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Abstract 
 
 

Massive shales and fractures are the main cause of seismic anisotropy in the 

upper-most part of the crust, caused either by sedimentary or tectonic processes. 

Neglecting the effect of seismic anisotropy in seismic processing algorithms may 

incorrectly image the seismic reflectors. This will also influence the quantitative 

amplitude analysis such as the acoustic or elastic impedance inversion and amplitude 

versus offsets analysis. Therefore it is important to obtain anisotropy parameters from 

seismic data. Conventional layer stripping inversion schemes and reflector based 

reflectivity inversion methods are solely dependent upon a specific reflector, without 

considering the effect of the other layers. This, on one hand, does not take the effect of 

transmission in reflectivity inversion into the account, and on the other hand, ignores the 

information from the waves travelling toward the lower layers. I provide a framework to 

integrate the information for each specific layer from all the rays which have travelled 

across this layer. To estimate anisotropy parameters I have implemented unconstrained 

minimization algorithms such as nonlinear conjugate gradients and variable metric 

methods, I also provide a nonlinear least square method, based on the Levenberg-

Marquardt algorithm. In a stack of horizontal transversely isotropic layers with vertical 

axis of symmetry, where the layer properties are laterally invariant, we provide two 

different inversion schemes; traveltime and waveform inversion. Both inversion schemes 

utilize compressional and joint compressional and converted shear waves. A new exact 

traveltime equation has been formulated for a dipping transversely isotropic system of 

layers. These traveltimes are also parametrized by the ray parameters for each ray 

element. I use the Newton method of minimization to estimate the ray parameter using a 

random prior model from a uniform distribution. Numerical results show that with the 

assumption of weak anisotropy, Thomsen’s anisotropy parameters can be estimated with 

a high accuracy. The inversion algorithms have been implemented as a software package 

in a C++ object oriented environment. 
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Introduction 
 
 

With the advent of new seismic data acquisition technology and processing 

algorithms, seismic anisotropy, which had been considered as an academic practice  two 

decades ago, has now provided a large impact on the quality of processed data and also 

on the quantitatively interpreted seismic data. Without considering the effect of 

anisotropy, exploration seismologist would have ignored the multi component data two 

decades ago (Alford, 1986; Grechka, 2001). Converted shear wave data recorded from 

ocean-bottom seismic surveys have gained much from considering anisotropy. 

Anisotropy is mainly due to massive shales and fractured rocks under sedimentary or 

tectonic processes. Transverse isotropy with the vertical axis of symmetry (Polar 

anisotropy) is one of the most common types of seismic anisotropy routinely used in 

seismic imaging and quantitative seismic interpretation such as amplitude versus offset 

analysis and impedance inversion. P-wave prestack time and depth migration is further 

extended to include transverse isotropy with the horizontal axis of symmetry (Azimuthal 

anisotropy) due to vertical fractures (Thomsen, 2001). These models, despite the 

simplicity in modelling the anisotropy of geological formations are still the most 

commonly used types of seismic anisotropy. 

After introducing the Thomsen’s anisotropy parameters (Thomsen, 1986a), P-

wave and S-wave velocity expressions become simpler and give more intuitive insight. 

They further simplified the reflectivity to more understandable equations (Rüger, 1996). 

Estimation of Thomsen’s anisotropy parameters has been an important area of research in 

seismic anisotropy and research is still going on to provide more accurate estimates. 

In this thesis I provide two inversion strategies to estimate Thomsen’s anisotropy 

parameters from seismic data; traveltime inversion and waveform inversion. Due to the 

importance of converted shear waves, we implement both compressional and joint 

compressional and converted shear wave data. I use exact traveltimes and approximate 

reflection and transmission coefficients for different modes in horizontally layered media. 

I also provide a new formulation for exact P-wave and SV-wave traveltimes in dipping 

transversely isotropic media. These equations are also used to estimate Thomsen’s 

anisotropy parameters in dipping layered media. 
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Background 
 

Estimation of elastic stiffness coefficients and anisotropic structure of the earth 

has been of interest, particularly in earthquake seismology, from the earliest days of 

seismic anisotropy studies. Crampin and Bamford (1977) studied the anisotropy structure 

of the upper mantle from azimuthal P-wave data using  transverse isotropy and 

orthorhombic models. From the earliest works on anisotropic parameter estimation in 

modern exploration seismology, I can refer to works of Miller and Spencer (1994) and 

Miller et al. (1994). They expressed the vertical slowness of quasi-compressional waves 

in a transverse isotropic medium with vertical axis of symmetry (VTI), as a linear 

function of elastic stiffness coefficients. Assuming a horizontally layered medium and 

using wide aperture walk-away vertical seismic profile data, they have estimated the 

elastic stiffness coefficients for a shale layer from the horizontal and vertical slowness of 

quasi compressional waves, however, their methodology resolved 55C  poorly.  

Li (2002) introduced a layer striping inversion scheme using the Levenberg- 

Marquardt algorithm to estimate Thomsen’s anisotropy parameters in  layered VTI media 

from quasi-compressional wave traveltimes from VSP data. In a stack of n  horizontally 

homogeneous, transverse isotropic layers, she considers the 1n −  upper layers over the 

layer n  as a single effective layer with the same effect on the traveltime as if the ray 

travels across the 1n −  layers. Layer stripping based inversion schemes do not 

incorporate the ray information from all the ray paths travelling across a system of n  

layers. This would cause the lack of robustness in parameter estimation.  

Hyperbolic and nonhyperbolic moveout based anisotropic parameter estimation is 

extensively studied and practically implemented in both transversely isotropic and 

orthorhombic media (Tsvankin and Thomsen, 1995; Tsvankin, 1997; Grechka and 

Tsvankin, 1998; Grechka et al., 1999; Grechka and Tsvankin, 1999; Thomsen et al., 

1999; Grechka and Tsvankin, 2000). These are a class of layer stripping linear inversion 

methods which mostly minimize traveltimes for both vertical normal moveout velocity 

and processing parameter (anellipticity) η .  The effectiveness of η  is in its 

parameterization which combines two Thomsen’s anisotropy parameter δ  and ε . They 

have been implemented on P-wave, S-wave, and joint & vP P P S→ →  traveltimes. These 
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algorithms do not use the exact traveltime equations. Instead, they use the Taylor 

approximations. Most of these algorithms are processing algorithms and are used in 

anisotropic NMO correction and seismic imaging. They do not decouple processing 

parameter η  into  δ  and ε . Hence, these algorithms may not be very helpful in the 

anisotropic reflectivity analysis such as amplitude versus offset (AVO) analysis and 

impedance inversion. 

Traveltime based inversion methods generally estimate the coarse part of the 

structure. In successive sand shale layers where the thickness of layers is less than the 

Rayleigh resolution limit (a quarter of dominant wavelength), discrimination of the top 

and the base of the layers is impossible. Constructive and destructive interference makes 

it difficult to distinguish the layer boundaries. Prestack and particularly poststack 

inversion has been widely used in isotropic elastic and acoustic impedance successfully. 

Isotropic poststack inversion is routinely used in commercial applications. With the 

knowledge of the source wavelet, the high frequency part of the structure can be 

successfully estimated. Estimation of Thomsen’s anisotropic parameters from partial 

stack seismic data is unreliable and a wide range of different angles of incidence are 

needed to recover these parameters. Hence, prestack anisotropic inversion algorithms 

should be used instead. The prestack anisotropic inversion is computationally intensive, 

so full waveform and even exact plane wave formalism may not be economically 

justified. Approximate analytic anisotropic reflectivity equations of Rüger  (1996), 

Thomsen (1993), and Jílek (2002),  could be used instead. These linear equations are 

generally valid for pre-critical angles of incidence. 

 Jílek (2002) proposed linear and  nonlinear algorithms using approximate and 

exact plane waves respectively for joint & vP P P S→ →  reflection coefficients at the 

boundary of two transversely isotropic media. Incorporating the converted shear waves 

increases the nonlinearity but stabilizes estimates of Thomson’s anisotropy parameters.  

Simões-Filho et al. (1999) inverted the elastic stiffness coefficients at the interface 

of a VTI/HTI media. They used a genetic algorithm to invert the exact plane wave 

reflectivity equations of Schoenberg and Protázio (1992). Free partial derivative 

minimization algorithms such as simplex method and especially global optimization 

algorithms such as Genetic algorithm and Markov Chain Monte Carlo require extensive 
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function evaluation. Global optimization methods converge most likely to the global 

minimum in nonlinear functions. Jílek (2002) and Simões-Filho et al. (1999) inversions 

are single interface parameter estimation algorithms and neither consider transmission 

effect nor extra information from the other ray paths which contribute to a specific 

reflector, in the favour of reducing dimensionality and nonlinearity. 

 

Methodology 
 

To address some of the above issues in this thesis, I provide a framework to 

incorporate all the information from different rays which passes through a specific layer. 

This is in contrast to the layer stripping inversion methods which rely only on the ray 

passing through the layer under estimation. 

 Most of the nonlinear geophysical inversions rely on the popular least square 

minimization methods, such as Levenberg-Marquardt, which require the prior model to 

be close to the solution. Instead, I implement the unconstrained minimization methods, 

such as variable metric and especially conjugate gradient methods, which are more 

tolerant to errors in prior information in estimating model parameters simultaneously 

from different layers. I also provide a simultaneous least square inversion model.  

I provide two prestack inversion algorithms for P-wave and joint & vP P P S→ →  

waves: traveltime and waveform inversion. Both inversions use the exact traveltimes 

based on ray parameter in horizontally layered transversely isotropic media given by 

Ursin and Stovas (2006). Layers are considered as laterally homogeneous. I compute the 

ray parameter by inversion of the offset equation using the Newton method. To be able to 

compute the derivatives of reflection and transmission coefficients analytically, I use the 

Rüger’s equations (Rüger, 1996) which are computationally fast and valid for pre-critical 

incidence angles. Traveltime inversions are used to estimate Thomsen’s anisotropy 

parameters and layer thicknesses while waveform inversion is mostly used in estimation 

of Thomsen’s anisotropy parameters. 

I formulate the new offset and exact traveltime equations in a dipping transversely 

isotropic layered medium based on ray parameters. I also use these equations to estimate 

the Thomsen’s anisotropy parameters from inversion of P P→  and joint inversion of 
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& vP P P S→ →  traveltimes. Moveout based anisotropic parameter estimations only 

assumes a single dipping layer at the bottom of the model. 

 
Thesis outline 
 

In the first chapter I review seismic wave propagation in anisotropic media 

particularly in a transversely isotropic medium. The solution of Christoffel equations in a 

transversely isotropic medium will be discussed. At the end of this chapter the vertical 

slowness and polarization directions of different modes from few examples will be 

demonstrated. 

In the second chapter I review the exact traveltime and offset equations for a 

horizontal VTI medium for P P→  and vP S→  waves. I use the Newton method to 

estimate the ray parameter by inversion of the offset equations from a random prior 

model. I also derive the new offset and exact traveltime equations in a dipping 

transversely isotropic layered medium for P P→  and vP S→  waves. Because the law of 

conservation of horizontal slowness is no longer valid in a dipping layer, I estimate the 

first ray parameter in the interface of the first two top layers and the other ray parameters 

will be computed successively based on Snell law at the interface of two media. 

In the third chapter I review the computation of approximate reflection and 

transmission coefficients based on the Rüger’s equations. To understand the limitation of 

the approximate equations I compute the exact plane wave reflection and transmission 

coefficients and compare them with approximate ones at the interface between two VTI 

layers. I also compute the offset gathers of synthetic seismograms from a multilayered 

VTI medium for both approximate and exact reflectivity equations for compressional and 

joint compressional and shear wave wavefield respectively.  

In chapter four I briefly explain the anatomy of an inverse problem and review the 

nonlinear least square inversion and unconstrained minimization algorithms which have 

been used in this thesis. The significance of preconditioning conjugate gradient in fast 

convergence will be discussed. Different conjugate gradient algorithms and their impact 

on the objective function will be discussed. I compare the variable metric and 
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preconditioning conjugate gradient algorithms in terms of their efficiency in fast 

convergence from an example of a traveltime inversion. 

In chapter five I show how to compute the analytic partial derivatives in a system 

of layered media. I demonstrate the equations of partial derivatives of traveltimes and 

effective reflection coefficient with respect to model parameters which will be followed, 

respectively by the derivative of their objective functions. At the end of this chapter I 

compare the computation of the analytic and numerical partial derivatives of the objective 

function of the effective reflection coefficient with respect to the model parameters for a 

given layered VTI model. 

In chapter six the numerical results from the unconstrained nonlinear inversion of 

P P→  and joint & vP P P S→ →  traveltimes in horizontal VTI media will be 

demonstrated. I investigate the effect of random prior information from a uniform 

distribution on the estimated Thomsen’s anisotropy parameters. This will be followed by 

nonlinear waveform inversion of P P→  and joint & vP P P S→ →  respectively. At the 

end of this chapter the traveltime inversion in dipping transversely isotropic layered 

media will be discussed using an example of  the preconditioning conjugate gradient 

method for both P P→  and joint & vP P P S→ → prestack data. 

At the end of this thesis I address the potential future works and the conclusion. 
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Chapter 1 

Review of seismic anisotropy 
 
Introduction 

Seismic anisotropy is defined in different ways by different authors (Crampin, 

1989; Winterstien, 1990) but perhaps the Thomsen’s definition (2002) is the simplest and  

more intuitive one: “the dependence of seismic velocity upon angle”. In geological areas 

where there are massive shales or where Carbonate or Sandstones formations are 

fractured, Thomsen’s definition is well defined.  

Despite the formalism of the dynamics of elastic waves in anisotropic media 

developed in 19th century by Kelvin (Musgrave, 1954a; Helbig and Thomsen, 2005), 

elastic anisotropy has received little attention until the works of Musgrave in the mid 

1950’s (Musgrave, 1954a; , 1954b; , 1959). However, for almost two decades this did not 

attract the attention of seismologist up until the works of Crampin and his colleagues, 

particularly in the context of earthquake seismology (Bamford and Crampin, 1977; 

Crampin, 1977; Keith and Crampin, 1977). Seismic anisotropy in transversely isotropic 

media has been further studied  in exploration seismology by Berryman (1979) and Levin 

(1979). It has also been studied and implemented by Amoco since the early 1980’s but it 

was officially announced in the famous Amoco “Anisotropy Session” at the 1986 SEG 

convention (Alford, 1986; Lynn and Thomsen, 1986; Rai and Hanson, 1986; Willis et al., 

1986; Thomsen, 1986b). Parametrizing the elastic stiffness coefficients in transverse 

isotropic media into five parameters (vertical compressional and shear wave velocities, 

,  , and δ ε γ ) by Thomsen (1986a)  was a significant progress in simplifying seismic 

velocity formulations. These are called as Thomsen’s anisotropy parameters. The new 

anisotropy parameters reveal more intuitive understanding of the seismic velocity of 

different modes in anisotropic media. A  comprehensive history of seismic anisotropy is 

given by Helbig and Thomsen (2005).  

In this chapter I review the theory of wave propagation in anisotropic media with 

emphasize on body waves in transverse isotropy. We start with the Hooke’s law to relate 

stress to strain through the stiffness tensor in an elastic transversely isotropic medium. 
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Later I introduce Christoffel matrix to compute the body wave slowness and polarization 

direction in a VTI medium. I discuss phase and group velocity and at the end of this 

chapter; to have a more physical insight to wave propagation through anisotropic media, 

several examples from the sedimentary rocks will be considered.  We compute the phase 

and group velocities for the examples and also calculate the slowness surface and 

polarization directions for the compressional and shear waves.    

 

1.1 Hooke’s law and Stiffness Tensor  
Hooke’s law is named after 17th Century British physicist Robert Hooke. In 

Newtonian mechanics Hooke’s law is an approximate linear model for elastic materials’ 

behaviour under a load. It relates the amount of extension or compression (strain) of an 

element directly to the applied force (stress). In an elastic material the small deformation 

of the atomic structure will return to the stable state (minimal energy level of atoms). 

This is in fact the linearity limit of the mathematical Hooke’s model.  The stress-strain 

relationship of Hooke’s law in a tensor notation is given as follows (Nye, 1993). 

 

 ij ijkl klcσ ε=  , (1.1) 

where klε  is the second- order strain tensor and is defined as: 

 1 ( )
2

k l
kl

l k

u u
x x

ε ∂ ∂
= +

∂ ∂
 . (1.2) 

ijσ  is the second-order stress tensor. Both stress and strain tensors are symmetric tensors; 

( ijσ = jiσ , klε = lkε ; , , , 1, 2,3i j k l = ). u is the displacement vector. ijklc  is the fourth-rank 

stiffness tensor and is a function of elastic properties of material. The stiffness tensor is a 

symmetric tensor ( )ijkl jikl ijlk jilkc c c c= = = . The symmetry allows reducing the number of 

independent elements of the stiffness tensor from 81 to 21 in an arbitrarily anisotropic 

medium. The fourth-order stiffness tensor can be mapped into a two dimensional 

symmetric matrix ijC = ijklc  of 36 elements (Voigt, 1928). 

where 

,
11 1, 22 2, 33 3, 32 23 4, 31 13 5, 12 21 6
ij m kl n→   →

→     →     →     = →     = →     = →
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In the most general anisotropic solid (triclinic symmetry), ijC  reduces to 21 

different elements, whereas in isotropic fluid to one element (Bulk modulus k). In the 

most realistic form of anisotropy in rocks, orthorhombic symmetry, ijC reduces to 9 

independent elements.  

  

 

11 12 13

12 22 23

13 23 33

44
ij

C C C
C C C
C C C

C
C

                  0         0         0
                  0         0         0

                  0         0         0       
=

 0         0         0              0     

55

66

0C
C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

    0         ⎜ ⎟
⎜ ⎟ 0         0         0         0              
⎜ ⎟⎜ ⎟ 0         0         0         0        0         ⎝ ⎠

 . (1.3) 

 

ijC ’s have the unit of Pascal ( 1 2ML T− − ) and usually are expressed by GPa. An 

orthorhombic medium is characterized by three mutually orthogonal symmetry planes. A 

sandstone or carbonate rock unit with two vertical systems of fractures, mutually 

orthogonal, is an example of orthorhombic symmetry. 

The general form of the wave equation in a homogeneous anisotropic media 

follows from the second Newton’s law. Tensor notation of the wave equation for an 

infinitesimal element deformed by the stress field ijσ in the Cartesian system is expressed 

as (Aki and Richards, 1980): 

 
2

2
iji

i
j

u f
t x

τ
ρ

∂∂
− =

∂ ∂
    1,2,3i =  , (1.4) 

where ρ  is density, and f is external force per unit volume. Substitution of Hooke’s law  

(1.1) and stress-strain relation (1.2) into the equation (1.4) and assuming homogeneous 

stiffness coefficients, results in the wave equation for a homogenous anisotropic 

medium,  

 
2 2

2
i k

ijkl i
j l

u uc f
t x x

ρ ∂ ∂
− =

∂ ∂ ∂
 . (1.5) 

By dropping the external force f , equation (1.5) reduces to the homogeneous wave 

equation for plane waves, 
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2 2

2 0i k
ijkl

j l

u uc
t x x

ρ ∂ ∂
− =

∂ ∂ ∂
 . (1.6) 

A trial solution for equation (1.6) is represented by: 

 ( / ) ( )j j j ji n x V t i p x t
k k ku AU e AU eω ω− −= =  , (1.7) 

where A  is the amplitude factor, kU  is the unit polarization vector, ω  is the angular 

frequency, V  is the velocity of wave propagation (the phase velocity), jn  is the unit 

vector normal to the wavefront, jp  is defined as the slowness vector ( / )j jp n V= . 

Substituting equation (1.7) into equation (1.6) results in: 

 2( ) 0ijkl l j ik kc n n V Uρ δ− =  . (1.8) 

This is the Christoffel equation for phase velocity V and polarization vector U . In matrix 

notation it is called Christoffel matrix (Musgrave, 1970): 

 

 

2
111 12 13

2
21 22 23 2

2
31 32 33 3

0
UG V G G

G G V G U
G G G V U

ρ
ρ

ρ

⎛ ⎞− ⎛ ⎞
⎜ ⎟⎜ ⎟− =⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 , (1.9) 

where ijG  depends on stiffness and wave propagation direction: 

 ik ijkl j lG c n n=  . (1.10) 

For the non-zero solution U  in equation (1.9) the determinant of the symmetric 

positive definite Christoffel matrix should be zero: 

 2det[ ] 0ij ikG Vρ δ− =  . (1.11) 

This is a 3 3×  classic eigenvalue problem. In an transversely isotropic medium with 

vertical axis of symmetry (VTI) for any direction n , the three eigenvalues of equation 

(1.11) correspond to one compressional (P-wave) and two shear waves “normal or 

vertical component (SV-wave) and parallel or horizontal component (SH-wave)”. Each 

of the three normalized eigenvectors corresponding to each eigenvalue determines the 

polarization direction of each mode. Polarization directions are always normal to each 

other but not necessarily to the direction of propagation. In an isotropic medium the 

polarization direction of plane waves is parallel to the propagation direction of 
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compressional wave and normal to the direction of shear waves; however, in anisotropic 

media this is usually untrue for each direction. 

Group velocity is the velocity in the direction of energy propagation or along the 

source receiver direction, whereas phase velocity is normal to the wavefront (Figure 1.1). 

The group velocity surface may be visualized as the constructive interference of plane 

wave wavefronts propagating from a point source (Winterstien, 1990). Depending on the 

degree of anisotropy, shape of the group velocity surface is usually more complicated 

than the shape of the phase velocity surface. In a TI medium a cusp may occur for the 

(SV-wave) group velocity surface resulting from a high curvature of its phase velocity 

(see Figures 1.4-1.6). Unlike the phase velocity which is directly computed from 

Christoffel equation, group velocity is a function of phase velocity and polarization 

vector. In dispersive isotropic media, group velocity is only a function of phase velocity 

and the variation of the phase velocity with the wave number, however, in anisotropic 

media, it also varies with the polarization direction. The general form of the group 

velocity is given as follow (Musgrave, 1970): 

 1
j ijkl i k lVg c U U n

vρ
=  , (1.12) 

where Vg is the group velocity, v  is the phase velocity, and U is the polarization vector. 

An angle dependent relation between group velocity (ray velocity) and phase velocity for 

a VTI medium is given by (Berryman, 1979): 

 ( )
2

2 2
g

dvV v
d

ψ
θ

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

, (1.13) 

where θ  is the phase angle, the angle between normal to the wavefront and symmetry 

axis. Group (ray) angle ψ  is the angle between group velocity vector and symmetry axis. 

In a VTI medium ray angle is given by (Thomsen, 1986a; Tsvankin, 2001). 

 1 tan( )tan( ) tan( ) / 1dv dv
v d v d

θψ θ
θ θ

⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 , (1.14) 

 

Figure (1.1) shows phase and ray angle and velocities for transversely isotropic medium 

with vertical axis of symmetry (VTI). Along the vertical and horizontal direction the 

phase and group angles are the same. 
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Figure 1.1: Ray and phase angles in a homogeneous VTI (Hexagonal symmetry) medium, 

θ  is the phase angle and ψ  is the ray angle. 
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1.2 Seismic wave propagation in transversely isotropic (TI) media 
Transversely isotropy (hexagonal symmetry) is the simplest form of anisotropy to 

model geological features and is widely used in geophysical applications. It is 

characterized by an isotropy plane and axis of symmetry normal to it. Any plane which 

contains axis of symmetry is a symmetry plane. In the isotropy plane the properties of 

that medium do not change with angle. If the axis of symmetry is rotated with respect to 

the coordinate axes it creates a general type of TI medium which is called tilted 

transversely anisotropy (TTI). Dipping transversely isotropic layers such as shales near 

the flanks of a diaper or in the folded and thrusted regions are examples of TTI media. 

Vertical transverse isotropy is a special case of a TTI in which the axis of symmetry is 

vertical (with respect to the earth surface). In some literature VTI is also has been called 

polar anisotropy (Thomsen, 2002). Shales very often show VTI behaviour. A 

homogenous isotropic stack of fine layers whose thicknesses are smaller than the seismic 

wavelength also show VTI behaviour. The effective properties of this medium are 

calculated by equivalent medium theory (Backus, 1962). This medium can be replaced by 

an equivalent homogeneous anisotropic medium. Horizontal transverse isotropy (HTI) is 

also a special case of TTI, in which the axis of symmetry is horizontal. Orthogonal 

parallel fractures in granitic rocks and sandstones cause a HTI behaviour. Figures (1.2) 

and (1.3) show schematic illustrations of a VTI and HTI medium.  

Stiffness tensor in a VTI medium consists of 5 independent elements (1.15). 

 

11 11 16 13

11 16 11 13

13 13 33

2
2

ij

C C C C
C C C C

C C C
C

                 −             0         0         0
−                              0         0         0

                                        0         0        
=

44

44 0
C

C

 0       
     0                     0               0              0         0         
     0                     0               0         0              
     0                     0          66C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟     0         0        0         ⎝ ⎠

 , (1.15) 

 

where the stability condition is (Musgrave, 1970): 

 

11 66

33

44
2

13 33 11 66

0
0
0

( )

C C
C
C

C C C C

≥ ≥
≥
≥

≤ −

 . (1.16) 
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Figure 1.2: A schematic illustration of a VTI medium. Isotropy plane is horizontal and 

axis of symmetry is normal to it.  

 

Figure 1.3: A schematic illustration of a HTI medium. Isotropy plane is vertical and axis 

of symmetry is normal to it. 
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Another way of representing the stiffness tensor in a VTI medium is given by Lamé 

constants (Chapman, 2004; Ikelle and Amundsen, 2005): 

  

 ijC

λ μ λ υ
λ λ μ υ
υ υ λ μ

⊥ ⊥ ⊥

⊥ ⊥ ⊥

+ 2                              0        0         0
              + 2                0        0         0
                              + 2   0        0          0

=
    0              

0
μ

μ
μ⊥

⎛ ⎞
⎜
⎜
⎜
⎜

   0              0               0         0         ⎜
⎜     0                 0              0         0               ⎜
⎜     0                 0              0         0        0        ⎝

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

 , (1.17) 

 

where ⊥  and  refer to normal and parallel to the axis of symmetry. Lamé constants can 

be found by equating the elements of (1.17) into (1.15). 

As for VTI medium, the stiffness tensor in a HTI medium consists of 5 

independent elements,  

 

11 13 13

13 33 33 44

13 33 44 33

2
2

ij

C C C
C C C C
C C C C

C

                            0         0         0
               −   0         0         0
     −             0         0         0       

=
 0              0          44

66

66

0
C

C
C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

  0                0         0      ⎜ ⎟
⎜ ⎟ 0              0            0          0               
⎜ ⎟⎜ ⎟ 0              0            0          0         0         ⎝ ⎠

 . (1.18) 

 

The stiffness tensor for a TTI medium can be found by rotating the stiffness 

tensor for a VTI medium normal to the symmetry axis. The stiffness tensor for a TTI 

medium as a function of dip angle is given by Ikelle and Amundsen (2005).  

We mentioned that the eigenvalues and eigenvectors of the Christoffel matrix 

correspond to phase velocity and polarization direction of three modes (P-waves, SV-

waves, and SH-waves) for VTI media. Since all orthogonal planes normal to the isotropy 

plane are similar, we can restrict the wave propagation to two dimensions (x-z plane). 

Now the cosine directions are: 

 1 2 3

3

sin( ), 0, cos( )
angle between and the wave propagation direction

n n n
n

θ θ
θ

=          =          =
=   

 . (1.19) 



 18

By substitution of the stiffness tensor for a VTI medium (1.15) into the equation (1.10), 

the ijG  coefficients are (Tsvankin, 2001): 

 

2 2 2
11 11 1 66 2 55 3

2 2 2
22 66 1 11 2 55 3

2 2 2
33 55 1 2 33 3

12 11 66 1 2

13 13 55 1 3

23 13 55 2 3

( )
( )
( )
( )

G C n C n C n

G C n C n C n

G C n n C n
G C C n n
G C C n n
G C C n n

= + +

= + +

= + +
= −
= +

= +

 . (1.20) 

     
   
Substitution of the equation  (1.20) in the Christoffel matrix (1.9) gives: 
 
 

2 2 2
111 1 55 3 13 55 1 3

2 2 2
66 1 55 3 2

2 2 2
13 55 1 3 55 1 33 3 3

0 ( )
0 0 0

( ) 0

UC n C n V C C n n
C n C n V U

C C n n C n C n V U

ρ
ρ

ρ

⎛ ⎞+ − + ⎛ ⎞
⎜ ⎟⎜ ⎟+ − =⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟+ + − ⎝ ⎠⎝ ⎠

 .          (1.21) 

 
  
In a VTI medium, 55 44C C= , so I prefer to use 44C instead when it is needed. 

Solving the equation (1.21), the phase velocity of a pure shear wave ( )shV  polarized in 

transverse direction can be found by solving the following equation for V :  

 2 2 2
66 44 2( sin ( ) cos ( ) ) 0C C V Uθ θ ρ+ − =  , (1.22) 

 

 2 2 2
66 44

1( ) sin ( ) cos ( )ShV C Cθ θ θ
ρ

⎡ ⎤= +⎣ ⎦  . (1.23) 

The phase velocity of the horizontal component of the shear wave in the vertical direction 

of propagation is 44(0) /shV C ρ= , while in the horizontal direction is 

66(90) /shV C ρ= . 

By letting 1 3 20, 0U U U= ≠   = , equation (1.21) turns to the following equation: 

 
2 2 2

111 44 13 44
2 2 2

213 44 44 33

sin ( ) cos ( ) ( )sin( ) cos( )
0

( )sin( ) cos( ) sin ( ) cos ( )
UC C V C C
UC C C C V

θ θ ρ θ θ
θ θ θ θ ρ

⎛ ⎞+ − + ⎛ ⎞
=⎜ ⎟⎜ ⎟+ + − ⎝ ⎠⎝ ⎠

 , (1.24) 
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Solving this equation for the phase velocity (V) for P-waves and SV-waves gives: 

 2 2 2
11 44 33 44

1( ) ( )sin ( ) ( ) cos ( )
2pV C C C C Dθ θ θ

ρ
⎡ ⎤= + + + +⎣ ⎦  , (1.25) 

 

 2 2 2
11 44 33 44

1( ) ( )sin ( ) ( )cos ( )
2SvV C C C C Dθ θ θ

ρ
⎡ ⎤= + + + −⎣ ⎦  , (1.26) 

where,  

( )
1

2 22 2 2 2 2
11 44 33 44 13 44( )sin ( ) ( ) cos ( ) 4( ) sin ( )cos ( )D C C C C C Cθ θ θ θ⎡ ⎤= − − − + +⎣ ⎦  . 

 
 The compressional velocity in the vertical direction, 33(0) /Vp C ρ= , while in the 

horizontal direction 11(90) /Vp C ρ= . This shows that compressional wave velocity in 

the vertical and horizontal directions are different unless 11 33C C= . The phase velocity for 

the SV-wave when it is propagating either in vertical or horizontal direction, is the same, 

44(0) (90) /sv svV V C ρ= = . The phase velocity difference of the shear wave modes in the 

isotropy plane results in shear wave splitting. 

Phase and group velocity surfaces can be illustrated by plotting phase and group 

velocities against their corresponding phase and group (ray) angles in a polar diagram. 

Slowness surface (inverse of the phase velocity) can be shown in the same way as phase 

velocity. According to Musgrave (1970) and Helbig (1994), wave propagation direction 

is normal to the slowness surface. The polarization direction of each mode can be 

determined by eigenvectors of equation (1.21). In a homogenous isotropic medium the 

polarization direction of each mode is either parallel (P-waves) or orthogonal (S-waves) 

to the ray direction, whereas, in homogenous anisotropic media except for the vertical 

and horizontal ray directions (pure compressional and shear waves), there is no pure 

compressional and SV-wave modes; Therefore, they are called quasi compressional and 

quasi SV- waves modes (see Figures 1.4-1.6). 

 In anisotropic media, the equations governing seismic wave propagation 

expressed based on the stiffness tensor, are more complicated than for isotropic media. 

The importance of anisotropy is usually hidden in these equations and can’t be intuitively 

understood. Thomsen (Thomsen, 1986a) introduced simpler notations which yield much 

insight to wave equation in anisotropic media. In a VTI medium five elastic coefficients 
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can be replaced by the following three Thomsen’s parameters ( ), ,δ ε γ  and vertical 

velocity of compressional and shear waves: 

 33
0

Cα
ρ

=  , (1.27) 

 44
0

Cβ
ρ

=  , (1.28) 

 11 33

332
C C

C
ε −

=  , (1.29) 

 
2 2

13 44 33 44

33 33 44

( ) ( )
2 ( )

C C C C
C C C

δ + − −
=

−
 , (1.30) 

 66 44

442
C C

C
γ −

=  , (1.31) 

 
where 0α  is vertical P-wave velocity and 0β  is vertical shear wave velocity, , ,ε δ  andγ  

are dimensionless. Rearranging the equations (1.25),  (1.26), and (1.23) in terms of 

Thomsen’s parameters gives: 

 
 2 2 2 '

0( ) 1 sin ( )pV Dθ α ε θ⎡ ⎤= + +⎣ ⎦  , (1.32) 

 
2 2

2 2 2 '0 0
0 2 2

0 0

( ) 1 sin ( )SvV Dα αθ β ε θ
β β

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
 , (1.33) 

 2 2 2
0( ) 1 2 sin ( )ShV θ β γ θ⎡ ⎤= +⎣ ⎦  , (1.34) 

where 
1

2 2 2 2 2
' 2 2 40 0 0 0

2 2 2 2 2
0 0 0 0

1 / 4(1 / )4(2 )1 sin ( )cos ( ) sin ( ) 1
2 1 / (1 / )

D β α β α ε εδ ε θ θ θ
β α β α

⎡ ⎤
⎧ ⎫− − +−⎢ ⎥= + + −⎨ ⎬⎢ ⎥− −⎩ ⎭⎢ ⎥⎣ ⎦

 . 

 
For 90θ =  equation (1.32) reduces to: 
 
 ( )2 2(90) (0) 1 2p pV V ε= +  . (1.35) 
 
An approximate Taylor expansion of (1.35) gives: 
 

 
(90) (0)

(0)
p p

p

V V
V

ε
−

≈  . (1.36) 
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Equation (1.36) shows why ε  is usually called as P-waves anisotropy. The same 

procedure with ShV in equation (1.34) results in: 

 (90) (0)
(0)

Sh Sh

Sh

V V
V

γ −
≈  . (1.37) 

γ  is usually called the SH-wave anisotropy. 

The definition of δ , however, is not as clear as ε  and γ  from (1.30). Taking the 

second derivative of pV  with respect to 0θ =  in equation (1.32) results in (Tsvankin, 

2001): 

 
2

2
0

( )
2 (0)p

p

d V
V

d
θ

θ
δ

θ
=

=  . (1.38) 

 Since 
0

0pdV
d θθ

=

= , this shows that away from the vertical direction pV will increase if 

δ is positive and decrease if δ  is negative. In processing of seismic reflection data δ has 

more influence than ε  and is directly connected to normal moveout velocity. The 

linearized equations of reflectivity (Thomsen, 1993; Rüger, 1996) show that δ  has a 

first-order effect on reflection coefficients in smaller angles of incidence, while ε  has 

more influence at larger angles of incidence. Following is the approximate moveout 

velocity (Thomsen, 1986a): 

                                                       ( )(0) 1pNMO pV V δ≈ +  .                                         (1.39) 

In moderately anisotropic sedimentary rocks ε  varies from 0.1-0.3 and even in 

compacted shale formations it may be 0.4-0.5 (Thomsen, 1986a; Alkhalifah, 1996). 

Typical values for δ are in the order of 0.05-0.2, while in a TI medium interbedding of 

thin isotropic layers produces small negative values (Berryman et al., 1999).  

Transformation from stiffness coefficients ( )ijC  to 0 0, , , ,α β δ ε γ  is straightforward but 

the inverse transformation is not unique for 13C unless the sign of 13 44( )C C+  is specified, 

since the stability condition (1.16) requires 44C be always positive (elastic medium) 

except for anomalous large values 44C the sign of  13 44( )C C+  is always positive. 

 2
33 0C ρα=  , (1.40) 

 2
44 0C ρβ=  , (1.41) 
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 11 33(2 1)C Cε= +  , (1.42) 

 ( ) ( )( )
1
2

13 33 44 33 44 442 1C C C C C Cδ⎡ ⎤= − + − −⎣ ⎦  . (1.43) 

 
 

1.3 Numerical examples 
To demonstrate the seismic wave propagation pattern and polarization direction in 

a transversely isotropic medium with vertical axis of symmetry, three examples (data 

after Thomsen, 1986) from the VTI media are illustrated in Figures 1.4-1.6 in a polar 

coordinate system. The vertical axis corresponds to the symmetry axis and phase ( )θ  and 

group ( )ψ  angles are measure from it. These examples correspond to shale samples from 

Dog Creek shale, Mesaverde shale, and Green River shale respectively. Phase (solid-

blue) and group (dashed-red) velocities for P-wave, SV-wave, and SH-wave are 

illustrated in Figure 1.4-a, 1.5-a, and 1.6-a. Strong anisotropy has resulted in triplication 

effects (cusps) on SV-wave phase velocity (Figures 1.5(a) and 1.6(a)). Shear wave 

singularities (where the phase velocity or slowness surfaces of SV-wave and SH-wave 

touch each other) can be seen in all three Figures. In Figures 1.4-1.6 (b), slowness and 

polarization directions are illustrated for three modes. Polarization direction of SH-wave 

is in the horizontal direction (isotropy plane) and does not change with phase angle, 

however, the polarization directions of P-wave and SV-wave change as the phase angle 

changes. Except in 0θ =  and 90θ = ±  in which, polarization vectors are parallel (P-

wave) or orthogonal (SV-wave) to the ray direction (pure modes), other directions are 

neither parallel (Quasi P-wave) nor orthogonal (Quasi SV-wave). Table (1.1) illustrates 

the stiffness tensor for three shale samples mentioned above, measured in the lab with 

ultrasonic waves. 
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10.2 5.58 4.96
5.58 10.2 4.96
4.96 4.96 7.

1.36
1.36

ijC

              
              
                     

=
                                        
                                                     
            

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟                                                      2.3⎝ ⎠

 

(a) 

 

 
66.6 19.6 39.4
19.6 66.6 39.4
39.4 39.4 39.9

10.9
10.9

ijC

              
              
                     

=
                                        
                                                     
          

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟                                                        23.5⎝ ⎠

 

 
(b) 

 
 

 
31.25 13.6 3.4
13.6 31.25 3.4
3.4 3.4 22.48

6.48
6.48

ijC

           
           

                       
=

                                        
                                                     
               8.82

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟                                                   ⎝ ⎠

 

(c) 
 

 
Table 1.1: Stiffness tensor for (a) Dog Creek Shale, (b) Mesaverde Shale, and (c) Green 

River Shale. Numbers are in GPa,  

 
 
 



 24

               (a) 

                     
                                                                     (b)  
   
Figure 1.4: Seismic wave propagation and polarization pattern of  P, SV, and SH waves 

for Dog Creek Shale (VTI anisotropy).  (a) Phase velocity (blue curve) and group 

velocity (red curve) surfaces. (b) Slowness surfaces (blue) and polarization direction (red 

arrows). (Data after Thomsen, 1986). The elastic and anisotropic parameters are: 
3

0 01875 / , 826 / , 2.00 / , 0.1, 0.225,m s m s g cmα β ρ δ ε γ=   =   =   =  =  = 0.345  
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               (a) 

                                                                 
                                                                       (b)  
 
Figure 1.5: Seismic wave propagation and polarization pattern of  P, SV, and SH waves 

for Mesaverde (5501) Shale (VTI anisotropy).  (a) Phase velocity (blue curve) and group 

velocity (red curve) fields. Triplication effects (Cusps) are occurred for vS  near 0  and 

90±  from vertical axis. (b) Slowness surfaces (blue) and polarization direction (red 

arrows). (Data after Thomsen, 1986). The elastic and anisotropic parameters are: 
3

0 03928 / , 2055 / , 2.59 / , 0.73, 0.334,m s m s g cmα β ρ δ ε γ=   =   =   =  =  = 0.575  
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                                                           (a) 

                  
                                                                     (b)   
Figure 1.6: Seismic wave propagation and polarization pattern of  P, SV, and SH waves 

for Green River Shale (VTI anisotropy).  (a) Phase velocity (blue curve) and group 

velocity (red curve) fields. Triplication effects (Cusps) are occurred for vS  near 0  and 

90±  from vertical axis. (b) Slowness surfaces (blue) and polarization direction (red 

arrows). (Data after Thomsen, 1986). The elastic and anisotropic parameters are: 
3

0 03292 / sec, 1768 / sec, 2.075 / , 0.220, 0.195,m m g cmα β ρ δ ε γ=   =   =   = −  =  = 0.180  
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Chapter 2 
 

Ray tracing in transversely isotropic media 
 
Introduction 
 

In the previous chapter we showed the Christoffel matrix based on the stiffness 

tensor elements and the directional cosines as a function of phase angle and I expressed 

phase velocities as the eigenvalues of this matrix. In this chapter I will express seismic 

wave propagation in terms of ray parameter which will subsequently be used in ray 

tracing in a homogeneous transversely isotropic layered medium. This approach has been 

widely used in elastic and viscoelastic isotropic and general anisotropic media (Daley and 

Hron, 1977; Chapman and Woodhouse, 1981; Ursin, 1983; Graebner, 1992; Chapman, 

1994; Ĉervenŷ, 2001; Stovas and Ursin, 2003; Ikelle and Amundsen, 2005). Using the 

offset equation given by Ursin and Stovas (2006), I will optimize an objective function 

composed of the calculated and measured offsets to estimate a ray parameter for every 

ray path for both P P→ and converted vP S→  waves. This will be done using the 

Newton method of minimization (Nocedal and Wright, 1999). At the end of this chapter I 

will formulate the new offset and traveltime equations for a dipping transversely isotropic 

medium and estimate ray parameter for each ray path for both P P→ and converted 

vP S→  waves. 

 
2.1 Parametric wave propagation in terms of ray parameter 
 

In a transversely isotropic medium with a vertical axis of symmetry we ignore the 

transverse direction and restrict ourselves to the vertical plane (so we only consider one 

component of horizontal slowness 1 2, 0p p p=     = ). Fourier transform of the equation of 

motion and Hooke’s law for a VTI medium can be written  as a system of 2n  linear 

ordinary differential equation expressed by a 2 2n n ×  coefficient matrix which is 

partitioned into the 4 n n × submatrices (Chapman, 1994; Stovas and Ursin, 2003): 
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0

0
Adb b

Bdz
ω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 , (2.1) 

where [ ], , ,z r z rb U S S Uω ω=  −   , zU  and rU are transformed vertical and horizontal 

displacements components, and rS , zS are transformed vertical and horizontal source 

components in the horizontal plane.  A and B are real symmetric matrices in an elastic 

medium and are functions of slowness and stiffness coefficients, 

 

 
1 1

33 13 33
11 2 2 1

4413 33 11 13 33

,
( )

pC C C p
A B

p CC C p p C C C
ρ

ρ

− −

−− −

−⎛ ⎞− ⎛ ⎞
=          =⎜ ⎟ ⎜ ⎟−− − − ⎝ ⎠⎝ ⎠

 , (2.2) 

 
where ρ  is the density. 
 

A product matrix H AB=  will be used to extract vertical slowness using 

dispersion equations, 

 

( ) ( )( )
1 1 2 1 1 1

33 13 33 33 13 33 44

2 21 2 2 1 1 2 2 1 1
13 33 11 13 33 13 33 11 13 33 44

C C C p pC C C C p
H

C C p p p C C C C C p p C C C C

ρ

ρ ρ ρ

− − − − −

− − − − −

⎛ ⎞− − +
⎜ ⎟=
⎜ ⎟+ − − − − − −
⎝ ⎠

.(2.3) 

 2 2 2 2 2 2,q p q pα βα β− −= −        = −  . (2.4) 

The eigenvalues q of (2.3) after substitution with the Thomsen’s anisotropy parameters 

are in fact vertical slowness for P-waves and SV-waves given by Stovas and Ursin (2003) 

and Ursin and Stovas (2006),  

 

2 2 2 2
0 0

1 2 ( )
2

q q q pα β σ δ⎡ ⎤= − − − + +⎣ ⎦                                                                                (2.5) 

( ) ( )( ) ( ) ( )
222 202 2 2 4

0 0 02 2
0 0

1
4 1 4 2pq q pβ α

γ
γ σ δ σ σ δ

α γ

⎡ ⎤−
⎢ ⎥± − − − − + + +
⎢ ⎥⎣ ⎦

 , 

 
where 2

0qα  and 2
0qβ are vertical slowness for P  and vS  waves travelling vertically: 

 0 0 0/γ α β=  , (2.6) 
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 ( )2
0σ γ ε δ= −  , (2.7) 

 2 2 2
0 0q pβ β −= +  , (2.8) 

 2 2 2
0 0q pα α −= +  , (2.9) 

            where 0α  and 0β  are the vertical compressional and shear wave velocities. By 
substitution of 0qα  and 0qβ respectively in (2.5), the vertical slowness for P-waves and  
SV-waves become: 
 ( )2 2 2

0q q pα α σ δ ψ= − + −  , (2.10) 

 ( )2 2 2
0q q pβ β σ δ ψ= − + +  , (2.11) 

where  

                                     
( )2

0 2 2 4 4
0 02

0

1
1 1

2
bp cp

γ
ψ α α

α
− ⎡ ⎤= + + −⎣ ⎦  ,                                  (2.12) 

( )
( )

( ) ( )
2

20
22 22

0 00

2 14 4,
1 1

b c
γ

σ δ σ σ δ
γ γγ

⎡ ⎤−
⎢ ⎥= − −     = + +

− ⎢ ⎥− ⎣ ⎦
 . 

 
The square root in (2.12) can be written in a Taylor series with a few terms as: 

 

 

2 2 4 4 2 2 2 4 4
0 0 0 0

2 6 6 2 2 8 8
0 0

1 1 11 1
2 2 4

1 1 1 1 5 ...
4 4 8 4 4

bp cp bp c b p

b c b p c b c b p

α α α α

α α

⎛ ⎞+ + = + + −⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞− − − − − +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

. (2.13) 

Combining (2.10) and (2.8) results in the WP ave−  phase velocity: 

 2
2 2

0

1 1

p

p H
v αα

= −  , (2.14) 

where  

 ( )2
0

0

j
j

j

H a pα α
∞

=

= ∑  . (2.15) 

The first few terms of ja  are given as: 
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1 2
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2
0

2 2 2
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1 2

22( ) 1
1
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22 24 ( ) 1 1  .
1 1 11

a

a

a

a

δ

γ δε δ
γ

γ δε δ δ σ
γ γ

γ δ σγ δ γ δε δ σ
γ γ γγ γ
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⎛ ⎞
= − +⎜ ⎟−⎝ ⎠

⎛ ⎞
= − − + −⎜ ⎟− −⎝ ⎠

⎡ ⎤−⎛ ⎞ ⎛ ⎞
= − − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟− − −− ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.16) 

 
By adding (2.10) and (2.11), then using (2.8) and (2.9), and combining with (2.14)   we 

can express the SV-wave phase velocity as:  

 2
2 2

0

1 1

s

p H
v ββ

= −  , (2.17) 

where  

 ( )2
0

1
2 j

j
j

H a pβ σ α
∞

=

= − ∑  . (2.18) 

Equations (2.14) and (2.17) are the key equations which will be used for the ray tracing. 

We investigated the accuracy of equations (2.14) and (2.17) for wide varieties of 

Thomsen’s anisotropy parameters and ray parameters. Equation (2.14) is accurate almost 

under any degree of anisotropy and every ray parameter, however, equation (2.17) seems 

to breaks down for larger ray parameters or phase angles of incidence. Since, in this 

thesis we are dealing with vP S→  rather than v vS S→ , and also SV-wave incidence angles 

from conversion are much smaller than P-wave phase angles of incidence,  there is no 

concern  about them during the ray tracing.  

 

2.2 Traveltime and offset in a horizontally layered media 
 

In this section we will represent the traveltime and offset equations for a 

homogeneous horizontally layered medium as a function of ray parameter for both 

compressional ( )P P→ and converted shear waves ( )vP S→ . We will still consider the 

medium as transversely isotropic with a vertical axis of symmetry.  Figure 2.1 shows a 

typical configuration for ray tracing in the symmetry plane for both P P→  and vP S→  

rays. The classic ray theory will be used and, to do so, only two conditions need to be 
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met. The ray trajectories have to be in the symmetry plane in each layer and rays have to 

obey Snell’s law (Hubral and Krey, 1980). 

Let the source and receiver be separated by offset X  on the earth’s surface and 

let the traveltime of the ray path be T . Each ray elements will have the traveltime t  and 

offset x  in a layer with the thickness z  (Figure 2.2). The traveltime  T  and offset  X  

can be represented by the summation of all down going and up going ray elements. 

   

 
2

1 ( )

n
k

k k k

zT
V cos α=

= ∑  , (2.19) 

 
2

1
( )

n

k k
k

X z tan α
=

= ∑  . (2.20) 

 

where kV  is the ray velocity (either compressional or converted shear wave), kα is the ray 

angle for each ray element, and n is the number of layers. As we saw in the previous 

section, wave propagation equations contain phase velocity rather than ray velocity, so 

the ray tracing equation has to be expressed by phase velocity and phase angle. 

The following equation (Ĉervenŷ, 2001) along with (1.13) and their derivatives, 

after some trigonometric manipulations (Ursin and Hokstad, 2003), (Ursin and Stovas, 

2006), map the ray angle and ray velocity to phase angle and phase velocity (see 

appendix  A), 

 ( ) vcos
V

α θ− =  . (2.21) 

where α  is the ray angle, θ  is the phase angle, and v  is phase velocity. By substitution 

of ray angle and ray velocity with phase angle and phase velocity, equations (2.19) and 

(2.20) can be expressed as (see Appendix B): 

 
2

1
1

( )

n
k

k
k k k k

z pT v
v cos vθ=

⎛ ⎞
′= +⎜ ⎟

⎝ ⎠
∑  , (2.22) 

 
2

3
1 ( )

n
k k k

k k k

z v vX p
cos vθ=

⎛ ⎞′
= +⎜ ⎟

⎝ ⎠
∑  . (2.23) 
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1 1 1 1 1 1p sV V zδ ε ρ ,  ,  ,  ,    ,      

2 2 2 2 2 2p sV V zδ ε ρ ,  ,  ,  ,         

1 1 1 1 1 1pn sn n n n nV V zδ ε ρ− − − − − − ,  ,  ,  ,         

pn sn n n n nV V zδ ε ρ ,  ,  ,  ,  ,       

P

P P
vS

( )PX P P→Source ReceiverSvX

( )P vX P S→

 
Figure 2.1: Ray paths for P P→ and vP S→ travelling through horizontal anisotropic 
media (Z is the thickness). 
 

lz

α

x

( )

( )

x ztan
zt

Vcos

α

α

=

=

 
Figure 2.2: A ray element travelling upward through a horizontal layer 
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Equations (2.22) and (2.23) need to be expressed in terms of vertical velocities, so using 

the equations (2.14) and (2.17), and their derivative we rewrite equations (2.22) and 

(2.23) as (see appendix B): 

 
( )

3 2
2 0,

2 2
1 0, 0,

11
2

1 1

n k k
k

k k k k

p v HzT
v p v H=

′+
=

− +
∑  , (2.24) 

                                            
( )

2

0, 2 2
1 0,

11
2

1 1

n k k

k k
k k k

H pH
X p z v

p v H=

′+ +
=

− +
∑  .                               (2.25) 

where 0v  is the vertical velocity (either compressional or converted shear waves) and 

/H dH dp′ = . In the case of converted shear waves H and H ′  should be replaced by 

sH and sH ′ for the second leg of the ray path.   

 

2.3 Two point ray tracing in a horizontally layered media 
 

In the previous section we derived parametric traveltime and offset equations for 

the rays which travel in the symmetry plane of a VTI horizontally layered medium.  

Unfortunately there is no explicit method to find the ray parameter for a multilayered 

medium. In the ray tracing algorithm we seek a ray parameter in which a ray after 

shooting can reach the receiver within an error limit. We use Newton method (Nocedal 

and Wright, 1999) which is fast and works under almost any condition in terms of degree 

of anisotropy and velocity contrast. In the models we are dealing with in this thesis we 

assume there would be no triplications in SV-wavefronts. To optimize the ray parameter 

we choose a quadratic objective function (2.26) which is the square function of measured 

offset 0x  and calculated offset x  by (2.25). 

 ( )2
0f x x= −  . (2.26) 

The objective function is discontinuous (Figure 2.3) and for the cases, in which 

the ray parameter is close to the critical point, minimization is unstable and will break 

down. To avoid the instability, minimization will alternate to a logarithmic scaled 

objective function (2.27) and it will effectively stabilize the objective function (Figure 

2.3). 
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2

0ln xf
x

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 . (2.27) 

We draw a random ray parameter from a uniform distribution in a certain interval 

(0.00001 - 0.0001, the random ray parameter outside the interval will be rejected) and 

check for consistency with the following equation to avoid the imaginary part. So,  

 

 ( )2 2
0,1 1k kp v H− +  , (2.28) 

 only the ray parameters which results in positive values of (2.28) will be accepted. In the 
case of tracing the vP S→  rays, equation (2.28) also has to be satisfied for the converted 

shear wave part. This means that the H  and 0v  terms has to be replaced with sH and 0β . 

After selecting a ray parameter we calculate the offset according to equation (2.25) and 
the derivatives of offset with respect to ray parameter (see appendix 2. C). the prior ray 
parameter can be updated according to: 

 
2

1 2/n n
f fp p
p p

μ+

∂ ∂
= −

∂ ∂
 , (2.29) 

where   

 

( )

( )

0

22 2

02 2

2  ,

2 2  ,

f x x x
p p

f x xx x
p p p

∂ ∂
= − −

∂ ∂

⎛ ⎞∂ ∂ ∂
= − − + ⎜ ⎟∂ ∂ ∂⎝ ⎠

 (2.30) 

μ  is the step length from the line minimization, and n is the iteration number. The 

Newton method usually converges to the minimum in a few iterations to 1.e-06 meter of 

accuracy (difference between the measured offset and calculated offset from the 

estimated ray parameter). Sometimes where the angle of incidence is very large (it occurs 

for the shallow reflectors in long offsets or where the velocity contrast is high), 

minimization may need to be restarted via a recursive algorithm. 

To test the method we have used a numerical model of Ursin and Stovas (2006) 

after some modifications (Table 2.1) to calculate the traveltimes. This model was 

composed of 10 layers with different thicknesses. A large variety of VTI anisotropy was 

assigned to layers to investigate the effect of anisotropy on wave propagation. We will 

use this layered model as a benchmark to estimate its properties by different inversion 
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algorithms in later chapters.  Figures 2.4 and 2.5 illustrate the ray parameters for P P→  

and vP S→  rays which have been estimated for the layered model (Table 2.1). The first 

receiver is kept at 200 meter away from the source and the rest of the receivers are spaced 

at every 50 meters. The maximum offset is 4950 metre. Figures 2.6 and 2.7 illustrate the 

traveltimes for P P→  and vP S→  respectively which are calculated using the estimated 

ray parameters. 
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Figure 2.3: A typical ray parameter solution space.  

 

Layer ( / )pV m s  ( / )sV m s  δ  ε  3( / )g cmρ  ( )z metreΔ  

1 1940 780 0.03 0.1 2.03 1000 

2 2140 860 -0.02 0.14 2.06 160 

3 2220 890 -0.05 0.1 2.08 90 

4 2000 1000 0.1 0.14 2.04 40 

5 1990 990 0.05 0.1 2.04 100 

6 1900 950 0.04 0.12 2.02 190 

7 2200 1150 0.06 0.18 2.08 270 

8 2050 1130 0.1 0.2 2.05 170 

9 2650 1500 0.07 0.1 2.15 310 

10 2750 1530 0.1 0.14 2.17 300 

 

Table 2.1: Layer properties used to calculate P P→  and vP S→ traveltimes. 
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Figure 2.4: Ray parameters estimated for P P→  rays from the horizontal layered media (Table 

2.1). The top curve corresponds to layer 1, while the lowest one corresponds to layer 9. 
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Figure 2.5: Ray parameters estimated for vP S→  rays from the horizontal layered media (Table 

2.1). The top curve corresponds to layer 1, while the lowest one corresponds to layer 9. 
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Figure 2.6: Traveltimes calculated for P P→  rays from the horizontal layered media (Table 2.1). 

The top curve corresponds to layer 1, while the lowest one corresponds to layer 9. 

 

0 1000 2000 3000 4000 5000
Offset (meter)

5000

4500

4000

3500

3000

2500

2000

1500

Tr
av

el
tim

e(
m

s)

 
 
Figure 2.7: Traveltimes calculated for vP S→  rays from the horizontal layered media (Table 

2.1). The top curve corresponds to layer 1, while the lowest one corresponds to layer 9. 
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2.4 Two point ray tracing in a dipping layered medium 
 

2.4.1 Snell’s law in a dipping layered media 

In this section we express equations for traveltime and offset in a dipping layered 

medium. We assume that each layer is transversely isotropic, the axis of symmetry 

normal to the interface and layer properties do not change laterally. In a dipping layered 

medium the law of conservation of horizontal slowness is no longer valid and each ray 

element has its own ray parameter. Along the interface of two dipping layers, the 

horizontal slowness is constant and we can calculate a ray parameter by projection of 

vertical and horizontal slowness on  the interface (Tsvankin, 2001). Then, using Snell’s 

law along the interface we can  compute refraction phase angle (Byun, 1982; Levin, 

1990). Snell’s law along the interface for different rays can be written as: 

 

Down going waves: 

 

( )
( )

( )
( )

r r ifc u
ifc

u r

t t ifc l
ifc

l t
r t
ifc ifc

sinp
v

sinp
v

p p

θ γ ψ
θ

θ γ ψ
θ

− +
=

− +
=

=

 , (2.31) 

where rθ  is the incidence phase angle, tθ  is the refraction phase angle, γ  is the dip angle 

of the interface, and ψ  is dip angle of the symmetry plane. u  and l  stand for upper and 

lower layers, v  is phase velocity, p is ray parameter, and ifc stand for interface . 

 

Reflected waves: 
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( )
( )

r r r
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p p
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=
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=

=

 , (2.32) 

where r and r′ stand for incidence and reflected waves. 
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Up going waves: 

 

( )
( )

( )
( )

r r ifc u
ifc

l r

t t ifc l
ifc

u t
r t
ifc ifc

sinp
v

sinp
v

p p

θ γ ψ
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θ

+ −
=

+ −
=

=

 . (2.33) 

 
Equations (2.31) – (2.33) are the general form of Snell’s law and have to be corrected for 

the dip direction of the layer and the symmetry plane. This could be done by multiplying 

by +1 for positive dips (assuming the dipping directions are counter clockwise) and -1 for 

negative dips (assuming the dipping directions are clockwise). 

Suppose a ray is propagating downward. For a given ray parameter along an 

interface ( r
ifcp ), we can calculate the phase velocity in the upper layer ( uv ), then the phase 

angle of incidence can be calculated using equation (2.29). Now, phase velocity in the 

lower layer ( lv ) for the given ray parameter along the interface can be calculated and, 

therefore, the phase angle of refraction or equally, the phase angle of incidence for the 

lower layer is found. In each layer the horizontal slowness ( 1p ) and vertical slowness 

( 3p ) can be calculated simply by Snell’s law (equation(2.31)). 

 
1

3

( )
( )

( )
( )

sinp
v
cosp
v

θ
θ

θ
θ

=

=
 , (2.34) 

which, in fact are related to the ray parameter along an interface via: 
 
 1 3( ) ( )ifc ifc ifcp p cos p sinγ γ= +  . (2.35) 

 
2.4.2 Traveltime and offset in a dipping layered media 

We assume a dipping transversely isotropic medium composed of a stack of 

layers in a 2-D plane (Figure 2.8). We also assume that ray trajectory has to be in the axis 

of the symmetry plane, so there is no out of plane reflection. At the interface of two 

media, in 
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Figure 2.8: Incidence and refraction phase angles in a dipping media 

 

addition to P-wave reflections, shear wave conversions will also be created (Figure 2.9). 

We consider a down-going ray element (Figure 2.10) between two dipping interfaces 

travelling left to right. The source- receiver offset ( X ) is the sum of the projection of all 

ray elements (down-going and up-going) on the horizontal plane (equation (2.35)). Using 

some geometrical and trigonometry relationships, the projection of ray element ( kX ) can 

be expressed based on ray angle (α ), dip angles ( uγ , lγ ), thickness (Z, measured from 

the middle of the model) as (see appendix 2.D and 2.E) : 

 

 ( ) ( )
( ) ( )

u l
k k k k k

k l
k k

Z a tan a tanX
cot tan

γ γ
α γ

− +
=

+
 , (2.36) 
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0

n
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X X
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= ∑  , (2.37) 

where  
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  (2.38) 

 
cX is sum of the projection of all ray elements from left to right up to the current ray 

element k . N is number of the layers. 

Traveltime kT for each ray element can be expressed by (see appendix 2.F): 
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= ∑  . (2.40) 

In the case of a converted shear waves H and H ′  should be replaced by sH and sH ′ .  

Equation (2.36) is the general form and the sign of the tan terms has to be 

changed according to the ray propagation direction and dip direction of interfaces. For the 

clockwise dip directions they have to be multiplied by (+1) and for counter clockwise dip 

directions they have to be multiplied by (-1). In addition, the tan  terms need to be 

multiplied by (+1) in the case of down-going rays and (-1) for the up-going rays.  

In an anisotropic dipping layered medium calculation of the ray parameter is more 

complicated and computationally intensive. We draw a random ray parameter in the 

interface of the first and second layer and all the ray parameters for each ray element will 

be computed using Snell’s law. A very small variation in ray parameter ( )61 10−×  will 

results in a few millisecond error in traveltime. Therefore, ray parameters have to be 

estimated very precisely, so that the difference in computed offset and original offset 

should be less then ( )81 10−×  metre. This very high precision will put an extra burden on 

minimization and require more iterations. Apart from the discontinuity problem 

associated  with  the objective  function, for near offsets, small  ray  parameters result in a 
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Figure 2.9: Ray paths for P P→ and vP S→ travelling through a dipping layered 

anisotropic media (Z is the thickness measured from the middle of model). 
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Figure 2.10: A ray element travelling downward through a dipping layer 
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 negative offset, which can’t be handled by a logarithmic objective function. Fortunately, 

this range of ray parameters is quite far from the discontinuity region and minimization 

will alternate to the non-logarithmic objective function (Figure 2.11).  

The objective function f is a monotonically decreasing function for the range of 

ray parameters from zero to the solution point. Away from the solution it increases 

sharply and suddenly drops, making a secondary minimum (Figure 2.12). If the ray 

parameter during the optimization falls in the right hand side of the global minimum, 

minimization algorithms converge to a local minimum and it results in a jump in 

traveltime and ray parameter curves in an offset gather. In this case we use a jump 

detection algorithm based on local curvature (Figure 2.13) to identify the jump and restart 

the minimization. 

To minimize the objective function we need the derivative of (2.36) with respect 

to the ray parameter. We know that all ray parameters are related to each other through 

Snell’s law in the interface, so it turns out that derivative with respect to every ray 

parameter should be almost the same. To test this approximation we computed the 

numerical derivatives of (2.37) with respect to the ray parameter at the first interface for a 

ray path. We realized that the numerical derivatives, to a good approximation, are equal 

to the analytic derivative of (2.37) when the analytic differentiation is taken by summing 

(2.37) over all the ray elements for each ray path (Figure 2.14). In the next chapters 

whenever we need to calculate the derivative of any parameter with respect to ray 

parameter, we use this approach. 

            The traveltimes for a dipping layered medium (Table 2.2) for both compressional 

and converted shear waves for an offset gather consisting of 96 receivers have been 

computed. The first receiver is kept at 200 meter from the source and the rest of the 

receivers are spaced every 50 meters. The maximum offset is 4950 meter. Figures 2.15 

and 2.16 illustrate the traveltimes for P P→  and vP S→  respectively. The non-

hyperbolic behaviour of the traveltimes is quite obvious. 
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Figure 2.11: Solution space of objective function in a dipping medium for near offsets. 
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Figure 2.12: Solution space of the logarithmic objective function in a dipping medium for 

larger offsets. 
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Figure 2.13: Jump detection based on the curvature. The red star is a local minimum 

solution for ray parameter has resulted in a drop in traveltime 
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Figure 2.14: Analytic (red-dashed) and numerical (blue-solid) derivatives for the ray path 

reflecting from the top of layer 10 (Table 2.2). Model width is kept at 3000 metres. 

Numerical derivatives are calculated from the ray parameter at the interface between the 

first and second layer. The derivatives with respect to all other ray parameters are the 

same as the Blue curve (not shown here). 
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Table 2.2: Layer properties used to calculate P P→  and vP S→  traveltimes for the 

dipping layered. 

 

 

 

 

 

Layer 
( / )

pV

m s

    
 

( / )
sV

m s
    

 δ  ε  
Layer/  Symmetry 

plane dip ( )
Z

meter
    

 

1 1940 780 0.03 0.1 0 477 

2 2140 860 -0.02 0.14 -3 295 

3 2220 890 -0.05 0.1 -6 414 

4 2000 1000 0.1 0.14 -3 254 

5 1990 990 0.05 0.1 -2 398 

6 1900 950 0.04 0.12 3 214 

7 2200 1150 0.06 0.18 4 231 

8 2050 1130 0.1 0.2 3 255 

9 2650 1500 0.07 0.1 6 206 

10 2750 1530 0.1 0.14 7 374 
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Figure 2.15: Traveltimes calculated for P P→  rays from the dipping layered medium (Table 

2.2). The top curve corresponds to layer 1, while the lowest one corresponds to layer 9 
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Figure 2.16: Traveltimes calculated for vP S→  rays from the dipping layered medium (Table 

2.2). The top curve corresponds to layer 1, while the lowest one corresponds to layer 9. 
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Appendices  
 
Appendix A 

Taking the derivative of both sides of equation 2.21 or (A.1) respect to phase angle ( )θ  

we have: 

( ) vcos
V

α θ− =   ,                                                                                                          (A.1) 

( )( ) vcos
V

α θ
θ θ
∂ ∂ ⎛ ⎞− = ⎜ ⎟∂ ∂ ⎝ ⎠

 ,                                                                                         (A.2) 

2

1( ) ( )d dv v dVsin sin
d V d V d

αα θ α θ
θ θ θ

− − + − = −  .                                                          (A.3) 

From equation (1.13) we have: 
2

2 2 dvV v
dθ

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 ,                                                                                                          (A.4) 

Dividing (A.4) to 2V and 2v  respectively and using (A.1) results in: 

1( ) dvsin
V d

α θ
θ

− =   ,                                                                                                     (A.5) 

1( ) dvtan
v d

α θ
θ

− =   ,                                                                                                     (A.6) 

using the chain rule we have: 

dV dV d
d d d

θ
α θ α

=   ,            (A.7) 

 Then  

/d dV dV
d d d
α
θ θ α

=   ,            (A.8) 

replacing (A.5) , (A.8) and (A.1) in (A.3) results in: 

1 1( ) dV dvtan
V d v d

α θ
α θ

− = =  .                                                                                        (A.9) 

Let’s write: 

( ) ( ) ( ) ( ) ( )
( ) ( )[1 ( ) ( )]

cos cos cos sin sin
cos cos tan tan

α θ α θ θ α θ
θ α θ θ α θ

= − − −
= − − −

  ,                                                      (A.10) 

 

Replacing (A.1) and (2.A.6) in (A.10) results in: 
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1( ) ( ) [1 ( ) ]v dvcos cos tan
V v d

α θ θ
θ

= −  .                  (A.11) 

Let’s write: 

( ) ( ) ( ) ( ) ( )
1( ) ( )[1 ( )]
( )

sin sin cos cos sin

sin cos tan
tan

α θ α θ θ α θ

θ α θ α θ
θ

= − + −

= − + −
.                 (A.12) 

Replacing (A.1) and (A.6) in (A.12) results in: 

1 1( ) ( ) [1 ]
( )

v dvsin sin
V tan v d

α θ
θ θ

= +   .                     (A.13) 

Now, by dividing (A.12) over (A.10), we obtain (Ursin and Hokstad, 2003): 

( )( )1( ) ( )( ) 1

cos dvsin
v dtan tan dvcos

v d

θθ
θα θθ

θ

+
=

−
    .                                                                   (A.14) 

Taking the derivative of ray parameter ( )sinp
v

θ
=  with respect to phase angle we obtain: 

( ) d dvcos v p
dp dp

θθ = +    ,                      (A.15) 

( )dp cos
dvd v p
dp

θ
θ

=
+

     .                                  (A.16) 

Using the chain rule we have: 

dv dv dp
d dp dθ θ

=    ,                     (A.17) 

substitution (A.16) in (A.17) we obtain: 

( ) dvcos
dv dp

dvd v p
dp

θ

θ
=

+
  .                     (A.18) 

 

Now, by substitution of (A.18) in (A.11) we map ray angle and ray velocity to phase 

angle and phase velocity: 
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.                                                        (A.19) 

 

 

 

 

Choosing the notation: 

dvv
dp

′ =  , 

1( ) ( )
1

Vcos vcos p v
v

α θ=
′+
   .                                                                                   (A.20) 

 

In the same way, by substitution of (A.18 ) in (A.14) we obtain (Ursin and Stovas, 2006): 

3( ) [ ]
( )

dv
v dptan p

cos v
α

θ
= +   ,                    (A.21) 

 

3( ) [ ]
( )

v vtan p
cos v

α
θ

′
= +   .                    (A.22) 

Equations (A.20) and (A.22) will have a main role in traveltime equations from ray 

domain to phase domain. 
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Appendix B 

By taking the derivative of a general form of equations 2.14 or 2.17, (B.1) respect to ray 

parameter we obtain: 

2
2 2

0

1 1 p H
v v

= −   ,                                                                                                           (B.1) 

2
3

1
2

v pH p H
v

′
′= +  ,                                                                                                      (B.2) 

where dHH
dp

′ =  and  dvv
dp

′ =  . 

If we rearrange the equation (B.1) in terms of phase velocity we obtain: 
2

2 0
2 2

01
vv
p v H

=
−

   .                       (B.3) 

If we express ( )cos θ  in terms of ray parameter we obtain: 

( )2 2
0
2 2

0

1 1
( )

1
p v H

cos
p v H

θ
− +

=
−

   .                    (B.4) 

Now, by substitution of (B.3) in (B.4) we obtain: 

 
( )2 2

0

0

1 1
( )

v p v H
cos

v
θ

− +
=   .                     (B.5) 

By substitution of (B.5) and (B.2) in equation 2.23 (for each ray element), (B.6) we 

obtain: 

3( )
zv vx p

cos vθ
′⎛ ⎞= +⎜ ⎟

⎝ ⎠
   ,                      (B.6) 

 

( )

0

2 2
0

11
2

1 1

zv p H pH
x

p v H

⎛ ⎞′+ +⎜ ⎟
⎝ ⎠=
− +

   .                     (B.7) 

 
In the same way by substitution of (B.5) and (B.2) in equation 2.22 (for each ray 

element), (B.8) we obtain: 

1
( )

z vt p
vcos vθ

′⎛ ⎞= +⎜ ⎟
⎝ ⎠

  ,                     (B.8) 
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( )

3 2
0

2 2
0 0

11
2

1 1

p v Hzt
v p v H

′+
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− +
   .                       (B.9) 

 
Appendix C 

 
dx
dp

=                                                                                                                               (C.1)   

                        . 

       

   
                                                                                                       

2

2

d x
dp

=                                                                                                                             (C.2) 

. 
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Appendix D 

 
From Figure D.1: 

( )2 . uz a tan γ=   ,                                                                                                            (D.1)  

( ) ( )

( ) ( )

11 2

1

.
,

. .  ,

u

u

z Z a tanz Z zTan
a a

z a tan a tan Z

γ
β

β γ

+ ++ +
= =

= − −
        (D.2) 

( )

( )

1

1

 ,

 ,
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l l

al l
cos

β

β

=
+

= −
                                                                                                          (D.3) 
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1 1
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Figure D.1: A ray element travelling downward through a dipping layer 
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     ,                                                                    
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− −
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x l cos a
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cot tan

β γ
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β γ

γ γ
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α β

− −
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+

+ +
=

+

=

                                                                (D.6) 

so, the projection of ray element l on the horizontal axis is: 
 

( ) ( )
( ) ( )

. .l u

l

a tan a tan Z
x

cot tan
γ γ

α γ
+ +

=
+

  ,                                                                                    (D.7) 

where α  is the ray angle. 
 
  

Appendix E 

 
By substitution of (B.2) in (A.22): 
 

1( ) [1 ]
( ) 2

vptan H pH
cos

α
θ

′= + +    .                                                                              (E.1) 

 
Now, by substitution of (B.3) and (B.5) in (E.1), we can express (E.1) for ( )cot α  as: 

( ) ( )2 2
0

0

1 1
11
2

p v H
cot

pv H pH
α

− +
=

⎛ ⎞′+ +⎜ ⎟
⎝ ⎠

    .                              (E.2) 

Appendix F 

 
By rewriting the equation (A.13) we obtain: 
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( ) ( ) ( )
1 11 dvVsin vsin

tan v d
α θ

θ θ
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

  .                                                                    (F.1) 

Now, by substitution of (A.18) in (F.1) and few manipulations we will obtain: 
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              . (F.2) 

 
 Now, by substitution of (2.B.2) in (2.F.2) we obtain: 
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By substitution of (B.3) in (F.3) we obtain: 
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 . (F.4) 

Now, for each ray element the traveltime t can be written as: 
 

( )
xt

Vsin α
=    ,                                                                                                               (F.5) 

after substitution (F.4) in (F.5) we obtain: 
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where x is given by (D.7). 
 
 
 
 
 
 
Appendix G 
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Chapter 3 

Reflection and transmission of plane waves in 
transversely isotropic media 

 
 Introduction 

Reflection and transmission (R/T) of seismic waves at an interface of two media 

is a fundamental topic in theoretical seismology. The solution for an interface between 

two isotropic media was first given by Zoeppritz (1919). Zoeppritz equations are 

generally arranged in a matrix form and a closed form solution for 16 R/T coefficients is 

provided for down and up going compressional and shear waves (Aki and Richards, 

1980; Waters, 1981). A parametric solution to Zoeppritz equations is given in (Ĉervenŷ, 

2001) which is more suitable for ray tracing based algorithms. Zoeppritz equations are 

exact plane wave solution and are very complicated to infer the effect of each elastic 

parameter on the reflection coefficient. Based on a small jump assumption in elastic 

properties in the boundary of two elastic isotropic media, Aki and Richards (1980) 

linearized the Zoeppritz equations for P P→  waves. The linearized equation for P P→  

waves was rewritten further in terms of the Poisson ratio by (Shuey, 1985). In a critical 

comment on the use of Poisson ratio in seismology, Thomsen (1990) rearranged  Shuey’s 

equation in terms of original compressional and shear waves velocities and shear 

modulus. Thomsen style of linearization is widely used among exploration seismologists. 

His method of linearization gives more insight into the effect of seismic elastic 

parameters on R/T coefficients. 

Reflection and transmission of plane waves in anisotropic media has been an 

active area of research since the 1950 and there is an extensive literature on this topic. 

Musgrave (1954a; , 1954b) studied the propagation of an elastic plane wave in a general 

anisotropic and transversely isotropic crystals respectively. Musgrave (1959) formulated 

the R/T coefficients of an elastic plane wave numerically at the boundary of two elastic 

media with general anisotropy. While Musgrave was concentrating on plane waves, 

Buchwald (1959) further studied radiation of elastic waves from a point source in an 

infinite general anisotropic medium. In 1977 one special issue of the Geophysical Journal 
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of the Royal Astronomical Society (Volume 49, Issue 1) was devoted to the works that 

have been done by Crampin and his colleagues on the current state of seismic anisotropy, 

particularly in earthquake seismology (Bamford and Crampin, 1977). Keith and Crampin 

(1977) formulated equations for calculation of R/T coefficients numerically for an elastic 

plane wave at an interface of two general anisotropic media. 

Daley and Hron (1977) give analytical expressions for R/T coefficients from a 

plane wave in a transversely isotropic medium. This paper along with Banik’s (1987) first 

order perturbation theory approach was later used by Thomsen (1993) to linearize R/T 

coefficients. Thomsen (1993) introduced the idea of an average medium “two identical 

isotropic layers separated by a phantom interface as the background, perturbed by a 

small jump in elastic parameters” which could approximate the R/T coefficients from the 

interface of two weakly transverse isotropic media with a small jump in elastic 

parameters. Banik’s (1987) equation are only valid for small angles of incidence while 

Thomsen’s (1993) linearized equations may not be valid for moderate angles of incidence 

too. Thomson’s method of linearization later motivated Rüger (1996) to modify 

Thomsen’s reflectivity equations to a better approximation based on Graebner (1992) 

equations. While Rüger (1996) only gives analytical expressions for converted shear 

waves at the symmetry planes of TI or Orthorhombic media, Jílek (2002) gives analytical 

expressions for azimuthally varying reflectivity at the interface of two weakly TI or 

Orthorhombic anisotropy media. Varvyčuk and Pšenčik (1998), and Pšenčik and 

Varvyčuk (1998) give analytic expressions for azimuthally varying R/T coefficients for 

compressional waves at an interface of two weakly but general anisotropic media based 

on Thomsen’s (1993) approach while, Rüger (1998) extracted analytic equations for 

azimuthally varying reflection coefficient at an interface of two HTI media and also at the  

symmetry planes of Orthorhombic media. A complete review of reflection-transmission 

problem in transversely isotropic medium with vertical axis of symmetry, where the 

reflection and transmission coefficients are expressed in terms of slowness is given by 

Stovas and Ursin (2003). 

In this chapter I review the Graebner (1992) equations. Rüger’s (1996) 

approximations in transversely isotropic media for compressional and converted shear 

waves will be discussed. Numerical models will be used to compare the exact and 
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approximate plane wave reflection coefficients and at the end of this chapter I address the 

reflectivity calculation for a stack of horizontally layered VTI media by a convolution 

approach along the ray path. I also compute the corresponding synthetic seismograms of 

compressional and converted shear wave. 

 
3.1 Polarization vectors and vertical slowness in a TI medium  

The exact plane wave analytic expression for reflection and transmission 

coefficient at an interface of two TI medium, given by Graebner (1992), are particularly 

suitable for ray parameter based ray tracing problems. We review Graebner’s expressions 

after some modifications in notation. We assume that plane waves are propagating in the 

symmetry plane of TI medium. The vertical slowness for quasi compressional (QP) and 

shear waves (QSV) and their polarization vectors can be derived from the solution of 

Christoffel equation given by (White, 1983): 

   

 
( )

( )

2 2
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ρ
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p and q are horizontal and vertical slowness respectively. 
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The polarization vectors for QP-wave are given as the eigenvectors corresponding 

to P-wave vertical slowness: 

 
( ) ( )

( ) ( )
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C p C q C q C p
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α

α α

α
α

α α

⎛ ⎞′ ′+ −⎜ ⎟=
⎜ ⎟′ ′ ′ ′+ − + + −⎝ ⎠

⎛ ⎞′ ′+ −⎜ ⎟=
⎜ ⎟′ ′ ′ ′+ − + + −⎝ ⎠

 , (3.4) 

 

where the prime indicates quantities normalized by density. 

The polarization vectors for QSV are given as the eigenvectors corresponding to SV-

wave vertical slowness: 

 
( ) ( )

( ) ( )

1
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11 55
2 2 2 2

11 55 33 55

1
2 2 2

33 55
2 2 2 2

11 55 33 55

1
1 1

1
1 1

C p C q
l

C p C q C q C p

C q C p
m

C p C q C q C p

β
β

β β

β
β

β β

⎛ ⎞′ ′+ −
⎜ ⎟=
⎜ ⎟′ ′ ′ ′+ − + + −⎝ ⎠

⎛ ⎞′ ′+ −
⎜ ⎟=
⎜ ⎟′ ′ ′ ′+ − + + −⎝ ⎠

 . (3.5) 

 
3.2 Boundary conditions at the interface of two solid elastic TI media 

The boundary conditions at an interface of two media have an essential effect in 

the reflection and transmission coefficients. At an interface of two solid elastic media 

both displacement and stress has to be continuous in three directions when a wavefront 

either P  or SV  is incident at the interface. These are vertical and horizontal 

displacements and normal and shear stresses. Continuity of horizontal displacement 

implies that the interface has to be welded and no slippage is allowed along the interface. 

Continuity  normal to the interface displacement means that materials can’t be separated 

from each other or penetrate one another (Slawinsky, 2003). The continuity of 

displacement vectors is usually called the kinematic boundary conditions while dynamic 

boundary conditions refer to continuity of the stresses along the interface. In the 

symmetry plane of a TI or monoclinic medium (XZ plane) the conditions on the 

displacements ( )u and stresses ( )σ can be written as: 
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 [ ] [ ] 0x zu u= =  , (3.6) 

 

 [ ] [ ] 0zx zzσ σ= =  , (3.7) 

where brackets denote the difference in displacement and stresses across the interface. 
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Figure 3.1: Geometry of incidence &P SV  waves, correspondent polarization vectors 

(indexed by ,l m ), and slowness components (indexed by ,i j ) at the interface in the 

symmetry plane of two TI medium. Solid lines indicate P-waves and dashed lines SV-

waves. ( Daley and Hron (1977) after some modifications). 
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3.3 Exact plane wave reflection and transmission coefficients  
If the source is distant and the thickness of the layers is large compared to  the 

wavelength,  a wave with a spherical wavefront can be approximated by a plane wave 

(Daley and Hron, 1977). The particle displacement vector of an elastic plane wave in the 

symmetry plane is denoted by: 

 ( ) ( ), 0, iw px qz tu l m Ue + −=    , (3.8) 

where andl m   are polarization vectors for particle motion (Figure 3.1). U is the plane 

wave amplitude, t is time, and ω  angular frequency. The direction of the Z axis is 

positive downward. The sign of the particle motion has been adopted based on the 

convention used by Aki and Richards (1980). The positive polarization direction is such 

that the horizontal component of particle motion has to be in the direction of horizontal 

slowness. Now, the particle displacement of four incidence waves is denoted by Graebner 

(1992): 

 ( ) ( )
0, 0,  ,iw px q z td

pu l m U e α
α α

+ −=    (3.9) 

 ( ) ( )
0, 0, iw px q z tu

pu l m U e α
α α

− −=   −  (3.10) 

 ( ) ( )
0, 0,  ,iw px q z td

Svu m l U e β

β β
+ −=   −  (3.11) 

 ( ) ( )
0, 0,  .iw px q z tu

Svu m l U e β

β β
− −=    (3.12) 

 
The particle displacements of the scattered wavefields from a quasi-

compressional incident wavefield (3.9) with the unit amplitude at in interface of two 

elastic medium can be expressed as: 

 ( ) ( )
1 1, 0, iw px q z tu

p ppu l m r e α
α α

− −=   −  (3.13) 

 ( ) ( )
1 1, 0,  ,iw px q z tu

Sv psu m l r e β

β β
− −=    (3.14) 

 ( ) ( )
2 2, 0,  ,iw px q z td

p ppu l m t e α
α α

+ −=    (3.15) 

 ( ) ( )
2 2, 0,  .iw px q z td

Sv psu m l t e β

β β
+ −=   −  (3.16) 

where ,  ,  ,  u u d d
p Sv p Svu u u u  are displacement of scattered wave mode of reflected QP-wave, 

reflected QSV-wave, transmitted QP-wave, and transmitted QSV-wave respectively. 
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The kinematic boundary conditions (3.6) for a quasi compressional incident wave  

at the interface of two elastic medium and in an arbitrary point ( )0, 0, 0x y z=   =   =  for a 

single angular frequency ω  and any time t  can be constructed by substitution of (3.9) 

and (3.13)-(3.16) in (3.6).  

 1 1 2 1 2

1 1 2 1 2

for  direction

for  direction .
a pp a pp a ps ps

pp a pp a ps ps

l r l t l r m t m x

m r m t m r l t l z
β β

α β β

− = − + −  ,              

− = − − + +  ,          
  (3.17) 

 

In a general anisotropic medium stress-strain relationship can be written using the 

Hooke’s law in a tensor notation as: 

 ( ), ,
1
2ij ijkl k l i kC u uσ = +  , (3.18) 

where in ,k lu  the comma denotes the partial derivative with respect to l component and 

the Einstein summation over repeated indices is implied. In the symmetry plane of a 

transversely isotropic medium, the dynamic boundary conditions (3.7) using (3.18) can 

be written as: 

 
55

13 33

,

.

x z
xz

x z
zz

u uC
z x
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x z
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∂ ∂
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  (3.19) 

Now, by substitution of (3.17) in (3.19) we have two more equations for a quasi 

compressional wave incident above the interface at an arbitrary point 

( )0, 0, 0x y z=   =   =  for a single angular frequency ( )ω . Considering that the time ( )t is 

the same for all incident, reflected and transmitted waves, we have (Rüger, 1996): 
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where  I and II denote the upper or lower media respectively. 

The boundary conditions for a shear wave incident from above the interface and also for 

upcoming waves impinging on the interface from below the interface can be expressed in 

a similar way. 

The four sets of linear equations with four unknown reflection and transmission 

coefficients can be arranged in a matrix form as (Graebner, 1992): 

 

 sr b=  , (3.21) 

where r is a vector of reflection and transmission coefficients 

 ( )T
pp ps pp psr r r t t=        , (3.22) 

s is a 4 4×  matrix: 
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and b is a vector of the form 
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= −

= +

= −

      .                                   (3.25) 
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Equation  (3.21) can be extended to include all the 16 reflection and transmission 

coefficients resulting from 4 incident waves from above and below the interface as: 

 SR B=  , (3.26) 

where             

  

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

l m l m
c d c d

S
m l m l

a b a b

α β α β

α β α β

         −     −⎛ ⎞
⎜ ⎟

            −       −⎜ ⎟= ⎜ ⎟   −          −
⎜ ⎟⎜ ⎟                       ⎝ ⎠

   ,                                  (3.27) 

and 

 

D D U U
pp sp pp ps

D D U U
ps ss ps ss

D D U U
pp sp pp sp

D D U U
ps ss ps ss

r r t t

r r t t
R

t t r r

t t r r

⎛ ⎞            
⎜ ⎟

            ⎜ ⎟
= ⎜ ⎟

            ⎜ ⎟
⎜ ⎟⎜ ⎟            ⎝ ⎠

 . (3.28) 

Matrix R is called the scattering matrix too, and  

 

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

l m l m
c d c d

B
m l m l
a b a b

α β α β

α β α β

−     −         ⎛ ⎞
⎜ ⎟

−      −            ⎜ ⎟= ⎜ ⎟     −        −
⎜ ⎟⎜ ⎟                      ⎝ ⎠

 . (3.29) 

 

Equation (3.26) can be solved numerically. Due to block  symmetry in  S and B matrices, 

they can be further simplified to lower dimensional matrices, see Graebner (1992). 

 

3.4 Approximate plane wave reflection and transmission coefficients  
The exact plane wave solution to R/T coefficients at the boundary of two elastic 

TI media is too complex to intuitively infer the physics behind it. It also depends upon all 

elastic parameters above and below the interface which makes it even more difficult to 

understand. An R/T phenomenon depends, primarily, on the contrast of elastic parameters 

rather than each parameter individually.  Practically, the contrast in elastic properties in 

most cases in the exploration seismology is relatively small (10-20-30%) and in the 

context of weak anisotropy, linearization of exact expressions seems to be reasonable 

(Thomsen, 1993). 
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i
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β δ
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ρ γ
ρ

Δ
       

Δ
                   =    

Δ
        

 , (3.30) 

where Δ  means difference and bar means average. for instance: 2 1ρ ρ ρΔ = −  and 

( )2 1 / 2ρ ρ ρ = + . 

With the above assumptions, Thomsen (1993) proposed  two isotropic identical 

media with a phantom interface in between, where there would be no reflection and 

conversion. This is also called a background isotropic medium. With the small 

perturbation in both media, equation (3.26) can be written as: 

 ( )( )0 0 0S S R R B B+ Δ + Δ = + Δ  , (3.31) 

 

where 0 indices imply the unperturbed model.  

Linearizing (3.31) in terms of Δ  and using equation (3.26), equation (3.31) can be 

written as: 

 0 0S R SR BΔ + Δ = Δ  , (3.32) 

where the solution RΔ is: 

 ( )1
0 0R S B SR−Δ = Δ − Δ  . (3.33) 

In a VTI medium where P and SV  waves don’t depend onγ , BΔ  and SΔ  can be 

computed by linearizing (3.27) and (3.28) using the following partial derivates with 

respect to all parameters in (3.30) as: 

 1, 2...7j
j

d j
d
∂

Δ =          =  
∂

. (3.34) 

Matrices 0S and 0R  have a simpler structure because only one incident waves is 

transmitting in a medium for each component, so its inverse is simpler, see Rüger (1996).  

To express the reflection and transmission coefficients as a function of incidence 

phase angle ( )θ  instead of  polarization angles ( )γ  of (3.4) and (3.5), Rüger (1996) 
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further extends the Tsvankin (1996) equation for polarization angles in a weak TI 

medium as: 

 
( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

2 2

2 2

1 2

1 2

m cos fsin sin cos

l sin fcos sin sin

γ θ δ ε δ θ θ

γ θ δ ε δ θ θ

⎡ ⎤= = − + −⎣ ⎦

⎡ ⎤= = + + −⎣ ⎦
 , (3.35) 

where 
 ( )2 2 2

0 0 0/f α α β= −  , (3.36) 

and ,  and  ,m m m l l lα β α β→  →   are the direction cosines (3.4) and (3.5) for the weak TI 

medium. This implies that phase angle θ  in (3.35) corresponds to P-wave and SV-wave 

incidence angles respectively. These cosine directions have been expressed by Rüger 

(Rüger, 1998) as: 

 
( )

( )
, , ,

, , ,

i j i j

i j i j

l l sin

m m cos

α β

α β

θ

θ

=

=
 , (3.37) 

where θ  stands for phase angle and ,i j  correspond to ,α β  respectively. Now, the 

matrices 0S  and 0R , need to be rearranged in terms of velocity and phase angle instead of 

horizontal and vertical slowness. P-wave and SV-wave velocities should be also 

linearized in terms of (3.30) using (3.34) (Thomsen, 1986a) . Finally, Using Cramer’s 

rule one can solve equation (3.34) for reflection and transmission coefficients. 

Rüger (1996) derived the following equations for the reflection and transmission 

coefficients for P-waves and SV-waves in a VTI medium. These equations are quite good 

approximation to the exact plane waves equations for pre-critical angles of incidence 

(usually up to 40 degrees of phase angle of incidence) in the context of weak anisotropy. 

To clarify the effect of anisotropy, R/T coefficients are decomposed into isotropic and 

anisotropic terms (e.g. iso aniso
pp pp ppr r r= + ). The following equations are only R/T 

coefficients for down-going waves. For up-going waves simply upper and lower media 

have to be swapped. θ  is the phase angle of incidence or  reflection (converted shear 

waves), i  stands for P-wave and j for SV-waves. Following, are some of the Rüger’s 

equations for reflection and transmission coefficients at an interface of  two VTI media 

for different modes. 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
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   (3.38) 

 

where 0Z ρα= , μ  is the shear modulus, ( )2 1δ δ δΔ = − , and ( )2 1ε ε εΔ = − . 
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3.5 Numerical examples of exact and approximate R/T coefficients  
Computation of exact plane wave R/T coefficients is intensive and it is not easy to 

derive analytic expression for their partial derivatives. On the other hand, computation of 

the Rüger’s equations is less intensive compared to the exact one. To compare the 

computational cost of both approximate and the exact plane wave, we have computed the 

reflection and transmission coefficients for all 16 modes of exact plane wave and 

equivalent Rüger’s equations. It turns out that CPU time of the exact one is about 50 

times more than that the approximate one. It is also easy to derive analytic partial 

derivatives of the Rüger’s equations. However Rüger’s equations are subject to errors 

especially in higher angles of incidence and care has to be taken on their limitation.  
 
To compare the exact plane wave reflection and transmission coefficients in a 

VTI medium (Graebner, 1992) with the corresponding linear approximations (Rüger, 

1996) of P P→ and vP S→ waves, we have used the model in table 2.1 and computed the 

reflection coefficient from the base of a reflector and effective reflection coefficient 

(including transmission effect for all layers travelled by the waves) for pre-critical angles 

of incident of  both P P→ and vP S→ waves. The nearest angle corresponds to the offset 

at 200 metre and the far angle corresponds to 2550 meter.  
 
Figures 3.2 and 3.3 illustrate the reflection coefficient for P P→  and 

vP S→ waves from the interface of the first and second layer. The solid line shows the 

exact plane wave reflection coefficient, while the dash line shows the approximate plane 

wave reflection coefficient. For phase angles of incidence up to 25 degrees the 

approximation is very close to the exact solution, however for larger angles the 

approximation tends to diverge from the exact one. The differences in elastic properties 

are shown below the figure. For converted shear waves the conversion point is shifted 

from the centre of the source-receiver toward the receiver, hence the P-wave angle of 

incidence is larger than in the P P→ , however, it is less for the converted shear wave. 

The angle of incidence which is plotted for vP S→ reflection coefficient is in fact the P-

wave angle of incidence.  
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Figure 3.2: Reflection coefficients for P P→ waves from the interface between layer 1 

and layer 2. The solid curve shows the exact plane wave and the dashed curve shows 

plane wave linear approximation. 2
0 9.80392 10α −Δ = × , 2

0 9.7561 10β −Δ = × , 

21.46699 10ρ −Δ = × , 2-5 10δ −Δ = × , 24 10ε −Δ = ×  
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Figure 3.3: Reflection coefficients for vP S→ waves from the interface between layer 1 

and layer 2. The solid curve shows the exact plane wave and the dashed curve shows the 

plane wave linear approximation. See Figure 3.2 for the contrast in elastic properties. 
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Figure 3.4 and Figure 3.5 illustrate the exact and approximate reflection 

coefficients for P P→  and vP S→  plane waves from the interface between layer 5 and 

layer 6 respectively. The transmission effect has been included for the entire layers down 

to the interface for down-going and up-going waves and is shown in blue colour. The 

approximate solution matches the exact solution up to 30 degree, and after that, it starts to 

diverge from the exact solution. The approximation in vP S→  case is even better and it 

extends to 35 degrees. The transmission effect is quite obvious and it reaches a maximum 

5 percent difference compared to the only reflection coefficient (red curves).  
 

Figure 3.6 and Figure 3.7 illustrate the exact and approximate reflection 

coefficients for P P→  and vP S→  plane waves from the interface between layer 9 and 

layer 10. The transmission effect has been included for the entire layers down to the 

interface for down-going and up-going waves and is shown in blue colour. The 

approximation is fairly good over the entire range of the incidence angles. The 

transmission effect is about 10 percent and neglecting it could results in error in effective 

reflection coefficient. Transmission effect has caused an increase in the absolute 

magnitude of the reflection coefficient which is not a very uncommon phenomenon. This 

will happen when the transmission coefficient is bigger than unity. 
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Figure 3.4: Reflection coefficients for P P→ waves from the interface between layer 5 

and layer 6. The solid curves show the exact plane wave and the dashed curves show the 

plane wave linear approximation. Red curves show reflection coefficient without 

transmission effect while the blue curves correspond to including transmission effect,   
2

0 -4.62725 10α −Δ = × , 2
0 -4.12371 10β −Δ = × , 2-0.985222 10ρ −Δ = × , 2-1 10δ −Δ = × , 

22 10ε −Δ = × . 
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Figure 3.5: Reflection coefficients for vP S→ waves from the interface between layer 5 

and layer 6. See Figure 3.4 for the contrast in elastic properties and identifying the 

curves. 
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Figure 3.6: Reflection coefficients for P P→ waves from the interface between layer 9 

and layer 10. The solid curves show the exact plane wave and the dashed curves show the 

plane wave linear approximation. The red curves show reflection coefficient without 

transmission effect while for blue curves, transmission is included. 2
0 3.7037 10α −Δ = × , 

2
0 1.9802 10β −Δ = × , 20.925926 10ρ −Δ = × , 23 10δ −Δ = × , 24 10ε −Δ = × . 
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Figure 3.7: Reflection coefficients for vP S→ waves from the interface between layer 9 

and layer 10. See Figure 3.6 for the contrast in elastic properties and indentifying the 

curves. 
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3.6 Computation of synthetic seismograms in a layered media  
A synthetic seismogram is a time series of reflectivity from a layered earth model 

which has been convolved with a wavelet.  Seismic source signature (wavelet) estimation 

is a key part in seismic waveform inversion algorithms. The very straightforward 

statistical deconvolution methods assuming that the signals are stationary and, with an 

assumption about the phase of the wavelet, only use the amplitude information to 

estimate the wavelet. On the other hand, the more sophisticated deterministic methods 

utilize seismic amplitudes as well as sonic log and traveltime information at the location 

of a well by correlating and calibration of seismic data with well logs, see White and 

Simm (2003) for more detail. Convolution of a discrete reflectivity series with a wavelet 

can be written in the time domain as: 

 ( ) ( )( ) ( )
1

0

n

i i
i

U t r w t r w t τ
−

=

= ∗ = −∑  , (3.44) 

where t is the discrete time sampling and iτ  is traveltime from the source to the receiver 

for a particular ray path i, n is the number of ray paths, iτ  has to be an integer number of 

sampling interval tΔ , and U is the amplitude of the seismic trace. Geometrical spreading 

term is ignored as in chapter five we assume seismic data has been corrected for this 

effect. 

Synthetic seismic computation is a single trace based algorithm and the traveltime 

from all the reflectors for a specific source – receiver offset has to be computed. 

Convolution in the time domain is computationally intensive and it is usually computed 

in the frequency domain by Fourier transform. A fast Fourier transform (FFT) algorithm 

(Press et al., 2002) is best suited to transform wavelet to frequency domain but it is less 

desirable to transform the reflectivity series because of irregularity in time. One way to 

suppress irregularity is to interpolate reflectivity in a regular interval using Lagrange 

interpolation scheme (Gunning and Glinsky, 2004) based on the nearest four samples to 

the time of a spike. The other way is to use a discrete Fourier transform (DFT) as: 
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j f
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U f r w f e π τ
−

=

= ∑  (3.45) 
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where  f  is frequency. This method is effective for the limited number of reflectivity 

series with which we are dealing in this thesis. The maximum frequency could be the 

Nyquist frequency but it is usually truncated at the bandwidth of the amplitude spectrum 

without introducing too much error in the synthetic seismic traces. By inverse Fourier 

transform seismic traces will be transformed to the time domain. 
 

Synthetic seismic traces are computed for the model in table 2.1 using both exact 

and approximate reflection and transmission coefficients of plane waves. 96 traces at 25 

metre interval over 4 second with a sampling interval 2 ms for compressional waves and 

converted shear waves are modelled. In all of the synthetic seismic traces transmission 

effect has been considered. A minimum phase wavelet with dominant frequency 25 Hz is 

used in the convolution model (Figure 3.8).  
 
The first two panels from the left in Figure 3.9 illustrate the farthest traces at 

offset 2550 metre for compressional and converted shear waves. The blue traces are exact 

plane wave and red traces show approximate plane waves. The Rüger approximation for 

a shallow reflector in converted shear waves panel is quite different from the plane waves 

with exact R/T coefficients. Figure 3.3 demonstrates this difference well where the angle 

of incidence is high. The Rüger approximation for P-waves is quite similar to the plane 

waves trace with exact R/T coefficients. Panel 3 and panel 4 illustrate the primary 

wavefield for both compressional and converted shear waves for the farthest offset of 

2550 m. and near offset at 200 m. The change in amplitude is very obvious. 
 
Figure 3.10 illustrates the synthetic compressional wavefield over 96 traces 

separated at 25 metre intervals. The left panel shows the plane wave with exact R/T 

coefficients while the middle one shows Rüger approximation. The right panel shows the 

difference in amplitude between the two. Except for large angles of incidents, the 

approximation is close to the plane waves with exact R/T coefficients. All traces in three 

panels are displayed with the same gain. Figure 3.11 illustrates the synthetic converted 

shear wavefield over the same geometry as in Figure 3.10. Because of the conversion 

point, the angle of incidence is much larger in vP S→  than in P P→  reflections; hence 

Rüger approximation is a good approximation of the exact plane waves with exact R/T 
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coefficients. In Figure 3.12 we have illustrated the complete primary wavefield of 

compressional and converted shear waves for the same geometry as in the previous 

figure. The residual of the plane waves with exact and approximate R/T coefficients for 

converted shear waves is bigger than for P-wave reflections at large angles of incidence. 

In the chapter six a resample of 48 traces (with trace interval of 50 metre) from each of 

the P-waves and combined P-waves and SV-waves shot gathers which have been 

computed using Rüger approximation will be considered  as observed seismic data for 

parameter estimation. 
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Figure 3.8: A minimum phase wavelet with a 25 Hz dominant frequency and 2ms 

sampling interval. I use this wavelet whenever we need to compute a synthetic trace. 
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Figure 3.9: Exact (blue) and approxim
ate (red) plane w

ave of single traces. From
 top: The first and second traces show

 near (offset = 200 m
) 

and far (offset = 2550 m
) offset traces  of m

ixed com
pressional and converted shear w

aves. the third and fourth traces show
 converted shear 

w
aves and com

pressional w
aves separately for the farthest offsetat 2550 m

eter.

 

 



 85

Figure 3.10: Exact (left) and approxim
ate (m

iddle) com
pressional

plane w
aves. The right panel illustrate the 

difference betw
een exact and approxim

ate w
avefield.
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Figure 3.11: Exact (left) and approxim
ate (m

iddle) converted shear plane w
aves. The right panel illustrate the 

difference betw
een exact and approxim

ate w
avefield.
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Figure 3.12: Prim
ary  and converted shear w

avefield of exact (left) and approxim
ate (m

iddle) plane w
aves. The 

right panel illustrate the difference betw
een exact and approxim

ate w
avefield
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Chapter 4 
 

A review of parameter estimation 
 
Introduction 
 

Understanding the structure and the physical properties of earth’s subsurface is 

one of the ultimate goals of geophysical exploration. These physical properties could be 

the elastic or other properties such as electrical, gravitational or electromagnetic. A 

mathematical model relates the potential fields, created naturally or by interaction with an 

external field, to their physical properties. By a finite number of measurements which 

may be inaccurate or even incomplete, we aim to understand the system under study. 

Unfortunately, most of the physical problems are nonlinear in nature, mathematical 

models are approximate and data are insufficient, therefore, a prior knowledge of the 

system is always required. Inverse modelling provides a framework to use all the 

information to realize the system. In this chapter we review first the conventional 

constrained nonlinear least square minimization method which is very popular in 

geophysical inversion and provide an inverse model to estimate the elastic properties in a 

system of transversely isotropic layered media. In the next section we will concentrate 

mainly on unconstrained minimization methods which have been used widely in this 

thesis. During the review of these methods we bring a few examples of Thomsen’s 

anisotropy parameters estimation, to emphasize the efficiency of different unconstrained 

minimization algorithms. 

 
4.1 The anatomy of inverse problems 
 

Any geophysical inverse problem consists of at least three components; a model 

parameter vector which consist of a set of unknown physical parameters that are to be 

estimated from a model space, a set of measured data which are usually contaminated 

with noise, and the physics of the problem which map model to data space. The physics is 

also called the forward operation. The process of estimation of the model parameters 

from the measured data in the geophysical community is usually referred to as the inverse 

problem or parameter estimation.  An earth model has infinitely many degrees of freedom 
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and the number of measurements is always finite, so mapping from a finite data space to 

an infinite model space using the inverse operator is always not unique even with noise 

free data. Moreover, the physics governing geophysical problems is intrinsically 

nonlinear and this worsens the nonuniqueness. This makes the inverse problem to be 

considered as an inference or estimation problem. Due to nonlinearity as well as 

parameterization and regularization, the estimated parameter model may not be exactly 

the true model, so error estimation needs to be considered. This part is called the 

appraisal problem (Scales and Snieder, 2000). A schematic of the anatomy of an inverse 

problem is illustrated in Figure 4.1.  

For linear problems, the theory of error estimation is well developed and 

estimators, such as the model resolution matrix and covariance matrix, quantify the error 

propagation in model space due to errors in data and confidence level in the model 

parameter (Jackson, 1972; Menke, 1989; Berryman, 1994; Tarantola, 2005). There is no 

solid theory to quantify errors in high dimensional nonlinear problems, however, using 

linearization scheme such as a first order Taylor approximation, one can linearize the 

forward problem around a prior model and use the same analysis for linear problems 

(Tarantola, 2005). For small scale nonlinear inverse problems, error estimation would be 

possible by sampling from the posterior model space using computationally intensive 

algorithms such as Markov Chain Monte Carlo, and putting the prior probability and 

likelihood function in a Bayesian framework (Scales and Tenorio, 2001). Posterior model 

space is the product of a likelihood function and prior probability density function (pdf) 

and has a narrower distribution than the prior pdf which is scaled by the marginal 

distribution function. 
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Figure 4.1: A schematic view of an inverse problem (After Scales and Snieder (2000)). 
 
 
 
4.2 Nonlinear least square optimization methods   
 

Least square algorithms, are by far, the most widely used minimization algorithms 

in linear and nonlinear geophysical problems. They are easy to implement and are robust 

enough, but they may not converge if the prior model is too far from the solution. Gauss-

Newton and Levenberg-Marquardt (Nocedal and Wright, 1999) are two varieties of least 

square method which will be reviewed here.  

Any inverse problem tries to optimize an objective function of the sum of all the 

residual errors. The shape of the objective function has the greatest importance and for 

each inverse problem it may be different. We may include structural information as well 

as data residual (Oldenburg and Li, 2005). A general form of an objective function for 

unconstrained minimization problems may be written as:       
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 d mϕ ϕ βϕ= +   . (4.1) 

where 

 
0

,
,

T
d e e

e d d
φ =  

= −  
 (4.2) 

 ,d Gm Linear problem=           , (4.3) 

 ( ),d g m Nonlinear problem=      (4.4) 

where m is the model parameter, d is the synthetic data, 0d is the measured data, G is the 

forward model,  e is the residual error, and T is the transpose operator. β  is a stabilizer 

and generally is called the regularization parameter. β  can be constant ( )0β ≥  but it 

may be decreased monotonically as iteration number increases. As an alternative, the 

value of β  can be estimated by root finding of the objective function (Nocedal and 

Wright, 1999). mϕ  is the model structure and can simply be the discrepancy from a prior 

model  (Tarantola, 2005), 

 ( ) ( )0 0
T

m m m m mϕ = − −  . (4.5) 

Depending on the specific geophysical problem, mϕ  can be more sophisticated 

(Oldenburg and Li, 2005) . In underdetermined systems (4.3), where the number of 

model parameters is far more than the number of independent data, mϕ  has an important 

effect on reducing the nonuniqueness. Underdetermined systems arise frequently in 3-

dimensional discretized parameters such as velocity tomography, geoelectrical resistivity 

tomography, and other potential field problems. 

 
Uncertainty should be incorporated in the model and data space of the objective 

function through the covariance matrices (Tarantola, 2005). Hence, the equations (4.2) 

and (4.5) should be rewritten as:   

  

 1T
d De C eϕ −=  , (4.6) 

 ( ) ( )1
0 0

T
m Mm m C m mϕ −= − −  . (4.7) 

where DC  and  MC are covariance matrices of the data and model parameter respectively. 

These matrices are generally diagonal and are simply the variances (assuming there is no 
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correlation between model parameters). If, for example, data are traveltimes, then the 

square of the errors in picking traveltime can be considered as the data variances. 

Similarly if the model parameters are velocities, we can use the square of half of the 

difference between upper and lower limits, as the model variance for each model 

parameter. 

We have discussed the objective function from the consideration of a general 

inverse theory. Now we look at the objective function from a maximum likelihood point 

of view. Least square minimization is based on the assumption of a Gaussian distribution 

of both model parameter and data. If we assume that prior information of model 

parameters has the mean 0m  and covariance matrix MC , with the assumption of the 

Gaussian distribution (in fact for many geophysical problem, where the model parameters 

are positive, the distribution is log normal) the prior probability density function is 

defined as: 

 
( )( )

( ) ( )1
0 01/2

1 1exp
22

T
M MM

M

m m C m m
C

ρ
π

−⎡ ⎤= − − −⎢ ⎥⎣ ⎦
 . (4.8) 

M is the number of model parameters and MC is the determinant of MC . By incorporating 

regularization parameter and a smoother matrix, Ulrych et al. (2001) give a different  pdf 

for the prior model. A Gaussian probability density function for data with the mean d and 

covariance matrix DC  is defined as: 

 
( )( )

( )( ) ( )( )1
1/2

1 1exp
22

T
D DN

D

d g m C d g m
C

ρ
π

−⎡ ⎤= − − −⎢ ⎥⎣ ⎦
 . (4.9) 

where N is the number of data and DC is the determinant of DC . Using the forward 

model (4.3) relating data d and model parameter m and putting all the  probability density 

functions in terms of Bayes theorem the posterior density function Mσ can be written as 

(Ulrych, Sacchi and Woodbury, 2001; Tarantola, 2005):  

 D

D

M
M

M dm

ρ ρ
σ

ρ ρ
=

∫
 , (4.10) 

 ( )1. exp
2M const mσ ϕ⎛ ⎞=  −⎜ ⎟

⎝ ⎠
 . (4.11) 
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where ϕ  is the objective function (4.1). If the forward problem is linear or weakly 

nonlinear or if the objective function is quadratic, the posterior density function Mσ is 

Gaussian. The further the forward problem is away from linearity or the objective 

function is from being quadratic, the further  Mσ  will be from Gaussian distribution. 

In linear problems, the mean of the posterior density function is the solution, 

however, in nonlinear systems we have to explore the whole distribution to estimate the 

empirical mean of the posterior. Sampling methods such as Markov Chain Monte Carlo, 

are very efficient in low dimensional problems in estimating the mean of the posterior but 

in high dimensional problems it could be computationally intensive. By assuming a weak 

nonlinearity, one tries to find the solution where the posterior pdf is a maximum 

(maximum likelihood point). Maximizing the posterior density function means 

minimizing the objective function, so in the weakly nonlinear systems the mode of the 

posterior probability density function can be considered as a solution. 

In the inverse problems, where the objective function is quadratic, hence the 

posterior density function is Gaussian; there should be a point m with covariance matrix 

MC such that the posterior density function (4.11) can be expressed as (Tarantola, 2005): 

 ( ) ( )11. exp
2

T
M Mconts m m C m mσ −⎛ ⎞=  − − −⎜ ⎟

⎝ ⎠
 . (4.12) 

Maximizing (4.12) with respect to m gives the following expression for the mean and 

covariance matrix of the posterior density function, assuming the exact theory (4.12), is 

given by Tarantola (2005) and Menke (1989) as: 

 ( ) ( )1

0 0
T T

M M D obsm m C G GC G C d Gm
−

= + + −  , (4.13) 

 ( ) 1T T
M M M M D MC C C G GC G C GC

−
= − +  . (4.14) 

  

So far we have been mostly concerned about the linear least square problems 

from both a general inverse theory and maximum likelihood point of view. Now we will 

be talking about linearizing the nonlinear least square methods and problems associated 

with rank deficiency and ill-conditioning and stabilizing them using singular value 
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decomposition (SVD) and  Levenberg-Marquardt algorithms for regularization. We will 

estimate the solution of a nonlinear inverse problem by looking at the iterative methods. 

Let us assume that 0m is an initial estimate of m and 0d  is the nonlinear equation 

(4.3) evaluated at 0m , a first order Taylor expansion of ( )d g m=  around 0m  can be 

expressed as (Lines and Treitel, 1984): 

 ( )
0

0 0

1

M

j j
j j m m

dd d m m
m= =

∂
= + −

∂∑  . (4.15) 

In matrix notation, (4.15) can be expressed as: 
 

 0d d J m= + Δ  , (4.16) 

where J is the matrix of partial derivative or Jacobian matrix ( N M× , where N is the 

number of data and M is the number of the model parameters) and 0
j jm m mΔ = − . The 

error vector e, the difference between the measured data y and computed data d (simply 

data residual) can be written as: 

 e y d= −  . (4.17) 

Substitution of (4.16) in (4.17) results in: 
 0r y d e J m= − = + Δ  . (4.18) 

where r is the discrepancy vector. By rearranging (4.18), the error vector e can be 

expressed as: 

 e r J m= − Δ  . (4.19) 

Minimization of the objective function (4.1) by substituting the error vector (4.19) 

and differentiation with respect to the mΔ can be expressed as:   

 ( )T TJ J I m J rβ+ Δ =  (4.20) 

 ( ) 1T Tm J J I J rβ
−

Δ = +  (4.21) 

 
This is the Levenberg-Marquardt (Marquardt, 1963) algorithm. Due to the β  in (4.21) 

Levenberg-Marquardt algorithm belongs to the class of constrained optimization 

problem. If 0β = , the Levenberg-Marquardt algorithm reduces to Gauss-Newton 

method. The equation (4.20) can be solved by any linear matrix solvers such as Choleski 

factorization without computing the inverse matrix in (4.21). Despite that, the Gauss-
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Newton method generally suffers from rank-deficiency of the TJ J matrix, Levenberg-

Marquardt algorithm avoids this weakness by including the positive number β . 

Including β  avoids singularity of the eigenvalues of TJ J and will ensure that TJ J  is 

positive definite but this is not sufficient if the residual errors are not a linear function of 

model parameters.  If the residual vector r is large, performance of Gauss-Newton or 

Levenberg-Marquardt algorithms is poor and will likely fail to converge (Nocedal and 

Wright, 1999). This is the result of neglecting the second derivative term (Hessian 

matrix) in (4.15), which will be significant if the residuals are large. Sufficiency for 

minimization of the objective function means that the Hessian matrix has to be positive 

definite (Fletcher, 1980). By neglecting the second component of the objective function 

(4.1) and taking its first derivative with respect to model parameter we will get (Lines and 

Treitel, 1984): 

 
1

2 , 1,2,..., .
N

i
i

ij j

e e j M
m m
ϕ

=

∂∂
=       =

∂ ∂∑  , (4.22) 

 
22

1
2

N
i i i

jk i
ij k j k j k

e e eA e
m m m m m m

ϕ
=

⎛ ⎞∂ ∂ ∂∂
= = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∑  . (4.23) 

Since  

 i i

j j

e d
m m

∂ ∂
= −

∂ ∂
 . (4.24) 

The Hessian matrix (4.23) can be written as: 

 
22

1
2

N
i i i

jk i
ij k j k j k

d d eA e
m m m m m m

ϕ
=

⎛ ⎞∂ ∂ ∂∂
= = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∑  , (4.25) 

In matrix notation, (4.25) becomes: 
 2 2TA J J A′= +  , (4.26) 

where  
2

2 i
i

j k

A
ee

m m
′ =

∂
∂ ∂

. 

Equation (4.26) shows that Hessian A has two components; in a range of model 

parameters, where, the objective function is quadratic, TJ J  will always be positive 

definite. If the errors are linear function of model parameters, A′ vanishes and the 

Hessian matrix is only a function of the Jacobian matrix TJ J , however, if errors are 
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nonlinear function of model parameters,  A′  will not be zero and there is no guarantee 

that the Hessian will be positive definite;  hence minimization might not occur. 

In large scale problems, where, the number of data and model parameters is large, 

computation of  TJ J  and  TJ r  not only needs large storage but also causes numerical 

inaccuracies. Singular value decomposition (Golub and Van Loan, 1996) is a method for 

analyzing rank-deficiency and / or ill-conditioned matrices (Aster et al., 2005). Suppose 

for any vector g  in the range of J the following linear equation needs to be solved: 

 J m gΔ =  , (4.27) 

 where J is an N by M ill-conditioned matrix. J can be decomposed in the following way: 

 TJ U V= Λ  , (4.28) 

 
where U is an N by N orthogonal matrix whose columns are unit basis vectors spanning 

the data space, nR . V is an M by M orthogonal matrix whose columns are basis vectors 

spanning the model space, mR . Λ is an N by M diagonal matrix whose nonnegative 

elements are called singular values. If there are only P nonzero singular values, the M-P 

zero elements will be discarded and the rest are arranged in a descending order. Because 

the N-P element of matrix U and N-P element of matrix V are multiplied by zero, (4.28) 

will simplify into a compact form (4.29). Therefore,  Λ  is a P by P diagonal matrix with 

positive values. 

 T
p p pJ U V= Λ  . (4.29) 

The P columns of matrix pU  form an orthonormal basis for ( )R J , while the N-P 

columns of  0U  form an orthonormal basis for the null space of ( )TN J . Therefore, 

( ) ( )T nN J R J R+ = . ( )TN J is usually referred to as data null space. Similarly, because 

T T
p p pJ V U= Λ , the P columns of matrix pV  form an orthonormal basis of ( )TR J  and M-P 

columns of matrix 0V  form an orthonormal basis for the null space of ( )N J , so 

( ) ( ) mTN J R J R+ = . ( )N J is usually called model null space. There are other properties 

(4.30) and (4.31) of  SVD which can be easily proved (see Aster, Borchers and Thurber 

(2005), such as,  
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 2T
i i iJJ u uλ=  , (4.30) 

 2T
i i iJ Jv vλ=  . (4.31) 

These equations show that in theory, one can simply use the above equations to compute 

the eigenvalues and eigenvectors TJJ  and TJ J , but there are more efficient algorithms to 

do SVD (Golub and Van Loan, 1996; Press et al., 2002). It should be mentioned, 

however, there are M-P null vectors in matrix V, but this reduces the dimensionality of 

the inverse problem and in practice the number of P eigenvalues ( )λ  are kept at the 

number of model parameters (M). 

Let us write down the least square problem (4.27) in terms of singular value 

decomposition by replacing (4.28) in (4.27): 

 T m gU V Δ =Λ  , (4.32) 

Now  
 †m J gΔ =  . (4.33) 

where  
 † 1 TJ V U−= Λ  , (4.34) 

is called the generalised inverse. 
 
We can expand (4.33) as a linear combination of columns of basis vectors: 
 

 
( )

1

TM
i i

i

v u g
m

λ=

Δ = ∑  . (4.35) 

Very small value of the eigenvalues in the denominator will give a very large weight to 

the corresponding basis vectors of model space ( )iv  and they dominate the solution. In 

the case of random noise g has a nonzero projection onto each component of basis vector 

of data space ( )iU . In the worst case,  a generalised inverse is just  a noise amplifier and 

the solution is useless (Aster, Borchers and Thurber, 2005).  

The condition number of the matrix J is a measure of instability of the generalized 

inverse. It is the ratio of the largest eigenvalue of diagonal matrix  Λ  to the smallest one. 

A large condition number is an index of instability. There are several ways to reduce the 

condition number. Truncated singular value decomposition (TSVD) is a way to discard 

the small eigenvalues, but this result in lowering the dimensionality of the problem and 
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we have to sacrifice some model parameters for the sake of stability. Another way of 

stabilizing the generalized inverse solution is to compute the singular values of an ill-

conditioned matrix which has been stabilized by Levenberg-Marquardt algorithm.   

Let us rewrite the normal equation (4.21) in terms of SVD. Substituting   (4.28) in  

(4.21) and by the fact that TV V I= , the generalized inverse solution (see Lines and 

Treitel (1984) for more detail) can be written as: 

 2
Tm V U g

β
Λ

Δ =
Λ +

 . (4.36) 

 By rewriting the (4.36) in terms of eigenvalues of the diagonal matrix Λ , the generalized 

inverse solution is as follow:   

 2
Ti

i

m Vdiag U gλ
λ β

⎛ ⎞
Δ = ⎜ ⎟+⎝ ⎠

 . (4.37) 

Even in the case of small eigenvalues, the regularization parameter ( )β  avoids the 
instability in the solution of the generalized inverse.  
 

We have so far talked about finding the solution of either linear or nonlinear 

inverse problems using singular value decomposition. In theory, the solution of exact 

linear inverse problem could be achieved in one step, however, due to noise the objective 

function is not quite quadratic, so SVD should be repeated until a satisfactory solution is 

found. In nonlinear inverse problems we rely on linearizing the forward model around an 

initial model parameter and by successive updating of the model parameter we hope to 

get to a solution. Due to nonlinearity of the forward model we may converge to a 

minimum which may not necessary be the global minimum. This process has to be an 

iterative scheme and as such we update the initial model iteratively until we reach a 

satisfactory solution. In general, whenever the gradient vector of the objective function 

(4.1) or forward model is zero, iteration should be stopped. Whenever the structural 

constrained (the second term) of the objective function (4.1) is neglected, the value of the 

objective function itself could be used as a criterion to stop the iteration process. 

Sequence (4.38) summarizes the iterative process ( Sen and Stofa , (1995) after some 

modification). 
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toleranceε = , 

1, ...Loop over iteration i n     =     

( )i id g m= ,   synthetic data vector 

i i ie y d= −  ,   data residual 

Computeϕ , The objective function                                                               (4.38) . 

dJ
m

∂
=

∂
 ,   gradient vector 

Computed byim SVDΔ =  ,   model parameter update 

i i im m m= + Δ  ,   new model parameter 

If ( )0J =  or ( )ϕ ε<  or i n=  Exit  

Continue  

 
4.3 Least square inversion of traveltimes in a multi layered medium 
 

In a layered, transversely isotropic medium (Figure 4.2), traveltimes (either P-

waves or SV-waves) are a function of vertical compressional and shear wave velocities, 

Thomsen’s anisotropy parameters ( ),δ ε , and layer thickness for a given offset and 

reflector. These properties which, hereafter, will be called model parameters are assumed 

to be constant laterally. For a specific offset and a stack of 1M +  layers, M traveltimes 

will be recorded (assuming the thickness of each layer compared to the wavelength is 

large enough). As each ray travels through all the layers down to the reflector, each layer 

has already been hit by elastic waves. The lowest layer which is considered as reflector 

has only been hit once; while the top layer has been hit by the number of ray paths and 

the rest are in between. This way of considering the impact of each ray on each layer 

down to the reflector is different from layer stripping inversion, where each ray path is 

treated individually and the effects of other ray paths from the upper reflectors are 

neglected. This will improve the robustness of the upper layer parameters. 

Simultaneously incorporating all the information is more complicated in terms of 

configuring a nonlinear least square method.  
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Figure 4.2: Reflection traveltimes of compressional waves in a layered medium. 
 

Following the notation used in previous sections, we express traveltimes by the 

vector i
jd , where  index i  denotes the traveltime for a specific offsets and j  refers to the 

traveltime from each reflector. The model parameter is expressed as k
jm , where index  j  

refers to layer number and k  applies to each model parameter from different type (such 

as , ,p sV V etc    ). The matrix of partial derivatives (Jacobian matrix) and its transpose are 

expressed in (4.39) and (4.40) respectively. The Jacobian matrix is a blocky sparse matrix 

composed of lower triangular blocks of M by M . The first column of each block is the 

derivative of the traveltime from a specific offset with respect to a model parameter from 

the first layer (top layer). The second column belongs to a model parameter in the second 

layer. The first element of this column is zero because the ray path reflection from the top 

of the second layer has no effect on the model parameters in the second layer. In the last 

column only the last element is nonzero, because only one ray path has contributed to the 

corresponding layer. The vertical   columns belong to traveltimes from different offsets,  
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 (4.39) . 

 
while the horizontal blocks belong to different type of the model parameters. The 

Jacobian matrix  ( )J  is a rectangular ( ),N M M K× ×  sparse matrix, with 

( )1 / 2KNM M −  null elements. The sparsity of the Jacobian matrix is 1
2

M
M
− , which, in 

the  limit,  reaches 50 percent when M goes to infinity.   
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 (4.40) . 

 
Vector g  (4.41) is a blocky vector, composed of N sub vectors each with the size 

M  elements. The index i  in i
jg  refers to a specific offset, while index j  denotes the ray 

path reflecting from the top of each layer. The solution vector mΔ (4.42) is composed of 

k  sub vectors jm , each of size M  elements. k  refers to the number of different types of 
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parameters to be estimated. Equations (4.39) - (4.42) form a nonlinear least square 

approach to the traveltime inversion problem in a multi layered media.  

 

 

 (4.41) , 

 

 

  (4.42) . 
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4.4 Unconstrained minimization using iterative gradient methods 
 

There are two major groups of unconstrained algorithms for multidimensional 

minimization using the first derivatives; conjugate gradient and variable metric methods. 

Conjugate gradient is well suited for large scale problems with storage of the order of M 

model parameters in which the second derivatives do not necessarily need to be found. 

Variable metric methods instead use the storage of the order of  2M  and second 

derivatives need to be calculated. Due to implementing the Hessian matrix, variable 

metric is faster than the general form of the conjugate gradient but this limits the Hessian 

based minimization algorithms for problems where the prior information is close enough 

to the solution. In this section we review the multidimensional line minimization which 

will be followed by a review of conjugate gradient and variable metric method. 

Gradient based minimization algorithms use a descent direction h  of the 

objective function f  to find a point where the objective function is minimum. Direct 

search and gradient based methods are two major categories in line search method. Direct 

search methods like golden section or bisection by successive bracketing find the 

minimum of a function. They are robust but require more function evaluation. On the 

other hand, gradient based line search algorithm try to find the minimum of 

( ) ( )f x hϕ α α= +  by successive evaluation of  ϕ  at differentα  (step length).  In this 

section, for consistency with mathematical literature, we use x as a variable representing 

the model parameter m which we are dealing with. 

In the linear problems, where the objective function is quadratic, ϕ  can be 

minimized directly for the α  along a descent direction. If the objective function is far 

from being quadratic, α  needs to be computed using iterative line search methods. 

Inexact line search methods based on Armijo or Wolf conditions (Nocedal and Wright, 

1999) can effectively be used for minimization algorithms such as variable metric or 

Newton method. Steepest descent and conjugate gradient algorithms need a more 

accurate line search or exact line search such as the Brent method (Brent, 1973).  In 

practice, we initially bracket the minimum to a reasonable interval using, for example, 

golden section and then use either one of the inexact or inverse quadratic search methods 
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to find the minimum of ϕ . This approach is more suitable for nonlinear problems where 

the objective function is not quadratic.  

4.4.1 Golden section search method 
 

The Golden section search is a direct search method which, by successive 

bracketing,    eliminates regions which fall outside a triple point sequence in which the 

objective function value is larger than the triple points.  The amount of jump to a bracket 

is equal to the golden ratio τ . Suppose a function has a minimum in the range of 0-1. We 

choose two symmetric points from this range where their distances from either points is 

equal to τ  (Figure 4.3 a).  In the first step we eliminate the right end point assuming that 

the function is larger than other points. Now, the range is limited to τ  (Figure 4.3 b). We 

draw a point with the distance τ  from the right end point. This distance is in fact 2τ  in 

the range of 0-1.  To retain the symmetry the inner point has to be symmetric to either 

end point, hence 2 1τ τ= − . This is a quadratic function (4.43) and the positive solution of  

τ  is golden ratio.  

 

2 1 0

1 5 0.61803...
2

τ τ

τ

+ − =

− +
= =

  . (4.43) 

Figure 4.4 illustrates an example of golden section search bracketing (Ravindran 

et al., 2006).  Function f is bracketed initially at two end points 1 and 2. The first two 

evaluations are located at points 3 and 4. Since the function f at point 4 is smaller than in  

point 3 and also point 4 is smaller than point 3,  the region beyond point 3 is eliminated. 

In the next step point 5 will be chosen based on golden ratio τ  measured from point 3. 

The function f at 5 is greater than point at 4, so the region before point 5 will be 

eliminated and so on. A general criteria to stop a golden section search might be to stop 

whenever the difference between two successive bracketing is not greater than 410−  for 

single precision and 83 10−×  for double precision computation (Press, Teukolsky, 

Vetterling and Flannery, 2002). The Convergence rate of a golden section search 

algorithm is linear and linear improvement in bracketing requires linearly increasing 

function evaluation. 
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Figure 4.3: Golden ratio search 
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Figure 4.4: Golden section search bracketing  ( ) ( )240 90f x x= −  
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4.4.2 Inexact line search methods 
 

In previous section we mentioned the purpose of the line search. We are looking 

for a global value of step length α  to minimize an objective function f  at the minimum 

cost.  

 ( ) ( )k kf x hϕ α α= +  . (4.44) 

The direct search methods such as golden section search, however, are robust to deal 

even with non-quadratic objective function but require a lot of function evaluations.  

In linear problems, where  (4.44) is a quadratic one-dimensional minimizer of α  

along the  k kx hα+ , taking the directional derivative of f  with respect to α  and 

equating it to zero, results in the following  expression (Nocedal and Wright, 1999). 

 
T

k k
k T

k k

f h
h Ah

α ∇
= −  . (4.45) 

where h  is a search direction and H can be the Hessian matrix for nonlinear problem or 

could simply be the coefficients of a system of linear equations in linear problems. 

Nonlinear objective functions need an iterative, either inexact or exact line search, to 

estimate α . In the following, we briefly review some of the most popular inexact line 

search methods based on Armijo and Wolfe conditions. Wolfe conditions are the most 

popular inexact line search method which is used in unconstrained minimization 

algorithms specifically in the variable metric methods where an exact line search 

minimizer is not required. 

Armijo is a popular inexact line search method where it looks for a step length α  that 

sufficiently decreases the objective function f by satisfying the following inequality: 

 ( ) ( ) 1
T

k k k k kf x h f x c f hα α+ ≤ + ∇  . (4.46) 

The right side of inequality (4.46) is a linear function ( )l α  of step length. Inequality 

(4.46) is usually known as the Armijo condition or rule. 10 1c< <  , kh  is a descent 

direction, and   T
k kf h∇  is the directional derivative. In practice, 4

1 10c −= . Figure 4.5 

illustrates the line of sufficient decrease; every value of step length which lies below the 

objective function ( )ϕ α  can be a candidate for the line search minimization. As can be 
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seen from Figure 4.5, there are locations that satisfy Armijo condition, although they are 

quite far from a minimizer.  Armijo condition is not sufficient and other conditions need 

to be imposed. Curvature of the objective function along with the line of sufficient 

decrease, collectively, can be used to restrict step length according to: 

  

 
( ) ( )

( )
1

2

T
k k k k k

T T
k k k k k

f x h f x c f h

f x h h c f h

α α

α

+ ≤ + ∇

∇ + ≥ ∇
 . (4.47) 

The inequalities in (4.47) are collectively called the Wolfe conditions. The left 

hand side of the second inequality of Wolfe conditions is the derivative of the objective 

function with respect to each step length. 1 2 1c c< < . Wolfe conditions simply state that 

the slope of the objective function has to be equal to or greater than a reduced slope of the 

objective function at a location where the step length is zero. Figure 4.5 shows the areas 

where the step length satisfies the Wolfe conditions. Wolfe conditions have restricted the 

areas where step length could be a candidate for line search minimization. The value of 

2c  varies, based upon the minimization algorithms which produced the search direction 

vector h . For the Newton and variable metric algorithms it should be 0.1 while, for 

nonlinear conjugate gradient it should be 0.9 (Nocedal and Wright, 1999). As it can been 

seen in Figure 4.5, there are areas where, the curvature is strongly positive and the related 

step length is quite far from a local minimizer , however it satisfies the Wolfe conditions. 

By imposing some constraints on curvatures, the step length can be forced  closer to the 

critical point of the objective function.  

 
( ) ( )

( )
1

2

T
k k k k k

T T
k k k k k

f x h f x c f h

f x h h c f h

α α

α

+ ≤ + ∇

∇ + ≤ ∇
 . (4.48) 

The inequalities in (4.48) are called strong Wolfe conditions. Practical 

implementation of methods satisfying Wolfe conditions need to find an initial guess for 

the step length and also its upper and lower limits. This is usually treated as a two step 

process. In the first step α  has to be bracketed to a lower and upper limit by any method 

such as parabolic interpolation, golden section search, bisection etc. In the second step 

after finding a suitable range, α  is iteratively updated using an interpolation scheme. 

This includes updating the upper and lower bounds while satisfying the Wolfe conditions. 
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A practical implementation of line search utilizing Wolfe conditions is  given by (Moré 

and Thuente, 1994; Nocedal and Wright, 1999). 

 

 
 
Figure 4.5: Line of sufficient decrease and Wolfe conditions for the objective function 

(Nocedal and Wright (1999) after some modifications). 

 

4.4.3 Exact line search methods 
 

In situations where the multidimensional minimization algorithms such as 

nonlinear conjugate gradient need a step length very close to the minimum of (4.44), 

inexact line search  methods may not be very efficient and instead an exact line search 

minimizer should be considered. Exact line search algorithms need extra computation and 

line search methods with linear convergence rate such as Golden section search are not 

desirable. Brent’s method (Brent, 1973) is a popular but complicated one-dimensional 

minimization method  with superlinear convergence rate. It only uses the function 
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evaluation and don’t utilise first derivatives which would impose extra function 

evaluation. There are exact line search methods where, first derivatives are utilized. One 

of the early works is assigned to William C. Davidon in 1959, who introduced the 

variable metric method  (Davidon, 1991). Brent’s method combines successive inverse 

parabolic interpolation and Golden section search method (whenever, the function is not 

cooperating) to find an approximate minimum of the objective function.  

Lagrange interpolation for any triplet points a, b, and c, where c is located 

between a and b, can be expressed in the following form. 

 ( ) ( ) ( )( )
( )( )

( ) ( )( )
( )( )

( ) ( )( )
( )( )

x b x c x c x a x a x b
f x f a f b f c

a b a c b c b a c a c b
− − − − − −

= + +
− − − − − −

 . (4.49) 

After equating the first derivative of (4.49) to zero and some algebraic manipulation the 

extremum  can be expressed as: 

 
( ) ( ) ( )[ ] ( ) ( ) ( )[ ]
( ) ( ) ( )[ ] ( ) ( ) ( )[ ]

2 2
1
2

b a f b f c b c f b f a
x b

b a f b f c b c f b f a
− − − − −

= −
− − − − −

 . (4.50) 

We express e x b= − . At each step there are six points a, b, u, v, w, and x which are not 

all distinct and their position changes during the algorithm. Assuming there is a minimum 

in the bracketed range of [ ],a b , apart from u, the rest of the variables are initialized using 

the Golden ratio: 

 ( )( )( ) ( )( )3 5 , 3 5 0.381966...0.5 0.5v w x a b a= = = + − −     − =                     (4.51) 

As the process starts, x will be calculated using (4.50) as the minimum of the 

fitted parabola to the objective function; w is the point with next least value of the 

objective function; v is the previous value of w; and u is the last point where, the 

objective function is evaluated. In the next iteration, if the denominator of (4.50) is equal 

to zero, if ( ),x a b∉ , e tol≤ , where e  is calculated in the previous iteration, or 

1

2
x b e− ≥ , then the process alternates to  the Golden section search method. Let 

2

a b
m

+
=  be the mid point of ( ),a b . The next value of u is: 

 

                                                                    (4.52) 
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Figure 4.6:  Successive fitting a parabola with the objective function. Points 1 and 3 has 

already been bracketed, while point 2 initially has been located using the golden ratio. 

The first parabola is fitted in the point 1, 2, and 3. The minimum of the first parabola (4) 

is considered as the next point along with points 1 and 2 for another parabolic fitting. The 

minimum of the second parabola (5) is close to minimum of the objective function (After 

Press, et al. (2002) ). 

 

If the Golden section is used or 

 u x e= +  , (4.53) 

if the inverse parabolic interpolation method is used. A typical termination of Brent’s 

method will be if the interval of ( ),a b  is less than 2 x tol ×  × , where the tol  should not 

be less than the square root of floating point machine precision. In this thesis, we use 

Brent’s method based on the algorithm given by (Press, Teukolsky, Vetterling and 

Flannery, 2002) whenever nonlinear conjugate gradient is used.  
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4.4.4 The Method of steepest descent 
 

Let us approximate a nonlinear function f with the Taylor series of the second 

order in vicinity of the point 0 0x m=  as a quadratic form. 

 ( ) 1
2

T Tf x x Ax b x c= − +  . (4.54) 

where ( )c f m= ,  
0x

b f= −∇ , and 
0

2

ij
i j x

fA
x x
∂

=
∂ ∂

is a symmetric  matrix. Differentiating 

(4.54) with respect to x  results in: 

 ( ) 1 1
2 2

Tf x A x Ax b

Ax b

′ = + −

          = −
 . (4.55) 

If A is positive definite then (4.56) will be the solution of ( )f x  as:  

 Ax b=  (4.56) 

A matrix A is called positive definite if for any vector x, 0Tx Ax > . Linear problems can 

also be expressed as a quadratic form for minimization; however, ijA , which are the 

coefficients of a set of linear equations, may not be symmetric or even positive definite. 

If A is not positive definite, then  

 ( )1
2

TA A x b+ =  , (4.57) 

could be a solution of (4.54). ( )TA A+  is now symmetric.  
 

In the method of steepest descent we start at an initial point ix  and move in the 

direction of steepest descent: 

 
( )i i

i

r f x
b Ax

′= −

   = −
 . (4.58) 

The amount of jump is i irα , where α  is the step length. We take the next step 

perpendicular to the previous direction. The model parameter x  will be iteratively 

updated according to: 

 1i i i ix x rα+ = +  . (4.59) 
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The updating scheme (4.59), in a probabilistic point of view for a steepest descent 

algorithm, is given by (Tarantola, 2005) as: 

 1
1

T
i i i M f D ix x C C eα −
+ = + ∇  , (4.60) 

where MC and DC are covariance matrices of model parameters and data respectively. 

e y d= − is the residual vector. In this thesis wherever we use any unconstrained 

minimization updating scheme we use (4.60) rather than generic equation (4.59). 

Assuming the function f is quadratic, The step length α  can be found by taking 

the directional derivative of ( )1if x +  with respect to α  and the orthogonality of 

successive steepest descent directions (Shewchuk, 1994) , 1 0T
i ir r+ =  as: 

 
T

i i
i T

i i

r r
r Hr

α =  . (4.61) 

For nonlinear functions where the assumption of quadratic behavior is not well satisfied, 

the step length α  should be found by any of the inexact or exact line search methods. 

The method of steepest descent will become very slow if it goes along a narrow valley 

and it takes a lot of small steps to reach the solution even if the objective function is a 

perfect quadratic function. Figure 4.7 shows the convergence of a linear set of equations 

of two parameters. Steepest descent converges to the minimum by more steps than the 

number of parameters. 
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Figure 4.7: Minimization of a two parameter linear equation using the method of steepest 

descent. 
3 2

2 6
A =

⎡ ⎤
⎢ ⎥⎣ ⎦

,  
2

8
b =

−

⎡ ⎤
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, and 0c = . It takes several small steps to reach the solution 

(Shewchuk, 1994). 
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4.4.5 Conjugate gradient algorithm 
 

The conjugate gradient (CG) algorithm was proposed by Stiefel and Hestenes in 

1950 separately  (Hestenes and Stiefel, 1952) for linear problems but it remained without 

attention for about 20 years. Conjugate gradient has been considered as one of top 10 

algorithms with greatest influence on development and practices of science and 

engineering in 20th century (Sullivan and Dongara, 2000). It has been particularly 

important for large scale minimization problems. The first conjugate gradient algorithm 

for nonlinear problems has been proposed by Fletcher and Reeves (1964). 

Preconditioning of conjugate gradient algorithms either linear or nonlinear has led to the 

fast convergence of this algorithm (Van der Vorst, 2000).  

One of the remarkable properties of conjugate gradient is to produce n conjugate 

directions along which the objective function can be successively minimized, in n steps.  

A set of non-zero vectors h  are said to be conjugate if for a positive definite matrix A  : 

 ,T
i jh Ah i j= 0     ≠  . (4.62) 

The question is, how to get the conjugate directions? There are many ways to do so. The 

eigenvectors of matrix A  are mutually orthonormal and also conjugate to A  but this 

approach is not suitable for large scale problem where it will be computationally 

expensive to calculate the eigenvectors. A-Orthogonalization (Conjugate Gram-Schmidt) 

process  (Hestenes and Stiefel, 1952; Shewchuk, 1994) as well as conventional or 

modified Gram-Schmidt (Golub and Van Loan, 1996) processes can produce 

orthonormal vectors with less computation. The A term in A-Orthogonalization refers to a 

positive definite matrix A. Using a set of n linear independent vectors iu , n conjugate 

vectors  ih  can be constructed using the conjugate Gram-Schmidt  orthogonalization as: 

 
1

0

i

i i ik k
k

h u hβ
−

=

= + ∑ , (4.63) 

 ,
T
i k

ik T
k k

u Ah i k
h Ah

β = −     >  . (4.64) 

where 0 0h u= , ikβ  are the projection of u over h , and iu  could  be a set of linear 

independent random vectors and ih  are conjugate directions. This process subtracts out 
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any vector which is not conjugate to the previous h  vectors. One disadvantage of Gram-

Schmidt orthogonalization is the need to store all the previous conjugate directions.  

In the method of conjugate direction the solution vector 1ix +  can be updated as the sum of 

previous vectors and a jump in the direction of conjugate vectors as: 

 1i i i ix x hα+ = +  . (4.65) 

The step length α  can be found by minimizing the objective function f along the search 

direction. Equating the first derivative of ( )1if x +  with respect to α  to zero,  results is  

(Nocedal and Wright, 1999): 

 
T

i i
i T

i i

r h
h Ah

α = −  . (4.66) 

where ir is the previous residual vector. The residual vector 1ir +  can be computed using a 

combination of previous residual vector ir  and the new search direction 1ih +  , but after 

few iterations it will suffer from floating point roundoff error and should be refreshed by 

the x vector. 

 1i i i ir r Ahα+ = +  . (4.67) 

 
The method of conjugate gradient is the same as the method of conjugate 

directions except the linear independent vector u  is replaced by the residual direction r . 

Equation (4.67) shows that each residual vector is a linear combination of the previous 

residual vector and 1iAh + . Vector 1 2i ih D+ +∈ , where iD  is an i-dimensional subspace span 

}{ 0 1 1, , ..., ih h h −   . This implies that subspace 2iD +  is formed from the union of previous 

subspace 1iD +  and 1iAD +  (Shewchuk, 1994).  

 
}{
}{

2 1
0 0 0 0

2 1
0 0 0 0

, , ,....,

, , ,....,

i
i

i

D span d Ad A d A d

span r Ar A r A r

−

−

=

     =       
 . (4.68) 

Subspace (4.68) is called Krylov subspace. It is a subspace which is spanned by a Krylov 

matrix iD . Because 1iAD +  is in the subspace 2iD +  and residual vector 1ir +  is orthogonal 

to 2iD + , hence 1ir +  is conjugate to 1iD + . This fact results in a nice property in the 

conjugate Gram-Schmidt orthogonalization where 1ir +  is conjugate to the previous search 
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directions and all  projection operations in (4.63) and (4.64) will vanish except for 1ih + . 

The new scalars α  and β  can be expressed as (Kelley, 1995; Nocedal and Wright, 

1999): 

 
T

i i
i T

i i

r r
h Ah

α =  , (4.69) 

 1 1
1

T
i i

i T
i i

r r
r r

β + +
+ =  . (4.70) 

The search vector 1ih +  can now be updated using the linear combination of current 

residual vector 1ir +  and  1i ihβ + as: 

 1 1 1i i i ih r hβ+ + += − +  . (4.71) 

where 1ir +  can be computed using (4.67). 

The linear conjugate gradient algorithm can now be summarized as (Nocedal and Wright, 

1999): 

 

0 0

0 0 0 0

1

1

1 1
1

1 1 1

Given a prior model  and convergence tolerance >0,
, , 0;

;

;
;

;

i

T
i i

i T
i i

i i i i

i i i i

T
i i

i T
i i

i i i

x m
Set r Ax b h r i
while r

r r
h Ah

x x h
r r Ah

r r
r r

h r h

ε

ε

α

α
α

β

β

+

+

+ +
+

+ + +

=
  ← −   ← −   ←

   >

     =

     = +
     = +

     =

     = − + ;
1;

i

i i
end
     = +

  . (4.72) 

Due to floating point roundoff errors in matrix-vector product, particularly when 

the matrix A  is ill-conditioned, the conjugate vectors will lose their A Orthogonality−  

and the following inner products are not strictly satisfied in practice: 

 , 0, , 0, , 0i j i j i jr r h r h Ah〈 〉 =   〈 〉 =   〈 〉 =  . (4.73) 

To ensure that (4.73) equations are strictly satisfied, search directions have to be 

re-orthogonalized against all the previous directions. This process is called complete re-



 120

orthogonalization and conjugate gradient algorithm will be very slow. Partial re-

orthogonalization of current search direction against a number of previous descent 

vectors has been shown effective to satisfy conjugacy (Roux, 1989). Equation (4.71) 

should be expressed as: 

 1 1
0

k

i i i j i j
j

h r hβ+ + − −
=

= − + ∑  , (4.74) 

 1i

i j

T
i j

i j T
i j

r Ah
h Ah

β +

−

−
−

−

= −  . (4.75) 

We have so far considered the conjugate gradient method to minimize linear 

functions. One of the remarkable aspects of conjugate gradient is, its extension to 

nonlinear functions. Fletcher and Reeves (1964) by two modifications in (4.72) showed 

conjugate gradient can be extended to nonlinear functions. Replacing the residual vector 

r by the negative of the derivative of the nonlinear objective function (gradient vector) 

( )f x′−  and computing the step length α  using a line search method rather than equation 

(4.69). They proposed a new scalar β  which does not need to evaluate the matrix vector 

product (4.75). This algorithm with the following scalar  is known as the Fletcher-Reeves 

(Fletcher and Reeves, 1964) algorithm, 

 1 1
1

T
FR i i

i T
i i

r r
r r

β + +
+ =  , (4.76) 

where ( ) ( )1 1,i i i ir f x r f x+ +′ ′= −   = − . There are many other expressions for the scalar β  

and  there is continuing research for new variants of nonlinear conjugate gradient. 

Perhaps, the Polak-Ribiére  method (Polak and Ribiére, 1969) (4.77)  by far, is the most 

favorable variant of nonlinear conjugate gradient . From the other most important 

variants of nonlinear conjugate gradient, we can recall the methods of Hestenes-Stiefel , 

Fletcher (abbreviated as CD )  (Fletcher, 1980), Dai and Yuan (Dai and Yuan, 1999) and 

are given in equations (4.78) - (4.80) respectively. 

 ( )1 1
1

T
i i iPR

i T
i i

r r r
r r

β + +
+

−
=  , (4.77) 
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 ( )
( )

1 1
1

1

T
i i iHS

i TT
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r r r
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+

+
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−
 , (4.78) 

 1 1
1

T
CD i i
i T

i i

r r
h r

β + +
+ = −  , (4.79) 

 
( )

1 1
1

1

T
DY i i

i T
i i i

r r
h r r

β + +
+

+

=
−

 . (4.80) 

 
A generic nonlinear conjugate gradient algorithm is  summarized  as (Nocedal and 

Wright, 1999; Bonnans et al., 2003): 

 

( ) ( )

( )
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          = +
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  . (4.81) 

 

Shi and Shen  (2006) proposed the following recursive step length for 

unconstrained minimization problems. The first step length 0α can be calculated for 

instance, by Armijo rule. This may reduce the cost of line minimization computation.  
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1 1
1

1
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i i i

i T
i i i
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r r h
αα + +

+

+

= −
−

 . (4.82) 



 122

In nonlinear problems it is common to have a negative β , especially for the method of 

Polak and Ribiére where, the strong Wolfe conditions do not guarantee that ih  is always a 

descent direction (Nocedal and Wright, 1999). In this case β  should be set to zero. 

To asses the effectiveness of the different nonlinear conjugate gradient algorithms 

we have applied methods (4.76)-(4.80) to a stack of anisotropic layers (Table 2.1) to 

estimate the Thomson anisotropy parameters ( ),δ ε  from traveltime data. Figure 4.8 

illustrate the objective function evolution for the above algorithms. All use the same prior 

model and use the exact line minimization. 96 traces have been used where the first trace 

was located at 200 metre from the source and the rest of the traces were kept at 50 metre 

intervals. It can be seen that only Polak-Ribiére method has converged reasonably but the 

method of Dai-Yuan and Fletcher-Reeves have failed. The method of Hestenes-Stiefel 

has a step-wise like convergence pattern and it might converge if we continued to more 

iterations. Fletcher method has a monotonic decreasing behavior and tends to converge as 

the iteration goes further. 
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Figure 4.8: Convergence pattern of different nonlinear conjugate gradient methods. 

Polak-Ribiére method seems superior to other algorithms. 
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The conjugate directions ensure the convergence of conjugate gradient in n steps, 

where n is the number of conjugate directions. Due to floating point roundoff error, 

conjugacy is not always observed and conjugate gradient may converge in more than n 

iterations. Lack of conjugacy of search directions is even more serious in nonlinear than 

in linear problems. Figure 4.8 clearly shows these issues where there are 18 parameters to 

be estimated. It takes more than 250 iterations to converge to a reasonable error level. In 

large scale problem or where the forward problem is computationally intensive, 

continuing the process even by n iteration is not economic. If the condition number of the 

matrix A is high or the eigenvalues are not clustered, the convergence rate will be slow. 

Preconditioning is a way to reduce the condition number of a matrix and increase the 

robustness and efficiency of iterative algorithms. Preconditioning is a means to transform 

the original linear system to another one which has the same solution but is likely to be 

easier to solve by an iterative solver. 

Suppose A  is a symmetric positive definite matrix and there exist a 

preconditioner matrix M  which approximates A  in each iteration. Matrix M  is also 

symmetric and positive definite and easier to invert. Then, the system of linear equations 

(4.56) can be solved as: 

 1 1M Ax M b− −=  . (4.83) 

If the condition number of  matrix 1M A−  is much smaller than the condition number of 

A  or if the eigenvalues of 1M A−  are more clustered, then (4.83) can be solved iteratively. 

However, matrix 1M A−  is no longer symmetric and positive definite. One can use 

incomplete Choleski factorization to decompose matrix M  to a lower triangular and its 

transposed matrices, to preserve the symmetry. However, we can use M-inner product 

, Mx y〈 〉  of two vectors in conjugate gradient algorithm instead of their Euclidean inner 

products ,Mx y〈 〉  (Saad, 2000). Since 1M A−  is self-adjoint for the M-inner product, 

 , , ,Mx y Mx y x My〈 〉 ≡ 〈 〉 = 〈 〉  , (4.84) 

where  

 ( )1 1 1, , , , ,M MM Ax y Ax y x Ay x M M A y x M Ay− − −〈 〉 = 〈 〉 = 〈 〉 = 〈 〉 = 〈 〉  . (4.85) 

The new residual vector for preconditioned system can be written as: 

 1
i iz M r−=  . (4.86) 
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where the old residual r is defined in (4.58). Now, the following expressions need to be 

considered for preconditioned conjugate gradient algorithm. 

 1

,
,

i i M
i

i i M

z z
M Ah h

α −
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〈 〉
 , (4.87) 

 1 1,
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 , (4.88) 

 
where 1

1 1i iz M r−
+ += . Since , ,i i M i iz z r z〈 〉 = 〈 〉  and  1 , ,i i M i iM Ah h Ah h−〈 〉 = 〈 〉 , the M-inner 

products do not need to be computed explicitly. The Following is a sequence for 

preconditioned linear conjugate gradient algorithm given by Saad (2000). 
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β

+

+ + +      = +
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               . (4.89) 

 

The simplest and easily implemented preconditioner is the diagonal 

preconditioning or Jacobian preconditioning where, the inverse of the diagonal elements 

of matrix A is  used as preconditioner (Kelley, 1995). Sparse Cholesky factorization of 

matrix A can also be used as a more elaborated preconditioner which is called incomplete 

Cholesky preconditioner (Nocedal and Wright, 1999). To see more comprehensive 

preconditioners for linear conjugate gradient problems the reader may refer to Saad 

(2000).  
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Nonlinear problems can also be preconditioned; however there is not much about  

nonlinear preconditioners in the literature. The Hessian matrix could be an effective 

preconditioner to approximate M if it is positive definite (Shewchuk, 1994). In areas of 

model space where ix  is quite far from the quadratic region, there is no guarantee that the 

Hessian matrix is positive definite (Press, Teukolsky, Vetterling and Flannery, 2002) and 

unfortunately there is not much that we can do. In this case we have to force the Hessian 

matrix to be positive definite, simply by changing to a unit matrix. If the computation of 

Hessian matrix is expensive we may only use the diagonal elements and setting the off-

diagonal elements to zero. By computing the first derivatives at two locations of model 

space, we can calculate an approximation to the inverse of the Hessian matrix using the 

BFGS method numerically. This means we have to compute the inverse of the Hessian 

matrix in every iteration. In the next section we will review the BFGS method.  The 

sequence (4.89) with few changes can also be implemented for nonlinear problems. The 

residuals have to be considered as the sequence (4.81) and step length α  should also be 

computed using a line search. β  should also be computed according to (4.81). One of the 

disadvantages of preconditioning is that the model parameters and their derivatives must 

have almost the same magnitude otherwise they have to be rescaled. 

We have implemented a preconditioned nonlinear conjugate gradient on the same 

example as we did in nonlinear conjugate gradient without preconditioning (Figure 4.8). 

we used BFGS method to approximate the inverse of the Hessian matrix as a 

preconditioner with the Polak-Ribiére method. As can be seen in Figure 4.9 there is an 

outstanding improvement in convergence rate of the objective function. The method of 

Polak-Ribiére, without preconditioning, has also been shown for comparison. The 

preconditioning conjugate gradient after 25 iterations has reached the same error level 

that the conjugate gradient without preconditioning has reached at 250 iterations. 
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Figure 4.9: Convergence pattern of preconditioned nonlinear conjugate gradient (PCG) 

using the method of Polak-Ribiére (PR) (red line). The convergence for the conjugate 

gradient without preconditioning (CG) (blue line) has also been shown for comparison.  
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4.4.6 Variable metric (quasi-Newton) methods 
 

In mid 1950’s C. W. Davidon, a physicist from Argonne National Laboratory, 

while he was frustrated by slow convergence of the steepest descent method, proposed a 

new unconstrained minimization algorithm which turned out to be one of the 

revolutionary ideas in optimization. His algorithm,  named variable metric, improved the 

convergence rate and efficiency of the numerical minimization method remarkably. “An 

interesting historical irony is that Davidon’s paper (Davidon, 1959) was not accepted for 

publication; it remained as a technical report for more than thirty years until it appeared 

in the first issue of the SIAM Journal on Optimization in 1991 (Davidon, 1991)” 

(Nocedal and Wright, 1999). The variable metric algorithm was further studied, 

implemented and popularized by Fletcher and Powell. DFP and BFGS are two variants of 

variable metric. The first one is called after works of Davidon, Fletcher and Powell and 

the later is named due to works of Broyden, Fletcher, Goldfarb and Shanno. Variable 

metric essentially uses the updating scheme, like the Newton method, which implements 

the matrix of second derivatives, but instead it approximates the Hessian matrix 

implicitly. It does not calculate the Hessian matrix at every iteration explicitly, but 

instead it updates the Hessian matrix from the previous and current search directions and 

gradient information. Variable metric methods need extra storage of the order of 2n for 

the Hessian matrix. With the advent of high performance computers where memory is not 

a big issue, variable metric can be used efficiently for large scale problems. It is more 

popular than conjugate gradient but more likely to fail if we are too far from the quadratic 

region and where the assumption of positive definite of the Hessian matrix is violated.   

Let us approximate the objective function f by its Taylor expansion in the vicinity of an 
initial model parameter ix  as: 

 ( ) ( ) ( ) ( ) ( ) ( )1
2i i i i if x f x x x f x x x A x x= + − ∇ + − −  , (4.90) 

where A  is the matrix of second derivatives. Taking the derivative of (4.90) we get: 
 

 ( ) ( ) ( )i if x f x A x x∇ = ∇ + − . (4.91) 

The minimum of  (4.90) can be computed by taking ( ) 0f x∇ = , so 
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 ( )1
i i ih x x A f x−= − = − ∇  . (4.92) 

This is the search direction ih  as in Newton method (2.30)  and the model will be updated 
according to: 
 

 1i i i ix x hα+ = +  , (4.93) 

where the step length iα  is chosen to satisfy the Wolfe conditions. The only difference 

from Newton method is that A is used in place of the true Hessian. This is why variable 

metric is also called as quasi-Newton method. By evaluating (4.90) at the new location 

1ix +  and calculating the derivative as (4.91) at the minimum we get: 

 ( )1
1 1i ix x A f x−

+ +− = − ∇  . (4.94) 

Now by subtracting the (4.94) and (4.92) we have: 

 
 ( )1

1 1i i i ix x A f f−
+ +− = ∇ − ∇ , (4.95) 

where ( )i if f x∇ ≡ ∇ . Lets 1i i iy f f+= ∇ − ∇  and 1i i is x x+= − , now (4.95) can be written as: 
 

 i iy As=  . (4.96) 
 
This is the secant equation. Multiplying both side of (4.96) by T

is we have curvature 
condition: 
 

 0T T
i i i is y s As= >  . (4.97) 

When f is strongly convex, the inequality (4.97) is satisfied for any two points ix  and 

1ix + . However, if f is not strongly convex, inequality (4.97) will not be satisfied and 

some restriction has to be imposed on α  in the line search. If  Wolfe conditions or strong 

Wolfe conditions are imposed during the line search the condition (4.97) will be satisfied 

(Nocedal and Wright, 1999). 

By moving from location ix  to 1ix +  , we will be looking for a new matrix 1iH +  as if it was 

actually 1A− . We assume that among all symmetric matrices satisfying the secant 

equation, 1iH +  is, the one which is closest to the current matrix 1A− . We might also think 

that 1i iH H Correction+ = + . The amount of correction is given by either DFP or BFGS 

methods as: 
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DFP: 

 1

T T
i i i i i i

i i T T
i i i i i

H y y H s sH H
y H y y y+ = − +  . (4.98) 

 
BFGS: 

 1

T T T
i i i i i i

i iT T T
i i i i i i

s y y s s sH I H I
y s y s y s+

⎛ ⎞ ⎛ ⎞
= − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (4.99) 

DFP is quite effective but very soon, it was replaced by BFGS which is presently 

considered to be the most effective updating formula among all other variable metric 

variants. There is no unique solution for the initial inverse of the Hessian matrix, one can 

calculate the Hessian matrix, for instance, by finite differences at 0x  and compute its 

inverse. Otherwise we can simply use an identity matrix. The following is a sequence for 

implementing variable metric with BFGS (Nocedal and Wright, 1999). 
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= ∇ − ∇
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 (4.100) 

 
To asses the performance of variable metric over conjugate gradient methods we 

estimated the Thomson’s anisotropy parameters as in the previous example with the 

method of BFGS. Variable metric was converging quickly but has been trapped in a 

plateau (Figure 4.10).  
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Figure 4.10: Convergence pattern of variable metric using the BFGS method. 

Preconditioned nonlinear conjugate gradient and conjugate gradient without 

preconditioning, both using the method of Polak-Ribiére have also been shown for 

comparison. Variable metric has converged in initial iterations but it has been trapped in 

a plateau later. In this case one may restart variable metric algorithm by changing the 

prior model. 
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Chapter 5 
 

Unconstrained inverse models for traveltime and 
amplitude 

 
Introduction 
 

In inverse problems, where the forward model is computationally intensive, it is 

important to obtain the solution within minimum computation time. Robustness and 

efficiency of unconstrained minimization algorithms have attracted the numerical 

analysts to optimize such computationally intensive problems. Unconstrained 

minimization algorithms often need gradient information to find a direction in order to 

converge quickly. Unfortunately, it is not always easy to extract analytic partial 

derivatives. Instead, numerical methods such as finite differences can often be considered 

as an alternative. Finite differences have a few drawbacks; they are computationally 

intensive and their accuracy is very much dependent on the interval of differentiation. 

This feature which is called instability is a serious issue especially when the function is 

highly nonlinear. Analytic partial derivatives are exact, fast but often lengthy and 

cumbersome to calculate if possible at all. In this chapter I extract the partial derivatives 

of traveltimes, reflection and transmission coefficients and verify them with numerically 

computed ones for a system of transversely isotropic layers. I provide unconstrained 

inverse models for prestack P P→ and joint & vP P P S→ →  traveltimes in both 

horizontal and dipping layers. I also formulate an unconstrained minimization algorithm 

for waveform inversion of both prestack P P→ and joint & vP P P S→ →  seismic 

amplitudes. This approach is superior to layer stripping method in which traveltimes from 

lower layers make no contribution to the model parameters in upper layer. 
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5.1 Partial derivatives of traveltime in a layered TI media 
 

We follow the Dahl and Ursin (1991) approach to compute the partial derivatives 

of traveltime with respect to model parameters in a  layered, either horizontally layered or 

dipping media. Since we express the traveltimes as a function of ray parameter, the 

derivative of traveltimes with respect to any model parameter has to consider the 

derivative of ray parameter with respect to any model parameter too. This will be 

accomplished by taking the derivative of offset with respect to each model parameters as: 

 
.j j jp const

dx x x p
dm m p m

=

∂ ∂ ∂
= +

∂ ∂ ∂
 , (5.1) 

 
where jm  is the model parameter for a layer j, x is source-receiver offset , and p is the ray 

parameter. Since the offset is given for a given ray, the derivative of the offset with 

respect to any model parameter is zero, 0jx m∂ ∂ = . These result in derivatives of ray 

parameter with respect to a given model parameter as: 

 .j p const

j

x
mp

xm
p

=

∂
∂∂

= −
∂∂
∂

 , (5.2) 

where x p∂ ∂  and 
.j p const

x m
=

∂ ∂ are given in chapter 2 and appendix A respectively. 

Given the equation (5.2), the derivative of traveltime with respect to each model 

parameter can be expressed as the sum of the derivative of traveltime with respect to a 

model parameter for a given layer at a constant ray parameter and a derivative term 

including the effect of change in ray parameter for a ray path as the consequence of 

change in a model parameter as: 

 
.j j jp const

dT T T p
dm m p m

=

∂ ∂ ∂
= +

∂ ∂ ∂
 , (5.3) 

 
where T p∂ ∂  and 

.j p Const
T m

=
∂ ∂ are given in appendix A. 
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5.2 Partial derivatives of reflection and transmission coefficients in a TI 
horizontal layered media 

 
The computation of partial derivative of reflection and transmission (R/T) 

coefficients with respect to model parameters is more complicated but we still follow the 

same approach as for the traveltimes. Since at the interface of two elastic media, R/T 

coefficients are functions of elastic properties of both upper and lower media, any 

changes in one of these media will change the R/T, hence the derivative. Suppose a plane 

wave travelling across a system of layered TI media (Figure 5.1), the effective reflection 

coefficient can be expressed as: 
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Figure 5.1: Reflection and transmission coefficients of a plane wave across a M layer TI 
media. 
 
The derivative of reflection coefficient r with respect to a model parameter jm  at the 
interface of two layers j  and 1j +  for a down going plane wave can be written as: 
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.j j jp const

dr r r p
dm m p m

=

∂ ∂ ∂
= +

∂ ∂ ∂
, (5.5) 

 
1 1 .j j p const

dr r
dm m+ + =

∂
=

∂
 , (5.6) 

where r  could be P P→ or vP S→  reflection coefficient. The partial derivative of 

reflection coefficient with respect to ray parameter in (5.6) vanishes because the layer 

1j +  has no effect on the ray parameter of the ray reflected from the top of this layer. 

Equations (5.5) and (5.6) are only valid for model parameters Vp , Vs , δ  , and ε . These 

equations have to be modified for density ρ  and layers thickness z  according to: 

 
.j j p const

dr r
dρ ρ

=

∂
=

∂
 , (5.7) 

 
1 1 .j j p const

dr r
dρ ρ+ + =

∂
=

∂
 , (5.8) 

 
j j

dr r p
dz p z

∂ ∂
=

∂ ∂
, (5.9) 

 
1

0
j

dr
dz +

= . (5.10) 

Since 0p ρ∂ ∂ = , (5.7) should  only be evaluated in layer j  at a constant ray parameter. 

The reflection coefficient at the interface of two media is not a function of layer 

thickness, however, the reflection coefficient for a given offset will vary as the thickness 

varies. This is due to the fact that a change in thickness will affect the ray parameter and 

hence, the angles of incidence and refraction.  

The derivative of the transmission coefficients t  with respect to model parameter 

jm  and 1jm +  at the interface of two elastic medium j  and 1j +  for a down going 

compressional plane wave can be expressed as: 

 
.j j jp const

dt t t p
dm m p m

=

∂ ∂ ∂
= +

∂ ∂ ∂
 , (5.11) 
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1 1 1.j j jp const

dt t t p
dm m p m+ + +=

∂ ∂ ∂
= +

∂ ∂ ∂
 , (5.12) 

 
where model parameter m could be Vp , δ , or ε . Equations (5.11) and (5.12) can be 

easily extended to the up going compressional plane waves by considering layer 1j +  at 

the top of layer j . Since the transmission coefficient is not a function of the vertical shear 

wave velocity in Rüger’s equations for a down going or up going compressional plane 

wave, (5.11) and (5.12) have to be rewritten as: 

 
j j

dt t p
dVs p Vs

∂ ∂
=

∂ ∂
 , (5.13) 

 
1 1j j

dt t p
dVs p Vs+ +

∂ ∂
=

∂ ∂
 . (5.14) 

The above derivatives are in fact numerically very small, because the ray parameter for 

compressional wave field is a very weak function of shear wave velocity in a transverse 

isotropic medium. 

The partial derivative of transmission coefficient for a down-going or up-going 

compressional plane wave with respect to density and layer thickness can be written as: 

 
.j j p const

dt t
dρ ρ

=

∂
=

∂
 , (5.15) 

 
1 1 .j j p const

dt t
dρ ρ+ + =

∂
=

∂
 , (5.16) 

 
j j

dt t p
dz p z

∂ ∂
=

∂ ∂
 , (5.17) 

 
1 1j j

dt t p
dz p z+ +

∂ ∂
=

∂ ∂
 . (5.18) 

For the case of up going waves in equations (5.13)-(5.14), we need to assume that layer 

1j +  is laid on the top of layer j . 

Equations (5.5)-(5.10) can be also used for the converted shear wave reflection 

coefficient in Rüger’s equations. To compute the partial derivatives of up going shear 
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wave transmission coefficients, we can also use equations (5.11) , (5.12) and (5.15)-

(5.18). Shear waves transmission coefficients for up going waves can be written as: 

 
.j j jp const

dt t t p
dVs Vs p Vs

=

∂ ∂ ∂
= +

∂ ∂ ∂
, (5.19) 

 
1 1 1.j j jp const

dt t t p
dVs Vs p Vs+ + +=

∂ ∂ ∂
= +

∂ ∂ ∂
. (5.20) 

The partial derivative of the effective reflection coefficient (5.4) with respect to 

model parameter km can be expressed as: 

 
2 3

1

1M
i

ik i k

s
m s m

−

=

∂∂
=

∂ ∂∑ . (5.21) 

In a stack of layers, where a ray is reflecting from the top of the deep layers (more than 

three layers down), only the maximum 4 terms of the (5.21) have to be evaluated and the 

rest are zero. To have a clearer understanding of (5.21), we demonstrate the above 

statement by an example of a system of 5 layers, where a ray is supposedly  reflected 

from the top of the last layer. The partial derivatives of effective reflection coefficients 

with respect to model parameter jm , in each layer, only consist of the following non-zero 

terms: 
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⎛ ⎞′′ ′∂ ∂∂ ∂ ∂∂
= + + +⎜ ⎟′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞′ ′∂ ∂ ∂ ∂∂ ∂∂
= = + +⎜ ⎟′∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂ ∂∂
= =

∂ ∂ ∂

 . (5.22) 

 
where j  is the layer number. 
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Reflection and transmission coefficients in Rüger’s equations are a function of 

phase angle of incidence and refraction but the ray tracing is carrying out in terms of ray 

parameter. Using equation (2.14) and the definition of ray parameter we have,  

 ( )
( )

0
1

2 2 2
0

sin  ,
1 p

p

p H

αθ
α

=
−

 (5.23) 

for P-waves and  

 ( )
( )

0
1

2 2 2
0

sin  ,
1 s

p

p H

βθ
β

=
−

 (5.24) 

for SV-waves. Other trigonometric relations can easily be calculated. 
 

The derivatives of Rüger’s equations for reflection and transmission coefficients 

for different modes, ,  ,  ,  and v v v vP P P S S S S P→ → → →  are cumbersome and are not 

shown here. We have stored all the derivatives in Maple format on a compact disk. 

Readers may refer to the compact disk attached to this thesis.  

 
5.3 Unconstrained inverse model for traveltime inversion in a multi 

layered media 
 

As in the previous section, we assume a transversely isotropic horizontal or 

dipping layered medium (Figures 2.1 and 2.9), where the elastic properties and geometry 

of each layer are laterally invariant. In the case of dipping layers we assume that the 

layers are not truncated.   

A quadratic objective function, without imposing a specific structure given by 

Tarantola (2005), can be used to minimize the residual error as: 

 ( ) ( ) ( ) ( ) ( )1 11 1
2 2

T T

obs syn D obs syn prior M priorS m d d C d d m m C m m− −= − − + − −  . (5.25) 

Furthermore, in most examples in this thesis we ignore the second term of (5.25) and 

simply minimize the residual in data space. This is sufficient when we have a parameter 

estimation problem (Oldenburg and Li, 2005) and the system is overdetermined. Using an 

iterative scheme we update the prior model vector m according to Tarantola (2005): 

 1
1

T
i i i M S D im m C C eα −
+ = − ∇  . (5.26) 
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In practice, we assume that data and model parameters are independent, hence, the 

correlation between two different elements is zero. So, the covariance matrices of model 

MC  and data DC  are diagonal and contain the variances. For now, we take the inverse of 

the data covariance matrix out and look at the product of gradient T
S∇ and data residual 

vector obs syne d d= − as: 

 
1

,
1 1

N M
ijT

S k ij
i jk k

TS e e
m m

−

= =

∂∂
= ∇ = −

∂ ∂∑∑  , (5.27) 

where the indices i  , j , and k  repeat over the  number of offsets N ,   the number of 

layers 1M − , and the model parameters respectively. In a matrix notation equation (5.27) 

can be expressed as: 

 Tm J gΔ =  , (5.28) 

where TJ  , g  , and mΔ are given in (4.39), (4.40), and (4.41) respectively. Here, g is in 

fact the vector representation of matrix e and mΔ refers to vector 
k

S
m
∂

∂
. The objective 

function S  in an indicial notation can be shown in the following form: 

 ( ) ( )
1 1

1 1

1
2

TN M
obs syn ii obs syn

ij ij D ij ij
i j

S T T C T T
− −

= =

⎡ ⎤= − −⎣ ⎦∑∑ , (5.29) 

where TN  is the number of traces, obs  stands for measured traveltimes, and syn  for 

computed traveltimes. We assume there is no correlation between the data, hence, the off-

diagonal elements are zero. The diagonal elements or the variances could simply be the 

errors in picking the traveltimes.  

 

5.4 Unconstrained inverse model for waveform inversion in a multi 
layered media 

 
In chapter three we computed the synthetic seismogram as the product of a source 

wavelet  w  and a reflectivity series l , in the frequency domain as: 

 ( ) ( ) ( )U f w f f=  . (5.30) 

The partial derivative of seismic amplitude U  with respect to each model 

parameter km  at each frequency f can be written as: 
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 ( ) ( ) ( ) ( ) ( )
k k k

U f f w f
w f f

m m m
∂ ∂ ∂

= +
∂ ∂ ∂

 . (5.31) 

 
( ) 0kw f m∂ ∂ = , hence (5.31) can be simplified as: 

 

 ( ) ( ) ( )
k k

U f f
w f

m m
∂ ∂

=
∂ ∂

 . (5.32) 

Here, ( ) kf m∂ ∂ is computed using a DFT algorithm as: 
 

 ( )
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2
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M
j f

i
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f e π τ
−

=

= ∑  , (5.33) 

where i  is the effective reflection coefficient (including transmission effects for the 

whole ray path) using  Rüger’s equations (Rüger, 1996) at each interface for a specific 

wave mode. iτ  is the two way traveltime for a specific event ( ) or vP P P S→ →  

reflecting from interface i . M is the number of layers. Taking derivative of (5.33) with 

respect to model parameter km  gives: 
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                                       (5.34) 

Using Euler’s formula, 
 ( ) ( )2 cos 2 sin 2ij f

i ie f j fπ τ π τ π τ= +  , (5.35) 

 equation (5.34) can be further extended to: 
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So,  (5.32) can be written as: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Re Re Im Im

Re Im Im Re  .

k k k

k k

U f f f
w f w f

m m m

f f
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m m
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 (5.37) 

 
The derivative of the objective function (5.25) with respect to model parameters 

can be expressed as: 

 ,
1 1

N n
ijT

S k ij
i jk k

US e e
m m= =

∂∂
= ∇ = −

∂ ∂∑∑  , (5.38) 

where n is the number of frequency samples and ije  is the difference between the 

measured seismic traces and synthetic seismograms in the frequency domain. Here, the 

index notation of S , ignoring the model space term could be of the form, 

 ( ) ( )† 1

1 1

1
2

ST NN
obs syn ii obs syn
ij ij D ij ij

i j

S U U C U U
−

= =

⎡ ⎤= − −⎣ ⎦∑∑  , (5.39) 

where TN is the number of traces and SN  is number of frequency samples. The seismic 

amplitudes U  are complex and †  is the conjugate complex operator. The diagonal 

elements of the covariance matrix are real valued and could be the signal to noise ratio. 

We assume that seismic amplitudes are stationary and uncorrelated, so, off-diagonal 

elements are zero. The frequency spectrum can be extended up to the Nyquist frequency, 

but both computation of S  and kS m∂ ∂  will be intensive. It makes sense to limit the 

frequency range to the spectrum bandwidth.  

To test whether the analytic derivatives are correctly derived, we have computed 

(5.38) for a system of horizontal layers in a prior model. Computation of numerical 

derivatives is straightforward, however, much care has to be taken. We found the 

numerical derivatives with respect to Thomsen’s anisotropy parameters are highly 

unstable and a proper interval at which the derivatives are to be taken is very crucial. An 

improper interval could easily lead to inaccurate derivatives. In a small range of the 

function where the assumption of linearity is valid, we evaluate the objective function in 

1000 successive points. During the evaluation of the objective function, we only change 

one parameter and the rest of the other model parameters are unchanged. Then, using a 
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linear regression we calculated the derivative. This will compensate the roundoff error 

which may cause inaccurate computation of the objective function. As a general rule of 

thumb, 0.001 percent of parameter can be an optimal interval for R/T coefficients and 0.1 

percent for traveltime derivatives respectively. By computing (5.38), the derivatives of 

traveltimes with respect to the model parameters are also computed. 

 Table 5.1 shows the prior model for a system of transversely isotropic layers used 

for computation of the derivatives of compressional wavefield. We have used 48 traces 

and sampled the compressional wavefield by 2048 time samples every 2 milliseconds. 

Nyquist frequency is 250 Hz. Table 5.2 demonstrates the analytic derivatives (5.38) while 

Table 5.3 illustrates the numerically computed partial derivatives with respect to model 

parameters. There is a good agreement between the two tables. In Table 5.4 we have only 

used one quarter of frequency samples which covers the most useful part of the spectrum. 

This reduces the computation of the objective function and its derivatives considerably.  

A comparison between tables 5.2 and 5.4 shows a good agreement. 

 

 

 

 

Layer ( )/ secVp m  ( )/ secVs m δ  ε  ( )z metre  ( )3/gr cmρ

1 1697.5 877.5 0.02625 0.1125 875 2.28375
2 1872.5 752.5 -0.01717 0.1575 180 1.8025
3 2497.5 1001.25 -0.42916 0.0875 78.75 1.82
4 1750 875 0.0875 0.1575 35 2.295
5 2238.75 1113.75 0.04375 0.1125 112.5 2.295
6 2137.5 831.25 0.045 0.135 166.25 2.2725
7 2475 1006.25 0.0675 0.1575 236.25 2.34
8 1793.75 988.75 0.0875 0.225 148.75 2.30625
9 2318.75 1312.5 0.07875 0.1125 348.75 2.41875
10 3093.75 1338.75 0.1125 0.1575 262.5 1.89875
11 2970 1676.25 0.035 0.07 123.75 2.41875

 

 

Table 5.1: the prior model has been used to compute the analytic and numerically 

derived partial derivatives. 
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Layer Vp  Vs  δ  ε  z  ρ  
1 -6.26511 -0.09949 -6241.51 -22572.8 -24.6499 -277.906
2 -7.60709 0.646668 -1251.33 -17631.5 -28.4609 -1273.21
3 18.548 -1.33439 5194.3 30107.4 -16.9072 2633.49
4 -2.74135 0.801856 -1229.82 -1449.9 -18.1381 -1365.76
5 1.66819 -0.3268 710.519 583.14 -4.18432 627.284
6 -0.7408 0.153815 -458.369 -419.869 -4.22447 -622.637
7 2.26564 -0.34857 947.578 584.702 -0.86093 1378.19
8 -2.4241 0.265867 -602.955 -187.201 -0.30585 -1521.85
9 0.307755 -0.06551 -31.3482 -68.2764 0.909414 394.479
10 0.043983 -0.02994 123.551 104.164 0.167985 -93.0508
11 0.300365 -0.03883 84.9804 21.2973 0 311.625

 
Table 5.2: Analytically computed partial derivatives of the objective function 

using the amplitudes of compressional waves. All of the frequency samples have been 

used. 

 
 
 
 
 

Layer Vp  Vs  δ  ε  z  ρ  
1 -6.26621 -0.09953 -6273.07 -21944 -26.6804 -277.906
2 -7.44387 0.646046 -1381.38 -17101.3 -28.5673 -1273.2
3 18.56206 -1.33198 5080.25 30686.53 -17.2689 2633.494
4 -2.78341 0.802407 -1262.2 -1403.07 -18.0754 -1365.75
5 1.667401 -0.32669 706.4241 580.706 -4.185 627.2889
6 -0.73696 0.153924 -453.123 -409.382 -4.23169 -622.629
7 2.265887 -0.34865 948.284 585.0287 -0.85651 1378.193
8 -2.42499 0.266044 -605.434 -190.269 -0.30679 -1521.84
9 0.308048 -0.06548 -30.6895 -67.2433 0.910864 394.4844
10 0.044387 -0.02994 123.3061 103.9389 0.167737 -93.04
11 0.300542 -0.03882 84.99086 21.2978 0 311.6278

 
Table 5.3: Numerically computed partial derivatives of the objective function 

using the amplitudes of compressional waves. All of the frequency samples have been 

used. 
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Layer Vp  Vs  δ  ε  z  ρ  
1 -6.26541 -0.09948 -6238.69 -22563 -24.6491 -277.726
2 -7.60276 0.646301 -1250.76 -17623.4 -28.4577 -1272.5
3 18.5402 -1.33373 5192.59 30094 -16.912 2632.14
4 -2.73944 0.801568 -1229.14 -1449.48 -18.1554 -1365.07
5 1.66769 -0.32664 710.203 582.881 -4.1893 626.917
6 -0.7398 0.153728 -458.043 -419.635 -4.22943 -622.299
7 2.265 -0.34836 947.131 584.478 -0.86658 1377.38
8 -2.42163 0.265705 -602.43 -187.026 -0.31518 -1520.88
9 0.307701 -0.06546 -31.2536 -68.186 0.908211 394.218
10 0.0439 -0.02992 123.466 104.095 0.168217 -93.0287
11 0.30017 -0.0388 84.9204 21.2815 0 311.426

 
 

Table 5.4: Analytically computed partial derivatives of the objective function 

using the amplitudes of compressional waves. Only a quarter of the frequency samples 

have been used. 
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Appendices 
 
Appendix A: Partial derivatives of offset and traveltime in a horizontal VTI 

layered medium 
 

The following equations in this appendix and appendix 5.B are only given for P-

wave traveltimes. These can be extended to shear wave traveltimes simply by changing 

the pv to sv and pH  to sH . Care has to be taken where taking the derivatives of sH  with 

respect to pv  or sv . 
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Appendix B: Partial derivatives of offset and traveltime in a dipping TI 

layered medium 
 

As we mentioned in Chapter 2, each ray element has its own ray parameter. For 

simplicity we avoid subscript layer index k  for ray parameter p  in the following 

equations,  
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where  kdX dz  is defined in (B-5). 
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Appendix C:  Partial derivatives of PH  and SH  with respect to model 

parameters and ray parameter 
 

We can write down equation (2.15) in each layer with a good accuracy using the 

first few terms only. To avoid extra indices we omit the layer indices. The subscripts p  

and s  refer to P-wave and to SV-waves respectively. We express sH  as a function pH  

to reduce the computations. a terms are given in Chapter 2. 
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Using the equation (2.18) we can express sH  derivative as: 
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Chapter 6 
 

Numerical results of unconstrained inversion of 
traveltime and amplitude 

 
Introduction 
 

This chapter implements the methods and algorithms discussed in previous 

chapters.  We choose a stack of transversely isotropic layers and assign them a wide 

range of elastic parameters. We simulate a prestack offset gather of the traveltimes and 

synthetic seismograms for a wide range of offsets over a 2-dimensional line. To 

demonstrate the efficiency of proposed unconstrained minimization algorithms, we 

perturb the true model in different ways and try to recover the true model via different 

strategies. Over a horizontally layered media we use both traveltime and waveform 

inversion, however, only traveltime inversion will be used over a dipping layered 

medium. We limit the waveform inversion solely to estimation of Thomsen’s anisotropy 

parameters to utilize its capability in recovering the high frequency part of the model. 

Due to intensive computations involved in dipping media, we use a preconditioning 

conjugate gradient algorithm to converge to the solution in fewer iterations. This limits 

the parameter estimation problem to the parameters with a more or less similar scale. To 

accomplish the inversion we have developed a package in C++ in object oriented 

environment. The class diagram is given in the appendix at the end of this chapter.  

 

6.1 Traveltime inversion in a horizontally layered VTI media 
 

In the first minimization example we investigate the effect of the offset and 

uncertainty in the prior models on estimation of model parameters. We restrict the 

parameter estimation to one layer only and estimate layer properties such as P-wave 

velocity, thickness, and Thomsen’s anisotropy parameters simultaneously from the 

inversion of near and far offset P-wave traveltimes. We compute 96 P-wave traveltimes 

corresponding offsets from zero to 4750 metres in 50 metre intervals in a  layer with 

following properties: Vp = 1940 metres/sec, Vs = 780 metres/sec, Z = 1000 metres, δ = 



 157

0.03, and ε  = 0.1. we consider far and near offsets corresponding all traveltimes from 0 

to 4750 metres and zero to 3000 metres, respectively. In each case, the prior model for 

the P-wave velocity, shear wave velocity, and thickness are kept the same (Vp=2750 

metres/sec, Vs=1375 metres/sec, Z=500 metres) but the prior models for δ  and ε  are 

drawn randomly from a uniform distribution with upper and lower boundaries in the 

context of week seismic anisotropy ( 0.05 0.2δ− ≤ ≤  and 0 0.25ε≤ ≤ ). The condition  

ε δ≥  is applied during the random selection. Further, to investigate the effect of 

uncertainty in the Thomsen’s anisotropy parameters on parameter estimation we 

minimize the traveltimes with 20 different prior models of  δ  and  ε . 

Since the estimation of Thomsen’s anisotropy parameter δ  depends on both 

compressional and shear wave velocities and because P-wave traveltimes in a transverse 

isotropic medium are depending weakly on S-wave velocity, we are not expecting a good 

estimate of δ  while shear wave velocity itself is under estimation. To moderate this 

effect we constrained shear wave velocity by / 2.Vp Vs =  This may, however, bias the 

estimation of δ .  

Figures 6.1 and 6.3 illustrate the convergence pattern of P-wave velocity and 

thickness for 20 realizations from the inversion of far offset traveltimes using a nonlinear 

conjugate gradient algorithm. After a few iterations both P-wave velocity and thickness 

have converged to a solution. It can be also seen that the initial Thomsen’s anisotropy 

parameters have a crucial effect on the estimation of P-wave velocity and thickness, 

where the uncertainty in P-wave velocity and thickness is large. The mean of the P-wave 

velocity is 1955 metres/sec and standard deviation is 87 metres/sec, while the mean of 

thickness is 1008 metres and standard deviation is 47 meters. This indicates that the 

relative error in estimation of P-wave velocity and thickness is almost the same. In figure 

6.2 and figure 6.4 we have illustrated the convergence pattern of P-wave velocity and 

thickness from the inversion of near offset traveltimes for 20 realizations. We have used 

the same prior models as above for compressional and shear wave velocities and 

thickness but different random prior models for  δ  and  ε  for minimization. It can be 

seen that the uncertainty in estimation of P-wave velocity and thickness is larger 

compared to the uncertainty in estimation from the far offsets. The mean of the P-wave 

velocity is 1925 metres/sec and standard deviation is 117 metres/sec, while the mean of 
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thickness is 993 metres and standard deviation is 58 meters. As expected, the effect of 

seismic anisotropy is more significant in far offset, hence, it results in better estimation of 

P-wave velocity and thickness. Figures 6.5 and 6.6 illustrate the convergence of the 

objective function for far and near offsets, respectively. In each figure a different curve 

belongs to a minimization from a prior model with different δ  and  ε . The Frobenius 

norm depicts the amount of minimized residuals and does not necessarily mean a better 

solution. For example, if one parameter, such as thickness or P-wave velocity that has a 

major effect on the objective function resolves well, the objective function dramatically 

drops, yet the other parameters may have not been converged to true solutions. 

Tables 6.1 and 6.2 show the prior model and estimated model parameters from the 

previous minimization. They show there is no major update in Thomsen’s anisotropy 

parameters. One of the reasons is the large uncertainty in the prior model of parameters 

such as P-wave velocity and thickness that have a much larger impact on the objective 

function. These parameters have larger directional derivatives compared to δ  and  ε  

whenever they are far from the solution, hence, they do not comply well with the search 

direction vectors along the directional derivatives of δ  and ε . Another reason is due the 

large difference in the scale of Thomsen’s anisotropy parameters with velocity and 

thickness. A thorough revising of the traveltime and offset equations by linear scaling of 

velocity and thickness to the same magnitude of Thomsen’s anisotropy parameters may 

compensate the scaling effect (Ravindran et al., 2006).  As an alternative, we may think 

of inverting the elastic stiffness coefficients instead, which have almost the same scale. 

We scaled also the P-wave and S-wave velocities and thicknesses to their mean values. 

We implemented both approaches, but no improvement was achieved. In general, we take 

the approach of Gunning and Glinsky (2004) to estimate the model parameters that  

strongly dominate the objective function and then the model parameters with smaller 

effect. In general, where the uncertainty in the velocity and thickness is large, it may lead 

up to 10 percent error in estimation of layer thickness and P-wave velocity, respectively. 

In the following examples we reduce the uncertainty in the model parameters 

within 25 percent which is more realistic. This let us to estimate the model parameters in 

a layered media simultaneously. To compute the traveltimes in a stack of horizontal 

transversely isotropic layers we use a model (Table 6.3) given by Ursin and Stovas 
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(2006) with a few modifications. This model provides a wide range of compressional and 

shear wave velocities, thicknesses, and Thomsen’s anisotropic parameters in the context 

of weak anisotropy. We compute the traveltimes for P P→  and vP S→  waves from 9 

reflectors for 96 traces placed inline at 50 metre intervals. The nearest trace is placed at 

200 metre offset from shot point and the farthest at 4950 metre.  Figures 2.6 and 2.7 

illustrate the P P→  and vP S→  traveltimes from the above model with the given 

geometry. These traveltimes will be considered as the observed traveltimes in the 

following minimization examples. To start the minimization we set a lower and upper 

boundary for each model parameter in Table 6.3 by 25± percent deviation from the true 

model (Table 6.3). We draw a random prior model from a uniform distribution 

constrained by the upper and lower boundaries (Table 6.4). 

In the second minimization example, we implement a nonlinear conjugate 

gradient algorithm using the Polak-Ribiére method (Nocedal and Wright, 1999; Bonnans 

et al., 2003) to simultaneously estimate all the 45 model parameters by inverting the 

noise free P P→  traveltimes from 96 traces (Nadri and Hartley, 2007a; , 2007b). We 

continued the minimization up to 500 iterations. Table 6.5 shows the estimated model 

parameters for the last iteration. P-wave velocities, layer thicknesses, and to some extents 

ε  are fairly well estimated, however, estimates of δ and especially S-wave velocities, as 

was expected, are not very accurate. Such a good estimation of thickness and P-wave 

velocity is mainly due to the fact that prior information for Thomsen’s anisotropy 

parameters is close to the true solution and initial model for velocities and thickness are 

within the 25 percent of the true model. 

In the third minimization example, we implement the same minimization 

algorithm as above to simultaneously estimate all the 45 model parameters by inverting 

the joint P P→  and vP S→ traveltimes from 96 traces. We again continued the 

minimization up to 500 iterations. Table 6.6 demonstrates the estimated model 

parameters for the last iteration. P-wave and S-wave velocities, and layer thicknesses are 

fairly well estimated, however, ε  and δ are poorly optimized. 

To investigate the effect of offset on both P P→  and joint P P→  and vP S→  

traveltime minimization, where the uncertainty in P-wave, S-wave, and thickness is not 
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large, we limited the number of offsets to the first 48 traces. Hence, the far offset is 

located at 2550 metre. We implemented the same minimization algorithm and continued 

up to 500 iterations. Tables 6.7 and 6.8 show the estimated model parameters for the last 

iteration. In general, reducing the number of offsets did not cause a major effect on the 

parameter estimation. This offcourse should not bring us to the conclusion that larger 

offsets are not necessary in parameter estimation. Such a good results may be due to 

noise free traveltimes or being close to the solution.  

To demonstrate the effectiveness of each of the above examples we show, in 

Figures 6.7-6.12, the convergence pattern of some of the estimated parameters. Figure 6.7 

illustrates the convergence pattern of thickness for the top layer from the inversion of  

P P→  and joint P P→  and vP S→  traveltimes for the two sets of 48 and 96 traces. The 

blue curve depicts the P P→ inversion of traveltimes from 96 traces, red the same but for 

48 traces, green and cyan curves show the convergence pattern of joint  P P→  and 

vP S→  traveltime inversion for 96 and 48 traces respectively. All the four minimizations 

converged to true solutions. To see the numerical values of last iteration refer to Tables 

6.5-6.8. Figure 6.8 illustrates the thickness for layer 7 using the same inversion and 

colour coding as Figure 6.7. 

The estimated P-wave velocities for the top layer and layer 7 from the 

minimization of P P→  and joint P P→  and vP S→  traveltimes for the two sets of 48 

and 96 traces are shown in Figures 6.9 and 6.10, respectively. P-wave velocity in the top 

layer has converged faster than for layer 7. In general, due to propagation of more rays in 

top layers compared to lower ones, model parameters in top layers gain more information 

and this result in faster and more stable convergence.  

We have shown the estimated shear wave velocities for the top layer and layer 7 

in Figure 6.11 and Figure 6.12 respectively with the same conjugate gradient algorithm as 

in the above examples. We only plotted the result of joint inversion of P P→  and 

vP S→ traveltimes as not much update has occurred from the inversion of 

P P→ traveltimes. The S-wave velocity from the inversion of longer offsets seems to 

converge faster than when using only near range offsets. This is a because of the large 

moveout of shear wave traveltimes at longer offsets.  
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Figure 6.13 shows the convergence of the objective function of four different 

minimization examples discussed above. The vertical axis is the Frobenius norm which is 

simply the objective function in equation (5.29). The objective functions are not 

normalized  as they are generally a representation of the data residuals (errors) left from 

minimization. The objective function for joint compressional and shear waves obviously 

uses more measured data, hence their mean square error is generally bigger than that 

using only compressional waves. 

In multidimensional nonlinear minimization problems, it is not easy to interpret 

the behavior of the objective function or convergence pattern of a specific model 

parameter. In a linear conjugate gradient algorithm, as mentioned in chapter 4, the model 

parameters should theoretically converge to the solution in n iteration, where n is the 

number of model parameters. In nonlinear problems, even in the absence of finite 

precision problems, which cause loss of orthogonality of the conjugate directions, there is 

no guarantee to converge even to a local minimum within n iterations. We may however, 

attribute the rapid jump in objective function to the convergence property of the 

conjugate gradient algorithm. The convergence pattern of each model parameter is an 

interaction of all other model parameters with respect to the shape of the objective 

function in n- dimension.  Hence, it is not easy to interpret their evolution patterns 

independently. 

We have so far been concerned about simultaneous inversion of all different 

parameters such as P-wave and S-wave velocity, layer thickness, and Thomsen’s 

anisotropy parameters. Hereafter, we assume that we, by some means, for examples 

check shot data have a fairly good estimation of vertical velocity and structure model of 

the layered medium and solely looking at estimation of Thomsen’s anisotropy 

parameters. This will gives us more freedom on the prior knowledge of ε  and δ . In the 

following, we implement a preconditioning conjugate gradient algorithm (Saad, 2000) to 

estimate Thomsen’s anisotropy parameters in the context of weak anisotropy. This 

means, with the assumption of weak anisotropy (equation 3.30), we do not need to have 

an explicit prior model for Thomsen’s anisotropy parameters. The preconditioning 

utilizes a Numerically computed Hessian matrix based on the method of BFGS (Nocedal 

and Wright, 1999; Press et al., 2002). Because, Thomsen’s anisotropy parameters have 



 162

almost the same scale and the Hessian matrix is homogenous and well conditioned, it 

could be used as a preconditioner. 

Figure 6.14 shows the convergence of the objective function from minimization 

of P P→  traveltimes over 96 traces using a preconditioned conjugate gradient algorithm. 

Minimization has been carried out over five different prior models randomly drawn from 

a uniform distribution constrained by the weak anisotropy assumption. We assume 

0.05 0.2δ− ≤ ≤  and 0 0.2ε≤ ≤ . We continued minimization for up to 250 iterations, but 

as it can be seen, all the objective functions are very small after 25 iterations.  

In the upper part of the Table 6.9 we have shown 5 different prior models for ε  

and δ and in the lower part, the estimated model parameters from the last iteration of the 

minimization for the related prior model. It can be seen that all of the model parameters 

have converged to their true solution. The first two columns correspond to the red curve 

in Figure 6.14, the second two columns to blue, the third two columns to green, the fourth 

two columns to brown, and the last two columns to the magenta curve. The brown curve 

has reached the least value of the objective function. This is due to the fact that its 

corresponding prior model has been drawn by coincidence closer to the true model. We 

can see the closeness of the prior model for the brown curve in Figures 6.15-6.20.  

Figure 6.15 and Figure 6.16 illustrate the convergence pattern of δ  and ε  from 

five realizations from the top layer respectively. All realizations have converged to the 

solution in 20 iterations. The preconditioning has reduced the computational burden 

significantly. In Figure 6.17 and Figure 6.18 the convergence pattern of δ  and ε  from 

five realizations for layer 7 are shown respectively. It can be seen that all realizations 

have converged in 30 iterations. In Figure 6.19 and Figure 6.20 we have demonstrated the 

convergence pattern of δ  and ε  from five realizations for layer 9 respectively. It can be 

seen that all realizations have converged in 25 iterations. 

To compare the effect of preconditioning in conjugate gradient algorithm we have 

estimated the Thomsen’s anisotropy parameters from a system of 9 layers by inverting 

the P P→  traveltime from 96 traces. The convergence pattern of the objective function as 

a criterion for comparison has been shown in Figure 6.21. The blue curve illustrates the 

Polak-Ribiére conjugate gradient algorithm without preconditioning, while a 

preconditioned algorithm has been shown by the red curve. Both algorithms use the same 
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prior model. The preconditioned conjugate gradient algorithm has a significant 

superiority over that without preconditioning. The Polak-Ribiére conjugate gradient 

algorithm without preconditioning is robust enough and has finally converged to the 

solution but at the cost of 10 times more iterations. 
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Figure 6.1: Convergence pattern of the 20 realizations of  P-wave velocity of layer 1 from 

the inversion of far offset traveltimes for different δ  and ε . The true value is 1940 

m/sec. Mean is 1955 m/s and standard deviation is 87 m/sec. 
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Figure 6.2: Convergence pattern of the 20 realizations of  P-wave velocity of layer 1 from 

the inversion of near offset traveltimes for different δ  and ε . The true value is 1940 

m/sec. Mean is 1925 m/s and standard deviation is 111 m/sec. 
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Figure 6.3: Convergence pattern of the 20 realizations of thickness of layer 1 from the 

inversion of far offset traveltimes for different δ  and ε . The true value is 1000 metres. 

Mean is 1008 metres and standard deviation is 47 metres. 
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Figure 6.4: Convergence pattern of the 20 realizations of thickness of layer 1 from the 

inversion of near offset traveltimes for different δ  and ε . The true value is 1000 metres. 

Mean is 993 metres and standard deviation is 58 metres. 
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Figure 6.5: Convergence pattern of the 20 realizations of objective function from the 

inversion of far offset traveltimes of layer 1 for different δ  and ε .  

 

 

 

 

 

 

Figure 6.6: Convergence pattern of the 20 realizations of objective function from the 

inversion of near offset traveltimes of layer 1 for different δ  and ε .  
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Vp(m/sec) 
(est.) 

Z(m) 
(est.) 

δ  
(prior) 

δ  
(est.) 

ε  
(prior) 

ε  
(est.) 

Obj. 
Func. 
(Init.) 

Obj. Func. 
(250 Iter) 

2063 1064 -0.0205 -0.03 0.028 0.0303 416258 0.000826688 
2021 1042 -0.026 -0.011 0.072 0.0527 451401 0.00024071 
1991 1033 0.0595 0.043 0.05 0.0583 443940 14.7082 
1865 968 0.132 0.122 0.135 0.1353 515782 16.4982 
1982 1021 -0.024 0.0039 0.105 0.0758 476887 0.170106 
2045 1053 -0.0315 -0.023 0.050 0.0419 433141 0.646181 
2016 1048 0.0615 0.0375 0.026 0.0420 423577 21.2554 
1874 960 0.018 0.0255 0.169 0.1537 526922 13.2523 
2079 1072 -0.029 -0.0376 0.021 0.0222 409329 0.00114151 
1833 940 0.0515 0.0565 0.195 0.1811 548048 8.8612 
2062 1069 0.00425 -0.0005 0.025 0.0227 416691 9.52178 
1959 1010 0.00125 0.0197 0.111 0.0879 484230 3.3435E-005 
1852 952 -0.02375 0.0603 0.232 0.1631 560844 2.8879 
2005 1038 0.02475 0.0214 0.059 0.0545 447002 6.02033 
1828 941 0.018 0.0868 0.237 0.1777 570216 0.535326 
1963 1012 0.04425 0.0174 0.068 0.0854 456407 2.10973E-005 
1840 944 0.05575 0.0596 0.187 0.1739 543262 5.57953 
1966 1011 0.003 0.0048 0.097 0.0868 473556 1.16838 
1846 950 0.07525 0.0739 0.173 0.1649 536494 0.753365 
2011 1037 -0.0115 -0.0066 0.07 0.0578 450957 0.000161741 

 
Table 6.1: Prior and estimated model of the 20 realizations from traveltime inversion of 
far offset data for layer 1. Vp(prior)=2750 m/s, Vs(prior)=1375 m/s, and Z(prior) =500 
m. 

Vp(m/sec) 
(est.) 

Z(m) 
(est.) 

δ  
(prior) 

δ  
(est.) 

ε  
(prior) 

ε  
(est.) 

Obj. 
Func. 
(Init.) 

Obj. Func. 
(250 Iter) 

2063 1064 -0.0205 -0.03 0.028 0.0303 416258 0.000826688 
2021 1042 -0.026 -0.011 0.072 0.0527 451401 0.00024071 
1991 1033 0.0595 0.043 0.05 0.0583 443940 14.7082 
1865 968 0.132 0.122 0.135 0.1353 515782 16.4982 
1982 1021 -0.024 0.0039 0.105 0.0758 476887 0.170106 
2045 1053 -0.0315 -0.023 0.050 0.0419 433141 0.646181 
2016 1048 0.0615 0.0375 0.026 0.0420 423577 21.2554 
1874 960 0.018 0.0255 0.169 0.1537 526922 13.2523 
2079 1072 -0.029 -0.0376 0.021 0.0222 409329 0.00114151 
1833 940 0.0515 0.0565 0.195 0.1811 548048 8.8612 
2062 1069 0.00425 -0.0005 0.025 0.0227 416691 9.52178 
1959 1010 0.00125 0.0197 0.111 0.0879 484230 3.3435E-005 
1852 952 -0.0237 0.0603 0.232 0.1631 560844 2.8879 
2005 1038 0.0247 0.0214 0.059 0.0545 447002 6.02033 
1828 941 0.018 0.0868 0.237 0.1777 570216 0.535326 
1963 1012 0.0442 0.0174 0.068 0.0854 456407 2.10973E-005 
1840 944 0.0557 0.0596 0.187 0.1739 543262 5.57953 
1966 1011 0.003 0.0048 0.097 0.0868 473556 1.16838 
1846 950 0.0752 0.0739 0.173 0.1649 536494 0.753365 
2011 1037 -0.0115 -0.0066 0.07 0.0578 450957 0.000161741 

 
Table 6.2: Prior and estimated model of the 20 realizations from traveltime inversion of 
near offset data for layer 1. The prior model for Vp, Vs, and Thickness is the same as 
above table 6.1. 



 168

0 50 100 150 200 250 300 350 400 450 500
Iteration

840

880

920

960

1000

1040

Th
ic

kn
es

s 
(m

)

0 50 100 150 200 250 300 350 400 450 500
Iteration

230

240

250

260

270

280

290

Th
ic

kn
es

s 
(m

)

&
&   96 

  
 

  

 4

48 

96 
8 

v

vP P P S Traces
P P P S Trac

P

e

P Trace
P P Traces

s

s
→ →
→ →

→
→

 

 

 

 

 

 

Figure 6.7: Convergence pattern of the thickness of layer 1 from inversion of the 

traveltime data. The true value is 1000 metres.  
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Figure 6.8: Convergence pattern of the thickness of the layer 7 from inversion of the 

traveltime data. The true value is 270 metres.  
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Figure 6.9: Convergence pattern of the P-wave velocity of layer 1 from inversion of the 

traveltime data. The true value is 1940 m/sec.  
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Figure 6.10: Convergence pattern of the P-wave velocity of layer 7 from inversion of the 

traveltime data. The true value is 2200 m/sec. 
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Figure 6.11: Convergence pattern of the S-wave velocity of layer 1 from inversion of the 

traveltime data. The true value is 780 m/sec. 
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Figure 6.12: Convergence pattern of the S-wave velocity of layer 7 from inversion of the 

traveltime data. The true value is 1150 m/sec. 
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Figure 6.13: The Frobenius Norm (objective function) shows the convergence rate of the 

simultaneous traveltime inversion of vertical P-wave velocity, vertical S-wave velocity, 

thickness, and Thomsen’s anisotropy parameters of a VTI media consist of 10 horizontal 

layers. The Frobenius norm is not scaled. Polak-Ribiére conjugate gradient algorithm 

without preconditioning has been used. 
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Layer ( )/ secVp m  ( )/ secVs m δ  ε  ( )z metreΔ  
1 1940 780 0.03 0.1 1000 
2 2140 860 -0.02 0.14 160 
3 2220 890 -0.05 0.1 90 
4 2000 1000 0.1 0.14 40 
5 1990 990 0.05 0.1 100 
6 1900 950 0.04 0.12 190 
7 2200 1150 0.06 0.18 270 
8 2050 1130 0.1 0.2 170 
9 2650 1500 0.07 0.1 310 
 

Table 6.3: True layer properties which have been used to create observed P P→  and 

vP S→ traveltimes. 

 

Layer ( )/ secVp m  ( )/ secVs m δ  ε  ( )z metreΔ  
1 1698 878 0.0263 0.113 875 
2 1873 753 -0.0172 0.158 180 
3 2498 1001 -0.429 0.088 79 
4 1750 875 0.0875 0.158 35 
5 2239 1114 0.0438 0.113 113 
6 2138 831 0.045 0.135 166 
7 2475 1006 0.0675 0.158 236 
8 1794 989 0.0875 0.225 149 
9 2319 1313 0.0788 0.113 349 
 

Table 6.4: The prior model which has been used in minimization of  P P→  and 

vP S→ traveltimes. 
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Layer ( )/ secVp m  ( )/ secVs m δ  ε  ( )z metreΔ  
1 1941 877 0.0281 0.099 1000 
2 2128 751 -0.017 0.149 159. 
3 2249 1001 -0.0428 0.087 92 
4 1872 875 0.0881 0.1587 35 
5 2030 1113 0.0437 0.1082 104 
6 1874 831 0.0450 0.1333 187 
7 2231 1006 0.0677 0.1560 275 
8 2021 991 0.0893 0.2332 167 
9 2628 1312 0.0789 0.1113 308 
 

Table 6.5: Estimated model parameters from minimization of the P P→  for the last 

iteration in Figure 6.13. 96 traces have been used in the minimization. 

 

 

 

Layer ( )/ secVp m  ( )/ secVs m δ  ε  ( )z metreΔ  
1 1945 782 0.0284 0.097 1003 
2 2118 856 -0.017 0.153 159 
3 2257 893 -0.043 0.084 90 
4 1840 873 0.088 0.157 34 
5 2053 1059 0.044 0.107 108 
6 1852 910 0.045 0.134 182 
7 2232 1183 0.067 0.167 277 
8 1969 1061 0.087 0.236 160 
9 2635 1497 0.079 0.112 310 
 

Table 6.6: Estimated model parameters from minimization of the joint P P→ and vP S→  

traveltimes for the last iteration in Figure 6.13. 96 traces have been used in minimization. 
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Layer ( )/ secVp m  ( )/ secVs m δ  ε  ( )z metreΔ  
1 1945 782 0.0284 0.097 1003 
2 2118 856 -0.017 0.153 159 
3 2257 893 -0.043 0.084 90 
4 1840 873 0.088 0.157 34 
5 2053 1059 0.044 0.107 108 
6 1852 910 0.045 0.134 182 
7 2232 1183 0.067 0.167 277 
8 1969 1060 0.087 0.236 160 
9 2635 1497 0.079 0.112 310 

 

Table 6.7: Estimated model parameters from minimization of the P P→  for the last 

iteration in Figure 6.13. 48 traces have been used in minimization. 

 

 

Layer ( )/ secVp m  ( )/ secVs m  δ  ε  ( )z metreΔ  
1 1944 782 0.028 0.097 1002 
2 2115 846 -0.017 0.154 158 
3 2241 902 -0.043 0.084 91 
4 1777 875 0.088 0.157 34 
5 2158 1086 0.045 0.110 111 
6 1858 926 0.045 0.134 185 
7 2235 1174 0.067 0.164 275 
8 1871 1020 0.088 0.229 153 
9 2669 1513 0.079 0.1137 314 
 

Table 6.8: Estimated model parameters from minimization of the joint P P→ and vP S→  

traveltimes for the last iteration in Figure 6.13. 48 traces have been used in minimization. 
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Figure 6.14: The Frobenius Norm (objective function) shows the convergence rate of the 

five realizations with different random prior model of simultaneous P P→  traveltime 

inversion of Thomsen’s anisotropy parameters of a VTI medium consist of 10 horizontal 

layers. 96 traces have been used in each realization. Preconditioning Polak-Ribiére 

conjugate gradient algorithm has been used. The color code is the same in the Figures 

6.15-6.20. See Table 6.9 to relate each curve to a specific prior model. 
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Figure 6.15: Convergence pattern of the δ  for layer 1 from five realizations. A 

preconditioning conjugate gradient algorithm has been used for simultaneous inversion of 

Thomsen’s anisotropy parameters from a system of 10 layers. The true value is 0.03. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16: Convergence pattern of the ε  for layer 1 from five realizations. A 

preconditioning conjugate gradient algorithm has been used for simultaneous inversion of 

Thomsen’s anisotropy parameters from a system of 10 layers. The true value is 0.1. 
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Figure 6.17: Convergence pattern of the δ  for layer 7 from five realizations. A 

preconditioning conjugate gradient algorithm has been used for simultaneous inversion of 

Thomsen’s anisotropy parameters from a system of 10 layers. The true value is 0.06. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18: Convergence pattern of the ε  for layer 7 from five realizations. A 

preconditioning conjugate gradient algorithm has been used for simultaneous inversion of 

Thomsen’s anisotropy parameters from a system of 10 layers. The true value is 0.18. 
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Figure 6.19: Convergence pattern of the δ  for layer 9 from five realizations. A 

preconditioning conjugate gradient algorithm has been used for simultaneous inversion of 

Thomsen’s anisotropy parameters from a system of 10 layers. The true value is 0.07. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20: Convergence pattern of the ε  for layer 9 from five realizations. A 

preconditioning conjugate gradient algorithm has been used for simultaneous inversion of 

Thomsen’s anisotropy parameters from a system of 10 layers. The true value is 0.1. 
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Figure 6.21: This picture illustrates the effect of the preconditioning on the convergence 

rate in the conjugate gradient algorithm. Thomsen’s anisotropy parameters from a system 

of 9 horizontal layers have been optimized simultaneously by minimizing  P P→  

traveltime from 96 traces. Both inversions use the same prior model. The blue curve 

illustrates the Polak-Ribiére conjugate gradient algorithm while, red curve shows the 

results from the preconditioned Polak-Ribiére conjugate gradient algorithm.  
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6.2 Waveform inversion in horizontally layered VTI media 
 

Prestack amplitude based inversion methods suffer from problems such as loss of 

true amplitude during the processing, out of plane interference, noise, an incorrect 

wavelet, and intensive computational costs, however, they have been promising in 

estimation of the high frequency part of the structures where layer thickness is small. 

That is why traveltime data are usually used in estimation of the low frequency part of the 

structure. The other benefit of waveform inversion is the fact that it takes the bottom 

layer of the model into account, whereas traveltime inversion does not.  

In this section we still take the geometry of previous sections, however, only the 

first 48 traces will be used in parameter estimation. This will keep the phase incidence 

angles below the critical angle, where Rüger’s equations (Rüger, 1996) are valid. We will 

not consider geometrical spreading effects as the seismic data are usually corrected for 

this. Implementing the geometrical spreading is straightforward and readers may refer to 

Ursin and Hokstad (2003).  We also assume that data have been corrected for multiples, 

but we will consider the shear converted waves and use them in parameter estimation. 

 The objective function of a waveform inversion problem (equation 5.39) in terms 

of velocity and thickness is highly nonlinear and less nonlinear in terms of Thomsen’s 

anisotropy parameters and density. We can still use prestack waveform inversion to 

estimate the velocity and thickness but the prior information needs to be close enough to 

the solution. Apart from nonlinearity, the parameter model space contains many local 

minima and it is likely to converge to a local minimum rather than the global minimum. 

A quick evaluation of the objective function (equation 5.39) for two high impact 

parameters such as P-wave velocity for the first and second layers simultaneously, will 

show the nonlinearity and frequency of local minima. For the sake of utilizing the high 

frequency estimating power of prestack waveform inversion, we assume a fairly well 

velocity model using for example traveltime inversion is available and estimate merely 

Thomsen’s anisotropy parameters (Nadri and Hartley, 2007b). 

In the first example, we draw a random prior model for δ  and ε  from a uniform 

distribution constrained within 50±  percent of the true model (the second two columns of 

Table 6.10). This will be used for both P P→ and joint & vP P P S→ →  inversion. We 
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also draw a random prior model from a wider uniform distribution constrained by 75±  

percent of the true model (the last two columns of the Table 6.10). We only use this prior 

model for inversion of P P→ data. Due to high nonlinearity of the objective function 

corresponding to joint & vP P P S→ → , it was not possible to converge to the solution 

with the latter prior model. We used the Polak-Ribiére conjugate gradient algorithm to 

minimize the objective function. Figure 6.22 illustrates the convergence pattern of the 

objective function for P P→ (blue curve), joint & vP P P S→ →  (red curve), and 

P P→ data with a broader prior model (green curve). The blue curve has a better 

convergence because it used a closer prior model compared to the green curve. 

Minimization continued for up to 500 iterations. 

The convergence patterns of Thomsen’s anisotropy parameters δ  and ε  for the 

top layer are illustrated in Figure 6.23 and Figure 6.24 respectively. All the inversion 

schemes have resolved the model parameters well. We only plotted the first 250 iterations 

for a better view. It is clear that the green curves are farther from the solutions. The 

estimated Thomsen’s anisotropy parameters for the last iteration are given in table 6.11 

for different inversion schemes.  

In Figures 6.25 and 6.26 we have illustrated the convergence pattern of δ  and ε  in layer 

4. The thickness of this layer is 40 metres and the waveform from the bottom of this layer 

overlaps the tail of the waveform from the upper reflector (Figure 3.9). Practically, 

picking the traveltimes for this event is not very reliable, however, waveform inversion 

was able to resolve the layer properties well.  

Figure 6.27 illustrates the convergence pattern of δ  from layer 9. The overall 

convergence rate is slow and even slower for waveform inversion of P P→  waves, 

however, they have all converged to the true solution. In Figure 6.28 the convergence rate 

of  ε  from layer 8 is illustrated. The prior model for P P→ (green curve) is very far from 

the solution, however, it has been able to converge rapidly to true solution. 

To demonstrate the impact of anisotropy on seismic amplitudes, we have 

computed the P P→  wavefield in a prestack gather from the true model and a prior 

model given in the first two columns and second two columns of Table 6.10 respectively. 

The P P→  wavefield from the true model is shown in the left panel of Figure 6.29. We 
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also computed the & vP P P S→ →  wavefield in a prestack gather from the true model and 

a different prior model given in last two columns of Table 6.10. The & vP P P S→ →  

wavefield from the true model is also shown in the left panel of Figure 6.30. We have 

subtracted the P P→  synthetic seismograms from the true model and prior model and 

have shown the resultant seismogram in the middle panel of Figure 6.29. We call the 

subtracted seismogram the seismic residual gather. It can be seen that the amount of the 

residuals is quite significant. The seismic residual gather clearly shows the effect of 

anisotropy on the seismic wavefield. The same procedure has been applied to 

& vP P P S→ →  seismograms and the residual gather is shown in the middle panel of 

Figure 6.30. It is clear that the amount of residual is quite large especially at the larger 

offsets. To demonstrate the efficiency of the minimization algorithm in suppressing the 

seismic residuals we have computed the synthetic seismogram from the estimated model 

parameters in the last iteration of P P→  waveform inversion given in the last two 

columns of table 6.11. We subtracted the above synthetic seismogram from the true 

corresponding P P→  seismogram and illustrated the residual seismogram in the right 

panel of Figure 6.29. All panels have been shown with the same gain. It is clear that the 

minimization has been quite effective and almost no residual is left.  The same procedure 

has been used for & vP P P S→ →  wavefield. We have computed the synthetic 

seismogram from the estimated model parameters in the last iteration given in the second 

two columns of Table 6.11. The seismic residual for the & vP P P S→ →  wavefield is also 

illustrated in the right panel of Figure 6.30. Same as the Figure 6.29 all gathers have been 

plotted with the same amplitude scaling factor. As it can be seen, minimization is quite 

effective and almost no residual is left.  
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Figure 6.22: Convergence rate of the simultaneous P P→  (blue and green curves) and 

joint  & VP P P S→ →  (red curve) waveform inversion of Thomsen’s anisotropy 

parameters. Both red and blue curves used the same prior model drawn from a prior 

model within the %50±  of the true model. The green curve has been drawn from a prior 

model within the %75±  of the true model. A Polak-Ribiére conjugate gradient algorithm 

has been used to simultaneously minimize Thomsen’s anisotropy parameters from a 

system of 10 horizontal layers. All prior models have been randomly selected from a 

uniform distribution constrained to an upper and lower limit. Only the first 48 traces are 

used in minimization. 
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Figure 6.23: Convergence pattern of the δ  for layer 1 from waveform inversion. The true 

value is 0.03. 
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Figure 6.24: Convergence pattern of the ε  for layer 1 from waveform inversion. The true 

value is 0.1. 
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Figure 6.25: Convergence pattern of the δ  for layer 4 from waveform inversion. The true 

value is 0.1. 
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Figure 6.26: Convergence pattern of the ε  for layer 4 from waveform inversion. The true 

value is 0.14. 
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Figure 6.27: Convergence pattern of the δ  for layer 9 from waveform inversion. The true 

value is 0.07. 
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Figure 6.28: Convergence pattern of the ε  for layer 8 from waveform inversion. The true 

value is 0.2. 
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Layer δ  ε  δ  ε  δ  ε  
1 0.03 0.1 0.02 0.073 0.0079 0.072 
2 -0.02 0.14 -0.014 0.130 -0.0133 0.187 
3 -0.05 0.1 -0.055 0.053 -0.053 0.128 
4 0.1 0.14 0.0806 0.229 0.1516 0.260 
5 0.05 0.1 0.04 0.171 0.0459 0.201 
6 0.04 0.12 0.063 0.12 0.0385 0.053 
7 0.06 0.18 0.046 0.226 0.0328 0.191 
8 0.1 0.2 0.122 0.191 0.1135 0.389 
9 0.07 0.1 0.113 0.099 0.130 0.160 
10 0.1 0.14 0.072 0.169 0.063 0.331 

 

Table 6.10: The first two columns correspond to the true model, the next two columns to 

the prior model which has been used in waveform inversion of  P P→  and joint 

& vP P P S→ →  from 48 seismic traces as in Figures 6.22-6.26. The last two columns 

correspond to prior model which has been used in waveform inversion of  P P→  from 48 

seismic traces as in Figures 6.22-6.26. This prior model is further from the true model 

parameters than the one in first two columns. 

 

Layer δ  ε  δ  ε  δ  ε  
1 0.03 0.100 0.03 0.100 0.030 0.1 
2 -0.0197 0.14 -0.02 0.14 -0.02 0.14 
3 -0.05 0.10 -0.05 0.100 -0.05 0.1 
4 0.1 0.14 0.099 0.140 0.1 0.14 
5 0.049 0.101 0.05 0.101 0.048 0.103 
6 0.040 0.119 0.04 0.12 0.04 0.118 
7 0.060 0.18 0.06 0.18 0.06 0.179 
8 0.1 0.20 0.1 0.2 0.1 0.201 
9 0.07 0.101 0.07 0.11 0.068 0.104 
10 0.095 0.157 0.10 0.15 0.087 0.183 

 

Table 6.11: The first two columns correspond to estimated model parameters from the 

last iteration (Figure  6.22) of the waveform inversion of  P P→  and the second two 

columns to joint & vP P P S→ →  data. The last two columns correspond to waveform 

inversion of P P→  data as in Figures 6.22-6.26 where the prior model is further from the 

true model parameters than the one in the first two columns of Table 6.10. 
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6.3 Traveltime inversion in a dipping layered TI media 
 

In Chapter 2 we gave a ray tracing algorithm for dipping layers in a TI medium 

and in Chapter 5 we discussed unconstrained minimization algorithms in dipping media. 

The minimization algorithm is the same as for horizontal layers but more computationally 

intensive. In Chapter 2, non-hyperbolic behavior of P P→  and vP S→ traveltimes and 

violation of the law of conservation of horizontal slowness were discussed. These issues 

make the computation of traveltimes and partial derivatives very intensive. In contrast to 

inversion of traveltimes in horizontally layered media in which we could go for a higher 

number of iterations, the computational cost in dipping media makes it difficult to do 

large number of iterations. A preconditioning conjugate gradient can substantially 

decrease the number of iterations. In the dipping media, we are mainly concerned with 

the estimation of Thomsen’s anisotropy parameters, but instead we extend the prior 

information knowledge to the weak anisotropy assumption. We have shown, by the 

assumption of weak anisotropy, that Thomsen’s anisotropy parameters can be effectively 

estimated without the knowledge of a prior model (Nadri and Hartley, 2008). 

We use Table 2.2 to compute the traveltimes for P P→  and vP S→  waves. These 

traveltimes will be considered as the measured traveltimes during the minimization. The 

first two columns of Table 6.12 show the prior model parameters for both P P→ and joint 

& vP P P S→ →  minimization. This prior model has been drawn randomly from a uniform 

distribution constrained by the weak anisotropy assumption (equation 3.30). The uniform 

distribution parameters are 0.05 0.2δ− ≤ ≤  and 0 0.2ε≤ ≤ .  

A preconditioning conjugate gradient algorithm has been used to invert P P→  

and joint & vP P P S→ →  traveltimes respectively. We continued P P→ traveltime 

inversion up to 250 iterations and stopped the joint & vP P P S→ →  traveltimes inversion 

after 48 iterations where it reached the true solutions. Figure 6.31 illustrates the 

convergence rate of the objective function (5.29) for both P P→  (red curve) and joint 

& vP P P S→ →  (blue curve). As can be seen, the P P→ traveltimes has been quite well 

inverted after 50 iterations and not updated much after that. The estimated model 

parameters from the last iteration of  P P→  traveltime inversion are shown in the first 
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two columns of Table 6.11 while the last two columns show the estimated model 

parameters from the last iteration of joint inversion & vP P P S→ →  traveltimes. 

 Figures 6.32 and 6.33 demonstrate the convergence pattern of δ  and ε  from the 

top layer for both P P→  (red curve) and joint & vP P P S→ →  (blue curve) respectively. 

Both parameters have converged to the true solution after 40 iterations. In the Figures 

6.34 and  6.35 the convergence pattern of δ  and ε  is shown, respectively, for layer 3. It 

is obvious that prior models are quite far from the solutions. In Figures 6.36 and 6.37 we 

have illustrated the convergence rate of δ  and ε  from layer 7 and in Figures 6.38 and 

6.39 they are plotted, respectively, for layer 9. The entire examples in this section show 

that a preconditioned conjugate gradient is robust in estimating the true model parameters 

in fewer iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 193

0 25 50 75 100 125 150 175 200 225 250
Iteration

0.0001

0.001

0.01

0.1

1

10

100

1000

10000
Fr

ob
en

ui
s 

N
or

m

 

 

 

 

 

 
 
& vP S

P
P
P

P→ →
→  

 

 

 

 

 

 

 

 

 

Figure 6.31: Convergence rate of the simultaneous inversion of P P→  (red curve) and 

joint  & VP P P S→ →  (blue curve) traveltimes. Polak-Ribiére preconditioning conjugate 

gradient algorithm has been used to simultaneously invert Thomsen’s anisotropy 

parameters in dipping TI media consisting of 9 layers. Both inversions use the same prior 

model. Joint inversion of   & VP P P S→ →  traveltimes has reached to the true solution 

after 48 iterations. All prior models have been drawn randomly from in a uniform 

distribution constrained by the weak anisotropy assumption. 
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Figure 6:32 Convergence pattern of the δ  for layer 1 from traveltime inversion of P P→  

(red curve) and joint  & VP P P S→ →  (blue curve) in dipping TI media. The true value is 

0.03. 
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Figure 6:33 Convergence pattern of the ε  for layer 1 from traveltime inversion of P P→  

(red curve) and joint  & VP P P S→ →  (blue curve) in dipping TI media. The true value is 

0.1. 
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Figure 6:34 Convergence pattern of the δ  for layer 3 from traveltime inversion of P P→  

(red curve) and joint  & VP P P S→ →  (blue curve) in dipping TI media. The true value is -

0.05. 
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Figure 6:35 Convergence pattern of the ε  for layer 3 from traveltime inversion of P P→  

(red curve) and joint  & VP P P S→ →  (blue curve) in dipping TI media. The true value is 

0.1. 
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Figure 6:36 Convergence pattern of the δ  for layer 7 from traveltime inversion of P P→  

(red curve) and joint  & VP P P S→ →  (blue curve) in dipping TI media. The true value is 

0.06. 
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Figure 6:37 Convergence pattern of the ε  for layer 7 from traveltime 

inversion of P P→  (red curve) and joint  & VP P P S→ →  (blue curve) in dipping TI 

media. The true value is 0.18. 
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Figure 6:38 Convergence pattern of the δ  for layer 9 from traveltime inversion of P P→  

(red curve) and joint  & VP P P S→ →  (blue curve) in dipping TI media. The true value is 

0.07. 
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Figure 6:39 Convergence pattern of the ε  for layer 9 from traveltime inversion of P P→  

(red curve) and joint  & VP P P S→ →  (blue curve) in a dipping TI media. The true value is 

0.1. 
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Layer δ  ε  δ  ε  δ  ε  
1 0.054 0.146 0.03 0.1 0.030 0.1 
2 -0.0297 0.133 -0.02 0.14 -0.021 0.14 
3 0.017 0.161 -0.05 0.10 -0.05 0.10 
4 0.077 0.157 0.1 0.14 0.10 0.14 
5 0.116 0.137 0.05 0.1 0.05 0.10 
6 -0.023 0.041 0.04 0.12 0.04 0.12 
7 0.156 0.035 0.06 0.18 0.06 0.18 
8 0.020 0.070 0.1 0.2 0.1 0.2 
9 -0.038 0.179 0.07 0.1 0.07 0.10 
 

Table 6.12: The first two columns correspond to prior model which has been used in 

traveltime inversion of  P P→  and joint & vP P P S→ →  from 96 traces in dipping TI 

media. The second two columns correspond to estimated model parameters from the 

inversion of P P→  traveltimes for the last iteration (Figure 6.31). The last two columns 

correspond to estimated model parameters from joint inversion of the & vP P P S→ →  

traveltimes from the last iteration (Figure 6.31). Figures 6.32-6.39 have used the current 

prior model. 

 

Comments 
 

Traveltimes are particularly useful to estimate the low frequency part of the model 

space. Using the far offset P P→  traveltimes one can simultaneously estimate model 

structure, vertical P-wave velocities ( 0α ), however, due to the huge difference in scale 

between Thomsen’s anisotropy parameters (δ , ε ) and other parameters ( 0α , 0β , z ), ε  

and especially δ  are poorly resolved. Joint traveltime inversion of & vP P P S→ →  can 

efficiently estimate vertical S-wave velocity ( 0β ) as well as 0α  and layer thickness ( z ). 

Having a good velocity model either from check shot data or traveltime inversion, one 

can estimate δ  and ε  efficiently.  This can be accomplished without a prior knowledge 

by using the weak anisotropy assumption. Where, the layer thickness is small compared 

to Rayleigh vertical resolution and picking the traveltime of corresponding reflector is 

difficult, waveform inversion is an alternative to estimate the high frequency part of the 

model in terms of Thomsen’s anisotropy parameters. 
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Conclusions, Discussions, and Future prospects 
 
 
Conclusion and discussion 

One of the achievements of this thesis is providing a framework to integrate all 

the relevant information to create a robust algorithm to effectively minimize the objective 

function. This facilitates the simultaneous estimation of different model parameters from 

different layers. Using the sophisticated unconstrained minimization algorithms such as 

nonlinear preconditioning conjugate gradient, traveltimes from a horizontally, layered 

vertical transversely isotropic medium have been inverted to estimate the Thomsen’s 

anisotropy parameters. With the assumption of weak anisotropy, estimation of Thomsen’s 

anisotropy parameters is independent of specific prior information.  

We have shown that vertical P-wave velocity and thickness of the layers can be 

effectively estimated using traveltime inversion of compressional waves, however, joint 

inversion of & VP P P S→ → has been used to recover the vertical shear wave velocity as 

well as vertical compressional wave velocity and thickness, in fewer iterations. 

The effect of source-receiver offset on the estimation of Thomsen’s anisotropy 

parameters has been studied. From the implementation of both pre-critical and post- 

critical phase incidence angles, we have show that only pre-critical reflections are 

sufficient to estimate the velocity structure and Thomsen’s anisotropy parameters. 

However, long offset generally results in faster convergence. 

Another achievement of this thesis is formulating new equations for offset and 

exact traveltime in dipping layered transversely isotropic media. These equations have 

been expressed as a function of ray parameter which is suitable for ray tracing 

algorithms. Due to nonhyperbolic behaviour of traveltimes, especially for converted shear 

waves, ray tracing in dipping TI media is much more complicated than in horizontal 

layers. We use the Newton method to estimate the ray parameter for each ray path by 

inverting the offset equations. A random ray parameter drawn from a uniform distribution 

has been used as a prior model. 

We have also demonstrated the ability of the unconstrained minimization 

algorithms to estimate the Thomsen’s anisotropy parameters in dipping transversely 
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isotropic media. With the assumption of weak anisotropy both P P→  and joint 

& VP P P S→ → traveltime inversions have successfully estimated the Thomsen’s 

anisotropy parameters from the random prior model drawn from a uniform distribution. 

This also enables the estimation process to be independent of  prior knowledge. 

Horizon-based inversion schemes such as traveltime inversion are unable to 

recover the low-frequency part of a model structure. Reflectivity based methods at the 

interface of two layers where the thickness of the layer is below the tuning limit suffer 

from the interference effect, so estimated parameter may be biased. Amplitude inversion 

based schemes are more effective in estimation of the high frequency part of the model. 

Prestack waveform inversion is, however, highly nonlinear so there is no guarantee to 

converge to a solution from one realization of a prior model. To be able to estimate 

Thomsen’s anisotropy parameters, a good prior velocity model is essential. This may be 

achieved by using well log data or the traveltime inversion as discussed above.  Prestack 

waveform inversion is also computationally intensive. I have shown that restricting the 

frequency spectrum to the signal bandwidth, does not affect the partial derivative 

considerably but it significantly reduces the computations. 

Gradient based inversion algorithms need partial derivatives of the objective 

function. It is not always possible to derive the partial derivatives of exact reflection and 

transmission coefficient analytically. So the common approach is to use finite difference 

calculations instead. Finite differences are computationally intensive and require an 

optimum interval. I have shown that the numerical derivatives of the objective function of 

the effective reflection coefficient with respect to δ  and ε  are highly unstable. We 

preferred to use Rüger’s equations (1996) for different modes. They approximate the 

exact plane wave reflection and transmission coefficients for pre-critical phase angles of 

incidence, where the difference in Thomsen’s anisotropy parameters is small. It is also 

possible to derive their analytic partial derivatives, however, it is cumbersome to extract 

the derivative of effective reflection coefficients, where the transmission coefficients in 

layered system needs to be included. I have shown that neglecting the transmission 

coefficients may cause error in effective reflection coefficient of up to 10 percent. I have 

demonstrated that prestack waveform inversion is able to effectively estimate the 

Thomsen’s anisotropy parameters where the layer thickness is within the tuning limit. I 
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found Joint inversion of & VP P P S→ → seismic amplitudes converges to the solution 

faster than just P P→ inversion, however, this increases the nonlinearity of the model 

space and we don’t expect joint & VP P P S→ →  to minimize the same prior model as 

P P→  does.  

I have used C++ as a programming platform because it is fast and its object 

oriented programming environment provides a framework to easily reuse the classes we 

have developed here. New classes can be easily integrated within the package. 

 

Future prospects 
The inversion algorithms which have been developed in this thesis, for a 

horizontally VTI model could be extended to an HTI model. This could be done by 

transformations  given by Tsvankin (1997) which convert an equivalent VTI model to an 

HTI model. The inverse models could be further extended to estimate fracture orientation 

using the azimuthal variation of traveltimes. This could be done either by rewriting the 

Christoffel equations for an HTI model directly, in the same way as Ursin and Stovas  

(2006) did for a VTI model, or to use the Tsvankin (1997) equivalent VTI model (Nadri 

et al., 2008b; Nadri et al., 2008c). It is also possible to use the azimuthally varying 

P P→  effective reflection coefficients from the Rüger‘s equations (Rüger, 1998) or joint 

azimuthally varying P P→  (Rüger, 1998) and VP S→ (Jílek, 2002) waves. 

The computation of ray parameter in dipping TI media is intensive. This is mainly 

due to nonhyperbolic moveout behaviour of traveltimes. So, the ray parameter should be 

very precise and this causes extra burden on Newton minimization. During the 

minimization, where a large number of function evaluations are necessary, CPU time will 

be large, however, a preconditioning conjugate gradient algorithm ensures faster 

convergence.  

Parallel processing is an effective solution to distribute the computations to 

different CPUs in a cluster. Computation of each ray parameter for each ray path is 

independent of other ray paths. So, using parallel programming for example, OpenMP 

(Chapman et al., 2008), one could easily port the computation of ray parameters, at least 

for each reflector, to a specific CPU.  
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