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ABSTRACT

Geocoding is essential to translating a physical address such as a house,
business or landmark into spatial coordinates which are used in a range of
everyday activities. Geocoding is an active area of research, both within the
literature and also in industry. Despite progress in the field, there remains
a small portion of addresses which are difficult to geocode. The purpose
of this research is to explore the use of agent-based techniques to add
intelligence to the geocoding process. The importance of the research stems
from its potential to move geocoding in a new direction, by complementing
current theory and practice with control and knowledge improvements
which will improve geocoding results. The investigation was undertaken by
identifying the issues relevant to intelligent geocoding, designing an agent-
based solution and building a prototype. The prototype was then evaluated
using sample addresses to assess its quantitative performance, and its
qualitative performance was evaluated based on the new functionality
it provided. Results indicate that intelligence in geocoding is a product
of both context and semantics (at a conceptual level) and control and
knowledge (at an implementation level), where the two are “connected” by
the agent paradigm which is both a representation and a solution. Other
conclusions include that further development in learning and semantics
in geocoding would allow the knowledge base to infer new knowledge and
store insights regarding the spatial cognition of users.
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CHAPTER 1

INTRODUCTION

GEOCODING is translating a physical address such as a house, business
or landmark into spatial coordinates. The tendency of people not

to use spatial coordinates for everyday tasks is reflected by the fact
that people define locations represented in terms people can understand,
such as place names (Hill, 2006), and often may only have a name to
work with without knowing the location to which it refers. Addressing
provides a convenient way for people to remember, and express, locations.
Although addresses are “spatial”, they contain no inherent connection or
reference to an absolute location, other than the fact that an address
does (or did) occupy a unique location on the Earth. Establishing this
link between address and absolute location is the challenge in geocoding.
The purpose of this research is to add intelligence to the geocoding
process. Part of adding this intelligence is re-evaluating how geocoding is
performed, and analysing how the process can be overhauled to improve
geocoding and enable the process to be compatible with ongoing and
significant improvements relating to computing and the Internet. The
vision for intelligent geocoding involves advances in the areas of (i)
flexibility, (ii) context, (iii) semantics, (iv) learning, (v) interaction and (vi)
user perception.

This geocoding process is used in applications such as health, business,
navigation and emergency services. Geocoding has found particular
success in mainstream applications such as car global positioning systems
(GPS), and increasingly developed mobile phone and smart phone location-
based applications with mobile GIS. It is also a vital component of emerging
technologies such as smart phones and services that are increasingly
reliant on location. Street addressing was designed with no regard
for absolute geographic coordinates. The availability of computing and
geographic information systems (GIS) has meant more can be done with

1



INTRODUCTION

information that has a spatial component, by bringing together two
fields: street addressing and absolute positioning. Because GIS performs
operations using absolute geographic coordinates, any real world problem
solving or analysis involving the location of buildings or other features
requires a translation from address to absolute location.

1.1 Contemporary Geocoding

The geocoding process is well documented in the literature (Goldberg et al.,
2007; Karimi and Durcik, 2004; Zandbergen, 2008; Wei et al., 2009; Lee,
2009; Jacquez and Rommel, 2009) and although the terms used to describe
the phases can vary, the process itself is straightforward. The geocoding
process relies on a combination of techniques from record linkage and GIS.
The record linkage is necessary to take the original address submitted
for geocoding and accurately identify corresponding records in one or
more reference data sources which describe that address (Gu et al., 2003)
for the purposes of correcting and verifying the address. After linkage
occurs, techniques from GIS assist in assigning geographic coordinates
to the address. The geocoding process can be divided into three phases
(normalization, matching and locating) which are further described in
Sections 2.1.1, 2.1.2 and 2.1.3.

1.2 Issues in Contemporary Geocoding

There are several categories of errors in the geocoding process and these
relate to data input, reference data and the underlying process (Zandber-
gen, 2008; Karimi and Durcik, 2004; Goldberg et al., 2007; Bigham et al.,
2009); these categories and the topics within these categories are presented
in Table 1.1.

2
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TABLE 1.1: Sources of Error in Geocoding

Data Input Errors
(Zandbergen, 2008)

Reference Data
(Zandbergen, 2008)

Underlying Process
(Zandbergen, 2008)

Levels of
Completeness

Completeness (Karimi
and Durcik, 2004)

Assumptions made
during interpolation
(Goldberg et al., 2007)

Syntax Currency (Karimi and
Durcik, 2004)

Underlying Accuracy
of Reference Dataset
(Goldberg et al., 2007)

Semantic and
Geographic

Correctness (Karimi
and Durcik, 2004)

Uncertainty in the
Matching Algorithm
(Goldberg et al., 2007)

Iterative and
Compounded

Consistency (Karimi
and Durcik, 2004)

Uncertainty during
Standardization

Spatial Accuracy
(Karimi and Durcik,
2004)

Choice of Areal Unit
used for Geocoding
(Goldberg et al., 2007)

Of particular interest are the errors associated with semantic, geographic,
iterative and compounded problem addresses; these are given little atten-
tion in the literature, but are emerging as a problem type that could be
catered for. Within the underlying process, the uncertainty in the matching
algorithm is also of interest, as this could be a category for significant
improvement, especially if the sub-process can be tied back to the concept
of semantics and control. The categories of data input errors, reference
data and underlying process are described in more detail in Sections 2.2.1,
2.2.2 and 2.2.3.

1.3 Rationale for the Research

Geocoding is at a transition point where its current capabilities are
going to be confronted by advances in the Internet, artificial intelligence
and geocomputation. For geocoding to continue to improve, it must not
only handle its existing limitations but look to future advances for the
opportunities which these bring. This section presents geocoding in light of
these advances and the opportunities that are emerging.
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1.3.1 The Bigger Picture for Geocoding Enhancement

Society is on the verge of a semantic geospatial web (Egenhofer, 2002), and
this mindset needs to be embraced for the field of geocoding. Geocoding
must follow the semantic geospatial web as it brings a totally new way of
organizing information (Egenhofer, 2002; Passin, 2004), with the ability to
find information based on the meaning of spatial and textual queries. The
inventor of the web, Sir Tim Berners-Lee, has stated that:

“The real power of the Semantic Web will be realized when people
create many programs that collect Web content from diverse
sources, process the information and exchange the results with
other programs. The effectiveness of such software agents will in-
crease exponentially as more machine readable Web content and
automated services (including other agents) become available”.
(Berners-Lee et al., 2001)

This has implications for both the creation and use of information, along
with the control of how this information is used in software. With the
opportunity afforded by these emerging technologies, the question is how
will these affect the phases in the contemporary geocoding process and
benefit the current limitations and difficulties in contemporary geocoding?

As reference data continues to improve with the use of authoritative
geocode point data sets with verified positional accuracy, techniques such
as interpolation will no longer be needed. Although it will take longer,
complex sites and rural sites will eventually have reliable geocode data.
The result of this is that one of the biggest issues in geocoding, accurate
spatial reference data, will be minimized.

While current techniques for address standardization and matching do
take into account the idea that users make mistakes, the types of mistakes
catered for are limited to those involving language and the order of address
elements. Very little consideration is given to mistakes they made with
regards to semantics and ontological meaning or similarity.

Geocoding has an established, linear work flow with certain steps, and
these should not be thrown out, but the way they are executed and
controlled could be improved. Renovating the geocoding process with a
new mechanism for control could not only prepare it for the burgeoning
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semantic geospatial web, but would also provide the opportunity for greater
extensibility and modularity.

Emerging from this bigger picture of geocoding enhancement are specific
opportunities for geocoder improvement. The idea is that these concepts
will improve existing deficiencies and also provide a framework for future
geocoder development as the semantic web becomes a reality.

1.3.2 Specific Opportunities for Improvement

Based on the current limitations of geocoding, several ideas have emerged
which could be pursued for enhancing the process. These improvements
relate to how knowledge is structured and stored, maintaining knowledge,
how users perceive addresses, how reference data is accessed, the quality of
data and the communication of this, the matching process and allowing the
user to understand this process with its implications, and context. These
topics are explained in Section 2.3.

1.4 Considerations for an Intelligent Solution

Definitions of artificial intelligence (AI) vary, but Negnevitsky (2002) states
that “The goal of artificial intelligence as a science is to make machines
do things that would require intelligence if done by humans”, a definition
originally presented by Boden (1977). Myers (2004) define intelligence as
“the ability to learn from experience, solve problems, and use knowledge
to adapt to new situations”, which is very much in line with the vision
for intelligent geocoding. The definition by Fogel (1995) that “Any system...
that generates adaptive behaviour to meet goals in a range of environments
can be said to be intelligent” reiterates that intelligence involves adaption
and meeting goals. In looking towards what could shape an intelligent
solution, it is proposed that the solution can be best described by three
factors which are control, knowledge representation and learning.

Control relates to the cause, sequence and technique for executing pro-
gramming code in software. There are different techniques for control in
software and advantages associated with their use. Section 2.4.1 details the
traits desirable for intelligent geocoding. Also presented in Section 2.4.1
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are the properties of a particular programming paradigm (software agents)
relating to control; there is commonality between these agent traits, the
desired traits for control and traits associated with intelligent behaviour.

An intelligent geocoding framework requires knowledge, which are the
concepts and data structured in a way the computer can use, needed specif-
ically to store geocoding expertise (relationships and meta-information),
query this expertise and create new knowledge. An intelligent geocoding
solution will require a mechanism for acquiring and storing knowledge.

Learning is defined by Negnevitsky (2002) as involving “adaptive mecha-
nisms that enable computers to learn from experience, learn by example
and learn by analogy”, also stating that “learning capabilities can improve
the performance of an intelligent system over time”. It is this type of
capability which is needed for geocoders to dynamically update their own
knowledge.

1.5 Objectives

The overall aim of the research is determining how to add intelligence to the
geocoding process. The research objectives which emerge from this concept
include:

1. Identify issues and problems relevant to intelligent geocoding.
The topics of control, knowledge and learning identified in Section 2.4
provide the categorization for issues which will be analysed. It will be
determined what are the most immediate and important issues that
could be enhanced by intelligence. The question of what is intelligence
as it pertains to geocoding will also be investigated. Other questions
include (i) whether it is possible that there are other categories of
problem addresses which have not been identified yet, (ii) what are
the desirable properties of an intelligent geocoder, and (iii) what are
the benefits of including control, knowledge and learning into the
geocoding process?

2. Investigate and develop a framework for how to build intel-
ligence into the geocoding process. If intelligence is needed,
then how does the existing geocoding process have to be changed
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and updated? Is intelligence required in all stages of the geocoding
process, and what impact does this have on the correction techniques
and reference data used? It will be determined how intelligence can
be added now and provide immediate benefit, while also ensuring the
framework is extensible. Is it possible to take a linear process (geocod-
ing) and make it more flexible, event-driven and service oriented, as
the Internet is? What roles will semantics and context play in an
intelligent geocoding framework? A prototype intelligent geocoder
will be built to incorporate aspects of the insights discovered during
investigation.

3. Examine and evaluate how control and knowledge can be used
to build intelligence into a geocoding framework. What are the
knowledge requirements for an intelligent geocoding framework, and
how do these compare for control knowledge and domain knowledge?
Can domain knowledge be infused into the control process, and
conversely can insights learned during processing be kept for future
use? If knowledge is kept, how should it be structured and queried? Is
learning possible within geocoding, and what are the implications for
learning in this field? The best ideas for control and knowledge use in
geocoding will be included in the prototype.

1.5.1 Overview for Pursuing Objectives

Objective 1 will be pursued via a literature review in which the oppor-
tunities for improvement in geocoding are identified, and priorities are
determined. These findings will be used to shape the investigation and
development in Objective 2, where the findings will help determine what
“intelligence” is in terms of geocoding and how this can be built into
geocoding. Three steps for evaluating Objective 2 include (i) conceptu-
alizing a solution, (ii) designing a framework, and (iii) implementing a
prototype. Objective 3 will examine the prototype developed in Objective
2, to evaluate to what extent control and knowledge were present. To do
this three steps will be used which include (i) a quantitative evaluation of
intelligent geocoder behaviour, (ii) evaluation of the intelligent paradigm
for the geocoding process, and (iii) examining derived functionality. A more
detailed method for examining all the research objectives is presented in
Chapter 3.
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1.5.2 Scope

Intelligence will be built into geocoding using an agent based approach
because of the desirable traits that agents exhibit, particularly with
regards to software control; these characteristics are presented in Section
2.4.1. The focus of the research for the framework will be establishing a
mechanism for control (including context and semantics), and to a lesser
extent knowledge and learning will included; the included knowledge and
learning is more to demonstrate the potential that exists. The control is
seen as the most fundamental component, which is why the focus is on it.
Of the three phases in geocoding (normalization, matching and locating)
the framework will cover all phases and the prototype will demonstrate a
complete geocode work flow from start to finish.

Improvements in correction techniques and emerging address problem
types will be focused in the matching phase. Improvements in control
will be seen throughout all phases. The research will not include any
improvement in the normalization phase with regards to assigning mean-
ing to the individual elements nor in the locating phase with regards to
positional accuracy. The rationale behind this is that advancements in
these phases done by other researchers can be included in the intelligent
geocoding framework if desired. In terms of handling problem addresses,
the emphasis is put on handling semantic and geographic addresses, and
iterative and compounded addresses. Figure 1.1 illustrates the scope of the
research. The prototype is a sub-set of the functionality described in the
entire system, as the purpose of the prototype is to not move beyond the
“proof of concept” stage.

FIGURE 1.1: Scope of the Research
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A key aspect of control will be adding parallelism to the geocoding process,
and demonstrating that geocoding can performed and coordinated using
distributed processing. Parallelism will be investigated at three levels,
including: (i) intra-agent, (ii) inter-agent, and (iii) query. The intra-
agent parallelism would allow a single agent to perform multiple tasks
at the same time, within a single plan. Inter-agent parallelism would
offer distributed processing which would utilize messaging between the
agents to seek needed information and maintain awareness of other agents.
Query parallelism is necessary for the geocoder to process multiple queries
concurrently in the system. Associated with this query parallelism is the
need to track the queries as they move throughout the system.

1.6 Contribution to GIScience

The research has several contributions, targeted both for the short-term
improvement and some for longer-term improvement. In the short-term,
the goal is to improve geocoding, which a vital part of GIS and especially
location based services and navigation. In the long-term, geocoding will
continue to evolve and improve, however it will also have to become
“compatible” and integrated with the semantic web. Agents could assist
with geocoding making the transition to the semantic web, by orientating
the geocoding process towards an event-driven approach and aligning it
with increased service usage on the Internet. At a broader level of contri-
bution, the research also furthers understanding of modelling geographic
entities with agent based techniques; specifically treating the geographic
elements as “actors”. Related to this is the use of messaging between
agents to model the semantic relationships between address elements.
The research provides a definition of what intelligence in geocoding is,
and uses this to provide a framework containing numerous components of
novel functionality. The framework is extensible, and provides a realistic
model for distributed and parallel geocoding in software. In the field of
geocoding, it appears to be the first time agents have been used (also
in conjunction with a rule based system). In addition to adapting this
paradigm successfully, the research has also introduced the idea that
geocoders can dynamically improve over time based on previous experience
(without human intervention).
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1.7 Thesis Structure

With Chapter 1 establishing the need for geocoder improvement and
providing the objectives for the research, Chapter 2 examines the suit-
ability of agents for the purpose of architecture and implementation.
Throughout Chapter 2 the strengths and suitability of the agent paradigm
are presented, in addition to how the various agent aspects fit together
for a single approach. The Research Design chapter (Chapter 3) presents
how the research needed for the objectives presented in Chapter 1 will
be pursued, including the metrics and observations used for evaluation.
The Prototype Development chapter (Chapter 4) incorporates the geocoding
issues and objectives from Chapter 1 in the design and implementation of a
prototype. The scope for the prototype functionality is given in Chapter 1;
also the method for developing the software is discussed in the Research
Design chapter (Chapter 1). The Results chapter (Chapter 5) presents
how the geocoder performed, both in quantitative and qualitative terms
as established in the Research Design. The results also form the basis for
addressing the objectives presented in Chapter 1. Interpretation of the
results occurs in the Conclusions chapter (Chapter 6), where the metrics
presented in the Research Design chapter are used in interpretation. Con-
clusions about the agent based approach and contributions to GIScience are
also discussed. Ideas for further research and improvement are presented
in the Future Work section (Chapter 6).
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CHAPTER 2

SUITABILITY OF AGENTS FOR

THE FRAMEWORK

THIS chapter provides a more detailed description of the agent paradigm,
and highlights why the agent paradigm is suitable for an intelligent

geocoding framework. First, the direct benefits are presented and then
additional background detail about agent software is provided which builds
on the benefits listed. The summary of agent suitability ties together the
agent framework into a whole. The benefits of using agents presented in
this chapter are for the most part common to any agents using the BDI
model, and implementation level details (i.e. specific only to a certain
project or product) are avoided unless common among several frameworks,
or pivotal to the anticipated solution.

2.1 Phases in the Contemporary Geocoding Process

The three phases of the geocoding process are normalization, matching
and locating. In general terms, normalization massages the address into a
standardized form which can then be used for matching. Matching involves
trying to find the address element values in reference datasets to confirm
they exist. If and when an address has been matched to a sufficient level of
confidence, coordinates are found for the address from reference datasets
containing coordinates.

2.1.1 Normalization

Because it cannot be assumed that the address is error-free and that the
address will exactly match with reference data sources, probabilistic record
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linkage is required (Gu et al., 2003). Within the record linking process,
the address undergoes normalization and then matching (Whitsel et al.,
2004). Normalization allows the address to be compared to reference
data, using the same format as the reference data itself; the more closely
an address resembles the format used for reference data the greater its
likelihood of being correctly matched (Christen and Churches, 2005). As
part of this normalization, the address must be cleaned and standardized.
Cleaning typically uses hard-coded rules and look-up tables to alter an
address for issues such as (i) variations in lower and upper case, (ii)
expanding abbreviations, and (iii) punctuation (Nicoara, 2005). During
standardization the address string is first parsed into its individual
elements, i.e. the string is tokenized. Meaning is then assigned to the
tokens, identifying which tokens represent the various address element
types, such as street name and postcode (Lovasi et al., 2007). Using
hard-coded rules, look-up tables and reference data to assign meaning is
a deterministic approach (Tang and Clark, 2003). Another alternative is
to use a probabilistic approach, such as a Hidden Markov Model, to assign
meaning to the tokens (Churches et al., 2002). The deterministic approach
for standardization is the norm for geocoding software.

2.1.2 Matching

Given an address that has been normalized, the matching process attempts
to link the address to a corresponding record in one or more reference data
sources (Drummond, 1995). Ideally the address will match exactly with a
record in the reference data, based on individual address elements types,
values and their order in the address. When trying to link addresses,
the search space can be reduced by using a blocking technique (Zhao,
2007). To measure how closely the address matches the potential candidate
addresses in the reference data, weights are used to gauge the relative
importance of each address element type (Zhan et al., 2006). An element
that is more important or influential in determining a match is given
a larger weighting (Whitsel et al., 2006). Using these weightings, each
potential candidate address in the reference data can be assigned a score;
a higher score means the potential candidate is more likely to be a match
(Rushton et al., 2006). A minimum match score can be enforced (Tang and
Clark, 2003). Using these scores, the potential candidate addresses are
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designated as either a match, non-match or a tie (Whitsel et al., 2004). The
occurrence of a tie would mean that human intervention is required.

If a match is not found, the selection criteria (such as the minimum match
score) can be relaxed or the values of the inputted address elements can
be modified with the goal that they will better match the reference data
(Goldberg et al., 2007). Common techniques for modifying values include
word stemming, the Soundex algorithm and Levenshtein algorithm; these
algorithms focus on the spelling and grammar of the element values
(Zobel and Dart, 1996; Cohen et al., 2003). For an areal address element
(such as a postcode or locality), geographically adjacent areas can be
substituted. All of these techniques have the motivation of correcting
values for the potential mistakes that may have arisen from human input
error. Depending on the geocoder implementation, some of these same
techniques may also be used in the standardization process.

2.1.3 Locating

To return a geocode, the matched address needs to have geographic
coordinates assigned to it. The reference data available to do this
includes (i) polygons such as a state, postcode, or locality which have a
coordinate assigned to their centroid, (ii) line segments which represent
street networks, (iii) land parcels and (iv) address points.

The coordinates assigned will be the best available given the amount of
information available in the address and the reference data available. If an
address only contains state and locality information, the resulting geocode
will be much more generalized than for an address containing locality,
street name and street number information. Current geocoding returns
a point coordinate for all of the address element types seen in Table 2.1,
which means for a state or postcode, the coordinate represents a much
larger area than for a street or street number (Strickland et al., 2007).
In the case of a street name with no further information, the coordinates of
the point halfway along the street are returned; the longer the street the
less useful these coordinates are.

Coordinates for state, postcode and locality can typically be found in a
gazetteer style data set (Goldberg et al., 2007), where coordinates are
stored along with the name of the entity. The storage of this data can
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be in a GIS (stored spatially) or in a flat file (stored textually). Street
data is typically stored in a GIS, which provides topological information.
Coordinates for the street number can be interpolated using the street
network, or can be looked up in an address point dataset. Address point
datasets such as the Geocoded National Address File (G-NAF) (Richards
and Paull, 2003) in Australia and ADDRESS-POINT (Ordinance-Survey,
2003) in the United Kingdom contain coordinates for the primary building
located at the address; these datasets are the most accurate way of locating
an address. In the case of an interactive geocoding session, the final
geocode is returned to the user and displayed on a map. For batch
geocoding or a service oriented query between two machines, the geocode
is stored or returned without visualization.

TABLE 2.1: Address Element Types

Address
Element

Geometry
Type

Desired Coordi-
nate

Coordinate Search

State Polygon Centroid Look-up from gazetteer / GIS
Postcode Polygon Centroid Look-up from gazetteer / GIS
Locality Polygon Centroid Look-up from gazetteer / GIS
Street Line Mid-Point Look-up from GIS
Street
Type

- - -

Street
Number

Point On Feature or
Parcel

Interpolation or look-up from
GIS

Unit Num-
ber

Point On Feature Look-up from GIS

Landmark Point,
Line,
Polygon

- Look-up from gazetteer / GIS

2.2 Issues in Contemporary Geocoding

Within contemporary geocoding, the highest level issues include (i) data
input errors, (ii) reference data, and (iii) the underlying process. Data
input errors relate to the levels of completeness of an address submitted
for geocoding, the syntax of the request and underlying semantic (including
geographic) causes of error. Issues pertaining to reference data include
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completeness, currency and correctness (correctness includes positional
accuracy and repeatability). Issues within the underlying process include
uncertainty in the standardization process, uncertainty in the matching
algorithm, match rates and assumptions made during interpolation.

2.2.1 Data Input Errors

The levels of completeness for an address relate to the number and types
of elements that are in the address. The best case is having all address
element types, however often there are varying street number types
(duplex numbers, unit numbers, lot numbers), various permutations of
missing elements, use of estate names which are not officially recorded,
new localities which are not contained in reference data and aliases which
are an alternative, non-official description of an address element type.
Geocoders could be better at recognizing non-numeric characters and their
meaning when used in street numbers. The degree of completeness can
affect the uniqueness of the available information contained in an address
which is important in determining the size of the search space for the
final geocode. There is a balance between the desire to narrow the search
space and prioritize possible matches but the questions arises of whether
to eliminate a potential match if there is any chance the suggestion could
be the intended result. This need for prioritization is why match rates
are used, and why it is the norm in geocoding that not every possible
match is considered equal (Tang and Clark, 2003). This is related to
whether an otherwise incomplete address could be improved and geocoded
if more information can be found. The completeness of an address is also
directly related to another error, the choice of areal unit used for geocoding
(Ratcliffe, 2001). If the amount of information in an address only allowed
for a geocode at the postcode level, then using this for spatial analysis can
have implications as it is much broader than a street or house level geocode.

Syntax relates to the characters (letters, numbers, punctuation) that
make up words and the arrangement of words in an address (Zobel and
Dart, 1996). This includes the number of the various address elements,
the order they are in and errors that people commonly make based on
language. An example is a street name with two or more words (e.g.
“The Promenade”), where some geocoders interpret the second word as the
street type. Punctuation such as the use of duplex numbers/letters (e.g.
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FIGURE 2.1: Spatial and Attribute Similarity of Streets

“48A” or “U3/154”), rural lot numbers (e.g. “Lot 310”) and slashes can all
make it harder to correctly parse an address and determine the meaning of
elements, which is directly related to the standardization process.

The presence of particular address elements types (such as locality, street
type) can be critical for determining the meaning of address elements, and
is why syntactic mistakes can derail standardization and is troublesome
when elements cannot be corrected. Other examples relating to syntax
include similarity of an element value to other words (“Shiraz” and
“Chiraz”), linguistic (unexpected spellings, e.g. “Nangarra” should be
“Gnangara”), phonetic (i.e. verbal linguistic) (e.g. “Mushay” should be
“Muchea”), spelling mistakes for various elements (typos, e.g. “Heskath”
should be “Hesketh”), and also combinations of spelling mistakes with
certain elements missing, conflicting elements (such as postcode and
locality), abbreviation (e.g. “Vic Park” should be “Victoria Park”), non-
abbreviation (e.g. “Mt Claremont” should be “Mount Claremont”), hyphens
(“Pinjarra-Williams Rd”), numbers versus roman numerals (“Australia 2
Dr” should be “Australia II Dr”), reversed directional information (“Perth
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South” should be “South Perth”), ranged addresses (“102-114 Normanby
Rd”) and word stemming differences.

Semantic and geographic issues relate to data input errors based on
user perception and relationships of address elements in physical space,
respectively. Examples of geographic issues include that (i) parcels can
have multiple addresses (complex sites and duplexes); (ii) rural and semi-
rural address geocoding (such as using a lot number as a street number,
and the difference between lot numbers and newer, revised rural number)
has much poorer results than urban geocoding; (iii) different parts of
the world have different addressing systems, such as that in Japan; (iv)
correct street with neighbouring locality, (v) vanity addressing when an
incorrect locality/suburb is substituted for another because it has higher
socioeconomic status, (vi) corner addresses, (vii) roads with two names
(e.g. “Jayes Rd” and “Bridgetown Boyup Brook Rd” are the same road),
(viii) ontological similarity (e.g. “Small Creek Rd” should be “Little River
Rd”), (ix) first and second order neighbouring localities, and (x) address
elements that exhibit spatial similarity and semantics. Of particular note
is how mistakes can be made where the entities involved (localities) have
no similarity in language and the ultimate cause is the perception of the
user.

An example of semantic and geographic errors is seen in Figure 2.1, where
Grantham Street and Cambridge Street are very similar due to being
parallel, having the same number of lanes, the same speed limits, and the
same streets running between them. The idea here is that a user could get
the streets confused based on their perception of the environment in their
mind.

In Figure 2.2, a corner block is shown which could confuse a user when
they submit the address for geocoding; in their mind they know where the
house is located (and its house number) but may not know which street the
house is associated with. Iterative and compounded addresses are those
addresses which cannot be solved in their initial form, as there are too
many conflicting elements or errors with the various element values. For
example, an address has a misspelled street name, uses a neighbouring
locality and the name of the neighbouring locality is also misspelled. As
a consequence, there is not enough information in the original inputted
address to geocode the address. The concept here is that correction for
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FIGURE 2.2: Corner Address

these types of addresses cannot be done in a single attempt, rather several
iterations are required where one element must be corrected, after which
this newly corrected element is used to correct another element. This can
lead to having several possible addresses, which would have to be ranked.
It would also require a mechanism in software to track each of the potential
matches as they are pursued.

2.2.2 Reference Data

The overall quality of reference data affects many stages of the geocoding
process, and directly affects the ability to standardize, match and locate an
address. There may not be anything a geocoding engine can do to improve
its reference data, rather the issue is accepting the error and identifying
how it affects the geocoding outcome; it is also desirable to communicate
this to the user.

The reference data errors of completeness and currency describe what
quantity of reference data is available for given geographic regions and how
up to date this data is, respectively. For example the ADDRESS-POINT
data set includes geocodes for around 26 million addresses, and the product
is updated for release every 3 months; the goal is to provide geocodes for
all street addresses throughout Great Britain (Ordinance-Survey, 2003). A
very similar product, the G-NAF (Richards and Paull, 2003) is available
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in Australia and also has an update schedule of 3 months. The G-NAF
provides a geocode for all valid physical addresses, of which there are
approximately 12.6 million. Google Maps has provided a mechanism for
users to edit the location of addresses after they have been geocoded, i.e.
correct the geocode location based on the user’s opinion/experience. This
is a prime example of user feedback, and bodes well for the idea that
geocoding can be more of an interaction rather than a single query. In terms
of completeness, individual geocode data for complex sites (such as blocks
of apartments, universities or business offices/suites) and duplexes is not
always available, and this issue is reflected in the G-NAF and ADDRESS-
POINT data.

Correctness of geocoding data relates to the attributes (textual, non-
spatial) and spatial data; correctness can be thought of as the degree
to which the data correctly reflects reality. For example are the street
names spelled correctly, and are the postcodes associated with the correct
localities? The quality of the reference database can significantly affect
matching frequencies (Dearwent et al., 2001).

Correctness for spatial data includes, but is not limited to, the issue
of positional accuracy. Although positional accuracy is important for
reference data (such as road locations and topological relationships), the
most studied aspect of positional accuracy is that of the final geocode,
establishing how comparable a geocode is to the equivalent position on the
earth of a feature. No amount of normalization or matching will make this
aspect better, it is reliant solely on the quality of the reference data.

There has been much attention given to positional accuracy in the lit-
erature (Bonner et al., 2003; Cayo and Talbot, 2003; Dearwent et al.,
2001; Karimi and Durcik, 2004; Ratcliffe, 2001; Schootman et al., 2007;
Strickland et al., 2007; Ward et al., 2005; Whitsel et al., 2006; Zandbergen,
2007; Zhan et al., 2006; Zimmerman et al., 2007) as this is inherently
important for an accurate geocode. Ratcliffe (2001); Lovasi et al. (2007);
Whitsel et al. (2004) also suggest that accuracy is poor, and in a study by
Karimi and Durcik (2004), it was found that for the positional accuracy
of three geocoding applications being tested only 55%, 43% and 40% of
the geocoded addresses were within 45 metres of the GPS measurements.
Zandbergen (2008) states that “typical positional errors range from 25 to
168m”, and generally the positional accuracy of geocodes in urban areas are
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better than those in rural areas (Bonner et al., 2003; Cayo and Talbot, 2003;
Ward et al., 2005). Cayo and Talbot (2003) go on to state that for rural areas
“95 percent of the addresses geocoded to within 2872 metres of their true
location”, while the same percent for suburban areas “geocoded to within
421 metres”. For urban areas, 95 percent of sites “geocoded to within 152
metres of their true location”. In an attempt to improve these results, the
authors of the paper also used land parcel coordinates instead of TIGER
files to perform the geocoding. This technique succeeded by markedly
reducing the positional error of geocoding: ninety-five percent (95%) of
rural areas “were within 195 metres of the true location”, while the same
percentage of suburban sites were within 39 metres and urban within 21
metres. Positional error in geocodes can have a negative impact on spatial
analysis (Zandbergen, 2008), reducing the ability to identify clusters and
trends (Jacquez and Waller, 2000; Waller, 1996; Zimmerman et al., 2007;
Burra et al., 2002) it has been shown that is not always accurate enough
for analysis in health studies (Zandbergen, 2007; Zandbergen and Green,
2007; Whitsel et al., 2006). Authoritative data sets such as the G-NAF
and ADDRESS-POINT provide the best option for spatial reference data in
terms of positional accuracy as they are compiled from multiple sources and
validated. As early as 1995, Drummond (1995) suggested the development
of a nationwide database containing the latitude and longitude of every
address in Australia. In addition to the positional accuracy itself, the user
is not informed of the accuracy of the geocode (such as “plus or minus 20
meters” or that the geocode is an approximated centroid).

With regards to repeatability, a study by Whitsel et al. (2006) using
3615 sample addresses from 49 states in the USA found substantial
differences between the four commercial vendors used (Zandbergen, 2008).
Important differences were found between the vendors with respect to
match rate, agreement of known census tracts and those from vendors,
and the distances between known coordinates and those calculated. This
reflects a similar conclusion in Whitsel et al. (2004) that the repeatability
of commercial geocoding is not very good (Zandbergen, 2008). Comparing
the study by Whitsel et al. (2006) and Whitsel et al. (2004) with a study
by Karimi and Durcik (2004) where the three geocoding algorithms were
compared and the differences found to be small (using the same reference
data), it has been suggested that differences in reference data could be at
least partly responsible for the differences in commercial geocoding results.
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2.2.3 Underlying Process

Uncertainty in the Standardization Process occurs from the fact that
the address elements can have the wrong type assigned to them during
standardization. This can be due in part to reference data, but the pre-
defined tables that are often used for cleaning can incorrectly alter words,
resulting in the element being assigned the wrong type. The rules used to
assign meaning based on the order of elements can also perform incorrectly,
which is a reason why a probabilistic approach has been used by Christen
and Churches (2005). The same techniques used to try and improve
element values can also be used in the matching process, so improved
techniques which look for errors based on geography or semantics could
be used in the standardization process.

Uncertainty in the Matching Algorithm can occur for a number of reasons,
some based on user preferences, the reference data used and techniques
used to modify an element value to find a match. Weightings can vary for
the elements, and can affect what is determined to be a match; although the
greatest weight is usually attached to the street type, the choice of weights
for other elements can make a difference. Correction algorithms such as
Soundex (Zobel and Dart, 1996) and Levenshtein (Cohen et al., 2003) have
their limitations, such as the dependence of the Soundex algorithm on
the initial letter, mistyping, extra consonants, swapped consonants, silent
consonants and the use of initials (Patman and Shaefer, 2001; Nicoara,
2005). The Soundex algorithm has shown in testing that it produces
a high number of incorrect matches (Stanier, 1990). These correction
techniques only deal with spelling and grammar, there is no thought given
to correction based on semantics or spatial similarity. These and other
correction techniques (word stemming, aliases) are important because they
only mechanisms for ‘fixing’ an element value when it cannot be found in
the reference data.

Match rates are a key quality indicator for geocoding, but have limitations
with regard to the quality they communicate. For example, although a
geocoder may return a high match rate for a particular set of addresses, the
quality of the matches themselves could be low. This is because the match
rate does not (by itself) describe the rigor of the match (i.e. the criteria
used to determine a match) or the positional quality of the geocode. It is
for this reason that match rates can be misleading (Whitsel et al., 2004), as
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relaxing the criteria for a match will result in a higher match rate. There
are also implications for the match rate with regards to data used, as “a
match is only obtained in parcel geocoding if there is a perfect match for
the house number” (Zandbergen, 2008), which is why parcel geocoding can
result in lower match rates; this is also the case for a point data set such as
the G-NAF. Street geocoding is more relaxed, as it ”does not provide for a
check if the house number actually exists and can therefore result in false
positives” (Zandbergen, 2008). It should also be noted that the matching of
duplexes and units is different from providing coordinates at the unit level;
i.e. just because a match occurs at the unit level does not mean the geocode
has positional accuracy at that level.

Assumptions made during interpolation occur when using the street
geocoding method, as parcel sizes can be irregular and house numbers
can be on the wrong side of the road, out of sequence. Work has been
done to take these irregular parcel sizes into account (Bakshi et al., 2004).
Despite its shortcomings, street geocoding remains one of the dominant
geocoding technique. The choice of areal unit used for geocoding can have
implications for how it is used, for example the centroid of a locality may
not be suitable for the same spatial analysis (such as a health study) used
for a point representing a house. There are also implications for navigation,
where any geocode other than a building or parcel level result would
be insufficient. Within contemporary geocoding, most processes (start to
finish) are linear (Goldberg et al., 2007), and that results in few “optional
pathways” able to be considered. This raises the question of whether this
can bias outcomes? It would be useful to have the ability to pursue all
potential address corrections.

2.3 Specific Opportunities for Improvement

Having discussed the phases in contemporary geocoding and the issues
associated with them, there are opportunities for improvement which
emerge. These opportunities for improvement are presented in Table 2.2.
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TABLE 2.2: Ideas to Enhance Geocoding

Concept Description
Ontologies
and Semantic
Understanding

Allow the meaning of data for greater flexibility of
expression to be used by people and computers for
querying

User
Perception

Correct addresses for mistakes made by users based
on their spatial cognition of the environment, using
research in semantics and spatial similarity

High-level and
Low-level
Knowledge

Using an alias as an example, use “rules” to
describe common mistakes both in terms of specific
address element values (low level) and in terms of
their element types (high level)

Knowledge
Maintenance

A mechanism used to ensure reference knowledge
(e.g. aliases and other rules) are all maintained
at a given level of quality; it is desirable to occur
without human intervention and focus on those
factors affecting reference data

A Unified
Geocoding
Model

Defining the entities and relationships used in
geocoding with such flexibility and extensibility
that the same set of guidelines can be used to
represent geocoding as it is implemented worldwide

Data Access Knowing the context of data needed to solve a
query, combined with web service discovery, the
most appropriate data can be sought in real-time

Quality of
Reference Data

Structure the metadata available in reference data
to allow querying and make use of this in decision
making at runtime; would allow for knowing what
data is suitable for particular needs, and mediate
multiple data sets. Other functional outcomes
would include being able to (i) select the best
dataset if there are several possibilities available,
dynamically select using multiple criteria, (ii) store
feedback about how well a data source performed,
and (iii) update the original data source if it is found
to contain errors.
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Concept Description
Communication
of Quality

Move to a series of other questions which may help
refine during the matching process, rather than
present a list after the fact. To support this, the
geocoder software cannot just take the initial query
and process it once; the query must remain open
and be able to incorporate more detail over time.
This interactivity can continue with communicating
the quality of the geocode in real-time while it is
being processed, so user can see it be refined over
time.

Match Quality Improvements could include comparing the spatial
resolution, the overall agreement of the individual
elements within the matched address, and how
different the matched address is from the original.
The quality of a match should be a combination of
(i) whether the query could be found in a reference
dataset, (ii) an indication of the extent to which the
criteria had to be “relaxed” for a match, (iii) how
”similar” the matched address is to the original, and
(iv) the associated spatial and temporal accuracy
associated with the match.

Transparency
in Processing

Part of communicating quality is being able to
establish which steps were followed and in what
order to arrive at a result. This would include
the ability to track multiple queries through the
system, which techniques were used and which
address elements provided the catalyst for an
address match. Extending this concept of “process
pedigree” beyond matching, reasons could also be
given regarding why certain reference data sets
were used.

Reliability of
Knowledge

Enhanced geocoding needs the capability to store
several metrics, including when the knowledge
was created, how often it is used, and whether
new knowledge coming into the system repudiates
existing knowledge. Correlations would be made to
amount of use, creators of information and other
indicators.

Context Include user, application, geographic and jurisdic-
tional context in the execution of geocoding phases
(normalization, matching and locating), along with
user interaction beginning, during and at the end of
processing.
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Concept Description
Control Needs to offer an event based paradigm, capable

of the ongoing user interactions, the ability to
infuse knowledge into the decision making process,
merge multiple sources of information and status
indicators into a clear decision making ability.

Learning Approaches for an intelligent model would be to
infer from specific case to another specific case
(syllogism), or take a specific case and express it in
terms of its general types as to make it applicable
to other specific cases (i.e. other queries).

2.4 Considerations for an Intelligent Solution

The key aspects to consider for an intelligent solution include control,
knowledge and learning. Control pertains to how the software receives
new data, makes decisions and manages processing. Knowledge is storage
of domain expertise used for decision making. Learning is essentially the
accumulation (automatically) and storage of knowledge over time.

2.4.1 Control

After reviewing programming paradigms and language features in the
literature, there are several which seem appealing, including (i) event
based, (ii) goal directed, (iii) distributed, (iv) parallel processing, (v)
non-deterministic, (vi) meta-programming, (vii) recursive and (viii) object
oriented. These programming features are shown in Table 2.3.
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TABLE 2.3: Desirable Control Features

Feature Advantage / Desirable Trait
Event based Can compliment service oriented software, because the

requests from incoming web requests are themselves
the events. Although traditional batch geocoding on a
desktop machine may have been procedural, geocoding
has embraced and is well suited to a service paradigm,
both for queries from humans and other machines via the
internet.

Goal directed Advantages from Cichelli and Cichelli (1977) include
(i) the top level code is oriented around the user
problem, (ii) there is an intuitive structure, (iii) ”control
code is separated both logically and syntactically from
function code”, that (iv) top down design can assist with
nesting control code at lower levels, and (v) The top
down approach can also be beneficial to defining data
structures.

Distributed Allows for the clustering of computers, which provides
scalability in terms of processing, cost and the amount
of requests it can handle. The system can be easier to
manage, can be geographically decentralized and ensures
there is no single point of failure. Each software entity
has its own local memory. Entities communicate with
each other by using message passing, communication
occurs over the network.

Parallel Multiple operations can be done in parallel on a single
machine if it has multiple processors. This is especially
useful if only one machine (i.e. not distributed) is used
and it has many processors.

Non-deterministic Ability to choose most appropriate action at runtime,
with the ability to rollback a choice if it fails and choose
from other alternatives, where the choice is not directly
specified at design time (i.e. in code by the programmer).
(Sterling and Shapiro, 1986)

Meta-Programming Software can reprogram itself and because of this can
handle new situations without recompilation

Recursive Allows a function/method in code to call itself dynami-
cally and (at design time) an unspecified number of times,
where stopping is dependent on an exit criteria.

Object Oriented Useful for modelling real-world phenomena and situa-
tions, and brings its own advantages including informa-
tion hiding, data abstraction, encapsulation, modularity,
polymorphism, and inheritance (Pierce, 2002).
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Some of these techniques are not necessarily all contained within the
field of AI, but nonetheless provide important benefits which could enable
an intelligent solution. Event based, recursion and object oriented pro-
gramming is available in most languages, such as Java (Horstmann and
Cornell, 2007), C++ (Deitel and Deitel, 2009) and Python (Lutz, 2009). Non-
deterministic programming is available in Prolog (Sterling and Shapiro,
1994), but is not found in more mainstream languages such as Java and
C++. With extra frameworks, distributed and parallel processing are
available for languages such as Java and C++. Goal based processing seems
most common in systems developed around the belief, desire and intentions
(BDI) model, such as PRS (Ingrand et al., 1992) and dMARS (D’Inverno
et al., 2004). Agent oriented programming frameworks based on BDI also
exhibit all of the desirable traits shown in Table 2.3 (Georgeff and Rao,
1995).

Just as object oriented programming is a software abstraction, so are
software agents except they are agent oriented, not object oriented. Agents
are seen as self-contained software entities, and have the properties seen
in Table 2.4 (Jennings et al., 1998; Russell and Norvig, 2003):

TABLE 2.4: Agent Characteristics

Characteristic Description
Autonomous

behaviour
The agent pursues its own agenda and does not
need to be explicitly told by a human or another
agent how to achieve it.

Established ob-
jectives

Whether specified by a human at runtime, or hard-
coded at design time, the agent has objectives which
it pursues. It is through knowing these objectives,
it is able to pursue them autonomously.

Control of its
own actions
and internal
state

Unlike the objects used in object-oriented program-
ming which are directly modified and have no choice
in their state, agents have full control over the
changes made to them and inside them.
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Characteristic Description
Perceive their
environment

Although agents are often software based in a
computer (some are hardware based too, such as
in robots), they are considered to be more than a
”program” which is run once and then terminated.
Rather they are situated in an environment, in
which they perceive new information (percepts)
and in turn act on the environment themselves
(actions).

React
accordingly

The agent has an ability to choose a course of action
most appropriate to the situation at hand. The
sophistication of an agent in choosing a response is
a key aspect of the categories defined by Russell and
Norvig (2003).

Opportunistic Given a current situation, or changing situation,
the agent can adjust its actions in the short-term
to maximize the prospects of finding success in the
long term.

Goal Directed This means the agent knows what it should achieve
but is not explicitly told how to do it. Part of being
goal directed is the flexibility to be opportunistic,
and to try alternative actions if those already tried
do not succeed.

Interaction Although agents do not require assistance to
do their processing, they can choose to initiate
communication with others (human or other agent)
if it will advance their own agenda. Similarly, if an
agent is asked a question it can choose to respond
or not.

The goal-directed approach has advantages as outlined by Cichelli and
Cichelli (1977) which include that the top level code is oriented around the
user problem, there is an intuitive structure, “control code is separated both
logically and syntactically from function code”, top down design allows for
nested control code at lower levels, and that top down approach also applies
to data structures.

2.4.2 Knowledge

To utilize knowledge, a knowledge level model can be developed to suit
the domain of geocoding, which in this case is a “particular subject matter
of interest in some context” (Uschold, 1998). A domain (in this case
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geocoding) is understood (i.e. organized by the human mind) concretely via
a conceptualization. A conceptualization can be expressed in many ways,
including simple written language, diagrams and ontologies.

As people we have a particular conceptualization of what geocoding (and
more generally, space itself) is and what it involves. Our conceptualization
of geocoding is defined by our experiences with visiting addressed locations,
as well as our general knowledge of how street addressing operates
and even the standards that define addressing in particular places. A
knowledge level model for geocoding would have to include the relation-
ships and entities common to it - at a minimum the address components
(such as states, localities, post codes, streets, house numbers). Beyond this,
as semantics is involved more, directions, non-spatial attributes and other
factors could be modelled.

To make the knowledge level model more definitive, an ontology can be
developed which is described by Gruber (1992) as “a vocabulary of terms
(names of relations, functions, individuals), defined in a form that is both
human and machine readable. An ontology, together with a kernel syntax
and semantics, provides the language by which knowledge-based systems
can interoperate at the knowledge level: exchanging assertions, queries
and answers.” Tecuci (1998) states that “An ontology contains the objects,
concepts, and other entities that exist in an area of interest, as well as
the relationships that hold them together”. Passin (2004) explains that the
ability to specify ontologies, vocabularies and represent knowledge is made
possible by the use of logic. Advantages from using logic are described by
Passin (2004) as (i) applying and evaluating rules, (ii) inferring facts that
haven’t been explicitly stated, (iii) explaining why a particular conclusion
has been reached, (iv) detecting contradictory statements and claims, and
(v) combining information from distributed sources in a coherent way.
Welty et al. (1999) suggests various purposes for using ontologies, and
these include (i) reuse and sharing, (ii) interoperability, (iii) structuring
knowledge bases, and (iv) browsing and search.

With a knowledge level model defined, an ontology defined, and knowing
that there are benefits to using logic a representation is needed for use in
software. The main conclusion from Newell (1982) is that the knowledge
level is a level above the “symbol level” (symbol level being the imple-
mentation level); the key to understanding this is that “a representation
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is the structure at the symbol level that realizes knowledge”. There are
choices with regards to the approach used for representing the ontology.
However, regardless of choice there is commonality amongst techniques in
that both (i) will result in the creation of a knowledge base as concrete data
is added to the ontological structure i.e. the knowledge base can be thought
of as an instantiated form of the ontology, (ii) will require an inference
engine to query the knowledge stored in the knowledge base, and (iii)
rules can be written in terms of the individual assertions in the knowledge
base. The two major choices for representation include the description
logic (Russell and Norvig, 2003) based and frames based (Minsky, 1974)
approach. For implementing the description logic based approach, the
web ontology language (OWL) (Mcguinness and van Harmelen, 2004)
has distinctive reasoning capabilities, while for frames there is no single
standard for representation analogous to OWL (Wang et al., 2007). There
are similarities and differences between the two techniques, in terms of
expressive power, semantics, tool support and guidelines for usage; an
comparison of the two is presented by Wang et al. (2007). An example
of building an ontology is found in Noy and McGuinness (2001), where the
focus is on a frame based approach but the methodology is still relevant to
the OWL approach.

Van Rees (2003) describes the difference between a taxonomy and ontology,
with a taxonomy being described as ”as a hierarchy created according to
data internal to the items in that hierarchy” and more simply as a ”simple
ontology”. Van Rees (2003) also suggests that “Once a lot of properties and
relationships are added to a hierarchical structure, the term ‘ontology’ is
better suited than ’taxonomy’ ”. Table 2.5 from Morris (2008) shows some
of the differences between a taxonomy and an ontology.
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TABLE 2.5: Taxonomy vs. Ontology (Morris, 2008)

Taxonomies Ontologies
Usually are a single, hierarchical clas-
sification within a subject

Subsume taxonomies

Primarily focused on “is-a” relation-
ships between classes

Include attributes with cardinality
and restricted values

Limited in inference potential due to
lack of relational expressiveness

Unlimited relationships between en-
tities
Superior inference support due to
relational expressiveness

The inference engine used will depend somewhat on the knowledge rep-
resentation used. Two types of inference engines are a semantic reasoner
(Sirin et al., 2007) and an expert system (Friedman-Hill, 2003). Expert
systems are rule based, and use a declarative programming paradigm, as
opposed to typical procedural programming (Negnevitsky, 2002). Declar-
ative software differs by being told what needs to be done, but is not
given specific, pre-defined instructions on how to achieve it. Rule-based
systems work by reaching conclusions and performing actions based on
the premises it has. The system’s ability to reach conclusions is only as
comprehensive as the rules it has stored in its rule base, however new
rules can be derived from existing rules. Both OWL and frame based
representations can be reasoned over with an expert system, however
expert systems have their origins in frame based knowledge representation
(Mei and Bontas, 2004; Biondo, 1990). Additionally, there are things that
can be done in a semantic reasoner that cannot be done in an expert system.

2.4.3 Learning

The field of learning within artificial intelligence is a vast one, but a critical
fact is that there are three main types of learning, namely supervised,
unsupervised and reinforcement learning. In addition to these is the
process of logical inference, which can occur on the knowledge inside a
knowledge base. The types of learning can be seen in Table 2.6.
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TABLE 2.6: Types of Learning

Learning Type Description Training Data
Supervised Inductive Inputs and outputs

Unsupervised Summarizes data Unlabeled inputs only
Reinforcement Receives reward input Inputs only

Logical Inference Deductive Existing knowledge

As described in Russell and Norvig (2003), supervised learning has training
data which includes both inputs and resulting outputs for a number of
examples cases. Unsupervised learning has only unlabeled input data, i.e.
the algorithm does not even know what the data is representing (no names
are given, no categories, thresholds etc.), the objective here is to describe
the data as best as possible using discovered patterns or commonalities in
the data (a common technique is clustering). Reinforcement learning also
has unlabeled input values, but has a performance critic which provides
desirability feedback (e.g. “good” or “bad”, “correct” or “wrong”) associated
with the inputs. Given these types of learning, the question arises of which
type(s) are most relevant to geocoding, specifically as what is available in
the way of training data and feedback.

One possibility for the use of supervised learning in geocoding is using
decision tree learning, where each node in the tree is a test, and the
branches are possible values (Russell and Norvig, 2003). The known input
would be the incorrect address being geocoded and the known output would
be the corrected address and optionally a label of the associated type of
“problem” address. The idea would be to create a decision tree which could
eventually be applied to incoming, incorrect addresses and by looking for
specific (known) errors fix the address with the prescribed techniques (e.g.
language, geographic, semantic correction). The decision tree could also be
converted into rules for use in an expert system. The challenge would be to
find a solution where the address elements values, their underlying cause
and the correct addresses can be reconciled into decision tree learning.
A potential problem with this idea is that solving a geocode involves not
just the “face value” of address elements but the underlying relationships
and causes behind the values; this would have to be accounted for in the
learning algorithm. Using a supervised learning approach would only be
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effective if a sufficient number of address training data could be found; even
finding the data of incorrect and correct address pairs could be difficult.

Reinforcement learning provides another opportunity, where the success
of geocoding could be used as the performance critic. In this idea, the
only inputs would be the incorrect addresses and whether the incorrect
address could be corrected and geocoded. If the corrected address was the
only solution (i.e. there were not multiple potential matches) then some
conclusions could be made because the incorrect and correct addresses
equate to each other. For example, if the locality was changed during
correction, then an alias could be generated detailing this modification.
Several address elements could be used, to be more specific. For example
an alias could be made for a street name, but only in a particular
locality and state. The idea is that these aliases are used in future
geocoding and could be applied to incorrect addresses. An advantage to
this reinforcement learning approach is it does not require training data of
incorrect and correct address pairs; it also requires no human intervention.
A disadvantage is that making any extrapolations (i.e. aliases) beyond the
very specific incorrect address could be incorrect, and of course a newly
stored alias may not be applicable in every future geocoding processing,
it could only serve as a suggestion. Another aspect is that although
the aliases are stored, the algorithm is creating these aliases from the
correction techniques (e.g. language, geography, semantics) so what is
stored is nothing that could have been determined anyway. However when
done over time with enough input data, trends could be found in how
these corrections are applied and the stored aliases could have worth (value
added) beyond just the correction techniques.

It is the deductive reasoning made possible by logical inference which has
the potential to create new knowledge from existing geocoding knowledge,
by (i) using specific values from one query to help solve another query, and
(ii) moving from specific values to expressing the same ideas as types.

An example of using specific values is combining two disparate pieces of
information to find a new meaning, inspired by Aristotle who pioneered
syllogisms, and described in Barnes (1969). For example, in an expert
system two rules could be created which specify:

1. In the suburb of Armadale, the street Armadale Rd is contiguous with
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Albany Hwy

2. Mt. Richon is a common vanity alias for the locality Armadale

If a geocode query included “Albany Hwy, Mt. Richon” then the expert
system would use both rules and provide the suggestions of “Armadale Rd.”
and “Armadale”. The key concept here is that the final outcome would
not have been possible without combining the multiple pieces of disparate
information. What is interesting with this approach is that these rules
would not necessarily have to be added by a human; these could be added
using insight from the reinforcement learning approach, i.e. a combined
reinforcement and deductive approach. Another idea would also be to find
specific instances of a trend or something happening, expressed in specific
terms (for example “Pangbourne St”, the locality of “Wembley”) and express
this in terms of “street” and “locality” to make the finding applicable to a
wider set of future addresses that need correcting. Reasoning with types
could also have uses if the general assertions could be acquired. For
example:

• Some streets are within single postcode + some multiple localities
are within single postcode, therefore some streets are within multiple
localities

• Some streets in Churchlands have bird names + Some streets near
water have bird names, therefore Some streets in Churchlands are
near water

Some of these basic assertions could come from humans and some could be
calculated by the computer, whether by looking at spatial data, attribute
data or a combination of both. The overarching idea is that although these
assertions may not solve queries individually, over time as many of these
assertions and new conclusions intertwine they will together solve queries.

Artificial neural networks (ANN) are a potential tool for intelligent geocod-
ing. The ANN can be used for supervised, unsupervised and reinforcement
learning (Russell and Norvig, 2003). Three specific ideas for using ANNs
in geocoding are:

1. Using for standardization, similar to how a hidden markov model
(HMM) has been used; possibly used as a classifier where given the
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input address as string, the ANN decides which tokens within the
string are the various address elements. Perhaps this could be done
using the values, positions and other information such as total number
of tokens.

2. Using to determine the most prevalent geocoding mistakes for a given
region, in trying to solve a query give more attention to certain
problems types. This could make the difference in cases where two
potential explanations for a given problem are equally as likely.

3. Classify an address into the type of problem address it is with the aim
of correcting the address on the basis of knowing the problem type.

These ideas regarding neural networks would require much more research
to even determine if the use of ANNs in these ways is feasible; this research
falls outside the scope of the current research.

2.5 Agent Definition

Padgham and Winikoff (2004) provide a definition of an agent, which is
taken from Wooldridge (2002) and originally adapted from Wooldridge and
Jennings (1995); the definition is:

“An agent is a computer system that is situated in some
environment, and that is capable of autonomous action in this
environment in order to meet its design objectives” (p. 1).

Wooldridge (2002) defines an intelligent agent as also being reactive,
proactive or social.

Intelligent agents have been used for spatial science tasks such as geospa-
tial information retrieval and filtering, geospatial search engines, knowledge
discovery, decision model assessment and optimisation (Shahriari and Tao,
2002), and the discovery and analysis of spatial information (Li et al.,
2001). Agents have also been suggested as a tool for enabling geographic
information systems (GIS) within an Internet environment (Tsou and
Buttenfield, 1998).
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Some applications use only one agent, but often more than one agent is
required due to complexity or conceptual modelling; these are called multi-
agent systems (Ferber, 1999). Multi-agent systems (MAS) are also referred
to categorically as distributed artificial intelligence systems (Jennings,
1993); the defining concept is that “multiple agents interact to improve
their individual performance and to enhance the system’s overall utility”
(Jennings, 1993).

Looking at some of the agent properties from Jennings et al. (1998),
interaction and autonomous behaviour in particular are standouts with
regard to multi-agent systems. Agents are capable of sending messages to
each other, which can be as simple as a single message (to which a response
may not even be sent) or as complex as a whole session of messaging, using
established protocols, between one or more agents. The autonomy means
that within a MAS, each agent is “doing its own thing”, pursuing its own
goals without regard to what the agents are doing. It is up to the individual
agents whether or not they initiate messaging and respond to requests.
Depending on how the system is designed, the MAS may have competitive
or cooperative agents. Each have their own uses, although a cooperative
system is very useful as tasks can be achieved in parallel.

A specific architecture within goal-based agents is the belief, desire,
intention (BDI) model. Desires can be thought of as goals the agent wants
to achieve, intentions as plans that dictate how to go about this and beliefs
are internal data (Agent-Oriented-Software, 2003). The BDI architecture
is shown in Figure 2.3.

The BDI system is modelled on ideas from psychology and philosophy,
simplified into a version suitable for computer implementation (Howden
et al., 2001).
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FIGURE 2.3: Architecture of a BDI System, from Braubach et al. (2004)

2.6 Beliefsets

A specific architecture within goal-based agents is the belief, desire,
intention (BDI) model. Desires can be thought of as goals the agent wants
to achieve, intentions as plans that dictate how to go about this and beliefs
are internal data (Howden et al., 2001). Just as people have a view of
the world, the BDI model sees agents also having a “view” of their world;
this view is represented by the beliefs in the beliefset (Kinny et al., 1996).
As the environment changes around the agent, beliefsets are updated to
reflect this. The beliefsets provide the core of the BDI model, as most other
functionalities are related to it. Beliefsets work hand in hand with events.
Events have a twofold relationship with beliefs; an event can be the cause
for updating a belief, and a change in belief can be the cause for creating a
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new event.

Two examples of beliefset structures are those used by the JACK and Jadex
(Braubach et al., 2004) implementations. A JACK beliefset corresponds to
a single database table, complete with a number of attributes (columns)
and tuples (rows). Primary keys are also used to uniquely identify tuples
(Howden et al., 2001). Each attribute has a data type, for example string,
integer and boolean (there are others too). The databases are defined at
design time, and are instantiated at run-time; many instantiations can be
made from a single design. Sometimes tuples are referred to as facts, but
these should not be confused with the concepts of facts used in rule based
systems. Tuples are added, modified and removed using specific methods.
Beliefset queries are used to select relevant tuples from a beliefset, based
on parameters including beliefset name, attribute names and attribute
values. The result of executing a beliefset query is a cursor. There are
several different types, but essentially this is similar to a database cursor
where the results can be iterated through. Using a relational database
approach for the beliefset structure is not mandatory in Jadex, where
“ordinary Java objects of any kind can be contained in the beliefbase”
(Braubach et al., 2004). This means that Jadex beliefs can utilize any tool
which can be represented as a Java object - including possibilities such
as ontology reasoning engines and rule based systems, along with regular
databases. Regardless of which implementation is used, a common feature
in BDI is that triggers can be specified which activate when the beliefs
reach a particular state. In JACK, this could be an attribute within a
tuple being modified to a particular value, or in Jadex this could be the
property of a Java object being set to a particular value. These triggers
can be the catalyst for creating events; these triggers could be written in
terms of geocoding data and conditions. For example, the triggers could be
written in terms of the address elements (state, postcode, street etc.) and
their spatial relationships (e.g. the street exists or does not exist, the state
contains a particular postcode).

A benefit for geocoding is that beliefs provide a dynamic mechanism
for maintaining awareness of events. Because the beliefs of an agent
are ongoing, they can be updated at any time and likewise actions and
selections can change accordingly which automatically ensures the agent
is not operating under old information or assumptions. This means new
geocoding information could be added at any time during geocoding, e.g.
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additional input from the user, from other agents or web services. By
having beliefs at the heart of the BDI agent system, a “belief driven”
(data driven) design approach is available. This provides a single place
for geocoding data (address elements, relations, results of tests), progress
and metadata to be stored. It also provides the ability to track an address
throughout its entire life cycle - “end to end tracking”, and can keep track
of information provided by the user or other agents. It also acts as an
integration mechanism where disparate pieces of information can come
together into the beliefset where they can combine to become the catalyst
for something else happening. The beliefs support the pursuing of long
terms objectives (i.e. “correct and geocode the address”), with a balance of
proactive (e.g. find the data, try correction techniques, ask questions) and
reactive behaviour (e.g. use an alternate data source, use information about
other address elements). There is also the possibility of connecting the
beliefsets within the agent to an external source such as a knowledge base;
this would mean the beliefsets could be loaded with stored knowledge to be
used for decision making in the agent, and would also provide a repository
of knowledge for all agents to use.

2.7 Events

An event is used to signify a change of some sort has occurred, either inside
an agent or within the environment (Georgeff and Rao, 1995). Regardless
of the type of event, the event contains information. In this sense, an
event in BDI can be thought of as an envelope; on the outside of the
envelope is the destination of who the envelope should go to, and inside
the envelope is paper with information on it. In the case of a normal event
(i.e. an event used internally within the agent to initiate action), the agent
“addresses” the envelope to itself. The information “inside” the envelope
is a number of event properties or attributes, simple variables which each
have a particular data type. The information contained within the event is
accessible by the plan chosen to process the event.

Events are divided into internal and external events. Internal events
allow the agent to monitor its own progress in relation to objectives while
external events (percepts) allow the agent to receive information from its
environment (other agents, from the user or a data source).
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Events (along with plans) are not intended to be used as if calling
subroutines - this procedural approach would counteract the benefits
brought by events (Howden et al., 2001). Polymorphic events are possible,
where although the core event itself stays the same, subtle differences
in parameters and variable types can cause different outcomes in terms
of plan execution. Because events are transient in nature, they require
a concrete mechanism to store data that will “last” between events, this
is the role beliefsets. Beliefsets have a close relationship with events as
beliefsets represent the world, if the agent continues to use information
that is outdated (i.e. new information has come into the system but it
is not be used) its subsequent actions based on this information will be
inappropriate and simply wrong.

This event based processing makes the agent well suited to working in a
service oriented architecture, for example receiving geocoding queries on
the Internet. Events and beliefs mean the agents are not “stuck” on a
single line of processing, new events immediately affect processing without
any time being wasted continuing to pursue an old agenda. Agents do not
have to react to events (especially external events) so they still have choice
and autonomy. Messaging can be synchronous or asynchronous, which for
example could be used to broadcast new info/updates between agents or to
the user. This also means an agent could ask a question where the answer
is important and wait for reply (halting its individual processing), or could
not wait for a reply and move on, only incorporating the reply when it
arrives. Internal events can be triggered given predefined criteria (context),
which is tied to values in the beliefset, for example when address elements
have a particular value or a particular sequence of events occur. All of
this activity can occur in multiple threads, and is very opposite to linear
processing, although linear processes can still be catered for. With event
based approach, the code does not have to list exactly in what order things
will occur, it just needs the individual ways of dealing with it (i.e. plans) the
order of processing could be different every time; this is good for geocoding
due to the variability in input addresses and errors. Polymorphic events
are possible, where although the core event itself stays the same, subtle
differences in parameters and variable types can cause different outcomes
in terms of plan execution; this enhances the context available. Because
events are transient in nature, they require a concrete mechanism to store
data that will “last” between events, this is the role beliefsets.
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2.7.1 Automatic Events

Events which are started (also known as posted) as a direct result of a
beliefset value changing can be thought of as automatic beliefs (Howden
et al., 2001). These are completely reactionary in the sense than no
deliberation needs to be done, only a pre-determined attribute-value
condition must be met. The link between this reaction and deliberation
is that as a consequence of the reaction, a goal can be posted.

2.7.2 Beliefset Callbacks

Although automatic events can be used for posting events when a given
beliefset condition arises, in some cases it can be more useful to post events
from within a beliefset callback. This is because the automatic events
activate on the basis of particular values in the beliefset, whereas beliefset
callbacks are activated on the manipulation of a beliefset. This would be
useful for knowing when to update other agents or the user about progress
being made in the geocoding of a particular element.

This is an important difference because there are times when the trigger
value is not known, or is not of primary concern, and it is more important
simply that the beliefset has been utilized. The other major benefit to using
beliefset callbacks is that events can be posted from the callback method.
There are several types of beliefset callbacks, for example when a tuple is
added, modified or deleted. A benefit of the callback used when a tuple is
modified is the ability to compare the “old” tuple with the “new” tuple that
is replacing it, which means logical tests can also be performed on values.

2.7.3 Goals

Goals represent a particular situation or state of the environment which
the agent would like to bring about (Howden et al., 2001). In pursuing a
goal, there are many different possible alternative actions that the agent
can take - but the ultimate measure of whether or not a particular goal
has been achieved is defined by its beliefsets. The beliefset values are how
the outcome of an agent goal is specified. The different courses of action
that an agent can utilize in pursuing a goal are called plans, and these can
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perform any action the programmer wants (regular code is run); one of the
critical actions that a plan serves in a BDI model is to update the beliefset.
In this way a cycle emerges of the agent taking action based on beliefs and
then changing these beliefs as a result.

Normal events differ from goal events (or simply “goals”) in the way the
task is pursued, and how success of the task is specified. With a regular
event where a task is specified and an action taken - success is assumed
regardless of outcome. a true goal (in the BDI model) has its essence
defined in terms of the beliefset; a goal is complete when one or more beliefs
in the beliefset reach a particular value. There are two main factors why
some steps are represented as goals, and some as events, and these can be
attributed to either time sensitivity and/or functionality. From a temporal
point of view, events are immediate and goals are longer term; i.e. from an
achievement point of view, goals relate to objectives while events relate to
responses.

Because an event must be dealt with immediately, it makes sense that
there is only time for one course of action - beyond that the event has passed
and using the information contained in the event after this would mean the
agent risks having an outdated view of its “world”. An event is handled by
choosing only one plan that is both relevant and applicable; this is a “one
time chance” such that if the chosen plan fails then the event fails. In
contrast to event handling, goal handling is characterized by a goal event
potentially having several plans that are equally qualified for selection
(regular events have just one), and also in the event of a plan failing others
may be used in its place (where the normal event would fail on first plan
failure). Another distinction between events and goals is that a goal use a
beliefset to monitor whether or not it has achieved its goal; specifically the
criteria for achieving its goal is specified by a logical condition constructed
from attributes and conditions from one or more beliefsets.

As a guideline, a situation should be represented as a goal if (i) it is an
objective that is to be achieved in the long term, (ii) there are many plans
with equal relevance and applicability that could be selected, (iii) plan re-
selection and use (of a single plan) is required upon plan failure, or (iv) it
would be desirable to use every plan that is relevant and applicable (not
just the first that succeeds), or (v) the criteria for success of the situation
can be expressed in terms of one or more beliefsets.
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This means geocoding can be viewed from a goal and sub-goal perspective,
with the ability to revisit steps as needed and not stay to a rigid linear
pipeline. How would geocoding differ if the whole process could be divided
into goals and sub-goals? This also enables an agent to balance the longer
term goal of solving a geocode with the more immediate events which could
affect processing.

2.8 Messages

Similar to events, messages are both the cause and the result of changes
in beliefsets, except that messages deal with information originating from
outside the agent, where events are focused internally within the agent
(Howden et al., 2001). An agent can receive a message from another
agent, or a message can originate from the environment (this is more
correctly called a “percept”). With an incoming message or percept is
information that may be used to update a beliefset; also, a change in
beliefset may justify the creation of a new message leaving the agent which
is communicating the change to another agent or affecting the agent’s
environment in some way.

2.9 Plans

Plans are an essential building block of the BDI model, and are atomic
chunks of code which are executed under certain circumstances (Russell
and Norvig, 2003). The circumstances under which the plans can be
executed are specified by the event types for which the plan is suitable
(a static criteria) the agents beliefs (a dynamic criteria). The ability
to make decisions dynamically stems from using these small units of
code grouped together and categorised by having the potential to solve a
common problem (manifested in the agent system as events and goals).
These plans are compiled at design time, and depending on conditions
at runtime only certain plans will be applicable and others may also fail,
meaning only a select sub-set are subsequently used to achieve the desired
outcome (i.e. goal). Figure 2.4 shows how an agent has multiple plans, and
how these plans are selected using two tiers of context, namely the relevant
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and context methods; these are specific to the JACK agent implementation.
A possibility is that one of these layers of context could be connected to the
domain knowledge stored in a knowledge base.

FIGURE 2.4: Context in Agents

An example of plan use is wanting to get a particular type of data, but
needing to decide where to get the data from; the correct plan can be
selected depending on contextual factors (e.g. user, application, geographic
and jurisdictional). This use of plans to solve goals weaves a thread of these
types of context through potentially every decision made in the system.
Other uses of context via plans is ensuring an acceptable match rate
and acceptable reference data quality are used when looking for data and
performing the geocoding. Another example of potential plan selection for
geocoding is when a particular correction technique (e.g. Soundex) yields
no suggestions so another is used, or accessing a dataset does not work so
another avenue for data is tried using a different plan, or agent waits until
conditions change.

2.10 Summary of Agent Based Systems

Figure 2.5 brings together the various BDI components mentioned so far,
and this is what forms the control of the proposed intelligent geocoding
framework.

The key concepts seen in Figure 2.5 could be applied to geocoding such that:

• The messages will be sent between the outside world (the user, web
services) and other agents
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FIGURE 2.5: The BDI Life Cycle

• Agents will balance a proactive goal of geocoding with the reactive
responses needed to deal with the messages and internal conditions
that become fulfilled

• The whole control process will be data driven and real time via the
beliefsets, which will simultaneously be the catalyst for spawning new
tasks, monitoring their progress and provide the metric to measure
completion

• Plans will be used to carry out the tasks required to satisfy regular
events and goals

• Plans will be applied selectively and dynamically to find the best
option

• The plans will in turn perform an action (a chunk of code), send a
message, spawn another goal or update beliefs

This provided BDI cycle will continue until an address has a geocode
determined for it or processing has been exhausted. This approach will
be for control, but there remains a need for other techniques.
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2.11 Conclusions

This section builds on the desirable control features and agent character-
istics seen in Section 2.4.1. Agents contain many of the desired traits for
intelligent geocoding, and many of the issues have the common thread of
semantics running through them. A benefit of using agents for geocoding
includes the ability to decompose the geocoding phases (normalization,
matching, locating) into smaller problems (expressed as goals and sub-
goals) which allows for a less linear geocoding process and an ability to
incorporate dynamic data coming from events internal and external to
the agent. This decomposition is further complicated by the idea that
processing can also be done in parallel. This leads to the question of how
are tasks arranged to work in parallel. The goals and parallel tasks will
also require conditions to define their success and failure. If designed
correctly, the ability to process in parallel provides the opportunity for a
scalable solution (using multiple processors and multiple machines).

There is a need to determine a way that the same linear geocoding process
is not simply repeated using agents but that the process is enriched from
using agents. Because agents are social, interactive and event based it is a
possibility that the semantics and context could be incorporated into their
behaviour. Relevant to this is the concept that the essence of semantics
for addresses is in terms of the geographic entities and their relationships.
Part of this behaviour is message sending, and considerations for design
include (i) which agents are sending the messages, and (ii) the content of
the messages being sent.

The event driven approach is also beneficial to geocoding as a service
oriented architecture (SOA), because new geocoding requests coming in
over the Internet from users or other machines are events. There is a
choice to use one or more agents, using multiple agents could have benefits
over just using one agent, but the design will need to determine what this
benefit is and how to include it in the design. There is a “ripple” effect
present in geocoding (at least there could be with an event driven approach)
where although geocoding has many different steps and there several parts
to an address, everything is intertwined; changes in one component can
affect another. Whether it correction, scoring, or finding data all aspects
are related - this is suited to event driven design.

46



SUITABILITY OF AGENTS FOR THE FRAMEWORK

Beliefs within the BDI model provide the “glue” which ties together the
goals, messages, events, context and plan selection; this also provides a
data driven approach to geocoding where multiple geocoding queries can be
pursued simultaneously, advanced tracking of address progress is possible,
and only the necessary geocoding phases are applied as needed. It is
anticipated that beliefsets will be the cornerstone to control in intelligent
geocoding, but there is a question regarding the type and richness of
knowledge that a beliefset can represent.

Non-deterministic behaviour allows agents to deal with geocoding out-
comes dynamically at runtime and retry if failure occurs in particular task.
The use of the belief, desire, and intention (BDI) agent model provides
the ability for many types of context to influence decision making in all
aspects of processing. BDI provides the ability to take the currently linear
geocoding process and make it more flexible where steps can be revisited
or avoided, dependant on address values and context of the situation.

To utilize previous experience (i.e. learn) it will be necessary to read
and write to a knowledge base, although only a reinforcement learning
approach will be suitable because the only feedback is whether an incorrect
address was successfully corrected with regards to reference data. The
agent and knowledge base will need a common structure and vocabulary for
describing addresses. The comprehensiveness of the knowledge structure
will determine whether it is a taxonomy or an ontology.

Agents have the potential to offer a radically different way of design-
ing a solution for geocoding, specifically enabling intelligent geocoding.
Questions that arise include how to weave geographic semantics into the
framework at a base level and throughout. From the issues discussed
regarding user perception and geographic/semantic errors, there is a
possibility that there are more types of geocoding mistakes being made
than are currently known or corrected for. There is also a need to determine
where in the geocoding process user perception is incorporated.

Is clear from reviewing the steps in geocoding that there is definition (with
ordering and interdependence); these steps could be a natural fit with
goals and sub-goals. Plans will contain code to perform the corrections,
lookups and locating; their design will require thinking about the geocoding
process differently to ensure the maximum benefit is achieved from using
the agent paradigm. With interdependence between geocoding steps, along
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with the vision for greater interaction, there are several reasons why the
geocoding process could be repeated several times for the same address (i.e.
refinement of the solution).

Beliefs can be used to track progress, i.e. its beliefs will reflect what is
happening in its “environment” of geocoding. The event driven design will
require a mechanism for determining when to “stop”. The traditional steps
in geocoding are not going to change, but the paradigm used to control
them and the order they execute in, how the traditional geocoding steps
work together can be changed.

Levels of completeness will have implications for the quality of the geocode
and if one or more elements within an address are missing then this will
affect the processing of other elements, the design needs to ensure there is
a flexible way of handling this. The design also needs to use the elements
that are present in an address to narrow the search space for other address
elements.

Although syntax only describes errors at the “surface” (i.e. not deeper
semantic meaning), at least they are straightforward to store for correction
and later use because the text is symbolic; the knowledge base can store
correct and incorrect addresses. Storing of corrected names/syntax is
related to the situation that the geocoder can only learn if exactly one
correct result (assuming no more interaction from user) is found for an
incorrect query.

Because the presence of particular address elements can be critical and
they are sometimes unknown, the question arises of what would happen to
processing if the missing elements could be inserted based on the elements
that are present. It would be useful if the design could include a way of
combining multiple misspellings, and also cater for the possibility that
there are misspellings and other causes included in the same incorrect
query. To cater for the perception of users would require research
specifically into why users make mistakes spatially, this is beyond the scope
of this research, however it would be good if the knowledge base could be
extensible to cater for this. It would be useful if the knowledge base was
extensible enough to cater for storing geographic errors (assertions stated
in terms of actual geometric relationships).

48



CHAPTER 3

RESEARCH DESIGN

THE research methods shape the investigation of how to apply an agent-
based framework to handle intelligent geocoding, given the issues

of geocoding and the benefits of agent based systems. An overarching
question and theme throughout the research design is how control and
context is present and used.

3.1 Method for Identifying Relevant Issues

The key steps for this method are determining the current state of
geocoding based on the literature and also commercial sources, distilling
these concepts into a manageable overview and then determining priorities
from these to guide the focus of the research. The findings and focus
from this method are used in the method for developing the intelligent
framework. The method for developing the intelligent framework (Section
3.2) is responsible for taking an initial idea, refining it, establishing
a design and finally creating a prototype for evaluation. The method
for examining control and knowledge determines what role these factors
play in the prototype by analysing both the behaviour and process of the
prototype. Looking at the behavior presents a quantitative perspective,
while analysing the process provides a qualitative perspective. In addition
to this analysis, other functionality also made possible by the prototype is
examined. Figure 3.1 shows the various research methods used and the
sequence they are used in.

Although there are many areas within geocoding that could be improved,
the uncertainty in the matching algorithm aspect of the underlying process,
along with data input errors attributed to semantic, geographic, iterative
and geographic addresses all benefit from new research. This new research
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FIGURE 3.1: Research Methods within the Research Design

is based on where previous research has been done and where commercial
efforts continue to improve. The geocoding component of the literature
review is done first to build an understanding of this field which then
directs the review of artificial intelligence techniques and how these fit into
the solution. The literature on this topic provides an indication for what is
and is not possible with current AI techniques, and also provides insight
into which of the techniques are more suited for use in geocoding. Agent
based programming was identified in Section 2.4.1 as a strong candidate
due to both the traits it has and how these aligned with the anticipated,
overarching desires for intelligence in geocoding.

3.2 Method for Developing an Intelligent Framework

To investigate and develop a framework for intelligent geocoding, an initial
solution is sketched out which not only seeks to solve some of the issues
in geocoding, but do so by adopting techniques from the field of artificial
intelligence. With the basic solution sketched out, a more formal design
is defined which includes a greater level of detail and a plan for the
novel contributions to be created. An implementation tool is then selected
which is capable of reproducing the design in program code. It is the
implementation which produces the prototype (named “IntelliGeoLocator”)
which in turn is used to evaluate the research ideas proposed.
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3.2.1 Conceptualization of the Solution

Preliminary ideas are established for a solution and AI paradigms are
evaluated against preliminary ideas. This is where original synthesis of
ideas occurs, and an informal design happens on paper. The background
literature, the chosen focus for geocoding and adding intelligence all
combine into what is a high-level solution. It was during this stage that the
idea for modelling control using messages between agents (representing
address elements) was formalized, along with using agent beliefsets to
process and track all aspects of geocoder operation. Agents provide the
control knowledge and a rule based system stores the domain knowledge.
Storing the knowledge opens the pathway for learning. This step of the
method provides a starting point for comparison of the initial design ideas
to AI techniques to see how feasible the solution are from a software
perspective. At this stage of evaluation, a theoretical evaluation is
made to see whether the AI paradigms available would broadly support
the preliminary ideas for adding intelligence to geocoding. The step
is considered “theoretical” because at this point there could be several
possible implementations of an agent or rule based system used.

3.2.2 Framework Design

This step includes designing the framework for intelligent geocoding,
identifying and obtaining required data (both for geocoder operation and
testing), and developing a testing framework. Design is applied before
implementation to produce a better outcome in terms of software engi-
neering (Pressman, 2004). To assist with the agent design process, the
Prometheus methodology (Padgham and Winikoff, 2002) is used. Agent-
based programming is a unique paradigm but just like other software
paradigms it requires a software engineering methodology to ensure the
design process is well thought out, structured and scalable. Prometheus
was built specifically for the agent-based paradigm, and produces guidance
for how to best approach the use of goals, beliefs, plans and events in
design.

As early on as possible in the design, the data required for processing
needs to be found as doing this can take time, and it is not worth waiting
until implementation only to find a particular type of data needed is not
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available. Likewise with the testing framework (Section 3.3), thought
was given early (during design) as to how robust the testing framework
would be for testing the research ideas regarding building intelligence in
geocoding.

The prototype is evaluated using several criteria including (i) observation
of the prototype behaviour, (ii) examining the results of address testing,
and (iii) examining the additional functionality made possible by the
new framework. The quantitative test is included to show capability
and relevance compared to other established geocoders. The quantitative
testing is intended to ensure the prototype is not grossly deficient in a
sample of common problem address types. The goal of the research is to
establish a new framework for geocoding with real implications, rather
than to solely write a collection of problem address correctors. This is
important as the main reason for the quantitative testing is to show an
agent-based framework does not have barriers with regards to a wider
adoption by industry. To conduct the quantitative test, five categories
of test addresses are used, and three other geocoders are evaluated in
conjunction with the prototype.

The categories of problem addresses for testing include (i) levels of com-
pleteness, (ii) syntax of addresses, (iii) semantic and geographic, (iv)
iterative processing, and (v) compounding of errors. The geocoders selected
for comparison include (i) Google Maps, (ii) Multimap, and (iii) Whereis.
The Google geocoder was selected because of its broad usage and wide
access, along with the fact it is constantly being updated. Multimap and
Whereis were selected for their emphasis on Australia. All the geocoders
selected for use are online geocoders, the rationale for this is that they are
more advanced and are changing/updating more rapidly than the vendor-
based geocoders which are more limited in scope and currency.

3.2.2.1 Identify System Components

The agent oriented component will be the hub of the entire geocoding
process and maintain flow of control for the system, coordinating itself and
the other components. The agent or agents will access the knowledge base
and reference data as needed during processing. An agent will be capable
of many different actions, some are basic while others (such as matching)

52



RESEARCH DESIGN

require more sophisticated algorithms and supporting technologies. The
components in the system can be seen in Figure 3.2.

In the course of completing a query, the agent will consult the knowledge
base to help solve queries via knowledge stored from previous queries.
An agent will also write to the knowledge base if any new knowledge is
discovered.

An agent accesses reference datasets to make decisions regarding the
address elements submitted in a query. It can be seen in Figure 3.2 that
data is accessed both locally and over the Internet. The diagram also
provides a prelude to the detail further contained in both the knowledge
base and the agent system. The use of remote data via the Internet includes
web services, and as more of these services become available, and as the
semantic web further develops, agents will have richer data to draw from.

One of the main aspects of the design is that overall control of the geocoding
process is based on the interactions between agents representing the
geographic elements contained in an address. In other words, each address
element is represented by a software agent and each of these agents pursue
tasks associated with correcting and preparing their individual element for
geocoding. Because there are multiple agents, these tasks occur in parallel.
The result is the geocoding process in software running with multiple foci of
control. Eventually when each agent is finished correcting its own element,
all the elements from each of the agents are reassembled and coordinates
are found for the address.

Because agents are used to represent the geographic address elements,
the same geographic relationships that exist between the address elements
also exist between the agents. Because the processing of individual elements
does require information about other elements in the address, messages are
used for the agents to send and receive data. However, because the agents
represent geographic elements, these messages have content relating to the
real geographic relationships. For example, the relationship that a state
contains a particular locality, or that a street is within a given locality. The
messages also allow the high level or conceptual level to be represented
(e.g. in terms of “states” or “streets”) and the specific instances of these
(e.g. “Western Australia” and “Marlow St”).

Messages also allow data outside the immediate system (e.g. from the
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FIGURE 3.2: System Components

user) to reach the agents. Beliefsets enable the agents to internally store
many different data values, relating to all aspects of its processing and
providing the coordination it needs. For example, an agent stores its
particular element value, that status of its progress in processing, its
relationship with other address elements, and data describing selected
other elements (plus other data). The tasks undertaken by each of the
agents are modelled as goals, and the beliefsets allow the agent to know
when, for example, an address component has been corrected and the agent
can move on. Similarly, regular internal events (such as the status of
progress being updated, an address element value being modified or a new
piece of information from another agent) are also driven by the beliefset
values. Plans are used by the agents to search for data, send messages,
update a status score, query the knowledge base and other actions.

The agents do not persist their beliefsets to storage between sessions,
instead using the knowledge base to store important data. The data stored
is used in future queries as “knowledge” to help correct address element
values, using the dynamically created aliases. The agents are able to query
the knowledge base at runtime, and add content dynamically. There is a
single knowledge base, which each agent contributes to.

The design of the prototype is suitable for all phases of the geocoding pro-
cess, however the focus is on building intelligent knowledge and control into
the geocoding process. As mentioned in the Section 1.5.2 of the research,
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the framework does not perform any normalization of the data with regards
to the meaning of the address elements, i.e. the prototype assumes the
incoming address elements have the correct meaning associated with them.
There is nothing preventing the work of others such as Churches et al.
(2002) to be used or embedded in the intelligent framework. Web services
are used for the locating of actual geocode coordinates, and this action is
performed by an agent.

The vision which underpins the design is that context and semantics
will be built into geocoding control at a fundamental level. It is hoped
that this combined with the event based and parallel nature will provide
a scalable and innovative paradigm for geocoding which overhauls the
existing geocoding approach for one more in tune with the semantic web
and increasing use of service based processing on the Internet.

3.2.2.2 Agent Assignment

The geocoding process is the same, with a few differences, for each of
the address elements and this lends itself to reusing large parts of agent
behaviour for the various agents. The nature of geocoding means that, with
some intercommunication between processes, the various address elements
can be processed simultaneously, which ties in with the ability of agent
software to do parallel processing. From a control and communication point
of view, design is made easier by only having to consider the behaviour
of each agent individually, and then putting these together via a common
messaging approach. The agent types assigned within the system include
a user agent, matching agent, and five specialty agents. Figure 3.3 shows
the parallel behaviour of a single agent brokering the incoming queries and
distributing the individual elements to the specialty agents.

The five specialty agents include the state, postcode, locality, street and
property agents. Although five agents are mentioned specifically, the
design is intended to cater for more. The geographic representation does
not have to stop at the property level, and the design would allow drilling
down to buildings, rooms in buildings and even objects in rooms. This
adds flexibility and extensibility to the design, and is not constrained by
the increasing complexity which would happen in a “linear” environment.
Likewise, in terms of the higher level, areal features, it does not have to
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FIGURE 3.3: Address Components Distributed to Agents

stop at the state. Beyond state, there could also be a country representa-
tion, this in particular would work well with semantic knowledge detailing
the idiosyncrasies of geocoding in other countries (e.g. geography, topology,
temporal).

The street agent is responsible for processing both street name and street
type. The property agent is responsible for processing street number and
unit number. Because the internal beliefsets, reference data and much of
the processing is the same for all geography element types, a single agent
design has been made which will contain the functionality to process any
element type.

When the system is run, multiple instantiations of this design are created
and each assigned to a particular role. With so much shared functionality,
this makes design much easier. The agent type created to incorporate these
functionalities is named the element agent. The matching process seems
distinctly different from the processing done by the element agent, both in
its objective and also the data it uses. For this reason, a matching agent
exists to perform the processing associated with matching.

A user agent was created to manage the brokering of queries from users,
and then distributing these to the element agents. This user agent provides
a neat start and finishing point for the parallel processing done by the
element agents; it is the user agent which has the coordinating role for
the multiple queries coming in. It is within the user agent that each
agent is assigned a unique ID and kept track of so that the outcomes can
be distinguished. The user agent is responsible for “distributing” these
identifiers as needed by the agents, and when closing a query it retires the
identifier.
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3.2.2.3 Goals

The goals and sub-goals within the framework can be seen in Figure 3.4,
where a goal is represented with a box, sub-goal as a coloured ellipse and a
plan as plain ellipse.

Correction of Element

Existence
Complementary 

Elements
Agreement of 
Complements

Suggestions
Equivalent 

Complements

Find Suggestions

Knowledge 
Base

Soundex Levenshtein
Geographic 
Neighbours

FIGURE 3.4: Goals and Sub-Goals within the Framework

The goal Correction of Element is the top-level goal which is pursued for
every address element, and in turn each of the sub-goals are also pursued.
Each of these sub-goals is a step in the element correction process, although
depending on the status of the element, not all steps may be required at a
given time in the geocoding process. The terminology used to describe the
goals in Figure 3.4 corresponds with the definitions given in Section 3.4.

Looking at these sub-goals, and their role in the geocoding algorithm, it
is seen that (i) goals are applied in a sequence where order is important,
(ii) not all sub-goals will be needed in every situation, (iii) goals are subtly
influenced by their environment, and (iv) a mechanism is needed to ensure
one goal is completed satisfactorily before moving on to the next.

The goal to test whether an element is present and exists (“Existence”) is a
simple lookup, no techniques are used in this step to try and find a possible
replacement or correction. This information is stored in beliefsets. There
are some special considerations to this step, such as when a particular type
of element is required to check the existence of another because the other
by itself is simply not possible; e.g. to check if a street number “exists” at
the very minimum a street name is also needed.

The “Complementary Elements” goals sends messages to other agents
(which each represent elements) to ask what their values are, which
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determines what the complementary elements are for the original element;
these values are then stored in the beliefset of the original agent. Each
agent exchanges messages with at least one or two other agents to do this,
and this is an example of activity occurring in parallel.

It is important to mention that related to the use of these goals (and overall
geocoder control) is the role of address element status scores. These scores
are calculated for each address element and also for the overall address.
The score of an individual agent affects messages sent out to other agents.
When certain beliefs are true then the agent is “eligible” to perform certain
actions and interactions. For example, once an agent has determined
whether its address element is present and exists, it will respond to other
agents requesting what its status is. Previous to determining this the agent
being asked would not respond. If an agent reaches an individual score of
1.0 then this is the catalyst for the agent indicating they are “complete”,
and eventually when all agents are complete then the processing of the
overall address is complete. Similarly, even when agents reach a final
maximum score less than 1.0, this is communicated via messaging and the
agents reach consensus indicating that overall processing is complete.

3.2.2.4 Messaging

Messages can be received and have the contents of the message written
to its beliefsets, or the message can be acted on immediately and nothing
stored in the beliefsets. In this design all the messages sent have their
contents stored in the receiving agents beliefsets. Uses for messaging
include: (i) bringing a geocode query into agent system, (ii) distributing
address elements to the various element agents, (iii) Providing an element
for use in matching, (iv) getting current information about complementary
elements, (v) providing information in response to update request, (vi)
correcting elements ready for matching, (vii) notifying other agents of
updated status, (viii) providing arrays of element suggestions to Matching
Agent, and (ix) providing arrays of complementary element suggestions to
Matching Agent.

58



RESEARCH DESIGN

3.2.2.5 Inherent Semantics and Real-Time Quality

Two particular features in the architecture of the prototype are the abilities
to have (i) inherent semantics in the geocoder because of the agent used
and their messaging, and (ii) quality scores and geocodes calculated for
addresses in real-time.

When working with the geographic elements, they are arranged concep-
tually as seen in Figure 3.5, where they are arranged in order of which
elements “contain” other elements. This arrangement is what underpins
the semantic relationships between the agents representing the address
elements (referred to from herein as element agents).

FIGURE 3.5: Elements Arranged in Descending Containment

There are several terms which describe the relationships between ele-
ments. An element is present if a value was submitted in the original
submitted address, i.e. the element value is not blank. An element exists if
it can be found in at least one reference data set, e.g. the locality “Floreat”
exists in the gazetteer for Western Australia.

As seen in Figure 3.5, a given element has other elements on the “left”
and “right” of it; these are referred to as complementary elements. For
example, the complementary elements for the postcode are the state and
locality. In a real query, if a particular element type is not submitted (i.e.
it is blank) then the complement is the next present element type. The
state and unit number elements do not have upper and lower complements,
respectively. The complementary elements in this research are address
elements, but there is no reason they could not be more generally used as
“complementary components”, any component that better contextualizes it
and gives additional assurance.

This agreement of complements is a spatial agreement, for example the
postcode contains a given street, or a street does have a particular street
number on it. It is possible that two elements may not agree spatially,
even if they both exist; this case would mean that one of the elements is

59



RESEARCH DESIGN

incorrect.

An equivalent complement is the equivalent, complementary element value
for a given element value; the result is selected from a reference dataset,
using the given element value as the search criteria. For example, using the
a street name, its equivalent postcode can be found. Using this approach,
an element type finds the equivalent complementary element only to its
“left” (the containing geographic element); this is an effort to perform a “one
to one” search as often as possible (e.g. a street usually has few or a single
locality associated with it, but a single locality would have many streets in
it). This “one to one” idea is used simply to keep the list of equivalents as
small as possible.

It is because the agent is the geographic element, and vice versa, that a
commonality exists between control, knowledge and the phenomena being
abstracted (the geographic element). This commonality is such that the
geographic elements also benefit from receiving context and semantics.
Figure 3.6 presents how the intelligent framework can be thought to have
two imaginary tiers involved, where the bottom tier is the “behind the
scenes” use of control and knowledge which in turn drives the context and
semantics on the surface.

Figure 3.6 also shows how when viewed from overhead, only the context
and semantics is apparent. Also, because the two “layers” of intelligent
geocoding are parallel and aligned, then conceptually any effect or capabil-
ity on the top layer has a corresponding cause or capability on the lower
layer. The vertical column in Figure 3.6 represents that it is the agent
paradigm which ties the two layers together and allows for the duality of
the control and geographic representation.

The meaning of each agent is known to other agents, for example if there
is an address element missing, the other agents can adjust accordingly.
This leads into the established relationship between the agents, which
at the most fundamental level is a “contains” relationship. For example,
a postcode contains a locality. Additional relationships exist within the
definitions presented previously, both individually (“present”, “exists”)
and between elements (“spatially agrees with complementary elements”).
As described with Figure 3.6, these geographic relationships are also
represented at the control and knowledge level, by the messages each agent
can send to each other, regarding their own status and also questions they
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FIGURE 3.6: Two Layers within Intelligent Geocoding

may have for other agents.

Extensibility is also a feature of using agents in this way, for example
having the ability to add more agents representing additional geographies
or even other entities other than geography. The extent of the framework
currently is street numbers (the lowest level of geography) but if buildings
were desired then a “building agent” could be added in the future.

Because the agents will be processing their own elements in parallel, it
means that some results will be ready sooner than others, due to the time
it takes to query reference data. This means that as agents process their
respective elements and have results, they can be displayed for the user (or
sent to another program/machine) as they become available. If all address
elements are processed quickly then the final result would be available
almost immediately, but if there is lag then the user would benefit from
seeing the result as it is so far. The user would also be provided with a
geocode as soon as possible; this could initially have a low spatial resolution
(e.g the state level), but would improve as more address elements are
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processed (in particular the lower level elements such as street and street
number).

3.2.3 Prototype Implementation

Implementation was an iterative process which involved creating an initial
skeleton of agent and knowledge base functionality, then connecting the
agent with the knowledge base and adding more functionality to both.
At each stage of development, the software was tested to ensure it
worked. Time was needed initially to learn the specifics of the agent based
framework and rule based system.

3.3 Method for Examining Control and Knowledge

At a high level, the methodology for evaluation aims to establish that (i)
the new framework can perform tasks that current geocoders do, and (ii)
the new framework can utilise semantics to improve geocoding using an
intelligent approach. To do this will involve (i) comparison with a selection
of existing geocoders, and (ii) any new functionality which has been made
possible. Contrasting the prototype with existing geocoders provides an
objective base of functionality which the prototype can be compared to; it
will also indicate whether the new geocoder is too deficient to be used in
industry. Testing will also evaluate the ability of the geocoder to: (i) resolve
problem input addresses with invalid, missing or aliased information, and
(ii) learn from previous geocode queries, create rules and use these in the
future.

The testing methodology touches on the three objectives from Section 1.5,
by using addresses identified as problematic (Objective 1) in a quantitative
analysis, and using a qualitative analysis to evaluate how successfully
intelligence was built into the geocoding process (Objective 2) and how
control and knowledge are used together (Objective 3).
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3.3.1 Evaluation of Intelligent Geocoder Behaviour

This approach is to look at the behaviour of the prototype from a quan-
titative perspective, gaining insight of how the system operated based on
the values produced during processing. For example, how does the scoring
process perform, does it work as expected? Do the agents cease processing
correctly and how is the processing load spread amongst the agents? Other
observations will include whether the real-time correction and geocoding
worked as expected and also the parallel and distributed aspects. If these
indicators perform as expected, then it is an initial sign that the geocoder
is operating as expected. To carry out this observation, notes will be taken
of the status of the prototype during address processing, the messages used
and time taken to perform different tasks. In particular, focus will be given
to the behaviour of agents individually and as a whole.

3.3.2 Evaluation of Intelligent Geocoding Process

Included in this stage is testing the prototype with known problematic
addresses. The testing is not intended to be a rigorous test for positional
accuracy, but more to show the prototype is not deficient. This testing
follows that from Section 3.3.1 and provides the next validation that the
prototype is or is not performing as expected. At the end of this stage, it
would be known whether the prototype is operating as expected and is on
par with other geocoding products.

To geocode a wider range of problem addresses, it is the correction
techniques, not the control framework which is largely responsible -
although the framework can help. More original correction techniques are
needed, such as spatial similarity. It is expected that the geocoder will
improve on existing problem addresses, however given the scope of the
research, both the research and the prototype need to be explored further
to demonstrate and achieve this, the result of the research is an extendible
and expandable framework which can be further improved in the future.

However, for the newer correction techniques introduced there should be
improvement in the new types of errors handled. Original functionality will
emerge and this a contribution in itself, the address testing in this research
is not about a massive comparison with other vendors, this research is a
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new framework and paradigm; this is about how the prototype does its
processing, not so much the geocodes it gets back - this is exemplified by
the fact that it uses another geocoding web service and it is not doing any
standardization.

Results from the test addresses will be recorded in a table, with both
IntelliGeoLocator and other geocoders being represented. For each address
type, it will be noted whether the geocoder was able to resolve the geocoder
entirely, partially, or not at all. The notes will also include insights
into how the geocoders behaved. By using a variety of test addresses, it
can be seen how suited the prototype and its paradigm are to different
issues. The addresses considered “representative” will be chosen using the
experiences of other experts (e.g. LandGate in WA) and the public, and the
literature. Examples of different input addresses include the use of varying
address elements, different ways of specifying addresses, and different
errors. The test addresses are categorised in terms of completeness, syntax,
semantic and geographic, and compounding of errors. These categories
have been chosen because they include both the immediately visible and
“invisible” aspects of an address, in other words those aspects apparent
from the address string and those with a deeper causation. The category
of compounded errors is a mechanism to cater for situations where several
errors are present in an address.

3.3.3 Examine Derived Functionality

In addition to evaluating the behaviour of the intelligent geocoder (Section
3.3.1) and the effectiveness of the agent paradigm for the geocoding process
(Section 3.3.2), there is also a need to evaluate other functionality made
possible by the framework for intelligent geocoding. The concepts and
questions which need to be tested include agent control, use and transfer of
knowledge, inference, communication and more. To evaluate functionality
defined at the conceptual/framework level (the left column in Table 3.1),
practical demonstration is used at the prototype level; an overview of the
evaluation methods are shown in Table 3.1.
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TABLE 3.1: Derived Functionality to be Evaluated

Outcome to be Evaluated Method for Evaluation
That an intelligent framework provides
the ability for an address to flow
through from start to finish with a final
geocode

Demonstrate what happens when an
address moves through all necessary
beliefsets, plans and messaging

BDI (specifically events) acting as a
form of control knowledge

Demonstrate sample events, what
data was contained in them and
which agents did the sending and
receiving

BDI within the framework allowing the
geocoding process to be less linear

Demonstrate with an example of how
goals, plans and messaging interact
in the geocoding process

Showing how knowledge from the KB
was transferred to the agent (beliefsets)
and used to make a decision

Demonstrate which plan accessed
the KB, the knowledge which was
retrieved and how this affected the
agent

Re-writing the knowledge base dynam-
ically (e.g. aliases) automatically

Demonstrate how a single result was
written to KB at end of processing
including what the fact was

Fundamental inference using disparate
facts

Demonstrate how two pieces of infor-
mation were used to solve a query

Use of context Highlight and give examples of agent
roles, plan selection, messaging be-
tween agents and knowledge base
(including geographic context)

Tracking of multiple addresses made
possible by framework

Demonstrate example of the tracking
IDs assigned to queries throughout
the geocoding lifecycle

Aggregation of results from different
agents

Demonstrate sample message coming
into MatchingAgent and how they
were aggregated

Rule based reconstruction Provide an example of how the rule
based reconstruction performs

3.4 Conclusions

An important conclusion emerged after identifying the issues, which is
that they have a common thread of intelligence weaved throughout them,
this subsequently informed the method for developing the framework by
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providing a focus. The method for identifying relevant issues established
there is a link between agent techniques and the issues in geocoding. When
identifying relevant issues, limiting the scope means a foundation can be
built (using intelligence) without deviating into the work being done by
other researchers in complementary areas.

By conceptualizing the design and sketching out components, it was
realized that there was a need for a knowledge base component to support
the agent component. The design included planning for the future with
regards to more and smarter web services that the agent will be able to
utilize. Having multiple foci of control and parallel behaviour is a deviation
from the norm for geocoding, but this is at the crux of the new approach to
geocoding control; using agents in conjunction with web services (now and
in the future) is a very complementary combination.

The semantics inherent in this design are directly related (enabled)
by having the multiple foci of control, made possible by the agents.
Extensibility has been considered, and just as individual agents are used to
represent geographic entities, so too could additional contributing factors
be added in the future as agents. Creating a “base agent” with the most
common functionality and then tweaking (adding) to this for the various
geographic elements makes design and code reuse easier. Focusing on what
needs to be achieved rather than how to do it means new and additional
techniques/plans can be added later without having to change the code
which uses them.

Using messaging means that without any extra effort the software can be
run on multiple machines, as messages can move across networks between
agents. By representing address elements as agents, it has provided a
way to fuse the practical (software) and conceptual (semantic geographic
relationships) together into one.

Splitting the method for examining control and knowledge allowed three
focus areas to be utilized and examine the geocoder from different aspects.
The behaviour aspect analyses happens when real queries are processed,
being a quantitative review of several of the unique aspects of intelligent
geocoding. Geocoding process focuses on outcomes of different, represen-
tative address types and results of processing. Derived functionality looks
at other desirable capabilities of the intelligent geocoding prototype, made
possible by the intelligent paradigm.
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CHAPTER 4

PROTOTYPE DEVELOPMENT

THIS chapter describes the prototype architecture, key design decisions,
novel approaches to the geocoding process and the implementation

using an agent based approach and a rule based system. The architecture
is presented first to provide background necessary for understanding how
the implementation is carried out.

The implementation is referred to as IntelliGeoLocator (IGL). Figure 4.1
shows an overview of the implementation, which includes the JACK
agent framework (Agent-Oriented-Software, 2003), the knowledge base
(implemented using the JESS API (Friedman-Hill, 2003)), and the supple-
mentary (i.e. reference) data used in the algorithms to solve the geocoding
queries. The Java interface in Figure 4.1 was written to simplify access
to the knowledge base for the agents. The supplementary data includes
databases accessed locally, and also web services accessed via the Internet.
Also in Figure 4.1 are the facts and rules which are asserted and modified
by the agents.

Both JACK and JESS are implemented in Java, so they are compatible
with each other immediately. JACK was selected as it is a very close
implementation of BDI theory and traces its roots back to the original
proponents of BDI theory. The product is technically mature, stable and
well documented. JESS was selected for use as it is the best known
Java rules engine, also has technical pedigree (it is based on CLIPS) and
is a faithful implementation of the original Rete algorithm used for rule
based systems. Both JACK and JESS have been used in real industrial
applications, which shows they are reliable and scalable. Using these tools
would also provide documentation and support for industry sponsors if they
decided to be further involved with the research and the prototype.

The following sections describe the implementation of IntelliGeoLocator,
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FIGURE 4.1: Overview of the Implementation

using the typical steps in process as a structure for the sections themselves.
Every aspect of the geocoding lifecycle is included, from a new geocode
query (i.e. address) entering the system, through to matching and locating.

4.1 Initialization and Setup

Because each agent is its own entity, they are each instantiated individu-
ally. Also, because these agents are individuals they cannot “see inside” the
internal state of other agents, nor is there a global (i.e. shared) memory -
each agent has its own protected memory. This means there is a need for
sharing information, which is the role of messaging.

The agents in the prototype are only instantiated once, when the whole
prototype is started up (which also occurs only once). This means that
for every query that comes into the geocoder, new sets of agents are not
created - rather the query “flows” through the existing instantiated agents;
in this way many queries can be processed simultaneously. With this
concurrency is the need to track and identify unique queries within the
system; likewise when all processing is complete, the query needs to be
closed. Only the agents themselves are explicitly instantiated in code by
the programmer, components such as beliefsets, events and plans are each
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instantiated automatically as needed. A beliefset is instantiated once for
each agent that uses it, the first time it is used.

In the intelligent geocoder design, there are three types of agent, and
in the implementation there are also three types, however there are
seven instantiations. These types include the UserAgent, ElementAgent
and MatchingAgent. The ElementAgent is a “one size fits all” agent
which, after it is instantiated, can take on the role of either StateAgent,
PostcodeAgent, LocalityAgent, StreetAgent, or PropertyAgent.
This is made possible by the fact that each of these element agent types
perform the same tasks the majority of the time, they only differ in
the geographic elements they need to compare and the dataset queries
required. Also, a temporary SenderAgent is created and used for each
new geocode query, sending the address information to the UserAgent.

4.2 Brokering and Closing a Query

The SenderAgent is used to input whole addresses into the system, which
are read from file. The sender agent is the only temporary agent in the
prototype; each time a new address is read from file, a sender agent is
created and this agent is used to send a message “into” IntelliGeoLocator
from the initial Java executable. Once the sender agent has sent the
message, it is destroyed. It is feasible though that with an online system
accepting queries from users via the web, the SenderAgent may not be
necessary; instead the UserAgent could directly handle the queries from
the website. The file which the addresses are read from are in a pipe
delimited format; this input means that it is already known which parts
of the address are of particular element types. This is contrary to other
geocoding research, discussed in Chapter 1, which has focussed on initially
identifying (through both rules and probability) which parts of an input
string are which elements. Because of this, the assumption has been made
that the user has not confused, for example, the value of the street name
with the locality. Every time a new query enters the system, the user agent
increments an integer stored in a beliefset, to keep track.

Figure 4.2 shows the MessageAgent sending the complete address to
the UserAgent, via SetAddressEvent, and the UserAgent handling
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this event via the IncomingAddress plan. The IncomingAddress plan
then sends each of the individual address elements to their respective
agents, and also sends the all initial address element values to the
MatchingAgent for preliminary matching (completely uncorrected).

FIGURE 4.2: User Agent Distributing Address Elements

Three key plans involved in this stage are IncomingAddress, Proces-
sExternalElement and InitiateGoal. The ProcessExternalEle-

ment plan is used by the ElementAgent to add a new address element to
its beliefset. InitiateGoal is also used by an ElementAgent to launch
the overall goal of FindBestValue, which oversees the correction of the
element. The UserAgent sends the various elements of the inputted
address to each of the ElementAgents in parallel.
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4.3 Goal Coordination

As seen in Figure 3.4, the top level goal is correction of element, and the
implementation of this is the FindBestValue goal. Each of the goals
(including sub-goals) in Figure 3.4 are posted in sequence, beginning with
Existence; this reflects that although a new paradigm is being used, the
same contemporary geocoding steps are used. Posting these tasks as goals
is the essence of using agents rather than a more procedural approach; the
agent is approach is “this has happened, now work out how to handle it”,
i.e. what to do not how to do it (the most appropriate course of action is
chosen by the agent at runtime).

Although the goals are posted in sequence, they are only pursued if a
logical condition is not already true; this means that not every goal is
necessarily pursued, for example, the complementary elements goal may
not be required. This logical condition is included in the command used
when the goal is posted, the command includes both the goal and an exit
condition. The conditions are a combination of literal values (such as
integers and strings) and also JACK logical variables which are bound
to a particular value. The agent stops trying to pursue the goal when
these conditions are met. Using the Existence goal as an example, the
condition is that the exist attribute (in the belief table) becomes either
“true” or “false”, i.e. it does not remain at “unknown”. In other words,
stop processing when the outcome is determined to be either true or false.
Other goals use more complex logical conditions by combining attributes
from multiple beliefsets.

The exist attribute mentioned would have originally been set in the
ProcessInfo plan, where initial values are added to the Values, Stages,
AgreementValues and AgreementStatus beliefsets. This means setting
all the attributes to the string value of “unknown”. The only exception is
identification ID numbers, and also the initial status score which is 1.0.
The intermediary plans which post the sub-goals include the relevance and
applicability selection methods within the plan, so that only those sub-
goals which are suitable are used. The environment plays a role because
the beliefsets dictate whether the sub-goals are used, and also when both
the main goal and the sub-goals have succeeded; this highlights the close
relationships between beliefs, goals and plans. Because the beliefsets are
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populated by messages from other agents and also the progress of the
agent’s own internal processing, the beliefs need to be updated as quickly
as possible and thus be as up to date as possible.

4.3.1 Existence

When the existence goal is posted, only one plan will be both relevant and
applicable. Element types including state, postcode, locality, street name
and street type have a plan to check whether or not they exist. Because
house number and unit require other information to determine if they are
valid, these elements are excluded from the concept of existence. Instead,
their validity is determined in the next goal which checks the spatial
agreement of a particular element with its complements.

The reference databases used to check this existence are the G-NAF, state
data from WA, and postcode data from Australia Post. The G-NAF is
accessed via a JDBC connection to a remote MySQL server, while the state
data and postcodes (obtained from LandGate) are stored locally using the
Cloudscape database.

FIGURE 4.3: Plans Used to Determine Existence

A SQL statement is constructed (and stored as a string) using the infor-
mation stored in the goal event. A custom class was written which then
takes the string and executes this against the database; the class returns a
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boolean variable if at least one record is returned. The result of this query
is then written to the InternalValues beliefset.

4.3.2 Complementary Elements

Each of the element types has a plan to determine the complimentary
elements for it; only one of these plans is selected. Within the plan, both
the complementary elements are found in parallel (i.e. simultaneously). If
a particular element has not been submitted in the query, then it is not
present and would not be the complementary element to anything. The
agents send messages to each other to discover which element is the upper
and lower. Each agent starts by messaging the other agents responsible for
both of its complementary elements; the sending agent waits for a response
from the destination agent. The payload of the reply message contains
whether or not the element is present in the query, and whether it exists.
If the destination agent has not yet determined this information, then the
sending agent waits while it does so. If the sending agent determines that
the destination agent is not its complementary element, then it proceeds to
message the next possible element, and so on. The UpdateRequest message
type includes just the identifying information and the element type it is
requesting information about; this is essential, as some agents (e.g. street
agent and property agent) handle multiple element types which have the
same identifying integers.

Plans provide the full extent of their power and flexibility when there are
several plans available to choose from, each with their own criteria for
being selected. This becomes most apparent in this research with the use
of plans to choose flow of control based on the geography type. This is what
allows one element agent type to be designed and then used at runtime
to take on the persona of any of the geography types. For example, if the
element agent is instantiated as a locality agent, then when it comes to
finding (for example) the complementary elements or suggestions, the plan
specific to doing this for locality is chosen.

Each of the plans use the UpdateRequest message event, and that the
results of the message interactions are stored in the AgreementValues

and AgreementStatus beliefsets. All message replies are of the type
UpdateResponse, which includes properties of unique identifier, and
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string, boolean and double variables which describe (i) the type of the
element, (ii) the value, (iii) whether the element is present, (iv) whether
it exists, and (v) the status score of the element.

Message sending in other situations is very similar to that of comple-
mentary elements; the only essentials are a destination address name
(which agent the message is being sent to) and any extra parameters.
When designing a message event, the header is similar to a method, and
parameters can be defined. Within the message, members (i.e. variables)
are assigned values by the sending agent, and when the receiving agent
“reads” the message, it can access the same member values. The best
analogy is an envelope, where the sending agent fills it with values,
addresses the envelope, and send it to another agent who opens it and
retrieves the values; this is why it is essential to include the queryID,
subID, parentID, and element type for tracking purposes.

The SetAddressEvent message uses a custom object (of class Address) to
transport it data. This class can be seen in Table 4.1. This class was a
convenient mechanism to pass the data rather than setting many variables
in the message itself.

TABLE 4.1: The Address Class

Class Element Setter Getter

Address Flat Number setFlatNumber getFlatNumber
Address Street Number setNumber getNumber
Address Street Name setStreetName getStreetName
Address Street Type setStreetType getStreetType
Address Locality setLocality getLocality
Address State setState getState
Address Postcode setPostCode getPostCode

Messaging in the geocoder uses both single messages, and also dialogues
of request messages and responses. An example of the “one off” messages
includes when an element agent sends a message out to its complementary
elements with an update in its own values or status score; this message
requires no response.
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The logical condition used when waiting for a response or preparing to send
a response can also be expressed in terms of a beliefset query. For example,
in the PostcodeRequest plan, before the postcode agent responds to a
request for information about its values and status, its needs to have these
established already (operating under the assumption that “unknown” is not
an acceptable response). So, the agent waits to reply until it has evaluated
its own situation. The rationale behind this is that by waiting, only one
request is made and in the long run this will reduce the volume of agent
messaging. So, the PostcodeRequest plan uses a command to suspend
processing until its “present” and “exists” attributes in the InternalValues
beliefset are set to either “true” or “false”. Once processing is unsuspended,
the agent sends the reply. The parameters supplied to the reply include the
incoming message to which is being replied, and an instantiated message
event which is the response. The UpdateRequest message is the only
message listed as having a reply, this is because after the request is sent, a
response is expected.

4.3.3 Calculating a Status Score

The intelligent geocoding model has user-defined weighting for each ad-
dress element (as per the ESRI model), but also includes a score indicating
the quality of the element itself. A benefit of this is that both importance
and a measure of confidence (at a given point in time) are included. There
are two tiers of scoring, that which contributes to the score of the individual
elements, and then the contribution of each element to the overall address
score. Because the scoring mechanism inherently includes inter-reliance
and communication between elements, it is suited to the parallel processing
approach used by the geocoder; it also means the scoring can be updates
in real-time as processing occurs. The scoring mechanism also allows
for ambiguity in scoring, because there are distinct steps which include
the element being present, existing and agreement with complementary
elements. This means two elements can both exist yet not spatially agree
with each other, however this is handled by the scoring approach. The
intelligent geocoding model provides a continuous representation of the
match, in conjunction with a weighting.
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FIGURE 4.4: Quality Scoring in the Intelligent Geocoding Model

The importance of interdependence is shown by how the weighting ac-
counts for this, e.g. it is more important that street name agree with
locality than with street type. This importance is also included at the whole
address level, with a weighting available indicating the importance of each
element type to the overall score. This reflects the idea that ultimately
locality is a more important indicator of a match than street type is. This
quality scoring approach of IntelliGeoLocator also ties in to the correction
philosophy it uses. The approach provides a finer granularity in terms of
understanding the problem and helps to find potential solutions. It is also a
gateway to a semantic correction (e.g. knowing that two address elements
both exist but do not spatially agree may indicate the neighbouring locality
was intended, or some other semantic cause). The concept of not treating
the elements in isolation ties to the functionality in IntelliGeoLocator of
providing equivalent complementary elements of suggestions, which can
mean introducing element values not previously considered.

Approach of IntelliGeoLocator to matching is that even if the input query
is incorrect, the user had a particular address in mind and that there is
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a finite number of reasons why they made a mistake (or that the address
they had in mind defied convention), and that a solution can be found.

Going beyond this confidence score would be the ability to explain what the
geocoder did to arrive at its conclusions and justify why it did this, in a
way the user can understand. The user could stipulate whether they want
to see this information or not. This provides another reason to use a rule-
based system in the geocoder, as these systems can (inherently) provide the
steps followed to reach a conclusion.

IntelliGeoLocator provides the following during operation:

• Calculates a score for the original submitted address (which provides
the user with an initial idea of the quality of their input as a
benchmark)

• Accounts for reduced spatial resolution in the resulting suggestions
(relative to the original query). e.g. if the resolution of the original
query was at the street level, but the result only matched to the
locality level.

• Accounts for incorrect, individual element values when calculating a
score (such as with the initial query)

• Uses a weighting system so different address elements can have
varying importance in their contribution to the score

• The system has been designed to allow the weightings to be configured
according to the preferences and context of the user; for example the
confidence a user has regarding the individual elements they have
submitted.

There is an event named StatusRequired, which is posted anytime a
status score needs to be recalculated for an element. This event is a regular
event, and has only one plan (CalculateStatus) which is used to handle
it. Regardless of the element type, this plan works the same for all as it
was programmed in a generic way. Calculation of the score is done via the
formula presented in Appendix A.5.

The majority of code in this plan is used to access the needed values from
beliefsets, and the rest performs simple arithmetic (e.g. addition, division
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etc.) to calculate the score. Some code is also used to round the final decimal
value of the score (rounded up). The score is stored in the Values beliefset.

There is a consequence when the status score is updated in the beliefset,
and is different from its previous value (i.e. its score has decreased
or increased) as the beliefset Values posts the event RevisedStatus

which in turn is handled by the plan SendRevision, which retrieves the
complementary elements for the element with the updated score, and then
sends a message to the respective agents with the new status score, and
identifying information for the element.

The event is launched from the beliefset via a beliefset callback. At the time
it runs, both the tuple that is being changed, as well as the new tuple are
both available, which means comparisons can be done on both tuples. After
comparing the two status scores and finding they are not equal to each
other, the RevisedStatus event is posted via a beliefset posting method.
The calculated score value is then written back to a beliefset (the Values
beliefset).

4.3.4 Agreement of Complements

To determine whether elements agree, the situation is looked at from the
point of view that each element needs to be checked against both of its
complementary elements. Because of this, each plan available to handle
this goal operates by comparing two specific element types. For example,
the StateLocality plan checks the existence between the state and the
postcode; the PostcodeLocality plan checks agreement between the
postcode and locality elements. Figure 4.5 shows a selection of these plans
(some are not shown).
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FIGURE 4.5: Determining Agreement Between Complementary Elements

For a given address query, StateLocality and PostcodeLocality

would not both be used, as only one pair of elements can be the comple-
mentary pair. The actual code to do the check is a single SQL statement
which uses the local and remote G-NAF, Australia Post and WA State data.
For address elements such as house number and unit number, this is the
first goal to test its validity (as these elements do not use the existence
goal); the plan for evaluating these elements are the same as for any other
elements. The plans for spatial agreement are presented in Table 4.2:
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TABLE 4.2: Spatial Agreement Plans

Spatial Agreement Plans

PostcodeStreetName Verifies the spatial agreement of postcode and
street name

StateStreetName Verifies the spatial agreement of state and street
name

StateLocality Verifies the spatial agreement of state and
locality

PostcodeLocality Verifies the spatial agreement of postcode and
locality

StatePostcode Verifies the spatial agreement of state and
postcode

LocalityStreetName Verifies the spatial agreement of locality and
street name

StreetNumberUnitNumber Verifies the spatial agreement of street number
and unit number

StreetNameStreetType Verifies the spatial agreement of street name
and street type

StreetNameStreetNumber Verifies the spatial agreement of street name
and street number

The same SQL statement is used for each combination of elements, because
if one element agrees with the other, then the converse would also be
true (assuming a single dataset is used). More research is required for
the situation where multiple datasets are used and these differ in their
results with regard to spatial agreement. Pairs such as (state, locality) and
(locality, street) can be compared against each other in isolation, however
some other element types are not this simple. To check the agreement for
the street number and unit number it is necessary to use also street name
and street type. The results of this processing is written to beliefsets.
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4.3.5 Suggestions

Each element type has its own plan to coordinate the creation of element
suggestions. In the design, each of these plans then post another goal (a
sub-goal of the Suggestions goal) which in turn is handled by several
plans, each plan corresponding to a suggestion technique (e.g. Soundex,
Levenshtein, knowledge base, first order neighbours). In implementation,
the use of a sub-goal has been skipped and instead the plan calls the
suggestion techniques directly. This has not led to any decrease in
functionality, and was done to save time and sufficiently shows proof of
concept.

Each plan calls the techniques, using the element value as input, and puts
the suggestions into an array. After all the suggestion classes have been
used and the array is completely populated, the array is searched and
any repeated suggestion values are eliminated. Although some techniques
require only the element value itself, others require additional information
such as a state or locality. For example, the Levenshtein technique (for
finding street name suggestions) requires that a locality also be supplied.
In some cases too, the suggestions from other element types are used as the
additional information necessary to find suggestions for a given element
type. An example of this is using the Levenshtein technique to find
suggestions for street name - if the original locality element submitted in
the address query does not exist, then there is no valid locality to use; to
overcome this the suggestions of the locality elements (created in a different
agent) are fed back to the street agent to provide the locality search space
required for that technique. The benefit of this is that in some cases, an
otherwise missing element is given a value.

For the Soundex and Levenshtein techniques, classes were written in
Java, by Shyllon et al. (2007) which use the commonly available Soundex
and Levenshtein algorithms. These algorithms were used in conjunction
with the G-NAF database. For finding first order neighbours, a custom
class consulted the G-NAF neighbours table. With the list of suggestions
completed, the array is sent to the matching agent, via the message event
SuggestionsForMatching. A regular event is also posted which contains
the suggestion list and is the ultimate catalyst for EquivalentComple-
ments being posted. The suggestions plans can be seen in Table 4.3:
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TABLE 4.3: Suggestions Plans

Suggestions Plans

StateSuggestions Finds potential replacement values for state
PostcodeSuggestions Finds potential replacement values for post-

code
LocalitySuggestions Finds potential replacement values for locality
StreetSuggestions Finds potential replacement values for street

name
StreetTypeSuggestions Finds potential replacement values for street

type
StreetNumberSuggestions Finds potential replacement values for street

number
UnitNumberSuggestions Finds potential replacement values for unit

number

Most of these plans are quite similar, although the techniques used to find
suggestions for some element types do not work for other element types.
For example the techniques of Soundex and Levenshtein work for locality
and street names, but they do not work for street number suggestions. In
the prototype, there are suggestions offered for locality and street name.
Ideas for providing suggestions for street number and unit number would
include providing a list of all the available numbers, or those that similar
in terms of the digits.

The LocalitySuggestions and StreetSuggestions both use the Sug-
gestions class, which use the traditional correction techniques in addition
to the knowledge base. The results of these techniques are merged,
any redundancies are removed and these are the suggestions. For the
locality suggestions, the soundex, geographic proximity and knowledge
base techniques are used, while for street name suggestions the Soundex
and Levenshtein techniques are used. Once the plan has determined the
suggestions, it posts a goal to find the adjacents for each suggestion. These
adjacents are then sent to the matching agent. In the particular case of the
LocalitySuggestions plan, it also sends the BuildSuggestionsGoal

event to the street agent to initiate its building of suggestions (the street
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agent utilizes the reduced search space provided by the LocalityAgent).

4.3.6 Knowledge Base

A custom Java class was created to serve as a “black box” for use by the
agent. This class is named KnowledgeBase and contains the methods
open(), save(), addAlias(), and queryAlias(). The KnowledgeBase
uses the Jess API, and specifically creates a Rete engine which is the
primary Jess object and the engine in which the rule based system runs;
using the Rete object facts and rules can be added to the engine and
queries can be run. Manipulating the Rete engine with its methods is the
programmatic equivalent to using Jess at the command line.

When the Rete object is first created, a text file is read in which contains
Jess specific commands for initialization of the Jess environment. The
commands include the templates, rules and queries created at design time;
these are loaded in when the engine is initialized so they are then ready to
use. The three main components used for knowledge base implementation
(fact templates, rule definitions and fact queries) can be seen in Tables 4.4,
4.5 and 4.6.

The facts of type locality-alias are persistently stored in a separate file;
these are aliases stored from previous geocoding sessions. The put-locality-
alias is the fact type which is asserted using the values supplied from the
agent, this is why the template includes slots for the queryID and subID.
These ID values ensure all activity inside the rule engine is correctly
tracked and all processing remains correct. The street-alias fact template is
identical to locality alias, except in the address element type it represents.
The implementation for rule based reconstruction follows the example
shown in Appendix A.3.
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TABLE 4.4: Fact Templates

Fact Templates

locality-alias A locality alias already stored in the KB
street-alias A street alias already stored in the KB
put-locality-alias Incorrect locality value used to search
put-street-alias Incorrect street value used to search
found-locality-alias Asserted when locality alias found
found-street-alias Asserted when street alias found
potential-element An address element asserted by the ElementA-

gent
agreement Indicates that two address elements spatially

agree
postcode-state-match Indicates that the given postcode and state

spatially agree
locality-state-match Indicates that the given locality and state

spatially agree
street-state-match Indicates that the given street and state

spatially agree
locality-postcode-match Indicates that the given locality and postcode

spatially agree
street-postcode-match Indicates that the given street and postcode

spatially agree
street-locality-match Indicates that the given street and locality

spatially agree
street-sttype-match Indicates that the given street and street type

spatially agree
address-match Asserted when an address (minimum one pair)

is matched

The rules which are loaded include locality-alias-match and street-alias-
match. Using locality as an example, the rule compares the locality-alias
and put-locality-alias, checking if the values in the alias-name and state
slots of the former match with those of the latter. If they do, then the
found-locality-alias fact is asserted; this fact also includes a queryID and
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subID so results can be tracked within the knowledge base. Also loaded
from the text file are two custom functions, named query-locality-alias and
query-street-alias which look for facts of type found-locality-alias, with the
supplied queryID and subID. These functions can also be called using the
Jess API, and the results can be taken from Jess working memory and
retrieved for use in the KnowledgeBase object, which can then return
these to the agent.

TABLE 4.5: Rules in the Knowledge Base

Rule Definitions
locality-alias-match An alias has been found for the inputted locality
street-alias-match An alias has been found for the inputted street
postcode-state Asserts the postcode-state-match fact
locality-state Asserts the locality-state-match fact
street-state Asserts the street-state-match fact
locality-postcode Asserts the locality-postcode-match fact
street-postcode Asserts the street-postcode-match fact
street-locality Asserts the street-locality-match fact
street-sttype Asserts the street-sttype-match fact
match-4-1 State, postcode locality, street and street type

match
match-3-1 State, postcode, locality and street match
match-3-2 State, postcode, street and street type match
match-3-3 State, locality, street and street type match
match-3-4 Postcode, locality, street and street type match
match-2-1 State, street and street type match
match-2-2 State, postcode and locality match
match-2-3 State, locality and street name match
match-2-4 Postcode, street and street type match
match-2-5 Locality, street and street type match
match-1-1 State and postcode match
match-1-2 State and locality match
match-1-3 State and street name match
match-1-4 Postcode and locality
match-1-5 Postcode and street name
match-1-6 Locality and street name
match-1-7 Street name and street type

Most of the methods in the KnowledgeBase object are straightforward;
open() is used to read the facts from file and load these into the knowledge
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base. Similar to this, the save() method writes any locality-alias facts to
file. The addAlias() method has parameters including type, aliasName,
realName and stateName; this is all the information needed to add a new
alias. When saving the facts, Jess uses a method to write to plain text; if
needed, Jess can also write to XML (facts and rules) although this is not
used in this research.

From the point of view of the agent, the parameters used with the
queryAlias() include queryID, subID, type, alias, and state. The param-
eter type is used as a switch to specify whether a locality or street name
element type is the subject of the query. The alias parameter is the term (a
string) being queried, and the state is the Australian state being searched
within. Results are returned to the agents a Jess QueryResult object,
which is similar to a ResultSet object in Java database programming.

TABLE 4.6: Fact Queries

Fact Queries

query-locality-alias Checks if any found-locality-alias facts have
been asserted

query-street-alias Checks if any found-street-alias facts have
been asserted

find-matches-all Finds all matches of any quality (number of pairs)
find-matches-level-4 Finds matches comprised of four pairs
find-matches-level-3 Finds matches comprised of three pairs
find-matches-level-2 Finds matches comprised of two pairs
find-matches-level-1 Finds matches comprised of one pair

4.3.7 Equivalent Complements

The plans used for determining the equivalent complements are dependent
on what the complementary elements are. Because of this, there are
several plans which cater for each possibility. For example, there are
the plans LocalityEquivalents State and LocalityEquivalents -

Postcode which find the equivalent state or equivalent postcode for a
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locality, depending on which is the complementary element for locality.
Several Java classes were written which interrogate the state data and
postcode data to find the equivalent complementary element for a given
element. The classes return an array, in case there are multiple results.

The resulting arrays are sent to the matching agent to be used in the
reconstruction process. The equivalent elements plans can be seen in Table
4.7. These plans all have the same purpose, but differ in the address
elements being used for each. Their purpose is to find the equivalent
element for each of the suggestions previously found by the geocoder.

TABLE 4.7: Equivalent Element Plans

Equivalent Element Plans

StateEquivalents Not used
PostcodeEquivalents Find the state equivalent for a

given postcode
LocalityEquivalents State Find the state equivalent for a

given locality
LocalityEquivalents Postcode Find the postcode equivalent for a

given locality
StreetNameEquivalents StreetType Find the street type equivalent for

a given street name
StreetNameEquivalents Locality Find the locality equivalent for a

given street name
StreetNameEquivalents Postcode Find the postcode equivalent for a

given street name
StreetNameEquivalents State Find the state equivalent for a

given street name
StreetNumberEquivalents Not used

For a given suggestion, the equivalent element is always the first available
element of a larger geographic size. If a given value has several comple-
mentary elements (e.g. a locality is in several postcodes) then all of these
are retained and used. To implement this, a call is made to the reference
database to select the values (the equivalent element) based on the query.
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At runtime, the equivalent element will be based on which complementary
elements that are present. For this reason, flexibility in the code is
needed to cater for this situation. For example, the locality element could
have to find equivalent elements of either postcode or state, depending
on which is available; the agent knows which complementary element
is available based on previous messaging with other agents. There
are several plans, and these cater for different cases amongst element
type pairs. An example of this is having both LocalityAdjacents State
and LocalityAdjacents Postcode; these plans are also cases where both
relevant() and context() are used for plan selection.

Once the equivalent elements have been found, the values are placed in an
array and sent (via a message) to the MatchingAgent.

The relevant() method is the first tier of filtering whether the plan
should be selected, and if the plan makes it past this first tier then the
relevant() method is used. An important consideration is also that
the relevant() method is static, while the context() method is not.
This means the relevant() method is useful for selecting plans based on
element geography types (which are strings) or any other event methods
that included in the event “envelope”. The context() provides the critical
link to the beliefsets, which because it is not static can query the beliefset
in realtime and compare the result cursor to the logical conditions defined
in the context() header itself. This means context() is useful for
checking whether (for example) an element already “exists” by querying
the InternalValues beliefset. The context() method can also be used
for static tests, it does not have to be used for testing beliefsets. This
means that when finding the equivalent complements for an element,
the appropriate plan be found by first checking (using relevant())
which element type is being is being processed, and then secondly (using
context()) the element type which it has as its complementary element.

4.4 Matching

As seen in Figure 4.6, the matching agent receives address elements from
up to three different message events, including PerfectsForMatching,
EquivalentsForMatching and SuggestionsForMatching. Elements
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are only sent via the PerfectsForMatching if the element both exists
and agrees spatially with its complementary elements.

FIGURE 4.6: Agent Matching Process

The plans PerfectsForMatching, EquivalentsForMatching and
SuggestionsForMatching assert their respective arrays into the Jess
engine object, where each element within the array is a unique fact.
The Jess engine instance was created when the original IntelliGeoLocator
executable was run, and this object is passed to the matching agent when it
is instantiated. To assert facts “inside” the Jess engine, the executeCom-
mand() method of the Rete object is called and the parameters of this
method include the Jess command assert, which places a fact in working
memory. The values for the slots in the assert command are taken from the
elements contained in the message arrays.

As more facts are asserted into the Rete engine, the run command is used
to ensure all the required rules are fired. As these rules fire, new facts
are asserted which represent the matches found. To access the solution
facts, a query is used inside Jess to select all the facts and return these
as a QueryResult object. Parameters to the query include what quality
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level is desired. By running the query and putting the results into a
QueryResult object, it means the values contained in the facts can be
accessed in “regular Java”, outside the Rete object itself. The QueryResult
object is similar in use and concept to a ResultSet object used in Java to
query a database. This QueryResult is then iterated through, and the
various elements from the address are put into a single string and an event
is posted (FindGeocode) begins the geocoding process. The final category
of plans are the Matching plans, seen in Table 4.8.

TABLE 4.8: Matching Plans

Matching Plans

ProcessElement Adds new element to matching beliefs and posts Find-

Geocode event
Geocode Queries web service with address
UseAdjacents Asserts complementary elements and executes rule based

sysem
UseSuggestions Asserts suggestions into the rule based system

The ProcessElement plan is used every time a new address element enters
the geocoding system. When the UserAgent sends a new geocode query
to the ElementAents, the ElementAgent also sends an immediate copy
to the MatchingAgent. With a new address, the elements will reach the
MatchingAgent at slightly different times, but the ProcessElement plan
will aggregate this as they come in; this is how the geocoder derives its
dynamic geocoding refinement of the raw elements in a new query. It
performs the geocoding by posting the FindGeocode event. This concept
of different pieces of information arriving at different times, and refining
results is well suited to the idea of fusing agents for interactive geocoding
sessions with users.

The Geocode plan is critical, it actually performs the query to find the
coordinates. From an implementation perspective, it is sent all the address
elements it needs inside the FindGeocode event. It tests each of these
address elements to see which have values and builds a string using them.
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A custom class named QueryEngine was created to work with the Java web
service library provided by LisaSoft. This custom class is for convenience,
and sets settings such as username and password, and other parameters
such as the country. An instantiation of the custom class is created and the
address string is passed to it. The web service query is invoked, and the
resulting latitude and longitude is retrieved from the object.

UseSuggestions is more simple in terms of code than UseAdjacents, as it
just asserts each of the values in its array. In addition to asserting it values
also, the UseAdjacents plan also run the rule based engine; this is what
finds the matches.

A query has been developed to query the rule engine, and retrieve any
results from the matching. This particular query (named “find-matches-
all”) is used to find any results; there are other queries written to retrieve
only those results with a specified number of matching pairs; this is
another form of quality measure. The UseAdjacents plan also posts
the FindGeocode event, which in turn is handled by the Geocode plan
mentioned above.

Also within this plan is the code to write new address elements to the
knowledge base, for both street names and locality names. If the geocoder
has an address element that is originally incorrect, and then finds a single,
final solution, the geocoder writes the “incorrect / correct” pair to the
knowledge base.

The other important assertion it writes to the knowledge base is that the
suggestions and adjacents “agree”. There is a specific fact type to represent
this.

4.5 Geocoding

The plan which handles the geocoding is named simply geocode, and
this uses a Java class called Address, which stores the element values
in properties and includes a method named .geocode() to access a
web service provided by LisaSoft, and then returns the coordinates (via
.getLon() and .getLat()). LisaSoft is one of the industry sponsors
involved in the geocoding prototype. The service is XML based, and result
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codes are provided in the web service, provides an indication of result
resolution. For example, it specifies whether the match was at the house,
street, locality, postcode or state level.

The authoritative dataset used to get coordinates is the Geocoded National
Address File (G-NAF) developed by PSMA Australia (Richards and Paull,
2003); for the prototype a web service was used which accessed the dataset
stored at another location (a partner company, LisaSoft). To use the web
service, first a URL was built using the address of the geocoding engine
along with several parameters attached to the end of the address.

The parameters included engine, countryCode, freeFormAddress, flatNum-
ber, levelNumber, buildingName, number, streetName, streetType, locality,
state, postalCode, and geocode. Not every parameter was used, the most
important were the element types; the more element types included in the
query then the better the resolution of the result (assuming the elements
were correct).

Each agent has its own local connection to the Cloudscape database
containing LandGate and Australia Post data. Cloudscape is a pure Java
relational database that can be embedded in projects with an extremely
small footprint. This database is opened when the geocoder is first run and
accessed as needed by the agents.

4.6 Agent Based Approach

Based on experiences from the development of the prototype, agent-based
design seems like an effective way to design software. To measure
this effectiveness, a paper by Jennings (2001) was used, in which the
author suggests that although data is simply not available to show the
quantitative benefits of agent design, there are qualitative justifications.
To argue the affirmative, Jennings (2001) states it is essential to show
that (i) “agent-oriented decompositions are an effective way of partitioning
the problem space of a complex system” (p. 37), (ii) “the key abstractions
of the agent-oriented mindset are a natural means of modelling complex
systems” (p. 37), and (iii) “the agent-oriented philosophy for modelling and
managing organizational relationships is appropriate for dealing with the
dependencies and interactions that exist in complex systems” (p. 37).
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For the decomposition, Jennings (2001) summarizes that “the natural
way to modularize a complex system is in terms of multiple autonomous
components that can act and interact in flexible ways in order to achieve
their set objectives” (p. 38).

• The components have been modularized in terms of the objectives
they achieve. In the prototype this is seen from each agent having
a different role according to their geographic type; there is also the
UserAgent and MatchingAgent which have different objectives too.

• Complex systems have multiple loci of control. This is true for Intel-
liGeoLocator, and especially ties in with the idea that the prototype
try to avoid the linear geocoding process; in the prototype, control is
distributed amongst all the agents. In order to achieve this, each agent
is active and autonomous.

• Interaction is essential and with very complex systems it is impossible
to know ahead of time all the interactions that will be needed; it
is beneficial then that the intelligent geocoding model is extensible
meaning additional beliefs and plans can be built into each agent.
Jennings (2006) indicates this is due to unpredictable times, reasons
and the components themselves. To handle this, the agents require
an ability to make decisions at runtime; and although an agent may
not expect a particular type of message they can determine what to
do when required. Although the prototype is not this complex, it did
assist design by not having to explicitly define the timings and order
of messaging. It was shown that the quality measures involve many
and varied sequences of messaging, where new statuses and scores are
shared between agents; none of the interactions between agents were
specified at design time, only the messages as far as each agent was
concerned. This approach of runtime decision making about messages
has the benefits of reducing coupling and the burden of determining
control relationships at design time.

With regard to the abstraction, Jennings (2001) suggests that it is desirable
to minimize the difference between the problem being solved and the
paradigm of the tool used to solve it - and that subsystems are well suited
to being modelled by agents because “they involve a number of constituent
components that act and interact according to their role within the larger
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enterprise” (p. 38). Other benefits for abstraction include (i) High-level
social interactions between subsystems and components, (ii) Viewed from
different level of abstraction, (iii) Changing webs of relationships, (iv) Can
represent collectives, and (v) Agents suited to the cooperation, coordination
and negotiation found in systems.

When it comes to managing organizational relationships, the benefits
of using the agent design approach include (i) The ability to flexibly
form, maintain and disband organizations (Jennings, 2001), and (ii) The
ability for “individual agents or organizational groupings can be developed
in relative isolation and then added into the system in an incremental
manner”.

An interesting aspect, and a benefit, of using the agent programming
paradigm was that the focus is on building the agent and the messages
it can send and receive; the actual timings of when to send messages and
exactly what will happen was not explicitly defined. In this way, the system
is more than the sum of its parts - when the system is run there is no way
of telling exactly what messages will occur in what order, but in the end
the system arrives at the answer via messages. One of the core outcomes of
the research has been that functional geocoder can be built using an agent
paradigm, demonstrated by the prototype running from start to finish. As
part of this, it was shown that the key agent constructs of goals, plans,
beliefsets, messages and events can all serve a purpose in agent based
geocoding.

Beliefsets provided time-sensitive structure, forces processing to be up-
to-date, persistence allowed for coordination of multiple geocode queries
through system, efficient querying, beliefset callbacks allowed for mecha-
nism of performing operations when adding, modifying and deleting tuples,
provided control by storing the status of processing, weights, values used
for distributed processing, “empty” structures populated as processing
continued, provide the storage needed for the transient nature of event-
driven operation.

Factors that were dynamically monitored included whether the immediate
address element was “present” and “existed”, along with it’s spatial agree-
ment with the elements above and below it, also monitored was the rating
value and element type of the elements above and below; this was in flux in
real-time. Because the agents automatically notify each other of updates,
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it is almost a “set once and forget” situation where as a programmer the
algorithm is not completely set, the agent will communicate and modify as
needed.

4.7 Conclusions

From a programming perspective, JACK and JESS integrated together in
a straightforward way. It was also intriguing to watch the overall system
in operation. In particular watching the interactions/messages between
agents was interesting because of the self-determining sequencing and the
fact that messaging was different for each address tested.

Using the same “base” agent with minor tweaks for the role of the agent
lends itself to extensibility. Tracking is so essential because agents are
their own entities with protected memories, and they need any data for
what they are expected to decide on (via messaging) there is a lot of
information being sent throughout the geocoder.

It was determined that there is such a close relationship between goals
and beliefs because beliefs are the measure for goal success. The beliefset
was a useful data structure for geocoding, and insights discovered during
development. An example of this was not to iterate through beliefsets,
instead they change from instant to instant and acting on them should
not involve time (i.e. iteration) but rather reaction based on triggers.
It is the temporal aspect of beliefsets which set them apart from other
data structures; the beliefset is not a common data structure in regular
programming languages, the closest would be an in-memory embedded
database.

Goals mean the steps can be revisited only as needed, this is flexible and
means the developer can have many possible courses of action without hav-
ing to worry about how this will affect each other (side-effects, sequence)
as at runtime the agent will decide which to use. The temporal aspect and
time sensitive focus of the whole agent tool makes it suited to real-time
queries from the Internet. In addition to sending messages is the extra
option of waiting for a response, this is a useful technique as it provides a
balance between autonomy and social behaviour.
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Broadcasting/sending updates is more efficient than other agents con-
stantly asking for them. The scoring system is useful because it simul-
taneously considers the score of the address and its elements. Because an
element’s score is calculated in its own status and that of its complemen-
tary elements, a ripple effect between elements occurs however messaging
is regulated (self-regulated) by agents to ensure there are no artificial/false
frenzies where scores increase for no reason.

Spatial agreement between elements in combination with tracking/multiple
iterations means other possible addresses can be pursued and at least see
if one turns out to be decidedly better. Having a dedicated sub-goal for
suggestions means there is a clear place to insert new suggestion/correction
techniques, and it is here that correction techniques which take spatial
cognition/perception of the user into account (now with semantic and
geographic category, more in the future with further research). Correction
techniques are only applied to the appropriate element types, and this is
use of context in processing. The relevant() and context() methods in a
plan provide a significant form of context for the agents. Because rule
based systems have no fixed algorithm, it is suited to pulling in data
from different agents and then aggregating it. The address and element
relationship is analogous to the rule and fact relationship, both have parts
and a whole which is why it is so suited.
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CHAPTER 5

RESULTS AND DISCUSSION

THE results include the presentation of how the prototype behaved
when it processed a range of real addresses, the robustness of the

prototype when geocoding a range of sample addresses, and a summary
of the functionality which emerged from the prototype. These results
are obtained using the testing methodology in Section 3.3. Results
indicate that a quality score was used successfully when implemented
when using an agent oriented approach, real-time updating of status
scores was successful and the agent approach does provide a means for
processing many queries simultaneously in a parallel and distributed way.
Address testing shows there are no significant shortfalls by using the agent
approach. Results also show that there is novel behavior in the prototype,
which is underpinned by context, semantics, control and knowledge.

5.1 Evaluation of Intelligent Geocoder Behavior

This section focuses on observations made about the prototype as real
data was being processed. Some of the results were unexpected (such as
the behavior of agents when finding the appropriate quality score) while
others confirmed what had been expected (success of real-time geocodes
and parallel processing).

5.1.1 Geocode Match Quality

The scoring algorithm as a basis of geocoding quality was tested using sev-
eral types of addresses (of varying correctness), however for the purposes of
illustration and explanation in this section, an address known to eventually
be scored at 1.0 (i.e. fully resolved and completely correct) was used. This
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was to highlight the number of steps and communication required to reach
this score. An interesting finding was that for addresses which do not reach
1.0 (i.e. their quality is lower), the individual agents (and subsequently the
overall score) reach a maximum score between 0 and 1. This is interesting
because there is no overall control mechanism telling the scoring process to
stop, instead it is the consensus of agents (based on messaging and updates
to individual agent scores) which controls when the process stops; more
is mentioned about this later in this section. The results are presented
in detail because the scoring and storage of the scores in beliefsets is a
fundamental aspect of agent control for IntelliGeoLocator.

The formula for calculating a match score (see Sections 4.3.3 and A.5) has
some conditions with it such that when calculating a score when elements
do not exist (such as during processing before the final address solution is
found), those elements that do not exist are not used in the calculation.
This is because when calculating a score during processing, the elements
which do not exist should not have any contribution. Each element type
has its initial score calculated “internally”, in the sense that no other data
is used other than data known about itself; this includes whether or not
the element is present and whether or not it exists. This is demonstrated
using the same example address from the section on iterative processing.
The abbreviations used in the Tables 5.2 through to 5.12 are listed in Table
5.1.

TABLE 5.1: Abbreviations Used in Score Tracing Examples

T Type
V Value
S Address Element Score
P Present
E Exist

AU Agree with Upper Complementary Element
AL Agree with Lower Complementary Element
WP Weight assigned to element being present
WE Weight assigned to element existing
WU Weight assigned to Upper Complementary Element
SU Current Score of Upper Complementary Element
WL Weight assigned to Lower Complementary Element
SL Current Score of Lower Complementary Element
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Table 5.2 shows the initial scores for the elements based on whether the
elements are present and exist; at this point of calculation, the agents are
not aware of information about the other elements. Even when the various
elements are sent the information (in particular the score and value of its
complementary elements), it does not affect the element scores because the
elements do not spatially agree.

TABLE 5.2: Initial Scores for Address Elements

T V S P E AU AL WP WE WU SU WL SL
state WA 0.60 Y Y n/a N 1 2 n/a n/a 2 0
locality shentin park 0.13 Y N N N 1 2 3 0 2 0
st name glosster 0.14 Y N N N 1 2 3 0 1 0
st type st 0.43 Y Y N n/a 1 2 4 0 n/a n/a

Table 5.3 shows that when an agent calculates the initial score, only the
criteria of whether the address element is present and exists is used, i.e.
complementary elements do not contribute to the score at that point of
processing.

TABLE 5.3: Scores of Complementary Elements have No Effect

T V S P E AU AL WP WE WU SU WL SL
state WA 0.60 Y Y n/a N 1 2 n/a n/a 2 0.13
locality shentin park 0.13 Y N N N 1 2 3 0 2 0.14
st name glosster 0.14 Y N N N 1 2 3 0 1 0.43
st type st 0.43 Y Y N n/a 1 2 4 0 n/a n/a

In Tables 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9 it is shown how the scores of the
elements increase as a result of other agents updating their scores and
sending these updates as messages. Table 5.4 shows the state spatially
agreeing with the locality (row 2, column 7 there is a “Y”), the locality
existing, and the locality spatially agreeing with the state; each of these
criteria contribute to the score of the element. Note that only a few changes
are shown in each table to indicate the transitions that are passed through.
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TABLE 5.4: Spatial Agreement and Existence Affect Scoring

T V S P E AU AL WP WE WU SU WL SL
state WA 0.65 Y Y n/a Y 1 2 n/a n/a 2 0.13
locality shenton park 0.60 Y Y Y N 1 2 3 0.60 2 0.14
st name glosster 0.14 Y N N N 1 2 3 0.13 1 0.43
st type st 0.43 Y Y N n/a 1 2 4 0.14 n/a n/a

Table 5.5 shows how once an agent updates the score for one of its own
elements, it sends this to the other relevant agents. In this case, the state
agent incorporates the updated locality score and in turn updates its own
score.

TABLE 5.5: State Store Increases based on Locality Increase

T V S P E AU AL WP WE WU SU WL SL
state WA 0.84 Y Y n/a Y 1 2 n/a n/a 2 0.6
locality shenton park 0.60 Y Y Y N 1 2 3 0.60 2 0.14
st name glosster 0.14 Y N N N 1 2 3 0.13 1 0.43
st type st 0.43 Y Y N n/a 1 2 4 0.14 n/a n/a

In the next several tables, the only changes which occur are the state
agent and locality agent sending updated scores to each other, and in turn
updating their own scores. Table 5.6 shows the locality score increasing as
a result of the current score of its upper complementary element increasing
its score. Interestingly, the increase in locality score from Table 5.6 plays
a role in Table 5.7 where it is the catalyst for an increase in score for
the “state” element. This is because locality is the lower complementary
element of the state, and this demonstrates the ripple effect of how an
increase in one element affects others. This is why the message-based
scoring design ensures that agents do not enter a “race condition” where
they continue to update the scores of other agents continuously. Table
5.8 shows that the locality score increased as a result of the state score
increasing (seen in Table 5.7) however the state score does not subsequently
increase (seen in Table 5.9). Avoiding this race condition is made possible
by the agents knowing whether they are the “only two” involved in the
increments; this is achieved by messaging and storing information in
beliefsets.
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TABLE 5.6: An Increase in Locality Score

T V S P E AU AL WP WE WU SU WL SL
state WA 0.84 Y Y n/a Y 1 2 n/a n/a 2 0.6
locality shenton park 0.69 Y Y Y N 1 2 3 0.84 2 0.14
st name glosster 0.14 Y N N N 1 2 3 0.13 1 0.43
st type st 0.43 Y Y N n/a 1 2 4 0.14 n/a n/a

TABLE 5.7: An Increase in State Score

T V S P E AU AL WP WE WU SU WL SL
state WA 0.88 Y Y n/a Y 1 2 n/a n/a 2 0.69
locality shenton park 0.69 Y Y Y N 1 2 3 0.84 2 0.14
st name glosster 0.14 Y N N N 1 2 3 0.13 1 0.43
st type st 0.43 Y Y N n/a 1 2 4 0.14 n/a n/a

TABLE 5.8: An Increase in Locality Score

T V S P E AU AL WP WE WU SU WL SL
state WA 0.88 Y Y n/a Y 1 2 n/a n/a 2 0.69
locality shenton park 0.71 Y Y Y N 1 2 3 0.88 2 0.14
st name glosster 0.14 Y N N N 1 2 3 0.13 1 0.43
st type st 0.43 Y Y N n/a 1 2 4 0.14 n/a n/a

TABLE 5.9: An Increase in Locality Score did not Increase State Score

T V S P E AU AL WP WE WU SU WL SL
state WA 0.88 Y Y n/a Y 1 2 n/a n/a 2 0.71
locality shenton park 0.71 Y Y Y N 1 2 3 0.88 2 0.14
st name glosster 0.14 Y N N N 1 2 3 0.13 1 0.43
st type st 0.43 Y Y N n/a 1 2 4 0.14 n/a n/a

It should be noted that in Tables 5.6 to 5.9, the affect of the street name and
street type have not been shown, so that the interaction between just two
agents can be understood. In particular, a behavior has emerged where
although the agents are contributing to each other’s score, the score for
each element reaches a limit after which no further change occurs. In this
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example, the limit for the state is 0.88, and for the locality it is 0.71. This
can be seen in Figure 5.1.
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FIGURE 5.1: Locality Element Score Change Reaching a Limit

This means that although the state agent and locality agent are con-
tributing to the score of each other, the score does not become useless
by simply increasing every time to 1.0 regardless. Instead the algorithm
“sorts itself out” by reducing the increment in score each time. The results
indicate that there is an initial increase in score, which can be attributed
to spatial agreement occurring and the incorporation of the score of a
complementary element in its own score calculation. The rapid decrease in
the rate of scores sent between agents can be attributed to division being
used in the formula for element scores. The use of division in the formula
actually seems to be an essential ingredient, if the formula had used just
addition for example, the agents would not have come to an organic stop
short of 1.0. The uniqueness of this algorithm is that the formula itself,
not programming code, is the main reason behind the agents finding the
appropriate score and not incrementing beyond this. It is also important
to remember that updates of scores are sent from an agent only to its
complementary elements; this means that although a change at one “end”
of an address can ripple to the other (e.g. state through to street type), it
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limits the direct increasing of an element score by too many agents.

Figure 5.2 shows the complete graph of which Figure 5.1 is a part. Figures
5.2 and 5.1 show the different scores which the locality element has during
its processing. The purpose of including Figure 5.2 is to show how the
score moves through phases, and how the steepness is tied to significant
events (e.g. existing, or spatial agreement with another element); the
flatter segments of the graph correspond to where the score was “tweaked”
(increased slightly) due to a slight increase in another element. Figure 5.3
shows the scores of the locality element at every point of processing where
it or another element updated its score. The purpose of including these two
types of graphs is to (i) focus on the scores of the individual element and the
transitions between these (Figure 5.2), and (ii) focus on the element scores
over time, where “time” is the total number of increments that occurred
in the system (Figure 5.3). When these two types of graphs look similar,
it means that the number of updates (i.e. number of increments) to the
element’s own individual score was similar to the number of updates in
the overall system; this means the element was a major contributor to the
overall address score.
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FIGURE 5.2: Complete Graph of Changes in Locality Element Score
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FIGURE 5.3: All Values in Locality Scoring

Figures 5.4 and 5.5 show that the change in score for the “state” element is
steady, and occurs mostly uniformly across the life of the query; this occurs
from a combination of the state element (i) having only one complementary
element, and (ii) weighting its own presence and existence the same as
spatially agreeing with the locality. The weightings used for the example
are shown in Table 5.10, where the → arrow points to the element being
weighted. For example, “State → Locality” means that state uses a
weighting of x for locality when calculating the state score. The larger
the weighting, the more important the element is in the calculation. For
example, when calculating the score for locality, a weighting of 3 is used for
state and a weighting of 2 is used for street name; this means agreement
with state has more influence than street name. The rationale for this
was that within a state in Australia, the locality names would be unique,
and that there could be multiple streets with the same name in the same
locality. These weightings can be configured as needed.
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TABLE 5.10: Weightings Used for the Scoring Example

State→ Locality 2
State← Locality 3
Locality→ Street Name 2
Locality← Street Name 3
Street Name→ Street Type 1
Street Name← Street Type 4

Note that every element type has a weighting of 1 for being “present”, and
a weighting of 2 for “existing”. These weightings reflect that an element
existing (i.e. it is found in a reference dataset) is much more important
than the element simply being present in the geocode query (being present
says nothing about whether the element is correct).
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FIGURE 5.4: Changes in State Score
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FIGURE 5.5: All Values in State Scoring

It can be seen from Figures 5.6, 5.7, 5.8 and 5.9 that the street name and
street type elements each have a steep increase in their scores, and this is
related to their reliance (in terms of weighting) to the locality. Specifically
the street name has a weighting of 3 for the locality (i.e. quite important)
and a low weighting of 1 for the street type. The street type element is
heavily reliant on the street name (and indirectly, the locality), as it has
a weighting of 4 for the street name, and this is its only complementary
element.

The weightings are stored in beliefsets, which can be modified at runtime.
This means that with a suitable user interface, the user would be able
to alter these, or an application could alter these as parameters in a web
service. In the future, other factors affecting quality could also be added,
and would flexible in the same way.
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FIGURE 5.6: All Values in Street Name Scoring
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FIGURE 5.7: Changes in Street Name Scoring
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FIGURE 5.8: All Values in Street Type Scoring
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FIGURE 5.9: Changes in Street Type Scoring

Figure 5.10 shows the progress of the overall address score during the
lifetime of the query. There are several definite spikes, and the causes
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of these are shown in Table 5.15 where scores and their contributing scores
are presented. A graphical representation of the message sending between
agents which is the basis for increases in scores as seen in Figure 5.11;
this reinforces the idea that every increment described in Table 5.15 is
performed via messaging.
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FIGURE 5.10: All Values in Address Scoring

During processing, the calculation of element scores and the sending of
these scores to other agents is performed by all the agents concurrently.

The prototype is able to correct address elements during processing, and
can actually branch off into many simultaneous possibilities (discussed
in Section A.2). Reflecting this in the example, Table 5.11 shows what
happens when the value of the locality is changed to the correct value of
“Subiaco” (this is achieved from a geographic proximity correction). The
implications of this is that the locality spatially agrees with the street
name, which increases the locality score slightly (by 0.03), and this in turn
raises the score of the state (by 0.02). The status score of street name
is still quite low, but the real changes occur after this. The increase of
score for street name and its interaction with locality is a major cause for
subsequent increases.
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TABLE 5.11: An Increase in Several Elements

T V S P E AU AL WP WE WU SU WL SL
state WA 0.90 Y Y n/a Y 1 2 n/a n/a 2 0.74
locality subiaco 0.74 Y Y Y N 1 2 3 0.88 2 0.14
st name gloster 0.43 Y N N N 1 2 3 0.71 1 0.43
st type st 0.43 Y Y N n/a 1 2 4 0.14 n/a n/a

The street name agrees with both its upper and lower complementary
elements, and the results of this can be seen in an increase of its score,
which is shown in Table 5.12. The presentation of Table 5.12 is similar to
the beliefset structure used in the agents, and is intended as a reminder
for the reader as what occurred during processing (updating of fields and
these acting as a catalyst for increase in other elements).

TABLE 5.12: An Increase in Street Name Score

T V S P E AU AL WP WE WU SU WL SL
state WA 0.90 Y Y n/a Y 1 2 n/a n/a 2 0.74
locality subiaco 0.74 Y Y Y N 1 2 3 0.88 2 0.14
st name gloster 0.79 Y Y Y Y 1 2 3 0.71 1 0.43
st type st 0.43 Y Y N n/a 1 2 4 0.14 n/a n/a

The remaining changes in score can be seen in Table 5.13; this table shows
that eventually the address elements each reach a score of 1.0 because the
address is fully corrected and each element spatially agrees with the others.

TABLE 5.13: Various Element Scores as Processing Continues

Type Value Score Score Score Score Score
State WA 0.90 0.90 0.96 0.99 1.0
Locality Subiaco 0.74 0.91 0.97 0.98 1.0
Street Name Gloster 0.79 0.88 0.95 0.98 1.0
Strert Type St 0.88 0.93 0.97 0.99 1.0

In addition to the status score (and subsequent indicator of quality)
of individual elements, also included is the status score of the overall
address. During processing (as the overall score is incrementing) because
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the variable m relies on elements spatially agreeing, the overall score
for the address increases when an address element reaches the status of
existing and also spatial agreement. The overall scores for the address in
the example can be seen in Table 5.14, the values 1 to 16 indicate each
of the changes in score of the overall address (i.e. the address score was
calculated 16 times). The values in Table 5.14 are the same values used in
Figure 5.10.

TABLE 5.14: Overall Address Scores

Score Score
1 0.09 9 0.62
2 0.09 10 0.64
3 0.29 11 0.76
4 0.33 12 0.81
5 0.35 13 0.90
6 0.35 14 0.96
7 0.36 15 0.98
8 0.36 16 1.00

The increases in overall score seen in Table 5.14 can be attributed to
several factors, such as elements existing, reaching spatial agreement
and individual elements increasing in their scores. These overall score
increases and factors can be seen in Table 5.15.

TABLE 5.15: Factors in Overall Score Changes

Transition Factors
0.09 to 0.29 Locality exists

Locality agrees with upper
State agrees with lower

0.36 to 0.62 Street name exists
0.64 to 0.76 Street name agrees with upper

Street name agrees with lower
0.81 to 0.90 Street type agrees with upper

The weightings used in determining the overall score can be seen in Table
5.16.
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TABLE 5.16: Weightings used for Overall Score

Element Weighting
State 2
Postcode 4
Locality 3
Street 3
Street Type 1
House number 2
Unit Number 1

Address scoring as shown in this section provide a measure of quality,
including both the score of individual elements and the overall address.
Both scoring techniques recognize that although an element may not exist
now, it may do in the future. This feature has relevance especially to
the levels of completeness category of test addresses, for example where
(i) an element does not exist at all, (ii) it is present in the address but
does not exist, and (iii) where two elements both exist but do not agree
with each other. In these cases, the algorithm for element suggestions and
address reconstruction worked well as often these missing elements could
be “filled in”. By incorporating an element’s complementary elements in
the calculation right from the start, it highlights the importance of not
just considering an element in isolation. By implementing these formulae
in beliefsets, the values can be in constant flux and the calculation be
updated dynamically; it can both increase and decrease depending on what
information comes into the system, which keeps in tune with the concept
of an agent being in a dynamic environment.

The weighting of each address element adds a level of flexibility which
is also useful for providing a quality score which includes some con-
text. However the implementation stores the weightings in instantiated
beliefsets which means that at run time they can be modified without
problem; the implications of this is that the weightings can be adjusted
to suit the context of the user or applications that have put forward the
query. Users could also set weightings according to how confident they are
about the query they have submitted, or in the case of an administrator
their knowledge of a particular geographic area and the mistakes people
commonly make. Examples of this weighting being important are when
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two or more elements may both exist, but may not spatially agree with each
other; the weighting in this case would see the one with the higher rating
being used. Another example is related to the iterative functionality of the
system, and the situation where several suggestions may be available. By
having weightings, these suggestions may in some cases be ranked.

Because the formula for overall address score takes into account the
resolution of the address, it means a result address with less elements
is necessarily given a higher score than another suggestion with more
elements; this has relevance for the test addresses which had elements
missing. Calculating the quality rating was straightforward with belief-
sets, not just for the persistence, but because they are so tightly integrated
with the whole agent functionality; instead of having to worry about
data and process as separate considerations, beliefsets blend in with the
whole paradigm. Measuring the quality of a query is an ongoing result
throughout the whole geocoding process, as it occurs when a query first
enters the system, during the correction stages, and also at the end of
processing when an address has its quality rating calculated. This real
time processing has been an important part of the framework, and it is the
internal catalyst for the events which occur inside the system.

Context was used successfully to modify execution based on address
element types, the quality rating, and the factors used to calculate the
quality rating. This shows that geocoding is capable of using plans and the
sort of “polymorphic event handling” that they bring. The close relationship
can be seen between context and control, where context is essentially
making a flow of control choice based on the given value. Context can be
seen in the dynamic calculation of the quality score. Keeping in mind that
in the formula, the element types each have their own weighting, and so
even though the same number of elements could be present in different
cases, the type will determine they have different scores; these weightings
were shown in Figure 5.10.

Figure 5.11 shows a messaging diagram created during processing of
quality score updates; it is a graphical depiction of the updates and
subsequent beliefset modifications shown in tables previously throughout
this section. Each agent type is labeled across the top, and each vertical
line represents an agent. The sloped, interconnecting lines represent the
messages sent between agents. The small block on each line designates
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where the message was sent from, and the other end of the line terminates
at the agent the message was sent to. It can be seen that typically an agent
will receive an update from another agent, after which it recalculates its
status and send two new messages to its complementary elements (agents).

FIGURE 5.11: Agents Sending Messages with Updates Scores

There is a relationship between the quality score of the address and the
geocode determined, such that it is possible to have a high quality score,
but not be able to geocode the address. It depends on the reference
data, because as is the case with IntelliGeoLocator, non-spatial textual
reference data (i.e. lists of localities, streets etc.) are used to perform
the address correction and quality assessment. It is after this that
coordinates are found for the address. So if the textual reference dataset
(e.g. locality and street names) used for address correction is different from
the coordinate/spatial dataset then this “verified but unlocated” situation
could arise. For IntelliGeoLocator, this would only happen if the street
name or locality was not in the spatial reference dataset, as the non-spatial
reference data does not include street numbers and so there would be no
conflict between reference datasets.
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To reiterate, the important point is that the score calculated by IGL is
intended to be a measure of confidence that the match is what the user
intended, and also how valid the address is as defined by its existence in
the physical world. If the quality score was intended to provide a detailed
assessment of positional accuracy, the IGL would have had to interrogate
the metadata of the reference data, and this was not done. This would be
an excellent addition to any geocoder though, effectively distinguishing the
granularity of the geocode (e.g. locality or street level versus house level)
from its positional accuracy (e.g. 5m, 10m or 50m). This would require
additional research and work.

The testing of IGL has also raised issues regarding what the geocode
represents, especially in cases where an arbitrary point is chosen to
represent a line or area. This is an issue of context, but could also be
considered an issue of quality depending on what the user is expecting to
be presented or what they were going to use the result for. Depending on
user context, different types of users may have different expectations and
these could be defined in the “user” agent which assigns “contexts” relating
to the type of user or the type of application, eg. student, emergency
management, finding states and countries. For example, for a point
representing a state (e.g. Western Australia), would the user prefer the
centroid (in the desert) or state capital (Perth)? When testing IGL using
the LISAsoft web service for coordinates (which in turn uses the G-NAF
dataset from PSMA), results for states, localities and post codes were all
centroids. For street level results it was the mid-point of the road which was
used. In the case of having multiple results, each with possibly the same
quality score, it would be good if there was a way to choose the one “most
resembling the original query” but this can be a hard concept to design
because the question arises of whether this is based on syntax (e.g. both
have 80% the same characters in the their strings), physical proximity (one
choice is 5km closer to the query value), semantic concept (“both the query
and one option are named after birds” - e.g. Falcon Ave. and Pelican Ct.
in Churchlands, Western Australia) etc.; this would have to be the focus
of further research. This concept would have most impact in situations
where several candidate addresses are tied. With all the processing and
messaging that occurs in calculating a quality score, the questions arises
of how this load is distributed amongst the various elements, and causes
behind any variation in how the processing occurs.
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5.1.2 Activity Load for the Address Elements

Figure 5.12 shows the number of increments needed for each address
element to reach a final score of 1.0. The address used for Figure 5.12
is “perfect”, in that all the elements exist and agree. This address was used
specifically to see how messaging activity (i.e. load) varied for each element
type. These increments in the address elements are almost synonymous
with messages between agents. The only difference is that one agent (the
street agent) is responsible for two address elements, specifically street
name and street type. So when there is an update is required between
these, there is no message required, as it is only an internal event used.
But the increment happens nonetheless. That is why, for the purpose of
analysing the algorithm, Figure 5.12 shows increments.
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FIGURE 5.12: Each Address Element with all Score Increments
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One significant observation is that there is more activity for the postcode
and locality elements. In this example, state has 11 increments, postcode
has 17, locality has 19, street has 9, and street type has five increments.
There are two possible reasons for this, including:

• The number of other address elements that provide updates to a given
element. For example, state and street type only have one source (i.e.
one complementary element) of increments; conversely they also only
send updates to one address element.

• Because updates for a given element come only from the lower and
upper complementary elements, the number of increments that they
have will affect the number of the given element. For example,
because the postcode element has great activity, this feeds the activity
of the locality element.

So overall, locality has slightly more (two) more increments than postcode
because although both elements receive updates from two other address
elements, and have an increment “frenzy” from updating each other, it
is the fact that the locality element has a lower complementary element
(street) which itself has two sources of updates. Postcode however has the
complementary element of state; this difference means locality gets a few
extra increments from the street element.

The longer it takes for an element to reach its final score, the more
involved it is in the overall process; this is shown by postcode and locality.
The difference in the number of increments for each element highlights
how the algorithm (and in particular the ordering and time used for
processing) is non-deterministic and address-driven. Not only are postcode
and locality active in the address processing, but they have the largest
weightings associated with them. The number of interactions (i.e. time) is
a function of the number of other elements it relies on and the weightings
of all elements. Because agent messaging is used for the scoring, adding
additional factors in the future would be possible without having to re-
architect the design because the factors could be agents and more messages
could be used along with weightings.
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5.1.3 Initial Real-Time Correction of Elements

Initially in the processing of an address, the prototype builds up its
geocoding quality for each element as they arrive from the SenderAgent

(where they were read from file), and then from there the concept of
distributed processing is shown to work as the various agent types begin
evaluating and processing their elements in parallel. This processing starts
with the state level and progresses to the property as the data comes in - it
happens very quickly and not every level in between is necessarily shown
if the next piece of data comes in quick enough. For example, the various
levels for the address “32 Marlow St, Wembley 6014 WA” are shown in
Figures 5.13, 5.14, 5.15 and 5.16.

FIGURE 5.13: Geocode at the state centroid level
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FIGURE 5.14: Geocode at the locality centroid level

FIGURE 5.15: Geocode at the street centroid level
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FIGURE 5.16: Geocode at the property level

The example in Table 5.17 shows the raw processing is an address which is
already correct; if an address is submitted in which one or more of the
elements do not exist, then the agent still shows raw results for those
elements that do exist. The idea here is that while the user is waiting for
the correction process to correct the elements with errors, at least they can
get some preliminary geocode information; this is only in the case where a
real user sits at the front end, this is less critical for batch jobs or where
applications are at the front end. An example of an address entering the
system and having its initial element values be geocoded can be seen in
Table 5.17.

TABLE 5.17: Geocodes for the Raw Elements Entering the System

Geocode Address String

-25.47, 122.18 ( wa)
-25.47, 122.18 ( 6014 wa)
-31.9331007, 115.81774798 ( wembley 6014 wa)
-31.93679383, 115.80779265 ( marlow wembley 6014 wa)
-31.93679383, 115.80779265 ( marlow st wembley 6014 wa)
-31.93722, 115.80817 ( 32 marlow st wembley 6014 wa)

5.1.4 Parallel and Distributed Processing

Figure 5.11 is a good representation of the messages that are sent between
agents; the order of these messages is not determined at design time. As
it was used in the prototype, parallel processing allowed the UserAgent

to distribute the initial geocoding query in parallel. The most significant
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result was that the tasks of processing each element type could be
done simultaneously, and intermediate results could be sent between
agents. Because a different agent was responsible for each type of address
element, the situation allowed for the creation of one “generic” agent
(ElementAgent) which was then given the persona of a particular type
(e.g. LocalityAgent and StreetAgent). Then in parallel, each agent
with its corresponding persona could access its own algorithms, local data,
message sending or web services as it needed. On a single CPU system,
this parallelism is “pseudo-parallelism” as the agents operate on different
threads and very rapidly switch between these. When the agents run
on different machines this is very much “true” parallel and distributed
processing. When running on a multi-core CPU, properties can be set in
the agent runtime environment to have agents run in the different cores.
As user demand increases (i.e. server load grows) more machines can be
added to scale accordingly.

The prototype handles many simultaneous queries coming into the geocoder,
and this was no harder than designing the system to handle just one ad-
dress, as the event driven paradigm forces a synchronized and concurrent
system design from the start. Because of the tracking system described in
Appendix A.2, the unique IDs allow any number of simultaneous geocoder
queries to be handled. It should be noted that for every additional query
coming into the system, no additional agents are being created. The same
six agents (UserAgent, MatchingAgent, StateAgent, PostcodeAgent,
StreetAgent and PropertyAgent) are instantiated the whole time, and
remain instantiated between queries so there is no overhead in creating
new agents. Memory is used to process events, send messages, and add
beliefs to beliefsets (and other operations), but it seems logical that this
processing would scale as additional agents of different types could be
added. For example, there is no reason there could not be five locality
agents (or five of every agent) and when new geocode queries enter the
system they could be assigned appropriately (load balanced) to an agent.
The parallel processing also ties in with the processing of the initial “raw”
inputs, as both provide a way to return results to the user while they wait.
Because the quality scores (both for individual elements and overall) are
calculated on an ongoing basis, these results are displayed for the user
along the way.
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5.2 Evaluation of Intelligent Geocoding Process

Testing indicated that overall performance of IntelliGeoLocator was gen-
erally on par with other geocoders, although all geocoders had types of
addresses they performed poorly on. This assessment of performance is
based on a range of address types used for testing. The following sections
identify the range of address types and provide a representative example
of an address type to illustrate the nature of the performance.

5.2.1 Levels of Completeness in Addresses

The levels of completeness were compiled using results from four geocoders
(see Section 3.2.2 regarding geocoder selection), including Google Maps,
Multimap, Whereis and IntelliGeoLocator. This is tabulated for a range
of address types and representative addresses are shown in Table 5.18
where the vendors are abbreviated as G, M, W and I respectively. The
addresses provided in the tables are examples of such address types
and are representative of that address type; these are just some of the
many addresses tested. The test addresses used in this chapter were
either provided from other organisations familiar with geocoding, from
personal experience, or were examples picked randomly from the phone
book (with the only criteria being it was an example of the particular
address type). The test addresses used to illustrate the results here are
representative of their types. Addresses in this category are missing at
least one address element, or some derivation of this. Table 5.18 and
the other tables presenting address testing in subsequent sections use the
result abbreviations of “P”, “Yes” and “No”, note that “P” indicates “partial”.

TABLE 5.18: Test Table for Levels of Completeness

Address Example G M W I

1 - Complete Address
197 Holbeck St Doubleview WA 6018 Yes Yes Yes Yes
13 Paris Rd Australind 6233 Yes Yes Yes Yes
163 Alfred Rd Mt Claremont 6010 Yes Yes Yes Yes
2 - Complete Address (Duplex)
58a Cresswell Rd Dianella 6059 Yes No No Yes
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Address Example G M W I

224b Marmion St Palmyra 6157 Yes P No Yes
262b Selby St Wembley 6014 Yes P No Yes
3 - Complete address with unit number
4 / 133 Bourke St Leederville WA 6007 P No No P
6/14 Alora Drive Port Kennedy 6172 P P No P
44/70 Marlboro Road Swan View 6056 P P No P
4 - No Postcode
103 Wellington Rd Dianella WA Yes Yes Yes Yes
39 Warringah Cl Kallaroo WA Yes Yes Yes Yes
4 Comer St Como WA Yes Yes Yes Yes
5 - No state or postcode
119 Stirling Hwy Nedlands Yes No P Yes
169 Delgado Pde Iluka Yes Yes Yes* Yes
31 Backhouse Rd Kingsley Yes Yes Yes* Yes
6 - No state, postcode or locality *
40 Pennant St (North Perth, 6006) P P No Yes
157 Acton Ave (157 Acton Ave, Rivervale 6103) Yes Yes No Yes
70 Roberts St (Bayswater) P P N P
7 - House number and street name only *
10 Forrest P No No P
31 Fordham P No No P
177 Ocean Keys No No* No No
8 - Street name and type only *
Parnell Ave P P No P
Murray Bend Rd (Murray Bend Rd, Ravenswood) Yes No No No
Anaconda Drv (Gosnells) Yes Yes* No Yes
9 - Street name only
Hampstead P P No P
Sir Charles Court Yes No No No
Woodbridge (Woodbridge Drv, Greenmount) No P No Yes*
10 - State name only *
WA Yes Yes No Yes
NSW Yes Yes* No No
NT Yes Yes No No
11 - Postcode only *
6021 Yes Yes No No
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Address Example G M W I

6001 (post office box, non-geographic) No No No No
12 - Locality name only *
Malaga Yes Yes Yes Yes
Tamala Park Yes Yes Yes No
South Lake Yes Yes Yes Yes
13 - Complete, Semi-Rural Address
Lot 310 Arborfield Way Bullsbrook 6084 WA No P P P
Lot 2 Ranford Rd Armadale WA 6112 P P No P
Lot 1 South Western Hwy Mundijong WA 6123 P No No P
33 - Lot numbers
1 Cockburn Rd, South Fremantle is also Lot 50
Cockburn Rd, South Fremantle

Yes No No No

Lot 36 is also 425 Victor Rd Darlington WA 6070 No No No No
38 - Use of Estate Names
Brighton Estate (replacing Butler) No No No No
Floreat Waters (replacing Churchlands) No No No No
Landsdale North (replacing Landsdale) No No No No
- New Localities
Dardadine, WA No* No Yes No
Meeking, WA No* No No* No
- Alias Examples
Old Yorkrakine Road, Tammin (old) No No* Yes No*
Russell street, Tammin (new, renamed) No No* No* No*
Bournville St, Wembley WA (old) Yes No Yes Yes*
Ruislip St, Wembley WA (new, renamed) Yes* Yes No* Yes
Hockley Street, Mount Barker (old) No No* Yes No*
Hockley View, Mount Barker WA (new, renamed) No No* No* No

In Table 5.18 there are asterisks which appear for address types and for
the results of individual addresses. For the address types, the asterisk
indicates that for IGL, data was restricted to the state of Western Australia
(WA). This means that the search space of the geocoder was restricted to
WA. This was taken into account, given that other geocoders would search
all states and could therefore have more potential matches. For the specific,
representative test addresses an asterisk was used to indicate that the
result is what is stated (e.g. “Yes”, ”No”) but there was some caveat; in
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other words the asterisk detracts (in the case of a “Yes”) or enhances (in the
case of a “No”) from the stated result. For example, where a geocoder found
the correct result but the result was one of several suggestions (as would be
the case when searching other states in addition to WA) the geocoder was
given a “Yes” but with an asterisk. This allowed geocoders to receive an
evaluation consistent with their performance. The use of these asterisks is
used in a similar way for the address types in Sections 5.2.2, 5.2.3, 5.2.4 and
5.2.5. In some cases in Table 5.18, some addresses were geocoded despite
a positive result not being expected. For example, concerning the for state
name only category, IGL did not have reference data to geocode “NSW” or
“NT”. Similarly, it was not expected that any geocoder would geocode a
postcode for a post office box but it was tested nonetheless to ensure this.

An advantage of the approach used by IGL for this overall category of
address is how it handles the dilemma with ambiguous results and the
balance between the desire to narrow and prioritize but not eliminate if
there is any chance the suggestion could be the intended result. IGL
uses complementary address elements to narrow the search space which
increases processing speed and narrows the result set of possible geocodes.
IGL also does also not mandate that certain element values have to be
present. For example, even if a critical element type such as locality is not
present, the equivalent values based on the elements that are present are
used. Even if there are multiple possibilities they are all explored.

Figure 5.17 shows an overview of address evaluation for this category.
Even though Google shows a higher hit rate than IGL, there are reasons,
including that IGL was not able to separate the unit numbers and
slashes from the house numbers (natural language processing) which
Google can do, and also that because a web service was used by IGL
for locating coordinates it (IGL) was not privy to how the web service
manipulated/processed reference data in regard to some of the unusual
street names. Future versions of IGL could use multiple web services
for locating, and use consensus from these services to provide increased
confidence. The ratio of “yes” (successful) compared to “partial” geocode
results should also be noted, specifically because there is a relatively large
amount of partial results. This was largely due to the geocoders returning
multiple results based on the ambiguity of the query. In other words there
were multiple results each of which were equally likely. This indicates
that there could be potential in the future for (i) asking the user additional
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questions to refine the query, and (ii) possibly storing the most common
choices of the candidates dynamically in the knowledge base. The last
option though would still need to cater though for the fact that the more
uncommon of the candidates could be the actual result; more research
would be needed to explore this. This type of knowledge could be stored
as rules (which the knowledge base used in the prototype caters for) at a
higher level of knowledge than the facts stored in alias tables.
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FIGURE 5.17: Results for Levels of Completeness Category

The approach of IntelliGeoLocator to matching is that even if the input
query is incorrect, the user had a particular address in mind and that
there is a finite number of reasons why they made a mistake (or that the
address they had in mind defied convention), and that a solution can be
found. The concept generalizes to demonstrate that basic assumptions and
processing of strings in addresses are still subject to error and the expected
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spacing and words typically associated with particular element types do not
always correspond to what is expected. With computing power continuing
to increase, it can also be asked why a brute force approach is not used
more frequently; for geocoding this means trying different combinations of
address elements together, simultaneously.

In the example of “177 Ocean Keys” why not try every possibility? For
example, the following permutations could exist: (i) “Ocean Keys” could be
the street name, (ii) “Ocean” could be the street name, (iii) “Keys” could
be the street type, (iv) “Keys” could be the locality, (v) “177” could be the
street number, or (vi) ”177” could be part of a postcode. Although IGL
(the prototype) has the meaning of its elements pre-established, it has
the ability already for (i) pursuing multiple possible address possibilities
using a tree mechanism, and (ii) iterate through generations of address
possibilities as potential matches “evolve”.

An example of the postcode concept is “Doveton, Victoria” which has the
postcode “3177”, where it is conceivable a user could mistakenly not type
the “3”. Effectively each of the element possibilities forms another result
suggestion. This is the approach taken with IntelliGeoLocator, as explained
in Section A.2. The key here is that a “match” could be found in multiple
components of an address (i.e. street, locality) but that the first one found
(in a linear algorithm) is not necessarily the correct one. IG would attempt
all options in parallel.

Given the current state of geocoding with regards to queries which have
multiple geocodes it seems that the use of interaction between the geocoder
and the user will continue to be important - for example asking additional
questions to narrow down lists of suggestions. These questions would be in
terms of things that users can relate to, such landmarks, events or possibly
distance and direction; these would require semantics and geographic
context beyond what is present in the prototype but which IGL can provide
with further expansion.

Agents are ideal for this social, event-based and dynamic behaviour. IGL
obtains geocode queries from a source (eg. file, user, etc.) and processing
begins there. The intelligent geocoding framework has been designed so
that as long as the geocode query is still “open” (which would be until the
user closes their browser) then new information could be included into an
existing query. This is because all the information used in processing the
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query is stored in beliefsets and these beliefsets can be modified at any
time. Because the framework includes the use of automatic events (i.e.
posted from beliefsets), the updated information is perpetuated through
the system and processing is updated, the geocode result would change
accordingly.

5.2.2 Syntax of Addresses

Addresses in this category are those which have an error regarding the
spelling or arrangement of the characters and tokens within the address
string. These types of errors are “superficial” in the sense there is
usually no underlying, deeper cause. The address types and representative
addresses are shown in Table 5.19.

TABLE 5.19: Test Table for Syntax

Address Example G M W I

14 - Similarity to commonly known words
Shiraz St Greenmount WA (should be Chiraz St) No No Yes No
Glide St East Fremantle WA (should be Glyde St) No No* Yes* Yes
Queue Ct Swan View WA (Cue St) No P No Yes
Navy Base (Naval Base) No Yes Yes Yes
15 - Linguistic (written)
Wanneru, WA (should be Wanneroo) Yes Yes P Yes
Nangarra, WA (should be Gnangara) Yes No No No
Lewin, WA (should be Leeuwin - locality) No No Yes Yes*
16 - Linguistic (verbal)
Mushay (instead of Muchea) No No Yes P
Coeburn (instead of Cockburn) No No* No* No*
Gardner (instead of Gairdner) No Yes* Yes* Yes*
17 - User makes mistake typing street
Waratag Ave, Dalkeith 6009 Yes P P P
39 Heskath Ave Seville Grove 6112 (should be
Hesketh)

Yes No Yes Yes

19 Birtonia Way Forrestfield 6058 (should be
Burtonia)

No Yes* Yes Yes

18 - User makes mistake typing street (no
postcode)
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Address Example G M W I

Waratag Ave, Dalkeith Yes P P P
39 Heskath Ave Seville Grove Yes No Yes Yes
19 Birtonia Way Forrestfield No Yes Yes Yes
19 - User makes mistake typing locality
(with postcode)
Shoveler Tce, Joondaluo 6027 (should be Joon-
dalup)

Yes No Yes Yes

Lakor St Scarborough 6019 (should be Lalor) No Yes No Yes
Binacle Rd Ocean Reef 6027 (should be Binnacle) Yes Yes Yes Yes
20 - User makes mistake typing locality
(no postcode)
Stock Rd Attadalw (should be Attadale) Yes No Yes Yes
Littlefield Rd High Wycome (should be Wycombe) Yes Yes Yes Yes
Stephen St Abany (should be Milpara, near
Albany)

No No* No* No*

21 - Incorrect postcode (correct locality
and street)
Aberdeen St, Northbridge 6014 Yes Yes Yes Yes*
Irian Gr Riverton 6108 (should be 6148) Yes Yes Yes Yes
High St South Perth 6051 (should be 6151) Yes Yes Yes Yes
22 - Conflicting locality and postcode
Floreat 6015 1st 1st 1st Both
Victoria Park 6107 1st 1st 1st Both
Rockingham 6172 1st P 1st Both
34 - Abbreviation of locality name
8 Marmion St East Freo (East Fremantle) No Yes Yes Yes
11 Leonard St Vic Park (Victoria Park) No Yes Yes No
144 Raleigh St Carlisle S (Carlisle South)* Yes No Yes No
35 - Long form
Saint Michael Terrace, Mount Pleasant WA Yes Yes Yes P
Mount Claremont, WA (correct) Yes Yes Yes Yes
Mt Claremont, WA (incorrect) Yes Yes Yes Yes
Mount Henry Road, WA (correct) Yes Yes No No
Mt Henry Rd, WA (incorrect) Yes No No No
Mounthaven Street, Kalamunda (correct) Yes Yes Yes Yes
Mt Haven Street, Kalamunda (incorrect) No No* Yes Yes
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Address Example G M W I

36 - Freeway
Mitchell Fwy, Perth WA Yes No Yes Yes
South West Hwy WA (South Western Hwy) No No No No
Australind Bypass Yes No No Yes*
37 - Hyphenated names
Pinjarra-Williams Rd, WA Yes Yes No Yes
Wandering-Narrogin Rd, Cuballing Yes Yes No P
Ongerup-Pingrup Rd, Pingrup Yes Yes No P
Baronhay Court, Kensington (should be Baron-
Hay)

Yes Yes Yes Yes

Belair Place, Connolly (should be Bel-Air) Yes No* Yes Yes
Gin-Gin, WA (should be Gingin) No No Yes Yes
40 - Punctuation Missing
Oconnor WA No No Yes Yes
Odea Gate, Canning Vale (should be O’Dea) Yes No Yes Yes
Adale Wy, Dalyellup (should be A’Dale) Yes No Yes P
Break Oday Dr, Australind (should be O’Day) Yes Yes Yes Yes
Allsaints Way, Churchlands (should be All Saints) Yes No Yes Yes
Backbeach Rd, Onslow (should be Back Beach) Yes No Yes Yes
Lagrange Rd, Stoneville (should be La Grange) Yes No Yes Yes
- Full Stop
C.W.A. Avenue, Useless Loop Yes No No No*
S.E.C. Road, Rosa Brook No No No No*
Old Haul Road No. 1, Karrakup Yes No No No
- Ampersand
Cobb & Co Road, West Pinjarra Yes No No Yes
41 - Punctuation not wanted
Smith’s Beach Rd, Yallingup WA (Smiths Beach) No Yes P Yes
View Way, Swan View (should be Viewway) No No Yes* No
Kings Way, Nedlands (should be Kingsway) No No Yes* No
42 - Number in street name
Australia II Drv, Crawley WA Yes No Yes No
Australia 2 Drv, Crawley WA No No Yes No
John XXIII Ave, Mt Claremont WA Yes Yes Yes No
John 23 Ave, Mt Claremont WA Yes No Yes* No
44 - Directional Reversed
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Address Example G M W I

Perth North, WA (North Perth, WA) Yes No* Yes No
Swan Middle, WA (Middle Swan, WA) Yes Yes Yes* P
South Carlisle, WA (South Carlisle, WA) Yes No* No* P
4 - Streets with “The” in them
The Cove, Yallingup WA Yes No* Yes* Yes
The Boulevard, Floreat WA Yes No Yes Yes
The Summit, Yangebup WA Yes No Yes Yes
- Road name could be the road type
The Avenue, Nedlands WA (correct) Yes No Yes Yes
Avenue, Nedlands WA (incorrect) No No Yes Yes
The Promenade, Mt Pleasant WA Yes No* Yes Yes
Promenade, Mt Pleasant WA (incorrect) Yes No* Yes Yes
The Crescent, Helena Valley WA (correct) Yes No* Yes Yes
Crescent, Helena Valley WA (incorrect) Yes No* Yes Yes
- Ranged addresses
102 - 114 Normanby Rd, Inglewood Yes* Yes* No No*
19E - 23E Johnston St E, Boulder No No* No No*
Unit 35, 227 - 237 North Rd, Centennial Park P No No No*

In Table 5.19 the presence of an asterisk (*) means there was some caveat,
or in more general terms, the geocoder was “given the benefit of the doubt”
or performed such that it belonged more in one category than another.
For example, with the sample address of “Glide St East Fremantle WA”,
Whereis provided just two suggestions, but the first suggestion was the
correct geocode; Multimap returned the geocode of “Fremantle, WA”. So for
the latter, it did not meet the requirement but was not a complete failure
to geocode. For some address types, such as the ranged addresses, IGL did
not provide a result because the functionality had not been implemented.

There were relatively few “partial” results in Figure 5.18, because mostly
the geocoders either geocoded the query correctly or not at all.
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FIGURE 5.18: Results for Syntax Category

IGL had slightly more partial results than the other geocoders, which can
be attributed to it producing a result at reduced spatial resolution than the
original query. For example, when given a street name and locality, IGL
may have only produced a geocode at the locality level. The performance of
IGL within the category was heavily dependent on its string manipulation
and correction techniques. IGL was designed to be extensible so that
additional string correction techniques can be added, because by default
IGL uses Levenshtein and Soundex. A proof of concept was shown in the
prototype, however with additional correction techniques (which can be
added to the agent as plans) the performance of IGL would increase.
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5.2.3 Semantic and Geographic Addresses

The address types in Table 5.20 deal with the underlying causes of some
address errors. It should be noted that “geographic” types can also be
“semantic”, but the title of the section is used to reflect that semantic errors
can have several causes (spatial, meanings of words etc.), while geographic
errors are firmly rooted in spatial relationships.

TABLE 5.20: Test Table for Semantic and Geographic

Address Example G M W I

23 - Correct street with neighbouring
locality
Hurstford cl, cottesloe wa (should be Peppermint
Grove)

Yes No Yes Yes

Inwood Pl, Winthrop (should be Murdoch) Yes No No* Yes
Doric St, Rossmoyne (should be Shelley) Yes No* Yes Yes
28 - Vanity address
17 Thomas St, Mt Richon WA (should be
armadale)

Yes P No No

129 Edinboro St, mt hawthorn WA (should be
Joondanna)

Yes Yes Yes Yes*

22 Money Rd, Attadale WA (should be Melville) Yes Yes* Yes Yes
29 - Display unique locations for duplexes
103A Flinders St, Mt Hawthorn WA 6016 No No No No
5A Davy St Wembley Downs 6019 No No No No
164A Stock Rd Attadale 6156 No No No No
30 - Rural addresses use LGA rather than
locality
304 Timber Creek Crs Toodyay (should be
Coondle)

No No P Yes

23 Backland St Esperance (should be Sinclair) Yes Yes Yes* Yes
6 Albatross Drv Albany (should be Bayonet Head) Yes No Yes* Yes
31 - Corner addresses
2 McKay St Bentley is the same as 50 Marquis St No No No No
240 Bournville St, Wembley is same as 30 Keane
St

No No No No

74 Alexandra Rd, East Fremantle same as 9
Coolgardie Ave

Yes Yes No* No
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Address Example G M W I

32 - Rural roads with two names
Jayes Rd, Boyup Brook WA and Bridgetown
Boyup Brook Rd

Yes Yes Yes Yes

Great Eastern Hwy through Kellerberrin is Mass-
ingham St (58 Great Eastern Hwy, Kellerberrin)

No* No No* No*

Wubin-Mullewa Rd through Perenjori is Fowler
St (26 Mullewa-Wubin Rd, Perenjori)

P No No P

Coalfields Rd through Collie becomes Throssell
St becomes Cameron Rd becomes Gibbs Rd (119
Coalfields rd, Collie WA )

P No No No*

39 - Complex sites with private roads
104 Kununurra Way Coogee Beach Holiday Park
3 Powell Rd Coogee

No No No No

Jackson Ave, Bentley, WA (Curtin University) Yes No Yes P
Victoria Drive, Royal Perth hospital, Shenton
Park WA

No No No No

43 - Ontological Similarity
Small Creek Rd, Denmark WA (Little River Rd) No No No No
63 Cambridge St, Wembley WA (should be Grantham). Note 63 Cambridge
St is in West Leederville - Discussion

21 Pearson St, Herdsman (21 Pearson Way, Osborne Park) - Discussion

Swan Ct, Yangebup (Cygnet Ct, Yangebup) - Discussion

King Regent Dr, Connolly (Prince Regent Dr) No No Yes No
46 - Historic change
Floreat Park, WA (should be just Floreat) No* No* Yes Yes
Maniana, WA (was a pseudo-suburb in Queens
Park)

No No No No

- Rural Address (Location number)
1073 Abbott Rd, Arthur River WA 6315 (old) No* No No* No*
21 Abbot Rd, Arthur River WA 6315 (new) No* No No* No*
3284 Boyup Brook-Arthur Rd, Moodiarrup WA
6393 (old)

No* No No* No*

4512 Boyup Brook-Arthur Rd, Moodiarrup WA
6393 (new)

No* No* No* No*

2738 Rajander Rd, Bowelling, WA 6225 (old) No* No* No* No*
814 Rajander Rd, Bowelling, WA 6225 (new) No* No* No* No*
- Rural Address (Lot number)
Lot 21 Albany Hwy, Arthur River, WA 6315 (old) Yes? No No Yes?
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Address Example G M W I

16882 Albany Hwy, Arthur River WA 6315 (new) No* No No* No
Lot 3 Boscabel-Chittinup Rd, Moodiarrup WA
6393 (old)

No* No* No No*

1226 Boscabel-Chittinup Rd, Moodiarrup WA
6393 (new)

No* No* No* No*

Lot 3 Coalfields Rd, Darkan, WA 6392 (old) Yes? No* No Yes?
10371 Coalfields Rd, Darkan, WA 6392 (new) No* No* No* No*

The graph in Figure 5.19 shows a low performance for all geocoders in this
category. The “partial” results were relatively low as the geocoders either
solved the queries completely or not at all. The performance of Google
and IGL were similar, with one stand-out feature of IGL was its ability
to correct an LGA name with the corresponding locality name. This idea
that a locality is within an LGA was added at design time, but further
to this are the representative test addresses which involved additional
ontological considerations. The inclusion of the rule based system in IGL
means that the prototype could be extended to include enhanced ontological
processing and reasoning. With the results in mind, it is important to
remember that the goal for the prototype was to perform the geocoding
process intelligently, which means the focus is not primarily on what the
results were but rather how they were obtained. In other words, the
prototype does intelligently (one example is using the dynamic knowledge
base) what other geocoders do using lookup tables and static aliases. Also
the goal was not to build only address correction utilities but rather a
framework for the whole geocoding process.
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FIGURE 5.19: Results of Semantic and Geographic Category

An example of semantics is the use of a neighbouring locality in place of
the correct one, as seen with Cottesloe and Peppermint Grove in Figure
5.20. This type of example occurs frequently, is easy to explain, but most
importantly it highlights how mistakes can be made where the entities
involved (localities) have no similarity in language and the ultimate cause
is the perception of the user. The geocoding of 1st order neighbours is well
established technique, and handles well, although MultiMap performed
poorly in this regard, as it did not have the internal mechanism to check
for neighbouring localities, the other geocoders did; this category of address
can be seen in Table 5.20 (item 23). IGL was able to identify 1st, 2nd and
3rd order neighbours through a combination of neighbour tables built from
spatial data (these spatial operations could also be done directly in the
future) and the ability to iterate through several generations of potential
solutions (hence the “neighbours of neighbours”).
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FIGURE 5.20: Neighbouring Localities: Cottesloe and Peppermint Grove

Following the criteria of no similarity in language and the role of perception,
other examples can be found which move from specific (expressed using
values) to more “abstract” (expressed using types). Examples of semantics
with a geographic component include Cambridge and Grantham streets
(seen in Figure 2.1), and Pearson St and Pearson Way (seen in Figure
5.21). The first is a case of two streets which are the same size (in
terms of lanes and traffic), are parallel with each other and have the same
streets intersecting them (in a grid fashion); as a result these streets are
commonly confused. Although the example of Pearson Way and Pearson
St involves the same street name, there is more to this, as both streets
are metres from each other, run in the same directions and are both near
a major lake (a defining landmark). The key to this concept is that users
could make mistakes when submitting a geocode based on these semantic
and geographic relationships, causes which are not currently included
in geocoders. The intelligent framework has provided a foundation via
the knowledge base which currently can have this alias stored as a rule,
and with future work the relationships (distance, direction and landmark
proximity) could be stored. The tool selected for the knowledge base would
not have to change, the ontological structure would just have to be made
richer. However the prototype has demonstrated the ability to make a
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conclusion using two disparate facts, so in this case it would be ensuring
these facts can describe the causes (distance, direction and landmark
proximity).

FIGURE 5.21: Geographically and Syntactically Similar

The examples of “Swan Ct” and “Cygnet Ct”, both in Yangebup represents
the case where two entities are semantically similar based on what they
are named after, in addition to the fact they are in very close geographic
proximity to each other and also have the same street type; in this case
both street names describe very similar objects. Another example is
“King Regent Dr”, which for testing was purposefully submitted as “Prince
Regent Dr”; which only Whereis was able to geocode. It seems likely that
Whereis derived this solution via word similarity (i.e. the word “Regent”),
it also indicates that Whereis uses all tokens in an element string to
do similarity (i.e. Levenshtein and Soundex) comparisons. An example
of a semantic mistake which cannot be solved from word similarity is
“Small Creek Rd, Denmark WA” which should actually be “Little River
Rd, Denmark WA”; in this case the confusion arose between “small” and
“little”, along with “creek” and “river”. To solve a query like this, a reference
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is needed which represents the relationships between the elements and
can be queried. If geocoders used this approach it would provide a much
fuller understanding and better performance. For IntelliGeoLocator to
offer this would require the ability to reason over terms such as “small”
and “little”. This type of ontological reasoning was beyond the scope of
the research but the intelligent framework is extensible so that additional
semantics (and learning) can be added which could be used for this purpose.
This information could also be fitted into the rule-base if it was extended
to accommodate this. So if the user “taught” it one time, it could use
the new knowledge another time. If the user had been able to identify
this relationship and build in this rule by hand, the knowledge would be
available for future queries (i.e. not fully automated, but the “proof of
concept” is there).

The vanity address problem is really no different from the problem of using
the wrong (often neighbouring) locality. All the geocoders tested handled
this well. The design of IntelliGeocoder with its ability to run in iterations
means that it can search for localities which are actually second or higher
order neighbouring localities. An example of this is seen in Figure 5.22
where it is shown how the locality Daglish is a second order neighbour to
Wembley.

Further research is required and may involve building a rule comprising
geographic functionality, possibly utilizing a web processing service func-
tion. A GIS could be used to dynamically check whether an address is
a potential corner address, by checking its proximity to street corners; if
it was a street corner, by checking the cadastre information around it, it
could possibly determine what its “other” address might be.

5.2.4 Iterative Processing

To demonstrate the result of using iterative processing, one of the test
addresses which has compounded errors can be used. The address in its
incorrect form is “Glosster St, Shentin Park, WA”; the correct equivalent is
“Gloster St, Subiaco, WA”.
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FIGURE 5.22: Daglish is a Second Order Neighbour to Wembley

TABLE 5.21: Sample Address with Compounded Errors

Glosster St Shentin Park WA
Present: Yes Present: Yes Present: Yes Present: Yes
Exist: No Exist: Yes Exist: No Exist: Yes

In this case, as seen in the list of sample addresses, the address has a
misspelled street name, uses a neighbouring locality and the name of the
neighbouring locality is also misspelled.

Because the street name does not exist, the only techniques which can
be used with it are the knowledge base, Soundex and Levenshtein; the
same is also true for the locality. In particular, the “neighbouring locality”
technique cannot be used for the locality because it does not exist. The
original address is given the query-ID, sub-ID and parent-ID of 1, 0 and 0,
respectively (the notation 1:0:0 can be used to show this).
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The Soundex and Levenshtein techniques were used on the street name,
and the results can be seen in Table 5.22; this table also shows the
suggestions for locality. The Levenshtein technique was also used for the
street name but there were no results.

TABLE 5.22: Suggestions found during First Iteration

Type ID Technique Value
street 1:0:0 Soundex Galston Place (Duncraig)
street 1:0:0 Soundex Ghooli South Rd (Ghooli)
street 1:0:0 Soundex Glastonbury Way (Wattle Grove)
street 1:0:0 Soundex Glastonbury Rd (Armadale)
street 1:0:0 Soundex Gloster St (Subiaco)
street 1:0:0 Soundex Gloster Way (Woodvale)
locality 1:0:0 Soundex Shenton Park

It should be noted too that the most important relationships in this
example are street and locality and locality and state. The street type is an
unusual element in that it is most useful for “breaking a tie” in the event
that there are two streets in the same locality with the same name. Aside
from that happening, the street type is obviously so non-discriminatory
that it does not affect the street chosen; however it is still used as a factor
in matching.

The suggestions are sent to the matching agent but no matches exceeding
one element are found. As described in Appendix A.2, each “match” (in
this case just single elements) are assigned updated tracking IDs and
distributed back to the agents.

Table 5.23 shows the element values as they are sent back to the agents;
note that each of these now has a unique sub-ID.
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TABLE 5.23: Element Values with Updated IDs

Type ID Value
street 1:1:0 Galston Place (Duncraig)
street 1:2:0 Ghooli South Rd (Ghooli)
street 1:3:0 Glastonbury Way (Wattle Grove)
street 1:4:0 Glastonbury Rd (Armadale)
street 1:5:0 Gloster St (Subiaco)
street 1:6:0 Gloster Way (Woodvale)
locality 1:7:0 Shenton Park

As explained in Section A.2, each agent receives back the elements of its
particular element and begins processing this; as a consequence its com-
plementary agents realize they have no element with that corresponding
sub-ID, and because of this take the default value of the parent address.
In the example, the street agent would realize that it has no value with a
sub-ID of “7”. Also, separately, the locality agent would realize that it has
no value with a sub-ID of “5”. These are just two of the “new” addresses
spawned from iteration; if we were to do a “join” across the agents the two
addresses (amongst many) would be seen, as detailed in Table 5.24.

TABLE 5.24: Selected First Generation Addresses

ID Street Street Type Locality State
1:5:0 Gloster St Shentin Park WA
1:7:0 Glosster St Shenton Park WA

These are two of many new address combinations being processed, and
these results indicate that there are at least two combinations which
should eventually lead to the same result, although the steps taken to get
there may be in a different order.

Of the two addresses shown in Table 5.24, the second can be followed
further into its iterations. The suggestions found this time for the values
with ID 1:7:0, can be seen in Table 5.25.
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TABLE 5.25: Suggestions Found during Second Iteration

Type ID Technique Value
street 1:7:0 Soundex Galston Place (Duncraig)
street 1:7:0 Soundex Ghooli South Rd (Ghooli)
street 1:7:0 Soundex Glastonbury Way (Wattle

Grove)
street 1:7:0 Soundex Glastonbury Rd (Armadale)
street 1:7:0 Soundex Gloster St (Subiaco)
street 1:7:0 Soundex Gloster Way (Woodvale)
locality 1:7:0 geo neighbour Daglish
locality 1:7:0 geo neighbour Floreat
locality 1:7:0 geo neighbour Jolimont
locality 1:7:0 geo neighbour Karrakatta
locality 1:7:0 geo neighbour Kings Park
locality 1:7:0 geo neighbour Mount Claremont
locality 1:7:0 geo neighbour Nedlands
locality 1:7:0 geo neighbour Subiaco
locality 1:7:0 geo neighbour West Perth

When these are sent to the matching agent, a significant match is found
between the street, Gloster St (in Subiaco), and the locality Subiaco.
Although not mentioned explicitly in the example, element matches would
also occur (using the same approach) between the street name and street
type, and also the locality and state.
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TABLE 5.26: Second Generation Element Values with Updated IDs

Type ID Value
street 1:8:7 Galston Place (Duncraig)
street 1:9:7 Ghooli South Rd (Ghooli)
street 1:10:7 Glastonbury Way (Wattle Grove)
street 1:11:7 Glastonbury Rd (Armadale)
street 1:12:7 Gloster St (Subiaco)
street 1:13:7 Gloster Way (Woodvale)
locality 1:14:7 Daglish
locality 1:15:7 Floreat
locality 1:16:7 Jolimont
locality 1:17:7 Karrakatta
locality 1:18:7 Kings Park
locality 1:19:7 Mount Claremont
locality 1:20:7 Nedlands
locality 1:12:7 Subiaco
locality 1:21:7 West Perth

Note in Table 5.26 that the same sub-ID value is shared by the street
and the locality (1:12:7). The street type and state used in the match-
ing/reconstruction would also have the same ID. When these are sent back
to their respective agents, if a “join” was to be done, it can be seen that
a complete address is distributed between the agents. At this point, a
complete match has been found and there is no need to continue processing
other possibilities, unless this is desired. This is an example of a contextual
choice which could be set by the user, do they want to stop with the
first completely correct match, or instead continue processing in the event
that there are several complete matches? Also relevant to this is the
situation where a complete match is never found, and instead several
partial matches are found; depending on the number and type of elements
they would have different quality scores.
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5.2.5 Compounding of Errors in Addresses

This section describes a small number of problem address types, but they
are worth considering, as they reflect the situation where a user makes
multiple mistakes in a single address. A subset of the addresses tested are
presented in Table 5.27.

TABLE 5.27: Test Table for Compounded Errors

Type of Address G M W I

—– [24] Misspelt street with neighbouring locality

Jup Ln, Belmont (should be Jupp Ln, Rivervale) No No No Yes
Dorofy St, Bassendean (should be Dorothy St,
Ashfield)

No No No No*

Rensure Blvd, Mindarie (Renshaw Blvd, Clark-
son)

No No Yes No*

—– [25] Correct street, misspelt neighbouring locality

Hampton Rd, Handsdale (should be Hampton Rd,
Darch)

Yes No* No* Yes

Fletching St, Mirabooca (should be Fletching St,
Balga)

Yes Yes Yes Yes

Willis St, Wykiki (should be Willis St, Warnbro) Yes No* No* Yes

—– [26] Misspelt street, misspelt neighbouring locality

48 haleswoorth rd, floreatt wa (Halesworth,
Jolimont)

Yes No Yes Yes

Glosster St, Shentin Park wa (Gloster, Subiaco) No No Yes* Yes
Erwin Rd, Morley WA (should be Irwin Rd,
Embleton)

No No Yes No

—– [27] Misspelt street, wrong street type, misspelt neighbouring locality

Ozborn St, Palmyra WA (Osborne Rd, East
Fremantle)

No No No Yes*

Longfjord St, Wide Gum Valley WA (Longford Rd,
Beaconsfield)

Yes No No* Yes

Russ St, Bealiar WA (Rhus Ct, Yangebup) No No* No* Yes*

The results from this category are shown in Table 5.23, where there are no
“partial” results, only successful. Also, it can be seen IGL performed better
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than the other three geocoders in this category.
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FIGURE 5.23: Results for Compounding of Errors Category

Because IntelliGeocoder uses an iterative execution design, it is suited
to dealing with compound errors. This is because at each “generation”
of correction, each correction technique is applied. This results in per-
mutations expressed in what is effectively a “suggestion tree’. Assuming
that all of the sources of error in the address can be corrected by the
techniques used in IntelliGeocoder (Soundex, Levenshtein, neighbouring
locality, knowledge base), the order of how these corrections should be
applied is not a constraint with the design.
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5.3 Derived Functionality

The use of a complete address demonstrates that an address can suc-
cessfully flow from start to finish through a geocoder using the control
knowledge embedded in the events, goals and plans used in processing.
Strengths can be highlighted, in particular the almost endless possibilities
provided by an agent utilizing its strengths in control, along with the
ability to rewrite the rules and facts in the knowledge base at runtime
(due to the rule based system being interpreted).

5.3.1 Fusion of Knowledge and Control

The results of fusing the knowledge (contained in the knowledge base and
the agent) with the agent, and its associated control, can be categorized in
two ways. The first is that because the knowledge base is interpreted, it
can be altered dynamically at runtime; the second is that the agent (which
is compiled) can have its behaviour altered by it accessing the knowledge
base in its compiled code. Essentially this means that the compiled code
accesses the knowledge base in a set way, but the knowledge it accesses
enables the agent to exhibit “pseudo-interpreted” behaviour.

The knowledge base in the prototype stores facts which are at a fundamen-
tal level of knowledge, similar to those in the G-NAF (Richards and Paull,
2003). However these are stored as facts and they have the capacity for
inference. The sample aliases seen in Program 1 are representative of the
locality aliases created in the prototype, and were created as a result of the
correction techniques (e.g. Levenshtein, Soundex, geographic neighbour).
Specifically, these were created when the original query was successfully
resolved to a single corrected result; however with minor improvements to
the prototype in the future several geocoding suggestions could be provided,
they can all be stored as aliases, but with the quality codes indicating the
confidence that they are.

There is no measure of confidence to the correctness of the alias stored
in the knowledge base (not to be confused with the scoring in the agent
component), if it is present in the knowledge base it is assumed to be
correct and reliable. In the prototype, aliases were not stored for street
names, however if they were, it would be possible to use two disparate facts
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Program 1 Aliases Stored in the Knowledge Base

(MAIN::locality-alias (alias-name ‘‘SUBI’’)
(real-name ‘‘SUBIACO’’)
(state ‘‘WA’’))

(MAIN::locality-alias (alias-name ‘‘FREO’’)
(real-name ‘‘FREMANTLE’’)
(state ‘‘WA’’))

(MAIN::locality-alias (alias-name ‘‘EAST FREO’’)
(real-name ‘‘EAST FREMANTLE’’)
(state ‘‘WA’’))

(one regarding locality, and one regarding street name) to solve a single
incorrect query with those two elements being incorrect. An example of
this is in a first query (“Runner Ave, West Perth”) an alias for “Walker
Ave” (correct) was stored as “Runner Ave” (incorrect). In a separate query
(“Ord St, Western Perth”), an alias is stored for “West Perth” as “Western
Perth”. In each of these individual queries, they were solved because
they had other complementary information. In the first query a semantic
search found a street suggestion and had a correct locality to confirm this;
in the second query the street was found, and its corresponding locality
(“West Perth”) was considered a confident match with the incorrect input
(“Western Perth”). With these aliases now stored, a third query (“Runner
Ave, Western Perth”) was easier to match. The knowledge base is one of the
correction techniques which can be called after or before another correction
technique.

The control of the agents in the prototype is affected by the retrieval of
these aliases. When the agent finds an alias in the knowledge base, it uses
the entry and does not need to use the other correction techniques; this
is because the entries in the knowledge base are derived using the other
techniques. Further work could allow the knowledge base to synthesise its
own knowledge, then it would be used in conjunction with other correction
techniques.

The test addresses which had incorrect or abbreviated localities demon-
strate the transfer of domain knowledge to control knowledge, where the
locality aliases stored in the knowledge base become asserted in the agent’s
beliefsets.
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The use of relational, tuple-based beliefsets in the agent system is sufficient
for storing operational knowledge, and for the bulk of test addresses it is
suitable for storing the domain knowledge. This is because (i) the level of
knowledge being stored in the knowledge base is low level aliases, and (ii)
the issues associated with many of the problem addresses are syntactic.
But the test addresses with an ontological similarity reveal that a different
approach (other than relational storage) is needed to store, and infer, the
relationships needed to geocode these queries; the rule based system serves
this purpose.

For the levels of completeness category often there is no way to “repair”
something that is missing (and the associated ambiguity), although some-
times the missing information can be solved from other complementary
elements or other datasets, and from users. The intelligent geocoding
model does take this into account, it was just not within the scope of
implementation of the prototype. Rules in the knowledge base relating to
aliases have a geographic context because the aliases are only relevant in
given areas (i.e. one area, many areas or universal).

IntelliGeoLocator demonstrated how an agent which displays dynamic
behaviour from static code can connect with a rule based system to provide
the ability to dynamically rewrite code; this itself is the link between
control knowledge and domain knowledge. From this it was shown that
domain knowledge could transition to control knowledge when the agent
accessed the knowledge base, took the results and put them into agent form
(beliefsets, messages, plans) where they could be acted upon. An example of
this was the aliases in the knowledge base being used to solve queries. Also
demonstrated was the use of a basic ontology. Context in the knowledge
base included the state associated with a corrected locality, and also the
locality associated with a corrected street.

The highlight of learning in the system is the automatic generation of
rules which are stored in the knowledge base; this makes full use of the
rule based system. This prototype did this successfully when a single
suggestion/match was found for a query. This was because (according
to the processing of the prototype) there was only one possible solution.
During testing an address with a correct street name and incorrect (but
valid) locality was corrected, and a rule created. The correct locality was a
neighbouring locality, and it contained the street name. It is important to
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look to the future and recognize that using the knowledge base will provide
functionality that a file-based solution or database could not. The use of a
rule based system for matching was unique. Included with the development
of the knowledge base was the associated ontology and high level rules; if
these had reached a greater level of sophistication it is anticipated that
better results in the area of learning would have also been possible.

5.3.2 Context

The results of using context can be seen in the different roles that the
agents have, the plan selection inside agents, the messaging between
agents, and in the knowledge base.

Having agents with different roles allowed for parallel processing between
agents, but in terms of context, the most benefit of separate agent roles
came from the agents being able to specialise in their own element type,
and the fact that by having separate agents allowed for the design of plan
selection in the agents and messaging. Having the UserAgent provided
a common entry point for new queries, and allowed for the creation of
tracking data for each new query. This tracking data was critical for the
operation of the prototype and segmenting this functionality into one agent
was a convenient way of ensuring the tracking information was created
before distribution. Because the user agent manages all interaction with
the user, the element agents do not need to do this which made design
easier and in the future if there is increased interaction with the user (e.g.
via a website) then it would be easier given that there is a single point for
communication with the user.

The MatchingAgent also provides a single point of coordination, with
regards to bringing together the results of the various ElementAgents.
This worked without any problems, and was essential for aggregating the
different elements; it also provided a single point for using the combined
elements to execute a query to the database or web service to retrieve
coordinates. Although the PresentationAgent was not implemented in
the prototype, it has been planned for and would customise presentation
according to context based on the needs of the user; in this sense it would
be an intermediary between the UserAgent and ElementAgents.

Because there is just one ElementAgent and it is set at runtime to be
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responsible for a particular element type, context is important for it to
perform the processing relevant to its element type. This is where the
relevant() and context() methods provide static and dynamic choice with
regards to plan selection. Examples of this in the element include selecting
plans based on the element type, and also the combination of element type
and the complementary element type.

Program 2 Relevant and Context in the Agent Language

static boolean relevant(BuildAdjacentsGoal ev)
{
boolean returnBool = false;

if ( ev.element_type.equalsIgnoreCase("locality") )
{

returnBool = true;
}
return returnBool;

}

context()
{

ev.upper_neighbour_type.equalsIgnoreCase("state");
}

In Program 2, it can be seen that the language-standard methods of
relevant() and context() are used to test if the element type is “locality”,
and the upper complimentary element is “state”. It is important to note
that the relevant() method is static in terms of the Java language, and so
tests in this method must be consistent with those expected in a Java static
method; in this case it means this is where the payload of agent messages
are examined. In the example, another value in the message is also tested.
The power of the context() method is its ability to not just test with a static
limitation, but also with dynamic objects - especially beliefsets. It is in
the context() method that the agent can evaluate a beliefset at the time of
plan selection, and use the results of the beliefset query to select a plan.
This has significant potential power because it means that the context()
method could (as it is appropriately named) be used for modifying the
processing of the geocoder based on the context of the user or application.
For example, the particular context of the user could be captured via the
website and each particular preference stored in a beliefset. The code
sample in Program 2 is presented to reinforce how context is so specifically
catered for in the agent language. In the prototype, use of the knowledge
base was from agents plans, and direct calls can be made to the knowledge
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base in the context() method.

The messages used in the prototype are mainly “well-known”, in the sense
that each agent has the code it needs to adequately process any messages
it receives at runtime. The best example of context in the prototype
messaging is the “message overloading” which is used to send a particular
type of message but have their elements vary in their type (seen in Program
3); this is the same concept as method overloading in regular object-
oriented programming.

Program 3 Message Overloading

#posted as
attributes(int queryID_v, String element_type_v,
String element_value_v)
{
...

}
#posted as

attributes(int queryID_v, String element_type_v,
String element_value_v, boolean suggested, ArrayList loc_list)
{

...
}

The code in Program 3 is included to highlight that context exists not just in
where the message came from (and where it is going), but also the structure
and contents of the message. This provides a means whereby geographic
semantics represented in a message could be used to determine the action
to take. Further research would be required to investigate how to achieve
this.

There is context in the knowledge base, as the aliases are only applicable
in certain situations. For example the locality aliases are only applicable
in certain states. The same could be done with streets in states, streets
in localities and so on. The results from the prototype indicate a basic
capability, but there is so much more that could be done using this
approach in future research. There is a powerful complement where the
knowledge base provides results which incorporate geographic context, and
the agent uses the results in a way that utilizes control context. The agent-
based and rule-based paradigms have provide a novel and effective control
mechanism. Plans are the embodiment of context, as seen by the three
levels of granularity available.
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5.3.3 Rule-Based Address Reconstruction

In explaining the results for rule-based reconstruction, the same example
address is used as presented in Section 5.2.4, which is “Gloster St, Subiaco,
WA” (incorrectly inputted as “Glosster St, Shentin Park, WA”). The initial
suggestions from the ElementAgents can be seen in Table 5.28.

TABLE 5.28: Initial Suggestions from the ElementAgents

[wa] 1:0:0
[wa, shenton park] 1:0:0
[duncraig, galston place] 1:0:0
[ghooli, ghooli south rd] 1:0:0
[wattle grove, Glastonbury way] 1:0:0
[armadale, Glastonbury rd] 1:0:0
[subiaco, gloster st] 1:0:0
[woodvale, gloster way] 1:0:0

These values can also be seen in Table 5.21, except here the emphasis is
placed on the “equivalent” element values which are looked up, and paired
with the suggestion. Note that WA does not have an equivalent element as
it is the “top most” element.

With these suggestions asserted in the matching engine, it runs, and once
the matching engine has run, the IDs assigned to the matches (of which
there are not very many) can be seen in Table 5.23. The only match (i.e.
two or more pairs) is:

[wa] + [wa, shenton park]

This match, along with the various suggestions (which did not overlap with
any other elements) are sent back to agents with new IDs. Although the
majority of the suggestions were not matched, they are still given unique
IDs.

As mentioned in the design chapter, for each of these unique IDs, a new
“thread” is weaved which constitutes a new address - where necessary
the default (i.e. original) address elements are used to fill the “blanks”.
From the example, two of the addresses can be seen in Table 5.20. From
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Tables 5.23 and 5.24, we can see that “Shenton Park” and “WA” were
assigned the ID 1:7:0 - this is because they (the pairs) matched within
the reconstruction. When the elements were sent back, street and street
type lacked a value so the values of these elements (“Glosster” and “St”,
respectively) were taken from the original input.

Following the progress of the address with ID 1:7:0, it means that any
suggestions from this address will also have ID 1:7:0. These can be seen
in Table 5.25. It is important to note which correction techniques produced
these suggestions; Soundex was used on the street name with ID 1:7:0
because no technique had been applied to it previously. For the locality
element with ID 1:7:0, only the “geo neighbour” correction can be used
because it was derived from locality 1:0:0 using Soundex, and so it cannot
have Soundex used twice. As mentioned in the design chapter, only certain
particular correction techniques can be used in sequence. The suggestions
from the address with ID 1:7:0 can be seen in Table 5.25, and reveals
several pairs, seen in Table 5.29.

TABLE 5.29: Suggestions from the Address with ID 1:7:0

[subiaco, gloster st.]
[wa, subiaco]
[wa]

It can be seen that the overlap from these three provide the complete ad-
dress of gloster st, subiaco WA. The same rule-based address reconstruction
approach is used for street names and street types, but is not shown in the
example. Street numbers and unit numbers were not implemented, but
the same concept would apply and they could be implemented in a similar
manner. The difference with street number and unit numbers is that the
“direction” of the complementary “lookup” would be different. Remember
that for street name, locality, and postcode they all “lookup” the adjacent
element which is a larger aggregation. For street number and unit number,
the street name would be required to look these up and discover each
possibility - then these could overlap with the inputted values.

The matching worked as expected, with every possible match being found,
including the single elements. With each suggestion having its own unique
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ID, the matching is not confused between the different addresses, despite
the addresses being all in the same JESS runtime memory. This runs fine,
however it means that the facts and rules build up over time. If the main
memory in JESS is reset then all of the facts and rules are lost. There are
two ways this could be mitigated, although these were not implemented in
the prototype. These include using JESS modules to partition the execution
space so only certain rules run in an area of memory and the rules will
only match facts in the same given area of memory. The other option is
retracting the facts after the matching rules have been applied; this can be
done because the right-hand side (RHS) of the rule can reference the facts
used to activate it.

The code created to extract the results of the matching from within the
JESS memory and bring these “back” into the agent memory also worked.
This code provides a parameter which determines what level of matching
results should be fetched. This level is the number of pairs which constitute
a match. In this way, an address with five, four, three pairs and so on can be
found; this means the code can be called and the best match can be found.
Aside from the domain knowledge stored using the rule-based system,
there is also control knowledge as seen in this address reconstruction.
The results of using a rule-based system have indicated how a rule based
system is useful for situations where no single algorithm exists.

5.3.4 Flexibility

The existing flexibility that comes in the system is made possible by the
combination of beliefsets, plans and rule based systems. Included within
the existing flexibility are two ways to terminate processing dependent
upon the context, (i) stop when a certain quality is reached, or (ii) continue
until the maximum number of children levels is reached. Inside the rule
based matching system, the ability to set which elements are passed on
and which are not was a useful feature. Additional flexibility is provided
by the ability to adjust whether the MatchingAgent does the immediate,
raw geocoding. The prototype also demonstrated how weightings can be
tied to importance or user confidence of element.

When a new geocode query is submitted, it would be a useful to enable the
user (which could be a person or another computer) to have a “dialogue”
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for geocoding or only a one time data entry. Improvements to processing
flexibility would include which geocoding algorithm to use for scoring,
either a conservative or broad choice; an example of the algorithm choice
considerations are seen in Table 5.30. In addition to this, the geocoder could
be configured to only use domain knowledge which has been designated
only for a particular use.

TABLE 5.30: Properties of Emergency and Business Geocodes

Emergency Business

Critical to have only 1 match Multiple matches are acceptable
Tied matches and choice of scoring
algorithm is important

Scoring algorithm serves as a rank

High level of confidence required More assumptions and lower confi-
dence acceptable

Near real-time is desirable Less time sensitive

Presentation information could also be enhanced, given the incoming
address and by including extra information such as platform and use
captured from the user and have the presentation agent make decisions
based on this; this would be presentation context.

5.3.5 Extensibility

The design of the intelligent geocoding model can easily extend the
framework to accommodate other syntactic and semantic considerations
in resolving addresses. This was the rationale behind having plans execute
the correction module; if a new correction technique is desired it can be put
in a plan, and added with little modification to existing code or changing
of the current design. This of particular interest for semantic correction
techniques which may developed in the future.

The knowledge base is also ready to be extended, extending the different
geocoding rules (eg. different jurisdictions, applications, countries, etc.) to
support the concept of the unified geocoding model. For different countries,
the idea would be that the same geographic primitives would be used
to represent any country, but the relationships between these would be
specific to that country. The facts and rules in the knowledge base would
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reflect this and the geocoding engine could then reason over these.

5.3.6 Information Discovery and Access

The datasets used in the project were pre-determined in the software, and
called when needed from within the plans. In the case of a local database,
the SQL was formed dynamically, and for the web service query the URL
was also formed dynamically. The foundation is present in the intelligent
model to allow settings about the datasets to be stored as facts and rules
in the knowledge base. For example, this would mean there could be
different plans for the different datasets, and then within these plans the
code accesses the most suitable dataset of that type. An example of this
would be plans for local database and web service, and then within the
database plan it queries the knowledge base using a particular geographic
region (for example Bentley, WA) and address type (for example complex
type) and then finds the best dataset. There is significant potential for
storing settings of how to access web services (and metadata describing
these services) in the knowledge base, which could be updated dynamically.
This would eliminate the need for “hard coding” where to find data. This is
related to the overarching theme of the semantic web, and the proliferation
of services on the Internet and the ability to find and broker previously
unknown services.

5.4 Conclusions

Results confirmed that the algorithm for scoring led to self-determined
behaviour, as it stopped when it found a natural maximum. The scoring
used the social aspect of agents, performing coordination and communi-
cation with the agent messaging framework; this also means that the
scoring approach embraces parallel and real-time processing. The scoring
approach allowed for flexibility and quality by including weightings for
address elements measuring both (i) importance of the individual element,
and (ii) the confidence associated with that element at a given point in
time (in real-time). Relevant to scoring is that future implementations
could add as many factors for determining geocode quality as desired (it
is expandable), these can be physical (additional geographic features) or
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virtual (e.g. cultural).

The event driven paradigm is well suited to the real-time nature of web
service requests on the Internet, and the agent lifecycle is also well suited
to geocoding, in several ways. First is the reactive aspect of responding to
a new geocode request, this is followed by the pro-active aspect of doing
everything possible to find a solution. The constant cycle of observe, plan
and act is also very relevant where there is constant and dynamic updating
of beliefs.

A controlled ripple effect in scoring is useful and manageable, where some
of the address elements contribute to the scores of some other elements but
not all. IGL has demonstrated parallel processing for geocoding and is a
scalable system.

The use of user perception in conjunction with semantic and geographic
correction has merit, however a richer ontology is needed for this. The
knowledge base has shown a proof of concept for storing geocoding rules,
and this could be extended to include greater sophistication. It was shown
that there can be compounded errors in geocoding, and this presents the
idea that “deeper” causes of error could be at work in some incorrect
geocoding queries. The agents were able to access knowledge stored from
previous experience and use this to complete a subsequent query, which
shows learning for geocoding in a prototype form.

With multiple tiers of context built into the agent framework, it is
well suited to modifying geocoder behaviour based on varying situations.
Context was included via (i) the different roles of agents, (ii) plan selection
inside agents, (iii) messaging between agents, and (iv) the knowledge base.

Because the research was focused on getting the framework (agent and
knowledge base) to work as a whole, there was less effort directed towards
correction algorithms. If more correction modules were added to the
agent (to cater for all types of problem addresses) then performance would
increase. The BDI processing approach could also be applied specifically to
correction algorithms.

The prototype demonstrated a unique approach using beliefsets to create a
mechanism which simultaneously (i) tracked the various elements being
processed in parallel and coordinated their reconstruction, (ii) enabled
multiple “generations” of addresses, (iii) allowed compound errors in
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addresses to be discovered during iterative processing, and (iv) pursue
multiple possible solutions for a single address (and its elements) then
choose the best.

The idea of a compunded error in an address and the fact that this problem
type was not handled by other geocoders is preliminary evidence that other
types of problem addresses may exist. It also hints that user cognition
could be a legitimate source of address errors. To handle these sort of
potential errors, it makes sense that a framework for geocoding which
has iterative processing, inherent geographic semantics, a dynamically
rewritable rule base and extensibility would be useful. The compounded
error type benefited from the iteration ability of IGL and the way it can
pursue multiple possibilities.

The way in which IGL processed addresses in the geographic and semantic
category is unique in that the agent representation and messaging pro-
vided inherent geographic semantics. This approach of having the software
paradigm be intertwined with the problem concept sets IGL apart from
other geocoders. The significance of this is not just tied to the results from
testing, but the power and extensibility the intelligent framework provides.

The dynamic rewriting of knowledge in the rule base has demonstrated
that a geocoder can add and update its own domain knowledge at run-
time. This has significance for future geocoders, because it provides an
opportunity for less human intervention and for the knowledge base to
increase its own knowledge autonomously. Another significant outcome
is that IGL has demonstrated that domain knowledge can be transferred
to control knowledge; there is actually a loop where after the agents use
domain knowledge to make control decisions they then use the outcomes to
add new knowledge to the knowledge base.

Using a rule based system for aggregating data from multiple agents is
useful because it does not fire until all needed data is asserted, so two
functionalities include (i) having many rules to determine control based on
content of the data, and (ii) temporal control where the engine waits for all
agent input before proceeding. Using a paradigm which enabled inherent
semantics which was (i) had more functionality, (ii) enabled intelligence,
(iii) was very apt to the event driven and service oriented nature of
geocoding.
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It has been concluded from the testing of Section 5.1 that there is
a fundamental, quantitative difference in how the prototype performs
geocoding and that results indicate there are intriguing properties unique
to agent geocoding. It was seen from Section 5.2 that the prototype handles
a variety of addresses, is suitable for use as a geocoding engine now,
and with further research it could provide enhanced capabilities. The
functionality described in Section 5.3 indicates there are other benefits
from using an agent paradigm, in particular control and context.
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CHAPTER 6

CONCLUSIONS

INTELLIGENCE in geocoding is a product of both context and semantics
(at a conceptual level) and control and knowledge (at an implementation

level), where the two are “connected” by the agent paradigm which is
both a representation and a solution. This has provided a foundation for
intelligent geocoding and the conclusions presented in this section cover the
objectives originally presented in Section 1.5, namely identifying relevant
issues, developing an intelligent framework and examining both control
and knowledge.

6.1 Issues Relevant to Intelligent Geocoding

The specific opportunities for improvement which arise from the issues
in contemporary geocoding (Section 3.1) have a common theme which is
that intelligence provides solutions for all of them. Based on the flexible
capabilities of the prototype, the idea still stands that if the normalization
and reference data are as good as they can be, then benefit will come from
working with the user, understanding what they want and also making
the most from prior experience. Specific types of issues that are relevant
to intelligent geocoding including (i) the underlying process, specifically
within matching (Sections 3.1 and 2.2.3), (ii) a mechanism in software to
interact with increasingly available web services (Sections 1.3.1 and 5.3.6),
(iii) coping with an increasingly event driven and real-time nature of the
Internet (Section 1.3.1), (iv) robustness of natural language processing and
availability of reference data will continually increase (Section 1.3.1), (v)
greater attention needed for problem addresses based on semantic and
ontological errors (Section 2.2.1), (vi) determining and expressing match
quality, (vii) context (user, application, geographic, jurisdictional) as in seen
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in Sections 2.3, 2.9, 3.2.2.5 and 5.3.2, (viii) reducing human intervention in
maintenance and resolving problem addresses (Section 1.6). The rationale
for the intelligent framework for geocoding is that the existing geocoding
process would benefit from a new paradigm, providing the improvement
needed to cater for these current and emerging needs. Each of the
issues identified and subsequently pursued in the research found their
way into the design and subsequently into the prototype, which shows that
the issues had real solutions and that they also contributed to the new
functionality presented in the results chapter.

6.1.1 Intelligence as it Pertains to Geocoding

Intelligence can be used for improving geocoder performance over time
and reaching new conclusions. This can be done by using a rule based
system to combine disparate facts describing address elements to solve
new queries (Section 5.3.1). For geocoding, intelligence includes making
decisions based on subtle differences that are situationally dependent. An
example of this is the use of context for control as seen in Sections 2.3,
2.9, 3.2.2.5 and 5.3.2. The ability to adapt, and the flexibility to make
choices and operate in new situations is a property of intelligence and in
geocoding this is made possible by accumulating dynamic aliases over time,
and subsequently increasing knowledge (Section 5.3.1). An intelligent
geocoder has the ability to form outcomes catered to the subtleties of the
address being submitted. This non-deterministic behaviour is described
in Section 2.4.1 and means the framework can handle subtle differences
in queries and form results accordingly. Social behaviour with users and
other software can be seen in the intelligent framework via the messaging
capability (Section 2.8) and event-based processing (Section 2.7) which both
contribute to providing intelligence in geocoding. Having an understanding
of the data and concepts the geocoder uses is part of intelligence, and an
approach to this is a shared geographic ontology that can be used for control
and domain knowledge (Sections 2.4.2 and 3.2.2.5). Intelligence means
being able to consider multiple possible solutions, i.e. multiple directions
of inquiry and using the best result (Section 5.2.4), which IGL does. IGL is
also able to use past experience to influence current decisions (and improve
its performance), which is the fusion of knowledge with control (Section
5.3.1) and the use of domain knowledge (Section 4.3.6). When accessing
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this knowledge, IGL also demonstrates intelligence by understanding that
only certain knowledge is relevant in particular situations (use of context).
Intelligence in geocoding also includes the ability for justification, and IGL
is capable of explaining the steps and rationale it used in finding result
(Section 4.3.6) because it uses a rule based system.

6.1.2 Desirable Properties of an Intelligent Geocoder

The three main properties of intelligent geocoding include control, knowledge
and learning. Intelligent control in geocoding results in behaviour which is
event based, goal directed, distributed, parallel, non-deterministic, meta-
programming, recursive and object oriented (Section 2.4.1). Two knowledge
properties which are desirable for intelligence in geocoding include ontolog-
ical structure and logic. An ontology provides the structure for knowledge
in the database, in addition to the ability for reuse and sharing (of the
ontology and for the knowledge it describes), interoperability, structuring
knowledge bases, browsing and search (Section 2.4.2). Logic utilises the
structure provided by an ontology, and allows for applying and evaluating
rules, inferring facts that have not been explicitly stated, explaining why a
particular conclusion has been reached, detecting contradictory statements
and claims, and combining information from distributed sources in a
coherent way. Not all learning types are suitable for geocoding, for
example, ideas for using supervised learning have been considered but
could be intractable (Section 2.4.3). Reinforcement learning provides
another opportunity, where the success of geocoding could be used as the
performance critic, and this was the approach used in the prototype. It
is the deductive reasoning made possible by logical inference which has
the potential to create new knowledge (combining two disparate pieces of
information) within the knowledge base. Also useful would be the ability
to move from specific values (e.g. “Smith Avenue”) to expressing the same
ideas as types (e.g. “road”) as seen in Section 2.4.3, which would enable
additional conclusions to be reached via generalisation.

6.1.3 Benefits of including Control, Knowledge and Learning

As presented in Section 5.3.1 benefit of using control, knowledge and
learning together is that they are complementary and form a cycle, as seen
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in Figure 6.1.

FIGURE 6.1: Complementary flow of control, knowledge and learning

By including the reinforcement approach of learning (using a successful,
unique match and geocode as the performance critic) as part of control,
learning is provided. This learning creates new knowledge which is stored
in the knowledge base. This knowledge is then used by the control
component when making future decisions; this demonstrates the transfer
of domain knowledge to control knowledge. The implications of this are
that a system using this intelligent framework would continue to store
knowledge over time and because of this continue to increase its abilities.
As more knowledge is autonomously stored, the less human intervention is
required and the software control has a richer set of knowledge to draw on.

6.1.4 Unidentified Categories of Problem Addresses

Although identifying new types of problem addresses was not a major focus
of this research, an outcome of the research is an indication that there could
be additional types of geocoding errors relating to the spatial cognition of
users. The compound errors in Sections 2.2.1 and 5.2.5 along with the
ontological errors in Sections 2.2.1 and 5.2.3 indicate there are errors in
geocoding beyond just those handled by algorithms such as Soundex and
Levenshtein. For the semantic and geographic problem address types, all
the geocoders tested below 20% (Section 5.2.3), which indicates that this is
an area for improvement by the geocoding community. IGL performed well
with regards to the iterative and compound errors, which shows the new
approach is warranted and also reinforces the question of whether there
could be other problem addresses which are unknown. Also of relevance
is the fact that improvements in reference data does not solve errors based
on human spatial perception/cognition. Similarly, improvements in natural

164



CONCLUSIONS

language processing may improve processing of the query string, but do not
solve ontological problem addresses.

6.2 Development of the Intelligent Framework

The most significant aspect of the intelligent framework development
was the decision to represent the individual address elements as agents
(Section 3.2.1). This influenced almost every other aspect of the geocoder,
and is essential to the added functionality provided by event-based pro-
cessing and parallel processing (plus other benefits). Relevant to this is
the representation of the relationships between agents as messages, with
messages sent throughout the system referring to geographic relationships
and content. The goal-based and event-based capability of the framework
means that unless there is specialised data required (which had to be stored
locally), it is very realistic that a geocoder would be able to rely entirely
on the use of other web services and have no data stored locally (Section
3.2.2.1). Agent reuse is another benefit of the framework development, as
most agents are very similar except for a few specifics (Section 3.2.2.2).

6.2.1 Updating the Existing Geocoding Process

The intelligent framework uses a design and subsequent paradigm which
differs from other approaches in geocoding, and this was done to explore the
idea that there was a better way to coordinate geocoding and to embrace
the increasingly service oriented nature of the Internet. The iterative
processing within the framework is enabled by the multiple foci of control
(Section 5.2.4) within the agent paradigm. The messages used in the
framework allowed a new approach for geocoding to be tested, instead
of the linear flow approach. This enables distributed processing without
extra effort, and illustrated that additional types of geocoding errors could
be handled. The goal based approach (Section 3.2.2.3) provides flexibility
and the ability to specify a goal without explicitly defining how to achieve
it. This has positive implications for working with web services in the
long term, and in the short term allows context to be utilised for decision
making. Real-time correction (Section 3.2.2.5) and notification was enabled
by the agent paradigm and presents a new approach. This approach is
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also extensible, allowing multiple factors (geographic, cultural, abstract) to
be added and contribute in real-time. The scoring mechanism used also
embraces the parallel approach, and has the capability to work correctly
within this new paradigm, using techniques such as the limit for scoring
which reaches a natural limit.

6.2.2 Correction Techniques and Reference Data

It has been determined in this research (Section 4.3.5) the order which
correction techniques are used in is important (nearest neighbour needs to
be used after the element name is correct, for example using Soundex or
Levenshtein). Similarly, not every correction technique is suitable (or used
in the same way) for every geography type, for example the street element
type may not have a first order or second order “neighbour” the same way
a locality does. The reasons for this are based on the meaning associated
with the address elements and the fact that their fundamental geometry
types (point, line and polygon) are different. As more research is done into
user cognition in geocoding, it could be discovered that the address element
types, the order they are analysed in and their values all play a role in
the mistakes users make. Despite a new paradigm being used, no new
types of reference data were required, which means there is no additional
burden from a data perspective to using the intelligent framework. It is
the sum of these benefits (iteration, messaging/parallelism, goals and web
service usage) that allow the intelligent framework to pursue the geocoding
process intelligently. The goals allow the geocoder to pursue goals using
the BDI technique from AI, while the knowledge base allows for dynamic
storage, modification and inference. The inherent semantics made possible
by the agent assignment are also reflected in the knowledge base, where
knowledge is stored in terms of the same relationships. With additional
research it would be possible for the agent to choose from multiple web
services using BDI reasoning which would enhance performance even
more.

6.2.3 Role of Semantics and Context

There is inherent semantics within the intelligent framework such that one
address element can “contain” another spatially (Section 3.2.2.5), which
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is made possible by the agent paradigm. In addition to this, two layers
exist where context and semantics (between geography) relationships are
also represented at the control and knowledge level, made by possible
by the agent framework Section 3.2.2.5. Context was included in the
intelligent framework and prototype via (i) the different roles of agents,
(ii) plan selection inside agents, (iii) messaging between agents, and (iv)
the knowledge base. The role of semantics and context is at a higher level
conceptually than the control and knowledge used to implement it; it is the
semantics and context which deals with the geography and relationships
between geographic elements.

6.3 Using Control and Knowledge to Build Intelligence

Control and knowledge builds intelligence because it provides the under-
lying mechanism that powers the semantics and context mentioned in
Section 6.2.3. The benefit of using an agent-based approach is that it
enables the two tiers of (i) semantics and context, and (ii) control and
knowledge to be simultaneously represented, because the agents are the
geographic elements. Control knowledge is utilised in both the agents
and knowledge base in different ways, and can be characterised differently.
Knowledge in the agent is stateless (it is not stored between sessions) but
the knowledge in the knowledge base is persistent. When the prototype
is run for the first time, the knowledge base is empty, but increases over
time (because it is re-writable), while the knowledge in the agent remains
the same. Also, the knowledge in agents is expressed in terms of the code
and context in plans, events and other constructs; the knowledge in the
knowledge base is stored a completely different approach. Yet it is these
differences which ultimately make them stronger as a combination.

6.3.1 Requirements for Control and Domain Knowledge

Following from the mention in Section 6.3, control knowledge can be
stateless, while domain knowledge does need to be stored persistently.
Given the distributed nature of the intelligent framework, the ability to
track address elements and reassemble them throughout processing is
essential. With event-based processing being such a large part of the
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intelligent framework, it is important to have control data structures which
are suited to event-based processing, with a significant part of this ensuring
that the structure is temporally and thread safe. In the prototype, the
beliefsets (represented internally in the agent as relational tables) used
provided this temporally and thread safe capability (Section A.1). The
knowledge structure used in the control needs to be the same as that used
in the knowledge base, i.e. the same ontological structure; this allows
for the same concepts to be expressed in both which ultimately allows
transfer of domain knowledge to control knowledge. A relational structure
suffices for control knowledge, but more expressive storage is needed for
domain knowledge. This more expressive structure provides the ability for
inference.

6.3.2 Structuring and Querying Knowledge

From a development point of view, it was useful to abstract out what occurs
in the knowledge base, providing simplified software methods for the agent.
The “query ID” and “sub ID” used for tracking and aggregating address
elements are important to include in the facts used in the knowledge
base, as they are used to associate the elements from the various agents
and correlate them into one address. The facts used in the knowledge
base for indicating that two address elements spatially agree use the
same geographic relationships as those in the agents, this reinforces the
importance of having similar schemes in both. The rule based system
provides the mechanism to “layer” rules upon rules, for geocoding this
means atomic spatial agreement pairs (e.g. locality and state spatially
agree) can be combined to represent matches at any match success level.
Because there are individual match rules for each level of match (levels
one through four) it means there is a quality measurement metric already
in the rule based system. Because a rule based system is used for the
aggregation and matching, there is also direct lineage of what occurred
to get the result; this could be shown to a user to explain or justify the
processing steps used.
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6.3.3 Acquiring New Knowledge

The key to acquiring new knowledge is the ability to store new knowledge
dynamically and also the ability for inference. This ability for inference
allows for combining multiple disparate pieces of information to solve an
otherwise unsolvable query. Although it was not implemented in the
prototype, the framework allows for moving from specific instances of
address elements (e.g. street name) to the equivalent general concept (e.g.
type, such just “street”), this abstraction could be a way of learning new
rules that apply to the “general” based on the “specific”. Currently the
knowledge stored in the knowledge base prototype is derived only from
the correction techniques, this demonstrates learning but ideally a future
version needs to create knowledge from a mechanism other than those
original correction techniques (this would be possible via inference).

6.4 Future Work

The suggestions for future work are varied in terms of where they fit into
the geocoding process. Suggestions include modifying the agent to include
a rule based system to control the posting of goals, expressing facts in the
knowledge base in terms of geography, dynamic storage of web service
description information, and modelling errors made by humans due to
spatial similarity.

6.4.1 Rule Based System in the Agent

One option is to use the rule based system for control, and not only as
the repository of domain knowledge. The beliefs would be seen as the
raw beliefs (percepts) about its environment, while the rules in the RBS
would be another level on top of the beliefs. As the “raw” beliefs come
into the agent, this causes facts to be written in the rule based system -
but not everything is asserted (this would be redundant), but rather facts
at a slightly higher level; these might be referred to as aggregations. As
seen in So and Sonenberg (2004), where rules are used in agents. Dietrich
et al. (2003) suggests using semantic web technologies to build rule-based
agents.
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One concept is that the rules actually provide the agent with a sense of
perspective, in the sense that via the rules the agent can “recognize” its own
behaviour. For example recognizing that the agent is performing better
in locality than another, or that it has processed the same query several
times in the last week (which may be unusual). Because the RBS has the
backchaining functionality, it can also post goals, which the agent can then
pursue and when the goal is finished the result can be posted back into the
rule based system - which may in turn make another rule fire. Looking
at the strengths of the BDI and rule-based paradigms, it can be seen that
the hybrid idea could work. This is because with a regular BDI system the
criteria for defining when a goal is pursued is set at design time. By using a
RBS within the agent, the rules can be used to launch the goals. However
this means over time the rules can change, and the catalyst for posting
goals can change. This is analogous to people, where there is a finite set of
goals and actions people can do, but there motivations for doing them (and
combinations) may change over time.

6.4.2 Reference Data

Datasets commonly used for geocoding could be expressed using formats
compatible with semantic reasoning, for example the G-NAF could be
stored using RDF triples which would provide additional options for
inferencing over the data. Another related question is whether the Open
Geospatial Consortium (OGC) could release ontologies for various fields,
such as geocoding; this would tie in with the triples.

6.4.3 Geographic Facts Derived from GIS

For an area, street or point of interest, geographic facts could be asserted
about the location. These facts would be found via traditional GIS
processing functions. This would mean that reasoning could then occur
regarding geography. An example is a corner address, where the spatial
components of this phenomenon are spatially computed and asserted
as facts; a rule could then stipulate that this a corner address and
assert another fact accordingly. These geographic relationships would
be determined at design time, and would be the geographic computation
equivalent to a developed geocoding ontology.
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6.4.4 Dynamic Data Source Knowledge

Because web services provide an opportunity to access data that is current,
varied and in some cases specialized, aggregating these services for
geocoding would be beneficial. If the geocoder could discover these
web services (via web service registries) autonomously as they become
available, they could be stored as facts in the knowledge base. This would
mean the new web services could be added and modified dynamically. Also,
if meta-data and keywords were available to describe the web service, these
could be stored and rules could be used for selecting suitable web services
in the future.

6.4.5 Spatial Similarity in Geocoding

The work by Bruns and Egenhofer (1996) describes the searching of
databases using the concept of spatial similarity. In particular, the factors
of topology, distance and direction have been described, quantified and
used for determining spatial similarity. Further research could determine
whether types of factors could be useful in geocoding to describe errors
made by humans in their cognition of addresses. Further research could
include a correction module for the geocoder which uses these geographic
criteria for suggestions. A GIS could be used to perform the spatial queries
in real-time.
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APPENDIX A

ALGORITHMS

A.1 Beliefsets

Design of the beliefsets is based on the goals specified in Section 3.2.2.3.
Specifically, the goals of existence, complementary elements, agreement
of complements, suggestions and equivalent complements each have their
own requirements in terms of the attributes needed to store their data.
It has been mentioned that Prometheus is an iterative process, and the
design of beliefsets reflects this. The first “draft” of beliefset design assists
with agent selection, and can be improved later. The beliefset design is
presented below, in terms of the goal types. All of the beliefsets below are
presented in their final form, and in finalising their design, feedback was
taken from later steps in the Prometheus methodology.

Existence The main criteria for building a beliefset to work with this goal
is the ability to store whether an element is present and exists. These fields
can be seen in Figure A.1.
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FIGURE A.1: Relational Table Design for ”InternalValues” Beliefset

The possible values for the present and existing fields include true, false,
and unknown. There is an important difference between “false” and
“unknown”; with existence for example, false means no it does not exist,
which is quite different from it has not been verified yet. The other fields
will be explained in following sections. Also in Figure A.1 are the “Query
ID”, “Sub ID” and “Type” fields; these are all primary keys for the beliefset.
These key fields are found in almost every beliefset used in the geocoder,
as it provides a way to uniquely identify and track any address element
throughout the system.

Complementary Elements To clarify, the use of the word neighbour in
this beliefset name refers to the given element’s complementary elements.
Likewise, the terms above and below refer to the complementary ele-
ments. Although this wording could have been changed for presentation
in this thesis, the original terms were used due to complexities and
inter-relationships in the actual design. The information about the
complementary elements is stored in the “Neighbour Values” beliefset, seen
in Figure A.2.
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FIGURE A.2: “Neighbour Values” Beliefset

The type and value for each complementary element is stored, and the
potential values for these attributes are either true, false or unknown.
The other attributes are used for calculating a status score (discussed in
Section A.5). Figure A.3 shows how at the beginning of processing the
type and value of a complementary element may be unknown, but once the
information is found, it can be updated.
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exist-above
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Complementary Elements

FIGURE A.3: “Neighbour Values” Beliefset being Updated (upper portion)

The example in Figure A.3 shows the type and value of the complementary
element being set from unknown to postcode and 6014.

Agreement of Complements The storage of whether an element agrees
with either of its complements is in the InternalValues beliefset, already
shown in Figure A.1. From a design point of view, all of the information
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relating to the particular element type being analyzed is put in the
InternalValues beliefset, while information in regards to “other” address
elements (from the perspective of the element being analyzed) is stored
in the NeighbourValues beliefset. An example of how a record in the
NeighbourValues beliefset can update is shown in Figure A.4.
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FIGURE A.4: Agreement of Complements Information being Updated

Note how in Figure A.4 the final agreement is stored as true and false,
while at the start of a new geocode query this processing has not been done
and is initially set as unknown.

Suggestions A beliefset is needed to store all the suggestions arising from
the suggestions goal. The requirements are similar to the other beliefsets,
except that an additional primary key field is needed (SUGGESTIONID)
to uniquely identify suggestions; this is because there can be multiple
suggestions of the same type. The value of the suggestion is a regular
attribute. The beliefset design purpose is named ElementSuggestions, and
is shown in Figure A.5.
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FIGURE A.5: “Element Suggestions” Beliefset

In addition to storing the actual suggestions themselves, it was also
anticipated that another beliefset may be needed to store information about
the suggestions. The design started with a count of the suggestions, and
the design stayed this way. In the future, other attributes cold be added
to store statistics or other information used to examine performance. The
MetaSuggestions beliefset is shown in Figure A.6.

FIGURE A.6: “Meta Suggestions” Beliefset

Together, the ElementSuggestions and MetaSuggestions provide the infor-
mation needed to find the equivalent complements for a given element.

Equivalent Complements There is actually no beliefset created specifi-
cally for the equivalent complements. The details why will be covered in
following sections, but it is largely because it is the last goal, and as long
as it can pass its results onto the next step in the geocoding process, it does
not need persistence.

Matching and Scoring It was anticipated that beliefsets would be needed
for storing the elements used in the matching process, storing any explana-
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tory information, and also the weights used in calculating a status score.
Figure A.7 shows the beliefsets used in matching.

FIGURE A.7: “Matching Elements” and “Meta Matching” Beliefsets

The attribute type “available” in the MatchingElements beliefset provides
the ability to store an address element in the beliefset but not use it
yet (used for when a brand new query enters the system). It was also
anticipated that a beliefset would be needed to store the results of the final
stage in geocoding - obtaining the coordinates. The beliefset created for
this, MatchingCoordinates, is presented in Figure A.8.

FIGURE A.8: “Matching Coordinates” Beliefset

Weightings are used to calculate the status score, where each different
element type that contributes to the score has its own weighting in relation
to the element type having its score calculated. Instead of having these
weightings hard coded, the weightings are set at runtime and stored in a
beliefset. The structure allows for different element types to have different
weightings relative to other element types. For example, the street type

may have a higher weighting than state when calculating the score for the
street element. The beliefset for storing these weights is seen in Figure
A.9.
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FIGURE A.9: “Weights’ Beliefset

Coordination It was recognized that coordination and tracking would be
an issue with so many addresses being processed, and also the need to
determine when processing is completed. To assist with this, the beliefsets
AddressTree (Figure A.10) and MetaUserCompletion (Figure A.11) were
designed.

FIGURE A.10: “Address Tree” Beliefset

The AddressTree beliefset provides a mechanism to track the number
of suggestions that have been created from a given element value, and
whether the “child” element itself is done with processing.

FIGURE A.11: “Meta Completion” Beliefset

MetaUserCompletion is a beliefset which gets updated when a particular
element is completely finished processing.
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A.2 Address Element Tracking

There is a concept of “parent” and “child” addresses, and more specifically,
child elements. The original address is considered to be the initial parent,
or root node, of the system. During geocoding, several iterations can
occur depending on how incorrect the original address is. Suggestions
are made for each element that does not exist, or exists but does not
spatially agree with its complements; each of these suggestions adds to
the number of possible addresses that could be the “corrected” version of
the original query. The iteration within the system stops after three child
“branches” have been pursued, or when a complete match is found. It was
the opinion of the researcher that beyond three branches, there may be a
risk of straying too far from the original query element.

Each suggestion that emerges from the matching and is kept becomes a
child node. Each element within the original address is essentially the
parent node of its own tree; and the parent node along with each of the child
nodes have corresponding, complementary elements on the other trees.

1 0 0

1 1 0

1 2 1 1 3 1 1 4 1 1 5 1

1 6 5

FIGURE A.12: Unique Identifiers for Each Child Node

Figure A.12 shows that each element suggestion has three unique integers
which together distinctly identify the element. These three integers, from
left to right, are the query-ID, sub-ID and parent-ID. The query-ID is the
same for every element contained/generated from the same original query
submitted by the user; in Figure A.12 this value is 1. The sub-ID is unique
for every element, this simply increments for every additional element
suggestion that is added; in Figure A.12 this value ranges from 0 (in the
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root element) to 6 (the final element or third generation). The parent-ID is
the sub-ID of the element “above” (i.e. its parent) any given element.

As described in the Appendix, the FindBestValue goal has several criteria
for success, one of these criteria utilizes this concept of parent and child
nodes. The goal succeeds when a parent element has more than zero
child elements, and the number of total child elements equals the number
of completed child elements. As a design decision, no more than three
“generations” of child element suggestions are allowed to ensure the
suggestions are not too far removed from the intended value inputted by
the user. This means that processing would stop when an element writes
to a beliefset a parentID of 2. Of the different criteria for termination, it is
the first to occur which causes termination. In Aldemir (1994), Friedmann
Mattern’s idea of “sticky state indicators” is provided as a solution for this
distributed termination detection problem which useful for termination in
agent-based geocoding.

This tree structure and the FindBestValue is recursive, in two ways. The
first is that suggestions originate from suggestions, and this continues
for three generations. As a result of this, the second form of recursion is
the that the goal FindBestValue will be nested. This is because a parent
element will not have completed its goal until its child element has, and so
on; once the child element has finished, the parent is free to complete their
goal.

The steps after the posting of FindBestValue are evaluated every time the
FindBestGoal is posted, although not every sub-goal will necessarily be
pursued.

This capability for tracking address elements throughout the system,
and knowing which elements are the parents or children makes possible
the concept of iteration. Iterations allows the cycle of goals to be used
several times. Each of the goals are visited one after another, which
at first inspection seems to be the same as the linear geocoding process
used in current geocoders, but the whole sequence of goals can repeated
if needed. The rationale behind this is that some addresses may need
several transformations in order to be fully corrected. For example, a user
may have a locality confused with its neighbour and may also spell that
neighbour incorrectly. It is expected that in the future that the use of
in-depth semantics in geocoding will further validate this concept. If the
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whole geocoding process can be thought of a “pipe”, the iteration essentially
takes the first set of results and drops these back into the pipe.

Figure A.12 is both a data structure and a process, and conceptually is
applicable to both whole addresses and individual elements. In other words
each node shown in Figure A.12 could represent an address or specific
element (e.g. a locality or postcode). If used for a whole address, then
only one tree would be needed, as presented in Figure A.12, but if used
for individual elements, there would be many trees used in conjunction
with one another. Any number of suggestions could be found for a given
element, which means there can be more suggestions for a particular
element type than another. Root nodes will always have the exact same
IDs; for the leaf nodes though, it depends how the subIDs are assigned. If
issued indiscriminately then there would be no commonality of numbering
between the different trees.

Alternately, a mechanism could be used to coordinate the distribution of
subIDs such that the element with a particular subID in one tree belonged
to the same address as an element with the same subID in another tree.
This option would mean that if the elements contained in all trees needed
to be reassembled, a query to gather all the elements with the same subID
would belong to the same address.

A.3 Address Element Reconstruction

It was shown how the goals constituted a large part of the overall system
operation. Each element in the address, unless it exists to begin with and
also spatially agrees with its complementary elements, will move through
each of these steps. The last goals in the sequence were Suggestions and
Equivalent Complements, and after these steps have concluded, the result
is several lists containing pairs of the form [suggestion, equivalent] created
by each of the agents, operating in parallel.

It is in this section that the overall algorithm resumes, and the following
five steps are given consideration:

1. Element candidates and adjacents are sent to the matching agent with
the queryID, subID and parentID of the element value for which the
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suggestions and adjacents were created from.

2. Suggestions and adjacents are processed in rule based system, and
none, one or many matches may be found.

3. The matching agent maintains a counter to store which subID inte-
gers can be used.

4. Each match is given a unique subID and the counter is incremented
accordingly, suggestion elements which do not match are also given
a subID. The respective parentID is also attached. It is necessary to
give subIDs to the elements which do not match, because in the worse
case scenario they will all be sent back as suggestions and therefore
need a subID.

5. Each of the elements in the rule based system are sent back to their
respective agents, and written into the InternalValues beliefset using
the queryID, subID and parentID provided by the matching agent.
Included in the messages back to the element agents is the total
number of elements being sent (this becomes the number of children
number for the parent element). From a contextual point of view, if
the user wants feedback during geocoding, the MatchingAgent would
send the matches it finds in the RBS to the UserAgent for display to
the user.

This reconstruction algorithm provides a coordinated numbering of leaf
nodes. Because it is the MatchingAgent which generates, assigns and
distributes the subIDs, it possible to ensure each element belonging to a
particular address each receive the same number.

To demonstrate what is happening, consider the lists created for several
elements, where the known element is in regular font, and the suggestion
is in italics. This would be [street name, locality], [locality, postcode],
[postcode, state] and also [state]. Note that state does not have an
equivalent element suggestion, as it is at the “end” of the elements;
in terms of its agreement with other elements, the state has only one
complementary element.

If these lists of pairs are grouped together it can be seen that there is
“overlap” between the suggestion of one pair, and the equivalent of another.
Using this overlap means the lists can be chained together, and if enough
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of these pairs are chained together then a complete address will be formed.
Even if a complete address is not found, addresses comprised of varying
numbers of elements will be found. In order to reconstruct and analyze
these lists of suggestions and equivalents, a rule-based system is used.

Within the rule based system, each of the suggestions is asserted as a fact,
of type potential-element. This fact has the slots query-id, type and
value. The slot query-id is used only to keep track of the various facts
in the system, so that facts from different queries do not interfere with
each other. The type slot is used to identify whether the suggestion is a
state, postcode or street name etc. The value is the actual character string
representing the postcode, street name etc. In Figure A.13 it can be seen
that potential elements include a state (“WA”), postcode (“6014”), locality
(“Wembley”) and street (“Marlow”).
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FIGURE A.13: Rule Based Address Reconstruction

To represent the relationship between the suggestions and their equivalent
elements “to the left”, another fact template, agreement, is used. This
template has the slots query-id, of-type, of-value, with-type and
with-value. The of-type and of-value slots describe the suggestion,
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and the with-type and with-value slots describe the element type
which is equivalent to the suggestion. In Figure A.13, agreements can
found between state and postcode, postcode and locality, and locality and
street. The example shows how for each of these agreements, the two
potential-element facts are mentioned in the agreement fact, which
ultimately means the two elements match with each other (resulting in,
for example, the state-postcode-match fact). Even if there are two
potential elements, there is no match without the agreement fact.

The way rules are used in the reconstruction process can be thought of as
“finding pairs”, and then “groups of pairs”. The rules are used for matching
and consolidating facts, as seen by the three tiers of facts which are
processed in two stages. The first stage rules (such as state-postcode,
postcode-locality and locality-street) bring together the other-
wise disparate fact types of potential-element and agreement and
explicitly define any pair matches found as facts (e.g. state-postcode-
match and locality-street-match).

These facts representing matches of pairs are then further combined (if
they match) and unified into a single fact representing a complete address.
This unification can be seen in Figure A.13, where the address-match fact
contains values for the state, postcode, locality and street name; the values
for street type, street number and unit number remain null in this case,
as no information (in the form of facts) was matched for these. The name
of the rule match-3-1 has meaning; the first number (3) indicates it is a
rule used for matching three facts, and the second number (1) is a unique
identifier (i.e. this naming convention allows for many rules which match
three facts). It should be noted that the first two slots in the address-

match template are query-id and match-value; the latter is used to
store the number of pairs combined to populate the address-match fact,
this number also serves as an initial quality indicator.

The address represented by address-match in Figure A.13 is one of the
potentially many addresses. This address is also a “first generation” child of
the original address (root node). Only the address matches with the highest
quality values are “kept” for subsequent reiteration. For example, if there
were many address-match facts with quality scores of 3, 2 and 1 - only
those with quality 3 are kept; at this overall stage of the geocoding process,
no weighting is given to the various element types that may comprise
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that address. Unless this child address is a perfect match, it will be re-
submitted back into the system, and follow the same process that the
original address (its parent) did when it was first submitted.

A.4 Reiteration of Address Elements

In the processing algorithm, the initial query passed through a series of
goals, where various assessments were made, status scores were calculated
and where necessary suggestions were found and messages were sent to the
matching agent with the information needed for matching. Matching then
occurs and this leads to the next steps, including:

1. The elements which are sent from the MatchingAgent back to the
element agents are added to the respective InternalValue beliefsets,
using the queryID, subID and parentID supplied by the matching
agent.

2. Adding the elements from the MatchingAgent is (mostly) treated no
differently from when the original element entered the system and
was itself added to the InternalValues beliefset. This addition to
the beliefset begins the process of pursuing goals that are relevant.

3. Any elements being sent from the MatchingAgent already “exist”,
so the first goal Existence is not needed. The other goals may all be
suitable.

4. The Complementary Elements and Agreement of Complements goals
are pursued for the agent, and results are written to beliefs as usual.

5. As usual, any time during pursuing goals, status scores are recalcu-
lated if needed.

6. If needed, the Suggestions plan is activated and the usual process
follows where suggestions and equivalent complements are found and
sent to the matching agent. The queryID, subID and parentID reflect
that these originated from next generation elements.

7. Overall processing ends when elements reach the third generation is
reached or a match at a given quality level is found.
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One of the outcomes from the tracking system, messaging and beliefset
design is that throughout the various InternalValues beliefsets con-
tained in the element agents, each of the element types has corresponding
equivalents in other agents; this means in each beliefset within the
different element agents are elements each with the same queryID and
more importantly the same subID. The best way to think of this is if a
“join” (the database definition) were to be performed across the different
beliefsets using the queryID and subID, then a complete address would
be the result.

When an agent is determining its complementary elements and agreement
of complements, it will request information from its complementary ele-
ments; this request will include the queryID, subID and parentID of the
desired element. If the agent being asked has no tuple with that queryID
and subID then it adds a corresponding tuple and for the value uses the
“default” value of its parent (determined using the parentID).

When finding suggestions for an element (Suggestions goal), given two
complementary elements, if one element exists and the other does not then
suggestions are only found for the element that does not exist. If both
the elements existed, but did not agree spatially, the suggestions would be
found for both elements.

The nature of the system means that there can be many combinations of
potential elements forming many potential addresses. However with the
tracking techniques used, this is not a problem.

Only certain correction techniques can be used at various generations of
suggestions, also there are restricted orders in which the techniques can be
used. Restrictions include that, for example, the finding of neighbouring
localities can only be used if the original locality exists. Also, the opinion
of the author is that a technique cannot be used twice - soundex used twice
would provide erroneous suggestions. The knowledge base can be used at
any generation. A selection of valid combinations of correction includes
Levenshtein-Soundex-Geo (where “Geo” is neighbouring geographic locali-
ties), Soundex-KB, Levenshtein-Geo and Geo-KB.

The whole process is a cycle, with the bulk of the processing done by the
various element agents, with the matching agent providing an essential
integration mechanism followed by subsequent redistribution. The tree of
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element suggestions provides a novel (and exhaustive) technique to look for
potential address matches.

Figure ?? shows how elements from the Matching Agent are sent back to
the ElementAgents and added to the InternalValues beliefset, in a way very
similar to a new address element (from an entirely new geocode query). By
using this approach, it means that the same process can be used for either
a new address element or an element being used as part of an iteration.

A.5 Quality Scores

The focus of quality in the agent system is on the quality of the address
results, specifically to what extent the address elements agree with each
other and the overall spatial agreement of the address. Because sugges-
tions are found in separate agents at element level, and so the “inward
looking” scoring scheme is relevant and valid because when a suggestion
is found, not all other element types are automatically modified to reflect
or agree with the suggestion value. Using the agent-based quality means
that a measure is provided to the user so they understand the quality of
the geocode they are using, and has a focus on the address itself.

The quality score for an individual element in the address has a value
between zero and one. The score is a measure of how well an element
“fits” with the address it is in. A value of zero (0) indicates no agreement,
while one (1.0) indicates that the element agrees completely with its
neighbouring elements. Combining these individual scores together can
also provide an overall measure of quality for the address.

The individual score is calculated by using several factors, including
whether the element value is present, exists, and agrees with both its upper
and lower neighbours (where applicable). Each of these factors is also
given a numerical weighting, which reflects the relative importance of the
factor. For example, when calculating the score for street name, it would
be considered much more important for the street name to agree with the
locality than with the street type; this is reflected by giving locality a larger
weighting in the calculation. Each particular element being calculated
can have different weightings for the same element type. Also taken into
account is the current score of the element’s complementary elements. This
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means that the current status score of one element will affect the score of
the elements that rely on it, because of this the element scoring process
is interdependent and gives an inherent measure of the overall address
quality. The calculation be seen in Equation A.1, where w is the weight
and s is the score.

score =
wpresent + wexist + (wupper × supper) + (wlower × slower)

wpresent + wexist + wupper + wlower

(A.1)

When calculating the numerator, the weight for present and exist are
only added if the element is present and exists. When calculating the
denominator, the weights for being present, existing and agreeing with the
neighbours is added regardless. Ultimately, this means that the status
score for an element is penalised via the numerator. When a new query
is submitted, each element is given an initial quality of 1.0. This can
be thought of as providing the element with the “benefit of the doubt”
regarding its score; not until proven otherwise is the element penalised.

A score for the overall address can be calculated by combining these
individual address elements. This formula can be seen in Equation A.2,
where n is the number of elements submitted in the original query, and m
is the number of elements in the final, matched address result for which a
geocode is returned to the user; when calculating the overall score before
processing has completely finished, m is the number of elements which are
present, exist and spatially agree with their complementary elements. The
score of the element is the same score calculated for individual elements in
Equation A.1. It can be seen in Equation A.2 that the score is penalised
if the number of elements in the final matched address is less than the
number originally submitted. This penalty is applied because the resulting
address contains less information than the original. This penalty is useful
to quantify the fact that although a result address may have a better
score than the original submitted address, its geocode may have a reduced
resolution than the original query.

score =
m

n
×

∑m
i=1(welement i × selement i)∑n

i=1 welement i
(A.2)

Each element used in Equation A.2 has a weighting which denotes its
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importance to the overall address. For example, the postcode can be
configured to be more important in determining a geocode than a street
type.

The linking algorithm used to find address matches was presented in
Section 4.9.2, and this algorithm also provides a basic source of quality
information. The matching agent ranks the results it obtains using
the linking algorithm, in order to pass on only the best matches to the
respective specialty agents. When the linking algorithm is used, the
number of pairs that agree spatially is recorded. For example, an address
that has the state, postcode, locality, street name and street type in
agreement would have 4 pairs in agreement.

As well as providing the user with an indication of how reliable their results
are, the quality measures are also important in internal system processing.
When multiple address matches are found, regardless of whether one or
many results are expected, these matches need to be sorted. Some sorting
occurs within the matching agent (using the “pair score”), and after this
further sorting occurs at the specialty agents, where addresses considered
to be of “equal quality” by the matching agent can be sorted based on the
whole address score calculated for each. For example, although there could
be two matched addresses returned by the matching agent, each with three
pairs that spatially agreed, each address could have different sets of pairs.
Because of the weightings associated with the different element types, this
means that one of the addresses could have a higher whole-address score
calculated for it and subsequently considered a better result.
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