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Abstract 
 
The alumina industry provides the feedstock for aluminium metal production and 

contributes to around A$6 billion of Australian exports annually. One of the most 

energy-intensive parts of alumina production, with a strong effect on final product 

quality, is calcination or thermal decomposition, in which gibbsite powder is 

converted into alumina. Industrially, gibbsite calcination is conducted in bubbling or 

circulating fluidized beds. Better modelling of fluid bed calciners is needed to 

improve process design, control and operations. Multi-scale models, which account 

for phenomena interacting across different length and time scales, are increasingly 

being used to describe complex, multidisciplinary, nonlinear, non-equilibrium 

processes, including fluidized bed reactors. In order to attain more insight into the 

gibbsite calciner, from a multi-scale viewpoint, this investigation has been conducted 

in five steps as follows. 

Firstly, the possibilities for developing a multi-scale model for the fluidized bed 

calcination of gibbsite are investigated, followed by recommendations on promising 

directions. The key elements of the multi-scale approach that is considered were: (i) 

identification of the relevant scales of interest for bubbling and circulating fluidized 

bed reactors; (ii) characterisation of the dominant phenomena, modelling approaches 

and available data at each scale; (iii) an integrated communication framework to link 

the scales of interest, and briefly (iv) experiment design and model validation for 

multi-scale models. A conceptual model having three scales (particle, volume 

element / cluster, and vessel) was proposed and the information flows between the 

scales were outlined. There are several possibilities for the sub-models used at each 

scale, and these have been noted. 

Secondly, as a part of the particle scale modelling efforts, a 1-D mathematical model 

describing the calcination of a single gibbsite particle to alumina has been developed 

and validated against literature data. A dynamic, spatially-distributed, mass and 

energy balance model enables the prediction of the evolution of chemical 

composition and temperature as a function of radial position inside a particle. In the 

thermal decomposition of gibbsite, water vapour is formed and the internal water 

vapour pressure plays a significant role in determining the rate of gibbsite 

dehydration. A thermal decomposition rate equation was developed by closely 
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matching experimental data reported previously in the literature. Estimated values of 

the transformation kinetic parameters are reported. The reaction order with respect to 

water vapour concentration was negative, meaning that the water vapour that is 

produced impedes further gibbsite calcination, which is in agreement with previous 

kinetic studies. Using these kinetic parameters, the gibbsite particle model is solved 

numerically to predict the evolution of the internal water vapour pressure, 

temperature and gibbsite concentration. The model prediction is shown to be very 

sensitive to the values of heat transfer coefficient, effective diffusivity, particle size 

and external pressure, but relatively less sensitive to the mass transfer coefficient and 

particle thermal conductivity. The predicted profile of the water vapour pressure 

inside the particle helps explain some phenomena observed in practice, including 

particle breakage and formation of a boehmite phase. 

Thirdly, a new variation on the unreacted shrinking core model has been developed 

for calcination and similar non-catalytic thermal solid-to-gas decomposition 

reactions in which there is no gaseous reactant involved and the reaction rate 

decreases with increasing product gas concentration. The numerical solution of the 

developed model has been verified against an analytical solution for the isothermal 

case. The model parameters have been tuned using literature data for the calcination 

of gibbsite to alumina over a wide range of temperatures. The model results for 

gibbsite conversion are found to agree well with the published experimental data. 

Predictions of the non-isothermal unreacted shrinking core model compare well with 

the more complex, distributed model developed in the previous step.    

Fourthly, a multi-stage, multi-reaction, shrinking core model is proposed for the 

simulation of solid-to-gas reactions with self-inhibiting behaviour and in which the 

build-up of internal pressure caused by the product gas may alter the reaction 

pathway in a way that favours one pathway over others. This model emphasises the 

role of the produced gas, not only in mass transfer, but also in the reaction kinetics. It 

includes parallel and series reactions, allowing for the formation of an intermediate 

species. The model has been applied to the conversion of gibbsite to alumina, 

including the formation of intermediate boehmite. Modelling results for gibbsite 

conversion, boehmite formation and its subsequent consumption, as well as alumina 

formation, agree well with literature data; the corresponding kinetic parameters are 

estimated for all reactions. Significantly, the experimentally-observed plateaux in the 
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particle’s temperature history are predicted by the model. The role of heating rate 

and particle size on boehmite formation is also evaluated using the model, and is in 

agreement with observation. 

Fifthly, a simplified version of the multi-scale model proposed in the first step has 

been developed. Particle scale models are valuable for analysing kinetics, 

understanding behaviour and some experimental design of gas-solid reactions. 

However, engineers are always interested in practical, equipment-scale models that 

can predict the performance of operating units in different scenarios. In this part of 

the research, some fluid bed reactor phenomena are described along with their 

modelling methodologies, and then a two-scale model combining one of the particle 

scale models with a simple reactor scale model is described. The simple reactor 

model consists of a collection of ideal mixed volumes connected in series. In each 

volume element, the reaction rate from the particle scale is linked into material and 

energy balances at the reactor scale. The number of volume elements is variable and 

thus able to simulate reactor behaviour from an ideal CSTR to a near-ideal PFR, and 

also for flow regimes in between them. In spite of the simplicity, the solid residence 

time distribution and gas flow rate variation are accounted for at the reactor scale. 

Even though a general discussion of fluid bed reactors is presented, gibbsite 

calcination is again considered for the case study, the same as for the other steps in 

the project. The developed two-scale model predicts the gas and solid temperature 

profiles, trends in overall gas flow rate and water vapour pressure, and alumina and 

gibbsite concentration profiles through the reactor. Sensitivity analyses are 

conducted into the number of volume elements and the solid throughput rate. 

Finally, potential research opportunities for multi-scale modelling of fluidized bed 

reactors are outlined.  
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  1
Introduction 

 

 

Particle technology is central to minerals processing and to Australia’s current 

resources boom. It spans applications to other industries, such as food, building 

products, pharmaceuticals, and agriculture. The alumina industry alone, which 

provides the feedstock for aluminium metal production, contributes around A$6 

billion to Australian exports annually. Although a technologically mature industry, it 

strives for continual advancements in the process to stay competitive in the global 

market, while at the same time meeting increasingly high expectations from the 

community. One of the most energy intensive processes in alumina production, with 

a strong effect on final product quality, is calcination, which is conducted in fluidized 

bed reactors (FBRs). An improved quantitative understanding of this operation will 

lead to significant benefits to the alumina industry. Modelling as an engineering tool 

makes it feasible to optimize the process productivity and energy consumption.  

Further, product design is increasingly receiving attention, which makes modelling 

endeavours more valuable and necessary. With regards to alumina as a strategic 

product that has application in other industries and also in high-tech composite 

materials, both process intensification and product quality control are of importance.  

Accordingly, much research effort has been undertaken to address the requirements 

of this industry. However, the majority of these works are experimental studies with 

especial attention to reaction behaviour. Little modelling work on gibbsite 

calcination has been done due to the complex nature of this process, particularly 

when conducted in a full-scale fluidized bed reactor. Different mechanisms and 

interactions come in to play in fluidized bed reactor systems, causing difficulties in 

developing a simple and accurate predictive model. In addition, the calcination of 

gibbsite, in itself, has inherent complexity in its reaction kinetics, as several parallel 

and series reactions are involved and the reaction orders are considerably different.
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As a novel and promising methodology, multi-scale models are under development 

to address some of difficulties in describing FBR systems. Actually, the main 

concept behind multi-scale models, which potentially could reduce the ambiguities of 

FBR systems, is that they are built using different layers of information derived at 

different scales of interest. In other words, data and concepts at different time and 

length scales are combined into an integrated model, which should offer enhanced 

predictions and interpretations of the system. Process control and optimization, along 

with product design, are realised not only at one time-length scale, but also 

potentially through manipulation of parameters at different scales. 

Development of different particle scale models for solid-to-gas reactions with 

negative order reactions and subsequent application of these models at the reactor 

scale is the main focus of this research, with particular attention to the gibbsite 

calcination process. Comparable solid-to-gas processes include lime calcination, 

sodium bicarbonate calcination, pyrolysis of carbonaceous materials, and the thermal 

decomposition of other organic and inorganic compounds. The gibbsite calcination 

process possesses considerable ambiguities in terms of scale identification, sub-

model formulation, the selection of the most appropriate multi-scale modelling 

framework and model validation. Therefore, the key elements of a comprehensive 

multi-scale modelling approach that should be considered are: (i) identification of the 

relevant scales of interest for bubbling and circulating fluidized bed reactors; (ii) 

characterisation of the dominant phenomena, modelling approaches and available 

data at each scale; and (iii) integrated communication frameworks to link the scales 

of interest. Since this scope of work is broad, care has been taken to limit the work 

undertaken, where necessary, to those aspects that are most relevant to gibbsite 

calcination. 

 

1.1.  Background 

Dense, gas-particle, two-phase flows are always aggregative, resulting in 

considerable heterogeneity over a wide spectrum of spatio-temporal scales. Some 

researchers analyse them at three scales of observation, termed micro-scale, meso-

scale and macro-scale. Regarding the micro-scale, the difference between the gas and 

solid phases forms a natural heterogeneity in the system. For example, the density 
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difference between gas and solid phase causes such heterogeneity. Furthermore, solid 

particles are usually irregular in shape and may be porous. The particle-particle 

effects can be divided in two main groups, including contact effects (friction forces 

for instance) and non-contact effects (Van der Waals forces for instance). In the riser 

of a circulating fluidized bed, the meso-scale consists of dynamic dense clusters in 

contact with a dilute phase system, and these clusters deform, interact, break up and 

re-form continuously. In bubbling fluidized beds, the meso-scale consists of rising 

bubbles and the surrounding emulsion phase. As a consequence of this dynamic 

behaviour, the transport and reaction properties could be strongly affected. On the 

macro-scale, which is of high importance to process engineers, a wide range of flow 

regimes exists and macro-scale behaviour changes in time and location because of 

boundary, inlet and outlet conditions. The aforementioned heterogeneous flow 

regime and phase interactions are challenging in terms of their explanation and 

interpretation, and have been a focus in the investigation of multi-phase flow.  

In order to address the difficulties caused by the multi-scale nature of gas-particle 

flows, many methods have been introduced in various domains of interest. A 

reasonably accurate simulation of gas and solid flows should be based on micro-scale 

(individual particle) behaviour. However, direct, naive utilization of this method 

seems unacceptable for practical (industrial) systems because of the very large 

number of particles in a typical vessel, but micro-scale information can be linked to 

macro-scale behaviour through a multi-scale modelling approach.  

A coarse-grid methodology utilizing the two-fluid model (TFM) from computational 

fluid dynamics (CFD) and a hybrid approach, which mixes the continuum 

description for the gas and the discrete particle method (DPM) or discrete element 

method (DEM) for particles, are the current available approaches for reactor scale 

simulation from the industrial viewpoint. Finding ways of enhancing the available 

simulations by their improvement or combination, so that industrial scale models are 

able to use insights into micro-scale behaviour, is a crucial task for researchers in 

multi-phase systems, and in particular for fluidized bed reactor specialists. 

A literature search on multi-scale modelling aspects and applications in the chemical 

engineering field has revealed four main categories of research areas, which are as 

follows: 
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 Qualitative (descriptive) research on the definition, application and 

importance of multi-scale modelling; 

 Hydrodynamics of fluidized beds; 

 Multi-scale modelling of mass and heat transfer and reaction; 

 Quantitative research and publications on specific chemical engineering 

issues. 

The research work on fluidized beds in these four categories has some shortcomings, 

a few of which are addressed in this study and some of which are presented in the 

last chapter of this thesis as possibilities for future work. 

 

1.2. Significance 

As mentioned earlier, the production of alumina and aluminium in Australia alone is 

a multi-billion dollar industry. During calcination, which is a very energy-intensive 

part of the Bayer process, gibbsite powder is converted into alumina. Calcination 

also has a strong impact on product quality because it is essentially the last 

processing step. Industrially, the calcination is conducted in bubbling or circulating 

fluidized beds. From an industrial viewpoint, the following areas are of particular 

interest: 

 Energy consumption minimization; 

 Temperature distribution and control; 

 Transition reaction pathway prediction; 

 Product quality control; 

 Particle breakage minimization. 

Better modelling of fluid bed calciners is needed to improve process design, control 

and operations, leading in turn to cost, safety and environmental benefits for the 

industry. Current modelling approaches do not strongly link micro-scale product 

quality characteristics, such as chemical composition, microstructure and mechanical 

strength, to vessel-scale operating conditions and design details.  

 

1.3. Project aims 

This project aims to 

1. Investigate and outline potential research opportunities in the  
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i. Multi-scale nature of fluidized bed reactors; 

ii. Gibbsite calcination–related fundamentals. 

2. Develop a multi-scale modelling framework for gibbsite calcination in 

fluidized bed reactors. 

3. Develop particle scale models for solid-to-gas reactions that possess a self-

inhibiting nature due to the gas produced, with an especial focus on gibbsite 

calcination as the case study. 

4. Investigate dominant mechanisms and parameters in the gibbsite calcination 

process using predictive and descriptive models at the particle scale. 

5. Exemplify employment of the particle scale model at the reactor scale 

through a simplified multi-scale modelling endeavour. 

 

1.4. Research method 

Multi-scale models are composite mathematical models that combine two or more 

component models that describe phenomena at different characteristic length and 

time scales. In contrast to single-scale models, in multi-scale modelling there are four 

tasks that need special attention: 

 Identifying and selecting the time and length scales to include in the model; 

 Choosing the order of model construction in terms of scale; 

 Adopting or developing appropriate models at each scale of interest; 

 Linking the single-scale models into a coherent multi-scale model. 

The tools and techniques developed in this project focus on addressing the above 

four topics for modelling the fluid bed calcination of gibbsite. The multi-scale model 

is developed by following several steps.  

Firstly, a comprehensive literature review is done on topics including multi-scale 

modelling, alumina production and the calcination process. Each chapter of this 

thesis reflects a part of the literature review in its own Introduction section.  

Secondly, the possibilities for fluidized bed reactor modelling for gibbsite calcination 

from a multi-scale point of view are outlined. This sets out a “modelling map”.  
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Thirdly, the identification of scales of interest is accomplished. For each scale it is 

necessary to characterise the boundaries and define the specifications that will be 

considered during this investigation. In addition, the wide range of current modelling 

approaches is explored, and decisions made to adopt them or develop new models for 

the processes on each scale. Mass and energy balances as well as reaction-related 

issues are studied on each scale at this stage (Figure 1.1). Three candidate scales 

have been identified as: 

1. Micro-scale (particle size): on this scale a single particle should be 

considered in terms of mass and heat transfer and reaction to develop 

a predictive model for reaction conversion. Therefore this part 

includes a deep focus on reaction kinetics as well as possible reaction 

pathways to provide constitutive equations needed for mass and heat 

balance equations.  

2. Meso-scale (bed volume element size): by importing information from 

the particle scale (e.g., water vapour production rate, particle 

composition), this scale will account for phenomena such as particle-

particle interactions, and overall energy and mass balances. The meso-

scale is large with respect to individual particles, but small with 

respect to the whole reactor. Although hydrodynamics, as the 

dominant phenomenon on this scale, can be estimated more accurately 

using CFD modelling, ideal flow and mixing regimes result in a 

simpler model. In particular, combinations of plug flow and well 

mixed regimes for both gas and solids phases can be considered. 

Temperature and concentration profiles are the main outputs of this 

scale’s model. The meso-scale is an interface between micro- and 

macro-scales. 

3. Macro-scale (reactor size): overall performance of a real-life reactor 

in terms of product quality and spatial profiles will be the modelling 

outputs on this scale. Similar to the meso-scale, we need a good 

approximation of the hydrodynamics at the macro-scale.  

However, in this thesis two scales are considered, micro- and macro-scale, as 

discussed later. 
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Fourthly, the particle scale modelling has been done through different approaches. 

This part of the work mainly consists of fundamental modelling, and numerical and 

analytical solution of the models, along with the model validation against 

experimental data. The developed models include distributed, shrinking core and 

multi-stage, multi-reaction shrinking core models for a single reacting particle. 

MATLAB coding is utilized for numerical calculations. 

Fifthly, application of particle scale models at the reactor scale is illustrated through 

a simplified FBR model. At the reactor scale, diversity of the particle sizes and 

residence time distributions are accounted for. In addition, different possibilities for 

reactor modelling are explored. 

 

1.5. Thesis structure 

This thesis is arranged in seven chapters. In all chapters a relatively short literature 

review on the main subject of the chapter is presented in the Introduction section. In 

addition, all modelling work starts with a general development, followed by 

validation and analysis using the gibbsite calcination process as a case study.   

Chapter 2 includes the conceptual multi-scale modelling framework proposed for the 

gibbsite calcination process inside a FBR. The chapter illustrates the main concerns 

on modelling of FBRs at each scale, along with a discussion of research and 

modelling possibilities. Finally, a general framework is suggested for the case study. 

The following chapters present work that goes part of the way to realising the 

proposed framework.  

Chapter 3 presents the development steps of a spatially-distributed model of single 

reacting particle experiencing a thermal decomposition reaction. In this chapter, a 

simple reaction is simulated to attain valuable and useful insight into intra-particle 

parameters including the gas and solid concentrations, temperature and gas pressure. 

Further, kinetic parameters are extracted from literature data and justified for the case 

study. Subsequently, several sensitivity analyses on gibbsite calcination are 

conducted using the validated model.  
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Figure 1.1 – Flowchart showing potential multi-scale topics to investigate.
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Chapter 4 involves a different modelling approach to the same reacting system as in 

Chapter 3. A new variation of the shrinking core model is proposed and developed 

for solid-to-gas reactions in which the product gas negatively influences the reaction 

progress. The role of the gas is accounted for in both the intrinsic reaction rate and 

the mass transfer rate inside the particle. Similar to the previous chapter, the model is 

validated for gibbsite calcination through comparison to experimental data and also 

to the results of the distributed model of Chapter 3.  

In Chapter 5, some complex features of solid-to-gas reactions with negative reaction 

orders with respect to gas species are addressed. A multi-stage, multi-reaction 

shrinking core model is developed and examined for a combination of series and 

parallel reactions. Prediction of reaction progress through different pathways was the 

main goal of this modelling study. A practical application of this model is to capture 

the formation of the intermediate species boehmite during gibbsite calcination. 

However, the model is general enough to be implemented for similar reacting 

systems. 

Use of particle scale modelling at the reactor scale is shown via a simplified reactor 

model in Chapter 6. Even though different modelling strategies and considerations 

are described in this chapter, a pseudo-single-phase FBR is simulated using ideal 

flow regimes, from well-mixed to near plug-flow. Two-way information transfer 

occurs between particle and reactor scales. This chapter aims to illustrate multi-scale 

modelling practice. 

Chapter 7 presents the conclusions and future work recommendations. 

Figure 1.2 shows how the individual chapters are interconnected. 
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Figure 1.2 – Overall structure of the thesis. 



 

 

2 
A multi-scale modelling outlook for  

gibbsite calcination 
 

Multi-scale models, which account for phenomena interacting across different 
length and time scales, are increasingly being used to describe complex 
multidisciplinary, nonlinear, non-equilibrium processes. The main objective of this 
chapter is to explore the possibilities for developing a multi-scale model for the 
fluidized bed calcination of gibbsite, and to make recommendations on promising 
directions. The suggested framework in this chapter serves as a roadmap for the 
tasks that need to be accomplished in other parts of the thesis. The key elements of 
the multi-scale approach that were considered are (i) identification of the relevant 
scales of interest for bubbling and circulating fluidized bed reactors; (ii) 
characterisation of the dominant phenomena, modelling approaches and available 
data at each scale; (iii) an integrated communication framework to link the scales of 
interest, and briefly (iv) experiment design and model validation for multi-scale 
models. A conceptual model having three scales (particle, volume element / cluster, 
and vessel) is proposed and the information flows between the scales are outlined. 
There are several possibilities for the sub-models used at each scale, and these have 
been noted. 

 

2.1 Introduction 

The aluminium industry relies on the Bayer process to produce alumina (Al2O3) from 

bauxite, the main aluminium ore, which consists mostly of gibbsite, boehmite and 

diaspore. Despite being over 120 years old, the Bayer process remains the most 

economical approach for obtaining alumina powder, which may then be converted 

into aluminium metal (Hudson et al., 2005). In the Bayer process, bauxite is washed, 

ground and dissolved in sodium hydroxide at high pressure and temperature. The 

resulting liquor consists of sodium aluminate solution, along with undissolved 

bauxite residues containing iron, silicon and titanium. These residues, known as “red 

mud”, sink to the bottom of the processing vessel and are removed (International 

Aluminium Institute, 2010). Aluminium hydrate (Al(OH)3) is precipitated from the 

solution by cooling. The final stage of the Bayer process is calcination, or thermal 

dehydration, which is conducted approximately at 1100°C to remove the chemically-

bound water. The dehydration reaction involves several solid phase transitions, but 

these can be approximated as (Gan et al., 2009): 

http://www.world-aluminium.org/?pg=85
http://www.world-aluminium.org/?pg=85
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

   α-Al2O3  +  3H2O(g) 

2Al(OH)3                (2.1) 

         Al2O3.H2O      α-Al2O3  +  H2O(g) 

  +  2H2O(g) 

 

The end product is white α-alumina powder. 

In current practice, the Bayer process hydrate is calcined into alumina in a fluidized 

bed reactor (FBR), either a bubbling fluidized bed (BFB) or a circulating fluidized 

bed (CFB). In older alumina refineries, calcination was carried out in rotary kilns, 

but today all new capacity is installed as fluidized bed calciners (Outotec, 2008). In a 

CFB calciner (Figure 2.1), the energy is supplied through direct combustion of 

hydrocarbon fuels, oil and gas, as well as energy recovery from downstream 

processes. 

The key component of a CFB reactor is the riser, which is where the reaction takes 

place. A relatively high fluidizing gas velocity is used that causes the solids and gas 

to flow cocurrently upwards in the riser. At the top of the riser, the solids are 

separated from the gas using cyclones and other equipment, and then they are 

recycled to the base of the riser, thus forming a circulating flow of solids. On the 

other hand, BFBs consist of a vessel with a semi-porous base that allows the upwards 

flow of gas, but prevents solids flow through. Lower gas velocities are used 

compared to CFBs, and the solids are more or less confined to the processing vessel. 



 

 

 

Figure 2.1 – Alumina calcination in a CFB (Outotec, 2008). 
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Over many years CFB and BFB reactors have been proven to be highly effective 

reactors for gas–solid and solid-catalysed gas reactions. Their successful applications 

include catalytic cracking, calcination, coal and wood pyrolysis, biomass 

gasification, polyethylene production and combustion of a variety of fuels (Ściążko 

and Zieliński, 1995; Nemtsov and Zabaniotou, 2008). They offer advantages such as 

high throughput rates and thorough gas–solid contacting, leading to excellent heat 

and mass transfer (Bolkan et al., 2003). The near-homogeneous temperatures in 

FBRs assist in producing high-quality products. Low maintenance cost, no moving 

mechanical parts in the hot zone, high availability, uniform product quality, stability 

and ease of control are further advantages of CFB reactors (Karches et al., 2004). 

The availability of accurate, validated models will assist in the design, control and 

optimization of FBRs. In the Bayer process, better modelling of fluid bed calciners 

should lead to cost, safety and environmental benefits for the industry. Developing 

an accurate, comprehensive model of an alumina calciner is, however, difficult 

because of the wide range of physical and chemical processes occurring together. 

These include: 

 Hydrodynamics, essentially the gas and particle flows inside the CFB or 

BFB; 

 If the calciner is fired with heavy fuel oil, then liquid droplet dispersion 

amongst the bed solids, and droplet evaporation are also important; however, 

these processes are absent for calciners operating on natural gas; 

 High-temperature heat transfer – inside the solids, between solids and gas, 

and between the gas-solid suspension and the vessel walls; 

 The fuel combustion reaction; 

 The calcination reaction itself, including intrinsic reaction kinetics, 

diffusional resistances, solid phase transitions and microstructure evolution in 

the solid. 

All these phenomena are interdependent and must be considered in an integrated 

model if it is to produce meaningful results (Marsh, 2009).  
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2.2 Review of current models 

2.2.1 Fluidized bed reactors 

Many authors have reported on the modelling of FBRs, especially the 

hydrodynamics (Gungor and Eskin, 2007; Behjat et al., 2008). Hydrodynamics plays 

a crucial role in the performance of fluidized beds as it can strongly affect the other 

processes taking place: heat transfer, mass transfer and reaction. Computational fluid 

dynamics (CFD) and discrete particle modelling (DPM) are key techniques used to 

describe the details of gas-solid hydrodynamics. Coupling CFD and reaction kinetics 

in fluid beds is a challenging but promising area of investigation (Bi and Li, 2004). 

FBR modelling can also be considered from a multi-scale perspective, which may 

help develop more accurate and reliable models. Some investigators have reported on 

multi-scale modelling of FBRs in general or its application to specific fluid bed 

processes (Bauer and Eigenberger, 2001; Raimondeau and Vlachos, 2002;  Balaji et 

al., 2010). 

2.2.2 Alumina calcination 

Very few publications report specifically on the calcination of aluminium ores in 

FBRs. Guardani et al. (1989) presented experimental work on thermal transformation 

of aluminium phosphate rock in a FBR. Marsh (2009) reported CFD modelling of a 

gibbsite calciner. The majority of publications related to gibbsite calcination have 

focused on the detailed reaction kinetics and phase transitions (Whittington and 

Ilievski, 2004; Wang et al., 2006; Gan et al., 2009). Little work has been published 

on coupling reaction kinetics and hydrodynamics, and no work specifically on multi-

scale modelling of alumina calciners appears to be available. 

 

Based on the open literature, one can summarise a number of deficiencies in current 

gibbsite calcination models: 

 Alternative pathways for gibbsite calcination exist, as seen in reaction (2.1), 

but it is not currently possible to predict the extent to which each path is 

followed (Gan et al., 2009). 

 There is no comprehensive model for a gibbsite particle undergoing 

calcination, in particular to predict chemical composition, essentially α-
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alumina content, and physical properties, such as porosity and specific 

surface area. 

 There is a lack of coupling of processes at different scales, such as particle 

and vessel scales, in current models. 

 In general, the design of experiments for multi-scale systems, which is 

needed for model calibration and validation, needs further study. 

Multi-scale modelling holds the promise of relating vessel scale measures, like 

energy efficiency and throughput, to the particle-scale factors that determine product 

quality: chemical composition and microstructure. Before discussing multi-scale 

modelling of gibbsite calcination, a general explanation of the multi-scale approach 

is given below. 

2.2.3 Multi-scale modelling 

Due to increasing market demands and environmental regulations along with 

increases in computing power, chemical engineers are turning to multi-scale 

approaches to improve model accuracy and detail (Ingram et al., 2004). Multi-scale 

modelling comes in many forms, some of them relatively new, and the methodology 

continues to evolve. 

The aim of a multi-scale model is to transfer process information from one length or 

time scale to other scales. Utilizing molecular-scale (micro) information on larger 

(macro) scales was the initial approach in multi-scale modelling. This approach has 

been employed, for instance, in the design of nano-structured materials, like catalysts 

(Nily, 2009). More recent multi-scale models use a wide range of configurations. 

One view of the procedure for developing a multi-scale model is given below: 

1. Identifying the relevant scales, phenomena and variables of interest in the 

system under study; 

2. Surveying the modelling approaches and available data at each scale; 

3. Implementing an integrated communication framework to link the scales of 

interest; and   

4. Developing experimental designs and undertaking validation for the 

candidate multi-scale model. 
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This chapter discusses the conceptual implementation of this strategy for fluidized 

bed gibbsite calcination, and presents a synthesis of the state of the art. More details 

on the multi-scale approach in chemical engineering are available (Ingram et al., 

2004; Li et al., 2004, 2005; Reis, 2009; Charpentier, 2010). 

2.3 Elements of a multi-scale modelling approach 

The following sections use the modelling procedure above to flesh out the 

components of a possible multi-scale model for CFB and BFB reactors used in 

gibbsite calcination. 

2.3.1 Identification of scales, phenomena and key variables 

Gibbsite calcination involves a wide range of size and time scales. On the micro-

scale, gibbsite particles undergo reaction and consequent structural deformation 

because of the loss of chemically-bound water molecules. This process is driven by 

heating, and several types of intermediates may form depending on the process 

conditions and physico-chemical properties of the gibbsite particle (Gan et al., 2009).  

On the macroscopic scale, calcination is conducted at high throughputs during 

industrial alumina production, and it is at this scale that the process is influenced 

through equipment design and process control. The mass production of high-quality 

alumina is challenging because microscopic processes affect the macro-scale 

production in terms of the end product’s physical and chemical properties. The 

micro-scale and macro-scale processes are tied together by the meso-scale of cluster 

(CFB) and bubble (BFB) dynamics. Traditional reactor models used for alumina 

processing are not accurate enough to establish the relationship between end product 

properties and microscopic processes (Marsh, 2009). Other scales of interest can be 

identified (Li and Kwauk, 2001), for example the nano-scale that considers reactions 

at the atomistic level, and the mega-scale of the flowsheet or factory, in which 

process efficiency and profitability are considered. Models that help to bridge the gap 

between scales should lead to productivity and quality improvements. 

It is proposed to concentrate on the micro, meso and macro scales, since these should 

be sufficient to relate product quality to calciner design and operation. Table 2.1 

summarises some possibilities for relevant scales, active mechanisms and modelling 

approaches. The key phenomena and process variables at the scales of interest are 

discussed below: 
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2.3.1.1. Micro-scale: This involves gibbsite calcination at the particle scale, 

including thermal dehydration of a single particle and its consequent change 

in structure. Many characteristics of alumina particles—chemical 

composition, porosity, pore diameter, specific surface area, particle size and 

so on—are determined at this scale. While intrinsic reaction kinetics are 

important, intra-particle diffusion and heat transfer also need attention in the 

particle-scale model. 

 

2.3.1.2. Meso-scale: Here we are concerned with gas and many-particle 

interactions, and the transient structures that form: particle clusters in CFBs 

and gas bubbles in BFBs. Cluster and bubble formation and breakage rates, 

and size distribution; effective drag coefficients; heat and mass transfer; and 

ways to control these parameters are considered at this scale. The meso-

scale will be referred to as the “cluster scale” and “volume element” scale 

for CFBs and BFBs, respectively. Temperature control is important during 

calcination, and prediction of vessel and particle temperature distributions 

needs to consider meso-scale phenomena. 

 

2.3.1.3. Macro-scale: The third scale considered is the vessel scale. Variables of 

interest include production capacity, energy consumption, vessel design 

parameters, and bulk product quality measures, such as particle size 

distribution. Most available models and practical data are related to this 

scale. 

 

Having identified the relevant scales and key variables, the next step to consider is 

the available models and method of connecting the smaller scales with the vessel 

scale. 
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Table 2.1 – Scale identification and characteristics of gibbsite calcination using BFB and CFB reactors. 

 

FBR 

type 

 

Scale 

 

 

Character-

istic size & 

time scale 

Phenomena / Mechanisms 

Hydrodynamics Heat and mass transfer Reaction 

Issues Current model(s) Issues Current model(s) Issues Current model(s) 

BFB

& 

CFB 

Particle 
10–5–10–3 m 

 

10–6–2000 s  

Interaction between 

individual particles, 
wall & gas; 

Flow around individual 

particle 

Direct numerical 

simulation 
(DNS); Discrete 

particle modelling 

(DPM) 

Intra-particle mass 

diffusion & heat 
conduction; Thermal 

shock; Particle-gas heat 

transfer 

Fick’s law;  

Knudsen diffusion 

equation; 
Fourier's law 

Reaction pathway & 
kinetics; Conversion;  

Breakage 

Un-reacted & reacted 

core model; 

Homogeneous reaction 
model 

BFB 
Volume 

element 

10–3–0.1 m 

 

10–3–100 s 

Bubble size, bubble-

bubble & bubble-solid 
interaction & mixing; 

Flows corresponding to 

volume elements 
Two-fluid model 

(TFM); 
Computational fluid 

dynamics; 

Local averaging; 
Zonal models 

 

Bubble phase & 

emulsion phase heat and 
mass transfer 

Gridding or 
meshing 

methodology; 

Computational fluid 

dynamics 

 

Reaction progress through 

a calculation cell; Reaction 

kinetics & void fraction 

Two-phase approach 

CFB 
Particle 

cluster 

Particle-particle 

collision; Mixing; 

Cluster size; Cluster-
cluster, cluster-wall & 

cluster-gas interaction; 

Inter- & intra-cluster 
flows 

Inter- & intra-cluster 

heat & mass transfer 
Core-annulus model 

BFB

& 

CFB 

Reactor 
0.1–30 m 

 

1–4000 s 

Bulk solid motion; 

Bulk gas motion; Solids 

fraction distribution; 
Elutriation 

Continuum zero & 

one dimensional 

models for gas & 
solid flows 

Overall mass & energy 
balances; Temperature 

distribution profile 

Core-annulus 
model; Two-zone 

model 

Overall reaction 
conversion; 

Residence time distribution 

Plug flow reactor; 

Well-mixed reactor; 

Core-annulus reactor 
model; 

Population  balance 

model (to describe 
particle size changes) 
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2.3.2 Models and inter-scale communication framework 

For transferring information among the various models at different scales, the 

concept of a “multi-scale integration framework” is helpful. However, only the 

models to use at each scale and the variables used to transfer information between 

them are suggested—a formal communication framework in the sense of Ingram et 

al. (2004) is not considered here. 

The hydrodynamics at the meso-scale might be modelled using CFD, or a simplified 

method, such as the network of zones or compartment approach (for example, Bauer 

and Eigenberger, 2001; Lim et al., 2001). In this thesis, the latter approximate 

approach is favoured, which should be adequate for calciners heated with natural gas. 

Water vapour is produced as calcination proceeds, and should be included as a 

source term in the meso-scale model. The profiles of particle conversion, gas phase 

concentration and temperature are inputs to the reactor scale model, to help calculate 

the overall process productivity and efficiency. 

The initial temperature, size and other particle characteristics, and the environmental 

temperature and water vapour pressure are typical outputs of a simplified reactor 

model that should be passed to a particle scale model. A single-particle reaction 

model can predict particle diameter, temperature and water vapour production rate 

for use in the meso-scale model. In addition, the micro-scale model can also provide 

particle morphological and structural information to larger scales to help assess 

product quality.  

Heat and mass transfer coefficients used in particle reaction modelling are 

information that the meso-scale provides to the micro-scale. Figure 2.2 depicts the 

proposed multi-scale modelling framework applicable for the gibbsite calcination 

process. 

Figure 2.2 shows that two-way communication between the models at each scale is 

needed. Non-overlapping size scales for the sub-models have been identified (Table 

2.1); hence, inter-scale communication via the “embedded” multi-scale integration 

framework (Ingram et al., 2004) could be suitable for this model. However, the time 

scales for the sub-models do overlap (Figure 2.3), which can lead to hysteresis and 

memory effects in the variables. 
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The “model spectrum” at each scale in Figure 2.2 needs some explanation. 

Depending on the modelling goal, and possibly sensitivity analyses, a simplified or 

rigorous model may be used at each scale, for example, a lumped model compared to 

a distributed-parameter model. On the macro-scale, I consider only one aspect of 

control-relevant modelling: “hard-sensor control” refers to measuring all variables 

using sensors, while in “soft-sensor control” un-measured variables are inferred by 

combining sensor outputs using a neural network or similar. 

2.3.3 Multi-scale design of experiments 

The design of experiments (DOE) is a tool used in model building and validation. 

Various approaches to DOE have been used in the past, but recent work favours 

model-based, and particularly multi-scale model-based, approaches (Vlachos et al., 

2006; Franceschini and Macchietto, 2008). Prasad et al. (2010) published a new 

methodology for multi-scale, model-based DOE, using the production of hydrogen 

from ammonia as a case study. DOE and validation for multi-scale models remain 

open research topics. Multi-scale, model-based DOE is out of the scope of this thesis. 
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Figure 2.2 – Proposed multi-scale modelling framework for gibbsite calcination in a 

FBR. 

 

 

 

Figure 2.3 – Scale distribution of sub-models in fluid bed gibbsite calcination. 

 

Communication 

● Gibbsite feed conditions  

● Process operating conditions 

● Vessel design parameters  

 

Communication 

● Local gibbsite conversion 

● Local bed temperature 

● Local particle size distribution 

 

Communication 

● Particle composition and size change 

● Vapour production and heat consumption rates  

● Particle morphology 

 

Communication 

● Boundary  conditions: surrounding 

temperature and v apour pressure 

● Heat and mass transfer coefficients  

 

Macro-Scale (Reactor) 

Issues: 
 Throughput and end-product properties 

 Vessel design and operating conditions 
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 Particle reaction model  

 Heat and mass diffusion 

Modelling spectrum: 

Lumped  model                 Distributed model 

Reactor scale 

Volume element 

scale 

Particle scale 

10 
-6 

10 
-4 

10 
-2 

10 
0 

10 
2 

10 
4 

10 
-6 

10 
-4 

10 
-2 

10 
0 

10 
2 

Time (s) 

S
iz

e
 

(m
) 

Volume element / Cluster 

Particle 

Reactor 



Chapter 2: A multi-scale modelling outlook for gibbsite calcination 

  

23 

 

2.4 Summary 

A conceptual framework has been proposed for a multi-scale model to predict the 

performance of fluidized bed reactors used for gibbsite calcination. The aim of the 

conceptual model is to relate product quality parameters, such as particle size and 

chemical composition, with calciner design and operating conditions. It links a 

single-particle reaction model, a meso-scale model describing fluidized bed 

hydrodynamics, and a vessel-scale model. This framework depicts the scales, 

mechanisms and potential models needed, as well as commenting on the important 

variables at each scale. 

With regards to the conceptual framework described in this chapter, the development 

of the elements of the proposed framework is the subject of the following chapters, 

starting with a detailed investigation of the particle scale.    
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3 
A 1-D non-isothermal dynamic model for 

the thermal decomposition of a  

gibbsite particle 
 
As the first stage of the single reacting-particle modelling, a 1-D mathematical 
model describing the thermal decomposition, or calcination, of a single gibbsite 
particle to alumina has been developed and validated against literature data. A 
dynamic, spatially-distributed, mass and energy balance model enables the 
prediction of the evolution of chemical composition and temperature as a function 
of radial position inside a particle. In the thermal decomposition of gibbsite, water 
vapour is formed and the internal water vapour pressure plays a significant role in 
determining the rate of gibbsite dehydration. A thermal decomposition rate 
equation, developed by closely matching experimental data reported previously in 
the literature, assumes a reaction order of 1 with respect to gibbsite concentration, 
and an order of –1 with respect to water vapour pressure. Estimated values of the 
transformation kinetic parameters were k0=2.5×1013 mol/m3 s for the pre-
exponential factor, and Ea=131 kJ/mol for the activation energy. Using these kinetic 
parameters, the gibbsite particle model is solved numerically to predict the evolution 
of the internal water vapour pressure, temperature and gibbsite concentration. The 
model prediction was shown to be very sensitive to the values of heat transfer 
coefficient, effective diffusivity, particle size and external pressure, but relatively less 
sensitive to the mass transfer coefficient and particle thermal conductivity. The 
predicted profile of the water vapour pressure inside the particle helps explain some 
phenomena observed in practice, including potential particle breakage and the 
formation of a boehmite phase. The results of this chapter are utilized for validation 
purposes in Chapter 4 and also in conjunction with a reactor scale model in 
Chapter 6.   
 

3.1.  Introduction 

Gibbsite, known as aluminium tri-hydroxide, undergoes calcination to convert it into 

alumina in the final stage of the Bayer process. Final product physical properties are 

significantly affected by the process conditions experienced in the calcination stage. 

In current industrial practice, gibbsite calcination is conducted at atmospheric 

pressure at approximately 1100°C. Replacing rotary kilns with stationary calciners, 

either bubbling or circulating fluidized beds, has resulted in reductions in the energy 

consumption from 4.5 GJ/t Al2O3 to lower than 3.0 GJ/t Al2O3 (Williams and Misra, 

2011) for gibbsite calcination under atmospheric pressure (Wind et al., 2011). 



Chapter 3: A 1-D non-isothermal dynamic model for thermal decomposition of a gibbsite particle 

 

27 

 

Further reductions in energy consumption may result from the commercialisation of 

a high pressure (4–30 atm) continuous pilot-scale unit, which achieved an energy 

consumption of only 1.55 GJ/t Al2O3, and produced better quality alumina (Sucech 

and Misra, 1986). Because alumina and its partial hydrates are of high importance, 

not only for aluminium production, but also for other applications, such as catalysts, 

absorbents and catalyst supports, gibbsite calcination has been the subject of 

investigation for decades. 

The modelling of thermal dehydration is central to the prediction of gibbsite 

transformation in calciners. Moreover, by using a predictive process model, it may be 

possible to develop effective methods for process troubleshooting, optimization and 

product design. In this area, experimental studies are much more common in the 

literature than mathematical modelling, particularly modelling at the particle scale. 

Most research into gibbsite calcination has focused on the details of dehydration 

kinetics and phase transitions (Gan et al., 2009; Wang et al., 2006; Whittington and 

Ilievski, 2004).  Further, the amount of work published on coupling kinetics with 

hydrodynamics in a calciner is limited (Marsh, 2009), and no specific work on the 

simulation of a gibbsite particle undergoing calcination appears to be available. A 

combination of dehydration, mass and heat transfer processes needs to be 

investigated to understand the controlling mechanisms, as well as to explore the 

effects of different operational parameters. Several important questions could be 

answered by modelling gibbsite calcination at the particle scale, for instance, the 

extent of particle breakage due to the build-up of internal water vapour pressure, the 

effect of external pressure on the decomposition rate, and the conditions favouring 

different thermal decomposition pathways. The aim of this chapter is to develop a 

dynamic model that can predict the distribution of temperature, gibbsite 

concentration and internal water vapour pressure in a single gibbsite particle as a 

function of calcination conditions in a range that is relevant to industrial practice.  

There are several mathematical modelling approaches that are commonly used for 

describing the characteristics of a reacting particle that undergoes changes in 

physical structure and chemical composition. Typical modelling methodologies that 

are widely used for gas-solid reactions include homogeneous, unreacted core, grain, 

random pore and volumetric models (Chang and Kuo, 1999; Homma et al., 2005; 

Kasaoka et al., 1985; Molina and Mondragón, 1998; Silcox et al., 1989). In this 
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chapter, the term “distributed model” will be used to denote a model in which the 

state variables are functions of particle radius. Generally, the selection of the 

modelling approach depends on the properties of the specific reactants and products, 

as well as on the modelling goals. These models and their selection criteria are 

reviewed by Molina and Mondragón (1998). The distributed model is particularly 

suitable for describing thermal decomposition involving porous and relatively porous 

solids. Mathematical simplicity, incorporation of meaningful physical and chemical 

parameters, and insight into the distribution profiles inside the particle are the main 

advantages of a 1-D distributed dehydration model. In this model, it is assumed that 

thermal decomposition proceeds in all parts of the particle; however, the dehydration 

rate varies spatially due to concentration and possibly temperature gradients.  

Unlike common gas-solid reactions that have a gas-phase species as one of the 

reactants, in dehydration, as considered in this study, gaseous species are reaction 

products only and they may inhibit the reaction. No previous work has been reported 

on particle-scale modelling that combines dehydration kinetics and transport 

phenomena for gibbsite calcination. In addition, while the influence of external water 

vapour pressure has been studied before at relatively low temperatures, the effects of 

internal vapour pressure at elevated temperatures have not been explored. The model 

developed in this chapter allows for the inhibiting role of water vapour that is 

produced during gibbsite calcination. Internal and external mass and heat transfer 

resistances are combined with the dehydration rate expression in a distributed model, 

which can predict, for the first time, the characteristic heating behaviour and the 

internal vapour pressure build up in a gibbsite particle. Both these processes are 

relevant to the understanding of particle breakage and dehydration pathways. The 

model is validated against literature laboratory data at 873–923 K. While it is known 

that external water vapour pressure has a significant effect on gibbsite thermal 

transformation at low temperatures (Stacey, 1987; Candela and Perlmutter, 1986), 

our study extends the prediction to elevated temperatures. Sensitivity studies are 

conducted into the effects of particle size, heat and mass transfer coefficients, 

effective diffusivity and external water vapour pressure. 

In the first part of this chapter, literature on the dehydration kinetics of gibbsite is 

briefly discussed, particularly the modelling of the effect of water vapour pressure 

and the estimated value of the activation energy. The model’s governing 
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conservation and constitutive equations are then presented. Subsequently, the 

numerical approach employed for model solution is explained. Finally, model 

validation and sensitivity analyses are reported. 

 

3.2.  Mathematical model 

3.2.1. Gibbsite dehydration kinetics 

Depending on processing conditions, the calcination or thermal dehydration of 

gibbsite to alumina mainly takes place via two well-known dehydration and phase 

transition pathways. Heating rate, particle size distribution and water vapour pressure 

inside and around the particles are the dominant parameters that affect the 

dehydration pathway. Disregarding some additional intermediate chemical species, 

the two gibbsite dehydration pathways may be summarized as follows (Whittington 

and Ilievski, 2004): 

 

1. Gibbsite transformation directly to alumina. 

2. Gibbsite transformation to boehmite and then to alumina. 

 

According to Whittington and Ilievski (2004) and Candela and Perlmutter (1992), 

boehmite formation is more likely to happen in high water vapour pressure 

environments and in coarse particles. However, even at high vapour pressures and 

for large particle sizes (> 50 µm), the majority (~70%) of gibbsite dehydrates directly 

to alumina via the first pathway. In this development of a model for gibbsite 

calcination, both dehydration pathways are effectively lumped into one and consider 

the reactant to be gibbsite and the product to be alumina. Determination of the 

distribution of intermediate chemical species, such as boehmite, and different 

alumina phases, is not a goal of this study, but is partly addressed in Chapter 5.  

Gibbsite calcination is complicated in terms of its dehydration kinetics and dominant 

mechanisms. Different kinetic correlations have been presented in the literature for 

the thermal decomposition of gibbsite; some involve an activation energy that 

apparently changes with temperature and dehydration extent. In general for gas-solid 

reactions, in order to use a model such as the distributed model or shrinking core 

model to predict conversion (Levenspiel, 1999), a reaction rate based on solid and 

gas species concentration has been used widely in the literature. The majority of 
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these investigations have been focused on gas-solid reactions that generally have the 

form: )()()()( sgsg dDcCbBaA  . Subsequently, a first order reaction based on gas (A) 

and solids (B) concentrations makes it possible to proceed using established results 

from the literature; these ignore the presence of reaction products. However, in 

calcination and dehydration cases, the water vapour component is a product, 

appearing on the right hand side of the reaction equation and causing a barrier to the 

dehydration progress. For example, in gibbsite calcination: 

 

AluminaGibbsite

OAlOHOHAl 3223 3)(2 
       (3.1) 

 

The effect of water vapour pressure (concentration) on gibbsite calcination has been 

reported by a number of investigators (Candela and Perlmutter, 1986, 1992; Stacey, 

1987). This influence may be considered through the rate equation for gibbsite 

consumption: 

 

21)/(
0)(

n
G

n
W

RTE
G CCekr a

        (3.2) 

 

where CW and CG represent the water vapour and gibbsite concentrations, 

respectively, and n1 and n2 denote the corresponding orders of reaction. In the 

definition of molar concentrations, the particle volume was chosen as the basis for 

both solid and gas species. The dehydration reaction is assumed to be irreversible 

and to obey the Arrhenius law, as shown above. The calcination of 75 µm gibbsite 

particles at 473 K and different water vapour pressures (100–3200 Pa) was studied 

by Stacey (1987) who determined n1 values of –1.3 and –0.4 for gibbsite to alumina 

and boehmite to alumina dehydration reactions, respectively. Candela and Perlmutter 

(1986) estimated the value of n1 as –2. Their investigation was done under a 

controlled, pure water vapour atmosphere at pressures from 50 to 3000 Pa over a 

temperature range from 458 to 508 K. The negative value of n1 means that increasing 

the water vapour concentration reduces the rate of gibbsite conversion, although the 

precise value of n1 remains uncertain as seen above. More experimental 

investigations are needed into dehydration kinetics at conditions relevant to industrial 

calcination, which operates at temperatures and pressures much higher than those 
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investigated by Stacey (1987) or Candela and Perlmutter (1986). In the absence of 

high temperature and high pressure data, and for simplicity of the model, in this 

study n1 = –1 was considered. The value of the dehydration order with respect to 

gibbsite concentration is also uncertain for high temperature and pressure. The use of 

a fixed value of n2 = 1 was selected, which is consistent with the few data that are 

available. 

Regarding the activation energy, several kinetic studies have been published by 

different authors, but substantial uncertainty exists over the value for Ea. Candela and 

Perlmutter (1986) report Ea = 260±20 kJ/mol as the activation energy for gibbsite 

decomposition, which is reasonably consistent with the value of 272±12 kJ/mol 

presented by Stacey (1987). The Ea value estimated by Lopushan et al. (2007) was 

150±12 kJ/mol, obviously not in agreement with either previous study. These three 

studies were mainly conducted at low and moderate temperatures. Jovanović et al. 

(1992) and Wang et al. (2006) report a change in the dominant dehydration 

mechanism at elevated temperatures. According to Jovanović et al. (1992) at 883 K, 

the mechanism of gibbsite thermal decomposition changes and this causes a decrease 

in the activation energy from 141 to 53 kJ/mol. Wang et al. (2006) confirm the low 

activation energies at elevated temperatures (823–923 K) and they estimated the Ea 

value for the thermal transformation of gibbsite to alumina as only 14 kJ/mol. Table 

3.1 shows a summary of kinetic parameters reported in the literature. 

In summary, the activation energy reported for gibbsite calcination appears to vary 

considerably with operational conditions. In this study, average k0 and Ea values are 

estimated from dehydration rate constants fitted to literature conversion data.  
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Table 3.1 – Kinetic parameters for the calcination of gibbsite to alumina as reported by different authors. 

 

Reference Temperature range (K) k0  Ea (kJ/mol) n1 n2 

Stacey (1987)  473–623 4.7±0.7×10
27 

(Pa
1.3

/s) 272±12 –1.3 - 

Wang et al. (2006) 823–923 - 14 - 1 

Lopushan et al. (2007) 443–783 - 150±12 - - 

Jovanović et al. (1992) 823–923 - 141 to 53 - - 

Candela and Perlmutter (1986) 458–508 - 260±20 –2 - 

Rožić et al. (2001) 883–943 8.85±0.7×10
–3 

(1/s) 66.5 - - 
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3.2.2. Model assumptions 

The assumptions of the model are as follows: 

 The particle is initially pure gibbsite. 

 A dehydration reaction of the form of Eq. (3.1) takes place throughout the 

particle to produce water vapour and porous alumina. The rate of the 

dehydration reaction, which is given by Eq. (3.2), may vary through the 

particle. 

 The particle is spherical with constant shape and constant outer diameter 

during the dehydration reaction. Possible changes due to particle breakage, 

aggregation and shrinkage processes have been neglected in the model. 

 The particle porosity is assumed constant, with a value in between the very 

low porosity of gibbsite and the relatively high porosity of alumina. 

 Convective heat and mass transfer processes take place between the particle 

and the environment; radiation heat transfer may also take place between the 

particle and the environment. 

 All physical properties are assumed to be constant during dehydration. In 

particular, the effects of any structural changes on the diffusion coefficient 

are ignored. The effect of the diffusion coefficient is explored in Section 

3.4.8. 

 Heat and mass transfer fluxes inside the particle are modelled using an 

effective thermal conductivity and an effective diffusion coefficient, 

respectively, following the practice of Bird et al. (2002). 

 

3.2.3. A 1-D, non-isothermal dehydration model for a single particle  

A distributed single-particle dehydration model should take into account three 

interdependent processes: heat transfer in the particle and the surrounding gas film, 

the dehydration reaction, and mass transfer of water vapour in the particle and the 

gas film. A 1-D, spherically symmetrical, dynamic dehydration model that 

incorporates distributed water vapour and gibbsite mass balances and a distributed 

energy balance may be developed as follows. 

The equation of continuity for the water vapour in terms of concentration, CW(r,t), 

over the domain r(0, Rp), t(0, tend] is 
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where ε is the particle porosity, t is time, r is radial position, De is the effective 

diffusion coefficient, α is the ratio of the stoichiometric coefficients of water vapour 

production to gibbsite consumption in Eq. (3.1) and rG is the gibbsite dehydration 

rate defined in Eq. (3.2). Initially, the water vapour concentration inside the particle 

is assumed to be the same as the environment: 

 

WbW CrC )0,(           (3.4) 

 

At the centre of the particle, the water vapour profile is symmetric: 
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while at the surface of the particle, convective mass transfer takes place:  
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       (3.6) 

 

Here, Rp is the particle radius, K is the mass transfer coefficient and CWb is the water 

vapour concentration in the environment. 

The gibbsite concentration at any point in the particle is deduced from the 

dehydration rate:  

 

G
G r
t

C





         (3.7) 

 

The initial concentration of gibbsite is considered to be the same in all parts of the 

particle: 

0)0,( GG CrC            (3.8) 
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The energy balance equation for the reacting gibbsite particle during dehydration 

may be written as: 
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(3.9) 

 

where ρ, Cp and λe are, respectively, the molar density, molar heat capacity and 

effective thermal conductivity of the gibbsite particle, and ΔH is the dehydration 

enthalpy of gibbsite. Initially, the particle temperature is uniform at the ambient 

temperature:  

 

0( ,0)T r T           (3.10) 

 

Due to symmetry the heat flux at the particle centre is zero: 
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The particle receives the majority of the required energy for calcination from the 

surroundings via convection and radiation at the particle surface. The radiation 

contribution has been linearised around environmental temperature Tb and lumped 

with the convection term: 
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where h is a combined convective / radiative heat transfer coefficient. 

 

Finally, the gibbsite conversion X and gibbsite mass fraction WG, averaged through 

the particle, at any time of interest can be calculated by  

2

0
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and 
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where MG and MA are the molecular weights of gibbsite and alumina, respectively, 

and β is the ratio of stoichiometric coefficients of alumina to gibbsite in Eq. (3.1). 

The ideal gas law is used to relate the concentration of water vapour to its partial 

pressure in the bulk gas: Wb Wb bC P RT . At higher pressures, other equations of state, 

for example Peng-Robinson or Soave-Redlich-Kwong, may be used. 

 

3.2.4. Model solution 

Time and radial position are the independent variables, and the main dependent 

variables in this modelling study are T, CG and CW. The last variable is of high 

importance for the interpretation of the role of water vapour pressure in gibbsite 

calcination. The governing equations of the distributed model, Eqs. (3.2)–(3.12), 

were solved simultaneously along with corresponding initial and boundary 

conditions to find the values of the dependent variables as functions of time and 

radial position. The numerical solution was obtained by applying the MATLAB
®

 

(2010b) pdepe algorithm, which uses the method of Skeel and Berzins (1990) for 

spatial discretisation, and performs time integration with a variable-order, multi-step 

solver. Eqs. (3.13) and (3.14) were evaluated through post-processing, with the 

integral in Eq. (3.13) being calculated by trapezoidal integration using MATLAB’s 

trapz routine. The parameter values used in the simulations are shown in Table 3.2.  

The MATLAB Optimization Toolbox was used to fit the model kinetic parameters to 

the experimental data of Wang et al. (2006) via nonlinear regression calculations, as 

discussed in the next section. 

 

3.3.  Estimation of kinetic parameters and sensitivity study 

Wang et al. (2006) performed calcination experiments at elevated temperatures (823 

to 923 K) in an autoclave. The particle size ranged from 20 nm to 2000 µm, with the 

mean particle size being approximately 100 µm. They measured the average gibbsite 

mass fraction in the particles as a function of time and estimated dehydration rate 

constants with regression analysis without considering any internal or external 
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resistances to mass or heat transfer. However, heat transfer on the particle boundary 

and mass transfer inside the particle play a significant role in controlling the progress 

of gibbsite dehydration. In this study, kinetic parameters are estimated based on the 

particle dehydration model developed in Section 3.2. Two sets of experimental data 

(at 873 and 923 K) reported by Wang et al. (2006) were used for parameter 

estimation and one set (at 898 K) was used to validate the model. 

In order to find the best values of the parameters k0 and Ea, the following objective 

function was minimised: 

 
 


K}923,873{ 1

2
,,,0 )(),(

b

Tb

T

N

i

iexpGiGa WWEkf      (3.15) 

 

where NTb is the number of temporal data points i from Wang et al. (2006) at 

temperature Tb, WG,i is the mass fraction of gibbsite predicted by the model via Eq. 

(3.14) and WG,exp,i is the experimental gibbsite mass fraction measured by Wang et al. 

(2006). 

Since the regression problem and model are nonlinear, an isothermal analysis was 

first performed by setting T(r,t) ≈ Tb to estimate the dehydration constant 

/( )
0

aE RT
k k e


  at 873 and 923 K. The approximate activation energy and pre-

exponential coefficient were obtained from the slope and intercept of the straight line 

produced by plotting ln(k) against 1/Tb. These values were used as initial guesses in 

the full non-isothermal numerical analysis. The constant temperature reported by 

Wang et al. (2006) was used as the external temperature, Tb. More precise kinetic 

values for k0 and Ea obtained by non-isothermal analysis were 2.5×10
13

 mol/m
3
 s and 

131 kJ/mol, respectively. Figure 3.1 presents a comparison of experimental results 

(Wang et al., 2006) and the results of the fitted model at 873 and 923 K for the 

evolution of the gibbsite mass fraction. 
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Figure 3.1 – Evolution of gibbsite mass fraction predicted by the model using fitted 

kinetic parameters and original experimental data (Wang et al., 2006) at (a) 873 K and 

(b) 923 K. 
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Table 3.2 – Model parameters used for validation and in all sensitivity studies unless 

noted otherwise. 

 
Parameter Value Reference / comment 

CG0 (mol/m
3
) 3.1×10

4 Wefers and Misra (1987) 

Cp (J/mol K)
 

80 Wefers and Misra (1987) 

De (m
2
/s) 7×10

–10 Value for alumina; Fowler et al. (1977) 

Dp (μm) 100 Experimental conditions of Wang et al. (2006); Rp =Dp/2=50 µm 

Ea (kJ/mol)
 

131 Found by parameter estimation – see Section 3.3. 

h (W/m2 K) 1.5 Combines radiation and convection; Incropera et al. (2007) 

ΔH (kJ/mol) 147 Beyer et al. (1989) 

k0 (mol/m
3
 s)  2.5×10

13

 Found by parameter estimation – see Section 3.3.
 

K (m/s) 0.1 Estimated based on minimum Sherwood number (Sh = 2) 

MA (g/mol) 102 - 

MG (g/mol)  80 - 

n1 –1 Discussed in Section 3.2.1 

n2
 

1 Wang et al. (2006) 

PWb (kPa) 3 Typical environmental water vapour pressure
 

R (J/mol K) 8.314 Ideal gas constant 

Tb (K) 873, 893, 923 Experimental conditions of Wang et al. (2006) 

T0 (K) 298 Particle initially at ambient temperature 

α 1.5 From Eq. (3.1) 

β 0.5 From Eq. (3.1) 

ε 0.3 Altundoğan and Tümen (2003) 

λe (W/m K) 19 Wefers and Misra (1987) 

ρ (mol/m
3
) 3.1×10

4
 Wefers and Misra (1987) 

 

 

Model predictions for the concentration distribution of water vapour inside the 

gibbsite particle are found to be sensitive to the effective diffusion coefficient. For 

water vapour diffusion in alumina, a wide range of diffusivities are reported in the 

literature (Doremus, 2006; Fowler et al., 1977). Ideally, De should be a function of 

temperature and dehydration extent or composition, since the particle porosity 

changes during dehydration. Due to the lack of such a function, in most of this study 

the constant porosity value ε and constant De 
reported by Fowler et al. (1977) for 

alumina were used; however, Section 3.4.8 examines the effect of different De 

values. 
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3.3.1. Validation of the model 

A set of the experimental data of Wang et al. (2006) at 898 K was used to 

independently validate the model, as presented in Figure 3.2. The model prediction, 

using kinetic parameters estimated from the 873 K and 923 K data, are in good 

agreement with Wang et al.’s data at 898 K. 

 

 

Figure 3.2 – Validation of the model against independent experimental data (Wang et 

al., 2006) at 898 K. 

 

 

3.4.  Model analysis 

This section reports temperature and composition profiles inside the particle 

predicted by the model, and it also presents sensitivity studies for the model 

parameters. The conditions for each study are those given in Table 3.2, except where 

otherwise noted. 

 

3.4.1 Temperature profile inside the particle 

Figure 3.3 shows the predicted temporal and spatial temperature distribution in a 

reacting 100 µm diameter gibbsite particle at 898 K. At any time, the temperature is 

almost uniform throughout the particle cross-section. This result is consistent with a 
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lumped capacity model for the particle energy balance. The Biot number criterion, Bi 

= hDp/λe < 0.1, has been used to confirm particle isothermality, even in the presence 

of a solid-phase reaction, such as pyrolysis (Chern and Hayhurst, 2010). For particles 

100 µm in diameter fluidized by air at 400 K, the heat transfer coefficient between 

the gas and the particles would be around 420 W/m
2
 K according to Kunii and 

Levenspiel (1991). A combination of the above parameters with a conservative 

particle thermal conductivity of 16 W/m K for alumina at 400 K (Shackelford and 

Alexander, 2001), yields Bi = 0.0026 << 0.1, which confirms that it is reasonable to 

assume isothermal conditions inside the particle. Smaller particles, lower heat 

transfer coefficients and higher particle thermal conductivities would satisfy the 

isothermality criterion even more easily. Conversely, in the work of Wang et al. 

(2006), the gibbsite-alumina particle size ranged up to 2000 μm, and at high 

temperatures the effective gas-particle heat transfer coefficient can increase further 

due to a significant radiative contribution. For these conditions, it would be possible 

that gibbsite particles could exhibit Bi numbers larger than 0.1, leading to a non-

uniform spatial temperature profile. 

The finding of uniform temperature inside the particle suggests that the distributed 

energy balance, Eqs. (3.9)–(3.12), could be replaced with a lumped capacity energy 

balance: 

 

)(4)(4
3

4 2

0
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 (3.16) 

 

which has the initial condition: 

 

0)0( TT                (3.17) 

 

It should be noted, however, that while the reacting particle has a spatially uniform 

temperature, it is not temporally isothermal. The particle internal temperature is 

unsteady, increasing over time as dehydration progresses as seen in Figure 3.3. In the 

first few seconds, the particle temperature shows a very rapid rise. This shock is 

damped by the demand for energy as the endothermic calcination reaction begins. 
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From about 10 to 130 s, the temperature rises slowly as approximately 90% of the 

particle reacts. At ~130 s, the dehydration reaction slows down due to depletion of 

fresh reactant and the mass diffusion resistance. After ~130 s, the temperature again 

increases quickly since little heat is consumed by the calcination reaction, and the 

particle finally reaches the environmental temperature. It is a significant achievement 

of the model that the predicted temperature history reproduces well the shape and 

temperature plateau during gibbsite thermal decomposition found in the independent 

experimental work of Stacey (1987). In contrast to the uniform temperature field 

inside the particle, the dehydration reaction takes place at a greater rate at the particle 

surface compared to its interior due to the high internal mass diffusion resistance and 

the effect of water vapour concentration on the dehydration rate, as discussed in the 

next section. 
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Figure 3.3 – Temperature evolution as a function of time and particle radius (a), and 

temperature evolution at the particle centre and outer boundary (b); both for 

Tb=898 K. 
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3.4.2 Water vapour profile inside the particle 

Several aspects of gibbsite thermal decomposition may be attributed to the water 

vapour pressure inside and around the reacting particle. As water vapour pressure 

affects the dehydration and phase transformation reaction pathways and subsequently 

the formation of different alumina phases, having some knowledge of this distributed 

parameter will help to explain experimental and industrial observations. In addition, 

particle breakage, which is frequently reported for high temperature calcination, 

could potentially be monitored and controlled using model predictions of the 

pressure increase inside the particle over its calcination period. 

Figure 3.4 shows the predicted spatial and temporal distribution of water vapour 

pressure inside a gibbsite particle reacting at 898 K. Note that the surrounding 

vapour pressure is 3 kPa, or 0.03 atm. A significant increase in internal vapour 

pressure over time can be seen in Figure 3.4(b). The pressure build up is a maximum 

at the particle centre and is predicted to be very high at elevated temperatures. This 

pressure could contribute to particle fracturing under flash calcination conditions, 

which involve high temperatures and a short calcination time, especially for large 

particles. When the dehydration is complete, the vapour pressure inside the particle 

quickly decreases due to diffusion of the remaining vapour to the particle surface. 

Finally, the internal vapour pressure will become uniform at the bulk gas pressure. 

Since higher vapour pressure favours boehmite formation (Candela and Perlmutter, 

1992; Wang et al., 2006; Whittington and Ilievski, 2004) it can be concluded that the 

outer layer of a particle is more likely to convert directly to the final product 

(alumina), while intermediate boehmite formation is more probable at the particle 

centre where the vapour pressure is higher. 
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Figure 3.4 – Evolution of water vapour pressure as a function of time and particle 

radius (a), and water vapour pressure as a function of particle radius at selected times 

(b); both for Tb=898 K. 
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3.4.3 Gibbsite concentration profile inside the particle 

Figure 3.5 shows the gibbsite concentration as a function of radial position at several 

times during calcination. Near the particle centre, the gibbsite concentration is 

reasonably uniform, particularly in the early stages of dehydration. In the outer layers 

of the particle, however, a considerable difference in gibbsite concentration develops. 

A difference between the behaviour of the central and outer regions of the particle 

shown in Figure 3.5 is supported by the experimental results of Perlander (2010). 

In gibbsite calcination, temperature and water vapour pressure are the dominant 

parameters controlling dehydration progress. While the temperature is the same at all 

points in the particle cross-section at a given time, the water vapour pressure is not. 

As can be seen in Figure 3.4(b), the vapour gradient is steeper near the particle 

surface in comparison to the centre, particularly at the beginning of dehydration. 

Thus, different dehydration rates at the outer surface and particle centre may be 

reasonably attributed to the water vapour pressure profile. 

 

Figure 3.5 – Normalized gibbsite concentration (CG/CG0) as a function of particle radius 

at different times; Tb=898 K. 
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3.4.4  Effect of particle size 

Gibbsite calcination behaviour is a strong function of particle size. Temperature 

history, internal water vapour pressure and gibbsite concentration are all affected by 

particle size as can be seen in Figures 3.6 and 3.7. Particle temperature history is 

illustrated in Figure 3.6. Coarser particles take a longer time to reach the 

environmental temperature. This delay is mainly due to the longer dehydration 

period, during which the heat penetrating from outside the particle is consumed to 

drive the dehydration reaction. Regarding the internal vapour pressure, the maximum 

value will occur at the end of dehydration, as seen in Figure 3.7. The maximum 

pressure value depends strongly on particle size. The larger the particle, the higher 

the vapour pressure build up inside the particle, increasing the potential for the 

parallel dehydration reaction that produces boehmite, as well as for physical damage 

to the particle structure, such as crack formation and particle breakage.                                                                                                         

 

3.4.5  Effect of external water vapour pressure 

Recently, gibbsite calcination under high pressure conditions, and hence high 

external water vapour pressures, was investigated at the pilot-scale (Williams and 

Misra, 2011). The driver for their work was a low effective fuel consumption of 1.55 

GJ/t Al2O3. This is lower than the best current practice at atmospheric pressure, 

which has a fuel consumption of around 2.79 GJ/t Al2O3 (Klett et al., 2011). In a 

high-pressure calciner, the water vapour pressure around particles can be thirty times 

higher than in atmospheric calciners. As mentioned earlier, particle breakage at high 

temperature, including anecdotal evidence on explosive breakage (Perlander, 2010), 

has been observed in industrial operations, but there is a lack of quantitative analysis 

of the potential causes and also of appropriate methods to prevent it. This study 

provides insight on the influence of the external water vapour pressure on 

dehydration behaviour and some quantification of this industrially-important 

phenomenon. 

As can be seen in Figure 3.8(a), the model predicts only a small effect of the external 

water vapour pressure on the gibbsite conversion rate. At an external water vapour 

pressure of 0 atm, the dehydration time is around 150 s, while at 15 atm it increases 

to around 160 s, a change of less than 10%. However, Figure 3.8(b) shows in these 

two cases that the evolution of the maximum vapour pressure inside the particle is  
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Figure 3.6 – Evolution of particle temperature for different particle sizes; Tb=898 K. 

 

 

 

Figure 3.7 – Evolution of maximum internal vapour pressure for different particle 

sizes; Tb=898 K. 
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different. For external pressures between 0 and 15 atm, the maximum internal 

pressure is approximately constant at around 28 atm, while above 15 atm external 

pressure, the maximal internal pressure increases. It is proposed that particle 

breakage would be more affected by the difference between the peak internal 

pressure and the external pressure, than by the absolute value of the internal pressure. 

At higher external pressures, the pressure difference between inside and outside the 

particle is lower, suggesting a reduced possibility of breakage. 

The calciner operating pressure could be optimized with respect to capital and 

operating costs in the context of other process demands. However, a qualitative 

examination of the results in Figure 3.8 suggests the following reasons why an 

external water vapour pressure of 15 atm may be preferred for industrial operation in 

comparison to the higher or lower pressures considered in this study. First, the 

difference between internal and external pressure is less for 15 atm than for the lower 

pressures, 1 atm for instance, which should decrease the potential for breakage. 

Second, 15 atm is lower than 30 atm, which would result in lower costs for 

equipment, maintenance and operation. Third, little delay in the completion of 

dehydration is caused by increasing the external pressure from 0 to 15 atm at the 

temperatures of interest (823 K and higher). Fourth, it is possible that a more 

homogenous and stronger, more attrition-resistant alumina product (Sucech and 

Misra, 1986) may be produced at 15 atm external vapour pressure, as the vapour 

profile inside the particle is flatter in contrast to that at lower pressures. 
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Figure 3.8 – The effect of external water vapour pressure (PWb) at Tb=898 K on the 

evolution of (a) gibbsite mass fraction, and (b) maximum internal water vapour 

pressure. 
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3.4.6 Effect of heat transfer coefficient 

To test the sensitivity of the model to external heat transfer, the dehydration rate of 

gibbsite is studied for three different values of the heat transfer coefficient, h. Note 

that all other parameters, including k and Ea, are fixed at the values reported, which 

were deduced from model fitting using h = 1.5 W/m
2
 K. As can be seen in Figure 

3.9(a), conversion time is strongly affected by the heat transfer coefficient, 

emphasising the difference in reaction rate for a stagnant system, such as autoclave, 

in contrast to a fluidized system with a higher h, such as a circulating fluidized bed 

reactor. Further, the process intensification achieved in industrial practice through 

replacement of rotary kilns with fluidized bed reactors, can be partly explained by 

the enhanced gas-particle heat transfer rate. 

Figure 3.9(b) illustrates that, for the original best-fit dehydration kinetics reported in 

Table 3.1, the gibbsite particles in an environment with a low heat transfer 

coefficient experience a moderate temperature gradient in time with a long delay in 

the completion of dehydration. On the other hand, for particles that experience a high 

heat transfer coefficient, as would occur in a fluidized bed for instance, the 

conversion of gibbsite to alumina is quickly completed and they undergo very rapid 

heating. An important conclusion of this analysis is that estimation of the rate of 

single gibbsite particle calcination needs model parameters corresponding to the 

correct operating environment. The model becomes less sensitive to the heat transfer 

coefficient as h is increased, for example by increasing the local gas velocity. 

 

3.4.7 Effect of mass transfer coefficient 

The effect of mass transfer rate in the surrounding gas layer on the overall 

dehydration rate was investigated by running the model for different mass transfer 

coefficients K, which represent various hydrodynamic environments. A low external 

mass transfer coefficient could potentially influence the rate of gibbsite conversion 

and the particle temperature history. Estimation of the minimum K value, 

corresponding to diffusion from an isolated sphere (Sh=KDp/Db=2), which could 

approximate an autoclave, yields K ~ 0.1 m/s. No significant change was observed in 

any of the model outputs for this K value or higher. 
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Figure 3.9 – The effect of heat transfer coefficient at Tb=898 K on (a) the change in 

gibbsite mass fraction over the reaction period, and (b) the evolution of the particle 

temperature. 
 

Even for K values conservatively lower than 0.1 m/s, for example 0.01 and 0.001 

m/s, no significant effect on model performance was detected. Mass transfer 

coefficients would certainly be higher than 0.1 m/s in a fluidized bed. This indicates 
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that the mass transfer resistance in the surrounding gas layer can be ignored safely 

for practical gibbsite calcination, and that internal diffusion and dehydration control 

the rate of mass transfer. 

The finding of the insensitivity of the results to K suggests that the model could be 

simplified by replacing Eq. (3.6), the Robin boundary condition for external mass 

transfer, by a simpler fixed concentration Dirichlet boundary condition: 

WbRrW CC
p




    (3.18) 

 

3.4.8 Effect of effective diffusivity 

The model is very sensitive to the value of the effective diffusivity, De. Figure 3.10 

illustrates how the maximum internal water vapour pressure changes if the effective 

diffusion coefficient is varied. Reliable values for the effective diffusivity for this 

system are not available in the open literature. However, if consideration is restricted 

to a meaningful range for the internal water vapour pressure, realistic values for the 

applicable effective diffusivity can be proposed. Very high and low internal 

pressures are not acceptable physically. Tentatively, it is proposed that the reasonable 

range of the effective diffusivity is narrow and between 2×10
–10

 and 2×10
–9

 m
2
/s, 

which is consistent with the De value for alumina reported in Fowler et al. (1977). 

The model currently uses a constant De since that is the simplest assumption that is 

supported by any experimental data, but further investigations could consider the 

influence of temperature and structural changes brought about by the dehydration on 

the diffusivity. 

      

3.5.  Summary 

One of the main purposes of this study was to quantify the role of internal and 

external water vapour pressure on calcination of a single gibbsite particle, which has 

before been dealt with only qualitatively. A model that couples dynamic, spatially-

distributed mass and energy balances with appropriate thermal transformation  
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Figure 3.10 – Influence of the effective diffusivity value on the maximum water vapour 

pressure inside the particle at Tb=873 K. 

 

 

kinetics has been developed. The model, which predicts distributed gibbsite and 

water concentrations, and the temperature profile inside the particle, was validated 

against laboratory gibbsite calcination data in a temperature range from 873 to 

923 K.  Based on the literature experimental data, assuming an order of 1 with 

respect to gibbsite concentration and order of –1 with respect to water vapour 

pressure, the thermal transformation rate parameters were estimated as k0=2.5×10
13

 

mol/m
3
 s and Ea =131 kJ/mol. 

For the first time, the evolution of temperature and internal pressure in a gibbsite 

particle undergoing thermal dehydration was predicted by a mathematical model. 

The water vapour pressure at the centre of a dehydrating gibbsite particle can reach 

values in the order of 100 atm, which can help explain the occurrence of particle 

fracture and the possibility of forming a boehmite phase. The assumed effective 

diffusion coefficient has a strong influence on the model prediction; the lower the 

effective diffusivity, the higher the value of the maximum particle internal pressure. 
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The model prediction was shown to be very sensitive to the heat transfer coefficient, 

effective diffusivity, particle size and external pressure, but relatively less sensitive 

to the external mass transfer coefficient and particle thermal conductivity. 

The model results suggest that gibbsite particles undergoing calcination are spatially 

uniform in terms of temperature, and are insensitive to the external mass transfer 

environment. This means that the proposed model can potentially be simplified by 

replacing the distributed energy balance by a lumped capacity energy balance, and by 

replacing the external mass transfer Robin boundary condition by a given 

concentration Dirichlet boundary condition. 

The distributed model developed in this chapter is compared to a shrinking core 

model proposed in Chapter 4. Further this model is the one that will be utilized in the 

integrated, multi-scale model in Chapter 6. 

 

Nomenclature 

Bi
 

Biot number, [–] 

pC  Particle molar heat capacity, [J/mol K] 

GC
 

Gibbsite molar concentration, [mol/m
3
] 

0GC  Initial gibbsite molar concentration, [mol/m
3
] 

WC  Water vapour molar concentration, [mol/m
3
] 

WbC  External water vapour molar concentration, [mol/m
3
] 

bD  Water diffusivity in environment, [m
2
/s] 

eD  Effective water diffusivity in particle, [m
2
/s] 

pD  Particle diameter, [μm] 

aE
 

Activation energy, [kJ/mol] 

h
 

Heat transfer coefficient, [W/m
2
 K] 

H
 Enthalpy of gibbsite dehydration, [kJ/mol] 

k
 

Dehydration rate constant, [mol/m
3
] 

0k
 

Pre-exponential coefficient, [mol/m
3
] 

K
 Mass transfer coefficient, [m/s] 
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AM
 

Alumina molecular weight, [g/mol] 

GM  Gibbsite molecular weight, [g/mol] 

1n
 

Reaction order with respect to water vapour concentration, [–] 

2n
 

Reaction order with respect to gibbsite concentration, [–] 

TbN
 

Number of experimental data points at temperature Tb, [–] 

WbP
 

External water vapour pressure, [kPa] 

r
 Radial position, [μm] 

Gr  Gibbsite dehydration rate, [mol/m
3
] 

R
 Universal gas constant, [J/mol K] 

pR  Particle radius, [μm] 

Sh  Sherwood number, [–] 

t
 

Time, [s] 

endt
 

End time of simulation, [s] 

T
 Temperature, [K] 

bT  External  temperature, [K] 

0T
 

Initial particle temperature, [K] 

GW
 

Gibbsite mass fraction, [–] 

X  Gibbsite conversion, [–] 

 

Greek symbols 


 Ratio of water to gibbsite stoichiometric coefficients, [–]

 


 Ratio of alumina to gibbsite stoichiometric coefficients, [–]
 


 Particle porosity, [–] 

e  
Effective particle thermal conductivity, [W/m K]

 
  Particle molar density, [mol/m

3
] 
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4
 An unreacted shrinking core model 

for calcination and similar solid-to-

gas reactions 
 

In this chapter, a variation on the unreacted shrinking core model has been 
developed for calcination and similar non-catalytic thermal solid-to-gas 
decomposition reactions in which there is no gaseous reactant involved and the 
reaction rate decreases with increasing product gas concentration. The numerical 
solution of the developed model has been validated against an analytical solution 
for the isothermal case. The model parameters have been tuned using literature 
data for the thermal dehydration (calcination) of gibbsite to alumina over a wide 
range of temperatures, from 490 K to 923 K. The model results for gibbsite 
conversion are found to agree well with the published experimental data. A reaction 
order with respect to water vapour concentration of n = –1 was found to give a good 
fit to the data and yield activation energies consistent with literature values. 
Predictions of the non-isothermal unreacted shrinking core model compare well with 
the more complex distributed model developed in Chapter 3. The shrinking core 
model is extended in Chapter 5 to cover more complex aspects of self-inhibiting gas-
to-solid reactions by accounting for parallel and series reactions with a diversity of 
reaction orders.  

 

4.1 Introduction 

Gas-solid reaction has wide application in the metallurgical and chemical industries. 

Due to its importance, the modelling of these heterogeneous reactions has been of 

strong interest to investigators for decades, resulting in a variety of modelling 

approaches. These include the homogeneous, unreacted core, grain, random pore and 

modified volumetric models, in addition to a variety of customised models developed 

for specific cases (Chang and Kuo, 1999; Homma et al., 2005; Kasaoka et al., 1985; 

Molina and Mondragón, 1998; Silcox et al., 1989). Volumetric reaction models find 

application where the intrinsic reaction rate is relatively low compared to internal 

mass transfer. In contrast, unreacted shrinking core models are commonly used for 

nonporous, and in some cases for low-porosity, solid reactants, where the intrinsic 

reaction rate is higher than the diffusion rate. In some cases, it may not be possible to 

decide which of these two simple but opposing models is the more applicable — 
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complicating factors include the change of particle properties, for example, porosity, 

effective diffusion coefficient and effective thermal conductivity, with reaction 

conversion. This diversity in particle scale modelling is exemplified by lime 

calcination, which is a solid-to-gas thermal decomposition reaction. Although the 

shrinking core modelling approach has been widely used in this case (Bluhm-

Drenhaus et al., 2010; Garcìa-Labiano et al., 2002; Moffat and Walmsley, 2005), the 

application of volumetric modelling has also been demonstrated and justified (Hu 

and Scaroni, 1996; Stanmore and Gilot, 2005; Ying et al., 2000). As numerous 

particle scale experimental and modelling studies have been reported for lime 

calcination, it is accepted that shrinking core and volumetric models, and a 

combination of these two, the grain model (Garcìa-Labiano et al., 2002; Mahuli et 

al., 2004; Stanmore and Gilot, 2005), can describe the process. Char combustion is 

another example for which different modelling strategies have been proposed (Canò 

et al., 2007; Sadhukhan et al., 2010). 

Shrinking core models have been used for reactions involving a change in the overall 

particle size due to gasification, drying or mass burn-off. In these cases, the 

unreacted core is continuously exposed to the reacting environment and the particle 

shrinks as the reaction occurring at the particle surface proceeds. The unreacted core 

model can also be used for cases in which a reaction product forms a porous “ash” 

layer around the unreacted solid. The so-called ash layer is considered to be an inert 

material through which gas diffusion is possible so that reaction can still take place 

on the unreacted core surface. The size of the unreacted core decreases as conversion 

proceeds, with the overall particle size remaining essentially constant. Although the 

unreacted shrinking core model does not account for all possible mechanisms in a 

gas-solid reaction, it is widely considered to be an acceptable, simple model for the 

majority of reacting gas-solid systems (Ishida and Wen, 1971). 

In the case of calcination, thermal dehydration and similar reactions, the role of 

gaseous species is different compared to other common gas-solid heterogeneous 

reactions. In many gas-solid reactions, gas-phase species are both reactants and 

products, while in the calcination reactions of interest in this paper, the gaseous 

species is a reaction product only. Further, the presence of the product gas species 

may actually impede the rate of the reaction. Thus, while a solid-to-gas reaction may 

reasonably be expected to occur uniformly inside a particle of uniform porosity and 
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temperature, when the reaction rate is dependent on the product gas concentration, 

spatial gradients in reaction rate may develop inside the particle. This would be 

especially the case for solid reactants of low porosity. There is a shortage of particle 

scale conversion models for calcination and similar reactions in which there is no 

gas-phase reactant, but in which a gaseous product forms whose presence reduces the 

rate of reaction. The development of a model suitable for these reactions is a key 

contribution of the current chapter. 

As discussed already in Chapter 3, gibbsite calcination is an important stage in 

alumina production using the Bayer process and has been studied for many years. 

The majority of publications on gibbsite calcination have focused on reaction 

kinetics and phase transitions (Gan et al., 2009; Wang et al., 2006; Whittington and 

Ilievski, 2004) while only a few have looked at coupling reaction kinetics and 

hydrodynamics (Marsh, 2009). Of particular relevance to the current chapter is a 

recent study using electron microscopy by Perlander (2010) who comments that 

gibbsite particles appear to undergo calcination in a way that “bears some 

resemblance to a shrinking core model.” Gibbsite is a relatively non-porous material, 

while the porosity of the main solid product, alumina, is relatively high. Further, the 

formation of boehmite, which is a potential intermediate solid species, is also 

relatively non-porous according to Stacey (1987). These points, along with the 

previously-mentioned success for lime calcination, argue that shrinking core models 

are potentially applicable for gibbsite calcination. As a part of an effort to develop a 

multi-scale model for the thermal dehydration of gibbsite in a fluidized bed reactor 

(FBR), calcination of a single gibbsite particle is studied to establish a predictive 

model for thermal decomposition at the particle scale. In this chapter, an unreacted 

shrinking core model is developed to describe calcination of a gibbsite particle at 

different temperatures. 

In Chapter 3, a distributed model for a gibbsite particle undergoing thermal 

dehydration was developed, in which the gaseous product (water vapour) impedes 

the reaction. The simpler shrinking core modelling approach has not been used 

before to model this kind of reaction. This chapter presents, for the first time to the 

author’s knowledge, a shrinking core model for gibbsite particle calcination that 

includes the effect of water vapour pressure inside and outside the particle. This 

model consists of ordinary differential and algebraic equations that are easier to solve 
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than the partial differential-algebraic equations of the distributed model. In addition, 

the proposed shrinking core model has an analytical solution for the isothermal case. 

The computing power needed to simulate small-scale, particle-level behaviour is an 

important consideration when it is intended to use the small-scale model in multi-

scale modelling. This is because in some forms of multi-scale modelling, for 

example the “simultaneous” and “embedded” frameworks (Cameron et al., 2006), the 

small-scale model is called very many times. The model is tested against literature 

data over a wide temperature range, covering conditions that are favoured in 

laboratory studies and at industrial scales. Despite gibbsite calcination being the 

focus of this chapter, the model developed is a general one, which may be applied to 

other reactions in which a gaseous species is a reaction product only. Examples 

include the pyrolysis of carbonaceous materials, thermal decomposition of some 

organic or inorganic compounds, and the reduction of metal oxides. The potentially 

retarding effect of the product gas concentration on the reaction rate is included in 

the model. Previous versions of the unreacted shrinking core model cannot be 

directly applied for this type of calcination process. 

The chapter is organised as follows. First, the reaction stoichiometry and kinetics of 

interest are summarised. After presenting the model assumptions, the unreacted 

shrinking core model is derived. The model is written in dimensionless form and an 

analytical solution is presented for a particular isothermal case. Then application of 

the model is demonstrated by focusing on a case study – the calcination of gibbsite to 

alumina. Parameter estimation and model validation for this variant of the unreacted 

shrinking core model are conducted using experimental data on gibbsite calcination 

available in the literature over a wide range of temperatures. Finally, the current 

model is compared to the distributed model of Chapter 3 and other gas-solid reaction 

models that assume a first order reaction with respect to the gas concentration. 

Sensitivity studies into the effect of the surrounding water vapour pressure, particle 

size and reaction order are also presented. 
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4.2  Mathematical model 

4.2.1 Reaction kinetics 

Unreacted core models for gas-solid reactions, in which the reaction rate is based on 

the reactant gas concentration, have been used in a wide range of applications in the 

literature. The majority of previous works have considered gas-solid reactions that 

were often represented by a reaction of the form: 

)()()()( sgsg dDcCbBaA       (4.1) 

The reaction was usually assumed to follow first order kinetics based on the reacting 

gas (A) concentration, and the modelling proceeded on that basis. 

However, in several applications, such as thermal dehydration, a gas-phase species is 

not needed for reaction, but occurs as a reaction product, only appearing on the right 

hand side of the reaction equation: 

)()()( sgs dDcCbB         (4.2) 

Corresponding surface reaction rate expressions have been developed that involve 

the concentration of the gaseous product species (C), which impedes the reaction rate 

as indicated in Eq. (4.3): 

0)( B

n

CB CkCr         (4.3) 

where n has a negative value. Generally, the reaction rate coefficient is supposed to 

obey the Arrhenius relation: 

)/(

0

RTEekk          (4.4) 

4.2.2 Model assumptions 

The assumptions of the model are as follows: 

 The particle is initially pure species B and has low, but non-zero, 

permeability. 

 A reaction of the form of Eq. (4.2) takes place on the surface of an unreacted 

core of B to produce a gas C and a permeable layer of product D, which 

adheres to the solid core. The rate of reaction is given by Eq. (4.3), and the 

presence of the gaseous product C may reduce the rate of reaction. 
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 The gas species formed diffuses through the permeable product layer, and a 

pseudo-steady state condition applies for modelling the gas-phase 

concentration profile in the product layer. The pseudo-steady state 

assumption is reasonably acceptable for gas-solid reactions, as in the majority 

of cases the criterion CC/CB < 10
–3

 holds (Gómez-Barea and Ollero, 2006). 

 The particle is spherical with constant shape and constant outer diameter 

during the reaction. 

 The particle temperature is assumed to be spatially uniform, but may vary 

with time.  

 The mass transfer rate through the gas film surrounding the particle is 

assumed to be very high, so that the gas concentration at the outer surface of 

the particle surface and in the bulk gas is the same. 

 

The physical picture corresponding to the modelling assumptions is as follows. A 

small particle of species B with low, but non-zero, permeability enters the reaction 

environment. Reaction (4.2) takes place throughout the particle and a high 

concentration of gas species C inside the particle is quickly established. The 

production of vapour C does not cause the particle to fragment because the gas is 

able to diffuse to the particle surface. The high internal concentration of C retards the 

reaction, except near the outer surface of the particle where the gas can escape to the 

environment. The solid product species D is more permeable than the reactant B, and 

gas can diffuse easily through the product layer. In this way, the geometry of a 

shrinking core model is approximated, but the boundary of the core is not sharp. It is 

a result of the high internal concentration of gas inside the particle suppressing 

further reaction, and also the ease of diffusion of the gas through the product layer. 

 

4.2.3 The unreacted shrinking core model 

A schematic diagram of the reacting particle is shown in Figure 4.1. As mentioned in 

Section 4.2.2, reaction and diffusion in an isothermal particle having a high mass 

transfer coefficient is considered in this study. Based on those assumptions, and 

inspired by Ishida and Wen (1971) and Homma et al. (2005), an expression for the 

rate of each process and hence an equation for the rate of core shrinking is 

developed, which is finally related to particle conversion. Note that we cannot 

directly use the results of Ishida and Wen (1971), Homma et al. (2005) and similar 
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studies because their reaction stoichiometry (Eq. 4.1) and corresponding rate 

equation contain a reacting gas species A whose presence promotes the reaction, 

while we have only a product gas species C that may impede the reaction. Thus, 

while the use of reaction (4.2) and rate equation (4.3) are relatively small changes 

from a theoretical viewpoint, they mean that the analytical and numerical solutions 

developed by those previous authors cannot be used, and that the resulting model 

predictions are different. 

 

Figure 4.1 – Schematic diagram of a single particle undergoing thermal dehydration 

according to the unreacted shrinking core model. Shown are the core (dark 

grey), porous product layer (light grey) and the gas concentration profile. 

 

On the unreacted core surface, the molar rate of gas (C) production can be expressed 

through the surface reaction rate Eq. (4.3) and the core surface area: 

n

CcBc CkCrW 0

2

1 4          (4.5) 

where CB0 and CCc are the concentration of solid reactant B and gas product C at the 

core surface respectively,   is the ratio of stoichiometric coefficients (c/b) and rc is 

the current core radius. The rate of diffusion of gas in the product layer can be 

represented as 

dr

dC
DrW C

e

2

2 4         (4.6) 

where De is the effective diffusion coefficient of C in the product layer. For constant 

W2 (pseudo-steady state conditions), Eq. (4.6) can be solved analytically for the 

following boundary conditions: 
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CC = CCs at r = R0        (4.7) 

CC = CCc at r = rc        (4.8) 

The solution is 

0

2 11
4

Rr

CC
DW

c

CsCc
e




          (4.9) 

Further, under pseudo-steady state conditions, the diffusion rate of gas in the product 

layer is equal to the rate of gas production on the surface of the unreacted core: 

W1 = W2         (4.10) 

By combining Eqs. (4.5), (4.9) and (4.10), the vapour concentration on the core 

surface CCc can be determined from  

0
11

0

20 











Rr
r

D

CkC
CC

c
c

e

B
n
Cc

CsCc


      (4.11) 

Now, the solid B consumption rate and size of the unreacted core are related by 













B

Bc
B

Mw

r

dt

d
N

 3)3/4(        (4.12) 

On the other hand, the reaction rate of solid species B is also related to the gas 

production rate: 

1

1
WNB


          (4.13) 

Subsequently from Eqs. (4.5), (4.12) and (4.13), an expression for rate of change of 

the core radius can be obtained: 

n

CcB

B

Bc CkC
Mw

dt

dr
0


         (4.14) 

with the initial condition 

rc = R0 at t = 0         (4.15) 
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The assumption of spatially uniform temperature allows the energy balance over the 

particle to be written as 

 

(4.16) 

 

where Cp is the particle molar heat capacity, h is the heat transfer coefficient, Tb is 

the external temperature and ΔH is the enthalpy of reaction. The initial condition is 

 

T = T0 at t = 0         (4.17) 

The new version of the unreacted shrinking core model is thus given by the system of 

equations (4.11), (4.14) and (4.16). The governing equations may be represented in 

dimensionless form by using following dimensionless groups: 

0R

rc           (4.18) 

Cb

Cc
C

C

C
          (4.19) 

)/( 1
000

n
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t
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00
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pbCT
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3
          (4.23) 

00
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bRTE /           (4.25) 

where ξ, γC, θ, and τ are the dimensionless size of the shrinking core, vapour 

concentration at the core, temperature and time, respectively;   is the average Thiele 

HCkCrTThR
dt

dT
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modulus, which represents the ratio of intrinsic chemical reaction rate in the absence 

of mass transfer limitations to the rate of diffusion through the particle. The physical 

interpretation of 2  is analogous to the Damkohler number. The parameter,   is 

termed the cooling potential as it is proportional to the adiabatic cooling temperature 

which is the ratio of the reaction enthalpy to the heat capacity of the particle and 

inversely proportional to the environmental temperature. Further,  measures the 

heat absorption capacity which characterises the ratio of heat transferred into the 

particle from the environment to the thermal capacity of the particle. Finally, the 

parameter β is the dimensionless activation energy. 

Consequently, the unreacted shrinking core model given by Eqs. (4.11), (4.14) and 

(4.16) can be represented in dimensionless form for general n as: 

0)1(1 2 





 en
CC        (4.26) 








 

 e
d

d n
C           (4.27) 

ξ = 1 at τ = 0         (4.28) 








 

 e
d

d n
C

2)1(        (4.29) 

θ = θ0 at τ = 0         (4.30) 

The ordinary differential-algebraic system of Eqs. (4.26)–(4.30) needs to be solved 

simultaneously for given values of the model parameters  , n, η, β and ω. In general, 

a numerical solution is needed to predict how the core radius changes with time. This 

in turn can be used to determine the solid conversion. The simple mathematical form 

and consequent fast numerical solution of the model are significant because of its 

intended use for multi-scale reactor modelling. In a two-scale model that combines a 

particle scale model with a reactor scale model, for example, the particle scale model 

may be evaluated many times in a single simulation of the reactor. 

For the special case of n = –1 and the particle temperature being constant at the 

environmental temperature, which has significance in the later calcination case study, 

an explicit expression for γC can be found from Eq. (4.26): 

http://en.wikipedia.org/wiki/Thermal_capacity


Chapter 4: An unreacted shrinking core model for calcination and similar solid-to-gas reactions 
 

70 

 

2

1

4

1
)1(

2/1
2 








  eC        (4.31) 

so that Eq. (4.27) becomes 
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The analytical solution of Eq. (4.32) is 
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and the time needed for complete reaction of the particle is 
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     (4.35) 

Note that Eqs. (4.31)–(4.35) apply only for n = –1 and the particle temperature being 

constant at the environment temperature. 

Finally, for any value of n, the conversion X of solid reactant B may be related to the 

volume of the unreacted core: 

particleofVolume

timeatcoreunreactedofVolume
)(1

t
tX        (4.36) 

and therefore 

)(1)( 3 ttX          (4.37) 
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Further, the mass fraction of the solid reactant B in the particle at any time can be 

calculated from the dimensionless core radius also:     

   

DB

B
B

XMwbdMwX

MwX
tm

)/()1(

)1(
)(




       (4.38) 

 

Figure 4.2(a) shows typical conversion versus time profiles for different values of the 

Thiele modulus. Further, the typical evolution of the product gas (C) concentration 

profile inside the particle is shown in Figure 4.2(b). Over the total reaction time, the 

gas concentration at the shrinking particle surface increases up to a maximum value 

before declining, but for any given time the maximum concentration of gas C occurs 

at the surface of the shrinking core. Note that the gas concentration profile is only 

defined in the porous product layer, 1)/( 0  Rr . Higher values of the Thiele 

modulus lead to a higher gas pressure build up at the unreacted core surface at a 

given time. This is because high a Thiele modulus corresponds to a high reaction rate 

and a low diffusion rate of the product gas species. 

 

4.3  Case study: gibbsite calcination 

4.3.1 Reaction kinetics 

A mentioned in the previous chapter, Section 3.2.1, the gibbsite calcination reaction 

displays complex behaviour in terms of its reaction kinetics and controlling 

mechanisms. In this chapter, a lumped (overall) reaction is considered for application 

with the proposed shrinking core model, as follows: 

2Al(OH)3 → 3H2O + Al2O3       (4.39) 

        Gibbsite                           Alumina 

Subsequently the role of water vapour concentration on reaction rate is considered by 

using Eq. (4.40): 

0

)/(

0)( G

n

C

RTE

G CCekr         (4.40) 

In Chapter 3 it was discussed that the activation energy of gibbsite calcination 

appears to vary with the operating conditions. More detail is given in Chapter 3. 
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Figure 4.2 – Representative dimensionless model predictions for n = –1 and θ = 1: (a) 

Conversion-time plots for different values of the Thiele modulus,  ; (b) 

Concentration-radial position profile for product gas (C) inside the porous 

product layer as a function of time for   = 800. 

 

In this study, average E and k0 values for low temperatures are estimated via data 

fitting by minimising Eq. (4.41). For high temperatures, however, the E value 

estimated in Chapter 3, Table 3.2 is used, but the k0 must be re-fitted as the reaction 

rate in this study is based on the surface area of the unreacted core, while Chapter 3 

used a reaction rate expressed on a volumetric basis. Thus, in the high temperature 
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range, the Eq. (4.42) is used as the objective function for error minimization 

purposes. 

 
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Note also in Eq. (4.41) the objective is to minimise the difference between the model 

and experimental conversions, while in Eq. (4.42) the difference in gibbsite mass 

fraction is minimised. These reflect the different ways in which the experimental data 

were reported in the literature. The estimated values of k0 and E are shown in Table 

4.1 along with the other parameter values used in the model. 

 

4.3.2 Model validation 

The model developed in Section 4.2 is restricted to a spatially uniform temperature 

inside the particle. This assumption needs to be checked for gibbsite particles 

undergoing calcination. The Biot number criterion, Bi = hDp/kp < 0.1, has been used 

to confirm isothermality, even in the presence of a solid phase reaction, such as 

pyrolysis (Chern and Hayhurst, 2010). In the most conservative case for gibbsite 

calcination considered in the current chapter, with a particle diameter of 1 mm 

fluidized by air at 400 K with a superficial velocity of three times the estimated 

minimum fluidization velocity, the heat transfer coefficient between the gas and the 

particle would be around 420 W/m
2
K according to Kunii and Levenspiel (1991). A 

conservative particle thermal conductivity of 16 W/m.K for alumina at 400K 

(Shackelford and Alexander, 2001), yields Bi = 0.03, which confirms that assuming 

isothermal conditions inside the particle is reasonable in our case study. Smaller 

particles, lower heat transfer coefficients and higher particle thermal conductivities 

would satisfy the isothermality criterion even more easily. While the particle is 

spatially uniform in temperature, the temperature does change with time. 
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Table 4.1 – Literature and fitted parameters used in the model for gibbsite calcination. 

Parameter Value Reference / comment 

)/( 3
0 mmolCG  

3.03×10
4 Wefers and Misra (1987) 

)./( KmolJCp
 80 Wefers and Misra (1987) 

)/( 2 smDe  
7×10

–10 Value for alumina; Fowler et al. (1977) 

)( mDp 
 

100 

30 
High Tb range; Wang et al. (2006) 

Low Tb range; Lopushan et al. (2007) 

)/( molkJE    

    High Tb range 

    Low Tb range 

131 

150±3 

Amiri et al. (2012) 

Found by parameter estimation via Eq. (4.41). 

)./( 2 KmWh  1.5 Combines radiation and convection; Incropera et al. (2007) 

)/( molkJH
 

147 Beyer at al. (1989) 

)./( 2
0 smmolk

 
  

    High Tb range 

    Low Tb range
 

5×10
7 

4×10
6 

Found by parameter estimation via Eq. (4.42). 

Found by parameter estimation via Eq. (4.41). 

)./( KmWke  
16 Shackelford and Alexander (2001) 

)/( molgMwA  
102 Alumina molecular weight 

)/( molgMwG  
80 Gibbsite molecular weight 

)(kPaPCb  
3  Typical environmental water vapour pressure

 
n

 –1
 

 As discussed in Sections 4.3.1 and 4.3.3.6 

)(KTb    

    High range 

    Low range 

873–923 

490–530 

Experimental conditions of Wang et al. (2006) 

Experimental conditions of Lopushan et al. (2007) 

)(0 KT
 

298 Particle initially at ambient temperature 

)/( 3mkgG  
2420 Wefers and Misra (1987) 

 

Eqs. (4.4), (4.11), (4.14) and (4.16) with their corresponding initial conditions, which 

comprise the unreacted shrinking core model, were solved simultaneously using 

numerical methods for the parameters given in Table 4.1. 

The performance of the proposed model was examined against experimental gibbsite 

conversion versus time data reported by Lopushan et al. (2007) and Wang et al. 

(2006) over a wide range of temperatures. Since there is uncertainty over the 

dependency of the reaction rate on water vapour pressure and temperature as outlined 

in Sections 3.2.1 and 4.3.1, a parameter estimation approach is adopted and explored 

in two cases. In the first case, it was assumed that n = 0, which represents a 

considerably simplified model. At each experimental temperature, different reaction 

rate parameters were fitted to the experimental data. In the second case, after initial 

scoping studies, a constant value of n = –1 was used, and again kinetic parameters 

were fitted to the experimental data at each temperature. The estimated kinetic 

parameters for the second case are shown in Table 4.1. The comparison between the 
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model and the data is divided into two temperature ranges, low and high, and is 

presented in Sections 4.3.2.1 and 4.3.2.2. Note that the low temperature range data 

are for fine (30 µm) particles, while the high temperature data are for much coarser 

particles (100 µm). 

 

4.3.2.1 Low temperature range 

Figures 4.3(a)–(c) show the model predictions at relatively low temperatures (490, 

510 and 530 K) for two reaction orders, n, as well as the experimental data published 

by Lopushan et al. (2007). This temperature range is primarily of interest in 

experimental studies into kinetics as the reaction times are relatively long, 

simplifying measurement; industrial-scale alumina production is always operated at 

higher temperatures. The agreement between the practical data and the model 

prediction with n = –1 is considerably better than for n = 0, which helps confirm the 

importance of including the water vapour concentration in the reaction rate 

expression. 

 

 

Figure 4.3(a) – Comparison between model predictions for n = 0 and n = –1 and 

experimental conversion data (Lopushan et al., 2007) at 490 K.  

 



Chapter 4: An unreacted shrinking core model for calcination and similar solid-to-gas reactions 
 

76 

 

 

 

Figure 4.3(b, c) – Comparison between model predictions for n = 0 and n = –1 and 

experimental conversion data (Lopushan et al., 2007) at (b) 510 K and (c) 

530 K. 
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4.3.2.2. High temperature range 

To test the model at high temperatures, the experimental calcination data published 

by Wang et al. (2006) were used as shown in Figures 4.4(a)–(c). In their work, the 

kinetics of gibbsite dehydration were investigated at Bayer process conditions (823–

923 K). Those authors reported data on the mass fraction of gibbsite in a single 

particle as a function of time, rather than conversion, and the model results have been 

presented in the same way by using Eq. (4.38). The model results are in good 

agreement with the experimental data, and n = –1 performs slightly better than n = 0. 

Since a relatively coarse particle size (100 µm) was used in their experiments, some 

intermediate boehmite formation, in addition to direct formation of alumina, is a 

strong possibility (Candela and Perlmutter, 1986; Whittington and Ilievski, 2004). 

While the reaction order of the water vapour concentration for the conversion of 

gibbsite to boehmite is unknown, Stacey (1987) reported a reaction order of –0.4 for 

the conversion of boehmite to alumina. In the current unreacted shrinking core 

model, it is assumed that all the reactions and phase transformations are lumped 

together and can be approximated by Eqs. (4.39) and (4.40) and an overall n value. 

The results of Stacey (1987) suggest that the formation of boehmite might favour an 

overall n value between 0 and –1, but it is not possible to say definitively which 

value of n is better in the high temperature range. Currently, there are data only for 

fine particles in the low temperature range, and only for coarse particles at high 

temperatures. Extra experimental data for both fine and coarse particles over the 

entire temperature range considered (490–923 K) would assist in finding the most 

appropriate value of n. 
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Figure 4.4(a, b) – Comparison between model predictions for n = 0 and n = –1 and 

experimental data (Wang et al., 2006) at (a) 873 K and (b) 898 K. 
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Figure 4.4(c) – Comparison between model predictions for n = 0 and n = –1 and 

experimental data (Wang et al., 2006) at 923 K. 

 

 

4.3.3 Analysis of the model 

4.3.3.1 Interpretation of temperature profile 

Temperature history plays an important role in model performance. Ignoring 

temperature variations during the reaction may result in incorrect conclusions about 

the reaction rate and kinetic parameters. As can be seen in Figures 4.5(a) and (b), the 

particle temperature is not steady, particularly in the high operating temperature 

range, even under high heat transfer rate conditions. This can be attributed to the 

high rate of the endothermic calcination reaction, which moderates the particle’s 

temperature rise. The unsteady behaviour is less significant in the low temperature 

range (Figure 4.5b) as it lasts a very short time in comparison to the total conversion 

time.  At 530 K, the particle reaches the external temperature Tb in less than 50 s, 

while total reaction time is around 8000 s. An increase in the heat transfer coefficient 

reduces the length of the unsteady period. It can be concluded that the particle’s 

temperature dynamics are unimportant when Tb is low – the model can be used 

without the energy balance, since the particle very rapidly reaches the external  
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Figure 4.5 – Particle temperature profile for different heat transfer environments for 

(a) a high external temperature (898 K), and (b) a low external temperature 

(530 K). 
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temperature Tb. In that situation, the analytical solution, Eq. (4.33), will be 

applicable. Figure 4.6 compares two sets of model predictions – the full model with 

the dynamic energy balance solved numerically and the analytical solution of Eq. 

(4.33), which assumes that T = Tb.   

From Figure 4.6 it is clear that there is negligible difference between model with and 

without the energy balance at low temperatures. The results also help validate the 

numerical approach that was used in this chapter. However, at elevated Tb, ignoring 

the particle’s temperature dynamics would cause a considerable error in the model 

predictions, which emphasises the need to be cautious about making simplifying 

assumptions. 

 

Figure 4.6 – Experimental data (Lopushan et al., 2007) compared with model 

predictions in the low temperature range for the full model with the dynamic energy 

balance (numerical solution) and the model without the energy balance in which 

temperature is constant at Tb (analytical solution). 

 

4.3.3.2  Comparison of shrinking core and distributed models 

Figure 4.7 compares the results of the proposed new variation of the shrinking core 

model to those of the distributed model developed in Chapter 3. As can be seen in 
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Figure 4.7(a), both models predict similar reductions in the gibbsite mass fraction 

with time. The temperature profiles also show satisfactory agreement (Figure 4.7b). 

It should be noted that except for k0, all other parameters are kept the same in the two 

models. Actually, k0 should not be equal in the two models as the reaction rate in the 

current model is expressed on a surface area basis, while it is a volumetric rate in the 

distributed model. 

 

The main advantage of the shrinking core model over the distributed model is the 

simplicity and speed of solution, as the latter requires more complicated numerical 

methods. However, the distributed model can give more insight into the temperature 

and species distributions inside the particle. For instance, the internal water vapour 

pressure profile can be better explained by the distributed model, while the shrinking 

core model may be preferred for use in multi-scale modelling due to its 

computational efficiency. Thus, the choice of model depends on the modelling goal. 

 

 

 Figure 4.7(a) – Comparison of shrinking core and distributed models at 898 K: 

predicted evolution of the gibbsite mass fraction. 
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Figure 4.7(b) – Comparison of shrinking core and distributed models at 898 K: 

predicted evolution of the particle temperature. 

 

 

4.3.3.3  Role of the water vapour 

Ishida and Wen (1971) reported an analytical solution, Eq. (4.43), for a kinetically-

controlled shrinking unreacted core model in which the gas-solid reaction was 

considered to be of the form of Eq. (4.1). In their work, the reaction rate equation 

was first order in the concentration of a reactant gas species A. Figure 4.8 shows how 

mis-consideration of the role of water vapour in calcination reactions results in an 

incorrect conversion profile. Also shown is a comparison of the current model with 

an ideal diffusion-controlled shrinking core model, Eq. (4.44). 

 

3/1)1(1 X
t

t




        (4.43) 

)1(2)1(31 3/2 XX
t

t




       (4.44) 
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Figure 4.8 – Comparison between results of the current model, the ideal reaction-

controlled and diffusion-controlled models of Eqs. (4.43) and (4.44), respectively, and 

the experimental data of Lopushan et al. (2007) at 520 K. 

 

In both equations, t∞ is the reaction completion time. This comparison indicates that, 

in spite of the dominant role that diffusion plays, the shrinking core model proposed 

in this work can offer a better prediction of gibbsite conversion by accounting for 

reaction as well as diffusion. 

4.3.3.4 Effect of surrounding vapour pressure 

Water vapour diffuses from the surface of the unreacted core where it is formed 

towards the particle surface, with the vapour pressure gradient acting as the driving 

force for mass transfer. As the surrounding vapour pressure is raised, the rate of gas 

diffusion is decreased due to a lower vapour pressure gradient. In addition, the 

reaction rate is negatively affected by a higher vapour pressure. It should be noted 

that pressure has no effect on Knudsen diffusivity and has a slight influence on the 

effective diffusivity of vapour in the alumina layer. The rate of conversion decreases 

considerably with increasing external vapour pressure at low temperature, while no 

significant effect is seen at higher temperatures (Figure 4.9). At high temperatures, 

the water vapour pressure inside the particle is significantly higher than outside; this 
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high difference damps out the effect of relatively small changes in the external 

vapour pressure.  

As mentioned previously in Section 3.1, Williams and Misra (2011) determined that 

the effective fuel consumption may be as low as 1.55 GJ/t alumina in an exploratory 

high-pressure alumina calciner. This compares favourably to the best current 

atmospheric pressure calciners that have fuel consumptions of around 2.79 GJ/t 

alumina (Klett et al., 2011). In the high-pressure calciner, the water vapour pressure 

surrounding a gibbsite particle can be 30 times above that in atmospheric calciners, 

and it can change by a factor of more than two as the particle travels through the 

vessel. However, as mentioned previously, at least based on the current modelling 

results, the conversion of a single particle will not be significantly influenced by the 

surrounding vapour pressure at the elevated temperatures used in industrial-scale 

operations. Therefore, high-pressure calcination offers the potential for a reduction in 

energy consumption without a significant negative effect on the rate of gibbsite 

conversion. If the unreacted shrinking core model is to be applied to high-pressure 

calcination, it should be verified by further experimental data obtained at elevated 

pressures. 

 

Figure 4.9(a) – The effect of surrounding water vapour pressure on the conversion-

time relationships at 450 K. 
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Figure 4.9(b) – The effect of surrounding water vapour pressure on the conversion-

time relationships at 510 K. 

 

4.3.3.5  Effect of particle size 

The effect of particle size on conversion rate and complete calcination time is 

presented in Figure 4.10. Investigations into the effect of particle size on calcination 

behaviour in FBRs involve both hydrodynamic and chemical reaction aspects. From 

the reaction kinetics point of view, fine particles will be thermally decomposed 

quickly, resulting in a more homogenous (or sharply distributed) product. For 

instance, a fine particle will be calcined in a short time with alumina being the main 

product. A coarser particle would take more time to complete the calcination process, 

producing alumina and possibly boehmite. Therefore, smaller particle sizes are 

favoured in terms of reaction time and selectivity. From the hydrodynamic 

viewpoint, however, a very fine particle will have a shorter residence time at a given 

fluidization velocity, which could lead to incomplete calcination. Consequently, a 

moderate particle size may be best to meet process requirements in terms of 

calcination degree, product selectivity, process productivity and control. Particle size 

is a variable that has importance at both the individual particle scale and at the vessel 

scale, and is a key consideration in multi-scale modelling work. 
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Figure 4.10 – The importance of particle size: (a) The effect of particle size on gibbsite 

conversion as a function of time at 450 K and 490 K for a surrounding water 

vapour pressure of 350 Pa, and (b) the effect of particle size on calcination 

completion time. 
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4.3.3.6 Reaction order 

Even though a negative order reaction produces clearly better results, it should be 

noted that conversion-time results of Figures 4.3 and 4.4 alone are not sufficient to 

identify the correct value of n, the reaction order with respect to water vapour, 

particularly at high temperatures, making it necessary to employ complementary 

information. An interpretation of the temperature profiles corresponding to each 

reaction order leads to a more informed judgment about n. However, since 

uncertainty also exists for the other kinetic parameters, E and k0, a sensitivity 

analysis approach has been adopted in an attempt to arrive at a robust conclusion 

about n in the high temperature range. In the first case, different n values (1, 0, –1,    

–2) have been selected and best-fit values of k0 for each n have been determined for a 

common best-fit value of E (131 kJ/mol). These results are reported in Table 4.2, and 

a corresponding predicted evolution of the particle temperature is shown in Figure 

4.11.  

 

Table 4.2 – Fitted pre-exponential coefficients for different reaction orders for a fixed 

activation energy of E = 131 kJ/mol in the high temperature range (823–923 K). 

 

n k0 (mol
–n

m
3n+1

/s) 

1 4.9×10
3
 

0 5.1×10
5
 

–1 5×10
7
 

–2 4.3×10
8
 

 

 

In the second case, the same n values as above were selected and best-fit values of E 

for each n were determined for a common best-fit value of k0 (5×10
7
 mol

–n
m

3n+1
/s). 

These results are reported in Table 4.3, and a corresponding predicted evolution of 

the particle temperature is shown in Figure 4.12. 
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Figure 4.11 – Predicted evolution of particle temperature for different reaction orders, 

but for fixed activation energy E = 131 kJ/mol, at Tb = 898 K. 

 

 

Table 4.3 – Fitted activation energy coefficients for different reaction orders for a fixed 

pre-exponential coefficient of k0 = 5×10
7
 mol

–n
m

3n+1
/s in the high temperature range 

(823–923 K). 

 

n E (kJ/mol) 

1 200 

0 160 

–1 131 

–2 115 
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Figure 4.12 – Predicted evolution of particle temperature for different reaction orders, 

but for fixed pre-exponential coefficient of k0 = 5×10
7
 (mol

–n
m

3n+1
/s), at Tb = 898 K. 

 

It can be seen that, for a particular reaction order n, the corresponding particle 

temperature evolutions in Figure 4.11 and Figure 4.12 are very similar. However, for 

different reaction orders, the temperature profiles reported in both Figures 4.11 and 

4.12 are considerably different. These two observations suggest that it is possible to 

draw conclusions about the value of n, despite uncertainties in k0 and E. Stacey 

(1987) reported an experimental temperature history for a gibbsite particle 

undergoing thermal decomposition that shows the particle first warming up and then 

reaching a plateau temperature of about 500 K as the endothermic calcination 

reaction begins. This plateau endures until conversion is complete and is then 

followed by a rapid increase in temperature, since the reaction is no longer 

consuming the energy received from the environment. It is clear from Figures 4.11 
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and 4.12 that for a reaction order of n = 1, the predicted temperature profile is 

unreasonable, since there is an initial temperature peak followed by a decline and this 

is not consistent with the observed data. Further, despite the existence of a plateau in 

the temperature profile for n = 0, the plateau temperature is not consistent with the 

data of Stacey (1987), being about 80 K too high. Both n = –1 and n = –2 are more 

compatible with the experimental data, confirming that n should be negative. While n 

= –1 does appear to show better agreement with the experimental data, it is not 

conclusive and more data are needed. The best reaction order, however, is expected 

to lie in the range –1 to –2, which agrees with the experimental results of Stacey 

(1987) and Candela and Perlmutter (1986). 

 

 

4.4  Summary 

Based on the unreacted shrinking core approach, a new predictive model has been 

developed for solid-to-gas thermal decomposition, in which the gas product species 

exhibits a negative effect on the reaction rate. Shrinking core models developed 

previously by other authors cannot be directly applied to such cases as they include 

gas-phase reactants in their stoichiometry and reaction rate equations. The model 

predicts particle conversion and temperature as functions of time. For the isothermal 

case, the numerical solution of the unreacted shrinking core model has been validated 

against a newly-developed analytical model solution. For non-isothermal conditions, 

the unreacted shrinking core model results closely match those from a distributed 

model. The non-isothermal unreacted shrinking core model is simpler and easier to 

solve than the partial differential-algebraic distributed model developed in the 

previous chapter. Computational efficiency is relevant in multi-scale modelling since 

the small-scale model may be run many times during a multi-scale simulation, and 

this can be a significant advantage if the model is used within an overarching multi-

scale model. 

A gas-solid reaction, the thermal dehydration of gibbsite to alumina, was used as a 

case study to verify the model, as well as to investigate its behaviour through a 

sensitivity study. Using experimental data available in the literature, gibbsite 

dehydration rate parameters were estimated over a wide temperature range, from 

490 K to 923 K. The order of the reaction rate with respect to water vapour 
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concentration was found to be n = –1. The inhibiting effect of the water vapour 

concentration (negative n) leads to improved agreement of the model with 

experimental data, and yields an activation energy that is in good agreement with 

values found in the literature. Estimated values of the activation energy and 

Arrhenius pre-exponential coefficients are reported separately for low and high 

temperature ranges. Model results show that smaller gibbsite particles achieve 

complete decomposition in a shorter time. 

 

Nomenclature 

a, b, c, d Stoichiometric coefficients, [–] 

Bi   Biot number, [–] 

CB0   Initial solid reactant concentration, [mol/m
3
] 

CCc   Product gas concentration on core surface, [mol/m
3
] 

CCb   Product gas concentration in surrounding environment, [mol/m
3
] 

CCs   Product gas concentration on outer particle surface, [mol/m
3
] 

CG0   Initial gibbsite concentration, [mol/m
3
] 

Cp   Average molar heat capacity, [J/mol K] 

De   Effective diffusion coefficient, [m
2
/s] 

Dp   Particle diameter, [m], Rp = Dp/2 

E   Activation energy, [J/mol] 

ΔH   Reaction enthalpy, [J/mol] 

h   Particle heat transfer coefficient, [W/m
2 

K] 

k   Surface reaction rate constant, [mol
–n

m
3n+1

/s] 

k0   Arrhenius pre-exponential coefficient, [mol
–n

m
3n+1

/s] 

kp   Particle thermal conductivity, [W/m K] 

MwB   Molecular weight of solid reactant, [g/mol] 

MwG   Gibbsite molecular weight, [g/mol] 

m   Mass fraction, [–] 

BN    Solid reactant consumption rate, [mol/s] 

NTb   Number of experimental data points at temperature Tb, [–] 

n   Reaction order with respect to water vapour concentration, [–] 

PCb   Water vapour pressure around particle, [Pa] 
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R   Ideal gas constant, [J/mol K] 

R0   Particle radius, [m] 

r   Radial position, [m] 

rc   Unreacted core radius at any time, [m] 

rB   Solid surface reaction rate, [mol/m
2 

s] 

rG   Gibbsite surface reaction rate, [mol/m
2 
s] 

S   Term in analytical solution, [–] 

T   Particle temperature, [K] 

T0   Initial particle temperature, [K] 

Tb   External temperature, [K] 

t   Time, [s] 

W1   Vapour production rate on unreacted core due to reaction, [mol/s] 

W2   Vapour diffusion rate in porous product layer, [mol/s] 

X   Reaction conversion, [–] 

 

Greek symbols 

β  Dimensionless activation energy, [–] 

γC  Dimensionless concentration of gas, [–] 

   Ratio of stoichiometric coefficients (c/b), [–] 

ξ  Dimensionless unreacted core radius, [–] 

ρB  Solid reactant density, [kg/m
3
] 

ρD  Solid product density, [kg/m
3
] 

ρG  Gibbsite density, [kg/m
3
] 

τ  Dimensionless time, [–] 

θ  Dimensionless temperature, [–] 

η  Cooling potential defined by Eq.(4.23), [–] 

   Average Thiele modulus, [–] 

ω  Heat absorption capacity  defined by Eq. (4.24), [–] 
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5 
A multi-stage, multi-reaction shrinking  

core model for self-inhibiting 

 gas-solid reactions 
 

 

Some thermal decomposition reactions display self-inhibiting behaviour, where the 
produced gas negatively influences the reaction progress. Further, a build-up of 
internal pressure caused by the product gas may alter the reaction pathway over the 
reaction duration in a way that favours a particular pathway over others. Two well-
known cases of this kind of reaction are the thermal decomposition of limestone and 
gibbsite, in which carbon dioxide and water vapour are the produced gases, 
respectively. In this chapter, a multi-stage, multi-reaction, shrinking core model is 
proposed for this type of process. The model emphasises the role of the produced 
gas, not only in mass transfer, but also in the reaction kinetics. It extends the single-
reaction models of Chapters 3 and 4 by including parallel and series reaction 
pathways, allowing for the formation of an intermediate species. The model has 
been applied to the conversion of gibbsite to alumina, including the formation 
intermediate boehmite. The model results are in good agreement with experimental 
data from the literature for gibbsite conversion, boehmite formation and 
subsequent consumption, as well as alumina formation. Further, the corresponding 
kinetic parameters are estimated for all reactions. Significantly, the experimentally-
observed plateaux in the particle’s temperature history are predicted by the model. 
In addition, the role of heating rate and particle size on boehmite formation is 
evaluated using the model, and is in agreement with practical observations. 
 

5.1. Introduction 

Many modelling techniques have been reported on both catalytic and non-catalytic 

gas-solid particle reactions using a variety of approaches depending upon the 

physical and chemical properties of the solid and the type of reaction considered. 

Comprehensive reviews of the major modelling categories and their features are 

given by Ramachandran and Doraiswamy (1982) and Molina and Mondragón 

(1998). The importance of developments in gas-solid reaction modelling is still high 

since a wide variety of reactions encountered in the process industries belong to this 

class. Combustion, gasification, roasting, calcination, reduction of metal ores, and 

catalyst regeneration are typical industrial gas-solid processes demanding new 

modelling tools for process intensification and product design. Modelling becomes 
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crucial when prediction and control of transients during reaction at high conversion 

rates and at high temperature is the subject of investigation. In such cases deeper 

insight will be achieved by carefully establishing the relationships between dominant 

mechanisms, including reaction kinetics and transport processes, as well as structural 

changes taking place over the reaction period. Further, the combination of different 

sub-models at different time and length scales in a multi-scale modelling framework 

makes it possible to deal with product quality issues (small scale) via control of the 

process (large scale). 

To date, particle reaction models have been mainly based on reactions with a positive 

order, particularly first order reactions. The variation of the reaction mechanism over 

the reaction period due to a change of internal conditions, like the build-up of gas 

pressure inside the particle, has not been extensively studied.  

Mantri et al. (1976) proposed a three-zone model comprised of a core, an outer 

product layer and a reacting zone in between them. The model is based on a single 

reaction and it is assumed that the reaction is first order with respect to gas 

concentration and zero order with respect to the solid. This model was applied by 

Chang and Kuo (1999) to predict the transport of reactive gas in a packed bed of 

porous media. A variation of the shrinking core model with an intermediate layer 

was also proposed by Homma et al. (2005). In their work, fresh reactant is converted 

to an intermediate followed by conversion of the intermediate to a gas product 

without leaving any ash (solid) layer. This model was also based on a first order 

reaction with respect to the gaseous reactant. The intermediate component formed 

immediately and the final product was formed only via consumption of the 

intermediate. Suresh and Ghoroi (2009) developed a model for solid-solid reactions 

in series for a single particle. In their work, multiple reactions were considered and 

reaction rates were first order with respect to the solid concentrations.  

The objective of this chapter is to extend the shrinking core model developed in 

Chapter 4, which considered a particular class of gas-solid reactions in which the 

released gas reduces the reaction rate, so that changes in the reaction mechanism and 

the formation of an intermediate solid species are accounted for. Calcination and 

thermal dehydration / decomposition of solid particles belong to this category of gas-

solid reactions. The prediction of the formation and consumption of an intermediate 
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species is a leading feature of the model developed in this chapter. This kind of 

information is needed for maximization or minimization of the amount of the 

intermediate in the product via process control. The involvement of multiple 

reactions with different orders, and determination of reaction-switching times are 

other notable features of this new version of the shrinking core model. 

As in Chapters 3 and 4, the calcination of gibbsite to alumina is used as a case study, 

but unlike those previous chapters, allowing for the production of intermediate 

boehmite is the focus of this chapter. The importance of this system and the extent of 

previous modelling work have already been noted in Sections 3.1 and 4.1. A single 

gibbsite particle undergoing calcination is studied in this chapter to establish a 

predictive three-stage model for particle conversion at the high temperatures relevant 

to industrial operations. This study explores the effect of water vapour pressure 

inside the particle on competing reactions and it includes the reaction orders with 

respect to vapour concentration for the various gibbsite calcination reactions. 

Parameter estimation is performed by using two sets of experimental data from 

Wang et al. (2006), then the model is validated against another data set at a different 

temperature. While gibbsite calcination is the focus of this paper, the model 

developed is general enough to be applied to other reactions in which a gaseous 

species is a reaction product only, for example pyrolysis of carbon-based materials, 

thermal decomposition of some organic and inorganic compounds, and the reduction 

of metal oxides. 

In Section 5.2, the nature of the reaction system is presented and discussed along 

with model assumptions. The model’s geometry, temporal stages, equations and 

numerical solution methodology are presented in Section 5.3, with two supporting 

appendices containing the model derivation details. Section 5.4 applies the model to 

a case study, the dehydration of gibbsite to alumina, which involves parameter 

estimation, model validation and sensitivity analyses. The study’s conclusions are 

presented in Section 5.5. 
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5.2. Reaction kinetics and modelling assumptions 

As noted previously, unreacted core models for gas-solid reactions, in which the 

reaction rate is based on the reactant gas concentration, have been widely applied in 

the literature. Most previous investigations have focused on gas-solid reactions that 

were generally represented by a reaction such as:  gas + solid → solid + gas. First 

order kinetics with respect to the reacting gas concentration were usually assumed. 

However, in several industrially-important reactions, gas-phase species are reaction 

products only. In this chapter, three reactions are considered and there is no gaseous 

reactant. The following stoichiometric equations are used to represent parallel and 

series gas-solid reactions in a single particle: 

)()()(

1

gs

k

s cCdDaA           (5.1) 

)()()(

2

gs

k

s CcBbAa         (5.2) 

)()()(

3

gs

k

s CcDdBb         (5.3) 

 

Species A is the solid reactant; B is the solid intermediate; D is the final solid 

product, which may be formed directly from A through reaction (5.1) or via B in 

reactions (5.2) and (5.3); and C is the gaseous product. 

The assumptions on which the mathematical model stands are  

 The particle is initially pure, non-porous species A. 

 A reaction of the form of Eq. (5.1) initially takes place on the surface of the 

unreacted core to produce a gas and a porous product layer, which adheres to 

the solid core. After a particular point, the reactions of Eqs. (5.2) and (5.3) 

begin, forming and consuming the layer of intermediate solid B. Details of 

the reaction transition criteria are given later. 

 The gas species formed diffuses through the porous product and intermediate 

layers, and a pseudo-steady state gas-phase concentration profile exists in the 

two layers. The effective diffusion coefficient is assumed to be the same in 

both layers. The pseudo-steady state assumption is reasonably acceptable for 

gas-solid reactions as in the majority of cases the criterion C(g) / C(s) ≤ 10
–3

 

holds (Gómez-Barea and Ollero, 2006). 

 The particle is spherical with constant outer diameter during the reaction. 
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 The mass transfer rate through the surrounding gas layer outside the particle 

is assumed to be very high, so that the gas concentration at the particle 

surface and in the bulk gas is the same. 

 The particle temperature is spatially uniform (Chapter 3), but may vary with 

time. The particle exchanges energy with its surroundings by a combined 

convection and radiation heat transfer coefficient. 

 

These assumptions are very similar to those of the unreacted shrinking core model 

developed in Chapter 4, with the exception of the more complicated set of reactions 

involved. 

Although competition between different reaction pathways can be assessed by 

comparing intrinsic reaction rate constants at the same conditions, more factors, 

however, need to be considered to evaluate the reaction pathway selectivity. For 

instance, heating rate, gas pressure inside the particle and particle size may alter the 

reaction mechanism to favour one pathway over others (Candela and Perlmutter, 

1986). This issue will be discussed later. This study couples the reaction pathways 

given by Eqs. (5.1)–(5.3) in a reacting particle model to investigate the effect of 

dominant parameters including reaction and diffusion rates. 

Solid conversion is considered to be negatively affected by the presence of the gas 

product C. The reaction rate has been modelled as being proportional to the 

difference between the partial pressure of the gaseous reactant and the equilibrium 

partial pressure; however, the following expression with a flexible order for the 

surface reaction rate has been used (Candela and Perlmutter, 1992):  

 

n
CSs CkCr 0)(           (5.4) 

 

where S = A or B, n is negative, and the rate coefficient obeys the Arrhenius 

equation: 

)/(
0

RTEekk          (5.5) 
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5.3. Mathematical model description and development 

In the model, the particle is converted over several stages as presented in Figure 5.1. 

During the first stage (0 ≤ t ≤ t12), the reaction of A starts at the outer surface of the 

particle, forming porous solid D and gas C according to reaction (5.1). As the 

thickness of the D layer increases with the reaction progress, escape of the produced 

gas becomes more difficult due to internal diffusion resistance, causing higher gas 

pressure at the reaction front. At a certain level of C gas pressure, the reaction 

mechanism changes and intermediate species B begins to form via reaction (5.2), and 

this point marks the end of stage 1. In the first stage, therefore, the particle consists 

of an unreacted core of A surrounded by a layer of D. 

At time t12, which marks the beginning of stage 2, the intermediate species B starts to 

form. The B then reacts to D via reaction (5.3). Thus, during stage 2, the particle has 

three zones – an inner unreacted core of A, a middle zone of the intermediate B, and 

an outer zone of product D. During stage 2, reactions (5.2) and (5.3) occur 

simultaneously at the A-B and B-D interfaces, respectively. Diffusive mass transfer 

of C also occurs in the intermediate and product layers. 

The beginning of stage 3 occurs at time t23, which happens when the A core 

disappears completely and the particle again has two zones – a B core and an outer 

product D layer. During this stage only reaction (5.3) is taking place at the B core 

surface. This stage ends with a completely converted particle that consists of D only. 

 

5.3.1 Model derivation 

The derivations of the governing ordinary differential and algebraic equations for 

stage 1 and 2 (Figure 5.1) are presented in Appendices A and B of this chapter, 

respectively. The governing equations for stage 3 are similar to those of stage 1 if 

species A is replaced by B. The model equations for all stages are summarised in 

Table 5.1. 
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Figure 5.1 – Schematic of solid particle reaction including intermediate formation.  
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Table 5.1 – Governing equations of the multi-stage model. 
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  T = T12  at  t = t12 (5.13) 
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   T = T23  at t = t23 (5.16) 
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(5.18) 

 

 

Calculation of t12 and t23 is based on requiring continuity of the model predictions 

during the transition from stages 1 to 2, and stages 2 to 3, respectively. During the 

numerical integration of Eqs. (5.6)–(5.13), the transition between stages 1 and 2 

takes place at t12, which is the time when the product gas C reaches a critical 

concentration, C12, at the reacting core surface. The critical concentration, which is 

temperature-dependent, is found by requiring that the governing equations of stage 1 

and stage 2 predict the same gas concentration at the core at the point of transition. In 



Chapter 5: A multi-stage multi-reaction shrinking core model for self-inhibiting gas-solid reactions 
 

106 

 

particular, at time t12, the gas-species mass balances Eqs. (5.6) and (5.10) should both 

apply and yield CC1 = CC2 = C12 for r1 = r2 = r12. The nonlinear system of algebraic 

equations (5.17) and (5.18), which are derived from Eqs. (5.6) and (5.10), therefore 

needs to be solved simultaneously at each integration step to find r12 and C12. 

Consequently, t12 is the time taken for r1 to decrease from Rp to r12. On the other 

hand, t23 is the integration time when the last A at the centre of the particle finally 

disappears; that is, when r1 reaches zero according to Eq. (5.11). The particle 

temperatures at t12 and t23 are denoted by T12 and T23, respectively. 

 

5.3.2 Model solution 

The model was solved numerically in Matlab
®
 R2010b. During each model stage, the 

relevant ordinary differential-algebraic equations (DAEs) were integrated using the 

Matlab DAE solver ode23t. The transitions between stages needed some 

consideration and the entire simulation proceeded as follows: 

(i) Initial estimates of r12 and C12 were produced by solving Eqs. (5.17) and 

(5.18) using the Matlab zero-finding routine fzero for k1–k3 evaluated at T = 

Tb. The time and particle temperature for which r1 = r12 were denoted as t12 

and T12, respectively. 

(ii) The stage 1 equations (5.6)–(5.8) were integrated from t = 0 to large t. 

(iii) Eqs. (5.17) and (5.18) were again solved using fzero to find new values of 

12r  and 
12C  for k1–k3 evaluated at T = T12. New values for the time and 

particle temperature for which r1 = 
12r  were denoted as 

12t  and 
12T  , 

respectively. 

(iv) If the difference between T12 and 
12T  was greater than a given tolerance, then 

t12 = 
12t , T12 = 

12T   was set and steps (ii) and (iii) were repeated. 

(v) The stage 2 equations (5.9)–(5.13) were integrated from t = t12 to large t. 

(vi) The stage 2 / stage 3 transition time t23 was identified as the time for which 

r1 = 0. 

(vii) The stage 3 equations (5.14)–(5.16) were integrated from t = t23 to large t. 

(viii) The reaction completion time t∞ was identified as the time at which r2 = 0. 

Numerical results generated in step (vii) for t > t∞ were discarded. 
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5.3.3 Conversion and mass fractions 

At any stage over the reaction period, the conversion of A and the mass fraction of 

each species in the particle can be calculated from the radius of the reaction front and 

the particle radius. The conversion of A is given by 
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The mass fraction of a solid component in the particle can be calculated by 
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where Mwi and ni are the molecular weight and number of moles of species i  {A, 

B, D}. The conversion of A and mass fractions are evaluated in post-processing. 

 

5.4. Case study 

The calcination of gibbsite (Al(OH)3) to alumina (Al2O3) takes place mainly via two 

well-known reaction and phase transition pathways, one of which involves boehmite 

(AlOOH). Heating rate, particle size distribution and water vapour pressure inside 

and around the particles are the main parameters that affect the reaction pathway. 

Regardless of any additional intermediate phases, the gibbsite calcination pathways 

may be summarized as: 

 

OHOAlOHAl
k

2323 3)(2
1

         (5.21) 

OHAlOOHOHAl
k

23

2

)(          (5.22) 

OHOAlAlOOH
k

232

3

2         (5.23) 

 

A comparison of the gibbsite calcination reactions of Eqs. (5.21)–(5.23) with the 

reactions of the general model, Eqs. (5.1)–(5.3), indicates the following 
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correspondence: A = Al(OH)3, D = Al2O3, B = AlOOH, C = H2O, a = b′′ = 2, c = 3, 

and a′ = b′ = c′ = c′′ = d = d′′ = 1. 

According to Whittington and Ilievski (2004) and Candela and Perlmutter (1992), 

boehmite formation occurs more readily in the presence of high water vapour 

pressure and in large particles. However, even at high vapour pressures and for large 

particles (above 50 µm), the maximum boehmite mass fraction in a reacting gibbsite 

particle is reported as 30% by Whittington and Ilievski (2004). 

In the above reactions, water vapour is a product and causes a barrier to reaction 

progress. The reaction rate equations include the influence of the water vapour 

concentration, and may include or exclude the solid concentration; for example, for 

the reaction of gibbsite, either of the following equations could apply: 

 

n
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00
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where n denotes the order of reaction and CG and CA represent the gibbsite 

concentration and water vapour concentration, respectively. In this study, the 

reaction rate was considered to be independent of the solid concentration, so Eq. 

(5.24) was used. Similar rate expressions were used for boehmite dehydration. 

 

5.4.1. Parameter estimation and model validation 

Wang et al. (2006) performed gibbsite calcination experiments at elevated 

temperature (823 to 923 K) with a particle size range from 20 nm to 2000 µm. Two 

of their data sets were used for parameter estimation and one for model validation. 

Most of the model’s parameter values were taken from the literature as noted in 

Table 5.2; however, k01, k02 and k03 were determined via least squares parameter 

estimation using the experimental data of Wang et al. (2006) at 898 and 923 K 

according to 
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Table 5.2 – Model parameters. 

Parameter Value Reference / comment 
)./( KmolJCpe  80 Wefers and Misra (1987) 

)/( 2 smDe  7×10
–10 Value for alumina; Fowler et al. (1977) 

)( mRp   50 Wang et al. (2006) 

)/(1 molkJE  131 Determined in Chapter 3 

)/(2 molkJE  142 Ruff et al. (2008) 

)/(3 molkJE  145 Estimated in Appendix C of this chapter 

)./( 2 KmWh  1.5 Incropera et al. (2007) 

)/( 13

01 smmolk nn 

 6.18×10
7 Found by parameter estimation via Eq. (5.26) 

)/( 13

02 smmolk nn   1.3×10
6 Found by parameter estimation via Eq. (5.26) 

)/( 13

03 smmolk nn   3.5×10
5 Found by parameter estimation via Eq. (5.26) 

)(kPaPCb  3 Typical environmental water vapour pressure 
1n  –1 Determined in Chapter 3 

2n  –0.5 Approximate value established in scoping studies 

3n  –0.4 Stacey (1987) 
)(KTb  873–923 Experimental conditions of Wang et al. (2006) 

 

 

The reaction orders n1 and n3 were taken from previous publications while n2 was 

estimated in scoping studies as reported in Table 5.2. Independent estimation of the 

value for E3, the activation energy of the boehmite to alumina reaction, is provided in 

Appendix C. Figure 5.2 demonstrates the good fit of the model to the data at 898 and 

923 K, where the coefficients of determination (R
2
) were 0.87 and 0.95, respectively. 

Using these fitted parameters, the model was validated against the data at 873 K, 

which results in very good agreement (R
2
 = 0.89) as shown in Figure 5.3. 
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Figure 5.2 – The results of parameter estimation at different environmental 

temperatures: 923 K (a) and 898 K (b), using data from Wang et al. (2006). 
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Figure 5.3 – Model validation at 873 K using data from Wang et al. (2006). 

  

5.4.2. Comparison of single and multi-reaction scenarios 

Figure 5.4 compares the current model’s predictions with those of a reduced version 

of the model in which boehmite formation is ignored and it is assumed that gibbsite 

reacts entirely according to Eq. (5.1). The full model predicts the depletion of 

gibbsite, the production and consumption of intermediate boehmite, and the 

production of alumina, with R
2
 = 0.95 as noted in the previous section. The reduced 

model, however, offers a moderately acceptable prediction for gibbsite consumption, 

but overestimates the rate of alumina production and completely ignores the presence 

of boehmite, resulting in R
2
 = 0.41. It should be noted that the same kinetic 

parameters are used in both full and reduced models in this comparison. While the 

single-stage model prediction for gibbsite consumption could be improved by a 

separate parameter fitting, it will still display unreasonable results for alumina and 

boehmite formation. Figure 5.4 clearly shows the current multi-stage, multi-reaction 

model is superior to a single-stage, single-reaction model. 
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Figure 5.4 – Comparison of model predictions and experimental data from Wang et al. 

(2006) at 923 K: (a) the multi-stage, multi-reaction model, and (b) the reduced, single-

reaction version. 
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5.4.3. Particle temperature history 

Consideration of the temperature history of the reacting particle can give insight into 

the conversion progress. It is possible to interpret the change in the dominant 

reaction mechanism over the reaction time using the temperature history of the 

reacting particle. Stacey (1987) reported a range of experimental dynamic 

temperature profiles for the thermal decomposition of gibbsite and boehmite. The 

plateaux in the dynamic temperature profiles and the transitions between them result 

from switching of the reaction pathways, Eqs. (5.21)–(5.23), and also how long each 

pathway endures. In Chapter 3, it was confirmed that the distributed model with a 

single gibbsite to alumina reaction (Eq. 5.21) reproduces the low temperature 

gibbsite plateau from Stacey (1987). It is also shown in Appendix C of this chapter 

that the current model, modified to consider only the boehmite to alumina reaction 

(Eq. 5.23), can replicate the boehmite temperature plateau reported by Stacey (1987) 

for E3 = 145 kJ/mol. 

Figure 5.5 shows the temperature history of a gibbsite particle undergoing thermal 

decomposition based on the proposed model for the conditions in Table 5.2, along 

with an interpretation of the processes taking place. This temperature history results 

from the interaction of three reactions: (i) gibbsite to alumina, (ii) gibbsite to 

boehmite, and (iii) boehmite to alumina. The extent to which each reaction pathway 

is followed and the reaction durations vary with the process parameters (particle size, 

environmental temperature, and others), as examined in this chapter and in Chapters 

3 and 4. The current model predicts boehmite formation and its consumption during 

the reaction, producing an additional temperature plateau, as shown in Figure 5.5, 

that was not reported by Stacey (1987). Boehmite formation is also reported by 

Stacey (1987) at the beginning of calcination, while the experiments of Wang et al. 

(2006) and the current model show a clear delay in boehmite formation. The 

differences between these experimental studies, and between the present temperature 

predictions and the data of Stacey, are partly due to differences in the process 

parameters used in the model. 
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Figure 5.5 – Predicted particle temperature history for Tb = 923 K. 

 

5.4.4. Effect of particle size on intermediate formation 

As mentioned earlier, experimental investigations have shown a higher propensity 

for boehmite formation in coarser particles (Whittington and Ilievski, 2004; Candela 

and Perlmutter, 1992). The behaviour of the proposed model is consistent with this 

finding. As presented in Figure 5.6, boehmite formation increases significantly as the 

particle size increases. As expected, total conversion time also increases with particle 

size. The controlling parameter for boehmite formation is mainly the water vapour 

pressure inside the particle. As the escape of the produced vapour is more difficult in 

a coarser particle, higher vapour pressure builds up in those particles, and this 

favours boehmite production. However, the induction time for boehmite formation 

does not change significantly with particle size. 
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Figure 5.6 – Effect of particle size on intermediate product (boehmite) formation. 

 

5.4.5. Effect of heating rate on intermediate formation 

Heating rate is accepted as an important parameter that affects gibbsite 

transformation pathways and the formation of different phases (Gan et al., 2009). 

The proposed model may be used to explore the effect of the heating rate on 

boehmite formation, which is the intermediate product. To this end, the 

environmental temperature (Tb) was used as a forcing function, increasing it from the 

initial particle temperature (Tb(0) = T0 = 298 K) at different linear rates (5–15 K s
–1

) 

until the particle had been completely converted to alumina. 
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Figure 5.7 – Effect of heating rate on intermediate product (boehmite) formation for an 

initial environmental temperature of 298 K. 

 

As seen in Figure 5.7, the maximum mass fraction of boehmite is not strongly 

affected by different heating rate conditions. This result is in good agreement with 

experimental data reported by Gan et al. (2009), which indicate no effect of heating 

rate on the maximum amount of boehmite formed. Figure 5.7 also shows a clear 

difference in the induction time and time of peak boehmite composition, with faster 

heating leading to earlier formation of boehmite. As mentioned earlier, a minimum 

level of water vapour pressure is needed to form boehmite. The faster the reactor or 

autoclave temperature rises, the faster that the build-up of vapour inside a particle 

occurs, which accelerates boehmite formation and reduces the induction time. 

 

5.5. Summary 

A multi-stage, multi-reaction, non-isothermal shrinking core model is proposed for 

gas-solid decomposition reactions in which the produced gas inhibits the reaction and 
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in which a solid intermediate product forms. The model consists of three stages and 

accounts for transitions in the reaction pathways. It consists of a set of ordinary 

differential and algebraic equations that were solved numerically. The model results 

display good agreement with experimental data for the calcination of gibbsite to 

alumina with boehmite as an intermediate product, and show a significant 

improvement compared to the single-stage, single-reaction model developed in 

Chapter 4. The predicted temperature history is consistent with trends observed in 

experimental studies. Different plateaux in the temperature history can be attributed 

to different reaction pathways and the model may help in detecting the occurrence of 

various pathways in particle temperature data. The effect of particle size and heating 

rate on the formation of the intermediate product was investigated and the results are 

in agreement with practical observations. 

 

Nomenclature 

a,c,d,aʹ,bʹ,cʹ,bʺ,cʺ,dʺ Stoichiometric coefficients, [–]  

CA0   Initial fresh solid concentration, [mol/m
3
] 

CB0   Initial intermediate solid concentration, [mol/m
3
] 

CC1   Gas concentration at r1, [mol/m
3
] 

CC2   Gas concentration at r2, [mol/m
3
] 

CCb   Gas concentration in surrounding environment, [mol/m
3
] 

CCs   Gas concentration on particle surface, [mol/m
3
] 

CG0   Initial gibbsite concentration, [mol/m
3
]  

CPe   Effective molar heat capacity, [J/mol K] 

C12   Gas concentration at reactant-product interface at t12, [mol/m
3
] 

De   Effective diffusivity coefficient, [m
2
/s] 

Dp   Particle diameter, [m] 

E   Activation energy, [J/mol] 

ΔH   Heat of reaction, [J/mol] 

h   Heat transfer coefficient, [W/m
2 
K] 

k    Surface reaction rate constant, [mol
–n

 m
3n+1

/s] 

k0   Arrhenius pre-exponential coefficient, [mol
–n

 m
3n+1

/s] 

M   Gas production/diffusion rate, [mol/s] 

Mw   Molecular weight, [g/mol] 
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Mwe   Average molecular weight, [g/mol] 

m   Mass fraction, [–] 

Ṅ   Solid consumption rate, [mol/s]  

n   reaction order with respect to water vapour concentration, [–] 

PCb   Environmental gas (C) pressure, [kPa] 

R   Gas constant, [J/mol K]  

Rp   Particle radius, [m] 

rG   Gibbsite surface reaction rate, [mol/m
2 
s] 

rs   Solid surface reaction rate, [mol/m
2
s] 

r1   Unreacted fresh reactant core radius at any time, [m] 

r12   Reactant-product interface location at t12, [m] 

r2   Intermediate-product interface location at any time, [m] 

r23   Intermediate-product interface location at t23, [m] 

T   Temperature, [K]  

Tb   Environmental temperature, [K] 

T0   Initial particle temperature, [K]  

T12   Particle temperature at t12, [K] 

T23   Particle temperature at t23, [K] 

t   Time, [s]  

t12   Time for transition from stage 1 to 2, [s] 

t23   Time for transition from stage 2 to 3, [s] 

t∞   Reaction completion time, [s] 

X   Reactant conversion, [–] 

 

Greek symbols 

ϑ1, ϑ2, ϑ3   Ratio of stoichiometric coefficients: (c/a), (cʹ/aʹ), (cʺ/bʺ), [–]  

ρe   Average density, [kg/m
3
] 
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Appendix A: Derivation of the first stage of the model 

During the first stage of the model (Figure 5.1), the only reacting solid is A (Eq. 5.1). 

Therefore, on the unreacted core surface, the rate of gas production can be written 

using the solid reaction rate as follows: 

 

1

1011

2

11 4
n

CA CCkrM          (A.1) 

where CA0 and CC1 are, respectively, the initial concentrations of solid (A) and gas 

(C) at core the surface (r = r1) and ϑ1 is the ratio of stoichiometric coefficients (c/a). 

 

The rate of diffusion of gas C in the layer of porous product (D) layer can be 

expressed as 

 

dr

dC
DrM C

e
2

2 4         (A.2) 

where De is the effective diffusion coefficient, which in this study is considered to be 

constant, with the effect of any structural changes ignored. For constant M2, which 

assumes a pseudo-steady state condition of the gas concentration profile, Eq. (A.2) 

can be analytically integrated using the following boundary conditions: 

 

CC = CCs at r = Rp         (A.3) 

CC = CC1 at r = r1         (A.4) 

The solution is 

 

p

CsC
e

Rr

CC
DM

11
4

1

1
2




          (A.5) 

Under pseudo-steady state conditions, the diffusion rate of gas in the product layer is 

equal to the gas production rate on the surface of the unreacted core: 

 

21 MM           (A.6) 

By combining this with Eqs. (A.1) and (A.5), the gas concentration on the unreacted 

core surface can be determined by solving 
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Now, the solid consumption rate and size of unreacted solid core are related by 
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and the gas production rate is related to the solid reaction rate: 
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Substituting Eqs. (A.1) and (A.8) into (A.9) yields 
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with the initial condition  

 

r1 = Rp at t = 0         (A.11) 

The assumption of spatially uniform temperature allows the energy balance over the 

particle to be written as 

 

101
2

1
2

3

1)(
3

HCCkrTThR
dt

dT

Mw

CR
n
CcAbp

A

peAp



      (A.12) 

where Cpe is the average particle heat capacity, h is the heat transfer coefficient, Tb is 

the external temperature and ΔH1 is the enthalpy of reaction (5.1). The initial 

condition is 

 

T = T0 at t = 0          (A.13) 
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Appendix B: Derivation of the second stage of the model 

During the second stage of the model (Figure 5.1), both the original solid reactant A 

and the intermediate solid B are reacting. The rate of generation of gas due to 

conversion of the original solid reactant to the intermediate solid at 1r  is 

 

2

1022

2

13 4
n

CA CCkrM          (B.1) 

 

where 2k  and 2n , respectively, denote the reaction rate constant and reaction order 

with respect to the gas species, 1CC  is the gas concentration at the inner core surface 

and 1r  is the inner core radius. 

 

Similar to Eq. (A.5), the rate of gas diffusion in the intermediate product layer can be 

formulated as 
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where 2r  is the radius of the interface between the final product D and the 

intermediate B. In other words, the intermediate product reacts to the final product at 

radius 2r . The gas concentration at this interface is 2CC . 

 

In addition to 1r  and 2r , which vary with time as the reaction progresses, both 1CC  

and 2CC  are unknown. They may be calculated with the help of the pseudo steady-

state assumption at radius r2: 

 

43 MM           (B.3) 

 

Thus, after substituting Eqs. (B.1) and (B.2) into (B.3), the following is obtained: 
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The rate of consumption of the original reactant A is 
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and this is related to the gas production rate at r1: 
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Hence, the shrinking rate of the radius of unreacted core can be obtained: 
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Similarly, a material balance on the gas in the intermediate layer leads to two more 

equations as follows. Firstly, the rate of intermediate B conversion to final product D 

at 2r  can be expressed by 
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where 3k  and 3n , respectively, denote reaction rate constant and order of this 

reaction. 

 

Subsequently, assuming the same diffusivity coefficient for the intermediate and 

final product layers, the rate of gas diffusion in the product layer may be described 

by 
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Since the gas produced at both reactive interfaces must escape by diffusion through 

the product layer, the pseudo-steady state assumption can be invoked again to yield 
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and therefore 
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In addition, the rate of intermediate B consumption can be written as 
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where BMw  and B  are the molecular weight and density of the intermediate 

component, respectively. Subsequently, using 
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the rate of change of the intermediate radius can be calculated by 
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The assumption of spatially uniform temperature allows the energy balance over the 

whole particle to be written as 
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where it should be noted that there are now two reaction enthalpy terms, in contrast 

to the single ∆H term in Eq. (A.12). The initial condition is 

 

T = T12 at t = t12        (B.16) 
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Appendix C: Estimation of the boehmite to alumina activation 

energy 

In order to estimate the activation energy E3 for boehmite to alumina conversion, and 

minimize the number of fitted parameters in the current model, several simulations 

were run on the non-isothermal, 1-D reacting particle model developed in Chapter 3 

that was adapted to simulate the boehmite to gibbsite reaction. The evolution of the 

temperature of a reacting boehmite particle predicted by the 1-D model is shown in 

Figure C.1 for three assumed values of the activation energy. The value E3 = 

145 kJ/mol provides a temperature plateau at 690~720 K, which most closely agrees 

with the experimental temperature plateaux observed for the transformation of a pure 

boehmite particle to alumina observed by Stacey (1987). Further, the same value of 

E3 was obtained in a preliminary data fitting study that used the current multi-stage 

shrinking core model. Although neither of these estimations is a definitive 

confirmation of the value for E3, they are consistent, reasonable and provide 

acceptable agreement between the model predictions and experimental data. 

 

 

 

Figure C.1 – Predicted temperature history of a pure boehmite particle reacting to 

alumina according to the 1-D model of Chapter 3 (adapted for boehmite calcination) 

for different assumed values of the activation energy at Tb = 923 K.
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6 
Fluidized bed reactor modelling: 

 gibbsite calcination 
 

 

6.1. Introduction 
Modelling and simulation of fluidized bed reactors (FBRs) have increasingly 

received attention by researchers. Due to the interaction of numerous mechanisms in 

a FBR, prediction and explanation of the behaviour of this system is highly 

complicated in terms of reactions and hydrodynamics. Multi-scale modelling has 

been found to be a useful approach to handle these complexities, although it is 

currently still in its early stages. 

From a multi-scale point of view, investigations into the processes in FBRs might be 

classified as follows: 

 Qualitative (descriptive) research on the definition, application and 

importance of multi-scale modelling; 

 Hydrodynamics of fluidized beds; 

 Multi-scale modelling of mass and heat transfer and reaction; 

 Quantitative research and publications on other chemical engineering 

processes.

Particle scale models are valuable for determining kinetics from laboratory 
experiments into gas-solid reactions. In addition, investigation of a single reacting 
particle allows appropriate assumptions to be made about modelling the internal 
and external heat and mass transfer processes. However, engineers are always 
interested in equipment scale models that can predict the practical performance of 
units under different operating scenarios. For complex unit operations like fluidized 
bed reactors (FBRs), this issue is more challenging compared to reactors containing 
only fluids with ideal flow patterns, because for the latter, process simulation 
software and models are well developed. In this chapter, some of the previous work 
into multi-scale modelling of FBRs is outlined then a multi-scale model for a FBR is 
proposed that combines a particle scale model with a simplified reactor scale 
model. Even though a general discussion of FBRs is presented, gibbsite calcination is 
considered for the case study the same as in previous chapters.   
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This chapter is organised as follows. The remainder of Section 6.1 summarises the 

current state and issues in modelling for each of the four areas mentioned above. 

Section 6.2 discusses the various choices involved in developing a FBR model for 

calcination, in particular the division of the reactor phases. The assumptions and 

equations for a simplified reactor scale model are presented in Section 6.3. The first 

part of Section 6.4 explains the numerical solution of the resulting multi-scale model, 

while the remaining parts present sensitivity studies of various important parameters. 

Finally, conclusions are drawn in Section 6.5. 

 

6.1.1. Qualitative (descriptive) research on the definition, application and 

importance of multi-scale modelling 

 
This group of publications mostly focuses on new developments in multi-scale 

modelling and its future prospects. Although these articles do not necessarily include 

the technical details of modelling, they are beneficial for better understanding of 

systems, scales, dominating mechanisms, algorithms, and the gaps or flaws in current 

multi-scale modelling approaches. In addition, they help show how to develop a new 

model for a new process by focusing on the key points and considerations in multi-

scale modelling.  

Uncertainty in physico-chemical mechanisms and thermodynamic and kinetic 

coefficients, computational costs in solving and linking together models, a shortage 

of manipulated parameters, lack of straightforward evaluation of micro-scale 

properties and inefficient system engineering tools to meet demands for systems 

described by discrete and discrete-continuum models are challenges in multi-scale 

modelling (Braatz et al., 2004). This class of research work provides guidance on 

how to accomplish the following: 

1. To identify the chemical engineering scales of interest.  

2. To identify the main phenomena and dominant mechanism(s) on each scale.  

3. To specify the governing equations (conservation and constitutive equations) 

for each scale and maybe analyse how these equations are interrelated 

between the scales. 

4. To investigate modelling methods for each scale and the abilities of various 

models on a single scale. 
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5. To propose modelling goal(s) such as process control, optimization 

(intensification and selectivity) or design (at different scales, e.g. catalyst and 

reactor), and understand how they influence the construction of a multi-scale 

model.  

6. To propose a reasonable methodology for multi-scale model validation 

including the Design of Experiments, as this area has considerable challenges. 

7. To develop a scale-communication algorithm or flowchart. 

8. To identify changeable and measurable parameters at a scale that can be 

useful in model validation and sensitivity analysis. 

 

6.1.2. Hydrodynamics of fluidized beds 

This category of works may provide detailed insights into the hydrodynamics of the 

system applicable to a multi-scale model, which involves (Schmidt, 1996; Curtis and 

van Wachem, 2004; van der Hoef et al., 2005; Deen et al., 2007): 

1. Explanation of the system (flow regimes) at each scale, including detection of 

flow mechanisms and parameters (drag coefficient, …). 

2. Investigation into the modelling method(s) as well as the solution techniques 

for each scale.  

3. Computational Fluid Dynamics (CFD) modelling, involving a powerful 

package such as Fluent. Validation is a considerable challenge in CFD 

modelling as well as in other modelling methods. 

4. Estimation of real-life particle drag coefficients that account for the 

polydispersity of particle sizes. 

5. Coupling the particle size distribution (PSD) with a hydrodynamic model. 

6. Providing qualitative information that can be used in higher scale models; for 

instance, heterogeneity caused by inelastic collisions and non-linear drag 

anticipated in discrete particle models. 

7. Providing quantitative information that can be used in higher scales. For 

example, drag force relations obtained from Lattice Boltzmann Model (LBM) 

simulations can find direct use in both Discrete Particle Model (DPM) and 

Two Fluid Model (TFM) simulations. 

8. Exploration of the effects of different coupling methods for models at 

different scales. 
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9. Development of improved expressions for solid pressure and viscosity, as 

they are used in TFM. However, it is a non-trivial task to extract direct data 

on solid viscosity and pressure in DPM. 

10. Consideration of cluster phenomena in modelling. This scale has been 

focused on in recent investigations because of its lower computational load in 

comparison with simulating all the individual particles. 

11. Modelling the flow around individual particles in a turbulent and 

concentrated flow, which is not resolved yet. 

12. Coupling reaction with hydrodynamic models. 

13. Coupling mass and heat transfer with hydrodynamic models. 

 

6.1.3. Multi-scale modelling of mass and heat transfer and reaction 

Complex, multi-phase systems like fluidized bed reactors need to be explained by 

three independent phenomena, including local fluid mechanics, heat and mass 

transfer, and reaction kinetics. The similarity of heat, mass and momentum transfer 

may simplify the study of these transport phenomena at various scales. 

If we identify particle, bed volume element and reactor scales as micro, meso and 

macro-scales, respectively, as in Chapter 2, then micro-scale heat and mass transfer 

refer to intra-particle and inter-particle processes acting on single particles. Transfer 

between particle clusters as well as from cluster to fluid, represents the meso-scale 

processes occurring for example in circulating fluidized beds. Subsequently, macro-

scale transfer phenomena include heat and mass transfer in the bulk gas-solid 

mixture, and between the bulk phase and the reactor walls. 

Reaction kinetics could be the subject of investigation on micro or meso-scales 

depending on its nature (catalytic or non-catalytic, exothermic or endothermic, 

homogeneous or heterogeneous, …). Reaction kinetics are related to interactions 

between molecules in a homogeneous reaction and to particle-surface interactions for 

reactions involving a catalyst or solid reactant. Coupling detailed reaction kinetics 

with hydrodynamics for fluidized bed reactors is quite a new possibility due to recent 

computational advances.  

Compared to packed beds, mass transfer in fluidized beds is less investigated and this 

can be attributed to two difficulties: conducting the mass transfer experiments, and 
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understanding the more complex flow structure. Consequently, the mass transfer 

rates reported in the literature may differ considerably. Wang et al. (2005) have tried 

to investigate the problem from a multi-scale viewpoint. The same uncertainty also 

exists for heat transfer. In addition, a study of the role of reactions, including kinetics 

and the potential for agglomeration, in meso-scale and macro-scale models is 

necessary. Hence, a facet of current research is mass and heat transfer modelling for 

multi-scale models, which may include reaction and agglomeration processes 

(Breault, and Guenther, 2009; Breault, 2006; Behjat et al., 2008; Dong et al., 2008). 

 

6.1.4. Quantitative research and publications on other chemical 

engineering processes 

There are case studies of multi-scale modelling of other processes in chemical 

engineering that may be worthwhile investigating, such as bubble columns, chemical 

vapour deposition (CVD), nanotube production, and fluidized beds for the 

production of solar grade silicon and hydrogen production from ammonia. As a 

consequence of the difference between the natures of these processes, the relevant 

(time-space) scales are also different. However, conducting a survey of these various 

types of processes makes it possible to understand their differences as well as their 

similarities. For example, nanotube growth can be thought of as corresponding to 

agglomeration to some extent. In addition CVD is an outstanding example of a multi-

scale process that includes a vast range of multi-scale phenomena. According to the 

authors, these processes are not fully understood, which is the same for fluidized bed 

systems. The concerns and flaws in those processes could be similar to those for 

fluidized beds also, and they may need to be addressed in any reasonable new model. 

Hence, doing a survey on these other chemical processes is worthwhile. 

 

6.2. Modelling aspects of FBRs 

Modelling of FBRs is highly complicated as a wide range of parameters and 

mechanisms are interacting simultaneously. Figure 6.1 shows some of the issues that 

must be considered in modelling efforts. Clear specification of the process and 

properly justified assumptions could simplify the complexity to some extent.  
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Figure 6.1 – Typical issues involved in FBR modelling for calcination processes. 

 

 

In numerous publications, FBRs have been modelled as single, two and three-phase 

systems in which gas-solid reactions occur. However a significant gap exists in the 

application of these approaches to the gibbsite calcination process. Particle scale 
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models have been studied extensively through different methodologies in this thesis, 

and now it is worthwhile to employ those models for reactor scale simulations. In the 

following sections, the possibilities for modelling FBRs for gibbsite calcination as 

single and two-phase systems are briefly discussed. Subsequently, a simplified 

single-phase model at the reactor scale is chosen and is linked with a particle scale 

model to form an illustrative multi-scale model.  

 

6.2.1. Two-phase model 

A large number of modelling efforts on FBRs are based on considering two phases in 

the fluidized bed with exchange of mass and energy between them. In this approach, 

the gas can be in both bubble form and well-mixed with the solids, forming an 

“emulsion”, with the solid particles mainly existing in the emulsion phase. In other 

words, the gas bubbles are almost solid-free. Having solid-free bubbles is an 

idealistic assumption as the existence of solids in the bubble phase has been shown 

experimentally and theoretically (Mostoufi et al., 2001). In spite of these 

simplifications, the two-phase FBR model has been of interest due to its simplicity of 

model development and solution. In addition, the predictions of this model are 

reasonably in agreement with practical data. 

The two-phase model is well presented by Kunii and Levenspiel (1991). Their model 

is tailored here for gibbsite calcination, and hence focuses on water vapour (W) in the 

gas phase and gibbsite (G) in the solid phase. Figure 6.2 shows conceptually how a 

two-phase fluidized bed model at the reactor scale could be linked with alternative 

particle scale models to create a multi-scale model. Focussing on the reactor scale, 

Figure 6.3 presents how the two-phase FBR equations of Kunii and Levenspiel 

(1991) could be adapted for gibbsite calcination. However, the modelling approach 

embodied by Figure 6.3 will not actually be used in the simulations presented in this 

chapter, but it does show how communication between scales could take place in a 

two-phase FBR model. The multi-scale model that is actually implemented in this 

chapter uses a simpler, pseudo single phase, tanks-in-series model at the reactor 

scale. 



 

134 

 

 

Figure 6.2 – Schematic of a conceptual two-phase model for a FBR showing communication with alternative particle scale models. 
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Figure 6.3 – Two-phase flow element for a FBR with equations from Kunii and Levenspiel (1991) adapted for gibbsite calcination. 
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6.2.2. Single-phase, well-mixed model 
At very high velocities, FBRs may show well-mixed properties in which it is very 

hard to distinguish between emulsion and gas bubbles. Under these conditions 

(Kunii and Levenspiel, 1991), the gas and solid flows might be considered as pseudo 

single-phase flow. Small bubble sizes and unrestricted interphase mass and energy 

transfer rates are embedded in this assumption. Therefore, temperature and 

concentration are approximately uniform throughout the bed (McAuley et al., 1994). 

This kind of model might be derived from a two-phase FBR model as a limiting case 

in which heat and mass transfer resistances are quite low. 

6.2.3. Tanks-in-series model 

A single-phase FBR might be approximated via ideal reactor models such as the 

Plug Flow Reactor (PFR) model or Continuous Stirred Tank Reactor (CSTR) model. 

However, due to complex hydrodynamics, the behaviour of a real-life reactor may 

fall in between the PFR and CSTR. Therefore a general model is needed to account 

for the non-ideal flow conditions. 

The tanks-in-series model is general enough to simulate both CSTR and PFR 

reactors. In addition, any kind of reactor performing between these two ideals could 

be simulated by adjusting the number of tanks. Therefore this modelling approach is 

used in this chapter to illustrate how communication between particle and reactor 

scale models could be set up. Figure 6.4 shows the schematic of CSTRs-in-series. 

 

6.3. Multi-scale model development 

Initially, the mass and energy balances over a single CSTR element, which will form 

part of the general model, are developed for co-current flow of gas and solid. 

Subsequently a MATLAB code was developed for CSTR model solution and this 

interacts with codes previously developed for particle scale models. The reactor code 

has been designed to be flexible so that it can employ different numbers of CSTRs in 

series and different residence time distribution (RTD) functions. The communication 

between the codes at different scales was carefully established to ensure correct 

information transfer between the different scales.  



  

137 

 

 

 

 

 Volumetric Reaction Model:  

Either Single or Multiple Reactions 

 

 Shrinking Unreacted Core Model:  

A Single Reaction and Single Stage 

 

 Multi-Stage Multi-Reaction  

Shrinking Core Model 

 

 

 

 

Figure 6.4 – Schematic of a multi-scale model that combines tanks-in-series at the reactor scale with alternative particle scale models.
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Even though only the co-current flow regime is investigated in this chapter, the 

model and corresponding codes could be applied to other flow configurations, 

including counter-current and cross-flow of gas and solid. 

 

6.3.1. Modelling assumptions 

In the context of gibbsite calcination, the following assumptions are made: 

 The model is steady state and non-isothermal. 

 The reactor is oriented vertically with the gas and solid entering the base of 

the reactor and flowing co-currently upwards. The overall reactor is assumed 

to behave as a vertical collection of CSTRs connected in series. 

 At each horizontal level, the gas and solid are well-mixed, showing pseudo 

single-phase behaviour. 

 All CSTRs are considered to have equal volume and the same residence time 

distribution. 

 The temperature and species concentrations inside the particles exiting each 

CSTR are obtained by averaging the temperature and concentration profiles 

inside a single particle with respect to radial position in the particle and over 

the solids residence time distribution for that CSTR. 

 The voidage of the bed is constant throughout the reactor. 

 Particles are assumed to have a constant size during the reaction.  

 The water vapour concentration inside the reactor has no significant influence 

on the reaction rate at the particle scale. The validity of this assumption has 

already been confirmed in Chapters 3 to 5 for gibbsite calcination. 

 A constant total pressure for the gas phase is assumed. 

 The assumptions related to the solid physical properties are the same as those 

reported in Chapter 3. 

 There is no reaction in the gas phase. The solid reaction is lumped, 

considering a pure gibbsite feed reacting to alumina. However the possibility 

of intermediate species inclusion through considering series and parallel 

reactions is discussed in Section 6.4. 

 The gas phase consists of air and water vapour, and the ideal gas law applies. 

 

Figure 6.5 depicts a single CSTR, which is one element in the reactor scale model. 
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Figure 6.5 – Schematic of a single CSTR element showing the inlet and outlet 

concentrations of gibbsite, water vapour and alumina. 

 

 

 

6.3.2. Conservation and constitutive equations 

The mass balances of a single CSTR with respect to the individual species involved 

in the calcination reaction are fairly straightforward. However special attention must 

be paid to the energy balance since the composition of the solid and gas mixture, 

local temperature and reaction rate are all changing.  

Table 6.1 summarises the governing conservation and constitutive equations of a 

single CSTR element that will be utilised in a tanks-in-series model as the i
th

 element 

out of n. Eq. (6.1) uses the particle scale model (via X(t)) and the solids residence 

time distribution (E(t)) to determine the average gibbsite conversion in the i
th

 CSTR 

element. Eq. (6.2) is the gibbsite material balance, estimating the outlet moles of 

gibbsite based on the difference between the inlet moles and the consumption due to 

conversion. Similarly, the material balances for the alumina and water vapour, Eqs. 

(6.3) and (6.4) respectively, can be determined from the inlet moles of each species, 

the gibbsite consumption and the appropriate stoichiometric coefficients. Even 

though air is inert in the calcination reaction, the local concentration of the air may 

change due to water vapour production and gas temperature changes. The total gas 
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flow rate and the air concentration can be predicted by considering the water vapour 

production and temperature changes as shown in Eqs. (6.5) and (6.6). 

Table 6.1 – Conservation and constitutive equations at the reactor scale for CSTR i. 
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The energy balance for i
th

 element consists of different enthalpy terms. Gas and solid 

enthalpies for the inlet and outlet streams of the element, as well as the reaction 

enthalpy, must be considered in the energy balance. Due to changes in material 

compositions for both solid and gas phases, local mean values of the heat capacities 

are employed. Eq. (6.7) shows the energy balance, rearranged for the outlet gas 

temperature. The first and third terms in the numerator are the enthalpy of the inlet 

and outlet solids. Similarly, the second and fourth terms of the numerator are the 

enthalpies of the inlet gas and the reaction, respectively. The denominator multiplied 

by T(i) forms the enthalpy of the outlet gas. 
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At this point it is worthwhile briefly comparing the single-phase reactor model 

presented in Table 6.1 with the conceptual two-phase model of Figure 6.3. In Figure 

6.3, a differential mole balance for gibbsite is presented, along with two other 

differential mole balances for the water vapour in the emulsion and bubble phases. In 

contrast, the material balances of the single-phase reactor are presented in discretised 

form. Further, hydrodynamic parameters such as minimum fluidization velocity (Umf) 

and bubble velocity (Ub), are considered in Figure 6.3, but not in the single-phase 

model. In addition, unlike the single-phase model, there is no energy balance at the 

reactor scale in Figure 6.3, as the reactor is assumed to be isothermal with a known 

temperature. 

In multi-scale modelling, establishing proper communication between the scales is of 

vital importance. This issue was explained in Chapter 2 with the help of “multi-scale 

frameworks”. Here, data exchange between the reactor and particle scale is briefly 

described to exemplify the theoretical framework presented in Chapter 2. 

The reaction occurs in the solid at the particle scale. For a given particle size and 

surrounding gas temperature and pressure, a single particle model can be solved to 

obtain radially distributed and dynamic temperature, pressure, and concentration 

profiles inside the particle. At any given time, the conversion of gibbsite can be 

calculated by integration of the gibbsite concentration over the radius of the particle. 

In this way, a prediction of conversion as a function of time, X(t), is achieved. This 

function is used in combination with the solid RTD function to obtain the average 

conversion, iX , of particle in reactor element i. It should be noted that the RTD is 

information that is passed from the reactor scale to the particle scale and iX  is 

information exported to the reactor scale from the particle scale. The reactor scale 

also receives the temperature profile, as a function of the conversion, from the 

particle scale. This profile is interpolated at the conversion value calculated from the 

inlet and outlet concentrations of gibbsite at the reactor scale for element i to obtain 

the average solid temperature leaving the i
th

 reactor element. The calculation of 

temperature and concentration profiles at the reactor scale provides new input values 

at the particle scale for the surrounding gas temperature and pressure. Obviously, a 

new surrounding gas temperature affects all the information flows from the particle 

to the reactor scale. However, the water vapour pressure in the surrounding gas does 
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not have a significant influence at the particle scale. Nevertheless, iteration is needed 

to ensure convergence of the exit concentrations and temperature for each CSTR 

element as explained in Section 6.3.4.  

Due to its importance, the RTD, E(t), is discussed in more detail in Section 6.3.3. 

 

6.3.3. Residence time distribution 

The residence time distribution is the tool that accounts for the different time history 

each reacting particle experiences inside a reactor. Obviously the time history is not 

the same for all particles except under ideal plug flow conditions.  

Mathematical expressions for the RTDs of ideal reactors are well developed. Eqs. 

(6.7) and (6.8) are the RTD functions for a CSTR and PFR respectively (Fogler, 

2008): 
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Eq. (6.8) contains the Dirac Delta function. For the purpose of numerical coding 

simplicity, the Delta function of the PFR can be approximated by a Gaussian 

function as follows: 

)
2

)(
exp(

2

1
)(

2

2

2 








t
tE    (6.9) 

where 2  is the variance. Eq. (6.9) is a reasonable approximation for the Delta 

function only when the variance is very small. 

With regards to the CSTRs-in-series modelling approach, the RTD function for the 

whole reactor can be interpreted as the superposition of those of the individual 

reactors: 
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Figure 6.6 shows how the residence time distribution varies with the number of 

tanks, n. When n = 1, the residence time profile is the same as an ideal CSTR, while 

increasing n makes the profile tend towards an ideal PFR. Note that the 

dimensionless form of the RTD functions is based on θ = t/τ and E(θ) = τE(t). 

 
Figure 6.6 – Dimensionless RTD for different numbers of CSTRs in series (a) and 

comparison of PFR and CSTRs in series for n = 20 (b). 

 

 

6.4. Model solution and analysis 

The reactor scale and particle scale models must be solved simultaneously to predict 

the overall performance of the reactor and also update the parameters that the particle 

scale is receiving from the reactor scale. To address this, the spatially distributed 

particle scale model, developed in Chapter 3, is combined with the simplified 

CSTRs-in-series model developed in Section 6.3. The distributed model is used here 

in preference to the shrinking core models developed in Chapters 4 and 5 for two 

main reasons. It has more flexibility for adding all the species involved in the 

gibbsite calcination process in the future, including boehmite and different alumina 

phases. In addition, water vapour pressure, which plays such a dominant role in 

phase formation, can be explained in more detail by using the distributed model.  

a b 
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However, use of the shrinking core models in this multi-scale modelling formulation 

is also feasible and can proceed in a similar way to the distributed model. Further, the 

multi-stage, multi-reaction shrinking core model, proposed in Chapter 5, would 

permit the prediction of boehmite formation and consumption at the reactor scale, 

which is not the case in the current version of the distributed model. With regards to 

the shrinking core model developed in Chapter 4, the availability of an analytical 

solution at low temperatures could offer some advantages by shortening the model 

solution time. 

The main model outputs are the gibbsite, alumina and water vapour concentrations in 

addition to the gas and solid temperatures, all as functions of height in the reactor. A 

numerical solution has been created by developing a MATLAB code where the 

governing equations of the model were solved simultaneously along with the inlet 

boundary conditions.  

The inputs of the first CSTR are given: CG(0), CAl(0), CW(0), CAir(0), Ẏ(0), and T(0). 

The surrounding gas temperature inside each CSTR must be calculated, and it is a 

function of reaction rate at the particle scale. On the other hand, the particle reaction 

rate is a strong function of surrounding gas temperature, which appears as a 

boundary condition in the particle scale model. Therefore an iterative procedure has 

been employed starting with an initial guess value for the surrounding gas 

temperature T(i). The initial guess for the temperature of element i was taken as the 

converged temperature of element (i–1). The stopping point for these iterative 

calculations was set to be |T
k
(i) – T

k–1
(i)| < 1 K, where k is the iteration number. For 

each iteration, the particle scale model must be called to provide an updated 

conversion value based on estimated surrounding gas temperature in that particular 

iteration. In addition, the particle temperature has been averaged by using the (Tp, X) 

data exported from the particle scale to the reactor scale during each iteration. The 

outputs from each element i provide the inputs and also the initial guesses for the 

next element (i+1). 

In Sections 6.4.1 to 6.4.4 typical results and their interpretation are given for the 

multi-scale model predictions based on the reactor scale parameters given in Table 

6.2. The parameters of the particle scale model are the same as those in Table 3.2, 

unless noted otherwise. 
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Validation of the reactor scale model was not possible due to a shortage of suitable 

experimental data in the literature. The developed model assumes that the reactor 

consists of well-mixed volumes in series, but industrial calciners may have complex 

flow patterns (Marsh, 2009). Experimental data specific to the flow pattern, for 

example approximating plug flow of gas and solids, would be needed for validation. 

Time and resources did not permit such experiments to be performed. Further, as 

discussed earlier in Section 2.3.3, DOE for multi-scale model validation is still an 

open research area.  

Table 6.2 – Reactor scale model parameters. 

Parameter Value Reference / comment 

Dt (m) 0.5 Typical value. 

H (m) 1 Typical value. 

ΔH (kJ/mol) 147 Beyer et al. (1989). 

h (W/m2 K) 50 As discussed in Section 4.3.2. 

n (–)    20 See Section 6.4.1. 

P (atm) 3 – 

R (J/mol K) 8.314 Ideal gas constant. 

Solid inlet mass flux (kg/m
2
s) 7.7 Ṡρ/A  

Ṡ (m
3
/s) 0.0004 – 

T0 (K) 2000 In the range of Marsh (2009). 

Tp0 (K) 298 Particles at ambient temperature. 

Ẏ0 (m
3
/s) 4 Typical value. 

ε (–) 0.8 – 

 

 

6.4.1. Comparison of modelling results of a single PFR and multiple 

CSTRs in series 

The performance of the model with different numbers of CSTRs in series is tested 

against a single PFR. The results show a considerable deviation for n < 20 while for 

n = 20 and higher, the conversion profile is nearly the same for both reactor 
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configurations (Figure 6.7). Accordingly, a single ideal CSTR, an ideal PFR and an 

arbitrary flow regime between these two ideal patterns can be simulated by using 

CSTRs in series with different n. Comparison of practical operating data with 

simulation results can help to estimate the appropriate n. For the remainder of the 

case studies, n = 20 will be used. 

 

 

 Figure 6.7 – Conversion of gibbsite in a single PFR and multiple CSTRs in series. 

 

6.4.2. Gas temperature, particle temperature, and species profiles 

The temperature profiles of the gas and reacting particles in a gibbsite calciner are of 

great interest for process control and the minimisation of energy consumption. The 

unsteady temperature profile inside a particle has already been discussed extensively 

in Chapters 3 to 5. The temperature profile inside a particle is strongly affected by 

the surrounding gas temperature, and this gas temperature changes through the 

reactor. One of the most important pieces of information that must be transferred 

from the particle scale to the reactor scale is the particle temperature. Similarly, the 

surrounding gas temperature has to be transferred from the reactor scale to the 

particle scale. This interaction is essential, because assuming independent gas and 

particle temperature histories will certainly result in significant errors. 

As can be seen from the particle scale modelling work presented earlier in Figures 

3.3 and 4.5(a), the temperature profile of a reacting particle consists of three stages 

(assuming only gibbsite to alumina conversion occurs). First is the initial warming 

stage during which the particle receives energy from the surrounding gas until its 
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temperature is high enough to initiate the calcination reaction. After this stage the 

obvious temperature plateau of the reaction period can be seen, in which the 

environmental energy input is balanced by the endothermic reaction. Finally, another 

warm-up period will take place during which the particle can approach the 

surrounding gas temperature. 

Figure 6.8 shows the average particle and gas temperature profiles, and overall 

conversion of the reactor at different heights, attained from the multi-scale model 

based on parameters reported in Table 6.2. Similar temperature behaviour can be 

observed in Figure 6.8 at the reactor scale as was observed at the particle scale 

(Chapters 3–5). In addition the temperature drop of the hot gas at inlet of the reactor 

suggests that more investigation on preheating the solids may have advantages. 

 
Figure 6.8 – Average particle and gas temperature profiles (a), and overall conversion 

of the reactor (b), at different heights in the reactor. 

 

It should be noted that particle temperature increases sharply when the conversion 

reaches close to 100% (Figure 6.8). It was also observed when investigating the 

behaviour of a single reacting particle (Section 3.4.1). Special attention needs to be 
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paid to the numerical discretisation approach to be able to efficiently capture this 

sharp change. 

The temperature histories for both gas and solid phases are strongly influenced by 

material flow rates, reaction rates and the heat transfer rate. These effects are 

examined in the next sections. 

Similarly the gibbsite and alumina concentrations may be estimated at different 

heights in the reactor as shown in Figure 6.9. This graph is consistent with the start 

of the post-reaction warm-up period in Figure 6.8(a) at H = 0.6 m, as it shows the 

gibbsite concentration is almost zero at this point, causing the reaction to stop. 

Information of the type shown in Figures 6.8 and 6.9 is potentially of assistance in 

the design of alumina calciners. For the idealised reactor configuration and the 

conditions considered in this study, it can be clearly seen that conversion is 

essentially complete at H = 0.6 m, meaning that 40% of the reactor volume is not 

being used for reaction. 

 

 

Figure 6.9 – Gibbsite and alumina concentration profiles in the particle phase inside 

the reactor. 

 

6.4.3. Effect of solid input rate on overall reactor conversion  

Solid throughput considerably influences the residence time of the reacting particles. 

Consequently, different conversion profiles can be observed for different solid mass 
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fluxes as displayed in Figure 6.10. As expected, a greater reactor volume is needed to 

fully convert a higher gibbsite feed rate. 

Information about the conversion profile as a function of reactor height (or volume) 

and the solid mass flux are valuable in optimization of the reactor height and 

operating conditions.   

 
Figure 6.10 – Effect of solid input rate on overall reactor conversion. 

 

6.4.4. Water vapour and gas flow rate profiles inside the reactor 

The role of water vapour pressure inside the particle and in the surrounding bulk gas 

on the progress of calcination has been extensively studied in Chapters 3–5. It was 

concluded that effect of the surrounding vapour pressure on both reaction progress 

and mechanism is insignificant as long as the water vapour pressure is less than 

15 atm, as was shown in Figure 3.8. However, the vapour content in a FBR is of 

interest for the treatment of the effluent gas and also for the heat balance inside the 

reactor. In addition, it could be worthwhile to estimate the maximum vapour pressure 

exerted by the water vapour under different operating conditions. A comprehensive 

model must involve the mass balance of the air and water vapour species along with 

the main reactant(s) and product(s). Figure 6.11 shows how the water vapour builds 
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up inside the reactor due to vapour production from the reacting particles. The profile 

of the total volumetric flow rate of the gas passing through the reactor, Figure 6.12, 

shows a considerable decrease in the lower part of the FBR, which is due to the large 

temperature drop of the inlet gas (Figure 6.8a). The production of water vapour due 

to the calcination reaction causes an increase in the overall molar gas flow rate inside 

the bed, and this counteracts the effect of the reduced temperature on the volumetric 

flow rate to some extent.   

 
 

Figure 6.11 – Water vapour pressure build-up inside the reactor. 

 

 
 

Figure 6.12 – Overall gas (air + water vapour) volumetric flow rate inside the reactor. 
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6.4.5. Time scales of the multi-scale model  

The importance of time scale diversity can be clarified by focusing on different 

concepts at different scales. In the case of gibbsite calcination for instance, the 

process vessel could have a characteristic time of several minutes (the residence time 

in the reactor) and the reaction might be completed for a single particle within a 

similar time, e.g. a hundred seconds. In contrast, the gas pressure inside a single 

particle may change within a fraction of a second. This does not present particular 

modelling challenges, but it makes the set of equations stiff, slightly complicating the 

solution. 

This example shows how investigation and control of product quality characteristics 

such as porosity of the product, which is certainly affected by the internal gas 

pressure history, must allow for information communication between two different 

time scales in the model (Figure 2.2). Further inclusion of a model for the meso scale 

would make the simulation more realistic by allowing for more details of the gas and 

solid flow patterns, such as cluster formation in CFBs (Table 2.1). Nevertheless it 

must be noted that adding another scale, with its own model elements, would 

definitely increase computational time and costs. Accordingly, goal-oriented 

management of the time and length scales included in the model plays a leading role 

in the model's success. 

In this chapter the connection between the time scale diversity at the particle scale 

and reactor scale has been implemented via consideration of the residence time 

distribution for the reactor and the changes that each particle experiences in response 

to its reaction environment. The multi-scale concept offers a very interesting area for 

further research: monitoring the process performance and product quality over 

different time scales. 

6.5. Summary 

In this chapter a simplified reactor scale model is presented and combined with a 

particle scale model to illustrate the multi-scale modelling methodology for a FBR. 

In spite of the simple structure of the proposed model, the main features of a gibbsite 

calciner are reasonably captured. Gas and solid temperature profiles, trends in overall 

gas flow rate and water vapour pressure inside the bed, alumina and gibbsite 
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concentration profiles, and effects of the solid throughput rate on the reactor 

performance are predicted and explained based on the proposed model.  

The spatially distributed, particle scale model developed in Chapter 3 was employed 

in this chapter. This was due to the potential of the distributed model to handle more 

species in future studies, which will be important for gaining the greatest benefit 

from the multi-scale modelling approach. However, the simple shrinking core model 

and multi-stage, multi reaction shrinking core model, which were developed in 

Chapters 4 and 5 respectively, could also be applied to multi-scale modelling work 

using a similar approach.  

The multi-scale model was solved numerically through an iterative procedure that 

alternated between solving particle scale and reactor scale models. An iterative 

method was chosen to ease the model solution as the variables at the two scales have 

complicated interactions. The key variable that complicates the model solution is the 

temperature of the gas at the reactor scale: it affects the conversion history at the 

particle scale by changing one of the boundary conditions and is in turn affected by 

the extent of particle reaction through the overall energy balance at the reactor scale. 

 

Nomenclature 

A  Reactor cross section area, [m
2
] 

Cp  Molar heat capacity, [J/mol.K] 

CAir  Air concentration, [mol/m
3
] 

CAl  Alumina concentration, [mol/m
3
] 

CG  Gibbsite concentration, [mol/m
3
] 

CW  Water vapour concentration, [mol/m
3
] 

CWb  Water vapour concentration in bubble phase, [mol/m
3
] 

CWe  Water vapour concentration in emulsion phase, [mol/m
3
] 

db  Bubble diameter, [m] 

Dbm  Maximum bubble diameter, [m] 

Dt  Reactor diameter, [m] 

E(t)  Residence time distribution function, [1/s] 

H  Reactor height, [m] 

ΔH  Enthalpy of reaction, [J/mol] 
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h  Heat transfer coefficient, [W/m
2
 K] 

Kcb  Cloud-to-bubble gas interchange coefficient, [1/s] 

Keb  Emulsion-to-bubble gas interchange coefficient, [1/s] 

Kec  Emulsion-to-cloud gas interchange coefficient, [1/s] 

n  Number of CSTRs, [–] 

R
*  

Overall reaction rate, [mol/m
3 
s] 

Ṡ  Solid volumetric flow rate, [m
3
/s] 

T  Gas temperature, [K] 

T0   Initial hot gas temperature, [K] 

Tp   Average particle temperature, [K] 

Tp0   Initial particle temperature, [K] 

U0  Superficial gas velocity, [m/s] 

ubr  Bubble rise velocity, [m/s] 

Ub  Bubble velocity, [m/s] 

Ue  Emulsion velocity, [m/s] 

Umf  Minimum fluidization velocity, [m/s] 

VR  Reactor volume, [m
3
] 

X   Average conversion in a single CSTR, [–] 

X(t)  Conversion as a function of time in a single particle, [–] 

Ẏ  Gas volumetric flow rate, [m
3
/s] 

 

Greek symbols 

α Stoichiometric coefficient: moles of alumina produced / moles of 

gibbsite consumed, [–] 

γM  Parameter in Horio and Nonaka (1987) correlation, [–] 

δ  Bubble fraction, [–] 

ε  Bed voidage, [–] 

εmf  Bed voidage at minimum fluidization velocity, [–] 

θ  Dimensionless time, [–] 

μg  Gas viscosity, [Pa s] 

ρ  Solid (gibbsite) density, [kg/m
3
] 

τ  Average residence time, [s] 

τi  Average residence time in a single CSTR, [s] 



Chapter 6: Fluidized bed reactor modelling: gibbsite calcination 

  

154 

 

ω Stoichiometric coefficient: moles of water produced / moles of 

gibbsite consumed, [–] 
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7 
Conclusion and future work 

 
 

Multi-scale modelling of a fluidized bed reactor for the calcination, or thermal 

dehydration, of gibbsite to alumina has been studied both conceptually and from first 

principles in this thesis. A conceptual multi-scale model was envisioned, then three 

alternative particle scale models were developed and finally one of them was linked 

with a simple reactor scale model to create a multi-scale model. 

In Chapter 2 a conceptual framework was proposed for a multi-scale model to predict 

the performance of fluidized bed reactors used for gibbsite calcination. The aim of 

the conceptual model was to relate product quality parameters, such as particle size 

and chemical composition, with calciner design and operating conditions. It 

hypothesised linking together a single-particle reaction model, a meso-scale model 

describing fluidized bed hydrodynamics, and a vessel-scale model. This framework 

depicted the scales, mechanisms and potential models needed, as well as commenting 

on the important variables at each scale. 

Particle scale modelling was then focussed upon using a variety of methodologies. 

A model that coupled dynamic, 1-D spatially-distributed mass and energy balances 

with appropriate thermal transformation kinetics was developed in Chapter 3. The 

model, which predicts radially distributed gibbsite and water concentrations, and the 

temperature profile inside a particle, was validated against laboratory gibbsite 

calcination data in the temperature range 873 to 923 K. A feature of gibbsite 

calcination, which was noted in experimental studies in the literature, is that the 

water vapour that is produced during the reaction actually lowers the reaction rate. 

For the first time, the evolution of temperature and internal pressure in a gibbsite 

particle undergoing thermal dehydration was predicted by a mathematical model. 

The water vapour pressure at the centre of a dehydrating gibbsite particle can reach 

values in the order of 100 atm, which can help explain the occurrence of particle 

fracture and the possibility of forming a boehmite phase. The assumed effective 
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diffusion coefficient has a strong influence on the model prediction; the lower the 

effective diffusivity, the higher the value of the maximum particle internal pressure. 

The model prediction was shown to be very sensitive to the heat transfer coefficient, 

effective diffusivity, particle size and external pressure, but relatively less sensitive 

to the external mass transfer coefficient and particle thermal conductivity. The model 

results suggest that gibbsite particles undergoing calcination are spatially uniform in 

terms of temperature, and are insensitive to the external mass transfer environment. 

In Chapter 4, an alternative approach was taken to modelling calcination and similar 

solid-to-gas thermal decomposition reactions at the particle scale. This was 

motivated partly by the desire to have a model that was solved more quickly than the 

distributed model of Chapter 3. The model was based on the unreacted shrinking 

core approach. A new variation of the shrinking core model was developed for solid 

decomposition reactions in which the product gas species reduces the reaction rate. 

Shrinking core models reported in the literature previously cannot be directly applied 

to such cases as they include gas-phase reactants in their stoichiometry and reaction 

rate equations. The new model predicts particle conversion and temperature as 

functions of time. For the isothermal case, the numerical solution of the unreacted 

shrinking core model has been validated against a newly-developed analytical 

solution. For non-isothermal conditions, the shrinking core model results closely 

match those from the distributed model created in Chapter 3. The non-isothermal 

unreacted shrinking core model is simpler and easier to solve than the partial 

differential-algebraic distributed model. Computational efficiency is relevant in 

multi-scale modelling since the small-scale model may be run very many times 

during a multi-scale simulation. 

As before, the new shrinking core model was applied to gibbsite calcination, both to 

verify the model and to investigate its behaviour through a sensitivity study. Using 

literature experimental data, the gibbsite dehydration rate parameters were estimated 

over a wide temperature range, from 490 to 923 K. The order of the reaction rate 

with respect to water vapour concentration was found to be n = –1. The inhibiting 

effect of the water vapour concentration (negative n) leads to good agreement with 

experimental data, and yields an activation energy that is consistent with literature 
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values. Estimated values of the activation energy and Arrhenius pre-exponential 

coefficients are reported separately for low and high temperature ranges. 

Chapter 5 extended the shrinking core model developed in Chapter 4 by allowing for 

the formation of another solid species. Thus, a multi-stage, multi-reaction, non-

isothermal shrinking core model was created for gas-solid decomposition reactions in 

which the produced gas inhibits the reaction and in which a solid intermediate 

product forms. The model has three stages and accounts for transitions in the reaction 

pathways. It consists of a set of ordinary differential and algebraic equations that 

were solved numerically. The model results display good agreement with 

experimental data for the calcination of gibbsite to alumina with boehmite as an 

intermediate product. This extended model shows a significant improvement 

compared to the single-stage, single-reaction model of Chapter 4. The predicted 

temperature history is consistent with trends observed in experimental studies. 

Different plateaux in the temperature history can be attributed to different reaction 

pathways and the model may help in detecting the occurrence of various pathways in 

particle temperature data. The effect of particle size and heating rate on the formation 

of the intermediate product was investigated and the results are in agreement with 

practical observations. 

In Chapter 6, a simplified reactor scale model was presented and combined with one 

of the particle scale models to illustrate multi-scale modelling for a fluidized bed 

reactor. The reactor scale model consisted of material and energy balances over a 

series of connected well mixed volumes and allowed for a distribution of solid 

residence times, but did not explicitly account for the reactor hydrodynamics. In spite 

of the simple structure of the proposed multi-scale model, the main features of a 

gibbsite calciner are reasonably captured. Gas and solid temperature profiles, trends 

in the total gas flow rate and water vapour pressure inside the bed, alumina and 

gibbsite concentration profiles, and effects of the solid throughput rate on the reactor 

performance are predicted and explained based on the proposed model. One of the 

main challenges in formulating the multi-scale model was ensuring the correct 

transfer of information between the particle scale and reactor scale models. 

The spatially distributed particle scale model developed in Chapter 3 was used in this 

multi-scale model. This was due to potential of the distributed model to handle more 
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species in future studies, which is important for gaining the greatest benefit from a 

multi-scale approach. However, the simple shrinking core model and multi-stage, 

multi-reaction shrinking core model, which were developed in Chapters 4 and 5 

respectively, could also be used in multi-scale modelling by following a similar 

approach. 

This study has revealed a range of future research issues that may be of interest to 

scientist and engineers: 

 The conceptual multi-scale modelling framework that was described in the 

second chapter could be enhanced to become a more comprehensive 

modelling roadmap. Among the possible enhancements is linking the Design 

of Experiments (DOE) to the framework. Currently, performing DOE based 

on a multi-scale model and DOE for multi-scale model validation are both in 

their infancy, and there is wide scope for potential research to be done in this 

area. In addition, consideration of product quality parameters within the 

conceptual framework will help make future modelling endeavours more 

goal-oriented. 

 Modelling at the particle scale was performed via different modelling 

approaches in the thesis. However, there are other modelling possibilities at 

this scale. For instance, the “grain model” has not been tested for gibbsite 

calcination. 

 With regards to the distributed particle scale model, the inclusion of more 

species should be considered in future work. For gibbsite calcination, these 

species are different phases of alumina. Further, more detailed investigation 

of the profiles inside a particle may help explain more of the issues 

experienced in industry. For instance, the profile of water vapour pressure 

inside the particle may be able to explain particle fracture and the porosity 

distribution during the calcination process. 

 Modelling at the particle scale would be enhanced by considering product 

quality-related parameters. For instance, the development particle scale 

models for the prediction of porosity and specific surface area, as well as 

mechanical properties of the product, would be valuable additions. These 
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kinds of model can enrich a multi-scale modelling effort by aligning the 

modelling goal towards “product design”. To address this goal properly, 

however, good collaboration between experimental and modelling researchers 

is needed. There are many gaps in the experimental literature on particle scale 

gibbsite calcination, particularly in terms of the spatial distribution of solid 

phases inside a particle as a function of reaction progress. These experimental 

studies could be directed using enhanced models that have a special focus on 

predicting product quality. 

 The reactor scale offers considerable and interesting research potential for 

future work. Some of the improvement of predictions at the reactor scale 

would depend on modelling enhancements at the particle scale. However, 

considerable progress could be made at the reactor scale for calcination by 

taking inspiration from fluidized bed reactor modelling performed in other 

industries. Improved hydrodynamic predictions for calciners, and linking 

reaction with hydrodynamics, can open new doors for the exploration of 

calciner behaviour. For this purpose, use of a traditional process simulator 

like Aspen Plus is an interesting possibility, as solid process multi-scale 

modelling has apparently not been dealt with in this kind of simulator before. 

A separate calcination process model linked to the simulator as a user defined 

module is a potential project for the future. 

 Development of a model library at different scales, according to the 

conceptual framework of Chapter 2, is a possibility that would give scientists 

and engineers flexibility and assistance in future multi-scale modelling 

efforts. Some elements of this library have been created in this thesis. 

In addition to the issues mentioned above, Chapter 2 includes some further research 

possibilities for gibbsite calcination and the multi-scale modelling of calciners. 

 


