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ABSTRACT 
 

Abstract 
 

 

 

 

Fossil fuels such as coal remain as the major fuels for supplying energy in Australia, 

resulting in significant carbon emissions. In Australia, the introduction of Renewable 

Energy Target Scheme provides the industry with the much needed incentives to shift 

toward renewable energy such as biomass. Mallee tree, which is a by-product of 

managing dryland salinity issue in the wheatbelt region of south Western Australia, is a 

promising second generation biomass (lignocellulosic) feedstock. The production of 

mallee biomass is at a large scale, economical and achieving a relatively higher energy 

ratio compared to other energy crops.  

 

Biomass can be utilised for energy production through various thermochemical 

processes. For example, biomass can be burnt directly or co-fired in coal power plants 

to generate energy. It can be converted into syngas via gasification. In addition, biomass 

can also be converted into biochar and bio-oil via pyrolysis, which can be used as fuels. 

Furthermore, lignocellulosic biomass can be hydrothermally treated to convert the 

hemicellulose and cellulose in biomass into fermentable sugars for bio-ethanol 

production.  

 

Leaching process plays an important role in utilisation and thermochemical processes 

of biomass. For sample, water washing of biomass has been extensively studied as a 

strategy to remove the inherent ash-forming species in biomass that lead to notorious 

ash-related issues during biomass combustion or gasification. Batch leaching of biomass 

with water was also employed as the first step of sequential leaching to investigate the 

occurrence of inorganic species in biomass. Leaching of biochar, on the other hand, is 

employed to assess the recyclability of inorganic species in biochar and leachability of 

organic matter from biochar when it is applied to soil. Even during hydrothermal 

processing of biomass in hot-compressed water (HCW), the inherent inorganic species 
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in biomass may be leached from biomass via HCW. The leaching of these elements can 

have a significant implication on the yield of fermentable sugar from hydrothermal 

processing of biomass in HCW. Despite continued research on the leaching of inorganic 

and organic matter from biomass and biochar, there are still a number of research gaps 

that are yet to be addressed. 

 

The current study aims to provide better understanding on the leaching of inorganic and 

organic species from biomass and biochar under various conditions with emphasis on 

equilibriums, kinetics and their implications. The main objectives of this research are: 

(1) to study the leaching characteristics of inorganic and organic matter from biomass 

and the influence of the leaching of organic matter on the leaching of inorganic matter 

from biomass; then, a method to accurately quantify the water-soluble inorganic species 

in biomass is proposed; (2) to investigate the potential of partial steam gasification of 

fast pyrolysis biochar as a method to tune biochar properties and reduce the leaching of 

harmful organic matter from biochar; (3) to examine the suitability of partial steam 

gasification as a method to enhance the recyclability of nutrients from fast pyrolysis 

biochars; and (4) to provide better understanding on the leaching characteristics of alkali 

and alkaline earth metallic (AAEM) species in biomass under HCW condition and the 

occurrence of water-insoluble AAEM species in biomass. 

 

Firstly, the results of this study show that over 30% and ~2% (on carbon basis) organic 

matter can be leached from mallee leaf and wood by water, respectively, producing 

acidic leachates containing organic acids. As a result, there are significant differences 

in the leaching characteristics of both organic and inorganic species in biomass between 

batch and semi-continuous leaching operations. Under conventional batch leaching, the 

acidic leachate continuously contact with the biomass for a prolonged period, resulting 

in the leaching of at least some water-insoluble inorganic species (e.g. organically-

bound) from biomass. Therefore, the batch leaching method clearly overestimates the 

amount of water-soluble inorganic species in biomass. The leaching of inorganic species 

in biomass under batch condition exhibits two-step leaching kinetics, i.e. a rapid 

leaching step for an initial short period followed up a slow leaching step for a relatively 
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long period. This study further develops a semi-continuous leaching method to address 

this issue via minimising the contact between the leachate and the biomass sample. The 

semi-continuous leaching quantifies the true water-soluble inorganic species in biomass. 

Its leaching kinetics include only the first rapid leaching step, with the disappearance of 

the second slow-leaching step due to the absence of the interaction between acidic 

leachate and biomass. The results suggest that in the sequential extraction scheme used 

in chemical fractionation, semi-continuous (instead of batch) water leaching method 

should be used for quantifying water-soluble inorganic species in biomass. Attention 

should also be paid to the potentially substantial loss of fuel materials when utilising 

water leaching as a pretreatment method to remove inherent inorganic species in 

biomass for fuel quality improvement. As result of overestimating water-soluble 

inorganic species and loss of organic matter, care must be taken in using water batch 

washing as a method for studying the effect of the inherent water-soluble inorganic 

species on thermochemical reactions of biomass. 

 

Secondly, the results in this PhD thesis suggest that it is a good strategy to tune the 

properties of fast pyrolysis mallee biochar (fine particle wood and leaf biochar and large 

particle wood biochar) properties via partial steam gasification at low carbon 

conversions (5 – 10%) and mild temperature (725°C). Such a tuning process resulted in 

a small expense (can be as low as ~10%) in the amount of carbon that can be 

sequestrated. The pores in fast pyrolysis biochar are mainly micropores. Partial steam 

gasification only leads to a small increase in micropore surface area while increase of 

BET N2 surface area from <100 m2/g to between 450 and 675 m2/g is observed, owing 

to the enlargement of micropores and opening of the partially blocked pores in biochar. 

Less than 1.5% of organic matter on carbon basis can be leached from raw and tuned 

biochar via water. Secondary pyrolysis generally leads to the reduction of water 

leachable organic matter to below detectable amount. However, small amount of 

organic matter is leachable from tuned biochar due to the opening of blocked pores and 

increase in accessibility of these leachable compounds within biochar due to 

development of porous structure following gasification. Analysis of water leachates 

shows no detectable aromatic compound. However, aromatic compound with up to 5 
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fused rings can be leached from raw biochar via chloroform–methanol mixture. Tuning 

of biochar via partial gasification produced biochar with no solvent leachable aromatic 

compound, reducing the risk of possible soil contamination due to leaching harmful 

organic species. The results further demonstrate that tuning of biochar via partial steam 

gasification is able to produce biochar with desired properties for soil amendments (such 

as promoting soil microbial activity and improving soil water holding capacity).  

 

Thirdly, tuning of biochar via partial steam gasification to enhance the recyclability of 

nutrients from fast pyrolysis biochars is studied. Partial steam gasification of biochar 

resulted in minimal volatilisation of AAEM species in biochar. However, the retention 

of Na in leaf biochar can be as low as ~66% owing to the more intense volatile-char 

interaction and forced flow of Argon gas through a thin layer of char bed. Most of the 

Na and K in fast pyrolysis leaf and wood char prepared at 500 °C are leachable by water 

or Mehlich-1 solution (plant available nutrient). However, ≤30% of Mg and Ca in wood 

biochar is water leachable or plant available nutrient, resulting in low recyclability of 

Mg and Ca. Partial steam gasification (1) promotes the development of pore structure 

in biochar and (2) transforms part of the AAEM species that is in the form that is not 

water nor dilute acid soluble into the form that is leachable by water and Mehlich-1 

solution. This effectively enhanced the recyclability of AAEM in wood and leaf biochar 

to 85% and 96%, respectively. Further effort had been taken to fit the experimental data 

from water leaching of AAEM species to pseudo-second order kinetic model. It is found 

that partial steam gasification increases the overall kinetic rate constant and initial 

leaching rate, due to the same two factors aforementioned.  The overall recycling of 

AAEM species from tuned and raw biochar is calculated by normalising the amount of 

plant available nutrient to the total AAEM species available in biomass. The result 

shows tuning of biochar via partial steam gasification greatly enhanced the overall 

recyclability of Mg and Ca in biochar. The result further demonstrates that biochar 

produced from pyrolysis of large particle feedstock can be ground and tuned to enhance 

the overall recyclability and leaching kinetics of the nutrient species. 
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Lastly, the leaching of water-insoluble alkaline earth metallic species in mallee wood 

under HCW conditions at 150 – 270 °C using semi-continuous reactor system is studied. 

The biomass sample is leached at room temperature before hydrolysis in HCW. ~90% 

Mg and ~96% Ca in mallee wood can be leached under HCW conditions. The leaching 

of Mg and Ca took 70 min to reach equilibrium at 150 °C but 90% of leachable Mg and 

Ca was released in <15 min at temperature ≥180 °C. The leaching kinetics of Mg and 

Ca remained unchanged at temperature ≥180 °C. To better understand the correlation 

of the leaching of water-insoluble Mg and Ca and the conversion of organic matter, the 

organic compound in the liquid product is analysed. The biomass conversion at 150 °C 

with reaction time of 70 min is ~34% and increases to ~88% at 270 °C. The 

hemicellulose and lignin begin to decompose at 150 °C and are completely decomposed 

at 180 °C. Cellulose begins to decompose at 230 °C with the reaction becoming more 

intense at 270 °C. It is found that the leaching of water-insoluble alkaline earth metals 

in mallee wood is well correlated with the recovery of arabinose during mallee wood 

conversion in HCW. This suggests that water-insoluble Mg and Ca are bound to organic 

acid functional groups on hemicellulose bunches. 
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Chapter 1: Introduction 
 

 

 

 

1.1 Background and Motives 

 

To date, the Australian economy is dominantly powered by fossil fuels. Coal remains 

as the major fuel for electricity generation and accounted for 64% of electricity 

generated in Australia.1, 2 Heavy reliance on fossil fuels results in significant carbon 

emission which is known to contribute to climate change and global warming. The 

introduction of Renewable Energy Target Scheme3-6 in 2000 provides the essential 

incentive for investment toward renewable energy such as biomass. Since then, there 

had been substantial growth in the share of electricity generated from renewable 

sources.1 Australia is targeted to generate 20 % of its electricity from renewable energy 

sources by 2020.7 

 

In Western Australia, mallee tree is planted in the wheatbelt region to prevent the 

degradation of agricultural land. It is a short rotation crop regenerated as coppices with 

the potential for large scale production.8-10 Unlike other energy crops, the production of 

mallee biomass has a high energy ratio and it does not compete with food crop for 

agriculture land. Therefore, mallee biomass can be a promising second-generation 

bioenergy feedstock.10  

 

Biomass such as mallee can be used as an energy source through combustion or 

gasification,7, 11 converting it to higher energy density fuels such as biochar or bioslurry 

through pyrolysis12-15 or processing biomass into biofuels such as bio-ethanol through 

hydrolysis then fermentation.16, 17 However, combustion or gasification of biomass is 

often accompanied by notorious ash related issues.18-20 Water leaching of biomass is 

often employed for removal of ash forming inorganic species20-22 or for studying the 

occurrence of inorganic species in biomass.18, 23 Organic matter can also be leached from 
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biomass24 and can potentially lead to overestimation of water-soluble inorganic species 

in biomass but it is often overlooked.  

 

In addition to their application as a fuel, biochar from pyrolysis of biomass can also be 

used to sequestrate carbon to soil and recycle part of the nutrients uptake by biomass 

during its growth. The nutrient retained in biochar can potentially return back to the soil 

to prevent degradation of soil from continuous removal of soil nutrient resulted from 

continuous harvesting of biomass.25, 26 Leaching of biochar produced under various 

conditions was carried out to access the recyclability of nutrient species in biochar and 

leaching of potential harmful organic matter.24, 27 However, there is potential that 

harmful aromatic compound can be leached from biochar28 and the water-solubility of 

some plant important nutrients such as Mg and Ca is low.27 A method has to be 

developed to maximise the leachability and leaching kinetic of inorganic species and 

minimise the leaching of harmful organic matter from biochar.  

 

Furthermore, inorganic matter was reportedly leached from biomass during hydrolysis 

of biomass in hot-compressed water (HCW).29, 30 The leaching of inorganic matter can 

potentially lower the yield of oligosaccharide from hydrolysis31 for ethanol fermentation. 

However, the leaching characteristics of inorganic matter in HCW and its implication 

are not well understood. Better understanding of this process will help to improve the 

yield of fermentable sugar from hydrolysis of biomass in HCW, and provide useful 

information on the occurrence of water-insoluble alkali and alkaline earth metallic 

(AAEM) species in biomass. 
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1.2 Scope and Objectives 

The current study aims to provide better understanding on the leaching of inorganic and 

organic species from biomass and biochar under various conditions with emphasis on 

equilibrium, kinetic and implication. The detailed objectives of this study are as follows: 

• To study the leaching characteristics of inorganic and organic matter from 

biomass and the influence of the leaching of organic matter on the leaching of 

inorganic matter from biomass. 

• To investigate the potential of partial steam gasification of fast pyrolysis biochar 

as a method to tune biochar properties and reduce the leaching of harmful 

organic matter from biochar. 

• To examine the suitability of partial steam gasification as a method to enhance 

the recycling of nutrients from fast pyrolysis biochars. 

• To provide better understanding on the leaching characteristics of AAEM 

species in biomass under HCW condition and the occurrence of water-insoluble 

AAEM species in biomass.  

 

1.3 Thesis Outline 

 

This thesis consists of 8 chapters including the current chapter. The thesis structure is 

schematically shown in the thesis map presented as Figure 1.1. Each chapter in this 

thesis is outlined below: 

 

• Chapter 1 introduces the background and objectives of the current research 

 

• Chapter 2 provides an up-to-date literature review on leaching of inorganic and 

organic matter from biomass and biochar. This chapter will conclude identified 

research gaps and specific objectives for the current study. 

 

• Chapter 3 provides an overview on the methodology employed to achieve the 

research objectives and detailed description on the sample preparation, 

experimental setup and analytical methods involved. 
Page 3 

 
 



CHAPTER 1 
 

 

• Chapter 4 studies the leaching characteristics of inorganic and organic matter 

from biomass and the influence of leaching of organic matter on the leaching of 

inorganic matter from biomass. 

 

• Chapter 5 investigates the potential of partial steam gasification of fast pyrolysis 

biochar as a method to tune biochar properties and reduce the leaching of 

harmful organic matter from biochar 

 

• Chapter 6 examines the suitability of partial steam gasification as a method to 

enhance the recycling of nutrients from fast pyrolysis biochars. The leaching 

kinetic of nutrient species from biochars is also discussed in this chapter. 

 

• Chapter 7 studies the leaching characteristics of AAEM species in biomass 

under HCW condition and the occurrence of water-insoluble AAEM species in 

biomass. 

 

• Chapter 8 concludes the current study and lists out recommendations for future 

work. 
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Figure 1.1: Thesis Map
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Chapter 2: Literature Review  
 

 

 

 

 

2.1 Introduction 

 

Over the past few decades, significant amount of studies had been devoted to the 

thermochemical conversion for energy production. Leaching of biomass and biochar 

has an important role in thermochemical processes of biomass. Combustion and 

gasification of biomass are often accompanied by notorious ash related issue.18, 20, 32 

Significant research had been carried out to study water leaching as a method to remove 

ash forming species from biomass.20, 32, 33 Biochar co-produced during fast pyrolysis for 

bio-oil product can be applied to soil to recycle nutrient uptake during plant growth to 

soil and potentially improve the sustainability of biomass pyrolysis scheme.25, 26 Biochar 

leaching was carried out to study the recycling of inorganic nutrients24, 27 and potential 

leaching of harmful organic matter24 from biochars. As hydrolysis of biomass in hot-

compressed water (HCW) is a promising method to convert polysaccharide in 

lignocellulosic biomass into oligosaccharide,17 it is important to understand the leaching 

of inorganic species under HCW condition. 

 

The objectives of this chapter are to review the current literatures concerning the 

leaching of biomass and its derived biochar under various conditions, identify the 

research gaps and present the aims of this study. The literature review will first discuss 

the significance of mallee biomass in Western Australia and its significance as a 

bioenergy source. Next, a brief overview on biomass organic and inorganic composition 

will be provided. Then, the thermochemical processing of biomass is discussed. Later, 

a review on the importance of leaching to thermochemical processing of biomass will 

be given. Lastly, this chapter will conclude the research gaps identified and objectives 

of this study. 
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2.2 The significance of Mallee Biomass in Western Australia and Its Roles as 

a Bioenergy Source 

 

As increasing number of countries are moving towards renewable energy, the utilisation 

of biomass plays a more significant role in global energy mix. However, the large scale 

utilisation of first-generation biofuel leads to several drawbacks. Although, the 

conversion technologies and market for this biofuel is well established, it has low energy 

efficiency and large carbon footprint.9, 34 Large scale plantation of this feedstock such 

as canola for bioenergy can potentially threaten global food security due to conversion 

of significant agriculture land for biofuel production.34-36  

 

Mallee eucalyptus is a short-rotation croppies planted in Western Australia wheatbelt 

region to combat the dryland salinity issue which leads to degradation of agriculture 

lands in the region.8, 9, 37 To date, approximately 15,000 hectare of mallee trees have 

been planted by 1,000 farmers in Western Australia.7 An estimated biomass yield of 10 

– 20 green tonnes a hectare per year is achievable when growing in alley system and in 

the region with sufficient rainfall and appropriate soil type. In addition, there is a small 

traditional market for eucalyptus oil extracted from the leaves and may have a potential 

for industrial use,38, 39 providing additional cost benefits for the production of mallee 

biomass. Moreover, the leaf oil deter the livestock from grazing the tree and therefore, 

no additional effort is required to fence the plantation from livestock.7 

 

Unlike the first-generation feedstock, the utilisation of mallee biomass for bioenergy 

does not compete with food crop for agriculture land but serve to complement the use 

of agriculture land.9 Various studies demonstrate the potential of mallee biomass as 

second-generation feedstock (lignocellulosic biomass) for bioenergy.9, 10 Wu and co-

workers demonstrate that the production of mallee biomass has significantly higher 

energy ratio and energy productivity compared to other energy crops used in the region 

such as canola used for biodiesel production.10 Study carried out by Yu and co-workers 

also shows that the supply of mallee biomass can be economical with strategic 

implantation.40 
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2.3 Inorganic and Organic Composition of Mallee Biomass  

2.3.1 Biomass Organic Composition 

 

Lignocellulosic biomass such as mallee can be considered as a composite of structural 

organic components (lignin, hemicellulose and cellulose) and matrices organic and 

inorganic compounds. The proportion or composition of structural organic component 

and bulk extractive varies depending on the type of biomass and its components (wood, 

bark, leaf).41 Roughly 40% of mallee biomass is made up of wood, 25% of it is bark or 

twig and the remaining 35% is leaf.8 An example of the composition of mallee biomass 

(Eucalyptus loxophleba, subspecies lissophloia)42 used in this work is presented in 

Table 2.1. The major component in wood is cellulose while extractive is dominant in 

bark and leaf component of mallee.  

 

Table 2.1: The composition of mallee biomass42 

Composition Wood Leaf bark 

Lignin 24.7 25.2 24.1 

Cellulose 42.4 15.4 26.3 

Hemicellulose 23.8 18.6 17.3 

Extractivea 9.1 40.8 32.3 

Arabinan 1.1 7.5 4.5 

Xylan 18 5.5 10 

Mannan 0.59 0.67 0.55 

Galactan 2.1 2.4 2.2 

Glucan 44.5 16.7 27.6 
a Extractive is calculated by difference from lignin, cellulose and hemicellulose 
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Cellulose 

 

Cellulose is the polymer of glucose, linked by β-1,4 glycoside linkage43 and it is the 

most abundant organic compound on earth.16 Depending on the degree of 

polymerisation (DP) of cellulose, its molecular weight (MW) ranges between 300,000 

and 500,000. As an example, the DP of cellulose in cotton ranges from 7,000 to 10,000 

while it is around 15,000 for wood.16 The long cellulose chains are bonded to adjacent 

chains by a long network of hydrogen bonds,41 forming cellulose fibril.44 However, not 

all of the cellulose occurs as crystalline structure.44 Part of it occurs in amorphous phase 

and its proportion varies with the biomass type. 70% of cellulose in cotton is crystalline 

while only 40% for wood cellulose.16   

 

Hemicellulose 

 

Unlike cellulose, hemicellulose is the polymer of pentose (mainly xylose and arabinose), 

hexose (glucose, galactose and mannose), and 4-O-methyl glucuronic acid and 

galacturonic acid residues.16 The dominant component in hemicellulose for hardwood 

such as mallee is xylan (refer to Table 2.1). Typically, the structure of the hemicellulose 

comprises of a xylan main chain as the backbone substituted with other saccharides 

sidechain.45 Compare to cellulose, the MW of hemicellulose is <30,000.43 It has an 

amorphous structure owing to its heterogeneous group of bunched polysaccharides.41, 46 

Hemicellulose exists in association with cellulose in cell wall,16 surrounded by lignin 

which acts as a protective sheath for the hemicellulose-cellulose structure.46 An example 

of hemicellulose structure is presented in Figure 2.1. 
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Figure 2.1: A schematic of the basic structure of hemicellulose. A as arabinose, FeA as 
ferulic acid, G as galactose, Glc as glucuronic acid and X as xylose.45   
 

Lignin  

 

About 25% of mallee wood, leaf and bark is lignin. It is an amorphous heteropolymer 

containing three different phenylpropane units, p-coumaryl alcohol, conifereryl alcohol 

and sinapyl alcohol (Figure 2.2), which were covalently bonded via various cross-

links.44 As aforementioned, lignin is often associated with hemicellulose and cellulose. 

It covers the cell walls, binds the cells together, ties and agglomerates the cellulosic 

fibres and holds the microfibrils with relatively high structural rigidity in a 

lignocellulosic complex.41 This provides the plant with structural support,47 

impermeability and resistance to microbial attack and oxidative stress.44 Such complex 

has to be broken down before the cellulose and hemicellulose is accessible, rendering 

the decomposition or hydrolysis of lignocellulosic biomass a challenging task.46 
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Figure 2.2: The structure of p-coumaryl alcohol, conifereryl alcohol and sinapyl 
alcohol.48 
 

Organic Extractives 

 

A portion of biomass is comprised of organic extractive which can be extracted via polar 

or non-polar solvent.47, 48 They are 9% in the case for mallee wood and about 41% and 

32% for leaf and bark, respectively (Table 2.1). These extractives may include fats, fatty 

acids, waxes, alkaloids, proteins, phenolics, simple sugars, pectins, mucilages, gums, 

resins, terpenes, starches, glycosides, saponins, and essential oils.16, 47, 48 The amount of 

extractives in wood can be as low as a few percent but it can be higher at specific parts 

of the tree. In the case of mallee, the extractive in bark and leaf sections is higher 

compared to wood section (See Table 2.1). The content and composition of extractive 

can be different depending on location and season.47  

 

2.3.2 Biomass Inorganic Species 

 

Biomass may contain small amount of inorganic species48 due to nutrient uptake during 

biomass growth.16 These inorganic species mainly include AAEM species (Na, K, Mg 

and Ca), Si, Fe, Al, Cl, P, Ti and other elements where each element has its role in plant 

nutrition activity. For example, K and N are directly related to plant development, Ca is 

important for plant cellular tissues and Mg is crucial for plant vital function. The 
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concentration of these elements varies depending on species and environmental 

conditions.22 An example of inorganic elements contents in mallee biomass24 used in 

this study is presented in Table 2.2. 

 

Table 2.2: Inorganic species content in different biomass component. (Na, K, Mg, Ca, 

Fe, Si, Al, and P in wt% db; wt % daf for S, Cl, and N) 

Element (wt%) Wood Leaf bark 

Na 0.0212 0.5537 0.2094 

K 0.0744 0.3797 0.1105 

Mg 0.0364 0.1447 0.0796 

Ca 0.1236 0.7652 2.6591 

Si 0.0026 0.0550 0.0099 

Al 0.0025 0.0192 0.0028 

Fe 0.0001 0.0142 0.0019 

P 0.0182 0.1075 0.0235 

S 0.0183 0.1181 0.0509 

N 0.1910 1.4574 0.3918 

Cl 0.0323 0.1839 0.2601 

 

The amount of inorganic elements in wood is relatively little when compared to those 

in leaf and bark. Mallee biomass contains high amount of AAEM species especially Ca. 

The concentration of Al, Si and Fe in mallee biomass is small comparatively. In addition, 

mallee biomass also contains various amounts of S, Cl, P and N. The ash content in 

wood is ~0.4% while it is ~3.8% and ~5.5% for leaf and bark, respectively.24 Recent 

study by Wu and co-workers24 demonstrates that nearly all of Na, K and Cl in mallee 

biomass is water soluble while the amount of water-soluble Mg, P and S varies at 40-

80%, 60-80% and 30-50% respectively. Although there is an abundant amount of Ca in 

mallee biomass, these are hardly water soluble. Only 5-30% of them are water soluble. 

 

 

Part of these water-soluble AAEM species can be in the form of water-soluble salt 

associated with Cl-, SO4
2- and PO4

3-. They also can occur as cations of water-soluble 
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organic compounds such as carboxylates.18, 24 However, the occurrence of these water-

soluble Mg and Ca in the form of carboxylate is less likely as the carboxylate of these 

species are hardly water soluble.24 The small amount of water-insoluble Na and K are 

likely to be organically bounded Na and K that are ion-exchangeable by ammonium 

acetate.18, 23 The majority of water-insoluble Mg is likely to be in organically bounded 

and ion-exchangeable forms with a small amount of them only soluble in acid. Ca, on 

the other hand, varies from wood to leaf and bark. The majority of this water-insoluble 

Ca in wood is likely to be ion-exchangeable via ammonium acetate while the majority 

of it is likely to be in various forms of oxalates that are only leachable by acids.18, 23  

 

As nearly all the chlorine is water soluble, the chlorine presents in biomass in the form 

of chlorides of AAEM species, such as NaCl and KCl.18 The water-soluble P and S 

mainly present in the form of sulphate and phosphate associated with AAEM species as 

aforementioned. However, part of these P can also originate from organic compound 

which contain phosphorous such as phytic acids.18 The remaining P and S were also 

reported to be in the form of sulphate and phosphate leachable via ammonium acetate 

and acid.23.    

 

2.4 Thermochemical Processing of Biomass 

 

Biomass can be used as fuel or energy production via various thermochemical processes. 

Biomass can be directly burnt or co-fired to generate energy or turned into syngas via 

gasification process. In addition, biomass can also be converted into biochar or bio-oil 

via pyrolysis process which then can be used as fuels. Biomass can also be 

hydrothermally treated to break down its hemicellulose and cellulose into 

oligosaccharides, which can be subsequently fermented to bio-ethanol. 

 

2.4.1 Combustion and Gasification of Biomass 

Combustion and Gasification of Biomass: Ash Related Issues 
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Biomass can be burnt to generate heat and power. One of such example is the large 

amount of wood residues generated by wood production industry are typically used to 

generate power.11 In Queensland, Australia, sugarcane bagasse from its sugarcane 

industry had been widely used to generate power with the excess power being fed back 

to the power grid.7 Furthermore, biomass can also co-fired with fossil fuels such as coal 

in existing coal fired power plants49-51 to reduce the greenhouse gases emission.7 

However, the amount of biomass co-fired is usually kept below 10% in order to avoid 

adverse effect on the operation of the plants.7, 52 In addition, biomass can be used to 

produce syngas via gasification7 in fixed or fluidised bed gasifier.53 The syngas can be 

used as fuel in boilers, engines and combustion turbine7 or upgraded to transportation 

fuels.54  

 

However, the high alkali metals and chlorine content in biomass lead to several ash 

related issues during combustion and gasification of biomass. These include formation 

of slags and fouling deposits, corrosion,18-20, 32, 55-57 sintering and agglomeration of bed 

material.18, 22, 57-62 Na and K in biomass mostly present in the form of water-soluble or 

organic bound K+ as aforementioned. As opposed to the insoluble forms of K, these 

forms of K can vaporise55 and release to flue gas during combustion and can actively 

participate in further reaction.18 High chlorine content in biomass may result in 

formation of highly corrosive KCl. The presence of KCl lowers the first melting 

temperature of the fly ash, resulting in sticky ash at lower temperatures. Water-soluble 

Mg and Ca in biomass on the other hand, can lead to sintering and formation of hard 

deposits from their carbonates.18 In addition, Na and K have high mobility and might 

react with inert bed material to form a sticky surface which promotes the agglomeration 

of these particles and eventually result in defluidisation.20, 58, 59 Alkali metals are also 

likely to react with silica in residue ash at temperatures well below 900 °C which can 

lead to formation of deposits on the bed surface.20, 63  

 

2.4.2 Pyrolysis of Biomass 

Overview of Biomass Pyrolysis Technology 
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Although biomass can be directly used as a fuel, the bulky nature of biomass, its low 

energy density and high moisture content12 and in the case of mallee, high cost 

associated with long distance transportation40 limits the utilisation of biomass as a fuel. 

In addition, the poor grindability of biomass such as mallee also leads to significant cost 

for size reduction, limiting the amount of biomass that can be co-fired in conventional 

coal based power plant. However, these undesirable characteristics can be eliminated 

though pyrolysis.12 

 

Through pyrolysis, the energy density increase from ~10 MJ/kg for green mallee wood 

to ~32 MJ/kg for biochar and ~17 MJ/kg for bio-oil which were prepared at 500 °C.12, 

14 However, due to the low bulk density of biochar, there is no significant improvement 

in term of its volumetric energy density (~5 GJ/m3 for green biomass to ~9 GJ/m3 for 

biochar).12 Pyrolysis of biomass is a thermal degradation process where the biomass is 

heated under oxygen depleted environment to produce biochar (solid), bio-oil (liquid) 

and fuel gas products.64 The pyrolysis process can be categorised into conventional 

pyrolysis (slow pyrolysis), fast pyrolysis and flash pyrolysis. The range of operating 

conditions for these three pyrolysis processes is listed in Table 2.3. Each of these 

pyrolysis processes result in different distribution of pyrolysis products.  

 

Table 2.3: Typical main operation conditions for pyrolysis processes64  

 Slow Pyrolysis Fast Pyrolysis Flash Pyrolysis 

Pyrolysis Temperature (K) 550 – 950 850 – 1250  1050 – 1300  

Heating rate (K/s) 0.1 – 1 10–200 > 1000 

Particle Size (mm) 5 – 50 < 1 < 0.2 

Solid residence time (s) 450 – 550  0.5 – 1.0 < 0.5 

 

 

Slow pyrolysis produces significant portion of biochar (35%), bio-oil (30%) and fuel 

gas (35%),26 thus is typically employed when biochar is the desired product.64 For 

production of bio-oil, fast pyrolysis is generally employed.26, 64 The high heating rate 

experienced by biomass in this reactor system causes biomass to undergo thermal 
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decomposition to form vapours, aerosols and light gases. The short vapour residence 

(<1 s) time and rapid cooling of vapour product in fast pyrolyser lead to higher bio-oil 

yield (50-70% bio-oil, 10-30% biochar and 15-20% noncondensable gas by mass).26, 65 

Compared to slow and fast pyrolysis, flash pyrolysis requires fine biomass particle and 

high heating rate. Under this pyrolysis condition, the major product is gaseous 

compound.64, 66   

 

Biochar as a Fuel 

 

Biochar can be used as a solid fuel. In fact, several properties of biochar make it a good 

candidate for co-combustion in coal based power stations. Its good grindability 

drastically improves the size reduction efficiency with existing ball mills in the coal 

power plant compared to biomass, addressing the issues such as incomplete burn out 

and blockage or bridging in the feeding system due to coarse biomass particle.12 Low 

sulphur content in biochar and its relatively similar NOx emission compared to coal 

means that biochar can be co-fired with coal without additional effort for SOx and NOx 

emission control.26 Recent study on particulate matter (PM) emission from combustion 

of biochar demonstrates a reduced PM1 emission compared to direct combustion of 

biomass,67 resulting in reduced pollution due to emission of PM. 

 

Bio-oil as a fuel 

 

Compared to biochar, bio-oil from biomass pyrolysis can have a wider application as a 

fuel. However, several unusual properties of bio-oil including but not limited to high 

oxygen content, low pH, presence of ash, high viscosity, instability of bio-oil and its 

high water content presented various challenges for its applications.68-70 Nevertheless, 

bio-oil can be burnt in boilers, furnaces, engines and turbines for energy generation.48  

Substantial tests carried out at Neste Oy in a 2.5 MW Danstoker boiler equipped with a 

dual fuel burner shows the boiler can operate at acceptable condition with various fuel 

oil to bio-oil ratios. A slight modification is required to improve the combustion  

stability for operating with bio-oil only but this resulted in high particulate emission.70 
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The only commercial system known to generate heat from bio-oil is at the Red Arrow 

Products pyrolysis plant in Wisconsin, which has been running for more than ten 

years.70-72  

 

Combustion of bio-oil in diesel engine was also tested. Studies show that bio-oil can be 

combusted efficiently in medium-speed diesel engine with a pilot injection system for 

ignition.70, 73 However, a large variation in bio-oil composition could result in difficulty 

in adjusting the injection system. The acidity and particulate in bio-oil and high CO 

emission are also additional concerns. Despite these negative characteristics, the 

thermal efficiency of bio-oil is found to be similar to diesel fuel.70 Ormrod and 

Webster74 also reported their success on operating a modified dual-fuel six-cylinder 250 

kWe diesel engine for more than 400 hours. Three of the cylinders were modified to 

feed bio-oil with 5% diesel as pilot fuels and the other three cylinders ran entirely on 

bio-oil. However, the NOx emission was higher compared to that from diesel and diesel 

is required for engine ignition.  

 

In addition, the application of bio-oil also has the potential to expand to turbine engine 

with the first test carried out can be tracked to early 1980s.70 During 1990s, some studies 

were carried out with a 2.5 MWe class GT2500 engine from Mashproekt in Ukraine. It 

is found that the combustion with bio-oil releases less NOx and SOx but the emission of 

particulate is high compared to diesel.70, 75 A separate study carried out by Strenziok and 

co-workers76 between 1999 and 2000 on a modified 75 kWe commercial turbine shows 

that bio-oil can be burnt in dual fuel mode. The combustion chamber is fitted with an 

ignition nozzle for diesel (40%) and a main nozzle for bio-oil (60%). The turbine was 

started with diesel and the supply to main nozzle switched to bio-oil during operation. 

It was estimated that this operating condition has 73% of the power output ran on diesel. 

Although bio-oil is not suitable as a transportation fuel, various reviews were done to 

investigate the potential for upgrading bio-oil into syntactic transportation fuels. These 

methods include hydrotreating, hydrocracking and catalytic vapour cracking.68, 70, 77 

Hydrotreating of bio-oil is a catalytic hydrogenation process taking place under a high 

pressure and moderate temperature condition to remove oxygen in bio-oil as water.68, 70 
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Hydrocracking requires the bio-oil vapour to be separated into a carbohydrate-derived 

aqueous phase and a lignin fraction.26, 77 The aqueous phase will be converted into 

hydrogen via steam reforming for hydrocracking the lignin fraction to hydrocarbons.70 

Catalytic vapour cracking on the other hand removes oxygen in bio-oil via simultaneous 

dehydration and decarboxylation over acidic zeolite catalyst.70 However, compared to 

bio-oil application in static burners and generators, its potential as a transportation fuel 

is at a relatively infancy stage. 

 

Furthermore, bio-oil can be mixed with finely ground biochar to produce bioslurry fuel.  

A recent study by Abdullah and Wu demonstrates that bioslurry prepared from mallee 

biomass at 20% biochar loading has high energy density of ~18 MJ/kg and has desirable 

rheological properties for combustion and gasification.14 In addition, the high energy 

density also indicates that the bioslurry can be economically transported to a central 

processing plant where it can be gasified to syngas for liquid fuel production.13, 70 

 

Biochar for Environment and Agronomic Benefits 

 

Other than as a fuel, biochar from biomass pyrolysis can also be applied to soil to 

achieve various environmental and agronomic benefits.25, 26 As the carbon in biochar is 

stable for a long period of time,78 application of biochars to soil has the potential to 

sequestrate atmospheric carbon to the ground for millennia.25, 26 While the bio-oil 

produced from a fast pyrolyser has promising applications as a fuel, application of the 

biochar co-produced to soil has the potential to turn bio-oil into a carbon negative energy 

source.25, 79 It is estimated that ~31 kg of C can be removed from the atmosphere for 

every GJ of energy produced.80 With its minimal risk of large scale release of 

sequestrated carbon and accountability, biochar sequestration is perceived as a near-

term technology for carbon sequestration.79 

 

Large scale production of renewable fuels from biomass can result in significant amount 

of crop residues being removed from the field.81 Various researchers expressed their 

concerns on their potential negative impacts to soil and water quality25, 26, 81 which can 
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lead to lower crop yield and jeopardise the sustainability of bioenergy production.25 

Continuous harvesting of crop residue removes plant nutrients such as C, N, K, P, Ca 

and Mg uptake during biomass growth from soil thus decline in soil fertility. It can also 

lead to reduction in soil organic matter, cation exchange capacity and water holding 

capacity and restrict the air and water penetration in soil.25, 26 Moreover, the reduction 

of soil organic carbon could heavily discount the carbon credit gain from utilisation of 

bioenergy.26       

 

However, the soil quality where this biomass is harvested can be enhanced by returning 

the biochar25, 26, 78-80 coproduced from fast pyrolyser and concurrently improves the 

overall sustainability of the pyrolysis scheme. The application of biochar in soil 

increases the soil ability to retain nutrients25, 26, 82 and agriculture chemicals.25 This 

reduces the leaching of nutrients and chemicals to surface and ground water. In addition, 

incorporating biochar to soil has the potential to return the valuable nutrient species 

retained in biochar during pyrolysis back to the soil.24, 27, 78 The porous nature of biochar 

can help to reduce the bulk density of high clay soil, improve the drainage, aeration and 

root penetration. Furthermore, it also helps to increase water holding capacity of sandy 

soils.25, 78 The liming effect from application of biochar also helps to balance out the 

acidifying effect from application of N fertilisers.25 
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2.4.3 Hydrothermal Conversion of Biomass 

 

An Overview to Biomass Hydrolysis Process 

 

Currently, majority of the bioethanol in countries like US and Brazil are produced from 

food crop containing sugar and starch such as sugarcane and corn,45, 83, 84 resulted in 

competition between farm lands for energy production purposes. As human are unable 

to digest cellulose,46 the production of bioethanol from lignocellulosic biomass such as 

mallee does not result in food or fuel dilemma and can reduce the reliance on food crops 

for bioethanol production. Production of bioethanol from starch is a reasonably 

developed process via the pathway of enzymic liquefaction, scarification and finally, 

fermentation. However, the production of bioethanol from lignocellulosic biomass 

through enzymic hydrolysis is hindered by several factors. Mainly, the sheathing effect 

of hemicellulose and lignin around cellulose leads to resistance of lignocellulose 

material against decomposition or hydrolysis.46 The low surface area due to cellulose 

crystallinity in lignocellulose biomass further increases the resistivity of cellulose to 

biological attack.45 In addition, the high cost and very low specific activity of cellulase 

enzyme result in long digestion time. Moreover, the thermal inactivation of the enzyme 

(thus limit the recyclability of the enzyme) and the inhibition of hydrolysis product to 

enzymic hydrolysis reaction limit the efficiency of the process.16, 85 Recent development 

of genetically modified organism which produced large quantity of callulase enzyme 

that digest the cellulose efficiently,86 brought down the cost of the cellulase enzyme and 

increased the efficiency of enzymic hydrolysis significantly. Nevertheless, the 

resistance of cellulose to enzymic hydrolysis remained as an issue. 

 

Other than enzymic hydrolysis, various processes such as acid hydrolysis, alkaline 

hydrolysis and hydrolysis in hot-compressed water (HCW) can be used to decompose 

cellulose into its monomer or oligomers or served as pre-treatment prior to enzymic 

hydrolysis.16 High glucose yield is achievable with dilute acid hydrolysis but this 

process can suffer from extensive glucose degradation and heat transfer limitation at 

higher temperatures.16, 87 Although hydrolysis in concentrated acid has a glucose yield 
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close to 100% and minimal glucose degradation, the cost, environmental and corrosion 

issues associated with the utilisation of acid and lack of reliable methods to recover the 

acid render this process economically unviable.16, 85 Similarly, alkaline hydrolysis also 

results in low sugar yield due to degradation of sugar at temperatures lower than 100 °C. 

In addition, the formation of organic acids during hydrolysis also leads to consumption 

of alkali.16, 88  

 

Unlike acid and alkaline hydrolysis, hydrolysis of lignocellulose biomass in HCW does 

not involve catalyst or chemical thus the environmental and corrosion issues resulted 

from the use of acid and alkaline can be avoided.16 Even though the glucose yield from 

hydrolysis in HCW is low compared to acid hydrolysis,16 the recovery of glucose 

oligomers and their derivative are about 80% in semi-continuous reactor.17 These 

oligomers can be further decomposed into glucose via enzymic hydrolysis for 

bioethanol fermentation.  

 

The hydrolysis of biomass or cellulose in HCW can be carried out either in batch,29, 89-

91 semi-continuous,17, 30, 90, 92-95 or continuous96-99 reactor systems. For batch system,29, 

89-91 the raw material and water are charged into the reactor before the reactor is sealed, 

pressurised then heated to and hold at the designated temperature and time. The reactor 

content is quenched at the end of the process. In semi-continuous reactor system, 61, 63, 

66-70 the raw material is charged into and retained in the reactor. A stream of HCW at 

the desired temperature is fed to the reactor and passed through the bed of raw material. 

As for continuous reactor system,96-99 both raw material and liquid is fed to the reactor 

in the form of slurry. The reactor effluent in semi-continuous and continuous reactor 

system is immediately cooled. The short liquid product residence time in these systems 

results in less degradation of liquid product thus higher sugar yield compared to batch 

system.98, 99 The long liquid product residence time in batch system can lead to 

significant degradation of sugar into oil and char.16 The difference in cellulose 

decomposition behaviour is also observed between different reactor systems. For 

instance, Lü and Saka90 reported that the cellulose of Japanese beech started to 
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decompose at 170 °C in batch system but it was not observed at temperature below 

210 °C in semi-continuous system.  

 

Decomposition of Hemicellulose, Lignin and Cellulose in HCW 

 

Hemicellulose, cellulose and lignin component of biomass solubilise in HCW at 

different temperature due to their occurrence in biomass. As discussed in section 2.3.1, 

hemicellulose and lignin has an amorphous structure. They are solubilised in HCW at 

temperature as low as 180 °C in semi-continuous system.30, 100-102 At 230 °C, most of 

the hemicellulose is hydrolysed within 15 minutes. However, the recovery of 

hemicellulose drops at higher HCW temperature due to the decomposition of 

hemicellulose saccharides such as xylose, into secondary products.90 Cellulose which 

has a crystalline structure in biomass starts to decompose between 210 °C – 230 °C in 

HCW.30, 90, 100 In study carried out by Lü and Saka,90 the recovery of glucose  oligomers 

(C1-C5) peaks at 270 °C with recovery rate of 16.1%. However, a separate study carried 

out by Yu and Wu17 with a smaller sample size shows that the recovery of C1-C5 

glucose oligomers at 270 °C is in the range of 31% - 34% and the glucose yield via post-

hydrolysis is close to 80%. This shows that glucose oligomers resulted from hydrolysis 

at higher temperature is ready to undergo further decomposition reactions, which 

decreases the recovery of glucose oligomers from cellulose.    

 

The decomposition of saccharides in hydrolysis liquid product can take place via 

dehydration or fragmentation. Examples of these dehydration compounds are furfural, 

hydroxymethylfurfural and levoglucose. The decomposition of monosaccharides via 

fragmentation produces compounds such as methylglyoxal, glycolaldehyde and 

erythose. The resultant compounds can undergo further decomposition to form low 

molecular weight compounds such as organic acids.90, 103-105 
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2.5 The Importance of Leaching Process to Thermochemical Processes of 

biomass 

 

Leaching process plays an important role in thermochemical process of biomass. Water 

washing of biomass is the key for addressing the ash related issues associated with 

biomass combustion and gasification. Leaching of biochar is important for studies of 

the recyclability of nutrient species and leaching of organic matter from biochar used 

for soil amendment purposes. This can have a huge implication on sustainability of 

bioenergy production via pyrolysis. During hydrothermal treatment of biomass, the 

biomass is essentially immerged in hot water under high pressure condition where the 

inorganic species in biomass can be leached out under this condition. This process along 

with the implications of inorganic species leaching to hydrothermal conversion will be 

reviewed in this section. 

    

2.5.1 Water Leaching of Biomass 

 

Table 2.4 lists down examples of water leaching of biomass and their purposes. Mostly, 

waster washing of biomass is employed as a pre-treatment method for the removal of 

alkali metals and other inorganic species such as Cl, S and P.20, 22, 32, 33, 53, 63, 106-110 Water 

washing is also used as the first step in sequential leaching of biomass for quantification 

of water-soluble compound in biomass18, 23. Some researchers also use water washing 

to remove AAEM species from biomass to study their effect on pyrolysis111, 112 and 

gasification behaviour113 or their influence on the yield and composition of bio-oil114. 

Wu and co-workers on the other hand, used water leaching of biomass as a mean to 

quantify the recycling of biomass inherent nutrient species.24 In the literatures studied, 

most of the water leaching implemented are batch leaching. Only exceptional few was 

carried out in a semi-batch manner.106, 108 
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Batch Leaching of Biomass in Sequential Leaching Scheme 

 

Chemical fractionation provides important information on fuel mineral chemistry and 

ash forming species to predict the fuel ash behaviour for possible corrosion risks in 

combustion devices. Sequential leaching employed provides an insight to the 

occurrence of metallic species, their possible mobility, and their availability for 

interactive actions.18 Sequential leaching separates the ash-forming matters into 

dissolved salt, organically bound matter and lastly included and excluded minerals.18, 23 

Batch water leaching is the first step in sequential leaching for determination of 

dissolved salt. 

 

Biomass Water Leaching as Fuel Pre-treatment Strategy 

 

Water leaching is largely employed for removal or reduction of alkali metals and 

chlorine in biomass20, 22, 32, 33, 53, 63, 106-110 as the majority of them are water soluble thus 

can be removed by water leaching. For example, Turn and co-workers reported that 

combination of leaching and mechanical dewatering of banagrass achieved 45% ash 

reduction in addition to 98% removal of Cl, 90% of K, 55% of S, 68% of Na, 72% of P 

and 68% of Mg in original biomass. Dayton and co-workers found that leaching of rice 

straw, wheat straw, switchgrass, wood fuel and banagrass on average, removed 55% of 

Na2O, 83% of K2O, 91% of Cl, 69% of SO3, 51% of MgO ash elements in biomass 

studied. The removal of these elements significantly reduced the ash-related issues 

associated with combustion and gasification of biomass. For instance, work carried out 

by Arvelakis and co-workers20 showed that combustion of water-washed olive residual 

did not show any sign of deposition or agglomeration problem during the test period 

compared to the untreated samples.  
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Table 2.4: Summary of application of water leaching and the modes of leaching used 
Ref Purpose of water leaching/washing  Methods Additional notes 

24 To quantify the removal and recycling of nutrients from mallee biomass 

components and their derived biochars 

Batch Reported the leaching of organic matter from biomass 

and biochars. Leached thrice sequentially.  
106 As a pre-treatment method for removal of Na, K Cl in straw biomass to reduce 

slagging and fouling to furnace and other thermal conversion system 

Batch 

Water Spray 

Flushing 

Batch is 100g in 7L water for 24 hours.  

Water was spray over 30mm of 100g straw bed of. 

Flushing 20 L water through 100g of a thin sample 
63 As a pre-treatment method to remove water-soluble N, K and Cl from olive 

residue to prevent agglomeration-deposition problem in gasifier 

Batch Ash content of the olive residue was reduced by 

almost half 
33 As a pre-treatment method to remove inorganic elements in biomass which 

contributes to ash related issues in thermos-chemical energy conversion of 

biomass (Banagrass). 

Mechanical 

dewatering 

and leaching 

Monomer sugars constituted up to 4% of dry matter is 

detected in the leachate. 45% ash, 90% K, 98% Cl, 

55% S, 68% Na, 72% P and 68% Mg reduction.  
20 As a pre-treatment method to reduce ash content to reduce the ash related 

problems during fluidised bed combustion of wheat straw and olive residue 

Not reported  

22 As a pre-treatment method to reduce N, K and Cl from olive residue to study its 

effect on agglomeration during biomass gasification in fluidised bed system 

Batch  

107 As a pre-treatment method to leach water-soluble N, K and Cl from peach stone 

that contributes to ash related problem during gasification 

Batch The pH of the leachate is about 6 to 6.5.  

108 As a method to remove alkali metal from biomass to study its effect on release 

of alkali during pyrolysis 

Semi-batch Leached with 80°C hot water in batch for cellulose 

sample. 
32 As a method to remove alkali metal and chlorine from rice straw, wheat straw, 

switchgrass and wood to study the release of alkali metal in combustion 

 

Batch Leaching leads to reduction in alkali metal vapour 

during combustion 
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Ref Purpose of water leaching/washing  Methods Additional notes 
109 For the removal of water-soluble and ion-exchangeable inorganic elements such 

as Na, K, Ca, Cl and S in biomass 

Batch Decrease in pH during leaching of wheat straw 

113 To remove AAEM species and chlorine in biomass. Investigate the effect of 

water leaching of hydrogen production during biomass steam gasification 

Batch  

23 Batch water leaching as first step of chemical fractionation to determine the 

form or occurrence of inorganic species in biomass 

Batch The pH of the water is between 4.4 and  5.0 for all the 

samples studied 
110 Use to remove inorganic matter from biomass in order to reduce the fouling and 

slagging potential due to alkali metal 

Batch  

18 Batch water leaching as first step of chemical fractionation to determine the 

form or occurrence of inorganic species in biomass 

Batch  

111 Water-washing is employed to study the decomposition behaviour of raw and 

washed-straw 

Batch  

112 Water leaching is used to study the effect of KCl on wheat straw pyrolysis. Batch Hot and cold water were used. For the case of hot 

water, 300mL of water is used to rinse afterwards. 
114 Water leaching is used to removed water-soluble AAEM species to study its 

effect on the yield and composition of bio-oil 

Batch  
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Leaching of Organic Matter from Biomass: An Overlooked Process  

 

In addition to inorganic species, organic matter is also removed when biomass is pre-

treated via water washing. A study carried out by Turn, Kinoshita and Ishimura33 

demonstrated that monomeric sugars accounted up to 4wt% (dry basis)  of biomass can 

be leached. A recent study by Wu and co-workers24 also reported that the amount of 

organic matter leached from biomass can be significant. More than 30% of organic 

matter on carbon basis were leached from mallee leaf and bark component while ~2% 

of organic matter (carbon basis) were leached from wood component24. The high 

organic matter removed from bark and leaf might be due to the high extractive content 

in these components (refer to Table 2.1).  

 

Furthermore, various studies concerning the use of biomass as adsorbent for metal 

contaminant also reported that organic matter was leached during adsorption study. 

Organic matters was reportedly leached from absorbent prepared from seaweed.115, 116 

Other studies117-119 also reported that organic matter waw leached from algal biomass 

used to remove metal contaminants. Sciban et al.120, 121 and Gaballah et al.122 also found 

that organic matter can be leached from wood and bark material.  

 

Although these studies24, 33, 115-122 indicate that organic matter can be leached from 

biomass, only few studies24, 33 reported on the leaching of organic matter during biomass 

pre-treatment by water washing. The leaching of this organic matter might be due to the 

removal of some compounds in biomass extractive component soluble in water at room 

temperature. The removal of organic matter can result in significant weight loss during 

water washing of biomass where 49% weight loss is reported by Figueira and co-

workers.116 Even though water washing of biomass can be effective on removal of alkali 

metal and Cl,22, 33, 55, 63, 106 weight loss during biomass washing has to be considered due 

to losses of fuel and may introduce additional cost associated to treatment biomass 

washing effluent. However, it is seldom discussed in open literatures concerning water 

washing for biomass pre-treatment. 
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Moreover, the leaching of organic matter from biomass during water washing can result 

in acidic leachate. Arvelakis and co-workers109 found that the pH of the water leachate 

decreased during leaching of wheat straw. Study on water leaching of various biomass 

fuels by Werkelin and co-workers23 found that the pH of these leachates range between 

4.4 and 5.0. On the other hand, Vassilev et al. 41 demonstrate that the pH of water 

leaching leachate can range from 5 to close to neutral. These shows that depending on 

the type or species of biomass subjected to washing, the leachate can be acidic possibly 

due to the leaching of organic acids from biomass. During batch leaching of biomass, if 

these organic acids are not removed, the acidic condition might lead to leaching of some 

organic bounded inorganic species through ion-exchange. This can result in inaccurate 

quantification of water-soluble inorganic species in biomass during chemical 

fractionation. 

 

2.5.2 Biochar Leaching 

 

Biochar Leaching for Recycling of Biochar Inorganic Nutrient Species 

 

With the growing interest in using biochar as soil amender and potential of recycling 

part of the nutrient adsorbed by biomass during it growth to soil, biochar leaching is 

carried out to access the recyclability of various inherent nutrient species in biochar. Wu 

et al.24 and Kong et al.27 studied the removal and recycling of inherent nutrient species 

in mallee biochar prepared under various pyrolysis conditions (pyrolysis temperature, 

heating rate, biomass component and particle size) via water. It is also important to note 

that Kong and co-workers27 also used Mehlich-1 solution to quantify total plant 

available nutrient. Extraction with Mehlich (Mehlich-1 or Mehlich-3) solutions has long 

been used for quantification of bioavailable micronutrient in soil.123-128 Although it is 

designed for soil analysis, various studies also attempted to quantify bioavailable 

micronutrient in biochar. Gaskin and co-workers129 used Mehlich-1 extraction to 

quantify potential plant available micronutrient such as P, K, Mg and Ca. Mukherjee 

and co-workers130 leached biochar with Mehlich-1 solution for 24 hours to quantify 

plant available P. 
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Leaching of Organic Matter from Biochar 

 

Other than inorganic matter, organic matter are also leached from biochar.131 The 

leaching of organic matter from biochar is studied due to two reasons. First, the leaching 

of organic matter from biochar can lead to reduction of C being sequestrated when 

biochar is amended to soil.24 Second, some of bio-oil compounds may condense within 

the pores of biochar or its surface. Some of these compounds such as phenol can be 

leached from biochar when applied to soil. Significant leaching of organic matter from 

biochar can potentially contaminate the soil due to the leaching of harmful organic 

compound.24, 28, 132, 133 

 

Although the leachability of inorganic matter has been actively studied, the leaching of 

organic matter from biochar is rarely discussed. Organic matter leached from biochar 

via water were also quantified by Wu el al.24 who studied the recycling of nutrient in 

slow pyrolysis biochars. They found that < 2% of total carbon in these biochars is 

leachable by water. A separate study by Lievens et al.28 found that aromatic compound 

ranging from 2 to 5 fused rings can be leached from fast pyrolysis biochar via water. 

The amount of leachable aromatic compounds is highly dependent on the feedstock and 

pyrolysis temperature. The leaching of organic matter from biochar can take up to a 

month to reach equilibrium.     

 

Retention of Inorganic Matter in Biochar 

 

The amount of AAEM species in biomass that are retained in biochar during pyrolysis 

thus available for nutrient recycling can be influenced by pyrolysis temperature, heating 

rate, type of biomass134 and reactor configurations. Studies by Sonoyama et al.135 and 

Okuno et al.136 showed the volatilisation of AAEM species during pyrolysis can be 

significant at higher temperatures (>500 °C). Slow pyrolysis of pine saw dust at 800 °C 

in a fixed-bed reactor showed no significant release of AAEM species compared to >50% 

release of K and up to 20% release of Mg and Ca when the pyrolysis was carried out in 

a mesh wire reactor where a forced flow of gas was present.136 The high AAEM 
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retention in fixed-bed reactor is due to rapid desorption of AAEM species from and 

adsorption of AAEM species on char surface,135 forming a more stable and less volatile 

compound. In reactors where volatile and char interaction are significant such as the 

drop-tube fixed-bed reactor used by Rahim and co-workers,137 the interaction between 

volatile and hot nascent char can induce the release of AAEM species with the release 

being prominent for monovalent alkali species.137, 138  Increase in temperature and 

heating rate lead to lower retention of AAEM species. This is due to the increase in the 

availability of H radical during volatilisation which can induce the release of AAEM 

species bound to char matrix thus the volatilisation of these species.134, 136 Moreover, 

the retention of AAEM species during pyrolysis may differ from biomass to biomass. 

A study by Keown and co-workers134 demonstrated that the release of Mg and Ca in 

pine sawdust is higher compared to bagasse. The difference in AAEM species retention 

might be due to the difference in the composition of other inorganic species such as Cl 

and Si which can form a more stable compound with Mg and Ca.134, 139  

 

Nevertheless, the majority of the AAEM species in mallee biomass are retained when 

the biochar is produced at 500 °C24, 27, 67, 137, 140 which is within the temperature range 

of the optimum bio-oil yield.65 Wu and co-workers24 reported that the retention of 

AAEM species in wood, leaf and bark component of mallee biomass is 90-100% while 

the data reported by Gao et al.67 and Rahim et al.137 indicated that the retention of AAEM 

species in fast pyrolysis biochar ranged from 80 to100%.   

 

The influence of pyrolysis parameters is not only limited to the retention of AAEM 

species but also on other nutrient species in biomass such as Cl, S, P and N. For example, 

pyrolysis temperature and reactor configuration can affect the retention of Cl in biochar. 

During the slow pyrolysis of mallee biomass in a fixed-bed reactor, most of the Cl is 

released at a temperature as low as 400 °C.24, 137 However, when the fast pyrolysis is 

carried out under a drop-tube fixed-bed condition, part of the Cl is retained in biochar. 

An experiment carried out by Rahim and co-workers137 indicated that the retention of 

Cl increased to ~44% when the fast pyrolysis temperature increased from 400 °C to 

600 °C before it declined at higher temperatures. The prolonged volatile-char interaction 
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in drop-tube fixed-bed reactor caused the Cl released as volatile to recombine into the 

char thus higher retention in fast pyrolysis biochars.141, 142 This also indicates that 

depending on the pyrolysis condition, biochar obtained can be depleted of Cl thus not 

available for nutrient recycling when applied to soil. The P in mallee biomass, on the 

other hand, is largely retained (> 90%) in biochar after pyrolysis and unaffected by the 

pyrolysis temperature. For S and N, as the temperature increases, the retention of these 

elements in mallee biochar decreases. Unlike Cl, a significant portion of these species 

can be retained in biochar at 500 °C even when undergoing slow pyrolysis.24   

 

The Influence of Pyrolysis Parameters on Leaching of Inorganic and Organic 

Matter 

 

Although, most of the AAEM species and part of crucial plant nutrient such as N, S, Cl 

and P in mallee biomass is retained in biochar, not all of these nutrient species are 

leachable from biochar to soil and made available for plant uptake. Pyrolysis process 

parameters such as pyrolysis temperature24 and heating rate27 can play a key role in the 

occurrence of these inorganic nutrient species thus their leachability.  

 

Work carried out by Wu and co-workers24 demonstrated that the amount of AAEM 

species leachable from biochar via water dropped when the pyrolysis temperature 

increased from 300°C to 500 °C. However, with further pyrolysis temperature increase 

to 750 °C, the amount of water-soluble K and Ca increased noticeably for leaf and bark 

biochar. During pyrolysis, part of the AAEM species originally present in the form of 

water-soluble salts become organically bounded (attached to carboxylate group on 

biochar) during pyrolysis. As the temperature increased, the O and H content in biochar 

reduced, hence these AAEM species may become directly bounded to the char matrix. 

Part of these metallic species may also be transformed into carbonates or oxides at high 

temperatures.24 The substantial increase in water-soluble Ca in leaf and bark biochars 

prepared at 750 °C might be due to the formation of calcium bicarbonate which has a 

high solubility in water compared to its carbonate. This observation prompts Wu et al.24 

to point out that thermal treatment can be used to tune biochar to increase the 
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leachability of Ca in biochars. It is also important to note that, while the amount of 

water-soluble Na and K in biochar prepared between 300 °C and 750 °C range between 

approximately 40% and 90%, the amount of water leachable Mg and Ca is generally < 

20% and < 5% for Mg of leaf and bark char at temperature ≥ 500 °C. With Ca being the 

major AAEM species in mallee biomass, its low water solubility may indicate that Ca 

in biochar is not readily available for plant uptake. 

 

The pyrolysis heating rate can also influence the available nutrient for plant uptake. A 

study carried out by Kong and co-workers27 demonstrated that the biochar produced 

from fast pyrolysis can have lower water-soluble Na and K while there is no noticeable 

difference on Mg and Ca. It is also found that while water-soluble Ca in leaf and bark 

biochar prepared under slow heating condition is < 20%, > 80% of Ca in those biochar 

can be extracted via Mehlich-1 solution, indicating that most of the Ca in these biochar 

is bioavailable. Although part of the Na and K become water-insoluble when prepared 

via fast-pyrolysis, they are leachable via Mehlich-1 solution thus available for plant 

uptake. The reduction in Na and K water solubility in fast pyrolysis biochar might be 

due to the transformation of these species to organically bounded form, rendering them 

water-insoluble but soluble in Mehlich-1 (double dilute acid) solution. Moreover, fast 

pyrolysis also produces biochar with higher plant available Mg and Ca, possibly due to 

the lesser degree of carbonisation of fast pyrolysis biochar compared to that produced 

from slow pyrolysis. In addition, Kong et al.27 also demonstrated that biomass particle 

size can affect the leachability of AAEM species from the resultant biochar. The total 

plant available AAEM species in fast pyrolysis biochar prepared from large wood 

particle is lower compared to that prepared from fine particle biomass and similar to 

biochar prepared under slow pyrolysis. This is attributed to the poor thermal 

conductivity of biomass leading to part of the biomass undergoing pyrolysis at lower 

heating rate thus its total plant available AAEM species is similar to biochar produced 

from slow pyrolysis. 
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Although majority of the P in mallee biomass are retained during pyrolysis, half of P in 

wood biochar prepared at 300 °C is water soluble.24 However, this water-soluble portion 

diminishes quickly with increase of pyrolysis temperature. <30% of P is water soluble 

in leaf and bark biochar. When pyrolysis temperature increases to 500 °C and higher, 

hardly any P remains water soluble. The amount of water leachable S in wood biochar 

decreases with increasing pyrolysis temperature. In the case of leaf and bark biochar, 

the percentage of water-soluble S increases with the pyrolysis temperature. However, 

with less S retained at higher temperatures, the total amount of S recoverable from 

biochar at higher temperatures normalised to S content in biomass is lower. The low 

water solubility of P and S in biochar produced from increasing temperature might be 

due to these elements become increasingly organic bounded thus insoluble at higher 

pyrolysis temperature.24 N retained in biochar prepared at temperature ranges from 

300 °C to 750 °C is hardly water soluble. This is because the N in biomass largely exists 

in organically bounded form and remained organically bounded following pyrolysis. As 

aforementioned, part of the Cl is retained in fast pyrolysis biochar. Although the 

information on water solubility of chlorine in fast pyrolysis mallee biochar at different 

temperature is limited, the Cl in fast pyrolysis bark biochar prepared at 600 °C is mostly 

water soluble (~90%).137  

 

2.5.3 Leaching of Inorganic Matter from Biomass in HCW 

 

Although the hydrolysis of lignocellulosic biomass in HCW for recovery of sugar is 

widely studied,30, 90, 94, 95, 100-102, 143 the leaching or removal of inorganic species from 

biomass is seldom discussed.29, 30, 144, 145 Bai et al.144 and Reza et al.29 demonstrated that 

more than 87% of AAEM species in saw dust of Japanese cedar can be removed during 

hydrolysis in HCW under batch condition at temperature ranging from 200 °C to 260 °C. 

Other elements such as phosphorus, sulphur, iron and manganese were also removed in 

the process.29, 145 During hydrolysis of biomass in HCW under semi-continuous 

condition, the inorganic species can co-elute with oligosaccharides at a temperature of 

200 °C and below.30, 145 The leaching of inorganic matter is a hypothesis to be correlated 

to the removal of hemicellulose during hydrolysis.29, 145    
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The leaching of inorganic matter can result in an undesirable impact on biomass 

hydrolysis. High amount of inorganic species in liquid product stream resulted from 

hydrolysis of high ash biomass might lead to additional effort to remove this compound 

from liquid product streams.145 The solubilisation of organic species during hydrolysis 

of biomass in HCW can potentially increase the tendency of equipment fouling and 

corrosion. In addition, inorganic elements (especially trivalent and divalent species31) 

can catalyse the decomposition of saccharide in liquid product.31, 146, 147 If their 

concentration in liquid product is high, this might result in more extensive 

decomposition of saccharide thus limited recovery of saccharides from lignocellulosic 

biomass.  

 

2.6 Conclusions and Research gaps 

 

From the literature review above, the following key conclusions can be drawn: 

• Mallee biomass can be a key second-generation biomass feedstock in Western 

Australia.   

• Biomass can be utilised for energy production through various thermochemical 

production. This includes but not limited to combustion and gasification of 

biomass, conversion of biomass to biochar, bio-oil and pyrolysis gas which can 

be used as a fuel via pyrolysis and hydrothermal conversion of biomass for bio-

ethanol production.  

• Large scale production of renewable fuels from biomass will lead to 

deterioration of soil and water quality resulted from removal of crop residues. 

By returning biochar to soil, such consequences can be avoided and potentially 

lead to various agronomic benefits.  

• Water leaching of biomass had been widely used to remove ash forming species 

in biomass. Batch water leaching is the first step of sequential leaching to 

quantify water-soluble inorganic species. However, the leaching of organic 

matter from biomass during water leaching was generally overlooked. 
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• Various nutrient species can be leached from biochar and available for plant 

uptake. Organic species have also been leached from biomass during water 

leaching. The leaching of these compounds can potentially pose a threat for the 

application of biochar as soil amender. 

• Depending on pyrolysis parameters such as pyrolysis heating rate, temperature 

and reactor configuration, a significant amount of inorganic species mainly 

AAEM species in biomass are retained in biochar. Pyrolysis parameters also 

have profound influence in the leachability of inorganic species from biomass. 

• AAEM species can be leached during hydrothermal conversion of biomass to 

oligosaccharides.  

 

From the review on the leaching of inorganic and organic matter from biomass and 

biochar, it is clear that (1) significant portion of organic matters can be leached from 

biomass but little is known on its leaching characteristics and implications. (2) Various 

studies had been carried out to investigate the effect of pyrolysis parameters on the 

retention and leachability of AAEM species in biochar but the retention and leachability 

of P, N and S in biochar produced from fast pyrolysis is rarely discussed. (3) Although 

majority of AAEM species in mallee biomass is retained in biochar, the percentage of 

water-soluble Mg and Ca in mallee biochar (both slow and fast pyrolysis biochar) 

remains low. (4) Even though aromatic compounds are known to be leached from fast 

pyrolysis biochars, the total organic matter can be removed from fast pyrolysis biochar 

is unknown. (5) Few studies had indicated that inorganic species in biomass can be 

leached in HCW. Yet, the knowledge on the leaching characteristics of these inorganic 

species in HCW and its implication is limited. Therefore, further research and 

development is required to address the research gaps identified above, including: 

 

• Better understanding on the equilibrium, kinetic and implication on leaching of 

inorganic and organic matter from biomass. It is known that the organic matter 

leached from biomass can be acidic. This can potentially cause batch leaching 

of biomass to overestimate water-soluble AAEM species during sequential 
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leaching for chemical fractionation. A better approach for quantification of 

water-soluble AAEM species in biomass is required. 

• Leachability and retention of P, N and S in a fast pyrolysis biochar. P, N and S 

are important micronutrients for biomass. A systematic study on the retention 

and leachability of these elements in biochar when pyrolysis is carried out at 

different heating rate and reactor configuration. 

• Improve water-soluble Mg and Ca portion in mallee Biochars. Although most 

of the AAEM species is retained in biochar, a significant portion of Mg and Ca 

present in the form that is either not water-soluble or not available to plant. 

Various thermal treatment methods should be explored as a mean to tune the 

biochar to enhance the leachability and leaching characteristics of AAEM 

species in biomass. 

• Leaching of organic matter from fast pyrolysis mallee biochar. As the leaching 

of aromatic compound from biochar can potentially contaminate soil amended 

with biochar, a method has to be developed to eliminate or reduce water-soluble 

aromatic compound in biochar. 

• To investigate the leaching characteristics of AAEM species in biomass in HCW. 

A better understanding of this area might lead to a better understanding on the 

occurrence of organically bonded AAEM species in biomass.  

 

2.7 Research Objectives of Current Study 

From the literature review carried, a number of research gaps in the field had been 

identified. However, it is impossible to address all the research gaps identified in a PhD 

study. Therefore, the scope of current study is limited to the equilibrium, kinetics and 

implication on leaching of inorganic and organic matter from biomass and biochars 

under various conditions. The main objectives of current study are: 

 

• To study the leaching characteristics of inorganic and organic matter from 

biomass and the influence of the leaching of organic matter on the leaching of 

inorganic matter from biomass. 
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• To investigate the potential of partial steam gasification of fast pyrolysis biochar 

as a method to tune biochar properties and reduce the leaching of harmful 

organic matter from biochar. 

• To examine the suitability of partial steam gasification as a method to enhance 

the recyclability of nutrients from fast pyrolysis biochars 

• To provide better understanding on the leaching characteristics of AAEM 

species in biomass under HCW condition and the occurrence of water-insoluble 

AAEM species in biomass.  
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Chapter 3: Research Methodology and Analytical Techniques 
 

 

 

 

 

3.1 Introduction 

 

This chapter will provide the research methodology employed to achieve the objectives 

outlined in Section 2.7. The experimental setups and analytical techniques used will be 

described in detailed in this chapter. 

 

3.2 Methodology 

 

To achieve the main research objectives outlined in Section 2.7, a series of experiments 

had been carried out. These include: 

• Leaching of mallee wood and leaf in batch and semi-continuous mode. The 

leachate samples were analysed for inorganic and organic species.  

• Pyrolysis of fine particle (150 – 250 µm) mallee wood and leaf in drop-

tube/fixed-bed reactor to produce fine particle biochar. The pyrolysis 

experiments were also carried out with fluidised-bed reactor to produce biochar 

from 1 – 2 mm mallee wood. 

• Tuning of biochar via secondary pyrolysis of raw biochar at 725 °C to produce 

secondary pyrolysis biochars and partial steam gasification of raw biochar at 

725 °C to produce partial steam gasified biochar at 5% and 10% carbon 

conversion. 

• Analysis of the biochar via a series of analytical techniques for its proximate, 

ultimate analysis data, chemical composition and surface area.  
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• Leaching of the raw and tuned biochars in water, Mehlich-1 solution and 

solvents. A series of analysis were carried out on the leachate samples collected.  

• Hydrolysis of mallee wood in hot-compressed water (HCW). Liquid products 

collected were analysed for inorganic species, total organic carbon (TOC) and 

saccharides.  

 

To ensure the repeatability of the results obtained from this research, all experiments 

were carried out at least in duplicates. The average value along with the error bar of the 

data is reported. Figure 3.1 depicts the overall research methodology employed to 

achieve the research objectives. 

 

3.2.1 Leaching of Organic and Inorganic Matter from Biomass by water: 

Differences between Batch and Semi-continuous Operations 

 

In order to study the leaching characteristics of inorganic and organic matter from 

biomass and its influences on biomass inorganic leaching, a series of experiments were 

carried out. First, the leaching of mallee wood and leaf in water were carried out in batch 

operation.  The concentration of inorganic and organic matter in leachates sampled was 

quantified. The low leachate pH observed lead to the hypothesis that the organic matter 

leached might lead to an overestimation of water-soluble inorganic species from 

biomass. Therefore, leaching of biomass in semi-continuous mode was also carried out 

to verify this hypothesis. The content of inorganic and organic matter in leachates 

sampled was also analysed. From the data collected, the leaching kinetic of inorganic 

and organic matter from biomass and their different leaching characteristics in batch 

and semi-continuous operation were studied and discussed in Chapter 4. 
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Figure 3.1: Overall research methodology 
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3.2.2 Tuning of Biochar Properties 

 

To achieve the second and third objectives of this research, a series of systematic 

experiments were performed. The fast pyrolysis wood and leaf biochar were prepared 

from drop-tube/fixed-bed reactor and fluidised-bed reactor described in Section 3.3.3 

below. Next, the raw biochar were subjected to secondary pyrolysis and partial steam 

gasification to tune the biochar properties. Then, proximate, ultimate and chemical 

analysis of all biochar prepared were carried out. Biochar surface areas were also 

measured through combination of nitrogen and carbon dioxide adsorptions. Finally, the 

raw biochar and tuned biochar were subjected to leaching in water, Mehlich-1 solution 

and methanol/chloroform solvent.  The TOC, alkali and alkaline earth metal (AAEM) 

species and Cl content in water leachates were analysed and normalised to those 

available in biochar. The water and Mehlich-1 solution leachate samples were also 

analysed via UV-fluorescence spectrometer for soluble aromatic compounds. The 

AAEM species leached by Mehlish-1 solution were determined for plant available 

nutrient species. The solvent leachates were analysed with UV-fluorescence for 

leachable aromatic compound.  

 

The results for biochar surface area, the leaching of organic matter and aromatic 

compounds will be discussed in Chapter 5. The leaching of inorganic species and the 

recyclability of inorganic nutrient will be discussed in Chapter 6. Additional effort was 

taken to fit the experimental data from leaching of AAEM species via water to a pseudo-

second order kinetic model to study the effect of tuning on leaching kinetic. The findings 

are also discussed in Chapter 6. 

 

3.2.3 Leaching of Biomass Water-Insoluble Metallic Species under Hot-

Compressed Water Conditions 

 

To study the leaching characteristics of inorganic species from biomass in HCW, 

hydrolysis of mallee wood in HCW at a series of temperatures (150 °C, 180 °C, 230 °C 
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and 270 °C) were carried out. The liquid products sampled at designated time intervals 

were analysed for AAEM species content. The leaching equilibrium and kinetic were 

discussed. To further investigate the occurrence of organically bounded AAEM species 

in biomass, the decomposition of hemicellulose, cellulose and lignin in mallee wood 

were also investigated. Additional analyses were carried out for TOC and saccharide 

content. The findings from this part of the study are discussed in detailed in Chapter 8. 

 

3.3 Experimental 

3.3.1 Biomass Sample Preparation 

 

The wood and leaf components were separated from mallee eucalyptus loxophleba 

(subspecies lissophloia) trees which were harvested from Narrogin, Western Australia. 

The samples were then subjected to size reduction using a cutting mill (model: Fritsch 

Cutting Mill Pulverisette 15) and sieved to prepare the final samples of size 150-250 

µm and 1-2 mm. The samples were kept in plastic bottles and stored below -9 °C before 

experiments. It is noted that the use of such small particles (150-250 µm) in Chapter 4 

is for the purpose of fundamental study in order to reduce the effect of mass transfer 

limitation during leaching. 

 

3.3.2 Biomass Leaching under Batch and Semi-continuous Operations 

 

Biomass leaching experiments were conducted using a batch leaching reactor. During 

each leaching experiment, approximately 5 g of a biomass sample was weighed then 

soaked in 1 L of ultrapure water (resistivity >18.2 MΩ-cm) in a bottle. The mixtures 

were gently agitated with a magnetic stirrer for a series of leaching times. At a given 

leaching time, a fixed volume of sample was drawn from the bottle and an equal amount 

of fresh ultrapure water was added to the mixtures.  This process continued till the 

leaching reached equilibrium (no further increase in the total amount of organic matter 

and AAEM species leached out from biomass). The leaching experiments were done at 

least in duplicates.  
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The semi-continuous leaching experiments were carried out using a continuous flow 

reactor,  which is similar to the one used for hydrolysis of cellulose in a previous study92 

but operated at room temperature and atmospheric pressure. Briefly, in each experiment, 

~30 mg of biomass was loaded into a SUS316 stainless steel tubular reactor cell, which 

was sandwiched by two silver-plated stainless steel filters. The reactor cell was then 

connected with an HPLC pump (model: Alltech Model 627) at the inlet while the outlet 

was used for leachate collection. A stream (flow rate: 100 mL/min) of ultrapure water 

was then delivered by the HPLC pump and flowed through the reactor cell. Leaching 

equilibrium is considered to be reached when no TOC and inorganic species can be 

detected in the leachate. The leachate samples were collected at a series of leaching 

times and then subjected to the analysis of pH, TOC, contents of AAEM species and 

anions. 

 

3.3.3 Preparation of Biochars 

 

The pyrolysis experiments were carried out to prepare biochar from mallee biomass 

using 2 types of reactors, (1) drop-tube/fixed-bed quartz reactor and (2) fluidised bed 

quartz reactor. A drop- tube/fixed-bed reactor was used to prepare fine particle fast 

pyrolysis wood and leaf biochar. A fluidised bed reactor was used to prepare large 

particle fast pyrolysis biochar from 1 - 2 mm wood particle.  

 

Drop-tube/Fixed-bed Quartz Reactor 

 

A schematic of the drop-tube/fixed-bed quartz reactor system is shown in Figure 3.2. 

For preparation of fast pyrolysis wood and leaf biochars at 500 °C, the quartz reactor 

was pre-heated to 500 °C with a consistent flow of 2 L min-1 of ultra-high purity argon 

through the reactor. Approximately 20 g of biomass was loaded to the feeder and purged 

with ultra-high purity argon for 15 min before it was fed to the reactor through a water-

cooled feeding probe at the rate of 2 g min-1 for 10 min. The reactor was held at 500 °C 

for 10 min before it was lifted then cooled at room temperature. The flow of argon 
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through the reactor was maintained until the reactor was cooled to room temperature. 

The wood biochar produced is referred as “FWB-500-P” while the leaf biochar obtained 

is referred as “FLB-500-P” in Chapter 5 and Chapter 6. Pyrolysis experiments above 

were repeated to obtain the amount of biochars required. 

 
Figure 3.2: Schematic of drop-tube/fixed-bed reactor. The internal diameter middle 

section of the reactor is 60 mm. 
 

Fluidised Bed Reactor 

 

The schematic of the fluidised bed system used to prepare fast pyrolysis biochar from 1 

– 2 mm wood biomass is shown in Figure 3.3. Briefly, the fluidised-bed reactor consists 

of a vertical tube furnace large enough to heat up the 80 mm diameter quartz reactor. 

The fluidising medium used is high-purity fine silica sand (125 – 355 μm). A stream of 
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argon is fed from the bottom of the reactor to fluidise the sand at pyrolysis temperature. 

In order to prevent the quartz reactor from shuttering due to sand rapid thermal 

expansion during heating, the reactor had to be heated to pyrolysis temperature at a 

heating rate less than 10 K/min. The biomass was fed to the reactor from the top of the 

reactor. A stream of argon was flowed through the biomass feeder to prevent the 

backflow of pyrolysis volatiles to the feeding system. The volatiles produced during the 

pyrolysis were vented to the extraction system via two side tubes of the quartz reactor.  

 
Figure 3.3: Schematic of a fluidised-bed reactor system. The internal diameter of the 

middle section of the reactor is 80 mm. 
To prepare fast pyrolysis biochar from 1 – 2 mm wood biomass, the reactor was first 

loaded with approximately 450 g of high purity fine silica sand (125 – 355 μm) before 

it was heated to 500 °C within 70 min. A flow of ultra-high purity argon was used to 
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maintain the fluidisation of sand in the reactor and additional 1 L min-1 of Argon was 

used as a carrier gas in the feeder. ~45 g of biomass was loaded to the feeder. The system 

was purged with argon for 15 min before the biomass was fed to the reactor at a rate of 

2 g min-1. The reactor was held at pyrolysis temperature for 10 min before it was lifted 

and cooled to room temperature while the flow of carrier gases were maintained. The 

biochar was carefully separated from the sand by using a 500 μm sieve. The biochar 

produced from fluidised-bed system was ground manually and sieved to the size fraction 

of 105 – 250 μm prior to any leaching, secondary pyrolysis and gasification experiments. 

Pyrolysis experiments above were repeated to obtain the amount of biochars required. 

The wood biochar produced from this reactor is denoted as “LWB-500-P”. 

 

3.3.4 Secondary Pyrolysis Biochar 

 

Secondary pyrolysis biochar used in Chapter 5 and Chapter 6 in this study was produced 

using a drop-tube/fixed-bed quartz reactor aforementioned. Briefly, ~1.5 g of raw 

biochar were loaded to the reactor and purged with 3 L min-1 of ultra-high purity argon 

for 15 min before it was lowered to a pre-heated furnace. The reactor was held for 10 

min at 725 °C before it was lifted from the furnace and cooled to room temperature 

while maintaining the flow of argon. These procedures were repeated to obtain 

sufficient biochar amount required. The biochar produced are denoted accordingly as 

shown in  

 

Table 3.1. The meaning of the sample labels are given as “XXX-DDD-YY”, in which 

XXX indicates the type of biochar, DDD is the processing temperature (°C) and YY 

indicate the conditions of biochar tuning via particle gasification. XXX can be FWB for 

fine wood biochar, FLB for fine leaf biochar, LWB for biochar produced from large 

particle wood, respectively. DDD can be either 500 for pyrolysis at 500 °C or 725 for 

re-pyrolysis or partial gasification at 725 °C. YY can be P for the raw fast-pyrolysis 

biochars, RP for the re-pyrolysed biochars, or 5%-PG and 10%-PG for tuned biochar 

after 5% and 10% partial gasification at 725 °C, respectively. 
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Table 3.1: The label for biochars produced from secondary pyrolysis and partial steam 

gasification 

Raw Biochars Secondary 

Pyrolysis at 725 °C 

Partial Steam Gasification 

5% 10% 

FWB-500-P FWB-500-RP FWB-500-5%-PG FWB-500-10%-PG 

FLB-500-P FLB-500-RP FLB-500-5%-PG FLB-500-10%-PG 

LWB-500-P LWB-500-RP LWB-500-5%-PG LWB-500-10%-PG 

  

3.3.5 Partial Steam Gasification of Biochar 

 

The partial steam gasification of biochar was performed with a fixed-bed reactor system 

as shown in Figure 3.4, similar to that used by Yip and co-workers.148 Please note that 

the quartz reactor used in this experiment is 60 mm in internal diameter. Briefly, about 

0.4 g of raw biochar were loaded to the reactor and purged with 3 L min-1 of ultra-high 

purity argon for 15 min before it was lowered to a furnace pre-heated to 725 °C. The 

gasification began when the temperature of the reactor reached 725 °C by feeding the 

steam at the concentration of 8.2 vol% in argon. The steam gasification was first carried 

out for 40 min to determine the time required to achieve 5% and 10% carbon conversion 

relative to the carbon content in biochar repyrolysed at 725 °C with no holding time. 

For partial steam gasification, the steam flow was cut off at the required gasification 

time and the reactor was immediately lifted and cooled to room temperature. Multiple 

experiments were carried out to collect sufficient biochar amount for various leaching 

experiments and analysis.  
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Figure 3.4: Schematic of fixed-bed reactor system for steam gasification. The internal 

diameter middle section of the reactor is 60 mm. 
 

The gas produced during the steam gasification was cooled with two condensers 

submerged in ice water in series to remove condensable gas products and water. The 

gas was then passed through tube packed with glass wool to remove particles suspended 

in gas stream before it was collected with gas bags for analysis. The gas collected was 

analysed for H2, CO, CO2, and CH4 as described in Section 3.4.8 below. The biochar 

produced are denoted accordingly as shown in Table 3.1 
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3.3.6 Biochar Leaching  

 

Biochar leaching was carried out with different leaching mediums. They are water, 

Mehlich-1 solution and chloroform/methanol mixture. The leaching of inorganic and 

organic matter from biochar via water were conducted under batch condition at solid to 

liquid ratio of 1 g/L. Briefly, about 1 g of biochar was weighed and soaked with 1 L of 

ultra-pure water (18.2 M Ω) in a plastic bottle. The content was stirred gently with a 

magnetic stirrer bar at room temperature to minimise the solution concentration 

difference. A fixed amount of water sample was drawn from the bottle with a needle 

and syringe at a designated time interval. The sample was then centrifuged. The 

supernatant was carefully decanted to sample container while the solid retained was 

mixed with an equal amount of fresh ultra-pure water before adding them into the bottle. 

The leaching experiment was carried out for 28 days (4 weeks). Therefore, the water 

leachable inorganic and organic matter in biochar is defined as amount of inorganic and 

organic matter leached at equilibrium or 28 days. The TOC content was quantified using 

TOC analyser and AAEM and Cl content in water leachate were analysed with 2 ion-

chromatographs. 

 

Total plant available AAEM species were quantified by leaching with Mehlich-1 

solution (0.05 N HCl and 0.025 N H2SO4) for extended period of 24 h following the 

procedure used in previous study.27 Briefly, ~35 mg of biochar was weighed and 

immersed in 35 mL of solution. The content was stirred gently with a magnetic stirrer 

bar at room temperature for 24 h. The solution was then filtered with a 0.45 µm PVDF 

syringe filters before the concentration of the AAEM species and Cl was analysed with 

ion chromatographs.  

 

The solvent leaching of biochars was conducted by immerging 0.2 g of biochar in 10 

mL of chloroform and methanol mixture (4:1 v/v). The samples were then shook in an 

orbital shaker for 24 h. Immediately, the samples were filtered with a 0.45 µm filters 

before UV-fluorescence spectra of the sample were recorded. The leaching experiments 

were conducted in duplicate. 
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3.3.7 Hydrolysis of Biomass in HCW 

 

 
Figure 3.5 Schematic diagram of the semicontinuous reactor system used for biomass 
hydrolysis: (1) Water reservoir; (2) HPLC pump; (3) infrared image furnace; (4) reactor; 
(5) sintered stainless steel filter; (6) thermocouple; (7) cooling unit; (8) back-pressure 
regulator; (9) liquid product collector. 
 

The hydrolysis of mallee wood was carried out using the same semi-continuous reactor 

system used in a study by Yun and Wu.92 The schematic of the system used is shown in 

Figure 3.5. The setup mainly consisted of a HPLC pump, an infrared gold image furnace, 

an ice water bath and a pressure regulator.  The HPLC pump (Alltech 627 HPLC pump) 

is used to deliver a constant flow (Example, 10 mL/min) of water to the system. The 

water was preheated to the hydrolysis temperature in the furnace before it entered the 

reactor cell located at the lower section of the furnace. The reactor cell used was a 

SUS316 stainless steel tubular reactor cell with two silver-plated stainless steel gasket 

filters to sandwich the biomass sample in the reactor. The effluent from the reactor was 

rapidly quenched to 0 °C in a cooling unit. The cooling unit was made up of a stainless 

steel coil with known dead volume submerged in ice water bath. The back pressure 
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regulator located right after the cooling unit was used to regulate the pressure of the 

HCW (for example, 10 MPa). The liquid samples were collected from the liquid outlet. 

 

To carry out the biomass hydrolysis experiment, ~50 mg of mallee wood sample was 

weighted and charged into the reactor cell. Prior to hydrolysis in HCW, the sample was 

leached with water at room temperature with 10 mL/min of ultrapure water 

(resistivity >18.2 MΩ-cm) delivered by a HPLC pump for 30 min to remove water-

soluble AAEM species. Then the pressure in the reactor was pressurised to 10 MPa. The 

hydrolysis began by heating reactor and water rapidly (in 2 minutes) to hydrolysis 

temperatures (150°C, 180°C, 230°C and 270°C) and the temperature was held constant 

for 70 min. The reactor effluent was immediately quenched with an ice water bath to 

minimise any subsequent secondary reaction of the liquid product. The liquid product 

was sampled at designated time intervals. It is important to note that the time scale on 

the figures presented in Chapter 7 represents the holding time. The TOC, pH, saccharide 

and AAEM content of the liquid product were analysed swiftly after each experiment. 

The TOC content was analysed by a TOC analyser. The total saccharide in the liquid 

sample was analysed via HPAEC-PAD system following post-hydrolysis. The AAEM 

species was analysed by an ion chromatograph. The details of the instrument and 

analytical techniques used are given in Section 3.4 below. 

 

3.4 Instrument and Analytical Techniques 

3.4.1 Proximate and Ultimate Analysis  

 

The proximate analysis of biomass and biochar samples was conducted using a 

thermogravimetric analyser (TGA, model: METTLER) according to ASTM E870-82. 

The carbon, hydrogen and nitrogen contents of all biomass and biochar samples were 

analysed using a CHNSO elemental analyser (model: Perkin Elmer 2400 Series II). The 

chlorine content was quantified using the Eschka and combustion method specified in 

AS1038.8.1.149 The sulphur and phosphorous content in biomass used in Chapter 4 were 

analysed by external laboratory (ChemCentre, Bentley). The biomass samples were 

firstly microwave digested with concentrated nitric acid, followed by the quantification 
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of sulphur and phosphorous using inductively couple plasma optical emission 

spectrometry (ICP-OES). The oxygen (O) content was then determined by difference 

from Carbon, hydrogen, nitrogen and sulphur on a dry and ash-free (daf) basis. The 

sulphur content in other biomass and biochar sample used in Chapters 5, 6 and 7 were 

analysed following the method specified in AS1038.6.3.1.150 

 

3.4.2 Quantification of AAEM Species in Biomass and Biochar Samples 

 

The amount of AAEM species in biomass and biochar were quantified according to a 

method that was used previously.148 Briefly, ~5 mg of biomass or biochar sample was 

loaded in a platinum crucible which was first ashed using a specifically-designed ashing 

temperature program to prevent the loss of ash-forming species. The ash sample was 

then digested with a mixture of concentrated acid (𝐻𝐻𝐻𝐻/𝐻𝐻𝐻𝐻𝑂𝑂3=1:1). Excessive acids in 

the solution obtained after acid digestion was evaporated, followed by dissolving the 

residue with 0.02 M methasulphonic acid. The solution was then subjected to the 

quantification of AAEM species (Na, K, Mg and Ca) using an ion chromatograph (IC) 

detailed in Section 3.4.5. 

 

3.4.3 Analysis of Biomass Structural Carbohydrate and Sugar Content in 

Liquid Products 

 

The structural carbohydrate composition (arabinan, galactan, glucan, xylan, mannan) in 

wood sample were analysed via acid hydrolysis based on a NREL method.151 About 100 

mg of biomass was charged to a pressure tube and 1 mL of 72% sulphuric acid was then 

added to the sample. The pressure tube was then immerged in 30 °C water bath for 1 h. 

The acid concentration was later adjusted to 4% by addition of 28 mL ultrapure water 

before it was autoclaved for 1 h at 121 °C. For every batch of analysis, a recovery 

standard was prepared to correct the loss of saccharide during hydrolysis. 348 µL of 72% 

sulphuric acid was added to 10 mL of liquid standard containing arabinose, galactose, 
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glucose, xylose and mannose in a pressure tube. The content was autoclaved along with 

the samples.  

 

Post hydrolysis of HCW liquid product was carried out similar to the recovery standard 

to decomposed oligosaccharides into their respective monosaccharides for 

quantification of total saccharides in liquid product. The content of monosaccharides in 

the hydrolysed sample was filtered with 0.45 µm syringe filter before being analysed 

via HPAEC-PAD system following the procedure outline in Section 3.4.7. The 

concentration of saccharides in the liquid sample was adjusted based on the recovery of 

the standard to account for the lost during hydrolysis.   

 

3.4.4 Quantification of Organic Matter in Liquid Samples 

 

The concentration of organic matter in water samples (biomass/biochar washing 

leachates and liquid products collected from hydrolysis in HCW) were analysed 

immediately after collection using a TOC analyser (model: Shimadzu TOC-VCPH) 

equipped with inorganic carbon reaction vessel. The TOC in water samples was 

calculated through subtraction of inorganic carbon from total carbon in water sample. 

To enable direct comparison, the amount of TOC in liquid samples was then normalised 

to the total carbon contained in the respective biomass/biochar sample. 

 

3.4.5 Quantification of Inorganic Species in Liquid Samples 

 

The AAEM species (Na, K, Mg and Ca) content in water samples and aliquot from acid 

digestions were quantified using an ion chromatograph (IC, model: DIONEX ICS-3000) 

equipped with suppressed conductivity detection system. Separation was achieved with 

IonPac CS12A 4x250mm column and IonPac CS12AG 4x50mm guard column using 

0.02 M methasulphonic acid as eluent. Chloride, sulphate and phosphate were analysed 

using another IC system (model: DIONEX ICS-1100) equipped with suppressed 

conductivity detection system. The anions were separated with IonPac AS22-fast 
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4x150mm column and IonPac AS22G 4x30mm guard column using 45 mM sodium 

carbonate and 14 mM sodium bicarbonate as eluent.  

 

3.4.6 Quantification of Organic Acids in Leachates  

 

Anion for organic acids (formate, acetate and oxalate) in leachate from batch leaching 

of biomass experiments in Chapter 4 were quantified using an ion chromatograph (IC, 

model: DIONEX ICS-3000) equipped with a suppressed conductivity detection system. 

Separation was achieved with IonPac AG20 2 × 250 mm column and IonPac AG20  

2 × 50 mm guard column using 5mM Potassium Hydroxide as eluent. The analysis was 

carried out by an external laboratory (ChemCentre, Perth). 

 

3.4.7 Quantification of Monosaccharides 

 

The monosaccharides (arabinan, galactan, glucan, xylan, mannan) content in water 

sample were analysed using a HPAEC-PAD system. The acid hydrolysis samples 

required a minimum of 5 times dilution with ultrapure water to bring the concentration 

of sulphuric acid down to ≤0.8wt%. The HPAEC-PAD is essentially a Dionex ICS-3000 

ion chromatography system equipped with pulsed electrochemical detection (PAD with 

Au electrode and Ag/AgCl reference). In order to achieve an adequate separation of 

arabinose, galactose, glucose, xylose and mannose with CarbonPac PA20 analytical and 

guard columns, a gradient program listed in Table 3.2 was used. The total flow rate of 

the eluent was maintained at 0.5 mL/min. To ensure sufficient linearity of the detector 

respond, post-column base addition was required. 0.4 mL/min of 300 mM NaOH was 

added to analytical column effluent by using a PEEK flow path HPLC pump.  

 

 

 

 

Table 3.2: HPAEC-PAD gradient program used for separation of monosaccharides 
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Time 

Eluent 

A (%) B (%) C (%) 

0.3M NaAc in 0.1M 

NaOH 

0.3 M NaOH Water 

0.0 0 0 100 

20.0 0 0 100 

20.5 100 0 0 

23.5 100 0 0 

24.0 0 100 0 

30.0 0 100 0 

30.5 0 0 100 

40.5 0 0 100 

3.4.8 Gas Chromatography  

 

The CH4, CO, CO2 and H2 content in the gas collected during gasification were analysed 

using two Perkin Elmer gas chromatographs (GC). The H2 content was analysed with 

Perkin Elmer AutoSystem XL GC equipped with molecular sieved column using argon 

as the carrier gas. CH4, CO and CO2 in gas sample were quantified using Perkin Elmer 

AutoSystem GC with dual columns (molecular sieve column and Porapak-N column) 

and helium as carrier gas. The GCs were calibrated with certified standard gas purchased 

from BOC Australia prior to each analysis sequence. 

 

3.4.9 UV-fluorescence Spectroscopy  

 

UV-fluorescence spectroscopy had been widely used to determine the relative size and 

concentration of the aromatic compound in liquid samples.152, 153 The synchronous 

spectra of the solvent wash and water washing leachate were recorded with Pekin Elmer 

LS55B spectrometer at constant energy different of -2800 cm-1. The slit width and scan 

speed were set to 2.5 nm and 200 nm min-1 respectively. All the spectra presented are 

the average of 5 scans. 

3.4.10 Biochar Surface Area 
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The BET N2 surface area of biochar was analysed by N2 adsorption based on Brunauer-

Emmett-Teller (BET) equation.154, 155 The N2 adsorption was carried out with 

Micromeritics Tri-star II Model 3020. About 200 mg of biochar samples were carefully 

measured in a sample tube then the sample was outgassed for at least 12 h at 120 °C. 

The weight loss during outgassing was measured prior to the analysis. The analysis was 

done with N2 gas as adsorbate at liquid N2 temperature. The range of 𝑃𝑃/𝑃𝑃0 used was 

limited to 0.05 to 0.35. The surface area was determined with Micromeritics ASAP 3020 

software using BET equation at the linear range of the isotherm. 

The micropore surface area of biochar was analysed by CO2 adsorption based on 

Dubbin-Radushkevich (DR) equation.156 The CO2 adsorption was carried out with 

Micromeritics Gemini with approximately 100 – 150 mg of sample. The sample was 

outgassed following the same procedure prior to analysis. The analysis was carried out 

with CO2 as adsorbate at 273 K (ice water bath) using multi relative pressure points 

between 0.005 and 0.3. The micropore surface area was determined via DR equation 

from the linear region of the ln𝑊𝑊 versus log (𝑃𝑃0/𝑃𝑃) plot.  
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3.5 Kinetic Model 

 

Previous study by Kong and co-worker27 demonstrated that pseudo-second order kinetic 

model could be used to describe the leaching of AAEM species from biochar.27 The 

experimental data for leaching of AAEM species from biochar via water was fitted to 

this kinetic model to determine the pseudo-second order leaching rate constant and 

initial leaching rate. The pseudo-second order leaching model is shown in Eq 1157-159.  

dCt
dt = k(Cs − Ct)2               − (𝐸𝐸𝐸𝐸 1) 

where k is the second order overall leaching rate constant (𝐿𝐿 𝑚𝑚𝑔𝑔−1𝑑𝑑𝑑𝑑𝑦𝑦−1); 𝐶𝐶𝑠𝑠 is the 

equilibrium concentration (𝑚𝑚𝑚𝑚 𝐿𝐿−1) and 𝐶𝐶𝑡𝑡  is the concentration (𝑚𝑚𝑚𝑚 𝐿𝐿−1) of AAEM 

species in water at time t.  

 

To determine the leaching parameter from the experimental data, Eq 1 had to be 

expressed in linear form. By integrating Eq 1 with the boundary condition 𝑡𝑡 = 0 to 𝑡𝑡 

and 𝐶𝐶𝑡𝑡 = 0 to 𝐶𝐶𝑡𝑡, integrated rate law Eq  2 could be obtained. By rearranging Eq 2, the 

linear form of Eq 1 could be obtained as shown in Eq 3. By fitting the data into 𝑡𝑡 vs 

𝑡𝑡/𝐶𝐶𝑡𝑡, leaching parameter 𝐶𝐶𝑠𝑠 could be obtained from the slope and 𝑘𝑘 could be calculated 

from the intercept. As t approaching 0, the initial leaching rate could be expressed by 

Eq 4. The initial leaching rate h could be determined through Eq 4. 

𝐶𝐶𝑡𝑡 =
𝐶𝐶𝑠𝑠2𝑘𝑘𝑘𝑘

1 + 𝐶𝐶𝑠𝑠𝑘𝑘𝑘𝑘
                    − (𝐸𝐸𝐸𝐸 2) 

𝑡𝑡
𝐶𝐶𝑡𝑡

=
𝑡𝑡
𝐶𝐶𝑠𝑠

+
1
𝑘𝑘𝐶𝐶𝑠𝑠2

                    − (𝐸𝐸𝐸𝐸 3) 

ℎ = 𝑘𝑘𝐶𝐶𝑠𝑠2                                − (𝐸𝐸𝐸𝐸 4) 
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3.6 Summary 

 

Mallee wood and leaf were carefully separated and prepared into the desired size 

fractions (150 – 250 μm and 1 – 2 mm). Leaching of fine biomass was carried in both 

batch and semi-continuous modes. The biomass samples were also pyrolysed to produce 

fast pyrolysis biochar. Secondary pyrolysis and partial steam gasification of biochar 

were also used to tune the biochar. All the biochars produced were then subjected to 

leaching in water, Mehlich-1 solution and solvents. In addition, hydrolysis of biomass 

in HCW was also carried out to study the leaching of AAEM species in HCW. The raw 

biomass and its derived biochar were characterised with various analysis discussed in 

Section 3.4. The leachate samples collected from leaching experiment were also 

analysed. The results from these experiments led to a better understanding on the 

equilibrium, kinetic and implication of leaching of inorganic and organic matter from 

biomass and biochar under various conditions.  
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Chapter 4: Leaching of Organic and Inorganic Matter from Biomass 

by water: Differences between Batch and Semi-continuous 

Operations 
 

 

 

4.1 Introduction 

 

One key feature of biomass is that during its growth biomass extracts various inorganic 

nutrients species (e.g. Cl and alkali and alkaline earth metallic species, i.e. AAEM 

species, including K, Mg, Ca etc) from soil as inherent inorganic species in biomass. 

Knowledge on the leaching behaviour of these species during biomass water leaching 

is essential to biomass utilisation for at least four important reasons as described below. 

 

First, the inherent inorganic species in biomass as precursors of ash formation are known 

to be responsible for notorious ash-related issues during biomass 

combustion/gasification.18, 19, 56-62 The transformation of these inorganic species during 

biomass combustion/gasification strongly depends on the chemical forms (e.g. water-

soluble, organically-bound etc) of these species in biomass.18, 160-163 Chemical 

fractionation is a common method used for determining the forms of inorganic species 

in solid fuels. It is a sequential extraction method initially used by Benson and Holm,164 

later modified by Baxter165 and recently improved by Zevenhoven et al.18 The first-step 

of the method uses batch water washing to quantify the water-soluble inorganic species 

in biomass. However, as demonstrated in previous studies,24, 121, 158 batch water washing 

of biomass may also leach out a substantial amount of organic matter from biomass. 

Such leaching of organic matter may result in an acidic leachate, which may in return 

interact with biomass to possibly remove some organically-bound (water-insoluble) 

inorganic species in biomass. Unfortunately, little work has been done on this aspect so 

far. 
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Second, it was demonstrated in previous studies18, 20, 32, 33, 106-108, 111, 166, 167 that water 

washing may be an effective pretreatment strategy to remove inherent inorganic species 

in biomass for mitigating the ash-related issues. Such water washing of biomass was 

conventionally carried out under batch operations, with the removal performance 

reported to be dependent on the properties of biomass materials. 18, 20, 32, 33, 101-103, 106, 164, 

165 Likewise, if water washing can produce an acidic leachate, such a leachate will 

possibly alter the leaching performance of these inorganic species in biomass. Most 

importantly, the leaching of organic matter from biomass during such a pretreatment 

step also means the loss of fuel materials. Surprisingly, little has been discussed on these 

aspects in the open literature. 

 

Third, batch water leaching was also used to remove water-soluble inorganic (such as 

AAEM) species in biomass to investigate the effect of these species on the pyrolysis 

behaviour of biomass.111, 112, 166, 167 Similarly, if batch washing of biomass leads to the 

loss of fuel materials,24, 121, 158 such loss of organic matter in fuel may also influence the 

pyrolysis behaviour of the water-washed biomass. However, the effect of such organic 

matter loss (as results of water leaching) on biomass pyrolysis was unknown and not 

considered previously. 

 

Fourth and last, the continuous growth and harvest of biomass in land result in 

continuous export of the inorganic species from soil, potentially leading to depletion of 

these inorganic nutrients in soil. Therefore, it is important to recycle at least part of these 

inherent inorganic species in biomass in order to maintain the sustainability of biomass 

production. It was reported that during mallee biomass production about half of key 

inorganic nutrients exported are in the leaf component so that recycling of these 

nutrients may be achieved via incorporating mallee leaf materials back into the soil.168 

Therefore, it is beneficial to understand the leaching behaviour of inherent inorganic 

species in biomass by water. 

 

Therefore, it is the objectives of this chapter to carry out a series of fundamental study 

on the leaching characteristics of organic and inorganic matter from mallee biomass by 
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water, employing both a batch leaching reactor and a semi-continuous leaching reactor. 

A unique feature of the semi-continuous leaching reactor is that the leachate is rapidly 

swept out of the reactor while the biomass remains inside the reactor. Such a design 

minimises the contact between the leachate with the biomass particles being leached, 

offering significant advantages over the conventional batch leaching. The experimental 

program considers both wood and leaf components of mallee. Leaching characteristics 

of organic carbon, AAEM species and anion species (e.g. Cl) are discussed. 

 

4.2 Leaching of Organic and Inorganic Matter in a Batch Reactor 

 

Table 4.1: Properties of mallee wood and leaf biomass samples used in this chapter 

Sample 

Moisture  

(wt% after 

air-dried) 

Proximate  

(wt % dry basis) 
 Ultimate (wt% dry ash free) 

Ash VMa FCb  C H N S Oc 

Leaf 5.6 3.6 76.5 19.9  59.1 7.4 1.30 0.12 32.08 

Wood 4.0 0.5 83.6 15.9  48.8 6.7 0.42 0.02 44.06 
aVM–volatile matter; bFC–fixed carbon; cBy difference 

 

Table 4.2: Contents of inorganic species in biomass samples 

Samples 
Inorganic Species (wt% dry basis) 

Na K Mg Ca Cl P 
Leaf 0.5927 0.3057 0.1699 0.7876 0.1949 0.1165 

Wood 0.0246 0.0689 0.0355 0.1376 0.0244 0.0115 

 

 

Table 4.1 and  

Table 4.2 show the data on the proximate, ultimate and ash analysis of mallee wood and 

Leaf used in this chapter. Figure 4.1 presents that data on the total organic carbon 

leached from mallee wood and leaf samples in the batch reactor under equilibrium 

conditions. A substantial amount of organic matter, about 32% of the total carbon in the 

mallee leaf sample, can be leached from mallee leaf. However, only a small amount of 

organic matter (~2% of the total carbon in the mallee wood sample) can be leached from 
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mallee wood. The results are in consistent with those reported by Wu et al.24 for mallee 

biomass samples prepared from different batches. The data for the leaching of inorganic 

species are presented in Figure 4.2. At equilibrium under batch leaching conditions, Na 

and K were almost completely leached out from both mallee wood and leaf samples (i.e. 

~100% and ~92% of Na, 95% and 98% of K were leached out from wood and leaf, 

respectively). However, the leaching of Mg and Ca are considerably less under the same 

batch leaching conditions (~45% and 58% of Mg, 29% and 5% of Ca were leached out 

from wood and leaf, respectively). Therefore, after batch water washing, there are 

significant quantities of water-insoluble Mg and Ca remained in the biomass samples 

while all Cl can be leached out from both wood and leaf. 

 

 
Figure 4.1: Percentages of total organic carbon leached from the water washing of 
mallee wood and leaf biomass samples under batch and semi-continuous leaching 
conditions 
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Figure 4.2: Percentages of various inorganic species leached from the water washing 
of mallee wood (a) and leaf (b) biomass samples under batch and semi-continuous 
leaching conditions 
 

Table 4.3 lists the pH, concentrations of organic acids and cation/anion ratio of the 

leachates obtained from the batch water washing of leaf and wood samples at 

equilibrium. Clearly, the leachates are acidic as the pH values of the leachates collected 

from wood and leaf leaching are 5.5 and 4.2, respectively. The results suggest that at 

least some organic acids are present in the organic matter leached from the biomass 

samples. Analysis using ion chromatography (see the method detailed in section 3.4.6) 

shows that the leachate samples contain organic acids including acetate, formate and 

oxalate etc. As shown in Table 4.3, the identified organic acids contribute to 2.06% and 

0.79% of total organic carbon leached from wood and leaf, respectively. Also listed in 

Table 4.3 is the cation/anion ratio of the leachate (Na + K +2Mg + 2Ca)/(Cl +2S +3P). 

The cation/anion ratios are 2.3 and 3.1 for wood and leaf, respectively, suggesting at 
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least some of the AAEM species leached out from the biomass samples do not exist in 

the biomass samples as water-soluble salts. Overall, the results presented so far clearly 

demonstrate that under batch water leaching conditions, the organic acids leached from 

biomass samples remain in the leachates system and leach out some of the acid-soluble 

(but water-insoluble) AAEM species (e.g. organically-bound AAEM species via ion 

exchange). It is likely that batch water washing of biomass overestimates the contents 

of the water-soluble inorganic species in biomass samples. Therefore, a new method is 

needed for the correct quantification of these water-soluble inorganic species, 

eliminating the effect of the interactions between the leachate and the leaching biomass 

sample.  

 

Table 4.3: Properties (pH, concentrations of organic acids and cation/anion ratio) of the 

leachates obtained from water washing of leaf and wood samples at equilibrium under 

batch leaching conditions 

Items Leachate from batch 
washing of wood 

Leachate from batch 
washing of leaf 

pH 5.5 4.2 
concentrations of organic acid anions (% of TOC in leachate) 

acetate 1.13 0.03 
formate 0.11 0.02 
oxalate 0.82 0.74 

Total 2.06 0.79 
cation/anion ratio, ie 
(Na + K +2Mg + 2Ca)/(Cl +2S +3P) 

2.2 3.1 

 

4.3 Leaching of Organic and Inorganic Matter under Semi-continuous 

Operations 

 

Efforts were then taken to carry out a series of leaching experiments using a semi-

continuous leaching reactor. As aforementioned, the key innovation of the semi-

continuous leaching reactor is the realisation of rapidly separating the leaching products 

from the biomass particles being leached. This ensures it is the fresh water (rather than 

acidic leachate) that continues to perform the leaching action on the biomass sample. 
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The results of leaching experiments using the semi-continuous leaching reactor are also 

plotted in Figure 4.1 and Figure 4.2, along with those using the batch leaching reactor. 

It can be seen in Figure 4.1 that there is a small (but appreciable) reduction in the amount 

of total organic carbon leached using the semi-continuous reactor, in comparison to that 

using the batch reactor. Additionally, there are considerable reductions in the 

percentages of AAEM species leached from both wood and leaf using the semi-

continuous leaching reactor, in comparison to those leached using the batch reactor. For 

example, the percentages of Na, K, Mg and Ca leached from biomass samples are 

reduced by an absolute 20, 10, 15 and 18% for wood (and 15, 3, 30 and 4% for leaf), 

respectively. Therefore, it is clearly demonstrated that in the batch leaching reactor, as 

results of extensive and lengthy contact (hence interactions) between the acidic 

leachates and the biomass samples, various amounts of water-insoluble inorganic 

species (but soluble in the acidic leachates) have been leached out. In addition, Figure 

4.2 also shows that all the chlorine in the biomass samples was leached out under both 

batch and semi-continuous leaching conditions, clearly indicating that all Cl in biomass 

is truly in water-soluble forms. 
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Figure 4.3: Percentage of various inorganic species leached from the water washing of 
mallee wood (panels a-e) and leaf (panels f-j) as a function of leaching time. 
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Figure 4.4: Correlation between −ln (𝐶𝐶/𝐶𝐶0) and leaching time under both batch and 
semi-continuous leaching conditions: Panel (a-d) for Na, K, Mg and Ca in wood, 
Panel (e-h) for Na, K, Mg and Ca in leaf  
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4.4 Differences in Leaching Kinetics between Batch and Semi-continuous 

Leaching Operations 

 

Figure 4.3 presents the percentages of inorganic species leached out from the mallee 

wood and leaf samples as a function of leaching time under both batch and semi-

continuous leaching conditions. The results clearly demonstrate the substantial 

differences in the leaching kinetics between batch and semi-continuous leaching 

conditions.  Leaching of Na and K from both leaf and wood is rapid within the first 10 

minutes and almost reaches equilibrium under both batch and semi-continuous leaching 

conditions. Similarly, the leaching of Mg and Ca is also rapid during the first 10 minutes 

and further leaching becomes slow. All chlorine in biomass can be leached within less 

than 5 minutes for batch leaching and within one minute for semi-continuous leaching. 

The longer leaching time for batch leaching suggests that Cl leaching appears to be 

influenced by the Cl concentration in the bulk leachate. 

 

Assuming the leaching follows the first-order kinetics, Ci,0 is the total amount of species 

i which can be leachable and Ci,t  is the total amount of species i remained after a 

leaching time t, we have 

 tk
C
C

i
i

ti =− )ln(
0,

,  

where ki (min-1) is the leaching rate and t (min) is the leaching time. For first-order 

kinetics, the plot of −ln (𝐶𝐶𝑖𝑖,𝑡𝑡/𝐶𝐶𝑖𝑖,0) against time t should give a straight line. Figure 4.4 

presents such plots for Na, K, Mg and Ca based on the experimental data. Clearly, the 

overall leaching process does not follow first-order kinetics under batch operations. It 

consists of two distinct first-order leaching steps (represented by two straight lines for 

each species in Figure 4.4) for the leaching of these species from both wood and leaf. 

The first step is a rapid leaching step within the first several minutes, followed the 

second step which is slow. The two-step leaching suggests that two different leaching 

mechanisms govern the leaching process during batch water leaching of biomass. The 

first step corresponds to rapid dissolution of inorganic species which are in the form of 

water-soluble salts while the second step reflects the slow leaching of inorganic species 
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via ion-exchange with H+ from organic acids. However, under semi-continuous leaching 

conditions, Figure 4.4 shows that the leaching process consists of only one single step, 

i.e. the first rapid leaching step. The slow second-step leaching is absent because the 

acidic leachate was swept out of the semi-continuous reactor rapidly hence its contact 

with the biomass particles was minimised.  

 

 
Figure 4.5: Percentage of total organic carbon leached from the water washing of 
mallee wood (a) and leaf (b) as a function of leaching time, under both batch and 
semi-continuous leaching conditions. 
 

Similar trends of two-step leaching are also observed in the leaching of total organic 

carbon from the biomass samples under batch conditions. As shown in Figure 4.5, under 

batch leaching conditions, ~80% of leachable total organic carbon was leached out 

within 5 minutes, followed by a slow leaching process towards equilibrium. As shown 

in Figure 4.6, the leaching of organic matter from wood also shows a one-step leaching 

process under semi-continuous operation conditions, However, Figure 4.6 shows a two-
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step leaching process for the water leaching of leaf under semi-continuous conditions. 

The data in Figure 4.1 show that the amount of water-leachable organic matter in leaf is 

substantial, equivalent to ~32% of the total carbon in the biomass. Therefore, as far as 

water leaching is concerned, 80% of this water-leachable organic matter in leaf can be 

dissolved and leached quickly by water in the first rapid step. The subsequent leaching 

of the rest 20% of the water-leachable organic matter in leaf is slow. 

 

 
Figure 4.6: Correlation between −ln (𝐶𝐶/𝐶𝐶0) and leaching time for total organic carbon 
leached from the water washing of mallee wood (a) and leaf (b) under both batch and 
semi-continuous leaching conditions.  
 

4.5 Differences in the Evolution of Leachate pH and Cation/Anion Molar 

Ratios between Batch and Semi-continuous Leaching Operations 
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Figure 4.7: Evolution of leachate pH during water washing of mallee biomass sample 
under batch (a) and semi-continuous (b) leaching conditions 
 

Further work was then carried out to analyse the pH and the cation/anion molar ratios 

of various leachate samples as a function of leaching time. As shown in Figure 4.7a, 

under batch leaching conditions, the leachate pH decreases sharply as soon as leaching 

begins for a period of 5 mins, coinciding with the rapid TOC leaching during the same 

period (see Figure 4.5). A further increase in leaching time leads to a much slower 

decrease in pH of the leachate till reaching equilibrium. At equilibrium, the pH value 

(4.2) of the leachate from leaf is much lower than that (5.5) of the leachate from wood. 

This is in consistence with the fact that there is substantially more organic matter 

leached from leaf than wood (see Figure 4.1). On the other hand, under semi-continuous 

leaching conditions (see Figure 4.7b), the pH value of the leachate increases with the 

leaching time within the first several minutes, reaches a value of 6.3 and remains 

unchanged with leaching proceeding further. Two points should be noted from the data 

presented in Figure 4.7b. One is that a pH value of 6.3 is close to neutral because the 

0 300 600 900 1200 1500
4.0

4.5

5.0

5.5

6.0

6.5

0 10 20 30 40 50
4.0

4.5

5.0

5.5

6.0

6.5

 Wood    Leaf

Le
ac

ha
te

 p
H

Time (min)

(a) Batch

(b) Semi-continuous

 L
ea

ch
at

e 
pH

Time (min)

Page 71 
 

 



CHAPTER 4 
 
 

pH of the ultrapure water was ~6.5 that is below 7 (known to be the results of ambient 

carbon dioxide inevitably dissolved in the water169).The other is that water-soluble 

organic matter can be indeed leached out within a period of several minutes, after which 

little organic matter can be further leached out, resulting in a leachate with pH close to 

that of the ultrapure water.  

 

Figure 4.8 further presents the cation/anion molar ratio of the leachate samples, i.e. (Na 

+ K +2Mg + 2Ca)/(Cl +2S +3P), as a function of leaching time. Under batch conditions, 

the data in Figure 8a shows that the cation/anion molar ratio in the leachate from the 

water washing of wood is close to parity initially, indicating that the inorganic species 

in biomass leached at the beginning are mainly in the forms of water-soluble inorganic 

salts. As the leaching process proceeds, the cation/anion molar ratio quickly increases 

to above 2, clearly showing that the acidic leachate leaches out some of the organically-

bound inorganic species in biomass under batch leaching conditions. For the same 

reasons, the cation/anion ratio under batch leaching conditions is considerably higher 

than those under semi-continuous leaching conditions. For leaf biomass, the differences 

in the cation/anion molar ratios between batch and semi-continuous leaching conditions 

are more significant. This apparently due to the considerably larger amount of total 

organic carbon leached out of leaf (~32%) in comparison to wood (~2%). 
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Figure 4.8: Evolution of leachate cation/anion ratio during the water washing of 
mallee wood (a) and Leaf (b) samples under batch and semi-continuous leaching 
conditions 
 

4.6 Further Discussion and Practical Implications 
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determined via the leaching of biomass using 0.01 M HCl solution (initial solid 

concentration: 5 g biomass per 1 L dilute acid solution) for 24 hours. It should also be 

noted that for chlorine, acid leaching of biomass was carried out using 0.01 M H2SO4 

solution. The residual portion was then calculated by difference. Considering the two 

different cases of water leaching, i.e. batch leaching as used commonly and semi-

continuous leaching reported in this study, the distribution of the three categories of 

inorganic species are plotted in Figure 4.9 for comparison. It can be seen that both 

methods can accurately quantify the water-soluble inorganic species if such species are 

present in biomass only in water-soluble form (e.g. Cl). Otherwise, the conventional 

method via water batch leaching leads to a clear overestimation. For example, while 

water leaching using the semi-continuous reactor shows the true water-soluble portion 

of Na in wood is 80%, batch water leaching results in the conclusion that all Na are 

water soluble as results of the leaching of 20% organically-bound Na by the acidic 

leachate in the batch reactor. Similarly, the water-soluble portion of Mg in leaf is 

considerably overestimated, by almost one fold. Therefore, in the sequential extraction 

scheme deployed in chemical fractionation, the semi-continuous instead of batch water 

leaching should be used for quantifying the water-soluble inorganic species.  
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Figure 4.9: Occurrence of inorganic species in mallee biomass via batch and semi-
continuous leaching methods: (a) wood; (b) leaf; B and SC stand for batch and semi-
continuous leaching, respectively. 
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Second, under semi-continuous leaching conditions, the kinetic plots in Figure 4.4 

suggest that the leaching of water-soluble mono-valence species (Na and K) is much 

faster than that of di-valence species (Mg and Ca). For water leaching of a species i 

within porous materials such as biomass, the leaching kinetics of the species is 

dependent on the diffusion coefficient Di of the species within the complex micro-pore 

network of the biomass particle. Based on the previous work on ion transport in porous 

media,171, 172 the overall diffusion coefficient 𝐷𝐷𝑖𝑖 can be calculated as 𝐷𝐷𝑖𝑖 = 𝐷𝐷𝑖𝑖𝑢𝑢 𝜏𝜏⁄ , where 

𝐷𝐷𝑖𝑖𝑢𝑢 is the diffusion coefficient of the ion species in free water and 𝜏𝜏 is the tortuosity of 

the complex micro-pore network within the porous media. For the same biomass 

materials, 𝜏𝜏 can be considered to be same for all ionic species. Therefore, the overall 

diffusion is determined by 𝐷𝐷𝑖𝑖𝑢𝑢 that is an intrinsic attribute of an ionic species. According 

to the classic chemistry handbook (such as reference173), the values of 𝐷𝐷𝑖𝑖𝑢𝑢 of Na+ and 

K+ (mono-valence species) at 25 °C are 1.334 × 10-9 and 1.957× 10-9 m2/s, respectively, 

considerably higher than 0.706 × 10-9 and 0.792 × 10-9 m2/s of Mg2+ and Ca2+ (di-

valence species), respectively. Therefore, the leaching of Mg and Ca are slower than Na 

and K, as indicated by the data in Figure 4.4. 

 

Third, the results reported in this chapter also have important implications to the use of 

water batch washing as a pretreatment strategy for removing inorganic species in 

biomass fuels for mitigating ash-related issues during thermochemical processing of 

biomass. Such a strategy was considered in various previous studies. 18, 20, 32, 33, 101-103, 

106, 164, 165 Based on the results in this chapter, it is true that under this condition, water 

leaching removes most of Cl, Na and K as well as considerable portions of Mg and Ca. 

However, water leaching may also remove substantial amounts of organic matter in 

biomass, depending on the origin of biomass. For example, for mallee biomass, while 

water leaching removes 2% TOC from wood, it can remove and ~32% of TOC from 

leaf. It was also reported that over 30% of TOC can be removed from mallee bark by 

water batch leaching.24 Considering that the bulk biomass from the harvest of mallee 

trees has 40% of wood, 25% of bark and twig, and 35% of leaf,174 this can translate to 

a substantial loss of fuel if water washing is adopted as an attempt to remove inherent 

inorganic species in biomass. Therefore, from energy applications’ point of view, the 
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fuel loss due to organic matter removal from the water leaching of biomass cannot be 

neglected.  

 

Fourth, the findings in this chapter may also have an important implication to the 

conventional method used in investigating the effect of water-soluble inherent inorganic 

species on chemical reaction mechanisms during thermochemical processing of biomass. 

In such studies,106, 107, 164, 165 water washing of biomass was typically carried out under 

batch operations to prepare a so-called “washed” biomass sample which is considered 

to be free of water-soluble inorganic species. The effect of water-soluble inorganic 

species on thermochemical reactions (e.g. pyrolysis) of biomass was then investigated 

by comparing the behaviour of the raw and the washed samples. Unfortunately, the 

removal of potentially substantial organic matter from biomass during the water 

washing of the raw biomass under batch conditions was not quantified and discussed.  

 

4.7 Conclusions 

 

This chapter demonstrates that various amount of organic matter can be leached out 

from biomass during water washing, depending on biomass materials. The leaching of 

organic matter from biomass produces an acidic leachate. During batch leaching, the 

acidic leachate is in continuous contact with biomass particles being leached, resulting 

in at least some of the water-insoluble (e.g. organically-bound) inorganic species being 

leached out and being quantified as water-soluble. A semi-continuous leaching reactor 

was then developed to overcome this issue. It rapidly sweeps the leachate out of the 

reactor while keeps the biomass sample within the reactor, effectively minimising the 

contact between the acid leachate and the biomass sample. This leads to accurate 

quantification of water-soluble inorganic species in biomass and demonstrates that the 

conventional method using batch washing can lead to an overestimation. The batch 

leaching of inorganic species in biomass is a two-step process, which include a rapid 

leaching step for an initial short period and a followed slow leaching step for a long 

period. However, the semi-continuous leaching of inorganic species in biomass is a 

single-step process that only includes the first rapid leaching step. The second slow-
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leaching step disappears as results of minimised interaction between acidic leachate and 

biomass. It was also found that the leaching of water-soluble di-valence species (Ca and 

Mg) is slower than mono-valence species (Na and K) due to the smaller diffusion 

coefficients of di-valence ionic species. The overestimation of water-soluble species 

suggests that semi-continuous (instead of batch) water leaching should be deployed in 

the sequential extraction scheme used in chemical fractionation for quantifying water-

soluble inorganic species in biomass. As results of potentially substantial loss of fuel 

matter, care must be taken in using water batch washing as a potential strategy for 

removing inorganic species in biomass (for fuel quality improvement) and as a method 

for studying the effect of water-soluble inorganic species on thermochemical reactions 

of biomass.  
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Chapter 5: Tuning Biochar Properties via Partial Gasification: 

Biochar Characteristics and Leaching of Organic Matter 
 

 

 

 

5.1 Introduction 

 

As discussed in Section 2.4.2, large scale utilisation of biomass for bioenergy 

production may lead to various undesirable impacts on soil and water quality,25, 26, 81 

resulted from continuous harvesting of biomass or removal of biomass residual. This 

includes reduction of soil fertility due to significant losses of plant nutrients like alkali 

and alkaline earth metallic (AAEM) species from soil argo-ecosystem. Unless part of 

these plant nutrients is returned or recycled to the soil, continuous removal of plant 

nutrient from pyrolysis lifecycle might render sustainability of biomass pyrolysis in 

doubt. Bio-oil is normally produced from fast pyrolysis of biomass at temperature of 

450 °C to 550 °C for optimum yield. While bio-oil can be burned in diesel engine72, 74 

and potentially upgraded to transportation fuel,68, 70, 77 the vast quantity of biochar 

produced during commercial production of bio-oil can be applied to soil.26 As the 

majority of AAEM species in biomass are retained in biochar during pyrolysis24, 137 this 

will enable part of AAEM species uptake by biomass during its growth to be recycled 

to soil24, 27 and improves the quality of the soil at the same time.26 

 

Although the overall recyclability of Mg and Ca in fast pyrolysis mallee biochar (based 

on Mehlich-1 leaching) is high, a major portion of them are water insoluble. This is due 

to the combination of encapsulation of these AAEM species in biochar structure and 

possible transformation of AAEM species into water-insoluble form.27 The fact that a 

large portion of these Mg and Ca being water-insoluble indicates that depending on the 

soil pH, the overall recyclability of these AAEM during soil amendment can be low. 
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As steam gasification is known to promote the formation of porous structure of 

biochar,154 partial steam gasification can potentially tune the biochar from fast pyrolysis 

to enhance the overall recycling of biomass inherent AAEM species retained in biochar 

by exposing those AAEM species which are encapsulated during pyrolysis. Furthermore, 

the inherent AAEM species in biochar are known to be the catalyst for char gasification 

and participate in the gasification reaction.175 Coupled with increase in oxygen 

containing functional groups on biochar surface,175, 176 there is a possibility those 

AAEM species in the form that is water-insoluble to transform into water-soluble form 

thus increase in the overall recyclability of these AAEM species in biochar at a wider 

range of soil conditions. 

 

While partial steam gasification is a promising method for biochar tuning, basic 

characteristics of the tuned biochar such as its surface area and leaching of organic 

matters have to be understood. Application of biochar in soil will certainly affect the 

soil physical properties.177 For instance, surface area and pore size distribution can affect 

the amended soil microbial activity177 and water holding capacity (WHC). In addition, 

it is known that small amount organic matter can be leached from mallee biochar24 

which can be harmful to the environment. Although complete identification of these 

organic matters leached from biochar is not practical, at least basic nature of these 

compound have to be understood. 

 

The option to tune the properties of biochar from fast pyrolysis mallee biochar via partial 

stream gasification will be investigated in current and following chapter. This chapter 

will focuses on the evolution of biochar characteristics following partial gasification 

and the leaching of organic matter from raw and tuned biochar. Chapter 6 will 

emphasise on the leaching characteristics and recycling of inorganic nutrients in biochar. 

 

In this chapter, the raw biochars were prepared from fast pyrolysis of small particle 

mallee wood and leaf using drop-tube fixed-bed (DTFB) reactor system and large 

particle wood using fluidised-bed (FB) reactor system. The raw biochar were tuned via 

5% and 10% partial steam gasification. Then the properties of biochar such as char yield, 
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carbon content and surface area were analysed and discussed. To better understand the 

leaching of organic matter from biochar during soil application, the biochars were 

subjected to water and solvent (chloroform methanol mixture at 4:1 v/v ratio) washing. 

The total organic carbon (TOC) content of water leachate was quantified to determine 

the amount of organic matter leachable by water. Finally, the leachates from water and 

solvent washing of biochar were analysed using UV-florescence spectroscopy to study 

the leaching of aromatic compound from raw and tuned biochar. 

 

5.2 Char Yield and the Characteristics of Biochar from Secondary Pyrolysis 

and Partial Gasification  

 

Table 5.1 shows the proximate and ultimate analysis data for the raw biomass and 

biochars used in this chapter. Figure 5.1 shows the progression of steam gasification of 

three different biochars as percentage carbon conversion over time at 725 °C. The steam 

gasification was carried out at a mild temperature (725 °C) rather than 750 °C used in 

previous studies148, 154 to slow down the gasification process, especially the gasification 

of leaf biochar so that the conversion of the biochar could be controlled precisely.148, 154 

Compared to gasification of wood derived biochar, the gasification rate of leaf biochar 

(FLB-500-P) was highest followed by wood biochar prepared from FB (LWB-500-P) 

and lastly DTFB (FWB-500-P) system. This is due to the catalytic effect from high 

AAEM content in leaf biochar and slightly higher AAEM content in LWB-500-P 

biochar compared to FWB-500-P biochar as shown in Table 5.2. 
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Table 5.1: Proximate and ultimate analysis of the raw biomass and various biochars 
used in this study. The meaning of the sample labels are given as “XXX-DDD-YY”, in 
which XXX indicates the type of biochar, DDD is the processing temperature (°C) and 
YY indicate the conditions of biochar tuning via particle gasification. XXX can be FWB 
for fine wood biochar, FLB for fine leaf biochar, LWB for biochar produced from large 
particle wood, respectively. DDD can be either 500 for pyrolysis at 500 °C or 725 for 
re-pyrolysis or partial gasification at 725 °C. YY can be P for the raw fast-pyrolysis 
biochars, RP for the re-pyrolysed biochars, or 5%-PG and 10%-PG for tuned biochar 
after 5% and 10% partial gasification at 725 °C, respectively. 

Sample 

Moistu

rea 

(wt%) 

Proximate (wt%, 

db) 
 Ultimate (wt%, dafd) 

Ash VMb FCc  C H N S Oe 

Raw Biomass 

Wood 4.0 0.5 83.6 15.9  47.7 6.2 0.51 0.03 45.6 

Leaf 5.6 3.6 76.5 19.9  58.7 7.3 1.52 0.25 32.5 

Fine Wood Biochar 

FWB-500-P 3.4 3.0 21.3 75.7  85.1 2.6 0.44 0.02 11.9 

FWB-725-RP 3.8 3.5 16.9 79.5  89.6 0.9 0.44 0.02 9.1 

FWB-725-5%-PG 2.9 3.8 13.7 82.5  89.2 1.1 0.35 0.01 9.3 

FWB-725-10%-PG 2.8 4.0 12.5 83.5  89.2 1.5 0.16 0.01 9.2 

Fine Leaf Biochar 

FLB-500-P 4.6 14.4 31.3 54.3  82.9 2.2 2.09 0.08 12.9 

FLB-725-RP 6.7 16.2 20.0 63.8  88.7 0.2 1.93 0.08 9.1 

FLB-725-5%-PG 7.5 16.1 19.9 64.0  88.0 0.4 1.47 0.07 10.1 

FLB-725-10%-PG 6.9 16.5 21.4 62.1  85.7 0.5 1.30 0.07 12.5 

Large Wood Biochar 

LWB-500-P 3.6 4.5 23.0 72.5  87.3 2.6 0.32 0.03 9.8 

LWB-725-RP 3.2 5.1 13.4 81.5  87.3 1.3 0.29 0.03 11.1 

LWB-725-5%-PG 4.1 5.2 13.0 81.8  89.2 1.3 0.21 0.02 9.3 

LWB-725-10%-PG 3.1 5.5 13.2 81.3  88.7 0.9 0.14 0.02 10.3 
a wt% after air dried; b VM–volatile matter; c FC–fixed carbon; d daf–dry ash free; e by 

difference; 
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Figure 5.1: % carbon conversion as a function of gasification time for various biochars 
at 725°C 
 

The char yield of biochar from pyrolysis at 500 °C and biochar from subsequent re-

pyrolysis then partial steam gasification at 725 °C is shown in Figure 5.2. As expected, 

re-pyrolysis and gasification of biochar at a higher temperature cause the biochar to 

experience additional weight loss due to release of volatiles and conversion of some 

biochar into syngas. The magnitude of weight loss of these biochar is in the order of 

FWB-500-P > FLB-500-P > LWB-500-P derived biochar. The biochar produced from 

LWB-500-P experienced a higher weight lost during secondary pyrolysis and 

gasification compared to FWB-500-P derived biochar. This might due to the higher 

volatile content in LWB-500-P biochar as this biochar was produced from pyrolysis of 

larger particle size biomass. An increase in biomass feedstock particle size caused some 

of the volatile from pyrolysis to trap within biochar structure due to mass transfer 

limitation imposed by pyrolysis of large particle biochar. However, as the biochar was 

grounded to smaller particle size prior to secondary pyrolysis and steam gasification, 

these trapped volatile matters were released during treatment at an elevated temperature. 
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Table 5.2: Contents of inorganic species in biomass and various biochars, expressed as 

wt% on a dry basis. The meanings of the sample labels are given in the caption of Table 

5.1 

Sample 
Inorganic species 

Na K Mg Ca Cl 

Wood 0.024 0.066 0.033 0.128 0.015 

Leaf 0.550 0.336 0.159 0.748 0.158 

FWB-500-P 0.123 0.350 0.172 0.667 0.016 

FWB-725-RP 0.141 0.380 0.197 0.749 0.018 

FWB-725-5%-PG 0.129 0.412 0.203 0.806 0.014 

FWB-725-10%-PG 0.138 0.440 0.215 0.827 0.008 

FLB-500-P 2.054 1.187 0.587 2.794 0.543 

FLB-725-RP 2.053 1.326 0.634 3.126 0.506 

FLB-725-5%-PG 1.636 1.364 0.701 3.365 0.279 

FLB-725-10%-PG 1.679 1.407 0.704 3.421 0.253 

LWB-500-P 0.141 0.422 0.278 0.913 0.051 

LWB-725-RP 0.154 0.402 0.271 0.899 0.048 

LWB-725-5%-PG 0.131 0.461 0.315 1.052 0.036 

LWB-725-10%-PG 0.144 0.512 0.333 1.104 0.024 

 

In addition, the weight loss experienced during these processes also indicated the loss 

of carbon in biochar. Figure 5.2b shows the retention of carbon after secondary pyrolysis 

and 5% to 10% carbon conversion partial steam gasification. It is clear that biochar 

tuning via partial gasification comes at an appreciable cost, with losses of 8 – 23% of 

carbon available for sequestration. While only 75% of carbon is retained in leaf biochar 

following 10% partial steam gasification (FLB-725-10%-PG), the carbon retained in 

FWB-725-10%-PG and LWB-725-10%-PG biochars is at 88% and 80%, respectively. 

Lower carbon retention in leaf biochar is coincided with higher weight loss. Moreover, 

subsequent treatment of raw biochar also increases the ash content of the biochar due to 

accumulation of inorganic species as indicated in Table 5.2. Although, partial steam 

gasification generally resulted in biochar with higher inorganic species content, a slight 

decrease in Na content is observed which attributed to the volatilisation of Na during 
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gasification. This may result in ash-related issue in gasification system during large 

scale implementation. 

 
Figure 5.2: Weight and carbon retention of various biochars. (a) Char yield from 
pyrolysis and partial steam gasification normalised to biomass feedstock mass (wt% 
dry-basis). (b) Carbon retained in the tuned biochars, expressed as % of the total carbon 
in the respective raw biochar. The meanings of the sample labels are given in the caption 
of Table 5.1. 
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It should be noted that for the biochar to be stable and recalcitrant from degradation 

when applied to soil, the H/C and O/C molar ratios of biochar need to be below 0.6 and 

0.4, respectively.178-180 The Van Krevelen diagram in Figure 5.3 clearly shows the tuned 

biochars have the O/C molar ratio (~0.1) and H/C molar ratio (0.05–0.2), which are well 

below the threshold values, suggesting that the carbon in the tuned biochars will be 

stable. 

 
Figure 5.3: Van Krevelen diagram for the raw, re-pyrolysed and tuned (via partial 
gasification at 5% and 10% carbon conversions, respectively) biochars. The meanings 
of the sample labels are given in the caption of Table 5.1. 
 
 

5.3 Evolution of Biochar Surface Area 

 

Biochar porosity and surface area play important roles in amended soil WHC and 

bioactivity.177 Figure 5.4 presents the evolution of biochar surface area following partial 

steam gasification. The data clearly shows the dissimilarity between surface areas 

obtained N2 (BET N2 surface area) and CO2 (micropores surface area) adsorption 

isotherm. For raw biochar, the surface area obtained with CO2 adsorption isotherm is 
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higher compared to surface area obtained from N2 adsorption isotherm. This indicates 

that the surface area of raw biochar is dominantly contributed by narrow-micropores as 

the diffusion of N2 to these pores is kinetically restricted at liquid nitrogen temperature 

(77K).181, 182 The micropores surface area is within the range of 120 – 180 𝑚𝑚2/𝑔𝑔 while 

BET N2 surface area is less than 50 𝑚𝑚2/𝑔𝑔. Please note that the BET N2 surface area for 

biochar re-pyrolysis at 725°C is not presented as the BET surface area cannot be 

accurately determined due to the limited linearity of the N2 adsorption isotherm of these 

samples. Following secondary pyrolysis at 725 °C, the micropores surface area of all 

biochar increases by about 100 𝑚𝑚2/𝑔𝑔 . This shows significant development of 

micropores in biochar structure during pyrolysis. On the other hand, there is no 

significant change in micropores surface area in wood biochar during partial steam 

gasification. The micropores surface area between 5% and 10% partial steam gasified 

wood char is relatively close. Leaf component derived biochar on the contrary, 

experience a sizable increase in micropore surface area at 5% conversion while further 

gasification of the leaf biochar does not contribute to significant increase in micropore 

surface area.  
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Figure 5.4: Surface area of various biochars: (a) BET surface area, determined via N2 
adsorption at 77K using BET Method (b) micropore surface area, determined via CO2 
adsorption at 273K using D-R Method. FWB, FLB and LWB stand for fine wood 
biochar, fine leaf biochar and large wood biochar, respectively. “500-P” indicates raw 
biochars, “725-RP” indicates repyrolysed biochar while “725-5%-PG” or “725-10%-
PG” indicate tuned biochars via partial gasification at 5% and 10% conversions, 
respectively. 
 

Although further partial steam gasification does not lead to further increase in 

micropores surface area, partial steam gasification at higher conversion lead to 

significant increase in BET N2 specific surface area, coincide with the finding in the 

previous study on steam gasification of slow pyrolysis mallee biochars.154 A substantial 

increase in BET N2 specific surface area while micropores surface area is relatively 

unchanged can point towards two possible explanations. 1) Steam gasification leads to 
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enlargement of existing micropores into mesopores and macropores while new 

micropores continue to form as no reduction in micropores surface area is observed 

during steam gasification at the carbon conversions studied.183 2) Pyrolysis at higher 

temperatures often results in melting of initial biochar structure184 and more pronounce 

secondary reaction72 which might cause the formation of secondary char within 

micropores. These can result in partial blockage of micropores. Steam gasification at 

low conversion might lead to removal of carbon deposits which restrict the penetration 

of N2 into micropores.185 However, while gasification might lead to opening of partially 

blocked pore, formation or larger pores during partial steam gasification at 5% and 10% 

might be a dominant process as BET N2 surface area is significantly higher compared 

to micropores surface area of partial gasified biochar with the exception of FLB-725-

5%-PG biochar. 

 

In addition, the data also show that the surface area of biochar produced from large 

biomass particles (LWB-500-P) is lower compared to the biochar produced from small 

biomass particles (FWB-500-P). This suggests that effect of feedstock particle size on 

the structure of the resultant biochars. This is because the heat- and mass-transfer 

limitations arising from the fast pyrolysis of large biomass particles might lead to 

slowed devolatilisation of the biomass core186 and thus, a reduction in surface area. 

 

5.4 The Lechability of Carbon from Treated biochar 

 

Figure 5.5 shows that some organic matter was leached from the raw biochar and tuned 

biochars. Similar to biochar produced from slow pyrolysis,24 the amount of organic 

matter leachable via water in these biochars is <1.5% (on a carbon basis), demonstrates 

the recalcitrant nature of carbon in biochar. The organic matter leached from biochar 

might be due to the removal of the polar component of pyrolytic product retained on 

biochar during pyrolysis. A recent study by Lin and co-workers187 characterised the 

organic matter leached from biochar prepared at temperature ranging between 380°C 

and 600°C indicates that these organic matter are mainly low molecular weight protic 

organic acids, alcohol, ketone, aldehyde and sugar. 
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Figure 5.5: Leachability of organic matter leachable from the raw and tuned biochars 
via water, normalised to the total carbon contents in the respective biochars. The 
meanings of the sample labels are given in the caption of Table 5.1. 
 

It is important to note that the raw biochars prepared from fast pyrolysis (at 500 °C), 

the tuned biochars (particularly for FWB-725-RP and FLB-725-RP biochars) after the 

re-pyrolysis of the raw biochars at 725 °C reduces the amount of leachable organic 

matter to below the quantification limit of our method (0.06% of C in biochar). This is 

plausible because re-pyrolysis at a higher temperature might result in the cracking of 

heavy tars in raw biochar188 and/or the release of at least some organic matter on biochar 

surface. However, there is no reduction of the amount water-soluble organic matter in 

LWB-725-RP biochar, probably due to difference characteristics of the organic matter 

present in LWB-500-P biochar as it was prepared from large particle feedstock in 

fluidised bed reactor.  It is interesting to note that after partial gasification at low 

conversions, there are actually significant amount of organic matter leached from the 

tuned biochars. The data clearly demonstrate that there are leachable organic matter 

locked in at least part of the pore system within the biochars and such organic matter is 
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inaccessible to leaching medium as that part of the pore system is either closed or 

blocked (e.g. by carbon deposition during pyrolysis). Partial gasification opens these 

closed/blocked pore systems so that the locked organic matter becomes accessible. In 

addition, partial gasification leads to the formation of larger pores such as macropore 

and mesopore181 which also act as transport system for leaching. 

 
 

Figure 5.6: Leaching kinetics of organic matter (on a carbon basis) from the raw and 
tuned biochars. Panel (a) fine wood biochars, (b) fine Leaf biochars and (c) large 
wood biochars. The meanings of the sample labels are given in the caption of Table 
5.1. 
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Figure 5.6 presents the leaching profile of organic matters from the biochars studied. 

Compared to leaf biochar, the leaching wood biochars (except LWB-725-5%-PG) 

achieves equilibrium within 2 days. Leaf biochars on the other hand, require 4 to 6 days 

for the leaching process to reach equilibrium. While the leaching of the organic matter 

from biochars might require up to 6 days to reach equilibrium, >70% of the leachable 

amount is removed during first days of leaching. This further supports that the leachable 

organic matters in these biochars are mainly consisted of low molecular weight 

compounds with fair solubility in water. The difference in leaching equilibrium time 

between wood and leaf biochar is probably due to the dissimilarities in their organic 

matter characteristics.  

 

5.5 Leaching of Aromatic Compounds 

 

Aromatic compounds such as polyaromatic hydrocarbons (PAH) are known to be 

present in biochar.189 The leaching of aromatic compounds from biochar during soil 

application may result in undesirable environmental impact. Therefore, the raw and 

tuned biochars were leached with chloroform methanol mixture (4:1 v/v) for 24 hours 

for characterisation of leachable aromatic compound. The UV-fluorescence 

synchronous spectra of the resultant leachate are presented in Figure 5.7. The spectra 

show raw biochar contain solvent leachable aromatic compound. The maxima centred 

at ~350 nm for the spectra of raw fine wood (FWB-500-P) and leaf (FWB-500-P) 

biochar indicates the leaching of 2-3 fused rings aromatic compounds while the maxima 

centred at ~390 nm for the spectrum of large wood (LWB-500-P) biochar indicate the 

leaching of larger 3-5 fused rings aromatic compounds. The higher intensity in the raw 

fine leaf biochar and large wood biochar spectra suggest higher amount of aromatic 

compounds can be leached from these biochars compared to raw fine wood biochar. 

However, no leaching of aromatic compound in the re-pyrolysed and tuned biochar is 

detected. It is also noted that UV spectra of the leachates collected from the leaching of 

turned biochars using water showed the absence of aromatic compounds. The absence 

of these aromatic compounds suggests that those aromatic compounds were mostly 

likely depolymerised or cracked during re-pyrolysis or partial gasification (as results of 
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more intense reactions at higher temperature188). In addition, it is known that steam 

gasification can lead to selective removal of smaller and reactive components within 

biochar at low conversions, resulting in the tuned biochars with a stable and highly-

aromatic structure.154 Therefore, partial gasification at low conversions tunes the raw 

biochar to be virtually free of leachable aromatic compounds. 

 

 
Figure 5.7: UV/Fluorescence spectrums of Methanol/Chloroform wash solution 
normalised to per g of biochar (dry-basis). The wavelength of the spectra shown is the 
wavelength of the excitation monochromator. Penal (a) shows the spectra for raw 
biohcar, (b) biochar after re-pyrolysis, (c) 5% gasification biochar and (d) 10% 
gasification biochar. 
 

5.6 Further Discussion and Practical Implications 

 

Tuning biochar via partial gasification also leads to positive changes in the pore 

structure of biochar, with several practical implications. First, it is known that biochar 

porosity and surface area play important roles in amended soil water holding capacity 
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and bioactivity177 and a surface area of > 150 m2/g has been recommended and 

considered as preferable for good performance in soil.178, 179 The results in this study 

show that partial gasification at low conversions can tune the biochar structure to have 

surface area significantly larger than 150 m2/g. Second, it was postulated that soil 

microbes activity is unlikely to benefits from addition of biochar with micropore (<2 

nm) as these pores is inaccessible by most bacteria and fungi190, 191 (with sizes of 0.5 – 

5 µm192). The results in this study show that tuning via partial gasification leads to the 

formation of larger pores in tuned biochars (hence potentially providing more habitat 

for soil microbes and protect them from their gazers177). Third, Biochar with a large 

surface area and rich in macropore with pore diameter >50 nm are known to potentially 

have high water holding capacity.193 The higher surface area and formation of large 

pores in tuned mallee biochars (via partial gasification reported in this chapter) can bring 

significant benefits when the tuned biochars are applied to soil. This is of great 

importance and highly desired to the sandy soil (abundant in the agriculture land in 

Western Australia194) which suffers from low water holding capacity due to its low 

surface area.192  

 

A small amount (<1.5% on carbon basis) of organic matter can be leached from raw and 

tuned biochar. With the typical application rate of biochar at 5 to 50 t/ha195 and >70% 

of water leachable organic matter leached within a day, large quantity or organic matter 

will leach to soil. This can also lead to potential contamination to local water way and 

ground water. Therefore, it is important to access the quantity of water leachable organic 

matter in biochar intended for soil application. Strategic application should also be 

employed for biochar with high water leachable organic matter. Although some organic 

matter can be leached from biochar tuned with partial steam gasification, UV-

fluorescence study demonstrates that there is no detectable aromatic compounds 

leachable via water and organic solvent. This clearly demonstrates that partial steam 

gasification fast pyrolysis mallee biochar has little or no aromatic compounds such as 

polyaromtic hydrocarbons (PAHs). 
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5.7 Conclusion 

 

This study investigates the evolution of the characteristics and leaching of organic 

matter from mallee biochars tuned via partial steam gasification at low carbon 

conversion of 5% and 10%. Tuning of biochar via partial steam gasification causes a 

loss of up to 25% of carbon available for sequestration in raw biochar. However, the 

remaining carbon is postulated to be stable with the H/C ratio and O/C ratio of these 

biochars well below 0.6 and 0.4 respectively. While raw biochar is dominantly 

microporous, partial steam gasification leads to significant increase in surface area and 

formation of larger pore structure owing to enlargement of micropores and opening of 

partially blocked pores. Partial steam gasification does not remove water leachable 

organic matters from biochar while secondary pyrolysis generally reduces them to 

below detection limit. However, only <1.5% of organic matter on carbon basis can be 

leached from raw and tuned biochar. The leaching of organic matters in tuned biochar 

is possibly due to the increase in accessibility of water leachable organic matter within 

biochar. UV-fluorescence spectroscopy study of water and organic solvent leachates 

demonstrate that partial steam gasification is able to produce tuned fast pyrolysis mallee 

biochar with little or no leachable aromatic compound thus reduce the risk of possible 

contamination from aromatic compounds such as PAHs during soil application. The 

results further show this tuning method can produce mallee biochar with characteristics 

that will improves its performance in soil such as promoting soil microbial activity and 

improving soil water holding capacity. High application rate of biochar in soil should 

proceed with care due leaching of organic matter from biochar. 
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Chapter 6: Tuning Biochar Properties via Partial Gasification: 

Leaching Characteristics and Recycling of Inorganic Nutrients 
 

 

 
 

6.1 Introduction 
 

In the effort to reduce greenhouse gases emission related to energy generation, 

increasing number of countries are moving toward increasing the contribution of 

renewable energy in their country energy mix. This consequently led to a growing 

interest in utilisation of biomass for energy. Unlike fossil fuels, combustion of biomass 

or its derived biofuels is relatively carbon neutral as the carbon dioxide released will be 

reabsorbed by plant during its growth.196  

 

The literature review in Section 2.2 shows that mallee biomass is postulated to be a 

promising bioenergy feedstock due to its potential for large scale and near carbon 

neutral production.9, 10, 40 Recent studies also showed that pyrolysis of mallee biomass 

can produce biochar and bio-slurry suitable as a fuel.12, 14, 15, 67, 140 Fast pyrolysis can 

also be employed for production of bio-oil. While bio-oil can be processed into 

transportation fuels,197  the biochar produced can be applied to soil and delivered 

numerous agronomical25, 82, 125, 155, 198, 199 and environmental benefits.25, 79, 80 In addition, 

majority of the plant nutrient species such as alkali and alkaline earth metallic (AAEM) 

species mainly Na, K, Mg and Ca adsorbed by plant during its growth is retained in 

biochar.24, 137 Applying biochar to soil can potentially return part of these plant nutrients 

to soil27 thus improves the sustainability of biomass pyrolysis process.    

 

Earlier study on overall recycling of AAEM species in fast pyrolysis mallee biochar 

demonstrated that while overall recycling based on Mehlich-1 leaching is high, a 

significant portion of Mg and Ca are water-insoluble.27 Furthermore, Mg and Ca account 

for at least half of AAEM species in biomass by weight and are important plant nutrients. 

Page 96 
 

 



CHAPTER 6 
 
 

The limited water solubility of these species signifies that much of these AAEM species 

might not available to plant under certain soil condition.  

 

However, the recovery of Mg and Ca from fast pyrolysis mallee biochar can be 

improved by tuning the biochar via partial steam gasification. The development of 

highly porous structure154 during gasification might expose the AAEM species trapped 

in biochars structure that render them inaccessible by water. As biochars AAEM species 

are known as catalyst and take part in catalytic gasification reaction,175 partial steam 

gasification can potentially transform part of these water-insoluble Mg and Ca into 

water-soluble form.  

 

As discussed in Chapter 5, fast pyrolysis biochar tuned via partial steam gasification at 

carbon conversion of 5% and 10% have desirable characteristics for a good biochar 

performance in soil. Moreover, the amount of water leachable organic species is <1.5% 

and no detectable aromatic compound is leachable via water or organic solvent. In this 

chapter, the effect of partial steam gasification on the leachability and overall 

recyclability of AAEM species in various fast pyrolysis biochars will be investigated. 

The raw biochars are prepared from fast pyrolysis of small particle mallee wood and 

leaf using drop-tube fixed-bed (DTFB) reactor system and large particle wood using 

fluidised-bed (FB) reactor system. The raw biochar will be tuned via re-pyrolysis, 5% 

and 10% partial steam gasification. The leachability of AAEM species in biochar will 

be accessed via batch leaching with water and Mehlich-1 solution. Lastly, the overall 

recyclability between raw and partial steam gasified biochars will be compared.  
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6.2 AAEM Retention in Biochar 

 
Figure 6.1: Retention of inorganic nutrients species in the tuned biochars, normalised 
to the total respective nutrients species in the raw biochars. The meanings of the 
sample labels are given in the caption of Table 5.1. 
 

Figure 6.1 shows the retention of AAEM species in biochars compared to its content in 

raw biochars. At least 88% of K, Mg and Ca and more than 80% of Na in wood biochar 

are retained during re-pyrolysis then partial gasification. However, the retention of Na 

in partial steam gasified leaf biochar can be as low as ~66% which indicates significant 

volatilisation of Na during gasification reaction. The release of Na during re-pyrolysis 

of the FLB-500-P biochar is slightly higher compared to wood biochars (FWB-500-P and 

LWB-500-P) produced from both reactor configurations possibly due more intense 
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volatile-char interaction.138 Similar trend is also observed during fast pyrolysis of bark 

with DTFB system where significantly higher amount of Na is volatilised compared to 

K, Mg and Ca. Higher volatile matter content in FLB-500-P biochar and comparatively 

significant reduction of volatile matter between FLB-500-P and FLB-725-RP biochar 

both suggest that more volatile is released during the re-pyrolysis and steam gasification 

of 500LC biochar. In addition, Na content FLB-500-P biochar is comparatively higher 

(see Table 5.2 in chapter 5). Coupled with a forced gas flow through the thin char bed, 

this might result in the significant losses of Na.135, 200 The volatilisation of Mg and Ca 

is insignificant due to their higher atomic mass and divalent nature.201 Furthermore, the 

majority of Mg and Ca in fast pyrolysis biochar are water insoluble24, 27 which indicates 

that a large portion of these species is organically bounded to char matrix. Two bonds 

have to be broken before the alkaline earth metallic species can be released from char 

matrix and volatilised during gasification. While K is not a divalent species, the 

volatilisation of K is insignificant possibly due its more pronounced intercalating 

properties compared to Na.202  

 
Table 6.1: Chlorine content in biomass and raw biochars as % wt in dry basis. The 

data is extracted from Table 5.2 of Chapter 5 

Sample Chlorine Content (% wt db) 

Wood 0.0146 

Leaf 0.1576 

FWB-500-P 0.0159 

FLB-500-P 0.5427 

LWB-500-P 0.0512 

 

In addition to high retention of AAEM species, considerable amount of Cl is retained in 

fast pyrolysis wood biochar as shown in Table 6.1 while most of the Cl in wood biochar 

prepared from slow pyrolysis is not detectable.24 Furthermore, the Cl content of raw leaf 

biochar is also higher compared to that prepared from slow pyrolysis.24 Higher Cl 

retention in biomass prepared from fast pyrolysis is resulted from prolonged volatile-

char interaction, causing the Cl released as volatile to recombine with nascent char as 

pointed out by Rahim and co-worker.137 Moreover, the chlorine retained in wood 
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biochar prepared from fluidised-bed reactor (FB) is lower compared to that prepared 

from drop-tube/fixed-bed (DTFB). This might due to less significant volatile-char 

interaction as higher gas flow rate required for fluidisation of bed material greatly 

reduced the residence time of volatile in the reactor thus reduction in Cl retention. 

 

6.3 The Lechability of AAEM Species in Raw and Treated Biochar 

 

Figure 6.2 presents the data on the leachability of inorganic nutrient species by water or 

Mehlich I medium. It can be seen that over 70% of Na and K in the raw biochars are 

water leachable and similar amount of Na and K are observed to be leached by Mehlich 

I medium. This suggests that in the raw biochar, water leaching can recycle close to 100% 

of the total plant available Na and K in the raw biochar. However, less than 30% of Mg 

and Ca are water leachable from the raw biochar while close to 50% and 90% of Mg 

and Ca in the raw char can be leached by Mehlich I medium, respectively. Therefore, 

water leaching can only recycle less than less than 60% and 30% of the total plant 

available Mg and Ca in the raw biochars, respectively. 
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Figure 6.2: Leachability of inorganic nutrients species in the raw and tuned biochars 
via (a-d) water (e-h) Mehlich I solution. The meanings of the sample labels are given 
in the caption of Table 5.1. 
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The most important finding in Figure 6.2 is that partial gasification at low carbon 

conversions (5% and 10%) can have significant effect on the leachability of inorganic 

nutrients in the biochars. For water leaching, there are potentially substantial increases 

in the amount of water leachable Mg and/or Ca in biochars. For example, the water 

leachable Mg in tuned fine (FWB) and large (LWB) wood biochar almost quadrupled 

(from ~16% to 60%) after 10% gasification and the water leachable Ca increases from 

~30% to ~60%. However, the trend for Mg in leaf biochars (FLB) following partial 

gasification is not clear. The partial gasification process also brought the amount of 

water-soluble Na and K to ~100%. It is clear that partial gasification of the raw biochar 

can facilitate the recovery of inorganic nutrient species from biochars prepared from 

fast pyrolysis. For Mehlich I medium leaching, partial gasification can also significantly 

increase the total plant available Mg and Ca. For example, the total plant available Mg 

in fine and large wood biochar increases from ~15% to ~65% while it increase from 46% 

to 74% for fine leaf biochar. The plant available Ca in both fine and large wood biochar 

increases from ~30% to ~75%. The increases in the leachability (by water or Mehlich I 

solution) of inorganic nutrients as results of partial gasification may be attributed to at 

least two reasons. One is that partial gasification opens the closed or blocked micropore 

and also enlarges micropore due to the gas-solid reactions as aforementioned. Therefore, 

the inorganic nutrient species which was encapsulated in the char structure during fast 

pyrolysis27, 184 and inaccessible would have become accessible by the leaching medium. 

The other is that the gasification reactions may have changed some of the inorganic 

nutrient species in biochars to more leachable chemical forms.175   

 

It is further noted in Figure 6.2 that there is a noticeable difference in water-soluble and 

total plant available (Mehlich I extracted) Na and K between the FWB-500-P and LWB-

500-P biochars. This is likely due to the differences in the conditions for biochar 

preparation. LWB-500-P was prepared from large wood particles in a fluidised-bed (FB) 

reactor while FWB-500-P was prepared from fine wood particles in a drop-tube/fixed-

bed (DTFB) reactor. During pyrolysis, the mass transfer resistance for the volatiles 

within the pyrolysing large wood particles promotes the secondary reactions of volatiles 

within the particles. These result in more carbon deposition within the micropore hence 
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more encapsulation of inorganic nutrients species in the blocked pores.27, 72  The data in 

Figure 6.2 show that grinding the LWB-500-P biochar particles into fines then followed 

up by biochar tuning via partial gasification can improve the leachability of inorganic 

nutrient species. It can be seen that the water soluble Na and K in LWB-500-P biochar 

increase from ~72% and ~88% to ~93% and ~103%, respectively while all Na and K 

become leachable in the Mehlich I solution medium.  

 

The leachability of chlorine from the raw and tuned biochars by water is presented in 

Figure 6.3. Please note that the data on chlorine leached by the Mehlich I solution 

medium are not available because the Mehlich I solution itself contains chlorine. It can 

be seen that while all the chlorine in biomass is water soluble,203 ~80% of the chlorine 

in raw biochar is water soluble. This is consistent with the previous report that during 

pyrolysis, a proportion of chlorine bound to biochar is transformed into water-insoluble 

form.137 Furthermore, re-pyrolysis and partial gasification has an insignificant effect on 

the distribution of water-soluble chlorine in biochar.  

 
Figure 6.3 Leachability of chlorine in raw and tuned biochar via water. The meanings 

of the sample labels are given in the caption of Table 5.1. 
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6.4 Leaching Kinetic and Kinetic Model 

 

Figure 6.4 shows the leaching kinetic of inorganic matter from the raw and tuned 

biochars. The experimental data was then fitted to the pseudo-second order kinetic 

model, with the values of the fitted parameters tabulated in Table 6.2. It can be seen that 

the r2 of the data fitting are all above 0.98, suggesting that the pseudo-second order 

kinetic model is suitable to describe the leaching kinetics of inorganic nutrient species 

and organic carbon from the raw and tuned biochars. The data in Table 6.2 further shows 

that partial gasification generally increases the overall leaching rate constant and the 

initial leaching rate. This is reflected by the fact that, in Figure 6.4 there is a sharp 

increase in the leaching of inorganic nutrient species from tuned biochars within the 

first 2 days of the 28-day leaching period. Therefore, partial gasification enhances not 

only the recycling but also leaching kinetics of the inherent inorganic nutrients in the 

biochars. This is a desired but expected outcome, due to at least two reasons. One reason 

is that partial gasification leads to the formation and enlargement of the pore system and 

the opening of closed/blocked pores, as discussed in Chapter 5. This tunes the raw 

biochar into a highly porous tuned biochar with a high surface area. Such porous 

structure of the tuned biochar reduces the intra-particle mass-transfer resistance of the 

inorganic nutrient species during leaching. A higher surface area in the tuned biochar 

also promotes the ionisation or dissolution of the inorganic nutrient species due to the 

increased exposures of these species to the leaching medium. The other reason is that 

partial gasification has changed the occurrence forms of the inorganic nutrient species 

within the tuned biochar. For example, at least part of Mg and Ca have been transformed 

from water insoluble form into water soluble form and become water leachable. 
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Table 6.2: Kinetic parameters for water leaching of various biochars. In the table, k is overall leaching rate (unit: L mg-1 day-1) and h is 

initial leaching rate (unit: L mg-1 day-1) at time close to 0 while r2 is the goodness of fit from kinetic parameter fitting. The meanings 

of the sample labels are given in the caption of Table 5.1. 

Samples 

Kinetic parameter for each element 

Na K Mg Ca 

k h r2 k H r2 k h r2 k h r2 

FWB-500-P 0.711 0.864 0.998 0.523 6.022 0.999 3.470 0.239 0.991 0.757 2.803 0.995 

FWB-725-RP 1.073 0.783 0.990 0.694 9.248 0.998 4.098 0.194 0.994 1.502 8.372 0.998 

FWB-725-5%-PG 3.418 3.948 0.998 6.494 98.230 0.999 14.702 4.111 0.999 3.339 30.613 0.999 

FWB-725-10%-PG 5.601 8.550 0.999 16.856 299.100 0.999 5.183 7.201 0.999 1.390 30.681 0.999 

FLB-500-P 0.113 32.482 0.998 0.241 23.242 0.998 0.512 1.043 0.990 0.824 17.709 0.998 

FLB-725-RP 0.112 30.687 0.998 0.280 40.782 0.999 5.843 3.065 0.997 0.745 67.241 0.999 

FLB-725-5%-PG 0.396 80.421 0.999 1.107 163.950 1.000 39.997 57.570 0.998 0.284 9.004 0.993 

FLB-725-10%-PG 0.836 200.360 1.000 2.032 404.510 1.000 1.482 0.5881 0.971 26.163 6775.501 0.999 

LWB-500-P 0.397 0.391 0.984 0.161 2.161 0.995 0.488 0.104 0.990 0.095 0.717 0.986 

LWB-725-RP 0.296 0.283 0.990 0.574 10.366 0.999 1.408 0.268 0.993 0.443 5.185 0.994 

LWB-725-5%-PG 3.255 3.786 0.999 4.398 87.680 0.999 4.028 3.989 0.999 0.646 13.275 0.998 

LWB-725-10%-PG 14.287 24.479 0.999 38.902 1059.0 0.999 1.7313 6.343 0.999 0.930 33.231 0.999 
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Figure 6.4: Leaching kinetics of inorganic nutrient species from various biochars. Panel 
(a-e) for fine wood biochars(FWB), (f-j) for fine Leaf biochars(FLB) and (k-o) for large 
wood biochars(LWB). “500-P” indicates raw biochars, “725-RP” indicates repyrolysed 
biochar while “725-5%-PG” or “725-10%-PG” indicate tuned biochars via partial 
gasification at 5% and 10% conversions, respectively. 
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6.5 Further Discussions 

 

The results presented so far show that K (and Na) in the raw biochar prepared by 

biomass pyrolysis at 500 °C is generally plant available and its recycling can be 

achievable via water leaching while the plant availability and recyclability of the 

inherent Mg and Ca in the raw biochars are poor (see Figure 6.2). It can further be seen 

in Table 5.2 (on page 84) that Mg and Ca accounted for more than 65% and 50% of the 

total major inorganic nutrient species in the raw wood and leaf biochars, respectively. 

K, Mg and Ca are crucial to plant growth.194, 204, 205 The poor plant availability of Mg 

and Ca translate to only ~50% of the all major inorganic nutrient species (Na, K, Ca, 

Mg and Cl) in the raw biochar can be returned during the direct soil application of the 

raw biochars. 

 

 
Figure 6.5: Overall recyclability of inorganic nutrient species in the raw and tuned 
biochars (measured via leaching by Mehlich I solution), normalised to the respective 
total inorganic nutrient species in the initial biomass materials. The meanings of the 
sample labels are given in the caption of Table 5.1. 
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The results presented so far also show that tuning the raw biochars via partial 

gasification can potentially increase the plant availability of the inorganic nutrient 

species in the biochars substantially. To further illustrate and evaluate the overall 

recyclability of the inorganic nutrient species in the raw and tuned biochars, the amounts 

of plant available inorganic nutrient species (measured via Mehlich I solution leaching) 

in various biochars are normalised to those present in the raw biomass materials. As 

shown in Figure 6.5, partial gasification at low conversions can be a good strategy for 

tuning biochar because it clearly enhances the overall recyclability of inorganic nutrient 

species, particularly Mg and Ca. The overall recyclability of Na is low after tuning via 

partial gasification due to the release of Na during gasification. This is not a concern 

because in Western Australia, mallee is planted in agricultural land for managing 

dryland salinity and there are over supply of Na (in the form of NaCl salt205).  

 

There are also several important considerations in choosing the process parameters of 

partial gasification for tuning biochars structure and facilitating inorganic nutrients 

recycling. There are mainly three parameters of consideration, i.e. conversion, 

temperature and particle size. The first important consideration is biochar conversion 

during tuning via partial gasification. To make the tuning strategy meaningful and 

practically useful, it is critical to achieve the desired structural tuning with minimised 

weight loss of the biochar which would be subsequently returned to soil for carbon 

sequestration and minimised losses of inherent inorganic nutrients. Therefore, the 

gasification should be done at low conversions and the data in this study show that 5-

10% conversion is sufficient. A too low conversion may not achieve the desired 

objectives of tuning while a too high conversion leads to significant loss of carbon which 

would be otherwise available for sequestration. The second important parameter is the 

choice of a suitable gasification temperature, considering a balance among processing 

time, energy consumption and potential loss of useful inorganic nutrient species. At a 

too low temperature, gasification reaction is slow, the process would benefit from a low 

energy input, favourable retention of inorganic nutrient species in the tuned biochar and 

good process controllability but suffer from a prolonged tuning time. However, at a too 

high temperature, gasification reaction is fast, the process benefits from a fast tuning 
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time but it becomes difficult to control, demands high energy input and suffers from 

potential release of useful inorganic nutrients species during the tuning process. 

Therefore, the application of partial gasification for tuning biochars is recommended to 

be done at low conversions (below 10%) and a suitable temperature. The third and last 

consideration is particle size. Gasification of small biochar particles can be significantly 

faster than that of large biochar particles as small particles reduce intraparticle mass-

transfer limitations and provide considerably more surface area available for 

gasification reactions.206 It is known that while the grindability of mallee biomass is 

poor, the biochar produced from biomass pyrolysis has excellent grindability so that 

size reduction of biochar (instead of biomass) is favoured.12 It was also reported that 

direct leaching of inorganic nutrients species from large biochar particles are slow due 

to intraparticle mass transfer limitations.27 Therefore, the results in this study show that 

for tuning purpose, the biochar produced from the pyrolysis large biomass particles can 

be firstly ground into small particles, followed by partial gasification for tuning. This 

leads to not only a fast process for biochar tuning but also improved leaching kinetics 

of tuned biochar. Of course, care should be taken during biochar size reduction because 

extensive grinding leads to the ground biochar containing increased contents of fine 

particulate matter which can remain airborne for significant period of time during soil 

application and poses potential health risk to workers and neighbouring environment.207   

 

6.6 Conclusion 

 

The study in this chapter demonstrate that the volatilisation of AAEM species in biochar 

when tuned via partial steam gasification is minimal with exception for leaf biochar 

where the retention of Na is as low as ~66%. Biochar produced from 500 °C fast 

pyrolysis of biomass generally has a low fraction of water and Mehlich-1 solution 

leachable Mg and Ca. This result in approximately half of AAEM species in biochar is 

recovered through water leaching. This study demonstrates that partial steam 

gasification at low carbon conversions (e.g. 5% and 10%) and mild temperature (725 °C) 

can greatly improve the amount of water and Mehlich-1 solution leachable AAEM 

species and consequently more AAEM species can be recycled to the soil during soil 
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amendment application. This effectively boosted the total plant available AAEM 

species in wood biochar and leaf biochar to about 85% and 96%, respectively. The 

increment in leachability of AAEM in biochar can be attributed to two main factors, (1) 

the development of pore structure and (2) transformation of the occurrence of biochar 

inherent AAEM species during partial steam gasification from the form that bonded to 

char matrix to the forms that are soluble in water or dilute acid solution. These factors 

also result in increase of overall and initial AAEM species leaching rate. The overall 

AAEM species recycling demonstrate that partial gasification can be employed to 

minimise the loss of AAEM species in biomass utilisation cycle and thus the 

sustainability of biomass pyrolysis process. Furthermore, partial steam gasification of 

grounded fast pyrolysis biochar produced from large particle wood also increases the 

overall recycling of AAEM species and enhances leaching kinetic compared to its raw 

biochar.  
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Chapter 7: Leaching of Biomass Water-Insoluble Metallic Species 

under Hot-Compressed Water Conditions 
 

 
 

 

7.1 Introduction 

 

Utilisation of fossil fuels for energy generation results in significant release of CO2 to 

the atmosphere, accounting for 69% of the total greenhouse gases emitted in 2010.208 

Therefore, the government in develop and developing countries are moving toward 

replacing fossil fuels with carbon-neutral and renewable fuel209 such as bioethanol.210 

However, majority of bioethanol in US and Brazil is produced from corn and 

sugarcane83, 84 while wheat, sorghum and molasses are the feedstock for bioethanol in 

Australia.84 Yet, the production of bioethanol from food crops at the scale that can 

replace significant amount of fossil fuels use can result in competition of land use for 

food production36, creating food/fuel dilemma. Hence, the production at such scale is 

only sustainable with lignocellulose biomass as feedstock.45 

 

Biomass hydrolysis in hot-compressed water (HCW) for the liberation of fermentable 

sugars has been extensively studied,90, 100, 143 but little attention is paid on the leaching 

of alkali and alkaline earth metallic (AAEM) species from biomass during hydrolysis 

process29, 30, 144, 145. Lignocellulosic biomass such as mallee can have high contents of 

AAEM species depending on the biomass component (wood, leaf and bark)24. The 

removal of these AAEM species might potentially catalyse the decomposition of sugar 

products into other secondary products during hydrolysis in HCW,146, 147, 211 thus 

reduction of fermentable sugars. As majority of Na and K in mallee biomass is water 

soluble (see Chapter 4), simple water washing is able to remove these alkali metallic 

species. However, only a small amount of Mg and Ca are water soluble (see Chapter 4). 

Therefore, it is important to understand the leaching characteristics of these water-

insoluble Mg and Ca during biomass hydrolysis under HCW conditions.   
Page 111 

 
 



CHAPTER 7 
 
 

In this study, the leaching characteristics of AAEM species and degradation of lignin, 

cellulose and hemicellulose in mallee wood will be investigated. The hydrolysis will be 

carried out at 150 - 270 °C to understand the leaching behaviour of AAEM species and 

decomposition of lignin, cellulose and hemicellulose in biomass at different 

temperatures. As lignin, hemicellulose and lignin start to decompose at different 

temperatures, this study will provide an insight to the occurrence of organically bounded 

AAEM species in biomass.  

 

7.2 Leaching of AAEM Species during Biomass Conversion in HCW 

 

Before mallee wood is hydrolysed in HCW, the biomass was washed at room 

temperature for 30 minutes to remove water-soluble AAEM species from biomass. 

Figure 7.1 shows almost 90% of Na and K in mallee wood are water soluble while the 

amount of water-soluble Mg and Ca are low. Only ~21% of Mg and ~14% of Ca in 

mallee wood are water soluble. The remaining AAEM species in mallee wood is mainly 

organically bounded and leachable via dilute acid (see chapter 4). In addition, small 

amount of organic matters (~2% in carbon basis) were also leached from biomass at 

room temperature. The removal of this organic matter can be associated with the 

leaching of extractive in biomass.  

 

Table 7.1: Proximate and ultimate analysis of mallee wood sample 

Moisturea 

(wt%) 

Proximate (wt%, db)  Ultimate (wt%, dafd) 

Ash VMb FCc  C H N S Oe 

4.0 0.5 83.6 15.9  47.7 6.2 0.51 0.03 45.6 
a wt% after air dried; b VM–volatile matter; c FC–fixed carbon; d daf–dry ash free; e by difference; 
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Table 7.2: Saccharides and inorganic species content (wt% in dry basis) of mallee wood 

used in this study. 

Saccharides content (wt%, db)  
Inorganic species content 

(wt%, db) 

Arabinan Galactan Glucan Xylan Manan  Na K Mg Ca 

1.06 2.21 40.66 17.95 0.38  0.024 0.066 0.033 0.128 

 

 
Figure 7.1: Organic matter (on a carbon basis) and AAEM species leached by water 
from mallee wood at room temperature, expressed as % of the total of those in 
biomass, respectively. 
 

However, these water-insoluble alkaline earth species can be leached from biomass 

during hydrolysis in HCW. The leaching profile of Mg and Ca under HCW conditions 

is presented in Figure 7.2. About 90% of the total Mg and ~95% of the total Ca in 

biomass can be recovered. Due to majority of Na and K are removed during leaching at 

room temperature, the amount of Na and K leached at high temperature cannot be 

accurately quantified and therefore not reported in this study. At 150 °C, the leaching 

of Mg and Ca remained in biomass occurs slowly spanning throughout 70 minutes of 

the reaction time. When the reaction temperature increased to 180 °C, the leaching of 
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Mg and Ca take place swiftly with ~90% of leachable metallic species in biomass under 

HCW condition removed within 10 minutes. At 230 °C, a steeper raise of Mg and Ca 

was observed as compare to those at 180 °C. However, there is no significant change in 

the leaching kinetic observed with further increase of temperature to 270 °C, indicating 

that the leaching of AAEM species is temperature independent at temperature above 

230 °C.  

 

 
Figure 7.2: Leaching of (a) Mg and (b) Ca from mallee wood as a function of reaction 
time during hydrothermal processing at various reaction temperatures (150, 180, 230 
and 270 °C), expressed as % of the total Mg and Ca in biomass, respectively.  
 

Although an increase in water temperature under HCW conditions results in the increase 

of water ionic product16, 212, the abundance of hydronium ion (H3O+) in HCW alone 

does not explain the significant removal of Mg and Ca under HCW condition. The pH 
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of HCW ranges from ~6 at 150 °C to ~5.6 at 270 °C.16, 212 Result in Chapter 4 

demonstrates that the pH of the leachate during batch water leaching of mallee wood 

was ~5.5, which is close to the pH of HCW at 200 – 270 °C. However, only ~44% of 

Mg and ~ 28% of Ca in biomass are removed from batch leaching compare to ~90% of 

Mg and ~95% of Ca under HCW conditions. Moreover, the total amount of Mg and Ca 

leached is similar to the total amount of Mg and Ca leachable via dilute acid (0.01M 

HCl) reported Chapter 4. It is known that strong acid leaching can result in biomass 

physiochemical structural changes,213 exposing the organically bound AAEM species 

that are not available for ion-exchange by weaker organic acids. The relatively similar 

leaching kinetic of Mg and Ca at the temperature range of 180 °C to 270°C also indicates 

that the leaching of water-insoluble AAEM species under HCW conditions might 

correlate to the decomposition and removal of organic compounds in mallee wood. 

Therefore, the TOC, saccharide and lignin content in liquid product were also analysed. 

 

7.3 Conversion of Biomass Organic Matter in HCW Conditions 

 

Further effort had been taken to analyse the total carbon present in the liquid products. 

Figure 7.3 depicts the biomass hydrothermal conversion on a carbon basis at various 

temperatures. At 150 °C, the total carbon conversion increases slightly with reaction 

time, suggesting part of the biomass structure starts to decompose even at 150 °C. The 

carbon conversion is ~34% after 70 minutes. At 180 °C, there is a steep incline of carbon 

conversion at time < 15 minutes followed by a gradual increase to settle at ~56% after 

70 min. The carbon conversion for hydrolysis at 230°C and 270°C follows a similar 

trend with the conversion of ~69% at 230 °C and ~88% at 270 °C after 70 min. The 

specific reactivity of the organic matter (on a carbon basis) in biomass at various 

temperatures is plotted in Figure 7.4. At 150 °C, the low specific reactivity and its 

gradual increase with carbon conversion show the slow decomposition of biomass 

organic matter. As the reaction temperature increases to 180 °C, the specific reactivity 

and carbon conversion increases, indicating a more rapid decomposition of some 

reactive biomass components (such as hemicellulose and lignin). A further increase in 

temperature to 230 °C continues to speed up the decomposition of those reactive 
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components in biomass. However, the specific reactivity decreases significantly at 

biomass conversions of 40-60%, suggesting the reactivity of the remaining biomass 

component (mostly cellulose, see discussion below) is slow at 230 °C. At 270 °C, 

although the specific reactivity also decreases at biomass conversions of 40-60%, but 

the specific reactivity is higher than that at 230 °C, confirming the promotion of biomass 

conversion at increased temperatures. 

 

 
Figure 7.3: Carbon conversion as a function of reaction time during hydrothermal 
processing at various reaction temperatures: (a) 150°C, (b) 180°C, (c) 230°C and (d) 
270°C, expressed as % of total C in mallee wood. 
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Figure 7.4: Specific reactivity of biomass as a function of biomass conversion (on a 

carbon basis) during hydrothermal processing at various reaction temperatures: (a) 

150°C, (b) 180°C, (c) 230°C and (d) 270°C  

 

To better understand the composition of the liquid product, the saccharide contents were 

analysed following post-hydrolysis. The recovery of arabinose, galactose, xylose and 

glucose at various temperatures is presented in Figure 7.3 and Figure 7.5. Arabinose, 

galactose and small amount of glucose oligomers started to form in the liquid products 

collected from hydrolysis of biomass at 150 °C (Figure 7.3a and Figure 7.5a). However, 

only significant amount of xylose oligomers is recovered after 15 minutes of hydrolysis 

(Figure 7.3a). The formation of significant amount of these oligomers at 150 °C 

demonstrates that the hemicellulose in mallee wood starts to decompose at temperatures 

as low as 150 °C. It is known that the typical structure of hemicellulose consists of xylan 

chain as backbone with the present of various compounds such as mannose, arabinose, 

galactose and sugar acid (just to name a few) on the brunches, depending on the type of 

plant.45, 209 It is also known that lignin structure can also be covalently bonded to 
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hemicellulose.45 A schematic of typical hemicellulose structure is shown as Figure 2.1 

in Chapter 2. Therefore, the formation of mannose, galactose and glucose oligomers 

prior to xylose oligomers indicates that the decomposition of hemicellulose brunches 

and lignin starts before xylan backbone is exposed and available for hydrolysis. 

 
Figure 7.5: Recovery of arabinose, galactose, xylose and glucose during hydrothermal 
processing at various reaction temperatures: (a) 150°C, (b) 180°C, (c) 230°C and (d) 
270°C as a function of biomass conversion, quantified via post-hydrolysis, expressed 
as % of the respective total saccharides in mallee wood. 
 

At 180 °C, the decomposition of most of the hemicellulose in mallee wood completes 

within 20 minutes with ~98% of the xylose recovered after 40 min (Figure 7.3b and 

Figure 7.5b). The amount of glucose recovered remained at ~3% after 70 min, similar 

to that observed at 150 °C, most likely resulting from the decomposition of amorphous 

glucan associated with hemicellulose. The conversion of cellulose in mallee wood was 

not observed until the temperature increased to 230 °C and the reaction accelerated at 

270 °C. The increase in glucose recovery with biomass conversion at 270 °C (Figure 

7.3d and Figure 7.5d), clearly demonstrate that the higher reactivity is mainly 

contributed by the conversion of glucan. Although ~88% carbon conversion was 
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achieved at 270 °C, the recovery of glucose levels off at ~62%.  Such a glucose recovery 

is lower compared to that of ~80% achieved from microcrystalline cellulose under the 

same condition in previous work by Yu and Wu.17 A low recovery of glucose was also 

reported by Phaiboonsilpa and co-workers102 using a similar reactor system for 

hydrothermal processing of Japanese cedar. The low glucose recovery is not likely due 

to the secondary reactions of primary liquid product, since the xylose recovery is close 

to 100% at 270 °C. It is more likely due to the in situ structural changes of cellulose in 

biomass during hydrothermal treatment,214 resulting in the decomposition of cellulose 

structure before converted into the liquid product.   

 

Additional effort was taken to calculate the percentage of carbon contributed by 

saccharides to the total carbon in liquid product. The data is presented in Figure 7.3. 

Despite more than 30% of carbon is recovered at 150 °C, less than half of the recovered 

carbon are contributed by sugar products. Similarly, <35% of total carbon recovered at 

180 °C is contributed by sugar products. This suggests that considerable amount of 

lignin start to hydrolyse at 150 °C. A gradual increase in carbon recovery after 20 

minutes hydrolysis at 180 °C also suggests that additional lignin were decomposed at 

180 °C as the amount of carbon contributed by saccharides had levelled off.  

 

7.4 Relationship between the Leaching of Water-insoluble Mg and Ca and the 

Hydrolysis of Hemicellulose Brunches 

 

As the water-insoluble Mg and Ca in biomass start to leach at 150 °C, the leaching of 

these inorganic species during hydrothermal treatment is unlikely to be correlated with 

the decomposition of cellulose. In addition, lignin usually consists of phenolic 

compounds linked via C–O–C or C–C  bond,215 thus is unlikely to be associated with 

inorganic species. On the other hand, hemicellulose in hardwood such as O-acetyl-4-O-

methyl-glucuronoxylan contains significant amount of 4-O-methylglucuronic acids and 

various amounts of arabinose, galactose and glucose as side chains on the xylan 

backbone.47, 215, 216 Therefore, it is more plausible that the organic-bound Mg and Ca are 

associated with carboxylic acid functional group on hemicellulose side chains. However, 
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the analysis of carboxylic acid in the liquid sample was not performed in this study due 

to the limitation of our analytical techniques. Therefore, this study only tries to correlate 

the leaching of Mg and Ca with the sugar recovery to obtain some indirect evidences.  

 

Figure 7.6: Correlation between the recovery of arabinose, galactose or xylose with 
the release of (panel a-c) Mg and (panel d-f) Ca during hydrothermal processing at 
various reaction times (0 – 70 min) and temperatures (150 – 270 °C). 
Consequently, the leaching of Mg and Ca in biomass is plotted against the recovery of 

hemicellulose-derived sugars (e.g., arabinose, galactose and xylose), as shown in Figure 

7.6. It is noteworthy that the leaching of the water-insoluble Mg and Ca in the wood 
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sample is only linearly proportional to arabinose recovery, while the plots for galactose 

and xylose are non-linear. The release of arabinose prior to xylose (even galactose, see 

Figure 7.5) at low temperatures (i.e., 150 °C) suggests arabinose is likely associated 

with hemicellulose side chains, which decompose prior to the xylan backbone in 

hemicellulose during hydrothermal processing. It is known that Mg and Ca cannot be 

organically bound to arabinose directly. Thus, the linear relationship between the 

arabinose recovery and the leaching of Mg and Ca further suggests that the water-

insoluble Mg and Ca are likely organically bound to the carboxylic acid functional 

group on hemicellulose side chains. As hydrothermal processing at low temperatures 

can convert the reactive organic matter (i.e., the hemicellulose side chains) in biomass, 

exposing more organic-bound inorganic species which are not accessible at room 

temperature. Then, the high ionic product in HCW allows the ion exchange reaction to 

take place, leading to the leaching of more water-insoluble Mg and Ca during 

hydrothermal processing. The results on the inorganic species release during wood 

hydrothermal processing may have some important practical implications. For example, 

the released inorganic species can potentially act as catalysts to promote the secondary 

decomposition of sugar products 31, 146, 147 and alter the reaction pathway in the aqueous 

phase 217 

 

7.5 Conclusion 

 

This chapter investigates the leaching of water-insoluble alkaline earth metallic species 

in mallee wood under HCW conditions at 150 – 270 °C, using a semi-continuous reactor 

system. Depending on the temperature, >90% of Mg and Ca in mallee wood can be 

leached under HCW conditions. At 150 °C, the leaching of Mg and Ca took at least 70 

min to complete but ~90% of leachable Mg and Ca were released in <15 min hydrolysis 

at temperature ≥180°C. The organic compounds in the liquid product were also analysed 

to understand the correlation of leaching of water-insoluble alkaline earth metallic 

species and the conversion of organic matter. The biomass conversion increase from 

~34% to ~88% as temperature increase from 150 to 270 °C after reaction for 70 min, 

with the majority of organic compounds contributed by sugar oligomers and lignin 
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derived compounds. Hemicellulose and lignin started to decompose at 150 °C. Almost 

all of the arabinose, galactose, xylose and mannose were recovered at 180 °C. Cellulose 

started to decompose at 230 °C with the decomposition rate increase significantly at 

270 °C. Further analysis of the data clearly shows that the leaching of water-insoluble 

Mg and Ca are well correlated with the recovery of arabinose during mallee wood 

conversion in HCW, indicating the water-insoluble alkaline earth metallic species are 

mainly bounded the acid functional groups on hemicellulose brunch. 
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Chapter 8: Conclusions and Recommendations 
 

 

 

 

 

8.1 Introduction 

 

This chapter summarises the key findings from this PhD research. The work carried out 

in this research leads to a better understanding on the leaching of inorganic and organic 

matter from biomass and biochar under various conditions, their equilibrium, kinetics 

and implications. First, this research found that the leaching of organic matter from 

biomass leads to at least some of the water-insoluble inorganic species being leached 

during batch water leaching. This resulted in over estimation of water-soluble inorganic 

species in biomass with batch leaching. Second, partial steam gasification can 

effectively tune the properties of fast pyrolysis mallee biochar, producing biochar with 

high surface area and with little or no leachable aromatic compounds. Third, tuning 

biochar via partial gasification improves the leachability of alkali and alkaline earth 

metallic (AAEM) species in biomass. This enhances the overall recyclability of AAEM 

species from biochar. Lastly, ~90% Mg and ~96% Ca were leaching from mallee wood 

when hydrolysis under hot-compressed water (HCW) condition. The experimental data 

indicates that organic bounded Mg and Ca are likely to be bounded on the acid groups 

on hemicellulose brunches linked by arabinose. In addition, based on the outcomes from 

this research, several recommendations suggested for future work required to improve 

the knowledge in this research area. 
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8.2 Conclusions 

8.2.1 Leaching of Organic and Inorganic Matter from Biomass by water: 

Differences between Batch and Semi-continuous Operations 

 

• Various amount of organic matter can be leached from biomass during water 

washing, producing an acidic leachate.  

• Continuous contact between acidic leachate and biomass during batch leaching 

leads to part of the water-insoluble (e.g. organically bounded) inorganic species 

being leached out and quantified as water-soluble. 

• The use of semi-continuous leaching method minimises the contact between 

acidic leachate and biomass sample, providing an accurate quantification of 

water-soluble inorganic species in biomass.  

• The leaching kinetics demonstrates that batch leaching of inorganic species 

involves two leaching steps, rapid leaching for an initial short period of time and 

a subsequence slow leaching step for a long period. However, the second slow 

leaching step is not observed for semi-continuous leaching due to minimised 

interaction between leachate and biomass. 

• The leaching of mono-valence species (Na and K) is found to be faster compared 

to di-valences species (Mg and Ca). This is due to the large diffusion coefficients 

of mono-valence ionic species in water. 

 

8.2.2 Tuning Biochar Properties via Partial Gasification: Biochar 

Characteristics and Leaching of Organic Matter 

 

• Tuning of fast pyrolysis mallee biochar via partial steam gasification at low 

conversion (5 to 10%) and mild temperature (725 °C) causes up to 25% loss in 

carbon available for sequestration. However, the remaining carbon in tuned 

biochar is postulated to be stable. 

• Partial steam gasification leads to significant increase in biochar surface area 

mainly through the formation of large pores (e.g. mesopore and macropores). 
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• <1.5% of organic matter on carbon basis can be leached from biochar studied. 

While secondary pyrolysis generally removes the water-soluble organic matter 

from biochar, partial steam gasification does not. The leaching of organic matter 

following partial steam gasification might be due to the increase of accessibility 

of water to water leachable organic matter in biochar. 

• Small amount of aromatic compound in raw biochar can be leached from fast 

pyrolysis biochar via organic solvents. Tuning via partial steam gasification is 

able to produce biochar with no leachable aromatic compounds. This reduces 

the risk of possible contamination of amended soil  

 

8.2.3 Tuning Biochar Properties via Partial Gasification: Leaching 

Characteristics and Recyling of Inorganic Nutrients 

 

• Close to 90% of K, Mg and Ca in fast pyrolysis biochar are retained during 

tuning via partial steam gasification. Up to ~34% of Na in leaf biochar is 

volatilised following partial steam gasification while >80% Na in wood biochar 

are retained. 

• Partial steam gasification enhances the leachability of AAEM species in water 

and Mehlich-1 solution. 85% AAEM species in wood biochar and 96% of that 

in leaf biochar are leachable by Mehlich-1 solution thus available to plant.  

• Increase in AAEM species leachability might be due to (1) the development of 

pore structure, and (2) transformation of biochar inherent AAEM species from 

the form that bounded to char matrix to the form that are soluble in water and 

Mehlich-1 solution during partial steam gasification. 

• Tuning of biochar via partial steam gasification increase the overall recycling of 

AAEM species from fast pyrolysis biochar when it is applied to soil, minimising 

the loss of soil nutrient during biomass utilisation cycle and improving the 

sustainability of biomass pyrolysis process. 
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8.2.4 The Leaching of Biomass Water-Insoluble Metallic Species under Hot-

Compressed Water Condition 

 

• Most of the Na and K in mallee biomass are leachable at room temperature. ~90% 

Mg and ~96% Ca in mallee wood can be leached under HCW conditions.  

• At 150 °C, the leaching of Mg and Ca in HCW took at least 70 min to complete. 

At 180 °C, ~90% leachable Mg and Ca were removed in 15 min. The increase 

in HCW temperature does not affect the leaching kinetic of Mg and Ca. 

• The carbon conversion of mallee wood is found to be at ~34%, ~56%, ~69% and 

~88% following hydrolysis in HCW at 150 °C, 180 °C, 230 °C and 270 °C, 

respectively. 

• The lignin and hemicellulose component of mallee wood start to decomposed at 

150 °C. Cellulose only starts to decompose at 230 °C. 

• Further analysis suggests that organic bounded Mg and Ca are likely to be 

bounded on the acid functional groups on hemicellulose branches. 

 

8.3 Recommendations 

 

Based on the finding from this research, the following future researches are suggested 

to close the research gaps in this area:  

 

1. Water leaching of biomass in this study was carried out with fine biomass 

particle and at room temperature. The leaching equilibrium and kinetics of 

inorganic and organic matter from larger particle biomass and at various 

temperatures are not well understood. Therefore, further investigation on the 

leaching characteristics of inorganic and organic matter from various biomass 

particle size and temperature is required. 

 

2. This study demonstrates that a small amount of labile organic matter can be 

leached from biochar via water and solvent. However, the nature of the organic 

matter leached is not well understood thus additional study has to be carried out 
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to characterise these organic matter. In addition, it is also important to quantify 

the presence of poly aromatic hydrocarbon (PAH) in raw and tune biochar. 

These are to ensure the application of biochar to soil will not contaminate the 

amended soil. 

 

3. Current research only studies the recyclability of AAEM species from raw and 

tuned biochars. Biochar also contains other plant essential nutrients such as S, 

N and P. A systematic study is required to study the recyclability of S, N and P 

from fast pyrolysis biochar produced under various pyrolysis conditions and the 

effect of partial steam gasification on the recyclability of these nutrient species. 

 

4. Only mallee biochars were considered in the present research. The study on the 

tuning of biochars to enhance the recycling of inherent nutrient species should 

also be extended to other biomass feedstock. 

 

5. The study on the leaching of AAEM species during biomass hydrolysis in HCW 

in this research is limited to the mallee wood. As mallee leaf and bark contain 

high amount of AAEM species, it is important to study the leachability and 

leaching kinetic of AAEM species from these components under HCW 

conditions.  
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