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Field Measurements and Back-Analysis of Marine Clay 

Geotechnical Characteristics under Reclamation Fills 
 

ABSTRACT 

 

Due to the scarcity of land at coastal regions around the world, land reclamation is 

commonly carried out for the future expansion of various infrastructure facilities. Marine 

clay is present at the coastal regions of Southeast Asia. Land reclamation on this highly 

compressible soil foundation often requires the use of soil improvement works to eliminate 

significant future settlements from occurring. The combination of prefabricated vertical 

drains with preloading is one of the most widely used ground improvement methods in land 

reclamation projects. The best means available for field measurement and back-analysis of 

the marine clay geotechnical characteristics under reclamation fills is by carrying out 

extensive field instrumentation and in-situ tests.   

 

In-situ testing of marine clay was carried out at a test site. In-situ penetration testing was 

used to analyse the degree of consolidation, the improved shear strengths, overconsolidation 

ratio and the effective stress of marine clay prior to reclamation as well as after surcharge 

loading. In-situ dissipation testing was used to determine the coefficient of consolidation due 

to horizontal flow and horizontal hydraulic conductivity of the marine clay prior to 

reclamation as well as after surcharge loading. The in-situ penetration and dissipation tests 

were carried out by means of the field vane shear, piezocone, dilatometer, self-boring 

pressuremeter and BAT permeameter.  

 

Field instrumentation methods, assessment and back-analysis of marine clay behaviour under 

reclamation fills forms the crux of this research. The factors that affect the field 

instrumentation assessment of marine clays treated with prefabricated vertical drains, forms 

an integral part of this research study. Settlement gauges and piezometers were used to 

monitor the performance of the vertical drains and to assess the degree of consolidation of 

the improved soil at two case study sites. The field settlement data were back-analysed by 

the Asaoka and Hyperbolic methods to predict the ultimate settlement of the reclaimed land 

under the surcharge fill. Back-analysis of the field settlement and piezometer monitoring 

data also enabled the coefficient of consolidation due to horizontal flow to be closely 

estimated. Finite element modeling of marine clay and prefabricated vertical drains was 

carried out and compared with the field surface settlement results at the two case study sites.  
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1.0 INTRODUCTION 

 

 

1.1 Objectives of the Research 

 

This research study will provide a contribution to the field of Civil/Geotechnical Engineering 

particularly with regards to the field instrumentation, in-situ testing and finite element 

modeling of marine clays under reclamation fills at coastal regions.  The objectives for this 

research study can be outlined as follows:  

 

(1) Characterisation of strength, consolidation, physical and mineralogical 

characteristics of Singapore marine clay at Changi. This includes a study into the 

geology and formation history of Singapore marine clay. 

 

(2) Description of offshore land reclamation methodology and associated dredging 

plants. 

 

(3) Description of the various theories and design processes involved in the design of a 

ground improvement project with vertical drains. The properties and installation 

methodology of the prefabricated vertical drains will also be described. Design 

predictions of a case study area was carried out and compared to field 

instrumentation results. 

 

(4) Description of testing procedures and comparison of the results of various in-situ 

testing methods carried out in Singapore marine clay. This includes in-situ 

penetration testing and long term dissipation tests. 

 

(5) Study of the increase in shear strength, stress history, degree of consolidation and 

effective stress of the Singapore marine clay under surcharge loading by means of 

in-situ testing and laboratory testing. 

 

(6) Determination of the coefficient of consolidation due to horizontal flow and 

horizontal hydraulic conductivity of the Singapore marine clay by means of in-situ 

dissipation tests. 
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(7) Comparison of the in-situ testing results carried out after surcharge loading with the 

prior to reclamation results. Also a comparison of the in-situ testing of a sub-area 

area treated with vertical drains and surcharge with an adjacent untreated sub-area  

which was only surcharged. 

 

(8) Description of the type of field instrumentation suitable for the study of marine clay 

especially pertaining to those installed to monitor land reclamation projects. 

 

(9) Study of the assessment of field settlement gauges to predict ultimate settlement, 

degree of consolidation and coefficient of consolidation due to horizontal flow of 

marine clays. 

 

(10) Study of the assessment of piezometers to obtain the piezometric elevations, excess 

pore pressures, degree of consolidation and coefficient of consolidation due to 

horizontal flow of marine clays. 

 

(11) Comparison of the field instrumentation results of sub-areas treated with various 

spacings of vertical drains and surcharged with that of an adjacent untreated sub-area  

which was only surcharged. 

 

(12) An in-depth study into the factors that affect field instrumentation assessment of 

marine clay treated with prefabricated vertical drains. The factors that affect the 

assessment by the Asaoka, Hyperbolic and piezometer assessment methods were 

studied in detail, compared with each other and the findings reported. 

 

(13) Finite element modeling of prefabricated vertical drains and marine clay. 

Comparisons between the finite element modeling results and the actual field surface 

settlement to ascertain the accuracy of the soil model. 

 

(14) Performance verification of prefabricated vertical drains by various methods this 

being by back-analyses using ch from Asaoka method, proposed modified Asaoka 

equation,  conventional calculation and finite element modeling method.  
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1.2 Background to the Research 

 

Land reclamation is carried out in large magnitudes in the Southeast Asian region. Marine 

clays is generally found in the near shore of the countries in this region and as such, land 

reclamation on this highly compressible soil foundation often requires the use of soil 

improvement works to eliminate significant future settlements from occurring due to the 

future imposed dead and live loads. The decision on which viable ground improvement 

technique to use depends generally on the future use, importance, and construction period of 

the project area. The simplest ground improvement technique is to put a surcharge preload of 

equal to or higher than the anticipated future load so as to preconsolidate the soil to the 

required effective stress. However, due to large vertical drainage paths of thick marine clay 

deposits, this technique often requires a long consolidation period, which is not ideal in 

many land reclamation or infrastructure projects.  

 

The combination of prefabricated vertical drains and preloading with surcharge is a viable  

ground improvement option in such critical projects as they reduce the period for 

consolidation due to the introduction of shorter radial drainage paths. The combination of 

prefabricated vertical drains and surcharge is one of the most widely used and economical 

ground improvement methods in such land reclamation projects in the region and worldwide. 

The surcharge height to be placed will depend on the future-working load and allowances 

have to be made for the submergence effect and anticipated settlement during the design 

preloading period.  

 

In such ground improvement projects, it is essential to have a good in-situ testing and field 

instrumentation programme so as to characterise and assess the deformation behaviour of the 

marine clay under the preload. These field measurement methods are used to assess the 

degree of consolidation of the marine clay under the surcharge load and to determine when 

the required degree of consolidation is achieved to enable the removal of the surcharge. As 

surcharge can only be removed after the clay has attained the required effective stress 

increase, it is vital to correctly assess the degree of consolidation of the improved clay prior 

to the commencement of surcharge removal works. 

 

The data for this research study was obtained from a land reclamation and ground 

improvement project in the Republic of Singapore which the author was personally involved 

with for several years. Data was gathered before, during and after soil improvement works.  
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The research studied the various in-situ test results and the field instrumentation monitoring 

data, to determine the characteristics and behaviour of marine clay under reclamation fill. In-

situ testing was carried out in one of the case study sites prior to reclamation and after the 

completion of surcharge loading.  Field instrumentation results were monitored, assessed and 

back-analysed at two case study sites. Finite element modeling was carried out and the 

results of the modeling were compared to the field surface settlement. 

 

 

1.3 Significance 

 

This research is to serve as a reference guide for future land reclamation and ground 

improvement projects on soft clay. Actual field monitored case studies of the instrumentation 

works will serve as a future reference to the behaviour of marine clay under reclaimed fill 

and after ground improvement. The field instrumentation back-analysis methods used, will 

bring to light the various factors that affect the assessment of the marine clay treated with 

vertical drains as predicted by the Asaoka (1978), Hyperbolic (Tan, 1993)  and piezometer 

(Arulrajah et al., 2003a) back-analysis methods. These methods are the best known back-

analysis methods relevant for soft soils. Studies of the various factors that affect field 

instrumentation assessment of soft soil, have not been carried out in such depth previously. 

Finite element modeling of marine clay with vertical drains was carried out by means of the 

axi-symmetric unit cell and full scale analysis methods. Finite element modeling of marine 

clay without vertical drains was carried out by means of full scale analysis method. 

 

Various in-situ testing methods as well as their interpretation will be highlighted in the study. 

The in-situ tests consist of penetration tests for the study of the shear strength increase, 

effective stress gain and degree of consolidation of the marine clay after surcharge loading. 

In-situ dissipation tests were carried out to determine the hydraulic conductivity and 

coefficient of consolidation due to horizontal flow of the marine clay before reclamation and 

after surcharge loading. 

 

The study will highlight the various processes involved and methodology of carrying out 

land reclamation and installation of vertical drains. The design methodology of these works 

will also be highlighted so as to serve as a guide for future ground improvement and land 

reclamation projects. 
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1.4 Identification of the Research Needs 

 

Field instrumentation methods, assessment and back-analysis based on case studies of 

marine clay behaviour forms the crux of this research. The factors that affect the field 

instrumentation assessment of marine clays treated with prefabricated vertical drains forms 

an integral part of this research study. Finite element modeling and in-situ testing of marine 

clay is also of importance in  this research study. 

 

Most ground improvement projects using prefabricated vertical drains specify the 

requirement for a certain degree of consolidation of the design surcharge load to be attained 

prior to the removal of surcharge. As such, the assessment of the degree of consolidation of 

the underlying soil is of critical importance for the determination of when the surcharge load 

can be removed. The assessment of the degree of consolidation of the marine clay as such 

has enormous technical, construction and financial implications for such ground 

improvement projects. The method of assessment of the degree of consolidation of the 

marine clay can be carried out by means of in-situ testing and field instrumentation methods. 

  

Accurate prediction of the magnitude and time rate of settlement is dependent upon the 

selection of soil parameters and the engineer’s judgment. In most cases, the prediction of 

ultimate settlement can be well predicted. However, field time rate of settlement is often 

slower than the predicted rate of settlement by use of conventional equations based on 

laboratory test results.  

 

In most land reclamation projects, the coefficient of consolidation due to horizontal flow is 

assumed as twice that of vertical flow (Bo, Arulrajah and Choa, 1997b). . In this study, the 

determination of coefficient of consolidation due to horizontal flow was carried out by 

various in-situ testing methods. Furthermore, the determination of coefficient of 

consolidation due to horizontal flow was also carried out from the back-analysis of the field 

instrumentation monitoring results. The predicted settlement curves for time rate of 

settlement of vertical drain improved area by the conventional design and finite element 

modeling methods was compared to the actual field settlement curves.   

 

 

1.5 Research Method 

 

In this study, various methods of analysis comprising in-situ testing, field instrument 

monitoring, laboratory testing and finite element modeling was used to ascertain the degree 
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of consolidation and back-analysed geotechnical parameters of the improved soil with 

vertical drains at field test sites. The research site in this study comprises of two field testing 

sites consisting of sub-areas of various vertical drain spacings. The type of ground treatment 

carried out at the treated sub-areas was with vertical drains and preloading while the 

untreated control sub-area was only preloaded. This enabled a comparison of in-situ testing, 

field instrumentation and laboratory results between the adjacent treated and untreated sub-

areas. The entire planning, implementation, supervision and monitoring of the works in this 

research inclusive of land reclamation, ground improvement, in-situ testing, laboratory 

testing and field instrumentation works was carried out by the author during his involvement 

in the project.   

 

The research was first carried out with an extensive literature review to ensure that the 

subject and problems were well understood. The literature review covered all aspects of the 

research and included land reclamation, preloading with vertical drains, marine clay 

characterisation, in-situ testing, laboratory testing, field instrumentation and finite element 

modeling of vertical drains.  

 

Following this, the characterisation of the engineering properties of the marine clay at the 

research site was carried out prior to reclamation. The marine clay characterisation was 

carried out based on the findings of laboratory and in-situ tests carried out at the Project Site. 

Subsequently, an extensive site characterization was carried out to carefully and accurately 

predict the soil parameters of the Singapore Marine Clay. Clay mineralogy photos and close-

up photographs of the marine clay were taken to assist in the characterisation of the marine 

clay. 

 

The methods of offshore land reclamation technology and preloading with vertical drains 

was studied and elaborated on. The design theories and concepts of prefabricated vertical 

drains were reported in detail.  

 

A series of in-situ tests was next carried out at the In-Situ Test Site prior to reclamation by 

means of various in-situ testing methods. to assess the degree of improvement of the marine 

clay in the Vertical Drain Area as well as in the adjacent untreated Control Area. A series of 

in-situ tests using the  field vane shear, self-boring pressuremeter, dilatometer, cone 

penetration and BAT permeameter tests were carried out at the In-Situ Test Site prior to 

reclamation. The in-situ tests were analysed to obtain the in-situ shear strengths, over-

consolidation ratios and effective stress of the marine clays. A series of in-situ tests were 

also carried out after surcharge loading and the results were compared with the results 
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obtained prior to reclamation. In-situ dissipation tests were also carried out in the In-Situ 

Test Site to obtain the coefficient of horizontal consolidation and horizontal hydraulic 

conductivity of the marine clay prior to reclamation and after surcharge loading.  

 

Field instruments were installed in two Case Study Areas, this being the Pilot Test Site and 

In-Situ Test Site prior to the installation of prefabricated vertical drains. The case study sites 

consist of vertical drains installed at various spacings as well as an untreated control sub-

area. Surcharge of the same height was placed over each of the sub-areas at each of these 

Case Study Areas. The surcharge load was left at the Pilot Test Site for 32 months and at the 

In-Situ Test Site for 20 months. Soil instruments comprising surface settlement plates, deep 

settlement gauges and piezometers installed just prior to the installation of the vertical drains 

were analysed. Instrument readings were also taken at close frequencies. Instrumented data 

collected from the case study areas were analysed at various durations after the completion 

of surcharge placement. Comparison were carried out between the instruments in the various 

vertical drain sub-areas for which different spacings of vertical drains were installed as well 

as the untreated control sub-area. The degree of consolidation of the marine clay was 

determined after the preloading period at the various sub-areas by assessment of the 

settlement gauges and piezometers. 

 

An in depth and exhaustive study was carried out for the three vertical drain sub-areas of the 

Pilot Test Site to determine the various factors that affect the field instrumentation 

assessment of marine clay treated with prefabricated vertical drains. Factors affecting the 

assessment by the Asaoka, Hyperbolic and piezometer methods were investigated and 

compared. This study has not been carried out to such depths and details in the past and the 

author has made significant findings on this aspect of the research.  

 

The settlement plates at the three vertical drain sub-areas of the Pilot Test Site were back-

analysed by the Asaoka and hyperbolic methods to determine the estimated ultimate 

settlement and coefficient of consolidation due to horizontal flow of the marine clay under 

the surcharge load. The settlement gauge readings between the various sub-areas were 

compared to ascertain the difference in magnitude and degree of consolidation due to the 

installation of the various drain spacings. Back-analysis of the settlement behaviour of the 

marine clays with vertical drains was compared with the design predictions. A study was 

carried out to determine the influence of time interval on the prediction of ultimate 

settlement by the Asaoka and hyperbolic methods. This was carried out by varying the time 

intervals and time of assessment of the settlement plate readings. The degree of 



   

  8

consolidation of the marine clay was determined after the preloading period at the various 

sub-areas by assessment of the settlement gauges. 

 

Piezometers were analysed at the Case Study Areas to obtain the piezometric elevations, 

excess pore water pressures and degree of consolidation of the marine clay at various periods 

of preloading time. The piezometer readings for the various sub-areas were compared to 

ascertain the difference in piezometric elevations, excess pore water pressure and degree of 

consolidation due to the installation of the various drain spacings. The piezometer readings 

were corrected for the effect of large strain settlement of the piezometer tip by using the deep 

settlement gauge readings from deep settlement gauges which are installed at or close to the 

same elevation of the piezometer. Water stand-pipes were installed in each of the sub-areas 

to enable interpretation of the piezometer readings. The water stand-pipe readings were used 

to determine the static water pressure and this enabled the excess pore water pressure of the 

piezometers to be calculated. Factors affecting the assessment of piezometers such as 

correction for large strain settlement of the piezometer tip due to the reclamation load were 

also studied in detail and its findings reported. The degree of consolidation of the marine 

clay was determined after the preloading period at the various sub-areas by assessment of the 

piezometers and this was compared with the settlement gauge results. 

 

Finite element modeling of marine clay and prefabricated vertical drains under reclamation 

fill was studied by means of the Plaxis Version 8 (2002) numerical modeling software. The 

finite element modeling was carried out for the In-Situ Test Site and the Pilot Test Site 

consisting of vertical drain treated areas and an untreated control area. Prefabricated vertical 

drains were modelled by both the axi-symmetric unit cell and full scale analysis methods. 

The untreated marine clay was modelled by the full scale analysis method. The finite 

element modeling results were compared with the actual field settlement. 

 

Performance verification of prefabricated vertical drains was studied at the In-Situ Test Site 

by various methods this being by back-analyses using ch from Asaoka method, proposed 

modified Asaoka equation, conventional calculation and finite element modeling method. 

The results were also compared to that of using the back-analysed coefficient of horizontal 

flow for the conventional and finite element modeling methods. 

 

 

 

 

 



   

  9

1.6 Thesis Organisation 

 

The thesis has been divided into various chapters to highlight the various aspects of the 

study: 

 

Chapter 1 consists of an introduction into the entire research study in general and highlights 

the needs, scope, objectives, methodology and organisation of the study. 

 

Chapter 2 consists of literature review of the following: ground improvement of soft clay, 

land reclamation, prefabricated vertical drains, field instrumentation of marine clays, in-situ 

testing of marine clays, laboratory testing of marine clays and finite element modeling of 

prefabricated vertical drains.  

 

Chapter 3 describes the characteristics and mineralogy of Singapore marine clay. The 

chapter describes the site investigation methods in land reclamation projects. The 

consolidation characteristics, physical characteristics and undrained shear strength of the 

Singapore marine clay at Changi are described in this chapter. The mineralogy, geology, 

formation history and photographic identification of Singapore marine clay is also described 

in this chapter. 

 

Chapter 4 describe the methodology and the affiliated dredging plant used in land 

reclamation works. 

 

Chapter 5 describes the vertical drain history, functions, properties, quality control testing 

and installation methods. The design methodology and associated theories involved in the 

design process of prefabricated vertical drains is also described in this chapter. 

 

Chapter 6 describes the location and the characterisation of the In-Situ Testing Site 

comprising the Vertical Drain Area and the untreated Control Area prior to reclamation and 

after surcharge loading by means of in-situ testing. The various in-situ tests used in the 

characterisation study of Singapore marine clay in the testing site is described. Also covered 

in this chapter is the interpretation of stress history, shear strength, effective stress and 

degree of consolidation by the various in-situ testing methods. The interpretation of in-situ 

dissipation tests prior to land reclamation and after surcharge loading by the various testing 

methods is also described in this chapter. 
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Chapter 7 discusses the various types of field instrumentation involved in offshore, on-land 

and long term field instrumentation works for land reclamation projects on soft clay. The 

various types of settlement gauges and piezometers and the methods of assessment and back-

analyses of their field measurements are discussed in the chapter. Furthermore, the use of 

inclinometer, deep reference point and total pressure cell is also discussed in the chapter. 

 

Chapter 8 describes the field instrumentation case study at two locations within the project 

site. The settlement gauges and piezometers are assessed and back-analysed in this chapter. 

The degree of consolidation  and coefficient of consolidation due to horizontal flow is also 

determined at these two test locations.  

 

Chapter 9 studies the various factors that affect the field instrumentation assessment of 

marine clay treated with prefabricated vertical drains. The various factors that affect 

assessment by the Asaoka, Hyperbolic and piezometer assessment methods are described in 

depth and compared in this chapter.   

 

Chapter 10 studies the finite element modeling of marine clay and vertical drains. The 

vertical drains are modelled in this chapter by both the axi-symmetric unit cell and full scale 

analysis methods while the untreated adjacent embankment is modelled by the full scale 

analysis method. The modeling results are also compared with the actual field settlements.  

 

Chapter 11 studies the performance verification of prefabricated by various methods this 

being by back-analyses using ch from Asaoka method, proposed modified Asaoka equation,  

conventional calculation and finite element modeling method. The results were also 

compared to that of using the back-analysed coefficient of horizontal flow for the 

conventional and finite element modeling methods. 

 

Chapter 12 concludes the findings of this research study.   
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2.0 LITERATURE REVIEW 

 

Land reclamation on soft compressible clays for vital facilities requires some form of ground 

improvement. The prefabricated vertical drain with preloading method is a popular and well 

documented method of soil improvement of compressible soils. Prefabricated vertical drains 

are used to accelerate the consolidation of the marine clays. This method of ground 

improvement was used in the ongoing Changi East Reclamation Project in the Republic of 

Singapore. Prior to the removal of the surcharge load, the degree of improvement attained by 

the foundation soil must be ascertained to confirm whether the design criteria has been 

achieved. The determination of the degree of improvement of the soft soil can be determined 

by means of field instrumentation, in-situ testing and finite element modeling. 

 

Field instrumentation monitoring is the only means available of providing continuous 

records of the ground behaviour from the point of instruments installation. Without a proper 

soil instrumentation method or program, it would be impossible to monitor the current 

degree of improvement of the soil at any point of time. By analyzing the field instrument 

monitoring results, it is possible to verify the degree of consolidation of the foundation soil 

before allowing the removal of the surcharge load. During the process of consolidation, the 

settlement gauges monitoring data was analyzed by means of the Asaoka and Hyperbolic 

methods to determine the ultimate settlement and degree of consolidation of the underlying 

soft marine clay due to the fill and surcharge load. Piezometer monitoring data was used to 

determine the dissipation of excess pore water pressures and degree of consolidation of the 

marine clay. 

 

The main objective of this research is the field measurements and back-analysis of marine 

clay geotechnical characteristics under reclamation fills by means of field instrumentation  

and in-situ testing. The various factors that affect predictions of degree of consolidation and 

back-analysed coefficient of consolidation due to horizontal flow of the soft soil by means of 

field instrumentation, were analysed and reported. The various factors such as time interval 

and time of assessment of the settlement plate and piezometer data was studied in this 

research to ascertain their influence on the assessment of the ultimate settlement and degree 

of consolidation of the marine clay. There has been very little previous study on this aspect 

of field instrumentation assessment of marine clay behaviour under reclamation fills prior to 

this research study. The author has carried out extensive analysis and reported on this 

particular aspect of field instrumentation and as such, this forms an important aspect of this 

research.  
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In the last two decades, there has been an emergence of in-situ testing methods as an 

alternative to laboratory testing methods. The geotechnical strength and overconsolidation 

parameters of the soft soil as well as the permeability and consolidation properties of the soil 

particularly in the horizontal direction are important design parameters in vertical drain 

projects.  In-situ testing and in-situ dissipation tests have emerged as a useful method to 

obtain the required geotechnical parameters for the design of vertical drain projects. The in-

situ penetration and dissipation tests were carried out with the field vane, piezocone, flat 

dilatometer, self-boring pressuremeter and BAT permeameter.  

 

In-situ penetration tests were conducted to determine the undrained shear strength and 

overconsolidation ratio of the marine clay prior to and after surcharge loading. In-situ 

dissipation tests provide a means of evaluating the in-situ coefficient of horizontal 

consolidation and horizontal hydraulic conductivity of marine clays, prior to and after 

surcharge loading. In-situ dissipation testing is an alternative to traditional laboratory testing 

methods to determine the horizontal consolidation and permeability parameters of soft soil.  

These tests can be conducted at various levels in the marine clay and hence variations of the 

horizontal coefficient of consolidation and horizontal hydraulic conductivity with depth can 

be obtained. The determination of these geotechnical parameters is traditionally based on 

laboratory tests. However laboratory testing does not yield appropriate properties of soil due 

to different loading, drainage conditions and sample disturbance as compared to the actual 

in-situ soil condition.  

 

The performance of the prefabricated vertical drains were also predicted by the finite 

element modeling method and the results compared to that of the field instrumentation at two 

case study areas. The analyses included the modeling of the consolidation behaviour of 

marine clay under reclamation fills with and without prefabricated vertical drains. Modeling 

of the sub-areas treated with vertical drains was carried out by both the axi-symmetric unit 

cell and full-scale analysis methods. Modeling of untreated control sub-areas was carried out 

by the full-scale analysis method. 
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2.1 Distribution of Marine Clay Deposits in Southeast Asia 

 

Soft clays are fairly widespread and the majority of these are of marine origin. Several 

extensive deltaic deposits exist in Southeast Asia as indicated in Figure 2.1, some of which 

are of considerable importance because of their occurrence at the sites of major cities. Soft 

clays present severe but interesting geotechnical engineering problems (Brand et al., 1989). 

By their nature, soft clays are of low strength and high compressibility, often with water 

contents at or close to their liquid limits (Skempton, 1969). Although they are commonly 

normally consolidated, they nearly always exhibit light over-consolidation caused by self-

weight consolidation, dessication and the rise and fall of sea levels in the geological past.  

 

The very nature of soft clay deposits of marine origin, is that they are arguably the most 

interesting soil to work with from the viewpoint of geotechnical engineering. At the same 

time, marine clays lend themselves wonderfully to field measurements by either field 

instrumentation or in-situ testing which is not always possible for most other soil types. 

 

 
Figure 2.1 Distribution of marine clay deposits in Southeast Asia (After Broms, 1987) 
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2.2 General Characteristics of Soft Marine Clay 

 

Studies on the general characteristics of marine clays found in the coastal regions of various 

countries have been carried out to date by various authors.  

 

Tanaka and Tanake (1999) have reported on the characteristics of Ariake clay in Japan. 

Torrance (1999) has reported on the mineralogy of Ariake clay in Japan. Yashima et al. 

(1999) and Mimura et al. (2003) have reported on the microstructure and characteristics of 

Osaka Bay marine clay in Japan. Tsuchida has reported on the natural water content of 

marine deposits found in Japan. The general characteristics of marine clay in the Taipei 

Basin of Taiwan have been reported by Lee et al. (1993) and Feng (1993). Kim et al. (1999) 

have reported on the general characteristics and distribution of marine clay in South Korea.  

 

The characteristics and distribution of Bangkok clay of the Chao Phraya Plain in Thailand 

has been reported by Bergado at al. (1992) and Shibuya et al. (1999). Balasubramaniam et al. 

(1993) have also discussed on the general characteristics of Bangkok Clay.  

 

The study of the general geotechnical characteristics of Malaysian marine clay at Muar has 

been reported by Poulos et al. (1989), Brand et al. (1989) and the Malaysian Highway 

Authority (1987). The geotechnical characteristics of coastal marine clay at Kuala Perlis has 

been studied by Hussein et al. (1996). Bo et al. (1998g) and Rahardjo (1998) have reported 

on the characteristics of marine clay found in the Jakarta Bay in Indonesia.  

 

Leroueil (1999) has reported on the characteristics, geology and mineralogy of Quebec 

marine clay in Canada. The study of the general geotechnical characteristics of Norwegian 

marine clay has been reported by Bjerrum (1967). Lunne and Lacasse (1999) have reported 

on the characteristics of Drammen clay in Norway. 

 

The general characteristics, mineralogy and geology of Singapore marine clay has been 

described briefly in the past by Bo, Arulrajah and Choa (1998a), Choa et al. (1996) and 

Yong et al. (1990).  
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2.3 Land Reclamation 

 

The methods of land reclamation and the types of machinery involved have been discussed 

in detail in the British Standard (BS 6349: Part 5: 1991). The standard describes the methods 

of investigation, dredging processes, site control and environmental considerations. Land 

reclamation experiences in coastal areas in the Republic of Singapore have been elaborated 

by Bo, Arulrajah, Choa and Chang (1998a), Bo, Arulrajah, Choa and Na (1998d), Na, Choa, 

Bo and Arulrajah (1998) and Bo et al. (2004). 

 

The land reclamation methodology and characteristics of dredging plant used in the Changi 

East Reclamation Project in Singapore described in this chapter has been discussed by the 

author (Arulrajah et al., 2004c) during the course of this research study. 

 

 

2.4 Ground Improvement with Prefabricated Vertical Drains 

 

There are various ground improvement methods at present that provide soil strength 

improvement, mitigation of total and differential settlement, shorten construction time, 

economical construction costs and other characteristics which may impact on their utilisation 

to specific projects. Factors such as the significance of the structure, applied loading, site 

conditions, period of construction have to be considered in the selection of the ground 

treatment method (Bergado et al., 1992). 

 

The various ground improvement methods currently available for soft ground projects 

include ground improvement by vertical drains, vibro-replacement with stone columns, 

lime/cement columns and sand compaction piles. With special regard for the ground 

treatment of marine clays in land reclamation projects, the vertical drain with preloading 

technique remains the most widely used and economical method employed in this region. 

 

The methods of assessing the performance of vertical drains and preloading techniques by 

various analytical means inclusive of design predictions, field instrumentation monitoring 

and in-situ testing was investigated in this research study. The one-dimensional 

consolidation settlement behaviour of clays is described by Terzaghi (1925). This method 

when used in conjunction with Barron (1948) and Carrillo (1942) methods can be used for 

the design of vertical drains. Imai (1995) has also written on the time rate of settlement effect 

of clays. Bo, Arulrajah and Choa (1997a, 1997b, 1998b), Indraratna and Bamunawita (2002), 
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Hansbo (1979) and Choa (1981, 1984) have also described the consolidation behaviour of 

clays by using prefabricated vertical drains. 

 

Holtz et al. (1991) offers an in-depth coverage of the study of vertical drains. Holtz et al. 

(1991) and Bo et al. (2003a) have also provided in-depth coverage on the method of 

installation of vertical drains be it static penetration or vibratory driving, types of mandrels 

and type of shoes.  

 

Bo et al. (2003a), Indraratna and Bamunawita (2002) and Bergado et al. (1992) have also 

described the use of vertical drains for ground improvement. These publications too have 

coverage on the theories and mechanisms of vertical drains. The various types of vertical 

drains and their characteristics are also covered in these publications as well as design 

methodology and consolidation processes. Case histories of installation of sand drains on 

soft Bangkok clay, which have been fully instrumented, are covered in the report. In 

addition, Van Impe (1989), Hausmann (1990) and Schaefer (1997) have also described the 

theories and mechanisms of vertical drains. Onoue (1988) have suggested a simplified 

formula for the average degree of consolidation with respect to radial flow. Yoshikuni and 

Nakado (1974), has described the effects of well resistance on the vertical drain permeability 

and provided coefficients to be used.  

 

Choa (1981, 1985) has discussed on the combination of vertical drains with preloading. Choa 

(1981, 1985) has also discussed on the design of the preloading and the dissipation of excess 

pore water pressure with time as well as encompassing the design theories and concepts of 

vertical drains. Special attention is also paid to the back analysis of field observation data to 

obtain the ultimate settlement and coefficient of consolidation due to horizontal flow by 

means of the Asaoka method. Case study of instrumented embankments with various vertical 

drain spacing at the Changi Airport second runway reclamation which were carried out in the 

1970’s has also been described. Choa et al. (1984, 1985) has also discussed the methods of 

installation of vertical drains as well as the field instrumentation and assessment of 

performance of vertical drains in Singapore marine clays. 

 

Bo et al. (1998f, 2000b) and Indraratna and Redana (1998) have discussed the study of the 

smear effect of vertical drains due to mandrel penetration. Field results have also been 

verified with laboratory results. Permeability results before and after mandrel penetration in 

Singapore marine clays have also been compared in the studies. Bo et al. (2000d) has also 

studied the comparison of various vertical drains at different drain spacing for Singapore 

marine clays. Bo et al. (2000d) have made special reference to the laboratory testing of the 
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discharge capacity of vertical drains under straight and buckled conditions and also the 

reduction of discharge capacity with hydraulic gradient.  

 

With particular reference to land reclamation projects in Singapore, Choa et al. (1995) and 

Bo, Arulrajah and Choa. (1998a) have in-depth descriptions of the investigation, design and 

construction processes involved. Holtz et al. (1991) has provided in-depth coverage on the 

method of installation of vertical drains be it static penetration or vibratory driving, types of 

mandrels and type of shoes.  

 

The various theories, considerations, design methodologies and design predictions for the 

ground treatment of marine clay with prefabricated vertical drains in such off-shore projects 

has been discussed by the author (Arulrajah et al., 2004m) during the course of this research 

study. 

 

 

2.5 Field Instrumentation of Marine Clays 

 

Field instrumentation of the case study areas in this research study comprises of settlement 

plates, deep settlement gauges, pneumatic piezometers, electric piezometers and water stand-

pipes. The instruments were monitored for a long duration enabling the behaviour of the 

marine clay to be assessed under the reclaimed fill and surcharge load. The settlement gauge 

readings were analysed to ascertain the ultimate settlement of the marine clay and the 

corresponding degree of consolidation under the reclaimed fill. Piezometers were analyzed 

to obtain the piezometric elevations, excess pore water pressures and degree of consolidation 

at various stages of the preloading period. Comparisons were carried out between the 

instrumented readings for various vertical drain sub-areas as well as an adjacent untreated 

control sub-area.  

 

The field instrumentation case studies and assessment of marine clay in offshore land 

reclamation works described in this thesis have been discussed in detail by the author 

(Arulrajah et al., 2003a, 2003b, 2004b, 2004c, 2004e, 2004g, 2004l) during the course of this 

research study.  
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2.5.1 Necessity and Shortcomings of Field Instrumentation 

Prior to the removal of surcharge in ground improvement projects with vertical drains, the 

degree of consolidation attained by the foundation soil must be ascertained to confirm 

whether the design criteria has been achieved. Field instrumentation is the only means 

available of providing continuous day to day records of the ground behaviour from the time 

of instrument installation. Without a proper soil instrumentation method or program, it 

would be difficult to monitor the current degree of improvement of the soil. By analysing the 

field instrumentation monitoring results, it is possible to assess the degree of consolidation of 

the foundation soil before allowing the removal of the surcharge load. It will also be possible 

to ascertain the achievement of required effective stress and to indicate the necessity for 

remedial action. 

 

Care must be taken in interpretation of monitoring data, as some correction may be required. 

For instance, correction for settlement of piezometer tip is required to obtain actual 

piezometric elevation of the pore water. Instruments are also subject to damage at site due to 

malfunctioning instruments and movement of machinery. Instruments must be installed 

correctly at site following required guidelines and to the correct levels. Manpower is 

required to monitor the instruments regularly. Monitoring records have to be correctly 

recorded. Monitoring reports have to be carefully studied and interpreted. 

 

2.5.2 Settlement Gauges 

Bo, Arulrajah and Choa (1997a, 1998b) and Choa (1984, 1985) have previously published 

on the use and case studies by the Asaoka and Hyperbolic method for the estimation of 

ultimate settlement in land reclamation projects. These publications describe how the degree 

of consolidation of marine clays under reclamation fills can be ascertained from the 

settlement plate readings. Tan (1993, 1995, 1996) and Bujang (1996, 2002) have published 

on the estimation of ultimate settlement from field settlement by means of the Hyperbolic 

method. Tan (1996) and Bo et al. (1999) have also previously compared between the 

estimation of ultimate settlement by the Hyperbolic and Asaoka methods. 

 

The assessment of field settlement plates by the Asaoka and Hyperbolic methods described 

in this thesis have been discussed in detail by the author (Arulrajah et al., 2003a, 2003b, 

2004b, 2004c, 2004e, 2004g) during the course of this research study.  
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2.5.3 Piezometers 

Bo, Arulrajah and Choa (1998b) and Choa (1984, 1985) have previously  published on the 

use and case studies of pneumatic and vibrating wire piezometers installed in land 

reclamation projects. These publications describe the methods used to obtain the degree of 

consolidation of the marine clays under the surcharge loads. These publications describe the 

methods used to obtain the degree of consolidation of the marine clays under the surcharge 

loads. These publications also elaborate on suitable protection methods for piezometers and 

the need for correction of the piezometer tip settlement. Hanna (1985) and Dunnicliff (1988) 

have also published comprehensive books on field instrumentation describing the types of 

instruments, planning of instrumentation, method of instalment and method of measurement 

of various instruments. The assessment of piezometers described in this thesis have been 

discussed in detail by the author (Arulrajah et al., 2003b, 2004b, 2004c, 2004e, 2004g, 

2004l) during the course of this research study.  

 

2.5.4 Factors Affecting Field Instrumentation Assessment of Marine Clay  

The influence of factors such as time interval and time of assessment of the settlement plate 

and piezometer data was studied in this research to ascertain their influence on the 

assessment of the ultimate settlement and degree of consolidation of the marine clay. There 

has been very little study on this aspect of field instrumentation with respect to marine clays 

subject to reclaimed fill prior to this research study. Factors that affect prediction by the 

Asaoka method are the period of assessment after surcharge placement as well as the time 

interval used for the analysis. Factors that affect prediction by the Hyperbolic method are the 

period of assessment after surcharge placement. Factors that affect the analysis of 

piezometers include period of assessment, hydrogeologic boundary condition, settlement of 

piezometer tip and reduction of initial imposed load due to submergence effect (Arulrajah et 

al., 2003a, 2004a, 2004e).  

 

Factors affecting field instrumentation assessment of marine clay treated with prefabricated 

vertical drains described in this thesis have been discussed in detail by the author (Arulrajah 

et al., 2003a, 2004a, 2004e) during the course of this research study.  

 

2.5.5 State of the Art: Field Instrumentation 

Other field instruments used in ground improvement projects include, multilevel settlement 

gauges, inclinometers, liquid settlement gauges and earth pressure cells. Of late, long-term 

remote monitoring instrument clusters in which instruments are connected to an automatic 

data acquisition system powered by battery and solar panels have been used in large ground 

improvement projects. This multi-tasking operating system allows for continuous logging, 
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control and storage of all measurements taken from the site under all weather conditions. 

Due to the auto-logging capabilities of the acquisition system, no manual monitoring of the 

instrument readings is necessary.  In the long-term instrument clusters, the liquid settlement 

gauges and electric piezometers are the common instruments. Currently, the hydrostatic 

profile gauge is also commonly used in embankment projects.  

 

 

2.6 In-Situ Testing of Marine Clays 

 

In-situ testing works in this research study comprises the use of field vane shear, piezocone, 

flat dilatometer, self-boring pressuremeter and the BAT permeameter by means of 

penetration testing and dissipation tests. All these in-situ testing methods used have been 

well proven for use in soft clays. Studies of various in-situ testing in Singapore marine clays 

at reclamation projects have been out particularly by Bo, Arulrajah, Choa and Chang 

(1998a), Bo, Chang, Arulrajah and Choa (2000a), Choa (1984, 1985) and Chang et al. (1986, 

1997).  

 

The in-situ testing of marine clay described in this thesis has been discussed in detail by the 

author (Arulrajah et al., 2004d, 2004f, 2004i, 2004h, 2004o, 2004p) during the course of this 

research study. 

 

2.6.1 Necessity and Shortcomings of In-Situ Testing 

In-situ testing can be used to assess the degree of improvement of soils. In every ground 

improvement project with vertical drains, the duration of the preloading period is set in 

advance based on the predetermined time rate of consolidation of the compressible layer. If 

prediction is accurately done, the required degree of consolidation is met at the pre-

determined preloading time. As such, there is a requirement for in-situ tests to be carried out 

just prior to the removal of surcharge to assess the degree of consolidation of the improved 

ground. In-situ tests may also determine the shear strength, overconsolidation ratio and 

effective stress gain of the foundation soil. 

 

The cost for mobilisation and testing can be relatively high depending on the type of test to 

be carried out. The operator’s experience is important to the quality of the test. Various 

checks and calibrations have to be meticulously carried out prior to the testing. The test 

equipment will require regular maintenance and servicing. Different in-situ tests could 

provide different test results when compared to each other. As such, engineering experience 

is required to decipher the actual soil properties. Various empirical equations are used in the 
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evaluation of soil properties by these in-situ tests and as such site-specific refinements of the 

empirical equations may have to be carried out. 

 

2.6.2 Field Vane  

The use of the field vane shear tests as well as the determination of the undrained shear 

strength has been described by the Norwegian Geotechnical Society (1979), Flaate (1966) 

and Aas (1967). Most geotechnical textbooks similarly cover the field vane shear test, as it is 

arguably the most common equipment used for the determination of the undrained shear 

strength of soft clays. Mayne and Mitchell (1988) have provided an interpretation method of 

the overconsolidation ratio of clays by using the field vane shear test results.  

 

The in-situ testing of marine clay with the field vane described in this thesis has been 

discussed in detail by the author (Arulrajah et al., 2004d,  2004h, 2004p) during the course of 

this research study. 

 

2.6.3 Piezocone  

The piezocone has seen a surge in its use in soft clays in this region as a better alternative to 

other crude field testing equipments notably the Mackintosh probe and the standard 

penetration test. Campanella and Robertson (1988) have described the standard guidelines 

for the use of the piezocone test equipment. The authors have also provided various 

interpretation charts to be used in conjunction with the cone penetration test results. 

Sugawara (1988) has provided a method of estimating insitu overconsolidation ratio of clays 

by using the piezocone test. Baligh and Levadoux (1980), De Beer et al. (1988) and Gupta et 

al. (1983, 1986) have written on the piezocone dissipation test methods and the 

determination of the excess pore water pressure in clays. By this determination of the excess 

pore pressures in the clay, the degree of consolidation of the clay can be easily calculated. 

 

The in-situ testing of marine clay with the piezocone described in this thesis has been 

discussed in detail by the author (Arulrajah et al., 2004d, 2004f, 2004i, 2004h, 2004p) during 

the course of this research study. 

 

2.6.4 Flat Dilatometer 

Marchetti (1980, 1981, 1989) has provided a detailed description of the flat dilatometer and 

its interpretation methods. The determination of undrained shear strength and 

overconsolidation ratio from dilatometer tests has been extensively covered by Marchetti 

(1980) and Chang (1986, 1997).  Chang (1986) has described the methods and interpretation 

of flat dilatometer dissipation tests. The method of interpretation of coefficient of 
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consolidation due to horizontal flow values from dilatometer holding tests have been 

described by Marchetti and Totani (1989). 

 

The in-situ testing of marine clay with the flat dilatometer described in this thesis has been 

discussed in detail by the author (Arulrajah et al., 2004d, 2004f, 2004i, 2004h, 2004o,  

2004p) during the course of this research study. 

 

2.6.5 Self-Boring Pressuremeter 

Mair and Wood (1987) have described the methods of testing of various pressuremeters 

including the self-boring pressuremeter. Windle and Wroth (1997) has described the 

determination of the undrained properties of clay by means of the self-boring pressuremeter. 

Whittle et al. (1993) has described the lift-off stress and analysis of the initial stress 

distribution of the six arm self-boring pressuremeter. Chang (1994) has described the 

methods and interpretation of self-boring pressuremeter dissipation tests. 

 

The in-situ testing of marine clay with the self-boring pressuremeter described in this thesis 

has been discussed in detail by the author (Arulrajah et al., 2004d, 2004f, 2004i, 2004h, 

2004p) during the course of this research study. 

 

2.6.6 BAT Permeameter 

The BAT permeameter device has been used for the determination of in-situ permeability of 

clays. Torstensson (1983, 1986) has described the equipment, its functions, methods of 

conducting the tests and the method of interpretation of the data. Bo, Arulrajah and Choa 

(1998c)  have successfully used the device for determining the in-situ permeability of clays. 

 

The in-situ testing of marine clay with the BAT permeameter described in this thesis has 

been discussed in detail by the author (Arulrajah et al., 2004d, 2004i) during the course of 

this research study. 

 

2.6.7 State of the Art: In-situ Testing 

Current state of the art in insitu testing includes the use of the cone pressuremeter test in soft 

clays. The cone pressuremeter is suitable for carrying out tests in soft clay where pushing 

condition is favourable. It is also suitable for use in sand where preboring is difficult. The 

testing method is similar to that of the self-boring pressuremeter. Cao (1998) has published 

on the testing method, theory and interpretation of the results of this test in marine clay. The 

cone penetrometer and hand-held field vane are also tools often used in soft clays. 
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2.7 Laboratory Testing of Marine Clays 

 

Geotechnical books cover extensively the various laboratory testing equipments and describe 

the testing methods for the testing of soft clay.  Sridharan and Sreepada (1981) have 

particularly written on the method of using the Hyperbolic fitting method for one-

dimensional consolidation.  

 

To date, studies of various laboratory tests in Singapore marine clays at the Changi 

reclamation projects have been extensively carried out particularly by Bo, Arulrajah, Choa 

and Chang (1998a) and Choa (1985).  

 

2.7.1 Necessity and Shortcomings of Laboratory Testing 

Laboratory testing enables the physical and consolidation properties of the foundation soil to 

be ascertained.  The expected post improvement effective stress can also be determined. 

Post-investigation boreholes can be carried out at a designated time close to the surcharge 

removal period and from the laboratory results the degree of improvement can be assessed. 

Void ratio after improvement can be compared with prior to reclamation and expected 

values. Laboratory testing however takes time to conduct and can also be expensive. In 

addition there are a lot of complexities involved such as borehole quality, sample quality, 

testing quality, testing methods and interpretation methods. 

 

2.7.2 State of the Art: Laboratory Testing 

Currently the GDS stress path equipments has been used for laboratory testing of clays in 

Singapore and Southeast Asia. The tests though relatively expensive compared to other 

laboratory tests, is able to provide stress path history of the clays by drained or undrained 

tests.  Direct simple shear tests and Mikasa shear  tests have successfully been carried out on 

marine clays in Singapore. Large diameter Rowe cells and hydrocon is also being used for 

the consolidation testing of soft clays. The laboratory vane is also commonly in use to 

determine shear strengths of clays while the cone penetrometer is increasingly used for the 

determination of liquid limit.  

 

Electro-osmosis consolidation laboratory tests have also been carried out by means of 

modified triaxial apparatus in which soil sample has an electric current applied and its 

volumetric change is accurately measured. Bo et al. (2000c) has described the test apparatus, 

procedures and result analysis of Singapore marine clays. 
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2.8 Finite Element Modeling of Prefabricated Vertical Drains 

 

Lin et al. (2000) has previously verified the performance of using the interface element to 

simulate vertical drains in soft Bangkok clay by the finite element method. Lin et al. (2000) 

stated that the interface element can be used to act as a drainage channel to dissipate excess 

pore water pressure during the consolidation process which is the basic function of vertical 

drains. In the modeling of the vertical drains in Bangkok clay by Lin et al. (2000), the 

interface element was used with the same soil property as the adjacent soil except for its 

permeability. Furthermore, the conversion scheme for well resistance was achieved by using 

interface elements. Bo, Arulrajah and Choa (1997b) has previously carried out a 

performance verification study of prefabricated vertical drains installed in Singapore marine 

clay by means of the Sage Crisp numerical modeling software. 

 

The finite element modeling of marine clay deformation under reclamation fills described in 

this thesis have been discussed in detail by the author (Arulrajah et al., 2004j) during the 

course of this research study. The analyses carried out by the author included the modeling 

of the consolidation behaviour of marine clay under reclamation fills with and without 

prefabricated vertical drains. Modeling of the sub-areas treated with vertical drains was 

carried out by both the axi-symmetric unit cell and full-scale analysis methods. Modeling of 

untreated control sub-areas was carried out by the full-scale analysis method. 

 

 

2.9 Discussion on Literature Review 

 

Ground improvement of soft clay, land reclamation and prefabricated vertical drains has 

been discussed in this chapter with references to various publications. The theories and 

mechanisms for the design of the vertical drains will be discussed further in a later chapter.  

 

In-situ testing of marine clays by various penetration and dissipation testing methods has 

been highlighted. These include references to publications on field vane shear, piezocone, 

self-boring pressuremeter, flat dilatometer and BAT permeameter. The latest state-of-the-art 

in in-situ testing has been discussed.  

 

Field instrumentation of soft clays has been referenced to various books and papers with 

respect to the method of instrumentation and analysis namely settlement gauges and 

piezometers. In addition, the latest state-of-the-art methods of field instrumentation and 
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laboratory testing have been discussed. Previous finite element modeling methods used for 

the modeling of prefabricated vertical drains installed in soft clays have also been discussed. 

 

In conclusion it can be said that there is no dearth of existing literature on the aspects of 

ground improvement with prefabricated vertical drains and the associated in-situ testing and 

instrumentation works. The state of the modern day society is such that there are always 

countless new innovations and theories on methods of analysis, testing and interpretation of 

works. As such the need arises for a Geotechnical Engineer to keep abreast of the latest 

publications and findings in Geotechnical Engineering so as not to be left behind in this 

modern age.  
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3.0 CHARACTERISTICS AND MINERALOGY OF SINGAPORE MARINE 

CLAY AT CHANGI 

 

Singapore marine clay at Changi is a quartenary deposit that lies within valleys cut in the 

Old Alluvium. It is locally known as Kallang formation. Prior to the commencement of land 

reclamation works on this marine clay formation, it is essential to carry out a proper site 

characterization of the marine clay consolidation and physical characteristics to obtain the 

required design parameters.  

 

The pre-reclamation general site characterization was carried out by means of marine 

sampling boreholes, field vane testing and laboratory testing. It was carried out for the 

purposes of determining the consolidation characteristics, stratigraphy, geology, strength 

characteristics and stress history of the marine clay at Changi.  

 

A preliminary survey inclusive of a desk study of existing data and geophysical seismic 

reflection surveys was carried out prior to the detailed soil investigation which was planned 

based on the marine geophysical seismic reflection survey and marine bathymetric results.   

 

Physical and compressibility parameters of the marine clay at Changi were characterized 

from the laboratory tests while the shear strengths were evaluated from the field vane shear 

tests data obtained. The consolidation properties of marine clay are needed prior to land 

reclamation activities in order to predict the magnitude and rates of settlement with the 

expected fill load and future service load. These properties are also needed for the design of 

soil improvement works.  

 

The shear strength values are required for foundation stability analyses of general fills and 

surcharge during reclamation and for the short and long term stability analyses of shore 

protection works.   

 

Clay mineralogy tests were carried out by X-ray diffraction and scanning electron 

microscope to determine the mineralogical properties of the marine clay. Photographic 

identification of the marine clay was carried out to visually record the marine clay colour and 

texture.  

 

The objective of this chapter is to report on the characteristics of the consolidation, strength 

mineralogy and formation history of Singapore marine clay at Changi, as determined from 
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laboratory and field vane shear tests. The following aspects of the characteristics and 

mineralogy of marine clay are discussed and presented in this chapter: 

 

• Description of Project Site  

• Site investigation  

• Marine geophysical seismic reflection surveys  

• Marine bathymetric surveys  

• Laboratory testing  

• Physical and consolidation characteristics  

• Vertical hydraulic conductivity  

• Horizontal hydraulic conductivity 

• Field vane shear testing 

• Determination of clay mineralogy by means of X-ray diffraction  

• Determination of clay mineralogy by scanning electron microscope 

• Geology of Singapore marine clay a Changi 

• Formation history of Singapore marine clay at Changi 

• Photographic identification of marine clay 

 

 

3.1 Description of Project Site 

 

The site for the research is located in the Changi East Reclamation Project in the Republic of 

Singapore. The project comprises the on-going land reclamation and ground improvement 

works to allow for the future expansion of Changi International Airport comprising the 

runway, taxiways, turn-offs and associated airport facilities.  

 

The area is submerged underwater with seabed elevation varying from – 2 mCD to – 8 mCD 

(Admiralty Chart Datum, where mean sea level is +1.6 mCD). The Northern Area of the 

project area is underlain by marine clay up to 40 meters in thickness in certain areas and it is 

this portion of the project area that was investigated in this research study.  

 

Figure 3.1 indicates the location and site plan of the Changi East Reclamation Project in the 

Republic of Singapore. 
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Figure 3.1    Location and site plan of the Changi East Reclamation Project  

(modified from Choa et al., 2001).  
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3.2 Site Investigation  

 

Extensive soil investigation works consisting of marine boreholes, in-situ tests and 

laboratory tests were carried out for the preliminary site investigation to obtain the general 

characteristics and trends of the marine clay. Undisturbed samples taken from boreholes 

were tested in the laboratory to determine the physical, mineralogical, strength and 

consolidation characteristics of the marine clay. A desk study was first conducted on existing 

marine boreholes which had been carried out earlier by other parties and site profiles and 

geology of the underlying soil were then derived. Additional investigations clarifying the 

stratigraphy, geology and the soil characteristics and stress history of the marine clay was 

found to be necessary. The characterization study involved the execution of about 50 marine 

soil investigation boreholes. 

 

Marine bathymetric surveys together with marine geophysical seismic reflection surveys of 

the project area were carried out with the use of a water surface-towed boomer profiling 

system. The elevations of the bases of the compressible layers and the distribution of soft 

marine clay pockets deposited in submarine valley cuts were determined from the marine 

bathymetric and seismic reflection surveys. The marine bathymetric and seismic reflection 

survey was used to complement the determination of the marine sampling borehole locations 

at the site. 

 

3.2.1 Marine Sampling Boreholes 

Marine soil investigation works were planned with the aid of a geophysical seismic 

reflection survey. Boreholes were drilled at locations with thick marine clay and other 

locations for determination of the marine clay profile. Due to the large extent of the project 

area and the variations in the underlying soil profile, a large number of marine boreholes 

were carried out with the use of offshore jack-up pontoons. Continuous undisturbed 

sampling was carried out throughout the marine clay layer for all boreholes. Following the 

completion of each sampling borehole, the rig on the offshore jack-up pontoon was shifted 

about one meter and a field vane shear test (FVT) was next carried out using a Geonor vane 

at one meter depth intervals. Laboratory tests to determine the physical characteristics of the 

marine clay such as Atterberg limits,  moisture content and bulk density were carried out on 

the retrieved samples. Conventional oedometer and consolidation tests were also conducted 

on undisturbed soil samples retrieved from the site. The objective of these tests was to 

establish the characteristics of the foundation soil and to obtain the soil parameters needed 

for the design. Figure 3.2 shows an off-shore jack-up pontoon with boring rig. Figure 3.3 

shows the location of the marine sampling boreholes. 
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Figure 3.2   Off-shore jack-up pontoon with boring rig. 
 
 
 

 
Figure 3.3   Location of marine sampling boreholes. 
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3.2.2 Bathymetric and Seismic Reflection Surveys 

Marine bathymetric surveys together with marine geophysical seismic reflection surveys of 

the project area were carried out with the help of a water surface-towed boomer profiling 

system. The elevations of the bases of the compressible layers and the distribution of soft 

marine clay pockets deposited in submarine valley cuts were determined from the marine 

bathymetric and seismic reflection surveys.  

 

The seismic survey vessel was fitted with a Del Norte DDMU 540 trisponder, Atlas Deso 20 

echo sounder and a boomer profiling system. The survey operation was run at lines of 50 

meter spacing in alternate directions. Cross lines were run at 50 meter spacing in alternate 

directions, as specified by a geophysical specialist for accurate interpretation of the seismic 

survey results. Figure 3.4 indicates a schematic view of the survey vessel.  

 

For horizontal control of the survey, a trisponder positioning system was used to control the 

location of the survey vessel along pre-computed lines. A total of 4 shore stations were used 

at any one time. For vertical control of the survey, the tidal reduction of the survey area was 

carried out using tide levels observed at a tide gauge.  

 

Tidal data was obtained from the Port of Singapore, Hydrographical Department. The echo 

sounder enabled the contouring of the seabed elevation profile while the boomer enabled the 

isoline of the base elevation of the marine clay to be plotted. Hence the geological sequence 

description could be obtained based on the interpretation of the boomer data and this could 

be correlated with the existing marine boreholes data provided over the survey area.  

 

Based on the seismic survey and bathymetric survey results, additional boreholes were 

planned to accurately profile the marine clay at the project site. This was done by filling in 

gaps of uncertain data or deep pockets of marine clay by providing additional boreholes. 

Figure 3.5 shows an isopach map result of the seismic survey of the Project Site. 
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Figure 3.4   Schematic view of survey vessel. 
 
 
 
 

 
Figure 3.5   Isoline map of seismic survey contours. 
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3.3 Laboratory Testing of Marine Clay 

 

The characterization study indicated the presence of two distinct layers of marine clay which 

are the “Upper Marine Clay layer” and the “Lower Marine Clay layer” (Arulrajah et al., 

1995). The “Intermediate Stiff Clay layer” which is also present is in reality the desiccated 

layer of the lower marine clay, which separates these two distinct marine clay layers (Bo, 

Arulrajah and Choa 1998a). The primary compression and secondary compression 

characteristics of the marine clay were determined from oedometer tests. The upper marine 

clay with an average compression index (Cc) of 1.0 is found to be more compressible than 

the lower marine clay.  

 

3.3.1 Consolidation and Physical Characteristics 

Based on the results obtained, the marine clay in the Northern Area can be described as high 

to very highly plastic silty clay, except for the intermediate stiff clay as shown in the 

plasticity chart in Figure 3.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6   Plasticity chart showing the classification of Singapore marine clay at Changi. 
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The range of physical and consolidation characteristics of the upper, lower and intermediate 

marine clay is tabulated in Table 3.1. The recommended design parameters of the various 

marine clay layers based on the results of the marine boreholes and laboratory tests (Bo, 

Arulrajah and Choa 1998a) is tabulated in Table 3.2 and were design parameters used in the 

design of the reclamation and ground improvement works.  

 

Typically the upper marine clay ranges between 0-5.5 meters to about 10-25 meters below 

the seabed. The upper marine clay has a liquid limit of between 80-95%, plastic limit of 

between 20-28% and water content of 70-88%. The upper marine clay is generally 

overconsolidated with overconsolidation ratio (OCR) of about 1.5-2.5. The upper marine 

clay has a compression index (Cc) of 0.6-1.5 and secondary compression index (Cα) of 

0.012-0.025. The coefficient of consolidation for vertical flow (cv) of the upper marine clay 

is between 0.47-0.6 m2/year while the coefficient of consolidation due to horizontal flow (ch) 

is between 2-3 m2/year. 

 

The lower marine clay ranges to a depth of 30-50 meters below the seabed. The lower 

marine clay has a liquid limit of 65-90%, plastic limit of 20-30% and water content of 40-

60%. The lower marine clay is lightly overconsolidated with OCR of 2. The lower marine 

clay has a compression index (Cc) of 0.6-1.0 and secondary compression index (Cα)  of 

0.012-0.023. The compression index is used for the calculation of field settlement caused by 

settlement. The coefficient of consolidation for vertical flow (cv) of the lower marine clay is 

between 0.8-1.5 m2/year while the coefficient of consolidation due to horizontal flow (ch) is 

between 3-5 m2/year. 

 

The intermediate stiff clay is sandwiched between the upper marine clay and lower marine 

clay. This 3-5 meter thick layer comprises of predominantly stiff sandy silt or sandy clay. 

The intermediate stiff clay has a liquid limit of about 50%, plastic limit of 18-20% and water 

content of 10-35%. The intermediate stiff clay is moderately overconsolidated due to 

desiccation, with OCR of 3-4.  The intermediate stiff clay has a compression index (Cc) of 

0.2-0.3 and secondary compression index (Cα) of 0.0043-0.023. The coefficient of 

consolidation for vertical flow (cv) of the intermediate marine clay is between 1-4.5 m2/year 

while the coefficient of consolidation due to horizontal flow (ch) is between 5-10 m2/year. 

 

The variations of soil properties with depth are presented in Figures 3.7 to 3.15. These plots 

are based on combined information of all boreholes in the Northern area of the project. 

Trends may not be present due to differences in location and variability in the soil stiffnesses 

and characteristics from borehole to borehole. 
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Table 3.1  Range of physical and consolidation characteristics of Singapore marine clay at 
Changi. (Bo, Arulrajah and Choa 1998a). 

Parameters Upper Marine Clay Intermediate Stiff Clay Lower Marine Clay 

γbulk (kN/m3) 14.23-15.7 18.64-19.6 15.7-16.67 

WC (%) 70-88 10-35 40-60 

LL (%) 80-95 50 65-90 

PL (%) 20-28 18-20 20-30 

eo 1.8-2.2 0.7-0.9 1.1-1.5 

Gs 2.6-2.72 2.68-2.76 2.7-2.75 

Cc 0.6-1.5 0.2-0.3 0.6-1.0 

Cα 0.012-0.025 0.0043-0.023 0.012-0.023 

Cr 0.09-0.16 0.08-0.15 0.14-0.2 

cv (m2/yr) 0.47-0.6 1-4.5 0.8-1.5 

cvr (m2/yr) 3-7 10-30 4-10 

ch (m2/yr) 2-3 5-10 3-5 

OCR 1.5-2.5 3-4 2 

 

 

 

Table 3.2  Recommended Design parameters of Singapore marine clay at Changi  
    (Bo, Arulrajah and Choa 1998a).  

Parameters Upper Marine Clay Intermediate Stiff Clay Lower Marine Clay

γbulk (kN/m3) 14.91 19.13 16.2 

WC (%) 80 30 50 

LL (%) 90 50 75 

PL (%) 25 19 25 

eo 2.0 0.8 1.3 

Gs 2.67 2.72 2.73 

Cc 1.0 0.25 0.8 

Cr 0.13 0.1 0.17 

cv (m2/yr) 0.5 2 1 

cvr (m2/yr) 5 20 10 

OCR 2 3.5 2 
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 Figure 3.7   Variation of bulk density with depth. 
 

 Figure 3.8   Variation of specific gravity with depth. 
 

Figure 3.9   Variation of water content and Atterberg limits with depth.  
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 Figure 3.10   Variation of Atterberg limits with depth.  
 

Figure 3.11   Variation of initial void ratio with depth. 
 

 Figure 3.12   Variation of maximum past pressure with depth. 
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Figure 3.13   Variation of compression index with depth. 

 
Figure 3.14   Variation of recompression index with depth. 

        Figure 3.15   Variation of cv with depth (oedometer). 
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3.3.2 Hydraulic Conductivity  

For the vertical hydraulic conductivity measurement, conventional one-dimensional 

oedometer tests were carried out. Rowe cell tests were carried out for the horizontal 

hydraulic conductivity measurements. The collected samples were sealed immediately with a 

wax and Vaseline mixture at site and sent by boat to the on-site laboratory.  

 

3.3.2.1 Vertical Hydraulic Conductivity  

The oedometer specimens were 63.5 mm in diameter and 19 mm in height. The samples 

were conventionally trimmed horizontally (i.e., the loading surface is perpendicular to the 

axis of the sampling tube) so that the compressibility and coefficient of consolidation due to 

vertical flow could be measured. The consolidation load was applied in 24 hour loading 

stages with a load increment ratio of unity. Vertical hydraulic conductivity (kv) was obtained 

from e - log k relation and taken at the natural void ratio. kv values were generally  calculated 

from coefficient of consolidation results (Bo, Arulrajah and Choa; 1998c): 

 

kv = cv mv γw         (Eq. 3.1) 

where: 

 cv is the coefficient of consolidation for vertical flow in m2/yr 

 mv is the coefficient of volume compressibility in m2/kN 

 γw is the unit weight of water in kN/m3 

 

Figure 3.16 shows the vertical hydraulic conductivity versus depth plots for the marine clay.  

Vertical hydraulic conductivity values were found to range between 2 x 10-10 to 1.5 x 10-8 

m/s for the Singapore marine clay at Changi. Vertical hydraulic conductivity values from 

laboratory tests do not show a systematic decrease with increasing depth.  

 

Tavenas et al. (1983) has highlighted the weakness of evaluating hydraulic conductivity 

values from step-loaded oedometer tests. Tavenas et al. (1983) has explained that in the 

oedometer test there is a non-homogeneous condition and cv is much faster near the drainage 

boundary than in the middle of the specimen. However cv values are taken as an intermediate 

value and it would be difficult to transform into hydraulic conductivity values using the 

suggested equation. This is because proper quantification of corresponding mv, void ratio and 

effective stress is difficult. This could thus be the reason for the non-systematic variation of 

the hydraulic conductivity values. However, vertical hydraulic conductivities were evaluated 

from cv values derived from Taylor’s method (Taylor 1948) which is likely to give a closer 

estimation to the actual in-situ hydraulic conductivity. 



   

  40

Figure 3.16 Vertical hydraulic conductivity versus depth plot from laboratory testing. 
 

 

The change of hydraulic conductivity with void ratio is defined as the hydraulic conductivity 

change index, ckv which was found to range between 0.3 to 0.87 for the marine clay (Bo, 

Arulrajah and Choa; 1998c). Leroueil et al. (1992) stated that ckv deduced from oedometer 

tests under-estimates the real values. Tavenas et al. (1983) explained that the 

underestimation of void ratio versus log hydraulic conductivity relationship at small void 

ratios could be associated with the use of mean values instead of void ratio at the upper 

boundary where hydraulic conductivity is measured.  

 

The relationship between in-situ initial void ratio (eo)and ckv as shown in Figure 3.17, is 

found to be ckv = 0.3 eo for Singapore marine clay at Changi (Bo, Arulrajah and Choa; 

1998c). 
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Figure 3.17 Relationship comparison with ckv to eo of various clays  
(Bo, Arulrajah and Choa; 1998c). 

 

3.3.2.2 Horizontal Hydraulic Conductivity   

As the oedometer test does not permit horizontal drainage, Rowe cell tests (Rowe, 1966) 

which have provisions for horizontal drainage were used to determine coefficient of 

consolidation due to horizontal flow (ch) and horizontal hydraulic conductivity (kh) of the 

marine clay. The Rowe cell used was 75 mm in diameter and 30 mm in thickness. The 

prepared samples were 72.5 mm in diameter and as such the thickness of the side drain was 

2.5 mm. The consolidation load was applied in 24 hour stages with a load increment ratio of 

unity. Horizontal hydraulic conductivity, kh was taken from values at the natural void ratio 

and calculated from coefficient of consolidation due to horizontal flow. 

 

Consolidation tests were carried out with Rowe cell and the horizontal hydraulic 

conductivity values were calculated from coefficient of consolidation due to horizontal 

flow,ch. kh from laboratory tests versus depth plots are shown in Figure 3.18.  
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Horizontal hydraulic conductivity values were found to range between 3 x 10-9 to 8 x 10-8 

m/s, which is much higher than the laboratory vertical hydraulic conductivity. Hydraulic 

conductivity anisotropy is not significant for the marine clay. The kh/kv ratio for the 

Singapore marine clay at Changi is about 1.5. It can therefore be concluded that the 

hydraulic conductivity anisotropy is negligible for the Singapore marine clay at Changi. 

 

Tavenas et al. (1983) stated that permeability anisotropy is not a significant parameter in 

most massive marine clays. Larsson (1981) stated that isotropy of Swedish clay with the 

difference between kh and kv is in the range of measurement error. Rowe (1972) stated that 

oedometer consolidation tests carried out on a small diameter Rowe cell should give lower 

value of ch and kh if the fabric effect is significant. This may not be the case for Singapore 

marine clay at Changi, which is of recent Quaternary age, where the type of clay is 

homogeneous with less frequent silt-sand lamination.  

 

 

Figure 3.18 Horizontal hydraulic conductivity versus depth plot from laboratory testing. 
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3.4 Field Vane Shear Testing of Marine Clay 

 

The undrained shear strength obtained from the field vane tests was analysed to obtain 

empirical correlations of the shear strengths and the normalized shear strength ratios of the 

marine clay. A Geonor field vane was used in the testing and both undisturbed and 

remoulded shear strengths were obtained from the tests. The in-situ field vane shear testing 

of Singapore marine clay at Changi have been discussed in detail by the author (Arulrajah et 

al., 2004d) during the course of this research study. 

 

The undrained shear strength of the upper marine clay is between 10 to 30 kPa while that of 

the lower marine clay is between 30 to 60 kPa. The graphical plots of the field vane test 

results are found in Figure 3.19. The empirical correlations suggested for the field vane tests 

in Changi marine clay by Bo et al. (2003b) were used in the characterisation. The empirical 

correlations obtained indicate that the marine clay is soft and slightly overconsolidated. 

 

cu = 10 + 1.6 z  (kN/m2)  (for upper marine clay)  Eq. (3.2) 

cu = 10 + 2 z  (kN/m2)  (for lower marine clay)       

         

The normalised shear strength ratio is defined as follows:    

    

cu / σvo ′ = 0.37        Eq. (3.3) 

where:  

cu = undrained shear strength in kN/m2 

 z = depth below seabed in meters 

 σvo′ = effective stress in kPa 

 

For many naturally deposited clay soils, the undrained shear strength is much less when the 

soils are tested after remoulding without any change in the moisture content. This property of 

clay is called the sensitivity. The degree of sensitivity is the ratio of the undrained shear 

strength in an undisturbed state to that in a remoulded state: 

 

St = cu (undisturbed) / cu (remoulded)     Eq. (3.4) 

 

The sensitivity of the marine clay at Changi varies from 3 to 8 which can be described as 

highly sensitive marine clay. Figure 3.20 indicates the sensitivity of the marine clay at the 

Northern Area of the Project Site.  
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Figure 3.20   Variation of field vane sensitivity with depth.  
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3.5 Mineralogy of Marine Clay 

 

The mineralogy of the marine clay was determined by the extraction of piston samples which 

were stored and sent to the British Geological Survey for X-ray diffraction (XRD) and 

scanning electron microscope (SEM) analysis. The tests were carried out according to the 

British Standards. 

 

3.5.1 X-Ray Diffraction 

A representative portion of each sample was removed and dispersed in distilled water using a 

reciprocal shaker by treatment with ultrasound. The suspension was then sieved on 63 µm 

and the <63 µm material placed in a measuring cylinder and allowed to stand. In order to 

prevent flocculation of the clay crystals, 2 ml of 0.1M ‘Calgon’ (sodium 

hexametaphosphate) was added to each suspension. After a period dictated by Stoke’s Law, 

a nominal < 2 µm was then re-suspended in a minimum of distilled water and pipette onto a 

ceramic tile in a vacuum apparatus to produce an oriented mount. 

 

The XRD analysis was carried out using a Philips PW1700 series diffractometer equipped 

with a cobalt-target tube and operating at 45kV and 40mA. Clay mineralogy was determined 

after scanning the air-dry, glycol-solvated and heated to 550o C/2 oriented mounts from 1.5-

32  o2q at 0.48 o2θ/minute. Diffraction data was analysed using Philips APD1700 software 

coupled to a JCPDS database running on a DEC MicroVax 2000 micro-computer system. 

 

The XRD analysis indicates the major content of minerals to be kaolinite and smectite with  

‘mica’ and chlorite being the minor minerals.  

 

The XRD result for a sample at 10 meters depth is shown in Figures 3.21. The XRD result 

for a sample at 18 meters depth is shown in Figures 3.22. 
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Figure 3.21  X-ray diffraction results for marine clay at 10 meters depth .  
 
 

 
Figure 3.22  X-ray diffraction results for marine clay at 18 meters depth. 



   

  47

3.5.2 Scanning Electron Microscope 

A sub sample approximately 2 cm x 1cm2 was freeze dried prior to specimen preparation. 

This involved rapidly freezing the sub sample in liquid nitrogen followed by drying in an 

Edwards Modulyo Freeze Drier for approximately 24 hours. Once dry the samples were 

carefully fractured to produce a freshly exposed surface for SEM examination. These 

specimens were then mounted on aluminium stubs and coated in a layer of carbon 

approximately 25 nm thick in an Edwards 306A carbon evaporation coater.  

 

The SEM specimens were examined in a Cambridge Instruments SEM S250 Mk 1 fitted 

with a Link 860A energy dispersive X-ray analysis (EDXA) system which provided 

qualitative chemical information from areas of interest. An accelerating voltage of 20 kV 

was used throughout this study. The qualitative chemistry of each clay mineral is identified 

as a list of elements detected. The elements listed in brackets are listed in approximate order 

of decreasing concentration estimated from peak heights in the qualitative EDXA spectra. 

 

Under the SEM, the clays appear poorly consolidated. The fabric of the clays appears 

generally open with porosities optically estimated at up to 30% based on SEM interpretation. 

The clay samples are generally composed of ragged clay mineral flakes typically less than 10 

µm in diameter. The flakes have a chemistry with K, Fe aluminium silicate dominating in 

most samples as obtained from the EXDA. Such a chemical composition probably 

corresponds with the micaceous clay mineral identified by XRD. Rarer flakes with a Mg, K, 

Fe (tr Ca) aluminium silicate to a K, Fe (tr Ca, Ti) aluminium silicate composition may relate 

to the smectite-group mineral identified by XRD. Kaolinite generally forms discrete 

subrounded particles intimately associated iron oxides, too fine grained to be resolved by 

SEM. Rare detrital muscovite flakes, quartz and K-feldspar silt grains and shell fragments 

are distributed throughout the clay matrix. Authigenic pyrite occurs as isolated subspherical 

particles and rare framboids suggesting an anoxic diagenetic environment. Poorly developed 

clay flakes, apparently associated with the pyrite have a Fe, K, Mg, Al, Si chemistry and may 

be composed of chlorite. These interpretations were provided in the test report of the British 

Geological Survey. 

 

The SEM photomicrographs are shown in Figure 3.23 (Plates 1-6). Plates 1 and 4 shows the 

typical clay morphology. Plate 2 shows the typical clay morphology and open, poorly 

compacted texture. Plate 3 indicates the presence of rare framboical pyrite. Plate 5 indicates 

the presence of kaolinite particles within the clay matrix. Plate 6 shows the typical open, 

porous clay fabric. 
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Figure 3.23 Magnification of soil fabric under Scanning Electron Microscope  
  (Plates 1-3:    at 6 m depth;  Plates 4-6 at 15 m depth) . 
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3.6 Geology and Formation History of Marine Clay 

 

The marine clay found in the project site belongs to the marine member of the Kallang 

Formation. This formation is underlain by Old Alluvium. The most important influence on 

the sedimentation history of recent sediments in the coastal areas of Southeast Asia has been 

the sea level fluctuations which have occurred in the late Pleistocene and Holocene periods 

(Yong et al., 1990). These sea level fluctuations during glacial advance and retreat led to the 

erosion of deep valleys in all earlier formations and the subsequent sea level rises were 

accompanied by the filling of these valleys with the alluvial and marine members of the 

Kallang formation. The infilled valleys of marine clays were found to be up to 40 to 50 

meters in depth. At some localities, sand layers which are alluvial deposits laid at river 

mouth during the pause in marine deposition, were found instead of the dessicated clay. The 

lower marine clay in turn is underlain by the old alluvium comprising of cemented silty 

clayey sand. The preliminary site investigation and geophysical survey of the project site 

revealed that the Singapore marine clay at Changi consists of two marine members locally 

known as the upper and the lower marine clays. These soft to medium stiff clay members, as 

determined by in-situ or laboratory tests, are recent deposits of estuarine origin. The upper 

and lower marine clays are separated by a layer of medium stiff to stiff clay 2 to 5 meters in 

thickness. This layer locally termed as intermediate clay is reddish in colour and is believed 

to be the dessicated crust of the lower marine clay resulting from the exposure of the seabed 

to the atmosphere during the rise and fall of the sea levels in the geological past.  

 

It is the onset of the Wurm/Wisconsin glacial period approximately 75,000 years ago which 

brought on an extremely rapid drop of sea level to about 140 meters below the present sea 

level about 18,000 years ago. There has been a tremendous transgression of the sea over the 

land in the last 10,000 to 20,000 years. With further uplift of land and regression of the seas, 

more erosion and deposition took place. These cycles of aggregation and erosion had 

occurred many times throughout the geological ages before giving rise to the present marine 

clay formation in Eastern Singapore. This is evident in the geological profile of the project 

site, in which three successive layers of marine clay are observed, suggesting that at least 

three cycles must have taken place. Most recent estuarine and littoral deposits of the Kallang 

Formation have been deposited since sea level has been established at or close to its current 

level. For Singapore marine clay, with reported thickness of 40 meters, the age of these 

deposits must be younger than 12,000 years (Yong et al., 1990). The typical geological 

profile of the project site shown in Figure 3.24.  
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Figure 3.24    Typical geological profile of the project site. 
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3.7 Photographic Identification of Marine Clay 

 

Photographic identification of the marine clay was carried out in the site laboratory. The 

marine clay samples were obtained from a marine sampling borehole and the samples were 

sent by boat to the site laboratory for photographic purposes.  

 

The marine clay samples were extruded and the entire length of the sample was carefully cut 

and subsequently broken open. Opening the sample as such exposed the inner core of the 

sample to identify the lamination of the marine clay. The colour of the marine clay was 

compared with colour charts to positively describe the colour of the various layers of marine 

clay. 

 

Photographic identification of the marine clay in this manner  allow to feature the degree of 

the lamination of the marine clay. The identification depths of sand seams, organic material, 

layers of past exposure to oxidation etc. could thus be determined. The same soil sample has 

been cut in half and split apart as shown in the left hand and right hand side of Figure 3.25 to 

Figure 3.28. 

 

Figures 3.25 shows that the marine clay found close to the seabed consists of interbedded 

sand seams due to the geological deposition of seabed sand into this layer.  

 

Figure 3.26 shows the brownish-blue upper marine clay layer consisting of organic deposits.  

 

Figure 3.27 shows the intermediate stiff clay layer which is reddish due to oxidation of the 

layer as a result of exposure of the seabed to the atmosphere during the rise and fall of the 

sea levels in the geological past.  

 

Figure 3.28 shows brownish-blue lower marine clay layer consisting of organic deposits. 

Fine sand particles are observed in both the upper and lower marine clay layers. 
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Figure 3.25 Photo identification of marine clay close to seabed level. 

 

 

 
Figure 3.26 Photo identification of upper marine clay. 
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Figure 3.27    Photo identification of intermediate stiff marine clay. 

 

 

 
Figure 3.28 Photo identification of lower marine clay. 
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4.0 OFFSHORE LAND RECLAMATION METHODOLOGY 

 

The land reclamation methodology and characteristics of dredging plant used in the Changi 

East Reclamation Project in Singapore described in this chapter has been discussed by the 

author (Arulrajah et al., 2004c) during the course of this research study. 

 

 

4.1 History of Land Reclamation in the Republic of Singapore 

 

Land reclamation in Singapore dates back to the 19th Century where one of the earliest being 

the Telok Ayer reclamation project between 1879 and 1887 in which hill cut soil was used 

(Yong et al., 1990).  

 

Large scale land reclamation has been undertaken in various parts of the Republic of 

Singapore since the 1960’s. This is necessary because of the small size of the country (total 

area being about 581.5 square kilometres prior to 1960) and the rising demand for more land 

as the population increases. Land has been reclaimed for building homes for the growing 

population, expanding commercial and industrial activities and also to meet transport needs 

such as port and airport facilities. By 1990, the total land area of Singapore was 633 square 

kilometres. This was an increase of 51.5 square kilometres and makes up 8.9% increase of 

the total land area from the 1960’s. With continuing land reclamation, it is estimated that 

land area in Singapore will increase by another 100 square kilometres by the year 2030 

(Urban Housing Development of Singapore, 2000). Figure 4.1 shows the locations of 

reclaimed land in Singapore and their uses. 

 

The limiting constraints as to how much more land the country can reclaim is the 

significantly higher cost of land reclamation works in deeper waters as well as the 

constrictions of the sea lanes when pushing the reclamation further offshore. Land 

reclamation has modified the coastline of Singapore, extending it seawards especially on the 

eastern, north-eastern and western parts of the island and changing it quite beyond 

recognition. Large coastal areas have also been straightened by the building of dykes across 

estuaries. Many offshore islands have also become larger. (Urban Housing Development of 

Singapore, 2000). In the early years of land reclamation in Singapore, fill materials were 

evacuated from the hills in various parts of Singapore and used for filling the reclamation 

areas. However, these days, reclamation filling sand is mostly imported into Singapore from 

neighbouring countries. 
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Figure 4.1    Reclaimed land and their uses in the Republic of Singapore  

(Urban Housing Development of Singapore, 2000). 
 

 

4.2 Land Reclamation at the Changi East Reclamation Projects 

 

Since the early 1990’s, the still ongoing Changi East Reclamation Projects in the East of 

Singapore has involved the filling of  200 million cubic meters of sand for the reclamation of 

a total land area of 2500 hectares. Land reclamation works is carried out primarily with 

cutter suction dredgers, trailer suction hopper dredges and bottom-opening hopper barges. 

Land reclamation is carried out using fill materials derived from dredging granular material 

from the seabed at the borrow source in neighbouring countries. Sea sand obtained from the 

seabed is the source of fill materials for land reclamation and is imported from neighbouring 

countries. Land reclamation at Changi East requires areas that are permanently submerged to 

be raised to levels that are permanently above the sea level. The sea sand is well-graded, free 

draining sand with fines and shell contents of less than 10%. When the fill is placed by 

pumping, fines may also be released with the draining water when flow velocities within the 

area of reclamation are sufficiently high to maintain fine particles in suspension. When fill is 

placed hydraulically without containment bunds, the free escape of draining water normally 

removes most of the fine particles. Figure 4.2 and 4.3 shows land reclamation operations at 

the Changi East Reclamation Project. 
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Figure 4.2   Land reclamation operations. (note cutter-suction dredgers in background). 

 

 

 

 
Figure 4.3 Land reclamation sand-pumping operations. 
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4.3 Characteristics of Dredging Plant 

 

The principal type of dredging plant used in the land reclamation works are the cutter-

suction dredger, trailer suction hopper dredger and the bottom-opening hopper barge. The 

characteristics of these dredging plants have been discussed in British Standard 6349 (1991). 

Other equipment commonly used in offshore land reclamation activities include dredging 

plough, bucket dredgers, grab dredgers, crane pontoons, backhoe dredgers and stone 

dumping pontoons. 

 

4.3.1 Cutter Suction Dredger 

In the Changi East Reclamation Projects, cutter-suction dredgers were positioned at both the 

borrow area in neighbouring countries as well as at the rehandling pit in the project site. 

Cutter-suction dredgers stationed at the borrow areas were utilised to load bottom-opening 

hopper barges which were then towed to deep water rehandling pits in the reclamation site. 

The cutter-suction dredgers stationed at the rehandling pit would be used to redredge sand 

from the rehandling pit and pump it via a floating pipeline to the area of reclamation. Cutter 

suction dredgers currently available can have total installed diesel power varying up to 

27,150 kW (Jan De Nul, 2003). 

 

The cutter-suction dredgers used in the project were dumb (non-self propelled). Dredging 

only takes place with the dredger moored in some way and it involves an initial powerful 

cutting action with suction and pumped discharge to barges or via pipeline to an onshore area 

for land reclamation.  

 

The positioning and control of the cutter-suction dredger is usually by means of a 

combination of spuds and winches. The discharge from the dredge pumps passes over the 

stern of the pontoon to a heavy hose or flexible coupling, to which is connected a floating 

pipeline which in turn is connected to an onshore pipeline. An intermediate seabed pipeline 

is often used.  

 

Figure 4.4 and 4.5 shows the schematic diagram and picture of a cutter suction dredger. 
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Figure 4.4   Schematic diagram of cutter suction dredger (After BS6349; 1991). 

 

 

 

 
Figure 4.5   Cutter-suction dredger in operation. 
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4.3.2 Trailer Suction Hopper Dredger 

A trailer suction hopper dredger is a ship that has the ability to hold its own, normally called 

a hopper, by means of centrifugal pumps. Loading takes place when the ship is under way. 

Discharge is normally by means of a bottom dumping arrangement or by pump discharge to 

the shore. The trailer suction thus has the independent ability to dredge sand from the borrow 

area, transport the sand to the project site and discharge the sand directly from the hopper 

into the reclamation area. The trailer suction hopper dredger is rated according to the 

maximum hopper capacity, which can vary up to 44000m3 (Jan De Nul, 2003).  

 

The intake end of the suction pipe is fitted with a ‘draghead’ designed to maximise the 

concentration of solids entrained from the sea bed. Since the dredge pumps of the trailer 

suction hopper dredger are usually low head pumps, the trailer suction hopper dredger can 

not normally pump discharge through long pipelines unless intermediate booster pumps are 

employed. Figure 4.6 and 4.7 shows the schematic diagram and picture of a trailer suction 

hopper dredger. 

 

Depending on draft and local conditions, the trailer suction dredger may pump directly 

ashore or they may discharge into a rehandling pit just offshore. At this point, a cutter 

suction dredger pumps the dredged sand ashore through a floating pipeline.  

 

4.3.3 Bottom-Opening Hopper Barge 

The bottom-opening hopper barges were utilised in combination with the use of tug boats to 

transport the fill material which is loaded into the hoppers from the borrow source to the 

discharge point at the rehandling pits. The borrow area itself is in neighbouring countries and 

as such the dredging cycle (i.e. the time to sail to and from the borrow source and the time to 

unload) is an important factor in project economics. 

 

In deep waters, the bottom-opening hopper barges can discharge fill material from the 

hopper directly into the reclamation area due to its shallow draft. Barge capacities are as 

much as 3000 m3 and the loaded draught is generally less than 4 meters dredger (BS6349; 

1991).  

 

Figure 4.8 shows a bottom-opening hopper barge with tug boat. 
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Figure 4.6   Schematic diagram of a trailer suction hopper dredger (After BS6349; 1991). 

 

 

 

 
 

Figure 4.7   Trailer suction hopper dredger in operation. 
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Figure 4.8   Bottom-opening hopper barge in operation. 

 

 

4.4 Shore Protection Works 

 

Shore protection works in land reclamation can be in the form of revetments, rip-raps, 

groynes and headlands. The purpose of the slope protection work is to protect the reclaimed 

land from the erosive effects of waves and currents. Armour rocks and smaller rocks are 

used in the construction of the shore protection works. Geofabric is used to prevent the 

underlying sand layer penetrating into the upper rock layer and from there being flushed out 

(Centre for Civil Engineering Research and Codes, 1995). In general, the hydraulic loads 

exerted on shore protection works are in the form of wind waves, ship waves, tidal levels, 

wind waves and swell and currents.  

 

Construction of shore protection works involves the underwater placement of geofabric and 

rocks from marine barges with the aid of global positioning systems and specialist deep sea 

divers. Of prime geotechnical importance in the design of the shore protection works is the 

stability and settlement of the structures. Therefore it is important to correctly assess the 

shear strength and consolidation parameters of the marine clay underlying these protection 

works. Figure 4.9 and 4.10 shows shore protection works at the project site. 
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Figure 4.9   Aerial view of shore protection works. 

 

 

 

 
Figure 4.10   Close-up view of shore protection works. 
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5.0 PRELOADING AND PREFABRICATED VERTICAL DRAINS  

 

The prefabricated vertical drain (PVD) with preloading method was considered the most 

feasible treatment option for the project based on the depth of treatment, cost, time available 

for preloading and other considerations. The objective of using the vertical drains with 

preloading technique is to accelerate the rate of consolidation and to minimize future 

settlement of the treated area under the future dead and live loads. Preloading increases the 

bearing capacity and reduces the compressibility of weak ground by forcing soft soils to 

consolidate (Van Impe, 1989). Soil improvement works is carried out in such a way that a 

specified degree of primary consolidation is designed to be attained within the desired time 

frame by improving the soil drainage system. The characteristics of the marine clay and the 

description of the Project Site has been presented earlier in Chapter 3.  

 

The various theories, considerations, design methodologies and design predictions for the 

ground treatment of marine clay with prefabricated vertical drains in such off-shore projects 

has been discussed by the author (Arulrajah et al., 2004m) during the course of this research 

study. 

 

 

5.1 Preloading 

 

The idea of preloading consists of first loading the foundation layer in such a manner and 

over a well-chosen area so that the settlements related to this preloading already, either 

completely or to a large extent, constitute the initial expected deformation for the final 

construction (Van Impe, 1989). Preloading, with or without vertical drains is only effective 

in causing substantial pre-emptive settlement if the total applied load significantly exceeds 

the preconsolidation pressure of the foundation material (Hausmann, 1990). 

 

Soil stresses and pore water pressures are increased by the extra weight, the pore water 

pressure temporarily. If the excess pore water is then expelled, only the increased effective 

stresses remain. The initial effective stresses after preloading may thus increase 

considerably, leading to soil improvement during construction.  
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5.2 History of Vertical Drains 

 

The American engineer D.J. Moran, first proposed the use of sand drains as a means for deep 

stabilisation in 1925. The first practical sand drain installation were constructed in California 

a few years later (Holtz et al., 1991). 

 

In Sweden in the mid to late 1930’s, Kjellman began experiments and obtained patents on 

the first prototype of a prefabricated drain made entirely of cardboard. It was soon 

discovered that the prefabricated drains were subject to undesirable rapid deterioration, 

particularly near the top of the drained clay layers. Even with these difficulties, Kjellman 

wick drains have been used occasionally in both Europe and Japan during the past 50 years. 

However, until the early 1970s, the vast majority of vertical drains installed in the world 

were sand drains. In 1971, Wager improved on the Kjellman wick by using a grooved plastic 

(polyethylene) core in place of the cardboard one. This drain was called Geodrain and the 

first models utilised Kraft paper filters. Later models were provided with non-woven textile 

filters (Holtz et al., 1991). 

 

In the last 20 years, a new frontier seems to have opened for vertical drains. A large number 

of prefabricated drains have appeared on the market. This competition has decreased the cost 

of the drains appreciably. Installation procedures too have improved and rapid installation to 

depths up to 60 meters can now be achieved at rates of 1 m/s. Currently vertical drains are 

the most common form of deep ground treatment in this region and their applications are 

vast in projects such as roads, railways, ports, airports and various other infrastructure 

projects. 

 

 

5.3 Functions of Vertical Drains 

 

In order to reduce, in cohesive layers, the time required to reach a high degree of 

consolidation under preloading, improved drainage should be used in the form of 

prefabricated vertical drains (Van Impe, 1989).   

 

The primary use of prefabricated vertical drains is to accelerate consolidation to greatly 

decrease the settlement time of embankments over soft soils such that the final construction 

can be completed in a reasonable time with minimal post construction settlement. By doing 

so the vertical drains also accelerate the rate of strength gain of the in-situ soft soils. 

Furthermore, vertical drains decrease the amount of surcharge or preload material required to 
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achieve a settlement in a given time. Without installing vertical drains, bearing failures may 

occur during placement of the fill and settlement of soft soils may extend over many years. 

Due to the highly efficient drain installation methods, preloading combined with vertical 

drains has become an economic alternative to the installation of other ground improvement 

methods (Hausmann, 1990).  

 

Vertical drains accelerate primary consolidation only, because significant water movement is 

associated with it. Secondary consolidation causes only very small amounts of water to drain 

from the soil and as such secondary settlement is not speeded up by vertical drains. Only 

relatively impermeable soil potentially benefit from vertical drains. Vertical drains are 

particularly effective where a clay deposit contains many thin horizontal sand or silt lenses 

(so-called microlayers).  

 

Prefabricated vertical drains are band shaped (rectangular cross-section) products consisting 

of a geotextile filter material surrounding a plastic core. The size of the prefabricated vertical 

drain is typically 10 cm wide by 3 to 4 mm in thickness (Bo et al., 2003a). The material 

consists of a plastic core formed to create channels which are wrapped in a geotextile filter 

(Schaefer, 1997). The main function of the filter of the vertical drain is to ensure that fine 

particles cannot pass through and clog the drainage channels in the core (Hansbo, 1981). 

 

 

5.4 Properties of Prefabricated Vertical Drains 

 

Prefabricated vertical drains consist of a core and filter sleeve which are made of polymers. 

The dimension of the drain is normally 100 mm wide and 3-4 mm thick. The performance of 

the vertical drain is affected not only by the drain itself but also by the type of soil and the 

installation method (Bo et al., 2003). The filter interacts with the soil and the properties of it 

control the entry of water into the drains. The method of installation used requires for the 

vertical drain to possess a certain tensile strength to sustain the tensile stresses subjected to it 

during the installation process.  

 

The main properties of vertical drains that need to be specified in a ground improvement 

project are discussed as follows (Bo et al., 2003; Indraratna and Bamunawita, 2002; Holtz et 

al., 1991): 
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5.4.1 Discharge Capacity 

The purpose of using the prefabricated vertical drains is to release the excess pore water 

pressure in soil and discharge water. Therefore, the higher the discharge capacity of the 

vertical drains the better the performance of the vertical drain.  

 

Factors affecting the performance of vertical drains are as follows: 

 

• Consolidation stress.  

The discharge capacity of vertical drains decreases with increasing consolidation stress. This 

is predominantly due to the reduction in the cross-sectional surface area of the vertical drain 

as the drain is compressed under pressure and the penetration of the filter into the drain 

groove. (Broms et al., 1994). 

 

• Deformation of drain 

With the consolidation of soil, the drain will buckle or deform inside the soil. The discharge 

capacity of the buckled drain will normally be smaller than that of a straight drain (Chu and 

Choa, 1995).  

 

• Time 

The discharge capacity of the vertical drain may change with time. This is attributable to the 

creep deformation of the drain material particularly the filter which will cause the effective 

cross-section area of the drain to reduce (Chu and Choa, 1995).  

 

• Clogging of drain 

When the pores of the filter are too large, the fines may ingress into the drain thereby 

clogging the drain.  

 

• Hydraulic gradient 

The discharge capacity measured varies with different hydraulic gradients and is smaller 

when a higher hydraulic gradient is used.  

 

• Temperature 

The higher the temperature, the faster the flow and the larger the discharge capacity. 

 

When the discharge capacity of the vertical drain is smaller than the amount of water that 

needs to be discharged, well resistance will occur. Ideally the discharge capacity of the drain, 

qw should be sufficiently large in order for well resistance to be ignored in the design. 
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According to Xie (1987) and Wang and Chen (1996), the following condition must be met in 

order to hold the well resistance to an insignificant level: 

 

 π         kh     
lm

2  < 0.1        Eq.(5.1) 
 4        qw 
 

where: 

kh is the horizontal hydraulic conductivity of soil (m/s). 

lm is the length of the vertical drain (m) 

 

For this condition to hold, the discharge factor must hold by the following equation: 

 

           qw           
D =          >  7.85        Eq.(5.2) 
          kh lm

2  
 

The required discharge capacity after applying a reduction factor to consider all the 

influencing factors on discharge capacity reduces to:  

 

qreq  >  7.85 Fs kh lm
2        Eq.(5.3) 

 

where: 

 qreq is the required discharge capacity (m3/s). 

 Fs is the reduction factor which is a value of between 4 to 6. 

  

Mesri and Lo (1991) has compared discharge capacity mobilised in field situations to that 

required for negligible well resistance. From their findings, the minimum discharge capacity 

should be no less than 100 m3/yr or 3 x 10-6 m3/s. Bo et al. (2003a) states that it is 

unnecessary to use an excessively high reduction factor  for discharge capacity. This is 

because, although the discharge capacity reduces with the deformation of vertical drain and 

time, the permeability of soil reduces with consolidation (Arulrajah et al., 2004f, 2004i), so 

the amount of water discharged also reduces with time.  

 

5.4.2 Properties of Filter 

There are two basic filter design criteria that have to be met. The first is that the Apparent 

Opening Size (AOS) has to be sufficiently small so that it can prevent the ingress of clay 

particles into the drain. The second is that the permeability of the filter has to be sufficiently 
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large. The criteria adopted for prefabricated vertical drains is listed below (Bo et al., 2003; 

Holtz et al., 1991): 

 

• Soil retention ability 

Carroll (1983) stated that the following condition has to be met for the soil retention ability: 

 

O95  <  (2 to 3) D85        Eq.(5.4) 

O50  <  (10 to 12) D50                          Eq (5.5) 

 

where: 

 O95 is the AOS of the filter. O95 = 75 mm is often specified for vertical drains. 

 O50 is the size which is larger than 50% of the fabric pores. 

 D85 is the size for 85% of passing of the soil particle. 

 D50 is the size for 50% of passing of the soil particle. 

 

Bergado et al. (1993) has adopted the following criteria for Bangkok  clay: 

 

O95  <  (2 to 3) D85        Eq.(5.6) 

O50  <  (18 to 24) D50        Eq.(5.7) 

 

• Permeability  

The permeability of the filter should be at least one order of magnitude higher than that of 

the soil. As the soil to be treated by prefabricated vertical drains usually has very low 

permeability, this requirement should be easily met in most cases (Bo et al., 2003): 

 

kf  >  10 ks         Eq.(5.8) 

 

where: 

 kf is the permeability of the filter and ks is the permeability of the soil. 

 

• Clogging resistance 

Clogging occurs when the soil particle is trapped in the filter due to the particle grading 

sizes. To prevent clogging, Wang and Chen (1996) has recommended that the following 

conditions be met to meet the requirement of clogging resistance: 

 

n  > 30%         Eq.(5.9) 
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O95  > 3 D15         Eq.(5.10) 

O15  >  (2 to 3) D10        Eq.(5.11) 

100 ks  < kf   <  100 m/s        Eq.(5.12) 

 

where:  

 n is the porosity of the filter 

 O15 is the size which is larger than 15% of the fabric pores. 

 D15 is the size for 15% of passing of the soil particle. 

 D10 is the size for 10% of passing of the soil particle. 

 

5.4.3 Tensile Strengths 

Prefabricated vertical drains should have adequate strength to sustain the tensile stresses 

subjected to it during the installation process. Therefore, the core, strength of filter, strength 

of the entire drain and strength of the spliced drain should be specified in both the wet and 

dry conditions (Bo et al., 2003). Kremer et al. (1983) stated that a drain should be able to 

withstand at least 0.5 kN of tensile force without exceeding 10% in elongation. It is common 

nowadays to specify the tensile strength of the entire drain at wet and dry condition as larger 

than 1 kN at a tensile strain of 10% (Bo et al., 2003). A spliced vertical drain should also be 

required to have a tensile strength comparable to that of an unspliced drain. 

 

 

5.5 Quality Control Testing of Vertical Drains 

 

Quality control testing of vertical drains is used to assess the various drain properties such as 

discharge capacity, tensile strength, permeability, Apparent Opening Size (AOS) etc. The 

required set of vertical drain testing equipment and testing methods have been established 

and discussed by Bo et al. (2003a) as well as Chu and Choa (1995). The in-depth testing 

methodology has been described by Bo et al. (2003a). Some of the essential facilities 

required for the quality control implementation of  prefabricated vertical drain projects are 

listed below: 

 

• Discharge capacity testing with straight drain tester. 

• Discharge capacity testing with buckled drain tester. 

• Discharge capacity testing with kinked drain tester. 

• Tensile strength testing. 

• Cross-plane permeability testing of filter. 

• Apparent Opening Size (AOS) of filter. 
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5.6 Installation of Prefabricated Vertical Drains 

 

Vertical drain installation is commonly by static, vibratory, combined static and vibratory 

methods. The vertical drains are installed with the use of a vertical drain stitcher which 

comprises a crawler crane or a crawler excavator. The installation of deep depths of vertical 

drains requires an installation mast mounted to a crane in order to provide stability. In some 

situations, the installation mast has to be secured with guy wires (Schaefer, 1997). Figure 5.1 

shows a schematic diagram and photo of vertical drain stitcher.  

 

5.6.1 Installation Considerations and Details 

The suitability of the vertical drain rigs is as follows (Bo et al., 2003a): 

• Static rig – Normal ground conditions 

• Static rig with water balancing system – Very soft soil 

• Vibratory rig – Firm to stiff soil 

 

Selection of the type of vertical drain rig to use depends on the following factors:  

• Bearing capacity of the platform 

• Depth of installation 

• Type of soil 

• Production capacity of rig 

 

The vertical drain rigs are driven by the following mechanisms: 

• Chain system 

• Pulley and roller system 

• Additional hydraulic cylinders to penetrate hard ground 

• Additional clamps to push down mandrel 

 

A steel covering mandrel protects the drain material as it is installed and is used for the 

installation of the vertical drains. The mandrel must be rigid enough to penetrate the 

formation vertically and at the same time not too big such as to disturb the soil in which it is 

installed. The four main shape types of mandrels are rhombic, rectangular, square and 

circular. The rhombic and rectangular mandrels are the most commonly used mandrel types 

while the circular mandrel is the least commonly used. The drain material comes in rolls and 

is threaded through the mandrel. Figure 5.2 shows a typical mandrel for installation of 

prefabricated vertical drains. Bo et al. (2004) has described in detail the typical mandrels 

used in the Changi Reclamation Projects in Singapore. 
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Figure 5.1   Schematic diagram and photo of vertical drain stitcher. 

 

 
Figure 5.2   Typical mandrels for prefabricated vertical drain (After Holtz et. al., 1991). 

 

An anchoring system is employed to hold the drain material in place while the mandrel is 

withdrawn. The anchor has to be strong enough to anchor the vertical drain into the 

dense/stiff formation. The anchor also functions to prevent soil ingress into the mandrel. The 

anchors in common use are steel bars and flexible metal plate Steel bars is the preferred type 

of anchor due to the minimum disturbance in the soil caused by its usage. In rare cases the 

vertical drain material itself is used as an anchor though this is not a suggested method. 

Figure 5.3 shows a typical detachable anchor shoes used with prefabricated drain mandrels. 
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Figure 5.3 Typical detachable anchor shoes used with prefabricated drain mandrels (After 

Holtz et. al., 1991). 
 

Vertical drains were installed in the Project Site at the platform level of +4 mCD, the level of 

which was predetermined and fixed to ensure that the drains are installed in dry working 

conditions above the astronomical spring tide level (about +3.3 mCD). Additional allowance 

is provided to cater for the immediate settlements due to the drain installation. As sand is 

used for the reclamation filling works, the required sand blanker drainage layer for the 

vertical drains to function is automatically provided to enable a clear drainage path for the 

dissipation of the excess pore water pressures. Figure 5.4 shows vertical drains installation 

works at the project site while Figure 5.5 shows a close-up of the vertical drain installation 

works. 

 
Figure 5.4   Vertical drains installation works at project site  
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Figure 5.5    Close-up of vertical drain installation works (note roll of drain material which 

is threaded through mandrel). 
 
Selection of the type of vertical drain rig to use depends on the following factors (Bo et al., 

2003): 

• Bearing capacity of the platform 

• Depth of installation 

• Type of soil 

• Production capacity of rig 

 

The vertical drain rigs are driven by the following mechanisms: 

• Chain system 

• Pulley and roller system 

• Additional hydraulic cylinders to penetrate hard ground 

• Additional clamps to push down mandrel 

 

5.6.2 Installation Difficulties 

The various installation difficulties encountered during installation in marine clay is as 

follows (Bo et al., 2003): 

• Dessicated hard crust encountered at the original seabed level  

• Intermediate stiff soil encountered at intermediate depth in the soft marine clay  

• Hard or dense formation encountered at intermediate deep depths overlying soft marine 

clay  

• Installation difficulties in soft or ultra-soft clays 



   

  74

The dessicated hard crust and intermediate stiff soil encountered can be overcome by the 

use of prepunching or augering equipment. Alternatively, a vertical drain rig with a 

vibratory system can be used.  

 

The hard or dense formation at deep depths on the other hand will require a high powered, 

low speed vertical drain installation rig which can punch through the layer and enable 

vertical drain installation in the marine clay underlying this layer. Leaving the underlying 

thick soft marine clay beneath this layer untreated can result in detrimental settlements 

arising in the future. 

 

Installation of prefabricated vertical drains in soft or ultra-soft clays can result in the 

extrusion of mud along the annulus of the penetration hole resulting in contamination of the 

drainage layer. The intrusion of the material into the mandrel can lead to unsuccessful 

anchoring of the vertical drain. This installation difficulty can be minimised by introducing a 

water balancing system to counterbalance the water encountered in the formation. A smaller 

dimension mandrel with a smaller anchor is also suitable for such situations.  

 

5.6.3 Installation Quality Control 

Prefabricated vertical drains are installed at the project site to refusal. The refusal depth is 

often taken in the design as 1-3 meters below the base of the marine clay. The estimation of 

vertical drain depths is made by the Design Engineer based on the pre-reclamation site 

investigation and the seismic reflection survey results. Following reclamation to the vertical 

drain platform level, another series of site investigation can be directed to reconfirm the 

estimated depths of the vertical drains. This series of site investigation is often carried out 

with the use of the relatively quick cone penetration test.  

 

The installation length of vertical drains is recorded by the following means (Bo et al., 

2003): 

• Visual readings of scale markings on mast – distinct painted markings  

• Visual readings of dial gauge – drain depth determined by rotations of driving chain 

sprocket 

• Automatic digital counter – computerised recording of reference points and penetration 

length 

 

The automatic digital counter is currently a requirement in the implementation of many large 

ground improvement projects. This recording method enables the penetration length of each 

an every installation point to be recorded and the subsequent production of the as-built 
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records of an entire panel of vertical drain works. Furthermore, any points which have to be 

offset or omitted due to any obstructions can also be identified and shortlisted for remedial 

works which would likely be the installation of additional points. 

 

The predetermined vertical drain design predicted lengths can hence be used as a gauge of 

the expected site installation lengths and differences between the lengths can be studied with 

the use of further post-installation site investigations. 

 

 

5.7 Factors Affecting Design Predictions 

 

The main variables of the design predictions area: 

• the surcharge level; 

• the vertical drain spacing; 

• the preloading period; 

• the degree of consolidation; and 

• the coefficient of consolidation due to horizontal flow (ch) 

 

Prediction of the magnitude and time rate of settlement with vertical drains plays a major 

role in the design of soil improvement projects with prefabricated vertical drains and 

surcharge. Accurate prediction of the magnitude and time rate of settlement is dependent 

upon the selection of soil parameters and the engineer’s judgement. In most cases, field time 

rate of settlement is slower than the predicted rate of settlement even though the soil 

parameters are obtained from controlled laboratory tests or in-situ tests. Magnitude and time 

rate of settlement could also differ from field settlement due to smear effect, variation of soil 

in nature and many other factors. 

 

Prediction of the magnitude of primary consolidation settlement is largely dependent upon 

geotechnical parameters such as initial void ratio(e0), compression index(Cc), recompression 

index(Cr) and preconsolidation pressure(Pc). In order to get accurate void ratios for each sub-

layer, moisture content tests were carried out and the dry density and void ratio were 

calculated. Compression index and recompression index were obtained from 24 hours 

loading oedometer tests with load increment ratio of one. For the accurate prediction of time 

rate of settlement, the correct selection of design parameters for the coefficient of 

consolidation for vertical flow (cv) and horizontal flow (Ch) is essential. Conventional 

methods (Terzaghi 1925, Barron 1948) were used for the settlement predictions.  
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5.8 Design and Theories of Prefabricated Vertical Drains  

 

5.8.1 Design of  Surcharge Level  

The aim of the surcharge placement works is to preload the foundation soil to attain an 

effective stress which exceeds the pressure due to the design load. The design load comprises 

the future anticipated dead and live loads, which in the case of the proposed runway area 

would include the future runway pavement and the live airplane loads.  

 

The time required to achieve the required degree of consolidation depends largely on the 

spacing of the vertical drains, which in turn will depend on the available time for completion 

of the project.  

 

In the case of the airport runway, a drain spacing of 1.5 meters was considered viable due to 

several reasons. Firstly, the tight construction programme necessitated a closer drain spacing 

to be used and the surcharge period as specified. Secondly, ch was considered to fall between 

2 to 3 times cv based on previous reclamation experiences in the area. Figures 5.6 and 5.7 

shows surcharge placement operations at the project site. 

 

 

 
Figure 5.6   Surcharge placement operations at the project site. 
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Figure 5.7    Aerial view of surcharge close to vertical drain installation works. 

 

5.8.2 Determination of ch 

Since quaternary marine formation has been deposited under quiet marine conditions, there 

is no significant stratification. As such, the hydraulic properties are considered to be nearly 

isotropic. Due to this, the coefficient of consolidation due to horizontal flow and vertical 

flow may not be much different. The common practice for vertical drain installation in 

marine clays is to assume a ch value of twice cv (ch=2cv) since there is some lamination and 

foliation in the marine clay formation. However, based on experiences the ch value obtained 

from laboratory and in-situ results, ch values of as high as 6cv could sometimes be obtained. 

Therefore, even with smear effect ch values of at least 3cv could be expected. Even though ch 

was assumed as twice cv (ch = 1 and 2 m2/year for upper and lower marine clay respectively), 

the design prediction analysis has been carried out for various ch to cv ratios.  

 

The design equations adopted in the study for the vertical drain areas incorporated the use of 

various equations namely Terzaghi’s one-dimensional (1943), Barron’s theory (1948) and 

Carillo’s (1942) theory. Most consolidation with vertical drain software in the market today 

enables the consolidation and time rate of settlement of only a single layer to be calculated. 

As the marine clay in the Vertical Drain Area comprises of several distinct layers, the 

method of utilizing “equivalent cv” was used in the design calculations for the multiple layers 

similar to that used by Arulrajah and Bo (1995) and Choa et al. (1992) in land reclamation 

projects in Singapore. 
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5.8.3 Consolidation Settlement  

The consolidation settlement equations used are as defined by Terzaghi for one-dimensional 

consolidation. The equations were used to calculate the ultimate settlement for the filling 

works at the vertical drain platform level, as well as for the surcharge placement works at the 

surcharge level. Consolidation settlements were calculated separately for each of the various 

layers and this was then summed up to obtain the ultimate settlement.  

 

Ultimate settlement, Sult: 

 

     Ho  σf      Ho  σc 
 Sult  =  Cc    log  +   Cr      log  if σf>σc     Eq.(5.13) 
          1 +  eo  σc  1 +  eo  σ o 
 
  Ho  σ f 
 Sult  =  Cr      log                  if σc>σf    Eq.(5.14) 
          1 +  eo  σ o 
 
where:  

Cc = compression index 

Cr = recompression index 

eo = initial void ratio 

Ho = thickness of layers 

σc = preconsolidation pressure 

σf = final vertical effective stress,  

  

Overburden Pressure at Centre of Layer: 

σo  = (γbulk- γw) Ho/2 (kPa)      Eq.(5.15) 

 

where:  

 Ho is the thickness of layer (m) 

 

Additional Pressure (due to Fill Placement): 

 

∆σ = (γbulk - γw) Hf1 + (γbulk Hf2)      Eq.(5.16) 

 

where:  

Hf1 is height of fill below ground water level 

 Hf2 is height of fill above ground water level 
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Final vertical effective stress, σf: 

 

σf = σo + ∆σ          Eq.(5.17) 

 

5.8.4 Equivalent Thickness 

As the marine clay consists of several layers, the equivalent thickness of the marine clay had 

to be calculated to enable the equivalent thickness, equivalent drainage and coefficient of 

vertical consolidation to be used as input values. The equations used for computation of 

equivalent thickness is as follows: 

 

Equivalent Thickness of layer 1, H1': 

 

H1' = H1(cvi / cv1 )0.5        Eq.(5.18) 

 

where:  

cvi is an initial assumed value       

 

 

Total Equivalent thickness of all layers, HTi':  

 

HTi' = H1' + H2' +H3'. ... Hn'      Eq.(5.19) 

 

 

Equivalent drainage thickness, Hdri:  

 

Hdri = Hi' / 2        Eq.(5.20) 

 

 

Equivalent coefficient of vertical consolidation, cvi:  

 

cvi = HTi' 2 / (cvi HTi')        Eq.(5.21) 
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5.8.5 Vertical Consolidation  

The equations applicable for the calculations of the time rate of settlement are as follows: 

 

Time factor for consolidation by vertical drainage, Tv: 

 

 Tv = cvi t / Hdri
2        Eq.(5.22) 

 

Average degree of consolidation with respect to vertical flow, Uv: 

   

Uv = (4Tv / π)0.5 / [1+(4Tv / π)2.8]0.179 (%)    Eq.(5.23) 

 

5.8.6 Radial Consolidation 

A square pattern of drain installation was designed for the project site. Hansbo (1979) 

suggested that the equivalent diameter, dw should be that of a cylinder having the same 

circumference. 

 

Diameter of equivalent soil cylinder, de:  

 

de = 1.13s for square pattern      Eq.(5.24) 

 

de = 1.05s for triangular pattern      Eq.(5.25) 

 

Diameter of vertical drain, dw:  

 

dw = 2(a + b) / π = 0.0675 for the type of drain used in study  Eq.(5.26) 

 

Drain spacing ratio, n: 

n = de / dw        Eq.(5.27) 

where:  

s is the drain spacing (m) 

a is the drain width (m) 

b is the drain thickness (m) 

 

The time factor and average degree of consolidation with respect to radial flow computations 

are relevant for the simulation of settlement after installation of vertical drains at the drain 

installation level as well as analysis throughout the surcharge duration. The solution for 
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radial water flow toward the central drain goes back to Rendulic (1936). The result is 

generally expressed in terms of the average consolidation ratio for radial drainage Ur. 

 

Time factor for consolidation by horizontal drainage, Tr: 

 

Tr = ch t / de
2        Eq.(5.28) 

 

Onoue (1988) suggested a simplified formula given below for the average degree of 

consolidation with respect to radial flow, Ur . The equation uses Yoshikuni and Nakanodo 

(1974) well resistance coefficient, L defined later in Section 5.8.8. 

 

         -8 Tr 
Ur = 1  –   exp         Eq.(5.29) 

    F(n) + 0.8L 
 

       n2             3n2 – 1  
F(n) =       loge (n)  -        Eq.(5.30) 

  (n2 – 1)               4n2 
 

where:  

n is the drain spacing ratio 

 

5.8.7 Combined Vertical and Radial Consolidation  

Carrillo (1942) derived how the average degree of consolidation for combined vertical and 

radial water flow, Uvr  can be calculated: 

 

(1 - Uvr) = (1 - Uv) (1 - Ur) or      

Uvr = 1 - [(1 - Uv) (1 - Ur)]      Eq.(5.31) 

 

Time rate of total settlement, St with vertical drains can be calculated at any particular time 

for the various surcharge heights by the following equation: 

 

 St = Sult  (Uvr)        Eq.(5.32) 

 

5.8.8 Well resistance 

The relevant features for the design and performance of vertical drains are their hydraulic 

properties: the discharge capacity of the cross-section and their filter permeability. If during 

the consolidation period the discharge capacity of the drain is reached, the overall 

consolidation process is retarded. In such cases, the drains present resistance to the water 
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flowing in them. The longer the drainage path within the drain, the slower will be the 

consolidation and gain in strength in the zone furthest from a permeable layer adjoining the 

soil being treated.  

 

Well resistance can develop and increase as the deterioration of the drain filter may lead to 

reduction of the cross-section. Furthermore fine soil particles may pass through the filter and 

decrease the area available for flow. Finally, folding of the drain because of large settlements 

may result in a reduced discharge capacity. (Holtz et al., 1991). For the calculations in this 

study, the well resistance parameter, L as developed by Yoshikuni and Nakanodo (1974) has 

been used. 

 

Well resistance parameter, L: 

 

L = [ 32 / (π)2 ] (kh/kw) (Hdri/dw)2       Eq.(5.33) 

 

where:  

kh is the horizontal hydraulic conductivity of the soil = 0.0315 m/yr,  

kw is the coefficient of longitudinal permeability of the drain = 34689.6 m/yr  

 

5.8.9 Smear Effect,  

It is often assumed that the installation of the drain does not change the properties of the 

surrounding soil. In actuality however, drain installation disturbs the soil to a degree, 

depending on its sensitivity and macro-fabric (Rowe, 1968). Disturbance of the soil adjacent 

to the drain is likely to decrease its permeability and thus slow down the consolidation 

process. This effect is described as “smear”. The smear effect is believed to increase with 

increasing drain diameter and is also dependent on other factors such as method of 

installation, size of mandrel and size of anchor plate. Barron (1948) and Hansbo (1979, 

1981) analysed the effect of this soil disturbance by assuming an annulus of smeared clay 

around the drain. Within this annulus of diameter, ds the remoulded soil has a lower 

coefficient of permeability, kr than the kh of the undisturbed clay as illustrated  in Figure 5.8. 

This leads to a new boundary condition between the undisturbed zone and the smeared 

annulus, and this affects the solution by changing the drain factor F(n) defined earlier to as 

follows: 

 

Smear effect, Fs(n): 

 

Fs(n)= loge[n / s] - 0.75 + [(kh / kr) loge (s)]     Eq.(5.34) 
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where:  

kh / kr assumed to be 2 

s = smear zone ratio = ds / dw 

ds is the diameter of smeared zone 

 

  
Figure 5.8   Smear effect and well resistance (After Hansbo, 1981). 

 

 

5.9 Predictions of Magnitude and Time Rate of Settlement with PVD 

 

Figure 5.9 shows the design construction sequence at the case study area (Vertical Drain 

Area at the In-Situ Test Site). Figure 5.10 and Figure 5.11 shows prediction of settlement 

and degree of consolidation curves generated from the design of vertical drains with 

preloading for the Vertical Drain Area.  Vertical drains were designed to be installed in the 

Vertical Drain Area at the platform level of +4 mCD at 1.5 meters square spacing. Surcharge 

placement of 6 meters in height (+10 mCD) was designed to be carried out. The 

characteristics of the marine clay has been described by the author in Chapter 3. Curves were 

plotted for various ch to cv ratios. For the design predictions, the coefficient due to horizontal 

flow (ch) was assumed to be 2 times that of cv that is, ch = 1 and 2 m2/year for upper and 

lower marine clay.  

 

Design predictions for the ground treatment of marine clay with prefabricated vertical drains 

has been discussed by the author (Arulrajah et al., 2004m) during the course of this research. 
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Figure 5.9 Design Construction sequence for Vertical Drain Area (Arulrajah et al., 2004m). 
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Figure 5.10  Settlement curves for various ch at Vertical Drain Area (Arulrajah et al., 2004m) 
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Figure 5.11  Design curves for Vertical Drain Area (Arulrajah et al., 2004m). 
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Table 5.1 presents a comparison of the design prediction results with that of the back-

analysed field instrumentation results at the case study area (Vertical Drain Area at the In-

Situ Test Site), 20 months after surcharge. The field instrumentation results and assessment 

of the Vertical Drain Area (In-Situ Test Site) is discussed fully in Section 8.2.  

 

The results of the design predictions are found to be in excellent agreement with that of the 

back-analysed field instrumentation results. The degree of consolidation obtained by the 

design predictions is found to be only slightly higher than that of the field instrumentation 

results. For the Vertical Drain Area (In-Situ Test Site), a degree of consolidation of 83.3% 

was obtained from the design predictions as compared to 80.1% from the Asaoka method, 

80.0% from the Hyperbolic method and 80.0% from the piezometer method.  

 

Table 5.1  Comparison between design (ch=2cv) with back-analysed field instrumentation 
results at Vertical Drain Area,  20 months after surcharge (Arulrajah et al., 2004m). 

Sub-Area Comparison Design Asaoka Hyperbolic Piezometer 

Vertical 

Drain 

1.5 x 1.5 m 

 

Ultimate Settlement(m) 

Settlement to date (m) 

Degree of Consolidation,U% 

3.005 

2.504 

83.3 

3.000 

2.404 

80.1 

3.005 

2.404 

80.0 

- 

- 

80.0 
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6.0 IN-SITU TESTING OF MARINE CLAY UNDER RECLAMATION FILLS 

 

In every embankment project the duration of preloading period is set in advance based on the 

predicted time rate of consolidation of the compressible layer. If prediction is accurately 

done the required degree of consolidation is met at the pre-determined preloading time. 

Therefore close to the surcharge removal time, in-situ tests should be carried out to assess 

the degree of consolidation. In the last two decades, there has been an emergence of in-situ 

testing methods as an alternative to laboratory testing methods. The shear strength, 

overconsolidation ratio and degree of consolidation are important parameters which can to 

be determined from in-situ testing. In-situ dissipation tests on the other hand provide a means 

of evaluating the in-situ coefficient of horizontal consolidation and horizontal hydraulic 

conductivity of marine clays. 

 

Prior to the commencement of land reclamation works, a series of in-situ tests were 

conducted in marine conditions with the use of various in-situ testing equipment at the In-

Situ Test Site. The In-Situ Test Site was located in the Northern area of the project where the 

thickest compressible marine clay layers existed.  The in-situ tests carried out prior to 

reclamation were with the field vane, piezocone, flat dilatometer, self-boring pressuremeter 

and BAT permeameter. In-situ tests were conducted to determine the undrained shear 

strength and overconsolidation ratio of the marine clay. In-situ dissipation tests by means of 

piezocone, dilatometer, self-boring pressuremeter and BAT permeameter were utilised to 

determine the coefficient of horizontal consolidation and horizontal hydraulic conductivity 

of marine clay. The in-situ tests methodology and results are discussed in this chapter. 

 

Following the completion of ground improvement works with prefabricated vertical drains 

and preloading, another series of in-situ penetration tests and in-situ dissipation tests  were 

carried out in the In-Situ Test Site for comparison purposes. These post-improvement in-situ 

tests were carried out after a surcharge period of about 23 months in the Vertical Drain Area 

where vertical drains were installed at 1.5 meter square spacing as well as an adjacent 

Control Area where no drains were installed for comparison purposes. The locations of these 

in-situ tests were done close to each other so as to enable a good comparison of the degree of 

consolidation of the areas treated with and without vertical drains when subjected to the 

same magnitude of preloading. In-situ tests were conducted to determine the undrained shear 

strength, overconsolidation ratio and degree of consolidation of the marine clay. In-Situ 

dissipation tests were similarly carried out after surcharge loading in the Vertical Drain Area 

as well as in the adjacent untreated Control Area to determine the coefficient of horizontal 

consolidation and horizontal hydraulic conductivity of Singapore marine clay after ground 
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treatment with and without vertical drains. All in-situ tests and dissipation tests carried out in 

the Vertical Drain Area after surcharge loading, were carried out at the centroid of the 

vertical drain grid. 

 

Accordingly, the objectives of this paper are: 1) to describe the testing and analysis 

procedure for the various in-situ tests; 2) to determine the undrained shear strength and 

overconsolidation ratio of Singapore marine clay at Changi prior to reclamation and after 

surcharge loading; 3) to determine the coefficient of consolidation due to horizontal flow (ch) 

of Singapore marine clay prior to reclamation and after surcharge loading; 4) to determine 

the horizontal hydraulic conductivity (kh) of Singapore marine clay prior to reclamation and 

after surcharge loading; 5) To compare and discuss the results of the various in-situ test prior 

to reclamation and after 23 months of surcharge loading with and without vertical drains. 

 

The in-situ testing of marine clay described in this chapter has been discussed in detail by the 

author (Arulrajah et al., 2004d, 2004f, 2004h, 2004i, 2004l, 2004o, 2004p) during the course 

of this research study. 

 

 

6.1 In-Situ Testing of Undrained Shear Strength, Overconsolidation Ratio and 

Degree of  Consolidation of Marine Clay 

 

In-situ tests were carried out at the In-Situ Testing Site to determine the undrained shear 

strength, overconsolidation ratio (OCR), effective stress and the degree of consolidation of 

marine clay.  

 

In-situ tests were carried out prior to reclamation as well as after surcharge loading. In-situ 

tests were carried out in a Vertical Drain Area as well as in an adjacent untreated Control 

Area 23 months after 23 months of surcharge loading for comparison purposes. The purpose 

of this research is to determine and compare the differences in undrained shear strength, 

overconsolidation ratio (OCR), effective stress and the degree of consolidation of marine 

clay prior to reclamation as well as after ground treatment with and without vertical drains 

by means of in-situ tests. The degree of consolidation by the various in-situ testing methods 

after surcharge loading was calculated by the method of Bo et al. (2003). 

  

Tests carried out were the field vane shear test (FVT), cone penetration test (CPT), 

dilatometer test (DMT), self-boring pressuremeter test (SBPT) and BAT permeameter test 

(BAT). Table 6.1 summarises the various in-situ tests and their related testing procedures.  
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The in-situ testing of undrained shear strength, overconsolidation ration and degree of 

consolidation of marine clay described in this chapter has been discussed in detail by the 

author (Arulrajah et al., 2004d, 2004f, 2004h, 2004i, 2004o, 2004p) during the course of this 

research study. 

 

Table 6.1 Testing Procedure for In-Situ Tests (Bo, Chang, Arulrajah and Choa, 2000a). 

Testing 

Method 

Equipment 

Type 

Installation 

Method 

Penetration 

Depth Pattern 

Waiting 

Time 

Rotation 

Rate 

FVT Geonor Vane Preboring followed by 

short penetration 

Five times borehole 

diameter beneath the 

bottom of borehole. 

5 min 12 deg/min 

CPT Gouda G.D. 

C.F.I.P (50,500, 

20) 

Static pushing using 

hydraulic force. 

Continuous Negligible 20 mm/s 

DMT Marchetti Flat 

Dilatometer 

Static pushing using 

hydraulic force. 

Stop at every 20 mm Negligible 20 mm/s 

SBPT Cambridge In-

Situ 

Preboring and than self-

boring during 

installation. 

Full embedment 5 min Strain 

controlled 

(17%/ min) 

 

 

6.2 In-Situ Dissipation Testing of Marine Clay 

 

As vertical drains are used to accelerate the consolidation of the marine clays, the 

permeability and consolidation properties of the soil particularly in the horizontal flow are 

important design parameters. The determination of these design parameters are traditionally 

based on the multiplier of coefficient of vertical consolidation, cv value obtained from the 

laboratory consolidation tests. Results of these laboratory tests however are usually subject 

to uncertainties primarily due to inevitable sample disturbances and uncertain multiplier 

values.  

 

In-situ dissipation tests have emerged as a useful method to obtain the required horizontal 

consolidation and permeability parameters for the design of vertical drain projects. The 

coefficient of consolidation due to horizontal flow and horizontal hydraulic conductivity of 

marine clays are important parameters for the design of vertical drain projects. The 

determination of these design parameters are traditionally based on the multiplier of 

coefficient of vertical consolidation, cv value obtained from the laboratory consolidation 

tests. Results of these laboratory tests however are usually subject to uncertainties primarily 

due to inevitable sample disturbances and uncertain multiplier values. Laboratory testing 
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also does not yield appropriate properties of soil due to different loading and drainage 

conditions as compared to the actual in-situ soil condition. In-situ dissipation tests are an 

alternative to these traditional laboratory testing methods and furthermore the effect of 

disturbance to marine clays is minimal. These dissipation tests can be conducted at various 

levels in the marine clay and hence variations of the coefficient of consolidation due to 

horizontal flow and horizontal hydraulic conductivity with depth can be obtained. In-situ 

dissipation testing has emerged as a useful method to obtain the required horizontal 

consolidation and permeability parameters for the design of vertical drain projects. The in-

situ dissipation testing of marine clay described in this chapter has been discussed by the 

author (Arulrajah et al., 2004d, 2004f, 2004i, 2004o) during the course of this research study. 

 

In-situ dissipation tests by means of piezocone (CPTU), dilatometer (DMT), self-boring 

pressuremeter (SBPT) and BAT permeameter (BAT) were utilised in the characterisation of 

the coefficient of horizontal consolidation and horizontal hydraulic conductivity of 

Singapore marine clay in this research study. In-situ dissipation tests were used to determine 

the coefficient of consolidation due to horizontal flow and horizontal hydraulic conductivity 

prior to reclamation and after surcharge loading with and without vertical drains. 

Coefficients of consolidation due to horizontal flow, ch can be determined from the CPTU, 

DMT and SBPT dissipation tests as well as laboratory tests. Horizontal hydraulic 

conductivity, kh can be obtained directly from the BAT permeameter tests and indirectly 

from the ch results of the other in-situ tests. This will be discussed later in this chapter. 

 

In-situ dissipation tests were carried out prior to reclamation as well as after ground 

improvement with prefabricated vertical drains, and preloading to compare the changes in 

the coefficient of horizontal consolidation and horizontal hydraulic conductivity prior to and 

after surcharge loading.  

 

In-situ dissipation tests were carried out in a Vertical Drain Area as well as in an adjacent 

untreated Control Area, after 23 months of surcharge loading, to compare the improved 

parameter under the different degree of consolidation stages. The purpose of this research is 

to determine the horizontal consolidation and hydraulic conductivity parameters of 

Singapore marine clay prior to reclamation as well as after ground treatment with and 

without vertical drains by means of in-situ dissipation tests.  

 

The objective of this research is to investigate the comparison of in-situ dissipation tests 

prior to and after surcharge loading in a vertical drain area and adjacent untreated area, as 

well as between the various test methods. Studies have been carried out previously by Bo, 
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Arulrajah and Choa (1998c) and Chu et al. (2002) in the same reclamation site for 

dissipation tests carried out prior to land reclamation. However, comparisons of the 

dissipation test results prior to and after surcharge loading have only been carried out briefly. 

The in-depth evaluation of this particular research of dissipation tests should make these test 

methods valuable for application to ground improvement projects on soft soil or marine clay. 

 

 

6.3 Location and Marine Clay Characteristics of the In-Situ Test Site  

 

The In-Situ Test Site was located in the Northern area of the project where the thickest 

compressible layers existed and a portion of where the future airport runway would be 

located. The In-Situ Test Site consists of two adjacent sub-areas namely the Vertical Drain 

Area where vertical drains were installed at 1.5 meter square spacing and the Control Area 

where vertical drains were not installed. The two sub-areas are located adjacent to each other 

and are subject to the same construction sequence and surcharge heights and as such this 

enabled a comparison to be made between the two areas.  

 

Figure 6.1 shows the location of the In-Situ Test Site. Field tests carried out prior to 

reclamation were denoted as FT-2. Field tests carried out in the Vertical Drain Area after 

improvement and 23 months of surcharge loading, were denoted as FT-8.  Tests carried out 

in the untreated Control Area after 23 months of surcharge loading were denoted as FT-9. A 

pre-reclamation borehole and various in-situ tests were carried out prior to the 

commencement of land reclamation works to characterize the marine clay properties. The 

test results are discussed later in this chapter. Figure 6.2 indicates the soil profile of the In-

Situ Test Site prior to reclamation.  

 

As evident in Figure 6.2, the In-Situ Test Site comprises of two distinct layers of marine 

clay, which are the “Upper Marine Clay layer” and the “Lower Marine Clay layer”. The 

“Intermediate Stiff Clay layer” separates these two distinct marine clay layers. The upper 

marine clay is soft with undrained shear strength values ranging from 10 to 30 kPa. The 

intermediate layer is a silty clay layer and its formation is believed to have occurred during 

the lowering of sea level, which was then followed by a rise in sea level and further 

deposition of the upper marine clay layer. The lower marine clay is lightly overconsolidated 

with an undrained shear strength varying from 30 to 50 kPa. It is not homogeneous but 

occasionally interbeded with sandy clay, peaty clay and sand layers. Below the lower marine 

clay is a stiff sandy clay layer locally known as Old Alluvium. The original seabed level in 

the In-Situ Test Site was 3.29 meters below Admiralty Chart Datum (–3.29 mCD). 
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Figure 6.1 Location of In-Situ Test Site comprising Vertical Drain Area and Control Area 
 (Arulrajah et al., 2004f). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Figure 6.2 Typical soil profile and engineering parameters at In-Situ Test Site  
(Arulrajah et al., 2004d).  
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Following the completion of the pre-reclamation in-situ tests, land reclamation was carried 

out by hydraulic placement of sand until the vertical drain platform level of 4 meters above 

Admiralty Chart Datum (+4 mCD). Vertical drains were next installed at this elevation at the 

1.5 meter square spacing according to the design, to depths of up to 35 meters in the Vertical 

Drain Area. Soil instruments were placed in both the Vertical Drain Area and Control Area 

either just before or immediately after the installation of the vertical drains at this vertical 

drain platform level. Surcharge, with reclamation sandfill, was next placed until the design 

elevation of 10 meters above Admiralty Chart Datum (+10 mCD) for both areas. Another 

series of in-situ tests were carried out after a surcharge loading period of about 23 months in 

the Vertical Drain Area and adjacent untreated Control Area for comparison purposes. 

 

Close to the end of the surcharge period, post-improvement boreholes and various in-situ 

tests were carried out in both the Vertical Drain Area as well as the adjacent untreated 

Control Area. These boreholes and in-situ tests enabled for comparison of the results of the 

post-improvement boreholes and in-situ tests with that of the pre-reclamation boreholes and 

in-situ tests. In addition, the presence of the similarly instrumented adjacent untreated 

Control Area enabled comparison to be made between areas treated with vertical drain and 

surcharge with that of an untreated area with surcharge only. 

 

A detailed site characterisation of the soil consolidation and physical characteristics was 

essential for the In-Situ Test Site comprising the Vertical Drain Area and the Control Area. 

The pre-reclamation site characterisation of the In-Situ Test Site was carried out by means of 

laboratory testing of the recovered samples from a marine sampling borehole and by in-situ 

field testing by various methods, as described later in this chapter. These testing results are 

applicable to both the future Vertical Drain Area as well as the Control Area.   

 

 

6.4 Laboratory Testing and Predictions  

 

6.4.1 Pre-Reclamation Laboratory Testing 

Laboratory tests were carried out on the recovered undisturbed samples from the pre-

reclamation borehole. Tests carried out include oedometer tests, water content, Atterberg 

limit and various other classification tests. The primary function of these tests was to 

determine the various soil parameters for the In-Situ Test Site. The tests were also carried 

out as a comparison with the in-situ testing results.  
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Based on the results obtained, the marine clay can be described as high to very high 

plasticity silty clay based on the British Standards, except for the intermediate stiff clay 

layer. The characterization study of the In-Situ Test Site, indicated the presence of the two 

distinct layers of marine clay which are the “Upper Marine Clay layer” and the “Lower 

Marine Clay layer” similar to that found in the general site characterization study discussed 

in Chapter 3. The engineering parameters of the In-Situ Test Site are within the ranges 

obtained from the general site characterization study and as such the suggested design 

parameters and empirical field vane test correlation can be applied to the In-Situ Test Site.  

 

Compression index and recompression index were obtained from 24 hours loading 

oedometer tests with a load increment ratio of one. Although 24 hours loading duration 

includes secondary compression, it has been largely accepted that 24 hours strain in 

oedometer is equivalent to end of primary in the field (Imai, 1995). The coefficient of 

vertical consolidation (cv) of the marine clay for the reclamation area was determined by 

one-dimensional oedometer tests. However the accurate determination of preconsolidation 

pressure is still under question as preconsolidation pressure can differ due to method of 

testing, load increment ratio, duration of loading, method of interpretation and some other 

complexities such as the salt content, strain rate and temperature (Bo et al., 2003a). There are 

quite a large number of methods to determine the preconsolidation pressure from the 

oedometer tests such as Casagrande (1936) method, Janbu (1969) method, Butterfield (1979) 

method and Sridharan (1991) method.  Among the tests the resulting values can  differ by  

10-15 % (Bo, Arulrajah, Choa and Chang, 1998a). Figure 6.3 indicates the typical void ratio 

versus effective stress load-unload curves of the marine clays in the In-Situ Test Site. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 6.3 Oedometer compression curves for the distinctive clays (PB39). 

0

0.5

1

1.5

2

2.5

1 10 100 1000 10000

Log vertical effective stress, P' (kPa)

Vo
id

 ra
tio

, e

Upper Marine Clay
Intermediate Clay
Lower Marine Clay



   

  94

6.4.2 Laboratory Predictions  

From the borehole carried out prior to reclamation, the consolidation and shear strength of 

marine clay can be characterised. From the void ratio versus log effective stress curve, the 

expected void ratio after soil improvement can be predicted. Expected post improvement 

effective stress for 90% degree of consolidation can be worked out from the following 

equation: 

 

σvf′ = σvo ′ + (∆σ′ 0.9)       Eq. (6.1) 

 

where:  

∆σ′ is additional preloading pressure taking into account surcharge effect and settlement. 

σvo ′ is effective vertical stress (kPa) 

 

Undrained shear strength related to final load for Singapore marine clay can be estimated by 

using Skempton’s (1969) equation for normally consolidated clays:  

 

cu / σvo′ = 0.11 + 0.0037 PI       

  

cu = (0.11 + 0.0037 PI) σvo′ = 0.25 σvo′     Eq. (6.2) 

 

6.4.3 Post-Improvement Laboratory Testing 

Post investigation boreholes with continuous sampling were carried out after a surcharge 

period of about 23 months. From the laboratory results of collected sample, improvement 

can be assessed. However care should be taken in comparing this data, as some adjustment 

of elevation after soil improvement is required due to settlement of ground and sub-layers. 

Void ratio determination will also not be realistic if sample is disturbed. Undrained shear 

strength may also be underestimated if some disturbance and stress release in samples has 

occurred.  

 

Degree of consolidation can be worked out from measured void ratio and undrained shear 

strength. A conventional way to assess the degree of consolidation is to determine the 

preconsolidation effective stress from oedometer tests. Degree of consolidation can be 

worked out from the preconsolidation effective stress as follows (Bo, Arulrajah and Choa; 

1997a):  

   

U% = [ σy′ / (σvo + ∆σ′) ] 100      Eq. (6.3) 
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where:  

σy′ is effective yield stress (kPa). 

 

There are several methods to determine the preconsolidation pressure from the oedometer 

tests. In this study, the Sridharan (1991) method was used. It is to be noted that the accurate 

determination of preconsolidation pressure can differ due to method of interpretation and 

other complexities such as salt content, strain rate and temperature.  

 

Figure 6.4 to 6.6 shows the comparative laboratory results from pre-reclamation and post 

improvement investigation boreholes. Figure 6.7 shows the comparative plot of degree of 

consolidation assessed from void ratio, yield stress and undrained shear at the Vertical Drain 

Area. The post improvement laboratory testing results are found to be slightly lower degree 

of consolidation than the expected improvement results. In the comparisons, the laboratory 

tests in the Vertical Drain Area improved with vertical drains indicate the expected 

improvements as compared to the Control Area. The water content and void ratio of the 

Vertical Drain Area as expected are found to be lower than that of the Control Area. The 

intermediate clay layer is again clearly identified in the laboratory results based on its lower 

void ratio and higher degree of consolidation. The preconsolidation pressures of the Vertical 

Drain Area are higher than that of the Control Area.  

 

The degree of consolidation of the In-Situ Test Site is found to be inconclusive due to the 

wide scatter in the values by the different methods. It is to be noted that laboratory testing is 

subject to many complexities such as sample disturbance, borehole quality, testing quality, 

testing method and interpretation method. Samples recovered at the field are subject to 

disturbance at the field, during transportation to the laboratory, during sample extrusion and 

during testing preparations. In addition, laboratory testing takes time to test and can also be 

expensive depending on the type of laboratory tests specified.  
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Figure 6.4 Comparison of preconsolidation pressure between Vertical Drain Area and      
Control Area. 

 
 
 

Figure 6.5 Comparison of water content at Vertical Drain Area and Control Area. 
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Figure 6.6 Comparison of void ratio at Vertical Drain Area and Control Area. 
 
 
 

Figure 6.7 Comparison of degree of consolidation from laboratory results at Vertical  
Drain Area.  
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6.5 Field Vane Test (FVT)  

 

The type of field vane instrument used in the In-Situ Test Site was a Geonor vane 

(Norwegian Geotechnical Society, 1979). The vane blade dimensions were 65 mm by 130 

mm and with a blade thickness of 2 mm. Vane testing consists of pushing a vane into clay 

and measuring the maximum torque required to rotate the vane at a given rate of rotation. It 

follows that the failure surface is cylindrical around the vane (Cadling and Odenstad, 1950). 

Figure 6.8 shows the geometry and dimensions of the field vane used in the research. Figure 

6.9 shows the field vane shear testing equipment. The in-situ testing of marine clay with the 

field vane described in this chapter has been discussed in detail by the author (Arulrajah et 

al., 2004d, 2004h, 2004p) during the course of this research. 

 

The testing procedure was carried out by the method described by the Norwegian 

Geotechnical Society (1979) for which a waiting time of five minutes after penetration was 

imposed to allow for the equalization of pore water pressure generated during penetration of 

the vane blade. Following the advancement of the borehole, the vane was pushed steadily for 

a distance of about five times the diameter of the borehole to the proposed test level. 

Following this, a torque was applied at the surface to the vane blade with a rod rotation rate 

of 12 degrees per minute. This would ensure that the rotation would not introduce significant 

viscous effect and drainage effects on the soil. The maximum torque required for 

mobilization of the vane was recorded. The way in which the test is carried out, including 

any delay between penetration and vane rotation and time to failure also influence the results 

(Flaate,1966 and Aas, 1967).  

 

6.5.1 Field Vane Test Method 

Field vane shear tests were carried out to determine the field vane shear strength of the 

marine clay at the In-Situ Test Site. The vane shear strength is found to be increasing with 

depth as is normally the trend for marine clays in this region. The interpretation of undrained 

shear strength, assumes full and uniform mobilization of shear stress over the entire failure 

surface and is determined from the following relationship (Flaate, 1966): 

 

cu = 6/7 (T / π D3)       Eq. (6.4) 

 

where:  

cu is in units of kN/m2 

T is the maximum measured torque (kN.m) 

 D is diameter of field vane (m) 
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Figure 6.8 Geometry and dimension of field vane (After Norwegian Geotechnical 

Society, 1979). 
 

 

 

 
Figure 6.9 Field vane shear testing equipment. 
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Mayne and Mitchell (1988) suggested that OCR can be estimated from undrained shear 

strength. As such, it can therefore be assessed whether the improved soil has attained an 

OCR close to unity with the surcharge load:  

 

OCR = 22 PI-0.48 [cu / σvo ]      Eq. (6.5) 

 

where:  

cu is in units of kN/m2 

PI is the plasticity index  

σvo’ is the effective vertical stress. 

 

6.5.2 Comparison of Field Vane Shear Tests 

The comparison of the FVT results after 23 months of surcharge loading is shown in Figures 

6.10 to 6.13.  

 

Notably, the FVT in Control Area indicates less effective stress than the prior to reclamation 

results. This could be attributable to variations in soil stratigraphy or submerged weight of 

soil at the FVT testing locations.   

 

The FVT test indicates that the degree of consolidation of the vertical drain treated Vertical 

Drain Area had attained a degree of consolidation of about 60-80% while the Control Area 

had attained a degree of consolidation of about 20-30%. The degree of consolidation was 

obtained by the method of Bo, Arulrajah and Choa (1997a). 
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Figure 6.10 Variation of FVT shear strength with elevation after 23 months of surcharge 
loading. 
  
 

 
Figure 6.11 Variation of FVT OCR with elevation after 23 months of surcharge loading .  
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Figure 6.12 Variation of FVT effective stress with elevation after 23 months of 
surcharge loading.  
 
 
 

Figure 6.13 Variation of FVT degree of consolidation with elevation after 23 months of 
surcharge loading. 
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6.6 Piezocone Test (CPT) 

 

The type of cone used in the piezocone tests was a Gouda cone, capable of registering a cone 

resistance of up to 50 MN/m2, sleeve friction of up to 500 kN/m2 and a maximum pore 

pressure of 2000 kN/m2. The cone had a 60 degree cone tip, projected cross-section area of 

10 cm2, friction sleeve area of 150 mm2 and an unequal area ratio “a” of 0.8035. The pore 

pressure filter was located at the base immediately behind the cone tip. The cone was 

advanced into the soil with a 20 ton dutch cone rig. Figure 6.14 shows the geometry and 

dimensions of the piezocone tip used in the research study. Figure 6.15 shows the piezocone 

tip. The in-situ testing of marine clay with the piezocone described in this chapter has been 

discussed in detail by the author (Arulrajah et al., 2004d, 2004f, 2004h, 2004i, 2004p) during 

the course of this research study. 

 

 
Figure 6.14 Geometry and dimension of piezocone tip (After De Beer et. al., 1988). 

 

 
Figure 6.15   Piezocone tip. 
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6.6.1 Piezocone Test Method 

 

The piezocone has seen a surge in its use in soft clays in this region.  Campanella and 

Robertson (1988) have described the standard guidelines for the use of the piezocone test 

equipment. Campanella and Robertson (1988) have also provided various interpretation 

charts to be used in conjunction with the cone penetration test results. Sugawara (1988) has 

provided a method of estimating in-situ overconsolidation ratio of clays by using the 

piezocone test. The piezocone is economical, easy to carry out and is widely available in the 

region. The test can be done relatively quickly over the whole soil profile. 

 

The testing procedure was carried out by the recommended international practice (De Beer et 

al., 1988) with a continuous penetration at a prescribed rate of 20 mm per second. The 

recorded parameters of the penetration test were cone resistance (qc), sleeve friction (fs) , 

penetration pore pressure (ubt) and inclination.  

 

From the measured cone resistance reading, the corrected cone resistance readings were 

calculated using the following equation to account for the unequal bearing area effect 

(Campanella et al., 1988): 

 

qt = qc + (1 – a) ubt       Eq. (6.6) 
 

 

where:  

 qc is the cone resistance (MN/m2) 

 ubt is the penetration pore pressure (MN/m2) 

 a is the unequal bearing area effect which is 0.8035 for the type of cone used.  

 

Campanella and Robertson (1988) has described that the undrained shear strength cu can be 

estimated from the corrected cone resistance qT, total over-burden pressure σvo and cone 

factor NKT: 

 

cu = (qT - σvo) / NKT       Eq. (6.7) 

 

where:  

cu is in units of kN/m2  
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NKT for Singapore Marine Clay at Changi was taken as follows (Bo, Arulrajah and Choa, 

1997a): 

  

NKT = 23.8 - (1 / 3.8) PI       Eq. (6.8) 

 

Sugawara (1988), proposed that OCR can be estimated from the corrected cone resistance 

and total and effective overburden pressure as follows: 

 

(qT - σvo ) / σvo′ = K . OCR      Eq. (6.9) 

 

where:  

K is constant and varies between 2.5 and 5.0. A K value of 3.136 was used for the marine 

clay, and the following equation was used for the marine clay:  

 

(qT - σvo) / σvo′ = 3.136 OCR        Eq. (6.10) 

 

6.6.2 Comparison of Piezocone Tests  

If compressible soil is fully consolidated with present surcharge load, overconsolidation ratio 

of soil will become unity with current surcharge load. Therefore the improvement of soil can 

be assessed whether it is close to unity with current load or not. If compressible foundation is 

fully consolidated under additional surcharge load, it becomes normally consolidated with 

current overburden pressure. Therefore normalized shear strength ratio cu/σvo′ can be 

expressed as mentioned by Skempton (1957): 

 

cu / σvo′ = 0.11 + 0.0037 PI      Eq. (6.11) 

 

The comparison of the CPT results after 23 months of surcharge loading is shown in Figures 

6.16 to 6.19.  

 

The CPT penetration test indicates that the degree of consolidation of the Vertical Drain 

Area had attained a degree of consolidation of about 70-80% while the Control Area had 

attained a degree of consolidation of about 30-40%. 
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Figure 6.16 Variation of CPT shear strength with elevation after 23 months of surcharge 
loading.  
 
 

 
Figure 6.17 Variation of CPT OCR with elevation after 23 months of surcharge loading. 
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Figure 6.18 Variation of CPT effective stress with elevation after 23 months of 

surcharge loading.  
 
 
 

Figure 6.19 Variation of CPT degree of consolidation with elevation after 23 months of 
surcharge loading. 
 

-35

-30

-25

-20

-15

-10

-5

0

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

Effective Stress (kPa)

El
ev

at
io

n 
(m

 C
D

)

CPT2: Prior to reclamation

CPT8: Vertical Drain Area

CPT9: Control Area

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50 60 70 80 90 100

Degree of Consolidation (%)

El
ev

at
io

n 
(m

 C
D

)

CPT8: Vertical Drain Area

CPT9: Control Area 



   

  108

6.6.3 Piezocone Dissipation Test (CPTU) 

The cone penetrometer used in this study had the pore pressure filter located just behind the 

cone tip. The piezocone dissipation tests (CPTU) were carried out at various elevations. 

Coefficient of consolidation due to horizontal flow was estimated by the method suggested 

by Baligh and Levadoux (1986).  

 

When piezocone is penetrated into soft soil, some excess pore pressure will generate due to 

penetration. However if the cone is held in the same elevation,  pore pressures will dissipate 

until it reaches the equilibrium pore pressure at the quasi-static state. This equilibrium pore 

pressure will be the same as pore pressure in the soil at the time of testing.  

 

The first step in the prediction method consists of normalizing dissipation records and 

plotting the normalized excess pore pressure versus log time. In general, the normalized 

excess pore pressure decreases monotonically from 1.0 (at t = 0) to 0 (at t approaching 

infinity): 

 

ū = (u – u0) / (ui – u0)       Eq. (6.12) 

 

where:  

  ū  is the normalized excess pore pressure at time t 

  u0 is the static pore pressure 

  ui is the initial or penetration pore pressure (at t=0)  

  u is the pore pressure recorded at time t 

 

At a given degree of consolidation, the predicted coefficient of consolidation due to 

horizontal flow can be obtained from the following expression given by Baligh and 

Levadoux (1986): 

 

ch (probe) = (R2 T50) / t50       Eq. (6.13) 

 

where:  

   ch (probe) is in units of m2/yr 

   R is radius of cone shaft in meters which is 0.01785 m for the cone used 

   T50 is time factor, which is 3.65 for a 60 degree tip at 50% normalised excess pore pressure 

   t50 is time elapsed for 50% degree of  consolidation to take place 
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For clays consolidated in the normally consolidated range, estimates of the coefficient of 

consolidation due to horizontal flow can be estimated from ch (probe) by means of the 

following expression published by Baligh and Levadoux (1986): 

 

ch (NC) = (Cr / Cc) [ch (probe)]      Eq.(6.14) 

 

where:  

 ch (NC) is in units of m2/yr 

Cr = recompression index 

 Cc =  compression index 

 

Figure 6.20 shows the piezocone dissipation test curves prior to reclamation. 
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Figure 6.20    CPTU dissipation test curves prior to reclamation  

(Arulrajah et al., 2004f). 
 

In order to obtain the hydraulic conductivity in the normally consolidated condition, a 

correction taking the recompression ratio into account needs to be applied. The horizontal 

hydraulic conductivity can be estimated from: 

             

kh= (γw / 2.3σ’v) (RR) ch              Eq. (6.15) 

 

where:  

kh is horizontal hydraulic conductivity in m/yr 

γw is unit weight of water in kN/m3  

RR is recompression ratio, Cr/Cc 

σ'v is mean effective vertical stress of the soil in kPa. 
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6.6.4 Comparison of Piezocone Dissipation Tests  

When the CPTU cone is held in the same elevation for a long time period, pore pressures 

will dissipate until it reaches the equilibrium pore pressure at the quasi-static state. This 

equilibrium pore pressure will be the same as pore pressure in the soil at the time of testing. 

With this measured equilibrium pore pressure from CPTU tests, a counter check can be done 

with piezometric pressures from piezometer instruments and the average degree of 

consolidation can be computed:  

 

U(%) = 1- (Ut  / Ui)       Eq. (6.16) 

 

where:  

 Ut = excess pore pressure at time “t” 

 Ui = initial excess pore pressure which is equal to additional load (∆σ′). 

 

Figure 6.21 indicate the CPTU dissipation test curves in the Vertical Drain Area after ground 

improvement with vertical drains and surcharge loading for 23 months. Figure 6.22  presents 

the comparison of piezometric heads between CPTU dissipation tests and piezometers in the 

Vertical Drain Area.  The dissipation tests in the Vertical Drain Area were carried out for up 

to 50 hours. It can be seen that the normalized excess pore pressures at all elevations have 

stabilised close to this time period. It is evident that the ground improvement with vertical 

drains has significantly dissipated the excess pore water pressures built up due to the 

surcharging load.  

 

Figure 6.23 indicate the CPTU dissipation test curves in the Control Area after surcharge 

loading for 23 months. Figure 6.24  presents the comparison of piezometric heads between 

CPTU dissipation tests and piezometers in the Control Area.  The dissipation tests in the 

Control Area were carried out for up to 42 hours. The normalized excess pore pressures at all 

elevations have stabilised after 1000 minutes. Without ground improvement, a slight 

dissipation of the excess pore water pressures built up due to the consolidation was observed. 

The CPTU dissipation test and piezometer readings indicate good agreement in piezometric 

pressures. 

 

Figure 6.25 shows the degree of consolidation from the CPTU dissipation tests for the 

Vertical Drain Area and Control Area as compared to the instrumentation results. The field 

instrumentation results of the In-Situ Test Site will be described in detail in Chapter 8.2. The 

CPTU dissipation test and piezometer readings are in good agreement for both the Vertical 

Drain Area and Control Area. The deep settlement gauges in the Vertical Drain Area were 
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also analysed by both the Asaoka and hyperbolic methods to attain the ultimate settlement 

and subsequently the degree of consolidation from the settlement gauges were computed. 

The method of analysis of the deep settlement gauges was carried out by the method 

proposed by Bo, Arulrajah and Choa (1997a). These too were in good agreement with the 

CPTU dissipation test results in the Vertical Drain Area.  Based on the CPTU results, the 

Vertical Drain Area has attained a degree of consolidation of 80-85%. The Control Area 

without vertical drains on the other hand has attained a degree of consolidation of 10-22%.   
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Figure 6.21 CPTU dissipation test curves at Vertical Drain Area  
  (Arulrajah et al., 2004f).  
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Figure 6.22 Comparison of piezometric heads at Vertical Drain Area 

(Arulrajah et al., 2004f).   
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Figure 6.23 CPTU dissipation test curves at Control Area (Arulrajah et al., 2004f). 
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Figure 6.24 Comparison of piezometric heads at Control Area (Arulrajah et al., 2004f). 
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Piezocone dissipation tests have been utilised as a tool to obtain the piezometric heads of 

marine clays after surcharge loading as well as to assess the degree of consolidation of the 

improved marine clay. The results indicated that pore pressure measured from the CPTU 

holding tests are in agreement with the piezometric pressures from piezometer instruments in 

both the Vertical Drain Area and the Control Area.  

 

The CPTU test results were also successfully used for the determination of the equilibrium 

pore pressure and degree of consolidation of the improved areas as confirmed by 

instrumentation results. This confirms that long term piezocone holding tests can be used as 

an alternative to piezometer instruments in marine clays.  

 

Based on the CPTU results, the Vertical Drain Area was found to have attained a degree of 

consolidation of 80-85%. The Control Area without vertical drains on the other hand has 

attained a degree of consolidation of 10-22% . Figure 25 compares the degree of 

consolidation from CPTU dissipation test between the Vertical Drain Area and Control Area 

after 23 months of surcharge loading. 
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Figure 6.25 Comparison of degree of consolidation from CPTU dissipation test between 

Vertical Drain Area and Control Area after 23 months of surcharge loading 
(Arulrajah et al., 2004f). 
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Figure 6.26 presents the ch results from the CPTU dissipation tests for the Vertical Drain 

Area and Control Area after 23 months of surcharge loading as compared to the pre-

reclamation dissipation test.  

 

The pre-reclamation dissipation tests indicate large ch values in the intermediate stiff clay 

layer. The ch values for the laboratory tests were obtained from radial flow Rowe cell of 75 

mm diameter and 30 mm thickness and also from horizontally cut 63.5 mm oedometer test 

samples and were found to be in the same range as that of the CPTU.  

 

The ch value seems to be higher in the Vertical Drain Area at some elevations as compared to 

the Control Area. This is either due to the greater reduction in the coefficient of volume 

change after consolidation, local geology or it was simply affected by the correction factors 

used. A clear increase in the ch values is obtained in the intermediate marine clay layer.  

 

Figure 6.27 shows the kh results from the CPTU dissipation tests for the Vertical Drain Area 

and Control Area after 23 months of surcharge loading as compared to the pre-reclamation 

dissipation test.  

 

It can be observed that the pre-reclamation kh values are decreasing with depth. The 

piezocone test results also show high kh values in the intermediate desiccated zone. It is 

apparent that the prior to reclamation kh is higher than that of the Vertical Drain Area and 

Control Area after 23 months of surcharge loading. This is expected due to reduction in the 

void ratio after surcharge loading. It is also apparent that the kh in the Vertical Drain Area is 

lower than that in the Control Area which is expected due to higher void ratio changes and 

smear effect. Smear effect also affects the kh in the vertical drain treated area due to insertion 

of the mandrel into the ground.  

 

The pre-reclamation CPTU dissipation test indicate that the ch values of the upper and lower 

marine clay varies between 2 to 6 m2/yr. ch values of 4 to 7 m2/yr were obtained in the 

intermediate stiff clay, separating the upper and lower marine clay layers. The pre-

reclamation dissipation tests indicate large ch values in the intermediate stiff clay layer. The 

pre-reclamation CPTU indicates that kh varies between 10-8 and 10-9m/s.  

 

ch varies between 3 and 6 m2/yr in the Vertical Drain Area and between 3 and 5 m2/yr in the 

Control Area, after 23 months of surcharge loading. kh varies between 10-9 and 10-10 m/s in 

the Vertical Drain Area and Control Area, after 23 months of surcharge loading.  
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The major factor that accounts for the lower ch values back calculated from field settlement 

measurements is the smear effect incurred from the insertion of the mandrel during the 

installation of vertical drains. For soft marine clay, the smear effect can be quite significant 

as the spacing of the drains is normally 1.5 meters (Chu et al., 2002).  

 

Bo et al. (1998b) has reported that the permeability of soil in the smear zone could be 

reduced by 1 order of magnitude or to the kh of the remoulded clay as a result of the smear 

zone. The smear zone was reported by Bo et al. (1998b) to be 4-5 times the equivalent 

diameter of the vertical drain. When drains are installed at close spacing, the back-calculated 

ch values will generally be greatly influenced by this smear zone (Chu et al., 2002).  

 

The smear effect also affects the CPTU measurements for kh and ch. In the CPTU dissipation 

test, a penetrometer has to be pushed into the clay and a smear effect similar to the insertion 

of a mandrel could have been introduced prior to the measurements. This finding also 

indicates that when vertical drains are used in soft clay, the smear effect on the consolidation 

properties of soil has to be taken into consideration in the design (Chu et al., 2002).  
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Figure 6.26 Comparison of coefficient of consolidation due to horizontal flow from 
CPTU dissipation test prior to reclamation and after 23 months of surcharge loading 
(Arulrajah et al., 2004f). 
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Figure 6.27 Comparison of horizontal hydraulic conductivity from CPTU dissipation test 
prior to reclamation after 23 months of surcharge loading (Arulrajah et al., 2004f). 
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6.7 Flat Dilatometer Test (DMT) 

 

A Marchetti flat dilatometer (Marchetti and Crapps, 1981) was used for the tests, which 

consists of a steel membrane on one side of the blade. The dilatometer blade is 96 mm in 

width and 230 mm in length. The diameter of the membrane is 60 mm. Marchetti (1980) has 

provided a detailed description of the flat dilatometer and its interpretation methods. The 

determination of undrained shear strength and overconsolidation ratio from dilatometer tests 

has been extensively covered by Marchetti (1980), Chang (1986) and Chang et al. (1997).  

Chang (1986) has described the methods and interpretation of flat dilatometer dissipation 

tests. The method of interpretation of coefficient of consolidation due to horizontal flow 

values from dilatometer holding tests have been described by Marchetti and Totani (1989). 

The dilatometer requires certain specialised skill and technical knowledge to operate. Figure 

6.28 shows the geometry and dimensions of the Marchetti dilatometer blade used in the 

research study. Figure 6.29 shows the dilatometer blade.  

 

The in-situ testing of marine clay with the flat dilatometer described in this thesis has been 

discussed in detail by the author (Arulrajah et al., 2004d, 2004h, 2004i, 2004o 2004p) during 

the course of this research study. 

 

6.7.1 Flat Dilatometer Test Method 

The testing procedure followed that described by Marchetti and Crapps (1981). The testing 

consisted of pushing the flat dilatometer blade gradually into the soil at a prescribed rate of 

20 mm per second with the use of a 20 ton dutch cone rig. The pushing was temporarily 

stopped at each of the proposed testing levels at which the two pressure readings A and B 

corresponding to two prefixed states of expansion of the membrane was recorded. The first 

pressure reading that is A-reading (po) corresponds to the membrane lift-off pressure in units 

of bar, while the second pressure reading that is B-reading (p1) corresponds to the pressure 

required for the centre of the membrane to deflect by a preset distance of 1 mm into the soil 

in units of bar.  

 

From the two pressure readings, three dilatometer indices are obtained being the material 

index (ID), horizontal stress index (KD) and dilatometer modulus (ED): 

 

ID = (po - p1) / (po  - u0)       Eq. (6.17) 

KD =  (po  - u0) / σvo - u0)       Eq. (6.18) 

ED = 34.7 (p1 – p0)       Eq. (6.19) 
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Marchetti (1980) proposed the following correlation between the undrained shear strength, cu 

in units of kN/m2, with the horizontal stress index KD:  

 

 cu = 0.22 σvo′ (0.5 KD)η        Eq. (6.20) 

 

KD = (P0 - U0) / σvo ′        Eq. (6.21) 

 

    
Figure 6.28 Geometry and dimension of Marchetti dilatometer blade (Chang, 1986). 

 

 
Figure 6.29 Dilatometer blade and accessories. 
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where:  

σvo′ is vertical effective stress (kPa) 

KD is the horizontal stress index 

η is a constant depending on the clay type  

P0 is the A reading from dilatometer (kPa) 

U0 is pre-inserting water pressure (kPa) 

 

For Singapore Marine Clay at Changi, η can be taken as 1 for upper marine clay and 

intermediate clay while η can be taken as 0.7 for lower marine clays (Bo, Arulrajah, Chang 

and Choa; 2000a). 

 

Marchetti (1980) proposed the following correlation for the estimation of OCR for clays: 

 

OCR = (0.5 KD)n        Eq. (6.22) 

 

For Singapore Marine Clay at Changi, n can be taken as 1 for upper and lower marine clays 

and 0.8 for intermediate clays (Bo, Arulrajah and Choa; 1997). 

 

6.7.2 Comparison of Flat Dilatometer Tests  

Care should be taken in determining the horizontal stress index, KD, when soil is still 

undergoing consolidation with current surcharge load. In this case, current pore pressure 

values from the piezometer instruments should be used for equilibrium pore pressure. With 

OCR values worked out from the dilatometer tests the degree of improvement of 

compressible soil can be evaluated.  

 

The comparison of the DMT results after 23 months of surcharge loading is shown in 

Figures 6.30 to 6.33. The DMT test indicates that the degree of consolidation of the Vertical 

Drain Area had attained a degree of consolidation of about 70-80% while the Control Area 

had attained a degree of consolidation of about 40%. 
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Figure 6.30 Variation of DMT shear strength with elevation after 23 months of 
surcharge loading. 

 
 
 

Figure 6.31 Variation of DMT OCR with elevation after 23 months of surcharge 
loading.  
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Figure 6.32 Variation of DMT effective stress with elevation after 23 months of 
surcharge loading. 
 
 
 

Figure 6.33 Variation of DMT degree of consolidation with elevation after 23 months of 
surcharge loading. 
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6.7.3 Flat Dilatometer Dissipation Test  

The dilatometer test has the potential of providing estimates of the in-situ coefficient of 

consolidation due to horizontal flow from dissipation tests. The common dilatometer 

dissipation test involves two different procedure, one by recording the change of A-reading 

with time and the other the change of C-reading with time. The C-reading is the pressure 

reading, which corresponds to the resumption of the lift-off position of the membrane during 

deflation subsequent to taking the B-reading. The dissipation test which makes use of the A 

reading is called the DMTA dissipation test and can be performed at any depth by the 

procedure described by Marchetti and Tottani (1989). In this method, the A-reading is taken 

at different time intervals and plotted against log time. The time corresponding to the point 

of reverse curvature on the A-decay curve, Tflex is used as a basis for the interpretation of the 

ch.  For the DMTA dissipation test, the following expression was proposed by Marchetti and 

Tottani (1989) :- 

 

ch (DMTA) x Tflex = 5 – 10 cm2       Eq. (6.23) 

 

where:  

ch is in units of cm2/min; for Singapore marine clay ch (DMTA) x Tflex = 5 cm2  

     

In the dissipation test procedure which makes use of the C-reading, the C-reading is plotted 

against square root time and the time corresponding to 50% consolidation, t50 is determined 

and used in the interpretation of ch (Schmertmann, 1988). Gupta et al. (1983) procedure, 

developed for piezocone dissipation analysis was modified and used in the interpretation of 

ch. The dissipation test which makes use of the C-reading is called the DMTC dissipation test 

and can be performed at any depth. The procedure involves estimating rigidity index, Eu/ cu, 

and pore pressure at failure, Af, for the clay and determining the time factor corresponding to 

50% pore pressure dissipation, T50, from the dissipation curves for Af = 0.9 (Schmertmann, 

1988). An adjustment of the time factor may be required if Af is different from 0.9. The T50 

can then be used in the following equation which assumes R2 = 600 mm2 for a test involving 

the standard Marchetti dilatometer (Chu et al., 2002):   

  

ch (DMTC) = 600 (T50 / t50)      Eq. (6.24) 

 

 where:  

ch is in units of mm2/min 

T50 is the theoretical time factor;  

t50 is time elapsed for 50% degree of consolidation to take place.  
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Similar to CPTU tests, the ch values determined from either DMTA or DMTC corresponds to 

the unloading/reloading range. Corrections have to be made to obtain the in situ ch value. 

When converting the ch(DMT) values into the ch value at the normally consolidated state, the 

conversion using Eq. (6.14) has been found to provide consistent results. Eq. (6.15) can be 

used to determine the horizontal hydraulic conductivity of the marine clay. Figures 6.34 to 

6.37 show the DMTA and DMTC testing results and interpretation. 

Figure 6.34    DMTA dissipation tests prior to reclamation (Arulrajah et al., 2004o). 

Figure 6.35    DMTC dissipation test prior to reclamation (Arulrajah et al., 2004o). 
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  Calculations: 

  ch(DMTA) * Tflex = 5 cm2 

  ch(DMTA) = 5 / 23 = 0.217 cm2/min = 11.43 m2/yr 

  Cc / Cr = 5.8 

ch(field) = ch(DMTA) * Cr/Cc = 11.43 * 1/5.8 

  ch(field)   = 1.97 m2/yr 

 

 

Figure 6.36 Typical DMTA dissipation test and calculations prior to reclamation 

   (elevation –20.39 mCD). 
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Calculations:  

 Eu / Su =150 

Af = 0.5 and therefore η = TAf=0.5 / TAf=0.9 = 0.8 

 T50 = 1.2 * 0.8 = 0.96 

 ch(DMTC) = 600 * T50 / t50 mm2/min 

 ch(DMTC) = 600 * 0.96 / (2.6)2 = 85.02 mm2/min = 44.71 m2/yr 

 Cc / Cr = 6.7 

ch(field) = ch(DMTA) * Cr/Cc  = 44.71 * 1/ 6.7  

 ch(field) = 6.68 m2/yr 

 

 

Figure 6.37 Typical DMTC dissipation test and calculations prior to reclamation  

(elevation –7.19 mCD). 
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6.7.4 Comparison of Flat Dilatometer Dissipation Tests  

The comparison of the ch results for the Vertical Drain Area and the Control Area is 

presented in Figure 6.38, while Figure 6.39 shows the kh results.  

 

ch value is apparent to be higher in the Vertical Drain Area as compared to the Control Area. 

Despite the kh being lower in the Vertical Drain Area, the ch could be higher due to greater 

ratio of reduction in the coefficient of volume change, mv. The in-situ results in the upper and 

lower marine clay layers indicate ch values of 4-6 m2/yr in the Vertical Drain Area and 

values of 4-6 m2/yr in the Control Area.  

 

The kh values in the Vertical Drain Area is found to be lower than that in the Control Area. It 

is noted however that kh values are indirectly obtained from ch values. kh values ranging from 

10-9 to 10-10 m/s were obtained in the Vertical Drain Area while values of 10-9 m/s were 

obtained in the Control Area. 

 

It is evident that the prior to reclamation DMT dissipation test has encountered the 

intermediate stiff layer strata at the lower elevations and hence the high initial ch values. The 

DMT dissipation tests in the Vertical Drain Area and the Control Area also indicate higher ch 

values in the intermediate stiff layer. Only DMTA readings method was carried out in both 

the Vertical Drain Area and the Control Area.  

 

Figures 6.40 and 6.41 show the DMTA testing results for the Vertical Drain Area and 

Control Area after 23 months of surcharge loading. Figures 6.42 and 6.43 show the typical 

DMTA interpretation for the Vertical Drain Area and Control Area after 23 months of 

surcharge loading.  
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Figure 6.38 Comparison of coefficient of consolidation due to horizontal flow from 
DMTA dissipation test prior to reclamation and after 23 months of surcharge loading 
(Arulrajah et al., 2004i). 
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Figure 6.39 Comparison of horizontal hydraulic conductivity from DMTA dissipation 
test prior to reclamation and after 23 months of surcharge loading (Arulrajah et al., 2004i). 
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Figure 6.40 DMTA dissipation test at Vertical Drain Area (Arulrajah et al., 2004o).  

 

Figure 6.41 DMTA dissipation test at Control Area (Arulrajah et al., 2004o). 
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Calculations:  

 ch(DMTA) x Tflex = 5 cm2 

 ch(DMTA) = 5 / 5 = 1 cm2/min = 52.56 m2/yr 

 Cc / Cr = 4.335 

ch(field) = ch(DMTA) x Cr/Cc = 52.56 x 1/4.335 

 ch(field)   = 12.12 m2/yr 

 

 

Figure 6.42 Typical DMTA dissipation test plot and calculations at Vertical Drain Area 
(elevation – 12 mCD) (Arulrajah et al., 2004o). 
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 Calculations:  

 ch(DMTA) x Tflex = 5 cm2 

 ch(DMTA) = 5 / 12 = 0.417 cm2/min = 21.9 m2/yr 

 Cc / Cr = 5.73 

ch(field) = ch(DMTA) x Cr/Cc = 21.9 x 1/5.73 

 ch(field)   = 3.82 m2/yr 

 

 

Figure 6.43 Typical DMTA dissipation test plot and calculations at Control Area 
(elevation – 8.257 mCD) (Arulrajah et al., 2004o). 
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6.8 Self-Boring Pressuremeter Test (SBPT) 

 

The Cambridge-type self-boring pressuremeter with 6 strain measuring arms located at the 

mid-level (Cambridge In-Situ, 1993) was used for the testing purposes. The probe is about 

83 mm in diameter and 1.4 meters in length and is made up of stainless steel and brass. Over 

the critical part of the instrument, the diameter is maintained to an accuracy of 0.1 mm. The 

instrument consists of strain gauge type transducers attached to the central core or 

pressuremeter body. The pressuremeter body is covered with a rubber membrane for direct 

recording of the radial displacement and the applied pressure. A rotary bit is present at the 

base of the equipment.  

 

The in-situ testing of marine clay with the self-boring pressuremeter described in this chapter 

has been discussed in detail by the author (Arulrajah et al., 2004d, 2004h, 2004i, 2004p) 

during the course of this research study. 

 

6.8.1 Self-Boring Pressuremeter Test Method 

Mair and Wood (1987) have described the methods of testing of various pressuremeters 

including the self-boring pressuremeter. Windle and Wroth (1997) have described the 

determination of the undrained properties of clay by means of the self-boring pressuremeter. 

Whittle et al. (1993) has described the lift-off stress and analysis of the initial stress 

distribution of the six arm self-boring pressuremeter. Figure 6.44 shows the geometry and 

dimensions of the self-boring pressuremeter used in the research study. Figure 6.45 shows 

the self-boring pressuremeter and accessories.  

 

Testing involves the advancement and insertion of the pressuremeter to the proposed depth 

by use of the self-boring technique. After the insertion of the pressuremeter, the rubber 

membrane was inflated by injection of gas pressure. Both the applied pressure and the 

corresponding displacement of the borehole (cavity) wall were measured during the test. 

Raw testing results are produced in plots of applied pressure versus radial cavity strain, 

which is interpreted by the cavity expansion theory.  

 

Windle and Wroth (1997) suggested undrained shear strength can be estimated from the limit 

pressure from the self boring pressuremeter as follows: 

  

cu = (Pc - σho ) / [1 + loge (G / cu )]      Eq. (6.25) 

 

or cu = (Pc - σho ) / Np       Eq. (6.26) 
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 Np = 1 + loge (G / cu)       Eq. (6.27) 

 

where:  

cu is in units of kN/m2 

σho is total horizontal stress (kN/m2) 

G is shear modulus (MPa) 

Np is the pressuremeter constant by Marsland and Randolph (1977).  

 
Figure 6.44 Geometry and dimension of self-boring pressuremeter  

  (Cambridge In-Situ, 1993). 
   

 
Figure 6.45   Self-boring pressuremeter and accessories. 
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For Singapore marine clays, Np values of 6.6, 6.4 and 7.2 can be applied for the upper marine 

clay, intermediate clay and lower marine clay respectively (Bo, Arulrajah, Choa and Chang; 

1998a). Estimation of shear modulus can be obtained from small unload-reload cycles. The 

undrained shear strength is obtained from the expansion tests. 

 

The OCR for the pre-reclamation SBPT in the Vertical Drain Area was calculated from the 

SBPT shear strength values by using Eq. (6.5) which is also used for the FVT. 

 

6.8.2 Comparison of Self-Boring Pressuremeter Tests 

Since total stress can be measured from self-boring pressuremeter test, coefficient of earth 

pressure at rest, K0, can be calculated and OCR can then be estimated by this method for 

locations treated with vertical drains: 

 

K0 = σ ho′ / σvo ′        Eq. (6.28) 

 

where:  

K0 is coefficient of earth pressure at rest.  

σho′ is effective lateral stress (kPa).  

 

OCR = [(K0 oc) / (K0 nc)]1/h      Eq. (6.29) 

 

where:  

h is a constant of between 0.32 - 0.4 and is taken as 0.4 in this study. 

 

The comparison of the SBPT results after 23 months of surcharge loading is shown in 

Figures 6.46 to 6.49. The SBPT test indicates that the degree of consolidation of the Vertical 

Drain Area had attained a degree of consolidation of about 80% while the Control Area had 

attained a degree of consolidation of about 20-30%.  
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Figure 6.46 Variation of SBPT shear strength with elevation after 23 months of 
surcharge loading.  

 
 
 

Figure 6.47 Variation of SBPT OCR with elevation after 23 months of surcharge 
loading.  
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Figure 6.48 Variation of SBPT effective stress with elevation after 23 months of 

surcharge loading.  
 

 

Figure 6.49   Variation of SBPT degree of consolidation with elevation after 23 months of 
surcharge loading. 
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6.8.3 Self-Boring Pressuremeter Dissipation Test  

The pore pressure cells are located 43 mm below the centre of the pressuremeter probe. The 

holding test proceeds as a normal pressuremeter test until the point when the soil is to be 

unloaded. Instead of unloading at a constant rate of strain, the expanded cavity is held fixed 

at the current dimensions. The excess pore water pressure generated by the preceding 

expansion will begin to drain and the decay of pore pressure is recorded. When the level of 

excess pore pressure has fallen by slightly more than half, the test is terminated. 

 

When the pore water pressures fall, the total pressure in the instrument will be greater than 

that required to maintain the cavity at a fixed size. Left alone, the cavity would continue to 

expand. An automatic strain control unit is used to monitor this tendency for the cavity to 

increase, and the unit vents a little of the pressure in the instrument to compensate. Hence, 

information about the decay of pore pressures is available directly from the pore water 

pressure transducers on the outside of the instrument and indirectly from the necessary 

decline in total pressure. 

 

The analysis used was proposed by Clarke et al. (1979). The analysis assumes that the 

Gibson and Anderson model of soil deformation applies (Clarke et al., 1979) and hence that 

the pore water pressures generated by an undrained expansion can be calculated and 

converted to a time factor. Coefficient of consolidation due to horizontal flow can thus be 

worked out as follows: 

 

 ch(probe) = T50 γ0
2 / t50       Eq. (6.30) 

 

where:  

ch is in units of m2/yr 

γ0 is the radius of cavity 

 T50 is theoretical time factor as estimated from the relationship given by Clarke et al. (1979)  

t50 is time elapsed in years for 50% degree of consolidation to take place.  

 

Similar to CPTU and DMT tests, the ch values determined from SBPT corresponds to the 

unloading/reloading range and a correction based on Eq. (6.14) is required in order to obtain 

the ch value for the NC range. The horizontal hydraulic conductivity can be calculated as 

follows in units of m/yr: 

 

kh = (ch / G) γw [(1 – 2µ)/ {2 – (1 – µ)}]     Eq. (6.31) 
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where:  

 kh is in units of m/yr 

G  is shear modulus in MPa  

µ is poisson ratio which was assumed to be 0.5 for the current test 

γw is the unit weight of water 

 

6.8.4 Comparison of Self-Boring Pressuremeter Dissipation Tests 

The comparison of the ch results for the Vertical Drain Area and the Control Area is 

presented in Figure 6.50, while Figure 6.51 shows the kh results.  

 

ch value is seen to be higher in the Vertical Drain Area as compared to the Control Area. 

Despite the kh being lower in the Vertical Drain Area, the ch could be higher due to greater 

ratio of reduction in the coefficient of volume change, mv. The in-situ results in the upper and 

lower marine clay layers indicate ch values of 3-12 m2/yr in the Vertical Drain Area and 

values of 4-7 m2/yr in the Control Area. The SBPT dissipation tests in the Vertical Drain 

Area, Control Area and prior to reclamation also indicate higher ch values in the intermediate 

stiff layer.  

 

It also seems that kh values in the Vertical Drain Area is higher than that in the Control Area 

which should not be the case and this is attributable to the indirect method of computing kh 

from ch values. kh values ranging from 10-9 to 10-10 were obtained in the Vertical Drain Area  

while values of 10-9 to 10-10 were obtained in the Control Area. 
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Figure 6.50  Comparison of coefficient of consolidation due to horizontal flow from SBPT 
dissipation test prior to reclamation and after 23 months of surcharge loading (Arulrajah et 
al., 2004i). 
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Figure 6.51  Comparison of horizontal hydraulic conductivity from SBPT (PPC) dissipation 
test  prior to reclamation and after 23 months of surcharge loading (Arulrajah et al., 2004i). 
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6.9 BAT Permeameter Test (BAT) 

 

Τhe ΒΑΤ permeameter developed by Torstensson (1983) was used in this study for the in-

situ testing of horizontal hydraulic conductivity. This involves the functions of sampling of 

ground water and at the same time the measurement of pore water pressure in the sample 

container. Diameter of the BAT filter used is 30 mm and the length is 40 mm. Figure 6.52 

shows the geometry and dimensions of the BAT permeameter used while Figure 6.53 shows 

the filter tip.  

 

The key element in the BAT system is the filter tip. The different test adapters make a tight 

temporary connection to the filter tip with the aid of a hypodermic needle. When the test 

adapter is lowered down the extension pipe, it is coupled to the nozzle in the filter tip and 

gravity draws the hypodermic needle downward, penetrating the rubber disc mounted in the 

filter tip. The needle provides a hydraulic connection between the interior of the filter tip and 

the test adapter.  

 

The in-situ testing of marine clay with the BAT permeameter described in this thesis has 

been discussed in detail by the author (Arulrajah et al., 2004d, 2004i) during the course of 

this research study.  

 

 
     Figure 6.52 Geometry and dimension of BAT permeameter (Torstensson, 1983). 
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Figure 6.53 BAT permeameter filter tip. 

 

6.9.1 BAT Permeameter Dissipation Test 

The kh results from the BAT tests can be used as the baseline results since the system 

measures horizontal hydraulic conductivity directly, whereas the other in-situ tests required 

the introduction of additional parameters to evaluate the hydraulic conductivity indirectly 

from ch values. 

 

The BAT permeameter test can be carried out either as an "inflow test" or as an "outflow 

test". In the former case the gas/water container is completely gas-filled at the start of the 

test. An inflow test can be conducted simultaneously with extraction of pore water sample. 

In an outflow test, the container is partially filled with compressed gas. The air in the 

chamber is evacuated (or pressurized) to any desired pressure. As water flows into (or out of) 

the probe, the air pressure in the chamber changes. A pressure transducer monitors the 

pressure change.  

 

The test is based on measurement of flow into and out of a sample container. This rate is 

computed by measuring the pressure change in the container, which using Boyles’s law can 

be translated into a volume change. Analysis of the time-pressure record thus yields the 

horizontal hydraulic conductivity. The quantity of flow and heads are computed from Boyle's 

Law and the measured change in the gas pressure in the chamber: 
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where:  

kh is the horizontal hydraulic conductivity in units of m/s  

P0 is absolute initial system pressure in kPa 

V0 is initial gas volume in m3 

F is shape factor and is calculated as 228.76 mm for the current test  

U0 is static pore water pressure in kPa 

Pt is absolute pressure at time t in s 

L is length of filter in m   

d is diameter of filter in m 

 

 

Figure 6.54 shows the typical permeability versus elapsed time plot for the BAT 

permeameter. 

 

Figure 6.54 Typical BAT permeameter test prior to reclamation (elevation –7.19 mCD). 
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6.9.2 Comparison of BAT Permeameter Dissipation Tests 

The comparison of kh results from BAT for the Vertical Drain Area and the Control Area is 

presented in Figure 6.55. It is apparent that the horizontal hydraulic conductivity decreases in 

the Vertical Drain Area as compared to the prior to reclamation and the Control Area within 

the marine clay layer. This is as expected due to the smearing effect of the vertical drain 

treated area and confirms that there is a reduction of horizontal permeability from time to 

time during consolidation. Variations though are noted in the intermediate clay and alluvium 

layers. 

 

As the BAT permeameter method of measurement is a direct method, as such the kh values 

obtained here can be used as the benchmark values for this study. The coefficient of 

permeability prior to reclamation is in the order of 10-9 to 10-10 m/s. The coefficient of 

permeability is in the order of 10-9 to 10-10 m/s in the Vertical Drain Area and the Control 

Area after 23 months of surcharge loading. 

 

Figure 6.56 indicates the variation of horizontal hydraulic conductivity with time. It is 

apparent that the horizontal hydraulic conductivity decreases in the Vertical Drain Area as 

compared to the prior to reclamation and the Control Area within the marine clay layer. This 

is as expected and confirms that there is a reduction of horizontal permeability from time to 

time during consolidation.  
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Figure 6.55 Comparison of horizontal hydraulic conductivity from BAT permeameter 
test prior to reclamation and after 23 months of surcharge loading (Arulrajah et al., 2004i). 
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Figure 6.56 Comparison of horizontal hydraulic conductivity from BAT permeameter 
test versus elapsed time between Vertical Drain Area and Control Area. 

 

 

6.10 Undrained Shear Strength, Overconsolidation Ratio and Degree of 

Consolidation of Marine Clay 

 

The in-situ testing of undrained shear strength, overconsolidation ratio and degree of 

consolidation of marine clay described in this chapter has been discussed in detail by the 

author (Arulrajah et al., 2004d, 2004f, 2004h, 2004i, 2004o, 2004p) during the course of this 

research study. 

 

6.10.1 Prior to Reclamation 

Figures 6.57 to 6.59 shows comparisons between the shear strengths, OCR and effective 

stress for the various in-situ tests prior to reclamation.  

 

The pre-reclamation in-situ test results by the various methods are in close agreement with 

each other. In the shear strength and OCR comparisons, the various tests indicate similar 

increasing trend profiles for increasing depths.  

 

There is a clear distinction of higher shear strength and OCR values indicated by the various 

tests in the intermediate marine clay layer.  

0.00E+00

1.00E-09

2.00E-09

3.00E-09

4.00E-09

5.00E-09

6.00E-09

7.00E-09

0.1 1 10 100

Elapsed Time (min)

Pe
rm

ea
bi

lit
y 

(m
/s

ec
)

BAT2: Prior to reclamation
BAT8: Vertical Drain Area
BAT9: Control area



   

  144

The values of undrained shear strength of the Singapore marine clay by the various methods 

are in good agreement with each other. The undrained shear strength obtained from the 

various test methods was analysed to obtain an empirical correlation of the undrained shear 

strength (cu) of the marine clay at the In-Situ Test Site.  

 

With respect to the comparison of shear strength values by the various testing methods, the 

CPT penetration test indicates slightly lower shear strength values for the lower marine 

clays. The shear strength values of the SBPT are slightly higher than that of the other  test 

methods while the DMT and FVT results seem to have the closest agreement.  The empirical 

correlation of shear strength increase with depth obtained from the in-situ tests at the In-Situ 

Test Site is as follows: 

 

 cu = 7.06 + 1.7 z (where z is depth below seabed in m)   Eq. (6.34) 

 

where:  

 cu is in units of kN/m2. 

 

The upper marine clay is overconsolidated with OCR of about 1.5 to 3. The lower marine 

clay is lightly overconsolidated with OCR of 1 to 2. The intermediate stiff clay is 

overconsolidated due to desiccation, with OCR of 1.5 to 3. The dessicated layer found close 

to the seabed is also found to register high OCR values. Higher OCR at seabed normally 

occurs due to hydrodynamic effect caused by wave and current action. It is apparent that the 

OCR from CPT is the lowest of the in-situ testing methods. This is possibly due to the value 

of the constant, K used in Eq. (6.9), for the OCR computations by the CPT.  

 

With respect to the comparison of OCR and effective stress values by the various testing 

methods, the CPT test result are lower than that of the other test methods. This is especially 

more obvious for the lower marine clays. The FVT result is found to be the highest for the 

upper marine clay while the DMT results are found to be the highest for the lower marine 

clay. The results of the SBPT seem to be relatively close but slightly lower than the DMT.  
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Figure 6.57 Variation of undrained shear strength with depth by various in-situ methods 

prior to reclamation (Arulrajah et al., 2004d). 
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Figure 6.58 Variation of OCR with depth by various in-situ methods prior to reclamation 

(Arulrajah et al., 2004d). 
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Figure 6.59 Variation of effective stress with elevation by various in-situ methods prior 
to reclamation.  

 
 
 
6.10.2 Post-Improvement  

The comparison of in-situ test results of the Vertical Drain Area and the Control Area by 

various testing methods is compared in Figures 6.60 to 6.63. In the shear strength, OCR, 

effective stress and degree of consolidation comparisons the post-improvement values 

obtained from various in-situ tests after a surcharge period of 23 months are found to be 

agreeable with each other. There is a clear distinction of higher values indicated by the 

various tests in the intermediate marine clay layer.   

 

With respect to the shear strength results in the Vertical Drain Area the CPT and SBPT 

results are especially in close agreement while the DMT and FVT results are found to be 

lower than that of the other in-situ tests. In the Control Area the DMT shear strength results 

is found to be the highest while the CPT results are found to be lower than that of the other 

in-situ tests. In the Vertical Drain Area, the SBPT results indicate the highest OCR, effective 

stress and degree of consolidation values while the CPT results indicate the lowest. In the 

Control Area, the DMT results indicate the highest values while the FVT and SBPT tests 

indicate the lowest values. In the degree of consolidation comparison, the in-situ tests in the 

Vertical Drain Area indicate much higher degree of consolidation as compared to the Control 

Area. 
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The post improvement in-situ test results after 23 months of surcharge loading by the various 

test methods are in close agreement with each other.  The improved areas indicate clear 

increases in the soil strength and consolidation properties due to the improvement works. 

The results also indicate the expected higher shear strengths, OCR, effective stress and 

degree of consolidation in the Vertical Drain Area as compared to the Control Area.  

 

The post improvement in-situ test results in Figure 6.63 indicate that after 23 months of 

surcharge loading, the degree of consolidation of the Vertical Drain Area had attained a 

degree of consolidation generally in the range of about 70-80% while the Control Area had 

attained a degree of consolidation of about 30-40%.  

 
 
 

Figure 6.60 Comparison of shear strengths from in-situ testing between Vertical Drain 
Area and Control Area after 23 months of surcharge loading (Arulrajah et al., 2004h). 
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Figure 6.61 Comparison of overconsolidation ratio from in-situ testing between Vertical 
Drain Area and Control Area after 23 months of surcharge loading (Arulrajah et al., 2004h). 
 
 
 

 
Figure 6.62 Comparison of effective stress from in-situ testing between Vertical Drain 
Area and Control Area after 23 months of surcharge loading (Arulrajah et al., 2004h). 
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Figure 6.63 Comparison of degree of consolidation from in-situ testing between Vertical 
Drain Area and Control Area after 23 months of surcharge loading (Arulrajah et al., 2004h). 
 

 

6.11 Coefficient of Consolidation due to Horizontal Flow of Marine Clay 

 

In-situ dissipation tests by means of piezocone, dilatometer and self-boring pressuremeter 

have been used prior to reclamation and after a surcharge period of 23 months in the 

characterisation of the coefficient of consolidation due to horizontal flow of Singapore 

marine clay in this research study.  

 

The in-situ dissipation testing of marine clay for determination of coefficient of 

consolidation due to horizontal flow described in this chapter has been discussed in detail by 

the author (Arulrajah et al., 2004d, 2004f, 2004i, 2004o) during the course of this research 

study. The findings are discussed in this section. 

 

6.11.1 Prior to Reclamation  

The pre-reclamation coefficient of consolidation due to horizontal flow (ch) as obtained from 

various in-situ dissipation tests vary between 2 to 26 m2/yr as shown in Figure 6.64. The 

CPTU results is found to be the closest to the laboratory testing results.  
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The ch values for the laboratory tests were obtained from radial flow Rowe cell of 75 mm 

diameter and 30 mm thickness and also from horizontally cut 63.5 mm oedometer test 

samples. It is observed that all the methods indicate large ch values in the intermediate stiff 

clay layer. The CPTU results is found to be the closest to the laboratory testing results.  

 

The pre-reclamation CPTU dissipation test indicate that the ch values of the upper and lower 

marine clay varies between 2 to 6 m2/yr. ch values of 4 to 7 m2/yr were obtained in the 

intermediate stiff clay, separating the upper and lower marine clay layers. The pre-

reclamation dissipation tests indicate large ch values in the intermediate stiff clay layer.  

 

Among the in-situ tests the ch values in the marine clay layers from SBPT are the highest 

overall while that from the CPTU dissipation test indicate the least variations with depth. 

The DMT results are reasonable in the lower marine clay layer. The ch determined by the 

DMT and SBPT is noted to be an order of magnitude greater than the laboratory data. It is 

observed that all the methods indicate large ch values in the intermediate stiff clay layer. The 

actual depths of the intermediate clay layer may slightly vary from location to location due to 

slight variations in stratigraphy due to the formation history of the layer. 

 

The smear effect also affects the CPTU and DMT measurements for ch. In the CPTU and 

DMT dissipation test, a penetrometer has to be pushed into the clay and a smear effect 

similar to the insertion of a mandrel could have been introduced prior to the measurements. 

This as such could lead to the CPTU and DMT measurements being lower than that of the 

SBPT. 

 

The ch determined by the various in-situ testing methods are relatively higher overall as 

compared to the laboratory testing results. Horizontal laminations and micro lenses present 

in the marine clay profile, will lead to higher ch values and subsequently higher kh for the in-

situ tests. The presence of laminations and lenses are difficult to be detected by the 

laboratory tests due to the sampling intervals and the sampling process. Furthermore, 

laboratory results are subject to various complexities such as borehole quality, sample 

quality, testing methods and method of interpretation which could lead to lower test values. 
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Figure 6.64 Prior to reclamation coefficient of consolidation due to horizontal flow from 
various in-situ dissipation tests (Arulrajah et al., 2004d).  
 

6.11.2 Post-Improvement  

The comparison between coefficient of horizontal consolidation between the Vertical Drain 

Area and Control Area from in-situ dissipation tests after 23 months of surcharge loading, is 

presented in Figure 6.65 and Figure 6.66. Figure 6.67 presents the coefficient of horizontal 

consolidation for the Vertical Drain Area. Figure 6.68 presents the coefficient of horizontal 

consolidation for the Control Area.  

 

Increase in the ch values is obtained in the intermediate marine clay layer in both the Vertical 

Drain and Control Area, due to the comparatively higher permeability of the intermediate 

stiff clay layer.  

 

The ch value are higher in the Vertical Drain Area at some elevations as compared to the 

Control Area. This is due to the greater reduction in the coefficient of volume change, mv, 
after consolidation or it was simply affected by the correction factors used.  

 

The CPTU results indicate that ch varies between 3 and 6 m2/yr in the Vertical Drain Area 

and between 3 and 5 m2/yr in the Control Area, after 23 months of surcharge loading.  
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Figure 6.65 Comparison between coefficient of consolidation due to horizontal flow 
from in-situ dissipation tests between Vertical Drain Area and Control Area after 23 months 
of surcharge loading (Arulrajah et al., 2004i). 
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Figure 6.66 Comparison between coefficient of consolidation due to horizontal flow 
from in-situ dissipation tests between Vertical Drain Area and Control Area after 23 months 
of surcharge loading with prior to reclamation results. 
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Figure 6.67 Comparison between coefficient of consolidation due to horizontal flow 
from in-situ dissipation tests for Vertical Drain Area after 23 months of surcharge loading. 
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Figure 6.68 Comparison between coefficient of consolidation due to horizontal flow 
from in-situ dissipation tests for Control Area after 23 months of surcharge loading. 
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6.11.3 Discussion and Conclusions 

The ch determined by the various in-situ testing methods are relatively higher overall, with 

some exceptions, as compared to the laboratory testing results, as evident in the prior to 

reclamation test results. Horizontal laminations and micro lenses present in the marine clay 

profile, will lead to higher ch values and subsequently higher kh for the in-situ tests. The 

presence of laminations and lenses are difficult to be detected by the laboratory tests due to 

the sampling intervals and the sampling process. Furthermore, laboratory results are subject 

to various complexities such as borehole quality, sample quality, testing methods and 

method of interpretation which could lead to lower or variable test values. 

 

It is apparent that ch results vary between the various in-situ testing methods due to the 

differing assumption in cavity radius amongst other things in the various test methods. The 

varying ch values will subsequently lead to differing kh in the CPTU, DMT and SBPT results 

as kh computations is worked out indirectly from ch values.  

 

The ch value derived from the CPTU dissipation test is generally lower than those obtained 

from the other in-situ dissipation tests. The ch value obtained from the DMT dissipation tests 

is usually smaller than that from the SBPT holding test. The ch value obtained from the 

SBPT exhibits a larger variation in comparison with that of other tests. In general, the ch 

value measured by the SBPT is much larger than those obtained from the other in-situ 

dissipation tests. The SBPT does not appear to be desirable for the measurement of ch for soft 

marine clay at Changi, as the ch values obtained from SBPT are normally too high to be 

directly used for the design. The ch determined by the DMT and SBPT prior to reclamation is 

noted to be an order of magnitude greater than the laboratory data.  

 

The smear effect affects the CPTU and DMT measurements for ch. In the CPTU and DMT 

dissipation test, a penetrometer has to be pushed into the clay and a smear effect similar to 

the insertion of a mandrel could have been introduced prior to the measurements. This as 

such could lead to the CPTU and DMT measurements for ch being lower than that of the 

SBPT. The ch value seems to be higher in the Vertical Drain Area at some elevations as 

compared to the Control Area. This is attributed to the greater reduction in the coefficient of 

volume change, mv, after consolidation or it could have been affected by the correction 

factors used.  

 

In-situ dissipation tests using the CPTU is recommended by the author as the most suitable 

method for the determination of the ch in soil improvement schemes involving vertical 

drains. However the ch value directly measured by the CPTU holding test is normally too 
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high to be used directly in the design involving the use of vertical drains. A conversion 

would have to be made to convert the direct ch value into the value in the normally 

consolidated state.  

 

The pre-reclamation CPTU dissipation test indicate the ch values in the marine clay varies 

between 2 to 6 m2/yr for the upper and lower marine clay layers. The CPTU results indicate 

that ch varies between 3 and 6 m2/yr in the Vertical Drain Area and between 3 and 5 m2/yr in 

the Control Area, after 23 months of surcharge loading.  

 

 

6.12 Horizontal Hydraulic Conductivity of Marine Clay 

 

In-situ dissipation tests by means of piezocone, dilatometer, self-boring pressuremeter and 

BAT permeameter have been used after a surcharge period of 23 months in the 

characterisation of the horizontal hydraulic conductivity of Singapore marine clay in this 

research study. The in-situ dissipation testing of marine clay for determination of horizontal 

hydraulic conductivity described in this chapter has been discussed in detail by the author 

(Arulrajah et al., 2004d, 2004f, 2004i, 2004o) during the course of this research study. 

 

6.12.1 Prior to Reclamation  

 
The horizontal hydraulic conductivity, kh as obtained from the various in-situ dissipation 

tests prior to reclamation are shown in Figure 6.69. Based on the results obtained, the BAT 

was found to give the lowest values whereas the dilatometer and CPTU gave the highest 

values. The same observation has been reported by Bo et al. (1998b) and Chu et al. (2002) in 

the reclamation site for tests carried out prior to land reclamation. The laboratory results are 

also close to that of the BAT results. Horizontal hydraulic conductivity of in-situ tests was 

found to range between 10-7 to 10-10 m/s for the marine clay.  

 

The kh results from the BAT tests can be used as the baseline results since the system 

measures horizontal hydraulic conductivity directly whereas the other in-situ tests required 

the introduction of additional parameters to evaluate the hydraulic conductivity indirectly 

from ch values. The horizontal hydraulic conductivity prior to reclamation is in the order of 

10-9 to 10-10 m/s based on the BAT results. Dilatometer and CPTU values range around  10-7 

to 10-9 m/s while the SBPT are in the 10-8 to 10-9 m/s range. It can be observed that kh values 

decrease with depth. The in-situ test results also show high kh values in the intermediate 

dessicated zone. 
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Figure 6.69 Prior to reclamation horizontal hydraulic conductivity from various in-situ 
dissipation tests (Arulrajah et al., 2004d). 
 

6.12.2 Post-Improvement 

The comparison between horizontal hydraulic conductivity between the Vertical Drain Area 

and Control Area from in-situ dissipation tests after 23 months of surcharge loading, is 

presented in Figure 6.70 and Figure 6.71. Figure 6.72 presents the horizontal hydraulic 

conductivity for the Vertical Drain Area. Figure 6.73 presents the horizontal hydraulic 

conductivity for the Control Area.  Increase in the kh values is obtained in the intermediate 

marine clay layer in both areas due to the higher permeability of the intermediate stiff clay 

layer.  

 

The horizontal hydraulic conductivity is in the order of 10-9 to 10-10 m/s in the Vertical Drain 

Area and Control Area after 23 months of surcharge loading, based on the BAT results. The 

horizontal hydraulic conductivity decreases in the Vertical Drain Area as compared to the 

Control Area within the marine clay layer as evident in the BAT readings. This supports the 

theory that there is a reduction of vertical permeability from time to time during 

consolidation. The other in-situ testing methods however do not all accurately reflect this 

and it could be due to their indirect measurement of kh readings from ch values. As the 

Control Area has undergone only a small degree of consolidation, as such there is not much 

variation in the permeability of this area as compared to the prior to reclamation results.  
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Figure 6.70 Comparison between horizontal hydraulic conductivity from in-situ 
dissipation tests between Vertical Drain Area and Control Area after 23 months of surcharge 
loading (Arulrajah et al., 2004i). 
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Figure 6.71 Comparison between horizontal hydraulic conductivity from in-situ 
dissipation tests between Vertical Drain Area and Control Area after 23 months of surcharge 
loading with prior to reclamation results. 
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Figure 6.72 Comparison between horizontal hydraulic conductivity from in-situ 
dissipation tests for Vertical Drain Area after 23 months of surcharge loading. 
 

 

 

-35

-30

-25

-20

-15

-10

-5

0

1.000E-11 1.000E-10 1.000E-09
k h  (m/s)

El
ev

at
io

n 
(m

C
D

)

CPTU9: Control Area

DMT9 (A reading): Control Area

SBPT9 (pore pressure cell): Control Area

BAT9: Control area

 
Figure 6.73 Comparison between horizontal hydraulic conductivity from in-situ 
dissipation tests for Control Area after 23 months of surcharge loading. 
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6.12.3 Discussion and Conclusions 

In-situ dissipation tests using the BAT is recommended as the most suitable method for the 

determination of the kh of marine clay, since the system measures horizontal hydraulic 

conductivity directly whereas the other in-situ tests required the introduction of additional 

parameters to evaluate the kh indirectly from ch values. The BAT results compared well with 

the CPTU and DMT results in the Control Area after 23 months of surcharge loading. The 

SBPT results was noted to be the most different from the BAT. 

 

The horizontal hydraulic conductivity prior to reclamation is in the order of 10-9 to 10-10 m/s 

based on the BAT results. The horizontal hydraulic conductivity is in the order of 10-9 to 10-

10 m/s in the Vertical Drain Area and Control Area after 23 months of surcharge loading.  

 

The smear effect also affects the BAT, CPTU and DMT measurements for kh. In the BAT, 

CPTU and DMT dissipation test, a penetrometer has to be pushed into the clay and a smear 

effect similar to the insertion of a mandrel could have been introduced prior to the 

measurements. This finding also indicates that when vertical drains are used in soft clay, the 

smear effect on the consolidation properties of soil has to be taken into consideration in the 

design (Chu et al. 2002). Smear effect also affects the kh in the vertical drain treated area due 

to insertion of the vertical drain mandrel into the ground.  

 

The smear effect for BAT permeameter could be greater than that for the CPTU, as the BAT 

permeameter had a filter with a larger surface area. This may explain why kh measured by the 

BAT permeameter is normally lower than that by the CPTU, although the working 

mechanisms of the two tests are very similar. The SBPT should not be affected by the smear 

effect due to its self-boring mechanism. 

 

It is apparent that the prior to reclamation kh is higher than that of the Vertical Drain Area 

and Control Area after 23 months of surcharge loading. This is expected due to reduction in 

the void ratio after surcharge loading. It is also apparent that the kh in the Vertical Drain Area 

is lower than that in the Control Area which is expected due to higher void ratio changes and 

smear effect and also supports the general belief that there is a reduction of vertical 

permeability from time to time during consolidation in the vertical drain treated area. Bo et 

al. (1998b) has reported that the permeability of soil in the smear zone could be reduced by 1 

order of magnitude or to the kh of the remoulded clay as a result of the smear zone. The 

smear zone was reported by Bo et al. (1998b) to be 4-5 times the equivalent diameter of the 

vertical drain. When drains are installed at close spacing, the back-calculated ch values will 

generally be greatly influenced by this smear zone (Chu et al. 2002).  
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7.0 FIELD INSTRUMENTATION MONITORING OF LAND RECLAMATION 

PROJECTS ON MARINE CLAY FORMATIONS 

 

7.1 Overview of Field Instrumentation Works 

 

Land reclamation on soft compressible clays for vital facilities requires some form of soil 

improvement work. The prefabricated vertical drain with preloading method is a popular and 

well documented method of soil improvement of compressible soils. This method of ground 

improvement was used in the ongoing Changi East Reclamation Project in the Republic of 

Singapore. Prior to the removal of the surcharge load, the degree of improvement attained by 

the foundation soil must be ascertained to confirm whether the design criteria has been 

achieved. Field instrumentation monitoring is the only means available of providing 

continuous records of the ground behaviour from the point of instruments installation. 

Without a proper soil instrumentation method or program, it would be impossible to monitor 

the current degree of improvement of the soil at any point of time. By analyzing the field 

instrument monitoring results, it is possible to verify the degree of consolidation of the 

foundation soil before assessing whether the surcharge load can be removed in the field.  

 

Prior to the installation of vertical drains in the Changi East Reclamation Project, an 

instrumentation programme was implemented which included the installation of settlement 

plates, deep settlement gauges, earth pressure cells, piezometers and water stand-pipes. 

During the process of consolidation, the settlement gauges monitoring data was analyzed by 

means of the Asaoka and Hyperbolic methods to determine the ultimate settlement and 

degree of consolidation of the underlying soft marine clay due to the fill and surcharge load. 

Piezometer monitoring data was used to determine the dissipation of excess pore water 

pressures and degree of consolidation of the marine clay. 

 

In the reclamation project, various field instruments were installed in instrumentation 

clusters to enable the instruments functions to complement each other. All instruments found 

in the instrument clusters were extended and protected throughout the surcharge placement 

operations. The use of field instrumentation is essential for assessing the degree of 

consolidation of the marine clay under the reclaimed fill as this assessment is paramount to 

ascertain when the surcharge can be removed. Field instrumentation monitoring will provide 

a continuous record of the marine clay behaviour under the fill and surcharge load right from 

the point of the initial instrument installation. In land reclamation projects, instruments are 

installed either off-shore prior to reclamation or on-land after reclamation to the vertical 
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drain installation platform level. Field instruments suitable for the study of marine clay 

behaviour and monitoring of land reclamation works include the following: 

 

• surface settlement plates 

• deep settlement gauges  

• multi-level settlement gauges 

• liquid settlement gauges 

• pneumatic piezometers   

• electric piezometers 

• open-type piezometers 

• water standpipes  

• inclinometers 

• deep reference points 

• earth pressure cells 

 

The field instrumentation monitoring and assessment of marine clay in offshore land 

reclamation works described in this chapter has been discussed in detail by the author 

(Arulrajah et al., 2004b, 2004c) during the course of this research study. The assessment of 

field settlement plates by the Asaoka and Hyperbolic methods described in this thesis have 

been discussed in detail by the author (Arulrajah et al., 2003a, 2003b, 2004b, 2004c, 2004e, 

2004g, 2004n) during the course of this research study. The assessment of piezometers 

described in this thesis have been discussed in detail by the author (Arulrajah et al., 2003b, 

2004a, 2004b, 2004c, 2004e, 2004g, 2004l) during the course of this research study.  

 

 

7.2 Field Instrumentation Monitoring 

 

Prior to the removal of the surcharge load, the degree of improvement attained by the 

foundation soil must be ascertained to confirm whether the design criteria has been achieved. 

Field instrumentation monitoring is the only means available of providing continuous 

records of the ground behaviour from the point of instruments installation. Without a proper 

soil instrumentation method or program, it would be impossible to monitor the current 

degree of improvement of the soil at any point of time.  By analyzing the field instrument 

monitoring results, it is possible to verify the degree of consolidation of the foundation soil 

before allowing the removal of the surcharge load. Back-analysis of the field settlement and 
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piezometer data will also enable the coefficient of consolidation due to horizontal flow to be 

closely estimated.  

 

Field instrument monitoring was carried out at regular intervals so that the degree of 

improvement could be monitored and assessed throughout the period of the soil 

improvement works for the project. Instruments were monitored at close intervals of up to 3 

times a week during sandfilling and surcharge placement operations. At other times the 

instrument was monitored usually at a frequency of once a week. 

 

 

7.3 Off-shore Field Instrumentation 

 

Off-shore field instrumentation was carried out prior to the commencement of the 

reclamation works. Off-shore platforms measuring 6 meters by 6 meters were installed at 

selected strategic locations at 30 meter offset from the proposed soil improvement areas. The 

purpose for offsetting the platforms from the proposed soil improvement areas is to ensure 

that the instruments and vertical drain rigs would not be damaged during the vertical drain 

installation works. The instrument platforms would act as a “Control Area” to enable 

comparisons to be made of this untreated area with the adjacent vertical drain treated areas.  

 

The instrument platforms were installed by the driving of steel H-piles into the seabed. 

Following the driving of the H-piles, the platform and scaffoldings were installed. 

Instruments installed from the platform level include seabed settlement plates, deep 

settlement gauges, pneumatic piezometers, vibrating-wire electric piezometers, water stand-

pipes and inclometers. The instruments were installed at various elevations so as to study the 

deformation of the soil at the various elevations of each-sublayer. The instruments installed 

at the protection platform could therefore provide complete information of the soil behaviour 

throughout the entire reclamation fill and surcharge loading history of the marine clay. Total 

settlement of the seabed was measured with the seabed settlement plate while the settlement 

of the various layers were obtained from the deep settlement gauges. The continuous 

settlement data during the project including the initial sandfilling, surcharge placement and 

preloading periods of the location was therefore obtained. Excess pore water pressure build-

ups and dissipation as a result of sand filling and surcharge placement operations and 

consolidation of the marine clay could also be studied at the various piezometer elevations. 

Figure 7.1 and 7.2 presents a schematic diagram and photo of an off-shore field 
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instrumentation platform. Figures 7.3 to 7.5 present photos of the various steps involved in 

the construction of a protection platform for off-shore field instrumentation works. 

 
Figure 7.1 Schematic diagram of an off-shore field instrumentation platform  

(Arulrajah et al., 2004b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 7.2 Picture of an off-shore field instrumentation platform after initial 

reclamation (Arulrajah et al., 2004b). 
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Step 1: Installation of sheet-piles 

 

 
Step 2: Protection Platform Construction   

 

 
Step 3: Completion of Protection Platform 

 

Figure 7.3 Construction steps 1,2,3 for off-shore field instrumentation works. 



   

  165

 
Step 4: Boring-rig for instrumentation 

 

 
Step 5: Sand pumping towards instrument platform 

 

 
Step 6: Reclamation proceeding towards protection platform 

 

Figure 7.4 Construction steps 4,5,6 for off-shore field instrumentation works. 



   

  166

 
Step 7: Filling to platform level  
 

 
Step 8: Preparation for final surcharge fill 
 

  
Step 9: Top of surcharge level (+10 mCD) 

 

Figure 7.5 Construction steps 7,8,9 for off-shore field instrumentation works. 
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7.4 On-Land Field Instrumentation 

 

After the hydraulic sandfilling to an elevation of +4 mCD (where Mean Sea Level is at 

+1.6mCD) and just prior to the installation of the prefabricated vertical drains, instruments 

were installed in instrument clusters. The instrument clusters were installed throughout the 

reclamation site along the proposed runway, taxiway and linkways. Instrument clusters were 

installed at locations having typical soil profiles and at locations of variation of the soil 

profile and characteristics.  

 

Types of instruments installed at the on-land instrument clusters are surface settlement 

plates, deep settlement gauges, multi-level settlement gauges, pneumatic piezometers, 

vibrating-wire electric piezometers, water stand-pipes, earth pressure cells and inclinometers.  

 

The functions of the instruments are the same as those installed in the instrumented 

platforms but information from these instruments could only be obtained just prior to or soon 

after the installation of the prefabricated vertical drains. The information obtained however, 

is sufficient to assess the performance of the vertical drain since high magnitude of 

settlement and fast rate of dissipation of pore pressure occurred only after vertical drain 

installation. Figure 7.6 shows on-land field instrumentation clusters at the Project Site. 

 

 

Figure 7.6 On-land field instrumentation clusters. 
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7.5 Long-Term Field Instrumentation 

 

After the completion of soil improvement works comprising vertical drains and preloading, 

long-term monitoring instruments were installed in selected locations. The purpose of the 

instruments here was to monitor the long-term deformation behaviour of the treated marine 

clay. As the long-term instruments are relatively expensive to monitor using these 

capabilities, long-term monitoring instruments are recommended to be installed only after 

the completion of all ground improvement and sand densification works. Monitoring with 

these instruments can be carried out regularly till the handing over of these parcels of land.  

 

Instruments used for the long-term field instrumentation works comprises of liquid 

settlement gauges and electric piezometers which are installed at various elevations of the 

marine clay. The long-term instruments are often extended to monitoring huts which are 

located at a safe location away from the movement of traffic and from the hands of potential 

vandals. 

 

The long-term monitoring instruments are connected to an automatic data acquisition system 

powered by battery and solar panels. This multi-tasking operating system allows for 

continuous logging, control and storage of all measurements taken from the site under all 

weather conditions. Due to the auto-logging capabilities of the acquisition system, no manual 

recordings of the instrument readings was necessary. Figure 7.7 shows the typical 

arrangement of a long-term field instrumentation cluster. 

 

 
Figure 7.7     Typical details of long-term field instrumentation cluster  

(Arulrajah et al., 2004b). 
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7.6 Settlement Gauges  

 

In the Project Site, several types of settlement monitoring instruments were installed to 

monitor the settlement of the marine clay under the reclaimed fill load. These are settlement 

plates, deep settlement gauges, multi-level settlement gauges and liquid settlement gauges, 

which will be described in detail in this section.  

 

It was found that the settlement plates and the deep settlement gauges that were installed 

through the sandfill at the original seabed gave similar reading for the magnitude and rate of 

settlement. The multi-level settlement gauges was found to indicate far lower magnitudes of 

settlement as compared to the deep settlement gauges for the same sub-layers.  

 

7.6.1 Settlement Plate 

Settlement plates consist of seabed settlement plates and surface settlement plates. Seabed 

settlement plates consist of a concrete base plate while surface settlement plates consist of a 

steel base plate. Settlement plates, due to their relative low cost of production and 

monitoring are the most common instrument used in land reclamation and other ground 

improvement projects.  

 

Seabed settlement plates were placed on the seabed at the off-shore field instrumentation 

platforms prior to the commencement of land reclamation works. Surface settlement plates 

were installed after reclamation to the vertical drain platform level of +4 mCD.  

 

The surface settlement plates are installed just before or immediately after the installation of 

vertical drains in order to capture the ground deformations due to the rapid dissipation of 

excess pore water pressures as soon as vertical drains are installed. Surface settlement plates 

were installed approximately 0.5 meters beneath the vertical drain platform level of +4 mCD. 

The seabed and surface settlement plates are monitored from the time of installation till the 

point of surcharge removal works.  

 

A PVC pipe extension is provided for the settlement plate to eliminate the effect of the 

settling sand fill gripping onto the rod of the settlement gauges. Measurements of field 

settlement is carried out by surveying the elevation of the top of the steel pipe. Figure 7.8 

indicate the typical details of a seabed settlement plate while Figure 7.9 indicates the details 

of a surface settlement plate. 
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Figure 7.8 Typical details of a seabed settlement plate. 

 

 

 
Figure 7.9 Typical details of a surface settlement plate. 
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7.6.2 Deep Settlement Gauge 

The deep settlement gauges were installed prior to reclamation from the off-shore protection 

platforms. Deep settlement gauges were also installed in clusters on-land after reclamation to 

the vertical drain platform level either before or immediately after the installation of vertical 

drains.  Deep settlement gauges used consisted of a screw plate at the end of the steel pipe. 

 

Each deep settlement gauge is installed in a separate borehole at different elevations of the 

marine clay sub-layers. Installation at various elevations enables measurement of the 

magnitude of deformation of these sub-layers. The deep settlement gauge installed at the 

seabed level of the marine clay will provide the same magnitude and rate of settlement as 

that of the seabed or surface settlement plate installed at the same location. The deep 

settlement gauges that were installed in different sublayers indicated decreasing settlement 

with depth as would be expected. A PVC pipe extension is provided for the deep settlement 

gauges to eliminate the effect of the downdrag onto the rod of the settlement gauges. 

Measurements of field settlement is carried out by surveying the elevation of the top of the 

steel pipe. Figure 7.10 indicates the typical details of a deep settlement gauge. 

 

 
Figure 7.10 Typical details of a deep settlement gauge. 
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7.6.3 Multi-Level Settlement Gauge 

The multi-level settlement gauges were installed prior to reclamation from the off-shore 

protection platforms. Multi-level settlement gauges were also installed on-land after 

reclamation to the vertical drain platform level either before or immediately after the 

installation of vertical drains.   

 

The multi-level settlement gauge consists of a series of “spider” metal rings placed at various 

locations along an access tube with a magnetic datum at the base. The “spider” is a site 

jargon used to describe the several metal arms that project out of the metal ring. At the base 

of the access tube is a magnetic datum point. The multi-level settlement gauge access tube is 

installed into a borehole which is drilled to the hard formation of 3 consecutive Standard 

Penetration Test (SPT) of 50 blows. Installation in this manner will ensure that the spider 

metal rings will be at different designed elevation within the marine clay layer.  

 

A magnetic beeping probe is used to monitor the settlement of the spiders at the various 

elevations. The magnetic probe will first be lowered to the datum point and from this 

reference point, the locations of the “spiders” are detected and recorded. The difference 

between the new recording locations of the spiders and their earlier locations will indicate 

the settlement of the sub-layer at which the spider is installed. In essence, the “spider” rings 

are supposed to settle together with the soil mass during consolidation settlement. The top of 

the access tube elevation is also recorded during each site monitoring to enable computation 

of the “spider” elevations. 

 

The multi-level settlement gauges indicates far lower magnitudes of settlement as compared 

to the deep settlement gauges for the same sub-layers. There are several possibilities for this 

behaviour of the multi level settlement gauges (Bo, Arulrajah and Choa; 1998b) which are: 

• although surrounding marine clay is settling, the magnetic “spiders” do not follow  

• no deformation of grout together with marine clay 

• jamming between “spider” metal ring and access tube 

• the datum point is moving which results in the absolute movement not being recorded 

since the instrument measures relative movement.  

• lateral deflection could overestimate the vertical distance between magnetic datum and 

“spiders” thus causing underestimation of settlement of sub-layers. 
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Figure 7.11 indicates the typical details of a multi-level settlement gauge. Figure 7.12 

indicates the typical accessories required for a multi-level settlement gauge. Figure 7.13 

indicates a comparison of settlement measured by deep settlement gauges and multi-level 

settlement gauges. 

 

 
Figure 7.11 Typical details of a multi-level settlement gauge. 

 

 
Figure 7.12 Accessories of a multi-level settlement gauge. 
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Figure 7.13 Comparison of settlement measured by deep settlement gauges and multi-
level settlement gauges. 

 

7.6.4 Liquid Settlement Gauge 

The liquid settlement gauge can be monitored automatically and as such was used for long-

term instrumentation monitoring. The liquid settlement gauge consists of two liquid-filled 

tubes attached to a pressure transducer. The liquid-filled tubes serve as a column of water. 

The pressure transducer measures the pressure exerted by the column of water. The top of 

tubing serves as a reference datum and is terminated to a reference elevation reservoir 

typically mounted on a post on stable ground away from the measured area. The bottom of 

the tubing is connected to a pressure transducer and is placed on the ground for which the 

settlement is to be monitored. The tube and transducer settle together with the surrounding 

ground, effectively increasing the height of the column of water and the pressure of the 

transducer. Settlement is obtained by computing the change in differential elevation between 

the pressure transducer and the reference reservoir.  

 

The transducer in the liquid settlement gauge converts the pressure of the liquid column to a 

tensional load on a steel strip that is fixed at both ends. When excited by a magnetic coil, the 

steel strip vibrates at its natural frequency generating voltage pulses that are transmitted to 

the readout device. The readout device counts a set number of pulses and computes a natural 

period, the inverse of the frequency. The square of the natural frequency is proportional to 

the tension in the steel strip and hence  the pressure exerting the load on the strip.  

 

Figure 7.14 indicates the typical details of a liquid settlement gauge while Figure 7.15 shows 

a liquid settlement gauge. 
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Figure 7.14 Schematic details of a liquid settlement gauge (Courtesy of Sinco). 
 

 

 

 
Figure 7.15 Liquid settlement gauge (Courtesy of Sinco). 

 

 



   

  176

7.7 Assessment of Settlement Data  

 

More realistic assessment of average degree of consolidation as well as degree of 

consolidation for sub-layers can be carried out by using ultimate primary consolidation 

settlement predicted from settlement monitoring data. This can be worked out by the Asaoka 

(Asaoka 1978) and Hyperbolic (Tan 1993) methods. Ultimate settlement can be well 

predicted after getting sufficient field settlement monitoring data. The assessment of field 

settlement plates by the Asaoka and Hyperbolic methods described in this thesis have been 

discussed in detail by the author (Arulrajah et al., 2003a, 2003b, 2004b, 2004c, 2004e, 

2004g, 2004n) during the course of this research study. 

 

7.7.1 Asaoka Method 

Asaoka (1978) has suggested a procedure modified for application to consolidation problems 

with vertical drains using Barron (1948) solution for pure radial drainage. The Asaoka 

procedure generates a straight-line only if the soil behaviour fulfils the assumptions of 

Terzaghi’s theory of one-dimensional consolidation. The use of the Asaoka method for the 

assessment of the degree of consolidation of marine clays with vertical drains in land 

reclamation projects has been previously described by Bo, Arulrajah and Choa (1997a, 

1997b) and Choa et al. (1981).  

 

In the Asaoka analysis procedure, the time settlement curve of the settlement gauge is first 

plotted. Following this, a series of settlement values s1, s2...si is selected, such that si is the 

settlement at time i and that the selected time interval in the analysis, ∆t = (ti – ti-1) is 

constant. The next step is to plot the points (si-1,si). These points should lie on a straight line 

defined as follows: 

 

si = so + βsi-1        Eq. (7.1) 

 

where:  

so and β are two constants which depend on the selected time interval ∆t. 

 

The ultimate settlement (Sult) can then be predicted at the intercept of this line and a 45 

degree line  (illustrated in Chapter 9). In the case of placement of additional fill, the straight 

line will be deviated after the point the additional fill is placed. When the settlement is 

relatively small compared to the thickness of the clay layer, the shifted line becomes almost 

parallel to the initial line (Asaoka, 1978).  
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The constant β, represents the slope of the constructed straight line. The coefficient of 

consolidation due to horizontal flow can be back analysed from settlement data (Asaoka 

1978): 

 

ch = de
2 F(n) logeβ / 8∆t       Eq. (7.2) 

 

where:  

 de is the diameter of equivalent soil cylinder = 1.13 x Drain Spacing (square pattern). 

 F(n) is the drain spacing factor. 

 

7.7.2 Hyperbolic Method 

The use of the Hyperbolic method for the assessment of the degree of consolidation of 

marine clays with vertical drains in land reclamation projects has been described by Bo, 

Arulrajah and Choa (1997a, 1998b) and Choa et al. (1981).   

 

The Hyperbolic method is also useful in tracing the loading history of ground improvement 

works. Changes in the loading sequence will appear as deviations from the Hyperbolic line, 

which can be easily detected (Tan, 1993). In the Hyperbolic method, the relationship 

between consolidation settlement and time is postulated to approach a Hyperbolic curve 

given by the following equation: 

 

t/s = c + m t        Eq. (7.3) 

 

This is a straight line in a t/s versus t plot. The equation shows that the ultimate settlement is 

given by 1/m, which is the inverse of the slope Tan et al. (1993, 1995, 1996).  

 

The ultimate settlement can be easily predicted once sufficient data are available to show 

that the behaviour approaches the Hyperbolic line and that c and m can be estimated  

(illustrated in Chapter 9). A degree of consolidation of at least 60% (Tan, 1995) should be 

attained by the foundation soil in order for the c and m constants to be estimated for cases of 

combined vertical and radial drainage. This can be estimated based on analysing the field 

settlement by using Equation (7.5). Tan (1995) stated that good estimates of the total primary 

settlement can be estimated  by the inverse slope (1/m) multiplied by the theoretical slope 

factor (α) for cases of combined vertical and radial drainage:  

 



   

  178

Ultimate Settlement = α (1 / m)      Eq. (7.4) 

 

The α factor used in the assessment is based on the relationship chart proposed by Tan 

(1995) shown in Figure 7.16: 

 

 
Figure 7.16 Relationship of slopes (α) of initial linear segments (between U60 and U90) 

of theoretical  hyperbolic plots (Tan, 1995).  
 

7.7.3 Degree of Consolidation of Settlement Gauges 

From measured settlement and predicted ultimate settlement, degree of consolidation can be 

computed by using the following equation: 

 

U% = St / Sult        Eq. (7.5) 

 

where:  

St is settlement at time t  

Sult is ultimate primary settlement  

U% is the degree of consolidation 

 

If deep settlement gauges are installed in the sub-layers, degree of consolidation of sub-

layers can also be estimated by applying Equation (7.5) and hence the degree of 

consolidation of sub-layers can also be estimated. However, this relationship will not be 

applicable for the overconsolidated layers which do not follow Terzaghi’s theory. 
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7.8 Piezometers  

 

In the Project Site, three types of piezometers were installed to monitor the dissipation of 

excess pore pressures of the marine clay under the reclaimed fill load. These are pneumatic 

piezometers, vibrating-wire electric piezometers and open-type piezometers. The 

piezometers were installed in individual boreholes at various predetermined elevations in the 

marine clay. The piezometers were installed in the same instrument clusters as the water 

stand-pipes and settlement gauges. The pneumatic piezometer and electric piezometer 

indicate similar measurements for piezometric elevation and excess pore water pressures. 

Installation of piezometers at the same elevations as the deep settlement gauges enabled for 

the correction of the piezometer tip due to large strain settlements of the marine clay under 

the reclaimed fill.  

 

Prior to the piezometer installation, a site calibration was conducted in a large diameter water 

well to check on the manufacturer’s calibration. As such, a site calibration chart is produced 

for each piezometer prior to their installation plotting measured pressure against pressure of 

water on the piezometer. Piezometer tips are packed in a sand bag and saturated in the water 

at least twenty-four hours before installation. After installation in a borehole, sand was 

placed again to a certain limit and a bentonite seal suitable for marine conditions was placed 

on top of the sand column. The borehole was backfilled to the original seabed level with 

original soil. Alternatively, the borehole could be backfilled with a good mixture of bentonite 

cement permeability of which is equal to or lower than the natural soil. This is because 

backfilling with sand will lead to a lower measurement of the excess pore pressure at the 

location due to the rapid dissipation of pore pressure along the sand fill column above the 

piezometer (Bo et al., 2003).   

 

7.8.1 Pneumatic Piezometer 

Pneumatic piezometers were installed in the off-shore protection platforms as well as in the 

on-land field instrumentation clusters. The pneumatic piezometer consists of a pneumatic 

transducer which has been permanently installed in a borehole. Tubing runs from the 

transducer to a terminal on the surface. Readings for pneumatic piezometers are obtained 

with a pneumatic indicator. To obtain a pressure reading, the operator connects the 

transducer tubing to the indicator and directs a flow of compressed nitrogen gas to the 

transducer. When the transducer tubing brings a flow of gas back to the surface, the operator 

knows the transducer has been activated and shuts off the flow of gas. Gas pressure inside 

the transducer now balances water pressure outside and the reading is recorded.  
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In the initial stages, the pneumatic piezometers were subject to a high damage rate 

attributable to the pinching of the tubing due to the large strain settlements which led to the 

loss of valuable data until they were replaced. This was however corrected by installing a 

protective casing throughout the length of the cables and by housing the piezometer in a 

guard shell. As such, gripping and pinching of the cable due to lateral stress and settlement 

was overcome. Figure 7.17 indicates the typical details and photo of a specially modified 

pneumatic piezometer with protected guard cell. 

Figure 7.17 Typical details and photo of pneumatic piezometer with protected guard cell. 
(photo courtesy of Dr M.W.Bo). 

 

7.8.2 Electric Piezometer 

The vibrating-wire electric piezometers were installed in the on-land field instrumentation 

clusters as well as the long-term field instrumentation clusters. The electric piezometer 

consists of a transducer which converts water pressure to tensional load on a steel strip that is 

fixed at both ends. When excited by a magnetic coil, the steel strip vibrates at its natural 

frequency, generating voltage pulses that are transmitted to the readout device. The readout 

device counts a set number of pulses and computes a natural period, the inverse of the 

natural frequency. The square of the natural frequency is proportional to the tension in the 

steel strip and hence, the pressure exerting the load on the strip. Figure 7.18 indicates the 

typical details of an electric piezometer while Figure 7.19 shows an electric piezometer. 
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Figure 7.18 Typical details of an electric piezometer. 

 
Figure 7.19 Electric piezometer (Courtesy of Sinco). 

 

7.8.3 Open-Type Piezometer 

Open-type piezometers are installed in sub-layers with permeable sand formations. The 

purpose of the installation was to determine the drainage condition of the sub-layer at which 

the piezometer was installed. Installation of the open-type piezometer at the vertical drain 

anchoring formation level in vertical drain areas could confirm whether the vertical drains 

were double draining to the top sand fill layer and the anchoring layer as often assumed in 

the design of vertical drains for the Changi area of Singapore. A water-level indicator which 

emits a buzzing sound on contact with water is used to determine the water level. Figure 7.20 

indicates the typical details of an open type piezometer. Figure 7.21 indicates the typical 

details of a water level indicator.  
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Figure 7.20  Typical details of an open-type piezometer. 
 

 

 

 
Figure 7.21 Typical details of water level indicator . 
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7.8.4 Water Stand-Pipe 

Water stand-pipes were installed at the sand formation within piezometer clusters so as to 

measure the hydrostatic water level at these locations. This enabled the evaluation of the 

excess pore water pressures for the piezometers by determining the piezometric elevation 

and subsequently the excess pore water pressures. The water stand-pipe consists of water 

intake opening slots that are small enough to prevent the ingress of the surrounding soil into 

the stand-pipe. A geofabric is often wrapped around the slotted portion of the water stand-

pipe. Figure 7.22 indicates the typical details of a water standpipe. A water-level indicator 

which emits a buzzing sound on contact with water is used to determine the water level. 

 
Figure 7.22  Typical details of a water stand-pipe. 

 

 

7.9 Assessment of  Piezometer Monitoring Data 

 

The method of assessment of piezometers described in this thesis have been discussed in 

detail by the author (Arulrajah et al., 2003b, 2004a, 2004b, 2004c, 2004e, 2004g, 2004n) 

during the course of this research study.  

 

7.9.1 Degree of Consolidation  

Pneumatic piezometers were installed in the same clusters as the settlement gauges, close to 

the same elevation as the settlement gauges to enable for correction of the piezometer tip due 

to large strain settlement. Water stand-pipes were installed in the clusters so as to measure 

the static water level at these locations and hence to ascertain the excess pore water pressures 

of the piezometers. 
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The piezometers indicates measurements for piezometric head. Piezometers are utilized to 

measure the pore pressure in the soil. If regular monitoring is carried out to measure the 

piezometric head together with the static water level, changes of excess pore pressure due to 

additional load and thus degree of consolidation can be computed.  

 

Average degree of dissipation is defined as ratio of excess pore pressure at time “t” upon 

initial excess pore pressure. The method of computation of degree of consolidation is the 

same used as that used earlier in the CPTU dissipation tests: 

 

U(%) = 1- (Ut  / Ui)       Eq. (7.6) 

 

where:  

 Ut = excess pore pressure at time “t”  in kPa 

 Ui = initial excess pore pressure = additional load (∆σ’) in kPa 

 

Piezometers were installed at different elevations and as such, the average degree of 

consolidation for the whole compressible unit as well as the average degree of consolidation 

of the sub-layers were determined. 

 

Due to the large strain settlements at site, all raw piezometer readings taken were corrected 

to account for the new elevation of the piezometer at each monitoring due to the settlement 

of the piezometer tip. The settlement of the adjacent deep settlement gauges in the field 

instrumentation cluster at about the same respective elevation was used to adjust the 

settlement of the piezometer tips. Correction is essential and if not made will lead to an 

underestimation of the degree of dissipation of the excess pore water pressure. 

 

7.9.2 Back-Analysis of Coefficient of Consolidation due to Horizontal Flow  

From field pore pressure measurements, the coefficient of consolidation due to horizontal 

flow can be back-analysed. The first step is the determination of the degree of consolidation 

at the particular time using Eq (7.6). Subsequently, the nondimensional time factor, Th has to 

be determined with the following equation: 

 

    -8Th 
Ur = 1 –   exp         Eq. (7.7) 

    F(n) 
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where: 

 Ur = Average degree of consolidation with respect to radial flow 

Th = Non-dimensional time factor for consolidation by horizontal drainage 

F(n) = Vertical drain factor  

 

       n2             3n2 – 1  
F(n) =       loge (n)  -        Eq. (7.8) 

  (n2 – 1)               4n2 
 

where: 

 n = drain spacing ratio = de / dw 

de = 1.13 x drain spacing (square pattern) or 1.05 x drain spacing (triangular pattern)

 dw = [2 (a + b)] / π  , where a is the drain width and b is the drain thickness 

 

Coefficient of consolidation due to horizontal flow, ch can be calculated by either using the 

total time method or the incremental time method (Bromwell and Lambe, 1968) :  

 

Total time method: 

  

    Th de
2 

 ch =             Eq. (7.9) 
     t 

 

Incremental time method: 

 

Th2 – Th1  
 ch =     de

2       Eq. (7.10) 
    t2 – t1 

where: 

 t is time 

 

7.10 INCLINOMETER 

 

Inclinometers consist of a grooved plastic or aluminium casing installed vertically in a 

borehole socketed to the firm/dense stratum.  For installation in marine and nearshore 

conditions, the use of the plastic casing is advisable as it is not subject to corrosion. Four 

longitudinal, equally spaced inner grooves control the directional orientation of the sensor. 

The sensor is lowered to the base of the casing and is then gently withdrawn upwards at 

frequent depths of intervals. The sensor readings are recorded and displayed on a portable 

digital indicator at the ground surface. In this manner, the inclinometer readings are taken in 
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the four orientation directions and subsequently converted to lateral displacements. 

Consecutive readings at the same depths, taken at periodic monitoring intervals are used to 

determine the depths, magnitudes and rates of movement of the marine clay due to the 

reclaimed fill.  

 

Inclinometers at site are normally installed along the slopes of the sandfilling and surcharge 

placement works. Inclinometers are monitored continuously during the sandfilling and 

surcharge placement operations to determine and control the rate and magnitude of lateral 

displacement. Should the rate and magnitude of lateral displacement be too high as 

detemined by the Engineer, the sandfilling and surcharge operations will be slowed down or 

stopped and necessary remedial action will be taken. Inclinometers are installed in boreholes 

which are terminated at SPT N-values of 3 consecutive 100 blow counts. Since the 

inclinometer is measuring relative movement rather than absolute movement, its toe has to 

be anchored in the dense/hard stratum to ensure that there is no settlement at this non-lateral 

displacement formation. Any lateral displacement at the toe will lead to an underestimation 

of absolute lateral movement of soil along the inclinometer. Figure 7.23 indicates the typical 

details of an inclinometer. Figure 7.24 illustrates the comparison of lateral deflection 

monitored in inclinometers anchored at SPT of 50 blows with that anchored at SPT of 100 

blows formation. As evident, the inclinometer anchored in the lower SPT formation indicates 

lower lateral displacement than the actual absolute displacement due to movement at the toe. 

 
Figure 7.23 Typical details of an inclinometer. 
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Figure 7.24 Comparison of lateral displacement between inclinometers anchored at SPT 
50 blows and SPT 100 blows (Arulrajah et al., 2004b; Bo, Arulrajah and Choa 1998b). 
 

 

7.11 DEEP REFERENCE POINT 

 

The deep reference point is essentially the survey datum reference point to which all 

elevation measurements of instruments are tied in too. It is essential as such that the deep 

reference point is installed in a very dense/hard formation to ensure that it is not subject to 

any settlements. The deep reference point is positioned at locations at the site which are far 

from other permanent survey benchmarks.  

 

 

7.12 EARTH PRESSURE CELL 

 

Earth pressure cells measure the combined pressure of effective stress and pore-water 

pressure. With the installation of water stand-pipes close by, the vertical effective stress of 

the surcharge load can be computed. The total pressure cell is formed from two circular 

plates of stainless steel which are welded together to form a sealed cavity which is filled with 

fluid. A pressure transducer is connected to this cell which is installed with its sensitive 

surface in direct contact with the soil. The total pressure acting on the sensitive surface is 

transmitted to the fluid inside the cell and measured by the pressure transducer. Earth 

pressure cells are installed in a trench 0.5 to 0.6 meters deep, at the vertical drain platform 

level (elevation of +4 mCD) just prior to the placement of the surcharge load. The total 
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pressure cell is backfilled with sand prior to the placement of surcharge. Figure 7.25 

indicates the typical details of a total pressure cell. 

 
Earth pressure cells should be installed with their sensitive side facing upward in order to 

measure correctly the surcharge load. Figure 7.26 highlights the comparative plot of earth 

pressure between earth pressure cells installed with sensitive side facing up and down for a 6 

meter height of surcharge (surcharge elevation +10 mCD). As evident, the cells placed with 

the sensitive side facing upwards provides an accurate reading of the imposed surcharge 

load. 

 

 
Figure 7.25 Typical details of a total pressure cell. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 7.26 Comparison between the results of earth pressure between cells placed with 

sensitive side up and down (Arulrajah et al., 2004b; Bo, Arulrajah and Choa; 
1998b). 
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8.0 FIELD INSTRUMENTATION OF MARINE CLAY CASE STUDIES 

 

Field instrumentation case studies of the behaviour of marine clay under reclamation fills 

was carried out at two locations in the project site. In the field instrumentation case studies, 

the behaviour of the marine clay was monitored for sub-areas with and without vertical 

drains. Long duration field instrumentation monitoring was carried out at regular intervals at 

the case study locations. 

 

 The first field instrumentation case study location was located beyond the northern tip of the 

runway and is referred to as the Pilot Test Site. The field instrumentation case study at the 

Pilot Test Site described in this chapter has been discussed in detail by the author (Arulrajah 

et al., 2003a, 2004g, 2004e, 2004l, 2004n) during the course of this research study.  

 

The second field instrumentation case study location was situated at the same location as the 

in-situ testing site and is referred to as the In-Situ Test Site. The field instrumentation case 

study at the In-Situ Test Site described in this chapter has been discussed in detail by the 

author (Arulrajah et al., 2004c, 2004b, 2003b) during the course of this research study. The 

location of the field instrumentation case study sites within the Changi East Reclamation 

Project site is shown in Figure 8.1. 

 

 
Figure 8.1 Location of field instrumentation case study sites (Arulrajah et al., 2004d). 
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8.1 FIELD INSTRUMENTATION OF MARINE CLAY CASE STUDY:  

PILOT TEST SITE 

 

The location of the Pilot Test Site is in the northern area of the project just beyond the 

runway tip. The field instruments at these locations were installed on-land at the vertical 

drain platform level of +4 mCD just before or soon after vertical drain installation. The Pilot 

Test Site consisted of 4 sub-areas, three of which were installed with vertical drains at 

various spacings. Long duration field settlement monitoring was carried out at regular 

intervals at these sub-areas.  

 

The seabed elevation is about -6 mCD (Admiralty Chart Datum, where mean sea level is 

+1.6 mCD) while the thickness of the soft marine clay in the location was up to 40 meters 

thick. Land reclamation was first carried out to the vertical drain platform elevation of +4 

mCD. Field instruments comprising of surface settlement plates, deep settlement gauges, 

pneumatic piezometers, vibrating-wire electric piezometers and water stand-pipes were 

installed from the platform level where vertical drains were installed. The field instruments 

were installed prior to vertical drain installation. Prefabricated vertical drains were installed 

to depths of up to 45 meters in the various sub-areas. Following the installation of vertical 

drains, surcharge was next placed by hydraulic filling to an elevation of +7 mCD 

simultaneously for all the sub-areas. As such, an assessment could be carried out and 

compared between the sub-areas treated with vertical drains at various spacings when 

subjected to the same surcharge preload. The analysis of the field instrumentation results for 

the various sub-areas was carried out 32 months after surcharge placement which equates to 

a total monitoring duration of about 42 months.  

 

The field instrumentation case study at the Pilot Test Site described in this chapter has been 

discussed in detail by the author (Arulrajah et al., 2003a, 2004a, 2004e, 2004g, 2004j, 2004l, 

2004n) during the course of this research study. The summary of the vertical drain spacing in 

the various sub-areas based on the design requirements is indicated in Table 8.1.  

 

Table 8.1. Summary of Pilot Test Site sub-area vertical drain spacings  
(Arulrajah et al., 2003a). 

Pilot Test Site Sub-Areas Vertical Drain Square Spacing 

A2S-71 2.0 meter x 2.0 meter 

A2S-72 2.5 meter x 2.5 meter 

A2S-73 3.0 meter x 3.0 meter 

A2S-74 No Drain 
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Figure 8.2 shows the layout plan of the Pilot Test Site. The profile of field instrumentation at 

the Pilot Test Site is shown in Figure 8.3. Figures 8.4 to 8.7 indicate the instrument 

elevations.  

 

 
Figure 8.2 Layout plan and vertical drain spacing of sub-areas at the Pilot Test Site 

(Arulrajah et al., 2003a). 
 

 

 
Figure 8.3 Cross sectional profile showing instrument elevations at the Pilot Test Site 

(Arulrajah et al., 2004e). 
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Figure 8.4 Instrument elevations in A2S-71 (2.0m x 2.0m). 

 

 

 
Figure 8.5 Instrument elevations in A2S-72 (2.5m x 2.5m). 
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Figure 8.6 Instrument elevations in A2S-73 (3.0m x 3.0m). 

 

 

 
Figure 8.7 Instrument elevations in A2S-74 (No Drain). 
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8.1.1 Analyses of Settlement Gauges 

The surface settlement plates which was installed 0.5 meters beneath the vertical drain 

platform level in the reclamation sand and the deep settlement gauges which was installed at 

the top surface of the compressible marine clay gave similar readings for magnitude and time 

rate of settlement. This indicates that the settlement contribution of the sandfill layer is 

minimal as would be expected. The deep settlement gauges that were installed in the 

different sub-layers indicate decreasing settlement with depth as would be expected. 

 

Figure 8.8 compares the surface settlement plate results between the various sub-areas in the 

Pilot Test Site. The A2S-71 (2.0m x 2.0m) sub-area records the highest magnitude and rate 

of settlement as compared to the other sub-areas due to its closer drain spacing. The A2S-74 

(no drain) sub-area on the other hand records the least magnitude and rate of settlement. 

Normally, for the same surcharge and the same thickness of clay, the same amount of 

ultimate settlement is obtained after a long time. However, in the Pilot Test Site, variations 

in settlements is due to slight variation of soil profile at the various sub-areas. Furthermore, 

settlement of the sub-areas prior to the installation of prefabricated vertical drains will also 

result in variations in the magnitude of surcharge load and hence the ultimate settlement. 

This is because the sub-areas were surcharged to the same elevation rather than same load. 

The significant improvement of the vertical drain treated areas compared to the A2S-74 (no 

drain) sub-area is clearly evident in the figure. It can be observed that the closer the vertical 

drain spacing, the higher the corresponding magnitude of settlement. Sub-area A2S-71 (2.0m 

x 2.0m) with the closest drain spacing indicates the highest settlement readings while the 

untreated sub-area A2S-74 (no drain) indicates the least. This indicates that the vertical drain 

is functioning as expected.  

 

Figure 8.9 compares the field settlement isochrones between the various sub-areas of the 

Pilot Test Site at various durations after surcharge. The settlement gauges indicate increasing 

settlement in the marine clay with the increase in the surcharge duration. The marine clay is 

observed to be softer and with higher compression parameters at the upper layer. The gauges 

installed in the very deep underlying dense sand layer indicates minimal settlement with the 

increasing surcharge duration which is expected. The settlement gauges indicate increasing 

settlement in the marine clay with the increase in the surcharge duration. The marine clay is 

observed to be softer and with higher compression parameters in the upper marine clay layer. 

The settlement gauges installed in the very deep underlying dense sand layer indicates 

minimal settlement with the increasing surcharge duration which is expected. The settlement 

isochrones confirm that the sub-area with the closer drain spacing registers the higher 

settlements. The settlement isochrones indicate the trend of decreasing settlement for the 
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deeper deep settlement gauges which is due to the marine clay increasing with density, 

stiffness,  strength and compression parameters decreasing with depth. Minimal settlement is 

recorded in the hard old alluvium layer. Plotting settlement isochrones is a useful means of 

checking whether the settlement gauges for the clusters are functioning properly. 
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Figure 8.8 Comparison of field settlement between sub-areas at the Pilot Test Site 

(Arulrajah et al., 2003a). 
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Figure 8.9    Comparison of field settlement isochrones between sub-areas at the Pilot Test 

Site (Arulrajah et al., 2004g). 
 

 

Figures 8.10 indicates the magnitudes of settlements of the A2S-71(2.0m x 2.0m) sub-area in 

the Pilot Test Site. Figures 8.11 indicates the magnitudes of settlements of the A2S-72 (2.5m 

x 2.5m) sub-area in the Pilot Test Site. Figures 8.12 indicates the magnitudes of settlements 

of the A2S-73 (3.0m x 3.0m) sub-area in the Pilot Test Site. Figures 8.13 indicates the 

magnitudes of settlements of the A2S-74 (No Drain) sub-area in the Pilot Test Site.  
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Figure 8.10 Field settlement results of settlement plate and deep settlement gauges at 

A2S-71 (2.0m x 2.0m) (Arulrajah et al., 2004g). 
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Figure 8.11 Field settlement results of settlement plate and deep settlement gauges at 

A2S-72 (2.5m x 2.5m) (Arulrajah et al., 2004g). 
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Figure 8.12 Field settlement results of settlement plate and deep settlement gauges at 

A2S-73 (3.0m x 3.0m) (Arulrajah et al., 2004g). 
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Figure 8.13 Field settlement results of settlement plate and deep settlement gauges at 

A2S-74 (No Drain) (Arulrajah et al., 2004g). 
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Figure 8.14 to Figure 8.16 shows the typical Asaoka plot predictions for the settlement plates 

at the A2S-71, A2S-72 and A2S-73 sub-areas of the Pilot Test Site 32 months after 

surcharge at time intervals of 28 and 56 days.  
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Figure 8.14 Asaoka plot for A2S-71 (2.0m x 2.0m) at time interval of 28 and 56 days 

(Arulrajah et al., 2004g). 
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Figure 8.15 Asaoka plot for A2S-72 (2.5m x 2.5m) at time interval of 28 and 56 days 

(Arulrajah et al., 2004g). 
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Figure 8.16 Asaoka plot for A2S-73 (3.0m x 3.0m) at time interval of 28 and 56 days 

(Arulrajah et al., 2004g). 
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Figure 8.17 and 8.22 shows the combined settlement gauges and settlement plate Hyperbolic 

plot predictions at the A2S-71, A2S-72 and A2S-73 sub-areas of the Pilot Test Site 32 

months after surcharge placement.  
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Figure 8.17 Combined Hyperbolic plot of settlement gauges at A2S-71 (2.0m x 2.0m) 

(Arulrajah et al., 2004g). 
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Figure 8.18 Hyperbolic plot at A2S-71 (2.0m x 2.0m) after surcharge duration of 32 

months (Arulrajah et al., 2004g). 
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Figure 8.19 Combined Hyperbolic plot of settlement gauges at A2S-72 (2.5m x 2.5m) 

(Arulrajah et al., 2004g). 
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Figure 8.20 Hyperbolic plot at A2S-72 (2.5m x 2.5m) after surcharge duration of 32 

months (Arulrajah et al., 2004g). 
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Figure 8.21 Combined Hyperbolic plot of settlement gauges at A2S-73 (3.0m x 3.0m) 

(Arulrajah et al., 2004g). 
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Figure 8.22 Hyperbolic plot at A2S-73 (3.0m x 3.0m) after surcharge duration of 32 

months (Arulrajah et al., 2004g). 
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8.1.2 Analyses of Piezometers 

All the piezometers indicate a marked increase in piezometric elevations and excess pore 

water pressures during the surcharge placement which is indicated at around the 120 to 150 

day mark. This is followed by a gradual dissipation of the excess pore water pressures during 

the surcharge period in the sub-areas with vertical drains which indicates gaining degree of 

consolidation of the marine clay over time. The excess pore water pressure is derived from 

the difference of the total pore water pressure and the hydrostatic pore water pressure. The 

A2S-74 (No Drain) sub-area also indicates this trend but to a far smaller magnitude to the 

vertical drain treated areas. 

 

At approximately the 1170 day mark, some piezometers pick up a slight rise in piezometric 

elevation and excess pore water pressures which is attributable to the surcharge placement at 

site of areas adjacent and close to these sub-areas. As such the piezometers are noted to be 

sensitive to the surcharge placement operations and the loading pressure bulbs of these 

adjacent areas.  

 

Damage to piezometers is indicated by the extreme shooting-up in the piezometric elevation 

and excess pore water pressures readings of certain piezometers. Damage can also be 

indicated by a sudden loss of signal which could be attributable to damage from moving 

machinery. 

 

The piezometer monitoring data for all the sub-areas have been corrected to account for the 

settlement of the piezometer tip. 

 

The piezometer elevations and excess pore water pressures for the A2S-71 (2.0m x 2.0m) 

sub-area is shown in Figure 8.23 and Figure 8.24. The piezometer elevations and excess pore 

water pressures for the A2S-72 (2.5m x 2.5m) sub-area is shown in Figure 8.25 and Figure 

8.26. The piezometer elevations and excess pore water pressures for the A2S-73 (3.0m x 

3.0m) sub-area is shown in Figure 8.27 and Figure 8.28. The piezometer elevations and 

excess pore water pressures for the A2S-74 (No Drain) sub-area is shown in Figure 8.29 and 

Figure 8.30. In the said figures, the electric piezometers are denoted as PZ while the 

pneumatic piezometers are denoted as PP. 

 

Higher excess pore presures were recorded in the A2S-71 (2.0m x 2.0 m) and A2S-74 (no 

drain) sub-areas which indicates comparatively lower effective stress than the other sub-

areas.  
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Figure 8.23 Piezometric elevations at A2S-71 (2.0m x 2.0m) (Arulrajah et al., 2004g). 
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Figure 8.24 Excess pore water pressures at A2S-71 (2.0m x 2.0m)  

(Arulrajah et al., 2004g). 
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Figure 8.25 Piezometric elevations at A2S-72 (2.5m x 2.5m) (Arulrajah et al., 2004g). 
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Figure 8.26 Excess pore water pressures at A2S-72 (2.5m x 2.5m)  

(Arulrajah et al., 2004g). 
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Figure 8.27 Piezometric elevations at A2S-73 (3.0m x 3.0m) (Arulrajah et al., 2004g). 
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Figure 8.28 Excess pore water pressures at A2S-73 (3.0m x 3.0m)  

(Arulrajah et al., 2004g). 
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Figure 8.29 Piezometric elevations at A2S-74 (No Drain) (Arulrajah et al., 2004g). 
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Figure 8.30 Excess pore water pressures at A2S-74 (No Drain)  

(Arulrajah et al., 2004g). 
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Figure 8.31 to 8.33 indicates the comparison of excess pore pressure isochrones between the 

sub-areas 12, 24 and 32 months after surcharge. Non-uniform variation of the excess pore 

pressure regarding elevation is due to slight difference in the installed location of the 

piezometer from the vertical drains as well as the presence of thin sand lenses (so-called 

microlayers). 
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Figure 8.31 Comparison of piezometer excess pore pressure isochrones between sub-

areas 12 months after surcharge. 
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Figure 8.32 Comparison of piezometer excess pore pressure isochrones between sub-

areas 24 months after surcharge 
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Figure 8.33 Comparison of piezometer excess pore pressure isochrones between sub-

areas 32 months after surcharge (Arulrajah et al., 2004g). 
 
 
Figure 8.34 indicates the comparison of excess pore pressure isochrones between the sub-

areas various periods after surcharge. Figure 8.35 indicates the comparison of degree of 

consolidation between the sub-areas 32 months after surcharge. Relatively rapid dissipation 

of excess pore water pressure with time is clearly evident in the vertical drain treated sub-

areas as compared to the No Drain sub-area. The sub-area with the closer vertical drain 

spacing is found to generally register the higher degree of consolidation at a particular 

elevation. Some exceptions to this is found at certain elevation which could be due to the 

slightly varying soil profiles that exist between the various sub-areas. Furthermore, the 

presence of sand seams in the marine clay will increase the permeability of the marine clay 

and enable the excess pore water pressure in it to drain relatively rapidly. 

 

The piezometers installed close to the reclamation sand boundary close to the top of the 

marine clay are found to register increasingly lower excess pore water pressure with time 

and thus higher degree of consolidation, which is due to it being installed close to the 

drainage boundary. Piezometers installed close to the dense sand layer at the bottom of the 

marine clay is also found to register increasingly lower excess pore water pressure with time 

and thus higher degree of consolidation, confirming that there is bottom drainage of excess 

pore water pressure into the permeable sand layer. Evidently from the findings of the figures, 

the degree of consolidation is highest at the sub-area with the closest vertical drain spacing 

and lowest for the No Drain sub-area. The summary of the degree of consolidations for the 
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various sub-areas will be reported later in the section 8.1.4 when the piezometer readings are 

compared with the settlement plate readings. 

 

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280
Excess Pore Pressure (kPa)

El
ev

at
io

n 
(m

C
D

)
A2S-71 PZ: 12 months after surcharge

A2S-71 PZ: 24 months after surcharge

A2S-71 PZ: 32 months after surcharge

A2S-71: Total Additional Load =160.31 kPa

A2S-71: Submerged Additional Load (12 mths)=151.89 kPa 

A2S-71: Submerged Additional Load (24 mths)=138.14 kPa

A2S-71: Submerged Additional Load (32 mths)=134.75 kPa

A2S-72 PP: 12 months after surcharge

A2S-72 PP: 24 months after surcharge

A2S-72 PP: 32 months after surcharge

A2S-72: Total Additional Load = 147.08 kPa

A2S-72: Submerged Additional Load (12 mths)=143.65 kPa

A2S-72: Submerged Additional Load (24 mths)=128.93 kPa

A2S-72: Submerged Additional Load (32 mths)=126.16 kPa

A2S-73 PP: 12 months after surcharge

A2S-73 PP: 24 months after surcharge

A2S-73 PP: 32 months after surcharge

A2S-73: Total Additional Load = 146.5 kPa

A2S-73: Submerged Additional Load (12 mths)=144.25 kPa

A2S-73: Submerged Additional Load (24 mths)=130.69 kPa

A2S-73: Submerged Additional Load (32 mths)=127.23 kPa

A2S-74 PZ: 12 months after surcharge

A2S-74 PZ: 24 months after surcharge

A2S-74 PZ: 32 months after surcharge

A2S-74: Total Additional Load = 162.35 kPa

A2S-74: Submerged Additional Load (12 mths)=155.14 kPa

A2S-74: Submerged Additional Load (24 mths)=143.11 kPa

A2S-74: Submerged Additional Load (32 mths)=140.67 kPa

A2S-71: 2.0m x 2.0m drain spacing 
A2S-72: 2.5m x 2.5m drain spacing
A2S-73: 3.0m x 3.0m drain spacing
A2S-74: No drain 

 
Figure 8.34 Comparison of piezometer excess pore pressure isochrones between sub-

areas various periods after surcharge.  
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Figure 8.35 Comparison of degree of consolidation between sub-areas 32 months after 

surcharge (Arulrajah et al., 2004g).  
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8.1.3 Comparison between Electric and Pneumatic Piezometers 

The performance of the electric (PZ) and pneumatic (PP) piezometers installed in marine 

clay in the Pilot Test Site was studied and has been reported by the author during the course 

of this research (Arulrajah et al., 2004l). The results obtained from the two types of 

piezometers were compared to ascertain the performance of the piezometers installed in the 

marine clay and subject to the reclaimed fill load and surcharge load. The piezometers were 

compared for the A2S-71 (2.0 m x 2.0 m) and A2S-74 (No Drain) sub-areas where the two 

types of piezometers were both installed at the same elevations in the marine clay for 

comparison purposes. The excess pore pressure isochrones obtained from the piezometers 

monitoring data were compared at various periods of time after the placement of surcharge. 

Both the electric and pneumatic piezometer readings were corrected for the settlement of the 

piezometer tip.  

 

Figure 8.36 indicates the cross-sectional profile showing piezometer locations at the A2S-71 

(2.0 m x 2.0 m) and A2S-74 (No Drain)  sub-areas. Figure 8.37 indicates the comparison of 

the excess pore pressure isochrones from electric and pneumatic piezometers monitoring 

data among  the sub-areas at 12, 24 and 32 months after surcharge.  Figure 8.38 shows the 

comparison of the excess pore pressure isochrones at the various time intervals after 

surcharge placement. Figure 8.39 indicates the comparison of degree of consolidation 

between pneumatic and electric piezometers for the various piezometer elevations 32 months 

after surcharge.  

 
Figure 8.36 Cross-sectional profile showing piezometer locations at the A2S-71 (2.0 m x 

2.0 m) and A2S-74 (No Drain) sub-areas (Arulrajah et al., 2004l). 
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Figure 8.37 Comparison between electric (PZ) and pneumatic (PP) piezometer excess pore 

pressure isochrones at 12, 24 and 32 months after surcharge (Arulrajah et al., 
2004l).   
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Figure 8.38 Comparison between electric (PZ) and pneumatic (PP) piezometer excess pore 

pressure isochrones at various periods after surcharge (Arulrajah et al., 2004l).   
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Figure 8.39 Comparison of degree of consolidation between electric (PZ) and pneumatic 

(PP) piezometer 32 months after surcharge (Arulrajah et al., 2004l).     
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The comparison of the excess pore pressure isochrones indicate that in the vertical drain 

treated sub-area A2S-71(2.0 m x 2.0 m ),  electric piezometers consistently provide a lower 

excess pore pressure than the pneumatic piezometers installed at the same corresponding 

elevation. The shape of the excess pore pressure isochrones of the two types of piezometers 

are of the same trend in the various sub-layers thus indicating that the measurement of the 

excess pore pressures by the piezometers are consistent for both types of piezometers at the 

same corresponding elevation. 

 

In the untreated sub-area A2S-74 (No Drain), the lower elevation pneumatic piezometer 

provides lower excess pore pressure than the electric piezometers installed at the same 

corresponding elevation. However, at deeper elevations, the electric piezometer is found to 

provide lower excess pore pressures. In this location, the shape of the excess pore pressure 

isochrones of the two types of piezometers are generally of the same trend in the various 

sub-layers. This indicates that the measurement of the excess pore pressures by the 

piezometers are consistent for both types of piezometers at the same corresponding 

elevation. It is to be noted that the pneumatic piezometer at the elevation of -27 mCD has 

been installed in a layer with sand seams or a sandy layer due to the very low excess pore 

water pressure at that elevation.  

 

The comparisons of the degree of consolidation indicate that in the vertical drain treated sub-

area A2S-71(2.0m x 2.0m), electric piezometers generally provides a higher degree of 

consolidation than the pneumatic piezometers installed at the same corresponding elevation. 

The shape of the degree of consolidation isochrones of the two types of piezometers are of 

the same trend in the various sub-layers, thus indicating that the measurement of the degree 

of consolidation are consistent for both types of piezometers at the same corresponding 

elevation.  

 

In the untreated sub-area A2S-74 (No Drain), the shallower elevation pneumatic piezometer 

generally registers higher degree of consolidation than the electric piezometers installed at 

the same corresponding elevation. However at deeper elevations, the electric piezometer is 

found to register higher degree of consolidation. The shape of the degree of consolidation 

isochrones of the two types of piezometers are generally of the same trend in the various 

sub-layers indicating that the measurement of the degree of consolidation are consistent for 

both types of piezometers at the same corresponding elevation.  
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Table 8.2 below summarises the degree of consolidation of the sub-areas based on the 

isochrones of the electric piezometers at various periods after surcharge placement. The 

electric piezometer indicates that at the end of the surcharging period of 32 months, the sub-

area with the vertical drains (A2S-71: 2.0 x 2.0) has achieved a degree of consolidation of 

86.2 % while the untreated sub-area (A2S-74) has achieved a degree of consolidation of only 

37.0 %. Dissipation of excess pore water pressure readings is faster in the vertical drain 

treated sub-area. This indicates that the vertical drains installed in the project are performing 

to improve the soil drainage system.  

 

Table 8.2  Comparison of average degree of consolidation using electric piezometers at 
various periods after surcharge placement.  

Sub-Area Electric Piezometers 12 mths. 24 mths. 32 mths. 

A2S-71 (2.0m x 2.0m) 

 

Degree of Consolidation, U (%) 79.7 83.0 

 

86.2 

A2S-74 (No Drain) Degree of Consolidation, U (%) 35.3 35.5 37.0 

 

 

The findings of the comparison between pneumatic and electric piezometers indicate that 

there is reasonable agreement in readings between the two types of piezometers. As such, 

either type of piezometer can be used for the monitoring of the marine clay behaviour under 

reclaimed fills. The slight variations could be due to differences in the soil stratification or 

the sensitivity of the  piezometer.   

 

8.1.4 Comparison of Degree of Consolidation and ch between Sub-Areas 

Table 8.3 summarises the comparison of degree of consolidation between the settlement 

plates and piezometers at the various sub-areas 32 months after surcharge. The degree of 

consolidation of the vertical drain treated sub-areas is far greater than that of the No Drain 

sub-area.  

 

The Asaoka method indicates that the sub-area with the closest vertical drain spacing has 

attained the highest degree of consolidation for the various surcharging durations. At the end 

of the surcharging period of 32 months, the sub-area with the closest vertical drain spacing 

(A2S-71: 2.0 x 2.0) has achieved a degree of consolidation of 91.8 % while that with the 

furthest vertical drain spacing (A2S-73: 3.0 x 3.0) has achieved a degree of consolidation of 

79.0 %. The study reveals that the ch value of the marine clay, as defined in chapter 7, is 

lowest at the sub-area with the closest vertical drains spacing (A2S-71: 2.0 x 2.0) and highest 

at the sub-area with the furthest vertical drain spacing (A2S-73: 3.0 x 3.0). This can be 
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attributed to the higher degree of smear effect at locations with closer drain spacing. 

However reduction of ch with time is due to reduction of void ratio as consolidation progress. 

 

Table 8.3 Comparison of Asaoka, Hyperbolic and piezometer methods at Pilot Test Site 
32 months after surcharge - 41.9 months of monitoring (Arulrajah et al., 2004g). 

Sub-Area Comparison Asaoka Hyperbolic Piezometer 

A2S-71 

2.0 x 2.0 m 

 

Ultimate Settlement (m) 

Settlement to date (m) 

Degree of Consolidation, U (%) 

Back-Analysed ch (m2/year) 

1.838 

1.687 

91.8 

1.08 

1.801 

1.687 

93.7 

- 

- 

- 

86.2 

1.30 

A2S-72 

2.5 x 2.5 m 

 

Ultimate Settlement (m) 

Settlement to date (m) 

Degree of Consolidation, U (%) 

Back-Analysed ch (m2/year) 

1.412 

1.264 

89.5 

1.22 

1.408 

1.264 

89.8 

- 

- 

- 

82.5 

1.94 

A2S-73 

3.0 x 3.0 m 

 

Ultimate Settlement (m) 

Settlement to date (m) 

Degree of Consolidation, U (%) 

Back-Analysed ch (m2/year) 

1.200 

0.948 

79.0 

2.20 

1.169 

0.948 

81.1 

- 

- 

- 

73.1 

2.23 

A2S-74 

No Drain 

 

Degree of Consolidation, U (%) 

 

- 

 

- 

 

37.0 

 

 
The Hyperbolic method indicates that at the end of the surcharging period of 32 months, the 

sub-area with the closest vertical drain spacing (A2S-71: 2.0 x 2.0) has achieved a degree of 

consolidation of 93.7 % while that with the furthest vertical drain spacing (A2S-73: 3.0 x 

3.0) has achieved a degree of consolidation of 81.1 %.  

 

Normally, for the same surcharge and the same thickness of clay, the same amount of 

ultimate settlement is obtained after a long time. However, in the Pilot Test Site, variations 

in the final predicted settlements is due to variation of soil profile at the various sub-areas. In 

addition higher excess pore pressure was recorded in the A2S-71 (2.0m x 2.0 m) and A2S-74 

(no drain) sub-areas which indicates comparatively lower effective stress than the other sub-

areas. Furthermore, settlement of the sub-areas prior to the installation of  instruments will 

also result in variations in the settlement measured after installation of instruments.  
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The piezometer indicates that at the end of the surcharging period of 32 months, the sub-area 

with the closest vertical drain spacing (A2S-71: 2.0 x 2.0) has achieved a degree of 

consolidation of 86.2 % while the untreated sub-area (A2S-74) has achieved a degree of 

consolidation of only 37.0 %.  

 

The piezometer monitoring data indicates that the ch value of the marine clay is lowest at the 

sub-area with the closest vertical drains spacing (A2S-71: 2.0 x 2.0) and highest at the sub-

area with the furthest vertical drain spacing (A2S-73: 3.0 x 3.0). This is in similar agreement 

with the ch values back-calculated by the Asaoka method and confirms the higher degree of 

smear effect at locations with closer drain spacing. However reduction of ch with time is due 

to reduction of void ratio as consolidation progress. 

 

8.1.5 Findings for Field Instrumentation of Pilot Test Site  

The magnitude of settlement and thereby degree of consolidation is highest in sub-area A2S-

71 (2.0 x 2.0 m) which has the closest vertical drain spacing and lowest in A2S-74 (No 

Drain). Similarly, dissipation of excess pore water pressure readings is evidently faster in the 

closer spacing vertical drain treated sub-area. This indicates that the vertical drains installed 

in the project are performing to improve the soil drainage system. 

 

The ultimate settlement and degree of consolidation obtained by the Asaoka and Hyperbolic 

methods is found to converge to be in excellent agreement with each other after the 

surcharge period of 32 months. The degree of consolidation predicted by the Hyperbolic 

method is found to be slightly higher than that of the Asaoka method, as illustrated in Table 

8.3.  

 

The piezometer indicates lower degree of consolidation as compared to field settlement 

predictions. Similar findings for lower piezometer readings compared to field settlement 

predictions have been reported by Bo et al. (1999). This can be attributable to the possible 

pinching of the piezometer cables due to the large strain settlements of the reclaimed fill.  

 

The degree of consolidation of the Pilot Test Site, as obtained by the Asaoka, Hyperbolic and 

Piezometer methods is summarised as follows: 

Sub-area A2S-71 (2.0 x 2.0 m) had attained a degree of consolidation of about 93 %.  

Sub-area A2S-72 (2.5 x 2.5 m) had attained a degree of consolidation of about 90 %.  

Sub-Area A2S-73 (3.0 x 3.0 m) had attained a degree of consolidation of about 80%.  

Sub-Area A2S-74 (No Drain) had attained a degree of consolidation of about 37.0 %.  
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The ch values back-calculated by the Asaoka and piezometer methods 32 months after 

surcharge placement is found to be in good agreement. The Asaoka and piezometer methods 

indicate that the back-analysed ch value of the marine clay is lowest at the sub-area with the 

closest vertical drains spacing (A2S-71: 2.0 x 2.0) and highest at the sub-area with the 

furthest vertical drain spacing (A2S-73: 3.0 x 3.0). This can be attributed to the higher 

degree of smearing effect at locations with closer drain spacing. However reduction of ch 

with time is interpreted to be due to reduction of void ratio as consolidation progress. 

 

For soft marine clay, the smear effect can be quite significant at locations installed with 

vertical drains (Chu et al., 2002). Bo et al. (1998b) has reported that the permeability of soil 

in the smear zone could be reduced by 1 order of magnitude or to the horizontal hydraulic 

conductivity of the remoulded clay as a result of the smearing. When drains are installed at 

close spacing, the back-calculated ch values will generally be greatly influenced by this 

smear zone (Chu et al., 2002).  

 

At the Pilot Test Site, the findings of the comparison between pneumatic and electric 

piezometers indicate that there is reasonable agreement in readings between the two types of 

piezometers. As such either type of piezometer can be used for the monitoring of the marine 

clay behaviour under reclaimed fills. A proper protective guard cell is required for the 

pneumatic piezometer to counter for the effect of possible pinching of the piezometer cable 

due to the large strain settlements of the reclaimed fill.  
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8.2 FIELD INSTRUMENTATION OF MARINE CLAY CASE STUDY:  

IN-SITU TEST SITE 

 

The location of the second instrumentation case study is the same location as that of the In-

Situ Test Site described earlier in Chapter 6. Field instruments comprising of surface 

settlement plates, deep settlement gauges, pneumatic piezometers and water stand-pipes 

were installed and monitored at both the Vertical Drain Area and the untreated Control Area. 

The instruments in the Control Area were installed prior to reclamation in an off-shore 

instrument platform. The Control Area was not treated with vertical drains. These 

instruments were protected as the reclamation filling works commenced in the area. 

Instruments in the Vertical Drain Area were installed on-land at the vertical drain platform 

level of +4 mCD just before or soon after vertical drain installation at 1.5 meter square 

spacing. Surcharge was placed at this case study area to the elevation of +10 mCD for both 

the Vertical Drain Area as well as the Control Area. The construction sequence for both 

these areas are identical as sand pumping operations were carried out for the entire case 

study area. The analysis of the instrumentation results was carried out for both the Vertical 

Drain Area and Control Area after a monitoring period of about 26 months which equates to 

a surcharging period of 20 months. The profile of the instrument elevations at the In-Situ 

Test Site is shown in Figure 8.40 while Figures 8.41 and 8.42 indicate the instrument 

elevations. The field instrumentation case study at the In-Situ Test Site described in this 

chapter has been discussed in detail by the author (Arulrajah et al., 2003b, 2004b, 2004c) 

during the course of this research study.  

 
SP = Settlement Plate, DS = Deep Settlement Gauge, PP = Pneumatic Piezometer , WS = Water Stand-Pipe  

Figure 8.40 Cross Sectional soil profile showing field instrumentation elevations at the In-
Situ Test Site (Arulrajah et al., 2004b).  
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Figure 8.41 Instrument elevations in Vertical Drain Area. 

 

 

 

 
Figure 8.42 Instrument elevations in Control Area. 
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8.2.1 Analyses of Settlement Gauges 

The surface settlement plate which was installed at the vertical drain platform level for the 

Vertical Drain Area and the deep settlement gauge which was installed at the top surface of 

the compressible marine clay gave similar readings for magnitude and time rate of 

settlement. This indicates that the settlement contribution of the sandfill layer is minimal as 

also indicated in the Pilot Test Site. The deep settlement gauges that were installed in the 

different sub-layers indicate decreasing settlement with depth as would be expected. 

 

Figure 8.43 compares the settlement plate results between the Vertical Drain Area and 

Control Area. The vast improvement of the Vertical Drain Area as compared to the untreated 

Control Area is clearly evident in Figure 8.43. This indicates that the vertical drains are 

functioning as per their requirements at the In-Situ Test Site. 

 
 
 
 
 

Figure 8.43 Comparison of field settlement between Vertical Drain Area and Control 
Area (Arulrajah et al., 2004b). 
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Figure 8.44 compares the field settlement isochrones between the Vertical Drain Area and 

Control Area. The settlement isochrones confirm that the Vertical Drain Area registers 

higher settlements than the Control Area. The settlement isochrones indicate the trend of 

decreasing settlement for the deeper settlement gauges which is due to the marine clay 

increasing with density, stiffness, compression parameters and strength with depth.  

 

It was found that the settlement plates (SP-95) and the deep settlement gauge (DS-93) that 

were installed at the original seabed level gave similar reading for the magnitude and rate of 

settlement. The deep settlement gauges that were installed in the different sub-layers indicate 

decreasing settlement with depth as would be expected. 
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Figure 8.44 Comparison of field settlement isochrones between Vertical Drain Area and 

Control Area (Arulrajah et al., 2004c). 
 

 

Figures 8.45 and 8.46 indicate the magnitudes of settlements in the Vertical Drain Area and 

the Control Area. As expected, the Vertical Drain Area indicated much higher settlement 

readings as compared to the Control Area due to the soil improvement works. This indicates 

that the vertical drains are functioning as per their requirements. 
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Figure 8.45 Field settlement results of settlement gauges at Vertical Drain Area 
(1.5m x 1.5 m) (Arulrajah et al., 2004b).  
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Figure 8.46 Field settlement results of settlement gauges at Control Area (No Drain) 
(Arulrajah et al., 2004b). 
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Figure 8.47 shows the typical Asaoka plot and interpretations for the settlement plate in the 

Vertical Drain Area.  
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Figure 8.47 Asaoka plot of settlement plate at Vertical Drain Area  

(Arulrajah et al., 2004b). 
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Figures 8.48 and 8.49 shows the typical Hyperbolic plots and interpretations for the 

settlement gauge at a particular elevation in the Vertical Drain Area. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.48 Combined Hyperbolic plot of settlement gauges at Vertical Drain Area 

(Arulrajah et al., 2003b).  
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Figure 8.49 Hyperbolic plot of settlement plate at Vertical Drain Area  

(Arulrajah et al., 2004b).  
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8.2.2 Analyses of Piezometers  

The piezometer monitoring data in the Vertical Drain Area inclusive of correction of the 

piezometer tip is shown in Figure 8.50. The piezometer monitoring data in the Control Area 

is shown in Figure 8.51.  

 

Figure 8.50 Piezometric Elevations at Vertical Drain Area (1.5m x 1.5m).  

 
Figure 8.51 Excess pore water pressures at Vertical Drain Area (1.5m x 1.5m) 

(Arulrajah et al., 2004c). 
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Figure 8.52 Piezometric elevations at Control Area (No Drain). 

 
 

Figure 8.53 Excess pore water pressures at Control Area (No Drain)  
(Arulrajah et al., 2003b).  
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Figure 8.54 indicates the comparison of excess pore pressure isochrones between the 

Vertical Drain Area and Control Area. The rapid dissipation of excess pore water pressure 

with time is clearly evident in the Vertical Drain Area. The slow rate of dissipation of excess 

pore water pressure with time is also noted at the Control Area. It is evident that the degree 

of consolidation of the Vertical Drain Area is far greater than that of the Control Area as 

would be expected. The Vertical Drain Area is found to register the higher degree of 

consolidation at each particular elevation. Piezometers installed close to the dense sand layer 

at the bottom of the marine clay is also found to register a high degree of consolidation thus 

confirming that there is bottom drainage of excess pore water pressure into the permeable 

sand layer.  
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Figure 8.54 Comparison of piezometer excess pore pressure isochrones between Vertical 

Drain Area and Control Area 20 months after surcharge (Arulrajah et al., 
2004b).   

 

8.2.3 Comparison of Degree of Consolidation  

Table 8.4 compares the degree of consolidation of the Vertical Drain Area by the various 

assessment methods. The degree of consolidation of the piezometers is found to tie in well 

with that of the settlement gauges at the Vertical Drain Area which is about 80%. The degree 

of consolidation of the piezometers in the Control Area is about 20%. Figure 8.55 compares 

the degree of consolidation as obtained from the settlement gauge and piezometer results at 

the Vertical Drain Area and Control Area. The greater rate of dissipation of excess pore 

water pressure with time is evident in the Vertical Drain Area.  
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Table 8.4 Comparison of Asaoka, Hyperbolic and piezometer methods at In-Situ Test 
Site 20 months after surcharge (Arulrajah et al., 2004b). 

Sub-Area Comparison Asaoka Hyperbolic Piezometer 

Vertical Drain 

1.5 x 1.5 m 

 

Ultimate Settlement(m) 

Settlement to date (m) 

Degree of Consolidation,U% 

3.000 

2.404 

80.1 

3.005 

2.404 

80.0 

- 

- 

80.0 

Control 

No Drain 

 

Degree of Consolidation, U% 

 

- 

 

- 

 

20.0 

 
 

 
 

Figure 8.55 Comparison of degree of consolidation at Vertical Drain Area and Control 
Area 20 months after surcharge (Arulrajah et al., 2004b). 

 
 
8.2.4 Back-Analysis of Field Consolidation Compression Parameters 

The field magnitude of settlement is very similar to the predicted settlement based on 

laboratory parameters found in Table 8.5.  

 

Back-analyses were carried out to determine the void ratio changes against effective stress 

based on piezometer and settlement data at the Vertical Drain Area. The void ratio versus 

effective stress curve for each sub-soil layer was then generated. From these actual field 

parameters of compression index, recompression index and yield stress values were 

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50 60 70 80 90 100

Degree of Consolidation (%)

El
ev

at
io

n 
(m

 C
D

)

Vertical Drain Area Piezometers
Vertical Drain Area Settlement gauges(Hyperbolic method)
Vertical Drain Area Settlement gauges (Asaoka method)
Control Area Piezometers



   

  235

compared with the laboratory parameters used in the design prediction. Field void ratio 

versus effective stress curve for sub-layers is shown in Figure 8.56.  

 

It can be seen in Table 8.5 that the compression parameters used in design stage are quite 

similar to field parameters back-analysed from field performance. This is the reason that 

actual field settlement is very close to the predicted settlement. 

 

Table 8.5   Comparison of laboratory prediction and back-analysed field soil parameters  

(Bo, Arulrajah and Choa, 1997b). 

Elevation Cc Cr Pc 

(mCD) Laboratory Field Laboratory Field Laboratory Field 

-7.50 1.00 0.875 0.13 - 41.3 < 40 

-12.85 1.00 1.133 0.13 0.590 93.9 90 

-17.40 0.25 0.343 0.10 0.030 272.9 133.7 

-23.55 0.80 0.551 0.17 0.018 235.5 181.6 

 

 

Figure 8.56 Field void ratio versus effective stress for sub-layers. 
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8.2.5 Back-Analyses of  Coefficient of Consolidation due to Horizontal Flow 

It was found from the back-analyses of the settlement monitoring results by Asaoka (1978) 

method that the actual field coefficient of consolidation due to horizontal flow is only 0.78 

m2/year. This is lower than the corresponding value of ch obtained from the in-situ holding 

test results as discussed in section 6.11 and that used in the design as discussed in section 

5.9.  

 

However, field measurement of coefficient of consolidation due to horizontal flow measured 

prior to reclamation by the various in-situ testing methods is much higher than the back 

analysed and design ch values.  

 

This is further confirmation that the permeability anisotropy of Singapore marine clay at 

Changi is not significant thus confirming the findings of Tavenas (1983) and Larsson (1981).  

 

The summary of the back analysed ch results of settlement gauges is given in Table 8.6.  

 

 

Table 8.6 Back analysed ch results of settlement gauges (Asaoka method). 

Settlement Gauge Elevation Back analysed ch (m2/yr) 

SP-95 - 3.29 0.78 

DS-93 - 4.1 0.69 

DS-106 - 10.9 1.11 

DS-107 -14.8 0.85 

DS-108 -20.0 1.18 

DS-109 -27.1 0.82 

 

Despite the in-situ testing measured coefficient of consolidation due to horizontal flow being 

much higher than the assumed values used in the design stage, actual field time rate of 

consolidation is slower than the predicted time rate. Back-analysed ch values are also much 

lower than the in-situ. As such, there are only three possibilities which are: a) reduction of 

horizontal and vertical permeability from time to time during consolidation b) well resistance 

and smear effects and c) clogging of vertical drains after some time.  
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8.2.6 Findings for Field Instrumentation of In-Situ Test Site  

The ultimate settlement predicted from the settlement gauges by the Hyperbolic and Asaoka 

prediction methods was found to be about 3 meters. The assessment of degree of 

consolidation is found to be in good agreement for the Asaoka, Hyperbolic and piezometer 

methods. The settlement gauges and piezometers indicate that the degree of consolidation of 

the Vertical Drain Area had attained a degree of consolidation of about 80%. This is in good 

agreement with the in-situ testing results.  

 

The piezometers indicate that the Control Area had only attained a degree of consolidation of 

about 20%. The field instrumentation results in the Vertical Drain Area indicates much 

higher degree of improvements as compared to the Control Area which indicates that the 

vertical drains are performing to improve the soil drainage system.  

 

Compression parameters obtained from the laboratory which were used for prediction is very 

similar to the actual back-analysed parameter. Back-analysed ch values are also much lower 

than the in-situ which is due to: a) reduction of horizontal and vertical permeability from 

time to time during consolidation b) well resistance and smear effects and c) clogging of 

vertical drains after some time.  
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9.0 EVALUATION OF OBSERVATIONAL METHODS OF ASSESSING 

IMPROVEMENT OF MARINE CLAY UNDER RECLAMATION FILLS   

 

Thick deposits of soft marine clay are commonly present in the coastal regions of the tropics. 

The use of prefabricated vertical drains with preloading option is the most widely-used 

ground improvement method for the improvement of soft clays in land reclamation projects. 

Surcharge of equivalent working load after taking into account submergence effect and 

settlement of the reclaimed land is placed until the required degree of consolidation of the 

soft clay is obtained. The assessment of the degree of consolidation of the marine clay is of 

paramount importance before the removal of preload. This analysis can be carried out by 

means of observational methods.    

 

Field settlement monitoring data can be used to ascertain the settlement of the reclaimed fill 

from the time of initial installation. The field settlement data can be analysed by the Asaoka 

and Hyperbolic methods to predict the ultimate settlement of the reclaimed land under the 

surcharge fill. Back-analysis of the field settlement data will also enable the coefficient of 

consolidation due to horizontal flow to be closely estimated.  Factors that affect prediction 

by the Asaoka method are the period of assessment after surcharge placement as well as the 

time interval used for the analysis. Factors that affect prediction by the Hyperbolic method 

are the period of assessment after surcharge placement. 

 
Piezometer monitoring data can be analysed to obtain the degree of consolidation of the 

improved marine clay. Piezometers were analysed to investigate the various factors that 

affect their analysis. Factors that affect the analysis of piezometers include period of 

assessment, hydrogeologic boundary condition, settlement of piezometer tip and reduction of 

initial imposed load due to submergence effect. 

 

It is to be noted that the Asaoka and Hyperbolic assessment methods was not reported for the 

A2S-74 (No Drains) sub-area in this chapter, as the degree of consolidation did not reach a 

high enough value to enable an interpretation. 

 

The aim of this chapter is to highlight the significance and impact of these factors in the field 

settlement assessment and back-analysis of coefficient of consolidation due to horizontal 

flow of soft clays and with special regard to coastal marine clays. The study was carried out 

using the data obtained from the Pilot Test Site sub-areas. Factors affecting field 

instrumentation assessment of marine clay treated with prefabricated vertical drains 
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described in this chapter have been discussed in detail by the author (Arulrajah et al., 2003a, 

2004a , 2004e) during the course of this research study.  

 

 

9.1 Factors Affecting Assessment by the Asaoka Method 

 

The magnitude of ultimate settlement, degree of consolidation and coefficient of 

consolidation due to horizontal flow can be predicted by the Asaoka method as described in 

section 7.7.1. The prediction of ultimate settlement by the Asaoka method is affected by the 

period of assessment after surcharge placement as well as by the time interval used for the 

assessment.  

 

Factors affecting assessment by the Asaoka method have been discussed in detail by the 

author (Arulrajah et al., 2003a, 2004e) during the course of this research study. The 

assessment by the Asaoka method was carried out for the sub-areas for assessment periods of 

12, 24 and 32 months after surcharge placement with the use of various time intervals.  

 

Tables 9.1, 9.2 and 9.3 compare the magnitude of ultimate settlement (Sult), degree of 

consolidation (U%) (as defined in section 7.7.3) and coefficient of consolidation due to 

horizontal flow (ch)  predicted by the Asaoka method. The predictions were carried out using 

various selected time intervals as tabulated in Tables 9.1, 9.2 and 9.3. The predictions were 

carried out with assessment periods of 12, 24 and 32 months after surcharge for the various 

vertical drain treated sub-areas of the Pilot Test Site.  
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Table 9.1   Asaoka method with various time intervals 12 months after surcharge 
   - 21.6 months of monitoring (Arulrajah et al., 2004e). 

Sub-Area Asaoka 7 days 14 days 21 days 28 days 42 days 56 days 

A2S-71 

2.0 x 2.0m  

 

Sult(m) 

St (m) 

U% 

ch (m2/yr) 

1.895 

1.334 

70.4 

1.78 

1.893 

1.334 

70.5 

1.35 

1.890 

1.334 

70.6 

1.40 

1.872 

1.334 

71.3 

1.29 

1.872 

1.334 

71.3 

1.27 

1.872 

1.334 

71.3 

1.06 

A2S-72 

2.5 x 2.5m  

 

Sult(m) 

St (m) 

U% 

ch (m2/yr) 

1.520 

1.020 

67.1 

2.62 

1.517 

1.020 

67.2 

1.42 

1.515 

1.020 

67.3 

1.55 

1.500 

1.020 

68.0 

1.30 

1.500 

1.020 

68.0 

1.33 

1.500 

1.020 

68.0 

1.27 

A2S-73 

3.0 x 3.0m  

Sult(m) 

St (m) 

U% 

ch (m2/yr) 

1.280 

0.693 

54.1 

3.87 

1.270 

0.693 

54.6 

3.00 

1.260 

0.693 

55.0 

1.96 

1.250 

0.693 

55.4 

2.07 

1.250 

0.693 

55.4 

2.03 

1.250 

0.693 

55.4 

1.99 

 

 

 

Table 9.2   Asaoka method with various time intervals 24 months after surcharge  
- 33.7 months of monitoring (Arulrajah et al., 2004e). 

Sub-Area Asaoka 7 days 14 days 21 days 28 days 42 days 56 days

A2S-71 

2.0 x 2.0m  

 

Sult(m) 

St (m) 

U% 

ch (m2/yr) 

1.875 

1.578 

84.2 

1.93 

1.873 

1.578 

84.2 

1.24 

1.870 

1.578 

84.4 

1.22 

1.850 

1.578 

85.3 

1.17 

1.850 

1.578 

85.3 

1.16 

1.850 

1.578 

85.3 

1.14 

A2S-72 

2.5 x 2.5m  

 

Sult(m) 

St (m) 

U% 

ch (m2/yr) 

1.450 

1.225 

84.5 

2.87 

1.445 

1.225 

84.8 

1.86 

1.440 

1.225 

85.1 

1.78 

1.420 

1.225 

86.3 

1.46 

1.420 

1.225 

86.3 

1.25 

1.420 

1.225 

86.3 

1.20 

A2S-73 

3.0 x 3.0m  

Sult(m) 

St (m) 

U% 

ch (m2/yr) 

1.248 

0.856 

68.6 

4.94 

1.243 

0.856 

68.9 

3.43 

1.242 

0.856 

68.9 

2.81 

1.240 

0.856 

69.0 

2.09 

1.240 

0.856 

69.0 

2.06 

1.240 

0.856 

69.0 

1.75 
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Table 9.3   Asaoka method with various time intervals 32 months after surcharge 
- 41.9 months of monitoring (Arulrajah et al., 2004e). 

Sub-Area Asaoka 7 days 14 days 21 days 28 days 42 days 56 days

A2S-71 

2.0 x 2.0m  

 

Sult(m) 

St (m) 

U% 

ch (m2/yr) 

1.857 

1.687 

90.8 

2.20 

1.855 

1.687 

90.9 

1.56 

1.850 

1.687 

91.2 

1.44 

1.838 

1.687 

91.8 

1.19 

1.838 

1.687 

91.8 

1.08 

1.838 

1.687 

91.8 

1.08 

A2S-72 

2.5 x 2.5m  

 

Sult(m) 

St (m) 

U% 

ch (m2/yr) 

1.438 

1.264 

87.9 

1.95 

1.435 

1.264 

88.1 

1.59 

1.430 

1.264 

88.4 

1.53 

1.412 

1.264 

89.5 

1.48 

1.412 

1.264 

89.5 

1.35 

1.412 

1.264 

89.5 

1.22 

A2S-73 

3.0 x 3.0m  

Sult(m) 

St (m) 

U% 

ch (m2/yr) 

1.220 

0.948 

77.7 

5.62 

1.215 

0.948 

78.0 

4.79 

1.210 

0.948 

78.3 

3.31 

1.200 

0.948 

79.0 

2.25 

1.200 

0.948 

79.0 

2.09 

1.200 

0.948 

79.0 

2.20 

 

 

9.1.1 Period of assessment after surcharge placement and selection of time interval 

The study revealed that a longer period of assessment (32 months) after initial placement of 

surcharge will provide a decrease in the predicted ultimate settlement and a subsequent 

increase in the assessment of the degree of consolidation. Furthermore, the study reveals that 

at any particular period of assessment the longer the time interval used, the lower is the 

predicted ultimate settlement and subsequently the higher the corresponding degree of 

consolidation. This is illustrated in Figures 9.1 and 9.2. Similar findings have been reported 

previously by Bo et al. (1999). It is apparent that the degree of consolidation of the marine 

clay converges to the actual value as a longer time of assessment and increasing time 

intervals is used in the back-analysis.  

 

At small time intervals, the data points are cluttered together which make it difficult to 

accurately assess the best-fit line through the data points. Using a larger time interval on the 

other hand will require a long term field  instrumentation monitoring programme in order to 

enable sufficient data points to be obtained in order to assess the best-fit line through the data 

points.  
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Figure 9.1 Comparison of variation in ultimate settlement for various time intervals by 

the Asaoka method.  
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Figure 9.2 Comparison of variation in degree of consolidation for various time intervals 

by the Asaoka method.  
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It is apparent in Figure 9.1, that as the time interval increases, a cut-off time interval is 

obtained after which increasing time intervals would converge to the same magnitude of 

ultimate settlement.  This cut-off time interval in this study is after 28 days as the ultimate 

settlement is predicted to be the same from 28 day to 56 day time intervals. However, the use 

of increasing time intervals would be restricted by the number of data points available to 

assess the best-fit line. As such, the use of increasing time intervals was curbed to 56 days. 

 

As expected, the sub-area with the closest vertical drain spacing has attained the highest 

degree of consolidation for the various surcharging durations. At the end of the surcharging 

period of 32 months, the sub-area with the closest vertical drain spacing (A2S-71: 2.0 x 2.0) 

has achieved a degree of consolidation of 91.8 % while that with the furthest vertical drain 

spacing (A2S-73: 3.0 x 3.0) has achieved a degree of consolidation of 79.0 %. It is to be 

noted that the Asaoka method assessment was not reported for the A2S-74 (No Drains) sub-

area as the degree of consolidation did not reach a high enough value to enable an 

interpretation. 

 

9.1.2 Back-Analysed Coefficient of Consolidation due to Horizontal Flow 

ch value was previously thought to be theoretically independent of the chosen time interval 

(Holtz et al., 1991). However the author’s study on the effect of the period of assessment and 

time interval used reveals that there is a trend of the ch value generally increasing at longer 

periods of assessment after surcharge placement. Furthermore, it was found that the ch value 

decreases with increasing time intervals.  This is illustrated in Figure 9.3. It is apparent that 

the coefficient of consolidation due to horizontal flow, ch value of the clay converges to the 

final value as longer time of assessment and increasing time intervals are used in the back-

analysis.  

 

The study reveals that the ch value of the marine clay is lowest at the sub-area with the 

closest vertical drains spacing (A2S-71: 2.0 x 2.0) and highest at the sub-area with the 

furthest vertical drain spacing (A2S-73: 3.0 x 3.0). This may be attributed to the higher 

degree of smear effect at locations with closer drain spacing.  

 

For soft marine clay, the smear effect can be quite significant at locations installed with 

vertical drains (Chu et al., 2002). Bo et al. (2000b) has reported that the permeability of soil 

in the smear zone could be reduced by 1 order of magnitude or to the horizontal hydraulic 

conductivity of the remoulded clay as a result of the smearing. When vertical drains are 

installed at close spacing, the back-calculated ch values will generally be greatly influenced 

by this smear zone (Chu et al., 2002).  
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Figure 9.3 Comparison of variation in coefficient of consolidation due to horizontal 

flow for various time intervals by the Asaoka method.  
 

Figure 9.4, 9.5 and 9.6 show the Asaoka plots at A2S-71 sub-area (2.0m x 2.0m) 12, 24 and 

32 months after surcharge.  

 

Figure 9.7, 9.8 and 9.9 show the Asaoka plots at A2S-72 sub-area (2.5m x 2.5m) 12, 24 and 

32 months after surcharge.  

 

Figure 9.10, 9.11 and 9.12 show the Asaoka plots at A2S-73 sub-area (3.0m x 3.0m) 12, 24 

and 32 months after surcharge.  
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Figure 9.4 Asaoka plots at A2S-71 sub-area (2.0m x 2.0m) 12 months after surcharge.  
   (Arulrajah et al., 2004e). 
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Figure 9.5 Asaoka plots at A2S-71 sub-area (2.0m x 2.0m) 24 months after surcharge.  
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Figure 9.6 Asaoka plots at A2S-71 sub-area (2.0m x 2.0m) 32 months after surcharge.  
  (Arulrajah et al., 2003a). 
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Figure 9.7 Asaoka plots at A2S-72 sub-area (2.5m x 2.5m) 12 months after surcharge.  
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Figure 9.8   Asaoka plots at A2S-72 sub-area (2.5m x 2.5m) 24 months after surcharge.  
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Figure 9.9   Asaoka plots at A2S-72 sub-area (2.5m x 2.5m) 32 months after surcharge.  
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Figure 9.10 Asaoka plots at A2S-73 sub-area (3.0m x 3.0m) 12 months after surcharge.   
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Figure 9.11 Asaoka plots at A2S-73 sub-area (3.0m x 3.0m) 24 months after surcharge.  
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Figure 9.12 Asaoka plots at A2S-73 sub-area (3.0m x 3.0m) 32 months after surcharge.
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9.2 Factors Affecting Assessment by the Hyperbolic Method  

 

The magnitude of ultimate settlement and degree of consolidation can be predicted by the 

Hyperbolic method as described in section 7.7.2. Factors affecting assessment by the 

Hyperbolic method have been discussed in detail by the author (Arulrajah et al., 2003a, 

2004e) during the course of this research study. The assessment by the Hyperbolic method 

was carried out for the sub-areas for assessment periods of 12, 24 and 32  months after 

surcharge placement. Table 9.4 compares the magnitude of ultimate settlement and degree of 

consolidation predicted by the Hyperbolic method using various periods of assessment after 

surcharge placement.   

 

Table 9.4  Hyperbolic method at 12, 24 and 32 months after surcharge placement 
    - 21.6, 33.7 and 41.9 months of monitoring (Arulrajah et al., 2004e). 

Sub-Area Hyperbolic 12 months 24 months 32 months 

A2S-71 

2.0 x 2.0 m 

 

Ultimate Settlement(m) 

Settlement to date (m) 

Degree of Consolidation, U (%) 

1.749 

1.334 

76.3 

1.758 

1.578 

89.7 

1.801 

1.687 

93.7 

A2S-72 

2.5 x 2.5 m 

 

Ultimate Settlement(m) 

Settlement to date (m) 

Degree of Consolidation, U (%) 

1.380 

1.020 

73.9 

1.405 

1.225 

87.2 

1.408 

1.264 

89.8 

A2S-73 

3.0 x 3.0 m 

 

Ultimate Settlement(m) 

Settlement to date (m) 

Degree of Consolidation, U (%) 

1.096 

0.693 

63.2 

1.126 

0.856 

76.0 

1.169 

0.948 

81.1 

 

The slope of Hyperbolic plot is changing with time and varies with the period of assessment 

as described in section 7.7.2. The ultimate settlement predicted is found to increase with 

increasing period of assessment as evident in Table 9.4. Correspondingly, the degree of 

consolidation will decrease with the increasing period of assessment. Similar behaviour has 

been reported by Bo et al. (2003a). If an assessment is made too early after surcharge 

placement, this will lead to an overestimation of the degree of consolidation of the marine 

clay. Table 9.4 indicates that the sub-area with the closest vertical drain spacing has attained 

the highest degree of consolidation for the various surcharging durations. At the end of the 

surcharging period of 32 months, the sub-area with the closest vertical drain spacing (A2S-

71: 2.0 x 2.0) has achieved a degree of consolidation of 93.7 % while that with the furthest 

vertical drain spacing (A2S-73: 3.0 x 3.0) has achieved a degree of consolidation of 81.1 %. 

It is to be noted that the Hyperbolic method assessment was not reported for the A2S-74 (No 

Drains) sub-area as the degree of consolidation did not reach a high enough value to enable 
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an interpretation. Figure 9.13 shows the Hyperbolic plots at assessment periods of 12, 24 and 

32 months after surcharge placement for the A2S-71 sub-area.  
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Figure 9.13 Hyperbolic plots at A2S-71 for various periods of assessments after 

surcharge (Arulrajah et al., 2003a). 
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Figure 9.14 shows the Hyperbolic plots at assessment periods of 12, 24 and 32 months after 

surcharge placement for the A2S-72 sub-area. 
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Figure 9.14 Hyperbolic plots at A2S-72 for various periods of assessments after 

surcharge. 
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Figure 9.15 shows the Hyperbolic plots at assessment periods of 12, 24 and 32 months after 

surcharge placement for the A2S-73 sub-area. 
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Figure 9.15 Hyperbolic plots at A2S-73 for various periods of assessments after 

surcharge. 
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9.3 Factors Affecting Assessment by Piezometers 

 

Based on the ratio of the excess pore water pressure reading of the piezometer and the initial 

excess pore water pressure, the degree of consolidation of the piezometer can be ascertained. 

Factors that affect piezometer analyses include period of assessment after surcharge 

placement, hydrogeologic boundary phenomenon, correction for settlement of the 

piezometer tip and reduction of initial imposed load. Factors affecting assessment by the 

piezometer method have been discussed in detail by the author (Arulrajah et al., 2004a 

2004e) during the course of this research study. The predictions were carried out with 

assessment periods of 12, 24 and 32 months after surcharge for the various vertical drain 

treated sub-areas of the Pilot Test Site. Table 9.5 compares the degree of consolidation (U%) 

and coefficient of consolidation due to horizontal flow (ch) predicted by the piezometer 

method.  

 

9.3.1 Period of assessment after surcharge placement 

Pore water pressure is dissipating with increasing periods of assessment and as such there is 

a lower remaining excess pore water pressure with increasing periods of assessment. 

Correspondingly, the degree of consolidation will increase with increasing period of 

assessment. The isochrones of the excess pore water pressures is interpreted to obtain the 

average degree of consolidation of the various sub-areas. Figures 9.16 to 9.19. shows the 

excess pore water pressure isochrones of the various sub-areas for various periods of 

assessment. Table 9.5 indicates that the sub-area with the closest vertical drain spacing has 

attained the highest degree of consolidation for the various surcharging durations. At the end 

of the surcharging period of 32 months, the sub-area with the closest vertical drain spacing 

(A2S-71: 2.0 x 2.0) has achieved a degree of consolidation of 86.2 % while A2S-74(No 

Drain) has achieved a degree of consolidation of 37.0%. This is a small increase compared to 

the degree of consolidation after surcharging period of 24 months. 

 

9.3.2 Back-Analysed Coefficient of Consolidation due to Horizontal Flow 

At the Pilot Test Site, ch prediction from piezometers (section 7.9.2) was carried out by the 

total time method. It is apparent that the coefficient of consolidation due to horizontal flow, 

ch value of the clay is reducing with time and as longer time of assessment is used in the 

back-analysis by piezometer method. The piezometer monitoring data indicates that the ch 

value of the marine clay is lowest at the sub-area with the closest vertical drains spacing 

(A2S-71: 2.0 x 2.0) and highest at the sub-area with the largest vertical drain spacing (A2S-

73: 3.0 x 3.0). This is in similar agreement with the ch values back-calculated by the Asaoka 
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method and confirms the higher degree of smear effect at locations with closer drain spacing. 

However reduction of ch with time is due to reduction of void ratio as consolidation progress. 

 
 
Table 9.5  Comparison of average degree of consolidation using piezometers for 12, 24 and 

32 months after surcharge placement - 21.6, 33.7 and 41.9 months of monitoring 
(Arulrajah et al., 2004e). 

Sub-Area Piezometers 12 mths. 24 mths. 32 mths. 

A2S-71 

2.0 x 2.0 m 

Degree of Consolidation, U (%) 

Back-Analysed ch (m2/year) 

79.7 

2.80 

83.0 

1.56 

86.2 

1.30 

A2S-72 

2.5 x 2.5 m 

Degree of Consolidation, U (%) 

Back-Analysed ch (m2/year) 

73.9 

3.99 

81.9 

2.54 

82.5 

1.94 

A2S-73 

3.0 x 3.0 m 

Degree of Consolidation, U (%) 

Back-Analysed ch (m2/year) 

63.0 

4.51 

72.2 

2.90 

73.1 

2.23 

A2S-74 (No Drain) Degree of Consolidation, U (%) 35.3 35.5 37.0 
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Figure 9.16 Comparison of A2S-71 (2.0 x 2.0 m) piezometer excess pore pressure 

isochrones 12, 24 and 32 months after surcharge (Arulrajah et al., 2004e).   
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Figure 9.17 Comparison of A2S-72 (2.5 x 2.5 m) piezometer excess pore pressure 
isochrones 12, 24 and 32 months after surcharge (Arulrajah et al., 2004a).   
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Figure 9.18 Comparison of A2S-73 (3.0 x 3.0 m) piezometer excess pore pressure 
isochrones 12, 24 and 32 months after surcharge (Arulrajah et al., 2004a).   
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Figure 9.19 Comparison of A2S-74 (No Drain) piezometer excess pore pressure 
isochrones 12, 24 and 32  months after surcharge (Arulrajah et al., 2004e).   
 

9.3.3 Hydrogeologic Boundary Phenomenon 

If the piezometer is installed in offshore condition prior to reclamation, the initial excess 

pore water pressure can be obtained during the monitoring as the initial static pore pressure 

is known. Otherwise, the initial excess pore pressure has to be calculated from the assumed 

bulk density of the fill material (Bo et al., 1999). For the case of land reclamation projects, it 

is common to assume a bulk density of 17 to 19 kN/m3 for the sand fill material. Bo et al. 

(1999) has measured the density of sand in the same reclamation project as varying from 15 

kN/m3 to 19 kN/m3. As such, the calculated excess pore pressure based on assumed bulk 

density of the fill material could lead to an over-estimation of excess pore pressure for land 

fill cases and an underestimation for hydraulic filling. 

 

Initial excess pore pressure is usually assumed to be equal to the applied additional load. 

However, it could vary from the in-situ measured pore pressure after loading for some cases 

where clay layer is underlain by the hydrogeologic boundary. Figure This phenomenon has 

been explained by Schiffman et al. (1994). In such cases, the profile of pore pressure after 

additional load could be lower than that calculated. 9.20 illustrates this phenomenon. 

Overestimation of degree of consolidation would occur if the initial lower pore pressure is 

not taken into consideration. Situations like this will arise when the clay layer is underlain by 

a water aquifer which is being extracted for water supply. However, the hydrogeologic 

boundary phenomenon does not arise in the Pilot Test Site.  
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Figure 9.20 In-situ pore pressure which is lower than static pore pressure due to 

hydrogeologic boundary (after Schiffman et al., 1994). 
 

9.3.4 Correction for Settlement of Piezometer Tip 

Due to the large strain settlements at site, all piezometer raw readings taken have to be 

corrected to account for the new elevation of the piezometer due to the settlement of the 

piezometer tip. Without correction, the calculated piezometric elevation would be higher 

than the actual and this will subsequently lead to the underestimation of the degree of 

consolidation. This behaviour has been reported by Bo, Arulrajah and Choa (1998b).  

 

Figure 9.21, 9.22 and 9.23 shows the comparison of corrected and uncorrected piezometric 

elevation, excess pore pressures and isochrones respectively for the Pilot Test Site. 
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Figure 9.21 Comparison between corrected and uncorrected piezometric elevation 

(A2S-72: PP-250) (Arulrajah et al., 2004e).  
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Figure 9.22 Comparison between corrected and uncorrected excess pore pressure 

(A2S-72: PP-250) (Arulrajah et al., 2004a). 
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Figure 9.23 Comparison between corrected and uncorrected piezometer excess pore 
pressure isochrones 24 months after surcharge at Pilot Test Site (Arulrajah et al., 2004e).   
 

9.3.5 Reduction of Initial Imposed Load  

For marine clay when reclamation fill is imposed, the marine clay can seldom gain the 

effective stress equivalent to the initial imposed load due to the following reasons: 

 

• Reduction of load due to sinking of fill below groundwater level 

• Rise in groundwater level due to seasonal recharge 

 

This behaviour was first reported by Mesri and Choi (1985). As such, degree of 

consolidation based on the initial imposed load is likely to be underestimated since the 

available effective additional load at assessed time is smaller than the initial load (Bo et al., 

1999). 
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9.4 Comparison between Asaoka, Hyperbolic and Piezometer Methods  

The comparison of degree of consolidation and back-analysed ch between the Asaoka (28 

day interval), Hyperbolic and piezometers is summarised in Tables 9.6, 9.7 and 9.8 using 

periods of assessment of 12, 24 and 32 months after surcharge placement.  

 

Table 9.6    Comparison between Asaoka, Hyperbolic and piezometer methods 12 months 
after surcharge - 21.6 months of monitoring (Arulrajah et al., 2004e). 

Sub-Area Comparison  Asaoka Hyperbolic Piezometer 

A2S-71 

2.0 x 2.0 m 

 

Ultimate Settlement(m) 

Settlement to date (m) 

Degree of Consolidation, U (%) 

Back-Analysed ch (m2/year) 

1.872 

1.334 

71.3 

1.06 

1.749 

1.334 

76.3 

- 

- 

- 

79.7 

2.80 

A2S-72 

2.5 x 2.5 m 

 

Ultimate Settlement(m) 

Settlement to date (m) 

Degree of Consolidation, U (%) 

Back-Analysed ch (m2/year) 

1.500 

1.020 

68.0 

1.27 

1.380 

1.020 

73.9 

- 

- 

- 

73.9 

3.99 

A2S-73 

3.0 x 3.0 m 

 

Ultimate Settlement(m) 

Settlement to date (m) 

Degree of Consolidation, U (%) 

Back-Analysed ch (m2/year) 

1.250 

0.693 

55.4 

1.99 

1.096 

0.693 

63.2 

- 

- 

- 

63.0 

4.51 

 

 

Table 9.7 Comparison between Asaoka, Hyperbolic and piezometer methods 24 months 
after surcharge - 33.7 months of monitoring (Arulrajah et al., 2004e). 

Sub-Area Comparison Asaoka Hyperbolic Piezometer 

A2S-71 

2.0 x 2.0 m 

 

Ultimate Settlement (m) 

Settlement to date (m) 

Degree of Consolidation, U (%) 

Back-Analysed ch (m2/year) 

1.850 

1.578 

85.3 

1.14 

1.758 

1.578 

89.7 

- 

- 

- 

83.0 

1.56 

A2S-72 

2.5 x 2.5 m 

 

Ultimate Settlement (m) 

Settlement to date (m) 

Degree of Consolidation, U (%) 

Back-Analysed ch (m2/year) 

1.420 

1.225 

86.3 

1.20 

1.405 

1.225 

87.2 

- 

- 

- 

81.9 

2.54 

A2S-73 

3.0 x 3.0 m 

 

Ultimate Settlement (m) 

Settlement to date (m) 

Degree of Consolidation, U (%) 

Back-Analysed ch (m2/year) 

1.240 

0.856 

69.0 

1.75 

1.126 

0.856 

76.0 

- 

- 

- 

72.2 

2.90 
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Table 9.8 Comparison between Asaoka, Hyperbolic and piezometer methods 32 months 
after surcharge - 41.9 months of monitoring (Arulrajah et al., 2004e). 

Sub-Area Comparison Asaoka Hyperbolic Piezometer 

A2S-71 

2.0 x 2.0 m 

 

Ultimate Settlement (m) 

Settlement to date (m) 

Degree of Consolidation, U (%) 

Back-Analysed ch (m2/year) 

1.838 

1.687 

91.8 

1.08 

1.801 

1.687 

93.7 

- 

- 

- 

86.2 

1.30 

A2S-72 

2.5 x 2.5 m 

 

Ultimate Settlement (m) 

Settlement to date (m) 

Degree of Consolidation, U (%) 

Back-Analysed ch (m2/year) 

1.412 

1.264 

89.5 

1.22 

1.408 

1.264 

89.8 

- 

- 

- 

82.5 

1.94 

A2S-73 

3.0 x 3.0 m 

 

Ultimate Settlement (m) 

Settlement to date (m) 

Degree of Consolidation, U (%) 

Back-Analysed ch (m2/year) 

1.200 

0.948 

79.0 

2.20 

1.169 

0.948 

81.1 

- 

- 

- 

73.1 

2.23 

 

The ultimate settlement predicted by the Asaoka method is slightly decreasing with 

increasing periods of assessment, as illustrated in Figure 9.24. Subsequently, the degree of 

consolidation predicted by the Asaoka method is increasing with increasing periods of 

assessment, as illustrated in Figure 9.25. The ultimate settlement predicted by the Hyperbolic 

method on the other hand is increasing with increasing periods of assessment, as illustrated 

in Figure 9.24. Subsequently, the degree of consolidation predicted by the Hyperbolic 

method is decreasing with the increasing periods after surcharge placement, as illustrated in 

Figure 9.25. The ultimate settlement and degree of consolidation obtained by the two 

methods is found to converge to an excellent agreement with each other as the surcharge 

period increases. The degree of consolidation predicted by the Hyperbolic method is found 

to be slightly higher than that of the Asaoka method.  

 

The degree of consolidation predicted by the piezometers is found to be in good agreement 

with the Asaoka and Hyperbolic methods for the early period of assessment as shown in 

Figure 9.24. However as the assessment period increases, the piezometer indicates lower 

degree of consolidation as compared to field settlement predictions, as illustrated in Figure 

9.25.  Similar findings for lower piezometer readings compared to field settlement 

predictions have been reported by Bo et al. (1999). This can be attributed to the non-linearity 

of the stress-strain behaviour of soil (Mikasa, 1995). In the non-linearity theory, the effective 

stress gain is slower in initial stage whereas settlement rate is faster in this stage (Bo et. al, 

2003a). Therefore the degree of consolidation worked out from settlement ratio is much 

greater than that worked out from pore pressure. 
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Figure 9.24 Comparison between variation in ultimate settlement at various surcharge 
periods by the  Asaoka and Hyperbolic methods (Arulrajah et al., 2004e). 
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Figure 9.25 Comparison between variation in degree of consolidation at various 
surcharge periods by the Asaoka, Hyperbolic and piezometer methods(Arulrajah et al. 
2004e). 
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The back-analysed ch by the Asaoka method indicates that there is a trend of the ch value 

generally increasing at longer periods of assessment after surcharge placement. This is 

illustrated in Figure 9.26. The coefficient of consolidation due to horizontal flow, ch value of 

the clay converges to the final value as longer time of assessment is used in the back-analysis 

by the Asaoka method. The study reveals that the ch value of the marine clay is lowest at the 

sub-area with the closest vertical drains spacing (A2S-71: 2.0 x 2.0) and highest at the sub-

area with the furthest vertical drain spacing (A2S-73: 3.0 x 3.0). This can be attributed, 

amongst other reasons, to the higher degree of smear effect at locations with closer drain 

spacing. However reduction of ch with time is due to reduction of void ratio as consolidation 

progress.  

 

The back-analysed ch by the piezometer method indicates that there is a trend of the ch value 

generally decreasing at longer periods of assessment after surcharge placement. This is 

illustrated in Figure 9.26. It is apparent that the coefficient of consolidation due to horizontal 

flow, ch value of the clay is reducing with time and as longer time of assessment is used in 

the back-analysis by piezometer method. 

 

The ch values back-calculated by the Asaoka and piezometer method after 32 months of 

surcharge placement is found to be in good agreement. The piezometer monitoring data 

indicates that the back-analysed ch value of the marine clay is lowest at the sub-area with the 

closest vertical drains spacing (A2S-71: 2.0 x 2.0) and highest at the sub-area with the 

furthest vertical drain spacing (A2S-73: 3.0 x 3.0). This is in agreement with the ch values 

back-calculated by the Asaoka method and supports that the higher degree of smear effect at 

locations with closer drain spacing. However reduction of ch with time is due to a reduction 

of void ratio as consolidation progresses. 
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Figure 9.26 Comparison between variation in ch at various surcharge periods by the 

Asaoka and piezometer methods (Arulrajah et al., 2004e). 
 
 
9.5 Findings and Recommendations 

 

The author’s findings of the Asaoka method reveal that the magnitude of ultimate settlement 

decreases and the degree of consolidation subsequently increases as a longer period of 

assessment is used in the prediction. It is apparent that as the time interval increases, a cut-

off time interval is obtained after which increasing time intervals would converge to the 

same magnitude of ultimate settlement. In the study of the vertical drain areas in the Pilot 

Test Site, the cut-off time interval was determined to be 28 days. 

 

The author’s findings reveal that the ch value back-analysed by the Asaoka method is 

dependant on the time interval used for the prediction. The ch value predicted by the Asaoka 

method decreases and converges to the final value as a longer time of assessment and 

increasing time intervals is used in the back-analysis. The study reveals that the ch value of 

the marine clay is lowest at the sub-area with the closest vertical drains spacing and highest 

at the sub-area with the largest vertical drain spacing which is attributed to the larger smear 

effect at locations with closer drain spacing. The author recommends that for the Asaoka 

method a longer time interval has to be used for the ultimate settlement and ch predictions. 

The author’s findings of the Hyperbolic method reveal that the magnitude of ultimate 

settlement increases and subsequently the degree of consolidation decreases as a longer 
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period of assessment is used in the prediction. The prediction of ultimate settlement and 

degree of consolidation is found to be in excellent agreement for the two methods especially 

when the period of assessment increases.   

 

The degree of consolidation predicted by the piezometers is found to be in good agreement 

with the Asaoka and Hyperbolic methods for the early period of assessment. However as the 

assessment period increases, the piezometer indicates lower degree of consolidation as 

compared to field settlement predictions. This can be attributed to the non-linearity of the 

stress-strain behaviour of soil (Mikasa, 1995). 

 

The back-analysed ch by the piezometer method indicates that there is a trend of the ch value 

generally decreasing at longer periods of assessment after surcharge placement. It is apparent 

that the coefficient of consolidation due to horizontal flow, ch value of the clay is reducing 

with time as longer time of assessment is used in the back-analysis by piezometer method.  

The ch values back-calculated by the Asaoka and piezometer method after 32 months of 

surcharge placement is found to be in good agreement. This is in similar agreement with the 

ch values back-calculated by the Asaoka method and confirms the higher degree of smear 

effect at locations with closer drain spacing.  
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10.0 FINITE ELEMENT MODELING OF MARINE CLAY DEFORMATION 

UNDER RECLAMATION FILLS  

 

Modeling of the consolidation behaviour of marine clay and prefabricated vertical drains 

(PVD) under reclamation fills and surcharge was carried out by the finite element modeling 

(FEM) method with the Plaxis Version 8 (2002) numerical modeling software. The analyses 

included the modeling of the consolidation behaviour of marine clay under reclamation fills 

with and without prefabricated vertical drains.  

 

Modeling of the sub-areas treated with vertical drains was carried out by both the axi-

symmetric unit cell and full-scale analysis methods using a 2D model. Modeling of control 

areas which was not treated with prefabricated vertical drains was carried out by means of 

full-scale analysis. The numerical analysis of marine clay deformation with and without 

vertical drain was carried out for the Pilot Test Site and In-Situ Test Site described earlier. 

Each of the test sites comprise of vertical drain treated sub-areas and untreated sub-areas 

which were both reclaimed and preloaded under the same conditions. The results of the finite 

element modeling analysis were compared with that obtained by means of observational 

methods. The finite element analysis was carried out by the author using the Plaxis Version 8 

(2002) numerical modeling software.  

 

The finite element modeling of marine clay deformation under reclamation fills described in 

this chapter have been discussed in detail by the author (Arulrajah et al., 2004j) during the 

course of this research study.  

 

 

10.1 Theory of Finite Element Modeling of Prefabricated Vertical Drains  

 

In the modeling of the vertical drains in Bangkok clay by Lin et al. (2000), the interface 

element was used with the same soil property as the adjacent soil except for its permeability. 

Furthermore, the conversion scheme for well resistance was achieved by using interface 

elements. The well resistance was automatically considered in interface element for axi-

symmetric and plane strain unit cells by the equivalent discharge capacity of interface 

elements to that of vertical drain.  

 

For the axi-symmetric unit cell analysis of vertical drains in this study, the author has applied 

the methodology first proposed by Lin et al. (2000) in the consideration of the smear effect 

by using the equivalent horizontal permeability of soil surrounding the vertical drains. The 
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modeling of the Singapore marine clay treated with vertical drains was however modified to 

incorporate the marine clay multi-layers present in Singapore marine clay at Changi.   

 

The conversion schemes from axi-symmetric to plane strain condition as proposed by Lin et 

al. (2000) was used for the full scale analysis method. For the modeling of prefabricated 

vertical drains in the full scale analysis method in this study, the author has used the drain 

element of the Plaxis Version 8 (2002) numerical modeling software. 

 

It is necessary to consider the smear effect for the consolidation rate of vertical drain treated 

ground with finite permeability. Smear effect comes about due to the installation of vertical 

drains into the originally undisturbed soil. The installation of the vertical drains will result in 

disturbance of the adjacent soil surrounding the mandrel. The resulting smear zone will 

depend on the shape of the mandrel, the anchor rod and the method of installation. Bergado 

et al. (1992) has verified the diameter of the smear effect radius to be twice the equivalent 

cross-sectional area of the mandrel for soft Bangkok clay.   

 

Since prefabricated vertical drain has a limited discharge capacity, the effect of well 

resistance varies with the permeability of the surrounding soils, the discharge capacity and 

the length of the vertical drain drainage path. Consequently the well resistance may affect the 

distribution of excess pore water pressure with depth and distance from the vertical drain 

during the consolidation. The contribution of well resistance is minimal for such long lengths 

of vertical drains and as such can be ignored in the numerical modeling analyses. Lin et al. 

(2000) states that previous analysis of field performance of vertical drains in soft clay 

deposits indicated that well resistance is negligible when the well resistance factor, R is 

greater than 5 as defined in the following equation:  

  

 R = qw / (kh lm
2)        Eq. (10.1) 

 

where: 

 qw is the discharge capacity of the vertical drain in m3/s 

 kh is the horizontal permeability of the undisturbed soil in m/s 

 lm is the length of the vertical drain in m 
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10.2 Axi-Symmetric Unit Cell Analysis of Prefabricated Vertical Drain 

 

The vertical drains installed in the test sites were modeled in an axi-symmetric unit cell 

analysis by the author with the Plaxis Version 8 (2002) software. Figure 10.1 depicts the 

prefabricated vertical drain in axi-symmetric radial flow.  

 

Figure 10.1 Axi-symmetric radial flow (Lin et al., 2000). 

 

The method used for the consideration of the smear effect in the unit cell analysis is by using 

the equivalent horizontal permeability of surrounding soils, ke  (Lin et al., 2000) which is 

defined as: 

 

     kh ln(re/rw) 
ke   =         Eq. (10.2) 

         ln(re/rs) + (kh /ks)ln(rs/rw)   
 

where: 

 re  is the radius of influence zone in units of m 

 rw is the equivalent radius of vertical drain in units of m 

 rs  is the radius of smear zone in units of m 

kh is the horizontal permeability of the undisturbed soil in units of m/day 

 ks is the horizontal permeability of soil within the smear zone in units of m/day 

 

In the axi-symmetric unit cell analysis of the vertical drain, the equivalent horizontal 

permeability of the surrounding soil was taken as twice that of the equivalent vertical 

permeability. Figure 10.2 shows the schematic depiction of the conversion of the axi-

symmetric unit cell from undisturbed marine clay with smear zone to that of equivalent 

horizontal permeability of surrounding soils.   
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Figure 10.2 Conversion of the axi-symmetric unit cell from undisturbed marine clay 

with smear zone to that of equivalent horizontal permeability of surrounding 
soils (Arulrajah et al.,2004j).   

 

Table 10.1 indicates the soil parameters used for the finite element modeling of vertical drain 

by the axi-symmetric  unit cell analysis. The parameters were obtained from laboratory 

testing results. 

 

Figure 10.3 shows the deformed mesh while Figure 10.4 shows the vertical displacement by 

the axi-symmetric unit cell analysis of the Vertical Drain Area at the In-Situ Test Site, 20 

months after surcharge placement.  

 

Figure 10.5 shows the deformed mesh while Figure 10.6 shows the vertical displacement by 

the axi-symmetric unit cell analysis of the A2S-71 sub-area (2.0m x 2.0m) at the Pilot Test 

Site, 32 months after surcharge placement.  

 

Figure 10.7 shows the deformed mesh while Figure 10.8 shows the vertical displacement by 

the axi-symmetric unit cell analysis of the A2S-72 sub-area (2.5m x 2.5m) at the Pilot Test 

Site, 32 months after surcharge placement.  

 

Figure 10.9 shows the deformed mesh while Figure 10.10 shows the vertical displacement by 

the axi-symmetric unit cell analysis of the A2S-73 sub-area (3.0m x 3.0m) at the Pilot Test 

Site, 32 months after surcharge placement. 
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Table 10.1 Soil parameters for axi-symmetric unit cell analysis of PVD  
(Arulrajah et al., 2004j) 
 

 
 
 

Mohr-Coulomb 
 

 Reclamation 
Sandfill 

Type  Drained 
γunsat [kN/m³] 17.00 
γsat [kN/m³] 20.00 
kh [m/day] 1.000 
kv [m/day] 1.000 

Eref [kN/m²] 13000.000 
ν [-] 0.300 

Gref [kN/m²] 5000.000 
Eoed [kN/m²] 17500.000 
cref [kN/m²] 1.00 
ϕ [°] 31.00 
ψ [°] 0.00 

 
Soft-Soil 

 
 Upper Marine Clay Intermediate Stiff Clay  Lower Marine Clay 

Type  Undrained Undrained Undrained 
γunsat [kN/m³] 15.00 15.00 15.00 
γsat [kN/m³] 15.50 15.50 16.00 
ke [m/day] 2.66E-5 6.25E-5 2.81E-5 
kv [m/day] 1.33E-5 3.13E-5 1.41E-5 
λ∗ [-] 0.150 0.060 0.170 
κ∗ [-] 0.018 0.011 0.025 
c [kN/m²] 1.00 1.00 1.00 
ϕ [°] 27.00 32.00 27.00 
ψ [°] 0.00 0.00 0.00 

νur [-] 0.150 0.150 0.150 
K0

nc [-] 0.55 0.47 0.55 
 

Reclamation Sandfill 

Upper Marine Clay 

Intermediate Stiff Clay 

Lower Marine Clay 

Notations: 
γ = soil unit weight  
k = permeability 
Eref = Young’s modulus 
ν = poisson's ratio 
Gref = Shear modulus 
Eoed = Oedometer modulus 
cref  = Cohesion 
ϕ = friction angle 
ψ = dilatancy angle 
λ∗ = modified compression index 
κ∗ = modified swelling index 
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Figure 10.3   Deformed mesh by axi-symmetric unit cell analysis of Vertical Drain Area 
(1.5m x 1.5m) at the In-Situ Test Site, 20 months after surcharge placement. 
 
 
 

 
Figure 10.4       Vertical displacement by axi-symmetric unit cell analysis of Vertical Drain 
Area (1.5m x 1.5m) at the In-Situ Test Site, 20 months after surcharge placement. 
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Figure 10.5   Deformed mesh by axi-symmetric unit cell analysis of A2S-71 sub-area 
(2.0m x 2.0m) at the Pilot Test Site, 32 months after surcharge placement. 

 
 
 

 
Figure 10.6 Vertical displacement by axi-symmetric unit cell analysis of A2S-71 sub-
area (2.0m x 2.0m) at the Pilot Test Site, 32 months after surcharge placement. 
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Figure 10.7   Deformed mesh by axi-symmetric unit cell analysis of A2S-72 sub-area 
(2.5m x 2.5m) at the Pilot Test Site, 32 months after surcharge placement. 

 
 
 

 
Figure 10.8 Vertical displacement by axi-symmetric unit cell analysis of A2S-72 sub-
area (2.5m x 2.5m) at the Pilot Test Site, 32 months after surcharge placement. 
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Figure 10.9   Deformed mesh by axi-symmetric unit cell analysis of A2S-73 sub-area 
(3.0m x 3.0m) at the Pilot Test Site, 32 months after surcharge placement. 

 
 
 

 
Figure 10.10 Vertical displacement by axi-symmetric unit cell analysis of A2S-73 sub-
area (3.0m x 3.0m) at the Pilot Test Site, 32 months after surcharge placement. 
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10.3 Full Scale Analysis of Prefabricated Prefabricated Vertical Drains  

 

The drain element available in the Plaxis Version 8 (2002) finite element program was used 

by the author to model the vertical drains for  the Vertical Drain Area at the In-Situ Test Site 

by the full-scale analysis method. This method uses the open consolidation boundary 

condition at which, the excess pore water pressure is set to zero during the consolidation 

process in all nodes that belong to a drain.  

 

The 6-node triangular element was adopted in the analysis. The element provides second 

order interpolation functions for displacement and its stiffness matrix is evaluated by 

numerical integration using 3 integration points.  

 

In the modeling of the ground improvement, the following conditions were considered :- 

• Consolidation analysis was performed under 2-D plane strain condition. 

• Marine clay layers were simulated by using the Soft Soil Model 

• Sandfill layer was simulated by using the Mohr-Coulomb Model. 

   

In the full scale analyses finite element model, the conversion of permeability for an axi-

symmetric radial flow to that of a plain strain flow with smear effect was carried out. In the 

finite element method analysis, pore water flow in the plain strain unit cell is considered as 

2-D plane strain flow.  

 

The conversion from radial flow of an axi-symmetric unit cell to 2-D plane flow of 

continuous drainage wall systems of plane strain unit cell can be carried out by the method 

of Lin et al. (2000). Figure 10.11 depicts the prefabricated vertical drain in 2-D plain strain 

flow. 

 

 
Figure 10.11 PVD in 2-D  plane strain flow (Lin et al., 2000). 
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The equivalent permeability of the marine clay with consideration for smear effect can be 

calculated by the conversion of the axi-symmetric unit cell to that of a plain strain unit cell 

(Lin et al., 2000):  

 
      khax π 

khpl =         Eq. (10.3) 
      6 [ln(ni/s) + (khax/ksax)ln(s) – 0.75] 
 

where: 

  khpl is the horizontal permeability of undisturbed zone in plane strain unit cell 

 khax is the horizontal permeability of undisturbed zone in axi-symmetric unit cell 

 ksax is the horizontal permeability of the smear zone in axi-symmetric unit cell 

 ni is the influence ratio given by re/rw 

 s is the smear ratio given by rs/rw 

 

The equivalent horizontal permeability of the marine clay after applying the conversion from 

axi-symmetric flow to plane strain flow with smear effect consideration was used in the 

finite element analysis of the vertical drains for the full scale analysis.  

 

Table 10.2 indicates the soil parameters used for the finite element modeling of vertical 

drains by the full scale analysis. 

 

Figure 10.12 shows the deformed mesh while Figure 10.13 shows the extreme vertical 

displacements by the full scale analysis for the Vertical Drain Area at the In-Situ Test Site, 

20 months after surcharge placement. 
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Table 10.2 Soil parameters for full scale analysis of PVD (Arulrajah et al., 2004j). 

 

 
 

Mohr-Coulomb 
 

 Reclamation 
Sandfill 

Type  Drained 
γunsat [kN/m³] 17.00 
γsat [kN/m³] 20.00 
kh [m/day] 1.000 
kv [m/day] 1.000 

Eref [kN/m²] 13000.000 
ν [-] 0.300 

Gref [kN/m²] 5000.000 
Eoed [kN/m²] 17500.000 
cref [kN/m²] 1.00 
ϕ [°] 31.00 
ψ [°] 0.00 

 
Soft-Soil 

 
 Upper Marine Clay Intermediate Stiff Clay Lower Marine Clay 

Type  Undrained Undrained Undrained 
γunsat [kN/m³] 15.00 15.00 15.00 
γsat [kN/m³] 15.50 15.50 16.00 
khpl [m/day] 4.67E-6 1.10E-5 4.95E-6 
kv [m/day] 2.34E-6 5.50E-6 2.48E-6 
λ∗ [-] 0.150 0.060 0.170 
κ∗ [-] 0.018 0.011 0.025 
c [kN/m²] 1.00 1.00 1.00 
ϕ [°] 27.00 32.00 27.00 
ψ [°] 0.00 0.00 0.00 

νur [-] 0.150 0.150 0.150 
K0

nc [-] 0.55 0.47 0.55 
 
 
 
 
 
 
 
 

Reclamation Sandfill 

Upper Marine Clay 

Lower Marine Clay 

Intermediate Stiff Clay 

Prefabricated Vertical Drains 

Notations: 
γ = soil unit weight  
k = permeability 
Eref = Young’s modulus 
ν = poisson's ratio 
Gref = Shear modulus 
Eoed = Oedometer modulus 
cref  = Cohesion 
ϕ = friction angle 
ψ = dilatancy angle 
λ∗ = modified compression index 
κ∗ = modified swelling index 
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Figure 10.12 Deformed mesh by full scale analysis of Vertical Drain Area (1.5m x 1.5m)  
at In-Situ Test Site, 20 months after surcharge placement (Arulrajah et al., 2004j). 

 
 
 
 

 
Figure 10.13 Vertical displacement by full scale analysis of Vertical Drain Area  
(1.5m x 1.5m) at In-Situ Test Site, 20 months after surcharge placement (Arulrajah et al., 
2004j). 
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10.4 Full Scale Analysis of Untreated Control Embankments  

 

In the full scale numerical modeling of the untreated control embankments of the Pilot Test 

Site and In-Situ Test Site where no vertical drains were installed but where surcharge of the 

same height was placed, the 6-node triangular element was adopted in the analysis.  

 

The horizontal permeability of the undisturbed soil was taken as twice the vertical 

permeability of the undisturbed soil based on the properties of Singapore marine clay: 

 

kh =  2 kv        Eq. (10.4) 
 

where: 

   kh is the horizontal permeability of the undisturbed soil 

 kv is the vertical permeability of the undisturbed soil 

 

Table 10.3 indicates the soil data parameters used for the finite element modeling of 

untreated control embankment by the full scale analysis. 

 

Figure 10.14 shows the deformed mesh while Figure 10.15 shows the extreme vertical 

displacements by the full scale analysis for the untreated Control Area at the In-Situ Test 

Site, 20 months after surcharge placement. 

 

Figure 10.16 shows the deformed mesh while Figure 10.17 shows the magnitude of the 

extreme vertical displacements by the full scale analysis for the No Drain Area at the Pilot 

Test Site, 32 months after surcharge placement. 
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Table 10.3 Soil parameters for full scale analysis of untreated control embankment 
(Arulrajah et al., 2004j) 

 

 
 

 
Mohr-Coulomb 

 
 Reclamation 

Sandfill 
Type  Drained 

γunsat [kN/m³] 17.00 
γsat [kN/m³] 20.00 
kh [m/day] 1.000 
kv [m/day] 1.000 

Eref [kN/m²] 13000.000 
ν [-] 0.300 

Gref [kN/m²] 5000.000 
Eoed [kN/m²] 17500.000 
cref [kN/m²] 1.00 
ϕ [°] 31.00 
ψ [°] 0.00 

 
Soft-Soil 

 
 Upper Marine Clay Intermediate Stiff Clay Lower Marine Clay 

Type  Undrained Undrained Undrained 
γunsat [kN/m³] 15.00 15.00 15.00 
γsat [kN/m³] 15.50 15.50 16.00 
kh [m/day] 3.67E-5 8.64E-5 3.89E-5 
kv [m/day] 1.84E-5 4.32E-5 1.95E-5 
λ∗ [-] 0.150 0.060 0.170 
κ∗ [-] 0.018 0.011 0.025 
c [kN/m²] 1.00 1.00 1.00 
ϕ [°] 27.00 32.00 27.00 
ψ [°] 0.00 0.00 0.00 

νur [-] 0.150 0.150 0.150 
K0

nc [-] 0.55 0.47 0.55 
 

 

 

Notations: 
γ = soil unit weight  
k = permeability 
Eref = Young’s modulus 
ν = poisson's ratio 
Gref = Shear modulus 
Eoed = Oedometer modulus 
cref  = Cohesion 
ϕ = friction angle 
ψ = dilatancy angle 
λ∗ = modified compression index 
κ∗ = modified swelling index 

Reclamation Sandfill 

Upper Marine Clay 

Lower Marine Clay 

Intermediate Stiff Clay 
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Figure 10.14 Deformed mesh by full scale analysis of Control Area (No Drain) at In-Situ 
Test Site, 20 months after surcharge placement (Arulrajah et al., 2004j). 
 
 
 

 
Figure 10.15 Vertical displacement by full scale analysis of Control Area (No Drain) at 
In-Situ Test Site, 20 months after surcharge placement (Arulrajah et al., 2004j). 
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Figure 10.16 Deformed mesh by full scale analysis of A2S-74 sub-area (No Drain) at 
Pilot  Test Site, 32 months after surcharge placement. 
 

 
 
 

 
Figure 10.17 Vertical displacement by full scale analysis of A2S-74 sub-area (No Drain) 
at Pilot Test Site, 32 months after surcharge placement. 
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10.5 Comparison of Finite Element Modeling Results 

 

10.5.1 In-Situ Test Site 

Table 10.4 and Figure 10.18 illustrate the comparison of the finite element modeling results 

between the actual field settlement and the Plaxis Version 8 (2002) numerical modeling 

method for the In-Situ Test Site, 20 months after surcharge placement. Figure 10.19 

illustrates the comparison between ultimate settlement by finite element modeling with 

actual field settlement ,after 20 months of surcharge loading, at the In-Situ Test Site. 

Excellent agreements were obtained from the finite element modeling analysis as compared 

to the actual field settlements for both the embankment with vertical drains as well as the 

control embankment. The matching techniques used in the finite element analysis of the 

vertical drains were based on that used previously in  the modeling of Bangkok clays with 

PVD. The modeling of the Singapore marine clay treated with vertical drains was however 

modified to incorporate the marine clay multi-layers present at the project site in Changi. 

The modeling technique used by the author is found to provide similar excellent agreements 

in their use for the modeling of Singapore marine clay with vertical drains. The axi-

symmetric unit cell and the full scale analysis of vertical drains were both found to be in 

excellent agreement with  each other and with the actual field settlement results at the Pilot 

Test Site.  

 

The axi-symmetric unit cell analysis result is found to be settling at a slightly slower rate 

than the full scale analysis and the actual field settlement after 360 days. As evident for the 

Vertical Drain Area in Table 10.4 and Figure 10.18 there is a difference of  only 0.144 

meters of settlement between the actual field settlement (2.404 meters) and the axi-

symmetric unit cell FEM analysis (2.260 meters) after a surcharge period of 20 months. The 

axi-symmetric unit cell analysis is noted to provide a slightly lower settlement than that of 

the full scale analysis. 

 

The full scale analysis with the use of the newly introduced drain element on the other hand 

is found to match very well with the actual field settlement until the 630 day period. As 

evident for the Vertical Drain Area in Table 10.4 and Figure 10.18, there is a difference of 

only 0.084 meters of settlement between the actual field settlement (2.404 meters) and the 

full scale FEM analysis (2.320 meters) after a surcharge period of 20 months. In the author’s 

analysis of the full scale embankment with vertical drains for the In-Situ Test Site, the newly 

introduced drain element was successfully utilised instead of the interface element 

previously used for the modeling of Bangkok clay.  
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The full scale analysis of the untreated Control Area is also found to be in excellent 

agreement with the actual field settlement. The settlements are found to be in very close 

agreement after the final monitoring period of 785 days. As evident for the Control Area in 

Table 10.4 and Figure 10.18, there is a difference of only 0.019 meters of settlement between 

the actual field settlement (0.706 meters) and the full scale FEM analysis (0.687 meters) for 

the untreated Control Area after a surcharge period of 20 months. 

 

Table 10.5 indicates the comparison of Asaoka, Hyperbolic, piezometer and finite element 

modeling methods at the In-Situ Test Site. As evident in Table 10.5, the ultimate settlement 

obtained by the finite element modeling method is found to be lower than that predicted by 

the Asaoka and Hyperbolic prediction methods for the Vertical Drain Area (1.5m x 1.5m). 

The degree of consolidation obtained by the finite element modeling method for the Vertical 

Drain Area (1.5m x 1.5m) is subsequently slightly higher than that obtained by the Asaoka, 

Hyperbolic and piezometer methods. For the Vertical Drain Area, a degree of consolidation 

of 87.8% was obtained from the FEM method as compared to 80.1% from the Asaoka 

method, 80.0% from the Hyperbolic method and 80.0% from the piezometer method. The 

degree of consolidation obtained by the finite element modeling method for the untreated 

Control Area is also found to be slightly higher than that obtained by the piezometer method. 

For the Control Area, a degree of consolidation of 27.9% was obtained from the FEM 

method as compared to 20.0% from the piezometer method. 

 
Table 10.4  Comparison between finite element modeling results with actual field settlement 
at In-Situ Test Site, 20 months after surcharge placement (Arulrajah et al., 2004j). 

Sub-Area Field Settlement  

to Date (m) 

Full Scale FEM 

Analysis (m) 

Axi-symmetric Unit Cell 

FEM Analysis (m) 

Vertical Drain  

1.5m x 1.5m 

2.404 2.320 2.260 

Control  

No Drain 

0.706 0.687 - 

 
Table 10.5  Comparison of settlement assessed by Asaoka, Hyperbolic, piezometer and finite 
element modeling methods at In-Situ Test Site, 20 months after surcharge placement 
(Arulrajah et al., 2004j). 

Sub-Area Comparison Asaoka Hyperbolic Piezometer FEM  

Vertical Drain 

1.5m x 1.5m 

Ultimate Settlement (m) 

Settlement to date (m) 

Degree of Consolidation (%) 

3.000 

2.404 

80.1 

3.005 

2.404 

80.0 

- 

- 

80.0 

2.640 

2.320 

87.8 

Control 

No Drain 

Ultimate Settlement (m) 

Settlement to date (m) 

Degree of Consolidation (%) 

- 

0.706 

- 

- 

0.706 

- 

- 

- 

20.0 

2.465 

0.687 

27.9 
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Figure 10.18  Comparison between finite element modeling results with actual field 
settlement at In-Situ Test Site 20 months after surcharge placement (Arulrajah et al., 2004j). 
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Figure 10.19 Comparison between ultimate settlement by finite element modeling with 
actual field settlement at In-Situ Test Site (Arulrajah et al., 2004j). 
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10.5.2 Pilot Test Site 

Table 10.6 and Figure 10.20 illustrate the comparison of the finite element modeling results 

between the actual field settlement and the Plaxis Version 8 (2002) numerical modeling 

method for the Pilot Test Site, 32 months after surcharge placement. Figure 10.21 illustrates 

the comparison between ultimate settlement by finite element modeling with actual field 

settlement at Pilot Test Site. Excellent agreements were obtained from the finite element 

modeling analysis as compared to the actual field settlements for both the embankment with 

vertical drains as well as the control embankment.  

 

The matching techniques used in the finite element analysis of the vertical drains were based 

on that used previously in the modeling of Bangkok clays with PVD by the axi-symmetric 

unit cell analysis method. The modeling of the Singapore marine clay treated with vertical 

drains was however modified to incorporate the marine clay multi-layers present in 

Singapore marine clay at Changi. The modeling technique used by the author is found to 

provide excellent agreement in their use for the modeling of Singapore marine clay with 

vertical drains. The axi-symmetric unit cell analysis of vertical drains was found to be in 

excellent agreement with the actual field settlement results at the Pilot Test Site.  

 

The axi-symmetric unit cell analysis result is found to be in good agreement with the actual 

field settlement for sub-areas A2S-71 (2.0m x 2.0m) and A2S-73 (3.0m x 3.0m). The axi-

symmetric unit cell analysis result is found to be settling at a slightly slower rate than the 

actual field settlement for sub-area A2S-72 (2.5m x 2.5m).  

 

As evident in Table 10.6 and Figure 10.20 there is a difference of only 0.021 meters of 

settlement between the actual field settlement (1.687 meters) and the axi-symmetric unit cell 

finite element modeling analysis (1.666 meters) for sub-area A2S-71 (2.0m x 2.0m) after a 

surcharge period of 32 months. There is a difference of only 0.002 meters of settlement 

between the actual field settlement (1.264 meters) and the axi-symmetric unit cell finite 

element modeling analysis (1.262 meters) for sub-area A2S-72 (2.5m x 2.5m). There is a 

difference of only 0.012 meters of settlement between the actual field settlement (0.948 

meters) and the axi-symmetric unit cell finite element modeling analysis (0.960 meters) for 

sub-area A2S-73 (3.0m x 3.0m).  

 

The full scale analysis of the untreated control embankment of the A2S-74 (No Drain) sub-

area is also found to be in excellent agreement with the actual field settlement. The 

settlements are found to be in very close agreement after the surcharge period of 32 months 

(monitoring period of 41.9 months). As evident for sub-area A2S-74 (No Drain) in Table 
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10.6 and Figure 10.20, there is a difference of only 0.068 meters of settlement between the 

actual field settlement (0.503 meters) and the full scale finite element modeling analysis 

(0.435 meters) for the untreated A2S-74 sub-area after a surcharge period of 32 months 

(monitoring period of 41.9 months). 

 

Table 10.7 indicates the comparison of ultimate settlement and degree of consolidation 

assessed by using Asaoka, Hyperbolic, piezometer and finite element modeling methods at 

the Pilot Test Site. As evident in Table 10.7, the ultimate settlement obtained by the finite 

element modeling method is found to be slightly lower than that predicted by the Asaoka and 

Hyperbolic prediction methods for the A2S-71 (2.0m x 2.0m) sub-area. The degree of 

consolidation obtained by the finite element modeling method for the A2S-71 sub-area is 

subsequently slightly higher than that obtained by the Asaoka, Hyperbolic and piezometer 

methods. For the A2S-71 sub-area, a degree of consolidation of 95.6% was obtained from 

the FEM method as compared to 91.8% from the Asaoka method, 93.7% from the 

Hyperbolic method and 86.2% from the piezometer method. 

 

The ultimate settlement obtained by the finite element modeling method is found to be 

slightly higher than that predicted by the Asaoka and Hyperbolic prediction methods for the 

A2S-72 (2.5m x 2.5m)and A2S-73 (3.0m x 3.0m) sub-areas. The degree of consolidation 

obtained by the finite element modeling method for the A2S-72 and A2S-73 sub-areas is 

subsequently slightly lower than that obtained by the Asaoka, Hyperbolic and piezometer 

methods. For the A2S-72 sub-area, a degree of consolidation of 87.9% was obtained from 

the FEM method as compared to 89.5% from the Asaoka method, 89.8% from the 

Hyperbolic method and 82.5% from the piezometer method. For the A2S-73 sub-area, a 

degree of consolidation of 78.9% was obtained from the FEM method as compared to 79.0% 

from the Asaoka method, 81.1% from the Hyperbolic method and 73.1% from the 

piezometer method. 

 

The degree of consolidation obtained by the finite element modeling method for the 

untreated A2S-74 (No Drain) sub-area is also found to be slightly lower than that obtained 

by the piezometer method. For the untreated A2S-74 sub-area, a degree of consolidation of 

33.9% was obtained from the FEM method as compared to 37.0% from the piezometer 

method. 

 

In conclusion, it can be said that reasonable agreements were obtained from the finite 

element modeling analysis as compared to the actual field settlements for both the vertical 

drain treated embankments as well as the untreated control embankments at both the In-Situ 
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Test Site and Pilot Test Site. The axi-symmetric unit cell and the full scale analysis of 

vertical drains were found to be in reasonable agreement with  each other and with the actual 

field settlement results.  

 

Table 10.6 Comparison of settlement between finite element modeling results with 
actual field settlement at Pilot Test Site 32 months after surcharge (Arulrajah et al., 2004j). 

Sub-Area Field Settlement 

to Date (m) 

Full Scale FEM Analysis 

(m) 

Axi-symmetric Unit Cell 

FEM Analysis (m) 

A2S-71 

2.0 x 2.0 m 

1.687 

 

- 1.666 

A2S-72 

2.5 x 2.5 m 

1.264 

 

- 1.262 

A2S-73 

3.0 x 3.0 m 

0.948 

 

- 0.960 

A2S-74 

No Drain 

0.503 

 

0.435 

 

- 

 

 

 

Table 10.7 Comparison of settlement and degree of consolidation assessed by Asaoka, 
Hyperbolic, piezometer and finite element modeling methods at Pilot Test Site 32 months 
after surcharge (Arulrajah et al., 2004j). 

Sub-Area Comparison Asaoka Hyperbolic Piezometer FEM  

A2S-71 

2.0 x 2.0 m 

 

Ultimate Settlement (m) 

Settlement to date (m) 

Degree of Consolidation (%) 

1.838 

1.687 

91.8 

1.801 

1.687 

93.7 

- 

- 

86.2 

1.743 

1.666 

95.6 

A2S-72 

2.5 x 2.5 m 

 

Ultimate Settlement (m) 

Settlement to date (m) 

Degree of Consolidation (%) 

1.412 

1.264 

89.5 

1.408 

1.264 

89.8 

- 

- 

82.5 

1.436 

1.262 

87.9 

A2S-73 

3.0 x 3.0 m 

 

Ultimate Settlement (m) 

Settlement to date (m) 

Degree of Consolidation (%) 

1.200 

0.948 

79.0 

1.169 

0.948 

81.1 

- 

- 

73.1 

1.217 

0.960 

78.9 

A2S-74 

No Drain 

Ultimate Settlement (m) 

Settlement to date (m) 

Degree of Consolidation (%) 

- 

0.503 

- 

- 

0.503 

- 

- 

- 

37.0 

1.281 

0.435 

33.9 
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Figure 10.20 Comparison between finite element modeling results with actual field 
settlement at Pilot Test Site, 32 months after surcharge placement (Arulrajah et al., 2004j). 
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Figure 10.21 Comparison between ultimate settlement by finite element modeling with 
actual field settlement at Pilot Test Site (Arulrajah et al., 2004j). 
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11.0 PERFORMANCE VERIFICATION OF MARINE CLAY TREATED WITH 

PREFABRICATED VERTICAL DRAINS  

 

The vertical drain performance was verified for the In-Situ Test Site by using the ch obtained 

from back-analysis by the Asaoka Method and by finite element modeling with the Plaxis 

Version 8 (2002) numerical modeling software.  

 

 

11.1 Back-Analysis Using ch from Asaoka Method  

 

Conventional calculations by applying Barron (1948), Hansbo (1979) and Yoshsikuni and 

Nakanodo (1974) theories with well resistance and smear effect were compared with the 

actual field performance. The conventional vertical drain design with a ch of 0.78 m2/year 

obtained from back-analysis by applying the Asaoka method was generated (section 8.2.5).  

 

The ch of 0.78 m2/year which was obtained from back-analysis by the Asaoka method was 

compared to the actual field performance. It was found that the calculated time rate of 

settlement curve with a ch of 0.78 m2/year is similar to the field curve as shown in Figure 

11.1. This is apparent especially up to the surcharge period of 12 months, after which the 

field settlement curve slows down. 

 

Based on the settlement plate monitoring results (SP-095), a settlement of 0.691 meters was 

recorded during filling operations from the vertical drain platform level (+4 mCD) to the 

surcharge level (+10 mCD). This settlement was incorporated in the comparison of degree of 

consolidation between field and the back-analysis for the Vertical Drain Area.  

 

 

11.2 Proposed Modified Asaoka Equation 

 
Settlement at any point of time, St can be calculated as a fraction of the final settlement Sult 

from the following Asaoka equation (Hausmann, 1990):  

 

 

   St                 8                 8 ch’   +    π2 cv   Eq.(11.1) 
          = 1 -  exp    -      t 

Sult         π2       de
2 α         4 Ho 2    
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where:  

 de  = equivalent diameter of cylinder of soil around drain (=1.128s for square) (m) 

 cv  = coefficient of consolidation for vertical flow (m2/yr) 

 ch’ = effective value of coefficient of consolidation due to horizontal flow (m2/yr) 

 Ho   = thickness of layer (m) 

 t    = time elapsed since application of surcharge (yr) 

 α   = [(n2 ln n) / (n2 – 1)] – [(3n2 – 1)/4n2] 

 n    = de / d 

 d    = equivalent drain diameter (m) 

 

However, the above equation is suitable for a single layer of clay only. The author proposes 

that the equation be modified to allow for the analysis of multiple layers of marine clay (in 

this case being upper marine clay, intermediate clay and lower marine clay) by means of 

consideration for the equivalent thickness of the marine clay. 

 

Equivalent Thickness 

As the marine clay consists of several layers (in this case being three), the author proposes 

that the equivalent thickness of the marine clay has to be calculated to enable the input 

values of the equivalent thickness, equivalent drainage and coefficient of vertical 

consolidation values into the proposed modified Asaoka equation. The equations used for 

computation of equivalent thickness of marine clay is defined as follows: 

 

Equivalent Thickness of layer 1, H1': 

 

H1' = H1(cvi / cv1 )0.5        Eq.(11.2) 

 

where:  

cvi is an initial assumed value       

 

Total Equivalent thickness of all layers, HTi':  

 

HTi' = H1' + H2' +H3'. ... Hn'      Eq.(11.3) 

 

 

Equivalent drainage thickness, Hdri:  

Hdri = Hi' / 2        Eq.(11.4) 
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The author suggests the incorporation of the equivalent coefficient of consolidation for 

vertical flow, cvi and equivalent thickness of the layers, HTi' into the equation. The modified 

Asaoka equation proposed by the author for multiple layers of marine clay is defined as 

follows : 

 

 

   St                 8                 8 ch’   +    π2 cvi   Eq.(11.6) 
          = 1 -  exp    -      t 

Sult         π2       de
2 α         4 HTi'2    

 

 

where:  

 HTi'= equivalent total thickness of the marine clay layers 

 cvi  = equivalent coefficient of consolidation for vertical flow 

 

The ch of 0.78 m2/year which was obtained from back-analysis by the Asaoka method 

(section 8.2.5) was used in the equation. It was found that the calculated time rate of 

settlement curve with a ch of 0.78 m2/year is also similar to the field curve as shown in 

Figure 11.1. This is apparent especially up to the surcharge period of 12 months, after which 

the field settlement curve slows down.  The proposed modified Asaoka equation ties in very 

well with the back-analysis results by conventional method and as such can be used in future 

instead of back-analysing using the conventional calculations. 

 

 

11.3 Conventional Design of PVD with Back-Calculated ch 

 

The conventional design method for vertical drains was carried out with consideration for 

well resistance and smear effect and with using a ch to cv ratio of 2. The predicted rate of 

settlement is found to be much faster than that of the actual field settlement as shown in 

Table 11.1 and Figure 11.1. Similar findings have been reported by Bo, Arulrajah and Choa 

(1997b) and Chun et al. (1997). 

 

The conventional design method for vertical drains was also carried out with consideration 

for  well resistance and smear effect but this time by using the back-calculated ch of 0.78 

m2/yr. It is observed in Figure 11.1 that the calculated time rate of settlement by the 

conventional design method using the back-calculated ch of 0.78 m2/yr is similar with the 

field curve especially up to the surcharge period of 12 months, after which the field 

settlement curve slows down.  
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11.4 Finite Element Modeling of PVD 

 

Finite element modeling of the vertical drains was carried out with the Plaxis Version 8 

(2002) numerical modeling software by both the axi-symmetric unit cell analysis and full 

scale embankment analysis methods by means of the conventional modeling method using kh 

= 2kv for Singapore marine clay as described in the previous chapter. It is evident in Figure  

11.1, that the rate of consolidation for the axi-symmetric unit cell analysis and full scale 

embankment finite element modeling methods is faster than that of the actual field 

settlement.  

 

Finite element modeling was also carried out using the back-calculated ch = 0.78 m2/yr by 

the axi-symmetric unit cell analysis method. The calculated time rate of settlement is found 

to be similar to that of the field curve if the back-calculated ch = 0.78 m2/yr is used in the 

finite element modeling analysis as illustrated in Figure 11.1. Similar findings have been 

reported previously by Bo, Arulrajah and Choa (1997b) and Balasubramaniam et al. (1995) 

with the use of the Sage Crisp Finite element modeling program.  

 

Table 11.1 indicates the vertical drain performance verification comparison of settlement and 

degree of consolidation by various methods.  

 

Figure 11.1 illustrates the vertical drain performance verification comparison of degree of 

consolidation by various methods. 
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Table 11.1    Comparison of vertical drain performance verification by settlement and 
degree of consolidation by various methods 20 months after surcharge 
placement (Arulrajah et al., 2004j). 

Methods Employed 

(PVD Spacing of 1.5 m square) 

Ultimate 

Settlement (m) 

Settlement  

to date (m) 

Degree of 

Consolidation U (%) 

Actual Field Settlement: 

Hyperbolic method 

3.005 2.404 80.0 

Actual Field Settlement: 

Asaoka method 

3.000 2.404 80.1 

Conventional Method:  

Well resistance and smear effect 

3.005 2.923 97.3 

Full Scale FEM Analysis (Plaxis): 

kh = 2kv 

2.640 2.320 87.8 

Unit Cell FEM Analysis (Plaxis) 

kh = 2kv 

2.480 2.260 91.1 

Conventional Method:  

Back-calculated ch = 0.78 m2/yr  

3.000 2.553 85.1 

Proposed Modified Asaoka Eqn: 

Back-calculated ch = 0.78 m2/yr 

3.000 2.530 84.3 

Unit Cell FEM Analysis (Plaxis): 

Back-calculated ch = 0.78 m2/yr 

2.454 1.987 80.9 

FEM Analysis (Sage Crisp): 

Back-calculated ch = 0.78 m2/yr 

2.963 2.489 84.0 
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Actual field settlement: Ultimate settlement derived by Hyperbolic Method (SP95)

Actual field settlement: Ultimate settlement derived by Asaoka method (SP95)

Conventional method with well resistance and smear effect: Ch = 2Cv

Full scale FEM analysis (Plaxis): kh = 2kv

Axi-symmetric unit cell FEM analysis (Plaxis): kh = 2kv

Conventional method with well resistance and smear effect : Back-calculated Ch = 0.78 m2/yr  

Proposed modified Asaoka equation: Back-calculated Ch = 0.78 m2/yr

Axi-symmetric unit cell FEM analysis (Plaxis): Back-calculated Ch = 0.78 m2/yr 

FEM analysis (Sage Crisp): Back-calculated Ch = 0.78m2/yr 

 
Figure 11.1 Vertical drain performance verification comparison of degree of 
consolidation by various methods at 20 months after surcharge (Arulrajah et al., 2004j). 
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11.5 Findings and Discussion  

 

Findings 

Table 11.1 and Figure 11.1 indicate that field time rate of consolidations is in good 

agreement with the newly proposed modified Asaoka method and the conventional method 

using the back-calculated ch = 0.78 m2/yr (section 8.2.5). The actual field settlement 

measurement is slightly slower than the proposed modified Asaoka and the conventional 

method using the back-calculated ch = 0.78 m2/yr by only about 5% as indicated in Table 

11.1. The newly proposed modified Asaoka equation is found to be in good agreement with 

the conventional method using the back-calculated ch. As such, it is proposed that the 

proposed modified equation can be used in similar multi-layer schemes of marine clay and 

can be used in future instead of using the conventional method with back-calculated ch. 

 

Field measurement of coefficient of consolidation due to horizontal flow measured prior to 

reclamation by the various in-situ testing equipments is much higher than the back-analysed 

and designs (ch) values (section 6.11). As such, it is recommended based on these findings 

that the assumed coefficient of consolidation due to horizontal flow in the design stage 

should not be more than 1.5 times that of the coefficient of consolidation for vertical flow 

when thick layers of homogeneous clay are in existence. The field settlement curve is noted 

to be slowing down after one year of surcharging period.  

 

Discussion 

The major factor that accounts for the lower ch values back-calculated from field settlement 

measurements is the smear effect incurred from the insertion of the mandrel during the 

installation of vertical drains. For soft marine clay, the smear effect can be quite significant 

as the spacing of the drains is normally 1.5 meters. Bo et al. (1998f) has reported that the 

permeability of soil in the smear zone could be reduced by 1 order of magnitude or to the kh 

of the remoulded clay as a result of the smear zone. The smear zone was found to be 4-5 

times the equivalent diameter of the vertical drain Bo et al. (1998f). When drains are 

installed at close spacing, the back-calculated ch values will generally be greatly influenced 

by this smear zone. It is also to be noted that prior to reclamation in-situ measured ch values, 

are ch with existing overburden pressure and it’s value would be reduced to a certain degree 

after increasing the additional load. This can be seen in the reduction of ch values in the 

laboratory with each load increment.  
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In addition to this, the reduction of the rate of settlement after some time could be due to 

reduction of permeability of the vertical drain filter due to clogging and reduction of 

permeability in surrounding soil due to void ratio changes. Therefore the usage of ch values 

from in-situ test prior to reclamation may not be so conservative since this ch value accounts 

for the existing overburden pressure and would be reduced with the increments in fill load.  

 

Furthermore, the boundary condition for in-situ tests and for field conditions with vertical 

drains is different. As such, average ch values surrounding the effective area of vertical drain 

could be different from in-situ tests, which have a smaller effective flow area.  

 

Vertical drains installed in the project are performing to improve the soil drainage system, 

however their conventional design performance is slightly slower than that predicted by field 

measurements. An exact superimposed time rate of settlement curves between field and 

prediction is extremely difficult to obtain since there are various natural variations, which 

cannot be modelled.  
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12.0 CONCLUSIONS 

 

The conclusion of this research is sub-divided into various sub-sections. 

 

 

12.1 Characteristics and Mineralogy of Singapore Marine Clay at Changi 

The findings of the characteristics and mineralogy of Singapore Marine Clay is listed below: 

 

(1) The upper marine clay has a liquid limit of between 80-95%, plastic limit of between 

20-28% and water content of 70-88%. The upper marine clay is generally 

overconsolidated with OCR of about 1.5-2.5. The upper marine clay has a 

compression index (Cc) of 0.6-1.5 and secondary compression index (Cα) of 0.012-

0.025. The laboratory testing results indicate that the coefficient of consolidation for 

vertical flow (cv) of the upper marine clay is between 0.47-0.6 m2/year while the 

coefficient of consolidation due to horizontal flow (ch) is between 2-3 m2/year.  

 

 

(2) The lower marine clay has a liquid limit of 65-90%, plastic limit of 20-30% and 

water content of 40-60%. The lower marine clay is lightly overconsolidated with 

OCR of 2. The lower marine clay has a compression index (Cc) of 0.6-1.0 and 

secondary compression index (Cα) of 0.012-0.023. The laboratory testing results 

indicate that the coefficient of consolidation for vertical flow (cv) of the lower 

marine clay is between 0.8-1.5 m2/year while the coefficient of consolidation due to 

horizontal flow (ch) is between 3-5 m2/year.  

 

 

(3) The intermediate stiff clay is sandwiched between the upper marine clay and lower 

marine clay. The intermediate stiff clay has a liquid limit of about 50%, plastic limit 

of 18-20% and water content of 10-35%. The intermediate stiff clay is moderately 

overconsolidated due to desiccation, with OCR of 3-4.  The intermediate stiff clay 

has a compression index (Cc) of 0.2-0.3 and secondary compression index (Cα) of 

0.0043-0.023.The laboratory testing results indicate that the coefficient of 

consolidation for vertical flow (cv) of the intermediate marine clay is between 1-4.5 

m2/year while the coefficient of consolidation due to horizontal flow (ch) is between 

5-10 m2/year.  
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(4) Vertical hydraulic conductivity values, kv from laboratory tests was found to range 

between 2 x 10-10 to 1.5 x 10-8 m/s for the Singapore marine clay.  

 

The relationship between in-situ initial void ratio and vertical hydraulic conductivity 

change index, ckv is found to be only ckv = 0.3eo for Singapore marine clay at 

Changi.  

 

Horizontal hydraulic conductivity values from laboratory testing was found to range 

between 3 x 10-9 to 8 x 10-8 m/s. It was found that the hydraulic conductivity 

anisotropy is negligible for the Singapore marine clay at Changi. 

 

 

(5) An empirical correlation was obtained for the pre-reclamation field vane shear 

strength variation with depth. The cu/σvo′ ratio of the marine clay was found to be 

0.37. This indicates that the clay is overconsolidated as cu/σvo′ ratio is greater than 

0.25. The sensitivity of the marine clay at Changi varies from 3 to 8 which can be 

described as highly sensitive. 

 

 

(6) Under the Scanning Electron Microscope, the clays appear poorly consolidated. The 

fabric of the marine clay appears to be generally open with porosities optically 

estimated at up to 30%. The X-Ray Diffraction analysis indicates the major content 

of minerals to be kaolinite and smectite with ‘mica’ and chlorite being the minor 

minerals.  

 

 

(7) Photographic identification of Singapore marine clay shows the brownish-blue upper 

and lower marine clay layer consists of organic deposits and fine sand particles. The 

intermediate stiff clay layer is reddish due to oxidation of the layer as a result of 

exposure of the seabed to the atmosphere during the rise and fall of the sea levels in 

the geological past. 
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12.2 In-Situ Testing of Marine Clay under Reclamation Fills 

 

The findings of the In-Situ Test Site are listed below: 

 

(1) In the prior to reclamation series of in-situ tests, similar profiles were obtained for 

the shear strength and OCR. The undrained shear strength of the Singapore marine 

clay by the various methods is in good agreement with each other. The undrained 

shear strength obtained from the various in-situ test methods was analysed to obtain 

an empirical correlation of the undrained shear strength of the marine clay at the In-

Situ Test Site.  

 

 

(2) The upper marine clay is generally overconsolidated with OCR of about 1.5 to 3. 

The lower marine clay is lightly overconsolidated with OCR of 1 to 2. The 

intermediate stiff clay is overconsolidated due to desiccation, with OCR of 1.5 to 3.  

 

The dessicated layer found close to the seabed is also found to register high OCR 

values. Higher OCR at seabed normally occurs due to hydrodynamic effect caused 

by wave and current action.  

 

It is apparent that the OCR from CPT is the lowest of the in-situ testing methods. 

This is possibly due to the value of the constant used in the OCR computations by 

the CPT.  

 

 

(3) In the post improvement series of in-situ tests after a surcharge period of 23 months, 

the shear strength, OCR, effective stress and degree of consolidation obtained from 

various in-situ tests are found to be agreeable with each other 

 

 

(4) The post improvement in-situ tests indicated clear increases in the soil strength and 

degree of improvement which is as expected. The results also indicate the expected 

higher increases in strength, overconsolidation ratio, effective stress and degree of 

consolidation between the Vertical Drain Area as compared to the untreated Control 

Area.  
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The post improvement in-situ tests indicate that the degree of consolidation of the 

Vertical Drain Area had attained a degree of consolidation of about 70-80% while 

the Control Area had attained a degree of consolidation of about 30-40%.  

 

 

(5) Piezocone dissipation tests have been utilised as a tool to obtain the piezometric 

heads of marine clays after ground improvement as well as to assess the degree of 

consolidation of the improved marine clay. The results indicated that pore pressure 

measured from the CPTU holding tests are in agreement with those measured by the 

piezometers tests in both the Vertical Drain Area and adjacent untreated Control 

Area.  

 

The CPTU test results were also successfully used for the determination of the 

equilibrium pore pressure and degree of consolidation of the improved areas as 

confirmed by the field instrumentation results. This suggests that the quasi-static 

piezometric pressures from the piezocone dissipation tests may be used as an 

alternative to piezometer instrumentation in measuring piezometric pressure in 

consolidation stage.  

 

The Vertical Drain Area was found to have attained a degree of consolidation of 80-

85% based on the CPTU results. The Control Area without vertical drains on the 

other hand has attained a degree of consolidation of 10-22% based on the CPTU 

results.   

 

 

(6) In-situ dissipation test using the piezocone is recommended as the most suitable 

method for the determination of the ch of marine clay. The prior to reclamation 

CPTU results is found to be the closest to the laboratory testing results. 

 

The pre-reclamation CPTU dissipation test indicate that the ch values of the upper 

and lower marine clay varies between 2 to 6 m2/yr. ch values of 4 to 7 m2/yr were 

obtained in the intermediate stiff clay, separating the upper and lower marine clay 

layers. The pre-reclamation CPTU results is found to be the closest among the in-

situ dissipation tests to the laboratory testing results.  

 



   

  306

The post-improvement CPTU results in the upper and lower marine clay layers 

indicate ch varies between 3 and 6 m2/yr in the Vertical Drain Area and between 3 

and 5 m2/yr in the Control Area, after 23 months of surcharge loading.  

 

 

(7) The ch determined by the various in-situ testing methods are relatively higher overall 

as compared to the laboratory testing results, as evident in the prior to reclamation 

test results. Horizontal laminations and micro lenses present in the marine clay 

profile, will lead to higher ch values and subsequently higher kh for the in-situ tests. 

The presence of laminations and lenses are difficult to be detected by the laboratory 

tests due to the sampling intervals and the sampling process. Furthermore, laboratory 

results are subject to various complexities such as borehole quality, sample quality, 

testing methods and method of interpretation which could lead to lower test values. 

 

 

(8) It is apparent that ch results vary between the various in-situ testing methods due to 

the differing assumption in cavity radius in the various test methods. The varying ch 

values will subsequently lead to differing kh in the CPTU, DMT and SBPT results as 

kh computations is worked out indirectly from ch values.  

 

 

(9) The ch value derived from the CPTU dissipation test is generally lower than those 

obtained from the other in-situ dissipation tests. In general, the ch value measured by 

the SBPT is much larger than those obtained from the other in-situ dissipation tests. 

The ch determined by the DMT and SBPT prior to reclamation is noted to be an 

order of magnitude greater than the laboratory data.  

 

The smear effect affects the CPTU and DMT measurements for ch. In the CPTU and 

DMT dissipation test, a penetrometer has to be pushed into the clay and a smear 

effect similar to the insertion of a mandrel could have been introduced prior to the 

measurements. This as such could lead to the CPTU and DMT measurements for ch 

being lower than that of the SBPT. 

 

 

(10) The ch value seems to be higher in the Vertical Drain Area at some elevations as 

compared to the Control Area. This is due to the greater reduction in the coefficient 
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of volume change, mv, after consolidation or it was simply affected by the correction 

factors used.  

 

 

(11) In-situ dissipation tests using the BAT is recommended as the most suitable method 

for the determination of the kh of marine clay, since the system measures horizontal 

hydraulic conductivity directly whereas the other in-situ tests required the 

introduction of additional parameters to evaluate the kh indirectly from ch values.  

The horizontal hydraulic conductivity prior to reclamation is in the order of 10-9 to 

10-10 m/s based on the BAT results.  

 

The horizontal hydraulic conductivity is in the order of 10-9 to 10-10 m/s in the 

Vertical Drain Area and the Control Area after 23 months of surcharge loading.  

 

It is apparent that the prior to reclamation kh is higher than that of the Vertical Drain 

Area and Control Area after 23 months of surcharge loading. This is expected due to 

reduction in the void ratio after surcharge loading. 

 

It is also apparent that the kh in the Vertical Drain Area is lower than that in the 

Control Area which is expected due to higher void ratio changes and smear effect.  

 

The results from the BAT permeameter tests confirm that there is a reduction of 

vertical permeability from time to time during consolidation in the vertical drain 

treated area. 

 

 

(12) The smear effect also affects the BAT, CPTU and DMT measurements for kh. In the 

BAT, CPTU and DMT dissipation test, a penetrometer has to be pushed into the clay 

and a smear effect similar to the insertion of a mandrel could have been introduced 

prior to the measurements. Smear effect also affects the kh in the vertical drain 

treated area due to insertion of the vertical drain mandrel into the ground.  

 

The smear effect for BAT permeameter could be greater than that for the CPTU, as 

the BAT permeameter had a filter with a larger surface area. This may explain why 

kh measured by the BAT permeameter is normally lower than that by the CPTU, 

although the working mechanisms of the two tests are very similar. The SBPT 

should not be affected by the smear effect due to its self-boring mechanism.  
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12.3 Field Instrumentation of Marine Clay Case Studies  

 

The findings of the Pilot Test Site and In-Situ Test Site are listed as follows: 

 

(1) Instrumentation monitoring by means of settlement gauges and piezometers is found 

in the research to be a reliable method to continually assess the degree of 

consolidation of vertical drains in land reclamation projects.  

 

 

(2) At the Pilot Test Site, the magnitude of settlement is highest in sub-area A2S-71 (2.0 

x 2.0 m) which has the closest vertical drain spacing and lowest in A2S-74 (No 

Drain). Higher magnitudes of settlement and higher degree of consolidation are 

obtained as closer vertical drain spacing is used. Similarly, dissipation of excess pore 

water pressure readings is evidently faster in the closer spacing vertical drain treated 

sub-area. The ultimate settlement and degree of consolidation obtained by the 

Asaoka and Hyperbolic methods is found to converge to be in excellent agreement 

with each other after the surcharge period of 32 months. The degree of consolidation 

predicted by the Hyperbolic method is found to be slightly higher than that of the 

Asaoka method. The piezometer indicates lower degree of consolidation as 

compared to field settlement predictions. The degree of consolidation of the Pilot 

Test Site is as follows: 

 

Sub-area A2S-71 (2.0 x 2.0 m) had attained a degree of consolidation of about 93 %. 

Sub-area A2S-72 (2.5 x 2.5 m) had attained a degree of consolidation of about 90 %. 

Sub-Area A2S-73 (3.0 x 3.0 m) had attained a degree of consolidation of about 80%. 

Sub-Area A2S-74 (No Drain) had attained a degree of consolidation of 37.0 %. 

 

 

(3) At the Pilot Test Site, the findings of the comparison between pneumatic and electric 

piezometers indicate that there is reasonable agreement in readings between the two 

types of piezometers. As such either type of piezometer can be used for the 

monitoring of the marine clay behaviour under reclaimed fills. Proper protective 

guard cell is required for the pneumatic piezometer to counter for the effect of 

possible pinching of the piezometer cable due to the large strain settlements of the 

reclaimed fill.  
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(4) At the In-Situ Test Site the settlement gauges and piezometers indicate that the 

degree of consolidation of the vertical drain treated Vertical Drain Area had attained 

a degree of consolidation of more than 80% while the Control Area had attained a 

degree of consolidation of less than 20%. This is in good agreement with the in-situ 

testing results.  

 

The results of the design predictions are found to be in good agreement with that of 

the field instrumentation results. The degree of consolidation obtained by the design 

predictions is found to be only slightly higher than that of the field instrumentation 

results. For the Vertical Drain Area, a degree of consolidation of 83.3% was 

obtained from the design predictions as compared to 80.1% from the Asaoka 

method, 80.0% from the Hyperbolic method and 80.0% from the piezometer 

method.  

 

 

(5) Compression parameters obtained from the laboratory which were used for 

prediction is very similar to the actual back-analysed parameters. Back-analysed ch 

values are also much lower than the in-situ which is due to reduction of horizontal 

and vertical permeability from time to time during consolidation, well resistance and 

smear effect and clogging of vertical drains after some time.  

 

 

12.4 Evaluation of Observational Methods of Assessing Improvement of 

Marine Clay under Reclamation Fills 

 

(1) The author’s findings of the Asaoka method reveal that the magnitude of ultimate 

settlement decreases and the degree of consolidation subsequently increases as a 

longer period of assessment is used in the prediction. It is apparent that as the time 

interval increases, a cut-off time interval is obtained after which increasing time 

intervals would converge to the same magnitude of ultimate settlement. In the study 

of the vertical drain areas in the Pilot Test Site, the cut-off time interval was 

determined to be 28 days.  

 

 

(2) The author’s findings reveal that the ch value back-analysed by the Asaoka method is 

dependant on the time interval used for the prediction. The ch value predicted by the 
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Asaoka method decreases and converges to the final value as a longer time of 

assessment and increasing time intervals is used in the back-analysis.  

 

(3) The study reveals that the ch value of the marine clay is lowest at the sub-area with 

the closest vertical drains spacing (A2S-71: 2.0 x 2.0) and highest at the sub-area 

with the furthest vertical drain spacing (A2S-73: 3.0 x 3.0). This may be attributed to 

the higher degree of smear effect at locations with closer drain spacing. This is 

confirmed by similar trends obtained by the Asaoka and piezometer back-analysis. 

However reduction of ch with time is due to reduction of void ratio as consolidation 

progress. 

 

(4) The author recommends that for the Asaoka method a longer time interval has to be 

used for the ultimate settlement and ch predictions. The use of a longer time interval 

will require a long term field  instrumentation monitoring programme in order to 

enable sufficient data points to be obtained in order to assess the best-fit line through 

the data points.  

 

 

(5) The author’s findings of the Hyperbolic method reveal that the magnitude of 

ultimate settlement increases and subsequently the degree of consolidation decreases 

as a longer period of assessment is used in the prediction.  

 

 

(6) The prediction of ultimate settlement and degree of consolidation is found to be in 

excellent agreement for the Asaoka and Hyperbolic methods especially when the 

period of assessment increases.   

 

 

(7) The degree of consolidation predicted by the piezometers is found to be in good 

agreement with the Asaoka and Hyperbolic methods for the early period of 

assessment. However as the assessment period increases, the piezometer indicates 

lower degree of consolidation as compared to field settlement predictions. This can 

be attributed to the non-linearity of the stress-strain behaviour of soil (Mikasa, 

1995). 
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(8) The back-analysed ch by the piezometer method indicates that there is a trend of the 

ch value generally decreasing at longer periods of assessment after surcharge 

placement. It is apparent that the coefficient of consolidation due to horizontal flow, 

ch value of the clay is reducing with time and as longer time of assessment is used in 

the back-analysis by piezometer method.   

 

 

(9) The study of the piezometer method reveals that the ch value of the marine clay is 

lowest at the sub-area with the closest vertical drains spacing and highest at the sub-

area with the largest vertical drain spacing which is attributed to the larger smear 

effect at locations with closer drain spacing. This is in similar agreement with the ch 

values back-calculated by the Asaoka method and confirms the higher degree of 

smear effect at locations with closer drain spacing. However, reduction of ch with 

time is due to reduction of void ratio as consolidation progress.  

 

(10) The ch values back-calculated by the Asaoka and piezometer method after 32 months 

of surcharge placement in the Pilot Test Site is found to be in good agreement and 

confirm the higher degree of smear effect at locations with closer drain spacing.  

 

 

12.5 Finite Element Modeling of Marine Clay and Vertical Drains  

 

The findings of the finite element modeling of the In-Situ Test Site and Pilot Test Site are 

listed below: 

 

(1) Reasonable agreements were obtained from the finite element modeling analysis as 

compared to the actual field settlements for both the vertical drain treated 

embankments as well as the untreated control embankments at both the In-Situ Test 

Site and Pilot Test Site. The axi-symmetric unit cell and the full scale analysis of 

vertical drains were found to be in excellent agreement with  each other and with the 

actual field settlement results.  

 

 

(2) The techniques used in the finite element analysis of the vertical drains were based 

on that used previously in the modeling of Bangkok clays with PVD. The modeling 

of the Singapore marine clay treated with vertical drains was however modified to 

incorporate the marine clay multi-layers present in Singapore marine clay at Changi. 
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The modeling technique used by the author is found to provide similar reasonable 

agreements in their use for the modeling of Singapore marine clay with vertical 

drains.  

 

 

(3) In-Situ Test Site Finite Element Modeling Findings: 

The ultimate settlement obtained by the finite element modeling method is found to 

be lower than that predicted by the Asaoka and Hyperbolic prediction methods for 

the Vertical Drain Area (1.5m x 1.5m). The degree of consolidation obtained by the 

finite element modeling method for the Vertical Drain Area (1.5m x 1.5m) is 

subsequently slightly higher than that obtained by the Asaoka, Hyperbolic and 

piezometer methods. For the Vertical Drain Area, a degree of consolidation of 

87.8% was obtained from the FEM method as compared to 80.1% from the Asaoka 

method, 80.0% from the Hyperbolic method and 80.0% from the piezometer 

method. 

 

The degree of consolidation obtained by the finite element modeling method for the 

untreated Control Area is also found to be slightly higher than that obtained by the 

piezometer method. For the Control Area, a degree of consolidation of 27.9% was 

obtained from the FEM method as compared to 20.0% from the piezometer method. 

 

 

(4) Pilot Test Site Finite Element Modeling Findings: 

The ultimate settlement obtained by the finite element modeling method is found to 

be slightly lower than that predicted by the Asaoka and Hyperbolic prediction 

methods for the A2S-71 (2.0m x 2.0m) sub-area. For the A2S-71 sub-area, a degree 

of consolidation of 95.6% was obtained from the FEM method as compared to 

91.8% from the Asaoka method, 93.7% from the Hyperbolic method and 86.2% 

from the piezometer method. 

 

The ultimate settlement obtained by the finite element modeling method is found to 

be higher than that predicted by the Asaoka and Hyperbolic prediction methods for 

the A2S-72 (2.5m x 2.5m) and A2S-73 (3.0m x 3.0m) sub-areas. For the A2S-72 

sub-area, a degree of consolidation of 87.9% was obtained from the FEM method as 

compared to 89.5% from the Asaoka method, 89.8% from the Hyperbolic method 

and 82.5% from the piezometer method. For the A2S-73 sub-area, a degree of 

consolidation of 78.9% was obtained from the FEM method as compared to 79.0% 
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from the Asaoka method, 81.1% from the Hyperbolic method and 73.1% from the 

piezometer method. 

 

The degree of consolidation obtained by the finite element modeling method for the 

untreated control A2S-74 (No Drain) sub-area is also found to be slightly lower than 

that obtained by the piezometer method. For the untreated A2S-74 sub-area, a degree 

of consolidation of 33.9% was obtained from the FEM method as compared to 

37.0% from the piezometer method. 

 

 

12.6 Performance Verification of Marine Clay Treated with Prefabricated Vertical 

Drains 

 

The performance verification of prefabricated vertical drains was studied at the In-Situ Test 

Site and findings are as follows: 

 

(1) The field time rate of consolidations is found to be in good agreement with the 

newly proposed modified Asaoka method and the conventional method using the 

back-calculated ch = 0.78 m2/year. The actual field measurement is slightly slower 

than the proposed modified Asaoka and the conventional method using the back-

calculated ch = 0.78 m2/year by only about 5%. The newly proposed modified 

Asaoka equation is found to be in good agreement with the conventional method 

using the back-calculated ch. As such, it is proposed that the proposed modified 

equation can be used in similar multi-layer schemes of marine clay and can be used 

in future instead of using the conventional method with back-calculated ch assumed 

as a ratio of cv. 

 

 

(2) It was found from the back-analyses of the field instrumentation monitoring results 

that the actual field coefficient of consolidation due to horizontal flow is only 0.78 

m2/year. However, field measurement of coefficient of consolidation due to 

horizontal flow measured prior to reclamation by the various in-situ testing 

equipments is much higher than the back-analysed and design (ch) values. As such, it 

is recommended based on these findings that the assumed coefficient of 

consolidation due to horizontal flow in the design stage should not be more than 1.5 

times that of the coefficient of consolidation for vertical flow when thick layers of 

homogeneous clay are in existence. The adoption of too high an assumed ch to cv 
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ratio, will predict a design rate of settlement that is faster than that of the actual field 

settlement. 

 

 

(3) The field curve is noted to be slowing down after one year of surcharging period. 

This may be an indication of a reduction in permeability of the vertical drain filter 

due to clogging. This may also be due to the reduction of permeability in the 

surrounding soil due to void ratio changes in the later stage of the consolidation. 

 

 

(4) Vertical drains installed in the project are performing to improve the soil drainage 

system, however their performance is slightly slower than that predicted. An exact 

superimposed time rate of settlement curves between field and prediction is 

extremely difficult to obtain since there are various natural variations, which cannot 

be modelled. As such, it would be more effective to design the vertical drain 

especially where thick layers of homogeneous clay exist with a lower specified 

degree of consolidation but with a higher surcharge load (higher additional load) in 

order to gain the equivalent stress gain within a shorter duration when vertical drains 

are fully performing.  
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