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Abstract

Duality is one of the most successful ideas in modern science [46] [91]. It is essential in

natural phenomena, particularly, in physics and mathematics [39] [94] [96]. In this thesis,

we consider the canonical duality theory for several classes of optimization problems.

The first problem that we consider is a general sum of fourth-order polynomial mini-

mization problem. This problem arises extensively in engineering and science, including

database analysis, computational biology, sensor network communications, nonconvex

mechanics, and ecology. We first show that this global optimization problem is actually

equivalent to a discretized minimal potential variational problem in large deformation

mechanics. Therefore, a general analytical solution is proposed by using the canonical

duality theory.

The second problem that we consider is a nonconvex quadratic-exponential optimiza-

tion problem. By using the canonical duality theory, the nonconvex primal problem in

n-dimensional space can be converted into a one-dimensional canonical dual problem,

which is either a concave maximization or a convex minimization problem with zero du-

ality gap. Several examples are solved so as to illustrate the applicability of the theory

developed.

The third problem that we consider is quadratic minimization problems subjected to

either box or integer constraints. Results show that these nonconvex problems can be

converted into concave maximization dual problems over convex feasible spaces without

duality gap and the Boolean integer programming problem is actually equivalent to a

critical point problem in continuous space. These dual problems can be solved under

certain conditions. Both existence and uniqueness of the canonical dual solutions are

presented. A canonical duality algorithm is presented and applications are illustrated.

The fourth problem that we consider is a quadratic discrete value selection problem

subjected to inequality constraints. The problem is first transformed into a quadratic 0-1

integer programming problem. The dual problem is thus constructed by using the canon-

ical duality theory. Under appropriate conditions, this dual problem is a maximization

problem of a concave function over a convex continuous space. Theoretical results show

that the canonical duality theory can either provide a global optimization solution, or

an optimal lower bound approximation to this NP-hard problem. Numerical simulation

studies, including some relatively large scale problems, are carried out so as to demon-
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strate the effectiveness and efficiency of the canonical duality method. An open problem

for understanding NP-hard problems is proposed.

The fifth problem that we consider is a mixed-integer quadratic minimization problem

with fixed cost terms. We show that this well-known NP-hard problem in R2n can be

transformed into a continuous concave maximization dual problem over a convex feasible

subset of Rn with zero duality gap. We also discuss connections between the proposed

canonical duality theory approach and the classical Lagrangian duality approach. The

resulting canonical dual problem can be solved under certain conditions, by traditional

convex programming methods. Conditions for the existence and uniqueness of global

optimal solutions are presented. An application to a decoupled mixed-integer problem is

used to illustrate the derivation of analytic solutions for globally minimizing the objective

function. Numerical examples for both decoupled and general mixed-integral problems

are presented, and an open problem is proposed for future study.

The sixth problem that we consider is a general nonconvex quadratic minimization

problem with nonconvex constraints. By using the canonical dual transformation, the

nonconvex primal problem can be converted into a canonical dual problem (i.e., either

a concave maximization problem with zero duality gap). Illustrative applications to

quadratic minimization with multiple quadratic constraints, box/integer constraints, and

general nonconvex polynomial constraints are discussed, along with insightful connections

to classical Lagrangian duality. Conditions for ensuring the existence and uniqueness of

global optimal solutions are presented. Several numerical examples are solved.

The seventh problem that we consider is a general nonlinear algebraic system. By using

the least square method, the nonlinear system of m quadratic equations in n-dimensional

space is first formulated as a nonconvex optimization problem. We then prove that, by

using the canonical duality theory, this nonconvex problem is equivalent to a concave

maximization problem in Rm, which can be solved by well-developed convex optimization

techniques. Both existence and uniqueness of global optimal solutions are discussed, and

several illustrative examples are presented.

The eighth problem that we consider is a general sensor network localization problem.

It is shown that by the canonical duality theory, this nonconvex minimization problem is

equivalent to a concave maximization problem over a convex set in a symmetrical matrix

space, and hence can be solved by combining a perturbation technique with existing

optimization techniques. Applications are illustrated and results show that the proposed

method is potentially a powerful one for large-scale sensor network localization problems.
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CHAPTER 1

Introduction

1.1 Motivation and background

In this thesis, canonical duality theory which was developed from nonconvex analysis

[10] [27] and global optimization [38], is applied to study several interesting nonconvex

optimization problems. Some concepts and basic results on canonical duality theory are

briefly reviewed in this chapter.

1.2 Canonical duality theory: A brief review

The basic idea of the canonical duality theory can be demonstrated by solving the following

general nonconvex problem (the primal problem (P) in short)

(P) : min
x∈Xa

{
P (x) =

1

2
⟨x,Ax⟩ − ⟨x, f⟩+W (x)

}
, (1.1)

where A ∈ Rn×n is a given symmetric indefinite matrix, f ∈ Rn is a given vector, ⟨x,x∗⟩
denotes the bilinear form between x and its dual variable x∗, W (x) is a general nonconvex

function, and Xa ⊂ Rn is a given feasible space.

The key step in the canonical dual transformation is to choose a nonlinear operator,

ξ = Λ(x) : Xa → Ea ⊂ Rp (1.2)

and a canonical function V : Ea → R such that the nonconvex functional W (x) can be

recast by adopting a canonical form W (x) = V (Λ(x)). Thus, the primal problem (P) can

be written in the following canonical form:

(P) : min
x∈Xa

{P (x) = V (Λ(x))− U(x)} , (1.3)

where U(x) = ⟨x, f⟩ − 1
2
⟨x,Ax⟩. By the definition introduced in [38], a differentiable

1



2 Introduction

function V (ξ) is said to be a canonical function on its domain Ea if the duality mapping

ς = ∇V (ξ) from Ea to its range Sa ⊂ Rp is invertible. Let ⟨ξ; ς⟩ denote the bilinear form

on Rp. Thus, for the given canonical function V (ξ), its Legendre conjugate V ∗(ς) can be

defined uniquely by the Legendre transformation

V ∗(ς) = sta{⟨ξ; ς⟩ − V (ξ) | ξ ∈ Ea}, (1.4)

where the notation sta{g(ξ)| ξ ∈ Ea} stands for finding stationary point of g(ξ) on Ea. It
is easy to prove that the following canonical duality relations hold on Ea × Sa:

ς = ∇V (ξ) ⇔ ξ = ∇V ∗(ς) ⇔ V (ξ) + V ∗(ς) = ⟨ξ; ς⟩. (1.5)

By this one-to-one canonical duality, the nonconvex term W (x) = V (Λ(x)) in the prob-

lem (P) can be replaced by ⟨Λ(x); ς⟩ − V ∗(ς) such that the nonconvex function P (x) is

reformulated as the so-called Gao-Strang total complementary function [38]:

Ξ(x, ς) = ⟨Λ(x); ς⟩ − V ∗(ς)− U(x). (1.6)

By using this total complementary function, the canonical dual function P d(ς) can be

obtained as

P d(ς) = sta{Ξ(x, ς) | x ∈ Xa}

= UΛ(ς)− V ∗(ς), (1.7)

where UΛ(x) is defined by

UΛ(ς) = sta{⟨Λ(x); ς⟩ − U(x) | x ∈ Xa}. (1.8)

In many applications, the geometrical nonlinear operator Λ(x) is usually a quadratic

function

Λ(x) =
1

2
⟨x, Dkx⟩+ ⟨x,bk⟩, (1.9)

where Dk ∈ Rn×n and bk ∈ Rn, k = 1, · · · , p. Let ς = [ς1, · · · , ςp]T . In this case, the

canonical dual function can be written in the following form:

P d(ς) = −1

2
⟨F(ς),G+(ς)F(ς)⟩ − V ∗(ς), (1.10)

where G(ς) = A+
∑p

k=1 ςkDk, F(ς) = f−
∑p

k=1 ςkbk, and G+ denotes the Moore-Penrose
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generalized inverse of G,

Let S+
a = {ς ∈ Rp| G(ς) ≽ 0}. Therefore, the canonical dual problem is proposed as:

(Pd) : max{P d(ς)| ς ∈ S+
a }, (1.11)

which is a concave maximization problem over a convex set S+
a ⊂ Rp.

Theorem 1.1 ( [38]). Problem (Pd) is canonically dual to (P) in the sense that if ς̄ is a

critical point of P d(ς), then

x̄ = G+(ς̄)F(ς̄) (1.12)

is a critical point of P (x) and

P (x̄) = Ξ(x̄, ς̄) = P d(ς̄). (1.13)

If ς̄ is a solution to (Pd), then x̄ is a global minimizer of (P) and

min
x∈Xa

P (x) = Ξ(x̄, ς̄) = max
ς∈S+

a

P d(ς). (1.14)

Conversely, if x̄ is a solution to (P), it must be in the form of (1.12) for critical solution

ς̄ of P d(ς).

To help explain the theory, we consider a simple nonconvex optimization in Rn:

minΠ(x) =
1

2
α(

1

2
∥x∥2 − λ)2 − xT f , ∀x ∈ Rn, (1.15)

where α, λ > 0 are given parameters. The criticality condition ∇P (x) = 0 leads to a

system of nonlinear algebraic equations in Rn:

α(
1

2
∥x∥2 − λ)x = f . (1.16)

Clearly, to solve this system of nonlinear algebraic equations directly is very difficult. Let’s

make use of the canonical dual transformation. To do so, we let ξ = Λ(x) = 1
2
∥x∥2−λ ∈ R.

Then, the nonconvex function W (x) = 1
2
α(1

2
∥x∥2 − λ)2 can be written in canonical form

V (ξ) = 1
2
αξ2. Its Legendre conjugate is given by V ∗(ς) = 1

2
α−1ς2, which is strictly convex.

Thus, the total complementary function for this nonconvex optimization problem is

Ξ(x, ς) = (
1

2
∥x∥2 − λ)ς − 1

2
α−1ς2 − xT f . (1.17)
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Figure 1.1: Graphs of the primal function Π(x) (solid line) and its canonical dual function
Πd(ς) (dotted line).

For a fixed ς ∈ R, the criticality condition ∇xΞ(x) = 0 leads to

ςx− f = 0. (1.18)

For each ς ̸= 0, equation (1.18) gives x = f/ς in vector form. Substituting this into the

total complementary function Ξ, the canonical dual function can be easily obtained as

Πd(ς) = {Ξ(x, ς)|∇xΞ(x, ς) = 0}

= −fT f

2ς
− 1

2
α−1ς2 − λς, ∀ς ̸= 0. (1.19)

The critical point of this canonical function is obtained by solving the following dual

algebraic equation

(α−1ς + λ)ς2 =
1

2
fT f . (1.20)

For any given parameters α, λ and the vector f ∈ Rn, this cubic algebraic equation has

at most three roots satisfying ς1 ≥ 0 ≥ ς2 ≥ ς3, and each of these roots leads to a critical

point of the nonconvex function P (x), i.e., xi = f/ςi, i = 1, 2, 3. By the fact that ς1 ∈
S+
a = {ς ∈ R | ς > 0}, it is clear from Theorem 1.1 that x1 is a global minimizer of Π(x).

Consider one dimensional problem with α = 1, λ = 2, f = 1
2
. The primal function and

canonical dual function are shown in Fig. 1.1, where x1 = 2.11491 is the global minimizer

of P (x), ς1 = 0.236417 is global maximizer of Πd(ς), and Π(x1) = −1.02951 = Πd(ς1) (See

the two black dots in Fig. 1.1).

1.3 Overview of this thesis

The primal goal of this thesis is to apply this newly developed canonical duality theory

to eight nonconvex problems.

The rest of the thesis is organized as follows. Chapters 2 and 3 are concerned on
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canonical duality theory to unconstrained optimization problems. In Chapter 2, canon-

ical duality theory is applied to study fourth-order polynomials minimization problems.

Chapter 3 is on nonconvex quadratic exponential minimization problem. Chapters 4 to

Chapter 7 are concerned on constrained problems. Chapter 4 is focused on the applica-

tion of canonical duality theory to box and integer constrained problem. Chapter 5 is on

general multi-integer constrained problem. Chapter 6 is on mixed integer programming.

Chapter 7 is on general nonconvex constrained optimization. In Chapter 8, canonical du-

ality theory is applied to algebraic system. Chapter 9 considers a real world application

on sensor network localization. In Chapter 10, we summarize the contributions of the

thesis and make comments on open problems. Some future research problems are also

suggested.

1.4 Notation

The following is a list of notations used in this thesis.

R: Real number.

Rn: n-dimensional Euclidean space.

Rn×m: n×m-dimensional real matrices space.

Z: Integers.
Zn: n-dimensional integer space.

|S|: Cardinality of the set S.
∥x∥: Euclidean norm.

{xi}ni=1: Column vector (x1, · · · , xn)
T .

e: Vector with all its components being 1.

ei: Vector, where its ith component is 1, while the others are all 0.

AT : Transpose of the matrix A.

trace(A): Trace of the matrix A.

rank(A): Rank of the matrix A.

diag(A): Diagonal vector of the matrix A.

diag(x): Diagonal matrix with diagonal elements x1, · · · , xn.

A ◦B: Hadamard product of the matrices A and B, i.e., A ◦B = {aijbij}ni,j=1.

⟨A,B⟩: Inner product of the matrices A and B, i.e., ⟨A,B⟩ = trace(AB).

Q ≻ 0: Q is a positive definite matrix.

Q ≽ 0: Q is a positive semidefinite matrix.

f ⋆: Conjugate function of f .

dom f : Domain of the function f .

δf : Derivative of the function f .

∇f : Gradient of the function f .
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∇2f : Hessian of the function f .

∂f : Set of subgradients of the function f .

exp(x): Exponential function ex.

sta{}: finding stationary points of the statement in {}.



CHAPTER 2

Fourth-Order Polynomials Minimization

Problems

2.1 Introduction

This chapter presents a canonical dual approach to solve a general sum of fourth-order

polynomial minimization problem. This problem arises extensively in engineering and

science, including chaotical dynamical systems [39], chemical database analysis [100],

sensor network communications [17] [86], large deformation computational mechanics [35],

and phase transitions of solids [45].

We first show that this global optimization problem is actually equivalent to a dis-

cretized minimal potential variational problem in large deformation mechanics. Therefore,

a general analytical solution can be proposed by using the canonical duality theory.

2.2 Problem Statement

We are interested in solving the following general nonlinear programming problem

(P) : min {P (x) =
m∑
e=1

We(x) +
1

2
xTQx− xT f : x ∈ Rn}, (2.1)

where

We(x) =
1

2
αe

(
1

2
xTAex+ bT

e x+ ce

)2

, (2.2)

and Ae = AT
e , Q = QT ∈ Rn×n are indefinite symmetrical matrixes, f , be ∈ Rn are

given vectors, ce ∈ R and αe are given constants. Without loss of generality, we assume

that αe > 0, ∀e = 1, . . . ,m. The criticality condition δP (x) = 0 leads to a nonlinear

7
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equilibrium equation:

m∑
e=1

αe(
1

2
xTAex+ bT

e x+ ce)(Aex+ be) +Qx− f = 0 (2.3)

Direct methods for solving this coupled nonlinear algebraic system is very difficult. Also

equation (2.3) is only a necessary condition for global minimizer of the problem (P). A

general sufficient condition for identifying the global minimizer is a fundamental task in

global optimization.

2.3 Canonical Dual Transformation

Following the standard procedure of the canonical dual transformation, we introduce a

differentiable geometrical operator

ξ = Λ(·) : Rn → Rm, (2.4)

which Λ(x) =
{

1
2
xTAkx+ bT

k x+ ck
}
is a map from Rn into Va ⊂ Rm. Then, the non-

convex function W (x) can be written in the canonical form

W (x) = V (Λ(x)), (2.5)

with

V (ξ) =
m∑
k=1

1

2
αkξ

2
k =

1

2
αT (ξ ◦ ξ)

is a quadratic function, where α = {αk} ∈ Rm, and ξ ◦ ξ = {ξkξk} ∈ Rm represents the

Hadamard product. Thus, the duality relation

ς = δV (ξ) = α ◦ ξ (2.6)

is invertible for any given ξ ∈ Va.

Let V∗
a be the range of the duality mapping ς = δV (ξ) : Va → V∗

a ⊂ Rm, i.e., ς ∈ Rm.

Then, for any given ς ∈ V∗
a , the Legendre conjugate V ∗ can be uniquely defined by

V ∗(ς) = sta{ξT ς − V (ξ)} =
m∑
k=1

1

2
α−1
k ς2k .

So (ξ, ς) forms a canonical duality pair on Va × V∗
a (cf. [38]) and the following canonical
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duality relations hold on Va × V∗
a :

ς = δV (ξ) ⇔ ξ = δV ∗(ς) ⇔ ξT ς = V (ξ) + V ∗(ς). (2.7)

Replacing W (x) = V (Λ(x)) by Λ(x)ς − V ∗(ς), the generalized complementary function

[44] can be defined by

Ξ(x, ς) = Λ(x)ς − V ∗(ς) +
1

2
xTQx− xT f

=
m∑
k=1

[(
1

2
xTAkx+ bT

k x+ ck

)
ςk −

1

2
α−1
k ς2k

]
+

1

2
xTQx− xT f . (2.8)

For a fixed ς ∈ V∗
a , the criticality condition δxΞ(x, ς) = 0 leads to the following canonical

equilibrium equation:

G(ς)x− F (ς) = 0, (2.9)

where F (ς) = f −
∑m

k=1 ςkbk, G(ς) = Q +
∑m

k=1 ςkAk. Therefore, on the dual feasible

space defined by

Sa = {ς ∈ Rm}, (2.10)

the canonical dual function can be formulated as

P d(ς) = sta{Ξ(x, ς) : x ∈ Xa}

=
m∑
k=1

(
ckςk −

1

2
α−1
k ς2k

)
− 1

2
F T (ς)G+(ς)F (ς), (2.11)

where G+ denotes the Moore-Penrose generalized inverse of G, Thus, the canonical dual

problem can be finally proposed as:

(Pd) : sta

{
P d(ς) =

m∑
k=1

(
ckςk −

1

2
α−1
k ς2k

)
− 1

2
F T (ς)G+(ς)F (ς) : ς ∈ Sa

}
. (2.12)

Theorem 2.1 (Complementary-Dual Principle). The problem (Pd) is canonically dual to

the primal problem (P) in the sense that if ς̄ is a critical point of (Pd), then the vector

x̄ = G+(ς̄)F (ς̄) (2.13)

is a critical point of (P) and

P (x̄) = P d(ς̄). (2.14)



10 Fourth-Order Polynomials Minimization Problems

Proof. Suppose that ς̄ is a critical point of (Pd). Then, we have

∂P d(ς̄)

∂ςk
= ck − α−1

k ςk + bT
k x̄+

1

2
x̄TAkx̄ = 0, k = 1, · · · ,m, (2.15)

where x̄ = G+(σ̄)F (ς̄). The criticality condition (2.15) is actually the canonical duality

relation, i.e., ςk = αk(
1
2
x̄TAkx̄+ bT

k x̄+ ck). Thus, we have

x̄ = G+(ς̄)F (ς̄)

=

[
Q+

m∑
k=1

αk

(
1

2
x̄TAkx̄+ bT

k + ck

)
Ak

]+ [
f −

m∑
k=1

αk

(
1

2
x̄TAkx̄+ bT

k x̄+ ck

)
bk

]
.

This shows that x̄ is a critical point of the primal problem (P).

Moreover, in term of x̄ = G+(ς̄)F (ς̄), we have

P d(ς̄) =
m∑
k=1

(
ck ς̄k −

1

2
α+
k ς̄

2
k

)
− 1

2
F T (ς̄)G+(ς̄)F (ς̄)

=
m∑
k=1

(
ck ς̄k −

1

2
α+
k ς̄

2
k

)
− 1

2

(
f −

m∑
k=1

ς̄kbk

)T (
Q+

m∑
k=1

ς̄kAk

)+(
f −

m∑
k=1

ς̄kbk

)

=
m∑
k=1

(
ck ς̄k −

1

2
α+
k ς̄

2
k

)
+

1

2
x̄T

(
Q+

m∑
k=1

ς̄kAk

)
x̄− x̄T

(
f −

m∑
k=1

ς̄kbk

)

=
m∑
k=1

[(
1

2
x̄TAkx̄+ bT

k x̄+ ck

)
ς̄k −

1

2
α+
k ς̄

2
k

]
+

1

2
x̄TQx̄− x̄T f

=
m∑
k=1

[(
1

2
x̄TAkx̄+ bT

k x̄+ ck

)2

αk −
1

2
αk

(
1

2
x̄TAkx̄+ bT

k x̄+ ck

)2
]

+
1

2
x̄TQx̄− x̄T f

=
m∑
k=1

1

2
αk

(
1

2
x̄TAkx̄+ bT

k x̄+ ck

)2

+
1

2
x̄TQx̄− x̄T f

= P (x̄).

This proves the theorem. 2

Theorem 2.1 presents an analytic solution (2.13) for the critical point of the primal

problem (P). This solution is actually a special case of the general analytical solution

form proposed in nonconvex variational problems [36].
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2.4 Global Optimality Criteria

In order to identify global extremality properties of the analytical solution (2.13), we need

to introduce a useful feasible space

S+
a = {ς ∈ Sa | G(ς) ≽ 0}. (2.16)

By the canonical duality theory developed in [38], we have the following results.

Theorem 2.2. Suppose that the vector ς̄ is a critical point of the canonical dual function

P d(ς̄). Let x̄ = G+(ς̄)F (ς̄).

If ς̄ ∈ S+
a , then ς̄ is a global maximizer of P d on S+

a if and only if the vector x̄ is a

global minimizer of P on Rn, i.e.,

P (x̄) = min
x∈Rn

P (x) ⇔ max
ς∈S+

a

P d(ς) = P d(ς̄). (2.17)

Proof. By Theorem 2.1, we know that the vector ς̄ ∈ Sa is a critical point of Problem

(Pd) if and only if x̄ = G+(ς̄)F (ς̄) is a critical point of Problem (P), and

P (x̄) = Ξ(x̄, ς̄) = P d(ς̄).

By the fact that the canonical dual function P d(ς) is concave on S+
a , the critical point

ς̄ ∈ S+
a is a global maximizer of P d(ς) over S+

a . Since (x̄, ς̄) is a saddle point of the total

complementary function Ξ(x, ς) on Rn × S+
a , i.e., Ξ is convex in x ∈ Rn and concave in

ς ∈ S+
a , we have

P d(ς̄) = max
ς∈S+

a

P d(ς) = max
ς∈S+

a

min
x∈Rn

Ξ(x, ς) = min
x∈Rn

max
ς∈S+

a

Ξ(x, ς)

= min
x∈Rn

{
1

2
xTQx− fTx+

m∑
k=1

max
ςk∈S+

a

{(
1

2
xTAkx+ bT

k x+ ck

)
ςk −

1

2
α+
k ς

2
k

}}
= min

x∈Rn

{
1

2
xTQx− fTx+

m∑
k=1

1

2
αk

(
1

2
xTAkx+ bT

k x+ ck

)2}
= min

x∈Rn
P (x) = P (x̄)

This proves the statement (2.17).

Theorem 2.2 shows that the extremality condition of the analytical solution (2.13) is

controlled by the critical point of the canonical dual problem, i.e., if ς̄ ∈ S+
a , the solution

x̄(ς̄) is a global minimizer of (P).
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2.5 Numerical Examples

We now present examples to illustrate the applications of the theory proposed in this

chapter.

Example 2.1 Unconstrained two-dimensional polynomial minimization.

min

{
P (x1, x2) =

2∑
k=1

1

2
αk

(
1

2
(ak1x

2
1 + ak2x

2
2) + ck

)2

+
1

2
(q1x

2
1+q2x

2
2)−

2∑
i=1

fixi : x ∈ R2

}
.

On the dual feasible set

Sa = {ς ∈ R2 | (q1 + ς1a11 + ς2a21)(q2 + ς1a12 + ς2a22) ̸= 0},

the canonical dual function has the form of

P d(ς) =
2∑

k=1

(
ckςk −

1

2αk

ς2k

)
− 1

2
[f1, f2][

(q1 + ς1a11 + ς2a21)
−1 0

0 (q2 + ς1a12 + ς2a22)
−1

][
f1

f2

]
.
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Figure 2.1: Graph of P (x) (left) and contour of P (x)(right).

If we let a11 = −0.4, a12 = 0.6, a21 = 0.5, a22 = −0.3, q1 = −1, q2 = 0.6, f =

[0.3,−0.2]T , c = [1, 2]T , α = [0.2, 0.8]T , the graphs and contours of the primal and dual

functions are illustrated in Figures 2.1 and 2.2. In this case, the dual problem has a

unique critical point ς̄ = [0.3467, 2.4700]T in the space

S+
a = {ς ∈ R2 | (q1 + ς1a11 + ς2a21)(q2 + ς1a12 + ς2a22) > 0}.

Therefore, by Theorem 2.2, we know that

x̄ = [f1/(q1 + ς̄1a11 + ς̄2a21), f2/(q2 + ς̄1a12 + ς̄2a22)]
T = [3.1146,−2.9842]T
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Figure 2.2: Graph of P d(ς) (left) and contour of P d(ς)(right).

is a global minimization. It’s easy to verify that

P (x̄) = 0.4075 = P d(ς̄).

Example 2.2 Minimization problem of Colville Function.

minP (x) = 100(x2 − x2
1)

2 + (1− x1)
2 + 90(x4 − x2

3)
2 + (1− x3)

2 +

10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)

s.t. −10 ≤ xi ≤ 10, i = 1, 2, 3, 4.

This is a well-known test problem for global optimization. On the dual feasible set

Sa = {ς ∈ R2 | (1− ς1)(1− ς2) ̸= 0},

the canonical dual function has the form of

P d(ς) = 42− 1

400
ς21 −

1

360
ς22

−1

2


2

40− ς1

2

40− ς2


T 

2− 2ς1

20.2 19.8

2− 2ς2

19.8 20.2


+ 

2

40− ς1

2

40− ς2



Ξ(x, ς) = 42 + (x2 − x2
1)ς1 + (x4 − x2

3)ς2 −
1

400
ς21 −

1

360
ς22

+(x2
1 + 10.1x2

2 + x2
3 + 10.1x2

4 + 19.8x2x4)− (2x1 + 40x2 + 2x3 + 40x4)

By solving the criticality condition ∇Ξ(x, ς) = 0, we get three critical points:

x̄1 = [1, 1, 1, 1]T , ς̄1 = (0, 0),
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x̄2 = [−0.967974, 0.947139,−0.969516, 0.951248]T , ς̄2 = [2.03309, 2.03144]T ,

x̄3 = [−0.031251, 0.165971,−0.0312582, 0.184264]T , ς̄3 = [32.999, 32.9916]T ,

and ς̄1 ∈ S+
a . By Theorem 2.2, we know that x̄1 is global minimizer of P (x). It is easy

to check that P (x̄1) = Ξ(x̄1, ς̄1) = P d(ς̄1) = 0.

2.6 Conclusion

We have presented a detailed application of the canonical duality theory for solving general

sum of fourth-order polynomial optimization problem. An analytical solution is obtained

by the complementary-dual principle and its extremality property is classified by the du-

ality theory. Results show that by using the canonical dual transformation, the nonconvex

primal problem in Rn can be converted into a concave maximization dual problem (Pd
max)

in Rm, which can be solved by well-developed convex minimization techniques.



CHAPTER 3

Nonconvex Quadratic-Exponential

Minimization Problem

3.1 Introduction

This chapter presents a set of complete solutions and optimality conditions for a noncon-

vex quadratic-exponential optimization problem. By using the canonical duality theory

reported in Chapter 1, the nonconvex primal problem in n-dimensional space can be con-

verted into an one-dimensional canonical dual problem, which is a concave maximization

problem with zero duality gap. The global extrema of the nonconvex problem can be

identified by the canonical duality theory. Several examples are solved so as to illustrate

the applicability of the theory.

3.2 Problem Statement

The primal problem to be solved is given by

(Pe) min

{
P (x) =

1

2
xTAx− cTx+W (x) : x ∈ Rn

}
, (3.1)

where A = AT ∈ Rn×n is a given indefinite matrix, c is a given vector in Rn, the nonconvex

function W (x) is an exponential function with quadratic function exponent:

W (x) = exp

(
1

2
|Bx|2 − α

)
, (3.2)

where B ∈ Rm×n is a matrix, α > 0 is a positive constants, and |v| denotes the Euclidean
norm of v. The quadratic-exponential function can be used to model a large class of

nonlinear phenomena, such as plant and insect growth [20], finite deformation elasticity

[71], computational bio-chemistry [104], and bio-mechanics [58].

15
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The criticality condition ∇P (x) = 0 leads to a nonlinear equilibrium equation:

Ax+ exp

(
1

2
|Bx|2 − α

)
BTBx = c. (3.3)

Solving this coupled nonlinear algebraic system directly is very difficult. Also equation

(3.3) is only a necessary condition for global minimizer of Problem (Pe). Due to the non-

convexity of the target function P (x), Problem (Pe) may possess many local minimizers.

A general sufficient condition for identifying the global minimizer is a fundamental task

in global optimization.

We will show that by the use of the canonical dual transformation, the nonlinear cou-

pled algebraic system in Rn can be converted into an algebraic equation in one-dimensional

space. Therefore, a complete set of solutions is obtained.

3.3 Canonical Dual transformation

Following the standard procedure of the canonical dual transformation, we introduce a

differentiable geometrical operator

ξ = Λ(x) =
1

2
|Bx|2 − α, (3.4)

which is a quadratic map from Rn into Va = {ξ ∈ R | ξ ≥ −α}. Thus, the nonconvex

function W (x) can be written in the canonical form

W (x) = V (Λ(x)), (3.5)

where V (ξ) = eξ is a canonical function on Va, i.e., the duality relation

ς = ∇V (ξ) = eξ (3.6)

is invertible for any given ξ ∈ Va (see the definition of the canonical function introduced

in Chapter 1). It is clear that ς > 0.

By letting U(x) = 1
2
xTAx− cTx, the primal problem (Pe) can be reformulated in the

following canonical form:

(P) min{P (x) = U(x) + V (Λ(x)) : x ∈ Rn}. (3.7)

Let V∗
a = {ς ∈ R | ς > 0} be the range of the duality mapping ς = ∇V (ξ) : Va →

V∗
a ⊂ R. So (ξ, ς) forms a duality pair on Va ×V∗

a and the Legendre conjugate V ∗ can be
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uniquely defined by

V ∗(ς) = sta{ξς − V (ξ) : ξ ∈ R} = ς log ς − ς,

where sta{} denotes finding stationary points of the statement in {}. Thus, replacing

W (x) = V (Λ(x)) by Λ(x)ς − V ∗(ς), the total complementary function (see Chapter 1)

can be defined by

Ξ(x, ς) = U(x) + Λ(x)ς − V ∗(ς)

=
1

2
xTAx− cTx+ (

1

2
|Bx|2 − α)ς − (ς log ς − ς). (3.8)

For a fixed ς, the criticality condition ∇xΞ(x, ς) = 0 leads to the following canonical

equilibrium equation:

Ax− c+ ςBTBx = 0. (3.9)

Clearly, for any given ς > 0, if the vector c ∈ Col(A+ ςBTB), i.e., c is in the column space

of (A+ ςBTB), the general solution of equation (3.9) is

x = (A+ ςBTB)+c, (3.10)

where A+ denotes the Moore-Penrose generalized inverse of A. Substituting this result

into the total complementary function Ξ, the canonical dual problem can be formulated

as:

(Pd) : sta

{
P d(ς) = −1

2
cT (A+ ςBTB)+c− (ς log ς − ς)− ας : ς ∈ Sa

}
, (3.11)

where the dual feasible space is given by

Sa = {ς ∈ R | ς > 0}.

Let

Ad(ς) = A+ ςBTB.

Theorem 3.1. If ς̄ is a KKT point of (Pd), then the vector

x̄ = A+
d (ς̄)c

is a critical point of (Pe) and P (x̄) = P d(ς̄).
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Proof. Suppose that ς̄ is a KKT point of (Pd). Then, we have

ς̄ > 0, ∇P d(ς̄) =
1

2
|Bx̄|2 − log ς̄ − α ≤ 0 (3.12)

ς̄∇P d(ς̄) = 0. (3.13)

By the fact that ς̄ > 0, the complementarity condition (3.13) leads to

1

2
|Bx̄|2 − log ς̄ − α = 0,

i.e., ς̄ = exp
(
1
2
|Bx̄|2 − α

)
. Thus, we have

x̄ = A+
d (ς̄)c =

(
A+ exp

(
1

2
|Bx̄|2 − α

)
BTB

)+

c.

Since ∇P (x̄) = 0, therefore x̄ is a critical point of the primal problem (Pe).

Moreover, in term of x̄ = A+
d (ς̄)c, we have

P d(ς̄) = −1

2
cTA+

d (ς̄)c− (ς̄ log ς̄ − ς̄)− ας̄

=
1

2
x̄T (A+ ς̄BTB)x̄− cT x̄− (ς̄ log ς̄ − ς̄)− ας̄

=
1

2
x̄TAx̄− cT x̄+ (

1

2
|Bx̄|2 − α)ς̄ − (ς̄ log ς̄ − ς̄)

=
1

2
x̄TAx̄− cT x̄+ ς̄ + (

1

2
|Bx̄|2 − log ς̄ − α)ς̄

=
1

2
x̄TAx̄− cT x̄+ exp

(
1

2
|Bx̄|2 − α

)
= P (x̄).

This proves the theorem.

The next section will show that the global extremum of the function P : Rn → R only

rely on critical points of the canonical dual function P d(ς).

3.4 Global Optimality Criteria

It is known that the criticality condition is only necessary for local minimization of the

nonconvex problem (Pe). In order to identify global and local extrema among the critical

points of Problem (Pe), we need to introduce a useful feasible space

S+
a = {ς ∈ Sa | Ad(ς) ≻ 0}. (3.14)
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Clearly, S+
a is an open convex subset of R. By the canonical duality theory, we have the

following result.

Theorem 3.2. Suppose that the vector ς̄ is a critical point of the canonical dual function

P d(ς̄). Let x̄ = A+
d (ς̄)c. If ς̄ ∈ S+

a , then ς̄ is a global maximizer of P d on S+
a , the vector

x̄ is a global minimizer of P on Rn, and

P (x̄) = min
x∈Rn

P (x) = max
ς∈S+

a

P d(ς) = P d(ς̄). (3.15)

Proof. By Theorem 3.1, we know that the vector ς̄ ∈ Sa is a KKT point of Problem (Pd)

if and only if x̄ = A+
d (ς̄)c is a critical point of Problem (Pe), and

P (x̄) = Ξ(x̄, ς̄) = P d(ς̄).

By the fact that the canonical dual function P d(ς) is concave on S+
a (which can be easily

proved by ∇2P d(ς) < 0 ∀ς ∈ S+
a ), the critical point ς̄ ∈ S+

a is a global maximizer of

P d(ς) over S+
a , and (x̄, ς̄) is a saddle point of the total complementary function Ξ(x, ς)

on Rn × S+
a , i.e., Ξ is convex in x ∈ Rn and concave in ς ∈ S+

a . Thus, we have

P d(ς̄) = max
ς∈S+

a

P d(ς) = max
ς∈S+

a

min
x∈Rn

Ξ(x, ς) = min
x∈Rn

max
ς∈S+

a

Ξ(x, ς)

= min
x∈Rn

{
1

2
xTAx− cTx+max

ς∈S+
a

{
(
1

2
|Bx|2 − α)ς − (ς log ς − ς)

}}
= min

x∈Rn

{
1

2
xTAx− cTx+max

ς∈S+
a

{
ς + (

1

2
|Bx|2 − log ς − α)ς

}}
= min

x∈Rn
P (x)

This proves the statement (3.15).

This theorem shows that the extremality condition of the primal problem is controlled

by the critical points of the canonical dual problem, i.e., if ς̄ ∈ S+
a , the vector x̄(ς̄) is a

global minimizer of (Pe).

In a special case when A is a diagonal matrix and B is an identity matrix, we have

A+
d (ς) =

{
1

ai + ς

}
. (3.16)

In this case,

P d(ς) = −1

2

n∑
i=1

c2i
ai + ς

− (ς log ς − ς)− ας. (3.17)
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The criticality condition ∇P d(ς) = 0 gives the canonical dual algebraic equation:

1

2

n∑
i=1

(
ci

ai + ς

)2

− log ς − α = 0. (3.18)

For the given α, {ci}, and {ai} such that a1 ≤ a2 ≤ . . . ,≤ an, this dual algebraic equation

(3.18) can be solved completely within each interval −ai+1 < ς < −ai such that ai < ai+1

(i = 1, 2, · · · , n).

3.5 Numerical Examples

We now list a few examples to illustrate the applications of the theory presented above.

3.5.1 One-dimensional nonconvex minimization

First of all, let us consider one dimensional concave minimization problem:

min

{
P (x) =

1

2
ax2 − cx+ exp

(
1

2
x2 − 2

)
: x ∈ R

}
. (3.19)

In this case,

Sa = {ς ∈ R | ς > 0, a+ ς ̸= 0}.

The dual function is

P d(ς) = −1

2
c2/(a+ ς)− ς log ς − ς. (3.20)

If we choose c = 0.5, and a = −2, the dual solution ς1 = 2.21 is a unique global

maximizer of P d on S+
a = {ς ∈ R+ | a+ ς > 0}. It gives the global minimizer x1 = 2.36.

It is easy to check that P (x1) = −4.56 = P d(ς1). The graph of P (x) and P d(ς) are shown

in Figures 3.1-3.2.

3.5.2 Two-dimensional nonconvex minimization

Consider

min

{
P (x1, x2) =

1

2
(a1x

2
1 + a2x

2
2)− c1x1 − c2x2 + exp

(
1

2
(x2

1 + x2
2)− 2

)
: x ∈ R2

}
.

The dual feasible set is given by

Sa = {ς ∈ R2 | ς > 0, (a1 + ς)(a2 + ς) ̸= 0}.
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Figure 3.1: Graph of P (x) for one dimensional problem which has global minimizer x1 =
2.36.

1 2 3 4

-10

-8

-6

-4

-2

2

4

6

Figure 3.2: Graph of P d(ς) for one dimensional problem which is concave on ς > 2 and
has global maximizer ς1 = 2.21.

The canonical dual function has the form of

P d(ς) = −1

2
[c1, c2]

[
1

a1+ς
1

a2+ς

][
c1

c2

]
− ς log ς − ς. (3.21)

Case I. a1 ≤ 0, a2 ≤ 0. We let c = [0.1,−0.3]T , a1 = −1, a2 = −1.2. The canonical

dual problem has three critical points

ς1 = 1.34 ∈ S+
a = {ς ∈ R2| ς > 1.2},

and

ς2 = 0.94, ς3 = 0.14.

By Theorem 3.2, we know that x1 = [c1/(a1+ ς1), c2/(a2+ ς1)]
T= [0.29,−2.12]T is a global



22 Nonconvex Quadratic-Exponential Minimization Problem

minimizer. It is easy to verify that

P (x1) = P d(ς1) = −2.07

(see Figures 3.3-3.4).

-2

-1

0

1 -2

-1

0

1

2

-2

-1

0

1

-2

-1

0

-2 -1.5 -1 -0.5 0 0.5 1
-2

-1

0

1

2

Figure 3.3: Graphs of P (x) and its contour for two dimensional problem(Case I).
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Figure 3.4: Graph of P d(ς) for two dimensional problem(Case I).

Case II. a1 ≤ 0, a2 ≥ 0. We choose c = [0.1,−0.3]T , a1 = −1, a2 = 0.6. In this case,

we have

ς1 = 1.05 ∈ S+
a = {ς ∈ R2| ς > 1},

and

ς2 = 0.95, ς3 = 0.15.

Thus, x1 =[2.02,−0.18]T ∈ R2 is a global minimizer. It is easy to verify that

P (x1) = P d(ς1) = −1.23

(see Figures 3.5-3.6).
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Figure 3.5: Graphs of P (x) and its contour for two dimensional problem(Case II).
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Figure 3.6: Graph of P d(ς) for two dimensional problem(Case II).

3.5.3 Two-dimensional general nonconvex minimization

Let A be a diagonal matrix and let B be a 3× 2 matrix. The primal problem is

min

{
P (x1, x2) =

1

2
(a1x

2
1 + a2x

2
2)− c1x1 − c2x2 + exp

(
1

2
|Bx|2 − 4

)
: x ∈ R2

}
.

Suppose that BTB =

[
c11 c12

c21 c22

]
. Then, on the dual feasible set, we have

Sa =

{
ς ∈ R2| ς > 0, c ∈ Col

([
a1 + ςc11 ςc12

ςc21 a2 + ςc22

])}
,

The canonical dual function has the form of

P d(ς) = −1

2
[c1, c2]

[
a1 + ςc11 ςc12

ςc21 a2 + ςc22

]−1 [
1

c2

]
− ς log ς − 3ς. (3.22)
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Let c = [0.5,−0.5]T , a1 = −2, a2 = 1.2, B =

 −1 −1

−1 −2

2 1

. The critical points of the

canonical dual problem inside S+
a is ς1 = 0.94, where

S+
a = {ς ∈ R| ς > 0.28}.

By Theorem 3.2, we know that x1 =[2.03,−1.47]T ∈ R2 is a global minimizer. It is easy

to verify that

P (x1) = P d(ς1) = −3.65

(see Figures 3.7-3.8).
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Figure 3.7: Graphs of P (x) and its contour for two dimensional general problem.
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Figure 3.8: Graph of P d(ς) for two dimensional general problem.

Comparing Fig. 3.7 with Fig. 3.8, we can see clearly that the graph of the primal

function is very flat, indicating a very slow convergent rate of any numerical method used

for solving this problem directly. On the contrary, the dual problem with only one variable

can be solved very easily to obtain all extreme points and the largest dual solution ς1 leads

to the global minimizer of the primal problem.
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3.6 Conclusions

In this chapter, we have presented an application of the canonical duality theory to the

nonconvex optimization problem (Pe). Generally speaking, the nonconvex quadratic form

with an exponential objective function can be used to model many nonconvex systems. By

using the canonical dual transformation, the nonconvex primal problem in n-dimensional

space can be converted into a one-dimensional canonical dual problem, which can be

solved completely. The global extrema can be identified by Theorem 3.2. As indicated

in [38], for any given nonconvex problem, as long as the geometrical operator can be

chosen properly and the canonical duality pairs can be identified correctly, the canonical

dual transformation can be used to formulate perfect duality pair.





CHAPTER 4

Box and Integer Constrained Problem

4.1 Introduction

This chapter applies the canonical duality theory for solving quadratic minimization prob-

lems subjected to either box or integer constraints. Results show that these nonconvex

problems can be converted into concave maximization of dual problems over convex fea-

sible spaces without duality gap. Furthermore, the Boolean integer programming prob-

lem [25] is actually equivalent to a critical point problem in continuous space. These

dual problems can be solved under certain conditions and an analytic solution for integer

programming problem is obtained. Both existence and uniqueness of the canonical dual

solutions are presented.

4.2 Problem Statement

Let us consider the following constrained nonconvex quadratic minimization problem:

(P) : min

{
P (x) =

1

2
⟨x, Qx⟩ − ⟨x, f⟩ | x ∈ Xa

}
, (4.1)

where Q = QT ∈ Rn×n is a given indefinite matrix, f is a given vector in Rn, Xa ⊂ Rn is

a feasible space, and ⟨∗, ∗⟩ represents a bilinear form on Rn × Rn. For box constrained

problem, Xa is defined by

Xa = {x ∈ Rn | − 1 ≤ xi ≤ 1, ∀i = 1, . . . , n}. (4.2)

Problem (P) is probably the most simple global optimization problem, which appears in

many applications [32]. Replacing the inequality constraints in Xa by equality constraints

xi = ±1 (i = 1, 2, . . . , n), Problem (P) is reduced to the well-known integer programming:

(Pip) : min

{
P (x) =

1

2
⟨x, Qx⟩ − ⟨x, f⟩ | x ∈ ∂Xa

}
, (4.3)

27
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where the feasible set ∂Xa denotes the boundary of Xa, i.e.,

∂Xa = {x ∈ Rn| x ∈ {−1, 1}n}. (4.4)

Due to the nonconvexity of the quadratic function P (x), quadratic minimization problems

with either box or integer constraints are known to be NP-hard [72] [75] [76].

4.3 Canonical Dual Transformation

Following the standard procedure of the canonical dual transformation, we rewrite the

inequality constraints −1 ≤ xi ≤ 1, i = 1, . . . , n, in Xa in the canonical form: x ◦ x ≤ e,

where the notation s ◦ t := [s1t1, s2t2, . . . , sntn]
T denotes the Hadamard product for any

two vectors s, t ∈ Rn. We introduce the geometrical operator

ξ = {ξ, ϵ} = Λ(x) =
1

2
[xTQx,x ◦ x]T : Rn → E = R1+n, (4.5)

and let

V (ξ) =

{
ξ if ξ ≤ 1

2
e,

+∞ otherwise.
(4.6)

Then the box constrained problem (P) can be reformulated as the following unconstrained

canonical form:

min{Π(x) = V (Λ(x))− ⟨x, f⟩ | x ∈ Rn}. (4.7)

Let ∂f(x) denote the set of subgradient of the function f at the point x, i.e.,

∂f(x) := {u|f(x) + uT (y − x) ≤ f(y)}.

By the fact that V (ξ) is convex and lower semi-continuous on E , the canonical dual

variable ξ∗ can be defined as:

ξ∗ ∈ ∂V (ξ) = {1,σ} ∈ E∗ = R1+n. (4.8)

Let ⟨ξ; ξ∗⟩ denote the bilinear form on E × E∗, the so-called complementary function

V ♯(ξ∗) can be defined by the Fenchel transformation:

V ♯(ξ∗) = sup
ξ∈E

{⟨ξ; ξ∗⟩ − V (ξ)} =

{
1
2
⟨e,σ⟩ if λ ≥ 0 ∈ Rn,

+∞ otherwise.

Since both V (ξ) and V ♯(ξ∗) are proper convex functions over their effective domains

Ea = {ξ = {ξ, ξ} ∈ E| ξ ≤ 1
2
e} and E∗

a = {ξ∗ = {1,σ} ∈ E∗| σ ≥ 0}, respectively, the
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following canonical duality relations hold on Ea × E∗
a :

ξ∗ ∈ ∂V (ξ) ⇔ ξ∗ ∈ ∂V ♯(ξ) ⇔ V (ξ) + V ♯(ξ∗) = ⟨ξ; ξ∗⟩. (4.9)

Replacing V (Λ(x)) in the canonical primal problem (4.7) by V (Λ(x)) = ⟨Λ(x); ξ∗⟩ −
V ♯(ξ∗). Then the total complementary function Ξ(x,σ) : Rn × Rn → R associated with

the problem (P) can be defined as:

Ξ(x,σ) = ⟨Λ(x); ξ∗⟩ − V ♯(ξ∗)− ⟨x, f⟩ (4.10)

=
1

2
⟨x,G(σ)x⟩ − 1

2
⟨e,σ⟩ − ⟨x, f⟩ s.t. σ ∈ Rn

+, (4.11)

where Rn
+ := {σ ∈ Rn| σ ≥ 0}. For a fixed σ ∈ Rn

+, the criticality condition ∇xΞ(x,σ) =

0 leads to

G(σ)x̄ = f . (4.12)

Clearly, if the matrix G(σ) is invertible on Sa, the primal variable x̄ can be uniquely

defined by x̄ = G+(σ)f .

On the other hand, for a given matrix Q and σ ∈ Rn
+, if the vector f is in the column

space Col(G(σ)) of the matrix G(σ), i.e., a linear space spanned by the columns of G(σ),

the generalized solution x̄ of the canonical equilibrium equation (4.12) is given by

x̄ = G+(σ)f ,

where G+(σ) denotes the Moore-Penrose generalized inverse of G(σ). Substituting this

generalized solution into the total complementary function Ξ and let Sg be a generalized

canonical dual feasible space defined by

Sg = {σ ∈ Rn| σ ≥ 0}, (4.13)

the generalized canonical dual function Pg : Sg → R can be formulated as

P g(σ) = sta{Ξ(x,σ)| x ∈ Rn}

= −1

2
⟨G+(σ)f , f⟩ − 1

2
⟨e,σ⟩. (4.14)

Therefore, the generalized canonical dual problem (Pg) can be formulated as

(Pg) : max

{
P g(σ) = −1

2
⟨G+(σ)f , f⟩ − 1

2
⟨e,σ⟩ | σ ∈ Sg

}
. (4.15)

Similarly, the canonical dual problem for the integer programming problem (Pip) can be
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formulated as

(Pg
ip) : max

{
P g(σ) = −1

2
⟨G†(σ)f , f⟩ − 1

2
⟨e,σ⟩ | σ ̸= 0

}
. (4.16)

Then we have the following result.

Theorem 4.1 (Complementary-Dual Principle). Problem (Pg) is canonically dual to (P)

in the sense that if σ̄ ∈ Sg is a feasible solution of (Pg), then the vector

x̄(σ̄) = G+(σ̄)f (4.17)

is a feasible solution of Problem (P) and

P (x̄) = P g(σ̄). (4.18)

Moreover, if σ̄ ̸= 0 is a critical point of (Pg), then x̄ ∈ ∂Xa is a KKT point of (Pip).

Proof. By introducing a Lagrange multiplier ϵ ∈ Rn
− := {ϵ ∈ Rn| ϵ ≤ 0} to relax the

inequality condition σ ≥ 0 in Sg, the Lagrangian L : Sg × Rn
− → R associated with

Problem (Pg) is

L(σ, ϵ) = P g(σ)− ⟨ϵ,σ⟩. (4.19)

It is easy to prove that the criticality condition ∇σL(σ̄, ϵ) = 0 leads to

ϵ = ∇P g(σ̄) =
1

2
(x̄(σ̄) ◦ x̄(σ̄)− e) = ξ(x̄(σ̄))− 1

2
e (4.20)

and the KKT conditions

0 ≤ σ̄ ⊥ ϵ(x̄) ≤ 0, (4.21)

where x̄ = G+(σ̄)f , and σ̄ ⊥ ϵ denotes the complementarity condition, i.e.,

ϵ(x) ⊥ σ̄ ⇔ 1

2
(x2

i − 1)σ̄i = 0, ∀i = 1, . . . , n.

This shows that if σ̄ is a KKT point of the problem (Pg), then x̄ = G+(σ̄)f is a KKT

point of the primal problem (P).

By the complementarity condition in (4.21) and x̄ = G+(σ̄)f , we have

P g(σ̄) =
1

2
⟨G+(σ̄)f , f⟩ − ⟨G+(σ̄)f , f⟩ − 1

2
⟨e, σ̄⟩

=
1

2
⟨x̄, Qx̄⟩ − ⟨x̄, f⟩+ 1

2
⟨x̄ ◦ x̄− e, σ̄⟩ = P (x̄).

Moreover, if σ̄ ̸= 0, the complementarity condition ϵ(x̄) ⊥ σ̄ in (4.21) leads to

ϵ(x̄) = 1
2
(x̄ ◦ x̄ − e) = 0, i.e., ∇P g(σ̄) = 0. This shows that if σ̄ ̸= 0 is a critical
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point of P g(σ), the associated vector x̄(σ̄) = G+(σ̄)f ∈ {−1, 1}n is a KKT point of the

integer programming problem (Pip). 2

Corollary 4.1. If σ̄ ̸= 0 is a critical point of P g(σ), then the vector x̄ = G+(σ̄)f ∈
{−1, 1}n is a feasible solution to the integer programming problem (Pip).

Proof. By the criticality condition δP g(σ̄,σ) = ⟨∇P g(σ̄),σ⟩ = 0 ∀σ ̸= 0 ∈ Rn, where

δP g(σ̄,σ) denotes the derivative of P g at σ̄ in the direction σ, we have the canonical

complementarity equation

⟨x̄(σ̄) ◦ x̄(σ̄)− e,σ⟩ = 0 ∀σ ∈ Rn, (4.22)

where x̄ = G+(σ̄)f . Therefore, under the condition σ ̸= 0, the canonical solution

x = G+(σ)f is a feasible solution of (Pip). 2

For the given indefinite matrix Q, the inequality constraint σ ̸= 0 is essential for the

canonical dual integer programming problem (Pg
ip). But this condition, as well as the

condition σ ∈ Col(G(σ)) in S+
g can also be relaxed by perturbation methods.

4.4 Global Optimality Criteria

In this section, we shall present global optimality conditions for the nonconvex problems

(P) and (Pip). We let

S+
g = {σ ∈ Sg| G(σ) ≽ 0}, (4.23)

and consider the following canonical dual problem:

(P+
g ) : max

{
P g(σ) = −1

2
⟨G+(σ)f , f⟩ − 1

2
⟨e,σ⟩ | σ ∈ S+

g

}
. (4.24)

Theorem 4.2. For any given matrix Q ∈ Rn×n and a vector f ∈ Rn, the canonical dual

problem (P+
g ) has at least one KKT point σ̄ ∈ S+

g and the following weak duality relation

holds

min
x∈Xa

P (x) ≥ max
σ∈S+

g

P g(σ) = P g(σ̄). (4.25)

If the KKT point σ̄ ∈ S+
g is a critical point of P g(σ), then the vector x̄ = G+(σ̄)f

is a global minimizer to the primal problem (P) and the following strong duality relation

holds

P (x̄) = min
x∈Xa

P (x) = max
σ∈S+

g

P g(σ) = P g(σ̄). (4.26)
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Proof. Since S+
g is a closed convex set, for any given σ ∈ S+

g such that x = G+(σ)f , the

Hessian matrix of P d(σ)

∇2P g(σ) = −Diag (x(σ)) G+(σ) Diag (x(σ)) (4.27)

is negative semi-definite on S+
g . Thus, the canonical dual function P g(σ) is concave on

S+
g . By the fact that, for any given σ ≥ 0 ∈ Rn,

lim
α→∞

P g(ασ) = −∞, (4.28)

we know that the canonical dual function P g(σ) is coercive on the closed convex set S+
g .

Therefore, the canonical dual problem (Pg
max) has at least one maximizer σ̄ ∈ S+

g by the

theory of convex analysis [28] [80]. Since the total complementary function Ξ(x,σ) is a

saddle function on Rn × S+
g , we have

min
x∈Xa

P (x) = min
x∈Rn

max
σ∈S+

g

Ξ(x,σ) ≥ max
σ∈S+

g

min
x∈Rn

Ξ(x,σ) = max
σ∈S+

g

P g(σ).

This leads to the weak duality relation (4.25).

By Theorem 4.1 we know that if the vector σ̄ ∈ Sg is a critical point of the canonical

dual function (Pg), then x̄ = G†(σ̄)f is a KKT point of Problem (P) and

P (x̄) = Ξ(x̄, σ̄) = P g(σ̄). (4.29)

Since the geometrical operator Λ(x) defined in (4.5) is a (pure) quadratic operator, the

quadratic function

Ga(x,σ) =
1

2
⟨x,G(σ)x⟩ (4.30)

is a convex function of x ∈ Rn for any given σ ∈ S+
g . Therefore, the total complementary

function Ξ : Rn × S+
g → R is a saddle function which is convex in x ∈ Rn and concave in

σ ∈ S+
g . Thus, we have (4.26). 2

Corollary 4.2. Suppose that σ̄ ∈ S+
g is a critical point of the canonical dual problem

(P+
g ) and x̄ = G+(σ̄)f .

If G(σ̄) ≻ 0, then x̄ is a unique global minimizer of Problem (P).

If σ̄ ∈ S+
g and σ̄ ̸= 0, then x̄ is a global minimizer of the integer programming problem

(Pip).

Theorem 4.2 shows that a vector x̄ = G+(σ̄)f is a global minimizer of Problem (P) if

σ̄ is a KKT point of (P+
g ).

We will illustrate the advantage of using canonical duality theory through following
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example.

Example 1. For a given vector f ∈ Rn, we consider the following constrained convex

maximization problem:

max{∥x+ f∥2 : ∥x∥∞ ≤ 1}, (4.31)

which is equivalent to the following concave quadratic minimization problem

min

{
P (x) = −1

2
xTx− xT f : |xi| ≤ 1, ∀i = 1, . . . , n, xTx ≤ r

}
, (4.32)

where r > n to ensure that the additional quadratic constraint xTx ≤ r in the feasible

space Xc = {x ∈ Rn| − 1 ≤ xi ≤ 1, ∀i = 1, . . . , n, xTx ≤ r} is never active. It is

known that for high dimensional nonconvex constrained optimization problems, to check

which constraints are active is fundamentally difficult.

If we let n = 2, r = 100, and f = (1, 1)T , the optimal solution is x̄ = (1, 1)T with

objective value P (x̄) = −3. To illustrate the difficulty of applying the classical Lagrangian

duality theory directly to (4.32), we first introduce Lagrange multipliers (σ1, σ2, σ3, σ4)
T ∈

R4
+ to relax the linear box constraints −1 ≤ xi ≤ 1, i = 1, 2, and σ5 ≥ 0 to relax the

quadratic constraint 1
2
xTx ≤ 50. The Lagrangian associated with (4.32) is

L(x,σ) = −1

2
(x2

1+x2
2)− (x1+x2)+

2∑
i=1

[σi(xi − 1)− σi+2(xi + 1)]+
1

2
σ5

(
x2
1 + x2

2 − 100
)
,

with the lagrangian dual function given by

P ∗(σ) = min
x∈R2

L(x,σ).

when σ5 < 1, we get P ∗(σ) = −∞. When σ5 = 1, we obtain maxσ≥0{P ∗(σ) : σ5 = 1} =

−52 at the solution σ0 = (1, 1, 0, 0, 1). Finally, for any given σ ∈ Sr = {σ ∈ R5
+| σ5 > 1},

the Lagrangian dual function can be obtained as

P ∗(σ) = − 1

2(σ5 − 1)

[
(1− σ1 + σ3)

2 + (1− σ2 + σ4)
2
]
−

4∑
i=1

σi − 50σ5.

It is easy to check that the solution to the Lagrangian dual problem

sup{P ∗(σ) : σ ∈ Sr} = −52,

realized as σ → σo = (1, 1, 0, 0, 1)T . Hence, the optimal dual value is given by P ∗(σ) =

−52, and there exists a duality gap between the primal and the Lagrangian dual problem,
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i.e.,

P (x̄) = min
x∈Xc

P (x) = −3 > −52 = max
σ∈R5

+

P ∗(σ) = P ∗(σo).

To close this duality gap, we rewrite the constraints in the canonical form g(x) =

Λ(x) ≤ d with

Bα
ij =

{
1 if i = j = α,

0 otherwise,
i, j, α = 1, 2, B3

ij =

{
1 if i = j,

0 if i ̸= j,
i, j = 1, 2

and d = 0.5(1, 1, 100)T . Then, on the canonical dual feasible space S+
q = {σ ∈ R3

+| σi +

σ3 − 1 > 0, i = 1, 2} the canonical dual problem (Pd
q ) is

max

{
P d
q (σ) = −1

2

(
1

σ1 + σ3 − 1
+

1

σ2 + σ3 − 1

)
− 1

2
(σ1 + σ2)− 50σ3 : σ ∈ S+

q

}
.

(4.33)

The optimal solution for this concave maximization problem is σ̄ = (2, 2, 0)T with the

optimal value P d
q (σ̄) = −3. Observed that σ̄3 = 0 reflects the fact that the quadratic

constraint xTx ≤ r is inactive. Since σ̄ ∈ S+
q is a critical point of P d

q (σ), therefore,

the vector x̄ = G−1
q (σ̄)f = (1, 1)T is a global minimizer of the primal problem with zero

duality gap.

Remark 1. This example shows the difficulty of directly applying the classical Lagrangian

duality for solving nonconvex minimization problem with linear (including both box and

integer) constraints. The classical Lagrangian duality theory was originally developed

for linearly constrained convex problems in analytical mechanics, where the Lagrange

multipliers and the linear constraints possess certain perfect duality. The primal problem

in above example has both linear and nonlinear (quadratic) constraints, the Lagrange

multipliers σi, i = 1, 2, 3, 4 are dual to the linear constraints, while σ5 is dual to the

quadratic constraints. Since the linear and nonlinear constraints are different geometrical

measures, their corresponding dual variables, i.e., the Lagrange multipliers σi, i = 1, 2, 3, 4,

and σ5 are in different metric spaces with different (physical) units. Therefore, the classical

Lagrangian dual problem in this case does not make physical sense. The weak Lagrangian

duality theory leads to various duality gaps.

4.5 Existence and Uniqueness Conditions

The weak duality theorem (4.25) shows that the canonical dual problem (Pd
max) provides

a lower bound for the box/integer constrained problems. In order to study existence and

uniqueness of the canonical dual problems, we introduce a singular hyper-surface defined
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by

Ga = {σ ∈ Rn| detG(σ) = 0}. (4.34)

Then, we have the following theorem.

Theorem 4.3 (Existence and Uniqueness Criterion). Suppose that for a given symmetric

matrix Q and a vector f such that S+
g ̸= ∅ and Ga ⊂ S+

g . If for any given σo ∈ Ga and

σ ∈ S+
a ,

lim
α→0+

P g(σo + ασ) = −∞, (4.35)

then the canonical dual problem (P+
g ) has a unique critical point σ̄ ∈ S+

a and x̄ = G−1(σ̄)f

is a global minimizer to the primal problem (P). If σ̄ ̸= 0, then x̄ is a global minimizer

to the integer programming problem (Pip).

Proof. If Ga ⊂ S+
g , then S+

g is a closed convex subset of Rn
+. Since P g : S+

g → R is

concave, if (4.35) holds, the canonical dual function P g(σ) is coercive on the open convex

set S+
a . Therefore, the canonical dual problem (Pg) has a unique maximizer σ̄ ∈ Sp

a . 2

Clearly, if Q ≻ 0, the quadratic objective function P (x) is convex and the solution to

the box constrained primal problem (P) could be a stationary point in the box Xa. If

Q ≺ 0, the primal function P (x) is concave and its global minimizer x̄ must be located on

the boundary of the feasible space Xa. In this case, the box constrained problem (P) is

identical to the integer constrained problem (Pip), and both of them are considered to be

NP-hard. However, by the fact that Ga ⊂ S+
g and for any given f ∈ Rn, the dual feasible

space S+
g ̸= ∅, the canonical dual problem (Pd

max) could be much easier to solve.

In the case that Q = Diag (q) is a diagonal matrix with q = {qi} ∈ Rn being its

diagonal elements, the canonical dual function P d(λ) has a simple form

P d(σ) = −
n∑

i=1

(
c2i

2(qi + σi)
+

1

2
σi

)
. (4.36)

The criticality condition δP d(σ) = 0 leads to the dual solutions

σi = −qi ± |ci|, ∀i = 1, 2, . . . , n. (4.37)

Clearly, for any given q ∈ Rn, if ci ̸= 0 ∀i = 1, . . . , n, the condition (4.35) holds.

Therefore, by Theorems 4.2 and 4.3, we have the following result.

Corollary 4.3. For any given diagonal matrix Q = Diag (q) and a vector f ∈ Rn such
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that ci ̸= 0 ∀i = 1, . . . , n, it holds that

x =

{
ci
|ci|

}
is a global minimizer of if λ = {−qi + |ci|} > 0;

x =

{
− ci
|ci|

}{
is a local minimizer if λ = {−qi − |ci|} > 0,

is a local maximizer of if λ = {−qi − |ci|} < 0.

4.6 Perturbations and Analytical Solutions

For any given indefinite symmetrical matrix Q ∈ Rn×n, there exists a parametrical vector

α ∈ Rn such that Q + Diag (α) is either positive definite or negative definite. By the

fact that x ◦ x = e, the integer programming problem (Pip) is identical to the following

perturbed problem

(Pα) : min

{
Pα(x) =

1

2
⟨x, (Q+Diag (α))x⟩ − ⟨x, f⟩ − dα | x ∈ ∂Xa

}
, (4.38)

where dα = 1
2
⟨e,α⟩.

Clearly, if we choose α ∈ Rn such that Qα = Q + Diag (α) ≺ 0, the primal function

Pα(x) is strictly concave and its global minimizers must be located on the boundary ∂Xa.

In this case, the condition Gα(σ) = Q+Diag (α+ σ) ≽ 0 implies σ > 0. Therefore, on

the perturbed dual feasible space

S+
α = {σ ∈ Rn| Gα(σ) ≽ 0}, (4.39)

the perturbed canonical dual problem is

(Pg
α) : max

{
P g
α(σ) = −1

2
⟨G+

α (σ)f , f⟩ −
1

2
⟨e,σ⟩ − dα | σ ∈ S+

α

}
. (4.40)

Since the inequality constraint σ ̸= 0 is relaxed by the α-concave perturbation Q +

Diag (α) ≺ 0, this perturbed canonical dual problem is easier than (Pg
ip).

Theorem 4.4 (Analytic Solution to Integer Programming Problem (Pip)). For a given

α ∈ Rn such that detQα ̸= 0. Then the problem (Pd
α) is canonically dual to the integer

programming (Pip) in the sense that if σ̄ = {σ̄i}n is a solution to (Pd
α), then the vector

x̄ = {x̄i}n defined by

x̄(σ̄) =

{
ci − σ̄i

|ci − σ̄i|

}n

(4.41)

is a feasible solution to (Pip), and P (x̄) = P d
α(σ̄).

If Qα ≻ 0, the dual problem (Pd
α) has at most one solution σ̄, which is a global
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maximizer of P d
α(σ), the vector x̄(σ̄) is a unique global minimizer of (Pip), and

Pα(x̄) = min
x∈{−1,1}n

Pα(x) = max
σ∈Rn

P d
α(σ) = P d

α(σ̄). (4.42)

Proof. The first part of the theorem can be proved easily by the complementary-dual

principle. If Qα ≻ 0, then P d
α(σ) is strictly concave and the canonical dual problem (Pd

α)

is equivalent to

max
{
P d
α(σ) | σ ∈ Rn

}
, (4.43)

which has at most one solution σ̄ over Rn. By the canonical duality theory, the feasible

solution x̄(σ̄) is a global minimizer of (Pip).

2

Theorem 4.4 shows that for convex perturbation Qα ≻ 0, the canonical dual problem

(Pd
α) is a unconstrained concave maximization problem (4.43). Therefore, if the primal

problem has a unique global minimizer, it can be obtained by solving the convex pertur-

bation canonical dual problem (4.43). However, for certain given Q and f , this problem

may have no critical solution.

Combining Theorems 4.2 and 4.4, the condition for the existence of unique solution is

given in the following theorem.

Theorem 4.5 (Unique Analytic Solution). For a given matrix Q = {qij} ∈ Rn×n and

a vector f = {ci} ∈ Rn, let α = {αi} ∈ Rn be a parametrical vector such that either

Q+ Diag (α) ≻ 0 or Q+ Diag (α) ≺ 0. If

|ci| >
n∑

j=1

|αiδij + qij| ∀i = 1, . . . , n, (4.44)

where δij = 1 if i = j, 0 if i ̸= j is Kronecker delta, then the integer programming problem

(Pip) has a unique global minimizer x̄ = {x̄i}n given by

x̄i =

{
1 if ci >

∑n
j=1 |αiδij + qij|,

−1 if ci < −
∑n

j=1 |αiδij + qij|.
(4.45)

Proof. By the criticality condition ∇P α(σ̄) = 0, we have

(
G+

α (σ̄)f
)
◦
(
G+

α (σ̄)f
)
= e, (4.46)

or in the component form (G+
α (σ̄)f)

2
i = 1. Thus, we have G+

α (σ̄)f = t, where t = {±1}n.
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This leads to the linear equation σ̄ ◦ t = f −α ◦ t−Qt, or equivalently,

σ̄ = (f −α ◦ t−Qt) ◦ t.

If condition (4.44) holds and let t = x̄ = {x̄i}n, where x̄i is defined by (4.45), then we have

σ̄ > 0. This leads to Gα(σ̄) ≻ 0 since Q+Diag (α) ≻ 0. By Corollary 4.2 we know that

x̄ = G+
α (σ̄)f = {x̄i}n given by (4.45) is a global minimizer to the integer minimization

problem (Pip).

On the other hand, if Q + Diag (α) ≺ 0 and the condition (4.44) holds, the dual

problem (Pd
α) has a unique critical point σ̄ = Gαx̄. Therefore, the vector defined by

(4.45) must be a unique solution of (Pip). 2

Theorem 4.5 shows that the existence of a unique analytical solution depends mainly

on the given input f . If f is very small or even zero (for example, max-cut problems), the

primal problem (Pip) is usually NP-hard and has more than one global minimizer.

4.7 Numerical Examples

Example 4.1. One-dimensional Concave Minimization. First of all, let us consider

one dimensional concave minimization problem:

min

{
P (x) =

1

2
qx2 − cx | − 1 ≤ x ≤ 1

}
. (4.47)

Clearly, if q < 0, the global minimizer of P (x) has to be one of boundary points x̄ = ±1.

Since q ̸= 0, the canonical dual function P d(σ) = P g(σ) is

P d(σ) = −1

2
c2/(q + σ)− 1

2
σ. (4.48)

The criticality condition δP d(σ) = 1
2
c2/(q+σ)2− 1

2
= 0 has two roots: σ̄1,2 = −q±|c|, and

x̄1,2 = ±c/|c| are two KKT points of (Pip). By Theorem 4.5 we know that σ̄1 = −q+ |c| >
−q > 0 is a unique global maximizer of P d on S+

a = {σ ∈ R |σ ≥ 0, q + σ > 0}.
The canonical dual function P d

α(σ) for this example is a nonconvex/nonsmooth func-

tion

P d
α(σ) = −1

2
q−1σ2 − |c− σ|, (4.49)

which has at most two critical points: σ̄1 = q if c > q and σ̄2 = −q if c < −q.

If we choose c = 0.5, q = −1, the dual solution σ̄1 = 1.5 of Problem (Pd) gives the

global minimizer x̄1 = c/(q+ σ̄1) = 1. It is easy to check that P (x̄1) = −1 = P d(σ̄1). The

graphs of P (x) and P d(σ) are shown in Fig. 4.1 (a).
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(a) P (x) and P d(σ) (b)P (x) and P d
α(σ)

Figure 4.1: Graphs of P (x) and its dual functions for Example 4.1 with c = 0.5

The graphs of P (x) and P d
α(σ) are shown in Fig. 4.1 (b). As we can see, the graph

of P d
α(σ) is nonconvex/nonsmooth and has two critical points: σ̄1 = −1 and σ̄2 = 1. By

the analytical solution of (4.41), we have x̄1 = 1 and x̄2 = −1. It is easy to verify that

P (x̄1) = P d
α(σ̄1) = −1 and P (x̄2) = P d

α(σ̄2) = 0.
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(a) P (x) and P d(σ) (b)P (x) and P d
α(σ)

Figure 4.2: Graphs of P (x) and its dual functions for Example 4.1 with c = 1.5

If we choose c = 1.5, q = −1, the canonical dual problem (Pd) has two critical

points: σ̄1 = 2.5 and σ̄2 = −0.5. By the fact that σ̄1 ∈ S+
a , x̄1 = c/(q+ σ̄1) = 1 is a global

minimizer and P (x̄1) = −2 = P d(σ̄1). In this case, the canonical dual problem (Pd
α) has

only one critical point σ̄ = −1 which is a global minimizer of P d
α(σ). By Theorem 4.4, we

know that x̄ = 1 is a global minimizer of (Pip) and P (x̄) = −2 = P d
α(σ̄).

Example 4.2. Two-dimensional Nonconvex Programming Problem. We now
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consider the following quadratic programming within a convex set:

min P (x1, x2) =
1

2
(q1x

2
1 + q2x

2
2 + 2q3x1x2)− c1x1 − c2x2 (4.50)

s.t. −1 ≤ xi ≤ 1, i = 1, 2. (4.51)

The canonical dual function has the form of

P g(σ1, σ2) = −1

2
[c1, c2]

[
q1 + σ1 q3

q3 q2 + σ2

]+ [
c1

c2

]
− 1

2
(σ1 + σ2). (4.52)

Three cases to be considered.

Case I. q1 ≤ 0, q2 ≤ 0, and q3 = 0. In this case, P (x) is concave. If we let

f = [0.1,−0.3]T , q1 = −0.5, q2 = −0.6, the dual function P g(σ) = P d(σ) has four

critical points:

σ1 = [0.6, 0.9]T , σ2 = [0.4, 0.3]T , σ3 = [0.4, 0.9]T , σ4 = [0.6, 0.3]T .

Since

σ1 = [0.6, 0.9]T ∈ S+
a = {σ ∈ R2| σ1 > 0.5, σ2 > 0.6},

by Theorem 4.4, x1 = [c1/(q1 + σ1), c2/(q2 + σ2)]
T = [1.0,−1.0]T is a global minimizer,

and

P (x1) = P d(σ1) = −0.95.

See Fig. 4.3.
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Figure 4.3: Graph of the concave function P (x1, x2) and its contour for Example 4.2 (I)

Case II. q1 ≤ 0, q2 ≥ 0, and q3 = 0. In this case, P (x) is a saddle function. If we let

f = [0.1,−0.3]T , q1 = −0.5, q2 = 0.3, the dual function P d has four critical points

σ1 = [0.6, 0.0]T , σ2 = [0.4, 0.0]T , σ3 = [0.4,−0.6]T , σ4 = [0.6,−0.6]T .
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Since σ1 ∈ S+
a = {σ ∈ R2| σ1 > 0.5, σ2 ≥ 0} is a KKT point, by Theorem 4.4, we know

that x1 = [1.0,−1.0]T ∈ Xa is a global minimizer. It is easy to verify that

P (x1) = P d(σ1) = −0.5.

See Fig. 4.4.
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Figure 4.4: Graph of the saddle function P (x1, x2) and its contour for Example 4.2 (II)

Case III. General matrix Q ∈ R2×2 with integer solutions.

Let f = [1,−2]T , q1 = −2., q2 = −1, q3 = −3. In this case, the eigenvalues of Q

are {−4.54138, 1.54138}. This implies that the primal problem is nonconvex. The dual

problem has four critical points

σ1 = [4, 6]T , σ2 = [6, 2]T , σ3 = [0, 0]T , σ4 = [−2,−4]T ,

from which, we have

x1 = [−1,−1]T , x2 = [1, 1]T , x3 = [1,−1]T , x4 = [−1, 1]T .

on the four corners of the box Xa = {x ∈ R2| − 1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1}. Since
σ1 ∈ S+

a , we know that x1 ∈ Xa is a global minimizer (see Fig. 4.5), and

P (x1) = −5.5 < P (x2) = −3.5 < P (x3) = −1.5 < P (x4) = 4.5.

Case IV. General matrix Q ∈ R2×2 with mixed solutions.

We choose q1 = −4, q2 = 10, q3 = −2, the eigenvalues of Q are {10.3,−4.3},
i.e. the primal problem is nonconvex. If we let f = [−8, 10]T , the dual solution is

σ = [10.4, 0]T ∈ S+
a . Since σ2 = 0, the constraint −1 ≤ x2 ≤ 1 is inactive. The

corresponding primal solution x = [−1.0, 0.8]T is not on the corner of the feasible set Xa
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Figure 4.5: Graph of the saddle function P (x1, x2) and its contour for Example 4.2 (III)

(see Fig. 4.6), but we still have P (x) = −1.3 = P d(σ).
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Figure 4.6: Graph of the function P (x1, x2) and its contour for Example 4.2 (IV)

Example 4.3. High Dimensional Integer Programming Problem

We now let n = 10 and randomly choose Q and f as given below:

Q =



−6 2 −1 −3 1 1 −3 −3 0 −1

2 −10 −1 2 1 0 2 1 −3 −4

−1 −1 −5 0 3 −1 1 0 −1 −4

−3 2 0 −6 1 1 1 −2 0 0

1 1 3 1 −7 0 −4 −1 −1 2

1 0 −1 1 0 −6 −2 1 3 −1

−3 2 1 1 −4 −2 −8 −1 0 0

−3 1 0 −2 −1 1 −1 −3 0 0

0 −3 −1 0 −1 3 0 0 −7 −4

−1 −4 −4 0 2 −1 0 0 −4 −6



,
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f = [−9.49, 6.14, 9.13, 0.0525,−2.54, 6.69, 0.847,−8.36, 6.31,−2.69]T .

To use the direct enumeration method to solve this problem, it is required 210 times of

enumerations. However, by using the canonical dual problem, it takes few iterations to

obtain the global maximizer:

σ = 2[12.2, 16.0, 12.0, 6.0, 8.8, 6.3, 7.6, 10.2, 8.7, 8.7]T .

The global minimizer of the primal problem (P) is then

x = [−1, 1, 1,−1,−1, 1,−1,−1, 1, 1]T

and P d(σ) = −119.1 = P (x).

4.8 Conclusions

We have presented a detailed application of the canonical duality theory to solving box

and integer constrained quadratic optimization problems. By using the canonical dual

transformation, several canonical dual problems and their perturbations are proposed.

Since the canonical dual problem (Pg
max) is a smooth concave maximization problem [19]

over convex feasible spaces, it is not difficult to solve for certain given Q and f . Existence

and uniqueness criteria are established. If Q and f satisfy certain appropriate conditions,

the unique analytical solution can be obtained.

Theorem 4.4 is particularly useful, which shows that for any given Q and f , the

discrete integer constrained problem (Pip) is equivalent to the continuous unconstrained

canonical dual problem (Pd
α). For convex-perturbation Q+Diag (α) ≻ 0, if the concave

maximization problem

(P♯
α) : max{P d

α(σ)| σ ∈ Rn} (4.53)

has a critical solution, the discrete problem (Pip) can be solved uniquely. Otherwise, the

nonsmooth problem (P♯
α) provides a lower bound for the box constrained problem (P).





CHAPTER 5

Discrete Value Selection Problem

5.1 Introduction

Many decision making problems, such as portfolio selection, capital budgeting, production

planning, resource allocation, and computer networks can often be formulated as quadratic

programming problems with discrete variables. See for examples, [8] [21] [31] [62]. In some

engineering applications, the variables of these optimization problems are not allowed to

have arbitrary values. Instead, some or all of the variables must be selected from a set

of integers or discrete values [99]. For examples, structural members may have to be

selected from selections available in standard sizes, their thicknesses are required to be

selected from the commercially available ones, the number of bolts for a connection must

be an integer, the number of reinforcing bars in a concrete structure must be an integer.

However, these integer programming problems are computationally highly demanding.

Several survey articles on nonlinear optimization problems with discrete variables have

been published [66] [83] [95]. Furthermore, some popular methods have been proposed,

which include branch and bound methods [15] [18] [52], branch and cut method [63] [93],

a hybrid method that combines a branch-and-bound method with a dynamic program-

ming technique [68], sequential linear programming, rounding-off techniques, cutting plane

techniques [11] [77], heuristic techniques, penalty function approach and sequential linear

programming. The relaxation method has also been proposed, leading to second order

cone programming (SOC) [47]. More recently, simulated annealing [54] [59] [69] and

genetic algorithms [57] have been proposed.

In this chapter, our goal is to solve a general quadratic programming problem with its

decision variables taking values from discrete sets [30]. The elements from these discrete

sets are not required to be binary or uniformly distributed. An effective numerical method

is developed based on the canonical duality theory.

45
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5.2 Problem Statement

The discrete programming problem to be addressed is given below:

(Pa) Minimize P (x) =
1

2
xTQx− cTx (5.1)

subject to g(x) = Ax− b ≤ 0, (5.2)

x = [x1, x2, · · · , xn]
T , xi ∈ Ui, i = 1, · · · , n,

where Q = {qij} ∈ Rn×n is an n × n symmetric matrix, A = {aij} ∈ Rm×n is an m × n

matrix with rank(A) = m < n, c = [c1, · · · , cn]T ∈ Rn and b = [b1, · · · , bm]T ∈ Rm are

given vectors. Here, for each i = 1, · · · , n,

Ui = {ui,1, · · · , ui,Ki
},

where, ui,j, j = 1, · · · , Ki, are given real numbers. In this chapter, we let K =
∑n

i=1 Ki.

Problem (Pa) arises in many real-world applications, such as the pipe network optimi-

sation problems in water distribution systems, where the choices of pipelines are discrete

values. Such problems have been studied extensively [101]. Due to the constraint of

discrete values, this problem is considered to be NP-hard. In this chapter, we will show

that the canonical duality theory will provide a lower bound approach to this challeng-

ing problem. Furthermore, the global optimal solution could be obtained under certain

conditions.

5.3 Equivalent Transformation

In order to convert the discrete value problem (Pa) into the standard 0-1 programming

problem, we introduce the following transformation,

xi =

Ki∑
j=1

ui,jyi,j, i = 1, · · · , n, (5.3)
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where, for each i = 1, · · · , n, ui,j ∈ Ui, j = 1, · · · , Ki. Then, the discrete programming

problem (Pa) can be written as the following 0-1 programming problem:

(Pb) Minimize P (y) =
1

2
yTBy − hTy (5.4)

subject to g(y) = Dy − b ≤ 0, (5.5)
Ki∑
j=1

yi,j − 1 = 0, i = 1, · · · , n, (5.6)

yi,j ∈ {0, 1}, i = 1, . . . , n; j = 1, · · · , Ki, (5.7)

where

y = [y1,1, · · · , y1,K1 , · · · , yn,1, · · · , yn,Kn ]
T ∈ RK ,

h = [c1u1,1, · · · , c1u1,K1 , · · · , cnun,1, · · · , cnun,Kn ]
T ∈ RK ,

B =



q1,1u
2
1,1 · · · q1,1u1,1u1,K1 · · · q1,nu1,1un,Kn

...
. . .

...
. . .

...

q1,1u1,K1u1,1 · · · q1,1u
2
1,K1

· · · · · ·
...

. . .
...

. . .
...

qn,1un,Knu1,1 · · · · · · · · · qn,nu
2
n,Kn


∈ RK×K ,

D =


a1,1u1,1 · · · a1,1u1,K1 · · · a1,nun,Kn

...
. . .

...
. . .

...

am,1u1,1 · · · am,1u1,K1 · · · am,nun,Kn

 ∈ Rm×K .

Theorem 5.1. Problem (Pb) is equivalent to Problem (Pa).

Proof. For any i = 1, 2, · · · , n, it is clear that constraints (5.6) and (5.7) are equivalent

to the existence of only one j ∈ {1, · · · , Ki}, such that yi,j = 1 while yi,j = 0 for all other

j. Thus, from the definition of y, the conclusion follows readily. 2

Problem (Pb) is a standard 0-1 quadratic programming problem with both equality

and inequality constraints. In order to use the canonical duality theory for solving this
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NP-hard problem, we need to reform the integer constraint in the canonical form. Let

H =


1 · · · 1 0 · · · 0 · · · 0 · · · 0

0 · · · 0 1 · · · 1 · · · 0 · · · 0
...

. . .
...

...
. . .

...
. . .

...
. . .

...

0 · · · 0 0 · · · 0 · · · 1 · · · 1

 ∈ Rn×K

and, for any integer N , let

eN = [1, · · · , 1, · · · , 1, · · · , 1]T ∈ RN .

By the fact that the solution to the quadratic equation yi(yi − 1) = 0 must be either 0

or 1, the integer constrained problem (Pb) can be reformulated to the following quadratic

programming problem:

(P) Minimize P (y) =
1

2
yTBy − hTy (5.8)

subject to g(y) = Dy − b ≤ 0, (5.9)

Hy − en = 0, (5.10)

y ◦ (y − eK) = 0, (5.11)

where the notation s ◦ t := [s1t1, s2t2, . . . , sKtK ]
T denotes the Hadamard product for any

two vectors s, t ∈ RK .

5.4 Canonical Dual Transformation

Now we apply the canonical duality theory to integer programming problem presented in

Section 5.2. Let

U(y) = −P (y) = hTy − 1

2
yTBy,

and define

ξ = Λ(y) = [(Dy − b)T , (Hy − en)
T , (y ◦ (y − eK))

T ]T

= [(ϵ)T , (δ)T , (ρ)T ]T ∈ Rm+n+K ,

where Λ is the so-called geometric operator. Let

W (ξ) =

{
0 if ϵ ≤ 0, δ = 0,ρ = 0,

+∞ otherwise.
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Let ς = [(σ)T , (τ )T , (µ)T ]T ∈ S = Rm+n+K be the canonical dual variable corresponding

to ξ ∈ Z = {(ϵ, δ,ρ) : ϵ ≤ 0, δ = 0,ρ = 0}. Then, the Fenchel super-conjugate of the

function W (ξ) is defined by

W ♯(ς) = sup{ξT ς −W (ξ) : ξ ∈ Z}

=

{
0 if σ ≥ 0

+∞ otherwise.
(5.12)

Let

G(µ) = B + 2Diag (µ), (5.13)

and

F(ς) = h−DTσ −HTτ + µ. (5.14)

Then, the total complementary function can be obtained as:

Ξ(y, ς) = ⟨Λ(y), ς⟩ −W ♯(ς)− U(y)

=
1

2
yTBy − hTy + σT (Dy − b)

+τ T (Hy − en) + µT (y ◦ (y − eK))

=
1

2
yTG(µ)y − FT (ς)y − σTb− τ Ten.

The critical condition ∇yΞ(y, ς) = 0 leads to

G(µ)y = F(ς). (5.15)

Let

Sa = {ς = (σ, τ ,µ) ∈ S = Rm+n+K : σ ≥ 0, µ ̸= 0}. (5.16)

Therefore, the canonical dual problem can be formulated as follows:

(Pd) Maximize

{
P d(ς) = −1

2
FT (ς)G+(µ)F(ς)− σTb− τ Ten

}
,

subject to ς ∈ Sa.

Theorem 5.2 (Complementary-Dual Principle). Problem (Pd) is a canonically dual to

Problem (P) in the sense that if ς̄ = (σ̄, τ̄ , µ̄) is a KKT solution of Problem (Pd), then

the vector

ȳ(ς̄) = G+(µ̄)F(ς̄) (5.17)
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is a KKT solution of Problem (P) and

P (ȳ) = P d(ς̄).

Proof. By introducing the Lagrange multiplier vectors ϵ ≤ 0 ∈ Rm, and ρ ∈ RK to

relax the inequality constraints σ ≥ 0 and µ ̸= 0, respectively, the Lagrangian function

associated with the dual function P d(σ, τ ,µ) becomes

L(σ, τ ,µ, ϵ,ρ) = P d(σ, τ ,µ)− ϵTσ − ρTµ.

Then, in terms of y = G+(µ)F(σ, τ ,µ) the KKT conditions of the dual problem become

∂L(σ, τ ,µ, ϵ, δ,ρ)

∂σ
= Dy − b− ϵ = 0,

∂L(σ, τ ,µ, ϵ, δ,ρ)

∂τ
= Hy − en = 0,

∂L(σ, τ ,µ, ϵ, δ,ρ)

∂µ
= y ◦ (y − eK)− ρ = 0,

σ ≥ 0, ϵ ≤ 0,σTϵ = 0,

µ ̸= 0, ρ = 0.

They can be written as:

Dy ≤ b, (5.18)

Hy − en = 0, (5.19)

y ◦ (y − eK) = 0, (5.20)

σ ≥ 0, σT (Dy − b) = 0, (5.21)

µ ̸= 0, y ◦ (y − eK) = 0. (5.22)

This proves that if (σ̄, τ̄ , µ̄) is a KKT solution of (Pd), then (5.18)-(5.20) are the so-

called primal feasibility conditions, while (5.21)-(5.22) are the so-called dual feasibility

conditions. Therefore, the vector

ȳ(σ̄, τ̄ , µ̄) = G+(µ̄)F(σ̄, τ̄ , µ̄)

is a KKT solution of Problem (P).
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Again, by the complementary conditions and (5.17), we have

P d(σ̄, τ̄ , µ̄) = −1

2
F(σ̄, τ̄ , µ̄)TG(µ̄)+F(σ̄, τ̄ , µ̄)− σ̄Tb− τ̄ Ten

=
1

2
ȳTBȳ − hT ȳ + σ̄T (Dȳ − b) + τ̄ T (Hȳ − en) + µ̄T (ȳ ◦ (ȳ − eK))

=
1

2
ȳTBȳ − hT ȳ = P (ȳ).

Therefore, the theorem is proved. 2

Remark 5.1. Since the inequality constraint µ ̸= 0 in the canonical dual problem (Pd)

produces a nonconvex feasible set, this constraint can be replaced by either µ < 0 or

µ > 0. Since the condition µ < 0 is corresponding to y ◦ (y − eK) ≥ 0, this leads to a

nonconvex open feasible set for the primal problem, it is reasonable to let µ > 0. In this

case, the KKT condition (5.22) should be replaced by

µ > 0, y ◦ (y − eK) ≤ 0, µT [y ◦ (y − eK)] = 0. (5.23)

Therefore, as long as µ ̸= 0 is satisfied, the complementarity condition in (5.23) leads to

the integer condition y ◦ (y − eK) = 0.

5.5 Global Optimality Criteria

To continue, let the feasible space Y of Problem (P) and the dual feasible space Z be

defined by

Y = {y ∈ RK : Dy ≤ b, Hy = en,y ◦ (y − eK) ≤ 0}

and

Sa = {ς = (σ, τ ,µ) ∈ S : σ ≥ 0,µ > 0},

respectively. Furthermore, we introduce a subset of the dual feasible space:

S+
a := {ς = (σ, τ ,µ) ∈ Sa : G(µ) ≻ 0}. (5.24)

We have the following theorem.

Theorem 5.3. Assume that ς̄ = (σ̄, τ̄ , µ̄) is a KKT point of P d(ς) and ȳ = G+(µ̄)F(ς̄).
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If ς̄ ∈ S+
a , then ȳ is a global minimizer of P (y) and ς̄ is a global maximizer of P d(ς) with

P (ȳ) = min
y∈Y

P (y) = max
ς∈S+

a

P d(ς) = P d(ς̄). (5.25)

Proof The canonical dual function P d(ς) is concave on S+
a . Therefore, a KKT point

ς̄ = (σ̄, τ̄ , µ̄) ∈ S+
a must be a global maximizer of P d(ς) on S+

a . For any given ς ∈ S+
a ,

the complementary function Ξ(y, ς) is convex in y and concave in (σ, τ ,µ), the critical

point (ȳ, ς̄) is a saddle point of the complementary function. More specifically, we have

P d(ς̄) = max
(σ,τ ,µ)∈S+

a

P d(ς)

= max
ς∈S+

a

min
y∈Y

Ξ(y, ς) = min
y∈Y

max
ς∈S+

a

Ξ(y, ς)

= min
y∈Y

max
ς∈S+

a

{
1

2
yTG(µ)y − (h−DTσ −HTτ + µ)Ty − σTb− τ Ten

}
= min

y∈Y
max
ς∈S+

a

{
1

2
yTBy − hTy + σT (Dy − b) + τ T (Hy − en) + µT [y ◦ (y − eK)]

}
= min

y∈Y
max
ς∈S+

a

{1
2
yTBy − hTy + ςTξ}.

Note that

max
ς∈S+

a

{W ♯(ς)} = 0

and

max
ξ∈Z

{W (ξ)} = 0.

Thus, it follows from (5.26) that

P d(ς̄) = min
y∈Y

max
ς∈S+

a

{1
2
yTBy − hTy + ςTξ −W ♯(ς)}

= min
y∈Y

{1
2
yTBy − hTy}+ max

ς∈S+
a

{ςTξ −W ♯(ς)}

= min
y∈Y

{1
2
yTBy − hTy}

= min
y∈Y

P (y).

This completes the proof. 2

Remark 5.2. By the fact that the inequality µ ̸= 0 in Problem (Pd) is replaced by the

unilateral inequality µ > 0 in the convex feasible set S+
a , the canonical dual function
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P d(ς) may have no KKT point in the (semi) open convex domain S+
a . If we let

S+
c = {ς = (σ, τ ,µ) ∈ S+

a : µ ≥ 0},

then on this closed convex domain, the concave maximization problem

(P♯) max{P d(ς)| ς ∈ S+
c } (5.26)

has at least one solution ς̄ = (σ̄, τ̄ , µ̄). If the corresponding ȳ = G+(µ̄)F(ς̄) is feasible,

then ȳ is a global minimizer of the primal problem (P). Otherwise, the value P (ȳ)

provides a lower bound to the primal problem (P). This is one of the main advantages

of the canonical duality theory.

5.6 Numerical Examples

All data and computational results presented in this section are produced within Matlab

environment. For proper display, all the elements of a matrix are rounded to two decimals.

Example 5.1. 5-dimensional problem.

Consider Problem (Pa) with x = [x1, · · · , x5]
T , while xi ∈ {2, 3, 5}, i = 1, · · · , 5,

Q =


3.43 0.60 0.39 0.10 0.60

0.60 2.76 0.32 0.65 0.49

0.39 0.32 2.07 0.59 0.39

0.10 0.65 0.59 2.62 0.30

0.60 0.49 0.39 0.30 3.34

 ,

c = [38.97,−24.17, 40.39,−9.65, 13.20]T ,

A =


0.94 0.23 0.04 0.65 0.74

0.96 0.35 0.17 0.45 0.19

0.58 0.82 0.65 0.55 0.69

0.06 0.02 0.73 0.30 0.18

 ,

b = [11.49, 9.32, 14.43, 5.66]T .

Under the transformation (5.3), this problem is transformed into the 0-1 programming
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Problem (P), where

y = [y1,1, y1,2, y1,3, · · · , y5,1, y5,1, y5,3]T ∈ R15,

B =



13.71 20.56 34.27 2.40 3.61 6.01 1.58 2.37 3.95 0.39 0.58 0.97 2.38 3.57 5.95

20.56 30.84 51.41 3.61 5.41 9.01 2.37 3.55 5.92 0.58 0.88 1.46 3.57 5.36 8.93

34.27 51.41 85.68 6.01 9.01 15.02 3.95 5.92 9.87 0.97 1.46 2.43 5, 95 8.93 14.88

2.40 3.61 6.01 11.05 16.57 27.61 1.27 1.91 3.18 2.61 3.91 6.52 1.95 2.93 4.88

3.61 5.41 9.01 16.57 24.85 41.42 1.91 2.86 4.77 3.91 5.87 9.78 2.93 4.39 7.32

6.01 9.01 15.02 27.61 41.42 69.03 3.18 4.77 7.96 6.52 9.78 16.31 4.88 7.32 12.20

1.58 2.37 3.95 1.27 1.91 3.18 8.27 12.40 20.67 2.37 3.55 5.92 1.57 2.36 3.93

2.37 3.55 5.92 1.91 2.86 4.77 12.40 18.60 31.00 3.55 5.33 8.89 2.36 3.53 5.90

3.95 5.92 9.87 3.18 4.77 7.96 20.67 31.00 51.67 5.92 8.86 14.81 3.93 5.90 9.83

0.39 5.58 0.97 2.61 3.91 6.52 2.37 3.55 5.92 10.50 15.74 26.24 1.20 1.80 3.00

0.58 0.88 1.46 3.91 5.87 9.78 3.55 5.33 8.89 15.74 23.62 39.36 1.80 2.70 4.50

0.97 1.46 2.43 6.52 9.78 16.31 5.92 8.89 14.81 26.24 39.36 65.60 3.00 4.50 7.51

2.38 3.57 5.95 1.95 2.93 4.88 1.57 2.36 3.93 1.20 1.80 3.00 13.35 20.02 33.37

3.57 5.36 8.93 2.93 4.39 7.32 2.36 3.54 5.90 1.80 2.70 4.50 20.02 30.04 50.06

5.95 8.93 14.88 4.88 7.32 12.20 3.93 5.90 9.83 3.00 4.50 7.51 33.37 50.06 83.43



,

h = [77.95, 116.92, 194.87,−48.34,−72.51,−120.85, 80.78, 121.17

201.96,−19.29,−28.94,−48.23, 26.39, 39.59, 65.99]T ,

D =


1.88 2.83 4.71 0.47 0.70 1.17 0.09 0.12 0.22 1.30 1.94 3.24 1.49 2.23 3.72

1.91 2.87 4.78 0.71 1.06 1.77 0.34 0.51 0.85 0.90 1.35 2.25 0.38 0.57 0.94

1.15 1.72 2.88 1.64 2.46 4.11 1.30 1.95 3.25 1.09 1.64 2.74 1.37 2.06 3.43

0.12 0.18 0.30 0.03 0.05 0.08 1.46 2.20 3.66 0.59 0.89 1.48 0.37 0.55 0.92

 ,

H =


1 · · · 1 0 · · · 0 · · · 0 · · · 0

0 · · · 0 1 · · · 1 · · · 0 · · · 0
...

. . .
...

...
. . .

...
. . .

...
. . .

...

0 · · · 0 0 · · · 0 · · · 1 · · · 1

 ∈ R5×15.

The canonical dual problem can be stated as follows:

(Pd) Maximize P d(ς) = −1

2
F(ς)TG+(µ)F(ς)− σTb− τ Te5

subject to ς = (σ, τ ,µ) ∈ R4+5+15, σ ≥ 0,µ > 0,

where F (ς) and G(µ) are as defined by (5.13) and (5.14), respectively.

By solving this dual problem with the sequential quadratic programming method in
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the optimization Toolbox within the Matlab environment, we obtain

σ̄ = [0, 0, 0, 0]T ,

τ̄ = [73.90,−106.70, 111.95,−59.27,−0.01]T ,

and

µ̄ = [39.34, 22.07, 12.49, 33.56, 3.01, 76.14, 61.00, 35.52

18.78, 1.47, 41.96, 0.001, 0.001, 0.006]T .

It is clear that ς̄ = (σ̄, τ̄ , µ̄) ∈ S+
c . Thus, from Theorem 5.3,

ȳ = (B + 2Diag (µ̄))+(h−DT σ̄ −HT τ̄ + µ̄)

= [0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]T

is the global minimizer of Problem (P) with P d(ς̄) = −227.87 = P (ȳ). The solution to

the original primal problem can be calculated by using the transformation

x̄i =

Ki∑
j=1

ui,j ȳi,j, i = 1, 2, 3, 4, 5,

to give

x̄ = [5, 2, 5, 2, 2]T

with P (x̄) = −227.87.

Example 5.2. 10-dimensional problem.

Consider Problem (Pa), with x = [x1, · · · , x10]
T , while xi ∈ {1, 2, 4, 7, 9}, i = 1, · · · , 10,

Q =



6.17 0.62 0.46 0.37 0.56 0.66 0.67 0.85 0.57 0.44

0.62 5.63 0.29 0.56 0.79 0.29 0.43 0.69 0.49 0.39

0.46 0.29 5.81 0.55 0.22 0.55 0.36 0.27 0.51 0.91

0.37 0.56 0.55 6.10 0.28 0.42 0.44 0.34 0.75 0.44

0.56 0.79 0.22 0.28 4.75 0.40 0.55 0.42 0.49 0.44

0.66 0.29 0.55 0.42 0.40 5.71 0.32 0.57 0.65 0.70

0.67 0.43 0.36 0.44 0.55 0.32 5.27 0.56 0.37 0.85

0.85 0.69 0.27 0.34 0.42 0.57 0.56 5.91 0.15 0.62

0.57 0.49 0.51 0.75 0.49 0.65 0.37 0.15 4.51 0.46

0.44 0.39 0.91 0.44 0.44 0.70 0.85 0.62 0.46 5.73



,
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f = [0.89, 0.03, 0.49, 0.17, 0.98, 0.71, 0.50, 0.47, 0.06, 0.68]T ,

A =


0.04 0.82 0.97 0.83 0.83 0.42 0.02 0.20 0.05 0.94

0.07 0.72 0.65 0.08 0.80 0.66 0.98 0.49 0.74 0.42

0.52 0.15 0.80 0.13 0.06 0.63 0.17 0.34 0.27 0.98

0.10 0.66 0.45 0.17 0.40 0.29 0.11 0.95 0.42 0.30

0.82 0.52 0.43 0.39 0.53 0.43 0.37 0.92 0.55 0.70

 ,

b = [33.76, 37.07, 26.75, 25.46, 37.36]T .

By solving the canonical dual problem of Problem (Pa), we obtain

σ̄ = [0, 0, 0, 0, 0]T ,

τ̄ = [−19.99,−20.12,−18.13,−18.37,−14.32,

−17.13,−18.46,−19.73,−17.65,−16.55]T ,

and

µ̄ = [9.51, 0.97, 21.93, 53.36, 74.34, 9.95, 0.21, 20.53, 51.01, 71.35

8.68, 0.77, 19.68, 48.03, 66.94, 8.30, 1.77, 21.91, 52.13, 72.27

6.40, 1.54, 17.39, 41.19, 57.04, 7.57, 1.98, 21.10, 49.77, 68.90

9.15, 0.16, 18.79, 46.72, 65.34, 9.82, 0.09, 19.90, 49.63, 69.45

8.76, 0.13, 17.92, 44.60, 62.39, 6.26, 4.03, 24.60, 55.48, 76.04]T ,

It is clear that ς̄ = (σ̄, τ̄ , µ̄) ∈ S+
c . Therefore,

ȳ = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0]T

is the global minimizer of the problem (P) with P d(ς̄) = 45.54 = P (ȳ). The solution to

the original primal problem is

x̄ = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T

with P (x̄) = 45.54.

Example 5.3. Relatively large size problems.

Consider Problem (Pa) with n = 20, 50, 100, 200 and 300. Let these five problems be
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referred to as Problem (1), · · · , Problem (5), respectively. Their coefficients are generated

randomly with uniform distribution. For each problem, qij ∈ (0, 1), aij ∈ (0, 1), for

i = 1, · · · , n; j = 1, · · · , n, and ci ∈ (0, 1), xi ∈ {1, 2, 3, 4, 5}, for i = 1, · · ·n. Without

loss of generality, we ensure that the constructed Q is a symmetric matrix. Otherwise,

we let Q = Q+QT

2
. Furthermore, let Q be such that it is diagonally dominated. For each

xi, its lower bound is li = 1, and its upper bound is ui = 5. Let l = [l1, · · · , ln]T and

u = [u1, · · · , un]
T . The right-hand sides of the linear constraints are chosen such that the

feasibility of the test problem is satisfied. More specifically, we set b =
∑

j aijlj + 0.5 ·
(
∑

j aijuj −
∑

j aijlj).

We then construct the canonical problem of each of the five problems. It is solved

by using the sequential quadratic programming method with active set strategy from the

Optimization Toolbox within the Matlab environment. The specifications of the personal

notebook computer used are: Window 7 Enterprise, Intel(R), Core(TM)(2.50 GHZ). Table

5.1 presents the numerical results, where m is the number of linear constraints in Problem

(Pa).

Table 5.1: Numerical results for large scale integer programming problems
n m CPU Time (Seconds)
20 5 1.77
50 5 6.23
100 5 26.05
200 5 136.29
300 5 408.59

From Table 5.1, we see that the algorithm based on the canonical dual method can

solve large scale problems with reasonable computational time. Furthermore, for each

of the five problems, the solution obtained is a global optimal solution. For the case of

n = 300, the equivalent problem in the form of Problem (Pb) has 1500 variables. For such

a problem, there are 21500 possible combinations.

5.7 Conclusion

We have presented a canonical duality approach to solving a general quadratic discrete

value selection problem with linear constraints. Our results show that this NP-hard

problem can be converted into a continuous concave dual maximization problem over a

convex space without duality gap. For certain given data, if this canonical dual has KKT

point in the dual feasible space S+
a , the problem can be solved by using well-developed

convex optimization methods. Several examples, including some relatively large scale

ones, were solved effectively by using the method proposed.





CHAPTER 6

Fix Charge Problem

This chapter presents a canonical dual approach for solving a mixed-integer quadratic

minimization problem with fixed cost terms [65]. We show that this well-known NP-hard

problem in R2n can be transformed into a continuous concave maximization dual problem

over a convex feasible subset of Rn with zero duality gap. We also discuss connections

between the proposed canonical duality theory approach and the classical Lagrangian

duality approach. The resulting canonical dual problem can be solved, under certain

conditions, by traditional convex programming methods. It turns out that an analyti-

cal solution for the mixed integer programming problem is obtained. Conditions for the

existence and uniqueness of global optimal solutions are presented. An application to a

decoupled mixed-integer problem is used to illustrate the derivation of analytic solutions

for both globally minimizing and maximizing the objective function. Numerical exam-

ples for both decoupled and general mixed-integral problems are presented, and an open

problem is proposed for future study.

6.1 Problem Statement

In this chapter, we address the following quadratic, mixed-integer fixed-charge problem

[7] [53]:

(P♭) : min

{
P (x,v) =

1

2
xTAx+ cTx+ fTv | (x,v) ∈ Xv

}
(6.1)

where A ∈ Rn×n is a given (generally indefinite) symmetric matrix, c, f ∈ Rn are given

vectors, the binary variable vector v ∈ {0, 1}n represents fixed-cost variables, and the

feasible space Xv is defined by

Xv = {(x,v) ∈ Rn × {0, 1}n | − v ≤ x ≤ v}. (6.2)

Problem (P♭) arises in mathematical economics, facility location, and lot-sizing appli-

cation contexts [2] [12] [48], where the constraints of the form x ∈ [−v,v] with v ∈ {0, 1}n

being referred to as fixed-charge constraints [73]. These types of constraints have received

59
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a great deal of attention in the integer programming [26] literature , and many different

types of valid inequalities have been developed to deal with this structure [9] [51]. Since

we do not assume that the matrix A is positive semidefinite, the problem remains NP-

hard, even with all the fixed-cost variables vi (i = 1, . . . , n) fixed to one [55] [72] [75] [87].

In order to numerically solve the latter continuous, box constrained quadratic program,

many effective methods have been developed [3] [4] [32] [33] [34] [49] [88] [89] [90]. Nat-

urally, the problem becomes even more challenging with the addition of the fixed-charge

feature.

6.2 Canonical Dual Transformation

In order to formulate a canonical dual problem that exhibits a zero duality gap, the key

step is to rewrite the variable box constraints −v ≤ x ≤ v, v ∈ {0, 1}n in the (relaxed)

quadratic form:

x ◦ x ≤ v, v ◦ (v − e) ≤ 0, (6.3)

where e = {1}n is an n-vector of all ones and the notation x ◦v := [x1v1, x2v2,. . ., xnvn]
T

denotes the Hadamard product for any two vectors x,v ∈ Rn. Accordingly, consider the

following (continuous relaxation) reformulation of the primal problem (P♭):

(Pr) min{P (x,v) =
1

2
xTAx+ cTx+ fTv : x ◦ x ≤ v, v ◦ (v − e) ≤ 0}. (6.4)

Introducing a nonlinear transformation (i.e., the so-called geometrical mapping):

y = Λ(x,v) =

(
ϵ(x)

ξ(x)

)
=

(
x ◦ x− v

v ◦ v − v

)
∈ R2n,

the constraints (6.3) can be replaced identically by Λ(x,v) ≤ 0. Let

V (y) =

{
0 if y ≤ 0 ∈ R2n

+∞ otherwise
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and let y∗ =

(
σ

τ

)
∈ R2n be the vector of dual variables associated with the corre-

sponding restrictions y ≤ 0. The sup-Fenchel conjugate of V (y) can be defined by

V ♯(y∗) = sup
y∈R2n

{⟨y,y∗⟩ − V (y)}

= sup
ϵ∈Rn

sup
ξ∈Rn

{ϵTσ + ξTτ − V (ϵ, ξ)}

=

{
0 if σ ≥ 0 ∈ Rn, τ ≥ 0 ∈ Rn,

+∞ otherwise.

By the theory of convex analysis, the following extended canonical duality relations hold:

y∗ ∈ ∂V (y) ⇔ y ∈ ∂V ♯(y∗) ⇔ V (y) + V ♯(y∗) = yTy∗, (6.5)

or equivalently:

ϵ ≤ 0 ⇔ σ ≥ 0 ⇔ ϵTσ = 0, (6.6)

ξ ≤ 0 ⇔ τ ≥ 0 ⇔ ξTτ = 0. (6.7)

Observe that the complementarity condition ξTτ = τ T (v ◦ v − v) = 0, ∀τ > 0 in (6.7)

leads to the integrality condition v ◦ v − v = 0.

Letting U(x) = −1
2
xTAx−cTx−fTv, the relaxed primal problem (Pr) can be written

in the following unconstrained canonical form:

(Pc) : min {Π(x,v) = V (Λ(x,v))− U(x,v) | x ∈ Rn, v ∈ Rn} . (6.8)

Firstly, we replace V (Λ(x,v)) in (6.8) by the Fenchel-Young equality

V (Λ(x,v)) = Λ(x,v)Ty∗(σ, τ )− V ♯(y∗(σ, τ )).

Then the total complementary function

Ξ(x,v,σ, τ ) : Rn × Rn × Rn × Rn → R ∪ {−∞}

associated with Problem (Pc) can be defined as given below:

Ξ(x,v,σ, τ ) = Λ(x,v)Ty∗(σ, τ )− V ♯(y∗(σ, τ ))− U(x,v)

=
1

2
xTG(σ)x+ cTx+ vTDiag (τ )v − (σ + τ − f)Tv − V ♯(y∗(σ, τ )),
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where

G(σ) = A+ 2Diag (σ), (6.9)

and the notation Diag (σ) stands for a diagonal matrix with σi, i = 1, ..., n, being its

diagonal elements. From this complementary function, we obtain the canonical dual

function Πd : Rn × Rn → R ∪ {−∞} as:

P d(σ, τ ) = sta{Ξ(x,v,σ, τ ) | x ∈ Rn,v ∈ Rn} = UΛ(σ, τ )− V ♯(σ, τ ), (6.10)

where UΛ(σ, τ ) is the Λ-conjugate transformation defined by

UΛ(σ, τ ) = sta{Λ(x,v)Ty∗(σ, τ )− U(x,v)| x ∈ Rn,v ∈ Rn}. (6.11)

Accordingly, introducing a dual feasible space

S♯ = {(σ, τ ) ∈ Rn × Rn| σ ≥ 0, τ > 0, c ∈ Col(G(σ))}, (6.12)

where Col(G) denotes the column space of G (i.e., a vector space spanned by the columns

of the matrix G), the canonical dual function can be formulated as

P d(σ, τ ) = UΛ(σ, τ ) = −1

2
cTG+(σ)c− 1

4

n∑
i=1

1

τi
(σi + τi − fi)

2, ∀(σ, τ ) ∈ S♯, (6.13)

where G+ denotes the Moore-Penrose generalized inverse of G. Denoting

P d(σ, τ ) = −1

2
cTG+(σ)c− 1

4

n∑
i=1

1

τi
(σi + τi − fi)

2 : S♯ → R, (6.14)

the proposed dual to (P♭) is then stated as follows:

(P♯) : max

{
P d(σ, τ ) = −1

2
cTG+(σ)c− 1

4

n∑
i=1

1

τi
(σi + τi − fi)

2 | (σ, τ ) ∈ S♯

}
.

(6.15)

For any given n-vectors t = {ti}n and s = {si}n, we denote t⊘ s = {ti/si}n.

Theorem 6.1 (Complementary-Dual Principle). Problem (P♯) is canonically (i.e., per-

fectly) dual to the primal problem (P♭) in the sense that if (σ̄, τ̄ ) ∈ S♯ is a KKT point of

(P♯), then the vector (x̄, v̄) defined by

x̄ = −G+(σ̄)c, (6.16)

v̄ =
1

2
(σ̄ + τ̄ − f)⊘ τ̄ (6.17)
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is a local optimal solution to the primal problem (P♭), and

P (x̄, v̄) = Ξ(x̄, v̄, σ̄, τ̄ ) = P d(σ̄, τ̄ ). (6.18)

Proof. By introducing Lagrange multipliers (ϵ, ξ) ∈ Rn
− × Rn

− associated with the re-

spective inequalities in (6.12) (where Rn
− is the nonpositive orthant of Rn), the Lagrangian

Θ : S♯ × Rn
− × Rn

− → R for Problem (P♯) is given by

Θ(σ, τ , ϵ, ξ) = P d(σ, τ )− ϵTσ − ξTτ . (6.19)

It is easy to prove that the criticality conditions

∇σΘ(σ̄, τ̄ , ϵ, ξ) = 0, ∇τΘ(σ̄, τ̄ , ϵ, ξ) = 0

lead to

ϵ = ∇σP d(σ̄, τ̄ ) = x̄(σ̄) ◦ x̄(σ̄)− v̄(σ̄, τ̄ ), (6.20)

ξ = ∇τP
d(σ̄, τ̄ ) = v̄(σ̄, τ̄ ) ◦ v̄(σ̄, τ̄ )− v̄(σ̄, τ̄ ), (6.21)

and the accompanying KKT conditions, which include

0 ≤ σ̄ ⊥ ϵ ≤ 0, (6.22)

0 < τ̄ ⊥ ξ ≤ 0, (6.23)

where x̄(σ̄) = −G+(σ̄)c, and v̄(σ̄, τ̄ ) = 1
2
(σ̄ + τ̄ − f) ⊘ τ̄ . By the strict inequality

condition τ̄ > 0, the complementarity condition τ̄ T (v̄ ◦ v̄− v̄) = 0 in (6.23 ) leads to the

integrality condition (v̄ ◦ v̄ − v̄) = 0. This shows that if (σ̄, τ̄ ) is a KKT point of the

problem (P♯), then (x̄, v̄) is a local optimal solution to the discrete primal problem (P♭).

By using (6.16) and (6.17), we have:

P d(σ̄, τ̄ ) =
1

2
cTG+(σ̄)c− cTG+(σ̄)c− 2v̄TDiag (τ̄ )v̄ + v̄TDiag (τ̄ )v̄

=
1

2
x̄TAx̄+ x̄TDiag (σ̄)x̄+ cT x̄− v̄T (σ̄ + τ̄ − f) + τ̄ T (v̄ ◦ v̄)

= Ξ(x̄, v̄, σ̄, τ̄ ) = P (x̄, v̄) + σ̄T (x̄ ◦ x̄− v̄) + τ̄ T (v̄ ◦ v̄ − v̄)

= P (x̄, v̄)

due to the complementarity conditions (6.22) and (6.23). This proves the theorem. 2

Remark 6.1. Theorem 6.1 shows that by the canonical duality theory, the NP-hard dis-

crete primal problem (P♭) is actually equivalent to a continuous dual problem (P♯) with

zero duality gap. If G(σ̄) is invertible, then the KKT point (σ̄, τ̄ ) of the canonical dual
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problem (P♯) is a critical point of the canonical dual function P d(σ, τ ).

2

6.3 Global Optimality Criteria

Theorem 6.1 shows that any KKT point of the canonical dual problem (Pd) leads to a

KKT point of the continuously reformulated primal problem (P♭). In this section, we

present global optimality conditions for the nonconvex problem (P♭). We first introduce

a useful feasible space:

S+
♯ = {(σ, τ ) ∈ Rn × Rn | σ ≥ 0, τ > 0, G(σ) ≻ 0} (6.24)

By the triality theory developed in [38], we have the following results, where y∗ = (σ, τ ).

Theorem 6.2. Suppose that the vector ȳ∗ = (σ̄, τ̄ ) ∈ S+
♯ is a critical point of the dual

function P d(σ, τ ). Let (x̄, v̄) =
(
−G+(σ̄)c, 1

2
(σ̄ + τ̄ − f)⊘ τ̄

)
.

If ȳ∗ ∈ S+
♯ , then ȳ∗ is a global maximizer of P d on S+

♯ . The vector (x̄, v̄) is a global

minimizer of P on Xv, and

P (x̄, v̄) = min
(x,v)∈Xv

P (x,v) = max
(σ,τ )∈S+

♯

P d(σ, τ ) = P d(σ̄, τ̄ ). (6.25)

Proof. By Theorem 6.1, we know that if the vector ȳ∗ is a critical point of the problem

(P♯), then the vector (x̄, v̄) defined by (6.16) and (6.17) is a local optimal solution to the

problem (P♭), and

P (x̄, v̄) = Ξ(x̄, v̄, σ̄, τ̄ ) = P d(σ̄, τ̄ ).

By the fact that the canonical dual function P d(y∗) is concave on S+
♯ , the critical point

ȳ∗ ∈ S+
♯ is a global maximizer of P d(y∗) over S+

♯ , and (x̄, v̄, ȳ∗) is a saddle point of the

total complementary function Ξ(x,v,y∗) on R2n ×S+
♯ , i.e., Ξ is convex in (x,v) ∈ R2n =

Rn × Rn and concave in y∗ ∈ S+
♯ . Thus, by the (right) saddle min-max duality theory

(see [38]), we have

P d(ȳ∗) = max
y∗∈S+

♯

P d(y∗) = max
y∗∈S+

♯

min
(x,v)∈R2n

Ξ(x,v,y∗) = min
(x,v)∈R2n

max
y∗∈S+

♯

Ξ(x,v,y∗)

= min
(x,v)∈R2n

{
P (x, v) + max

(σ,τ )∈S+
♯

{
Λ(x, v)Ty∗ − V ♯(y∗))

}}
= min

(x,v)∈Xv

P (x, v) = P (x̄, v̄)
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due to the fact that

V (Λ(x, v)) = sup
y∗∈S+

♯

{Λ(x, v)Ty∗ − V ♯(y∗)}

=

{
0 if (x, v) ∈ Xv,

+∞ otherwise.

This proves the statement (6.25).

2

Theorem 6.2 shows that, under the stated conditions, the nonconvex quadratic mixed-

integer minimization problem (P♭) is canonically dual to the following concave maximiza-

tion problem:

(P♯
+) : max

{
P d(σ, τ ) : (σ, τ ) ∈ S+

♯

}
. (6.26)

Since P d(σ, τ ) is a continuous concave function over a convex feasible space S+
♯ , if (σ̄, τ̄ ) ∈

S+
♯ is a critical point of P d(σ, τ ), it must be a global maximizer of the problem (P♯

+), and

the vector (x̄, v̄) =
(
−G+(σ̄)c, 1

2
(σ̄ + τ̄ − f)⊘ τ̄

)
is a global minimizer of the problem

(P♭). By the fact that for a fixed σ, the criticality condition ∇τP
d(σ, τ ) = 0 leads to

τ = |σ − f | > 0 ∈ Rn. Substituting this into P d(σ, τ ), we have

P g(σ) = −1

2
cTG+(σ)c−

n∑
i=1

(σi − fi)
+, (6.27)

where (ti)
+ = max{ti, 0}. Furthermore, let δ(t)+ = {δi(ti)+}n ∈ Rn, where

δi(ti)
+ =

{
1 if ti > 0

0 if ti < 0,
i = 1, · · · , n, (6.28)

and

S+
σ = {σ ∈ Rn| σ ≥ 0, σ ̸= f , G(σ) ≻ 0}. (6.29)

Then, the canonical dual problem (P♯
+) can be written in the following simple form:

(Pg
+) : max

{
P g(σ) : σ ∈ S+

σ

}
. (6.30)

Theorem 6.3 (Analytic solution to (P♭)). For given A ∈ Rn×n and c, f ∈ Rn, if σ̄ ∈ S+
σ

is a critical point of P g(σ), then the vector

(x̄, v̄) = (−G+(σ̄)c, δ(σ̄ − f)+) (6.31)

is a global minimizer of (P♭).
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This theorem can be proved easily by using Theorem 6.2. In the next section, we will

study certain existence and uniqueness conditions for the canonical dual problem to have

a critical point in S+
σ .

6.4 Existence and Uniqueness Criteria

Definition 6.1. A function f : Rn → R is said to be coercive if for every sequence

{xv} ⊂ Rn for which ∥xv∥ → ∞ it must be the case that f(xv) → ∞ as well.

Let

∂S+
σ = {σ ∈ S+

σ : detG(σ) = 0}. (6.32)

Then, we have the following theorem:

Theorem 6.4 (Existence and Uniqueness Criteria). For a given matrix A ∈ Rn×n and

vectors c, f ∈ Rn, if for any given σ ∈ S+
σ ,

lim
α→0+

cT [G(σo + ασ)]+c = ∞ and lim
α→∞

cT [G(σo + ασ)]+c ≥ 0, ∀σo ∈ ∂S+
σ , (6.33)

then the canonical dual problem (Pg
+) has at least one critical point σ̄ ∈ S+

σ and the vector

(x̄, v̄) =
(
−G+(σ̄)c, δ(σ̄ − f)+

)
is a global optimizer of the primal problem (P♭). Moreover, if

ci ̸= 0, σ̄i − fi ̸= 0, ∀i = 1, . . . , n, (6.34)

then the vector (x̄, v̄) is a unique global minimizer of (P♭).

Proof. By the fact that, on S+
σ , we have

∂G+(σ)

∂σk

= −G+(σ)
∂G(σ)

∂σk

G+(σ),

the Hessian of the quadratic form −1
2
cTG+(σ)c is:

H1σ2(σ) = {−4xi(σ)G
+
ij(σ)xj(σ)}, (6.35)

where x(σ) = −G+(σ)c. Therefore, the Hessian matrix of the dual objective function P d

is:

H(σ, τ ) = ∇2P d(σ, τ ) =

(
H1σ2 +H2σ2 Hστ

Hτσ Hτ2

)
,
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where

H2σ2 = Diag

{
− 1

2τi

}
,

Hστ = Hτσ = Diag

{
(σi − fi)

2τ 2i

}
,

Hτ2 = Diag

{
−(σi − fi)

2

2τ 3i

}
.

It is clear that

H1σ2(σ) ≼ 0, H2σ2(τ ) ≺ 0, Hτ2(σ, τ ) ≼ 0, ∀(σ, τ ) ∈ S+
♯ , (6.36)

H1σ2(σ) ≽ 0, H2σ2(τ ) ≻ 0, Hτ2(σ, τ ) ≽ 0, ∀(σ, τ ) ∈ S−
♭ . (6.37)

For any given non-zero vector w = (s, t) ∈ R2n, we have

wTH(σ, τ )w = sTH1σ2(σ)s+
n∑

i=1

− 1

2τi

(
si − ti

σi − fi
τi

)2

. (6.38)

Thus

∇2P d(σ, τ ) ≼ 0 if (σ, τ ) ∈ S+
♯ ,

∇2P d(σ, τ ) ≽ 0 if (σ, τ ) ∈ S−
♭ .

Therefore, P d(σ, τ ) is concave on S+
♯ , convex on S−

♭ , and P g(σ) is concave on S+
σ . From

the conditions in (6.33), we have, for any σ0 ∈ ∂S+
σ ,

lim
α→0+

P g(σo + ασ) = −∞, ∀σ ∈ S+
σ , (6.39)

and

lim
α→∞

P g(σo + ασ) = −∞, ∀σ ∈ S+
σ . (6.40)

(6.39) and (6.40) show that the canonical dual function P g(σ) is concave and coercive on

the convex set S+
σ . Therefore, by the theory of convex analysis [80], we know that the

canonical dual problem (Pg
+) has at least one critical point σ̄ ∈ S+

σ . Because for convex

problem, critical points are always global optimizer [1], so σ̄ is a global maximizer of

P g(σ) over S+
σ . By Theorem 6.2, the corresponding vector (x̄, v̄) is a global optimizer

of the primal problem (P♭). Moreover, if the conditions in (6.34) hold, then H1σ2(σ) ≺
0; Hτ2(σ, τ ) ≺ 0, ∀(σ, τ ) ∈ S+

♯ , and the Hessian ∇2P d(σ, τ ) ≺ 0, i.e., P d(σ, τ ) is

strictly concave on S+
♯ . Therefore, (Pd) has a unique critical point in S+

♯ , which implies

that (Pg
+) has a unique critical point in S+

σ and that the primal problem has a unique
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global minimizer. 2

6.5 Application to Decoupled Problem

We now apply the theory presented in this chapter to a decoupled system. For simplicity,

let A = Diag (a) be a diagonal matrix with a = {ai} ∈ Rn being its diagonal elements.

Now, consider the following extremal problem:

max

{
P (x,v) =

n∑
i=1

(
1

2
aix

2
i + cixi + fivi

)}
(6.41)

s.t. − vi ≤ xi ≤ vi, vi ∈ {0, 1}, i = 1, . . . , n. (6.42)

For this decoupled problem, the canonical dual function has a simple form given by

P d(σ, τ ) = −1

2

n∑
i=1

(
c2i

ai + 2σi

+
(σi + τi − fi)

2

2τi

)
. (6.43)

By Theorem 6.2, if the critical point (ς, τ ) ∈ S+
♯ , then the corresponding primal

solution is:

(xi, vi) =
(
− ci

ai+2σi
, fi+σi+τi

2τi

)
, ∀ i = 1, · · · , n. (6.44)

The global extrema of the primal problem can be determined by the following theorem:

Theorem 6.5. For any given a, c, f ∈ Rn, if ci ̸= 0,

− 1

2
[ai − |ci|] ≥ 0, and fi −

1

2
[ai − |ci|] > 0, ∀ i = 1, · · · , n, (6.45)

then the canonical dual function P d has a unique critical point

(−1

2
[ai − |ci|], ∀ i = 1, . . . , n; fi −

1

2
[ai − |ci|], ∀ i = 1, . . . , n) (6.46)

which is a global maximizer of P d(σ, τ ) on S+
♯ , and

(x♯,v♯) =

(
{− ci

|ci|
, i = 1, · · · , n}, e

)
(6.47)

is a global minimizer of P (x,v) on Xv.

On the other hand, if ci ̸= 0,

min
i=1,··· ,n

{
−1

2
(ai ± ci)

}
< 0, min

i=1,··· ,n

{
fi −

1

2
(ai ± ci)

}
< 0, (6.48)
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then the canonical dual function P d has a unique critical point

(σ♭, τ ♭) =

(
min

i=1,··· ,n

{
−1

2
(ai ± ci)

}
, min
i=1,··· ,n

{
fi −

1

2
(ai ± ci)

})
∈ S−

♭ , (6.49)

which is a global minimizer of P d(σ, τ ) on S−
♭ and

(x♭,v♭) =

({
ci
|ci|

, i = 1, · · · , n
}
, e

)
(6.50)

is a global maximizer of P (x,v) on Xv.

6.6 Numerical Examples

6.6.1 Two-dimensional decoupled problem

Let a1 = −3, a2 = 2, c1 = 5, c2 = −8, f1 = −2, and f2 = 2. The canonical dual function

P d has a total of nine critical points (σ, τ )k, k = 1, . . . , 9, and the corresponding results

are listed below:

(σ, τ )1 = (4, 3, 2, 5), (x,v)1 = (−1, 1, 1, 1), P d
1 = −13.5;

(σ, τ )2 = (2, 3, 0, 5), (x,v)2 = (0, 1, 0, 1), P d
2 = −9.0;

(σ, τ )3 = (4,−2, 2, 0), (x,v)3 = (−1, 0, 1, 0), P d
3 = −4.5;

(σ, τ )4 = (−1, 3,−3, 5), (x,v)4 = (1, 1, 1, 1), P d
4 = −3.5;

(σ, τ )5 = (2,−2, 0, 0), (x,v)5 = (0, 0, 0, 0), P d
5 = 0;

(σ, τ )6 = (4,−5, 2,−3), (x,v)6 = (−1,−1, 1, 1), P d
6 = 2.5;

(σ, τ )7 = (−1,−2,−3, 0), (x,v)7 = (1, 0, 1, 0), P d
7 = 5.5;

(σ, τ )8 = (2,−5, 0,−3), (x,v)8 = (0,−1, 0, 1), P d
8 = 7;

(σ, τ )9 = (−1,−5,−3,−3), (x,v)9 = (1,−1, 1, 1), P d
9 = 12.5.

By the fact that (σ, τ )1 ∈ S+
♯ , we can tell that (x,v)1 is a global minimizer of P (x,v).

6.6.2 General nonconvex problem

Let n = 10 and let c, f and A be chosen randomly as follows:

c = {16,−13,−12,−18,−11, 7, 11, 16,−4, 18}T ,

f = {11, 5, 13, 18, 6, 4,−16, 16,−20,−3}T ,
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A =



10 9 9 9 1 9 4 1 5 9

2 5 7 3 2 10 7 2 8 2

7 2 6 6 2 2 6 1 7 5

5 5 2 9 6 3 9 5 7 8

2 9 1 9 8 10 9 4 4 5

8 2 1 9 7 3 7 3 1 4

4 2 8 2 2 6 6 2 4 2

4 7 7 10 2 5 7 5 6 3

3 6 9 10 1 8 6 5 9 5

7 7 2 7 7 3 7 7 8 6



.

By solving the canonical dual problem (Pg
+), we obtain the global maximizer

σ̄ = [6.9, 6.9, 6.3, 9.8, 3.9, 2.9, 15.995, 11.5, 116, 8.0]T ,

and

τ̄ = [17.9, 11.9, 19.3, 27.8, 9.9, 6.9, 0.005, 27.5, 8.4, 5.0]T .

The global minimizer of the primal problem (P) is then given by

x̄ = [−1.0, 1.0, 1.0, 1.0, 1.0,−1.0, 0,−1.0, 0,−1.0]T ,

and

v̄ = [1, 1, 1, 1, 1, 1, 0, 1, 0, 1]T ,

with P d(σ̄, τ̄ ) = −181 = P (x̄, v̄).

6.7 Conclusions

We have studied in this chapter an application of canonical duality theory to solve the

mixed-integer quadratic optimization problem (P♭) and its co-problem (P♯). Using an

appropriate quadratic mapping y = Λ(x,v) = (x◦x−v, v ◦v−v), the given nonconvex

mixed-integer primal problem was converted into a canonical dual problem in continuous

space, and its relationship with the classical Lagrangian duality under a similar trans-

formation was revealed. Theorem 6.2 shows that the canonical dual problem (P♯) is a

concave maximization over the convex dual feasible space S+
♯ and the co-dual (P♭) is a

convex minimization problem on S−
♭ . Therefore, both problems can be solved via convex

programming optimization methods. Theorem 6.3 shows that the mixed-integer program-

ming problem in R2n is canonically dual to a simplified concave maximization problem

(Pg
+) over a convex feasible set S+

σ ⊂ Rn, which can be solved by well-developed convex
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minimization techniques. Certain existence and uniqueness conditions related to critical

points belonging to a derived dual feasible space for yielding a zero duality gap were

established in Theorem 6.4.





CHAPTER 7

Nonconvex Constrained Optimization

This chapter presents a canonical duality theory for solving a general nonconvex quadratic

minimization problem with nonconvex constraints. By using the canonical dual transfor-

mation, the nonconvex primal problem can be converted into a canonical dual problem

(i.e., either a concave maximization or a convex minimization problem with zero duality

gap). The global extremum of the nonconvex problem can be identified by the triality

theory associated with the canonical duality theory. Illustrative applications to quadratic

minimization with multiple quadratic constraints, box/integer constraints, and general

nonconvex polynomial constraints are discussed, along with insightful connections to clas-

sical Lagrangian duality. Criteria for the existence and uniqueness of optimal solutions

are presented. Several numerical examples are provided.

7.1 Introduction

We are interested in solving the following general constrained nonlinear programming

problem:

(P) : min {P (x) =
1

2
xTAx− xT f : x ∈ Xk}, (7.1)

where A = {Aij} ∈ Rn×n is an indefinite symmetric matrix, f ∈ Rn is a given vector, the

feasible space Xk ⊂ Rn is defined as

Xk = {x ∈ Xa| g(x) ≤ d ∈ Rm}, (7.2)

where g(x) = {gα(x)} : Xa → Rm is a given vector-valued differentiable (not necessary

convex) function, Xa is a convex open set in Rn, and d ∈ Rm is a given vector.

The problem (P) involves minimizing a nonconvex quadratic function over a nonconvex

feasible space. By introducing a Lagrangian multiplier vector σ ∈ Rm
+ = {σ ∈ Rm| σ ≥ 0}

to relax the inequality constraints in Xk, the classical Lagrangian L : Xa × Rm
+ → R is

given by

L(x,σ) =
1

2
xTAx− xT f + σT (g(x)− d). (7.3)

73
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If all the components of g(x) are convex functions, and A ≽ 0, i.e., positive semidef-

inite (PSD), then Problem (P) has a convex quadratic objective function and convex

constraints, and the Lagrangian is a saddle function, i.e., L(x,σ) is convex in the pri-

mal variables x, concave (linear) in the dual variables (Lagrange multipliers) σ, and the

Lagrangian dual problem can be easily defined by the Fenchel-Moreau-Rockafellar trans-

formation

P ∗(σ) = inf
x∈Xa

L(x,σ), (7.4)

where, under certain constraint qualifications that insure the existence of a Karush-Kuhn-

Tucker (KKT) solution [14], we have the following strong min-max duality relation:

inf
x∈Xk

P (x) = sup
σ∈Rm

+

P ∗(σ). (7.5)

In this case, the problem can be solved easily by any well-developed convex programming

technique.

However, due to the assumed nonconvexity of Problem (P), the Lagrangian L(x,σ) is

no longer a saddle function and the Fenchel-Young inequality leads to only the following

weak duality relation in general:

inf
x∈Xk

P (x) ≥ sup
σ∈Rm

+

P ∗(σ). (7.6)

The slack θ = inf P (x) − supP ∗(σ) in the inequality (7.6) is called the duality gap in

global optimization. Very often, we have θ = ±∞. This duality gap shows that the well-

developed Fenchel-Moreau-Rockafellar duality theory can be used only for solving convex

minimization problems. Also, due to the nonconvexity of the objective function and/or

constraints, the problem may have multiple local solutions. The identification of a global

minimizer has been a fundamentally challenging task in global optimization.

In the next section, we will show how to use the canonical dual transformation to

convert the nonconvex constrained problem into a canonical dual problem, in order to

derive related global optimality conditions.

7.2 Canonical Dual Transformation

For convenience, we introduce an indicator function of the feasible set Xk:

W (ϵ) =

{
0 if ϵ ≤ d

+∞ otherwise
(7.7)
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and let

U(x) = xT f − 1

2
xTAx.

Then the primal problem (P) can be written in the following unconstrained form:

min {P (x) = W (g(x))− U(x) : x ∈ Xa} . (7.8)

By the Fenchel transformation, the conjugate function W ♯(σ) of W (ϵ) can be defined by

W ♯(σ) = sup
ϵ∈Rm

{ϵTσ −W (ϵ)} =

{
dTσ if σ ≥ 0

+∞ otherwise,
(7.9)

which is convex and l.s.c. (lower semi-continuous) on Rm. From convex analysis [80], the

following relations hold for (ϵ,σ) ∈ Rm × Rm:

σ ∈ ∂W (ϵ) ⇔ ϵ ∈ ∂W ♯(σ) ⇔ W (ϵ) +W ♯(σ) = ϵTσ.

Replacing W (g(x)) in Π(x) by the Fenchel-Young equality W (g(x)) = gT (x)σ−W ♯(σ),

the extended Lagrangian Ξo : Xa ×Rm → R ∪ {∞} associated with Problem (7.8) can be

given as:

Ξo(x,σ) = gT (x)σ −W ♯(σ)− U(x). (7.10)

Clearly, we have Ξo(x,σ) = L(x,σ), ∀(x,σ) ∈ Xa × Rm
+ .

Since g(x) is a nonconvex function, following the standard procedure of the canonical

dual transformation, we assume that there exists a geometrical operator

ξ = {ξαβ} = Λ(x) : Xa ⊂ Rn → Ea ⊂ Rm×pα , (7.11)

and a canonical function V : Ea → Rm such that the nonconvex constraint g(x) can be

written in the canonical form:

g(x) = V (Λ(x)), (7.12)

and the duality mapping

ς = {ςβα} = ∇V (ξ) =

{
∂Vα(ξ)

∂ξαβ

}
: Ea → E∗

a ⊂ Rpα×m (7.13)

is invertible. We note that the geometric variable ξ = {ξαβ} is an m × pα matrix, while

its canonical dual variable ς = {ςβα} is a pα ×m matrix. For the constrained problem (P)

considered in this chapter, the dimension pα of the geometrical variable ξ = {ξαβ} depends

on each given constraint gα(x) ≤ dα, α = 1, . . . ,m. Let Iα = {β| β ∈ {1, . . . , pα}} be an
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index set and let

⟨ξ; ς⟩ =

{∑
β∈Iα

ξαβ ς
β
α

}
: Ea × E∗

a → Rm

denote the partial bilinear form on the product space Ea ×E∗
a . Thus, the Legendre conju-

gate V ∗ : E∗
a → Rm of V can be defined by

V ∗(ς) = sta{⟨ξ; ς⟩ − V (ξ) : ξ ∈ Ea},

where the notation sta{∗} denotes computing the stationary points of {∗}. By the assump-

tion that the duality relation (7.13) is invertible (i.e., canonical), the Legendre conjugate

V ∗(ς) is uniquely defined on E∗
a and the inverse duality relation can be written as:

ξ = ∇V ∗(ς) =

{
∂V ∗

α (ς)

∂ςβα

}
. (7.14)

It is easy to verify that the following equivalent relations hold on Ea × E∗
a :

ς = ∇V (ξ) ⇔ ξ = ∇V ∗(ς) ⇔ ⟨ξ; ς⟩ = V (ξ) + V ∗(ς). (7.15)

Noting that (7.12) and (7.15) are used to replace g(x) in (7.10), we obtain

V (Λ(x)) = ⟨Λ(x); ς⟩ − V ∗(ς).

Define the generalized total complementary function Ξ : Xa × Rm
+ × E∗

a → R as:

Ξ(x,σ, ς) = σT [⟨Λ(x); ς⟩ − V ∗(ς)− d] +
1

2
xTAx− xT f , (7.16)

where σ ∈ Rm
+ is the dual variable vector associated with g(x) ≤ d ∈ Rm. Through this

total complementary function, the canonical dual function is defined by

P d(σ, ς) = sta {Ξ(x,σ, ς) : x ∈ Xa} = UΛ(σ, ς)− σT (V ∗(ς) + d), (7.17)

where UΛ(σ, ς) is the parametric Λ-conjugate function of the quadratic function U(x) =

−1
2
xTAx+ xT f defined by the following conjugate transformation [37]:

UΛ(σ, ς) = sta{σT ⟨Λ(x); ς⟩ − U(x) : x ∈ Xa}. (7.18)

Let Sk ⊂ Rm
+ × E∗

a be a canonical dual feasible space on which the canonical dual

function P d(σ, ς) is well defined. Then, the canonical dual problem can be posed as

follows:

(Pd) : max{P d(σ, ς) : (σ, ς) ∈ Sk}. (7.19)
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Theorem 7.1 (Complementary-Dual Principle). Problem (Pd) is canonically dual to the

primal problem (P) in the sense that if (x̄, σ̄, ς̄) is a critical point of Ξ(x,σ, ς) over

(x,σ, ς) ∈ Xa × Rm
+ × E∗

a , then x̄ is a KKT point of (P), (σ̄, ς̄) is a KKT point of (Pd),

and

P (x̄) = Ξ(x̄, σ̄, ς̄) = P d(σ̄, ς̄). (7.20)

Proof. If (x̄, σ̄, ς̄) is a critical point of Ξ, then we have the following criticality conditions

∇xΞ(x̄, ς̄, σ̄) = σ̄T ⟨Λt(x̄); ς̄⟩+Ax̄− f = 0, (7.21)

∇ςΞ(x̄, ς̄, σ̄) = Λ(x̄)−∇V ∗(ς̄) = 0, (7.22)

where Λt(x) = ∇Λ(x) denotes the derivative of Λ, along with the conditions

0 ≤ σ̄ ⊥ (⟨Λ(x̄); ς̄⟩ − V ∗(ς̄)− d) ≤ 0, (7.23)

where the notation ⊥ represents the complementarity or orthogonality condition. Since

(ξ, ς) is a canonical duality pair on Ea × E∗
a , the criticality condition (7.22) is equivalent

to ς̄ = ∇ξV (Λ(x̄)) = ∂V (ξ(x̄))/∂ξ. Substituting this into (7.21) and using the chain rule

to deduce ∇g(x̄) = ⟨Λt(x̄);∇ξV (Λ(x̄))⟩, we have

Ax̄− f + σ̄T∇g(x̄) = ∇xL(x̄, σ̄) = 0.

This is the criticality condition of the primal problem (P). By the Legendre equality

⟨Λ(x̄); ς̄⟩ − V ∗(ς̄) = V (Λ(x̄)), the condition (7.23) can be written as:

0 ≤ σ̄ ⊥ (g(x̄)− d) ≤ 0.

This shows that x̄ is a KKT point of the primal problem (P). From the complementarity

condition (7.23), we have

Ξ(x̄, σ̄, ς̄) = P (x̄).

On the other hand, by the definition of the canonical dual function, if (x̄, σ̄, ς̄) is a KKT

point, the criticality condition (7.21) leads to

UΛ(σ̄, ς̄) = σ̄T ⟨Λ(x̄); ς̄⟩ − U(x̄).

Therefore, Ξ(x̄, σ̄, ς̄) = P d(σ̄, ς̄) and (σ̄, ς̄) is a KKT point of the dual problem (Pd). 2

This theorem shows that there is no duality gap between the primal problem and its

canonical dual. In order to identify the global minimizer, we need to study the convexity

of the generalized complementary function Ξ(x,σ, ς). Without losing much generality,
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we introduce the following assumptions:

(A1) the geometrical operator Λ(x) : Rn → Ea is twice differentiable; and

(A2) the canonical function V : Ea → Rm is convex.

By Assumptions (A1) and (A2), we know that the conjugate function V ∗(ς) : E∗
a → Rm

is also convex, and for any given (σ, ς) ∈ Sk, the generalized complementary function

Ξ(x,σ, ς) is twice differentiable on x. Let Ga(x,σ, ς) = ∇2
xΞ(x,σ, ς) denote the Hessian

matrix of Ξ(x,σ, ς) and let

S+
k = {(σ, ς) ∈ Sk | Ga(x,σ, ς) ≽ 0, ∀x ∈ Xa} (7.24)

be a subset of Sk. We have the following theorem.

Theorem 7.2 (Global Optimality Condition). Suppose that Assumptions (A1) and (A2)

hold and that (x̄, σ̄, ς̄) is a critical point of Ξ(x,σ, ς). If (σ̄, ς̄) ∈ S+
k , then (σ̄, ς̄) is a

global maximizer of P d on S+
k and x̄ is a global minimizer of P on Xk, i.e.,

P (x̄) = min
x∈Xk

P (x) = max
(σ,ς)∈S+

k

P d(σ, ς) = P d(σ̄, ς̄). (7.25)

Proof. By the convexity of V (ξ), its Legendre conjugate V ∗ : E∗
a → Rm is also convex.

Thus, for any given σ ∈ Rm
+ , the linear combination σTV ∗(ς) : E∗

a → R is convex

and the generalized complementary function Ξ(x,σ, ς) is concave in ς. By considering

σ ∈ Rm
+ as a Lagrange multiplier for the inequality constraint in Xc, the complementary

function Ξ(x,σ, ς) can be viewed as a concave (linear) function of σ ∈ Rm
+ for any given

(x, ς) ∈ Xa × E∗
a . Therefore, for any given x ∈ Rn, we have

max
σ∈Rm

+

max
ς∈E∗

a

Ξ(x,σ, ς) = max
σ∈Rm

+

L(x,σ) =

{
P (x) if x ∈ Xc,

∞ otherwise .

Moreover, if (σ, ς) ∈ S+
k , then Ξ(x,σ, ς) is convex in x ∈ Xa and concave in ς for any

given σ ∈ Rm
+ . Therefore, if (x̄, σ̄, ς̄) is a critical point of Ξ, we have

min
x∈Xk

P (x) = min
x∈Xa

max
(σ,ς)∈S+

k

Ξ(x,σ, ς) = Ξ(x̄, σ̄, ς̄)

= max
(σ,ς)∈S+

k

min
x∈Xa

Ξ(x,σ, ς) = max
(σ,ς)∈S+

k

P d(σ, ς).

By Theorem 7.1, we have (7.25). 2

This theorem provides a sufficient condition for a global minimizer of the nonconvex

primal problem. In many applications, the geometrical mapping Λ(x) : Xa → Ea is usually
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a quadratic operator

Λ(x) =

{
1

2
xTBα

βx+ xTCα
β

}
: Rn → Ea ⊂ Rm×pα , (7.26)

where Bα
β = {Bα

ijβ} = {Bα
jiβ} ∈ Rn×n, Cα

β = {Cα
iβ} ∈ Rn, and the range Ea depends on

both Bα
β and Cα

β . In this case, the generalized complementary function has the form:

Ξ(x,σ, ς) =
1

2
xTGa(σ, ς)x− σT (V ∗(ς) + d)− xTF(σ, ς), (7.27)

where

Ga(σ, ς) = A+
m∑

α=1

∑
β∈Iα

σαB
α
βς

β
α (7.28)

is the Hessian matrix of Ξ(x,σ, ς), which does not depend on x, and

F(σ, ς) = f −
m∑

α=1

∑
β∈Iα

σαC
α
βς

β
α . (7.29)

The criticality condition (7.21) in this case is a linear equation of x, i.e.,

Ga(σ, ς)x = F(σ, ς). (7.30)

Clearly, for a given (σ, ς), if F(σ, ς) is in the column space of Ga(σ, ς), denoted by

Col(Ga), the solution of the equation (7.30) can be written in the form:

x = G+
a (σ, ς)F(σ, ς), (7.31)

where G+
a is the Moore-Penrose generalized inverse of Ga. Thus, the canonical dual

feasible space Sk can be defined as:

Sk = {(σ, ς) ∈ Rm
+ × E∗

a | F(σ, ς) ∈ Col(Ga)}, (7.32)

and the canonical dual function P d can be formulated as:

P d(σ, ς) = −1

2
F(σ, ς)TG+

a (σ, ς)F(σ, ς)− σT (V ∗(ς) + d). (7.33)

Since Λ(x) is a quadratic operator, its derivative is an affine operator

Λt(x) = ∇Λ(x) = xTBα
β +Cα

β .
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The complementary operator Λc(x) of Λt is defined by

Λc(x) = Λ(x)− Λt(x)x = −1

2
xTBα

βx. (7.34)

Thus, the complementary gap function can be defined as:

G(x,σ, ς) = σT ⟨−Λc(x); ς⟩+
1

2
xTAx =

1

2
xTGa(σ, ς)x. (7.35)

This gap function plays an important role in nonconvex analysis and global optimization.

Clearly, G(x,σ, ς) ≥ 0 ∀x ∈ Xa if Ga(σ, ς) ≽ 0. Let

S+
k = {(σ, ς) ∈ Sk | Ga(σ, ς) ≽ 0}, (7.36)

Theorem 7.3. Suppose that Λ(x) is a quadratic operator defined by (7.26) and Assump-

tion (A2) holds.

If (σ̄, ς̄) ∈ Sk is a critical point of (Pd), then x̄ = G+
a (σ̄, ς̄)F(σ̄, ς̄) is a KKT point of

(P) and P (x̄) = P d(σ̄, ς̄).

If the critical point (σ̄, ς̄) ∈ S+
c , then (σ̄, ς̄) is a global maximizer of P d(σ, ς) on S+

k ,

the vector x̄ is a global minimizer of P (x) on Xk, and

P (x̄) = min
x∈Xk

P (x) = max
(σ,ς)∈S+

k

P d(σ, ς) = P d(σ̄, ς̄). (7.37)

Proof. If (σ̄, ς̄) ∈ Sk is a critical point of (Pd), we have

δςP
d(σ̄, ς̄) = σ̄T (Λ(x̄)−∇V ∗(ς̄)) = 0, (7.38)

0 ≤ σ̄ ⊥ δσP d(σ̄, ς̄) = ⟨Λ(x̄); ς̄⟩ − V ∗(ς̄)− d ≤ 0, (7.39)

where x̄ = G+
a (σ̄, ς̄)F(σ̄, ς̄). Equation (7.38) asserts that if σ̄α ̸= 0, then the correspond-

ing ξα(x̄) = Λα(x̄) = ∇ςαV
∗(ς̄). By the fact that (Λ(x̄), ς̄) is a canonical duality pair on

Ea × E∗
a , from the equivalent relations in (7.15), we have ⟨Λ(x̄); ς̄⟩ − V ∗(ς̄) = V (Λ(x̄)) =

g(x̄). Therefore, the complementarity condition in (7.39) leads to σ̄α(gα(x̄)− dα) = 0. If

σ̄α ̸= 0, we have the criticality condition gα(x̄) − dα = 0. This shows that if (σ̄, ς̄) is a

critical point of P d(σ, ς), the vector x̄ = G+
a (σ̄, ς̄)F(σ̄, ς̄) is a KKT point of (P).

2
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7.3 Quadratic Constrained Problems

We begin by considering the following nonconvex quadratic minimization problem with

quadratic inequality constraints, denoted by (Pq).

(Pq) :

{
min

{
P (x) = 1

2
xTAx− xT f

}
s.t. 1

2
xTBαx+ xTCα ≤ dα, α = 1, . . . ,m,

(7.40)

where Bα = {Bα
ij} = {Bα

ji} ∈ Rn×n, Cα = {Cα
i } ∈ Rn,∀ α = 1, · · · ,m, and d = {dα} ∈

Rm is a vector. Due to the nonconvex cost function and nonconvex inequality constraints,

this problem is known to be NP-hard.

Since the constraint g(x) is a vector-valued quadratic function defined on Xa = Rn,

we simply let

g(x) = Λ(x) =

{
1

2
xTBαx+ xTCα

}
: Rn → Rm. (7.41)

Compared with (7.26), we have pα = 1 and the canonical function V (ξ) = ξ is a self-

mapping. Therefore, the canonical dual variable ς = ∇V (ξ) = I is an identity matrix

in Rm×m and V ∗(ς) = sta{⟨ξ; ς⟩ − ξ| ξ ∈ Rm} = 0. In this case, the generalized

complementary function (7.27) has a very simple form:

Ξq(x,σ) =
1

2
xTGq(σ)x− xTFq(σ)− σTd, (7.42)

where

Gq(σ) = A+
m∑

α=1

σαB
α, and Fq(σ) = f −

m∑
α=1

σαC
α. (7.43)

Therefore, on the dual feasible space

Sq = {σ ∈ Rm
+ | Fq(σ) ∈ Col(Gq)}, (7.44)

the canonical dual function P d
q can be formulated as

P d
q (σ) = −1

2
Fq(σ)

TG+
q (σ)Fq(σ)− σTd. (7.45)

In this case, the complementary gap function has a simple form:

G(x,σ) =
1

2
xTGq(σ)x, (7.46)

which is nonnegative on Rn if Gq(σ) ≽ 0. Let

S+
q = {σ ∈ Sq| Gq(σ) ≽ 0}, S−

q = {σ ∈ Sq| Gq(σ) ≺ 0}. (7.47)
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Then the canonical dual problem for this quadratic constrained problem is given by

(Pd
q ) : max{P d

q (σ) : σ ∈ S+
q }. (7.48)

And we have the following result.

Theorem 7.4. The problem (Pd
q ) is canonically dual to the primal problem (Pq) in the

sense that for each critical point σ̄ ∈ Sq of (Pd
q ), the vector x̄ = G+

q (σ̄)Fq(σ̄) is a KKT

point of (Pq) and P (x̄) = P d(σ̄).

Particularly, if the critical point σ̄ ∈ S+
q , then σ̄ is a global maximizer of (Pd

q ). The

vector x̄ is a global minimizer of (Pq), and

P (x̄) = min
x∈Xk

P (x) = max
σ∈S+

q

P d
q (σ) = P d

q (σ̄). (7.49)

If Gq(σ̄) ≻ 0, then σ̄ is the unique global maximizer of (Pd
q ) and the vector x̄ = G−1

q (σ̄)Fq(σ̄)

is the unique global minimizer of (Pq).

Theorem 7.4 shows that the Hessian matrix of the complementary gap functionG(x,σ)

provides sufficient and uniqueness conditions for globally minimizing the quadratic con-

strained problem (Pq). In order to study the existence theory, we need to introduce the

following sets:

∂Sq = {σ ∈ Rm| detGq(σ) = 0}, (7.50)

∂S+
q = {σ ∈ Sq| detGq(σ) = 0}. (7.51)

Theorem 7.5. Suppose that for given matrices A, {Bα}, {Cα} and vectors f , d, there

exists at least one σ0 ∈ S+
q such that Gq(σ0) ≽ 0 and

lim
∥σ∥ → ∞
σ ∈ S+

q

P d
q (σ) = −∞. (7.52)

Then the canonical dual problem (Pd
q ) has at least one KKT point σ̄ ∈ S+

q . If σ̄ ∈ S+
q is

also a critical point of P d
q (σ), then x̄ = G+

q (σ̄)Fq(σ̄) is a global minimizer for the primal

problem (Pq).

Moreover, if ∂Sq ⊂ Rm
+ , there exists at least one σ0 ∈ S+

q such that Gq(σ0) ≻ 0, and

lim
σ → ∂S+

q

σ ∈ S+
q

P d
q (σ) = −∞, (7.53)

then the canonical dual problem (Pd
q ) has a unique global maximizer σ̄ ∈ S+

q and x̄ =

G−1
q (σ̄)Fq(σ̄) is a unique global minimizer for the primal problem (Pq).
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Proof. By the fact that the feasible space S+
q is a semi-closed convex set whose boundary

∂S+
q is a hyper surface in Rm, if there exists a σ0 such that Gq(σ0) ≽ 0, then S+

q is not

empty. Since the canonical dual function P d
q (σ) is continuous and concave on S+

q , which

is finite on ∂S+
q , if the condition (7.52) holds, then P d

q (σ) has at least one maximizer on

S+
q .

Moreover, if ∂Sq ⊂ Rm
+ , then S+

q ⊂ Rm
+ . If there exists a σ0 such that Gq(σ0) ≻ 0,

then S+
q is non-empty and has at least one interior point. Under the conditions (7.52)

and (7.53), the canonical dual function P d
q (σ) is strictly concave and coercive on the open

convex set S+
q \∂S+

q . Therefore, the canonical dual problem (Pq) has a unique maximizer

σ̄ ∈ S+
q that is a critical point of P d

q (σ). 2

Theorem 7.5 shows that under conditions (7.52) and (7.53), the canonical dual function

P d
q (σ) has a unique maximizer σ̄ on the open feasible space

S‡
q = {σ ∈ Sq| Gq(σ) ≻ 0}. (7.54)

In this case, the matrix Gq(σ) is invertible on S‡
q and the canonical dual function P d

q can

be written as:

P d
q (σ) = −1

2
Fq(σ)

TG−1
q (σ)Fq(σ)− σTd. (7.55)

Particularly, if m = 1 and C = 0, Problem (Pq) has only one quadratic constraint

g(x) = 1
2
xTBx ≤ d. Therefore, the canonical dual function has only one variable:

P d
q (σ) = −1

2
fT (A+ σB)−1f − σd, (7.56)

and the criticality condition ∇P d
q (σ) = 0 leads to a nonlinear algebraic equation

1

2
fT (A+ σB)−1B(A+ σB)−1f = d, (7.57)

which can be solved easily to obtain all dual solutions. Moreover, if B = I is an identity

matrix in Rn, then the constraint 1
2
xTBx = 1

2
∥x∥2 ≤ d is an n-dimensional sphere.

7.4 Nonconvex Polynomial Constrained Problems

We now assume that g(x) is a general fourth order polynomial constraint given by

g(x) =

{∑
β∈Iα

1

2
Dβ

α

(
1

2
xTBα

βx+ xTCα
β − Eα

β

)2
}

≤ d, (7.58)
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where Bα
β = {Bα

ijβ} ∈ Rn×n and Cα
β = {Cα

iβ} ∈ Rn are given as before, Iα is a (finite)

index set that depends on each index α = 1, . . . ,m, and {Dβ
α} and {Eα

β } are two given

second order tensors. We assume that Dβ
α > 0, ∀α ∈ {1, . . . ,m}, β ∈ Iα.

By introducing a geometrical measure

ξ = Λ(x) = {ξαβ} =

{
1

2
xTBα

βx+ xTCα
β

}
: Rn → Ea,

where the range of Ea depends on the tensors {Bα
β} and {Cα

β}, the canonical function

V (ξ) =

{∑
β∈Iα

1

2
Dβ

α

(
ξαβ − Eα

β

)2}
: Ea → Rm

is a quadratic function. Thus, the canonical duality relation

ς = ∇V (ξ) = {Dβ
α(ξ

α
β − Eα

β )} : Ea → E∗
a

is a linear mapping, where the range of E∗
a depends on the tensors {Dβ

α} and {Eα
β }. The

Legendre conjugate V ∗ can be defined uniquely as:

V ∗(ς) =

{∑
β∈Iα

(
1

2Dβ
α

(ςβα)
2 + Eα

β ς
β
α

)}
. (7.59)

Substituting this into (7.33), the canonical dual function has the following form:

P d(σ, ς) = −1

2
F(σ, ς)TG+

a (σ, ς)F(σ, ς)−
m∑

α=1

∑
β∈Iα

(
σα

(
1

2Dβ
α

(ςβα)
2 + Eα

β ς
β
α + dα

))
,

(7.60)

which is concave on the dual feasible space

S+
c = {(σ, ς) ∈ Rm

+ × E∗
a | F(σ, ς) ∈ Col(Ga), Ga(σ, ς) ≽ 0}. (7.61)

Remark 7.1. It is again insightful to view the connection between the canonical dual

(7.60) and the classical Lagrangian dual. In this case, we have

L(x,σ) =
1

2
xTAx− xT f + σT (g(x)− d) . (7.62)

Clearly, without introducing the canonical dual pair (ξ, ς), the Fenchel-Moreau-Rockafellar

dual P ∗(σ) = infx∈Xa L(x,σ) cannot be defined explicitly due to the high order nonlin-

earity of the constraint g(x) ≤ d. However, by using the canonical dual transformation
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ξ = Λ(x) and the chain rule, the necessary condition ∇xL(x,σ) = 0, leads to

Ax− f +
m∑

α=1

∑
β∈Iα

(
σας

β
α(B

α
βx+Cα

β)
)
= 0. (7.63)

This is the canonical equilibrium equation Ga(σ, ς)x = F(σ, ς), where

ς ≡ ∂V (Λ(x))

∂ξ
(7.64)

is as defined above. If Ga(σ, ς) is invertible for (σ, ς) ∈ Sk as defined in (7.32), it follows

from (7.63) that x uniquely satisfies x = G−1
a (σ, ς)F(σ, ς). Furthermore, by (7.63), we

get
1

2
xTAx =

1

2
xT f − 1

2

m∑
α=1

∑
β∈Iα

σας
β
α[x

TBα
βx+ xTCα

β ]. (7.65)

Substituting for 1
2
xTAx in (7.62) using (7.65), and then applying the optimality condition

x = G−1
a (σ, ς)F(σ, ς), the Lagrangian dual function reduces precisely to P d(σ, ς) defined

in (7.60) under the global optimality condition (σ, ς) ∈ S+
c . Note that ∇ςΞ(x,σ, ς) = 0

produces the inverse of the identity (7.64) under the relevant case when σα ̸= 0, ∀α =

1, . . . ,m, thus validating the foregoing derivation.

We now present some special cases.

7.4.1 Quadratic minimization with one nonconvex polynomial

constraint

We first assume that the primal problem has only one nonconvex constraint

g(x) =
1

2

(
1

2
xTBx+ xTc− η

)2

≤ d, (7.66)

where B is an n × n matrix, c ∈ Rn is a vector, and η > 0 is a constant. In this case,

m = |Iα| = 1, and

Ga(σ, ς) = A+ σςB, F(σ, ς) = f − σςc.

The canonical dual function is

P d(σ, ς) = −1

2
FT (σ, ς)G+

a (σ, ς)F(σ, ς)− σ

(
1

2
ς2 + ης + d

)
. (7.67)
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7.4.2 Combined quadratic and nonconvex polynomial constraints

We now consider the problem with the following two constraints:

g1(x) =
1

2
xTB1x+ xTC1 ≤ d1,

g2(x) =
1

2

(
1

2
xTB2x+ xTC2 − η

)2

≤ d2.

In this case, m = 2, Iα = {1}, for α = 1, 2, and the geometrical operator

ξ = Λ(x) =

{
1

2
xBαx+ xTCα

}
: Rn → R2

is a 2-vector. The canonical function V (ξ) is a vector-valued function

V (ξ) = {ξ1,
1

2
(ξ2 − η)2}.

The canonical dual variable is ς = ∇V (ξ) = [1, ξ2 − η]T . Since ς1 = 1, we let ς2 = ς.

Thus, the canonical dual function has only three variables (σ1, σ2, ς) ∈ R3, i.e.,

P d(σ1, σ2, ς) = −1

2
F(σ1, σ2, ς)

TG+
a (σ1, σ2, ς)F(σ1, σ2, ς)− σ1d1 − σ2

(
1

2
ς2 + ης + d2

)
,

(7.68)

where

Ga(σ1, σ2, ς) = A+ σ1B
1 + σ2ςB

2, F(σ1, σ2, ς) = f − σ1C
1 − σ2ςC

2.

7.5 Numerical Examples

Example 7.1 In 2-D space, let

A =

(
3 0.5

0.5 −2.0

)
, B =

(
1 0

0 0.5

)
, and f =

(
1

1.5

)
.

Clearly, the matrix A is indefinite, and B is positive definite. Setting d = 2, the graph

of the primal function P (x) = 1
2
xTAx − xT f is a saddle surface (see Fig. 7.1), and the

boundary of the feasible set Xk = {x ∈ R2| 1
2
xTBx ≤ d} is an ellipse (see Fig. 7.1). In

this case, the canonical dual function (7.56) can be formulated as:

P d
q (σ) = −1

2
(1 1.5)

(
3 + σ 0.5

0.5 −2 + 0.5σ

)−1(
1

1.5

)
− 2σ,
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which has four critical points (see Fig. 7.2):

σ̄1 = 5.08 > σ̄2 = 3.06 > σ̄3 = −2.46 > σ̄4 = −3.68.

Since Gq(σ̄1) ≻ 0 , it yields that x1 = (−0.05, 2.83)T is a global minimizer located on the

boundary of Xk. We have

P (x1) = −12.25 = P d(σ̄1).
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Figure 7.1: Graph of P (x) (left); contours of P (x) and boundary of Xk (right) for
Example 7.1
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Figure 7.2: Graph of P d(σ).

Example 7.2 In 2-D space, let B be an identity matrix, c = 0, and A a diagonal

matrix with a11 = 0.6, a12 = a21 = 0, and a22 = −0.5. Setting f = [0.2,−0.1]T , d = 1,

and η = 1.5, the constraint g(x) ≤ d is an annulus (see Fig. 7.3 (right)). Solving the dual

problem, we get

σ̄ = 0.3829201, and ς̄ = 1.4142136.

The primal solution

x̄ =

[
0.1752033

−2.4078477

]
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is located on the boundary of the feasible set Xk (see Fig. 7.3) and we have

P (x̄) = −1.7160493 = P d(σ̄, ς̄).
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Figure 7.3: Graph of P (x) (left); contours of P (x) and boundary of Xk (right) for
Example 7.2.

Example 7.3 Let A be a 2 × 2 diagonal matrix, where a11 = −0.4, a12 = a21 = 0,

and a22 = 0.6. Setting f = [0.3,−0.15]T , B1 = B2 = I, C1 = C2 = 0, d1 = 2,

d2 = 1.2, and η = 1.7, the graph of the objective function P (x1, x2) is a saddle surface

(Fig. 7.4 (left)), the constraint g1(x1, x2) = 1
2
(x2

1 + x2
2) ≤ 2 is a disk of radius 2, while

g2(x1, x2) = 1
2

(
1
2
(x2

1 + x2
2)− 1.7

)2 ≤ 1.2 represents an annulus (see Fig. 7.4 (right)).

Solving the dual problem, we get

σ̄1 = 0.5503198, σ̄2 = 0, and ς̄ = 0.3159349.

The primal solution is therefore

x̄ =

[
1.9957445

−0.1303985

]
,

which is located on the boundary g1(x̄1, x̄2) = 0, and

P (x̄) = −1.4097812 = P d(σ̄1, σ̄2, ς̄).

7.6 Conclusions

We have presented a detailed application of the canonical duality theory to the general

differentiable nonconvex optimization problem. This problem arises in many real-world
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Figure 7.4: (a) Graph of P (x); (b) Contours of P (x), constraints g1(x1, x2) ≤ d1 (disk with
radius R ≤ 2, dashed circle), and g2(x1, x2) ≤ d2 (annulus with radius 0.55 ≤ R ≤ 2.55)
for Example 7.3.

applications. Using the canonical dual transformation, a unified canonical dual problem

was formulated with zero duality gap, which can be solved by well-developed nonlinear

optimization methods. The global optimizer can be identified by the triality theory.

Insightful connections of this canonical duality with the classical Lagrangian duality have

also been presented for two special cases.

Generally speaking, optimal solutions for constrained nonconvex minimization prob-

lems are usually KKT points located on the boundary of the feasible sets. Due to the

lack of global optimality criteria, it is very difficult for direct methods and the classical

Lagrangian relaxations to find global minimizers [82]. However, by the canonical duality

theory, these KKT points can be determined by the critical points of the canonical dual

problems. The triality theory can be used to develop effective algorithms for solving these

problems.





CHAPTER 8

Nonlinear Systems of Equations

8.1 Problem Statement

We are interested in solving the following general nonlinear system of m quadratic equa-

tions:

(P0) : Q(x) = Λ(x) +Bx− c = 0, (8.1)

where x = {xi} ∈ Rn is an unknown vector, c = {cα} ∈ Rm is a given data, B = {bαi } ∈
Rm×n is a matrix such that Bx = {

∑
i b

α
i xi} is a vector in Rm, and Λ : Rn → Rm is a

quadratic operator defined by

Λ(x) = xTAx =
∑
i

∑
j

xiA
α
ijxj, α = 1, . . . ,m, (8.2)

in which, A = {Aα
ij} ∈ Rn×m×n is a given three-order tensor.

Problem (P0) arises extensively in many complex systems of engineering science, data

mining, chemistry, biomedicine, information theory, network communications, and ecology

[32] [60] [61] [98]. The system is called under determined if n > m, and over determined if

n < m. In either case, problem (P0) possesses very high computation complexity, O(nm),

due to several numerical issues [56] [23].

By using the least square method, Problem (P0) can be relaxed as the following

unconstrained optimization problem ((P) for short):

(P) : min

{
P (x) =

1

2
∥Λ(x) +Bx− c∥2 : x ∈ Rn

}
, (8.3)

where ∥y∥ represents the Euclidian norm of y.

Lemma 8.1. If x̄ is a solution to (P0), then x̄ must be a solution to (P). On the other

hand, if (P0) has no solution, then Problem (P) provides at least one optimal solution to

Problem (P0).

Proof. The necessary condition ∇P (x̄) = 0 for the unconstrained minimization problem

91
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(P) leads to the following equilibrium equation

(2Ax̄+B)T (Λ(x̄) +Bx̄− c) = 0. (8.4)

Clearly, if x̄ is a solution to (P0), i.e.,

Λ(x̄) +Bx̄− c = 0, (8.5)

then x̄ must be a critical point of P (x). By the fact P (x̄) = 0, we know that x̄ is a

(global) minimizer of P (x). On the other hand, if the problem (P0) has no solution, then

E(x) = Λ(x) + Bx − x ̸= 0. Since the polynomial P (x) = ∥E(x)∥2 ≥ 0 ∀x ∈ Rn

is bounded below and coercive, i.e., limx→∞ P (x) = ∞, the unconstrained minimization

problem (P) has at least one solution x̄. 2

In the linear case that Λ(x) = 0 and n > m, Problem (P) is convex and the optimality

condition leads to a linear equation

BTBx = BTc. (8.6)

Clearly, this linear equation has at least one solution if BTc is in the column space of

BTB. It has a unique solution if rank B = m < n.

Generally speaking, the target function P : Rn → R is a fourth-order polynomial:

P (x) = W (x) +
1

2
xTBTBx− cTΛ(x)− cT (Bx) + d, (8.7)

where W (x) = 1
2
Λ(x)TΛ(x) + (Bx)TΛ(x) and d = 1

2
cTc, Problem (P) may have multiple

local extremal solutions. The standard techniques for solving nonconvex problems are

mainly Newton type iteration methods [49] [50]. It was shown that the solutions to

nonconvex minimization problems are difficult to be captured by Newton type direct

approaches [42] [43]. From the criticality condition (8.4), we know that if x̄ solves the

linear equation

2Ax̄+B = 0, (8.8)

it is also a critical point of P (x). However, due to the fact that P (x̄) = 1
2
∥1
4
BTA−1B +

c∥2 > 0, this critical point is neither a solution to (P), nor a solution to (P0). Actually,

due to the lack of global optimality conditions, many nonconvex minimization problems

in global optimization are considered as NP-hard [31] [72] [92].
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8.2 Canonical Dual Transformation

Following the standard procedure of the canonical dual transformation, we introduce a

quadratic geometrical measure

ξ = Λ(x) = xTAx ∈ Rm. (8.9)

Thus, the nonconvex function W (x) = 1
2
Λ(x)TΛ(x) + (Bx)TΛ(x) can be written in the

canonical form

W (x) = V (Λ(x),x), (8.10)

where V (ξ,x) = 1
2
ξTξ + (Bx)Tξ, i.e., the duality relation

ς =
∂V (ξ,x)

∂ξ
= ξ +Bx ∈ Rm (8.11)

is invertible for any given ξ ∈ Rm. Thus, (ξ, ς) forms a canonical duality pair on Rm×Rm

(see [38]) and the Legendre conjugate V ∗ can be uniquely defined by

V ∗(ς,x) = sta{ξT ς − V (ξ,x) : ξ ∈ Rm} =
1

2
(ς −Bx)2, (8.12)

where sta{} denotes finding the stationary point of the statement in {}.
Replacing W (x) = V (Λ(x),x) by Λ(x)ς − V ∗(ς,x), the total complementary function

can be defined as:

Ξ(x, ς) = Λ(x)T ς − V ∗(ς,x) +
1

2
xTBTBx− cTΛ(x)− cT (Bx) + d

=
1

2
xTG(ς)x− xTF (ς)− 1

2
ςT ς + d,

where

G(ς) = 2(ς − c)TA =

{
m∑

α=1

2(ςα − cα)Aα
ij

}
∈ Rn×n, (8.13)

F (ς) = (c− ς)TB =

{
m∑

α=1

(cα − ςα)Bα
i

}
∈ Rn. (8.14)

For a fixed ς, the criticality condition ∇xΞ(x, ς) = 0 leads to the following canonical

equilibrium equation:

G(ς)x = F (ς). (8.15)

On the canonical dual feasible space Sa ⊂ Rm defined by

Sa = {ς ∈ Rm}, (8.16)
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the solution of the canonical equilibrium equation can be uniquely determined as x =

G+(ς)F (ς). Substituting this result into the total complementary function Ξ, the canon-

ical dual problem can be finally formulated as:

(Pd) : sta

{
P d(ς) = −1

2
F (ς)TG+(ς)F (ς)− 1

2
ςT ς + d : ς ∈ Sa

}
. (8.17)

Theorem 8.1 (Complementary-Dual Principle). If ς̄ is a critical point of (Pd), then the

vector

x̄ = G+(ς̄)F (ς̄) (8.18)

is a critical point of (P) and P (x̄) = P d(ς̄).

Proof. Suppose that ς̄ is a critical point of (Pd). Then,

∇P d(ς̄) = x̄(ς̄)TAx̄(ς̄) +Bx̄(ς̄)− ς̄ = 0, (8.19)

where x̄ = G+(ς̄)F (ς̄). Therefore, ς̄ = x̄TAx̄+Bx̄ = Λ(x̄) +Bx̄.

On the other hand,

P (x̄) =
1

2
Λ(x̄)TΛ(x̄) + (Bx̄)TΛ(x̄) +

1

2
x̄TBTBx̄− cTΛ(x̄)− cT (Bx̄) +

1

2
cTc

=
1

2
(Λ(x̄) +Bx̄)2 − cTΛ(x̄)− cT (Bx̄) +

1

2
cTc.

Thus,

x̄ =
1

2
((ς̄ − c)TA)+((c− ς̄)TB)

is a critical point of the primal problem (P).

Moreover, in terms of x̄ = G+(ς̄)F (ς̄), we have

P d(ς̄) = −1

2
F (ς̄)TG(ς̄)F (ς̄)− 1

2
ς̄T ς̄ + d

=
1

2
x̄T (2(ς̄ − c))TAx̄− x̄T ((c− ς̄)TB)− 1

2
ς̄T ς̄ +

1

2
cTc

= ς̄TΛ(x̄)− 1

2
ς̄T ς̄ + (Bx̄)T ς̄ − cTΛ(x̄)− cT (Bx̄) +

1

2
cTc

=
1

2
ς̄T ς̄ − cTΛ(x̄)− cT (Bx̄) +

1

2
cTc

=
1

2
Λ(x̄)TΛ(x̄) + (Bx̄)TΛ(x̄) +

1

2
(Bx̄)T (Bx̄)− cTΛ(x̄)− cT (Bx̄) +

1

2
cTc

= P (x̄)

This proves the theorem. 2
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This theorem shows that the problem (Pd) is canonically dual to the primal problem

(P) in the sense that P (x̄) = P d(ς̄) at each critical point.

8.3 Global Optimality Criteria

It is known that the criticality condition is only necessary for local minimization of the

nonconvex problem (P). In order to identify global extrema among the critical points of

Problem (P), we need to introduce one useful feasible spaces

S+
a = {ς ∈ Sa | G(ς) ≻ 0}. (8.20)

Thus, we have the following result.

Theorem 8.2. Suppose that the vector ς̄ is a critical point of the canonical dual function

P d(ς̄). Let x̄ = G+(ς̄)F (ς̄). If ς̄ ∈ S+
a , then ς̄ is a global maximizer of P d(ς) on S+

a . The

vector x̄ is a global minimizer of P (x) on Rn, and

P (x̄) = min
x∈Rn

P (x) = max
ς∈S+

a

P d(ς) = P d(ς̄). (8.21)

Proof. By Theorem 8.1, we know that the vector ς̄ ∈ Sa is a critical point of Problem

(Pd) if and only if x̄ = G+(ς̄)F (ς̄) is a critical point of Problem (P), and

P (x̄) = Ξ(x̄, ς̄) = P d(ς̄).

By the fact that the canonical dual function P d(ς) is concave on S+
a , the critical point

ς̄ ∈ S+
a is a global maximizer of P d(ς) over S+

a , and (x̄, ς̄) is a saddle point of the total

complementary function Ξ(x, ς) on Rn × S+
a , i.e., Ξ is convex in x ∈ Rn and concave in

ς ∈ S+
a . Thus, by the saddle min-max duality theory (see [38]), we have

P d(ς̄) = max
ς∈S+

a

P d(ς) = max
ς∈S+

a

min
x∈Rn

Ξ(x, ς) = min
x∈Rn

max
ς∈S+

a

Ξ(x, ς)

= min
x∈Rn

{−cTΛ(x)− cT (Bx) +
1

2
cTc+ max

ς∈S+
a

{Λ(x)T ς + (Bx)T ς − 1

2
ςT ς}}

= min
x∈Rn

{−cTΛ(x)− cT (Bx) +
1

2
cTc+

1

2
((Λ(x̄) +Bx̄)T (Λ(x̄) +Bx̄))}

= min
x∈Rn

{1
2
Λ(x)TΛ(x) + (Bx)TΛ(x) +

1

2
(Bx)T (Bx)− cTΛ(x)− cT (Bx) +

1

2
cTc}

= min
x∈Rn

P (x) = P (x̄).

This proves the statement (8.21).
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This theorem shows that the extremality criteria of the primal problem are controlled

by the critical points of the canonical dual problem, i.e., if ς̄ ∈ S+
a , the vector x̄(ς̄) is a

global minimizer of (P).

Remark 8.1 (Perturbed Primal and Dual Problems). Generally speaking, the solutions

to the nonlinear problem (P0) are not unique and the associated optimization problem

(P) may have multiple global minima. In order to solve Problem (P) more efficiently by

the canonical duality theory, we introduce the following perturbed problem

(Pϵ) : min
{
Pϵ(x) = P (x) + ϵTx : x ∈ Rn

}
, (8.22)

where ϵ ≥ 0 ∈ Rn is a given perturbation vector. By the triality theory, the perturbed

canonical dual problem is

(Pd
ϵ )max : max

{
P d
ϵ (ς) = −1

2
Fϵ(ς)

TG+(ς)Fϵ(ς)−
1

2
ςT ς + d : ς ∈ S+

a

}
, (8.23)

where

Fϵ(ς) = (c− ς)TB − ϵ =

{
m∑

α=1

(cα − ςα)Bα
i − ϵi

}
∈ Rn. (8.24)

It is easy to prove that the canonical dual function P d
ϵ (ς) is concave on S+

a . Therefore, for

a given perturbation vector ϵ ∈ Rn, if the canonical dual feasible space S+
a is not empty,

this perturbed canonical dual problem can be solved to yield a unique solution.

8.4 Numerical Examples

We now list a few examples to illustrate the applicability of the theory presented in this

chapter. In order to find the global minimizer, we need to add a perturbation term.

Example 8.1 We first consider a two dimension problem with only one equation

(m = 1):

Q(x) = [x1, x2]
T

[
A11 A12

A12 A22

][
x1

x2

]
+ [b1, b2]

T

[
x1

x2

]
− c = 0.

Clearly, this equation has infinite number of solutions. The perturbed primal problem is

a nonconvex minimization problem in R2:

min

Pϵ(x) =
1

2

(
[x1, x2]

T

[
A11 A12

A12 A22

][
x1

x2

]
+ [b1, b2]

T

[
x1

x2

]
− c

)2

+ ϵTx : x ∈ R2

 .



8.4 Numerical Examples 97

On the dual feasible space

Sa = {ς ∈ R},

the canonical dual problem has the form of

P d
ϵ (ς) = −1

2
Fϵ(ς)

TG+(ς)Fϵ(ς)−
1

2
ς2 +

1

2
c2,

where

G(ς) =

[
2(ς − c)A11 2(ς − c)A12

2(ς − c)A12 2(ς − c)A22

]
, Fϵ(ς) =

[
(c− ς)b1

(c− ς)b2

]
− ϵ.

If we choose A11 = 0.5, A22 = 0.3, A12 = 0.2, b1 = 2, b2 = −1, c = 0.2, ϵ = [0.2, 0.2]T ,

the dual problem has three critical points (see Figure 8.2):

ς̄3 = −5.68 < ς̄2 = 0.12 < ς̄1 = 0.28.

Since ς̄1 ∈ S+
a , we know that x̄1 = [−4.80, 0.60]T is a global minimizer; while x̄2 =

[−2.49, 7.54]T is a local minimizer, and x̄3 = [−3.62, 4.14]T is a local maximizer (see

Figure 8.1). We have

Pϵ(x̄1) = −0.84 = P d
ϵ (ς̄1) < Pϵ(x̄2) = 1.01 = P d

ϵ (ς̄2) < Pϵ(x̄3) = 17.40 = P d
ϵ (ς̄3).
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Figure 8.1: Graph of Pϵ(x) (left); contours of Pϵ(x) (right) for Example 8.1

By the fact that

P (x̄1) = 0.00305261 < P (x̄2) = 0.00313757,

both x̄1 and x̄2 are perturbed solutions to the original problem (P0) and it is easy to
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Figure 8.2: Graph of P d
ϵ (ς) for example 8.1.

verify that

Q(x̄1) = 0.0781359, Q(x̄2) = −0.07921557.

Since P (x̄3) = 17.2917, the local maximizer x̄3 is a perturbed solution to the linear

equation (8.8) and

2Ax̄3 +B =

[
0.0340092

0.0340092

]
.

Example 8.2 Let n = 3, m = 2 such that the primal problem is

min

{
Pϵ(x) =

1

2
((xTA1x+B1x− c1)2 + (xTA1x+B1x− c1)2) + ϵTx : x ∈ R3

}
,

where

A1 =

 A1
11 A1

12 A1
13

A1
21 A1

22 A1
23

A1
31 A1

32 A1
33

 , A2 =

 A2
11 A2

12 A2
13

A2
12 A2

22 A2
23

A2
31 A2

32 A2
33

 ,

B1 = [b11, b
1
2, b

1
3], B2 = [b21, b

2
2, b

2
3].

Let

G(ς1, ς2) = 2((ς1 − c1)A1 + (ς2 − c2)A2) ∈ R3×3,

Fϵ(ς1, ς2) = (c1 − ς1)B
1 + (c2 − ς2)B

2 − ϵ ∈ R3.

On the dual feasible space

Sa = {(ς1, ς2) ∈ R2| detG(ς1, ς2) ̸= 0},
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the perturbed canonical dual function has the form of

P d
ϵ (ς1, ς2) = − 1

2
Fϵ(ς1, ς2)

TG+(ς1, ς2)Fϵ(ς1, ς2)−
1

2
(ς21 + ς22 ) +

1

2
(c21 + c22).

Assume that

A1 =

 0.1 0 0

0 0.7 0

0 0 0.6

 , A2 =

 0.8 0 0

0 0.4 0

0 0 0.3

 ,

B1 = [0.4, 0.9, 0.8]T , B2 = [0.9, 0.7, 0.6]T ,

c1 = 0.8, c2 = 0.6, ϵ = [0.05, 0.05, 0.05]T .

The perturbed canonical dual problem has a unique solution ς̄ = [0.8212, 0.6295]T on S+
a ,

which leads to the global minimizer x̄ = [−1.65299,−1.68412,−1.962245]T . It is easy to

check that Pϵ(x̄) = −0.2642 = P d
ϵ (ς̄). The graph of P d

ϵ (x) and its contours are shown in

Figure 8.3.
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Figure 8.3: Graph of P d
ϵ (ς) (left); contours of P

d(ς) (right) for Example 8.2.

By the fact that

P (x̄) = 0.000756,

we know that x̄ is a perturbed solution to the original problem (P0) and it is easy to
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verify that

Q(x̄) =

[
0.0224805

0.0317292

]
.

8.5 Conclusions

We have presented a detailed application of the canonical duality theory to the gen-

eral nonlinear systems of quadratic equations. Using the canonical dual transformation,

the canonical dual problem was formulated with zero duality gap. Furthermore, the n-

dimensional nonconvex problem (P) can be reformulated as an m(m < n)-dimensional

concave maximization dual problem (Pd) on S+
a , which can be solved by well-developed

optimization techniques. Generally speaking, for given data and the perturbation vec-

tor ϵ ∈ Rn, the perturbed canonical dual problem (Pd
ϵ ) has at most one solution in

S+
a . Detailed study on the existence and uniqueness of the canonical dual solutions is an

interesting future research topic.

For general higher order nonlinear systems, as long as the geometrical operator Λ is

chosen properly, the canonical dual transformation method can be used to establish useful

theoretical results.



CHAPTER 9

Sensor Network Localization

9.1 Introduction

Sensor network localization [16], [24], [64], [79], [103] is an important problem in commu-

nication and information theory, and hence it has attracted an increasing attention. The

information collected through a sensor network can be interpreted and relayed far more

effectively if it is known where the information is coming from and where it needs to be

sent. Therefore, it is often very useful to know the positions of the sensor nodes in a

network. Wireless sensor network consists of a large number of wireless sensors located in

a geographical area with the ability to communicate with their neighbors within a limited

radio range. Sensors collect the local environmental information, such as temperature or

humidity, and can communicate with each other. Wireless sensor network is applicable

to a range of monitoring applications in civil and military scenarios, such as geographical

monitoring, smart homes, industrial control and traffic monitoring. There is an urgent

need to develop robust and efficient algorithms that can identify sensor positions in a

network by using only the measurements of the mutual distances of the wireless sensors

from their neighbors, which is called neighboring distance measurements. The advance

of wireless communication technology has made the sensor network a low-cost and highly

efficient method for environmental observations.

Sensor network localization can also be formulated as an optimization problem by

least square method. However, this optimization is nonconvex, and hence its global op-

timal solutions are difficult to find. Several approximation methods have been developed

for solving this difficult optimization problem [74] [78] [97], [105]. The semi-definite pro-

gramming (SDP) and second-order cone programming (SOCP) relaxation are two of the

most polular methods studied recently. The basic idea of SDP relaxation is to think

of the quadratic terms as new variables subject to linear matrix inequality. The SOCP

relaxation is developed in a similar way.

101
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9.2 Problem Statement

We use the least square method for the formulation of a new optimization problem.

Consider a general sensor network localization problem, where the sensor locations are to

be determined by solving the system of polynomial equations [6] [22]:

(P0) : ∥xi − xj∥ = dij, (i, j) ∈ Ad, (9.1)

∥xi − ak∥ = eik, (i, k) ∈ Ae. (9.2)

Here, the vectors ak, k = 1, · · · ,m, are specified anchors, where

∥xi − xj∥ =

√√√√ d∑
α=1

(xα
i − xα

j )
2

denotes the Euclidian distance between locations xi and xj ∈ Rd, i = 1, · · · , n; j =

1, · · · , n, and

Ad = {(i, j) ∈ [n]× [n] | ∥xi − xj∥ = dij, i < j, dij are given distances},

Ae = {(i, k) ∈ [n]× [m] | ∥xi − ak∥ = eik, eik are given distances},

where [N ] = {1, · · · , N} for any integer N .

For a small number of sensors, it might be possible to compute sensor locations by

solving equations (9.1)-(9.2). However, solving this algebraic system can be very expensive

computationally when the number of sensors is large.

By the least squares method, the sensor network localization problem (P0) can be

reformulated as a fourth-order polynomial optimization problem stated below:

(P1) : min

P (X) =
∑

(i,j)∈Ad

1

2
wij(∥xi − xj∥2 − d2ij)

2 +
∑

(i,k)∈Ae

1

2
qik(∥xi − ak∥2 − e2ik)

2

 ,

where X = [x1, x2, · · · , xn] = {xα
i } ∈ Rd×n is a matrix with each column xi being a

position in Rd, wij, qik > 0 are given weights. Obviously, X are true sensor locations if and

only if the optimal value is zero. This nonconvex optimization problem appears extensively

in mathematical physics [45], computational biology [102], numerical algebra [81] as well

as finite element analysis of structural mechanics [84].

The sensor network localization problem can also be viewed as a variant of Graph Re-

alization problem, or a distance geometry problem [6], which has been studied extensively

in computational biology, Euclidean ball packing, molecular confirmation and wireless net-

work communication. In general, the sensor network localization problem is considered
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to be NP-hard even for the simplest case d = 1 [70] [85]. Therefore, many approximation

method have been proposed for solving this nonconvex global optimization problem ap-

proximately. The semi-definite programming (SD)) and second order cone programming

(SOCP) relaxation are two of the popular methods studied recently [5] [6] [13] [97] [98].

In the following, we shall see that by using the canonical duality theory, this nonconvex

minimization problem is equivalent to a concave maximization dual problem over a convex

set, which can be solved by well-developed optimization techniques.

9.3 Canonical Dual Transformation

In order to use the canonical dual transformation, we transfer variables from matrix to

vector, and let

y = [x1
1 · · ·xd

1 · · ·x1
n · · ·xd

n]
T ∈ Rnd : Locations of sensors (variables),

W = [w11 · · ·w1n · · ·wn1 · · ·wnn]
T ∈ Rnn : Weights for the optimization problem (P1),

Q = [q11 · · · q1m · · · qn1 · · · qnm]T ∈ Rnm : Weights for the optimization problem (P1),

a = [
d∑

α=1

(aα1 )
2, · · · ,

d∑
α=1

(aαm)
2]T : Sums of squares of anchors,

d = [d211 · · · d21n · · · d2n1 · · · d2nn]T ∈ Rnn : Squares of distances between sensors,

e = [e211 · · · e21m · · · e2n1 · · · e2nm]T ∈ Rnm : Squares of distances between sensors and anchors.

Then, Problem (P1) can be written in a vector form given below.

(P) : min

P (y) =
∑

(i,j)∈Ad

1

2
wij

(
yTDijy − d2ij

)2
+
∑

(i,k)∈Ae

1

2
qik

(
yTEiky − 2AT

iky +
d∑

α=1

(aαik)
2 − e2ik

)2
 ,

where y ∈ Rnd, Eik ∈ Rnd×nd is a diagonal matrix defined by

Eik =

 0 0 0

0 Iik 0

0 0 0

 ,

with Iik ∈ Rd×d being the identity matrix corresponding to sensor i and anchor k, so that

the (1,1) entry of Iik coincides with the (i, k) entry of Eik. Similarly, Dij is an nd × nd

matrix defined by
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Dij =


0 0 0 0 0

0 Iii 0 −Iij 0

0 0 0 0 0

0 −Iji 0 Ijj 0

0 0 0 0 0

 ,

with Iii,Ijj, Iij,Iji ∈ Rd×d being the identity matrices, so that the (1,1) entry of Iii coincides

with the (i, i) entry of the matrix Dij. For Ijj, Iij, Iji, they are defined similarly. Let

ξij = Λij(y) = yTDijy, (9.3)

ϵik = Λik(y) = yTEiky − 2AT
iky, (9.4)

where Λij and Λik are, respectively, geometrical operators from Rnd into

Ed = {ξ ∈ Rnn| ξij ≥ 0, ξij = 0 if i = j}

and

Ee = {ϵ ∈ Rmn| ϵik ≥ 0}.

By introducing quadratic functions Vij : Ed → R and Vik : Ee → R such that

Vij(ξij) =
1

2
wij(ξij − d2ij)

2 (9.5)

and

Vik(ϵik) =
1

2
qik(ϵik +

d∑
α=1

(aαik)
2 − e2ik)

2. (9.6)

Problem (P) can then be reformulated in the canonical form given below:

(P) : min

Π(y) =
∑

(i,j)∈Ad

Vij(Λij(y)) +
∑

(i,k)∈Ae

Vik(Λik(y))| y ∈ Rnd

 .

Note that the function Vij(ξij) and Vik(ϵik) are both convex. Their duality relations

are given, respectively, by

ςij = ∇Vij(ξij) = wij(ξij − d2ij), (i, j) ∈ Ad, (9.7)
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and

σik = ∇Vik(ϵik) = qik(ϵik +
d∑

α=1

(aαik)
2 − e2ik), (i, k) ∈ Ae, (9.8)

where ςij and σik are dual variables. Let Sd be the range of the duality mapping ς ij =

∇Vij(ξij), and let Se be the range of the duality mapping σik = ∇Vik(δik). Then, for any

given ς ∈ Sd and σ ∈ Se, the Legendre conjugate V ∗
ij and V ∗

ik can be uniquely defined by

V ∗
ij(ςij) = sta{ξTijςij − Vij(ξij) | ξij ∈ Vd} =

1

2
w−1

ij ς2ij + d2ijςij, (ij) ∈ Ad

and

V ∗
ik(σik) = sta{δTikσik − Vik(δik) | ξik ∈ Ve} =

1

2
q−1
ik σ2

ik + (e2ik −
d∑

α=1

(aαik)
2)σik, (i, k) ∈ Ae,

where sta{} denotes finding the stationary point of the statement within {}. Clearly,

(ξ, ς) and (ϵ,σ) form a canonical duality pair (see [38]). The following canonical duality

relations hold on both Ed × Sd and Ee × Se

ςij = ∇Vij(ξij) ⇔ ξij = ∇V ∗
ij(ςij) ⇔ ξTijςij = Vij(ξij) + V ∗

ij(ςij), (9.9)

σik = ∇Vik(ϵik) ⇔ ϵik = ∇V ∗
ik(σik) ⇔ ϵTikσik = Vik(ϵik) + V ∗

ik(σik), (9.10)

respectively.

Replacing Vij(Λij(y)) by Λij(y)
T ςij −V ∗

ij(ςij) and Vik(Λik(y)) by Λik(y)
Tσik −V ∗

ik(σik),

the generalized complementary function is given by

Ξ(y, ς,σ) =
∑

(i,j)∈Ad

(Λij(y)ςij − V ∗
ij(ςij)) +

∑
(i,k)∈Ae

(Λik(y)ςik − V ∗
ik(ςik))

=
∑

(i,j)∈Ad

((yTDijy)ςij − (
1

2
w−1

ij ς2ij + d2ijςij))

+
∑

(i,k)∈Ae

((yTEiky − 2AT
iky)σik − (

1

2
q−1
ik σ2

ik + (e2ik −
d∑

α=1

(aαik)
2)σik))

=
1

2
yTG(ς,σ)y − FT (σ)y − 1

2
(W−1)T (ς ◦ ς)− 1

2
(Q−1)T (σ ◦ σ)

−dT ς + aTσ − eTσ,

where s ◦ t := [s1t1, s2t2, · · · , sntn]T denotes the Hadamard product of any two vectors s,
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t ∈ Rn,

F(σ) =

[
m∑
k=1

2a1kσ1k · · ·
m∑
k=1

2adkσ1k · · ·
m∑
k=1

2a1kσnk · · ·
m∑
k=1

2adkσnk

]T
, (9.11)

G(ς,σ) = 2(Diag (F1(ς)) + Diag (F2(σ)) +G3(ς)), (9.12)

with

F1(ς) =



∑n
i=1 ς1i +

∑1
i=n ςi1

...∑n
i=1 ς1i +

∑1
i=n ςi1

...∑n
i=1 ςni +

∑1
i=n ςin

...∑n
i=1 ςni +

∑1
i=n ςin


,

F2(σ) =



∑m
k=1 σ1k

...∑m
k=1 σ1k

...∑m
k=1 σnk

...∑m
k=1 σnk


,

G3(ς) =


−ς11I11 · · · −ς1nI1n

...
...

...

−ςn1In1 · · · −ςnnInn

 .

For a fixed ς ∈ Sd and σ ∈ Se, the criticality condition ∇yΞ(y, ς,σ) = 0 leads to the

following canonical equilibrium equation:

G(ς,σ)y − F(σ) = 0. (9.13)

Thus, on the dual feasible space defined by Sd × Se, the canonical dual function can
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be formulated as:

P d(ς,σ) = sta{Ξ(y, ς,σ)| y ∈ Ya}

= −1

2
F(σ)TG+(ς,σ)F(σ)− 1

2
(W−1)T (ς ◦ ς)

−1

2
(Q−1)T (σ ◦ σ)− dT ς + aTσ − eTσ,

where

F(σ) =

[
m∑
k=1

2a1kσ1k · · ·
m∑
k=1

2adkσ1k · · ·
m∑
k=1

2a1kσnk · · ·
m∑
k=1

2adkσnk

]T
, (9.14)

G+(ς,σ) denotes the generalized inverse of G(ς,σ), and

W−1 =

[
1

w11

· · · 1

w1n

· · · 1

wn1

· · · 1

wnn

]T
,

Q−1 =

[
1

q11
· · · 1

q1m
· · · 1

qn1
· · · 1

qnm

]T
.

Therefore, the canonical dual problem can be written in the form given below:

(Pd) : sta
{
P d(ς,σ)| ς ∈ Sd,σ ∈ Se

}
.

We have following theorems:

Theorem 9.1. Problem (Pd) is a canonical dual of the primal problem (P) in the sense

that if (ς̄, σ̄) is a critical point of (Pd), then

ȳ = G+(ς̄, σ̄)F(σ̄) (9.15)

is a critical point of (P) and

P (ȳ) = P d(ς̄, σ̄). (9.16)

Theorem 9.1 shows that the nonconvex primal problem (P) is equivalent to its canon-

ical dual problem (Pd) with zero duality gap, and the solution of (P) can be analytically

expressed in the form of (9.15). The extremality of this analytical solution will be dis-

cussed in the next section.

For further discussion on extremality properties of the analytical solution (9.15), we

introduce the following feasible space

S+
a = {(ς,σ) ∈ Sd × Se | G(ς,σ) ≻ 0}. (9.17)
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We have the following results.

Theorem 9.2. Suppose that (ς̄, σ̄) is a critical point of the canonical dual function

P d(ς̄, σ̄) and ȳ = G+(ς̄, σ̄)F (σ̄). Let (ς̄, σ̄) ∈ S+
a . Then, ȳ is a global minimizer of

P (y) on Rnd if and only if (ς̄, σ̄) is a global maximizer of P d(ς̄, σ̄) on S+
a , i.e.,

P (ȳ) = min
y∈Rnd

P (y) ⇔ max
(ς ,σ)∈S+

a

P d(ς,σ) = P d(ς̄, σ̄). (9.18)

Theorem 9.2 shows that the extremality condition of the analytical solution (9.15)

is controlled by the critical point of the canonical dual function. If the primal problem

has a global minimal solution, then S+
a ̸= ∅ and the primal problem is equivalent to the

canonical dual problem

(Pd
max) : max{P d(ς,σ)| (ς,σ) ∈ S+

a }. (9.19)

9.4 Numerical simulations

9.4.1 18 sensors network localization problem

We now consider sensor network localization problem with 18 sensors. In this case, we have

Problem (P1) with d = 2. Define y = [x1
1, x

2
1, · · · , x1

n, x
2
n]

T ∈ R2n, and let wij = qik = 1 in

Problem (P1). Here, we do not consider noise.

The 18 sensors {x̂i = [x̂1
i , x̂

2
i ] : i = 1, · · · , 18} are randomly generated in the unit

square [-0.5, 0.5] × [-0.5, 0.5]. The four anchors (a1, a2, a3, a4) are placed at the positions

(±0.45,±0.45). The distances d = {dij}, i = 1, · · · , 18; j = 1, · · · , 18, and e = {eik},
i = 1, · · · , 18; k = 1, · · · , 4, are computed as follows:

dij = ∥x∗
i − x∗

j∥, eik = ∥x∗
i − ak∥

We now assume that the locations of the 18 sensors are unknown. They are to be deter-

mined by the approach proposed in the chapter. The sequential quadratic programming

approximation with active set strategy in the optimization toolbox within the Matlab

environment is used to solve the canonical dual problem.

By Theorem 9.2, we obtain ȳ = [x̄1, · · · , x̄18]
T with x̄i = [x̄1

i , x̄
2
i ]

T , i = 1, · · · , 18, which
is a global minimizer of P (y),

Furthermore, we have

Π(ȳ) = 1.30× 10−8 ≃ 3.03× 10−8 = Πd(ς̄, σ̄).

This problem is also solved by the standard semi-definite programming (SDP) method.
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Figure 9.1: Sensor network with 18 sensors by the canonical dual method.
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Figure 9.2: Sensor network with 18 sensors by the standard SDP method.

The RMSD obtained using the canonical dual method is 4.61 × 10−7, while the RMSD

obtained using the standard SDP method is 4.45× 10−5, where RMSD is the Root Mean

Square Distance defined by

RMSD = (
1

n

n∑
i=1

∥x̂i − x̄i∥2)
1
2 ,

which is to measure the accuracy of the computed locations.

The computed results by the canonical dual method and the standard SDP method

are plotted in Fig. 9.1 and Fig. 9.2, respectively. The true sensor locations (denoted by

circles) and the computed locations (denoted by stars) are connected by solid lines. Our

program is implemented in the MATLAB environment, where SEDUMI [67] is used as

the SDP solver.
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From the results obtained, we see that, when there is no noise and the sensor size is

not too large, both the canonical dual method and SDP method are very effective method

for finding sensor locations. In particular, for the canonical dual method, all the stars are

exactly located inside circles.

9.4.2 A 20-sensor-network localization problem with distance

errors

A network of 20 uniform randomly distributed unknown points is generated in the square

area [0, 1]× [0, 1]. We assume

If ∥xi − xj∥ ≤ radio range, a distance (with noise) is given between xi and xj,

If ∥xi − xj∥ > radio range, no distance is given between xi and xj.

4 anchors are located in (0,0), (0,1), (1,0) and (1,1). The distances between the nodes are

calculated. If the distance between two nodes is within the specified radio range of 0.4,

the distance is included in the edge set for solving the problem after adding a random

error to it in the following manner:

dij = d̂ij|1 +N(0,
√
0.001)|

where d̂ij is the actual distance between the 2 nodes, and N(0,
√
0.001) is a random

variable.

The computed results obtained by the canonical dual method and the standard SDP

method are plotted in Fig. 9.3 and Fig. 9.4, respectively. The true sensor locations

(denoted by circles) and the computed locations (denoted by stars) are connected by

solid lines.

9.4.3 A 200-sensor-network localization problem with distance

errors

A network of 200 uniform randomly distributed unknown points is generated in the square

area [0, 1]× [0, 1]. 4 anchors are located in (0,0), (0,1), (1,0) and (1,1). For all sensors, the

radio range = 0.2. The distance, including a random error, is generated in the following

manner:

dij = d̂ij|1 +N(0, 0.01)|

The computed results obtained by the canonical dual method and the standard SDP
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Figure 9.3: Sensor network with 20 sensors solved by the canonical dual method.
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Figure 9.4: Sensor network with 20 sensors solved by the standard SDP method.

method are plotted in Fig. 9.5 and Fig. 9.6, respectively.

Careful examination of the results obtained for the cases involving 20 sensors and 200

sensors, we observe that when noise is taken into consideration, the canonical dual method

gives rise to much better solutions. In particular, if the level of noise or the sensor size

is large, the standard SDP is usually having difficulty to find the exact sensor positions.

See Figure 9.3 and Figure 9.5.

9.5 Conclusions

We have presented an effective computational method based on the canonical duality

theory for solving large scale sensor network localization problems. The form of the

analytical solution is obtained by using the complementary-duality principle, yielding a
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Figure 9.5: Sensor network with 200 sensors solved by the canonical dual method.
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Figure 9.6: Sensor network with 200 sensors solved by the standard SDP method.

concave maximization dual problem, which can be solved by any nonlinear optimization

technique. From the numerical studies, it is seen that large scale sensor network localiza-

tion problems can be solved by the method proposed, yielding global solutions.



CHAPTER 10

Summary and future research directions

10.1 Main contributions of this thesis

We have presented a detailed application of the canonical duality theory for solving general

sum of fourth-order polynomial optimization problem. An analytical solution is obtained

by the complementary-dual principle and its extremality property is classified by the trial-

ity theory. Results show that by using the canonical dual transformation, the nonconvex

primal problem in Rn can be converted into a concave maximization dual problem (Pd
max)

in Rm, which can be solved by well-developed convex minimization techniques .

Generally speaking, the nonconvex quadratic form with an exponential objective func-

tion can be used to model many nonconvex systems. By using the canonical dual trans-

formation, the nonconvex primal problem in n-dimensional space can be converted into

a one-dimensional canonical dual problem. As indicated in [38], for any given nonconvex

problem, as long as the geometrical operator Λ(x) can be chosen properly and the canoni-

cal duality pairs can be identified correctly, the canonical dual transformation can be used

to formulate perfect dual problems. In global optimization, extensive applications of the

canonical duality theory have been given to the problems including concave minimiza-

tion with inequality constraints, polynomial minimization, nonconvex minimization with

box constraints, quadratic minimization with general nonconvex constraints, nonconvex

fractional programming, and integer programming.

We have presented a detailed application of the canonical duality theory for solving

box and integer constrained quadratic optimization problems (P) and (Pip). By using the

canonical dual transformation, several canonical dual problems and their perturbations

are proposed.

For any given Q and f , the discrete integer constrained problem (Pip) is equivalent

to the continuous unconstrained canonical dual problem (Pd
α). For convex-perturbation

Q+Diag (α) ≻ 0, if the concave maximization problem

(P♯
α) : max{P d

α(σ)| σ ∈ Rn}. (10.1)

113
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has a critical solution, the discrete problem (Pip) can be solved uniquely. Otherwise, the

nonsmooth problem (P♯
α) provides a lower bound for box constrained problem (P).

The canonical duality theory was originally developed for general complex systems

[38] [44], which has been successfully applied for solving a class of nonconvex/nonsmooth

variational/boundary value problems [36]. Complete sets of solutions to a class of well-

known problems in finite deformation mechanics and phase transitions of solids have been

obtained [42]. Recent applications in finite dimensional systems have shown that this

theory is potentially useful for solving both continuous and discrete global optimization

problems [29] [40] [41].

As indicated in [38], the key step in the canonical dual transformation is to choose the

(nonlinear) geometrical operator Λ(x). Different forms of Λ(x) may lead to different (but

equivalent) canonical dual problems.

To see this, instead of the vector-valued (pure) quadratic geometrical operator Λ(x) =
1
2
{xTQx,x ◦ x} for integer programming, we simply let Λ(x) be a matrix-valued geomet-

rical operator:

ξ = Λ(x) =
1

2
xxT : Rn → E = Rn×n. (10.2)

Then, both the primal problems (P) and (Pip) can be written in the following unified

canonical form

min{Π(x) = V (Λ(x))− ⟨x, f⟩| x ∈ Rn}, (10.3)

where the canonical function V : E → R ∪ {+∞} is defined by

V (ξ) = ⟨Q; ξ⟩+

{
0 if ξ ∈ Ea
∞ if ξ /∈ Ea.

(10.4)

For box constrained problem, the effective domain Ea of V (ξ) is defined by

Ea = {ξ ∈ E| ξ = ξT , ξ ≽ 0, 2ξii ≤ 1 ∀i ∈ {1, . . . , n}, ξ rank-one }. (10.5)

While for integer constrained problem, the inequality 2ξii ≤ 1 in Ea should be replaced

by equality. The bilinear form ⟨ξ; ξ∗⟩ : E × E∗ → R is defined by

⟨ξ; ξ∗⟩ = trace(ξTξ) =
n∑

i=1

n∑
j=1

ξijξ
∗
ij. (10.6)

Using σ ∈ Rn to relax the inequality condition ξii ≤ 1
2
and let ξ = 1

2
xxT to relax

ξ = ξT , ξ ≽ 0, and rank-one conditions in Ea, the Fenchel sup-conjugate of the canonical
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function V (ξ) can be obtained as:

V ♯(ξ∗) = sup
ξ∈E

{⟨ξ; ξ∗⟩ − V (ξ)} = sup
ξ∈Ea

{⟨ξ; ξ∗ −Q⟩}

= sup
x∈Rn

{
1

2
⟨x, (ξ∗ −Q)x⟩ −

n∑
i=1

1

2
σi(x

2
i − 1)

}

=

{
1
2
⟨e,σ⟩ if ξ∗ ∈ E∗

a

+∞ otherwise,

where

E∗
a = {ξ∗ ∈ E∗

a = Rn×n| ξ∗ = Q+Diag (σ), σ ∈ Rn
+}. (10.7)

Therefore, in term of σ, the standard total complementary function is

Ξ(x, ξ∗) = ⟨Λ(x); ξ∗⟩ − V ∗(ξ∗)− ⟨x, f⟩.

Since the geometrical operator Λ(x) = 1
2
xxT is a pure quadratic function of x, its variation

at x̄ in the direction of x is δΛ(x̄,x) = Λt(x̄)x = xx̄T , where Λt(x̄) = ∇Λ(x̄) denotes the

derivative of Λ(x) at x̄. Its complementary operator is defined as Λc(x) = Λ(x)−Λt(x) =

−1
2
xxT , where Λ,Λt,Λc are denoted as A, T, N , respectively. By Λt, the canonical

equilibrium condition

⟨Λt(x̄)x; ξ
∗⟩ = ⟨x, f⟩ ∀x ∈ Rn

leads to the analytical solution form x̄ = G−1(σ)f . By Λc, the complementary gap

function is given by

Gap(x, ξ
∗) = ⟨−Λc(x); ξ

∗⟩ = 1

2
⟨xxT ;Q+Diag (σ)⟩ = 1

2
⟨x,G(σ)x⟩.

Clearly, the sufficient condition Gap(x,σ) ≥ 0 ∀x ∈ Rn for global minimizer of the primal

problem leads to the semi-positive definite condition G(σ) ≽ 0. Therefore, we have

min
x∈Xa

P (x) = max
σ∈S+

g

P d(σ).

Thus, we have shown again that the equivalent (or the same) canonical dual problem can

be obtained by using different quadratic geometrical operator Λ(x).

In finite deformation theory and differential geometry, the pure quadratic geometrical

measure ξ = Λ(x) is similar to the Cauchy-Riemann type metric tensor, which has been

used extensively in the canonical duality theory [38]. In semi-definite optimization, the

bilinear form ⟨ξ; ξ∗⟩ is denoted by ξ • ξ∗. Therefore, in a very special case of f = 0,

the canonical primal problem (10.3) for integer programming can be written (in term of
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X = 2ξ = xxT ) as :

(Pmc) : min
1

2
Q •X, s.t. X ≽ 0, Xii = 1, X = XT , X rank-one. (10.8)

If both the symmetrical and rank-one constraints are ignored, this problem is exactly

a semi-definite programming problem. However, we must emphasize that for quadratic

integer programming problems, these two conditions imply that X = xxT and hence

can not be ignored. Otherwise, Problem (10.8) will have n × n unknowns, and the dual

variable of X should be also a tensor X∗ ∈ Rn×n, instead of a vector in Rn. Therefore,

by introducing Lagrange multiplier σ ∈ Rn to relax the equality and rank-one conditions,

we have

(Pd
mc) : max

{
−1

2
⟨e,σ⟩ | G(σ) ≽ 0, σ ̸= 0

}
, (10.9)

which is clearly a special case of the canonical dual problem (Pg
max).

we know that the vector f plays a fundamental role for ensuring unique solution of

the nonconvex quadratic programming problems. From the view point of systems theory,

f represents input (or source) and x denotes the output (or state). If there is no input,

the system either has trivial solution (x = 0) or more than one solution. The reason for

multi-solutions is due to the symmetry of the systems. The input usually destroys certain

symmetry and leads to the possibility of unique solution.

10.2 Future research directions

The canonical duality theory was originally developed for general complex systems [38]. It

has been successfully applied to some nonconvex optimization problems. It is mathemat-

ically challenging and practically significant to develop efficient and effective numerical

methods based on the use of canonical theory, to finding global solutions of discrete op-

timization problems and nonconvex optimization problems.

The α-perturbed problem (Pα) is actually a quadratic perturbation for solving general

Euclidean distance geometry problems in network optimization. However, how to choose

the perturbation vector α is fundamentally important and deserves further investigation.

Also if the dual feasible space S+
a contains no KKT point, the primal problem could

be NP-hard. In this case, the canonical dual problem (P♯) can be used to provide an

optimal lower bound approach to the NP-hard primal problems. Finding conditions for

Q, c,A,b such that S+
a has no KKT point is an open problem which is fundamentally

important for understanding NP-hard problems.
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