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Abstract

Prospective ECG-triggering is regarded as one of the most effective approaches for reduction
of radiation dose to patients during coronary CT angiography (CCTA). This study was
conducted to investigate the diagnostic performance of prospective ECG-triggered CCTA
with regard to the image quality and dose reduction, based on a multi-centre research. The
research was performed in four stages, with stage 1 investigating the different CT scanning
protocols and conventional angiography procedures with corresponding radiation dose
measurements; stage 2 focused on the analysis of radiation dose in patients undergoing
different generations of multislice CT scanners; stage 3 conducted a survey among medical
specialists and radiographers with the aim of obtaining opinions regarding the benefits and
difficulties in performing prospective ECG-triggered CCTA,; stage 4 analysed image quality
and radiation dose in patients undergoing single-source and dual-source 64-slice CT
coronary angiography with use of prospective ECG-triggering.

Stage 1 is a pilot study conducted on an anthropomorphic phantom. In this experiment, the
radiation dose was compared between the invasive coronary angiography (ICA) and CCTA.
These imaging protocols for ICA included the standard angular projection views with
different magnifications. These ICA protocols were compared with several CT protocols
including prospective and retrospective ECG gating. In addition, tube current modulation
was applied in retrospective gating protocol. The radiation dose was also measured at the
selected radiosensitive organs including breast and thyroid gland. Although ICA produced
lower radiation dose than CCTA, application of modified techniques in both CCTA and ICA

is recommended in clinical practice for further radiation dose reduction.

Stage 2 involved a retrospective analysis of radiation dose in patients undergoing prospective
ECG-triggered CCTA with different CT generations including single-source 64-slice CT
(SSCT), dual-source 64-slice CT (DSCT), dual-source 128-slice CT and 320-slice CT based
on several hospitals in Perth, Western Australia and Kuala Lumpur, Malaysia. A total of 164
patients undergoing prospective ECG-triggered CCTA with different types of CT scanners
were studied. The analysis showed that the mean effective dose was estimated at 6.8 mSv,
4.2 mSv, 4.1 mSy, and 3.8 mSv, corresponding to 128-slice DSCT, 64-slice DSCT, 64-slice
SSCT and 320-slice CT scanners, respectively. A positive relationship was found between
effective dose and body mass index (BMI) in this study. Low radiation dose was achieved in
prospective ECG-triggered CCTA, regardless of any CT scanner generation. BMI is
identified as the major factor that has a direct impact on the effective dose associated with
prospective ECG-triggered CCTA.



A well-designed survey was performed in stage 3 among specialists and radiographers from
6 national health institutions in Malaysia in order to explore the opinion concerning the
benefits and difficulties in performing prospective ECG triggered CCTA. In total, 53
responses were received (85%), comprising specialists (21%) and radiographers (79%).
Across all the respondents, the main benefits of prospective triggering were agreed as:
radiation dose reduction, image quality improvement and patients’ output increases. On the
other hand, the issue of heart rate was agreed by all respondents as a main challenge when
performing prospective triggered CCTA. The remaining challenges such as difficulty in
obtaining cardiac functional assessments, diagnostic accuracy concerns and data processing
management issue have been seen to vary according to the groups of respondents and the
scanner type. Radiation dose reduction seems to be the main benefit, which is most agreed
upon, while the issue of the heart rate is seen as the main challenge in prospective ECG-
triggered CCTA.

Finally, stage 4 is a comparative study consisting of quantitative and qualitative analysis, and
it was conducted to investigate the image quality and radiation dose performance between
retrospective gated and prospective ECG triggered CCTA with use of 64-slice SSCT and
DSCT. The SSCT component was performed in the Royal Perth Hospital, Western Australia,
while the DSCT component was conducted in the National heart Institute, Kuala Lumpur,
Malaysia. A total of 209 patients who underwent CCTA with suspected coronary artery
disease (CAD) scanned with SSCT (n=95) and DSCT (n=114) scanners using prospective
ECG-triggering and retrospective ECG-gating protocols. The image was qualitatively
assessed by two experienced observers, while quantitative assessment was performed by
measuring the image noise, the signal-to-noise ratio (SNR) and the contrast-to-noise ratio
(CNR).

A total of 2,087 coronary artery segments were evaluated. Both DSCT and SSCT resulted in
good image quality, regardless of prospective or retrospective gating protocols. Although
radiation dose calculated between DSCT (6.5 mSv) and SSCT (6.2 mSv) showed no
significant difference, the effective dose in prospective triggering was significantly lower
than that in retrospective gating protocol. The results indicated that in the retrospective
gating protocol, the effective dose with DSCT (18.2 mSv) was also significantly lower than
that in SSCT (28.3 mSv). This study confirmed that prospective ECG triggered CCTA
reduces radiation dose significantly compared to retrospective ECG-gating CCTA, while

maintaining good image quality.



In summary, the results of this project show that coronary CT angiography with prospective
ECG-triggering is a reliable diagnostic technique with resultant very low radiation dose, but
still maintaining diagnostic images. With widespread use of coronary CT angiography in the
diagnosis of coronary artery disease, increased awareness of radiation dose associated with
coronary CT angiography is of paramount importance, and application of dose-reduction

strategies is highly recommended for routine clinical practice.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW
1.1 Coronary artery anatomy
1.1.1 Normal anatomy-Right coronary artery

The two coronary arteries are the first vessels to branch off the ascending aorta and supply
oxygenated blood to the myocardium. The right coronary artery (RCA) arises from the right
coronary sinus inferior to the origin of the left coronary artery (LCA). After its origin from
the aorta, the RCA passes to the right and posterior to the pulmonary artery and then emerges
from under the right atrial appendage to travel in the right anterior atrioventricular (AV)
groove. The RCA gives off small branches that supply the right atrium. In about 50% of the
cases, the conus artery is the first branch of the RCA (Figure 1-1). The conus artery can also
arise directly from the aorta. The conus branch always courses anteriorly to supply the
pulmonary outflow tract. The posterior interventricular branch follows the posterior
interventricular sulcus and supplies the walls of the two ventricles with oxygenated blood.
The right marginal branch in the coronary sulcus carries oxygenated blood to the
myocardium of the right ventricle. The distal RCA starts just after the acute marginal branch
passes horizontally along the diaphragmatic surface of the heart, which gives rise to the right
posterior descending artery (PDA) that adjoins the middle cardiac vein and runs anteriorly in
the posterior interventricular sulcus (Figure 1-2). The coronary artery that gives rise to the
PDA and posterolateral branch is referred to as the ‘dominant’ artery, with the RCA being
dominant in approximately 70% of cases. If it is RCA dominant, the RCA continues beyond
the crux in the left atrioventricular sulcus where it terminates into the posterior left
ventricular branch (PLB) (Kini, Bis, and Weaver 2007).

1.1.2  Normal anatomy-Left coronary anatomy

The LCA normally arises from the left coronary sinus as the left main artery (LMA). The
LMA coronary artery is a short branch (5-10 mm), and it courses for a variable distance
before giving rise to the left anterior descending (LAD) and left circumflex (LCx) (Figure 1-
2). In some cases, the LMA trifurcates into the LAD, LCx, and the ramus intermedius artery.
The ramus intermedius artery itself has different types of branching. The ramus intermedius
can be distributed as a diagonal branch or as an obtuse marginal branch depending on

whether it supplies the anterior or the lateral wall, respectively.

The LAD artery passes behind the pulmonary trunk and moves forward between the

pulmonary trunk and the left arterial appendage to the anterior interventricular sulcus, along



the ventricular septum. The LAD artery has branches called “septal perforators” which
supply the anterior ventricular septum. These septal branches have wide variations in
number, size and distribution. A first distribution contains large, located more vertical and
sometimes divided into a number of secondary branches that split throughout the septum. In
certain condition, septal perforator could be found parallel to the LAD. A collateral channel
also can be created between two septal branches which originate from the LAD and the PDA

of the right coronary artery.

Figure 1-1: The multi-planar reformation (MPR) images of right coronary artery inclusive of
RCA (a-b) and PDA (c-d).
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Figure 1-2: The multi-planar reformation (MPR) images of left coronary artery inclusive of

LAD (a-b), diagonal artery (c), LCx (d) and OM (e-f).
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LAD also has diagonal arteries that course over and supply the anterior wall of the left
ventricle (Kini, Bis, and Weaver 2007). A wide variation in number and size of diagonal
branches exist with all originating from the LAD and passing over the anterolateral aspect of
the heart. The diagonals and septal perforators are numbered sequentially from proximal to
distal as D1, D2, S1 and S2 (van Ooijen et al. 2004).

The LCx runs in the posterior AV groove analogous to the course of the RCA on the
opposite side. The LCx angles posteriorly from the bifurcation to pass below the left atrial
appendage towards AV groove. The major branches of the LCx consist of obtuse marginals
(OM) (Figure 1-2). OM branches supply the lateral wall of the left ventricle (LV) and they
are numbered sequentially from proximal to distal as OM1, OM2 and OM3. Sometimes,
LCx gives rise to one or two left arterial circumflex branches which supply the lateral and

posterior aspect of the left atrium (Kini, Bis, and Weaver 2007).
1.1.3 Normal anatomy-Coronary dominance

The artery that supplies the PDA and the posterolateral branch determines the coronary
dominance. If the PDA and PLB arise from the RCA, then the system is said to be right
dominant (80-85% of cases). In this instance, the RCA supplies the inferoseptal and inferior
segments of the left ventricle (Cerqueira et al. 2002). On the other hand, if the PDA and PLB
arise from the LCx artery, then the system is said to be left dominant (15-20% of cases). In
this instance, the LCA supplies the inferoseptal and inferior segments of the left ventricle.
However, in about 5% of cases, the PDA comes from the RCA and the PLB comes from the
LCx artery in which is called co-dominant (Kini, Bis, and Weaver 2007).

1.1.4 Coronary artery anomalies

Anomalies of the coronary arteries may be found incidentally in 0.3%-1% of healthy
individuals (Angelini, Velasco, and Flamm 2002). For several decades, premorbid diagnosis
of coronary artery anomalies has been made with invasive coronary angiography. The
coronary artery anomalies are classified into anomalies of origin, anomalies of course, and
anomalies of termination. Coronary artery anomalies may also be classified as either
haemodynamically significant or insignificant. Haemodynamically significant anomalies of
the coronary arteries are characterized by abnormalities of myocardial perfusion, which lead
to an increased risk of myocardial ischemia or sudden death (Reagan, Boxt, and Katz 1994).
These anomalies include an anomalous origin of either the LCA or the RCA from the

pulmonary artery, an anomalous course between the pulmonary artery and the aorta



(interarterial) of either the RCA arising from the left sinus of Valsalva or the LCA arising
from the right sinus of Valsalva.

1.1.5 Coronary artery disease

Coronary artery disease (CAD) is a common cardiovascular disease that is responsible for
the leading cause of death in advanced countries and its prevalence is increasing in
developing countries. Early detection and diagnosis plays an important role in patient
management. Traditionally, this is achieved with use of invasive coronary angiography;
however, it is associated with procedure-related complications. Since multislice computed
tomography (MSCT) has been introduced, coronary CT angiography (CCTA) has been
widely used as a non-invasive technique to detect CAD in cardiac imaging (Brenner and Hall
2007; Naghavi et al. 2006). CAD results from the deposition of atheroma in the artery which
supplies blood to the heart muscle. As the plaque accumulates in the coronary arteries, blood
supply to the heart muscle is decreased which results in ischemia, a local and temporary
impairment of circulatory and myocardial damage as an infarction (an area of ischemic
necrosis). The plague accumulation in the vessel lumens is characterised into two categories;
stable plaque and unstable plaque. Generally, stable atherosclerotic plaques, which tend to be
asymptomatic, are rich in extracellular matrix and smooth muscle cells, while, unstable
plaques are rich in macrophage and foam cells and the extracellular matrix separating the
lesion from the arterial lumen (also known as the fibrous cap) is usually weak and prone to
rupture (Ross 1999).

Plague accumulation can be classified as soft and hard plaques. Soft plaque is normally
referred to lipid or cholesterol deposition in the vessels whereas hard plaque is normally
referred to calcium deposition in the vessels and it equally results in blood flow obstruction.
Atherosclerotic calcification is an organized, regulated process similar to bone formation that
occurs only when other aspects of atherosclerosis are also present. Although calcification is
found more frequently in advanced lesions, it may also occur in a small number of
populations in earlier lesions, which appear in the second and third decades of life.
Histopathological investigation has shown that plaques with microscopic evidence of
mineralization are larger and associated with larger coronary arteries than plaques or arteries
without calcification (Wexler et al. 1996). The relation of arterial calcification to the
probability of plaque rupture is unknown. Although the amount of coronary calcium
correlates with the amount of atherosclerosis in different individuals and to a lesser extent in
segments of the coronary tree in the same individuals, it is not known if the quantity of

calcification tracks the quantity of atherosclerosis over time in the same individuals (Ross



1999). Further research is needed to better elucidate the relation of calcification to the

pathogenesis of both atherosclerosis and plaque rupture.

Major complications of CAD include angina pectoris, myocardial infarction and subsequent
myocardial necrosis if the patient survives from heart attack. CAD is responsible for over
30% of all annual death in the United States and is the single most frequent cause of death in
both men and women (Mace and Kowalczyk 2004). Most cases on autopsy demonstrate
significant widespread atherosclerotic disease of the coronary arteries. As mentioned earlier,
the exact aetiology of plaque formation is unknown. However, risk factors for CAD are well
known which include tobacco use, diets with content high in fats and calories, nutrition with

low in phytochemicals and fibre, also poor physical fitness (Wexler et al. 1996).

Medical treatment for CAD may include vasodilators or antithrombotic/anticoagulant drugs
to improve cardiovascular circulation and use of beta-blockers to decrease the risk of further
injury to myocardium. Percutaneous transluminal coronary angioplasty (PTCA) which uses
balloon or stent placement would be considered as a treatment option in order to open up the
occluded coronary lumen that is caused by soft plagues. However, it depends on the degree
and location of the occlusion (Mace and Kowalczyk 2004). In addition, percutaneous
transluminal coronary rotational atherectomy (PTCRA) is an option for calcified lesions
(Khoury et al. 1996). Alternatively, CAD could be treated surgically with coronary artery
bypass grafts (CABG).



1.2 Imaging modalities in the diagnosis of coronary artery disease

With the advancement in imaging technology, there are a number of imaging modalities that
can be used in cardiac imaging. These modalities range from invasive to non-invasive and
from ionizing to non-ionizing radiation approaches which are available to be used depending
on the availability and most importantly the sensitivity and specificity of the imaging
modalities. There are several imaging modalities available for the diagnosis of CAD
including conventional angiography, CCTA, magnetic resonance imaging (MRI), ultrasound

and nuclear medicine.
1.2.1 Conventional coronary angiography

Coronary angiography is regarded as the "gold standard" and most accurate method for
evaluating and defining CAD especially in quantifying lumen stenosis of the coronary
arteries (Arbab-Zadeh et al. 2010). Coronary angiography is used to identify the exact
location and severity of CAD. A catheterization procedure is required in the assessment of
the coronary arteries. Specifically, coronary catheterization is a visually interpreted
procedure which is performed to identify occlusion, stenosis, restenosis, thrombosis or
aneurysmal enlargement of the coronary artery lumens, heart chamber size, heart muscle
contraction performance and some aspects of heart valve function. Important internal
measurements associated with ventricular ejection fraction can be accurately performed
during the procedure. The most common indication for coronary angiography is coronary

atherosclerosis, which leads to coronary stenosis or occlusion (Rees et al. 2004).
1.2.1.1 Coronary angiography views

A complex three-dimensional pattern of coronary artery branches need to be visualised
clearly in different angles. Therefore, a series of angiographic views are generated and
named according to the x-ray image intensifier position in order to obtain a complete picture
of the coronary anatomy. The names are completely different from the normal radiological
nomenclature as they are given corresponding to the position of the beam passing through
the patients. For example, a left anterior oblique 60° with 40° caudal view means that
position of the image intensifier on the left side of the patient with 60° angulation relating to
the degree of displacement of the image intensifier from the vertical position. The additional
caudal angulation of 40° refers to tilting the image intensifier towards patient’s feet. The tube
is usually angulated in two planes which are left or right oblique and in caudal or cranial
tilting. It is a standard procedure to perform a series of 8-10 views for left coronary arteries

and 3-5 views for right coronary arteries (Table 1-1). Some additional views or multiple



views are also required for a full clinical interpretation of the disease in some patients (Rees
et al. 2004).

Table 1-1: Visualisation of coronary artery structures based on different angiographic views
(Rees et al. 2004)

Angiographic views Anatomical Structures

AP 0° LMA, LAD, D2, LCx

RAO 30° LMA, LAD, S, D1, D2, LCx
LAO 60° LMA, LAD, S, D1, D2, LCx
Left lateral 90° LMA, LAD, D1, D2, LCx
RAO 30°/30° cranial LMA, LAD, S, D2

RAO 30°/30° caudal LMA, LAD, S, D1, D2, LCx
LAO 50°/20° cranial LMA, LAD, S, D1, D2, LCx
LAO 50°/30° caudal LMA, LAD, LCx

AP 30° caudal LAD, S, D1, D2, LCx

AP 40° cranial LMA, LAD, S, D2, LCx
LAO 45° RCA, RV, PLB, PDA

AP 30° cranial RCA, PLB, PDA

RAO 30° RCA, RV, PDA

AP 0° RCA, RV, PLB, PDA

Right lateral 90° RCA, RV, PLB, PDA

*AP= anterior-posterior; RAO= right anterior oblique; LAO= left anterior oblique; LMA=
left main artery; LAD= left anterior descending artery; S=septal artery; D1=first diagonal
artery; D2= second diagonal artery; LCx= left circumflex artery; RCA= right coronary
artery; RV= right ventricular branch; PLB= posterior lateral branch; PDA= posterior

descending artery
1.2.1.2 Risks and limitations

Coronary angiography is regarded as a safe procedure even it is an invasive approach. One

of the earlier studies by Adams et al. in 1973 was carried out to report the complications of



coronary angiography. The study showed that mortality rate of coronary angiography was
0.44% in a cohort of 55,640 cases. However, in 1975, the mortality rate was dropped to
0.17% in a study consisting of 35,500 patients conducted by the same research group
(Abrams and Adams 1975). The mortality rate was decreased gradually by years when the
Registry of the Society for cardiac angiography carried out an observation on participating
hospitals in the United States between 1978 and 1981 and reported that the life time risk of
coronary angiography was only 0.13% (Kennedy 1982). Furthermore, the Society also
reported that other cardiovascular risks decreased gradually including myocardial infarction
(0.09%), stroke (0.07%) and vascular complications (0.50%). The statistics data also showed
that the risk of angiography increased with the severity of the disease. The highest mortality
rate (0.86%) was identified in patients with left main artery disease which was assumed to
have the highest mortality risk (Kennedy 1982). However, the current rate of complications

for diagnostic coronary angiography is assumed to be less than 1% (Rees et al. 2004).

1.2.2 Coronary magnetic resonance angiography

Coronary angiography by MRI has long been a goal for bringing MRI to the forefront of
application in diagnosis of CAD. Although many non-invasive tests are commonly used for
the diagnosis of CAD, conventional angiography is still considered as the most reliable
method for assessment of the coronary vessels (Tsapaki et al. 2009). However, the coronary
magnetic resonance angiography (MRA) was introduced due to its non-ionizing radiation
approach and also does not require the use of iodinated contrast media which is potentially
nephrotoxic (Danias 2004). Furthermore, coronary MRA can be obtained in any direction
and plane, without any restriction to the angulation of the images. Finally, coronary MRA
can easily be combined with a comprehensive evaluation of the anatomy and function of the
left ventricle and assessment of myocardial viability, thus meeting all the requirements of a

comprehensive cardiac examination.
1.2.2.1 Imaging principles

When time-of-flight MRA techniques were introduced, two-dimensional (2D) breath hold
angiography was applied to the coronary arteries (Danias 2004). The used of conventional
black blood techniques (spin echo) with electrocardiographic gating (ECG) was introduced
earlier in 2D imaging technique. However, this technique was insufficient to determine
coronary stenosis. Then, a white blood sequence (gradient echo), which acquires the image
data with ECG-gating in multiple segments (segmented k-space) in many cardiac cycles was
introduced. In this sequence, a 2D image with resolution of 1.9 x 0.9 mm could be

completed in 16 consecutive cardiac cycles with breath hold in order to minimize respiratory



motion. The data was acquired at approximately 100 ms with cardiac motionless at a mid-
diastolic phase. In addition to the advantage of least motion (diastasis), mid-diastolic phase
also presents with maximum blood flow in the coronary arteries. Multiple sections were
obtained with consecutive breath holds in order to depict the entire coronary tree within a
total of 10 to 15 breath holds. However, the inconsistency in depth variability between a
series of breath holds lead to discontinuities of the coronary vessels which mimic a stenosis.
These techniques, although promising and have an excellent in-plane resolution, depend on
experienced user placement of slices to cover the coronary arteries and suffer from poor
through-plane resolution. Nevertheless, early reports of the sensitivity and specificity of 2D

coronary MRA were encouraging (Manning, Li, and Edelman 1993; Danias 2004).

Since then, a three-dimensional (3D) technique has been introduced in clinical practice to
overcome the limitations of the 2D approaches. Compared to multislice 2D-breath hold
approaches, 3D imaging takes advantage of the enhanced signal-to-noise ratio (SNR) and the
post-processing benefits of thin adjacent slices. Spatial resolution in free-breathing 3D
coronary MRA is only restricted by SNR and not the physiological limits of a sustained
breath hold (Botnar et al. 1999). A 3D acquisition also offers volume imaging data with
continuity between image sections. An impediment of 3D technique, however, is the
prolonged scanning time, which might be problematic in patients, or diaphragmatic drifts
associated with prolonged breath holds (Botnar et al. 1999; Danias 2004; Taylor et al. 1997).

The MRA technique has been improved with an ultra-fast 3D interleaved gradient echo
planar technique (TFE-EPI) to overcome the long scanning time problem by using a
combination of a 3D segmented k-space ultra-fast echo time (TFE) with an echo planar
imaging (EPI) technique (McKinnon 1993). This approach takes advantage of the short echo
time (TE) of TFE techniques and also shortens acquisition window of EPI techniques. Since
fewer radio frequency (RF) excitations are needed per shot, higher excitation flip angles can
be used and the steady-state magnetization is expected to be increased with respect to TFE
scans. Compared to 2D breath hold multislice approaches, where adjacent slices are acquired
at different time points within the cardiac cycle (Slavin, Riederer, and Ehman 1998), all
slices of the 3D volume are acquired simultaneously at the same time point. Therefore miss-
registration problems between adjacent slices due to bulk cardiac motion may be further
minimized. Signal voids due to rapid blood flow or cardiac motion are expected to be
reduced because of the shorter TE compared to pure EPI techniques and residual respiratory
motion artefacts could be minimized because of the shorter acquisition window duration than
in TFE scans (Botnar et al. 1999).
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In coronary MRA, the magnitude of signal loss correlates with the degree of stenosis
visualised on angiographic images. Nevertheless, with the latest bright blood technique, the
false positive and false negative results of coronary disease may still occur. For instance, a
slow blood flow distal to a stenosis may represent as complete signal loss, although the
vessel is patent. In addition, bright blood technique is not sensitive to the direction of blood
flow, whereas a total occlusion with adequate collateral circulation may represent as
adequate signal, even in the vessel lumen distal to the stenosis. Data from more than 30
studies based on single centre experiences have been published to date regarding the ability
of coronary MRA to identify atherosclerotic stenosis (Bunce and Pennell 1999; Danias
2004). These studies used both 2D and 3D MRI imaging techniques with breath hold and
free breathing approaches with navigator monitoring of the diaphragmatic motion applied for
suppression of the respiratory motion. As a result, there is considerable heterogeneity in the
reported sensitivities and specificities, which to a greater extent depend on the different
technical procedures, evaluation of different patient groups, methods used for data analysis

and the various experiences of the individual centres.

Over the past few years most of the cardiac MRI centres use 3D coronary MRA technique,
since it increases SNR and allows reconstruction in any orientation compared to 2D
technique. With the technical advancements and better patient selection, the accuracy of
coronary MRA for the detection of significant coronary stenosis seems to be improving over
the last few years (Danias 2004). Moreover, with developments in the magnetic field (from
15T to 3.0 T), coronary MRA has become more accurate and is increasingly used in cardiac
imaging. Imaging coronary artery with 3.0 T MRA potentially increases SNR, which in turn
increases spatial resolution and shortens the imaging acquisition time (Bi et al. 2005). In fact,
various studies have shown that SNR is improved by approximately 50% at 3.0 T over 1.5 T
with similar sequences and parameters (Bi et al. 2005; Sommer et al. 2005). In addition,

there are a few ongoing studies on coronary MRA with the latest magnetic field 7.0 T MRI.
1.2.2.2 Diagnostic accuracy

A few studies have reported the diagnostic accuracy of the whole heart coronary MRA with
specificity, diagnostic accuracy and positive predictive value being 92.1%, 91.1% and
52.0%, respectively (Kim et al. 2006; Danias 2004; Sakuma et al. 2005). Sakuma et al.
(2005) in their prospective study using whole heart coronary MRA reported that the
sensitivity and specificity of the 3D coronary MRA were 82% and 91%, for detecting
significant stenosis respectively (Sakuma et al. 2005). Kim et al. (2001) conducted a
prospective multicentre study using 3D coronary MRA with the targeted volume acquisition

technique, in which the sensitivity, specificity, accuracy and the negative predictive value for
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patients with disease of the left main artery or three vessel disease were 100%, 85%, 87%
and 81%, respectively (Kim et al. 2001).

1.2.3.2 Limitations

Coronary MRA faces several challenges. Firstly, the coronary arteries themselves are a
moving target, subject to continuous movement due to cardiac contraction and respiration.
Moreover, the coronary tree is complicated in terms of anatomical details with three-
dimensional structure, which moves towards the cardiac apex and rotates in counter-
clockwise direction at the same time during ventricular contraction. However, during the
diastolic period, it follows an opposite trajectory. In addition, the heart (and the coronary
arteries) follows the diaphragmatic displacement during free breathing; moves cranially
during inspiration and caudally during expiration. The displacement of the heart could vary
widely depending on the depth of inspiration (Hofman, Wickline, and Lorenz 1998). Another
limitation of coronary MRA is the limited spatial resolution of MR imaging, which is less
than 1.0 mm in z-axis direction. This is inferior to that of multislice CT angiography, which
is between 0.4-0.5 mm. This limits the visualisation of distal coronary arteries and branches

during coronary MRA.

1.2.3 Echocardiography

Since the technology in cardiac imaging has been developed, more and more imaging
modalities were introduced to clinical practice in order to detect and diagnose coronary
artery disease. Cardiovascular ultrasound or echocardiography is one of those techniques
which are increasingly used nowadays in cardiac imaging. Cardiovascular ultrasound has
progressed immensely from scan of A-mode images deriving from a thin ultrasound beam, to
graphic displays of M-mode echocardiography, and to 2D and 3D examinations, assisting
physicians with real-time images of the heart in motion (Pandian et al. 1994). Doppler
techniques are now routinely used in assessing haemodynamic and blood flow to the
cardiovascular system. Cardiac ultrasound has evolved as an important diagnostic tool in the
contemporary cardiology. Nevertheless, the heart is a complex 3D organ that has been
displayed anatomically and functionally in only 2D views at any given time. Advances in
ultrasound instrumentation supported by computer technology have led to dynamic 3D

echocardiography, thus introducing a new era in cardiovascular imaging.
1.2.3.1 Imaging principles

The rationale to develop 3D echocardiography is the awareness of the limitations of current

imaging modalities, and the desire to exploit the potential ultrasound methods in order to
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improve the diagnostic performance of echocardiography. Three-dimensional
echocardiography could complement current echocardiography techniques by providing
realistic 3D images of cardiac anatomy and pathology in projections that cannot be obtained
with 2D images; by offering quantitative data more accurate than those that are currently
available; and additional quantitative information and functional indices (Kisslo et al. 2000).

Colour Doppler displays 2D spatial maps of flow jets and makes evaluation of flow
abnormalities easier. Trans-oesophageal echocardiography vyields new orientations of
viewing the heart and provides high resolution 2D images. However, the 3D heart is only
projected in a 2D format by all these modalities. From a multitude of 2D images, clinicians
must make an effort to visualise the heart in its original form by a mental 3D reconstruction
process. This is not always easily achieved or accurately demonstrated. For instance, in a
heart with vegetation or a flail mitral valve, perceptions on the attachment sites of
vegetation, or the precise portion of the valve that is flail, could be erroneous despite viewing
2D images in multiplanar reconstructions. Furthermore, it is difficult to determine the spatial
relationship of pathology to adjacent structures. Therefore, 3D imaging is the solution to
overcome those problems. With 3D imaging method, it could allow visualization of the true
nature of cardiac abnormalities in a clinically useful manner; provide better understanding of
the topographical aspects of pathology, and define the spatial relationship of structures more
reliably (Pandian et al. 1994).

The 3D echocardiography could demonstrate lesions such as an atrial septal defect very well.
The precise location of the defect, its relation to adjacent valves, vena cava, and pulmonary
veins, are also easily located. In addition, measurements of the size, length of pathological
lesions, volume and function of cardiac chambers which may influence management
decisions can be obtained. Traditionally, left ventricular chamber volume is calculated from
a single plane or biplane 2D images with the use of equations that require a number of
assumptions with regard to the 3D geometry of the ventricle. The ability to reconstruct the
chamber in all its dimensions and slice it three-dimensionally could aid in measuring left
ventricular volume and ejection fraction accurately without any geometric assumptions. This
could be especially helpful in ventricles with distorted shape. For estimation of right
ventricular volume, no reliable method using 2D techniques has emerged recently. This

problem may be solved with 3D imaging (Pandian et al. 1994; Pandian and VVannan 1993).
1.2.3.2 Diagnostic accuracy

A systematic review showed that the diagnostic accuracy of echocardiography for cardiac

disease was also moderate, with the mean sensitivity and specificity of 83% (95% CI 73% to
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90%) and 72% (95% CI 53% to 85%), respectively (Janda et al. 2011). Moreover, another
technique on echocardiography using stress test (exercise versus dobutamine) with the same
purpose for the diagnosis of CAD, resulted in mean sensitivity and specificity of 84% and
82% on exercise echocardiography (15 studies); and 80% and 84% with dobutamine
echocardiography (28 studies), respectively (Bax, Van der Wall, and De Roos 2005).

1.2.3.3 Limitations

Several limitations exist in 3D echocardiography imaging. Firstly, the real-time 3D range
resolution is 2 mm, whereas the lateral resolution is 3 mm at a depth of 7 cm. This indicates
a planar resolution inferior to that with conventional phased-array scanners. In a circular
matrix array, however, the transmitted and received beams are symmetrically circular,
steered, and focused in two dimensions instead of one dimension, like in a conventional
linear array. A focus on all dimensions, therefore, results in the significant improvement in
volumetric resolution over conventional 2D imaging arrays. Thus, a real-time 3D imaging
from a circular aperture transducer provides better volume resolution throughout the field of
view than conventional 2D echocardiography, although the planar resolution is slightly low
(Pandian et al. 1994). The clinical significance of these differences in resolution needs to be
tested. Secondly, system sensitivity is still limited to some extent. The definition of the
endocardia borders is a crucial issue in quantitative echocardiography, and the determination
of right ventricular volume requires saline contrast enhancement to adequately locate right
ventricular endocardium for the purpose of measurement. Thirdly, the frame rate of
echocardiography is 22 frames/seconds. This relatively slow frame rate may provide
sufficient samples at slow heart rates but could be quite problematic for the determination of
volumes in small children and infants or in adults with high heart rates. Lastly, the pyramidal
scan may not always be adequate to acquire an entire volume of the enlarged heart or left
ventricle (Kisslo et al. 2000).

1.2.4 Cardiac radionuclide imaging

Advancements in radionuclide imaging have brought about significant developments in the
non-invasive evaluation of cardiovascular disease. Radionuclide imaging demonstrates
cardiac functional changes and is more sensitive than other imaging modalities for the
detection and diagnosis of various cardiovascular abnormalities. Radionuclide imaging
techniques include single-photon emission computed tomography (SPECT), positron
emission tomography (PET), and integrated imaging modalities such as SPECT/CT and
PET/CT or PET/MRI.
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1.2.4.1 Imaging principles

SPECT is composed of conventional scintigraphy and computed tomography technique
which presents 3D and functional information about the patient’s anatomy in more detail and
in higher contrast when a radioactive substance is simultaneously included in the procedure.
The scintillation of SPECT consists of one or more cameras in a classic SPECT system that
obtains multiple two dimensional planer projection images around the patient. It is used to

assess the myocardial viability and left ventricular function

The imaging principle of SPECT is very similar to conventional nuclear medicine planar
imaging using gamma camera. However, it is able to provide true 3D information. This is
not only presented as cross-sectional slices of the patient, but also can be freely reformatted
or manipulated at any orientations. The basic technique requires intravenous injection of a
gamma-emitting radioisotope, which is a simple soluble dissolved ion, such as a radioisotope
of gallium (1I) for disease detection (Elhendy, Bax, and Poldermans 2002). However, in
most of the SPECT examinations, a marker radioisotope is attached to a specific ligand to
create a radio-ligand, which is of interest for its chemical binding properties to certain types
of tissues. This bond allows the combination of ligand and radioisotope to be carried and
bound to a place of interest in the body, which then allows the ligand concentration to be

seen by a gamma-camera.

Myocardial perfusion imaging (MPI) is a form of functional cardiac imaging, and is used for
the diagnosis of ischemic heart disease. The underlying principle is that under conditions of
stress, diseased myocardium receives less blood flow than normal myocardium. MPI is one
of the several types of cardiac stress tests. A cardiac-specific radiopharmaceutical is
administered, such as Tc-99m-tetrofosmin and Tc-sestamibi. Then, the heart rate is elevated
to induce myocardial stress, either by exercise or pharmacologically with adenosine,

dobutamine, or dipyridamole (Elhendy, Bax, and Poldermans 2002).

SPECT imaging performed after stress reveals the distribution of the radiopharmaceutical,
and therefore assessing the relative blood flow to the different regions of the myocardium.
Diagnosis is made by comparing images acquired during stress to a further set of images
obtained at rest. As the radionuclide redistributes slowly, the series of images (during stress
and rest situations) may not possible to be performed on the same day, hence a second
attendance is required 1-7 days later. The rest images are normally acquired at two hours
post-stress. However, if stress imaging is normal, it is unnecessary to perform rest imaging,
as it will be normal too; thus, stress imaging is always performed first (Elhendy, Bax, and
Poldermans 2002).

15



PET is a nuclear medicine imaging technique that produces a 3D image of functional
processes in the body. Unlike SPECT, PET scan needs a radioactive material called positron
which produces two gamma rays moving in opposite directions. The system detects pairs of
gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is
introduced into the body on a biologically active molecule. Three-dimensional images of the
tracer concentration within the body are then processed and reconstructed by computer
analysis. In modern scanners, three dimensional imaging is often accomplished with the aid

of a CT X-ray scan performed on the patient during the same session, in the same machine.

If the biologically active molecule chosen for PET is 18F-FDG (fluorodeoxyglucose), an
analogue of glucose, the concentrations of tracer imaged then give rise to tissue metabolic
activity, in terms of regional glucose uptake. Use of this tracer to explore the possibility of
cancer metastasis results in the most common type of PET scan in routine clinical practice
(90% of current scans). However, many other radiotracers are increasingly used in PET
scans to image the tissue concentration of many other types of molecules of interest
(Elhendy, Bax, and Poldermans 2002).

Combined or integrated PET/CT represents a recently developed technique that provides
both anatomical and functional information, thus, maximising the diagnostic performance of
the individual imaging modality. Multislice CT provides excellent anatomical details, while
PET offers superior physiological information of the body organs, thus combining these two
techniques in a single gantry system improves diagnostic value and allows accurate

assessment of disease extent.

1.2.4.2 Diagnostic accuracy

Myocardial perfusion imaging with SPECT is a widely established method for non-invasive
evaluation of coronary artery stenosis (Hachamovitch 2003). In fact, the sensitivity of
SPECT for detecting CAD is consistently beyond 70%. However, some studies have
reported that the sensitivity of SPECT was within the range of 85-90% (Di Carli and
Hachamovitch 2006; Slomka et al. 2008). PET has also contributed significantly to the
diagnosis of coronary artery disease. With regard to the assessment of CAD, the diagnostic
accuracy of myocardial perfusion by PET has been reported to be superior to SPECT
(Santana et al. 2007; Donati et al. 2011). PET with rest-stress myocardial perfusion is also
known as an accurate imaging modality for investigating and managing patients with CAD
(Donati et al. 2011). Moreover, the combined modality of PET/CT further increases the
diagnostic accuracy in CAD (Di Carli and Hachamovitch 2006; Slomka et al. 2008; Santana
et al. 2007; Donati et al. 2011; van der Vaart et al. 2008).
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A systematic review of sensitivity, specificity and the accuracy of SPECT, PET and PET/CT
in the detection of CAD showed that PET demonstrated the highest sensitivity, specificity
and the accuracy at 91%, 89% and 89%, respectively (Al Moudi, Sun, and Lenzo 2011).
Whereas PET/CT had 85%, 83% and 88% while SPECT was found to have 82%, 76% and
83% corresponding to sensitivity, specificity and accuracy. With the moderate results of
sensitivity, specificity and accuracy in detecting CAD, therefore, this analysis indicates that
SPECT has not reached the diagnostic accuracy to be considered as a reliable technique for
assessment of CAD. Several studies also showed that the mean sensitivity and specificity of
SPECT was 86% and 74% for the detection of CAD. However, the lower specificity of
SPECT may be due to referral bias which is introduced by including patients with normal
SPECT studies, only those with a high suspicion for CAD are referred for coronary

angiography (Underwood et al. 2004).
1.2.4.3 Limitations

SPECT scanning can be time-consuming. It can take hours or days for the radiotracers to
accumulate in some parts of the body under investigation and imaging may take up to several
hours to complete though in some cases, newer equipment is available that can substantially
shorten the procedure time (Mettler and Guiberteau 1998; Strauss and Griffeth 1994). In
addition to the limitation of time-consuming, it is essential that no patient movement is
required during the scan time. Movements can cause significant degradation of the
reconstructed images, although movement compensation reconstruction techniques can help
solve the problem to some extent. In addition, a highly uneven distribution of
radiopharmaceutical also has the potential to cause artifacts. A very intense area of activity

can cause extensive streaking of the images and obscure adjacent areas of activity.

Limitations to the widespread use of PET arise from the high costs of cyclotrons needed to
produce the short-lived radionuclides for PET scanning and the need for specially adapted
on-site chemical synthesis apparatus to produce the radiopharmaceuticals after radioisotope
preparation. Furthermore, the radioactive material used in PET/CT has shorter half-life.
Since the half-life of 18F-FDG is about two hours, the prepared dose of a
radiopharmaceutical bearing this radionuclide will undergo multiple half-lives of decay
during the working day (Mettler and Guiberteau 1998). This necessitates frequent

recalibration of the remaining dose and careful planning with respect to patient scheduling.
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1.3 Coronary CT angiography
1.3.1 Technical aspects-spatial resolution

Spatial resolution is determined as the ability to visualize small structures in the scanned
volume. A voxel is the volume element that is represented by a 2D pixel in the axis of x- and
y-plane. The third dimension is the z-axis which represents a voxel height. Image
reconstructions with a smaller field of view can substantially decrease the pixel size in the
axial planes (Kroft, de Roos and Geleijns 2007), however, the spatial resolution of coronary
CT angiography depends on the resolution at the z-axis, which is determined by the slice
thickenss. With current MSCT scanners, volume data with thinner slice thickness (0.5-0.6
mm) can be easily acquired with high resolution, thus, partial volume artefacts can be

eliminated.

Many cardiac structures, especially the coronary arteries and the cardiac valves including the
valve flaps, represent small and complex 3D structures that require very high and
submillimeter isotropic spatial resolution with longitudinal resolution close or equal to in-
plane resolution (0.4-0.6 mm). The lumen diameter of the main segments of the coronary
artery tree ranges from 3-5 mm in the main segments to about 1 mm in the distal segments.
With early type of MSCT scanners such as 4-slice CT, the image quality is poor and limited
due to limited spatial resolution (0.6 x 0.6 x 1.0 mm), and the non-assessable coronary
segments could be as high as more than 20% in 4-slice studies (Dirksen et al. 2005; Giesler
et al. 2002; Hong et al. 2001; Nieman et al. 2002). With the introduction of 16-slice (0.5 x
0.5 x 0.6 mm) and development of 64-slice CT, acquisition of isotropic volume data is made
available, especially with 64-slice CT (0.4 x 0.4 x 0.4 mm), thus detection of main and side
coronary artery branches is significantly improved when compared to earlier types of MSCT
scanners (Dewey et al. 2004; Hoffmann, Lessick, et al. 2006; Kantarci et al. 2006; Leschka
et al. 2009; Mollet et al. 2005; Pugliese et al. 2006).

1.3.2 Technical aspects-temporal resolution

Temporal resolution is the ability to resolve fast-moving objects in the displayed CT image
(Geleijns et al. 2006). Temporal resolution remains a major challenge in coronary CT
angiography since the heart is a fast-moving organ during CT scans. Limitations in temporal
resolution are strongly related to the visualisation of coronary artery anatomical details. The
temporal resolution of MSCT scanners is mainly determined by the speed of gantry rotation.
As it is possible to accurately reconstruct images using data acquired from a 180 degree

rotation rather than the full 360 degree rotation, the temporal resolution is equal to half the
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gantry rotation speed (e.g. 250 ms for 500-ms rotation time, and 200 ms for 400-ms rotation

time).

A temporal resolution of about 250 ms is estimated to be appropriate for motion free imaging
in the diastolic phase up to a heart rate of about 60 bpm, about 200 ms up to a heart rate of
70 bpm, and approximately 150 ms for clinically usual heart rates up to 90 bp. It can be
expected that a temporal resolution of about 100 ms is sufficient for imaging the heart during
the diastolic or end-systolic phase also at high heart rates. The temporal resolution for 4-
slice CT is 250 ms, and this is further reduced to 165 ms for 16- and 64-slice CT, and to 83
ms for dual source CT (Flohr 2003; Flohr, Kiittner, et al. 2003; Flohr, McCollough, et al.
2006)

1.3.3 Artefacts

Image artefacts can be defined as any inconsistency between the reconstructed Hounsfield
values in the image and the true attenuation coefficients of the object in such a way that these
discrepancies are clinically significant or relevant as judged by the radiologist (Hsieh 2003).
Imaging coronary arteries using CT angiography requires high spatial resolution, high
temporal resolution, good low-contrast resolution, intravascular contrast enhancement and a
short scanning time. Image artefacts always associated with the limitations of either temporal
resolution, or noise and the reconstruction algorithm in the scanner system. Images artefacts
are mainly demonstrated as blooming, streaks, partial volume and motion artefacts. All these

artefacts can arise from technical, operator, and patient errors (Barrett and Keat 2004).

Stair-step artefact is the most common artefact that occurs in CCTA. Stair-step artefact is
also known as slab artefact which is attributable to cardiac pulsation often degrading image
quality. Stair-step artefact occurs especially in patients with high heart rates, heart rate
variability, and the presence of irregular or ectopic heart beats such as premature ventricular
contractions and atrial fibrillation during image acquisition. It can be best recognized in a
sagittal or coronal view. Therefore, beta-blockers should be used to reduce the heart rate
prior to the scan. Reducing this artefact is achieved by reconstructing the dataset at different
phases of the cardiac cycle. In general, reconstructions for CCTA are performed in mid-
diastole to late diastole (60%—-70% of the R-R interval). However, because the duration of
diastole decreases as the heart rate increases, an end-systolic phase reconstruction at 25%—

35% of the R-R interval might be considered for image processing (Barrett and Keat 2004).
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1.3.4 CT scanner developments

CT scanner has rapidly evolved from single slice to multislice CT which started from 4-slice
systems in 1998 to the latest 256-slice and 320-slice CT systems. With smaller detector
element size and faster gantry rotation speed, spatial and temporal resolutions of the 64- or
more MSCT scanners have enabled coronary artery imaging a feasible and reliable clinical
test. The technological advancements from 16- to 64-slice systems progressed in a relatively
uniform fashion with improved longitudinal (z-axis) volume coverage, decreased gantry
rotation time, and smaller detector elements (Paul et al. 2003; Ropers et al. 2003). With the
ability to acquire volume data, technological improvements in CT scanning also enables
generation of 3D image processing such as multiplanar reformation (MPR), maximum
intensity projection (MIP), surface-shaded display, and volume-rendering techniques, and
these reconstructed visualisations have become an important component of medical imaging

visualization in daily practice (Sun, Choo, and Ng 2012).
1.3.4.1 Single-slice CT

Parallel fan beams of radiation are produced by the X-ray tubes with the earlier successive
generations of CT scanners. This resulted in very slow image acquisition since no movement
occurred along the axis of the patient during each of the projections. Axial scanning requires
long examination times because of the interscan delays necessary to move the table
incrementally from one scan position to the next and unwind the cable, thus it is prone to
misregistration or loss of anatomical details due to potential movement of the relevant
anatomical structures between two scans (by patient breathing, motion or swallowing).
Besides, only a few slices are scanned during maximum contrast enhancement when the
contrast medium is used. These problems may be overcome if the scan speed is increased
and interscan delay is eliminated. The development of spiral CT possesses these features

which help to overcome the above problems.

The introduction of spiral CT in the late 1980s represented a fundamental evolutionary step
in the development and continuing refinement of CT imaging techniques (Ciernak 2011). In
1989, spiral CT became available as a mode for continuous volume scanning (Ciernak 2011).
With spiral CT, the patient table is continuously moved and translated through the gantry
while scan data are acquired simultaneously. A prerequisite for spiral CT scanning is the
introduction of slip-ring technology, which eliminates the need to rewind the cable after each
rotation and enables continuous data acquisition during multiple rotations. The purpose of
slip-ring is to allow the x-ray tube and detectors to rotate continuously so that a volume data

of the region of interest, rather than a single slice can be acquired very quickly in a single
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breath hold. Spiral CT scanning does not suffer from the danger of misregistration or loss of
anatomic details. Images could be reconstructed at any position along the patient longitudinal
axis, and overlapping image reconstruction could be generated (normally 50% overlap) to
improve longitudinal resolution. Acquisition of volume data has become the very basis for
applications such as CT angiography (Goldman 2008).

1.3.4.2 4-slice CT

In 1998, a 4-slice CT scanner was introduced by several manufacturers representing an
obvious quantum leap in clinical performance (Costello 1996; Taguchi and Aradate 1998).
Four detector ‘rows’ corresponding to the 4 simultaneously collected slices fed data into four
parallel data ‘channels’, so that these 4-slice scanners were said to possess four data
channels. These 4-slice scanners, however, were quite flexible with regard to how detector
rows could be configured; groups of detector elements in the z-direction could be
electronically linked to function as a single, longer detector, thus providing much flexibility
in the slice thickness of the four acquired slices (Flohr et al. 2005; McCollough and Zink
1999). Fundamental advantages of MSCT include substantially shorter acquisition times,
retrospective creation of thinner or thicker sections from the same raw data, and improved

three-dimensional rendering with diminished helical artefacts (Costello 1996).

For example, the SOMATOM Volume Zoom with a 500 ms gantry rotation time and the
simultaneous acquisition of 4 slices offers an eight-fold increase of performance compared to
previous 1 second, single-slice scanning. Obviously, such a significant improvement opens
up a new area in spiral CT improving all existing applications and allowing the realization of
new clinical applications. The key issue is correspondingly increased volume coverage per
unit time at high axial resolution and subsequent improved temporal resolution (Costello
1996).

Four-slice scanners are the basic system for CCTA examination. With only 250 ms of
temporal resolution from a gantry rotation of 500 ms CCTA with use of 4-slice CT requires
longer longitudinal scan to cover the entire cardiac chamber and coronary arteries, thus, this
may result in long breath hold between 30 and 40 seconds which lead to breathing and
motion artefacts (Haberl et al. 2005).

1.3.4.3 16-slice CT

The installation of 16-slice CT scanners in 2002 provides 16 detector channels enabling
simultaneously acquisition of 16 slices per gantry rotation (Goldman 2008). In addition to

simultaneously acquiring up to 16 slices, the detector arrays associated with 16-slice
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scanners were redesigned to allow thinner slices to be obtained as well. Note that in all of the
models, the innermost 16 detector elements along the z-axis are half the size of the outermost
elements, allowing the simultaneous acquisition of 16 thin slices (from 0.5 mm to 0.75 mm
thick, depending on the model and manufacturer). When the inner detectors were used to
acquire submillimeter slices, the total acquired z-axis length and therefore the total width of
the x-ray beam ranged from 8 mm for the Toshiba model to 12 mm for the Philips and
Siemens scanners. Alternatively, the inner 16 elements could be linked in pairs for the

acquisition of 16 thicker slices (Lewis, Keat, and Edyvean 2006).

Sixteen-slice scanners have a slightly better spatial resolution and faster gantry rotation (420
ms) than that in 4-slice CT (Kopp et al. 2002). The major advantage of 16-slice scanners
over 4-slice CT is the longer z-axis coverage (16 x 0.75 mm vs 4 x 1.0 mm), resulting in
significantly shorter breath hold and less motion artefacts (Achenbach et al. 2005; Gibbons
et al. 1997; Kuettner, Beck, and Drosch 2005). The rotational speed of 16-slice scanners is
only marginally faster, and adaptive multi-cycle reconstructions, which require a high
number of detectors, often cannot be applied because of heart rate variations. As a
consequence of these factors, image quality with the 16-slice scanner is significantly
improved, reducing the number of coronary segments with poor image quality (Achenbach et
al. 2005; Flohr, Schoepf, et al. 2003; Garcia, Lessick, and Hoffmann 2006; Gibbons et al.
1997; Kuettner, Beck, and Drosch 2005).

Coronary CT angiography became more clinically practical with retrospective
electrocardiogram (ECG) gating to capture cardiac motion plus the z-axis coverage from 16-
detector row scanners (Kalender et al. 1990). However, cardiac motion and stair-step
artefacts are the main challenge in this system. Therefore, there are few steps suggested to
overcome those problems, which include increasing the number of detector elements and the
volume coverage along the z-axis of detector block. Moreover, increase in the sensitivity of
detector material and application of iterative image reconstruction algorithms represents
another approach to improve cardiac image quality (Klingenbeck-Regn et al. 1999; Liang
and Kruger 1996). During 2003 and 2004, manufacturers introduced different types of
MSCT models with less than 16-slice scanners, but most commonly the introduction of more
than 16-slice scanners represented the main direction for improving MSCT systems
(Goldman 2008).

1.3.4.4 64-slice CT

The 64-slice CT was first introduced with a single x-ray source mounted opposite to a 64-

detector-array in the gantry unit. With gantry rotation times down to 0.33 second for 64-slice
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CT (0.375 second for 16-slice CT), temporal resolution for cardiac ECG-gated imaging is
again markedly improved. The increased temporal resolution of 64-slice CT has the potential
to improve the clinical strength of ECG-gated cardiac examinations at higher heart rates,
thereby reducing the number of patients requiring heart rate control. In contrast to previous
studies, high diagnostic accuracy has been achieved despite the presence of severely
calcified coronary plaques. In addition, using 64-slice CT the scanning time is reduced to
less than 15 seconds, allowing a decreased breath hold time, better utilization of contrast
medium with fewer enhancements of adjacent structures and a lower dose of applied contrast
medium. Improvement of image quality has also been reported in the visualization of all

coronary artery branches with high sensitivity and specificity achieved.

The new-generation dual-source MSCT (Somatom Definition FLASH; Siemens Medical
Solution, Forchheim, Germany) introduced at the end of 2008 is equipped with two 64-
detector row units, each with an alternating focal spot. The 360° gantry rotation time is 280
ms, translating to a temporal resolution of approximately 75 ms when the scanner operates
with both x-ray tubes collecting data at the same energy. The vendor has proposed a high-
pitch prospectively ECG-triggered scanning acquisition (Achenbach et al. 2006; Flohr,
McCollough, et al. 2006). In single-source 64-slice CT, the maximum pitch is roughly 1.5
for gapless image reconstruction. The pitch can be increased up to 3.2 in dual-source
systems. For CCTA, the typical phase window required for a diagnostic quality examination
regarding motion artefact is 10% of the R-R interval. The pitch required for multiphase
acquisition ranges from 0.2 to 0.5, depending on the heart rate (Steigner et al. 2009).

With the high-pitch acquisition mode, only one phase is acquired, which gradually increases
with the z-axis table translation. The influence on image quality for different clinical
scenarios and heart rates is evaluated with the second generation dual-source CT. Achenbach
et al. (2009) have demonstrated the feasibility of this new scanning method using first-
generation dual-source CT. However, slow and regular heart rates are the prerequisite for
this acquisition protocol that is prospectively triggered by ECG signal and is anticipated to
scan the entire heart in 270 ms, with a pitch of up to 3.4 (Achenbach et al. 2009). Another
potential advantage of dual-source CT is tissue characterization with both detector systems
operating at different tube voltages known as dual-energy CT. Although this has not been
extensively studied to date, the two x-ray beams of different energy spectra in theory could
better demonstrate varying attenuation characteristics of different tissues (Ruzsics et al.
2008; Rybicki et al. 2008).
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1.3.4.5 128- and 256-slice CT

In late 2007, the 128-slice CT (Brilliance iCT; Philips Healthcare, Cleveland, OH) was
introduced with a 128 x 0.625-mm detector row system with dual focal spot positions to
double the number of slices within the 8-cm (width) z-axis gantry coverage. The iCT has a
gantry rotation time of 270 ms, which translates to an approximate temporal resolution of
135 ms. Prospectively ECG-triggered coronary CT angiography typically covers the entire
heart in two axial acquisitions over three heartbeats. During the diastole of the first heartbeat,
the upper half of the heart is imaged. During the second heartbeat, the X-ray table translates
62.4 mm. Subsequently, the lower half of the heart is acquired during the diastole of the third
heartbeat. The scanner is equipped with several radiation reduction capabilities, including a
dynamic helical collimator and an adaptive axial collimator to reduce z-over scanning
(Hameed et al. 2009; Walker et al. 2009).

Second generation of 128-slice CT was introduced with dual-source which uses two x-ray
tubes with opposing 64 detector arrays mounted 90° from each other. The main advantage of
this system is that the temporal resolution is effectively halved because each x-ray
tube/detector array system only needs to rotate half of the angle that would otherwise be
required by a single-source system. The number of detector rows in the longitudinal axis (z-
axis) and the number of slices of CT system are not interchangeable terms because multiple
systems with an alternating focal spot allow the same z-axis coverage to be sampled twice,
and thus the number of image slices generated is double the number of detector rows (Flohr,
McCollough, et al. 2006). However, the volume coverage remains the same; for example, a
128-detector row scanner with two alternating z-focal spot positions can be referred to as
256-slice CT. It is important to specify the number of detector rows in z-axis, with or

without alternating focal spot positions, and single versus dual source.
1.3.4.6 320-slice CT

This hardware (Aquilion One Dynamic Volume CT; Toshiba Medical System, Tochigi-ken,
Japan) currently has the largest z-axis detector coverage. It was released shortly after
experiments with a 256-detector row CT prototype (Kido et al. 2007; Mori, Endo, et al.
2005; Mori et al. 2006; Mori, Kondo, et al. 2005). Each detector element is 0.5 mm wide,
yielding a maximum of 16-cm z-axis coverage. This configuration allows three-dimensional
volumetric entire heart imaging during the diastole of one R-R interval. In 320-detector row
CT, the entire heart is imaged with temporal uniformity. Furthermore, if the x-ray beam is
turned on for a longer period, the scanner can capture the heart over one or more cardiac

cycles. This has been described as four-dimensional CT or volumetric cine imaging (Mori,
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Kondo, et al. 2005). The temporal resolution of CT scanner reflects the ability to freeze
cardiac motion, thus producing motion-free images. The 320-detector scanner has a standard
temporal resolution of approximately 175 ms, one half the gantry rotation times. For patients
with higher heart rate (>65 bpm) and contraindications to B-blockers, multi-segment
reconstruction can be used at the expense of higher radiation dose. For example, in two-
segment reconstruction, data required for image reconstruction are acquired over two cardiac
cycles. Therefore, only data from 90° rotation during each of the two cardiac cycles are used,

improving the effective temporal resolution by a factor of 2 (Hoe and Toh 2009).
1.3.5 Coronary CT angiography scanning techniques with ECG-gating protocols

Over the last ten years continuing improvements have taken place in the CT technology. The
ability to produce images of the coronary artery lumen and wall in order to obtain
information on the presence, severity, and characteristics of CAD has made CCTA a reliable
non-invasive diagnostic tool in coronary artery imaging. With emergence of the latest
technology in CCTA, visualisation of atherosclerotic plaque and luminal stenosis/obstruction

has become available for the diagnostic work-up of patients with known or suspected CAD.

The acquisition of the dataset for CCTA consists of three steps including topogram,
determination for the adequate contrast enhancement of CCTA and the image acquisition for
the entire coronary artery tree. A low-energy topogram is acquired as a first step. This scan
permits accurate positioning of the scan volume for subsequent planning on data acquisition
inclusive of scan direction, slice thickness and set up of the exposure parameters. In step
two, the contrast enhancement setting for the scan can be obtained in two techniques namely

bolus tracking technique and the test bolus technique.

The bolus tracking technique uses a series of dynamic low-dose axial scans with an interval
of 2 seconds at the level of the carina. This technique allows the operator to track the bolus
of contrast material in order to ensure that contrast enhancement is sufficient at the level of
the ascending aorta prior to the scan. The CCTA imaging sequence is initiated when the
contrast enhancement reaches a predefined value between 100 and 150 Hounsfield units. On
the other hand, the test bolus technique requires a small bolus of iodinated contrast agent
(10-20 mL) to be injected into the antecubital vein and followed by normal saline (30-50
mL) at a rate of 4-5 mL/s in order to determine the contrast material transit time (Hoffmann,
Ferencik, et al. 2006). A non-gated axial image is generated every 2 seconds at the level of
the ascending aorta. The time from the start of the injection to the peak contrast enhancement
in the ascending aorta determines the time for scan delay after the initial contrast material

administration. The test bolus technique is also known as ‘sure start’ technique by some

25



manufactures. The timing bolus (Achenbach et al. 2005; Hoffmann et al. 2004; Kuettner et
al. 2004) and the bolus tracking techniques (Dewey et al. 2004; Hoffmann et al. 2005; Mollet
et al. 2004) provide similar results and have been widely used in the current cardiac CT
studies.

In the third step, a CT volume dataset for the coronary arteries is acquired; this dataset
covers the entire heart from the proximal ascending aorta (approximately 1-2 cm below the
carina) to the diaphragmatic surface of the heart. The scan is acquired in a single breath hold
during comfortable inspiration and starts with the injection of a contrast agent with a high
concentration of iodine (300-400 mg/mL) at a high flow rate (4-6 mL/s). The total volume
of contrast agent depends on the scan length, but typically 60-80 mL is injected, followed by
a saline flush (40-70 mL at 4-6 mL/s). The actual CT scan starts after the delay is calculated

as the contrast material transit time (Hoffmann, Ferencik, et al. 2006).

There are two scanning modes for a CT scan: step-and-shoot CT or sequential and helical or
spiral CT. In sequential CT, a cross-sectional image is produced by acquiring a series of
axial slices of the body from different angular positions while the X-ray tube and detector
rotate 360° around the patient with the table being stationary. The image is then
reconstructed from the resulting projection data. However, if the patient moves during the
acquisition, the data obtained from the different angular positions are no longer consistent. In
fact, the image will be degraded by motion artefacts and may be of limited diagnostic value
(Flohr, Bruder, et al. 2006; Flohr et al. 2005).

Spiral CT uses a different scanning principle. Unlike the sequential CT, X-ray the table
moves continuously through the gantry in the z-direction while the X-ray tube rotates 360°
around the patient. The X-ray traces a spiral path around the patient and produces volume
data. The table movement in the z-direction during the data acquisition will generate
inconsistent datasets, causing reconstructed images being degraded by the artefacts. Thus,
some special reconstruction algorithms such as interpolation techniques are used to generate
a planar set of data for each table position producing artefact-free images. Thus it is possible
to reconstruct individual slices from a large data volume by overlapping reconstructions as
often as required (Flohr, Bruder, et al. 2006; Flohr et al. 2005).

1.3.6  Prospectively ECG-triggered coronary CT angiography

Prospectively ECG-triggered technique uses axial images and an incrementally moving table
to cover the heart with minimal overlap of axial slices. Cardiac imaging with electron beam
CT also uses prospective data acquisition triggered by ECG. Prospective triggered technique

in cardiac CT is not new and it was actually being used by Dr. Godfrey Hounsfeld in early
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1980 with conventional single-slice CT (Hounsfield 1980). It was recognized that CT image
synchronization with heart diastolic phase was optimal for imaging the heart. However, the
findings were not being achieved when the patient heart rate increases.

The prospective triggered technique uses a combined ‘‘step-and-shoot’’ axial data
acquisition and an incrementally moving table with adaptive ECG triggering. In this
technique, the table is stationary during image acquisition. It then moves to the next position
for another scan initiated by the subsequent cardiac cycle. This results in very little overlap
between the scans but leads to a significant reduction in radiation dose. In prospective ECG
triggering, the tube current is turned off for most of the scan period. The tube current is on
only for a short period during diastole which is triggered by the electrocardiogram (Earls
2009).

When a 64-slice system is used, the scan is prescribed by using 3-5 incremental of 64 x
0.625 mm (40 mm) image groups which requires 2—4 incremental table translations of 35
mm. Thus, allow for 5 mm of overlap. The minimum interscan delay is approximately
between 0.6 and 1.0 second which normally requires skipping a cardiac cycle between data
acquisitions which results in one image acquisition per 2 cardiac R-R cycles (Earls 2009).
However, the process will be faster with larger detectors (128-, 256- or 320-slice CT) being
used. The detector width determines the number of steps/scans to cover the entire heart and
complete an examination. For instance, the dual-source 64-slice CT has a narrower detector
array (32 x2 x 0.6 mm = 38.4 mm per acquisition); thus, it takes more incremental steps
(normally 4-5 cardiac cycles) to cover the heart and complete an examination than with the
320-row system (320 x 0.5 mm = 160 mm) which covers the heart in a single acquisition
(Hoe and Toh 2009).

Prospectively ECG-triggered technigue has a limited number of cardiac phases available for
reconstruction. Therefore, mid-diastolic phase (75% of R-R interval) was normally selected
for data acquisition for all subjects. In addition, by using add-on ‘padding’ will allow more
cardiac phases for reconstruction. Padding technique is described as prolonging the
acquisition window in order to allow the reconstruction to adapt with minor heart rate
variations and to produce consistent image quality. Padding turns the x-ray tube on before
and after the minimum or actual acquisition time (milliseconds) required. Available padding
options with current software ranges from 0 to 200 msec (Figure 1-3). No padding is
required for patient with stable heart rates with minimal heart rate variability. However,
radiation dose also will increase with application of padding window due to expense of

radiation exposure on the particular windows phase (Earls 2009; Hausleiter et al. 2006).
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Figure 1-3: The use of extra tube-on time to acquire image data during additional cardiac
phases. Padding turns tube on prior to minimum half-scan time and leaves it on afterwards. It

is recommended in cases when heart rate varies during examination.

Minirmum acquisition
window [ no padding)

100ms 50ms 0ms Oms 50ms 100 ms
padding windows padding windows

Other than adjusting prospective triggering parameters in order to adapt with high heart
rates, application of B-blockade for heart rate control is also commonly used in CCTA to
produce better results. However, precautions have to be taken in patients who are
contraindicated to B-blockage agent. Alternatively, calcium channel blocker could be used in
order to reduce the heart rate. The maximum of 15 mg of intravenous metaprolol (-blocker)
or 40 mg of intravenous diltiazem (calcium channel blocker) is recommended prior to the
scan in order to control the heart rate (Earls 2009; Pannu, W. Alvarez, and E. K. Fishman
2006).

The major drawback of prospective ECG triggering is that cardiac functional analysis is
unavailable. Since prospective technique acquires data during a limited portion of the cardiac
cycle, it cannot be used to evaluate cardiac function. Both quantitative and qualitative
functions, either global or regional, require images to be reconstructed throughout the entire
cardiac cycle. If the clinical scenario or referring physician requires information about

cardiac function, then retrospective gating must be undertaken.

Heart rate variability is another limitation for the prospective ECG triggered technique. Heart
rate variability of > 5 beat/minute is considered not applicable for prospective triggering.
Therefore, the scan has to be reverted into retrospective ECG gating technique if patients’
heart rate elevated or heart rate variability does not meet the requirement after 3-blocker has

been given (Earls 2009).
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However, the prospective ECG triggered technique in patients with higher heart rates still
produces diagnostic images. CT scanner with higher detector arrays is an alternative to
obtain CCTA in patients with high or irregular heart rates. It has been reported that high
diagnostic value could be achieved with 320-slice CT angiography in the diagnosis of CAD,
with image quality independent of heart rate (Hoe and Toh 2009). The improved temporal
resolution (175 ms) and increased coverage scan value (160 mm) of 320-slice CT results in
robust image quality within a wide range of heart rates; thus providing the opportunity to
image patients with higher heart rates without requiring pre-examination beta-blockage (Hoe
and Toh 2009).

1.3.7 Retrospectively ECG-gated coronary CT angiography

Coronary CT angiography is most commonly performed in the spiral acquisition mode with
continuous acquisition of data throughout the cardiac cycle. Multiple reconstruction
parameters determine the quality of the reconstructed axial images. Images are usually
reconstructed with a slice thickness of 0.75 mm, 50% overlap between images (0.4-mm
increment), and a pixel matrix of 512 x 512. Although a thinner slice improves the resolution
of the 3D dataset and the quality of reconstructed images, it comes at the cost of increased
image noise, which can significantly limit the diagnostic assessment of the coronary arteries

in patients with body mass index of greater than 30 kg/m? (Leschka et al. 2008).

CCTA images are typically reconstructed with a medium smooth reconstruction kernel.
Sharper reconstruction kernels can be applied to tailor evaluation of coronary stents. A small
field of view (18-20 cm) that encompasses only the heart is used for CCTA evaluation. For
the assessment of incidental extra cardiac findings, the raw data are reconstructed with a
larger field of view (35 cm) and 3-mm-thick slices. The use of retrospective ECG-gated
reconstruction permits the reconstruction of complete datasets collected at different points of
the R-R cycle. It has been shown that the optimal reconstruction window in which the
coronary arteries can be visualized almost free of motion artefacts lies in mid-diastole (60%—
70% of the R-R interval) (Leschka et al. 2009). Exceptions are observed in patients with
higher or irregular heart rates, in which a reconstruction window positioned in late systole
(25%-35% of the R-R interval) often yields the best image quality. Although the half-scan
algorithm (data from 210° and 1 detector are used for a single image) is the default option for
all patients with heart rates of less than 70 beats per minute (bpm), sometimes multisector
reconstruction algorithms are used in patients with high heart rates to generate diagnostic
images (Flohr, McCollough, et al. 2006).
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In single-source CT (SSCT), improved temporal resolution is obtained at the expense of
limited spiral pitch and correspondingly increased radiation dose to the patient. For a single
segment reconstruction, the table has to travel slowly in order to ensure that each z-position
of the heart is visualised by a detector slice during each phase of cardiac cycle. Therefore,
the patient’s heart rate would determine the spiral pitch (if the heart rate goes up, the spiral
pitch can be increased). Moreover, if multi-segment reconstructions are applied at higher
heart rates to improve temporal resolution, the spiral pitch has to be reduced again. For
example, each z-position of the heart has to be visualised by a detector slice during two
consecutive heart beats in a 2-segment reconstruction; and three consecutive heart beats for a
3-segment reconstruction; and so on. In general, manufacturers of single-source CT scanners
recommend an adaptive approach for ECG-gated cardiac scanning which the pitch of the
ECG-gated spiral scan is kept constant at a relatively low value between 0.2 and 0.25.
Therefore, more segments are used for image reconstruction at higher heart rates to improve
temporal resolution (Dikkers et al. 2009; Wang et al. 2009).

Using a DSCT system, a temporal resolution of a quarter of the gantry rotation time is
achieved, independent of the patient’s heart rate. Single-segment reconstruction using data
from one cardiac cycle for image reconstruction can be applied at all heart rates. Since multi-
segment reconstruction will not be required, the spiral pitch can be efficiently adapted to the
patient’s heart rate and significantly increased at elevated heart rates, compared with single -
source CT systems with multi-segment reconstructions required at higher heart rates. Pitch
values ranging from 0.25 at lower heart rates up to 0.5 at high heart rates are possible,
resulting in coverage of the entire heart volume within 5 to 9 seconds with use of 2 x 32 x
0.6 mm collimation. The increased pitch at higher heart rates not only reduces the
examination time, but also reduces the radiation dose to the patient. At a constant tube output
and fixed gantry rotation time, higher pitch is directly related to the reduction of patient dose.
Using the dedicated DSCT scanner, the patient’s heart rate is monitored before the
examination with the lowest heart rate being observed during the monitoring phase and an
additional safety margin of 10 bpm being subtracted to automatically adjust the pitch values
(Flohr, McCollough, et al. 2006; Ketelsen et al. 2010).

Although the opportunity to noninvasively exclude significant CAD provides an attractive
rationale for using CCTA in a variety of clinical applications, data on the clinical utility,
cost, and cost-effectiveness, prerequisites to justify clinical implementation, are still
debatable. Since invasive coronary angiography is associated with a small but not negligible
risk of complications (inherent in invasive procedures), inconvenience to patients, and high

costs, CCTA may be an effective alternative to invasive coronary angiography, with the
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potential of reducing the number of purely diagnostic angiographic procedures. Patients with
an intermediate likelihood of CAD (between 30% and 70% probability of having significant
CAD, as determined by age, sex, and clinical symptoms) may benefit from CCTA (Gibbons
et al. 1997). Other potential applications include preoperative risk assessment, assessment of
patency of stents placed in the left main coronary artery, and evaluation of bypass patency.
Furthermore, the ability to detect and characterize the extent, distribution, and morphology
of coronary atherosclerotic plague may be useful for improving short- and long-term

cardiovascular risk stratification (Achenbach et al. 2004).
1.3.8 Coronary CT angiography-diagnostic accuracy

The diagnostic accuracy of coronary CT angiography has been reported extensively in the
literature ranging from the earlier studies using retrospective ECG-gated protocols to the
recent reports comparing prospective ECG-triggering and retrospective ECG-gating. In
retrospectively ECG-gated CCTA, several studies on different types and generations of
MSCT scanners were carried out with overall results showing that CCTA had moderate to
high sensitivity of 86-99 % and high specificity of 89-100% in patients with suspected CAD.
In particular, a very high negative predictive value (NPV) of over 95% (96-99%) has been
reported in these studies indicating that CCTA can be used as a reliable screening tool for
CAD (Pontone et al. 2009; Sun and Ng 2012). Moreover, multicentre studies were also
conducted on 64-slice CT scanner to investigate the diagnostic accuracy of CCTA with
different risks of CAD prevalence. The results showed that high sensitivity (94%),
specificity (83%) and NPV (99%) was achieved in high risk patients with CAD (68%).
Similarly, high diagnostic accuracy was also presented in low risk of CAD with sensitivity,
specificity and NPV being 94%, 83% and 99% in 25% of CAD prevalence; 85%,90% and
83% in 56% of CAD prevalence, respectively (Budoff et al. 2008; Meijboom et al. 2008;
Miller et al. 2008). A study on the high-pitch mode with 128-slice CT also resulted in high
sensitivity, specificity and NPV of 94%, 91% and 97% respectively (Alkadhi et al. 2010).

In recent years, prospective ECG-triggered CCTA is increasingly used in the diagnosis of
CAD with promising results reported. The sensitivity (93.7-100%), specificity (82.7-97%)
and NPV (95-98%) in the assessment of CAD were reported in multiple studies confirming
the feasibility of this fast developing technique (Pontone et al. 2009; Sun and Ng 2012).
Several studies on CCTA using DSCT were also conducted to compare the diagnostic
accuracy between 64-slice and 128-slice CT. The high sensitivity, specificity and NPV were
achieved in 64-slice CT with 100%, 99% and 94% respectively (Scheffel et al. 2006).
Similarly, 128-slice DSCT also demonstrated high diagnostic accuracy of 93%, 94% and
97% corresponding to sensitivity, specificity and NPV, respectively (Alkadhi et al. 2010).

31



However, studies on the diagnostic accuracy of CCTA using the latest CT generations
including 256- and 320-slice CT are limited, thus, further research is needed to investigate
the diagnostic performance of CCTA with use of these recent models, in particular, the

corresponding image quality and radiation dose.
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1.4 Radiation dose
1.4.1 Radiation dose effects

Radiation dose could cause deterministic and stochastic effects. Deterministic effect occurs
when the radiation dose reaches a threshold dose level. The threshold level in deterministic
effect varies in different subjects and the damages are significantly correlated to the amount
of dose received. Skin injury, hair fall and cataract are the examples of deterministic effects
associated with radiation dose. For example, skin injuries range from skin erythema, moist
desquamation, epilation, laceration to necrosis if the skin is exposed to radiation dose beyond
the threshold dose at 2 Gy (Bogaert et al. 2009).

On the other hand, stochastic effect can be defined as an effect that occurs without any dose
threshold. It happens at all time and the damages are not depending on the amount of dose
received. For example, ionising radiation induces cancer and genetic changes. However,
previous studies have reported that the increment of radiation dose could increase the chance
of developing cancer (Hall 1999).

The assumed risk of cancer estimations are derived from analyses of mortality data based on
Japanese atomic bomb survivors exposed to the radiation doses (Brenner et al. 2001; Pierce
et al. 1996). This study has reported that there was a strong evidence of an increased cancer
risk at equivalent doses greater than 100 mSv, good evidence of an increased risk for doses
between 50 and 100 mSv and reasonable evidence for those who had exposed to doses

between 10 and 50 mSv.

However, CT contributes to the highest radiation dose of all radiological examinations.
Brenner and Hall estimated that approximately between 1.5 and 2% of all cancers in the
United States may be caused by radiation exposure from CT examinations (Brenner and Hall
2007). Previous research estimated that CT scans causes 800 cancers in woman and 1300 in
man per year in the United Kingdom (Broadhead et al. 1997). Moreover, a study conducted
on paediatric CT showed that the percentage increases in the mortality of cancer over the
natural background are very low (Brenner et al. 2001). However, in the United States,
approximately 500 out of 600,000 children less than 15 years old who are estimated to

undergo CT procedure each year will die of cancer (Brenner and Hall 2007).

Thyroid gland is the most radiosensitive organ in human body (UNSCEAR). It was reported
that ionizing radiation is the common factor that induces thyroid cancer (Shore 1992). The
aetiology of radiation-induced thyroid cancer was derived from the analysis of atomic bomb

survivors and radiotherapy patients (Ron et al. 1989; Thompson et al. 1994). Apart from
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thyroid cancer, hypothyroidism and single thyroid nodules were found in Nagasaki atomic
bomb survivors (Nagataki et al. 1994). However, children are more sensitive and have a
higher risk of developing thyroid cancer than adults. With a minimum radiation dose of 10
cGy, it could possibly cause thyroid cancer to develop in children (Ron et al. 1989; Shore
1992). According to the report from the biological effect of ionizing radiation VII (BEIR
VII), benign tumour could occur at approximately 50 cGy of radiation exposure (Einstein,
Henzlova, and Rajagopalan 2007). This report was supported by other studies that there was

a significant relationship between radiation dose and thyroid cancer.

Heart or cardiac organ was known as a radio-resistant organ in early 1900s. However, in
1950s the researcher found that there was evidence of detrimental effects on cardiovascular
system on patient who were on radiotherapy treatment for Hodgkin lymphoma and breast
cancers, and therefore, cardiac organ is no longer resistant to the radiation (Senkus-Konefka
and Jassem 2007). The study showed that the impairment of cardiovascular system was
associated with radiation dose threshold of 40 Gy and there was more than 35 Gy of
treatment dose that was given to patients for radiotherapy treatment of the Hodgkin
lymphoma and breast cancer. The side effects resulting from the radiation exposure was an
increase of fibrous tissues in pericardium, myocardium and endocardium layers. Moreover,
arteriosclerosis occurred around coronary ostium and proximal coronary arteries due to
radiation exposure. In certain cases, other cardiac diseases could develop such as pericarditis
and functional valvular defects if a large volume of cardiac region was exposed to the
radiation. However, some studies indicated that cardiovascular injury due to radiation was
not only caused by radiotherapy, but it can also due to diagnostic radiology examinations and

radiation exposure in a working environment (Senkus-Konefka and Jassem 2007).
1.4.2 Radiation dose quantity and measurements

1.4.2.1 CT dose index

The fundamental radiation dose parameter in CT is the computed tomography dose index
(CTDI). CTDI 14 is a measured parameter of radiation exposure which is more convenient
than the CTDI and it is regarded as the measurement of choice performed by medical
physicists in the clinical setting. It is measured by a 100-mm long pencil-shaped ionization
chamber in two different cylindrical acrylic phantoms (16-cm and 32-cm diameter) which
was placed at the iso-center of the CT scanner. Most manufacturers use a 16 cm phantom for
head and 32 cm phantom for body examinations during CTDI calculation (Wagner, Eifel,
and Geise 1994). The CTDI,, is the weighted average of the CTDI 140 measurements at the

center and the peripheral locations of the phantom. This parameter reflects the average
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absorbed dose over the two-dimensions (x and y dimensions) of the average radiation dose to

a cross-section of a patient’s body.

The CTDI, is different from CTDI,, as the former averages radiation dose over three-
dimensions (x, y, and z directions) (CTDI,, represents the average exposure in the x-y plane
only). CTDl, is the weighted CTDI divided by the pitch, or CTDI,,= CTDI,, /pitch. The
CTDl,q is now the preferred radiation dose parameter in CT dosimetry. CTDl,,, is commonly
used in clinical practice due to its accessibility to the radiologists and CT operators as it
specifies the radiation intensity used to perform a specific CT examination and not to
quantify how much radiation that each patient receives from the CT examination (Huda et al.
1997).

1.4.2.2. Dose length product

The dose-length product (DLP) is an indicator of the integrated radiation dose of an entire
CT examination. The DLP is an approximation of the total energy a patient absorbs from the
scan. It incorporates the number of scans and the scan width, e.g. the total scan length, while
in contrast CTDI,, and CTDI,, represent the radiation dose of an individual slice or scan.
Therefore, DLP increases with an increase in total scan length or variables that affect the
CTDI,, (e.g. tube voltage or tube current) or the CTDI,,, (e.g. pitch). Because scan length is
expressed in centimeters, the Sl unit for DLP is mGy-cm. Similar to CTDI,, DLP is also

available on the operator’s console.
1.4.2.3 Absorbed dose and equivalent dose

Absorbed dose is an amount of energy that is deposited in a unit of mass of matter (tissue). It
is measured in gray (Gy) with 1 Gy equal to 1 joule per kilogram. Each type of ionizing
radiation produces different biological effect. For instance, biological effect on tissue which
is exposed to 1 Gy alpha radiation is more harmful than 1 Gy of x-rays. This is because alpha
particles are more heavily charged and slower than x-rays. Therefore, alpha particles lose
much more energy along the travel path before reaching the target (Ng 2003). However, the
quantity of equivalent dose is used to compare all types of ionizing radiation equally on the
biological effect. Equivalent dose is measured in Sievert (Sv). Equivalent dose is obtained by

multiplying the absorbed dose with the radiation weighting factor (Table 1-2).
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Table 1-2: Radiation weighting factor for various type and energy range (Ng 2003)

Type and energy range Radiation weighting factor, Wr (ICRP-60)
Photons, all energy 1
Electrons, muons, all energy 1
Neutrons <10 keV 5
10 keV-100 keV 10
>100 keV-2MeV 20
>2 MeV - 20 MeV 10
>20 MeV 5
Protons >2 MeV 5
Alpha particles, fission fragments and 20
heavy nuclei

1.4.2.4 Dose area product

Dose area product (DAP) is a product of the irradiated surface area multiplied by the
radiation dose at the surface (in grays-centimetre square) (Gy-cm®). DAP is a valuable
parameter because radiation-induced biological effects are directly related to both the
magnitude of the radiation dose and the total amount of tissue that is irradiated. Similar to
the DLP in CT unit, DAP can also be measured directly from fluoroscopy and angiography
units with a special ionization chamber at the surface of the x-ray tube collimator.
Knowledge of DAP and the location and projection of the x-ray beam allows direct
calculation of the effective dose (Nickoloff et al. 2008).

1.4.2.5 Effective dose

The most important parameter in CT imaging is the effective dose (ED), which is valuable in
assessing and comparing the potential biological risk of a specific examination. ED is a sum
of equivalent doses in organs of the body that are considered radiosensitive. It is a uniform
whole-body dose that has the same nominal radiation risk of carcinogenesis and induction of
genetic effects as any given non-uniform exposure (Huda, Ogden, and Khorasani 2008).
Each organ in human body has different radiosensitivity with some organs more sensitive to
the risk of damage than the others. ED can be obtained by multiplying each equivalent dose

by a relative organ with the tissue weighting factor related to the risk associated with that

36



organ and summing over all exposed organ. ICRP publication 103 released in 2007 has
recommended values for the tissue weighting factors with major changes different from the
previously published ICRP publication 60 (International Commission on Radiological
Protection 2003; Huda, Magill, and He 2011) (Table 1-3). The SI unit of estimating ED is
the sievert (Sv) or millisievert (mSv). The weighting factors used for individual tissues are
based on a statistical analysis of the increase in the long-term incidence and mortality for
cancer determined from a life span study of the survivors in Japan during the atomic bomb
explosion (Martin 2006; Pierce and Preston 2000; Preston et al. 2003). Usually, tabular data
of conversion coefficients are available to estimate ED from entrance skin dose for
radiography (Rosenstein 1988; Rosenstein, Beck, and Warner 1979), from dose area product
(DAP) for fluoroscopy (Hart, Jones, and Wall 1994b; Le Heron 1992), or from CTDl,, or
DLP for CT (European Commission 1999). The goal is to convert the higher radiation doses
delivered to a small portion of the body into an equivalent uniform dose to the entire body

that carries the same biological risk for causing radiation-induced fatal and nonfatal cancers.

Table 1-3: Tissue weighting factor comparison between ICRP publication-103 and
publication-60 (Ng 2003)

Tissue weighting factor, W+

Organs
ICRP-103 ICRP-60

Colon 0.12 0.12
Lung 0.12 0.12
Red bone marrow 0.12 0.12
Stomach 0.12 0.12
Breast 0.12 0.05
Gonads 0.08 0.20
Bladder 0.04 0.05
Liver/ Oesophagus 0.04 0.05
Thyroid 0.04 0.05
Bone surface/skin 0.01 0.01
Brain 0.01 -
Salivary glands 0.01 -
Remainder tissues 0.12* 0.05"

*Remainder tissues in ICRP-103: adrenals, kidneys, muscle, small intestine, pancreas,
spleen, thymus, uterus/cervix, prostate, extra-thoracic region, gallbladder, heart, lymphatic
nodes and oral mucosa; “Remainder tissues in ICRP-60: adrenals, kidney, muscle, small

intestine, pancreas, spleen, thymus, uterus, upper large intestine and brain.
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1.4.2.6 Background equivalent radiation time

Background equivalent radiation time (BERT) is used to explain the dose to the general
public without complicated scientific units, terminology or concepts.. It converts the
radiation dose to an equivalent period of natural background radiation in days, weeks,
months or years to which the entire population is exposed every day from natural radioactive
substance in the air, internal, terrestrial, cosmic and environment. For example, it is more
likely for patient to easily understand that “your chest x-ray dose is about equal to 3 days of
background radiation” rather than “you have received 0.02 mSv for your chest x-ray
examination” (Ng 2003). BERT is not used to provide a high level of diagnostic accuracy,
but to relieve anxiety about radiation by giving an understandable and satisfactory answer
(Table 1-4) (Nickoloff et al. 2008).

1.4.2.7 Entrance skin dose

Entrance skin dose is an amount of energy imparted per gram of tissue at the entrance
surface. It is also known as surface absorbed dose (SAD). 1 Gy is equal to 1 millijoule per
gram of energy deposited by the x-rays. Entrance skin dose can be obtained by multiplying
the radiation exposure measured in the air at the skin by a factor, f for the tissue. The f factor
is a quantity of radiation dose exposure conversion measured in the air (coulomb per
kilogram at the standard temperature and pressure) to an equivalent radiation dose absorbed
in tissue (grays) at the same location. However, entrance skin dose is not an indicator to
measure radiation risks except for skin erythema, but it is useful for organ dose calculation
especially in a computer-based program that is involved with Monte Carlo simulations
(Rosenstein 1988; Rosenstein, Beck, and Warner 1979).

1.4.2.8 Critical organ dose

Critical organ dose (COD) is more commonly reported in the literature for radiologic
examinations. Critical organ dose refers to the energy deposited per unit mass to individual
critical organs for which the radiosensitivity and radiation dose are high. Its unit of
measurement is usually milligrays, which is equivalent to millijoules per kilogram. COD can
be used to assess the risks of irradiation beyond cancer induction for certain organs; for
example, other potential biological effects can include skin erythema, cataracts, fetal
abnormalities, haematologic effects, vascular damage, and effects on the central nervous

system.
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Table 1-4: Estimated effective doses for diagnostic medical exposures associated with
BERT and lifetime fatal cancer risks from National Radiological Protection Board (NRPB)
(Ng 2003).

X-ray examination Estimated effective | BERT* Fatal cancer risk
dose (MSv) per examination**
Limbs and joints (exclude hip) <0.01 <1 days 1 in a few millions
Dental (single bitewing) <0.01 <1.5days | 1inafew millions
Dental (panoramic) 0.01 1.5 days 1in 2 million
Chest (single PA) 0.02 3 days 1ina million
Skull 0.07 11 days 1in 300,000
Cervical spine 0.08 2 weeks 1in 200,000
Thoracic spine 0.7 4 months 1in 30,000
Lumbar spine 13 7 months 1in 15,000
Abdomen 0.7 4 months 1in 30,000
Hip 0.3 7 weeks 1in 67,000
Pelvis 0.7 4 months 1in 30,000
Intravenous urography 25 14 months 1in 8,000
Barium swallow 15 8 months 1in 13,000
Barium meal 3 16 months 1in 6,700
Barium follow-through 3 16 months 1in 6,700
Barium enema 7 3.2 years 1in 3,000
CT head 2 1 year 1in 10,000
CT chest 8 3.6 years 1in 2,500
CT abdomen/pelvis 10 4.5 years 1in 2,000

*Natural background radiation based on Australia average = 2.4 mSv per year,;

**Appropriate lifetime risk for patients from 16-69 years old: paediatric=2x; geriatric=5x
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Critical organ dose may be determined by other dose descriptors, such as entrance skin dose
or dose area product, by using tables or software programs that are based on Monte Carlo
calculations for standard patient sizes (Rosenstein 1988; Rosenstein, Beck, and Warner
1979). Also, the critical organ dose values for various organs, along with their corresponding
weighting factors, can be used to calculate the effective dose (National Council on Radiation
Protection and Measurements 1995; International Commission on Radiological Protection
2003). In clinical practice, knowledge of organ doses and the carcinogenic sensitivity of
certain organs can lead to better collimation and patient positioning to reduce the risks from

exposure to radiation.
1.4.2.9 Diagnostic acceptable reference level

Diagnostic acceptable reference level is also known as diagnostic reference level (DRL).
DRL values are published based on the nationwide evaluation of x-ray trends surveys (Gray
et al. 2005; Nickoloff et al. 2008). The data values can be used as a reference point to ensure
that all current clinical practice involving radiation in radiological investigations are safe.
However, ESD, DAP, or CTDI,, values that are greater than those of DRL may be attributed
to the patient’s size, the complexity of the clinical case, equipment malfunctions, or
suboptimal protocols. Some of the higher values may be unavoidable; however, many of the
higher values can be avoided. When patient doses appear to be above those of DRL,
especially when they are consistently higher, investigation and assessment are required. If
suboptimal protocols or equipment deficiencies are the cause of the higher dose levels, the

strategies must be undertaken to reduce the radiation dose.
1.4.2.10 Radiation dosimeter

Radiation dose in clinical practice can be measured accurately by using a dosimeter. There
are a plenty of dose measurements tools with different methods being used to measure the
radiation dose absorption. The value of absorbed dose is determined indirectly by measuring
the radiation effect through ionization of air, fogging of photographic emulsion,
thermoluminescence, scintillation and ionization of a semiconductor. However, the most
popular method in radiation dosimetry is thermoluminescence dosimeter (TLD) (Ball,
Moore, and Turner 2008).

1.4.2.11 Thermoluminescence phenomenon

Thermoluminescence is a condition where the light is emitted from a heated crystalline
material which is made up of lithium fluoride (LiF) or calcium fluoride (CaF,) phosphors.

When the crystalline is exposed to the radiation, electrons in the crystal are pulled out from
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valence band to the conduction band by a small amount of energy. However, without enough
energy, some of the electrons are trapped into one of the isolated levels provided by
impurities in the crystal. It will remain immobilized at that state until energy is supplied to
release it (usually by heat). Thus, the electrons leave a positive hole in the valance band. By
heating the crystal, the trapped electrons will elevate and return to the valence positive hole.
A photon of visible light is emitted during the process of returning electrons from the trap to
the valence band (Figure 1-4) (Martin 2006). The total light emitted is counted where the
measurement for the number of trapped electron indicates the absorbed radiation.

Surprisingly, it can be used even after a month of storage.

Figure 1-4: The process of light emission from the radiation exposure in the

thermoluminescence phenomenon
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Several types of thermoluminescence dosimeters (TLD) are commercially available for a
wide range of applications. For instance, LiF: Mg, Li,B40;, CaSO,: Dy, Al,Os, CaF,: Dy and
CaF,: Mn (Maia and Caldas 2010; Miljanie, Vekie, and Martinieie 1999). In diagnostic
radiology, LiF: Mg, Ti or usually known as TLD-100 was chosen for dosimetry purposes in
clinical radiation measurement. In fact, it was the first material used in diagnostic radiology
and one of the most utilised materials when compared to others (Berni et al. 2002). TLD
with LiF: Mg, Ti material is chosen because of the physical shape which is small, light and
convenient for local measurement during the radiological examinations. Apart from physical

appearance, it is able to measure entrance surface absorbed dose at the reference point at
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specific organs without obscuring an image due to the radiolucency specification (Maia and
Caldas 2010). Moreover, it has high reproductive capability, thus it can be used repeatedly.
The materials are sensitive to detect radiation exposure in a range between 10 pGy and 10
Gy, in addition to having a good linear relationship between thermoluminescence readout
value and dose absorption up to 1mrad.

1.4.2.12 CT dose measurement

Effective dose in CT can be easily estimated by a simple calculation through multiplying the
DLP with a conversion coefficient factor (E/DLP). Huda, Ogden, and Khorasani (2008) in
their study introduced a new approach to determine the ED. They suggested that ED can be
calculated from DLP by using ImMPACT software package which is based on Monte Carlo
simulation performed by the National Radiological Protection Board (1998). Yet, the
accuracy of this system is undisputable when Huda, Ogden, and Khorasani (2008) compared
those ED calculations with other software packages like CT-expo and ImpactDose. As a
result, there were approximately 5% differences between ED/DLP values according to each
software package and it was not statistically significant (Huda, Ogden, and Khorasani 2008).
CT-Expo is a program run on Monte Carlo dosimetry data while ImpactDose is a personal
computer based-program that calculates ED values for arbitrary scanning parameters and
anatomic ranges. However, the ED values still can be calculated manually by multiplying the
DLP values with the conversion coefficient factor in CT imaging based on individual organs
and tissue weighting factors published by the ICRP 103 (Hart, Jones, and Wall 1994a; Huda,
Magill, and He 2011; Kalender et al. 1999). Similarly, ED associated with invasive
angiography can be estimated by multiplying the DAP values with a conversion coefficient
factor (E/DAP).
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1.5 Dose reduction strategies in coronary CT angiography

Previous studies have reported that CCTA with use of retrospective ECG-gated technique
results in very high radiation dose, which ranged from 13.4 mSv to 31.4 mSv (d'Agostino et
al. 2006; Johnson et al. 2006; Poll et al. 2002). This has raised serious concerns in the
literature due to the potential risk of radiation-induced malignancy resulting from CCTA.
several dose-saving strategies have been introduced to deal with radiation dose issues, and
these techniques include anatomy-based tube current modulation (Jung et al. 2003; Starck et
al. 2002), ECG-controlled tube current modulation (Abada et al. 2006; Sigal-Cinqualbre et
al. 2004; Wintersperger et al. 2005), tube voltage reduction (Geleijns et al. 2006; Hohl et al.
2006), a high-pitch scanning (Achenbach et al. 2010; Achenbach et al. 2009; Coles et al.
2006) and prospective ECG-triggered CCTA (Paul and Abada 2007).

151 Anatomy-based tube current modulation

Tube current is an important element that is directly related to radiation dose and image
quality. With rapid developments of CT technology, implementation of automatic tube
current modulation allows significant reduction in radiation dose for CT examinations. In CT
examination, automatic tube current modulation can be defined as a series of techniques
that enable automatic adjustment of the tube current in x-, y-plane (angular modulation) or z-
plane (z-axis modulation), according to the size and attenuation characteristics of the human
body. The purpose of these adjustments is to achieve optimum image quality with low
radiation dose. The term automatic tube current modulation is similar to automatic exposure-
control that is commonly used in conventional radiography (Deetjen et al. 2007; Kalra et al.
2004).

1.5.1.1 Angular modulation (x-y plane)

Since the shape of patients body is not symmetrical (anteroposterior versus lateral), angular-
modulation techniques automatically adjust the tube current for each projection angle to the
appropriate attenuation according to patient’s anatomical structures. Without angular
modulation, the tube current is held constant over the 360° rotation, regardless of the patient
attenuation profile. The angular-modulation technique reduces tube current as a function of
projection angles for low-attenuation projections (anteroposterior versus lateral projections).
This technique calculates the modulation function (an objective image quality parameter)
from the online attenuation profile of the patient. The modulation function data are processed
and sent to the generator control for tube current modulation with a delay of 180° from the x-

ray generation angle. In asymmetrical regions being scanned such as the shoulders in chest
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CT, the x-ray attenuation is substantially less in the anteroposterior than in the lateral
direction. This radiation dose reduction could be achieved up to 90% with application of the
angular-modulation technique (Greess et al. 2002). Therefore, the technique of angular
modulation helps in improving dose efficiency in the x- and y-axis by reducing radiation

exposure in a particular scanning plane.
1.5.1.2 Z-Axis Modulation

The principle of z-axis—modulation technique is different from that of angular modulation
(Westerman 2002). Unlike angular modulation, the z-axis modulation technique adjusts the
tube current automatically to maintain a user-specified quantum noise level in the image
data. It provides a noise index to allow users to select the amount of x-ray noise that will be
present in the reconstructed images. Using a localizer radiograph, the scanner computes the
tube current required obtaining images with a selected noise level. Hence, z-axis modulation
attempts to make all images have a similar noise irrespective of patient size and anatomy.
The noise index value is approximately equal to the image noise (standard deviation) in the
central region of an image of a uniform phantom. However, the actual noise measured on the
image by drawing a region of interest that will differ from the noise index selected for
scanning. This is due to the fact that noise index settings only adjust the tube current,
whereas the standard deviation is also affected by other parameters, including the
reconstruction algorithm, the reconstructed section thickness (if different from the
prospective thickness), the use of image space filters, variations in patient anatomy and

patient motion, and the presence of beam-hardening artefacts.

A lower minimum tube current may result in reduced exposure to patients, which
occasionally increases image noise in smaller patients scanned with a substantially reduced
tube current. Generally, larger patients receive higher tube current with z-axis modulation if
a fixed-tube-current technique used in order to maintain the selected image noise. In contrast,
with automatic tube current modulation, the tube current is inconsistent throughout the scan
and thus results in the diagnostic image quality with reduced radiation dose. The main
limitation of automatic tube current modulation is the lack of uniformity between techniques

developed by different vendors.

The CARE Dose 4D protocol (Siemens, Medical Solutions, Erlangen, Germany) was then
introduced in order to adapt the tube current to the patient’s individual anatomy and
modulate the tube current in the section with the lowest dose levels. Previous studies have
shown that 20%—-60% dose reduction was achieved, depending on the anatomic region and

patient habitus, with improved image quality (Suess and Chen 2002). Another study
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combining angular and z-axis modulation (3D Auto mA; GE Yokogowa Medical Systems,
Tokyo, Japan) reported significant dose reductions (60%) in abdominal-pelvic CT
examinations (Horiuchi 2002). This technique uses a single localizer radiograph to determine
patient asymmetry and appropriate angular and z-axis modulation for the patient. The
investigators added noise (computer modification of original raw scan data to simulate lower
tube current noise levels) to patients’ scan data to produce images and calculate the radiation

dose reduction.

1.5.2 ECG-controlled tube current modulation

The idea of decreasing radiation doses associated with tube current modulation in CT
stimulated manufacturers to improve the CCTA examinations. One of the most recently
developed methods, CARE dose 4D by Siemens Medical Solutions), combining the effects
of angular and z-axis modulation techniques was introduced (Schwartzman, Lacomis, and
Wigginton 2003). Virtually all anatomic regions in the thorax, abdomen, and pelvis have
benefited from these sophisticated techniques that result in considerable dose reduction
(Abada et al. 2006; Hausleiter et al. 2006).

However, the z-axis modulation of CARE dose 4D was not compatible with ECG pulsing.
ECG-pulsed tube current modulation is the most significant improvement in minimizing
radiation from CT technology and is the only one dedicated to cardiac imaging. ECG pulsing
is performed online during cardiac CT examination and allows a decrease in radiation
exposure of between 30% and 50% by modulation of tube current output to decrease the
dose given during systolic phase (Leber et al. 2005). Therefore, the algorithm for ECG-
dependent dose modulation represents a very effective tool for limiting radiation dose in the

vast majority of patients undergoing cardiac CT studies.

In ECG-controlled tube current modulation technique, a high tube current with optimal
image quality is applied only during the diastolic phase of the cardiac cycle, in which images
are most likely to be reconstructed with minimal artefacts, while in the systolic phase, a low
tube current (50% of normal tube current) is applied. Image reconstruction during cardiac
CT examinations is usually performed in ventricular mid-diastole due to less cardiac motion
that caused blurring of cardiac structures. Thus, diagnostic images with high quality are
acquired during the diastolic phase (Earls et al. 2008). However, this method totally depends
on the patient’s heart rate and requires a regular sinus rthythm in order to prevent poor image
quality. Unfortunately, the ECG-controlled tube current modulation algorithm is not working
in the presence of arrhythmias such as premature extra beats. Thus, this algorithm may not

be useful in patients with arrhythmias.
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1.5.3 Low tube voltage

Since radiation dose varies with the square of the tube voltage, an application of lower tube
voltage during CT data acquisition is another approach for radiation dose reduction. A
previous study by Huda et al. (2000) showed that reducing the X-ray tube potential from 140
to 80 kVp at constant tube current decreased the radiation dose by a factor of about 3.4.
Image contrast and image noise will increase because there are fewer photons produced
(Huda 2002; Huda, Scalzetti, and Levin 2000; Nickoloff and Alderson 2001; Siegel et al.
2004). However, since the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) are
the key factor of CT image quality, noise is rather irrelevant if the level of contrast or
amount of signals are too high (Huda 2002). The change in image contrast is dependent on
the anatomic number (Z) of the structures being investigated. The image structure with high-
anatomic-number becomes significantly more prominent than image of low-anatomic-
number structures (soft tissue) in the application of low tube voltages (Huda, Scalzetti, and
Levin 2000).

It has been confirmed that diagnostic image quality was not affected by lower tube voltages
in paediatric CT investigations. Similarly, in a phantom study, Siegel et al. (2004) showed
that reduced beam energy in contrast-enhanced paediatric CT decreased radiation dose
without affecting image contrast and image noise (Siegel et al. 2004). The interrelationship
between beam energy and tube output in terms of image noise has been described by Boone
et al. (2003), who characterized image noise for CT technigues using tube voltages of 80—
140 kVp and tube currents of 10-300 mA (Boone et al. 2003). Provided the tube current—
time product was appropriately adapted, radiation dose was significantly reduced at lower
tube voltage while CNR remained at a constant level. Cody et al. (2004) reported that the use
of 80-kVp tube voltage resulted in beam-hardening artefacts and thus recommended the use
of 100- to 120-kVp settings in paediatric patients. For non-cardiac CT studies with
kilovoltage reduction, an increase of the tube current by 50% has been proposed to maintain
image quality and to reduce the dose estimates at the same time (Cody et al. 2004). However,
a further increase in tube current is limited with the available standard protocols for cardiac
CT scanning on the studied CT scanners. Therefore, a trade-off between dose saving and

increased image noise has to be considered with current cardiac CT protocols.

A previous study compared the diagnostic quality of the coronary artery segments between
good and poor quality in order to detect stenosis in various scan protocols (Herzog et al.
2008). In this qualitative analysis of image quality, no deterioration of diagnostic image
quality was detected for scan protocols with the ECG-dose modulation and the 100-kV

protocols using 16- and 64-slice CT. The value of this analysis is limited by a potential
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selection bias of used scanning protocols. Image obtained with 120-kV scan protocol without
ECG modulation (on patients with arrhythmia) are likely to present with more non-
diagnostic coronary segments, even when no dose-saving algorithms were applied. However,
the impact of dose-saving algorithms on the detection of calcified and non-calcified plaques
remains unknown. Therefore, further studies are needed to investigate the balance between
dose savings and maintained diagnostic image quality for CCTA investigations.

1.5.4 High pitch value

With the recent advent of second-generation of dual-source, another low-dose technique has
been introduced for cardiac CT which is high-pitch scanning mode (Ertel et al. 2009). This
technique was successfully tested with dual-source 128-slice CT. In this technique, the data
are acquired in a spiral mode while the X-ray table runs with a very high pitch of 3.4
equalling to a table feed of 46 cm/s. When this high-pitch mode is used, the entire heart is
scanned within one single cardiac cycle, generally during the diastolic phase (75% R-R
interval). The temporal resolution for this system is 75 ms, owing to the gantry rotation time
of 280 ms and with regard to quarter rotations for data reconstruction. Early reports on
phantom studies have shown that the purpose of this scan mode is to deliver images of
diagnostic quality at a low radiation dose. Moreover, two studies have successfully proved
that feasibility of this high-pitch mode technique also in patients by using the remodelled
first generation, dual-source 64-slice CT scanners with effective dose less than 1 mSv
(Achenbach et al. 2009; Hausleiter et al. 2009). Then, several recent studies have reported
similar results (Goetti et al. 2010; Lell, Hinkmann, et al. 2009; Lell, Marwan, et al. 2009;
Sommer et al. 2010). In addition to low dose aspect, high diagnostic accuracy has been
achieved with the high-pitch dual-source CT (Leschka et al. 2009).

In order to apply the high-pitch mode, several requirements must be fulfilled. Firstly, dual-
source geometry is necessary in order to obtain the projection data by the second detector for
gaps fill-up due to the fast table movement. In this way, the pitch can be increased up to 3.4
while still allowing image reconstruction, although the limited field of view is covered by
both detectors. A quarter rotation of data per measurement is used for image reconstruction,
and each of the individual axial images has a temporal resolution of a quarter of the rotation
time t,/4. At the same time, because of the high pitch, overlapping radiation exposure is
avoided, thus reducing the radiation dose to the patient to the minimum level (Alkadhi et al.
2010).

Secondly, a higher temporal resolution is essential to enable single cardiac cycle

reconstruction without image distortion due to motion artefacts. Thirdly, patient’s heart rate
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must be regular and consistent in order to obtain a good image quality. With used of high
pitch mode, the examination table is accelerated to the maximum speed during data
acquisition which is triggered by the R-peak of the heartbeat. The examination table could
not be accelerated in an infinitely small time period; therefore, it has to be set in motion
sufficiently earlier prior to scanning acquisition. Inconstant heart rates lead to inaccurate
positioning of the data acquisition window, with data being acquired either too early in the
(if heart rate decreases) or too late (if heart rate increases) cardiac cycle. Inconsistent heart

rates would compromise image quality by stair-step artefacts.

Finally, high pitch mode requires patient with low heart rates (<65 bpm) in order to obtain a
motion-free artefact which allowed the acquisition during a single diastolic period (Alkadhi
et al. 2010). In patients with high heart rates, a narrow diastolic exposure of R-R interval
window may not yield diagnostic image quality of the coronary arteries and therefore, tube

current modulation is required for adjustment accordingly (Goetti et al. 2010).
1.5.5 Prospectively ECG-triggered coronary CT angiography

Various strategies have been developed to reduce radiation exposure of patients, and the
most important one is prospectively ECG-gated CT coronary angiography, also called step-
and-shoot mode. The step-and-shoot mode is characterised by turning on the x-ray tube only
at a predefined time point of the cardiac cycle, usually in mid-diastole, while keeping the
patient table stationary. The x-ray exposure time of this technique is short, and thus, low
radiation doses ranging between 1.2 and 4.3 mSv have been reported using various 64-slice
and first-generation, dual-source 64-slice CT (Herzog et al. 2008; Klass et al. 2009; Shuman
et al. 2008). Most importantly, this low-dose step-and-shoot method is still able to produce
high diagnostic accuracy for the detection of coronary stenosis (Herzog et al. 2008; Scheffel
et al. 2008).

Unlike standard retrospective ECG-gating, where the tube output (in mA) is constant
throughout the data acquisition during spiral CT which results in high radiation dose,
prospective triggering is performed with sequential scans. In prospective triggering, the tube
current is turned off for most of the scan period and is triggered by the electrocardiogram to
be ‘on’ only for a short period during diastole. Thus, this results in remarkable reduction in
radiation dose (Earls 2009). With application of prospective ECG triggering, the radiation
dose of CCTA can be reduced by up to 83% when compared to retrospective ECG gating
technique (Earls 2009; Lu et al. 2011; Sabarudin, Sun, and Ng 2012; Shuman et al. 2008;
Sun et al. 2008; Sun and Ng 2012).
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1.5.6 Iterative reconstruction methods

Alternative image reconstruction techniques such as iterative reconstruction have been used
mainly in nuclear medicine studies (Knesaurek et al. 1996; Liow et al. 1997). In CCTA,
iterative reconstruction (Adaptive Statistical Iterative Reconstruction (ASIR), GE
Healthcare) has been introduced as a new reconstruction algorithm (Cheng, Fang, and Tyan
2006; Hara et al. 2009; Liu et al. 2007; Nuyts et al. 1998). Iterative reconstruction is a
method to reconstruct 2D and 3D images from measured projections on an object. However,
unlike filtered back projection, iterative reconstruction starts with an initial estimate of the
object which is subsequently improved in a stepwise fashion by comparing the synthesized

image to the one acquired with projection data and improving the previous estimate.

Moreover, iterative reconstruction reduces image noise by iteratively comparing the acquired
image to a modeled projection. This reconstruction algorithm is used to help deal with one of
the primary issues of dose and tube current reduction for CCTA. Since iterative
reconstruction has been consistently associated with image quality improvement, especially
improving CNR, it has the possibility of improving spatial resolution (Leipsic et al. 2010;
Thibault et al. 2007). With faster computer technologies and adapted techniques, the use of
iterative reconstruction for cardiac CT imaging has been increasingly studied and the
reconstruction speed now allows its use in clinical practice. Although iterative reconstruction
has been shown to reduce noise and improve image quality, enabling reduction in radiation
dose in body CT (Nuyts et al. 1998), it has not been systematically studied in CCTA.
However, the main limitation to its routine use is the high computational cost, which can be
100-1,000 times higher than for filtered back projection (Wang, Yu, and De Man 2008 ).

Moreover, iterative reconstruction does not assume that the measured signal is free of noise
due to x-ray photon statistics or electronic noise but rather uses more accurate statistical
modeling during the reconstruction process (Cheng, Fang, and Tyan 2006). This enables
improved noise properties in the reconstructed images, while maintaining spatial resolution
and other image quality parameters. The use of iterative reconstruction techniques is
expected to increase in CT as computational processing improves and algorithms become
more robust and easy to apply. Because more powerful iterative reconstruction algorithms
are emerging, the impact of these techniques may show greater noise reduction and thereby

permit further reductions in radiation exposure to patients.
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1.6 Thesis outline

This research was designed to investigate and compare the radiation dose between
retrospective and prospective axial gating in coronary CT angiography. Although some
modified parameters were introduced in this research project, the image quality needs to be
monitored in order to achieve the acceptable diagnostic quality. The objectives for this

research were detailed as follows:

e To seek the satisfaction from the medical imaging specialists and the acceptable
diagnostic images in coronary CT angiographic procedures.

e To measure and compare the radiation dose between retrospective and prospective
gating in coronary CT angiographic procedures.

e To compare the image quality in both prospective and retrospective ECG-gating
coronary CT angiography procedures with aim of determining the clinical feasibility

of prospective gating procedure.

The literature review in this chapter has explained the radiation dose arising from a standard
CCTA protocol in addition to the implication on the image quality. This thesis contains six
papers which are presented from chapter 2 to 7. An overview of all articles is presented in
this section which consists of the relevance and the interconnection to the topic. Moreover,
all publications included in this study have answered all the issues raised regarding the
radiation concern and image quality with an introduction of dose saving protocol of CCTA,
namely prospective ECG-triggering CCTA. Basically, the papers cover two main important
aspects: radiation dose and image quality associated with CCTA. All aspects are tested with
different imaging modalities, protocols and techniques. The overall aim of the thesis is to
introduce a latest dose-saving technique in CCTA, namely, prospective ECG triggering. This
technique was compared to the standard routine CCTA (retrospective ECG gating) and

invasive coronary angiography in terms of radiation dose and image quality.

Paper 1

A systematic review of radiation dose associated with different generations of multidetector
CT coronary angiography. Journal of Medical Imaging and Radiation Oncology 56 (1): 5-
17.

This paper has been published in the Journal of Medical Imaging and Radiation Oncology.
Since there were a lot of radiation research ongoing especially associated with CCTA, a
meta-analysis on radiation dose was carried out in this paper. The radiation dose results were

analysed systematically based on 66 studies published between 1998 and 2011 using
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different generations of MSCT scanners ranging from 4-slice to 320-slice CT with use of
different dose-saving techniques.

More dose-saving strategies were applied in recent CT generations including prospective
ECG-triggered protocols, applications of lower tube voltage and tube current modulation to
achieve a significant dose reduction. Prospective ECG triggered protocol was increasingly
used in 64-, 125-, 256- and 320-slices with significantly lower radiation dose than that in
retrospective ECG-gating technigue. This analysis has also shown that dose-saving strategies
can substantially reduce the radiation dose in CCTA. The fact that more and more clinicians
are opting for dose-saving strategies in CCTA indicates an increased awareness of risks

associated with high radiation doses amongst them.

Paper 2

Radiation dose associated with coronary CT angiography and invasive coronary
angiography: An experimental study of the effect of dose-saving strategies. Radiation
Protection Dosimetry 150 (2): 180-187.

This paper has been published in the prestigious journal on radiation dose issue, Radiation
Protection Dosimetry. In this paper, a pilot study was conducted on an anthropomorphic
human phantom to investigate the effective dose and entrance skin dose in selected
radiosensitive organs through invasive and CCTA procedures using different dose-saving
techniques. The new protocol in CT angiography, namely prospective ECG triggering was
compared with the standard CT protocol for CCTA and the ‘gold standard’ invasive
conventional angiography (ICA). This comparative study was performed to investigate the
radiation dose by using different protocols in both CT and ICA. In CCTA, three different
protocols were used including prospective ECG triggering, retrospective ECG-gating with
and without tube current modulation. On the other hand, invasive coronary angiography was
performed with four different magnifications. In this study, the entrance skin dose was
measured at the breast and thyroid gland during the procedures. Although ICA produces
lower radiation dose than CCTA, application of modified techniques in both CT and invasive
coronary angiography is recommended in clinical practice for further reduction in radiation

dose.

Paper 3

Coronary CT angiography with prospective ECG-triggering: A systematic review of image

quality and radiation dose. Singapore Medical Journal 54 (1):15-23

This paper was accepted for publication in the Singapore Medical Journal on June 24, 2012.

A systematic review on diagnostic accuracy, image quality and radiation dose of prospective

51




ECG-triggered CCTA was presented in this paper. The review was performed based on
different databases containing 23 studies of CCTA that used prospective ECG triggering
associated with diagnostic accuracy, image quality and radiation dose between 2008 and
2011. The effective dose and image quality reported in each study were analysed and
compared between the types of multislice CT scanners and scanning protocols. In addition, a
formal consensus method, QUADAS (Quality assessment of diagnostic accuracy) for quality
assessment of diagnostic accuracy of prospective ECG triggered protocol in the detection of
coronary artery disease was also introduced. QUADAS was performed in order to develop
and evaluate an evidence based quality of individual studies in terms of potential for bias,

lack of applicability and quality of reporting.

Paper 4

Radiation dose in coronary CT angiography associated with prospective ECG-triggering
technique: comparisons with different CT generations. Radiation Protection Dosimetry
(Epub ahead of print) doi:10.1093/rpd/ncs243

This paper was accepted for publication in the journal of Radiation Protection Dosimetry on
21% of August, 2012 and the corrected proof is available online now. In this paper, a
retrospective analysis was performed in patients undergoing prospectively ECG-triggered
CCTA with single-source 64-slice CT (SSCT), dual-source 64-slice CT (DSCT), dual-source
128-slice CT and 320-slice CT with the aim of comparing radiation dose associated with
different CT generations. Several imaging technical parameters were also compared in order
to investigate the radiation dose produced during the clinical setting. A total of 164 patients
undergoing prospective ECG-triggered CCTA with different types of CT scanners were
studied with the mean effective dose estimated 6.8 + 3.2 mSv, 4.2 £ 1.9 mSy, 4.1 + 0.6 mSy,
and 3.8 = 1.4 mSy, corresponding to 128-slice DSCT, 64-slice DSCT, 64-slice SSCT and
320-slice CT scanners. A positive relationship was found between effective dose and body
mass index (BMI) in this study. Moreover, low radiation dose is achieved in prospective
ECG-triggered CCTA, regardless of any CT scanner generation. BMI is identified as the
major factor that has a direct impact on the effective dose associated with prospective ECG-
triggered CCTA.

Paper 5

A survey study exploring local specialists and radiographers’ perceptions of the benefits and
challenges in relation to prospective ECG-triggered coronary CT angiography, submitted to

Journal of Medical Imaging and Health Informatics (In press)
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This manuscript was submitted to Asia-Pacific Journal of Public Health and is currently
under review. This paper involved investigating and exploring the opinion concerning the
benefits and difficulties in performing prospective ECG-triggered CCTA practice in
Malaysia among specialists and radiographers. In addition, this study was also conducted in
order to determine the levels of preference and the effects of an individual’s experience with
regard to prospective ECG- triggered CCTA. In this paper, a questionnaire form designed to
meet the needs of each respondent group was distributed to 6 national health institutions in
Malaysia in which, prospectively ECG-triggered CCTA was performed as a routine cardiac
imaging procedure. Respondents were asked to assess their levels of agreement on the

benefits and challenges in prospective ECG-triggered CCTA.

Results showed that in total, 53 responses (85%) were received, comprising specialists
(21%) and radiographers (79%). Across all the respondents, the main aim of the benefits of
prospective ECG-triggered CCTA was considered as: radiation dose reduction, image quality
improvement and patients’ output increase. Low agreement was achieved on the issue of an
increase in the financial incentives to institutions because of prospective ECG-triggered
procedures. The issue of heart rate was found to be the main challenge when performing
CCTA and this was agreed to by the respondents. However, the remaining challenges listed

have been seen to vary according to the groups of respondents and the scanner type.

Paper 6

Coronary CT angiography with single-source and dual-source CT: Comparison of image
quality and radiation dose between prospective ECG-triggering and retrospective ECG-
gating protocols, International Journal of Cardiology (Epub ahead of print)

This paper was accepted for publication in the prestigious cardiology journal, International
Journal of Cardiology on September 29, 2012. This prospective study represented the main
part of this thesis and it was conducted to investigate and compare image quality and
radiation dose between retrospective gating and prospectively ECG-triggered CCTA with
use of single-source CT (SSCT) and dual-source CT (DSCT). Different from previous
publications, this paper used the latest published conversion coefficient factor (0.026
mSv-mGy -cm™*) for effective dose calculations. In this study, the image quality was
obtained qualitatively assessed by two experienced observers and quantitatively performed
by measuring the image noise, SNR and the CNR). Images were obtained from a total of 209
patients who underwent CCTA with suspected CAD scanned with SSCT (n=95) and DSCT
(n=114) with prospective ECG triggered and retrospective ECG-gated protocols at two
different institutions. Results showed that 793 segments reported missing from a total of

2,880 coronary artery segments was being evaluated. Thus, 2,087 coronary segments were
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assessable, with 98.0% classified as of sufficient and 2.0% as of insufficient image quality
for clinical diagnosis. DSCT resulted in poor image quality as compared to SSCT for both
protocols. However, there was no significant difference in overall image quality between
prospective and retrospective gated protocol, regardless of DSCT or SSCT scanners.
Prospective ECG triggered protocol was compared in terms of radiation dose calculation
between DSCT (6.5 + 2.9 mSv) and SSCT (6.2 £ 1.0 mSv) scanners and no significant
difference was noted (p=0.99). However, the effective dose was significantly lower with
DSCT (18.2 + 8.3 mSv) than with SSCT (28.3 £ 7.0 mSv) in the retrospective gated
protocol. Prospective ECG-triggered CCTA reduces radiation dose significantly compared to
retrospective ECG-gated CCTA, while maintaining good image quality. CCTA with the use
of DSCT resulted in better image quality as compared to SSCT.

In summary, an in-depth analysis of CCTA with regard to the prospectively ECG-triggered
and retrospectively ECG-gated protocols was performed in this thesis consisting of these six
papers. In addition the diagnostic performance of CCTA was also compared with the ‘gold
standard’ technique, invasive coronary angiography. Clinical value of prospectively ECG-
triggered CCTA with regard to dose reduction and image quality based on different
generation of multislice CT scanners has been thoroughly investigated in this project, thus,

achieving the goal of judiciously utilising this fast growing technique in clinical practice.
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CHAPTER 2: A SYSTEMATIC REVIEW OF RADIATION DOSE ASSOCIATED
WITH DIFFERENT GENERATIONS OF MULTIDETECTOR CT CORONARY
ANGIOGRAPHY

2.1 Introduction

Coronary artery disease (CAD) is a common cardiovascular disease and a leading cause of
death amongst people in advanced countries. Early detection and diagnosis play an important
role in patient management. Traditionally, this has been achieved with use of invasive
coronary angiography; however, this technique is associated with procedure-related
complications. Therefore, ever since multi-detector computed tomography angiography
(MDCTA) has been introduced as a non-invasive technique in cardiac imaging it has been
widely used to detect CAD as a less invasive imaging modality (Brenner and Hall 2007;
Naghavi et al. 2006).

Over the last decade MDCT has undergone rapid technical developments, and has
demonstrated regular technical improvements starting with the early generation of 4-slice to
16-slice, 64-slice and up till the most recent models of 320-slice scanners (Hein et al. 2009;
Rybicki et al. 2008; Stolzmann et al. 2011). Although rapid developments in MDCT
technology have led to striking improvements in both image quality and diagnostic value in
cardiovascular imaging, MDCT runs the potential risk of high radiation dose (Frush and
Yoshizumi 2006; Sun and Ng 2010b, 2010a). Preliminary studies have shown that radiation
dose increases with increasing detector rows in CT due to narrow detector collimations and
long anatomic coverage (Tsapaki and Rehani 2007). It is generally agreed that CT is an
imaging modality with high radiation exposure, as it contributes up to 70 per cent radiation
dose of all radiological examinations, although it comprises only 15 per cent of all
radiological examinations (Sun, Choo, and Ng 2012 ). Recent advances and improvements to
the spatial and temporal resolution of MDCT have increased its accuracy to diagnose CAD;
however, this has resulted in increased radiation dose. The radiation risks associated with
cardiac MDCTA have raised serious concerns in the literature (Frush and Yoshizumi 2006;
Sun, Choo, and Ng 2012 ; Tsapaki and Rehani 2007). Thus, the questions have to be
addressed, which are: Does utilisation of cardiac MDCTA lead to the greatest benefit and is
the risk of radiation greater than the benefit expected from the CT examinations? (Budoff
and Gupta 2010).

Despite the increased awareness of radiation risk, there are many clinicians and researchers
who have not yet realised the amount of radiation exposure associated with coronary CTA,

or the possibility of tailoring the scanning protocols to reduce radiation dose. Therefore, the
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aim of this study is to carry out a systematic review of radiation dose in coronary CTA
performed with different generations of MDCT scanners and various dose-saving techniques
based on the available literature. We expect that the research findings of this study will
provide valuable information for radiologists and radiographers with regard to optimisation
of radiation exposure and judicious use of MDCT in the diagnosis of CAD.

2.2 Materials and methods

The literature search for relevant references was performed by using eight different
databases, which included Highwire Press, Ovid, PubMed, ProQuest Health and Medical
Complete, Medline, Science Direct, Scopus and Springer Link to cover publications between
1998 (MDCT was first introduced in 1998) and 2011 (last search was done in February
2011). The terms used for identification of references were ‘multidetector/multislice CT
coronary angiography’, ‘multidetector/multislice CT coronary angiography’, ‘radiation dose
and effective dose in multidetector CT coronary angiography’, and ‘dose reduction strategies
for CT coronary angiography’. Each of these terms was matched separately with prefix of 4-,
16-, 40-, 64-, 128-, 256-, 320-slice CT. The search was limited to include all the studies that
had been published in the English language and were on human subjects. All the
retrospective/prospective studies were included in this review as long as the effective
radiation dose was provided in studies using MDCTA in the diagnosis of CAD. Exclusion
criteria included calcium scoring on coronary CT scans, case reports, phantom studies, and
studies with use of electron beam CT. Moreover, all the references were checked manually
in order to ensure the precision and originality of the review. Comparisons of effective dose
in each CT generation were performed based on multiple variables including demographic
characteristics and technical parameters such as exposure factors (kVp, mAs), and scanning

protocols (collimation, pitch, ECG-gating).

Data were extracted by two authors (AS and ZS) independently and all disagreements were
resolved through consensus. Data extraction was based on the following characteristics in
each study: year of publication, number of patients included in each study, age and gender,
type of CT scanner, scanning protocols and technique, gantry rotation time, beam
collimation, exposure factors (kVp and mA), pitch, method of electrocardiogram (ECG)
gating (retrospective or prospective gating), and strategies to reduce radiation dose
(adjustment of tube voltage or tube current). Effective dose was recorded in terms of mean
value and dose range corresponding to the gender. In addition, CTDIl,, and dose length

product (DLP) were checked in each study and recorded, wherever available.

2.2.1 Statistical analysis
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All data were analyzed and processed using SPSS V 17.0 (SPSS Inc, Chicago, IL). Effective
doses are expressed as mean value + SD. Comparisons were performed using one sample

two-sided T test. A p-value less than 0.05 was defined as a statistically significant difference.

2.3 Results

The search process and results of obtaining these references are shown in Figure 2-1. Eighty-
three citations were identified to be relevant to the cardiac MDCT angiography with reports
of radiation dose, and only 66 articles were found to meet the selection requirements for
inclusion in this review (Hein et al. 2009; Rybicki et al. 2008; Stolzmann et al. 2011;
Achenbach et al. 2000; Becker et al. 2002; Haberl et al. 2005; Jakobs et al. 2002 ; Knez et al.
2001; Kopp et al. 2002; Leber et al. 2003; Roos et al. 2002; Anders et al. 2006; Chiou et al.
2005; Coles et al. 2006; Dill et al. 2008; Garcia, Lessick, and Hoffmann 2006; Hoffmann et
al. 2005; Houslay et al. 2007; Kuettner et al. 2004; Leta et al. 2004; Mahnken et al. 2003;
Mollet et al. 2004; Park et al. 2009; Schroeder et al. 2001; Yamamoto et al. 2006; Alkadhi et
al. 2008; Blankstein et al. 2009; Deetjen et al. 2007; Earls et al. 2008; Feuchtner et al. 2010;
Francone et al. 2007; Freeman et al. 2009; Gaspar et al. 2005; Hausleiter, Bischoff, et al.
2009; Hausleiter et al. 2006; Husmann et al. 2010; Leber et al. 2005; Maruyama et al. 2008;
Meijboom et al. 2007; Mollet et al. 2005; Nikolaou et al. 2006; Pontone et al. 2009; Pugliese
et al. 2006; Rixe et al. 2009; Van Mieghem et al. 2006; Achenbach et al. 2010; Alkadhi et al.
2010; Chao et al. 2010; Chen et al. 2010; Dewey et al. 2009; Efstathopoulos et al. 2009;
Graaf et al. 2010; Hoe and Toh 2009; Hunold et al. 2003; Klass et al. 2009; Raff et al. 2005;
Ropers et al. 2006; Shuman et al. 2008; Steigner et al. 2009; Walker et al. 2009; Wang et al.
2009; Weigold 2009; Xu et al. 2010; Zhao et al. 2009; Nieman et al. 2001; Nieman et al.
2002), as shown in Figure 2-1. Two studies were reported from the same research group, so
one study was excluded from the analysis (Goetti et al. 2010). Twelve studies were
performed on 4-slice CT (Achenbach et al. 2000; Becker et al. 2002; Haberl et al. 2005;
Hunold et al. 2003; Jakobs et al. 2002 ; Knez et al. 2001; Kopp et al. 2002; Leber et al. 2003;
Mahnken et al. 2003; Roos et al. 2002; Schroeder et al. 2001; Nieman et al. 2001), 13 on 16-
slice CT (Anders et al. 2006; Chiou et al. 2005; Coles et al. 2006; Dill et al. 2008; Garcia,
Lessick, and Hoffmann 2006; Hoffmann et al. 2005; Houslay et al. 2007; Kuettner et al.
2004; Leta et al. 2004; Mollet et al. 2004; Park et al. 2009; Yamamoto et al. 2006; Nieman et
al. 2002), 1 on 40-slice CT (Gaspar et al. 2005), 23 on 64-slice CT (Achenbach et al. 2010;
Alkadhi et al. 2008; Blankstein et al. 2009; Earls et al. 2008; Feuchtner et al. 2010; Francone
et al. 2007; Freeman et al. 2009; Hausleiter, Bischoff, et al. 2009; Husmann et al. 2010;
Leber et al. 2005; Maruyama et al. 2008; Meijboom et al. 2007; Mollet et al. 2005; Nikolaou
et al. 2006; Pontone et al. 2009; Pugliese et al. 2006; Raff et al. 2005; Ropers et al. 2006;
Shuman et al. 2008; Stolzmann et al. 2011; Wang et al. 2009; Xu et al. 2010; Zhao et al.
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2009), 1 on 128-slice (Alkadhi et al. 2010), 5 on 256-slice (Chao et al. 2010; Chen et al.
2010; Walker et al. 2009; Weigold 2009; Efstathopoulos et al. 2009), and 6 on 320-slice CT
(Dewey et al. 2009; Graaf et al. 2010; Hein et al. 2009; Hoe and Toh 2009; Rybicki et al.
2008; Steigner et al. 2009), respectively, and the remaining five studies consisted of a
combination of different generations of MDCT scanners for comparative purposes (Deetjen
et al. 2007; Hausleiter et al. 2006; Klass et al. 2009; Rixe et al. 2009; Van Mieghem et al.
2006). Therefore, according to the individual study cases, 12 studies were performed on 4-
slice CT, 17 on 16-slice, 1 on 40-slice CT, 28 on 64-slice, 3 on 128-slice, 5 on 256-slice, and
6 on 320-slice CT.
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1864 citations found from 8 databases on multidetector
CT coronary angiography radiation dose

1051 citations were not related to effective dose

813 citations on effective dose were
screened to be more specific on clinical
related study

.| 730 citations were not related to clinical

study and in foreign languages

h 4

83 citations clinical related to effective dose
in CT coronary angiography

Excluded

10 citations on phantom studies

3 citations on case reports

2 citations only focused on calcium score

A\ 4

result
2 citations belong to the same study group

Kncluded \

Type of detector Citations
4-row detectors CT 12
16-row detectors CT 13
40-row detectors CT 1
64-row detectors CT 23

128-row detectors CT

256-row detectors CT 5
320-row detectors CT 6
Combination (comparing between two difference CT) 5
Total 66

N /

Figure 2-1: Flow chart showing the search strategy of eligible references.

Four different manufacturers of CT scanners were used in the studies with different models.
These included Siemens Medical Solution, Philips Medical System, GE Healthcare and

Toshiba Corporation Medical System and are shown in Figure 2-2.
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Figure 2-2: Different manufacturers are used in different multidetector CT scanners.

2.3.1 4-and 16-slice CT

Table 2-1 presents the mean effective dose (ED) associated with 4-slice CT coronary
angiography in 12 studies, which is 6.0 £ 2.8 mSv. The results were analyzed with different
variables such as gender, exposure parameters, and dose saving strategies. In the
comparison between genders, the ED was estimated with 4.9 + 2.5 mSv and 6.6 = 3.1 mSv in
male and female patients, respectively. However, four out of 12 studies did not specify the
radiation dose in relation to the patient’s gender, since only the mean ED was reported which
is 7.0 £ 2.6 mSv (Knez et al. 2001; Leber et al. 2003; Nieman et al. 2001; Roos et al. 2002).
Moreover, all studies were performed with retrospective ECG-gating scanning protocols of
minimum 120 kVp and a pitch ranging from 0.375 to 2.0. Three out of 12 studies were
performed with high pitch corresponding to the heart rate with a pitch of 1.5 used for heart
rates below 80 bpm (beats per minute) and pitch 2.0 for heart rates more than 80 bpm
(Jakobs et al. 2002 ; Kopp et al. 2002; Nieman et al. 2001).

The mean ED was estimated to be 10.4 + 4.9 mSv in 16-slice coronary CTA with use of
retrospective ECG-gating protocol. A 120 kVp protocol was consistently used in almost 90
per cent of 17 studies performed with 16-slice coronary CTA (Table 2-1), with beam
collimation less than 1.0 mm and the mean ED being 9.6 + 4.3 mSv, which is higher than in

4-slice CTA. A lower dose protocol with 100 kVp was implemented in two studies
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(Hausleiter et al. 2006; Park et al. 2009), and the mean ED was 6.4 + 1.9 mSv, indicating a
dose reduction of up to 33 per cent.

Another effective approach for dose reduction called ECG-controlled tube current
modulation was applied in six out of 17 studies. This was done to compare it with the
conventional retrospective ECG-gating scan without use of tube current modulation. The
analysis shows that ED in a scan protocol with application of tube current modulation was
significantly lower (6.7 = 1.8 mSv) than without using tube current modulation (11.6 + 5.1
mSv) (p<0.01). Another aspect that could increase radiation dose is an extension of the
scanning region (field of view) with 16-slice CT scanning protocol which may be done in
some studies for purposes of reassessment of coronary bypass procedure. The mean ED
increased from 9.8 + 4.3 mSv to 14.8 £ 8.5 mSv if the scan range increased from 100 mm to
149 mm with the normal exposure parameter set at 120 kVp (Anders et al. 2006; Houslay et
al. 2007; Yamamoto et al. 2006). Thus, the dose increased considerably with an extended
scanning coverage area. However, the radiation dose was not compared between genders in
16-slice CT due to insufficient number of studies that had been conducted. One study was
performed with 40-slice CT scanner (Brilliance 40 Philips Medical System) in coronary
angiography (Table 2-1). Here the effective radiation dose was reported to be 9.9 + 2.8 mSy,
which is close to the 16-slice CT dose report (10.4 + 4.9 mSv) (Gaspar et al. 2005).
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Table 2-1: Study details of 4-slice, 16-slice and 40-slice CT coronary angiography

) ] Tube Tube
Author/Year of No. of patients Mean Age Effective dose Detector GRT ]
o o Pitch voltage | current
publication (male/female) (years) (mSv) (male/female) | collimation (mm) (ms)
(kVp) (mA)
Achenbach et al. (2000) 16/9 56 3.9/5.8 4x1.0 500 0.375 140 150
Becker et al.(2002) 27/1 64 7.1/9.6 4x1.0 500 NS 120 300
Haberl et al.(2005) 83/50 67 5.8-7.4/7.6-9.8 4x1.0 NS NS 120 300
36/14 56.3 1.0/1.4" 4x25 500 15 120 100*
Jakobs et al.(2002)
36/14 55.7 1.9/2.5 4x25 500 15 120 100*
Knez et al.(2001) 38/6 60 9.5 4x1.0 500 NS NS -
Kopp et al.(2002) 79127 62 5.5/6.5 4x1.0 500 1.5-2.0 120 300
Leber et al.(2003) 72/19 61.7 8.2 4x1.0 NS NS 120 300
Mahnken et al.(2003) 27/8 62.3 5.4/7.8 4x1.0 500 0.375 120 400*
Nieman et al.(2001) 27/8 59 4.9 4x10 500 1.5-2.0 140 -
20 60 8.85 4x1.0 500 0.38-0.75 120 250-400
Roos et al.(2002)
20 60 3.65 4x25 500 1.0 140 150
Schroeder et al.(2003) 13/2 58 6.7-10.9/ 8.1-13 4x1.0 500 15 140 400*
Anders et al.(2006) 29/3 67 3.4-48/5.1-7.1 12 x 0.75 420 NS 120 500*
Chiou et al.(2005) 65/7 58 9.0 12/16 x 0.75 420 NS 120 500
Coles et al.(2006) 27/13 60 15.3 16 x 0.75 420 NS 120 550*
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31/20 64 14.2° 12 x0.75 420 NS 120 500*
] 39/17 65.96 9.76 16 x 0.75 375 NS 120 550*
Deetjen et al.(2007)
41/10 58.84 5.58" 16 x 0.75 375 NS 120 550*
Dill et al. (2008) 49/7 66 9.76 16 x 0.75 375 0.16-0.2 120 550*
Garcia et al. (2006) 162/76 59.8 8.0 16 x 0.75 NS NS 120-140 | 400-500
27/33 10.6 16 x 0.75 420 0.18 120 510
Hausleiter et al. (2006) 33/33 59.1 6.4" 16 x 0.75 420 0.18 120 304
34/34 5 16 x 0.75 420 0.21 100 387
Houslay et al.(2007) 43/7 66 18.5 16 x 1.00 500 0.25 135 250-300
57 8.1 16 x 0.75 420 0.2 120 240
Hoffmann et al.(2005) 61.5
46 4.9 16 x 0.75 420 - 140 300
5.4 12 x 0.75 NS NS 120 500
Kuettner et al.(2004) 44/16 58.3
10.1 12 x 0.75 NS NS 120 500
Leta et al. (2004) 28/3 66 24.2 NS NS NS 120 250-350
Mollet et al. (2004) 113/15 58.9 9.85 16 x 0.75 420 NS 120 400-450
Nieman et al. (2002) 34 58 8-9 12 x 0.75 420 NS 120 400-450
105 55.9 7.8 16 x 0.75 420 0.2 100 600-630
Park et al. (2009)
80 56.5 10.1 16 x 0.75 420 0.2 120 550-600
Rixe et al. (2009) 49/7 68 9.8 16 x 0.75 NS 0.2-0.24 120 550
Van-Mieghem et al. (2006) 27 61.2 11.8-16.3 16 x 0.75 420 NS 120 400-450
Yamamoto et al. (2006) 36/6 63.6 20.8 16 x 0.625 500/600 0.275 NS 350
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Gaspar et al.(2005)

20/20

63.1

9.9

40 x 0.625

420

0.2

120

600-800

GRT= Gantry rotation time;*effective mAs; “Tube current modulation; NS= Not stated
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2.3.2 64-slice CT

Twenty-eight studies were carried out using 64-slice CT and a number of comparisons were
undertaken between them with different CT models. These are shown in Table 2-2. The
comparisons consist of detector technology (single-source and dual-source CT), scanning
protocol (prospective and retrospective ECG-gating), and tube voltage (100 and 120 kVp).
Overall ED estimation in 64-slice CT was 10.0 £ 6.2 mSv. With conventional retrospective
ECG-gating technique, the mean dose of 64-slice CT was 11.8 + 5.9 mSv compared to
prospectively ECG-gating protocol with estimated ED being 4.1 £ 1.7 mSv. The ED was
compared between 100 kVp and 120 kVp scanning protocols from five studies (Hausleiter et
al. 2006; Kuettner et al. 2004; Alkadhi et al. 2008; Feuchtner et al. 2010; Xu et al. 2010),
with a total of 724 patients, with the corresponding mean ED at 5.6 £ 3.0 mSv and 10.7 + 5.1
mSy, respectively, resulting in a dramatic dose reduction of 48 per cent (p<0.01).

Eight out of the 28 studies that were performed with 64-slice CT were scanned with dual-
source CT scanners, which were all manufactured by Siemens Medical Solutions. In general,
the mean ED in both single source CT (SSCT) and dual-source CT (DSCT) scanners was
reported as 11.7 + 6.3 mSv and 6.7 + 4.6 mSv, respectively (Figure 2-3). However, the mean
ED was differentiated between prospective and retrospective ECG-gating protocols in both
scanners with use of DSCT and SSCT. The ED was 9.5 £ 3.9 mSv and 2.8 + 1.7 mSv in
studies performed with retrospective and prospective ECG-gating with DSCT, and 13.4 £ 5.7
mSv and 6.8 £ 5.1 mSv in studies using retrospective and prospective ECG-gating with
SSCT, respectively, indicating a significant reduction of ED with prospective gating
(p<0.01).

The purpose of padding is to provide extra phase information to compensate for variations in
heart rate by adding time before and after the centre phase of the acquisition. Padding is
described in the range of 0-200 ms and is added to both sides of the centre of the acquisition
with padding O corresponding to a window of 100 ms scanning time and padding 100
corresponding to a window of 200 ms scanning time (Kalra et al. 2004). Application of
padding helps to generate diagnostic images in patients with high heart rate variations;
however, this leads to an increase of ED when compared with those without padding
(Pontone et al. 2009). The effect of different paddings on radiation dose in prospective ECG-
gating protocols was conducted in one study (Pontone et al. 2009), and the results showed
that ED was estimated with 5.8 + 1.8 mSv and 7.4 + 3.0 mSv with use of 100 ms and 200 ms
padding respectively. In contrast, the ED was much lower without padding (Pontone et al.
2009), which is 3.8 £ 1.2 mSv.

80



307

2571

(=]
o
1

Effective Dose (mSv)
3

-
o
1

T T
Retrospective ECG-gating Prospective ECG-gating

Figure 2-3: Box plot shows the mean effective dose reported in the studies with use of
retrospective ECG-gating and prospective ECG-gating. It is obvious that the radiation dose
of prospective gating MDCT angiography was significantly lower than that of retrospective

gating protocol.
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Table 2-2: Study details of 64-slice CT coronary angiography

Author/ Year of No. of patients | Mean Age Effective Detector GRT pitch Tube voltage | Tube current
itc
publication (male/ female) (years) Dose (mSv) | collimation (mm) (ms) (kVp) (mA)
36/14 57 9.0 2x32%0.6 330 0.2-05 120 330*
) 15/13 61.5 2.9 2x32%0.6 330 NS 120 330*
Alkadhi et al.(2008)
28/15 59.9 4.2 2x32%0.6 330 0.2-05 100 220*
26/14 62.9 1.3 2x32x%0.6 330 NS 100 190*
Achenbach et al.(2010) 50 NS 0.87 2% 64x0.6 280 3.2-34 100 220-290
) 114/74 56.5 13.4 2x32x%0.6 330 0.3 80-140 320
Blankstein et al.(2009)
26/16 44.3 3.2 2x%32x%0.6 330 - 80-140 200
Deetjen et al.(2007) 25/22 57.36 13.58 64 x 0.6 330 NS 120 850
44/38 55.6 18.4" 64 x 0.625 350 NS 120 647
Earls et al.(2008) .
71/50 56.7 2.8 64 x 0.625 350 NS 120 508
26 53.1 9.6 32x0.6 330 0.2 100 500-800
26 - 5.3" 32x0.6 330 0.2 100 500-800
Feuchtner et al.(2009)
25 55.3 18.2 32x0.6 330 0.2 120 600-900
26 - 8.7" 32x0.6 330 0.2 120 600-900
Francone et al.(2007) 108/6 63.1 95 32x2x0.6 330 0.2 120 800
157 20.3 64 x 0.625 350 NS NS NS
Freeman et al.(2009) 748 56 3.02° 64 x 0.625 350 NS NS NS
359 6.96" 64 x 0.625 350 NS NS NS
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34/34 14.8 64 x 0.6 330 0.2 120 870
Hausleiter et al.(2006) 36/36 59.3 9.4* 64 x 0.6 330 0.2 120 551
21/49 5.4" 64 % 0.6 330 0.2 100 537
384 NS 19 64 x 0.625 NS NS 100-120 NS
123 NS 10 64 x 0.625 NS NS 120 NS
Hausleiter et al.(2009) 380 NS 9* 64 x 0.6 NS NS 120 NS
521 NS 11* 2%x32x0.6 NS NS 100-120 NS
138 NS 15" NS NS NS 120 NS
Husmann et al.(2010) 28/12 54.9 2.1 64 x 0.625 350 NS 100-120 400-650
Klass et al.(2009) 58/22 58 3.36° 64 x 0.625 420 NS 120-140 150-210
Leber et al.(2005) 59 NS 10-14 64 x 0.6 330 NS 120 550-750
71/26 69.9 21.1 64 x 0.625 350 NS 120 800
Maruyama et al.(2008) N
47129 69.1 4.3 64 x 0.625 350 NS 120 800
Meijboom et al.(2007) 279/123 60 13.4-17.0 32x2x%0.6 330 NS 120 850-960
Mollet et al.(2005) 34/18 59.6 15.2-21.4 32x2x%0.6 330 NS 120 900
Nikolaou et al.(2006) 59/13 64 8-10 32x2x%0.6 330 NS 120 850
65/15 64.3 20.5 64 x 0.625 350 NS 120 700
Pontone et al.(2009) i
70/10 64.8 5.7 64 x 0.625 350 NS 120 700
Pugliese et al.(2006) 35 61 15-20 32 x2x%0.6 330 NS 120 900
Raff et al.(2005) 53/17 59 13-18 32 x0.6 330 NS 120 750-850
Rixe et al.(2009) 22/33 55 8.6 64 x 0.6 330 0.2-0.3 120 850
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95 60 9.6 64 x 0.6 330 0.2-0.5 120 320

25 60 3.8" 64 x 0.6 330 0.2-0.5 100 320

Ropers et al.(2006) 52/32 58 7.5-11.2 64 x 0.6 330 NS 120 750
31/19 475 26.7 64 x 0.625 330 0.2-0.3 120 600-790

Shuman et al.(2008)

33/17 46 6.2 64 x 0.625 330 1.0 100-120 400-500

70/30 64.5 8.1 2x%32x%0.6 330 0.2-0.4 100-120 330

Stolzmann et al.(2010)

58/42 68 2.2 2x%32x%0.6 330 0.2-0.4 100-120 190

Van Mieghem et al.(2006) 43 61.2 15.2-21.4 64 x 0.6 330 NS 120 900

68/32 53.1 5.9-9.1° 2x32x%0.6 NS 0.2-0.4 120 320

Wang et al.(2009)

42/18 52.5 9.3 64 x 0.6 NS 0.2 120 770

26/24 54.6 7.4" 2x%32x0.6 330 0.3-0.4 100 362

25/25 54.6 3.4 2x32x0.6 330 NS 100 418

Xu et al.(2009)

26/24 56.2 15.5 2x32x0.6 330 0.3-0.4 120 410

25/25 56.2 6.5 2x32x%0.6 330 NS 120 506
25/5 58.7 14.6 2x%32x%0.6 330 NS 100-120 330-430

Zhao et al.(2009)

2317 58.7 2.2 2x%32x%0.6 330 NS 100-120 200-260

*tube current modulation; *effective mAs; "Prospective ECG-triggering CCTA; GRT= gantry tube rotation; NS= Not stated
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2.3.3 128-, 256- and 320-slice CT

With latest CT models such as 128-, 256- and 320-slice CT, prospective ECG-gating was
found to dominate most scanning protocols, as shown in this analysis. Therefore, the mean
ED was estimated for each generation of scanner with 3.6 + 0.4 mSv, 3.0 £ 1.9 mSv and 7.6
+ 1.6 mSv in 128-, 256- and 320-slice CT respectively. However, some studies were
conducted using retrospective ECG-gating in these latest CT generations. The mean
estimation of ED was reported with 12.4 £ 1.4 mSv, 11.3 + 3.8 mSv and 13.5 + 0.7 mSv in
128-, 256- and 320-slice CT respectively. In the 256-slice CT study, the analysis showed that
mean ED in retrospective ECG-gating protocol was even lower with use of tube current
modulation (10.3 + 3.7 mSv) than it was without using tube current modulation (14.1 + 1.9
mSv) (Achenbach et al. 2000).

Table 2-3 shows studies performed with 320-slice CT, where all studies were conducted with
prospective ECG-gating protocol. However, only one study used multiple heartbeats
scanning protocol for higher heart rates in order to allow more data reconstruction (Hoe and
Toh 2009). A study comparing the radiation dose between single and multiple heartbeat
showed that the ED increases from 5.7 £ 1.7 mSv to 16.5 = 4.2 mSv with use of up to three
heartbeat scanning (Hoe and Toh 2009). However, in comparison with the latest generation
of MDCT scanners, the ED in 320-slice CT with single-heartbeat scan is still higher than that
estimated in 128- (3.6 + 0.4 mSv) and 256-slice CT (3.0 £ 1.9 mSv).

Figure 2-4 shows the range of mean ED reported in this review based on different CT
scanner generations. It is difficult to tell whether or not the increase of CT slices leads to an
increase in the radiation dose since various dose saving strategies have been increasingly

used in recent generations of MDCT scanners.
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Table 2-3: Study details of 128-slice, 256-slice and 320-slice CT coronary angiography

Author/ Year of No. of patients Mean Effective Detector GRT pitch Tube voltage | Tube current
itc
publication (male/female) Age Dose (mSv) | collimation (mm) | (ms) (kVp) (mA)
] 38/12 62 14 2%x64%0.6 280 0.2-0.5 100 320
Alkadhi et al.(2010)
36/14 63 0.9¥ 2x64%0.6 280 3.4 100 320
80/24 61.5 14.8" 256 x 0.625 270 NS 120 592
Chao et al.(2010)
80/24 61.5 5.1 256 x 0.625 370 NS 120 925
5/5 56.3 7.3 256 x 0.625 270 NS
3/7 57.9 11.8 256 x 0.625 270 NS
Chen et al.(2010) 120 700-900
8/2 60 4.7 256 x 0.625 270 NS
5/5 54.8 2.7 256 x 0.625 270 NS
5/5 55.2 3.2 128 x 0.625 270 180-250
Efstathopoulos et al.(2009) . NS 120
12/3 55.2 13.4 128 x 0.625 270 800-950
Klass et al.(2009) 58/22 60 3.42 2 x128 x0.625 270 NS 120-140 150-250
Walker et al.(2009) 2,811 NS 3.8 2 x128 x0.625 270 0.18 120 800
) 77/12 NS 11.4 128 x 0.625 270 NS 120 NS
Weigold (2009)
77/12 NS 4.0 128 x 0.625 270 NS 120 NS
Dewey et al.(2009) 21/9 61 8.1 320 x 0.5 350 NS 120 350-450
Hein et al.(2009) 19/11 63.2 10.5 320 x 0.5 350 NS 120 400
Graaf et al.(2010) 34/30 61 3.9-10.8 320 x 0.5 350 NS 100,120,135 400-580
Hoe and Toh (2009) 109/42 56.3 5.7 320 x 0.5 350 NS 100-120 300-580
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24]12 54.7 13.00 32005 350 NS 120
9/3 55.7 175 32005 350 NS 120
5/1 615 14 320% 05 350 NS 120

Rybicki et al.(2008) 400-580
23/11 52.7 7.2 320% 05 350 NS 120

Steigner et al.(2009) 28/13 53 6.7 320%05 350 NS 120 400-580

GRT= Gantry rotation time; ¢ 2-heart beat scan; *3-heart beat scan; ¥ High pitch; “"Retrospective ECG-gating CCTA; NS= Not stated
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Figure 2-4: Distribution of mean effective dose between 4-, 16-, 64-, 128-, 256- and 320-
slice multidetector CT scanners is displayed the box plot. Radiation dose increases with the
increase of number of slices; in particular, this is apparent when comparing 4-slice with 16-
and 64-slice CT. With latest models such as 128-, 256- and 320-slice CT, radiation dose was

reduced to some extent as prospective gating is commonly used.

2.4 Discussion

This review indicates that radiation dose has risen from early generation scanners of 4-slice
to 16- and 64-slice CT and will continue to do so if no dose-saving strategies are applied.
With increased use of MDCT in coronary imaging due to technological developments the
awareness of radiation risk has increased. Thus more and more dose-saving strategies are
being employed to reduce the radiation dose while acquiring diagnostic images. This
analysis confirms the trend as variable dose-reduction approaches were applied in recent CT
scanners, especially 64-slice coronary CTA. This includes the highly effective strategy of
ECG-controlled tube current modulation and very effective strategy of prospective ECG-

gating, which result in a significant reduction of radiation dose.
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Despite promising results of coronary CT angiography, coronary CTA suffers from the
disadvantage of high radiation dose, and associated high radiation risks (Brenner and Hall
2007; Hausleiter, Meyer, et al. 2009). Brenner and Hall (2007) estimated that approximately
between 1.5 and 2% of all cancers in the United States may be caused by radiation exposure
from CT examinations (Brenner and Hall 2007). Davies et al (2011) estimated that in the UK
radiation from CT scans causes 800 cancers per year in women and 1,300 in men (Davies,
Wathen, and Gleeson 2011). Radiation exposure is especially unsafe for young and female
patients as radiation effects are more severe in these groups than in older individuals and in
men. Thus, protecting young and female patients from high radiation doses is very
important. A recent study reported that one in 270 women aged 40 years who undergoes
coronary CT angiography will develop cancer (Smith-Bindman et al. 2009). Therefore,
coronary CT angiography should be performed with dose-saving strategies whenever

possible so as to reduce the radiation dose to patients.

Several techniques were introduced to reduce the radiation dose in coronary CT imaging in
order to accomplish the rule ‘as low as reasonably achievable’ (ALARA). Variable dose
reduction techniques were applied in the studies, which included ECG-controlled tube
current modulation, lower x-ray tube voltage, and prospective ECG-gated scanning (Nieman
et al. 2001). ECG-controlled tube current modulation technique is regarded as one of the
highly effective approaches for dose reduction (Kalra et al. 2004). This approach indicates
that tube current can be adjusted in different cardiac phases so that high-quality diagnostic
images of coronary arteries during the reconstruction window, and low-quality, higher noise
images of the cardiac chamber and cardiac valves during the rest of the cardiac cycle can be
achieved. This algorithm restricts the prescribed tube current to a pre-defined time window
during the diastolic phase and decreases tube current in the systolic phase of the cardiac

cycle, thus achieving significant dose reduction with this method (Coles et al. 2006).

With use of tube current modulation in MDCTA, radiation dose can be reduced between 20
to 50% depending on heart rate (Gies et al. 1999; Hausleiter et al. 2006; Jakobs et al. 2002 ;
Walker et al. 2009). This corresponds to our analysis that showed dose reduction between 38
and 51% in 4-, 16-, 64- and 128-slice CT. Another effective approach to reduce radiation
dose is to adjust the tube voltage, kVp. Although using a 100-kVp exposure reduces
radiation dose between 33 and 48% in 16-slice and 64-slice CT compared to 120 kVp
protocols, it should be emphasised that a low tube voltage protocol is only recommended in
patients with small body mass index (BMI) or with BMI less than 25 kg-m™in order to keep
the image quality at the diagnostic level (Abada et al. 2006).
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Since the time that 64-slice CT was introduced, prospective gating technique has been
increasingly used in coronary CT scanning due to its capability to lower radiation doses
notably. This is reflected in our findings as the researchers showed increased concerns about
the radiation dose associated with coronary CTA in application of variable dose-saving
strategies. Prospective ECG-gating method is reported to reduce the ED between 70 and
87% compared to retrospective ECG gating, and results from this review are consistent with
other reports (Earls 2009; Husmann et al. 2008; Shuman et al. 2008). According to this
analysis, radiation dose was reduced between 66 and 73% with regard to any slice CT

generations.

Further dose reduction can be achieved by a combination of prospective ECG gating with
high pitch spiral acquisition, which results in a consistent dose below 1 mSv (Achenbach et
al. 2010; Alkadhi et al. 2010). This is only achievable with the second generation of dual-
source CT scanners with acquisition of 128-slices per gantry rotation, and high temporal
resolution of 75 ms (Alkadhi et al. 2010). There is no doubt that prospective gating
represents the very effective approach in reducing radiation dose; however, its application is
limited to patients with a regular and low heart rate (<65 bpm), and no functional

information is available from the scan.

Studies performed with 4-slice and 16-slice CT have shown that the effective radiation dose
was estimated in female significantly higher than in male patients due to the different size
thickness on the chest region. However, the breast tissue is radiosensitive and keeping the
radiation dose to the breast at the minimum level is paramount. This also highlights the
importance of reducing radiation dose in young female patients. It is estimated that ED of
coronary CTA may reach up to 40 mSv in female patients if no dose-saving strategies are

applied and there is associated radiation exposure to breast tissues (Husmann et al. 2008).

There are some limitations in this analysis. First, the searching criteria included only
citations on radiation dose in coronary CT angiography from the selected databases. Five per
cent of the articles were in non-English languages and were thus excluded from this review.
Second, although there were many references especially on earlier types of CT scanners, the
reports were limited to diagnostic accuracy, as most of the publications focused on image
quality rather than on radiation dose. The development of CT scanners in particular, enabled
researchers to improve the scanning technique or diagnostic quality but did nothing to raise
awareness of radiation risk. Third, this analysis only looked at the radiation dose and did not
assess diagnostic value or image quality related to different types of CT scanners. However,
literature on the diagnostic accuracy of MDCT in CAD has been extensively studied and a

number of meta-analyses have been published to show the increased accuracy of MDCT
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from 4-slice to 64-slice CT (Paul and Abada 2007; Stein et al. 2008; Sun et al. 2008).
Moreover, most of the studies on 256- and 320-slice CT were based on phantom
experiments, which were excluded from the current analysis. Finally, some studies,
especially those using 16-slice CT scanners did not provide detailed information about
radiation dose in relation to gender. Thus, it is difficult to perform a comparison with other
types of MDCT scanners.

2.5 Conclusion

Diagnostic value of MDCT angiography in the diagnosis of coronary artery disease has
improved significantly with technological developments of MDCT technique, leading to
increased application of MDCT in cardiac imaging. The amount of radiation dose that is
associated with cardiac MDCT remains a major point of deliberation in clinical practice and
is reflected in the increased use of dose-saving strategies, as shown in this analysis. With the
latest MDCT scanners achieving high diagnostic accuracy, reduction of radiation dose has
become a major concern to clinicians and manufacturers. Furthermore, awareness amongst
clinicians to reduce radiation doses because of the risks associated with radiation has
increased. This is indicated in the fact that more and more dose-saving strategies are being

implemented in coronary CT angiography examinations.
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CHAPTER 3: RADIATION DOSE ASSOCIATED WITH CORONARY CT
ANGIOGRAPHY AND INVASIVE CORONARY ANGIOGRAPHY: AN
EXPERIMENTAL STUDY OF THE EFFECT OF DOSE-SAVING STRATEGIES

3.1 Introduction

Invasive angiography is regarded as the gold standard technique for diagnostic and
therapeutic purposes with regard to vascular diseases (Tan et al. 2007; Tins, Oxtoby, and
Patel 2001). Since the emergence of the multislice CT, especially the extensive applications
of CT angiography technique, invasive angiography examinations have been replaced by this
less-invasive procedure with the aim of reducing procedure-related complications.
Nowadays, the multislice CT angiography has become a reliable alternative to conventional
angiography in many vascular applications due to its rapid technological developments,
which lead to fast scanning and data acquisition with high spatial and temporal resolutions.
In the United States, the numbers of CT examinations are estimated to increase gradually
over the next ten years since many new applications are being developed for CT procedures
to improve the diagnostic accuracy (Measurements 2009). In most clinical centers, multislice
CT angiography is being increasingly used to replace conventional angiography as an

alternative method in vascular imaging.

One of the main applications of multislice CT angiography is coronary CT angiography,
with the diagnostic value having been significantly improved with rapid technical
developments from the earlier generation of the 4-slice to the latest model 320-slice CT
(Hein et al. 2009; Sun, Choo, and Ng 2012 ). Despite the high diagnostic value of coronary
CT angiography, the radiation dose associated with coronary CT angiography has raised
serious concerns in the medical field. In response to this concern, various dose-saving
techniques have been introduced to reduce or minimize the radiation dose while acquiring
diagnostic quality images. Parameters such as reduced tube voltage, prospective ECG-gating,
and tube current modulations including, ECG-controlled and attenuation-dependent
modulation have been reported to result in a significant dose reduction in cardiac CT (Sun,
Choo, and Ng 2012 ; Sun and Ng 2010). As invasive coronary angiography is still regarded
as the gold standard technique in diagnosing coronary artery disease, this procedure is
retained with the latest developments in dose-reducing strategies, for instance, spectral
shaping filter, pulsed fluoroscopy in cardiac angiography, flat panel detector, continuous half
exposure, and the air gap technique in order to increase the accuracy and reduce radiation
dose (Lederman et al. 2002; Partridge et al. 2006).
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During coronary CT or invasive angiography examinations, it is not unusual for some organs
to receive unnecessary exposure to radiation, which leads to the dose level exceeding the
acceptable limits. Many radiosensitive organs are at a potential risk of being overexposed
since they are located within the radiation exposure coverage, especially the breast tissue and
the thyroid gland. It has been shown that the risk of lung or breast cancer development may
correlate with radiation exposure from the chest CT scan (Erin Angel et al. 2009; Preston et
al. 2003). Therefore, those organs need to be protected and monitored as there is a direct
correlation between development of thyroid cancer and radiation exposure. Although many
studies suggest that protective shielding results in a significant reduction of radiation dose
(McLaughlin and Mooney 2004), it is not feasible to protect all of those organs as it may
compromise image quality. It seems impractical to block those organs with designated
shielding, which may obscure the regions of interest simultaneously. However, only certain
organs are easily protected such as the thyroid gland, eyes (the lens) and the gonad but again,
this depends on the type and purpose of the examination. Optimization of the technical
parameters is another effective way to protect the radiosensitive organs by reducing radiation
dose during CT examinations. The aim of the study was to compare the effective dose
estimation (E) and entrance skin dose (ESD) of the selected radiosensitive organs through
coronary CT angiography and invasive angiography performed with different protocol
settings.

3.2 Materials and methods
3.2.1 Coronary angiography equipments

This study was performed on an anthropomorphic thorax phantom which represents an
average male with 175 cm tall and a weight of 74 kg (Pixy, USA) with the use of a 64-slice
CT scanner (Brilliance 64, Philips Healthcare, USA) and the Allura Xper FD20 with flat
panel detector C-arm (Philips Medical, USA). Three coronary CT angiography protocols
were set up for radiation-dose comparisons (E and ESD) including, standard retrospective
gating without tube current modulation (routine protocol), retrospective ECG-gating with
ECG-controlled tube current modulation (TCM), and prospective axial gating technique
(dose-saving protocols). On the other hand, invasive coronary angiography procedure was
performed in a series of 11 projections with four different protocols indicated by different

magnifications of the flat panel detector of 1.6, 1.8, 2.2, and 2.5 magnification factors.

The ESD was measured using thermoluminescence dosemeter (TLD) rods and the E was

determined by calculation from dose length product (DLP) and kerma air product (KAP).
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Both doses were recorded during the procedures and compared for both, CT and invasive
angiography.

3.2.2  Coronary CT angiography protocols

Since the coronary scan is needed to be triggered by the heart rate, the electrocardiogram
leads were attached to a volunteer outside the scanning room for the heart rate readings prior
to the scans. No contrast medium was used in this study. Therefore, no image quality
assessment was observed throughout the procedures. The coronary CT angiography was
performed with a detector collimation of 64 x 0.625 mm, slice thicknesses of 0.8 mm, field
of view ranging from 150 mm to 174 mm, tube voltages of 120 kV, and adjustable tube
current in the range of 300-500 mA. All the scan protocols were based on the same scout
image and using the same volume of coverage in order to obtain the consistency of the study
pattern. Specific protocols are detailed in Table 3-1.The protocols were selected and
modified according to those applied in the department’s routine practice. In addition, it was
chosen based on previous studies which were recommended to produce a significant dose
reduction as a dose-saving strategy in CT coronary angiography (Kalra et al. 2004; Sun,

Choo, and Ng 2012 ). The DLP from each protocol scanned was recorded.

102



Table 3-1: Coronary CT angiography protocols

Parameters Protocol 1 Protocol 2 Protocol 3
Collimation (mm) 64 x 0.625 64 x 0.625 64 x 0.625
Slice thickness (mm) 0.80 0.80 0.80
Increment (mm) 0.40 N/A 0.40
Pitch 0.20 N/A 0.20
Rotation time (s) 0.40 0.40 0.40
Cycle time (s) N/A 1.90 N/A
FOV (mm) 174.00 150.00 160.00
Tube setting (kKVp/mA) 120/381 120/500 120/381
Planned mAs (mAs/slice) 800 N/A 800
current-time (MAS) 800 210 800
Tagging (%) 75 75 75
Cardiac filter Yes No Yes
Adaptive filter Yes SP Yes
*Filter XCB XCB XCB
Scan time (s) 9.98 5.48 9.98
Scan length (mm) 136.0 124.8 136.0
scan angle (°) N/A 360 N/A
tilt (°) N/A 0 N/A
Table speed (mm/sec) 19.0 N/A 19.0
Orientation Feet first Feet first Feet first

N/A-not available; *Filter-Xres standard filter for coronary CT (XCB); Protocol 1:
Retrospective ECG-gating without tube current modulation (standard); Protocol 2:
Prospective ECG-gating; Protocol 3: Retrospective ECG-gating with tube current

modulation.
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3.2.3 Invasive coronary angiography procedures

Each invasive angiography protocol consisted of 11 projections including left anterior
oblique (LAO) 15°/15° caudal, LAO 30°, LAO 30°/30° caudal, LAO 40°/60° caudal, left
lateral 90°, anterior-posterior (AP) 30° caudal, AP 20° cranial, AP 40° cranial, right anterior
obligue (RAO) 30°/30° cranial, RAO 35°, and RAO 40°/30° caudal. In addition, the dose
area product (DAP) reading from each projection was recorded once it was complete. Each
projection was obtained at 100-110 cm of source-to-image distance (SID) and at
approximately 80 frames of dynamic acquisition. Those projections were suggested in order
to cover the entire coronary anatomy during the invasive coronary angiography procedure.
The sideways collimation was applied accordingly as in clinical practice to minimize the
radiation dose. The exposure filter was selected with 0.10 mmCu/1.00 mmAl and 0.9
mmCu/1.00 mmAl for fluoroscopy filtration from the angiographic system and automatic
exposure control was applied. Specific protocols are recorded in Table 3-2.

3.2.4 Radiation dose measurements

ESD was measured by placing the TLD rods securely above the radiosensitive organs on the
phantom skin surface. It was paramount to identify the highest point of radiation dose
received by organs from the overall dose distribution which includes exposure from either
the primary beam or the secondary radiation beams, depending on the location of these
organs during coronary CT and invasive angiography procedures. The ESD was then
recorded in milligray (mGy) after undergoing a series of procedures including annealing,
calibration, radiation dose exposure, and read-out process. The annealing and dose read-out
was performed with a Harshaw-5500 reader (Thermo Electron Corp., USA) while calibration
was performed with general x-ray machine (Shimadzu, Japan). TLDs calibration was
designed to create a graph pattern for radiation dose conversion from nanoculomb (nC) to
miligray (mGy) by exposing it to a known dose, which was measured with a digital radiation
survey meter (model 660) having an ion-chamber model 660-3 beam measurement probe
and a readout/logic unit (model 660-1). These TLDs were interpreted 24 hours after the
exposure. The TLD used in this study was micro-rod shaped and sealed in numbered,

cylindrical tubing.
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Table 3-2: Invasive coronary angiography protocols

Protocols Protocol 1 (1.6%) Protocol 2 (1.8%) Protocol 3 (2.2%) Protocol 4 (2.5%)
Tube position kV/mA time Frames | kV/mA time Frames | kV/ImA time Frames | kV/mA time Frames
(ms) (ms) (ms) (ms)
LAO 15°/15°] | 68/470 5 81 68/505 5 79 70/613 5 80 73/653 6 76
LAO 30°/0° 67/455 4 81 67/426 4 82 68/495 5 81 71/628 5 79
LAO 30°/30°] 70/579 5 83 70/608 5 83 74/660 6 79 75/671 6 79
LAO 60°/40°] 86/625 7 80 90/596 8 81 99/544 8 77 101/531 8 81
LT Lat 90°/0° 66/391 4 81 66/411 4 81 68/495 5 80 70/593 5 81
AP 0°/30°] 66/406 4 80 68/505 5 80 70/593 5 82 721647 5 80
AP 0°/20°1 65/322 4 80 66/376 4 75 68/480 5 81 69/549 5 80
AP 0°/40°1 67/436 4 80 68/515 5 78 71/618 ) 81 73/656 6 81
RAO 30°/30°1 64/297 4 80 65/362 4 79 67/436 4 83 69/554 5 82
RAO 35°/0° 65/342 4 79 66/391 4 80 67/455 4 80 68/470 5 80
RAO 40°/30°| 71/623 5 80 72/650 5 80 74/663 6 84 761677 6 78

*Magnification factor; LAO- Left anterior oblique; LT-Left; LAT- Lateral; AP- Anterior posterior; RAO-Right anterior oblique
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A total of eighteen TLDs were securely taped on the phantom skin surface over the
radiosensitive organs for each protocol whereas; three were placed on the bilateral thyroid,
breast, and gonad organs in order to measure the dose distribution during the procedures.
Four invasive angiography protocols were designed with different flat panel detector
magnifications ranging from 19 cm to 31 cm indicating between 1.6 and 2.5 magnification
factors. Similar to the coronary CT angiography procedure, 18 different TLDs were used and
placed at exactly the same locations in each protocol magnification for dose comparison. The

TLD readings of a specific organ were averaged to calculate the dose for this organ.

The E was obtained by straightforward calculation based on a formula. The formula required
DLP from CT scans and dose area product (DAP) from invasive angiography. DAP is a
guantity known to many interventionalists and it is numerically equal to the KAP which
KAP is the quantity recommended by the International Commission on Radiation Units
(ICRU) to measure patient doses in interventional radiology (Vano et al. 2009). Both the
DAP and the DLP were then multiplied with dose conversion co-efficient factor (DCC)
distinctively. The DCC factor was derived from the parts anatomically-specific to the region
of the body being scanned in CT while DCC for invasive angiography was derived from a
study which met the specific exposure conditions in the coronary angiography procedure
(Schultz and Zoetelief 2005). A conversion factor of 0.017 mSv-mGy™-cm™ was used for the
calculation of the E in the chest region (Huda, Ogden, and Khorasani 2008) in coronary CT
angiography and 0.2 mSv-Gy*-cm? was used to calculate the E in invasive coronary
angiography (Broadhead et al. 1997; Schultz and Zoetelief 2005).

3.2.5 Statistical analysis

All data were entered into SPSS V17.0 (SPSS, version 17.0 for Windows, Chicago, Illinois,
USA) for statistical analysis. A p-value of <0.05 was considered to indicate statistically
significant differences. All of the doses from each protocol were presented in box plot. One-
way ANOVA and repeated measures ANOVA were used in ESDs analysis to determine the
existing difference in mean ESD of radiosensitive organs (thyroid, breast and gonad) in both
CT and invasive coronary angiography of all protocols. With regard to the effective dose, the
ANOVA test is perform to determine the significant difference of mean values between the
protocols. Moreover, a Duncan multiple range test is used to facilitate statistical comparisons

among the mean values in invasive coronary projections.

106



3.3 Results

3.3.1 Coronary CT angiography

There were no significant differences in ESD measurements between the radiosensitive
organs as tested with one-way ANOVA at p=0.32. However, with repeated measures
ANOVA, the ESD measured in thyroid, breast and gonad differed significantly within all
three protocols (standard retrospective ECG gating, retrospective ECG gating with tube
current modulation and prospective ECG gating) at p<0.05. Apparently, ESD was found to
be the highest at the breast compared to other organs with a mean value of 79.2 £ 1.13 mGy
acquired with standard retrospective gating (protocol 1), 34.7 £ 1.9 mGy with prospective
ECG-gating technique (protocol 2), and 38.6 + 0.10 mGy with retrospective with tube
current modulation (protocol 3) (Figure 3-1). In fact, the dose received by the breast was six
times greater than that by the thyroid during the procedure.

100

Protocol 1: Retrospective ECG-gating without TCM
Protocol 2: Prospective ECG-gating
Protocol 3: Retrospective ECG-gating with TCM

60

40 é -

Entrance skin dose (mGy)

Thy‘roid Thvlroid Thylroid Breiast Brelast Brelast Go:wd Gorlwd Go:13d

Protocol 1 Protocol 2 Protocol 3Protocol 1 Protocol 2Protocol 3 Protocol 1 Protocol 2 Protocol 3
Figure 3-1: Box plot shows the mean ESD of 3 radiosensitive organs (the thyroid, breast,
and gonad) in CT coronary angiography. It shows that the breast received the highest dose
distribution compared to the thyroid and gonad in prospective gating, retrospective gating

with and without tube current modulation.

On the other hand, the DLP was recorded individually for dose comparison among the three
protocols (standard retrospective ECG gating, retrospective ECG gating with tube current
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modulation and prospective ECG gating) with the inclusion of effective dose estimation.
Statistically, there are enormous differences between mean E due to protocols. The p values
are reported to be very small (p<0.001). The mean effective dose demonstrated that the
standard retrospective gating protocol (protocol 1) resulted in the highest dose of 9.6 £ 0.12
mSv, followed by retrospective gating with tube current modulation (protocol 3) (3.3 £ 0.5
mSv), and prospective gating (protocol 2) (2.5 + 0.8 mSv).

3.3.2 Invasive coronary angiography

Entrance skin dose was measured and recorded for all three radiosensitive organs (the
thyroid, the gonads, and the breast) in all four protocols (1.6, 1.8, 2.2, and 2.5 magnification
factor). Overall, this study found that ESDs differed insignificantly between radiosensitive
organs (thyroid, breast and gonad) as tested with one-way ANOVA at p=0.26. However, on
further examination with the repeated measures ANOVA, there is a significant difference in
ESD within the protocols. In other words, the changes in dose received by organ is
significant when the magnification increased or decreased with p<0.05. Therefore, thyroid
gland returns with higher scores than breast and gonad in all protocols with resultant 3.2 £
0.7 mGy, 2.0 £ 0.4 mGy, 1.6 £ 0.2 mGy, and 1.4 £ 0.3 mGy corresponding to 1.6 (protocol
1), 1.8 (protocol 2), 2.2 (protocol 3), and 2.5 FD magnifications (protocol 4) (Figure 3-2).

Different magnifications of flat panel detector indicated dose variations among all 11
projections during invasive coronary angiography. The DAP was recorded to determine the
radiation dose production in each projection (Table 3-3). The results showed that the LAO
60° with caudal 40° (spider view) projection produced the highest dose which is about 2.3
times higher than the average dose of overall projections significantly as tested with
Duncan’s multiple comparisons. The effective dose estimation was calculated then from the
DAP of total projections at the end of each examination to compare the protocols. The mean
effective dose differed significantly across all magnification settings with ANOVA test at p
< 0.05. Results showed the highest mean of E estimation to be 7.26 £ 0.05 mSv calculated at
1.6 FD magnifications (protocol 1). The effective dose was reduced significantly with 6.35 +
0.05 mSv, 5.58 + 0.01mSv, and 4.71 + 0.07 mSv (p<0.05) being achieved and corresponding
to the smaller magnifications of 1.8 (protocol 2), 2.2 (protocol 3), and 2.5 (protocol 4),

respectively.
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Protocol 1:1.6
Protocol 2: 1.8
Protocol 3: 2.2
Protocol 4: 2.5

maagnification factor
magnification factor
magnification factor
magnification factor

Entrance skin dose (mGy)
1
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Figure 3-2: Distribution of mean ESD measured at 3 radiosensitive organs (the thyroid,
breast, and gonad) in invasive coronary angiography with the use of different magnification
factors displayed by the box plot. Apparently, the thyroid gland received the highest
radiation dose compared to breast and gonad in all 4 protocols. However, it still remains
below 3 mGy which meets the reference dose limit set by European Commission DIMOND
I11 project (2003).
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Table 3-3: Dose area product (DAP) results in invasive coronary angiography protocols

Tube position/ Protocols

Protocol 1 (1.6%)

Protocol 2 (1.8%)

Protocol 3 (2.2%)

Protocol 4 (2.5%)

(mGy-cm?) (mGy-cm?) (mGy-cm?) (mGy-cm?)

LAO 15°/15°] 2786 2900 2660 2178
LAO 30°/0° 3190 2222 1966 1746
LAO 30°/30°] 4259 3838 3383 2677
LAO 60°/40°| (spider view) 7843 6442 4911 3854
LT LAT 90°/0° 2407 1905 1751 1750
AP 0°/30°] 2760 2773 2650 2180
AP 0°/20°1 1913 1693 1794 1578
AP 0°/40°1 3057 2802 2717 2429
RAO 30°/30°1 1624 1581 1463 1573
RAO 35°/0° 2012 1792 1540 1160
RAO 40°/30°] 4472 3681 3076 2415

*Magnification factor; LAO- Left anterior oblique; LT-Left; LAT- Lateral; AP- Anterior posterior; RAO-Right anterior oblique
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3.4 Discussion

This study demonstrates four important findings of radiation dose reduction in coronary
angiography using CT angiography and the invasive approach. Firstly, coronary CT
angiography results in an effective dose that is about 2.5 times higher than that of invasive
angiography. Secondly, dose-saving protocols in coronary CT angiography (prospective
gating and attenuation dependent tube current modulation) help to reduce the effective dose
significantly up to 70% when compared with a standard retrospective gating. Thirdly,
effective dose arising from invasive angiography is decreased up to 13% with an increase in
magnifications. Finally, invasive angiography leads to a significant reduction in entrance
skin dose up to 95% compared to CT coronary angiography at three radiosensitive organs

(the thyroid, the breast, and the gonads).

Many studies have reported that the prospective ECG-gating reduces effective dose
significantly between 60% and 90% when compared with retrospective ECG-gating (Earls
2009; Freeman et al. 2009). The prospective gating uses a step-and-shoot technique with the
radiation beam turned on only at selected cardiac phase, and turned off for the remaining
cardiac cycle to keep the dose to a minimum. This is confirmed in our results as the
prospective ECG-gating reduces the effective dose by up to 70% compared with

retrospective gating.

Radiation dose in CT can be reduced significantly by applying the approach of tube current
modulation. Either ECG-controlled or anatomical-dependent tube current modulation results
in effective dose reduction significantly between 22% and 52% compared to retrospective
ECG-gating without any modifications (Greess et al. 2002; Mayo and Leipsic 2009). In
ECG-controlled modulation, the tube current is reduced to the level between 46% and 80%
from its maximum at diastole (60-80% of R-R interval) (Mayo and Leipsic 2009). Our
findings are consistent with these reports as the results demonstrate a significant reduction of
about 65% in effective dose with ECG-controlled tube current modulation when compared

with the corresponding retrospective gating.

The entrance skin dose received by each organ varies differently in coronary CT and
invasive coronary angiography. This is because of the distance between the x-ray tube and
the response organ during the exposure and their locations. For example, in CT coronary
angiography, the cardiac phantom was positioned at the center of the x-ray tube so that the
breast would receive the maximum dose from the primary radiation beam. However, the
thyroid and the gonad only received scattered radiation since they were anatomically situated

away from the breast. This was verified by the TLD measurement in our study. In invasive
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angiography, the situation was slightly different. The measured thyroid gland dose was the
highest compared to that from the breast and the gonad. The caudal tube angulation brings
the x-ray tube closer to the thyroid gland and results in increased radiation dose as stated in
the inverse square law (Kuon et al. 2004). Moreover, the repetition of caudal tube angulation
performed in this study (6 out of 11) explained the fact that the thyroid gland received higher
radiation dose than other organs.

Although radiation dose values in both, CT and invasive angiography, such as DAP, air
kerma, DLP, and the CT dose index could not be compared directly due to different
measurement units, the estimations of effective dose is still measureable and comparable in
those angiographic systems. Effective dose represents a general dose quantification of the
biological risk in medical exposure where it is not a quantity that can be measured
independently. It can only be derived by computation from a model or simulation that has
estimated the dose for individual tissues (Martin 2007). Our study estimates the effective
dose in all protocols of CT and invasive angiography for comparison. It is essential to
provide information and create awareness about radiation dose in angiography among

patients, Radiologists, imaging technologists, and the public.

Our study investigates 11 common projections in invasive coronary angiography to cover all
the cardiac vessels. The left anterior oblique/caudal (spider view) is shown with 3 times
higher dose production compared to other projections. This was reported as being similar to
a previous study by Kuon et al. (2004), where the dose was increased up to 2.6 times and 3.7
times higher when the angulation was continuously raised from right to left anterior oblique
and cranial to caudal tube angulation, respectively (Kuon et al. 2004). However, the dose
was reported to be decreased significantly with every 10° decrement in tube angulations.
Since this view is important to optimize the visualization of the left circumflex artery with
obtuse marginal, left main artery, bifurcation of left anterior descending and the diagonal
artery, therefore, there is no other option but to reduce the dose by eliminating this projection

other than limiting the angulation and regulating the time duration of the exposure wisely.

The entrance skin dose was taken into consideration in this study since it predicted the
possibility of getting deterministic skin injuries ranging from skin erythema, moist
desquamation, epilation, laceration, to necrosis if the skin was exposed beyond the threshold
dose at 2 Gy (Bogaert et al. 2009). Deterministic injuries to the skin are associated with
overexposure regardless of high radiation exposure setting or increased length of exposure.
Therefore, 45 Gy-cm”® was proposed as the diagnostic reference level for coronary
angiography by the European Commission DIMOND |11 project in 2003 in order to prevent
the interventionalist from going beyond that dose threshold (Neofotistou et al. 2003).
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However, even though the skin received a radiation dose below the dose threshold, it was
still at the risk of developing radiation-induced cancer from the stochastic effects.

Our study has its limitations. Although the protocols were developed from previous reports
in the literature on CT dose-saving strategies, it is still difficult to measure the accuracy on
the protocol guideline since the image quality assessment has not been taken into account.
However, this study only used an anthropomorphic phantom to simulate the radiation dose
guantification on a standardized patient. No contrast medium was used in any of the
angiography protocols. Therefore, there is no way of comparing and assessing image quality,
since no contrast enhancement in the coronary arteries could be visualized. Thus, further
studies are necessary to verify the accuracy of our results through the administration of a

contrast medium and qualitative and quantitative assessment of image quality.
35 Conclusion

In conclusion, this study shows that invasive angiography produces significantly lower
radiation dose than coronary CT angiography, which is demonstrated by effective dose and
entrance skin dose. Modification techniques in coronary CT (dose-saving protocols) and
invasive angiography (multi-size magnification) are recommended in daily clinical practice

since they produce further dose reduction.
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CHAPTER 4: CORONARY CT ANGIOGRAPHY WITH PROSPECTIVE ECG-
TRIGGERING: A SYSTEMATIC REVIEW OF IMAGE QUALITY AND
RADIATION DOSE

41 Introduction

Coronary computed tomography angiography (CCTA) has been widely used as a useful
diagnostic imaging modality for the non-invasive assessment of coronary artery disease
(CAD). It has become a reliable and accurate modality to assess the coronary arteries in
patient with suspected CAD (Sun et al. 2008). Previous studies have found that retrospective
ECG-gated CCTA shows high sensitivities (86-99%) and specificities (89-100%) for
coronary artery stenosis and also results in high negative predictive values (NPV) (96-99%)
(Pontone et al. 2009; Sun et al. 2008). Prospective ECG-gated CCTA also promises high
sensitivity (93.7-100%), specificity (82.7-97%) and NPV (95-98%) in the assessment of
CAD (Pontone et al. 2009; Sun and Ng 2012). Although high diagnostic accuracy is
achieved with both retrospective and prospective ECG-gating in detecting CAD, the
radiation dose associated with these two cardiac examinations is significantly different due

to the different approaches used in coronary artery scanning.

It is well-known that CCTA with retrospective ECG-gating leads to high radiation dose up to
31.4 mSv since the volumetric data of the heart is acquired during continuous scans, while
only a portion of the data is used for reconstruction (Maruyama et al. 2008; Van Mieghem et
al. 2006). In contrast, with exposure taking place at selective phases of cardiac cycle in
patients with low and regular heart rate, prospective ECG-triggering is associated with very
low radiation dose which indicates a significant reduction in effective dose up to 87%
(Efstathopoulos et al. 2009).

A significant dose reduction has been reported in several studies performed with prospective
ECG-gated CCTA (Achenbach et al. 2010; De France et al. 2010; Hosch et al. 2011; Klass et
al. 2009; Weigold 2009; Zhang et al. 2011). However, diagnostic image quality of
prospective triggering in the assessment of coronary arteries or CAD has not been
systematically studied. Therefore, the purpose of this article is to investigate the assessments
of coronary artery as part of image quality evaluation and radiation dose of CCTA with use
of prospective ECG-triggering in the detection of CAD based on a systematic review of the

current literature.
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4.2 Materials and methods
4.2.1 Literature searching

A search of Medline, SpringerLink, Highwire Press and Science Direct databases of English
literature was performed to identify studies performed with prospective ECG-triggering
CCTA in patients with suspected or confirmed CAD. The literature search ranged from 2008
to present as prospective ECG-triggering of CCTA was first reported in 2008 (last search
was done in October 2011). The following key words were used in searching the relevant
articles: CT coronary angiography, prospective ECG gating, multislice CT/multidetector CT
with prospective ECG-gating/ECG-triggering, and image quality /diagnostic value of CT
coronary angiography.

The eligible articles were identified and selected based on the following criteria: (a) CCTA
was performed with use of prospective ECG-gating in the study; (b) information on
gualitative and quantitative image quality assessment was provided in each study and (c) the
radiation dose associated with CCTA inclusive of effective dose value must be provided.
The articles on case reports, review articles, previous treatments (coronary stents or bypass

grafts), paediatric cases and phantom studies were excluded from the study.

A formal consensus method, QUADAS” (Quality Assessment of Diagnostic Accuracy
Studies) was performed by one author for the quality assessment of diagnostic accuracy in
these studies. The QUADAS is regarded as an important tool for quality assessment in
systematic reviews as it enables to develop and evaluate an evidence based quality of
individual studies in terms of potential for bias, lack of applicability and quality of reporting
(Whiting et al. 2003).

4.2.2 Data extraction and analysis

The data were recorded and extracted independently by two authors based on selection
criteria (Sabarudin, A and Sun, Z). Disagreements on the final results were resolved by
consensus. The data extraction was performed based on each article: year of publication,
type of scanner (64-, 128, 256- or 320-slice CT), technical parameters such as beam
collimation, gantry rotation time, exposure factors and temporal resolution, patient’s
demographic data such as number of patients, age, body mass index (BMI) and heart rates

were also reported.

Effective dose was recorded from each study as a variable in this review. The estimation of
effective does provided in each study was obtained by calculation. It was derived from the

original study reports, namely dose-length product (DLP) which was obtained from the CT
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scanning protocol of each CCTA study. The DLP was then multiplied with a conversion co-
efficient factor (CC), which was 0.017 mSv-mGy™-cm™ based on averaged between male
and female anatomical phantoms (Esposito et al. 2011; Huda, Ogden, and Khorasani 2008).

Quantitative and qualitative assessments of diagnostic image quality recorded in each study
were analysed. Quantitative image quality was determined by measuring signal-to-noise ratio
(SNR) and contrast-to-noise ratio (CNR) for comparisons among the studies. SNR was
calculated as the mean Hounsfield unit (HU) of particular region of interest (ROI) divided by
image noise. On the other hand, CNR was defined as the difference of attenuation values of
the contrast enhancement at two different regions (eg. left ventricular chamber and left
ventricular wall) and then divided by image noise. Image noise is a standard deviation, SD of
HU measured at selected anatomical region.

Qualitative assessment of image quality was carried out on a per-segment basis by using of
three- to five-point Likert ranking scale. The coronary segments were analysed and the
results were documented and categorised as percentage of assessable and non-assessable
coronary segments. The classification of coronary segment was based on the descriptions of
each score in Likert rank-scale. The coronary arteries were characterised into 15-19
segments according to the classification by American Heart Association (AHA) and the
extent of stenosis was evaluated in each segment with more than 50% coronary stenosis
being defined as significant (Austen et al. 1975). Sensitivity, specificity, positive predictive
value (PPV), NPV and diagnostic accuracy for the detection of significant coronary stenosis

were also be analysed.
4.2.3 Statistical analysis

All the data were entered into SPSS version 19.0 (SPSS V 19.0, Chicago, ILL) for analysis.
Assessment of image quality in each study was extracted and analysed with analysis of
variance (ANOVA) for multifactorial mean comparisons. The radiation dose was also
compared between the scanner types (dual source vs single source 64-, 128-,256- and 320-
slice CT) with use of ANOVA. A p value of <0.05 was considered statistically significant

difference.
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4.3 Results

A total of 12,670 citations were identified from searching the above-mentioned four different
databases. Twenty-three articles met the selection criteria and were included in the analysis
(Pontone et al. 2009; Achenbach et al. 2010; Efstathopoulos et al. 2009; Esposito et al. 2011;
Hosch et al. 2011; Maruyama et al. 2008; Zhang et al. 2011; Arnoldi et al. 2009; Buechel et
al. 2011; Carrascosa et al. 2010; Chen et al. 2010; Duarte et al. 2011; Feng et al. 2010;
Gutstein et al. 2008; Hirai et al. 2008; Ko et al. 2010; Lu et al. 2011; Muenzel et al. 2012;
Qin et al. 2011; Shuman et al. 2008; Shuman et al. 2009; Stolzmann et al. 2011; Xu et al.
2010). The search process of study attrition diagram is shown in the flow chart (Figure 4-1).
In addition, information on image quality assessment was analysed with regard to four
different manufactures, namely, Siemens, Philips, Toshiba and GE, and various types of
scanners ranging from 64- to 128-, 256- and 320-slice CT. Details of the scanner features are
presented in Table 4-1. A total of 2080 patients were included in all 23 studies with a mean
age of 59.1 years (95% CI: 45, 70 years). Coronary CT angiography with use of prospective
ECG triggering was conducted with an average heart rate of 60.8 beats per minutes (bpm)
(95% Cl: 54.6, 82.8 bpm) and body mass index of 25.3 kgm? (95% CI: 22.3, 28 kgm™). The
quality assessment for each study according to QUADAS guideline was presented in Table
4-2.
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Figure 4-1: Flow chart showing the search strategy of eligible references.

12,670 citations found from 4 databases
on CT coronary angiography prospective
ECG gating radiation dose

»| 12,042 citations were not related
to the title

h

628 citations were screened
for further investigation

421 citations were excluded by abstract
which contains case reports,

A 4

book/article reviews, comments to
editor and conference abstract

h 4

207 citations of original
articles were screened
for further evaluation

160 citations were not related
to clinical/ experimental study

A 4

48 citations related to clinical study
of CT coronary angiography
prospective ECG gating

Excluded
2 citations on phantom studies
3 citations in foreign language

h 4

2 citations on paediatric studies

2 citations on stents/ grafts studies

16 citations without segmented coronary
artery image quality report

Glcluded \

Type of detector Citation(s)
64-row detectors CT 14
128-row detectors CT 3
256-row detectors CT 4
320-row detectors CT 2
Total 23
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Table 4-1: Study details of prospective ECG-gated CTCA

Studies publication D-etectf)r N?. of Age HR BM I2 Tube voltage | Effective dose Manufacture
collimations patients | (years) (b.p.m) (kg/m?) (kVp) (mSv)
Achenbach et.al (2010) 2x64x0.6 50 n/a 68+9 n/a 100 09+01 Siemens
Arnoldi et.al (2009) 2x32x%x0.6 20 58 + 10 64+9 23+ 4 120 31 Siemens
Buechel et.al (2011) 64 x 0.625 612 59+12 62 26+5 100-120 1.8+ 0.6 GE
Carrascossa et.al (2010) 64 x 0.625 50 62+ 13 | 54.9+6.8 27.7£3.4 120 3404 Philips
Chen et.al (2010) 2 x128 x 0.625 10 607 58.7+6.3 23.0+1.5 120 4.7+04* Philips
2 x128 x 0.625 10 55+ 9 56.6%5.0 23.1+2.1 120 277+04 Philips
Duarte et.al (2011) 2%x64x0.6 40 627 60+5 n/a 100-120 21+09 Siemens
Efstathopolous et.al (2009) | 2 x128 x 0.625 15 55+ 8 57.1+7.2 27.8+4.3 120 3.2+06 Philips
Esposito et.al (2011) 64 x 0.625 90 61+ 12 59+7 26+4 100-140 4-5.2 GE
Feng et.al (2010) 2%x64x0.6 31 60+9 67.5+9.7 24.7+3.0 100 27+0.7 Siemens
Gutstein et.al (2008) 2x32x0.6 42 53+12 57.8+4.0 24.9+3.1 100-120 22+08 Siemens
Hirai et.al (2008) 64 x 0.625 62 65+ 11 57.1+7.8 n/a 120 41+18 GE
Hosch et.al (2010) 2 x128 x 0.625 115 n/a 58+7 n/a 120 3.1£0.4 Philips
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Ko et.al (2010) 64 x 0.625 84 56+11 | 56.5+4.3 23.8+15 120 343+0.6 GE
Lu et.al (2011) 2x32x0.6 62 56 +10 | 67.7+10.5 | 25.3+3.0 120 30+14 Siemens
Maruyama et.al (2008) 64 x 0.625 76 70+10 | 546+6.9 23.9+4.6 120 43+13 GE
Muenzel et.al (2011) 2 x128 x 0.625 29 560 62.5+15.9 25.4+4.0 120 48" Philips
2 x128 x 0.625 24 65 66.6+14.6 25.2+2.9 120 3.9% Philips
Pontone et.al (2009) 64 x 0.625 80 65+10 | 54.7+5.2 27.0+£3.9 120 57+£15 GE
Qin et.al (2011) 320 % 0.5 240 45+ 20 5648 n/a 120 3.3+£20 Toshiba
Shuman et.al (2008) 64 x 0.625 50 n/a n/a n/a 100-120 6.2+20 GE
Shuman et.al (2009) 64 x 0.625 31 55+8 50+6 28+5 100-120 92+22 GE
Stolzman et.al (2011) 2%x32x0.6 100 688 58+7 26.313.1 100-120 22104 Siemens
Xu et.al (2010) 2x32x0.6 50 55+10 | 82.8+9.3 n/a 100-120 11.8+4.5 Siemens
Zhang et.al (2011) 320x 05 40 59+10 | 55153 | 22.3+15 100 2.1+0.2 Toshiba
320 % 0.5 67 56 + 10 66.2+6.6 27.8+2.7 120 46+0.8 Toshiba

n/a=not available;*additional padding windows; "FOV>250mm; *FOV <250mm; GE=general electric
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Table 4-2: Quality Assessment of Diagnostic Accuracy Studies (QUADAS)

Studies publication Items

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Achenbach et.al (2010) Y Y Y U Y Y Y Y Y Y Y Y Y Y
Arnoldi et.al (2009) Y Y Y U Y Y Y Y Y Y Y Y Y Y
Buechel et.al (2011) Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Carrascossa et.al (2010) Y Y Y Y Y Y Y U U Y Y Y Y Y
Chen et.al (2010) Y Y Y Y Y Y Y Y Y U U Y Y Y
Duarte et.al (2011) Y Y Y Y Y Y Y U U Y Y Y Y Y
Efstathopolous et.al (2009) Y Y Y Y Y Y Y U U Y Y Y Y Y
Esposito et.al (2011) Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Feng et.al (2010) Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Gutstein et.al (2008) Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Hirai et.al (2008) Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Hosch et.al (2010) Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Ko et.al (2010) Y Y Y Y Y Y Y Y Y Y Y Y Y Y

123



Lu et.al (2011)

C

Maruyama et.al (2008)

Muenzel et.al (2011)

<| <| <| c
<l <| <| c

Pontone et.al (2009)

Cc
c

Qin et.al (2011)

Shuman et.al (2008)

Shuman et.al (2009)

Stolzman et.al (2011)

Xu et.al (2010)

<l <| =< <| <| =< < < < <
<l <| < =<| <| =< =<| <] < <
<l <] =< <| <| =< =< < < <
<l <| < =<| <| =< =<| < < <
< <] =< <] <| =< =< <

< <| < =<| <| =< =<| < < <
< <| =< <| <| =< < < < <
<l < < =<| <| =< =<| <] < <
<l <] =< <| <| =< =<| < < <
< <| <| <| c

<l <| <| <] c

<l <] =< <] <| =< =< < < <
<l <| =< <| <| < < < < <
<l <] < <] <| =< =<| < < <

Zhang et.al (2011)

Y=yes; U=unclear

Item 1: was the spectrum of patients representative of the patients who will receive the test in practice?

Item 2: was selection criteria clearly described?

Item 3: is the reference standard likely to correctly classify the target condition?

Item 4: is the time period between reference, standard and index test short enough to be reasonably sure that the target condition did not change between the
two tests?

Item 5: did the whole sample or a random selection of the sample, receive verification using a reference standard of diagnosis?
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Item 6: did patients receive the same reference standard regardless of the index test results?

Item 7: was the reference standard independent of the index test (i.e., the index test did not form part of the reference standard)?

Item 8: was the execution of the index test described in the sufficient detail to permit replication of the test?

Item 9: was the execution of the reference standard described in the sufficient detail to permit its replication?

Item 10: were the index test results interpreted without knowledge of the results of the reference standard?

Item 11: were the reference standard results interpreted without knowledge of the results of the index test?

Item 12: were the same clinical data available when test results were interpreted as would be available when the test is used in practice?
Item 13: were uninterpretable/intermediate test results reported?

Item 14: were withdrawals from the study explained?
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4.3.1 Systematic review of image quality associated with prospective ECG-triggering
CCTA

Quantitative image assessment was performed in only 4 out of 23 studies (Carrascosa et al.
2010; Feng et al. 2010; Muenzel et al. 2012; Zhang et al. 2011) with mean SNR and CNR of
20.9 (95% CI: 11.7, 28.6) and 18.0 (95% CI: 5.2, 22.2), respectively. There was no
significant difference between SNR and CNR groups in these studies. The SNR and CNR
was measured at the proximal segment of the right coronary artery and in the left main
coronary artery, left ventricular wall and left ventricular chamber (Carrascosa et al. 2010),
the root of the ascending aorta (Feng et al. 2010), ascending aorta, pulmonary artery and
coronary arteries (Muenzel et al. 2012), ascending aorta and perivascular fatty tissue (Zhang
et al. 2011). However, the qualitative image quality could not be analyzed due to the limited

number of studies.

Only one study was using single viewer for image quality evaluation (Chen et al. 2010). Of
22 studies, 15 studies (Achenbach et al. 2010; Carrascosa et al. 2010; Feng et al. 2010; Hirai
et al. 2008; Hosch et al. 2011; Ko et al. 2010; Lu et al. 2011; Muenzel et al. 2012; Pontone et
al. 2009; Qin et al. 2011; Shuman et al. 2008; Shuman et al. 2009; Stolzmann et al. 2011; Xu
et al. 2010; Zhang et al. 2011) assessed the inter-observer agreement by using Cohen’s kappa
statistic with a mean value of 0.79 (95% CI: 0.60, 0.94), indicating excellent agreement
between the 2 viewers. Two studies (Duarte et al. 2011; Gutstein et al. 2008) used consensus
reading, and that information in the remaining 5 studies was not available (Arnoldi et al.
2009; Buechel et al. 2011; Efstathopoulos et al. 2009; Esposito et al. 2011; Maruyama et al.
2008).

A likert-scale point score system was used in all studies to indicate the evaluability of
coronary segment. Two studies were conducted with 3-point scoring system (Arnoldi et al.
2009; Esposito et al. 2011) and another two studies with 5-point scores (Hosch et al. 2011,
Muenzel et al. 2012). The 3-point score indicates excellent, moderate and poor image quality
(Figure 4-2) while 5-point score was classified distinctively in two studies which one study
described the score as excellent, good, moderate, poor and extremely poor image quality
(Hosch et al. 2011). In contrast, the other study defined 5-point score as excellent quality,
good quality, mild artefacts, severe artefacts and non-evaluable (Figure 4-3) (Muenzel et al.
2012). The remaining 19 studies used 4-point scoring system which consisted of excellent,
good, moderate and poor image quality (Figure 4-4). The distribution of each coronary
segment was presented in Figure 4-2. However, the coronary segments were only analysed
and classified into 2 groups (assessable versus non-assessable segments) based on score

description despite using different scoring systems.
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A total of 26,620 coronary artery segments were evaluated in these 23 studies with an overall
mean value of 96.8% (95% CI: 83,100%) assessable and 3.2% not assessable segments
(Table 4-3). There is no statistically significant difference in the mean assessable coronary
segments between or within types of scanners (p=0.76). The mean assessable coronary
segments in 64-slice scanners (single source versus dual-source CT) were 96.5% (95% CI:
88.2, 99.5%) and 97.5% (95% CI: 92.3, 99.7%) respectively. The mean assessable coronary
segments were 97.9% (95% CI: 95.0, 99.5%), 95.6% (95% CI: 83.0, 100%) and 98.9% (95%
Cl: 98.2, 100%), corresponding to 128-, 256- and 320-slice CT, respectively.

1,000
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Image quality classifications

Figure 4-2: Box plot shows the number of coronary segments assessed associated with the

image quality classifications with 3-rank scale system in prospective ECG-gating CCTA.
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Figure 4-3: Box plot shows the number of coronary segments assessed associated with the

image quality classifications with 5-rank scale system in prospective ECG-gating CCTA.

Of 23 studies, evaluation on sensitivity, specificity, PPV, NPV and the accuracy for coronary
artery stenosis was available in 5 studies (Carrascosa et al. 2010; Lu et al. 2011; Maruyama
et al. 2008; Pontone et al. 2009; Stolzmann et al. 2011). Pooled estimates of sensitivity,
specificity, PPV, NPV and accuracy with 95% confidence interval (Cl) were 98.3% (95%
Cl: 96 and 100%), 90.5% (95% CI: 85.7 and 96%), 92.3% (95% CI: 77 and 99%), 90%
(95% CI: 75 and 100%) and 96.2% (95% CI: 95 and 98%) for patient-based assessment;
89.8% (95% CI: 76.6 and 98%), 97.2% (95% CI: 95 and 98.5%), 89.8% (95% CI: 85.5 and
96%), 92.8% (95% CI: 83 and 100%) and 95% (95% CI. 93 and 98%) for segment-based
assessment; 89.3% (95% CI: 79.6 and 99%), 94.7% (95% CI: 92.3 and 97%), 91.6% (95%
Cl: 88.2 and 95%), 92.6% (95% CI: 86.2 and 99%) and 92.3% (95% CI: 86.6 and 98%) for

vessel-based assessment, respectively.
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Figure 4-4: Box plot shows the number of coronary segments assessed associated with the

image quality classifications with 4-rank scale system in prospective ECG-gating CCTA.

Of 8 studies involving assessment of stenosis, degree of stenosis was investigated in three
studies with pooled estimation being 79.1% (95% CI: 55, 94.4%) and 11.2% (95% CI: 5.6,
16%) corresponding to 50-75% stenosis and over 75% occlusion, respectively (Buechel et al.
2011; Carrascosa et al. 2010; Hirai et al. 2008). The remaining five studies focused on the
stenosis location and coronary vessels involvement. However, comparison between these
data could not be performed due to use of different methods of analysis (Achenbach et al.
2010; Carrascosa et al. 2010; Gutstein et al. 2008; Muenzel et al. 2012; Stolzmann et al.
2011), although the sensitivity in detecting stenosis on vessel-based and segment-based
assessment was lower than that on patient-based assessment (89.3% and 89.8% versus
98.3%).
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Table 4-3: Analysis of the coronary artery segments in prospective ECG-gated CTCA

Studies publication

Segments classification no.

Total number of segments

Diameter requirement

Assessable segments (%0)

Achenbach et.al (2010) 18 742 All segments 99.5
Arnoldi et.al (2009) 15 269 All segments 98.1
Buechel et.al (2011) 16 7814 >1.5mm 96. 2
Carrascossa et.al (2010) 17 51 >1.5mm 88.2
Chen et.al (2010) 15 138 n/a* 100

15 160 n/a 100
Duarte et.al (2011) 16 450 >1.5mm 99.1
Efstathopolous et.al (2009) 16 224 All segments 83.0
Esposito et.al (2011) 16 1170 All segments 96.9
Feng et.al (2010) NS 439 n/a 95.0
Gutstein et.al (2008) 15 633 n/a 99.2
Hirai et.al (2008) 17 828 >1.5 mm 98.7
Hosch et.al (2010) 15 1714 All segments 96.3
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Ko et.al (2010) 16 1226 >1.5mm 97.4
Lu et.al (2011) 15 246 All segments 92.3
Maruyama et.al (2008) 15 1089 All segments 96.7
Muenzel et.al (2011) 16 390 >1.0 mm* 97.2

16 294 >1.0 mm* 96.9
Pontone et.al (2009) 15 1044 >1.5mm 95.6
Qin et.al (2011) 15 3240 >1.5 mm 100
Shuman et.al (2008) 19 614 >1.5mm 98.9
Shuman et.al (2009) 19 394 >1.5mm 99.5
Stolzman et.al (2011) 16 1508 >1.0 mm 98.4
Xu et.al (2010) 16 610 >1.5mm 99.7
Zhang et.al (2011) 16 504 >1.5 mm" 98.2

16 829 >1.5mm” 98.6

n/a=not available; *additional padding windows; *FOV>250mm; *FOV <250mm; "100kVp; “'120kVp
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4.3.2 Systematic review of radiation dose associated with prospective triggering CCTA

The overall mean effective dose was 3.9 mSv (95% CI: 0.9, 9.2 mSv) in the 23 studies
performed with prospective ECG-triggered CCTA. There is no significant difference in the
mean effective doses (p=0.47) between 64- (single vs dual source CT), 128-, 256- and 320-
slice scanners, with mean effective doses of 4.7 mSv (95% CI: 1.8, 9.2 mSv), 4.4 mSv (95%
Cl: 2.2, 11.8 mSv), 1.8 mSv (95% CI: 0.9, 2.7 mSv), 3.5 mSv (95% CI: 2.1, 4.8 mSv) and
3.3 mSv (95% CI: 2.1, 4.6 mSv) respectively, corresponding to these different types of
scanners. There were several techniques introduced in some studies in order to produce
further reduction in radiation dose. One study was conducted with high pitch value resulting
in the effective dose of less than 1.0 mSv (Achenbach et al. 2010). In addition, applying with
high field of view (FOV) and lowering tube voltage (100 kVp) also led to radiation dose
reduction with 4.8 vs 3.9 mSv (FOV>250 mm vs FOV<250 mm) (Muenzel et al. 2012) and
2.1vs 4.6 mSv (100 vs 120 kVp) (Zhang et al. 2011).

4.4 Discussion

This analysis highlights two findings that are considerably important for clinical applications
in coronary CT angiography with use of prospective ECG-gating protocol. Firstly, this
review shows that high percentage of assessable coronary segments was achieved with a
mean value of 96.8% regardless of any type of scanners. Secondly, prospective ECG-gating
CCTA has demonstrated high sensitivity, specificity, NPV, PPV and accuracy in detecting
CAD with significantly lower radiation dose.

In this review, 96.8% of coronary segments were found to be assessable in the evaluation
throughout the subjective image quality assessment, with a very small number of non-
assessable segments reported in this prospective ECG-gating technique. Targeting patients
with appropriate heart rate might reduce the coronary segments rejection depending on the
scanner type and scanning technique. Beta-blockage is routinely recommended as a
prerequisite prior to the scan to lower the heart rate with aim of achieving diagnostic image
quality (Pannu, W. Alvarez, and E. K. Fishman 2006), since heart rate is the key factor in
determining image quality. A recent study showed that the percentage of non-assessable
coronary images was increased significantly with heart rate over 57 bpm and with heart rate
variability more than 6 bpm (Ko et al. 2010). However, it has been reported that image
quality acquired in dual-source CT (DSCT) using prospective ECG-gating was diagnostic in
patients with heart rate more than 65 bpm (Xu et al. 2010). Assessable segments in DSCT
coronary angiography were found to be slightly higher than those in single-source CT

coronary angiography according to this review, although there is no significant difference.
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Further studies comparing DSCT with single-slice CT coronary angiography using
prospective ECG-gating are required to confirm the diagnostic accuracy.

In response to the concern of high radiation dose in CT, various dose-saving strategies were
introduced in the literature with the aim of reducing the radiation dose associated with
CCTA, while still preserving diagnostic value in CAD (Pontone et al. 2009). Of several dose
saving strategies, prospective ECG-triggering represents the most recently developed
approach with a significant reduction of radiation dose when compared to conventional
retrospective ECG-gating (Sun 2010; Sun and Ng 2012). Although we did not focus on the
retrospective ECG-gating CCTA in this review, radiation dose results from previous studies
confirmed that the effective dose was reduced significantly in prospective ECG-gating (3.9
mSv) compared to retrospective ECG-gating (18-24 mSv) (Earls et al. 2008; Hirai et al.
2008). This is also supported by several studies conducted on radiation dose indicating that
prospective ECG-gated CCTA leads to a dose reduction by up to 83% when compared to
retrospective ECG-gating (Lu et al. 2011; Shuman et al. 2008; Earls 2009; Sabarudin, Z.
Sun, and K-H. Ng 2012). This analysis shows that the effective dose in CCTA with
prospective ECG gating was even lower than that in invasive coronary angiography as
reported in the previous study (5.6 mSv) (Coles et al. 2006). Application of high pitch and
lower tube voltage in prospective ECG-gating can result in further radiation dose reduction
with less than 1 mSv (Alkadhi et al. 2010; Achenbach et al. 2010).

The principle of prospective ECG-triggering is that data acquisition only takes place in the
selected cardiac phase by selectively only turning on the x-ray tube when triggered by the
ECG signal, and turning it off or dramatically lowering it during the rest of the R-R cycle.
This technique is limited to heart rate less than 70 or 65 beats per minute (bpm). In addition,
ECG-triggered sequential scan is usually restricted to scanning with non-overlapping
adjacent slices, or slice increments with only small overlap. The scan time to cover the heart
volume is thus directly proportional to the slice increment. Consequently, prospective ECG-
triggering puts high demand on the z-axis coverage, therefore, it is normally performed with
64-slice or more slice scanners. Presence of misalignment due to acquisition of images in 4-
5 heart beats to cover the entire heart with 64-slice CT is an example of this limitation. This
can be overcome with the latest 320-slice CT scanner, which enables coverage of the cardiac
volume in a single heartbeat (Hoe and Toh 2009). This is confirmed by this analysis, since
prospective ECG-triggering CCTA with 320-slice CT shows lower dose than the other

generations of CT scanners, although no significant difference was reached.

Some limitations exist in this review. Firstly, there is lack of objective assessment reported

in all studies. Only 17% (4 out of 23) of the studies provided details on quantitative
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assessment of image quality. In contrast, the subjective image analysis was reported in all of
the studies. Each study must provide a subjective image quality assessment as a requirement
limits the number of studies included in this review. Moreover, image quality evaluation by
single viewer might lead to bias results in scoring the coronary artery segments. However,
the majority of studies (96%) obtaining their image quality assessment by 2 viewers with
good inter-observer agreement. Secondly, limited information on diagnostic image accuracy
was in this review. Investigation of diagnostic value of prospective ECG-triggering should
be conducted in more studies with a large cohort of patients. Finally, the publication bias

may affect the results with the exclusion of non-English language publications.
4.5 Conclusion

In conclusion, this systematic review shows that prospective ECG-triggered coronary CT
angiography results in high diagnostic image quality with high diagnostic accuracy in
detecting coronary artery stenosis. Prospective ECG-triggering protocol produces a
significantly lower radiation dose compared to retrospective ECG-gating CCTA.
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CHAPTER 5: RADIATION DOSE IN CORONARY CT ANGIOGRAPHY
ASSOCIATED WITH PROSPECTIVE ECG-TRIGGERING TECHNIQUE:
COMPARISONS WITH DIFFERENT CT GENERATIONS

51 Introduction

Coronary computed tomography angiography (CCTA) has been increasingly used in the
diagnosis of coronary artery disease (CAD), thanks to its hon-invasiveness, rapid acquisition
of high resolution images and high diagnostic accuracy (Mollet et al. 2005; Raff et al. 2005).
With rapid improvements in spatial and temporal resolution, CCTA not only visualises
coronary anatomy and characterises plague components, but also allows for quantitative
analysis of coronary stenosis (Achenbach et al. 2006; Budoff et al. 2006; Earls et al. 2008;
Hein et al. 2009; Rybicki et al. 2008). The rapidly increasing multidetector CT (MDCT)
scanners have led to the increase of CCTA examinations worldwide (Efstathopoulos et al.
2009). However, high-radiation dose resulting from CCTA raises a major concern, as
radiation-induced cancer is not negligible (Budoff et al. 2006; Coles et al. 2006;
Efstathopoulos et al. 2009).

Previous studies have reported that CCTA with use of retrospective ECG-gating technique
results in very high effective dose, which ranged from 13.4 mSv to 31.4 mSv (Earls et al.
2008; Einstein, Henzlova, and Rajagopalan 2007; Hirai et al. 2008; Maruyama et al. 2008).
However, several dose-saving strategies have been introduced in the retrospective ECG-
gated CCTA to deal with radiation dose issues, and these techniques include anatomy-based
tube current modulation (Deetjen et al. 2007; Kalra et al. 2004), ECG-controlled tube
current modulation (Abada et al. 2006; Gutstein et al. 2008; Hausleiter et al. 2006), tube
voltage reduction (Francone et al. 2008; Herzog et al. 2008) and high-pitch scanning
(Achenbach et al. 2010; Alkadhi et al. 2010).

Apart from these dose-saving strategies, prospective ECG-triggering technique was recently
introduced in CCTA examination with resultant very low dose when compared to
conventional retrospective ECG-triggering protocol (Earls et al. 2008; Hoe and Toh 2009;
Maruyama et al. 2008). In prospective ECG-triggering (also called step-and-shoot mode),
exposure is triggered by ECG signal and x-ray tube is only turned on at the selected cardiac
phase (diastolic), and turned off during the rest of the cardiac cycle. Consequently, this
results in a significant reduction of radiation dose during prospective ECG-triggering CCTA.
In contrast, in retrospective gating technique, the x-ray tube remains turned on throughout
the entire cardiac cycle, leading to higher radiation dose than the prospective triggering
protocol (Earls 2009).
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Because of the promising low-dose results, many studies have been conducted with recent
CT models ranging from 64-slice to 320-slice scanners to compare prospective triggering
and retrospective ECG-gating protocols with regard to the dose reduction, image quality and
diagnostic value in CCTA (De France et al. 2010; Hoe and Toh 2009; Rybicki et al. 2008;
Zhang et al. 2011). Despite satisfactory results in prospective ECG-triggered protocol, very
few studies have been conducted to compare the radiation dose between different CT
generations with use of prospective triggering (Efstathopoulos et al. 2012; Klass et al. 2009).
Therefore, the aim of study was to compare the radiation dose associated with different
multislice CT generations that is done using prospective ECG-triggering technique, based on

a retrospective analysis of the patients undergoing CCTA.
5.2 Materials and methods

Three hospitals in Klang Valley, Malaysia and one major public hospital in Perth, Western
Australia were selected for this study to determine radiation dose exposure to patients in
routine CCTA procedures over 6 months (July 2011-January 2012). A retrospective data
analysis was performed in all patients undergoing prospective ECG-triggered CCTA with
different generations of MDCT scanners. All patients were referred for CCTA due to
suspected or known CAD. Patients scanned with retrospective ECG-gated protocol, for other
cardiovascular diseases such as pulmonary embolism or coronary artery bypass grafts were
excluded from this study. The data were collected and recorded from each hospital

independently.
5.2.1 Coronary CT angiography protocols

The study patients were divided into four groups based on CT scanner generations used.
There were four different CT scanners from various manufacturers used in the study, namely
single-source 64-slice CT (SSCT) (Brilliance 64, Philips Healthcare, USA), dual-source 64-
slice CT (DSCT) (Somatom Definition, Siemens Healthcare, Germany), dual-source 128-
slice CT (Somatom Definition Flash, Siemens Healthcare, Germany) and 320-slice CT
(Aquilion ONE, Toshiba Medical System, Japan). Table 5-1 lists the details of CCTA
scanning protocols corresponding to different generations of CT scanners, and patient
characteristics. The tube current (mA) was selected manually depending on the availability
of the scanner system (Table 5-1). Therefore, no tube current modulation was used in this

study.

140



A survey study on perceptions in relation to prospective ECG-gated CCTA- Chapter 6

Table 5-1: Details of CCTA protocols and patients demographic

Manufacturer Philips Siemens Siemens Toshiba

Model Briliance CT Somatom Somatom Aquillion ONE
Definition Definition Flash

No. of patients 43 50 31 40
Age (years) 49.3+13.2 53.4+9.6 49.0+11.0 52.8+9.3
Male (%) 51 58 55 75
BMI (kg/m?) 25.7+2.3 26.3+3.8 255+4.4 26.4+4.2
CTDl,y (mGy) 157+£1.9 174+7.8 284 %129 19.0+6.8
Effective dose

41+0.6 42+19 6.8+3.2 3814
(mSv)
Exposure
windows in R-R 75 70-75 70, 10-90 70, 30-90
interval (%)
Tube voltage

120 100-120 100-120 100-120

(kVp)
Tube current

150-210 320 320 300-580

(mA)

No. of detector
(mm) 64 x 0.625 32 x2x0.625 64 x 2 x 0.625 320 x 0.5
mm

Gantry rotation
420 330 280 350
(ms)

All scan protocols covered from the level of tracheal bifurcation to the diaphragm and a non-
ionic contrast media between 60 and 85 ml was administered with a flow rate from 4.5 to 6.0
ml/s in all study groups. A bolus tracking technique was used in all studies to ensure optimal
coronary enhancement. The parameters of CT volume dose index (CTDlI,,) and dose length
product (DLP) values were obtained from the scans. Effective dose was derived from the
product of DLP and a conversion coefficient of 0.017 mSv-mGy“-cm™ was used for the chest
region (Huda, Ogden, and Khorasani 2008).

5.2.2  Statistical analysis
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Descriptive data were presented as mean + standard deviation. Data analysis was performed
by using SPSS version 19.0 (SPSS V19.0, Chicago, USA). A p value of less than 0.05 was
considered statistical significance. Pearson correlation was used to test the relation between
radiation dose and BMI in each group. Analysis of variance (ANOVA) test was also used for

multifactorial mean comparisons.
5.3 Results

A total of 164 patients (98 males, 66 females) undergoing a prospective ECG-triggered
CCTA procedure were included in the analysis. Demographic data of the study and radiation

dose information are presented in Table 5-1.

The mean effective doses for each CT scanner group are presented in Figure 5-1. The results
show that the highest effective dose was estimated at 6.8 + 3.2 mSv in patients scanned with
128-slice DSCT, followed by 4.2 + 1.9 mSv with 64-slice DSCT and 4.1 + 0.6 mSv with 64-
slice SSCT. Effective dose estimated in 320-slice CT was 3.8 + 1.4 mSv, which is the lowest
among the groups. There was a significant difference in the mean effective dose in patients
scanned with 128-slice DSCT when compared to the other groups (p<0.05). However, no
significant differences were found in the mean effective doses between 64-slice (SSCT and
DSCT) and 320-slice CT groups (p=0.71).

The effective dose in males was slightly higher than that in females for 64-slice SSCT (4.1
mSv versus 4.0 mSv), 64-slice DSCT (4.4 mSv versus 4.1 mSv), 128-slice DSCT (6.9 mSv
versus 6.6 mSv) and 320-slice CT (3.8 mSv versus 3.7 mSv). However, there was no
significant difference in effective dose between males and females in all study groups (p=
0.07, 0.27, 0.38 and 0.19 corresponding to 64-slice SSCT, 64-slice DSCT, 128-slice DSCT
and 320 slice CT group, respectively).

Analysis of the relation between effective dose and BMI shows a significantly positive
relationship (Figures 5-2,5-3, 5-4 and 5-5) in all groups with a Pearson correlation factor at
r=0.6, r= 0.8, r= 0.4 and r=0.7, corresponding to 64-slice SSCT, 64-slice DSCT, 128-slice
DSCT and 320-slice CT groups, respectively.
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Figure 5-1: Box plot shows the mean effective dose reported in the studies with use of 64-
slice SSCT, 64-slice DSCT, 128-slice DSCT and 320-slice CT. It shows that effective dose
in 128-slice DSCT is the highest amongst all of four groups. Also, there is a very small range
of dose distribution in 64-slice SSCT group. The box indicates the first to third quartiles,
the line in the box indicates median quartile, and whiskers indicate the minimum and

maximum values.

The effective dose was also compared between 100 kVp and 120 kVp protocols in three
groups using 64-slice DSCT, 128-slice DSCT and 320-slice CT. The results show that the
differences in effective dose between 100 kVp and 120 kVp protocols are significant in all
groups. The mean effective doses were estimated with 3.0 £ 0.5 mSv and 6.6 £ 1.1 mSv in
64-slice DSCT; 5.3 £ 2.1 mSv and 8.0 + 3.4 mSv in 128-slice DSCT; and 2.8 + 1.0 mSv and
4.5+ 1.2 mSv in 320-slice CT corresponding to 100 and 120 kVp respectively. However, the
comparison was not performed in 64-slice SSCT group since 100 kVp was not available in

the system.
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Figure 5-2: Correlation graph analysis of effective dose depending on body mass index
(BMI) for 64-slice SSCT; r = 0.6.

5.4 Discussion

This study highlights two important findings in radiation dose associated with prospective
ECG-triggered CCTA. First, low-radiation dose can be achieved in CCTA between different
generations of CT scanners with the application of prospective ECG-triggering protocol.
Second, BMI affects the radiation dose significantly. Patients with large BMI are most

likely to receive higher radiation dose when undergoing prospective ECG-triggered CCTA.

This comparative study was performed at four different clinical centres where coronary CT
angiography was performed using different types of MDCT scanners. Since this study was
performed with prospective ECG-triggering, the scan acquisition was made in sequential
(axial) mode rather than spiral (helical) mode. BMI is another main factor that needs to be
considered during CCTA as it is closely related to the selection of kVp and mA values, thus,
it has a direct impact on radiation dose and image quality due to the wide ranges of kVp or
mA selections. Despite different clinical sites were included, the same scanning protocol was

used among these centres, thus enabling a comparative analysis of radiation dose from
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different generations of MDCT scanners. Selection of tube voltage was based on patients’
BMI. Patients with BMI < 25 kg/m® was scanned with 100 kVp protocol, while a patient
with BMI > 25 kg/m?, a tube voltage of 120 kVp was applied. Although the 100 kVp
protocol was not available with the 64-slice SSCT, the results were not significantly affected
due to a small number of patients (n=11) having BMI less than 25 kg/m? in this cohort.
Previous studies have reported that effective dose in 100 kVp was significantly lower than
that in 120 kVp which patients were classified into these two groups (100- and 120-kVp)
based on their BMI (Feuchtner, Jodocy, et al. 2010; Park et al. 2009; Zhang et al. 2011).

64-slice DSCT
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| I I T
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Body mass index (kg/m?)
Figure 5-3: Correlation graph analysis of effective dose depending on body mass index
(BMI) for 64-slice DSCT; r =0.8.
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Figure 5-4: Correlation graph analysis of effective dose depending on body mass index
(BMI) for 128-slice DSCT; r = 0.4.

It has been widely reported that prospective ECG-triggering protocol reduces radiation dose
significantly compared to the conventional retrospective ECG-gating technigque, with a dose
reduction ranging from 76% to 83% (Earls et al. 2008; Hirai et al. 2008; Maruyama et al.
2008). Our results are in line with previous reports. The effective dose of prospective ECG-
triggered CCTA was estimated between 3.8 mSv and 6.8 mSv, which correspond to dose
reduction between 63% and 82% when compared to effective dose in retrospective ECG-
gating from previous studies (Earls et al. 2008; Hirai et al. 2008; Maruyama et al. 2008). In
addition, low-radiation dose recorded in our study was found to be similar to that of invasive
coronary angiography, which ranges from 3.1 mSv to 10.6 mSv (Betsou et al. 1998;
Karpinner et al. 1995; Leung and Martin 1996).

Our study showed that mean effective dose estimated from 64-slice CT scanners (DSCT
with 4.2 mSv and SSCT with 4.1 mSv) was consistent with previous results, in which
effective dose in DSCT ranged from 2.2 to 6.5 mSv (Alkadhi et al. 2010; Blankstein et al.
2009; Stolzmann et al. 2011; Xu et al. 2010; Zhao et al. 2009) and in SSCT ranged from 2.8
to 5.7 mSv (Earls et al. 2008; Freeman et al. 2009; Klass et al. 2009; Maruyama et al. 2008;
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Pontone et al. 2009). Current data also show that there was no significant difference in
effective dose between 64-slice DSCT and SSCT (p=0.97) with prospective ECG-triggered
protocol since sequential mode data acquisition (step-and-shoot) was used in the study.

320-slice CT

8.00

5.007

4.007

Effective dose (mSv)

2.00

0.004

1 T I I I
15.00 20.00 25.00 30.00 35.00

Body mass index (kg/m?)

Figure 5-5: Correlation graph analysis of effective dose depending on body mass index
(BMI) for 320-slice CT; r=0.7.

However, studies on 64-slice CT with the application of retrospective ECG-gated CCTA
reported that DSCT produces significantly lower radiation dose compared to SSCT in
patients with higher heart rate (>70 bpm) due to interchangable pitch mode corresponding to
patients’ heart rate (Sabarudin, Sun, and Ng 2012; Wang et al. 2009).

The 128-slice DSCT using prospective ECG-triggering technique is associated with a wide
range of effective dose. In comparison with other reports using 128-slice DSCT prospective
ECG-triggering technique, the average effective dose in our data is significantly lower than
that reported in other studies, which ranges from 1.7 to 14 mSv (Anders et al. 2009;
Feuchtner, Gotti, et al. 2010). However, the wide range in 128-slice CT effective dose might

be caused by the scanning protocol variations such as adding ‘padding” windows for patients
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with high heart rate variability. Padding technique is described as prolonging the acquisition
window in order to compensate for minor heart rate variations and to produce consistent
image quality. However, the average effective dose (6.8 mSv) in our study was found to be
higher than that acquired with the high-pitch spiral mode reported in some recent studies
using 128-slice CT with estimated effective dose of less than 1 mSv (Achenbach et al. 2010;
Alkadhi et al. 2010). This emphasises the importance of using high-pitch model in cardiac

imaging.

Our study shows that there is no significant difference in effective dose between male and
female patients. This is different from the previous literature data, since higher effective dose
was reported in females (ranges from 16.3 mSv to 18 mSv) than males (ranges from 12 mSv
to 15 mSv) when CCTA was performed with retrospective ECG-gating protocol (Esposito et
al. 2012; Mollet et al. 2005; Raff et al. 2005). However, a study conducted on radiation dose
comparison reported that breast dose could be reduced up to 76% with the application of
prospective ECG-triggered protocol with use of 70-80% exposure window (Abadi et al.
2011). This is because there is only a small amount of radiation dose absorbed in the breast
tissue during prospective ECG-triggered protocol, which leads to a minimal contribution to

the total radiation dose.

There are some limitations in this study. For example, image quality assessment was not
included since this study focused on the dose comparison between different generations of
CT scanners, rather than image quality assessment. Another limitation is a small number of
cases being included in each study group due to the strict heart rate control applied to all
patients undergoing prospective ECG-gating protocol, thus, excluding a large number of
patients. Further studies in patients undergoing prospective ECG-triggered CCTA with

inclusion of different heart rates should be conducted to explore the resultant radiation dose.
55 Conclusion

In conclusion, low radiation dose can be achieved in low and regular heart rate with
prospective ECG-triggering protocol, regardless of the CT scanner generation. Although
there is no significant difference in effective dose between genders, BMI is identified as the
main factor that significantly affects the radiation dose in prospective ECG-triggered CCTA

in our study.
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CHAPTER 6: A SURVEY STUDY EXPLORING LOCAL CARDIOLOGISTS AND
RADIOGRAPHERS’ PERCEPTIONS OF THE BENEFITS AND CHALLENGES IN
RELATION TO PROSPECTIVE ECG-GATED CORONARY CT ANGIOGRAPHY

6.1 Introduction

Coronary CT Angiography (CCTA) has been increasingly used in the diagnosis of coronary
artery disease due to improved spatial and temporal resolution since 64- or more slice-CT
was introduced into clinical practice (Earls et al. 2008; Efstathopoulos et al. 2009; Hamon,
Morello, and Riddell 2007; Hein et al. 2009; Kalender 2000; Sun 2010). However, high
radiation doses associated with CCTA has raised serious concerns in the field of medicine
and literature, as radiation-induced malignancy is non-negligible. In response to these
concerns, several dose-saving strategies have been introduced, such as electrocardiogram
(ECG)-controlled tube current modulation (Abada et al. 2006; Hausleiter et al. 2006),
lowering the tube voltage (Francone et al. 2008; Herzog et al. 2008), high pitch values
(Achenbach et al. 2010) and prospective ECG-triggering techniques (Bischoff et al. 2010;
Pontone et al. 2009; Shuman et al. 2008) with the aim of achieving minimal dose with

diagnostic image quality.

Of these dose-saving approaches, prospective ECG-triggering CCTA has proved to be a very
effective approach for dose reduction when compared to other dose-saving strategies (Earls
et al. 2008; Sabarudin, Sun, and Ng 2012). Prospective ECG-triggered data acquisition was
initially used in coronary calcium scoring with electron-beam CT (Hounsfield 1980; Sun
2010). Currently, prospective ECG-triggering technique has been widely used in clinical
practice for Coronary CT Angiography due to the very low radiation dose involved.

Despite all these advantages, there are some challenges that exist when performing
prospective ECG-triggering technique in order to achieve satisfactory diagnostic results. It is
generally agreed, that prospective ECG-triggering is applicable to patients with a low and
regular heart rate (Earls et al. 2008; Herzog et al. 2008; Ko et al. 2010) albeit with high
diagnostic accuracy (>90%). Image quality and diagnostic accuracy of CCTA will be
compromised due to the artefacts in patients with high (>65 bpm) or irregular heart rate
(heart rate variation >6bpm) (Ko et al. 2010; Pontone et al. 2009). It has been reported that
the diagnostic accuracy of prospective ECG-triggering was inferior to that received from
retrospective ECG-gating, given the presence of artefacts due to high heart rate variability in
prospective ECG-triggered scans, which resulted in the reduction of diagnostic sensitivity
and specificity (Pontone et al. 2009). The number of non-assessable coronary arteries was
increased in patients with a heart rate more than 75 bpm when prospective ECG-triggering

was used (Ko et al. 2010). Therefore, prospective ECG-triggered CCTA has inherent
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limitations that present some potential challenges for clinicians to deal with, before this
technique is widely recommended in clinical practice. Although more studies using
prospective ECG-triggered CCTA are being performed at many clinical centres, there is little
information available in the literature with regard to the perceptions or opinions of clinicians
towards the application of prospective triggering techniques. In order to provide some
insights into this area, a structured survey was conducted among clinical and imaging
practitioners consisting of cardiologists, radiologists and radiographers who were
experienced in using prospective ECG-triggering CCTA in their practice in Malaysia. This
survey has been designed to explore their opinions concerning the benefits and difficulties in
performing prospective ECG-gating CCTA, and determined the levels of preference and

effects of an individual’s experience when undergoing prospective ECG-gating CCTA.
6.2 Materials and methods
6.2.1 Survey design and setting

The survey process commenced with an in-depth consultation with cardiologists from the
National Heart Institute at Kuala Lumpur, Malaysia. This enabled the identification of the
benefits of performing prospective ECG-gating CCTA and the challenges in pursuing the
procedure (Table 6-1) in all 3 sections of the questionnaires (Appendix B). This study was

approved by the local institutional ethics committee.

This study was a cross-sectional study conducted in 6 health institutions in the Klang Valley,
Malaysia and included public and private hospitals where prospective ECG-gating CCTA
was routinely performed for the diagnosis of coronary artery disease between November
2011 and January 2012. The recruitment of subjects was undertaken through convenience
sampling among radiologists, cardiologists and radiographers who were experienced in
performing prospective ECG-gated CTCA. Radiographers and specialists who had no
experience in coronary CT examinations/reports were excluded from the study. All potential
subjects were screened and only those meeting the selection criteria were given the survey

form. All respondents were required to return the survey form on the same day.

Respondents were asked a few profile questions including their demographic details, work
experience and organizational background as shown in section 1. The main part of the
guestionnaire was presented in sections 2 and 3. These two sections dealt with the potential
benefits and the difficulties in performing prospective ECG-triggering CCTA based on the
respondents’ clinical experiences. The respondents were asked about their degree of

agreement with regard to the benefits and difficulties in performing prospective ECG-
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triggering CCTA. The response options included: ‘strongly agree’, ‘agree’, ‘do not know’,

‘disagree’ and ‘strongly disagree’.

Table 6-1: Respondents were asked to state their level of agreement for each statement

which leads to the benefits and limitations of prospective ECG-triggered coronary CT

angiography (strongly agree, agree, do not know, disagree and strongly disagree).

Benefits of prospective ECG-triggered
CCTA

Difficulties in performing prospective
ECG-triggered CCTA

Reduce radiation dose

Heart rate issues

Improve diagnostic image quality

Difficulty in obtaining cardiac functional

assessments

Increase number of patients or cases

(patient’s output)

Image quality concerns

Increase financial incentives

Diagnostic accuracy concerns

- Data processing management issues

6.2.2 Statistical analysis

All data were analysed using the SPSS version 19.0 (SPSS V 19.0, Chicago, ILL).
Descriptive statistics were expressed as mean value + standard deviation. One sample t-test
and analysis of variance (ANOVA) was performed to determine if there was any significant
difference between the respondents from different institutions (specialists versus
radiographers, public hospitals versus private practice) and the types of scanners used (64-,
128-, 256- and 320-slice CT) respectively.

6.3 Results

6.3.1  Respondents’ backgrounds

In total, 53 out of 62 respondents returned the questionnaires (response rate of 85%) in this
survey (Table 6-2). Eleven out of 16 specialists responded and these specialists consisted of
9 cardiologists and 2 radiologists who were actively (reporting/conducting) involved in
prospective ECG-gating CCTA. Nine specialists were male and the 2 remaining were
female. All specialists had at least 6 years of working experience with Coronary CT
Angiography, with 36.4% of the specialists having more than 20 years’ experience in cardiac

CT imaging. More than half of them were consultants in private practice institutions (n=9).
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Table 6-2: Respondent’s distribution

Subgroup Number of Male Private Year of experience
respondents hospitals (>6 years)
Cardiologists 9 (17%) 9 (17%) 7 (13%) 9 (17%)
Radiologists 2 (4%) 0 (0%) 2 (4%) 2 (4%)
Radiographers 42 (79%) 21 (40%) 33 (62%) 12 (23%)
Total 53 (100%) 30 (57%) 42 (79%) 23 (44%)

Of 46 radiographers who received the questionnaires, 42 responded displaying an equal ratio
between the male and female respondents. Most of the radiographers (71%) who participated
in this study had less than 6 years of experience in performing Coronary CT Angiography
examinations. However, 7 radiographers were found to have more than 10 years’
experiences with CCTA imaging. In addition, more than half of responding radiographers
had worked in private hospitals (n=33) compared to the small number of radiographers

working in the public health institutions (n=9).
6.3.2 Benefits and challenges in performing prospective ECG-gating CCTA

There was no significant difference in the perceptions or opinions between the specialists
and radiographers with regard to the benefits and difficulties in performing prospective
ECG-gating CCTA (p-= 0.43-0.44). A comparison between specialists and radiographers’
opinions on both, the benefits and challenges in performing prospective ECG-gating CCTA
is displayed in Table 6-3. All specialists indicated that reduction in radiation doses was the
main benefit of using prospective ECG-gating technique, while 93% radiographers showed

similar opinions.
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Table 6-3: Percentage of agreement (strongly agree and agree) with regard to benefits and difficulties when performing prospective ECG-triggered CCTA

between two groups of respondents.

Specialists Radiographers
Items Number of % | X? p-value Numberof | % |[X? p-value
agreement (n) agreement (n)
Reduce radiation dose 11 100.0 - 39 92.9 | 30.86 (0.000)
Improve diagnostic image quality 9 81.8 | 4.45(0.035) 33 78.6 | 13.71(0.000)
Increase number of patients or cases (patient’s output) 8 72.7 | 2.27(0.132) 28 66.7 | 4.67(0.031)
Increase financial incentives 2 18.2 | 4.45(0.035) 18 429 | 0.86 (0.355)
Heart rate issues 11 100.0 - 32 76.2 | 11.52(0.001)
Difficulty in obtaining cardiac functional assessments 9 81.8 | 4.45(0.035) 22 52.4 | 0.095 (0.758)
Image quality concerns 10 90.9 | 7.36(0.007) 30 71.4 | 7.71(0.005)
Diagnostic accuracy concerns 8 72.7 | 2.27(0.132) 27 64.3 | 3.43(0.064)
Data processing management issues 7 63.6 | 0.82(0.366) 24 57.1 | 0.86 (0.355)
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More than 65% of each respondent groups agreed that with the use of prospective ECG-
gating CCTA technique, there would be an increase in the acquisition of diagnostic quality
images and the number of cases (patients’ output). However, there was little agreement
among respondent groups with regard to the factor that prospective ECG-gating techniques
would not result in any profits accruing to the institutions. Further, more than half of
specialists (63.6%) did not know how the scanning technique correlated with the institutional
economy benefits. With regard to the prospective ECG-gating technique and whether it
could improve image quality, both, the specialists and radiographers displayed strong
agreement at 82% and 79% respectively, although this did not result in a significant
difference.

All the specialists agreed that heart rate issues were the major obstacles when performing
prospective ECG-gating techniques. This was also supported by the radiographers of whom,
76.2% agreed that heart rate issue was an obstacle when performing the CCTA. More than
55% respondents agreed that the cardiac functional analysis, data processing, image quality
and diagnostic accuracy were more likely to affect the performance of prospective ECG-
gating CCTA. However, there were significant disagreements between both, the specialists
(36%) and radiographers’ (33%) groups in terms of data processing management compared
to other factors that influenced the performance of prospective ECG-gating techniques. In
addition, about 41% radiographers did not know that cardiac functional analysis could not be

assessed with prospective ECG-gating CCTA.

6.3.3  Perceived benefits and challenges in performing prospective ECG-gating CCTA

among CT scanners

Respondents who were experienced in the use of all types of CT scanners agreed that
radiation doses in Coronary CT Angiography could be reduced significantly with
prospective-ECG gating (Table 6-4). A 100% consensus was achieved in that prospective
ECG-gating techniques associated with radiation dose reduction in 64-, 256- and 320-slice
CT could be acquired, although less than 80% respondents from each scanner type chose the
‘strongly agreed’ option. However, 11% of respondents did not know that prospective ECG-

gating with 128-slice CT could reduce radiation dose.

There was a good agreement achieved in the case of the 256- and 320-slice CT with regard
to the increase in the numbers of patients in prospective ECG-gating CCTA compared to

what was seen in the cases of the 64- and 128-slice CT (>80% versus <60%).
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Table 6-4: Percentage of agreement (strongly agree and agree) with regard to benefits and difficulties when performing prospective ECG-triggered CCTA

according to different types of CT scanners.

Items 64-slice CT 128-slice CT 256-slice CT 320-slice CT
Number of % Number of % Number of % Number of %
agreement agreement agreement agreement
Benefits
Reduce radiation dose 9 100.0 24 88.9 12 100.0 5 100.0
Improve diagnostic image quality 2 22.2 25 92.6 12 100.0 3 60.0
Increase number of patients or cases
(patient’s output) 5 55.6 16 59.3 11 91.7 4 80.0
Increase financial incentives 2 22.2 7 25.9 9 75.0 2 40.0
Obstacles
Heart rate issues 9 100.0 25 92.6 4 33.3 5 100.0
Difficulty in obtaining cardiac
functional assessments 6 66.7 20 74.1 2 16.7 3 60.0
Image quality concerns 8 88.9 24 88.9 3 25.0 5 100.0
Diagnostic accuracy concerns 6 66.7 21 77.8 3 25.0 5 100.0
Data processing management issues 5 55.6 19 70.4 3 25.0 4 80.0
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In contrast, there was some disagreement among about 40% of the respondents with regard
to the use of the 64- and 128-slice CT indicating that prospective ECG-gating would increase
the numbers of patients. Prospective ECG-gating CCTA that could increase financial
incentives for institution was agreed to with regard to the 256-slice CT (75%). However,
those respondents who worked in the hospital with 64-, 128 and 320-slice CT scanners did

not know that prospective ECG-gating could also be beneficial to the institutional economy.

There was a consensus reached by respondents when discussing all types of CT scanners that
the heart rate issue was a major challenge in prospective ECG-gating CCTA except in the
256-slice CT, since about 67% of the 256-slice CT users did not agree that the heart rate was
an issue in prospective ECG-gating. Similarly, the remaining challenges in prospective ECG-
gating including image quality and diagnostic accuracy concerns, data processing and the
inability to perform cardiac functional analysis were achieved with good agreement with
reference to all types of CT scanners, excluding the 256-slice CT. Seventy-five per cent of
the 256-slice CT users were likely to disagree on the data processing issue, image quality
and diagnostic accuracy concern. In addition, 75% of the 256-slice CT respondents did not
know that cardiac functional analysis could not be performed with prospective ECG-gating
CCTA.

6.4 Discussion

This analysis emphasises two major findings that are considered clinically important to
measure the degree of satisfaction of CT users with regard to the use of prospective ECG-
gating protocols in Malaysia. Firstly, this survey shows that prospective ECG-gating is
associated with a significantly lower radiation dose, which was agreed to by all the users
regardless of any groups and types of scanners (94%). Secondly, the majority of the
respondents (>70%) agreed that the heart rate was a main concern in achieving good image

quality for prospective ECG-gating CCTA.

It is well-known that prospective ECG-gating CCTA is regarded as the most effective
technique to reduce radiation doses and associated with a less invasive modality in the
diagnosis of coronary artery disease. Previous studies have shown that prospective ECG-
gating significantly reduces radiation dose by more than 80% compared to retrospective
ECG-gating methods (Earls 2009; Efstathopoulos et al. 2009; Gutstein et al. 2008; Hirai et
al. 2008; Husmann et al. 2008; Rybicki et al. 2008). Therefore, the use of prospective gating
methods is increasingly recommended in imaging centres, especially in the developing

countries.
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Our survey shows that there is a reasonable level of consensus among specialists and
radiographers’ groups regarding the benefits of prospective ECG-gating protocol, especially
in radiation dose reduction and image quality improvement. Since the specialists are not
really exposed to the medical bills, this explains the results of the high percentage of people
unaware of the ‘increasing financial incentives’ factor, which is beneficial to prospective

ECG-gating CCTA.

Although cardiac functional assessment was unlikely to be achieved in prospective ECG-
gating protocol, it was not a major concern in coronary artery disease assessment as reported
by researchers (Earls 2009). However, if the cardiac functional assessment did prove
necessary for clinical diagnosis, it was advised that retrospective ECG-gating technique
should be performed. Prospective ECG-gating technique was introduced in Malaysia a few
years ago, with the installation of the 128-, 256- and 320-slice CT scanners. However, this
technique was introduced for Coronary CT imaging in the National Heart Institution with 64-
slice and dual-source CT in late 2011. Therefore, it is necessary to identify whether
prospective ECG-triggered CCTA has been introduced into the cardiac imaging, and whether
it has been accepted as a valuable technique by local specialists. This survey shows that the
specialists and radiographers’ responses were consistent with existent literature as to the
attractive benefits of prospective gating (Sun 2010; Muenzel et al. 2012). Several studies
related to prospective ECG-gating CCTA have been published in literature with a focus on
radiation dose, image quality and diagnostic accuracy (Bischoff et al. 2010; Earls et al. 2008;
Hirai et al. 2008; Husmann et al. 2008; Muenzel et al. 2012; Hoe and Toh 2009).
Satisfactory results have been achieved according to these studies, with a significant
reduction in radiation dose with the use of prospective ECG-gating CCTA. However, the
users’ perceptions’ regarding satisfaction of prospective ECG-triggering techniques has not

been studied, to the best of our knowledge.

Several studies on radiation dose awareness among clinicians and health professionals were
published in the previous literatures (Chun-sing et al. 2012; Correia et al. 2005; Shiralkar et
al. 2003; Soye and Paterson 2008; Thomas et al. 2006). The results showed that radiologists
are best equipped with the relevant knowledge pertaining to radiation exposure related to
radiological imaging as compared to other physicians (Chun-sing et al. 2012). Although the
information given was limited to general radiological examinations, including chest x-ray
and CT scan, it is still applicable to other radiological imaging procedures. Therefore, the
result of this study is aligned with previous studies and points to the fact that prospective
ECG-gating is beneficial in reducing radiation dose (Earls et al. 2008; Efstathopoulos et al.
2009; Ko et al. 2010; Shuman et al. 2008; Husmann et al. 2008).
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We believe that it is important for CT practitioners’ teams to make current information
regarding CT radiation dose widely available since there are debatable issues about the
potential risk of radiation-induced cancer (Brenner and Hall 2007). Moreover, current
information regarding the radiation dose related to the latest technological advancements in
CT imaging should be made available to the public. Thus, it is necessary that healthcare
providers, healthcare professionals and patients be aware of the radiation risks associated
with CT, so as to accurately weigh the risks and benefits associated with prospective ECG-
gating CCTA (Thomas and Lindell 2001). Thus, results from this study are considered
valuable for current clinical practice with regard to the implementation of prospective gating
techniques.

The cohort of sample respondents was probably skewed to those specialists who were
involved with coronary CT reports and radiographers who were working with the latest CT
scanners. In terms of professional backgrounds, it was skewed towards the private hospitals
since there was a huge competition among individuals engaged in private practice in

convincing patients to adopt the latest technology which was fast, safe and convenient.

The answer scale for sections 2 and 3, which asked respondents to choose their levels of
agreement on the benefits and the difficulties in performing prospective ECG-gating
Coronary CT Angiography, did not include a ‘neither agree nor disagree’ option. This was
because our study did not force respondents to choose the levels of agreement if they did not
feel that their option was strong enough to be worth selecting. Therefore, the ‘don’t know’
option allowed respondents to state that they had no opinion or had not thought about any

particular issue.
6.5 Conclusion

In conclusion, although there is a reasonable level of consensus with regard to the benefits
and challenges in prospective ECG-gating CCTA, regardless of the respondents group or
scanner type users, the reduction in radiation dose seems to be the most agreed benefit while
the heart rate issue is the most likely challenge in prospective ECG-gating CCTA. Our study
is the first-scale survey of the views of specialists and radiographers responding to the
prospective ECG-gating Coronary CT Angiography protocol in Malaysia. It was designed to
stimulate discussion after the prospective ECG-gating technique was introduced in
Malaysian health institutions a few years ago. The results of this unique survey provide an
insight into the current perceptions on the usefulness of prospective ECG-gating techniques
in CCTA.
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CHAPTER 7: CORONARY CT ANGIOGRAPHY WITH SINGLE-SOURCE AND
DUAL-SOURCE CT: COMPARISON OF IMAGE QUALITY AND RADIATION
DOSE BETWEEN PROSPECTIVE ECG-TRIGGERED AND RETROSPECTIVE
ECG-GATED PROTOCOLS

7.1 Introduction

Coronary CT angiography (CCTA) has gained a leading role in the diagnosis of coronary
artery disease (CAD) due to its high diagnostic value, in particular, a very high negative
predictive value (95-99%) (Budoff et al. 2006; Sun et al. 2008). With 64- or more slice CT,
non-invasive CCTA has become a reliable alternative to invasive coronary angiography in

the diagnosis of patients with suspected CAD (Sun et al. 2008).

Traditionally, CCTA was performed using retrospective ECG gating, which enables
acquisition of volume data, but at the expense of high radiation dose, since data is acquired
during a spiral CT protocol (Efstathopoulos et al. 2012). High radiation dose associated with
retrospective ECG-gated CCTA raised major concerns in the literature; thus, strategies for
reducing radiation dose in retrospective ECG gating have been developed and widely
introduced in present-day clinical centres. These strategies include tube current modulation
that is either attenuation-based (Deetjen et al. 2007; Kalra et al. 2004) or ECG-control-based
(Abada et al. 2006; Gutstein et al. 2008), lower tube voltage (Hausleiter et al. 2006; Leschka
et al. 2008), high-pitch scanning (Achenbach et al. 2010; Alkadhi et al. 2010), and
prospective ECG triggering (Earls 2009; Efstathopoulos et al. 2012; Hoe and Toh 2009). Of
these strategies, prospective ECG triggering represents the most effective approach with a
significant dose reduction when compared to the conventional retrospective ECG-gated

protocol, but with high diagnostic image quality.

Unlike the principle of retrospective ECG gating, the principle of prospective ECG
triggering is that data acquisition takes place only in the selected cardiac phase by selectively
turning on the X-ray tube when triggered by the ECG signal, and turning it off or
dramatically lowering it during the rest of the R—R cycle (Efstathopoulos et al. 2012).

Radiation dose and image quality with prospective ECG triggering are increasingly being
studied and compared with retrospective ECG gating in the literature (Ko et al. 2010; Lu et
al. 2011; Shuman et al. 2008; Sun and Ng 2012). Despite the promising results that have
been achieved in dose reduction and image quality, there is a concern about the accuracy of
effective dose calculation. Moreover, to our knowledge there is a lack of systematic
investigation on image quality comparison between different types of scanners (single-

source vs. dual-source CT) with prospective and retrospective ECG-gated CCTA techniques.
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Therefore, the aim of this study was to investigate and compare image quality and radiation
dose between prospective ECG-triggered and retrospective ECG-gated CCTA protocols,
using different types of 64-slice CT scanners.

7.2 Materials and methods
7.2.1  Study population

This is a cross-sectional study comparing radiation dose and image quality between
prospective triggered and retrospective ECG-gated CCTA in two major public hospitals,
Royal Perth Hospital, Perth, Australia, and National Heart Institute, Kuala Lumpur,
Malaysia. The study was approved by both the institutional ethical review boards. The first
part of the study was conducted retrospectively between January and July 2011 in the Royal
Perth Hospital with 95 patients with suspected CAD who underwent CCTA with single-
source CT (SSCT). The second part of the study was conducted prospectively with 114
consecutive patients who underwent CCTA between August 2011 and January 2012 with
dual-source CT (DSCT) in the National Heart Institute. Written informed consent was
obtained from all patients. The data including demographic information (i.e. age, gender,
body mass index and heart rate) and scan parameters (i.e. scan duration, longitudinal scan
range, tube voltage and pitch) were collected from each patient. Heart rate which was
defined as the average heart rate during image acquisition was also recorded for each patient.
All patients had sinus heart rhythm. Patients with renal insufficiency presenting with
elevated serum creatinine levels (> 1.5 mg/dL), documented hypersensitivity to iodinated
contrast materials and any indications related to heart surgery, that is, post-coronary artery
bypass graft assessments, heart valve and pacemaker placement and patients with obvious

coronary wall calcifications (calcium score >1000) were excluded from the study.
7.2.2  SSCT scanning protocols

The CCTA protocol was divided into prospective triggering (n=43) and retrospective ECG
gating (n=52), both of which were performed with a 64-slice scanner (Brilliance 64, Philips
Healthcare, USA). The CCTA was performed with detector collimation of 64 x 0.625 mm,
slice thicknesses of 0.8 mm, field of view ranging from 150 to 170 mm and adjustable tube
current in the range of 300-500 mA with a tube voltage of 120 kV. A pitch of 0.2 and an
ECG-pulsing window of 30-80% of the R—R interval were used in retrospective ECG-gating

protocol.

7.2.3 DSCT scanning protocols
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The CCTA protocol was divided into prospective triggering (n=50) and retrospective ECG
gating (n=64), both of which were performed with a 64-slice CT scanner (Somatom
Definition, Siemens Medical Solutions, Germany). CCTA protocol was performed with
beam collimation of 2 x 32 x 0.6 mm, slice acquisition of 2 x 64 x 0.6 mm with z-flying
focal spot and 320 mAs per rotation and tube voltage of 120 kV. For retrospective ECG-
gating protocol, the ECG-pulsing window was set at 30-80% of the R—R interval with pitch

of 0.2-0.43, which was automatically adapted to the heart rate.
7.2.4  Contrast medium administration

A minimum of 65 mL contrast agent (lomeron 350 mgl/mL) was administered intravenously
at a flow rate of 5.0-5.5 mL/s followed by 50 mL saline flush at 5 mL/s. The amount of
contrast medium required for coronary CT examination was calculated according to the
following formula: V = IR-ST, where V is volume in millilitres, IR is the injection rate
(mL/s) and ST is the scanning time in seconds (Hirai et al. 2008). Bolus was tracked by
using an automated bolus triggering technique at the region of interest, that is, at the
ascending aorta, with a baseline threshold of 120 HU (Hounsfield units).

Details about the use of beta-blockers are presented in Figure 7-1. However, in retrospective
ECG-gated protocol, beta-blockers were given only to patients with heart rate > 70 bpm
(beats per minute) in the SSCT group and > 100 bpm in the DSCT group.
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Figure 7-1: Flow chart showing the administration of beta-blocker

Patient screened: HR, rhythm, history

>65 bpm

A

Beta-blocker
contraindicated

HRv check

No Yes
\4
A 4 B-blocker protocol: Calcium Channel
2.5-5mg 2.5-5 mg metaprolol: blocker protocol:
metaprolol or repeat every 10 mins 10 mg diltiazem:
10mg diltiazem prior to scan repeat every 10 mins
Max: 15 mg Max: 30 mg
Check HR
>65 bpm
v
HRv check
<65 bpm
>5 bpm
v v

Prospective ECG triggering Retrospective ECG gating

A 4

*HR-Heart rate; HRv-Heart rate variability
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7.2.5 Analysis of image quality

Assessment of image quality was determined by two experienced viewers with at least 5

years of experience in cardiac CT imaging who were blinded to the acquisition parameters

and protocols. Each image was scored subjectively with a 4-point grading scale. Details of

the grading scale are presented in Table 7-1. Each coronary segment was evaluated

according to the 16-segment model based on the American Heart Association’s (AHA)
guidelines (Austen et al. 1975; Scanlon et al. 1999).

Table 7-1: Image quality score descriptions

Image quality

score

Quality
level

Description

Excellent

All vessels had continuous course which surrounded by
low-attenuation fat with good and uniform contrast

enhancement and no artifacts

Good

Presence of discrete blurring of vessel margin in any planar
orientation with minor motion artifacts, increased image
noise, low contrast enhancement without stair-step artifact.
However, evaluations of the vessel lumen and plaque

characteristics are possible and satisfactory.

Moderate

Noticeably blurred vessel/plague margins and distinctly
broader motion artifacts extending less than 5 mm from the
vessel center. Reduced image quality due to any
combination of motion, slice miss-registration, increased
image noise, poor contrast enhancement or presence of
extensive coronary calcification, making interpretation
difficult. However, the image quality was sufficient to

assess the patency of the artery.

Poor

Inadequate delineation between vessel and surrounding
tissue with presence of streak artifacts extending at least 5
mm from center of the vessel and stair-step artifacts of >

25% of the vessel diameter. Non-assessable the artery

patency due to impaired image quality.
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The right coronary artery (RCA) included segments 1-4, the left main coronary artery and
left anterior descending coronary artery (LAD) included segments 5-10, and the left
circumflex coronary artery (LCx) included segments 11-15. If present, the intermediate
artery was designated as segment 16. Coronary artery analysis was performed in all vessels
with at least a 1.0-mm luminal diameter at their origin. If the segment was not present due to
anatomical variants, image quality was recorded as missing. Sufficient quality (score 1, 2
and 3) was defined as excellent, good and moderate, respectively, which was considered to
be evaluable for diagnosis. Insufficient image quality was ranked with a score of 4 which

was described as poor or of no diagnostic value.

The image quality was also measured quantitatively with a commercially available software
Analyze 7.0 (Analyze, version 7.0 for Windows, Kansas, USA). The objective parameters of
image quality included CT attenuation, image noise, signal-to-noise ratio (SNR) and
contrast-to-noise ratio (CNR). CT attenuation was measured in HU and defined as the mean
value while image noise was measured in terms of standard deviation (SD). Both CT
attenuation and image noise were measured at three different regions of interest (ROI) with a
circular ROI of 200, 7, and 3-5 mm? placed at the ascending aorta, perivascular fatty tissue
and coronary artery (left main and proximal right coronary artery), respectively (Figure 7-2).
The SNR was determined by dividing CT attenuation with image noise, while CNR was
calculated by dividing contrast enhancement (CT attenuation at the aorta minus CT
attenuation at the fat) with image noise, that is, CNR o= Meanags—Means,/ SD o (Muenzel
etal. 2012).

7.2.6  Estimation of effective dose

The effective dose (E) was estimated by multiplying the dose-length product (DLP) with a
conversion coefficient factor (E/DLP), k (mSv-mGy “-cm ™). The DLP value is available on
the scanner console and the k factor of 0.026 mSv-mGy -cm™* was used for the cardiac
region instead of chest CT (0.014 or 0.017 mSv-mGy “cm™) based on International
Commission on Radiological Protection (ICRP-103) publication (Huda, Magill, and He
2011; Huda et al. 2010). Since the conversion coefficient factor of 0.017 mSv-mGy “-cm* is
widely used in the literature (Huda, Ogden, and Khorasani 2008), the results of effective
dose were also provided by using a conversion coefficient factor of 0.017 mSv-mGy “-cm*

for comparison.
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Figure 7-2: The quantitative measurement was obtained by locating the ROI at the root of
the ascending aorta (a), perivascular fatty tissue (b), left main artery (c) and proximal RCA
(d). If image quality scores were 2 or more, ROl was put at the area where artefacts were

least severe.

7.2.7 Statistical analysis

All data were entered into SPSS V17.0 (SPSS, version 17.0 for Windows, Chicago, Illinois,
USA) for statistical analysis. A p value of <0.05 was considered to indicate a statistically
significant difference. The values were normally distributed in all prospective and
retrospective ECG-gated groups with inclusion of DSCT and SSCT. Those values were
compared with one-way analysis of variance (ANOVA) for multi-factor interaction analysis.

The doses from each protocol were presented in box plots while the correlation between E
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and body mass index (BMI) was analysed with Pearson’s correlation in both prospective
triggered and retrospective ECG-gated groups between DSCT and SSCT. For image quality
parameter, inter-observer agreement for image analysis was estimated by kappa statistics and
classified as follows: poor (x < 0.20); fair (x = 0.21-0.40); moderate (x = 0.41-0.60); good (x
= 0.61-0.80) and excellent agreement (x = 0.81-1.00). Kruskal-Wallis test was conducted
for further statistical non-parametric analysis in image quality assessment. Quantitative
image analysis such as CT attenuation, image noise, SNR and CNR were compared using the
Student’s t-test.

7.3 Results

Details on patient demographics, CAD risk factor and beta-blocker usage are presented in
Table 7-2. A total of 2,880 coronary artery segments were evaluated. However, 793
segments (mainly posterior lateral branch, second diagonal artery, second obtuse marginal
branch and ramus intermedius segment) were not considered because of anatomical variants.
Therefore, 2,087 segments were assessable of which 2,046 (98.0%) segments were ranked as
of sufficient image quality (score 1 to 3), while only 41 segments (2.0%) were classified as
of insufficient image quality (score 4) regardless of prospective or retrospective ECG-gated
CCTA protocols.

7.3.1 Diagnostic performance of image quality

The image quality of coronary artery segments was assessed by two readers with a kappa
score of 0.65 and 0.62 for both prospective and retrospective ECG-gated group respectively,
indicating good inter-observer agreement. In the retrospective ECG-gated group, evaluation
was undertaken with reconstructions at the mid-diastolic phase in 70% of the patients
(81/116), resulting in better image quality, while for the remaining 30% of patients,

reconstruction was selected at the end-systolic phase.
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Table 7-2: Patients demographic data, CAD risk factor and percentage of beta-blockers

administration

Characteristics

Dual source 64-slice

Single source 64-slice

CT
PPG RPG PPG RPG

Demographics | Number of 50 64 43 52
patients
Mean age (years) 53+ 10 53+9 49 +13 55+ 15
Mean BMI 26.3+3.8 | 27.7+£52 | 25.7+£23 | 25.6+2.8
(kg/m?)
Male (%) 58 55 51 50
Heart rate (b.p.m) | 56.3+6.4 | 67.9+96 | 56.3+6.0 | 724+7.3

Risk factor Diabetes 16 23 26 23
(%)

Hyperlipidaemia 20 22 19 21
Hypertension 54 66 53 56
Obesity 42 52 51 54
Family history 30 23 42 40
Smoking 52 48 65 67

IV B-blocker | None 46 69.7

usage (%)

2.5mg 26 30.3
5mg 22 n/a n/a
10 mg 6
>10 mg 0

*PPG=Prospective ECG-triggering; RPG=Retrospective ECG-gating
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Image quality was rated as excellent (image quality score 1) in 182/528 (34.5%) and 120/504
(23.8%) for the retrospective ECG-gated group, 152/504 (30.2%) and 244/551 (44.3%) for
the prospective ECG-triggered group with DSCT and SSCT, respectively. Moreover,
sufficient image quality with scores of 2 and 3 was found in 342/528 (64.8%) and 375/504
(74.4%) coronary segments with protocols using retrospective ECG-gated DSCT and SSCT
groups, whereas this was found in 343/504 (68.0%) and 288/551 (52.3%) coronary segments
in the prospective ECG-triggered DSCT and SSCT groups. Insufficient image quality (score
4) was found in 4/528 (0.8%) and 9/504 (1.8%) coronary segments for the retrospective
gated group and in 9/504 (1.8%) and 19/551 (3.4%) coronary segments for the prospective
triggered group, corresponding to DSCT and SSCT, respectively. Although DSCT led to
fewer instances of insufficient image quality, there were no significant differences in the
mean quality scores between prospective triggered and retrospective ECG-gated protocols
(p>0.05) as shown in Table 7-3.

All quantitative measurements of image quality are given in Table 7-3. For the analysis of
image quality, most of the measurements did not show significant differences in terms of CT
attenuation, image noise, SNR and CNR between different anatomical locations, regardless
of CT scanners and CCTA protocols (p>0.05). Only image noise measurements in DSCT
with use of retrospective ECG-gated protocol were significantly different between aorta
versus RCA (25.6 HU vs. 38.3 HU) and aorta versus LCA (25.6 HU vs. 35.6 HU) (p<0.05).
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Quantitative image quality

Dual source 64-slice CT (DSCT)

Single source 64-slice CT (SSCT)

parameters
PPG RPG PPG RPG
CT attenuation | Aorta 448.40 + 64.57 442.89 + 109.65 425.63 +£98.81 434.52 +123.53
(HU)
RCA 467.46 +120.97 469.32 + 121.98 459.56 + 111.29 472.62 +116.63
LCA 466.38 + 91.96 462.33 + 122.64 450.70 + 108.22 465.36 + 113.94
Perivascular fat -116.22 +17.81 -103.62 £ 22.71 -111.51 £ 37.51 -104.69 + 46.23
Image noise Aorta 25.53+7.13 25.58 +7.95 23.83+7.22 19.65 £ 9.02
(HU)
RCA 23.88 £9.28 38.32 +16.29 21.09+5.99 21.42 +7.53
LCA 24.59 + 8.07 35.63 + 14.78 21.76 +7.58 22.01+9.49
Perivascular fat 29.41 +7.64 21.94 +6.96 2541 +7.07 2071+7.71
SNR Aorta 19.33+7.48 18.84 £ 7.17 19.74 + 8.22 26.62 + 15.06
RCA 22.74 +10.26 15.22 £10.92 23.40 +8.54 24.42 +9.46
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LCA 21.17 £ 8.39 15.62 + 8.38 23.11+£9.04 25.62 £ 14.56
CNR Aorta 24.39 £ 9.50 23.30+8.78 24.93+10.44 33.19+£17.91

RCA 28.33+12.16 18.45 + 12.65 29.24 +10.75 29.97 + 11.60

LCA 26.47 +10.18 19.14 + 10.07 29.07 £ 11.85 31.44 +17.23
Quialitative image average score 1.87+£0.71 1.80 £ 0.68 1.79+0.84 2.00+£0.72

(subjective analysis)

*PPG=Prospective ECG-triggering; RPG=Retrospective ECG-gating
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7.3.2 Radiation dose comparison

In prospective ECG-triggered groups using DSCT and SSCT protocols, the mean DLP was
249.3 + 109.7 mGy-cm and 238.3 £ 37.9 mGy-cm corresponding to an effective dose
estimation of 6.5 £ 2.9 mSv and 6.2 £ 1.0 mSy, respectively, with no significant difference
between these two protocols (p=0.99). Whereas in the retrospective ECG-gated groups using
DSCT and SSCT protocols, the mean DLP was 699.5 + 318.9 mGy-cm and 1088.5 + 269.8
mGy-cm corresponding to an effective dose estimation of 18.2 = 8.3 mSv and 28.3 + 7.0
mSv, respectively, resulting in significant difference between these two protocols (Figure 7-
3). However, estimation of effective doses was lower by 35% with application of 0.017
mSv-mGy “cm* conversion coefficient factor when compared to that with use of 0.026
mSv-mGy “cm* (Table 7-4). With regard to effective dose comparison in genders, none of
the results were significantly different between males and females (Figure 7-4). In the
prospective ECG-triggered group, the effective dose was slightly higher in males than in
females with the use of DSCT (6.7 £ 3.0 mSv vs. 6.2 £ 2.7 mSv) (p=0.28) and SSCT
scanners (6.3 £ 0.8 mSv vs. 6.1 £ 1.2 mSv) (p=0.07). In the retrospective ECG-gated group,
the effective dose was similarly higher in males than in females with the use of SSCT (29.4
+ 7.5 mSv vs. 27.2 + 6.4 mSv) (p=0.22). On the other hand, the effective dose estimation in
females was greater than in males with the use of DSCT scanner (20.4 £ 9.2 mSv vs. 16.3 =

7.1 mSv) (p=0.16), despite no significant difference being reached.

The correlation between effective doses and patients’ BMI was tested with Pearson
correlation and this resulted in a strong positive linear correlation for SSCT with prospective
ECG triggering (r=0.64), SSCT with retrospective ECG gating (r=0.65) and DSCT with
retrospective ECG gating (r= 0.62). However, the prospective ECG-triggered group with
DSCT showed weak positive linear correlation (r=0.11). All these correlations are presented

in Figure 7-5.
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Figure 7-3: Box plot shows the mean effective dose estimation reported in the studies with
use of 64-slice single-source CT (SSCT) and 64-slice dual-source CT (DSCT) with
prospective and retrospective ECG-gated CCTA. Effective dose estimated in SSCT with
retrospective ECG-gated CCTA is the highest amongst all of the four groups. The box
indicates the first to third quartiles, with the line in the box indicating median quartile, and
whiskers indicate the minimum and maximum values. The estimation of effective dose was

calculated based on 0.026 mSv-mGy “-cm ' conversion coefficient factor.
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Protocol Prospective ECG-gating CCTA Retrospective ECG-gating CCTA

Scanner type DSCT SSCT DSCT SSCT

k (mSv-mGy*.cm™) 0.017 0.026 0.017 0.026 0.017 0.026 0.017 0.026
Overall 42+19 6.5+29 41+0.6 6.2+1.0 119+54 18.2+8.3 185+4.6 28370
Male 44+20 6.7+ 3.0 41+05 6.3+0.8 10.7+4.6 16.3+7.1 19.3+49 294+75
Female 40+18 6.2+27 40+0.8 6.1+1.2 13.4+6.0 20.4+9.2 17.8+4.2 27.2+64
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A survey study on perceptions in relation to prospective ECG-gated CCTA- Chapter 6

Figure 7-4: Box plot shows the mean estimation of effective dose comparison between
genders in SSCT and DSCT with prospective and retrospective ECG-gated CCTA. The box
indicates the first to third quartiles, with the line in the box indicating the median quartile,
and whiskers indicate the minimum and maximum values. The estimation of effective dose

was calculated based on 0.026 mSv-mGy “-cm* conversion coefficient factor.
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Effective dose (mSv)

Figure 7-5: Graph shows correlation analysis of effective dose estimation depending on
body mass index (BMI) for prospective (a) and retrospective (b) ECG-gated CCTA groups.
In prospective gating, a strong positive correlation was shown only in SSCT (r=0.64) while
in DSCT this resulted in a weak positive correlation (r = 0.11). However, in the retrospective
ECG gating, both SSCT and DSCT showed a strong positive correlation with r=0.65 and
r=0.62, respectively. The estimation of effective dose was calculated based on 0.026

mSv-mGy -cm* conversion coefficient factor.
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Effactive dose (mSv)

Figure 7-5 (b)
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7.4 Discussion

This study demonstrates two main findings which are useful for clinical study. Firstly, there
was no significant difference in image quality between prospective ECG-triggered and
retrospective ECG-gated CCTA regardless of the use of SSCT or DSCT scanner. All images
were presented with sufficient quality in more than 96% of the coronary segments. Secondly,
prospective ECG-triggered CCTA leads to a significant lower radiation dose compared to

with a retrospective ECG-gated technique performed with both DSCT and SSCT techniques.

Prospective ECG-triggered CCTA has been widely used in the diagnosis of CAD since it
provides a lower radiation dose. This method has since been evaluated for image quality of
the coronary arteries and for diagnostic accuracy as well as effective radiation dose in
several studies (Hirai et al. 2008; Ko et al. 2010; Lu et al. 2011; Shuman et al. 2008; Sun and
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Ng 2012). Studies comparing prospective triggering with retrospective gating have shown
that prospective triggering resulted in high image quality with lower percentage of
suboptimal images (Earls et al. 2008; Shuman et al. 2008). Earl et al. (2008) conducted a
comparative study of 121 patients using prospective triggered CCTA examinations with 82
patients on retrospective ECG-gated CCTA. They found out that image quality was
significantly improved with prospective triggering with low percentage of non-evaluable
segments (1.4% for prospective and 2.1% for retrospective gated CCTA). Shuman et al.
(2008) also showed similar results that the coronary segments with unadjusted chest size
were likely to have a better image quality score in prospective triggering than in
retrospective gating (p=0.03). However, when adjusted by comparing patients with the same
chest size, the score of image quality was not significantly different between prospective
triggering and retrospective ECG gating, but 77% lower patient dose was achieved with
prospective triggering when compared with that of retrospective gating. Although
prospective ECG-triggered CCTA with SSCT in our study resulted in the highest score of
excellent image quality (44.3%), the percentage of insufficient image quality was still high
(3.4%) compared to retrospective gating (1.8%). Similar findings were noted with
prospective triggering (1.8%) compared to retrospective gating using DSCT (0.8%). This is
because the heart rate was elevated unexpectedly during data acquisition in some cases using
prospective ECG-triggered protocol. The presence of inadequate ECG synchronization
caused severe stair-step artefacts which led to poor image quality. Our results are similar to
those of a previous study (Ko et al. 2010), where the non-assessable coronary segments were

higher in the prospective triggering (2.6%) than in the retrospective ECG gating (0.9%).

It has been reported that prospective ECG triggering using single-source 64-slice CT
scanners substantially reduced radiation doses with sufficient image quality of the coronary
arteries (Arnoldi et al. 2009; Earls et al. 2008; Hirai et al. 2008). The major disadvantage of
the prospectively triggered method is the limited predefined interval for data acquisition
(normally in the mid-diastole phase). Therefore, only reconstructed images from a single
phase of the cardiac cycle are available for diagnostic interpretation to represent the entire
coronary artery segments. In patients with higher heart rate (>70 bpm), image reconstruction
is set in the systolic phase to ensure diagnostic image quality. In our study, beta-blockers
were used in patients with higher heart rate (>65 bpm) in order to minimize risk of non-
diagnostic image quality for prospective ECG triggering. Apart from beta-blockers,
ivabradine can also be used as an alternative to reduce heart rate. Oral ivabradine has been
reported to be a safe and effective heart rate lowering agent when compared to the beta-
blockers, according to a recent study (Guaricci et al. 2012). However, if the heart rate cannot

be controlled after administration of heart rate lowering drugs, the scan is reverted to
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retrospective gated protocol. This is because small heart rate irregularities might lead to
stair-step artefacts. Previous studies have found a significant correlation between average
heart rate and cardiac motion artefact and also between heart rate variability and stair-step
artefacts (Ko et al. 2010; Stolzmann et al. 2008). Less heart rate variability has been reported
in CCTA using contrast agents with lower osmolarity compared to higher osmolarity
contrast agents (Choi et al. 2012). Other than heart rate restriction, prospective ECG-
triggered technique could not provide information on ventricular or valvular function. Again,

a retrospective ECG-gated procedure should be obtained to meet the purpose.

In comparison with SSCT, DSCT is advantageous because CCTA can be undertaken in
patients with higher or even irregular heart rates such as atrial fibrillation. This is due to the
improvement of temporal resolution at 83 ms in DSCT, which allows the pitch to increase by
up to 0.5 at increased heart rates ranging from 70 to 100 bpm without affecting image quality
(Dikkers et al. 2009). Another advantage of DSCT is that it produces lower radiation dose
than SSCT in retrospective gated protocol (Rixe et al. 2009). This was confirmed in our
study as the effective dose recorded with DSCT (18.2 mSv) was significantly lower than
with SSCT (28.3 mSv).

The available data have shown that effective dose in females was significantly higher than in
males in retrospective ECG-gated CCTA (Mollet et al. 2005; Raff et al. 2005), however, the
impact of sex on dose reduction associated with prospective ECG-triggered compared to
retrospective ECG-gated CCTA between DSCT and SSCT has not been addressed. Results
of this study indicate that radiation dose did not differ significantly between genders in
prospective ECG-triggered CCTA. The dose difference between males and females was
observed in retrospective ECG-gated CCTA, which is consistent with a recent report by
Esposito et al (2012).

The latest conversion coefficient factor (E/DLP) was used in this study to accurately estimate
the effective dose for CCTA examination, which represents a unique aspect of this study.
The E/DLP value that is specific for coronary CT examinations has not been widely used in
the literature (Huda, Magill, and He 2011). The current practices assume that the E/DLP
used in coronary CT were similar to that used for chest CT examinations (0.014 or 0.017
mSv-mGy *-cm ™) (Commission 1999; Hausleiter et al. 2009; Huda et al. 2010). However,
this is considered inadequate as the estimation does not reflect the measurement at the
cardiac region. Therefore, the E/DLP value of 0.026 mSv-mGy *-cm™ was applied in this
study since this value was likely to be more accurate for estimation of radiation dose
associated with cardiac CT compared to the chest CT (Huda, Magill, and He 2011). The

reason for the update is because the cardiac region is likely to be more radiosensitive than
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the chest, which results in E/DLP ratios. Moreover, the tissue weighting factor in the breast
has been reported in ICRP-103 and it changed significantly from 0.05 to 0.12 (Huda, Magill,
and He 2011; Huda et al. 2010). These changes have led to an increase in effective dose of
about 35% compared to the E/DLP value for averaged chest CT examinations. We admit that
the estimation of effective dose calculation for CCTA based on the new conversion
coefficient factor value is much higher than that calculated with the current approach, but it
is of paramount importance to apply the timely relevant factor according to the latest

publication of the ICRP tissue weighting factor.

Although our analysis of radiation dose reduction using the above-described strategies is
reasonable and sufficient since it combines both qualitative and quantitative methods, we
acknowledge several limitations in our work. Firstly, our comparative study used two
different CT scanners from different manufacturers. Therefore, certain features might vary
significantly in both types of scanners such as power output availability and technical
parameters setting. Secondly, we did not investigate the diagnostic accuracy in the detection
of CAD in both prospective and retrospective ECG-gating groups, neither in SSCT nor in
DSCT because most patients did not undergo invasive coronary angiography examinations
for further assessments. Lastly, although low tube voltage (100 kV) was applied in some
subgroups (prospective ECG-triggered and retrospective ECG-gated CCTA with use of
DSCT) for dose comparison, results were not presented in the present study due to

inhomogeneity of patients group.
7.5 Conclusion

In conclusion, prospective ECG-triggered CCTA reduces radiation dose significantly
compared to retrospective ECG-gated CCTA, while maintaining good image quality.
Although prospective ECG triggering provides no significant difference in radiation dose
between both types of scanners, DSCT is advantageous since it results in lower percentage of
insufficient image quality as compared to SSCT. Taking into account the advantages and
disadvantages of the different techniques, the following guidelines for the selection of
different CCTA protocols are recommended: in patients with slow and regular heart rate a
protocol with prospective ECG triggering should be chosen, whereas in patients with higher

or irregular heart rate retrospective ECG gating should be considered.
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CHAPTER 8: CONCLUSIONS AND FUTURE DIRECTIONS

8.1 Conclusions

In this thesis, the research has investigated the diagnostic performance and radiation dose
associated with prospective ECG-triggered coronary CT angiography when
compared to the conventional retrospective ECG-gated coronary CT angiography
and invasive coronary angiography. This research has used an anthropomorphic

model to test different cardiac CT protocols for dose reduction strategies.

A systematic comparison of different CT generations with use of prospective ECG-
triggered technique and a well-designed questionnaire of investigating the local
specialists and radiographers’ perceptions of prospective ECG-triggered coronary CT
angiography has demonstrated the usefulness and clinical acceptance of this rapidly
developed technique. The results in this section also addressed one of the objectives
of this study which is about seeking satisfaction in terms of the acceptable diagnostic

images among the users including radiologists, cardiologists and radiographers.

Prospective ECG-triggered coronary CT angiography has been shown to
significantly reduce radiation dose compared to retrospective ECG-gated protocol,
while maintaining diagnostic image quality. The research outcomes are summarised

as follows:

e Coronary CT angiography with prospective ECG-triggered technique
produced significantly lower radiation dose than that standard retrospective
ECG-gated protocol. Although this has been confirmed in the literature, this
study further validates the statement of low-dose protocol with use of
prospective ECG-triggering by comparing different generation of multislice

CT scanners, and through both qualitatively and quantitative assessments.

¢ Although the radiation dose was found higher in retrospective gated protocol,
the radiation dose differed significantly between dual-source and single-
source CT scanners with the radiation dose being lower in dual-source CT

compared to single-source CT scanner.
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e In prospective ECG-triggered protocol, there is no significant difference in

radiation dose between different generations of CT scanners.

e Radiation dose does not differ significantly between genders regardless of

coronary CT angiography protocols.

e The low radiation dose in prospective triggered coronary CT angiography can

only be achieved in patients with low and regular heart rate.

The low radiation dose in prospective ECG-triggered coronary CT angiography is
similar to or even lower than that in the invasive coronary angiography. This further
confirms the feasibility of prospective ECG-triggered coronary CT angiography in

the diagnosis of coronary artery disease.
8.2 Future directions

This study improves our understanding of the clinical applications of prospective
ECG-triggered coronary CT angiography with regard to image quality and radiation
dose. Moreover, these research findings highlight the effectiveness of low dose
protocol with use of prospective triggering. However, there are few suggestions for

the future research, which are detailed as follows:

e Studies focusing on the a combination of multiple dose-reduction strategies
such as combining prospective triggering with low tube voltage or high pitch
spiral CT acquisition to achieve even lower radiation dose with acceptable

diagnostic images;

e Research focusing on the diagnostic performance of prospective ECG-
triggered coronary CT angiography in patients with high or irregular heart
rates using dual-source CT or 320-slice CT so that this technique will be

applicable to more patients;

e Research investigating the prognostic value of prospective ECG-triggered
coronary angiography for prediction of major adverse cardiac events, as there

are very limited reports available in the literature;
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e Studies based on a large population and multicentres with inclusion of
diagnostic accuracy of prospective triggering should be performed to verify

our results.
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Appendix A

Dual source CT coronary angiography: effectiveness of radiation dose
reduction with low tube voltage.
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This study was conducted to investigate the effectiveness of dose-saving protocols in dual-source computed tomography (CT)
coronary angiography compared with invasive coronary angiography (ICA). On 50 patients who underwent coronary CT angi-
ography was performed dual-source CT (DSCT) and compared with ICA procedures. Entrance skin dose (ESD), which was
measured at the thyroid gland, and effective dose (E) were assessed for both imaging modalities. The mean ESD measured at
the thyroid gland was the highest at 120 kVp, followed by the 100 kVp DSCT and the ICA protocols with 4.0 + 1.8,
2.7+ 1.0 and 1.1 £+ 1.2 mGy, respectively. The mean E was estimated to be 10.3 + 2.1, 6.2 + 2.3 and 5.3 + 3.4 mSyv corre-
sponding to the 120-kVp, 100-kVp DSCT and ICA protocols, respectively. The application of 100 kVp in DSCT coronary
angiography is feasible only in patients with a low body mass index of <25 kg m~2, which leads to a significant dose reduc-

tion with the radiation dose being equivalent to that of ICA.

INTRODUCTION

Since 1998, multi-detector computed tomography
(CT) has undergone rapid development from 4-slice
to 320-slice. The technologies in CT have been devel-
oped to make CT angiography a reliable non-inva-
sive diagnostic method for cardiovascular disease,
especially coronary CT angiography. Many studies
of CT coronary angiography associated with radi-
ation dose and image quality have been conducted
to evaluate and improve the performance in clinical
practice’ . Although it is well-known that invasive
angiography is the gold standard technique for car-
diovascular imaging with radiation dose lower than
that of coronary CT angiography® ®, recent devel-
opments in CT techniques, especially application of
dose-saving strategies in coronary CT angiography,
are towards the most efficient technique in cardiovas-
cular imaging with less invasive, less radiation and
high accuracy in the diagnosis of coronary artery
disease® 7. In fact, improved diagnostic value of cor-
onary CT angiography with an advantage of its being
a less invasive modality has been demonstrated in
some studies'"* ®.

Despite all of these advances and technical
improvements in CT technology such as increased
use of dual-source CT (DSCT), the radiation dose

associated with CT in cardiac imaging is still high,
ranging from 4.9 to 31.4 mSv® ¥, depending on the
type of CT scanners and scanning protocols used.
This has raised serious concern, as the risk of radi-
ation-induced malignancy is not negligible®: ',
Therefore, various dose-saving strategies have been
explored to reduce the CT-associated radiation dose
so that it can be used as a reliable imaging modality
in the diagnosis of cardiovascular disease. Of these
strategies, lowering the tube voltage and adjustment
of tube current (Electrocardiography (ECG)-con-
trolled tube current modulation) are the most effect-
ive approaches that are commonly used in clinical
practice® 'V,

It was reported that by lowering the tube voltage
to 100 kVp in coronary CT angiography, the radi-
ation dose could be reduced between 25 and 35 %
compared with that in the standard 120-kVp tube
protocol'"> 2 However, lowering the 100 kVp
setting should be carefully applied in patients with a
large body mass index (BMI) as the possible increase
in image noise resulting from a lower kVp setting
could interfere with diagnostic image quality®.
Therefore, the purpose of this study was to measure
and compare the effective dose estimate (E) and en-
trance skin dose (ESD) at the radiosensitive organ

© The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
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(thyroid gland) in coronary angiography procedures
between conventional invasive and DSCT with dif-
ferent protocol settings.

MATERIALS AND METHODS
Patients

This study investigated radiation doses on a repre-
sentative group of the Malaysian population that
underwent coronary angiography procedures at the
National Heart Institute, Kuala Lumpur, during a
6-month period. This study was approved by the
local hospital ethics committee. Written consent was
obtained from all the patients. The patients’ demo-
graphic data with the 100-kVp CT protocol (n=25)
were compared with those scanned with 120 kVp
(n=25) and all the patients had obtained invasive
coronary angiography (ICA) procedure (n=50) as
shown in Table 1. All the patients had stable sinus
rhythm and were older than 18 y. Patients with ele-
vated serum creatinine levels >1.5 mg d1™", or aller-
gic reactions to iodinated contrast medium or
previous history of undergoing coronary bypass
grafting or coronary stent placement were excluded
from this study.

Coronary CT angiography scanning protocols

Coronary CT angiography was performed with
Somatom Definition 64 (Siemens Medical Solution,
Germany) with 2 x 32 x 0.6 mm collimation, a
z-flying focal spot, a pitch ranging from 0.2 to 0.44
depending on the heart rate and 320 mAs per rota-
tion with two different tube voltages depending on
the patient’s BMI, being 100 kVp (<25 kg m ?)
and 120 kVp (>25 kg m 2. In addition, an ECG-
pulsing window with 70—70, 40—70 and 35-70 % of
the R—R interval was used respectively, with consist-
ent, low (50-60 bpm), high (60-90 bpm) and ex-
tremely high (>90 bpm) heart rates. All patients
were given 0.5 mg of sublingual Nitroglycerine prior
to the scan. Patients with irregular heart rate and
higher than 80 bpm were given a 5-mg dose of

Metaprolol (beta-blockers), whereas patients who
were contraindicated to beta-blockers were given 5
mg of Verapamil.

A contrast agent (fomeron 350 mgl ml™!) with a
minimum of 60 ml was administered intravenously
at a flow rate of 5.0-5.5 ml s ! followed by 50 ml of
saline flush at 5 ml s~!. The amount of contrast
medium required for coronary CT examination was
calculated according to the following formula:

V=IR-ST, where V is volume in millilitres, IR is
injection rate (ml s ') and ST is scanning time in
seconds''?. Bolus timing was achieved by using an
automated bolus triggering technique at the region
of interest i.e. at the ascending aorta, with a thresh-
old detection of 120 HU. Scanning was undertaken
in the cranio-caudal direction with simultaneous
ECG-signal reading from the patient for image re-
construction purposes on the retrospective ECG-
gating. Each scan was acquired from the midlevel of
the ascending aorta to the diaphragm. The image
series were reconstructed with a slice thickness of
0.75 mm and an increment of 0.5 mm, using a
medium-soft convolution kernel (B26f)'¥.

ICA scanning protocols

ICA was performed with Integris H5000C single-
plane (Philips Medical, USA) ceiling suspension
with a high output X-ray tube, 100-kW OPTIMUS-
CP generator, image intensification between 5 and
9 inches and a full-field image display with a high-
resolution dynamic acquisition. The investigation
followed a standard protocol of 11 projections (8 left
coronary artery, 3 right coronary artery with left an-
terior oblique, right anterior oblique and lateral and
anterior—posterior projections). Percutaneous coron-
ary intervention procedures were excluded from this
study.

Radiation dose measurements and estimation
of effective dose

Two types of dose measurements were performed in
this study: ESD and effective dose (E). ESD was

Table 1. Demographic data of the study.

Parameters

DSCT coronary angiography ICA

100 kVp

120 kVp

Age (range) [years]
Gender: male (% male)
BMI (range) [kg m 2]
HR (range) [bpm]

58.2410.2 (41-80)
18/25 (72 %)

224+ 1.8 (16.7-24.8)
73.5+9.9 (62-91)

57.149.1 39-77)
17/25 (68 %) 35/50 (70 %)
29.143.2 (25.8-40.1) 25.7+4.3 (16.7-40.1)
72.9+ 8.8 (60—89) n/a

57.6+ 9.6 (39-80)

DSCT, dual-source CT; ICA, invasive coronary angiography; BMI, body mass index; HR, heart rate.
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measured by using thermoluminescence dosemeter
(TLD) chips. The ESD was obtained in milligrays
with a series of procedures consisting of annealing,
calibration, radiation exposure and read-out process.
The annealing and dose read-out was performed
with a Harshaw-5500 reader (Thermo Electron
Corp., USA), while calibration was performed with
a general X-ray system (GE healthcare, USA). A
series of known radiation exposures were obtained
during TLD calibration to create a graph pattern for
radiation dose conversion from nanoculomb to milli-
gray. The doses were then measured with a digital
radiation survey meter (model 660) with an ion-
chamber (model 660-3) beam measurement probe
and a readout/logic unit (model 660-1). These
TLDs were interpreted 24 h after the exposure. The
TLD wused in this study was thin micro-square
shaped and sealed with numbers for identifica-
tion". Those TLD chips were placed on top of the
skin surface at the thyroid gland (radiosensitive
organ) before the exposure began in both CT and
ICA procedures. The thyroid glands are located at
3 cm below the thyroid cartilage. The thyroid cartil-
age is prominent and easy to identify physically at
the level of fifth cervical spine. At the completion of
this procedure, the doses from TLD chips were read
to acquire the dose distribution on that particular
area. The ESD is expressed in milligrays. The second
method of dose measurement, E, reflects the non-
uniform radiation absorption of individual body
organs relative to a whole-body radiation dose.
Therefore, it is calculated on the basis of radiation
exposure to individual organs and the relative risk to
each organ tissue, and is expressed in millisieverts.
The E calculation in DSCT was performed by
multiplying the dose-length product (DLP) by a con-
version factor, & (mSv mGy ' em™!). The DLP
read-out is available on the CT console after each
scan. The conversion factor is derived anatomicall

and is specific to the body region being scanned'®.
For the chest region, a k-value of 0.017 mSv mGyf1
cm ™! was used. Similar to the DSCT, E in ICA was
calculated from dose-area product which was multi-
plied by a conversion factor, k (with units of
mSvGy ' em ?). A k-value of 0.20 mSv Gy !
cm 2 was used in this study, which meets the condi-
tion of the scanning parameter with inclusion of Cu
filtration of 0.10 mmCu/1.00 mmAI*7 '®,

Statistical analyses

All the data were entered into SPSS V17.0 (SPSS,
version 17.0 for Windows, Chicago, IL, USA) for
statistical analysis. A p-value of <0.05 was consid-
ered to indicate a statistically significant difference.
The doses from the 100-kVp and the 120-kVp proto-
cols were presented in box plots. The student r-test

and one-way analysis of variance were used to
analyse the multi-factor interaction.

RESULTS

Both CT and ICA were successfully performed in
this study without any complications. The mean esti-
mates of the effective doses for the DSCT 100-kVp,
120-kVp and ICA protocols are presented in
Figure 1. The mean E estimates in the DSCT 100
and 120-kVp protocols were 6.2 +2.3 and 10.3 +2.1
mSy, respectively (p < 0.05), whereas the mean E in
ICA was estimated to be 5.3 + 3.4 mSv, which is sig-
nificantly lower than that measured in DSCT with
the 120-kVp protocol (p < 0.05), but the difference
in E between invasive angiography and the 100-kVp
protocol (DSCT) was not statistically significant
(p=0.31).

The results of the ESD measured at the thyroid
gland are presented in Figure 2. The mean ESD
measured in the DSCT of 120-kVp protocol was
4.0 + 1.8 mGy, which is the highest, followed by the
100-kVp protocol and invasive angiography, which
were 2.7+ 1.0 and 1.1 +1.2 mGy, respectively. All
mean ESDs were significantly different among these
three groups (p < 0.05).

In DSCT, the effective dose differed significantly
(p < 0.05) between patients with higher (>75 bpm)
and lower (<75 bpm) heart rate in both the 100 and
120-kVp protocols. The mean E corresponding to
patients with higher and lower heart rate was mea-
sured as 4.2+4+0.3 and 7.74+1.9 mSv (100-kVp

Figure 1. Box plot shows the mean effective dose reported

in the studies with use of 120 kVp, 100 kVp (DSCT) and

ICA. It is obvious that effective dose at 120 kVp was the

highest among the other protocols. The box indicates the

first to third quartiles, the line in the box indicates median

quartile, the circle indicates outliers and whiskers indicate
the minimum and maximum values.
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Figure 2. Box plot shows the mean ESD measured at

thyroid gland in DSCT (100 and 120 kVp) protocols and

ICA. It shows that ICA received the lowest dose to the
thyroid compared with DSCT.

protocol) and 8.5+0.2 and 11.5+2.0 mSv (120-
kVp protocol). The mean effective dose and ESD
were also compared between genders. Both E and
ESD estimated in ICA and DSCT between males
and females differed insignificantly. The dose esti-
mated in males was higher than females for the ICA
procedure. The mean E and ESD were estimated to
be 6.0+34 and 3.6+3.0 mSv (p=0.06) and
1.2+ 1.2 and 0.9+ 1.1 mGy (p=0.42) among males
and females for ICA, respectively. In contrast, the
dose calculated in females was higher than that for
males for the DSCT procedure. The mean doses cor-
responding to males and females were measured as
82+32 and 84+2.6 mSv (p=0.36) (E) and
3.2+ 1.7 and 3.6 + 1.2 mGy (p=0.81) (ESD).

DISCUSSION

This study reported three important findings of radi-
ation dose in coronary angiography study using the
CT angiography and the invasive approach. Firstly,
DSCT with a 100-kVp setting shows a significant
reduction in effective dose by 40 % compared with
120 kVp in DSCT. Secondly, the entrance skin dose
measured at the thyroid gland also results in a signifi-
cant reduction in CT with the application of 100-kVp
tube voltage at 33% but the dose still cannot be as low
as that measured in the invasive coronary procedure.
Finally, DSCT demonstrates that effective dose can be
reduced further with higher heart rates and the doses
recorded in females was higher than in males despite
having an insignificant difference either in E or in
ESD.

It has been demonstrated that DSCT has the po-
tential to reduce radiation doses® '". With a dedi-
cated dose reduction algorithm in DSCT, the

radiation dose can be significantly reduced, and it is
even lower than that of single-source CT (SSCT).
Comparison of effective dose between DSCT and
SSCT angiography procedures has been performed
in previous studies® ' '?. These results show that
SSCT produces an E between 12.7 and 22.7 mSy,
whereas DSCT produces an E between 8.9 and 10.4
msV. However, those results are shown with a 120-
kVp retrospective ECG-gating of coronary CT angi-
ography. Lowering kVp from 120 to 100 may lead to
further dose reduction in coronary CT angiography.
Although 120 kVp is routinely used for CT
imaging, including cardiac scans, lower tube voltage
is increasingly applied to further reduce the radiation
dose. Moreover, ECG-controlled tube current modu-
lation is another approach for dose reduction. In this
study, a 100-kVp scanning protocol was used in
25 patients with a BMI of <25 kg m™ 2 and the esti-
mated E value was decreased even further by 40 %.
This is in agreement with the results reported in pre-
vious literature® ' 29 which stated that the dose
could be reduced between 30 and 53 % with the ap-
plication of a lower tube voltage (100 kVp) either in
SSCT or in DSCT. However, the lowering of tube
voltage results in an increase in image noise, which
may compromise diagnostic image quality, and this
is especially apparent in overweight patients or
patients having high coronary calcium scores®.
Therefore, a low-tube voltage protocol is feasible
only in patients with a low BMI of <25 kg m 2!V,
Another advantage of DSCT is that it can be per-
formed on patients with higher and regular heart
rates. This is because the improvement of temporal
resolution at 83 ms in DSCT allows an increase of
the pitch by 0.5 at elevated heart rates. In DSCT, the
pitch is dependent on heart rates and ranges from
0.25 to 0.50@". The pitch is interchangeable corre-
sponding to the heart rates with higher pitch being
applied to patients with higher heart rates. Thus, this
allows DSCT coronary angiography to be performed
on patients with various ranges of consistent heart
rates from 70 to 100 bpm without affecting image
quality®. The use of higher pitch in DSCT scanning
results in a significant dose reduction. Previous
studies confirmed that the mean E estimate was
between 10.1 and 19.7 mSv for patients with a lower
heart rate (50—60 bpm) and between 7.8 and 13.2 mSv
for patients with a high heart rate (70— 110 bpm)" 2",
In addition to the assessment of E between differ-
ent kVp ranges, which has been conducted in previ-
ous studies®™ ' 2 this study also evaluated the
ESD, using TLD measurements among three differ-
ent population groups undergoing both the CT and
ICA procedures. The values obtained by the TLDs
represent the dose at thyroid skin level in all the
patients. Our results showed that the highest ESD
was found at DSCT with 120 kVp (4.0 mGy), which
is much lower than the recommended threshold
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range (beyond 2 Gy)®>~>*. The ESD can be esti-
mated accurately at any specific location in order to
measure the amount of dose received after the body
region has been exposed to the radiation. TLD-100
is the most suitable type for diagnostic radiology
dose study as it has many advantages: it is easy to
handle and since the size is small, it is very useful
for local dose measurement on the patient®.

This research focused on the thyroid gland
because of its anatomical location and distance from
the heart, which could lead to exposure to higher
amounts of radiation compared with other radiosen-
sitive organs such as the gonads, bladder and intes-
tines during coronary angiography examinations. In
2008, the estimated age-standardised thyroid cancer
incidence rates were 4.7 and 1.5 per 100 000 women
and men, respectively®®. According to these rates,
thyroid cancer accounted for 2.7 % of all incident
cancer among women worldwide and 0.7 % of
cancer diagnosed among men®®. However, overall
mortality rates for thyroid cancer were low for
women than men with 0.6 and 0.3 out of 100 000 in-
cident respectively, although thyroid cancer is gener-
ally associated with greater mortality at older ages.
A review on medical exposure to radiation and
thyroid cancer has estimated that about 1000 future
thyroid cancers could be related to CT scans con-
ducted in the USA in 2007¢7 *®. In addition, al-
though most studies of thyroid cancer have
demonstrated that risks following acute thyroid
doses from 0.5 Gy to several Gy, a few have evalu-
ated that the effect of thyroid doses as low as 0.1
Gy® 3D occurred.

Generally, it is not necessary to shield all other
organs (testicles, ovaries, bladder and colon) located
away from the heart while performing coronary
angiography, since the amount of radiation received
by those organs is relatively small with a mean value
of <0.13 mGy®?. Although the breasts and lungs
absorb the maximum amount of radiation from the
primary beam in CT coronary angiography, it is dif-
ficult to shield the breast and lung because these
organs are located within the scanning field.
Although bismuth breast shielding was introduced
as radiation protection device, it is not recom-
mended to be applied because of their impact on
image noise, which could compromise diagnostic
image qualitym). Previous studies have demon-
strated that bismuth breast shielding was only
applied on the right breast while the left breast was
left unshielded for comparison purposes. Therefore,
the image quality on shielded coronary artery was
still inconclusive®*~3,

Studies conducted with DSCT have shown that
the effective radiation dose estimated in females is
significantly higher than in male patients because of
the size thickness on the chest region. However, the
breast tissue is radiosensitive and keeping the

radiation dose to the breast at the minimum level is
of paramount importance. Similar to this, some
studies also reported that higher dose was estimated
in women than men for coronary CT angiography.
For instance, Raff er al. " reported that an effective
dose was 13 mSv for men and 18 mSv for women.
In addition, Mollet er al. @ also supported this
finding with higher dose reported in women (21
mSv) than in men (15 mSv) in a 64-slice DSCT.

Some limitations exist in the study. We did not
include image quality assessment, since this study
focuses on the dose comparison between CCTA and
ICA, rather than image quality assessment. However,
all the CT images in this study were reported com-
pletely by consultant cardiologist with sufficient diag-
nostic image quality and further assessments on
image quality are not required. Another limitation of
this study is that the dose distribution (ESD) on the
other radiosensitive organs such as the eyes, breast
and the gonads was not assessed. Although the
breasts are anatomically located in the scanned
region, application of radio-protection device seems
to be not recommended during the scan because of
image quality concerns®?.

CONCLUSION

The radiation dose can be reduced with the use of
low-tube voltage in patients with high heart rates
undergoing DSCT coronary angiography. A 100-
kVp DSCT protocol is feasible only in patients with
a low BMI of <25 kg m ™2, which leads to a signifi-
cant dose reduction with the effective dose being
almost similar to that of ICA. Further studies with
inclusion of assessment of image quality and diag-
nostic value are required to verify the preliminary
results of this study.
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Appendix B

Survey for radiographers regarding prospective ECG-triggering coronary CT angiography

Section 1
Please complete the information below:

1) Areyou:

[ ] mMale [ ] Female
2) Yearsin practice:

[ ] 1-3 years [ ] 4-6 years [ ]7-10 years [ ] over 10 years
3) Which area do you currently work?

[] Government hospital [ ] Private hospital

[_] Other health institutions, please specify:

Section 2

We are interested to know your opinion on the benefits of prospective ECG-gated coronary CT
angiography. Below is a list of the potential benefits from prospective ECG-gating coronary CT
angiography which are referenced from the previous studies reported in the literature. Please give your
response to the statements below in order to reflect your personal views on prospective ECG-gating
coronary CT angiography.

a. Reduces radiation dose

] Strongly agree [] Agree [Jpon'tknow [] Disagree |:|Strongly disagree
b. Improves diagnostic image quality

] Strongly agree [] Agree [Jpon'tknow [ ] Disagree L] Strongly disagree
c. Increases number of patients/cases (patient’s output)

] Strongly agree [] Agree CIpon’t know [ ] Disagree L] Strongly disagree
d. Increases financial incentives

] Strongly agree [] Agree [Ipon’t know [ ] Disagree [] Strongly disagree
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Section 3

We are interested to know your concern on the challenges/ obstacles in performing prospective ECG-
gating coronary CT angiography. Listed below are the major problems that might influence the efficiency
of performing the prospective ECG-gating coronary CT angiography. Please give your response to the
statements below in order to reflect your personal thought on the challenges in prospective ECG-gating
coronary CT angiography.

a. Heart rate issues

] Strongly agree [] Agree [Jpon’t know [_] Disagree L] Strongly disagree
b. Difficulty in obtaining cardiac functional assessments

] Strongly agree [] Agree [ 1Don’t know ] Disagree ] Strongly disagree
c. Image quality concerns

] Strongly agree [] Agree [ 1Don’t know ] Disagree |:|Strongly disagree
d. Diagnostic accuracy concerns

] Strongly agree [] Agree [Jpon’tknow [ ] Disagree |:|Strongly disagree
e. Data processing management (pre-/post-processing)

] Strongly agree [] Agree [Jpon'tknow [ ] Disagree L] Strongly disagree

Thank you
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Survey for clinical specialists (cardiologists and radiologists) regarding prospective ECG-triggering

coronary CT angiography

Section 1

Please complete the information below:

4) Areyou:
[ ] mMale [ ] Female
5) Areyou:
[ ] Radiologist [ ] cardiologist

6) Yearsin practice:

[ ] 1-5 years [ ] 6-10 years [ ]11-20years [ ] over 20 years
7) Which area do you currently work?

[ ] Government hospital [ 1 Private hospital

[] other health institutions, please specify:

Section 2

We are interested to know your opinion on the benefits of prospective ECG-gated coronary CT
angiography. Below is a list of the potential benefits from prospective ECG-gating coronary CT
angiography which are referenced from the previous studies reported in the literature. Please give your
response to the statements below in order to reflect your personal views on prospective ECG-gating
coronary CT angiography.

e. Reduces radiation dose

] Strongly agree [] Agree [Jpon'tknow [] Disagree |:|Strongly disagree
f. Improves diagnostic image quality

] Strongly agree [] Agree [ 1Don’t know [] Disagree L] Strongly disagree
g. Increases number of patients/cases (patient’s output)

] Strongly agree [] Agree [Ipon’t know [ ] Disagree [] Strongly disagree
h. Increases financial incentives

] Strongly agree [] Agree [ 1bon’t know [] Disagree [] Strongly disagree
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Section 3

We are interested to know your concern on the challenges/ obstacles in performing prospective ECG-
gating coronary CT angiography. Listed below are the major problems that might influence the efficiency
of performing the prospective ECG-gating coronary CT angiography. Please give your response to the
statements below in order to reflect your personal thought on the challenges in prospective ECG-gating
coronary CT angiography.

f.

Heart rate issues

] Strongly agree [] Agree [ 1Don’t know
Difficulty in obtaining cardiac functional assessments
] Strongly agree [] Agree |:| Don’t know
Image quality concerns

|:| Strongly agree [] Agree |:| Don’t know
Diagnostic accuracy concerns
] Strongly agree [] Agree [ 1Don’t know
Data processing management (pre-/post-processing)

] Strongly agree [] Agree [ 1Don’t know

Thank you

[] Disagree

|:| Disagree

|:| Disagree

|:| Disagree

|:| Disagree

|:|Strongly disagree

|:|Strong|y disagree

|:|Strong|y disagree

|:|Strongly disagree

|:|Strongly disagree

206



	Library 3.pdf
	INTRODUCTION
	MATERIALS AND METHODS
	Patients
	Coronary CT angiography scanning protocols
	ICA scanning protocols
	Radiation dose measurements and estimation �of effective dose
	Statistical analyses

	RESULTS
	DISCUSSION
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES




