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Abstract

Face recognition becomes challenging as the images have lower resolutions. Face hal-

lucination techniques are proposed to enhance the face resolutions, which is supposed

to be helpful to improve the recognition performance. Current face hallucination

approaches can be divided into two types: holistic models and patch-based models.

The advantages and disadvantages of both holistic and patch-based hallucinating

models are analyzed respectively in this thesis. Holistic models preserve facial fea-

tures while they introduce noises in the learning process. Patch-based models can

generate smooth results. However, some facial features may be lost if low-resolution

faces are enhanced to high-resolution ones through these models.

A new holistic face hallucination model is firstly proposed in this thesis. Face fea-

tures in Eigen-subspace are adopted to enhance the facial resolutions. Recursive

holistic residual compensation method is obtained to render the local features and

to reduce the noises. A two-stage method is further proposed to render the residues.

The proposed holistic hallucination model can increase the hallucination perfor-

mance in terms of Peak Signal Noise Ration (PSNR) and Root Mean Square Error

(RMSE). A patch-based model is further proposed in order to solve the noise prob-

lem. Training sample selection method is proposed based on Curvelet features.

After patch-based face hallucination, a holistic based residue compensation method

is proposed, which renders the lost global facial features in patch-based enhance-

ment. The proposed approach generates smooth facial images and in the meanwhile,

compensates global facial features. Extensive experiments show the improvement in

terms of PSNR and RMSE when compared with other popular face hallucination

algorithms.

Face recognition is one of the motivations behind face hallucination. As a result,
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face recognition performance is proposed to be the evaluation method in this thesis.

Recognizing faces in low resolutions and in hallucinated high resolutions are both

studied. Experiments show that the recognition improvements of hallucinated faces

are not so evident in many of the current face databases. We found that these

databases are obtained from high definition cameras in controlled environments. The

low-resolution face images are derived by down-sampling method. In this situation,

facial images with the size of 32× 32 can have higher recognition performance after

hallucination. However, faces with the size of 8 × 8 can hardly be improved in the

same way. Traditional evaluating methods PSNR and RMSE are also analyzed and

compared with recognition performance. According to the experiments, traditional

PSNR and RMSE measurements can not exactly represent the hallucination quality

in terms of recognition performance.

A Practical face recognition scenario is proposed and analyzed, where the low-

resolution face images are obtained from directly captured images in far distances

instead of down-sampled images from high-resolution images. Three factors that in-

fluence face recognition performance are proposed and analyzed. And experiments

demonstrate that resolutions play a key role in face recognition of surveillance sys-

tems. Thus for those low resolution images captured in far distance with surveillance

cameras, face hallucination can be very useful. A new approach which combines the

advantages of holistic hallucination model and patch-based face hallucination model

is proposed. Experiments demonstrate that the proposed approach can improve the

recognition performance in surveillance environment.
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Chapter 1

Introduction and Background

When we are using social media e.g. Facebook and some online forums, we often

met the problem that we could not recognize people’s profile images because of

their small sizes. In many cases, the profile pictures are people’s faces or include

people’s faces. It is really difficult to recognize who these people are due to the lower

resolution of the photos. There are also other situations that we are bothered by

small sized face images, for example, graduation photos where the pictures are taken

from far distances and one specific face inside the group is very small. The potential

application also includes face recognition in surveillance systems, e.g., CCTV. So

how to recognize these small size faces is an open problem in computer community.

1.1 Face Recognition Overview

Face recognition has been a popular research topic in recent decades. Face recog-

nition can be divided into human perception and machine recognition (Zhao et al.,

2003). From Zhao et al. (2003), we can see that face recognition in human per-

ception is a psychological problem. Human generally recognize faces in holistic. If

some of the facial features are obvious, local feature based recognition is also ap-

plied. In some situations, contextual knowledge is also used, which makes human

perception recognition be a sophisticated system. In most cases human perception

performs better than machine recognition. However, machine recognition has its ad-
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vantages. For example, machine recognition can store and deal with a large amount

of data. Learning from human recognition, machine based face recognition system

consists of three steps (Zhao et al., 2003): face detection, feature extraction and face

recognition. Face detection techniques have been widely applied in our daily lives,

such as the face detection function in digital cameras. In terms of feature extrac-

tion and face recognition, many approaches have been proposed such as Principal

Component Analysis (PCA) (Turk and Pentland, 1991), Linear Discriminant Anal-

ysis (LDA) (Belhumeur et al., 1997), Locality Preserving Projections (LPP) (He

and Niyogi, 2004) and Face Recognition via Sparse Representation (SRC) (Wright

et al., 2009). Face recognition algorithms are also widely implemented nowadays,

for example, the face recognition applications in facebook and iphoto.

In the situation when face images are very small, low-resolution face recognition ap-

proaches are proposed. There are several possibilities that face images are very small.

The first possibility is this small face image are resized from a high-resolution face

image. Another reason is because that the low-resolution face image was captured

from a far distance. And it was also probably captured by CCD(Charge-Coupled

Device)/CMOS(Complementary Metal Oxide Semiconductor) image sensors with

small sizes. As a special issue in face recognition field, recognizing small size faces

is difficult through the existing face recognition algorithms. Because there are very

few facial features in these small face images which can not provide enough infor-

mation for recognition. In general there are two directions to recognize small size

face images. One is recognizing these captured faces directly in small sizes. As faces

in gallery set are often in high resolutions. The usual way is to down-sample these

high-resolution gallery faces to low-resolution face images which have the same reso-

lution as the captured low-resolution face images. Then face recognition algorithms

can perform directly on these low-resolution testing faces and gallery faces. Howev-

er, the other popular direction for low-resolution face recognition is to enhance the

image resolutions. Captured low-resolution face images are firstly enhanced to high
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resolutions which are the same as gallery faces. And then they are recognized by

machine perceptions algorithms.

1.2 Enhancing Face Resolutions

In most cases, the main reason that faces can not be recognized is their low res-

olutions, especially when facial images are captured in far distances. As a result,

enhancing low-resolution face images can be re-directed to enhancing their resolu-

tions. As a special case of image, facial image resolution enhancement can be traced

back to image super-resolution.

1.2.1 Generic Image Super-Resolution Overview

The earliest generic image super-resolution was proposed by Tsai and Huang (1984)

toward multi-frame image super-resolution. They built a linear relationship between

a set of shifted low-resolution images and the high-resolution image in frequency

domain. This relationship is based on the shifting properties of Discrete Fourier

Transformation and Continuous Fourier Transformation. Based on their work, many

frequency based approaches were proposed (Kim et al., 1990; Tom and Katsaggelos,

1995; Bose et al., 1993). However, this frequency based transformation is difficult

to deal with noise problem. Since it is not able to add prior information. Such

techniques can only deal with multi-frame image super-resolution problem. There

are also other multi-frame based super-resolution techniques, e.g., Project Onto

Convex Sets (POCS) (Patti and Altunbasak, 2001), Maximum a Posteriori (Chantas

et al., 2008, 2007).
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For single image super-resolution, it can be simply separated into two categories:

direct interpolation and learning based super-resolution. Similarly, single image

interpolation is hard to add prior information. Interpolation technique increases

the image resolution directly from the low-resolution input images (Wolberg, 1990;

Chen and Defigueiredo, 1985; Karayiannis and Venetsanopoulos, 1991; Xue et al.,

1992; Schultz and Stevenson, 1994), but could not achieve smooth accurate results

since it utilizes information only from low resolution images. Learning-based super-

resolution is popular in the past decade. Many of the approaches first divide low-

resolution image into patches, and then learn the patch relationship between testing

and training examples through machine learning algorithms. The high-resolution

image is achieved through reconstructed high-resolution patches. This framework

includes two data sets: the low resolution and corresponding high resolution training

samples. Since the purpose of image enhancement is to obtain a high resolution

image for a corresponding low resolution image, learning algorithms aim to explore

the relationship between high resolution and low solution images. Freeman et al.

(2000) developed a Markov Network to learn the relationship. Hertzmann et al.

(2001) applied the ’Image Analogies’ method to obtain high resolution images using

local feature transforms.

1.2.2 Face Hallucination Overview

As a special type of digital images, facial images have the common properties of

generic images. Thus their resolutions can be enhanced through image super-

resolution techniques. However, facial images also have their special properties.

Approaches specifically for enhancing facial images’ resolutions were firstly pro-

posed in 2000 by Baker and Kanade (2000). The super-resolution on facial images

is then named as ’Face Hallucination’. After that, Wang and Tang (2005) intro-

duced the Eigen-transformation algorithm at a relatively small computational cost.
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They project the low resolution face image into the eigen-faces of the low-resolution

training set and obtain the coefficients which can be used to construct a high res-

olution image. This method is computationally efficient for face image resolution

enhancement. However only the global face is derived and thus some local features

are not well characterized. For example, hair and glasses in some face images are

not well represented in the reconstructed high resolution images. Liu et al. (2007,

2001) proposed a two-step face hallucination algorithm, who introduced the residue

concept for face hallucination. In the first step, a global face is generated. After

that, local features are derived by minimizing the energy of a Markov Network.

In order to reduce the computational cost, Zhuang et al. (2007) used locality pre-

serving projection (LPP) and radial basis function (RBF) to generate the global

faces and rendered the residue part by applying the Nearest Neighbor algorithm.

Based on Zhuang et al. (2007), Huang et al. (2010a) assumed the global face hal-

lucinating process to be a black box. Then they estimated the global face with

a linear transformation on the basis of PCA. Recently, Yang et al. (2008a) pro-

posed a method by combining the Non-negative Matrix Factorization with sparse

representation algorithms. Jia and Gong (2008) used trained tensor to construct

a high-resolution face and compensate the residue by a nonparametric patch learn

process. Huang et al. (2010b) used canonical correlation analysis in both global face

and residue generation. Liang et al. (2010) proposed the use of morphological com-

ponent analysis (MCA) in global hallucination faces and neighbor reconstruction

for local features. Zhang and Cham (2011) proposed a face hallucinating algorithm

in frequency domain instead of the conventional spatial domain. They transferred

the low-resolution face images into Discrete Cosine Transformation coefficients and

inferred the high-resolution coefficients through utilizing Markov Random Field (M-

RF). Then, the expected high-resolution face images can be acquired by adopting

the inverse Discrete Cosine Transformation.

Regardless of various fields where face hallucination approaches come from, those

5



Coefficients

 

Coefficients  

Mapping 

Coefficients

 ? 

Input low-resolution face 
Low-resolution  

training samples 

Spatial or subspace 

learning 

High-resolution  

training samples 
Output high-resolution face 

Figure 1.1: Face Hallucination Diagram.

proposed methods can be divided into two classes according to how to deal with the

testing faces. One kind of approaches treat facial images as a vector, and make use

of face properties in subspaces to enhance the resolutions. The other method is to

divided facial images into overlapped patches, and enhance each patch separately.

Then by combining overlapped patches, one can construct the higher resolution

images.

1.2.2.1 Hallucinating Faces in Holistic Model

The obvious benefit of hallucinating faces in holistic images is that it makes use of

facial properties. As seen from Figure 1.1, low-resolution faces are trained in full

images, which keeps the face structure and the facial properties. During the learning

process, these structures and properties are kept and passed to hallucinated high-

resolution face images. In order to strengthen these facial properties, Chapter 2
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proposed a method which purely treat both the testing and training faces as holistic

images. One advantage of hallucinating faces in holistic model is its global features

are well kept. However, many of the local features may be lost and noises are

generated during the hallucination.

1.2.2.2 Hallucinating Faces in Patch Model

Most of patch based hallucinating approaches come from generic image super-

resolution approaches. Through dividing facial image into small and overlapped

patches, each patch is considered as a generic image. Each of them is enhanced

separately to high resolutions. After combing all the patches back, a high-resolution

facial image is generated. Patch based face hallucination can generate very smooth

high-resolution facial images and achieve good performance in terms of Peak Signal

Noise Ratio and Root Mean Square Error. However, in some cases the hallucinated

faces are too smooth to keep the global facial features.

1.3 Challenges in Face Enhancement

1.3.1 Holistic vs. Patches

The visual results of hallucinated faces can be divided into two types according

to two kinds of hallucinating methods. The holistic approaches treat facial images

as a whole data, thus face structures and properties are well kept and transferred

as many as possible in the learning and reconstruction steps. However, errors are

introduced in learning and mapping procedures. The reconstructed facial images

have a good representation of global facial features while the local features may be
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lost. The vision of hallucinated faces in holistic methods is noisy and not smooth.

On the contrary, patch based hallucinating methods divide face images into small

overlapped patches. These patches are treated as generic images and one learns the

relationship between patch dictionaries. In the reconstruction step, the learned high-

resolution patches are overlapped with each other. This step makes the hallucinated

faces very smooth. Especially when patch size is small and overlapped size is large,

the hallucinated facial images are too smooth to represent human facial structures

and properties. In other words, the local features are kept while the global features

of faces may be lost in compromise. Figure 1.2 shows the comparison between

hallucinating faces in holistic model and in patch based model. The testing and

training data are exactly the same. The method of the holistic model is by Liu et al.

(2007) and the method of the patch-based model is by Wright et al. (2009); Yang

et al. (2010). As we can see from Figure 1.2, face hallucinated by holistic model

(Figure 1.2 (b)) represents global face features well. However, the local features

are not well constructed. Noises appear around mouth, chin and neck area. Face

hallucinated by patch-based model has a smooth appearance. But some of the

global face features are lost. Especially in the area around the eyes and eyebrows,

hallucinated face can not be as clear as the face hallucinated by holistic model.

1.3.2 Face Hallucination Evaluations

In previously proposed approaches, most of them adopt Root Mean Square Error

(RMSE) and Peak Signal Noise Ratio (PSNR) as evaluation metrics to evaluate

hallucinating results. These evaluation methods are applicable for grey scale images.

For color face images, they will firstly be transferred into grey scale images. For

example, Yang et al. (2010) first transfer RGB images to YCbCr color space, where

Y is the luma component and CB and CR are the blue-difference and red-difference

chroma components. Y component is adopted as the grey scale image for RMSE
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(a) (b) (c) (d)

Figure 1.2: Examples Display of Comparison between Holistic Model and Patch-

based Model. (a) Low-resolution Face Image. (b) Hallucinated High-resolution

Face by Holistic Model (Liu et al., 2007). (C) Hallucinated High-resolution Face by

Patch-based Model (Yang et al., 2010). (d) Original High-resolution Face Image

and PSNR evaluatoin. Both calculation equations are listed as below:

RMSE =

√√√√√ m∑
1

n∑
1

(I − Î)2

m× n
(1.1)

PSNR = 20 · log10
255

RMSE
(1.2)

where m and n are the numbers of rows and columns of the high-resolution images.

I and Î represent the original high-resolution testing images and hallucinated high-

resolution images respectively.

However, RMSE and PSNR can only evaluate the average differences for the whole

image. RMSE calculates the average square differences between hallucinated faces

and original high-resolution face images. Similarly, PSNR calculates the average

signal noise ratio of the whole image. However, as we know that some important

facial features are actually the key points for face recognition instead of the whole

face images. For example, eyes, eyebrows, mouth, nose and etc. RMSE and PSNR
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can not specifically evaluate these features of hallucinated face images. In practice,

smoothly enhanced face images often have high RMSE and PSNR values, which

are actually too smooth to recognize. For example, face images enhanced through

cubic interpolation (Hou and Andrews, 1978) which is a super-resolution method

for generic images can achieve good RMSE and PSNR performance. But faces

hallucinated by interpolation are usually blurred and difficult to be recognized (Hou

and Andrews, 1978; Baker and Kanade, 2000, 2002). Therefore, how to exactly

measure those face hallucination approaches is in fact a challenging task, especially

for color or 3D images.

1.3.3 Down-sampled Low Resolution Faces vs. Directly Cap-

tured Low Resolution Faces

Since hallucinating faces is to enhance low-resolution facial images to high-resolution

images, the objects of hallucinating (low-resolution facial images) are important.

In many previous approaches, these low-resolution faces are derived from down-

sampling method. The down-sampling equation is given below:

xl(m,n) =
1

k2

k−1∑
p=0

k−1∑
q=0

xh(m ∗ k − p, n ∗ k − q) (1.3)

where xl and xh is low and high resolution face pair, m,n are image pixel position

and k is down-sampling rate.

Down-sampling is a good way to achieve low-resolution images with good quality.

However, in many circumstances, low-resolution resolution facial images are directly

captured from cameras. The difference between them are quite obvious. Figure 1.3

lists both down-sampled low-resolution faces and directly captured low-resolution

faces. How much the hallucination methods can improve the directly captured low-

resolution faces and how much these hallucinated faces can improve face recognition
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(b) (c)

Figure 1.3: Examples Display of Faces Captured through Different Environments.

All the Faces are in Similar Resolutions. (a) Down-sampled Faces Captured by HD

Camera in controlled Environment. (b) Directly Captured Faces by HD Camera in

Far Distance. (c) Directly Captured Faces by Surveillance Camera.

performance are open issues and we will investigate these problems in this thesis.

1.4 Contributions of this Thesis

Considering the above challenges in face hallucination field, this thesis gradually

explores these issues in separate chapters. Hallucinating faces in holistic model and

patch based model are explored individually in Chapter 2 and 3. The conditions

and limitation of face hallucinating evaluation are discussed in Chapter 4. Down-

sampled faces and directly captured faces in real world are compared and discussed

in Chapter 5.
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1.4.1 Hallucinating Faces in Holistic Images

The advantage of holistic model is keeping the global features of facial images which

makes hallucinated faces to be ’closer’ to human faces instead of generic images.

Chapter 2 proposed an approach which purely hallucinates facial images in holistic

model. In order to remove the mapping errors which are the disadvantages taken by

holistic model, two methods are proposed. The first is a holistic compensation step.

After mapping and reconstructing a high-resolution facial image, this hallucinated

image is then down-sampled to low-resolution. There is a residual difference between

low-resolution testing and this down-sampled hallucinated image. This residual

image is then mapped to a high-resolution residual image. This step adopts holistic

models to render a residue image. It can be performed iteratively, thus reduce

errors. Another method named ’two-stage’ is also proposed which hallucinating

low-resolution faces in separate resolution stages. The proposed approach purely

utilizes holistic model which keeps the global features. The holistic and iterative

residual method and two-stage method can help to compensate local features in

holistic way which makes the hallucinated faces more smooth.

1.4.2 Hallucinating Faces in Patches

Although the proposed holistic approach mentioned in previous section can both

keep global features and compensate local features, the hallucinated facial image

are still not smooth enough for vision perception. Chapter 3 proposes a method

through combing holistic model and patch model. This approach has three com-

ponents: training sample selection, patch based hallucination and holistic residual

compensation. The main hallucinated face is generated by patch based model, which

makes the hallucinated faces very smooth. However, in order to compensate global

face features, two more rendering parts are added before and after the hallucination.
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Before hallucination, a training sampling pre-selection part is performed. Based on

Curvelet features of facial images, training samples of hallucinating faces are first se-

lected and this forces testing faces can only learn the relationship from those selected

training samples with similar global features as the testing face. After hallucination

part, a residual compensation part that renders residues in Curvelet frequency do-

main is adopted. Both the above methods can improve the global face features in

the hallucinated faces.

1.4.3 Face Hallucination for Recognition Performance Im-

provement

Chapter 4 analyzes the current popular face hallucination evaluation methods RMSE

and PSNR and proposes to use face recognition performance to replace RMSE and

PSNR as an evaluation method. Further more, Chapter 4 indicates that hallucinated

high-resolution facial images do not guarantee high face recognition performances.

If the low-resolution facial images are derived from down-sampling method, the

hallucinated facial images can perform even worse in recognition test when the low-

resolution face images have the size of 8× 8 before hallucination. On the contrary,

if the low-resolution testing faces have the resolution of 32 × 32, the recognition

performance of hallucinated faces can be improved. In this situation, only halluci-

nating faces from ’higher’ low resolutions (32×32) can improve the face recognition

performance. When the testing facial images are in a very small resolution, for

example 8 × 8, the recognition performances of hallucinated faces would decrease.

Besides, we also find that recognition performances on down-sampled low-resolution

faces in many face databases do not decrease magnificently along with the decrease

of resolutions.
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1.4.4 Face Recognition in Surveillance Scenarios

Chapter 5 explores face recognition performances with real life cameras. It reveals

that directly captured facial images in surveillance environment are different from

those face databases taken in laboratories. When the image resolutions of captured

faces drop, the face recognition performances would drop dramatically. Three fac-

tors which influence recognition performance in surveillance systems are analyzed:

Capture distance, types of cameras and face resolutions. Through extensive ex-

perimental analysis, resolution is regarded as the most important factor for face

recognition in surveillance environments. Regardless of cameras and capturing dis-

tances in indoor scenarios, the higher captured resolutions prove to have higher

recognition performances. Thus, face hallucination techniques are more useful in

this situation. A new hallucinating scheme is also proposed for face recognition in

this case. Low-resolution facial images are hallucinated separately both in holistic

model and patch based model. A decision maker process is proposed to determine

each pixel value of the output faces, which can improve the recognition performance

as validated in experiments.

1.5 Face Databases used in this Thesis

In this thesis several face databases are used for different purposes. As for face

hallucination restrictions, hallucinating faces with large poses is too difficult to carry

out. All the testing faces only have a small pose variation with the angles which

are less than thirty degrees in this thesis. However, training face selection does not

have this restriction in order to derive more facial features in the learning process.

All the experiments follow leave-one-out principle. In face databases, each subject
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means one person’s ID. All the face images of this person inside a face database be-

long to this subject. This means when one human subject is selected as testing face,

all facial images for this subject will be excluded in the training data. Furthermore,

in Chapter 4 and Chapter 5 we extend this leave-one-out principle to database level.

We did not hallucinate faces inside the same face database. We adopted an indepen-

dent database Face Recognition Grand Challenge (FRGC) Phillips et al. (2006) as

the training data to hallucinate faces. This principle makes our experiments closer

to real applications for face recognition scenarios.

1.5.1 The Facial Recognition Technology (FERET) Database

The Facial Recognition Technology (FERET) Database (Phillips et al., 2000) is

sponsored by the Department of Defense’s Counterdrug Technology Development

Program, which aimed to develop automatic face recognition capabilities and was

supposed to assist security, intelligence and law enforcement. Totally 14051 images

were collected through a 35 mm camera and converted to eight-bit gray scale images

of human heads. The original image size is 256×384. The FERET database consists

of 24 sets for each person with various situations. For example, Fa includes regular

face expressions while Fb consists of alternative frontal faces with facial expressions.

Other sets also include illuminations and poses.

In this thesis, The Facial Recognition Technology (FERET) Database is utilized in

Chapter 2. As the most frequently used face database in face hallucination, only

frontal faces are collected. In this thesis, totally 839 subjects are collected. Each

subject includes 2 to 10 frontal face images. Leave-one-out algorithm is adopted

in all the hallucinating face experiments in this thesis. This means one subject is

selected as testing samples and the left are used as training samples. The faces

samples are shown in Figure 1.4.
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Figure 1.4: Examples Display of FERET Database.

Figure 1.5: Examples Display of YaleB Database.

1.5.2 The Extended Yale Face Database B (YaleB)

The Extended Yale Face Database B (Georghiades et al., 2001; Lee et al., 2005)

contains 28 human subjects. Each subject includes 9 poses sessions and each pose

session has 64 images with different illumination conditions. It means each human

subject has 576 images.

The Extended Yale Face Database B is used in Chapter 2, 3, 4 and 5. Only frontal

faces are collected for both hallucination and recognition. Thus in this thesis 28

subjects are used and each subject includes 64 frontal faces in various lighting con-

ditions. The examples faces are illustrated in Figure 1.5.
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Figure 1.6: Examples Display of CAS-PEAL Database.

1.5.3 CAS-PEAL

CAS-PEAL face database (Gao et al., 2008) is an newly published Chinese face

database for face recognition. CAS-PEAL database is sponsored by National Hi-

Tech Program and ISVISION by the Face Recognition Group of Joint Research &

Development Laboratory for Advanced Computer and Communication Technologies

(JDL), Institute of Computing Technology Chinese Academy of Sciences (ICT),

Chinese Academy of Sciences (CAS). This database consists of 1040 human subjects

including 595 males and 445 females. As a large scale human face database, CAS-

PEAL provides 9 poses, 5 expressions, 6 accessaries (3 sunglasses and 3 caps) and

15 lighting conditions for each subject.

This database is used in Chapter 3 in order to verify the proposed hallucinating

approaches are applicable in a wide range. The examples of CAS-PEAL are shown

in Figure 1.6.
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Figure 1.7: Examples Display of AR Database.

1.5.4 AR Face Database

AR face database (Martinez and Benavente, 1998) was created in the Computer

Vision Center (CVC) in 1998. This database includes 126 human subjects with

70 males and 56 females. Each subject has two sessions which were collected at

difference time (14 day away). Each session contains 13 images in various conditions

including expressions, illuminations and occlusions. In this thesis AR database is

performed in Chapter 4 and 5. The 13 examples of AR database are listed in Figure

1.7.

1.5.5 Face Recognition Grand Challenge (FRGC) Face Database

Face Recognition Grand Challenge face database (Phillips et al., 2006)was collected

from 2004 to 2006. This database contains a huge number of face data both in

2D and 3D. The primary goal of the FRGC was to promote and advance face

recognition technology designed to support existing face recognition efforts in the

U.S. Government. There are six experiments inside FRGC database. Experiment 1
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Figure 1.8: Examples Display of FRGC Database.

and 2 contain single and multi controlled face images. Experiment 3, 5 and 6 consider

3D face recognition. Experiment 4 consists of both controlled and uncontrolled 2D

face images. The controlled facial images in FRGC database is defined as images

taken in a studio setting and facial images taken under two illumination conditions

and with two facial expressions (smiling and neutral). The uncontrolled images are

defined as images which were taken in varying circumstances, e.g., hallways, atriums,

or outside. Similarly, the uncontrolled facial images also include two expressions with

smiling and neutral.

In this thesis, FRGC face database is used in Chapter 4 and 5. Most of the previous

face recognition databases only contain still facial images under controlled environ-

ments. However, this thesis deals with far face enhancement which apparently can

not be performed purely under controlled circumstances. Therefore, FRGC database

is a good data source as face image training data since it contains both controlled

and uncontrolled facial images. The facial data contained in Experiment 4 of FRGC

is used in this thesis as facial training data. The example faces in FRGC are listed

in Figure 1.8.

1.5.6 Surveillance Cameras Face Database (SCface)

Surveillance Cameras Face Database Grgic et al. (2011) is a newlypublished face

database dealing with surveillance cameras. SCface database is collected through

six cameras including five different surveillance cameras and one high definition

digital camera. It contains 4160 static images in 130 subjects with 115 males and 15
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Figure 1.9: Examples Display of SCface Database.

females aging from 20 to 75. This database were captured in Croatia and all the 150

participants were Caucasians. The high definition camera captured human faces in

an controlled environment. The other five surveillance cameras acquired face data

in the same time in a room with natural lighting condition. Three distances were

adopted for face capturing. As a result, three images were taken for each person in

one camera in terms of three capturing distances.

As both down-sampled low-resolution facial images and directly captured low-resolution

facial images are considered in this thesis, SCface face database meets the experi-

mental demanding. This database is used in Chapter 5, where performances between

directly captured faces and down-sampled faces are compared. The example faces

in SCface database is shown in Figure 1.9.

1.5.7 CurtinFace Database

CurtinFace Database was collected in 2011 in Curtin University Australia. This

this face database include 52 human subjects both males and females. A various

conditions including lighting, poses and glasses are included. This database contains

three cameras and four sections. Section one consists of facial images captured by
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Figure 1.10: Examples Display of CurtinFace Database.

a Microsoft Kinect camera with 3D information and section two contains facial

images captured by a high definition camera. Both these two sections are taken

under controlled environment. Section three and section four are produced under

uncontrolled surveillance conditions in a corridor. Face images in section three

are collected by the same high definition camera as section two, but in different

circumstances and far distances. Section four contains facial images captured by a

commercial surveillance camera in far distances.

This face database is adopted in Chapter 5, where surveillance scenarios are ana-

lyzed and compared with controlled face capturing environment. The examples of

CurtinFace database is shown in Figure 1.10.
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Chapter 2

Hallucinating Faces in Holistic

2.1 Introduction

The research in learning based face hallucination can be divided into two categories.

One is to treat face images as generic images and utilize image super-resolution

methods to enhance the resolutions. The other way is to utilize the special property

of face images, e.g., eigen-subspace and to learn the relationship between testing

face and training faces. After mapping this relationship from low-resolution field to

high-resolution field, a high-resolution result can be derived. This holistic method

treats each facial image in one entity and learns the relationship in a holistic model.

In order to keep face features when mapping from low dimension to high dimen-

sion, subspace methods are frequently used in face hallucination. In this chapter

a new face image enhancement method is proposed based on holistic model. First,

the relationship of projection coefficients between high-resolution and low resolution

images on the respective eigen-faces is investigated. Based on this investigation, a

high-resolution global face is constructed. Then we propose a residue technique to

render the global face for detailed parts. As such, residue image is constructed by

eigen-subspace projections derived from high and low resolution residue training

samples. The reconstructed face image is the combination of the global face and

the residue image. Further we propose a recursive residue rendering method with

an aim to compensate more details of local features. Finally a two-stage learning
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framework is proposed by adding a middle-stage resolution learning set and enhanc-

ing resolution in two stages. This two-stage method has proven to be able to obtain

more information from the middle-stage learning set, and thus can improve the face

hallucination results. The proposed method can improve the approach proposed

by Wang and Tang (2005) in terms of Peak Signal Noise Ratios. Meanwhile it has

lower computational cost compared with methods by Liu et al. (2007) and Yang

et al. (2008a).

The rest of this chapter is organized as follows. Background and related algorithms

are introduced in Section 2.2, followed by details of the proposed algorithms in

Section 2.3. Experiments are conducted in Section 2.4. In Section 2.5 summary of

this chapter is represented.

2.2 Background and Related Works

2.2.1 Down-sampling from High-resolution to Low-resolution

2.2.1.1 Down-sampling Function

Since most of previous research on face hallucination utilizes face recognition databas-

es to perform experiments, in this chapter we also use general face databases to hal-

lucinate faces. The provided faces in those databases are usually in high resolutions.

Just like previous work, we adopt down-sampling method to produce low-resolution

face images in this chapter.

Let xl denote a low-resolution face image, and xh denote the corresponding high-
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resolution version. xl can be derived by the down-sampling method from xh as

follows:

xl(m,n) =
1

k2

k−1∑
p=0

k−1∑
q=0

xh(m ∗ k − p, n ∗ k − q) (2.1)

where k is an integer and represents the down-sample rate, m and n are the image

pixel position.

Down-sampling method is adopted for two kinds of data. The first is the generation

of low-resolution testing data. As we know, in current face databases, facial images

are generally in high resolution. In order to generate a proper low resolution testing

data which matches hallucinating experiments, these picked testing images need to

be down-sampled. The other data is low-resolution training data. In the learning

process, low-resolution testing image is used to learn the relationship between itself

and training data. As the same reason for the low-resolution testing data’s gen-

eration, selected training data is usually in high resolution. These high-resolution

training data need to be down-sampled to the same resolution as testing data.

In fact, this down-sampling method calculates the average value of each non-overlapped

block with the size of k × k. For example, let k = 4. The high-resolution image is

then separated into a set of 4× 4 blocks. If the high-resolution image is a 128× 128

facial image, there will be 1024 blocks in this image. After down-sampling, these

1024 blocks will be 1024 pixel as the low-resolution image. The value of each pixel

is the average value of each block.

There are also other down-sampling methods to down-sample a high-resolution im-

age to a low-resolution one. From the Nyquist-Shannon sampling theorem (Shannon,

1949) of signal processing, a high-resolution image can be down-sampled through

sampling its row and column. For example, for a facial image with size of 128×128,

the first column of every four columns is sampled and kept as the columns of the

low-resolution image. After that the first row of every four rows is sampled and
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kept as the rows of the low-resolution image. Then the 32×32 low-resolution image

is derived. The low-resolution image can also be derived by selecting the second,

the third or the fourth column and row of high-resolution image. Nyquist-Shannon

sampling theorem (Shannon, 1949) is generally used to transfer a analog signal to

discrete one, which indicates the sampling rate should be twice equal or bigger than

the bandwidth of signal in order to perfectly reconstruct the signal. However, when

the sampling rate is smaller than than twice of the signal bandwidth, some high

frequency parts of the signal will be lost and the signal can not be reconstructed

completely. The generation of low-resolution face images has the same problem. As

a kind of digital signal, the recording process of digital images contains the convert-

ing from analog signal to digital signal. The deriving of low-resolution face images is

due to the limited size of camera sensors. For instance, if the captured faces are far

away from the camera, the captured faces can only be represented by a few pixels.

When converted from analog to digital, the sampling rate is thus limited compared

with bandwidth of face images. As there is not any analog face signals in the face

databases, we can only further sample the digital images to low-resolutions, which

have being sampled when recorded in cameras, to simulate the naturally capture

process of low-resolution face images. The high-resolution face images are assumed

as being sampled under the Nyquist-Shannon sampling theorem (Shannon, 1949),

which can be reconstructed. The low-resolution face image are assumed as being

sampled out of Nyquist-Shannon sampling theorem and high frequency components

are lost in the low-resolution face images. In this chapter, the down-sampling method

based on sampling theory follows this method (Shannon, 1949).

In frequency domain, the low-resolution image can also be derived by filtering the

high-frequency components of high-resolution image. High-resolution image is first

transferred to frequency domain, the high frequency components are then abandoned

and low frequency components are kept. When these low frequency components are

transferred back to spatial domain, the low-resolution image can be derived. Figure
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(a) (b) (c) (d)

Figure 2.1: Examples Display of Faces through Different Down-sampling Methods.

(a) Original High-resolution Facial Image (with the resolution of 192 × 128). (b)

Low-resolution Facial Image Down-sampled by Equation 2.1 (with the resolution

of 48 × 32). (c) Low-resolution Facial Image Down-sampled by Sampling Theory

(Shannon, 1949) (with the resolution of 48 × 32). (d) Low-resolution Facial Image

Down-sampled in Frequency Domain (with the resolution of 48× 32).

2.1 shows the down-sampling results through different methods. From the Figure 2.1

it can be concluded that low-resolution faces down-sampled by Equation 2.1 (Figure

2.1 (b)) and by frequency domain (Figure 2.1 (d)) have similar quality. However

low-resolution face down-sampled by sampling method (Figure 2.1 (c)) has a poor

quality. The influences brought by different down-sampling methods in hallucinating

faces will be investigated in our experiments in Section 2.4.

2.2.1.2 Zero-mean Face Matrix

Let F h = [F h
1 , F

h
2 , . . . , F

h
N ] denote the high-resolution training face images set, each

F h
i (i = 1, . . . , N) represents one face in the database. F h

i is a one-column matrix

by reshaping the face matrix. Similarly, F l = [F l
1, F

l
2, . . . , F

l
N ] denotes the low-

resolution training face images set, mh and ml represent the mean face images

respectively. mh and ml are also reshaped as one-column matrix. In order to reduce
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calculation errors, we first minus the mean face from F h and F l. The mean face

mh and ml are the average values at each point of the face matrix. The zero-mean

training face images can be obtained as:

Ah = [F h
1 −mh, F h

2 −mh, . . . , F h
N −mh] = [Ah

1 , A
h
2 , . . . , A

h
N ],

Al = [F l
1 −ml, F l

2 −ml, . . . , F l
N −ml] = [Al

1, A
l
2, . . . , A

l
N ],

2.2.1.3 Up-sampling Faces

In terms of different down-sampling methods, there are different equations for down-

sampling methods. However, all the image down-sampling equations including E-

quation2.1 can be denoted in a symbolic form as:

Al = K ↓ ×Ah (2.2)

where K ↓ is the down-sample operator. Al and Ah represent low-resolution and

high-resolution samples respectively.

For image super-resolution or face hallucination fields, we are interested in investi-

gating the K ↑, where K ↑ can satisfy the following equation:

Ah = K ↑ ×Al (2.3)

In the proposed method, K ↑ is derived from learning the relationship between

low-resolution training set Al and high-resolution training set Ah through Principal

Component Analysis.
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2.2.2 Eigen-transformation

Eigen-transformation approach by Wang and Tang (2005) is based on Principal

Component Analysis. And it can be outlined as follows:

First, the eigen-subspace for high-resolution training images is constructed. Let

Eh = [Eh
1 , E

h
2 , . . . , E

h
N ] and Λh represent eigen-vector and eigen-value matrices re-

spectively, which are obtained from a covariance matrix C:

C =
N∑
i=1

(F h
i −mh)(F h

i −mh)
T
= Ah(Ah)

T
(2.4)

The weight vector wh for an input high-resolution image xh can be computed as

follows.

wh = (Eh)
T
(xh −mh) (2.5)

In Principal Component Analysis based face recognition (Turk and Pentland, 1991),

the weight vector wh is used as face features. The nearest neighbor of wh in the

weight vectors of training faces is the recognized face.

With above defined wh, a high resolution image yh can be reconstructed based on

the high resolution eigen-faces as:

yh = Ehwh +mh (2.6)

However, the dimension of the covariance matrix C is high. In order to reduce

computation, eigen-vectors V h = [V h
1 , V

h
2 , . . . , V

h
N ] of covariance matrix Ĉ = AhTAh

are adopted (Turk and Pentland, 1991). Then Eh can be computed from V h as:

Eh = AhV h 1√
Λh

(2.7)
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Therefore, Equation 2.6 can be rewritten as:

yh = (AhV h 1√
Λh

)wh +mh = AhKh +mh (2.8)

where Kh = [Kh
1 , K

h
2 , . . . , K

h
N ] = V h 1√

Λh
wh are coefficients when input image xh is

projected to the training data basis.

Similarly, in the low-resolution version face database, a low resolution face image yl

can be reconstructed as:

yl = AlK l +ml (2.9)

In Wang and Tang (2005), the high-resolution reconstructed face image can be

calculated by the following equation:

yw = AhK l +mh (2.10)

In fact Wang and Tang (2005) replaced Kh in Equation 2.8 by K l, which indicates

that Kh and K l are approximately the same. This will be explained in the next

section.

2.3 Proposed Approach

2.3.1 Global Face Hallucination

In order to establish the relationship between the low-resolution domain and high-

resolution face images, we project a low-resolution image into the low-resolution

eigen-subspace using the low-resolution training set, and its corresponding high-

resolution image into the high-resolution eigen-subspace using the high-resolution
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training set separately. Then the coefficients (K l andKh) are calculated respectively

before comparison.

An experiment is carried out in order to test whetherK l equals toKh. We design the

experiment as follows. We randomly select one facial image from FERET database

(Phillips et al., 2000), and then randomly select other 200 facial images from 200

human subjects. Each person provides one image. The first selected one person xh

is not included in the 200 images, neither in the 200 human subjects. These selected

200 face images are set as training data Ah. The eigen-subspace is then calculated

as Equation 2.7. xh is then projected into the eigen-subspace and Kh is derived

through the following equation:

Kh = [Kh
1 , K

h
2 , . . . , K

h
N ] = V h 1√

Λh
wh (2.11)

Also, K l can be derived exactly the same as Kh.

Figure 2.2 shows the value of coefficients for a pair of test images. The black line

with stars represents the values of Kh and the green one with circles denotes K l.

It can be seen from the figure that the values of coefficients (K l
i and Kh

i ) are very

similar, which means if we replace Kh
i with K l

i in Equation 2.8, we can obtain a

high-resolution output as follows:

yh = AhKh +mh ≈ AhK l +mh (2.12)

The coefficients K l in equation Equation 2.12 can be derived when a test image xl

is provided. We can then construct a high-resolution global image yg according to

Equation 2.12 as follows:

yg = AhK l +mh (2.13)

Though the global face can be constructed based on K l in Equation 2.13, the global
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Figure 2.2: Comparison of projection coefficients Kh and K l

face can not represent the details quite well partially because K l is only an approx-

imation of Kh. As can be noticed these two parameters are not exactly the same

as observed in Figure 2.2. The difference between K l and Kh will lead reconstruc-

tion errors. Thus residue technique is adopted to adjust the hallucinated faces as

introduced in next subsection.

2.3.2 Residue Computation

A high resolution global face image is reconstructed based on Eigen-transformation

method Equation 2.12. However, it is only a generic approximation of high-resolution

human face image and thus may lack some details. There are differences between

hallucinated high-resolution image and the original high-resolution image. Figure

2.3 shows the residue between a hallucinated facial image by Zhuang et al. (2007)

and the original high-resolution facial image.
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(a) (b) (c)

Figure 2.3: Examples Display of Residue between Hallucinated Face and Origi-

nal Face Image. (a) Original High-resolution Face Image. (b) Hallucinated High-

resolution Face by Zhuang et al. (2007). (C) Residue between Hallucinated Face

Image and Original High-resolution Face Image.

In order to obtain the lost residue part of an hallucinated face, a compensation

method is proposed as follows: The high-resolution hallucinated face yg derived

from Equation 2.13 is down-sampled to the same resolution as xl, which is denoted

by yd. Then its residue sl is calculated as:

sl = xl − yd (2.14)

This residue is a low-resolution image that represents local features for the test im-

age. This low-resolution residue sl needs to be enhanced to a high-resolution image

which can be thought of as the local features of the test image in high resolution.

Learning-based PCA is used to achieve this aim as explained below.

The high-resolution residue and the corresponding low-resolution residue training

sets are constructed as follows. Each low-resolution training image is considered

as a test image which is then enhanced to a high-resolution image Rh
i , using Equa-

tion 2.13. The high-resolution residue training samples Sh
i are the difference between
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Rh
i and original high-resolution training sample F h

i . Accordingly, the low-resolution

training set Sl
i is derived by down-sampling Sh

i to the low-resolution.

Sh
i = F h

i −Rh
i (2.15)

Sl
i = Sh

i ↓ (2.16)

When a low resolution residue sl is obtained from Equation 2.14, the corresponding

high resolution residue sh can be derived by projecting sl onto the low resolution

residue training images Sl
i. Then sh is obtained as follows:

sh = ShKsl +msh (2.17)

where Ksl are the contributing coefficients of sl projecting on the low resolution

residue training images Sl
i andmsh is the mean of the high resolution residue training

images. Then the final enhanced image is obtained by:

ys = yg + sh (2.18)

This high resolution image ys improves the quality of reconstruction results com-

pared with Wang’s work. The local features of the human face such as hair and a

mustache can be well represented by this residue method. Figure 2.4 indicates the

framework of this residue based PCA method (PCAR).

2.3.3 Recursive Residue Computation

Although the quality of the reconstructed face image in the last section is generally

better than global faces hallucinated from Equation 2.13, it may be improved further

by using a recursive method proposed in this section, which compensates more local
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Figure 2.4: Process chart of PCA based residue (PCAR) method
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features. When an output image ys is produced from Equation 2.18, it can be

down-sampled to the low-resolution image yd2 and used to calculate the residue sl2

between it and the original low-resolution input image xl again.

sl2 = xl − yd2 (2.19)

Similarly, the residue is projected onto the corresponding residue training sets and

one can obtain a high resolution residue:

sh2 = ShKsl2 +msh2 (2.20)

Finally a high-resolution image can be obtained by the proposed recursive method

(Fig. 2.5).

yr = ys + sh2 (2.21)

Although this recursive residue framework can be used in face image enhancement

for infinite rounds, fewer local features will be obtained when the number of rounds
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increases. The experiments show that one or two rounds will be sufficient.

2.3.4 Two-stage PCAR Computation

When the resolution difference between the high and low resolution images is sig-

nificantly large, due to loss of information, it may be difficult to enhance a low

resolution image directly with the proposed technique in last section. In order to

obtain more information from training sets, a ”medium” resolution training set is

introduced when the low-resolution and high-resolution images have large devia-

tions. We use three sets of training samples with three resolutions here respectively:

(32× 24), (64× 48) and (128× 96). We first enhance a low-resolution input image

(32 × 24) to a middle stage (64 × 48) by using PCAR. A middle-stage output ymr

with the resolution (64 × 48) is produced. In the second stage ymr is assumed to

be an input image. By learning from the training data, the middle-stage image ymr

can be enhanced to high resolution by using the same algorithm as the first stage

(see Fig. 2.6).

In the first stage we derive the mid-stage output ymr according to Eq. 2.21:

ymr = yms + smh2 (2.22)

In the second stage ymr is used as the input of this method. We first enhance ymr

to a high-resolution global face by learning from two sets of training samples: Ah

and Am. Then this global face is down-sampled to a low-resolution face image.

The residue between this low-resolution face image and original low-resolution test

image is enhanced to a high-resolution residue image by residue learning process. In

this stage, We down-sample the global image to the low-resolution instead of mid-

resolution. This is because the mid-resolution face ymr is an approximate image
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which cannot be used to determine the true deviation. Thus, this two-stage program

can benefit from the two-stage learning processes while compensating the residues

correctly. The final output of the two-stage method is:

yfr = yfs + sfh2 (2.23)

Similar to the recursive method, this two-stage framework can be further expanded

to a three-stage, four-stage or more, depending on the difference between the low

resolution of input images and the high resolution of target images. In this chapter

we only use the two-stage method for experiments to validate the proposed idea.

Now we can present a detailed algorithm as below:

Step 1: Given a set of high-resolution and low-resolution training pairs Ah
i , A

l
i and

an input low-resolution face image xl, compute the eigen-subspace coefficients K l

according to Equation 2.4, Equation 2.8 and Equation 2.9.

Step 2: Setting each low-resolution training sample Al
i as an input image, a set of

high-resolution images Rh
i are generated from Equation 2.13. The residue training

samples are obtained from Equation 2.15.

Step 3: Given an low-resolution input face image xl, a global face is obtained from

Equation 2.13.

Step 4: A residue image is derived from Equation 2.14. Then it is enhanced to a

high-resolution residue according to Equation 2.17 and Equation 2.18.

Step 5: A high-resolution image ys is generated by PCAR method from Equation

2.18.

Step 6: Repeat steps 4-5, a high-resolution face image yr based on recursive residue

frame work, can be obtained from Equation 2.19, Equation 2.20 and Equation 2.21.

Step 7: Assume that there are three training sets: Ah
i , A

m
i , A

l
i, which represent three

resolutions. We first execute step 1-6, enhancing a low-resolution input face image xl

to a middle-resolution one ymr from Equation 2.22. Then steps 1 to 6 are executed

to obtain a final high-resolution image yfr with a middle-resolution input image ymr
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from Equation 2.23.

2.4 Experiments and Discussion

2.4.1 Data and Evaluation

Before the experiments, all the face images are aligned manually by fixing the centers

of the eyes and mouth with the resolution (128× 96). The cropping procedure is as

follows:

Step 1: For a face image with the resolution of 128× 96, the centers of left eye and

right eye are first clicked manually.

Step 2: The face image along the horizontal axis is interpolated till the distance

between left eye center and right eye is 48, which takes account half of the target

resolution in horizontal axis.

Step 3: The center of mouth is then click manually.

Step 4: The face image is interpolated along vertical axis. The vertical distance

between eyes and mouth is set as 5/12 of the whole face image. In other words,

the vertical distance between eyes and forehead accounts for one third of the whole

length and the vertical distance between the mouth to the bottom of the face is set

one fourth of the whole image.

All the cropped images are then down-sampled to the low resolution of (32 × 24)

according to Equation 2.1.

The results of the experiment are compared using the Peak Signal Noise Ratio
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(PSNR) defined as below.

PSNR = 10 log

[
2552

1
M×N

∑∑
(IO − IR)2

]
(2.24)

where M and N are the numbers of rows and columns of the high-resolution image.

IO and IR represent the original high-resolution testing image and reconstructed

high-resolution image respectively.

2.4.2 Proposed methods

2.4.2.1 PCAR Method.

According to Equation 2.13 and 2.17 the global faces and residues are constructed.

They are then combined to generate the final output Equation 2.18. Figure 2.7 shows

the images of low-resolution face, global face, our three algorithms and original high-

resolution face, It can be seen that the our output images combined with residue

have more local features than those global face images which were obtained from

the eigen-transformation method. For example the hair of the third person and the

moustache of the fifth person are reconstructed better by using our method when

compared with global face images.

2.4.2.2 Recursive and Two-stage methods.

After obtaining a high-resolution face image from the residue based PCA method,

we can increase its quality by recursively using the residue algorithm from Eq. 2.21.

However, this recursive method can not be used infinitely since no more useful

information can be learned and more errors may occur from after several rounds.

Figure 2.8 indicates that the average PSNR values of testing images reach the peak
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 2.7: Experimental results using PCAR. (a) Input 32 × 24 low-resolution

images. (b) Global face. (c) Reconstructed images using PCAR method. (d) Re-

constructed images using recursive residue compensation. (e) Reconstructed images

using two-stage compensation. (f) Original 128× 96 high-resolution images
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Figure 2.8: PSNR values in terms of different recursive rounds

when the number of recursive rounds is two and it will drop when more rounds of

residue compensations are performed.

In order to obtain more information from training data, we also set up a two-stage

experiment. Firstly, we enhance the low-resolution testing face to an image with

mid-stage resolution and then enhance it to a high-resolution face image using Eq.

2.23. In this experiment we can improve the result since more information is added

due to the mid-stage training data. Figure 2.9 shows the values of PSNR of the our

three methods (Residue, Recursive and Two-stage) when the number of training

samples is 200. It can be observed that the two-stage approach can improve the

performance of the recursive method.

42



27.22

27.28

27.83

26.9

27

27.1

27.2

27.3

27.4

27.5

27.6

27.7

27.8

27.9

Comparison of Our Own Methods

PCAR

Recursive

Two-stage

Figure 2.9: Comparison of our own methods in terms of PSNR

2.4.3 Comparison of Different Down-sampling Methods

As discussed in 2.2.1.1, there are different methods to down-sample high-resolution

image to low-resolution. Experiments are designed to compare the influence in

terms of different down-sampling methods. We can see from Figure 2.1 that general

average based down-sampling method (Figure 2.1 (b)) and frequency based down-

sampling method (Figure 2.1 (d)) perform better than sampling method (Figure 2.1

(c)) in visual quality. An experiment is designed to compare the hallucinating results

between different down-sampling methods. Figure 2.10 displays the comparison in

terms of three different down-sampling methods.

Both Figure 2.1 and Figure 2.10 show the visual effects of different down-sampling

methods. Figure 2.1 demonstrates the low-resolution images in terms of different

down-sampling methods. Figure 2.10 illustrates the hallucination effects of different

down-sampling methods. Table 2.1 also shows effects of the hallucination results in

PSNR and RMSE.
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(a) (b) (c) (d) (e)

Figure 2.10: Examples Display of Hallucinated Faces through Different Down-

sampling Methods. (a) Original Low-resolution Face Image (32 × 24). (b) Hallu-

cinated High-resolution Image from Low-resolution Facial Image Down-sampled by

Equation 2.1 (32×24). (c) Hallucinated High-resolution Image from Low-resolution

Facial Image Down-sampled by Sampling Theory (32× 24). (d) Hallucinated High-

resolution Image from Low-resolution Facial Image Down-sampled in Frequency Do-

main (32× 24). (e) Original High-resolution Facial Image (128× 96).
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Table 2.1: PSNR and RMSE of Hallucinated Faces in terms of Different Down-

sampling methods.

by Average by Sampling in Frequency Domain

PSNR 27.73 21.47 23.04

RMSE 10.53 21.84 18.92

2.4.4 Comparison with Other Methods

In this section the results of the experiment of the proposed two-stage approach are

compared with approaches by Wang and Tang (2005), Liu et al. (2007) and Yang

et al. (2008a), when the number of training samples is 200, which are shown in

Fig. 2.11. The first row is the low-resolution testing images. The second, third,

fourth and fifth rows are the results of Wang and Tang (2005), Liu et al. (2007)

and Yang et al. (2008a) respectively. The sixth row lists images of our two-stage

method and the original high-resolution images are in the last row. It can be seen

that our method obviously performs better than Wang’s method. The images ob-

tained by our two-step method have more detailed information and local features

than Wang and Tang (2005) such as hair and moustache. We mainly focus on com-

paring our method with Liu et al. (2007) and Yang et al. (2008a), as they are good

representations of holistic hallucination model and patch-based hallucination model

respectively. Figure 2.12 shows a line chart that indicates the trend of average PSNR

values between a reconstructed high-resolution image and original high-resolution

image when an input low-resolution image is enhanced using Wang and Tang (2005),

Liu et al. (2007), Yang et al. (2008a) and our methods, separately. The horizontal

axis represents the number of training samples and the vertical axis shows the av-

erage PSNR values. It can be seen that our method performs better in the case of

small number of training samples. More importantly, Liu et al. (2007) that based

on probabilistic model has a higher computational cost and Yang et al. (2008a) in-
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.11: Comparison of different methods. Experimental results using PCAR.

(a) Input 32×24 low-resolution images. (b) Wang’s eigen-transformation approach.

(c)Liu’s two-step approach. (d) Yang’s method. (e) Reconstructed images using our

two-stage method. (f) Original 128× 96 high-resolution images

cludes optimization approaches both in generating global faces and residues. As the

proposed approach in this chapter is only a linear combination of training matrices,

its execution speed is much faster than Liu et al. (2007) and Yang et al. (2008a).
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Figure 2.12: Average PSNR of different methods on different training samples

2.5 Summary

In this chapter an innovative framework for image enhancement is proposed. In

the proposed framework, the input low-resolution image is first enhanced to a high-

resolution face based on Principal Component Analysis (Wang and Tang, 2005).

Then, a residue image is computed to derive the local features. A reconstructed

image is achieved by using recursive and two-stage methods in order to improve the

quality. This framework improves the enhancement performance compared with gen-

eral PCA eigen-transformation method and is also computationally efficient. How-

ever, with large training samples, the approaches proposed in Liu et al. (2007) and

Yang et al. (2008a) are supposed to perform slightly better. This phenomenon may

be due to the requirement of large training samples in their approaches.

Different Down-sampling methods lead to different visual effects of low-resolution

facial images. They also further affect the hallucination results. However all the
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down-sampling methods can only be performed by computers in labs. In real face

capturing systems, low-resolution faces are not obtained from these down-sampling

methods. Instead small faces are often captured in far distances. The far distance

causes the low resolution of captured face images. How the distance between camera

and object affects the face hallucination and face recognition will be discussed in

other chapters of this thesis.
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Chapter 3

Hallucinating Faces in Patches

3.1 Introduction

3.1.1 Holistic and Patch based Face Hallucination

As discussed in Chapter 1.3.1, hallucinating faces in holistic images may introduce

noises. These hallucinating approaches can achieve good performances in global

face features. However, they do not perform well for local features. Especially in

hallucinating the chin area of faces, these holistic models generate noises. Though

the proposed approach in Section 2 has good performances in terms of PSNR and

RMSE, the effectiveness is not so significant.

In order to solve this problem, a patch based face hallucination approach is proposed

in this chapter. Patch based super-resolution approaches can produce smooth high-

resolution images due to overlapped patches. However, these methods may ignore

the specific properties of faces and only enhance them as generic images. Many

face features are lost during the super-resolution process. In order to add more

face features into hallucinated images, a residue compensation step is proposed in

this chapter. After hallucinating faces in overlapped patches, a frequency based

compensation is conducted to render the facial global features. This frequency

based compensation process adopts Curvelet frequency as face features. We use

this step to render lost face features during the previous patch based hallucinating
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step. This rendering will increase the holistic features in the hallucinated faces as

demonstrated in experiments.

3.1.2 Assumptions of the Proposed Method

Most current face hallucination techniques are proposed in spatial domain, which

often require a large amount of computation. This is due to the large number

of training data. In terms of frequency domain based super-resolution techniques,

though they are efficient, they can hardly represent detailed facial features without

the learning process (Milanfar, 2010). In order to synthesize the advantages of the

methods in both spatial and frequency domains, we propose a face hallucination

method combined with pre-selection processes based on Curvelet features. As we

know from Liu et al. (2007), in face hallucination, face images include two types of

features: global features and local features. Global features describe the common

human features like eyes, mouths and noses. The local features represent the specific

features of an individual face image. However, in traditional two step approach,

global features and local features are described in spatial domain. Instead, we

adopt the Curvelet frequency features to describe those two types of features in this

chapter.

Feature 1 Global face features which include most of the low-frequencies of human

faces;

Feature 2 Local face features which consist of the high-frequencies in face images.

The previously proposed global features and local features (Liu et al., 2007) are the

separated parts of digital facial images. This separation divides face images into

two parts in spatial domain. However, these two parts could only be approached
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approximately by learning algorithms and residual methods. Thus there is not any

algorithms which specifically define which part of an image is global features and

which part is local features. In this chapter, we define the global features and local

features in frequency domain. For any digital image including facial image, the high

frequency components and low frequency components can be defined accurately

through digital image processing theory. Therefore, both these two parts could be

approached easily and accurately.

3.1.3 Contributions of this Chapter

With these two features, we design the learning based face hallucination method in

two steps. One is the low-frequency face image hallucination and the other is the

high frequency based face image hallucination. In order to reduce computational

cost and reconstruction errors, Curvelet features of a testing image are used to select

the associated training samples in both two steps. For given full data samples both in

high and low resolution used for learning, we first decompose the pairs into Curvelet

frequency domain. In fact, the fine Curvelet coefficients describe the high frequency

components of face images, and the coarse Curvelet coefficients represent the low

frequency part of face images. In order to reduce computational complexity, we

only use two layers of Curvelet coefficients in this chapter. Now for each image, we

have both the fine and the coarse coefficients. Then we use Kth Nearest Neighbors

algorithm to find K1 images, which have the best matched coarse coefficients with

the coarse coefficients of testing face image. Similarly, we also can find K2 images

which have the best matched fine coefficients compared with the fine coefficients of

testing image. In this chapter, we use the selected K1 images as the training samples

in first step and the selected K2 images as the training set in second step.

In the first step, we estimate the high resolution global features for a low resolution
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testing face image using the sparse representation learning method. The examples

of low resolution images are shown in the first column of Figure 3.8. In the second

step, we produce a residue training data, and estimate the high resolution residue

which compensates the missing local features for the global face in the first step. By

learning the Curvelet features of the residue training pairs, we estimate the Curvelet

features of the high-resolution residue face for a testing image and construct the high

resolution image by using the Inverse Curvelet transformation. Figure 3.1 shows the

implementation steps of our method.

The main contributions of chapter have three parts. 1). We extract two types of

features based on Curvelet frequency domain: low-frequency part, which represents

the global features of human faces; high-frequency part, which demonstrates the

local features of human faces.

2). We use the Curvelet features to select training samples for a testing image in

both global and local hallucination algorithms, which reduced the computational

cost significantly due to the selected smaller training data.

3). In high frequency feature estimation, we hallucinate this residue image through

the inverse Curvelet transformation.

This chapter is organized as follows: the proposed algorithms are illustrated in Sec-

tion 3.2. More specifically, in Section 3.2.1 we extract image features in Curvelet

frequency domain and select training samples based on global and local features

respectively. Then we hallucinate the low-resolution faces to global high-resolution

faces by employing the sparse representation algorithm in Sec. 3.2.2. In Sec. 3.2.3,

the residual faces are derived from the Inverse Discrete Curvelet Transformation. Ex-

perimental results are illustrated in Sec. 3.3 with comparison with other approaches.

Conclusion and summary are stated in Sec. 3.4.
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Figure 3.1: Process Diagram. DCT:Discrete Curvelet Transformation. LF:Low Fre-

quency. HF:High Frequency. LR:Low Resolution. HR:High Resolution. SR:Sparse

Representation Hallucination. Down:Down Sample. IDCT:Inverse Discrete Curvelet

Transformation.
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3.2 Proposed Algorithm

3.2.1 Curvelet Based Training Sample Selection

3.2.1.1 Curvelet Overview

Curvelet was first proposed by Candès and Donoho (1999), and then developed to

the second generation in 2006. Both of them are fast and accurate (Candes et al.,

2006). As a multi-scale representation, Curvelet has been designed to overcome the

shortages of wavelet when dealing with singularities in signal processing, data com-

pression and image denoising. For example, Curvelet transformation provides far

more sparse representations than wavelet for objects with edges. Human faces in

gray scale images are good examples of those edged images. Previous work (Mandal

et al., 2009) has proved that Curvelet can ideally extract the human face features

and address the face recognition problem. There are two Discrete Curvelet Trans-

formation versions, namely USFFT and Wrapping, we adopt the latter one. For a

2D image, Curvelet transformation is performed as follows (Candes et al., 2006):

As from Candes et al. (2006), Curvelet coefficients can be derived as follows:

1. Apply the 2D FFT and obtain Fourier samples f̂ [n1, n2] of f [t1, t2],

where 0 ≤ t1, t2 ≤ n,−n/2 ≤ n1, n2 < n/2.

2. For each scale j and angle l , compute the product Ũj,l[n1, n2]f̂ [n1, n2],

where Ũj,l[n1, n2] is the discrete localizing window.

3.Wrap this product around the origin and obtain f̃j,l[n1, n2] = W (Ũj,lf̂ [n1, n2]),

where W is the wrapping function.
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4. Apply the inverse 2D FFT to each f̃j,l and collect the discrete Curvelet

coefficients C{j}{l}(k1, k2).

where j and l represent the scales and angles and k1, k2 denote the position of

Curvelet coefficient matrix.

3.2.1.2 Using Curvelet Features to Select Training Data

In this chapter, we use Curvelet features to select training samples for each testing

image. First it is used to select the training samples with global features. As we

know, training samples play a key role in the single frame face hallucination. As a

result, how to carefully select training samples is a key issue for face super-resolution.

Here we select training sample from the face data sets through Curvelet coefficients

before hallucinating global faces. we transfer the low-resolution testing image and

the training images into Curvelet domain, where we calculate the nearest neighbors

in the low-resolution coarse coefficients of the testing image. Then, those images

whose coarse coefficients are the nearest neighbors of the coefficients of the testing

image are selected as the training samples for such testing image.

Specifically, let Ah
i = [Ah

1 , A
h
2 , · · · , Ah

n, · · · ] denote the high resolution face database,

andAl
i = [Al

1, A
l
2, · · · , Al

n, · · · ] denote the corresponding low resolution face database.

we first decompose the ith low resolution face image into Curvelet features Ci{j}{t}(k1, k2),

where (i = 1, 2, · · · , n, · · · ). Here j and t represent the scales and angles of Curvelet

coefficients respectively. k1, k2 indicate the coefficient matrix positions. We simplify

Ci{j}{t}(k1, k2) to be Ci{j}{t} in the left part of this chapter. When a test low res-

olution image x comes, it is decomposed to Curvelet domain to get the coefficients

Cx{j}{t}. In order to reduce computational cost, we set scale j = 2, angle l = 8

in this chapter. Once the Curvelet coefficients Cx{j}{t} are derived, the coarsest
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Figure 3.2: Curvelet Coefficients. The top left is the original face image. The left

9 images are the low-frequency image of the first layer and the 8 high-frequency

images of the second layer respectively.

coefficient Cx{1}{t} (t = 1) represent the low frequency feature and the finest coef-

ficients Cx{2}{t} (t = 1, 2, · · · , 8) represent the high frequency feature. Figure 3.2

shows the Curvelet coefficients of a testing image x. For the convenience of display,

all the feature images are plotted in the same size.

Now we have a set of Curvelet coefficients Ci{j}{t}(i = 1, 2, · · · , n, · · · ) for the face

database and Cx{j}{t} for the testing face. we first utilize the low frequency feature

Cx{1}{t} and calculate its K1 nearest neighbors in Ci{1}{t}(i = 1, 2, · · · , n, · · · ).

For computational efficiency, we first adopt the Principal Component Analysis (P-

CA) to reduce the dimension and then apply the nearest neighbor algorithm for

K1 elements selection. Consequently, we have K1 selected training samples for the

global face enhancement, named as I = [I1, I2, · · · , IK1 ].

Similarly, for high frequency components, we also use the local features to select

another set of training samples. In order to achieve this, we treat the whole second

scale of Cx{2}{t} as one image and resize all the coefficients to form one column.

This one column image represents the high frequency features through t different
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angles (t = 8). Similarly as global case, we also adopt PCA for dimension reduction.

We keep first 20 eigenvectors corresponding to 20 largest eigenvalues, which keep the

most of the data energy. After that we select K2 nearest neighbors in Ci{2}{t}(i =

1, 2, · · · , n, · · · ) as local feature training samples, namely F = [F1, F2, · · · , FK2 ].

The main reasons that we utilize classifier before learning processes is to reduce

computational cost and also to minimize errors. We can see that after using classifies,

the number of training data does not rely on the whole database. Instead, we reduce

it according to the value of K and N in pre-selection step. We further reduce the

computation by decompose spatial faces into Curvelet frequency features. Thus we

avoid dealing with the huge dimensions of spatial face images. Another advantage

for Curvelet based classification is to reduce errors in learning process. In the full

face database, some images involve very specific characteristics which may increase

the errors in the learning program. According to the global and local constraints

of face images, the proposed global classifier classifies the faces which have the

close characteristics in global features and local classifier classifies the images which

have the similar characteristics in local features. Thus this proposed method avoids

learning the unnecessary features which may increase the errors.

3.2.2 Hallucinating Faces via Sparse Representation

In sparse sensing theory, signals can be represented by basis signals through a well-

constructed dictionary (Donoho, 2006a; Candès and Wakin, 2008). If we think of

face images as a kind of signal, one face image can be represented by a set of face

basis when there is a large training data set. A generic image sparse representation

algorithm has been proposed, which estimates the high-resolution image from raw

image patches (Yang et al., 2008b). As a kind of images, face image can also be

recovered by redundant training samples. Follow Yang et al. (2008b), we first take
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face images as generic images and enhance low-resolution face images in a patch-

based model. However, face images have their special properties. In reality the

quality of face super-resolution depends on how well the dictionary is designed. In

this chapter, we design the training dictionary through the Curvelet features selected

in previous section.

When face images are enhanced in overlapped patches, the face images are taken as

generic images. Thus the global face features might be lost. In order to compensate

the lost global features, we add the pre-selection procedure in previous section. Only

those faces who have the similar global features are selected as the training samples

for patch-based face image super-resolution. The low-resolution testing patches learn

the relationship in high-resolution training patches. Those high-resolution training

patches come from the faces who have the similar global features as the testing face

image. Thus some of the global features will be kept during the learning process.

The selected training set I = [I1, I2, · · · , IK1 ] in Section 3.2.1 are low-resolution

training images which have the closest global features as the low-resolution test-

ing face x. The selected low-resolution training images I = [I1, I2, · · · , IK1 ] have

their high-resolution pairs Ih = [Ih1 , I
h
2 , · · · , IhK1

]. These high-resolution training im-

age are firstly divided into overlapped patches P h. Correspondingly, there are also

overlapped low-resolution patch pairs P l in the low-resolution training data. The

learning dictionary pairs Dh and Dl are selected as follows: The testing face image

x is firstly divided into overlapped patches. Similarly, the each of the low-resolution

training faces I = [I1, I2, · · · , IK1 ] is also divided into overlapped patches. For every

patch p inside x, we only consider the patches which have the same positions in

training faces I = [I1, I2, · · · , IK1 ] to be the dictionary. This can force the testing

patches to learn the images features which have the same position in high-resolution

space. For example, patches around the eyes can only learn from the high-resolution

patches around the eyes. Some special features might be kept in this learning pro-
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cess. In the meanwhile, the learning algorithm avoid to learn from a large amount

of training samples. Thus the computational costs are reduced.

Suppose the selected training set in Section 3.2.1 to be Dh(high− resolution) and

Dl(low − resolution) for a testing patch p, the high-resolution patch image can be

reconstructed by solving the following optimization problem:

α̂ = argmin ∥ α ∥0

s.t. Dlα = p
(3.1)

where α is the sparse representation coefficients in 0 norm.

Generally this 0 norm problem is NP hard to be solved. However, according to

Donoho (2006b), if α can be sufficiently sparse, p can be recovered by solving the

problem in ℓ1 norm.

α̂ = argmin ∥ α ∥ℓ1

s.t. Dℓα = p
(3.2)

where α is the sparse representation coefficients in ℓ1 norm. The solution of this

problem has been presented by solving the equivalent Lagrange multipliers Yang

et al. (2010, 2008b).

min ∥ α ∥1 +
1

2
∥ Dℓα− p ∥22 (3.3)

Once being solved, this sparse representation coefficients α in low-resolution face

images can then be mapped to the high-resolution. The global high-resolution face

can be reconstructed as:

y = Dhα̂ (3.4)

In practice, the sparse representation does not perform well when treating the whole

face as one signal. We first divide face images into overlapped patches and enhance
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Table 3.1: PSNR and RMSE of Hallucinated Faces in terms of Different Patch

Overlapped Sizes.

Non-Overlap 1-Overlap 2-Overlap 3-Overlap

PSNR 30.22 30.96 30.97 31.13

RMSE 7.94 7.30 7.16 7.16

those patches respectively. Then by combining those patches, we can derive the high-

resolution faces. In this chapter the size of each patch is set as 4×4 in low-resolution

images and 16 × 16 in high-resolution images. The overlapped size is set as 3 and

12 respectively. The visual differences of holistic model and patch-based model are

shown in Figure 3.3. The low-resolution face images are hallucinated by both holistic

based sparse representation method and patch-based sparse representation method.

The training data are exactly the same with 200 people. The visual hallucinated

results are demonstrated in Figure 3.3. As can be seen clearly that the hallucinated

faces by holistic model have a good representation of global face features. The

images around eyes are very clear. However, noises exist around the chin and cheeks

area. The hallucinated faces by patch-based model are very smooth. But some

global face features are lost.

When merging the patches, the values of overlapped pixels in the high-resolution

face are the average values of pixels in the same position. The experiment of different

overlapping sizes is shown in Figure 3.4 and Table 3.1. The visual effects in terms

of overlap sizes are not obvious, as can be seen from Figure 3.4. However, the

hallucinated performances in terms of PSNR and RMSE are enhanced when the

overlap sizes increase.
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(a) (b) (c) (d)

Figure 3.3: Comparison between Holistic Model and Patch-based Model. (a) Low-

resolution Face Images. (b) Hallucinated Face Images by Holistic Model. (c) Hal-

lucinated Face Images by Patch-based Model. (d) Original High-resolution Face

Images.
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(a) (b) (c) (d)

Figure 3.4: Our approach in terms of different overlapping sizes. (a) Hallucinated

Faces without Patch Overlap for each 4× 4 Patch. (b) Hallucinated Faces with One

Pixel Overlap for Each 4× 4 Patch. (c) Hallucinated Faces with Two Pixel Overlap

for Each 4 × 4 Patch. (d) Hallucinated Faces with Three Pixel Overlap for Each

4× 4 Patch.
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3.2.3 Residue Face Enhancement in Curvelet

A global face constructed in last section only represents the low frequency infor-

mation of a face image, thus some detailed features might be lost. Residue face

enhancement is required for this reason. We treat the residual face to be the special

features towards each individual. For each person, this residue should be unique. In

this chapter, a learning process in frequency subspace is developed.

More precisely, we have obtained a globally hallucinated face y in previous section.

As we only have a testing image x, which is in low-resolution, we first down sample

y to low-resolution, and derive its residue image s:

s = x−Down(y) (3.5)

where Down represents the downsample function. The down sample rate is set to

be 4 in this chapter.

This residue image is thought of as the local features of the test image x. However,

s only represents the low resolution local features and we need its high resolution

local features sh to render the globally hallucinated face y. In this section we derive

this sh through a frequency domain learning process. Since we have selected a

training set F = [F1, F2, · · · , FK2 ], which are based on the local features of face

images in previous section, we need to derive a high resolution residue training set

Rh = [Rh
1 , R

h
2 , · · · , Rh

K2
] from F . This high resolution residue training set should

represent the high frequency local features of the testing face image. For such

purpose, we first down sample F to low resolution, then enhance them to the high

resolution image set F̃ = [F̃1, F̃2, · · · , F̃K2 ]. As a result, R
h can be derived as follows:

Rh
(i) = F(i) − F̃(i) (3.6)

where i = (1, 2, · · · , K2).
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In order to reduce the computational costs, we do not derive F̃ through sparse

representation enhancement for each training image. Instead, we adopt the Bi-

cubic interpolation (Hou and Andrews, 1978) to obtain a smooth high resolution

training set F̃ . Note that Rh represents the high frequency components of the

selected training images, which are then down sampled to the low-resolution version

Rl = [Rl
1, R

l
2, · · · , Rl

K2
]. Now we have a testing low resolution image s and a set of

training samples Rh and Rl. We first decompose both s, Rl and Rh into Curvelet

subspace and derive the corresponding Curvelet coefficients. Let C l
s{j}{t} denote

the coefficients of s, C l
r(i)

{j}{t}) denote the coefficients of Rl
(i) and Ch

r(i)
{j}{t} denote

the coefficients of Rh
(i) (i = 1, 2, · · · , K2), we formulate an optimization problem

to obtain Ch
s {j}{t}, which is the Curvelet coefficients of sh. For each element in

C l
s{j}{t}, which is a matrix, there is a corresponding matrix in C l

r(i)
{j}{t}) and

Ch
r(i)

{j}{t}. Here, we first formulate the following least square problem:

argmin
Wi

∥ C l
s{j}{t} −

K2∑
i=1

WiC
l
r(i)

{j}{t} ∥22

s.t.

K2∑
i=1

Wi = 1

(3.7)

where (i = 1, 2, · · · , K2; j = 1, 2; , t = 1, 2, · · · , 8).

This is a standard optimization problem. The solution can be obtained in a close

form as below: For each value of j and t, C l
s{j}{t} is a matrix. This matrix can be

resized into a vector and represent one variable. There are total N = j×t C l
s{j}{t}.

These vectors are combined as a matrix. Similarly, each C l
r(i)

{j}{t}) is resized to be

a vector. Now we follow the following algorithm:

Step 1: For each j and t, there exists a unique vector that represents the Curvelet

feature in this position. This vector is denoted as vector Cs.

Step 2: For each vector Cs, the K2 neighbors have been found at the same position

of the Curvelet features in training data. We denote this training matrix as Cr. Cr
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is determined in our training sample pre-selection with K2 columns.

Step 3: Vector Cs is subtracted from each column of matrix Cr. We denote this

matrix as Crs. The covariance matrix is computed as C = Crs
′ ∗ Crs.

Step 4: Solve the linear system C ∗Wi = 1.

Step 5: The solved weight Wi is normalized to be 1.

Step 6: Repeat Step 1 to Step 5.

Step 7: The high-resolution Curvelet coefficients are reconstructed by Equation 3.8.

Then for each C l
s{j}{t}, we can derive a set of Wi. The corresponding Ch

s {j}{t}

can be derived by:

Ch
s {j}{t} =

K2∑
i=1

WiC
h
r(i)

{j}{t} (3.8)

We now have the complete coefficients Ch
s {j}{t} of sh, By using the Inverse Discrete

Curvelet Transformation (IDCT) in Ch
s {j}{t}, we can obtain the high frequency

feature sh. Finally we can derive:

yf = y + sh (3.9)

It should be remembered that in the residue step, we only used the K2 selected

images for high frequency learning.

3.3 Experimental Results

In this chapter, we use FERET face database (Phillips et al., 2000) and CASPEAL

database (Gao et al., 2008) to test our approach. The FERET database includes

839 individuals and each individual has 2 to 10 images. We choose 239 people as

testing samples and the other 600 as training samples. CASPEAL database has
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1040 individuals and we choose 440 for testing and the remain 600 for training.

In the experiment only one frontal image is collected for each person, including

various illuminations, races and genders. Before the experiment, we first align all

the images manually and crop the faces by fixing the centers of the eyes and the

mouths. The size of the cropped high-resolution image is set as 128 × 96 and that

of the low-resolution image is set as 32× 24.

3.3.1 Hallucinating Faces in Curvelet

There are two steps in our experiment. Before each step, there is a pre-selection

process, which is designed to locate a set of proper training samples for a testing

image to achieve a better performance compared with randomly selected training

samples in the hallucinating process. Then in the first step, we try to construct

a smooth, high-resolution image with global features. In other words, we want to

construct a high-resolution face image with low frequency information based on the

coarse coefficients in the Curvelet domain. Since we construct a high-resolution

global face with low frequency information, we need to find the local features of

each individual. These local features are also called residues, located in the high

frequency domain. For this reason, we aim to find the high frequency information

through the fine coefficients in Curvelet domain in the second step.

In summary we perform four types of experiments in this chapter.

Experiment 1: By randomly selecting K1 training samples, we perform sparse rep-

resentation super-resolution algorithm (Equation. 3.2).

Experiment 2: By randomly selecting K1 training samples, we first perform sparse

representation super-resolution algorithm (Equation. 3.2), then perform Curvelet

residual compensation (Equation. 3.7) based on those K1 training samples.

Experiment 3: We first adopt the proposed Curvelet based pre-selection algorithm to
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select K1 training samples, and then perform sparse representation super-resolution

algorithm (Equation. 3.2).

Experiment 4: We adopt our Curvelet based pre-selection algorithm to selectK1 and

K2 training samples, then perform sparse representation super-resolution algorith-

m (Equation. 3.2). And finally obtain the final results by combining the proposed

Curvelet residual compensation (Equation. 3.7).

Figure 3.5 illustrates the hallucination results of our method. Specifically, columns

a and b show the original low-resolution and high-resolution images, respectively.

Columns c indicates the global face without the pre-classification step, while column

d shows the global face with the pre-classification step. Column e illustrates the final

result of our three-step approach. It can be seen from Fig.3.5 that the images in

column d have better quality than those in column c.

Comparisons in terms of the Peak Signal Noise Ratio (PSNR) and the Root Mean

Square Error (RMSE) for our four experiments with other approaches can be found

in Table 3.2 and Fig. 3.6, where K1 = 30, K2 = 20, and (e),(f),(g) and (h) are

proposed approaches. In Table 3.2, we show the PSNR values of randomly picked

6 training samples and the average results of the whole 679 testing samples in each

column. It can be seen from Table 3.2 that when combined with sparse repre-

sentation technique separately, both our Curvelet Residual compensation approach

(Experiment 2) and pre-selection approach(Experiment 3) can improve the results of

generic sparse representation method (Experiment 1). A more significant improve-

ment can be seen in our final result (Experiment 4), where we adopt both proposed

pre-selection approach and Curvelet residual compensation approach. Similarly,

Fig. 3.6 demonstrates the average RMSE values of the 679 testing samples, where

both our Curvelet Residual compensation approach and pre-selection approach can

reduce the errors, no matter whether they are used separately (Experiment 2 and

3) or used together (Experiment 4).
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(a) (b) (c) (d) (e)

Figure 3.5: Our approach. (a) Original low-resolution images. (b) Original high-

resolution images. (c) Hallucinated global faces without pre-classification. (d) Hal-

lucinated global faces with pre-classification. (e) Our final output.
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Table 3.2: PSNR Comparison of six randomly selected images and the average val-

ues of 679 Testing Samples. (a) Sparse Representation approach Yang et al. (2010).

(b) LPH super-resolution and neighbor reconstruction Zhuang et al. (2007). (c) Eigen-

Transformation hallucinationWang and Tang (2005). (d) A two-step face hallucination Liu

et al. (2007). (e) Experiment 1. (f) Sparse Representation combined with our Curvelet

residual compensation approach (Experiment 2). (g) Sparse Representation combined

with our pre-selection approach (Experiment 3). (h) Our final approach (Experiment 4).

Average demonstrates the average PSNR results of all the 679 testing images for each

approach.

Images 1 2 3 4 5 6 Average

(a) 28.69 29.02 30.68 27.75 29.26 31.59 29.23

(b) 24.72 22.47 26.47 21.23 24.32 25.54 24.16

(c) 21.44 18.35 23.23 15.81 24.79 20.24 21.92

(d) 25.79 27.06 28.36 24.45 27.85 29.54 26.96

(e) 28.01 28.06 29.36 27.45 28.85 31.54 28.96

(f) 30.89 30.47 31.55 29.74 30.01 32.27 30.03

(g) 30.85 30.64 31.49 29.90 29.48 32.02 29.97

(h) 31.75 31.40 32.22 30.49 31.24 32.41 30.63
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Figure 3.6: Average RMSE Comparison of 679 Testing Samples. (a) Sparse Rep-

resentation approach Yang et al. (2010). (b) LPH super-resolution and neighbor

reconstruction Zhuang et al. (2007). (c) Eigen-Transformation hallucination Wang

and Tang (2005). (d) A two-step face hallucination Liu et al. (2007). (e) Experiment

1. (f) Sparse Representation combined with our Curvelet residual compensation ap-

proach (Experiment 2). (g) Sparse Representation combined with our pre-selection

approach (Experiment 3). (h) Our final approach (Experiment 4).
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Figure 3.7: Our PSNR results in terms of different K1.

In order to clarify the influence of training samples, we perform our experiment

when K1 is set as 5, 10, 20, 30, 50, 100, 200, 300, 400, 500 and 600 respectively in

Experiment 4 (K2 = 20). Figure 3.7 describes the average PSNR values in term of

different training samples(K1) in Experiment 4. It can be seen that our approach

does not depend too much on the number of selected training samples. It performs

quite well even the number of training samples is small.

By combining the pre-selection approach and Curvelet residual compensation, our

approach utilizes the advantages in both spatial domain and frequency domain.

Figure 3.8 indicates the comparison between our approach (K1 = 30, K2 = 20) and

other four typical methods (Wang and Tang, 2005; Liu et al., 2007; Yang et al., 2010;

Zhuang et al., 2007) when the number of training data is 200. It can be identified

that our results have much smoother and clearer views even with a smaller training

data. Especially when compared with those approaches with holistic face as training
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samples (Wang and Tang, 2005; Liu et al., 2007; Zhuang et al., 2007), the proposed

method has less noises around the chin area.

The comparison of different methods in terms of the Peak Signal Noise Ratio (PSNR)

is also shown in Table 3.2, which includes six randomly selected people in both two

databases. And the last column shows the average results of the whole experiment

(239 people in FERET and 440 in CASPEAL). Face hallucination results of Yang

et al. (2010), Zhuang et al. (2007), Wang and Tang (2005) and Liu et al. (2007)

are shown in (a), (b), (c) and (d) respectively. Figure 3.6 describes the average Root

Mean Square Errors of the above methods as well. From these comparisons, one can

see that our approach outperforms other existing approaches.

3.3.2 Holistic Model vs Patch based Model

In previous chapter, we propose a holistic model to enhance the resolution of faces,

while in this chapter we propose a patch-based model instead. When compare both

these two types of models, we can conclude from Figure 1.2 that the holistic based

hallucination models have better performance in facial details. When comparing

both these models in PSNR and RMSE values, we can see from Table 3.2 that, the

holistic models (Liu et al., 2007),(Wang and Tang, 2005),(Zhuang et al., 2007) have

smaller PSNR values (less than 27), while the patch based model Yang et al. (2010)

has higher PSNR performance (more than 30). This means that the patch-based

models performs better in terms of PSNR evaluation method. In Figure 3.3, we

specialize the hallucination algorithm to be the same (Sparse Representation Super-

resolution (Yang et al., 2010)) in both holistic and patch based models, which reduce

the impact caused by different hallucination methods. All the experiment settings

are exactly the same, such as training data, sparse parameters, testing data, and

etc. As displayed in Figure 3.3, the hallucinated faces in terms of holistic and
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(a) (b) (c) (d) (e) (f) (g)

Figure 3.8: Comparison with other methods. (a) Original low-resolution face. (b)

Original high-resolution face. (c) Hallucinated faces by Yang et al. (2010). (d)

Hallucinated faces by Zhuang et al. (2007). (e) Hallucinated faces by Wang and

Tang (2005). (f) Hallucinated faces by Liu et al. (2007). (g) Hallucinated faces by

our approach.
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patch-based models with sparse sensing theory have the similar results compared

with Figure 1.2. In this thesis, we propose a holistic based model in Chapter 2 and

a patch based model in Chapter 3. The comparison of visual quality between the

proposed approaches can be seen from Figure 2.11 and Figure 3.5. The common

features in terms of holistic-based and patch-based models could be concluded as

follows:

1. The detailed facial features, such as eyes, eyebrows, mouths, and etc., of halluci-

nated faces based on holistic models look better than patch-based models. However,

the visual comparison shows the edges of hallucinated faces, especially around chin

area, of holistic models are quite noisy. The patch-based models could display s-

moother faces, though some of the facial features are lost during the hallucinating

process.

2. In terms of PSNR and RMSE, the patch-based models performs better than

holistic models, as they produce much smoother results.

3.4 Summary

In this chapter, a Curvelet feature based face hallucination approach is proposed

via sparse sensing technique. We first select the training samples according to the

Curvelet coefficients of the low-resolution testing image. Secondly, we use the gen-

eral sparse representation idea to reconstruct the global face based on the selected

training samples. Compared with the general sparse representation method, this

pre-selected training samples can help improve the hallucination results. Residue

compensation is then carried out. Since the residues can be thought of as the high

frequency information of the face images, we select the residue training samples by
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locating the nearest neighbors of the high frequency coefficients in Curvelet domain.

Through the learning process, the Curvelet coefficients of the high-resolution residue

images are estimated. The high-resolution residue image can be derived by employ-

ing the Inverse Discrete Curvelet Transformation. Finally, by combining the global

face with the residue, the final high-resolution face can be derived.

Most of the face hallucination methods only adopt Peak Signal Noise Ratio (PSNR)

or Root Mean Square Error (RMSE) as evaluation method. However, in some oc-

casions, PSRN and RMSE can not represent hallucination quality properly. Since

our aim of face enhancement is to improve face recognition performance, recogni-

tion performance should be adopted to evaluate hallucination quality. How much

face hallucination can improve face recognition in different situation? This will be

discussed in the next chapter.
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Chapter 4

Face Hallucination for Recognition

Performance Improvement

4.1 Introduction

4.1.1 Face Hallucination Overview and Related Work

As described in Chapter 1, most of the face recognition approaches are performed

in the same resolution. When testing images and gallery images are in different

resolutions, the simplest way is to resize the testing and/or gallery images to have

the same resolution. As the gallery faces are generally in high resolutions while the

testing faces vary from low to high resolutions, the easiest way is to down-sample

the gallery faces to match the testing size or choose a low resolution and down-

sample both gallery and testing images to this chosen size. However, this will have

a compromise on face recognition performance.

Another way of matching resolution is to change the resolution of testing images and

make them to have the same resolution as gallery images. Thus super-resolution

techniques are required for face recognition, which is called face hallucination. Face

hallucination adds additional pixels to increase the resolution of face images in

order to improve the performance of face recognition systems for very low-resolution
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testing face images.

As to face hallucination, Baker and Kanade (2000, 2002) was the first to introduce

the face hallucination theory. Based on such techniques, they proposed a learning

based algorithm, which learns the prior on the spatial distribution of the face image

gradient and yields high-resolution face images. Numerous face hallucination ap-

proaches have been proposed ever since, such as Wang and Tang (2005); Liu et al.

(2007); Zhuang et al. (2007); Yang et al. (2008a); Zhang and Cham (2011); Chang

et al. (2004); Yang et al. (2010); Ma et al. (2010); Chakrabarti et al. (2007). As

discussed previously, Theses hallucinating approaches can be divided into two types

according to the way they dealing with testing faces. One is holistic based face

hallucination and the other is patch based face hallucination. For example, Wang

and Tang (2005) proposed an efficient hallucinating algorithm. They took the low-

resolution and high-resolution faces into two groups, and tried to find the linear

relation between those two groups. They derived this through Principal Compo-

nent Analysis (PCA), where both the low and high resolution images are projected

into their eigen-subspaces, and the linear transformation could be interpreted in

these two subspaces. A statistical modeling approach was proposed by Liu et al.

(2007), who solved the enhancement problem through two steps. The global fea-

tures and local features were separately derived from a global parametric model

and a local non-parametric model. A hallucinated human face can be derived by

combining the global and local features. Based on their work, Zhuang et al. (2007)

adopted Locality Preserve Projection (LPP) and Radial Basis Function (RBF) to

produce the global faces and simplify the non-parametric model to generate the

local features. Yang et al. (2008a) adopted the Non-negative Matrix Factorization

(NMF) algorithm to generate global faces and found the local residues through s-

parse representation method. All these above approaches are holistic models. As for

patch based face hallucination approaches. Zhang and Cham (2011) proposed an

approach in frequency domain. They transformed faces through the Discrete Cosine
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Transformation (DCT), and estimated the high-resolution DC components and AC

components separately. Through the inverse DCT, hallucinated faces can be con-

structed. Other super-resolution approaches for generic images also can be used in

face hallucination. Chang et al. (2004) proposed a super-resolution approach based

on the Locality Linear Embedding. Yang et al. (2010) proposed a Sparse Repre-

sentation super-resolution approach. All of these patch based models can generate

smooth hallucinated faces efficiently and with good performances in terms of Peak

Signal Noise Ratio (PSNR) and Root Mean Square Error (RMSE) performance.

4.1.2 Research Gap

One original motivation of face hallucination is to improve face recognition per-

formance. However, many of the previous hallucinating approaches only used the

PSNR or RMSE values to evaluate the hallucinating quality. The proposed ap-

proaches claim to have good hallucination results in terms of high PSNR or low

RMSE values. However, the did not validate their performance in terms of face

recognition. Also, they did not prove the performances of their algorithms on im-

ages with extremely low resolutions, where face hallucination is actually most needed

for face recognition. In this thesis we define the extremely low-resolution faces as

facial image whose resolutions are equal or lower than 16× 16.

4.1.3 Contributions

In this chapter, we aim to fill the above gap by studying the relationships among

image resolution, recognition performance and hallucination performance. We have

three contributions here.
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Firstly, through extensive experiments we prove that in case of extremely very low-

resolution, the effectiveness of hallucinating on improving face recognition is actually

debatable.

Secondly, we reveal that the recognition performance can be improved if the image

resolution is sufficiently large. When the resolution is very low, hallucinating faces

can not actually enhance the recognition performance.

Finally, by studying the relationship between the recognition rate with PSNR and

RMSE values, we found that these two commonly used evaluation metrics for hallu-

cination algorithms are not able to accurately reflect how much hallucination could

assist in face recognition.

The remaining part of this chapter is organized as follows. In Section 4.2, we will

investigate the relationship of image resolution and recognition performance. In

Section 4.3, the face hallucination and recognition are investigated. The Hallucina-

tion metrics are discussed in terms of recognition performance in Section 4.4. The

summary of this chapter is presented in Section 4.5.

4.2 Relationship between Resolution and Recog-

nition

Since one of the the most important purposes of face hallucination is to assist per-

formance in face recognition, it is an important issue to determine what kind of face

images cannot be recognized by human perceptions and machine perceptions. For

human perceptions, faces are able to be recognized in reasonably high-resolution

images as there are more details available in those images. When the image resolu-

tion decreases to a certain threshold, faces are difficult to be recognized by human.

Figure 4.1 demonstrates a set of faces in YaleB database (Georghiades et al., 2001;
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(a) 128× 128 (b) 64× 64 (c) 32× 32 (d) 16× 16 (e) 8× 8

Figure 4.1: Face Image Display in terms of Different Resolutions.

Lee et al., 2005) from high-resolution 128×128 to very low-resolution 8×8. We can

see that the faces become hardly recognizable when the resolution is below 32× 32.

With machine recognition, things are surprisingly different. Experiments are con-

ducted on the extended YaleB database (Georghiades et al., 2001; Lee et al., 2005),

where face images are down-sampled from high-resolution (128 × 128) to a set of

low-resolution images: 64×64, 32×32, 16×16 and 8×8. Face recognitions are then

performed on images in different resolutions. In all the recognition experiments, half

of the images in each class are randomly selected as training data and the remaining

half as testing data. Recognition experiments are repeated twenty times for each

class and the recognition rates are taken from the average values.

If the resolutions are set as the variable, it is found that when the resolutions vary

from 8 × 8 to 128 × 128, the recognition rates have different trends with different

recognition approaches. Figure 4.2 shows the results of our experiments in which

we recognize faces using different recognition approaches in the Extended YaleB

database. We implemented Principal Component Analysis (PCA) Turk and Pent-

land (1991), Linear Discriminant Analysis (LDA) Belhumeur et al. (1997), Locality
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Figure 4.2: Recognition Rates in terms of Different Recognition Algorithms and

Resolutions in Extended YaleB Face Database

Preserving Projections (LPP) He and Niyogi (2004) and Sparse Representation (S-

RC) Wright et al. (2009) which are the most popular face recognition algorithms for

images with resolutions of 8×8, 16×16, 32×32, 64×64 and 128×128. Recognition

by the PCA algorithm has an obvious trend, where the recognition rate increases

when face resolution increases. However, the overall recognition rates by PCA is

not good enough, ranging from 37.54 to 77.37. LDA, LPP and SRC produce sat-

isfactory recognition rates. However, the recognition performances do not strictly

follow the resolution sizes. It can be seen that in the low resolution, SRC has a

very good performance. Specifically in the resolution of 16 × 16, SRC produces a

similar recognition rate as in the highest resolution of 128 × 128. In the resolution

of 32× 32, recognition rates drop for both the SRC and LDA methods.

The same experiment is also performed in the AR database (Martinez and Be-

navente, 1998) in Figure 4.3, where the trend of recognition rate varies but still does

not increase along with resolution.

From both these experiments, it has been shown that though it is not always the
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Figure 4.3: Recognition Rates in terms of Different Recognition Algorithms and

Resolutions in AR Face Database.

case that higher resolutions leads to the higher recognition rates, the recognition

performance is in general becoming better with increasing high resolution. In other

words, when the resolution of facial images decreases, face recognition performances

do not drop obviously. Instead, they remain in a similar performance range (see

Figure 4.2 and Figure 4.3). Resolution is not the only factor that influences the

face recognition performances. There might be some other factors that affect the

recognition rate, such as recognition algorithms, types of cameras and different face

databases which include illumination, poses, expressions, gender and human races.

It is worth to point out that the high performances with different classifiers are pos-

sibly due to the face database patterns. Also the low resolution images are obtained

only from down sampling technique and some innate features of its high resolution

images are inherited. In practice, it is more interesting to see the recognition per-

formance for hallucinated images by using different approaches. We will investigate

this issue in next section.

82



4.3 Face Hallucination and Recognition

The previous section has shown that high resolutions do not guarantee the improve-

ment of face recognition in YaleB database (Georghiades et al., 2001; Lee et al.,

2005) and AR database(Martinez and Benavente, 1998). In order to clearly evalu-

ate the performance of face hallucination in recognition context, another experiment

is conducted in which we enhance the low-resolution face images through four typi-

cal face hallucination approaches: Eigen Transformation (Eigen) (Wang and Tang,

2005), Two Step Face Hallucination Theory (TwoStep) (Liu et al., 2007, 2001),

Sparse Representation Super Resolution (ScSR) (Yang et al., 2010) and Cubic In-

terpolation (Cubic) (Hou and Andrews, 1978). Wang and Tang (2005) and Liu

et al. (2007, 2001) are examples of holistic models. Yang et al. (2010) represents

patch based models. Hou and Andrews (1978) is a non-learning based interpolation

approach. The image resolutions are enhanced in three types of resolutions: from

8× 8 to 32× 32, from 16× 16 to 64× 64 and from 32× 32 to 128× 128. We take

each low-resolution image in the Extended YaleB and AR databases as a test image,

and use the FRGC Phillips et al. (2006) face database as the training data of the

hallucination experiment. We use a third face database (FRGC) as the training

data in order to fairly verify the robustness of hallucination approaches.

As a result a set of hallucinated high-resolution faces are then derived. In the

recognition experiment, the testing faces are randomly selected from the hallucinated

faces and the training data are randomly selected from the original high-resolution

images. LDA Belhumeur et al. (1997), LPP He and Niyogi (2004), PCA Turk

and Pentland (1991) and SRC Wright et al. (2009) face recognition algorithms are

adopted. Similarly, the recognition experiment is repeated twenty times and the

recognition rates are averaged from them.

The recognition rates of the low-resolution faces, hallucinated faces and high-resolution
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Figure 4.4: Recognition Rates of Hallucinated Faces in YaleB database. (a) Recog-

nition Rate of Low Resolution Faces. From (b) to (e) are Recognition Rates of

High Resolution Faces Hallucinated through Cubic Interpolation Hou and Andrews

(1978), Eigen-Transformation Wang and Tang (2005), Two Step Hallucinating The-

ory Liu et al. (2007) and Sparse Representation Super-Resolution Yang et al. (2010).

(f) Recognition Rate of Original High Resolution Faces.

faces are compared by using different face recognition approaches. Figure 4.4 (i)

demonstrates the experimental results when the low-resolution is 8× 8 and the hal-

lucinated high-resolution is 32. It can be seen that when the image resolutions is

extremely very low, hallucinated faces actually do not provide much help to recog-

nition rate. In fact, most hallucinated high-resolution faces have lower recognition

rates compared with the low-resolution faces. This gives us a conclusion that when

the image resolution is sufficiently low, image hallucination will not help for face

recognition. This is very surprising.

However, the situation is totally different when the images resolution is enhanced
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from 32 × 32 to 128 × 128. Figure 4.4 (ii) shows the experimental result for such

cases. For most hallucinated 128× 128 images, face recognition rates increase when

compared with the original 32×32 faces using all four typical recognition approaches.

This means that if the original face is in the resolution of 32×32, the face recognition

rates can be improved, sometimes significantly, by enhancing the image resolutions

through hallucinating faces, while in the resolution of 8 × 8, the recognition per-

formance can hardly be enhanced by these super-resolution approaches. Figure 4.5

displays hallucinated facial images in terms of different hallucinating approaches.

Similar results have been obtained by performing the same experiment in the AR

database (Martinez and Benavente, 1998). Figure 4.6 shows the results of our ex-

periment in AR database. Figure 4.7 illustrates the visual display of hallucinated

faces in AR database. These faces are hallucinated from the resolution of 32 × 32

to the resolution of 128× 128.

4.4 How to Evaluate the Hallucination Results

Most of the existing face hallucination algorithms use the Root Mean Square Er-

ror (4.1) and Peak Signal Noise Ratio (4.2) to evaluate the enhancement results.

They are defined respectively as:

RMSE =

√√√√√ m∑
1

n∑
1

(I − Î)2

m× n
(4.1)

PSNR = 20 · log10
255

RMSE
(4.2)

where m and n are the numbers of rows and columns of the high-resolution images.

I and Î represent the original high-resolution testing images and hallucinated high-
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(a) (b) (c) (d) (e) (f)

Figure 4.5: Examples Display of Faces through Different Hallucinating Methods In

YaleB (Georghiades et al., 2001) Database. (a) Original Low-resolution Facial Image

(with the resolution of 32 × 32). (b) High-resolution Facial Image Hallucinated by

approach of Wang and Tang (2005) (with the resolution of 128 × 128). (c) High-

resolution Facial Image Hallucinated by approach of Liu et al. (2007) (with the

resolution of 128×128). (d) High-resolution Facial Image Hallucinated by approach

of Cubic Interpolation (with the resolution of 128× 128). (e) High-resolution Facial

Image Hallucinated by approach of Yang et al. (2010) (with the resolution of 128×

128). (f) Original High-resolution Facial Image. (with the resolution of 128× 128).
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Figure 4.6: Recognition Rates of Hallucinated Faces in AR database. (a) Recog-

nition Rate of Low Resolution Faces. From (b) to (e) are Recognition Rates of

High Resolution Faces Hallucinated through Cubic Interpolation Hou and Andrews

(1978), Eigen-Transformation Wang and Tang (2005), Two Step Hallucinating The-

ory Liu et al. (2007) and Sparse Representation Super-Resolution Yang et al. (2010).

(f) Recognition Rate of Original High Resolution Faces.
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(a) (b) (c) (d) (e) (f)

Figure 4.7: Examples Display of Faces through Different Hallucinating Methods In

AR (Martinez and Benavente, 1998) Database. (a) Original Low-resolution Facial

Image (with the resolution of 32×32). (b) High-resolution Facial Image Hallucinated

by approach of Wang and Tang (2005) (with the resolution of 128× 128). (c) High-

resolution Facial Image Hallucinated by approach of Liu et al. (2007) (with the

resolution of 128×128). (d) High-resolution Facial Image Hallucinated by approach

of Cubic Interpolation (with the resolution of 128× 128). (e) High-resolution Facial

Image Hallucinated by approach of Yang et al. (2010) (with the resolution of 128×

128). (f) Original High-resolution Facial Image. (with the resolution of 128× 128).
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resolution images respectively.

However, both of these two parameters only measure the average differences between

the original low-resolution images and hallucinated high-resolution images, which

cannot count the correctness pixel by pixel. In other words, PSNR and RMSE

measurements can not exactly measure the face features.

In next experiment, we aim to verify high PSNR or RMSE values do not necessarily

lead to good hallucination metrics in terms of recognition performance. An exper-

iment is conducted to enhance the face resolution from 32 × 32 to 128 × 128, and

compares the PSNR and RMSE values with recognition rates using Principal Com-

ponent Analysis (PCA) (Turk and Pentland, 1991), Linear Discriminant Analysis

(LDA) (Belhumeur et al., 1997), Locality Preserving Projections (LPP) (He and

Niyogi, 2004) and Face Recognition via Sparse Representation (SRC) (Wright et al.,

2009).

This experiment is conducted in Extended YaleB Face Database (Georghiades et al.,

2001; Lee et al., 2005). And two processes are performed as follows:

Stage 1: Hallucinating Faces. In this stage, an individual face database, Face Recog-

nition Grand Challenge face database (Phillips et al., 2006), is adopted as training

data for hallucinating faces. Frontal faces with different illumination conditions in

each human subject are selected as testing data. This means each subject con-

tains 64 face images. These 64 ∗ 28 = 1792 testing images are firstly four times

down-sampled to low resolutions (32 × 32). And then hallucinated to the high

resolution (128 × 128) by four different hallucination algorithms, which are Eigen

Transformation (Eigen) (Wang and Tang, 2005), Two Step Face Hallucination The-

ory (TwoStep) (Liu et al., 2007, 2001), Sparse Representation Super Resolution

(ScSR) (Yang et al., 2010) and Cubic Interpolation (Cubic) (Hou and Andrews,
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1978).

Stage 2: The hallucinated faces have the same order as the original high-resolution

faces. We mix them together and adopt face recognition algorithms (PCA (Turk

and Pentland, 1991), LDA (Belhumeur et al., 1997), LPP (He and Niyogi, 2004)

and SRC (Wright et al., 2009)). For one human subject (64 images), we first mark

the numbers for each face image from 1 to 64. Then we randomly select half of

the images (32 images) from hallucinated face images as testing data. And choose

the left half from the original high-resolution face images as the training data. The

marking numbers of testing data and training data are not overlapped. PSNR and

RMSE evaluation is also performed for the hallucinated face images. These values

are then compared with face recognition performances.

The comparison is shown in table 4.1, where the best super-resolution result appears

when using the ScSR approach in terms of the PSNR and RMSE evaluation. Howev-

er, in PCA recognition method the best recognition rate appears at the TwoStep ap-

proach and in SRC recognition method the best recognition rate appears at the Cu-

bic approach. In PCA recognition method, Cubic interpolation approach performs

the worst in recognition rate while it performs better than Eigen-transformation and

Two-step approaches in terms of PSNR and RMSE. The experiment clearly shows

that neither PSNR nor RMSE could provide a good evaluation for the performance

of hallucination algorithms in terms of assisting face recognition.

Similar experiment is conducted to enhance the face resolution from 8×8 to 32×32.

And we compare the PSNR and RMSE values with recognition rates in the LDA,

LPP, PCA and SRC methods. The comparison is shown in table 4.2, where the

best super-resolution result appears at the PCA approach in terms of the PSNR

and RMSE evaluation.
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If we look the Table 4.1 and Table 4.2 further, we can find the best performance

classifiers in two cases are different, SRC in table 4.1 and PCA in table 4.2. With

better classifier selected, its performance is increasing with better PSNR values for

different hallucinated images. This is coincident with our logical reasoning and

motivates us to develop hallucinated techniques with selected classifiers in future. If

we look these two tables with Figure 4.4 and Figure 4.6 together, we will find that

it is unnecessary to hallucinate face images if the resolution is extremely low (8x8 in

our case) as the hallucinated images will not improve the recognition performance

in this case as seen in Figure 4.4 and Figure 4.6.

In a more precise study of Table 4.1 and Table 4.2, we can find the best recognition

performance appears when facial images are enhanced by Cubic interpolation (Hou

and Andrews, 1978) and recognized by SRC method (Wright et al., 2009) in Ta-

ble 4.1. In this case the recognition performance is almost as good as original high

resolution images. However, the best performance in terms of PSNR/RMSE appears

when faces are enhanced by ScSR (Yang et al., 2010). Though ScSR (Yang et al.,

2010) hallucination approach often has the best recognition performance regardless

of the recognition approaches in most of the time, Cubic interpolation (Hou and

Andrews, 1978) performs better occasionally in both recognition and PSNR/RMSE

evaluation. Regardless of different recognition approaches, the performance of face

hallucination in terms of PSNR/RMSE is not consistent with the performance in

terms of recognition rates. However, we still could make some conclusions. As we

have discussed in previous two chapters, patch-based models usually have better

performance in terms of PSNR/RMSE. Patch-based models also have better perfor-

mance in terms of recognition rates, though they are not always exactly consistent

with each other.
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Table 4.1: Comparison between Recognition Rates and PSNR/RMSE Values when

Hallucinating Faces from 32× 32 to 128× 128.

ScSR TwoStep Eigen Cubic

LDA 97.21 96.23 93.03 96.01

LPP 95.63 93.61 88.77 91.75

PCA 74.07 75.22 74.17 71.71

SRC 98.48 97.63 97.02 98.60

PSNR 31.52 27.57 22.48 30.96

RMSE 7.04 11.15 20.65 7.51

Table 4.2: Comparison between Recognition Rates and PSNR/RMSE Values when

Hallucinating Faces from 8× 8 to 32× 32.

ScSR TwoStep Eigen Cubic

LDA 7.74 3.82 3.20 9.91

LPP 11.81 3.77 3.73 9.93

PCA 42.30 20.66 26.84 37.98

SRC 12.87 4.34 3.60 19.18

PSNR 22.76 13.00 12.01 22.25

RMSE 19.40 58.99 64.00 20.61
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4.5 Summary

One of the main motivations for face hallucination is to help enhance the face recog-

nition performance by both machine and human perceptions. Through extensive

experiments in several public face databases, we found that when the face image

resolution is below 32 × 32, they can hardly be recognized by human perception,

but can still be well recognized by machines if such resolution is obtained by down-

sampling, through some popular recognition algorithms such as LDA, LPP and SRC.

It is also found that resolutions are not the only factor that influences face recog-

nition rate. Higher resolution does not necessarily mean higher recognition rate for

all classifiers in general. Many other factors may affect the performance of face

recognition.

Four typical face hallucination approaches (Wang and Tang, 2005; Liu et al., 2007;

Yang et al., 2010; Hou and Andrews, 1978) are implemented to enhance the low-

resolution face images to high-resolution: from 8 × 8 to 32 × 32, from 16 × 16 to

64×64 and from 32×32 to 128×128. Face recognitions are then performed on those

hallucinated face images using four popular face recognition algorithms: LDA, LPP,

PCA and SRC. From our experiments, when face images are enhanced from 32× 32

to 128× 128, the hallucinated high-resolution face images can be better recognized

than the low-resolution images. However, in extremely low dimension (8× 8), some

of the face hallucination approaches do not work properly. Recognition rates on the

hallucinated faces could be even lower than those on the original low-resolution face

images.

PSNR and RMSE are the common evaluation metrics for face hallucination results.

We compared PSNR and RMSE values of hallucinated faces with recognition rates.

The comparison shows that in some circumstances, PSNR and RMSE values are not

able to exactly reflect the hallucinating performance in terms of assisting recognition.
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More factors are to be considered to develop a robust and effective face hallucination

algorithm in future so that it could effectively help enhance face recognition with a

selected classifier. More effective evaluation metrics that can directly connect the

hallucination quality and the recognition correctness are needed.
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Chapter 5

Face Recognition in Surveillance

Scenarios

5.1 Introduction and Related Works

As seen from previous chapters, popular face recognition approaches can achieve

very high recognition performance in publicly released databases, e.g. Zhao et al.

(2003); Turk and Pentland (1991); Belhumeur et al. (1997); He and Niyogi (2004);

Wright et al. (2009), where the resolutions of the captured facial images are usually

higher than 100× 100. Some can even achieve similar high performances in a very

low resolution (Wright et al., 2009), where the resolution of face images can be

even less than 10 × 10. However, most of these works have been conducted on

databases where face images are captured in controlled environments with high

definition cameras. The so-called ”low-resolution” face images are derived from high-

resolution faces by down-sampling and/or smoothing methods. In Chapter 2, we

have discussed and compared different down-sampling methods. Their influences in

face recognition and face hallucination are also investigated. However, these down-

sampling methods in Chapter 2 are performed by mathematical techniques. The

low-resolution images produced are totaly different from the low-resolution images

that are directly captured . When face images are captured directly in a ”real” low

resolution, the high performances of current face recognition approaches are yet to

be proven.
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5.1.1 Related Works

Recently, face recognition research in real-life surveillance environments has become

popular. Surveillance cameras generally produce images in low resolutions, and face

images captured directly by surveillance cameras are usually very small. Besides,

images taken by surveillance cameras are generally with noises and corruptions,

due to the uncontrolled circumstances and distances. Zou and Yuen (2012) pro-

posed a super-resolution approach to increase the recognition performance for very

low-resolution face images. They employ a minimum mean square error estimator

to learn the relationship between low and high resolution training pairs. A fur-

ther discriminative constraint is put on the learning approach using the class label

information. Biswas et al. (2012) proposed a matching algorithm through using Mul-

tidimensional Scaling (MDS). In their approach both the low and high resolution

training pairs are projected into a kernel space. Transformation relationship is then

learned in the kernel space by using iterative majorization algorithm, which is used

to match the low-resolution test faces to the high-resolution gallery faces. Similarly,

Ren et al. (2012) proposed the Coupled Kernel Embedding approach, where they

map the low and high resolution face images into different kernel spaces and then

transform them to a learned subspace for recognition.

5.1.2 Research Gap

Only a small portion of existing researches are specifically for real surveillance s-

cenarios, where the captured face images are quite different compared with images

captured under controlled circumstances with high-definition cameras. Most of the

existing works are based on the down-sampled low-resolution face images captured

by high definition cameras under controlled environments. Even in those works un-

der surveillance cameras (Zou and Yuen, 2012; Biswas et al., 2012; Ren et al., 2012),
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the claimed low-resolution (e.g. 16× 16) surveillance face images are in fact down-

sampled from the original images captured in the resolution of 64× 64 (Grgic et al.,

2011). Face recognition performance based on low-resolution (lower than 32 × 32)

face images in uncontrolled surveillance scenarios remains an issue to be explored.

5.1.3 Our Contributions

In this chapter, we systematically analyze the key issues for face recognition in

surveillance scenario, where the captured face images are usually with uncontrolled

illumination, motion, poses and are generally taken in a far distance. Moreover, the

off-the-shelf commercial surveillance cameras come with low-quality sensors and can

only capture images in low resolutions.

Through our analysis, we found out that three factors impact significantly on face

recognition performances, including the distance between the camera and the human

subject, types of cameras including sensor sizes and quality, and the resolutions

of captured face images. Three experiments are designed to show the impact of

these factors. We first demonstrate that the recognition performances on the low-

resolution face images directly captured in real surveillance circumstances are much

lower than those on the down-sampled low-resolution images from high-resolution

images. This clearly indicates that the down-sampled face images are not able to

represent the true low-resolution images. By changing the types of cameras and the

values of distances and resolutions, we demonstrate that face image resolution plays

a key role in face recognition although the types of cameras and capturing distances

are also important factors.

Based on these observations, we propose an approach for face recognition in real

surveillance environment. In this chapter we focus on the indoor surveillance envi-
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ronment, e.g., in a corridor where people’s motions are generally walking in a single

direction in a relatively slow and steady pace. Our focus is hence on face recognition

based on directly captured face images from surveillance cameras with low resolu-

tions, varied illumination conditions, small pose variation, and slow motions. Due

to the very low resolution of the captured face images, many face features might be

lost. Image pre-processing ideas are employed to remove illumination variations as

much as possible. In order to accumulate more features, we fuse a video sequence

into one frame in the frequency domain. Curvelet features are adopted in the fu-

sion process. The fused image is further improved through image super-resolution

methods in order to increase the image resolution. Experimental results demon-

strate that the proposed system is able to improve the face recognition performance

significantly.

5.1.4 Chapter Structure

The remaining parts of this chapter are organized as follows: the proposed approach

is illustrated in Section 5.2 and Section 5.3 followed by description of our experiments

in Section 5.4. The conclusion is shown in Section 5.5.

5.2 Face Image Pre-precessing

5.2.1 Histogram Equalization for Illumination

In real surveillance scenarios, directly captured low resolution images are different

from those which are captured in controlled circumstances. Various factors influence

the performance of face recognition, such as motion blur, illumination and noises
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in images. In this paper we will focus on the surveillance of an ordinary indoor

environment, where a normal range of illumination condition and distortion are

considered without motion blurring.

With surveillance cameras, video pictures are usually captured in low resolution-

s. The generic commercial surveillance cameras record pictures with resolutions

varying from 400 to 800 pixels. For example the ”SWANNDV R4 − 1300” com-

mercial surveillance system used in CurtinFaces database (Li et al., 2013) cap-

tures video sequences with the resolution of 576 × 704. While working in the

indoor circumstance, the camera system captures very small faces in a distance.

In the ”SWANNDV R4 − 1300” commercial surveillance system, face resolution-

s are around 32 × 32 in the distance of approximately 2.5 metres, 16 × 16 in the

distance of 5 metres and 8 × 8 in the distance of 10 metres respectively. Alias-

ing problem is apparent in this surveillance circumstance, especially in the distance

beyond 5 metres. Fig 5.1 shows the captured face images in the three distances

with resolution of 32 × 32, 16 × 16 and 8 × 8 respectively. It is apparent that in

the surveillance system, aliasing exists because of the under-sampling problem ac-

cording to the Nyquist-Shannon sampling theorem. Anti-aliasing techniques are not

adopted currently in order to preserve the original features of the captured faces.

Most of the time, the captured motions are slow and regular. There are few motion

blur effects on the cropped faces. The rarely appeared blurring images will not be

used for face recognition in this chapter.

In an indoor corridor with no obvious side lighting, the face images captured demon-

strate quite obvious illumination effects from the natural overhead lightings during

a walking motion. A histogram equalization approach is adopted here for reducing

illumination variations. There are generally two types of histogram equalization for

image pre-processing (Štruc et al., 2009). One is the rank normalization where each

pixel of the image is ranked and mapped to a new image between the values of 0
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(a) (b) (c)

Figure 5.1: Captured Low Resolution Faces in Surveillance Camera. (a) Captured

in the Distance of 2.5 Meters with the Resolution 32 × 32. (b) Captured in the

Distance of 5 Meters with the Resolution 16× 16. (c) Captured in the Distance of

10 Meters with the Resolution 8× 8.

and 255. Another one is to pre-define a distribution of an image’s pixels and re-map

the image into the pre-defined model. Due to the similar feature on most part of

face images, we adopt the second method in our approach.

In detail, for a 32× 32 grey scale face image x, the rank for each pixel is normalized

to be ri,j (ri,j ∈ [1, 1024]) and the number of pixels is 1024 and the grey scale image

level is 256. A general mapping function for pixel xi,j is defined as:

pi,j =
1024− ri,j + 0.5

1024
=

∫ ti,j

x=−∞
f(x)dx = F (x) (5.1)

where ti,j is the rank of pixel xi,j in the re-mapped space with distribution function

f(x) and F (x) is the cumulative distribution function (CDF) for a given distribution

f(x).

In order to remove the illumination variation, we assume that the intensity distri-

bution of face images matches the standard normal distribution:

f(x) =
1

σ
√
2π

e−(x−µ)2/2σ2

(5.2)

The re-mapped face images can be derived from the inverse cumulative distribution

function. For the pixel xi,j, the re-mapped rank ti,j is derived from:

ti,j = F−1(pi,j) (5.3)
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where F−1 is the inverse cumulative distribution function and

F (x) =

∫ t

−∞
f(x)dx =

1

σ
√
2π

∫ t

x=−∞
e−(x−µ)2/2σ2

dx (5.4)

The grey scale face image after histogram equalization is derived through adjusting

the pixel rank ti,j to the interval [0, 255].

Figure 5.2 displays the histogram equalization quality for the faces captured by

High-Definition cameras in distance. The originally captured face images have the

resolution of 64×64. It can be seen that the histogram equalization can remove the

illumination effectively.

5.2.2 Fusion of Video Sequence

Surveillance cameras usually capture whatever happens in a given environment into

a video sequence. A set of images belong to one person with minor differences in

poses and expressions can be extracted from the video. Illumination differences could

be minimized after histogram equalization as described in last section. In order to

enhance the spectral features for face recognition, image fusion method (Mitchell,

2010) is adopted here. Generally there are two ways for image fusion. One is fusion

in the spatial domain and the other is fusion in the frequency domain. In this

paper, we utilize the Curvelet coefficients to represent the face features (Candès and

Donoho, 1999; Candes et al., 2006). The introduction of Curvelet based algorithms

in face feature representation can be found in Section 3.2.1.1 of Chapter 3.

As from Candes et al. (2006), Curvelet coefficients can be derived as follows for gray

scale 2D face images:
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(a) (b) (c)

Figure 5.2: The Results of Histogram Equalization. (a) Original Face Images Cap-

tured in Surveillance System. (b) Removed Illuminations. (c) Face Images after

Histogram Equalization.
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1. Apply the 2D FFT and obtain Fourier samples f̂ [n1, n2] of f [t1, t2],

where 0 ≤ t1, t2 ≤ n,−n/2 ≤ n1, n2 < n/2.

2. For each scale j and angle l , compute the product Ũj,l[n1, n2]f̂ [n1, n2],

where Ũj,l[n1, n2] is the discrete localizing window.

3.Wrap this product around the origin and obtain f̃j,l[n1, n2] = W (Ũj,lf̂ [n1, n2]),

where W is the wrapping function.

4. Apply the inverse 2D FFT to each f̃j,l and collect the discrete Curvelet

coefficients C{j}{l}(k1, k2).

where j and l represent the scales and angles and k1, k2 denote the position of

Curvelet coefficient matrix.

As discussed in previous chapter, Curvelet features are good at representing the

objects with edges. For example, human faces can be well represented by Curvelet

features. For this reason, Curvelet features are adopted for image fusion in this

chapter.

The proposed Curvelet based image fusion is represented in Figure 5.3 which indi-

cates that several video frames can be fused into one image in order to derive rich

features. It is expected to generate a face image which provides more features for

face recognition. FromMandal et al. (2009) we can see that fine coefficients represent

the character of a human better. For a sequence of facial images, we first transfer

them into Curvelet Coefficients. The smallest low-frequency components which are

represented by the coarse Curvelet coefficients and the biggest high-frequency com-

ponents which are represented by the fine Curvelet coefficients are therefore used in

the proposed approach.
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Figure 5.3: Image Fusion Process Diagram.

For the image sequence I1, I2, · · · , In, their coefficients are represented as Ci{j}{l}(k1, k2)

(i = 1, 2, · · · , n). The components of the first scale where j = 1 represent the low-

frequency parts of the face image and the components of other scales represent the

high frequency parts. The minimum components between each Ci{1}{l}(k1, k2)(i =

1, 2, · · · , n) and the maximum components among Ci{j}{l}(k1, k2)(i = 1, 2, · · · , n; j ̸=

1) are kept for the fused Curvet coefficients C{j}{l}(k1, k2). After inverse Curvelet

transformation, the fused face image can be derived as shown in Figure 5.3.

The process steps of fusing face images are shown as follows:

. Step 1: We first transfer each face image in video sequence I1, I2, · · · , In into

Curvelet domain. And Curvelet coefficients are derived as Ci{j}{l}(k1, k2)(i =

1, 2, · · · , n).

Step 2: For each face image Ii, the Curvelet coefficients are a set of matrices. With

each j and l, there is a matrix. So for every face image, its Curvelet coefficients

contain j ∗ l matrices. If the video sequence has n frames, the total coefficient

matrices would be n ∗ j ∗ l.

Step 3: When j = 1, the coefficients Ci{j}{l}(k1, k2)(i = 1, 2, · · · , n) show the low

frequency features of face images. When j > 1, Ci{j}{l}(k1, k2) demonstrate the

high frequency features of face images. When faces are captured in surveillance

system, the captured face images usually loose high frequency components. This is

due to the far distance between objects and cameras and also the poor sensor quality

of surveillance cameras. Consequently, the high frequency components face images

are desired in surveillance systems. In the fusion process, we keep the high frequency
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components of video sequence and suppress the low frequency components. When

n face images are fused to one, we adopt the minimum values of low frequency

components (Ci{j}{l}(k1, k2)j = 1) and the maximum values of high frequency

components (Ci{j}{l}(k1, k2)j > 1) in each position of Curvelet coefficients. Thus

the Curvelet coefficients (C{j}{l}(k1, k2)) of fused face image can be obtained.

Step 4: After Inverse Curvelet Decomposition, the fused face image can be derived.

This fusing step is optional because in many cases there is probably only one facial

image in the captured image sequences which is suitable for face recognition. In

surveillance environment is an uncontrolled system. Lighting, motion, pose, captur-

ing angle, capturing distance and so on affect the quality of captured faces. Some

faces with variances in post, illumination, blurring and etc. are not suitable for face

recognition. In many situations, only one frontal facial image is available for further

processing, thus the fusion step is optional in the proposed aprroach.

5.3 Super-resolution based Face Recognition

As demonstrated in previous work (Wright et al., 2009), even with a very small

resolution, some face recognition approaches can still achieve high recognition rates.

However, these image are generally obtained in controlled circumstances. Further-

more, most of the very low-resolution face images are derived from down-sampling

and smoothing from high-resolution face image database, which are captured by

high definition cameras in labs. They are not directly captured low-resolution im-

ages. In this chapter, we try to explore face recognition problem with directly

captured low-resolution images from surveillance cameras. As shown in Fig 5.1, in

real surveillance video sequences, face images taken beyond certain distance always

come with noticeable noises and corruptions. When the captured face images are
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below 32× 32, corruptions are obvious. Directly applying existing face recognition

approaches on them generally will not achieve acceptable recognition performances.

In order to enhance the face features, we propose a super-resolution based face

recognition algorithm.

As discussed previously, face hallucination techniques can be divided into two types.

One is the patch based super-resolution, where face images are divided into over-

lapped patches and each patch is enhanced separately. The final hallucinated image

is the combination of the enhanced patches. Such approaches can achieve a smooth

high-resolution face image. However, they take face images as generic images and

sometimes the enhanced faces are too smooth to preserve the specific human face

features. Moreover, in surveillance scenario, the captured low-resolution faces are

usually with noises and corruption. The patch based face hallucination would bring

these noises and corruptions into the hallucinated high-resolution patches. The oth-

er type of approaches is to take the face image as one entity and enhance it directly.

Most of such approaches can keep the holistic human face features after enhancing

low-resolution faces to high-resolution ones. However, when mapping low-resolution

faces into high-resolution, it will produce more noises in high-resolution face image

reconstruction if we take the face image as one unit.

In order to make use of the advantages from both the patch based and holistic based

hallucination techniques, we propose a method to enhance low-resolution face images

by utilizing both of them. Inspired by Yang et al. (2010), we make use of the sparsity

of signal representation to train low-resolution image patches pl through a dictionary

Dl and transfer the trained relationship α onto the corresponding high-resolution

dictionary Dh to reconstruct the high-resolution patch ph. This dictionary is trained

in the FRGC (Phillips et al., 2006) face database independently with both the high-

resolution and low-resolution pairs. The high-resolution patch ph is reconstructed

through adopting the same coefficients in the low-resolution training relationship,

106



where a low-resolution patch pl is represented by a low-resolution dictionary Dl with

the relationship of α. A high-resolution face image can be derived by combining all

the high-resolution patches together. The low-resolution sparse representation is

formulated as:

α̂ = argmin ∥ α ∥l1

s.t. Dlα = pl

(5.5)

where α is the sparse representation coefficients in l1 norm.

This sparse representation relationship is mapped to the high dimension space. The

high-resolution image patch is derived from:

ph = Dhα̂ (5.6)

After combing the two high-resolution patches, the hallucinated face image y can

be derived.

Meanwhile, we adopt the idea of Wang and Tang (2005) to enhance the same low-

resolution face image into a high-resolution one. This process utilizes the Eigen-

subspace features of human faces, which has been proved to have a good and stable

performance in face feature representation (Turk and Pentland, 1991). For a set of

training data (FRGC (Phillips et al., 2006) in this chapter), the covariance of zero

mean face images L is: C = L× LT . A zero mean low-resolution face image x can

be represented by the Eigenvectors E as:

x = E × w +m (5.7)

where w is the weight of Eigenfaces and m is the mean face.

Equation (5.7) can be rewritten as:

x = (L× V
1√
Λ
)w +m = L× α +m (5.8)
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where V is the Eigenvectors of covariance matrix C = LT × L and E = L × V 1√
Λ
.

The high-resolution face y can be derived from:

y = H × α +mh (5.9)

where H is the corresponding high-resolution training data of L and mh is the

high-resolution mean face.

After obtaining two high-resolution faces from the same low-resolution one, a deci-

sion is made for each pixel based on the low-resolution face image. For example,

for a 16 × 16 face image, we first enhance it into two high-resolution images us-

ing the methods described above. Both these high-resolution face images are then

combined into one image with a pixel by pixel decision making. For each pixel xi,j

in the low-resolution image, the corresponding pixels in high-resolution is a 4 × 4

block. For a 16× 16 low-resolution face, there are 256 blocks in the high-resolution

image. Assume the blocks from the two different enhanced face images are b1 and b2

respectively. In order to decide which block is to be kept, we down-sample both the

4 × 4 blocks into one pixel and keep the one which produces the pixel value closer

to the value of the original low-resolution pixel xi,j. The final enhanced block image

is:

argmin
λ

Down(b)− xi,j

s.t. b = λ× b1 + (1− λ)× b2

(5.10)

where λ equals to 0 or 1.

After combing the 256 blocks together, the final enhanced face image is obtained

which will be used for recognition.

The selection of holistic model and patch based model is optional. The purpose

of this holistic and patch combined approach is to adopt the advantages of both

holistic and patch based hallucinating model. Thus the hallucinated faces obtained
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by proposed approach have smooth appearances and in the meanwhile can keep the

facial features.

The proposed approach can be performed as the following steps:

Step 1: Perform histogram equalization on a captured video sequence to remove

illumination condition and noises;

Step 2: The image sequence derived after Step 1 is then fused into one image by

Curvelet based image fusion;

Step 3: The fused face image is then enhanced to high-resolution by a holistic

hallucination model;

Step 4: The fused face image in Step 2 is enhanced to high-resolution by a patch-

based hallucination model;

Step 5: The final hallucinated face image is decide by Equation 5.10.

5.4 Experiments and Results

In this chapter, the experiments are performed on four databases: FRGC (Phillip-

s et al., 2006), AR (Martinez and Benavente, 1998), ScFace (Grgic et al., 2011)

and CurtinFaces (Li et al., 2013). FRGC and AR databases are captured with

high definition cameras. Low-resolution images are down-sampled and smoothened

from high-resolution ones. ScFace and CurtinFaces databases contain face images

from both high definition cameras and surveillance cameras. All the face images

are cropped and aligned before being used. The high definition cameras used in

AR, ScFace and CurtinFaces databases are SONY 3CCDs, CanonEOS10D and

PanasonicLumix respectively. The surveillance cameras used in ScFace database

are: BoschLTC0495/51, ShannyWTC − 8342, ShannyMTC − L1438, JSJCC −

915D and V FD400− 12B. The surveillance camera used in CurtinFaces database
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is SWANNDV R4− 1300.

In real world, there are generally two reasons for a captured face image to be very

small. One is that the distance between the camera and the person is too large

and the other is that the camera sensor’s limitation. Although the focal length of a

camera can always be changed, when the distance between a camera and an object

is too far away, the captured images become very small. For simplicity, we assume

that all cameras in our experiments have fixed focal length.

In our experiments, the resolutions of face images are the originally captured sizes

unless specified otherwise. None of the images are down-sampled from high res-

olution images. For simplicity, we divide face image resolutions into five levels:

128× 128, 64× 64, 32× 32, 16× 16 and 8× 8. The face images are directly cropped

from the surveillance images, and if the cropped images are not exactly the desired

sizes, they are slightly changed through Cubic interpolation to the nearest resolution

level.

Four experiments are conducted here.

Experiment 1 compares recognition performances between two different types of

low resolution image. One type is directly captured with large distance between the

camera and the person. Another type is down-sampled from high-resolution images.

Results from Experiment 1 demonstrate that the recognition performances for the

directly captured images are much lower than the down-sampled low-resolution im-

ages.

In Experiment 2 the distance between the camera and the person is fixed. We com-

pare the recognition performances between different types of cameras, resulting in

different resolutions in the captured images.

In Experiment 3: the image resolution is fixed. Recognition performances are com-

pared for face images from various sources, whereas the types of camera and cap-
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turing distances vary.

The recognition performance of the proposed approach on surveillance face images

is demonstrated in Experiment 4.

5.4.1 Down-sampling vs Directly Captured Images

Lots of works have been done on low-resolution face recognition. However, most

of the existing works are on low-resolution face images down-sampled from high-

resolution images. In real life, most low-resolutions are due to the large distances

between the cameras and the face. It is hence worthwhile to evaluate whether the

down-sampled images provide a good representation of the true low-resolution im-

ages. Here we compare the recognition difference between the down-sampled images

and images captured by cameras in a far distance. Face recognition is first performed

on images from the popular AR database. Fig 5.4 (a) shows the recognition rates

in terms of different down-sampled resolutions on AR database. In this experiment,

we randomly select 13 out the 26 images per person for training and the other 13 for

testing. This procedure is repeated 10 times to obtain the average recognition rate.

Similarly, face recognition results on the CurtinFaces High Definition database are

shown in Fig 5.4 (b). Here, only 25 images are selected per person from the avail-

able 92 images among which images with large pose and illumination variations are

excluded. 12 images out of the 25 are randomly selected for training and the other

13 are for testing.

It can be seen from Figure 5.4 (a) and (b) that when low-resolution face images

are down-sampled from high-resolution ones, their recognition rates do not reduced

much. Even very low-resolution (8 × 8) faces can still achieve a satisfactory recog-

nition rate (around 90%).
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Figure 5.4: Down-sampling vs Distance Sampling. (a) Face Recognition Perfor-

mance of AR Database when Resolutions are Produced by Down-sampling. (b)

Face Recognition Performance of CurtinFaces HD Database when Resolutions are

Produced by Down-sampling. (c) Face Recognition Performance of CurtinFaces HD

Distance Database when Resolutions are produced by Distances. (d) Face Recogni-

tion Performance of CurtinFaces Surveillance Database when Resolutions are pro-

duced by Distances.
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However, when image resolution drops due to the increased distances, recognition

rates decrease very sharply, as shown in Figure 5.4 (c). In this figure, face images

are captured using the same High Definition camera as in b. Instead of down-

sampling images to low-resolution, images in this figure are captured from various

distances in the same environment. The resolutions of the captured face images are

approximately in the resolution levels of 128× 128, 64× 64, 32× 32, and 16× 16 in

the distances of 2.5 meters, 5 meters, 10 meters and 20 meters respectively. On the

contrary to the various resolutions from down-sampling, decreasing of resolutions

due to the increased distance from camera caused the recognition rates drop very

sharply, which is shown in Figure 5.4 (c).

It can be concluded that the down-sampled face images are not good representations

of captured low-resolution images for face recognition. Face recognition performance

with directly captured images in distances through High Definition cameras is very

low when the capturing distances decrease.

To further demonstrate the difference between down-sampling and distance sam-

pling, databases captured through surveillance cameras are adopted. Figure 5.4 (d)

and Table 5.1 show the face recognition rates in CurtinFaces Surveillance Camera

database and ScFace database respectively. The face images of them are captured

with different surveillance cameras in far distances. Figure 5.4 (d) shows the face

recognition performance in commercial available surveillance cameras. The capture

environment is the same as CurtinFaces HD Distance Database. Due to the quality

of surveillance camera, the resolution of captured face images drops to 32× 32 with

the distance of 2.5 meters, 16× 16 with the distance of 5 meters, and 8× 8 with the

distance of 10 meters. It can be seen from Figure 5.1 that, face images captured in

the distance of 10 meters are unable to be recognized with the resolution of 8 × 8.

Further recognition experiment in Figure 5.4 (d) shows the recognition performance

in this situation is near 0. Table 5.1 demonstrates the face recognition performance
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Table 5.1: Face Recognition Performance in ScFace database.

LDA LPP PCA SRC

Camera1 3.08 4.62 13.85 13.85

Camera2 5.38 4.62 18.46 14.62

Camera3 3.85 4.62 16.42 10.00

Camera4 1.54 7.69 20.77 12.31

Camera5 3.08 6.15 12.31 3.08

in ScFace database Grgic et al. (2011). It can be seen that regardless of different

recognition approaches, the recognition rates are very low when images are captured

in far distances instead of down-sampled from high-resolution images.

This experiment shows the obvious difference between directly captured low-resolution

facial images and those which are down-sampled from high-resolution ones in terms

of recognition performance. As discussed in this subsection, the recognition perfor-

mance of down-sampled images are much better than those directly captured ones.

This is due to the environmental noises between the cameras and faces which are

usually in far distances. The down-sampled faces do not have this problem because

they are usually derived from mug shots. Mug shots are captured in very shot

distances under controlled environment, where there is very few noises.

5.4.2 High Definition Camera vs Surveillance Camera

It has been shown in Fig 5.4 (c) that even images captured from a high definition

camera are unable to warrant a good recognition performance. In this experiment we

evaluate the performance of surveillance camera in an indoor surveillance scenarios.

The CurtinFaces Surv database contains video sequences from a surveillance camera

which captures human faces in the same environment as the high definition camera
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used above. The surveillance camera is a commercial video surveillance camera

with the image resolution of 704 × 576. The original resolutions of the cropped

face images from the surveillance camera are approximately 32 × 32, 16 × 16 and

8×8 taken in the distances of 2.5 meters, 5 meters and 10 meters respectively. Face

recognition performance by the popular LDA, LPP, PCA and SRC methods are

shown in Fig 5.4 (d). The recognition rates can be observed to be similar to those

of the high definition cameras with different distances (Fig 5.4 (c)). However, when

the distances are fixed, e.g., in 5 metres, the differences of cameras and resolutions

lead to huge differences in recognition rates. In this distance the SRC recognition

rate for high definition camera is around 70% with the resolution 64× 64, while the

SRC recognition rate for surveillance camera is around only 11% with the resolution

16× 16.

5.4.3 Camera, Distance and Resolution

This experiment aims to explore the influences of the types of cameras, distances and

resolutions on recognition performances in surveillance system. From Experiment 1,

we can see that when the same camera is used, images taken in different distances

result in totally different recognition performance. As shown in Experiment 2, when

the distance is fixed, images taken by different cameras have large differences in the

recognition performance. What would a given resolution lead to? We select two dif-

ferent resolutions in this experiment. Fig 5.5 (a) shows the recognition performance

for images with the resolution of 16 × 16. Images with this resolution is captured

by the high definition camera at the distance of 20 meters and by the surveillance

camera only from 5 meters away. Fig 5.5 (b) shows the performance in the resolution

of 32×32, where HD camera is at a distance of 10 meters and surveillance camera is

at a distance of 5 meters. We can see from both figures that despite the differences

in camera types and shooting distances, face images with same resolutions result in
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Figure 5.5: Recognition Comparison with The Same Resolution. (a) Comparison

of Face Recognition Performance between High Definition Camera and Surveillance

Camera in the Same Resolution of 16 × 16. (b) Comparison of Face Recognition

Performance between High Definition Camera and Surveillance Camera in the Same

Resolution of 32× 32.

similar recognition performances, which is surprising.

5.4.4 Face Recognition by Super Resolution

In this experiment, the proposed face recognition method is applied and tested.

Here, we carry out the experiment on the surveillance camera. Figure 5.6 (a) demon-

strates the recognition performance comparison between the captured faces in the

distance of 5 meters by the surveillance camera and the enhanced images by the

proposed approach. In this setting, the original face resolution is 16 × 16 and the

enhanced face resolution is 64×64. The directly captured face sequence by HD cam-

era have the resolution of 16×16. They are firstly processed through our histogram

equalization method and then fused into one face image by the proposed fusion

method. The pre-processed face image for each human subject is then hallucinated
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by the proposed super-resolution method. Two hallucinated high-resolution face im-

age are derived separately by one holistic hallucination model and one patch-based

model. As we have discussed in the proposed algorithm, the two hallucinated high-

resolution face images are merged into by proposed algorithm, which balance the

advantages and disadvantages of both holist hallucination model and patch-based

hallucination model.

Figure 5.6 (b) shows the recognition performance comparison between the captured

faces in the distance of 10 meters by the HD camera and the enhanced faces by the

proposed approach. The directly captured human faces with HD camera in surveil-

lance environment have higher resolutions compared with surveillance cameras. The

resolution of captured face image in the distance of 10 meters is 32 × 32 and en-

hanced to the resolution of 128 × 128. Similar as Figure 5.6 (a), the captured face

images enhanced by the proposed approach can achieve higher performance com-

pared with the directly captured low-resolution face images before hallucination. As

shown in Figure 5.6, the face recognition rates are greatly improved after the images

are processed using the proposed method, no matter which recognition method is

used.

The visual display of Figure 5.6 (b) is shown in Figure 5.7. Here, low-resolution

face images (32 × 32) captured in the surveillance environment are hallucinated to

high resolution (128× 128) by proposed approach. The first row shows the directly

captured low-resolution face images and the second row displays the hallucinated

high-resolution face image by proposed approach. We can see that compared with di-

rectly captured low-resolution face images, the hallucinated face image by proposed

approach have more detailed facial textures and both global and local face features.

Thus the improvement of face recognition performance as shown in Figure 5.6 (b)

is reasonable.
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Figure 5.6: Recognition Performance Comparison between originally captured face

images and proposed approach. (a) Originally Captured Low-Resolution (16 × 16)

face images in Surveillance Camera vs Enhanced face images (64 × 64) through

Proposed Approach. (b) Originally Captured Low-Resolution (32× 32) face images

in HD Distance Camera vs Enhanced face images (128 × 128) through Proposed

Approach.

(a) (b) (c) (d) (e)

Figure 5.7: Visual Display of Hallucinated Faces of Proposed Approach.
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Figure 5.8: Recognition Performance Comparison in terms of different face halluci-

nation approaches. (a) Face Images (64 × 64) Enhanced from Originally Captured

Low-Resolution (16 × 16) in Surveillance Camera through Wang and Tang (2005);

Liu et al. (2007); Yang et al. (2010) and Proposed Approach. (b) Face Images

(128 × 128) Enhanced from Originally Captured Low-Resolution (32 × 32) in HD

Distance Camera through Wang and Tang (2005); Liu et al. (2007); Yang et al.

(2010) and Proposed Approach.

We also compare the proposed approaches with other face hallucination methods,

including Wang and Tang (2005); Liu et al. (2007); Yang et al. (2010). Figure 5.8

(a) shows the comparison in Curtin Surveillance Database. Faces are captured with

surveillance cameras and the directly captured image resolution is 16 × 16. After

the same image pre-processing proposed in this chapter, those 16× 16 facial images

are enhanced through different face hallucination approaches to the resolution of

64× 64. A similar comparison in Curtin High-Definition camera database is shown

in Figure 5.8 (b). It can be seen that the proposed approach performs better in

both situations.
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5.5 Summary

The experiment in previous sections show that traditional face recognition approach-

es can hardly achieve satisfactory performance with low-resolution images, especially

on those directly captured by surveillance cameras. Till now little work has been

done specifically on face recognition based on surveillance cameras. In this chapter,

we analyze the factors which impact on face recognition performances in surveil-

lance scenarios. Experiments indicate that other than camera types and capturing

distances, image resolution is the major factor affecting the performance of face

recognition in surveillance circumstance.

According to the special conditions of a surveillance system, we proposed a super-

resolution based face recognition approach. Experiments demonstrate that our ap-

proach outperforms traditional face recognition approaches significantly.

Although the proposed approach performs well for very low resolution face recogni-

tion in surveillance system, more practical surveillance conditions need to be con-

sidered, such as motion blur, extremely low resolution (less than 10× 10) and face

recognition in outdoor conditions and from very far distances.
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Chapter 6

Conclusion and Future Works

6.1 Summary

This thesis has investigated facial image super-resolution techniques. Holistic and

patch-based hallucinating models are analyzed respectively. A new holistic face hal-

lucination model is proposed, which adopts the face features in Eigen-subspace to

keep and enhance the facial global features. A patch-based model is further pro-

posed, which generates smooth facial images and compensates global facial features

meanwhile. After studying face hallucination, we further explore the intrinsic rea-

sons behind it, i.e., face recognition with low resolution facial images. Recognizing

faces in low resolution and in hallucinated high resolution are studied. Experiments

show that the recognition improvements of hallucinated faces are not so evident

in many of the current face databases. In fact, there is a threshold in resolutions.

Facial images with the size of 32× 32 can have higher recognition performance after

hallucination while faces with the size of 8× 8 can hardly be improved. Traditional

evaluations for hallucinating results are also analyzed and compared with recogni-

tion performance. According to the recognition experiments, tradition PSNR and

RMSE measurements can not exactly represent the hallucination quality. As a re-

sult, we propose to adopt face recognition performance to evaluate the quality of

face hallucination instead of PSNR and RMSE. Practical face recognition scenarios

often happen in surveillance environments. We further analyze low resolution face

recognition in surveillance cameras and experiments demonstrate that resolutions
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play a key role in face recognition. Thus for those low resolution images captured

in far distance with surveillance cameras, face hallucination can be very useful. In

order to make use of the advantages of both holistic and patch based hallucination

models, we proposed a new approach which is able to deal with the special situa-

tion of low-resolution images captured in surveillance environment. Specifically, our

research in this thesis can be divided into the following four aspects:

Firstly, we propose a holistic based face hallucination method. It learns face features

from Eigen-subspace and reconstruct the high-resolution faces keeping the global fa-

cial features. This reconstructed face image has noises and lacks some of the local

face features. A residual compensation is then proposed. It renders local facial fea-

tures through holistic based learning in Eigen-subspace. This residual compensation

is designed to be implemented iteratively, which can render the lost local features

as many as possible while keep the global features. Moreover, a two-stage method

is proposed. It divides targeted resolution into two or more stages and enhance

low-resolution faces stage by stage. This stage based method helps learn the face

features in close resolutions, which help reduce noises. Compared with patch-based

models, this holistic based face hallucination approach greatly keeps the global fea-

tures of human faces and reduces noise at the same time. As for its Eigen-subspace

learning, the computational cost is also very low.

Secondly, a patch-based face hallucination model is proposed to solve the shortage

of holistic hallucination models. Face hallucinated by holistic models usually have

good quality in global features while are not good at local features. The hallucinat-

ed faces often have noises especially around the chin area. However, patch-based

models also have their shortages. They can hallucinate smooth face images by

enhancing the resolution patch by patch and these patches are often overlapped.

But when learning from patches, the global character of facial images may be lost.

We proposed a sample pre-selection approach based on patch based models. The
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patch based model is based on sparse representation algorithm. Overlapped patches

are enhanced separately through this algorithm. In order to render the lost global

face features, two methods are proposed. The first is sample pre-selection algorithm.

Due to the loosing of global features in patch-based learning, training samples of this

learning is first chosen instead of grabbing all the faces in the database or randomly

selecting some faces for training. These training samples are selected through global

features of low-resolution testing faces. We adopt Curvelet features to perform this

selecting. Only faces who have similar global features with testing face can be se-

lected as patch-based training samples. This pre-selection method helps testing face

learn from the training images who have the similar global features. Experiments

show the improvement compared with randomly selected training samples. More-

over, this pre-selection method helps reduce the computational cost. Only 30 to 50

training images are required to keep the PSRN/RMSE performances high. As the

hallucinated facial images are required to be smooth, they should be similar to the

low frequency parts of original faces. We further propose a frequency based residual

compensation method. The high frequency parts are learned from Curvelet coef-

ficients and rendered to the hallucinated faces. Through inverse Discrete Curvelet

Decomposition, the high-resolution faces can be hallucinated.

Thirdly, we propose to use face recognition performance as a measurement of face

hallucination. Experiments demonstrate that in terms of face recognition perfor-

mance, PSNR/RMSE can not represent the hallucination quality accurately. We

further explore the influence face hallucination on face recognition performance.

One can find that there is threshold with the resolutions in general face databas-

es. Both holistic models and patch-based models are tested in various popular face

recognition approaches in this thesis. The hallucinating scale is four, which means

the testing faces with resolution of 8×8 will be enhanced to 32×32 and 32×32 will

be enhanced to 128×128. Experiments on Extended YaleB and AR databases show

that when the resolution of testing faces is around 8 × 8, hallucination algorithms
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can barely enhance the face recognition performances. However, when the resolution

of low-resolution testing images is above 32 × 32, all the hallucinated approaches

can increase the recognition performances more or less.

Fourthly, Most of the previous face hallucination approaches are tested with high-

resolution face databases which usually captured under controlled environments.

However, few works have been done on surveillance databases. In this part of the-

sis, we specifically focus on the surveillance environment where face hallucination

methods are mostly required. The special scenarios of surveillance cameras are first

analyzed. Many factors need to be investigated, e.g., poses, lighting, capturing an-

gle, noise, blurring and etc. Three important factors are proposed for a corridor

surveillance scenario: capturing distance, camera sensor size and image resolutions.

The latter one is decided by the former two. Experiments are set to analyze these

three factors. In our experiment, we first show the difference between controlled en-

vironment in laboratory and uncontrolled environment in surveillance system. Even

capturing with the same high-definition camera, the recognition performances are

quite different. The faces derived from lab are in a very high resolution and low

resolution faces are obtained from down-sampling methods while the faces captured

from surveillance system are in low resolutions due to the capture distances or sen-

sor sizes. The recognition results show the down-sampled low-resolution faces can

have high performances which are similar as the original high-resolution face images.

The low-resolution face images captured in far distances have very low recognition

performances with the decrease of resolution. This shows the significant difference

between down-sampled faces and distance sampled face images. Furthermore, we

set one of the three factors to be fixed and the other two could change. Experi-

ments show that different cameras and capturing distances result in differences of

resolutions, which lead to obviously different recognition performances. However,

regardless of cameras types and capturing distances, facial images with same reso-

lutions have similar recognition performances. This implies that resolutions of face
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images are very important in the face recognition of surveillance systems. Hence

face enhancement can play a key role in these systems. As such, a face hallucina-

tion approach is proposed further. After histogram factorization and image fusion,

low-resolution faces captured in surveillance systems are then enhanced to high res-

olutions. This method chooses the result of hallucinated faces between a holistic

model and a patch-based model in pixel level. The method can balance the hallu-

cinating result between these two models. Experiments show the improvement in

face recognition performance.

6.2 Future Works

Based what we have achieved in this thesis, we believe the following problems deserve

further investigation in the future.

6.2.1 Tradeoff between holistic model and patch based mod-

el

In this thesis, holistic and patch-based face hallucination models are analyzed. New

approaches are proposed to solve the noise problem in holistic models and over-

smooth problem in patch-based models. However, current hallucination approaches

have a tradeoff between these two problems. Only one problem can be solved at a

time. One hallucinating approach can focus on one side, either holistic or patch-

based. Our patch-based model adopts holistic residual compensation in Chapter 3

to render holistic face features after hallucinating with patch-based model. However,

the over-smooth problem can be partly solved through this method. The proposed

decision maker method in Chapter 5 chooses either holistic or patch-based in pixel
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level. But this method can only select pixels between either holistic hallucinated

pixels or patch-based hallucinated pixels. There is still not a systematic method

which can perfectly solve both noise and over-smooth problem at the same time. We

believe this deserves further investigation. For example, faces can be hallucinated by

divided them into special patches. These patches are not normally divided patches.

Each patch can be part of the face features, e.g., eyes, nose, mouth, cheeks, etc. In

future, we will investigate face hallucination based on feature patches.

6.2.2 Surveillance based Face Recognition Database

As we discussed in Chapter 5, practically low-resolution face recognition usually

happens in surveillance cameras. However, most of current face databases are pro-

duced in controlled laboratory environments and face recognition algorithms are

designed for these databases. Grgic et al. (2011) provide a good database with faces

captured by both a high-definition camera and a set of commercial surveillance cam-

eras. They provide difference poses in high-definition faces and different capturing

distances in surveillance cameras. However, lighting conditions are not considered

in high-definition faces. And only one face is provided for each surveillance camera

in a certain distance. This would be difficult for face recognition algorithms dealing

with image set or video sequences. Li et al. (2013) also has its limitations, for ex-

ample, the capturing angles are not the same as surveillance cameras, which should

be located in up front and only one commercial surveillance camera is provided. A

more comprehensive face database is required, which has plenty of high-definition

face image with poses and illuminations, various capturing distances in surveillance

systems.
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6.2.3 Hybrid Resolution Face Recognition

In order to recognize low-resolution face images, we generally down-sample high-

resolution gallery face into low-resolution faces. Then low-resolution testing faces

can be matched to these gallery faces in the same resolution. Hallucinating low-

resolution testing faces is another way for face recognition. The low-resolution test-

ing faces are firstly hallucinated to high-resolution images. They are then matched

to the high-resolution gallery faces. Based on results here, we can usually enhance

the resolution of low-resolution testing faces and then match them to gallery faces

through face recognition algorithm. However, there is another solution for low-

resolution face recognition. A third resolution can be figured out where both low-

resolution testing faces and high-resolution gallery faces can be transferred to. This

third resolution can be a medium size resolution which both low and high resolutions

can reach easily. It can also be special subspace where the relationship between low

and high resolution faces can be learned more accurately. Kernel space is another

choice where pioneer works have been done by Ren et al. (2012) and Biswas et al.

(2012). However, there is still a lot of research can be done and this would be our

future work.
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