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Abstract

Automatic facial expression recognition has attracted significant research attention since

the 1990s due to its potential applications in human computer interaction. Although fa-

cial expression recognition seems easy and straight forward to us, it is a challenging task

for computers. Due to the subtlety and variability of human facial expressions, existing

methods based on 2D images/videos have limitations such as sensitivity to changes in

recording conditions, and inability to represent easily-confused expressions etc. Moreover,

the human face is neither convex nor rigid, which means that some of the deformations are

hard to record by single-view 2D images/videos. In order to represent facial expressions

sufficiently, 3D data based methods for expression analysis have recently gained popularity

due to the availability of low cost 3D recording devices. An ideal facial expression recog-

nition system should be fully automatic, person-independent, and able to work with all

types of facial expressions. Existing research has focused on addressing individual aspects

but a system that fulfills all these requirements is yet to be developed. This thesis inves-

tigates the facial expression recognition problem with emphasis on: (1) full automation,

from landmark detection to expression classification, (2) discriminative feature extraction

to represent facial expressions, such as colour spaces, facial components, and descriptors;

(3) disambiguation of easily-confused expressions by designing novel classifiers.

Firstly, the useful colour spaces for facial expression recognition are investigated in this

thesis. Especially, the Uncorrelated Colour Space (UCS) and the Discriminant Colour

Space (DCS) are derived for expression recognition and their performance is compared

against the standard RGB colour space and grayscale colour spaces typically used, on

the Oulu-CASIA NIR&VIS facial expression database and the CurtinFaces database. For

feature extraction on grayscale images, two categories are mainly investigated: geometric

features and appearance-based features. This thesis proposes a combination of these two

feature types as a better representation for facial expression recognition. In order to

disambiguate the misclassification between easily-confused expressions, such as anger and

sadness, a two-tiered hierarchical classification is proposed and different sets of features are

fed to support vector machine (SVM) classifiers in each tier. Our results show that the six

prototypic expressions are not mutually exclusive, and that our hierarchical classification

can reduce major confusions between anger and sadness.

Next, this thesis proposes a fully automatic 3D static facial expression recognition method.

Unlike the majority of existing works which rely on manually annotated landmarks to
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align the faces or extract expression features, our proposed method is fully automatic.

Currently, accurate localization of landmarks on a 3D face is still an open problem. Our

method starts with the automatic detection of five fiducial points (four eye corners and

nose tip) on the range images rendered from the raw 3D face point cloud. Then, the faces

are aligned by the Iterative Closest Points (ICP) algorithm and local depth features are

uniformly sampled around 25 heuristic points generated based on the detected 5 fiducial

points. To compensate for the misalignment of the heuristic points and to remove the

redundant features, mRMR (minimal-redundancy-maximal-relevance) feature selection is

applied before classification to extract feature patches that are most discriminative. The

proposed method achieves the best performance among existing automatic methods, and

is comparable to those approaches which require human interference.

Thirdly, the problem of recognizing facial expression based on 3D video sequences (dynam-

ic 3D expression analysis) is addressed. Previous works address dynamic facial expression

recognition as a time-series problem, and sequential models like Hidden Markov Models

(HMMs) are trained based on the feature sequences that are extracted frame-by-frame.

However, facial expression is inherently a spatio-temporal process, frame-by-frame feature

extraction may be insufficient to measure the expression dynamics. Instead, we propose to

extract 3D-DCT features around 68 detected landmarks, which are real 4D features and

truly represent 3D facial expression dynamics. This is followed by a two-round mRMR fea-

ture selection to reduce the feature dimension and improve the recognition performance.

Additionally, a method to identify the most discriminative facial parts/components for

human expressions is presented. The identification is conducted on 4D expression data,

where the HOG3D features are extracted from local depth patch-sequences. A hierarchical

classification embedded with feature selection is utilized to select the most discriminative

facial parts with the direct goal of maximizing recognition accuracy. An analysis of the

selection results is performed to show the precise locations around mouth, cheeks, and eye-

brows that carry the most important expression related information in 3D videos. Note

that in 2D expression recognition, the cheeks do not play an important role.

This thesis proposes and evaluates feature extraction and selection methods for person-

independent facial expression recognition. Experiments are conducted on several challeng-

ing, publicly-available databases and evaluated in terms of recognition accuracy. Most

importantly, this thesis presents fully automatic expression recognition algorithms and

results that are better than all existing automatic methods and at par with methods that

require manual intervention. Moreover, our algorithms are capable of correctly recognizing

the easily-confused expressions and automatically identify the most discriminative facial

components.
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Chapter 1

Introduction

Facial expressions provide one of the most powerful and natural means for humans to

communicate their emotions and intentions. Studies of facial expression started with psy-

chological work where the general principles of expression and the meaning of expressions

in both human and animals were established by Darwin (1872). In his treatise, Dar-

win grouped various kinds of expressions into several similar categories, and cataloged

the facial deformations that occur for each category of expressions. Another important

milestone is Ekman’s cross-cultural study (Ekman and Friesen, 1971) on the existence of

universal categories of emotional expressions, which comprises of the prototypic expres-

sions: happiness, sadness, surprise, fear, anger and disgust. This work has a significant

influence on the development of automatic facial expression recognition systems. Facial

expression analysis did not become a major field of study in computer science until the

1990s, though there are some works that predate this.

The pioneering work of Suwa et al. (1978) presented a system for analyzing facial ex-

pressions from a sequence of movie frames by tracking 20 points. Although this system

was proposed in 1978, the study of facial expression recognition did not continue in this

direction until the 1990s. The survey paper by Samal and Iyengar (1992) states that “re-

search in the analysis of facial expressions has not been actively pursued”. The turning

point arrived when the relatively cheap computational power started becoming available

in the 1990s. This facilitated the development of robust face detection and face tracking

algorithms, which are required by automatic facial expression recognition. Meanwhile,

Human Computer Interaction (HCI), face recognition, affective computing, synthetic face

animation as well as virtual reality started gaining popularity. Various potential applica-

tions in these areas produced a renewed interest in the development of automatic facial

expression recognition systems.

Physically, facial expressions are caused by facial muscle movements, which result in tem-

porary facial component displacement and deformation. No matter how natural and simple

it seems to humans, recognition of facial expression is a complex and challenging task for

computers. Survey papers by Pantic and Rothkrantz (2000), Fasel and Luettin (2003)

and Bettadapura (2012) presented comprehensive studies of the published works based on
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2D static images or dynamic sequences. Despite the fast development of the 2D image

based systems, most of these techniques are still highly sensitive to the recording condi-

tions of images, such as illumination, occlusions and other changes in facial appearance

like cosmetic products and facial hair. Moreover, it has been pointed out by Sandbach

et al. (2012b) that 2D images or videos cannot capture out-of-plane changes of the facial

surface. On the other hand, advancements in structured light scanning, 3D laser scanning,

time of flight scanning, and stereo photogrammetry have enabled the acquisition of 3D

facial structure to at low cost. Ever since the public availability of 3D face datasets (Yin

et al., 2006a, 2008; Savran et al., 2008), a wide range of 3D facial expression recognition

approaches (Danelakis et al., 2014) have been developed in order to perform analysis on

3D static face images and dynamic sequences.

1.1 Problem Statement

Automatic facial expression recognition attempts classify facial component motion and

facial feature deformation into several abstract expression classes, based purely on vi-

sual information, such as static images or video sequences. It does not try to estimate

the underlying emotional state since emotions are not the only source of human facial

expressions.

To facilitate possible application, there are some features that an ideal facial expression

recognition system must possess:

1. Fully automatic: This means all stages of the facial expression analysis are to be

performed automatically, including face detection / facial landmark localization,

facial expression feature extraction and classification.

2. Robustness: This also implies that the designed system should have the capability

to work with image or video feeds of different resolutions, illuminations, and poses.

It should be able to handle the changes caused by facial hair, glasses, makeup etc.

3. Person-independent:

(a) A feasible system should be able to analyze expressions of ‘stranger’ faces,

which means the person being analyzed does not necessarily exist in the training

gallery.

(b) The designed system should be able to work on people of various cultures and

skin colours, and also be robust to age.
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4. Real-time:

(a) As human facial expression dynamic is a spatio-temporal process, the ideal

system should be able to process the input image sequence or video in real-

time.

(b) For advanced human-computer interface, real-time performance is an essential

requirement.

The goal of this thesis is to address these issues in facial expression recognition, aiming

to improve the recognition efficiency and accuracy of the current state-of-art techniques

based on 2D/3D images or videos. This thesis deals with the list challenges by proposing

new approaches to overcome the limitations of current existing facial expression systems.

1.2 Limitations of Current Techniques

Although many works exist on automatic facial expression analysis, these techniques have

many limitations. From the survey papers by Pantic and Rothkrantz (2000), Fasel and

Luettin (2003), Bettadapura (2012), Sandbach et al. (2012b), and Danelakis et al. (2014),

it is easy to see that different research groups have focused their efforts on different indi-

vidual aspects of the features mentioned above. Consequently, current state-of-art systems

have the following limitations:

1. Some of the methods rely on manually labelled facial landmarks (Wang et al., 2006;

Sha et al., 2011; Tang and Huang, 2008), either aligning the faces in the preprocessing

stage or extracting expression features around the landmarks, especially in 3D data

based methods (Tekguc et al., 2009; Maalej et al., 2011). Obviously, such systems

are of no practical since it can not achieve automatic recognition. These methods

use manually labelled landmarks to analyze facial expressions due to the fact that

landmark detection on 3D faces is still an open problem.

2. It is not easy to develop a facial expression recognition system that performs in

real time, mainly because of the complexity of face/landmark problem. Specifically,

many feature extraction methods are time-consuming, which renders systems built

on these features significantly slower than real-time.

3. The six prototypic expressions are not mutually exclusive, at least from the point of

view of facial deformations. In many state-of-art systems, happiness and surprise are

easy to recognize, but some pairs (anger-sadness, disgust-fear) are easily confused.
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4. Currently, the majority of algorithms still extract facial expression features frame-by-

frame even when the input is a video or image sequence. However, facial expression

is inherently a spatio-temporal process. Recognition in such time-series data requires

that effective features extracted should be able to represent not only the deforma-

tion of facial features, but also the relative timing of facial actions as well as their

temporal evolution. In other words, it is essential to measure the dynamics of facial

expressions. Clearly, frame-by-frame feature extraction is insufficient in this sense.

1.3 Contributions and Significance

This thesis makes five main contribution to the field of facial expression recognition anal-

ysis — (1) investigation into a better colour space for facial expression recognition; (2) a

hierarchical classification algorithm for the purpose of improving recognition performance

for easily-confused expressions such as anger and sadness; (3) a fully automatic 3D fa-

cial expression recognition method based on local depth features; (4) an automatic 4D

facial expression recognition method based on 3D videos; and (5) selection of the most

discriminative 3D facial parts/components for expression recognition in 3D videos.

1.3.1 Investigating Colour Spaces for Facial Expression Recognition

The current state-of-art 2D facial expression recognition techniques described in Pantic

and Rothkrantz (2000), Fasel and Luettin (2003), and Bettadapura (2012) are mostly

based on gray-scale image features, with few making use of colour image features. Consid-

ering that colour information should lead to better recognition performance, several works

have been conducted on colour face data and demonstrated the effectiveness of colour

information in facial expression recognition. If colour information does in fact help facial

expression recognition, it is important to determine what colour space is the most effective

for representing and recognizing facial expressions.

In fact very little research has been done on this topic and current trials of using colour

information in facial expression recognition, such as by Lajevardi and Wu (2012), choose

an existing colour space without any learning strategy. Motivated by the progress in face

recognition, we aim to explore whether learning colour spaces would also be effective in

facial expression recognition since both face recognition and facial expression recognition

have similar intuitions. To this end, we derive the uncorrelated colour space (UCS) and

discriminant colour space (DCS) for facial expression recognition purpose, test them on
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Oulu-CASIA NIR&VIS facial expression database and CurtinFaces database, and compare

against both the RGB and gray colour spaces. Results show that Uncorrelated Colour

Space can improve facial expression recognition performance, and Discriminant Colour

Space does not work so well in facial expression recognition.

1.3.2 Hierarchical Classification for Easily-confused Expressions

As mentioned, not all the six prototypic expressions are easily distinguishable from each

other, so the misclassifications/errors caused by the easily-confused expressions will affect

the recognition performance significantly. In order to improve recognition performance,

the proposed method attempts to eliminate such confusions via a hierarchical classification

approach, comprising two advantages. The hierarchical classification picks the distinguish-

able expressions out in the first tier, and then focuses on the classification of easily-confused

ones in the second tier. Moreover, the hierarchical structure enables the utilization of the

most appropriate features for expression recognitions in each tier.

The hierarchical classification attempts to divide and conquer the recognition problem

using a two-tier structure. In the first tier, the easily-confused prototypic expressions

are grouped together as one class and are classified from the remaining expressions for

classification. In the second tier, another classifier, which focuses only on the expressions in

the merged class, is trained to separate the images of the merged class into the prototypic

expressions. The two-tiered structure allows the usage of different set of appropriate

features in each tier, especially for the easily-confused expressions separation. Results show

that the selected mouth and eyebrow features used in the second tier of the classification

improve performance significantly.

1.3.3 Fully Automatic 3D Facial Expression Recognition

For all practical applications, facial expression recognition should be fully automatic. Al-

though landmark detection on 3D face models remains an open problem, it is inevitable

to design a fully automatic facial expression analysis system. Unlike most of the existing

works that rely on manually labelled landmarks, we propose a fully automatic method,

including automatic detection of the fiducial points. From the detected fiducial points,

additional heuristic points are generated via interpolation and extrapolation based on the

structure of the human face. These heuristic fiducial points are chosen such that they fall

on parts of the human face that are significant for expressions, specifically around the lips,
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cheekbones and eyebrows.

Clearly, the heuristic fiducial points are not as accurate as manually labelled landmarks.

Local features are hence extracted from the area surrounding all fiducial points and feature

selection is applied to account for variability in the point (mis)alignment. Experimental

results show that the proposed method achieves the best performance among the existing

automatic approaches, and can be comparable to methods that rely on manually labelled

landmarks.

1.3.4 Automatic 4D Facial Expression Recognition

The majority of existing works on 4D facial expression recognition treat dynamic facial

expression recognition as a time-series problem, and sequential models like Hidden Markov

Models (HMMs) are trained based on the feature sequences extracted frame-by-frame.

Inspired by the success of discrete cosine transform in video compression, this thesis takes

a different approach and applies 3D-DCT on the local depth patch-sequences generated

from the original sequences based on automatic detected landmarks. The compact low-

frequency 3D-DCT coefficients are selected as the feature vector, which can represent

expression dynamics without the loss of subtle information.

The significance of our method is that the extracted 3D-DCT features are real 4D ex-

pression features, which are able to describe the spatiotemporal expression evolution.

Moreover, we propose a two-phase feature selection process from patch-level to face-level

to reduce the feature dimensionality and mitigate expression confusion. Experimental

results show that the proposed method can preserve the subtle information conveyed by

easily-confused expressions and outperforms other existing methods.

1.3.5 Identifying Discriminative Facial Components for Human Expres-

sions

It has been noted that facial expressions are conveyed by different facial parts/components.

Pardàs and Bonafonte (2002) show that the eyebrows and mouth are the components that

carry the maximum amount of information relevant to expressions, and Bourel et al. (2001)

reveal that sadness is mainly conveyed by the mouth area. Similarly, Kotsia et al. (2008)’s

study on the effect of occlusions on facial expression recognition shows that the occlusion

of mouth reduces the recognition rate by more than 50%. These insights inspire us to
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Figure 1.1: The relationship of the rest chapters.

investigate facial parts/components of human face which carry the information that can

best distinguish the six basic expressions. In other words, what are the most expressive

parts of human face that convey the most discriminative information for facial expression

recognition.

To answer this question, we propose an automatic method to determine the most discrim-

inative facial parts for expression recognition based on 4D data. The 4D facial expression

are represented by Histogram of Oriented 3D-Gradients (HOG3D), and a two-stage feature

selection process is conducted to select the most important parts with the direct goal of

maximizing the recognition rates. The significance of this method is that it is data-driven

which can be adjusted according to the different input images, and does not need manual

interference such as the artificially-induced occlusion approaches (Pardàs and Bonafonte,

2002; Bourel et al., 2001; Kotsia et al., 2008) which are mentioned above.

1.4 Structure of the Thesis

This thesis is organized as follows and the relationship among the rest chapters are il-

lustrated in figure 1.1. In Chapter 2, a review of related work in the fields of automatic

facial expression recognition is presented. The framework of a facial expression recogni-

tion system is first described briefly. This is followed by the comparison of 2D images and

3D images for facial expression recognition, and an introduction of popular benchmark

databases in the research of expression recognition. A review of the 2D and 3D facial

expression feature extraction methods is then presented, followed by a brief summary of

this chapter.
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In Chapter 3, the colour spaces for facial expression recognition are investigated in detail.

Specifically, the Uncorrelated Colour Space and Discriminant Colour Space are derived

with the purpose of expression recognition. Their performances are compared with RGB

and gray colour space on Oulu-CASIA NIR&VIS facial expression database and Curtin-

Faces database.

In Chapter 4, a two-tierd hierarchical classifier focusing on the recognition of easily-

confused expressions is presented. The classification is based on LBP features extracted

from 2D images. In the recognition stage, two different SVMs are trained in each tier of

the hierarchical classifier. Compared to the existing methods, the proposed method can

eliminate the confusion between anger and sad significantly.

In Chapter 5, a fully automatic 3D facial expression recognition method is proposed. Five

fiducial points (four eye corners and nose tip) are detected at first on the range images

rendered from the raw 3D point cloud. The face is then aligned by ICP and local depth

features are uniformly sampled around the heuristic points generated according to the five

fiducial points. After feature selection, the selected features are fed to a SVM classifier

to accomplish expression recognition. The performance achieved by the proposed method

is the best among existing automatic methods, and also comparable to those approaches

which require human interference.

In Chapter 6, the problem of 4D facial expression recognition is addressed. The proposed

method extracts 3D-DCT features around 68 detected landmarks, which are real 4D fea-

tures, to represent 3D facial expressions dynamics. This is followed by a two-round mRMR

(minimal-redundancy-maximal-relevance) feature selection to reduce the feature dimension

and improve the recognition performance. The proposed method is tested by conducting

6-class and 3-class recognitions. In both cases, the proposed method outperforms other

existing methods on a benchmark database.

In Chapter 7, a method to identify the most discriminative facial parts/components for

human expressions is presented. The identification is conducted on 4D expression data,

with the HOG3D features extracted from local depth patch-sequences. A hierarchical

classification embedded with feature selection is utilized to pick the most discriminative

facial parts out with the direct goal of maximizing recognition rates. The selection result

shows that mouth, cheeks, and eyebrow carry most of the expression related information.

Finally, Chapter 8 provides a summary of the thesis, as well as its contributions and

potential future directions.
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Chapter 2

Related Work

The research goal of this thesis is to develop new facial expression recognition techniques

based on 2D/3D images or videos, with the purpose of improving the recognition efficien-

cy and accuracy of the current state-of-art. The recognition process should be automatic

and person-independent. To achieve these goals, the scope of research in this thesis in-

volves facial landmark detection and face alignment, feature extraction and selection, and

classification. Facial landmark detection, in which the landmarks of important facial com-

ponents are detected, is a fundamental requirement for face alignment. In most cases,

it is inevitable to design an automatic system, since the landmarks are required by the

subsequent feature extraction. Moreover, the feature extraction and selection is critical

to achieve effective person-independent facial expression recognition, due to the subtlety

and variability of facial expressions.

Facial expressions are generated by contractions of facial muscles, which results in dis-

placed facial components (mouth corners, eye lids, eye brows, lips etc.) and temporally

deformed facial surface (wrinkles and bulges). In order to analyze facial behaviour, it is

necessary to measure the location of facial actions, their intensity as well as their dynam-

ics. Before 1977, most of the facial behaviour researchers relied on the human observers to

observe the face of the subjects and give their analysis. However, such visual observation

may not be reliable and accurate. Ekman and Friesen (1978) questioned the validity of

such observations by pointing out that the observers may be influenced by context. For

the same observations, different cultural groups may have different interpretations. To

accurately measure facial expressions, Ekman and Friesen (1978) developed the compre-

hensive Facial Action Coding System (FACS) which has become the de-facto standard.

This work is of significant importance and has a large influence on the development of

automatic facial expression recognition systems.

As illustrated in Fig 2.1, a facial expression recognition system generally consists of five

main steps: face acquisition, pre-processing, feature extraction, feature selection and clas-

sification. There are a wide variety of approaches to achieve facial recognition for differ-

ent purposes and depending on different assumptions, especially the methods for feature

extraction. In this chapter, we will review some classic approaches and analyze their
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Figure 2.1: The structure of facial expression system.

advantages and disadvantages.

2.1 Expressive Face Acquisition

2.1.1 2D Facial Expression Databases

Currently, the source feed of a facial expression recognition system is 2D/3D images or

videos. Early work in facial expression analysis was based on 2D images. In order to eval-

uate the performance of state-of-art algorithm, many 2D facial expression databases were

constructed. The first one is the Japanese Female Facial Expression (JAFFE) Database,

which contains 213 images of 7 facial expressions (6 basic facial expressions + 1 neutral)

posed by 10 Japanese female models. Each image has been rated on 6 emotion adjectives

by 60 Japanese subjects. The database was planned and assembled by Michael Lyons,

Miyuki Kamachi, and Jiro Gyoba at the Psychology Department in Kyushu University.

The most widely used 2D facial expression database is Cohn-Kanade AU-Coded Expression

database. It is created for automatic facial image analysis and synthesis and for perceptual

studies. Currently, there are two versions available. The first version, referred to as Cohn-

Kanade (CK) database, was released in the year 2000 for promoting research on detecting

individual facial expressions. This version has several limitations, such as the lack of

validated emotion label and common performance metric to evaluate new algorithms.

As a consequence, the second version, referred to as the Extended Cohn-Kanade (CK+)

database (Lucey et al., 2010), was created to address these concerns. It includes both
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posed and non-posed (spontaneous) expressions and additional types of metadata. As

with the initial release, the target expression for each sequence is fully FACS coded. In

addition, validated emotion labels have been added to the metadata. Thus, sequences

may be analyzed for both action units and prototypic expressions. Additionally, CK+

provides protocols and baseline results for facial feature tracking and action unit and

emotion recognition.

There are some other database that have been constructed for different purposes, for ex-

ample, the MMI Facial Expression Database (Pantic et al., 2005) which aims to deliver

large volumes of visual data of facial expressions to the facial expression analysis com-

munity. The database consists of over 2900 videos and high-resolution still images of 75

subjects. It is fully annotated for the presence of AUs in videos, and partially coded on

frame-level, indicating for each frame whether an AU is in one of the neutral, onset, apex

or offset phase. Another popular database is the Oulu-CASIA NIR&VIS facial expression

database (Zhao et al., 2011), which contains videos with the six prototypic expressions

from 80 subjects captured with two imaging systems, NIR (Near Infrared) and VIS (Visi-

ble light), under three different illumination conditions: normal indoor illumination, weak

illumination (only computer display is on) and dark illumination (all lights are off).

2.1.2 3D/4D Facial Expression Databases

Recent advances in stereo photogrammetry and structured light scanning have made the

acquisition of 3D facial structure and deformation a feasible task. The first 3D facial

database that was collected for facial expression recognition is the BU-3DFE dataset (Yin

et al., 2006a), examples of which can be seen in Figure 2.2. It contains static 3D facial

models of 100 subjects, displaying the six prototypic expressions at four different intensity

levels. The faces were captured by a 3D face imaging system (3DMD digitizer). The

database was released with a set of metadata including the position of 83 facial landmarks

on each facial model.

Human facial expression is inherently a spatio-temporal process, which means the static

facial model is often insufficient to represent facial expressions. As a consequence, the

BU-4DFE database (Yin et al., 2008), consisting of 3D faces changing over time (hence

4D), was recorded using the DI3D dynamic face capturing system (Winder et al., 2008).

As shown in Figure 2.3, it contains sequences of the six prototypic facial expressions with

each sequence lasting approximately 4 seconds. Similar to the BU-3DFE dataset, each

facial model of the sequence is released with 83 facial landmarks.
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Figure 2.2: The demo images from the BU-3DFE database (reprinted from Yin et al.

(2006a)).

2.2 2D-image/video Based Methods

There are two broad approaches to extract facial features from the original 2D face images:

geometric feature-based approaches and appearance-based approaches. Geometric feature-

based methods attempt to encode the shape and location of facial components such as

mouth, eyebrows, and cheeks. The facial components or facial feature points are extracted

to form a vector that represents the facial geometry. In contrast, the appearance-based

methods aim to capture the appearance changes caused by facial expressions, on either

the whole face or local regions.

2.2.1 Geometric Feature-based Methods

Typically, geometric feature-based methods detect or track the changes of facial component

via a bunch of landmarks. Tian et al. (2001) proposed a multi-state face and facial

12



Figure 2.3: The demo images from the BU-4DFE database (reprinted from Yin et al.

(2008)).

component models for tracking and modeling the various facial features, including lips,

eyes, brows, cheeks, and furrows. Given an image sequence, the location of face and facial

features are detected automatically in the initial frame (Rowley et al., 1998) and tracked

in the following sequence. During tracking, detailed parametric descriptions of the facial

features are extracted to describe shape, motion, and state of facial components. With

these parameters as inputs, a group of action units (neutral expression, six upper face AUs

and 10 lower face AUs) are recognized whether they occur alone or in combinations.

Automatic active appearance model (AAM) is another method that is widely adapted for

facial landmark detection and tracking (Cootes et al., 2001; Matthews and Baker, 2004;

Xiao et al., 2004). Cheon and Kim (2009) propose a natural facial expression recogni-

tion method that recognizes a sequence of dynamic facial expression images using the

differential AAM and manifold learning as follows. Firstly, the differential-AAM features

(DAFs) are computed by the differences of the AAM parameters between a target face

image and a reference image. Next, manifold learning embeds the DAFs into a continuous

feature space. Finally, the distances between the input image sequence and gallery image

sequences are computed in terms of the directed Hausdorff distance (DHD) and then the

expression by a majority voting of k-nearest neighbors (k-NN) sequences in the gallery are

selected as the recognition results.
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Valstar et al. (2005) proposed a method to detect 16 facial action units using features

calculated from tracked facial point data. The facial points are tracked by an improved

version of Particle Filtering with Factorized Likelihoods (PFFL) (Patras and Pantic, 2004)

and spatio-temporal relations between tracked points are then used to represent action

units. Then, the action units displayed in a video are classified by probabilistic actively

learned support vector machines (SVMs).

The explicit 3D wire frame face mode (Essa and Pentland, 1997; Tao and Huang, 1999)

is another type of model to track geometric facial features. The 3D wire frame model is

fitted to the first frame of expression sequence by manually selecting fiducial points such

as eye corners, mouth corners, and nose tip. The generic face model is warped to fit the

facial features around fiducial points to analysis facial expressions.

2.2.2 Appearance-based Methods

Appearance-based features represent the texture changes of face images with different ex-

pressions. In order to process digital images, plenty of texture descriptors are proposed to

analyze digital images with variety of technical purposes, such as noise filtering, argumen-

tation, segmentation etc. Popular descriptors, such as Gabor wavelets (Daugman, 1988),

Local Binary Pattern (LBP) (Ojala et al., 1996, 2002), Histogram of Oriented Gradients

(HOG) (Dalal and Triggs, 2005) are also widely used for facial expression analysis.

Gabor filters are widely used for facial expression recognition. The facial appearance

changes are encoded by a multi-scale and multi-orientation set of Gabor filters. The Ga-

bor filter may be applied to aligned local regions of a face (Lyons et al., 1998, 1999; Tian

et al., 2002; Zhang et al., 1998) or to the whole face (Bartlett et al., 2001; Donato et al.,

1999; Littlewort et al., 2002). In the work done by Lyons et al. (1999), facial expression

images are encoded by a set of Gabor filters, and a grid is registered by manual labelled

fiducial points. The amplitude of the Gabor transform coefficients are then sampled on

the grid to form a feature vector, i.e. Labeled Graph Vector (LGV). The distances of the

LGV from each facial expression cluster center are utilized for recognition. Donato et al.

(1999) compare several techniques for recognizing facial action units on whole face image,

including optical flow, local feature analysis, principal component analysis, independent

component analysis and Gabor wavelet representation. The best performance was ob-

tained using a Gabor wavelet representation and independent component analysis. It is

worth noting that all the methods such as those in Zhang et al. (1998) and Donato et al.

(1999) have a manual stage for face alignment.
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In the comprehensive study done by Shan et al. (2009), LBP features for person-independent

facial expression recognition are investigated empirically. Due to its tolerance to illumina-

tion variations and low computing cost, many works use LBP features to represent facial

expression and then different machine learning methods, including SVM, template match-

ing etc., are used to perform classification. Compared to Gabor wavelets, LBP features

can be derived efficiently in low-dimension, while keeping characteristic expression infor-

mation. Using the same classifier, LBP-based SVMs achieve slightly better performance

when compared to Bartlett et al. (2005)’ work which uses the Gabor-wavelet based SVMs.

During the past decade, Histogram of Oriented Gradients (HOG) features (Dalal and

Triggs, 2005) have received increasing research attention for the purpose of object detec-

tion. As an effective texture descriptor, it is also adapted for expression presentation. In

Dahmane and Meunier (2011)’s work, HOG is used to extract the appearance features by

accumulating the gradient magnitudes for a set of orientations in 1-D histograms defined

over a size-adaptive dense grid, and Support Vector Machines with Radial Basis Function

kernels are the base learners of emotions. Another example is presented by Orrite et al.

(2009), in which a hierarchical decision tree is built using a bottom-up strategy by recur-

sively clustering and merging the classes at each level. For each branch of the tree, a list

of potentially discriminative HOG features is built by applying the log-likelihood maps to

key locations. This method could recognize expression states which are not present in the

training set when tested on the Cohn-Kanade facial expression database.

2.2.3 Geometric Feature-based vs Appearance-based Methods

The authors of Tian et al. (2002) and Zhang et al. (1998) argue that appearance fea-

tures are better than geometric features, because geometric features are more sensitive

to inaccurate image alignment. In addition, Lucey et al. (2010) showed that appearance

information is more important to the recognition of anger, sadness and fear. However,

with the recent development on face alignment and facial feature tracking, an increasing

number of expression analysis algorithms are based on geometric features. Valstar et al.

(2005) presented a method that can detect facial action units effectively by classifying

features derived from the tracked facial landmarks. They argued that geometric features

are well suited for facial expression analysis, especially with facial feature tracking. The

studies from both sides indicate a possible combination of these two kinds of features

as a better face representation for facial expression recognition, for example, Tian et al.

(2002) improve the recognition rate of all facial action units by combining Gabor-wavelet

coefficients and geometric features. Thus one goal of this thesis is to combines the geomet-

ric features and LBP features to represent facial expressions, and achieved a significant
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improvement when compared to the results which use single type of features.

2.3 3D-Image/Video Based Method

Facial expressions reflex not only feature points movement but also skin surface deforma-

tion, which means the location, distance and movement of the landmarks as well as the

surface shape can be used to represent expressions. A wide range of 3D facial expression

recognition systems have been designed in order to perform analysis on static face models

and dynamic facial image sequences. The majority of systems developed have attempted

recognizing expressions from static 3D facial expression data. However, more recent works

employ dynamic 3D facial expression data for this purpose.

2.3.1 Static analysis

Several methods have been developed for the analysis of static 3D facial expressions, which

use a range of features to distinguish different expressions. According to the extraction

method, these features can be categorized into: distance-based features, patch-based fea-

tures and morphable models.

Distance-based Methods. One of the most popular methods for feature extraction in 3D

static faces is the use of distances between certain facial landmarks, from which the changes

caused by expression are calculated. This is similar with geometric 2D methods that track

fiducial points on the face. As the BU-3DFE database provides 83 facial landmark points

on each of the 3D face models. These manually labelled points, as well as the distances

between them, have been widely utilized for static facial expression analysis. The method

developed by Soyel and Demirel (2007) uses six characteristic distances extracted from the

11 facial feature points, achieving an average recognition rate of 91.3%. Another example

of using facial points in the BU-3DFE is the work done by Tang and Huang (2008).

The distances between landmark points are normalized by Facial Animation Parameter

Units (FAPUs). In addition, the slope of the lines connecting these points are used as an

additional set of features after being divided by their norms to produce unit vectors. This

method achieves an average recognition of 95.1%. Srivastava and Roy (2009) proposed to

use residues as features, in which both the magnitude and direction of the displacement

of the landmark points in the BU-3DFE database are encoded. A feature matrix is then

formed by concatenating the different matrices in each of the three spatial directions in

order to form one 2D matrix. An average rate of 91.7% is achieved by this method.
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Moreover, Sha et al. (2011) extract features by calculating the distances among all pairs

of available landmark points and the surface curvature at each point in the mesh. The

face is divided into triangles using a subset of the given facial landmarks, and histograms

are accumulated for each triangle of the surface curvature types. This approach obtains

an average recognition rate of 83.5% on the BU-3DFE database.

Patch-based Methods. Facial surface patches are widely employed for feature extraction in

expression recognition, because they reflect the deformation caused by expressions. The

shape information of small local patches are extracted to represent facial expressions,

surrounding either landmark points (Maalej et al., 2010, 2011; Lemaire et al., 2011), or

every point in the mesh (Wang et al., 2006). The curvature information is used by Wang

et al. (2006), who fitted a polynomial patch to the local surface at each point in the mesh.

The curvature features of the patches are labelled according to primitives, and achieve

an average rate of 83.6%. Alternatively, patches around landmark points in the 3D mesh

could be used for feature extraction. Lemaire et al. (2011) define patches around landmarks

on facial point cloud via the fitting of Statistical Facial Feature Model (SFAM), in which

three types of the variations such as shape, intensity and range value are combined linearly.

(Maalej et al., 2010, 2011) also found patches around landmarks in 3D mesh. The curves

surrounding these points are defined on the patches, and the square root velocity function

(SRVF) is calculated to capture the shape of curve. The geodesic distances between curves

are computed to represent the dissimilarity, which is summed to represent the differences

between patches.

Morphable Model-based Methods. An alternative approach for feature extraction is the use

of morphable models. Different implementations of morphable models have been utilized

to model identity, expressions, or in most cases both kinds of variations. The Statistical

Facial Feature Model (SFAM) was employed as one type of morphable model by Zhao

et al. (2010). The model is fitted to the target meshes, and the parameters of the fitting

are used to extract features. The intensity and range values are used in the fitting process

directly, while the mean of the shape parameters is subtracted to extract displacement

features. In addition, the shape index is calculated from fitting parameters, and then is

encoded by local binary patterns to provide further descriptors. This approach achieves

average recognition rate of 87.2% and 82.3% on the BU-3DFE database using manually

labelled landmarks and automatically selected landmarks respectively. The Morphable

Expression Model (MEM) used by Ramanathan et al. (2006) is able to model a range of

different expressions for a specific individual. The corresponding points on the expressive

faces of a particular subject are identified first by minimizing the value of energy function

between points. The MEM is created based on the principal components of the expressive

faces of one subject, and a new face is reconstructed by performing a weighted summation
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of these eigen-expressions. This method achieves an average expression recognition rate of

97.0% over a custom database containing neutral faces and three expressions: happy, sad

and angry. Finally, an elastically morphable bilinear 3D model is employed by Mpiperis

et al. (2008b). This deformable model captures variations in both identity and expression.

The model was fitted to the point cloud via landmarks which are identified on both

the MEM and points cloud. Once the correspondence has been established, Principal

Component Analysis (PCA) was applied to find the principal components of the basic

mesh deformation, i.e. eigen-meshes. Then, the 3D face was modelled by a bilinear

model based on these eigen-meshes, which facilitates the classification of both identity

and expressions. For facial expression recognition, the facial features are extracted and

represented during the model fitting. This approach achieves an average recognition rate

of 90.5% on the BU-3DFE database. This model is also adapted by some other works

(Mpiperis et al., 2008a, 2009), though the optimal parameters are obtained by different

methods.

2.3.2 Dynamic analysis

Instead of using single or multiple static 3D images for expression recognition, recent works

have started to utilise 3D videos/image sequences for the analysis of facial expression

dynamics, especially since the release of the BU-4DFE database. Based on the method

used to extract expression features from 3D image sequences, the dynamic facial expression

analysis techniques can be divided into two major groups: motion-based and deformation-

based.

Motion-based Methods. The motion-based methods try to extract facial expression by

tracking landmarks or critical points between 3D frames. In the landmark tracking case,

the local regions are tracked around specific facial landmarks along 3D frames and tempo-

ral changes are detected on their geometry characteristics using features such as rotation

invariant statistical moments or mesh curvatures. In the critical points tracking case, the

key points are tracked along time and temporal changes are detected on spatial character-

istics based on these points such as distances, angles etc. The difference between these two

cases is that in the first case, the expression descriptors are constructed on facial regions

around landmarks, while in the second case, only facial points are considered.

A typical work of the landmark tracking based method is presented by Chang et al. (2005).

A 2D semi-manual tracker is employed to track 22 landmarks with the help of wrapped

mesh model projection after fitted on 3D videos. The depth of the vertex is recovered

by minimizing the distance between the model and the range data. Lipschitz embedding
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(Bourgain, 1985) is utilized to normalize deformation of the standard model which could

be embedded in a low dimensional manifold. Finally, a probabilistic expression model

is learned on the manifold to accomplish the expression classification. In the work by

Tsalakanidou and Malassiotis (2009), an Active Shape Model (ASM) (Lanitis et al., 1997)

is implemented with 81 selected facial landmarks. The ASM is fitted to the 3D face data

using the gradient feature in the neighborhood of every landmark. With the help of FACS,

the extracted feature vector combines the geometric, curvature and appearance informa-

tion around landmarks. A rule-based classifier is then defined for the classification of

expressions and action units. Similarly, Sun et al. (2008) construct an Active Appearance

Model (AAM) (Cootes et al., 2001) to track 83 landmarks on 3D videos. Each regis-

tered vertex is assigned with one of eight primitive surface labels according to its principal

curvature. Then, a set of HMMs are used for classification.

As concern to critical points tracking-based methods, Berretti et al. (2012) propose a

method based on selected key points on the nose, eyes and mouth areas. The facial

expression conveyed in each 3D frame is represented by the distances between these points.

The distances are normalized by the inner eye separation to remove the identity-related

face structure information, and are then used to train a HMM for final classification.

Another example of using critical points is presented by Jeni et al. (2012). The critical

points are estimated on each 3D frame using Constrained Local Models (CLM). The

normalized difference between the current shape on target expression frame and the neutral

frame are used to train a SVM classifier for recognition.

Deformation-based Methods. Facial deformation methods attempt to detect temporal de-

formation using a generic 3D face model, which has been explored in several papers (Rueck-

ert et al., 1999; Reale et al., 2013). One of the first works on analysis of facial expression

dynamics is proposed by Sun and Yin (2008), in which the deformable range model is

adapted to each frame in the image, and its changes are tracked in order to extract geo-

metric features. This approach achieved an average expression recognition rate of 90.4%

when tested on the BU-4DFE database. Yin et al. (2006b) treat human face as a 3D

time varying wave and propose a tracking model to estimate motion trajectories. Based

on this model, a spatio-temporal descriptor, i.e. Facial Expression Label Map (FELM),

is proposed. The tracking model is aligned by Iterative Closet Points (ICP), and then

deformed to fit the target scan by minimizing an energy function. The combination of

FELM vector and motion vector is used to represent facial expressions for classification.

Another example is Sandbach et al. (2011)’s work which uses Free Form Deformations

(FFD) (Rueckert et al., 1999) to align faces and find a vector field for facial motion repre-

sentation. After the frame is divided into regions by quad-tree decomposition, three types

of features are extracted in each region: the distribution of vector directions, the magni-
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tude of the motion, and the divergence and curl of the vector field. Finally, features from

all the regions are concatenated as feature vector of each frame to train an HMM model

for classification. Moreover, Reale et al. (2013) propose a real 4D feature, i.e. “Nebula”,

to improve expression and facial action analysis performance. Unlike the majority of the

dynamic analysis methods which extract feature frame-by-frame, this method extracts

expression features directly on spatio-temporal volume. The volume data is voxelized and

fitted to a cubic polynomial. A label is assigned based on the principal curvatures, and

the angles of the least curvature are calculated. The labels’ angles for each feature are

used to accumulate a histogram for each volume. The histograms are concatenated from

all the volumes for expression representation and classification.

2.3.3 Comparison of Static and Dynamic Analysis

By comparing the three types of static analysis methods, it is easy to see that distance-

based methods only use landmarks in feature extraction. The computing cost of this

type of method is lower than patch-based method. However, distance-based methods may

be insufficient for expression representation since facial expressions are not only reflected

by facial component movement, but also the facial surface deformation. Meanwhile, the

morphable model-based methods seem to be flexible and accurate enough to capture facial

changes caused by expressions, but model fitting normally relies on an optimal process

such as minimizing energy function. This process is much slower than real-time and it

also has the local-minima optimization issues. This thesis propose a patch-based method

for static 3D facial expression recognition, including fiducial points detection, patch-based

depth feature extraction and feature selection to compensate the misalignment of the

generated heuristic landmarks.

In general, most of the dynamic analysis methods address the facial expression recogni-

tion as a time-series problem. The frame-by-frame extracted features are used to train

sequential models like Hidden Markov Models (HMMs) for expression classification. How-

ever, facial expression is inherently a spatio-temporal process, frame-by-frame extracted

features may be insufficient to capture the expression dynamics. Alternatively, the true

4D features like “Nubula” are more suitable for spatio-temporal feature extraction. In

this thesis, we also propose to extract real 4D features, such as 3D-DCT and HOG3D, to

represent 3D facial dynamics rather than extract features from discrete frames.
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2.4 Chapter Summary

This chapter has presented a review of existing works that are relevant to this thesis. It be-

gins with a framework of facial expression recognition system and the FACS for expression

measurement, and introduction of the benchmark database for expression recognition. It

mainly focuses on the feature extraction and expression representation methods, from 2D

image/video based methods to 3D image/video based methods. For 2D image/video based

methods, the advantage and disadvantage of geometric feature-based and appearance-

based methods are discussed, and the possible combination of these two types of feature

are considered for improving the recognition performance. Next, the approaches based on

3D face data are reviewed. For 3D static facial expression analysis, three types of features

are discussed and compared, especially the patch-based method which is most relevant to

this thesis. The 3D dynamic expression analysis method are reviewed at last, with the

brief overview of one very related work on real 4D feature extraction (Reale et al., 2013).
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Chapter 3

Colour Space Selection for Facial

Expression Recognition

Existing colour spaces are proposed for specific purposes. For example, the RGB colour

space is designed to describe the type of light that needs to be emitted to produce a given

colour, the CMYK colour space is designed to describe the type of inks required to be ap-

plied in a printing system so that the light reflected from the substrate and through the inks

produces a given color. However, current state-of-art facial expression recognition tech-

niques are mostly based on gray-scale image features (Pantic and Rothkrantz, 2000; Fasel

and Luettin, 2003), and rarely consider colour image features (Sandbach et al., 2012b).

Considering the fact that different colour channels provide complimentary information, an

appropriate use of colour information may lead to better recognition performance.

Many researchers have shown that colour provides useful information for face recognition

(Rajapakse et al., 2004; Jones and Abbott, 2006). These works address the problem of

extracting colour features for face recognition. In order to seek a theoretically meaning-

ful justification of colour features for face recognition, Yang and Liu (2008) proposed a

discriminant colour space (DCS) for face representation and verification using discrimi-

nant analysis, while Liu (2008) derived an uncorrelated colour space (UCS) by applying

principal component analysis to decorrelate the R, G and B component images. Their

experimental results show that the learned colour spaces, i.e. UCS and DCS, can achieve

better face recognition performance than the commonly used RGB colour space.

As far as colour image-based facial expression recognition is concerned, the same ques-

tion applies: which colour space is the most effective for representing and recognizing

facial expression? In fact, very few research has been done in this direction and current

methods of using colour information in facial expression recognition, such as Lajevardi

and Wu (2012), choose an existing colour space without employing any learning strategy.

Motivated by the success of the UCS and DCS colour space for face recognition, we aim

to explore in this chapter whether these learned colour spaces are also effective for facial

expression recognition since both face recognition and facial expression recognition have

similar engineering intuitions. The uncorrelated and discriminant colour spaces are de-
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Figure 3.1: Learning colour space for facial expression recognition.

rived for facial expression recognition purpose, and tested on the Oulu-CASIA NIR&VIS

facial expression database and the CurtinFaces database. Some conclusions and possible

research directions are given below.

3.1 Learning a Colour Space for Facial Expression Recogni-

tion

This chapter focuses on learning a colour space to extract colour features, which is a kind

of pre-processing. After pre-processing, the face images are converted from RGB colour

space into a new colour space which is learned for the expression recognition purpose. The

image features are then extracted in this learned colour space for expression representation

and classification.

Originally, the face images are represented in the fundamental RGB colour space, from

which a number of other colour spaces are generated. Suppose Qm×n is a colour image,

and each of its three colour components is of size m × n, we can reshape them into

column vectors: R,G,B ∈ Rd, where d = m × n. Consequently, the colour image can

be represented by a d × 3 matrix: Q = [R G B] ∈ Rd×3. Given a specific recognition

task, either face recognition or facial expression recognition, the goal of learning colour

space is to seek the combinations of the R, G and B colour components that can best

represent colour information for the recognition purpose. Specifically, the combination

can be denoted as

C = Qω = ω1 ·R+ ω2 ·G+ ω3 ·B (3.1)

where ω = [ω1 ω2 ω3]T is the weight vector, as illustrated in Figure 3.1. Thus, the task is
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to find the optimal weights so that C is the best representation of the image Q in terms

of a given criterion, such as the criterion of principal component analysis (PCA) or linear

discriminant analysis (LDA). The following section will introduce these two criterions and

then give the details about how to derive the UCS and DCS colour spaces.

3.2 Uncorrelated Colour Space

3.2.1 Principal Component Analysis

Principal component analysis (PCA), which was proposed by Person (1901), is mostly

used as a tool in exploratory data analysis and for making predictive models. Depending

on the field of application, it is also named the discrete KarhunenLove transform (KLT)

in signal processing, the Hotelling transform in multivariate quality control, eigenvalue

decomposition (EVD) of XTX in linear algebra etc. It uses an orthogonal transformation

to convert a set of observations of possibly correlated variables into a set of values of linearly

uncorrelated variables called principal components. The number of principal components

is less than or equal to the number of original variables, which is the reason why PCA

is also well-known as a dimension reduction method. Given a dataset of N samples

{x1, x2, ..., xN} ⊂ Rn, let us consider a linear transform that can project the original data

in n-dimensional space into an m-dimensional feature space, where m < n. The sample

xi after projecting could be defined as

yi = W Txi, i = 1, 2, · · · , N (3.2)

where W ∈ Rn×m is the projection matrix with orthonormal columns. In the original

space, the total scatter matrix is defined as

ST =

N∑
i=1

(xi − µ)(xi − µ)T . (3.3)

where µ is the mean of all the samples in the dataset. After projection, the total scatter

matrix of {y1, y2, ..., yN} ⊂ Rm could be defined as W TSTW . PCA aims to maximize the

determinant of the total scatter matrix of the projected samples by choosing a optimal

projection matrix Wopt. This could be achieved by applying eigen-decomposition to the

total scatter matrix ST :

Wopt = argmax
W

∣∣W TSTW
∣∣

= [w1 w2 · · · wm]
(3.4)
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where wi, i = 1, 2, · · · ,m is the eigenvectors of ST corresponding to the m largest eigen-

values. Then, the uncorrelated principal components could be derived based on these

eigenvectors.

3.2.2 Derivation of Uncorrelated Colour Space

The uncorrelated colour space (UCS) is derived from the RGB colour space using principal

component analysis to decorrelate the R, G and B colour components. Consider a set of N

sample images Q = {Q1, Q2, ..., QN} ⊂ Rd×3 in RGB colour space, and a unitary column

vector ω. Suppose the uncorrelated colour representation of Qi = [Ri Gi Bi] is given by

Ui = ω1 ·Ri + ω2 ·Gi + ω3 ·Bi = Qiω (3.5)

After converting into the uncorrelated colour space, the covariance matrix of the sample

images U = {U1, U2, ..., UN} can be formulated as

ST = E[(U − EU)(U − EU)T ]

= E[(Qω − EQω)(Qω − EQω)T ]

= E[(Q− EQ)ω][(Q− EQ)ω)]T

(3.6)

where E[·] is the expectation operator. The principal component analysis criterion (Yang

et al., 2004) is given by

J(ω) = tr(ST ) = ωT [E(Q− EQ)T (Q−EQ)]ω (3.7)

By defining the colour space scatter matrix as

Lt = E[(Q− EQ)T (Q− EQ)] (3.8)

the criterion can be rewritten as

J(ω) = ωTLtω (3.9)

where ω is a unitary column vector that maximizes this criterion and is the optimal weights

for the UCS. Actually, ω is the eigenvector of Lt. Since the colour space scatter matrix

Lt is a 3× 3 matrix, the uncorrelated colour space is defined by the transformation

[U1 U2 U3] = [R G B]

ω
1
1 ω1

2 ω1
3

ω2
1 ω2

2 ω2
3

ω3
1 ω3

2 ω3
3

 = [R G B][ω1 ω2 ω3] (3.10)
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3.3 Discriminant Colour Space

3.3.1 Linear Discriminant Analysis

When the data samples {x1, x2, ..., xN} ⊂ Rn are given with their respective class labels,

it is better to use the class label information to build a more effective method for linear

transform and feature reduction. Supposing that each sample belongs to one of the c classes

{L1, L2, ..., Lc}, linear discriminant analysis (LDA) (Fisher, 1936) calculates the between-

class scatter SB and within-class scatter SW according to the class label information as

follows

SB =

c∑
i=1

Ni(µi − µ)(µi − µ)T

SW =

c∑
i=1

∑
xj∈Li

(xj − µi)(xj − µi)
T

(3.11)

where the Ni is the number of samples in class Li, and µi is the class center of Li.

The optimal projection matrix Wopt is chosen as the matrix with orthonomal columns

which maximizes the ratio of the determinant of the between-class scatter matrix to the

determinant of the within-class scatter matrix in the projected subspace, as follows

Wopt = argmax
W

∣∣W TSBW
∣∣

|W TSWW |
|

= [w1 w2 · · · wm]

(3.12)

where wi, i = 1, 2, · · · ,m is the set of generalized eigenvectors of SB and SW corresponding

to the m largest generalized eigenvalues λi, i = 1, 2, · · · ,m, such as

SBwi = λSWwi, i = 1, 2, · · · ,m. (3.13)

After projected by the optimal projection matrix Wopt, the samples could achieve the

maximal ratio of the between-class scatter to the within-class scatter.

3.3.2 Derivation of Discriminant Colour Space

Clearly, when learning UCS for facial expression recognition, the expression label of sample

images is not utilized. However, the discriminant colour space (Yang and Liu, 2008), which
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applies discriminant analysis, considers the labels of sample images. Let c be the number

of the facial expressions, Qij be the j-th colour image in class i, where i = 1, 2, ..., c, j =

1, 2, ..., ni (ni is the number of training samples in class i). The colour space between-class

scatter matrix Lb and colour space within-class scatter matrix Lw are defined as

Lb =

c∑
i=1

pi(Q̄i − Q̄)T (Q̄i − Q̄) (3.14)

Lw =

c∑
i=1

pi
1

ni − 1

ni∑
j=1

(Qij − Q̄i)
T (Qij − Q̄i) (3.15)

where pi is the priori probability for class i, Q̄i is the mean image of the training images in

class i, Q̄ is the mean image of all the training images. The discriminant analysis criterion

becomes

J(x) =
xTLbx

xTLwx
(3.16)

where x is a unitary vector. In addition, Lb and Lw are nonnegative definite matrices,

the criterion in equation (3.16) is a generalized Rayleigh quotient. Its optimal solution

x1 = [x11 x21 x31]
T is actually the generalized eigenvector of eigen-decomposition problem

Lbx = λLwx, corresponding to the largest eigenvalue. In practise, one discriminant colour

component is not enough for the colour information representation, so all three of the

eigenvectors are kept to form the discriminant colour space

[D1 D2 D3] = [R G B][x1 x2 x3] (3.17)

It should be noted that in deriving DCS for face recognition, the label is the identity of

persons and for facial expression recognition, the label is the type of expressions. So the

UCSs are the same for both the face recognition and facial expression recognition but the

DCSs are different.

3.4 Experiments

In this section, the learned colour spaces are tested on the Oulu-CASIA NIR&VIS fa-

cial expression database and the CurtinFaces database. Figure 3.2 shows the proposed

algorithm for facial expression recognition in learned colour space. In general, there are

usually two ways to generate training set and testing set for a facial expression recog-

nition system. One is person-dependent, while the other is person-independent. In the

person-dependent case, the individuals included in the testing images also show up in the

training images. It means that the classifier has seen the individuals included in the testing

images. However, in the person-independent case, the individuals included in the testing
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Figure 3.2: The proposed algorithm for facial expression recognition in learned colour

space.

Size AN DI FE SA HA SU

Training 477 488 520 530 550 503

Testing 582 404 537 407 503 449

Table 3.1: Configuration of the person-independent case on Oulu-CASIA database.

images never appear in the training images. The training images and testing images are

both mixtures of images from different individuals. The individuals in the testing images

are totally strangers to the classifier. In this section, both the person-dependent and the

person-independent experiments are conducted on each of the databases. We also obtain

the recognition results of the uncorrelated colour space (UCS) and discriminant colour

space (DCS), and compared against with the results of RGB colour space and gray scale

images. In either of the cases, we utilize Fisher’s linear discriminant(FLD) to extract

facial expression features, and then feed them into the nearest-neighbour (NN) classifier

to obtain the recognition results.
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Size AN DI FE SA HA SU

Training 547 466 546 486 546 495

Testing 512 426 511 451 507 457

Table 3.2: Configuration of the person-dependent case on Oulu-CASIA database.
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Figure 3.3: Recognition rates on the Oulu-CASIA database.

3.4.1 Results on the Oulu-CASIA NIR&VIS Database

The Oulu-CASIA NIR&VIS facial expression database (Zhao et al., 2011) consists of

six expressions from 80 individuals between 23 to 58 years old, and almost 73.8% of the

subjects are males. The images are frames of a video sequence, and originally digitized into

320× 240 pixel arrays. In the experiment, the first 9 images of each sequence are ignored

for their low expression intensity. The remaining 6059 images are aligned into 64 × 64

pixel arrays according to the coordinates of eyes and mouth. Both person-dependent and

person-independent experiments are conducted on the aligned face images.

In the person-independent case, the images of the first 40 individuals are used as training

samples, and the last 40 individuals’ images are chosen as testing images. Thus, it is guar-

Gray RGB DCS UCS

Independent 49.5 49.9 48.6 53.0

Dependent 91.3 91.4 91.7 92.5

Table 3.3: Average recognition rates on Oulu-CASIA database.
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anteed that the training and testing images are from different subjects. The configuration

for the training and testing size of every expression in person-independent case is listed

in table 3.1. Figure 3.3(a) gives the recognition rates of the six prototypic expressions in

person-independent case. It shows that all the colour spaces achieve the best performance

in the recognition of happiness, and the worst performance in the recognition of fear. It

is notable that in the person-independent case, the discriminant colour space (DCS) can

improve the recognition rates of fear by more than 10% when compared against RGB

colour space, whereas the recognition rates of anger and surprise are much worse, even

worse than gray images. The uncorrelated colour space (UCS) performs better than DCS

on anger, happiness and surprise while slightly worse on disgust, fear and sadness.

In the person-dependent case, the images included in the first half of the each sequence

are selected to form training set, while the latter half of the sequences serve as testing

images. Table 3.2 records the configuration for the training and test size of each expression

in the person-dependent case, and the recognition rates of the six prototypic expressions

are illustrated in figure 3.3(b). Compared with RGB colour space, the discriminant colour

space (DCS) improve the recognition rates of fear and sadness, while the uncorrelated

colour space (UCS) performs even better than DCS, especially in the recognition of disgust.

In both cases, all the colour spaces achieve the best performance in the recognition of

happiness, and the worst performance in the recognition of fear. Table 3.3 records the

average recognition rates for the four colour spaces. One can see that the uncorrelated

colour space (UCS) is the best colour representation for facial expression recognition,

since it achieves higher average recognition rates than other colour spaces. As illustrated

in figure 3.3, the discriminant colour space (DCS) fails to keep high recognition rates

in anger and surprise when compared against RGB colour space, so it is not consistent

enough to represent colour information in facial expression.

3.4.2 Results on the CurtinFaces Database

The CurtinFaces database contains over 5000 face images of 52 individuals. It was collected

with a Kinect sensor and a standard Panasonic digital camera, with each Kinect capture

accompanied by an image taken from the Panasonic camera at the same time. All the

images are originally kept in RGB space. These images have varying facial expression,

pose, illumination and occlusion, simulating a real-world uncontrolled face environment.

In our experiment, we select a subset which consists of 1872 images of 52 subjects with 6

prototypic expressions and align them into 64×64 pixel arrays according to the coordinates

of eyes and mouth. Every subject has 6 images in each of the 6 prototypic expression.
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Figure 3.4: Recognition rates on CurtinFaces database.

Gray RGB DCS UCS

Independent 42.8 45.0 42.7 47.1

Dependent 45.0 49.6 49.7 53.7

Table 3.4: Average recognition rates on CurtinFaces database.

All the colour spaces are tested on the aligned images under three different setup, namely

person-independent, person-dependent and crossing image sources.

3.4.2.1 Person-independent vs person-dependent

In the person-independent case, the images of first 25 individuals are chosen to form the

training set, and the images of the remainder 27 subjects go into the testing set. Thus,

the training size of each expression is 150 (25 × 6), and the testing size is 162 (27 × 6).

However, in the person-dependent case, we select the first 3 images of each expression (for

all the 52 subjects) to form training set, and the reminder 3 images of each expression are

taken as testing set. That is to say, both the training and testing size are 156 (52× 3).

Figure 3.4 shows the recognition rates of the experiments conducted in both person-

independent and person-dependent ways. Among the 6 prototypic expressions, happiness

and surprise are relatively easier to recognize in both cases. Compared with RGB colour

space, the uncorrelated colour space is generally more effective in colour information rep-

resentation for facial expression recognition. However, in the person-dependent case, the

discriminant colour space works better than RGB colour space on fear, but worse on happi-

31



AN DI FE SA HA SU
0

20

40

60

80

100

Panasonic images

R
ec

og
ni

tio
n 

R
at

es

 

 

Gray
RGB
DCS
UCS

AN DI FE SA HA SU
0

10

20

30

40

50

60

70

80

Kinect captures

R
ec

og
ni

tio
n 

R
at

es

Figure 3.5: Recognition rates of crossing image sources on CurtinFaces database.

ness and surprise. The uncorrelated colour space achieves the highest average recognition

rates, while discriminant colour space fails to show a consistent performance, as recorded

in table 3.4.

3.4.2.2 Crossing image sources

In CurtinFaces database, every Kinect capture is accompanied by an image taken by

a standard Panasonic camera, and both of them are colour images and represented in

RGB colour space. In the last test, the facial expression recognition is conducted by

crossing image sources: training on the Kinect captures and testing on the images from

the Panasonic camera, and vice versa. In fact, this is a special case of person-dependent

facial expression recognition, since all the subjects involved in the recognition comes out

in the training set. To the classifier, there is no stranger in the testing set. The only

difference lies in the imaging source of the training and testing set: one is from a standard

Panasonic digital camera, the other is from Kinect sensors. The images from the Panasonic

camera are in high-resolution, but the Kinect captures are in low-resolution.

Figure 3.5 records the recognition rates of the 6 prototypic expressions. It shows that

the uncorrelated colour space is universally better than the discriminant colour space,

whether trained on Panasonic images or Kinect captures. The average recognition rates,

as illustrated in figure 3.6, tell us that the discriminant colour space is slightly better

than RGB colour space when the recognition system is trained on Kinect captures, but

much worse when trained based on the Panasonic images. However, no matter what

imaging source is, the performance of uncorrelated colour space is always better than RGB
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Figure 3.6: Average recognition rates of crossing image sources on CurtinFaces database.

and DCS. Therefore, the uncorrelated colour space is the best space to represent colour

information for facial expression recognition, but discriminant colour space is not good

enough to yield a consistent performance. The image source will vary a lot in a real facial

expression systems. A practical system should be robust to any imaging source. Compared

with DCS, the uncorrelated colour space (UCS) is better for colour representation, since

it performs better consistently over different imaging sources.

3.5 Chapter Summary

Colour provides useful information for any image recognition problem. Normally, colour

information is represented in RGB colour space, but there are neither theoretical nor ex-

perimental justification that supports it as a good representation for a specific recognition

purpose. This chapter explores the colour representation in facial expression problem,

via learning the discriminant colour space and uncorrelated colour space to encode colour

information.

Firstly, the experimental results reveal that the uncorrelated colour space represents colour

information best for facial expression recognition since it achieves the highest recognition

rates. The discriminant colour space fails to achieve a consistently better performance than

RGB space, occasionally even worse than gray scale representation, which is significantly

different from the cases in face recognition. This reveals that DCS is not suitable for facial

expression recognition. Secondly, the facial expressions contained in CurtinFaces database
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is much harder to be recognized than the Oulu-CASIA NIR&VIS database. The average

recognition rate is above 90% on Oulu-CASIA NIR&VIS database in the person-dependent

case, but only about 50% on the CurtinFaces database. The pose, illumination and occlu-

sion varieties included in CurtinFaces database are quite challenging in facial expression

recognition. Finally, the fact that DCS does not work in facial expression recognition

reflects the difficulty of colour representation in facial expression. This may be caused by

the ambiguity of some easily-confused facial expressions. Therefore, face recognition and

facial expression recognition can not be treated similarly in pattern recognition.

In addition, it is can be seen from the comparison figures that not all expressions recogni-

tion benefit to the same extent from the colour space change. For example, in Figure 3.5,

when colour space change from RGB to UCS, the recognition rate of fear increases almost

20%, but the recognition rate of disgust decrease quite a lot. These are the easily-confused

expressions, and this problem will be the focus of the next chapter.
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Chapter 4

Recognition of Easily-confused

Expressions via Hierarchical

Classification

The previous chapter examined the utility of employing different colour spaces to the

problem of expression recognition. Whilst it was shown that the uncorrelated colour

space produced an overall improvement over RGB or gray, not all expressions benefit from

changing the colour space. This is the problem where certain expressions are difficult to

separate from one another. Hence this chapter is concerned with methods to improve

recognition rates for these difficult expressions, regardless of the colour space used.

Though much progress has been made, robust and effective facial expression recognition

remains difficult due to the subtlety and variability of facial expressions. (Ekman and

Friesen, 1971) made a cross-cultural study on the existence of universal categories of

emotional expressions, which is referred to as the prototypic expressions consisting of

happiness, sadness, surprise, fear, anger and disgust. It has been shown that the six

prototypic expressions are not always mutually distinguishable. Current systems (Cohen

et al., 2003; Kotsia and Pitas, 2007; Kotsia et al., 2008; Michel and El Kaliouby, 2003) show

that there are often confusions between anger and disgust while some other work (Aleksic

and Katsaggelos, 2006; Sebe et al., 2007) show that sadness is often confused with anger.

In order to achieve highly accurate recognitions for all the expressions, many researchers

attempted to eliminate such confusions by proposing new techniques for feature extraction

and classification.

There are two common approaches to extract facial features from the original face images:

geometric feature-based approach (Gu and Ji, 2004; Valstar et al., 2005) and appearance-

based approach (Bartlett et al., 2003; Shan et al., 2009). In Tian et al. (2002) and Zhang

et al. (1998), the authors argued that appearance features are better than geometric

features, because geometric features are more sensitive to inaccurate image alignment.

In addition, Lucey et al. (2010) showed that appearance information is more important
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to the recognition of anger, sadness and fear. However, with the recent development on

face alignment and facial feature tracking, an increasing number of expression analysis

algorithms are based on geometric features. Valstar et al. (2005) presented a method

that can detect facial action units effectively by classifying features derived from the

tracked facial landmarks. They argued that the geometric features are well suited for facial

expression analysis, especially with facial feature tracking. The studies from both sides

indicate a possible combination of these two kinds of features as a better face representation

for facial expression recognition.

Normally, a classifier is designed based on the extracted features for the classification of

the six prototypic expressions, in which all the expressions are treated equally and evenly.

Out of the six expressions, happiness and surprise are the easiest to recognize (Michel

and El Kaliouby, 2003; Pardàs and Bonafonte, 2002). The remaining four expressions

are more subtle ones that are often confused with each other. This fact prompts us to

divide and conquer the problem of recognizing the 6-classes expressions by a hierarchical

classification. The expressions that are commonly confused are merged into one class,

which is joined by the remaining prototypic expression classes to form the first tier of

classification. It is expected that the first tier classification will perform well since the

expressions that are easily confused have been merged together. In the second tier, the

prototypic expressions in the merged class are then separated by another classifier. The

hierarchical classification provides an opportunity to utilize different features to obtain

the best performance in each tier.

In this chapter, a hierarchical SVM classifier is designed to improve the performance of

person-independent facial expression recognition. This hierarchical classifier enables us to

divide and conquer the recognition problem in two tiers. The easily-confused expressions

are merged into one class in the first tier and then separated in the second tier. We also

propose to utilize different features in each tier, because classification of different expres-

sions is targeted in each tier. The combined features of LBP and displacement are used

for facial expression description in the first tier since it yields the best performance among

possible features. In the second tier, the landmarks on mouth and eyebrows are select-

ed to represent expressions since mouth and eyebrows are proven highly related to those

easily-confused expressions (Bourel et al., 2001; Kotsia et al., 2008). The experimental

results obtained by applying the hierarchical classifier on the CK+ dataset (Lucey et al.,

2010) demonstrate the satisfactory performance of the proposed method.

36



4.1 Facial Expression Representation

Effective facial feature extraction from face images plays an important role in facial ex-

pression recognition. The appearance features and the geometric features are the common

features utilized in facial expression representation. Shan et al. (2009) compared the LBP

features with the Gabor features for facial expression recognition using different classi-

fiers, and studied their performances over various resolutions. The comparison results

revealed that the LBP features are effective and efficient for facial expression recognition,

even for low resolution face images. For the geometric features, the displacement of fa-

cial landmarks reflects the facial component motion, which is widely used for expression

representation.

4.1.1 Local Binary Pattern (LBP)

The appearance features model the appearance changes of faces, mainly caused by different

facial expressions. The original LBP operator was proposed by Ojala et al. (1996) as a

powerful means of texture description. As illustrated in Figure 4.1, LBP operator labels

the image pixels by thresholding a 3 × 3 neighbourhood of each pixel with the center

value and considering the results as one binary number. The histogram of the LBP

labels accumulated over a local region is then used as a texture descriptor. The binary

numbers, which are called the Local Binary Patterns, encode the local texture primitives

including corners, edges, spots etc, so the histogram of LBP could be used as a texture

representation.

Originally, the LBP operator consider a 3 × 3 neighbourhood to label the central pixel,

which can not capture dominant features in large scale. Thus, Ojala et al. (2002) extend-

ed the operator by using circular neighbourhoods and bilinear interpolation of the pixel

values. This allows the extended LBP operator LBPP,R to use any radius and number

of pixels, where (P,R) denotes the neighbourhood of P uniformly spaced sampling points

on the circle of radius R. Actually, LBPP,R produces 2P different output binary patterns,

with certain patterns containing more information than others (Ojala et al., 2002). Thus,

it is more effective to use a subset of the 2P local binary patterns, i.e. uniform patterns, to

describe the texture information. A local binary pattern is called uniform if it contains no

more than two bitwise transitions from 1 to 0 or vice versa when the binary pattern string

is considered as circular. It has been noted by (Ojala et al., 2002) that uniform patterns

hold nearly 90% of all patterns in the (8, 1) neighbourhood and about 70% in the (16, 2)

neighbourhood. Hence, in the computation of the extended LBP operator LBP u2
P,R, the
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Figure 4.1: The demo of extract binary number from pixel array.

histogram has a separate bin for each uniform pattern, and all non-uniform patterns are

assigned to a single bin. The number of resulted histogram bins are much less than 2P .

For example, LBP8,1 has 256 bins, but LBP u2
8,1 only has 59 bins.

The LBP u2
P,R operator is adopted here for facial appearance feature representation. It

can encode the appearance information about the distribution of the local micro-patterns

caused by facial expressions. Therefore, it can serve intuitively as the appearance feature

representation in facial expression analysis.

4.1.2 Displacement of Facial Landmarks

Geometric features have been widely exploited in facial representation (Tian et al., 2001;

Pantic and Rothkrantz, 2004), where locations and displacements of facial components

are extracted to represent the face geometry. In year 2010, Lucey et al. (2010) manually

labelled some key frames in video sequences and used a descent AAM fitting algorithm

(Matthews and Baker, 2004) to get the landmarks of the remaining frames. Their work

shows that facial expression recognition benefits a lot from fusion of both shape and

appearance features.

Assuming that the facial components have been labelled with N landmarks, the coordi-

nates of the landmarks could be denoted as pi = (xi, yi), i = 1, ..., N . The face images

could then be represented by the location information vector P = [p1 p2 ... pi ... pN ], which

is the concatenation of all the landmarks pi. The location information vectors encapsulate
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the shape and position of the facial components which are affected by the expressions.

Furthermore, in facial expression recognition based on image sequences, the facial move-

ments can be measured by the geometrical displacement of corresponding facial feature

points between the current frame and the initial frame. The displacement vector D can

hence be derived from concatenating the displacements of all the landmarks:

D = [∆x1 ∆y1 ∆x2 ∆y2 ...∆xi ∆yi ...∆xN ∆yN ] (4.1)

where ∆xj ,∆yj is the x, y coordinate displacement of the j-th landmarks respectively. The

displacement information encodes the motion of the landmarks from a neutral face to faces

with expressions of different intensity. Both the displacement and location information

are utilized in our method because they are directly related to facial expressions.

4.2 The Proposed Method

As mentioned before, the six prototypic expressions are not mutually distinguishable,

so the confusions caused by the easily-confused expressions will affect the recognition

performance significantly. In order to improve the recognition performance, the proposed

method attempts to eliminate such confusions via a hierarchical classification. It has two

advantages. Firstly, the hierarchical classification can pick the distinguishable expressions

out in the first tier, and then focuses on the classification of easily-confused ones in the

second tier. Secondly, the hierarchical structure enables us to utilize the most appropriate

features for expression recognitions in each tier. This section provides the details of the

proposed hierarchical classification method.

4.2.1 Feature Extraction

In the proposed method, both the appearance-based features (LBP features) and the geo-

metric features (Displacement and Location features) are extracted from the face images.

LBP features: Each face image is first aligned and then divided into 42(6×7) blocks, and

the 59-bin LBP u2
8,1 operator is used to extract texture features form each block, which is a

trade-off between the recognition performance and computational complexity. The 59-bin

LBP histogram derived from each of the 42 blocks is concatenated to a (59×42=)2478

dimension vector to represent a face image.
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Figure 4.2: (Left)Landmarks used in displacement feature extraction. (Right)The selected

landmarks of Mouth and Eyebrow.

Displacement features: In the proposed method, 68 landmarks which are tracked by Lucey

et al. (2010) are utilized to extract the displacement information, as illustrated in Fig. 4.2

(Left). For each face image, the x, y coordinates displacement of the landmarks are ob-

tained by subtracting the landmark locations of the neutral image from the corresponding

landmarks locations in current image. The displacement feature is represented by a vector

with the length of 136 which is formed by concatenating the x, y coordinate displacements.

MEb(Mouth and Eyebrow) features: The mouth and eyebrows are the most important

parts for facial expression recognition. It has been shown by Pardàs and Bonafonte (2002)

that the mouth and eyebrows possess the maximum amount of information related to

facial expressions, with the mouth carrying more information than the eyebrows. In Kotsia

et al. (2008), the authors show that occlusion of the mouth leads to inaccuracies in the

recognition of anger, fear, happiness and sadness, whereas the occlusion of the eyes and

brows leads to a dip in the recognition accuracy of disgust and surprise. Another occlusion

research by Bourel et al. (2001) has demonstrated that sadness is mainly conveyed by the

mouth. Thus, we select the landmarks on the mouth and eyebrows (see Fig.4.2 (Right))

and utilize both the location and displacement of these landmarks to form the MEb (Mouth

and Eyebrow) features for distinguishing anger and sadness which are most commonly

confused.
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4.2.2 Hierarchical Classifier Design

Since the six prototypic expressions are not evenly distinguishable, we attempt to divide

and conquer the recognition problem by a hierarchical classification. The hierarchical

classification has a structure of two tiers. In the first tier, the easily-confused prototypic

expressions are considered as one class and join the remaining expressions for classification.

In the second tier, another classifier, which focuses only on the expressions in the merged

class, is trained to separate the images of the merged class into the prototypic expressions.

The design of the 2-tiered structure allows us to use the appropriate features in each tier.

Support vector machines (SVMs) have been proven powerful in facial expression classifi-

cation (Valstar et al., 2005; Bartlett et al., 2003). It also achieves the best performance

according to a comprehensive study (Shan et al., 2009), so we adopt SVMs as the classi-

fiers for facial expression recognition in this chapter. SVMs attempt to find the hyperplane

that maximizes the margin between the positive and negative observations for a specified

class. Given a training set of labelled examples {(xi, yi), i = 1, ..., k} where yi ∈ {−1, 1} ,

a testing example x is labelled by the following function:

f(x) = sgn(
k∑

i=1

αiyiK(xi, x) + b) (4.2)

where αi are Lagrange multipliers of a dual optimization problem that determine the

classification hyperplane, K(·, ·) is a kernel function, and b is the threshold parameter of

the hyperplane.

SVMs make binary decisions. However, there are six classes in facial expression recogni-

tion, each representing one of the prototypic expressions (anger, disgust, fear, sadness, hap-

piness and surprise). LIBSVM (Chang and Lin, 2011a) is used for the training and testing

of SVMs, which achieves the multi-classes classification according to the one-against-rest

technique. With regard to the parameter selection, we carry out coarse-to-fine grid search

in a 5-fold cross-validation. The parameter which yields the best cross-validation accuracy

is selected for the decision function.

As illustrated in Fig.4.3, a hierarchical SVM classifier with two tiers is designed for the six

prototypic expressions recognition. Firstly, we merged two of the six prototypic expressions

(anger and sadness), which are the most commonly confused expressions, into one class.

Together with the remaining four prototypic expressions, there are 5 classes in the first-tier

classification. A 5-classes SVM classifier is used for this tier. The performance of the first-

tier classification should be much better than directly classifying the six expressions since
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Figure 4.3: The flow chart of the hierarchical classification.

the major confusion has been removed by merging anger and sadness images together.

For the images categorized as the merged class (anger and sadness), a 2-classes SVM is

trained in the second tier to separate them into anger and sadness.

4.2.3 Feature Selection in Each Tier

The first-tier classification plays such an important role in the whole recognition proce-

dure that it should perform as accurately as possible. We trained the 5-classes SVM

classifier based on the LBP feature, the displacement feature and the combined LBP and

displacement feature separately. The results show that the combined feature yields the

best performance in the classification of the 5 classes (4 prototypic expressions and one

merged class). Thus, the combined feature is selected to represent facial expressions in

the first tier.
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After the first tier, the merged class flows into the second-tier classification, in which the

images are separated into anger and sadness. The features highly related to these two

expressions are adopted because the second-tier SVM only focuses on the classification of

anger and sadness. We choose the displacement feature as the expressions representation

at first, but approximately 20% sadness images are still misclassified as anger.

The inveterate confusion of anger and sadness evokes us to extract new features since all

the features used so far can not provide significant distinctions in representing these two

expressions. Since the mouth and eyebrows possess the maximum amount of information

related to the facial expressions (Pardàs and Bonafonte, 2002), especially since the sadness

is mainly conveyed by the mouth (Bourel et al., 2001), we attempt to extract features of

mouth and eyebrows to discriminate anger and sadness. As illustrated in Fig.4.2 (Right),

the landmarks of mouth and eyebrows are selected and both the location and displacement

of these landmarks are used to form the MEb (Mouth and Eyebrows) feature for the

classification of anger and sadness in the second tier. The recognition result reveals that

the selected MEb feature could separate anger and sad better than all the other features.

4.3 Experiments

4.3.1 Experiment Settings

Experiments have been conducted by applying the proposed method on the extended

Cohn-Kanade (CK+) dataset (Lucey et al., 2010), which is comprised of 593 image se-

quences of 210 individuals. The expression in each sequence began with a neutral face and

ended at the peak intensity. For all the 593 sequences, each image was AAM tracked with

68-points landmarks. However, only 327 of the 593 sequences carry the prototypic expres-

sion labels. The original images in the CK+ dataset are digitized into either 640×490 or

640×480 pixel arrays with 8-bit grey scale or 24-bit colour values.

In our experiments, only the images from the labelled 327 sequences are chosen to test

the proposed method. The first 5 images of each sequence are ignored due to their low

expression intensity. The selected images are aligned and resized into 110×150 pixel grey

scale arrays automatically according to the location of eyes and mouth and then split into

training images and testing images.

43



AN DI FE SA HA SU
40

50

60

70

80

90

100

Facial Expressions

R
ec

og
ni

tio
n 

R
at

es

 

 

dependent(LBP)
dependent(Displacement)
dependent(Combined)
independent(LBP)
independent(Displacement)
independent(Combined)

Figure 4.4: The comparison of person-dependent and person-independent facial expression

recognition.

4.3.2 Person-dependent vs Person-independent

There are two ways to generate training set and testing set for a facial expression recog-

nition system. One is person-dependent, while the other is person-independent. In the

person-dependent case, the individuals included in the testing images also show up in the

training images. It means that the classifier has seen the individuals included in the testing

images. However, in the person-independent case, the individuals included in the testing

images never appear in the training images. In this section, both the person-dependent

and the person-independent cases are conducted on the selected images from CK+ dataset.

The LBP features, displacement features and combined features are extracted as the ex-

pression representation.

Fig. 4.4 illustrates the performances of the person-dependent and person-independent ex-

pression recognition based on the LBP feature, displacement feature and the combined

feature. The comparison shows that the confusions are very little in the person-dependent

case, especially based on the combined feature. However, in the person-independent case,

the expression recognition problem becomes much more difficult. The classification perfor-

mances of the six prototypic expressions decrease significantly, especially in the recognition

of anger and sadness. The confusion matrices of person-independent recognition based on

the LBP feature and displacement feature are recorded in Table 4.1 and Table 4.2 respec-

tively. It can be seen that 47.5% of the anger images are misclassified as sadness in the

LBP feature based recognition while 31.3% of the sadness images are confused as anger

in the displacement feature based classification. Even based on the combined feature, the

confusion of anger and sadness is still as high as 25.0% (as shown in Table 4.3).
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AN DI FE SA HA SU

AN 46.2 2.5 0.4 47.5 1.5 1.9

DI 1.6 86.1 2.4 9.1 0.0 0.8

FE 0.0 3.7 85.6 10.2 0.0 0.5

SA 1.5 1.5 1.5 94.4 0.0 1.0

HA 0.8 1.3 6.1 1.3 89.2 1.3

SU 0.2 1.2 1.6 3.5 0.2 93.3

Table 4.1: Confusion matrix of person-independent recognition based on the LBP feature.

AN DI FE SA HA SU

AN 79.9 6.8 0.0 11.7 0.0 1.7

DI 9.2 75.8 0.0 15.1 0.0 0.0

FE 1.4 0.0 85.2 13.0 0.0 0.5

SA 31.3 0.0 2.0 66.2 0.0 0.5

HA 0.0 1.1 0.6 6.3 92.0 0.0

SU 0.0 0.9 0.9 2.6 0.9 94.7

Table 4.2: Confusion matrix of person-independent recognition based on the displacement

feature.
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AN DI FE SA HA SU

AN 66.5 7.8 0.0 25.0 0.0 0.6

DI 2.0 93.7 0.0 4.0 0.0 0.4

FE 3.2 2.8 88.0 6.0 0.0 0.0

SA 0.5 2.5 0.5 94.9 0.0 1.5

HA 0.6 1.9 3.2 0.6 92.4 1.3

SU 0.0 0.9 1.6 2.1 0.0 95.3

Table 4.3: Confusion matrix of person-independent recognition based on the combined

feature.

4.3.3 Results of the Proposed Method

The proposed hierarchical classification only focuses on the difficult person-independent

expression recognition. In the proposed method, a 5-classes SVM classifier is trained in

the first tier classification since anger and sadness have been merged into one class. The

recognition performances based on the LBP feature, displacement feature and combined

feature are illustrated in Fig. 4.5. Obviously, the combined feature yields the best clas-

sification performance. Thus, it is selected as the expression representation in the first

tier.

The first-tier classification categorizes the images into 4 prototypic expressions plus the

merged class. In order to finish the prototypic expression recognition, the images in the

merged class need to be separated into anger and sadness in the second tier. We first

utilize the displacement feature in the second-tier classification. The confusion matrix of

the hierarchical classification is recorded in Table 4.4. Compared to the result in Table 4.3,

the hierarchical classification improves the recognition rate of anger from 66.5% to 86.0%.

However, the recognition rate of sadness goes down to 75.8%, and the major confusion still

lies between anger and sadness, with 21.7% of the sadness images misclassified as anger.

In order to better distinguish anger and sadness, we extract the MEb feature to be used

in the second tier. Table 4.5 records the recognition result. It can be seen that the

confusion between anger and sadness decreases to 14.6% while the sadness recognition

rate reaches 93.4%. Although the rate for anger drops to 77.8%, the overall recognition

rate reaches 89.6%, which shows that the selected MEb feature could separate anger and

sad better than all the other features. Finally, we compare the proposed method with

several state-of-art methods in table 5.4. It shows that the proposed method achieves the

best performance in the recognition of anger, fear and sadness.
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AN DI FE SA HA SU

AN 86.0 7.6 0.0 6.4 0.0 0.0

DI 6.7 86.9 0.0 6.0 0.0 0.4

FE 1.4 2.8 89.8 6.0 0.0 0.0

SA 21.7 0.0 0.5 75.8 0.0 2.0

HA 0.2 0.8 2.1 3.0 93.2 0.6

SU 0.5 0.0 0.7 2.6 0.0 96.3

Table 4.4: The confusion matrix of the hierarchical classification (2-tier based on the

displacement feature).

AN DI FE SA HA SU

AN 77.8 7.6 0.0 14.6 0.0 0.0

DI 1.6 86.9 0.0 11.1 0.0 0.4

FE 2.8 2.8 89.8 4.6 0.0 0.0

SA 4.0 0.0 0.5 93.4 0.0 2.0

HA 0.2 0.8 2.1 3.0 93.2 0.6

SU 0.7 0.0 0.7 2.3 0.0 96.3

Table 4.5: The confusion matrix of the hierarchical classification (2-tier based on the MEb

feature).

Methods AN DI FE SA HA SU AvgRate

Lucey et al. (2010) 75.0 94.7 65.2 68.0 100.0 96.0 83.2

Rudovic et al. (2012) 71.3 90.8 79.0 90.5 92.6 96.6 86.8

Zhong et al. (2012) 71.4 95.3 81.1 88.0 95.4 98.3 88.3

The Proposed 77.8 86.9 89.8 93.4 93.2 96.3 89.6

Table 4.6: The comparison with the state-of-art methods.
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Figure 4.5: The first-tier feature selection.

4.4 Chapter Summary

In this chapter, a hierarchical classification approach is proposed for person-independent

facial expression recognition. Due to the difficulty in distinguishing anger and sadness,

they are combined into one class and join the other four prototypic expressions in the first

tier of classifications and then separated in the second tier. The hierarchical structure of

the proposed method provides us with the opportunity to fuse different kinds of feature

into the classification, which can enhance the recognition performance.

The experimental results on CK+ dataset show that the hierarchical SVM classifier im-

proves the recognition performance for facial expression significantly, especially in reducing

confusions between anger and sadness. We only test the proposed method on CK+ dataset

because it is the only available dataset with facial landmark information. It is interesting

that the selected mouth and eyebrow feature separates anger and sadness better than

the displacement feature. This suggests that discriminative information of the prototypic

expressions is conveyed by different facial components.
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Chapter 5

Fully Automatic 3D Facial

Expression Recognition

Previous chapters have focussed on improving recognition accuracy given the optimal

conditions of known ground-truth locations of facial landmarks. However, for a facial

expression recognition system to be deployable in practical situations it is necessary to

be able to detect these landmarks automatically and still maintain good recognition even

with errors in this detection.

For all practical applications, facial expression recognition must be fully automatic. It is

easier to manually label the expression, which is the required final outcome of the pro-

cess, than to manually label multiple landmarks on a face. However, the methods, such

as Sandbach et al. (2012b); Wang et al. (2006) and Maalej et al. (2011), define patches

around manually labelled landmarks that can be consistently located across faces and

expressions. It is still an open problem to automatically recognize expressions without

manual reference landmarks. Lemaire et al. (2013) attempt automatic facial expression

recognition by extracting whole-face differential mean curvature maps (DMCM) features

that can capture facial surface deformations caused by expressions without using facial

landmarks. They reported an average recognition rate of 78.1%. Since they used the

entire face, their features include face regions that are not relevant to particular expres-

sions. In contrast, patch-based approaches work well as they can be located specifically

on important landmarks such as the mouth, cheeks and eyes and different set of features

can be defined for each patch.

We propose a fully automatic facial expression recognition algorithm based on depth fea-

tures extracted from local patches. In order to define local patches without human inter-

vention, we detect the nose tip and four eye corners automatically as five fiducial landmark

points. From these, another 25 heuristic landmarks are generated and local depth features

are extracted from patches around all the 30 landmarks. Then, mutually exclusive features

which jointly have the largest characterizing power are selected from the extracted depth

features using mRMR (maximum Relevance Minimum Redundancy) (Peng et al., 2005).

Feature selection is a critical step as depth features contribute differently to each type of
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Figure 5.1: Facial expression examples from the BU-3DFE database.

expression. Moreover, it also takes care of errors in landmark locations. We seek to use a

similar approach to that of Maalej et al. (2011) due to their very high recognition rates,

however their concentric geodesic rings cannot be segmented to facilitate feature selection.

Hence we instead utilize a discrete sampling of the depth patch as our features. Finally,

the selected features are fed to a SVM classifier for expression classification.

5.1 Pre-processing

The raw 3D faces in BU-3DFE (Yin et al., 2006a) are noisy and have minor pose variations

as shown in Figure 5.1. As illustrated in Figure 5.2, we preprocess the faces before feature

extraction. At first 5 fiducial points are automatically detected, followed by registration

of facial point clouds. Heuristic points are generated for feature extraction. In fiducial

point detection, the nose tip and four eye corners are located by a Haar detector and

AdaBoost classifier (Viola and Jones, 2004) which enables the proposed method to be

fully automatic. Then the 3D facial point clouds are aligned and registered according to

a T-area located on each face using the five fiducial points. We use only the T-area since

it is not very sensitive to noise. On each of the registered faces, 30 heuristic points are

generated based on the 5 fiducial points to extract depth features.
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Figure 5.2: Pre-processing of a 3D face. (a) Original 3D face; (b) Range image and its

x and y gradients rendered from 3D face; (c) Detected 5 fiducial points; (d) Generating

heuristic points on range image; (e) Locating heuristic points on 3D face.

5.1.1 Realtime Fiducial Points Detection

Automatic landmark detection on 3D faces is still an open problem due to the significant

topology changes caused by expressions, such as opening mouth in surprise. We notice

that features vary very little around some points when expression changes, such as the

four eye corners and nose tip. Our realtime detection method detects these five points

on a 3D facial surface. These five fiducial points and their relative distances are used to

generate another 25 heuristic points on the face.

We train a Haar-cascade classifier (Mian, 2011), which is based on the AdaBoost algorithm

used for face detection (Viola and Jones, 2004). Given a 3D face as shown in Figure 5.2(a),

the surface is uniformly sampled by a grid in the x, y-plane, and the depth information

(z-direction) is encoded in a range image. The resulting range image and its x and y

gradients (see Figure 5.3) are used to train the Haar cascade classifiers. For each point,

the detector returns several candidate locations. The facial structure and relative location

relationships between eyes and nose tip are utilized to remove the outliers and identify the

correct eyes and nose clusters. Take Figure 5.4(a) as an example, the candidate locations

of nose may fall on the lips and eyebrows, but nose is supposed to be in the central area

of the face. Thus, only the central candidates accounts for the final decision. In 5.4(b),

when detecting the right eye corners, some candidate locations are on the left side of the

face, which are definitely the outliers. Note that the detector in Mian (2011) is in fact

trained to find the eye outer corners and horizontal face scale. We extend this work to

additionally localize the inner eye corners as well and thus detect five points rather than

three as reported in Mian (2011). The process is illustrated in Figure 5.4.

We run our detection on all the 2500 faces in BU-3DFE database and the average de-
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Figure 5.3: Example range image and its x and y gradients.

Table 5.1: Detection time of fiducial points.

Feature Point Detection time

Nose 69.27 ms

Left eye 27.09 ms

Right eye 27.38 ms

Total 123.74 ms

tection time is recorded in Table 5.1. The total detection time for one face is less than

130 ms. Furthermore, since the BU-3DFE database provides manually labelled ground

truth locations for the four eye corners, the distance from the detected location to the

corresponding ground truth is calculated and illustrated in Figure 5.5, which shows that

90% of the detection errors are less than 4mm.

5.1.2 Registration

Minor pose variations exist in the BU-3DFE, which will affect the effectiveness of the

feature extraction. Thus, it is necessary to register the faces against a ‘standard’ face.

In the proposed method, all the faces are registered to the first female’s neutral face in

the BU-3DFE database by the Iterative Closest Points (ICP) (Besl and McKay, 1992)

algorithm. The whole faces are not suitable for rigid registration due to the nonrigid

facial surface deformations and topology changes caused by expressions. Therefore, we
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Figure 5.4: Demonstration of fiducial point detection. Small dots are candidates and large

dots represent the final detections.

crop out a T-area from the face surface using a binary mask generated with the five

fiducial points (see Figure 5.6). The T-area mainly covers the nose and forehead regions,

which are relatively stable against facial expressions. Thus, the T-area is suitable for

pose correction. Technically, the point clouds from T-area of two faces are fed to the

ICP algorithm to calculate rotation matrix and translation vector, which are then used to

register the corresponding two faces.

5.1.3 Heuristic Point Generation

The nose tip and eye corners are suitable to serve as fiducial points, but not representative

enough to extract expression features. Thus, we generate another 25 heuristic points for

expression feature extraction, as illustrated in Figure 5.7. The orange horizontal lines

are the location of the eyes, nose and chin (the bottom point of the face). The eye-nose

separation and nose-chin separation are denoted by h and d respectively. They are taken

as the ‘length unit’ to measure the face along the vertical direction, and render positions

to draw horizontal baselines. Similarly, in the vertical direction, the location of the four

eye corners and the eye centers are selected to draw vertical baselines which intersect the

horizontal baselines. The heuristic points are then selected from the intersections of these

baselines.

According to the research done by Kotsia et al. (2008), eyebrows and mouth area convey

the most important information of facial expressions. Thus, the majority of heuristic
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Figure 5.5: Detection error of the eye corners.

points are selected around the eyebrows (points 8-11, 27) and mouth area (points 18-25,

28 and 29). This is a flexible scheme to generate heuristic points, in which the locations of

some heuristic points can adjust according to different expressions. For example, d would

be longer on a surprised face because of the opening mouth, so points 18-25, 28 and 29 will

consequently be lowered to cover mouth area. Once the x, y-coordinates of the heuristic

points are obtained from range images, the x, y, z-coordinates can be easily determined by

finding the corresponding vertex on the uniformly sampled 3D point cloud.

5.2 Feature Extraction

Although our heuristic point generation based on the distance ratios of the fiducial points

can adjust according to the changes in facial shape, the heuristic points are not as accurate

as manually labelled ones. Thus we cannot assume perfect alignment of patches surround-

ing these heuristic points. To overcome this, we select a subset of features within a patch

that are useful in expression recognition despite errors in landmark location. To facilitate

this sub-patch feature selection, we choose to extract depth features sampled by a discrete

grid on the patch. Our features can be essentially viewed as a discrete approximation of

the rings used by Maalej et al. (2011) but also offer feature selection to choose arbitrary
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Figure 5.6: T-area for registration.

sub-patches – a process that could not be accomplished with the concentric geodesic ring

features used by Maalej et al. (2011).

5.2.1 Patch-based Depth Feature Extraction

As shown in Figure 5.8, once a heuristic point has been located, we use a sphere with radius

r centered at this point to crop a cluster of points. Then, a cubic patch is fitted to the

cropped points using the code from D’Errico (2006). The fitted patch is then sampled on

a uniform 74×74 grid, but only the central 64×64 samples covering the points in r region

are kept as the patch-based depth feature, in order to avoid the artifacts at boundaries.

All sampled patches end up with equal resolution which is necessary for the classification.

Figure 5.9 shows the same patch on the mouth corner of three different subjects under the

six expressions.

The 64×64 depth feature matrix of each patch is then reshaped into a 4096-dimension row

vector. Thus, each 3D face is represented by a 30×4096 matrix, as there are 30 patches.

A dimension of 4096 is quite large for a feature vector that only describes a local patch,

and there are overlaps between adjacent patches. Fortunately, it is possible to compress

these vectors by projecting them into a linear subspace defined by 2DPCA. The goal is
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Figure 5.7: Schema of generating heuristic points.

to discard the redundant information in preparation for feature selection. Assuming that

there are N 3D face samples in the training set, the ith training sample is denoted by an

m×n (our case 30×4096) matrix Ai(i = 1, 2, ..., N), and the average of all training samples

is denoted by A. Then, the scatter matrix C can be calculated by

C =
1

N

N∑
i=1

(Ai −A)T (Ai −A). (5.1)

According to Yang et al. (2004), the criterion of 2DPCA can be expressed by

J(X) = XTCX, (5.2)

where X is a unitary column vector. The optimal projection vector that maximizes the

criterion is the eigenvectors of C corresponding to the largest eigenvalue. Normally, we

select a set of the projection vectors, X1, ..., Xd, subject to the orthonormal constraints.

This can be achieved by applying the Singular Value Decomposition (SVD) on the scatter

matrix C as

C = USV T , (5.3)
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Figure 5.8: Patch-based depth feature extraction on 3D face surface.

Figure 5.9: Comparison of 3D facial patch (mouth corner) under different expressions.

The images are for the same three persons in Fig. 5.1

where U is a 4096×4096 matrix of the eigenvectors and S is a diagonal matrix of eigenval-

ues, both sorted in descending order. The first d columns of U are the optimal projection

vectors. To determine d, the ratio of the first d eigenvalues over the total eigenvalues is

calculated by

η =

∑d
i=1 λi∑4096
i=1 λi

, (5.4)

where λi is the ith eigenvalue. In our experiment, the ratio η always reaches 0.99 swiftly

at only d = 50. Thus, the first d = 50 eigenvectors are kept as the optimal projection

matrix Ud, and used to compress the samples as

F = (A−A)Ud, (5.5)

where F is a 30×50 matrix.
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Table 5.2: Recognition rates of different parameters (patch radius r and fitting grid size)

in feature selection.

Rates(%) 20×20 32×32 64×64

Radius=25mm 84.3 84.4 85.0

Radius=30mm 84.0 84.7 85.4

Radius=35mm 85.0 84.7 84.4

To optimize the parameter r and grid size, we tested three different radiuses (25mm, 30mm

and 35mm), and fitted into 20×20, 32×32 and 64×64 grids. The recognition rates of these

settings are given in Table 5.2. It can be seen that the patch-based features around the 30

heuristic points are not very sensitive to the radius of the cropping sphere and the fitting

grid size. r=30mm and 64×64 grid are hence used for all our remaining experiments.

5.2.2 Feature Selection

Identifying the most characterizing features of the observed data is crucial to minimize the

classification error. This could be achieved by selecting the features with the highest rele-

vance to the target class. However, it has been noticed that a simple combination of these

individually good features does not necessarily lead to good classification performance.

That is to say, “the m best features are not the best m features” (Peng et al., 2005; Cover,

1974; Jain et al., 2000). This is caused by the redundancy among the selected features.

Thus, it is necessary to reduce the redundancy while selecting the relevant feature to the

target class.

For 3D facial expression recognition problem, the extracted feature space are quite high-

dimensional. In order to conduct an efficient feature selection with the purpose of minimize

the recognition error, the computational cost should be taken in consideration. Among the

feature selection methods (Ding and Peng, 2005; Li and Yang, 2002; Pudil et al., 1994)

using the idea of Max-Relevance or Min-Redundancy, the framework of the minimal-

redundancy-maximal-relevance (mRMR) (Peng et al., 2005) is adopted to select the best

features for expression recognition. This is because the mRMR selection could find a

compact subset of superior features at very low cost. By combining both Max-Relevance

and Min-Redundancy criteria, the mRMR selection is especially suitable for large-scale

feature selection problems, including 3D facial expression feature selection. This involves

a two-stage selection algorithm.
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First, the mRMR criterion is used to select mutually exclusive features S = {x1, ..., xm}
that jointly have the largest characterizing power on each of the six prototypic expressions

class c: 

maxΦ(D,R) = D(S, c)−R(S),

D(S, c) = 1
|S|

∑
xi∈S I(xi; c),

R(S) = 1
|S|2

∑
xi,xj∈S I(xi, xj)

(5.6)

where I(xi; c) is the mutual information value between individual feature and class, I(xi, xj)

is the mutual information value between two features.

When candidate features are selected, the next task is to determine the optimal number

of features m. A wrapper that tests features with an SVM classifier is utilized to decide

the size of the feature set, with the direct goal of minimizing the recognition error of the

specific classifier on the training set.

We performed 10-fold cross validation to select discriminant features. Each time, we

selected a feature set Si, i = 1, ..., 10 enclosing 800 features by incremental search (Peng

et al., 2005), in which the features are arranged in descending order of characterizing

power. The common features S̄ =
∩10

i=1 Si are taken as the feature candidates. With the

purpose of determining the optimal number of features m, we give the common features

of the first 50k features in Si, i = 1, ..., 10 to the classifier, where k is the iteration number.

The common features that yields the best recognition performance is considered as the

optimal feature set. As shown in Figure 5.10, there are 169 common features in the first

300 feature candidates (k=6), and these 169 features are adopted as ”the best m features”

since they achieved the best recognition rates.

5.3 Classification

Support vector machines (SVMs) have proven to be powerful for facial expression classi-

fication. SVM achieves the best performance according to a comprehensive study (Shan

et al., 2009). Therefore, we adopt SVMs as the classifiers for facial expression recognition.

SVMs attempt to find the hyperplane that maximizes the margin between the positive

and negative observations for a specified class. Given a training set of labelled examples

{(xi, yi), i = 1, ..., k} where yi ∈ {−1, 1} , a testing example x is labelled by the following

function:
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Figure 5.10: Recognition rates of different size of selected features.

Table 5.3: Confusion matrix of recognition on BU-3DFE database.

AN DI FE SA HA SU

AN 80.9±3.7 3.8 4.0 10.4 0.8 0.1

DI 8.0 81.5±2.7 5.3 1.6 2.7 0.9

FE 4.1 7.1 70.8±3.1 4.0 9.9 4.3

SA 13.0 1.7 5.3 79.6±3.1 0.4 0.0

HA 0.2 0.9 7.3 0.0 91.1±2.0 0.6

SU 0.3 1.5 3.0 0.5 0.7 94.0±1.7

f(x) = sgn(
k∑

i=1

αiyiK(xi, x) + b) (5.7)

where αi are Lagrange multipliers of a dual optimization problem that determine the

classification hyperplane, K(·, ·) is a kernel function, and b is the threshold parameter of

the hyperplane.

SVMs make binary decisions. However, there are six classes in facial expression recogni-

tion. Therefore, we use LIBSVM (Chang and Lin, 2011b) for the training and testing of

SVMs, which achieves multi-classes classification according to the one-against-rest tech-

nique. With regard to the parameter selection, we carry out coarse-to-fine grid search in

a 10-fold cross-validation on the training dataset.
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5.4 Experimental Results

BU-3DFE database is one of the very few publicly available databases of annotated 3D

facial expressions. It consists of 100 subjects (56 females and 44 males) from different

ethnic ancestries and ages. Each subject has 25 facial scans, including one neutral face

and 24 faces of 6 prototypic expressions with 4 levels of intensity. The 3D locations of 83

facial landmarks are provided for each 3D face. These manually labelled landmarks are

widely used by most existing analysis algorithms.

The experiment is performed on 54-vs-6 setup, which is a commonly used protocol by most

methods (Maalej et al., 2011; Tekguc et al., 2009; Tang and Huang, 2008; Wang et al., 2006;

Sha et al., 2011). The samples of 60 subjects (30 females and 30 males) with two high-

intensities for each expression (03 and 04) are randomly selected from the 100 subjects

in BU-3DFE. In order to conduct person-independent facial expression recognition, we

randomly split these 60 subjects into 10 folds, take 9 folds (54 subject, 648 samples) as

training data, and the remaining fold (6 subjects, 72 samples) as the testing data.

Following the process of other methods (Maalej et al., 2011; Sha et al., 2011) that used

the BU-3DFE database, we select 60 subjects to form a 54-vs-6 setup. However, one

issue is that precisely which 60 subjects are selected is never clearly specified by previous

methods. This is an issue for performance comparison since different random samples of

60 subjects can give very different results and the selection of 60 “easy” faces can give very

high accuracy. To ensure unbiased experimental results, we perform 20 random selections

and conduct 10-fold cross validation on each of the 20 sets. Thus our total experiments are

20×10 = 200. The recognition results for each of the 20 times are shown in the box plot

of Figure 5.11. Note the significant variations in expression recognition between different

sets of 60 subjects.

The recognition rates and stand derivations across all 20 random selections of 10-fold

experiments are averaged and reported in Table 5.3. The proposed method achieved a

83% average recognition rate for the six prototypic expressions. The major confusions are

13.0% (sadness is misclassified as anger), 10.4% (anger is misclassified as sadness) and

9.9% (fear is misclassified as happiness).
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Figure 5.11: Boxplot of 20 times repeated 10-fold cross validation results of the proposed

method.

5.4.1 Comparisons

Table 5.4 compares our method to existing manual and automatic 3D facial expression

recognition techniques. The first row in the table reports the results of the performance of

human experts on the same BU-3DFE database using the same two expression intensity

levels i.e. 03 and 04. These experiments were performed by two psychologists who are the

experts in human facial expression research (Yin et al., 2006a). It is surprising to see that

not even humans have perfect accuracy on this database and even more surprisingly, the

method proposed by Maalej et al. (2011) performs better than humans. Our method has

the best performance among automatic methods and compares well with other manual

methods except Maalej et al. (2011). It is worth noting that our results are averaged over

20 random picks of 60 subjects multiplied by 10-fold experiments for each pick, whereas

the results reported by others are based on a single random pick of 60 subjects.

5.4.2 Analysis and Discussion

Although landmark detection on 3D face models remains an open problem, it is inevitable

in designing a fully automatic facial expression analysis system. The experimental results

reveal that our method outperforms existing automatic techniques (Lemaire et al., 2011,

2013), with better accuracy for every single expression (except sadness). In addition,

clearly the errors in our heuristic points make the recognition task much more difficult

than methods based on manual landmarks. However, as shown in Table 5.4, the depth

feature extracted around 30 heuristic points still achieved comparable results to many
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Table 5.4: Comparison between the proposed method and other 3D facial expression recog-

nition approaches. The type of “manual” means the landmarks used in the corresponding

method are manually labeled, while “auto” means points are automatically detected or

not necessary.

Method Type AN DI FE SA HA SU Avg

Yin et al. (2006a) Human expert 94.9 95.4 96.4 96.2 99.4 99.0 96.8

Maalej et al. (2011) Manual 97.9 99.2 99.7 99.3 98.6 98.2 98.8

Tekguc et al. (2009) Manual 86.0 87.3 85.3 82.9 93.4 94.7 88.2

Tang and Huang (2008) Manual 86.7 84.2 74.2 82.5 95.8 99.2 87.1

Wang et al. (2006) Manual 80.0 80.4 75.0 80.4 95.0 90.8 83.6

Sha et al. (2011) Manual 78.7 83.9 69.8 84.8 88.5 95.4 83.5

The proposed Auto 80.9 81.5 70.8 79.6 91.1 94.0 83.0

Lemaire et al. (2013) Auto 74.1 74.9 64.6 74.5 89.8 90.9 78.1

Lemaire et al. (2011) Auto 69.4 78.2 42.8 82.9 88.8 92.5 75.8

manual techniques (Maalej et al., 2011; Tekguc et al., 2009; Tang and Huang, 2008; Wang

et al., 2006; Sha et al., 2011) which use the manually labeled 83 landmarks.

The local depth feature utilized in proposed method facilitates an effective feature se-

lection. That is why we can achieve comparable performance with those methods using

manual landmarks. The discrete depth features are projected to a subspace by 2DPCA

for dimension reduction. By discarding the redundant dimensions, the resulting feature

vectors conserve most of the essential information with large variance. However, the vari-

ances in the resulting feature vector are not purely caused by facial expressions. It also

contains the changes caused by the facial differences in subjects and the inaccuracy of the

heuristic points. We performed facial expressions on the ‘contaminated features’, and only

achieved an average recognition rate of 75.4%. This shows that feature selection is vital

to our performance, increasing the accuracy significantly to 83%.

5.5 Chapter Summary

This chapter presented a fully automatic 3D static facial expression recognition method

using local patch-based depth features. We extracted depth feature around 30 heuristic

points, generated from 5 fiducial points, to represent facial expressions. A multi-class
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SVM was trained to classify the expressions based on the extracted feature after mRMR

feature selection. The proposed method outperformed existing fully automatic methods

by a significant margin.

However, expression is a dynamic process that occurs over time, and the reliance on a

single 3D image taken at a single time instant limits the amount of information available

about the expression. With the ability to automatically detect landmarks on 3D faces,

the next chapter seeks to recognize expressions based on 4D (3D over time) datasets

automatically.
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Chapter 6

Automatic 4D Facial Expression

Recognition

Ever since the public release of the BU-4DFE database (Yin et al., 2008) which contains 4D

expression data (i.e., dynamic 3D facial expression sequences), the temporal component is

introduced in 4D facial expression recognition, and lots of works have been done on facial

expression recognition using 3D dynamic sequence (Sun et al., 2008; Sandbach et al.,

2012a; Fang et al., 2011; Reale et al., 2013). Temporal information has been shown to

be able to significantly improve the accuracy of expression recognition (Sandbach et al.,

2011), which motivates the use of video sequences. Sun et al. (2008) proposed a facial

expression classification based on frame-by-frame features, and it only achieves an average

recognition rate of 65.1%. Such low performance is due to the frame-by-frame feature

extraction, which may not be able to capture the temporal information sufficiently.

In fact, facial expression is inherently a spatio-temporal process, which means that an

effective feature extraction should be able to extract not only the deformation of facial

features, but also the relative timing of facial actions as well as their temporal evolution.

Therefore, it is essential to measure the dynamics of facial expressions. For such purpose,

Le et al. (2011) used facial level curves to extract spatio-temporal features by compar-

ing the curves across frames using Chamfer distances. This method achieves an average

recognition rate of 92.2% when tested on three expressions from the BU-4DFE database:

sadness, happy and surprise. Another 4D spatio-temporal “Nebula” feature is proposed

by Reale et al. (2013) to improve expression and facial movement analysis performance,

in which the spatio-temporal volume is voxelized and represented by histogram of curva-

tures. This method achieves an average recognition rate of 76.9%, with noticeable high

recognition rates on happy and surprise, but much lower recognition rates on those easily-

confused expressions such as anger and sadness (Pantic and Rothkrantz, 2000; Fasel and

Luettin, 2003; Xue et al., 2014).

In this chapter, we propose a method to extract spatio-temporal features of facial ex-

pression dynamics by analyzing 4D data in frequency domain. Inspired by the success

of discrete cosine transform in video compression, 3D-DCT is applied on the local depth

65



Figure 6.1: Pre-processing of BU-4DFE face model. (a) Raw face model of BU-4DFE

database, the red dots are the vertices. (b) The denoised face model. (c) The cropped

facial area, with 130 detected landmarks. (d) The 68 selected fiducial points for feature

extraction.

patch-sequence generated from the original sequences based on the automatic detected

facial landmarks. The compact low-frequency 3D-DCT coefficients are selected as the

feature vector, which can represent expression dynamics without loss of the subtle infor-

mation conveyed by those easily-confused expressions. The extracted features are classified

by the nearest-neighbor classifier after feature selection and dimension reduction by lin-

ear discriminant analysis (LDA) (Belhumeur et al., 1997). The experimental results show

that the proposed method achieves an average recognition rate of 78.8%, by improving

the recognition rate of anger to 85.0% and sadness to 78.0% significantly.

6.1 Data Pre-processing

The raw 3D face models (frames of the expression sequences) in BU-4DFE database are

quite noisy, as illustrated in figure 6.1(a). The face models contain the very obvious outlier

vertices at the bottom part, which has a significant impact on landmark detection and

feature extraction. In the pre-processing step, we first apply noise filtering to remove the

outlier vertices and then implement landmark point detection.
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Figure 6.2: Tree structure of the landmark detection model. It contains 130 landmark

points, and 5 trees covering nose, left eye, right eye, mouth and face contour.

6.1.1 Noise Filtering

Figure 6.1(a) shows that the vertices of the facial part on the BU-4DFE face models are

very dense, while the outliers are quite sparse. Thus, we design a filter based on the length

of edges connecting model vertices, since the edges connecting outliers will be much longer

than those connecting the normal vertices on facial part. For a given face model, the

designed filter calculates the mean length m and standard deviation std of all the edges.

Any vertex corresponding to edges longer than m+ 5 · std will be filtered out.

The denoised facial model is shown in Figure 6.1(b). It still includes hair and neck. How-

ever, only facial area is of interest for expression analysis. In order to crop the facial area

out from the denoised model, the vertex which has the largest z-axis value is considered

as the nose tip. A sphere with radius of 70mm is centered at this vertex to crop the facial

area out (see Figure 6.1(c)).
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6.1.2 Landmark Point Detection

In order to extract local features from the denoised 3D face model automatically, we need

to identify the landmark points around important facial components. Currently, robust

landmark detection on 3D faces is still an open problem due to the significant topology

changes caused by expressions, such as mouth opening in surprise. However, every 3D face

model (i.e., a frame of the expression dynamic sequence) in BU-4DFE database is released

with a 2D image texture, and the correspondence between the 3D model vertices and 2D

image pixels is recorded in a model file. Thus, 2D facial landmarks can be detected on

the texture image and then the 3D positions of the landmarks can be located on the face

model through the correspondence between pixels and vertices.

The facial landmark localization method proposed by Zhu and Ramanan (2012) is utilized

to detect the 2D landmarks in the texture. As the tree-structure model is trained by

covering the whole face in one tree, it is not accurate enough to characterize some ex-

treme expressions contained in the BU-4DFE database. In order to improve the detection

accuracy over different expressions, we retrained 5 tree-structured models (Liang et al.,

2014) to detect 130 landmarks, which covers the nose, right eye, left eye, mouth and face

contour, as shown in Figure 6.2. The 130 detected landmarks are then back-projected

onto the corresponding 3D model (see in Figure 6.1(c)). In order to compare with the

existing results achieved using ground truth, 68 of the 130 detected points are picked out

for feature extraction.

6.2 Feature Extraction

Each facial expression sequence included in BU-4DFE database normally contains about

100 frames, each of which is a 3D face model. After performing landmark detection on each

frame, a sliding window with the width of 16 frames and sliding stride of 4 frames is applied

on each of the expression sequences to generate a group of subsequences. Obviously, every

subsequence generated contains 16 consecutive frames. Unlike the methods which extract

expression features frame-by-frame (Sun et al., 2008; Sun and Yin, 2008), we proposes to

extract features from frame sequences that can represent spatio-temporal facial expression

dynamics. This is accomplished by applying 3D-DCT on the local depth patch-sequences.
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Figure 6.3: Schema of 3D-DCT feature extraction and selection. (a) One cropped 3D

face frame with 68 landmarks. Two cubic patches are fitted to the point cloud around

left inner eye corner (blue patch) and right mouth corner (green patch). (b) Local depth

features are sampled from the fitted patch, and one patch-sequence is formed by putting

the sampled depth feature around same fiducial points(left inner eye corner or mouth

corner) from consecutive frames together. (c) 3D-DCT coefficients of the patch-sequence.

(d) The forward mRMR feature selection is applied on 3D-DCT coefficients of each patch-

sequence, and the “best m coefficients” are shown. (e) The selected features of every

patch-sequence are putting together, and the backward feature selection is applied to

determine the optimal feature set for whole face.

Figure 6.4: Demonstration of 3D-DCT on one depth patch-sequence. (a) One local depth

patch-sequence. (b) The patch-sequence is divided equally into 4 × 4 × 1 cells. (c) The

3D-DCT coefficients, one bar chart represents the selected 29 low-frequency coefficients

from one cell in (b).
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Table 6.1: The selected frequency coefficients of 3D-DCT.

Frequency (u, v, w)

DC (0, 0, 0)

(0, 0, 1) (0, 0, 2) (2, 0, 1) (2, 2, 0)

(0, 1, 0) (0, 2, 0) (2, 1, 0) (1, 2, 2)

(1, 0, 0) (2, 0, 0) (1, 1, 2) (2, 1, 2)

AC (0, 1, 1) (0, 1, 2) (1, 2, 1) (2, 2, 1)

(1, 0, 1) (0, 2, 1) (2, 1, 1) (0, 0, 3)

(1, 1, 0) (1, 0, 2) (0, 2, 2) (0, 3, 0)

(1, 1, 1) (1, 2, 0) (2, 0, 2) (3, 0, 0)

6.2.1 Local Depth Patch-sequence

As illustrated in Figure 6.3(a), once a fiducial point is located, we use a sphere with radius

r centered at this point to crop a cluster of points. Next, a cubic patch is fitted to the

cropped points using the grid-fitting code from D’Errico (2006). The fitted patch is then

sampled on a uniform 74×74 grid, but only the central 64×64 samples covering the points

in r region are kept as the patch-based depth feature, in order to avoid the artifacts at

boundaries. All sampled patches end up with equal resolution which is necessary for the

following feature extraction. For a given subsequences with 16 consecutive frames, the

extracted 64×64 patches which around the same fiducial point of every frame yield a

depth patch-sequence with the dimension of 64×64×16, as shown in Figure 6.3(b). Thus,

each expression subsequence is represented by 68 local depth patch-sequences, since there

are 68 fiducial points on every frame.

6.2.2 3D Discrete Cosine Transform

Inspired by the success of discrete cosine transform in image and video compression (Ser-

vais and De Jager, 1997; Chan and Siu, 1997), we propose an alternative expression dy-

namics representation based on the 3D discrete cosine transform (3D-DCT) which has a

set of fixed projection bases (i.e., cosine basis functions). Using these fixed projection

bases, it is only necessary to compute the corresponding projection coefficients (3D-DCT

coefficients) to represent the local depth patch-sequences. In fact, 3D-DCT leads to a

object representation with sparse high-frequency transform coefficients if a signal is self-

correlated in both spatio and temporal dimensions, which is desirable for depth patch-
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Algorithm 1: Forward Feature Selection

Input: Frequency coefficients of 3D-DCT

of depth patch-sequence.

Initialization: LDA classification error: E = 1,

Based on mutual information, Candidate

feature set: C0 = {xi|1 ≤ i ≤ n},
Optimal feature set: S∗

0 = Φ,

cnt = 1;

While: cnt ≤ n

For k = 1 : sizeof(Ck−1)

1. S∗
k =

{
S∗
k−1, xk

}
,

2. do LDA classification based on S∗
k ,

record error e(k),

3. i = argmin e(k),

End

If min e(k) ≤ E

1. E = min e(k),

2. S∗
k =

{
S∗
k−1, xi

}
,

3. Ck =
{
C∗
k−1 − xi

}
,

Else

Break,

End

cnt = cnt+ 1

End

Ouput: Optimal feature set: S∗
k
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sequence representation. That is to say, by discarding these high-frequency coefficients,

we simultaneously obtain a compact 3D-DCT based expression sequence representation

and the reconstruction error introduced by removing a subset of high-frequency coefficients

is typically small.

The 3D-DCT is based on a set of cosine basis functions which are determined by the

dimensions of the 3D signal and thus independent of the input video data. The goal of the

discrete cosine transform is to express a discrete signal, such as the depth patch-sequence,

as a linear combination of mutually uncorrelated cosine basis functions, each of which

encodes frequency-specific information of the discrete signal. In general, 3D-DCT can be

applied to 3D signal ((f3D(x, y, z))N1×N2×N3) as following:

C3D(u, v, w) = α1(u)α2(v)α3(w)

N1−1∑
x=0

N2−1∑
y=0

N3−1∑
z=0

f3D(x, y, z)

·
{
cos

[
π(2x+ 1)u

2N1

]
cos

[
π(2y + 1)v

2N2

]
cos

[
π(2z + 1)w

2N3

]} (6.1)

where u ∈ {0, 1, · · · , N1 − 1}, v ∈ {0, 1, · · · , N2 − 1}, w ∈ {0, 1, · · · , N3 − 1}, and αk(u) is

defined as

αk(u) =


√

1
Nk

, if u = 0;√
2
Nk

otherwise.
(6.2)

For each patch-sequence with the dimension of 64 × 64 × 16, we divide this volume into

16 cells (4× 4× 1, as shown in Figure 6.4(b)). Each cell has a dimension of 16× 16× 16,

on which 3D-DCT is applied. The DC coefficient and 28 low-frequency AC coefficients

are kept in a 29-dimensional vector to represent the corresponding cell. Table 6.1 records

the index of the selected coefficients of 3D-DCT. As shown in Figure 6.4(c), each small

bar chart (3D-DCT coefficients) represents one cell, and all these 16 bar charts together

represent the corresponding local depth patch-sequence.

6.3 Feature Selection and Classification

In pattern recognition problems, identifying the most characterizing features of the ob-

served data is crucial to minimize the classification error. The idea of feature selection

is that a simple combination of individually good features does not necessarily lead to

good classification performance. That is to say, “the m best features are not the best
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m features” (Peng et al., 2005). We adopt the framework of the minimal-redundancy-

maximal-relevance (mRMR) (Peng et al., 2005; Ding and Peng, 2005) to select the best

features for recognition as following:

First, the mRMR criterion is used to select mutually exclusive features S = {x1, ..., xm}
that jointly have the largest characterizing power on each of the six prototypic expressions

class c: 

maxΦ(D,R) = D(S, c)−R(S),

D(S, c) = 1
|S|

∑
xi∈S I(xi; c),

R(S) = 1
|S|2

∑
xi,xj∈S I(xi, xj)

(6.3)

where I(xi; c) is the mutual information value between individual feature and class, and

I(xi, xj) is the mutual information value between two features.

When the candidate features are selected, the next task is to determine the optimal number

of features m. A wrapper that tests features with a nearest-neighbor (NN) classifier is

utilized to determine the size of the feature set, with the direct goal of minimizing the

recognition error of the specific classifier on the training set.

In the proposed method, we perform 2-tier feature selection from the bottom up, corre-

sponding to patch-level and face-level. In the first tier, mRMR feature selection (Peng

et al., 2005) is applied on each patch-sequence to select the “best m features” of each

patch. This is done by a forward feature selection algorithm (Algorithm 1). The forward

feature selection will not stop until the recognition rate drops when adding one feature

from the candidate feature set. The selected “best m features” of each patch are put

together and fitted to second tier feature selection.

In the second tier, the selected features of all patches by forward algorithm are put to-

gether, and mRMR feature selection is applied on these features again to determine the

“best m features” of the whole face. Since these features are pre-selected, we use backward

feature selection algorithm (Algorithm 2) to condense the input features and refine the

optimal feature set. Although Chen et al. (2013) pointed out that keeping some of the re-

dundant features may be useful for classification, feature reduction is still needed because

some of the features yield confusion. In Figure 6.5, the recognition rate and number of

features of each iteration of the backward feature selection algorithm are plotted. It can be

seen that the recognition rate keeps increasing when the features with low characterizing

power are removed.
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Figure 6.5: The recognition rate of backward feature selection.

Finally, the features contained in the optimal feature set by backward feature selection is

considered as the “best m features”, for the purpose of expression classification. The dy-

namic 3D facial expression sequences are finally represented by these optimal features, and

classified by nearest-neighbour classifier after dimension reduction by linear discriminant

analysis (LDA) (Belhumeur et al., 1997).

6.4 Experimental Results

6.4.1 Experiment Setup

The BU-4DFE database in the first dataset consists of faces in 3D videos. It involves 101

subjects (58 females and 43 males) of various ethnicities. For each subject the six proto-

typic expressions (Angry, Disgust, Fear, Happy, Sad and Surprise) (Ekman and Friesen,

1978) were recorded gradually from a neutral face, onset, apex, offset and back to neutral,

using the dynamic facial acquisition system Di3D and producing roughly 60,600 3D face

modes(frames), with corresponding texture images. Each prototypic 3D expression video

sequence lasts about four seconds. The temporal resolution of the 3D videos is 25 fps

74



Algorithm 2: Backward Feature Selection

Input: The union of the optimal feature sets

from forward feature selection.

Initialization: LDA classification error: E = 1,

Optimal feature set:

S∗
0 = {xi|1 ≤ i ≤ n},

cnt = 1;

While: cnt ≤ n

For k = 1 : sizeof(S∗
k−1)

1. S∗
k =

{
S∗
k−1 − xk

}
,

2. do LDA classification based on S∗
k ,

record error e(k),

3. i = argmin e(k),

End

If min e(k) ≤ E

1. E = min e(k),

2. S∗
k =

{
S∗
k−1 − xi

}
,

Else

Break,

End

cnt = cnt+ 1

End

Ouput: Optimal feature set: S∗
k

Table 6.2: Confusion matrix of 6 prototypic expressions recognition with 3D-DCT feature

on the BU-4DFE database.

AN DI FE SA HA SU

AN 85.0 10.4 1.3 2.3 0.2 0.7

DI 9.3 74.6 3.8 1.8 3.6 7.0

FE 4.3 6.4 62.0 4.8 12.6 9.9

SA 17.0 2.1 1.3 78.0 0.4 1.1

HA 2.4 3.7 6.1 0.0 86.2 1.6

SU 0.4 3.2 5.8 0.7 2.8 87.1
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Table 6.3: Comparison of 6 prototypic expressions recognition performance on the BU-

4DFE database.

AN DI FE SA HA SU AvgRates

Sun and Yin (2008) 92.4 87.6 85.4 97.8 80.3 99.3 90.4

Xue et al. (2014) 71.8 56.3 51.7 72.3 66.8 63.5 63.8

Sandbach et al. (2012a) 48.2 66.1 46.2 57.1 88.2 82.6 64.7

Fang et al. (2011) 68.3 79.7 67.9 81.3 71.6 96.1 75.8

Reale et al. (2013) 76.3 74.0 60.0 70.9 90.8 89.8 76.9

The proposed 85.0 74.6 62.0 78.0 86.2 87.1 78.8

and each 3D model consists of approximately 35,000 vertices. Each frame is released with

83 manually labelled facial landmark points. In order to fairly compare with the existing

results which using the manually labelled ground truth landmarks, we select 68 fiducial

points (see red points in Figure 6.1(d)) from the automatic detected 130 landmarks for

feature extraction, which locate on the similar positions with manually labeled landmarks.

The proposed method is tested on a subset of the BU-4DFE database. We select 60

subjects (30 females and 30 males) randomly from the BU-4DFE database. In order to

guarantee person-independent facial expression recognition, we follow the commonly used

54-vs-6 setup (Sun and Yin, 2008; Wang et al., 2006; Xue et al., 2014), which means

that the 3D expression sequences from 54 subjects are chosen as the training set, and

the remaining 6 subjects’ sequences are taken as the testing set. To ensure unbiased

experimental results, we conduct 10-fold cross validation in all our experiments and the

average recognition rates are reported.

6.4.2 Expression Recognition Results

The first experiment is to recognize the six prototypic facial expressions sequences in the

BU-4DFE database. We generate 15 subsequences (16-frame length) from each original

expression sequence, and extract 3D-DCT features to represent these subsequences. The 2-

tier feature selection is applied on the extracted features, followed by dimension reduction

using linear discriminant analysis, and finally classified by nearest-neighbour classifier.

Table 6.2 records the recognition confusion matrix of the proposed method. 17.0% of the

sadness expression are misclassified as anger, but the worst recognition happens on the

fear expression.
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Table 6.4: Confusion matrix of recognition AN-HA-SU expressions on the BU-4DFE

database based on proposed 3D-DCT features.

AN HA SU

AN 100 0 0

HA 0.1 99.9 0

SU 0.1 0 99.9

The proposed method is compared with some existing approaches in Table 6.3. The

method proposed by Sun and Yin (2008) achieves an average recognition rate of 90.4% on

BU-4DFE database. However, it is not automatic because the generic model adaptation

is controlled by 83 pre-defined ground truth landmarks. We implement the method pro-

posed by Xue et al. (2014) and extract local depth feature frame-by-frame on BU-4DFE

database, the average recognition rate is only 63.8%. A close recognition rate 65.1% is

achieved by the work of Sun et al. (2008), in which the classification is performed on a

frame-by-frame basis rather than by constructing spatio-temporal features. This is to show

that feature extraction frame-by-frame is insufficient to represent expression dynamics ac-

curately. Instead, Reale et al. (2013) proposed a 4D spatio-temporal “Nebula” feature

to improve facial expression analysis performance, and achieves an average rate of 76.9%,

with noticeably recognition rates of 90.8% and 89.8% on happy and surprise respective-

ly. But the recognition rates of the easily-confused expressions, such as anger, fear and

sadness, are relatively lower. This is because the histogram of the curvature features is

not sensitive enough to reflect the subtle changes conveyed by the easily-confused expres-

sions. In contrast, the proposed method achieves a higher average recognition rates 78.8%

over all the 6 prototypic expressions. Furthermore, the recognition of rates of the easily-

confused expression are improved significantly, especially on anger expression 85.0% and

sadness expression 78.0%. Despite the 2-tier feature selection, the performance improve-

ment attributes to the 3D-DCT features extracted from depth patch-sequences, which

can preserve most of the changes caused by facial expression in compact low-frequency

coefficients.

The methods proposed in (Fang et al., 2011; Le et al., 2011; Sandbach et al., 2011) propose

to recognize only 3 expressions, either anger, happy and surprise (AN-HA-SU) or sad,

happy and surprise (SA-HA-SU). We also conduct similar experiments following this setup.

Table 6.4 and table 6.5 record the confusion matrices of the recognition of AN-HA-SU and

SA-HA-SU expressions. Table 6.6 compares the performance of the recognition rates over

expression group AN-HA-SU and SA-HA-SU, which reveal that the proposed method

outperforms other existing approaches in 3-class expression recognition.
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Table 6.5: Confusion matrix of recognition SA-HA-SU expressions on the BU-4DFE

database based on proposed 3D-DCT features.

SA HA SU

SA 100 0 0

HA 0.2 99.8 0

SU 1.7 0.9 97.4

Table 6.6: Comparison of 3-class expressions recognition base on the BU-4DFE database.

AN HA SU SA HA SU

Fang et al. (2011) 97.3 96.3 96.5 98.9 97.3 91.0

Le et al. (2011) - - - 91.7 95.0 90.0

Sandbach et al. (2011) 76.3 89.1 83.7 - - -

The proposed 100 99.9 99.9 100 99.8 97.4

6.4.3 Discussion

In 6-class recognition, misclassification happens among the easily-confused expressions,

such as anger, disgust, fear and sadness. The reason is illustrated in Figure 6.6, which

shows the expression samples in the subspace after LDA projection. Figure 6.6(a) shows

that in the projected subspace the ‘cloud’ of fear samples (red triangles) has intersections

with the ‘cloud’ of all the rest 5 expressions, especially with ‘cloud’ of happy samples,

which is the reason why 12.6% of the fear expression samples are misclassified as happy.

Similarly, the ‘cloud’ of anger samples (green plus) lies between the ‘cloud’ of disgust and

sadness, with big overlaps among them. This explains why 10.4% anger expression samples

are misclassified as disgust, and 17.0% of sadness expression samples are misclassified as

anger.

While in 3-class recognition, there are only 2 dimensions left after LDA projection. Either

in SA-HA-SU classification or in AN-HA-SU classification, only one ‘hard’ expressions is

left, and it has almost has no confusion with happy and surprise. It can be seen in Figure

6.6(b) and Figure 6.6(c). As the result, the proposed method achieves an average recog-

nition rate of 99.9% on AN-HA-SU classification and 99.1% on SA-HA-SU classification.
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Figure 6.6: The expression samples projected into the subspace from LDA. (a) In 6-

class recognition, the first 3 dimensions of the samples in LDA subspace are plotted. (b)

In AN-HA-SU recognition, the subspace from LDA only has two dimensions, and the 3

expressions have little overlap. (c) In SA-HA-SU recognition, the subspace from LDA has

two dimensions, the 3 expressions overlap slightly.

6.5 Chapter Summary

This chapter proposed an automatic 4D facial expression recognition method based on

dynamic 3D facial expression sequences. Three dimension discrete cosine transform is

utilized to extract compact spatio-temporal features from local patch-sequence to represent

facial expression dynamics. In order to get more characterizing features for classification,

two rounds mRMR feature selection are applied on the extract 3D-DCT coefficients. The

experimental results show that the proposed feature extraction method can preserve the

subtle information conveyed by easily-confused expressions, and outperforms the existing

methods, especially on the easily-confused expressions.
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Chapter 7

Discriminative Facial Expression

Feature Selection in 4D data

It has been noted that facial expressions are conveyed by different facial parts/components

(Pardàs and Bonafonte, 2002; Bourel et al., 2001). Pardàs and Bonafonte (2002) show that

eyebrows and mouth are the components that carry the maximum amount of information

relevant to expressions being conveyed, and mouth conveys more information than the

eyebrows. Another work by Bourel et al. (2001) reveal that sadness is mainly conveyed

by the mouth area. Similarly, Kotsia et al. (2008) show that the occlusion of the mouth

reduces the recognition rate by more than 50%. This result is highly consistent with

the results of Pardàs and Bonafonte (2002). These researches inspire us to ask: what

parts/components of human face carry the information that can best distinguish the six

basic expressions? In other words, what are the most expressive parts of human face

that convey the most discriminative information for facial expression? Answers to these

questions can be crucial for performance improvement of automatic expression recognition.

One possible approach to answer such questions is to recognize facial expressions under

partial facial image occlusion, such as the work mentioned above (Pardàs and Bonafonte,

2002; Bourel et al., 2001; Kotsia et al., 2008). The impact on recognition rate reflects

how discriminative the occluded facial area is, such as the area of mouth in Bourel et al.

(2001). However, the occlusion in these works (Pardàs and Bonafonte, 2002; Bourel et al.,

2001; Kotsia et al., 2008) is manually imposed on the face in a fixed manner by applying a

predefined binary mask on facial images empirically, which cannot be adjusted according

to the different input images containing different expressions. Therefore, it is necessary to

develop an algorithm that can search the most discriminative facial parts automatically

for different image data.

This chapter proposes an automatic method to determine the most discriminative facial

parts for 4D facial expression recognition. The local depth patch-sequence is generated

from automatically detected facial landmarks, and Histogram of Oriented 3D-Gradients

(HOG3D) feature is then extracted to represent 3D facial deformation over time. Two-

stage (forward and backward) mRMR feature selection is conducted to determine the
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Figure 7.1: Landmark detection on BU-4DFE face models. (a) Tree structure of the

landmark detection model. It contains 130 landmark points, and 5 trees covering nose,

left eye, right eye, mouth and face contour. (b) The 68 selected fiducial points for feature

extraction on 3D models. (c) The accumulation ratio of the error distance from the

detected landmarks to the corresponding groundtruth.

most discriminative facial parts. The proposed method consists of: (1) an automatic local

depth patch sequence based method to extract spatio-temporal features (real 4D features)

to represent 4D facial expressions rather than to extract features frame-by-frame; (2) a

data-driven method for determining the most expressive facial parts for 6 basic expressions;

(3) a hierarchical classifier which uses features of different facial parts in each tier. The

proposed method outperforms the state-of-art approaches by a significance margin.

7.1 Feature Extraction

7.1.1 Landmark Point Detection

Every 3D face model (i.e., a frame of the dynamic expression sequence) in the BU-4DFE

database (Yin et al., 2008) is released with a 2D image texture, and the correspondence

between the 3D model vertices and 2D image pixels is recorded in a model file. Thus,

2D facial landmarks can be detected on the texture image and then the 3D positions of

the landmarks can be located on the face model through the correspondence between the

pixels and vertices. In order to achieve a fully automatic method, we detect 130 landmarks

automatically on each 3D face model for feature extraction, rather than use the ground

truth points provided by BU-4DFE database.
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Figure 7.2: Schema of HOG3D feature extraction and selection. (a) One cropped 3D face

frame with 68 landmarks. Two cubic patches are fitted to the point cloud around left inner

eye corner (blue patch) and right mouth corner (green patch). (b) Local depth features are

sampled from the fitted patch, and one patch-sequence is formed by putting the sampled

depth feature around same fiducial points(left inner eye corner or mouth corner) from

consecutive frames together. (c) HOG3D features extracted from the patch-sequence.

(d) After two-stage feature selection, the resulting expressive facial parts/components are

plotted on a 3D face model. The color of the patch stands for its characterizing gradient’s

direction.

The facial landmark localization method proposed by Zhu and Ramanan (2012) is utilized

to detect the 2D landmarks in the texture image. As the tree-structure model is trained

to cover the whole face in one tree, it is not accurate enough to characterize some extreme

expressions contained in the BU-4DFE database. Same as in section 6.1.2, in order to

improve the accuracy of landmark detections over different expressions, we retrained 5

tree-structured models (Liang et al., 2014) to detect 130 landmarks, which covers the

nose, right eye, left eye, mouth and face contour, as shown in Figure 7.1(a). The detected

landmarks are then back-projected onto the corresponding 3D model (see in Figure 7.1(b)).

The distances from the detected landmarks to the corresponding groundtruth provided by

BU-4DFE data are calculated to check the detection accuracy. Figure 7.1(c) illustrates

the detection error of three points (left eye inner corner, right eye outer corner, and right

mouth corner). It can be seen that over 80% of the errors are less than 4 mm.
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7.1.2 Histogram of Oriented 3D-Gradients

Each facial expression sequence included in the BU-4DFE database normally contains

about 100 frames, with each frame a 3D face model. After performing landmark detection

on each frame, a sliding window with the width of 16 frames and sliding stride of 4 frames

is applied on each of the expression sequences to generate a group of subsequences. Ob-

viously, every subsequence generated contains 16 consecutive frames. Unlike the methods

which extract expression feature frame-by-frame (Sun et al., 2008; Sun and Yin, 2008), the

proposed method extracts real 4D features from subsequences in an attempt to represent

spatio-temporal facial expression dynamics. This is accomplished by extracting HOG3D

features (Klaser and Marszalek, 2008) on the local depth patch-sequences.

As illustrated in Figure 7.2(a), once a fiducial point is located, a sphere with radius r

is centered at this point to crop a cluster of points. Next, a cubic patch is fitted to the

cropped points using the grid-fitting code from D’Errico (2006). The fitted patch is then

sampled on a uniform 74×74 grid, but only the central 64×64 samples covering the points

in r region are kept as the patch-based depth feature, in order to avoid the artifacts at

boundaries. All sampled patches end up with equal resolution which is necessary for the

subsequent feature extraction. For a given subsequence with 16 consecutive frames, the

extracted 64×64 patches which are around the same fiducial point of every frame yield a

depth patch-sequence with the dimension of 64×64×16, as shown in Figure 7.2(b). Each

expression subsequence is represented by 68 local depth patch-sequences, since there are

68 fiducial points on every frame.

In order to generate the histogram of oriented 3D gradients, the 64×64×16 depth patch-

sequence is divided equally into 4×4×1 cuboid cells, each of which has dimension of

16×16×16. For every cuboid cell c(x, y, t), 3D gradients along x, y, t-directions are denoted

by partial derivatives [cx
′, cy

′, ct
′]T = [ ∂

∂xc,
∂
∂y c,

∂
∂tc]

T , and the mean gradient is denoted by

ḡc = [c̄x′, c̄y ′, c̄t′]
T . In order to calculate the histogram of 3D-Gradients, a regular n-sided

polyhedron is centered at the origin of a three-dimensional Euclidean Coordinate. The

mean gradient ḡc is then projected on axes which go through the origin and the center

points pi = [x, y, t] of all n facets. Let P be the projection matrix of the n center points

P = [p1,p2, . . . ,pn]. (7.1)

The projection h of the mean gradient vector ḡc is calculated as follows:

h =
P · ḡc
∥ḡc∥2

. (7.2)

In this work, we choose n = 20 to make a regular icosahedron which contains 20 regular
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Figure 7.3: The oriented discriminative parts of face on six basic expression models. The

colour stands for the selected orientation of the 3D-gradient feature in the corresponding

region.

triangle facets. The center points of a icosahedron is

(±1,±1,±1), (0,±1/η,±η),

(±1/η,±η, 0), (±η, 0,±1/η),
(7.3)

where η = 1+
√
5

2 is the golden ratio. Each pair of opposite facets corresponds to one

histogram bin since they are along the same axis.

For each cuboid cell, a 10-bin histogram is extracted, and it needs to be thresholded by

t = pT
i · pj since the projection directions are not mutually orthogonal. Consequent-

ly, the HOG3D features of one depth patch-sequence are obtained by concatenating the

histograms of corresponding 16 cells.
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7.2 Expressive Facial Parts Determination

7.2.1 Two-stage Feature Selection

As mentioned above, some parts of the face carry more information related to the fa-

cial expression being displayed, such as mouth and eyebrows. However, the amount of

information carried in them alone is not sufficient for good expression recognition. A

straightforward question is what parts of human face jointly carry the most discrimina-

tive information for recognition of six basic expressions. That is to say, features from

these parts/areas can jointly have the largest characterizing power on each of the six basic

expressions, and consequently lead to the best recognition performance.

The minimal-redundancy-maximal-relevance (mRMR) feature selection framework (Peng

et al., 2005; Ding and Peng, 2005) is adopted here to identify the most discriminative facial

parts for the recognition of the six basic expressions. The idea of feature selection is that a

combination of individually good features does not necessarily lead to good classification

performance. That is to say, “the m best features are not the best m features” (Peng

et al., 2005). In our case, the whole face is covered by 68 patches around corresponding

landmarks. Assuming that a HOG3D feature set S = {h1, ..., hm} can best distinguish

the six basic expression, this set can be identified from bottom up by a two-stage feature

selection process.

Firstly, the mRMR criterion is used to select mutually exclusive candidate features Q =

{h1, ..., hn} , n > m that jointly have the largest characterizing power on each of the six

prototypic expressions class c. When the candidate features are selected, the next task

is to determine the optimal number of features m. A wrapper that tests features with a

classifier is utilized to determine the size of the optimal feature set, with the direct goal

of minimizing the recognition error of the specific classifier on the training set. To ensure

the generalized performance of the selected features, 10-fold cross-validation is conducted

in each stage of the selection process.

In the first stage, mRMR feature selection is applied on each patch-sequence to determine

the most discriminative sub-patch. This is done by a forward feature selection algorithm.

In each iteration, the algorithm adds one feature from the patch according to the descend-

ing order of candidate features’ characterizing power. This forward feature selection will

not stop until the recognition rate starts to drop when adding one more feature from the

candidate feature set. In the ith-fold cross-validation, the classification error is set to 1 ini-

tially, and Qi is the candidate feature set. The wrapper first searches for a subset C1
i with

85



Figure 7.4: Visualization of the selected most discriminative regions of face models with

six basic expressions.

one feature by choosing the feature h∗1 that renders the greatest error reduction. Then the

wrapper selects the feature h∗2 from the set Qi −C1
i so that the feature set C2

i =
{
C1
i , h

∗
2

}
leads to the largest error reduction. This forward feature selection will continue until the

classification error e begins to increase when adding a new feature h∗k+1 with ek+1 > ek.

That is to say, the optimal feature number of this patch mi = k and the optimal feature

set Pi = Ck
i . Eventually, the features selected from all the 10 fold are put together to form

the optimal feature set of one patch P ∗ = P1 ∪ P2 ∪ · · · ∪ Pi ∪ · · · ∪ P10. The parts/areas

where P ∗ is selected are considered as the expressive parts of the current patch.

In the second stage, the features of expressive parts selected by the forward algorithm are

put together, and mRMR feature selection is applied on these features again to determine

the expressive parts of the whole face. Since these features are from pre-selected candidate

areas, we use a backward feature selection algorithm to condense the input features. This

can be done by eliminating one candidate features in each iteration according to the

ascending order of characterizing power. This process continues until the recognition rate

starts decreasing. Similar as the first stage, a 10-fold cross-validation is conducted, and

the union of the optimal features of each fold are preserved as “the m best features” for

facial expression recognition.

Finally, the facial parts where the preserved features come from are considered as the most
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Figure 7.5: The flowchart of the hierarchical classification.

discriminative areas for expression recognition. The selected expressive facial areas and

its 3D gradients orientations (represented by color) are shown in Figures 7.3. It shows the

most discriminative/expressive parts of human face selected based on a data-driven algo-

rithm with no pre-defined rules. We can see that the majority of the selected area covers

mouth and eyebrows (see in Figure 7.3, directions p3,p9,p10), which perfectly matches

the results of the occlusion related works (Pardàs and Bonafonte, 2002; Bourel et al., 2001;

Kotsia et al., 2008). Moreover, the deformations of mouth area in the directions p7 to

p10 are always considered as discriminative to human facial expressions by the proposed

data-driven algorithm, which explains why mouth area carries more expression informa-

tion than eyebrows (Pardàs and Bonafonte, 2002). Figure 7.4 illustrates the distribution

and the gradient directions of the expressive facial parts on 3D face model with different

expressions. Take the blue area covering left eyebrow as an example, it means the gra-

dient information along the direction p7 is very discriminative for expression recognition.

The importance of the cheek area is identified by the proposed data-driven algorithm (see

Figure 7.4), which has not been mentioned in previous works.

87



7.2.2 Hierarchical Classification

As mentioned before, the six basic expressions are not mutually exclusive and some of

them are easily-confused, even for a human observer, such as anger and sadness (Pantic

and Rothkrantz, 2000), fear and disgust (Fasel and Luettin, 2003). It is difficult to classify

all the 6 classes in one go, because of the overlaps caused by the subtlety and variance

of expressions. Thus, hierarchical classification is again adopted to divide and conquer

this problem, as shown in Figure 7.5 . Different from described in Chapter 4, each tier of

the classification is now wrapped with an independent feature selection to learn the most

discriminative features. All the learning processes are totally data-driven with a direct

goal of maximize the recognition accuracy, which means no pre-defined rules are used. In

each tier, nearest-neighbor classifier is used since it has no parameter to tune. The feature

selection process would be very time-consuming if the wrapped classifier has parameters

to tune.

7.3 Experimental Results

7.3.1 Experiment Setup

The BU-4DFE database is the first database that contains faces in 3D videos. It involves

101 subjects (58 females and 43 males) of various ethnicities. For each subject the six pro-

totypic expressions (Angry, Disgust, Fear, Happy, Sad and Surprise) (Ekman and Friesen,

1978) were recorded gradually from a neutral face, onset, apex, offset and back to neutral,

using the dynamic facial acquisition system Di3D and producing roughly 60,600 3D face

modes(frames), with corresponding texture images. Each prototypic 3D expression video

sequence lasts about four seconds. The temporal resolution of the 3D videos is 25 fps and

each 3D model consists of approximately 35,000 vertices. Each frame is released with 83

manually labeled facial landmark points.

The experimental setups of existing methods on BU-4DFE database vary a lot. Some

works (Canavan et al., 2012) select a subset of 60 subjects and follow the 54-vs-6 setup,

while some other approaches (Sandbach et al., 2012a; Jeni et al., 2012) select certain

frames from the original sequence. For example, in Reale et al. (2013), only 481 onset

frames with the expressions from neutral to apex are selected, while in Fang et al. (2012,

2011), the frames with ambiguous expressions are manually removed, and 507 sequences

are selected. In order to provide better comparison with the existing works, we conduct
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Table 7.1: Confusion matrix of recognition on selected onset expression sequences from

the BU-4DFE database.

AN DI FE SA HA SU

AN 92.46 2.93 1.11 3.50 0.00 0.00

DI 0.71 92.13 0.59 0.00 5.66 0.91

FE 0.91 1.11 96.98 0.00 1.00 0.00

SA 1.70 0.00 0.00 98.30 0.00 0.00

HA 0.00 0.67 0.50 0.50 98.33 0.00

SU 0.00 0.38 0.00 0.00 0.83 98.78

experiments using two different setups, details of which are described in the following two

subsections. To ensure unbiased experimental results, we conduct 10-fold cross validation

in all our experiments and the average recognition rates are reported.

7.3.2 Results for Onset Sequences

In the first experimental setup, to facilitate a fair comparison, we conduct experiments

using a similar setup as methods with selected expression sequences. Similar as Jeni et al.

(2012) and Reale et al. (2013), we select 651 onset frames sequences from the BU-4DFE

database, and generate training and testing samples from exclusive subjects to guarantee

person-independent expression recognition. Since some expression sequences do not start

from the neutral frame, the number of samples from each expression is not always the

same.

The HOG3D features are extracted from the onset sequences, and two-stage feature selec-

tions are conducted on the patch level and face level to find out the expressive area. The

features from the expressive parts are then compressed by linear discriminant analysis (L-

DA) (Belhumeur et al., 1997), and the recognition is accomplished by a Nearest-Neighbor

classifier. The confusion matrix of the classification is recorded in Table 7.1, and the

proposed method achieves an average recognition rate of 96.64%. Table 7.2 compares the

proposed method with other existing methods. It shows that the proposed method outper-

forms other existing results on selected sequences from BU-4DFE database. In addition,

our experimental results are obtained from 651 sequences, which is much more than other

methods.

89



Table 7.2: Comparison of 6 prototypic expressions recognition performance on the BU-

4DFE database. ‘-’ means the corresponding data is not available.

AN DI FE SA HA SU AvgRates

Sun et al. (2010) - - - - - - 94.37

Canavan et al. (2012) 83.60 83.20 81.30 78.00 92.10 89.50 84.80

Jeni et al. (2012) 80.00 59.00 42.00 64.00 78.00 85.00 78.18

Sandbach et al. (2012a) 51.92 62.71 46.15 68.97 75.28 82.56 64.60

Fang et al. (2011) 68.31 79.69 67.89 71.64 81.31 86.10 75.82

Fang et al. (2012) 92.42 91.67 81.06 88.64 98.48 93.94 91.00

Reale et al. (2013) 76.30 74.00 60.00 70.90 90.80 89.80 76.90

Proposed method 92.46 92.13 96.98 98.30 98.33 98.78 96.64

Table 7.3: Confusion matrix of 6 prototypic expressions recognition on the BU-4DFE

database.

AN DI FE SA HA SU

AN 81.11 5.33 2.89 8.00 1.67 1.00

DI 9.89 70.56 8.89 3.22 3.33 4.11

FE 6.56 9.78 65.56 2.11 10.44 5.56

SA 14.00 0.44 1.89 82.33 0.56 0.78

HA 1.11 3.22 5.22 0.33 86.22 3.89

SU 0.56 2.33 4.11 1.22 3.44 88.33

7.3.3 Results for Sequences from 60 Subjects

In the survey by Danelakis et al. (2014), all the methods listed in Table 7.2 are labeled with

automatic method, since most of them can extract features automatically. However, the

methods are tested on pre-selected expression sequences, or even selected frames, which

means that those methods are not truly automatic. In fact, the expression sequences

in BU-4DFE database contain plenty of abnormalities, such as the corrupted 3D faces,

the missing onset stage of expressions and inconsistencies of expressions etc. This is a

significant challenge to the facial expression algorithms. Thus, we set up an experiment

under a more realistic scenario to test the performance of the proposed method.

In this setup, there is no manual selection involved, such as selecting better expression
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Table 7.4: Confusion matrix of hierarchical classification on the BU-4DFE database.

AN DI FE SA HA SU

AN 82.11 10.89 6.00 0.56 0.00 0.44

DI 10.67 71.56 13.11 1.22 2.11 1.33

FE 9.67 12.00 69.22 1.89 3.89 3.33

SA 9.22 1.78 1.56 87.33 0.11 0.00

HA 0.78 3.56 3.44 0.00 92.22 0.00

SU 0.00 2.11 3.67 0.00 0.00 94.22

sequences, or choosing consistent frames etc. A subset of 60 (30 females and 30 males)

subjects is randomly selected from the original BU-4DFE database. In order to guarantee

person-independent facial expression recognition, the commonly used 54-vs-6 setup (Sun

and Yin, 2008; Wang et al., 2006) is adopted, which means that the 3D expression se-

quences from 54 subjects are chosen as the training set, and the remaining 6 subjects’

sequences are taken as the testing set. All the six basic expression are classified by a

nearest-neighbour classifier after LDA projection. Table 7.3 shows the confusion matrix

of the classification, leading to the average recognition rate of 79.0% and this result is still

slightly better than the results achieved on selected data (Jeni et al., 2012; Sandbach et al.,

2012a; Reale et al., 2013). It can be seen from Table 7.3 that the major confusions happen

between sadness and anger (14%), fear and happiness (10.44%). Thus, the hierarchical

classifier is used to improve the performance further.

We implement the hierarchical classification as follows. Firstly, a SVM is embedded in the

1st-tier to separate six basic expression into two groups: AN-DI-FE and SA-HA-SU. Next,

in the 2rd-tier, two Nearest-Neighbor classifiers are trained to classified the samples into

single expression category. The confusion matrix is recorded in Table 7.4. The average

recognition rate of 82.80% is achieved, which is comparable or even better than the results

obtained on selected samples such as Jeni et al. (2012), Sandbach et al. (2012a), and Reale

et al. (2013).

7.3.4 Discussion

From the comparison in Table 7.2, it can be seen that the proposed method achieves the

best performance of 96.64% on selected onset sequences. Even when tested on a much

more difficult sample set, i.e. the subset of randomly selected 60 subjects, an average

recognition of 82.80% is achieved by hierarchical classification. This is still comparable to
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Figure 7.6: The expression samples projected into the subspace from LDA. (a) The top row

illustrates the projection of training samples without feature selection. (b) The bottom

row demonstrates the projection of training samples after feature selection.

or even better than the results listed in Table 7.2. The reasons are as follows:

First, the proposed method extracts the spatio-temporal HOG3D features to represent 4D

facial expressions. It is a real 4D feature that can encode the intra-frame deformations

and inter-frame dynamics at the same time. This is better than extracting expression

information frame-by-frame, in which the resulted features can not sufficiently describe

the 3D mesh changes over time.

Second, the most discriminative face parts/components are identified by the proposed

two-stage feature selection, and only the features of the most expressive areas are used to

distinguish expressions. These features could achieve the best classification results since

they jointly have the most characterizing power for the six basic expressions. As shown

in Figure 7.6, the first 3 dimensions of all the samples in the LDA subspace are projected

to xy−,xz−,yz−planes. It is obvious that the features from the expressive areas (in the

bottom row of figure 7.6) are better for classification than the original features, because

the six expression classes are well separated in the second row (represented by features

from expressive parts), but inseparable in the first row, especially the expressions fear,

anger and disgust.
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Finally, the 2-tired hierarchical classifier could eliminate confusions in expression recog-

nition. It also facilitates feature selection in each tier, which can use ‘learned features’

to improve the recognition accuracy. It can be seen by comparing the confusion matrices

in Table 7.3 and Table 7.4. In hierarchical classification, the recognition rates of all the

expressions are improved, especially the recognition of fear (by 3.66%), sad (by 5.00%),

happiness (by 6.00%) and surprise (by 5.89%). In Table 7.3, the major confusion happens

in anger and sad (14.00% of sadness are misclassified as anger), and fear and happiness

(10.44% of fear are misclassified as happiness). In contrast, hierarchical classification re-

duces the misclassified rates to 9.22% (anger and sadness) 3.89% (fear and happiness)

respectively.

7.4 Chapter Summary

This chapter presented an automatic 4D facial expression recognition method based on

dynamic 3D facial expression sequences. The most characterizing face parts/components

for expression representation are identified by two-stage feature selection. The HOG3D

features extracted from the most discriminative parts are fed to a 2-tiered hierarchical

classifier to accomplish facial expression recognition. The experimental results show that

the proposed method outperforms the existing methods by a significant margin. The

landmark detection in this work still uses the information of 2D texture images, and a

3D landmark detector that can work directly on 3D information would be investigated in

future.
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Chapter 8

Conclusion

This thesis has proposed methods to improve the performance of automatic person-

independent facial expression recognition. The problem has been explored from 2D im-

age/video to 3D image/video. The facial landmark detection method is extended and ap-

plied in order to achieve fully automatic facial expression recognition. It means our meth-

ods have no manual intervention in the expression feature extraction and selection process.

The common problems of facial expression recognition, such as landmark detection on 3D

faces, easily-confused facial expressions classification, spatio-temporal representation for

dynamic analysis, have been addressed. The weaknesses of the existing approaches have

been analyzed and alternative approaches have been proposed accordingly.

In Chapter 2, a review of related work in the fields of automatic facial expression recog-

nition was presented. The framework of a facial expression recognition system was first

briefly described. This was follow by the introduction of the property of 2D and 3D facial

expression images and popular benchmark databases. Secondly, a review of the 2D and

3D facial expression feature extraction methods was presented. Finally, previous works

on feature selection were discussed, focusing on dimension reduction and improving the

classification performance.

In Chapter 3, the colour spaces for facial expression recognition were investigated in detail.

The Uncorrelated Colour Space and Discriminant Colour Space are derived with the pur-

pose of expression recognition. Three experiments were conducted on on the Oulu-CASIA

NIR&VIS facial expression database and the CurtinFaces database. The performances

of the UCS, DCS are compared with RGB colour space and gray images. In addition,

an experiment is conducted by crossing images source: training on the Kinect expression

captures and testing on the images from Panasonic camera, and vice versa. The Kinect

captures are in low resolution but images from Panasonic camera are in high resolution.

This is a special case of person-independent facial expression recognition, and a trial on

how to recognize the low-resolution expressions based on high-resolution images.

In Chapter 4, a two-tiered hierarchical classifier focusing on the recognition of easily-

confused expressions was implemented. The LBP features are extracted from local regions
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of 2D images, and concatenated to form feature vector to represent the expression conveyed

by the corresponding image. In order to improve the recognition performance of the

easily-confused expressions, a hierarchical classification is applied. Two different SVMs

are trained in each tier of the hierarchical classifier. In the first tier, the easily-confused

expressions such as anger and sadness are merged into one class, and a 5-class SVMs are

trained for classification (the merged class and the remaining 4 prototypic expressions:

Disgust, fear, happiness, surprise.). In the second tier, the samples classified as merged

class are then separated by a 2-class SVMs into anger and sadness. It is worth noting

that different features are used in each tier of the classification. Comparing with the

existing methods, the proposed method can reduce the confusion between anger and sad

significantly.

In Chapter 5, a fully automatic 3D facial expression recognition method was proposed.

This work is designed for recognizing facial expressions based on static 3D face model. In

order to achieve a fully automatic recognition, 5 points (four eye corners and nose tip)

are automatically detected to serve as the fiducial points for face alignment and feature

extraction. This is done by applying the Haar-cascade classifier on the range images

rendered from the raw 3D point cloud to detect the fiducial points. The 5 fiducial points

are then used to define a T-area for alignment and 25 heuristic points are generated all over

the whole face. Based on the T-area, the 3D faces are aligned by the ICP algorithm and

local depth features are uniformly sampled around the heuristic points to represent facial

expressions. After feature selection, the selected features are fed to the SVMs classifiers

to accomplish expression recognition. The performance achieved by the proposed method

is the best among existing automatic methods, and also comparable to those approaches

which require human interference.

In Chapter 6, the problem of 4D facial expression recognition was addressed. Unlike the

majority of the existing methods, this chapter tries to extract real 4D feature to represent

spatio-temporal 3D facial expression dynamics. A tree-structure model is used to detect

130 landmarks for the faces in BU-4DFE database, especially for those faces with extreme

expressions. The 3D-DCT features are then extracted around the selected 68 detected

landmarks to represent 3D facial expressions dynamics. This is followed by a two-round

mRMR (minimal-redundancy-maximal-relevance) feature selection to reduce the feature

dimension and improve the recognition performance. The proposed method is tested on 6-

class recognition and 3-class recognition. In both cases, the proposed method outperform

other existing methods on same database.

In Chapter 7, a method to identify the most discriminative facial parts/components for

3D dynamic expressions was presented. Human facial expression are conveyed by different
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facial regions, and previous work on this issue are all occlusion based. The facial regions,

such as eyebrow and mouth, are blocked by a predefined binary mask, which is not ad-

justable with regard to different data. In this chapter, the identification is conducted on

4D expression data, with the HOG3D features extract from local depth patch-sequences.

A hierarchical classification embedded with 2-stage feature selections is utilized to pick

the most discriminative facial parts out with the direct goal of maximizing recognition

rates. The data-driven selection result shows mouth, cheeks, and eyebrow carry most of

the expression-related information. Different from the 2D expression data, the cheek area

also carries important expression information in 3D facial data.

8.1 Summary of Contributions

The contributions of this thesis include the following:

• A quantitative performance comparison of four colour spaces, such as UCS, DCS,

RGB and Gray image, for facial expression recognition. This thesis tries to find out

what is the best colour space for facial expression recognition.

≻ Unlike in face recognition, DCS can not achieve consistently better performance

than the other colour spaces for facial expression recognition.

≻ The cross image source experiment is a specific trial for expression recognition,

especially when training on high-resolution images and testing on low-resolution

images.

• The use of hierarchical classification to improve the recognition performance of easily-

confused expressions. The significance of this includes:

≻ For those easily-confused expressions, hierarchical classification can divide and

conquer the problem by merging the easily-confused expressions in the first

tier, and then separating them in the second tier.

≻ The 2-tier structure allows the classifier to use different features in each tiers. The

features could be either extracted by different descriptors from original data,

or selected with different task in each tiers.

• Proposing a 2-stage feature selection to identify the most discriminant facial region

for expression representation and recognition. This has several advantages:

≻ The 2-stage feature selection is applied bottom up. In the first stage, local features

are selected based on the current interest region, such as the depth patches in
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chapter 6. The resulted features from the first stage are given to the second

stage to identify “the best m features” for the whole face.

≻ The feature selection is wrapped with classification. With different recognition

task in each tier, the selection process is able to select the best features for the

current tier.

≻ The proposed 2-stage feature selection are used to identify the most discriminative

facial regions for expression recognition.

8.2 Future Work

In general, there are certain limitations to the circumstances that the proposed approaches

can be applied to. As mentioned in chapter 1, the current state-of-art facial expression

recognition system focused on achieving different aspects of the ideal properties, such as

fully automatic, person-independent, real-time etc. However, it is necessary to integrate

all of these ideas together to refine facial expression recognition system. For the proposed

method, the efficiency and recognition performance should ideally be improved.

8.2.1 Real-time Recognition

Although many works has achieved automatic facial expression recognition, few of them are

real-time. The computational cost lies either in fiducial point detection or the subsequent

feature extraction. The fiducial points are very important for expression feature extraction.

It is therefore inevitable to demand a high-performance system for their detection. Lots of

algorithm, such as ASM, AAM, Haar-cascade, have been proposed for landmark detection

on 2D human face images. However, the computing costs are still quite high, and the

accuracy still needs to be improved. Moreover, 3D face images have gained its popularity

in facial expression analysis, but landmark detection on 3D face model is still an open

problem, especially real-time detection and tracking on 3D data. Until now, very few

work focuses on solving this problem. The ultimate goal of 3D facial expression recognition

systems is real-time analysis, requiring real-time alignment and tracking. Approaches with

low computational cost for these two operations need to be investigated. For expression

feature extraction, effective descriptors are required, especially for 3D dynamic expression

analysis. If the extracted features are in high-dimensional space, the effective dimension

reduction methods need to be applied to balance the computational cost and feature

discrimination.
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8.2.2 Easily-confused Expressions

It has been noticed for a long time that the six basic expressions, namely anger, disgust,

fear, sadness, happiness, and surprise, are not mutually exclusive. From the results of

survey papers by Bettadapura (2012), similar confusion happened between anger and

sadness (Aleksic and Katsaggelos, 2006; Sebe et al., 2007), anger with fear (Kotsia and

Pitas, 2007; Kotsia et al., 2008). In contrast, surprise and happiness are the easiest to

recognize (Michel and El Kaliouby, 2003; Pardàs and Bonafonte, 2002). The confusions

caused by the easily-confused expressions will affect the overall performance significantly.

In order to separate the easily-confused anger and sadness, chapter 3 uses specific features

and hierarchical classification to reduce the confusions. However, other than happiness and

surprise, the recognition rates for the remaining four expressions are still not good enough.

A possible way to solve this problem is using expression-specific classifiers. For each

expression, a unique feature could be extracted to train an expression-specific classifier,

and the final decision could be achieved by weighted voting.

8.2.3 Spontaneous Expression Recognition

Most of the existing research works have focused on the basis of recognizing deliberately

displayed/posed expressions, such as the six prototypic expressions. Recently, research

effort has begun to shift to recognizing more complex and spontaneous expressions, such as

lack of attention, boredom, frustration, pain etc. The major challenge that the researches

face is the non-availability of spontaneous expression data. If the subjects become aware

of the recording, their expressions lose authenticity immediately (Sebe et al., 2007). The

BP4D-Spontaneous Zhang et al. (2014) data is the pioneer work which attempt to capture

spontaneous facial expression data for research, in which the elicited expressions of subjects

are recorded. For recording spontaneous affective behaviour, a trade-off between the

acquisition of natural emotional expressions and data quality is applied. If the recording

environment is too constrained, genuine emotion and social signalling become difficult to

elicit. However, if the recording environment is unconstrained, substantial error may be

introduced into the recordings. Though well-validated emotion techniques which meet

the challenge mentioned by Coan and Allen (2007) are used, it is hard to guarantee the

expression authenticity. Furthermore, real life facial expression analysis is much more

difficult. The factors, such as head motion, low resolution, low expression intensity, will

complicate facial expression analysis.
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8.2.4 Temporal Information

The majority of the existing works on dynamic facial expression analysis address the ex-

pression recognition as a time-series problem. These works try to extract features from

discrete expression frames, and sequential models like HMMs are then used trained to

finish expression recognition. However, temporal information has been shown to be able

to improve the performance of recognition Sun et al. (2008), the timing of facial actions

may be as important as their configurations. In fact, the differences of spontaneous and

deliberate facial expressions may be reflected by the temporal parameters (Cohn et al.,

2002), such as the intensity and duration of expressions. This is consistent with neuropsy-

chological models (Rinn, 1984). Thus, spatio-temporal descriptors, which can encode the

deformation of facial features, the relative timing of facial actions, as well as their temporal

evolution, need to be developed for dynamic expression analysis.
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