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Abstract 

 

Forensic investigations often depend upon the recovery and analysis of physical 

evidence to reconstruct the events surrounding a crime. Though consensus standards 

have been established in this regard, these typically rely on the interpretation of 

complex data by an examiner, leading to apprehensions regarding human error or bias. 

Additionally, there are limited rigorous studies concerning the appropriate handling of 

forensic exhibits to maximise their evidential value. Recent decades have therefore 

seen an increased interest in developing more objective methods for assessing 

evidentiary significance, as well as statistically validated sampling and handling 

procedures. This may be achieved by employing multivariate statistics, or 

chemometrics, to provide objective measures of analytical data using well-established 

statistical protocols. This dissertation describes a series of investigations applying 

chemometrics to various aspects of forensic physical evidence examination, with a 

specific focus on textile fibres, writing inks and explosive residues.  

Microspectrophotometry (MSP) and chemometric pattern recognition were first used 

to conduct simulated “questioned versus known” comparisons on several blue-dyed 

acrylic fibre sets. Fisher’s Exact test was applied to the resultant data, providing a 

quantitative measure of sample similarity or dissimilarity. The majority of fibre sets 

formed distinct groupings on the basis of their overall dye composition, giving a true 

exclusion in 108 of 110 comparisons. Comparison of fibres within the same set 

resulted in a true inclusion in 10 out of 11 scenarios, with the one false exclusion 

attributed to a lack of spectral reproducibility. This methodology, whilst not infallible, 

could thus provide a more objective and statistical basis on which forensic examiners 

can support their conclusions in court. 

Chemometrics with diffuse reflectance visible spectroscopy was then investigated as 

an in situ characterisation method for inks on paper. Analysis of spectra from 35 blue 

ballpoint inks found several to be clearly distinguishable, though others exhibited 

overlap. A subsequent discriminant model resulted in 88.4 % of spectra being correctly 

assigned to the source pen or supplier. This model could be used to generate probative 

information from a questioned document, or could alternatively be utilised as a rapid, 

non-destructive screening method for document examination. 
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Analysis of six ballpoint inks stored under various office conditions found that they 

remained chemically stable for at least 14 months in the dark. Conversely, inks 

exposed to light could exhibit spectral changes within just one week, resulting in 

altered predictions using the chemometric model. This could prove beneficial when 

attempting to detect alterations made to a document using the same pen as the original 

entry at a later date. Multivariate calibration was employed in an attempt to model 

these changes for ink dating purposes, but the estimations afforded by these models 

proved unreliable. Artificial ageing experiments found that both heat and ultraviolet 

light play a role in the ageing process, and that accelerated ageing using these factors 

gives a reasonable depiction of short-term ageing under natural conditions. 

Further work in this area employed a video spectral comparator (VSC) as a means of 

obtaining visible spectra from handwritten ink entries, rather than the larger deposits 

employed previously. The VSC was found to give lower specificity between similar 

inks, with a classification accuracy of only 31.7 % achieved using an independent test 

set. Discriminant models based upon chromaticity values or fluorescence spectra were 

similarly unsuccessful. Fluorescence was then utilised as an initial binary classifier. 

Chemometric analysis was conducted on the visible spectra of fluorescent and non-

fluorescent inks, giving improved separation. Further specificity could be achieved by 

categorising the fluorescent inks according to their observed fluorescence intensity. 

However, as this was done based on personal opinion, a level of human bias could be 

introduced to the results. 

Finally, experimental design was utilised with gas chromatography-mass spectrometry 

(GC-MS) to determine optimum sampling, storage and extraction procedures for the 

recovery of smokeless powder residues from steel surfaces. The optimised protocols 

were successfully applied to post-blast residues deposited on steel witness plates 

through detonation of a pipe bomb device, with a rate of detection exceeding 95 % for 

both nitroglycerin and diphenylamine. These results provide a high level of confidence 

that explosive events involving smokeless powder formulations will be readily 

identified using the suggested parameters. The methodology employed here may also 

be readily applied to a variety of other explosive compounds, and thus assist in 

establishing ‘best practice’ procedures for explosive investigations. 
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1.1 Introduction 

The primary objective of many forensic investigations is the establishment of links 

between persons, places and/or objects of interest. These links are commonly drawn 

and supported using physical, or material, evidence. Many items of physical evidence 

are macroscopic items such as documents, clothing or weapons. However, this 

category also includes microscopic amounts of physical matter commonly referred to 

as ‘trace evidence', which may include fingermarks, soil, glass, paint, hair, fibres, or 

explosive particulates.[1-3] 

Physical evidence often plays a pivotal role in reconstructing the series of events 

surrounding a crime, and may be used to prove or disprove a point in question based 

upon its discernible characteristics. As stated by Paul L. Kirk: 

“Physical evidence cannot be wrong, it cannot perjure itself, it cannot be 

wholly absent. Only human failure to find it, study and understand it, can 

diminish its value.” [4] 

In addition, trace physical evidence can be instrumental in providing evidence of 

association. This value stems from the exchange principle developed by Edmond 

Locard, who posited that physical contact between two surfaces will likely result in a 

cross-transfer of matter between them, however minute.[3, 5] The recovery and analysis 

of these traces may therefore be used to demonstrate direct or indirect contact between 

a perpetrator, victim and/or crime scene. 

An issue arises, however, in the interpretation of physical evidence by forensic 

examiners. Many forensic disciplines, especially those involving pattern evidence such 

as marks or impressions, are primarily reliant on visual comparisons of images or 

chemical data. The subjective nature of these comparisons has led to concerns 

regarding potential human error and cognitive bias. Although this issue has been of 

particular relevance to pattern analysis, it also relates to the “eye-balling” of chemical 

data across a wide range of forensic analyses. This was highlighted in a broadly 

publicised report by the United States National Academy of Sciences (NAS) in 2009, 

which determined that more rigorous protocols were required to guide the subjective 

interpretations relied upon within many forensic disciplines.[6]  
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Following the publication of the NAS report, as well as a similar inquiry conducted by 

the British House of Commons Science and Technology Committee,[7] there have been 

strengthened efforts to establish statistically validated bases for assessing evidential 

value. One such approach is the use of chemometrics; a discipline that employs well-

established statistical protocols to model chemical data. An increasing volume of 

scientific literature has emerged regarding the application of chemometric techniques 

to the discrimination and classification of forensic evidence. Chemometric tools may 

also be used to investigate factors affecting these analyses through the use of 

experimental design methods, which as of yet remain largely underutilised within a 

forensic context. 

This dissertation outlines a program of research examining the application of 

chemometric techniques to the analysis and interpretation of physical evidence, as well 

as studying factors pertaining to its appropriate collection and storage. It is anticipated 

that these studies will assist in developing statistically validated operating procedures 

for forensic investigators. 

1.2 Issues in the interpretation of forensic analytical data 

Examination of physical evidence typically includes the use of various instrumental 

techniques, which generate a large volume of multivariate data in the form of spectra, 

chromatograms or similar output.[8, 9] Interpretation of this data typically relies upon 

visual inspections or comparisons by a forensic examiner.[2, 10] This may prove 

challenging when spectra appear visually similar, or when several samples must be 

compared simultaneously.[11] The visual complexity of the data may also obscure 

trends or relationships between samples that may prove useful to an investigation, 

leading to probative information being overlooked.[12]  

Moreover, it has become increasingly recognised that examiners may be prone to 

cognitive or social biases that have the potential to affect their examinations.[13-15] 

These may arise due to a number of factors, such as the examiner’s prior expectation 

of results, knowledge of investigative details, or predisposition to assist the team that 

has retained their services.[16, 17] This has led to a number of highly publicised cases, 

such as the erroneous association of Brandon Mayfield to the 2004 Madrid train 

bombings, or the flawed testimony provided by FBI hair examiners that resulted in an 

ongoing review of over 30,000 criminal cases.[18, 19]  
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The 2009 NAS report highlighted several issues regarding current interpretation 

protocols relating to forensic evidence. In particular, the report identified the need for 

more rigorous and objective means of evaluating forensic evidence, as well as 

fundamental research regarding accuracy and reliability in forensic disciplines: 

“A body of research is required to establish the limits and measures of 

performance and to address the impact of sources of variability and potential 

bias. Such research is sorely needed, but it seems to be lacking in most of the 

forensic disciplines that rely on subjective assessments of matching 

characteristics.” [6] 

The publication of the NAS report resulted in several initiatives in the United States 

aimed at improving forensic management and practice, such as the establishment of 

the National Commission on Forensic Science as a federal advisory group; formation 

of Organisation of Scientific Area Committees to develop documentary standards or 

guidelines; and attempts within Congress to introduce legislation promoting stronger 

oversight and fundamental research.[20-23] Several studies also emerged examining the 

reliability of current procedures and improved examination protocols in disciplines 

such as fingermark examination;[24-26] bitemark analysis;[27] toolmark comparisons;[28, 

29] shoeprint comparisons;[30] and DNA analysis.[21, 31] 

An increased interest has also been developed in the use of statistical methods as a 

more objective means of assessing and describing forensic evidence, rather than 

comparative descriptions such as a ‘strong’ or ‘weak’ association. One area of interest 

is the use of Bayesian statistics to assign probability values to proposed events, such 

as the likelihood of a recovered fibre originating from a suspect’s garment versus some 

other source. This probabilistic approach, initially used primarily in DNA analysis, has 

also been applied to the forensic comparison of shoeprints, glass fragments and 

ballistics.[32-35] However, calculation of the odds for a given event relies upon 

knowledge of several factors – in the case of a recovered fibre for example, data may 

be required regarding the number of garments produced over a given period, the 

number distributed within a geographical region, and the frequency of garments 

exhibiting properties consistent with those of the recovered sample. Such data is not 

always readily available, leading to debate concerning the applicability of Bayes’ 

theorem to a forensic context.[36-38]  
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1.3 Chemometric techniques 

Emerging in the 1970s, chemometrics is a discipline that uses statistical approaches to 

analyse and model chemical information.[39] These techniques provide objective and 

quantitative measures of collected data, thus addressing concerns of human bias in 

forensic examinations.[11, 40] Furthermore, the use of chemometric methods may reveal 

or explain trends not clearly evident from the raw information alone. As well as 

improving the discrimination of data, this may be vital in generating investigative leads 

or gathering forensic intelligence.[41] 

Chemometric techniques, of which only those used in this work are described here, 

can be divided into three main areas of application. Pattern recognition techniques such 

as principal component analysis (PCA) and linear discriminant analysis (LDA) are 

frequently applied to the discrimination and classification of samples, whilst 

calibration methods such as partial least squares regression (PLSR) are suited to the 

quantitative prediction of sample properties.[42-44] Finally, experimental design 

techniques such as central composite designs (CCDs) may facilitate the design and 

optimisation of experimental procedures.[45, 46]  

1.3.1 Principal component analysis (PCA) 

A common objective of pattern recognition is to identify latent trends within a dataset, 

also referred to as unsupervised learning or exploratory data analysis. This is often 

difficult when examining data obtained from analytical techniques, which may 

generate hundreds to thousands of variables for any given sample. PCA reduces the 

dimensionality of data by transforming the original set of correlated variables into 

orthogonal variables referred to as principal components, or PCs.[12, 42, 47] Each 

successive PC is calculated to describe the maximum proportion of remaining 

variance, such that the majority of information is retained within the first few PCs. The 

number of useful PCs is therefore much fewer than the number of original variables. 

A graphical representation of this process is shown in Figure 1.1 for a simplified 

dataset containing three variables. Samples of the dataset can be represented as data 

points in a feature space described by the initial variables; X, Y and Z. Each PC is 

determined by finding the direction along which the remaining dispersion of the data 

points is the greatest.[40] Projection of the samples onto the components then allows 

the dataset to be described using the PCs in place of the original variable set. 
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Figure 1.1: Diagram illustrating the generation of the first principal component (PC) for 

a simplified dataset described by variables X, Y and Z (based on Unscrambler® X user 

manual). Dashed lines indicate the projection of each sample onto the PC. 

PCA transforms the original data matrix (X) into separate scores (T) and loadings (P) 

matrices, as given by the following equation: 

X = TP + E 

This may be done through analysis of either the correlation or the covariance matrix.[12, 

42]  The correlation method mean centres and scales the data such that each variable is 

equally weighted, thus accounting for different measurement units or unit variances. 

The covariance method, used throughout this thesis, applies mean centring without 

data scaling. This method is preferred where the measurement units and variance 

magnitudes are comparable across all variables.  

As the majority of variation from the original dataset is retained by the first few PCs, 

multiplying the scores and loadings for these PCs allows the original dataset to be 

approximated. The discrepancy between the actual original data and this 

approximation is described by the residuals matrix (E), which largely encompasses 

random variation or noise within the dataset.[48] The scores of a sample attained against 

any two or three PCs may be used as a new coordinate system, generating a scores plot 

wherein samples sharing similar characteristics are grouped together (Figure 1.2).[49, 

50] The scores plot thus allows clusters of similar samples to be identified, as well as 

the discrimination of samples whose scores are substantially different.  



 

 

Page | 7 

 

Figure 1.2: 3-dimensional PCA scores plot of infrared spectra acquired from a large 

population of automotive clear coats, showing the grouping of samples according to their 

country of vehicle manufacture. 

Additionally, the PCA loadings may be examined to identify how variables of the 

original dataset are weighted against a particular PC (Figure 1.3). Variables with 

highly positive or negative loading values are significant in determining a sample’s 

score along that component.[47, 51] PCA hence not only allows the separation of 

samples, but can reveal the basis for this separation according to the underlying 

features of the sample. 

 

Figure 1.3: PCA loadings plot for infrared spectra acquired from a large population of 

automotive clear coats, showing wavenumber regions correlated with each PC. 
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1.3.2 Discriminant analysis (DA) 

Following the identification of sample groupings within a dataset, it is often of interest 

to develop classification models (supervised learning) to assign future samples to a 

corresponding group. DA is applied to datasets with pre-specified groupings to build 

a discriminant function, expressed as a combination of input variables, such that the 

ratio of between-group to within-group variance (known as the Fisher ratio) is 

maximised.[41, 52, 53] Where it is assumed that the covariance matrices of the classes are 

equal, such that the separating surface between the classes is linear, this method is 

specifically referred to as linear discriminant analysis (LDA). 

As the sample size of each group must exceed the number of variables, DA is often 

performed after data reduction techniques such as PCA, with the first few PCs being 

substituted in place of the original variable set.[11, 54] The subsequent model is then 

used to reclassify the samples of the training data (re-substitution), providing a 

percentage rate of correct classification.[55] It should be noted that the use of the same 

data to both build and evaluate the model often leads to over-optimistic predictions of 

its performance.[40, 54] For this reason, a more rigorous test of the model’s predictive 

efficacy should be obtained through cross-validation procedures using separate 

training and testing data. 

The most frequent form of cross-validation is the leave-one-out method, in which a 

single sample is removed from the dataset and a discriminant function constructed 

from the remaining data. The resultant model is used to predict a classification for the 

test sample, and the process then reiterated for every sample in the dataset.[12, 56] A 

variant is the bootstrap, also known as leave-p-out validation, in which a number (p) 

of samples are randomly omitted as a test set during each repetition.[12, 54] In both of 

these methods, the overall predictive ability is calculated as the average correct 

classification rate across all iterations. The most robust and reliable validation method 

is test set validation, wherein the dataset is divided into mutually exclusive training 

and validation sets.[11, 57] The training set should ideally comprise approximately two 

thirds of the original data and is used to construct the model, with the test or validation 

set then being used to evaluate its performance.[58] By utilising independent data to 

define and assess the model, this form of validation provides a more realistic indication 

of the model’s predictive capability.[40, 56, 57] 
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1.3.3 Partial least squares regression (PLSR) 

For datasets consisting of predictor (X) and response (Y) variables, the relationship 

between the X and Y matrices can be modelled using regression techniques. Where 

both the predictors and responses are quantitative properties, these methods are 

referred to as calibration. The development of calibration models is valuable in 

allowing predictions to be made of unknown sample parameters based on their related 

and directly measurable properties, though as with pattern recognition, deriving 

relationships between a large quantity of variables often proves challenging.  

PLSR addresses this problem by reducing the original variable set into a lesser number 

of combined variables or factors, in a similar fashion to PCA.[57, 59] These factors are 

calculated such that the covariance between X and Y is maximised, i.e. greater weight 

is applied to predictor variables that are highly correlated with response, under the 

assumption that these will be more accurate for predictive purposes.[40, 42, 50] This is in 

contrast to other multivariate calibration methods such as principal component 

regression, which apply heavier weighting to predictors that show the greatest amount 

of variation, regardless of whether this variation is related to a change in response.[40] 

1.3.4 Central composite design (CCD) 

Although pattern recognition and regression methods are valuable tools for data 

interpretation, the results are often highly dependent on the initial data quality.[40] The 

appropriate design of experimental procedures is thus of utmost importance. A CCD 

is one of several methods commonly used in response surface methodology; a 

collection of techniques aimed at modelling the relationships between multiple 

explanatory factors and a dependent response in a minimal number of experiments.[46, 

60] This data can be used to determine optimal factor settings that will provide an 

optimal response, as well as assessing potential factor interactions.  

A CCD is derived from a two-level factorial design; wherein each factor variable has 

two discrete levels (‘low’ and ‘high’ settings) and experimental runs comprise all 

possible combinations of levels across all factors.[11, 61] This is augmented with 

replicated centre points, in which all factors are set to a median value; and a set of axial 

(or star) points. The axial points are identical to the centre points, with the exception 

of a single factor that will take on values both above and below the median.[45, 60, 62]  
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The purpose of the axial points is to allow the detection and modelling of any curvature 

in the response surface. This cannot be achieved using the simpler factorial designs. 

The distance of the axial points from the centre value, termed α, will determine the 

specific model design as shown in Figure 1.4. Selection of the axial points to extend 

past the factorial space (α > 1) will result in a circumscribed CCD, whereas a design 

with axial points falling within the factorial range (α < 1) is termed inscribed.[63-65] 

Although a circumscribed design covers a larger investigative range, an inscribed 

design may be needed if variable settings outside of the factorial levels are not readily 

or safely achievable.[61]  

Alternatively, the axial points may be chosen such that the low and high values are 

equal to the factorial points (α = 1), giving rise to a face-centred design.[61, 66] Unlike 

circumscribed or inscribed designs, a face-centred CCD is non-rotatable, i.e. it does 

not provide a uniform prediction error across the investigated range.[65] On the other 

hand, as there are only three rather than five levels to be investigated per factor, a face-

centred design requires substantially fewer experimental runs. Additionally, a face-

centred design is well suited to scenarios where variable settings between or beyond 

the factorial points are not practicable. 

 

Figure 1.4: Schematic comparison of a circumscribed, inscribed and face-centred central 

composite design for two continuous factors. 

1.4 Chemometrics in forensic science 

Recent decades have seen an increased volume of research applying chemometric tools 

to forensic disciplines. This section provides a broad survey of chemometric 

applications to various forms of forensic physical evidence, including illicit drugs, 

documents, explosives, paints, fibres and soils. 
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1.4.1 Drugs and pharmaceuticals 

A large proportion of research concerning the forensic application of chemometrics 

has focussed on drugs of abuse. Early work in this field was largely concerned with 

batch comparisons and impurity profiling of illicit drugs for the purpose of gathering 

forensic intelligence.[67-76] This remains a key area of interest, with several studies over 

the last decade using chemometrics for the qualitative and quantitative analysis of 

illicit drugs such as amphetamine-type stimulants, opiates and cocaine.  

1.4.1.1 Amphetamine-type stimulants 

Andersson et al. employed partial least squares discriminant analysis (PLS-DA) and 

statistical distance metrics to identify linked samples of amphetamine analysed by gas 

chromatography mass spectrometry (GC-MS).[77] The resulting discriminant models 

were able to successfully identify linked and non-linked samples, in addition to 

distinguishing those synthesised by different routes. However, no quantitative 

information concerning sample composition or similarity was derived. Proof-of-

concept research by Goh et al. instead used field-portable attenuated total reflectance 

Fourier Transform infrared (ATR-FTIR) spectroscopy with PLSR to quantify solid 

mixtures containing methylamphetamine, glucose and caffeine, with predicted 

concentrations of these components typically within 6 % w/w of known values.[78]  

Similar work by Hughes et al. on a larger sample set resulted in models able to quantify 

samples containing as little as 0.3 % w/w methamphetamine.[79] The ability of this 

model to distinguish methamphetamine from structurally similar drugs is yet to be 

determined. 

1.4.1.2 Opiates 

Research by Moros et al. utilised diffuse reflectance near-infrared (DR-NIR) 

spectroscopy and PLSR to quantify heroin in seized illicit street drugs, resulting in the 

accurate quantitation of validation samples ranging from 6 – 34 % w/w purity.[80] 

However, it should be noted that the validation set consisted of only 10 samples, and 

no replicate spectra were acquired to gauge the predictive reproducibility. Turner et 

al., using FTIR spectroscopy, achieved successful and reproducible separation of 

heroin samples originating from three different poppy cultivars.[81] This work was also 

able to identify and distinguish between five component opiates of the poppy heads, 

though only morphine could be reliably quantified. 
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In addition to spectroscopic methods, more recent studies have utilised inductively 

coupled plasma (ICP) as a more sensitive method of analysis based upon elemental 

composition. Chan et al. applied ICP-MS to street heroin samples seized in Malaysia, 

identifying two separate classes of samples.[82] It was noted, though, that class 

similarities did not necessarily indicate batch linkages, as the profiled elements could 

have been introduced from contaminant sources in separate distribution chains. Later 

work by Liu et al. employed the same technique to distinguish opiate samples 

originating from the Golden Crescent and Golden Triangle; Asia's two principal areas 

of illicit opium production.[83] Ten elements and seven elemental ratios were found to 

markedly differ between samples originating from the two regions, and a subsequent 

discriminant model gave a 97 % prediction accuracy of 175 validation samples. 

1.4.1.3 Cocaine 

Dujourdy et al. studied the source determination of hydrochloride cocaine samples 

based upon the headspace profiling of residual solvents.[84] Cluster analysis was largely 

able to separate samples seized in Bolivia, Peru or Columbia, with a limited capacity 

to also discriminate between hydrochloride (salt) and base forms of cocaine. Separate 

studies by Rodrigues et al. and Groberio et al. on Brazilian seizures were able to 

reliably distinguish between salt and base samples based upon their IR spectra, with 

the latter also establishing PLSR models for the quantification of cocaine and selected 

common adulterants.[85-87] Monfreda et al., while not providing quantitative analysis, 

applied PCA to FTIR spectra to again separate base and salt forms, and visually 

distinguish pure samples from those adulterated with common cutting agents.[88] 

1.4.1.4 Pharmaceuticals 

In addition to illicit drugs, recent studies have also investigated pharmaceutical 

products, particularly in regard to counterfeit medications. Researchers at the 

University of Lausanne have explored several approaches toward counterfeit 

identification and profiling. Roggo et al. employed Raman spectroscopy with support 

vector machine (SVM) models to distinguish between 25 therapeutic product families, 

and postulated that this methodology could potentially be applied to detect counterfeit 

substitutes.[89] Been et al. then utilised NIR and Raman spectroscopy with pattern 

recognition to successfully distinguish six genuine batches of a pharmaceutical 

product from 27 counterfeit seizures.[90]  



 

 

Page | 13 

Dégardin et al. combined the above approaches; using Raman spectroscopy with SVM 

models in a two-step method to detect counterfeit products and compare them against 

a known reference database.[91] The resulting methodology successfully discriminated 

counterfeit seizures from genuine products, and identified several seizures of similar 

chemical profiles. An external validation set of generic brand medications was also 

recognised as being distinct from both the brand-name medications and existing 

counterfeit products. 

More recent work by Custers et al. utilised ATR-FTIR spectroscopy to characterise 

brand-name, generic and counterfeit erectile dysfunction medications, with PCA 

enabling discrimination based on the active pharmaceutical ingredients.[92] Although 

k-nearest neighbours classification and regression tree analysis were unsuccessful in 

classifying the majority of spectra, soft independent modelling of class analogy 

(SIMCA) provided 100 % discrimination of counterfeit tablets from both genuine and 

generic brand products. 

1.4.2 Document analysis 

Despite the increasing trend toward electronic communication and transactions, 

physical documents are still widely used in financial, legal and personal matters.[93] An 

array of research has hence examined the application of chemometrics to various 

aspects of forensic document analysis. 

1.4.2.1 Paper 

Kher et al. utilised infrared spectroscopy techniques with pattern recognition tools to 

distinguish between 14 white or yellow paper substrates.[94] PCA of spectra collected 

using ATR-FTIR spectroscopy was able to distinguish almost 68 % of possible 

pairings, while the analysis of diffuse reflectance infrared Fourier transform spectra 

gave 100 % discrimination using cross-validation. An approach by Sarkar et al. 

employed statistical correlation measures and t-testing with laser-induced breakdown 

spectroscopy (LIBS) to match 10 unknown paper substrates with a known database.[95] 

100 % correct identification was achieved; although as these substrates were all 

acquired from a single source, the applicability of the method to a wider range of 

substrates is not yet established. 
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1.4.2.2 Writing inks 

In addition to paper, several studies have been conducted regarding the 

characterisation of writing inks. The majority of these articles have focussed on blue 

ballpoint pens; one of the most widespread types of writing instrument. The successful 

discrimination and classification of blue ballpoint inks using secondary ion or ICP 

mass spectrometry,[96, 97] vibrational spectroscopy,[98-102] chromatographic methods,[99, 

103, 104] ultraviolet-visible (UV-Vis) spectroscopy,[105, 106] and image processing [107] 

have been described in the open literature. 

Of particular interest, Denman et al. conducted surface analysis of ballpoint inks on 

paper using time-of-flight secondary ion MS, providing in situ analysis of both organic 

and inorganic components with no interference from the underlying substrate.[97] This 

was able to discriminate 41 out of 45 pairs of inks (sourced from seven different pen 

models), and in one case was able to distinguish between separate batches of the same 

pen. Braz et al. employed Raman spectroscopy for the non-destructive, in situ analysis 

of over 300 pens, representing 38 pen models sourced from 12 known brands.[101]  

This was successful in distinguishing between inks of different brands, models or 

batches, as well as identifying the main colourants present. Later work used Raman 

mapping with multivariate curve resolution to generate images of pen ink crossings, 

resulting in the correct sequence of ink application being identified in over 60 % of 

cases.[102] 

A smaller volume of research has also been published on the characterisation of black 

writing inks. da Silva et al. employed PLS-DA to distinguish 55 inks of six different 

types based on their visible spectra, and demonstrated the applicability of this method 

in a casework scenario to identify the pen type, brand and model used on several pages 

of a questioned document.[108] Work by Adam et al. used UV-Vis spectroscopy and 

PCA to distinguish 25 black ballpoint inks,[109] and later analysed a subset of these 

pens in pairwise comparisons by luminescence spectroscopy, resulting in 60 % of 

handwritten samples being successfully discriminated.[110] Silva et al. employed NIR 

hyperspectral imaging to identify alternations made to documents by the obliteration 

or adding of text.[111] This methodology was able to identify 82 % of added text 

forgeries, and 85 % of instances in which crossed lines were deposited using different 

inks.  
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1.4.3 Explosives and related materials 

Explosive events have become of increasing concern over recent decades, with a large 

number of high-profile incidents resulting in mass civilian casualties. Chemometrics 

can provide a rapid means of assessing the large volumes of data generated from an 

explosives investigation, as well as distinguishing key signatures of various explosive 

materials. 

1.4.3.1 Low explosives and propellants 

In a series of three articles, Bueno et al. described the identification and discrimination 

of gunshot residues (GSR) using a combination of Raman and FTIR data.[112-114] The 

first of these employed NIR Raman microspectroscopy to differentiate GSR particles 

originating from different calibre ammunition.[112] Differentiation algorithms based on 

SVM and PLS-DA resulted in 9 mm and 0.38 calibre residues being successfully 

distinguished with only one misclassified spectrum. In the second paper, Raman and 

FTIR data were combined into a single dataset to improve statistical discrimination, 

yielding increased sensitivity and specificity compared to the original method.[113] 

Finally, automated Raman microspectroscopic mapping was used as a novel approach 

for GSR detection on adhesive tape.[114] Validation tests resulted in true positive rates 

of 85 % for organic residues and 90.4 % of inorganic residues, and a size detection 

limit of 3.4 µm was proposed. 

Ceto et al. demonstrated a system for the identification of subjects involved in firearm-

related incidents based on electroanalysis with chemometric data treatment. This 

approach was successfully able to distinguish subjects with no GSR exposure, 

secondary exposure, and exposure related to the loading and firing of ammunition. 

Steffen, using energy dispersive X-ray (EDX) and ICP-MS, was able to separate 15 

primers from different ammunition brands based on their elemental and isotopic 

composition. Fernandez de la Ossa et al. took a broader approach, using NIR 

hyperspectral imaging with PLS-DA to successfully distinguish black powder, 

smokeless powders, nitrocellulose and ammonium nitrate residues in handprints.[115] 

This holds potential as a non-invasive technique for explosives security screening, 

although limits of detection and the potential impact of skin contaminants are still 

under investigation. 
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1.4.3.2 High explosives 

Several authors have examined the analysis of explosives using chemometrics in 

combination with laser-induced spectroscopy or emission techniques;[116-122] 

electrochemical analysis;[123-125] vibrational spectroscopy;[126-128] ion mobility 

spectrometry;[129, 130] or isotope ratio mass spectrometry.[131]  

Gottfried et al. demonstrated the detection of cyclotrimethylene trinitramine (RDX) 

and non-explosive residues on various surfaces using LIBS and PLS-DA.[119] Models 

were constructed for each substrate based on nine peak intensities and 20 peak ratios, 

acquired from a 25 m distance. A detection rate of at least 90 % was achieved on all 

surfaces, though non-explosive residues on wood or travertine gave false positive rates 

exceeding 10 %. A combined model incorporating all substrates gave a true positive 

rate of 88.6 % and false positive rate of 12.7 %, with almost all false positives 

originating from wood, travertine or cardboard. Despite the issues encountered with 

these surfaces, the ability of LIBS to acquire spectra from a distance of several metres 

makes this a highly promising method for the remote detection of explosives. 

Ceto et al. described the simultaneous determination of five nitro-containing explosive 

compounds using cyclic voltammetry.[123] Voltammetric responses were pre-processed 

using discrete wavelet transform and the resulting coefficients analysed by PCA, 

distinguishing the pure components from five commercial mixtures. An artificial 

neural network was constructed to individually quantify RDX, trinitrotoluene (TNT) 

and pentaerythritol tetranitrate (PETN) in each mixture, yielding highly accurate 

estimates for both the training and validation sets. It was suggested that this 

methodology could be expanded to peroxide explosives such as triacetone triperoxide 

(TATP) that may prove challenging to analyse using traditional detection techniques. 

Buxton and Harrington examined the use of ion mobility spectrometry with 

multivariate mixture analysis to distinguish PETN and cyclotetramethylene tetranitrate 

(HMX) residues from potential interferents encountered during airport baggage 

screening.[129] Modification of the instrument to allow temperature programming 

yielded greater sensitivity and selectivity in comparison to standard thermal 

desorption; however, the analysis time was increased from 5 to 20 seconds. This could 

potentially be problematic during peak periods when the throughput demanded for 

luggage screening is extremely high. 



 

 

Page | 17 

1.4.3.3 Adhesive tapes 

In addition to post-blast residues, valuable information may be obtained from other 

components of an explosive device such as tape wrappings. Goodpaster et al. 

employed PCA and discriminant analysis (DA) to characterise 67 electrical tape rolls 

from the reference collection of the Bureau of Alcohol, Tobacco, Firearms and 

Explosives (ATF), according to their surface texture and elemental composition.[132] 

36 classes were identified within the dataset, to which samples could be assigned with 

up to 94 % accuracy. A subsequent study employed FTIR spectroscopy and DA to 

classify 72 tape rolls to their nominal brand based on spectra acquired from the tape 

backing and adhesive, with accuracy rates of up to 99 %.[133] This model was 

additionally utilised to correctly associate two fragments of blast-damaged tape from 

a detonated pipe bomb to their respective brands of origin. 

1.4.4 Fire debris 

Each year, deliberately lit fires cause significant damage to people, property and the 

environment. Various studies have thus explored the use of chemometrics to extract 

key information from fire debris analysis, as reviewed by Martín-Alberca et al.[134] Of 

particular interest, Sinkov et al. applied PLS-DA and SIMCA classification to the GC-

MS data acquired from 220 casework arson samples.[135] Chromatograms were first 

aligned based on a spiked ladder of perdeuterated n-alkanes, with variable selection 

and model optimisation performed using a lab-written program. This resulted in all 55 

validation samples being correctly assigned as either gasoline-containing or gasoline-

free, although no determination could be made regarding the type of gasoline used or 

any other classes of accelerant present.  

Research by Bodle and Hardy employed solid phase microextraction (SPME)-GC and 

SIMCA to distinguish five classes of accelerants, with a cross-validation accuracy of 

97.2 %.[136] Waddell similarly utilised several multivariate methods to distinguish 

ignitable liquid classes based upon their GC-MS total ion spectra. An initial approach 

using quadratic DA resulted in a 70.9 % validation accuracy based on samples 

produced in laboratory and field-test burns.[137] A subsequent article evaluated SIMCA 

as an alternative classification scheme compared to inspection by an examiner. It was 

found that whilst the examiner achieved a 90.5 % classification accuracy compared to 

79.1 % using SIMCA, the false positive rate also increased from 8.9 % to 15.0 %.[138] 
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Chemometric methods have also been used to discriminate accelerants within a class 

according to their refining process, brand or other distinguishing features.[139-145] 

Monfreda and Gregori for example were able to separate 50 unevaporated gasoline 

samples of five brands based on GC-MS determination of their aromatic compound 

content.[143] For two brands, it was additionally possible to link the chemical 

characteristics of samples to the crude oil employed. Balabin et al. were also successful 

in separating classes of liquid gasoline according to their refining site, refinery stream 

or octane rating using NIR spectroscopy and nine multivariate classifiers.[139] 

A limitation when establishing chemometric classifiers for arson investigations is the 

potential impact of sample weathering or degradation. Additionally, the analysis of 

‘neat’ samples does not take into account the various matrix interferences found in 

casework samples. Baerncopf et al. thus developed a methodology to associate post-

burn ignitable liquid residues to the corresponding neat liquid, with discrimination 

from matrix interferences.[146] Six ignitable liquids were burned on carpet, extracted 

using passive headspace extraction and analysed by GC-MS. PCA resulted in the six 

liquids being discriminated based upon their alkane and aromatic content, while 

Pearson product moment correlation coefficients were able to correctly associate all 

residues to their neat liquid equivalent.  

Turner and Goodpaster subjected simulated samples containing gasoline to weathering 

and microbial degradation in soils prior to analysis by GC-MS and PCA.[147] Volatile 

components were found to be susceptible to weathering, while mono-substituted 

aromatics or long-chain alkanes were most affected by microbial action. Highly 

substituted aromatics were found to be most resistant to weathering or degradation, 

and hence these compounds can be suggested as ideal targets for analysis. 

1.4.5 Paint 

Paint coatings are applied to many manufactured articles in order to protect or 

aesthetically improve the item’s surface. Subsequently, paint chips and smears are 

commonly encountered as forensic transfer evidence, and their analysis may prove 

essential in obtaining investigative leads. 
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1.4.5.1 Architectural paint 

Muehlethaler et al. analysed 34 red household paint samples using both FTIR and 

Raman spectroscopy combined with unsupervised chemometric analysis.[148] PCA of 

the FTIR data was able to distinguish samples based on their binder type (alkyd or 

acrylic resin) and presence or absence of calcium carbonate, whilst Raman 

spectroscopy differentiated samples according to their pigment composition. The same 

authors later applied FTIR with supervised and unsupervised methods to analyse 74 

red, green and blue spray paints.[149] Iterative PCA was able to discriminate over 90 % 

of samples in each category upon inspection of the scores plot, and SIMCA models 

gave an approximately 95 % classification accuracy of a separate validation set. 

Chemometric methods have also proved a valuable tool in the analysis of paints used 

in artworks.[150-153] Of particular interest, Rosi et al. combined PCA with reflection 

micro IR spectroscopy to map cross-sectioned paint from simulated ancient easel 

paintings. This methodology permitted characterisation of the layer sequence 

according to the inorganic pigments and organic binders present in each layer. 

Although these studies were originally conducted from an art provenance and 

conservation standpoint, the established methodology could potentially be applied to 

the forensic investigation of art forgery. 

1.4.5.2 Automotive paint 

Liszewski et al. and Mendlein et al. were able to identify broad classes of automotive 

clear coats based on their UV microspectrophotometry (MSP) or micro Raman spectra, 

although these could not be correlated to the make, model or manufacturing year of 

the source vehicles.[154, 155] Later studies by Maric et al. employed FTIR and Raman 

spectroscopy with pattern recognition to discriminate the clear coat or primer surfacer 

layers from a range of Australian and international vehicles.[156-158] This ultimately 

revealed 19 classes related to the vehicles’ manufacturer, model and in some instances 

specific year ranges or manufacturing plants. Further work established that the 

presence of post-manufacture coatings or long-term environmental exposure could 

cause erroneous identifications when relying solely on analysis of the upper clear coat, 

though these samples could be identified as atypical.[159, 160] Nevertheless, it was 

suggested that the full paint layer sequence be collected where possible, as analysis of 

the lower clear coat or underlying layers could still provide reliable information. 
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Several studies by Lavine et al. investigated the use of genetic algorithms to match 

automotive clear coats against the IR spectral library of the Paint Data Query 

database.[161-166] Successful discrimination was made between 2000 – 2006 model 

Chrysler and General Motor vehicles according to their assembly plant, allowing 

identification of the model, line or manufacturing year of the source vehicles. 

However, as the samples utilised in this study originated solely from North American 

manufacturing plants, the methodology currently has limited applicability within an 

international context. 

1.4.6 Hairs and fibres 

Two of the most frequently encountered forms of evidence in forensic investigations 

are hairs and fibres. The wide range of potential colours or morphologies can make 

these forms of evidence highly discriminating, and thus of high forensic interest.  

Barrett et al. investigated the discrimination of red-dyed hair samples based upon their 

UV-Vis MSP absorbance spectra.[167] Hierarchical cluster analysis identified three 

clusters of samples that were visually consistent with different shades of red. PCA 

identified the same groupings, and inspection of the loadings plot suggested that this 

separation was based on differences in the intensity of absorbance peaks related to both 

the hair and the dye. Discriminant analysis yielded an 89.1 % classification accuracy 

based on cross-validation, and 75 % using an external validation set. Additionally, it 

was found that successive washing of the hair samples led to a significant loss of dye 

colour within three weeks of application, which could lead to incorrect classifications. 

Chemometric methods have also been applied in several studies to discriminate textile 

fibres.[168-176] Causin et al. utilised pyrolysis GC-MS with PCA to differentiate 

colourless polyacrylonitrile-based fibres of similar morphological features.[168] The 

sample set comprised 36 fibres acquired from 11 manufacturers, with fibres from 

certain manufacturers differing by batch, manufacturing plant, or intended end-use. 

Fibres from one manufacturer were able to be uniquely identified based on the 

presence of methyl methacrylate as a co-monomer. The remaining samples were 

divided into two clusters according to the presence or absence of vinyl acetate, 

although no further separation according to any categorical factors was achieved. 
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Morgan et al. applied PCA and LDA to analyse a database of over 5,000 MSP spectra 

acquired from approximately 500 dyed textile fibres.[175] Both UV-Vis absorbance and 

fluorescence spectra were found to provide discriminating information, depending on 

the fibre set under analysis. In general, however, UV-Vis spectroscopy was determined 

to be the best single discriminating technique, allowing 78.9 % of fibres to be 

differentiated. It should be noted that in this study, all fibres of a particular colour were 

compared simultaneously, whereas casework scenarios more commonly utilise 

pairwise comparisons between a recovered fibre and one from a known source. It is 

thus possible that pairwise comparisons of this sample set would have led to improved 

discrimination between similar fibres. 

1.4.7 Soils 

Soil particulates may yield probative information in both criminal and environmental 

forensic investigations. There have hence been a number of studies applying 

chemometrics to discriminate or classify soils of different origins.[177-183] Thanasoulias 

et al. were able to distinguish soils collected from five different sites due to differing 

relative concentrations of aromatic groups in their fulvic and humic acid fractions, with 

an 85.0 % classification accuracy.[177] Dragović and Onjia described the classification 

of soils originating from 15 locations in Serbia and Montenegro, by applying PCA to 

radionuclide data collected by gamma-ray spectrometry.[178] An overall 86.0 % correct 

classification was achieved, on par with results achieved by Thanasoulias et al. 

Bonetti and Quarino were able to separate soil samples collected from 12 New Jersey 

state parks based on their particle size distribution, pH and organic content.[182] 

Chemometric analysis was initially performed solely on the particle size data, with 

error rates then found to decrease with the inclusion of the remaining data. Final error 

rates of 33.3 % and 3.3 % were obtained for soils collected during the summer and fall 

seasons respectively, with the high error rate of the former attributed to the collection 

of samples at 15 metre intervals. This indicates a high level of heterogeneity even 

amongst soils within a relatively limited geographical area, which may prove 

challenging when establishing the provenance of a questioned soil sample. 
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1.4.8 Other transfer evidence 

1.4.8.1 Impressions 

As discussed previously, the NAS report recommended the “raising of standards for 

scientific examination of all forms of physical evidence”. This could be argued as 

especially important for disciplines such as impression evidence, which currently rely 

on direct visual comparisons between recovered (questioned) and known reference 

samples. Petraco et al. reported the use of chemometrics to evaluate the ‘uniqueness’ 

of shoe impressions related to accidental mark or wear patterns.[184] Partial impressions 

left by five shoe pairs of the same brand and style, worn by a single person over  

30-day periods were converted into feature vectors based on the number and location 

of any accidental marks. The vectors of 116 impressions were then subjected to PCA 

and discriminant analysis to assign each impression to the corresponding shoe pair, 

resulting in cross-validation accuracies of 77 % to 100 %. 

A similar methodology was later applied to the statistical discrimination of toolmark 

impressions.[29] An image processing program was used to convert the striation marks 

left by nine different screwdrivers into binary feature vectors, with PLS-DA and PCA-

SVM then employed to match each screwdriver to its corresponding impression. The 

classification performances of each model were assessed through cross-, leave-one-

out and bootstrap validation, yielding classification accuracies of 97 % or greater with 

both classifiers. 

1.4.8.2 Biological materials 

A number of recent studies have reported the use of chemometric methods for the 

detection, identification or discrimination of bodily fluids. Sikirzhytski et al. used 

confocal Raman microscopy with discriminant analysis to differentiate between blood, 

semen and saliva; while Sikirzhytskaya et al. applied NIR Raman spectroscopy to 

discriminate mixtures of semen and blood from their pure components.[185, 186] 

Edelman demonstrated the capability of visible reflectance hyperspectral imaging with 

chemometric mixture analysis for the enhanced visualisation of blood stains on 

fabric.[187] This method was found to be effective even for diluted blood stains on black 

material, provided that a minimal concentration of 25 % whole blood was present. Li 

et al. attempted to estimate the age of equine bloodstains (employed as an analogous 

material for human blood) based on their visible reflectance MSP spectra.[188]  
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Initial results produced a correct classification rate exceeding 90 %; however, this was 

obtained using a single blood deposit for both training and test purposes, with only 10 

replicate spectra making up each set. The correct classification rate fell to 54.7 % when 

using an external test set obtained from a second bloodstain. 

Exploratory chemometric tools have also been utilised to investigate the composition 

of latent fingermark deposits. Girod and Weyermann used GC-MS and cluster analysis 

to classify fingermarks from 25 donors into ‘poor’ or ‘rich’ lipid categories.[189] 

Fingermark replicates of selected donors were tested as a validation set, with 86 % 

being correctly classified. It was proposed that this model could be exploited for 

research purposes in order to select ideal donors for given compounds of interest. Frick 

et al. later employed PCA to examine the lipid composition of fingermarks collected 

from over 100 donors.[190] Although variations between different donors were 

apparent, no correlation to specific donor traits could be discerned. 

1.4.8.3 Glass 

Zadora and Brozek-Mucha applied cluster analysis with scanning electron microscopy 

(SEM)-EDX to differentiate glass samples into use-type groups based on their 

elemental content.[191] Employing a logarithmic transformation of selected element 

concentrations revealed three clusters consistent with the three glass types (car 

headlamp, car window or container) under examination, with only four objects lying 

outside of these clusters. A later study described the use of naїve Bayes classifiers and 

SVM models to separate glass samples originating from car or building windows and 

those from bulbs or headlamps.[192] Classification accuracies of 90 % or greater were 

achieved across ten training and validation sets using both classification methods.  

1.4.8.4 Cosmetics 

An emerging area of interest in forensics is the examination of cosmetic products. 

Kulikov et al. employed wavelength-dispersive X-ray fluorescence spectrometry for 

the elemental analysis of 39 cosmetic powders.[193] Cluster analysis and PCA were able 

to clearly discriminate between samples possessing traditional ingredient or mineral-

based formulations, and also distinguish specific manufacturers of the latter. 

Salahioglu et al. later demonstrated the use of Raman spectroscopy to discriminate 

lipstick samples deposited on textile fibres, cigarette butts and paper tissues.[194]  
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Thirty spectra each of ten different lipsticks were subjected to PCA and k-nearest 

neighbours classification, attaining accuracy rates up to 98.7 %.  

1.4.9 Future directions and challenges 

As evident from the literature, chemometric methods show great potential for assisting 

examiners in several fields of forensic science. However, there is a great deal of further 

work to be done before these methods can be routinely implemented in forensic 

laboratories. One such challenge lies in the appropriate evaluation of model 

performance. For studies in which the primary objective is to differentiate between 

classes of samples, model performance is typically assessed based on the percentage 

of samples correctly assigned to their expected class. However, high classification 

accuracies are not necessarily an indicator of good discrimination, as ‘correct’ 

assignations may arise purely by chance. If the sample size under consideration is 

relatively small, this may cause the overall classification accuracy to become greatly 

inflated, thus over-estimating the model’s capabilities.[195, 196] 

Similarly, the performance of regression models is frequently judged based on the 

correlation coefficient, r, with the assumption that a higher r implies better quality of 

the regression line. It is important to note that while this value indicates the strength 

of the linear relationship between two variables, it does not provide evidence of 

causality. If a sufficiently high number of variables are considered, there is a 

reasonable likelihood that some of these variables will be randomly correlated over a 

limited range. Consequently, the probability of spurious correlations increases as the 

number of measured variables approaches the number of samples analysed, again 

leading to false optimism regarding the model’s potential.[196] 

There is also a need to define what constitutes ‘good’ classification in chemometric 

models. This is particularly important for methods such as LDA in which samples are 

assigned on the basis of the ‘closest fit’, regardless of whether the sample in question 

is adequately described by the existing data. Previous studies have demonstrated that 

samples assigned to a given class through chemometric techniques may in fact be 

atypical, as revealed upon further inspection of the output data.[156, 159, 160] Despite this, 

there is a tendency to accept the immediate results produced from chemometric 

analyses without critical evaluation as to their quality. 
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In addition, more thorough investigations are required concerning the factors that may 

affect chemometric models. ‘Real’ samples may be subject to ageing or weathering 

prior to their collection as evidence, thus affecting classifications by a model based on 

new samples produced under controlled conditions. Moreover, the amount of 

information that can be discerned using chemometrics is inherently limited by the 

quality of input data. This in turn may be dependent on the strategies utilised in the 

collection, preservation and chemical analysis of forensic exhibits. Experimental 

design techniques have the potential to optimise experimental procedures and thus 

identify ‘best protocols’ for evidence collection and handling. To date, these methods 

have remained largely unexplored within a forensic context. 

Further work is thus required to probe the capabilities and limitations of chemometrics 

as applied to forensic disciplines. The research described in this dissertation takes steps 

in this direction with regards to the forensic analysis of three commonly encountered 

forms of physical evidence; textile fibres, pen inks and explosive residues. 

1.5 Textile fibres 

Textile fibres form the basic unit of yarns, fabrics and other textile materials. They 

may be defined as elongate structures with a length at least 100 times their diameter, 

which also exhibit physical characteristics amenable to textile manufacture such as 

flexibility, strength and durability.[197-199] The use of fibres to create textile products 

can be traced back to at least the 6th or 7th century BC.[200] In modern society, textiles 

account for a vast array of products such as clothing, carpets, linens, and upholstery. 

This prevalence has led textile fibres to be one of the most commonly encountered 

forms of forensic trace evidence during criminal investigations. 

The forensic significance of fibres lies in their high tendency to shed and be transferred 

through physical contact.[201, 202] Furthermore, textile fibres can exhibit a vast array of 

physical and chemical characteristics, many of which are selected or designed for use 

in particular end products.[10, 203, 204] In addition to features inherent to the fibre itself, 

many textiles are further modified through the use of colourants and other additives. 

These may include delustrants (usually titanium dioxide) to reduce sheen and improve 

opacity, chemical treatments to adjust properties such as wetting and adhesion, or anti-

static conductors.[203, 205, 206] Variations in these distinguishing features can greatly 

enhance the significance attached to a positive fibre association. 
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1.5.1 Classes of textile fibres 

Textile fibres are most commonly classified according to their origin as either natural 

or manufactured.[198, 207] Natural fibres are derived wholly from plant, animal or 

mineral sources, and exist naturally in their fibrous state. As shown in Figure 1.5, plant 

fibres can be more specifically defined as originating from bast (stem), leaves, seeds 

or fruit; whereas animal fibres may be obtained from wool, hair or secretory glands.[208] 

Manufactured fibres are those which are artificially created through spinning and/or 

extrusion processes, and may be further classified as either derived or synthetic. 

Derived fibres such as rayon are regenerated from natural sources such as cellulose 

(polymeric) or glass (non-polymeric), whilst synthetic fibres such as polyester are 

produced solely from synthetic chemical pre-cursors.[10, 204] 

Fibres may also be discussed in terms of their length.[207, 208] Most natural fibres, with 

the exception of silk, have a finite length and are thus considered staple fibres. Those 

with a continuous or near-continuous length, such as silk and manufactured fibres, are 

instead referred to as filaments. These can be cut into discrete lengths to form 

manufactured staples. Alternatively, fibres may be categorised based upon their 

chemical composition as cellulosic (plant derived), protein (animal derived), 

polymeric (plant derived and synthetic) or inorganic (mineral, glass or metallic).[209]  

 

Figure 1.5: Classification of textile fibres according to source. 
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1.5.2 Forensic analysis of textile fibres 

Forensic fibre examiners typically employ several analytical techniques in sequence 

to characterise various features of the sample. As per guidelines published by the 

American Society for Testing and Materials (ASTM) International and the Scientific 

Working Group for Materials Analysis (SWGMAT), this begins with microscopic 

examination, followed by spectroscopic or chromatographic methods to provide more 

specific information as required.[210-212]  

1.5.2.1 Microscopy 

Initial inspection of fibres begins with visual examination assisted by optical or 

compound microscopy, in order to observe physical characteristics such as colour, 

diameter, or cross-sectional shape.[213-215] This allows many fibres to be easily and 

rapidly distinguished, narrowing the range of fibres required to undergo further 

examination. Polarised light microscopy may then be used to determine the 

birefringence, refractive index and dichroism of a sample.[204, 216] This is often utilised 

for synthetic fibres to determine their generic polymer class, and may also provide 

information regarding the production or finishing of the fibre.[209, 217] Fluorescence 

microscopy can also be employed to distinguish particular dyes or dye combinations 

based on their fluorescent behaviour,[216, 218] while SEM may be utilised to study the 

fibre’s surface morphology or finishing agents.[215, 219]  

1.5.2.2 Colourant analysis 

As discussed above, the colour of a given fibre can be a highly discriminating 

characteristic. Although some colours can be distinguished visually, these assessments 

are subjective and may be affected by metamerism or the examiner’s colour vision.[220, 

221] More objective measurements can be obtained using instrumental methods such as 

MSP, which provides rapid results while leaving the fibre intact.[220, 221] Analysis may 

also be carried out on the dyes themselves using thin layer chromatography (TLC) or 

high performance liquid chromatography (HPLC).[215, 222, 223] While chromatographic 

methods allow the structure of the dye to be determined, these techniques require 

extraction of the dye and are therefore destructive of the sample. 
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1.5.2.3 Infrared and Raman spectroscopy 

Vibrational spectroscopy methods are highly valuable as rapid, non-destructive 

techniques that allow structural information to be derived from a sample without the 

need for extensive sample preparation. IR spectroscopy has long been recognised as a 

useful method for not only identifying dye components, but also identifying the 

polymeric composition of the fibre itself, thus allowing its generic class or sub-class 

to be determined.[224-226] IR also has the added benefit of requiring minimal sample 

preparation, providing high signal-to-noise ratios and requiring only small sample 

sizes.[220] For this reason, IR spectroscopy is frequently employed in forensic 

laboratories for discriminating between optically similar fibres, or as a confirmatory 

technique to microscopic examinations.[220, 227]  

Modern advances in Raman instrumentation have renewed interest in the potential 

application of Raman spectroscopy to fibre analysis. Several recent studies have 

highlighted the ability of Raman spectroscopy to identify or distinguish between dyes 

and/or pigments in coloured textile fibres.[228-232] In addition, the complementary 

nature of Raman and IR spectroscopy may allow an even greater level of 

discrimination to be achieved between otherwise indistinguishable samples.[233, 234] 

Nonetheless, issues remain in regards to the potential fluorescence masking of spectra, 

as well as a lack of sensitivity to minor dye components.[216, 217, 235] As a result, Raman 

spectroscopy has not yet gained widespread use for fibre examination amongst 

practicing forensic personnel.  

1.6 Writing inks 

Ink can be considered as any liquid or semi-liquid material intended for the purposes 

of writing, printing or drawing. The history of ink dates back to ancient times, with the 

process of ink production known in China as early as the 3rd millennium BC.[236] These 

early inks consisted of a solid carbon-glue cake ground and suspended in water, 

stabilised with a binding agent such as shellac or natural gums.[237-239] This basic 

formulation is still employed today in the form of India inks, which are highly popular 

as a drawing ink due to their high colour stability and water resistance.[237] Most 

modern ink formulations however are considerably more complex, having evolved to 

meet specific requirements such as a high colour strength and vibrancy, rapid drying 

time and consistencies amenable to different writing instruments.[238, 240] 
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Most contemporary inks consist of several dyes or pigments carried in a solvent such 

as water, oil, alcohols or glycols.[239, 241] They may also contain a variety of additives 

collectively referred to as the ‘vehicle’. These can include fatty acids and softeners to 

adjust the flow and consistency characteristics; polymeric resins to improve drying; 

biocides to prevent microbial growth; metallic and inorganic pigments to impart novel 

aesthetic effects; and pH modifiers to prevent corrosion to any metal pen 

components.[238, 240, 241] This complexity, while potentially making inks a challenging 

material to analyse, also makes them good candidates for discrimination based on their 

different (and often proprietary) formulations. 

1.6.1 Classes of writing ink 

Writing inks can be broadly classified as either ballpoint or non-ballpoint formulations. 

The writing mechanisms for these inks vary, and as a result each requires specific ink 

properties in order to ensure the proper flow of ink onto a substrate.[240] Ballpoint pens 

have a small steel ball valve at their tip that is able to freely rotate while writing, thus 

collecting ink from the cartridge reservoir and transferring it to the paper surface. 

Consequently, ballpoint inks typically employ dyes as the colourant, as pigments could 

result in clogging of the narrow ball tip. These dyes may constitute up to 50 % of the 

total ink formulation, and are generally contained in an organic solvent based on 

glycols or benzyl alcohol.[242, 243] This imparts greater water resistance and also 

increases viscosity, providing better control over the ink flow.  

Non-ballpoint inks include fountain, felt tip, roller ball and gel inks; the components 

of which vary according to the specific ink type and production period. Early fountain 

pens used iron gall inks produced from iron salts and tannic acids, which were later 

replaced with aqueous solutions of synthetic dyes.[237] Although brighter and more 

attractive in colour, these dyes possessed poor water resistance and were prone to 

fading over time. Modern fountain inks thus contain pigmented dyes such as copper 

phthalocyanine, which exhibits superior permanence.[244] Felt tip and roller ball inks 

are usually water or xylene based; the latter being water resistant; with the addition of 

formamide or glycols to prevent drying of the pen tip.[245] These inks often contain 

metallised dyes for increased light-fastness.[246] Gel inks are a relatively recent 

development, consisting of insoluble pigments suspended in a water-based gel.[239] 
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These inks have a similar appearance to ballpoint inks but are insoluble in both water 

and strong organic solvents, making them particularly challenging to analyse.[247]  

1.6.2 Forensic analysis of writing ink 

The forensic examination of inks follows a similar framework to fibres, with general 

guidelines published by the American Society for Testing and Materials (ASTM) 

International and the Scientific Working Group for Document Examination 

(SWGDOC) outlining a range of analytical methods amenable to ink analysis.[248, 249] 

1.6.2.1 Visual examinations 

As with fibres, ink formulations often contain unique combinations of dyes and 

pigments, making colour a highly discriminating characteristic. Consequently, the 

inspection of inks begins with the determination of ink colour using microscopic 

examinations followed by UV-vis methods, which can provide excellent 

discriminatory power between visually similar samples.[250-253] Alternative light 

sources such as ultraviolet or infrared illumination may then be used to reveal any 

luminescence characteristics of the ink. Visual examination can also identify the type 

of ink present based on morphological characteristics. For example, fluid inks such as 

fountain, roller ball or felt tip will absorb into the paper, and may bleed into the 

surrounding paper upon extended contact with the pen tip.[240] Ballpoint inks by 

contrast are non-absorbent, merely resting on top of the paper surface, but may exhibit 

defects such as ‘gooping’ (excess ink deposition), skips or striations within the ink 

stroke (Figure 1.6).[237] 

 

Figure 1.6: Microscopic image of an ink line on paper showing defects characteristic of 

a ballpoint writing implement; (a) excess ink deposition and (b) skipping of the ink line. 
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1.6.2.2 Infrared and Raman spectroscopy 

Vibrational spectroscopy can be used to characterise not only the dyes of an ink 

sample, but also additives such as solvents or resins. Consequently, these methods can 

provide highly specific information regarding the overall ink composition. Numerous 

studies have illustrated the capability of Raman spectroscopy to distinguish the key 

organic dyes, pigments or additives present in different inks; in some instances also 

allowing the deposition sequence of crossed ink lines to be determined.[101, 254-257] The 

primary drawbacks to this technique are its low sensitivity to components with weak 

Raman scattering, and fluorescence masking caused by certain ink dyes or paper 

substrates.[101, 254] In these instances, IR spectroscopy is an ideal complementary 

method, as weak bands in the Raman spectrum often correspond to strong bands in the 

IR region and vice versa. IR has similarly been shown to have high discriminating 

power for similar ink samples based on their main components, including the 

determination of crossed ink lines.[242, 250, 258, 259] 

1.6.2.3 Chromatographic methods 

Chromatographic techniques such as GC and TLC may be used to separate and identify 

individual ink components. TLC is widely used as it is relatively inexpensive, simple 

to perform and the results can be easily interpreted or compared to an existing 

database.[260-263] GC is also commonly employed to compare organic, volatile 

components such as resins or solvents. Unlike TLC, the use of reference databases has 

limited utility in the GC analysis of inks due to the gradual loss of these volatile 

components following deposition of the ink on paper, thus altering its chemical profile.  

On the other hand, this also makes GC an ideal method for monitoring changes in the 

volatiles content over time, and thus developing dating curves for the age estimation 

of inks. Several examples of such dating curves can be found in the literature.[264-267] 

1.7 Explosives 

An explosion can be defined as a sudden conversion of potential energy into kinetic 

energy, resulting in violent physical disruption of the surrounding environment.[268-270] 

Although these events can result from natural phenomena, they are more commonly 

the result of chemical explosives; compounds or mixtures consisting of a fuel and an 

oxidant that react to produce a large volume of gaseous products.[271, 272]  
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The earliest chemical explosive was black gunpowder; a mixture of sulfur, charcoal, 

and potassium nitrate thought to have been developed in China during the 9th 

century.[273] This remained the only known explosive until the discovery of nitrated 

alternatives such as nitrocellulose (guncotton) and nitroglycerin in the 19th century.[274] 

Today, the ATF lists over 230 explosive materials and mixtures subject to federal 

monitoring and regulation in the United States.[275]  

In recent decades, explosive events have become an increasingly common occurrence 

both in large-scale incidents (i.e. terrorist activity) and also smaller ‘volume crimes’ 

such as theft or vandalism.[276-278] Over the five-year period between January 2008 and 

December 2013, over 1600 bombing events were reported in Australia, and nearly 

6700 in the United States.[279, 280] As a result, the development of new and improved 

methods for the analysis of explosive residues remains a key area of forensic interest. 

1.7.1 Classes of explosives 

Explosive materials are generally classified as ‘low’ or ‘high’ explosives. In low 

explosives such as gunpowders, the oxidant (often atmospheric oxygen) is separate 

from the fuel, causing the reaction to be limited by the rate at which oxygen can be 

supplied to sustain the reaction.[209, 281] These explosives will deflagrate (rapidly burn) 

with velocities up to 1,000 ms-1, but do not generally explode unless restricted within 

a confined volume.[241, 273, 282] High explosives by contrast incorporate fuel and oxidant 

moieties into a single molecule, allowing instant detonation with an extremely rapid 

blast velocity.[204, 209] This produces a supersonic shock wave that causes shattering or 

shearing of objects within the blast radius. 

High explosives may be further classified into primary or secondary charges based 

upon their sensitivity. Primary high explosives are relatively sensitive to detonation by 

shock, friction or other stimuli, and are typically used as primers for more stable 

explosives.[271, 273, 282] Secondary explosives generally do not detonate until subjected 

to the pressure wave caused by a primary charge, and are thus used for military or 

commercial purposes requiring controlled detonation.[272, 283, 284] These explosives are 

especially challenging from a forensic viewpoint, as they leave minimal traces for 

analysis.[285]  
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1.7.2 Forensic analysis of explosives 

In explosive events, much of the potential physical evidence at the scene may be 

destroyed or compromised by the explosive blast. The analysis of residues found at 

the scene may hence be vital in procuring investigative leads. The Technical Working 

Group for Fire and Explosions (TWGFEX) guidelines set out a number of analytical 

techniques for the identification of explosive residues as described below.[286, 287]  

1.7.2.1 Microscopy and microchemical testing 

Initial analysis of explosives begins with a microscopic examination to determine 

physical particle characteristics that may be indicative of a particular explosive.[10, 269] 

This is followed by microchemical testing, in which a small amount of sample is mixed 

with a reagent solution to produce a colour change or the formation of distinctive 

microcrystals.[288, 289] Where bulk amounts of sample are present, testing may also 

involve the observation of burning characteristics such as odour or flame colour.[269] It 

should be noted that these tests are strictly presumptive, and require confirmatory 

identification utilising an alternative analytical method.  

1.7.2.2 Separation methods 

Gas chromatography is one of the most frequently utilised methods for the separation 

and identification of organic explosive residues.[290-293] Several studies have shown GC 

to be a highly sensitive analysis method for explosives such as TNT, TATP, RDX and 

HMX.[294-296] A major drawback, however, is the limited capacity of GC for analysing 

thermally labile or non-volatile compounds such as emulsion explosives.[297, 298] In 

these cases, liquid chromatography may instead be an ideal alternative.[297, 299-302]  

Ion chromatography (IC) was, until recently, considered as the best technique for 

inorganic explosives analysis due to its robustness, reliability, high sensitivity and 

selectivity.[303-305] IC has proven to be readily applicable to improvised or emulsion 

explosives, and coupled IC systems have been shown to allow simultaneous 

separations of anionic and cationic species from a single sample.[306-308] Recent years 

have also seen an increased interest in capillary electrophoresis (CE) as an alternative 

for inorganic analyses due to its simplicity and lower operating costs.[309-311] The 

different ion selectivity provided by CE makes it useful as a complementary technique 

to ion chromatography, while retaining a comparable level of sensitivity.[307, 312]  
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1.7.2.3 Infrared and Raman spectroscopy 

Multiple studies have utilised various forms of IR or Raman spectroscopy for 

explosives analysis, as reviewed by McNesby.[313] IR is an ideal method as it is non-

destructive, applicable to both organic and inorganic analytes, and provides more 

comprehensive structural information than chromatographic methods.[285, 314] A series 

of studies by Banas and co-workers employed FTIR spectroscopy to detect and 

distinguish multiple high explosives in residues collected from various sample 

surfaces.[127, 315, 316] Primera-Pedrozo et al. were furthermore able to detect, distinguish 

and quantify several organic explosives utilising reflection/absorbance infrared 

spectroscopy.[317, 318] IR spectroscopy is also attractive due to its ability to characterise 

non-explosive constituents of explosive formulations, such as stabilisers, plasticisers 

or contaminants.[314] This may be useful in distinguishing different brands of 

commercially produced explosives, or in discriminating plastic or polymer-bonded 

explosives from their explosive components in pure form. 

Various modes of Raman spectroscopy have been used to detect explosives traces from 

clothing or fingermark residues, as well as providing stand-off detection of residues 

where physical contact of the sample with the instrument is either not possible or 

undesirable.[319-322] Recent investigations by Bueno and co-workers have also utilised 

NIR Raman spectroscopy in conjunction with multivariate statistics for the 

differentiation or distribution mapping gunshot residue particles.[112-114] These findings 

may warrant additional investigation into the capabilities of Raman spectroscopy 

applied to explosives investigations. 

1.8 Aims and overview 

Despite a large volume of research concerning the application of chemometric tools to 

forensic examinations, the full capabilities of these techniques are largely 

underutilised. The primary aim of this dissertation is to employ chemometric 

techniques to not only develop more reliable and objective comparison protocols, but 

also identify scientifically rigorous procedures for the collection and handling of 

forensic evidence. This thesis focuses specifically on the analysis of textile fibres, 

writing inks and explosive residues; however, the methodologies developed 

throughout this research are universal and may be applied to other forms of forensic 

physical evidence. 
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This dissertation comprises three main streams of investigation. The first of these, 

described in Chapter 2, examines the use of MSP with chemometrics to improve the 

confidence of "questioned versus known" fibre comparisons. Previous studies to date 

have focussed on the discrimination of several classes of fibres simultaneously, rather 

than the pairwise comparisons more typical of forensic casework scenarios. This work 

also employed Fischer’s Exact Test as a quantitative statistical means of determining 

the similarity or dissimilarity of questioned versus known pairs. 

Chapter 3 utilises conventional diffuse reflectance visible spectroscopy with PCA and 

LDA to characterise a large population of blue ballpoint inks. This chapter additionally 

describes investigations into the ageing of inks under office conditions over a 14 month 

period, and how the resulting compositional changes may affect the generated 

classification model. Further work in Chapter 4 focuses on the re-characterisation of 

the ink set using a video spectral comparator (VSC); an instrument routinely used by 

forensic document examiners, thus allowing the methodology to be more readily 

applied within an operational context. 

Chapter 5 examines the use of chemometric experimental design, in the form of a 

central composite design, to develop statistically optimised sampling and storage 

protocols for the recovery of smokeless gunpowder residues. To date, such studies 

have been limited to the optimisation of instrumental parameters for explosives 

analysis. The use of experimental design to evaluate evidence collection or handling 

procedures remains yet to be explored explored. 
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Chapter 2: Improving the confidence of “questioned 

versus known” fibre comparisons using 

microspectrophotometry and chemometrics 

 

Portions of this research have been submitted for publication in the journal Forensic 

Chemistry: 

G. Sauzier, E. Reichard, W. van Bronswijk, S.W. Lewis and J.V. Goodpaster. 

Chemometrics as a means of improving the confidence of “questioned versus known" 

fiber comparisons using microspectrophotometry. Forensic Chemistry, 2016 

(accepted). 
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2.1 Introduction 

Textiles are encountered in a wide range of everyday products, and so are one of the 

most common forms of trace evidence encountered during forensic investigations. 

Fibres may provide invaluable associative evidence due to their high tendency to shed 

and be transferred through physical contact.[202, 209, 323] In addition, certain classes of 

fibres may prove highly distinctive based on their morphology, composition or colour. 

The latter is a particularly discriminating feature due to the millions of shades that may 

be applied to textiles. More than 7,000 textile dyes and pigments are currently 

produced worldwide, and manufacturers will typically use combinations of these to 

impart specific colours to their products.[209, 324] Furthermore, textile dyeing processes 

are generally carried out in batches, which may exhibit minor variations in dye form, 

shade or strength.[207] 

Colour and colourant analysis thus form a major aspect of forensic fibre examination. 

Although many colours can be distinguished visually, these examinations are 

subjective and may be affected by metamerism or the examiner’s colour vision.[220, 221] 

More objective measurements can be obtained using instrumental methods such as 

microspectrophotometry (MSP), which is favoured as a rapid and non-destructive 

method for characterising the colour of dyed fibres.[217, 325] Various studies have shown 

the capability of MSP to distinguish visually similar coloured fibres based on different 

chromophores in the molecular structure of their dyes.[326-330] In recent years, the use 

of Raman spectroscopy has also become a subject of increasing interest, with several 

studies highlighting its ability to rapidly identify dyes and/or pigments at 

concentrations as low as 0.005 % w/w.[228, 230, 232, 331-333] Raman spectroscopy can be 

utilised as a confirmatory method to MSP, and may provide additional information 

regarding minor dye components not readily evident from MSP spectra.[229, 231] 

The majority of casework fibre examinations involve the comparison of questioned 

samples recovered from a crime scene and a reference material taken from a known 

source. Such “questioned versus known” (Q vs. K) comparisons are conducted by 

analysing the two samples in parallel to determine their physical and chemical 

characteristics.[10, 334] It is generally assumed that if the questioned and known samples 

share a common origin, they will exhibit ‘indistinguishable’ properties.[215]  
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In reality, this depends on the capability of the analytical method to detect and resolve 

features of interest. MSP spectra for example rarely provide a perfect ‘match’, even 

where these spectra originate from the same fibre. ‘Indistinguishable’ thus 

encompasses an acceptable range of variation between spectra of the questioned and 

known samples. Guidelines published by the Scientific Working Group for Materials 

Analysis (SWGMAT) dictate that a spectral inclusion can be made if the questioned 

spectrum lies within the range of the known spectra in terms of the curve shape and 

absorbance values.[335] In this case, the samples are considered to potentially originate 

from the same source. Conversely, if the questioned spectrum falls outside of the range 

produced by the known spectra, they can be excluded as sharing a common source.[335] 

Traditionally, the decision of whether the questioned spectra fall within range of the 

known has relied upon an examiner’s judgement, leading to concerns regarding human 

error or bias.[6] Substantial research in recent decades has hence examined the use of 

chemometrics as a more objective means of comparison.[168, 171-173, 176] Liu for example 

employed Raman spectroscopy with pattern recognition to distinguish cotton cellulose 

fibres based upon their colour, crystalline fraction and strength.[336] Morgan et al. 

described several inter-laboratory studies employing chemometrics with UV-visible 

spectroscopy and fluorescence MSP to discriminate between a large population of 

fibres based on their dye composition and loadings.[175] However, these studies have 

largely focussed on the simultaneous discrimination of several fibres, rather than the 

Q vs. K comparisons more typical of casework. Furthermore, there is presently a lack 

of quantitative measures for assessing sample similarity. The establishment of 

statistical cut-off criteria for an ‘inclusion’ or ‘exclusion’ result would provide an 

additional basis on which forensic scientists could support their findings in court. 

This study investigated the potential use of MSP spectroscopy followed by 

chemometrics to assess the similarity or dissimilarity of several blue-dyed acrylic fibre 

sets. These were selected as an example of a common fibre type and dye combination. 

Chemometric data analysis was conducted on spectra acquired from various fibre pairs 

to simulate Q vs. K comparisons. Quantitative determination of the similarity was then 

made by comparing the resultant data using hypothesis testing. Raman spectroscopy 

was also investigated as an alternative means of analysing the fibre set, to determine 

whether this method could provide additional discrimination to MSP. 
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2.2 Experimental 

2.2.1 Samples 

Fibre samples were provided by the University of South Carolina. The sample 

population comprised eleven bilobal blue acrylic fibre sets with varying combinations 

of cationic (basic) dyes, as shown in Table 2.1. Representative images of each fibre 

set are provided in Figure 2.1. Fibres from each set had varying diameters as indicated.  

Table 2.1: Dye compositions of eleven blue acrylic fibre sets utilised in this study. 

Fibre Set Dye composition Diameter (µm) 

Fibre A Blue 3, Red 18, Yellow 28 17.5 

Fibre B Blue 41, Red 46, Yellow 28, Yellow 29 15 

Fibre C Blue 41, Red 46, Yellow 28 15 

Fibre D Blue 41, Red 29, Yellow 21 21.25 

Fibre E Blue 147, Red 29, Yellow 28 23.75 

Fibre F Blue 3, Blue 147 23.75 

Fibre G Blue 147, Red 46, Yellow 28 18.75 

Fibre H Blue 3, Red 18, Yellow 28 22.5 

Fibre I Blue 41, Red 29, Yellow 28 22.5 

Fibre J Blue 41, Red 18, Yellow 28 25 

Fibre K Blue 3, Red 46, Yellow 28 25 

 

2.2.2 Microspectrophotometry 

Individual fibres from each set were removed and mounted on glass microscope slides 

using Permount mounting media (Fisher Scientific, NJ) for analysis. Spectra were 

acquired from 400 – 800 nm using a CRAIC QDI 2000 microspectrophotometer 

calibrated using NIST traceable standards, operated in transmission mode with 150x 

magnification.a An autoset optimisation, dark scan and reference scan were obtained 

prior to each sample analysis. Ten fibres were analysed with from each set, with five 

spectra taken along the length of each fibre to account for intra-fibre variation. Fifty 

averaged scans at a resolution of 5 nm were obtained for each spectrum. 

                                                
a All MSP spectra were acquired by Eric Reichard, Dana Bors, Wil Kranz and Marie 

Diez at Indiana University-Purdue University, Indianapolis (IUPUI). 
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Figure 2.1: MSP microscope images of blue acrylic fibre exemplars utilised for Q vs. K 

comparisons. 

2.2.3 Raman spectroscopy 

Individual fibres from each set were randomly selected and attached to mirrored 

microscope slides using adhesive tape. Raman spectra were obtained using a Renishaw 

inVia confocal Raman microscope under 100x magnification, equipped with a near-

infrared 785 nm diode laser. Data acquisition and instrument control was performed 

using Renishaw WiRE 3.4 software. Spectra were collected in Synchroscan mode 

between 100 – 3200 cm-1, using 0.1 % laser power and a 10 second exposure. 
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2.2.4 Data analysis 

Data pre-processing and chemometric analysis was conducted using XLSTAT 

(AddInSoft, Paris, France) and Unscrambler® X 10.3 (Camo Software AS, Oslo, 

Norway). All spectra were baseline offset to correct for light scattering and normalised 

to unit vector length to account for variations associated with the fibre diameter or dye 

concentrations. Spectra were then mean-centred and subjected to principal component 

analysis (PCA) using Unscrambler® X 10.3, using the non-linear iterative partial least 

squares (NIPALS) algorithm. 3-dimensional scores plots were generated using the 

scores from the first three principal components (PCs) in order to visualise the sample 

distribution and identify any outliers prior to further analysis.  

The Q vs. K approach was undertaken by conducting PCA on different pairs of fibre 

sets in XLSTAT.b In each case, the “known” sample was defined as a group of 45 

spectra originating from the first nine fibres of the set, while the “questioned” sample 

was defined as the five spectra acquired from the last fibre analysed in the same set (to 

assess true inclusions and false exclusions) or different set (to assess true exclusions 

and false inclusions). As the fibres of each set were selected randomly, the consistent 

use of the last fibre in each set as the questioned sample still provided a randomised 

selection. Discriminant analysis (DA) was performed in XLSTAT on each pair based 

on their PCA scores and using the Mahalanobis distance measure. The covariance 

matrices were assumed to be non-equal based on Box’s M test for equality of 

covariance. The number of PCs used to construct each model was selected according 

to the corresponding scree plots. Prior membership probabilities were calculated from 

the training set to avoid classification biases due to the size difference of the questioned 

and known classes. This approach was repeated for all possible pairs of questioned and 

known samples, yielding a total of 121 comparisons amongst all eleven fibre sets.  

Due to the large size difference between the questioned and known classes, the overall 

classification accuracy of the discriminant model could not be taken as a reliable 

measure of differentiation. As only five of the 50 spectra involved in each comparison 

originated from the questioned sample, an overall classification accuracy of 90 % 

would be obtained even if all five questioned spectra were assigned to the known class.

                                                
b Generation of XLSTAT values performed by Dr. John Goodpaster (IUPUI). 
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The differentiation between each pair was therefore evaluated according to the 

percentage of questioned spectra assigned to the known class, assessing the extent to 

which the questioned sample fell within the boundaries of the known source. In 

addition, the mean membership probability of the questioned sample belonging to the 

known class was recorded. Fisher’s exact test was then utilised to obtain a quantitative 

measure of sample similarity. Contingency tables were constructed from the results of 

the discriminant analysis as shown in Table 2.2. 

Table 2.2: General form of a contingency table generated from a Q vs. K comparison. 

 
Classified as 

“Known” 

Classified as 

“Questioned” 
Total 

Known a b a + b 

Questioned c d c + d 

Total a + c b + d  

 
Fisher’s exact test statistics were calculated in XLSTAT from each contingency table 

according to the following formula, where N is the sum of a, b, c, and d.  

 p = 
(a+b)!(c+d)!(a+c)!(b+d)!

a!b!c!d!N!
  

 

Fisher’s exact test calculates the exact probability associated with observing a given 

combination of data in a contingency table.[337, 338]   This probability is summed with 

all other combinations of a, b, c, and d that could be obtained whilst retaining the same 

marginal totals, generating an overall p-value.[338] The null hypothesis (p > 0.05 at the 

95 % confidence level) is that the rows and columns of the table are independent, i.e. 

there is no association between the classification of spectra as belonging to the 

questioned or known fibres and the actual source of the spectra.[339] This would 

indicate that the questioned and known fibres possess overlapping characteristics, and 

thus could potentially originate from a common source. Conversely, the alternative 

hypothesis (p < 0.05) is that there is an association between the actual and predicted 

fibre sources. This in turn implies that the questioned and known fibres are 

distinguishable, and that they are likely to originate from different sources. 
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2.3 Results and discussion 

2.3.1 Preliminary considerations 

Single textile fibres often exhibit varying levels of dye uptake, particularly where a 

multicomponent dye has been used.[207, 220] This potential heterogeneity both among 

and within individual fibres requires appropriate sampling to obtain representative data 

for the bulk material. For synthetic textiles such as acrylics, SWGMAT guidelines 

recommend the examination of at least five individual fibres, with a minimum of five 

replicate spectra acquired for each.[211, 335] In this study, nine to ten fibres were hence 

utilised in each known set to ensure representative sampling. As it is not always 

possible in casework scenarios to recover multiple fibres from the questioned source, 

single fibres were utilised as the questioned sample to simulate a challenging scenario 

wherein a single fibre is recovered and submitted for analysis alongside a much larger 

known source, such as a garment or blanket. However, the large difference in size of 

the questioned and known classes has the potential to affect the results obtained in this 

study, and this must be considered when evaluating the results. 

MSP spectra from fibre sets A and H were each collected over two consecutive days, 

with the instrument re-calibrated on each date. In a casework scenario, the known and 

questioned fibres would ideally be analysed sequentially on the same day, thus 

minimising the risk of false exclusions due to day-to-day variations in the instrument 

performance. However, this is not always feasible where a large number of samples 

have been submitted for analysis. The re-calibration of the instrument, in addition to 

inherent instrumental variability, may therefore result in spectral deviations that could 

influence the results determined through statistical analysis. 

2.3.2 Fibre characterisation using Raman spectroscopy 

Attempts to characterise the fibre population using Raman spectroscopy proved 

unsuccessful, due to strong sample fluorescence obscuring the entire spectral region 

(Figure 2.2). Sharp signals were observed in several spectra, though these were not 

reproducible across replicate spectra and so were identified as instrumental artifacts. 

The likelihood of fluorescence interference when conducting Raman analysis of dyed 

textiles has been heavily documented in the existing literature.[228, 230, 232, 331-333] This 

issue can potentially be overcome by utilising an alternative laser source, such that the 

wavelength of the laser falls outside of the sample’s fluorescence excitation range.  
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In this instance, as the Raman instrument available for this study was equipped with 

only a single laser, no further investigation could be conducted. The following results 

in this chapter are thus presented solely in reference to data obtained using MSP. 

 

Figure 2.2: Raman spectra acquired from blue-dyed acrylic fibre sets. (*) denotes signals 

identified as instrumental artifacts. 

2.3.3 Correlation between fibre spectra and component dyes 

Chemical structures of the component dyes used in this research are provided in 

Appendix 2.1. Though reference standards for each dye were unavailable, visual 

inspection of the spectra allowed broad correlations to be drawn between these dyes 

and specific spectral features (Table 2.3). 

Table 2.3: Spectral features attributable to dyes contained in the blue acrylic fibres. 

Dye Absorbance peak/s 

Blue 3 Sharp peak at 655 nm, shoulder at 600 nm 

Blue 41 Peak at 625 nm, shoulder at 585 nm 

Blue 147 Broad peak at 600 nm 

Red 46 Peak at 545 nm  

Yellow 21 Peak at 450 nm, possible peak at 425 nm 

Yellow 28 Peak at 450 nm 

Yellow 29 Peak at 450 nm 
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For the purposes of this inspection, the fibre sets were divided into three groups 

according to their primary blue dye: Blue 3 (sets A, F, H and K), Blue 41 (B, C, D, I 

and J) or Blue 147 (sets E and G). Example spectra from each of these fibre sets are 

shown in Figure 2.3. It was noted that spectra from sets A and H appeared visually 

identical, as expected given their identical dye combination. 

Fibres containing Blue 3 exhibited a strong peak at 655 nm with a shoulder at 600 nm, 

consistent with known values for this dye.[340-342] Sets A, H and K also showed minor 

peaks or shoulders at 450 nm consistent with Yellow 28.34, 35 No such peak was noted 

in the spectrum of set F, as these fibres did not contain any yellow dyes. Set K spectra 

exhibited a weak shoulder at 545 nm, possibly due to the presence of Red 46. Red 18, 

present in fibres from sets A and H, gave no distinguishable peak in the corresponding 

spectra. Given the broad, overlapping nature of MSP spectra, it is possible that any 

absorbance band from this dye was masked by the blue or yellow dyes, which would 

likely have been present at much greater concentrations. 

Samples containing Blue 41 showed a corresponding peak at 625 nm, with a shoulder 

at 585 nm. It is likely that the latter resulted in the masking of any red dyes, as none 

of the spectra yielded observable peaks in the red (500 – 550 nm) region. Fibres 

containing Yellow 28 gave the expected absorbance band at 450 nm, with the 

exception of sets I and J, which instead exhibited broad shoulders at ca. 490 nm. It is 

possible that this band shift is due to the overlap or interaction between multiple dyes 

contained in these samples. Fibre set B (containing Yellows 28 and 29) gave a single 

peak in the yellow region indistinguishable from that arising solely from Yellow 28, 

indicating that these dyes give rise to overlapping bands centred around 450 nm. Set 

D gave a weak shoulder at ca. 425, consistent with Yellow 21.[343, 344] 

Both fibre sets containing Blue 147 produced a single broad band at ca. 600 nm. Any 

Blue 147 contained in set F could was hence likely masked by the 600 nm shoulder of 

Blue 3, also explaining why this shoulder exhibited a broader peak width and greater 

intensity relative to the 655 nm peak compared to fibres containing only Blue 3.  

The Blue 147 peak may also be responsible for masking any bands in the red region 

caused by Red 29 (set E) or Red 46 (set G). Set G fibres gave no distinguishable peak 

in the yellow region despite containing Yellow 28, indicating that the concentration of 

yellow dye in these fibres was too low to be detected under the conditions in this study. 
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Figure 2.3: Normalised MSP spectra (averaged across five replicates) for acrylic fibres 

containing (top) Blue 3; (middle) Blue 41; and (bottom) Blue 147 as their primary dye. 
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2.3.4 Distribution of the spectral dataset 

PCA was employed to reduce the dimensionality of the data by transforming the 

original variable set into a lesser number of orthogonal principal components (PCs).[47, 

49, 53] This was done to visualise the overall distribution of the sample population, and 

identify any latent patterns within the dataset that would not be readily discernible 

from the raw spectra.[49]  

PCA revealed that 96.6 % of total variance in the dataset could be described by the 

first three PCs, as illustrated in the scree plot below (Figure 2.4). The scree plot is 

important in determining the optimum number of PCs to be retained within the 

model.[42] Retaining an insufficient number of PCs may cause information pertaining 

to dataset variation being lost, whilst extraneous PCs may result in the modelling of 

random variance or noise.[42, 48] By assessing the variance accounted for by each 

individual PC, and determining the point at which the curve begins to plateau, the 

optimum number of PCs required to model the data can be identified.[49, 59] In this case, 

the scree plot advocated the use of up to four PCs (accounting for 98.5 % of the total 

variation) to re-visualise the dataset. 

 

Figure 2.4: Scree plot depicting the cumulative variance in the blue acrylic fibre dataset 

retained by each PC. 
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Scores plots generated using combinations of the first four PCs resulted in most fibre 

sets forming visually distinct clusters, with no obvious outliers (Figure 2.5).  

PC4, despite accounting for only 1.9 % of variance within the dataset, was found to 

improve the discrimination between fibre sets C and D. These exemplars were 

observed to overlap when using only the first three PCs. Fibre sets A and H exhibited 

significant overlap, which was attributed to these fibres possessing the same dye 

combination (Table 2.1). It should also be noted, though, that these fibres have 

different diameters, and would hence be distinguishable upon a general microscopic 

examination. 

Spectra from sets D and E exhibited a high level of spread (i.e. intra-class variance) 

compared to the remaining samples when employing the first three PCs. Visual 

inspection of the corresponding spectra (Appendices 2.2 and 2.3) revealed variation in 

the relative absorbance between bands in the 400 – 500 nm (yellow dye) region and 

those in the 600 nm (blue dye) region. This is potentially due to differing dye uptake 

amongst individual fibres, as discussed above. This also reinforces the importance of 

collecting an adequate number of fibres and replicate spectra where feasible, in order 

to allow representative measurements to be obtained. 
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Figure 2.5: 3-dimensional PCA scores plot (employing PCs 1,2,3 and PCs 1,2,4) showing the distribution of blue acrylic fibres based upon their 

corresponding MSP spectra. Left and right images show the improved separation of Fibre Sets C and D upon the inclusion of PC4.
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The factor loadings for the first four PCs (Figure 2.6) can be used to identify which 

wavelength regions are the largest contributors to variation between the fibre sets, and 

hence between each Q vs. K pair. PC1 has a strong positive correlation at ca. 655 nm, 

consistent with the absorbance band for Blue 3 dye. Samples separated along this PC 

may therefore be assumed to differ in their relative proportions of this dye. For 

example, fibres from set F (containing Blue 3) attain positive scores against PC1, while 

fibres from set E (instead containing Blue 147) exhibit negative scores. Similarly, PC2 

has a positive correlation at 450 nm, consistent with Yellow 28 dye. Fibre pairs 

separated along this component are thus assumed to be dissimilar in terms of the type 

or concentration of yellow dye present. 

 

Figure 2.6: Factor loadings plot of PCs 1-4 for PCA of the entire blue acrylic dataset. 

PC3 exhibits a strong negative correlation at approximately 530 nm, consistent with a 

local minimum in the set B spectra (Figure 2.3). Set B fibres hence obtain the most 

positive scores along this PC, resulting in their separation from sets C, D, I or J. 

Likewise, PC4 has a negative correlation at ca. 470 nm. At this wavelength, set D 

spectra exhibit a local minimum whilst set C spectra are near a maximum, resulting in 

the separation of these samples along PC4 as observed in the scores plot. PCA is thus 

not only valuable in qualitatively assessing the similarity of a questioned and known 

pair, but may reveal the chemical basis for their similarity or dissimilarity. Such 

relationships may be difficult to identify from visual examination of spectra, 

highlighting the potential utility of chemometrics in forensic applications. 
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2.3.5 Simulated “Q vs. K” comparisons 

2.3.5.1 Fibres from same source 

Simulated Q vs. K comparisons were undertaken by subjecting pairs of fibre sets to 

PCA and DA. Successful discrimination (100 % correct classification) was interpreted 

as an exclusion result wherein the fibres could be considered to originate from different 

sources. Poor discrimination, i.e. where three or more of the questioned spectra were 

assigned to the known class, was treated as an inclusion – that is, the fibres could 

possibly originate from a common source. The first set of comparisons were carried 

out between fibres of the same set, employing the last fibre as the questioned sample 

and the remaining nine fibres as the known sample. These spectra were expected to be 

non-differentiable, thus yielding an inclusion result. 

This was the case for ten of the eleven fibre sets, as shown in Table 2.4. The majority 

of the questioned spectra from these fibre sets were assigned to the known class, 

implying the questioned fibre to fall within the boundaries of the known source. 

Furthermore, the mean membership probability of these spectra belonging to the 

known class exceeded 50 %. The results of Fisher’s exact test largely agreed with these 

initial metrics, with large p-values obtained for nine of the fibre sets. Fibre set I 

generated a p-value just below 0.05, resulting in an inconclusive comparison. For fibre 

set K, only two of the five questioned spectra were classified to the known class, and 

the mean membership probability for these two samples was less than 50 %. Fisher’s 

exact test also resulted in a rejection of the null hypothesis, giving a false exclusion. 

This is potentially a result of fibre heterogeneity associated with dye concentration, as 

previously discussed. 

Overall, these results indicate that while ten of eleven “same source” comparisons gave 

the expected result, there is a potential for false exclusions. This may be exacerbated 

by the large difference in size of the questioned and known classes, despite the fact 

that the initial probabilities of the discriminant model took this into account.  
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Table 2.4: Statistical values obtained from Q vs. K comparisons conducted on blue acrylic 

fibres originating from the same set. (*) denotes that the spectra for the ten fibres in these 

fibre sets were each acquired over multiple consecutive days.  

 Q = K classification (%) 
Mean Membership 

Probability (Q = K) (%) 

Fisher’s Exact 

Test 

(p-value) 

Fibre Set A* 100 76 1.0 

Fibre Set B 100 89 1.0 

Fibre Set C 100 87 1.0 

Fibre Set D 100 80 0.18 

Fibre Set E 100 88 1.0 

Fibre Set F 100 78 1.0 

Fibre Set G 100 74 1.0 

Fibre Set H* 80 78 1.0 

Fibre Set I 60 53 0.04 

Fibre Set J 80 66 1.0 

Fibre Set K 40 42 5.1 x 10-4 

 

2.3.5.2 Fibres from different sources 

When comparing fibres taken from different sets, the majority of samples (with 

exception of sets A vs. H and C vs. D) were unambiguously differentiated, yielding 

true exclusions in 108 of 110 comparisons. In these instances, 100 % correct 

classification was achieved and the membership probability of the questioned spectra 

belonging to the known class was determined to be 0 %. Successful discrimination of 

these fibre sets was expected based on their clear visual separation in the PCA scores 

plot. As these samples could be readily differentiated according to their PC scores, 

Fisher’s exact test was deemed unnecessary and the results are not included here. 

When fibre sets C and D were compared, there was a small probability for some of the 

questioned samples to be assigned to the known class (Table 2.5). This is consistent 

with the minor overlap noted between these sample sets in the PCA scores plot when 

employing the first three PCs. Nonetheless, as the probability associated with 

misclassification of the questioned spectra was minimal (below 5 % in each case), the 

samples were still considered to be separable. Fisher’s exact test also indicated that the 

Q vs. K membership frequencies for these samples were interdependent, yielding an 

overall exclusion result.  
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Table 2.5: Statistical values obtained from Q vs. K comparisons conducted on fibres from 

different sets. 

Questioned Known 

Q = K 

classification 

(%) 

Mean 

Membership 

Probability 

(Q = K) (%) 

Fisher’s Exact 

Test (p-value) 

Fibre Set C Fibre Set D 0 3 4.7 x 10-7 

Fibre Set D Fibre Set C 0 2 2.8 x 10-6 

Fibre Set A Fibre Set H 60 47 8.2 x 10-3 

Fibre Set H Fibre Set A 100 81 1.0 

 

When comparing fibre sets A and H, the results were less conclusive. When the 

questioned fibre originated from set A, the majority (60 %) of questioned spectra were 

assigned to the known class, despite the mean membership probability being less than 

50 %. Furthermore, Fisher’s exact test indicated that the two samples were 

distinguishable. However, when a fibre from set H made up the questioned sample, all 

questioned spectra were assigned to the known class with a high mean membership 

probability, with Fisher’s exact test indicating the two samples to be indistinguishable. 

Taken together, this indicates that fibre sets A and H were not able to be reliably 

differentiated.  

The inability to discriminate between these sets was expected given their high degree 

of overlap in the PCA scores plot (Figure 2.5). These fibre sets also contained the same 

dye combination, although the relative concentrations (loadings) of each dye 

component were not determined. Interestingly, visual examination of the spectra from 

sets A and H revealed varying ratios of absorbance at the 655 nm peak and 650 nm 

shoulder (Figure 2.7). Both of these bands have been attributed to the same dye 

(Blue 3), and so heterogeneous dye uptake would not appear to be a contributing factor 

to this variation. It is possible that the deviations observed are a result of inherent 

instrumental variation, and this warrants future investigation. 
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Figure 2.7: Pre-processed MSP spectra acquired from five individual fibres taken from 

(top) fibre set A and (bottom) fibre set H, illustrating differing relative intensities between 

the two major peaks at 600 nm and 650 nm. 
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2.4 Conclusions 

The use of statistical methods with MSP shows great potential for rapidly 

distinguishing visually similar fibres on the basis of their dye combinations. The 

comparison of simulated questioned and known fibres from the same source resulted 

in a correct inclusion result for nine of the eleven fibre sets, although fibre set I gave 

potentially ambiguous results. The comparison of questioned and known fibres from 

different sources allowed for the differentiation of all fibre sets with the exception of 

fibre set A and H, which shared the same dye combination, yielding true exclusion 

results in 108 of 110 comparisons.  

The single false exclusion, observed in fibre set K, may be attributed to a lack of 

reproducibility in obtaining the MSP spectra. This may result from the varying 

absorption of dyes in a multi-component mixture by individual fibres, or the analysis 

of questioned and known samples on different analysis dates. Given the impact of these 

factors on the results obtained through statistical analyses, it can be concluded that 

these methods are not infallible. Nevertheless, the use of well-documented statistical 

protocols for these comparisons provides a more scientifically rigorous basis on which 

examiners can support their findings in a court of law. 

Raman spectroscopy proved unsuccessful in characterising the fibre set due to 

significant fluorescence interference when using a 785 nm laser source. This could 

potentially be overcome through the use of alternative laser sources. Infrared 

spectroscopy could also be investigated, as this may afford more reproducible data in 

comparison to MSP, in addition to providing complementary information regarding 

the structure of the dyes or their substrate. 

This chapter has described the use of chemometric pattern recognition to characterise 

the variation present within a sample set. In the following chapter, these techniques 

will also be employed to investigate factors that may affect this characterisation, such 

as the ageing of samples under various conditions. 
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Chapter 3: Chemometric characterisation and ageing 

studies of blue ballpoint inks on paper using diffuse 

reflectance visible spectroscopy 

 

Portions of this chapter have been published in the journal Analytical Methods: 

G. Sauzier, P. Giles, S.W. Lewis and W. van Bronswijk, In situ studies into the 

characterisation and degradation of blue ballpoint inks by diffuse reflectance visible 

spectroscopy. Analytical Methods, 2015. 7(12): p. 4892-900. 
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3.1 Introduction 

The analysis and comparison of pen inks forms a key aspect of forensic investigations 

concerning document fraud or forgery. Modern writing inks are complex mixtures 

consisting of several pigments or dyes carried in a solvent such as water, oils or 

glycols.[239, 241] In the case of ballpoint inks, dyes may constitute up to 50 % of the total 

ink formulation, and are generally contained in glycol- or benzyl alcohol-based 

solvents.[237, 239, 242] Many ink formulations are patented and contain unique dye 

combinations, making colour a highly discerning characteristic. Several studies have 

hence investigated the discrimination of ballpoint inks using microspectrophotometry 

(MSP) or ultraviolet-visible (UV-Vis) spectroscopy.[250-252] Recent inquiries have 

combined these techniques with chemometric analysis, yielding more objective 

assessments compared to visual examinations of data and allowing the comparison of 

several samples at a time.[105, 106, 253, 345] 

A limitation in the majority of these studies is the analysis of inks as solvent extracts 

rather than in situ on a paper substrate, making the methodology destructive. Another 

drawback is the small sample sizes employed; typically fewer than 15 inks of a given 

colour and type. This can result in models that exhibit poor predictive capability or 

reliability when applied to future samples. Furthermore, these models were generated 

from freshly deposited inks, with a lack of validation regarding their utility to aged 

samples. Following deposition, the chemical composition of an ink may rapidly 

change due to the evaporation of volatiles, resin polymerisation, diffusion through the 

substrate or photofading of dyes.[346-349] Dye degradation poses a particular challenge 

for document examiners relying on MSP or UV-Vis methods, as ink from the same 

pen may produce very different spectral profiles depending on when it was deposited. 

The most common dyes in modern blue or black ballpoint inks are synthetic 

triarylmethane dyes; particularly those of the methyl violet family (Figure 3.1).[350] 

This dye class consists of three homologous structures derived from pararosaniline in 

which four, five or six of the amino hydrogen atoms have been replaced with methyl 

substituents. The degree of methylation determines the dye shade, with greater 

methylation tending toward blue-violets and lower methylation toward red-violets.[351] 

The terms “methyl violet” and “crystal violet” are generally used in a forensic research 

context to specifically denote the penta- or hexamethyl structures respectively. 
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However, commercial dyes marketed at crystal or methyl violet are typically 

manufactured and sold as a mixture of all three homologues in varying proportions.[352] 

  

Figure 3.1: Chemical structures, chemical names and common names of methyl violet 

homologues (chloride counter-ions not shown). 

A limitation concerning the use of these dyes in writing inks is their low 

photoresistance. Numerous studies have shown that methyl violets are highly prone to 

colour loss as a result of light exposure.[346, 353, 354] The main degradation pathways for 

these dyes that can be expected to occur on paper are oxidative N-demethylation or 

photooxidative cleavage of the central C-phenyl bond, as depicted in Figure 3.2.[354-

357] These processes are known to be accelerated by the presence of titanium dioxide; 

a filler commonly used in paper production to impart high opacity and brightness.[358] 

Li et al. also proposed that in an aqueous environment, hydroxide radicals formed by 

singlet oxygen and water could result in aromatic ring-opening reactions, though the 

exact mechanism or anticipated degradation products for this pathway were not 

specified.[356]  

A number of researchers have investigated the compositional changes that may occur 

in writing inks as a result of both natural and artificial ageing.[346-349, 359, 360] Several 

such studies have attempted to utilise these changes in order to develop a reliable 

means of age estimation, as reviewed by Ezcurra et al.[243] However, there is a paucity 

of research considering the effect of ageing on ink characterisation using chemometric 

techniques.  
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Figure 3.2: Anticipated degradation pathways of methyl violet dyes in ballpoint inks deposited on paper, shown for crystal violet: (a) oxidative N-

demethylation and (b) photooxidative cleavage of the central C-phenyl bond.



 

Page | 60  

One such study by Senior et al. found that blue ballpoint inks analysed 2, 6, 12 or 18 

months after deposition on paper gave significantly different PCA scores compared to 

fresh ink samples, and postulated that these changes could be correlated with time to 

estimate when a questioned document was written.[253] However, this study employed 

a limited sample set of only 10 pens, with the ink again analysed as solvent extracts 

rather than on paper. 

In this chapter, the use of diffuse reflectance visible spectroscopy followed by 

chemometric data analysis was investigated as an in situ analysis method for ballpoint 

inks on paper. Visible spectra acquired from 35 blue ballpoint inks were subjected to 

principal component analysis (PCA) and linear discriminant analysis (LDA), 

establishing a statistical model for ink identification or discrimination purposes. This 

chapter also examines the effects of both artificial and extended natural ageing on the 

chemical composition of selected inks, the resultant impact on the classification model, 

and the potential to utilise these changes for ink dating purposes. 

3.2 Experimental 

3.2.1 Sample collection and preparation 

35 blue ballpoint pens were obtained from office stationery supplies and various 

Western Australian retailers (Table 3.1). Ink from each pen was deposited onto 

commercial white copy paper (Fuji Xerox Professional Carbon Neutral, 80 g/m2) by 

filling 10 mm x 10 mm squares using parallel lines, with five replicate samples 

prepared using each pen to account for any inhomogeneity within the ink cartridge. An 

additional five replicates were prepared from 12 pens selected as an external validation 

set (Table 3.1). Where pens had been purchased as a packet, a different pen from the 

same packet was randomly selected as the validation exemplar. All pens were stored 

within a paper bag in a closed office cupboard when not in use. 

3.2.2 Ageing studies 

Inks from six newly purchased pens were selected to undergo both natural and artificial 

ageing (Table 3.1). These inks were deposited as 25 mm x 25 mm squares to allow 

replicate measures to be made from different locations on each sample. 
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3.2.2.1 Natural ageing 

Ink deposits from the selected pens were prepared for storage in three locations 

representative of typical office environments, as listed below. The samples were then 

left to age naturally, with analysis at specific intervals following ink deposition (1 day; 

1 and 2 weeks; and 1, 2, 4, 6, 8, 10, 13 and 14 months). 

i.) On an office shelf, exposed to light (on a diurnal cycle) and air 

ii.) In an office drawer, away from light but exposed to air 

iii.) In an office drawer, away from light and stored in archival plastic sleeves (Ditto 

A4 reinforced sheet protectors) 

Additional deposits were prepared as 10 x 10 mm squares for photographic 

monitoring, in order to track any visually discernible changes in the ink colour over 

time. These samples were stored in the same three locations as the analysis samples, 

with photographic images taken at the same intervals (1 day; 1 and 2 weeks; and 1, 2, 

4, 6, 8, 10, 13 and 14 months) following ink deposition. Further deposits were also 

prepared as 25 mm x 25 mm squares to act as an external validation set for ink dating 

purposes. These samples were stored on an office shelf exposed to light and air, with 

analysis carried out after 5 days and 3, 6, 14 and 21 weeks following deposition. 

All natural ageing experiments were carried out in a building with controlled air-

conditioning. As a climate control chamber was not available during these studies, no 

further attempts were made to control factors such as ambient humidity. Data collected 

using a Digitech QP-6013 data logger found that throughout the ageing period, the 

average relative humidity was 45.5 % with a standard deviation of 8.4 %. A summary 

of environmental data collected over the ageing period is provided in Appendix 3.1. 

3.2.2.2 Artificial ageing 

Thermal ageing was conducted by placing samples into a ZhiCheng ZXRD-A5055 

oven at 100 °C. Aluminium foil was placed over the glass oven window to prevent the 

samples from being exposed to light. These samples were analysed after 20 minutes, 

2 hours and 24 hours of exposure. UV accelerated ageing was conducted via irradiation 

with a compact fluorescent UV light (20 W, Nelson Industries, Australia) mounted 

overhead on a camera stand. Samples were placed approximately 17 cm below the 

light source and analysed following 24 and 48 hours of UV exposure. 
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Table 3.1: Models and assigned numeric identifiers for all pens in the sample population. 

(*) denotes inks also selected for the preparation of validation samples; (†) denotes inks 

selected for ageing studies. 

Pen ID Pen Model Pen ID Pen Model 

1* Bic Cristal 19† Pilot G-2 05 

2 Papermate Ink Joy 100 20 Pilot Super Grip 

3 Artline Ikonic 21* Uniball Power Tank 

4 Deer Ultrafine 22* Pilot BPS-GP 

5 Artline 7210 23† PaperMate Profile 

6 PaperMate Kilometrico 24* Bic Pro Plus 

7 Bic ReAction 25* PaperMate FlexGrip Elite 

8† Celco Retractable 26*† Pentel Rolly 

9 Bic Orange Fine 27 PaperMate Kilometrico Elite 

10† Keji Ballpoint 28* Staedtler Triplus 426 

11*† Office Basics Ballpoint 29 Staedtler Stick Click Retractable 

12 Artline Smoove 30 Pilot BP-145 

13* J.Burrows Ballpoint 31 PaperMate FlexGrip Ultra 

14 Bic Round Stic 32* PaperMate Ink Joy 300 

15 
Artline Flow 4-Colour 

Retractable 
33* Office Choice Retractable 

16 Artline Clix 4-Colour 34 COS Capped Ballpoint 

17 Bic Cristal Easy Glide 35 Staedtler 430 

18* Bic Economy   

 

3.2.3 Photographic recording 

Ink samples were photographed using a Nikon D300 camera on manual exposure 

mode, using a 60 mm lens. The camera was mounted overhead on a camera stand at a 

distance of 55 cm, with illumination provided by dual incandescent light globes on 

each side. All samples were photographed using a 1/60 second shutter speed, f8 

aperture, ISO 200 and incandescent white balance. Images were digitally captured on 

a desktop computer using the Nikon Camera Control Pro program (v. 2.0.0), and an 

auto-contrast applied using Adobe Photoshop CC (v. 2014.2.1). 
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3.2.4 Visible spectroscopy 

Spectra were obtained using a Cary 4000 UV-Visible spectrophotometer equipped 

with a DRA-900 internal diffuse reflectance accessory. Baseline scans were taken 

using an empty sample holder and mounted halon reference plate prior to sample 

measurement. The instrument was operated with a reduced slit height in double beam 

mode, and data acquisition performed using the Cary WinUV Bio Version software 

(v. 4.20). Spectra were recorded over the range of 400 – 700 nm, with a scan interval 

of 1 nm and scan speed of 600 nm min-1.  

3.2.5 Data analysis 

All data pre-processing and analysis was performed using the Unscrambler® X 10.3 

software (Camo Software AS, Oslo, Norway). Two different pre-processing 

approaches were examined. In both instances, spectra were first baseline offset to 0 % 

reflectance to account for any scattering effects, then unit vector normalised to remove 

variability caused by the sample surface texture. The first approach then subjected the 

spectra to chemometric analysis with no further pre-treatment, while the second 

approach applied a Kubelka–Munk (K-M) conversion according to the equation: 

F(R) = 
(1 – R)2

2R
 

The offset and normalised spectra were adjusted to a maximum reflectance of 1 prior 

to conversion, as the K–M function poorly handles values approaching zero, such as 

those obtained through normalisation.[361] 

Spectra were mean-centred and subjected to PCA using the non-linear iterative partial 

least squares (NIPALS) algorithm. 3-dimensional scores plots were generated using 

the scores from up to the first four principal components (PCs) to visualise the 

distribution of the samples and identify any outliers. An LDA model was then 

constructed from the calibration set (35 pens) using the Mahalanobis distance and 

scores from the first four PCs, treating each pen as a distinct class. The resultant model 

was used to predict spectra from the validation set (12 pens), with the actual and 

predicted classifications compared to evaluate the efficacy of the model. The validated 

model was also employed to predict spectra acquired from samples undergoing ageing, 

in order to detect any changes in the inks over time. 
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Separate dating models were constructed for each of the light-exposed inks using the 

pre-processed spectra collected over the 14 months of exposure. This data was mean-

centred and analysed using partial least squares regression (PLSR) with the NIPALS 

algorithm. The resulting regression models were used to predict the age of the 

validation ink deposits (exposed for up to 21 weeks), with the actual and predicted 

ages compared to evaluate the efficacy of the model.  

3.3 Results and discussion 

3.3.1 Preliminary considerations 

The outcomes obtained through chemometric analysis can be largely dependent upon 

the initial pre-processing of the data.[48] Two different approaches were thus examined 

in this study. The first approach used only a baseline correction and normalisation, 

while the second approach also applied a Kubelka–Munk (K-M) conversion. This 

function is frequently applied to diffuse reflectance spectra to derive quantitative 

information, which may be useful for discrimination purposes.[361, 362] In this instance, 

it was found that the K–M function did not improve discrimination between the 

samples. Using an external validation set, 73 % of spectra could be correctly assigned 

to the individual source pen and a further 8.3 % to the pen supplier, compared to 

71.7 % and 16.7 % respectively with only a baseline correction and normalisation. 

This is possibly due to the amplification of spectral deviations, which may occur when 

reflectance spectra are converted to K–M units.[362] For this reason, the K–M function 

was omitted in all further data analysis, and the following discussion is presented in 

reference to results obtained without the conversion applied. 

3.3.2 Distribution of blue ballpoint inks 

PCA performed on the dataset revealed that 95.8 % of total variance was described by 

the first three PCs. From the scree plot (Figure 3.3), it was determined that up to four 

PCs (accounting for 98.0 % of variance) could be suitably employed to re-visualise 

the dataset. Spectra from the 35 ballpoint pen inks were thus plotted against 

combinations of the first four PCs, resulting in the scores plots shown in Figure 3.4. 

Replicates from each individual pen were clustered together, indicating good 

reproducibility in the sampling and analysis method. PC4, although accounting for 

only 2.2 % of total variance, was found to assist in discriminating between the Pilot 

and Bic brand pens. 
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Figure 3.3: Scree plot depicting the cumulative variance in the Cary 4000 blue ballpoint 

ink dataset retained by each PC. 

Several inks formed visually distinct groupings, allowing rapid discrimination based 

solely upon their visible spectra. In some cases, these spectra visually appeared very 

similar (Figure 3.5) and may have been difficult to distinguish based on visual 

comparison alone. A number of overlapping clusters were also observed in which one 

or more inks could not be clearly distinguished, as described in Table 3.2. PCA 

repeated on these individual clusters failed to improve the separation between these 

sets of samples (Appendix 3.2).  

As Groups 1 – 3 all consisted of pens belonging to the same brand or supplier, the 

overlap between these samples is likely due to suppliers employing the same ink 

formulation across a range of different pens. Conversely, groups 4 and 5 contained a 

mixture of pens from different suppliers. This likeness may simply be due to these 

suppliers coincidentally using similar ink formulations. However, it should also be 

noted that although certain suppliers such as Bic manufacture their own inks,[363] many 

suppliers source their inks externally. A distinction must therefore be made between 

the ‘supplier’ (brand) and ‘manufacturer’ of any given ink. Consequently, it is possible 

that budget suppliers such as COS or Office Choice may have purchased inks from the 

same manufacturers as larger suppliers such as Artline and PaperMate, resulting in the 

same ink being used across different brands. 
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Figure 3.4: 3-dimensional PCA scores plots generated using the first four PCs, highlighting the distribution of the blue ballpoint ink population based 

upon their corresponding Cary 4000 visible spectra. Circles indicate Pilot brand and Bic brand pens, which are separated along PC4. 
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Table 3.2: Individual clusters of blue ballpoint pen inks observed to be visually 

indistinguishable using PCA based on their Cary 4000 visible spectra. 

Cluster Pens 

Group 1 Bic Pro Plus, Bic ReAction 

Group 2 Bic Cristal Easy Glide, Bic Economy, Bic Orange Fine 

Group 3 Pilot BP-145, Pilot BPS-GP, Pilot Super Grip 

Group 4 Artline Ikonic, Artline Smoove, COS Capped Ballpoint, Office 

Choice Retractable, Staedtler Stick Click Retractable 

Group 5 Artline Flow 4-Colour Retractable, PaperMate Ink Joy 100, 

PaperMate Ink Joy 300 

 

 

Figure 3.5: 3-dimensional PCA scores plot showing separation of (a) Celco Retractable 

and (b) PaperMate FlexGrip Elite inks, despite visually similar spectra. 

3.3.3 Discriminant analysis 

A discriminant model was constructed from the calibration set using the first four PCs, 

treating each ink as a discrete class. The efficacy of the model was then evaluated 

using a separate validation set comprising 12 inks. Six of these were deliberately 

chosen as exhibiting overlap or close clustering with other inks in the PCA plot, in 

order to observe how the model would handle these more challenging samples. The 

resultant model yielded correct classification accuracies of 97.7 % for the calibration 

set (Table 3.3), and 71.7 % for the validation set (Table 3.4).  



 

Page | 68  

Table 3.3: Number of correct and incorrect classifications for samples in the calibration 

set using a four-PC LDA model. Labels in brackets indicate assigned groups. The overall 

classification accuracy was 97.7 %. 

Pen Model Correct  Incorrect  % Correct 

Bic Cristal 5 0 100 

Papermate Ink Joy 100 5 0 100 

Artline Ikonic 5 0 100 

Deer Ultrafine 5 0 100 

Artline 7210 5 0 100 

PaperMate Kilometrico 5 0 100 

Bic ReAction 5 0 100 

Celco Retractable 5 0 100 

Bic Orange Fine 4 1 (Bic Economy) 80 

Keji Ballpoint 5 0 100 

Office Basics Ballpoint 5 0 100 

Artline Smoove 5 0 100 

J.Burrows Ballpoint 5 0 100 

Bic Round Stic 5 0 100 

Artline Flow 4-Colour 

Retractable 5 0 100 

Artline Clix 4-Colour 5 0 100 

Bic Cristal Easy Glide 5 0 100 

Bic Economy 
4 

1 (Bic Orange 

Fine) 80 

Pilot G-2 05 5 0 100 

Pilot Super Grip 5 0 100 

Uniball Power Tank 5 0 100 

Pilot BPS-GP 4 1 (Pilot BP-145) 80 

PaperMate Profile 5 0 100 

Bic Pro Plus 4 1 (Bic ReAction) 80 

PaperMate FlexGrip Elite 5 0 100 

Pentel Rolly 5 0 100 

PaperMate Kilometrico Elite 5 0 100 

Staedtler Triplus 426 5 0 100 

Staedtler Stick Click Retractable 5 0 100 

Pilot BP-145 5 0 100 

PaperMate FlexGrip Ultra 5 0 100 

PaperMate Ink Joy 300 5 0 100 

Office Choice Retractable 5 0 100 

COS Capped Ballpoint 5 0 100 

Staedtler 430 5 0 100 

 
171 4 97.7 
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Table 3.4: Number of correct and incorrect classifications for samples in the validation 

set using a four-PC LDA model. Labels in brackets indicate assigned groups. The overall 

classification accuracy was 71.7 %. 

Pen Model Correct Incorrect % Correct 

Bic Cristal M 5 0 100 

Office Basics Ballpoint 5 0 100 

J.Burrows Ballpoint 5 0 100 

Bic Economy 0 5 (Bic Orange Fine) 0 

Uniball Power Tank 4 1 (Bic Cristal) 80 

Pilot BPS-GP 4 1 (Pilot BP-145) 80 

Bic Pro Plus 2 3 (Bic ReAction) 40 

PaperMate Flexgrip Elite 3 2 (J.Burrows Ballpoint) 60 

Pentel Rolly 5 0 100 

Staedtler Triplus 426 4 1 (Staedtler Stick Click) 80 

PaperMate Ink Joy 300 5 0 100 

Office Choice Retractable 1 4 (Staedtler Stick Click) 20 

Total 43 17 71.7 

 

As expected, most incorrect classifications were obtained against inks that exhibited 

overlap in the PCA. For example, ink from the Bic Economy pen was predicted as 

originating from a Bic Orange Fine. These results were confirmed upon inspection of 

the discriminant values; distance measures between projected samples and the centroid 

of a given class. In LDA, assignment of an unknown sample is made to the group 

yielding the smallest magnitude discriminant value, indicative of the ‘closest fit’. In 

this instance, it can be seen that the spectra of the Bic Economy lie closer to the 

centroid of the Bic Orange Fine class, thus resulting in an incorrect classification 

(Table 3.5). However, similar magnitude values could be obtained against both classes, 

and the standard deviation ranges of each class overlap, implying a high ratio of intra-

sample to inter-sample variability. This suggests that the Bic Orange Fine and Bic 

Economy classes are not in fact well separated, and that classifications cannot be made 

to these groupings with confidence. It is therefore important to examine the 

discriminant values or other output data before accepting classifications provided by 

LDA, in order to assess the confidence of the result. 
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Table 3.5: Discriminant values of Bic Economy validation samples against the Bic Orange 

Fine and Bic Economy classes. 

 Discriminant Values 

 
Bic Orange Fine Bic Economy 

Bic Economy Validation-1 -24.2 -304.4 

Bic Economy Validation-2 -11.9 -62.6 

Bic Economy Validation-3 -71.5 -269.0 

Bic Economy Validation-4 -24.2 -120.8 

Bic Economy Validation-5 -10.4 -38.5 

Average -28.4 -159.1 

Standard Deviation 24.9 120.9 

 

It was noted that the Office Basics and PaperMate Ink Joy 300 inks were correctly 

predicted, despite their similar clustering with other inks in the PCA distribution. 

Examination of the discriminant values confirmed that these inks fell within a 

relatively close distance to other inks in the population (Table 3.6), although the 

separation in both cases was more distinct than that observed between the Bic Orange 

Fine and Economy. Nonetheless, classifications made to these groups should again be 

treated with caution.  

Table 3.6: Averaged discriminant values and associated standard deviations for Office 

Basics and PaperMate Ink Joy 300 validation samples against the two nearest classes. 

Values are averaged across five replicates. 

Validation Sample Class Average Standard Deviation 

Office Basics  Office Basics -126.3 139.2 

Staedtler Stick Click -2980.7 615.3 

PaperMate Ink Joy 300 PaperMate Ink Joy 300 -49.0 19.2 

PaperMate Ink Joy 100 -511.4 222.4 
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16.7 % of spectra, while not correctly assigned to a specific pen, were assigned to the 

correct pen supplier. This can be seen in Table 3.4 above, in which replicates of the 

Bic Economy, Bic Pro Plus, Pilot BPS-GP and Staedtler Triplus inks were assigned to 

other pens from the same brand. With exception of the latter, this is consistent with the 

overlap observed between certain Bic or Pilot pens (Table 3.2), which was attributed 

to these suppliers possibly using the same ink in multiple pen models. Hence, even in 

scenarios where an unknown ink cannot be uniquely attributed to a given pen, the 

model may still be capable of determining the pen supplier. Alternatively, the model 

could also be utilised for exclusionary purposes. As seen above, examination of either 

the PCA scores or discriminant values clearly identifies ink formulations that are 

dissimilar. On this basis, it is possible to reduce the number of potential source pens 

that an unknown ink could belong to, narrowing the scope for further examinations. 

3.3.4 Characterisation of naturally aged samples 

Inks from six newly purchased pens were left to undergo natural ageing under three 

office conditions, with spectroscopic analysis at intervals ranging from 1 day to 14 

months after deposition. This segment of study employed inks that were clearly 

discriminated in the PCA model, to ensure that any changes in classification could be 

attributed to ageing rather than coincidental overlap. Over the 14 month period, four 

of the six ink samples stored in the dark and open to air still gave 100 % correct 

predictions using the LDA model. Individual replicates of the PaperMate Profile and 

Office Basics inks were misclassified as early as one week after deposition; though as 

the remaining spectra were correctly classified, the overall classification of the ink 

remained unchanged (Table 3.7).  

These results were confirmed through projection of the aged ink deposits onto the 

original PCA model, which revealed the samples to largely remain clustered with their 

equivalent fresh ink deposits (Figure 3.6). Both the Celco Retractable and Keji 

Ballpoint inks exhibit very tight clustering, indicating no discernible compositional 

changes within these deposits over the ageing period. The Office Basics inks are 

similarly grouped very closely together with exception of a single spectrum acquired 

at 14 months, which was the only misclassified replicate for this ink. Visual inspection 

revealed this spectrum to significantly differ from the remaining spectra (Figure 3.6), 

and so this replicate was omitted as an outlier. 
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Figure 3.6: 3-dimensional PCA projection plot showing the distribution of fresh and aged inks stored open to air in the dark following various periods 

of exposure. Red arrow indicates Office Basics spectrum identified as an outlier. 
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The remaining three inks gave a greater overall spread, although similar levels of 

variance can be seen amongst replicates acquired at different intervals and those 

collected on the same date. Consequently, it cannot be stated with certainty whether 

these variations are indicative of a compositional change, or merely due to 

instrumental variation and inhomogeneity within the ink deposit.  

Spectra from three of the inks stored in plastic sleeves out of light were also 

misclassified at varying points during the exposure period. As with the samples stored 

in the dark and open to air, this was again largely limited to single replicates 

(Table 3.8). The overall classification of the inks across the ageing period thus 

remained unchanged, with exception of the Office Basics ink at 13 months, which 

yielded three misclassified spectra. This caused the ink to be wrongly assigned to a 

J.Burrows ballpoint pen. Following an additional month, the ink was again correctly 

assigned with only one misclassified replicate. The previous result is hence likely to 

have been caused by instrumental variation, rather than an actual compositional change 

in the ink 

Table 3.7: Number of misclassified replicate spectra for Office Basics Ballpoint and 

PaperMate Profile ink samples stored open to air in the dark, at various intervals 

following ink deposition. Labels in brackets indicate assigned groups. 

Ageing Period 
Pen 11 

(Office Basics) 

Pen 23 

(PaperMate Profile) 

1 Day - - 

1 Week - 1 (Pen 10) 

2 Weeks - - 

1 Month - - 

2 Months - 1 (Pen 10) 

4 Months - 1 (Pen 10) 

6 Months - 1 (Pen 10) 

8 Months - - 

10 Months - - 

13 Months - - 

14 Months 1 (Pen 33) 1 (Pen 1) 
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Table 3.8: Number of misclassified replicate spectra for Keji Ballpoint, Office Basics 

Ballpoint and PaperMate Profile inks stored in plastic sleeves in the dark, at various 

intervals following ink deposition. Labels in brackets indicate assigned groups. 

Ageing Period 
Pen 10 

(Keji Ballpoint) 

Pen 11 

(Office Basics) 

Pen 23 

(PaperMate Profile) 

1 Day - 1 (Pen 13) - 

1 Week - - - 

2 Weeks - - - 

1 Month - - - 

2 Months - - - 

4 Months - 1 (Pen 13) - 

6 Months 1 (Pen 18) 1 (Pen 13) - 

8 Months - 1 (Pen 13) - 

10 Months - 1 (Pen 13) 1 (Pen 10) 

13 Months - 3 (Pen 13) 1 (Pen 1) 

14 Months 1 (Pen 18) 1 (Pen 13) 1 (Pen 10) 

 

PCA projection again found that the aged inks largely remained clustered with their 

corresponding fresh deposits (Figure 3.7). Of note, spectra from the Pilot G-2 05 ink 

showed less intra-class variation when stored in plastic archive sleeves than when left 

open to air (Figure 3.6), suggesting that this ink remains more chemically stable when 

exposure to air is minimised. This in turn may indicate that the ink formulation is 

vulnerable to ageing mechanisms based on oxidation or the evaporation of volatiles. 

On the other hand, spectra from the Keji Ballpoint ink were more closely clustered 

when the sample was left open to air.  

Previous research by Grim et al. proposed that during the demethylation of dyes such 

as methyl violets (as depicted in Figure 3.2), solvent molecules provide the protons to 

replace the lost methyl substituents.[364] It is therefore possible that the trapping of 

solvent within the plastic sleeve results in the acceleration of this process, or 

alternatively that plasticisers contained in the sleeves undergo a chemical interaction 

with the ink. The discrepancy in results obtained from different inks indicates that the 

mechanisms of ageing can potentially vary according to the precise ink composition. 
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Figure 3.7: 3-dimensional PCA projection plot showing the distribution of fresh and aged 

blue ballpoint inks stored in plastic sleeves in the dark following various periods of 

exposure. 

When inks were exposed to ambient light in addition to open air, two inks (Celco 

Retractable and PaperMate Profile) were misclassified within just one week. Upon two 

months of ageing, incorrect predictions were obtained for all inks except the Pentel 

Rolly (Table 3.9). It was noted that each of the inks aged at different rates, with the 

first misclassification occurring at different points within the two-month period. This 

is consistent with findings in previous studies, which found that the rate of ageing is 

at least partially dependent on the initial ink composition, such as the volatility of 

solvents or the stability of the various dyes and pigments.[364-366]  

Photographic images of the ink deposits show a visual colour darkening of the Celco 

and PaperMate ink deposits following two months of exposure (Figure 3.8), consistent 

with their misclassification by the model. Conversely, no clearly evident changes were 

discerned in the visual appearance of the Pentel, Keji, Office Basics or Pilot inks, 

despite erroneous classifications of the latter three. This highlights the necessity of 

objective colour measurement techniques when conducting forensic comparisons, as 

instrumental analysis may detect changes not immediately apparent through visual 

inspection. With exception of the Pentel Rolly all inks were noted to become visually 

darker upon further ageing for six months, with fading of the Celco and Office Basics 

inks then observed between 6 months and 14 months. 
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Table 3.9: Number of misclassified replicate spectra for six blue ballpoint ink samples stored open to light, at various intervals following ink deposition. 

Labels in brackets indicate assigned groups. 

Ageing Period Pen 8 

(Celco Retractable) 

Pen 10 

(Keji Ballpoint) 

Pen 11 

(Office Basics) 

Pen 19 

(Pilot G-2 05) 

Pen 23 

(PaperMate Profile) 

Pen 26 

(Pentel Rolly) 

1 Day - - - - - - 

1 Week 5 (Pen 13) - - - 5 (Pen 10) - 

2 Weeks 5 (Pen 13) 3 (Pen 24) 

2 (Pen 18) 

1 (Pen 13) - 3 (Pen 10) 

1 (Pen 20) 

1 (Pen 22) 

- 

1 Month 5 (Pen 13) 2 (Pen 24) 

3 (Pen 18) 

4 (Pen 13) - 3 (Pen 1) 

1 (Pen 20) 

1 (Pen 22) 

- 

2 Months 5 (Pen 13) 5 (Pen 11) 5 (Pen 13) 5 (Pen 22) 1 (Pen 1) 

3 (Pen 20) 

1 (Pen 22) 

- 

4 Months 5 (Pen 13) 5 (Pen 13) 5 (Pen 13) 5 (Pen 30) 4 (Pen 22) 

1 (Pen 30) 

- 

6 Months 5 (Pen 13) 2 (Pen 13) 5 (Pen 13) 5 (Pen 27) 5 (Pen 22) - 

8 Months 5 (Pen 13) 1 (Pen 33) 5 (Pen 13) 3 (Pen 27) 

2 (Pen 13) 

4 (Pen 22) 

1 (Pen 30) 

- 

10 Months 4 (Pen 13) 

1 (Pen 34) 

1 (Pen 33) 5 (Pen 13) 3 (Pen 29) 

1 (Pen 13) 

1 (Pen 33) 

2 (Pen 22) 

2 (Pen 16) 

1 (Pen 30) 

- 

13 Months 3 (Pen 19) 

2 (Pen 34) 

5 (Pen 33) 4 (Pen 33) 

1 (Pen 30) 

3 (Pen 13) 

2 (Pen 29) 

4 (Pen 16) 

1 (Pen 19) 

- 

14 Months 3 (Pen 19) 

2 (Pen 34) 

3 (Pen 33) 

1 (Pen 16) 

1 (Pen 24) 

2 (Pen 33) 

2 (Pen 30) 

1 (Pen 19) 

5 (Pen 13) 4 (Pen 16) 

1 (Pen 19) 

- 
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Figure 3.8: Photographic images of six blue ballpoint ink deposits stored open to light, (a) immediately following deposition; then following (b) 2 months, 

(c) 6 months and (d) 14 months of exposure. 
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Over the 14 month period, the classifications of the light-exposed inks changed several 

times. These classifications, as well as the changes in the visual appearance of the 

deposits, indicate that the ageing process of these inks is still ongoing. This is apparent 

in the PCA projection plot (Figure 3.9), where the aged deposits continually drift 

further from the baseline samples with time. The PCA projection also illustrates the 

different rates of ageing observed in the inks. The Celco Retractable and PaperMate 

Profile inks shifted the furthest from the baseline samples within the first two months, 

hence being the first to become misclassified. These ink formulations can thus be 

considered as fast-ageing. In contrast, slow-ageing samples such as the Pilot G-2 05 

and Pentel Rolly remained clustered with their fresh ink equivalents until at least six 

months of exposure. 

Spectra acquired from the Celco Retractable ink over the 14 month period exhibited a 

decreasing relative reflectance in the blue region (c.a. 430 nm) and increasing 

reflectance in the red region (700 nm), resulting in the visible colour change described 

above. Examination of the spectra for the remaining samples revealed that this change 

was observable in all inks except for the Pentel Rolly (Figure 3.10). Peaks in the blue 

region of the Keji, Office Basics and PaperMate Profile spectra were also found to 

broaden towards the red region, whilst portions of the Celco and Pilot inks underwent 

a shift towards the blue region. 

Inspection of the PCA factor loadings (Figure 3.11) allows the spectral changes of the 

inks to be related to the shift in these spectra on the scores plot. As seen in Figure 3.9, 

the majority of inks obtained more negative scores along PC3 as the ageing period 

increased. This PC exhibits a positive correlation in the blue region at ca. 450 nm; 

hence as the reflectance decreases in this region, the scores attained along the PC 

become more negative. Similarly, PC1 exhibits a strong positive correlation at 700 nm, 

and a negative correlation between 400 – 500 nm. As the relative reflectance decreases 

in the blue region and increases in the red region, the scores attained along PC1 

therefore become more positive, as seen for the Pilot and Celco inks.  
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Figure 3.9: 3-dimensional PCA projection plot showing the distribution of fresh and aged blue ballpoint inks exposed to light following various periods 

of exposure, with spectra and photographic images (recorded under identical conditions) obtained at each interval for the Celco Retractable ink.
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Figure 3.10: Spectra of Celco Retractable, Keji Ballpoint, Office Basics, PaperMate Profile and Pilot G-2 05 ink deposits stored open to light; (a) 

immediately after deposition and (b) following 14 months of exposure.
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Figure 3.11: Factor loadings of the first three PCs for PCA conducted on the population 

of 35 blue ballpoint inks. 

Due to the proprietary nature of the ink formulations and the lack of structural 

information discernible from visible spectra, it cannot be said with certainty which ink 

components are responsible for the observed ageing effects. However, as these 

changes were limited to samples exposed to light, it is a reasonable assumption that 

they can be attributed to the photofading of triarylmethane dyes such as methyl or 

crystal violet.  

As discussed at the beginning of this chapter, triarylmethane dyes can undergo 

oxidative demethylation or cleavage reactions catalysed by titanium dioxide present in 

paper products.[354, 358] The shade of these dyes is also influenced by their degree of 

methylation, with decreasing methyl substitution resulting in the dye colour shifting 

from blue-violet to red-violet. The red shifts observed in the spectra of the Keji, Office 

Basics and PaperMate inks is therefore a potential indicator of dye degradation 

occurring via N-demethylation. Conversely, the blue shifts displayed by the Celco and 

Pilot inks suggests that degradation processes may be occurring through alternative 

mechanisms such as photooxidative cleavage. 

Spectral changes due to ageing pose an obvious challenge in applying chemometric 

models to ‘real’ samples, which may be several weeks to years old. The rapid alteration 

of visible spectra following deposition may result in ink entries created using the same 

pen being falsely excluded due to their different deposition dates or storage history.  
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Incorrect information could also be generated when attempting to predict or identify 

an aged ink on the basis of its visible spectrum. Fortunately, such samples can be 

identified as atypical through their discriminant values. Table 3.10 shows the 

discriminant values obtained by the aged Celco Retractable ink for the J.Burrows pen, 

to which the ink was incorrectly classified. The discriminant values against this group 

are several orders of magnitude larger than those from actual J.Burrows ink, 

demonstrating that the aged ink is not well classified. 

It should also be noted that in certain investigative instances, the rapid ageing of 

deposited inks may in fact be beneficial. In cases of suspected fraud or forgery, it is 

often of interest to determine whether an ink entry could have been modified at a later 

date from its original creation. Examples of this may include the contemporaneous 

signing of legal documents or the suspected alteration of banking cheques. These 

analyses may be complicated if changes have been made using the same pen as the 

original entry. However, the results here suggest that entries completed using the same 

pen, as little as one week apart, may be differentiable if the document has been exposed 

to light during the intervening period.
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Table 3.10: Mean and standard deviations of LDA discriminant values for aged Celco Retractable ink against the predicted class(es), compared to true 

ink of that class. Values are averaged over five replicate spectra. 

 J.Burrows Ballpoint COS Capped Ballpoint Pilot G-2 05 

Pen Mean Std. Deviation Mean Std. Deviation Mean Std. Deviation 

Celco Retractable – 1 Week -7869.4 991.9 - - - - 

Celco Retractable – 2 Weeks -9056.7 1469.8 - - - - 

Celco Retractable – 1 Month -12078.0 1612.3 - - - - 

Celco Retractable – 2 Months -11784.8 2263.4 - - - - 

Celco Retractable – 4 Months -10037.4 1412.3 - - - - 

Celco Retractable – 6 Months -9145.0 335.3 - - - - 

Celco Retractable – 8 Months -7703.2 284.7 - - - - 

Celco Retractable – 10 Months -8641.8 527.1 - - -20642.8 10332.8 

Celco Retractable – 13 Months - - -11436.1 301.4 -10145.4 3840.6 

Celco Retractable – 14 Months - - -11797.9 394.1 -9837.1 3603.4 

J. Burrows Ballpoint -3.2 3.7 x 10-6 - - - - 

COS Capped Ballpoint - - -3.2 2.9 x 10-6 - - 

Pilot G-2 05 - - - - -3.2 3.8 x 10-6 



 

Page | 84 

3.3.5 Development of dating models for light-exposed samples 

The results obtained from both PCA and LDA indicate that the ageing of ink deposits 

under ambient light is a dynamic process, with changes continuing to occur over at 

least a 14 month period. These changes could potentially be used to develop 

chemometric models for the age estimation of unknown ink entries. With this in mind, 

calibration curves were generated for the inks using PLSR; a multivariate regression 

technique that maximizes the covariance between the predictor and response variables. 

PLSR models were constructed for each of the light-exposed inks using the spectra 

acquired over the 14 month ageing period. For each model, a scree plot was used to 

select the optimal number of factors to retain for regression, as summarised below. 

Table 3.11: Number of selected factors and corresponding percentage of total variance 

for PLSR models of blue ballpoint inks exposed to light over a 14 month period. 

Ink Factors % Total Variance 

Celco Retractable 3 99.2 

Keji Ballpoint 3 99.0 

Office Basics Ballpoint 1 98.6 

Pilot G-2 05 1 96.2 

PaperMate Profile 3 98.8 

Pentel Rolly 6 98.6 

 

Scores plots were generated for each model using the first two factors, as depicted in 

Figure 3.12. It can be seen that the spectra of each ink generally attain more positive 

scores along Factor 1 with time, with exception of the Pentel Rolly ink. The latter was 

expected to give significant overlap between spectra of different exposure intervals, as 

this ink remained correctly classified even after 14 months. This result is also 

consistent with the previous PCA projection of these inks (Figure 3.9), in which all 

except the Pentel Rolly ink exhibited a clear shift along the PCs over the exposure 

period. Ink from the Keji and PaperMate Profile pens also show a degree of overlap 

between spectra collected at each analysis date, indicating that the ageing of these inks 

is gradual in comparison to the Celco, Office Basics or Pilot inks, in which the 

separation between the ageing intervals is more distinct. This contrasts with the 

previous characterisation of the PaperMate Profile ink by PCA as fast-ageing, and 

further examination of the discrepancy between the two methods would be of interest.
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Figure 3.12: 2-dimensional PLSR scores plots showing the distribution of six blue ballpoint inks exposed to light following various periods of exposure. 

Spectra collected at intervals within the first month of exposure have been colour-coded as a single group, but were treated as separate variables in the 

regression analysis. 
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Dispersion graphs of the actual and predicted ageing intervals are shown in Figure 

3.13. Excellent agreement was observed between the reference and estimated values 

both in the calibration and cross-validation, with correlation coefficients greater than 

0.96 obtained for all models including the Pentel Rolly ink. Based on this high 

correlation, it would appear that PLSR is a highly suitable means of modelling the 

dataset, and that the resultant models could be expected to demonstrate good predictive 

capability in estimating the age of an unknown ink deposit. 

The constructed regression models were evaluated using a separate validation set of 

ink deposits aged for up to 21 weeks. As these deposits were prepared approximately 

seven months after the initial ageing samples, baseline spectra from each deposit were 

first predicted using the discriminant model, in order to determine whether any 

significant compositional changes in the inks had occurred during the intervening 

period. All spectra were correctly assigned, indicating the inks to have remained 

chemically stable within the pen cartridges throughout the storage period.  

These results are consistent with earlier research by Andrasko and Kunicki, who found 

no evidence of dye degradation in ink entries produced from the same pen up to 6 years 

apart.[367] Grim et al. similarly found that dyes within the ink cartridges of pens stored 

for up to 20 years remained predominantly unchanged, although a small number of 

inks exhibited ageing at an even greater rate than when deposited on a paper 

substrate.[360] In these studies, however, no specification was made regarding the 

storage conditions of the pens in between analyses. For this research, all pens were 

kept in a closed office cupboard when not in use. It is possible that ink ageing within 

the cartridge may occur in pens left exposed to light; particularly for those with a 

transparent housing; and this may be the subject of future investigation. 

The regression results obtained for the validation samples at each analysis date are 

summarised in Table 3.12. Despite the high correlation coefficients obtained for each 

regression line, the majority of the regression models proved to be highly inaccurate, 

yielding age estimations substantially different from the actual age of the deposit. In 

fact, negative exposure times were often predicted even for ink deposits over one 

month old. In contrast, estimations for the Office Basics ink were reasonably accurate, 

with the predicted and actual ages consistently falling within two weeks of each other.  
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Figure 3.13: Reference values versus estimated values by PLSR models for the age estimation of six blue ballpoint inks exposed to light over a 14 month 

period. 
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Table 3.12: Mean and standard deviations of estimated ageing periods for validation blue ballpoint ink deposits exposed to light, compared to actual 

ageing periods. Values are averaged over five replicate spectra. 

Actual Ageing 

Period 

Estimated Ageing Period (Days) 

Celco Retractable Keji Ballpoint Office Basics Pilot G-2 05 PaperMate Profile Pentel Rolly 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

0 Days 6.0 3.9 -29.9 7.7 0.9 6.9 -29.9 6.5 14.2 12.6 -75.1 18.1 

6 Days -10.0 3.1 -45.0 5.7 2.9 6.2 -18.3 15.3 -20.9 14.5 -31.7 20.0 

21 Days -11.9 4.6 -18.8 13.2 29.8 25.2 -9.0 6.1 -7.2 21.4 -10.7 20.0 

42 Days 4.1 9.9 -10.6 8.9 44.5 5.9 32.8 20.7 27.1 29.7 29.2 13.2 

98 Days 73.8 8.9 43.3 23.3 106.8 7.1 80.2 5.0 91.6 25.7 135.2 27.6 

147 Days 143.0 15.4 82.4 28.6 159.7 7.2 133.3 13.6 130.4 25.8 153.5 15.0 
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It should be noted, however, that the age estimates for all inks were highly variable 

between replicate spectra collected at a given analysis date. This is evident from the 

standard deviations, which in several instances are greater than the actual age estimate 

of the ink. Further work is thus required to determine whether the results obtained from 

the Office Basics ink can be consistently reproduced. 

Upon closer inspection of the scores plots for each ink, it can be seen that although a 

shift in factor scores can be observed over time, the distance between spectra of 

different ages is similar or greater than that amongst spectra of the same ageing period. 

The similar magnitudes of intra-group and inter-group variance results in poor 

discriminative capability between inks of different ages, and hence inaccurate age 

estimations using the regression models. An additional figure of merit is the root mean 

square error of calibration (RMSEC) values obtained for each model. The RMSEC is 

a measure of the dispersion of calibration samples about the regression line, measured 

in the same units as the response variable.[368, 369] Table 3.13 shows that despite the 

high correlations achieved, the RMSEC for each model is greater than many of the 

predicted values, indicating a disproportionately high level of scatter around the 

regression line. As mentioned in Chapter 1, random correlations are likely to occur in 

datasets containing large numbers of variables.[196] The high correlations observed for 

the models may therefore have resulted from chance correlations rather than a causal 

relationship. This example highlights the potential pitfalls of over-relying on 

correlation values, without considering additional metrics such as the RMSEC to 

assess the regression quality. 

It can be concluded that although clear spectral changes are observable in the ink 

deposits as a function of ageing, these changes are insufficiently modelled using PLSR 

as employed in this work. It is possible that employing alternative pre-processing or 

regression techniques on the collected data may yield improved results. It must also be 

considered that successful application of these models would require knowledge of 

both the pen type of the ink and the storage history of the document it is deposited on, 

which may not be possible when conducting forensic examinations of questioned 

documents. Future work should hence examine not only alternate approaches to 

developing chemometric ink dating models, but the extent to which these models could 

be readily applied within an operational context.
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Table 3.13: Correlation coefficients and root mean square error of calibration (RMSEC) 

values obtained for PLSR models of blue ballpoint inks exposed to light over a 14 month 

period. 

Ink Correlation (R2) RMSEC 

Celco Retractable 0.992 12.6 

Keji Ballpoint 0.990 13.9 

Office Basics Ballpoint 0.986 16.8 

Pilot G-2 05 0.962 27.5 

PaperMate Profile 0.988 15.6 

Pentel Rolly 0.993 11.2 

 

3.3.6 Characterisation of artificially aged samples 

Artificial ageing experiments were carried out to examine the individual effects of heat 

and UV exposure on ink degradation, and to determine whether the induced changes 

provided a realistic comparison with naturally aged inks exposed to light and air. 

Samples of the six inks utilised in the natural ageing study were heated in an oven at 

100 °C as recommended by Cantu, who proposed that four minutes at this temperature 

would provide an equivalent ageing to three months under natural conditions.[370] After 

20 minutes to 2 hours of heat exposure, ink from the PaperMate Profile pen was 

misclassified as originating from a Keji ballpoint. Following 24 hours, three spectra 

from the Celco Retractable ink were additionally attributed to a J.Burrows ballpoint 

pen. These results are consistent with changes observed in the first week of natural 

ageing under ambient light. 

As mentioned previously, Grim et al. suggested that the solvent acts as a source of 

protons for the replacement of methyl substituents in the oxidative N-demethylation of 

methyl violet dyes.[364] Thus, while a thermal approach may be suitable for 

representing changes in the ink’s solvent content, the removal of solvent may hinder 

degradation of the dye molecules, thus resulting in little change to the visible spectrum 

of the ink. This supports conclusions from the natural ageing study that dye 

photofading has the key influence on the observed ageing of the inks. Nonetheless, the 

changes noted in thermally treated samples despite the absence of light indicates that 

solvent loss is also a relevant factor. 
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UV accelerated ageing was conducted by irradiating ink samples under a compact UV 

lamp. Inks from the PaperMate Profile and Celco Retractable pens were misclassified 

as Keji and J.Burrows inks respectively, following 24 hours of exposure. These results 

are again consistent with early changes noted in samples aged naturally for one week 

under open conditions. Interestingly, no further misclassifications were observed 

between 24 and 48 hours of irradiation. Siegel et al. postulated that that the loss of 

methyl groups due to UV exposure yields stable products that resist further 

degradation.[353] Alternatively, given the continuing changes in naturally exposed inks, 

it is perhaps more likely that the photodegradation of dyes is partially due to visible 

light rather than solely UV. Previous studies have achieved decolourisation of crystal 

violet and other triarylmethane dyes using visible irradiation in the presence of zinc 

oxide or titanium oxide.[356, 371] 

Figure 3.14 provides a comparison of the inks artificially aged for 24 hours and those 

aged naturally for one week, compared to freshly deposited ink. It can be seen that inks 

aged by UV irradiation show a greater shift away from their fresh counterparts 

compared to those that were thermally aged, though in both instances the direction of 

these shifts is consistent with naturally aged samples. Spectral changes in the 

artificially aged samples are also consistent with those obtained through natural ageing 

(Appendix 3.3). Hence, either approach can be considered to give a realistic depiction 

of natural ageing processes. 
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Figure 3.14: 3-dimensional PCA projection plot showing the distribution of inks aged naturally for one week and those artificially aged for 24 hours by 

(a) thermal exposure; and (b) UV irradiation, compared to freshly deposited ink. 
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3.4 Conclusions 

The overall results of this study indicate that diffuse reflectance visible spectroscopy 

with chemometrics provides a simple, rapid and non-destructive method for 

distinguishing blue ballpoint inks on paper. The developed model may be employed 

as a screening method to compare multiple pen inks at a time, and exclude those which 

are dissimilar. Additionally, prediction using LDA may allow the identification of the 

source pen or supplier for an unknown ink where a known reference is unavailable, or 

where comparison with another sample is not of primary interest. 

Analysis of six pen inks stored under different conditions found that inks stored in the 

dark could still be reliably predicted up to 14 months following deposition. 

Conversely, inks stored in the light could exhibit significant changes to their spectral 

profile within just one week, with these changes continuing over the 14 month period. 

This could prove beneficial when attempting to identify alterations made to a 

document using the same pen at a later date. PLSR was used to model these changes 

for ink dating purposes, but the estimations afforded by these models proved 

unreliable. Additionally, the application of such models would require knowledge of 

both the pen type and document storage conditions, which is often not possible when 

conducting questioned document examinations. Artificial ageing experiments 

determined that both thermal and UV exposure are significant in the ageing process of 

inks on paper, and that accelerated ageing through these mechanisms provides 

comparable results to short-term natural ageing under light. 

It should be noted that the instrumentation used in this chapter may not be readily 

available within existing document examination laboratories, due to their high cost and 

the need for specialised accessories. The size of the ink deposits required for this 

methodology are also not representative of ‘real’ samples, such as handwriting, that 

are encountered in an operational context. The following chapter presents an 

investigation into the characterisation of more typical ink deposits using 

instrumentation routinely employed by practicing document examiners. 
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Chapter 4: Chemometric characterisation of blue 

ballpoint inks on paper using a video spectral 

comparator 
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4.1 Introduction 

As described in Chapter 3, visible spectroscopy with chemometrics provides a rapid 

and non-destructive method for characterising inks on paper, as well as studying 

changes in their chemical composition as they age. The generated statistical model, 

while potentially useful as a means of forensic ink comparison, is limited in its 

applicability due to the relatively large (10 mm x 10 mm) ink deposits required for 

analysis, which are not representative of ‘real samples’ such as handwriting. Analysis 

of these samples requires instrumental methods with a much smaller aperture, such as 

micro-Raman or infrared microscopy. However, these techniques require specialised 

accessories that may not be available within a document examination laboratory.  

An alternative method for collecting spectral data from document evidence is the use 

of a video spectral comparator (VSC). Developed by Foster + Freeman, this instrument 

is routinely utilised by forensic document examiners conducting specialised lighting 

examinations.[372, 373] Samples are placed under an enclosed canopy and can be 

illuminated using various light sources and optical filters, allowing visualisation across 

the visible to near-infrared (NIR) range.[374, 375] This may be used to discriminate 

between similar inks based on their differing luminescence characteristics.[376, 377] 

Selected VSC models are also equipped with a video imaging system and automated 

spectrometer, enabling the collection of spectral and chromatic data.[378, 379] 

Within an Australian context, use of the VSC by forensic document examiners is 

primarily limited to the visual comparison of samples side-by-side under various 

viewing conditions.[380] As a result, there are limited studies probing the discrimination 

of inks using their VSC spectra. Weyermann et al. compared VSC spectroscopy with 

microspectrophotometry (MSP) and laser desorption ionisation-MS in distinguishing 

25 black gel inks, with the VSC yielding the lowest discriminatory power (DP) at 

49 %.[381] Reed et al. obtained a similarly low DP (38 %) for 14 black gel inks, though 

blue and red inks gave DP values of 82 % and 90 % respectively.[374] It must be noted 

that these studies used different means of calculating the DP, and so the cited values 

are not directly comparable. Work by da Silva et al. employed partial least squares 

discriminant analysis to VSC spectra acquired from blue and black inks.[105, 108] This 

methodology allowed the pen type and brand to be identified with a high degree of 

accuracy, but also necessitated individual models to be constructed for each class. 
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This study investigated the use of VSC reflectance spectra followed by pattern 

recognition chemometrics for the rapid characterisation of handwritten ink entries on 

paper. Chromaticity measurements and fluorescence characteristics were evaluated as 

a means of providing additional discrimination between similar ink formulations, 

potentially yielding more specific results. 

4.2 Experimental 

4.2.1 Sample preparation 

This study employed the same population of 35 blue ballpoint pens described in 

Chapter 3. Ink from each pen was deposited onto commercial white copy paper (Fuji 

Xerox Professional Carbon Neutral, 80 g/m2) by writing each pen’s model identifier. 

An additional ink trace was prepared from 12 pens selected as an external validation 

set (Table 4.1). All pens were stored in a paper bag in a closed office cupboard when 

not in use. 

Table 4.1: Models and assigned numeric identifiers for pens utilised as validation 

samples. 

Pen ID Pen Model Pen ID Pen Model 

1 Bic Cristal 24 Bic Pro Plus 

8 Celco Retractable 25 PaperMate FlexGrip Elite 

11 Office Basics Ballpoint 26 Pentel Rolly 

13 J.Burrows Ballpoint 28 Staedtler Triplus 426 

18 Bic Economy 32 PaperMate Ink Joy 300 

19 Pilot G-2 05 33 Office Choice Retractable 

 

4.2.2 Data collection 

Spectra and chromaticity values were obtained using a VSC5000 (Foster + Freeman, 

UK), with instrument control and data acquisition performed using the VSC5000 

software (v.5.7). Spectra were acquired in reflectance mode using the manufacturer 

provided white tile as the ‘standard white’ reference. The instrument was operated 

under 100 % flood illumination, 50 % brightness/contrast and automatic exposure 

settings. Spectra were recorded over the range 400 – 1000 nm, with a scan interval of 

3 nm. Validation samples were analysed one week following the calibration deposits. 
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4.2.2.1  Method development 

Spectra were acquired using magnification levels of approximately 10 – 50x, and 

regions of interest ranging from 4 x 4 pixels to 16 x 16 pixels. The placement of black 

material around the ink trace was also investigated as a means to reduce background 

light scattering from the paper substrate. The exposure settings (iris, camera gain and 

integration time) were not investigated, as these parameters are automatically set to 

fixed values during spectral acquisition. 

4.2.2.2  Reflectance spectra and chromaticity measurements 

Using the parameters determined through method validation, five replicate spectra 

were obtained at different locations along each ink trace. Chromaticity coordinates 

were automatically generated from the VSC5000 software by analysing each spectrum 

using the CIE (Commission Internationale de l'Eclairage, or International Commission 

on Illumination) colour measurement system. 

4.2.2.3  Fluorescence characterisation 

Fluorescence illumination was achieved using the VSC spot lamp source. Samples 

were excited at 645 – 720 nm and viewed through a 778 nm longpass barrier filter. 

Spectra of luminescent inks were obtained in fluorescence spot mode using the same 

settings employed for the reflectance spectra. Three replicate spectra were obtained at 

different locations along each ink trace. 

4.2.3 Data analysis 

Data pre-processing and chemometric analysis was carried out using the 

Unscrambler® X 10.3 (Camo Software AS, Oslo, Norway). Spectra were interpolated 

to a step size of 1 nm and truncated to selected wavelength ranges. A baseline offset 

to 0 % reflectance and unit vector normalisation were applied to account for variation 

due to light scattering or the sample surface texture. All spectra were mean-centred 

and subjected to principal component analysis (PCA) using the non-linear iterative 

partial least squares (NIPALS) algorithm. 3-dimensional scores plots were generated 

using combinations of the first four principal components (PCs) in order to visualise 

the sample distribution and identify outliers. A linear discriminant analysis (LDA) 

model was then constructed from the calibration set using the Mahalanobis distance 

and scores derived from the first four PCs, treating each ink as an independent class. 
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This model was used to predict source pens for the validation spectra, with the actual 

and predicted classes compared to evaluate the model’s performance. 

Calibration samples were also plotted according to their tristimulus values (refer to 

section 4.3.6) to determine whether chromaticity measurements could improve upon 

the separation afforded by the reflectance spectra. Samples were first plotted using 

their raw tristimulus values as a 3-dimensional coordinate system. The tristimulus 

values were then subjected to PCA both with and without unit vector normalisation, 

and samples plotted using the scores obtained against the first two PCs. 

4.3 Results and discussion 

4.3.1 Preliminary considerations 

PCA was conducted using both the visible (400 – 700 nm) and visible-NIR 

(400 – 925 nm) wavelength ranges, to establish whether infrared reflectance could 

increase separation between the inks. The wavelength region above 925 nm was 

omitted, as it yielded minimal variance between the spectra. The visible-NIR range 

was found to give no improved separation of the ink population (Appendix 4.1). The 

following discussion is thus presented solely in reference to results obtained using the 

visible range. 

4.3.2 Method development 

Initial research examined how factors such as the magnification or integration area 

would affect the quality of spectra obtained using the VSC (Appendix 4.2). A 

minimum 15.06x magnification was required to ensure that the ink trace comprised 

the full region of interest when integrating across a 16 x 16 pixel area. This feature 

area was found to produce the highest instrumental response in the blue region of the 

spectrum, as well as a more distinct reflectance maximum. Magnification below 

15.06x resulted in band broadening in the blue region due to the influence of the paper 

substrate, whilst magnification exceeding 15.06x provided no improvement to the 

quality of the spectra. Similarly, the use of black masking to reduce the interference of 

background scattering did not appear to have any effect on spectral quality. Based on 

these results, all subsequent spectra were acquired using 15.06x magnification and a 

16 x 16 pixel region of interest, with no attempt to reduce background scattering from 

the paper substrate. 



 

Page | 99  

4.3.3 Compatibility of VSC spectra with the existing spectrophotometer 

model 

Classification of the validation inks was performed using the VSC spectra with the 

statistical model generated in Chapter 3 using a Cary 4000 UV-Vis spectrophotometer, 

in order to assess the compatibility of the two instruments. All 12 inks were incorrectly 

classified (Appendix 4.3), and significant deviations were noted between spectra 

collected using each instrument (Figure 4.1). These discrepancies may be due to 

varying wavelength sensitivities between the instruments, or the use of different 

‘standard white’ reference materials. Spectra collected using the VSC also exhibited a 

lower signal-to-noise ratio compared to those obtained using the Cary 4000. This result 

was not unexpected given that the VSC is a highly specialised instrument not intended 

for research-level spectrophotometry, but it may affect the capability of the VSC to 

provide sufficiently reproducible data for discrimination purposes. 

 

Figure 4.1: Pre-processed reflectance spectra of a Pentel Rolly ink deposit acquired using 

the Cary 4000 UV-Visible spectrophotometer and VSC5000. 

4.3.4 Distribution of the spectral dataset 

PCA performed on the calibration inks on the basis of their VSC spectra showed that 

95.6 % of total variance was described by the first three PCs, and 97.3 % in the first 

four PCs (Figure 4.2). Scores plots were produced using combinations of the first four 

PCs, as shown in Figure 4.3. It was found that PC4 (accounting for 1.7 % of total 

variance) assisted in separating the Artline Smoove and Staedtler 430 spectra from the 

bulk of the ink population, and so the first four PCs were retained for subsequent 

discriminant analysis.  
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Figure 4.2: Scree plot depicting the cumulative variance in the VSC blue ballpoint ink 

dataset retained by each PC. 

As with the PCA model constructed in Chapter 3, replicates from each pen were 

generally clustered together, indicating reasonable measurement reproducibility. The 

overall clustering patterns observed were also consistent with those in the initial 

model. Certain inks, such as the Bic Cristal and Pentel Rolly, were again clearly 

distinguishable from all other samples in the dataset. However, a larger number of 

formulations formed a broad, overlapping cluster in the centre of the scores plot that 

could not be resolved through further PCA. This indicates that the VSC5000 provides 

lower specificity between ink formulations in comparison to the Cary 4000. 
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Figure 4.3: 3-dimensional PCA scores plots generated using the first four PCs, highlighting the distribution of the blue ballpoint ink population based 

upon their corresponding VSC visible spectra. Circles indicate Staedtler Triplus and Staedtler 430 inks, which are separated from the main population 

along PC4. 
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4.3.5 Discriminant analysis 

A discriminant model was constructed from the calibration set using the scores derived 

from the first four PCs, treating each ink as its own class. The efficacy of the model 

was then evaluated using a separate validation set of 12 inks, six of which were 

deliberately selected as overlapping with other inks in the sample population. The 

resultant model yielded a classification accuracy of 96.7 % for the calibration set 

(Table 4.2), on par with the original model. However, the validation accuracy was 

significantly lower at only 31.7 % (Table 4.3). Visual inspection revealed deviations 

between the calibration and validation samples in the blue region (ca. 400 – 470 nm) 

of the spectra (Figure 4.4). This, in conjunction with the overlap observed between 

many of the inks in the PCA, is likely the cause of the misclassified samples. 

 

Figure 4.4: Pre-processed calibration and validation spectra (averaged across five 

replicates) obtained from Bic Cristal ink deposits. 

As the calibration and validation spectra were acquired on separate days, systematic 

instrumental variation between analysis dates was considered as a prospective factor 

affecting the results. However, PCA showed no distinct separation between the 

calibration and validation spectra taken from any given ink deposit (Appendix 4.4). 

The discrepancies in the spectra were thus attributed to random instrumental variation 

or noise, as noted in section 4.3.3. Further work is needed to investigate the spectral 

reproducibility of the VSC, and whether corrections can be applied to compensate for 

the observed variations. 
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Table 4.2: Number of correct and incorrect classifications for samples in the VSC 

calibration set using a four-PC LDA model. Labels in brackets indicate assigned groups. 

The overall classification accuracy was 96.7 %. 

Pen Model Correct  Incorrect  % Correct 

Bic Cristal 5 0 100 

Papermate Ink Joy 100 5 0 100 

Artline Ikonic 4 1 (COS Capped) 80 

Deer Ultrafine 5 0 100 

Artline 7210 5 0 100 

PaperMate Kilometrico 5 0 100 

Bic ReAction 5 0 100 

Celco Retractable 5 0 100 

Bic Orange Fine 5 0 100 

Keji Ballpoint 5 0 100 

Office Basics Ballpoint 5 0 100 

Artline Smoove 5 0 100 

J.Burrows Ballpoint 5 0 100 

Bic Round Stic 5 0 100 

Artline Flow 4-Colour Retractable 5 0 100 

Artline Clix 4-Colour 5 0 100 

Bic Cristal Easy Glide 5 0 100 

Bic Economy 3 2 (Pro Plus) 60 

Pilot G-2 05 5 0 100 

Pilot Super Grip 5 0 100 

Uniball Power Tank 5 0 100 

Pilot BPS-GP 5 0 100 

PaperMate Profile 5 0 100 

Bic Pro Plus 2 2 (Bic Orange Fine) 

1 (Bic Economy) 

40 

PaperMate FlexGrip Elite 5 0 100 

Pentel Rolly 5 0 100 

PaperMate Kilometrico Elite 5 0 100 

Staedtler Triplus 426 5 0 100 

Staedtler Stick Click Retractable 5 0 100 

Pilot BP-145 5 0 100 

PaperMate FlexGrip Ultra 5 0 100 

PaperMate Ink Joy 300 5 0 100 

Office Choice Retractable 5 0 100 

COS Capped Ballpoint 5 0 100 

Staedtler 430 5 0 100 

 
169 6 96.7 
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Table 4.3: Number of correct and incorrect classifications for samples in the VSC 

validation set using a four-PC LDA model. Labels in brackets indicate assigned groups. 

The overall classification accuracy was 31.7 %. 

Pen Model Correct Incorrect % Correct 

Bic Cristal 1 3 (Artline Ikonic) 

1 (Bic Economy) 

20 

Celco Retractable 1 4 (Staedtler Stick Click) 20 

Office Basics Ballpoint 1 2 (J.Burrows Ballpoint) 

1 (Staedtler Stick Click) 

1 (Artline Clix 4-Colour) 

20 

J.Burrows Ballpoint 2 1 (Bic ReAction) 

1 (Artline Clix 4-Colour) 

1 (Office Basics Ballpoint) 

40 

Bic Economy 1 4 (Bic Cristal Easy Glide) 20 

Pilot G-2 05 5 0 100 

Bic Pro Plus 0 5 (Bic Cristal Easy Glide) 0 

PaperMate FlexGrip Elite 5 0 100 

Pentel Rolly 2 3 (Pilot G-2 05) 40 

Staedtler Triplus 426 0 2 (Staedtler Stick Click) 

2 (COS Capped Ballpoint) 

1 (Office Basics Ballpoint) 

0 

PaperMate Ink Joy 300 0 4 (Artline Flow 4-Colour) 

1 (PaperMate FlexGrip Elite) 

0 

Office Choice Retractable 1 4 (COS Capped Ballpoint) 20 

Total 19 41 31.7 

 

4.3.6 Chromatic data 

Chromaticity values were examined as a potential means to increase the discrimination 

between similar inks. The VSC generates a range of chromaticity values corresponding 

to several CIE colour spaces; mathematical models that describe perceived colours in 

human colour vision as numerical values. As these colour spaces are derived from one 

another, chemometric analysis of the entire chromatic dataset was not expected to yield 

meaningful information. Instead, data analysis was restricted to the tristimulus values, 

which represent basic trichromatic colour measurements based upon human colour 

vision as X, Y and Z coordinates. 
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Samples were first plotted using the raw tristimulus values as 3-dimensional 

coordinates. This produced a single overlapping cluster with no distinct separation of 

any of the ink formulations (Figure 4.5). PCA was then conducted on both the raw and 

normalised values, with samples plotted using their scores from the first two PCs, 

accounting for > 99 % of total variance (Figure 4.6). This again did not result in any 

clear discrimination. It can be seen that replicates of each ink exhibited a very large 

range of variation, indicating a poor level of reproducibility. As the chromatic data is 

derived from analysis of the spectra, it is possible that minor deviations or noise in the 

spectral data is affecting the generated tristimulus values, thus yielding poor results. 

 

Figure 4.5: 3-dimensional scatter plot showing the distribution of the blue ballpoint ink 

population based upon their tristimulus values. 
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Figure 4.6: 2-dimensional PCA scores plots showing the blue ballpoint ink population 

based upon (top) raw; and (bottom) unit vector normalised tristimulus values. 
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4.3.7 Fluorescence spectroscopy 

4.3.7.1 Spectral distribution 

As mentioned in section 4.1, the VSC is equipped with several light sources and optical 

filters for specialised lighting examinations. In addition to incandescent lamps, the 

main unit houses vapour discharge tubes (allowing UV excitation at 254 nm, 312 nm 

or 365 nm) and an infrared laser diode (970 – 990 nm). Ink deposits were viewed under 

each of these sources to determine whether fluorescence characteristics could assist in 

distinguishing inks with similar visible spectra. Whilst no fluorescence was observed 

under ultraviolet or infrared irradiation, several inks were found to fluoresce in the 

NIR region (ca. 720 – 910 nm) when illuminated under red light (Figure 4.7). This is 

consistent with work by Sun et al., who found that 18 selected blue ballpoint inks were 

most distinguishable when illuminated at 605 – 720 nm and observed in the NIR 

region.[377] 

 

Figure 4.7: Fluorescence spectrum recorded from an Office Choice ink deposit (inset 

image) using the VSC spot source at 645 – 720 nm excitation and 778 nm longpass filter. 

Due to limited instrumental response, fluorescence spectra could only be acquired 

from eight inks exhibiting strong fluorescence. PCA found no distinct separation 

between these inks, as shown in Figure 4.8. This was found to largely be due to the 

high level of variation between replicate spectra. Consequently, the use of VSC 

fluorescence spectra was concluded to be unsuitable for the discrimination of inks used 

in this study. 
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Figure 4.8: 3-dimensional PCA scores plot showing the distribution of strongly fluorescent blue ballpoint inks according to their fluorescence spectra, 

highlighting the large variation between replicates resulting from spectral deviations.   
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4.3.7.2 Fluorescence as an initial classifier 

Due to the poor results obtained using fluorescence spectra, an alternative approach 

was taken by using the observable fluorescence properties of each ink as an initial 

classifier. Each ink was categorised as fluorescent or non-fluorescent, and separate 

PCA conducted on the visible spectra for each group. 3-dimensional scores plots were 

generated using the scores obtained for the first 4 PCs, accounting for > 97 % of total 

variance in both instances (Appendix 4.5). 

Of the 35 ballpoint inks examined, ten gave no observable fluorescence under the 

selected instrumental settings. PCA of these inks showed that the Pentel Rolly and Bic 

Cristal inks were again clearly distinguishable using the first three PCs, while PC4 

improved the separation of the Office Basics and Artline Clix inks (Figure 4.9). In 

contrast, the Bic and Keji inks remained indistinguishable, even following further 

PCA. The Bic inks were expected to be clustered together given that these samples 

could not be reliably separated by the UV-Vis model generated in Chapter 3. This was 

previously attributed to the manufacturer using the same or very similar ink 

formulation across a range of its pen models. The fact that ink from these pens also 

exhibit similar fluorescence phenomena supports this theory. 

PCA of the fluorescent inks revealed improved separation of the PaperMate FlexGrip 

Elite using the first three PCs, with the exception of one replicate that overlapped with 

the Celco Retractable spectra (Figure 4.10). Visual inspection revealed this spectrum 

to significantly differ from the remaining spectra, and so this replicate was omitted as 

an outlier. The use of PC4 also resulted in the PaperMate Ink Joy and Staedtler 430 

inks becoming more readily distinguishable. 

Additional discrimination could be achieved by further dividing the fluorescent inks 

according to their observed strength of fluorescence. These inks were categorised as 

exhibiting weak, moderate or strong fluorescence (Figure 4.11) followed by 

subsequent PCA. It is important to note that the fluorescence intensity was judged 

based upon personal opinion, and this has the potential to once again introduce human 

subjectivity into the results. 
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Figure 4.9: 3-dimensional PCA scores plots showing the distribution of non-fluorescent inks according to their visible spectra, highlighting improved 

separation of Artline Clix and Office Basics inks. Left and right views show plots generated using (left) PCs 1, 2 and 3; and (right) PCs 1, 2 and 4. 
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Figure 4.10: 3-dimensional PCA scores plots showing the distribution of fluorescent inks according to their visible spectra, (left) using PCs 1, 2 and 3; 

and (right) using PCs 1, 2 and 4. Improved separation of the PaperMate Ink Joy 300 and Staedtler 430 inks (circled) was achieved along PC4. Red arrow 

indicates PaperMate FlexGrip Elite replicate identified as an outlier based on visual inspection of the spectra as shown. 
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Figure 4.11: Photographic image of inks evaluated as exhibiting (top) strong; (middle) 

moderate; and (bottom) weak fluorescence when excited at 645 – 720 nm and viewed 

through a 778 nm longpass filter. 

Weakly fluorescing inks were divided into two groups, with the PaperMate FlexGrip 

Ultra and Kilometrico Elite separated from the PaperMate Profile and Pilot inks along 

PC1 (Figure 4.12). The loadings plot (Appendix 4.6) revealed this PC to be positively 

correlated with the blue region (ca. 400 – 500 nm), and negatively correlated with the 

red region (ca. 600 – 700 nm). The FlexGrip Ultra and Kilometrico Elite inks exhibited 

a higher ratio of red- to blue-reflectance, thus resulting in more negative PC1 scores. 

Only four inks were judged to have moderate fluorescence, two of which (the Artline 

7210 and PaperMate FlexGrip Elite) formed independent clusters. These inks were 

separated from the PaperMate Kilometrico and Pilot G-2 05 along PC1, which was 

again found to be due to the differing ratios of reflectance in the red region compared 

to the blue region (Appendix 4.7).  

PCA of the strongly fluorescent inks produced three general clusters using PCs 1-3. 

The PaperMate Ink Joy and Office Choice inks were grouped together as expected 

based on earlier results, while the Celco Retractable ink was uniquely characterised. 

The remaining inks formed a largely overlapping cluster. Some separation of the 

Staedtler Triplus and Uniball Power Tank inks was noted, but due to the similar 

magnitudes of within-group and between-group variance, this was insufficient for 

reliable discrimination. The use of PC4 resulted in the PaperMate Ink Joy 300 being 

separated from the Ink Joy 100 and Office Retractable inks, as well as slightly 

improved separation of the Staedtler 430 and Triplus 426 inks. 
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Figure 4.12: 3-dimensional scores plots showing the distribution of (a) weakly fluorescent; (b) moderately fluorescent; and (c) strongly fluorescent inks 

according to their visible spectra. Plot (c) has been shown using (left) PCs 1, 2 and 3; and (right) PCs 1, 2 and 4. 
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4.4 Conclusions 

The results of this study demonstrate that the use of VSC spectroscopy with 

chemometrics could potentially be utilised as an objective discriminatory method for 

handwritten ink entries on paper, although further work is required regarding 

instrumental limitations. It was found that the VSC5000 gave lower specificity 

between similar inks in comparison to the Cary 4000 spectrophotometer used in 

Chapter 3. This was likely due to the lower signal-to-noise ratio provided by the VSC, 

resulting in lower spectral reproducibility. Consequently, a discriminant model 

constructed from the VSC visible reflectance spectra of the inks yielded poor 

classification results, with a validation accuracy of only 31.7 %.  

Discriminant models based upon tristimulus values or fluorescence spectra were 

similarly unsuccessful, due to the large magnitude of within-group to between-group 

variance. An alternative approach, in which the observed fluorescence intensity of 

each ink was used as an initial classifier, was used to narrow the range of similar 

samples to undergo chemometric analysis. PCA carried out on the fluorescent and non-

fluorescent inks gave improved separation of a number of inks which could not be 

distinguished when all inks were compared concurrently. Further specificity was 

achieved by categorising the fluorescent inks according to their fluorescence intensity. 

However, as this was done based on personal opinion, a level of human bias could be 

introduced to the results.  

It should be noted that in this study, several inks were analysed simultaneously. In a 

casework scenario, ink examinations are more likely to involve the pairwise 

comparison of ink entries in order to establish the integrity of a document. The 

methods described in this chapter may hence be more appropriate and effective for 

“questioned versus known” comparisons as described in Chapter 2, rather than ink 

identification using a database model. 

The work described in this dissertation thus far has been restricted to the use of pattern 

recognition and regression methods to aid the interpretation of physical evidence 

following its analysis. In Chapter 5, experimental design will instead be employed to 

optimise pre-analysis factors such as evidence sampling and handling. These factors 

may affect the quality of data generated using analytical techniques, and thus the 

information that may be subsequently extracted using chemometrics. 
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Chapter 5: Optimisation of recovery protocols for 

smokeless powder residues with subsequent analysis 

by gas chromatography-mass spectrometry 

 

Portions of this chapter have been published in the journal Talanta: 

G. Sauzier, D. Bors, J. Ash, J.V. Goodpaster and S.W. Lewis. Optimisation of recovery 

protocols for double-base smokeless powder residues using a central composite design 

and total vaporisation (TV) SPME/GC-MS. Talanta, 2016. 158: p. 368-374. 
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5.1 Introduction 

Improvised explosive devices (IEDs) are becoming an increasing topic of public 

concern, with high-profile incidents such as the Bali (October 2002), Boston Marathon 

(April 2013), and Baghdad (July 2016) bombings garnering international attention. 

Although the majority of media coverage has focussed on large-scale incidents 

attributed to terrorism, there has also been a rise in explosive incidents using smaller 

devices such as pipe bombs. This is particularly the case in the United States, where 

pipe bombs are considered to make up the vast majority of IED encounters.[382, 383] 

These devices can be easily and cheaply constructed from everyday materials, and can 

produce a large destructive effect using low explosive powders such as black powder, 

black powder substitutes, pyrotechnic compositions or smokeless powder. 

Smokeless powders are a class of nitrocellulose-based propellants designed to produce 

minimal solid residue upon deflagration. These propellants can be categorised as 

single-, double- or triple-base according to their composition. Single-base powder 

utilises nitrocellulose as the sole energetic component, while double-base smokeless 

powder (DBSP) also contains nitroglycerin for increased detonation velocity.[241, 273, 

384] Triple-base powders additionally employ nitroguanidine to lower the flame 

temperature and reduce barrel erosion, though these formulations are restricted to large 

calibre munitions and are hence rarely encountered in IEDs.[274, 385] All three varieties 

of smokeless powder may also contain additives; for example diphenylamine or ethyl 

centralite; that act as stabilisers, plasticisers, or flash suppressants.[282, 384] 

Though not commonly encountered in Australia due to legal restrictions, smokeless 

powders are readily available in the United States, where 10 million pounds (4500 

tonnes) are produced commercially per annum.[386] They are relatively powerful 

propellants; decomposing at rates of up to 1,000 metres per second; and can be 

purchased loose at sporting goods stores in quantities of up to 25 pounds 

(11.3 kilograms).[385, 386] As a result, they are highly favoured as the explosive charge 

for IEDs. In fact, smokeless powder devices comprised over 20 % of the 

approximately 4,300 explosive powder-related incidents reported to the U.S. Bomb 

Data Centre between 2008 and 2014.[280] By comparison, less than 50 powder-related 

incidents were reported to the Australian Federal Police over the same period, and only 

four of these were confirmed to involve smokeless powder formulations.[387] 
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The investigation of explosive events relies upon the detection and identification of 

residues from the scene. To this end, research to date has largely focussed on 

developing improved instrumental methods to yield more sensitive and selective 

analyses of explosive materials. However, the success of these methods is largely 

dependent on the sampling method, storage conditions and extraction parameters 

employed prior to instrumental analysis.[10, 269, 388] Adequate research to establish 

appropriate sampling and handling procedures is thus of equally critical importance. 

A common sampling method for explosives, particularly on large non-porous surfaces, 

is the use of swabbing techniques. A number of studies have evaluated the efficacy of 

various swabbing materials, solvents or extraction procedures in recovering organic 

and inorganic explosives on multiple substrates.[389-396] The findings of these studies 

have been diverse, with the most effective swabbing media or solvents differing 

according to the substrate or target analytes selected.[391-393] Investigations have also 

been conducted regarding the stability of explosive residues stored under various 

conditions. These studies have established that volatile explosives such as triacetone 

triperoxide (TATP) may rapidly evaporate at room temperature, whilst trinitrotoluene 

(TNT) and other nitroaromatic explosives are prone to photo-transformation.[397, 398] 

Despite several studies concerning the sampling, storage or extraction parameters of 

explosive traces, there is a lack of rigorous research examining particular combinations 

of these factors. Song-im et al. for example investigated a range of swab types and 

solvents for explosives recovery on different substrates; however, the same extraction 

procedure was used for all samples, and no investigation was made of different storage 

conditions.[392] Similarly, DeTata et al. studied the efficacy of several extraction 

procedures in removing explosive residues from different swab types, but employed a 

single swab type and solvent to examine residue stability under different storage 

temperatures.[389] This univariate approach fails to take into account interactions 

between the factors, and the effect that these interactions may have on explosives 

recovery. An additional limitation is the use of standard analyte solutions as simulated 

residues, which may not provide an accurate representation of ‘real’ samples generated 

through an explosive event. Furthermore, studies to date have relied solely upon visual 

assessment of the acquired data. Interaction effects may not be readily evident from 

the raw data, and can thus be overlooked when relying on visual inspections. 
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A more statistically rigorous approach is the use of multivariate chemometric 

techniques to identify and model interactions within the dataset. In particular, 

experimental design methods such as a central composite design (CCD) can be used 

to map the relationship between several explanatory factors and a dependent response. 

In addition to identifying the factor levels that will yield a target response, CCDs can 

be used to determine the significance and effect of factor interactions in a minimal 

number of experiments.[46] Unlike simpler design methods such as factorial designs, a 

CCD is also capable of modelling curvilinear variable effects.[45, 61] CCDs have 

recently been applied to optimise extraction and instrumental analysis parameters for 

explosive residues;[399-401] however, the broader capability of experimental design to 

investigate initial factors such as sampling and storage methods remains unexplored. 

This chapter describes the use of a CCD to optimise recovery procedures for DBSP 

residues analysed using total vaporisation solid-phase microextraction gas 

chromatography-mass spectrometry (TV-SPME/GC-MS). TV-SPME is a technique 

wherein a sample extract is heated to complete evaporation, and a SPME fibre used to 

pre-concentrate analytes from the vapour.[402] The analytes therefore partition directly 

between the vapour phase and the SPME fibre, providing increased sensitivity 

compared to either liquid injection or headspace or immersion SPME.  

TV-SPME has recently been applied to successfully detect smokeless powder residues 

recovered from steel pipe bomb fragments.[403] However, it is also of investigative 

interest to detect residues left on witness materials, i.e. surfaces proximate to an 

explosive device. The optimised parameters were therefore applied to the recovery of 

post-blast explosive residues deposited on steel plates surrounding a pipe bomb device 

following detonation. All experimental work in this chapter was conducted at Indiana 

University-Purdue University, Indianapolis (IUPUI). 

5.2 Experimental 

5.2.1 Reagents and materials 

Acetone and dichloromethane (Fisher Scientific, USA) were of analytical grade and 

used as received. Nitrobenzene and ethyl centralite (Sigma Aldrich, USA), 

nitroglycerin (Restek, USA) and diphenylamine (Acros Organics, USA) were all of 

analytical reagent grade or above.  
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Alliant Red Dot double-base smokeless powder was obtained from Gander Mountain 

(Indianapolis, IN, USA), Puritan sterile cotton-tip applicators from Fisher Scientific 

USA, polyvinylchloride (PVC) piping from Home Depot (Indianapolis, IN, USA) and 

low carbon galvanised steel sheets from Grainger Industrial Supply (Indianapolis, IN, 

USA). SPME fibres were acquired from Sigma Aldrich USA, and SPME vials and 

caps from Gerstel USA. 

5.2.2 Preliminary experiments 

Initial experiments were conducted to establish a suitable means of sample preparation, 

as well as identifying factors of interest to be examined using the central composite 

design. Analysis of these samples was carried out using the TV-SPME method 

previously optimised by Bors for the analysis of smokeless powder residues.[403] This 

method is referred to below as TV-SPME-1. 

5.2.2.1  Preparation of standard solutions 

Individual standards of nitroglycerin, diphenylamine and ethyl centralite were 

prepared in dichloromethane at a concentration of 1000 mg L-1. These were used to 

prepare mixed stock solutions at concentrations of 10 mg L-1 and 50 mg L-1. Mixed 

calibration standards in the range of 0.001 – 0.050 mg L-1 were prepared by dilution 

of the stock solutions. All solutions were kept refrigerated at approximately 8 °C 

before and after analysis, in order to minimise degradation. 

5.2.2.2  Smokeless powder deflagration 

The initial intended method for this study was to generate explosive residues through 

the deflagration of smokeless powder. To assess the feasibility of this approach, a 

series of deflagration trials were carried out using aluminium as a recovery surface. A 

single layer of aluminium foil was wrapped around a tin can lid, and Alliant double-

base smokeless powder placed within a 1 inch x 1 inch section marked on the foil 

surface. The tin can lid was mounted over a Bunsen burner at a distance of 

approximately 4 inches, and the powder heated until deflagration occurred. Masses of 

0.2 g, 0.3 g, 0.4 g, 0.5 g and 0.6 g were tested to determine the effect of powder quantity 

on the amount of recoverable residues. Quadruplicate trials using 0.3 g of powder were 

also performed to assess the reproducibility of residue deposition. 
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5.2.2.3  Factor screening 

Screening experiments were conducted to assess whether selected sampling, extraction 

or storage parameters of samples would affect recovery of the target analytes. These 

trials were intended not as an in-depth investigation, but to determine factors 

warranting further investigation through the optimisation design. Simulated residues 

were prepared by spiking aluminium foil with 20 µL aliquots of 50 mg L-1 mixed stock 

solution, and allowing the deposits to completely dry prior to sampling. 

Four sampling methods were chosen for comparison; solvent extraction, dry swabbing, 

acetone-wetted swabbing and isopropanol-wetted swabbing. Samples for solvent 

extraction were prepared by removing the spiked section of aluminium foil using a 

razor blade, and transferring directly to a 12 mL glass screw-top vial. Swabbing was 

carried out using cotton-tip applicators. Where applicable, the cotton-tips were briefly 

dipped in the selected swabbing solvent and the excess allowed to evaporate for 

20 seconds. The cotton-tips were rubbed back and forth across the recovery surface 

for 10 seconds to allow thorough sampling of the surface area whilst minimising 

evaporation of the solvent, and the tips transferred to 12 mL glass screw-top vials. 

Triplicate samples prepared using each sampling method were subjected to 15 minute, 

30 minute and 60 minute extractions. Triplicate samples were also sealed using wax 

film and refrigerated at 8 °C for three days, followed by a 15 minute extraction. 

5.2.3 Optimisation experiments 

5.2.3.1 Preparation of standard solutions 

In these experiments, acetone was used as the solvent rather than dichloromethane due 

to its lower toxicity, applicability to the extraction of PVC (which is dichloromethane 

soluble) and effectiveness in dissolving a wide range of explosives.[404] Individual 

standards of nitroglycerin, diphenylamine and ethyl centralite were each made at a 

concentration of 1000 mg L-1, and used to prepare a 50 mg L-1 mixed stock. An internal 

standard solution of nitrobenzene was made up at a concentration of 100 mg L-1. 

Mixed calibration standards in the range of 0.125 – 20 mg L-1 were prepared by 

dilution of the stock. A standard solution of Alliant Red Dot DBSP was prepared at a 

concentration of 2.04 g L-1. All solutions were refrigerated at 8 °C when not in use. 
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5.2.3.2 Smokeless powder quantification 

In order to more realistically represent the chemical composition of post-blast residue, 

optimisation samples were prepared from a standard solution of smokeless powder 

rather than solely the target components. Quantification of this solution was carried 

out to determine an appropriate spiking volume. Twenty-fold and fifty-fold dilutions 

of the smokeless powder solution were prepared in acetone, and run in triplicate 

alongside the mixed calibration standards (analysed without replicates). Due to 

instrumental issues at the time of this experiment, samples were analysed using liquid 

injection GC-MS rather than TV-SPME/GC-MS, as detailed in section 5.2.6 below. 

5.2.3.3 Central composite design 

The central composite design was generated using Design-Expert® 9 (Stat-Ease Inc., 

Minneapolis, USA) to investigate sampling, storage and extraction conditions as 

shown in Table 5.1. A face-centred CCD (α = 1) with five replicates of each centre 

point was selected. This design was chosen as only three rather than five levels are 

required for each factor, and because it allowed the number of storage days at each 

level to be restricted to integer values. This resulted in a total of 78 experiments. 

Analysis of the data was conducted using Design-Expert® 9, optimising the peak area 

recovery of nitroglycerin, diphenylamine and ethyl centralite to a maximum. Two-way 

analysis of variance (ANOVA) was conducted to assess the significance of any main 

effects or two-way factor interactions on the recovery of each target compound. 

Table 5.1: Factors and levels tested for optimising the recovery of DBSP residues using a 

face-centred central composite design. 

Factor Levels 

Swab Type None (dry), acetone and isopropanol 

Storage Location Fume cupboard (~ 25 °C) and refrigerator (~ 8 °C) 

Storage Duration 0, 3 and 6 days 

Extraction Time 15, 37 and 60 minutes 

 

5.2.3.4 Sample preparation 

Low carbon galvanised steel sheets (48 inch x 48 inch x 0.019 inch) were used as the 

recovery surface for all samples. Each sheet was cut into 12 inch x 12 inch plates, and 

further divided into 3 inch x 3 inch squares by scoring grid-lines into one side of each.  
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The surface was cleaned using deionised water followed by ethanol and acetone, then 

dried at room temperature before use. Samples for each experiment were prepared by 

spiking 50 µL of smokeless powder solution onto squares of the galvanised steel grid, 

allowing the deposit to completely dry prior to sampling. Swabbing was carried out as 

previously described, and the tips transferred to 12 mL glass screw-top vials. Each vial 

was sealed using wax film, and placed in either a fume cupboard or a refrigerator for 

the required storage duration prior to extraction and analysis. Due to the large number 

of samples to be analysed, a modified instrumental analysis procedure was employed 

to provide a shorter run time (detailed in section 5.2.6 below). This method will 

subsequently be referred to as TV-SPME-2. 

5.2.4 Pipe bomb trial 

Assembly and detonation of the pipe bomb device was completed by the Indiana State 

Police Bomb Squad. A single device was constructed using PVC pipe (8 inch x 1 inch 

diameter) and endcaps (1 inch diameter), with an approximately 50 g charge of Alliant 

Red Dot DBSP. The device was suspended by wire within a welded metal frame 

(approximately 22 inch x 24 inch x 34 inch), with the end-caps pointing in the north 

and south directions. Six galvanised steel plates (12 inch x 12 inch) were attached to 

each side of the frame, including above and below the device, by threading metal wire 

through holes drilled into the corners of each plate (Figure 5.1). All plates were 

positioned approximately 8 – 12 inches from the device. Specific distance 

measurements are provided in Appendix 5.1. 

 

Figure 5.1: Pipe bomb detonation trial set-up showing galvanised steel witness plates 

attached to each side of the welded metal frame surrounding the device. 
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A time fuse inserted through a hole in the south endcap was used to initiate the device. 

Following detonation, the steel plates were cut along the scored lines. The resulting 

segments (3 inch x 3 inch) were each given a unique alphanumeric identifier, and 

stored in separate polyethylene clip-seal bags prior to analysis. Sampling, storage and 

extraction were conducted using the optimal parameters determined by the central 

composite design. GC-MS analysis was performed using the TV-SPME-2 method 

utilised for the optimisation samples, with a modification to the ion dwell times as 

specified in section 5.2.6. 

5.2.5 Sample extraction 

Extraction was carried out as shown in Table 5.2. 3 mL, 5 mL or 10 mL of the selected 

extraction solvent was pipetted into each sample vial. The vials were then closed, 

sealed using wax film and placed onto a shaker table for the desired extraction period. 

60 µL or 70 µL aliquots of the extract were transferred directly to 20 mL SPME vials 

for analysis. These volumes were calculated based on the properties of the solvent as 

the maximum volume allowing for complete vaporisation, according to the equation: 

VS = (
10
(A - (

B
T+C

))
 VC

RT
)  (

M

ρ
 ) 

where VS is the aliquot volume (mL); A, B and C are the Antoine constants describing 

a solvent’s vapour pressure at a given temperature T (K); VC is the volume of the 

container (L); R is the ideal gas constant (J mol-1 K-1); M is the molar mass of the 

solvent (g mol-1); and ρ is the density of the solvent at room temperature (g mL-1). 

Table 5.2: Extraction parameters utilised for DBSP recovery experiments. 

Sample Set Extraction Solvent Extraction Volume (mL) SPME Volume (µL) 

Deflagration Dichloromethane 3 60 

Factor screening Dichloromethane 10 60 

Optimisation Acetone 5 70 

Pipe bomb Acetone 5 70 
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5.2.6 Instrumental analysis 

All sample analyses were performed using a Thermo Scientific Ultra II gas 

chromatograph equipped with a DSQ II mass spectrometer and TriPlus autosampler. 

Instrumental control, data acquisition and peak area integration was carried out using 

Thermo Xcalibur software (v.2.0.7), with integration performed as per the standard 

software parameters. As a consequence of instrumental limitations, three GC-MS 

programmes were utilised in this study. In each programme, analytes were separated 

on a Zebron ZB-5MS column (10 m x 0.18 mm x 0.18 µm) via splitless injection.  

 

Helium was used as the carrier gas at a flow rate of 1.5 mL min-1. Analytes were 

ionised using a pulsed positive ion negative ion chemical ionisation source with 

methane as the reagent gas. Selected ion monitoring was used to detect nitrobenzene 

(m/z 123 in negative mode), nitroglycerin (m/z 46 and m/z 62 in negative mode), 

diphenylamine (m/z 170 in positive mode) and ethyl centralite (m/z 269 in positive 

mode). Typical MS conditions were: solvent delay, 2 minutes; ionisation energy, 

70 eV; and electron multiplier voltage, 1505 V. Further instrumental conditions are 

listed in Table 5.3. 
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Table 5.3: Instrumental parameters for GC-MS analysis of explosives samples. 

Parameter 
Conditions 

TV-SPME-1 Liquid Injection TV-SPME-2 

                            Injection Parameters 

Sample 

incubation 
60 °C for 5 min N.A. 60 °C for 1 min 

SPME fibre Polyethylene glycol (PEG) N.A. 
Polydimethylsiloxane 

(PDMS) 

SPME 

extraction 

time 

20 min N.A. 1 min 

Injection 

volume 
N.A. 1 µL N.A. 

Splitless time 0.5 minutes 0.8 minutes 0.5 minutes 

Split flow 40 mL min-1 30 mL min-1 40 mL min-1 

                            Oven Parameters 

Inlet program 200 °C 
10° s-1 
→     250 °C 

             (0.21 min)                (0.21 min) 

200 °C 
10° s-1 
→     250 °C 

(0.21 min)                (0.21 min) 

200 °C 
10° s-1 
→     250 °C 

 (0.21 min)                (0.21 min) 

Oven program 40 °C 
45° min-1  
→       220 °C 

INF
→  300 °C 

(1 min)                        (1 min) 
40 °C 

40° min
-1

 
→      30 °C 

 (1 min)                         (1 min) 

40 °C 
40° min

-1
 

→      30 °C 
  (1 min)                        (1 min) 

Fibre 
conditioning 

240 °C for 5 min N.A. 240 °C for 3 min 

                          MS Parameters 

Ion source 

temperature 
250 °C 200 °C 200 °C 

Methane flow 1.3 mL min-1 2 mL min-1 2 mL min-1 

Ion dwell 

times 

m/z 46: 5 ms 
m/z 62: 5 ms  

m/z 170: 5 ms 

m/z 269: 5 ms 

m/z 62: 75 ms 
m/z 123: 75 ms 

m/z 170: 50 ms 

m/z 269: 50 ms 

m/z 46: 25 ms 

m/z 62: 25 ms  
m/z 123: 25 ms§ 

m/z 170: 50 ms 

m/z 269: 125 ms 

 

*N.A.: Not applicable; § For pipe bomb samples, m/z 123 (nitrobenzene) was removed 

and the dwell time of m/z 62 (nitroglycerin) increased to 50 ms. 
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5.3 Results and discussion 

5.3.1 Preliminary considerations 

As nitrocellulose is unsuitable for analysis via GC-MS, this study instead targeted 

nitroglycerin, diphenylamine and ethyl centralite as the components of interest. The 

structures and physical properties of these compounds, as well as those of nitrobenzene 

(used as an internal standard) are shown in Table 5.4. Diphenylamine is a stabiliser 

that neutralises nitrous and nitric oxides formed during nitrocellulose decomposition, 

which would otherwise result in autocatalytic degradation of the powder.[405, 406] Ethyl 

centralite is a stabiliser and a plasticiser, making the nitrocellulose pliable and reducing 

its hygroscopicity.[385, 386] Although results are presented in this chapter for all three 

components, the primary goal was to determine suitable recovery protocols for 

nitroglycerin. Under most forensic protocols, this component must be detected in order 

to report the presence of residues from double-base smokeless powder.c Additives such 

as diphenylamine and ethyl centralite may assist in identifying the brand of powder 

employed, but are not themselves indicative of an explosive material. 

A sample chromatogram acquired from a mixed calibration standard of nitrobenzene 

and the three target components is shown in Figure 5.2. It should be noted that ethyl 

centralite yielded a substantially lower peak area than the remaining components, 

which could potentially hinder its detection at low concentrations. Nitroglycerin, 

diphenylamine and ethyl centralite all exhibit a degree of chemical degradation, as 

evident by the presence of multiple chromatographic peaks. The minor peak eluting 

shortly before nitroglycerin was attributed to dinitroglycerin, a degradation product 

formed through the hydrolysis of a nitro functional group on trinitroglycerin.[406] 

Previous experiments by Bors found that this peak could be reduced by employing a 

lower GC inlet temperature.[403] In this instance, as the presence of dinitroglycerin was 

not found to interfere with the quantification of nitroglycerin, the existing GC inlet 

program was retained. Similarly, the minor peaks observed in the diphenylamine and 

ethyl centralite mass ranges were well separated from those of interest, and so no 

further investigation regarding their origin was conducted. 

                                                
c For example, this is standard procedure within the United States Bureau of    

  Alcohol, Tobacco, Firearms and Explosives (ATF), as communicated by Dr. John  

  Goodpaster (a former explosives analyst at the ATF). 
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Table 5.4:  Chemical structures and selected physical properties of nitroglycerin, 

diphenylamine, ethyl centralite and nitrobenzene. 

Compound Molecular Weight Boiling Point 

Nitroglycerin 

227.1 g mol-1 50 °C 

Diphenylamine 

 

169.2 g mol-1 302 °C 

Ethyl Centralite 

 

268.4 g mol-1 325-330 °C 

Nitrobenzene 

 

123.1 g mol-1 211 °C 
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Figure 5.2: GC-MS chromatogram acquired from a standard solution of nitrobenzene 

(NB), nitroglycerin (NG), diphenylamine (DPA) and ethyl centralite (EC) analysed using 

the TV-SPME-2 method. (*) denotes minor peak attributed to dinitroglycerin. Note that 

peaks have been auto-scaled for clarity. 

5.3.2 Smokeless powder deflagration 

As mentioned above, the majority of studies to date concerning recovery protocols for 

explosive traces have utilised standard solutions of the target analytes as imitation 

residues.[389, 390, 392-396, 398] These simulated samples may not provide an accurate 

representation of actual residues produced by an explosive event. Post-blast residues 

are significantly more complex due to the changes that occur in the explosive as it 

reacts, degradation processes following reaction, and potential contamination from the 

local environment.[407, 408] Initial experiments were hence conducted to assess the 

practicality of generating ‘real’ residues for sampling through the deflagration of 

smokeless powder. 
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Various masses of smokeless powder were deflagrated under identical conditions and 

quantification carried out on the resulting residues, as shown in Table 5.5. Only one 

trial; employing 0.3 g of smokeless powder; resulted in the successful detection of all 

three target components. Substantially lower recoveries of all analytes were observed 

in the 0.2 g trial, which may be due to insufficient material being present prior to 

deflagration. The overall recovery of residues also appeared to decrease with larger 

mass quantities of the powder. A possible explanation for this phenomenon is that 

greater powder quantities produce a larger flame, which is more efficient in consuming 

the explosive material. This is consistent with assertions in the scientific literature that 

larger explosions in fact leave less explosive residue at the scene than smaller 

detonations.[285] 

Table 5.5: Concentrations (parts-per-billion) of target explosive components recovered 

from deflagration trials of 0.2 – 0.6 g of Alliant Red Dot DBSP. 

Compound 0.2 g 0.3 g 0.4 g 0.5 g 0.6 g 

NG 0.00 16.46 0.00 0.00 1.28 

DPA 1.07 5.92 0.83 0.88 0.85 

EC 3.43 9.41 0.00 0.00 0.00 

 

Four replicate trials using 0.3 g of smokeless powder found that the most consistent 

results were obtained for nitroglycerin (Table 5.6). However, the relative standard 

deviation (RSD) was found to be greater than the recommended acceptable limit of 

15 %, indicating a lack of precision.[409] A greater level of variation was observed for 

the remaining components, with two trials failing to detect ethyl centralite altogether. 

This is consistent with prior studies that have found difficulty in controlling 

deflagration or detonation processes to obtain a reproducible deposition of 

residues.[410] Due to the low quantities of target analytes recovered from the 

deflagration trials, as well as the lack of reproducibility between replicate trials, it was 

decided to conduct all subsequent studies using standard solutions of the target 

analytes spiked onto the recovery surface. 
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Table 5.6: Concentrations (parts-per-billion) and standard deviation of target explosive 

components recovered from four replicate deflagration trials of 0.3 g of Alliant Red Dot 

DBSP. 

Compound Trial 1 Trial 2 Trial 3 Trial 4 Average 
Precision 

(% RSD) 

NG 3.39 2.18 2.33 1.91 2.45 26.5 

DPA 3.87 9.18 2.47 1.90 4.36 76.2 

EC 15.29 0.00 0.00 24.76 10.0 121.7 

 

5.3.3 Factor screening 

In order to select factors to be investigated using the central composite design, 

screening trials were carried out to determine whether particular sampling methods, 

extraction periods or storage parameters would affect recovery of the target analytes. 

Triplicate samples were prepared using each of four selected sampling methods; 

solvent extraction, dry cotton swabbing, isopropanol-wetted cotton swabbing and 

acetone-wetted cotton swabbing. Cotton swabs are frequently utilised for the sampling 

of explosive residues due to their low cost and availability,[392, 393] and the use of these 

swabs with both acetone and isopropanol has been reported in the literature.[411-413] 

The average percentage recoveries using each method are depicted in Figure 5.3. The 

ethyl centralite results were highly unreliable, with extremely large standard deviations 

and an impractically high recovery using the isopropanol-wetted swabs. The large 

variation in the ethyl centralite results is likely due to the low peak areas obtained, 

resulting in minor deviations producing a much larger percentage effect. Additionally, 

some error may be attributed to the instrumental analysis parameters utilised, which 

were optimised for the detection of nitroglycerin rather than ethyl centralite.[403] As 

ethyl centralite has a very low vapour pressure, the vaporisation of this analyte may 

have been inconsistent, contributing to the large variation between replicates. The 

inaccurate recovery (exceeding 300 %) obtained using the isopropanol-wetted swabs 

was attributed to uncertainty associated with the calibration. The low peak areas 

generated by ethyl centralite resulted in a poor signal-to-noise ratio, making it difficult 

to accurately integrate these peak areas. Consequently, the ethyl centralite recovery 

could not be determined with confidence. 
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Figure 5.3: Average percentage recoveries of nitroglycerin, diphenylamine and ethyl 

centralite using various sampling methods. Error bars represent the standard deviation 

across three replicates. 

Nonetheless, the results indicate that wetted cotton swabbing was the most effective 

overall recovery method, followed by solvent extraction and dry swabbing. This 

indicates that the presence of a solvent is highly desirable for recovering residues 

adhering to the surface. Interestingly, the use of isopropanol-wetted swabs gave a 

higher recovery of nitroglycerin whilst acetone gave a higher recovery of 

diphenylamine. This is potentially due to the relative solubilities of the two 

components in each solvent. It was hence decided to investigate the use of dry, 

acetone-wetted or isopropanol-wetted swabbing using the central composite design, to 

determine whether the difference in recoveries obtained from each method could be 

considered significant. 

The comparison of sampling methods was repeated using 30 minute and 60 minute 

extraction times, as it was anticipated that a longer extraction interval may improve 

recovery. As shown in Table 5.7, increasing the extraction time improved overall 

recoveries using the solvent extraction and dry swabbing methods. On the other hand, 

recoveries from the solvent-wetted swabs decreased over the extended extraction time. 

The differing results obtained from the wetted and dry swabs indicates an interaction 

between the swabbing method and extraction duration, warranting further 

investigation through the central composite design. 
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Table 5.7: Average percentage recoveries (from three replicates) of nitroglycerin, 

diphenylamine and ethyl centralite using four sampling methods, following 15 minute, 30 

minute or 60 minute extraction periods. 

Compound Solvent Extraction Dry Swab Acetone Swab Isopropanol Swab 

15 Minutes 

NG 31.0 39.0 67.9 119.1 

DPA 18.4 9.2 75.6 61.0 

EC 39.7 14.1 134.0 327.3 

30 Minutes 

NG 47.7 40.4 52.1 83.7 

DPA 52.5 21.1 70.1 51.9 

EC 70.5 49.4 148.7 240.6 

60 Minutes 

NG 51.9 40.8 46.7 54.3 

DPA 62.1 24.9 45.3 48.4 

EC 69.4 61.4 159.2 102.6 

 

Whilst the above samples were extracted and analysed within an hour of residue 

collection, this is often not achievable in casework scenarios due to the time required 

to transport samples from the scene to the laboratory, as well as the large number of 

samples submitted for analysis. In these instances, samples must be appropriately 

stored until they are able to be processed. Triplicate samples were prepared using each 

sampling method and kept in a refrigerator for three days prior to extraction and 

analysis, to determine whether a loss of residues would occur while in storage. 

Refrigerated conditions were selected in order to minimise the evaporation of volatile 

residues such as nitroglycerin. Despite this, evaporation of solvent from the swab 

material still occurred, as evident from condensation observed in the storage vials.  

Average recoveries from each sampling method are depicted in Figure 5.4. 

Comparison with Figure 5.3 shows that recoveries of the solvent extraction and dry-

swabbing samples increased after storage, but decreased for the wet-swabbing 

samples. A potential explanation is that the solvent-dissolved residues penetrate 

further into the swab than those collected through dry swabbing, and become strongly 

adhered to the swab material as the solvent evaporates. This would result in the 

residues becoming more difficult to remove upon extraction, decreasing recovery.  
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Figure 5.4: Average percentage recoveries of nitroglycerin, diphenylamine and ethyl 

centralite using various sampling methods following 3 days of sample storage. Error bars 

represent the standard deviation across three replicates. 

In this instance, a longer extraction period may improve the recovery from swabs that 

are stored prior to analysis. It was hence decided to investigate storage time as part of 

the experimental design to evaluate the importance of storage duration in analyte 

recovery, and also to determine whether an interaction could be identified between the 

storage and extraction intervals. As there was insufficient time during these initial 

experiments to determine the effect of sample storage at room temperature, it was 

additionally decided to investigate storage at room temperature versus refrigerated 

conditions. 

5.3.4 Smokeless powder quantification 

As described above, standard solutions of the target analytes were used as simulated 

residues for initial screening experiments, in order to ensure consistent residue 

deposition across all samples. However, these solutions omit potential interferences 

caused by other components of the explosive material such as opacifiers, burn 

modifiers or dyes. For the optimisation study, it was hence decided to prepare samples 

from a standard solution of smokeless powder rather than solely the target components. 

This was anticipated to more accurately represent the chemical composition of post-

blast smokeless powder residues. 



 

Page | 134 

Quantification of the solution was performed to determine an adequate spiking volume 

for sample preparation. The manufacturer-reported mass percentages of each 

component were 4 – 40 % nitroglycerin, 0 – 1 % diphenylamine and 0 – 1 % ethyl 

centralite.[414] Twenty-fold and fifty-fold dilutions of the powder solution were run in 

triplicate alongside mixed calibration standards, using nitrobenzene as an internal 

standard. Excellent linearity was obtained for all three components, with correlation 

coefficients (calculated using the relative peak area) exceeding 0.99 for all target 

components (Table 5.8).  

Table 5.8: Correlation coefficients of calibration curves generated for nitroglycerin, 

diphenylamine and ethyl centralite. 

Component Calibration Range Correlation Coefficient 

Nitroglycerin 0.125-20 mg L-1 0.994 

Diphenylamine 0.125-10 mg L-1 0.997 

Ethyl Centralite 0.125-10 mg L-1 0.999 

 

Quantification results are presented in Table 5.9. Nitroglycerin was quantified using 

peak areas integrated from the fifty-fold dilution, whilst diphenylamine and ethyl 

centralite were quantified from the twenty-fold dilution. Good precision was obtained 

for nitroglycerin and diphenylamine, with RSD values better than the recommended 

15 % limit. The precision for ethyl centralite was substantially lower, as expected 

given the large variation in results obtained during initial experiments. Nonetheless, as 

the mass percentages of each component were within the ranges reported by the 

manufacturer, these values were considered to be acceptable. On the basis of these 

results, 50 µL was selected as a spiking volume to ensure readily detectable analyte 

concentrations (in the approximate range of 0.1 – 5 mg L-1) upon extraction to 5 mL. 

Table 5.9: Quantified mass percentages (averaged across three replicates) and precision 

of nitroglycerin, diphenylamine and ethyl centralite in Alliant Red Dot DBSP. 

Component Mass Percentage Precision (% RSD) 

Nitroglycerin 26.2 % 13.59 

Diphenylamine 0.72 % 6.33 

Ethyl Centralite 0.55 % 27.65 
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5.3.5 Central composite design 

5.3.5.1 Optimisation 

A face-centred CCD was used to develop response surface models for each target 

analyte as a function of the selected sampling, storage and extraction parameters, in 

order to identify the optimum parameters leading to maximum recovery. Model fitting 

tests were used to assess the quality of the model for each component (Table 5.10). 

The coefficient of determination, R2, measures the percentage of response variation 

that can be explained by the model.[415] A drawback to relying on this metric is that it 

is dependent on the number of factor variables or parameters relative to the sample 

size.[61] The adjusted R2 value, corrected for the number of variables modelled, is thus 

usually taken as a more accurate indicator of explanatory power.[61, 416] The predicted 

R2 measures the model’s predictive capability toward new observations, and may 

reveal overfitting to the experimental data.[416] 

As seen in Table 5.10, the adjusted R2 was below 65 % for all components, signifying 

that a large proportion of variation in explosive recovery remains unexplained by the 

regression models. This variation is likely attributed to factors not included in the 

experimental design, such as the time interval between residue deposition and 

sampling. Additionally, low determination coefficients are frequently obtained when 

the response (i.e. recovery) variation between individual factor levels is small relative 

to the variation across the full factor range.[61] It is therefore possible that the low 

determination coefficients in this design are at least partially due to only small 

variations in recovery existing between particular factor levels.  

Table 5.10: Model fitting test results for response surface models constructed for 

nitroglycerin, diphenylamine and ethyl centralite based upon their GC-MS peak areas. 

Model parameter Nitroglycerin Diphenylamine Ethyl Centralite 

Model significance < 0.001 < 0.001 0.004 

R2 55.3 % 71.0 % 40.1 % 

Adjusted R2 43.6 % 63.3 % 24.4 % 

Predicted R2 35.5 % 54.8 % 5.0 % 

Lack-of-fit 0.999 0.928 0.865 
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The predicted R2 values for each component were below 55 %, indicating low 

predictive precision. The values for ethyl centralite were particularly low, with a large 

disparity noted between the adjusted and predicted R2. This suggests that the ethyl 

centralite model is overfitted to the experimental data, likely due to unnecessary 

parameters introducing random variation. The predicted R2 could be improved by 

reducing the number of parameters in the design; however, this could adversely affect 

the modelling of the remaining components. As the recovery of ethyl centralite was 

not of primary interest to this study, the full set of parameters was therefore retained. 

ANOVA found that the regression models for all three components were significant in 

modelling response variation (p < 0.005) with no substantial lack of fit (p > 0.85), 

indicating significant trends modelled within the dataset despite the low R2 values. 

These models may hence still provide valuable information regarding the effect of the 

investigated factors on explosives recovery. This example illustrates the importance of 

evaluating experimental design results based upon the full data available, rather than 

relying solely on a single metric such as R2. 

The optimum parameters and corresponding desirability for each component are 

shown in Table 5.11. The desirability is a measure of how suited the parameters are to 

producing an optimum response, with values ranging from 0 (least desirable) to 1 

(most desirable). Nitroglycerin and diphenylamine gave the same optimum 

parameters, with excellent desirability in both instances. The parameters for ethyl 

centralite, on the other hand, differ from the previous components and show a much 

lower desirability. This is likely due to the lower detection rate of ethyl centralite 

(82 %) in comparison to the other components (100 % detection). The overall optimum 

parameters, while the same as those determined for nitroglycerin and diphenylamine, 

thus exhibit a decreased desirability due to the poor response expected from ethyl 

centralite. Regardless, as the desirability towards nitroglycerin was very high, these 

parameters were retained for the pipe bomb detonation samples. 
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Table 5.11: CCD optimised parameters and corresponding desirability for the recovery 

of nitroglycerin, diphenylamine and ethyl centralite from Alliant Red Dot DBSP. 

 Nitroglycerin Diphenylamine Ethyl Centralite Overall 

Swab Type Isopropanol Isopropanol Dry Isopropanol 

Storage Location Fridge Fridge Fridge Fridge 

Storage Duration 0 Days 0 Days 6 Days 0 Days 

Extraction Time 20 Minutes 15 Minutes 60 Minutes 15 Minutes 

Desirability 1.000 0.996 0.672 0.777 

 

5.3.5.2 Main effects and factor interactions 

Two-way ANOVA was used to evaluate the effect of each factor on the subsequent 

explosives recovery, and results are shown in Table 5.12. The choice of swabbing 

solvent was not identified as a critical factor for any of the three target components, 

possibly due to the similarity in recoveries obtained using acetone and isopropanol. 

Similarly, extraction time alone was not found to be significant.  

Table 5.12: p-values for all individual factors or two-way factor interactions in the 

recovery of Alliant Red Dot DBSP residues on steel. 

Parameter(s) NG DPA EC 

Sampling solvent 0.999 0.500 0.541 

Storage location 0.049 < 0.001 < 0.001 

Storage duration 0.292 < 0.001 0.003 

Extraction time 0.627 0.391 0.327 

Storage duration curvature < 0.001 < 0.001 0.028 

Extraction time curvature 0.925 0.472 0.695 

Storage duration * Extraction time 0.058 0.012 0.176 

Storage duration * Sampling solvent 0.964 0.478 0.408 

Storage duration * Storage location 0.612 0.716 0.387 

Extraction time * Sampling solvent 0.876 0.646 0.271 

Extraction time * Storage location 0.838 0.865 0.788 

Sampling solvent * Storage location 0.203 0.563 0.842 
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Diphenylamine and ethyl centralite recoveries were found to be significantly lower in 

samples stored at room temperature than those under refrigerated conditions 

(p < 0.001). Conversely, storage temperature had low significance on the recovery of 

nitroglycerin (p = 0.049). It was expected that losses would occur at higher temperature 

due to residue evaporation, and that this would be most pronounced in the recovery of 

nitroglycerin due to its higher volatility than diphenylamine or ethyl centralite. The 

results obtained here instead suggest that the decreased recoveries are more likely due 

to solvent evaporation from the swab material, resulting in increased binding of the 

residues as reported by DeTata et al.[389] The greater recovery of nitroglycerin indicates 

that this component exhibits a lesser degree of binding to the swab material, allowing 

it to be more readily extracted when the swab is re-wetted. 

Both diphenylamine and ethyl centralite were found to be significantly affected by the 

storage duration, with longer storage periods proving detrimental to the former 

(p < 0.001) whilst appearing to improve recoveries of the latter (p = 0.003). This is 

evident from the response surface plots (Figure 5.5), which illustrate how recoveries 

of each component vary as a function of the storage duration and extraction time. It 

was anticipated that a minimum delay between sampling and analysis would provide 

the highest recovery, and so the result obtained for ethyl centralite was unexpected. At 

present, there is insufficient evidence to speculate as to the cause for this result, and 

this warrants future investigation. 

Interestingly, the response surface plots of both diphenylamine and nitroglycerin 

exhibit a response curvature associated with the storage duration of samples, in which 

those stored for 3 days exhibit much lower recoveries than those stored for 0 or 6 days. 

This curvature was found to be significant for both compounds (p < 0.005). Although 

the initial decrease in recovery could be anticipated due to residue loss or 

decomposition while in storage, the increased recovery between three and six days of 

storage was not anticipated. Due to the analysis of samples across multiple days, this 

curvature may be a result of block effects as previously discussed. Further work is 

hence required to determine whether the results obtained here can be reproduced, or 

are the result of extraneous variations in the data. 
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Figure 5.5: Response surface plots for the recovery of nitroglycerin and diphenylamine 

(isopropanol-wetted swabs) and ethyl centralite (dry swabs) stored under refrigerated 

conditions, as a function of extraction and storage time. Arrows indicate optimum points 

on each response surface. 
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Interactions between the different factors were generally found to be insignificant, with 

exception of the storage and extraction times. The combination of these factors was 

found to be influential on the recoveries of diphenylamine (p = 0.012) and ethyl 

centralite (p = 0.028), with longer extractions required for samples stored over 3 or 6 

days than those analysed on the same day as preparation. These findings again support 

the hypothesis that increased residue binding onto the swab material occurs whilst in 

storage, thus requiring a longer extraction period to remove the residues for analysis. 

This interaction demonstrates the value of a CCD, as univariate optimisation of the 

extraction time following three or six days of storage could produce a false optimum 

extraction time of 60 minutes. By employing a CCD to model the entire response 

surface, it can be seen that the true optimum is in fact obtained when both the storage 

and extraction time are minimised. 

5.3.6 Pipe bomb trial 

In order to validate the suitability of the optimised protocols within an operational 

context, a PVC pipe bomb detonation was conducted to produce real post-blast 

residues for recovery. Previous work by Bors employed TV-SPME/GC-MS for the 

recovery of DBSP residues from steel pipe bomb device fragments.[403] Although the 

device itself is a key source of post-blast residues, traces may also be recovered from 

“witness” materials surrounding the explosive charge.[408] This trial therefore aimed to 

recover residues on surfaces proximate to the device, rather than the device itself.  

Galvanised steel was chosen as the witness surface as it is a common non-porous 

material that could be expected to survive an explosive blast and accumulate post-blast 

residues suited to sampling using the techniques described above. Following 

detonation of the device (Figure 5.6), each plate was divided into 16 areas for 

processing using the CCD-optimised parameters. This resulted in excellent rates of 

detection for nitroglycerin (99.0 %) and diphenylamine (95.8 %), and moderate 

detection of ethyl centralite (64.6 %) across the 96 samples analysed. 

 

 



 

Page | 141 

 

Figure 5.6: Photographs of the PVC pipe bomb trial set-up, a) prior to; b) during; and c) 

following initiation of the device. 

The average relative peak area recoveries from each witness plate are provided in 

Table 5.13, and the relative quantities of nitroglycerin from individual samples 

illustrated in Figure 5.7. The highest overall recoveries were obtained from plates 

facing the sides of the device (east and west), rather than the end-caps. This is 

consistent with previous observations that the initial containment failure of PVC pipe 

bomb devices initiates in the pipe body, with the explosive plume primarily expanding 

from the sides of the device.[417] The heat map also reveals that the explosive residues 

are more heavily concentrated on samples toward the south end of the device. This is 

likely due to residues being expelled through the hole drilled in the south end-cap for 

the time fuse, or the breach of the container originating closer to the south end-cap. 

Table 5.13: Relative GC-MS peak areas (normalised to maximum recovery) of target 

analytes from galvanised steel witness plates following detonation of a PVC pipe bomb 

containing Alliant Red Dot DBSP. Values are averaged across 16 samples. 

Plate Position Nitroglycerin Diphenylamine Ethyl Centralite 

East 1.00 1.00 1.00 

West 0.95 0.68 0.51 

North 0.00 0.01 0.00 

South 0.34 0.21 0.14 

Top 0.54 0.33 0.78 

Bottom 0.47 0.38 0.87 

 

It should be noted that in pipe bombs constructed from steel, the first breach of the 

container has been observed to occur at the end-caps of the device rather than the pipe 

body.[417, 418] This would prospectively result in a differing distribution of post-blast 

residue on surrounding surfaces, and this should be investigated in future studies. 
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Figure 5.7: Heat maps showing the distribution of NG on witness plates (a) on each side; (b) above and below the PVC pipe bomb device. Colour scale 

is normalised to the highest nitroglycerin peak area recovery. (*) denotes the top edge of plates surrounding the device. 
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5.4 Conclusion 

The use of a CCD in combination with TV-SPME/GC-MS analysis was able to 

develop statistically validated protocols for the sampling, storage and extraction of 

DBSP residues resulting from an explosive event. The resulting parameters were 

successfully applied to post-blast residues produced from a pipe bomb detonation, with 

a rate of detection exceeding 95 % for both nitroglycerin and diphenylamine. The 

elucidated parameters therefore provide a high level of confidence that IED events 

involving DBSP formulations will be readily identified. The distribution of post-blast 

residues about the device was also found to be consistent with previous observations 

regarding the fracturing pattern of PVC pipe bomb devices. 

Storage temperature was identified as the most significant individual factor affecting 

the explosive recovery, with greater recoveries obtained when samples were stored 

under refrigerated conditions. Minimum storage durations were generally found to be 

ideal, and a substantial curvature in recovery also observed across the 0 – 6 day period 

tested. The latter is potentially the result of block effects in the experimental design. 

Nonetheless, the presence of both curvature and significant factor interactions 

highlight the necessity of multivariate optimisation methods in order to detect and 

adequately model higher-order interactions within complex datasets. 

As discussed at the beginning of this chapter, while smokeless powders are common 

in the United States, they are rarely encountered in countries such as Australia due to 

legal restrictions. In these jurisdictions, explosive incidents are more likely to involve 

mining munitions such as TNT, or homemade peroxide explosives such as TATP and 

ammonium nitrate-based explosives. Future work is therefore required determine 

optimum protocols for a wider range of explosives encountered in different 

geographical contexts. Ultimately, such studies will assist in establishing more 

rigorously validated standards for explosive investigations. 
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Chapter 6: Conclusions and Future Work 
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The aim of this dissertation was to develop more objective analysis and interpretation 

protocols for physical evidence through the use of chemometric techniques. The 

studies detailed in this thesis have shown the utility of chemometrics not only for the 

improved discrimination of samples, but also for the exploration of factors affecting 

sample characterisation, and subsequent optimisation of evidentiary procedures. 

Specific conclusions are provided below for each chapter, along with proposals for 

future work. 

Chapter 2 demonstrated the use of microspectrophotometry (MSP) with chemometrics 

and hypothesis testing to measure sample similarity or dissimilarity, specifically in 

regards to “questioned versus known” comparisons of blue-dyed acrylic fibres. It was 

noted that spectral deviations as a result of sample heterogeneity or instrumental 

variation have the potential to lead to false exclusions. Nonetheless, this methodology 

offers a quantitative means of describing the strength of a fibre association, addressing 

the need to express comparative evidence in probabilistic rather than subjective terms. 

Due to the limited sample range, further work is required to determine whether similar 

results can be obtained with other fibre or dye types. Natural fibres such as cotton or 

wool are of particular interest due to their prevalence and greater level of natural 

variation, which will provide a more challenging test of the methodology described.  

Raman spectroscopy was examined as a means of obtaining complementary 

information regarding both the fibre dyes and substrate, but proved unsuccessful due 

to significant fluorescence interference. This could potentially be overcome by using 

alternative laser sources. Alternatively, future work could instead investigate the 

characterisation of the fibres using infrared microspectroscopy, which has been shown 

to provide discrimination between undyed acrylic fibres based on their co-monomer 

content.[419] Another factor worthy of investigation is the effect of damage or 

degradation (e.g. by repeated wear or laundering) on the characterisation of textiles, as 

this may affect their probative value in questioned versus known comparisons. 

In Chapter 3, diffuse reflectance visible spectroscopy with chemometric analysis was 

used to characterise and classify a population of 35 blue ballpoint inks. The developed 

statistical model could potentially allow identification of the pen type from which a 

questioned ink entry was made, or exclude dissimilar ink formulations from further 

examination. Certain inks proved to be difficult to separate on the basis of colour alone.  
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Further studies could therefore make use of micro-Raman or infrared microscopy to 

instead target vehicle components such as solvents or resins, which may assist in 

discrimination.   

Monitoring of six inks stored under various conditions over 14 months found that they 

remained chemically stable in the dark. Conversely, changes in both the spectral 

profile and visible colour of the deposit could occur in as little as one week when left 

exposed to light. Although posing a challenge to ink identification, this may in fact 

prove beneficial in detecting document alterations. The observed changes are 

consistent with the degradation of triarylmethane dyes such as methyl violet through 

N-demethylation, though this cannot be stated with certainty as the composition of the 

studied inks is unknown. In future, chromatographic methods could be applied to 

identify ink constituents that may be of specific interest. Ink dating curves constructed 

using partial least squares regression (PLSR) proved unsuccessful due to a high level 

of dispersion about the regression line. It should also be noted that the use of these 

models would require knowledge of the ink composition and document storage history, 

which may not be feasible in casework scenarios involving questioned documents.  

Artificial ageing via ultraviolet (UV) or thermal exposure over 24 hours was able to 

reproduce the effects of short-term light exposure, though no subsequent changes were 

noted. It has been postulated in the literature that that the loss of methyl groups due to 

UV irradiation yields stable products resistant to further degradation, whilst the 

removal of solvent through heating may hinder the dye degradation pathway.[353, 364] 

Further work in this area would benefit from the use of a climate control chamber to 

more thoroughly investigate the effects of varying both light and temperature. This 

would also facilitate investigations regarding the impact of humidity, which was not 

controlled in this study but is likely to be influential on the ink ageing process.  

The study of ink analysis was extended in Chapter 4 through the use of a video spectral 

comparator (VSC) to obtain spectral and chromatic data from handwritten ink traces. 

This instrument is routinely utilised by forensic document examiners conducting 

specialised lighting examinations, allowing the results of this study to be more readily 

applied within an operational context. The distribution of the ink population based 

upon the VSC spectra was broadly consistent with results in Chapter 3, although less 

specificity was obtained due to the lower spectral reproducibility of the VSC.  
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Future studies should incorporate testing on other VSC5000s to determine whether 

this limitation is inherent to all other instruments of this model, or only with the 

instrument utilised in this study. It would also be of interest to determine whether 

improved results can be obtained using the more recent VSC6000 or VSC8000 models.  

The use of fluorescence as an initial classifier prior to chemometric analysis yielded 

improved separation of a small number of inks. Additional discrimination could be 

achieved by categorising the fluorescent inks according to their relative fluorescence 

intensity, though this was done based on personal opinion and could introduce 

subjectivity into the results. In future, the use of quantitative fluorescence microscopy 

may be able to establish objective cut-off values for ‘strong’ or ‘weak’ fluorescence. 

The ink studies in both Chapters 3 and 4 employed a very specific range of pen inks 

on a single substrate, all sourced from Western Australia. Additional studies involving 

a range of ink types (such as gel, roller-ball and felt-tip varieties) on different 

substrates should be conducted to determine whether similar results can be achieved. 

There is also a need to expand the sample set to incorporate international suppliers. 

This will allow the potential application of this model to a broader geographical 

context, as well as providing a more rigorous assessment of batch variations. 

Furthermore, ink formulations are constantly being redesigned to improve 

characteristics such as colour or viscosity, and this will necessitate the consistent 

addition of new data through continued sample collection. 

Chapter 5 illustrated the use of a central composite design to optimise the sampling, 

storage and extraction parameters for double-base smokeless powder residues 

analysed by total vaporisation solid-phase microextraction gas chromatography-mass 

spectrometry (TV-SPME/GC-MS). Storage temperature was found to be the most 

significant factor influencing recovery, with considerable losses observed when 

samples were stored at room temperature rather than under refrigerated conditions. 

Longer storage periods were found to be detrimental to recovery, requiring a greater 

extraction period to remove the residues from the swab material. Interestingly, a 

substantial curvature associated with the storage duration was noted for nitroglycerin 

and diphenylamine, the cause of which could not be stated with absolute certainty.  

This result highlights the necessity of multivariate optimisation methods in order to 

detect and adequately model higher-order interactions within complex datasets. 



 

Page | 148 

The optimum parameters identified through the central composite design were 

successfully applied to post-blast residues produced from a pipe bomb detonation, with 

a rate of detection exceeding 95 % for both nitroglycerin and diphenylamine. The use 

of these parameters therefore provides a high level of confidence that explosive events 

involving double-base smokeless powders will be readily identified. The distribution 

of residues on witness materials surrounding the device was found to be consistent 

with previous observations regarding the fracturing pattern of polyvinyl chloride 

(PVC) pipe bomb devices. It is expected that steel devices would produce a differing 

residue distribution on surrounding surfaces, and this should be investigated in future 

studies. 

It should be noted that although gunpowders are widely used in the United States, they 

are rarely encountered in countries such as Australia due to legal restrictions. In these 

jurisdictions, explosive incidents are more likely to involve mining munitions such as 

trinitrotoluene (TNT) or homemade peroxide explosives, e.g. triacetone triperoxide 

(TATP). Additional work is therefore required to determine optimum protocols for a 

wider range of explosives encountered in different geographical contexts. The 

methodology presented in Chapter 5 may also be applied to alternative forms of 

physical evidence. As with explosives analysis, the use of experimental design within 

a broader forensic context has been largely limited to the optimisation of instrumental 

analysis, rather than pre-analysis procedure such as sample collection or storage. The 

use of multivariate optimisation techniques will allow the development of 

scientifically rigorous evidential procedures across multiple forensic disciplines. 

Finally, whilst the work in this dissertation has demonstrated the applicability of 

chemometrics to forensic examinations, it must also be considered how the results of 

these examinations may be presented in court. Current approaches to the presentation 

of evidence vary between jurisdictions. For example, fibre analysts in the United States 

commonly employ a frequentist approach as per Scientific Working Group on 

Materials Analysis (SWGMAT) guidelines, whilst European (and to an extent, 

Australian) examiners utilise the Bayesian approach recommended by the European 

Network of Forensic Science Institutes.[212, 420, 421] Future research is needed to 

examine how chemometric methodologies can be integrated within each of these 

frameworks, in order to gain acceptance in the legal system. 
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Appendix 2.1: Chemical structures and CAS registry numbers of cationic dyes present in blue acrylic fibres (structure for Basic Blue 147 dye is unknown).
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Appendix 2.2: Pre-processed MSP spectra (each averaged across five replicates) 

obtained from five set D blue acrylic fibres. 

 

 

Appendix 2.3: Pre-processed MSP spectra (each averaged across five replicates) 

obtained from five set E blue acrylic fibres. 
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Appendix 3.1: A summary of temperature, humidity and dew point data collected using a Digitech QP-6013 data logger on an open office shelf utilised 

for natural ink ageing studies, acquired between 2-14 months of ageing. 

 

 

 

 

 
Temperature (°C) Relative Humidity (%) Dew Point (°C) 

 
Average Standard Deviation Average Standard Deviation Average Standard Deviation 

January 24.0 0.3 47.0 4.5 11.9 1.3 

February 24.1 0.5 53.1 6.7 13.8 1.8 

March 24.0 0.6 50.0 7.1 12.8 2.2 

April 24.0 0.7 45.8 8.1 11.4 2.7 

May 24.1 0.3 39.6 6.2 9.3 2.5 

June 24.0 0.4 42.6 7.0 10.3 2.4 

July 23.9 0.3 42.5 8.8 10.1 3.1 

August 23.8 0.5 42.3 6.9 10.0 2.4 

September 24.0 0.4 39.1 7.6 8.9 2.9 

October 24.0 0.2 47.5 7.8 11.9 2.7 

November 23.8 0.8 49.8 6.5 12.5 2.4 

December 23.8 0.3 50.3 5.9 12.7 2.0 
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Appendix 3.2: 3-dimensional PCA scores plots generated from individual clusters of inks observed to be visually indistinguishable using PCA of the 

overall dataset. 
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Appendix 3.3: Normalised spectra obtained from PaperMate Profile ink, both freshly 

deposited and following (top) one week of natural ageing under open light; (middle) 24 

hours of thermal exposure; and (bottom) 24 hours of UV irradiation. 
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Appendix 4.1: 3-dimensional PCA scores plots generated using the first three PCs, highlighting the distribution of the blue ballpoint ink population 

based upon their corresponding VSC visible-NIR spectra. 
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Appendix 4.2: Pre-processed VSC5000 visible spectra showing the effect of (top) varying 

magnification; (middle) varying integration area; and (bottom) black masking on spectral 

quality. 
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Appendix 4.3: Actual and predicted classifications of visible reflectance spectra acquired 

from 12 inks using the VSC5000, using the statistical model generated using the Cary 

4000. 

Actual Pen Predicted Pen(s) 

Bic Cristal Artline Clix 4-Colour / PaperMate Profile 

Celco Retractable Pilot BP-145 / PaperMate Profile 

Office Basics Ballpoint Pilot BP-145 / PaperMate Profile / Artline Clix 4-Colour 

J.Burrows Ballpoint Artline Clix 4-Colour 

Bic Economy Artline Clix 4-Colour 

Pilot G-2 05 Artline Clix 4-Colour 

Bic Pro Plus Artline Clix 4-Colour 

PaperMate FlexGrip Elite Artline Clix 4-Colour 

Pentel Rolly Artline Clix 4-Colour 

Staedtler Triplus 426 Artline Clix 4-Colour / PaperMate Profile 

PaperMate Ink Joy 300 Artline Clix 4-Colour 

Office Choice Retractable Artline Clix 4-Colour / PaperMate Profile 

 

 

 

Appendix 4.4: 3-dimensional PCA scores plot showing the relative distribution of 

calibration and validation spectra acquired from three inks using the VSC5000. 
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Appendix 4.5: Scree plots depicting the cumulative variance retained by each PC for (a) 

non-fluorescent; and (b) fluorescent blue ballpoint inks. 
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Appendix 4.6: PC1 factor loadings and visible reflectance spectra acquired from weakly 

fluorescent blue ballpoint inks using the VSC5000. 

 

Appendix 4.7: PC1 factor loadings and visible reflectance spectra acquired from 

moderately fluorescent blue ballpoint inks using the VSC5000. 
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Appendix 5.1: Distance measurements between fixed steel witness plates and the PVC 

pipe bomb device containing Alliant Red Dot double-base smokeless powder. 

Plate Distance to Device 

North 12.25 inches 

East 10.75 inches 

South 10.25 inches 

West 11.75 inches 

Top 8.5 inches 

Bottom 12.25 inches 

 


