

School of Information Systems
Curtin Business School

A Defeasible Logic Programming-based Framework to Support

Argumentation in Semantic Web applications

Naeem Khalid Janjua

This thesis is presented for the Degree of
Doctor of Philosophy

of
Curtin University

February 2013

i

DECLARATION

To the best of my knowledge and belief this thesis contains no material previously

published by any other person except where due acknowledgement has been made.

This thesis contains no material which has been accepted for the award of any other

degree or diploma in any university.

Naeem Khalid Janjua

Signature:

Date:

Table of Contents

List of Figures . xi

List of Tables . xvii

Preface . xviii

Acknowledgements . xix

List of Publications arising from this thesis xx

1 Introduction . 1
1.1 The Semantic Web . 1

1.1.1 Ontology languages layer . 4

1.1.1.1 Ontology languages . 5

1.1.1.2 Ontological reasoning 5

1.1.2 The logic layer . 7

1.1.2.1 Rules classification and knowledge acquisition 7

1.1.2.2 Reasoning methodology 10

1.1.2.3 Logic layer and support for non-monotonic reasoning . 12

1.2 Challenges in Semantic Web applications for Business Intelligence in an

enterprise . 15

1.3 Defeasible reasoning . 19

1.4 Argumentation . 22

1.5 Argumentation support in Semantic Web applications: Research gaps . 24

1.6 Research objectives of the thesis . 25

1.7 Scope of the thesis . 27

1.8 Significance of the thesis . 27

1.8.1 Scientific significance . 27

1.8.2 Social significance . 28

1.9 Thesis plan . 29

1.10 Conclusion . 30

2 Literature Review . 32

TABLE OF CONTENTS iii

2.1 Introduction . 32

2.2 Basic definitions . 32

2.2.1 Argumentation . 32

2.2.2 Argumentation systems . 33

2.2.3 Argument, Rebuttal, Undercut and Acceptable arguments . . . 33

2.2.4 Argumentation scheme . 34

2.2.5 Argumentation life cycle . 34

2.2.6 Types of arguments . 34

2.2.7 Patterns of arguments . 35

2.2.8 Monological and dialogical argumentation 35

2.2.9 Static and dynamic argumentation framework 36

2.3 Argumentation-based models, frameworks and applications 36

2.4 Philosophical models of argumentation 36

2.4.1 Theoretical models of argumentation 37

2.4.1.1 Toulmin’s model and its extensions 37

2.4.1.2 Argumentation schemes proposed by Walton and Reed 39

2.4.2 Argumentation frameworks and applications 42

2.4.2.1 Zeno argumentation framework 42

2.4.2.2 Carneades argumentation Framework 42

2.4.2.3 Sense-Making tool : Araucaria 44

2.5 Logic-based models of argumentation and applications 45

2.5.1 Argumentation frameworks . 46

2.5.1.1 Abstract argumentation framework 46

2.5.1.2 Bipolar argumentation frameworks 50

2.5.1.3 Preference-based argumentation frameworks 51

2.5.1.4 Value-base argumentation framework 54

2.5.1.5 Assumption-based argumentation framework 56

2.5.2 Argumentation Systems . 58

2.5.2.1 Abstract argumentation system 58

2.5.2.2 Defeasible Logic Programming (DeLP) server 58

2.5.2.3 Defeasible reasoning-based argumentation engines . . . 60

2.5.2.4 OSCAR . 60

2.5.2.5 IACAS . 61

2.5.2.6 Critical and recommender systems (C & R) 61

2.5.2.7 Miscellaneous applications 62

2.6 Comparison between philosophical and logic-based argumentation

frameworks and applications . 63

2.7 Categorization of reasoning approaches on the Semantic Web 65

TABLE OF CONTENTS iv

2.7.1 Sub-categories of monotonic reasoning 66

2.7.1.1 Ontology-driven reasoning 66

2.7.1.2 Semantic Web rule-based driven reasoning 67

2.7.1.3 Fuzzy logic-based reasoning 68

2.7.1.4 Description Logic Programs (DLP) 70

2.7.2 Sub-categories of non-monotonic reasoning 71

2.7.2.1 Defeasible logic-based reasoning 71

2.7.2.2 Argumentation-based approaches 72

2.7.3 Web-based Argument-assistance systems 74

2.7.4 Semantic Web-based argumentation support frameworks and

applications . 78

2.7.5 Semantic Web-based argumentation support applications with a

shared ontology (AIF) . 80

2.8 Critical evaluation of the existing approaches to support monological

argumentation in Semantic Web applications 82

2.8.1 Incapability of logic-based languages to represent information

that is potentially incomplete and/contradictory coming from

different sources . 84

2.8.2 Absence of an monological argumentation-driven reasoning

engine to identify and resolve conflicts present in information

coming from different sources 85

2.8.2.1 Rete network and its limitations 86

2.8.2.2 Lack of hybrid reasoning in Semantic Web reasoning

engines . 86

2.8.2.3 Lack of different argumentation-driven conflict

resolution strategies 88

2.8.3 No methodology for knowledge integration or the graphical

representation of the reasoning process and results to assist in

enterprise-wide decision making 88

2.9 Conclusion . 89

3 Problem Definition . 90
3.1 Introduction . 90

3.2 Key concepts . 90

3.3 Problem definition . 93

3.4 Research issues . 99

3.5 Research objectives . 100

TABLE OF CONTENTS v

3.5.1 To propose a methodology for incomplete and/or contradictory

information representation . 100

3.5.2 To propose a methodology for monological argumentation

driven-reasoning engine to reason over incomplete and/or

contradictory information . 101

3.5.3 To propose a methodology for information and knowledge

integration . 101

3.5.4 To exploit the power of a generic framework in different Semantic

Web applications as follows: . 102

3.5.4.1 To design and develop an Argumentation-enabled

Web-based IDSS (Web@IDSS) for handling structured

information . 102

3.5.4.2 To design and develop an Argumentation-enabled

Web-based IDSS (Web@KIDSS) for knowledge

Integration. 102

3.5.4.3 To design and develop an Argumentation-enabled

Web-based IDSS for handling unstructured information 102

3.5.5 To validate and evaluate the proposed framework 103

3.6 Research approach to problem solving 103

3.6.1 Research methods . 103

3.6.2 Choice of science and engineering-based research method 104

3.7 Conclusion . 106

4 Solution Overview . 107
4.1 Introduction . 107

4.2 Solution overview for logic-based framework that supports

argumentation in Semantic Web applications (GF@SWA) 108

4.3 Information layer . 111

4.4 Argumentation-driven information representation, reasoning and

integration layer (@IRRI) . 112

4.4.1 Solution for incomplete and/or contradictory Information

representation . 112

4.4.2 Solution for monological argumentation-driven reasoning engine

to reason over incomplete and/or contradictory information . . . 114

4.4.3 Solution for information and knowledge integration 118

4.5 Applications layer . 121

4.6 Realization of Semantic Web applications using GF@SWA for Business

Intelligence . 121

TABLE OF CONTENTS vi

4.6.1 Web@IDSS . 122

4.6.2 Web@KIDSS . 123

4.6.3 KR@PMD . 124

4.7 Conclusion . 124

5 Argumentation-enabled Web-based Intelligent Decision Support
System (Web@IDSS) . 126
5.1 Introduction . 126

5.2 Case study for problem definition . 128

5.3 Proposed framework for Argumentation-enabled Web-based IDSS

(Web@IDSS) . 130

5.3.1 Important definitions . 132

5.3.1.1 DeLP Language . 133

5.3.1.2 Working memory . 133

5.3.1.3 Production rule . 134

5.3.1.4 Rule base . 134

5.3.1.5 Strict production rule 135

5.3.1.6 Defeasible production rules 135

5.3.1.7 Argumentative production system 136

5.3.1.8 Consistency . 136

5.3.1.9 Arguments construction 137

5.3.1.10 Strict argument . 137

5.3.1.11 Defeasible argument 138

5.3.1.12 Counter-argument . 139

5.3.1.13 Static defeat . 139

5.3.1.14 Dialectical tree . 140

5.3.1.15 Marking of dialectical tree 141

5.3.1.16 Dynamic defeat . 141

5.3.1.17 Sub-argument . 142

5.3.1.18 Reasoning chain . 142

5.3.1.19 Strict reasoning chain 143

5.3.1.20 Defeasible reasoning chain 143

5.3.1.21 Mixed reasoning chain 144

5.3.1.22 Dependent reasoning chains 144

5.3.2 Working of the proposed framework for Web@IDSS 144

5.4 Information representation in DeLP format 149

5.4.1 Information pre-processing . 149

5.4.2 Web-based form to specify DeLP rules and facts 154

TABLE OF CONTENTS vii

5.5 Argumentative Production System to perform hybrid reasoning 155

5.5.1 Arguments construction using data-driven reasoning 158

5.5.2 Conflicts identification and their resolution using goal-driven

reasoning . 166

5.6 Information integration . 172

5.6.1 Construction of reasoning chains 173

5.6.2 Categorization of reasoning chains 175

5.6.3 Graphical representation of a reasoning chain 177

5.7 Conclusion . 178

6 Enterprise Knowledge Integration through Argumentation-enabled
Intelligent Decision Support Systems (Web@KIDSS) 180
6.1 Introduction . 180

6.2 Case study for problem definition . 182

6.3 Proposed framework for Argumentation-enabled Web-based IDSS for

Enterprise Knowledge Integration (Web@KIDSS) 185

6.3.1 Important definitions . 188

6.3.1.1 AIF argument network 188

6.3.1.2 Argumentative production system as an argument

network . 188

6.3.1.3 Predecessor and Successor Nodes in the network 189

6.3.1.4 Recommendations space 189

6.3.1.5 Integration scheme . 189

6.3.1.6 Valuation operator and valued reasoning chain 190

6.3.1.7 Focus operator . 191

6.3.1.8 Merge operator . 191

6.3.1.9 Unique operator . 191

6.3.1.10 Conflict operator . 192

6.3.1.11 Preference operator . 192

6.3.1.12 Integrated recommendations space 192

6.3.1.13 Query . 193

6.3.2 Working of the proposed framework for Web@KIDSS 193

6.4 Publication of enterprise integrated information (EII) in a standard format197

6.4.1 Modeling of a reasoning chain as an AIF argument network . . . 198

6.4.2 Semantic annotation and serialization of a reasoning chain . . . 202

6.5 Enterprise knowledge integration (EKI) 203

6.5.1 Import and transform the published reasoning chains 206

6.5.2 Valuation of the reasoning chains 210

TABLE OF CONTENTS viii

6.5.3 Generation of integrated recommendations space 216

6.6 Graphical representation of results to support intelligent decision making 219

6.7 Conclusion . 223

7 Process Map Discovery from Business Policies: A Knowledge
Representation approach with Argumentative Reasoning
(KR@PMD) . 224
7.1 Introduction . 224

7.2 Unstructured business policies and challenges for the enterprises 226

7.3 Case study for problem definition . 228

7.4 Proposed framework for KR@PMD . 230

7.4.1 Process ontology . 233

7.4.2 Working of the proposed framework for KR@PMD 235

7.5 Semantic annotation of unstructured business policies for business rules

specification . 239

7.5.1 Semantic annotation of business policies 241

7.5.2 Specification of business rules and facts 242

7.6 Argumentative production system performing hybrid reasoning 244

7.6.1 Process activation using data-driven reasoning 246

7.6.2 Argumentation-driven conflict resolution strategies 249

7.6.2.1 Generalize specificity 249

7.6.2.2 Dung style . 250

7.6.2.3 Fuzzy preferences . 251

7.6.2.4 Voting . 253

7.6.3 Building and marking of dialectical trees 254

7.7 Graphical representation of business process maps 255

7.8 Conclusion . 259

8 Validation and Evaluation of GF@SWA 261
8.1 Introduction . 261

8.2 General description of the tools . 261

8.3 Objectives for the development of GF@SWA 263

8.4 Characteristics of the proposed GF@SWA 263

8.4.1 Structure diagrams . 264

8.4.1.1 Communication package 265

8.4.1.2 Information representation package 266

8.4.1.3 Hybrid reasoning engine package 267

8.4.1.4 Information and knowledge integration package 269

8.4.2 Behaviour diagrams . 270

TABLE OF CONTENTS ix

8.4.2.1 Sequence diagram for semantic annotation of

unstructured information 270

8.4.2.2 Sequence diagram for production rules specification . . 271

8.4.2.3 Sequence diagram for hybrid reasoning and the

generation of graphical reasoning chains 273

8.4.2.4 Sequence diagram for knowledge integration 276

8.5 Functionality validation and feature evaluation of GF@SWA 279

8.5.1 Functionality validation of Web@IDSS 280

8.5.1.1 Aims for the development of Web@IDSS 280

8.5.1.2 Working of Web@IDSS 280

8.5.1.3 Achievement of the Aims of Web@IDSS 285

8.5.2 Features evaluation of Web@IDSS 286

8.5.3 Functionality validation of Web@KIDSS 289

8.5.3.1 Aims for the development of Web@KIDSS 289

8.5.3.2 Working of Web@KIDSS 289

8.5.3.3 Achievement of the Aims of Web@KIDSS 294

8.5.4 Features evaluation of Web@KIDSS 295

8.5.5 Functionality validation of KR@PMD 297

8.5.5.1 Aims for the development of KR@PMD 297

8.5.5.2 Working of KR@PMD 297

8.5.5.3 Achievement of the Aims of the KR@PMD 304

8.5.6 Features evaluation of KR@PMD 305

8.6 Conclusion . 307

9 Recapitulation and Future Work . 308
9.1 Introduction . 308

9.2 Recapitulation . 309

9.3 Contributions of the thesis . 310

9.3.1 Contribution 1: Methodology for incomplete and/or

contradictory information representation 312

9.3.2 Contribution 2: Methodology for monological argumentation

performed by a hybrid reasoning engine 312

9.3.3 Contribution 3: Methodology for different argumentation-driven

conflict resolution strategies to resolve conflicts between

arguments and their counter-arguments 313

9.3.4 Contribution 4: Methodology to integrate the output of a hybrid

reasoning engine in the form of a reasoning chain and generate

its graphical representation . 313

TABLE OF CONTENTS x

9.3.5 Contribution 5: Methodology for importing/exporting integrated

information to different Semantic Web applications 314

9.3.6 Contribution 6: Methodology for knowledge integration 314

9.3.7 Contribution 7: Methodology for the hybrid reasoning engine to

have a querying and answering capability 315

9.3.8 Contribution 8: Application of GF@SWA in different Semantic

Web applications to support intelligent decision making 315

9.4 Future work . 315

9.4.1 Automated production rules extraction from unstructured

information . 316

9.4.2 Extension of the proposed framework to work with machine

learning algorithms . 317

9.4.3 Extend the proposed framework as an actual/generic argument

model (GAAM) for practical reasoning 317

9.4.4 Collaborative framework for reasoning qualitative models

extracted from quantitative data to assist a group

decision-making process. 318

9.4.5 Evaluation for correctness of the reasoning chains produced by

GF@SWA . 318

9.5 Conclusion . 318

References . 319

Appendix A Information captured by Semantic Web applications . . 338
A.1 Production rules of a supplier in RuleML format 338

A.2 Feedback information in OWL/RDF format 341

A.3 Process ontology in OWL/RDF format 346

Appendix B Selected Publications arising from this thesis 355

List of Figures

FIGURE 1.1: The Semantic Web stack (reproduced from Horrocks et al.

(2005)) . 2

FIGURE 1.2: Pictorial representation of the person ontology 4

FIGURE 1.3: Pictorial representation of the person ontology with instance

data . 4

FIGURE 1.4: Turtle representation of person ontology developed in OWL . 6

FIGURE 1.5: Logic layer exploiting ontological knowledge 7

FIGURE 1.6: Two way knowledge acquisition on the Semantic Web 10

FIGURE 1.7: Updated Semantic Web stack (reproduced from Horrocks

et al. (2005)) . 12

FIGURE 1.8: Expressive overlaps among knowledge representation

languages (Grosof et al., 2003) 13

FIGURE 1.9: Semantic Web layer cake with negation-as-failure (reproduced

from Horrocks et al. (2005)) 14

FIGURE 1.10: Toulmin’s model of argument structure 22

FIGURE 1.11: Degrees of cogency . 23

FIGURE 1.12: Outline of chapters . 30

FIGURE 2.1: An illustration of Toulmin’s model of argument structure

(Toulmin, 2003) . 38

FIGURE 2.2: Illustration of the self-esteem argument 41

FIGURE 2.3: Zeno argumentation model 43

FIGURE 2.4: Carneades argumentation model 43

FIGURE 2.5: Expressive overlaps among knowledge representation

languages (Grosof et al., 2003) 70

FIGURE 3.1: Overview of science and engineering-based research method . 105

FIGURE 4.1: Solution overview of GF@SWA to support argumentation in

Semantic Web applications 109

FIGURE 4.2: Working of the proposed solution for Information

representation, reasoning and integration by Semantic

Web applications . 111

LIST OF FIGURES xii

FIGURE 4.3: Flowchart illustrating steps involved in information

representation . 113

FIGURE 4.4: Flowchart illustrating steps performed by argumentative

reasoning module . 115

FIGURE 4.5: Flowchart illustrating steps performed for information and

knowledge integration . 119

FIGURE 5.1: Evolution towards Argumentation-enabled Web-based IDSS

(extended from (Lee and Chung, 2005)) 127

FIGURE 5.2: Analyses of the business policies of a supplier and feedback

provided by the other users (companies) by Mr. David . . . 129

FIGURE 5.3: Proposed conceptual framework with highlighted components

exploited by Web@IDSS . 132

FIGURE 5.4: Pictorial representation of a dialectical tree 141

FIGURE 5.5: Pictorial representation of a marked dialectical tree 141

FIGURE 5.6: Flowchart illustrating steps performed by Web@IDSS for

information representation, reasoning and integration 146

FIGURE 5.7: Flowchart illustrating steps for information representation in

Web@IDSS . 150

FIGURE 5.8: Business policy of the supplier specified in RuleML format . 151

FIGURE 5.9: Pictorial representation of the process for translation of

information in OWL/RDF format to DeLP facts 153

FIGURE 5.10: Web-based form for the decision maker to specify DeLP rules

and facts . 155

FIGURE 5.11: Flowchart illustrating steps performed by Web@IDSS during

hybrid reasoning . 156

FIGURE 5.12: Simplified representation of the compilation of production

rules in a general Rete network 159

FIGURE 5.13: Code snippet that shows a production rule with

NegativeConditionNAF . 159

FIGURE 5.14: Compilation of production rules in the form of a Rete network

in Web@IDSS . 160

FIGURE 5.15: Data-driven reasoning by passing the facts through the Rete

network in Web@IDSS . 161

FIGURE 5.16: Comparison of a standard Rete with a single rule execution

strategy (left) with the extended Rete without the strategy

(right) . 162

FIGURE 5.17: Pictorial representation of arguments and their

counter-arguments from illustration 5.8 170

LIST OF FIGURES xiii

FIGURE 5.18: Pictorial representation of preference between arguments

using Generalize Specificity 170

FIGURE 5.19: Pictorial representation of undefeated marked dialectical tree

for argument d1 (left), defeated marked dialectical tree for

argument d2 (right) . 171

FIGURE 5.20: Flowchart illustrating steps performed by Web@IDSS for

information integration . 172

FIGURE 5.21: Pictorial representation of mixed reasoning chain generated

from arguments show in illustration 5.8 175

FIGURE 5.22: Pictorial representation of dependent reasoning chains

λ(j3,h)and λ(s4,j) . 176

FIGURE 5.23: Graphical representation of the reasoning chain generated by

Web@IDSS . 178

FIGURE 6.1: Interaction of an enterprise’s internal and external

environment for Enterprise Knowledge Integration (EKI) . . 181

FIGURE 6.2: Evolution towards Intelligent Information Integration in an

enterprise . 182

FIGURE 6.3: Interaction of enterprise ABC with external environment . . 183

FIGURE 6.4: Proposed framework with highlighted components exploited

by Web@KIDSS . 187

FIGURE 6.5: Flowchart illustrating steps performed by Web@KIDSS for

enterprise knowledge integration 194

FIGURE 6.6: Flowchart illustrating steps performed by Web@KIDSS for

publication of the reasoning chains 198

FIGURE 6.7: The Upper and Forms ontology of the AIF ontology(Bex et al.

(2010)) . 199

FIGURE 6.8: Pictorial representation of the recommendation forwarded by

IT department . 201

FIGURE 6.9: Pictorial representation a reasoning chain as an AIF argument

network . 202

FIGURE 6.10: Serialization of AIF compliant reasoning chain in turtle format203

FIGURE 6.11: Flowchart illustrating steps performed by Web@KIDSS for

knowledge integration . 205

FIGURE 6.12: AIF representation of a strict argument 207

FIGURE 6.13: AIF representation of a defeasible argument 207

FIGURE 6.14: AIF representation of a CA-Node 207

FIGURE 6.15: AIF representation of PA node 208

LIST OF FIGURES xiv

FIGURE 6.16: Pictorial representation of the transformation of an argument

to a production rule . 208

FIGURE 6.17: Pictorial representation of the recommendations space for an

enterprise ABC . 210

FIGURE 6.18: Pictorial representation of a modelled reasoning chain using

Toulmin model . 211

FIGURE 6.19: Web-based from of Web@KIDSS to define integration scheme 214

FIGURE 6.20: Web-based form of Web@KIDSS that shows the valuation of

a reasoning chain . 216

FIGURE 6.21: Pictorial representation of integrated recommendations space 219

FIGURE 6.22: Web-based form of Web@KIDSS presenting integrated

knowledge to assist the decision maker in decision making

process . 221

FIGURE 7.1: Evolution towards Web-based IDSS that can discovers

process map from unstructured business policies 225

FIGURE 7.2: Business policy life cycle in an enterprise 226

FIGURE 7.3: Interaction among departments for travel bookings for

university staff . 228

FIGURE 7.4: Proposed framework with highlighted components exploited

by KR@PMD . 232

FIGURE 7.5: Pictorial representation of the process ontology 233

FIGURE 7.6: Flowchart illustrating sequence of steps performed by

KR@PMD . 237

FIGURE 7.7: Flowchart illustrating steps performed by KR@PMD for

semantic annotation and production rules specification . . . 240

FIGURE 7.8: Graphical representation of annotation of travel policy with

the process ontology . 242

FIGURE 7.9: A Web-based form of KR@PMD for the specification of

business rules and facts . 243

FIGURE 7.10: Flowchart illustrating steps performed by of KR@PMD

during performing hybrid reasoning 246

FIGURE 7.11: Pictorial representation of the mapping of activated business

rules in a business process map 248

FIGURE 7.12: Marked dialectical trees considering different

argumentation-driven conflict resolution strategies 255

FIGURE 7.13: Graphical representation of business process map of business

process 1 by of KR@PMD 257

LIST OF FIGURES xv

FIGURE 7.14: Graphical representation of business process map of business

process 2 by of KR@PMD 258

FIGURE 8.1: Package diagram of GF@SWA 265

FIGURE 8.2: Hybrid Reasoning engine sub-packages 266

FIGURE 8.3: Sequence diagram for the semantic annotation of

unstructured information . 271

FIGURE 8.4: Sequence diagram for production rules specification 273

FIGURE 8.5: Sequence diagram for hybrid reasoning and the generation of

graphical reasoning chains 275

FIGURE 8.6: Sequence diagram represents the steps performed by hybrid

reasoning engine . 276

FIGURE 8.7: Sequence diagram knowledge integration 278

FIGURE 8.8: Web-based form of Web@IDSS to download RuleML files . . 281

FIGURE 8.9: Web-based form of Web@IDSS for translation of business

rules from RuleML to DeLP format 281

FIGURE 8.10: Web-based form of Web@IDSS for translation of feedback

specified in OWL/RDF format to DeLP format 282

FIGURE 8.11: Web-based form of Web@IDSS to define production rules and

facts . 283

FIGURE 8.12: Graphical representation of reasoning results with

justifications by Web@IDSS 284

FIGURE 8.13: Web-based form by Web@IDSS for querying the knowledge

base . 284

FIGURE 8.14: Web-based form of Web@KIDSS to import reasoning chains 290

FIGURE 8.15: Web-based form of Web@KIDSS to define integration scheme 290

FIGURE 8.16: Web-based form of Web@KIDSS to select reasoning chains

and apply the integration scheme 291

FIGURE 8.17: Web-based form of Web@KIDSS depicting the results of

valuation of a reasoning chain 292

FIGURE 8.18: Graphical representing of integrated knowledge by

Web@KIDSS to facilitate decision making process 293

FIGURE 8.19: Web-based form of KR@PMD for business policies semantic

annotation . 298

FIGURE 8.20: Web-based form of KR@PMD for business rules specification 299

FIGURE 8.21: Web-based form of KR@PMD shwoing set of arguments and

conflict set . 300

FIGURE 8.22: Web-based form of KR@PMD representing different

algorithms for conflicts resolution 300

LIST OF FIGURES xvi

FIGURE 8.23: Web-based form of KR@PMD for specification of fuzzy

preferences . 301

FIGURE 8.24: Web-based form of KR@PMD for specification of votes . . . 301

FIGURE 8.25: Graphical representation of business process map of process

1 by KR@PMD . 302

FIGURE 8.26: Graphical representation of business process map of process

2 by KR@PMD . 303

FIGURE 8.27: Web-based form of KR@PMD for querying the knowledge

base and explanation of the results 304

List of Tables

TABLE 2.1: Extension to Toulmin’s model of argument structure 40

TABLE 2.2: Symbols with their respective description 48

TABLE 2.3: Comparison of abstract argumentation frameworks 49

TABLE 2.4: Comparison of bipolar argumentation frameworks 52

TABLE 2.5: Comparison of preference-based argumentation frameworks . . 53

TABLE 2.6: Comparison of value-based argumentation frameworks 55

TABLE 2.7: Comparison of assumption-based argumentation frameworks . 57

TABLE 2.8: Comparison of logic-based argumentation

frameworks/applications with philosophical models of

argumentation/applications . 64

TABLE 2.9: OWL ontology reasoning semantics 67

TABLE 2.10: Comparison of defeasible logic based Web IDSS applications . 73

TABLE 2.11: Scale for evaluation and acceptability of arguments 75

TABLE 2.12: Comparison of Web 2.0 based argument assistance systems . . 77

TABLE 2.13: Comparison of semantic based argumentation support

applications . 79

TABLE 2.14: Comparison of semantic web-based argumentation support

system with shared Ontology 81

TABLE 5.1: Description of the supplier’s production rules translated by the

RuleML translator . 152

TABLE 5.2: Description of reviews/feedback by customer about supplier’s

production translated by OWL/RDF translator 154

TABLE 7.1: Ontology schema translation rules in DeLP format 247

TABLE 8.1: Comparison of Web@IDSS with existing applications 288

TABLE 8.2: Comparison of defeasible logic based Web IDSS applications . 296

TABLE 8.3: Comparison of KR@PMD with existing techniques to check

compliance of business policy with business process 306

xviii

Preface

Using ontologies, the Semantic Web provides structure and meaning to the vast amount

of available information on the World Wide Web (WWW) and enables machines and/or

computers to utilize, process, reason and discover knowledge from it. The logic layer

of the Semantic Web stack provides a set of logic-based rule languages to perform

automated reasoning over such information, produce results and assist the decision

maker in the decision making process. Initial efforts in the literature for reasoning in

Semantic Web applications have focused on the use of monotonic logic. However such

efforts lack the capability to represent and reason when the underlying information is

incomplete and/or contradictory. To overcome this problem, defeasible reasoning-based

Semantic Web applications have been proposed that are capable of representing and

reasoning over incomplete and/or contradictory information after defining the priorities

between them. However their drawback is that they can only represent and reason

over information coming from a single source. In scenarios where the decision maker is

interested in considering information from multiple sources (such as information from

collaborating enterprises or the feedback from customers) and where such information

is incomplete and/or contradictory, current Semantic Web-based approaches do not

provide any solution to represent, reason, resolve conflicts and integrate it to assist in

the decision making process. This is in contrast to the approaches proposed in the

literature in Artificial intelligence, where argumentation formalisms have been used to

reason over contradictory information and produce a justifiable, tractable conclusion.

Therefore, to overcome such limitations in the Semantic Web discussed above, in

this thesis a generic defeasible logic programming-based framework is proposed to

support argumentation in Semantic Web applications (GF@SWA). GF@SWA enables

Semantic Web applications to represent both structured and unstructured information

and/or translate the existing information into a defeasible logic programming (DeLP)

format, perform hybrid reasoning for arguments construction, identify and resolve

conflicts among arguments, integrate them and produce their graphical representation

in the form of reasoning chains. The GF@SWA also provides a solution to integrate

the reasoning chains produced by different Semantic Web applications and assists

the decision maker in the decision making process. For validation and evaluation of

GF@SWA, three Semantic Web applications are developed using GF@SWA to provide

decision support to an enterprise to achieve business intelligence. The functionality and

features of each Semantic Web application are validated and evaluated to highlight

the effectiveness of GF@SWA in addressing the decision making requirements of an

enterprise.

xix

Acknowledgements

First of all, praise and thanks to Almighty Allah for his uncountable blessings

bestowed upon me and for enabling me to complete my Doctoral dissertation under

the supervision of Dr. Omar Khadeer Hussain and Dr. Farookh Khadeer Hussain.

My greatest gratitude goes to my family. I thank my mother, Gul-e-Shareen, who

taught me the principles of morality, determination and perseverance in life. I thank

my father, Khalid Hussain Janjua, who always inspired me, encouraged me to embark

on higher studies, despite the enormous financial difficulties and supported my travel

adventure to Australia. I thank my sisters and brothers especially Faheem and Waseem

for being my best friends and for being a constant source of support for me throughout

my studies. I thank my wife, Naila and my son, Haris who have been a great strength

throughout my PhD. I also thank the members of my extended family in Pakistan for

their emotional support.

I would like to thank my supervisors, Dr. Omar Khadeer Hussain and Dr. Farookh

Khadeer Hussain, for their continued support, excellent guidance and encouragement

throughout my research. This thesis is as much their effort as it is mine. I thank Dr.

Farookh and Professor Tharam Dillon for their help and guidance in assisting me to

enrol at Curtin University and supporting me during the course of my studies.

I would like to express my appreciation to Dr. Alejandro J. Garcia and Mr.

Sebastian Gottifredi from the “Artificial Intelligence Research and Development

Laboratory (LIDIA)”, Argentina, for providing the DeLP Server for our research. I

also want to thank Dr. Iyad Rehwan from the “Masdar Institute” for answering my

emails and providing valuable feedback for my research.

I would like to thank my friends, as they deserve a big ‘thank you’ for sharing with

me the simple joys along the way. I thank Jamshaid, Atif, Zia, Adil, Raza, Bambang,

Mohammad, Ali Reza and Hai Dong for helping me to have such a wonderful time at

Curtin University.

I would like to thank my colleagues, especially Dr Hafiz Farooq, Dr. Amir Hayat

and Dr. Arshad Ali at the School of Electrical Engineering and Computer Science,

National University of Technology, Pakistan for their help in making the transition

from SEECS to the commencement of a PhD at Curtin University so smooth.

xx

List of Publications arising from this thesis

Referred Journal Articles

1. Naeem Khalid Janjua and Farookh Khadeer Hussain “Web@IDSS:

Argumentation-enabled Web-based IDSS for reasoning over incomplete

and conflicting information”, Knowledge-Based Systems, Volume 32, August

2012, Pages 9-27, doi:http://dx.doi.org/10.1016/j.knosys.2011.09.009

(Excellence in Research for Australia (ERA) rank: B, Impact Factor:
2.422)

2. Naeem Khalid Janjua, Farookh Khadeer Hussain and Omar Khadeer Hussain

“Semantic information and knowledge integration through argumentative

reasoning to support intelligent decision making”, Information Systems Frontiers,

July 2012, Pages 1-26, doi:http://dx.doi.org/10.1007/s10796-012-9365-x

(Australian Business Deans Council (ABDC) rank: A, ERA rank: B,
Impact Factor: 0.912)

Referred Conference Articles

3. Naeem Khalid Janjua and Farookh Khadeer Hussain. Development of a Logic

Layer in the Semantic Web: Research Issues. In 6th International conference on

Semantics, Knowledge and Grids, Pages 367-370, Nov. 1-3, 2010, Ningbo, China.

4. Naeem Khalid Janjua, Farookh Khadeer Hussain. Defeasible Reasoning

based Argumentative Web-IDSS for Virtual Team (VT). In 2011 International

conference on Web Intelligence and Intelligent Agent Technology, Pages 330-334,

August 22 - 27, 2011, Lyon, France.

5. Naeem Khalid Janjua, Farookh Khadeer Hussain. Rule-based business policies

representation, reasoning and integration in an enterprise. In IEEE 6 th

International conference on Broadband andWireless Computing, Communication

and applications, Pages 51-56, October 26-28, 2011, Barcelona, Spain.

Chapter 1 - Introduction

With recent technological developments, the World Wide Web (WWW) is no longer

simply a medium for sharing information over the Internet, but has become one of the

sources for generating new knowledge by using existing information for commercial,

social, educational, business and research-related activities. As a result, software

applications and information services have become the real wealth of a knowledge-based

society. However, the explosion of information on the WWW poses great challenges

in the design and development of software systems to exploit this information,

extract new knowledge autonomously and facilitate decision making processes. To

address such challenges, the concept of the Semantic Web has been proposed in the

literature. The Semantic Web aims to be a universal medium for data exchange

i.e. classifying, packaging and semantically enriching information to support data

automation, integration, and reuse across various applications and extract knowledge

from it (Torroni et al., 2009; Suguri et al., 2008).

In the next sub-section, the important characteristics of the Semantic Web are

discussed.

1.1 The Semantic Web

“The Semantic Web is not a separate Web but an extension of the current one, in

which information is given well-defined meaning, better enabling computers and people

to work in cooperation" (Lee et al., 2001).

The Semantic Web (Daconta et al., 2003) initiative was proposed by the inventor

of the WWW, Tim Berners Lee, to enable the sharing of information beyond the

boundaries of applications and websites. The vision of the Semantic Web is to transform

the current state of the Web which is confined to human readability to a machine

understandable Web. This is achieved by the use of semantic annotations, also known

as meta-data, to describe the meaning/context of information on the Web in order

1.1 The Semantic Web 2

to make them programmable by Semantic Web applications and software agents who

have no prior knowledge of them. This will facilitate automated information extraction,

reasoning, knowledge generation and the integration of knowledge from diverse sources

by Semantic Web applications to facilitate the decision making process. In order to

elucidate the vision of the Semantic Web, consider the example where an electronic

company’s website has annotated Web contents (also known as Web resources) to

distinguish between the company’s name, its location and the products on the Web.

Such annotation of the website’s contents helps other Semantic Web applications to

search for specific products and related information such as available locations, brands

and prices, compare and contrast them and provide customized results to the decision

maker.

Although the annotations of a website’s contents allow the sharing of annotated

information beyond its boundaries, the challenging aspect before the research

community is how the annotations of different websites can be aligned or combined

if everyone uses their own terminologies. The solution lies in the organization of

shared vocabularies, so-called ontologies (Fensel, 2003), and using the references of

these ontologies in order to bring inter-operability between different Web resources and

software applications. For example, a hotel ontology can be used to relate the rating

of certain hotels in a given country. Similarly, a countries ontology could be used to

determine that WA is an Australian state and Perth is a city in WA. Such information

(i.e. a hotel ontology and a countries ontology) is crucial for Semantic Web applications

that make reservations for people by establishing a connection between the decision

maker’s requests for accommodation in WA, and a hotel advertisement specifying Perth

as the hotel location.

In order to realize the sharing and use of ontologies between different Semantic

Web applications, considerable progress has been made towards the development and

use of standards, languages, technologies and applications. The Semantic Web stack as

shown in Figure 1.1, illustrates the hierarchy of languages layered in the form of a cake,

Figure 1.1: The Semantic Web stack (reproduced from Horrocks et al.
(2005))

1.1 The Semantic Web 3

where each layer exploits and uses the capabilities of the layers below it (Antoniou and

Van Harmelen, 2004). The layers in the Semantic Web stack are as follows:

1. The bottom layer is the eXtensible Markup Language (XML). It is a language for

marking Web contents with tags that make it simpler for software applications

to parse the data and process it. The XML standard supplies a grammar and

syntax for tagging contents and also a behavioural standard for parsing those

tags.

2. The Resource Description Framework (RDF) layer is located above the XML

layer. RDF is a basic data model for writing simple statements about Web

objects in the form of so-called triples. The RDF data model does not rely on

XML, but RDF has an XML-based syntax.

3. The next layer is the RDF Schema Layer (RDFS) which provides basic vocabulary

for RDF to create hierarchies of classes and properties.

4. The ontology languages layer provides a set of languages such as the Web

Ontology Language (OWL), OWL 2, Web Service Modeling Ontology (WSMO)

etc. for knowledge representation on the Semantic Web. OWL extends RDFS

and is an advanced, computationally stable way of defining highly complex and

interdependent data models in the Semantic Web.

5. The next layer is the logic layer which is used to extend the ontology language

further with application-specific knowledge in some declarative language.

6. The proof layer involves the representation of proofs in Web languages and proof

validation.

7. Finally, the top layer is trust which emerges through the use of digital signatures,

and other kinds of knowledge, based on recommendations by agents they trust,

or rating and certification agencies and consumer bodies.

The first four layers in the Semantic Web stack i.e. XML, RDF, RDFS and ontology

languages, have reached maturity, resulting in a number of standard ontology languages

being defined. Current research in the area of the Semantic Web stack focuses on

the logic layer for the realization of advanced reasoning capabilities in Semantic Web

applications. In the next sub-sections, the ontology languages layer and the logic layer

is overviewed in detail and the advancements made to them are explained.

1.1 The Semantic Web 4

1.1.1 Ontology languages layer

The ontology languages layer comprises a set of ontology languages. Each ontology

language is capable of the formal and explicit specification of a certain domain using

a combination of classes, their relationships or properties, instances and axioms. To

elucidate this with an example, consider a simple ontology named Person as depicted

in Figure 1.2. The person ontology comprises a class ‘person’ with two subclasses i.e.

‘student’ and ‘researcher’. The ontology has one object property i.e. hasSupervisor.

Figure 1.2: Pictorial representation of the person ontology

Consider information such as ‘Naeem has a supervisor named Omar ’. In order

to make this information understandable by different Semantic Web applications, we

need to annotate the information with the person ontology. As depicted in Figure 1.3,

‘Naeem’ and ‘Omar’ are depicted as the instances of the class student and researcher,

respectively. Similarly, ‘Naeem’ has an object property i.e. hasSupervisor which

relates him to his supervisor. As previously stated, ontologies are shared vocabularies,

therefore the information annotated with the person ontology can be understandable

by other Semantic Web applications by using the person ontology.

Figure 1.3: Pictorial representation of the person ontology with
instance data

There are several advantages of knowledge representation in the form of ontologies.

Wang et al. (2004) identified the following advantages:

1. Knowledge Sharing: The use of ontologies for context specification enables

software agents and services to have a common set of concepts in a context

while interacting with one another.

1.1 The Semantic Web 5

2. Logic-based reasoning: Based on ontologies, software agents and services

can exploit various existing logic-based reasoning mechanisms to deduce new

information from existing information.

3. Knowledge Reuse: By reusing well-defined Web ontologies of different domains

(e.g. hotel ontology and countries ontology), new ontologies can be composed

without starting from scratch.

In the next-subsection, the different languages which can be used to represent

ontologies are discussed.

1.1.1.1 Ontology languages

Web Ontology Language (OWL) is a W3C proposed standard for representing

knowledge on the Semantic Web and it provides constructs for cardinality restrictions,

boolean expressions and restrictions on properties (Dean and Schreiber, 2004). It

is based on Description Logic (DL) and has three variants with different levels of

expressiveness for reasoning i.e. OWL Lite, OWL DL and OWL Full.

The Web Ontology Language 1 2, informally OWL 2, is an ontology language for

the Semantic Web that became a W3C Recommendation on Oct 27 2009. OWL 2 is

compatible with the OWL standard of 2004 which it supersedes. As in OWL, the main

syntactic form of OWL 2 ontologies is based on an RDF serialization, although various

alternative syntactic forms are available too. OWL 2 is also available in three variants

i.e. OWL 2 EL, OWL 2 QL and OWL 2 RL. Figure 1.4 shows the specification of

person ontology with RDF/OWL in turtle format.

Similarly, efforts have been made towards building Semantic Web services using

service description standards based on ontologies i.e. Web Ontology Language for

Services (OWL S) , WSMO (Martin et al., 2007).

1.1.1.2 Ontological reasoning

Reasoning is a cognitive process by which a conclusion is reached. Using ontological

reasoning Semantic Web applications reason on information and derive new information

that is not expressed in the ontology explicitly. Ontology languages such as RDFS,

OWL and OWL 2 are based on DL, therefore for reasoning, they can exploit the

considerable existing body of DL reasoning engines such as FaCT++ (Tsarkov and

Horrocks, 2006) and Pellet (Parsia and Sirin, 2007).

1http://www.w3.org/2007/OWL/draft/ED-owl2-profiles-20090420/

1.1 The Semantic Web 6

Figure 1.4: Turtle representation of person ontology developed in OWL

DL reasoning helps the knowledge experts to design and maintain high quality

ontologies. It drives the inference from existing ontological concepts and properties

and detect whether the derived concepts and properties bring any inconsistency or

contradiction in ontology. Therefore, a high quality ontology fulfils certain logical

requirements in order to remain consistent. The important logical requirements are as

follows (Antoniou and Van Harmelen, 2004):

1. Class membership: if x is an instance of a class C, and C is a sub-class of D, then

we can infer that x is an instance of D.

2. Equivalence of classes: If class A is equivalent to class B, and class B is equivalent

to class C, then we can infer that class A is equivalent to class C.

3. Class consistency: If x is an instance of a class A and A is a subclass of B � C, A
is subclass of D, and B and D are disjoint. Then we have an inconsistency in an

ontology because A should be empty. It is an important logical requirement for

ontological reasoning as inconsistent ontologies may lead to erroneous conclusions.

4. Instance checking: If instance x satisfies a certain property-value pair of a class

A (property-value pairs that are declared sufficient for membership in a class A),

then x must be instance of class A.

In the next section, an introduction to the logic layer of the Semantic Web stack is

provided and its current status is discussed in detail.

1.1 The Semantic Web 7

1.1.2 The logic layer

As the ontology layer of the Semantic Web has reached maturity (i.e. standards such

as RDF, RDFs, OWL, OWL 2), the next step is to work on the logic layer to develop

advance reasoning capabilities on semantic enriched data for new knowledge extraction

and efficient decision making.

Adding the logic layer in the Semantic Web means making use of rules to make

inferences. Rules are used to express computational or business logic, express policies

or contracts in information systems which don’t have an explicit control flow and are

suitable for execution in dynamic situations for business collaboration. Rule-based

systems have been extensively used in several applications and domains, such as

databases, e-commerce, personalization, games, businesses (B2B, B2C) and academia.

In e-Business, they can be used to represent sellers offering products and services

(Grosof et al., 2009). Figure 1.5 demonstrates a simple example where, by using the

concepts defined in the person ontology, the application on the logic layer with the DL

reasoner defines a rule i.e. ‘Person, who is a student and has a supervisor appears in

the examination ’. The reasoning process results in the exploitation of the information

defined in the person ontology and results in new information i.e apperinexam(naeem).

Figure 1.5: Logic layer exploiting ontological knowledge

Rules can be classified into different categories as explained in the next sub-section.

1.1.2.1 Rules classification and knowledge acquisition

Boley et al. (2007) grouped the rules on the Semantic Web into the following categories:

1.1 The Semantic Web 8

• Deductive rules: Deductive rules are the statements of how to derive information

from other information by using logical inference. The execution of deductive

rules results in making implicit information explicit. To explain with an example,

the following rule

IF

movie ?M was produced before 1930

THEN

?M is a black and white movie

infers that if a movie was produced before 1930, then it is a black and white movie

as there were no colour movies at that time. Deductive rules are also known as

derivation rules in the business rules community, constructive rules by logicians,

and views in the database community.

• Normative rules: Normative rules are those that pose some constraints on the

data or on the business logic to ensure their consistency in the ontology or

knowledge base. To explain with an example, the following rule

IF

?C is Customer

THEN

?C has unique identification number

infers that if someone is a customer, then he must have a unique identification

number.

• Reactive rules: Reactive rules are those rules which, when executed, update the

ontology or knowledge base upon which they are being acted. In reactive rules,

we verify the satisfaction of conditions and also execute the action whenever

message arrival or timer event triggers the rule. The reactive rules are further

grouped into the following two categories:

* Event-Condition-Action (ECA) rule: ECA rules are rules of the form ON

Event IF Condition DO Action, where Action should be executed if the Event

occurs, provided that the Condition holds. A simple example of ECA rule is as

follows:

ON request from customer ?C to book a movie

IF

customer ?C is blacklisted

DO

deny ?C’s request

* Production rules : Production rules are rules of the form IF Condition

DO Action, where Condition queries the working memory containing the data

1.1 The Semantic Web 9

on which the rules operate. Action should be executed whenever a change to the

underlying database makes the condition true. A simple example of an ECA rule

is as follows:

IF

customer ?C is loyal

Then

give Discount to ?C

Each type of rule discussed have different requirements for implementation.

Reactive rules require more complex language for representation and reasoning

compared to the realization of deductive and normative rules.

To represent the different kinds of rules on the Semantic Web, different rule-based

languages have been proposed. The simplest of them is N3Logic, a logic proposed by

Tim Berners-Lee, that allows rules to be expressed on the logic layer in the Semantic

Web. It extends RDF with syntax for nested graphs and quantified variables with

predicates for implication and accessing resources on the Web. It also includes functions

for computation such as cryptographic, string, math etc. The main goal of N3Logic is

to be a minimal extension to the RDF data model so that the same language can be

used for logic and data representation (Berners-lee et al., 2008).

Similarly, the Rule Markup Language (RuleML) 2 is an international effort to

standardize the inference rules on the Semantic Web for the seamless publishing

and sharing of rule bases. The objective is on rule interoperation between industry

standards. RuleML builds a hierarchy of rule sub-languages upon XML, RDF and

OWL, e.g., Semantic Web Rule Language (SWRL). SWRL is intended to be the rule

language of the Semantic Web. It includes a high-level abstract syntax for Horn-like

rules and the rules are expressed in terms of OWL concepts (classes, properties,

individuals). Rules are saved as a part of ontology.

There are two ways in which rules can be used for knowledge acquisition on the

Semantic Web as depicted in Figure 1.6. A one-way knowledge flow exists from

an ontology module to a rule-based reasoning module, where an ontology module’s

instances are imported as basic facts and filtered with conditions in the rules. This

passive knowledge query uses only deductive rules, whereas if a rule engine derives

implicit new facts and updates those facts back to an ontology module, then this is

a reverse knowledge flow from a rule module to an ontology module. This reverse

knowledge flow requires normative and reactive rules (Dix et al., 2009). It is important

to note here that knowledge acquisition by either active or passive knowledge is realized

in the presence of a certain reasoning methodology.

2ruleml.org

1.1 The Semantic Web 10

In the next section, I discuss the current reasoning methodology being used by

Semantic Web applications.

Figure 1.6: Two way knowledge acquisition on the Semantic Web

1.1.2.2 Reasoning methodology

Reasoning is the core by which Semantic Web applications reach a conclusion. It

is applied in various areas such as product recommendations, auctions, identification

of requirements, vendor selection, negotiation, agent communication and information

integration (Deng and Wibowo, 2008; Cheung and Cheong, 2007; Shim et al., 2002;

Assche et al., 1988; Wen et al., 2008). It is performed at the logic layer of the

Semantic Web. Current rule-based languages such as N3Logic, SWRL, OWL-RL etc.

and ontology languages such as RDF, RDFs, OWL and OWL 2 are based on DL

(Baader et al., 2005) which provides syntax and semantics to model concepts, roles

and individuals, and their relationships.

DL is a subset of predicate logic (Van Emden and Kowalski, 1976) and thus inherits

its limitation i.e. it adopts a standard logical model of open-world assumption (OWA)

where a statement can’t be assumed true on the basis of failure to prove it. In other

words, OWA states that there can be true facts that are not contained in the knowledge

base. This can be elucidated with the help of an example. By taking into account the

ontology defined in Figure 1.2, if we want to know the truthfulness of the statement that

‘Naeem’ is a citizen of ‘Pakistan’, a logic based on a closed-world assumption (CWA)

will return a ‘No’ because a closed-world assumption implies that everything we don’t

know or information which is not present in the model is considered to be false. On

the other hand, an OWA states that everything we don’t know is undefined. The DL

and the inferences performed in Semantic Web applications over it follow OWA, such

reasoning being called monotonic reasoning. The following is an example of monotonic

reasoning:

• Premise: All students are Person.

• Premise: Naeem is a student.

1.1 The Semantic Web 11

• Conclusion: Therefore Naeem is a Person.

Representing in a logical notation, considering T , F and G representing some

statements, then monotonic reasoning can be expressed formally as follows:

T � F → T � G � F . (1.1)
It is evident from equation 1.1 that, in monotonic reasoning, if we enlarge the set

of axioms, we cannot retract any existing assertions or axioms. To explain with an

example, consider a knowledge base containing the following information at one point

in time:

• Premise: All students are Person.

• Premise: Naeem is a student.

• Conclusion: Therefore Naeem is a Person.

Later on, some new information comes into the knowledge base as follows:

• Premise: Naeem has graduated from Curtin.

After the addition of new information in the knowledge base, if I query the

knowledge base for ‘Naeem is a student?’, it will return true. Similarly, if I query

the knowledge base for ‘Naeem has graduated from Curtin?’, it will return true as

well.

It is evident from the example that the addition of new information does not result

in the retraction of previous information. Nute (1994) argued that such reasoning does

not add to the knowledge base (e.g. ‘Naeem is not a student’), it merely rearranges

existing knowledge. In monotonic reasoning, a knowledge base cannot represent and

reason on contradictory information. In this case, the premise ‘Naeem is a student ’

is already present in the knowledge base and if a system asserts a new premise i.e.

‘Naeem is not a student as he has graduated from Curtin’ , it will result in an error.

This problem can be overcome by using non-monotonic reasoning where the knowledge

base can represent and reason in the presence of contradictory information. In the

next sub-section, the current research efforts on the logic layer are explained and the

support for non-monotonic reasoning is discussed.

1.1 The Semantic Web 12

1.1.2.3 Logic layer and support for non-monotonic reasoning

The initially proposed single stack architecture (SSA) of the Semantic Web by Tim

Berners-Lee assumed that the Semantic Web stack is composed of a main language and

every new development should be built on top of existing layers (Berners-Lee, 2000; Lee,

2003). In response to criticisms that this proposal was unrealistic and unsustainable,

Berners-Lee then proposed an alternative multi-stack architecture (MSA) to overcome

the limitation of SSA (Lee, 2005, 2006). The MSA, as depicted in Figure 1.7, is more

realistic in the long run and in such a framework, rules lie next to the ontology layer

which results in the following advantages:

Figure 1.7: Updated Semantic Web stack (reproduced from Horrocks
et al. (2005))

• they can serve as an extension of, or alternative to, DL-based ontology languages

• they can be used to develop a declarative system using ontological information

• combining DL with rules will make possible the execution of expressive queries

on instances

• rules can also be useful in defining integrity constraints over individuals of an

ontology e.g. axioms Person has SSN and Person(george) are satisfiable in OWL

even if we don’t define an SSN for George (Meditskos and Bassiliades, 2009).

Additionally, it is impossible to assert that persons who study and live in the

same city are ‘home students ’ in OWL, while this can be done easily using rules:

studies(X,Y), lives(X,Z), loc(Y, U), loc(Z,U) −→ homeStudent(X). (1.2)

1.1 The Semantic Web 13

Significant debate is being generated on the suitability of Logic Programming in the

domain of the Semantic Web (Grosof et al., 2003). Logic Programming is a predominant

paradigm for expressing knowledge with rules, and making inferences and answering

queries. It provides both a declarative reading (a programming paradigm that expresses

the logic of a computation without describing its control flow) and an operational

reading of rules (with implementations). Its semantics underlie a large part of four

families of rule systems i.e. SQL relationship databases, OPS5 heritage production

rules, Prolog, and Even-Condition-Action rules and are being used as a proposal for

rules in the context of the Semantic Web.

Many efforts have focused on the mapping, intersection or combination of DL and

logic programs (LP) in order to overcome the shortcomings that emerged during the

development of practical OWL applications (Patel-Schneider and Horrocks, 2007). In

order to overcome the limitations of reasoning on OWL, Grosof et al. (2003) proposed

Description Logic Programs (DLP) which lie at intersection of LP and DL (as shown

in Figure 1.8) instead of using Full First Order Logic (FOL) to address OWL issues.

Figure 1.8: Expressive overlaps among knowledge representation
languages (Grosof et al., 2003)

FOL can express (positive) disjunctives which are inexpressible in LP, but it does

not provide support for expressing negation-as-failure (representation of incomplete

information) and procedural attachments (the association of action performing

procedural invocation with the drawing of conclusion about particular predicate).

Negation-as-failure is a way to represent incomplete information in the body of a rule

and is present by the word ‘not ’. To explain this, consider the following rule:

not Train −→ DonotCross

1.1 The Semantic Web 14

This states that if it is unknown whether a train is approaching or not, then do not

cross the railway lines. In such cases, the absence of information i.e. whether a train

is coming or not, does not restrict the application to reason and reach a decision. The

importance of such reasoning has been raised by researchers that has resulted in the

introduction of the ‘Two Towers ’ Semantic Web stack as depicted in Figure 1.9.

Figure 1.9: Semantic Web layer cake with negation-as-failure
(reproduced from Horrocks et al. (2005))

On the other hand, DLP does not provide features to support the non-monotonic

behaviour of the system. Non-monotonic behaviour, in contrast to monotonic

behaviour, follows CWA and is performed when the underlying information is

incomplete and/or contradictory. It is evident from the discussion that the current

Semantic Web development technologies do not support non-monotonic reasoning and

follow an assumption that “the underlying information for decision making is consistent

and the addition of new information doesn’t result in a contradiction with existing

information” . In other words, they assume that

i) no conflicts will arise during the process of decision-making, and

ii) the introduction of new information will not result in achieving a different

output.

But by using such assumptions, the current Semantic Web applications ignore

information that might be incomplete and/or contradictory but may be important

in providing better insights in the decision making process. This can be elucidated

with the help of an example of an online purchase of a book. Before making the

decision to buy a book, a buyer evaluates a list of available books and compares

the titles on the basis of the information provided by various Web site users in the

form of arguments and counter-arguments in respect of each book. After reading the

information and evaluating the arguments and counter-arguments, the buyer convinces

himself either to buy a specific book or not to make a purchase. Buyers can also submit

their rationale (arguments and counter-arguments) for the choice made. There may be

1.2 Challenges in Semantic Web applications for Business Intelligence in an
enterprise

15

incomplete and/or contradictory reviews provided by website users which need to be

solved to discover the correct insight from it. This is especially important in Semantic

Web applications where the aim is for applications to act autonomously on behalf of

users. In such cases, their ability to deal with either incomplete and/or contradictory

information is crucial to facilitate the decision making process and achieve Business

Intelligence.

In next section, the importance of Business Intelligence in Semantic Web

applications is highlighted. The challenges faced by Semantic Web applications in

achieving Business Intelligence due to the absence of non-monotonic reasoning is also

discussed.

1.2 Challenges in Semantic Web applications for

Business Intelligence in an enterprise

Over the past few decades, advancements in Internet, World Wide Web (WWW) and

Artificial Intelligence (AI) technologies have engendered a resurgence of interest in the

use of software intelligence for business applications, known as Business Intelligence

(BI). While the term BI is relatively new, computer-based business intelligence systems

go back, in one form or another, for close to forty years (Power and Sharda, 2009).

BI as a term has been used interchangeably with decision support systems (DSS),

executive information systems, and management information systems (Thomsen, 2003).

Formally, Business Intelligence (BI) is the use of high-level software intelligence to

produce actionable information that is delivered at the right time, and is immediately

accessible, easily comprehendible and exportable to other softwares to assist the

business decision-making process (Negash and Gray, 2003). It involves finding,

gathering, aggregating, and analysing information from different heterogeneous sources

for decision making.

The Semantic Web provides the tools and technologies to realize BI in an enterprise

(Saggion et al., 2007). Of the different layers of the Semantic Web stack, the

ontology layer helps to semantically annotate the information coming from different

heterogeneous sources and makes it understandable by Semantic Web applications.

The logic layer helps the Semantic Web applications to specify rules using logic-based

languages in order to perform advance reasoning on semantically annotated information

and generate knowledge from it.

Although the Semantic Web provides languages for the development of Semantic

Web applications for BI in order to facilitate decision making in an enterprise, as

1.2 Challenges in Semantic Web applications for Business Intelligence in an
enterprise

16

mentioned in the last section, there are cases where the current Semantic Web

applications for BI are facing some challenging situations. Some of these important

areas are:

1. Representation and reasoning over structured information that may be

incomplete and/or contradictory and exists within the enterprise and/or in other

enterprises

The development of the Semantic Web has helped information systems

to overcome the limitations of semantic heterogeneity and Web-based DSS

is now an active area of research in BI, impacting significantly on the way

information is exchanged and businesses are conducted. However, to remain

competitive, companies rely on BI to continuously monitor and analyse the

operating environment (both internal and external) for them, in order to identify

the potential risks, and to devise competitive business strategies.

To explain with an example, consider a scenario where an enterprise ‘abc’ asks

its departments to forward their recommendations for selecting a relocation

service ‘xyz ’. To make recommendations, the departments have to take into

account the supplier’s business policies, their service reputation and how the

enterprise requirements can be fulfilled by them. A Web-based DSS that can

represent information and reason about it can help the enterprise to make

the recommendation i.e. “whether or not to select the relocation service xyz” .

However, the current Web-based DSS applications are not able to represent

and reason over such information that is present within an enterprise and/or in

other enterprises, which could be incomplete and/or contradictory and provide

no decision support to decision makers. For example, consider the following

information:

• if company(xyz) and placeOrder(abc,xyz) then giveDiscount(abc)

• if shopper(abc), not make an advancePayment(xyz) then ¬
giveDiscount(abc)

where symbol ‘¬’ is used to represent contradictory information. This will be
explained further in the next section.

The first rule specified by enterprise ‘abc’ states that if we place an order, then

we expect a discount from ‘xyz ’. However, the ‘xyz’ policy states that if a

shopper places an order and he does not pay in advance, then he will not get any

discount. If such information exist within an enterprise or in other enterprises

1.2 Challenges in Semantic Web applications for Business Intelligence in an
enterprise

17

then the existing reasoning engines on the logic layer are not able to capture

that information and utilize it in reaching a conclusion. The situation becomes

more complicated when information comes from website users who have used the

service and provided diverse feedback on the WWW. Taking this information

into account can guide the reasoning process to a different output.

2. Integration of information/results generated by different Semantic Web

applications in an enterprise to support intelligent decision making

The availability of integrated, high quality information is a pre-requisite

for a decision support system (DSS) to aid the enterprise level decision-making

process. The introduction of the Semantic Web ensures the seamless integration

of information derived from diverse sources and transforms the DSS into an

adoptable and flexible Semantic Web-DSS (Web-DSS). But, as discussed in

the first scenario, the current Semantic Web lacks the capability to represent,

reason and integrate incomplete and/or contradictory information. This, in

turn, renders an enterprise incapable of knowledge integration ; that is, the

integration of knowledge about a subject that could be incomplete, contradictory

and distributed among different Web-based DSS within an enterprise or in other

enterprises.

This can be elucidated with the help of an example where the higher

level management of an enterprise asks for recommendations from different

departments about selecting a relocation service provider. The integration

of different recommendations forwarded by each department into a single

recommendation is known as knowledge integration. It is important to note

that the recommendations made by each department could be incomplete and/or

contradictory and thus it is a great challenge for the Web-based DSS to represent

reason and integrate those diverse recommendations in order to assist higher level

management in making a final decision about the selection of a service provider

‘xyz ’.

3. Representation, reasoning and integration of unstructured information that may

be incomplete and/or contradictory and exists within the enterprise and/or in

other enterprise

In recent past years there is tsunami of data that has been generated and

unstructured information accounts for around 80% 3 of the information in it.

This information ranges from customer reviews, users buying preferences for

3http://www.aiim.org/Research-and-Publications/Research/White-Papers/
Data-is-Unstructured-Information

1.2 Challenges in Semantic Web applications for Business Intelligence in an
enterprise

18

new product, business policies of an enterprise or collaborating enterprises etc,

which when considered by applications can provide better insights in the decision

making process according to their needs. However, it is also possible that

such information may be in different formats and potentially incomplete and/or

contradictory within themselves or with information coming from heterogenous

sources. Such scenario can be explained by the example of unstructured business

policies in an enterprise.

As it is known, business policies are of paramount importance in the working of an

enterprise. Operational business processes that are derived from business policies

consists of business processes and business rules that define how an enterprise

carries out its operations. However, it has been observed that over a period of

time, operational business processes may not comply with enterprise business

policies. A lack of systematic methodologies to check for such non-compliance

results in the dependence of enterprises on ad-hoc, time-consuming process

mapping techniques. Although previous work in the literature considers the

discovery of business processes from business policies (Wang et al., 2009), their

defeasible nature is not considered, where conflicts may arise in business policies

due to the following factors:

(a) elicitation of business policies by different viewpoints by different

department, and

(b) merging the business policies of two different enterprises that are seeking a

possible merger to address new market challenges (Rajsiri et al., 2010).

To explain the defeasible nature of business policies, consider a very common

example concerning pricing policy, discussed in the literature (Antoniou and

Arief, 2002; Grosof et al., 2002). A typical scenario in a pricing policy is whether

or not to give a discount to individuals based on their purchasing history. The

business rules to achieve this functionality could be constructed as follows:

R1 (company a) 5% discount if a buyer is a loyal customer

R2 (company b) 10% discount if a buyer has a history of large spending

R3 (company a) No discount if a buyer has a late-payment history

Suppose a buyer ‘Jon’ is a loyal customer. As a result, the business rule ‘R1’

applies to him and he receives a 5% discount. However, it is later learned

that ‘Jon’ also has a late-payment history. In such a case, the decision made

earlier on the basis of business rule ‘R1’ may have to be retracted in view of

the new information because of business rule ‘R3’, even though Jon is a loyal

1.3 Defeasible reasoning 19

customer. In such situations, a policy decision made earlier may become in

conflict in the presence of contradictory information. To address such issues,

there is need for a framework that analyses business policies, provides different

conflicts resolution strategies for the decision maker and after their resolution

generate a graphical representation of the process (in the form of business process

map). The generated business process map will provide a complete picture for

the business manager in identifying and making recommendations to resolve the

non-compliance of operational business processes with the business policies.

It can be seen from above mentioned challenges that the notion of information that

is present at one point of time can be changed by the introduction of new information

which may be either incomplete and/or in conflict with the information on hand. In

such situations, a decision made earlier needs to be reconsidered and reasoned again

in the presence of new incomplete that may be incomplete and/or contradictory. For

reasoning over such incomplete and/or contradictory information, a system needs to

perform non-monotonic reasoning. Such reasoning is an important feature that needs

to be included in Semantic Web applications. In current Semantic Web applications,

a decision once made can’t be retracted. As a result, non-monotonic reasoning can’t

be realized in current Semantic Web application for BI.

The current challenges being faced by the Semantic Web applications discussed

above have been tackled, one way or other, in the area of Artificial Intelligence (AI).

In the next section, a reasoning methodology from the area of AI for incomplete and

contradictory information representation and non-monotonic reasoning is discussed.

1.3 Defeasible reasoning

The term ‘defeasible reasoning’ was coined as a concept in the philosophy of law to

mean ‘convincing’ although not rigorous reasoning. Defeasible reasoning is a rule-based

approach to perform reasoning on uncertain information where a rule supporting a

conclusion may be negated or invalidated with the emergence of new information, as

evident in the following example:

A Tweety flies because it is a bird

B Tweety does not fly because it is a penguin

C Tweety flies because it is a magic penguin

A concludes that Tweety flies because it’s a bird, however, later information from

B negates the previous conclusion and states that Tweety cannot fly because it’s a

1.3 Defeasible reasoning 20

penguin. C negates the conclusion of B and supports A’s conclusion by providing

justification that Tweety flies because it’s a magic penguin.

Defeasible reasoning is a simple and efficient implementation of rule-based

non-monotonic reasoning. It can represent facts, rules, and priorities among rules.

It provides enhanced representational capabilities with low computational complexity

as compared to mainstream approaches for non-monotonic reasoning (Antoniou and

Bikakis, 2007). Antoniou et al. (2007) summarizes the important features of defeasible

reasoning as follows:

1. It is a rule-based approach without disjunction.

2. Classical negation, represented by the symbol ‘¬’, is used in the head to represent
contradictory information and ‘not ’ is used in body of a rule to represent

incomplete information.

3. Rules may support contradictory conclusions.

4. Reasoning is skeptical in the sense that contradictory rules do not fire. Thus,

consistency is preserved.

5. Priorities on rules may be used to resolve conflicts among rules.

Formally, a defeasible theory D is a triple (F, R, >) where ‘F’ is a set of literals

(called facts), ‘R’ a finite set of rules and ‘>’ a superiority relation on R. The set of

rules are categorised into the following two categories:

1. Strict rules: Strict rules are rules whose conclusion can’t be retracted, denoted

by ‘→ .’ An example of a strict rule is ‘Professors are faculty members ’ and is

written formally as professor(X) → faculty(X). Strict rules are intended to define

relationships that are definitional in nature, for example ontological knowledge.

2. Defeasible rules: Defeasible rules are rules whose conclusion can be retracted in

the presence of new information. It is denoted by ‘⇒’. An example of a defeasible
rule is ‘Professors are typically tenured ’ and is written formally as professor(X)⇒
tenured(X). The main point is that the information ‘Professors are tenured ’ is not

sufficient evidence to conclude that a particular professor is tenured. Defeasible

rules are intended to define information which is not absolutely true and may be

overridden by new information.

A superiority relation on defeasible rules is represented by the symbol i.e. ‘ >’. When

r1 > r2, then r1 is called superior to r2 and r1 will be executed and its conclusion will

1.3 Defeasible reasoning 21

be added in the knowledge base. This expresses that r1 may override r2. For example,

given the rules

r : professor(X) => tenured(X)

r
′
:visiting(X) => ¬tenured(X)

which contradict one another, no conclusive decision can be made about information

regarding whether a visiting professor is tenured. But if a superiority relation > with

r
′
> r is introduced, then it can be concluded that he/she cannot be tenured. Antoniou

and Wagner (2003) highlighted the importance of defeasible reasoning in Semantic Web

applications and outline its important in areas of Modeling Business Rules and Policies,

recommender and Brokering systems, and declarative negotiation strategies.

Although defeasible reasoning seems to be a good option to address the issues of

non-monotonic reasoning in Semantic Web applications, the superiority relation on

defeasible rules are hard-coded individual preferences and if conflicts arise at run time,

defeasible reasoning doesn’t provide any solution. This can be explained this with

an example by assuming that a virtual team (VT) for the Olympic Games comprises

the the Olympic International Committee (OIC), the Organising Committees for the

Olympic Games (OCOG) and the host city (HC). The objective of the virtual team

is to make important decisions about sports activities. These three committees have

their own particular goals and expectations which impact on the overall organisation

of the sports events. Further assume that the current task of VT members is to decide

“whether or not a scheduled match will be played in rainy conditions ”. To accomplish

this task, each member of the VT provides his/her views in the form of rules about

the stated task in a defeasible reasoning system as follows:

OIC if ground(perth), not rain(monday) ⇒ ¬ groundReady(perth)

OCOG if ground(perth), drainage(perth,good), rain(monday) ⇒ groundReady(perth)

HC if ground(perth), conditionOfLight(perth,bad) ⇒ ¬ groundReady(perth)

As previously mentioned, in a defeasible reasoning system, a member can define a

superiority relation between two contradictory rules only if both of them are defined

by him. As there are conflicts in the rule base between the rules defined by different

members of the VT i.e. the rule defined by ‘HC ’ and ‘OIC ’ is in conflict with

‘OCOG ’, the defeasible reasoning system cannot resolve conflicts through reasoning

and fails to assist the VT in the decision-making process. To find a solution for

this problem, argumentation which is a human’s way of handling conflicts during

debates and discussions provides a good option. In the next section, an introduction

to argumentation is provided.

1.4 Argumentation 22

1.4 Argumentation

Argumentation is a rich interdisciplinary area of research, traditionally spread across

philosophy, communication studies, linguistics and psychology. In our daily life,

argumentation, however, often has negative connotations, suggesting quarrelsomeness

and unpleasantness. However, this is not true in all cases. In a classical sense,

argumentation is the study of effective reasoning to reach to a conclusion which is

the key way humans deal with incomplete and/or contradictory information by taking

into account the exchange and evaluation of arguments and counter-arguments relevant

to a certain issue (Zarefsky, 2009). Decisions from argumentative reasoning are backed

by an explanation generated during the choices made.

Argumentation is inherently a process rather than an instant picture and the

building blocks of argumentation are arguments and relationship between those

arguments (Loui, 1998). According to Walton (2009); Palau and Moens (2009), an

argument is a set of statements (propositions) made up of three parts, a conclusion,

a set of premises, and an inference from premises to conclusion. During the process

of argumentation, relationships among the arguments link them with each other in a

certain pattern to support the ultimate conclusion. Such linking patterns are called

“Argumentation Schemes” which provide a way to perform reasoning over the set of

premises and conclusion. These argumentation schemes have emerged from informal

logics (Walton, 1989). Schemes help categorize the way arguments are built and aim

to fill the gap between logic-based applications and human reasoning by providing

schemes capturing stereotypical patterns of human reasoning e.g. arguments from

expert opinion schemes (Letia and Groza, 2008; Rahwan et al., 2007a).

Toulmin (Freeley and Steinberg, 2008; Toulmin, 2003) proposed a model to enhance

the understanding of the structure of practical reasoning that occurs in any argument.

He categorized premises which give arguments a richer structure, and one which

corresponds more closely to the way in which arguments are presented. Figure 1.10

presents the elements of Toulmin’s model of argument structure.

Figure 1.10: Toulmin’s model of argument structure

1.4 Argumentation 23

Toulmin used modal qualification to express the concept of the degrees of cogency.

The degrees of cogency are certainty, probability, plausibility or possibility as shown

in Figure 1.11. According to Baroni et al. (1998), such classification can help in

classifying the various ways an argument can be analysed. Perelman (1969) tried

to find a description of the techniques of argumentation used to obtain the approval of

others for their opinions, calling it “new rhetoric”. Both Toulmin and Perelman tried

to present an alternative to formal logic that is better suited to analyzing every day

communication. Eemeren and Grootendorst (2004) studied argumentation as a means

of resolving differences of opinion by considering argumentation as a discourse activity.

They proposed the pragma-dialectical theory which views argumentation as ideally

being part of a critical discussion which progresses through four discussion stages to

resolve a difference of opinion: the confrontation stage, opening stage, argumentation

stage and concluding stage. Argument diagramming is often claimed to be a powerful

method to analyse and evaluate arguments. Different tools have been used for the

diagramming of arguments e.g. Araucaria is a freely available, open source software

package that allows the text of an argument to be loaded from an Argument Markup

Language (AML) file, and provides numerous tools for marking up this text and

producing Standard, Toulmin, Wigmore diagrams (Reed et al., 2007).

Figure 1.11: Degrees of cogency

Over the last couple of years, argumentation has gained a lot of attention

from the artificial intelligence research community which led to the investigation

of argumentation and its application in various domains. From its theoretical

foundations, argumentation can be integrated into a number of real world applications

such as planning, MAS, legal reasoning, knowledge engineering, analysis of

news reports, clustering, argumentation support systems, mediation systems and

computer-supported collaborated argumentation (Chesnevar et al., 2006b; Rahwan,

2005). The ASPIC project (Argumentation Services Platform with Integrated

Components) involves the development of components implementing theoretical models

for argumentation-based inferences, decision making and dialogue in Multiagent

applications. Also efforts such as the Argument Interchange Format (AIF) for the

development of standard shared notation to represent and exchange argumentation

knowledge among agents are being made (Chesnevar et al., 2006a).

1.5 Argumentation support in Semantic Web applications: Research gaps 24

The large number of interactions between Web users on the WWW needs to be

captured in a certain semantic structure in order to make it explore-able by others

and to automate the process of argument build-up and analysis. Argument blogging

is an attempt to provide an environment on the web where Web user can harvest the

current resources on the web by structuring them into argumentative dialogues and

storing the resultant dialogue into a database for further analysis and reuse (Wells

et al., 2009). Web 2.0 can be used as a powerful paradigm for designing augmentation

tools for solving challenges on a global scale in collaboration. Shum (2008) provides a

comprehensive view of Web 2.0 features that are the driving force for the realization

of argumentation on the Web. The value of argumentation formalisms have been

harvested in the fields of philosophy, AI and the WWW however its potential has also

been unlocked for Semantic Web applications. In the next section, I discuss and identify

the current research gaps for the realization of argumentation support in Semantic Web

applications.

1.5 Argumentation support in Semantic Web

applications: Research gaps

Current research on the logic layer of the Semantic Web uses rule-based languages to

design and develop Semantic Web applications. However, the current developments

have two major limitations as follows:

1. Different rule-based languages have been proposed for knowledge representation

and reasoning in Semantic Web applications, however, each language has its own

syntax and semantics leading to inter-operability issues among different reasoning

engines. Therefore, the rules specified in a Semantic Web application can’t be

used in other ones. Similarly, the output of a reasoning engine can’t be shared

with other reasoning engines.

2. Like traditional applications, advance Semantic Web applications perform

reasoning under certain assumptions that ‘the underlying information for

decision making is consistent and addition of new information doesn’t result in

contradictions with the existing information’. In other words, they assume that:

i) no conflicts arise during the process of decision-making,

ii) and the introduction of new information will not result in achieving

different outputs.

1.6 Research objectives of the thesis 25

As a result of this assumption, they don’t cater for other information that could

be incomplete and/or contradictory, but may represent the correct facts, and if

considered, may lead to a different result. In these scenarios, where contradictory

information appears within enterprise boundaries, they either eradicate it or do

not include this information in the decision-making processes.

The application of defeasible reasoning is seen as an important attempt to address

the problem discussed above i.e. to represent and reason over incomplete and/or

contradictory information. However, as pointed out in Section 1.3, in defeasible

reasoning, the priorities are predefined and hard-coded in the application and assume

no more possible conflicts will arise during the decision-making process. In contrast, the

applications discussed in Section 1.2 are subjected to incomplete and/or contradictory

information where conflicts arise at run time and this is not satisfiable with current

approaches. As a result, the current enterprises cannot exploit the information on

the WWW outside of their boundaries to assist the decision-making process. This

calls for the design and development of intelligent Semantic Web applications that can

transform incomplete and/or contradictory information into useful knowledge to assist

the decision maker in the decision making process.

In an attempt to find inspiration for reasoning over incomplete and/or contradictory

information where conflicts may arise at run time, the literature on argumentation

in Philosophy and its exploitation in the field of Artificial Intelligence was studied

in detail where identifying and resolving conflicts takes place during the process of

argumentation itself. This presents the opportunity to realise similar benefits by

equipping defeasible reasoning with the ability to conduct argumentative reasoning

over contradictory interests to produce a conclusion.

It is evident from the above discussion that current Semantic Web development

technologies defined at the logic layer of the Semantic Web do not provide any

solution to represent reason and integrate information that could be incomplete and/or

contradictory. Therefore, enterprises need a logic-based framework that can take into

account incomplete and/or contradictory information on the WWW and transform

it into useful knowledge that, in turn, assists the members of an enterprise in their

decision making process to achieve BI.

1.6 Research objectives of the thesis

The objective of this research is to propose, develop and validate a Generic Framework

for carrying out Argumentative reasoning in Semantic Web Applications (GF@SWA).

In order to address the primary objective, the research objective can be broken down

1.6 Research objectives of the thesis 26

into the following sub-objectives:

1. To propose a rule-based declarative language for incomplete and/or contradictory

information representation and reasoning in Semantic Web applications. Such

information representation enables Web users to provide their information i.e.

specifications or preferences, that can be taken into account by Semantic Web

applications, considered in the reasoning process and produce customized results

for the decision maker.

2. To propose a methodology for an argumentation-driven reasoning engine to

reason over incomplete and/or contradictory information by taking into account

different conflict resolution algorithms to resolve conflicts between arguments.

Additionally, to propose a methodology to display a justifiable explanation of

conflict resolution and reasoning results to non-technical decision makers.

3. To propose a mechanism to integrate the information being produced by

an argumentation-driven reasoning engine in the form of a reasoning chain

and represent its graphical representation to the decision maker for a better

understanding of the results. Additionally, to propose a mechanism to export

reasoning chains to other software systems in order to integrate the reasoning

chains produced by different information systems into a coherent reasoning chain.

Such knowledge integration will provide a complete picture about information

spanning across different Semantic Web applications.

4. Exploitation of GF@SWA in different Semantic Web applications as follows:

(a) Design and develop a Web-based Intelligent DSS for representation and

reasoning over incomplete and/or contradictory information to assist the decision

maker in decision making process.

(b) Design and develop a Web-based Intelligent DSS for enterprise knowledge

integration.

(c) Design and develop a Web-based Intelligent DSS for process map discovery

from business policies.

5. Evaluate and validate the proposed framework and Semantic Web applications

with the help of case studies and implementation.

This thesis addresses the research objectives outlined above, resulting in addition of

significant knowledge to the existing body of literature.

1.7 Scope of the thesis 27

1.7 Scope of the thesis

The aim of this thesis is to design and develop a logic-based framework to

support argumentation in Semantic Web applications (GF@SWA). Defeasible logic

programming (DeLP) is used for incomplete and/or contradictory information

representation, reasoning and integration to support intelligent decision making. DeLP

is extended in the following aspects:

1. syntax and semantics for data-driven or forward-chain reasoning;

2. syntax and semantics for goal-driven reasoning to resolve conflicts among

arguments using different argumentation-driven conflict resolution strategies;

3. syntax and semantics for information and knowledge integration.

The utility and applicability of GR@SWA has been explained with the help of

different Semantic Web applications for BI. Even though concepts are drawn from

the philosophical view of argumentation and logic programming, this thesis does not

claim to make a contribution to those areas.

1.8 Significance of the thesis

The significance of this thesis can be discussed under two broad sections: scientific

significance and social significance.

1.8.1 Scientific significance

Currently, there is no argumentative reasoning engine for carrying out automated

reasoning in the Semantic Web context. This research will contribute significantly

to the existing body of knowledge for building a framework which adheres to Web

standards that can perform argumentative reasoning as a standalone component in

Semantic Web applications. On the basis of the literature review, it has been identified

that non-monotonic reasoning and argumentation will have a significant impact on

business applications (Kontopoulos et al., 2008) e.g.

1. Reasoning with incomplete and/or contradictory information

Business rules often have to deal with incomplete information because other

players may not be able (e.g. due to communication problems) or willing

(e.g. because of privacy or security concerns) to provide complete information.

1.8 Significance of the thesis 28

Additionally, the elicitation of business rules from different viewpoints may result

in contradictory information during the decision-making process. This is a typical

case for applying the logic-based framework to support argumentative reasoning

to assist the decision-making process.

2. Reasoning in prediction systems

Prediction systems specify their knowledge in the form of rules that can reason

on some information and help the decision maker to identify suitable goods and

services. The choices suggested by prediction systems need to be backed by

explanations. This thesis will equip the prediction systems with argumentation

support to generate explanations in the form of arguments and counter-argument

against each suggested choice.

3. Generic framework for information processing, integration and exchange

In an open computing environment, such as the WWW or an enterprise

intranet, various decision support systems are expected to work together to

support information exchange, processing, and integration. Currently, there

is no generic framework that can process, integrate and exchange incomplete

and/or contradictory information. This thesis contributes a significant body of

knowledge for the development of a generic framework that can be exploited by

Semantic Web applications for information information processing, integration

and exchange on the WWW.

4. Reasoning chains for non-technical decision makers

There is no framework that provides a visual representation of the reasoning

process to non-technical decision makers, therefore this research paves the way

to building a more interactive system for non-technical decision makers.

1.8.2 Social significance

A huge number of electronic business transactions are carried out on a daily basis in

e-commerce applications. This research will enable or support such business entities to

carry out decision making in situations where there is incomplete and/or contradictory

information.

1. Reasoning over customer feedback in e-Commerce applications

Due to the availability of semantic tools for the semantic enrichment of data, a

number of attempts have been made to transform e-commerce data in the form

of OWL/RDF. A typical e-commerce site contains product ontology, Web user’s

ontology (FOAF) and feedback ontology (SIOC). Reasoning on such semantically

1.9 Thesis plan 29

linked data with the help of an argumentative reasoning engine will reveal a

number of relationships between products and customer feedback. Such reasoning

will be very helpful in improving products and the quality of service.

2. Ontology engineering, alignment and merging

When ontologies and rules are developed by different authors and/or sources

are merged, inconsistencies and contradictions arise naturally and argumentative

reasoning could be used as an important mechanism to resolve these conflicts.

3. Trust establishment in e-Commerce applications

Trust is the key element in commerce, both in traditional commerce and

e-Commerce. If a customer (or Web user) wants to buy a device from a website, he

has to negotiate with the website systems to automatically establish trust with

the goal of successfully completing the transaction. This negotiation is based

on the policies and the credentials each system has. The customer and website

policies describe who they trust and for what purposes. Argumentative reasoning

will provide a suitable solution to address the requirement of such e-Commerce

transactions on the web.

1.9 Thesis plan

This thesis is structured into nine chapters as follows:

• Chapter 2 provides a critical survey of relevant existing research. In particular,

the existing frameworks for argumentation in the fields of Philosophy, Artificial

intelligence, the WWW and the Semantic Web are discussed and critiqued.

• In Chapter 3, the problem definition and research objectives are presented.

• In Chapter 4, the conceptual framework for incomplete and/or contradictory

information representation, reasoning and integration is outlined.

• In Chapter 5, a conceptual framework for Argumentation-enabled Web-based

intelligent DSS for incomplete and/or contradictory structured information

representation, reasoning and integration (Web@IDSS) is developed.

• In Chapter 6, a conceptual framework for enterprise knowledge integration

through Argumentation-enabled Web-based intelligent DSS (Web@KIDSS) is

developed.

1.10 Conclusion 30

• In Chapter 7, a conceptual framework for Semantic Web applications to

consider unstructured information that may be incomplete and/or contradictory

is developed. To explain the working of the conceptual framework, a case

study that takes into account the business polices of an enterprise for the

generation of a business process map is considered. Argumentation-enabled

Web-based Intelligent DSS that uses knowledge representation approach with

argumentative reasoning for process map discover from unstructured business

policies (KR@PMD) is developed.

• In Chapter 8, the evaluation and validation of the proposed framework is

provided.

• In Chapter 9, the conclusion to the thesis is given and future research directions

are provided.

The structure of the thesis is summarised in Figure 1.12. Chapters 5, 6 and 7 are all

elaborations on the conceptual framework presented in Chapter 4.

Figure 1.12: Outline of chapters

1.10 Conclusion

This chapter introduced the Semantic Web and discussed the ontology languages layer

and logic layer in detail. The limitations of current development technologies on the

logic layer which results in certain challenges for Semantic Web applications were

outlined. The importance of defeasible reasoning and argumentation techniques as

1.10 Conclusion 31

suitable candidates to address the challenges faced by Semantic Web applications in

the area of BI was detailed. Additionally, the objectives of undertaking this research

were discussed, followed by a description of the scope and significance of this thesis

in enabling argumentation support in Semantic Web Applications. Finally, the thesis

plan was presented.

Chapter 2 - Literature Review

2.1 Introduction

In this chapter, a comprehensive review of the literature, focusing on two important

aspects of the research problem, is presented. The first aspect (discussed in Section

2.3), focuses on the study of argumentation models, frameworks and applications in

different areas of research. The objective of this study is to identify key elements of

argumentation, its strengths and weakness and exploit them to address the challenges

faced by Semantic Web applications. The second aspect (discussed in Section 2.7),

focuses on the study and categorization of existing approaches for reasoning in Semantic

Web applications. In Section 2.8, a critical evaluation of the existing literature is given

and seven critical research issues that need attention are identified in order to provide

a framework for argumentation support in Semantic Web applications.

2.2 Basic definitions

In this section, some important definitions are outlined in order to prepare the reader

for a better understanding of the concepts discussed in this chapter.

2.2.1 Argumentation

Argumentation is defined as “a verbal and social activity of reason aimed at increasing

(or decreasing) the acceptability of a controversial standpoint for the listener or reader,

by putting forward a constellation of propositions intended to justify (or refute) the

standpoint before a rational judge” . It is the field of study in which rhetoric, logic and

dialectic meet Rahwan et al. (2007b).

2.2 Basic definitions 33

2.2.2 Argumentation systems

The applications governed by the rules of argumentation are known as argumentation

systems (Munoz and Botia, 2008) . Different argumentation models and frameworks

have been used in applications to address issues in different domains of research, and

all of them have important notions, such follows:

• the definition of argument;

• the notion of conflict between arguments;

• the notion of defeat;

• an argumentation semantics that selects acceptable (justified) arguments

(possibly including an underlying logical language and a notion of logical

consequence).

2.2.3 Argument, Rebuttal, Undercut and Acceptable

arguments

Argumentation is inherently a process rather than an instant picture and the building

blocks of argumentation are arguments and the relationships between those arguments.

According to the definitions in the literature by (Walton, 2009; Palau and Moens, 2009;

Besnard and Hunter, 2008), an argument is a set of statements made up of a minimum

of three parts:

• a conclusion, also known as a claim, is a proposition which could be either true

or false. These claims are used to drive other claims;

• a set of premises used to support the conclusion;

• inference or reasoning steps from premises to conclusion.

The support of an argument provides the reason (justification) for the claim of

the argument. An argument can be supported by other arguments known as its

sub-arguments. Counter-arguments or rebuttals are also arguments that attack an

argument with a contradictory claim. Counter-arguments, in turn, may be defeated

and the process may continue, resulting in the construction of argumentation lines

(Garcia and Simari, 2004). An undercutting argument is an argument with a claim

that contradicts some of the assumptions/inference of another argument.

For arguments to be acceptable, they must be weighed, compared and evaluated to

identify the set of warrants and a conclusion which convinces all decision makers. An

2.2 Basic definitions 34

acceptable set of arguments is coherent and strong enough to defend itself against any

attacking argument.

2.2.4 Argumentation scheme

During the process of argumentation, relationships among arguments link them with

one another in a certain pattern to support the ultimate conclusion. Such linking

patterns are called Argumentation Schemes (Walton, 2005). A leading example of

an argumentation scheme is that which represents the argument from expert opinion

(Walton, 1997). Argument from expert opinion can be a reasonable argument if it meets

the conditions displayed in the following argument form, where A is a proposition, E

is an expert, and D is a domain of knowledge: E is an expert in domain D. E asserts

that A is known to be true. A is within D. Therefore, A may plausibly be taken to be

true.

2.2.5 Argumentation life cycle

According to Eemeren and Grootendorst (2004); Walton (2009), four tasks under the

umbrella of argumentation are identification, analysis, evaluation and invention. The

task of detection involves the construction of an argument and attaching it to an

argumentation scheme, if possible. It involves the detection of a difference of opinion.

In the analysis phase, the participant tries to find implicit premises and conclusions

and tries to make them explicit to better evaluate the argument. Arguments missing

some premises or, in some instances, a conclusion, are termed Enthymeme. In the

evaluation phase, the strength of an argument is determined, i.e. either strong or

weak, in accordance with the general criteria applicable to that argument. The last

phase is invention, in which we try to construct new arguments that can be used to

prove a specific conclusion.

2.2.6 Types of arguments

According to Walton (2006), three major types of argument are as follows:

• In a deductive argument (e.g. mathematical proof in propositional logic), if the

premises are true, then the conclusion must be true. The reasoning process based

on deductive arguments is known as deductive reasoning.

• An inductive argument involves a kind of generalization from the empirical

evidence gathered. Inductive arguments sometimes use statistical techniques to

2.2 Basic definitions 35

establish the strength (or confidence) of the supported claim. The reasoning

based on inductive arguments is known as inductive reasoning.

• In a presumptive argument, the conclusions are said to be plausible given

the premises. Plausibility is different from probability. While probability is

determined by reasoning from statistical evidence, plausibility states that the

conclusion holds by default provided no adequate evidence supports the contrary

view. Arguments can be depicted graphically using argument diagramming

techniques (Reed and Rowe, 2007).

2.2.7 Patterns of arguments

During the argumentation process, arguments can be arranged in three ways or

patterns, called complex argumentation patterns, as discussed by Eemeren et al. (2002);

Zarefsky (2009) and Reed et al. (2007).

• Subordinative argumentation: In this pattern of argumentation, arguments are

arranged in a serial structure and depend on one another in a specific order to

carry the resolution.

• Coordinative / linked argumentation: Arguments are arranged in a convergent

structure. Each argument is independent of the others and the entire group of

arguments must be carried out to carry the resolution.

• Multiple/ Parallel / Convergent argumentation: Each argument is independent

of the others and each is sufficient to carry the resolution.

2.2.8 Monological and dialogical argumentation

According to Rotstein et al. (2010); Besnard and Hunter (2008), argumentation

is monological if a single agent or entity has collated the knowledge to construct

arguments for and against a particular conclusion. If a set of entities or agents interacts

to construct arguments for and against a particular claim, then such argumentation is

called dialogical argumentation. Newspaper articles, political speech, review articles,

or problem analysis by an individual seeking to draw a conclusion are examples of

monological argumentation, whereas, lawyers arguing in court, trader negotiations and

debates on an issue are examples of dialogical argumentation .

2.3 Argumentation-based models, frameworks and applications 36

2.2.9 Static and dynamic argumentation framework

The argumentation framework is considered to be dynamic if the knowledge-base

from which the arguments are derived is dynamic, i.e. it can be changed during

the argumentation process either with external changes or via guided changes. In

a static argumentation framework, by contrast, a single set of evidences is used in the

argumentation process, i.e. the knowledge-base does not change during the process of

argumentation. As a result, only one instance of argumentation framework would exist

(Rotstein et al., 2010).

2.3 Argumentation-based models, frameworks and

applications

In Chapter 1, a general introduction to argumentation was given. In this section,

it is elaborated in greater detail. The current literature on argumentation models,

frameworks and applications can be divided into two broad categories:

1. Philosophical argumentation

Models, frameworks and applications emphasising enrichment of the internal

structure of an argument as in the work done by Toulmin (2003) are considered

a philosophical model of argumentation,

2. Logic-based argumentation

Frameworks and applications built on a logic-based argumentation framework

are grouped under the umbrella of logical models of argumentation. The current

frameworks and applications that exploit argumentation models for reasoning on

the WWW are studied and compared.

2.4 Philosophical models of argumentation

“I see what your premises are, says the philosopher, and I see your conclusion. But

I just don’t see how you get there. I don’t see the argument”. These statements

distinguish the notion of argument in philosophy from the technical notion of argument

in logic by placing greater emphasis on the internal reasoning structure that leads the

premises to a conclusion (Parsons, 1996). The history of argumentation in philosophy

can be traced back to the beginnings of rhetoric in ancient Greece. Rhetoric is the

2.4 Philosophical models of argumentation 37

art of using language to communicate effectively. Citizens learned techniques to argue

in court so that they could defend themselves. Aristotle carried out a systematic

treatment of argumentation and rhetoric. Until the 1950s, argumentation was based

on rhetoric and logic, but in 1958, Toulmin provided a logical structure of arguments

and explained how the process works, using it as a tool to analyze various kinds of

philosophically-problematic reasoning. Perelman (1969) tried to find a description of

the techniques of argumentation used to obtain the approval of others for their opinions

and called it ‘new rhetoric’. Both Toulmin and Perelman tried to present an alternative

to formal logic that was better suited to analyzing every day communication. Eemeren

and Grootendorst (2004) studied argumentation as a means of resolving differences

of opinion by considering argumentation as a discourse activity. They proposed

pragma-dialectical theory which views argumentation as ideally being part of a critical

discussion which progresses through four discussion stages to resolve a difference of

opinion: the confrontation stage, opening stage, argumentation stage and concluding

stage.

In this chapter, the existing literature on argumentation, based on philosophical

concepts, is grouped into one of the following two categories:

1. Theoretical models of argumentation.

2. Argumentation frameworks and applications.

In the following section, each category is discussed in detail.

2.4.1 Theoretical models of argumentation

2.4.1.1 Toulmin’s model and its extensions

Toulmin, a British philosopher, pointed out that formal logic relies on the rigorous

testing of arguments based on mathematical rules carried out to declare them either

valid or invalid, which is of very little practical value (Toulmin, 2003; Freeley and

Steinberg, 2008). He proposed a model to better understand the structure of practical

reasoning that occurs in any argument. He believed that reasoning is much more closely

associated with the activity of testing and shifting existing ideas through the process

of justification, rather than using inference to discover new ideas. He categorized

premises in such a way that an argument was provided with a richer structure, one

which corresponds more closely to the way in which arguments are presented.

He distinguished six parts in argument structure and presented these in a

diagrammatic representation, as depicted in Figure 2.1. The elements are:

2.4 Philosophical models of argumentation 38

Figure 2.1: An illustration of Toulmin’s model of argument structure
(Toulmin, 2003)

1. Claims: Every argument makes assertions based on data. The assertion of an

argument is the claim of the argument.

2. Grounds: Data and hard facts, plus the reasoning behind the claim to establish

the foundation of the claim.

3. Warrants: Evidence and reasoning to justify the move from grounds to claim.

Warrants are not self-validating.

4. Backing: The backing (or support) for an argument gives additional support to

the warrant by answering different questions.

5. Modal qualification or degree of cogency: Qualifying the claim to express the

degree of cogency or modal specification. This is the extent to which the argument

is both sound and intellectually compelling. Toulmin used modal qualification to

express the concept of degree of cogency. The degrees of cogency are certainty,

probability, plausibility or possibility.

6. Rebuttals or Counter-arguments: Any rebuttal is an argument in itself, and thus

may include a claim, warrant, backing and so on. It also can have a rebuttal.

According to Baroni et al. (1998), Toulmin’s conceptual model of argumentation can

help to classify the various ways an argument can be analyzed. According to Toulmin,

three possible strategies are:

1. If the initial data of the opponent is wrong, all the conclusions derived from that

data will be undermined.

2. If there is a flaw in the line of reasoning that relates data to the conclusion, i.e.

warrant, this might mean questioning the knowledge used in the current context

or questioning the inference rules.

2.4 Philosophical models of argumentation 39

3. If inconsistencies can be detected in the opponent’s background knowledge,

challenge the backing.

Table 2.1 summarizes the different extensions made to Toulmin’s model of argument

representation. Each of these extensions is made keeping in view the purpose to be

fulfilled in a specific domain, as illustrated in the table.

2.4.1.2 Argumentation schemes proposed by Walton and Reed

Argumentation schemes provide a way to perform reasoning over a set of premises and

a conclusion. These argumentation schemes have emerged from informal logic and help

to categorize the way arguments are built, aiming to fill the gap between logic-based

application and human reasoning by providing schemes which capture stereotypical

patterns of human reasoning, e.g., arguments from an expert opinion scheme. Formally,

an argumentation scheme is composed of a set of premises Ai, a conclusion C, and a set

of critical questions CQi with the aim of defeating the derivation of the consequences

(Rahwan et al., 2007a; Letia and Groza, 2008).

The aim of an argument in presumptive or plausible reasoning is to shift the burden

of proof in a dialogue. Blair (1999) describes and discusses approximately thirty such

argumentation schemes. For each scheme, he provides a description, a formulation, a

set of associated critical questions, at least one and often several cases which are actual

or invented examples of the scheme in use, and a discussion of the scheme, in which he

typically draws attention to its salient properties, relates it to other schemes, discusses

the fallacies associated with it, comments on its presumptive force, and mentions typical

contexts of its use. Fallacies are the violations of rules of critical discussion that hinder

the resolution of opinion. Blair listed six characteristics of fallacy as follows: (1)

dialectical (2) pragmatic (3) commitment-based (4) presumptive (5) pluralistic and

(6) functional. These characteristics will help in the identification, classification and

evaluation of fallacies. Subsequently, Walton (2005) tried to address the justification

of a certain scheme.

2.4 Philosophical models of argumentation 40

T
ab
le
2.
1:
E
xt
en
si
on
to
T
ou
lm
in
’s
m
od
el
of
ar
gu
m
en
t
st
ru
ct
ur
e

E
xt
en
si
on

P
ur
po
se

D
om
ai
n

B
en
ch
-C
ap
on
(1
98
9)

A
dd
it
io
n

of
a

pr
e-
su
pp
os
it
io
n
co
m
po
ne
nt

In
tr
od
uc
ti
on
of
as
su
m
pt
io
ns
to

su
pp
or
t
th
e
cl
ai
m

L
eg
al
ex
pe
rt
sy
st
em

B
ra
nt
in
g
(1
99
3)

W
ar
ra
nt
ex
te
ns
io
n

C
on
st
ru
ct
io
n

of
w
ar
ra
nt
s

hi
er
ar
ch
y

sh
ow
in
g

di
ffe
re
nt

le
ve
ls
of
ab
st
ra
ct
io
n

L
eg
al
ex
pe
rt
sy
st
em

Fr
ee
m
an
(1
99
3)

W
ar
ra
nt
ex
te
ns
io
n

C
la
ss
ifi
ca
ti
on
s

of
w
ar
ra
nt

to
en
ri
ch

th
e

ju
st
ifi
ca
ti
on

st
ru
ct
ur
e

be
tw
ee
n

as
se
rt
io
n

an
d
da
ta

L
eg
al
ex
pe
rt
sy
st
em

N
ew
m
an

an
d

M
ar
sh
al
l

(1
99
2)

E
xt
en
de
d
en
ti
re
st
ru
ct
ur
e

M
ap
pi
ng

of
ar
gu
m
en
ta
ti
on

sc
he
m
es
,
ar
gu
m
en
t
st
ru
ct
ur
e

to
ar
gu
m
en
ta
ti
ve
di
sc
ou
rs
e

L
eg
al
ex
pe
rt
sy
st
em

C
la
rk
(1
99
1)

N
ew

ap
pr
oa
ch

to
kn
ow
le
dg
e

re
pr
es
en
ta
ti
on

an
d
pr
ob
le
m
-s
ol
vi
ng
ba
se
d

on
T
ou
lm
in
’s
m
od
el

C
om
pa
re
di
ffe
re
nt
op
in
io
ns
fo
r

ri
sk
as
se
ss
m
en
t

G
eo
lo
gi
ca
l

ri
sk

as
se
ss
m
en
t

Z
el
ez
ni
ko
w

an
d
St
ra
ni
er
i

(1
99
5)

N
ew

ap
pr
oa
ch
to
ju
st
ifi
ed

re
as
on
in
g

in
ru
le
-b
as
ed

sy
st
em
s

an
d

ne
ur
al

ne
tw
or
ks

P
re
di
ct

th
e

ou
tc
om
e

of
pr
op
er
ty

di
sp
ut
es

in
th
e

do
m
ai
n
of

A
us
tr
al
ia
n
fa
m
ily

la
w
.

L
eg
al
ex
pe
rt
sy
st
em

2.4 Philosophical models of argumentation 41

Reed and Walton (2003) also showed that argumentation schemes help users

to identify and evaluate common types of argumentation in daily discourse, but

the ways in which argumentation schemes drive a dialogue onwards, through a

combination of critical questioning and relevance maintenance, is largely unaddressed.

Therefore, the authors explored the relationship between the argument-as-process and

argument-as-product representations, using, as a focus, the roles that argumentation

schemes play in the two approaches. Arguments found in text are considered to

be products because they are already there, and when the argument is used to fill

the unstated premises or conclusions, the task is seen as argument-as-process. To

understand this notion, suppose that Bob and Helen are having a critical discussion on

tipping, and that Helen is against tipping. She thinks that tipping is a bad practice that

ought to be discontinued. Suppose in this context, Helen puts forward the following

argument: Dr. Phil says that tipping lowers self-esteem.

Dr. Phil is an expert psychologist, so the argument is, at least implicitly, an appeal

to expert opinion. It is also, evidently, an instance of argument from consequences.

Helen is telling her opponent, Bob, that lowering self-esteem is a bad consequence of

an action. Her argument is based on the assumption that since this bad outcome is

a consequence of tipping, tipping itself is a bad thing. Thus, Helen’s argument is an

enthymeme, that is, it is a chain of argumentation that can be reconstructed as follows:

The self-esteem argument:

• Dr. Phil says that tipping lowers self-esteem. Dr. Phil is an expert in psychology,

a field that has knowledge about self-esteem.

• Tipping lowers self-esteem.

• Lowering self-esteem is a bad thing.

• Anything that leads to bad consequences is itself bad as a practice.

• Tipping is a bad practice.

Figure 2.2: Illustration of the self-esteem argument

How can one know this? How can one fill in the unstated premises and link them

with other premises and conclusions in a chain of argumentation that represents Helen’s

2.4 Philosophical models of argumentation 42

line of argument? One tool which is needed is the argumentation scheme. Figure 2.2

illustrates the self-esteem argument in which the argumentation scheme is used to reach

a conclusion.

2.4.2 Argumentation frameworks and applications

2.4.2.1 Zeno argumentation framework

The Zeno argumentation framework (Gordon and Karacapilidis, 1997) is a formal model

of argumentation based on the informal models of Toulmin’s and Rittel’s Issue-Based

Information Systems (IBIS). The Zeno model contains the argumentation elements:

issue, position, pro-argument, contra-argument, preference, decision, and comment,

as illustrated in Figure 2.3. A message in the Zeno discussion forum (mediation

system) may contain more than one such argumentation element, if the author expresses

complex information in a single contribution. Most contributions in a forum will arise

as replies to existing arguments, so that an argumentation tree develops. Zeno uses

five standards of proof:

1. Scintilla of Evidence: the choice has some pros.

2. Preponderance of Evidence: the pros outweigh the cons given the preference

constraints.

3. No Better Alternative: no choice is preferred on the basis of the preference

constraints.

4. Best Choice : one choice is preferred to every alternative choice on the basis of

the preference constraints.

5. Beyond Reasonable Doubt: no con reason against a particular choice, and no pro

reason for an alternative.

2.4.2.2 Carneades argumentation Framework

The Carneades argumentation framework (Gordon and Walton, 2006; Gordon et al.,

2007) is a formal, mathematical model of argument evaluation which applies proof

standards to determine the defensibility of arguments and the acceptability of

statements on an issue-by-issue basis. It carries features from both the Zeno framework

and argumentation schemes. The framework use three kinds of premises (ordinary

premises, presumptions and exceptions) and information about the dialectical status

2.4 Philosophical models of argumentation 43

Figure 2.3: Zeno argumentation model

of statements (undisputed, at issue, accepted or rejected) to model critical questions

in such a way as to allow the burden of proof to be allocated to the proponent or the

respondent, as appropriate. The proof standards of Carneades are:

1. Scintilla of Evidence: supported by at least one defensible pro argument.

2. Preponderance of Evidence: the strongest defensible pro argument outweighs the

strongest defensible con argument, if there is one.

3. Dialectical Validity: supported by at least one defensible pro argument, and none

of the con arguments are defensible.

4. Beyond Reasonable Doubt: supported by at least one defensible pro argument; all

of the pro arguments are defensible and none of the con arguments are defensible.

Figure 2.4: Carneades argumentation model

Figure 2.4 is a reconstruction of Toulmin’s standard example about British

citizenship in the Carneades framework. The ‘rebuttal’ is modeled as an exception and

the backing as an assumption. Both the datum and warrant are ordinary premises.

2.4 Philosophical models of argumentation 44

Alternatively, backing could be modeled as the premise of an additional argument

pro the warrant, by generalizing the concept of an argumentation scheme to cover

patterns with multiple arguments. Carneades 1 provides tools that support a variety

of argumentation tasks, including:

1. argument mapping and visualization;

2. argument evaluation, applying proof standards and respecting the distribution of

the burden of proof;

3. argument construction from OWL ontologies and defeasible rules;

4. argument interchange in XML, using the Legal Knowledge Interchange Format

(LKIF).

2.4.2.3 Sense-Making tool : Araucaria

Argument diagramming is often claimed to be a powerful method for analysing and

evaluating arguments (Reed and Rowe, 2007). Ongoing work is being conducted on

building software for the analysis of arguments, resulting in the development of software

for specific groups of users with particular needs, leading to a plethora of such tools.

As a result, there is a need for a tool that can support different theoretical approaches

to analyze arguments.

The Araucaria 2 tool aims to do this. The Araucaria system (Reed and Rowe, 2004)

has been used to mark up and diagram textual arguments, supporting analysts’ work in

reconstruction and identification. Araucaria is a freely available, open source software

package which allows the text of an argument to be loaded from an Argument Markup

Language (AML) file, and provides numerous tools for marking up this text and

producing Standard, Toulmin, and Wigmore diagrams. Araucaria supports different

styles of argumentation, as well as translation features from one style to another. It

is currently being used in the construction of an online repository of arguments drawn

from newspaper editorials, parliamentary reports and judicial summaries from around

the world. Online Visualization of Argument (OVA) 3 is the web-based version of

Araucaria.

It is evident from discussion on the philosophical models of argumentation that

it plays a pivotal role as reasoning methodology in field of Philosophy. In the next

subsection , the logic-based models of argumentation and their exploitation in the field

of Artificial Intelligence is discussed.
1http://carneades.berlios.de/
2http://araucaria.computing.dundee.ac.uk/doku.php
3http://www.arg.dundee.ac.uk/?page_id=143

2.5 Logic-based models of argumentation and applications 45

2.5 Logic-based models of argumentation and

applications

Traditional models of reasoning were monotonic and unable to cope with incomplete,

uncertain and dynamic information. These reasoning models are built on first-order

predicate logic or a subset of the same and perform reasoning under certain assumptions

such as:

1. the given problem is fully specified (the solution to the problem lies in the specified

information);

2. the specifications are consistent;

3. new facts are also consistent with the already specified specifications;

4. new facts do not lead to the retraction of previous conclusions.

If T , F and G represent some statements, then, monotonic reasoning can be expressed
formally as follows:

T |= F → T � G |= F . (2.1)

It is evident from equation 1 that if a set of axioms in monotonic reasoning is enlarged,

existing assertions or axioms cannot be retracted. Such reasoning does not add to

our knowledge base and merely rearranges it (Nute, 1994). This is a basic property

which makes sense for mathematical knowledge but is not desirable for knowledge

representation, in general.

In the 1970s, argumentation was considered to be another way to formalise

defeasible reasoning or non-monotonic reasoning because of its close resemblance to

human patterns of reasoning, indicating that argumentation is the way in which a

person takes a standpoint and defends this standpoint. It is much more related to

day-to-day argumentation than the reasoning of logicians, who tend to concentrate on

the way in which conclusions are derived from premises (Eemeren et al., 1996). Some

examples are as follows:

1. A well-known example from Artificial intelligence is as follows:

Argument : Tweety flies because Tweety is a bird Counter-argument : Tweety is

different therefore it does not fly

2. In epistemology, the standard example is

Argument : This looks red, therefore it is red. Counter-argument: But the ambient

light is red, therefore it is not red

2.5 Logic-based models of argumentation and applications 46

In recent years, argumentation has gained considerable attention from the

artificial intelligence research community which has led to the investigation of

argumentation and its applications in various domains. From its theoretical

foundations, argumentation can be integrated into a number of real world applications,

such as planning, MAS, legal reasoning, knowledge engineering, the analysis of

news reports, clustering, argumentation support systems, mediation systems and

computer-supported collaborated argumentation (Chesnevar et al., 2006b).

In the field of AI, researchers are not particularly interested in the internal structure

of an argument. In contrast, they consider an argument to be a single entity and

hence are much more interested in modeling and evaluating the relationships between

arguments to reach a conclusion. In this section, I broadly divide the current literature

into two categories as follows:

1. Argumentation frameworks.

2. Argumentation systems or applications.

2.5.1 Argumentation frameworks

Broadly speaking, I can divide argumentation frameworks into the following five

categories:

1. Abstract argumentation framework.

2. Bipolar argumentation framework.

3. Preference-based argumentation framework.

4. Value-based argumentation framework.

5. Assumption-based argumentation framework.

2.5.1.1 Abstract argumentation framework

Dung (1995) proposed a very influential semantic foundation for an argumentative

framework based on the notion of the acceptability of arguments. He defined the

characteristics of the argumentative framework according to the relationship between

arguments and between sets of arguments. He defined an argumentation framework,

emerging from logic programming, as a pair AF =< A, attack > where A is the

set of arguments and attack is the binary relation on AR, representing the conflict

between them. If (A,B) ∈ attack then argument A attacks and defeats argument

2.5 Logic-based models of argumentation and applications 47

B . The notion of defence is defined from the notion of defeat by: an argument Ai

defends Aj against B iff there exist ((B,Aj) ∧ (Ai, B)) ∈ attack. He defined certain

properties of the argumentation framework which help to categorize arguments into

different extensions, such as preferred, stable and ground extensions. These properties

are:

1. Conflict Free : Given an AF F = (A, attacks). A set S ⊆ A is conflict-free in F ,

if, for each a, b ∈ S, (a, b) /∈ attacks.

2. Admissible Set : Given an AF F = (A, attacks). A set S⊆ A is admissible in F ,

if

(a) S is conflict-free in F

(b) a ∈ A is defended by S in F , if for each b ∈ A with (b, a) ∈ attacks, there

exists a c ∈ S, such that (c, b) ∈attacks.

The framework abstracts the details of the underlying language, argument structure,

origin and nature of arguments and argumentation rules. The presented semantics,

therefore, are clearer and more precise and as a result, the relationship between the

arguments can be analyzed in isolation from other relationships (e.g. implications).

Additionally, this framework encompasses a large variety of specific formalisms, such

as non-monotonic reasoning and game theory; as a result, it can be regarded as a

powerful tool for comparing different systems. Although his work elaborated in detail

the semantics of the argumentation network, Dung took an argument as an atomic

entity, and his notion of attack is also weak, because it considered all arguments to

be of the same strength. If an argumentation framework contains no even cycles, the

dispute is resolvable and this resolution can be achieved in a time linear to the number

of attacks. The framework also assumes that a complete set of arguments is given

together with the set of conflicts between arguments, and focuses on the definition of

the status of an argument. Argumentation semantics define the properties required for

a set of arguments to be acceptable. A set of arguments exhibiting these properties is

called an extension of the argumentation framework, for example:

• Admissible semantics A set E ⊆ A is admissible if and only if E is conflict-free

and E defends all its elements.

• Preferred semantics A set E ⊆ A is a preferred extension if and only if E is

maximal for set inclusion among the admissible sets.

• Stable semantics A set E ⊆ A is a stable extension if and only if E is

conflict-free and every a ∈ A , E is attacked by an element of E.

2.5 Logic-based models of argumentation and applications 48

• Grounded-semantics The grounded extension of <A,R>is the smallest subset
of A with respect to set inclusion among the subsets of A which are admissible

and coincide with the set of arguments acceptable w.r.t. itself.

Table 2.2 presents the syntax used to represent arguments, the set of arguments

and the relationships between the arguments. Table 3 gives a comparison of abstract

argumentation frameworks on the basis of the notion of attack, argument acceptability

criteria, extension and miscellaneous features. The notion of attack is defined as a

tuple of the following form:

{(argument OR set of arguments), (argument OR set of counter − argument)

, nature of attack, set of constraints}

Table 2.2: Symbols with their respective description

Symbol Description

A, B ,C Individual Arguments
S,Y Set of arguments
−→ Direct attack or Direct support
� Indirect attack or Indirect support
� Recursive attack
⇒ Set of attack (sequence of attack)
C 	B Left argument has higher priority than argument on right
≈ No preference
C Set of constraints (Propositional formula)

As proposed by Dung (1995), in Table 2.3, the notion of attack is represented as

(A, B,→), where A is an argument and B is its counter-argument and there is a direct

attack between A and B. Similarly, (S,Y ,→) represents a direct attack between the
set of arguments S and the set of arguments Y . Similarly, (S, (A,B) | A, �) represents
an attack between the set of arguments S and an argument A and indicates that

there is also a recursive attack between argument A and its counter-argument B . It is

evident from Table 2.3 that the researcher built this argumentation framework on top

of Dung’s framework by adding different flavours of attack, whereas the acceptability

criteria and extensions are quite consistent. Each of these frameworks will be discussed

briefly below.

2.5 Logic-based models of argumentation and applications 49

T
ab
le
2.
3:
C
om
pa
ri
so
n
of
ab
st
ra
ct
ar
gu
m
en
ta
ti
on
fr
am
ew
or
ks

N
ot
io
n
of
A
tt
ac
k

A
cc
ep
ta
bi
lit
y

cr
it
er
ia

Fe
at
ur
e

E
xt
en
si
on
s
4

D
un
g
(1
99
5)

(A
,B
,→
)
∈

a
tt

a
ck

C
on
fli
ct
fr
ee
an
d

ad
m
is
si
bl
e
se
t

A
ll

ar
gu
m
en
ts

ar
e
of

sa
m
e

st
re
ng
th
.

D
is
pu
te
s
ar
e
no
t
re
so
lv
ab
le
w
it
h

ev
en
cy
cl
es

P
re
fe
rr
ed
,

St
ab
le
,

G
ro
un
de
d.

B
oc
hm
an
(2
00
3)

(S
,Y
,→
)
∈

a
tt

a
ck

C
on
si
st
en
t

an
d

ad
m
is
si
bl
e
se
t

C
ol
le
ct
iv
e

ar
gu
m
en
ta
ti
on

to
re
pr
es
en
t
se
m
an
ti
cs
of
di
sj
un
ct
iv
e

lo
gi
c
pr
og
ra
m
s.

P
re
fe
rr
ed
,

St
ab
le
,

G
ro
un
de
d
ex
te
ns
io
n.

N
ie
ls
en

an
d

P
ar
so
ns
(2
00
7)

(S
,A
,
→
)
∈

a
tt

a
ck

A
cc
ep
ta
bl
e

an
d

ad
m
is
si
bl
e
se
t

Sy
ne
rg
y

am
on
g

ar
gu
m
en
ts
:

St
ro
ng
at
ta
ck

P
re
fe
rr
ed
,

St
ab
le
,

G
ro
un
de
d,

C
om
pl
et
e.

C
os
te
-M
ar
qu
is

et
al
.(
20
05
)

(A
,B
,�
)
∈

a
tt

a
ck

C
on
fli
ct
fr
ee
an
d

ad
m
is
si
bl
e
se
t

P
ro
vi
de

pr
ud
en
t
se
m
an
ti
cs
i.e
.

tw
o
ar
gu
m
en
ts
ha
vi
ng

in
di
re
ct

at
ta
ck
w
ill
no
t
be
lo
ng

to
sa
m
e

ex
te
ns
io
n

P
re
fe
rr
ed
,

St
ab
le
,

G
ro
un
d,

C
om
pl
et
e.

C
os
te
-M
ar
qu
is

et
al
.(
20
06
)

(A
,B
,
→
,
C)

∈
a
tt

a
ck

C
on
fli
ct
fr
ee
an
d

ad
m
is
si
bl
e
se
t

C
on
st
ra
in
t

ar
gu
m
en
ta
ti
on
,

C
on
st
ra
in
ts
ov
er
ar
gu
m
en
ts

P
re
fe
rr
ed

p-
ex
te
ns
io
ns
,

St
ab
le
p-
ex
te
ns
io
n,

P
re
fe
rr
ed

c-
ex
te
ns
io
n,

St
ab
le
-c
ex
te
ns
io
n

B
ar
on
i

et
al
.

(2
00
9)

(S
,
(A
,B
)

|
A

,�
)

∈
a
tt

a
ck

w
he
re
(A
,B
)∈

a
tt

a
ck

D
ef
ea
t,

C
on
fli
ct

fr
ee

R
ec
ur
si
ve

at
ta
ck
s

w
it
h

ou
t

re
st
ri
ct
io
ns

P
re
fe
rr
ed

4
Fo
r
de
fin
it
io
n
an
d
de
sc
ri
pt
io
n
of
ea
ch
ex
te
ns
io
n,
re
ad
er
s
ar
e
re
fe
rr
ed
to
co
rr
es
po
nd
in
g
ar
ti
cl
e
of
th
e
au
th
or
s.

2.5 Logic-based models of argumentation and applications 50

Bochman (2003) extended Dung’s work by the direct representation of global

conflicts between sets of arguments, whereas Nielsen and Parsons (2007) introduced

the notion of joint attacks in which a set of arguments can attack other arguments.

Katie Atkinson (2008) analyzed the two computational models of argumentation, i.e.

the Abstract Argumentation Framework (AAF) and argumentation schemes. The AAF

is the best framework to use when completely identified sets of arguments are available

and a binary relationship exists between them. Very often, however, such a set is

not available, in which case argumentation schemes can help to identify the ways in

which arguments can be attacked or defended and assist in the evaluation of arguments

with respect to a certain context. On the resolution of contextual issues, arguments

can be abstracted to an argumentation framework and evaluation can be carried out

with respect to logical relations between arguments. The author proposed an abstract

argumentation scheme framework that represents the components of argumentation

schemes in an argumentation framework. As a result, the structure of schemes is used

to guide the dialogue and provide contextual elements of evaluation, whilst retaining

the desirable properties of abstract frameworks to enable evaluation with respect to

the logical relations between arguments.

Coste-Marquis et al. (2005) extended Dung’s framework with prudent semantics to

better handle controversial arguments. Under prudent semantics, no two arguments

belong to the same extension if one of them indirectly attacks the other. Coste-Marquis

et al. (2006) also extended Dung’s framework to take into account several additional

constraints on the admissible sets of arguments, expressed as a propositional formula

over the set of arguments, called the constrained argumentation framework. All

the frameworks discussed above are static argumentation frameworks. Cayrol et al.

(2008) overcame the limitations of Dung’s framework by introducing the dynamic

argumentation framework and studied the impact of the addition of a new argument

which interacts with one previous argument on a set of framework extensions.

2.5.1.2 Bipolar argumentation frameworks

Most argumentation systems define only one type of relationship between arguments

i.e. an attack/defeat relationship. However, different studies reveal that another type

of relationship may exist between arguments: the “support” relationship. Such an

argumentation framework is called a bipolar argumentation framework (BAF) and is

defined as 〈A, attacksdef , attackssup〉 where A is a set of arguments, a binary relation

attackdef on A is called a defeat relation and another binary relation attackssupon A
is called a support relation.

2.5 Logic-based models of argumentation and applications 51

Amgoud et al. (2008) provided a comprehensive survey on the use of bipolarity in

argumentation frameworks and elaborated its importance in argumentation processes

in real world applications. Cayrol and Lagasquie-Schiex (2009, 2010) discussed

bipolarity at the interaction level in the argumentation process. They defined the

meta-argumentation framework and introduced the concept of coalition in BAF,

based on the coherence of the admissible set. The arguments in coalition cannot

be used separately in the attack process. Oren et al. (2007) describe the evidential

bipolar argumentation framework that supports argument schemes, burden of proof,

and accrual of argument. Table 2.4 provides a comparison of different bipolar

argumentation systems. Most of these bipolar argumentation frameworks consider

different types of attacks such as direct and indirect. Some BIFs consider joint attacks

between arguments, whereas others also consider attacks on an argument by a set of

arguments. The BAF provides a more enriched structure for argument representation,

such as coalitions.

2.5.1.3 Preference-based argumentation frameworks

In argumentation frameworks, one argument may be preferred over another when

it is more specific or has a higher probability or certainty. Such an argumentation

framework is called a preference-based argumentation framework. It is defined as a

triplet 〈A, attacks,�〉 where A is set of arguments, attacks is the binary attack relation

defined on AXA and � is a (total or partial) pre-order (preference relation) defined

on AXA.
Table 2.5 provides a comparison of preference-based argumentation systems. Modgil

(2009) extended Dung’s theory of argumentation to integrate meta-level argumentation

about preferences between arguments to add more semantics to attack relationships

between arguments. The result of an attack of one argument on another argument

depends on the existence of a preference argument, stating the preference of the

attacking argument on the attacked argument. The preferences between arguments

are not predefined; instead, arguments claim them.

2.5 Logic-based models of argumentation and applications 52

T
ab
le
2.
4:
C
om
pa
ri
so
n
of
bi
po
la
r
ar
gu
m
en
ta
ti
on
fr
am
ew
or
ks

N
ot
io
n
of
A
tt
ac
k

A
cc
ep
ta
bi
lit
y

cr
it
er
ia

E
xt
ra
no
te
s

E
xt
en
si
on
s
5

A
m
go
ud
et
al
.(
20
08
)

(A
,B
,→

|�
)
∈

a
tt

a
ck

su
p
p
o
r
t

,(
A
,C
,
→

|�
)∈

a
tt

a
ck

d
ef

ea
t

C
on
fli
ct
fr
ee

A
cc
ep
ta
bl
e

ar
gu
m
en
t

be
lo
ng
s

to
gr
ou
nd

ex
te
ns
io
n.

R
ej
ec
te
d

ar
gu
m
en
t
is
at
ta
ck
ed

by
ac
ce
pt
ab
le
ar
gu
m
en
t

A
cc
ep
ta
bl
e

ar
gu
m
en
ts

R
ej
ec
te
d

ar
gu
m
en
ts
A
be
ya
nc
e

ar
gu
m
en
ts

C
ay
ro
l

an
d

L
ag
as
qu
ie
-S
ch
ie
x

(2
00
9)

(A
,

B
,

→
|
⇒
)

∈
a
tt

a
ck

se
t−

su
p
p
o
r
t,
(A
,C
,

→
|⇒

)∈
a
tt

a
ck

se
t−

d
ef

ea
t

6
C
on
fli
ct

fr
ee

(S
af
e)

C
oh
er
en
ce
of
ad
m
is
si
bl
e
se
t
A
dm
is
si
bl
e
ex
te
ns
io
n,

P
re
fe
ra
bl
e
ex
te
ns
io
ns

C
ay
ro
l

an
d

L
ag
as
qu
ie
-S
ch
ie
x

(2
01
0)

(A
,

B
,

→
|
⇒
)

∈
a
tt

a
ck

se
t−

su
p
p
o
r
t,
(A
,C
,

→
|⇒
)∈

a
tt

a
ck

se
t−

d
ef

ea
t

C
oa
lit
io
n

M
et
aa
rg
um
en
ta
ti
on

us
in
g

co
al
it
io
n
co
nc
ep
t

C
oa
lit
io
n-
pr
ef
er
re
d,

C
oa
lit
io
n-
st
ab
le

O
re
n
et
al
.(
20
07
)

(S
,A
,

→
)∈

a
tt

a
ck

ev
id

en
ce
−s

u
p
p
o
r
t
(S
,A
,

→
)∈

a
tt

a
ck

ev
id

en
ce
−D

ef
ea

t

+
C
on
fli
ct

fr
ee
,

ad
m
is
si
bl
e
se
t

E
vi
de
nt
ia
l
A
rg
um
en
ta
ti
on

Sy
st
em
s.

Fr
am
ew
or
k

su
pp
or
t
ar
gu
m
en
t
sc
he
m
es
,

bu
rd
en
of
pr
oo
f,
ac
cr
ua
l
of

ar
gu
m
en
t

P
re
fe
rr
ed

ex
te
ns
io
ns
,

st
ab
le

ex
te
ns
io
ns
,

gr
ou
nd
ed
ex
te
ns
io
ns

5
Fo
r
de
fin
it
io
n
an
d
de
sc
ri
pt
io
n
of
ea
ch
ex
te
ns
io
n,
re
ad
er
s
ar
e
re
fe
rr
ed
to
co
rr
es
po
nd
in
g
ar
ti
cl
e
of
th
e
au
th
or
s.

6
C
on
fli
ct
fr
ee
:
T
hi
s
no
ti
on
m
ea
ns
th
at
fo
r
se
t
to
be
co
nfl
ic
t
fr
ee
,
ar
gu
m
en
ta
ti
on
sy
st
em

co
ns
id
er
m
or
e
co
nfl
ic
ts
th
an
co
nfl
ic
ts
co
ns
id
er
ed
in
no
ti
on
of

co
nfl
ic
t-
fr
ee
by
D
un
g.

2.5 Logic-based models of argumentation and applications 53

T
ab
le
2.
5:
C
om
pa
ri
so
n
of
pr
ef
er
en
ce
-b
as
ed
ar
gu
m
en
ta
ti
on
fr
am
ew
or
ks

N
ot
io
n
of
A
tt
ac
k

A
cc
ep
ta
bi
lit
y

cr
it
er
ia

E
xt
ra
no
te
s

E
xt
en
si
on
s7

M
od
gi
l(
20
09
)

(P
,(
B
,C
),
→
)
∈
at
ta
ck

C
on
fli
ct
fr
ee

A
rg
um
en
t

ar
e

us
ed

to
re
pr
es
en
t

pr
ef
er
en
ce
s.
M
et
a-
le
ve
l

ar
gu
m
en
ta
ti
on
-b
as
ed

re
as
on
in
g

ab
ou
t

pr
ef
er
en
ce
s

(e
xp
lic
it

ar
gu
m
en
t

us
ed

to
de
fin
e
pr
ef
er
en
ce
)

A
dm
is
si
bl
e,

P
re
fe
rr
ed
,

St
ab
le

an
d

G
ro
un
d

ex
te
ns
io
ns

A
m
go
ud

an
d

C
ay
ro
l(
20
02
)

((
A
,B
),

A
	

B
)
∈

a
tt

a
ck

In
di
vi
du
al

ac
ce
pt
ab
ili
ty
,

jo
in
t

ac
ce
pt
ab
ili
ty

P
ar
ti
al

or
co
m
pl
et
e

pr
e-
or
de
ri
ng

of
ar
gu
m
en
t

to
de
fin
e

pr
ef
er
en
ce

A
cc
ep
ta
bl
e
ar
gu
m
en
ts

R
ej
ec
te
d

ar
gu
m
en
ts

A
be
ya
nc
e
ar
gu
m
en
ts

M
ar
ti
ne
z

et
al
.

(2
00
6)

((
A
,
B
),

A
	

B
)

∈
a
tt

a
ck

P
r
o
p
er

d
ef

ea
ta

r

,(
(A
,
B
),

A
	

B
)
an
d
((
B
,
A
),

B
	

A
)
∈

a
tt

a
ck

B
lo

ck
in

g
d
ef

ea
ta

r

D
ef
ea
t-
fr
ee

or
su
pp
re
ss
ed

D
efi
ne
d
tw
o
ty
pe
s
of

de
fe
at

in
pr
e-
A
F
.

P
ro
pe
r

de
fe
at
er

(s
ym
m
et
ri
c

bl
oc
ki
ng

de
fe
at
er
(s
ym
m
et
ri
c)

A
cc
ep
te
d

ar
gu
m
en
ts

N
on
-a
cc
ep
te
d

ar
gu
m
en
ts

re
je
ct
ed

ar
gu
m
en
ts

M
ar
ti
ne
z

et
al
.

(2
00
8)

((
A
,B
)∧
(B
,C
),

A
	

B
)

∈
a
tt

a
ck

S
tr

o
n
g
d
ef

en
d
er

,
((
A
,B
)∧
(B
,C
),

B
	

A
)

∈
a
tt

a
ck

W
ea

k
d
ef

en
d
er

,
((
A
,B
)∧
(B
,C
),

A
≈

B

)
∈

a
tt

a
ck

N
o
r
m

a
le

f
en

d
er

,
((
A
,B
)∧
(B
,C
),

N
oP

re
f
)
∈

a
tt

a
ck

U
n
q
u
a
li

f
ie

d
D

ef
en

d
er

,

A
dm
is
si
bl
e
se
t

A
tt
ac
ks
ar
e
or
de
re
d
by

th
ei
r
fo
rc
e

St
ud
ie
d
ad
m
is
si
bl
e
se
ts

ac
co
rd
in
g
to
qu
al
it
y
of

de
fe
nd
er
s

7
Fo
r
de
fin
it
io
n
an
d
de
sc
ri
pt
io
n
of
ea
ch
ex
te
ns
io
n,
re
ad
er
s
ar
e
re
fe
rr
ed
to
co
rr
es
po
nd
in
g
ar
ti
cl
e
of
th
e
au
th
or
s.

2.5 Logic-based models of argumentation and applications 54

Amgoud and Cayrol (2002) address the acceptability of arguments in

preference-based argumentation frameworks, proposing a proof theory for this

preference-based argumentation framework. The proof theory verifies whether a given

argument A is acceptable or not. The proof theory is presented as a dialogue tree

between two players, PRO and OPP. Martinez et al. (2006) extended the notion of

defeat in an argumentation framework. Depending on the outcome of the preference

relation, an argument may be a proper defeater or a blocking defeater of another

argument. Martinez et al. (2008) equipped the argumentation framework with a set

of abstract attack relations of varied strength, such as strong defender, weak defender,

normal defender and unqualified defenders.

2.5.1.4 Value-base argumentation framework

In preference-based argumentation frameworks, it is not always possible to absolutely

define the preference for an argument over its counter-argument, especially in practical

reasoning, such as in law, politics and ethics. To address problems in such

domains, a value-based argumentation framework has been proposed. A value-based

argumentation framework (VAF) is a 5-tuple: V AF =< A, attacks,V , val, valpref >

where A is the set of arguments, attacks is the binary attack relation defined on AXA,
V is a non-empty set of values, val is a function which maps from elements of A to

elements of V , and valpref is a preference relation on V X V .
Table 2.6 provides a comparison of different preference-based argumentation

systems. Bench-Capon (2003) proposed a value-based argumentation framework to

quantify the strength of arguments and discussed the possibility of persuasion in

the face of uncertainty and disagreement. He argued that persuasion is pivotal in

argumentation, and that the strength of an argument depends on the social values

it advances; the success of one argument over another depends on the strength of

the values advanced by the argument concerned. Haenni (2009) presented a formal

theory of probabilistic argumentation to handle uncertain premises for which respective

probabilities are known. Probability is used to measure the credibility (weight)

of possible arguments and counter-arguments; thereafter, the overall probabilistic

judgment of the uncertain proposition in question is carried out to reach a certain

conclusion.

2.5 Logic-based models of argumentation and applications 55

T
ab
le
2.
6:
C
om
pa
ri
so
n
of
va
lu
e-
ba
se
d
ar
gu
m
en
ta
ti
on
fr
am
ew
or
ks

N
ot
io
n
of
A
tt
ac
k

A
cc
ep
ta
bi
lit
y
cr
it
er
ia

E
xt
ra
no
te
s

E
xt
en
si
on
s
8

B
en
ch
-C
ap
on

(2
00
3)

((
A
,B
),

v
a
lp

re
f
(v
al
(A
),
va
l(
B
))

∈
at
ta
ck
,

C
on
fli
ct

fr
ee
,

ad
m
is
si
bl
e

fo
r

au
di
en
ce

Sc
ep
ti
ca
lly

ac
ce
pt
ab
le

ar
gu
m
en
ts

ar
e
a
go
od

so
ur
ce
fo
r
pe
rs
ua
si
on

O
b
je
ct
iv
e

ac
ce
pt
an
ce
,

Su
b
je
ct
iv
e

ac
ce
pt
an
ce
,

In
de
fe
ns
ib
le

H
ae
nn
i

(2
00
9)

Φ
|s

|=
⊥

th
en

s
is

in
co
nfl
ic
t

Φ
|s
re
pr
es
en
t

co
nd
it
io
na
l
K
B

C
on
fli
ct

fr
ee
,

ad
m
is
si
bl
e,

P
ro
ba
bi
lis
ti
c
cr
it
er
ia

R
ea
so
ni
ng

pr
oc
es
s

co
ns
is
ts

of
qu
al
it
at
iv
e

an
d
qu
an
ti
ta
ti
ve
pa
rt
s.

N
o
ex
te
ns
io
ns

8
Fo
r
de
fin
it
io
n
an
d
de
sc
ri
pt
io
n
of
ea
ch
ex
te
ns
io
n,
re
ad
er
s
ar
e
re
fe
rr
ed
to
co
rr
es
po
nd
in
g
ar
ti
cl
e
of
th
e
au
th
or
s.

2.5 Logic-based models of argumentation and applications 56

2.5.1.5 Assumption-based argumentation framework

Assumption-based argumentation addresses the issues of how to find arguments,

identify attacks, and exploit premises shared by different arguments. Formally, an

assumption-based argumentation is a tuple 〈L,R,A,M〉 where

• 〈L,R〉 is a deductive system, with a language L and a set of inference rules R

• A ⊆ Lis a (non-empty) set, whose elements are referred to as assumptions

• M is a total mapping from A into L, where ¬α is the contrary of α .

In an assumption-based argumentation framework (ABF), arguments are

deductions supported by assumptions. Bondarenko et al. (1993) presented an ABF

in which a sentence is a non-monotonic consequence of a theory if it can be derived

monotonically from a theory extended by means of acceptable assumptions. The

notion of acceptability for such assumptions is formulated in terms of their ability

to successfully "counter-attack" any "attacking" set of assumptions. The authors

investigated applications of the proposed framework to logic programming, abductive

logic programming, logic programs extended with classical" negation, default logic,

autoepistemic logic and non-monotonic modal logic. Dung et al. (2009a) provided a

review of ABF and stated that ABF makes use of under-cutting as the only way in

which one argument attacks another argument.

Table 2.7 presents a comparison of two assumption-based argumentation

frameworks.

2.5 Logic-based models of argumentation and applications 57

T
ab
le
2.
7:
C
om
pa
ri
so
n
of
as
su
m
pt
io
n-
ba
se
d
ar
gu
m
en
ta
ti
on
fr
am
ew
or
ks

N
ot
io
n
of
A
tt
ac
k

A
cc
ep
ta
bi
lit
y
cr
it
er
ia

E
xt
ra
no
te
s

E
xt
en
si
on
s
9

B
on
da
re
nk
o

et
al
.
(1
99
3)

If
(A

,a
a
ss

u
m

p
ti

o
n
)�

α
an
d

{α
,b

a
ss

u
m

p
ti

o
n
}�

⊥
th
en

(α
,b

a
ss

u
m

p
ti

o
n
)
∈

a
tt

a
ck

L
og
ic
al
,
ad
m
is
si
bl
e
se
t

P
ro
vi
de
s
ne
w
se
m
an
ti
cs

fo
r
ne
ga
ti
on
as
fa
ilu
re
in

lo
gi
c
pr
og
ra
m
m
in
g

W
ea
kl
y

ad
m
is
si
bl
e,

W
ea
kl
y

pr
ef
er
re
d

ex
te
ns
io
ns

D
un
g

et
al
.

(2
00
9a
)

(S
,Y

)∈
a
tt

a
ck
if
(

α
∈

S,
β
∈

Y)
∈

a
tt

a
ck

u
n
d
er

cu
t

A
cc
ep
ta
bl
e

di
sp
ut
e

tr
ee
s

P
ro
vi
de
s
re
vi
ew

of
di
ffe
re
nt

A
ss
u-
A
F

.
D
is
pu
te
tr
ee
s

A
pp
ro
xi
m
at
io
n

(D
is
pu
te

tr
ee

co
m
pu
ta
ti
on
)

9
Fo
r
de
fin
it
io
n
an
d
de
sc
ri
pt
io
n
of
ea
ch
ex
te
ns
io
n,
re
ad
er
s
ar
e
re
fe
rr
ed
to
co
rr
es
po
nd
in
g
ar
ti
cl
e
of
th
e
au
th
or
s.

2.5 Logic-based models of argumentation and applications 58

2.5.2 Argumentation Systems

2.5.2.1 Abstract argumentation system

Vreeswijk (1997) defined an abstract argumentation system that is capable of

dealing with a number of problems of defeasible reasoning. He defined an abstract

argumentation system as a triple(L, R,�) composed of a language L that has the

capability of negation in the head of a rule to present contradiction, a set of inference

rules R, and �, a relationship between arguments. He called this argumentation system
a collection of defeasible proofs, or arguments of varying conclusive force. Although

he assumed a predefined order among the rules, he also pointed out that conclusive

force is not determined solely by syntactical structure; rather, further information is

needed from the semantics of the discourse domain to establish whether one argument

is stronger than another. He identified two types of rules, strict rules and defeasible

rules. Rules can be chained together to form arguments.

2.5.2.2 Defeasible Logic Programming (DeLP) server

The DeLP server, proposed by Garcia and Simari (2004), is based on Defeasible Logic

Programming (DeLP), which is a general-purpose defeasible argumentation formalism

based on logic programming, and is intended to model inconsistent and potentially

contradictory knowledge. A defeasible logic program has the form ψ= (Π, Δ), where

Π and Δ stand for strict knowledge and defeasible knowledge, respectively. The set Π

involves strict rules of the form P ← Q1 . . . Qn and facts (strict rules with empty body),

and is assumed to be non-contradictory (i.e., no complementary literals P and ∼ P

can be inferred, where ∼ P denotes the contrary of P). The set D involves defeasible

rules of the form P �Q1.....Qn which stand for ıQ1 . . . Qn provide a tentative reason

to “believe P”. Rules in DeLP are defined in terms of literals. A literal is an atom A or

the strict negation (∼ A) of an atom. Default negation (denoted not A) is also allowed

in the body of defeasible rules. Deriving literals in DeLP results in the construction

of arguments. Let h be a literal, and ψ= (Π, Δ) a DeLP program. The< A, h > is an

argument structure for h, if A is a set of defeasible rules of D, such that:

1. there exists a defeasible derivation for h from P ∪ A;

2. the set P ∪ A is non-contradictory, and

3. A is minimal: there is no proper subset A of A such that A satisfies conditions

(1) and (2). In short, an argument structure < A, h >, or simply an argument

A for h, is a minimal non-contradictory set of defeasible rules, obtained from a

2.5 Logic-based models of argumentation and applications 59

defeasible derivation for a given literal h. The literal h will also be called the

conclusion, supported by A. Note that strict rules are not part of an argument

structure.

A derivation for the lateral can be defeasible or strict. Let ψ = (Π, Δ) be a DeLP

and L a ground literal. A defeasible derivation of L from P , denoted P� L, consists

of a finite sequence L1, L2, . . . , Ln = L of ground literals, and each literal Li is in the

sequence because:

(a) Li is a fact in P , or

(b) there exists a rule Ri in ψ (strict or defeasible) with head Li and body

B1, B2, . . . , Bk and every literal of the body is an element Lj of the sequence appearing

before Li(j < i).

The derivation for literal h will be a strict derivation denoted by P →L, if either
h is a fact or all the rules used for obtaining the sequence L1, L2, . . . , Ln = Lare strict

rules. Strict derivation does not require defeasible rules.

In the DeLP program, the P cannot be contradictory, whereas the ψ = (Π, Δ) may

be contradictory. Let ψ= (Π, Δ) be a DeLP and the two literals h and h1 disagree,

if and only if the set P ∪ h, h1 is contradictory. When contradictory goals can be

derived defeasibly, argumentation formalism is used to decide between them. DeLP,

being declarative, does not capture interactions between pieces of knowledge and the

burden of defeasible inference falls on the language processor. However, priorities could

be used as an alternative approach. In DeLP, the construction of argument structures

is non-monotonic: that is, adding facts or strict rules to the program may cause some

argument structures to be invalidated because they become contradictory.

In DeLP, answers (yes, no, undecided, or unknown) to queries are supported by

arguments. However, an argument may be defeated by another argument. Let us

take an example where an argument < A1, h1 > counter-argues, rebuts, or attacks

< A2, h2 > literal h, if and only if there exists a sub-argument < A, h > of < A2, h2 >

such that h and h1 disagree. To compare arguments, two criteria are available:

1. Generalize Specificity: This favors two aspects of arguments as follows: a. Prefer

an argument with greater information content, or b. Prefer an argument with

less use of rules (more precise, more concise).

2. Argument comparison using rules priorities.

DeLP uses argumentation formalism to treat contradictory information by identifying

contradictory information in the knowledge base and applying a dialectical process

to decide which information prevails. Some formalisms define explicit priorities among

2.5 Logic-based models of argumentation and applications 60

rules and use these priorities to decide between competing conclusions. The use of these

priorities is usually embedded in the derivation mechanism and competing rules are

compared individually during the derivation process. In such formalisms, the derivation

notion is bound to one single comparison criterion. In DeLP, to decide between

competing conclusions, the arguments that support the conclusions are compared.

Thus, the comparison criterion is independent of the derivation process, and could

be replaced in a modular way.

2.5.2.3 Defeasible reasoning-based argumentation engines

Bryant and Krause (2008) provided a very comprehensive survey of existing practical

implementations of both defeasible and argumentation-based reasoning engines in

the literature and emphasized the need for well-designed empirical evaluation and

well-formed complexity analysis to justify the practical applicability of reasoning

engines. Nathan 10 proposed an early implementation of a defeasible reasoner using

specificity criteria to resolve conflict between generated arguments. To determine the

support for a conclusion, a warrant procedure based on a series of incremental steps

is used to classify an argument as “in” or “out” in a series of levels. This bottom-up

approach to reasoning determines that an argument is warranted when it is “in” in at

all remaining levels.

2.5.2.4 OSCAR

OSCAR proposed by Pollock (2000) is an agent-based architecture implemented in

the LISP programming language for rational agents, i.e. it is equipped with practical

and epistemic cognition. Practical cognition is about what to do and OSCAR directs

the agent’s interaction with the world, whereas epistemic cognition is about what to

believe; most of the work in rational cognition is performed by epistemic cognition. The

reasoning consists of the construction of arguments (nodes) to support the conclusion,

linked to one another through atomic reasons (dependencies) and forming an inference

graph. Two kinds of defeaters are identified in OSCAR. The first is the rebutting

defeater which attacks the conclusion of inference, and the second is the undercutting

defeater which attacks the connection between the premises and the conclusion. The

resolution of conflict is carried out by reasoning schemas to compute the defeat status

and the degree of justification, given the set of arguments constructed. The defeasible

reasoner of OSCAR is allowed to draw conclusions tentatively, and as a result, an

argument may be justified in one stage of reasoning and unjustified later, without any
10http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/reasonng/defeasbl/nathan/0.html,

Last accessed (22/10/2012)

2.5 Logic-based models of argumentation and applications 61

additional input. However, an argument is warranted when the reasoner reaches a

stage where, for any new stage of reasoning, the argument remains undefeated. This

is useful when dealing with limited resources, providing three possible statuses to a

subset of arguments: defeated, undefeated, and justified.

2.5.2.5 IACAS

Vreeswijk (1995) presents another argumentation system working on defeasible

argumentation, designed to carry out interactive argumentations on computers and

allowing a person to start with a dispute, a given number of facts, rules and cases. The

fact that it is interactive, is capable of finding the right number of arguments to reach

a conclusion, and is capable of analysing the epistemic status of propositions, sets it

apart from other argumentation systems. The building blocks of the argumentation

process are propositions, and strict and defeasible rules. Strict rules represent deductive

argumentation steps and defeasible rules represent plausible argumentation steps.

Arguments are displayed in a tree-like structure with a conclusion on the left-hand

side and their premises on the right-hand side. It has a command line interface and

allows the evaluation of the status of an argument to be certain, beyond reasonable

doubt, some presumption in favor, balanced or undetermined. IACAS implementation

shows that defeasible arguments are essential for carrying out formal argumentation.

2.5.2.6 Critical and recommender systems (C & R)

Chesnevar et al. (2006b) identified that the current C & R systems are incapable

of dealing with the defeasible nature of information. These systems are based on

machine learning and information retrieval algorithms. With no inference capabilities,

decisions rely on heuristics. Systems based on these quantitative approaches have

been criticized for their inability to generate easily understandable and logically clear

results; therefore, much of the implicit information remains uncovered. In this paper,

the authors present a novel approach for the integration of user-supported systems

such as critics and recommender systems with a defeasible argumentation framework

to enhance the practical reasoning capabilities of such systems. Formalisms such as

description logics can be integrated to achieve this objective but they lack the capability

to deal with the defeasible nature of user preferences. DeLP has therefore proven to

constitute the simplest yet most expressive language for encoding rule-based knowledge

with incomplete and potentially inconsistent information. The user preference criteria

are modeled as facts, strict rules and defeasible rules which, in turn, with the addition

of background information, are used by the argumentation framework to prioritize

2.5 Logic-based models of argumentation and applications 62

suggestions, thus enhancing the final results provided to users. Gomez et al. (2005)

tried to integrate ontology theory, defeasible argumentation and belief revision to define

ontology algebra, and suggested how different aspects of ontology integration can be

defined in terms of defeasible argumentation and belief revision. OWL ontology is

simply a collection of information comprising classes and properties, an approach which

is associated with the DeLP program for representing knowledge in which facts and

strict rules are distinguished. More formally, Ad-Ontology is a DeLP program P =

(KP , KG, Δ) where KP stands for particular knowledge (facts about individuals), KG

stands for general knowledge (strict rules about relations held among individuals), and

Δ stands for defeasible knowledge (defeasible rules).

2.5.2.7 Miscellaneous applications

Rahwan and Larson (2008) identified that little work exists on understanding the

strategic aspects of argumentation among self-interested agents and introduced an

argumentation mechanism design (ArgMD) which enables the design and analysis of

argumentation for self-interested agents. This work lies at the intersection of game

theory and formal argumentation theory. In this mechanism, the agent must decide

which arguments to reveal simultaneously and the mechanism calculates the set of

accepted arguments based on acceptability criteria.

Rahwan et al. (2004) also identified the role of argumentation in the agent’s

negotiation. They identify the elements of environment (e.g. communication language,

domain language, negotiation protocol) that host the agents and proposed a conceptual

framework which outlines the core features required by agents for argumentation-based

negotiation. Such negotiation will enable agents to operate in a dynamic, uncertain

and unpredictable environment.

Dung et al. (2009b) also proposed a framework and described the extensive

application of argument-based decision making and negotiation to a real-world scenario

in which an investor agent and an estate manager agent negotiate to lease land for

a computer-assembly factory. Agents are equipped with beliefs, goals, preferences,

and argument-based decision-making mechanisms, and take uncertainties into account.

Argumentation techniques are used in multi-agent systems to specify autonomous

agent’s reasoning, which involves forming and revising beliefs and actions according

to inconsistent, uncertain and contradictory information. Such techniques have been

used to facilitate multi-agent interactions which involve the dialogue process between

software agents who have contradictory views about certain domains of discourse.

2.6 Comparison between philosophical and logic-based argumentation
frameworks and applications

63

2.6 Comparison between philosophical and

logic-based argumentation frameworks and

applications

Many similarities as well as differences exist between philosophical and logic-based

argumentation frameworks and applications.

Table 2.8 provides a comparative study of both types of argumentation frameworks

and applications based on a number of distinct features. Of the various features,

the most important are the representation of an argument structure and reasoning

methodology. Philosophical models consider an enriched and complex argument

structure which comprises a set of elements that facilitate the subjective assessment of

an argument by the participants in decision making. The acceptability of arguments

is again subjective in nature, e.g. strong, moderate, weak etc., and is dependent

on human computation. Whereas logic-based argumentation models and applications

consider argument to be a very simple structure and try to define explicit semantics

so that a reasoning engine can evaluate the arguments, the evaluation of arguments in

logic-based argumentation models and applications is very simple, i.e., it is either true

or false. As a result, it is very easy to compute an acceptable set of arguments.

Argument structure and reasoning methodology are therefore the two features

that are of paramount importance for the design and development of new software

applications. A comparative study of both eases the decision about which

argumentation paradigm to use for the development of new software applications.

2.6 Comparison between philosophical and logic-based argumentation
frameworks and applications

64

T
ab
le

2.
8:

C
om
pa
ri
so
n

of
lo
gi
c-
ba
se
d

ar
gu
m
en
ta
ti
on

fr
am
ew
or
ks
/a
pp
lic
at
io
ns

w
it
h

ph
ilo
so
ph
ic
al

m
od
el
s

of
ar
gu
m
en
ta
ti
on
/a
pp
lic
at
io
ns

Fe
at
ur
e

L
og
ic
-b
as
ed

ar
gu
m
en
ta
ti
on

fr
am
ew
or
ks

/a
pp
lic
at
io
ns

P
hi
lo
so
ph
ic
al
m
od
el
s
of
ar
gu
m
en
ta
ti
on

A
rg
um
en
t
st
ru
ct
ur
e

M
os
t
of
th
e
ar
gu
m
en
ta
ti
on

fr
am
ew
or
k
ta
ke

ar
gu
m
en
ts
as

at
om
ic
en
ti
ti
es
an
d
fo
cu
se
d

on
th
e
in
te
ra
ct
io
n
am
on
g
ar
gu
m
en
ts
.

In
lo
gi
c-
ba
se
d

ap
pl
ic
at
io
n,

th
e

ar
gu
m
en
ts

co
m
pr
is
e
of

a
se
t
of

pr
em
is
es

an
d
a

co
nc
lu
si
on
.

Fo
cu
s
on

en
ri
ch
ed

re
pr
es
en
ta
ti
on

of
th
e

in
te
rn
al

st
ru
ct
ur
e
of

an
ar
gu
m
en
t
an
d

in
te
ra
ct
io
n
am
on
g
el
em
en
ts
of
an
ar
gu
m
en
t

su
ch

as
fa
ct
s,

cl
ai
m
,
w
ar
ra
nt
,
ba
ck
in
g,

m
od
al
it
y
et
c.

A
rg
um
en
t
ty
pe

M
os
tl
y
co
m
pr
is
e
of
de
du
ct
iv
e
ar
gu
m
en
ts

M
os
tl
y

co
m
pr
is
e

of
in
du
ct
iv
e

an
d

pr
es
um
pt
iv
e
ar
gu
m
en
ts

Ju
st
ifi
ca
ti
on
fo
r
a
cl
ai
m

R
el
y
on
ru
le
of
in
fe
re
nc
e

R
el
y
on
en
ri
ch
ed
st
ru
ct
ur
e
of
an
ar
gu
m
en
t

A
cc
ep
ta
bi
lit
y

of
ar
gu
m
en
ts

au
to
m
at
ed

m
an
ua
lo
r
se
m
i-a
ut
om
at
ed

A
rg
um
en
ts
ev
al
ua
ti
on

E
va
lu
at
io
n
of
ar
gu
m
en
ts
re
lie
s
on
th
e
ri
go
ro
us

te
st
in
g
of
ar
gu
m
en
ts
ba
se
d
on
m
at
he
m
at
ic
al

ru
le
s
w
hi
ch
de
cl
ar
e
th
em

tr
ue
or
fa
ls
e.

E
va
lu
at
io
n
of
ar
gu
m
en
ts
is
do
ne
by
hu
m
an
s

w
ho

w
ei
gh
te
d
or
w
ei
gh
te
d
th
em

as
ei
th
er

w
ea
k
or
st
ro
ng
.

A
rg
um
en
ta
ti
on
ty
pe

M
os
tl
y
fo
llo
w
m
on
ol
og
ic
al
ar
gu
m
en
ta
ti
on

M
os
tl
y
fo
llo
w
di
al
og
ic
al
ar
gu
m
en
ta
ti
on

R
ea
so
ni
ng

T
he

re
as
on
in
g
is
pe
rf
or
m
ed

by
a
so
ft
w
ar
e

co
m
po
ne
nt
i.e
.r
ea
so
ni
ng
en
gi
ne
.

T
he

re
as
on
in
g
ta
sk

is
ei
th
er
fu
lly

hu
m
an

de
pe
nd
en
t
or
se
m
i-a
ut
om
at
ed
.

In
it
ia
liz
at
io
n

L
og
ic
-b
as
ed
ar
gu
m
en
ta
ti
on
fr
am
ew
or
ks
st
ar
t

w
it
h
a
se
t
of
ex
is
ti
ng

ar
gu
m
en
ts
an
d
th
e

in
te
ra
ct
io
n
am
on
g
th
em
.
T
he

ap
pl
ic
at
io
n

fo
llo
w
s
dy
na
m
ic
ar
gu
m
en
ta
ti
on
.

T
oo
ls

bu
ilt

on
a

ph
ilo
so
ph
ic
al

m
od
el

of
ar
gu
m
en
ta
ti
on

fa
ci
lit
at
e

th
e

pa
rt
ic
ip
an
ts
/h
um
an
to
co
ns
tr
uc
t
ar
gu
m
en
ts
.

2.7 Categorization of reasoning approaches on the Semantic Web 65

In Section 2.7, the current reasoning approaches on the Semantic Web are

categorized.

2.7 Categorization of reasoning approaches on the

Semantic Web

As pointed out in Chapter 1, the ontology languages layer of the Semantic Web have

reached a level of maturity and now efforts are being focused on the development of the

logic layer of the Semantic Web. The logic layer provides a foundation for Semantic

Web applications to perform advance reasoning techniques for automated information

extraction, reasoning and integration to facilitate the decision-making process.

Broadly speaking, the current reasoning approaches on the Semantic Web can be

divided into the following two categories:

1. Monotonic reasoning

A reasoning is known as monotonic reasoning if during the reasoning process,

once a conclusion is asserted, it can’t be retracted later on in the presence of

new information. Monotonic reasoning follows Open-World Assumptions (OWA)

where everything I don’t know or information which is not present in the model

is considered undefined.

The current monotonic reasoning-based approaches on the Semantic Web can be

classified into the following three sub-categories:

a) Ontology-driven reasoning: Approaches that make use of ontologies

for knowledge representation and reasoning. Section 2.7.1.1 elaborates on

ontology-driven reasoning in detail.

b) Semantic Web rule-based reasoning: Approaches that make use of the

Semantic Web rule-based languages to represent and reason over information

present on the Semantic Web . These approaches are presented in Section 2.7.1.2

c) Fuzzy logic-based approaches : Approaches that make use of fuzzy logic

to represent and reason over information present on the Semantic Web. These

approaches are presented in Section 2.7.1.3

2. Non-monotonic reasoning

A reasoning is known as non-monotonic reasoning if, during the reasoning process,

once a conclusion is asserted, it can be retracted later in the presence of new

information. Non-monotonic reasoning follows Close-World Assumptions (CWA)

2.7 Categorization of reasoning approaches on the Semantic Web 66

where everything I don’t know or information which is not present in the model

is considered false. The current non-monotonic reasoning-based approaches can

be classified into the following two sub-categories:

a) Defeasible logic-based approaches: Approaches that make use of defeasible

logic-based rule languages to represent and reason over information present on

the Web. These approaches are discussed in Section 2.7.2.1

b) Argumentation-based approaches: Argumentation-based approaches make

use of argumentation techniques to represent and reason over information present

on the Web. These approaches are presented in Section 2.7.2.2

In the following Section 2.7.1, the different sub-categories of monotonic reasoning

are discussed in detail, followed by non-monotonic reasoning sub-categories in Section

2.7.2.

2.7.1 Sub-categories of monotonic reasoning

2.7.1.1 Ontology-driven reasoning

Ontologies (Fensel, 2003) are the core of the Semantic Web and provide formal and

explicit specification of a certain domain. They use a combination of classes, and their

relationships or properties, instances and axioms are defined in some formal language.

The W3C has proposed two ontology languages for representing knowledge on the

Semantic Web. The first one is RDFS, based on XML and logic programming, which

is a lightweight ontology language. The second language is OWL, which is based

upon description logic and provides constructs for cardinality restrictions, Boolean

expressions and restrictions on properties. OWL ontologies come in three species:

Lite, DL, and Full, ordered in increasing expressivity.

In addition to serving the purpose of representation, an ontology also enables logical

inference on facts through axiomatization. Hence, ontologies on the Web should provide

constructs for effective binding with logical inference primitives and options to support

a variety of expressiveness and computational complexity requirements. Table 2.9

depicts a set of axioms defined for OWL-Lite and these are exploited by DL reasoning

engines, such as FaCT++ (Tsarkov and Horrocks, 2006) and Pellet (Parsia and Sirin,

2007) to achieve the inference-ability objective. A number of architecture and web

applications have been built by modeling domain knowledge in the form of ontologies,

using the DL reasoner as an inference engine, such as a reasoning agent for the Semantic

Web (Oguz et al., 2008), OSGi-based infrastructure to manage context-aware services

(Gu et al., 2004) etc.

2.7 Categorization of reasoning approaches on the Semantic Web 67

Table 2.9: OWL ontology reasoning semantics

Property Semantics

TransitiveProperty (?P rdf:type owl:TransitiveProperty) ∩(?A ?P ?B) ∩(?B
?P ?C) ⇒(?A ?P ?C)

subClassOf (?a rdfs:subClassOf ?b) ∩ (?b rdfs:subClassOf ?c) ⇒ (?a

rdfs:subClassOf ?c)

subPropertyOf (?a rdfs:subPropertyOf ?b) ∩(?b rdfs:subPropertyOf ?c)⇒
(?a rdfs:subPropertyOf ?c)

disjointWith (?C owl:disjointWith ?D) ∩ (?X rdf:type ?C) ∩(?Y rdf:type
?D) ⇒(?X owl:differentFrom ?Y)

inverseOf (?P owl:inverseOf ?Q) ∩ (?X ?P ?Y) ⇒ (?Y ?Q ?X)

2.7.1.2 Semantic Web rule-based driven reasoning

Proposals for the integration of rule languages and ontology languages can be classified

by the degree of integration (Antoniou et al., 2005). Firstly, the hybrid approach is one

where there is strict separation between the rule predicates and ontology predicates and

reasoning is done by interfacing the existing rule reasoner with the ontology reasoned;

whereas, with the homogeneous approach, both rules and ontologies are embedded

in the same logical language L without making a prior distinction between the rule

predicates and ontology predicates, and the reasoning single reasoner can be used for

reasoning purposes.

The following two steps are involved:

• Compilation of rules as a Rete network.

• Matching phase i.e. data-driven reasoning by passing the facts present in the

working memory through the Rete network.

The Rete (Forgy, 1982) algorithm involves two steps. The first is the compilation

of rules in the form of a network called a Rete network. The second is the matching

phase, in which the rule engine matches the conditions of the rules in the knowledge

base against the facts in the working memory. As a result of this match, a single

rule fires. Firing the rule instance will add a new fact to the working memory. The

matching phase starts again and only the new inferred facts filter through the compiled

rules network and result in the firing of another rule; so the process continues. The

process will stop when no more rules match the new inferred facts.

2.7 Categorization of reasoning approaches on the Semantic Web 68

The importance of Semantic-based Web-based decision support systems (DSS) in

business applications has been identified by a number of researchers over a period of

time (Vahidov and Kersten, 2004; Silverman et al., 2001; Toni, 2007). Kartha and

Novstrup (2009) proposed a combination of ontologies and decision rules for building a

decision support application for time sensitive targeting. They represented knowledge

with the help of rules known as ‘decision rules’ which: (a) include primitives from

multiple ontologies and primitives that are defined by algorithms that are outside the

rule framework; (b) are time-dependent; and (c) incorporate default assumptions. They

developed what is known as the Sentinel system, which is general enough to support a

wide variety of DSS tasks.

Ceccaroni et al. (2004) present an environmental decision support system (called

OntoWEDSS) for waste water treatment to improve the diagnosis of faults in a

treatment plant, which provides support for complex problem-solving and facilitates

knowledge modeling and reuse. The system is based on the integration of case-based

and rule-based reasoning with an ontology, i.e. Waste-Water Ontology (WaWO) for

the representation of the domain and for reasoning. Nicolicin-Georgescu et al. (2010)

present an approach to managing data warehouse cache allocations via DSS by using

autonomic computing and Semantic Web technologies. They presented heuristics

for autonomic computing adoption, using ontologies for DSS system modeling and

ontology-based rules for heuristic implementation.

Similarly, Salam (2007) presents a supplier performance contract monitoring and

execution of DSS, using OWL-DL 11 for knowledge representation SWRL 12 to express

rules on top of OWL-DL ontologies. Cheung and Cheong (2007) address the challenges

of market operations using a rule-based approach in mission-critical decisions and

Garcia-Crespo et al. (2011) propose a semantic model for knowledge representation

in e-business. Yang et al. (2009) proposed a Semantic Web-DSS and provide semantics

for defining static and dynamic semantics representation based on ontologies and

quantitative decision making comprising three steps: publishing decision requirements,

bidding, and role-based collaboration among decision peers (each Semantic Web-DSS

is a peer) to negotiate decision models.

2.7.1.3 Fuzzy logic-based reasoning

A number of researchers used fuzzy logic-based quantitative approaches for reasoning

to address the issues of group decision-making. Subsorn et al. (2008) proposed

a Web-based group decision support system framework to deal with imprecise

11http://www.w3.org/TR/owl-guide/
12http://www.w3.org/Submission/SWRL/

2.7 Categorization of reasoning approaches on the Semantic Web 69

decision-making problems. The framework is based on a fuzzy analytic hierarchy

process for group decision-making. The framework enables group members to

develop satisfactory group solutions and allows group leaders to form final/acceptable,

satisfactory group solutions. Ma et al. (2010) proposed ‘Decider’, a fuzzy multi-criteria

group decision-making (MCGDM) process model that aims to support preference-based

decisions over the available alternatives that are characterized by multiple criteria in

a group. The model can handle information expressed in linguistic terms, Boolean

values, as well as numeric values to assess and rank a set of alternatives within a group

of decision makers.

Noor-E-Alam et al. (2010) also addressed the issue of multi-criteria decision-making

(MCDM) involving multiple experts and pointed out that the participation of many

experts makes the conflict aggregation process difficult. They developed a DSS based on

types of fuzzy-based conflict aggregation algorithms, namely, a possibility measure and

averaging conflict aggregation. Yue (2011) addressed the issue of multiple attribute

decision-making (MADM) and developed an algorithm for determining the weights

of decision makers within a group decision environment, in which the information

regarding each individual decision is expressed by a matrix in interval numbers. He

also defined positive ideal and negative ideal solutions of group opinion, the separation

measures and the relative closeness from the positive ideal solution.

Cabrerizo et al. (2010) used fuzzy logic to address the issue of consensus building

among experts when information is incomplete. They developed a consensus model to

address group decision-making problems with incomplete unbalanced fuzzy linguistic

information. The working of the model is supported by consistency and consensus

measures, and with the help of a feedback mechanism, personalized advice is provided

to the experts for modification to their unbalanced fuzzy linguistic preference relations.

Similarly, efforts are being made to represent the results of the decision-making process

to the end user in an easily comprehendible form, such as that of Li et al. (2001) who

proposed a visualized information retrieval engine based on fuzzy control.

The aforementioned fuzzy logic-based approaches, being quantitative, have been

criticized for their inability to generate easy-to-understand and logically clear results

for justification purposes. These approaches follow monotonic behaviour whereby once

a conclusion has been drawn, it cannot be retracted. Additionally, they lack inference

reasoning capability over contradictory information; for BI, we need such inference

mechanisms.

2.7 Categorization of reasoning approaches on the Semantic Web 70

2.7.1.4 Description Logic Programs (DLP)

Logic Programming is a predominant paradigm for expressing knowledge with rules,

and for making inferences and answering queries. It provides both a declarative

reading (a programming paradigm that expresses the logic of a computation without

describing its control flow) and an operational reading of rules (with implementations).

Its semantics largely underpin four families of rule systems, i.e. SQL relationship

databases, OPS5 heritage production rules, Prolog, and Even-Condition-Action rules,

and it is used as the proposal for rules in the context of the Semantic Web.

Many efforts have focused on mapping, intersection, or a combination of description

logics (DLs) and logic programs (LP) to overcome the shortcomings that emerged

during the development of practical OWL applications (Patel-Schneider and Horrocks,

2007). To overcome the limitations of reasoning on OWL, Grosof et al. (2003) proposed

Description Logic Programs (DLP) which lie at the intersection of LP and DLs (as

shown in Figure 2.5), instead of using Full First Order Logic (FOL) to address OWL

issues. FOL can express positive disjunctives which are inexpressible in LP, whereas

it does not provide support for expressing negation-as-failure (representing incomplete

information) and procedural attachments (e.g. the association of an action performing

procedural invocation with the drawing of a conclusion about a particular predicate).

On the other hand, Logic programs do not provide these features to support the

non-monotonic behaviour of the system.

Figure 2.5: Expressive overlaps among knowledge representation
languages (Grosof et al., 2003)

2.7 Categorization of reasoning approaches on the Semantic Web 71

2.7.2 Sub-categories of non-monotonic reasoning

2.7.2.1 Defeasible logic-based reasoning

Nute (1988) highlighted the importance of defeasible reasoning in decision support

systems and developed a logic for defeasible reasoning by extending Prolog. The

new logic comprises facts and presumption, absolute rules and defeasible rules, and

introduced another kind of weak rule known as a ‘defeater’. Causey (1994) developed

‘EVID’, a system for interactive defeasible reasoning and Johnston and Governatori

(2003) developed an algorithm that integrates defeasible logic into a decision support

system by automatically deriving its knowledge from databases of precedents.

Dr Prolog (Antoniou and Bikakis, 2007) is a prolog-based implementation for

carrying out defeasible reasoning on the Web. It provides declarative system support

rules, facts, ontologies, RuleML, and both monotonic and non-monotonic rules. It takes

into consideration both open world and closed world assumptions and provides features

for reasoning with inconsistencies. The system provides a number of variants such

as ambiguity blocking, ambiguity propagation and contradictory literals. Defeasible

theories are imported in defeasible logic or RuleML syntax and translated into logic

programs with the help of a logic translator. The Reasoning Engine compiles the

logic programs and the meta-program which corresponds to the DL version that

the user selects (ambiguity blocking/ propagating), and evaluates the answers to the

user’s queries. They extended RuleML DTDs to represent defeasible theories in XML

format. Dr Brokering (Antoniou et al., 2007) is a Dr-Prolog-based software agent

implementation to address the problem of brokering and matchmaking; i.e. how a

requester’s requirements and preferences can be matched against a set of offerings

collected by a broker.

Dr-Device (Kontopoulos et al., 2011; Bassiliades et al., 2004) is a CLISP-based

defeasible reasoning implementation provided with a VDR-Device reasoning system,

RDF loader/translator and rule loader/translator component. The VDR-Device is

an integrated development environment equipped with a graphical front end used for

deploying defeasible rules on top of RDF schema ontologies. The rule base is initially

submitted to the rule loader which transforms the rules into CLISP-like syntax through

an XSLT stylesheet. The resulting program is forwarded to the rule translator where

defeasible logic rules are compiled into a set of CLISP production rules. In parallel,

the RDF downloader downloads the RDF documents and translates them into CLISP

objects according to the RDF-to-Object scheme. The reasoning system performs

inference on transited RDF metadata using defeasible rules and generates the objects

that constitute the result of the initial rule program. The RDF extractor exports the

2.7 Categorization of reasoning approaches on the Semantic Web 72

resulting objects in the form of RDF/XML to the user. Dr-Device is implemented in

Jess and integrates well with RuleML and RDF. Unlike Prolog, Dr-Device supports

only one variant: ambiguity blocking. At present, it does not support OWL ontologies.

In addition, Dr-Prolog uses Logic Programs with well-founded semantics, which is

formally equivalent to the formal model. In contrast, Dr-Device uses the logic

meta-program as a guiding principle, but there is no formal proof of the correctness of

the implementation. On the other hand, Dr-Device has the relative advantage of easier

integration with mainstream software technologies. SweetJess (Grosof et al., 2002) is

another defeasible reasoning system based on Jess and closely resembles courteous logic

programs. It integrates well with RuleML but it can only perform reasoning in DML

+ OIL ontologies and not on RDF data as Dr-Device and Dr-Prolog does. However,

it allows for procedural attachment and it implements only one reasoning variant.

Moreover, it imposes a number of restrictions on the programs so that it can map

on Jess. Table 2.10 presents a comparison of defeasible reasoning-based information

systems.

2.7.2.2 Argumentation-based approaches

The WWW, being distributed and ubiquitous, provides a universal platform for

Internet users to interact with each other. Previously, there was one-way traffic of

content contributors on theWWW. The content provides information which was mainly

based on their thinking, observations and knowledge and the readers were not able to

reply to the author’s arguments if a difference of opinion existed.

Web 2.0 has revolutionized the WWW and provides a platform for the readers and

converts them from reader to content developer. This development led to the realization

of argumentation among users of the WWW. Blogs are one of the best examples of this.

Semantic Web technology adds more flavour to Web contents by enriching the content

with certain semantics to make the content processable by machines and automate

interaction and support the decision-making process. On the basis of the level of

functionality, the current applications of argumentation on the WWW are divided into

the following three categories:

1. Web-based argument-assistance systems.

2. Semantic Web-based argumentation support frameworks and applications.

3. Semantic Web-based argumentation support applications with shared ontology

(AIF).

In the following sections, each of these categories is discussed in detail.

2.7 Categorization of reasoning approaches on the Semantic Web 73

T
ab
le

2.
10
:

C
om
pa
ri
so
n
of

de
fe
as
ib
le

lo
gi
c
ba
se
d
W
eb

ID
SS

ap
pl
ic
at
io
ns

D
r-
P
ro
lo
g

D
r-
D
ev
ic
e

Si
tu
at
ed
C
ou
rt
eo
us
lo
gi
c

L
an
gu
ag
e

P
ro
lo
g

JE
SS

JE
SS

L
og
ic

D
ef
ea
si
bl
e
lo
gi
c

D
ef
ea
si
bl
e
lo
gi
c

Si
tu
at
ed
C
ou
rt
eo
us
lo
gi
c

Se
m
an
ti
c
da
ta

R
D
F
S/
O
W
L

R
D
F

D
A
M
L
+
O
IL

R
ul
es
re
pr
es
en
ta
ti
on

R
ul
eM
L

R
ul
eM
L

R
ul
eM
L

In
co
m
pl
et
e
kn
ow
le
dg
e

re
pr
es
en
ta
ti
on

Y
es

Y
es

Y
es

C
on
fli
ct
re
pr
es
en
ta
ti
on

Y
es

Y
es

Y
es

D
at
a-
dr
iv
en
re
as
on
in
g

N
o

Y
es

Y
es

G
oa
l-d
ri
ve
n
re
as
on
in
g

Y
es

N
o

N
o

C
on
fli
ct
re
so
lu
ti
on

U
se
r
de
fin
ed

pr
io
ri
ti
es
at

co
m
pi
le
ti
m
e

U
se
r
de
fin
ed

pr
io
ri
ti
es

at
co
m
pi
le
ti
m
e

U
se
r
de
fin
ed

pr
io
ri
ti
es
at

co
m
pi
le
ti
m
e

E
xp
la
na
ti
on

T
ex
tu
al

T
ex
tu
al

T
ex
tu
al

A
IF
re
ifi
ca
ti
on

N
o

N
o

N
o

2.7 Categorization of reasoning approaches on the Semantic Web 74

2.7.3 Web-based Argument-assistance systems

Web 2.0 is a powerful paradigm for designing argumentation tools to solve challenges

in collaboration on a global scale. However, there is a huge gap between Web 2.0

technologies and argumentation formalisms. Argumentation formalism focuses on

a particular kind of semantic structure for organizing elements in such a way that

computation and inference can be performed to reach a conclusion, whereas Web

2.0 moves the emphasis away from argumentation formalism features, such as no

predefined information organization schemes, and is more focused on self-organization

and community-driven indexation of elements, e.g. folksonomies that can be rendered

as clouds (Shum, 2008).

To bridge this gap, an argument assistance application offers a step forward; for

instance, argument assistance systems overcome the limitations of threaded discussion

forums by making a clear distinction between unsupported premises and supported

premises known as claims. To evaluate the existing applications, I define a scale for

argument evaluation and argument acceptability as depicted in Table 2.11.

2.7 Categorization of reasoning approaches on the Semantic Web 75

T
ab
le
2.
11
:
Sc
al
e
fo
r
ev
al
ua
ti
on
an
d
ac
ce
pt
ab
ili
ty
of
ar
gu
m
en
ts

T
yp
e

Sc
al
e

D
es
cr
ip
ti
on

Fu
lly
H
um
an
de
pe
nd
en
t
(F
H
D
)

Sy
st
em

de
pe
nd
s
up
on

pa
rt
ic
ip
an
ts
fo
r

ar
gu
m
en
ts
ev
al
ua
ti
on

Sc
al
e
fo
r
A
rg
um
en
t

E
va
lu
at
io
n

P
ar
ti
al
ly
H
um
an
de
pe
nd
en
t(
P
H
D
)

Sy
st
em

pr
ov
id
es
su
pp
or
t
to
pa
rt
ic
ip
an
ts

by
lin
ki
ng

cu
rr
en
t
in
fo
rm
at
io
n
to
ot
he
r

re
so
ur
ce
s
or

ex
te
rn
al

lin
ks

th
at

ca
n

pr
ov
id
e
so
m
e
so
rt

of
ju
st
ifi
ca
ti
on

or
ar
gu
m
en
ts
ne
tw
or
k
fo
r
be
tt
er
vi
su
al
iz
at
io
n

to
fa
ci
lit
at
e
ar
gu
m
en
t
ev
al
ua
ti
on
.

N
ot
H
um
an
de
pe
nd
en
t
(N
H
D
)

Sy
st
em

ha
s
bu
ilt
-in

se
m
an
ti
cs

fo
r

ar
gu
m
en
ts

ev
al
ua
ti
on

e.
g
so
m
e
lo
gi
ca
l

cr
it
er
ia
.

Fu
lly
H
um
an
de
pe
nd
en
t
(F
H
D
)

Sy
st
em

de
pe
nd
s
up
on

pa
rt
ic
ip
an
ts
to

co
m
pu
te
/
co
ns
id
er
ac
ce
pt
ab
le
ar
gu
m
en
ts
.

Sc
al
e

fo
r

A
cc
ep
ta
bi
lit
y

of
ar
gu
m
en
ts

P
ar
ti
al
ly
H
um
an
de
pe
nd
en
t
(P
H
D
)

Sy
st
em

pr
ov
id
es
su
pp
or
t
to
pa
rt
ic
ip
an
ts

in
te
rm
s
of

ex
te
rn
al

us
ef
ul

lin
ks

or
ar
gu
m
en
ts
;

gr
ap
h-
lik
e

st
ru
ct
ur
e

to
fa
ci
lit
at
e
pa
rt
ic
ip
an
ts
to

ta
g
ac
ce
pt
ab
le

ar
gu
m
en
ts
.

N
ot
H
um
an
de
pe
nd
en
t
(N
H
D
)

Sy
st
em

ha
s
bu
ilt
-in

se
m
an
ti
cs

fo
r

ar
gu
m
en
ts

ev
al
ua
ti
on

e.
g.

vo
ti
ng

m
ec
ha
ni
sm

2.7 Categorization of reasoning approaches on the Semantic Web 76

Table 2.12 shows a comparative analysis of different web-based argument assistance

applications, from which the following important observations can be made:

1. Most argumentation assistance applications are based on dialogical

argumentation with the exception of Debatabase 13, which follows monological

argumentation.

2. Argument structures vary from very simple structures, such as premises and

conclusions, to very complex argument structures, such as the argument

structures in ConvinceMe14, Debatepoint15 and Truthmapping.16

3. Argumentation is mostly used for application assistance in persuasion and debate.

4. The evaluation of arguments is either fully or partially dependent on humans.

None of the systems have the semantics to automate the process of argument

evaluation.

5. The acceptability of an argument is either fully human-dependent or is not at all

dependent on humans. In the latter case, different mechanisms are used, such as

voting.

6. Content contributors are not as prolific as they are on the social networks.

13http://www.idebate.org/debatabase/topic-index.php
14http://www.convinceme.net/
15http://debatepoint.org/
16http://www.truthmapping.com/

2.7 Categorization of reasoning approaches on the Semantic Web 77

T
ab
le
2.
12
:
C
om
pa
ri
so
n
of
W
eb
2.
0
ba
se
d
ar
gu
m
en
t
as
si
st
an
ce
sy
st
em
s

Fr
am
ew
or
k

/a
pp
lic
at
io
n

P
ur
po
se

A
rg
um
en
t
St
ru
ct
ur
e

E
va
lu
at
io
n
of

ar
gu
m
en
ts

A
cc
ep
ta
bi
lit
y

of
ar
gu
m
en
ts

C
on
te
nt

co
nt
ri
bu
to
rs

A
rg
um
en
ta
ti
on

ty
pe

L
ea
d

lin
e

(F
ar
nh
am

et
al
.,
20
00
)

P
er
su
as
io
n

P
re
m
is
e,
C
on
cl
us
io
n

F
H
D

F
H
D

A
Sm
al
l
gr
ou
p

D
ia
lo
gi
ca
l

C
on
vi
nc
eM
e.
ne
tP
er
su
as
io
n

P
re
m
is
es
,P
ro
,C
on
s,
co
nv
in
ce
d,

re
bu
tt
al
,
ev
id
en
ce
,
co
m
m
en
ts

P
H
D

N
H
D

M
ed
iu
m

(o
n
av
g.

5-
20
co
nt
ri
bu
to
rs
)

D
ia
lo
gi
ca
l

T
ru
th
m
ap
pi
ng
P
er
su
as
io
n

P
re
m
is
es
,
co
nc
lu
si
on
,
ag
re
e,

di
sa
gr
ee
,
w
it
hd
ra
w
n

P
H
D

N
H
D

M
ed
iu
m

(o
n
av
g.

5-
20
co
nt
ri
bu
to
rs
)

D
ia
lo
gi
ca
l

D
eb
at
ab
as
e

(E
xp
er
ts
)

L
ea
rn
in
g

P
re
m
is
e,
P
ro
,C
on
s,
C
on
cl
us
io
n

F
H
D

F
H
D

A
pe
rs
on

M
on
ol
og
ic
al

IB
IS
M
od

P
ro
bl
em

so
lv
in
g

Is
su
es
,p
os
it
io
ns
an
d
ar
gu
m
en
ts

F
H
D

P
H
D

M
ed
iu
m

(o
n
av
g.

5-
20
co
nt
ri
bu
to
rs
)

D
ia
lo
gi
ca
l

D
eb
et
eP
ed
ia

D
eb
at
e

P
re
m
is
e,
P
ro
,C
on
s

P
H
D

F
H
D

M
ed
iu
m

(o
n
av
g.

5-
30
co
nt
ri
bu
to
rs
)

D
ia
lo
gi
ca
l

D
eb
at
ep
oi
nt

D
eb
at
e

P
re
m
is
e,

at
ta
ck
,

su
pp
or
t,

m
od
er
at
e,
ir
re
le
va
nt
,
co
m
m
en
ts

F
H
D

N
H
D

L
ar
ge
(3
0-
ab
ov
e)

D
ia
lo
gi
ca
l

D
em
e

D
eb
at
e

P
re
m
is
es
,
op
in
io
ns
,
co
m
m
en
ts

P
H
D

P
H
D

M
ed
iu
m

(o
n
av
g.

5-
20
co
nt
ri
bu
to
rs
)

D
ia
lo
gi
ca
l

D
is
co
ur
se

D
B

P
re
di
ct
in
g

tr
en
ds

ab
ou
t
is
su
es

P
re
m
is
e,
pr
o,
co
ns
,
m
ix
ed

P
H
D

F
H
D

L
ar
ge
(3
0
-a
bo
ve
)

D
ia
lo
gi
ca
l

St
an
dp
oi
nt

C
lu
st
er
in
g
of
pe
op
le

w
it
h
sa
m
e
be
lie
f

P
re
m
is
e,

A
tt
ac
k,

Su
pp
or
t,

C
om
m
en
ts

P
H
D

N
H
D

L
ar
ge
(3
0-
ab
ov
e)

D
ia
lo
gi
ca
l

2.7 Categorization of reasoning approaches on the Semantic Web 78

2.7.4 Semantic Web-based argumentation support frameworks

and applications

The Semantic Web is an extension of the WWW on which information is annotated

with meta-data or ontologies to make it processable by machines. The Semantic

Web plays an important role in automating the computing of user interaction.

Realizing the importance of argumentation, Sprado and Gottfried (2009) defined

an argumentation-based framework for a decision support system in the context of

spatio-temporal systems. The DS framework is based on two paradigms, argumentation

and description logics. Argumentation is applied to identify and analyze consistent

sets of arguments, whereas description logics help to define terminological knowledge

to categorize the arguments at a semantic level. In this framework, arguments refer to

a conceptual description of a given state of affairs (Concept-Based Argumentation) and

use the preferences among them to resolve conflicts at a conceptual level. Similarly,

CoAKTinG (Bachler et al., 2004) provides tools to assist scientific collaboration by

integrating intelligent meeting spaces, ontologically annotated media streams from

online meetings, decision rationales and group memory capture, meeting facilitation,

issue handling, planning and coordination support, constraint satisfaction, and instant

messaging or presence.

The HCONE Kotis (2010) argumentation ontology supports the capture of the

structure of an entire argumentation dialogue as it evolves among collaborating parties

within a period. It allows the tracking and identification of the rationale behind atomic

changes and/or ontology versions. CoPe_it! also provides a mechanism to evaluate the

strength of a position, and so represents another interesting development. Positions

or alternatives are posted after the completion of an appropriate form. Each time a

user posts a discourse item, CoPe_it! re-evaluates the whole discussion and indicates

a solution.

Table 2.13 provides a comparative analysis of different argumentation-based

Semantic Web applications, summarized as follows:

1. Apart from debate, they are used to predict trends and cluster information.

2. Applications follow dialogical argumentation.

3. Current applications are not fully autonomous because they are partly dependent

on humans for their functionality.

2.7 Categorization of reasoning approaches on the Semantic Web 79

T
ab
le
2.
13
:
C
om
pa
ri
so
n
of
se
m
an
ti
c
ba
se
d
ar
gu
m
en
ta
ti
on

su
pp
or
t

ap
pl
ic
at
io
ns

Fr
am
ew
or
k
/a
pp
lic
at
io
n

O
nt
ol
og
y

P
ur
po
se

A
rg
um
en
t

St
ru
ct
ur
e

E
va
lu
at
io
n

of
ar
gu
m
en
t

A
cc
ep
ta
bi
lit
y
of

ar
gu
m
en
ts

H
C
O
N
E
(K
ot
is
,2
01
0)

A
rg
um
en
ta
ti
on

on
to
lo
gy

H
an
dl
in
g

co
nfl
it
cs

in
sh
ar
ed

on
to
lo
gy

de
ve
lo
pm
en
t

is
su
es
,
po
si
ti
on
s,

an
d

ar
gu
m
en
ts

(f
or
,a
ga
in
st
)

F
H
D

P
H
D

C
op
e_
it
(T
za
ga
ra
ki
s
et
al
.,

20
09
)

In
cr
em
en
ta
l

fo
rm
al
iz
at
io
n

L
ea
rn
in
g

it
em
s,

fa
vo
r,

ag
ai
ns
t

P
H
D

N
H
D

C
oh
er
e
(S
hu
m
,2
00
8)

C
oh
er
e

D
at
a

m
od
el

Id
ea
s-
lin
ki
ng

Id
ea
s,

Q
ue
st
io
n,

A
ns
w
er
,P
ro
,C
on

P
H
D

P
H
D

C
ic
er
o

(D
el
ls
ch
af
t
et

al
.,

20
08
)

D
IL
IG
E
N
T

ar
gu
m
en
ta
ti
on

on
to
lo
gy

H
an
dl
in
g

co
nfl
it
cs

in
sh
ar
ed

on
to
lo
gy

de
ve
lo
pm
en
t

Is
su
es
,
po
si
ti
on
s,

an
d

ar
gu
m
en
ts

(f
or
,a
ga
in
st
)

F
H
D

P
H
D

C
oA
K
T
in
G
(B
ac
hl
er
et
al
.,

20
04
)

E
-L
ea
rn
in
g

Is
su
es
,

Id
ea
s,

A
rg
um
en
ts

an
d

D
ec
is
io
ns

D
ia
lo
gu
e

M
ap
pi
ng

P
H
D

P
H
D

2.7 Categorization of reasoning approaches on the Semantic Web 80

2.7.5 Semantic Web-based argumentation support applications

with a shared ontology (AIF)

Currently, a large number of interactions occurring on the WWW need to be captured

in certain semantic structures to make it possible for them to be explored by others

(to back up their argument’s support or rebuttal), and to automate the process of

argument build-up and analysis. Argument interchange format (AIF) is one step

towards providing a standard ontology for capturing such interactions (Rahwan et al.,

2007b; Chesnevar et al., 2006a; Iyad Rahwan, 2009). Table 2.14 depicts different

argumentation applications that share a common ontology.

2.7 Categorization of reasoning approaches on the Semantic Web 81

T
ab
le
2.
14
:
C
om
pa
ri
so
n
of
se
m
an
ti
c
w
eb
-b
as
ed
ar
gu
m
en
ta
ti
on
su
pp
or
t

sy
st
em

w
it
h
sh
ar
ed
O
nt
ol
og
y

Fr
am
ew
or
k

/a
pp
lic
at
io
n

P
ur
po
se

A
rg
um
en
t

St
ru
ct
ur
e

E
va
lu
at
io
n
of

ar
gu
m
en
t

A
cc
ep
ta
bi
lit
y

of
ar
gu
m
en
ts

A
rg
um
en
ta
ti
on

ty
pe

A
rg
D
F
17

R
ep
re
se
nt
in
g

an
d

vi
su
al
iz
in
g
ar
gu
m
en
ts

A
rg
um
en
t

st
ru
ct
ur
e
is
de
fin
ed

by
ar
gu
m
en
ta
ti
on

sc
he
m
e

P
H
D

N
H
D

D
ia
lo
gi
ca
l

A
rg
um
en
t

bl
og
gi
ng

(W
el
ls
et
al
.,
20
09
)

H
ar
ve
st
in
g

te
xt
ua
l

re
so
ur
ce
s
fr
om

th
e

w
eb

an
d
st
ru
ct
ur
in
g

th
em

in
to
di
st
ri
bu
te
d

ar
gu
m
en
ta
ti
ve

di
al
og
ue

P
re
m
is
e,

su
pp
or
t,

re
fu
te
,

at
ta
ck

in
fe
re
nc
e

P
H
D

P
S-
H
D

D
ia
lo
gi
ca
l

A
ra
uc
ar
ia

(R
ee
d
an
d

R
ow
e,
20
04
)

R
ep
re
se
nt
in
g

an
d

vi
su
al
iz
in
g
ar
gu
m
en
ts

Su
pp
or
t

di
ffe
re
nt

di
ag
ra
m
s
w
it
h
ri
ch

st
ru
ct
ur
e

F
H
D

F
H
D

D
ia
lo
gi
ca
l

SI
O
C

A
rg
um
en
ta
ti
on

M
od
ul
e(
U
ld
is

B
oj
ar
s

et
al
.,
20
08
)

M
od
el
in
g

th
e

st
ru
ct
ur
e

of
th
e

di
sc
us
si
on
s
on

so
ci
al

w
eb
si
te
s

St
at
em
en
t,

is
su
e,

id
ea
,

el
ab
or
at
io
n,

de
ci
si
on
,p
os
it
io
n

P
H
D

P
H
D

D
ia
lo
gi
ca
l

17
ht
tp
:/
/w
w
w
.a
rg
df
.o
rg
/

2.8 Critical evaluation of the existing approaches to support monological
argumentation in Semantic Web applications

82

2.8 Critical evaluation of the existing approaches to

support monological argumentation in Semantic

Web applications

In this section, a critical evaluation of the existing approaches in the literature for

information representation and reasoning in the Semantic Web is presented in order to

build an integrated view and identify the key issues that need to be addressed to have

a complete methodology that provides monological argumentation-driven automated

reasoning support in Semantic Web applications. The provision of such a methodology

will enable enterprises to consider information that is potentially incomplete and/or

contradictory which exists either within the enterprise or in other enterprises, represent

and perform automated reasoning over it to identify and resolve any conflicts which

may arise, followed by the integration and representation of the reasoning results to

assist decision makers in the enterprise-wide decision-making process.

As seen from the discussion on reasoning approaches in the literature, decision

makers are extremely dependent on software applications to assist them in the process

of decision making (Carlsson and Turban, 2002; Shim et al., 2002). They need

intelligent applications that can transform information (which may be incomplete

and/or contradictory) into useful knowledge as well as providing qualitative insights,

so that a human style of reasoning can be expected in software applications. To

address this, researchers in the field of Artificial Intelligence (AI) have long been

striving to realize human-like decision-making power in software applications. The

vision of Semantic Web applications also derives its concepts from AI. However, as

discussed in Section 2.7.1.1, the logic-based languages that lie at the logic layer of

the Semantic Web are deductive in nature and perform monotonic reasoning i.e.

reasoning under assumptions that the underlying information for decision making is

consistent and the addition of new information doesn’t result in contradictions with

existing information(Antoniou and Van Harmelen, 2004; Horrocks et al., 2005) . In

other words, they assume that

i) no conflicts will arise during the process of decision-making, and

ii) new information will not result in a different output.

To overcome the limitations of the Semantic Web discussed above, defeasible

reasoning based approaches have been proposed in the literature which enable

Semantic Web applications to perform non-monotonic reasoning over incomplete

and/or contradictory information (Antoniou and Bikakis, 2007; Kontopoulos et al.,

2011; Bassiliades et al., 2004). As pointed out in Sections 1.3 and 2.7.2.1, even though

2.8 Critical evaluation of the existing approaches to support monological
argumentation in Semantic Web applications

83

defeasible reasoning seems to be a good option to address the issues of non-monotonic

reasoning in Semantic Web applications, however, the superiority relation on defeasible

rules are hard-coded preferences specified by a single user before performing reasoning,

and if a conflict between the rules arises during reasoning, then the existing defeasible

reasoning-based approaches don’t provide a solution to address them. As a result

of this, Semantic Web applications built using reasoning approaches are inflexible in

responding to dynamic situations and they lack the ability to make judgments in such

situations, unlike humans who may be able to make decisions even in situations where

the information may be incomplete and/or contradictory.

To address this problem, the concept of ‘argumentation ’ has been studied in the

literature on AI. Argumentation is much more closely related to a human style of

reasoning that takes into account the concepts from the study of arguments to support

opinions, claims, and proposals, and ultimately to lead to justifiable decisions and

conclusions (Prakken and Vreeswijk, 2002; Obeid, 1992) . Toulmin (2003) was the

first to provide the logical structure of an argument and his work has been extended

by a number of researchers to enrich the argument structure and address a variety

of reasoning problems in the philosophy of law and other disciplines. The formal

foundations of argumentation have been well explored in the academic literature (as

discussed in Sections 2.4 and 2.5). However, their major drawback is that most

software applications that are based on logic-based argumentation formalisms are built

separately, and are proprietary in nature. As a result of this, the code is not available

for enhancement and general use and cannot be applied directly to address the issues

of non-monotonic reasoning in Semantic Web applications.

Approaches have been proposed in the literature that apply the concepts of

argumentation in the Semantic Web. It can been seen from the discussion in Section

2.7.2.2 that argumentation-based reasoning approaches have proven to be very useful

in empowering Semantic Web applications. It enables Semantic Web applications

to take into account potentially incomplete and/or contradictory information and

through argumentative reasoning, bring these to an agreeable conclusion, if possible.

However, it is evident from the discussion in Sections 2.7.3, 2.7.4 and 2.7.5 that most

argumentation-based Web applications are dialogical in nature where the reasoning

mechanism is driven by the decision makers involved in the discussion. As a

result of this, argumentation-based Semantic Web-applications are missing a very

important and reusable component, that is, a reasoning engine capable of performing

monological argumentation over underlying information that may be incomplete and/or

contradictory. This is considered to be an integral part of Semantic Web applications

for product recommendation, auctions, identification of requirements, vendor selection,

negotiation, agent communication and information integration (Deng and Wibowo,

2.8 Critical evaluation of the existing approaches to support monological
argumentation in Semantic Web applications

84

2008; Cheung and Cheong, 2007; Shim et al., 2002; Assche et al., 1988; Wen et al.,

2008; Dong et al., 2011; Xue et al., 2012). So, due to the lack of reusable components

(i.e. monological argumentation driven reasoning engine), most of these existing

Semantic Web applications follow philosophical argumentation-based frameworks

where reasoning is performed by humans to cogitate and evaluate arguments and to

take action.

So, to have a reasoning engine that performs monological argumentation in

Semantic Web applications, the current approaches discussed in the literature do

not provide any solution. Hence, the main inadequacy of the existing approaches,

from the literature discussed above, in having an argumentation-based approach for

reasoning in Semantic Web applications which addresses all the aspects required for

taking into account potentially incomplete and/or contradictory information either

within an enterprise or in other enterprises can be summarized as:

1. Incapability of logic-based languages to represent information that is potentially

incomplete and/contradictory coming from different sources either within an

enterprise or in other enterprises.

2. Absence of a monological argumentation-driven reasoning engine (i.e. hybrid

reasoning engine) to identify and resolve conflict in the underlying information.

3. No methodology for information and knowledge integration and their graphical

representation to assist the decision maker in enterprise-wide decision making.

In the following sub-sections, each of these issues is discussed in detail.

2.8.1 Incapability of logic-based languages to represent

information that is potentially incomplete

and/contradictory coming from different sources

The reasoning approaches proposed in the literature, such as ontology-driven reasoning,

Semantic Web rule-based reasoning and DLP discussed in Sections 2.7.1.1, 2.7.1.2 and

2.7.1.4 respectively are based on description logic (DL) which is a subset of predicate

logic and therefore it inherits the limitations of predicate logic i.e. it only performs

monotonic reasoning under certain assumptions as follows:

1. The given problem can be fully addressed with the available information (i.e. the

solution to the problem lies within the available information).

2.8 Critical evaluation of the existing approaches to support monological
argumentation in Semantic Web applications

85

2. The information or specification of rules required for decision-making is

consistent. In other words, it is assumed that no contradictory information will

emerge during the decision-making process.

3. If new information is added to the application, it will be consistent with the

already available information or specifications.

4. New information does not lead to a retraction of previous conclusions.

which limits their capability to represent and reason by taking into account the

information present on the Semantic Web that could be potentially incomplete and/or

contradictory. To overcome the abovementioned problem, defeasible logic-based

implementation has been proposed in the literature that provides a formalism to

represent incomplete and/or contradictory information from a single user/source. In

this approach, a decision maker can define his preferences over the contradictory

rules at design time and these preferences are used to resolve conflicts during the

process of automated reasoning. However, these approaches do not provide a solution

for information representation when incomplete and/or contradictory information

comes from different sources and when there is more than one user involved in the

decision-making process. Hence, from the above discussion, it can be inferred that

existing Semantic Web stack languages present at the logic-layer of the Semantic Web

are incapable of representing incomplete and/or contradictory information that may

exist within the enterprise or in different enterprises and make it available for reasoning

purposes. Semantic Web applications built using these languages fail to represent

information where contradictory information may come from different users/sources.

However, such an approach is needed to capture all the information and the decision

makers’ opinions during the decision-making process.

In Chapter 3, the problem associated with the representation of information which

is potentially incomplete and/or contradictory is identified and defined, and in Chapter

4, a solution is proposed to address the problem defined in the existing literature.

2.8.2 Absence of an monological argumentation-driven

reasoning engine to identify and resolve conflicts present

in information coming from different sources

The issue i.e. the absence of an argumentation-driven reasoning engine to identify and

resolve conflicts present in information coming from different sources, can be subdivided

into the following sub-issues:

1. Rete network and its limitations.

2.8 Critical evaluation of the existing approaches to support monological
argumentation in Semantic Web applications

86

2. Lack of hybrid reasoning in Semantic Web reasoning engines.

3. Lack of different argumentation-driven conflict resolution strategies.

In the next sub-sections, each of these issues is discussed in detail.

2.8.2.1 Rete network and its limitations

Semantic Web application reasoning engines use the Rete network for the compilation

of rules and work in close coordination with the working memory. However, the

compilation of rules that may represent incomplete and/or contradictory information

is not possible in the existing Rete network due to the following limitations:

1. The general Rete network works only for predicate logic-based rule languages

that follow monotonic reasoning. Therefore, it is not capable of representing

potentially incomplete and/or contradictory information as Rete nodes.

2. A Rete network only executes one rule in a single match-execute cycle. If two

rules are activated, only the rule with the higher order preference for execution

defined by an individual (owner of the contradictory rules) will be executed.

When underlying information is potentially incomplete, to capture it may require

the execution of both contradictory rules each of which may represent a different

view point. However, the current Rete network fails to address this objective.

Hence, there is need to extend the Rete network for the representation of incomplete

and/or contradictory information as Rete nodes and enable the two contradictory

production rules to fire and instances of both production rules i.e. arguments, to be

added to the argument set. In Chapter 3, the problem associated with the Rete network

is formally identified and defined, and in Chapter 4, a solution for the problem defined

in the existing literature is proposed as well as extensions to the Rete network in order

to compile business rules (representing incomplete and/or contradictory information)

in the form of a Rete network.

2.8.2.2 Lack of hybrid reasoning in Semantic Web reasoning engines

Attempts have been made in the literature to perform reasoning over incomplete and/or

contradictory information in order to realize non-monotonic reasoning in Semantic Web

applications such as Dr-Prolog (Antoniou and Bikakis, 2007), Dr-Device Kontopoulos

et al. (2011); Bassiliades et al. (2004) and Situated Courteous logic (Grosof et al.,

2002). These defeasible logic-based applications use either data-driven reasoning or

goal-driven reasoning. Data-driven reasoning is used to move from current facts

2.8 Critical evaluation of the existing approaches to support monological
argumentation in Semantic Web applications

87

to a conclusion, whereas goal-driven reasoning is backward chain reasoning used to

move from a conclusion to the facts. But in the case of Semantic Web applications,

both types of reasoning are needed: data-driven reasoning for the construction of

arguments from underlying information and goal-driven reasoning to identify and

resolve conflicts that exit between arguments. However, none of these attempts

provide a solution that has both data-driven and goal-driven reasoning to reason over

incomplete and/or contradictory information. Another requirement for the reasoning

engine is that it should have the capability to resolve conflicts using different criteria,

either automatically or being guided by the members of the decision-making process

in order to achieve their goals. Defeasible logic-based attempts in Semantic Web

applications provide only goal-driven reasoning with an objective to identify the facts

that support the conclusion (Antoniou and Bikakis, 2007). Their methodology doesn’t

provide any support to reasoning in an environment where conflicts may arise at run

time such as in group decision making. When conflicts arise between the rules, these

formalisms represent and handle only individual preferences in the form of priorities.

These priorities are usually embedded in the derivation mechanism and competing rules

are compared individually during the derivation process. Therefore, the derivation

notion is bound to one single comparison criterion (defined by a single user) and fails

to take into account the multiple factors that are important for making an informed

decision.

To address the abovementioned drawbacks of defeasible reasoning-based Semantic

Web applications, argumentation-based reasoning approaches in the existing literature

have been discussed that take into account incomplete and/or contradictory

information and reach an agreeable solution if possible. However, it is evident from

the discussion in Section 2.7.2.2 that the Semantic Web and Web 2.0 are influenced

by the philosophical view of argumentation, in which considerable emphasis is given

to building arguments by human participation. Less importance has been given

to monological argumentation, i.e. the construction of automated arguments and

automated conflict resolution, and the acceptability of arguments by a reasoning engine

to reach a conclusion. Therefore, such Semantic Web applications do not provide

a solution for automated reasoning over underlying information. Therefore, there is

need for a system to be equipped with monological argumentation with an automated

built-in mechanism for argument construction and thereafter, through a reasoning

process, identify and resolve conflicts and recommend a decision. However, such an

approach has not been proposed in the existing literature. Hence, based on the above

discussion, it can be inferred that existing Semantic Web-based approaches fail to

provide a solution for reasoning over information that may be potentially incomplete

and/or contradictory either within the enterprise or in other enterprises. In Chapter 3,

2.8 Critical evaluation of the existing approaches to support monological
argumentation in Semantic Web applications

88

the problem associated with hybrid reasoning is formally identified and defined, and in

Chapter 4, a solution to the problem defined in the existing literature is proposed as well

as a hybrid reasoning methodology for argument construction and conflict resolution.

2.8.2.3 Lack of different argumentation-driven conflict resolution
strategies

The need for a hybrid reasoning engine discussed in the previous section generates a

set of arguments which may conflict with each other. An argument may attack its

counter-argument and defeat it on the basis of certain criteria such as the strength

or the weight of the argument i.e. the argument with more strength will defeat

its counter-argument. The criteria to establish defeat between an argument and its

counter-argument are also context dependent. As pointed out in Section 2.5.1, different

argumentation frameworks have been proposed which use different defeat criteria. In

the working environment of an enterprise, different kinds of Semantic Web applications

operate and each may have different reasoning contexts as discussed in Section 1.2. In

order to enable these applications to reason over information and resolve conflicts,

different conflict resolution strategies are required so that each application can use its

own conflict resolution strategy for the establishment of priority between an argument

and its counter-argument. Hence, there is need for different argumentation-driven

conflict resolution strategies, each using different criteria to establish defeat between

an argument and its counter-argument.

In Chapter 3, the problem associated with conflict resolution between arguments

is identified and defined, and in Chapter 4, a solution for the problem defined in

the existing literature is proposed as well as different argumentation-driven conflict

resolution strategies to address the need for different applications in an enterprise.

2.8.3 No methodology for knowledge integration or the

graphical representation of the reasoning process and

results to assist in enterprise-wide decision making

Semantic Web applications within enterprises today publish their information on the

Web, either on their intranet or on the World Wide Web, which triggers the need to

integrate the knowledge produced by the information systems of different enterprises to

obtain a better picture of enterprise-wide decision making. However, current Semantic

Web applications do not provide an enterprise-level knowledge integration methodology,

especially when the results on a subject are potentially incomplete and inconsistent

across the information systems of different enterprises. Most Semantic Web-based

2.9 Conclusion 89

reasoning engines differ from each other in the following aspects:

1. each has different knowledge-based representation;

2. each has different reasoning semantics;

3. each has a different output format.

This results in enterprises being unable to share, reason and integrate information

coming from different Semantic Web applications either within the enterprise or in

different enterprises. Additionally, the decision maker in an enterprise always need in

depth visibility of the reasoning process in order to take into account the rationale

behind the conclusion and make appropriate decisions. The monotonic reasoning

systems discussed in Section 2.7.1, and the non-monotonic reasoning-based system

discussed in Section 2.7.2 provide no visibility or information about the reasoning

process or how results are reached. Similarly, they provide no graphical representation

of the reasoning process in the form of a reasoning chain which can help the decision

maker trace the path from the evidence to the final conclusion and easily identify the

basis on which the decision was reached.

Hence, it is evident from the discussion above that there is need for a methodology

that provides a solution for knowledge integration which depicts the reasoning process

in a graphical representation format in order to provide a better analysis environment

for the decision maker so that appropriate decisions can be made. In Chapter 3, the

problem associated with knowledge integration is formally identified and defined, and

in Chapter 4, a solution for the problem defined in the existing literature is proposed,

as well as a methodology for knowledge integration and its graphical representation to

assist the decision maker in enterprise-wide decision making.

2.9 Conclusion

In this chapter, a survey of the existing literature on argumentation and its adoption

in the fields of Philosophy and AI was presented. Also, a critical analysis of existing

reasoning approaches deployed on the Semantic Web was given which categorised them

as either monotonic or non-monotonic reasoning. It is evident from a critical evaluation

of existing reasoning approaches that monotonic reasoning has a number of limitations

that inhibit their ability to reason over information that could be potentially incomplete

and contradictory. Non-monotonic reasoning, especially defeasible reasoning, is a good

option but it works under certain constraints which curtail its adoption in Semantic

Web applications for business intelligence.

Chapter 3 - Problem Definition

3.1 Introduction

In Chapter 2, a review of the literature on argumentation, philosophical and logic-based

models, argumentation frameworks and implementations was presented. The current

reasoning approaches being employed in Semantic Web applications were also discussed

and categorised. Several advancements that have been made in terms of reasoning

on information on the Semantic Web were outlined. Of the various Semantic Web

applications, defeasible reasoning-based systems are capable of addressing the issues

of representation and reasoning about information that could be incomplete and/or

contradictory. However, as pointed out in Chapter 2, defeasible reasoning-based

systems work under certain constraints such as a definition of individual preferences

and hard-coding them in Semantic Web application at compile time. After the critical

evaluation of existing reasoning approaches on the Semantic Web, the different research

gaps that need to be addressed in order to develop a framework for the representation

of incomplete and/or contradictory information, reasoning and integration in Semantic

Web applications were outlined.

In this chapter, the problem to be addressed in this thesis is formally defined, and

the different research issues are identified and transformed into research objectives,

using science and engineering methodologies to address the research objectives. In

the next section, the key concepts which are used this point forward in this thesis are

outlined.

3.2 Key concepts

This section presents the definition of important terms used throughout this thesis.

3.2 Key concepts 91

Enterprise

A business entity that makes use of software applications to gain better insights from

the existing information and guide their business activities.

Decision maker

A person who carries out the decision making process by using software applications

in an enterprise.

Information

The term ‘information’ refers to information in the following format:

• the production rules governing the inference mechanism, and

• the facts over which the inference mechanism is being applied.

Reasoning

Reasoning is a cognitive process of looking at reasons for beliefs, conclusions and

actions.

Web-based Intelligent DSS

A Semantic Web-based application that captures information and performs reasoning

by making use of high level software intelligence to provide decision support to the

decision maker in the decision making process.

Defeasible logic programming (DeLP)

This is a formalism that combines the results of Logic Programming and Defeasible

Argumentation. DeLP provides the possibility of representing information in the form

of rules such as strict and defeasible rules in a declarative manner.

Knowledge base

The collection of production rules represented using DeLP are saved in the rule base

and the facts/evidence represented using DeLP are saved in the working memory. The

working memory and rule base are collectively known as the knowledge base.

3.2 Key concepts 92

Hybrid reasoning engine

This performs hybrid reasoning over information saved in the knowledge base. Hybrid

reasoning comprises two types of reasoning: data-driven reasoning for argument

construction; and goal-driven reasoning for conflict identification between arguments

and their resolution.

Reasoning chain

This is the output of a hybrid reasoning engine integrated in the form of a chain.

It links the facts to the conclusions drawn. Its graphical representation helps the

decision maker to better understand the reasoning results. The process of generating

the reasoning chain is called information integration.

Integration scheme

This is an argumentation scheme consisting of the decision maker’s criteria to determine

if the reasoning chain adheres to the prerequisite requirements for the decision-making

process.

Valuation of reasoning chain

This involves the execution of the integration scheme on a reasoning chain. During this

process, all the premises and critical questions originating from the integration scheme

are executed on the reasoning chain under consideration. The resulting reasoning chain

which either passes or fails the test is called the valued reasoning chain.

Integrated recommendations space

The integration of the valued reasoning chains that passed the test through hybrid

reasoning results in the generation of an integrated recommendation space. The process

of generating an integrated recommendations space is called knowledge integration.

Rule Markup Language (RuleML)

This is a standard format to ensure compatibility of rules among different Semantic

Web applications. It supports the representation of different rule types and its syntax

has been extended to express defeasible rules and superiority relations (Bassiliades

et al., 2004; Pham et al., 2008).

3.3 Problem definition 93

Argument Interchange Format (AIF)

This is an international effort to develop a representational mechanism for exchanging

argument resources between research groups, tools, and domains using a semantically

rich language (Chesnevar et al., 2006a; Iyad Rahwan, 2009; Rahwan et al., 2007b).

The AIF was developed as a commonly agreed upon core ontology. The AIF ontology

specifies the basic concepts used to express arguments and the relationship between

arguments.

3.3 Problem definition

As mentioned in earlier chapters, the invention of the Internet has transformed the

working environments of enterprises and now, the majority of business activities,

one way or the other, are performed via the Internet. A number of software

applications have been developed which assist enterprises to transform the information

in their database/knowledge base into useful knowledge that assists them in their

decision-making process. With the advent of Web 2.0, a vast amount of information

is being produced over the WWW which is of interest to enterprises in their

decision-making processes (such as customer reviews about the products and services of

an enterprise, published business policies of collaborating enterprises, discussion on the

required features of new products and services) and the introduction of the Semantic

Web helps their systems to understand and consider such information during the

decision-making process. By doing so, the decision makers can gain better insight into

the available information, leading to either improvement in their working environments,

products and services or to a successful collaboration with their partners.

As pointed out in Section 1.2, information on the WWW outside of an enterprise’s

boundaries can be incomplete and/or contradictory. So, to understand and consider

such information during the decision-making process, there is a need to design and

develop intelligent Semantic Web applications that can transform the incomplete

and/or contradictory information on the WWW into useful knowledge along with

qualitative insights, so that decision makers can expect a human style of reasoning

in software applications (Carlsson and Turban, 2002; Shim et al., 2002). However, as

pointed out in Sections 1.5 and 2.8, the current Semantic Web development technologies

defined at the logic layer to infer knowledge do not provide any support to represent,

reason and integrate incomplete and/or contradictory information. As a result,
current enterprises cannot exploit the information on the WWW outside
of their boundaries for decision-making processes. This triggers the need
for enterprises to have a logic-based framework that can take into account

3.3 Problem definition 94

incomplete and/or contradictory information on the WWW and transform
it into useful knowledge that in turn, assists their decision-making process
to achieve BI.

To realize such a logic-based framework for informed decision making, the primary

objective is to represent the underlying information in a declarative format to drive

the reasoning process in Semantic Web applications. As highlighted in Section 1.1,

attempts have been made by different researchers to annotate the information on

the WWW with user-defined ontologies and then perform reasoning on top of it.

As discussed in Section 2.7.1.1, ontology-based reasoning approaches are an outcome

of research efforts in this regard. However, due to their limited expressiveness and

reasoning capabilities, they have been extended with different kinds of rule-based

languages such as N3Logic and SWRL defined at the logic layer of the Semantic Web

as discussed in Section 2.7.1.2 . Though these rule-based languages are capable of

introducing more advanced reasoning capabilities in Semantic Web applications to

address complex problems, as pointed out in Section 2.8, they do not provide any

support to represent incomplete and/or contradictory information. Some attempts have

been made in the literature to make use of defeasible reasoning to represent incomplete

and/or contradictory information as discussed in Section 2.7.2.1 . Though this provides

a solution for considering incomplete and/or contradictory information coming from a

single source, during information representation, they assume that if a contradiction

exists between any two rules, then a priority over them should be specified manually

for their successful execution. Furthermore, they are not capable of information

representation when it comes from different sources exists within an enterprise or

in other enterprises. In order to address such shortcomings, there is need for
a rule-based language that extends existing defeasible reasoning-based rule
languages and can represent incomplete and/or contradictory information
exists within an enterprise or in other enterprises to assist the decision
maker in the decision making process. From this point onwards, such a rule-based
language is referred to as the system’s rule-based language.

Once the issue of the representation of information has been solved, then the next

challenging task is the sharing of rules among different Semantic Web applications,

both internal and external to an enterprise. As pointed out in Section 2.8, each

Semantic Web-based reasoning engine has its own syntax and semantics for rule

representation, leading to rule inter-operability issues among different applications.

This makes the sharing of the rules a challenging task across different applications that

need to communicate with each other in order to process a task. In Section 1.1.2.1,

the importance of RuleML to ensure compatibility of rules among different Semantic

Web applications is highlighted. Therefore, there is a need for a translation

3.3 Problem definition 95

mechanism that can translate the rules defined in a standard format to the
system’s rule-based language format.

Once the information is present in the form of rules, then the next important

step is to transform the facts that drive the reasoning process into a format suitable

for the execution of rules defined in the system’s rule-based language. As pointed

out in Section 1.1.1.1, the standards for sharing facts on the Semantic Web are in

OWL/RDF format. However, facts on the WWW can be in textual form (unstructured

information) or structured data in traditional SQL relational databases. These facts

needs to be transformed into a standard format so that they can be used by Semantic

Web applications. For facts in an unstructured format, there are different tools

and technologies available that either semantically annotate unstructured text e.g.

the Knowledge and Information Management (KIM) platform, and provide data in

OWL/RDF file format. To transform structured information into a standard format,

the D2RQ platform enables applications to access an RDF-view on structured data

i.e. a non-RDF database such as SQL databases, through a rule engine API’s over

the Web via the SPARQL Protocol and as Linked Data. Once the data is available

in OWL/RDF, it can be used in different Semantic Web application. However, such

data follows an XML format which cannot be used directly by the rules defined in a

systems’s rule-based language. This data needs to be translated into a format suitable

to execute rules defined in a system’s rule-based language. Therefore, there is a need

for a translation mechanism to translate facts defined in OWL/RDF format
into a format that can be exploited by the system’s rule-based language .

Once information representation is achieved, the framework needs to have

the capability to perform reasoning on it. As pointed out in Section 2.8.2 ,

Semantic Web-based reasoning engines follow the monotonic reasoning approach

and are not capable to reason over information that may be incomplete and/or

contradictory. Of the three approaches discussed in Section 2.7.2.1 that consider

defeasible reasoning-based reasoning in Semantic Web applications, there is a single

attempt based on Situated Courteous logic (Grosof et al., 2002) that carries out

data-driven reasoning. However, during the reasoning process, if a conflict arises, the

reasoning engine removes the information with the lower priority from the knowledge

base in order to keep the remaining information consistent. Such a loss of information

during the reasoning process does not provide deep insights into the choices made

during the decision-making process. Additionally, it uses a Rete network for the

compilation of rules and works in close coordination with the working memory. This

results in the system having greater efficiency. As pointed out in Section 2.8.2.1,

using the Rete network for data-driven reasoning on incomplete and/or contradictory

information brings the following challenges:

3.3 Problem definition 96

1. The current Rete network works only for predicate logic-based rule languages

that follow monotonic reasoning. Therefore, it has to be extended to represent

incomplete and/or contradictory information as Rete nodes.

2. A Rete network only executes one rule in a single match-execute cycle. If two

rules are activated, then only the rule that has a higher preference order (specified

at compile time) will be executed. However, reasoning on incomplete and/or

contradictory information may result in the activation of more than one rule,

which may represent different viewpoints in relation to the issue at hand. These

can be called arguments and the construction of arguments by the reasoning

engine is a basic characteristic of the argumentation process to drive the reasoning

process to a certain conclusion. As highlighted in Section 2.8.2 , current reasoning

engines are not capable of performing such reasoning.

Therefore, the reasoning engine needs to be able to perform data-driven
reasoning capable of arguments construction from information saved in the
knowledge base and maintain them as an arguments set. The arguments in
an arguments set may contradict with each other.

A reasoning engine should also have the capability to resolve conflicts using different

criteria, either automatically or being guided by the members of the decision making

group to achieve their goals. As discussed in Section 2.7.2.1, the use of defeasible

reasoning-based attempts in Semantic Web applications enables goal-driven reasoning,

however, their objective is to identify the evidence that supports the conclusion. Their

reasoning methodology doesn’t provide any support for reasoning in an environment

where conflicts may arise at run time, such as in group decision making. Additionally,

when conflicts arise between rules, these formalisms represent and handle only

individual preferences in the form of priorities. These priorities are usually embedded

in the derivation mechanism and competing rules are compared individually during the

derivation process. Therefore, the derivation notion is bound to one single comparison

criterion and fails to take into account the multiple factors that are important for

making an informed decision. The most suitable solution is provided by argumentation

formalisms that have been recognized as a potential contender for capturing the

discussion among Web users on the WWW. A number of Web applications have been

built that enable users to represent their arguments about an issue in discourse and to

become involved in an argumentative discussion. However, as pointed out in Section

2.8, due to the lack of reusable components from AI research, most of these applications

follow philosophical argumentation-based frameworks where reasoning is performed

by humans to cogitate and evaluate arguments and to take action. Less importance

has been given to building automated arguments and furthermore, automated conflict

3.3 Problem definition 97

resolution and the acceptability of arguments to reach a conclusion. Therefore,
the reasoning engine needs to have goal-driven reasoning that is capable
of performing argumentation-driven conflict resolution. From this point
onward, such a reasoning engine is referred to as a hybrid reasoning engine
as it supports both kinds of reasoning, namely data-driven reasoning and
goal-driven reasoning .

It is important to note that during the argumentation process for conflict resolution,

an argument may attack its counter-argument and defeat it on the basis of certain

criteria such as the strength or the weight of the arguments. The argument with

more strength will defeat its counter-argument. The criteria to establish defeat

between an argument and its counter-argument are also context dependent. As pointed

out in Section 2.6, different argumentation frameworks have been proposed which

use different defeat criteria. In the working environment of an enterprise, different

kinds of Semantic Web applications operate and each may have different reasoning

contexts. In order to enable these applications to reason over information and resolve

conflicts, different conflict resolution strategies are required so that each application

can use its own conflict resolution strategy for the establishment of priority between an

argument and its counter-argument. Therefore, argumentation-driven conflict
resolution needs to be extended with different conflict resolution strategies,
each using different criteria to establish defeat between an argument and its
counter-argument.

One of the important features required of reasoning engines is an ability to answer

queries, with an explanation of how a particular conclusion was reached. The queries

can be simple queries such as whether information is true/false or they can be

complex. As pointed out in Section 2.7.2.1, the approach taken by Grosof et al. (2002)

removes information from the knowledge base that causes a contradictory situation

which results in a loss of information that may provide an explanation of the results.

Though defeasible logic-based implementation retains contradictory information in

their knowledge bases, they do not provide solutions for group decision making. In

such cases, conflict resolution involves the preferences of each member and results are

achieved after thorough discussion. This is much like argumentation-driven approaches

where decisions are backed by justifications. Therefore, the hybrid reasoning
engine needs to have a querying and answering capability backed by an
explanation of conflict resolution and/or the conclusions drawn.

Another important feature missing in current Semantic Web applications is an

ability to make reasoning transparent and easily comprehendible for the decision maker.

The decision maker in an enterprise always needs an in-depth understanding of the

reasoning process in order to take into account the rationale behind the conclusion

3.3 Problem definition 98

and make appropriate decisions. The monotonic reasoning systems discussed in

Section 2.7.1, and the non-monotonic reasoning-based systems discussed in Section

2.7.2 provide no information about the reasoning process and how results are reached.

In other words, they do not provide a trail to show how conclusions are reached in the

form of a chain, known as a reasoning chain. Additionally, the reasoning process in an

enterprise is becoming very complex which requires the reasoning results to be depicted

in graphical format to enable a deeper insight and ease of comprehension of the obtained

results. Currently, there is no framework that provides a graphical representation

of a reasoning chain that can help the decision maker to track the path from the

identification of the evidence to the final conclusion and easily identify the basis on

which the decision was reached. Therefore, there is a need for a methodology
that can integrate the output of a hybrid reasoning engine in the form of a
reasoning chain that links the facts to a conclusion. Additionally, it should
have the functionality to depict the reasoning chain in a graphical format.

The framework also needs to have a mechanism to export the results of the

reasoning engine in a form that is shareable on the WWW and among other enterprise

applications. As pointed out in Section 1.4, the Argument Interchange Format (AIF) is

an international effort to develop a representational mechanism to exchange argument

resources between research groups, tools, and domains, using a semantically rich

language (Chesnevar et al., 2006a; Iyad Rahwan, 2009; Rahwan et al., 2007b). The AIF

was developed as a commonly agreed upon core ontology. The AIF ontology specifies

the basic concepts used to express arguments and the relationship between arguments.

The generic framework needs a mechanism to annotate the output of the
hybrid reasoning engine i.e. the reasoning chain, with the AIF ontology so
that it can be used by different applications, either internal or external to
the enterprise.

In an enterprise, various applications are expected to work together to support

information exchange, processing, and integration. The results produced by one

application may need to be integrated with results of other applications. Such

integration of results about a subject is known as knowledge integration. It is

important to note that the results of an application may contradict the results of other

applications. To explain further, consider a simple example where management asks

its departments to provide recommendations on a particular issue. It is possible that

each department’s recommendations may contradict the recommendations of others.

Current defeasible logic-based Semantic Web applications do not provide a solution for

knowledge integration. In the literature, argumentation schemes have been proposed

that provide a solution to knowledge integration. Therefore, the framework needs
a methodology, driven by argumentation schemes, to integration knowledge

3.4 Research issues 99

that comes from different hybrid reasoning engines into a single reasoning
chain to facilitate enterprise-wide decision making.

To the best of my knowledge, there is no proposed framework in the literature that

addresses the shortcomings of current defeasible logic-based implementation in the

domain of the Semantic Web. Hence, there is need for a framework that can represent

reason and integrate information that is incomplete and potentially contradictory.

The above description of the problem points to the proposal of a complete

framework for the representation, reasoning and integration of incomplete and

contradictory information exists within an enterprise and/or in other enterprises. Based

on the above overview and description of the issues, the problem that will be addressed

in this thesis is defined as follows:

“Design and development of a generic framework for monological argumentation in

Semantic Web applications. Such a framework can be exploited for the development

of different Semantic Web applications to represent, reason and integrate information

exists within an enterprise and/or in other enterprises for enhanced business

intelligence as discussed in Section 1.2”.

3.4 Research issues

As previously discussed, the Semantic Web provides solutions for enterprises to exploit

the information on the WWW outside their boundaries. However, it is important to

note that such information may be incomplete and/or contradictory. As pointed out

in Sections 1.5 and 2.8 , the logic layer of the Semantic Web plays an important

role where rule-based technologies have been given paramount importance for the

development of advanced reasoning capabilities in Semantic Web applications to

address complex problems. They extract, transform and integrate information in a

platform-independent manner. However, current research does not provide a solution to

represent reason and integrate information, either internal or external to an enterprise.

Based on the critical evaluation of the existing literature review, the following research

issues have been identified:

1. Semantic Web development technologies follow monotonic logic, hence they are

incapable of representation and reasoning over incomplete and/or contradictory

information. The use of defeasible reasoning-based implementations is not

capable to drive reasoning in group decision making scenarios where conflicts

may arise among members of the teams during the decision making process.

3.5 Research objectives 100

2. Most Semantic Web-based reasoning engines have their own format for rule

and fact expressions. As a result, they cannot be shared or exchanged with

other Semantic Web applications, either internal or external to an enterprise.

In addition, Semantic Web-based reasoning engines either provide data-driven

reasoning or goal-driven reasoning which limits their capability to transform

information by reasoning into integrated knowledge.

3. There are some good non-monotonic techniques and technologies in logic

programming and argumentation formalisms for handling incomplete and/or

contradictory information. However, they have not yet been applied in the area

of the Semantic Web.

4. There is no framework that provides a graphical representation of the reasoning

process to non-technical decision makers.

5. There is no proposed methodology for the integration of reasoning results i.e.

knowledge integration originating from different Semantic Web applications.

In next section, the research objectives of this study are outlined in order to address

the research issues identified above.

3.5 Research objectives

The objective of this research is to propose, develop, validate and evaluate a

generic framework to provide monological argumentation support in Semantic Web

applications. In order to address the primary objective, the research objective can be

broken down into the following sub-objectives:

3.5.1 To propose a methodology for incomplete and/or

contradictory information representation

1. To propose a rule-based declarative language for incomplete and/or inconsistent

information representation on the Semantic Web. Such information

representation will enable the information provided by Web users i.e.

specifications or preferences, to be taken into account by Web applications and

considered in the reasoning process to produce customized results for the decision

maker.

2. To propose a translation mechanism to translate the information defined in

RuleML to the system’s rule-based declarative language. Such a translation will

3.5 Research objectives 101

enable the exploitation of information already existing on the Semantic Web,

specified in RuleML.

3. To propose a translation mechanism to translate the data defined on the Semantic

Web in the form of OWL/RDF into the system’s rule-based declarative language

format, keeping the semantic information intact. The translated data are

exploited by the rules during the reasoning process.

3.5.2 To propose a methodology for monological argumentation

driven-reasoning engine to reason over incomplete and/or

contradictory information

1. To propose a hybrid reasoning engine to reason over information represented

in the system’s rule-based declarative language. The hybrid reasoning engine

performs two types of reasoning, firstly, data-driven reasoning for arguments

construction, and secondly, goal-driven reasoning for conflicts identification

between arguments and their resolution.

2. To propose different conflict resolution algorithms to resolve conflicts between

arguments and their counter-arguments. Each conflict resolution algorithm

should take into account different conflict resolution criteria in order to address

different contexts in the Semantic Web applications.

3.5.3 To propose a methodology for information and knowledge

integration

1. To propose a mechanism to integrate the information (i.e. output) of the hybrid

reasoning engine and provide its graphical representation to the decision maker

for a better understanding of the reasoning process and the results.

2. To propose a mechanism to export reasoning chains in a standard format

to other Semantic Web applications and vice versa. This will help to bring

inter-operability among different Semantic Web applications and pave the way

for knowledge integration.

3. To propose a mechanism to query the reasoning results and obtain an explanation

of the results.

4. To propose a methodology to integrate the reasoning chains produced by different

Semantic Web applications into a coherent reasoning chain i.e. knowledge

3.5 Research objectives 102

integration.

3.5.4 To exploit the power of a generic framework in different

Semantic Web applications as follows:

3.5.4.1 To design and develop an Argumentation-enabled Web-based IDSS
(Web@IDSS) for handling structured information

1. Using a case study, identify the importance of Web@IDSS for business

intelligence.

2. To propose a conceptual framework for Web@IDSS in order to represent and

reason over structured information that may be incomplete and/or contradictory

and exists within the enterprise and/or in other enterprises.

3.5.4.2 To design and develop an Argumentation-enabled Web-based IDSS
(Web@KIDSS) for knowledge Integration.

1. Using a case study, identify the importance of argumentative reasoning and

argumentation schemes for knowledge integration.

2. To propose a conceptual framework for Web@KIDSS in order to integrate the

information/results generated by different Semantic Web applications in an

enterprise to support intelligent decision making.

3.5.4.3 To design and develop an Argumentation-enabled Web-based IDSS
for handling unstructured information

1. To propose and develop a domain ontology for annotation of unstructured

information.

2. Using a case study, identify the process for considering unstructured information

using the proposed framework by taking into account the business polices of

an enterprise or two or more collaborating enterprises. Make use of knowledge

representation approach with argumentative reasoning for process map discover

from unstructured business policies (KR@PMD).

3. To propose a conceptual framework for KR@PMD by exploiting the power of the

generic framework.

3.6 Research approach to problem solving 103

3.5.5 To validate and evaluate the proposed framework

1. To validate the functionality of proposed framework for monological

argumentation support in Semantic Web applications with the help of case studies

and development of Web-based IDSSs

2. To evaluate the proposed framework by performing feature evaluation of

Web-based IDSSs identified in above with the existing contemporary software

applications.

3.6 Research approach to problem solving

In addressing the stated problem, this thesis focuses on the development and subsequent

testing and validation of a methodology defeasible logic programming-based framework

for argumentation support in Semantic Web applications. In order to propose a

solution for the research issues listed in the previous section, a systematic scientific

approach needs to be followed in order to ensure the methodology development

is scientifically-based. Therefore, this section gives an overview of the existing

scientifically-based research methods and give reasons for choosing a particular research

method in this research.

3.6.1 Research methods

There are two broad categories of research approaches, namely

1. the science and engineering approach;

2. the social science approach.

Science and engineering-based research is concerned with confirming theoretical

predictions. Cohen (1987) states that in the engineering field, the spirit of ‘making

something work’ is essential and has three levels:

• Conceptual level (level one): creating new ideas and new concepts through

analysis.

• Perceptual level (level two): formulating a new method and a new approach

through designing and building the tools, environment or system through

implementation.

3.6 Research approach to problem solving 104

• Practical level (level three): carrying out testing and validation through

experimentation with real world examples, using laboratory or field testing.

The science and engineering-based research approach may lead to new techniques,

architectures, methodologies, devices or a set of new concepts which together will form

a new theoretical framework. It not only addresses the issue of what problems need to

be solved, it also proposes a solution.

Social science research methods may be categorised as either quantitative or

qualitative. Quantitative research involves extensive data gathering usually using

methods such as surveys and statistical analysis of the gathered data in order to prove

or disprove various hypotheses that have been formulated. Qualitative research involves

in-depth structured or semi-structured interviews that allow one to pursue particular

issues of interest that may arise during the interviews. It does not normally involve a

large sample of data and the information gathered may not be in a form that readily

allows statistical analysis. A typical social science research approach, the use of survey

forms, is used to identify problems which are subsequently formulated as hypotheses.

The goal of social science research is to obtain evidence to support or refute a formulated

hypothesis (McTavish and Loether, 1999; Burstein and Gregor, 1999; Nunamaker et al.,

1990) . The research assists the researcher to understand people and social issues, such

as culture, within the area of research. Kaplan and Maxwell (2005) argues that the

ability to understand a phenomenon within its social and cultural context is forfeited

when textual data results are quantified. This kind of research can indicate the extent

to which the methodology is or is not accepted and sometimes may be able to give a

reason for this. However, unlike engineering-based research, this type of research does

not explain what a methodology should be and how to produce a new methodology for

problem solving. This research only tests or evaluates a method that has already been

produced from science and engineering research.

This thesis deals with the development of a new generic, logic-based framework to

support argumentative in Semantic Web applications. Therefore, this research clearly

falls into the science and engineering research domain.

3.6.2 Choice of science and engineering-based research method

In this thesis, a science and engineering-based research approach was chosen as the

research method for the proposed solution development. An overview of this research

method is depicted in Figure 3.1

The research commenced with the identification of the research problems. Then,

the relevant literature on topics related to this study were analysed. Based on an

3.6 Research approach to problem solving 105

Figure 3.1: Overview of science and engineering-based research method

extensive review of the existing literature, the problem which needs be addressed was

formulated. Subsequently, the key concepts to address the problem were defined, taking

into account the characteristics of the interaction. These definitions are used when

developing the conceptual solution. After this, the conceptual solution to the problem

being addressed in this thesis was formulated. All processes from the literature review

to the conceptual solution are included in the conceptual level. At the perceptual

level, the methodology for argumentation support in Semantic Web applications was

developed by taking into account the representation, reasoning and integration of

incomplete and/or contradictory information. After this, the prototype systems were

engineered and some case studies were developed which are used later to test the

proposed methodology. The processes of methodology development and development of

prototype systems and case studies constituted the perceptual level of this work. Once

the prototype systems had been engineered, they were used together with the developed

case studies to validate the proposed methodology. At the practical level, based on the

results obtained, the proposed methodology was evaluated and validated. Based on

this, the proposed methodology was then fine-tuned. The process of evaluation and

validation of the developed methodology constitutes the practical part of this work.

With regard to research output evaluation and validation (Practical), Nunamaker

et al. (1990) argues that typical research follows a pattern of problem definition,

hypothesis, analysis and argument. In such a scenario, problems are encountered

and an analysis is performed in the form of proofs and developed solutions. The

results of the analysis and development form the basis of the evaluation of research

outcomes. The methodology proposed by Nunamaker et al. (1990) consists of the

problem definition, conceptual solution and system prototype processes. This research

will adopt the research method proposed by Nunamaker et al. (1990) for the validation

and verification of my research output, through proof of concept.

3.7 Conclusion 106

3.7 Conclusion

In this chapter, the formal definition of the problem to be addressed in this thesis was

presented. The identified problem was subsequently decomposed and discussed as a set

of seven cohesive research objectives in order to address the problem being examined

in this thesis. Furthermore, the proposal to implement a science and engineering

research methodology in conjunction with the research methodology that uses system

development as an information system research methodology was outlined.

Chapter 4 - Solution Overview

4.1 Introduction

As highlighted in Chapters 1 and 3, enterprises need to exploit the information on the

WWW to gain better insights into the decision making process by considering the wide

spectrum of information available. In order to do this, Semantic Web applications need

to have the capability to capture, represent, reason and integrate information from

different sources which may be incomplete and/or contradictory. To overcome this

challenge, the different research objectives that need to be addressed were elaborated

in Section 3.5 . In this chapter, the proposed solution to address these objectives, that

is, a logic-based framework that supports monological argumentation in Semantic Web

applications (GF@SWA) to enable them to represent, reason and integrate information

from different sources which could be incomplete and/or contradictory and utilize this

in the decision making process is described in detail.

This chapter is organised as follows: In Section 4.2, a brief overview of the proposed

logic-based framework that supports argumentation in Semantic Web applications

is given. The framework comprises three layers namely, the information layer, the

argumentation driven information representation, reasoning and integration (@IRRI)
layer and the applications layer. In Sections 4.3 - 4.5, each layer of the framework is

discussed in detail and an overview of the proposed solution to achieve the objective

of each layer is given. Section 4.6 outline three Semantic Web application that exploit

the proposed logic-based framework to represent, reason and integration information

in order to assist decision maker in decision making process. Section 4.7 concludes the

chapter.

4.2 Solution overview for logic-based framework that supports argumentation
in Semantic Web applications (GF@SWA) 108

4.2 Solution overview for logic-based framework

that supports argumentation in Semantic Web

applications (GF@SWA)

Figure 4.1 represents the proposed solution architecture of GF@SWA for incomplete

and/or contradictory information representation, reasoning and integration in the

Semantic Web applications of an enterprise. The solution architecture has the following

three layers:

1. Information layer

The information layer represents the information sources containing

information, either in a structured or unstructured format exists within an

enterprise and/or in other enterprises published over WWW. Semantic Web

applications can consume information from these sources to facilitate the decision

making process.

2. @IRRI layer

This layer comprises a logic-based framework to support monological

argumentation in Semantic Web applications for BI by demonstrating the

following functionalities:

(a) representation of incomplete and/or contradictory information;

(b) hybrid reasoning over underlying information;

(c) integration of reasoning results produced by a reasoning engine. This

process is known as information integration;

(d) import/export of the integrated information to other Semantic Web

applications;

(e) integration of results produced by different reasoning engines. This process

is known as knowledge integration.

3. Applications layer

This layer contains of a set of different Semantic Web applications that exploit

the functionality of the @IRRI layer to represent, reason and integrate incomplete

and/or contradictory information present on the information layer in order to

support decision makers in their decision making processes.

4.2 Solution overview for logic-based framework that supports argumentation
in Semantic Web applications (GF@SWA) 109

Figure 4.1: Solution overview of GF@SWA to support argumentation
in Semantic Web applications

4.2 Solution overview for logic-based framework that supports argumentation
in Semantic Web applications (GF@SWA) 110

Figure 4.2 is a flowchart diagram depicting the working of the overall proposed

solution and how the information on the WWW is taken into account and used by

Semantic Web applications in the decision making process. The proposed solution

comprises the following three important steps:

1. Semantic Web applications (located at the applications layer) take into account

the information (located at the information layer) to provide a wider insight for

decision makers and assist them in their decision making process. To achieve this

objective, Semantic Web applications exploit the functionality of the information

representation module of the logic-based framework located at the @IRRI layer.

The information representation module helps them to transform the information

on the WWW into a format suitable for reasoning and save it in their knowledge

bases.

2. To perform reasoning over the information in the knowledge base, the

argumentative reasoning module of the logic-based framework provides a hybrid

reasoning engine. The hybrid reasoning engine performs hybrid reasoning:

data-driven reasoning on the underlying information to infer new knowledge; and

goal-driven reasoning to identify any conflicts that may arise during the reasoning

process and solves them using different conflict resolution strategies.

3. After conflict identification and resolution, the

information and knowledge integration module of the logic-based framework

integrates the output of the reasoning process in the form of a reasoning chain.

This module also helps Semantic Web applications to share their reasoning

results in the form of a reasoning chain with other Semantic Web applications

by exporting them in a standard format. The last function performed by this

module is knowledge integration, which involves the integration of different

reasoning chains (may be imported from different reasoning engines) into an

integrated knowledge chain after resolving any conflicts that may arise during

this process.

In the next sections, the working of each of the three layers defined in the overall

architecture solution to solve the research problem is discussed in detail.

4.3 Information layer 111

Figure 4.2: Working of the proposed solution for Information
representation, reasoning and integration by Semantic Web applications

4.3 Information layer

The information layer represents the information on the Semantic Web, both in an

unstructured and structured format and is the primary source of input to Semantic

Web applications. The unstructured information on the WWW is in the form of text;

both on Web pages and in enterprise policy documents. The structured information

on the Semantic Web is categorized as follows:

• static information which remains consistent over a period of time and it is

composed of OWL/RDF ontologies, and

• dynamic information which changes over a period of time according to the

business needs and strategies such as business polices, business contracts etc.,

leading to possible conflicts among the underlying information. This information

is represented in the RuleML format.

Once the information on the WWW has been identified, that if considered give

better insight in the decision making process of an enterprise, then Semantic Web

4.4 Argumentation-driven information representation, reasoning and
integration layer (@IRRI) 112

applications need to exploit the functionality of the @IRRI layer to achieve their

desire objective. In the next section, the @IRRI layer is discussed in detail.

4.4 Argumentation-driven information

representation, reasoning and integration layer

(@IRRI)

In this section, an overview of the @IRRI layer that comprises the logic-based

framework to represent, reason and integrate information that could be incomplete

and/or contradictory is given. To enable Semantic Web applications to exploit this

layer, the overall proposed solution is divided into the following sub-solutions:

1. Solution for incomplete and/or inconsistent information representation.

2. Solution for hybrid reasoning engine with different argumentative-driven conflict

resolution strategies.

3. Solution for information and knowledge integration.

In the following section, each of these sub-solutions is described in detail.

4.4.1 Solution for incomplete and/or contradictory Information

representation

As discussed in Chapter 3, the current rule-based languages used for information

representation in Semantic Web applications follow Open World Assumptions (OWA),

as a result of which they are incapable of dealing with incomplete and/or contradictory

information. This drawback is addressed in this solution with the help of the

information representation module of the logic-based framework. The proposed

solution provides the following three possible ways to represent incomplete and/or

contradictory information in Semantic Web applications as depicted in Figure 4.3:

1. Specify rules and facts from scratch using the system’s rule language format and

save them in a knowledge base. In Chapter 5, the specification of rules from

scratch using Web-based forms is discussed in detail.

2. Use a translator to translate the structured information and save the translated

information in the knowledge base. In Chapter 5, the working of the proposed

translators is outlined in detail.

4.4 Argumentation-driven information representation, reasoning and
integration layer (@IRRI) 113

Figure 4.3: Flowchart illustrating steps involved in information
representation

3. Use semantic annotation to annotate the unstructured information with the

domain ontology, and use the annotated information for the specification of

rules and save them in the knowledge base. In Chapter 7, the solution for the

semantic annotation of unstructured information (business policies documents)

with the domain ontology and then the specification of business rules on top of

the annotated business policies concepts is discussed.

To exploit the information on the WWW, the proposed solution for incomplete and/or

contradictory information is sub-divided into the following three sub-solutions, each of

which corresponds to the objective identified in Section 3.5.1. The sub-solutions are as

follows:

4.4 Argumentation-driven information representation, reasoning and
integration layer (@IRRI) 114

1. Selection of a rule-based language for incomplete and/or inconsistent information

representation

After careful analysis of the existing work in Sections 2.5.2.2 and 2.8.2.2,

Defeasible Logic Programming (DeLP) which has been used to represent

incomplete and/or inconsistent information in software agents was selected. The

reasons for this selection are as follows:

• DeLP is capable of representing incomplete and/or contradictory

information.

• DeLP allows specification of information for reasoning where conflicts may

arise at run time which often happens in group decision making.

In Chapters 5, 6 and 7, different case studies for argumentation support in

different contexts are discussed as well as how the DeLP language assists in

representing incomplete and/or contradictory information.

2. Solution for a translation mechanism to translate rules defined in RuleML to the

system’s rule language

To enable the translation of rules defined in RuleML format, a RuleML

translator is proposed that takes a RuleML file as input, parses it and extracts

rules from it. It then transforms the extracted rules in DeLP format and saves

them in the rule base. In Chapter 5, the working of the proposed RuleML

translator is outlined in detail.

3. Solution for the translation of information in OWL/RDF to the system’s rule

language

To ensure the facts defined in the OWL/RDF format are available for the

reasoning process, the OWL/RDF translator is proposed which translates these

facts to DeLP facts and saves them in the working memory. In Chapter 5, the

working of the OWL/RDF translator is discussed in detail.

4.4.2 Solution for monological argumentation-driven reasoning

engine to reason over incomplete and/or contradictory

information

Once the required information for decision making has been captured, the next step is

to perform reasoning on it. This will be done by the argumentative reasoning module

of the logic-based framework. In this section, an overview is given of the proposed

4.4 Argumentation-driven information representation, reasoning and
integration layer (@IRRI) 115

solution that allows the Semantic Web applications of an enterprise to reason over the

underlying information specified using the DeLP language. To achieve this objective,

as shown in Figure 4.4 , the following two steps are required:

1. construction of arguments from the knowledge base with the help of data-driven

reasoning;

2. once the arguments are constructed, then the arguments are considered for

conflict identification and their resolution (if they exist). This objective is

achieved by goal-driven reasoning. During goal-driven reasoning, different

argumentation-driven conflict resolution strategies are provided to resolve the

conflicts between arguments and their counter-arguments. This results in the

construction of an ‘arguments set’ where a priority between arguments and their

counter-arguments.

Figure 4.4: Flowchart illustrating steps performed by argumentative
reasoning module

4.4 Argumentation-driven information representation, reasoning and
integration layer (@IRRI) 116

To design the complete solution for reasoning over underlying information, the

solution for the hybrid reasoning engine is sub-divided into the following two

sub-solutions, each of which corresponds to the objectives identified in Section 3.5.2.

1. Solution for developing a hybrid reasoning engine that performs data-driven

reasoning for arguments construction and goal-driven reasoning for conflicts

identification and their resolution

As pointed out in Section 2.5.2.2 , DeLP only uses goal-driven reasoning

with the objective to serve the decision maker’s queries only. It does not

provide a solution for data-driven reasoning to infer new knowledge from existing

information. The proposed solution overcomes this drawback and provides the

functionality of hybrid reasoning over underlying information. The steps involved

in this process are as follows:

• The rules present in the rule base are compiled in the form of a Rete network

which makes the information ready for data-driven reasoning. In Chapter

5, the extension of the Rete network to compile rules that may represent

incomplete and/or contradictory information is discussed.

• Data-driven reasoning starts by the introduction of facts in the Rete

network. This results in the activation and firing of the rules. The derived

facts flow back into the Rete network which, in turn, results in the activation

of new rules. This process continues until no more rule/s are activated.

During this processes, the activated rules are saved in the arguments set.

In Chapter 5, the syntax and semantics for data-driven reasoning over

underlying information specified in DeLP format is given. In Chapter

6, the extension of data-driven reasoning by providing the syntax and

semantics to support information and knowledge integration in Semantic

Web applications is given.

• Once data-driven reasoning is completed, goal-driven reasoning starts in

order to identify and resolve conflicts if they exist between arguments.

Goal-driven reasoning provides different conflict resolution strategies to

resolve the conflicts between arguments and their counter-arguments and

make the information ready for integration. In Chapter 5, goal-driven

reasoning using DeLP and the extension which is made to it to enable

it to work with data-driven reasoning in Semantic Web applications is

described. In Chapter 6, the extension of goal-driven reasoning by providing

the syntax and semantics to support information and knowledge integration

in Semantic Web applications is discussed.

4.4 Argumentation-driven information representation, reasoning and
integration layer (@IRRI) 117

2. Solution for different argumentation-driven conflict resolution strategies to resolve

conflicts between arguments and their counter-arguments

To assist the decision makers in different decision-making scenarios, the need

for different conflict resolutions was identified in Section 3.5.2. This objective

is achieved in the proposed framework which provides the following conflict

resolution strategies:

• Generalize specificity-based conflict resolution strategy

This is a DeLP built-in strategy for conflict resolution which takes into

account the ‘information specificity’ criteria to resolve conflicts between

arguments and their counter-arguments . In Chapter 5, this is discussed

in detail and an explanation as to how it has been enhanced to resolve

conflicts in the context of Web-based Intelligent Decision Support Systems

is given.

• Dung’s style-based conflict resolution strategy

This is also an automated conflict resolution strategy where an

argument X (part of a reasoning chain Y) is attacked by a counter-argument

Z (not part of reasoning chain Y) and X gets defeated by Z if there

is no other argument (in reasoning chain Y) that attack and defeat the

counter-argument Z. In Chapter 7, the working of this strategy is described

in detail.

• Fuzzy preferences-based conflict resolution strategy

The decision makers can provide their preferences to resolve conflicts

between arguments and their counter-arguments. These preferences are

fuzzy in nature. In Chapter 7, the working of this strategy is described in

detail and an explanation of its computational model to resolve conflicts

and establish the priority between arguments and their counter-arguments

is given.

• Voting-based conflict resolution strategy

The decision makers can vote either in favour or against a certain

argument which is in conflict with another argument (counter-argument) to

resolve the conflict. In Chapter 7, the working of this strategy is described

in detail with a discussion of the methodology used to capture the user’s and

expert’s votes and compute them in order to establish the priority between

arguments and counter-arguments.

4.4 Argumentation-driven information representation, reasoning and
integration layer (@IRRI) 118

4.4.3 Solution for information and knowledge integration

Once the reasoning over incomplete and/or contradictory information by the hybrid

reasoning engine is completed, the next step is to integrate the output of the reasoning

engine and display the results to the decision makers in order to assist them in their

decision-making process. As shown in Figure 4.5, the following steps are required to

transform the information produced by a reasoning engine into a form of a reasoning

chains that in turn provides the basis for knowledge integration:

• The output of the hybrid reasoning engine is integrated in the form of a reasoning

chain by linking the facts to the conclusions drawn. It also displays the reasoning

results in a graphical format for better comprehension of results by decision

makers.

• To share the reasoning chain with other Semantic Web application, the reasoning

chains is annotated with an AIF compliant ‘reasoning chain ontology’ and is

published over the WWW in RDF\XML format.

• Once the reasoning chains are available in AIF format, they are downloaded

and translated to DeLP format in order to integrate them together or with

existing reasoning chains generated by Semantic Web applications. This is called

knowledge integration.

• The reasoning engine also provides a querying facility where decision makers can

query the knowledge base and can obtain an explanation of the results of the

query and how this result was achieved.

4.4 Argumentation-driven information representation, reasoning and
integration layer (@IRRI) 119

Figure 4.5: Flowchart illustrating steps performed for information and
knowledge integration

To design a complete solution for the integration of incomplete and/or contradictory

information to facilitate the decision-making process, the solution for information and

knowledge integration comprises the following sub-solutions, each of which corresponds

4.4 Argumentation-driven information representation, reasoning and
integration layer (@IRRI) 120

to the objectives identified in Section 3.5.3:

1. Solution for information integration and its graphical representation

The last step required for an argumentation process is the construction of

a conclusion by integrating information (arguments) in the form of a reasoning

chain. To achieve this objective, the arguments are linked together in the form

of a reasoning chain. In Chapters 5 and 6, the building of reasoning chains in

different enterprise contexts is discussed. In Chapter 7, the extension of the

graphical representation of a reasoning chain to represent a business process

model is described. In Chapter 8, different Semantic Web applications that

provide a graphical representation of the reasoning process are discussed.

2. Solution for importing/exporting integrated information to different Semantic

Web applications

To share the results of the hybrid reasoning engine among different semantic

Web applications, a functionality to export results in a standard format is

needed. To achieve this objective, in Chapter 6, the methodology for the

semantic annotation of a reasoning chain with ArgDF ontology1 is described

and an explanation as to how the AIF compliant reasoning chain is serialized in

RDF/XML format is given.

3. Solution for knowledge integration

To obtain a complete picture about a particular subject in an enterprise, the

output of different reasoning engines may need to be integrated to facilitate the

decision making process in enterprises. To achieve this objective, the proposed

solution involves the following steps:

• Valuation of a reasoning chain. This involves the evaluation of a reasoning

chain against the decision maker’s defined integration scheme. The results

of this evaluation assist the decision maker to decide whether or not

to include the underlying reasoning chain for knowledge integration. In

Chapter 6, the process of defining the integration scheme and its use to

evaluate the reasoning chain is outlined.

• Argumentative reasoning is performed over a set of reasoning chains that

have been selected for knowledge integration. During this process, conflicts

are resolved among arguments, keeping in mind the decision maker’s

preferences. This process also results in the construction of new arguments

1http://www.argdf.org/source/ArgDF Protege Ontology.zip

4.5 Applications layer 121

by merging existing arguments that support the same claim. In Chapter 6,

the methodology of argumentative reasoning over a set of reasoning chains

is outlined.

• Once the argumentative reasoning is completed, the underlying information

i.e. reasoning chains, is integrated into a single reasoning chain called the

integrated recommendations space. The integrated recommendations space

is then displayed to the decision maker in a graphical format to assist him

in the decision-making process. In Chapter 6, this process is explained in

detail.

4. Solution for querying the knowledge base and obtaining an explanation of results

To answer the questions of a decision maker which may help him to

understand the reasoning process (that is, to obtain an explanation on the

conclusion achieved or conflicts resolved), there is need for a querying mechanism

to query the knowledge base. To achieve this objective, the proposed solution

provides a querying functionality thorough which decision makers can obtain

answers to their questions. In Chapters 6 and 7, an explanation on how to query

a knowledge base and how the results are displayed is given. In Chapter 8, the

different Semantic Web applications that provide a Web-based interface to query

the knowledge base and the graphical results are discussed.

4.5 Applications layer

The application layer refers to a set of Semantic Web applications that need

to represent, reason and integrate information that could be incomplete and/or

inconsistent and exists within the enterprise and/or in other enterprises. These

applications exploit the logic-based framework located at @IRRI layer to achieve their

objectives.

4.6 Realization of Semantic Web applications using

GF@SWA for Business Intelligence

To demonstrate the working capabilities of the GF@SWA i.e. consider incomplete

and/or contradictory information coming from various sources and assist the decision

maker in the decision making process, three Semantic Web applications are considered

in this thesis. They are as follows:

4.6 Realization of Semantic Web applications using GF@SWA for Business
Intelligence

122

1. Argumentation-enabledWeb-based IDSS for reasoning over incomplete and/or
contradictory information (Web@IDSS)

2. Knowledge Integration through Argumentative Reasoning byWeb-based IDSS
(Web@KIDSS)

3. Knowledge Representation approach with Argumentative reasoning for Process
Map Discovery from Business policies (KR@PMD)

In the following sections, each of these applications is discussed in detail.

4.6.1 Web@IDSS

Section 1.2 identified that the major shortcoming of existing Web-based IDSS is

their inability to represent and handle incomplete and/or contradictory structured

information spanning across enterprise boundaries. This is particularly important for

enterprises which take into consideration the information available on the Web for

timely and intelligent decision-making support. So a system is needed that is able to

capture the information outside an enterprise’s boundaries, identify the goals, conflicts

in the information with respect to the goals, resolve these conflicts by reasoning over

them and show the basis of the reasoning to the decision maker by which a conclusion

is reached.

To overcome the drawbacks of existing systems, Web@IDSS is proposed that

exploits the functionality of the logic-based framework present at @IRRI to represent,

reason and integrate incomplete and/or contradictory information.

In Chapter 5, a case study is presented and a conceptual framework for Web@IDSS

is proposed to represent, reason and integrate information across enterprise boundaries.

The main functionalities of the @IRRI layer exploited by Web@IDSS are as follows:

1. Exploit the functionality of the information representation module of the

logic-based framework to represent the information in DeLP format.

2. Exploit the functionality of the argumentative reasoning module to perform

data-driven reasoning over underlying information for arguments construction

and goal-driven reasoning for conflicts identification and their resolution.

3. Exploit the functionality of the information and knowledge integration module to

provide information integration, an explanation of the reasoning results and to

export the reasoning results in AIF format to enable them to be shareable over

the WWW.

4.6 Realization of Semantic Web applications using GF@SWA for Business
Intelligence

123

In Chapter 8, the functional validity of Web@IDSS is discussed with the help of use

cases which are tested on the developed application.

4.6.2 Web@KIDSS

Section 1.2 showed that due to the monotonic nature of the layered development

of the Semantic Web, Web-based IDSS lacks the capability to represent, reason

and integrate incomplete and contradictory information. This, in turn, renders an

enterprise incapable of knowledge integration ; that is, the integration of information

about a subject that could be incomplete, contradictory and distributed among

different Web-based IDSS within or across enterprises. So a system is needed that can

consider the reasoning chains produced by different hybrid reasoning engines located

within and/or beyond an enterprise boundaries and provides solution for knowledge

integration.

To overcome the drawbacks of existing systems, a Web@KIDSS is proposed that

exploits the functionality of the logic-based framework present at @IRRI to represent,

reason and integrate incomplete and/or contradictory information.

In Chapter 6, a case study is outlined and a conceptual framework for Web@KIDSS

is proposed to represent, reason and integrate information across enterprise boundaries.

The main functionalities of the @IRRI layer exploited by Web@KIDSS are as follows:

1. Exploit the functionality of the information representation module of the

logic-based framework to represent the information in DeLP format.

2. Exploit the functionality of the argumentative reasoning module to perform

data-driven reasoning over underlying information for argument construction and

goal-driven reasoning for conflict identification and resolution.

3. Exploit the functionality of the information and knowledge integration module to

(a) import and transform the published AIF reasoning chains in DeLP format

(b) integrate knowledge which involves the evaluation of the reasoning chain,

and conducting argumentative reasoning over a set of reasoning chains followed

by their integration.

In Chapter 8, the functional validity of Web@KIDSS is discussed with the help of use

cases which are tested on the developed application.

4.7 Conclusion 124

4.6.3 KR@PMD

Section 1.2 identified that in an enterprise unstructured information accounts for

around 80% of the total information and it ranges from customer reviews, customer

buying preferences for new product, business policies of an enterprise or collaborating

enterprises etc, which when considered by applications can provide better insights in

the decision making process according to their needs. However, it is also possible

that such information may be in different formats and potentially incomplete and/or

contradictory within themselves or with the existing information in an enterprise.

So a system is needed that is able to capture the unstructured information, reason

and resolve conflicts followed by integration and grpahical representation of integrated

information to the decision maker to assist him in decision making process.

To overcome the drawbacks of existing system, KR@PMD is proposed that exploits

the functionality of logic-based framework present at @IRRI to represent, reason and

integrate incomplete and/or contradictory information and show it in graphical format

to the decision maker.

In Chapter 7, a case study is outlined and a conceptual framework for KR@PMD

is proposed that analyses the unstructured information i.e. business policies, of an

enterprise) for discovering a business process map. The main functionalities of the

@IRRI layer exploited by KR@PMD are as follows:

1. Exploit the functionality of the information representation module of the

logic-based framework to represent the information in DeLP format.

2. Exploit the functionality of the argumentative reasoning module to perform

data-driven reasoning over underlying information for argument construction and

goal-driven reasoning for conflict identification and resolution.

3. Exploit the functionality of the information and knowledge integration module

for information integration and its graphical representation as a business process

map.

In Chapter 8, the functional validity of KR@PMD is discussed with the help of use

cases which are tested on developed application.

4.7 Conclusion

In this chapter, an overview is given of a solution to address the research objectives in

this thesis i.e. to support monological argumentation in Semantic Web applications.

4.7 Conclusion 125

The overall architecture was presented and the information layer, the @IRRI layer and

the applications layer was discussed in detail.

In the next chapter, the exploitation of the logic-based framework (located at

the @IRRI layer) by Web-based Intelligent Decision Support Systems (located at

the applications layer) is discussed in order to represent, reason and integrate

incomplete and/or contradictory information exists within an enterprise and/or in other

enterprises.

Chapter 5 - Argumentation-enabled

Web-based Intelligent Decision

Support System (Web@IDSS)

5.1 Introduction

In any enterprise, information is one of the essential components required for decision

making. Traditional information systems have been used by enterprises to consider the

underlying information of an enterprise and assist them in this process. However, these

systems are basic and are inflexible in responding to current situations such as:

• Dealing with the huge increase of information. In recent years, there has been

a huge increase in the amount of information available, termed the tsunami of

data (Brodie, 2008b,a). In order to make informed decisions, enterprises may

have to consider a huge volume of information as that may contain hidden

informed knowledge. So, information systems need to process this information

autonomously and make it available to decision makers to assist them in the

decision-making process.

• Dealing with information that may be across and beyond an enterprise’s

boundaries. For example, in the context of Customer Relation Management

(CRM) software, for the development of new products, considering information

such as expert knowledge, customer opinions, reviews about existing products

and services etc. in the decision-making process may lead to better results.

In order to overcome these issues, Decision Support Systems (DSS) (such as

individual DSS and Group DSS) were developed that assist in a wide range of

enterprise-wide decision-making processes (Power, 2002; Power and Sharda, 2009). To

consider the multi-site nature of decision making due to the widespread adoption of the

5.1 Introduction 127

WWW, Web-based DSS (Yao et al., 2001) were developed by which decision makers

that are spread across different locations can collaborate in the decision-making process

(Vahidov and Kersten, 2004; Silverman et al., 2001; Toni, 2007). By using Semantic

Web technologies, Web-based DSS, with help of ontologies, can understand and

consume information which exists outside an enterprise’s boundaries. The challenge

that now confronts the current Web-based DSS systems is: how to take into account

the information exists within an enterprise and/or in other enterprises that may be

potentially incomplete and/or contradictory (within themselves and/or with the existing

information in an enterprise) and utilize it in their decision-making process .

To address this challenge, as mentioned in Section 3.3, Web-based DSS have been

developed that are based on defeasible reasoning to represent incomplete information

and reason using pre-defined preferences from a single user’s point of view to resolve

conflicts (Antoniou and Bikakis, 2007; Bassiliades et al., 2004; Grosof et al., 2002).

However, these systems fail to address the problem in the context when information

may come from different sources such as in group decision making where there is

more than one decision maker involved in the decision-making process where conflicts

may arise between the members of the group due to their different viewpoints. To

address this challenge, I propose a framework for an Argumentation-enabled Web-based

Intelligent DSS (Web@IDSS). The proposed framework will use logic-based language for

information representation and argumentation-driven reasoning to identify and resolve

conflicts in the information coming from different sources, followed by information

integration to assist a decision maker in his decision-making process. This will advance

the research in Web-based DSS as depicted in Figure 5.1.

Figure 5.1: Evolution towards Argumentation-enabled Web-based
IDSS (extended from (Lee and Chung, 2005))

5.2 Case study for problem definition 128

The organization of this chapter is as follows: in Section 5.2, the problem to

be addressed is outlined by using a case study that highlights the requirements

and challenges for Web-based DSS in an enterprise. In Section 5.3, an overview

of the proposed framework for Argumentation-enabled Web-based Intelligent DSS

(Web@IDSS) is given. From Sections 5.4 to 5.6, each component of the proposed

framework is explained in detail and the ways in which it provides a solution to the

problem highlighted in the case study is discussed. Section 5.7 concludes the chapter.

5.2 Case study for problem definition

To explain the problem with an example, consider a scenario where Mr David is a

marketing manager of an enterprise A. He is responsible for formulating and suggesting

business strategies to increase sales of the company’s products (existing and new) and

generate revenue for the Chief Executive Officer (CEO) of the enterprise A. Enterprise

A intends to manufacture a new product (say Product B). To increase the enterprise’s

revenue from this project, one of the important aspects that Mr. David identifies is

“the greater the discount that an enterprise A receives from the supplier, the cheaper

the new product”, and negotiation plays an important part in securing the maximum

discount. Mr. David identifies that the materials for manufacturing the product will

be sourced from ‘N’ different suppliers, each of whom offer varying levels of discount.

Mr David would like to select a supplier that may give his enterprise the maximum

discount and he needs to justify his selection to the CEO of the company.

To achieve his objective, Mr David needs to analyse the business policies of each

supplier against his company’s requirements along with the feedback provided by the

other users (companies) about the raw materials provided by the suppliers as shown

in Figure 5.2 . During this process, Mr. David will come across different challenging

situations such as follows:

• There might be conflicts between the supplier’s policies and an enterprise A’s

business requirements.

• There may be conflicts within the supplier’s business policies.

• A situation may arise where Mr. David may require some information for decision

making which is not available at the time of decision making.

In order to overcome the above mentioned challenging situations, Mr. David

requires a Web-based DSS that will assist him to overcome these challenges. The

Web-based DSS should have the following functionalities:

5.2 Case study for problem definition 129

Figure 5.2: Analyses of the business policies of a supplier and feedback
provided by the other users (companies) by Mr. David

1. an interface to define the requirements in the form of business rules such as

‘Purchase product from supplier only if product feedback is good’ and certain

facts or information to realize those rules;

2. an interface to download the supplier’s product information and public policies

with details on the possible discount that can be given on their products and

services;

3. the capability to download feedback or reviews from other users (companies) on

the suppliers’ products from a third party forum such as Amazon;

4. situations may arise where the business policies of a supplier may be incomplete

or negotiation is required between the supplier and an enterprise A to resolve

conflicting interests. The Web-based DSS should be able to cater for these and

provide a means of resolving these conflicts, with a justified explanation, during

the reasoning process;

5. the capability to provide a graphical representation of the reasoning process and

the result in order to make them easily understandable by non-technical persons

such as CEOs.

To have such functionalities, a Web-based IDSS is needed that is able to capture the

information outside an enterprise’s boundaries, identify the goals, identify any conflicts

in the information with respect to the goals, resolve these conflicts by reasoning over

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 130

them and show the basis of the reasoning by which a conclusion is reached. The

current Web-based DSS are not able to represent, reason and integrate the information

that is required for the abovementioned tasks. Therefore, to address this challenge, Mr.

David’s requirements, which should be incorporated in Web-based IDSS, are formalized

as follows:

• A declarative, logic-based language for specification of the business requirements

of an enterprise.

• The declarative language should have the capability to represent incomplete and

contradictory information (i.e. business rules and facts).

• An inference mechanism that can perform reasoning pertaining to incomplete

and/or contradictory information in the knowledge base.

• Graphical representation of results obtained from the reasoning process to assist

in decision making.

• Justifiable explanation of the results obtained after the reasoning and conflict

resolution has occurred.

Assumption

• Enterprise A, the supplier and the feedback forum share a common vocabulary

defined in RDF/XML format and the predicates defined in the vocabulary are

used for the specification of business rules and policies. Therefore, the information

taken into account by the Web-based IDSS is structured information.

To achieve the abovementioned objectives, in the next section, a Web@IDSS

framework is proposed that can represent, reason and integrate incomplete and/or

contradictory information which exists within an enterprise and/or in other enterprises

to assist the decision maker in the decision-making process.

5.3 Proposed framework for Argumentation-enabled

Web-based IDSS (Web@IDSS)

In this section, the solution for an Argumentation-enabled Web-based IDSS is proposed

to represent, reason and integrate incomplete and/or contradictory information exits

within an enterprise and/or in other enterprises. Figure 5.3 represents the proposed

framework and consists of three layers as follows:

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 131

1. Information layer

The information layer represents the structured information identified by

the decision maker to be considered during the decision-making process. This

information may include:

• Business policies of an enterprise that provides different products and

services published on the WWW.

• Feedback of users published on the WWW about the products and services

offered by an enterprise.

2. @IRRI layer

This layer comprises a logic-based framework that enables a Web-based DSS

to deal with information which is potentially incomplete and/or contradictory,

and to process and consider it for decision making. It provides different modules

to represent or translate the information into DeLP format, perform hybrid

reasoning for arguments construction from underlying information followed by

conflicts resolution and then integrate the information obtained from the hybrid

reasoning to assist the decision maker in the decision-making process. The

modules are as follows:

(a) The Information representation module is responsible for

• the pre-processing of potentially incomplete and/or contradictory

information, and

• the translation of pre-processed information to DeLP format and

saving it in the knowledge base.

(b) The Argumentative reasoning module performs hybrid reasoning over

information saved in the knowledge base. The hybrid reasoning engine

performs two types of reasoning such as:

• data-driven reasoning for arguments construction, and

• goal-driven reasoning for conflicts identification followed by their

resolution.

(c) The Information and knowledge integration module is responsible for

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 132

• performing integration of the output of the hybrid reasoning in the

form of a reasoning chain;

• categorization of the reasoning chains based on the types of arguments

they are built on;

• graphical representation of the reasoning chain.

3. Web-based decision support systems (Web-based DSS) layer

This layer consists of Web-based DSS such as Web@IDSS, that exploits the

@IRRI layer and the information layer to achieve its objectives.

Figure 5.3: Proposed conceptual framework with highlighted
components exploited by Web@IDSS

Before explaining the working of the proposed framework, in the next sub-section,

several important definitions and concepts are introduced that are pivotal to

understand the working of the proposed framework for Web@IDSS.

5.3.1 Important definitions

In this section, the important concepts that encompass syntax and semantics for

DeLP to make it suitable for information representation, reasoning and integration

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 133

in Semantic Web applications are defined as follows:

5.3.1.1 DeLP Language

DeLP language is a set Φ containing a set of predicates P , a set of functions F ,
an infinite set of variables X , a finite set of symbols S, and a set of labels L.
Mathematically, language is defined as follows:

Φ = {P ,F ,X ,L,S} . Equation (5.1)

The language supports two types of negation: strong negation, represented by

the symbol ∼ ∈ S to represent contradictory knowledge, and weak negation which

represents negation as failure represented by the symbol not ∈ S which is used to

represent incomplete information.

5.3.1.2 Working memory

A collection of facts is known as working memory. Considering a set P of predicates

and an infinite set of variables X , a fact is a ground predicate f ∈ P ,or a negated
ground predicate ∼ f ∈ P . A set of facts, i.e working memory is represented by WM.

Mathematically, working memory is defined as follows:

WM={f ∪ ∼ f | f ,∼ f are ground predicates} . Equation (5.2)

where a ground predicate is a predicate whose input arguments are constant. The

predicate p(a, b) and not p(a, b) are ground predicates. Facts represent the current

state of the world and these provide some sort of evidence as a basis for activating

the rules of inference to infer new facts. If there are no facts in the system, then no

inference rules will be activated.

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 134

5.3.1.3 Production rule

Production rules are rules of the form IF Condition DO Action , where Condition

queries the working memory containing the facts on which the rules operate. Formally,

a production rule A is of the form: [rule identifier] [rule body] [type of inference rule]

[conclusion]. Mathematically, a production rule is defined as follows:

[A]∇ � α .Equation (5.3)

where

• [rule identifier]: A ∈ L is used as the identifier or name of the production rule;

• [rule body] ∇ is a pattern in the body of a production rule A. A pattern is a
tuple of predicates i.e. ∇ ⊆ P, and defined as ∇ = (Ci,, Cj) where 0 < i <

j, Ci is a predicate in a pattern;

• [conclusion] α is a predicate whose instances could be intuitively considered to be

added to the working memory when the rule is fired during argument construction

defined later on; and

• [type of inference] � indicates the inference that associates the rule body with
the conclusion.

The production rule represents a reasoning step for α from a tuple of predicates

{C1,, Cn}. The language supports two types of inferences in production rules.

One is strict inference represented by the symbol → ∈ S and the second is defeasible
inference represented by the symbol ��	 ∈ S. Strict inference is used to represent
information about which there is no ambiguity, whereas defeasible inference is used

to represent ambiguous or tentative information. Strong negation is allowed at the

conclusion of the rule, whereas weak negation is allowed only in the body of the rule.

5.3.1.4 Rule base

The set of production rules is known as the rule base, denoted by R. Mathematically,
the rule base is defined as follows:

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 135

R= {production rule} . Equation (5.4)

5.3.1.5 Strict production rule

Strict production rules are the rules in the classical sense: when a rule’s conditions

are true, apply the rules and reach a conclusion. These rules are used to represent an

inference mechanism from conditions to conclusion without any doubt. Most of the

time, these rules are constructed from terms such as ‘should be’, ‘must be’, ‘must’ and

their opposite terms. Formally, a production rule S ∈ R is a strict production rule of

the following form if the rule is based on strict inference.

[S]∇ → α . Equation (5.5)

The strict production rule S ∈ R is used to represent truthful information which

contains no ambiguity. Consider rule r1 which states that ‘if a person is innocent and

has no crime history then he is not guilty’ and rule r2 which states that ‘if someone is

not guilty, then he is free’. These rules can be represented as strict production rules

thus:

• [r1]innocent(X), hasCrimeHistory(X,no) → (X)

• [r2]notguilty(X) → free(X).

5.3.1.6 Defeasible production rules

Defeasible rules or refutable rules are those that link the set of conditions to a conclusion

with a certain doubt, and therefore could be refuted by contrary evidence. This type

of rule is indicated by words like ‘usually’, ‘presumably’, or ‘sufficiently’ or we could

intuitively feel that it is refutable. Formally, a production rule D ∈ R is a defeasible

production rule of the following form:

[D]∇ ��	 α .Equation (5.6)

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 136

A defeasible production rule D ∈ R is used to represent tentative information which

may change in due course. Consider rule r3 that states: ‘assume that someone is

innocent whenever it has not been proven that he is guilty’ and rule r4 that states:

‘generally, do not cross the railway tracks if it ca not be proven that no train is coming’.

These rules can be represented as defeasible production rules as follows:

• [r3] not guilty(X)��	 innocent(X).

• [r4] not ∼train_is_coming ��	∼ cross_railway_tracks(X).

5.3.1.7 Argumentative production system

An argumentative production system is defined as a system that allows representation

and execution (i.e. reasoning) of both strict and defeasible production rules. It consists

of a knowledge base (i.e. consisting of working memory and a rule base) and a hybrid

reasoning engine. An argumentative production system is formally defined as follows:

P=(WM,R,Args) . Equation (5.7)

• where P ∈ L is a label to identify the argumentative production system.

• WM represents the initial collection of facts in the argumentative production

system.

• R is the set of rules comprising both strict and defeasible production rules in the

argumentative production system.

• Args is an active argument set which contains arguments generated during the

argument construction phase, which will be defined later. Prior to the argument

construction phase, the Args is an empty set.

5.3.1.8 Consistency

A set of rules is consistent if and only if there are no two rules with mutually

contradictory predicates as their conclusion. Mathematically, this is represented as

follows:

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 137

Rconsis= {∀r, s ∈ R| if r � α then s � ∼ α} . Equation (5.8)

5.3.1.9 Arguments construction

Arguments construction is defined as a recursive process which involves the

interpretation of production rules with function match(WM, R) ∈ F which looks

for rules from a rule base whose pattern matches the facts in WM and, on a successful

match, executes the production rule which then adds the rule’s conclusion i.e. ground

predicate, to the working memory and instance of the production rule i.e. argument,

to the argument set i.e. Args. Such a reasoning process is also known as data-driven

reasoning. The argument construction process continues until all the matched rules in

the knowledge base have been processed. This interpretation of a production rule is

also known as the ‘firing of a rule’.

∀r ∈R {∇ ∈ r, α ∈ r, r /∈ Args | ifmatch(∇, WM) then WM′= WM ∪ α′ and

Args = Args ∪ r′} . Equation (5.9)

where α′ is the ground predicate and r′ is the interpreted rule by function

match(WM, R) ∈ F . The Args contains interpreted rules or fired rules known

as arguments.

5.3.1.10 Strict argument

A fired production rule in an argument set with strict inference is called a ‘strict

argument’. Mathematically, this is represented as follows:

[S] β1,........,βn → α . Equation (5.10)

where

1. S ∈ L is the label of the argument

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 138

2. α is a ground predicate known as the ‘claim of an argument’. Function claim(S)

∈ F returns the claim of a given argument S.

3. βi is a ground predicate known as the premise of an argument, supporting the

claim of an argument. Function premises(S) returns a set of argument premises

S.

4. → represents a strict inference from the set of premises to the claim.

5.3.1.11 Defeasible argument

A fired production rule in an argument set with defeasible inference is called a

‘defeasible argument’. Mathematically, this is represented as follows:

[D]β1,, βn ��	 α . Equation (5.11)

where

1. D ∈ L is the label of an argument.

2. α is a ground predicate known as the ‘claim of an argument’. Function claim(D)

∈ F returns the claim of a given argument D

3. βi is a ground predicate known as the premise of an argument, supporting the

claim of an argument. Function premises(D) returns a set of argument premises

D

4. ��	 represents defeasible inference from the set of premises to the claim.

To avoid any fallacies in the argumentation process, the following restrictions on

strict and defeasible argument structure are considered:

1. A premise in an argument cannot simultaneously be a conclusion i.e. βi /∈α.

2. A negation of a claim cannot become the premise of a claim i.e. βi �=∼ α.

3. There is no redundancy of a premise in a pattern. βi �= βj where 1<i, j < n.

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 139

5.3.1.12 Counter-argument

An argument r counter-argues argument s if and only if claim(r) is inconsistent

with claim(s) or claim(r) is inconsistent with the premises(s). Mathematically, a

counter-argument is defined as :

∀r, s { if(!Consistent(claim(s), claim(r)) then r ♦s} Equation (5.12)

where ♦ is used to represent the counter-argument relationship between two

arguments.

If argument r counter-argues argument s such that claim(r) is inconsistent with

claim(s), it is called a ‘direct counter-argument’, and if argument r counter-argues

s such that claim(r) is inconsistent with premises(s), then it is called an ‘indirect

counter-argument’. Mathematically, direct and indirect counter-arguments are

represented as follows:

∀s,r{ if !Consistent(claim(s), claim(r)) then s♦directr} Equation (5.13)

∀s,r{if !Consistent(claim(s), premises(r)) then s♦indirectr} Equation (5.14)

A strict rule cannot counter-argue another strict rule because of the definition of

consistency.

5.3.1.13 Static defeat

Under certain conditions, an argument r defeats its counter-argument s by establishing

its priority over its counter-argument. Such defeat is known as a ‘static defeat’. The

conditions for static defeat are as follows:

• If a strict argument counter-argues a defeasible argument, the strict argument

always defeats a defeasible argument. In other words, the strict argument has

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 140

higher priority than the defeasible argument. Mathematically, this is represented

as follows:

∀d, s ∈Args{if s, d are strict and defeasible arguments, respectively | s ♦directd then

s > d} .Equation (5.15)

• If a defeasible argument directly counter-argues a strict argument, then the strict

argument defeats the defeasible argument. Mathematically, this is represented

as follows:

∀s, d ∈Args{if s, d are strict and defeasible arguments, respectively | d ♦direct s

then s > d} . Equation (5.16)

5.3.1.14 Dialectical tree

If an argument A counter-argues argument B, and no static defeat exists, then a
dialectical tree (as defined by (Garcia and Simari, 2004)) for argument A is constructed
to determine whether argument A defeats argument B or vice versa.
Let A be an argument. A dialectical tree for argument A is Σ(A, h) where h is

claim(A), is recursively defined as follows:
(1) A single node labeled with an argument (A, h) with no counter-argument is by

itself a dialectical tree for (A, h). This node is also the root of the tree.
(2) Suppose that Σ(A, h) is an argument with counter-arguments (A1,h1),

(A2,h2),.........,(An,hn), The dialectical tree for (A, h), Σ(A, h) is constructed by
labeling the root node with (A, h) and by making this node the parent of the
root of dialectical trees for (A1,h1), (A2,h2),.........,(An,hn) i.e. Σ(A1, h1),Σ(A2,

h2),........,Σ(An, hn). Figure 5.4 depicts the graphical representation of the dialectical

tree.

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 141

Figure 5.4: Pictorial representation of a dialectical tree

5.3.1.15 Marking of dialectical tree

To identify the priority between an argument and its counter-argument, the dialectical

tree is marked as either defeated or undefeated as shown in Figure 5.5 . If the dialectical

tree of an argument is marked defeated, then the argument has less priority over its

counter-argument and vice versa. The marking of the dialectical tree (as defined by

(Garcia and Simari, 2004)) is a two-step process as follows:

(1) Leaves of Σ(A, h) are U-nodes.
(2)Let (B, q) be an inner node of Σ(A, h). Then (B, q) will be a U-node iff every

child of (B, q) is a D-node. The node (B, q) will be a D-node if it has at least one
U-node as a child.

Figure 5.5: Pictorial representation of a marked dialectical tree

5.3.1.16 Dynamic defeat

If an argument r counter-argues argument s and no static defeat exits, then dynamic

defeat is computed. Let ΣU(A, h) be marked dialectical tree for argument A and ΣD(B,
~h) is marked dialectical tree for its counter-argument B, then argument A establishes

its priority over its counter-argument B known as dynamic defeat. The dynamic defeat
results in the establishment of the priority of an argument over its counter-argument

which is known as a dynamic priority. Mathematically, dynamic priority is defined as

follows:

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 142

∀r, s ∈Args{if r ♦ s, ΣU(r, h) , ΣD(s,∼ h)} then r > s Equation (5.17)

If an argument A has an undefeated dialectical tree i.e. ΣU(A, h) and it

counter-argues an argument B which also has an undefeated dialectical tree i.e. ΣU(B,
�h), then neither argument A nor B can establish its priority over the other, resulting
in a blocked situation. Such arguments are referred to as blocking arguments.

5.3.1.17 Sub-argument

Given an argument set Args, an argument s is a sub-argument of r if and only if

claim(s) ⊆ premise(r) and, if there exists say, counter-argument g, then the marked

dialectical tree of an argument s is undefeated and the marked dialectical tree of

argument g is defeated. Mathematically, the condition for a sub-argument can be

represented as follows:

∀r,s, g { if (claim(s)⊆ premise(r) and if(s ♦ g) then s > g) then s ξ r} . . Equation

(5.18)

where ξ used to represent the sub-argument relationship between two arguments.

The sub-argument is a supporting argument and it must have the following

characteristics:

1. argument s is consistent w.r.t argument r;

2. There is no premise(s) such that premise(s) ⊆ claim(r).

A sub-argument that provides support to another argument results in a chaining of

arguments.

5.3.1.18 Reasoning chain

An argument A supported by a chain of sub-arguments produces a reasoning chain

λA=(A1,,An) for an argument A. The claim of supported argument A, is called

a ‘result’ of the reasoning chain and the chain of sub-arguments is called a ‘support’

for the result of the reasoning chain. Mathematically, a reasoning chain is defined as

follows:

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 143

∀r, s ∈ Args { if(s ξ r) then λ(r,j)= λ(r,,j)∪ s .Equation (5.19)

where ξ is used to represent a sub-argument relationship and λ(r,j)is used to

represent a reasoning chain with result j. The reasoning chain should have the

following characteristics:

1. The reasoning chain is consistent (i.e., there is no contradiction in the result and

support for the result).

2. There is no defeated argument in a reasoning chain.

3. Two blocking arguments cannot be in the same reasoning chain.

5.3.1.19 Strict reasoning chain

A reasoning chain is considered to be strict if all the arguments in the reasoning chain

are strict arguments. Mathematically, a strict reasoning chain can be represented as

follows:

∀r, s ∈ λ(r,j){r,s are strict arguments} . Equation (5.20)

This reasoning chain cannot be directly counter-argued by other reasoning chains.

However, this reasoning chain can counter-argue and defeat the rest of the reasoning

chains in an argumentative production system.

5.3.1.20 Defeasible reasoning chain

A reasoning chain is a defeasible reasoning chain if all arguments in the reasoning

chain are defeasible arguments. Mathematically, defeasible reasoning chains can be

represented as follows:

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 144

∀d, f ∈λ(r,j){d , f are defeasible arguments} . Equation (5.21)

This reasoning chain can counter-argue or can be counter-argued by other reasoning

chains in an argumentative production system. The defeasible arguments must be

undefeated and consistent within the defeasible reasoning chain.

5.3.1.21 Mixed reasoning chain

A reasoning chain is a mixed reasoning chain if it has a least one defeasible and one strict

argument. Mathematically, a mixed reasoning chain can be represented as follows:

∀r, s ∈λ(r,j){∃r that is a defeasible argument , ∃s that is a strict argument}..Equation

(5.22)

5.3.1.22 Dependent reasoning chains

A reasoning chain is dependent upon other reasoning chains if there is at least one

common sub-argument. If the common argument is a strict argument, then a reasoning

chain is known as a strictly dependent reasoning chain; if it is defeasible argument, then

it is weakly dependent and medium dependent if it contains more than one common

argument and those common arguments include both strict and defeasible arguments.

Mathematically, this is represented as follows:

if(λ(J,j) ∩ λ(H,h)) �= ∅ then λ(J,j)andλ(H,h)are dependent reasoning chains.........

Equation (5.23)

5.3.2 Working of the proposed framework for Web@IDSS

In this section, the working of the proposed framework for Web@IDSS that can

perform argumentative reasoning over incomplete and/or contradictory information

which exists within an enterprise and/or in other enterprises is discussed and considered

in decision making. As mentioned in Section 4.4.1, the proposed framework uses

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 145

the DeLP language to represent incomplete and/or contradictory information in a

declarative format, and uses a hybrid reasoning engine to reason over it. Figure 5.6

presents a flowchart diagram of the working of the proposed framework. The sequence

of steps in the proposed framework are as follows:

1. Information representation in DeLP format

The Web@IDSS, located at the Web-based DSS layer, takes into account the

structured information located at the information layer. To achieve this objective,

Web@IDSS exploits the functionality of the information representation module

of the logic-based framework located at @IRRI layer. This module helps the

Web@IDSS to translate the structured information in RuleML format into DeLP

rules (also called as production rules) and saves them in the rule base i.e R. It
also translates the structured information in OWL/RDF format to DeLP facts

and saves them in the working memory i.e. WM. Two translators have been

developed to achieve this task as follows:

• RuleML translator

It translates the information specified in RuleML format to DeLP

format. In most cases, the business rules of an enterprise are specified

in RuleML format.

• OWL/RDF translator

It translates the information specified in OWL/RDF format to DeLP

format. In most cases, the customer opinions, reviews/feedback about

products and services offered by an enterprise are specified in OWL/RDF

format.

2. Argumentative production system to perform hybrid reasoning

Once the knowledge base (i.e. rule base containing DeLP rules and working

memory containing DeLP facts) is formed, Web@IDSS exploits the functionality

of the argumentative reasoning module of the logic-based framework to reason

over the information present in the knowledge base. This process involves the

following steps:

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 146

Figure 5.6: Flowchart illustrating steps performed by Web@IDSS for
information representation, reasoning and integration

• Arguments construction using data-driven reasoning.

As mentioned previously, the information in the knowledge base may

be potentially incomplete and/or contradictory (representing different

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 147

viewpoints against a single issue) and current Web-based DSS are not

able to perform reasoning over it. As a result, they can’t assist the

decision maker in the decision-making process. So, there is need to

perform reasoning over such information and transform it into a format

that is easily understood by the decision maker and can assist him in

the decision-making process. In the proposed framework, this objective is

achieved by transforming the incomplete and/or contradictory information

in the knowledge base into a set of arguments. These arguments represent

the different viewpoints in the underlying information in a declarative

format. In the proposed framework, the construction of arguments involves

two steps:

– Compilation of DeLP rules in the form of a Rete network.

– Perform data-driven reasoning by introducing certain DeLP facts from
the working memory to the Rete network.

Data-driven reasoning results in the construction of a set of arguments

supporting different conclusions. Two types of arguments which are

constructed during this phase are strict arguments and defeasible

arguments.

• Conflict identification and resolution using goal-driven reasoning

Once the construction of arguments is complete, arguments which have

counter-arguments are identified in order to resolve the conflicts between

them and determine which one of them is defeated. To achieve this

objective, two types of defeats are defined:

– static defeat: a strict argument defeats a defeasible argument;

– dynamic defeat: when there are two defeasible arguments in conflict
with each other, then goal-driven reasoning is performed that uses

a ‘generalize specificity’ conflict resolution strategy to resolve the

conflict between them. During this process, a dialectical tree is

constructed against the defeasible arguments that are in conflict and

afterwards, each dialectical tree is marked as defeated or undefeated.

These marked dialectical trees are used by the argumentative

production system to resolve the conflict. The marked dialectical

tree is then saved for future use, such as to provide an explanation

for conflict resolution.

5.3 Proposed framework for Argumentation-enabled Web-based IDSS
(Web@IDSS) 148

3. Information integration

Once the conflicts have been resolved, Web@IDSS exploits the functionality of

the information and knowledge integration module of the logic-based framework

to integrate the information obtained from hybrid reasoning and display it to the

decision maker. This process involves the following steps:

• Construction of reasoning chains

Once the hybrid reasoning is finished and conflicts have been resolved

between arguments, the arguments need to be linked in the form of a chain.

This module provides the functionality to link these arguments (supporting

a conclusion) in the form of a chain know as a reasoning chain. During the

construction of reasoning chains, different arguments supporting different

conclusions result in the construction of different reasoning chains.

• Categorization of reasoning chains

After the construction of reasoning chains, the next step performed

by this module is to classify them on the basis of arguments upon which

they are built. The four categories defined in the proposed framework to

categorise the reasoning chains are as follows:

– strict reasoning chains: composed of strict arguments only;

– defeasible reasoning chains: composed of defeasible arguments only;

– mixed reasoning chains: composed of at least one strict argument and
one defeasible argument;

– dependable reasoning chains: composed of at least one argument that
is shared with another reasoning chain.

• Graphical representation of reasoning chains

The last functionality performed by this module is the graphical

representation of reasoning chains for the decision maker. This will

assist the decision maker in understanding the conclusion of the reasoning

process and how that conclusion has been reached. Additionally, such

representation of a reasoning process will help the decision maker to easily

communicate the results to non-technical people such as the CEO of an

enterprise.

In the next sections, the working of each of these steps defined in the proposed

framework for Web@IDSS will be discussed in detail.

5.4 Information representation in DeLP format 149

5.4 Information representation in DeLP format

As discussed in Section 4.4.1, the DeLP language is used in the proposed framework

to represent incomplete and/contradictory information in Web@IDSS. The structured

information is in RuleML and OWL/RDF format. There is need for a translation

mechanism to translate that information into DeLP format and use it in the

decision-making process. The proposed framework addresses this drawback with the

help of the information representation module of the logic-based framework located at

the @IRRI layer. There are two ways to represent information in Web@IDSS as shown

in the Figure 5.7. They are:

1. Information pre-processing

During information pre-processing, the structured information is parsed and

translated to DeLP format by using either the RuleML or OWL/RDF translator

and is saved in the knowledge base.

2. Web-based form to specify DeLP rules and facts

There may be some situations where there is no existing information available

to be translated into DeLP format. In such cases, the decision maker has to

specify the production rules by himself, depending on the objectives he wants

to achieve. In the proposed framework, this objective is achieved by using a

Web-based form to specify the DeLP rules and facts from scratch and saving

them in the knowledge base.

In the next-subsections, each of these will be discussed in detail.

5.4.1 Information pre-processing

Information processing is carried out with the help of the following two translators:

(a) RuleML translator

RuleML supports different rule types via the ‘implies’ element and allows

them to be named using the ‘oid’ element. RuleML syntax has been extended to

express defeasible rules and superiority relations (Bassiliades et al., 2004) (Pham

et al., 2008). A ‘@ruletype’ attribute has been added to the ‘implies’ element,

allowing it to take one of three values: strict rule, defeasible rule or defeater.

For the translation of rules to DeLP format, the RuleML translator performs the

following steps:

5.4 Information representation in DeLP format 150

Figure 5.7: Flowchart illustrating steps for information representation
in Web@IDSS

• It loads the RuleML file (XML format) and starts its paring from the root

element.

• It iterates through all the rules specified in the RulML file and by looking

at ‘@ruletype’ tag, it classifies them as either strict production rules or

defeasible production rules. If ‘@ruletype’ is absent, then it considers that

production rule as strict.

• Then, it takes up each parsed production rule and starts building

production rules in DeLP format. Information with the ‘Rel’ tag is captured

as a predicate in the body of the production rule and information with the

‘Var’ tag is captured as the subject and object variables in a predicate. If

a parsed production rule head contains the ‘Neg’ tag, this is captured with

the symbol ‘∼’ in the rule’s conclusion. It this tag is found in the body of
the parsed rule, it is captured with the symbol ‘not’ in the rule’s body.

• After translation of each parsed rule to DeLP format, the production rules

are then saved in the knowledge base.

The RuleML translator also saves other information about the RuleML file such

5.4 Information representation in DeLP format 151

as file URL, the number of rules translated, the owner/creator of rules etc., in a

database for their profiling.

To explain with an example, consider the case study mentioned in Section 5.2

where Mr. David has to download and consider the business policies of a supplier

in the decision-making process. Figure 5.8 shows the representation of the

business policy of a supplier in RuleML.

Figure 5.8: Business policy of the supplier specified in RuleML format

The Web@IDSS downloads and translates the supplier’s policies specified in the

RuleML to DeLP rules and saves them in the rule base. Illustration 5.1 represents

5.4 Information representation in DeLP format 152

the set of DeLP rules extracted from the supplier’s policy RuleML file.

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[d2] shopper(X), product(Y), not advancePayment(X,Y)���∼giveDiscount(X)

[d3] shopper(X), purchase(X, Y), bulkOrder(X,Y)���giveDiscount(X).

[d4] eShop(Z), packaging(Y ,Z)���gstFree(Y).

[d5] eShop(Z), not packaging(Y ,Z)���∼gstFree(Y)

[s2]gstFree(Y),giveDiscount(X)→ordinaryDiscount(X)

[s1] not gstFree(Y), giveDiscount(X)→normalDiscount(X)

[d7] shopper(X), normalDiscount(X) ���platinumDiscount(X)

[d8] shopper(X), normalDiscount(X), plansSlowToPay(X)���∼platinumDiscount(X)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Illustration(5.1)

R, in illustration 5.1, represents the rule base comprising strict and defeasible
production rules. The rules with labels ‘s1’ and ‘s2’ are strict production rules,

whereas the rest are defeasible production rules. Table 5.1 provides a description

of each production rule in a natural language format.

rule label Description
d2 If a shopper does not pay in advance for the product, he may

not receive a discount
d3 If a shopper purchases a product in bulk, he may be given a

discount
d4 If a product needs packaging in the shop, then GST may apply
d5 If a product does not need packaging, then GST may not apply
s2 If GST applies and the shopper has been given a discount, then

he must receive an ordinary discount
s1 If there is no information about GST, then the shopper must be

given an ordinary discount.
d7 If the shopper is given a normal discount, then he may be eligible

to receive a platinum discount
d8 If the shopper plans to pay in installments (i.e. slow to pay)

then he may be not be given a platinum discount.

Table 5.1: Description of the supplier’s production rules translated by
the RuleML translator

(b) OWL/RDF translator

Translation of OWL/RDF information into DeLP facts using the following

steps:

(a) OWL/RDF information is transformed with the help of the SWI-Prolog

RDF Parser (Wielemaker, 2011) into an intermediate triple format i.e. rdf

(Subject, Predicate,Object).

(b) The intermediate triple format is further processed to transform the RDF

statements into Predicate(Subject, Object) format.

5.4 Information representation in DeLP format 153

(c) The facts in Predicate(Subject, Object) format are then saved in the

knowledge base. The type attribute is further translated using the following

formula: type(X,C)→C(X)

To explain with an example, consider the case study mentioned in Section

5.2, where Mr. David has to consider the customer’s reviews/feedback about

a supplier’s product in his decision-making process. Figure 5.9 details the

information representing the customer reviews/feedback about the supplier’s

product in RDF/XML format (represented as step 1). The OWL/RDF translator

translates this information into an intermediate format (represented as step 2)

and then into DeLP format (represented as step 3).

Figure 5.9: Pictorial representation of the process for translation of
information in OWL/RDF format to DeLP facts

After translation of the customer’s feedback, the OWL\RDF saves the DeLP

facts in the working memory. Illustration 5.2 shows some of the DeLP facts that

Mr. David will consider during the process of decision making.

WM =

⎧⎪⎨
⎪⎩

eShop(BigW),product(rawMaterial)

havefeedback(rawMaterial, feedback),

reviwedRate(feedback, good)

⎫⎪⎬
⎪⎭
. Illustration(5.2)

5.4 Information representation in DeLP format 154

Table 5.2 provides a description of each DeLP fact shown in illustration 5.2.

DeLP fact Description
eShop(BigW), The eShop i.e. supplier providing the

product, is BigW.
product(rawMaterial) The product is raw material
havefeedback(rawMaterial,feedback) The raw material has some feedback
reviwedRate(feedback,good) The feedback is good.

Table 5.2: Description of reviews/feedback by customer about
supplier’s production translated by OWL/RDF translator

5.4.2 Web-based form to specify DeLP rules and facts

Another way by which information can be represented in DeLP format is by using the

Web-based form of Web@IDSS as shown in Figure 5.10. The Web-based form provides

a GUI for the decision maker to define/edit DeLP rules and facts and saves them in

the rule base and working memory, respectively. Using this form, Mr David can define

his business requirements in the form of rules. For example, Mr David would like to

purchase a product from a supplier who has good feedback from its customers. The

following defeasible production rule captures his requirement in DeLP format:

• [d9] shopper(X), product(Y), havefeedback(Y ,Z),

reviewedRate(Z,good) ��	purchase(X,Y)

Similarly, he wants to receive a discount on the purchase he may make. The following

defeasible production rule captures his requirement in DeLP format:

• [d1]shopper(X), purchase(X,Y) ��	 giveDiscount(X).

Additionally, he also wants to specify that he may purchase the product in bulk. In

DeLP language, such a parameter can be represented as a fact i.e. ‘bulkOrder’ using

Web@IDSS form and saves it in the knowledge base.

5.5 Argumentative Production System to perform hybrid reasoning 155

Figure 5.10: Web-based form for the decision maker to specify DeLP
rules and facts

5.5 Argumentative Production System to perform

hybrid reasoning

Once the required information for decision making has been captured in the knowledge

base, then the next step is to perform reasoning over it. To address this objective,

there is need for a hybrid reasoning methodology that can reason over the captured

information and resolve any conflicts that may arise during the reasoning process.

Web@IDSS achieves this objective with the help of an argumentative production

system 1 that exploits the functionality of the argumentative reasoning module of

the logic-based framework located at @IRRI layer. Figure 5.11 illustrates the steps

performed by the argumentative production system for hybrid reasoning over the

captured information. These steps are as follows:

1In Section 3.3.1, some important definitions which will help the reader to understand the design
and working of the argumentative production system are introduced.

5.5 Argumentative Production System to perform hybrid reasoning 156

Figure 5.11: Flowchart illustrating steps performed by Web@IDSS
during hybrid reasoning

1. Arguments construction using data-driven reasoning

This step is further divided into the following two sub-steps:

5.5 Argumentative Production System to perform hybrid reasoning 157

• The first step is the compilation of production rules in the rule base in the

form of a Rete network. In the proposed framework, the Rete network has

been extended to represent incomplete and/or contradictory information as

Rete nodes in the Rete network. Additionally, the single production rule

execution strategy of the Rete algorithm has been extended to execute all

production rules that are activated during data-driven reasoning.

• The second step is to perform data-driven reasoning over underlying

information by passing the facts in the working memory through the Rete

network. This results in the activation of production rules. The activation

of production rules is followed by the firing of production rules. However,

if the activated production rules’ body represents some predicate starting

with the symbol ‘not’, then before its firing, a query is sent to the DeLP

server to compute its truthfulness by querying the knowledge base. If the

query returns yes, then the production rule is fired, otherwise the activated

production rules will be removed from the activated rule set. The firing of

production rules results in the addition of new facts to the working memory

and the instance of the production rule is stored as an argument in the

‘argument set’. Data-driven reasoning is a recursive process that continues

until no further production rules are activated.

2. Conflicts identification and their resolution using goal-driven reasoning

Conflicts identification and their resolution is a recursive process consisting

of the following three steps:

• Identification of an argument and its counter-argument.

• If static defeat exits, then the conflict between argument and its

counter-argument is resolved by establishing a preference between them

and control flows back to the first step.

• In the case where static defeat does not exist between an argument and

its counter-argument, then dynamic defeat is computed by using the

‘Generalize Specificity’ conflict resolution strategy. The outcome of the

dynamic defeat computation is the marked dialectical trees of an argument

and its counter-argument that helps the argumentative production system

to establish the priority between them. Once the priority has been

established, the arguments are saved again in the argument set.

In next sub-sections, each of these steps will be discussed in detail.

5.5 Argumentative Production System to perform hybrid reasoning 158

5.5.1 Arguments construction using data-driven reasoning

The construction of arguments from the knowledge base is a two-step process as follows:

1. Compilation of production rules in the form of a Rete network

The arguments construction process starts with the compilation of the

production rules present in the rule base as a Rete Network. A general Rete

Network (Cirstea et al., 2004) consists of a network of nodes, each of which

represents one or more predicates that make up the body of the production rules

as shown in Figure 5.12. The three important nodes are as follows:

• One-input nodes: These nodes are located at the first level of the Rete

network and the facts from the working memory enter the Rete network

through them. The different one-input nodes are as follows:

– AssertCondition : The claim of a production rule is represented using
this type of node.

– RetractCondition : The claim can also be represented using this type
of node if it may need to be removed later on from the working

memory. In simple words, if contradictory information appears during

the reasoning process, the general Rete network allows the removal

of contradictory facts from the working memory in order to keep it

consistent.

– PositiveCondition: The predicates that make up the body of a

production rule are represented using this type of node.

• Two-input nodes: These are second level nodes in the Rete network and

facts coming from the one-input node flow through to the two-input node

and results in their activation.

• Terminal nodes: These are the last level nodes, each of which represent the

claim of a production rule. When all the incoming two-input nodes to the

terminal nodes are activated, it results in the activation of terminal nodes

and the instantiated claim represented by a terminal node is added to the

working memory.

5.5 Argumentative Production System to perform hybrid reasoning 159

Figure 5.12: Simplified representation of the compilation of production
rules in a general Rete network

In the proposed framework, the general Rete network has been extended to

represent incomplete and/or contradictory information as Rete nodes in the

network. The extensions made to one-input nodes are as follows:

• AssertCondition: The one-input nodes have been extend to represent

contradictory information by introduction strong negation i.e.∼ , as an

attribute in the AssertCondition class.

• NegativeConditionNAF: A new type of one-input node was introduced to

indicate incomplete information represented by the symbol ‘not’.

Figure 5.13: Code snippet that shows a production rule with
NegativeConditionNAF

To explain the compilation of production rules in a Rete network, consider the

rule base shown in illustration 5.1 where defeasible production rules d2 and d3

are translated from the supplier’s business policies and defeasible production rule

d1 is specified by Mr. David using the Web-based form of Web@IDSS as shown

in Figure 5.10. Figure 5.14 shows the compilation of these three production rules

5.5 Argumentative Production System to perform hybrid reasoning 160

in the form of a Rete network. The predicates that make up the body of the

production rules such as bulkOrder(X,Y), shopper(X) etc are represented as one

input node and the claim of the production rules d1, d2 and d3 are depicted

as terminal nodes. The nodes in between the one-input node and the terminal

nodes are represented as two-input nodes.

Figure 5.14: Compilation of production rules in the form of a Rete
network in Web@IDSS

2. Perform data-driven reasoning over underlying information by passing the facts

in the working memory through the Rete network

Once the production rules are compiled in the form of a Rete network,

the next step is to perform data-driven reasoning by passing the facts in the

working memory through the one-input nodes in the Rete network. This

process, called data-driven reasoning, results in the activation of production rules

called arguments (as defined in Section 5.3.1.9). Figure 5.15 illustrates the two

important steps that are performed recursively during data-driven reasoning for

the construction of arguments.

5.5 Argumentative Production System to perform hybrid reasoning 161

Figure 5.15: Data-driven reasoning by passing the facts through the
Rete network in Web@IDSS

These steps are as follows:

• Matching phase: During this phase, pattern-matching is performed between

the DeLP facts and the one input-node. If a pattern is matched, then the

one-input node is activated and it forwards the value of the attributes to

the two-input node. When two input-nodes receive the attribute value from

all the incoming input nodes, it results in the activation of the respective

terminal node.

• Execution phase: Once the terminal node is activated, the respective

production rule is added to the Activated Rules set. The activation of

production rules is followed by the firing of production rules. However, if

the activated production rule’s body represents a predicate starting with

the symbol ‘not’, then before it is fired, a query is sent to the DeLP server

to compute its truthfulness by querying the knowledge base. If it returns

true, then the production rule is fired. Otherwise, it will be removed from

the activated rules set. Firing the production rule will:

– add a new fact to the working memory, and

– add an instance of the rule to the argument Set.

5.5 Argumentative Production System to perform hybrid reasoning 162

It is important to note that in a general Rete network, data-driven reasoning

works only on the production rules specified by an individual and the

reasoning engine executes only one rule during a one match-execute cycle.

If two rules are activated, the reasoning engine fires a production rule

which has a higher preference specified by an individual at compilation

time. In the proposed framework, the single rule execution strategy of

the Rete network is removed as shown in Figure 5.16. Therefore, if two

contradictory production rules are activated, both will fire and instances of

both production rules i.e. arguments, are added to the argument set.

Figure 5.16: Comparison of a standard Rete with a single rule
execution strategy (left) with the extended Rete without the strategy

(right)

Data-driven reasoning will stop when no more production rules are activated.

A key issue to be noted here is that such new inferred facts may conflict with

the existing knowledge base. The purpose is to retain contradictory information

instead of eliminating it, in order to obtain better insight when deciding on

business strategies.

To explain the working of data-driven reasoning for argument construction

over underlying information as shown in Figure 5.15 , consider the following

production rule in the rule base:

• [i]shopper(X), product(Y), not advancePayment(X,Y) ��	∼
giveDiscount(X)

Further consider a working memory that contains facts such as shopper(david)

and product(Y). During the matching phase, pattern-matching is performed

in the Rete network between the DeLP facts and one-input nodes that

comprise the body of the production rules. On successful matching, the

production rule is activated and is added into the Activated Rules set. Once

the matching phase is finished, then execution phase is started. During

the execution phase, if the activated production rule represents some

5.5 Argumentative Production System to perform hybrid reasoning 163

incomplete information such as that represented by production rule i i.e.

not advancePayment(X,Y), then the predicate representing the incomplete

information is passed as a query (i.e. not advancePayment(X,Y)) to the DeLP

server. The DeLP server loads the knowledge base and executes the query

on it. The current knowledge base does not have any information regarding

advanced payment, therefore the DeLP query returns true and production

rule ‘i’ is fired. The firing of the production rule adds the derived fact (e.g.

derived predicate ∼ giveDiscount(david) as shown in Figure 5.15), into the

working memory and the instance of the production rule (e.g. an argument

shopper(david), product(rawMaterial), notadvancePyament(david, rawMaterial)

��	 giveDiscount(david) as shown in Figure 5.15), is added to the arguments

set.

Algorithm 1 demonstrates data-driven reasoning over underlying information by

passing the facts in the working memory through the Rete network. It takes in the

production rules specified in DeLP format and results in the construction of a set of

arguments.

Data: DeLP rules and DelP facts .
Result: Arguments.
initialization;1

Construct Rete network alpha and beta nodes etc ;2

initialize Rete network;3

bool constructArgument ←true;4

ActiveRules ActiveRuleSet;5

ActiveArgumentSet ArgsSet;6

repeat7

foreach rule re ∈ KnowledgeBase do8

if match(re, WM)=true then9

ActiveRuleSet ←ActiveRuleSet ∪ re;10

else11

constructArgument ←false;12

end13

end14

foreach re ∈ ActiveRuleSet do15

WM ← WM ∪ claim(r);16

ArgSet ← ArgSet+interpretationOf (re); end17

until constructArgument ←true ;18

Algorithm 5.1: Argument construction using data-driven reasoning

5.5 Argumentative Production System to perform hybrid reasoning 164

To explain argument construction using data-driven reasoning, consider an

argumentative production system that captures information identified in the case study

discussed in Section 5.2. This argumentative production system is named a WEBIDSS.

In light of the definition of an argumentative production system in Section 5.3.1.7,

WEBIDSS can be defined as follows:

WEBIDSS = (WM, R, Args) .Equation (5.24)

where

WM =

⎧⎪⎨
⎪⎩

shopper(david),eShop(BigW),product(rawMaterial)
havefeedback(rawMaterial, feedback),
reviwedRate(feedback, good), bulkOrder(david, rawMaterial)

⎫⎪⎬
⎪⎭
. Illustration(5.3)

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[s2]gstFree(Y), giveDiscount(X) → ordinaryDiscount(X)
[s1]not gstFree(Y), giveDiscount(X) → normalDiscount(X)
[d1]shopper(X)product(Y), purchase(X,Y) ��	giveDiscount(X)
[d2]shopper(X)notadvancePayment(X,Y) ��	 ∼giveDiscount(X)
[d3]shopper(X), purchase(X,Y), bulkOrder(X,Y) ��	 giveDiscount(X).
[d4]eShop(Z)packaging(Y,Z) ��	 gstFree(Y).
[d5]eShop(Z)notpackaging(Y,Z) ��	 ∼gstFree(Y)
[d7]shopper(X)normalDiscount(X)��	platinumDiscount(X)
[d8]shopper(X)normalDiscount(X)slowToPay(X)
��	∼platinumDiscount(X)
[d9]shopper(X)product(Y)havefeedback(Y,Z)
reviwedRate(Z, good)��	purchase(X,Y)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Illustration(5.4)

Args = {} . Illustration(5.5)

The WM represents the working memory of WEBIDSS and contains DeLP facts

as shown in illustration 5.3. R represents the rule base of WEBIDSS and contains

production rules in DeLP format as shown in illustration 5.4. Args represents the

arguments set of WEBIDSS and contains no argument as shown in illustration 5.5.

The WEBIDSS captures all the information i.e. feedback about the supplier’s

production and Mr. David’s facts in WM, the business policies of the service provider

and Mr. David as production rules in R, and an empty arguments set. Given the
definition of consistency in Section 5.3.1.8, in WEBIDSS the set {s1,s2} is consistent,

whereas set {d1,d2} is inconsistent. It is important to note that production rule ‘d1’ is

defined by Mr. David and argument ‘d2’ is a production rule representing the supplier’s

policy.

5.5 Argumentative Production System to perform hybrid reasoning 165

After arguments construction using data-driven reasoning over information in

WEBIDSS, it results in the following:

WEBIDSS = (WM′,R, Args) .Equation (5.25)

where WM′ represents the new state of the working memory after the addition
of the new inferred facts. The argumentative production system with the updated

working memory and populated with the argumentation is as follows:

WM′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

shopper(david),eShop(BigW),product(rawMaterial)

havefeedback(rawMaterial, feedback),

reviwedRate(feedback, good), bulkOrder(david, rawMaterial)

purchase(david, rawMaterial),∼ gstFree(rawMaterial),

giveDiscount(david), ∼giveDiscount(david),

normalDiscount(david),platinumDiscount(david),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. Illustration(5.6)

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[s2]gstFree(Y), giveDiscount(X) → ordinaryDiscount(X)

[s1]not gstFree(Y), giveDiscount(X) → normalDiscount(X)

[d1]shopper(X)product(Y), purchase(X, Y) ���giveDiscount(X)

[d2]shopper(X)notadvancePayment(X, Y) ��� ∼giveDiscount(X)

[d3]shopper(X), purchase(X, Y), bulkOrder(X, Y) ��� giveDiscount(X).

[d4]eShop(Z)packaging(Y, Z) ��� gstFree(Y).

[d5]eShop(Z)notpackaging(Y, Z) ��� ∼gstFree(Y)

[d7]shopper(X)normalDiscount(X)���platinumDiscount(X)

[d8]shopper(X)normalDiscount(X)slowToPay(X)

���∼platinumDiscount(X)

[d9]shopper(X)product(Y)havefeedback(Y, Z)

reviwedRate(Z, good)���purchase(X,Y)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. Illustration(5.7)

Args =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[d1] shopper(david), purchase(david,rawMaterial)

���giveDiscount(david)

[d2] shopper(david), not advancePayment(david, rawMaterial)

���∼giveDiscount(david)

[d3] shopper(david), purchase(david, rawMaterial),

bulkOrder(david,rawMaterial)���giveDiscount(david).

[d5]eShop(BigW), not packaging(BigW,rawMaterial)���
∼gstFree(rawMaterial)

[s1]not gstFree(rawMaterial),giveDiscount(david)

→normalDiscount(david)

[d7] shopper(david), normalDiscount(david) ���platinumDiscount(david)

[d9] shopper(david), product(rawMaterial),

havefeedback(rawMaterial,feedback),

reviewRate(feedback, good) ��� purchase(david,rawMaterial)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. . . Illustration(5.8)

Illustration 5.8 represents the set of arguments constructed during the arguments

construction phase. From illustration 5.8, it can be seen that argument ‘s1’ is a strict

argument and the rest of the arguments i.e. d1, d2, d3, d5, d7 and d9 are defeasible

arguments. These arguments represent the viewpoints of the supplier against Mr.

5.5 Argumentative Production System to perform hybrid reasoning 166

David’s business requirements in relation to whether to give him a discount and if so,

how much. To explain with help of example, consider the following three defeasible

arguments from illustration 5.8:

• [d1]shopper(david), product(rawMaterial),

purchase(david, rawMaterial) ��	 giveDiscount(david)

• [d2]shopper(david), product(rawMaterial),

not advancePayment(david, rawMaterial) ��	∼ giveDiscount(david)

• [d3]shopper(david), purchase(david, rawMaterial),

bulkOrder(david, rawMaterial) ��	 giveDiscount(X)

Argument ‘d1’ represents Mr. David’s viewpoint on receiving a discount. It states

that he purchases the raw material, and as a result, he expects a discount. However,

argument ‘d2’ from the supplier states that Mr. David purchased the product but did

not make a payment in advance, so he may not receive a discount. However, another

arguments ‘d3’ from the supplier states that Mr. David purchased the product and

placed a bulk order, so he may receive a discount.

5.5.2 Conflicts identification and their resolution using

goal-driven reasoning

Once the argument construction process is complete, the conflicts identification

and resolution phase is initiated. This is a recursive process that consists of the

identification of an argument and its counter-argument and resolving the conflict

between them. During this process, the following two types of defeats are computed in

order to resolve conflicts between arguments:

1. Static defeat

As defined in Section 5.3.1.13, a static defeat exits between an argument and

its counter-argument if a strict argument defeats its defeasible counter-argument.

This results in the establishment of the priority of a strict argument over a

defeasible counter-argument. To explain static defeat with help of an example,

consider an argument s1 from illustration 5.8 as follows:

• [s1]not gstFree(rawMaterial),

giveDiscount(david)��	 normalDiscount(david)

5.5 Argumentative Production System to perform hybrid reasoning 167

Further consider a defeasible argument that states that if Mr. David is eligible for

a discount, then he may not be given a normal discount as he is a bad customer.

The defeasible argument is represented as follows:

• [d11] badCustomer(david),giveDiscount(david)��	∼ normalDiscount(david)

Argument ‘s1’ is now in conflict with argument ‘d11’, however, there exits static

defeat between them because a strict argument always defeats its defeasible

counter-argument. Therefore, Mr. David will receive a normal discount.

2. Dynamic defeat by using the Generalize Specificity conflict resolution strategy to

resolve conflict

If static defeat does not exist between an argument and its counter-argument,

the argumentative production system resolves the conflict between them by

computing dynamic defeat. To achieve this objective, the argumentative

production system takes into account the DeLP built-in General Specificity

conflict resolution strategy (Garcia and Simari, 2004). In this strategy, an

argument (itself or with the help of other arguments) is considered specific over

its counter-argument if it requires less information to reach the final result. To

understand the working of this strategy, consider the following two arguments:

(a) [p1r2]executiveManager(X) ��	 approveTravel(X) which states that if

X is an executive manager, then he may approve travel.

(b) [p1r1]executiveManager(X), universityOfficer(Y), authorise(X,Y) ��	∼
approveTravel(X) which states that if X is an executive manager and he

authorises Y who is a university officer to approve travel, then X may not

approve travel.

Considering the General Specificity conflict resolution strategy, the <p1r1, ∼
approveTravel>argument is more specific than the <p1r2, approveTravel> if

the following two conditions hold:

(a) for all strict rules i.e. H and facts F, H ⊆ F, if approveTravel(jon) is

derived defeasibly and no strict derivation of approveTravel(jon) exists,

then the defeasible derivation of ∼ approveTravel(jon) exists, and

(b) there exists H
′ ⊆ F such that on basis of H

′
drives defeasibly ∼

approveTravel(jon) and there is no strict derivation of it and it does not

drive defeasibly approveTravel(jon).

5.5 Argumentative Production System to perform hybrid reasoning 168

Using General Specificity, the conflict between each argument and its

counter-argument is resolved and the priority is saved in the knowledge base.

The next step is to build the dialectical trees (as defined in Section 5.3.1.14) in

order to identify whether this priority is supported by the entire knowledge base

of the argumentative production system (in simple words, is there any argument

that may counter-argue the preferred argument). This objective is achieved as

follows:

• The claim of a preferred argument is submitted to the DeLP server (along

with its preference over the counter-argument) and in return, it gives the

marked dialectical tree (as defined in Section 5.3.1.15) of an argument.

Similarly, the same procedure is performed for its counter-argument.

• Once the argumentative production system has the marked dialectical trees

for both the argument and its counter-argument, an argument is preferred

over its counter-argument if the marked dialectical tree of an argument is

undefeated and the marked dialectical tree of counter-argument is defeated.

In the case where the marked dialectical tree of both the argument and its

counter-argument are undefeated, those arguments are considered blocking

arguments and the system needs human intervention to resolve the conflict

between them.

Algorithm 2 provides the detailed working of dynamic defeat using the General

Specificity conflict resolution strategy to resolve conflicts by taking into account

algorithm 3 i.e. building and marking dialectical trees. The marked dialectical tree for

argument d1 with undefeated status is represented as ΣU(d1,giveDiscount(david)).

5.5 Argumentative Production System to perform hybrid reasoning 169

Data: Arguments set.
Result: Preference establishment
initialization;1

foreach argi in ArgSet do2

if argi ♦ argi+1 then3

Σstatus(argi,hi)← BuildDialecticalTree(argi,hi);4

Σstatus(argi+1,hi+1)← BuildDialecticalTree(argi+1,hi+1);5

if ΣD(argi,hi) and ΣU (argi+1,hi+1) then6

argi+1 > argi;7

end8

if ΣU (argi,hi) and ΣD(argi+1,hi+1) then9

argi > argi+1;10

end11

if ΣB(argi,hi) and ΣB(argi+1,hi+1) then12

argi <> argi+1;13

end14

end15

end16

Algorithm 5.2: Dynamic defeat using the General Specificity conflict
resolution strategy

Data: (A, h)
Result: Σstatus(A, h)
Let C ← get all counter-arguments of (A, h); if C �= ∅ then1

while there is no ΣU(Ai, hi) ∈ C do2

for every argument in C do3

Let (Ai, hi)← minimal non-labelled element4

BuildDialecticalTree((Ai, hi)) getting result as Σ(Ai, hi);

Put Σ(Ai, hi) ξ (A, h)5

end6

if there exist some ΣU(Ai, hi) then7

Set ΣD(A, h);8

else9

Set ΣU(A, h);10

end11

end12

else13

Σ(A, h)= (A, h);14

Set Σ(A, h) ← defeated;15

end16

Algorithm 5.3: Building and marking of a dialectical tree

5.5 Argumentative Production System to perform hybrid reasoning 170

To explain conflict identification and resolution using goal-driven reasoning with

the help of an example, consider illustration 5.8, where argument ‘d1’ counter-argues

argument ‘d2’, and argument ‘d3’ counter-argues argument ‘d2’, as shown in

Figure 5.17.

Figure 5.17: Pictorial representation of arguments and their
counter-arguments from illustration 5.8

The WEBIDSS resolves the conflicts between the arguments and their

counter-arguments using the General Specificity conflict resolution strategy. This task

involves the following two steps:

(a) Identify conflict and establish the priority between an argument and its

counter-arguments.

In this step, an argument e.g. d2, which is more specific than its

counter-argument e.g. d1, defeats its counter-argument and results in priority

establishment represented as follows: d2 >d1, as shown in Figure 5.18. Similarly,

argument ‘d3’ defeats argument ‘d2’ which results in its priority establishment

as follows: d3 > d2.

Figure 5.18: Pictorial representation of preference between arguments
using Generalize Specificity

(b) Building and marking of dialectical tress to obtain the priority status of an

argument over its counter-argument by considering the entire knowledge base.

During this phase, the claims of argument d1 i.e. giveDiscount(david) and

the claims of its counter-argument d2 i.e. ∼ giveDiscount(david) , along with

the priority between them is sent to the DeLP server to perform goal-driven

reasoning and it returns their marked dialectical trees. The construction of

marked dialectical trees is defined in Section 5.3.1.15. Figure 5.19 shows a

5.5 Argumentative Production System to perform hybrid reasoning 171

marked dialectical tree for argument ‘d1’ and ‘d2’. In the figure, an argument

is represented in the short form e.g. [d1]giveDiscount(david) where [d1] is the

label of the argument and giveDiscount(david) is the claim of the argument.

Figure 5.19: Pictorial representation of undefeated marked dialectical
tree for argument d1 (left), defeated marked dialectical tree for argument

d2 (right)

It is evident from the figure that the marked dialectical tree for argument ‘d1’

is undefeated and the marked dialectical tree for argument ‘d2’ is marked as

defeated in the tree. Therefore, argument d1 with the undefeated marked tree

is preferred over argument ‘d2’ which has a defeated marked dialectical tree. It

is important to note that in the undefeated marked dialectical tree for argument

‘d1’, argument ‘d2’ is marked as defeated. However, before the construction and

marking of dialectical trees (as shown in Figure 5.18), argument ‘d2’ was preferred

over argument ‘d1’. However, during this step, argument ‘d2’ is attacked by

argument ‘d3’. Argument ‘d3’ is more specific than argument ‘d2’, therefore,

‘d3’ is preferred over argument ‘d2’ (as shown in Figure 5.18). The preference

of argument ‘d3’ over ‘d2’ results in the revival of argument ‘d1’. Therefore,

in simple words, argument ‘d3’ supports argument ‘d1’ to withstand the attack

of argument ‘d2’. As a result, the marked dialectical tree for argument ‘d1’ is

undefeated.

Once the marked dialectical trees are computed, argument ‘d1’ with the

undefeated marked dialectical tree is preferred over its counter-argument

‘d2’ with the defeated marked dialectical tree. Such dialectical analysis of

arguments helps decision makers such as Mr. David to understand that

even though he may not have paid in advance (i.e. represented as argument

[d2]shopper(david), product(rawMaterial),

not advancePayment(david, rawMaterial) ��	∼ giveDiscount(david)),

by placing the bulk order (i.e. represented by argument

[d3]shopper(david), purchase(david, rawMaterial),

bulkOrder(david, rawMaterial) ��	 giveDiscount(X)), he may be offered a

discount.

5.6 Information integration 172

5.6 Information integration

Once the argumentative production system has performed hybrid reasoning over the

underlying information, the next step is to integrate the results of hybrid reasoning

and display the results to the decision maker in a graphical format to assist him in the

decision-making process. To achieve this objective, Figure 5.20 illustrates the following

important steps in the proposed framework for Web@IDSS to integrate information:

Figure 5.20: Flowchart illustrating steps performed by Web@IDSS for
information integration

1. Construction of reasoning chains

During this step, the arguments are linked together in the form of a reasoning

chain. Such reasoning chains help to link the initial information that triggers the

5.6 Information integration 173

reasoning process to reach the final conclusion. It also explains the important

steps/information derived during reasoning to reach the final conclusion.

2. Categorization of reasoning chains

Reasoning chains represent a decision supported by an argument or chain

of arguments. Depending on the nature of argument/s supporting the decision,

the argumentative production system can categorise a reasoning chain either as

strict, defeasible, mixed or dependable. Such categorization of reasoning chains

helps the decision maker to identify the strength/weakness of the information

supporting the final decision.

3. Graphical representation of a reasoning chain

During this step, the reasoning chain is depicted in a graphical format provide

the decision maker with more easily comprehendible results. The graphical

representation of results also helps him to easily communicate the results to

higher authorities who may be non-technical people.

In the next subsections, each of these steps will be discussed in detail.

5.6.1 Construction of reasoning chains

The first step in information integration is the construction of reasoning chains. This

process involves the following steps:

1. all sub-arguments with undefeated dialectical trees are linked together as a

reasoning chain. This process will continue until all possible arguments are linked

to form a reasoning chain;

2. the top argument i.e. conclusion of the reasoning chain is called the ‘result’ of

the reasoning chain, and the chain of arguments supporting the top argument

are called to support the conclusion;

3. ensure the reasoning chain is consistent (i.e., there is no contradiction in the

result and support for the result).

5.6 Information integration 174

Algorithm 4 provides the working of the construction of a reasoning chain by

Web@IDSS.

Data: (A, h)
Result: λ(A,h)

Let S ← get all sub-arguments of (A, h);1

if S �= ∅ then2

foreach (Ai, hi) ∈ S do3

if noCounterArgument(Ai, hi) or ΣU(Ai, hi) then4

BuildReasoningChain((Ai, hi)) ;5

Put λ(Ai, hi) ξ (A, h);6

end7

end8

else9

λ(A,h) = (A, h);10

end11

Algorithm 5.4: Construction of a reasoning chain

To explain the construction of a reasoning chain, Figure 5.21 depicts a graphical

representation of a reasoning chain constructed from the arguments shown in

illustration 5.8. The reasoning chain is divided into two parts, namely, the result

of the reasoning chain i.e. platinum discount for Mr. David, and support for the result

i.e. supporting information that backs the decision to give a platinum discount to Mr.

David. By using such a graphical representation, Mr. David can identify that

• he may receive a discount by placing a bulk order (i.e.

[d3]shopper(david), purchase(david, rawMaterial), bulkOrder(david, rawMaterial) ��� giveDiscount(X)

and is depicted as 1 in Figure 5.21);

• he can identify that the raw material he needs are not GST free, so as a

result, he may be given a normal discount (i.e. [s1]not gstFree(Y), giveDiscount(X) →

normalDiscount(X) and it is depicted as 1,2 and 3 in Figure 5.21);

• lastly, he can identify that if he receives a normal discount, there is a chance he

may receive a platinum discount as well (i.e. [d7]shopper(david), normalDiscount(david) ���

platinumDiscount(david) as depicted as 3 and 4 in Figure 5.21).

5.6 Information integration 175

Figure 5.21: Pictorial representation of mixed reasoning chain
generated from arguments show in illustration 5.8

As mentioned in Section 5.3.1.18 where the formal definition of a reasoning chain

was provided, it was pointed out that a reasoning chain should adhere to the following

characteristics:

1. The reasoning chain should be consistent (i.e., there is no contradiction in the

result and support for the result). Therefore, for example, giveDiscount(david)

and ∼ giveDiscount(david) will not belong to one reasoning chain, but each

one of them can belong to different reasoning chains and those reasoning chains

represent alternative paths or choices.

2. There is no defeated argument in a reasoning chain.

3. Two blocking arguments cannot be in the same reasoning chain.

5.6.2 Categorization of reasoning chains

A reasoning chain represents a set of small decisions linked to support the final

conclusion. Depending on the nature of the arguments that are constructed during

the reasoning process, the reasoning chains can be classified into the following different

categories:

• Strict reasoning chain

5.6 Information integration 176

Such reasoning chains represent a decision process which cannot be

challenged, even when new arguments are introduced into the argumentative

production system.

• Defeasible reasoning chain

Such reasoning chains represent decisions which can be challenged by the

introduction of new arguments in argumentative production systems.

• Mixed reasoning chain

Such reasoning chains have less weak points compared to defeasible reasoning

chains which may be challenged by the introduction of new arguments in the

argumentative production system which may result in a different conclusion.

• Dependent reasoning chain

A reasoning chain is called dependent if it shares information with other

reasoning chains. Such shared information points provide an alternative path

in the decision-making process. If such information points are challenged by the

introduction of new arguments in the argumentative production system, then the

conclusions may change dramatically. Figure 5.22 shows two reasoning chains

λ(j3,h)and λ(s4,j) sharing a common argument i.e. (s3,g).

Figure 5.22: Pictorial representation of dependent reasoning chains
λ(j3,h)and λ(s4,j)

To explain the categorization of reasoning chains with help of an example, consider

a reasoning chain categorized as a mixed reasoning chain by WEBIDSS, and as depicted

in Figure 5.21. Such categorisation of a reasoning chain will help Mr David to identify

the weak points (defeasible arguments) providing support to the overall conclusion.

If new information arises later on, it may result in the defeat of those defeasible

arguments, leading to different conclusions. For example, if he does not purchase

in bulk, he will not only lose the opportunity to receive a discount, it will result in his

failure to receive a normal discount and eventually a platinum discount.

5.6 Information integration 177

5.6.3 Graphical representation of a reasoning chain

The last functionality performed by the information and knowledge integration module

of the logic-based framework is the graphical representation of reasoning chains. To

explain with help of an example, consider Figure 5.23 which represents the graphical

implementation of a reasoning chain depicted in Figure 5.21. The important features

of the graphical representation of a reasoning chain are as follows:

• The reasoning chain is represented as an inverted tree.

• An argument is represented in short form e.g. [s1]normalDiscount(david) where

[s1] is the label of the argument and normalDiscount(david) is the claim of the

argument.

• The facts are depicted as oval shapes, the arguments are depicted as rectangular

shapes. The defeasible inference is depicted with a dotted arrow and strict

inference as a straight arrow.

Such graphical representation helps Mr David to understand the whole reasoning

process that results in a conclusion i.e. plantinumDiscount(david). He can easily

identify the weak points (represented as defeasible inference) in a reasoning process

where, if new information arises, this may result in the retraction of existing

information, eventually leading to different results.

The graphical representation of the reasoning process takes into account the

business policies of a supplier i.e. BigW, and the customer’s feedback on its products

in the decision-making process. In order to formulate a strategy for product B, Mr

David has to perform the same activity with the rest of the suppliers in order to

identify the supplier who may offer a maximum discount. As a result, he will obtain ‘n’

number of reasoning chains, each of which provides a different degree of discount under

different conditions. By going through the graphical representations of the reasoning

chains, Mr David can easily identify a supplier who may offer him a maximum discount

considering his business requirements and the conditions with more strict rules. The

graphical representation of the reasoning process will also help him to communicate his

decision to the enterprise’s CEO about why and how he reached the decision to select

a particular supplier for raw material for the development of a new product.

5.7 Conclusion 178

Figure 5.23: Graphical representation of the reasoning chain generated
by Web@IDSS

5.7 Conclusion

In this chapter, the major shortcomings of the existing Web-based DSSs are addressed

i.e. inability to represent and handle incomplete and/or contradictory information

exists within an enterprise and/or in other enterprises. This is particularly important

for those enterprises who take into consideration the information available on the

Web for timely and accurate decision support. To overcome the limitations, the

syntax and semantics of the DeLP language to represent, reason and integration

information in Semantic Web applications is defined. A conceptual framework for

‘Argumentation-enabled Web IDSS’ is proposed and its workings are described in detail

with the help of a case study.

In Chapter 3, I outlined certain research objectives that need to be addressed in

order to support argumentation in Semantic Web applications. Some of the objectives

have been addressed in this chapter and how they can be applied in Semantic Web

applications for decision making when underlying information is inconsistent and

incomplete are as follows:

• A methodology for incomplete and inconsistent information representation

– A rule-based declarative language i.e. defeasible logic programming (DeLP)
was selected for incomplete and/or inconsistent knowledge representation

5.7 Conclusion 179

on the Semantic Web. DeLP allows information representation i.e.

specifications or preferences, that can be taken into account by the

Web-based DSS and considered in the reasoning process to produce

customized results for the decision maker.

– A RuleML translator that translates the information defined in the RuleML
to DeLP format was proposed. Such translation enables the exploitation of

information which already exists on the Semantic Web specified in RuleML

format.

– An OWL/RDF translator that translates the information defined on the
Semantic Web in the form of OWL and RDF into DeLP facts. The

translated data is exploited by the rules during the reasoning process.

• A methodology for an argumentation driven-reasoning engine to reason over

incomplete and inconsistent information

– A hybrid reasoning engine to reason over information represented in DeLP
format was proposed. The hybrid reasoning engine performs two types

of reasoning: firstly, data-driven reasoning for argument construction and

goal-driven reasoning for conflict identification between arguments and

resolution.

– A methodology to resolve conflicts among arguments by using the DeLP

built-in Generalize Specificity conflict resolution strategy was proposed.

• Proposed a methodology for Information Integration

– A mechanism to integrate the information being produced by different

argumentation-driven hybrid reasoning engines was proposed and its

graphical representation was provided to the decision maker to enhance

their understanding of the reasoning process and results.

Chapter 6 - Enterprise Knowledge

Integration through

Argumentation-enabled Intelligent

Decision Support Systems

(Web@KIDSS)

6.1 Introduction

In Chapter 5, an Argumentation-enabled Web-based IDSS (Web@IDSS) was proposed

to help decision makers represent, reason and integrate information that exits within

their enterprise and/or in other enterprises and assist them in the decision-making

process. This information integration is called as Enterprise Information Integration

(EII).

With the current proliferation and widespread adoption of e-business, enterprises

conduct business on an global level, and are often involved in collaborations and

mergers with other enterprises on a global scale (Norta and Eshuis, 2010; Alaranta

and Henningsson, 2008). In such cases, the decision/reasoning results produced by an

enterprise’s Web-based DSS might need to be integrated with other Web-based DSS

located within the enterprise and/or in other enterprises to obtain a comprehensive

picture of the problem at an enterprise level to enable business managers to obtain

better business insights and make better decisions. This information integration is

called as Enterprise Knowledge Integration (EKI) as depicted in Figure 6.1. EKI

may be defined as an integration of the decisions/results generated from different

Web-based DSS that may be potentially incomplete and/or contradictory into a single

coherent knowledge to support either intra-enterprise decision making (i.e. decision

making processes involving the departments of an enterprise) or inter-enterprise

6.1 Introduction 181

decision making (i.e. decision-making processes involving departments located in

different enterprises). However, as pointed out in Section 2.8, the current generation

of Web-based DSS are not able to represent, reason and integrate information that

may be potentially incomplete and/or contradictory to provide support for either the

intra-enterprise or inter-enterprise decision-making process. Due to this limitation,

they do not provide any solution for EKI. To address this, in this chapter, a framework

for Argumentation-enabled Web-based IDSS for EKI (Web@KIDSS) is proposed that

provides a solution for EKI to facilitate either the intra-enterprise or inter-enterprise

decision-making process.

Figure 6.1: Interaction of an enterprise’s internal and external
environment for Enterprise Knowledge Integration (EKI)

The proposed framework imports the reasoning chains generated by Web@IDSS

and extends its functionality to publish them in a standard format over the enterprise’s

intranet or the Internet. It then transforms the standard reasoning chains to DeLP

format, evaluates them against the decision maker’s defined criteria defined as an

integration scheme which is then followed by their integration using argumentative

reasoning. The development of Web@KIDSS will advance the research in Web-based

DSS as depicted in Figure 6.2.

6.2 Case study for problem definition 182

Figure 6.2: Evolution towards Intelligent Information Integration in
an enterprise

The organization of this chapter is as follows: in Section 6.2, an outline of

the problem to be addressed by using a case study to highlight the requirements

and challenges for EKI in enterprise-wide decision making is given. In Section

6.3, an overview of the proposed Argumentation-enabled Web-based IDSS for EKI

(Web@KIDSS) is provided. In Sections 6.4 to 6.6, each component of the proposed

framework is explained in detail and how it provides a solution to the problem

highlighted in the case study is discussed. Section 6.7 concludes the chapter.

6.2 Case study for problem definition

To explain the problem, consider the example of enterprise ABC, comprising different

departments such as Information Technology (IT), Marketing (Mar) and Human

Resources (HR), which has decided to relocate its departments to a new site. The

business manager responsible for overseeing the move has instructed the manager

of each department to provide recommendations and justifications for engaging

the services of the XYZ relocation service to assist with the move by considering

information such as:

• business-related information for the XYZ relocation service provider published

on the Web along with the department’s business requirements, and

• customer feedback on the services provided by the XYZ relocation service

provider

Figure 6.3 depicts the possible interaction between the internal environment of

enterprise ABC and the external environment that comprises information such as XYZ

6.2 Case study for problem definition 183

Figure 6.3: Interaction of enterprise ABC with external environment

business policies and customer feedback on the services provided XYZ etc. In order

to generate recommendations for relocation service provider XYZ, each department’s

manager uses Web@IDSS to represent, reason and integrate XYZ business information

with their departmental information (requirements) and customer feedback. Once

each department in the ABC enterprise forwards its recommendation to the business

manager, the latter will need to integrate the diverse recommendations about relocation

service provider XYZ from each department into a coherent knowledge base which

could help the business manager to reach a final decision, i.e. whether or not to engage

the services of the XYZ relocation service provider. The challenges that confront the

business manager are as follows:

• recommendations from each department need to be in a standard, shareable

format;

• recommendations from each department need to be evaluated by testing them

against the decision maker’s defined criteria. Such evaluation helps the decision

maker to decide on the scope of the recommendation chain and whether or not

to consider it for EKI;

• conflicts within and between the different recommendations need to be addressed

in relation to the inter-enterprise or intra-enterprise decision making process.

In order to overcome the abovementioned challenges, the business manager requires

a Web-based IDSS that offers the following functionalities:

• an interface to download the recommendations and save them in the knowledge

base;

6.2 Case study for problem definition 184

• an interface to define and apply an integration scheme over the recommendations

saved in the knowledge base in order to evaluate their scope and whether or not

to consider them for EKI;

• a reasoning mechanism that can resolve the conflicts between diverse

recommendations and integrate them into an integrated knowledge base that

may assist the decision makers in the intra-enterprise or inter-enterprise

decision-making process;

To develop a Web-based IDSS with the abovementioned functionalities, the business

manager’s requirements for a Web-based DSS for EKI are formalized as follows :

• sharing of recommendations in a standard format, such as AIF, that is

understandable by other Web-based DSS in the inter-enterprise or intra-enterprise

decision-making process;

• integration of recommendations which involves the definition and application

of the integration scheme and argumentative reasoning to identify and resolve

conflicts;

• justifiable explanation of the reasoning process and the results achieved;

• capability to provide a graphical representation of the reasoning process

performed to achieve EKI in order to make it easily understood by non-technical

persons such as the business manager.

Assumptions

• Enterprises ABC and XYZ and the feedback forum share a common vocabulary

defined in OWL/RDF format and the predicates defined in the vocabulary are

used for the specification of business rules.

• A declarative language for specifying the imported recommendation in the form

of reasoning chains for knowledge integration in an enterprise.

• A declarative language with the capability of representing incomplete and

contradictory information represented by reasoning chains.

• Information integration via an inference mechanism that can perform reasoning

pertaining to incomplete and contradictory information from different sources.

• Reasoning chains have been produced by different departments of an enterprise

by using Web@IDSS.

6.3 Proposed framework for Argumentation-enabled Web-based IDSS for
Enterprise Knowledge Integration (Web@KIDSS) 185

6.3 Proposed framework for Argumentation-enabled

Web-based IDSS for Enterprise Knowledge

Integration (Web@KIDSS)

In this section, the proposed framework for the Argumentation-enabled Web-based

IDSS for EKI is presented i.e. integrating the decisions/recommendations generated by

different Web-based DSS into a coherent knowledge base to support the inter-enterprise

or intra-enterprise decision making process. The proposed framework, presented in

Figure 6.4 consists of three layers as follows:

1. Information layer

The information layer represents the structured information identified by

decision makers for consideration during the decision-making process. This

information comprises different reasoning chains published over the enterprise’s

intranet or the Internet by different Web-based DSS located both within the

enterprise and/or in other enterprises.

2. @IRRI layer

This layer comprises a logic-based framework that enables Semantic Web

applications such as Web-based DSS, to deal with information in the form of

reasoning chains (e.g. recommendations generated by different Web@IDSS)

which are potentially incomplete and/or contradictory and considers them for

inter-enterprise or intra-enterprise decision making. It provides different modules

to transform a reasoning chain into a standard, shareable format such as

Argument Interchange Format (AIF) for publication on an enterprise’s intranet

or the Internet. Additionally, it also provides a solution for considering different

published reasoning chains, integrating them after applying the integration

scheme and performing argumentative reasoning to resolve conflicts between them

followed by representing them graphically to the decision maker to assist him in

the decision-making process. The modules are as follows:

(a) Information and knowledge integration module provides functionalities for:

• the transformation of a reasoning chain generated by a Web@IDSS

into AIF format and its publication in OWL/RDF format over the

enterprise’s intranet or the Internet. This ensures information from

heterogenous sources is in a standard format to achieve EKI.

6.3 Proposed framework for Argumentation-enabled Web-based IDSS for
Enterprise Knowledge Integration (Web@KIDSS) 186

• Enterprise knowledge integration which involves the following steps:

– Import the published reasoning chains in AIF format and

transform them into DeLP format (DeLP rules and facts) and

save them in the knowledge base. Such transformation of

reasoning chains from AIF to DeLP format enables the hybrid

reasoning engine to perform the next steps.

– Valuation of the reasoning chains which involves the following
steps:

� Re-construction of the reasoning chains from the

knowledge base with the help of the argumentative

reasoning module. The re-constructed reasoning chains

are then modelled in the form of an argument by using

the Toulmin model for the argument’s structure. The

collection of reconstructed, modelled reasoning chains is

called the recommendations space.

� definition and application of the integration scheme on the

recommendations space with the help of the argumentative

reasoning module. This is to identify and consider only

those reasoning chains for the next step that adhere to the

decision maker’s required criteria. The reasoning chains

that adhere to the decision maker’s defined criteria are

saved in the valued recommendations set.

� a Web-based form that displays the results produced

during the valuation of a reasoning chain.

– Generation an integrated recommendations space which

involves the following steps:

� identification and resolution of conflicts between the

arguments in the valued recommendations set with the

help of the argumentative reasoning module .

� construction of new arguments once the conflicts have

been resolved. This involves combining the premises of

the arguments that support the same claim. The new

arguments are saved in the valued recommendations set.

6.3 Proposed framework for Argumentation-enabled Web-based IDSS for
Enterprise Knowledge Integration (Web@KIDSS) 187

� identification of unique conclusions/claims in the valued

recommendations set followed by linking the supporting

arguments to reach a conclusion/claim to form a reasoning

chain. The construction of reasoning chains is carried out

with the help of the argumentative reasoning module .

– Graphical representation of the integrated recommendations
space to assist the decision maker in the decision-making

process. Additionally, this will provide functional support to

the decision maker to query the knowledge base.

(b) Argumentative reasoning module is exploited by the information and

knowledge integration module for the valuation of the reasoning chains and

the generation of the integrated recommendation space.

3. Semantic Web applications layer

This layer consists of Web@KIDSS which exploits the @IRRI layer and the

information layer to achieve its objectives.

Figure 6.4: Proposed framework with highlighted components
exploited by Web@KIDSS

6.3 Proposed framework for Argumentation-enabled Web-based IDSS for
Enterprise Knowledge Integration (Web@KIDSS) 188

Before explaining the working of the proposed framework, in the next sub-section,

important definitions and concepts are introduced to assist the understanding of the

working of Web@KIDSS.

6.3.1 Important definitions

In the following section, the formal syntax and semantics for Enterprise Knowledge

Integration through the Argumentation-enabled Web-IDSS (Web@KIDSS) are defined.

6.3.1.1 AIF argument network

Rahwan et al. (2007b) define an argument network Φ as a graph G and set of forms F

consisting of

• a set N of vertices (or nodes) comprising I-Nodes and S-Nodes; and

• a binary relation
edge−→: N x N representing edges between nodes

• a binary relation using an inference scheme from set F

such that � (i, j) ∈ uses(RA−node,scheme)−→ where both i ∈ N1 and j ∈ N1.

6.3.1.2 Argumentative production system as an argument network

Given an argument graph G and set of forms F in an argument network Φ , a

Web@IDSS argument network AG is defined as follows: (WM, R, Args) where

• WM: a set of information nodes i.e. N I
i,...,n, where I represents the information

nodes and i represents the index of the node.

• R : a set of production rules or specifications to establish links between N I
i nodes

through S node such that � (i, j) ∈ edge−→ where both i ∈ N1 and j ∈ N1

• Args: a set of arguments derived from R, where each argument establishes a
linked set of premises (N I

i) to a claim(N I
j) through S node. Based on the forms

of AIF ontology , the strict argument and defeasible argument are defined as

follows:

(Strict argument) : N I
i ,......,N I

j

Uses(RA,deductiveScheme)−→ N I
k

(Defeasible argument): N I
m,......,N I

n

Uses(RA,defeasibleScheme)
��	 No

6.3 Proposed framework for Argumentation-enabled Web-based IDSS for
Enterprise Knowledge Integration (Web@KIDSS) 189

The binary relation
edge−→: N x N representing edges between nodes in Web@IDSS can

be categorized as follows:

• Counter-argument: N I
i

Uses(CA−Node)
��	 ∼ N I

j such that N I
i is a counter-argument

N I
j

• Static defeat: N I
i

Uses(PA−Node)
��	 N I

j such that N I
i is has priority over N I

j

• Dynamic defeat: N I
i

Uses(PA−Node)
��	 N I

j such that N I
i has priority over N I

j

• Sub-argument: To represent the sub-argument relationship in AIF format, a

blank-node is added into the argument network i.e.

N I
i

Uses(Blank−Node)
��	 N I

j such that N I
i (claim of an argument) is a sub-argument

of N I
j (premise of an argument).

6.3.1.3 Predecessor and Successor Nodes in the network

Given a graph AG consisting of a set of nodes N and a relation S ⊆ N× Ndefining
the set of edges between the nodes, for each node n ∈ N , the set of its predecessor and
successor nodes is defined as follows:

• A predecessor node : {x ∈ N | (x, n) ∈ S },

• A successor node : {x ∈ N |(n, x) ∈ S }.

6.3.1.4 Recommendations space

A collection of recommendations, each in the form of a reasoning chain λ(identifer,result)

contributed by source ‘i’ is known as a recommendations space. Mathematically, a

recommendations space is defined as follows:

Θ =
∑n

i=0

{
[i]λ(identifer,result)

}
. Equation (6.1)

6.3.1.5 Integration scheme

An integration scheme, the decision maker’s defined argumentation scheme

(Katie Atkinson, 2008), is a tuple with the following form:

6.3 Proposed framework for Argumentation-enabled Web-based IDSS for
Enterprise Knowledge Integration (Web@KIDSS) 190

IS = –name, (premisei,premisen), conclusion, criticalquestions, variant}

. Equation (6.2)

where

• name is the label of the scheme which identifies the scheme;

• premise is a set of facts to be matched;

• sConclusion is the result of the scheme;

• sCriticalquestion is a set of queries;

• svaraint is a boolean flag for conflict blocking. If svariant is true, the conflicts are

blocked and the reasoning chain will not be considered for any further processing;

whereas if the flag is false, then reasoning chains with conflicts are still considered

for further processing.

The critical questions can be categorized as exceptions and assumptions. The premises

provide reasons for accepting the conclusion only if the assumptions are true and there

are no exceptions. If either an assumption is false or an exception is true, unless the

premises provide reasons for accepting the conclusion, the conclusion would not be valid

(Katie Atkinson, 2008). Thus, both assumptions and exceptions attack the conclusion

of the scheme.

6.3.1.6 Valuation operator and valued reasoning chain

The application of the integration scheme to a reasoning chain is termed ‘valuation of

a reasoning chain’ and the resulting reasoning chain is called a valued reasoning chain.

Mathematically, the valuation operator � is defined as a binary operator as follows:

[rc1]λval
(A,a)=

{
[rc1]λ(A,a) � IS

}
. .Equation (6.3)

6.3 Proposed framework for Argumentation-enabled Web-based IDSS for
Enterprise Knowledge Integration (Web@KIDSS) 191

During the valuation of a reasoning chain, all the premises and critical questions

originating from the integration scheme are executed on the corresponding reasoning

chain. If the premises match the reasoning chain and queries return true on the

execution over the reasoning chain, the reasoning chain is considered to be a valued

reasoning chain. The reasoning chain is still considered valued if the reasoning chain

premise does not match or queries return false, but the conflict blocking flag, i.e.

svariant is false.

6.3.1.7 Focus operator

⊗ is a binary operator, such that

[rc1]λval
(A,a) ⊗ [rc2]λval

(B,a) . Equation (6.4)

is called a ‘focus operator’. This corresponds to AND operator. If two arguments

belonging to different reasoning chains have the same claim, the application of the

focus operator produces these arguments in a resulting set.

6.3.1.8 Merge operator

 is a binary operator (Fan et al., 2010), such that

[ar1]a,b,c��	 d [ar2] e, b, c ��	 d . Equation (6.5)

is called a ‘merge operator’. This corresponds to the OR operator and it applies to

arguments that make the same claim. The application of this operator results in the

construction of a new argument that carries all the unique premises of the arguments

and links them to a common claim.

6.3.1.9 Unique operator

� is a binary operator, such that

6.3 Proposed framework for Argumentation-enabled Web-based IDSS for
Enterprise Knowledge Integration (Web@KIDSS) 192

[rc1]λval
(A,a) � [rc2]λval

(B,a) . Equation (6.6)

is called a ‘unique operator’. The application of the unique operator on reasoning

chains and returns all those arguments whose claim is unique between the reasoning

chains.

6.3.1.10 Conflict operator

is a binary operator, such that

[rc1]λval
(A,a) � [rc2]λval

(B,a) . Equation (6.7)

is called a ‘conflict operator’. The application of this operator to reasoning chains

will return the set of arguments along with their counter-arguments and undefeated or

blocking dialectical trees.

6.3.1.11 Preference operator

is a binary operator such that

[a]giveDiscount(XY Z) > [b] ∼ giveDiscount(XY Z)Equation (6.8)

is known as a ‘preference operator’. The decision maker can define a preference

relation explicitly for an argument and its counter-arguments.

6.3.1.12 Integrated recommendations space

The integration of recommendations, each in the form of a valued reasoning chain

λval
(identifer,result) contributed by a source ‘i’ is known as an integrated recommendations

space. Mathematically, an integrated recommendations space is defined as follows:

6.3 Proposed framework for Argumentation-enabled Web-based IDSS for
Enterprise Knowledge Integration (Web@KIDSS) 193

Θintegrated =
∑n

i=0

{
[i]λval

(identifer,result)

}
. Equation (6.9)

6.3.1.13 Query

A query ‘q’ consists of a predicate, and can be executed on the argument set ‘Args’

with the help of function executeQuery(q) ∈ F to check the support for the predicate

in the recommendations space.

6.3.2 Working of the proposed framework for Web@KIDSS

In this section, the working of the proposed framework for the integration of reasoning

results produced by different Web@IDSS located both within the enterprise and/or

in other enterprises after resolving the conflicts between them to assist the decision

maker in the decision making process is discussed. Figure 6.5 presents a flow chart

of the working of the proposed framework. The sequence of steps in the proposed

framework is as follows:

1. Publication of EII in a standard format

The Web@IDSS needs to publish decisions/results in a shareable format over

the enterprise’s intranet or the Internet so that they can be merged/considered

by other Web-based DSS to assist the inter-enterprise or intra-enterprise

decision-making process. To achieve this objective, Web@IDSS exploits

the functionality of the information and knowledge integration module of the

logic-based framework located at @IRRI layer. This module helps the Web@IDSS

to transform the reasoning chain into a standard format i.e. AIF and publish it

over the enterprise’s intranet or the Internet. This process involves the following

two steps:

• Modeling of reasoning chains as an AIF argument network

The elements of a reasoning chain i.e. arguments and the relationships

between them, are modelled as an AIF argument network.

• Semantic annotation and serialization of a reasoning chain

The modeling of a reasoning chain as an AIF argument network

is realized by annotating the elements of a reasoning chain with the

concepts and relationships defined in the AIF core ontology 1. The
1Details of the AIF core ontology are provided later in this chapter

6.3 Proposed framework for Argumentation-enabled Web-based IDSS for
Enterprise Knowledge Integration (Web@KIDSS) 194

semantic annotation is an automated process and once completed, the

annotated reasoning chain is in OWL/RDF format and is published over

the enterprise’s intranet or the Internet.

Figure 6.5: Flowchart illustrating steps performed by Web@KIDSS for
enterprise knowledge integration

2. Enterprise knowledge integration

Once the reasoning chains have been published, Web@KIDSS needs to

import and integrate them, generate a graphical representation of the integrated

6.3 Proposed framework for Argumentation-enabled Web-based IDSS for
Enterprise Knowledge Integration (Web@KIDSS) 195

reasoning chains to assist the decision maker in the decision making process of

the inter-enterprise or intra-enterprise. To achieve this objective, Web@KIDSS

exploits the functionalities of the information and knowledge integration module

and the argumentative reasoning module of the logic-based framework located at

@IRRI layer. This process involves the following three steps:

• Import and transform the published reasoning chains

This steps involves importing the published reasoning chains followed

by their transformation into DeLP format (i.e. DeLP rules and DeLP facts)

and saves them in the knowledge base.

• Valuation of the reasoning chains

This starts with the reconstruction of reasoning chains from the

knowledge base and their modeling in the form of an argument using the

Toulmin model for the argument’s structure. The next step is to define

and apply an integration scheme on the modelled reasoning chains. This

is to identify and consider only those reasoning chains for the next step

that adhere to the decision maker’s required criteria. This process is called

the ‘valuation of the reasoning chains’. The reasoning chains that pass the

valuation process are called valued reasoning chains and are saved in the

valued recommendations set. The valuation of the reasoning chains involves

the following steps:

– Re-construct the reasoning chains. As discussed in Section 5.5.1,

this involves the compilation of the production rules (DeLP rules)

in the rule base as a Rete network and the DeLP facts in the working

memory are passed through the Rete network. This results in the

construction of arguments. The arguments are then linked in the form

of reasoning chains. The reasoning chains are then modelled as an

argument by using the Toulmin model for the argument’s structure.

– Define an integration scheme that specifies the decision-maker’s

criteria in the form of pre-requisites which the reasoning chain must

satisfy in order for it to be considered for further processing.

– Apply the integration scheme over the reasoning chains that resulted
in the creation of the valued recommendations set.

– Display the valued reasoning chains to the decision maker.

6.3 Proposed framework for Argumentation-enabled Web-based IDSS for
Enterprise Knowledge Integration (Web@KIDSS) 196

• Generation of the integrated recommendations space

Once the valued recommendations set has been generated, the next

step is to perform argumentative reasoning to identify and resolve conflicts

between them, and identify the unique conclusions supported by the

valued reasoning chains followed by their integration. Such integration

of the valued reasoning chains results in the creation of the integrated

recommendations space, involving the following steps:

– Perform argumentative reasoning which involves the identification of

conflicts between arguments belonging to different valued reasoning

chains in a valued recommendations set. Once the conflicts have been

identified, the automated resolution of conflicts between arguments

takes place by computing either static or dynamic defeat. Once the

conflicts between the arguments in the valued recommendations set

have been resolved, the construction of new arguments takes place

by combining the premises of those arguments that support the same

claim.

– Identify the unique conclusion supported by underlying valued

reasoning chains.

– Build the reasoning chains (as defined in Section 5.6.1), each of which
support a unique conclusion. Such integration of information is called

an integrated recommendations space.

3. Graphical representation of results to support intelligent decision making

Once the integrated recommendations space has been created, Web@KIDSS

exploits the functionality of the information and knowledge integration module

of the logic-based framework located at @IRRI layer to provide a graphical

representation of the integrated recommendations space and assist the decision

maker to make the final decision. This process involves the following steps:

• Graphical representation of the integrated recommendations space

Once the integrated recommendations space has been created,

Web@KIDSS provides the decision maker with a graphical representation

to assist him in the intra-enterprise or inter-enterprise decision-making

process. Such an integrated recommendation space represents the different

viewpoints in the underlying information and the support for each.

6.4 Publication of enterprise integrated information (EII) in a standard format 197

• Functionality to query the knowledge base

The Web@KIDSS provides an interface to query the knowledge base

if the decision maker needs an explanation of the results returned by the

system.

In the next sections, each of these steps will be discussed in detail.

6.4 Publication of enterprise integrated

information (EII) in a standard format

As discussed in Chapter 5, a Web@IDSS represents, reasons and integrates

potentially incomplete and\or contradictory information that exists both within

the enterprise and/or in other enterprises to assist the decision maker in the

decision-making process. For EKI, a reasoning chain produced by a Web@IDSS

needs to be shared with other Web-based DSS which may be either within

the enterprise and/or in other enterprises. The current representation of

reasoning chains is Web@IDSS specific and it cannot be consumed directly

by other Semantic Web applications. The proposed framework addresses this

drawback with the help of the information and knowledge integration module

of the logic-based framework located at @IRRI layer. This module helps the

Web@IDSS transform and publish the reasoning chain in AIF format. Figure 6.6

describes the following steps involved in the transformation of a reasoning chain

in AIF format and its publication over an enterprise’s intranet or the Internet:

(a) Modeling of a reasoning chain as an AIF argument network

AIF is an effort to provide a standard representation of a set of

arguments and the relationships between them to ensure the argument

network is understandable by different applications. As discussed in

Section 5.6.1, a reasoning chain is composed of a set of arguments and

the relationships between them. In order to model the reasoning chain as

an AIF argument network, an argumentative production system is defined

as an AIF network of arguments in Section 6.3.1.2, where the elements of

a reasoning chain are mapped to the elements of an AIF .

(b) Semantic annotation and serialization of a reasoning chain

Once the reasoning chain has been modelled as an AIF argument

network, the next step is the realization (implementation) of a reasoning

6.4 Publication of enterprise integrated information (EII) in a standard format 198

chain as an AIF argument network. Using the mapping defined in Section

6.3.1.2, the reasoning chain is annotated with the ArgDF ontology that

provides AIF reification 2 in OWL/RDF format. As a result of semantic

annotation, the resulting reasoning chain is serialized in OWL/RDF format

and published over the enterprise’s intranet or the Internet.

Figure 6.6: Flowchart illustrating steps performed by Web@KIDSS for
publication of the reasoning chains

In the next-subsections, these two steps are discussed in detail.

6.4.1 Modeling of a reasoning chain as an AIF argument

network

The Argument Interchange Format (AIF) is an international effort to develop a

representational mechanism for exchanging argument resources between research

groups, tools, and domains, using a semantically rich language (Chesnevar et al.,

2006a; Iyad Rahwan, 2009; Rahwan et al., 2007b). AIF was developed as a

commonly agreed upon core ontology i.e. AIF core ontology, that specifies

the basic concepts used to express arguments and the relationship between

arguments. The AIF core ontology, as depicted in Figure 6.7, is composed of

the following two ontologies:

• Upper Ontology

2AIF reification refers to the use of a concrete language to represent an AIF argument network

6.4 Publication of enterprise integrated information (EII) in a standard format 199

The Upper Ontology defines the basic building blocks of AIF argument

graphs, and the types of nodes and edges. There are two types of argument

nodes:

– information nodes (I-Nodes) which capture information in the form
of a premise, conclusion, exception or presumption, and

– scheme nodes (S-nodes) which provide the relationship between two
I-Nodes and are further classified as:

� rule application nodes (RA-Node) which correspond to

inferences from premises to claims;

� conflict nodes (CA-Node) which correspond to conflicts between

two nodes;

� preference application nodes (PA-node) which correspond to

preference ordering between contradictory nodes.

• Forms Ontology

The Forms Ontology allows for the conceptual definition of the elements

of AIF graphs, such as premises, inference schemes and exceptions.

Inference schemes are similar to the rules of inference in logic such as a

deductive or defeasible inference.

Figure 6.7: The Upper and Forms ontology of the AIF ontology(Bex
et al. (2010))

Based on the definition of the AIF argument network (defined in Section 6.3.1.1),

an argumentative production system is defined as a network argument (defined

in Section 6.3.1.2) where the elements of a reasoning chain are mapped to the

elements of the AIF argument network as follows:

6.4 Publication of enterprise integrated information (EII) in a standard format 200

• A strict argument consists of a set of premises and a conclusion. The

premises and conclusion are linked with the help of a strict inference.

During mapping, each premise and a conclusion is represented as an I-Node

and the strict inference is represented as an S-Node using the deductive

scheme.

N I
i ,......,N I

j

Uses(RA,deductiveScheme)−→ N I

• A strict defeasible argument also consists of a set of premises and a

conclusion. The premises and conclusion are linked with the help of a

defeasible inference. During mapping, each premise and conclusion is

represented as an I-Node and the defeasible inference is represented as an

S-Node using the defeasible scheme.

N I
m,......,N I

n

Uses(RA,defeasibleScheme)
��	 No

The binary relations between arguments in a reasoning chain are mapped to an

AIF argument network as follows:

• The counter-argument relation involves two arguments which are in conflict

with each other. The claims of the argument and its counter-argument are

mapped as an I-Node and a CA-Node is used to represent the relationship

between them.

N I
i

Uses(CA−Node)
��	 ∼ N I

j such that N I
i is a counter-argument N I

j

• Static defeat and dynamic defeat are two types of defeats that are used

by an argumentative production system to resolve conflicts between an

argument and its counter-argument that results in the establishment of

preferences between them. During mapping, this relationship is represented

as a PA-Node between the claims of arguments that are represented as an

I-Node.

N I
i

Uses(PA−Node)
��	 N I

j such that N I
i is has priority over N I

j

• For representation of the sub-argument relationship in AIF format, a

blank-node is added into the argument network i.e. N I
i

Uses(Blank−Node)
��	

N I
j such that N I

i (claim of an argument) is a sub-argument of N I
j (premise

of an argument).

• The I-Node i.e. N I
i with no successor and with predecessor nodes is called

the ‘result’ of the reasoning chain. The remaining nodes are known as

‘support’ for the result.

6.4 Publication of enterprise integrated information (EII) in a standard format 201

To explain the modeling of a reasoning chain with an example, consider the case

study discussed in Section 6.2 where the recommendation from the IT department

about choosing the relocation service provider XYZ are shown in illustration 6.1.

IT=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[rc1.a.it.d1]client(it), happy(it, xyz), relocationService(xyz) ��� reuseService(it, xyz)

[rc1.x.d2]client(it), relocationService(xyz), reuseService(it, xyz) ��� giveDiscount(it);

[rc1.x.s1]giveDicount(it), advancmentPayment(it) → normalDiscount(it)

[rc1.a.it.d3]ontimeDelivery(xyz) ��� efficient(xyz).

[rc1.a.it.d4]not dmanageProduct(xyz) ��� safeDelivery(xyz).

[rc1.x.d3]efficient(xyz), safeDelivery(xyz) ��� reliableService(xyz)

[rc1.a.it.d5]largeTruck(xyz), reuseService(it, xyz), reliableService(xyz),

normalDiscount(xyz) ��� goodRelocationService(xyz)

[rc1.a.it.d6]language(english), languageProblem(xyz, english) ���∼ clearCriteria(xyz)

[rc1.a.it.d7]demandCash(xyz), demandTip(xyz) ���∼ convienent(xyz)

[rc1.a.it.d8]goodRelocationService(xyz), not convienent(xyz), not clearCriteria(xyz)

��� recommendService(xyz)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

illustration(6.1)

The Figure 6.8 provides the graphical representation of the recommendations in

form a reasoning chain constructed from set of arguments shown in illustration

6.1 by using the approach proposed in Section 5.6.1.

Figure 6.8: Pictorial representation of the recommendation forwarded
by IT department

Figure 6.9 depicts the pictorial representation of a reasoning chain modeled

as an AIF argument network where the premises and the conclusion are

represented as I-Nodes and defeasible/strict inference is represented as RA-nodes

that use defeasible/strict modus ponens to reach a conclusion. The directed

arrows are simply to emulate the edge from an S-Node to a I-Node and

bold-text I-Nodes are used represent the claim of an argument for better

readability. Similarly, an I-Node such as [rc1.a.it.d8]recommendService(xyz)

that has no successor and has predecessor nodes represents the ‘result’

of a reasoning chain and the remaining nodes represent the ‘support’ for

the result. The AIF argument does not provide a node to represent the

6.4 Publication of enterprise integrated information (EII) in a standard format 202

sub-argument relationship, therefore, to capture the sub-argument relationship,

the sub-argument i.e. [rc1.x.s1]normalDiscount(xyz) is linked to the argument

i.e.[rc1.a.it.d5]goodrelationService(xyz), with a blank node.

Figure 6.9: Pictorial representation a reasoning chain as an AIF
argument network

6.4.2 Semantic annotation and serialization of a reasoning

chain

Once the reasoning chain has been modelled as an AIF argument network, the

next step is the realization (implementation) of a reasoning chain as an AIF

argument network. To achieve this objective, the reasoning chain is annotated

with an ArgDF ontology that provides AIF reification 3. In Section 6.3.1.2, the

mapping between the elements of a reasoning chain and the elements of an AIF

argument network is defined. Using this mapping, the concepts and relationships

defined in the ArgDF ontology are used to annotate the reasoning chain and the

resulting reasoning chain is serialized in OWL/RDF format.

To explain the semantic annotation and serialization of a reasoning chain with

an example, consider a reasoning chain that comes from the arguments shown

in Figure 6.8. The semantic annotation is an automated process and the

resulting reasoning chain is saved in OWL/RDF format. Figure 6.10 depicts the

serialization of a reasoning chain built from the arguments shown in Figure 6.8.

3AIF reification refers to the use of a concrete language to represent an AIF argument network

6.5 Enterprise knowledge integration (EKI) 203

Figure 6.10: Serialization of AIF compliant reasoning chain in turtle
format

6.5 Enterprise knowledge integration (EKI)

Once the reasoning chains have been published, the next step is

EKI i.e. the integration of published reasoning chains and the

provision of a graphical representation of integration information to

assist the decision maker for the intra-enterprise or inter-enterprise

decision-making process. To achieve this objective, Web@KIDSS exploits

the functionalities of the information and knowledge integration module and the

argumentative reasoning module of the logic-based framework located at @IRRI

layer. This module helps the Web@KIDSS to import and transform the published

reasoning chains, perform hybrid reasoning over them and integrate them in a

format that can assist the decision maker in an enterprise-wide decision making

process. Figure 6.11 presents the flowchart of enterprise knowledge integration.

Enterprise knowledge integration involves the following three steps:

• Import and transform the published reasoning chains

6.5 Enterprise knowledge integration (EKI) 204

During this step, the published reasoning chains in AIF format are

imported by Web@KIDSS,transformed into DeLP format (i.e. DeLP rules

and DelP facts) and saved in the knowledge base. During transformation

of AIF argument network nodes to the elements of a reasoning chain, the

transformation rules considered are as follows:

– I-Nodes are transformed to premises and the conclusion of an

argument.

– RA-Nodes are used to determine the types of argument. The

RA-Nodes that use strict modus ponens are realized as strict

arguments and RA-Nodes that use defeasible modus poenens are

realized as defeasible arguments.

– CA-nodes do not need any transformation because Web@KIDSS
can identify the contradictory arguments using the argumentative

reasoning module.

– PA nodes are transformed to the preferences relationship between

contradictory arguments.

• Valuation of the reasoning chains

During this process, the following steps are performed:

– Re-construction of the reasoning chains. As discussed in Section 5.5.1,
this involves compilation of the production rules (DeLP rules in the

rule base) as a Rete network and facts (DeLP facts in the working

memory) are passed through the Rete network. This results in the

construction of arguments. The arguments are then linked in the form

of reasoning chains. The reasoning chains are then modelled using the

Toulmin model for an argument’s structure.

– Define an integration scheme that specifies the decision maker’s

criteria in the form of pre-requisites for a reasoning chain to satisfy

in order for it to be considered for further processing.

– Application of an integration scheme over the reasoning chains. The
reasoning chains that pass the valuation are called valued reasoning

chains. The collection of valued reasoning chains is called the valued

recommendations set.

6.5 Enterprise knowledge integration (EKI) 205

– Display the valued reasoning chains to the decision maker.

Figure 6.11: Flowchart illustrating steps performed by Web@KIDSS
for knowledge integration

6.5 Enterprise knowledge integration (EKI) 206

• Generation of integrated recommendations space

Once the valuation of the reasoning chains is accomplished and the

valued recommendations set is produced, the next step is to integrate the

reasoning chains in the valued recommendations set to form an integrated

recommendations space. To achieve this objective, the following steps are

performed:

– Perform argumentative reasoning which involves the identification of

conflicts between arguments belonging to different valued reasoning

chains in a valued recommendations set. Once conflicts have been

identified, the automated resolution of conflicts between arguments

occurs, with the help of computing either static or dynamic defeat.

Once the conflicts have been resolved between the arguments in the

valued recommendations set, the construction of new arguments takes

place by combining the premises of these arguments that support the

same claim.

– Identify the unique conclusion supported by underlying valued

reasoning chains.

– Build integrated reasoning chains, each of which support a unique
conclusion. Such integration of information is called the integrated

recommendation space.

In the following sub-sections, I will explain each of these steps in detail.

6.5.1 Import and transform the published reasoning chains

The reasoning chains published on the enterprise’s intranet or the Internet by different

Web@IDSS in AIF format are imported by the Web@KIDSS. It understands and

consumes these reasoning chains in AIF format (serialized in OWL/RDF format) and

translates them to DeLP constructs as follows:

• The information nodes are translated as either the premise of an argument or

claim, whereas the scheme nodes are used to build the types of arguments and the

relationship between arguments. For example, if there is an RA-node (defeasible

or strict inference), the predecessor of the scheme nodes will be the premise and

the successor of the RA-node and will be the claim of the argument.

6.5 Enterprise knowledge integration (EKI) 207

• Similarly, CA-nodes and PA-nodes are translated into counter-arguments and

defeat the relationship between the arguments, respectively. The blank-nodes

are translated as the sub-argument relationship between arguments.

To explain with an example, consider the AIF representation of reasoning chains

shown in Figure 6.9. The steps involved in the translation of AIF elements of a

reasoning chain to DeLP format by Web@KIDSS are as follows:

• Strict inference

If the RA-Nodes use strict modus ponens (represented in Figure 6.12), all

the incoming edges to the RA-Node are considered premises and the successor

node is considered as the claim of a strict argument.

Figure 6.12: AIF representation of a strict argument

• Defeasible inference

If the RA-Nodes use defeasible modus ponens (as represented in Figure 6.13),

all the incoming edges to the RA-Node are considered premises and the successor

node is considered the claim of the defeasible argument.

Figure 6.13: AIF representation of a defeasible argument

• CA-node

No translation for the CA-node (as represented in Figure 6.14) as the

proposed Web@KIDSS has a built-in mechanism to identify contradictory

arguments.

Figure 6.14: AIF representation of a CA-Node

6.5 Enterprise knowledge integration (EKI) 208

• PA-node

If the PA-nodes (as represented in Figure 6.15) exit between an argument

and its counter-argument, then the argument having an incoming edges from the

PA-Node has low priority than its counter-argument.

Figure 6.15: AIF representation of PA node

After translation of a reasoning chain, the arguments are transformed to production

rules (DeLP rules) and saved in the knowledge base. During the process, new

variables and DeLP facts are generated. Ground predicates such as shopper(david),

are transformed to a predicate with attribute variables such as shopper(X). Such

transformation of a reasoning chain allows the hybrid reasoning engine to save them

in the knowledge base and perform hybrid reasoning over it. A similar procedure is

performed for all of the premises of a production rule. Additionally, the premises of

the argument (except those that represent incomplete information and start with ‘not’)

are saved as DeLP facts in the working memory. Figure 6.16 represents the pictorial

representation of the procedure that transforms an argument into production rules and

saves the resulting DeLP facts and DeLP rules in the working memory and rule base,

respectively.

Figure 6.16: Pictorial representation of the transformation of an
argument to a production rule

To explain the importation and transformation of reasoning chains, consider the

case study discussed Section 6.2, where enterprise ABC considers the reasoning chains

published by its departments. The collection of these reasoning chains is called

recommendations space. The recommendation space for enterprise ABC is depicted

in Figure 6.17 and can be mathematically represented as follows:

6.5 Enterprise knowledge integration (EKI) 209

Θ =
{
[rc1]λ(d7,recommend), [rc2]λ(d4,∼recommend), [rc3]λ(d6,∼recommend)

}
. . .Equation (6.10)

where

• [rc1]λ(d7,recommend) represents the recommendation from the IT department

identified as ‘rc1’ in the form of a reasoning chain as shown in illustration 6.1.

• Similarly, [rc2]λ(d6,∼recommend) is a recommendation from the Mark department

identified as ‘rc2’ as shown in illustration 6.2, and [rc3]λ(d4,∼recommend) is a

recommendation from the HR department identified as ‘rc3’ as shown in

illustration 6.3.

Mark=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[rc2.a.mk.d1]not happy(marketing, xyz), relocationService(xyz) ���
∼ reuseService(marketing, xyz)

[rc2.x.d1]relocationService(xyz), client(marketing), useService(xyz) ���
∼ giveDiscount(marketing)

[rc2.a.mk.d3]ontimeDelivery(xyz), largeTruck(xyz), ��� efficient(xyz)

[rc2.a.mk.d5]dmanageProduct(xyz) ���∼ safeDeliver(xyz)

[rc2.a.mk.d4]not efficent(xyz), not reuseService(xyz), not giveDiscount(marketing),

not safeDeliver(xyz) ���∼ goodRelocationService(xyz)

[rc2.a.mk.d6]not goodRelocationService(xyz) ���∼ recommendService(xyz)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

illustration(6.2)

HR=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[rc3.a.hr.d1]language(english), languageProblem(xyz, english) ���∼ clearCriteria(xyz)

[rc3.x.d2]client(hr), relocationService(xyz), reuseService(hr, xyz) ��� giveDiscount(hr)

[rc3.a.hr.d2]not ontimeDelivery(xyz) ���∼ efficient(xyz)

[rc3.a.hr.d3]not efficient(xyz), not giveDiscount(xyz) ���∼ goodRelocationService(xyz).

[rc3.a.hr.d4]not goodRelocationService(xyz), not clearCriteria(xyz), ���
∼ recommendService(xyz)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

illustration(6.3)

6.5 Enterprise knowledge integration (EKI) 210

Figure 6.17: Pictorial representation of the recommendations space for
an enterprise ABC

6.5.2 Valuation of the reasoning chains

The valuation of a reasoning chain consists of the following steps:

1. Modeling of reasoning chains w.r.t the Toulmin model of an argument’s structure

The Web@KIDSS first models the reasoning chain by identifying its basic

elements as determined by Toulmin (2003). Such modeling of a reasoning

chain helps to obtain a better understanding of the reasoning process and the

importance of each element of a reasoning chain in the entire process. A reasoning

chain is modelled as follows:

• Back-up evidence: The initial working memory describes the current

situation, from which the argumentative reasoner starts its derivation

activity. In a reasoning chain, these nodes have no incoming edge

(no predecessor nodes) and only an outer edge, or successor nodes, are

considered back-up evidence.

• Claim: The conclusion/result of the reasoning chain corresponds to the

claim.

• Warrant: The support for the result of a reasoning chain is called a

‘warrant’. It is a set of arguments linked to form a reasoning chain link

as back-up evidence for a claim.

Such modeling of a reasoning chain has significant relevance for correctly

modeling a practical argumentation activity and helps to categorize the various

ways by which arguments can be analysed and defeated; therefore, the following

strategies could have significant value as identified by Baroni et al. (1998).

6.5 Enterprise knowledge integration (EKI) 211

• If conflict exists between a critical question and data, the entire conclusion

drawn from them is undermined.

• It could help to point out flaws in the reasoning chain that relate data to

the conclusion.

• If conflict exists between the claim and critical question, the decision maker

has to see the warrant and data in order to defeat the claim.

To explain the modeling of a reasoning chain by following the Toulmin model,

consider the case study discussed in Section 6.2 where the IT department forwards

its recommendation to the business manager. Figure 6.18 provides the pictorial

representation of a reasoning chain model using the Toulmin model for the

argument structure.

Figure 6.18: Pictorial representation of a modelled reasoning chain
using Toulmin model

2. Definition and application of an integration scheme on the reasoning chains

Once the modeling of the reasoning chains is completed, the next step is to

define and apply the integration scheme. The integration scheme, derived from

the concept of the argumentation scheme, corresponds to our daily life pattern

of reasoning. The application scope of parameters, defined in the integration

scheme, ranges from the valuation of reasoning chains and their integration during

the decision-making process. In the proposed framework, the DeLP language is

used to create an integration scheme using the following steps:

• Name the integration scheme.

6.5 Enterprise knowledge integration (EKI) 212

• Define the set of premises.

• Define the set of critical questions. The critical questions are queries to be

executed on a reasoning chain. The critical questions are further categorised

as follows:

– Set of assumptions

– Set of exceptions

• Set conflict handling variant i.e. conflict blocking either true or false. The

scope of conflict handling can be defined at the valuation of reasoning chains

or their integration or at both levels.

– During the valuation of a reasoning chain, if any conflicts exist
between a critical question and the premise, in the case of the conflict

blocking variant being true, the reasoning chain is not considered

suitable for knowledge integration and vice versa.

– During enterprise knowledge integration, if a conflict exists between
two arguments from different reasoning chains, in the case of

the conflict blocking variant being true, these arguments are not

considered in the final decision-making process and vice versa.

Once the Integration scheme has been defined, the next step is to apply

it on the reasoning chains. This process involves the generation of DeLP

queries from the integration schemes and their execution on the selected

reasoning chain. During this process, if any conflict exists either between

the data and premise, or between the critical question and the warrant, the

Web@KIDSS stores these results and depending upon the conflict blocking

variable value, the reasoning chain will be considered for the next phase.

The Web@KIDSS also displays the results to the decision maker.

Algorithm 6.1 provides the working of the valuation process over a valued

recommendations set. It takes into account a set of AIF compliant reasoning chains

6.5 Enterprise knowledge integration (EKI) 213

and sets their valuation flag to false.

Data: Recommendation space {rc1,rc2,rc3}

Result: Integrated arguments network

Array rc []= {rc1, rc2, rc3}; int i=0;1

supplierIngtegrationScheme si;2

Decision maker initialize si;3

foreach rc.length do4

rc[i].valued=false;5

i++;6

end7

foreach rchain in rc do8

boolean a = Call to Valuation of reasoning chain(rchain,si);9

if a is true then10

rc.valued = true;11

else12

rc.remove(rchain);13

end14

end15

Algorithm 6.1: Process of valuation over valued recommendations set

Then, it applies the integration scheme to each of the reasoning chains one-by-one

by calling Algorithm 6.2 for the valuation of each reasoning chain. During the

valuation of a reasoning chain, the decision maker’s queries defined in the form an

integration scheme are executed on the reasoning chain. If the execution of the query

on the reasoning chain returns false (i.e. the reasoning chain does not adhere to the

decision-maker’s criteria), this is captured as a conflict between the reasoning chain and

the integration scheme. Once the valuation of the reasoning chain is completed, if a

conflict exists between the reasoning chain and the integration scheme and the variant

flag is set to false (i.e. the reasoning chains is not considered for further processing),

the reasoning chain is removed from the valued recommendations set.

To explain the integration scheme with help of an example, consider the case study

discussed in Section 6.2 where the business manager has a set of recommendations in

the form of reasoning chains and he wants to consider only those reasoning chains for

enterprise knowledge integration which satisfy certain specific criteria. For example, the

business manager specifies the criteria that the recommendation must be for relocation

service provider XYZ. Therefore, only recommendations for XYZ are considered for

the final decision-making process, as shown in Figure 6.19 .

6.5 Enterprise knowledge integration (EKI) 214

Data: a reasoning chains(rc) and integration scheme(is)
Result: boolean
foreach premise in is do1

if result = execute(premise) on rc then2

if result== false then3

addconflict(premise, rc);4

end5

end6

end7

foreach cq in is do8

if result = execute(cq) on is then9

if result== false then10

addconflict(cq, rc);11

end12

end13

end14

if addconflict[] !=null or is.conflictBlocking==true then15

return true;16

else17

return false;18

end19

Algorithm 6.2: Valuation of a reasoning chain

Figure 6.19: Web-based from of Web@KIDSS to define integration
scheme

6.5 Enterprise knowledge integration (EKI) 215

To achieve this objective, they define the features in the integration scheme as

follows:

• Premise

The business manager wants to define a criteria that the recommendation

is against relocation service provider XYZ. This is done by defining

an execute function that takes a predicate as input as follows:

executeQuery(relocationService(xyz)). The premise is a query over the

knowledge base that contains the reasoning chain from the IT department. If

the query returns yes, then this demonstrates that the backup evidence contains

information that the relocation service provider is XYZ.

• Critical questions

The business manager wants to know whether or not in the underlying

reasoning chain XYZ is good at formalising the clients’ criteria and how it

is supported by the reasoning chain (i.e. warrant). This is accomplished

by defining an execute function that takes a predicate as input such as:

executeQuery(relocationService(xyz)).

• Variant

If the business manager wants to consider only those reasoning chains which

passed the tests defined in the integration scheme and qualify for EKI, he sets

the boolean variable to true. Otherwise, he can set it to false in order to include

the reasoning chain even if it does not qualify for EKI. Figure 6.20 shows a

Web-based form depicting the valued reasoning chain initially forwarded by the

IT department of enterprise ABC.

6.5 Enterprise knowledge integration (EKI) 216

Figure 6.20: Web-based form of Web@KIDSS that shows the valuation
of a reasoning chain

6.5.3 Generation of integrated recommendations space

Once the valued recommendation set has been generated, the next step is to

perform argumentative reasoning to identify and resolve conflicts between them,

identify the unique conclusions supported by the valued reasoning chains followed

by their integration. Such integration of valued reasoning chains is called integrated

recommendations space and involves the following steps:

1. Argumentative reasoning between reasoning chains

During this process the following steps are performed:

• The identification of conflicts between arguments belonging to different

valued reasoning chains in a valued recommendations set. The conflict

operator (�) is a binary operator defined in Section 6.3.1.10, which when

applied on the valued reasoning chains (e.g. rc[i] � rc[j]) returns a set of

arguments that are in conflict.

• Once the contradictory arguments have been identified, the Generalize

Specificity conflict resolution strategy is used by computing either static

or dynamic defeat to resolve conflicts between arguments. In the case of

blocking arguments (where the dialectical trees of both the arguments and

6.5 Enterprise knowledge integration (EKI) 217

their counter-arguments are undefeated), then Web@KIDSS needs human

intervention to resolve the conflict between them. Further discussion on

this is given in Chapter 7.

• After conflict resolution, the construction of new arguments is started. If

two arguments from a valued recommendations set have the same claim,

the premises of these arguments are combined to produce a new argument.

The focus operator (⊗) is a binary operator defined in Section 6.3.1.7, which

when applied to valued reasoning chains (e.g. e.g. rc[i] ⊗ rc[j]), returns the

set of arguments that share the same claim. The merge operator () is
a binary operator defined in Section 6.3.1.8, and when applied to a set of

arguments, results in the construction of a new argument that replaces the

old arguments which support the same claim.

2. Identification of the unique conclusion supported by underlying reasoning chains

Once the argumentative reasoning over the valued recommendations set is

completed, the next step is to identify the unique conclusions from it. The unique

operator (�) is a binary operator defined in Section 6.3.1.9, which when applied

to valued reasoning chains (e.g. rc[i] � rc[j]) returns the set of arguments that

support the unique claim.

3. Building integrated reasoning chains

Once the unique conclusions have been identified, the last step is to build

the reasoning chains. The methodology proposed for the construction of

reasoning chains in Section 5.6.1 is used for the construction of the integrated

recommendation space.

Algorithm 6.3 shows the process of generating the integrated recommendation

space. It first loops through a set of reasoning chains and compares the results of

a reasoning chain with the results of the remaining reasoning chains; if the results

match, then these reasoning chains are integrated. Four kinds of operators are used

during this integration process. With the help of focus (⊗) and merge () operators
, the new arguments are constructed and then loaded into a valued recommendation

set. With the help of a unique operator (�), unique arguments from both reasoning

chains are loaded into an valued recommendation set. With the help of the conflict

operator (�), contradictory arguments are taken into account for conflict resolution.

If the conflict blocking flag for knowledge integration is false, then Web@KIDSS tries

to resolve conflicts with the help of static or dynamic defeat. Otherwise, Web@KIDSS

provides an interface for the decision maker to establish the preference between the

6.5 Enterprise knowledge integration (EKI) 218

contradictory arguments. Finally, it invokes Algorithm 5.4 (defined in Chapter 5) in

order to build a reasoning chain from the arguments in the valued recommendations set.

The important thing to note here is that conflicts may exist in a valued recommendation

set if the conflict blocking flag is true.
Data: Valued recommendation set, claimflag
Result: Array of combined reasoning chain
Array commonClaims [];1
Array contradictoryArguments [];2
for i=0;i <rc.length(); i++ do3

for j=i;j <rc.length(); j++ do4
if flag==sameClaims then5

condition=rc[i].result ==rc[j].result6
else7

condition=rc[i].result !=rc[j].result8
end9
if condition==true then10

commonClaims = rc[i] ⊗ rc[j];11
argumentsSet= rc[i] � rc[j];12
contradictoryArguments = rc[i] � rc[j];13
foreach c in commonClaims do14

argRc1 = getArgument(c, rc1);15
argRc2 = getArguments(c, rc2);16
r = argRc1 � argRc2;17
argumentsSet=r;18
i++;19

end20
foreach arg in contradictoryArguments do21

argRc1 = getArgument(arg, rc1);22
argRc2 = getArguments(arg, rc2);23
if conflictblocking==true then24

argumentsSet = argRc1;25
agumentsSet = argRc2;26
if static or dynamic defeat does not exists between argRc1, argRc2 then27

userPreference=getUserPreference(argRc1,argRc2);28
end29
if userPreference(argRc1,argRc2) then30
preferenceSet = argRc1 > argRc2;31

end32

end33

end34
rc [i]=BuildupReasoningChain(argumentsSet);35

end36

end37
return rc;38

Algorithm 6.3: Integrated recommendation space

To explain enterprise knowledge integration with an example, consider the

case study discussed in Section 6.2 where each department needs to formulate

and forward its recommendations about relocation service provider XYZ to the

business manager. During this process, each department, with the help of

Web@IDSS , produces recommendations in the form of a reasoning chain. Consider

6.6 Graphical representation of results to support intelligent decision making 219

the recommendation forwarded by the manager of the IT department shown in

Figure 6.6 where he recommends that although the relocation service provider is

not convenient and is not good at formalising criteria, he assumes it to be a

good relocation service provider and recommends it for relocation purposes (i.e.

[rc1.a.it.d8]goodRelocationService(xyz), not convienent(xyz), not clearCriteria(xyz)

��	 recommendService(xyz)). However, other departments have a different opinion as

shown in Figure 6.17. It is important to note here that the recommendations produced

by each department contain valuable information about relocation service supplier

XYZ which could help the business manager make the final decision i.e. whether

or not to select relocation service provider XYZ for the relocation of the enterprise.

Figure 6.21 shows the pictorial representation of the integrated recommendation space.

The double-circled arguments are newly constructed arguments during argumentative

reasoning for enterprise knowledge integration.

Figure 6.21: Pictorial representation of integrated recommendations
space

6.6 Graphical representation of results to support

intelligent decision making

The last functionality performed by the information and knowledge integration module

of the logic-based framework is the graphical representation of the integrated

recommendations space and to provide query support to answer the questions of the

decision maker and assist them in the decision-making process. This process involves

the following steps:

6.6 Graphical representation of results to support intelligent decision making 220

1. Graphical representation of the integrated recommendation space

Once the generation of the integrated recommendation is completed, the

next step is its graphical representation for the decision maker in order to

assist him in the decision-making process. To explain with the help of an

example, consider Figure 6.22 which represents the graphical representation of

the integrated recommendations space depicted in Figure 6.21. The important

features of graphical representation of a reasoning chain are as follows:

• The reasoning chain is represented as a tree. Each reasoning chain supports

a unique conclusion.

• An argument is represented in short form e.g. [s1]normalDiscount(david)

where [s1] is the label of the argument and normalDiscount(david) is the

claim of the argument.

• The arguments are depicted with an rectangle shape, defeasible inference

is depicted with a dotted arrow and strict inference with a straight arrow.

Such graphical representation helps the business manager of enterprise ABC to

understand the whole reasoning process which can result in two recommendations:

either recommend XYZ or not. He can identify the reasons for the

recommendations as follows:

(a) Recommend Service provider XYZ

The manager of the IT department recommends service provider XYZ

for the relocation of enterprise ABC. His recommendation is based on the

following information:

• XYZ considers an enterprise ABC eligible for a discount. In light of

the current available information for decision making, he will offer a

normal discount to enterprise ABC.

• Although XYZ may be inconvenient and not able to capture the

enterprise’s criteria, the supplier is reliable and will likely provide

safe delivery of the enterprise’s goods.

• XYZ has been used previously by the IT department and the manager

is happy with their service and wants to reuse them for the relocation

of the department.

6.6 Graphical representation of results to support intelligent decision making 221

Figure 6.22: Web-based form of Web@KIDSS presenting integrated
knowledge to assist the decision maker in decision making process

6.6 Graphical representation of results to support intelligent decision making 222

(b) Not recommend service provider XYZ

The managers of the HR and Marketing departments do not recommend

XYZ for the relocation of the departments of enterprise ABC. Their

recommendations are based on the following information:

• XYZ has been used for relocation services before and the marketing

department was not happy with their service.

• XYZ may not provide safe delivery.

• Both departments consider XYZ to be a bad relocation service

provider.

2. Query the knowledge base

Once the integrated recommendation space has been generated and displayed

to the decision maker in a graphical format, he may query the knowledge base

to obtain an explanation of the results. In Section 6.3.1.13, the definition of a

query is provided. The execution of a query on the knowledge base may result

in one of the following conclusions:

• If the answer is ‘yes’,, the result will be an undefeated dialectical tree.

Mathematically, it is represented as follows:

ΣU(A, h) = executeQuery(q) . Equation (24)

• If the answer is ‘no’,, the result will be a defeated dialectical tree.

Mathematically, it is represented as follows:

ΣD(A, h) = executeQuery(q). Equation (25)

• If the answer is ‘undecided’,, the result will be a blocked dialectical tree.

Mathematically, it is represented as follows:

ΣB(A, h) = executeQuery(q). .Equation (26)

• Unknown, if the predicate in the query is not in the language of the program.

Mathematically, it is presented as follows:

6.7 Conclusion 223

unknown = executeQuery(q). .Equation (27)

To explain the query on the knowledge base with help of an example, consider

that the decision maker wants to know whether XYZ is a good relocation service

provider. To accomplish his objective, the query goodRelocationService(xyz) is

executed on the knowledge base and results in a defeated dialectical tree. This is

because the argument that states that XYZ is a good relocation service provider

has been defeated by the set of arguments that state that XYZ is not a good

relocation service provider. The decision maker uses this representation which

considers all the recommendations from the different stakeholders and resolves

the conflicts between them to assist him in taking an informed decision.

6.7 Conclusion

In this chapter, a solution for EKI was presented in order to assist the decision

maker in enterprise-wide decision making. It was pointed out that the Web@IDSS

(discussed in Chapter 5) addressed the issues of information integration to assist in

the decision-making process, but does not address the issue of sharing and integrating

information for the intra-enterprise or inter-enterprise decision-making process. To

overcome this problem, the Web@IDSS was extended to make its results shareable in

AIF format. Additionally, a framework for argumentation-enabled Web-based IDSS

for enterprise knowledge integration (Web@KIDSS) was proposed. The Web@KIDSS

import transforms standard reasoning chains to DeLP format, evaluates them against

the decision maker’s defined criteria defined as an integration scheme followed by their

integration using argumentative reasoning. The major contributions of this chapter

are as follows:

1. The extension of Web@IDSS to share its reasoning results in a standard AIF

format.

2. The formalization of syntax and semantics for enterprise knowledge integration

in an enterprise .

3. The proposal of a framework for representing, reasoning and integrating

potentially incomplete and/or contradictory reasoning chains to support the

intra-enterprise or inter-enterprise decision-making process.

4. The graphical representation of the integrated results and the provision of query

support for decision makers.

Chapter 7 - Process Map Discovery

from Business Policies: A Knowledge

Representation approach with

Argumentative Reasoning

(KR@PMD)

7.1 Introduction

In Chapter 5, an Argumentation-enabled Web-based IDSS (Web@IDSS) was proposed

to help decision makers consider the structured information, which exists within

the enterprise and/or in other enterprises, to represent, reason over it, resolve

conflicts between this information and the existing enterprise information using the

Generalize specificity-based conflict resolution strategy and integrate this to assist in the

decision-making process. In this chapter, the functionality of Web@IDSS is extended

to take into account the unstructured information which exists within the enterprise

and/or in other enterprises, to represent and reason over it, to enable this information

to be considered in decision making and provide solutions for Enterprise Information

Integration (discussed in Chapter 5) and Enterprise Knowledge Integration (discussed

in Chapter 6).

As mentioned in Section 4.6.3, the process of considering unstructured information

using the proposed logic-based framework by taking into account the business polices

of an enterprise or two or more collaborating enterprises was explained. Operational

business processes that are derived from business policies consist of business processes

and business rules that define how an enterprise carries out its operations. It

may be possible that the business policies of such enterprises may be incomplete

and/or contradictory, leading to inconsistencies between them and operational business

7.1 Introduction 225

processes. This needs to be resolved in order to ensure either successful collaboration

of enterprises or that their working environment is in accordance with legal regulations

or government policies. To overcome this problem, there is need to generate a business

process map from unstructured business policies that can be used for the validation

of operational business processes or the realization of new business processes at an

operational level in order to ensure that their working environment is in accordance

with legal regulations or government policies.

To address this problem, in this chapter, a Knowledge Representation and

argumentative reasoning-based approach for business Process Map Discovery
(KR@PMD) is proposed. The proposed framework represents and reasons over

unstructured information (i.e. business policies of an enterprise or collaborating

enterprises), providing different argumentation-driven conflict resolution strategies to

identify and resolve conflicts, followed by the integration and graphical representation

of the information in a format that may assist the decision maker in the intra-enterprise

or inter-enterprise decision-making process. This will advance research in Web@IDSS

as depicted in Figure 7.1

Figure 7.1: Evolution towards Web-based IDSS that can discovers
process map from unstructured business policies

The remainder of this chapter is organized as follows: Section 7.2 provides

an introduction to the context where unstructured information, represented as

business policies, brings challenges for its representation, reasoning and integration for

intra-enterprise (EII) or inter-enterprise decision making (EKI). Section 7.3 outlines a

real-life case study to explain the problem. In Section 7.4, an overview of the proposed

framework for process map discovery from business policies is provided. From Sections

7.5 to 7.7, each component of the proposed framework is explained in detail and how it

7.2 Unstructured business policies and challenges for the enterprises 226

provides a solution to the problem highlighted in the case study is discussed. Section

7.8 concludes the chapter.

7.2 Unstructured business policies and challenges for

the enterprises

Business policies play a pivotal role in an enterprise and are defined as high level

directives that control, guide, and define constraints and procedures, thus shaping how

an enterprise determines its course of action (Markovic et al., 2009). Using business

policies, business processes and rules are derived according to how an enterprise carries

out its operations, as shown in Figure 7.2. Two important factors that are essential at

this stage to ensure the successful completion of business activities are:

1. that the derived operational business processes consistently represent the business

policies, and

2. that there is no ambiguity or contradictory information in the business policies

that may result in conflict in the derived operational business processes. This is

particularly important when the information comes from multiple sources either

within the enterprise and/or from different enterprises.

Figure 7.2: Business policy life cycle in an enterprise

7.2 Unstructured business policies and challenges for the enterprises 227

The research literature shows that derived operational business processes often do

not comply with enterprise business policies (Wang et al., 2009; Aalst, 2009), and

as a result, enterprises invest huge amounts of money to ensure their business policies

comply with the requirements of various regulating authorities (Sadiq and Governatori,

2009; Turetken et al., 2011; Meyer et al., 2011; Rajsiri et al., 2010). The mismatch

between business policies and operational business processes may be for reasons related

to both business process modeling and the implementation of business process phases.

For example:

• During process modeling from the business policy phase, the current process

modeling languages, i.e. Business process modeling notation (BPMN) and

Event-Driven process chains (EPCs), lack proper semantics which often leads to

debates on how to interpret business process models (Lohmann et al., 2009). Such

situations may result in misunderstanding an enterprise’s business processes in

relation to its different functions and cause potential internal control deficiencies.

• During the implementation of the process model phase, business processes in

modern enterprises often operate in a dynamic environment in which business

processes are modified on a continuous basis to achieve business goals. This

situation may result in some deviation or exception from the ideal business

process execution defined in the business policies. Current process modeling

languages are not able to capture the exceptions in business processes that

appear at the operational level (Klein and Dellarocas, 2000). Additionally,

research has shown that in most enterprises, the link between the last phase

of process modeling shown in Figure 7.2 i.e. Amend Policy, and the first phase,

i.e. Modeling, is not pursued actively (Wang et al., 2009; Aalst, 2009; Liu and

Ong, 1999). As a result, the exceptions or updates in business processes are not

reflected in business policies.

To overcome this problem, process mapping techniques (Madison, 2005) have been

used in the literature. Process mapping techniques provide a visual representation

of the business process and assist in creating a common understanding of business

processes. They also assist in the identification of visible issues and provide an

opportunity for business process improvement. However, being traditional in nature,

these process mapping techniques are resource-intensive and time-consuming (Reijers

et al., 2003). Other attempts have been made in the literature to ‘redesign ’

existing business processes by applying formal methods and theories, such as

linear programming (Aldowaisan and Gaafar, 1999) and computational experiments

(Hofacker and Vetschera, 2001). However, none of these attempts use information such

as business policies (which could be unstructured) as their inputs.

7.3 Case study for problem definition 228

In order to overcome the abovementioned challenges, there is a need for a system

that can consider unstructured business policies and extract a business process map

from them. The graphical representation of extracted business process maps may

assist the decision maker to use it for the identification of any incompliance between

operational business processes and an enterprise’s business policies. The need for such

system is increasingly becoming a subject of interest for enterprises seeking solutions

to possible business mergers or to ensure that they are working in accordance with

legal regulations or government policies.

7.3 Case study for problem definition

To explain the problem with an example, consider a case study of a public university in

Australia to illustrate business policies for “Travel Bookings for University Staff". For a

staff member to make a successful travel booking, different departments located within

the university and/or in other universities need to collaborate with each other as defined

in the business policies of the university, as depicted in Figure 7.3. The business policies

may involve many tasks, data items, resources, constraints and actions, which make

the corresponding business process model a significant one. However, it is assumed

that these policies contain contradictory information as a result of the following:

• updating of a business policy over a period of time, and

• policy definitions by different departments located within the university and/or

in other universities.

For demonstration purposes, a small set of travel policies from “Travel Bookings for

University Staff" are selected as follows:

Figure 7.3: Interaction among departments for travel bookings for
university staff

7.3 Case study for problem definition 229

• Process 1 : Authority to approve travel

1. Executive managers have the authority to approve travel but may also

choose to authorise ‘University officers’ to approve travel on their behalf.

2. However, approval of ‘Business Class’ fares and nomination of ‘Level One

Travellers’ remains with the Executive Manager.

• Process 2 :Travel booking for staff and associates

1. On receipt of the correctly filled travel form, the facilitator usually submits

the travel booking form to the finance director for approval.

2. If the form is not filled out correctly, the facilitator should not submit the

form to the director for approval.

3. On receiving travel approval from the director, the facilitator proceeds to

make a booking for the traveller.

4. For domestic travel, s/he uses the online booking tool and for international

travel, s/he must book through a travel consultant.

The abovementioned unstructured business polices make it difficult for the decision

maker to ensure that the operational business process for travel bookings for staff

follow the business policies defined by the university. To overcome this problem, such

an unstructured business policy needs to be considered by Web-based IDSS in order to

extract a business process map that may explain the steps involved in a staff member

making a travel booking. Such a business process map could be used as a tool to check

the compliance of the business policy with existing operational business processes. In

order to achieve this objective, the challenges that confront Web-based DSS are as

follows:

• the need for a methodology to extract the concepts (i.e. elements of a process)

from an unstructured business policy document and represent them in business

rules format;

• the need for a reasoning mechanism that can activate/execute the business rules

and is capable of providing methodologies for handling conflicts present among

the business rules in different contexts, and

• the need for a mechanism to integrate the activated business rules in the form of

a business process map and provide its graphical representation for the decision

maker.

7.4 Proposed framework for KR@PMD 230

To achieve the abovementioned challenges, a Web-based DSS is required which has

the following functionalities:

1. Specification of the domain knowledge in the form of an ontology.

2. An interface for decision makers to load the business policy document and extract

the concepts (i.e. elements of the process) and annotate them with the domain

ontology.

3. An interface for decision makers to specify business rules by using the concepts

extracted and annotated with the domain ontology in the previous step.

4. A hybrid reasoning engine for the automated activation/execution of business

rules and the provision of different conflict resolution strategies for decision maker

to identify and resolve the conflicts among the activated business rules.

5. The generation of a business process map and the provision of its graphical

representation for decision makers so that it can be used as a validation tool to

check and ensure the compliance of operational business processes with business

policies.

Assumptions

• a declarative language is used for specifying the business rules, and

• a declarative language has the capability to represent potentially incomplete

and/or contradictory information present in the business policy.

To achieve the abovementioned functionalities, in the next section, a framework

for business process map discovery from business policies using the knowledge

representation approach with argumentative reasoning (KR@PMD) is proposed.

7.4 Proposed framework for KR@PMD

In this section, the solution for Process Map Discovery from business policies using

a knowledge representation approach with argumentative reasoning (KR@PMD) is

proposed to assist the decision maker of an enterprise or collaborating enterprises in

the decision-making process. Figure 7.4 represents the proposed framework which

consists of three layers as follows:

7.4 Proposed framework for KR@PMD 231

1. Information layer

The information layer represents the unstructured information identified by

the decision makers to be considered during the decision-making process. This

information comprises different business policy documents in a textual format

that outlines the series of steps to be followed.

2. @IRRI layer

This layer comprises a logic-based framework that enables the applications

located at Semantic Web application layer, such as Web-based DSS, to deal with

unstructured business policies and generate the graphical representation of the

process map to assist the decision maker in the intra-enterprise or inter-enterprise

decision-making process. It enables different modules to load a policy document,

perform semantic annotation followed by the specification of business rules and

facts for reasoning, perform hybrid reasoning to identify and resolve conflicts

and provide a graphical representation of a business process map for the decision

maker that can assist him to validate the operational business process. The

modules are as follows:

(a) An information representation module that provides the following

functionalities:

• AWeb-based form to load the business policy document and a domain

ontology such as a process ontology 1 that enables the decision maker

to extract and annotate information from the business policy with

concepts defined in the process ontology and save the annotated

information in the form of predicates in the relational database.

• A Web-based form to specify the business rules and facts by using the

annotated predicates saved in the relational database. The specified

production rules in DeLP format are saved in the rule base and facts

in DeLP format are saved in the working memory.

(b) An argumentative reasoning module that provides the following

functionalities:

• Performs hybrid reasoning over underlying information in the

knowledge base. The hybrid reasoning engine performs data-driven

reasoning to activate the tasks in a process (i.e. arguments

1An introduction to process ontology is given in the next sub-section

7.4 Proposed framework for KR@PMD 232

construction) and goal-driven reasoning for conflicts identification

among the tasks in a process followed by their resolution.

• Provides different argumentation-driven conflicts resolution strategies

for the decision makers to resolve conflicts between arguments and

their counter-arguments.

(c) Information and knowledge integration module that provides the following

functionalities:

• Integration of the output of hybrid reasoning in the form of a business

process map (i.e. reasoning chain).

• Graphical representation of the business process map generated in the

previous step.

3. Semantic Web applications layer

This layer consists of KR@PMD that exploits the @IRRI layer and the

information layer to achieve its objectives.

Figure 7.4: Proposed framework with highlighted components
exploited by KR@PMD

7.4 Proposed framework for KR@PMD 233

Before explaining the working of the proposed framework, in the next sub-section,

the process ontology which is used to annotate the unstructured business policy

document in the proposed framework for KR@PMD is introduced.

7.4.1 Process ontology

A business policy document outlines the working of the business processes in an

enterprise. Usually, an enterprise involved in collaboration either does not capture its

business policies formally or it documents them in natural language. These documented

business policies are for human consumption only and cannot be directly translated

into a machine-processable format. To consider such business policies and make

them understandable by Web-based DSS, a ‘Process Ontology’ has been designed

and developed which provides an explicit, declarative specification of business process

concepts, mostly specified in business policy documents. In the proposed framework,

the process ontology is used to annotate the unstructured business policies and make

them understandable by Web-based DSS. Figure 7.5 shows the pictorial representation

of the process ontology.

Figure 7.5: Pictorial representation of the process ontology

The process ontology is composed of the following important concepts:

1. process: represents a business activity that may comprise a set of different tasks.

2. task: represents a business activity that may comprise a set of resources,

data-items, constraints, situations, decisions and actions.

3. resource: represents an enterprise asset needed to accomplish a certain task, e.g.,

credit card, manager etc.

7.4 Proposed framework for KR@PMD 234

4. data-item: represents the data/information required for the execution of a given

task e.g., travel form.

5. constraint: represents certain limitations pertaining to the given task, resource

or data-item.

6. decision: represents a decision point in a task.

7. situation: represents the presence of a conflict in a task.

8. action: represents the execution or transition of a current procedure or activity

to another.

A process ontology is also enriched with different object properties, some of which

are as follows:

1. hasSubProcess property

This property is used to capture a relationship between a process and its

sub-processes.

2. hasDependentTask property

This property is used to capture the relationship between tasks that are

dependent on each other for the completion of a process. In such cases, the

commencement or completion of a task is dependent upon the commencement

or completion of another task. Three different types of hasDependentTask

relationships are identified as follows:

• finishToStart(X,Y)

Task Y is dependent on task X and task Y will start only when task X

is finished. This is a very common type of relationship when the execution

of tasks one after another is required.

• startToStart(X,Y)

Dependent task Y cannot begin until task X starts. This type of

relationship is useful for tasks that do not share information; as a result,

they can be executed in parallel.

• finishToFinish(X,Y)

Dependent task Y cannot be completed until task X is finished. In

this relationship, dependent task Y needs information from task X for its

completion.

7.4 Proposed framework for KR@PMD 235

3. hasResource property

This property is used to capture the relationship of a task with a resource needed

for its execution. Examples of such a relationship are ‘task assignment to a

person ’, ‘owner of a task ’, etc.

4. hasDataItem property

This property is used to capture the relationship of a task with a data-item it

needs for its execution. The possible word representation of such relationships in

business policies are ‘contain ’, ‘refer ’, ‘include ’, etc.

5. hasSituation property

This property is used to capture the relationship of a task with a situation

which needs the attention of the manager for its resolution. One example of such

a situation is the existence of conflict among the business rules. This relationship

is not modelled at design time; rather, it is used by the proposed framework to

annotate the business process map where such a situation exists.

6. hasDecision property

This property is used to capture the relationship of a task with a decision

made during its execution.

7.4.2 Working of the proposed framework for KR@PMD

In this section, the working of the proposed framework for business process map

discovery from business policies to assist the decision maker in the identification of any

incompliance between business policies and operational business processes is discussed.

Figure 7.6 depicts the working of the proposed framework. The sequence of steps in

the proposed framework are as follows:

1. Semantic annotation of unstructured business policies for business rules

specification

For the extraction and specification of business rules from an unstructured

business policy document, the KR@PMD exploits the functionality of the

information representation module of the logic-based framework located at @IRRI

layer. It provides a Web-based form for the decision maker to load the

unstructured business policy document, annotate the loaded information with the

concepts defined in the process ontology and make it available for the specification

of the business rules. The process involves the following two steps:

7.4 Proposed framework for KR@PMD 236

(a) Semantic annotation of business policies

During this step, a Web-based form is provided for the decision maker

to load the policy document, extract the information (i.e., elements of a

process) from the business policies and annotate them with the concepts

defined in the process ontology. The annotated information is then saved

in the relational database.

(b) Specification of business rules and facts

Once the semantic annotation of the business policies is completed,

the next step is to use the annotated information saved in the relational

database for the specification of business rules and facts and make the

information ready for further processing.

For the specification of business rules and facts, a Web-based form is

provided that loads the annotated predicates from the relational database

(from step 1 (a)) and makes them available for the decision maker for the

specification of business rules and facts. The specified business rules are

saved as DeLP rules in the rule base and facts are saved as DeLP facts in

the working memory.

2. Argumentative production system performing hybrid reasoning

Once the knowledge base has been created i.e., a rule base containing DeLP

rules and the working memory containing DeLP facts, KR@PMD exploits the

functionality of argumentative reasoning module of the logic-based framework

located at the @IRRI layer for reasoning, identification and resolution of conflicts

for information integration. The process involves the following three steps:

(a) Process activation using data-driven reasoning

In this step, the business rules in DeLP format are activated and

fired. An important point to note is that DeLP rules consist of a set

of premises and a conclusion, each of which represents an element of a

business process. Therefore, the activation of DeLP rules is actually the

activation of the element of a business process. In the proposed framework,

this objective is achieved by performing data-driven reasoning over the

underlying information (i.e. DeLP rules and DeLP facts). This step involves

the following two sub-steps:

• Compilation of DeLP rules in the form of a Rete network.

7.4 Proposed framework for KR@PMD 237

• Perform data-driven reasoning by introducing certain DeLP facts from

the working memory to the Rete network.

As a result of data-driven reasoning, the activated business process (i.e.

represented as a set of arguments) are saved as the Activated Process set.

Two types of arguments are constructed during this phase: strict arguments

and defeasible arguments.

Figure 7.6: Flowchart illustrating sequence of steps performed by
KR@PMD

7.4 Proposed framework for KR@PMD 238

(b) Argumentation-driven conflict resolution strategies

Once the activation of business processes is completed, the next step is

the identification and resolution of conflicts present in a business process

(i.e. represented as an argument and its counter-argument) by computing

either static or dynamic defeat. If static defeat does not exist, then dynamic

defeat is computed which involves the following steps:

• resolve the conflict between an argument and its counter-argument by

using the selected argumentation-driven conflict resolution strategy

by the decision maker, and

• build and mark the dialectical trees for the arguments involved in a

conflict.

The defined argumentation-driven conflict resolution strategies that can be

selected by the decision maker are as follows:

• Generalize specificity: This is an automated conflict resolution

strategy where an argument that is specific defeats its

counter-argument which is less specific. The Generalize specificity

conflict strategy resolution of the conflicts between arguments is

explained in Section 5.5.2.

• Dung’s style: This is also an automated conflict resolution strategy

where an argument X (part of a reasoning chain Y) is attacked by a

counter-argument Z (not part of reasoning chain Y) and X is defeated

by Z if there is no other argument (in reasoning chain Y) that attacks

and defeats the counter-argument Z.

• Fuzzy preferences: This is a semi-automated conflict resolution

strategy that takes input from the decision makers about their

preference between an argument and its counter-argument in fuzzy

terms such as definitely preferred, slightly preferred or no preferences

etc. and uses them to establish a priority between an argument and

its counter-argument.

• Voting: This is a semi-automated conflict resolution strategy that

considers input from a number of decision makers who are either in

favour or against an argument involved in the conflict. The argument

that has more votes in favour defeats its counter-argument that is less

favoured.

7.5 Semantic annotation of unstructured business policies for business rules
specification

239

Further explanation about Dung’s style, Voting and Fuzzy preferences is

given in Sections 7.6.2.2, 7.6.2.3 and 7.6.2.4, respectively.

(c) Building and marking of dialectical trees

Once the conflict between an argument and its counter-argument has

been resolved using the argumentation-driven conflict resolution strategy,

the next step is to construct and mark dialectical trees (as defeated or

undefeated), as discussed in Section 5.5.2. The marked dialectical trees are

used by the argumentative production system to establish the preference

between arguments and their counter-arguments. The marked dialectical

tree is then saved for future use, such as to provide an explanation of the

output of conflict resolution for the decision maker.

3. Graphical representation of the business process map

Once the hybrid reasoning process is complete, KR@PMD exploits

the functionality of the information and knowledge integration module of the

logic-based framework to integrate the information obtained from hybrid

reasoning and display it to the decision maker. This process involves the following

steps:

(a) Generation of business process map

During this process, the arguments present in the Activated Process set

are linked in the form of a map known as the business process map.

(b) Graphical representation of the business process map

Once the generation of the business process map is complete, the next

step is to provide a graphical representation of the business process map

for the decision maker.

In the following sections, the working of each step is explained in detail.

7.5 Semantic annotation of unstructured business

policies for business rules specification

To consider unstructured business policies for the specification of business rules,

KR@PMD exploits the functionality of the information representation module of the

logic-based framework located at @IRRI layer. This module helps the KR@PMD to

7.5 Semantic annotation of unstructured business policies for business rules
specification

240

load and annotate the business policy with a process ontology and use the annotated

predicates for the specification of DeLP rules and DeLP facts and save them in

the knowledge base. Figure 7.7 illustrates the steps performed by KR@PMD for

information representation. These steps are as follows:

1. Semantic annotation of business policy

For the semantic annotation of the business policies, KR@PMD provides a

Web-based form for the decision maker to load the business policy document.

Once it is loaded, the information is displayed to the decision maker from where

he can extract the process elements and annotate the concepts defined in the

process ontology. The resulting annotated information in the form of predicates

is saved in the relational database.

2. Specification of business rules and facts

Once the semantic annotation of the business policies is completed, the next

step is to use the annotated information saved in the relational database for the

specification of DeLP rules and facts.

Figure 7.7: Flowchart illustrating steps performed by KR@PMD for
semantic annotation and production rules specification

In the next sub-sections, each of these steps is discussed in detail.

7.5 Semantic annotation of unstructured business policies for business rules
specification

241

7.5.1 Semantic annotation of business policies

This step involves reading the business policy document by KR@PMD stored on the

local machine or downloaded from WWW and making it ready for the purpose of

semantic annotation. During this process, a Web-based form is provided to load the

process ontology and make its concepts available for the annotation of the business

policies. The decision maker can extract the process elements and annotate them

with the concepts defined in the process ontology. This process is repeated for all the

important information in the business policies. The resulting annotated information

in the form of predicates is saved in the relational database. It is important to note

here that the use of ontology-based business rules improves the shared understanding

of business rules and thus their reusability will be enhanced as required in an open

environment such as the Web and in enterprises.

To explain the Semantic annotation of business policies, consider the case study

discussed in Section 7.3 where the business process are; 1: authority to approve travel

and processes; and 2: travel bookings for staff and associates are provided in an

unstructured format. Figure 7.8 provides the graphical representation of the semantic

annotation of the ‘Travel Bookings for University Staff’ policy with a process ontology

where:

• traveller is an instance of the class Resource and has a data property Name.

Similarly, Submit is an instance of the Action class with the data properties

PersonName and FormName. The data properties for the rest of the concepts

are likewise defined in an ontology;

• finishToStart(X,Y): Similarly, Process 2, i.e. Travel booking for staff, will start

only when Process 1, i.e. Authority to approve travel, ends. The information

flows from Process 1 to Process 2;

• hasResource property: Similarly, the approval for travel, i.e. authorize(X,Y) is a

hasResource property in which executiveManager X authorizes universityOffice

Y to approve travel on his/her behalf, and

• information such as ‘fill booking form ’ and ‘correctly filled form’ are examples of

the hasDataitems property.

7.5 Semantic annotation of unstructured business policies for business rules
specification

242

Figure 7.8: Graphical representation of annotation of travel policy with
the process ontology

7.5.2 Specification of business rules and facts

Once the business policy has been annotated, the next step is to use these predicates

for the specification of business rules into DeLP format. To achieve this objective,

KR@PMD provides a Web-based form for the decision maker to specify the business

rules by using semantically annotated information and saves them in DeLP format in

the rule base. Section 5.3.1 provides details about the syntax and semantics of strict

and defeasible DeLP rules. These syntax and semantics are considered during this

process for the specification of business rules and facts.

To explain the specification of business rules and facts, Figure 7.9 depicts the

Web-based form provided by KR@PMD to the decision maker for the specification

of business rules and facts by using annotated information. The decision maker can

give a name to the business rule, select its type as either strict or defeasible, select a

set of premises and a conclusion. The specified business rule is then saved as the DeLP

rule in the rule base. Similarly, he specifies the facts and saves them as DeLP facts in

the working memory.

7.5 Semantic annotation of unstructured business policies for business rules
specification

243

Figure 7.9: A Web-based form of KR@PMD for the specification of
business rules and facts

Illustration 7.1 demonstrates the DeLP rules and illustration 7.2 demonstrates the

DeLP facts specified for the case study discussed in Section 7.3. From illustration

7.1, the business rules ‘p4r4’ and ‘p4r7’ are examples of strict business rules and the

business rules ‘p1r1’ , ‘p1r2’ and ‘p1r3’ are examples of defeasible business rules. The

business rule ‘p4start’ represents the realization of finishToStart (X,Y) object property

in the form of a rule. Similarly, the rest of the object properties i.e. startToStart(X,Y)

and finishToFinish(X,Y) relationships can be realized in rule form, as follows:

startToStart(X,Y), start(X) −→ start(Y)

finishTofinish(X,Y), end(X) −→ end(Y)

7.6 Argumentative production system performing hybrid reasoning 244

Business rules for Travel Bookings for University Staff
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[bootstrap]bootStrapProcess(PROCESSA) −→ startProcessA(PROCESSA)
[p]startProcessA(PROCESSA), processAName(PROCESSA),
startingManager(X) −→ executiveManager(X)
[p1r1]executiveManager(X) ��� approveTravel(X)
[p1r2]executiveManager(X), authorise(X, Y), universityOfficer(Y), ���∼ approveTravel(X)
[p1r3]executiveManager(X), businessTravel(Y) ��� approveTravel(X)
[p1finish1]approveTravel(X) −→ endProcessA(PROCESSA)
[p1finish2]not approveTravel(X) −→ stopProcessA(PROCESSA)
[p4start]finishToStart(PROCESSA, PROCESSB), endProcessA(PROCESSA),
processBName(PROCESSB,)
−→ start(PROCESSB)
[p4](PROCESSB), processBName(PROCESSB), startingTraveller(X) −→ traveller(X).
[p4r1]traveller(X,), fillForm(TAPS) ��� corredF illedForm(X, TAPS)
[p4r2]corredF illedForm(X, TAPS), traveller(X), facilitator(Y) ��� submit(TAPS, Y)
[p4r3]director(DEPT), traveller(X), submit(TAPS, Y), approvedBy(DEPT) ��� booking(Y, X).
[p4r4]booking(Y, X), localTravel(X) −→ onlineBooking(Y, X)
[p4r5]onlinebooking(Y, X) ��� proccedForPayment(Y).
[p4finish1]proccedForPayment(Y), processBName(PROCESSB),
start(PROCESSB) −→ end(PROCESSB)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Illustration(7.1)

Initial working memory

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

universityOfficer(david), authorise(jon, david), executiveManager(jon),
, bootStrapProcess(processone), processAName(processone), businessTravel(category),
corredF illedForm(tapsform, david), processBName(processfour),
finishToStart(processone, processfour), facilitator(david), fillForm(tapsform),
startingManager(jon), startingTraveller(naeem),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Illustration(7.2)

Once the business rules have been specified, the next step is to execute the business

rules. The execution of business rules is handled by the argumentative production

system. In the next section, the working of the main components of the argumentative

production system is elaborated.

7.6 Argumentative production system performing

hybrid reasoning

Once the required information from the business policies has been captured (as DeLP

rules and facts) and saved in the knowledge base, the next step is to perform reasoning

over it and make it ready for EII. To address this objective, there is a need for a hybrid

reasoning methodology that can reason over the captured information and resolve any

conflicts that may arise during the reasoning process before business process map

generation. An argumentative production system 2 exploits the functionality of the

argumentative reasoning module of the logic-based framework located at @IRRI layer.

Figure 7.10 illustrates the steps performed by the argumentative production system for

hybrid reasoning over the captured information. These steps are as follows:
2In Section 5.3.1, several important definitions were introduced to help the reader understand the

design and working of the argumentative production system.

7.6 Argumentative production system performing hybrid reasoning 245

1. Process activation using data-driven reasoning

During this step, data-driven reasoning is performed over underlying

information (i.e. DeLP rules and DeLP facts) for the activation of business

processes (i.e. in form of arguments). This step involves the following sub-steps:

• Compilation of DeLP rules in the form of a Rete network.

• Perform data-driven reasoning by introducing certain DeLP facts from the

working memory to the Rete network.

The activated business processes are saved as the Activated Process set. Two types

of arguments are constructed during this phase: strict arguments and defeasible

arguments.

2. Argumentation-driven conflicts resolution strategies

Once the activation of business processes is complete and the Activated

Process set is created, the next step is the identification and resolution of conflicts

present in a process (represented as arguments their counter-arguments) by

computing either static or dynamic defeat. If static defeat does not exist, then

dynamic defeat is computed which involves the following steps:

• resolve the conflict between an argument and its counter-argument using

argumentation-driven conflict resolution strategy, and

• build and mark dialectical trees for the arguments involved in a conflict.

The different argumentation-driven conflict resolution strategies are Generalize

specificity, Dung’s style, Voting and Fuzzy preferences.

3. Building and marking dialectical trees

Once the conflict has been resolved between an argument and its

counter-argument using the argumentation-driven conflict resolution strategy, the

next step is to construct and mark dialectical trees.

7.6 Argumentative production system performing hybrid reasoning 246

Figure 7.10: Flowchart illustrating steps performed by of KR@PMD
during performing hybrid reasoning

In the next sub-sections, each of these steps is discussed in detail.

7.6.1 Process activation using data-driven reasoning

The process activation is a two steps process as follows:

1. Complication of business rules in the form of a Rete network. In Section 5.5.1,

the detail of the compilation of business rules as a Rete network is outlined

and the extensions made to the Rete network to represent incomplete and/or

7.6 Argumentative production system performing hybrid reasoning 247

contradictory information is also given.

2. The second step is to perform data-driven reasoning over underlying information

by passing the facts present in the working memory through the Rete network.

This results in the activation of production rules called the Activated Process set.

Section 5.5.1 outlines the detailed working of data-driven reasoning.

During data-driven reasoning, the match and execute cycle results in the activation

of one-input nodes only if they match the facts coming from the working memory.

However, this has a drawback as the business rules specified on top of the ontology

e.g. the process ontology discussed in Section 7.4.1 may not be activated due to the

absence of matching facts in the working memory even though the working memory

contains the facts that semantically match with the one-input node.

To explain the problem with the help of an example, consider two concepts,

‘traveller’ and ‘person’, represented in an ontology such that traveller is a subclass

of person. Furthermore, consider that the rule-base contains a business rule i.e

[i]traveller(X) → giveDicount(X) which means that if X is a traveller, then he must

be given a discount, and the working memory contains facts such as person(perth)

and subClass(traveller, person). Now, if data-driven reasoning is performed, then the

business rule i, specified in the rule base, will not be activated because of the absence

of the fact ‘traveller’ in the working memory. In order to address this problem, a set

of semantic inter-operability rules, as shown in Table 7.1 are saved in the knowledge

base before data-driven reasoning is performed. These rules provide ontology schema

translation in order to bring semantic inter-operability among the business rules

specified in DeLP format. As a result, during data-driven reasoning, the activation and

firing of rule 2 depicted in Table 7.1 i.e., subClass(traveller, person), person(X) →
traveller(X), adds the new fact i.e. traveller(perth), in the working memory. The

addition of this new fact will result in the activation of business rule i.

Rule 1 type(X,C)→C(X) Class
Rule 2 subClassof(Sc, C), Sc(X)→C(X) Subclass
Rule 3 objectProperty(X), domain(X, Y), range(X,Z) →X (Y, Z) Object Property
Rule 4 objectProperty(X), X(Z, V), subProperty(X, Y)→Y(Z, X) subProperty
Rule 5 dataProperty(X), domain(X, Y), range(X, Z) →X(Y, Z) Data Property
Rule 6 dataproperty(X), X(Z, V), subProperty(X, Y)→Y(Z, X) SubProperty

Table 7.1: Ontology schema translation rules in DeLP format

To explain process activation using data-driven reasoning with the help of an

example, Illustration 7.3 shows the activated processes generated during data-driven

reasoning using DeLP rules (specified in illustration 7.1) and DeLP facts (specified in

illustration 7.2).

7.6 Argumentative production system performing hybrid reasoning 248

Activated Process set
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[bootstrap]bootStrapProcess(processone) −→ startProcessA(processone)

[p1]startProcessA(processone), processAName(processone),

startingManager(jon) −→ executiveManager(jon)

[p1r1]executiveManager(jon) ��� approveTravel(jon)

[p1r2]executiveManager(jon), universityOfficer(david), authorise(jon, david)

���∼ approveTravel(jon)

[p1r3]executiveManager(jon), businessTravel(david) ��� approveTravel(jon)

[p1finish1]approveTravel(jon), processAName(processone,) −→ endProcessA(processone)

[p1finish2]executiveManager(jon), processAName(processone), not approveTravel(jon,)

−→ stopProcessA(processone)

[p4]startProcessB(processfour), processBName(processfour), startingTraveller(naeem,)

−→ traveller(naeem)

[p4r1]traveller(naeem), fillForm(tapsform) ��� corredF illedForm(naeem, tapsform)

[p4start]finishToStart(processone, processfour), endProcessA(processone)

processBName(processfour) −→ startProcessB(processfour)

[p4r2]corredF illedForm(naeem, tapsform), traveller(naeem)

facilitator(david) ��� submitForm(tapsform, david)

[p4r3]submitForm(tapsform, david), traveller(naeem), director(smith),

approvedBy(smith) ��� booking(david, naeem)

[p4r4]booking(david, naeem), localTravel(naeem) −→ onlineBooking(david, naeem)

[p4r5]onlineBooking(david, naeem) ��� proccedForPayment(naeem)

[p4finish1]proccedForPayment(naeem), startProcessB(processfour),

processBName(processfour) −→ endProcessB(processfour)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Illustration(7.3)

It is important to note that the activated process set represents the elements of a

process in business rules format. Therefore, when the business rules are activated, it

is actually the activation of the elements of a process as depicted in Figure 7.11.

Figure 7.11: Pictorial representation of the mapping of activated
business rules in a business process map

7.6 Argumentative production system performing hybrid reasoning 249

Once the activation of the process is complete, the next step is the identification

of conflicts between the activated business rules and their resolution. As defined in

Section 5.5.2, two different types of priorities exist during the process of argumentation

as follows:

1. static priority

If a strict argument is in conflict with a defeasible argument, the strict

argument always has higher priority than the defeasible argument. This is known

as static priority.

2. dynamic priority

Dynamic priority establishment among defeasible arguments involves two

steps:

(a) Identify the conflict and establish a priority between an argument and its

counter-arguments using different argumentation-driven conflict resolution

strategies.

(b) Build and mark dialectical tress to obtain the priority status of an argument

over its counter-argument by considering the entire knowledge base.

In the next sub-sections, the two steps involved in the resolution of conflicts

between an argument and its counter-argument using dynamic priority are

discussed.

7.6.2 Argumentation-driven conflict resolution strategies

To identify conflicts and establish priorities between an argument and

its counter-arguments, four different conflict resolution strategies are used.

Each conflict resolution strategy takes into account different criteria for the

establishment of priority between an argument and its counter-argument and

uses it to resolve conflict. The four different conflict resolution strategies are as

follows:

7.6.2.1 Generalize specificity

Defeasible logic programming (DeLP) has a built-in mechanism for establishing

priority between contradictory business rules, known as Generalize specificity. In

Section 5.5.2, details were provided on the working of this strategy.

7.6 Argumentative production system performing hybrid reasoning 250

7.6.2.2 Dung style

Dung’s style of argumentation takes a very influential approach to conflict

resolution and has been discussed in detail in Section 2.5.1.1. Dung defined

the characteristics of the argumentative framework according to the attack

relationship between arguments and between sets of arguments.

Using Dung’s framework, arguments are categorised into two different sets as

follows:

• Conflict free set : A set of arguments S is said to be conflict free if it does

not attack itself i.e. there is no argument A ∈ S such that S attacks A.

• Admissible set : If a set of arguments S is conflict free and if an argument

(i.e. a ∈ S) is attacked by another argument (i.e. b /∈ S), then if there is

another argument (i.e. c ∈ S) that attacks the argument b, then S is said

to be an admissible set.

To explain the realization of Dung’s framework in the proposed framework,

first the argumentative production system in Dung’s style after the argument

construction phase is defined as follows:

KBS=(WM′,R,Args) . Equation (7.1)

where WM′ represents the new state of the working memory after argument

construction and Args contains a set of arguments and the relations between

them. Two types of relationships exist in Args; namely, the counter-argument

relationship and the sub-argument relation. The counter-argument relationship

is represented as an attack relationship in Dung’s framework. Therefore, KBS

defined in terms of Dung’s framework is as follows:

(a) Conflict free : Given an Args = (A, attacks). A set S ⊆ A is conflict-free

in Args, if, for each a, b ∈ S, (a, b) /∈ attacks.

(b) Admissible Set : Given an Args = (A, attacks). A set S⊆ A is admissible

in Args, if

7.6 Argumentative production system performing hybrid reasoning 251

i. S is conflict-free in Args, and

ii. a ∈ A is defended by S in Args, if for each b ∈ A with (b, a) ∈
attacks, there exists a c ∈ S, such that (c, b) ∈ attacks.

To explain with the help of an example, consider three arguments, p1r1, p1r2

and p1r3, from illustration 7.3 where p1r1, p1r2 and p1r2, p1r3 are in conflict

with each other. If Dung’s framework is implemented for conflict resolution, this

will result in the following sets:

Conflict free set ={p1r3, p1r1}and {p1r2}

Admissible set= {p1r3, p1r1}

The admissible set in the proposed framework is represented as a reasoning chain,

where if an argument (i.e. p1r1) in a reasoning chain is attacked by another

argument (i.e. p1r2) which is not part of that reasoning chain, then there exists

another argument (i.e. p1r3) within the reasoning chain that helps the argument

(i.e.p1r1) to withstand the attack from the argument (i.e. p1r2).

7.6.2.3 Fuzzy preferences

This approach for conflict resolution takes into account the fuzzy preference

relation given by the decision makers between an argument and its

counter-argument and uses this to determine the priority between them. In order

to realize this approach in the proposed framework, the fuzzy preference relations

approach defined by Kacprzyk et al. (1992) is followed.

To explain the working of fuzzy preferences, consider a set of decision makers in a

group represented as DM={dm1, dm2, . . . dmn} and a set of arguments involved

in a conflict as Args={a1, a2,. . . an} . Each decision maker dm ε DM gives his/her

preferences over Args. A fuzzy preference relation Rc, of a decision maker dmc,

by its membership function μRc is a cartesian product over Args i.e. Args ×
Args →[0,1] such that

μRc(ai, aj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if ai is definitely preferred over aj

d ∈ (0.5, 1) if ai is slightly preferred over aj

0.5 no preference

s ∈ (0, 0.5) if ajis slightly preferred over ai

0 if aj is definitely preferred over ai

(7.2)

7.6 Argumentative production system performing hybrid reasoning 252

Equation 7.2 results in the computation of a preference relation between an

argument and its counter-argument individually by each member involved in

group decision making. However, to compute the overall strength of a preference

between an argument and its counter-argument, a fuzzy linguistic qualifier Q

(Zadeh (1983)) i.e. μstrength is used as a fuzzy set defined in [0,1]. The

values obtained by the individual preference of each member for an argument

is added together and divided by the number of decision makers involved in the

decision-making process, as represented in equation 7.3

x =
sum(individuals preferrence over an arugment and its counter − argument)

number of decision makers
(7.3)

Once x has been computed for an argument and its counter-argument, then the

fuzzy linguistic Q i.e. ‘strength’, may be given as

μstrenth(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for x � 0.8

(2x − 0.6) for 0.4 < x < 0.7

0 for x � 0.3

(7.4)

which may be interpreted as follows: if the strength of a preference is at least

0.8 or above, it results in the establishment of the priority of an argument over

its counter-argument. If the strength of a preference is 0.3 or below, it results in

the priority of a counter-argument over an argument. If the value of preference

falls between 0.4 to 0.7, it results in no priority between an argument and its

counter-argument.

To explain with an example, consider illustration 7.3 which shows that there are

contradictory arguments p1r1,p1r2 and p1r3,p1r2 and there are three decision

makers. Matrix (a) represents the preferences of each decision maker in relation

to the arguments involved in a conflict. Considering equation 7.2 and arguments

(p1r1,p1r2), dm1 states that argument p1r1 is slightly preferred over argument

p1r2 and dm2 states that no preference exits between arguments p1r1 and p1r2

whereas dm3 states that argument p1r2 is slightly preferred over argument p1r1.

(a)=
dm1 dm2 dm3

(p1r1, p1r2) 0.6 0.5 0.2

(p1r3, p1r2) 0.2 0.8 0.7

To compute the μmost(x), equation 7.3 and equation 7.4 is used which results in

obtaining matrix b.

7.6 Argumentative production system performing hybrid reasoning 253

(b)= (p1r1, p1r2) 1.3/3 = 0.43

(p1r3, p1r2) 1.7/3 = 0.56

The results in matrix (b) can be interpreted as follows: the strength of attack

i.e. 0.43, results in the priority of counter-argument ‘p1r2 ’ over argument ‘p1r1 ’.

Similarly, the strength of attack i.e. 0.56, results in the priority of ‘p1r3’

7.6.2.4 Voting

The last method for conflict resolution is a voting mechanism (Dong et al., 2010)

that takes the decision-making problem to a wider set of audiences, along with

experts who design the business policies. The definition of voting-based conflict

resolution is as follows:

Conflictvalue = α × Σn
i=1V oteUser i

n
+ β × Σm

j=1ExpertUser j

m
(7.5)

where

n is the number of users voting for a given conflict;

m is the number of experts voting for a given conflict;

α is the weight of the votes from normal users;

(β is the weight of the votes from experts, and α+β=1. The votes for the users

i.e. voteuser and votes for the experts i.e. voteexpert, are defined for each argument

and counter-argument as follows:

(a) The voting result from the audience’s preference i.e. voteuser, varies between

0 Survive

0.5 Undefeated

1 Defeat

(b) The voting result from the policy maker’s preference voteexpert, varies

between

0 Survive

7.6 Argumentative production system performing hybrid reasoning 254

0.5 Undefeated

1 Defeat

To explain with an example, consider contradictory arguments p1r1, p1r2 and

p1r3, p1r2 from illustration 7.3 and the voting process which involves two users

and three experts. Matrix (a) represents the votes by the decision makers against

contradictory business rules. Matrix (b) shows their respective mathematical

representation. The application of equation 3 on matrix (b) results in matrix (c).

(a)=
user1 user2 expert1 expert2

(p1r1, p1r2) defeat survive defeat survive

(p1r3, p1r2) survive defeat defeat defeat

,

(b)=
user1 user2 expert1 expert2

(p1r1, p1r2) 1 0 1 0

(p1r3, p1r2) 0 1 1 1

taking α=0.4 and β=0.6 the calculations would be like

(c)= 0.4 ∗ (1/2) + 0.6 ∗ (1/2) = 0.20 + 0.12 = 0.32

0.4 ∗ (1/2) + 0.6 ∗ (2/2) = 0.20 + 0.60 = 0.80

The results in matrix (c) can be interpreted as follows: 0.32 means 32%

of members consider that argument ‘p1r1 ’ defeats its counter-argument

‘p1r2 ’. Therefore, counter-argument ‘p1r2 ’ has priority over an argument

‘p1r1 ’. Similarly, 80% of members believe that argument ‘p1r3 ’ defeats its

counter-argument ‘p1r2 ’ and results in the priority of argument ‘p1r3 ’ over its

counterargument ‘p1r2’.

7.6.3 Building and marking of dialectical trees

Once the conflict between an argument and its counter-argument is resolved

and the preference between them has been saved in the knowledge base, the

next step is to build the dialectical trees to establish dynamic priority between

the argument and its counter-arguments. In Section 5.5.2, the methodology for

the construction and marking of dialectical trees is discussed in detail. This

methodology is used to establish the preference between the arguments and their

counter-arguments using the decision makers’s selected argumentation-driven

conflict resolution strategy.

Considering the example in Section 7.3, any two instantiated DeLP rules are said

to be in conflict if they support contradictory claims. In Illustration 7.4, the

7.7 Graphical representation of business process maps 255

business rule ‘p1r1’ with claim approveTravel is in conflict with business rule

‘p1r2’ with claim ∼ approveTravel. For the resolution of such conflicts, the

argumentation-based technique is adopted. This process of argumentation starts

when a business rule called an ‘argument’, i.e. approveTravel, contradicts (also

known as ‘attacked by’) another business rule called its ‘counter-argument’, i.e.

∼ approveTravel. Counter-arguments are also arguments which, in turn, may

be attacked and result in the construction and marking of dialectical trees as

shown in Figure 7.12. The defeated arguments are represented by the letter D

and undefeated arguments by letter U.

Figure 7.12: Marked dialectical trees considering different
argumentation-driven conflict resolution strategies

7.7 Graphical representation of business process

maps

Once the hybrid reasoning process is complete, KR@PMD exploits the

functionality of information and knowledge integration module of the logic-based

framework to integrate the information obtained from hybrid reasoning and

displays it to the decision maker. This process involves the following steps:

7.7 Graphical representation of business process maps 256

(a) Generation of a business process map

During this step, the arguments present in the Activated Process set are

linked in the form of a map (i.e. reasoning chain) known as a business

process map. The construction of reasoning chains was explained in Section

5.6.1.

(b) Graphical representation of the business process map

Once the process map has been generated, the next step is to provide

its graphical representation to the decision maker. Figures 7.13 and 7.14

provide a graphical flow diagram of business processes 1 and 2 as discussed

in Section 7.4. The elements of a task specified as premises of a business

rule are depicted in the business process map3 as follows:

• the decision elements are diamond-shaped and light blue in colour;

• the resource elements are oval-shaped and pink in colour;

• the action elements are rectangular-shaped and blue in colour;

• the data-items are rectangular-shaped and green in colour;

• the situation elements are double octagon-shaped and maroon in

colour. These elements are also annotated with the priority

information of one over the other, and

• the constraints are rectangular-shaped and red in colour

Similarly, relationships between the different tasks in a process can be

easily identified. For example, the ‘−→’ arrow in a business process map
represents a strict business rule, whereas the ‘ ’ arrow represents

defeasible information in a process. The arrow ‘ joins the two

elements of a business process where the output of the first element becomes

the input for the second element in a business process.

3The claim of a business rule is represented by a grey, rectangular-shaped box.

7.7 Graphical representation of business process maps 257

Figure 7.13: Graphical representation of business process map of
business process 1 by of KR@PMD

7.7 Graphical representation of business process maps 258

Figure 7.14: Graphical representation of business process map of
business process 2 by of KR@PMD

The graphical representation of the business process map generated from

unstructured business policies by KR@PMD enables decision makers in the

7.8 Conclusion 259

following ways:

• Identify the important tasks in a business process and how they follow

one another as defined by the business policy. They can identify

and resolve conflicts that may be present in current business policies

so that they can ensure either successful collaboration between

departments located within the enterprise and/or in other enterprises

or they can ensure they are in accordance with the legal regulations

to which the enterprises should comply.

• The business process map can also be used as a validation tool to

ensure compliance of operational business processes with business

policies. The decision maker can forward a printout of the generated

business process map to the departments in order to check the

compliance of operational business processes with the enterprise’s

business policies. The manager of each department can easily identify

if a contradictory situation in a business process exists, e.g.,‘Authority

to approve travel ’ and how it should be resolved. He can further learn

that Process 2 can be started only if travel approval is given to ‘Jon’,

otherwise, Process 1 will result in the stopping phase and no further

processing will take place.

It is important to note that during data-driven reasoning, it is possible

that some business rules (i.e. representing different tasks in a process)

may not be activated. As a result, the final business process map may not

contain those tasks as part of the process. Therefore, a direct relationship

exists between information in the working memory and the business rules

in the rule-base. If all the information required by the business processes

is introduced into the working memory before data-driven reasoning, more

business rules will be activated during data-driven reasoning which results

in a more detailed business process map.

7.8 Conclusion

The need for tools to check the compliance of operational business processes with

the enterprise’s business policies has increasingly become a subject of interest for

businesses. In this chapter, this need was addressed using techniques from the

field of knowledge representation. A conceptual framework for process discovery

7.8 Conclusion 260

from business policies was proposed by considering their defeasible nature. A

Web-based DSS was developed that takes business policies as the starting point

and, through a series of steps, generates a graphical business process map.

This graphical map enables an operational manager to check the compliance

of operational business processes with business policies. The availability of such

tools will help enterprises to develop their business policies in compliance with

various regulatory authorities and will assist in seamless and successful business

mergers.

The contributions of this chapter are as follows:

(a) A semantic model-based process ontology based on process modeling

concepts.

(b) The extension of a business rule language for business process modeling.

(c) Different argumentation-driven conflict resolution strategies.

(d) Generation and graphical representation of process maps in order to use

them as validation tools to check the compliance of business policies with

operational business processes.

Chapter 8 - Validation and Evaluation

of GF@SWA

8.1 Introduction

In the previous chapters, the working of the generic defeasible logic programming-based

framework (GF@SWA) to represent, reason and integrate incomplete and/or

contradictory information (both structured and unstructured) in different Semantic

Web applications for EII and EKI was discussed. In this chapter, the effectiveness of

GF@SWA is demonstrated by developing three different Semantic Web applications i.e.

Web-based IDSSs, using GF@SWA to provide decision support in different scenarios.

The developed Web-based IDSSs provide proof of concept as explained in Section 3.6

on research methods. It constitutes the test stage of the system development approach

as an IS research methodology, namely, functionality validation and evaluation, using

a prototype system realization.

This chapter is organized as follows: Section 8.2 provides the general description

of the tool and technologies used for the development of Web-based IDSSs. Section

8.3 lists the objectives for the development of the proposed GF@SWA. Section 8.4

provides the static structure and dynamic behaviour of the proposed GF@SWA. Section

8.5 provides the functionality validation and demonstrates the working of GF@SWA.

Section 8.6 concludes the chapter.

8.2 General description of the tools

The development of GF@SWA and Semantic Web applications using GF@SWA i.e.

Web-based IDSSs, to address the requirements of different case studies is carried out

with help of different tools and technologies as follows:

8.2 General description of the tools 262

• Microsoft Visual Studio 2010 1

This is a powerful Integrated Development Environment (IDE) that supports

the development of Web-based applications in different programming languages.

For the development of GF@SWA , the C sharp (C#) programming language is

used. For the development of Web-based IDSSs using GF@SWA, Asp.net using

C sharp language is used.

• NRuler 2

This is a fast production system library based on the RETE algorithm,

written in C sharp. This library is extended for the development of the hybrid

reasoning engine.

• QuickGraph 3

This provides generic directed/undirected graph data structures and

algorithms for .NET. It also supports Graphviz 4 to render the graphs. It is

used to generate the graphical representation of the reasoning results produced

by the Web-based IDSS.

• DeLP Server

This is an implementation of Defeasible logic programming (DeLP)(Garcia

et al., 2007). It is used as a back-end server for the development of the hybrid

reasoning engine.

• MySQL 5

This is the world’s most popular open source relational database. MySQL

server is used on the back-end of the Web-based IDSS to save the information in

order to retrieve it later on.

• Protege 6

This is a free, open source ontology editor and knowledge-based framework.

It is used for the design and development of the process ontology, as discussed in

Section 7.4.1.

1http://www.microsoft.com/visualstudio/en-us
2http://nruler.codeplex.com/
3http://quikgraph.codeplex.com/
4http://www.graphviz.org/
5http://www.mysql.com/
6http://protege.stanford.edu/

8.3 Objectives for the development of GF@SWA 263

8.3 Objectives for the development of GF@SWA

The objectives behind the development of GF@SWA to support monological

argumentation in Semantic Web applications are as follows:

• To provide a set of classes that can be extended by Semantic Web applications

to represent/translate incomplete and/or contradictory information, both

structured and unstructured, and save it in the knowledge base.

• To provide a set of classes that can be extended by Semantic Web applications to

perform hybrid reasoning over underlying information saved in the knowledge

base. It should be able to construct a set of arguments from underlying

information and provide a set of strategies to resolve the conflicts present among

the arguments.

• To provide a set of classes that can be extended by Semantic Web applications

to integrate the output of a hybrid reasoning engine i.e. information integration,

and generate the graphical representation of the reasoning process and results.

• To provide a set of classes that can be extended by Semantic Web applications

to integrate the output of different hybrid reasoning engines i.e. knowledge

integration, published over the enterprise’s intranet or Internet and generate the

graphical representation of integrated knowledge.

In the next section, the important characteristics of the proposed framework which

are exposed to Semantic Web applications are explained which helps them to achieve

the abovementioned objectives.

8.4 Characteristics of the proposed GF@SWA

In this section, the basic characteristics and components of the proposed GF@SWA are

discussed with the help of Unified Modeling Language (UML) by using the following

diagrams:

• Structure diagrams

Structure diagrams 7 define the static structure of a model which comprises

different elements (packages, classes, objects and relationships among them) to

create conceptual diagrams that represent concepts from the real world and the

relationships between them.
7http://www.sparxsystems.com.au/resources/uml2_tutorial/

8.4 Characteristics of the proposed GF@SWA 264

• Behavior diagrams

Behavior diagrams 8 depict the variety of interaction and instantaneous states

within a system to achieve a certain task over a certain period of time and

observing the effects of an operation or event, including its results.

In the next sub-section, these diagrams are used to explain the characteristics of

the proposed GF@SWA.

8.4.1 Structure diagrams

In this section, the static structure of proposed framework is explained with the help

of Package diagrams. Figure 8.1 shows the package diagram of GF@SWA, which

comprises different packages as follows:

1. The Communication package comprises a set of classes to query the back-end

services such as the MySQL server and DeLP server. This package is created

from scratch to achieve its required functionalities.

2. The Information representation package comprises a set of classes to

represent/translate incomplete and/or contradictory information (both

structured and unstructured) and save it in the knowledge base. This

package is created from scratch to achieve its required functionalities.

3. Hybrid reasoning engine package comprises a set of classes to perform hybrid

reasoning over information saved in the knowledge base. Figure 8.2 provides

a set of sub-packages that come in the hybrid reasoning engine package. This

package is created by extending the NRuler.

4. Information and knowledge integration package comprises a set of classes to

perform information and knowledge integration. This package is created from

scratch, however, it exploits the Quick Sharp library to generate the graphical

representation of a reasoning chain.

8http://www.sparxsystems.com.au/resources/uml2_tutorial/

8.4 Characteristics of the proposed GF@SWA 265

Figure 8.1: Package diagram of GF@SWA

In next sub-sections, each of these packages is discussed in detail.

8.4.1.1 Communication package

This package provides a set of classes to establish communication (i.e. read and write)

between the GF@SWA and the back end servers such as the MySQL and DeLP server.

The important classes in this package are:

• dataBaseConnectionManager provides a set of functions to GF@SWA in order to

communicate with the MySQL server. The important functions it provides are

read, write and delete information from the MySQL server.

• DeLPConnectionManager provides a set of functions for GF@SWA to

communicate with the DeLP server. The important functions it provides are

connect, disconnect, send query, receive query results and load the knowledge

base.

8.4 Characteristics of the proposed GF@SWA 266

Figure 8.2: Hybrid Reasoning engine sub-packages

8.4.1.2 Information representation package

This package provides a set of classes to represent information (i.e. structured as well

as unstructured) that is potentially incomplete and/or contradictory and saves it in

the knowledge base. The important classes in this package are:

• The Semantic annotation controller (SA-CO) is responsible for handling the

interactions of a Semantic Web application with GF@SWA for the semantic

annotation of unstructured information and considers it in the decision-making

process. It helps a Semantic Web application perform the following tasks:

– download the decision maker’s specified documents containing unstructured
information and load the information in a Web-based form of Semantic Web

application;

– download the decision maker’s specified domain ontology, read the concepts

8.4 Characteristics of the proposed GF@SWA 267

from the ontology and display them on the Web-based form of the Semantic

Web application, and

– save the information (i.e. annotated predicates) specified by the decision
makers through the Web-based form of the Semantic Web application in the

Semantic Annotation Properties Object (SA-PO). SA-CO iterates through

information saved in SA-PO, validates the information and saves it in the

MySQL server.

• The production rules controller (PR-CO) is responsible for handling the

interactions of the Semantic Web application with GF@SWA for the specification

of production rules. It helps Semantic Web applications perform the following

tasks:

– load the annotated predicates saved in the MySQL sever on the Web-based
form of the Semantic Web application, and

– save the information (i.e. production rules) specified by the decision

makers through the Web-based form of the Semantic Web application in

the Production Rules Properties Object (PR-PO). PR-CO iterates through

information saved in PR-PO, validates the information and saves it in the

knowledge base.

8.4.1.3 Hybrid reasoning engine package

This package provides a set of classes to perform hybrid reasoning over information

saved in the knowledge base. The important classes in this package are:

• NegativeConditionNAF is a class located in the Conditions sub-package. It is

used to represent incomplete information as a predicate in a production rule.

• The AssertCondition is a class located in the Conditions sub-package. It is used to

represent both contradictory and non-contradictory predicates. A contradictory

predicate contains ‘∼’ at the start and the system reads this symbol to identify

the contradictory predicates during reasoning process.

• Agenda is a class located in the Rete sub-package. It is responsible for the

construction of the Rete network and forward chain reasoning. Its functionality

has been extended for the construction of arguments during forward chain

reasoning.

8.4 Characteristics of the proposed GF@SWA 268

• ArgumentativeResolver is a class located in the Conflicts sub-package. It is

responsible for argumentation-driven conflict resolution between arguments and

their counter-arguments. It uses the following classes to achieve its functionality:

– The ConflictResolverAlogirthm class provides a programming interface to

attach different reasoning algorithms with the hybrid reasoning engines.

– Fuzzy preferences, Dung’s style and Voting are implementations of different
conflict resolution algorithms that are used by the ArgumentativeResolver

to resolve conflicts between arguments and their counter-arguments

– DialecticalTree is class used to save the conflict resolution process

information generated by the hybrid reasoning engine during goal-driven

reasoning.

• The hybrid reasoning engine controller (HRE-CO) is responsible for handling

the interactions of Semantic Web applications with GF@SWA to perform hybrid

reasoning. It helps Semantic Web applications perform the following tasks:

– load the facts and production rules in the Agenda object;

– interact with the Agenda object to perform forward chain reasoning for the
construction of the arguments;

– interact with ConflictResolverController (defined next) to perform

goal-driven reasoning and resolve conflicts using the decision maker’s

specified conflict resolution strategy, and

– interact with ReasoningChainController (defined in the next sub-section)
for the construction and graphical representation of the reasoning chains.

• The conflict resolver controller (CR-CO) is responsible for handling the

interactions of HRE-CO with the DeLP Sever. It helps the Semantic Web

applications in the following tasks:

– provide different conflict resolution strategies for the decision maker and
apply the selected strategy to resolve conflicts between arguments, and

– interact with the DeLP server for the construction of dialectical trees during
goal-driven reasoning.

8.4 Characteristics of the proposed GF@SWA 269

8.4.1.4 Information and knowledge integration package

This package provides a set of classes to consider the output of hybrid reasoning

engine/s and perform information and knowledge integration. The important classes

in this package are as follows:

• The reasoning chains controller (RC-CO) is responsible for interacting with

HRE-CO for information integration. It helps Semantic Web applications

perform the following tasks:

– link the arguments forwarded by HRE-CO in the form of a reasoning chain,
and

– generate a graphical representation of the reasoning chain.

• The integration scheme controller (IS-CO) is responsible for handling the

interactions between a Semantic Web application and the HRE-CO for the

valuation of reasoning chains. It helps Semantic Web applications perform the

following tasks:

– save the argumentation scheme information specified by the decision maker
via a Web-based form in the Integration Scheme Properties Object (IS-PO);

– perform the valuation of reasoning chains with the help of RC-CO, and

– return the valuation results of each reasoning chain to the Semantic Web
application.

• The knowledge integration controller (KI-CO) is responsible for handling the

interactions between the Semantic Web application and HRE-CO for the

generation of integrated recommendations space i.e. knowledge integration. It

helps Semantic Web applications perform the following tasks:

– retrieve the valued reasoning chains with the help of RC-CO and forward
them to HRE-CO for identification and the resolution of conflicts among

the arguments;

– construct new arguments from existing ones, and

– generate a graphical representation of the integrated recommendations
space with the help of RC-CO and return the results to the Semantic Web

application.

8.4 Characteristics of the proposed GF@SWA 270

8.4.2 Behaviour diagrams

In this section, Sequence diagrams are used to depict the work flow or sequence of steps

involved in an activity over a period of time using messages passed between elements.

These messages correspond to Class operations and behavior in the software model.

Sequence diagrams are used to define the behaviour of GF@SWA in the following

activities:

1. Semantic annotation of unstructured information.

2. Production rules specification.

3. Hybrid reasoning and the generation of reasoning chains i.e. information

integration.

4. Integration of output of different hybrid reasoning engines and the generation of

reasoning chains i.e. knowledge integration.

In the following sub-sections, the sequence diagram of each activity is discussed in

detail.

8.4.2.1 Sequence diagram for semantic annotation of unstructured
information

Figure 8.3 shows the sequence of steps performed for the semantic annotation of

unstructured information by a Semantic Web application. The steps are as follows:

1. The Semantic Web application displays a Web-based form to the decision maker

where he can enter the URL/paths for a document that contains unstructured

information and for a domain ontology.

2. The Web-based form takes the information specified by the decision maker in

the previous step and forwards it to the Semantic Annotation Controller Object

(SA-CO). The SA-CO reads the specified files i.e. a document and an ontology,

and loads the information on the Web-based form.

3. The decision maker extracts the information/concepts from the loaded

information and annotates them with the concepts defined in the domain

ontology. The Web-based form saves the annotated predicate in the Semantic

Annotation Properties Object (SA-PO). This is an iterative process controlled

by the decision maker.

8.4 Characteristics of the proposed GF@SWA 271

4. The Semantic Web application forwards the SA-PO to SA-CO to save the

annotated predicates.

5. The SA-CO reads the annotated predicates from the List defined in SA-PO and

saves the predicates in the MySQL server.

6. The SA-CO displays the message ‘information saved successfully’ on the

Web-based form.

Figure 8.3: Sequence diagram for the semantic annotation of
unstructured information

8.4.2.2 Sequence diagram for production rules specification

The GF@SWA provides two ways for the specification of production rules as follows:

1. An automated process performed by the RuleML translator that translates the

8.4 Characteristics of the proposed GF@SWA 272

production rules specified in RuleML format to DeLP format and saves them in

the knowledge base.

2. A non-automated process where the specification of production rules is carried

out from scratch by a decision maker.

The first method of specifying production rules is an automated process performed

by a single class, therefore its sequence diagram is not represented. Figure 8.4 shows

the sequence diagram of the second method i.e. the specification of production rules

by a decision maker. The steps performed during this process are as follows:

1. The decision maker interacts with the Semantic Web application to open the

production rules specification form.

2. The Semantic Web application loads and displays the Web-based form for the

decision maker. During form loading, the Semantic Web application forwards the

request to PR-CO to load the annotated predicates. PR-CO reads the annotated

predicates from the MySQL server and loads the information on the Web-based

form.

3. The decision maker selects/fills in the production rule specifications (i.e. select

premises, rule type and a conclusion) and the Web-based form saves this

information in PR-PO. This is an iterative process, controlled by the decision

maker.

4. Once the decision maker finishes with the specification of production rules, the

Web-based form forwards the PR-PO to PR-CO to save the production rules

in the knowledge base. The PR-CO reads the production rules from PR-PO,

and checks if the production rules label already exist in the knowledge base. If

the query returns false, then the production rule is saved in the knowledge base.

Otherwise, the decision maker is informed of the problem and is asked to rectify

it.

5. Once all the production rules are saved in the knowledge base, PR-CO returns a

task completion message to the Semantic Web application and displays it on the

Web-based form for the decision maker.

8.4 Characteristics of the proposed GF@SWA 273

Figure 8.4: Sequence diagram for production rules specification

8.4.2.3 Sequence diagram for hybrid reasoning and the generation of
graphical reasoning chains

Figure 8.5 shows the steps performed during hybrid reasoning and the generation of

graphical reasoning chains. The sequence of steps involved in this process are:

1. Once all the required information has been specified and saved in the knowledge

base, the hybrid reasoning engine is ready to perform hybrid reasoning.

2. The Web-based form of the Semantic Web application delegates the task of hybrid

reasoning to the Hybrid Reasoning Engine Controller Object (HRE-CO). The

HRE-CO loads the facts and production rules into the Agenda object.

8.4 Characteristics of the proposed GF@SWA 274

3. Once the information from the working memory and rule base have been loaded

into the Agenda object, the Semantic Web application delegates the request to

HRE-CO to start reasoning.

4. The HRE-CO forwards the request to the Agenda object to start forward chain

reasoning for argument construction. As a result, it returns a set of arguments

and a conflict set to HRE-CO.

5. The HRE-CO returns the arguments and conflict set to the Web form of the

Semantic Web application. Using the Web-based form, the decision maker selects

a conflict resolution strategy to be used in order to resolve the conflicts between

arguments and their counter-arguments.

6. The HRE-CO applies the strategy over the set of arguments involved in the

conflicts during goal-driven reasoning. If the selected strategy needs some input

from the decision maker, the HRE-CO takes the input via the Web form and

considers this during the execution of the selected strategy.

7. Once the conflicts have been resolved, HRE-CO forwards the resulting arguments

to the Reasoning Chains Controller Object (RC-CO) to generate the reasoning

chains and returns their graphical representation to HRE-CO which then displays

them back on the Web-based form for the decision maker.

8.4 Characteristics of the proposed GF@SWA 275

Figure 8.5: Sequence diagram for hybrid reasoning and the generation
of graphical reasoning chains

Figure 8.6 shows the sequence diagram of the steps performed by HRE-CO during

hybrid reasoning. The steps are:

1. Once the production rules and facts have been loaded in the Agenda object,

the HRE-CO forwards the request to the Agenda object to start forward chain

reasoning.

2. The Agenda object first builds the Rete network and then performs forward chain

reasoning for the construction of arguments. The arguments constructed are then

saved in the Arguments Set object. Once forward chain reasoning is complete,

the arguments set is returned to HRE-CO.

3. To resolve conflicts between arguments using goal-driven reasoning, HRE-CO

forward the Argument Set object to the Conflict Resolver Control Object

(CR-CO). CR-CO retrieves the conflict resolution strategy selected by the

8.4 Characteristics of the proposed GF@SWA 276

decision maker from the Conflict Resolver Properties Object (CR-PO) and applies

it for the resolution of conflicts. During goal-driven reasoning, the marked

dialectical trees are saved in the Dialectical Tree Properties Object (DT-PO).

On the completion of goal-driven reasoning, the conflict-free arguments set is

returned to HRE-CO.

Figure 8.6: Sequence diagram represents the steps performed by hybrid
reasoning engine

8.4.2.4 Sequence diagram for knowledge integration

Figure 8.7 shows the sequence diagram for knowledge integration which involves the

following series of steps:

1. The Semantic Web application displays a Web-based form to the decision maker

to define an integration scheme. The decision maker selects/fills in the integration

scheme information. The Web form saves the integration scheme information in

the Integration Scheme Properties Object(IS-PO).

2. Once the information is saved in IS-PO, the Web-based form forwards the

request to Integration Scheme Controller Object (IS-CO) for the valuation of

the reasoning chains. The IS-CO pulls the reasoning chains with the help of

8.4 Characteristics of the proposed GF@SWA 277

RC-CO and applies the integration scheme on each reasoning chain and saves the

valued reasoning chain. This is an iterative process which continues until all the

reasoning chains are processed.

3. Once the valuation of the reasoning chains is complete, the decision maker

generates the integrated recommendation space. During this process, the

Web-based form forwards the request to the Knowledge Integration Data Control

Object (KI-CO). KI-CO pulls the reasoning chains with the help of RC-CO

and with the help of HRE-CO, identifies and resolves the conflicts among the

reasoning chains. Then it generates new arguments and forwards the argument

set to RC-CO to build the integrated recommendation space.

8.4 Characteristics of the proposed GF@SWA 278

Figure 8.7: Sequence diagram knowledge integration

8.5 Functionality validation and feature evaluation of GF@SWA 279

8.5 Functionality validation and feature evaluation of

GF@SWA

Software functionality validation (Andriole, 1986) results in confirmation by

examination and the provision of objective evidence that software specifications

conform to the decision maker’s needs, and that the particular requirements

implemented through the software can be consistently fulfilled. Software evaluation

(Anderson, 1989) involves the assessment of the software by comparing its

characteristics with existing software in that domain. During software feature-based

evaluation, each piece of software is assessed against the features defined in a matrix,

known as the feature matrix. Such evaluation of software helps to categorise the existing

software and identify the one that addresses the needs of the decision maker in the best

possible manner.

In order to validate and evaluate the proposed GF@SWA for monological

argumentation support in Semantic Web applications, the following steps were

performed:

• Three Semantic Web applications were developed using GF@SWA. The validation

of the functionality of each application provides the validation of the GF@SWA.

The developed applications are:

– Web@IDSS : Section 8.5.1 provides the validation of Web@IDSS by

considering the functional requirements identified in the case study

discussed in Section 5.2.

– Web@KIDSS: Section 8.5.3 provides the validation of Web@IDSS by

considering the functional requirements identified in the case study

discussed in Section 6.2.

– KR@PMD: Section 8.5.5 provides the validation of Web@IDSS by

considering the functional requirements identified in the case study

discussed in Section 7.3.

• Feature evaluation was performed on each developed Semantic Web application

identified above with the existing contemporary applications. Such evaluation of

each application in turn provides the evaluation of GF@SWA.

In the next sub-sections, the functionality validation and features evaluation of each

Semantic Web application developed using GF@SWA is discussed.

8.5 Functionality validation and feature evaluation of GF@SWA 280

8.5.1 Functionality validation of Web@IDSS

Section 5.3.2 provides the sequence of steps performed by Web@IDSS to consider the

incomplete and/or contradictory information which exists within an enterprise or in

other enterprises and assists the decision maker in the decision making process. In

the next sub-section, the aims to be met during of the validation of the functionalities

provided by Web@IDSS are listed.

8.5.1.1 Aims for the development of Web@IDSS

In this section, the aims for the development of Web@IDSS, as previously identified in

Section 5.2, are listed as follows:

1. a Web-based form to download the structured information representing the public

policies of an enterprise published over the enterprise’s intranet or on the Internet;

2. capability to download feedback or reviews from other customers about the

products and services of the enterprise;

3. a Web-based form to define the business requirements in the form of production

rules, and

4. ability to perform reasoning over underlying information which may be

incomplete and/or contradictory, automatically resolve conflicts and provide a

graphical representation of the reasoning process and the reasoning result in

order to make them easily understandable by non-technical persons.

In order to validate the functionality of Web@IDSS, in the next subsection, the

working of Web@IDSS is described with an example of the case study discussed in

Section 5.2 to achieve the aims discussed above.

8.5.1.2 Working of Web@IDSS

Figure 8.8 depicts a Web-based form of Web@IDSS displayed for the decision maker

to import the structured information representing public business rules or polices of

an enterprise defined in RuleML format over the Web. Appendix A.1 presents the

public policies of an enteprise BigW specified in RuleML format. Using the Web-based

form, the decision maker i.e Mr. David, downloads the business rules or policies of the

enterprise/s he has identified for consideration in the decision making process.

8.5 Functionality validation and feature evaluation of GF@SWA 281

Figure 8.8: Web-based form of Web@IDSS to download RuleML files

Once the decision maker has finished downloading the RuleML file/s, Web@IDSS

needs to translate RuleML files to DeLP format in order to consider them during hybrid

reasoning. Figure 8.9 depicts the Web-based form where the decision maker can select

the RuleML files he wants to consider during the decision-making process. Web@IDSS

translates the selected files and saves the translated information in form of production

rules in the rule base. The production rules are used by the hybrid reasoning engine

during the decision-making process.

Figure 8.9: Web-based form of Web@IDSS for translation of business
rules from RuleML to DeLP format

8.5 Functionality validation and feature evaluation of GF@SWA 282

To consider facts during the decision-making process, Web@IDSS provides a

Web-based form as depicted in Figure 8.10 that allows the decision maker to download

the feedback information about products and services, serialized in OWL/RDF format

and translate it to DeLP facts and save them in the working memory. Appendix A.2

presents feedback information on the raw material provided by BigW in OWL/RDF

format. The translated information is used for the activation of production rules saved

in the knowledge base by the hybrid reasoning engine during the decision-making

process.

Figure 8.10: Web-based form of Web@IDSS for translation of feedback
specified in OWL/RDF format to DeLP format

Once the decision maker is finished downloading and translating the information

identified for the decision-making process, he defines his own business requirements that

needs to be considered by the Semantic Web application during the decision-making

process, using the Web-based form as depicted in Figure 8.11. The decision maker

creates a production rule by assigning it a name, inference type, set of premises and a

conclusion and saves it in the rule base. He can also view the list of rules created and

can edit and delete them. The decision maker can define certain facts to be saved in

the working memory. The production rules and facts defined by the decision maker are

considered by the hybrid reasoning engine during the decision-making process along

with information already saved in the knowledge base i.e. translated business policies

of BigW and feedback about its products and services.

8.5 Functionality validation and feature evaluation of GF@SWA 283

Figure 8.11: Web-based form of Web@IDSS to define production rules
and facts

The next step performed by Web@IDSS after importing and defining the production

rules and facts is to undertake hybrid reasoning (i.e argumentation-driven reasoning).

During hybrid reasoning, Web@IDSS takes into account all the production rules present

in the knowledge base and the facts in the working memory to perform hybrid reasoning

and displays the reasoning results to the decision maker in the form of a reasoning

chain as depicted in Figure 8.12. The oval-shaped nodes in represent the facts and

the rectangular nodes represent the claim of the production rules. The dotted lines

from the nodes represent the defeasible inference and the solid lines represent the strict

inference. The rectangular nodes without a border represent the undefeated arguments

in a reasoning chain. If Web@IDSS produces more than one reasoning chain, the

decision maker can use a category filter, such as ‘Mixed Reasoning Chains’, as shown

in Figure 8.12 to display only those reasoning chains that belong to that category and

Figure 8.13 display a dialectical tree against the query ∼ giveDiscount(david).

8.5 Functionality validation and feature evaluation of GF@SWA 284

Figure 8.12: Graphical representation of reasoning results with
justifications by Web@IDSS

Figure 8.13: Web-based form by Web@IDSS for querying the
knowledge base

The graphical representation of the reasoning process takes into account the

business policies of BigW and the customer’s feedback on its products in the

decision-making process. The decision maker can understand the reasoning process

by understanding how the arguments support each other as follows:

• arguments d9, d1 and d3 state that if he purchases raw material from BigW, he

8.5 Functionality validation and feature evaluation of GF@SWA 285

is eligible to receive a discount;

• arguments d5 and s1 state that if no GST applies on the raw material, he might

receive a normal discount, and

• argument d7 states that if the decision maker receives a normal discount, he is

eligible for a platinum discount.

In order to formulate a strategy for product B, Mr David has to perform the same

activities with the other suppliers in order to identify the supplier who may offer a

maximum discount. As a result, he will obtain ‘n’ number of reasoning chains, each

of which provides a different degree of discount under different conditions. By going

through the graphical representations of the reasoning chains, Mr David can easily

identify a supplier who may offer him a maximum discount considering his business

requirements and conditions with more strict rules. The graphical representation of

the reasoning process will also help him to communicate his decision to the enterprise’s

CEO about why and how he reached the decision to select a particular supplier for raw

material for the development of a new product.

8.5.1.3 Achievement of the Aims of Web@IDSS

In this section, the steps performed by Web@IDSS to achieve the aims mentioned in

Section 8.5.1.1 are listed.

1. As represented in Figure 8.8 and Figure 8.9, Web@IDSS provides a Web-based

form to download the structured public policies of an enterprise (i.e. BigW)

in RuleML format. Once the download is complete, the decision maker selects

and submits the required information for translation by the Web@IDSS. Once

the Web@IDSS completes the translation, it saves the translated information as

DeLP rules in the rule base.

2. As represented in Figure 8.10,Web@IDSS provides a Web-based form to download

feedback or reviews published on WWW in OWL/RDF format. Once the

download is complete, the decision maker selects and submits the required

information for translation by the Web@IDSS. Once the Web@IDSS completes

the translation, it saves the translated information as DeLP facts in the working

memory.

3. As represented in Figure 8.11, Web@IDSS provides a Web-based form to the

decision maker to specify his requirements in the form of production rules. Once

the decision maker specifies and submits the information, the Web@IDSS saves it

8.5 Functionality validation and feature evaluation of GF@SWA 286

the form of DeLP rules in the rule base. Similarly, the decision maker’s specified

facts are saved as DeLP facts in the working memory.

4. Figure 8.12 provides the graphical representation of the reasoning results after

reasoning over underlying information obtained from the previous steps has been

performed. During this process, if conflicts among arguments exist, they are

resolved using an automated process, namely the Generalize conflict resolution

strategy, and the reasoning process is then displayed to the decision maker in

a graphical format. Figure 8.13 represents a Web-based form provided to the

decision maker to query the knowledge base and obtain a justification for the

reasoning results.

8.5.2 Features evaluation of Web@IDSS

In this section, the features evaluation of Web@IDSS is provided by comparing its

functionalities with existing applications in the literature such as Dr Prolog (Antoniou

and Bikakis, 2007), Dr-Device (Kontopoulos et al., 2011; Bassiliades et al., 2004) and

SweetJess (Grosof et al., 2002), each of which is discussed in Section 2.7.2. Table 8.1

provides the features matrix where a comparative study of Web@IDSS with existing

applications is provided and these are discussed in terms of three important aspects as

follows:

• Structured, incomplete and/contradictory representation

The applications presented in Table 8.1 except Web@IDSS, are capable of

representing incomplete and/or contradictory structured information only when

it comes from a single source by defining priorities between the contradictory rules

at compile time before starting the reasoning process. However, Web@IDSS is

capable of representing incomplete and/or contradictory structured information

which comes from different sources. It does not require definition of priorities

between the contradictory rules at compile time before starting the reasoning

process.

• Reasoning over such information

As evident from Table 8.1 , all applications except Web@IDSS provide either

data-driven reasoning or goal-driven reasoning. Data-driven reasoning is used

to move from current facts to a conclusion, whereas goal-driven reasoning is

backward chain reasoning used to move from a conclusion to facts. In the

case of Semantic Web applications, both types of reasoning are needed: that

is, data-driven reasoning to create a path from initial facts to a conclusion

8.5 Functionality validation and feature evaluation of GF@SWA 287

and goal-driven reasoning to identify reasons and justifications for a particular

conclusion which none of the existing applications provide. Another drawback of

existing applications is that they define individual preferences at compile time;

i.e. the decision maker decides the priorities between the contradictory rules,

whereas Web@IDSS does not need any such pre-conditions because it uses an

argumentation-driven methodology which is capable of identifying and resolving

conflicts in information coming from different sources/users automatically.

• Reasoning chains and graphical representation

None of these applications, except Web@IDSS, integrate the output of

the reasoning process and provide its graphical representation to the decision

maker to assist them in the decision-making process. Additionally, Web@IDSS

provides a graphical explanation of conflict resolution to produce more easily

understandable results in the form of marked dialectical trees.

8.5 Functionality validation and feature evaluation of GF@SWA 288

T
ab
le
8.
1:
C
om
pa
ri
so
n
of
W
eb
@
ID
SS
w
it
h
ex
is
ti
ng
ap
pl
ic
at
io
ns

D
r-
P
ro
lo
g

D
r-
D
ev
ic
e

Si
tu
at
ed
C
ou
rt
eo
us
lo
gi
c

W
eb
@
ID
SS

L
an
gu
ag
e

P
ro
lo
g

JE
SS

JE
SS

C
sh
ar
p

L
og
ic

D
ef
ea
si
bl
e
lo
gi
c

D
ef
ea
si
bl
e
lo
gi
c

Si
tu
at
ed
C
ou
rt
eo
us
lo
gi
c

D
ef
ea
si
bl
e

lo
gi
c

pr
og
ra
m
m
in
g

Se
m
an
ti
c
da
ta

R
D
F
S/
O
W
L

R
D
F

D
A
M
L
+
O
IL

R
D
F
S/
O
W
L

R
ul
es
re
pr
es
en
ta
ti
on

R
ul
eM
L

R
ul
eM
L

R
ul
eM
L

R
ul
eM
L

C
on
fli
ct
re
pr
es
en
ta
ti
on

Y
es

Y
es

Y
es

Y
es

D
at
a-
dr
iv
en
re
as
on
in
g

N
o

Y
es

Y
es

Y
es

G
oa
l-d
ri
ve
n
re
as
on
in
g

Y
es

N
o

N
o

Y
es

M
ul
ti
pl
e
so
ur
ce
of
in
fo

N
o

N
o

N
o

Y
es

C
on
fli
ct
re
so
lu
ti
on

In
di
vi
du
al
pr
ef
er
en
ce
s

In
di
vi
du
al

pr
ef
er
en
ce
s

In
di
vi
du
al
pr
ef
er
en
ce
s

A
rg
um
en
ta
ti
on

E
xp
la
na
ti
on

T
ex
tu
al

T
ex
tu
al

T
ex
tu
al

G
ra
ph
ic
al

G
ra
ph
ic
al

re
as
on
in
g

ch
ai
s

N
o

N
o

N
o

Y
es

8.5 Functionality validation and feature evaluation of GF@SWA 289

8.5.3 Functionality validation of Web@KIDSS

Section 6.3.2 provides the sequence of steps performed by Web@KIDSS for EKI in order

to facilitate either the intra-enterprise or inter-enterprise decision-making process when

the underlying information is incomplete and/or contradictory. In the next sub-section,

the aims to be met during the validation of the functionalities of the Web@KIDSS are

listed.

8.5.3.1 Aims for the development of Web@KIDSS

In this section, the aims for the development of Web@KIDSS previously identified in

Section 6.2 are listed as follows:

1. a Web-based form to download the recommendations/reasoning chains published

by different hybrid reasoning engines over an enterprise’s intranet or Internet;

2. a Web-based form for a decision maker to specify his criteria for the valuation

of the recommendations/reasoning chains. The system uses the decision maker’s

criteria and applies it to the downloaded recommendations/reasoning chains, and

3. a reasoning mechanism in the system that can resolve the conflicts present

among diverse recommendations and integrate them into an integrated knowledge

base, generate its graphical representation to assist decision makers in the

intra-enterprise or inter-enterprise decision-making process.

In order to validate the functionality of Web@KIDSS, in the next subsection, the

working of Web@KIDSS is demonstrated with an example of a case study discussed in

Section 6.2 to achieve the aims discussed above.

8.5.3.2 Working of Web@KIDSS

Figure 8.14 depicts the Web-based form provided by Web@KIDSS for the decision

maker to import the recommendations published in the form of reasoning chains in AIF

format over the enterprise’s intranet. In this way, the decision maker can download all

the required recommendations published either on an enterprise’s intranet or on the

Internet and consider them during the decision making process. The Web-based form

also shows the list of downloaded AIF compliant reasoning chain files and the decision

maker is able to either view or remove them from the Web@KIDSS.

8.5 Functionality validation and feature evaluation of GF@SWA 290

Figure 8.14: Web-based form of Web@KIDSS to import reasoning
chains

Once the decision maker has finished downloading the recommendation files,

Web@KIDSS needs to translate them to DeLP format in order to reason over them.

Figure 8.14 depicts the Web-based form where the decision maker selects the files

and Web@IDSS translates them to DeLP format . The translated information is

saved in the knowledge base and it is used by the hybrid reasoning engine during

the decision-making process.

Figure 8.15: Web-based form of Web@KIDSS to define integration
scheme

Once the decision maker has finished importing the AIF files, he can define an

integration scheme for the valuation of the reasoning chains. Figure 8.15 depicts an

interface where a decision maker defines premises that need to be matched, queries to

8.5 Functionality validation and feature evaluation of GF@SWA 291

be executed, and conflict blocking variant at the valuation of a reasoning chain and

knowledge integration levels. The decision maker also gives a name to the integration

scheme. Once the decision maker has finished the integration scheme, the next step

performed by Web@KIDSS is the valuation of the reasoning chains. Figure 8.16

depicts the Web-based form where the decision maker can select the reasoning chains

and submit them for the valuation process where Web@KIDSS applies all the premises

that need to be matched and queries to be executed on the reasoning chains.

Figure 8.16: Web-based form of Web@KIDSS to select reasoning chains
and apply the integration scheme

Figure 8.17 depicts the Web-based form for the decision maker to see the results of

the valuation process on a reasoning chain. The text in red shows the conflict between

the integration scheme and the contents of a reasoning chain. As a result of the

valuation, only those reasoning chains that pass the criteria defined in the integration

scheme by the decision maker qualify for further processing.

8.5 Functionality validation and feature evaluation of GF@SWA 292

Figure 8.17: Web-based form of Web@KIDSS depicting the results of
valuation of a reasoning chain

After the valuation of the reasoning chains, the next step is knowledge integration

whereby all the reasoning chains are integrated in the form of a reasoning chain,

known as an integrated recommendations space. Figure 8.18 depicts the graphical

representation that helps the decision maker of enterprise ABC to understand the

whole reasoning process which can result in two recommendations: either recommend

XYZ or not. He can identify the reasons for the recommendations as follows:

1. Recommend Service provider XYZ

The manager of the IT department recommends service provider XYZ for

the relocation of enterprise ABC. His recommendation is based on the following

information:

• XYZ considers an enterprise ABC is eligible for a discount. In light of the

current available information for decision making, he will offer a normal

discount to enterprise ABC.

• Although XYZ may be inconvenient and not able to capture the enterprise’s

criteria, the supplier is reliable and will likely provide safe delivery of the

enterprise’s goods.

8.5 Functionality validation and feature evaluation of GF@SWA 293

Figure 8.18: Graphical representing of integrated knowledge by
Web@KIDSS to facilitate decision making process

8.5 Functionality validation and feature evaluation of GF@SWA 294

• XYZ has been used previously by the IT department and the manager is

happy with their service and wants to reuse them for the relocation of the

department.

2. Not recommend service provider XYZ

The managers of the HR and marketing departments do not recommend XYZ

for the relocation of the departments of enterprise ABC. Their recommendations

are based on the following information:

• XYZ has been used for relocation services before and the marketing

department was not happy with their service.

• XYZ may not provide safe delivery.

• Both departments consider XYZ to be a bad relocation service provider.

The final decision needs to be made by the decision maker who selects the result

from the drop-down menu and clicks the ‘Final Decision’ button. This will save the

decision maker’s preference in the knowledge base.

8.5.3.3 Achievement of the Aims of Web@KIDSS

1. As represented in Figure 8.14, Web@KIDSS provides a Web-based form by which

the decision maker can download the recommendations specified by different

departments and submit them to the system to translate them into DeLP format

and save them in the knowledge base.

2. As represented in Figure 8.15, Web@KIDSS provides a Web-based form to the

decision maker to define an integration scheme. The Web@KIDSS takes the

decision maker’s defined integration scheme for the valuation of the reasoning

chains. Figure 8.16 represents the results of the valuation of the reasoning chains

selected by the user. Figure 8.17 represents in detail the information of a valued

reasoning chain.

3. As represented in Figure 8.18, Web@KIDSS provides the graphical representation

of the integration recommendation space to assist the decision maker in the

decision-making process for EKI. During this process, Web@IDSS resolves the

conflicts among arguments followed by the construction of a new argument and

generates an integrated recommendation space.

8.5 Functionality validation and feature evaluation of GF@SWA 295

8.5.4 Features evaluation of Web@KIDSS

In this section, the features evaluation of Web@IDSS is provided by comparing its

functionalities with existing applications such as Dr Prolog, Dr-Device, SweetJess and

Web@IDSS discussed in Section 8.5.2. Table 8.1 provides the comparative study of

Web@KIDSS with existing applications and these are discussed under two important

aspects as follows:

• Publication of reasoning chains

Each of the applications discussed in Table 8.1 except Web@KIDSS does not

publish their reasoning results on an enterprise’s intranet or on the Internet in a

standard format so that the results can be considered by different Semantic Web

applications either within the organisation or in other organisaitons.

• Knowledge integration

As discussed in Section 8.5.2, Web@KIDSS, similar to Web@IDSS, performs

hybrid reasoning for the construction of arguments during data-driven reasoning

and the resolution of conflicts during goal-driven reasoning. However, it has some

additional features which are not present in Web@IDSS and the other existing

applications in the literature. These are as follows:

1. it provides a set of conflict resolution strategies to the decision maker and

uses the decision maker’s selected strategy during conflict resolution;

2. it can transform the reasoning chains generated by the hybrid reasoning

engine to AIF format and publish them on an enterprise’s intranet or on

the Internet in OWL/RDF format, and

3. it provides a solution for knowledge integration. It takes into account

the recommendations published over an enterprise’s intranet or on the

Internet and through the reasoning process, integrates them to generate

an integrated recommendation space. It also provides a graphical

representation of the integrated recommendation space to the decision

maker to assist him in the decision-making process.

8.5 Functionality validation and feature evaluation of GF@SWA 296

T
ab
le
8.
2:
C
om
pa
ri
so
n
of
de
fe
as
ib
le
lo
gi
c
ba
se
d
W
eb
ID
SS
ap
pl
ic
at
io
ns

D
r-
P
ro
lo
g

D
r-
D
ev
ic
e

Si
tu
at
ed

C
ou
rt
eo
us

lo
gi
c

W
eb
@
ID
SS

W
eb
@
K
ID
SS

L
an
gu
ag
e

P
ro
lo
g

JE
SS

JE
SS

C
sh
ar
p

C
sh
ar
p

L
og
ic

D
ef
ea
si
bl
e
lo
gi
c

D
ef
ea
si
bl
e

lo
gi
c

Si
tu
at
ed

C
ou
rt
eo
us

lo
gi
c

D
ef
ea
si
bl
e

L
og
ic

P
ro
gr
am
m
in
g

D
ef
ea
si
bl
e

L
og
ic

P
ro
gr
am
m
in
g

Se
m
an
ti
c
da
ta

R
D
F
S/
O
W
L

R
D
F

D
A
M
L
+
O
IL

R
D
F
S/
O
W
L

R
D
F
S/
O
W
L

R
ul
es
re
pr
es
en
ta
ti
on

R
ul
eM
L

R
ul
eM
L

R
ul
eM
L

R
ul
eM
L

N
/A

In
co
m
pl
et
e
kn
ow
le
dg
e

re
pr
es
en
ta
ti
on

Y
es

Y
es

Y
es

Y
es

Y
es

C
on
fli
ct
re
pr
es
en
ta
ti
on

Y
es

Y
es

Y
es

Y
es

Y
es

D
at
a-
dr
iv
en
re
as
on
in
g

N
o

Y
es

Y
es

Y
es

Y
es

G
oa
l-
dr
iv
en
re
as
on
in
g

Y
es

N
o

N
o

Y
es

Y
es

M
ul
ti
pl
e
so
ur
ce
of
in
fo

N
o

N
o

N
o

Y
es

Y
es

C
on
fli
ct
re
so
lu
ti
on

In
di
vi
du
al
pr
ef
er
nc
es

In
di
vi
du
al
’s

pr
ef
er
en
ce
s

In
di
vi
du
al
’s

pr
ef
er
en
ce
s

Si
ng
le

(G
en
er
al
iz
e)

st
ra
te
gy

M
ul
ti
pl
e

ar
gu
m
en
ta
ti
on
-d
ri
ve
n

st
ra
te
gi
es

E
xp
la
na
ti
on

T
ex
tu
al

T
ex
tu
al

T
ex
tu
al

G
ra
ph
ic
al

G
ra
ph
ic
al

A
IF
re
ifi
ca
ti
on

N
o

N
o

N
o

N
o

Y
es

kn
ow
le
ge
In
te
gr
at
io
n

N
o

N
o

N
o

N
o

Y
es

8.5 Functionality validation and feature evaluation of GF@SWA 297

8.5.5 Functionality validation of KR@PMD

Section 7.4.2 provides the sequence of steps performed by KR@PMD to represent and

reason over unstructured information, identify and resolve conflicts followed by the

integration and graphical representation of the information in such a format that may

assist the decision maker in the intra-enterprise or inter-enterprise decision-making

process. The next sub-section lists the aims to be met during the validation of the

functionalities provided by KR@PMD.

8.5.5.1 Aims for the development of KR@PMD

In this section, the aims for the development of Web@IDSS previously identified in

Section 7.3 are listed as follows:

1. a Web-based form for the decision makers to load the unstructured information

(e.g. business policy documents), extract the concepts (i.e. elements of the

process) from the loaded information and annotate them with the domain

ontology;

2. a Web-based form for the decision makers to specify business rules by using the

concepts extracted and annotated with the domain ontology in the previous step;

3. a hybrid reasoning engine to perform hybrid reasoning in order to

activate/execute the business rules. The engine provides different conflict

resolution strategies to the decision maker to identify and resolve the conflicts

among the activated business rules, and

4. integrate the output of the hybrid reasoning engine (i.e. business process map)

and provide its graphical representation to the decision maker to assist him in

the decision-making process.

In order to validate the functionality of KR@PMD, in the next subsection, the working

of KR@PMD is described with an example of the case study discussed in Section 7.3

to achieve the aims discussed above.

8.5.5.2 Working of KR@PMD

The KR@PMD provides a Web-based form for the decision maker to extract and

annotate the domain model concepts, as depicted in Figure 8.19. Users are provided

with two options, i.e. they can either download the business policy document already

on the Web by providing the URL, or they can browse the business policy document

8.5 Functionality validation and feature evaluation of GF@SWA 298

on the local system. Following the specification of the business policy document, the

Web application loads the business policies and displays them to the decision maker

so he can extract the domain model concepts and annotate them by selecting the

appropriate data properties and object properties from drop-down menus provided

on the Web-based form. As a result, the unstructured information that represents

a business policy of an enterprise is transformed to structured information in form

of predicates. Once the extraction of domain model concepts and their annotation

with the process ontology (as shown in Appendix A.3) then next step is business rules

specification.

Figure 8.19: Web-based form of KR@PMD for business policies
semantic annotation

Figure 8.20 shows the Web-based form for the decision maker to specify the

production rules and save them in the rule base. The decision maker creates a

production rule by assigning it a name, inference type, set of premises and a conclusion.

The decision maker can also view the list of production rules created and either edit or

delete them. As a result of such activity, the annotated predicates saved in the previous

steps are used to build the process/flow of an activity defined in the unstructured

information document. Using the Web-based form depicted in Figure 8.20, the decision

maker can also define facts and save them in the working memory. The hybrid reasoning

engine uses the production rules and facts saved in the knowledge base during the

decision-making process.

8.5 Functionality validation and feature evaluation of GF@SWA 299

Figure 8.20: Web-based form of KR@PMD for business rules
specification

Once the decision maker has specified the production rules, the KR@PMD guides

the decision maker through the following steps:

Step 1 argumentative reasoning.

Step 2 conflict resolution algorithms.

Step 3 define fuzzy preferences if fuzzy preference criteria are selected for conflict

resolution by the user.

Step 4 define weighted voting by the users and experts if voting-based conflict resolution

is selected by the user.

Step 5 produce business process map.

Step 6 query and explain results.

Step 1 is shown in Figure 8.21 where the decision maker starts the argumentative

reasoning by clicking the ‘Perform argumentative reasoning’ button. The Web

application takes into account all the business rules present in the knowledge-base

8.5 Functionality validation and feature evaluation of GF@SWA 300

and the facts in the working memory to start performing argumentative reasoning.

It displays all the activated business rules, along with the business rules that are in

conflict with one another.

Figure 8.21: Web-based form of KR@PMD shwoing set of arguments
and conflict set

Step 2 involves the selection of conflict resolution algorithms as demonstrated in

Figure 8.22. The decision maker can select any one of the available algorithms and

proceed to Step 3. If the decision maker selects DeLP or Dung style, the KR@PMD

executes the conflict resolution algorithms without the decision maker’s intervention

and takes the decision maker to Step 5.

Figure 8.22: Web-based form of KR@PMD representing different
algorithms for conflicts resolution

8.5 Functionality validation and feature evaluation of GF@SWA 301

However, if the decision maker selects the fuzzy preferences-based algorithm

for conflict resolution, the wizard takes the decision maker to Step 4 where fuzzy

preferences can be defined against contradictory business rules, as demonstrated in

Figure 8.23. The Web-based form provides a drop-down menu from which the decision

maker can select a preference ranging from 0.0 to 1.0. If the decision maker selects

the voting-based algorithm for conflict resolution, a Web-based form as depicted in

Figure 8.24 is presented to the decision maker to select from three available options:

defeated, undecided, survive.

Figure 8.23: Web-based form of KR@PMD for specification of fuzzy
preferences

Figure 8.24: Web-based form of KR@PMD for specification of votes

8.5 Functionality validation and feature evaluation of GF@SWA 302

Step 5 generates a graphical flow diagram of business processes called a business

process map. The elements of a task specified as premises of a business rule are depicted

in the business process map9 as shown in Figure 8.25 and Figure 8.26.

Figure 8.25: Graphical representation of business process map of
process 1 by KR@PMD

The graphical representation of the business process map generated from

unstructured business policies by KR@PMD enables decision makers in the following

ways:

• Identify the important tasks in a business process and how they follow one another

as defined by the business policy. They can identify and resolve conflicts that may

be present in current business policies so that they can ensure either successful

collaboration between departments located within the enterprise and/or in other

enterprises or they can ensure they are in accordance with the legal regulations

to which the enterprises should comply.

• The business process map can also be used as a validation tool to ensure

compliance of operational business processes with business policies. The decision

maker can forward a printout of the generated business process map to the

departments in order to check the compliance of operational business processes

9The claim of a business rule is represented by a grey, rectangular-shaped box

8.5 Functionality validation and feature evaluation of GF@SWA 303

with the enterprise’s business policies. The manager of each department

can easily identify if a contradictory situation in a business process exists,

e.g.,‘Authority to approve travel ’ and how it should be resolved. He can further

learn that Process 2 can be started only if travel approval is given to ‘Jon’,

otherwise, Process 1 will result in the stopping phase and no further processing

will take place.

Figure 8.26: Graphical representation of business process map of
process 2 by KR@PMD

Step 6 provides an interface for business managers to run queries to obtain an

explanation of the decisions made during the process of conflict resolution. Figure 8.27

shows that the Web application provides an interface for query entry (e.g., who is

responsible for approveTravel(X) and why?). When the ‘Post query’ button is pressed,

the Web application passes the query to the DeLP server and retrieves the results which

are then displayed to the business manager in the form of a dialectical tree.

8.5 Functionality validation and feature evaluation of GF@SWA 304

Figure 8.27: Web-based form of KR@PMD for querying the knowledge
base and explanation of the results

8.5.5.3 Achievement of the Aims of the KR@PMD

1. As represented in Figure 8.19 , KR@PMD provides a Web-based form to the

decision makers to load the business policy document, manually extracts the

concepts (i.e. elements of the process) and annotates them with the concepts of

the domain ontology.

2. As represented in Figure 8.20, KR@PMD provides a Web-based form to the

decision maker to specify the business rules by using the concepts extracted and

annotated with the domain ontology.

3. Figure 8.21 provides a set of arguments constructed as result of hybrid reasoning.

It also displays the conflict set where arguments and their counter-arguments

are displayed. Figure 8.22 provides a Web-based form where a decision maker

can select an algorithm to resolve the conflicts among arguments. Figure 8.23

depicts a Web-based form to define the fuzzy preferences over the contradictory

arguments. Figure 8.24 depicts a Web-based form to define voting values defined

by different users over the arguments in conflict.

4. Figure 8.25 and Figure 8.26 depicts the graphical representation of the business

process map and provides its graphical representation to the decision makers so

that it can be used as a validation tool to check and ensure the compliance of

operational business processes with business policies.

8.5 Functionality validation and feature evaluation of GF@SWA 305

8.5.6 Features evaluation of KR@PMD

The compliance of operational business processes with business policies has increasingly

become a subject of interest for enterprises seeking solutions to possible business

mergers or to ensure that they are working in accordance with legal regulations or

the policies of the government. In order to ensure their compliance, in the literature,

different tools and technologies have been proposed to match the enterprise business

policies with operational business processes. Table 8.3 provides a comparative study

of KR@PDM with the existing most closely related software tools.

• Unstructured information representation proofread

The KR@PDM is innovative by proposing a ‘process ontology’ to annotate

the business policies and uses a knowledge-based-driven approach to capture the

business policies in the form of business rules, whereas the other applications

do not take into account the unstructured business policies of an enterprise or

collaborating enterprises.

• Argumentation reasoning

The existing approaches in the literature determine the compliance of business

processes with business policies, however, none of them except KR@PMD and

Governatori et al. (2006), take into consideration the defeasible nature of a

business policy for the generation of a business process map. Governatori et al.

(2006) proposed the use of formal models of normative systems to represent

the obligations, permissions and prohibitions in a business process. They

used the Formal Contract Language (FCL) as a formalism to represent the

business policies in the form of rules and through defeasible reasoning, the

violations in the business process model are identified and depicted in the business

process map. However, they define only individual preferences in the form

of priorities among the contradictory rules coming from a single source and

do not provides a solution for conflict resolution when information that may

be incomplete and/or contradictory information comes from different sources

present within an enterprise and/or in other enterprises. KR@PMD addresses

the issues faced by Governatori et al. (2006). It allows the representation and

reasoning over information coming from different sources and provides different

argumentation-driven conflict resolution strategies to resolve the conflicts present

in the underlying information.

8.5 Functionality validation and feature evaluation of GF@SWA 306

T
ab
le
8.
3:
C
om
pa
ri
so
n
of
K
R
@
P
M
D
w
it
h
ex
is
ti
ng
te
ch
ni
qu
es
to
ch
ec
k

co
m
pl
ia
nc
e
of
bu
si
ne
ss
po
lic
y
w
it
h
bu
si
ne
ss
pr
oc
es
s

G
ov
er
na
to
ri
et
al
.

(2
00
6)

W
an
g
et
al
.
(2
00
9)

W
ei
ga
nd
et
al
.
(2
01
1)

A
w
ad
et
al
.
(2
01
1)

K
R
@
P
M
D

In
pu
t

B
us
in
es
s
po
lic
ie
s

B
us
in
es
s
po
lic
ie
s

B
us
in
es
s
po
lic
ie
s

C
om
pl
ia
nc
e
po
lic
ie
s

B
us
in
es
s
po
lic
ie
s

O
ut
pu
t

B
us
in
es
s

pr
oc
es
s

m
ap

B
us
in
es
s

pr
oc
es
s

m
ap

A
se
t
of

ex
ec
ut
ab
le

ru
le
s
in
R
IF
fo
rm
at

V
is
ua
l

co
m
pl
ia
nc
e

vi
ol
at
io
ns

B
us
in
es
s
pr
oc
es
s
m
ap

K
no
w
le
dg
e

re
pr
es
en
ta
ti
on

la
ng
ua
ge

Fo
rm
al

C
on
tr
ac
t

L
an
gu
ag
e
(F
C
L
)

N
/A

D
eo
nt
ic

co
ns
tr
ai
nt

la
ng
ua
ge
(D
C
L
)

C
om
pu
ta
ti
on
al
T
re
e

lo
gi
c
(C
T
L
)

D
ef
ea
si
bl
e
lo
gi
c
pr
og
ra
m
m
in
g

(D
eL
P
)

A
pp
ro
ac
h

fo
r

bu
si
ne
ss

po
lic
ie
s

an
no
ta
ti
on

N
/A

T
ag
gi
ng

Se
m
an
ti
c

an
no
ta
ti
on

vi
a

R
ul
e

on
to
lo
gy

SB
V
R

V
is
ua
l

la
ng
ua
ge

B
P
M
N
-Q

Se
m
an
ti
c

an
no
ta
ti
on

vi
a

P
ro
ce
ss
on
to
lo
gy

In
fo
rm
at
io
n

sp
ec
ifi
ca
ti
on

fo
rm

F
C
L
ru
le
s

T
ag
ge
d

in
fo
rm
at
io
n

D
C
L
ru
le
s

C
T
L
fo
rm
ul
a

T
he
bu
si
ne
ss
ru
le
s
ar
e
de
fin
ed
in

D
ef
ea
si
bl
e
L
og
ic
P
ro
gr
am
m
in
g

(D
eL
P
)

R
ea
so
ni
ng
m
od
el

G
oa
l-
dr
iv
en

re
as
on
in
g

N
/A

N
/A

G
oa
l-
dr
iv
en

re
as
on
in
g

H
yb
ri
d
re
as
on
in
g
(d
at
a-
dr
iv
en

an
d
ga
ol
-d
ri
ve
n
re
as
on
in
g)

H
an
dl
in
g

of

de
fe
as
ib
le
bu
si
ne
ss

po
lic
ie
s

Y
es

N
/A

N
/A

N
/A

Y
es

C
on
fli
ct
s

re
so
lu
ti
on

in
di
vi
du
al

pr
ef
er
en
ce
s

to

re
so
lv
e
co
nfl
ic
ts

N
/A

N
/A

N
/A

A
rg
um
en
ta
ti
on
-d
ri
ve
n

re
as
on
in
g
to
re
so
lv
e
co
nfl
ic
ts

8.6 Conclusion 307

• Process map generation

All the applications except Wang et al. (2009) provide the results as a business

process map. However, none of them, except KR@PMD, depict the contradictory

information that is present in the business process map and how the conflicts have

been resolved during the hybrid reasoning process.

8.6 Conclusion

In this chapter, the developed Semantic Web applications were demonstrated with

the support of argumentation to assist the decision maker in the intra-enterprise or

inter-enterprise decision making process. Illustrative examples the working of the

various phases of the Semantic Web application were given and an explanation was

presented as to how they assist the decision maker in either translating or specifying

information, reason over it, resolve conflicts and produce a graphical representation of

the reasoning results.

Chapter 9 - Recapitulation and Future

Work

9.1 Introduction

In the existing literature, the approaches proposed for information representation and

reasoning in Semantic Web applications do not provide any solution for Enterprise

Information Integration (EII) and Enterprise Knowledge Integration (EKI) when the

underlying information (both structured and unstructured) is potentially incomplete

and/or contradictory and exists within the enterprise and/or in other enterprises.

At the same time, defeasible reasoning-based implementations on the Semantic Web

proposed in the literature have the capability to represent and reason over incomplete

and/or contradictory information, only if it comes from an individual user/source with

the help of predefined priorities between contradictory rules. However, such approaches

fail to provide a solution in a group decision-making scenario where information

may come from different sources/users and where priorities are not defined between

contradictory rules in advance i.e. before reasoning.

In order to overcome this disadvantage and to provide monological argumentation

support in Semantic Web applications by enabling them to represent, reason and

integrate incomplete and/or contradictory information, five major research objectives

have been identified (in Section 3.5) and addressed in this thesis. In Section 9.2,

the different research issues that have been identified and addressed in this thesis are

recapitulated. In Section 9.3, the contributions made by this thesis to the literature

by successfully addressing the research issues are highlighted. In Section 9.4, areas for

future work are identified and in Section 9.5 the chapter is concluded.

9.2 Recapitulation 309

9.2 Recapitulation

The World Wide Web (WWW) is one of the major sources of information for

software agents and Web applications to generate new knowledge and assist in the

decision-making process. The extension of WWW i.e. the Semantic Web, provides

a language stack (i.e. Semantic Web stack) that enables software agents and Web

applications to represent and understand this information and process it autonomously.

However, the current languages that lie at the logic layer of the Semantic Web are

incapable of representing and reasoning over information that may be incomplete

and/or contradictory. Although approaches have been proposed in the literature by

different researchers to exploit defeasible reasoning in the area of the Semantic Web,

none of them present an approach by which Semantic Web applications can represent,

reason and integrate information (i.e. that may be incomplete and/or contradictory)

when information comes from heterogenous sources. As a result, Semantic Web

applications in an enterprise are not able to consider the information which exists

within the enterprise and/or in other enterprises and fail to provide solutions for EII

and EKI.

One way by which the above mentioned problem has been addressed in the area

of AI is by using ‘argumentation’. Argumentation formalisms are considered a pivotal

methodology to reach a conclusion in the presence of incomplete and/or contradictory

information coming from different sources/users. However, due to a lack of reusable

components from AI, current argumentation-driven Semantic Web applications are

dialogical in nature and provide no solution for monological argumentation on

information which exists within the enterprise and/or in other enterprises to assist

the decision maker in the decision-making process. So, in the course of the research

documented in this thesis, the broad issue to be addressed i.e. the design and

development of a generic framework for monological argumentation in Semantic Web

applications. Such a framework can be exploited for the development of different

Semantic Web applications to represent, reason and integrate information exists within

an enterprise and/or in other enterprises for enhanced business intelligence, was

identified. Several sub-problems were identified to solve the broad issue as follows:

1. Propose a methodology for incomplete and/or contradictory information

representation in Semantic Web applications. Such information may be present

within the enterprise and/or in other enterprises and may need to be considered

during the intra-enterprise or inter-enterprise decision-making process.

2. Propose a methodology for monological argumentation performed by a hybrid

reasoning engine to reason over incomplete and/or contradictory information.

9.3 Contributions of the thesis 310

The proposed methodology needs to:

(a) Extend the Rete network in order to compile rules that may represent

incomplete and/or contradictory information.

(b) Define syntax and semantics for data-driven reasoning over underlying

information for arguments construction.

(c) Define syntax and semantics for goal-driven reasoning to identify and

resolve conflicts between arguments.

(d) Propose a methodology for different argumentation-driven conflict

resolution strategies to resolve conflicts between arguments and their

counter-arguments during goal-driven reasoning.

3. Propose a mechanism to integrate the information being produced by

different argumentation-driven hybrid reasoning engines and provide a graphical

representation for the decision maker for a better understanding of the reasoning

process and its results.

4. Propose a mechanism to export the generated reasoning chains to other Semantic

Web applications and vice versa. This will help to bring inter-operability between

different information systems and pave the way for knowledge integration.

5. Propose a mechanism to query the knowledge base once the hybrid reasoning is

complete in order to obtain an explanation of the reasoning results.

6. Propose a methodology to integrate the reasoning chains produced by different

information systems into a coherent reasoning chain. Such knowledge integration

will provide a complete picture about information spanning across different

information systems.

7. Exploit the proposed GF@SWA in different Semantic Web applications to support

intelligent decision making.

8. Validate the functionality and evaluate the features of the proposed GF@SWA.

9.3 Contributions of the thesis

The major contribution of this thesis to the literature is that it proposes a

defeasible logic programming-based framework for monological argumentation support

9.3 Contributions of the thesis 311

in Semantic Web applications, which enables them to consider incomplete and/or

contradictory which exists within the enterprise and/or in other enterprises to

obtain better decision-making support in the intra-enterprise or inter-enterprise

decision-making process. The contributions of this thesis are as follows:

1. Proposed a methodology for incomplete and/or contradictory information

representation by extending Defeasible logic programming (DeLP) in order

to represent incomplete and/or contradictory information in Semantic Web

applications to assist group decision making. The methodology also proposed

a translation mechanism to translate the information present in either RuleML

or OWL/RDF format to DeLP format.

2. Proposed a methodology for monological argumentation performed by a hybrid

reasoning engine. The hybrid reasoning engine performs data-driven reasoning

for argument construction and goal-driven reasoning for conflict identification

and resolution.

3. Proposed a methodology for different argumentation-driven conflict resolution

strategies to resolve conflicts between arguments and their counter-arguments.

4. Proposed a methodology that can integrate the output of a hybrid reasoning

engine in the form of a reasoning chain (called information integration). Such

methodology links the facts to a conclusion and represents the reasoning chain

in a graphical format.

5. Proposed a methodology for importing/exporting integrated information (i.e.

reasoning chain) to different Semantic Web applications.

6. Proposed a methodology that involves the definition and application of an

argumentation scheme over the reasoning chains followed by argumentative

reasoning to integrate knowledge that comes from different hybrid reasoning

engines into a single reasoning chain to facilitate enterprise-wide decision making.

7. Proposed a methodology for the hybrid reasoning engine to have a querying and

answering capability backed by an explanation of conflict resolution and/or the

conclusions drawn for the decision maker.

8. Demonstrated the application of GF@SWA in different Semantic Web

applications to support intelligent decision making over incomplete and/or

contradictory information which exists within the enterprise and/or in other

enterprises.

9.3 Contributions of the thesis 312

In the following, a brief explanation of the contributions which this thesis has made to

the existing literature is given.

9.3.1 Contribution 1: Methodology for incomplete and/or

contradictory information representation

The first contribution of this thesis to the existing literature is that it proposes a

methodology to represent information which exists within the enterprise and/or in

other enterprises that may be incomplete and/or contradictory for consideration in

the decision-making process. In the proposed methodology, first Defeasible logic

programming (DeLP) is selected for information representation and the reasons behind

the selection are discussed in Chapter 4. By using DeLP, the information presented

in the different Semantic Web applications (each of which are discussed in Chapters

5, 6 and 7) is captured in DeLP format either directly (with the help of Web-based

forms) or indirectly (translation/transformation of existing information with the help

of a translator). For transformation of existing structured information, two translators

were developed i.e. RuleML translator and OWL/RDF translator, which are discussed

in Chapter 5. To consider unstructured information in the decision-making process, a

semantic annotation mechanism was proposed, as discussed in Chapter 7.

To the best of my knowledge, DeLP has been discussed in AI literature for

information representation for software agents, critic and recommender systems etc.,

but it has been not used for information representation in Semantic Web applications

for BI.

9.3.2 Contribution 2: Methodology for monological

argumentation performed by a hybrid reasoning engine

The second contribution of this thesis to the existing literature is that it proposes a

methodology for monological argumentation performed by hybrid reasoning to reason

over information represented using DeLP language. The methodology was discussed in

Chapter 5. In the proposed methodology, the Rete network was extended to compile

DeLP rules and make them ready for the hybrid reasoning engine. The hybrid reasoning

engine performs two types of reasoning: firstly, data-driven reasoning for arguments

construction; and secondly goal-driven reasoning for conflicts identification between

arguments and their resolution. For knowledge integration, the working of hybrid

reasoning was further extended with syntax and semantics, as discussed in Chapter 6.

To the best of my knowledge, there is no methodological approach proposed

in literature where monological argumentation is performed by a hybrid reasoning

9.3 Contributions of the thesis 313

engine that can reason over underlying information which may be incomplete and/or

contradictory and use it in Semantic Web applications for BI.

9.3.3 Contribution 3: Methodology for different

argumentation-driven conflict resolution strategies

to resolve conflicts between arguments and their

counter-arguments

The third contribution of this thesis to the existing literature is that it proposes a

methodology for the provision of different argumentation-driven conflict resolution

strategies to resolve conflicts between arguments and their counter-arguments. Four

different conflict resolution strategies were proposed: the Generalize conflict resolution,

Dung’s style based conflict resolution, fuzzy preferences and voting-based conflict

resolution. The Generalize conflict resolution strategy was discussed in Chapters 5 and

6, whereas the other strategies were discussed in Chapter 7. Each conflict resolution

algorithm takes into account different conflict resolution criteria in order to address

different contexts.

In the literature, the abovementioned conflict resolution strategies have been used

but they have not been exploited in monological argumentation performed by a hybrid

reasoning engine to resolve the conflicts among arguments in Semantic Web applications

for BI.

9.3.4 Contribution 4: Methodology to integrate the output of a

hybrid reasoning engine in the form of a reasoning chain

and generate its graphical representation

The fourth contribution of this thesis to the existing literature is that it proposes a

methodology to integrate the output of a hybrid reasoning engine in the form of a

reasoning chain and provides its graphical representation for decision makers to assist

them in the decision-making process. The methodology was discussed in Chapters 5

and 6 with the help of Semantic Web applications, and discussion was provided on how

arguments are linked to form a reasoning chain after conflict resolution and how its

graphical representation assists the decision maker in different enterprise contexts for

decision making. In Chapter 7, the proposed methodology was extended to provide

more informative graphical representation of a reasoning chain such as a business

process map extracted from the unstructured business policies of an enterprise.

Some argumentation tools have been proposed in the literature to manually

9.3 Contributions of the thesis 314

draw and link arguments (i.e. dialogical argumentation) in the format of reasoning

chains, however, there is no proposed approach by which the output of monological

argumentation performed by a hybrid reasoning engine is integrated in the form a

reasoning chain in Semantic Web applications for BI.

9.3.5 Contribution 5: Methodology for importing/exporting

integrated information to different Semantic Web

applications

The fifth contribution of this thesis to the existing literature is that it proposes

a methodology to export the generated reasoning chains in a standard format so

that they can be considered by other software systems and vice versa. This

methodology was discussed in Chapter 6. By using this methodology, the Semantic

Web application working within the enterprise and/or in other enterprises can

share/exchange information in AIF format, paving the way for knowledge integration.

In the literature, different approaches have been proposed to import and export

information in AIF format, however, none of them provide any mapping of DeLP-based

reasoning chains to AIF format and vice versa, therefore they provide no solution for

information and knowledge integration using Semantic Web applications for BI.

9.3.6 Contribution 6: Methodology for knowledge integration

The sixth contribution of this thesis to the existing literature is that it proposes a

methodology to integrate the reasoning chains produced by different hybrid reasoning

engines into a coherent reasoning chain i.e., knowledge integration, in order to provide a

complete picture about a subject spanning across different Semantic Web applications.

This methodology was discussed in Chapter 6. By using the proposed methodology, a

decision maker can define an integration scheme in order to evaluate the reasoning

chains followed by argumentative reasoning that results in the construction of an

integrated recommendations space.

To the best of my knowledge, no approach or conceptual model has been proposed

in the literature which provides a solution for knowledge integration in Semantic Web

applications for BI when the underlying information is incomplete and/or contradictory.

9.4 Future work 315

9.3.7 Contribution 7: Methodology for the hybrid reasoning

engine to have a querying and answering capability

The seventh contribution of this thesis to the existing literature is that it proposes

a mechanism to equip the hybrid reasoning engine with a querying and answering

capability backed by an explanation of the results achieved through hybrid reasoning.

This methodology was presented in Chapter 6. In Chapter 8, different Semantic Web

applications were discussed that provide a Web-based interface to query the knowledge

base and show the graphical representation of the results which are displayed back to

the users.

In the current literature, DeLP query support has been provided to software agents

in AI, however, this has not been exploited in Semantic Web applications for BI.

9.3.8 Contribution 8: Application of GF@SWA in different

Semantic Web applications to support intelligent decision

making

The eighth contribution of this thesis to the existing literature is that it demonstrates

how the proposed generic framework i.e. GF@SWA, can be exploited by different

Semantic Web applications to represent, reason and integrate information which exists

within the enterprise and/or in other enterprises. The Web@IDSS, discussed in Chapter

5, exploits the functionalities of GF@SWA in order to provide a solution for EII when

the underlying structured information is incomplete and/or contradictory. In Chapter

7, KR@PMD also exploits the functionalities of GF@SWA to provide a solution for

EII when the underlying unstructured information is incomplete and/or contradictory.

The Web@KIDSS, discussed in Chapter 6, exploits the functionalities of GF@SWA in

order to provide a solution for EKI.

To the best of my knowledge, apart from this thesis, there is no proposed generic

framework in the literature on top of which different Semantic Web applications for BI

can be built in order to represent, reason and integrate information which exists within

the enterprise and/or in other enterprises.

9.4 Future work

In this thesis, a defeasible logic programming-based framework was designed and

developed to support monological argumentation in Semantic Web applications. The

generic nature of the proposed framework makes it flexible enough to be applied in

9.4 Future work 316

different Semantic Web applications, as explained in Chapters 5, 6 and 7, to provide

better decision support to decision makers in the intra-enterprise or inter-enterprise

decision-making process.

In this section, the future work that will be undertaken in order to strengthen the

proposed framework to provide more intuitive results to support the decision-making

process is discussed. The possible areas are as follows:

1. Automated production rules extraction from unstructured information.

2. Extension of the proposed framework to work with machine learning algorithms

for better classification of information.

3. Extend the proposed framework with an actual/generic argument model for

practical reasoning (GAAM).

4. A collaborative framework to reason over qualitative data to assist group decision

making.

9.4.1 Automated production rules extraction from

unstructured information

As discussed in Chapter 7, the proposed framework provides a semantic annotation

methodology to consider unstructured information in Semantic Web applications. In

this methodology, a decision maker is provided with a Web-based form on which to load

the process ontology and unstructured information e.g. a business policy document,

after which the unstructured information is read and the process elements are extracted

and annotated with a process ontology, and then the annotated predicates are utilized

for the specification of production rules. This methodology may work well for the

specification of a small number of rules, however, if the amount of information increases,

this methodology does not provide an efficient solution.

This triggers the need for an extensible model for the extraction of production rules

as strict and defeasible from unstructured information without human intervention and

attaches a strength value to each defeasible production rule for further processing. The

strength value may be assigned to a production rule on the basis of certain features,

such as the amount of information it carries, how important the information is that it

carries etc. The strength of individual production rules can then be used to compute

the strength of a reasoning chain.

9.4 Future work 317

9.4.2 Extension of the proposed framework to work with

machine learning algorithms

The goal of machine learning is to devise learning algorithms that do the learning

automatically without human intervention or assistance. A fundamental problem of

machine learning is dealing with large spaces of possible hypotheses. In the past decade

or so, numerous machine learning methods have been used to automatically learn

and recognize complex patterns and make intelligent decisions based on an enterprise

data/information. One of the common attributes of these machine learning methods

is that their working and functionality is constrained by the amount and nature of the

input data. In particular, existing machine learning either doesn’t consider domain

knowledge during classification, or if it does, then this knowledge holds for the whole

domain. Such approaches ignore any specific information or situation that may apply

to some small set of chosen learning examples.

In future work, it is intended to enhance the current generation of machine learning

techniques with the argumentation formalisms described in this thesis. In such cases,

the arguments (undefeated dialectical tree/s) pertinent to specific examples are

considered during the mining of an enterprise data1. Such work will lay the foundations

for performing large-scale analytics on Big data and Cloud computing applications .

9.4.3 Extend the proposed framework as an actual/generic

argument model (GAAM) for practical reasoning

Yearwood and Stranieri (2006) proposed an argument structure called the Generic

Actual Argument Model (GAAM) for capturing expert reasoning in the form of a

certain domain, using a variant of a layout of arguments advanced by Toulmin (2003).

In this model, arguments are captured at two levels of abstraction: the generic and

actual level. The generic level argument’s structure is sufficient to represent claims

made by all members of the group and they use this structure to create their actual

arguments. The GAAM model represents complex reasoning in such a manner that

enables the convenient search and retrieval of relevant information. The argument

trees represented using the GAAM framework can be readily converted into a format

for rapid deployment and can be made available to other software applications.

In the proposed framework, as discussed in Chapter 6, the reasoning chains have

been modelled with respect to the Toulmin model for argument structure i.e. backup

evidence, warrant and conclusion. To provide a more practical argument structure, as

proposed by GAAM, it is intended to extend the syntax and semantics of the proposed
1http://www.ailab.si/martin/abml/

9.5 Conclusion 318

framework and exploit it for modeling the new product development strategy on top

of the information present in customer relationship management systems for more

practical reasoning.

9.4.4 Collaborative framework for reasoning qualitative models

extracted from quantitative data to assist a group

decision-making process.

Traditionally, quantitative models over numeric data aim at producing precise

numerical results as answers to users’ questions about the problem domain. Such

precise numerical answers are often overly elaborate, and contain much more

information than is actually needed. In everyday life, humans use common sense to

reason about problems qualitatively, without numbers.

The logic-based framework discussed in this thesis can be applied by multi-site

collaborative teams who exploit information from ‘Big data’ to generate qualitative

models (Suc and Bratko, 2001) that can drive the reasoning process on an underlying

rule-base that is specified by different knowledge experts. The outcome of the

argumentative reasoning process will assist collaborative teams to discover non-trivial

hidden insights in the Big data analytics and Cloud computing applications, explaining

how, what and why information about an issue to the user.

9.4.5 Evaluation for correctness of the reasoning chains

produced by GF@SWA

Section 8.5 elaborates the functionality validation and features evaluation of GF@SWA

and the reasoning results are depicted in form of the reasoning chains. To evaluate the

correctness of reasoning chains, in future work, it is intended to compare the reasoning

chains depicted in Section 8.5 with the reasoning chains manually generated by a

decision maker when he is provided with incomplete and/or contradictory information .

9.5 Conclusion

In this chapter, the work that has been undertaken and documented in this thesis has

been recapitulated and the issues addressed in the literature which prompted the work

done in this thesis have been highlighted. The different contributions to the literature

as the result of outcome of work done in this thesis have also been highlighted. A brief

description of the further work that is intended to be undertaken in order to extend

9.5 Conclusion 319

the approaches developed in this thesis were then provided.

The work that was undertaken in this thesis has been published extensively as a part

of the proceedings in peer-reviewed international journals and conferences. Selected

publications are provided in Appendix B. A complete list of all the publications arising

as a result of the work documented in this thesis is given at the beginning of the thesis.

References

Aalst, W. V. D. (2009). Process-Aware Information Systems: Lessons to Be Learned

from Process Mining. In Jensen, K. and van der Aalst, W., editors, Transactions

on Petri Nets and Other Models of Concurrency II, volume 5460 of Lecture Notes in

Computer Science, pages 1–26. Springer Berlin / Heidelberg.

Alaranta, M. and Henningsson, S. (2008). An approach to analyzing and planning

post-merger is integration: Insights from two field studies. Information Systems

Frontiers, 10(3):307–319.

Aldowaisan, T. A. and Gaafar, L. K. (1999). Business process re-engineering: An

approach for Process Mapping. Omega, 27(5):515 – 524.

Amgoud, L. and Cayrol, C. (2002). A reasoning model based on the production

of acceptable arguments. Annals of Mathematics and Artificial Intelligence,

34(1-3):197–215. 10.1023/A:1014490210693.

Amgoud, L., Cayrol, C., Lagasquie-Schiex, M. C., and Livet, P. (2008). On

bipolarity in argumentation frameworks. International Journal of Intelligent

Systems, 23(10):1062–1093.

Anderson, E. E. (1989). A heuristic for software evaluation and selection. Software:

Practice and Experience, 19(8):707–717.

Andriole, S. (1986). Software Validation, Verification, Testing and Documentation: A

Source Book. Petrocelli Books, Inc.

Antoniou, G. and Arief, M. (2002). Executable declarative business rules and their

use in electronic commerce. In proceedings of the 2002 ACM Symposium on Applied

Computing, SAC ’02, pages 6–10, NY, USA.

Antoniou, G. and Bikakis, A. (2007). Dr-prolog: A system for defeasible reasoning

with rules and ontologies on the Semantic Web. IEEE transactions on knowledge

and data engineering, 19(2):233–245.

REFERENCES 321

Antoniou, G., Damasio, C. V., Grosof, B., Horrocks, I., Kifer, M., Maluszynski,

J., and Patel-Schneider, P. F. (2005). Combining Rules and Ontologies:

A survey. Technical report, EU FP6 Network of Excellence (NoE),

rewerse.net/deliverables/m12/i3-d3.pdf.

Antoniou, G., Skylogiannis, T., Bikakis, A., Doerr, M., and Bassiliades, N. (2007).

Dr-brokering: A semantic brokering system. Knowledge-Based Systems, 20(1):61 –

72.

Antoniou, G. and Van Harmelen, F. (2004). A Semantic Web primer. MIT Press.

Antoniou, G. and Wagner, G. (2003). Rules and defeasible reasoning on the semantic

web. In Second International Workshop Rules and Rule Markup Languages for the

Semantic Web, volume 2876 of RuleML 2003, pages 111–120, Sanibel Island, FL,

USA. Springer-Verlag Berlin Heidelberg.

Assche, F. V., Layzell, P., Loucopoulos, P., and Speltincx, G. (1988). Information

systems development: a rule-based approach. Knowledge-Based Systems, 1(4):227 –

234.

Awad, A., Weidlich, M., and Weske, M. (2011). Visually specifying compliance rules

and explaining their violations for business processes. Journal of Visual Languages

and Computing, 22(1):30 – 55.

Baader, F., Horrocks, I., and Sattler, U. (2005). Description logics as ontology

languages for the semantic web. In Mechanizing Mathematical Reasoning, Lecture

Notes in Computer Science, volume 2605, pages 228–248. Springer Berlin /

Heidelberg.

Bachler, M., Shum, S. B., Chen-Burger, J., Dalton, J., Roure, D. D., Eisenstadt,

M., Komzak, J., Michaelides, D., Page, K., Potter, S., Shadbolt, N., and Tate, A.

(2004). Collaboration in the semantic grid: a basis for e-learning. In Mostow, J.

and Tedesco, P., editors, Grid Learning Services workshop (GLS 2004) at the 7th

International Conference on Intelligent Tutoring Systems (ITS 2004) , pages 1–12.

Eficiência, Porto Alegre.

Baroni, P., Cerutti, F., Giacomin, M., and Guida, G. (2009). Encompassing attacks

to attacks in abstract argumentation frameworks. In Sossai, C. and Chemello,

G., editors, Symbolic and Quantitative Approaches to Reasoning with Uncertainty ,

volume 5590 of Lecture Notes in Computer Science, pages 83–94. Springer Berlin /

Heidelberg.

REFERENCES 322

Baroni, P., Fogli, D., and Guida, G. (1998). Modeling argumentation in

practical reasoning: a conceptual analysis of argument life cycle. In 7th

International Conference on Information Processing and Management of Uncertainty

in Knowledge-Based Systems, pages 1790–1797. Paris, France.

Bassiliades, N., Antoniou, G., and Vlahavas, I. (2004). Dr-device: A defeasible logic

system for the semantic web. In Principles and Practice of Semantic Web Reasoning,

Lecture Notes in Computer Science, volume 3208, pages 134–148. Springer.

Bench-Capon, T. J. M. (1989). Deep models, normative reasoning and legal expert

systems. In ACM Proceedings of the 2nd international conference on Artificial

intelligence and law, pages 37–45, NY, USA.

Bench-Capon, T. J. M. (2003). Persuasion in practical argument using value-based

argumentation frameworks. Journal of Logic and Computation, 13(3):429–448.

Berners-Lee, T. (2000). Semantic Web on XML. In Slides from XML 2000 conference,

Washington DC. W3C.

Berners-lee, T., Connolly, D., Kagal, L., Scharf, Y., and Hendler, J. (2008). N3Logic:

A logical framework for the World Wide Web. Theory and Practice of Logic

Programming, 8(3):249–269.

Besnard, P. and Hunter, A. (2008). Elements of argumentation, volume 47. MIT Press

Cambridge, MA.

Bex, F., Prakken, H., and Reed, C. (2010). A formal analysis of the AIF in terms of

the ASPIC framework. In Third International Conference on Computational Models

of Argument, COMMA 2010, pages 99–110, Amsterdam, The Netherlands.

Blair, J. A. (1999). D. N. Walton, Argumentation Schemes for Presumptive Reasoning.

Argumentation, 13(3):338–343.

Bochman, A. (2003). Collective argumentation and disjunctive logic programming.

Journal of Logic Computation, 13(3):405–428.

Boley, H., Kifer, M., Patranjan, P.-L., and Polleres, A. (2007). Rule interchange on the

web. In Antoniou, G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan,

P.-L., and Tolksdorf, R., editors, Reasoning Web, volume 4636 of Lecture Notes in

Computer Science, pages 269–309. Springer Berlin / Heidelberg.

Bondarenko, A., Toni, F., and Kowalski, R. A. (1993). An assumption-based framework

for non-monotonic reasoning. In Proceedings of the second international workshop on

REFERENCES 323

Logic programming and non-monotonic reasoning, pages 171–189, Cambridge, MA,

USA. MIT Press.

Branting, L. K. (1993). A computational model of ratio decidendi. Artificial Intelligence

and Law, 2(1):1–31.

Brodie, M. (2008a). Understanding our digital universe: Unleashing natural forces.

In 2nd IEEE International Conference on Digital Ecosystems and Technologies ,

Phitsanulok, Thailand.

Brodie, M. L. (2008b). The end of the computing era: Hephaestus meets the olympians.

In Paige, R. F. and Meyer, B., editors, Lecture Notes in Business Information

Processing, volume 11, pages 0–1. Springer.

Bryant, D. and Krause, P. (2008). A review of current defeasible reasoning

implementations. The Knowledge Engineering Review, 23(3):227–260.

Burstein, F. and Gregor, S. (1999). The systems development or engineering

approach to research in information systems: An action research perspective. In

Proceedings of the 10th Australasian Conference on Information Systems , pages

122–134, Wellington, Australia.

Cabrerizo, F., Pérez, I., and Herrera-Viedma, E. (2010). Managing the consensus in

group decision making in an unbalanced fuzzy linguistic context with incomplete

information. Knowledge-Based Systems, 23(2):169 – 181.

Carlsson, C. and Turban, E. (2002). DSS: directions for the next decade. Decision

Support Systems, 33(2):105 – 110.

Causey, R. L. (1994). Evid: A system for interactive defeasible reasoning. Decision

Support Systems, 11(2):103 – 131.

Cayrol, C. and Lagasquie-Schiex, M.-C. (2009). Bipolar abstract argumentation

systems. In Simari, G. and Rahwan, I., editors, Argumentation in Artificial

Intelligence, pages 65–84. Springer US.

Cayrol, C. and Lagasquie-Schiex, M.-C. (2010). Coalitions of arguments: A tool for

handling bipolar argumentation frameworks. International Journal of Intelligent

Systems, 25(1):83–109.

Cayrol, C., St-Cyr, F. D. D., and Lagasquie-Schiex, M.-C. (2008). Revision of an

argumentation system. In 11th International Conference on Principles of Knowledge

Representation and Reasoning, page 124 134, Sydney, NSW, Australia. AAAI Press.

REFERENCES 324

Ceccaroni, L., Cortés, U., and Sànchez-Marrè, M. (2004). OntoWEDSS: augmenting

environmental decision-support systems with ontologies. Environmental Modelling

& Software, 19(9):785 – 797.

Chesnevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M.,

Vreeswijk, G., and Willmott, S. (2006a). Towards an argument interchange format.

The Knowledge Engineering Review, 21(4):293–316.

Chesnevar, C. I., Maguitman, A. G., and Simari, G. R. (2006b). Argument-based

critics and recommenders: a qualitative perspective on user support systems. Data

& Knowledge Engineering, 59(2):293–319.

Cheung, K. . W. and Cheong, M.-P. (2007). Intelligent On-Line Decision Support

Tools For Market Operators. In International Conference on Intelligent Systems

Applications to Power Systems, pages 1 –6, Taiwan, Japan.

Cirstea, H., Kirchner, C., Moossen, M., and Moreau, P.-E. (2004). Production

Systems and Rete Algorithm Formalisation. Contrat A04-R-546 || cirstea04d,

http://hal.inria.fr/inria-00099850 [Last accessed, 10/02/2012]. Rapport de contrat.

Clark, P. (1991). A Model of Argumentation and Its Application in a Cooperative Expert

System. PhD thesis, Turing Institute, Department of Computer Science, University

of Strathclyde, Glasgow.

Cohen, R. (1987). Analyzing the structure of argumentative discourse. Computational

linguistics, 13(1-2):11–24.

Coste-Marquis, S., Devred, C., and Marquis, P. (2005). Prudent semantics for

argumentation frameworks. In 17th IEEE International Conference on Tools with

Artificial Intelligence, pages 568–572, Hong Kong, China.

Coste-Marquis, S., Devred, C., and Marquis, P. (2006). Constrained argumentation

frameworks. In Proceedings of the 10th International Conference on Principles of

Knowledge Representation and Reasoning, pages 112–122, Menlo Park, California.

The AAAI Press.

Daconta, M., Obrst, L., and Smith, K. (2003). The Semantic Web: a guide to the

future of XML, Web services, and knowledge management . Wiley.

Dean, M. and Schreiber, G. (2004). OWL Web Ontology Language Reference. W3C

recommendation (http://www.w3.org/tr/owl-ref/), W3C.

REFERENCES 325

Dellschaft, K., Engelbrecht, H., Barreto, J., Rutenbeck, S., and Staab, S. (2008).

Cicero: Tracking design rationale in collaborative ontology engineering. In Bechhofer,

S., Hauswirth, M., Hoffmann, J., and Koubarakis, M., editors, The Semantic Web:

Research and Applications, volume 5021 of Lecture Notes in Computer Science, pages

782–786. Springer Berlin / Heidelberg.

Deng, H. and Wibowo, S. (2008). A Rule-Based Decision Support System

for Evaluating and Selecting IS Projects. In Proceedings of the International

Multi-Conference of Engineers and Computer Scientists , pages 1962–1968, Hong

Kong, China.

Dix, J., Parsons, S., Prakken, H., and Simari, G. (2009). Research challenges for

argumentation. Computer Science - Research and Development, 23(1):27–34.

Dong, H., Hussain, F. K., and Chang, E. (2011). A service concept recommendation

system for enhancing the dependability of semantic service matchmakers in the

service ecosystem environment. Journal of Network and Computer Applications,

34(2):619 – 631.

Dong, H., Khadeer Hussain, F., and Chang, E. (2010). A human-centered semantic

service platform for the digital ecosystems environment. World Wide Web,

13(1-2):75–103.

Dung, P. M. (1995). On the acceptability of arguments and its fundamental role

in nonmonotonic reasoning, logic programming and n-person games. Artificial

Intelligence, 77(2):321 – 357.

Dung, P. M., Kowalski, R. A., and Toni, F. (2009a). Assumption-based argumentation.

In Simari, G. and Rahwan, I., editors, Argumentation in Artificial Intelligence, pages

199–218. Springer US.

Dung, P. M., Thang, P. M., and Hung, N. D. (2009b). Argument-Based Decision

Making and Negotiation in E-Business: Contracting a Land Lease for a Computer

Assembly Plant. In Computational Logic in Multi-Agent Systems, Lecture Notes in

Computer Science, volume 5405, pages 154–172. Springer Berlin / Heidelberg.

Eemeren, F. H. V., Grootendorst, R. F., and Henkemans, F. S. (1996). Fundamentals

of Argumentation Theory: A Handbook of Historical Backgrounds and Contemporary

Applications. Lawrence Erlbaum Associates, Hillsdale NJ, USA.

Eemeren, F. v. and Grootendorst, R. (2004). A systematic theory of argumentation :

the pragma-dialectical approach. Cambridge University Press.

REFERENCES 326

Eemeren, F. V., Grootendorst, R., and Henkemans, F. S. (2002). Argumentation

Analysis, Evaluation and Presentation. Lawrence Erlbaum Associates, Mahwah,

NJ, USA.

Fan, X., Toni, F., and Hussain, A. (2010). Two-agent conflict resolution with

assumption-based argumentation. In Proceeding of the 2010 conference on

Computational Models of Argument: Proceedings of COMMA 2010 , pages 231–242,

Amsterdam, The Netherlands, The Netherlands. IOS Press.

Farnham, S., Chesley, H. R., McGhee, D. E., Kawal, R., and Landau, J. (2000).

Structured online interactions: improving the decision-making of small discussion

groups. In Proceedings of the 2000 ACM conference on Computer supported

cooperative work, pages 299–308, NY, USA. ACM.

Fensel, D. (2003). Ontologies: Silver Bullet for Knowledge Management and Electronic

Commerce. Springer-Verlag, 2nd edition.

Forgy, C. L. (1982). Rete: A fast algorithm for the many pattern/many object pattern

match problem. Artificial Intelligence, 19(1):17–37.

Freeley, A. J. and Steinberg, D. L. (2008). Argumentation and Debate: Critical

Thinking for Reasoned Decision Making, chapter 9, pages 163–187. Wadsworth

Publishing Company„ 168 edition.

Freeman, K. (1993). Toward formalizing dialectical argumentation. PhD thesis,

University of Oregon, Eugene, USA.

Garcia, A. J., Rotstein, N. D., Tucat, M., and Simari, G. R. (2007). An Argumentative

Reasoning Service for Deliberative Agents. In Zhang, Z. and Siekmann, J., editors,

Knowledge Science, Engineering and Management, Lecture Notes in Computer

Science, volume 4798, pages 128–139. Springer Berlin Heidelberg.

Garcia, A. J. and Simari, G. R. (2004). Defeasible Logic Programming: An

argumentative approach. Theory and Practice of Logic Programming, 4(1-2):95–138.

Garcia-Crespo, A., Ruiz-Mezcua, B., Lopez-Cuadrado, J., and Gonzalez-Carrasco, I.

(2011). Semantic model for knowledge representation in e-business. Knowledge-Based

Systems, 24(2):282 – 296.

Gordon, T. F. and Karacapilidis, N. (1997). The Zeno argumentation framework. In

Proceedings of the 6th international conference on Artificial intelligence and law ,

pages 10–18, NY, USA. ACM.

REFERENCES 327

Gordon, T. F., Prakken, H., and Walton, D. (2007). The Carneades model of argument

and burden of proof. Artificial Intelligence, 171(10-15):875 – 896.

Gordon, T. F. and Walton, D. (2006). The Carneades Argumentation Framework Using

Presumptions and Exceptions to Model Critical Questions. In Proceeding of the 2006

conference on Computational Models of Argument, pages 195–207, Amsterdam, The

Netherlands,. IOS Press.

Governatori, G., Milosevic, Z., and Sadiq, S. (2006). Compliance checking between

business processes and business contracts. In 10th IEEE International Conference

on Enterprise Distributed Object Computing, pages 221 –232, Washington, DC, USA.

Grosof, B., Dean, M., and Kifer, M. (2009). Semantic Rules on

the Web. In International Semantic Web Conference, Tutorial

(http://silk.semwebcentral.org/talk-iswc2009-rules-tutorial.pdf), Washington,

DC.

Grosof, B., Gandhe, M., Finin, T., et al. (2002). Sweetjess: Translating damlruleml to

Jess. In Proceedings of the International Workshop on Rule Markup Languages for

Business Rules on the Semantic Web at 1st International Semantic Web Conference ,

volume 60, Sardinia, Italy.

Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. (2003). Description logic programs:

combining logic programs with description logic. In 12th international conference on

World Wide Web, pages 48–57, NY, USA. ACM.

Gu, T., Pung, H., and Zhang, D. (2004). Toward an OSGi-based infrastructure for

context-aware applications. Pervasive Computing, IEEE, 3(4):66 – 74.

Gomez, S. A., Chesnevar, C. I., and Simari, G. R. (2005). Embedding defeasible

argumentation in the semantic web: an ontology-based approach. In 7th Workshop

de Investigadores en Ciencias de la Computación. , pages 153–157, Río Cuarto,

Argentina.

Haenni, R. (2009). Probabilistic argumentation. Journal of Applied Logic,

7(2):155–176.

Hofacker, I. and Vetschera, R. (2001). Algorithmical approaches to business process

design. Computers and Operations Research, 28(13):1253–1275.

Horrocks, I., Parsia, B., Patel-Schneider, P., and Hendler, J. (2005). Semantic web

architecture: Stack or two towers? In Fages, F. and Soliman, S., editors, Principles

REFERENCES 328

and Practice of Semantic Web Reasoning, volume 3703 of Lecture Notes in Computer

Science, pages 37–41. Springer Berlin / Heidelberg.

Iyad Rahwan, C. R. (2009). The Argument Interchange Format. In Rahwan, I. and

Simari, G. R., editors, Argumentation in Artifical Intelligence,, chapter 19, pages

383–402. Springer.

Johnston, B. and Governatori, G. (2003). Induction of defeasible logic theories in

the legal domain. In Proceedings of the 9th International Conference on Artificial

Intelligence and Law, pages 204–213, NY, USA. ACM.

Kacprzyk, J., Fedrizzi, M., and Nurmi, H. (1992). Group decision making and consensus

under fuzzy preferences and fuzzy majority. Fuzzy Sets and Systems, 49(1):21 – 31.

Kaplan, B. and Maxwell, J. (2005). Qualitative research methods for evaluating

computer information systems. In Anderson, J. and Aydin, C., editors, Evaluating

the Organizational Impact of Healthcare Information Systems , Health Informatics,

chapter 2, pages 30–55. Springer New York, New York.

Kartha, N. and Novstrup, A. (2009). Ontology and rule based knowledge representation

for situation management and decision support. In Mott, S., Buford, J. F., Jakobson,

G., and J.Mendenhall, M., editors, Intelligent Sensing, Situation Management,

Impact Assessment, and Cyber-Sensing, pages 288–314. The international society

for optics and photonics (SPIE).

Katie Atkinson, T. B.-C. (2008). Abstract argumentation scheme frameworks.

In Dochev, D., Pistore, M., and Traverso, P., editors, Artificial Intelligence:

Methodology, Systems, and Applications, Lecture Notes in Computer Science , volume

5253 of Artificial Intelligence: Methodology, Systems, and Applications , pages

220–234. Springer Berlin / Heidelberg.

Klein, M. and Dellarocas, C. (2000). A Knowledge-based Approach to

Handling Exceptions inWorkflow Systems. Computer Supported Cooperative Work,

9(3-4):399–412.

Kontopoulos, E., Bassiliades, N., and Antoniou, G. (2008). Deploying defeasible logic

rule bases for the Semantic Web. Data & Knowledge Engineering, 66(1):116–146.

Kontopoulos, E., Bassiliades, N., and Antoniou, G. (2011). Visualizing semantic

web proofs of defeasible logic in the dr-device system. Knowledge-Based Systems,

24(3):406 – 419.

REFERENCES 329

Kotis, K. (2010). On Supporting HCOME-3O Ontology Argumentation Using Semantic

Wiki Technology. In Meersman, R., Tari, Z., and Herrero, P., editors, On the Move to

Meaningful Internet Systems: OTM 2008 Workshops, volume 5333 of Lecture Notes

in Computer Science, pages 193–199. Springer Berlin / Heidelberg.

Lee, K. C. and Chung, N. (2005). A Web DSS approach to building an intelligent

internet shopping mall by integrating virtual reality and avatar. Expert Systems

with Applications, 28(2):333 – 346.

Lee, T., Hendler, J., Lassila, O., et al. (2001). The Semantic Web. Scientific American,

284(5):34–43.

Lee, T. B. (2003). The Semantic Web and Challenges

http://www.w3.org/2003/talks/01-sweb-tbl/. W3C.

Lee, T. B. (2005). WWW 2005 Keynote, http://www.w3.org/2005/talks/0511-keynote-tbl/.

W3C.

Lee, T. B. (2006). Artificial Intelligence and the Semantic Web: AAAI 2006 Keynote,

http://www.w3.org/2006/talks/0718-aaai-tbl/overview.html. W3C.

Letia, I. and Groza, A. (2008). A Planning-Based Approach for Enacting World Wide

Argument Web. In Badica, C., Mangioni, G., Carchiolo, V., and Burdescu, D.,

editors, Intelligent Distributed Computing, Systems and Applications , volume 162 of

Studies in Computational Intelligence, pages 137–146. Springer Berlin / Heidelberg.

Li, T., Feng, S., and Li, L. X. (2001). Information visualization for intelligent decision

support systems. Knowledge-Based Systems, 14(5-6):259 – 262.

Liu, K. and Ong, T. (1999). A modelling approach for handling business rules and

exceptions. The Computer Journal, 42(3):221–231.

Lohmann, N., Verbeek, E., and Dijkman, R. (2009). Petri Net transformations for

business processes - a survey. In Jensen, K. and Aalst, W. M., editors, Transactions

on Petri Nets and Other Models of Concurrency II, pages 46–63. Springer-Verlag,

Berlin, Heidelberg.

Loui, R. P. (1998). Process and policy: Resource-bounded non-demonstrative

reasoning. Computational intelligence, 14(1):1–38.

Ma, J., Lu, J., and Zhang, G. (2010). Decider: A fuzzy multi-criteria group decision

support system. Knowledge-Based Systems, 23(1):23 – 31. Special Issue on Intelligent

Decision Support and Warning Systems.

REFERENCES 330

Madison, D. (2005). Process mapping, process improvement, and process management .

Paton Press.

Markovic, I., Jain, S., El-Gayyar, M., Cremers, A. B., and Stojanovic, N. (2009).

Modeling and enforcement of business policies on process models with maestro.

In Proceedings of the 6th European Semantic Web Conference on The Semantic

Web: Research and Applications, ESWC 2009 Heraklion, pages 873–877, Berlin,

Heidelberg. Springer-Verlag.

Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K.,

McGuinness, D. L., Sirin, E., and Srinivasan, N. (2007). Bringing semantics to web

services with owl-s. Journal of World Wide Web, 10(3):243–277.

Martinez, D. C., Garcia, A. J., and Simari, G. R. (2006). On acceptability in abstract

argumentation frameworks with an extended defeat relation. In Computational

models of argument: proceedings of COMMA 2006. IOS Press, Netherland.

Martinez, D. C., Garcia, A. J., and Simari, G. R. (2008). An abstract argumentation

framework with varied-strength attacks. In Proceedings of the Eleventh International

Conference on Principles of Knowledge Representation and Reasoning , pages

135–144, Sydney, NSW, Australia.

McTavish, D. G. and Loether, H. J. (1999). Social Research. Allyn & Bacon.

Meditskos, G. and Bassiliades, N. (2009). Rule-based owl reasoning systems:

Implementations, strengths and weaknesses. In Handbook of Research on

Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches ,

chapter VI, pages 124–148. Hershey, PA.

Meyer, N., Feiner, T., Radmayr, M., Blei, D., and Fleischmann, A. (2011). Dynamic

catenation and execution of cross organisational business processes - the jCPEX!

approach. In Fleischmann, A., Schmidt, W., Singer, R., and Seese, D., editors,

Subject-Oriented Business Process Management, volume 138 of Communications in

Computer and Information Science, pages 84–105. Springer Berlin Heidelberg.

Modgil, S. (2009). Reasoning about preferences in argumentation frameworks. Artificial

intelligence, 173(9-10):901–934.

Munoz, A. and Botia, J. (2008). ASBO: Argumentation system based on ontologies. In

Klusch, M., Pechoucek, M., and Polleres, A., editors, Cooperative Information Agents

XII, Lecture Notes in Computer Science, volume 5180, pages 191–205. Springer.

REFERENCES 331

Negash, S. and Gray, P. (2003). Business intelligence. In American Conference on

Information Systems, pages 3190–3199, FL, USA.

Newman, S. E. and Marshall, C. C. (1992). Pushing Toulmin Too Far: Learning From

an Argument Representation Scheme. Technical Report SSL-92-45, Xerox PARC,

Palo Alto, CA, USA,.

Nicolicin-Georgescu, V., Benatier, V., Lehn, R., and HenriBriand (2010).

Ontology-Based Autonomic Computing for Decision Support Systems Management:

Shared Resources Allocation between Groups of Data Warehouses. In Third

International Conference on Communication Theory, Reliability, and Quality of

Service (CTRQ), pages 233 –236, Athens/Glyfada, Greece.

Nielsen, S. H. and Parsons, S. (2007). A generalization of Dungs abstract framework for

argumentation: Arguing with sets of attacking arguments. In Maudet, N., Parsons,

S., and Rahwan, I., editors, Argumentation in Multi-Agent Systems, Lecture Notes in

Computer Science, volume 4766 of Lecture Notes in Computer Science, pages 54–73.

Springer Berlin / Heidelberg.

Noor-E-Alam, M., Lipi, T. F., Hasin, M. A. A., and Ullah, A. (2010). Algorithms for

fuzzy multi-expert multi-criteria decision making (ME-MCDM). Knowledge-Based

Systems, 24(3):367–377.

Norta, A. and Eshuis, R. (2010). Specification and verification of harmonized

business-process collaborations. Information Systems Frontiers, 12(4):457–479.

10.1007/s10796-009-9164-1.

Nunamaker, Jr., J. F., Chen, M., and Purdin, T. D. M. (1990). Systems development

in information systems research. Journal of Management Information Systems,

7(3):89–106.

Nute, D. (1988). Defeasible reasoning and decision support systems. Decision Support

Systems, 4(1):97 – 110.

Nute, D. (1994). Defeasible Logic. In Web Knowledge Management and Decision

Support, volume 2543 of Lecture Notes in Computer Science, pages 151–169. Springer

Berlin / Heidelberg.

Obeid, N. (1992). Nonmonotonic Reasoning: Logical Foundation of Commonsense.

The Computer Journal, 35(2):147–147.

REFERENCES 332

Oguz, G., Proctor, M., and Kuncak, V. (2008). Decision tree learning for

drools. Master’s thesis, Infoscience | Ecole Polytechnique Federale de Lausanne

[http://infoscience.epfl.ch/oai2d.py], http://www.scientificcommons.org/36887627.

Oren, N., Norman, T. J., and Preece, A. (2007). Evidential reasoning in bipolar

argumentation frameworks. In 4th International Workshop on Argumentation in

Multi-Agent Systems, Hawaii, USA,.

Palau, R. M. and Moens, M.-F. (2009). Argumentation mining: the detection,

classification and structure of arguments in text. In ICAIL ’09: Proceedings of

the 12th International Conference on Artificial Intelligence and Law , pages 98–107,

New York, NY, USA. ACM.

Parsia, B. and Sirin, E. (2007). Pellet: A practical OWL-DL reasoner. Web Semantics:

Science, Services and Agents on the World Wide Web, 5(2):51–53.

Parsons, T. (1996). What is Argument? Journal of Philosophy, 93(4):164–185.

Patel-Schneider, P. F. and Horrocks, I. (2007). A comparison of two modelling

paradigms in the Semantic Web. Web Semantics: Science, Services and Agents

on the World Wide Web, 5(4):240–250.

Perelman, C. (1969). The New Rhetoric: A Treatise on Argumentation. University of

Notre Dame Press.

Pham, D., Governatori, G., Raboczi, S., Newman, A., and Thakur, S. (2008). On

Extending RuleML for Modal Defeasible Logic. In Bassiliades, N., Governatori,

G., and Paschke, A., editors, Rule Representation, Interchange and Reasoning on

the Web, Lecture Notes in Computer Science, volume 5321, pages 89–103. Springer

Berlin Heidelberg.

Pollock, J. L. (2000). Rational Cognition in OSCAR. In 6th International Workshop

on Intelligent Agents VI, Agent Theories, Architectures, and Languages (ATAL) ,

volume 1757/2000 of Lecture Notes in Computer Science, pages 71–90. Springer

Berlin / Heidelberg.

Power, D. J. (2002). Decision support systems: concepts and resources for managers .

Greenwood Publishing Group.

Power, D. J. and Sharda, R. (2009). Decision Support Systems. In Nof, S. Y., editor,

Springer Handbook of Automation, pages 1539–1548. Springer Berlin Heidelberg.

REFERENCES 333

Prakken, H. and Vreeswijk, G. (2002). Logics for defeasible argumentation. In Gabbay,

D. M. and Guenthner, F., editors, Handbook of Philosophical Logic, volume 4, pages

219–318. Springer.

Rahwan, I. (2005). Guest editorial: Argumentation in multi-agent systems.

Autonomous agents and multi-agent systems, 11(2):115–125.

Rahwan, I. and Larson, K. (2008). Mechanism design for abstract argumentation. In

AAMAS ’08: Proceedings of the 7th international joint conference on Autonomous

agents and multiagent systems, pages 1031–1038, Richland, SC. International

Foundation for Autonomous Agents and Multiagent Systems.

Rahwan, I., Ramchurn, S. D., Jennings, N. R., McBurney, P., Parsons, S., and ,

L. S. (2004). Argumentation-based negotiation. The Knowledge Engineering Review,

18(4):343–374.

Rahwan, I., Zablith, F., and Reed, C. (2007a). Towards large scale argumentation

support on the semantic web. In AAAI’07: Proceedings of the 22nd national

conference on Artificial intelligence, pages 1446–1451. AAAI Press.

Rahwan, I., Zablitha, F., and Reed, C. (2007b). Laying the foundations for a World

Wide Argument Web. Artificial Intelligence, 171(10-15):897–921.

Rajsiri, V., Lorra, J.-P., Banaben, F., and Pingaud, H. (2010). Knowledge-based

system for collaborative process specification. Computers in Industry, 61(2):161 –

175.

Reed, C. and Rowe, G. (2004). Araucaria: Software for argument analysis,

diagramming and representation. International Journal of Artifical intelligence

Tools, 13(4):961–980.

Reed, C. and Rowe, G. (2007). A pluralist approach to argument diagramming. Law,

Probability and Risk, 6(1-4):59–85.

Reed, C. and Walton, D. (2003). Abstract Argumentation schemes in

argument-as-process and argument-as-product. In Proceedings of the conference

celebrating informal Logic. CD-Rom. Ontario Society for the Study of

Argumentation, Windsor.

Reed, C., Walton, D., and Macagna, F. (2007). Argument diagramming in logic, law

and artificial intelligence. The Knowledge Engineering Review, 22(1):87–109.

Reijers, H. A., Limam, S., and Van Der Aalst, W. M. P. (2003). Product-Based

Workflow Design. Journal of Management Information Systems, 20(1):229–262.

REFERENCES 334

Rotstein, N. D., Moguillansky, M. O., Garcia, A. J., and Simari, G. R. (2010). A

dynamic argumentation framework. In Baroni, P., Cerutti, F., Giacomin, M., and

Simari, G. R., editors, Frontiers in Artificial Intelligence and Applications , volume

216 of Computational Models of Argument - Proceedings of COMMA 2010 . IOS Press.

Sadiq, S. and Governatori, G. (2009). A methodological framework for aligning business

processes and regulatory compliance. In Brocke, J. and Rosemann, M., editors,

Handbook of business process management: 2. Strategic alignment, governance,

people and culture, pages 159–176. Springer-Verlag Berlin Heidelberg.

Saggion, H., Funk, A., Maynard, D., and Bontcheva, K. (2007). Ontology-based

information extraction for business intelligence. In Proceedings of the 6th

international The semantic web and 2nd Asian conference on Asian semantic web

conference, ISWC’07/ASWC’07, pages 843–856, Berlin, Heidelberg. Springer-Verlag.

Salam, A. (2007). Design and implementation of semantic decision support system for

supplier performance contract monitoring and execution: Integrating description

logics, semantic web rules and service-oriented computing in the context of the

extended enterprise. In Americas Conference on Information Systems, paper number

293 [http://aisel.aisnet.org/amcis2007/293].

Shim, J. P., Warkentin, M., Courtney, J. F., Power, D. J., Sharda, R., and Carlsson, C.

(2002). Past, present, and future of decision support technology. Decision Support

Systems, 33(2):111 – 126.

Shum, S. B. (2008). Cohere: Towards Web 2.0 Argumentation. In Proceeding of the

conference on Computational Models of Argument, pages 97–108, Amsterdam. IOS

Press.

Silverman, B. G., Bachann, M., and Al-Akharas, K. (2001). Implications of buyer

decision theory for design of e-commerce websites. International Journal of

Human-Computer Studies, 55(5):815 – 844.

Sprado, J. and Gottfried, B. (2009). Semantic argumentation in dynamic environments.

In International Conference Enterprise Information Systems , pages 236–241, Milan,

Italy. Springer, Heidelberg.

Subsorn, P., Xiao, J., and Singh, K. (2008). A web-based application of group

decision making in a fuzzy environment. In 5th International Conference on

Electrical Engineering/Electronics, Computer, Telecommunications and Information

Technology, volume 1, pages 17 –20, Krabi, Thailand.

REFERENCES 335

Suc, D. and Bratko, I. (2001). Induction of qualitative trees. In Proceedings of the 12th

European Conference on Machine Learning, EMCL ’01, pages 442–453, London, UK,

UK. Springer-Verlag.

Suguri, H., Ahmad, H. F., Pasha, M., and Khalid, N. (2008). Grid Computing

Research Progress Chapters, chapter Foundation for Autonomous Semantic Grid,

pages 151–191. Nova Science Publications, USA.

Thomsen, E. (2003). Biś promised land. Intelligent Enterprise, 6(5):20–25.

Toni, F. (2007). E-business in argugrid. In Veit, D. and Altmann, J., editors, Grid

Economics and Business Models, volume 4685 of Lecture Notes in Computer Science,

pages 164–169. Springer Berlin / Heidelberg.

Torroni, P., Gavanelli, M., and Chesani, F. (2009). Arguing on the Semantic Grid.

In Rahwan, I. and Simari, G. R., editors, Argumentation in Artificial Intelligence,

pages 423–441. Springer US.

Toulmin, S. E. (2003). The Uses of argument. Cambridge University Press.

Tsarkov, D. and Horrocks, I. (2006). FaCT++ description logic reasoner: System

description. In Proceedings of the Third international joint conference on Automated

Reasoning, pages 292–297. Springer-Verlag Berlin.

Turetken, O., Elgammal, A., van den Heuvel, Willem-Jan, and Papazoglou, M. (2011).

Enforcing compliance on business processes through the use of patterns. In European

Conference on Information Systems, paper 5, Finland.

Tzagarakis, M., Karousos, N., Karacapilidis, N., and Nousia, D. (2009). Unleashing

Argumentation Support Systems on the Web: The case of CoPe-it. In Proceedings

of the Web Science: Society On-Line, Athens, Greece.

Uldis Bojars, Tudor Groza, J. G. B., Handschuh, S., and Lange, C. (2008). Expressing

argumentative discussions in social media sites. In First Workshop on Social Data

on the Web at the 7th International Semantic Web Conference , Karlsruhe, Germany.

http://sdow.semanticweb.org/2008/.

Vahidov, R. and Kersten, G. E. (2004). Decision station: situating decision support

systems. Decision Support Systems, 38(2):283 – 303.

Van Emden, M. and Kowalski, R. (1976). The semantics of predicate logic as a

programming language. Journal of the ACM, 23(4):733–742.

REFERENCES 336

Vreeswijk, G. (1995). IACAS: an implementation of Chisholm’s principles of knowledge.

In The Proceedings of the 2nd Dutch/German Workshop on Nonmonotonic

Reasoning, pages 225–234., Utrecht, Netherland.

Vreeswijk, G. A. W. (1997). Abstract argumentation systems. Artificial Intelligence,

90(1-2):225 – 279.

Walton, D. (1989). Informal Logic: A Handbook for Critical Argument. Cambridge

University Press.

Walton, D. (1997). Appeal to expert opinion: Arguments from authority. Penn State

University Press.

Walton, D. (2005). Justification of Argumentation Schemes. The Australasian Journal

of Logic, 3:1–13. http://www.philosophy.unimelb.edu.au/ajl/2005/.

Walton, D. (2009). Argumentation theory: A very short introduction. In Rahwan,

I. and Simari, G. R., editors, Argumentation in Artifical Intelligence, pages 1–22.

Springer.

Walton, D. N. (2006). Fundamentals of Critical Argumentation. Cambridge University

Press, New York, USA.

Wang, H. J., Zhao, J. L., and Zhang, L.-J. (2009). Policy-driven process mapping

(PDPM): Discovering process models from business policies. Decision Support

Systems, 48(1):267 – 281.

Wang, X., Zhang, D., Gu, T., and Pung, H. (2004). Ontology based context modeling

and reasoning using OWL. In Proceedings of the Second IEEE Annual Conference on

Pervasive Computing and Communications Workshops , pages 18–22, Florida USA.

Weigand, H., van den Heuvel, W.-J., and Hiel, M. (2011). Business policy compliance

in service-oriented systems. Information Systems, 36(4):791 – 807.

Wells, S., Gourlay, C., and Reed, C. (2009). Argument Blogging. In 9th International

Workshop on Computational Models of Natural Argument (CMNA 9) , California,

U.S.

Wen, W., Chen, Y., and Chen, I. (2008). A knowledge-based decision support system

for measuring enterprise performance. Knowledge-Based Systems, 21(2):148 – 163.

Wielemaker, J. (2011). SWI-Prolog RDF parser ,

http://www.swi-prolog.org/pldoc/package/rdf2pl.html.

REFERENCES 337

Xue, Y., Ghenniwa, H. H., and Shen, W. (2012). Frame-based ontological view for

semantic integration. Journal of Network and Computer Applications, 35(1):121 –

131.

Yang, X., Bo, Z., and Bei, Z. (2009). Research on Semantic Decision Support System.

In World Congress on Computer Science and Information Engineering , volume 5,

pages 687 –691, Los Angeles, USA.

Yao, Y., Zhong, N., Liu, J., and Ohsuga, S. (2001). Web Intelligence (WI) Research

Challenges and Trends in the New Information Age. In Web Intelligence: Research

and Development, volume 2198 of Lecture Notes in Computer Science, pages 1–17.

Springer Berlin / Heidelberg.

Yearwood, J. L. and Stranieri, A. (2006). The generic/actual argument model of

practical reasoning. Decision Support Systems, 41(2):358 – 379.

Yue, Z. (2011). An extended TOPSIS for determining weights of decision makers with

interval numbers. Knowledge-Based Systems, 24(1):146 – 153.

Zadeh, L. (1983). A computational approach to fuzzy quantifiers in natural languages.

Computers & Mathematics with Applications, 9(1):149–184.

Zarefsky, D. (2009). Argumentation: The study of effective reasoning, 2nd edition.

volume 2009. Northwestern University.

Zeleznikow, J. and Stranieri, A. (1995). The split-up system: integrating neural

networks and rule-based reasoning in the legal domain. In Proceedings of the 5th

international conference on Artificial intelligence and law , pages 185–194, NY, USA.

ACM.

�

�

�

�

Every reasonable effort has been made to
acknowledge the owners of copyright material. I
would be pleased to hear from any copyright owner
who has been omitted or incorrectly acknowledged.

Appendix A - Information captured

by Semantic Web applications

A.1 Production rules of a supplier in RuleML format

<?xml version="1.0" encoding="UTF-8"?>

<RuleML xmlns="http://www.ruleml.org/0.91/xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ruleml.org/0.91/xsd

http://debii.curtin.edu.au/~naeem/delp-valid-xsd.xsd">

<Assert>

<Implies ruletype="defeasiblerule">

<oid><Ind>d9</Ind></oid>

<head>

<Atom>

<Rel>purchase</Rel>

<Var>X</Var>

<Var>Y</Var>

</Atom>

</head>

<body>

<Atom>

<Rel>shopper</Rel><Var>X</Var>

</Atom>

<Atom>

<Rel>product</Rel>

<Var>Y</Var>

</Atom>

<Atom>

<Rel>havefeedback</Rel>

<Var>F</Var>

<Var>Y</Var>

</Atom>

<Atom>

<Rel>reviewRate</Rel>

<Var>G</Var>

<Var>F</Var>

</Atom>

</body>

</Implies>

A.1 Production rules of a supplier in RuleML format 339

<Implies ruletype="defeasiblerule">

<oid><Ind>d1</Ind></oid>

<head>

<Atom>

<Rel>giveDiscount</Rel>

<Var>X</Var>

</Atom>

</head>

<body>

<Atom>

<Rel>shopper</Rel>

<Var>X</Var>

</Atom>

<Atom>

<Rel>purchase</Rel>

<Var>X</Var>

<Var>Y</Var>

</Atom>

</body>

</Implies>

<Implies ruletype="defeasiblerule">

<oid><Ind>d2</Ind></oid>

<head>

<Neg>

<Atom><Rel>giveDiscount</Rel>

<Var>X</Var>

</Atom>

</Neg>

</head>

<body>

<Atom>

<Rel>shopper</Rel><Var>X</Var>

</Atom>

<Atom>

<Rel>product</Rel>

<Var>Y</Var>

</Atom>

<Atom>

<Neg>

<Rel>advancePayment</Rel><Var>X</Var><Var>Y</Var>

</Neg>

</Atom>

</body>

</Implies>

<Implies ruletype="defeasiblerule">

<oid><Ind>d3</Ind></oid>

<head>

<Atom><Rel>giveDiscount</Rel>

<Var>X</Var>

</Atom>

</head>

<body>

<Atom>

<Rel>purchase</Rel>

<Var>X</Var>

<Var>Y</Var>

A.1 Production rules of a supplier in RuleML format 340

</Atom>

<Atom>

<Rel>shopper</Rel><Var>X</Var>

</Atom>

<Atom>

<Rel>product</Rel><Var>Y</Var>

</Atom>

<Atom>

<Rel>bulkOrder</Rel><Var>X</Var><Var>Y</Var>

</Atom>

</body>

</Implies>

<Implies ruletype="defeasiblerule">

<oid><Ind>d5</Ind></oid>

<head>

<Neg>

<Atom><Rel>gstFree</Rel>

<Var>Y</Var>

</Atom>

</Neg>

</head>

<body>

<Atom>

<Rel>product</Rel><Var>Y</Var>

</Atom>

<Atom>

<Rel>eShop</Rel><Var>Z</Var>

</Atom>

<Atom>

<Neg>

<Rel>packaging</Rel>

<Var>Y</Var>

<Var>Z</Var>

</Neg>

</Atom>

</body>

</Implies>

<Implies ruletype="strictrule">

<oid><Ind>s1</Ind></oid>

<head>

<Atom><Rel>normalDiscount</Rel>

<Var>X</Var>

</Atom>

</head>

<body>

<Atom>

<Rel>product</Rel>

<Var>Y</Var>

</Atom>

<Atom>

<Neg>

<Rel>gstFree</Rel><Var>Y</Var>

</Neg>

</Atom>

<Atom>

<Rel>giveDiscount</Rel><Var>X</Var>

</Atom>

</body>

A.2 Feedback information in OWL/RDF format 341

</Implies>

</Assert>

</RuleML>

A.2 Feedback information in OWL/RDF format
<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<!ENTITY ecommerceOntology "http://www.debii.com/~naeem/ecommerceOntology#" >

]>

<rdf:RDF xmlns="http://www.debii.com/~naeem/ecommerceOntology#"

xml:base="http://www.debii.com/~naeem/ecommerceOntology"

xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:ecommerceOntology="http://www.debii.com/~naeem/ecommerceOntology#"

xmlns:owl="http://www.w3.org/2002/07/owl#">

<owl:Ontology rdf:about=""/>

<!--

///

//

// Object Properties

//

///

-->

<!-- http://www.debii.com/~naeem/ecommerceOntology#haveFeedback -->

<owl:ObjectProperty rdf:about="#haveFeedback">

<rdfs:domain rdf:resource="#Products"/>

<rdfs:range rdf:resource="#Reviews"/>

</owl:ObjectProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#purchaseProducts -->

<owl:ObjectProperty rdf:about="#purchaseProducts">

<rdfs:domain rdf:resource="#Customer"/>

<rdfs:range rdf:resource="#Products"/>

</owl:ObjectProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#sell -->

<owl:ObjectProperty rdf:about="#sell">

<rdfs:range rdf:resource="#Products"/>

<rdfs:domain rdf:resource="#Store"/>

</owl:ObjectProperty>

<!--

///

//

// Data properties

//

A.2 Feedback information in OWL/RDF format 342

///

-->

<!-- http://www.debii.com/~naeem/ecommerceOntology#cashPayment -->

<owl:DatatypeProperty rdf:about="#cashPayment">

<rdfs:domain rdf:resource="#Customer"/>

<rdfs:subPropertyOf rdf:resource="#makePayment"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#clubMember -->

<owl:DatatypeProperty rdf:about="#clubMember">

<rdfs:domain rdf:resource="#Customer"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#creditCardPayment -->

<owl:DatatypeProperty rdf:about="#creditCardPayment">

<rdfs:domain rdf:resource="#Customer"/>

<rdfs:subPropertyOf rdf:resource="#makePayment"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#customerName -->

<owl:DatatypeProperty rdf:about="#customerName">

<rdfs:domain rdf:resource="#Customer"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#hasCustomerPolicy -->

<owl:DatatypeProperty rdf:about="#hasCustomerPolicy">

<rdfs:domain rdf:resource="#eShop"/>

<rdfs:subPropertyOf rdf:resource="#hasPolicies"/>

<rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#hasDiscountPolicy -->

<owl:DatatypeProperty rdf:about="#hasDiscountPolicy">

<rdfs:domain rdf:resource="#eShop"/>

<rdfs:subPropertyOf rdf:resource="#hasPolicies"/>

<rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#hasPolicies -->

<owl:DatatypeProperty rdf:about="#hasPolicies"/>

<!-- http://www.debii.com/~naeem/ecommerceOntology#hasProductCatalog -->

<owl:DatatypeProperty rdf:about="#hasProductCatalog">

<rdfs:domain rdf:resource="#eShop"/>

<rdfs:subPropertyOf rdf:resource="#hasProducts"/>

<rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#hasProductReviews -->

<owl:DatatypeProperty rdf:about="#hasProductReviews">

<rdfs:domain rdf:resource="#eShop"/>

<rdfs:subPropertyOf rdf:resource="#hasProducts"/>

<rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#hasProducts -->

<owl:DatatypeProperty rdf:about="#hasProducts"/>

<!-- http://www.debii.com/~naeem/ecommerceOntology#hasRefundPolicy -->

<owl:DatatypeProperty rdf:about="#hasRefundPolicy">

<rdfs:domain rdf:resource="#eShop"/>

<rdfs:subPropertyOf rdf:resource="#hasPolicies"/>

<rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

A.2 Feedback information in OWL/RDF format 343

<!-- http://www.debii.com/~naeem/ecommerceOntology#hasValue -->

<owl:DatatypeProperty rdf:about="#hasValue">

<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#id -->

<owl:DatatypeProperty rdf:about="#id">

<rdfs:domain rdf:resource="#eShop"/>

<rdfs:range rdf:resource="&xsd;integer"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#makePayment -->

<owl:DatatypeProperty rdf:about="#makePayment"/>

<!-- http://www.debii.com/~naeem/ecommerceOntology#name -->

<owl:DatatypeProperty rdf:about="#name">

<rdfs:domain rdf:resource="#eShop"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#productID -->

<owl:DatatypeProperty rdf:about="#productID">

<rdfs:domain rdf:resource="#Products"/>

<rdfs:range rdf:resource="&xsd;integer"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#productName -->

<owl:DatatypeProperty rdf:about="#productName">

<rdfs:domain rdf:resource="#Products"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#productPrice -->

<owl:DatatypeProperty rdf:about="#productPrice">

<rdfs:domain rdf:resource="#Products"/>

<rdfs:range rdf:resource="&xsd;float"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#regularCustomer -->

<owl:DatatypeProperty rdf:about="#regularCustomer">

<rdfs:domain rdf:resource="#Customer"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#reviewedComments -->

<owl:DatatypeProperty rdf:about="#reviewedComments">

<rdfs:domain rdf:resource="#Reviews"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#reviewedRate -->

<owl:DatatypeProperty rdf:about="#reviewedRate">

<rdfs:domain rdf:resource="#Reviews"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#slowToPay -->

<owl:DatatypeProperty rdf:about="#slowToPay">

<rdfs:domain rdf:resource="#Customer"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<!--

///

//

// Classes

//

///

-->

<!-- http://www.debii.com/~naeem/ecommerceOntology#Client -->

A.2 Feedback information in OWL/RDF format 344

<owl:Class rdf:about="#Client">

<owl:equivalentClass rdf:resource="#Customer"/>

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<!-- http://www.debii.com/~naeem/ecommerceOntology#Customer -->

<owl:Class rdf:about="#Customer">

<owl:equivalentClass rdf:resource="#Shopper"/>

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<!-- http://www.debii.com/~naeem/ecommerceOntology#Items -->

<owl:Class rdf:about="#Items">

<owl:equivalentClass rdf:resource="#Products"/>

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<!-- http://www.debii.com/~naeem/ecommerceOntology#Products -->

<owl:Class rdf:about="#Products">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<!-- http://www.debii.com/~naeem/ecommerceOntology#Reviews -->

<owl:Class rdf:about="#Reviews">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<!-- http://www.debii.com/~naeem/ecommerceOntology#Shopper -->

<owl:Class rdf:about="#Shopper">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<!-- http://www.debii.com/~naeem/ecommerceOntology#Store -->

<owl:Class rdf:about="#Store">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<!-- http://www.debii.com/~naeem/ecommerceOntology#eShop -->

<owl:Class rdf:about="#eShop">

<rdfs:subClassOf rdf:resource="#Store"/>

</owl:Class>

<!-- http://www.debii.com/~naeem/ecommerceOntology#physical -->

<owl:Class rdf:about="#physical">

<rdfs:subClassOf rdf:resource="#Store"/>

</owl:Class>

<!-- http://www.w3.org/2002/07/owl#Thing -->

<owl:Class rdf:about="&owl;Thing"/>

</rdf:RDF>

<!-- Generated by the OWL API (version 2.2.1.974) http://owlapi.sourceforge.net -->

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY products "http://www.BigW.com/products.owl#" >

<!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<!ENTITY ecommerceOntology "http://www.debii.com/~naeem/ecommerceOntology#" >

]>

A.2 Feedback information in OWL/RDF format 345

<rdf:RDF xmlns="http://www.BigW.com/products.owl#"

xml:base="http://www.BigW.com/products.owl"

xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

xmlns:products="http://www.BigW.com/products.owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:ecommerceOntology="http://www.debii.com/~naeem/ecommerceOntology#"

xmlns:owl="http://www.w3.org/2002/07/owl#">

<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://www.debii.com/~naeem/BigW"/>

</owl:Ontology>

<!--

///

//

// Data properties

//

///

-->

<!-- http://www.debii.com/~naeem/ecommerceOntology#productID -->

<owl:DatatypeProperty rdf:about="&ecommerceOntology;productID">

<rdfs:range rdf:resource="&xsd;integer"/>

</owl:DatatypeProperty>

<!-- http://www.debii.com/~naeem/ecommerceOntology#productName -->

<owl:DatatypeProperty rdf:about="&ecommerceOntology;productName"/>

<!-- http://www.debii.com/~naeem/ecommerceOntology#productPrice -->

<owl:DatatypeProperty rdf:about="&ecommerceOntology;productPrice"/>

<!--

///

//

// Classes

//

///

-->

<!-- http://www.debii.com/~naeem/ecommerceOntology#Products -->

<owl:Class rdf:about="&ecommerceOntology;Products"/>

<!--

///

//

// Individuals

//

///

-->

<!-- http://www.BigW.com/products.owl#rawMaterial -->

<ecommerceOntology:Products rdf:about="#rawMaterial">

<ecommerceOntology:productID rdf:datatype="&xsd;integer">1265</ecommerceOntology:productID>

<ecommerceOntology:productPrice rdf:datatype="&xsd;float">236.3</ecommerceOntology:productPrice>

<ecommerceOntology:productName rdf:datatype="&xsd;string"

>Philips Top loader</ecommerceOntology:productName>

</ecommerceOntology:Products>

</rdf:RDF>

<!-- Generated by the OWL API (version 2.2.1.974) http://owlapi.sourceforge.net -->

A.3 Process ontology in OWL/RDF format 346

A.3 Process ontology in OWL/RDF format
<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<!ENTITY travelOntology "http://www.semanticweb.org/ontologies/travelOntology.owl#" >

]>

<rdf:RDF xmlns="http://www.semanticweb.org/ontologies/travelOntology.owl#"

xml:base="http://www.semanticweb.org/ontologies/travelOntology.owl"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:travelOntology="http://www.semanticweb.org/ontologies/travelOntology.owl#">

<owl:Ontology rdf:about="http://www.semanticweb.org/ontologies/travelOntology.owl"/>

<!--

///

//

// Datatypes

//

///

-->

<!--

///

//

// Object Properties

//

///

-->

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#ProcessToProcess -->

<owl:ObjectProperty rdf:about="&travelOntology;ProcessToProcess">

<rdfs:domain rdf:resource="&travelOntology;Process"/>

<rdfs:range rdf:resource="&travelOntology;Process"/>

</owl:ObjectProperty>

A.3 Process ontology in OWL/RDF format 347

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#Task-Constraint-Relationship -->

<owl:ObjectProperty rdf:about="&travelOntology;Task-Constraint-Relationship">

<rdfs:range rdf:resource="&travelOntology;Constraints"/>

<rdfs:domain rdf:resource="&travelOntology;Tasks"/>

</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#Task-DataItem-Relationship -->

<owl:ObjectProperty rdf:about="&travelOntology;Task-DataItem-Relationship">

<rdfs:range rdf:resource="&travelOntology;DataItem"/>

<rdfs:domain rdf:resource="&travelOntology;Tasks"/>

</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#Task-Resource-Relationship -->

<owl:ObjectProperty rdf:about="&travelOntology;Task-Resource-Relationship">

<rdfs:range rdf:resource="&travelOntology;Resource"/>

<rdfs:domain rdf:resource="&travelOntology;Tasks"/>

</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#Task-Task-Relationship -->

<owl:ObjectProperty rdf:about="&travelOntology;Task-Task-Relationship">

<rdfs:range rdf:resource="&travelOntology;Tasks"/>

<rdfs:domain rdf:resource="&travelOntology;Tasks"/>

</owl:ObjectProperty>

<!--

///

//

// Data properties

//

///

-->

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#METHOD -->

<owl:DatatypeProperty rdf:about="&travelOntology;METHOD"/>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#TYPE -->

<owl:DatatypeProperty rdf:about="&travelOntology;TYPE"/>

A.3 Process ontology in OWL/RDF format 348

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#X -->

<owl:DatatypeProperty rdf:about="&travelOntology;X"/>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#Y -->

<owl:DatatypeProperty rdf:about="&travelOntology;Y"/>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#Z -->

<owl:DatatypeProperty rdf:about="&travelOntology;Z"/>

<!--

///

//

// Classes

//

///

-->

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#Constraints -->

<owl:Class rdf:about="&travelOntology;Constraints">

<rdfs:subClassOf rdf:resource="&travelOntology;Tasks"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#DataItem -->

<owl:Class rdf:about="&travelOntology;DataItem">

<rdfs:subClassOf rdf:resource="&travelOntology;Tasks"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#Process -->

<owl:Class rdf:about="&travelOntology;Process"/>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#Resource -->

<owl:Class rdf:about="&travelOntology;Resource">

<rdfs:subClassOf rdf:resource="&travelOntology;Tasks"/>

A.3 Process ontology in OWL/RDF format 349

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#Situation -->

<owl:Class rdf:about="&travelOntology;Situation">

<rdfs:subClassOf rdf:resource="&travelOntology;Tasks"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#Tasks -->

<owl:Class rdf:about="&travelOntology;Tasks">

<rdfs:subClassOf rdf:resource="&travelOntology;Process"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#action -->

<owl:Class rdf:about="&travelOntology;action">

<rdfs:subClassOf rdf:resource="&travelOntology;Tasks"/>

</owl:Class>

<!-- http://www.w3.org/2002/07/owl#Thing -->

<owl:Class rdf:about="&owl;Thing"/>

<!--

///

//

// Individuals

//

///

-->

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#Authority_to_approve_travel_ -->

<owl:NamedIndividual rdf:about="&travelOntology;Authority_to_approve_travel_">

<rdf:type rdf:resource="&travelOntology;Process"/>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#Travel_booking_for_staff_and_associates -->

<owl:NamedIndividual rdf:about="&travelOntology;Travel_booking_for_staff_and_associates">

<rdf:type rdf:resource="&travelOntology;Process"/>

</owl:NamedIndividual>

A.3 Process ontology in OWL/RDF format 350

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#airFairPayment -->

<owl:NamedIndividual rdf:about="&travelOntology;airFairPayment">

<rdf:type rdf:resource="&travelOntology;DataItem"/>

<X></X>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#approve -->

<owl:NamedIndividual rdf:about="&travelOntology;approve">

<rdf:type rdf:resource="&travelOntology;Tasks"/>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#booking -->

<owl:NamedIndividual rdf:about="&travelOntology;booking">

<rdf:type rdf:resource="&travelOntology;Tasks"/>

<X></X>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#contactTravelConsultant -->

<owl:NamedIndividual rdf:about="&travelOntology;contactTravelConsultant">

<rdf:type>

<owl:Restriction>

<owl:onProperty rdf:resource="&travelOntology;Task-Resource-Relationship"/>

<owl:someValuesFrom rdf:resource="&travelOntology;Tasks"/>

</owl:Restriction>

</rdf:type>

<METHOD></METHOD>

<Z></Z>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#creditCard -->

<owl:NamedIndividual rdf:about="&travelOntology;creditCard">

<rdf:type rdf:resource="&travelOntology;Resource"/>

<TYPE></TYPE>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#director -->

<owl:NamedIndividual rdf:about="&travelOntology;director">

<rdf:type rdf:resource="&travelOntology;Resource"/>

</owl:NamedIndividual>

A.3 Process ontology in OWL/RDF format 351

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#enterRecord -->

<owl:NamedIndividual rdf:about="&travelOntology;enterRecord">

<rdf:type rdf:resource="&travelOntology;Tasks"/>

<X></X>

<TYPE></TYPE>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#examineProfile -->

<owl:NamedIndividual rdf:about="&travelOntology;examineProfile">

<rdf:type rdf:resource="&travelOntology;Tasks"/>

<Y></Y>

<X></X>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#facilitator -->

<owl:NamedIndividual rdf:about="&travelOntology;facilitator">

<rdf:type rdf:resource="&travelOntology;Resource"/>

<Y></Y>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#fax -->

<owl:NamedIndividual rdf:about="&travelOntology;fax">

<rdf:type rdf:resource="&travelOntology;Tasks"/>

<Y></Y>

<METHOD></METHOD>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#filled -->

<owl:NamedIndividual rdf:about="&travelOntology;filled">

<rdf:type rdf:resource="&travelOntology;DataItem"/>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#finishToFinish -->

<owl:NamedIndividual rdf:about="&travelOntology;finishToFinish">

<rdf:type>

<owl:Restriction>

<owl:onProperty rdf:resource="&travelOntology;Task-Task-Relationship"/>

<owl:someValuesFrom rdf:resource="&travelOntology;Tasks"/>

</owl:Restriction>

A.3 Process ontology in OWL/RDF format 352

</rdf:type>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#finishToStart -->

<owl:NamedIndividual rdf:about="&travelOntology;finishToStart">

<rdf:type>

<owl:Restriction>

<owl:onProperty rdf:resource="&travelOntology;Task-Task-Relationship"/>

<owl:someValuesFrom rdf:resource="&travelOntology;Tasks"/>

</owl:Restriction>

</rdf:type>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#hotelPayment -->

<owl:NamedIndividual rdf:about="&travelOntology;hotelPayment">

<rdf:type rdf:resource="&travelOntology;DataItem"/>

<X></X>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#lateRecordEntry -->

<owl:NamedIndividual rdf:about="&travelOntology;lateRecordEntry">

<rdf:type rdf:resource="&travelOntology;DataItem"/>

<X></X>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#onlineBooking -->

<owl:NamedIndividual rdf:about="&travelOntology;onlineBooking">

<rdf:type rdf:resource="&travelOntology;Tasks"/>

<X></X>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#proceedForPayment -->

<owl:NamedIndividual rdf:about="&travelOntology;proceedForPayment">

<rdf:type rdf:resource="&travelOntology;Tasks"/>

<X></X>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#startToFinish -->

<owl:NamedIndividual rdf:about="&travelOntology;startToFinish">

A.3 Process ontology in OWL/RDF format 353

<rdf:type>

<owl:Restriction>

<owl:onProperty rdf:resource="&travelOntology;Task-Task-Relationship"/>

<owl:someValuesFrom rdf:resource="&travelOntology;Tasks"/>

</owl:Restriction>

</rdf:type>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#startToStart -->

<owl:NamedIndividual rdf:about="&travelOntology;startToStart">

<rdf:type>

<owl:Restriction>

<owl:onProperty rdf:resource="&travelOntology;Task-Task-Relationship"/>

<owl:someValuesFrom rdf:resource="&travelOntology;Tasks"/>

</owl:Restriction>

</rdf:type>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#submit -->

<owl:NamedIndividual rdf:about="&travelOntology;submit">

<rdf:type rdf:resource="&travelOntology;Tasks"/>

<X></X>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#travelConsultant -->

<owl:NamedIndividual rdf:about="&travelOntology;travelConsultant">

<rdf:type rdf:resource="&travelOntology;Resource"/>

<Z></Z>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#travelForm -->

<owl:NamedIndividual rdf:about="&travelOntology;travelForm">

<rdf:type rdf:resource="&travelOntology;DataItem"/>

</owl:NamedIndividual>

<!-- http://www.semanticweb.org/ontologies/travelOntology.owl#traveller -->

<owl:NamedIndividual rdf:about="&travelOntology;traveller">

<rdf:type rdf:resource="&travelOntology;Resource"/>

<X></X>

</owl:NamedIndividual>

A.3 Process ontology in OWL/RDF format 354

</rdf:RDF>

<!-- Generated by the OWL API (version 3.2.3.1824) http://owlapi.sourceforge.net -->

Appendix B - Selected Publications

arising from this thesis

Knowledge-Based Systems 32 (2012) 9–27
Contents lists available at SciVerse ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys
Web@IDSS – Argumentation-enabled Web-based IDSS for reasoning
over incomplete and conflicting information

Naeem Khalid Janjua, Farookh Khadeer Hussain ⇑
Digital Ecosystem and Business Intelligence Institute, Curtin University, Perth, WA, Australia
a r t i c l e i n f o

Article history:
Available online 24 September 2011

Keywords:
IDSS
Argumentation
DSS
Reasoning
Defeasible reasoning
Semantic web
0950-7051/$ - see front matter Crown Copyright � 2
doi:10.1016/j.knosys.2011.09.009

⇑ Corresponding author.
E-mail addresses: naeem.janjua@gmail.com (N.K. Ja

curtin.edu.au (F.K. Hussain).
a b s t r a c t

Over the past few decades, there has been a resurgence of interest in using high-level software intelli-
gence for business intelligence (BI). The objective is to produce actionable information that is delivered
at the right time, easily comprehendible and exportable to other software to assist business decision-
making processes. Although the design and development of decision support systems (DSS) has been car-
ried out for over 40 years, DSS still suffer from many limitations such as poor maintainability, poor flex-
ibility and less reusability. The development of the Internet and WWW has helped information systems
to overcome those limitations and Web DSS is now an active area of research in business intelligence,
impacting significantly on the way information is exchanged and businesses are conducted. However,
to remain competitive, companies rely on business intelligence (BI) to continually monitor and analyze
the operating environment (both internal and external), to identify potential risks, and to devise compet-
itive business strategies. However, the current Web DSS applications are not able to reason over informa-
tion present across organizational boundaries which could be incomplete and conflicting. The use of an
argumentation-based mechanism has not been explored to address such shortcomings in Web DSS. Argu-
mentation is a kind of commonsense reasoning used by human beings to reach a justifiable conclusion
when available information is incomplete and/or inconsistent among participants. In this paper, we pro-
pose and elaborate in detail a conceptual framework and formal argumentation-based semantics for Web
enabled Intelligent DSS (Web@IDSS). We evaluate the use of argumentative reasoning in Web DSS with
the help of a case study, prototype development and future directions. Applications built according to the
proposed framework will provide more practical, understandable results to decision makers.

Crown Copyright � 2011 Published by Elsevier B.V. All rights reserved.
1. Introduction

Business intelligence (BI) is the use of high-level software intel-
ligence to produce actionable information delivered at the right
time, and that is immediately accessible, easily comprehendible
and exportable to other software to assist the business decision-
making process [1]. Over the past few decades, advancements in
Internet, World Wide Web (WWW) and Artificial Intelligence (AI)
technologies have engendered a resurgence of interest in the use
of software intelligence for business applications. While the term
BI is relatively new, computer-based business intelligence systems
go back, in one form or another, for close to 40 years [2]. BI as a
term has been used interchangeably with decision support systems
(DSS), executive information systems, and management informa-
tion systems [3]. DSS are the core of BI and are defined as a broad
011 Published by Elsevier B.V. All

njua), farookh.hussain@cbs.-
category of interactive computer-based information systems for
informing and supporting decision makers and are intended to im-
prove and expedite processes by which people make and commu-
nicate decisions [2]. The advancements in Internet technologies
have enabled the development of new DSS architectures, from
stand-alone DSS to Group Decision Support Systems (GDSS), OLAP
and data warehouse technology in DSS [4].

Although DSS design and development has spanned over 40
years, DSS still suffer from many limitations. Firstly, they have
problems of poor maintainability, poor flexibility and less reusabil-
ity [5]. Secondly, most DSS applications [6] are not equipped with
inference capabilities; hence, much of the implicit information re-
mains undiscovered thereby resulting in sub-optimal business
decisions and business strategies. Thirdly, they are more focused
on data within an organization for extracting business intelligence
and ignore the fact that the underlying information which could be
used to derive business intelligence for formulating business strat-
egies could be present outside the organization’s boundaries, e.g.
suppliers’ business policies or information present in third party
portals such as Amazon.com [7].
rights reserved.

http://dx.doi.org/10.1016/j.knosys.2011.09.009
mailto:naeem.janjua@gmail.com
mailto:farookh.hussain@cbs.curtin.edu.au
mailto:farookh.hussain@cbs.curtin.edu.au
http://dx.doi.org/10.1016/j.knosys.2011.09.009
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

10 N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27
The advent and widespread adoption of the World Wide Web
has led to the development of Intelligent Web-DSS [8]. The
WWW technologies have the potential to reduce some of the lim-
itations of the DSS, making them flexible, maintainable and reus-
able [4]. As a result, the Web-based Decision Support Systems
(Web DSS) have become a new trend in DSS research, and organi-
zations are focusing on applying Web technologies to improve the
functionality of DSS applications [9]. One of the immediate benefits
of Web-DSS is the ability to publish and share the useful informa-
tion in a wide range of enterprise decision-making processes.

However, to remain competitive, companies rely on business
intelligence (BI) for the ongoing monitoring and analysis of the
operating environment in order to identify potential risks, and to
devise competitive business strategies [10]. Therefore, it has be-
come pivotal for organizations to make use of Intelligent DSS
(IDSS) for getting business insights. A critical step in this process
is modelling and representation of the business rules of organiza-
tions reflecting changes in business policies, procedures or other
constraints over a period of time to run their business activities.
Much research is being carried out on the design and development
of business rules-based Intelligent systems such as Web-DSS for
product recommendation, auctions, identification of requirements,
vendor selection, negotiation, agent communication and informa-
tion integration leading to great impact of IDSS on Web e-markets
[11–15]. However, like traditional DSS, these systems perform rea-
soning under certain assumptions such as:

1. The given problem can be fully addressed with available infor-
mation (solution to the problem lies within the available infor-
mation). In order to elucidate it, let us consider an example. An
organization wants to improve its product and they believe that
all the information it holds internally is sufficient to identify the
issues and improve the product’s quality. The organization
ignores any information present outside of its own boundaries.

2. The information or specification for business rules for decision
making is consistent. In other words, they assume that there
will be no conflicting rules during the decision-making process.

3. New information will be consistent with the already available
information or specifications.

4. New information does not lead to retraction of previous
conclusions.

Because of the limitations mentioned above, the existing IDSS
systems rely on analyzing a company’s internal data and do not
take into account a great deal of useful information present on
the Web outside of the organization’s boundaries for decision mak-
ing purposes. Especially with the emergence of Web 2.0, the large
number of customers generating information such as product re-
views can often provide useful information which will guide a
company to improve its products; thus, customer opinion becomes
a pivotal source of information for effective decision making pro-
cesses. Additionally, during business decision making, it would
be helpful to take into account the external operating business
environments (such as publically available policies of the prospec-
tive interacting party, etc.). Usually, the incorporation of polices
during the inference mechanism process might lead to conflicts
among the rules driving the inference mechanism.

The current generation of Web decision support systems is not
able to represent and reason over incomplete and inconsistent
information, irrespective of whether this information emerges
from within the organization or outside it [16]. It is important to
note here that when we refer to ‘information’ we mean the
following:

� the business polices or rules governing the inference mecha-
nism, and
� the data over which the inference mechanism is being applied.

There has been much discussion in the literature on the devel-
opment of Web-DSS systems that can handle conflicts among rules
by defining priorities at compile time [17–19]. However, such
Web-DSS systems suffer from two main limitations:

� They provide formalism to represent and handle only individual
preferences in the form of priorities among the conflicting rules.
However, DSS systems are subject to inconsistencies deriving
from multiple sources and multiple users; therefore, it is not
possible to define priorities in advance in order to resolve con-
flict among rules derived from multiple sources/users.
� The use of these priorities is usually embedded in the derivation

mechanism and competing rules are compared individually
during the derivation process. Therefore, the derivation notion
is bound to one single comparison criterion. In such scenario,
the explanation of the results is based on single criteria only
and fails to take into account the multiple factors important
for decision making.

In contrast, if we look at Artificial Intelligence research, the
challenge of incomplete and conflicting knowledge representation
and reasoning over it in software agents has been addressed using
logic-based argumentation formalisms, i.e. defeasible logic pro-
gramming (DeLP) [20]. Argumentation formalisms are defeasible
reasoning systems which work by considering the reasons that
lead to a given conclusion (claim) through a piece of reasoning
(the supporting arguments) and potential challenges (counter
arguments) for accepting the conclusion [21]. Argumentation plays
a pivotal role in identifying and organizing what can be justifiably
concluded, and presenting it systematically to human users or
merging it with the justified conclusions of other machines in
the absence of complete or accurate information.

As suggested by Carlsson and Turban [16] and Shim et al. [4],
there is the need to design and develop Intelligent Web-DSS in or-
der to transform incomplete information into useful knowledge
alongside qualitative insights. Therefore, the limitations of current
Web DSS, i.e. the capability to handle incomplete and conflicting
information, can be addressed by applying logic-based argumenta-
tion formalisms.

In order to address this critical shortcoming of the existing
Web-DSS systems, we propose Argumentation-enabled Web IDSS
(Web@IDSS) that exploits the power of logic-based argumentation
formalism for reasoning and representation of incomplete and con-
flicting knowledge. The system is based on a hybrid reasoning ap-
proach: forward chaining (data-driven) for the construction of
arguments, and backward chaining (goal-driven) for evaluation of
conclusions. For the forward chaining process, the Rete algorithm
is used to generate all possible arguments. Conflicts between argu-
ments are detected and resolved during the backward chaining
process.

From the BI perspective, such powerful Web-DSS systems
would be able to carry out reasoning on data across organizational
boundaries. This is a potential area of growth and research in Intel-
ligent Web-DSS as depicted in Fig. 1. This will enable organizations
to analyze the information present across the boundaries of the
organization for decision support, eventually adding to BI.

The rest of this paper is structured as follows: Section 2 presents a
review of literature, elaborating and focusing on logic based imple-
mentations of IDSS with their limitations. Section 3 describes a case
study related to reasoning over incomplete and inconsistent infor-
mation spanning across organizational boundaries. Section 4 dis-
cusses the argumentation and its current application in the area of
DSS. It also discusses the defeasible logic programming (DeLP) and
its limitations in the context of using it in enterprise for BI. Section

Fig. 1. Evolution towards Argumentation-enabled Web IDSS [extended from Lee
and Chung [22]].

N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27 11
5 describes the proposed conceptual framework. This is followed by
Section 6 which elaborates upon the argumentative engine in detail.
In this section we formally define the functionality of the argumen-
tative engine. Section 7 describes the translation of RuleML policies
and RDF/XML data to DeLP rules and facts respectively, followed by
Implementation and Prototype development in Section 8. Section 9
presents the conclusion and proposed future work.
2. Review of literature

Information is essential for any decision making process and
processing it manually is becoming increasingly difficult because
of the following trends [23]:

� Information technology and sophisticated analysis provided by
intelligent information analysis, promote accurate and reliable
decision making.
� There has been an explosion of data in recent years also termed

a tsunami of data which may traverse organizational bound-
aries and decisions need to be based on this huge corpus of data
[24,25].
� Rapid access to remote information such as information about

partners, experts, etc. is now possible.

The traditional DSS are inflexible in responding to dynamic sit-
uations and lack the ability to make judgments, unlike humans
who may be able to make decisions even in situations where infor-
mation may be deficient. Hence, we now have the special category
of systems known as decision support systems (DSS) which are
auxiliary systems in that they have not been developed to replace
the skilled decision makers, but rather, they assist in a wide range
of enterprise decision-making processes. DSS provide a framework
that allows decision makers to view alternatives and make good
decisions in a timely manner [26,27,2].

The importance of Web-based DSS in business applications has
been identified by a number of researchers over a period of time
[28–30]. According to Bhargava et al. [31], there are two ways in
which the DSS community adopted the internet and World Wide
Web: firstly as Web-based Decision support where the entire DSS
application is implemented using Web technologies; secondly, as
Web-enabled Decision support where the key parts of DSS like a
database remain on a legacy system, but the application can be ac-
cessed using a Web technology component and displayed in a
browser.

There is a plethora of research on DSS and IDSS. It is not within
the scope of this paper to review and analyze all the existing DSS
and IDSS. Hence, we restrict ourselves to logic-based IDSS. We clas-
sify logic-based IDSS into two broad categories, namely, ‘fuzzy
logic based IDSS’ and ‘Defeasible logic-based IDSS’.
2.1. Fuzzy logic based IDSS

A number of researchers use fuzzy logic-based quantitative ap-
proaches to group decision-making processes. Subsorn et al. [32]
proposed a Web-based group decision support system framework
to deal with imprecise decision-making problems. The framework
is based on a fuzzy analytic hierarchy process for group decision-
making. The framework enables group members to develop satis-
factory group solutions and allows group leaders to form the fi-
nal/acceptable, satisfactory group solutions. Ma et al. [33]
proposed ‘Decider’, a fuzzy multi-criteria group decision-making
(MCGDM) process model that aims to support preference-based
decisions over the available alternatives that are characterized by
multiple criteria in a group. The model can handle information ex-
pressed in linguistic terms, Boolean values, as well as numeric val-
ues to assess and rank a set of alternatives within a group of
decision makers. Noor-E-Alam et al. [34] also addressed the issue
of multi-criteria decision-making (MCDM) involving multiple ex-
perts and pointed out that the participation of many experts makes
the conflict aggregation process difficult. They developed a deci-
sion support system (DSS) based on types of fuzzy based conflict
aggregation algorithms, namely, a possibility measure and averag-
ing conflict aggregation. Yue [35] addressed the issue of multiple
attribute decision-making (MADM) and developed an algorithm
for determining weights of decision makers within a group deci-
sion environment, in which the information regarding each indi-
vidual decision is expressed by a matrix in interval numbers. He
also defined positive ideal and negative ideal solutions of group
opinion, the separation measures and the relative closeness from
the positive ideal solution. Cabrerizo et al. [36] used fuzzy logic
to address the issue of consensus building among experts when
information is incomplete. They developed a consensus model to
address the group decision-making problems with incomplete
unbalanced fuzzy linguistic information. The working of the model
is supported by consistency and consensus measures, and with the
help of a feedback mechanism, personalized advice is provided to
the experts for modifications to their unbalanced fuzzy linguistic
preference relations. Similarly, efforts are being made to represent
the results of the decision-making process to the end user in an
easily comprehendible form such as that of Li et al. [37] who pro-
posed a visualized information retrieval engine based on fuzzy
control.

The aforementioned fuzzy logic-based IDSS, being quantitative,
have been criticized for their inability to generate easy-to-under-
stand and logically clear results for justification purposes. These
approaches follow monotonic behavior whereby once a conclusion
has been drawn, it cannot be retracted. Additionally, they lack
inference reasoning capability over conflicting information; for
BI, we need such inference mechanisms.
2.2. Defeasible logic based Web IDSS

Nute [38] highlighted the importance of defeasible reasoning in
decision support systems and developed logic for defeasible rea-
soning by extending Prolog. The new logic is comprised of facts
and presumption, absolute rules and defeasible rules, and intro-
duced another kind of weak rule known as a ‘defeater’. Causey
[39] developed ‘EVID’; system for interactive defeasible reasoning
and Johnston and Governatori [40] developed an algorithm that
integrates defeasible logic into a decision support system by auto-
matically deriving its knowledge from databases of precedents.

12 N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27
Dr Prolog [17] is a prolog-based implementation for carrying
out defeasible reasoning on the Web. It provides declarative sys-
tem support rules, facts, ontologies, RuleML, and both monotonic
and non-monotonic rules. It takes into consideration both open
world and closed world assumptions and provides features for rea-
soning with inconsistencies. The system provides a number of vari-
ants such as ambiguity blocking, ambiguity propagation and
conflicting literals. Defeasible theories are imported in defeasible
logic or RuleML syntax and translated into logic programs with
the help of a logic translator. The reasoning engine compiles the lo-
gic programs and the meta-program which corresponds to the DL
version that the user selects (ambiguity blocking/ propagating),
and evaluates the answers to the user’s queries. They extended Ru-
leML DTDs to represent defeasible theories in XML format. Dr Bro-
kering [41] is a Dr-Prolog-based software agent implementation to
address the problem of brokering and matchmaking; i.e. how a re-
quester’s requirements and preferences can be matched against a
set of offerings collected by a broker.

Dr-Device [42,18] is a CLISP-based defeasible reasoning imple-
mentation provided with a VDR-Device reasoning system, RDF loa-
der/translator and rule loader/translator component. The VDR-
Device is an integrated development environment equipped with
a graphical front end used for deploying defeasible rules on top
of RDF schema ontologies. The rule base is initially submitted to
the rule loader which transforms the rules into CLISP-like syntax
through an XSLT stylesheet. The resulting program is forwarded
to the rule translator where defeasible logic rules are compiled into
a set of CLISP production rules. In parallel, the RDF downloader
downloads the RDF documents and translates them into CLISP ob-
jects according to the RDF-to-Object scheme. The reasoning system
performs inference on transited RDF metadata using defeasible
rules and generates the objects that constitute the result of the ini-
tial rule program. The RDF extractor exports the resulted objects in
the form of RDF/XML to the user. Dr-Device is implemented in Jess
and integrates well with RuleML and RDF. Compared to prolog, Dr-
Device supports only one variant: ambiguity blocking. At present,
it does not support OWL ontologies. In addition, Dr-Prolog uses lo-
gic programs with well-founded semantics, which is formally
equivalent to the formal model. In contrast, Dr-Device uses the lo-
gic meta-program as a guiding principle, but there is no formal
proof of the correctness of the implementation. On the other hand,
Dr-Device has the relative advantage of easier integration with
mainstream software technologies.

Sweetjess [19] is another defeasible reasoning system based
on Jess and closely resembles courteous logic programs. It inte-
grates well with RuleML but it can perform reasoning only in
DML + OIL ontologies and not on RDF data as does Dr-Device
and Dr-Prolog. However, it allows for procedural attachment
and it implements only one reasoning variant. Moreover, it im-
poses a number of restrictions on the programs so that it can
map on Jess.
Table 1
Comparison of defeasible logic based Web IDSS applications.

Dr-Prolog [17] D

Language Prolog JE
Logic Defeasible logic D
Semantic data RDFS/OWL R
Rules representation RuleML R
Incomplete knowledge representation Yes Y
Conflict representation Yes Y
Data-driven reasoning No Y
Goal-driven reasoning Yes N
Conflict resolution User defined priorities at compile time U
Explanation Textual T
AIF reification No N
Table 1 compares different defeasible logic-based implementa-
tions. It is evident that they provide either data-driven reasoning
or goal-driven reasoning. Data-driven is used to move from current
facts to conclusion, whereas goal-driven reasoning is backward
chain reasoning used to move from conclusion to the facts. In the
case of semantic Web-DSS, both types of reasoning are needed:
that is, data-driven reasoning to create a path from initial facts to
conclusion and goal-driven reasoning to identify reasons and justi-
fications for a particular conclusion. Another drawback is that they
define individual preference at compile time; i.e. the user decides
the priorities between the conflicting rules. Additionally, all of
them provide only textual explanation to the end user and the out-
put is not exportable in AIF format.

3. Case study

As depicted in Fig. 2, Mr. David is the marketing manager of
Organization A. He is responsible for formulating and suggesting
business strategies to increase the sale of the company’s products
and revenue (of the existing and new products) to the Chief Exec-
utive Officer of Organization A. Organization A intends to manufac-
ture a new product (say Product B). One of the important aspects
that Mr. David identifies is ‘‘the greater the discount that A receives
from the supplier, the cheaper would be the new product’’, and
negotiation plays an important part in securing the maximum dis-
count. Mr. David identifies that the materials for manufacturing
the product will be sourced from ‘N’ different suppliers, each of
whom offers varying discount levels. Mr. David would like to for-
mulate a strategy for manufacturing Product B by individually ana-
lyzing the business policies of each supplier against his company
requirements along with feedback about the raw materials sup-
plied by different companies. Finally, he would like to be able to
justify the formulated strategy to a higher authority such as the
CEO of Organization A.

As we can see from the above case study, an IDSS to accomplish
Mr. David’s business requirements would require an interface to
define his requirements in the form of business rules such as ‘Pur-
chase product from supplier only if product feedback is good’ and
certain facts or information to realize those rules. An example of
fact or information could be a type of feedback (washingMachine,
good) which means that the feedback for washing machine is good.
The IDSS should also provide an interface to download the suppli-
ers’ products information and suppliers’ public policies against the
possible discount on products and their shipment. Additionally,
IDSS should be able to download feedback or reviews against the
suppliers’ products from a third party forum like Amazon and take
that into consideration in the decision-making process. In situa-
tions where business policies may be incomplete or negotiation
with the providers is needed to resolve some conflicting interests
with the supplier, a system should be able to cater for these and
provide a means of resolving these conflicts, with justified
r-Device [42,18] Situated Courteous logic [19]

SS JESS
efeasible logic Situated Courteous logic
DF DAML + OIL
uleML RuleML
es Yes
es Yes
es Yes
o No
ser defined priorities at compile time User defined priorities at compile time
extual Textual
o No

Fig. 2. Web@IDSS reasoning over data across organization boundaries.

N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27 13
explanation, during the reasoning process. Finally, IDSS should be
able to export the result of the reasoning process to other software
for any further processing so that decisions can be communicated
to higher authorities effectively.

Here, we formalize David’s requirements as follows:

� A declarative language for specifications of business require-
ments of an organization.
� Language having the capability of representing incomplete and

conflicting information (i.e. business rules and data).
� A mechanism for sharing and reusing business rules over the

Web.
� An inference mechanism that can perform reasoning pertaining

to incomplete and conflicting information in the knowledge
base.
� Justifiable explanation of the reasoning results.
� Ability to export results to other software systems.

Assumption.

� Organization A, Supplier and Feedback forum share a common
vocabulary defined in RDF/XML format and the predicates
defined in the vocabulary are used for specification of business
rules and policies.
4. Argumentation

Argumentation is the study of effective reasoning in the way
that humans deal with conflicting information by taking into ac-
count arguments and counter-arguments relevant to a certain is-
sue. Argumentation is inherently a process rather than an instant
picture and the building blocks of argumentation are arguments
and the relationship between those arguments [43]. According to
Walton [44], an argument is a set of statements (propositions)
made up of three parts: a conclusion, a set of premises, and infer-
ence from premises to conclusion. Dung [45] proposed a very influ-
ential semantic foundation for an argumentative framework based
on the notion of acceptability of the arguments. He defined an
argumentation framework that emerged from logic programming,
as a pair AF = hAR,attacksiwhere AR is set of the arguments and
attack is the binary relation on AR i.e. attack # AR X AR, where
X represented attack relationship between arguments. Different at-
tempts have been made to extend Dung’s framework with the no-
tion of joint attacks [46], integration of meta-level argumentation
about preferences between arguments to add more semantics to
attack the relationship between arguments [47] and value-based
argumentation framework in order to quantify the strength of
arguments and discuss the possibility of persuasion in the face of
uncertainty and disagreement [48]. It also plays an important role
in agent-based applications [49], agents’ negotiations [50], belief
revision [51] and learning in virtual communities [52]. Similarly,
argumentation has been exploited in the development of different
systems such as OSCAR [53], IACAS [54] and critics and recom-
mender systems [55].

4.1. Argumentation based IDSS

Argumentation formalism has been used in the past by different
researchers in DSS for practical reasoning purposes. Morge [56]
proposed a DSS based on abductive reasoning which helps the
decision maker to select a business location after evaluating differ-
ent alternatives actions; it suggests some solutions and provides an
interactive and intelligible explanation of those choices. To further
develop DSS, Morge [56] used a logic language to represent knowl-
edge, goals and actions with quantitative priorities attached to
them to represent likelihood of knowledge, preferences between
goals and expected utilities of actions respectively. Similarly, Ches-
nevar et al. [55] identified that the current critic and recommender
systems are incapable of dealing with the defeasible nature of
information. They presented a novel approach to integrating DSS,
using critics and recommender systems with a defeasible argu-
mentation framework to enhance the practical reasoning capabili-
ties of such systems. Vasine [57] presented a confidence system for
solving real-world problems with argumentation semantics. He
designed and developed a system using a two-dimensional confi-
dence vector using argumentation system i.e. Calvin. Additionally,
attempts have been made to introduce ontologies in argumenta-
tive decision support systems [58,59].

Although argumentation formalism has been developed to
bring enhanced intelligence to DSS, it needs to be implemented
in e-business for BI. The applications discussed above exploit the
power of argumentation but they cannot adequately provide deci-
sion support for BI for the following reasons:

� No semantics are available for data-driven reasoning over
incomplete and inconsistent information.
� No tools are available that can provide logic-based applications

interoperability with Web technologies standards like RuleML
and RDF/XML, and generate graphical results in the form of rea-
soning chains which would give a more intuitive explanation of
results to the end user.

4.2. Defeasible logic programming (DeLP) and its limitations

DeLP uses the argumentation formalism for reasoning over con-
tradictory information by identifying conflicting information in the
knowledge base and applying the dialectical process to decide
which information prevails during the argumentative reasoning
process. Some of the existing formalisms on reasoning (using con-
flicting rules) define explicit priorities among rules and use these
priorities to decide between competing conclusions. The use of
these priorities is usually embedded in the derivation mechanism
and competing rules are compared individually during the deriva-
tion process. In such formalisms, the derivation notion, i.e. rules
execution pattern, is bound to one single comparison criterion.
With DeLP, in order to decide between competing conclusions,

14 N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27
the arguments that support the conclusions are compared. Thus,
the comparison criterion is independent of the derivation process,
and could be replaced in a modular way.

An interpreter of DeLP has been implemented in Prolog, and can
be used through the Web (see http://cs.uns.edu.ar/�ajg/DeLP.html).
Also, an abstract machine called JAM (Justification Abstract Ma-
chine) has been designed for the implementation of DeLP, as an
extension of the Warren’s Abstract Machine (wam). For more details
about DeLP, please refer to Garcia and Simari [20].

Although DeLP addresses the challenge of incomplete and con-
flicting knowledge representation and reasoning, it cannot be used
as such for the development of Web IDSS because of following lim-
itations [60]:

1. DeLP uses backward chaining or goal-driven reasoning only,
whereas most of the reasoning in DSS is primarily data-driven
or forward chain reasoning.

2. There is no tool available for translating RuleML format into
DeLP format.

3. There is no tool available that allows the business user to define
rules and perform argumentative reasoning over incomplete or
inconsistent information in the business domain.

4. There is no tool that provides proof explanation via graphical
representation of reasoning chains generated by an argumenta-
tive reasoner for traversal by end users.

5. Proposed conceptual framework

In this section, we elaborate on the proposed conceptual frame-
work for Web@IDSS for carrying out argumentative reasoning
about incomplete and inconsistent information spanning organiza-
tional boundaries. As mentioned previously, we use the term
‘information’ to refer to the:

� business polices or rules governing the inference mechanism;
and
� data to which the inference mechanism is being applied.

The proposed framework uses DeLP as knowledge representa-
tion and reasoning language with certain extensions to overcome
the limitations of DeLP defined in Section 4.2. Fig. 3 depicts the
proposed conceptual framework. The key components of our pro-
posed framework are as follows:

1. Data pre-processing and business rules translation
Business rules can be used to express computational or business
logic, policies, etc. in Web applications. Organizations are
increasingly publishing their public business polices in the form
of RuleML via the Web. This module provides the functionality
of parsing and translating business rules defined in RuleML
notation to DeLP rules and saves them in the knowledge base.
Similarly, the data in RDF/XML format is processed and trans-
formed into DeLP facts.

2. Working memory and knowledge base
A collection of facts is called a ‘working memory’ and a collec-
tion of rules is called a ‘knowledge base’. In the proposed frame-
work, the knowledge base comprises strict rules and defeasible
rules. The system provides an interface whereby the end user
can define and update DeLP facts and DeLP rules in the working
memory and knowledge base respectively. The end user is given
an interface with which to query the knowledge base.

3. Forward chain reasoning for arguments construction
In the proposed framework, we are extending the DeLP rule
engine with data-driven rules. We are using the Rete [61] based
algorithm without any conflict resolution strategy. The Rete
algorithm involves two steps. The first is the compilation of
rules in the form of a network called a Rete network. The second
step is the matching phase, in which the rule engine matches
the conditions of the rules in the knowledge base against the
DeLP facts in the working memory. For each match, a rule
instance is created and put into the Active rule set. Once the
matching phase is completed, instances of all the rules in Active
rule should be fired. Firing the rule instance will:
� add a new fact to the working memory, and
� add instance of rule to the active argument set.

The matching phase starts again and only the new inferred facts fil-
ter through the compiled rules network and result in the construc-
tion of an active rule set and the process continues. The process
will stop when no more rules match the new inferred facts. This
whole phase is known as ‘arguments construction’. A key issue to
be noted here is that such new inferred facts may conflict with
the existing knowledge base. The purpose is to retain conflicting
information instead of eliminating it, in order to obtain a better
insight when deciding on business strategies.
4. Conflict detection and resolution

Once the argument construction process is complete, the con-
flict detection, resolution and justified explanation phase is ini-
tiated. The process of argumentation starts when an argument
may be defeated by other arguments, since counter arguments
are also arguments which in turn may be defeated, and process
results in the construction of dialectical trees. This is an inter-
esting property of the argumentation approach which involves
dialectical proof procedures that are quite close to the process
used by humans to discuss an issue. This similarity with
human-style discussions gives argumentation an advantage
that can be useful in many contexts. As a result, the process
of dialectical analysis will lead to the establishment of dynamic
priorities between conflicting arguments. The last step of an
argumentation process is the construction of reasoning chains.

5. Export reasoning results
In Web@IDSS, we make use of Argument Interchange Format (AIF)
to export the output of the argumentation process (i.e. reasoning
chains), so that it can be shared with other argumentative systems
and even published over the Web. The Argument Interchange For-
mat (AIF) is the result of an international effort to develop a repre-
sentational mechanism for exchanging argument resources
between research groups, tools, and domains using a semantically
rich language [62]. This enables the output of Web@IDSS to be
merged with the justified conclusions of other machines. This
makes possible the sharing of results with other users or systems.

6. User interface
User interface is the graphical representation of reasoning
engine output for the end user. The user interface component
is responsible for representing the argumentation process and
justified conclusion to the user in the form of an inverted
tree-like structure, and the user is able to interact with and
query the results.
6. Argumentation engine

A rule-based Web DSS is an application of rule-based technolo-
gies on the Web that provides some form of artificial intelligence in
Web applications. It consists primarily of a set of inferential rules
about behavior, a collection of facts known as working memory
and a rule interpreter. The rules, also termed ‘productions’, are a
basic representation found to be useful in automated planning, ex-
pert systems and action selection. A production system provides
the mechanism necessary to execute productions in order to
achieve some goal for the system. Productions consist of two parts:
a rule body and a head. If a production’s rule body matches the cur-
rent state of the world, then the production is said to be fired and
new inferred facts are added to the working memory.

http://cs.uns.edu.ar/~ajg/DeLP.html
http://cs.uns.edu.ar/~ajg/DeLP.html

Fig. 3. Conceptual framework of Web@IDSS.

N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27 15
After a thorough review and analysis of the existing literature
[63,20,64,65], in the following section, we provide the formal argu-
mentative semantics for rule-based Web@IDSS.

6.1. Formal syntax and semantics

(Language). A language is a set U containing a set of predicates
P; a set of functions F , an infinite set of variables X , a finite set of
symbols S; and a set of labels L. Mathematically, we define lan-
guage as follows:
U ¼ fP;F ;X ;L;Sg: ð1Þ

The language supports two types of negation: strong negation,
represented by the symbol �2 S to represent contradictory knowl-
edge, and weak negation which represents negation as failure rep-
resented by the symbol not 2 S which is used to represent
incomplete information.

(Working memory). Considering a set P of predicates and an
infinite set of variable X , a fact is ground predicate f 2 P, or ne-
gated ground predicate � f 2 P. A set of facts represented by
WM is called a ‘working memory’. Mathematically, we define
working memory as follows:

WM¼ ff[� f jf ;� f are ground predicatesg; ð2Þ

where ground predicate is a predicate whose input arguments are
constant. The predicate p(a,b) and not p(a,b) are ground predicates.
Facts represent the current state of the world and these provide
some sort of evidence as a basis for activating rules of inference
to infer new facts. If there are no facts in the system, then no infer-
ence rules will be activated.

(Production rule). A production rule A is of the form: [rule
identifier] [rule body] [type of inference rule] [conclusion]. Mathe-
matically, we define a production rule as follows:

½A�r ‘ a; ð3Þ

where

� [rule identifier]: A 2 L is used as the identifier or name of the
production rule;
� [rule body]: r is a pattern in the body of a production rule A. A
pattern is a tuple of predicates i.e. r#P, and defined as
r = (Ci, . . . ,Cj) where 0 < i < j, Ci is a predicate in pattern;
� [conclusion]: a is a predicate whose instances could be intui-

tively considered to be added to the working memory when the
rule is fired during argument construction defined later on; and
� [type of inference]: ‘ indicates the inference that associates the

rule body with the conclusion.

The production rule represents a reasoning step for a from tuple
of predicates {C1, . . . ,Cn}. The language supports two types of infer-
ences in production rules. One is strict inference represented by
the symbol !2 S and the second is defeasible inference repre-
sented by the symbol 2 S. Strict inference is used to represent
information about which there is no ambiguity, whereas defeasible
inference is used to represent ambiguous or tentative information.
The strong negation is allowed at the conclusion of the rule,
whereas weak negation is allowed only in the body of the rule.

(Knowledge base). The set of production rules is known as the
knowledge base denoted by R. Mathematically, we define the
knowledge base as follows:

R ¼ fproduction ruleg ð4Þ

(Strict production rule). A production rule S 2 R is a strict pro-
duction rule of the following form if the rule is based on strict
inference
½S�r ! a: ð5Þ

The strict production rule S 2R is used to represent truthful
information which contains no ambiguity. Let us consider a rule
r1 which states that ‘‘if a person is innocent and has no crime his-
tory then he is not guilty’’ and rule r2 which states that ‘‘if someone
is not guilty, then he is free’’. These rules can be represented as
strict production rules thus:

[r1] innocent (X), hasCrimeHistory (X, no) ? � guilty (X) Illus-
tration (1)

[r2] not guilty (X) ? free (X) Illustration (2)

16 N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27
(Defeasible production rule). A production rule D 2 R is a
defeasible production rule of the form if the rule is based on defea-
sible inference.
½D�r a ð6Þ
The defeasible production rule D 2 R is used to represent tentative
information which may change in due course. Let us consider a rule
r3 that states: ‘‘assume that someone is innocent whenever it has
not been proven that he is guilty’’ and rule r4 that expresses: ‘‘gen-
erally, do not cross the railway tracks if it cannot be proven that no
train is coming’’. These rules can be represented as defeasible
production rules as follows:

[r3] not guilty (X) innocent(X) Illustration (3)
[r4] not � train_is_coming � cross_railway_tracks
(X) Illustration (4)

(Argumentative production system). Formally, we define an
argumentative production system as follows:

ðP ¼ ðWM;R;ArgsÞ: ð7Þ
� Where P 2 L is a label to identify the argumentative production
system.

� WM represents the initial collection of facts in the argumenta-

tive production system.

� R is the set of rules comprised of both strict and defeasible pro-
duction rules in the argumentative production system.
� Args is an active argument set which contains arguments gener-

ated during the argument construction phase (defined later on).
Prior to the argument construction phase, the Args is an empty set.

Consider the following argumentative production system of the
case study discussed in Section 3 by representing the formalism in
Illustrations 5, 6 and 7.

ESHOP ¼ ðWM;R;ArgsÞ ð8Þ

where
WM¼
shopperðdavidÞ; eShopðBigWÞ;productðwashingMachineÞ
havefeedbackðwashingMachine; feedbackÞ;
reviwedRateðfeedback; goodÞ; bulkOrderðdav id;washingMachi

8><
>:

R ¼

½s2�gstFreeðYÞ; giveDiscountðXÞ
! ordinaryDiscountðXÞ
½s1�not gstFreeðYÞ; giveDiscountðXÞ
! normalDiscountðXÞ
½d1�shopperðXÞ; purchaseðX;YÞ

giveDiscountðXÞ
½d2�shopperðXÞ;not advancePaymentðX;YÞ

� giveDiscountðXÞ
½d3�shopperðXÞ; purchaseðX;YÞ; bulkOrderðX;YÞ

giveDiscountðXÞ:
½d4�eShopðZÞ; packagingðY; ZÞ

gstFreeðYÞ:
½d5�eShopðZÞ;not packagingðY; ZÞ

� gstFreeðYÞ
½d7�shopperðXÞ;normalDiscountðXÞ

platinumDiscountðXÞ
½d8�shopperXÞ;normalDiscountðXÞ; slowToPayðXÞ

� platinumDiscountðXÞ
½d9�shopperðXÞ; productðYÞ; havefeedbackðY; ZÞ;

rev iwedRateðZ; goodÞ purchaseðX;YÞ

8>>><
>>>:

9>>>=
>>>;

Illustratio
Args ¼ fg Illustrationð7Þ

The defeasible production rule d9 is defined by Mr. David,
whereas the remaining rules are defined in supplier business po-
lices. However, the data or fact e.g. ‘bulkOrder’ is defined by Mr.
David, whereas the ‘havefeedback’, ‘reviewedRate’ are from a third
party reviewing site.

(Consistency). A set of rules is consistent if and only if, there are
no two rules with mutually contradictory predicates as their con-
clusion. Mathematically, we represent this as follows:

Rconsis ¼ f8r; s 2 Rjif r ‘ a then s0 � ag: ð9Þ

Given a program P in Eq. (7), the set of strict rules must be con-
sistent, whereas the set defeasible rules and P itself can be incon-
sistent. In the ESHOP argumentative production system, the set
{s1,s2} is consistent, whereas set {d1,d2} is inconsistent.

(Argument construction). We define argument construction as
a recursive process which involves interpretation of production
rules with function match ðWM;RÞ 2 F which looks for rules from
a knowledge base whose pattern matches the facts present inWM
and, on a successful match, executes the production rule which
then adds the rules conclusion, i.e. ground predicate, to the work-
ing memory. The argument construction process continues until all
the matched rules in the knowledge base have been processed.
This interpretation of a production rule is also known as ‘firing of
a rule’.

8r 2 R r 2 r;a 2 r; r R Argsjifmatchðr;WMÞ then WM0f
¼ WM[a0 and Args ¼ Args [r0g; ð10Þ

where a0 is the ground predicate and r0 is interpreted rule by func-
tion matchðWM;RÞ 2 F . The Args contains interpreted rules or fired
rules known as arguments defined later in the section. After the
argument construction process, we arrive at the following argu-
mentative production system:

ESHOP ¼ WM0;R;Argsð Þ; ð11Þ
neÞ

9>=
>;

Illustrationð5Þ

nð6Þ

N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27 17
where WM0 represents the new state of the working memory after
the addition of new inferred facts.

Let us consider the case study discussed in Section 3. After the
construction of arguments, the production system with updated
working memory and populated with the argumentation would
be as follows:
WM0 ¼

shopperðdavidÞ; eShopðBigWÞ;productðwashingMachineÞ
havefeedbackðwashingMachine; feedbackÞ;
rev iwedRateðfeedback; goodÞ; bulkOrderðdavid;washingMachineÞ
purchaseðdavid;washingMachineÞ;� gstFreeðwashingMachineÞ;
giveDiscountðdavidÞ;� giveDiscountðdavidÞ;
normalDiscountðdavidÞ; platinumDiscountðdavidÞ;

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

Illustrationð8Þ

R ¼ same� as� above� in� ilustration� 6f g Illustrationð9Þ

Args ¼

½d1�shopperðdav idÞ;purchaseðdav id;washingMachineÞ
giveDiscountðdav idÞ

½d2�shopperðdav idÞ;not advancePaymentðdav id;washingMachineÞ
� giveDiscountðdav idÞ

½d3�shopperðdav idÞ;purchaseðdav id;washingmachineÞ;
bulkOrderðdav id;washingMachineÞ

giveDiscountðdav idÞ:
½d5�eShopðBigWÞ;not packagingðBigW ;washingMachineÞ

� gstFreeðwashingMachineÞ
½s1�not gstFreeðwashingMachineÞ; giveDiscountðdav idÞ
! normalDiscountðdavidÞ
½d7�shopperðdav idÞ;normalDiscountðdav idÞ

platinumDiscountðdav idÞ
½d9�shopperðdav idÞ;productðwashingMachineÞ;
havefeedbackðwashingMachine; feedbackÞ;
reviewRateðfeedback; goodÞ purchaseðdav id;washingMachineÞ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

Illustrationð10Þ
The argument construction process may produce new facts in the
working memory which may contradict the already existing facts in
the memory. The objective is to retain the contradictory information
and use it in the reasoning process rather than eliminate it.

(Strict argument). A fired production rule in an active argu-
ment set with strict inference is called a ‘strict argument’. Mathe-
matically, we represent this as follows:

½S�b1; . . . ; bn ! a; ð12Þ

where

1. S 2 L is the label of the argument.

2. a is a ground predicate known as ‘claim of an argument’. Func-
tion claimðSÞ 2 F returns claim of a given argument S.

3. bi is a ground predicate known as the premise of an argument,
supporting the claim of an argument. Function premisesðSÞ
returns set of premise of argument S.

4. ? represents strict inference from the set of premises to the
claim.

In illustration 10, argument ‘s1’ is strict argument.
(Defeasible argument). A fired production rule in an active

argument set with defeasible inference is called a ‘defeasible argu-
ment’. Mathematically, we represent this as follows:

½D�b1; . . . ;bn a; ð13Þ

where
1. D 2 L is the label of an argument.

2. a is a ground predicate known as ‘claim of an argument’. Func-
tion claimðDÞ 2 F returns claim of a given argument D.

3. bi is a ground predicate known as the premise of an argument,
supporting the claim of an argument. Function premisesðDÞ
returns set of premise of argument D.
4. represents defeasible inference from the set of premises to

the claim.

In illustration 10, arguments d1, d2, d3, d5, d7 and d9 are defea-
sible arguments.

To avoid any fallacies in the argumentation process, we con-
sider the following restrictions on strict and defeasible argument
structure:

1. A premise in an argument cannot simultaneously be a conclu-
sion i.e. bi R a.

2. A negation of a claim cannot become the premise of a claim i.e.
bi – �a.

3. There is no redundancy of premise in a pattern. bi – bj where
1 < i, j < n.

(Counter-argument). An argument r counter-argues argument
s if and only if claim(r) is inconsistent with claim(s) or claim(r) is
inconsistent with the premises(s). Mathematically, we define coun-
ter-argument as:

ð8r; sfifð!ConsistentðclaimðsÞ; claimðrÞÞthen r } sg; ð14Þ

where } is used to represent the counter-argument relationship be-
tween two arguments.

If argument r counter-argues argument s such that claim(r) is
inconsistent with claim(s), it is called a ‘direct counter-argument’,
and if argument r counter-argues s such that claim(r) is
inconsistent with premises(s), then it is called an ‘indirect

Fig. 5. Marked dialectical tree.

Fig. 4. Dialectical tree for counterarguments.

18 N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27
counter-argument’. Mathematically, direct and indirect counter-
arguments are represented as follows:

8s; rfif !ConsistentðclaimðsÞ; claimðrÞÞthen s}directrg; ð15Þ
8s; rfif !ConsistentðclaimðsÞ;premisesðrÞÞthen s}indirectrg: ð16Þ

A strict rule cannot counter-argue another strict rule because of
the definition of consistency.

(Static defeat). Under certain conditions, an argument r defeats
its counter-argument s by establishing its preference over its coun-
ter-argument. Such defeat is known as a ‘static defeat’.

The conditions for static defeat are as follows:

� If a strict argument counter-argues a defeasible argument, strict
argument always defeats a defeasible argument. In other words,
strict argument has higher priority than defeasible argument.
Mathematically, we represent this as follows:

8d; s 2 Argsfif s;d are strict and defeasible argument respectively
js}directd then s > dg: ð17Þ
� If a defeasible argument directly counter-argues a strict argu-
ment, then the strict argument defeats the defeasible argument.

Mathematically, we represent this as follows:

8s; d 2 Argsfif s;dare strict and defeasible argument respectively
jd}directs then s > dg ð18Þ

(Dialectical tree. [20]) If an argument A counter-argues argu-
ment B, and no static defeat exists, then we construct a dialectical
tree for argument A to determine whether argument A defeats
argument B or vice versa.

Let A be an argument. A dialectical tree for argument A, is RðA,
h) where h is claim ðAÞ, is recursively defined as follows:

(1) A single node labeled with an argument ðA;hÞwith no coun-
ter-argument is by itself a dialectical tree for (A, h). This
node is also the root of the tree.
(2) Suppose that RðA;hÞ is an argument with counter-argu-
ments ðA1;h1Þ; ðA2;h2Þ; . . . ; ðAn;hnÞ, we construct the dialec-
tical tree for (A;hÞ, RðA, h) by labeling the root note with
ðA;hÞ and by making this node the parent of the root of dia-
lectical trees for ðA1;h1Þ; ðA2;h2Þ; . . . ; ðAn;hnÞ i.e.
RðA1;h1Þ;RðA2;h2Þ; . . . ;RðAn;hnÞ.

Taking into consideration illustration 10, where argument d1
counter-argues argument d2, in order to identify the result of the
counter-argument, we construct a dialectical tree for argument
d1 as shown in Fig. 4.

(Marking of dialectical tree [20]).

(1) Leaves of RðA; hÞ are U-nodes.
(2) Let ðB;qÞ be an inner node of RðA;hÞ. Then (B,q) will be a U-

node iff every child of ðB;qÞ is a D-node. The node ðB;qÞ will
be a D-node if it has at least one U-node as a child.

Considering the example from Section 3, the marked dialectical
tree is shown in Fig. 5 below. The status is represented as
RU(d1,giveDiscount (david)).

(Dynamic defeat). Let RUðA;hÞ be marked dialectical tree for
argument A and RDðB; �hÞ is marked dialectical tree for its coun-
ter-argument B, then argument A establishes its preference over
its counter-argument B known as dynamic defeat. The dynamic de-
feat results in establishment of preference of an argument over its
counter-argument and such preference is known as dynamic a pri-
ority. Mathematically, we define dynamic priority as follows:

8r; s 2 Args if r } s;RUðr; hÞ;RDðs;� hÞ thenf r > s: ð19Þ

If an argument A has undefeated dialectical tree, i.e. RUðA;hÞ
and it counter-argue an argument B which also have undefeated
dialectical tree, i.e. RUB;� hÞ, then neither argument A nor B can
establish its preference over the other, resulting in a blocking situ-
ation. Such arguments are considered as blocking arguments.

(Sub-argument). Given an active argument set Args, an argu-
ment s is a sub-argument of r if and only if claim (s) # premise(r)
and, if there exists say counter-argument g, then marked dialecti-
cal tree of an argument s is undefeated and marked dialectical tree
of is of argument g is defeated. Mathematically, the condition for a
sub-argument can be represented as follows:
Fig. 6. Mixed reasoning chain.

:

Fig. 7. Dependent reasoning chains k(J,j) and k(H,h).

N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27 19
8r; s; gfifðclaimðsÞ# premiseðrÞ and if ðs} gÞ then s > gÞthen snrg;
ð20Þ

where n used to represent the sub-argument relationship between
two arguments.

The sub-argument is a supporting argument and it must have
the following characteristics:

1. Argument s is consistent w.r.t argument r.
2. There is no premise(s) such that premise(s) # claim(r).

A sub-argument that provides support to another argument re-
sults in a chaining of arguments.

(Reasoning chain). An argumentA supported by a chain of sub-
arguments produces a reasoning chain kA ¼ A1; ;AnÞ for an
argument A. The claim of supported argument A; is called a ‘result’
of the reasoning chain and the chain of sub-arguments is called a
‘support’ for the result of the reasoning chain. Mathematically,
we define a reasoning chain as follows:
8r; s 2 Argsfif ðsnrÞ then kðr;jÞ ¼ kðr;;jÞ [s; ð21Þ
where n is used to represent sub-argument relationship and k(r,j) is
used to represent a reasoning chain with result j.

The reasoning chain should have the following characteristics:

1. The reasoning chain is consistent (i.e., there is no contradiction
in result and support for the result). Therefore, for example,
giveDiscount(david) and �giveDiscount(david) will not belong
to one reasoning chain, but each one of them can belong to dif-
ferent reasoning chains and those reasoning chains represent
alternative paths or choices.

2. There is no defeated argument in a reasoning chain.
3. Two blocking arguments cannot be in the same reasoning chain.

An argument can belong to two different reasoning chains. An
argumentation framework may be comprised of a number of rea-
soning chains.

(Strict reasoning chain). A reasoning chain is considered to be
strict if all the arguments in the reasoning chain are strict argu-
ments. Mathematically, a strict reasoning chain can be represented
as follows:

8r; s 2 kðr;jÞfr; s are strict argumentsg ð22Þ

This reasoning chain cannot be directly counter-argued by other
reasoning chains. However, this reasoning chain can counter-argue
and defeat the rest of the reasoning chains in an argumentative
production system.
(Defeasible reasoning chain). A reasoning chain is known as a
defeasible reasoning chain if all arguments in the reasoning chain
are defeasible arguments. Mathematically, defeasible reasoning
chains can be represented as follows:

8d; f 2 kðr;jÞfd; f are defeasible argumentsg: ð23Þ

This reasoning chain can counter-argue or can be counter-ar-
gued by other reasoning chains in an argumentative production
system. The defeasible arguments must be undefeated and consis-
tent within the defeasible reasoning chain.

(Mixed reasoning chain). A reasoning chain is called a mixed
reasoning chain if it has a least one defeasible and one strict argu-
ment. Mathematically, mixed reasoning chains can be represented
as follows:

8r; s 2 kðr;jÞ 9r that is a defeasible argument;f
9s that is a strict argumentg: ð24Þ

Fig. 6 depicts a mixed reasoning chain representation of illustra-
tion 10. The mixed reasoning chain also represents the negotiation
process within the argumentation framework.

(Dependent reasoning chains). a reasoning chain is dependent
upon other reasoning chains if there is at least one common sub-
argument. If the common argument is a strict argument, then a
reasoning chain is known as a strictly dependent reasoning chain;
if a weak argument, then weak dependent, and medium dependent
if common arguments are both strict and defeasible. Mathemati-
cally, this is represented as follows:

ifðkðJ;jÞ
\ kðH;hÞÞ – £ then kðJ;jÞ and kðH;hÞ are dependent reasoning chains

ð25Þ

Fig. 7 depicts a dependent reasoning chain with one common
argument, i.e. (s3,g). Similarly, all those chains excluding depen-
dent chains are known as independent reasoning chains.

(Query). A query ‘q’, consisting of a predicate, can be executed
on the argument set Args with help of the function
executeQueryðq;ArgsÞ 2 F to check the support for the predicate
in the argument set. There are four possible answers to a query,
as follows:

� If the answer is ‘yes’, then the result will be an undefeated dia-
lectical tree. Mathematically, it is presented as follows:
RUðA;hÞ ¼ executeQueryðq;ArgsÞ: ð26Þ
� If the answer is ‘no’, then the result will be a defeated dialectical
tree. Mathematically, it is presented as follows:
RDðA;hÞ ¼ executeQueryðq;ArgsÞ: ð27Þ
� If the answer is ‘undecided’, then the result will be a blocked
dialectical tree. Mathematically, it is presented as follows:
RBðA;hÞ ¼ executeQueryðq ArgsÞ: ð28Þ
� Unknown, if the predicate in the query is not in the language of
the program. Mathematically, it is presented as follows:
unknown ¼ executeQueryðq ArgsÞ: ð29Þ

20 N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27
6.2. Argumentative reasoning algorithm

In this section, we describe the working of our argumentative
reasoning algorithm. Algorithm 1 invokes Algorithms 2 and 3.
Algorithm 1 takes in DeLP rules and facts present in the knowledge
base. After initialization of Algorithm 1, a Rete network is built up
and facts are sieved through the Rete network which will result in
a set of rules matched with the working memory. On activation of
rules, new facts are added to the working memory. This process
continues until no more rules can be activated. Then the dialectical
trees are constructed for all arguments that have a counter-argu-
ment using Algorithm 2. The outcome of Algorithm 2 will be a dia-
lectical tree with a status of defeated, undefeated or blocked. The
last step is the build-up of reasoning chains which is carried out
by Algorithm 3. During this process, all the sub-arguments of an
argument with undefeated dialectical trees are linked together as
a reasoning chain. This process will continue until all the argu-
ments are linked up into reasoning chains. The top argument i.e.
conclusion, of the reasoning chain is called as a result of the rea-
soning chain, and the chain of sub-arguments supporting the top
argument are called to support the conclusion.
7. Extensions to defeasible logic programming (DeLP) for
Web@IDSS

Defeasible logic programming (DeLP) is a declarative language
based on non-monotonic logic and has been used in software
agents for providing goal-driven reasoning. It uses argumentation
semantics to resolve conflicts among rules. We identified DeLP lim-
itations (Section 4.2) in the context of Web-based IDSS. In this re-
search, we extend DeLP to make it interoperable or able to be used
for argumentative reasoning in Web@IDSS.
We made the following extensions to current DeLP:

1. We define semantics for data driven reasoning for DeLP
described in Section 6.

2. We extend goal driven reasoning semantics of DeLP described
in Section 6.

3. We make DeLP compatible with RuleML by providing transla-
tion of RuleML to DeLP rules.

4. We make DeLP compatible with RDF/XML by providing transla-
tion of RDF/XML to DeLP facts.

5. We also provide representation of reasoning output in Argu-
ment Interchange Format (AIF) to make it shareable among
argumentation-based tools.

Fig. 8. Transformation of business rules into different formats.

N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27 21
In following sections, we discuss extensions 2, 3 and 4 to DeLP
in detail.

7.1. Translation of business rules defined in RuleML to DeLP rules

RuleML already supports different rule types via the Implies ele-
ment and allows them to be named using the oid element. RuleML
syntax has been extended to express defeasible rules, defeaters,
and superiority relations [18,66]. A @ruletype attribute has been
added to the Implies element, allowing it to take one of three
values: strict rule, defeasible rule or defeater. Because strict rule
is implied when @ruletype is absent, when non-defeasible RuleML
rule sets are imported, the rules are correctly considered as strict.
Bassiliades et al. [18] used @superior attribute on the superior rule
as a link to the @ruleID label of the inferior rule. However, Pham
et al. [66] found this approach unsuitable and used a predicate,

Fig. 9. Translation of data in RDF/XML format to DeLP facts.

Fig. 10. Argument network representation in AIF.

22 N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27
i.e. Override, to explicitly represent the superiority relation among
the rules.

In Web@IDSS, the defeasible rules defined in RuleML notation
are translated to DeLP rules with the help of a Rule Translator mod-
ule. Firstly, the RuleML parser the defeasible rules into an interme-
diate format and forwards the parsed rules to the DeLP translator
to translate the defeasible rules to DeLP rules. The translator also
saves certain information about the rules such as file URL, number
of rules translated, owner/creator of rules, argument from expert,
etc., in a database for their profiling. After translation, the rules
are saved in a knowledge base. Fig. 8 represents the entire cycle
of business rule representation in natural language and then its
translation to RuleML format and ultimately into DeLP format.
7.2. Parsing of Web data defined in RDF/XML into DeLP facts

For execution of business rules defined in DeLP, we translate
RDF/XML data into DeLP facts.

1. RDF/XML data is transformed with the help of the SWI-Prolog
RDF Parser [67] into intermediate triple format i.e. rdf (Subject,
Predicate, Object).

2. The intermediate triple format is further processed to transform
the rdf statements into Predicate (Subject, Object)format.

3. The facts in Predicate (Subject, Object)format are then saved in
the knowledge base. The type attribute is further translated
using the following formula: type (X,C) ? C (X).

Fig. 11. Translation of business rules from RuleML to DeLP.

Fig. 12. Interface to define business rules and facts.

N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27 23

Fig. 13. Explanation of dynamic priority.

1 http://download.getabest.com/new/php-tree-graph-ext-222943.html.

24 N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27
Fig. 9 represents the translation of data from RDF/XML format
to DeLP facts.

7.3. Representation of a reasoning chain in AIF format

The Argument Interchange Format (AIF) is the result an interna-
tional effort to develop a representational mechanism for exchang-
ing argument resources between systems, research groups, tools,
and domains using a semantically rich language. The output of
the argumentative reasoner will be a justified conclusion based
upon existing facts. This information is very useful and exporting
this in AIF format will enable the system to merge it with the jus-
tified conclusions of other machines in the absence of complete or
accurate information.

The ReasoningChain k(J,j) in terms of AIF is defined as a graph
with a set of nodes (N X N) where X represents the binary rela-
tionships between nodes of the graph. The node N with only
incoming edges, represents the‘result’ of the graph. The remaining
nodes with either only outgoing edges or both incoming and out-
going edges, represents‘support’for the result. Fig. 10 represents
the mixed reasoning chain results in AIF compliant format.

8. Implementation and prototype development

This section provides the implementation details and working of
Web@IDSS to represent and reason over incomplete and conflicting
information spanning organizational boundaries. The development
of the prototype system is carried out on a machine having Apache
Web server version 2.2.11, PHP version 5.3.0, PHP Tree Graph Ext li-
brary1 with certain extensions to differentiate between fact and claim
of a rule, strict and defeasible inference, etc., MySql database version
5.1.36 and SWI-Prolog installed on it. After prototype development,
the Web application is deployed using the local server.

The system provides an interface allowing user to import the
public business rules or polices defined in RuleML format over
the Web. The user can download the RuleML files by entering the
file URL and name in the provided text fields and clicking the
‘download’ button as depicted in Fig. 11. Once the user has finished
downloading the files, he can then translate these into DeLP for-
mat. Fig. 11 depicts the interface where the user can select the files
by clicking the check-boxes and submitting the selected files for
translation by clicking the ‘Translate RuleML files to DeLP’ rules
button. Similarly, the systems interface allows the user to down-
load RDF/XML files and translate them to DeLP facts, prior to the
decision-making process.

Fig. 12 depicts an interface where a user can define his organi-
zational business rules and facts to be stored in the knowledge
base. The user can create a rule by assigning it a name, inference
type, set of premises and a conclusion. The user can also view
the list of rules created and can edit and delete them. The user
can define certain facts to be saved in working memory which will
be a source of rules activation.

http://download.getabest.com/new/php-tree-graph-ext-222943.html

Fig. 14. Querying the knowledge base.

N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27 25
Once the user has finished defining his rules and facts and
importing rules from other organizations, he proceeds to the next
step, i.e. argumentative reasoning by clicking the ‘Move to Next
Step’ button (shown in Fig. 12 above). Fig. 13 depicts the interface
where the user can select a filter such as ‘Mixed chain reasoning’
and click the ‘Perform Argumentative Reasoning’ button to trigger
the reasoning process.

Once the user clicks the ‘Perform Argumentative Reasoning’ but-
ton, the Web@IDSS takes into account all the rules present in the
knowledge base and the data in the working memory to start per-
forming argumentative reasoning and display the results to the user
as depicted in Fig. 13. The oval shaped nodes are used to represent
the facts and the rectangular nodes are used to represent the claim
of the rules. The dotted line arising from the nodes represents the
defeasible inference and the solid line represents strict inference.

If the reasoning chain contains some argument with justifica-
tion, the user can click on the node labeled ‘Explanation’. A pop-
up window will appear showing a dialectical tree providing justifi-
cation of dynamic priority as depicted in Fig. 13.

If the user wants to query the knowledge base, he can click on
the ‘Query Knowledge Base’ link provided on the Argumentative
Reasoning page and a pop-up window will appear where the user
can enter the query. By clicking the ‘submit’ button, the Web@IDSS
generates the dialectical tree against the query and displays it to
the user as shown in Fig. 14.

9. Conclusion and future work

Advancements in Internet, WWW and AI technologies have pro-
vided tools and technologies which can be used by information system
researchers to address the limitations of current DSS applications. The
development of Web-based DSS is a big step forward in this regard.
However, Web DSS are still subject to inherent limitations in that they
still cannot handle incomplete and conflicting information.
In this paper, we determined that a major shortcoming of the
existing IDSS applications is their inability to represent and han-
dle incomplete and conflicting information spanning organiza-
tional boundaries. This is particularly important for
organizations which take into consideration the data available
on the Web for timely and accurate decision-making support.
We identify that the argumentation is a pivotal methodology
used by humans to overcome conflicts among participants
belonging to diverse groups with diverse interests. Hence, we
have proposed a conceptual framework for ‘Argumentation En-
abled Web IDSS’ and described its working in detail. We have
also defined formal argumentation semantics for the system. Fi-
nally, we discuss the implementation and prototype develop-
ment with the help of screen shots of the Web@IDSS
application. The major contributions of this paper is that it pro-
poses Web@IDSS with the following research advances over
other IDSS systems:

1. Formalization of data-driven and goal-driven reasoning process.
2. Proposal of a mechanism for reasoning over incomplete and

conflicting information in the context of IDSS.
3. Web@IDSS can take into account both the internal as well as

external data of an organization in the decision-making process.
4. Proof explanation of the reasoning results generated by our pro-

posed Web@IDSS.
5. Representation of reasoning results in AIF format to make the out-

put of Web@IDSS shareable and compatible with other systems.

Regarding future tasks, we will be working on the development
of the following:

1. Integration of different reasoning chains, computed by different
Web@IDSS, into consolidated argumentation framework with
help of the Argumentation schemes [68].

26 N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27
2. Interactive graphical output visualizer so that non-technical
users can interact with the reasoning chain to drill up and down
the reasoning chains for better understanding of results.

3. Advanced query interface to handle different types of queries in
Web@IDSS such as ‘‘Why’’ will lead to construction of justifica-
tion, ‘‘What if’’ queries define addition facts and their impact
and ‘‘How’’ queries will determine what should be done in order
to achieve that objective.

4. Benchmarking Web@IDSS with other similar contemporary
enterprise DSS.
Acknowledgement

We would like to express our appreciation to Dr. Alejandro J.
Garcia and Mr. Sebastian Gottifredi from the ‘‘Artificial Intelligence
Research and Development Laboratory (LIDIA)’’, Argentina, for pro-
viding DeLP Server v 0.5.0 for our research. We would also like to
express our gratitude to the anonymous reviewers of our manu-
script for their valuable suggestions to improve this article.

References

[1] S. Negash, P. Gray, Business intelligence, in: Americas Conference on
Information Systems, 2003.

[2] D.J. Power, R. Sharda, Decision support systems, in: S.Y. Nof (Ed.), Springer
Handbook of Automation, Springer, Berlin, Heidelberg, 2009, pp. 1539–1548.
ISBN: 978-3-540-78831-7.

[3] E. Thomsen, BI’s promised land, Intelligent Enterprise 6 (5) (2003) 20–25.
[4] J.P. Shim, M. Warkentin, J.F. Courtney, D.J. Power, R. Sharda, C. Carlsson, Past,

present, and future of decision support technology, Decision Support Systems
33 (2) (2002) 111–126.

[5] Y. Xie, H. Wang, J. Efstathiou, A research framework for Web-based open
decision support systems, Knowledge-Based Systems 18 (7) (2005) 309–319.
ISSN 0950-7051.

[6] S. Eom, E. Kim, A survey of decision support system applications (1995–2001),
Journal of the Operational Research Society 57 (2005) 1264–1278.

[7] K. Xu, S.S. Liao, J. Li, Y. Song, Mining comparative opinions from customer
reviews for competitive intelligence, Decision Support Systems, in press,
Corrected Proof, ISSN: 0167-9236.

[8] Y. Yao, N. Zhong, J. Liu, S. Ohsuga, Web intelligence (WI) research challenges
and trends in the new information age, in: Web Intelligence: Research and
Development, Lecture Notes in Computer Science, vol. 2198, Springer, Berlin,
Heidelberg, 2001, pp. 1–17.

[9] J. Yao, Web-based Support Systems, first ed., Springer Publishing Company,
Incorporated, 2010.

[10] W. Chung, H. Chen, E. Reid, Business stakeholder analyzer: an experiment of
classifying stakeholders on the Web, Journal of the American Society for
Information Science and Technology 60 (1) (2009) 59–74.

[11] H. Deng, S. Wibowo, A rule-based decision support system for evaluating and
selecting IS projects, in: Proceedings of the International MultiConference of
Engineers and Computer Scientists, Hong Kong, 2008.

[12] K. Cheung, M.-P. Cheong, Intelligent on-line decision support tools for market
operators, in: International Conference on Intelligent Systems Applications to
Power Systems, 2007, pp. 1 –6.

[13] J.P. Shim, M. Warkentin, J.F. Courtney, D.J. Power, R. Sharda, C. Carlsson, Past,
present, and future of decision support technology, Decision Support Systems
33 (2) (2002) 111–126. ISSN 0167-9236.

[14] F.V. Assche, P. Layzell, P. Loucopoulos, G. Speltincx, Information systems
development: a rule-based approach, Knowledge-Based Systems 1 (4) (1988)
227–234.

[15] W. Wen, Y. Chen, I. Chen, A knowledge-based decision support system for
measuring enterprise performance, Knowledge-Based Systems 21 (2) (2008)
148–163.

[16] C. Carlsson, E. Turban, DSS: directions for the next decade, Decision Support
Systems 33 (2) (2002) 105–110.

[17] G. Antoniou, A. Bikakis, DR-Prolog: a system for defeasible reasoning with
rules and ontologies on the semantic Web, IEEE Transactions on Knowledge
and Data Engineering 19 (2) (2007) 233.

[18] N. Bassiliades, G. Antoniou, I. Vlahavas, DR-DEVICE: A defeasible logic system
for the semantic Web, Principles and Practice of Semantic Web Reasoning
(2004) 134–148.

[19] B.N. Grosof, M.D. Gandhe, T.W. Finin, SweetJess: translating DAMLRuleML to
JESS, in: Proceedings of the International Workshop on Rule Markup
Languages for Business Rules on the Semantic Web, 2002.

[20] A.J. Garcia, G.R. Simari, Defeasible logic programming: an argumentative
approach, Theory and Practice of Logic Programming 4 (1+2) (2004) 95–138.

[21] J. Dix, S. Parsons, H. Prakken, G. Simari, Research challenges for argumentation,
Computer Science – Research and Development 23 (1) (2009) 8.

[22] K.C. Lee, N. Chung, A web DSS approach to building an intelligent internet
shopping mall by integrating virtual reality and avatar, Expert Systems with
Applications 28 (2) (2005) 333–346. ISSN 0957-4174.
[23] E. Turban, E. McLean, J. Wetherbe, Information Technology for Strategic
Advantage, John Wiley & Sons, Inc., 2001.

[24] M. Brodie, The end of the computing era: Hephaestus meets the olympians, in:
Second IEEE International Conference on Digital Ecosystems and Technologies,
2008.

[25] M. Brodie, Understanding our digital universe: Unleashing natural forces, in:
Second IEEE International Conference on Digital Ecosystems and Technologies,
2008. DEST 2008, 2009.

[26] D. Power, DSS Case Summaries, URL <http://dssresources.com/cases/
DSScatalog.html>, Last visited (1/20/2011).

[27] D.J. Power, Decision Support Systems: Concepts and Resources for Managers,
Greenwood Publishing Group, 2002.

[28] R. Vahidov, G.E. Kersten, Decision station: situating decision support systems,
Decision Support Systems 38 (2) (2004) 283–303.

[29] B.G. Silverman, M. Bachann, K. Al-Akharas, Implications of buyer decision
theory for design of e-commerce websites, International Journal of Human–
Computer Studies 55 (5) (2001) 815–844.

[30] F. Toni, E-Business in ArguGRID, in: D. Veit, J. Altmann (Eds.), Grid Economics
and Business Models, Lecture Notes in Computer Science, vol. 4685, Springer,
Berlin, Heidelberg, 2007, pp. 164–169.

[31] H.K. Bhargava, D.J. Power, D. Sun, Progress in Web-based decision support
technologies, Decision Support Systems 43(4) (2007) 1083–1095, special Issue
Clusters.

[32] P. Subsorn, J. Xiao, K. Singh, A web-based application of group decision making
in a fuzzy environment, in: 5th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information
Technology, vol. 1, 2008, pp. 17–20.

[33] J. Ma, J. Lu, G. Zhang, Decider: A fuzzy multi-criteria group decision support
system, Knowledge-Based Systems 23 (1)(2010) 23 – 31, special Issue on
Intelligent Decision Support and Warning Systems.

[34] M. Noor-E-Alam, T.F. Lipi, M.A.A. Hasin, A. Ullah, Algorithms for fuzzy multi-
expert multi-criteria decision making (ME-MCDM), Knowledge-Based Systems
24 (3) (2011) 367–377.

[35] Z. Yue, An extended TOPSIS for determining weights of decision makers with
interval numbers, Knowledge-Based Systems 24 (1) (2011) 146–153.

[36] F. Cabrerizo, I. PTrez, E. Herrera-Viedma, Managing the consensus in group
decision making in an unbalanced fuzzy linguistic context with incomplete
information, Knowledge-Based Systems 23 (2) (2010) 169–181.

[37] T. Li, S. Feng, L.X. Li, Information visualization for intelligent decision support
systems, Knowledge-Based Systems 14 (5-6) (2001) 259–262.

[38] D. Nute, Defeasible reasoning and decision support systems, Decision Support
Systems 4 (1) (1988) 97–110.

[39] R.L. Causey, EVID: a system for interactive defeasible reasoning, Decision
Support Systems 11 (2) (1994) 103–131.

[40] B. Johnston, G. Governatori, Induction of defeasible logic theories in the
legal domain, in: Proceedings of the 9th International Conference on
Artificial Intelligence and Law, ICAIL ’03, ACM, New York, NY, USA, 2003,
pp. 204–213.

[41] G. Antoniou, T. Skylogiannis, A. Bikakis, M. Doerr, N. Bassiliades, DR-Brokering:
a semantic brokering system, Knowledge-Based Systems 20 (1) (2007) 61–72.

[42] E. Kontopoulos, N. Bassiliades, G. Antoniou, Visualizing Semantic Web proofs
of defeasible logic in the DR-DEVICE system, Knowledge-Based Systems 24 (3)
(2011) 406–419.

[43] P. Baroni, D. Fogli, G. Guida, Modeling argumentation in practical reasoning: a
conceptual analysis of argument life cycle, in: 7th International Conference on
Information Processing and Management of Uncertainty in Knowledge-Based
Systems, Paris, 1998, pp. 1790–1797.

[44] D. Walton, Argumentation in Artificial Intelligence, Springer, 2009. chap.
Argumentation Theory: A very short introduction, pp. 1–24.

[45] P.M. Dung, On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games, Artificial
Intelligence 77 (2) (1995) 321. ISSN 0004-3702.

[46] S.H. Nielsen, S. Parsons, A generalization of Dungs abstract framework for
argumentation: Arguing with sets of attacking arguments, Lecture Notes in
Computer Science, vol. 4766/2007, Springer, Berlin, Heidelberg, 2007.

[47] S. Modgil, Reasoning about preferences in argumentation frameworks,
Artificial Intelligence 173 (9–10) (2009) 901. ISSN 0004-3702.

[48] T.J.M. Bench-Capon, Persuasion in practical argument using value-based
argumentation frameworks, Journal of Logic and Computation 13 (3) (2003)
429. ISSN 0955-792X.

[49] J. Bentahar, R. Alam, Z. Maamar, N.C. Narendra, Using argumentation to model
and deploy agent-based applications, Knowledge-Based Systems, in press,
ISSN 0950-7051.

[50] I. Rahwan, S.D. Ramchurn, N.R. Jennings, P. McBurney, S. Parsons, L. Sonenberg,
Argumentation-based negotiation, The Knowledge Engineering Review 18 (04)
(2004) 343, (ISSN 0269-8889).

[51] I. Rahwan, Guest editorial: argumentation in multi-agent systems,
Autonomous Agents and Multi-agent Systems 11 (2) (2005) 115. ISSN 1387-
2532.

[52] G.S. Mahalakshmi, T.V. Geetha, Argument-based learning communities,
Knowledge-Based Systems 22 (4) (2009) 316–323. ISSN 0950-7051.

[53] J.L. Pollock, Rational cognition in OSCAR, Lecture Notes in Computer Science,
vol. 1757/2000, Springer, Berlin, Heidelberg, 2000.

[54] G. Vreeswijk, IACAS: an implementation of Chisholm’s principles of
knowledge, in: In The Proceedings of the 2nd Dutch/German Workshop on
Nonmonotonic Reasoning, Utrecht., 1995, pp. 225–234.

http://dssresources.com/cases/DSScatalog.html
http://dssresources.com/cases/DSScatalog.html

N.K. Janjua, F.K. Hussain / Knowledge-Based Systems 32 (2012) 9–27 27
[55] C.I. Chesnevar, A.G. Maguitman, G.R. Simari, Argument-based critics and
recommenders: a qualitative perspective on user support systems, Data and
Knowledge Engineering 59 (2) (2006) 293. ISSN 0169-023X.

[56] M. Morge, The hedgehog and the fox: an argumentation-based decision
support system, in: Proceedings of the 4th International Conference on
Argumentation in Multi-agent Systems, ArgMAS’07, Springer-Verlag, Berlin,
Heidelberg, 2008, pp. 114–131. ISBN 3-540-78914-6, 978-3-540-78914-7.

[57] L.R.D. Vesine, A Confidence System for Solving Real- World Problems with
Argumentation, International Journal of Artificial Intelligence 4 (2010) 78–89.

[58] M. Williams, A. Hunter, Harnessing ontologies for argument-based decision-
making in breast cancer, in: 19th IEEE International Conference on Tools with
Artificial Intelligence, 2007, vol. 2, ISSN 1082-3409, pp. 254 –261, doi:10.1109/
ICTAI.2007.110, 2007.

[59] S. Alejandro Gomez, C. Ivan Chesnevar, G.R. Simari, Reasoning with
inconsistent ontologies through argumentation, Applied Artificial
Intelligence 24 (1–2) (2010) 102–148. ISSN 0883-9514.

[60] N.K. Janjua, F.K. Hussain, Development of a logic layer in the semantic Web:
Research issues, Semantics, Knowledge and Grid, International Conference
(2010) 367–370.

[61] C.L. Forgy, Rete: A fast algorithm for the many pattern/many object pattern
match problem, Artificial Intelligence 19 (1) (1982) 17–37. ISSN 0004-3702.
[62] I. Rahwan, F. Zablitha, C. Reed, Laying the foundations for a world wide
argument web, Artificial Intelligence 171 (10–15) (2007) 897. ISSN 0004-3702.

[63] H. Cirstea, C. Kirchner, M. Moossen, P.-E. Moreau, Production Systems and Rete
Algorithm Formalisation, Tech. Rep., ILOG, INRIA Lorraine, INRIA
Rocquencourt. URL <http://hal.inria.fr/docs/00/28/09/38/PDF/
rete.formalisation.pdf>, 2004.

[64] G.A.W. Vreeswijk, Abstract argumentation systems, Artificial Intelligence 90
(1–2) (1997) 225–279. ISSN 0004-370.

[65] N.D. Rotstein, M.O. Moguillansky, A.J. Garcia, G.R. Simari, A dynamic
argumentation framework, in: P. Baroni, F. Cerutti, M. Giacomin, G.R. Simari
(Eds.), Frontiers in Artificial Intelligence and Applications, Computational
Models of Argument – Proceedings of Comma 2010, vol. 216, IOS Press, 2010.

[66] D. Pham, G. Governatori, S. Raboczi, A. Newman, S. Thakur, On extending
RuleML for modal defeasible logic, rule representation, Interchange and
Reasoning on the Web (2008) 89–103.

[67] J. Wielemaker, SWI-Prolog RDF parser, URL <http://www.swi-prolog.org/
pldoc/package/rdf2pl.html>, Last accessed May, 2011.

[68] I. Rahwan, C. Reed, F. Zablith, On building argumentation schemes using the
argument interchange format, in: Proceedings of the IJCAI Workshop on
Computational Models of Natural Argument (CMNA), 2007.

http://dx.doi.org/10.1109/ICTAI.2007.110
http://dx.doi.org/10.1109/ICTAI.2007.110
http://hal.inria.fr/docs/00/28/09/38/PDF/rete.formalisation.pdf
http://hal.inria.fr/docs/00/28/09/38/PDF/rete.formalisation.pdf
http://www.swi-prolog.org/pldoc/package/rdf2pl.html
http://www.swi-prolog.org/pldoc/package/rdf2pl.html

Inf Syst Front
DOI 10.1007/s10796-012-9365-x

Semantic information and knowledge integration
through argumentative reasoning to support
intelligent decision making

Naeem Khalid Janjua · Farookh Khadeer Hussain ·
Omar Khadeer Hussain

© Springer Science+Business Media, LLC 2012

Abstract The availability of integrated, high quality in-
formation is a pre-requisite for a decision support
system (DSS) to aid in the decision-making process.
The introduction of semantic web ensures the seam-
less integration of information derived from diverse
sources and transforms the DSS to an adoptable and
flexible Semantic Web-DSS (Web-DSS). However, due
to the monotonic nature of the layered development
of semantic web, it lacks the capability to represent,
reason and integrate incomplete and conflicting infor-
mation. This, in turn, renders an enterprise incapable
of knowledge integration; that is, integration of infor-
mation about a subject that could potentially be incom-
plete, inconsistent and distributed among different
Web-DSS within or across enterprises. In this article,
we address the issues of incomplete and inconsistent
semantic information and knowledge integration by
using argumentation and argumentation schemes. We
discuss the Argumentation-enabled Information Inte-
gration Web-DSS (Web@IDSS) along with its syntax

N. K. Janjua · O. K. Hussain
School of Information Systems, Curtin Business School,
Curtin University, Perth, WA, Australia

N. K. Janjua
e-mail: naeem.janjua@gmail.com

O. K. Hussain
e-mail: o.hussain@cbs.curtin.edu.au

F. K. Hussain (B)
Decision Support and e-Service Intelligence (DeSI) Lab,
Quantum Computation and Intelligent Systems (QCIS),
School of Software, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo,
NSW 2007, Australia
e-mail: Farookh.Hussain@uts.edu.au

and semantics for semantic information integration,
and devise a methodology for sharing the results of
Web@IDSS in Argument Interchange Format (AIF)
format. We also discuss Argumentation-enabled
Knowledge Integration Web-DSS (Web@KIDSS) for
semantic knowledge integration. We provide formal
syntax and semantics for the Web@KIDSS, propose
a conceptual framework, and describe it in detail. We
present the algorithms for knowledge integration and
the prototype application for validation of results.

Keywords Semantic web · Information integration ·
Argumentation · Argumentation schemes ·
Web based DSS

1 Introduction

Decision support systems (DSS) are a broad category
of interactive computer-based information systems de-
signed and developed over the last forty years for
a wide range of domains with the objective of con-
structing the reasons with which a decision maker will
convince himself and other actors involved in the
decision-making process (Power 2002; Power and
Sharda 2009; Shim et al. 2002). If we examine the re-
search conducted over the past few years, the synergies
among technologies of the Internet, World Wide Web
(WWW) and Artificial Intelligence (AI) have enabled
the single user-focused DSS to evolve into an intelligent
and complex Web-based DSS (Web-DSS) (March and
Hevner 2007). The current Web-DSS are compatible
with new technologies for business intelligence and
provide a more transparent interaction between sys-
tem and decision maker to improve the efficiency and

Inf Syst Front

effectiveness of intelligent decision making (Liu et al.
2010).

With the current proliferation and widespread adop-
tion of e-business, manufacturing and business are
extending beyond enterprise boundaries (Norta and
Eshuis 2010; Alaranta and Henningsson 2008). More-
over, enterprises are involved in collaboration and
mergers with other enterprises on a global scale. This
has created a demand for Intelligent Information Inte-
gration (III) to integrate, on demand, information from
heterogeneous data sources, applications and environ-
ments, in order to facilitate inter-operation and collabo-
ration, and provide intelligent decision support through
Web-DSS, leading to a more efficient decision-making
process at enterprise level (March and Hevner 2007;
Seng and Kong 2009; Osei-Bryson and Ngwenyama
2008). It is important to note here that when we refer
to ‘information’ we mean the following:

– the business polices or rules governing the infer-
ence mechanism, and

– the data to which the inference mechanism is being
applied.

The semantic web, an extension of the current World
Wide Web (WWW), is a step towards addressing the
aforementioned challenge, i.e. Intelligent Information
Integration (III), pertinent to Web-based DSS. The
semantic web is seeking a universal medium for data
exchange, i.e. classifying, packaging and semantically
enriching information for support of data automa-
tion, integration, and reuse across various applications
(Suguri et al. 2008; Torroni et al. 2009). The core of
the semantic web, i.e. ontologies, meta-data and rela-
tions for performing inference with rules, is a source
of seamless information integration of heterogeneous
information sources. However, the initially proposed
single stack architecture (SSA) of semantic web by Tim
Berners-Lee assumed that the semantic web stack is
composed of a main language and every new develop-
ment should be built on top of existing layers (Berners-
Lee 2000; Lee 2003). In response to criticisms that this
proposal is unrealistic and unsustainable, Berners-Lee
then proposed an alternative multi-stack architecture
(MSA) to overcome the limitation of SSA (Lee 2005,
2006). Although the MSA is more realistic in the long
run, it provides a basis for only monotonic logic-based
knowledge representation and reasoning; it does not
provide a basis for representing, reasoning and inte-
grating incomplete and/or contradictory information.
In monotonic logic, once a conclusion has been drawn
using currently available information, the availability of
new information may negate or invalidate existing in-
formation. This is a significant problem with monotonic

logics and requires re-examination of the entire rea-
soning cycles when new information, especially that
which contradicts existing knowledge, is added to the
knowledge base (Hurt 1998). Hence, the current gen-
eration of Web-DSS is not able to represent, reason
and integrate incomplete and inconsistent information,
irrespective of whether this information emerges from
within the organization or outside it (Antoniou et al.
2004; Carlsson and Turban 2002). There has been
much discussion in the literature on the development
of defeasible or non-monotonic logic based Web-DSS
systems that can integrate incomplete and conflicting
information through reasoning and defining priorities
among conflicting rules at compile time (Antoniou and
Bikakis 2007; Bassiliades et al. 2004; Grosof et al. 2002).
Reasoning is called ‘defeasible’ or ‘non-monotonic’ if a
rule that supports a conclusion can be defeated by new
information. However, such Web-DSS systems have
two main limitations:

– They provide a formalism to represent and handle
only individual preferences in the form of priorities
in order to handle incomplete and conflicting infor-
mation. However, Web-DSS are subject to incon-
sistencies deriving from multiple data/information
sources and multiple users; therefore, it is not pos-
sible to define priorities in advance in order to
resolve conflicts among business rules derived from
multiple sources/users.

– The use of these priorities is usually embedded
in the derivation mechanism and competing rules
are compared individually during the derivation
process. Therefore, the derivation notion is bound
to one single comparison criterion. In such a sce-
nario, the explanation of the results is based on a
single criterion only and fails to take into account
the multiple factors important for decision-making.

To overcome the limitations of current Web-DSS,
we propose and develop a framework for semantic in-
formation and knowledge integration at the enterprise
level for intelligent decision support. Figure 1 depicts
a layered architecture for Intelligent Information Inte-
gration (III) spanning the enterprise. It starts with the
semantic information integration phase followed by the
semantic knowledge integration phase. Let us discuss
each phase of III along with the contributions of this
article.

1. Semantic Information Integration (SII)
We define SII as the integration of semantic infor-
mation elicited in the form of business rules and
data, residing in different Web-based decision sup-
port systems. Our previous work focused on the de-

Inf Syst Front

Fig. 1 Layered-view
architecture for intelligent
information integration (III)

sign and development of an argumentation-enabled
intelligent decision support system (Web@IDSS)
capable of providing decision support by integrat-
ing semantic information which potentially could
be incomplete and inconsistent. Sections 4 and 5
provide detailed information about Argumentation
and Web@IDSS respectively.
In this article, we extend the functionality of
Web@IDSS with AIF reification in order to share
the results of Web@IDSS over the enterprise in-
tranet using Argument Interchange Format (AIF)
ontology.

2. Semantic Knowledge Integration(SKI)
We define SKI as the integration of decisions or
results about a subject that are potentially in-
complete, inconsistent and distributed amongst
different Web-DSS. To integrate the results of
different Web-DSS published over the web or en-
terprise intranet in AIF compliant format, we pro-
pose and demonstrate extensions to Web@IDSS to
address the issue of knowledge integration at enter-
prise level with the help of argumentation schemes
known as Web-based Intelligent Knowledge Inte-
gration DSS (Web@KIDSS). The contributions of
this paper to the existing literature body in terms of
SKI are as follows:

(a) We propose and demonstrate the integration
of different AIF-compatible reasoning chains
using a user-defined argumentation scheme.

(b) We provide formal syntax and semantics for
argumentative reasoning for semantic knowl-
edge integration.

(c) We also discuss the system architecture in de-
tail followed by algorithms used for semantic
knowledge integration.

(d) We illustrate the use of Web@KIDSS with
a case study, discuss prototype development,
and indicate future directions.

The rest of the paper is structured as follows:
Section 2 presents a review of the literature, elaborat-
ing and focusing on Semantic Web-DSS and Defea-
sible logic-based implementations of Web-DSS along
with their limitations. Section 3 describes a case study
related to information and knowledge integration in
an enterprise. Section 4 discusses argumentation and
argumentation schemes. Section 5 introduces seman-
tic information integration using Web@IDSS. It de-
scribes the working of We@IDSS and AIF reification.
This is followed by Section 6 which elaborates upon
the knowledge integration process using Web@KIDSS.
In this section, we define the formal syntax and se-
mantics for knowledge integration. This section also
elaborates on the proposed conceptual framework
for semantic knowledge integration and discusses
the algorithms in detail. This section is followed by
implementation and prototype development in Sec-
tion 7. Section 8 presents the conclusion and future
directions.

Inf Syst Front

2 Review of literature

In an open computing environment, such as the World
Wide Web or an enterprise intranet, various decision
support systems are expected to work together to sup-
port information exchange, processing, and integration.
However, DSS are usually built by different people,
at different times, to fulfil different requirements and
goals leading to (Xue et al. 2009):

1. different supporting infrastructures
2. different syntactic representations of information
3. different schematic designs of information models
4. different semantics of information models.
5. conflicts among information, and the presence of

incomplete information hinders its integration into
information systems and afterwards knowledge in-
tegration at enterprise level.

Mostly, integration efforts have focused largely on the
first four issues (Zhou et al. 2010; Seng and Kong
2009; Nguyen et al. 2011). In this paper, we discuss the
fifth issue which has received little attention in existing
literature: semantic information and knowledge inte-
gration in the presence of incomplete and conflicting
information.

Recently, knowledge engineers have realized that
they need to agree on a shared conceptualization
of an application domain, known as an ‘ontology’
when developing two or more information systems
which are syntactically and semantically interoperable
(Muthaiyah and Kerschberg 2007). A number of re-
searchers are working on different aspects of ontologies
such ontology construction (Kim et al. 2011), ontol-
ogy mapping (Chua and Goh 2010), ontology tailoring
(Flahive et al. 2005, 2009) and materialization of on-
tological views (Bhatt et al. 2006) etc. Using ontolo-
gies, the integration of information distributed among
different applications gives the information integration
a new level of automation and flexibility ultimately
leading to better description, explanation, conjunc-
tion, integration and reasoning on some related data,
thereby leading to better decision making.

Currently, the use of ontologies for semantic infor-
mation integration can be viewed from two perspec-
tives. Firstly, ontologies were introduced as a shared,
explicit specification of a conceptualization of a do-
main. Therefore, ontologies lead to integration tasks
to describe the semantics of information sources and
to make the content explicit. This also focuses on the
design and development of common ontologies that

can be extended for more specific application domain
specification. However, this will exacerbate the integra-
tion problem (Noy 2004; Benkö et al. 2003; Buccella
et al. 2009; Xue et al. 2009). Secondly, ontologies with
extended rules are used for reasoning purposes. This
involves an extension of ontologies with rules, where in-
ference and reasoning are central to the process. Here,
rules are defined on top of ontologies to infer new
knowledge. The proposals for integration of rules lan-
guages and ontology languages can be classified by the
degree of integration (Antoniou et al. 2005). Firstly, the
hybrid approach is one where there is strict separation
between the rule predicates and ontology predicates
and reasoning is done by interfacing the existing rule
reasoner with the ontology reasoned; whereas, with the
homogeneous approach, both rules and ontologies are
embedded in the same logical language L without mak-
ing a prior distinction between the rule predicates and
ontology predicates, and the reasoning single reasoner
can be used for reasoning purposes.

Many DSS applications are built using the second ap-
proach, i.e. ontology with extended rules, to ensure the
availability of integrated, high quality information for
decision support. Broadly speaking, such approaches
fall into two categories:

1. Semantic Web-DSS
2. Defeasible logic-based Web-DSS

In the following sections, we discuss these categories in
detail.

2.1 Semantic Web-DSS

The importance of Semantic-based Web DSS in busi-
ness applications has been identified by a number of
researchers over a period of time (Vahidov and Kersten
2004; Silverman et al. 2001; Toni 2007). Kartha and
Novstrup (2009) have proposed a combination of on-
tologies and decision rules for building a decision sup-
port application for time sensitive targeting. They have
represented knowledge with the help of rules known
as decision rules which: (a) include primitives from
multiple ontologies and primitives that are defined by
algorithms that are outside of the rule framework;
(b) are time-dependent; and (c) incorporate default
assumptions. They have developed what is known as
the Sentinel system, which is general enough to support
a wide variety of DSS tasks.

Ceccaroni et al. (2004), present an environmental de-
cision support system (called OntoWEDSS) for waste

Inf Syst Front

water treatment to improve the diagnosis of faults in
a treatment plant, which provides support for complex
problem-solving and facilitates knowledge modelling
and reuse. The system is based on the integra-
tion of case-based and rule-based reasoning with an
ontology, i.e. Waste-Water Ontology (WaWO), for
the representation of the domain and for reasoning.
Nicolicin-Georgescu et al. (2010) present an approach
to managing data warehouse cache allocations via de-
cision support systems, by using autonomic comput-
ing and semantic web technologies. He has presented
heuristics for autonomic computing adoption, using on-
tologies for DSS system modelling and ontology-based
rules for heuristics implementation.

Similarly, Salam (2007) presents a supplier perfor-
mance contract monitoring and execution DSS, using
OWL-DL1 for knowledge representation SWRL2 to
express rules on top of OWL-DL ontologies. Cheung
and Cheong (2007) address the challenges of market
operations using a rule-based approach in mission-
critical decisions and Garcia-Crespo et al. (2011) pro-
pose a semantic model for knowledge representation
in e-business. Yang et al. (2009) have proposed a Se-
mantic Web-DSS and provide semantics for defining
static and dynamic semantics representation based on
ontology and quantitative decision making compris-
ing three steps: publishing decision requirement, bid-
ding and then role-based collaboration among decision
peers (each Semantic Web-DSS is a peer) to negotiate
for decision models.

In all these attempts, the systems integrate infor-
mation through reasoning with the help of ontologies
under certain assumptions including:

1. The given problem can be fully addressed with
available information (solution to the problem lies
within the available information). In order to elu-
cidate it, let us consider an example. A department
in an enterprise wants to improve its product and
would like to make use of all the information it
holds internally in order to adequately identify
issues regarding product quality and improve the
product’s quality. The department ignores any in-
formation outside its own boundaries.

2. The information or specification of business rules
for decision-making is consistent. In other words, it

1http://www.w3.org/TR/owl-guide/
2http://www.w3.org/Submission/SWRL/

is assumed that no contradictory rules will emerge
during the decision-making process

3. New information will be consistent with the already
available information or specifications.

4. New information does not lead to retraction of
previous conclusions.

In the existing literature, there is no research on
enterprise-wide Web-DSS that addresses the afore-
mentioned issues of information integration for intel-
ligent decision-making.

2.2 Defeasible logic-based Semantic Web-DSS

This is the second category of Web-DSS having the
capability of integrating information which could be
incomplete and inconsistent. In this type of Web-DSS,
the special types of rules known as defeasible rules are
deployed to incorporate defeasible or non-monotonic
behaviour in the system.

Dr Prolog (Antoniou and Bikakis 2007) is a Prolog-
based implementation for carrying out defeasible rea-
soning on the semantic web. It provides declarative
system support rules, facts, ontologies, RuleML, and
both monotonic and non-monotonic rules. The system
provides a number of variants such as ambiguity block-
ing, ambiguity propagation and conflicting literals.

Dr-Device (Kontopoulos et al. 2011; Bassiliades
et al. 2004) is CLISP-based defeasible reasoning imple-
mentation for information integration provided with a
VDR-Device reasoning system. Compared to Prolog,
Dr-Device supports only one variant for information
integration, i.e. ambiguity blocking.

Sweetjess (Grosof et al. 2002) is another defeasible
reasoning system based on Jess and closely resembles
courteous logic programs. It allows for procedural at-
tachment and it implements only one reasoning variant.
Moreover, it imposes a number of restrictions on the
programs so that it can map on Jess.

Table 1 compares different defeasible logic-based
semantic web implementations. In the context of se-
mantic Web-DSS, these implementations have various
limitations. Firstly, they provide either data-driven or
goal-driven reasoning. Data-driven moves from current
facts to a certain conclusion, whereas goal-driven rea-
soning is used to validate the conclusion with support-
ing facts and answer the user queries. However, in the
case of semantic Web-DSS, both types of reasoning are
needed for information integration. The existing pro-
posed approaches cannot handle both types of reason-
ing for information integration. Secondly, they define

http://www.w3.org/TR/owl-guide/
http://www.w3.org/Submission/SWRL/

Inf Syst Front

Table 1 Comparison of
defeasible logic based
semantic Web-DSS

Dr-Prolog Dr-Device Situated courteous logic

Language Prolog JESS JESS
Logic Defeasible logic Defeasible logic Situated courteous logic
Semantic data RDFS/OWL RDF DAML+OIL
RuleML Yes Yes Yes
Incomplete knowledge Yes Yes Yes

representation
Conflict representation Yes Yes Yes
Data-driven reasoning No Yes Yes
Goal-driven reasoning Yes No No
Conflict resolution User defined User defined User defined

individual individual individual
preferences preferences preferences

Explanation Textual Textual Textual
AIF reification No No No
Information integration Limited Limited Limited
Knowledge integration No No No

explicit (user- defined) individual preferences among
conflicting rules at compile time to resolve conflicts
between them. The use of these priorities is usually
embedded in the derivation mechanism and conflicting
rules are compared individually during the derivation
process. In such formalisms, the derivation notion is
bound to one single comparison criterion. However, the
semantic Web-DSS is a source of defeasible knowledge
as it is open by nature and subject to inconsistencies
deriving from multiple sources; therefore, it is not pos-
sible to define priorities in advance among conflicting
rules and even if priorities exist, it is not appropriate
to compare rules individually during the derivation
process. As a result, these systems provide limited in-
formation integration and no knowledge integration at
all. Additionally, all of them provide to the end user
only a textual explanation about the integrated infor-
mation, and the integrated information results are not
exportable in Argument Interchange Format (AIF).

3 Case study

Let us assume that ABC is an enterprise comprised
of different departments such as IT, Marketing, and
Human Resources. Due to certain unavoidable cir-
cumstances, the enterprise has decided to relocate its
departments to a new site. Higher authorities have in-
structed the managers of each department to give their
recommendations along with justifications about the
suitability of using the XYZ relocation service provider
for relocation purposes. The XYZ relocation service
provider has its business-related information published
on the web, giving all the necessary information re-
quired potential customer such as ABC enterprise.

Figure 2 depicts the interaction between the internal
environment of enterprise ABC and the external en-
vironment.

In order to generate recommendations for XYZ, the
managers need an automated information integration
system which could automatically access, reason and
integrate XYZ business information along with their
departmental information (requirements). It is impor-
tant to note here that the information from service
provider XYZ could be potentially incomplete and con-
tradict departmental information of enterprise ABC.
Additionally, the managers also want to incorporate
user feedback provided by existing XYZ clients via a
feedback forum, in the decision-making process. On
successful information integration, managers need to
forward their recommendations to higher authorities in
a standard format.

Once each department within the ABC enterprise
forwards its recommendation to higher authorities, the

Fig. 2 Interaction of enterprise ABC with external environment

Inf Syst Front

latter will need to integrate the knowledge or recom-
mendations about XYZ obtained from each depart-
ment into a coherent information model which could
help them to reach a final decision, i.e. whether or not
to engage the services of the XYZ relocation service
provider.

Here we formalize the requirements for enterprise
ABC to successfully achieve the aforementioned tasks.

– A declarative language for specifying the business
requirements of an organization

– Language with the capability of representing in-
complete and conflicting information (i.e. business
rules and data)

– Information integration via an inference mecha-
nism that can perform reasoning pertaining to in-
complete and conflicting information coming from
different sources.

– Justifiable explanation of the information integra-
tion results

– Ability to export results to other software systems
– Knowledge integration through a user-defined

scheme that allows the user to define constraints
pertaining to knowledge to be integrated.

Assumption

– Organizations ABC, XYZ and Feedback forum
share a common vocabulary defined in OWL/RDF
format and the predicates defined in the vocabulary
are used for the specification of business rules.

4 Argumentation and argumentation schemes

In everyday life communication, argumentation often
has negative connotations, suggesting quarrelsomeness
and unpleasantness; this is a misconception. In fact,
argumentation in the classical sense is the study of
effective reasoning which is a key to the way that
humans deal with conflicting information by taking into
account arguments and counter-arguments relevant to
a certain issue (Zarefsky 2009). Argumentation is in-
herently a process rather than an instant picture, and
the building blocks of argumentation are the argu-
ments and the relationship between those arguments
(Loui 1998). According to Walton (2009) and Palau
and Moens (2009), an argument is a set of statements
(propositions) consisting of a conclusion, a set of pre-
mises, and inference from premises to conclusion. Dur-
ing the process of argumentation, relationships among
the arguments are linked with each other in a certain
pattern to support the ultimate conclusion. Such linking

patterns are called ‘argumentation schemes’ and allow
reasoning to be performed using a set of premises
and a conclusion. These argumentation schemes have
emerged from informal logic (Godden and Walton
2007). The schemes help to categorize the way that
arguments are built. They bridge the gap between logic-
based application and human reasoning by capturing
stereotypical patterns of human reasoning. An example
is an argument from an expert opinion scheme. For-
mally, an argumentation scheme is composed of a set
of premises Ai, a conclusion denoted as S, and a set of
critical questions CQi aimed at defeating the derivation
of the consequent (Letia and Groza 2008; Rahwan et al.
2007a).

Argumentation formalism has been used in the past
by different researchers in DSS for practical reasoning.
Morge (2008) proposed a DSS based on abductive
reasoning which helps the decision maker to select a
business location after evaluating different alternatives;
it suggests several solutions and provides an interac-
tive and intelligible explanation of those choices. To
develop the DSS, Morge (2008) used a logic language to
represent knowledge, goals and actions with quantita-
tive priorities attached to them to represent likelihood
of knowledge, preferences between goals and expected
utilities of actions respectively. Similarly, Chesnevar
et al. (2006b) identified that the current critic rec-
ommender systems are incapable of dealing with the
defeasible nature of information. They present a novel
approach to the integration of DSS, such as critics and
recommender systems with a defeasible argumentation
framework, to enhance the practical reasoning capabil-
ities of such systems.

5 Argumentation enabled semantic information
integration

The use of ontologies have helped to improve the in-
tegration of information derived from different sources
to a new level of automation and flexibility. This has
ultimately led to better description, explanation, con-
junction, integration and reasoning on some related
data, resulting in better decision-making. However, the
current generation of Web-DSS is not able to represent,
reason and integrate incomplete and inconsistent infor-
mation for information integration purposes, irrespec-
tive of whether this information emerges from within
the organization or outside it (Carlsson and Turban
2002).

We have addressed this challenge (representation
and reasoning over incomplete and inconsistent se-
mantic information) by using Web@IDSS (Janjua and

Inf Syst Front

Hussain 2011). The Web@IDSS uses Defeasible logic-
based argumentation formalism (DeLP)(Garcia and

Simari 2004) as knowledge representation and reason-
ing language with certain extensions.

WM =
{

relocationService(xyz), client(it), useService(xyz), ef f icient(xyz), saf eDelivery(xyz)

language(english), languageProblem(xyz, english)

}
illustration(1)

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x.d1]relocationService(X), client(Y), useService(X) ���∼ giveDiscount(X)

[x.d2]client(Y), relocationService(X), reuseService(Y, X) ��� giveDiscount(Y)

[x.d3]ef f icient(X), saf eDelivery(X) ��� reliableService(X)

[x.s1]giveDicount(Y), advancmentPayment(Y) → normalDiscount(Y)

[x.s2]normalDiscount(Y), bulkOrder(Y) → platinumDiscount(Y)

[a.it.d1]client(Y), happy(Y, X), relocationService(X) ��� resuseService(Y, X)

[a.it.d3]ontimeDelivery(X) ��� ef f icient(X).

[rc1.a.it.d4]not dmanageProduct(X) ��� saf eDelivery(X)

[a.it.d5]largeTruck(X), reuseService(Y, X), reliableService(X), normalDiscount(Y)

��� goodRelocationService(X)

[a.it.d6]language(ENG), languageProblem(X, ENG) ���∼ clearCriteria(X)

[a.it.d7]demandCash(X), demandTip(X) ���∼ convienent(xyz)

[a.it.d8]goodRelocationService(X), not convienent(X), not clearCriteria(X)

��� recommendService(X)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

illustration(2)

Args = { }
.. illustration(3)

The system is capable of translating business rules
defined in RuleML3 syntax into DeLP rules. The sys-
tem also translates the RDF/XML data into DeLP facts
and RDF(S) and part of OWL Ontologies into DeLP
facts and DeLP rules. Once the information such as
business rules and data translation is complete, the
system starts an argumentation construction cycle.

Lets us assume that illustrations 1, 2 and 3 depicts the
initial state of the argumentative production system of

3http://ruleml.org

the IT department of enterprise ABC. Illustration 1
represents current information saved in the working
memory (WM) and illustration 2 represents business
policies i.e. business rules (R) of the IT department
and XYZ service provider, each identified by their re-
spective label, and illustration 3 depicts an empty active
argument set (Args) before the arguments construction
cycle.

WM/ =

⎧⎪⎪⎨
⎪⎪⎩

relocationService(xyz), client(it), useService(xyz), ef f icient(xyz), safeDelivery(xyz)

language(english), languageProblem(xyz, english), resuseService(it, xyz), giveDiscount(it),
normalDiscount(it), reliableService(xyz), goodRelocationService(xyz),∼ clearCriteria(xyz),

∼ convienent(xyz), recommendService(xyz)

⎫⎪⎪⎬
⎪⎪⎭

illustration(4)

Args =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[rc1.a.it.d1]client(it), happy(it, xyz), relocationService(xyz) ��� reuseService(it, xyz)

[rc1.x.d2]client(it), relocationService(xyz), reuseService(it, xyz) ��� giveDiscount(it);
[rc1.x.s1]giveDicount(it), advancmentPayment(it) → normalDiscount(it)
[rc1.a.it.d3]ontimeDelivery(xyz) ��� ef f icient(xyz).

[rc1.a.it.d4]not dmanageProduct(xyz) ��� saf eDelivery(xyz).

[rc1.x.d3]ef f icient(xyz), saf eDelivery(xyz) ��� reliableService(xyz)

[rc1.a.it.d5]largeTruck(xyz), reuseService(it, xyz), reliableService(xyz)

, normalDiscount(xyz) ��� goodRelocationService(xyz)

[rc1.a.it.d6]language(english), languageProblem(xyz, English) ���
∼ clearCriteria(xyz)

[rc1.a.it.d7]demandCash(xyz), demandTip(xyz) ���∼ convienent(xyz)

[rc1.a.it.d8]goodRelocationService(xyz), not convienent(xyz),

not clearCriteria(xyz) ��� recommendService(xyz)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

illustration(5)

http://ruleml.org

Inf Syst Front

The argument construction is a recursive process
which involves interpretation of business rules. The sys-
tem searches for business rules from a knowledge base
whose pattern matches the facts present in working
memory (WM) and, on a successful match, executes
the business rule which then adds the rules conclusion,
i.e. ground predicate, to the working memory. The
argument construction process continues until all the
matched business rules in the knowledge base have
been processed. This interpretation of a business rule
is also known as ‘firing of a rule’. Illustrations 4 and 5
depicts the updated argumentative production system
of the IT department with a populated active argument
set and updated working memory(WM′).

The argument construction followed by the argu-
mentation phase consists of conflict detection, resolu-
tion and justified explanation. The conflict between an
argument and its counter-argument is resolved either
by static static priority establishment or dynamic prior-
ity establishment. For dynamic priority establishment,
the process of argumentation starts where an argument
may be defeated by other arguments. Since counter-
arguments are also arguments which in turn may be
defeated, this process results in the construction of di-
alectical trees. This is an interesting property of the ar-
gumentation approach which involves dialectical proof
procedures that are quite close to the process used
by humans when discussing an issue. This similarity to
human-style discussions gives argumentation an advan-
tage that can be useful in many contexts. As a result of
argumentation, the development of dialectical analysis
for conflict resolution amongst arguments leads to the
establishment of dynamic priorities between conflicting
arguments.

The last step in the argumentation process is the con-
struction of reasoning chains. During this process, all
the sub-arguments of an argument including arguments
in conflict with undefeated dialectical trees are linked
together as a reasoning chain. This process continues
until all possible arguments are linked up into reason-
ing chains. The top argument i.e. conclusion, of the
reasoning chain is known as ‘the ‘result’ of the reason-
ing chain’, and the chain of sub-arguments supporting
the top argument is called the ‘support’ of the result.
Figure 3 is a graphical representation of a reasoning
chain of the argumentative production system depicted
in illustrations 4 and 5. The arguments in Fig. 3 are rep-
resented in short form e.g. [rc1.a.it.d8]recommendService
(xyz) where [rc1.a.it.d8] is the label of the argument and
recommendService(xyz) is the claim of the argument.

5.1 Argument interchange format (AIF) reification

The AIF is an international effort to develop a rep-
resentational mechanism for exchanging argument re-
sources between research groups, tools, and domains
using a semantically rich language (Chesnevar et al.
2006a; Iyad Rahwan 2009; Rahwan et al. 2007b). The
AIF was developed as a commonly agreed upon core
ontology i.e. AIF ontology that specifies the basic con-
cepts used to express arguments and the relationship
between arguments. Figure 4 depicts the AIF core
ontology. The upper ontology describes the arguments
in the form of a connected network of nodes. The
nodes are of two types, namely, information nodes
(I-Node) and scheme nodes (S-nodes). The I-Node
captures the information in the form of premise, con-
clusion, exception or presumption. The scheme nodes

Fig. 3 Graphical
representation of a reasoning
chain

Inf Syst Front

Fig. 4 The upper and forms
ontologies of the AIF (Bex
et al. 2010)

provide the relationship between two I-Nodes and are
further classified as rule application nodes (RA-Node)
that correspond to inference from premises to claim,
conflict nodes (CA-Node) that correspond to conflict
between two nodes and preference application nodes
(PA-node) that correspond to preference ordering be-
tween conflicting nodes. These different kinds of nodes
are used to build the AIF argument graph defined by
Rahwan et al. (2007b) as follows:

Definition 1 (Argument Network) An argument net-
work � is a graph G consisting of

– a set N of vertices (or nodes) comprises of I-Nodes
and S-Nodes; and

– a binary relation
edge−→: N x N representing edges

among nodes

such that � (i, j) ∈ edge−→ where both i ∈ N1 and j ∈ N1.

The I-Node can be connected to other I-Nodes only
through S-Nodes to represent a rationale behind the
relationship between I-Nodes. However, the S-Node
can be directly connected to other S-Nodes to represent
some kind of meta-reasoning. For instance, RA-to-RA
and RA-to-PA edges might indicate some kind of meta-
justification for the application of an inference rule or
a particular criterion for defining preference. Addition-
ally, the ontology does not use typed edges in a graph;
instead, the semantics for edges can be inferred node
types that they connect. The argumentation schemes
are represented as forms of arguments known as ‘forms
ontology’ in AIF core ontology as depicted in Fig. 4.
Those argumentation schemes are preference scheme,
conflict scheme and inference scheme. The inference
scheme is again divided into a deductive scheme which
represents deductive inference from premises to a
claim, and a defeasible scheme which represents defea-
sible inference from premises to a claim.

The AIF reification in the Web@IDSS will help to
express arguments in more concrete language, and with
better representation and handling of conflicts in an

argument network and better evaluation of complex
arguments and reasoning chains. The export of results
provided by Web@IDSS in AIF-compliant format will
enable the system to merge it with the justified conclu-
sions of other machines in the absence of complete or
accurate information.

In the rest of this section, we provide formalisms that
make use of an ‘Argument Network’ to represent inte-
grated information as argumentative reasoning chains.

Definition 2 (Web@IDSS argument network) Given
an argument graph G and set of forms F in a argument
network �, a Web@IDSS argument network AG is
defined as follows: (WM, R, Args) Where

– WM: a set of information nodes i.e. N I
i,...,n, where I

represents information node and i represents index
of the node.

– R: a set of user-defined rules or specifications to
establish links between N I

i nodes through S node

such that � (i, j) ∈ edge−→ where both i ∈ N1 and j ∈
N1

– Args a set of arguments derived from R, where
each argument establishes a linked set of premise
(N I

i) to a claim(N I
j) through S node. Based upon

the forms of ontology, the strict argument and de-
feasible argument are defined as follows:

(Strict argument) :
N I

i ,,N I
j

Uses(RA,deductiveScheme)−→ N I
k

(Defeasible argument) :
N I

m,,N I
n

Uses(RA,defeasibleScheme)��� No

The binary relation
edge−→: N x N representing edge

among nodes in Web@IDSS can be categorized as
follows:

– Counter-argument: N I
i

Uses(CA−Node)��� ∼ N I
j such that

N I
i is counter-argue N I

j

Inf Syst Front

Fig. 5 Pictorial
representation of a AIF
compliant reasoning chain

– Static defeat: N I
i

Uses(PA−Node)��� N I
j such that N I

i is
has priority over N I

j

– Dynamic defeat: N I
i

Uses(PA−Node)��� N I
j such that N I

i

has priority over N I
j

– Sub-argument: For representation of sub-argument
relationship in AIF format, we added a blank-node
into argument network i.e.

N I
i

Uses(Blank−Node)��� N I
j such that N I

i (claim of an
argument) is sub-argument of N I

j (premise of an
argument).

Definition 3 (Predecessor and Successor Nodes)
Given a graph AG consisting of a set of nodes N and a
relation S ⊆ N × N defining the set of edges between
the nodes. For each node n ∈ N , we define the set of
its predecessor and successor nodes as follows:

– A Predecessor node: {x ∈ N | (x, n) ∈ S},
– A Successor node: {x ∈ N | (n, x) ∈ S}.
Using the above definitions, we represent the reasoning
chains produced by Web@IDSS in AIF format. The
node N I

i with no successor and have predecessor nodes

Fig. 6 Serialization of AIF
compliant reasoning chain in
turtle format

Inf Syst Front

is called the ‘result’ of reasoning chain. The remaining
nodes are known as ‘support’ for the result. Figure 5 de-
picts the graphical representation of a reasoning chain
in AIF format.4

5.2 Publication of reasoning chains

The purpose of AIF reification is to publish and share
the results of a Web-DSS over the web, enterprise
intranet or with other applications in order to provide
better decision-making support. For annotation of a
reasoning chain, we developed a ‘reasoning chain ontol-
ogy’ on top of the ArgDF ontology5 and serialized the
AIF-compliant reasoning chain in RDF/XML format.
Figure 6 depicts the serialization of a reasoning chain
in turtle format.

6 Argumentation-scheme-enabled,
argumentation-driven semantic
knowledge integration

Today, the decision-making environment has be-
come very complex and decentralized, exacerbated by
WWW. Results produced by one Web-DSS might need
to be integrated with other Web-DSS to obtain a com-
prehensive picture of the problem at enterprise level

4The directed arrow are just to emulate the edge from S-node to
N-node claim of the argument.
5http://www.argdf.org/source/ArgDFProtegeOntology.zip

to enable higher authorities to gain business insights
and make better decisions. We call such information
integration that is related to one subject and distrib-
uted among different information sources ‘knowledge
integration’. Let us consider the case study discussed in
Section 3 where each department needs to formulate
and forward its recommendations about the relocation
service provider XYZ to higher authorities. During this
process, each department, with the help of Web@IDSS
or AIF-compliant DSS system, produces recommenda-
tions in the form of a reasoning chain. Let us assume
that according to the IT department, although the relo-
cation service provider is not convenient and not good
at formalising the clients’ criteria, still we assume it is a
good relocation service provider and we recommend it.
Whereas, other departments have a different opinion.
According to illustrations 6, 7 and 8 which depict the
recommendations produced by the IT, Marketing and
Human Resources departments respectively, it is quite
evident that each department has some valuable infor-
mation about relocation service supplier XYZ, which
could help the higher authorities to make the final
decision about this supplier. But the biggest challenge
is how to automate the integration of this knowledge
which is derived from different sources and could be
incomplete and inconsistent, to facilitate the decision
making process at enterprise level.

IT =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[rc1.a.it.d1]client(it), happy(it, xyz), relocationService(xyz) ��� reuseService(it, xyz)

[rc1.x.d2]client(it), relocationService(xyz), reuseService(it, xyz) ��� giveDiscount(it);
[rc1.x.s1]giveDicount(it), advancmentPayment(it) → normalDiscount(it)
[rc1.a.it.d3]ontimeDelivery(xyz) ��� ef f icient(xyz).

[rc1.a.it.d4]not dmanageProduct(xyz) ��� saf eDelivery(xyz).

[rc1.x.d3]ef f icient(xyz), saf eDelivery(xyz) ��� reliableService(xyz)

[rc1.a.it.d5]largeTruck(xyz), reuseService(it, xyz), reliableService(xyz),

normalDiscount(xyz) ��� goodRelocationService(xyz)

[rc1.a.it.d6]language(english), languageProblem(xyz, english) ���∼ clearCriteria(xyz)

[rc1.a.it.d7]demandCash(xyz), demandTip(xyz) ���∼ convienent(xyz)

[rc1.a.it.d8]goodRelocationService(xyz), not convienent(xyz), not clearCriteria(xyz)

��� recommendService(xyz)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

illustration(6)

http://www.argdf.org/source/ArgDFProtegeOntology.zip

Inf Syst Front

Mar=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[rc2.a.mk.d1]not happy(marketing, xyz), relocationService(xyz) ���∼ reuseService(marketing, xyz)

[rc2.x.d1]relocationService(xyz), client(marketing), useService(xyz) ���
∼ giveDiscount(marketing)

[rc2.a.mk.d3]ontimeDelivery(xyz), largeTruck(xyz), ��� ef f icient(xyz)

[rc2.a.mk.d5]dmanageProduct(xyz) ���∼ saf eDeliver(xyz)

[rc2.a.mk.d4]not ef f icent(xyz), not reuseService(xyz), not giveDiscount(marketing),

not saf eDeliver(xyz) ���∼ goodRelocationService(xyz)

[rc2.a.mk.d6]not goodRelocationService(xyz) ���∼ recommendService(xyz)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

illustration(7)

HR=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[rc3.a.hr.d1]language(english), languageProblem(xyz, english) ���∼ clearCriteria(xyz)

[rc3.x.d2]client(hr), relocationService(xyz), reuseService(hr, xyz) ��� giveDiscount(hr)
[rc3.a.hr.d2]not ontimeDelivery(xyz) ���∼ ef f icient(xyz)

[rc3.a.hr.d3]not ef f icient(xyz), not giveDiscount(xyz) ���∼ goodRelocationService(xyz).

[rc3.a.hr.d4]not goodRelocationService(xyz), not clearCriteria(xyz), ���
∼ recommendService(xyz)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

illustration(8)

In the following section, we define the formal syn-
tax and semantics for Argumentation scheme en-
abled Argumentative Knowledge Integration Web-
DSS (Web@KIDSS). The proposed system is capable
of integrating knowledge regarding one subject derived
from different Web-based DSS into a coherent, consol-
idated form so that higher authorities can have better
business insights and make the optimal decisions or
decisions that take a broader perspective.

6.1 Formal syntax and semantics

Definition 4 (Recommendation space) A collection of
recommendations, each in the form of a reasoning
chain λ(identifer,result) contributed by a source ‘i’ is known
as a ‘recommendation space’. Mathematically, recom-
mendation space is defined as follows:

� =
n∑

i=0

{[i]λ(identifer,result)
}

(1)

The recommendation space’ for enterprise ABC is
depicted in Fig. 7 can be mathematically represented as
follows:

� = {[rc1]λ(A,recommend), [rc2]λ(B,∼recommend),

[rc3]λ(C,recommend)

}
(2)

Where

– [rc1]λ(A,a) represents the recommendation in the
form of a reasoning chain by department IT depart-
ment identified as rc1.

– Similarly, [rc2]λ(B,∼a) is a recommendation from
the HR department identified as rc2 and [rc3]λ(C,a)

is a recommendation from the marketing depart-
ment identified as rc3.

Definition 5 (Integration scheme) An Integration
scheme, a user-defined argumentation scheme (Katie
Atkinson 2008), is a tuple having the following form:

IS = {{name, (premisei,premisen), conclusion,

criticalquestions, variant} (3)

Where

– name is the label of the scheme which identifies the
scheme

– premise is a set of facts to be matched
– sConclusion is a result of the scheme
– sCriticalquestion is a set of queries
– svaraint is a boolean flag for conflicts blocking. If

svariant is true, the conflicts are blocked and the
reasoning chain will not considered for any further
processing; whereas, if the flag is false, then the
reasoning chains with conflicts are still considered
for further processing.

The critical questions can be categorized as excep-
tions and assumptions. The premises provide reasons
for accepting the conclusion only if the assumptions are
true and there are no exceptions. If either an assump-
tion is false or an exception is true, unless premises
provide reasons for accepting the conclusion, the con-
clusion would not be valid (Katie Atkinson 2008). Thus,
both assumption and exceptions attack the conclusion
of the scheme.

Inf Syst Front

In the context of the case study discussed above, the
integration scheme represents the criteria that are used
by higher authorities to evaluate each department’s
recommendation before their integration. If the recom-
mendation meets the integration criteria, then the rea-
soning chain is included in the knowledge integration
process.

Definition 6 (Valuation operator) The application of
the integration scheme to a reasoning chain is termed
‘valuation of a reasoning chain’. Mathematically, we
define the valuation operator � as a binary operator
such as

[rc1]λval
(A,a) = {[rc1]λ(A,a) � IS

}
(4)

During valuation of a reasoning chain, all the
premises and critical questions originating from the
integration scheme are executed on the corresponding
reasoning chain. If the premises match the reasoning
chain and queries return true on execution over the
reasoning chain, then the reasoning chain is considered
to be a valued reasoning chain. The reasoning chain is
still considered valued if the reasoning chain premise
does not match or queries return false, but the conflict
blocking flag, i.e. svariant is false.

Definition 7 (Focus operator) ⊗ is a binary operator,
such that

[rc1]λval
(A,a) ⊗ [rc2]λval

(B,a) (5)

is called a ‘focus operator’. This corresponds to AND
operator. If two arguments, belonging to different rea-
soning chains, have the same claim, the application
of the focus operator produces those arguments in
a resultant set. Let us consider the recommendation

space depicted in Fig. 7, the application of the focus
operator to reasoning chains rc2 and rc3 results in the
following set of common claims {[mk.d4, hr.d4] ∼
recommendService(xyz), [mk.d6, hr.d6] ∼
goodRelationService(xyz)}.

Definition 8 (Merge operator (Fan et al. 2010)) � is a
binary operator, such that

[ar1]a, b , c ��� d � [ar2] e, b , c ��� d (6)

is called a ‘merge operator’. This corresponds to the OR
operator. Let us consider the recommendation space
depicted in Fig. 7, containing two argument ‘hr.d6’
argument and ‘mk.d6’ argument belonging to reason-
ing chain rc2 and rc3 respectively. The application of
the merge operator to these arguments results in the
construction of a new argument which would look like:

[hr.d6][mk.d6]∼ goodRelocationService(xyz), ∼
clearCriteriac(xyz) ���∼ recommendService(xyz).

The merge operator applies to the arguments with
the same inference type.

Definition 9 (Unique operator) � is a binary operator,
such that

[rc1]λval
(A,a) � [rc2]λval

(B,a) (7)

is called a ‘unique operator’. The application of unique
operator on reasoning chains results in all those ar-
guments whose claim is unique between the reason-
ing chains. Let us consider the recommendation space
depicted in Fig. 7, the application of unique operator
on reasoning chains rc2 and rc3 results in following set
of arguments {∼ clearCriteria(xyz), giveDiscount(mk),

Fig. 7 Recommendation
space

Inf Syst Front

Fig. 8 Graphical
representation of integration
of rc2 and rc3

∼ giveDiscount(hr), ∼ saf eDelivery(xyz), ∼ ef f icent
(xyz), ∼ reuseService(xyz)}.6

Definition 10 (Conflict operator) is a binary operator,
such that

[rc1]λval
(A,a) 	 [rc2]λval

(B,a) (8)

is called a ‘conflict operator’. The application of this
operator to reasoning chains will return the set of ar-
guments along with their counter-argument and unde-
feated or blocking dialectical trees.

Let us consider the recommendation space illus-
trated in Fig. 7, the application of conflict operator on
reasoning chains rc2 and rc3 results in the following set
of claims {ef f icient(xyz), ∼ ef f icient(xyz)}

Definition 11 (Preference operator) is a binary opera-
tor such that

[a]giveDiscount(XYZ) > [b] ∼ giveDiscount(XYZ) (9)

is known as a ‘preference operator’. The end user can
define a preference relation explicitly for an argument
and its counter-arguments.

Definition 12 (Knowledge integration) The result of
a reasoning chain λ(A,a) supported by a chain of sub-
arguments belonging to valued recommendation set
produces an Integrated reasoning chain �a= (λi,,

λn) where 0 <i < n. Mathematically, we define an inte-
grated reasoning chain as follows:

∀r,s ∈ valuated argument set{i f (sξr)then�j = �j ∪ s (10)

where ξ is used to represent the sub-argument relation-
ship and � jis used to represent an integrated reasoning
chain for result j. Taking into consideration the rec-
ommendation space depicted in Fig. 7, the integration
of rc2 and rc3 results are shown in Fig. 8 considering
conflict blocking flag is false.

6For simplicity we have not mentioned the identifers of the
arguments.

7 Proposed conceptual framework

In this section, we elaborate in detail the proposed
conceptual framework of Web@KIDSS for knowledge
integration spanning across different Web-DSS. The
proposed framework takes into consideration the rea-
soning chains (recommendations) published on the web
or enterprise intranet for enabling decision-making
based on enterprise-wise information integration. The
task of Web@KIDSS is to integrate them into a con-
solidated reasoning chain depicting an enterprise-wise
picture to the decision maker and facilitate the
decision-making process. To achieve this task, the sys-
tem user defines an integration scheme to perform a
primary evaluation of a reasoning chain to determine
whether it is suitable for integration with the rest of the
reasoning chains. The proposed framework uses DeLP
as knowledge representation and reasoning language
with certain extensions (Janjua and Hussain 2011).
Figure 9 depicts the proposed conceptual framework.
The key components of our proposed framework are
as follows:

7.1 Translation of the reasoning chains

The reasoning chains published on intranet by different
Web-DSS in AIF compliant format are imported by
the system user and system translates the imported
reasoning chains in DeLP compliant reasoning chains.
During this process, the translation of nodes and the
relationship between nodes in an AIF formatted rea-
soning chain are translated to DeLP construct. The
information nodes are translated as either premise of an
argument or claim, whereas scheme nodes are used to
build the types of arguments and relationship between
arguments. For example, if there is an RA-node (de-
feasible or strict inference) the predecessor of scheme
nodes will be the premise and successor of the RA-node
and will be claim of the argument. Similarly, CA-nodes
and PA-nodes are translated into counter-argument
and defeat the relationship between arguments respec-
tively. The blank-nodes are translated as sub-argument

Inf Syst Front

Fig. 9 Conceptual
framework of Web@KIDSS

relationship between arguments. Some examples of the
translation are depicted in Table 2 below.

7.2 Definition of integration scheme

Once the task of translating the reasoning chains has
been accomplished, the next step is to define the inte-
gration scheme. The integration scheme, derived from
the concept of argumentation scheme, corresponds to
our daily life pattern of reasoning. To further explain
it, let us consider the case study discussed in Section 3
where higher authorities has a set of recommendations
and wants to select only those recommendations that
satisfy certain specific criteria. For example, higher
authorities specify criteria that the recommendation
must be provided for relocation service provider XYZ.

Therefore, only recommendations for XYZ are consid-
ered for the final decision-making process. The scope of
application of an integration scheme ranges from valua-
tion of reasoning chains and their integration during the
decision-making process. In the proposed framework,
DeLP language is used to create an integration scheme
using the following steps:

1. Enter name of integration scheme.
2. Define set of premises.
3. Define set of critical questions. The critical ques-

tions are queries to be executed on a reasoning
chain. The critical questions are further categorised
as follows:

(a) Set of assumptions
(b) Set of exceptions

Table 2 Translation of AIF compliant reasoning chain in Web@KIDSS

Scheme Node AIF representation Translation

Strict inference If the RA-Nodes use strict modus ponens, then all the incoming edges to
RA-Node are considered as premises and the successor node is
considered as claim of strict argument.

Defeasible inference If the RA-Nodes use defeasible modus ponens, then all the incoming edges
to RA-Node are considered as premises and the successor node is
considered as claim of defeasible argument

CA-node No translation, as proposed system has a built-in mechanism to identify
conflicting arguments

PA-node No translation, as proposed system has a built-in mechanism to identify
priority among conflicting arguments.

Inf Syst Front

4. Set conflict handling variant i.e. conflict blocking
either true or false. The scope of conflict handling
can be defined at valuation of reasoning chains or
their integration or at both levels.

(a) During valuation of a reasoning chain, if there
exists any conflict between the a critical ques-
tion and the premise, then in the case of
conflict blocking variant true, the reasoning
chain is not considered suitable for knowledge
integration and vice versa.

(b) During knowledge integration, if there ex-
ists a conflict between two arguments coming
from different reasoning chains, then in the
case of conflict blocking variant true, those
arguments are not considered in the final
decision-making process and vice versa.

Table 3 below depicts the definition of an integration
scheme for knowledge integration.

7.3 Valued recommendation set

After defining the integration scheme, now the system
applies the user-defined integration scheme to each
reasoning chain. This process requires the following
two steps:

1. Modelling of reasoning chains
2. Application of integration scheme to reasoning

chains

7.3.1 Modelling of reasoning chains

The system first models the reasoning chain by identify-
ing its basic elements as determined by Toulmin (2003).
A reasoning chain is modelled as follows:

1. Back-up evidence: The initial working memory de-
scribing the current situation, from which the argu-
mentative reasoner starts its derivation activity. In
a reasoning chain, these nodes have no incoming
edge (no predecessor nodes) and only an outer
edge, or successor nodes, are considered as back-
up evidence.

2. Claim: The result of the reasoning chain corre-
sponds to claim.

3. Warrant: The support for the result of a reasoning
chain is called a warrant. It is a set of arguments
linked up to form a reasoning chain link as back-up
evidence for a claim.

Such modelling of a reasoning chain has a significant
relevance for correctly modelling a practical argumen-
tation activity and helps to categorize the various ways
by which arguments can be analysed and defeated and
therefore the following strategies could have significant
value as identified by Baroni et al. (1998). If conflict
exists between a critical question and data, then the
entire conclusion drawn from them is undermined. Sim-
ilarly, it could help to point out flaws in the reasoning
chain that relate data to the conclusion. Additionally, if
conflict exists between claim and critical question, then
the decision maker has to see the warrant and data in
order to defeat the claim.

7.3.2 Application of integration scheme on reasoning
chains

After the modelling of reasoning chains, the system
applies the integration scheme defined by the system
user to each and every reasoning chain. This involves
executing all commands against the selected reasoning
chain as depicted in Table 3. During this process, if
any conflict exists either between data and premise, or
conflict between critical question and warrant, then the
system stores those results and depending upon conflict
blocking variable value, the reasoning chain will be
considered for the knowledge integration phase. The
system also displays the results to the system user so
that conflicts can be resolved if possible.

7.4 Knowledge integration

Once the valuation of reasoning chains has been com-
pleted, the next step is knowledge integration. This step
involves integration of the diverse valued reasoning
chains into a single consolidated reasoning chain to
provide a complete picture to the decision maker to

Table 3 Integration scheme mapping to DeLP

Integration scheme DeLP construct

Scheme name SupplierIntegrationScheme
Premise – The recommendations are against Relocation Service provider XYZ – Execute(relocationService(xyz))
Critical questions – The XYZ is good at formalising the clients’ criteria – Execute(clearCriteria(xyz))
Variant – Conflict blocking is true for valuation of reasoning chains – Conflict-blocking=true

Inf Syst Front

support the decision-making process. This step com-
prises the following tasks:

1. Identification of conflicts among arguments be-
longing to different valued reasoning chains in a
valued recommendation set.

2. Automated resolution of conflicts between argu-
ments with the help of static and dynamic defeat.
In case of blocking arguments, the system needs
human intervention to resolve the conflict between
them.

3. Construction of new arguments. If two arguments
from a valued recommendation set have the same
claim, then combine the premises of those argu-
ments to produce a new argument.

4. Building up of reasoning chains and providing an
interface to system user to making a final judge-
ment as depicted in Fig. 10

7.5 Query the valuated set

The system also provides an interface to query the
valuated reasoning chains.

Definition 13 (Query) A query ‘q’ , consists of a pred-
icate, and can be executed on the argument set Args
with the help of function executeQuery(q) ∈ F to check
the support for the predicate in the recommendation
space.

There are four possible answers to a query, as
follows:

– If the answer is ‘yes’, then the result will be an
undefeated dialectical tree. Mathematically, it is
presented as follows:

�U (A, h) = executeQuery(q) Equation (24)

– If the answer is ‘no’, then the result will be a
defeated dialectical tree. Mathematically, it is pre-
sented as follows:

�D(A, h) = executeQuery(q). Equation (25)

– If the answer is ‘undecided’, then the result will
be a blocked dialectical tree. Mathematically, it is
presented as follows:

�B(A, h) = executeQuery(q). Equation (26)

– Unknown, if the predicate in the query is not in
the language of the program. Mathematically, it is
presented as follows:

unknown = executeQuery(q). Equation (27)

7.6 User interface

The user interface is the graphical representation of a
reasoning engine output for the end user. The user in-
terface component will be responsible for representing
the argumentation process and justifies conclusions to
the user in the form of an inverted tree-like structure,
and the user will be able to interact with and query the
results.

Fig. 10 Graphical
representation of integrated
knowledge for decision
support

Inf Syst Front

7.7 Algorithms for knowledge integration

In this section, we describe the working of our knowl-
edge integration algorithms. Algorithm 1 (knowledge
integration) invokes Algorithm 2 (valuation of a rea-
soning chain) and Algorithm 3 (combine reasoning
chains). Algorithm 1 takes into account a set of AIF-
compliant reasoning chains and sets their valuation
flag to false. Then, the system applies the user-defined
integration scheme to each of the reasoning chains one
by one; this is known as the valuation of a reasoning
chain. This step is carried out by invoking Algorithm
2. Algorithm 2 takes into account a single reasoning
chain and a user-defined integration scheme such as
supplierIntegrationScheme shown in Table 3. During
valuation, all the queries generated through the integra-
tion scheme are executed on a reasoning chain. If the
result of a query execution is false, this will establish a
conflict between the reasoning chain content and the in-
tegration scheme content. The algorithm returns true if
there is no conflict between the integration scheme and
reasoning chain or the conflict blocking flag has a value
of false. Otherwise, this algorithm will return false. The
process of valuation applies to all the reasoning chains.
After valuation, reasoning chains are ready for the next
step: knowledge integration. All those reasoning chains
with valuation flags true are considered in the knowl-
edge integration phase. For knowledge integration, the
system first integrates all those reasoning chains whose

Inf Syst Front

results are the same or support the same point of view.
This task is performed by invoking Algorithm 3 with
a set of valuated reasoning chains. Algorithm 3 first
loops through a set of reasoning chains and compares
the result of a reasoning chain with the result of the
remaining reasoning chains; if the results match, then
those reasoning chains are integrated. Three kinds of
operators are used during this integration process. With
the help of a focus operator (⊗), the new arguments
are constructed and then loaded into a valued recom-
mendation set. With the help of a unique operator
(�), unique arguments from both reasoning chains are
loaded into an valued recommendation set. With the
help of the conflict operator () the conflicting argu-
ments are taken into account for conflict resolution. If
the conflict blocking flag for knowledge integration is
false, then the system tries to resolve conflicts with the
help of static or dynamic defeat. Otherwise, the system
asks the end user to choose between the conflicting
arguments. Finally, Algorithm 3 invokes Algorithm 4
(Buildup a reasoning chain) in order to establish a
reasoning chain from the argument loaded in the valued
recommendation set. The important thing to note here
is that conflicts may exist in a valued recommendation
set if the conflict blocking flag is true. The display func-
tion in Algorithm 1 displays the integrated reasoning
chains to the user as depicted in Fig. 10. The integrated
reasoning chains depict the different points of view
supported by the set of arguments. The end user can
make a decision based on the integrated information.
The system saves the decision and makes it available
for future reference.

8 Implementation and prototype development

This section provides the implementation details and
working of Web@KIDSS to represent and reason over
incomplete and conflicting recommendations coming
from different departments. The development of the
prototype system is carried out on a machine having an

Apache Web server version 2.2.11, PHP version 5.3.0,
PHP Tree Graph Ext library7 with certain extensions
to differentiate between fact and claim of a rule, strict
and defeasible inference etc, MySql database version
5.1.36 and SWI-Prolog installed on it. After prototype
development, the Web application is deployed on the
DEBII server.

Figure 11 shows the interface provided to the sys-
tem user to import the recommendations published in
the form of reasoning chains in AIF format over the
enterprise intranet. The user can download the file by
entering the URL and name in the provided text fields
and click the ‘Download button’. The interface also
shows the list of downloaded AIF compliant reason-
ing chain files and the user is able to either view or
remove them from the Web@KIDSS. Once the user
has finished downloading the recommendation files,
s/he can then translate the downloaded files into DeLP
format. Figure 11 depicts the interface where the user
can select the files by clicking the check-boxes and
submitting the selected files for translation by clicking
the ‘Translate AIF format files to DeLP’ format button.

Once the user has finished importing the AIF files,
s/he can then define an integration scheme for the
valuation of reasoning chains. Figure 12 depicts an
interface where a user can define premises that need
to be matched, queries to be executed, and conflict
blocking variant at valuation of a reasoning chain and
knowledge integration levels. The end user also gives
the integration scheme a name. Once the user has
finished the integration scheme, s/he proceeds to the
next step which is the valuation of reasoning chains
by clicking the ‘Next’ link (shown in Fig. 12 above).
Figure 13 depicts the interface where the user can
select reasoning chains and click the ‘Apply Integration
Scheme’ button to trigger the valuation process.

Once the user clicks the Apply Integration Scheme
button, the Web@KIDSS applies all the premises that
need to be matched and queries to be executed on
reasoning chains. The user can view the outcome of the
valuation process by clicking on the ‘View’ link against
the valuated reasoning chain as depicted in Fig. 14. The
text in red shows the conflict between the integration
scheme and the contents of a reasoning chain.

After the valuation of reasoning chains, the next
step is knowledge integration whereby all the reasoning
chains are integrated to depict the overall problem.
Figure 15 depicts the knowledge integration under two
arguments: recommend the supplier XYZ as preferred

7http://download.getabest.com/new/php-tree-graph-ext-222943.
html

http://download.getabest.com/new/php-tree-graph-ext-222943.html
http://download.getabest.com/new/php-tree-graph-ext-222943.html

Inf Syst Front

Fig. 11 Interface to import
reasoning chains

Fig. 12 Interface to define
integration scheme

Fig. 13 Interface to select
reasoning chains and apply
integration scheme

Inf Syst Front

Fig. 14 Interface depicting
the result of a reasoning chain
valuation

client or not recommend it as preferred client. The final
decision needs to be made by the end user who selects
the result from the drop-down menu and clicks the
‘Final Decision’ button. This will save the system user’s
preference in the knowledge base.

9 Conclusion and future directions

In this article, we have presented a solution for
enterprise-wide information and knowledge integra-
tion for intelligent decision making. We pointed out

Fig. 15 Interface presenting
integrated knowledge to
facilitate final decision

Inf Syst Front

that the semantic web, while it addresses the issues of
syntactical and semantical heterogeneity of informa-
tion to integrate and benefit the decision support sys-
tem, nevertheless does not address the issue of incom-
plete and conflicting information integration. Several
researchers have attempted to address this issue, but
their efforts have provided a formalism to represent
and handle only individual preferences in the form of
priorities among the conflicting rules. However, DSS
systems are subject to inconsistencies deriving from
multiple sources and multiple users; therefore, it is
not possible to define priorities in advance in order
to resolve conflict among rules derived from multiple
sources/users. This limitation of the current Web-DSS
also prevents enterprises from being able to integrate
knowledge.

In this article, we extend our previous work on
Web@IDSS to make its results shareable in AIF for-
mat. We also provide formal syntax and semantics for
Web@KIDSS. The Web@KIDSS is equipped with ar-
gumentative reasoning and an argumentation scheme
for knowledge integration. Therefore, Web@KIDSS
is capable of handling incomplete and contradictory
knowledge in the form of reasoning chains published
over the web or enterprise intranet by diverse Web-
DSS or Web@IDSS. The major contributions of this
article are as follows:

1. Extension to Web@IDSS with AIF reification re-
sulting in sharing of results in the form of AIF-
compliant reasoning chains.

2. Formalization of syntax and semantics for knowl-
edge integration in Web@KIDSS.

3. A proposed conceptual framework for represent-
ing, reasoning and integrating incomplete and
conflicting reasoning chains for knowledge integra-
tion in Web@KIDSS.

4. Design and development of algorithms for knowl-
edge integration and their validation through pro-
totype development.

Our future work will be primarily along the following
lines:

1. Enterprise environments are becoming increas-
ingly complex, competitive and dynamic. The busi-
ness policies change dynamically and frequently
to keep pace with the competitive nature of busi-
ness environments. However the actual processes
carried out in day-to-day business environments
are not always in consonance with the new busi-
ness policies (Wang et al. 2009). This situa-
tion is more profound in the case of manag-
ing dynamic processes where environment changes

rapidly (Pesic and van der Aalst 2006). This de-
mands for an enterprise business process modeling
methodology that automatically builds models and
executes task specific models in response to user
queries (Ba et al. 1997). Such an approach should
be flexible enough for e-Collaboration for business
process modeling amongst different participants to
address new challenges such as business process
mergers. To address above mentioned challenge,
we aim to design and develop policy-centric in-
formation system by extending the argumentation
based intelligent decision making techniques pro-
posed in this paper. We also aim at to introduce
a graphical language to represent different process
constructs and their linkages in a process model.

2. In the past decade or so, numerous machine learn-
ing methods have been used to automatically learn
and recognize complex patterns and make intel-
ligent decisions based on enterprise data. One of
the common attributes of these machine leaning
methods is that their working and functionality is
constrained by the amount of input data. How-
ever, the scale of the enterprise data has increased
mani-fold (leading to the concept of Big Data),
thereby in many cases rendering the underlying
machine learning algorithms either incapable of
managing such large and ever increasing data, or
too slow for decision making. In our further work
we intend to enhance the current generation of
machine learning techniques with argumentation
formalisms described in this paper. In such cases,
the arguments from experts are considered during
mining of enterprise data.8 Such work will lay down
foundations for performing large-scale analytics on
big data in an enterprise. Such an approach would
make use of cloud platforms.

References

Alaranta, M., & Henningsson S. (2008). An approach to analyz-
ing and planning post-merger is integration: insights from
two field studies. Information Systems Frontiers, 10, 307–319.

Antoniou, G., & Bikakis, A. (2007). Dr-prolog: a system for de-
feasible reasoning with rules and ontologies on the semantic
web. IEEE Transactions on Knowledge and Data Engineer-
ing, 19(2), 233.

Antoniou, G., Baldoni, M., Bonatti, P.A., Nejdl, W., Olmedilla,
D. (2004). Rule-based policy specification. In Yu, T., Jajodia,
S. (Eds.), Secure data management in decentralized systems
(pp. 169–216, Vol. 33). US: Springer

Antoniou, G., Damasio, C.V., Grosof, B., Horrocks, I.,
Kifer, M., Maluszynski, J., Patel-Schneider, P.F. (2005).

8http://www.ailab.si/martin/abml/

http://www.ailab.si/martin/abml/

Inf Syst Front

Combining rules and ontologies: A survey. Tech. Rep.
IST-2004-506779 REWERSE Deliverable I3-D3, Techni-
cal Report IST506779/Linköping/I3-D3/D/PU/a1. Linköping
University

Ba, S., Lang, K.R., Whinston, A.B. (1997). Enterprise decision
support using intranet technology. Decision Support Systems,
20(2), 99–134. doi:10.1016/S0167-9236(96)00068-1, http://www.
sciencedirect.com/science/article/pii/S0167923696000681.

Baroni, P., Fogli, D., Guida, G. (1998). Modeling argumentation
in practical reasoning: a conceptual analysis of argument life
cycle. In 7th international conference on information process-
ing and management of uncertainty in knowledge-based sys-
tems (pp. 1790–1797). Paris.

Bassiliades, N., Antoniou, G., Vlahavas, I. (2004). Dr-device: A
defeasible logic system for the semantic web. Principles and
practice of semantic web reasoning (pp 134–148).

Benkö, T., Lukácsy, G., Fokt, A., Szeredi, P. (2003). Information
integration through reasoning on meta-data. In AI moves to
IA: Workshop on artif icial intelligence, information access,
and mobile computing.

Berners-Lee, T. (2000). Semantic web - xml2000, W3C. http://www.
w3.org/2000/Talks/1206-xml2k-tbl/. Accessed 1 March 2012

Bex, F., Prakken, H., Reed, C. (2010). A formal analysis of the
aif in terms of the aspic framework. In 3rd international
conference on computational models of argument.

Bhatt, M., Flahive, A., Wouters, C., Rahayu, W., Taniar,
D. (2006). Move: a distributed framework for material-
ized ontology view extraction. Algorithmica, 45, 457–481.
doi:10.1007/s00453-006-1221-2, http://portal.acm.org/citation.
cfm?id=1165166.1165175.

Buccella, A., Cechich, A., Fillottrani, P. (2009). Ontology-driven
geographic information integration: a survey of current ap-
proaches. Computers & Geosciences 35(4), 710–723. Geo-
science Knowledge Representation in Cyberinfrastructure.

Carlsson, C, & Turban, E. (2002). Dss: directions for the next
decade. Decision Support Systems, 33(2), 105–110.

Ceccaroni, L., Cortés, U., Sànchez-Marrè, M. (2004). Ontowedss:
augmenting environmental decision-support systems with
ontologies. Environmental Modelling & Software, 19(9),
785–797. Environmental Sciences and Artificial Intelligence.

Chesnevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C.,
Simari, G., South, M., Vreeswijk, G., Willmott, S. (2006a).
Towards an argument interchange format. The Knowledge
Engineering Review, 21(4), 293.

Chesnevar, C.I., Maguitman, A.G., Simari, G.R. (2006b).
Argument-based critics and recommenders: a qualitative
perspective on user support systems. Data & Knowledge En-
gineering, 59(2), 293.

Cheung, K., & Cheong, M.P. (2007). Intelligent on-line decision
support tools for market operators. In International con-
ference on intelligent systems applications to power systems,
2007 (pp. 1–6).

Chua, W.W.K., & Goh, A.E.S. (2010). Techniques for discov-
ering correspondences between ontologies. International
Journal of Web and Grid Services Archive, 6(3), 213–243.
doi:10.1504/IJWGS.2010.035090.

Fan, X., Toni, F., Hussain, A. (2010). Two-agent conflict resolu-
tion with assumption-based argumentation. In Proceeding of
the 2010 conference on computational models of argument:
Proceedings of COMMA 2010 (pp. 231–242). Amsterdam,
The Netherlands: IOS Press.

Flahive, A., Rahayu, W., Taniar, D., Apduhan, B. (2005). A
distributed ontology framework in the semantic grid envi-
ronment. In 19th international conference on Advanced In-
formation Networking and Applications, 2005. AINA 2005
(pp. 193–196, Vol. 2). doi:10.1109/AINA.2005.19.

Flahive, A., Taniar, D., Rahayu, W., Apduhan, B.O. (2009).
Ontology tailoring in the semantic grid. Computer Standards
& Interfaces, 31(5), 870–885. doi:10.1016/j.csi.2008.
03.016, http://www.sciencedirect.com/science/article/pii/
S0920548908000330. Specification, Standards and Information
Management for Distributed Systems.

Garcia, A.J., & Simari, G.R. (2004). Defeasible logic program-
ming: an argumentative approach. Theory and Practice of
Logic Programming, 4(1+2), 95–138.

Garcia-Crespo, A., Ruiz-Mezcua, B., Lopez-Cuadrado, J.L.,
Gonzalez-Carrasco, I. (2011). Semantic model for knowl-
edge representation in e-business. Knowledge-Based Sys-
tems, 24(2), 282–296. doi:10.1016/j.knosys.2010.09.006.

Godden, D.J., & Walton, D. (2007) Advances in the theory of ar-
gumentation schemes and critical questions. Informal Logic,
27, 267–292.

Grosof BN, Gandhe MD, Finin TW (2002) Sweetjess: Translat-
ing damlruleml to jess. In Proceedings of the international
workshop on rule markup languages for business rules on the
semantic web.

Hurt, C.D. (1998). Nonmonotonic logic for use in information
retrieval: an exploratory paper. Information processing &
management, 34(1), 35.

Iyad Rahwan, C.R. (2009). The argument interchange format,
argumentation in artif ical intelligence. Springer.

Janjua, N.K., & Hussain, F.K. (2011). Web@idss :
argumentation-enabled web-based idss for reasoning over
incomplete and conflicting information. Knowledge-Based
Systems, 32, 9–27. doi:10.1016/j.knosys.2011.09.009, http://
www.sciencedirect.com/science/article/pii/S0950705111002103.

Kartha, N., & Novstrup, A. (2009). Ontology and rule based
knowledge representation for situation management and
decision support. In Mott, S., Buford, J.F., Jakobson, G.,
Mendenhall, J.M. (Eds.), Intelligent sensing, situation man-
agement, impact assessment, and cyber-sensing. SPIE.

Katie Atkinson, T.B.C. (2008). Abstract argumentation scheme
frameworks, artif icial intelligence: Methodology, systems, and
applications (Vol. 5253/2008). Berlin/Heidelberg: Springer.

Kim, J., Kim, P., Chung, H. (2011). Ontology construction using
online ontologies based on selection, mapping and merging.
International Journal of Web and Grid Services, 7, 170–189.

Kontopoulos, E., Bassiliades, N., Antoniou, G. (2011). Visual-
izing semantic web proofs of defeasible logic in the DR-
DEVICE system. Knowledge-Based Systems, 24(3), 406–419.
doi:10.1016/j.knosys.2010.12.001.

Lee, T.B. (2003). The semantic web and challenges. W3C. http://
www.w3.org/2003/Talks/01-sweb-tbl/. Accessed 1 March 2012.

Lee, T.B. (2005). Www 2005 keynote. W3C. http://www.w3.
org/2005/Talks/0511-keynote-tbl/. Accessed 1 March 2012.

Lee, T.B. (2006). Artificial intelligence and the semantic
web: Aaai 2006 keynote. W3C. http://www.w3.org/2006/
Talks/0718-aaai-tbl/Overview.html. Accessed 1 March 2012.

Letia, I., & Groza, A. (2008). A planning-based approach for
enacting world wide argument web. In Badica, C., Mangioni,
G., Carchiolo, V., Burdescu, D. (Eds.), Intelligent distrib-
uted computing, systems and applications, studies in computa-
tional intelligence (pp. 137–146, Vol. 162). Berlin/Heidelberg:
Springer.

Liu, S., Duffy, A., Whitfield, R., Boyle, I. (2010). Integration of
decision support systems to improve decision support per-
formance. Knowledge and Information Systems, 22, 261–286.

Loui, R.P. (1998). Process and policy: Resource-bounded non-
demonstrative reasoning. Computational intelligence, 14(1), 1.

March, S.T., & Hevner, A.R. (2007). Integrated decision support
systems: a data warehousing perspective. Decision Support
Systems, 43(3), 1031–1043. Integrated Decision Support.

http://dx.doi.org/10.1016/S0167-9236(96)00068-1
http://www.sciencedirect.com/science/article/pii/S0167923696000681
http://www.sciencedirect.com/science/article/pii/S0167923696000681
http://www.w3.org/2000/Talks/1206-xml2k-tbl/
http://www.w3.org/2000/Talks/1206-xml2k-tbl/
http://dx.doi.org/10.1007/s00453-006-1221-2
http://portal.acm.org/citation.cfm?id=1165166.1165175
http://portal.acm.org/citation.cfm?id=1165166.1165175
http://dx.doi.org/10.1504/IJWGS.2010.035090
http://dx.doi.org/10.1109/AINA.2005.19
http://dx.doi.org/10.1016/j.csi.2008.03.016
http://dx.doi.org/10.1016/j.csi.2008.03.016
http://www.sciencedirect.com/science/article/pii/S0920548908000330
http://www.sciencedirect.com/science/article/pii/S0920548908000330
http://dx.doi.org/10.1016/j.knosys.2010.09.006
http://dx.doi.org/10.1016/j.knosys.2011.09.009
http://www.sciencedirect.com/science/article/pii/S0950705111002103
http://www.sciencedirect.com/science/article/pii/S0950705111002103
http://dx.doi.org/10.1016/j.knosys.2010.12.001
http://www.w3.org/2003/Talks/01-sweb-tbl/
http://www.w3.org/2003/Talks/01-sweb-tbl/
http://www.w3.org/2005/Talks/0511-keynote-tbl/
http://www.w3.org/2005/Talks/0511-keynote-tbl/
http://www.w3.org/2006/Talks/0718-aaai-tbl/Overview.html
http://www.w3.org/2006/Talks/0718-aaai-tbl/Overview.html

Inf Syst Front

Morge, M. (2008). The hedgehog and the fox: An argumentation-
based decision support system. In: Proceedings of the 4th
international conference on Argumentation in Multi-agent
Systems, ArgMAS’07 (pp. 114–131). Berlin, Heidelberg:
Springer-Verlag.

Muthaiyah, S., & Kerschberg, L. (2007). Virtual organization
security policies: an ontology-based integration approach.
Information Systems Frontiers, 9, 505–514. doi:10.1007/
s10796-007-9050-7.

Nguyen, H.Q., Taniar, D., Rahayu, J.W., Nguyen, K. (2011).
Double-layered schema integration of heterogeneous xml
sources. Journal of Systems and Software, 84(1), 63–76.
doi:10.1016/j.jss.2010.07.055. Information Networking and
Software Services.

Nicolicin-Georgescu, V., Benatier, V., Lehn, R., Briand, H.
(2010). Ontology-based autonomic computing for decision
support systems management: Shared ressources alloca-
tion between groups of data warehouses. In 2010 3rd
international conference on Communication Theory, Re-
liability, and Quality of Service (CTRQ) (pp. 233–236).
doi:10.1109/CTRQ.2010.46.

Norta, A., & Eshuis, R. (2010). Specification and verification
of harmonized business-process collaborations. Informa-
tion Systems Frontiers, 12, 457–479. doi:10.1007/s10796-
009-9164-1.

Noy, N.F. (2004). Semantic integration: a survey of ontology-
based approaches. SIGMOD Record, 33, 65–70.

Osei-Bryson, K.M., & Ngwenyama, O. (2008). Decision models
for information systems management. Information Systems
Frontiers, 10, 277–279.

Palau, R.M., & Moens, M.F. (2009). Argumentation mining: the
detection, classification and structure of arguments in text.
In ICAIL ’09: Proceedings of the 12th international con-
ference on artif icial intelligence and law (pp. 98–107). New
York, NY: ACM.

Pesic, M., & van der Aalst, W. (2006). A declarative approach
for flexible business processes management. In Eder, J.,
& Dustdar, S. (Eds.), Business process management work-
shops, lecture notes in computer science (Vol. 4103, pp 169–
180). Berlin/Heidelberg: Springer. doi:10.1007/11837862_
18.

Power, D.J. (2002). Decision support systems: Concepts and re-
sources for managers. Greenwood Publishing Group.

Power, D.J., & Sharda, R. (2009). Decision support systems. In
Nof, S.Y. (Ed.), Springer handbook of automation (pp. 1539–
1548). Berlin/Heidelberg: Springer.

Rahwan, I., Zablith, F., Reed, C. (2007a). Towards large scale
argumentation support on the semantic web. In AAAI’07:
Proceedings of the 22nd national conference on artif icial in-
telligence (pp. 1446–1451). AAAI Press.

Rahwan, I., Zablitha, F., Reed, C. (2007b). Laying the founda-
tions for a world wide argument web. Artif icial intelligence,
171(10–15), 897.

Salam, A. (2007). Design and implementation of semantic deci-
sion support system for supplier performance contract mon-
itoring and execution: Integrating description logics, seman-
tic web rules and service-oriented computing in the context
of the extended enterprise. In Americas conference on infor-
mation systems.

Seng, J.L., & Kong, I.L. (2009). A schema and ontology-aided
intelligent information integration. Expert Systems with Ap-
plications, 36, 10,538–10,550.

Shim, J.P., Warkentin, M., Courtney, J.F., Power, D.J., Sharda,
R., Carlsson, C. (2002). Past, present, and future of decision
support technology. Decision Support Systems, 33(2), 111–
126.

Silverman, B.G., Bachann, M., Al-Akharas, K. (2001). Implica-
tions of buyer decision theory for design of e-commerce
websites. International Journal of Human-Computer Studies,
55(5), 815–844.

Suguri, H., Ahmad, H.F., Pasha, M., Khalid, N. (2008). Foun-
dation for autonomous semantic grid. USA: Nova Science
Publications.

Toni, F. (2007). E-business in argugrid. In Veit, D., & Alt-
mann, J. (Eds.), Grid economics and business models, lec-
ture notes in computer science (Vol. 4685, pp. 164–169).
Berlin/Heidelberg: Springer.

Torroni, P., Gavanelli, M., Chesani, F. (2009). Arguing on the
semantic grid. USA: Springer.

Toulmin, S.E. (2003). The uses of argument. Cambridge Univer-
sity Press.

Vahidov, R., Kersten, G.E. (2004). Decision station: situating
decision support systems. Decision Support Systems, 38(2),
283–303.

Walton, D. (2009). Argumentation in artif icial intelligence, chap
argumentation theory: A very short introduction (pp. 1–24).
Springer.

Wang, H.J., Zhao, J.L., Zhang, L.J. (2009). Policy-driven process
mapping (pdpm): discovering process models from busi-
ness policies. Decision Support Systems, 48(1), 267–281.
doi:10.1016/j.dss.2009.08.006, http://www.sciencedirect.com/
science/article/pii/S0167923609002012, Information Product
Markets.

Xue, Y., Ghenniwa, H., Shen, W. (2009). Ontological view-
driven semantic integration in collaborative networks. In
Camarinha-Matos, L., Paraskakis, I., Afsarmanesh, H.
(Eds.), Leveraging knowledge for innovation in collaborative
networks, IFIP advances in information and communication
technology (Vol. 307, pp. 311–318). Boston: Springer.

Yang, X., Bo, Z., Bei, Z. (2009). Research on semantic decision
support system. In WRI World congress on computer sci-
ence and information engineering, 2009 (Vol. 5, pp. 687–691).
doi:10.1109/CSIE.2009.364.

Zarefsky, D. (2009). Argumentation: The study of ef fective
reasoning (2nd Edn., Vol. 2009). Northwestern Univer-
sity. URL: http://www.teach12.com/ttcx/CourseDescLong2.
aspx?cid=4294.

Zhou, J., Yang, H., Wang, M., Zhang, R., Yue, T., Zhang, S.,
Mo, R. (2010). A survey of semantic enterprise information
integration. In: 2010 3rd International Conference on Infor-
mation Sciences and Interaction Sciences (ICIS) (pp. 234–
239).

Naeem Khalid Janjua is a PhD student at School of Information
Systems, Curtin University, Perth, WA. He received his Master
Degree in Information Technology from NUST School of Elec-
trical Engineering and Computer Science, Islamabad, Pakistan.
His areas of interests are Web-based decision support systems,
Argumentation based applications, Semantic Web and Artificial
Intelligence technologies.

Farookh Khadeer Hussain received the Bachelor of Technology
degree in computer science and computer engineering; the M.S.
degree in Information Yechnology from the La Trobe Univer-
sity, Melbourne, Australia; and the Ph.D. degree in Information
Systems from Curtin University of Technology, Perth, Australia,
in 2006. He is currently a Faculty member at School of Software,
Faculty of Engineering and Information Technology, University
of Technology, Sydney, Ultimo, NSW. His areas of active re-
search are trust, reputation, trust ontologies, data modeling of

http://dx.doi.org/10.1007/s10796-007-9050-7
http://dx.doi.org/10.1007/s10796-007-9050-7
http://dx.doi.org/10.1016/j.jss.2010.07.055
http://dx.doi.org/10.1109/CTRQ.2010.46
http://dx.doi.org/10.1007/s10796-009-9164-1
http://dx.doi.org/10.1007/s10796-009-9164-1
http://dx.doi.org/10.1007/11837862_18
http://dx.doi.org/10.1007/11837862_18
http://dx.doi.org/10.1016/j.dss.2009.08.006
http://www.sciencedirect.com/science/article/pii/S0167923609002012
http://www.sciencedirect.com/science/article/pii/S0167923609002012
http://dx.doi.org/10.1109/CSIE.2009.364
http://www.teach12.com/ttcx/CourseDescLong2.aspx?cid=4294
http://www.teach12.com/ttcx/CourseDescLong2.aspx?cid=4294

Inf Syst Front

public and private trust data, semantic web technologies and
industrial informatics. He works actively in the domain of making
informed business decisions (business intelligence) through the
use of trust and reputation technology. He is interested in the
application of trust and reputation as a technology, as a business
analysis and intelligence tool, and the applications of trust and
reputation to various domains.

Omar Khadeer Hussain received his PhD degree in Computer
Science in 2008 from Curtin University. Since 2008, he is cur-
rently a Research Fellow with the School of Information Systems
at Curtin University. His research interests are in the area of Risk
Assessment and Management, Trusted Computing, Informed
Decision Support Systems. He is a member of the IEEE and the
IEEE Computer Society.

Defeasible Reasoning based Argumentative Web-IDSS for Virtual Teams (VTs)

Naeem Khalid Janjua
Digital Ecosystems and Business Intelligence Institute

Curtin University of Technology
Perth, WA

Email: naeemkhalid.janjua@curtin.edu.au

Farookh Khadeer Hussain
Digital Ecosystems and Business Intelligence Institute

Curtin University of Technology
Perth, WA

Email: farookh.hussain@cbs.curtin.edu.au

Abstract—The Web-based intelligent decision support system
(Web-IDSS) is pivotal for a Virtual Team (VT) to successfully
execute business-related tasks. The current generation of Web-
IDSS built on top of semantic web technologies for VTs lacks
the capability to provide decision support when underlying
information is incomplete and/or contradictory. In this article,
we address this limitation of current Web-IDSS through
defeasible logic based argumentation formalism. The proposed
Web-IDSS uses a hybrid reasoning approach: forward chaining
(data-driven) for the construction of arguments over incomplete
information, and backward chaining (goal-driven) for conflict
identification and resolution with explanation. The proposed
Web-IDSS adheres to web standards and publishes the outcome
of argumentative reasoning in Argument Interchange Format
(AIF).

I. INTRODUCTION AND RELATED WORK

Today, business environments are becoming more com-
plex, competitive and dynamic, demanding that organiza-
tions be more flexible and responsive to environmental
changes. As a result, organizations are establishing Infor-
mation Technology as a primary enabler in order to adapt
to an ever changing competitive environment. One of the
outcomes of such efforts is the establishment of Virtual Team
(VT) to accomplish one or more organizational tasks [1].
Technological support for these virtual teams for collabo-
ration in distributed environments is now a topic of great
interest.
The VT deals with two types of knowledge. The first is

static knowledge composed of facts and ontologies which
remain static over a period of time; this requires monotonic
reasoning based upon open world assumptions to guarantee
the correct propagation of truth. The second category, which
needs special attention, is dynamic knowledge such as
business polices, business contracts etc. that often change
according to business needs and strategies, leading to con-
flicts among business polices. Such dynamic knowledge
that is potentially incomplete and inconsistent needs non-
monotonic or defeasible reasoning [2]. The term ‘defeasible
reasoning’ was coined to mean ‘convincing’ although not
rigorous reasoning as a concept introduced in the philosophy
of law. Defeasible reasoning is a simple rule-based approach
to perform reasoning about uncertain information where a

Figure 1. Trend towards defeasible logic based argumentative Web-IDSS
for VTs

rule supporting a conclusion may be negated or invalidated
with the emergence of new information.
Business policies or contracts are also rule-based state-

ments that are used by organizations to run their business
activities. The importance of explicit, declarative and au-
tomatically executable business rules has been identified by
several researchers [3, 4]. Attempts have been made to apply
defeasible logic based approaches to represent and reason
over dynamic knowledge that potentially is incomplete and
conflicting as depicted in Table I. Although these attempts
are very promising, they define explicit priorities among
business rules at compile time, in order to resolve conflicts
among business rules in advance. Whereas, VT is a source
of defeasible knowledge as it is open by nature and subject
to inconsistencies deriving from multiple sources; therefore,
it is not possible to define priorities in advance among con-
flicting rules. Additionally, in current implementations, the
use of these priorities is usually embedded in the derivation
mechanism and competing rules are compared individually
during the derivation process. In such formalisms, the deriva-
tion notion is bound to one single comparison criterion. In
such a scenario, the explanation of the results is based on
a single criterion only and fails to take into account the
multiple factors important for decision-making in VT.

2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology

978-0-7695-4513-4/11 $26.00 © 2011 IEEE

DOI 10.1109/WI-IAT.2011.168

330

2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology

978-0-7695-4513-4/11 $26.00 © 2011 IEEE

DOI 10.1109/WI-IAT.2011.168

330

Dr-Prolog
[7]

Dr-Device
[8]

Situated
Courteous
logic [9]

Language Prolog JESS JESS
Logic Defeasible

logic
Defeasible
logic

Situated
Courteous
logic

Semantic data RDFS/OWL RDF DAML+OIL
Rules representation RuleML RuleML RuleML
Incomplete knowledge
representation

Yes Yes Yes

Conflict representation Yes Yes Yes
Data-driven reasoning No Yes Yes
Goal-driven reasoning Yes No No
Conflict resolution User defined

priorities
User defined
priorities

User defined
priorities

Explanation Textual Textual Textual
AIF compatibility No No No

Table I
COMPARISON OF DEFEASIBLE LOGIC BASED IMPLEMENTATIONS.

In contrast, if we look at Artificial Intelligence research,
the challenge of incomplete and conflicting knowledge rep-
resentation and reasoning over it in software agents has been
addressed using logic-based argumentation formalism, i.e.
defeasible logic programming (DeLP) [5]. Argumentation
formalisms are defeasible reasoning systems which work
by considering the reasons that lead to a given conclusion
(claim) through a piece of reasoning (the supporting ar-
guments) and potential challenges (counter arguments) for
accepting the conclusion [6]. Argumentation plays a pivotal
role in identifying and organizing what can be justifiably
concluded, and presenting it systematically to human users
or merging it with the justified conclusions of other machines
in the absence of complete or accurate information.
In this article, we identify the shortcomings of DeLP in

the context of providing decision support to a VT and extend
it with data-driven reasoning and make it interoperable with
semantic web standards. We propose defeasible logic based
argumentative Web-IDSS for a VT. The novelty of the sys-
tem is its hybrid reasoning approach: forward chaining (data-
driven) for the construction of arguments, and backward
chaining (goal-driven) for the evaluation of conclusions.
The proposed system provides graphical explanation to the
members of a VT for better understanding and traceability
of results. From the Web-IDSS perspective, such powerful
support systems would be able to carry out reasoning on
data across members of a VT. This is the potential area of
growth and research in Intelligent Web-DSS as depicted in
Figure 1.

II. DEFEASIBLE LOGIC PROGRAMMING
Defeasible logic programming (DeLP)[5] is a general-

purpose defeasible argumentation formalism based on logic
programming, intended to model inconsistent and potentially
contradictory knowledge. A defeasible logic program has the
form ψ= (Π,Δ), where Π and Δ stand for strict knowledge
and defeasible knowledge, respectively. The set Π involves

strict rules of the form P ← Q1 . . . Qn and facts (strict rules
with empty body), and it is assumed to be non-contradictory
(i.e., no complementary literals P and ∼ P can be inferred,
where ∼ P denotes the contrary of P). The set � involves
defeasible rules of the form P �Q1 . . . Qn which stand for
Q1 . . . Qn provide a tentative reason to believe P”. Rules in
DeLP are defined in terms of literals. A literal is an atom
A or the strict negation (∼ A) of an atom. Default negation
(denoted not A) is also allowed in the body of defeasible
rules. For more details about syntax and semantics of DeLP
interested readers are referred to [5] .
DeLP uses the argumentation formalism for the treatment

of contradictory information by identifying conflicting infor-
mation in the knowledge base and applying the dialectical
process to decide which information prevails leading to
conclusion. Therefore in DeLP, in order to decide between
competing conclusions, the arguments that support the con-
clusions are compared. Thus, the comparison criterion is
independent of the derivation process, and could be replaced
in a modular way. Although DeLP addresses the challenge
of incomplete and conflicting knowledge representation and
reasoning, it cannot be used for the development of Web-
IDSS for VT because of following limitations:
1) DeLP uses backward chaining or goal-driven reason-
ing only, whereas most of the reasoning in Web-IDSS
for VTs is primarily data-driven requiring forward
chain reasoning.

2) There is no tool available for VTs to translate business
rules defined in RuleML1 format into DeLP rule
format.

3) There is no tool that provides proof explanation by
graphical representation of reasoning steps and con-
clusion generated by an argumentative reasoner for
traversal by VT members.

III. PROPOSED SYSTEM ARCHITECTURE

In this section, we discuss the proposed system archi-
tecture in detail as depicted in Figure 1. Let us assume
that a virtual team for the Olympic Games is comprised
of the Olympic International Committee (OIC), Organising
Committees for the Olympic Games (OCOG) and host city.
The objective of the virtual team is to make important
decisions about sports activities. These three organizations
have their own particular goals and expectations which
impact on the overall organisation of the sports events. Let
us further assume that the current task of VT members is
to decide "whether or not a scheduled match will be played
in rainy conditions". To accomplish this task, each member
of a VT provides his/her views in form of rules about the
stated task, and with the help of our proposed system, they
reach to a justifiable conclusion.

1http://ruleml.org/

331331

Figure 2. Proposed system architecture of argumentative Web-IDSS for a
VT

The key components of the proposed system architecture
are as follows:

A. View points against a business task
RuleML is an important step to provide a uniform format

for the representation of business rules for a virtual team.
RuleML supports different business rule types via the pre-
defined implies element and allows them to be named
using the pre-defined oid element. RuleML syntax has been
extended to express defeasible rules [10]. All members
of a virtual team define their business rules in RuleML
format and submit them through a graphical user interface
of our proposed system as their point of view against a
certain business task. The important thing to note here is the
assumption that all members of a VT use the same domain
ontology concepts to specify their business rules.

B. Knowledge base
A collection of facts is known as working memory and

collection of rules is known as rule base. A working memory
and a rule base are collectively known as knowledge base.
In the proposed framework, the rule base comprises of strict
rules and defeasible rules. Figure 3 depicts a knowledge base
for a VT. In rule base a business rule takes the following
form [rule identifier] [rule body] [type of rule] [head], where:
• rule identifier : is an identifier or name of the business
rule;

• rule body : is a tuple of predicates. Each predicate is
called as Premise;

• head: a predicate whose instances could be intuitively
considered to be added to the working memory when
the rule is activated during argument construction (de-
fined later on);

• type of rule : system supports two types of rules: strict
rules and defeasible rules. The strict rule is used to

Rule 1 type(X,C)→C(X) Class
Rule 2 subClassof(Sc, C), Sc(X)→C(X) Subclass
Rule 3 objectProperty(X), domain(X, Y),

range(X,Z) →X (Y, Z)
Object Property

Rule 4 objectProperty(X), X(Z, V),
subProperty(X, Y)→Y(Z, X)

subProperty

Rule 5 dataProperty(X), domain(X, Y),
range(X, Z) →X(Y, Z)

Data Property

Rule 6 dataproperty(X), X(Z, V),
subProperty(X, Y)→Y(Z, X)

SubProperty

Table II
RULES FOR TRANSLATION OF OWL/RDF TO DELP FACTS

represent non-negotiable information represented by a
solid arrow such as →. Whereas, a defeasible rule is
used to represent tentative, negotiable information and
is represented by dotted arrow such as ��� .

C. Translation of viewpoints and domain ontology
The proposed system parses and translates the business

rules defined in RuleML notation to DeLP rule format and
saves them in a knowledge base. Table II represents the
ontology schema translation rules which also reside in the
knowledge base to bring semantic interoperability among the
business rules. Let us consider that ‘ground’ and ‘stadium’
are two ontological concepts from the domain ontology such
that ground is subclass of stadium. The working memory
contains ‘ground(perth)’. On execution of Rule 2 depicted in
Table II i.e., ground(X)→ stadium(X) results in addition
the of new fact i.e. stadium(perth), in the working memory.

D. Construction of arguments from view points
To construct arguments from a set of rules and working

memory, forward chain reasoning is carried out which in-
volves a rule engine matching the conditions of the rules in
the rule base against the facts in working memory. For each
match, a rule instance is created and put into the Active rule
set. Once the matching phase is completed, the instances of
all the rules in Active rule are fired. Firing the rule instance
will result in the addition of a new fact to the working
memory and the addition of an instance of rule known as
argument in the Argument Set.
• A label is used to identify the argument.
• A conclusion is known as its claim.
• Ground predicate is known as the premise, supporting
the claim.

A key issue to be noted here is that the new inferred facts
may conflict with the existing knowledge base. The purpose
is to retain conflicting information instead of eliminating it,
in order to obtain a better insight when deciding on business
strategies. Figure 4 represents the updated working memory
and argument set.

E. Conflict detection, resolution and justifiable explanation
Once the argument construction process is complete, the

process of conflict detection, resolution with explanation

332332

Working memory⎧⎨
⎩

ground(perth),rain(monday), day(monday), stadium(perth),
conditionOfLights(perth, good),team(aus),
team(eng), matchSchedule(aus, eng, monday)

⎫⎬
⎭

Rule Base
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[hc1]ground(X), not rain(Y) ��� ∼ groundReady(X)

[ocog1]stadium(X), drainage(X, good), rain(Y)���
groundReady(X)

[hc2]ground(X), conditionOfLights(X, bad) ���
∼ groundReady(X)

[oic1]team(A), team(B), day(Y), matchSchedule(A, B,Y)���
printT ickets(Y)

[ocog2] not stadiumReady(X), day(Y), printT icket(Y)���
∼ rescheduleMatch(Y).

[oic2] not rescheduleMatch(Y), day(Y)→playMatch(Y)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Figure 3. Knowledge base of argumentative Web-IDSS.

Updated Working Memory⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

groundReady(perth), rain(monday), day(monday),
conditionOfLights(perth, good), team(aus), team(eng),
matchSchedule(aus, eng, monday), stadium(perth),
groundReady(perth),
∼ groundReady(perth), printT icket(monday),
rescheduleMatch(monday), playMatch(monday)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Arguments Set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[hc1]ground(perth), not rain(monday)
���∼ groundReady(perth)

[ocog1]ground(perth), drainage(perth, good),
rain(monday)���groundReady(perth)

[hc2]ground(perth), conditionOfLights(perth, bad)
��� ∼ groundReady(perth)

[oic1]team(aus), team(eng), day(monday),
matchSchedule(aus, eng,monday)���
printT ickets(monday)

[ocog2] not groundReady(perth), day(monday),
printT icket(monday)���
∼ rescheduleMatch(monday).

[oci2] not rescheduleMatch(monday),
day(monday)→playMatch(monday)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Figure 4. Updated knowledge base of argumentative Web-IDSS.

phase is initiated. For this purpose, we used a built-in
mechanism of DeLP. We first identify the argument having
a counter-argument. We define counter-argument as:
• Given an argument set, an argument ‘r’ counter-argues
argument ‘s’ if and only if claim of argument ‘r’ is
inconsistent with claim of ‘s’ or claim of argument ‘r’
is inconsistent with the premises of argument ‘s’.

In Figure 4, an argument ‘hc1’ is counter-argument to
argument ‘cocg1’. The system forwards the claim of the
argument to the DeLP engine to construct its dialectical
trees or justification trees as depicted in Figure 5 (Left)
where graphically an argument is represented as (hc1,∼
groundReady(perth)) where hc1 is argument identifier
and ∼ groundReady(perth) is claim of argument. Once

the dialectical tree construction is complete, the nodes in
dialectical trees are marked as either defeated or un-defeated
as shown in Figure 5 (Right) and the DeLP engine return
the results to the system. If the marked dialectical tree is
defeated, then the counter-argument has priority over the
argument and vice versa. Similarly, the system resolves the
remaining conflicts between arguments and their counter-
arguments by passing the argument’s claim to DeLP engine
to acquire its support from the knowledge base. In case,
the marked dialectical tree of both, the argument and its
counter-argument are undefeated, then those arguments are
considered as blocking arguments and the system needs
human intervention to resolve the conflict between them.

F. Conclusion

The last step of an argumentation process is the construc-
tion of a conclusion in the form of a reasoning chains. We
define a supporting argument or sub-argument as:
• Given an argument set, an argument ‘r’ is a sub-
argument of argument ‘s’ if and only if claim of
argument ‘r’ belongs to premise of argument ‘s’.

In Figure 4 an argument ‘oic1’ is supporting argument to
argument ‘ocog2’.
During this process, all sub-arguments with undefeated

dialectical trees are linked together as a reasoning chain.
This process will continue until all possible arguments are
linked up into a reasoning chain. The top argument i.e.
conclusion, of the reasoning chain is called the ‘result’ of the
reasoning chain, and the chain of arguments supporting the
top argument are called to support the conclusion as depicted
in Figure 7. The reasoning chain is always consistent (i.e.,
there is no contradiction in the result and support for the
result). Therefore, for example, groundReady(perth) and
∼ groundReady(perth) will not belong to one reasoning
chain, but each one of them can belong to different reasoning
chains and those reasoning chains represent alternative paths
or choices.

G. Publish conclusion

The Argument Interchange Format (AIF) [11] is an in-
ternational effort to develop a representational mechanism
for exchanging argument resources between research groups,
tools, and domains using a semantically rich language. The
system make use of Argument Interchange Format (AIF) to
export the output of the argumentation process i.e. reasoning
chains, over the web to ensure its interoperability with other
argumentative systems. For annotation of a reasoning chain,
we developed ‘reasoning chain ontology’ on top of the
ArgDF ontology2 and serialized the AIF compliant reasoning
chain in RDF/XML format.

2http://www.argdf.org/source/ArgDF Protege Ontology.zip

333333

Figure 5. Dialectical tree (Left) and marked dialectical tree(Right)

H. Query the knowledge base
The members of a VT can query the knowledge base. The

query consists of a predicate, and can be executed on the
argument set to check the support for the predicate in the
argument set. There are four possible answers to a query.
If the answer is ‘yes’, then the result will be an undefeated
dialectical tree. If the answer is ‘no’, then the result will
be a defeated dialectical tree. If the answer is ‘undecided’,
then the result will be a blocked dialectical tree. If unknown,
then the predicate in the query is not in the language of the
program.

IV. PROTOTYPE DEVELOPMENT AND CONCLUSION
The prototype development of the system is carried on

a machine having Apache Web server version 2.2.11, PHP
version 5.3.0, PHP Tree Graph Ext library3 , MYSQL
database version 5.1.36 and SWI-Prolog installed on it.
We extended the PHP Tree Graph Ext library with certain
extensions to differentiate between fact and claim of a rule,
strict and defeasible inference etc,. The proposed system
provides an interface to members of a VT to submit their
rules against a business task defined in RuleML format.
After translation of rules, the proposed system performs
argumentative reasoning as discussed in Section III.

Figure 7. Graphical representation of a reasoning chain

Figure 7 depicts results of argumentative reasoning in
the form of a graphical reasoning chain and a small pop
window which shows justification for an argument(hc1,∼
groundReady(perth)). We conclude here, by saying that,

3http://download.getabest.com/new/php-tree-graph-ext-222943.html

applications built on top of the proposed work, will provide
more practical, understandable results to members of a VT
for intelligent decision making.

REFERENCES
[1] A. Powell, G. Piccoli, and B. Ives, “Virtual teams: a

review of current literature and directions for future re-
search,” SIGMIS Database, vol. 35, pp. 6–36, February
2004.

[2] N. K. Janjua and F. K. Hussain, “Development of
a logic layer in the semantic web: Research issues,”
Semantics, Knowledge and Grid, International Confer-
ence, pp. 367–370, 2010.

[3] G. Antoniou and M. Arief, “Executable declarative
business rules and their use in electronic commerce,” in
Proceedings of the 2002 ACM Symposium on Applied
Computing, SAC ’02, (New York, NY, USA), pp. 6–10,
ACM, 2002.

[4] H. Boley, “Are your rules online? four web rule essen-
tials,” in Advances in Rule Interchange and Applica-
tions (A. Paschke and Y. Biletskiy, eds.), vol. 4824 of
Lecture Notes in Computer Science, pp. 7–24, Springer
Berlin / Heidelberg, 2007.

[5] A. J. Garcia and G. R. Simari, “Defeasible logic
programming: an argumentative approach,” Theory and
Practice of Logic Programming, vol. 4, no. 1+2,
pp. 95–138, 2004.

[6] J. Dix, S. Parsons, H. Prakken, and G. Simari, “Re-
search challenges for argumentation,” Computer Sci-
ence - Research and Development, vol. 23, p. 8, Mar
2009.

[7] G. Antoniou and A. Bikakis, “Dr-prolog: A system for
defeasible reasoning with rules and ontologies on the
semantic web,” IEEE transactions on knowledge and
data engineering, vol. 19, no. 2, p. 233, 2007.

[8] E. Kontopoulos, N. Bassiliades, and G. Antoniou,
“Deploying defeasible logic rule bases for the semantic
web,” Data & Knowledge Engineering, pp. 116–146,
2008.

[9] B. N. Grosof, M. D. Gandhe, and T. W. Finin, “Sweet-
jess: translating damlruleml to jess,” in Proceedings of
the International Workshop on Rule Markup Languages
for Business Rules on the Semantic Web, 2002.

[10] N. Bassiliades, G. Antoniou, and I. Vlahavas, “Dr-
device: A defeasible logic system for the semantic
web,” Principles and Practice of Semantic Web Rea-
soning, pp. 134–148, 2004.

[11] C. Chesnevar, J. McGinnis, S. Modgil, I. Rahwan,
C. Reed, G. Simari, M. South, G. Vreeswijk, and
S. Willmott, “Towards an argument interchange for-
mat,” The Knowledge Engineering Review, vol. 21,
no. 4, p. 293, 2006.

334334

	FinalThesisWithTitlePage
	titlepage
	FinalThesis

	kbsarticle
	Web@IDSS – Argumentation-enabled Web-based IDSS for reasoning over incomplete and conflicting information
	1 Introduction
	2 Review of literature
	2.1 Fuzzy logic based IDSS
	2.2 Defeasible logic based Web IDSS

	3 Case study
	4 Argumentation
	4.1 Argumentation based IDSS
	4.2 Defeasible logic programming (DeLP) and its limitations

	5 Proposed conceptual framework
	6 Argumentation engine
	6.1 Formal syntax and semantics
	6.2 Argumentative reasoning algorithm

	7 Extensions to defeasible logic programming (DeLP) for Web@IDSS
	7.1 Translation of business rules defined in RuleML to DeLP rules
	7.2 Parsing of Web data defined in RDF/XML into DeLP facts
	7.3 Representation of a reasoning chain in AIF format

	8 Implementation and prototype development
	9 Conclusion and future work
	Acknowledgement
	References

	isf
	Semantic information and knowledge integration through argumentative reasoning to support intelligent decision making
	Abstract
	Introduction
	Review of literature
	Semantic Web-DSS
	Defeasible logic-based Semantic Web-DSS

	Case study
	Argumentation and argumentation schemes
	Argumentation enabled semantic information integration
	Argument interchange format (AIF) reification
	Publication of reasoning chains

	Argumentation-scheme-enabled, argumentation-driven semantic knowledge integration
	Formal syntax and semantics

	Proposed conceptual framework
	Translation of the reasoning chains
	Definition of integration scheme
	Valued recommendation set
	Modelling of reasoning chains
	Application of integration scheme on reasoning chains

	Knowledge integration
	Query the valuated set
	User interface
	Algorithms for knowledge integration

	Implementation and prototype development
	Conclusion and future directions
	References

	wiiat

