.5191 



DCCGARCH t
stdVaR η

−  -5.41 -4.65 -26.17 -2.68 2.7925 



DCCGJR t
stdVaR η

−  -5.28 -4.56 -24.75 -2.67 2.5316 
(1) The  capital charge is calculated as the lower VaR of the previous day or the average 

VaR on the previous 60 days (VaRmin), multiplied by a scaling factor of (3+k), where k is 

the violation penalty 
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Table 4.20 shows the market risk capital charges that are a product of 

VaRmin (Table 4.17) multiplied by a scaling factor (Table 4.19). It 

represents the capital requirements established by the Basel Accord. 

Berkowitz and O'Brien (2002) and Pérignon, Deng, and Wang (2008) 

showed that banks tend to report high VaR forecasts that lead to an 

excessive amount of capital charges. In any case, there is an opportunity 

cost of misestimating VaR. Hence, pursuing a correct VaR model that can 

lead to the precision of determining minimum capital requirements is 

crucial for banks and the regulator (see Santos et al. 2012). In this case, 



DCCGARCH t
stdVaR

− and  DCCGARCH t
stdVaR η

− provide the lowest mean of capital charges at 

-5.41.  DCCGJR t
stdVaR

−  and CCCGARCH t
stdVaR

− give a mean of capital charges at -5.31 

and -5.22, respectively. The lowest capital charge is given by  DCCGARCH N
stdVaR η

−

at -26.41, followed by  DCCGARCH N
stdVaR

− at -26.32, and  DCCGARCH t
stdVaR η

− at -26.17. 

These capital costs are mostly charged during the GFC, where sharp 

negative spikes of capital charges are shown in Figure 4.12. On the 

contrary, the highest capital charge is presented by  DCCGARCH N
normVaR

− at – 2.39, 

followed by  DCCGJR N
normVaR

−  at -2.40. This occurs during periods of low 

volatility in the foreign exchange market. 

Figure 4.12 demonstrates the episodes at which capital charges are most 

likely to occur. It can be seen that due to extreme negative returns during 

the GFC of 2008, the capital charges are imposed at the highest costs. 

This is mostly expected during extreme market conditions where higher 

capital charges are imposed to protect banks from the worst possible 

trading losses. 
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Figure 4.12 Capital Charges and VaRmin at 1% level 
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Table 4.21 Proportion of Time Staying in a Color Zone 

Model Green Yellow Red 



CCCGARCH N
normVaR

−  44.83% 51.45% 3.76% 



CCCGJR N
normVaR

−  45.87% 50.40% 3.76% 



CCCGARCH N
stdVaR

−  73.35% 26.68% 0% 



CCCGJR N
stdVaR

−  75.86% 24.17% 0% 



CCCGARCH N
stdVaR η

−  63.50% 36.54% 0% 



CCCGJR N
stdVaR η

−  71.86% 28.18% 0% 



CCCGARCH t
stdVaR

−  73.35% 26.68% 0% 



CCCGJR t
stdVaR

−  75.51% 24.52% 0% 



CCCGARCH t
stdVaR η

−  69.35% 30.69% 0% 



CCCGJR t
stdVaR η

−  69.35% 30.69% 0% 



DCCGARCH N
normVaR

−  53.54% 43.61% 2.89% 



DCCGJR N
normVaR

−  55.83% 44.20% 0% 



DCCGARCH N
stdVaR

−  74.82% 25.22% 0% 



DCCGJR N
stdVaR

−  82.79% 17.24% 0% 



DCCGARCH N
stdVaR η

−  77.60% 22.43% 0% 



DCCGJR N
stdVaR η

−  82.79% 17.24% 0% 



DCCGARCH t
stdVaR

−  83.63% 16.41% 0% 



DCCGJR t
stdVaR

−  89.31% 10.73% 0% 



DCCGARCH t
stdVaR η

−  78.75% 21.28% 0% 



DCCGJR t
stdVaR η

−  89.31% 10.73% 0% 
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Figure 4.13 VaR Violations and VaRmin at 1% level 
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Table 4.21 provides the proportion of time staying in the green, yellow 

and red zones. The green zone is desirable by all banks, as this indicates 

that no excessive violations occur. A bank is categorized in the red zone 

if its VaR model is not appropriate, and will be required to pay a greater 

amount of capital charges. Figure 4.13 exhibits the periods of when the 

green, yellow and red zones are likely to occur for all VaR models. In most 

cases, the models tend to stay in the green and yellow zones during 

periods of low volatility with fewer VaR violations. With exception to



CCCGARCH N
normVaR

− ,CCCGJR N
normVaR

− , and  DCCGARCH N
normVaR

− , these models spend some time 
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in the red zone due to excessive negative movements during the GFC. 



DCCGJR t
stdVaR

− ,  DCCGARCH t
stdVaR

− , and  DCCGJR N
stdVaR

− models spend a very large 

proportion of time in the green zone, and substantially spending less 

time in the yellow zone. 

4.4 CONCLUSION 

This chapter emphasizes the importance of accommodating time-varying 

conditional correlations in forecasting VaR. These findings are crucial for 

banks and the regulator since a correct VaR model leads to increase 

efficiency in measuring market risk, hence leading to determine 

minimum capital requirements. In this chapter, two multivariate 

volatility models, namely CCC and DCC models, are considered to 

forecast VaR. These models are estimated by GARCH(1,1) and GJR1,1) 

processes under normal and student-t distributions. The results show 

that a student-t distribution gives a more robust estimation of VaR 

forecasts than a normal distribution, given that the foreign exchange 

returns exhibit heavy tails (see, Lee, Chiou, and Lin 2006, and, Pesaran 

and Pesaran 2010). The results also find that the VaR forecasts based on 

DCC models are superior to VaR forecasts based on the CCC models with 

the DCC models have lower numbers and percentages of VaR violations 

that are closer to one percent. Consequently, the time-varying 

conditional correlation highlights the importance of accommodating 

significant changes in the correlation between asset returns in 

forecasting VaR. Also, CCC models deliver a higher amount of capital 

charges compared to the DCC models. These results are consistent with 

the empirical findings by da Veiga, Chan, and McAleer (2008).  
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From the above discussions,  DCCGJR t
stdVaR

−  has always represented the most 

appropriate model given that it provides the lowest number of violations 

and a percentage of violation that is very close to one percent. Also, the 

model has the lowest mean ratio of absolute deviation for VaR violations. 



DCCGJR t
stdVaR

− has correctly accepted all statistical tests including TUFF, UC, 

Ind and CC tests. Based on the backtesting procedures as outlined by the 

Basel Accord, the model has consistently stayed in the green zone with 

no excessive violations occur in the red zone thus, no severe violation 

penalty is imposed. While, the mean and median of scaling factor are also 

maintained at a level of 3.0, with an exception of the highest scaling 

factor at 3.5 during the GFC of 2008. This implies that the scaling factors 

are consistently kept at a level of 3.0, which is mostly desirable by banks 

without suffering additional penalty charges. It is worth noting that the 

model leads to a mean of capital charges at -5.31 with VaRmin at -1.7382. 

In most cases, CCCGARCH N
normVaR

− presents the least appropriate model given 

that it has the highest number and percentage of violations. The model 

fails all statistical tests with serial dependent and excessive violations. 

The model also has the highest mean ratio of absolute deviation for VaR 

violations. It can be seen that the model has a maximum scaling factor of 

4 with the mean and median of scaling factor at a level of 3.4. However, 

the model has the lowest mean of capital charges at -4.79 with VaRmin at 

-1.3913. Therefore, the assumption of normality has a tendency of 

providing less conservative VaR forecasts and often with excessive 

violations but at a lower amount of capital charges. While, student-t 

distribution inclines to provide lower VaR forecasts with fewer violations, 

but usually at a higher amount of capital charges.  Given that a higher 

amount of capital charge represents an additional cost to the banks, 
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these results show that banks should exercise great care in selecting an 

optimal VaR model. 

Incorporating multivariate volatility in VaR models is not straightforward 

where there are many other factors to be considered. These models raise 

some difficulties in practice, where banks trade with relatively large and 

complex portfolios that are unlikely to change daily. This implies that 

each day, the banks would have to compute a series of historical data for 

the new portfolios to estimate VaR. This may create additional costs to 

the banks. Instead of using these models, banks appear to be taking less 

computationally demanding alternatives. Banks prefer to use a simple 

VaR model that aggregates all of the risks of a portfolio into a single 

number, which is suitable for use in the boardroom, reporting to the 

regulator and disclosure in their financial reports. Nonetheless, 

multivariate volatility models play a significant role in the study of VaR as 

they are very useful to measure and manage market risk. 

Page | 186  
 



 

 

A CRITICAL ANALYSIS OF THE MARKET RISK REGULATORY 

FRAMEWORK UNDER BASEL III 

 

[THIS CHAPTER IS PERMANENTLY EXEMPTED FROM THE 
THESIS INDEFINITELY] 

 

 

Page | 187  
 



 

 

CONCLUSION 

This thesis examines the tale of two perspectives in the context of 

Australian risk management in theory and in practice. Value-at-Risk (VaR) 

is established as an important risk measure to control and manage 

market risk. The popularity of VaR models is partly due to their 

conceptual simplicity and partly from the requirements of Basel Accord 

to the regulation of the banking system. Basel III explicitly recognizes the 

role of VaR where the banks must implement and report to monitor their 

market risk exposure and to determine the amount of regulatory capital 

requirements. Consequently, the Basel Accord also establishes the 

penalties for inadequate VaR models, hence, there are incentives to 

pursue practical approaches to forecasting VaR.  

Following the recent regulatory changes in Basel III, the need to 

understand the risk management practices in Australia is becoming more 

urgent and pronounced.  The thesis begins with an overview of the 

regulatory changes to Basel III with an emphasis on the influence of these 

regulations on market risk exposure. The Basel Accord requires 

Authorised Deposit-taking Institutions (ADIs) to measure their VaR 

forecasts on a daily basis using one or more risk models. To further 

evaluate and improve VaR procedures, this thesis concentrates on 

developing an alternative model to forecast VaR. The risk estimates of 

these models that are used to determine the capital charges and 

associated costs of ADIs depending on the number of previous VaR 

violations. At 99 percent confidence level, if an ADI’s internal model leads 
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to a greater number of violations than reasonably expected, a violation 

penalty at a multiplication factor of 3 k+  will be imposed. Then, the ADI 

will be required to hold a greater amount of capital charges including the 

penalty charges.  

The thesis provides new information about how VaR models can be 

improved by estimating market risk and suggest a superior forecasting 

model to produce an optimal risk measure for assessing market risk. The 

study will proceed by the application of VaR to optimize capital charges 

for Australian authorized deposit-taking institutions (ADIs) in 

accommodating market risk to an acceptable level. 

This thesis proposes a consistent estimator of the tail index for the 

asymmetric extension of Generalized Autoregressive Conditional 

Heteroskedasticity (GJR-GARCH) error by Glosten, Jagannathan, and 

Runkle (1993). The thesis then applies the proposed estimator to forecast 

VaR for a portfolio of the Australian dollar with twelve other currencies 

and compares its performance with the more traditional approaches 

based on conditional and unconditional variances. The results suggest 

that the proposed method performed reasonably well against the 

traditional approaches, and it has the advantage of accommodating 

information from the time-varying volatility without the need for 

computing the conditional variances on a regular basis. Thus, it provides 

a more computationally efficient approach to forecasting VaR.  

This thesis compares the performance of univariate and multivariate 

conditional volatility models in forecasting VaR. The thesis considers the 

Constant Conditional Correlation (CCC) model of Bollerslev (1990); and 

models that allow dynamic conditional correlation such as the Dynamic 
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Conditional Correlation (DCC) model of Engle (2002) and the Time-

Varying Conditional Correlation (TVC) model of Tse and Tsui (2002). 

While the underlying assumptions vary between these models, their 

common objective is to model the volatility of multiple assets by 

capturing their possible interactions. Thus, they provide more 

information about the underlying assets that could not be recovered by 

univariate models. However, the practical usefulness of these models is 

limited by their complexity as the number of asset increases. The results 

found that VaR forecasts based on the DCC models are superior to VaR 

forecasts based on the CCC models. The time-varying conditional 

correlation highlights the importance of accommodating significant 

changes in the correlation between asset returns in forecasting VaR. 

Furthermore, the results also find that a student-t distribution gives a 

more robust estimation of VaR forecasts than a normal distribution. 

Hence, the selection of a distribution assumption proves to be a more 

important consideration than the choice of a model to improve the 

performance of VaR forecasts. 

This thesis examines the information content of reported VaR forecasts 

on ADI’s trading revenues in a simple linear regression framework. The 

idea is that if the reported VaR forecasts are adequate, then they should 

be related to ADI’s future trading revenues. The results support this 

hypothesis for some ADIs. Due to data limitation on the number of 

observations and the frequency of data, the thesis cannot utilize more 

sophisticated techniques that are standard in financial econometrics. 

One of the main objectives for Basel III is to strengthen banks’ 

transparency and disclosures. The thesis finds that the current financial 

reporting environment in Australia does not provide academic 
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researchers and the regulator enough information to assess the quality 

of VaR forecasts reported by ADIs. It is also worth noting that the 

requirements for banks to disclose information more completely can 

sometimes be very costly and may not necessary increase transparency. 

This thesis has significant theoretical and practical implications. In theory, 

the proposed VaR models may be preferred for risk forecasting to 

accommodate for dynamic volatility in situations when very large and 

extreme returns occurred in a high volatility period. In practice, the 

ability to model VaR may be constrained by limited data availability, 

computational burdens and subsequent increase of costs. Most of these 

criticisms have been stressed by banks and the regulator. While the 

current regulatory framework implements a set of standards to manage 

and control the market risk exposure, the framework has yet to develop 

an alternative approach that can satisfy all practical and regulatory 

objectives. In reality, the role of academic researchers is crucial to enable 

feedback and to provide continuous engagement with the banks and the 

regulator. This, in effect, means that the academic researchers need to 

become more relevant to the regulatory process if banks and the 

regulator are to engage with them. Similarly, banks and the regulator 

should seek an increased level of engagement with the academic 

researchers. Subsequently, a more rigorous research to the 

understanding and the practice of VaR can be connected between banks 

and the regulator with the academic researchers. 

The research undertaken in this thesis can be extended in the following 

manners. First, a wider selection of distributional assumptions can be 

used. These include the asymmetric distributions, for example, 

Generalized Error Distribution (GED) by Nelson (1991). Second, a large 
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and more complex portfolio can be constructed assuming different 

weight structures, for example, the application of optimal weights in a 

portfolio in evaluating the performance of VaR forecast. Third, 

alternative univariate and multivariate conditional volatility models can 

also be considered, for example, the Exponential GARCH model of Nelson 

(1991), and Baba, Engle, Kraft and Kroner (BEKK) model described by 

Engle and Kroner (1995). Lastly, the use of ultra-frequency data, for 

example, 1-hour, 5-minute and 1-minute data can be applied to produce 

daily VaR forecasts. 
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