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Abstract

The technology of wireless communication has been playing a vital role in many

aspects of the modern lifestyle. In recent years, the increasing number of wire-

less devices has resulted in a significant growth on the demand for reliable and

high rate wireless communications. Multiple-input multiple-output (MIMO) re-

lay communication systems have been identified to be one of the promising solu-

tions to high rate wireless communication. Besides enhancing the capacity of the

networks, MIMO technology is able to reduce the effect of fading in wireless com-

munication networks by means of spatial diversity. The use of relaying scheme is

able to increase the network coverage and system reliability.

However, challenging problems in implementing MIMO relay systems do ex-

ist and the solutions remain elusive. One of the challenges is to estimate the

channel state information (CSI) of the MIMO relay systems, which is required

for retrieving source signals and optimizing the design of the transceiver and re-

lay matrices. However, the knowledge of CSI is unknown in practical MIMO

relay networks, and thus needs to be estimated. This thesis focuses on the chan-

nel estimation issues for MIMO relay communication networks, considering the

amplify-and-forward relaying scheme.

First, a robust channel estimation algorithm for one-way MIMO relay systems

is proposed, which takes into account the CSI mismatch between the estimated

and the true relay-destination channel matrices. The proposed algorithm always

perform better than conventional algorithms in estimating the source-relay chan-

nel without the need of greater computational effort.

Then the channel estimation issues on two-way MIMO relay communication

networks are discussed. Two channel estimation algorithms, namely the superim-

posed channel training scheme and the optimized two-stage channel estimation
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Chapter 0. Abstract iv

algorithm, are presented and compared. The proposed algorithms are able to

estimate the individual CSI for the first-hop and second-hop links. Through nu-

merical examples, it can be concluded that both algorithms outperform the con-

ventional two-stage channel estimation technique, with the optimized two-stage

channel estimation algorithm performs better than the superimposed channel

training scheme at the expense of higher computational complexity.

Next a more general situation is considered where two-way MIMO relay sys-

tems are operating in frequency-selective fading environments. The channel es-

timation problem is becoming more complicated in frequency-selective fading

environments as there are multiple paths between each transmit-receive antenna

pair. The superimposed channel training method is applied to derive the indi-

vidual CSI of first-hop and second-hop links. A minimum MSE (MMSE)-based

algorithm to retrieve first-hop channel matrices is also presented, considering the

estimation error inherited from the estimation of the second-hop channel matrices.

Thus far, the channel estimation problems are addressed by sending known

training sequences to the destination node to assist in the estimation of the chan-

nels. This thesis examines the blind approach for channel estimation, i.e., the

channels are estimated based on the statistical properties of the source signals.

Two blind source separation (BSS) methods are integrated to estimate the indi-

vidual CSI of the source-relay and relay-destination links for one-way MIMO relay

systems. In particular, a first-order Z-domain precoding technique is presented

to blindly estimate the relay-destination links, while the source-relay links are

estimated based on signal mutual information (MI) modified constant modu-

lus algorithm. The proposed blind channel estimation algorithms always have

a better bandwidth efficiency compared with training-based channel estimation

algorithms as no bandwidth is used to send training sequences.
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Chapter 1

Introduction

Wireless communication networks have been a revolutionary part in the field

of communication, which enable convenient multimedia communication between

people and devices. With a tremendous demand for high speed and reliable

wireless communications, multi-antenna and relaying techniques are expected to

be included in the next generation of wireless communication networks. The

main aim of this thesis is to develop efficient channel estimation algorithms for

multiple-input multiple-output (MIMO) wireless relay communication networks.

In this chapter, we introduce the background knowledge on MIMO relay networks

and the estimation of channel state information. We also state the contributions

and give an outline of the thesis.

1.1 Relaying and Cooperative Communication

Relaying and cooperative communications were first introduced by Van Der Meu-

len in [1], and were examined by Cover and El Gamal in [2]. The basic idea of

cooperative communication is to provide multiple routes for data packets to be

transmitted from the source to the destination. Fig. 1.1 shows a three-node two-

hop relay network, where data packets from the source node can be transmitted

to the destination node directly and/or through the relay node.

In recent years, growing interest in cooperative communications employing

relay nodes has motivated great research efforts in this area such as in [3]-[10].

The major advantages of cooperative relay communication can be summarized

1
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Source

Relay

Destination

Figure 1.1: A three-node two-hop relay network

below [3]-[8], [11]-[14]:

• The wireless networks coverage are increased, and is particularly useful

when the distance between the source and destination is long or the channel

between the source and destination is strongly faded.

• The reliability and robustness of the wireless systems have been improved

as multiple copies of source signals are transmitted, i.e., the diversity gain

at the destination node is increased.

There are mainly two types of relaying strategies, namely the non-regenerative

strategy and the regenerative strategy. The former technique only amplifies the

received signals and forwards the signals to the receiver, while the later scheme

decodes the received signals, then re-encodes them before retransmits the sig-

nals to the receiver. Compared with the regenerative relaying strategy, the non-

regenerative relaying strategy delivers more noise to the destination as the noise is

amplified at the relay node [10]. However, the non-regenerative relaying strategy

does not require sophisticated signal processing at the relay node, thus is easier

to implement than the regenerative relaying technique. In this thesis, the imple-

mentation of non-regenerative relaying strategy is considered. Recently, relaying

and cooperative communications techniques have been considered in some indus-

trial communication standards, such as IEEE 802.16j WiMAX standard [15] and

3GPP’s long-term evolution (LTE)-advanced standard [16].

1.2 MIMO Relay Communication Networks

The emerging demands in multimedia applications such as broadcasting of high

definition television have resulted in the need for wireless systems that are able to
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support higher data rate compared with the existing systems. Many approaches

have been suggested and developed to boost the performance of wireless systems,

which include the use of multiple antennas at both the transmitter and receiver

sides, i.e., MIMO technology [17]-[31].

The benefits of MIMO systems [18]-[23] are briefly explained below.

• Spatial diversity gain. MIMO systems are able to produce smaller error

rates by transmitting and receiving the same source signals over multiple

independent fading paths (when the antennas spacing is sufficiently large).

This spatial diversity gain is able to combat the fading effects that usually

occurred in wireless channel. Comparing with single-antenna transmission,

MIMO systems are more reliable and robust when the same transmission

rate is used. The spatial diversity has an advantage over time and frequency

diversity as it does not consume additional bandwidth or require longer

transmission time.

• Spatial multiplexing gain. In MIMO systems, independent data streams

can be simultaneously transmitted from different antennas to increase the

transmission rate without the need of extra bandwidth. The multiplexing

gain achieved in MIMO networks is linear to the number of antennas at the

transmitter/receiver, whichever is smaller.

• Array gain. signal-to-noise ratio (SNR) at the receiver can be improved us-

ing multi-antenna techniques. With the spatial filtering (beamingforming)

technique, the directions of the transmitter and receiver antennas can be

steered to favor the desirable signals, such as the information signals, while

suppressed the interference signals. This technique is also known as smart

antennas.

In general, tradeoff between the spatial diversity gain, spatial multiplexing

gain, and array gain is required as it may not be possible to reap all the bene-

fits of MIMO systems at the same time. The diversity-multiplexing tradeoff was

investigated in [21]. Currently, MIMO technology has been applied in many com-

mercial wireless products and systems, such as in routers, base stations, wireless

local area network (WLAN) and 3G cellular network. It has been considered
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in many industrial standards, for example, IEEE 802.11n WLAN standard [32]

and IEEE 802.20 mobile broadband wireless access systems [33]. Recently, the

application of MIMO systems for broadband power line communications (PLC)

is being investigated in [34]-[35].

Considering the advantages of MIMO technology and cooperative communic-

ations, it is expected for the next generation of wireless systems to turn to MIMO

relaying schemes. However, many challenging problems arise and research works

have been actively carried out to maximize the utilization of MIMO relaying

schemes [11],[36]-[46]. In [36] and [37], the optimal relay precoding matrix is

derived to maximize the mutual information between the source and destination

nodes for a three-node two-hop MIMO relay communication system. A unified

framework has been developed in [11] to optimize the source and relay precoding

matrices for two-hop MIMO relay systems with a broad class of commonly used

objective functions. In [38], the capacity of MIMO relay networks for Gaussian

channel and Rayleigh fading channel is studied. The joint transmit and relay pre-

coding design problems were investigated for two-hop multicasting MIMO relay

systems in [39]. A recent survey on transceiver design for amplify-and-forward

MIMO relay systems is presented in [40]. Other optimization works on MIMO

relay systems are investigated in [41]-[46].

1.3 Estimation of Channel State Information

Let us consider the simplest frequency-flat fading two-hop MIMO relay wireless

network where a source node transmits information to a destination node through

a relay node as shown in Fig. 1.2. The source, relay, and destination nodes are

equipped with Ns, Nr, and Nd antennas, respectively. The amplify-and-forward

strategy is considered at the relay node.

Destination
H1 H2

RelaySource

Figure 1.2: A two-hop MIMO relay wireless network

In the first time block, the source node transmits an Ns × L data matrix Ss
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to the relay node, where L is the length of the transmitted data sequence. The

received signal at the relay node is given by

Yr = H1Ss +Vr (1.1)

where H1 is the Nr ×Ns source-relay channel matrix and Vr is the Nr ×L noise

matrix at the relay node. In the second time block, the relay node applies an

Nr × Nr precoding matrix F on Yr and retransmits the linear precoded signal

matrix

Xr = FH1Ss + FVr (1.2)

to the destination node. The received signal at the destination node can be

written as

Yd = H2Xr +Vd = H2FH1Ss +H2FVr +Vd (1.3)

where H2 is the Nd ×Nr relay-destination channel matrix and Vd is the Nd × L

noise matrix at the destination node. Let H̄ , H2FH1 be the compound channel

matrix from the source node to the destination node and V = H2FVr +Vd be

the equivalent noise matrix, we have

Yd = H̄Ss +V. (1.4)

Using a linear receiver at the destination node, the estimated Ss is given by

Ŝs = WHYd (1.5)

where W is the Nd × Ns weight matrix of the linear receiver. The optimal W

that minimizes the estimation error of Ss is the Wiener filter [43] given by

W =
(

H̄H̄H +RV

)−1
H̄. (1.6)

Here RV = E
[

VVH
]

is the covariance matrix of V.

Let us define the singular value decomposition (SVD) of H1 and H2 as

H1 = UH1ΛH1VH1, H2 = UH2ΛH2VH2 (1.7)

where UH1 ,VH1,UH2, and VH2 are the singular vector matrices, and ΛH1 and

ΛH2 are the diagonal singular value matrix. It was shown in [36], [47]-[48] that

the optimal relay precoding matrix for two-hop MIMO relay networks is given by

F = VH2ΛFU
H
H1

(1.8)
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where VH2 and UH1 are unitary matrices of eigenvalue decompositions of the

channel matrices H2 and H1, respectively, and ΛF is a diagonal matrix. It is

obvious from (1.5)-(1.6) and (1.8) that in MIMO relay networks, the knowledge of

the channel characteristics, also known as instantaneous channel state information

(CSI), is required for the purpose of

• retrieving the source information at the destination node

• optimization of the MIMO relay systems, for example, to derive the optimal

source and relay matrices in linear amplify-and-forward relay networks.

However, in practical MIMO relay communication systems [11]-[13], [36]-[46],

the instantaneous CSI is unavailable at both transmitter and receiver, and thus,

it has to be estimated. Considering the importance of CSI in the overall per-

formance of MIMO relay networks, it is crucial to address the channel estimation

problems. Different from guided transmission medias (signal propagates along a

solid medium), the channel estimation in wireless systems is much more difficult

as wireless networks exhibit highly dynamic channels. Moreover, when multiple

antennas are used, more channel parameters are needed to be estimated.

Generally, there are two types of channel estimation techniques, [18],[49]-[50].

• Training-based channel estimation. In this method, known training se-

quences are transmitted to the receiver for the estimation of the instant-

aneous CSI. The accuracy of the channel estimation can be improved by

sending training sequences more frequently, especially for fast-fading chan-

nels. This method has the advantages of simplicity and reliability compared

with blind channel estimation. However, training-based method has a lower

bandwidth efficiency as part of the bandwidth is used to transmit the train-

ing sequences. For example, 26 bits of training sequences are placed in the

middle of each packet for Global System for Mobile (GSM) systems as il-

lustrated in Fig. 1.3. The training-based channel estimation technique is

discussed in [51]-[70].

• Blind channel estimation. The blind channel estimation technique relies

only on the received signals at the receiver during normal data transmission
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Figure 1.3: Structure of a data packet in GSM systems

to estimate the instantaneous CSI, without requiring the transmission of

training sequences. This technique utilizes the known statistical properties

of the transmitted signals and channels, such as cyclostationarity and con-

stant modulus properties. Eventually, blind technique might need a large

amount of data to achieve acceptable performance, which is not favorable

for fast-fading channels. Many blind channel estimation algorithms also suf-

fer from the complexity and stabilities issues. Nevertheless, this technique

achieves higher bandwidth efficiency compared with training-based chan-

nel estimation, as no bandwidth is used for the transmission of training

sequence [71]-[78].

1.4 Training-based Channel Estimation for Single-

hop Networks

In the early stage of tackling the channel estimation issues, the training-based

techniques have attracted the attention of the most researchers as the training-

based techniques are more reliable and robust compared with the blind meth-

ods. The pilot-assisted channel estimation technique was discussed in [51]-[52] for

single-antenna networks, and the performance of the technique was analyzed in

[53]. Later, these works have been extended to wireless networks equipped with

multiple antennas [54]-[65]. Let us consider the simplest frequency-flat fading

single-hop MIMO wireless network where the source node transmits information

to the destination node as shown in Fig. 1.4. The source and destination nodes

are equipped with Ns and Nd antennas, respectively. The Nd×L received signal

at the destination node can be written as

Yd = HSs +Vd (1.9)
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Destination
H

Source

Figure 1.4: A single-hop MIMO wireless network

where H is the Nd ×Ns channel matrix from the source node to the destination

node, Ss is the Ns × L source signal matrix, and Vd is the Nd × L noise matrix

at the destination node. Here, L is the length of the transmitted data sequence.

There are two popular training-based linear channel estimators, which are

• Least-square (LS) estimator. This estimator is used when the knowledge

of the channel and noise parameters are unknown. From (1.9), the LS

estimation of H is given by

ĤLS = YdS
†
s. (1.10)

Note that for a linear estimator, we have L ≥ Ns, i.e., the matrix Ss is a

fat matrix.

• Minimum mean-squared error (MMSE) estimator. When a priori informa-

tion of the channel and noise distributions are available, an MMSE estim-

ator can be used to reduce the estimation error. From (1.9), the MMSE

estimation of H can be written as

ĤMMSE = Yd

(

SH
s RHSs +RVd

)−1
SH
s RH (1.11)

where RH and RVd
are the channel and noise covariance matrices, respect-

ively.

The channel estimation issues for single-hop multiple-antennas networks have

been widely considered in the literature. In [54], the optimal design of the train-

ing sequences is studied by using the maximum likelihood (ML) method for block

flat-fading MIMO channels. This work has been extended in [55] where a simple

ML estimator is applied for continuous flat-fading MIMO channels. The tradeoff

between the channel capacity and number of training symbols for MIMO networks

is investigated in [56], and the optimal number of training symbols required for

a meaningful channel estimation is discussed. A superimposed pilot sequence
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technique for channel estimation is proposed in [57]-[58], where a known train-

ing sequence is linearly added into the unknown data sequence. In [59], optimal

training sequences for several channel estimation methods are derived for net-

works with multiple transmit antennas and single receive antenna. Subsequently,

the work in [59] was extended to the case of MIMO networks in [60]-[62]. Other

training-based channel estimation methods for single-hop MIMO networks are

discussed in [63]-[65].

1.5 Overview and Contributions of the Thesis

In near future, MIMO relay systems are expected to be deployed in the next gen-

eration wireless systems as they are capable of providing higher data rate, wider

network coverage and better network reliability compared with the conventional

wireless systems. As mentioned in Section 1.3, the estimation of instantaneous

CSI is essential in practical MIMO relay networks. Several channel estimation

algorithms are discussed in Section 1.4 for single-hop multiple antennas networks,

but the extension to MIMO relay networks is not straightforward. This thesis

focuses on the channel estimation issues for MIMO relay wireless communication

systems. In this thesis, the amplify-and-forward strategy is considered at the relay

node. This is because for MIMO relay networks, the complexity of amplify-and-

forward scheme is much lower compared with the decode-and-forward scheme,

since great computational efforts are required to decode and encode multiple

data streams. Subsequently, the deployment of the amplify-and-forward relay

scheme is easier, more cost effective, and have shorter end-to-end delay than that

of the decode-and-forward scheme.

The major contribution of this thesis is the development of efficient channel

estimation algorithms for MIMO relay networks. Both the training-based and

blind channel estimation techniques are investigated. Chapter 2 introduces a

robust training-based channel estimation algorithm for one-way MIMO relay sys-

tems. In Chapter 3, two training-based channel estimation methods for two-way

MIMO relay systems operating in frequency-flat fading environment are proposed.

Chapter 4 studies the channel estimation problem for frequency-selective two-way
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MIMO relay systems. The blind channel estimation method for MIMO relay sys-

tems is presented in Chapter 5. The summary of the thesis and brief descriptions

on the possible future works are given in Chapter 6.

Chapter 2: One-Way MIMO Relay Systems

In this chapter, a robust channel estimation algorithm for one-way MIMO relay

systems is developed. For conventional two-phase channel estimation algorithms,

the estimated relay-destination channel is used for the estimation of source-relay

channel. However, there is always a mismatch between the estimated and the true

relay-destination channel. This motivates us to investigate the impact of such CSI

mismatch on the accuracy of the source-relay channel estimation. By explicitly

taking into consideration the CSI mismatch, a robust algorithm to estimate the

source-relay channel is presented. In the proposed algorithm, the stochastic chan-

nel mismatch model is considered. Compared with the conventional two-phase

channel estimation techniques, the proposed robust channel estimation algorithm

performs better in estimating the source-relay channel, without requiring greater

computational effort.

The material in Chapter 2 is based on the conference publication:

• C. W. R. Chiong, Y. Rong, and Y. Xiang, “Robust Channel Estimation Al-

gorithm for Dual-Hop MIMO Relay Channels,” Proc. 23rd IEEE Int. Sym-

posium Personal, Indoor and Mobile Radio Commun. (PIMRC), Sydney,

Australia, Sep. 9-12, 2012, pp. 2376-2381.

Chapter 3: Frequency-Flat Two-Way MIMO Relay Systems

It is known that two-way MIMO relay systems are able to provide higher spectral

efficiency compared with conventional one-way MIMO relay systems. This mo-

tivates us to look into the channel estimation problem in two-way MIMO relay

systems. With the increasing number of channel parameters to be estimated, the

channel estimation problem in two-way MIMO relay systems is more difficult than

that of one-way MIMO relay systems. In this chapter, we propose two channel es-

timation algorithms for two-way MIMO relay systems operating in frequency-flat

fading environment. First, we develop the superimposed channel training scheme

where a training matrix is inserted to the received signals at the relay node to



Chapter 1. Introduction 11

assist in the channel estimation, and the channel estimation is completed in one

transmission cycle. Then, we present the two-stage channel estimation algorithm

where the relay-users links are estimated in the first stage while the users-relay

channels are estimated in the second stage.

For both algorithms, the optimal structure of the source and relay pilot

matrices are derived to minimize the mean-squared error (MSE) of channel es-

timation. The power allocation issue is also discussed in this chapter, where the

power allocation between the source and relay training sequences is optimized

in the superimposed channel training scheme, and in the two-stage channel es-

timation algorithm, the optimal power allocation at the relay node between two

stages is derived. Besides having a distinct advantage of capable to estimate the

individual CSI for the users-relay and relay-users links, both proposed algorithms

perform better in estimating the channel matrices than that of conventional chan-

nel estimation algorithms.

Chapter 3 is based on the journal publication:

• C. W. R. Chiong, Y. Rong, and Y. Xiang, “Channel Training Algorithms

for Two-Way MIMO Relay Systems,” IEEE Trans. Signal Process., vol. 61,

no. 16, pp. 3988-3998, Aug. 2013.

and the conference publication:

• C. W. R. Chiong, Y. Rong, and Y. Xiang, “Superimposed Channel Train-

ing for Two-Way MIMO Relay Systems,” Proc. 13th IEEE Int. Conf.

Commun. Syst. (ICCS), Singapore, Nov. 21-23, 2012, pp. 21-25.

Chapter 4: Frequency-Selective Two-Way MIMO Relay Systems

In this chapter, we propose a channel estimation algorithm that generalizes the

findings in Chapter 3 from frequency-flat fading channels to frequency-selective

fading channels. This extension is non-trivial as the optimization of channel es-

timation problem in frequency-selective two-way MIMO relay systems is much

more complicated compared with the frequency-flat systems. The method of su-

perimposed channel training is proposed to estimate the individual CSI of the

users-relay and relay-users links for frequency-selective two-way MIMO relay sys-

tems. To minimize the MSE of channel estimation, the optimal structure of
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the source and relay training sequences, as well as the optimal power allocation

between the source and relay training sequences, are derived. In addition, a novel

method based on the MMSE criterion to retrieve the first-hop channel matrices

is presented, which explicitly takes into account the estimation error inherited

from the estimation of the second-hop channel matrices.

The material in Chapter 4 is based on the journal publication:

• C. W. R. Chiong, Y. Rong, and Y. Xiang, “Channel Estimation for Two-

Way MIMO Relay Systems in Frequency-Selective Fading Environments,”

IEEE Trans. Wireless Commun., to appear, 2014.

and the conference publication:

• C.W. R. Chiong, Y. Rong, and Y. Xiang, “Channel Estimation for Frequency-

Selective Two-Way MIMO Relay Systems,” Proc. Int. Symposium Inf.

Theory Its Applications (ISITA’2014), Melbourne, Australia, Oct. 26-29, 2014.

Chapter 5: Blind Channel Estimation for MIMO Relay Systems

Blind channel estimation technique is well known for better spectral efficiency

compared with training-based scheme as all the bandwidth is used for the trans-

mission of communication data. This motivates us to examine the channel estim-

ation problem from the perspective of blind technique. In this chapter, two blind

source separation (BSS) methods are integrated to estimate the individual CSI of

source-relay and relay-destination links for two-hop MIMO relay systems. Spe-

cifically, a first-order Z-domain precoding technique is proposed to blindly estim-

ate the relay-destination channel matrix. This technique exploits the Z-domain

properties of the precoders applied at the relay node to derive the estimation cri-

terion for the relay-destination channel matrix. Then, using the estimated signals

at the relay node, an algorithm based on the constant modulus and signal mu-

tual information properties is developed for the blind estimation of source-relay

channel matrix.

Chapter 5 is based on the journal publication:

• C. W. R. Chiong, Y. Rong, and Y. Xiang, “Blind Channel Estimation and

Signal Retrieving for MIMO Relay Systems,” IEEE Trans. Signal Process.,

revised, Sep. 2014.
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and the conference publication:

• C. W. R. Chiong, Y. Rong, and Y. Xiang, “Blind Estimation of MIMO

Relay Channels,” Proc. IEEE Workshop on Statistical Signal Processing

(SSP’2014), Gold Coast, Australia, Jun. 29-Jul. 2, 2014, pp. 400-403.



Chapter 2

One-Way MIMO Relay Systems

In conventional two-phase channel estimation algorithms for dual-hop MIMO

relay systems, the relay-destination channel estimated in the first phase is used

for the source-relay channel estimation in the second phase. For these algorithms,

the mismatch between the estimated and the true relay-destination channel affects

the accuracy of the source-relay channel estimation. In this chapter, the impact

of such CSI mismatch on the performance of the two-phase channel estimation

algorithm is investigated. The state of the art is given in Section 2.1 while the

system model of an one-way MIMO relay communication system is introduced in

Section 2.2. The impact of CSI mismatch on the performance of the two-phase

channel estimation algorithm is investigated and by explicitly taking into account

the CSI mismatch, a robust algorithm to estimate the source-relay channel is

developed in Section 2.3. In Section 2.4, we show some numerical examples.

Conclusions are drawn in Section 2.5.

2.1 State of the Art

An overview of the training-based channel estimation techniques for single-hop

MIMO networks is given in Section 1.4. However, the techniques used to estimate

the channel matrices for single-hop MIMO systems can not be directly applied

in MIMO relay systems. In the following, we discuss some channel estimation

algorithms for one-way MIMO relay networks that have been proposed in the

literature.

14
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A novel interim channel estimation technique has been proposed in [79] where

the source-relay and relay-destination channels are estimated at the destination

node with the help of a known pilot enhancement matrix inserted at the relay

node. However, the algorithm in [79] is developed for a MIMO mimicking amplify-

and-forward relay system, and it is proven in [80] that the relay system can never

fully mimic a real MIMO relay system as the multiplexing gain is limited. Two

algorithms have been proposed in [81], namely, Bayesian-based linear minimum

mean-squared error (LMMSE) and expectation-maximization (EM)-based max-

imum a posteriori (MAP) channel estimation. In the LMMSE channel estimation

algorithm, only a sub-optimal solution can be achieved due to the high complex-

ity in the computational of the LMMSE estimator. Consequently, the authors

of [81] suggested the EM-based MAP channel estimation algorithm, where the

initial estimate of the EM algorithm depends on the LMMSE estimator proposed

earlier. However, the training sequences and relay precoding matrix are not op-

timized in [81]. A parallel factor analysis-based MIMO channel estimator was

proposed in [82].

In [83], an algorithm based on the LS method was developed to estimate

the channel matrices of MIMO relay networks. In particular, both the source-

relay and the relay-destination channel matrices are estimated from the observed

composite source-relay-destination channel matrix. A drawback from channel

estimation using [83] is the scalar ambiguity of the estimated channel matrices.

The performance of [83] was further analyzed and improved in [84] by using the

weighted least squares (WLS) fitting method. A superimposed channel training

algorithm has been proposed in [85] for orthogonal frequency-division multiplex-

ing (OFDM) modulated one-way relay systems.

A two-phase channel estimation scheme based on LMMSE was proposed in

[86] for two-hop MIMO relay networks. In particular, in the first phase, the source

node is silent while the relay node transmits a pilot matrix to the destination node

to estimate the relay-destination channel matrix. In the second phase, the source

transmits a source pilot matrix to the relay. The relay node linearly precodes

its received signal and forward it to the destination node. Then the source-relay

channel is estimated at the destination node making use of the relay-destination
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channel matrix estimated at the first phase. Compared with the approach in [83],

there is no scalar ambiguity in this approach.

However, in practical relay systems, there is always mismatch between the

estimated and the true relay-destination channel. Such CSI mismatch affects

the accuracy of the source-relay channel estimation in [86]. In this chapter, we

investigate the impact of this CSI mismatch on the performance of the two-phase

channel estimation algorithm [86]. By explicitly taking into account the CSI

mismatch, we develop a robust algorithm to estimate the source-relay channel,

without the need of greater computation effort.

2.2 One-Way MIMO Relay System Model

We consider a one-way two-hop MIMO relay system where the source node

transmits information to the destination node through a relay node as shown

in Fig. 2.1. The source, relay, and destination nodes are equipped with Ns, Nr,

and Nd antennas, respectively. We focus on the case where the direct link between

the source and destination nodes is sufficiently weak to be ignored [83], [86]. This

scenario occurs when the direct link is blocked by an obstacle such as a mountain.

In fact, a relay plays a much more important role when the direct link is weak

than when it is strong.

Destination
H1 H2

1 Ns 1 Nr 1 Nd

RelaySource

Figure 2.1: Block diagram of a one-way MIMO relay communication system.

Similar to [86], the channel matrices are estimated in two phases, where the

relay-destination channel matrix H2 is estimated in phase one while the source-

relay channel matrix H1 is estimated in phase two. In phase one, the signal

received by the destination node is given by

Y
(1)
d = H2Sr +V

(1)
d (2.1)
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where Sr is the Nr×Nr pilot matrix transmitted by the relay node to the destin-

ation node satisfying SH
r Sr = SrS

H
r = pr

Nr
INr

[61], and V
(1)
d is the Nd ×Nr noise

matrix at the destination node during phase one. Here pr is the power budget

available at the relay node. Note that we choose the length of Sr to be Nr to

maximize the overall system spectral efficiency [87].

A minimal variance unbiased (MVU) estimation [88] of H2 can be obtained

from (2.1) as

Ĥ2 =
Nr

pr
Y

(1)
d SH

r = H2 +
Nr

pr
V

(1)
d SH

r . (2.2)

It can be seen from (2.2) that due to the existence of the noise V
(1)
d , there is

a mismatch ∆2 , Nr

pr
V

(1)
d SH

r between H2 and Ĥ2. Obviously, ∆2 is a complex

Gaussian random matrix with zero mean and the variance of its entries is Nr/pr.

Therefore, H2 is a complex Gaussian matrix with the following distribution

H2 ∼ CN (Ĥ2, βINr
⊗ INd

) (2.3)

where β , Nr/pr. It can be seen from (2.3) that the variance of H2 decreases

when pr increases.

In phase two, the source node transmits an Ns × Ns pilot matrix Ss to the

relay node. Here we choose the length of Ss to be Ns to maximize the overall

system spectral efficiency. The relay node applies an Nr × Nr precoding matrix

F and retransmits the linear precoded signal matrix

Xr = FH1Ss + FVr (2.4)

to the destination node, where Vr is the Nr ×Ns noise matrix at the relay node.

The signal received at the destination node can be written as

Yd = H2FH1Ss +H2FVr +Vd (2.5)

where Vd is the Nd ×Ns noise matrix at the destination node during phase two.

By vectorizing both sides of (2.5), we obtain

yd = (ST
s ⊗H2F)h1 + (INs

⊗H2F)vr + vd (2.6)

where yd , vec(Yd), h1 , vec(H1), vr , vec(Vr), and vd , vec(Vd). To obtain

(2.6) from (2.5), we use the property of vec(ABC) = (CT ⊗A)vec(B) [89].
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In this chapter, we assume that the channel matrices H1 and H2 satisfy the

well-known Kronecker correlation model [90]

Hi = C
1
2
riHw,iC

T
2
ti , i = 1, 2 (2.7)

where Cti and Cri, i = 1, 2, are channel correlation matrices at the transmit side

and the receive side of Hi, respectively, and Hw,i, i = 1, 2, are Gaussian random

matrices with independent and identically distributed (i.i.d.) entries having zero

mean and unit variance. We also assume that all noises are i.i.d. additive white

Gaussian noise (AWGN) with zero mean and unit variance. The following lemma

is useful in this chapter.

Lemma 2.1 [91]: For H ∼ CN (0,Θ⊗Φ), there is E[HAHH] = tr(AΘT )Φ,

and E[HHAH] = tr(ΦA)ΘT .

2.3 Robust Channel Estimation Algorithm

In this section, we derive the optimal Ss and F that minimize the MSE of estim-

ating H1. Using a linear estimator, the estimated h1 is given by

ĥ1 = Wyd (2.8)

where W is the weight matrix of the linear estimator. Using (2.8), the MSE of

estimating h1 can be written as

J1 = E
[

tr
(

(h1 − ĥ1)(h1 − ĥ1)
H
)]

= tr
(

Rh1h
H
1
−Rh1y

H
d
WH −WRH

h1y
H
d
+WRydy

H
d
WH

)

. (2.9)

From (2.6) we have

Rh1y
H
d

= E[h1y
H
d ] = (Ct1S

∗
s)⊗ (Cr1F

HHH
2 ) (2.10)

Rydy
H
d

= E[ydy
H
d ]

= (ST
s Ct1S

∗
s)⊗ (H2FCr1F

HHH
2 ) + INs

⊗ (H2FF
HHH

2 ) + INsNd
(2.11)

Rh1h
H
1

= E[h1h
H
1 ] = Ct1 ⊗Cr1. (2.12)

Here we use h1 = (C
1
2
t1 ⊗C

1
2
r1)hw,1 with hw,1 , vec(Hw,1).

From (2.10)-(2.12), it can be seen that the CSI of H2 is needed in order to

minimize J1. However, the exact H2 is unknown in the second phase. In fact,
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it is shown in (2.3) that H2 is a complex Gaussian random matrix with the

mean matrix of Ĥ2. Obviously, the mismatch between H2 and Ĥ2 affects the

accuracy of the estimation of H1. To take such mismatch into account, we adopt

a statistically robust objective function through averaging J1 in (2.9) with respect

to the distribution of H2 as

EH2 [J1] = tr
(

Rh1h
H
1
−EH2 [Rh1y

H
d
]WH −WEH2 [R

H
h1y

H
d
] +WEH2[Rydy

H
d
]WH

)

.

(2.13)

The estimator W which minimizes (2.13) is the linear MMSE estimator [88] given

by

W = EH2 [Rh1y
H
d
]
(

EH2 [Rydy
H
d
]
)−1

. (2.14)

Substituting (2.14) back into (2.13), we have

EH2 [J1] = tr
(

Rh1h
H
1
− EH2 [Rh1y

H
d
]
(

EH2 [Rydy
H
d
]
)−1 ×EH2 [R

H
h1y

H
d
]
)

. (2.15)

It can be easily seen from (2.10) that

EH2 [Rh1y
H
d
] = (Ct1S

∗
s)⊗ (Cr1F

HĤH
2 ). (2.16)

Using Lemma 2.1, we have from (2.3) that

EH2 [Rydy
H
d
] = (ST

s Ct1S
∗
s)⊗

(

Ĥ2FCr1F
HĤH

2 + tr(βFCr1F
H)INd

)

+INs
⊗
(

Ĥ2FF
HĤH

2 + tr(βFFH)INd

)

+ INsNd
. (2.17)

Substituting (2.16) and (2.17) back into (2.15), we obtain that

EH2 [J1] = tr
(

Ct1⊗Cr1 − (ST
s C

H
t1
Ct1S

∗
s)⊗ (Ĥ2FC

H
r1
Cr1F

HĤH
2 )

×
[

(ST
s Ct1S

∗
s)⊗

(

Ĥ2FCr1F
HĤH

2 + tr(βFCr1F
H)INd

)

+INs
⊗
(

Ĥ2FF
HĤH

2 + tr(βFFH)INd

)

+ INsNd

]−1
)

. (2.18)

The transmission power consumed at the relay node during phase two can be

calculated from (2.4) as

pr , EH1

[

tr
(

F(H1SsS
H
s H

H
1 +NsINr

)FH
)]

= tr(ST
s Ct1S

∗
s)tr(FCr1F

H) +Nstr(FF
H). (2.19)



Chapter 2. One-Way MIMO Relay Systems 20

Using (2.18) and (2.19), the optimal robust Ss and F can be found as the solution

to the following problem

min
Ss,F

EH2 [J1] (2.20)

s.t. tr(SsS
H
s ) ≤ ps (2.21)

tr(ST
s Ct1S

∗
s)tr(FCr1F

H) +Nstr(FF
H) ≤ pr (2.22)

where (2.21) and (2.22) are the transmission power constraint at the source and

the relay node, respectively, and ps is the power budget available at the source

node. The problem (2.20)-(2.22) is complicated with matrices variables. We first

show the optimal structure of Ss and F.

Let us define the following eigenvalue decompositions (EVDs)

ST
s Ct1S

∗
s = USΛSU

H
S (2.23)

Ĥ2FCr1F
HĤH

2 = UFΛFU
H
F (2.24)

Ct1 = Ut1Λt1U
H
t1

(2.25)

Cr1 = Ur1Λr1U
H
r1 (2.26)

where US, UF , Ut1 , and Ur1 are the unitary eigenvector matrices, and ΛS,

ΛF , Λt1 , and Λr1 are the diagonal eigenvalue matrices with descending diagonal

elements. From (2.23)-(2.24), we can obtain that

ST
s C

1
2
t1 = USΛ

1
2
SQS, Ĥ2FC

1
2
r1 = UFΛ

1
2
FQF (2.27)

where QS and QF are unitary matrices. Here C
1
2
t1 and C

1
2
r1 are defined based on

(2.25) and (2.26) as

C
1
2
t1 = Ut1Λ

1
2
t1 , C

1
2
r1 = Ur1Λ

1
2
r1 (2.28)

Let us introduce the SVD of Ĥ2 as

Ĥ2 = UH2ΣH2V
H
H2

(2.29)

where UH2 and VH2 are the singular vector matrices and ΣH2 is the singular

value matrix with descending diagonal elements.

From (2.27) and (2.29) we have

ST
s = USΛ

1
2
SQSC

− 1
2

t1 (2.30)

F = VH2Σ
−1
H2
UH

H2
UFΛ

1
2
FQFC

− 1
2

r1 . (2.31)
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Using (2.23)-(2.31), J̄1 , EH2 [J1]− tr(Ct1⊗Cr1) can be written as

J̄1 = −tr
(

[ΛS ⊗ (ΛF+aINd
) + INs

⊗ (Λ
1
2
FQFΛ

−1
r1
QH

F Λ
1
2
F ) + bINsNd

]−1

×(Λ
1
2
SQSΛt1Q

H
S Λ

1
2
S )⊗ (Λ

1
2
FQFΛr1Q

H
F Λ

1
2
F )
)

(2.32)

where

a , tr(βΛFU
H
F UH2Σ

−2
H2
UH

H2
UF )

b , tr(βUFΛ
1
2
FQFΛ

−1
r1
QH

F Λ
1
2
FU

H
F UH2Σ

−2
H2
UH

H2
) + 1.

The power constraints (2.21) and (2.22) can be rewritten as

tr(ΛSQSΛ
−1
t1
QH

S ) ≤ ps (2.33)

tr(ΛS)tr(Σ
−2
H2
UH

H2
UFΛFU

H
F UH2)

+Nstr(Σ
−2
H2
UH

H2
UFΛ

1
2
FQFΛ

−1
r1 Q

H
F Λ

1
2
FU

H
F UH2) ≤ pr. (2.34)

From (2.32), we see that the mismatch between H2 and Ĥ2 is considered by

matrices aINd
and bINsNd

. In fact, the objective function in [86] can be viewed as

a special case of (2.32) where a = b = 0. It can be proven similar to [86] that if

Cr1 = αINr
, then at the optimal Ss, there is QS = INs

, QF = INr
, UF = UH2 ,

and US = INs
. Therefore, the optimal structure of Ss and F can be written as

ST
s = Λ

1
2
SC

− 1
2

t1 , F = α− 1
2VH2Σ

−1
H2
Λ

1
2
F . (2.35)

Substituting (2.35) back into (2.32)-(2.34) and let λS,i, λF,i, λt1,i, λr1,i, and σH2,i

be the ith diagonal element of ΛS, ΛF , Λt1 , Λr1 , and ΣH2 , respectively, the

problem (2.20)-(2.22) is converted to the following problem with scalar variables

min
{λS,i},{λF,j}

−
Ns
∑

i=1

Nd
∑

j=1

ci,j
di,j

(2.36)

s.t.

Ns
∑

i=1

λS,i

λt1,i
≤ ps (2.37)

Ns
∑

i=1

λS,i

Nd
∑

j=1

λF,j

σ2
H2,j

+

Nd
∑

j=1

NsλF,j

σ2
H2,j

λr1,j
≤ pr (2.38)

λS,i ≥ 0, i = 1, · · · , Ns (2.39)

λF,j ≥ 0, j = 1, · · · , Nd (2.40)
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where

ci,j , λS,iλt1,iλF,jλr1,j

di,j , λS,iλF,j+

Nd
∑

j=1

βλS,iλF,j

σ2
H2,j

+
λF,j

λr1,j
+

Nd
∑

j=1

βλF,j

λr1,jσ
2
H2,j

+1

{λS,i} , {λS,i, i = 1, · · · , Ns}

{λF,j} , {λF,j, j = 1, · · · , Nd}

The problem (2.36)-(2.40) is non-convex. However, as the optimization of

{λF,j} is convex when {λS,i} is fixed, and vice versa, (at least) a local optimum

solution can be found by iteratively optimize {λF,j} and {λS,i}. These two sub-

optimizations problem are formulated as follows.

1. Optimizing {λF,j} with fixed {λS,i}. The power constraint at the source

node is irrelevant as {λS,i} is fixed. Therefore, the Karush-Kuhn-Tucker (KKT)

conditions of optimizing {λF,j} can be written as

Ns
∑

i=1

λS,iλt1,iλr1,j

d2i,j

[

Nd
∑

l=1,l 6=j

βλF,l

σ2
H2,l

(

λS,i +
1

λr1,l

)

+ 1

]

= µ

[

Ns
∑

i=1

λS,i

σ2
H2,j

+
Ns

σ2
H2,j

λr1,j

]

(2.41)

µ

(

Ns
∑

i=1

λS,i

Nd
∑

j=1

λF,j

σ2
H2,j

+

Nd
∑

j=1

NsλF,j

σ2
H2,j

λr1,j

− pr

)

= 0 (2.42)

where µ ≥ 0 is the Lagrange multiplier such that equation (2.42) holds. With

any fixed {λS,i}, µ, and λF,l, l = 1, · · · , Nd, l 6= j, the non-negative λF,j can be

derived using the bi-section search, since the left-hand-side (LHS) of (2.41) is

a monotonically decreasing function of λF,j. Note that (2.41) depends on λF,j,

j = 1, · · · , Nd, hence, the value of {λF,j} needs to be updated each time a new

λF,j is obtained. To find the optimal value of µ, an outer bi-section loop is used

as the LHS of (2.38) is an increasing function of λF,j, and λF,j is a monotonically

decreasing function of µ.
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2. Optimizing {λS,i} with fixed {λF,j}. The KKT conditions of this subprob-

lem can be written as

Nd
∑

j=1

λt1,iλF,jλr1,j

(

λF,j

λr1,j
+ β

Nd
∑

l=1

λF,l

λr1,l
σ2
H2,l

+ 1
)

d2i,j
=

ν1
λt1,i

+ ν2

Nd
∑

j=1

λF,j

σ2
H2,j

(2.43)

ν1

(

Ns
∑

i=1

λS,i

λt1,i
− ps

)

= 0 (2.44)

ν2

(

Ns
∑

i=1

λS,i

Nd
∑

j=1

λF,j

σ2
H2,j

+

Nd
∑

j=1

NsλF,j

σ2
H2,j

λr1,j

− pr

)

=0 (2.45)

where ν1 ≥ 0 and ν2 ≥ 0 are the Lagrange multipliers. For any fixed {λF,j}, ν1
and ν2, the non-negative λS,i can be found by a bi-section search for all i. This

is because the LHS of (2.43) is a monotonically decreasing function of λS,i. Note

that the LHS of both (2.37) and (2.38) are increasing function of λS,i, and λS,i

is a monotonically decreasing function of both ν1 and ν2. Generally, to find the

optimal value of ν1 and ν2, a 2-D bi-section loop search is required. However, if

only one of the constraints is active (i.e. only one of the constraints satisfies the

equality), then only 1-D bisection loop search is required to find the corresponding

multiplier for the constraint as the other multiplier is zero. If both constraints

are inactive, then a 2-D bi-section loop is required to determine the optimal value

of ν1 and ν2.

2.4 Numerical Examples

In this section, we study the performance of the proposed channel estimation

algorithm through numerical simulations. We compare the proposed approach

with the algorithm developed in [86] (denoted as “imperfect H2”) where Ĥ2 is

used in the second phase to estimate H1. As a benchmark, the performance of

channel estimation algorithm with exactly known H2 is also studied.

In the simulations, for simplicity, we set Ns = Nr = Nd = N . The channel

correlation matrices are modelled as [Cti ]m,n = ρ|m−n|, i = 1, 2, [Cr2 ]m,n = ρ|m−n|,

where ρ is the correlation coefficient, and Cr1 = INr
. For each channel realization,

the normalized mean-squared error (NMSE) of channel estimation for all three

algorithms is calculated as ‖H1−Ĥ1‖2F/NsNr. All simulation results are averaged
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Figure 2.2: Example 2.1: Normalized MSE of H1 versus p for N = 2 and
ρ = 0.2

over 100 random channel realizations.

In the first example, we show the normalized MSE of estimating H1 when

N = 2 and ρ = 0.2 in Fig. 2.2. A different number of antennas N = 4 and

normalized correlation coefficient ρ = 0.8 are used for the next scenario and the

results are shown in Fig. 2.3. Note that for both scenarios, the power at the source

node is assumed to be the same as the power at the relay node, i.e. ps = pr = p.

In the second example, we show the normalized MSE of estimating H1 in

Fig. 2.4 when the power at the source node ps is fixed at 20dB while the power at

the relay node pr is varied from 5dB to 30dB. The number of antennas and the

normalized correlation coefficient are set to be N = 2 and ρ = 0.8 respectively.

From the simulation results, it is obvious that by considering the mismatch

between Ĥ2 and H2 in the algorithm, the performance of the algorithm has been

improved without the need of greater computation effort. The simulations are

executed with different parameters to examine the effectiveness of the algorithm,

and all results show an improvement in the estimation of channel matrices.



Chapter 2. One-Way MIMO Relay Systems 25

5 10 15 20 25 30
10

−1

10
0

p (dB)

N
or

m
al

iz
ed

 M
M

S
E

 o
f H

1

 

 

Without mismatch

Considering mismatch

Perfect H
2

Figure 2.3: Example 2.1: Normalized MSE of H1 versus p for N = 4 and
ρ = 0.8
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Figure 2.4: Example 2.2: Normalized MSE versus pr. N = 2, ρ = 0.8.
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2.5 Conclusions

The effect of the mismatch between the estimated and true relay-destination

channel on the performance of the LMMSE-based MIMO relay channel estim-

ation algorithm has been investigated in this chapter. It has been proven that

the robust channel estimation algorithm performs better compared to the chan-

nel estimation algorithm proposed in [86] that does not take the mismatch into

the consideration. Moreover, the robust channel estimation algorithm does not

require greater computational effort.



Chapter 3

Frequency-Flat Two-Way MIMO

Relay Systems

Two-way relay systems are known to be capable of providing higher spectral ef-

ficiency compared with conventional one-way relay systems. In this chapter, we

focus on the channel estimation problem for two-way MIMO relay communication

networks. Section 3.1 introduces background knowledge on channel estimation

for two-way MIMO relay systems. In Section 3.2, the system model of a two-way

MIMO relay network is presented. Two channel estimation algorithms, namely

the superimposed channel training scheme and the two-stage channel estimation

algorithm, are proposed and developed in Section 3.3 and Section 3.4, respect-

ively. For both algorithms, we derive the optimal structure of the source and

relay training sequences which minimize the MSE of channel estimation. In the

superimposed channel training scheme, the power allocation between the source

and relay training sequences is optimized. For the two-stage channel estimation

algorithm, we optimize the power allocation at the relay node between two stages

to improve the performance of the algorithm. Section 3.5 shows numerical ex-

amples to demonstrate the performance of the proposed algorithms. Conclusions

are drawn in Section 3.6. This chapter ends with the proof of Theorem 3.1 in

Section 3.A.

27
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3.1 Background Information

The channel estimation algorithms in Chapter 2 are developed for one-way re-

lay systems, where a source node sends signals to a destination node through

relay node(s). In two-way relay systems, two source nodes exchange their in-

formation through assisting relay node(s). Initially studied by Shannon in [92],

two-way relay systems are getting more attention recently as they have higher

spectral efficiency compared with one-way relay systems. For two-way MIMO

relay systems, the joint source and relay optimization is recently investigated in

[93]-[95] assuming the channel matrices are known. Channel estimation issue is

not discussed in [93]-[95].

The channel estimation problem becomes more complicated in two-way relay

systems and several algorithms have been proposed in [96]-[98]. ML and linear

maximum SNR channel estimation techniques have been introduced in [96], while

block-based training and pilot-tone based training algorithms are presented in

[97]. However, the algorithms in [96] and [97] are based on the assumption that

each node is equipped with single antenna only, and extension to MIMO systems

is not straightforward.

For two-way MIMO relay systems, cascaded channel estimation and individual

channel estimation algorithms have been proposed in [98]. The cascaded channel

estimation is easy to implement but does not provide the second-hop CSI, which

is necessary for system optimization [95]. In the individual channel estimation

algorithm, the first-hop CSI is first estimated at the relay node and then fed-

forward to the receive nodes. However, this algorithm requires the relay node to

be capable of performing advanced signal processing, and therefore, increases the

cost and complexity at the relay node.

The major challenge in channel estimation for two-way MIMO relay systems is

to obtain the instantaneous CSI of both the first-hop and second-hop links with a

minimal amount of signal processing at the relay node. In this chapter, we address

this challenge by proposing two algorithms: the superimposed channel training

scheme and the two-stage channel estimation algorithm. Both algorithms are

developed for two-way MIMO relay systems with frequency-flat fading channels.

In the superimposed channel training algorithm, both source nodes transmit their
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training sequence simultaneously to the relay node in the first time block. The

relay node then amplifies the received signals and superimposes its own training

sequence, before transmitting the superimposed signals to both receive nodes. By

exploiting the training sequences from the source and relay nodes, the individual

CSI of the first-hop and second-hop links can be successfully estimated.

In the two-stage channel estimation algorithm, both source nodes are silent at

the first stage, while the relay node broadcasts a pilot matrix to both receive nodes

for the estimation of the channel matrices from the relay node to the receive nodes

(second-hop links). During the second stage, both source nodes transmit their

training sequence simultaneously to the relay node, and the relay node amplifies

the received signals and forwards them to the receive nodes. Then, the channel

matrices from the source nodes to the relay node (first-hop links) are estimated

by exploiting the second-hop channel matrices estimated at the first stage. We

would like to mention that although the estimation of the second-hop channels

at the first stage is similar to the problem in [61] and [62], an efficient estimation

of the first-hop channels is a non-conventional problem.

For both algorithms, we derive the structure of the optimal training sequences

that minimize the sum MSE of channel estimation. In particular, we show that

the optimal training matrix for each hop matches the eigenvector matrix of the

correlation matrix of the MIMO channel at that hop. Moreover, in the super-

imposed channel training scheme, the power allocation between the source and

relay training sequences is optimized. For the two-stage channel estimation al-

gorithm, we optimize the power allocation at the relay node between two stages

to minimize the MSE of channel estimation. The performance of the superim-

posed channel training scheme and the two-stage channel estimation algorithm

are demonstrated and compared through numerical examples.

3.2 Frequency-Flat Two-WayMIMO Relay Sys-

tem Model

We consider a three-node two-way frequency-flat MIMO communication system

where node 1 and node 2 exchange information through a relay node as shown in
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Node 1 Node 2Relay node

Hr1

H1r H2r

Hr2

Figure 3.1: Block diagram of a two-way MIMO relay communication system.

Fig. 3.1. Nodes 1 and 2 are equipped with N1 and N2 antennas, respectively, while

the relay node has Nr antennas. For i = 1, 2, Hir is the Ni ×Nr channel matrix

from the relay node to node i, while Hri denotes the Nr×Ni channel matrix from

node i to the relay node. In this chapter, we consider that all nodes are operating

in the half-duplex mode, i.e., one node cannot transmit and receive at the same

time. Since in a two-way relay system, both source nodes transmit signals to

the relay node at the first time slot, they cannot receive signals from each other.

Therefore, there is no direct link between two source nodes. The half-duplex

mode has been widely used in two-way relay communications [95]-[97].

In this chapter, we assume that the channel matrices Hri and Hir satisfy

the well-known Gaussian-Kronecker model [90], where Hri and Hir are complex-

valued Gaussian random matrices with

Hri ∼ CN (0,Tri ⊗Rri), Hir ∼ CN (0,Cr ⊗Rir), i = 1, 2. (3.1)

Here Tri and Rri denote the Ni × Ni and Nr × Nr covariance matrix at the

transmit and receive side of Hri, respectively, while Cr and Rir stand for the

Nr ×Nr and Ni × Ni covariance matrix at the transmit and receive side of Hir,

respectively. In other words, from (3.1) we have

Hri = AriHri,wB
H
ri , Hir = AirHir,wK

H
r , i = 1, 2 (3.2)

where AriA
H
ri = Rri, BriB

H
ri = TT

ri, AirA
H
ir = Rir, KrK

H
r = CT

r , i = 1, 2, Hri,w

and Hir,w are Nr × Ni and Ni × Nr Gaussian random matrices with i.i.d. zero

mean and unit variance entries. We assume that Hri,w and Hir,w, i = 1, 2, are

statistically independent of each other.

3.3 Superimposed Channel Training Algorithm

In this section, we develop a superimposed channel training algorithm to estimate

Hri and Hir, i = 1, 2. This channel estimation scheme is completed in two time
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blocks. In the first time block, the source node i transmits an Ni × L training

signal matrix Si, where L is the length of the training sequence. The Nr × L

received signal matrix Yr at the relay node is given by

Yr =

2
∑

i=1

HriSi +Vr (3.3)

where Vr is an Nr × L noise matrix at the relay node.

In the second time block, the relay node amplifies Yr and superimposes its

own training matrix Sr. Thus, the Nr ×L signal matrix transmitted by the relay

node can be written as

Xr =
√
αYr + Sr (3.4)

where α > 0 is the relay amplifying factor. From (3.3) and (3.4), the Ni × L

received signal matrix at node i is given by

Yi = HirXr +Vi

=
√
αHirHriSi +

√
αHirHrīSī +HirSr +

√
αHirVr +Vi, i = 1, 2 (3.5)

where Vi is an Ni×L noise matrix at node i. Here, ī = 2 for i = 1, and ī = 1 for

i = 2. The main idea of the superimposed channel training algorithm is to use

Sr to estimate the second-hop channels Hir. Then the first-hop channels Hrj,

j = i, ī, can be estimated by exploiting Sj and the estimated Hir.

Let us introduce the EVD of TT
ri as UiΛiU

H
i , i = 1, 2, and the EVD of CT

r as

UrΛrU
H
r . Then we have BH

ri = ΠiΛ
1
2
i U

H
i , i = 1, 2, and KH

r = ΠrΛ
1
2
r UH

r , where

Πi and Πr are arbitrary Ni×Ni and Nr×Nr unitary matrix, respectively. Using

(3.2), we can rewrite (3.5) as

Yi =
√
αGiiS̃i +

√
αGīiS̃ī + H̃irS̃r + V̄i, i = 1, 2 (3.6)

where S̃r , UH
r Sr,

Gij , HirH̃rj, S̃j , UH
j Sj , H̃rj = HrjUj, j = i, ī,

H̃ir , HirUr, i = 1, 2 (3.7)

and

V̄i ,
√
αHirVr +Vi, i = 1, 2 (3.8)
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is the equivalent noise matrix at node i. In the following, we develop an algorithm

to estimate H̃ir andGij in (3.6). Then an estimate ofHir andHrj can be obtained

from (3.7) as Ĥir = H̆irU
H
r and Ĥrj = Ĥ†

irĞijU
H
j , j = i, ī, where H̆ir and Ğij

are the estimates of H̃ir and Gij, respectively.

By vectorizing both sides of (3.6), we obtain

yi =
[√

αS̃T
i ⊗ INi

,
√
αS̃T

ī ⊗ INi
, S̃T

r ⊗ INi

][

gT
ii , g

T
īi , h̃

T
ir

]T
+ v̄i (3.9)

, Miγi + v̄i, i = 1, 2 (3.10)

where for i = 1, 2, yi , vec(Yi), gij , vec(Gij), j = i, ī, h̃ir , vec(H̃ir),

v̄i , vec(V̄i). Here the identity of vec(ABC) = (CT ⊗A)vec(B) [89] has been

used to obtain (3.9) from (3.6). In (3.10), γi ,
[

gT
ii, gT

īi, h̃T
ir

]T
is the vector of

unknown variables at node i with a dimension of Qi , Ni(Ni + Nī + Nr), and

Mi ,
[√

αS̃T
i ⊗ INi

,
√
αS̃T

ī
⊗ INi

, S̃T
r ⊗ INi

]

has a dimension of TNi ×Qi.

Due to its simplicity, a linear MMSE estimator [88] is applied at node i to

estimate γi. We have

γ̂i = WH
i yi, i = 1, 2 (3.11)

where γ̂i stands for an estimation of γi andWi is the weight matrix of the MMSE

estimator. It can be seen from (3.11) that since a linear estimator is used, there

is L ≥ N1 +N2 +Nr, and the MSE of estimating γi can be written as

MSEi = E
[

tr
(

(γ̂i − γi)(γ̂i − γi)
H
)]

= tr
(

(

WH
i Mi − IQi

)

Rγi

(

WH
i Mi − IQi

)H
+WH

i Rv̄iWi

)

, i = 1, 2

(3.12)

where Rγi , E[γiγ
H
i ] is the covariance matrix of γi and Rv̄i , E[v̄iv̄

H
i ] is the

noise covariance matrix. Using (3.2), (3.8), and Lemma 2.1, we obtain that

Rv̄i = IL ⊗
(

αtr(KH
r Kr)AirA

H
ir + INi

)

= IL ⊗
(

αtr(CT
r )Rir + INi

)

, i = 1, 2.

(3.13)

Using Lemma 2.1, Rγi can be calculated as follows. First, the mth column of

Gij is given by [Gij]m = λ
1
2
j,mAirHir,wK

H
r ArjHrj,w[Πj]m, m = 1, · · · , Nj, where

λj,m is the mth diagonal element of Λj , and [Πj]m is the mth column of Πj.

Since Hir,w and Hrj,w are independent, the covariance matrix of [Gij]m can be
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calculated as

E
[

[Gij]m[Gij ]
H
m

]

= λj,mtr(K
H
r ArjA

H
rjKr)AirA

H
ir

= λj,mbjRir, m = 1, · · · , Nj , j = i, ī (3.14)

where bj , tr(RrjC
T
r ). Second, the covariance matrix of the mth column of H̃ir,

denoted as [H̃ir]m, is given by

E
[

[H̃ir]m[H̃ir]
H
m

]

= λr,mRir, m = 1, · · · , Nr (3.15)

where λr,m is the mth diagonal element of Λr. From (3.14) and (3.15), Rγi can

be written as

Rγi = Bdiag
[

Λi ⊗ biRir, Λī ⊗ b̄iRir, Λr ⊗Rir

]

, i = 1, 2. (3.16)

The matrix Wi minimizing MSEi in (3.12) is given by

Wi =
(

MiRγiM
H
i +Rv̄i

)−1
MiRγi, i = 1, 2. (3.17)

Substituting (3.17) back into (3.12), and using the matrix inversion lemma of

(A +BCD)−1 = A−1 −A−1B(DA−1B +C−1)−1DA−1, the MSE of estimating

γi can be obtained as

MSEi = tr
(

[

R−1
γi

+MH
i R

−1
v̄i
Mi

]−1
)

, i = 1, 2. (3.18)

The transmission power consumed at nodes 1 and 2 is

tr(SiS
H
i ) = tr(S̃iS̃

H
i ), i = 1, 2. (3.19)

From (3.4), the power consumed at the relay node is given by

αE

[

tr
(

2
∑

i=1

HriSiS
H
i H

H
ri + INr

)

]

+ tr(SrS
H
r )

= αNr + α

2
∑

i=1

tr(ΛiS̃iS̃
H
i )tr(Rri) + tr(S̃rS̃

H
r ). (3.20)

From (3.18)-(3.20), the optimal training matrices and the optimal α can be de-

signed by solving the following optimization problem

min
α,S̃1,S̃2,S̃r

2
∑

i=1

tr
(

[

R−1
γi

+MH
i R

−1
v̄i
Mi

]−1
)

(3.21)

s.t. tr(S̃iS̃
H
i ) ≤ pi, i = 1, 2 (3.22)

α
[

Nr +
2
∑

i=1

tr(ΛiS̃iS̃
H
i )tr(Rri)

]

+ tr(S̃rS̃
H
r ) ≤ pr (3.23)
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where pi is the transmission power available at node i, i = 1, 2, and pr is the

transmission power available at the relay node. The following theorem establishes

the optimal structure of S1, S2, and Sr as solution to the problem (3.21)-(3.23).

Theorem 3.1: The optimal training sequences S1, S2, and Sr satisfy SiS
H
i =

UiΣiU
H
i , i = 1, 2, r, and SiS

H
j = 0, i, j = 1, 2, r, i 6= j, where Σi, i = 1, 2, r, is

an Ni ×Ni diagonal matrices.

Proof: See Appendix 3.A. ✷

The optimal structure of Si, i = 1, 2, r, can be obtained from Theorem 3.1 as

Si = UiΣ
1
2
i Ωi, where Ωi is an Ni×L semi-unitary matrix satisfying ΩiΩ

H
i = INi

,

i = 1, 2, r, and ΩiΩ
H
j = 0, i, j = 1, 2, r, i 6= j. Such Ωr, Ω1, and Ω2 can be easily

constructed, for example, from the normalized discrete Fourier transform (DFT)

matrix when L ≥ N1 +N2 +Nr.

Interestingly, it can be seen that the optimal training matrix at node imatches

the eigenvector matrix of the transmitter correlation matrix of Hri, and the op-

timal training matrix at the relay node matches the eigenvector matrix of CT
r .

Using Theorem 3.1 and (3.81) in Appendix 3.A, the problem (3.21)-(3.23) is

equivalently converted to the following problem

min
α,Σ1,Σ2,Σr

2
∑

i=1

tr

(

2
∑

j=1

[

Dij + αΣj ⊗Dri

]−1
+
[

Dsi +Σr ⊗Dri

]−1

)

(3.24)

s.t. tr(Σi) ≤ pi, i = 1, 2 (3.25)

αNr + α
2
∑

i=1

tr(ΛiΣi)tr(Rri) + tr(Σr) ≤ pr (3.26)

α > 0, Σi ≥ 0, i = 1, 2, r (3.27)

where for a matrix A, A ≥ 0 means that A is a positive semi-definite (PSD)

matrix. Using the definition of Dij, Dsi, and Dri in (3.78) in Appendix 3.A, the

problem (3.24)-(3.27) can be equivalently rewritten as the following problem with
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scalar variables

min
α,σ1,σ2,σr

2
∑

i=1

(

2
∑

j=1

Nj
∑

m=1

Ni
∑

n=1

[

1

bjλj,mδi,n
+ αdi,nσj,m

]−1

+
Nr
∑

m=1

Ni
∑

n=1

[

1

λr,mδi,n
+ di,nσr,m

]−1
)

(3.28)

s.t.

Ni
∑

m=1

σi,m ≤ pi, i = 1, 2 (3.29)

αNr + α
2
∑

i=1

(

Ni
∑

m=1

λi,mσi,mtr(Rri)

)

+
Nr
∑

m=1

σr,m ≤ pr (3.30)

α > 0, σi,m ≥ 0, m = 1, · · · , Ni, i = 1, 2, r (3.31)

where di,n , 1/(αtr(CT
r )δi,n + 1), n = 1, · · · , Ni, i = 1, 2, σi ,

[

σi,1, · · · , σi,Ni

]T
,

i = 1, 2, r, δi,m, i = 1, 2, is the mth diagonal element of ∆i, and λi,m, σi,m,

i = 1, 2, r, are the mth diagonal element of Λi and Σi, respectively.

Given that bj , λj,m, δi,n, di,n, and λr,m are known variables with fixed α, the

objective function (3.28) can be rewritten as

min
σ1,σ2,σr

2
∑

i=1

( 2
∑

j=1

sum
Nj

m=1

Ni
∑

n=1

1

ai,j,m,n + ci,nσj,m

+
Nr
∑

m=1

Ni
∑

n=1

1

gi,m,n + di,nσr,m

)

where ai,j,m,n , 1/(bjλj,mδi,n), ci,n , αdi,n, and gi,m,n , 1/(λr,mδi,n) are known

variables. It can be seen from the above equation that the triple summation terms

and the double summation terms are monotonically decreasing and convex with

respect to σj,m and σr,m, respectively. Moreover, with fixed α, the constraints

in (3.29) and (3.30) are linear inequality constraints which can be rewritten as

1Tσi ≤ pi, i = 1, 2, and z̄T1σ1 + z̄T2σ2 + 1Tσr ≤ pr − αNr, respectively, where

z̄i , αtr(Rri)[λi,1, · · · , λi,Ni
]T , i = 1, 2, and 1 is a vector of all ones with a

commensurate dimension. Therefore, the problem (3.28)-(3.31) with respect to

σ1, σ2, and σr is a convex optimization problem when α is fixed, where the

optimal σ1, σ2, and σr can be efficiently obtained through the KKT optimality

conditions of the problem (3.28)-(3.31). In particular, the gradient conditions are
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given by

2
∑

j=1

Nj
∑

n=1

αdj,n
[

(biλi,mδj,n)−1 + αdj,nσi,m

]2 = µi + µ3ei,m, m = 1, · · · , Ni, i = 1, 2

(3.32)
2
∑

i=1

Ni
∑

n=1

di,n
[

(λr,mδi,n)−1 + di,nσr,m

]2 = µ3, m = 1, · · · , Nr (3.33)

where ei,m , αtr(Rri)λi,m, i = 1, 2, and µi ≥ 0, i = 1, 2, 3, are Lagrange multi-

pliers such that the complementary slackness conditions [99] given by

µi

(

pi −
Ni
∑

m=1

σi,m

)

= 0, i = 1, 2 (3.34)

µ3

(

pr − αNr − α

2
∑

i=1

Ni
∑

m=1

λi,mσi,mtr(Rri)−
Nr
∑

m=1

σr,m

)

= 0 (3.35)

are satisfied.

With fixed α and µi, i = 1, 2, 3, for each m, the non-negative σ1,m, σ2,m, and

σr,m can be found by using the bi-section search, since the LHS of (3.32) and

(3.33) are monotonically decreasing function of σi,m and σr,m, respectively. To

find the optimal µi, i = 1, 2, 3, an outer bi-section search loop is used as the LHS

of (3.29) is an increasing function of σi,m, and the LHS of (3.30) is an increasing

function of σ1,m, σ2,m, and σr,m, while in (3.32), σi,m is a monotonically decreasing

function of µi and µ3, and σr,m is a monotonically decreasing function of µ3 in

(3.33).

When α is an optimization variable (not fixed), the problem (3.28)-(3.31) as

a whole is not a convex optimization problem. However, we can show that (3.28)

subjecting to (3.29)-(3.31) is a unimodal (quasi-convex) function with respect to

α. Let us introduce χi,m , ασi,m, m = 1, · · · , Ni, i = 1, 2, the problem (3.28)-

(3.31) can be rewritten as

min
α,χ1,χ2,σr

2
∑

i=1

( 2
∑

j=1

Nj
∑

m=1

Ni
∑

n=1

1

ai,j,m,n + di,nχj,m
+

Nr
∑

m=1

Ni
∑

n=1

1

gi,m,n + di,nσr,m

)

(3.36)

s.t. 1Tχi ≤ αpi, i = 1, 2 (3.37)

zT1χ1 + zT2χ2 + 1Tσr ≤ pr − αNr (3.38)

α > 0, σr,m ≥ 0, χi,m ≥ 0, m = 1, · · · , Ni, i = 1, 2 (3.39)

where χi , [χi,1, · · · , χi,Ni
]T , and zi , tr(Rri)[λi,1, · · · , λi,Ni

]T , i = 1, 2.
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Let us first ignore the effect of all di,n by treating them as known variables.

Then the problem (3.36)-(3.39) is a convex optimization problem, since (3.36)

is a convex function of χ1, χ2, σr, and (3.37)-(3.39) are linear inequality con-

straints. In particular, with increasing α, the value of (3.36) first decreases and

then increases based on the following reasons. For a significantly small α, the

value of (3.36) is strongly governed by the constraints in (3.37), since constraint

(3.38) is inactive compared with those in (3.37) when α is small. Once α in-

creases from a small value, the feasible region specified by (3.37) expands, and

thus, the value of (3.36) decreases. On the other hand, when α is large, the

value of (3.36) is strongly governed by the constraint in (3.38), since constraints

in (3.37) are inactive compared with that in (3.38) when α is large. Once α

decreases from a large value, the feasible region specified by (3.38) expands, res-

ulting in a deceasing of the value of (3.36). Now we consider the effect of di,n.

Since di,n = 1/(αtr(CT
r )δi,n + 1), di,n monotonically decreases with increasing α,

and (3.36) increases when di,n decreases.

Considering the two effects above, we can draw the following conclusion re-

garding the value of (3.36) with respect to α. When α increases from a signi-

ficantly small positive number, the value of (3.36) starts to decrease since the

potential decrease of (3.36) due to the expanded feasible region (3.37) dominates

the potential increase of (3.36) caused by the decreasing di,n. The value of (3.36)

keeps decreasing as α increases till a ‘turning point’ where the decreasing of di,n

starts to dominate the effect of relaxed feasible region (3.37). After such turning

point, the value of (3.36) will monotonically increase with an increasing α.

To validate the analysis above, a plot of the MSE value (3.28) over a range of

feasible values of α is generated in Fig. 3.2 for the case where all nodes have the

same number of antennas, i.e., Ni = N = 4, i = 1, 2, r, and the channel matrices

have i.i.d. entries, i.e., Tri = Rri = Rir = Cr = IN , i = 1, 2. Fig. 3.2 shows the

NMSE, which is (3.28) divided by 6N2, versus α for different p1 = p2, and pr is

set to be 20dB. It can be observed from Fig. 3.2 that (3.28) is a unimodal (quasi-

convex) function of α. Thus, the optimal α for the problem (3.28)-(3.31) can be

efficiently found by applying the golden section search (GSS) technique described

in Table 3.1, where ε is a positive constant close to 0 and φ > 0 is the reduction
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factor. It is shown in [100] that the optimal φ = 1.618, also known as the golden

ratio. The GSS method can guarantee that the minimum of a unimodal function

to be found by bracketing the minimum to an interval of 0.618 times the size of

the preceding interval. Unlike the Fibonacci search, the GSS method is able to

perform up to the desired accuracy and does not require the number of iterations

as input. However, the GSS method may need more iterations compared with

the Fibonacci search.

0 5 10 15 20 25 30
0

5

10

α

N
M

S
E

 

 

0 5 10 15 20 25 30
0

5

10

α

N
M

S
E

 

 

0 5 10 15 20 25 30
0

5

10

α

N
M

S
E

 

 

0 1 2 3 4 5
10

0.5

10
0.9

0 0.5 1 1.5 2 2.5
10

0.3

10
0.9

p
1
 = p

2
 = 10dB

p
1
 = p

2
 = 15dB

p
1
 = p

2
 = 20dB

0 0.2 0.4 0.6 0.8
10

0.1

10
0.9

Figure 3.2: Superimposed channel training: NMSE versus α for different p1 =
p2 with N = 4 and pr = 20dB.

The complexity of the superimposed channel training algorithm can be es-

timated as O(cαcµcσ(N1 + N2)(N1 + N2 + Nr)), where cα is the number of GSS

iterations required to obtain the optimal α, cµ stands for the number of iterations

in the outer bi-section loop to obtain the optimal µ1, µ2, and µ3, and cσ represents

the number of bi-section operations required to obtain the optimal σ1, σ2, and

σr.
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Table 3.1: Procedure of applying the golden section search (GSS) to find the
optimal α in the problem (3.28)-(3.31).

1. Set a feasible bound [a,b] on α.

2. Define c1 = (φ− 1)a+ (2− φ)b and c2 = (2− φ)a+ (φ− 1)b.

3. Solve the problem (3.28)-(3.31) for α = c1;
Compute the MSE value defined in (3.28), fMSE(c1) for α = c1.

4. Repeat Step 3 for α = c2.

5. If fMSE(c1) < fMSE(c2), then assign b = c2.
Otherwise, assign a = c1.

6. If |b− a| ≤ ε, then end.
Otherwise, go to step 2.

3.4 Two-Stage Channel Estimation Algorithm

There are two stages in this channel estimation scheme. In particular, the channel

matrices Hir, i = 1, 2, from the relay node to the receive nodes are estimated in

the first stage, while the channel matrices Hri, i = 1, 2, from the source nodes

to the relay node are estimated in the second stage. The first stage requires one

time block while the second stage requires two time blocks.

3.4.1 Stage One

At the first stage, the relay node transmits an Nr ×L1 training signal matrix Pr

to both receive nodes, where L1 is the length of the training sequence and will be

determined later. The Ni × L1 received signal matrix Yi,1 at node i is given by

Yi,1 = HirPr +Vi,1, i = 1, 2 (3.40)

where Vi,1 is an Ni×L1 noise matrix at node i in stage one. By vectorizing both

sides of (3.40), we obtain

yi,1 = (PT
r ⊗ INi

)hir + vi,1, i = 1, 2 (3.41)

where yi,1 , vec(Yi,1), hir , vec(Hir), and vi,1 , vec(Vi,1).
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Using a linear MMSE estimator at node i to estimate hir, we obtain

ĥir = WH
i,1yi,1, i = 1, 2 (3.42)

where ĥir denotes an estimation of hir andWi,1 is the weight matrix of the MMSE

estimator given by

Wi,1 = R−1
i,1Ci,1, i = 1, 2. (3.43)

Here Ri,1 , E
[

yi,1y
H
i,1

]

= (PT
r CrP

∗
r) ⊗ Rir + INiT1 and Ci,1 , E

[

yi,1h
H
ir

]

=

(PT
r Cr) ⊗ Rir, i = 1, 2. From (3.41) and (3.42), we find that since a linear

estimator is used, there is L1 ≥ Nr. Using (3.41)-(3.43), the MSE of estimating

hir can be written as

MSEi,1 = E
[

tr
(

(ĥir − hir)(ĥir − hir)
H
)]

= tr
(

[(Cr ⊗Rir)
−1 + (P∗

rP
T
r )⊗ INi

]−1
)

, i = 1, 2.

Since the transmission power consumed by the relay node at stage one is

tr(PrP
H
r ), the optimal Pr can be derived by solving the following optimization

problem

min
Pr

2
∑

i=1

tr
(

[

(Cr ⊗Rir)
−1 + (P∗

rP
T
r )⊗ INi

]−1
)

(3.44)

s.t. tr(PrP
H
r ) ≤ qr,1 (3.45)

where qr,1 is the power allocation at the relay node at the first stage. The following

theorem establishes the optimal structure of Pr as the solution to the problem

(3.44)-(3.45).

Theorem 3.2: The optimal training sequence Pr satisfies PrP
H
r = UrΞrU

H
r ,

where Ξr is an Nr ×Nr diagonal matrix.

Proof: Similar to the proof of Theorem 3.1. ✷

The optimal structure of Pr can be obtained from Theorem 3.2 as Pr =

UrΞ
1
2
r Ωr,1, where Ωr,1 is an Nr×L1 semi-unitary matrix satisfying Ωr,1Ω

H
r,1 = INr

and can be easily constructed from the normalized DFT matrix when L1 ≥ Nr.

Using Theorem 3.2, the problem (3.44)-(3.45) is equivalently converted to the

following problem

min
Ξr

2
∑

i=1

tr
(

[

(Λ−1
r ⊗Λ−1

ir ) + (Ξr ⊗ INi
)
]−1
)

(3.46)

s.t. tr(Ξr) ≤ qr,1, Ξr ≥ 0. (3.47)



Chapter 3. Frequency-Flat Two-Way MIMO Relay Systems 41

The problem (3.46)-(3.47) can be equivalently rewritten as the following problem

with scalar variables

min
ξr

2
∑

i=1

Nr
∑

m=1

Ni
∑

n=1

1

λ−1
r,mλ

−1
ir,n + ξr,m

(3.48)

s.t.

Nr
∑

m=1

ξr,m ≤ qr,1, ξr,m ≥ 0, m = 1, · · · , Nr (3.49)

where ξr ,
[

ξr,1, · · · , ξr,Nr

]T
and ξr,m is the mth diagonal element of Ξr.

The problem (3.48)-(3.49) is convex and thus can be efficiently solved through

the KKT optimality conditions. The gradient condition is given by

2
∑

i=1

Ni
∑

n=1

1
[

λ−1
r,mλ

−1
ir,n + ξr,m

]2 = µ, m = 1, · · · , Nr (3.50)

where µ ≥ 0 is the Lagrange multiplier such that the complementary slackness

condition µ
(

qr,1−
∑Nr

m=1 ξr,m
)

= 0 is satisfied. For each m, with fixed µ, the non-

negative ξr,m can be found using the bi-section search, since the LHS of (3.50)

is a monotonically decreasing function of ξr,m. To find the optimal µ, an outer

bi-section search is used as the LHS of (3.49) is an increasing function of ξr,m,

while in (3.50), ξr,m is a monotonically decreasing function of µ.

3.4.2 Stage Two

At the second stage, the source node i transmits an Ni×L2 training signal matrix

Pi to the relay node. The Nr × L2 received signal matrix Yr,2 at the relay node

is given by

Yr,2 =
2
∑

i=1

HriPi +Vr,2

where Vr,2 is an Nr × L2 noise matrix at the relay node. Then the relay node

amplifies Yr,2 and retransmits Xr,2 =
√
ηYr,2, where η > 0 is the relay amplifying

factor. The Ni × L2 received signal matrix at node i is given by

Yi,2 = HirXr,2 +Vi,2

=
√
ηHirHriPi +

√
ηHirHrīPī +

√
ηHirVr,2 +Vi,2, i = 1, 2 (3.51)

where Vi,2 is an Ni × L2 noise matrix at node i.
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Introducing P̃j , UH
j Pj, j = i, ī, V̄i,2 ,

√
ηHirVr,2 +Vi,2, i = 1, 2, we can

rewrite (3.51) as

Yi,2 =
√
ηGiiP̃i +

√
ηGīiP̃ī + V̄i,2, i = 1, 2 (3.52)

where Gij is defined in (3.7). Similar to Section 3.3, we first estimate Gij . Then

an estimation of Hrj is obtained as H̆rj = H̆†
irĞijU

H
j , j = i, ī, where H̆ir is the

estimation of Hir obtained from stage one and Ğij is the estimation of Gij . By

vectorizing both sides of (3.52), we obtain

yi,2 =
[√

ηP̃T
i ⊗ INi

,
√
ηP̃T

ī ⊗ INi

][

gT
ii , gT

īi

]T
+ v̄i,2

, Niθi + v̄i,2, i = 1, 2 (3.53)

where yi,2 , vec(Yi,2), v̄i,2 , vec(V̄i,2), Ni ,
[√

ηP̃T
i ⊗ INi

,
√
ηP̃T

ī ⊗ INi

]

, and

θi ,
[

gT
ii, gT

īi

]T
is the vector of unknown variables at node i.

Using a linear MMSE receiver to estimate θi, we have

θ̂i = WH
i,2yi,2, i = 1, 2 (3.54)

where θ̂i stands for an estimation of θi, Wi,2 is the weight matrix of the MMSE

estimator and given by

Wi,2 =
(

NiRθiN
H
i +Rv̄i,2

)−1
NiRθi, i = 1, 2. (3.55)

From (3.53) and (3.54), we find that since a linear estimator is used, there is

L2 ≥ N1+N2. In (3.55), Rθi , E[θiθ
H
i ] is the covariance matrix of θi, which can

be calculated similar to Rγi in (3.16) and written as

Rθi = Bdiag
[

Λi ⊗ biRir, Λī ⊗ b̄iRir

]

, i = 1, 2.

In (3.55), Rv̄i,2 , E[v̄i,2v̄
H
i,2] is the noise covariance matrix which can be calculated

similar to Rv̄i (3.13) as

Rv̄i,2 = IL2 ⊗
(

ηtr(CT
r )Rir + INi

)

, i = 1, 2.

Using (3.55), the MSE of estimating θi can be obtained as

MSEi,2 = E
[

tr
(

(θ̂i − θi)(θ̂i − θi)
H
)]

= tr
(

[

R−1
θi

+NH
i R

−1
v̄i,2

Ni

]−1
)

, i = 1, 2. (3.56)
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The transmission power consumed at nodes 1 and 2 is

tr(PiP
H
i ) = tr(P̃iP̃

H
i ), i = 1, 2. (3.57)

And the power consumed at the relay node is given by

ηE

[

tr
(

2
∑

i=1

HriPiP
H
i H

H
ri + INr

)

]

= ηNr + η

2
∑

i=1

tr(ΛiP̃iP̃
H
i )tr(Rri). (3.58)

From (3.56)-(3.58), the optimal training matrices Pi, i = 1, 2, and the optimal η

can be obtained through solving the following optimization problem

min
η,P̃1,P̃2

2
∑

i=1

tr
(

[

R−1
θi

+NH
i R

−1
v̄i,2

Ni

]−1
)

(3.59)

s.t. tr(P̃iP̃
H
i ) ≤ qi, i = 1, 2 (3.60)

η
[

Nr +
2
∑

i=1

tr(ΛiP̃iP̃
H
i )tr(Rri)

]

≤ qr,2 (3.61)

where qi is the transmission power available at node i, i = 1, 2, and qr,2 is the

transmission power available at the relay node at the second stage. Note that for

a fair comparison with the superimposed channel training algorithm, the power

at three nodes should satisfy

qr,1L1 + qr,2L2 = prL, qiL2 = piL, i = 1, 2. (3.62)

The following theorem establishes the optimal structure of P1 and P2 as the

solution to the problem (3.59)-(3.61).

Theorem 3.3: The optimal training sequences P1 and P2 satisfy P1P
H
2 = 0

and PiP
H
i = UiΞiU

H
i , i = 1, 2, where Ξi is an Ni ×Ni diagonal matrix.

Proof: Similar to the proof of Theorem 3.1. ✷

The optimal structure of Pi can be obtained from Theorem 3.3 as Pi =

UiΞ
1
2
i Ωi,2, where Ωi,2 is an Ni×L2 semi-unitary matrix satisfying Ωi,2Ω

H
i,2 = INi

,

i = 1, 2, and Ω1,2Ω
H
2,2 = 0. Such Ω1,2 and Ω2,2 can be easily constructed from the

normalized DFT matrix when L2 ≥ N1 + N2. Using Theorem 3.3, the problem

(3.59)-(3.61) is equivalently converted to the following problem

min
η,Ξ1,Ξ2

2
∑

i=1

2
∑

j=1

tr
(

[

Dij + ηΞj ⊗ Eri

]−1
)

(3.63)

s.t. tr(Ξi) ≤ qi, i = 1, 2 (3.64)

ηNr + η

2
∑

i=1

tr(ΛiΞi)tr(Rri) ≤ qr,2 (3.65)

η > 0, Ξi ≥ 0, i = 1, 2 (3.66)
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where Eri ,
(

ηtr(CT
r )∆i + INi

)−1
, i = 1, 2, are diagonal matrices. The problem

(3.63)-(3.66) can be equivalently rewritten as the following problem with scalar

variables

min
η, ξ1, ξ2

2
∑

i=1

2
∑

j=1

Nj
∑

m=1

Ni
∑

n=1

[

1

bjλj,mδi,n
+ ηfi,nξj,m

]−1

(3.67)

s.t.

Ni
∑

m=1

ξi,m ≤ qi, i = 1, 2 (3.68)

ηNr + η
2
∑

i=1

(

Ni
∑

m=1

λi,mξi,mtr(Rri)

)

≤ qr,2 (3.69)

η > 0, ξi,m ≥ 0, m = 1, · · · , Ni, i = 1, 2 (3.70)

where fi,n , 1/(ηtr(CT
r )δi,n + 1), ξi ,

[

ξi,1, · · · , ξi,Ni

]T
, i = 1, 2, and ξi,m is the

mth diagonal element of Ξi.

With fixed η, the objective function (3.67) can be rewritten as

min
ξ1, ξ2

2
∑

i=1

2
∑

j=1

Nj
∑

m=1

Ni
∑

n=1

1

ai,j,m,n + hi,nξj,m

where ai,j,m,n and hi,n , ηfi,n are known variables. It can be seen from the above

equation that the summation terms are monotonically decreasing and convex with

respect to ξ1,m and ξ2,m. Moreover, with fixed η, the constraints in (3.68)-(3.70)

are linear inequality constraints. Therefore, the problem (3.67)-(3.70) is a convex

optimization problem with respect to ξ1 and ξ2 when η is fixed. For a given η,

the optimal ξ1 and ξ2 can be efficiently obtained through the KKT optimality

conditions associated with the problem (3.67)-(3.70). The gradient conditions are

given by

2
∑

j=1

Nj
∑

n=1

ηfj,n
[

(biλi,mδj,n)−1 + ηfj,nξi,m
]2 = νi + ν3ci,m, m = 1, · · · , Ni, i = 1, 2

(3.71)

where ci,m , ηtr(Rri)λi,m, i = 1, 2, and νi ≥ 0, i = 1, 2, 3, are Lagrange multipli-

ers such that the complementary slackness conditions given by

νi

(

qi −
Ni
∑

m=1

ξi,m

)

= 0, i = 1, 2 (3.72)

ν3

(

qr,2 − ηNr − η
2
∑

i=1

Ni
∑

m=1

λi,mξi,mtr(Rri)

)

= 0 (3.73)
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are satisfied.

With fixed η and νi, i = 1, 2, 3, for each m, the non-negative ξ1,m and ξ2,m can

be found by using the bi-section search, since the LHS of (3.71) is a monotonically

decreasing function of ξ1,m and ξ2,m. To find the optimal νi, i = 1, 2, 3, an outer

bi-section search is used as the LHS of (3.68) and (3.69) are increasing functions

of ξ1,m and ξ2,m, while in (3.71), ξi,m is monotonically decreasing with respect to

νi and ν3.

The problem (3.67)-(3.70) as a whole is is non-convex with respect to ξ1, ξ2,

η. However, based on a similar analysis used in the problem (3.28)-(3.31), it

can be shown that (3.67) subjecting to (3.68)-(3.70) is a unimodal (quasi-convex)

function with respect to η. To validate our analysis, a plot of the MSE value

over a range of feasible values of η is generated in Fig. 3.3 for the case where

all nodes have the same number of antennas, i.e., Ni = N = 4, i = 1, 2, r. The

channel matrices have i.i.d. entries, i.e., Tri = Rri = Rir = Cr = IN , i = 1, 2.

Fig. 3.3 shows the NMSE value versus η for different q1 = q2 with qr,2 set to

be 20dB. It can be observed from Fig. 3.3 that (3.67) is a unimodal function of

η. For a unimodal function, the minimum value can be efficiently found by the

GSS algorithm [100]. Hence, the optimal η for the problem (3.67)-(3.70) can be

obtained by applying the GSS technique similar to the procedure listed in Table

3.1.

Now let us investigate the optimal power allocation qr,1 and qr,2 at the relay

node during two stages of channel training. Based on (3.62), we let qr,1L1 = βprL

and qr,2L2 = (1 − β)prL, where 0 < β < 1. The aim is to find the optimal β to

minimize the overall MSE of channel estimation over two-stages which is given

by the summation of (3.44) and (3.59), and can be written as

2
∑

i=1

tr
(

[

(Cr ⊗Rir)
−1 + (P∗

rP
T
r )⊗ INi

]−1
+
[

R−1
θi

+NH
i R

−1
v̄i,2

Ni

]−1
)

. (3.74)

Fig. 3.4 shows the value of (3.74) over a range of feasible values of β for different

q1 = q2 with L1 = Nr, L2 = N1 + N2, L = N1 + N2 + Nr, and pr = 20dB.

We assume that Ni = N = 4, i = 1, 2, r, and Tri = Rri = Rir = Cr = IN ,

i = 1, 2. Here for each β, the problem (3.44)-(3.45) and the problem (3.59)-(3.61)

are solved to obtain the optimal Pr, P1, P2, and η. It can be seen from Fig. 3.4
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Figure 3.3: Two-stage channel estimation: NMSE versus η for different q1 = q2
with N = 4 and qr,2 = 20dB.
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that (3.74) is a unimodal function of β. Hence, the GSS technique described in

Table 3.1 can be applied to obtain the optimal β.

The complexity of the two-stage channel estimation algorithm can be estim-

ated as O(dβdµdξNr(N1 +N2) + dβdηdνdξ(N1 +N2)
2), where the first term is the

complexity of stage one, and the second term represents the complexity involved

in stage two. Here dβ, dη, and dµ stand for the numbers of iterations required to

obtain the optimal β, η, and µ, respectively, dν is the number of iterations in the

outer bi-section loop to obtain the optimal ν1, ν2, and µ3, and dξ represents the

number of bi-section operations required to obtain the optimal ξ1, ξ2, and ξr.

3.5 Numerical Examples

In this section, we study the performance of the proposed superimposed chan-

nel training algorithm and two-stage channel estimation algorithm through nu-

merical simulations. We consider a three-node two-way MIMO relay system

where all nodes are equipped with the same number of antennas, i.e., Ni = N ,

i = 1, 2, r. We also assume that all nodes have the same transmission power

pi = p, i = 1, 2, r, and use the shortest training sequence possible with L1 = N ,

L2 = 2N , L = 3N . Thus, based on (3.62), there are q1 = q2 = 1.5p and

(qr,1 + 2qr,2)/3 = p for the two-stage channel estimation algorithm. The channel

covariance matrices have the commonly used exponential Toeplitz structure [90]

such that [Tri]m,n = ρ|m−n|, i = 1, 2, [Rri]m,n = ρ|m−n|, i = 1, 2, [Rir]m,n = ρ|m−n|,

i = 1, 2, and [Cr]m,n = ρ|m−n|, where ρ is the correlation coefficient with mag-

nitude |ρ| < 1. For all scenarios, the NMSE of channel estimation at nodes 1

and 2 are computed. The optimal training sequences for the superimposed chan-

nel training method and the two-stage channel estimation algorithm are gener-

ated by using Theorem 3.1 and Theorems 3.2 and 3.3, respectively. In particu-

lar, the semi-unitary matrices in the superimposed channel training method are

set based on the normalized DFT matrix as [Ω1]m,n = 1√
3N

e−j 2πmn
3N , [Ω2]m,n =

1√
3N

e−j
2π(m+N)n

3N , [Ωr]m,n = 1√
3N

e−j
2π(m+2N)n

3N , m = 1, · · · , N , n = 1, · · · , 3N .

Matrices Ωr,1 and Ωi,2, i = 1, 2, in the two-stage channel estimation algorithm are

chosen as [Ωr,1]m,n = 1√
N
e−j 2πmn

N , m,n = 1, · · · , N , and [Ω1,2]m,n = 1√
2N

e−j 2πmn
2N ,
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Figure 3.5: Example 3.1. Superimposed channel training: NMSE versus p for
different α with N = 4 and ρ = 0.8.

[Ω2,2]m,n = 1√
2N

e−j
2π(m+N)n

2N , m = 1, · · · , N , n = 1, · · · , 2N .

In the first example, we study the performance of the superimposed channel

training algorithm with respect to α. Fig. 3.5 shows the NMSE of this algorithm

versus p with different α when N = 4 and ρ = 0.8. The curve associated with

the optimal α is obtained by applying the GSS algorithm on the proposed super-

imposed channel training technique to find the optimal α for different p. It can

be seen from Fig. 3.5 that the curve associated with the optimal α has the lowest

MSE level. This justifies that the GSS algorithm can be applied to obtain the

optimal α at different p efficiently. Interestingly, we observe from Fig. 3.5 that

the optimal α vary with respect to p, indicating that using constant α is strictly

suboptimal. In fact, the optimal α at low p level is smaller compared with the

optimal α for large p. The reason is that the estimation of the first-hop channels

Hri is based on that of the second-hop channels Hir. When p is small, at the re-

lay node, more power should be allocated for the estimation of Hir, which is also

beneficial to the estimation of Hri. When a large amount of power p is available,

the MSE of estimating Hir is smaller compared with that of Hri. Therefore, more

power should be allocated at the relay node to assist the estimation of Hri.
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Figure 3.6: Example 3.2. Two-stage channel estimation: NMSE versus p for
different β with N = 4 and ρ = 0.8.

In the second example, we investigate the performance of the two-stage chan-

nel estimation algorithm with respect to β. A plot of the NMSE of this algorithm

for different β is shown in Fig. 3.6, where the curve with the optimal β is obtained

from the GSS algorithm. Similar to Fig. 3.5, it can be seen from Fig. 3.6 that

the curve associated with the optimal β has the lowest MSE level.

In the third example, we compare the performance of the superimposed and

two-stage channel estimation algorithms when the optimal α and β are used. We

also show the performance of the conventional two-stage channel estimator, where

random orthogonal pilot sequences are used to estimate the channel matrices

and the transmission power at the relay node is equally distributed between two

stages. Fig. 3.7 demonstrates the MSE performance of all algorithms with ρ = 0.2

for different N , while Fig. 3.8 shows the MSE results at ρ = 0.8. It can be seen

from Figs. 3.7 and 3.8 that the proposed algorithms yield much smaller estimation

error compared with the conventional two-stage channel estimator, especially

at high p level. It can also be observed from Figs. 3.7 and 3.8 that for both

scenarios, the two-stage channel estimation algorithm yields smaller MSEs than

the superimposed channel training scheme. This is mainly due to the fact that
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Figure 3.7: Example 3.3. NMSE versus p for ρ = 0.2 and different N .

5 10 15 20 25 30
10

−2

10
−1

10
0

10
1

p (dB)

N
M

S
E

 

 

Two−Stage, N = 2
Superimposed, N = 2
Conventional, N=2
Two−Stage, N = 4
Superimposed, N = 4
Conventional, N=4

Figure 3.8: Example 3.3. NMSE versus p for ρ = 0.8 and different N .



Chapter 3. Frequency-Flat Two-Way MIMO Relay Systems 51

in the superimposed channel training algorithm, the estimation of Hir is affected

by the noise at the relay node, which is not the case in the two-stage channel

estimation scheme. However, the two-stage channel estimation algorithm has a

higher computational complexity than that of the superimposed channel training

scheme, since both β and η need to be optimized in the former algorithm. Such

performance-complexity tradeoff can be exploited in practical two-way MIMO

relay communication systems.

3.6 Conclusions

In this chapter, we have proposed and investigated the performance of two channel

estimation algorithms, namely, the superimposed channel training and two-stage

channel estimation schemes, for frequency-flat two-way MIMO relay communic-

ation systems. The proposed algorithms can efficiently estimate the individual

CSI for two-way MIMO relay systems, with the two-stage channel estimation

algorithm performs better than the superimposed channel training scheme at a

higher computational complexity.

3.A Proof of Theorem 3.1

Let us introduce the EVD of Rir = Qi∆iQ
H
i . We can equivalently rewrite (3.13)

and (3.16) as

Rv̄i = IL ⊗
(

Qi(αtr(C
T
r )∆i + INi

)QH
i

)

, i = 1, 2 (3.75)

Rγi = UγiBdiag
[

Λi ⊗ bi∆i, Λī ⊗ b̄i∆i, Λr ⊗∆i

]

UH
γi
, i = 1, 2 (3.76)
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where Uγi , Bdiag
[

INi
⊗Qi, INī

⊗Qi, INr
⊗Qi

]

, i = 1, 2. Substituting (3.75)

and (3.76) back into (3.18), MSEi can be rewritten as

MSEi = tr









































































Dii 0 0

0 Dīi 0

0 0 Dsi

























+

























√
αS̃∗

i ⊗ INi

√
αS̃∗

ī ⊗ INi

S̃∗
r ⊗ INi

























×
(

IL ⊗Dri

)(√
αS̃T

i ⊗ INi
,
√
αS̃T

ī ⊗ INi
, S̃T

r ⊗ INi

)

]−1
)

(3.77)

where

Dij , Λ−1
j ⊗ (bj∆i)

−1, j = i, ī, Dsi , Λ−1
r ⊗∆−1

i ,

Dri ,
(

αtr(CT
r )∆i + INi

)−1
(3.78)

are all diagonal matrices. It can be seen from (3.77) that the objective function

(3.21) is minimized only if

(S̃∗
i ⊗INi

)(IL⊗Dri)(S̃
T
ī ⊗INi

) =
(

S̃∗
i S̃

T
ī

)

⊗Dri = 0 (3.79)

(S̃∗
j⊗INi

)(IL⊗Dri)(S̃
T
r ⊗INi

) =
(

S̃∗
j S̃

T
r

)

⊗Dri = 0 (3.80)

for i = 1, 2, and j = i, ī. Equations (3.79) and (3.80) hold if and only if S̃∗
1S̃

T
2 = 0

and S̃∗
i S̃

T
r = 0, i = 1, 2, or equivalently S1S

H
2 = 0 and SiS

H
r = 0, i = 1, 2. Then

the objective function (3.21) can be written as

2
∑

i=1

tr

(

2
∑

j=1

[

Dij + αS̃∗
j S̃

T
j ⊗Dri

]−1
+
[

Dsi + S̃∗
rS̃

T
r ⊗Dri

]−1

)

. (3.81)

Since Dij , Dsi, and Dri are all diagonal, to minimize (3.81), S̃∗
i S̃

T
i , i = 1, 2, r,

must be diagonal. Note that the diagonality of S̃iS̃
H
i does not change tr(S̃iS̃

H
i ),

i = 1, 2, r, in the constraints (3.22) and (3.23). We would like to note that

tr(ΛiS̃iS̃
H
i ) in the constraints (3.23) is minimized if S̃iS̃

H
i is diagonal and its

diagonal entries are in the inverse order of that of Λi [101]. Denoting S̃iS̃
H
i = Σi,

i = 1, 2, r, then we have SiS
H
i = UiΣiU

H
i , i = 1, 2, r. ✷



Chapter 4

Frequency-Selective Two-Way

MIMO Relay Systems

In this chapter, the channel estimation problem for two-way MIMO relay commu-

nication systems in frequency-selective fading environments is investigated. After

an overview of the existing techniques in Section 4.1, the system model of a two-

way MIMO relay system in frequency-selective fading environments is presented

in Section 4.2. The method of superimposed channel training is developed in

Section 4.3 to estimate the CSI of the first-hop and second-hop links for two-way

MIMO relay systems with frequency-selective fading channels. The optimal struc-

ture and power allocation of the source and relay training sequences are derived to

minimize the MSE of channel estimation. Moreover, taking into account the es-

timation error inherited from the estimation of the second-hop channel matrices,

a novel MMSE-based algorithm is developed to retrieve the first-hop channel

matrices. Numerical examples are shown in Section 4.4 to demonstrate the per-

formance of the proposed superimposed channel training algorithm for two-way

MIMO relay systems in frequency-selective fading environments. In Section 4.5,

summaries on this chapter are given. The proof of Theorem 4.1 and Theorem 4.2

are presented in Section 4.A and 4.B, respectively.

53
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4.1 Overview of the existing works

Due to a larger number of unknowns, channel estimation problems are generally

more challenging in two-way relay systems than those in one-way relay systems.

In [96], two-way relay channel estimation algorithms based on the ML and linear

maximum SNR criteria have been proposed. However, the algorithms in [96]

were designed for single antenna relay systems, and the extension to MIMO relay

systems is not straightforward. Two methods were presented in [98] for two-

way MIMO relay systems, namely, cascaded channel estimation and individual

channel estimation. In the first algorithm, the cascaded channel matrices are

estimated at two source nodes. However, this approach cannot estimate the

individual second-hop channel matrices, which are essential for the optimization

of MIMO relay networks [95].

This problem has been addressed by the superimposed channel training al-

gorithm for two-way MIMO relay systems in [68], where a training sequence is

superimposed at the relay node. The purpose of superimposing a training matrix

at the relay node is to estimate the CSI of individual first-hop and second-hop

channel matrices at the destination nodes, which cannot be achieved by simply

multiplying the received signals at the relay node with a relay precoding mat-

rix. Individual CSI can also be obtained by first estimating the first-hop channel

matrices at the relay node and then forwarding the estimated channel matrices

to the destination nodes, as the individual channel estimation algorithm in [98].

Obviously, the approach in [98] increases the cost and complexity of the relay

node.

The relay systems in [68], [96], and [98] are assumed to have frequency-flat

fading channels, which is only valid for narrowband communication systems. In

this chapter, we consider a more general situation where two-way MIMO relay

systems are operating in frequency-selective fading environments, i.e., there are

multiple paths between each transmit-receive antenna pair. We apply the method

of superimposed channel training to estimate the individual channel matrices of

the first-hop and second-hop links for two-way MIMO relay systems in frequency-

selective fading environments. In particular, the channel training is completed

in two time blocks. In the first time block, both source nodes transmit their
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training sequences simultaneously to the relay node. The relay then amplifies the

received signals and superimposes its own training sequences before broadcast-

ing the superimposed signals to the destination nodes. The channel estimation

processes are implemented at the destination nodes to minimize the amount of

signal processing at the relay node.

Since the superimposed channel training approach does not require the re-

lay node to be capable of performing the advanced signal processing of channel

estimation, and hence, provides an easy and cost-effective implementation of two-

way relay communication systems. Such advantage of the superimposed channel

training approach is particularly important under frequency-selective channels,

as the complexity at the relay node increases significantly compared with the

frequency-flat fading environment when the approach in [98] is used. Thus, the

superimposed channel estimation method is preferred from practical point of view.

We derive the optimal source and relay training sequences by minimizing

the sum MSE of channel estimation. We also optimize the power allocation

between the source and relay training sequences at the relay node. The algorithm

developed in this chapter generalizes the results in Chapter 3 from frequency-flat

fading channel to frequency-selective fading channels. We would like to note that

such extension is non-trivial as the optimization problem for channel estimation in

frequency-selective two-way MIMO relay systems is much more complicated than

that of frequency-flat relay systems. Moreover, we develop a new MMSE-based

algorithm to retrieve the first-hop channel matrices, which takes into account the

estimation error inherited from the estimation of the second-hop channel matrices.

4.2 Frequency-Selective Two-WayMIMO Relay

System Model

We consider a three-node two-way MIMO relay communication system operating

in a frequency-selective fading environment, where two source nodes, node 1 and

node 2, exchange information through a relay node as shown in Fig. 4.1. The

source nodes and relay node are equipped with Ns and Nr antennas, respectively.

In this chapter, we assume that the practical half-duplex mode is used at all
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Figure 4.1: Block diagram of a two-way MIMO relay communication system.

nodes, i.e., each node is not able to send and receive signals at the same time.

With this assumption, there is no direct link between two source nodes as both

source nodes are transmitting signals at the first time block and cannot receive

signals from each other. The implementation of half-duplex mode is common in

two-way relay communications.

Let us denote hri
n,m =

[

hri
n,m,1, · · · , hri

n,m,Q

]T
as the Q × 1 first-hop multipath

channel vector from the mth antenna at node i to the nth antenna at the relay

node, i = 1, 2, m = 1, · · · , Ns, and n = 1, · · · , Nr, where we assume that all

channels have the same number of taps Q. The extension to systems with dif-

ferent number of channel taps between each transmit and receive antenna pair is

straightforward. In a similar way, hir
n,m =

[

hir
n,m,1, · · · , hir

n,m,Q

]T
is used to denote

the Q×1 second-hop multipath channel vector from the mth antenna at the relay

node to the nth antenna at node i.

The channel estimation process is completed in two time blocks. In the

first time block, source node 1 transmits an Ns × L training signal matrix S =

[s1, s2, · · · , sNs
]T and node 2 transmits an Ns×L training matrix T = [t1, t2, · · · ,

tNs
]T , respectively, where L > Q is the length of the training sequence and will

be determined later. Cyclic prefixes of length Lcp ≥ Q are inserted at sm and tn,

m,n = 1, · · · , Ns, to prevent the inter-block interference at the relay node [85].

The received signal vectors at the relay node over L time slots after removing the
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cyclic prefix can be written as

yr,n =
Ns
∑

m=1

Hr1
n,msm +

Ns
∑

m=1

Hr2
n,mtm + vr,n

=
Ns
∑

m=1

CQ(sm)h
r1
n,m +

Ns
∑

m=1

CQ(tm)h
r2
n,m + vr,n, n = 1, · · · , Nr (4.1)

where yr,n and vr,n are the L × 1 received signal vector and noise vector at the

nth antenna of the relay node, respectively, Hr1
n,m and Hr2

n,m are L × L circu-

lant channel matrices whose first columns are given by
[

(hr1
n,m)

T , 01×(L−Q)

]T
and

[

(hr2
n,m)

T , 01×(L−Q)

]T
, respectively, and CQ(s) represents an L × Q column-wise

circulant matrix taking s as the first column.

In the second time block, the relay node amplifies yr,n, n = 1, · · · , Nr, and

superimposes its own training matrix R = [r1, r2, · · · , rNr
]T . Thus, the signal

vector transmitted by the nth antenna of the relay node is given by

xr,n =
√
α yr,n + rn, n = 1, · · · , Nr (4.2)

where α > 0 is the relay amplifying factor. Similarly, a cyclic prefix is inserted

at xr,n prior to the transmission. The received signal vectors at the source node

i, i = 1, 2, after removing the cyclic prefix are given by1

yi,k =

Nr
∑

n=1

Hir
k,nxr,n + vi,k, k = 1, · · · , Ns (4.3)

where yi,k and vi,k are the L × 1 received signal vector and noise vector at the

kth antenna of node i, respectively, Hir
k,n is an L × L circulant channel matrix

whose first column is
[

(hir
k,n)

T , 01×(L−Q)

]T
.

The main idea of the superimposed channel training algorithm is to exploit R

to estimate the second-hop channels {hir
k,n} , {hir

k,n, i = 1, 2, k = 1, · · · , Ns, n =

1, · · · , Nr}, and then estimate the first-hop channels {hri
n,m} , {hri

n,m, i = 1, 2, n =

1, · · · , Nr, m = 1, · · · , Ns} using S, T, and the estimated {hir
k,n}. In this chapter,

we assume that

1. All channel taps are zero-mean circularly symmetric complex Gaussian

(CSCG) random variables.

1In this chapter, cyclic prefix is removed to facilitate the superimposed channel training al-

gorithm. It is an interesting topic to combine the proposed approach and the channel estimation

using the cyclic prefix, which may improve the accuracy of channel estimation.
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2. Channel taps associated with the same transmit-receive antenna pair, as

well as different transmit-receive antenna pairs are independent from each

other.

3. Channels are assumed to be quasi-static, i.e., channels do not change within

one cycle of transmission.

4. All noises are i.i.d. AWGN with zero mean and unit variance.

4.3 MMSE-Based Optimal Training Matrices

In this section, we design the optimal training matrices S, T, R, and the relay

amplifying factor α to minimize the MSE of channel estimation. By substituting

(4.1) and (4.2) into (4.3), we obtain

yi,k =
Nr
∑

n=1

Hir
k,n

(

√
α

Ns
∑

m=1

Hr1
n,msm +

√
α

Ns
∑

m=1

Hr2
n,mtm + rn +

√
αvr,n

)

+ vi,k

=
√
α

Ns
∑

m=1

Nr
∑

n=1

Hir
k,nH

r1
n,msm +

√
α

Ns
∑

m=1

Nr
∑

n=1

Hir
k,nH

r2
n,mtm +

Nr
∑

n=1

Hir
k,nrn + v̄i,k,

k = 1, · · · , Ns (4.4)

where

v̄i,k ,
√
α

Nr
∑

n=1

Hir
k,nvr,n + vi,k, k = 1, · · · , Ns (4.5)

is the equivalent noise vector at the kth antenna of node i. Since both Hir
k,n and

Hri
n,m are circulant matrices, (4.4) can be rewritten by exploiting the property of

circulant matrix as

yi,k =
√
α

Ns
∑

m=1

[

C2Q−1(sm)
Nr
∑

n=1

hir
k,n ∗ hr1

n,m

]

+
√
α

Ns
∑

m=1

[

C2Q−1(tm)

Nr
∑

n=1

hir
k,n ∗ hr2

n,m

]

+

Nr
∑

n=1

CQ(rn)h
ir
k,n + v̄i,k

=
√
αΦ(s)di1

k +
√
αΦ(t)di2

k +Φ(r)dir
k + v̄i,k, k = 1, · · · , Ns (4.6)
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where

Φ(s) , [C2Q−1(s1),C2Q−1(s2), · · · ,C2Q−1(sNs
)] ∈ CL×(2Q−1)Ns (4.7)

Φ(t) , [C2Q−1(t1),C2Q−1(t2), · · · ,C2Q−1(tNs
)] ∈ CL×(2Q−1)Ns (4.8)

Φ(r) , [CQ(r1),CQ(r2), · · · ,CQ(rNr
)] ∈ CL×QNr (4.9)

di1
k ,





(

Nr
∑

n=1

hir
k,n ∗ hr1

n,1

)T

,

(

Nr
∑

n=1

hir
k,n ∗ hr1

n,2

)T

, · · · ,
(

Nr
∑

n=1

hir
k,n ∗ hr1

n,Ns

)T




T

(4.10)

di2
k ,





(

Nr
∑

n=1

hir
k,n ∗ hr2

n,1

)T

,

(

Nr
∑

n=1

hir
k,n ∗ hr2

n,2

)T

, · · · ,
(

Nr
∑

n=1

hir
k,n ∗ hr2

n,Ns

)T




T

(4.11)

dir
k ,

[

(hir
k,1)

T , (hir
k,2)

T , · · · , (hir
k,Nr

)T
]T

. (4.12)

Here di1
k in (4.10) and di2

k in (4.11) can be viewed as the compound channel from

all antennas of node 1 and node 2 to the kth antenna at node i, respectively,

and dir
k in (4.12) is the channel from all antennas of the relay node to the kth

antennas at node i.

By introducing

A , [
√
αΦ(s),

√
αΦ(t),Φ(r)] ∈ CL×((4Q−2)Ns+QNr) (4.13)

θi,k ,
[

(di1
k )

T , (di2
k )

T , (dir
k )

T
]T

, k = 1, · · · , Ns (4.14)

we can rewrite (4.6) as

yi,k = Aθi,k + v̄i,k, k = 1, · · · , Ns. (4.15)

Here θi,k in (4.14) is the vector of unknowns that need to be estimated at node i.

Due to its simplicity, a linear estimator is applied at node i to estimate θi,k

as

θ̂i,k = WH
i,kyi,k, k = 1, · · · , Ns, i = 1, 2 (4.16)

where θ̂i,k denotes an estimation of θi,k and Wi,k is the weight matrix of the

linear receiver. As a linear estimator is used, we can see from (4.13) that the

length of the training sequences should satisfy L ≥ (4Q − 2)Ns + QNr. Based

on (4.15) and (4.16), the sum MSE of channel estimation at two nodes can be
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written as

MSE =
2
∑

i=1

Ns
∑

k=1

tr
(

E
[

(θ̂i,k − θi,k)(θ̂i,k − θi,k)
H
])

=

2
∑

i=1

Ns
∑

k=1

tr
(

E
[

(WH
i,kA− IB)C

i,k
x (WH

i,kA− IB)
H +WH

i,kC
i,k
v̄ Wi,k

])

(4.17)

where B , (4Q− 2)Ns +QNr, C
i,k
x = E

[

θi,kθ
H
i,k

]

is the covariance matrix of θi,k,

and Ci,k
v̄ = E

[

v̄i,kv̄
H
i,k

]

is the noise covariance matrix.

From (4.5), we have

Ci,k
v̄ =

(

α
Nr
∑

n=1

Q
∑

j=1

σir
k,n,j + 1

)

IL, i = 1, 2, k = 1, · · · , Ns

where σir
k,n,j = E

[

hir
k,n,j

(

hir
k,n,j

)∗]
is the variance of hir

k,n,j, j = 1, · · · , Q. Based on

(4.10)-(4.12) and (4.14), we obtain that Ci,k
x = Bdiag

[

Ck
i1,C

k
i2,C

k
ir

]

, where

Ck
ij = E

[

dij
k (d

ij
k )

H
]

= Bdiag
[

Cij
k,1, · · · ,Cij

k,Ns

]

, j = 1, 2 (4.18)

Ck
ir = E

[

dir
k (d

ir
k )

H
]

= Bdiag
[

Cir
k,1, · · · ,Cir

k,Nr

]

. (4.19)

By introducing σir
k,n =

[

σir
k,n,1, · · · , σir

k,n,Q

]T
and σrj

n,m =
[

σrj
n,m,1, · · · , σrj

n,m,Q

]T
,

where σrj
n,m,p = E

[

hrj
n,m,p

(

hrj
n,m,p

)∗]
is the variance of hrj

n,m,p, j = 1, 2, p = 1, · · · , Q,

we obtain that

Cij
k,m = E





(

Nr
∑

n=1

hir
k,n ∗ hrj

n,m

)(

Nr
∑

n=1

hir
k,n ∗ hrj

n,m

)H




=
Nr
∑

n=1

diag
[

σir
k,n ∗ σrj

n,m

]

, j = 1, 2, m = 1, · · · , Ns

Cir
k,n = E

[

hir
k,n(h

ir
k,n)

H
]

= diag
[

σir
k,n,1, · · · , σir

k,n,Q

]

, n = 1, · · · , Nr.

4.3.1 Structure of Optimal Training Sequences

The matrices Wi,k, i = 1, 2, k = 1, · · · , Ns that minimize MSE in (4.17) are given

by

Wi,k =
(

ACi,k
x AH +Ci,k

v̄

)−1

ACi,k
x , i = 1, 2, k = 1, · · · , Ns. (4.20)
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Substituting (4.20) back into (4.17), the MSE of channel estimation at both source

nodes can be written as

MSE =

2
∑

i=1

Ns
∑

k=1

tr

(

[

(

Ci,k
x

)−1
+AH

(

Ci,k
v̄

)−1
A
]−1
)

. (4.21)

The transmission power constraints at the source nodes are given by

Ns
∑

m=1

sHmsm ≤ p1,

Ns
∑

m=1

tHmtm ≤ p2 (4.22)

where p1 and p2 are the transmission power available at source nodes 1 and 2,

respectively. From (4.1) and (4.2), the transmission power constraint at the relay

node is given by

Nr
∑

n=1

E
[

tr
(

xr,nx
H
r,n

)

]

=

Nr
∑

n=1

(

αtr

(

Ns
∑

m=1

(

CQ(sm)D
r1
n,mC

H
Q (sm) +CQ(tm)D

r2
n,mC

H
Q (tm)

)

+ IL

)

+rHn rn

)

≤ pr (4.23)

where Dri
n,m , diag

[

σri
n,m,1, · · · , σri

n,m,Q

]

, i = 1, 2, and pr is the transmission power

available at the relay node. It can be seen from (4.23) that the feasible region of

α depends on pr as 0 < α < (pr −
∑Nr

n=1 r
H
n rn)/Ω, where

Ω ,

Nr
∑

n=1

tr

(

Ns
∑

m=1

(

CQ(sm)D
r1
n,mC

H
Q (sm) +CQ(tm)D

r2
n,mC

H
Q (tm)

)

+ IL

)

.

From (4.21)-(4.23), the optimal training sequences and the optimal α design

problem can be written as

min
S,T,R,α>0

2
∑

i=1

Ns
∑

k=1

tr

(

[

(

Ci,k
x

)−1
+AH

(

Ci,k
v̄

)−1
A
]−1
)

(4.24)

s.t.

Ns
∑

m=1

sHmsm ≤ p1 (4.25)

Ns
∑

m=1

tHmtm ≤ p2 (4.26)

Nr
∑

n=1

(

αtr

(

Ns
∑

m=1

(

CQ(sm)D
r1
n,mC

H
Q (sm) +CQ(tm)D

r2
n,mC

H
Q (tm)

)

+ IL

)

+rHn rn

)

≤ pr. (4.27)



Chapter 4. Frequency-Selective Two-Way MIMO Relay Systems 62

The following theorem establishes the optimal structure of S, T, and R as the

solution to the problem (4.24)-(4.27).

Theorem 4.1: The optimal training matrices S, T, and R satisfy the fol-

lowing equations for all m,n = 1, · · · , Ns, and p = 1, · · · , Nr

CH
2Q−1(sm)C2Q−1(sm) = βmI2Q−1,

CH
2Q−1(tn)C2Q−1(tn) = γnI2Q−1, CH

Q (rp)CQ(rp) = δpIQ (4.28)

CH
2Q−1(sm)C2Q−1(tn) = 0,

CH
2Q−1(sm)CQ(rp) = 0, CH

2Q−1(tn)CQ(rp) = 0 (4.29)

where βm = sHmsm, γn = tHn tn, and δp = rHp rp.

Proof: See Appendix 4.A. ✷

It is worth noting that the training matrices S, T, and R satisfying (4.28)

and (4.29) are not unique in general. Indeed, we are not particularly interested

in a unique solution of the problem. The minimum MSE of channel estimation is

achieved as long as the training matrices satisfy (4.28) and (4.29). One example

of achieving (4.28) and (4.29) is given below

s1 = Fs̃1, |s̃1,i| =
√

β1/L, i = 1, · · · , L

sm = Fs̃m, s̃m,i =
√

βm/β1s̃1,i e
j2π(i−1)(2Q−1)(m−1)/L,

i = 1, · · · , L, m = 2, · · · , Ns

tm = Ft̃m, t̃m,i =
√

γm/β1s̃1,i e
j2π(i−1)(2Q−1)(Ns−1+m)/L,

i = 1, · · · , L, m = 1, · · · , Ns

rn = Fr̃n, r̃n,i =
√

δn/β1s̃1,i e
j2π(i−1)[(2Q−1)(2Ns−1)+Q(n−1)]/L,

i = 1, · · · , L, n = 1, · · · , Nr

where j =
√
−1 and F is an L×L normalized fast Fourier transform (FFT) matrix

with [F]m,n = (1/
√
L)e−j2π(m−1)(n−1)/L. The training matrices shown above have

the advantage that they are easy to implement as the elements of s̃m (also t̃m

and r̃n) have a constant magnitude.
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4.3.2 Optimal Power Loading

Applying Theorem 4.1, the MSE function in (4.21) can be written as

MSE =

2
∑

i=1

Ns
∑

k=1

tr

(

Ns
∑

m=1

[(

Ci1
k,m

)−1
+ αβmηi,kI2Q−1

]−1

+
Ns
∑

m=1

[(

Ci2
k,m

)−1
+ αγmηi,kI2Q−1

]−1

+

Nr
∑

n=1

[(

Cir
k,n

)−1
+ δnηi,kIQ

]−1

)

(4.30)

where ηi,k is defined in (4.56). Let us denote cijk,m,q ,
[(

Cij
k,m

)−1]

q,q
, cirk,n,p ,

[(

Cir
k,n

)−1]

p,p
, and κi,m ,

∑Nr

n=1

∑Q
q=1 σ

ri
n,m,q, i = 1, 2. The problem (4.24)-(4.27)

with matrix variables can be equivalently rewritten as the following problem in

scalar variables

min
β,γ,δ,α

Ns
∑

m=1

Ns
∑

k=1

2Q−1
∑

q=1

2
∑

i=1

(

1

ci1k,m,q + αβmηi,k
+

1

ci2k,m,q + αγmηi,k

)

+

Nr
∑

n=1

Ns
∑

k=1

Q
∑

p=1

2
∑

i=1

1

cirk,n,p + δnηi,k
(4.31)

s.t.
Ns
∑

m=1

βm ≤ p1 (4.32)

Ns
∑

m=1

γm ≤ p2 (4.33)

α

(

Ns
∑

m=1

κ1,mβm +
Ns
∑

m=1

κ2,mγm

)

+
Nr
∑

n=1

δn + αLNr ≤ pr (4.34)

α > 0, βm ≥ 0, γm ≥ 0, m = 1, · · · , Ns, δn ≥ 0, n = 1, · · · , Nr (4.35)

where β , [β1, · · · , βNs
]T , γ , [γ1, · · · , γNs

]T , and δ , [δ1, · · · , δNr
]T .

Given that ci1k,m,q, c
i2
k,m,q, c

ir
k,m,q, and ηi,k are known variables with fixed α, it can

be observed that the fractions in the objective function (4.31) are monotonically

decreasing and convex functions with respect to βm, γm, and δn. Moreover,

when α is fixed, the constraints in (4.32)-(4.35) are linear inequality constraints.

Therefore, with fixed α, the problem (4.31)-(4.35) with respect to βm, γm, and

δn is a convex optimization problem where the optimal βm, γm, and δn can be

efficiently obtained through the KKT optimality conditions [99] of the problem
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(4.31)-(4.35). The gradient conditions are given by

Ns
∑

k=1

2Q−1
∑

q=1

2
∑

i=1

αηi,k
(

ci1k,m,q + αβmηi,k
)2 = µ1 + µ3ακ1,m, m = 1, · · · , Ns (4.36)

Ns
∑

k=1

2Q−1
∑

q=1

2
∑

i=1

αηi,k
(

ci2k,m,q + αγmηi,k
)2 = µ2 + µ3ακ2,m, m = 1, · · · , Ns (4.37)

Ns
∑

k=1

Q
∑

p=1

2
∑

i=1

ηi,k
(

cirk,n,p + δnηi,k
)2 = µ3, n = 1, · · · , Nr (4.38)

where µi ≥ 0, i = 1, 2, 3, are Lagrange multipliers such that the complementary

slackness conditions given by

µ1

(

p1 −
Ns
∑

m=1

βm

)

= 0 (4.39)

µ2

(

p2 −
Ns
∑

m=1

γm

)

= 0 (4.40)

µ3

(

pr − αNL−
Nr
∑

n=1

δn − α

Ns
∑

m=1

κ1,mβm − α

Ns
∑

m=1

κ2,mγm

)

= 0 (4.41)

are satisfied.

When α and µi, i = 1, 2, 3, are fixed, the non-negative βm, γm, m = 1, · · · , Ns,

and δn, n = 1, · · · , Nr, can be found by using the bi-section search, as the LHS

of (4.36), (4.37), and (4.38) are monotonically decreasing functions of βm, γm,

and δn, respectively. An outer bi-section search is applied to find the optimal

µi, i = 1, 2, 3, since the LHS of (4.32) and (4.33) are increasing functions of βm

and γm, respectively, and the LHS of (4.34) is an increasing function of βm, γm,

and δn. Moreover, in (4.36), βm is a monotonically decreasing function of µ1 and

µ3, γm is monotonically decreasing with respect to µ2 and µ3 in (4.37), while in

(4.38), δn is a monotonically decreasing function of µ3.

When α is not fixed, i.e., α is an optimization variable, the problem (4.31)-

(4.35) as a whole is not a convex optimization problem. However, the following

theorem states that (4.31) is a unimodal function of α.

Theorem 4.2: The objective function (4.31) subjecting to (4.32)-(4.35) is a

unimodal (quasi-convex) function with respect to α.

Proof: See Appendix 4.B. ✷

To verify Theorem 4.2, a plot of the MSE value over a range of feasible values

of α is shown in Fig. 4.2. We consider the case where all nodes have the same
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Figure 4.2: NMSE versus α for different p1 = p2 and pr with N = 2 and Q = 4.

number of antennas, i.e., Ns = Nr = N = 2, and Q = 4. Fig. 4.2 shows the

NMSE versus α for different p1 = p2 and pr. Note that the NMSE is obtained

by dividing (4.31) with L = (5Q− 2)N . It can be seen from Fig. 4.2 that (4.31)

is a unimodal function of α. For a unimodal function, the minimum value can

be efficiently found by the GSS [100] technique. Hence, the optimal α for the

problem (4.31)-(4.35) can be found by applying the GSS technique as described

in Table 4.1, where ε is a positive constant close to 0, and φ > 0 is the reduction

factor. It is shown in [100] that the optimal φ = 1.618, also known as the golden

ratio. It can be seen from Fig. 4.2 that the optimal value of α varies with p1, p2,

and pr. For fixed p1 and p2, the optimal α has a larger value when pr increases.

For a given pr, the optimal value of α decreases when p1 and p2 increases.

Since at each iteration, the GSS method reduces the interval containing the

optimal α to 0.618 times of the interval at the preceding iteration, the length of

the interval of uncertainty after the nth iteration is Γn = (0.618)nΓ0, where Γ0 is

the length of the initial feasible interval [100]. Therefore, the complexity of the

GSS method depends on the number of iterations, which is determined by the

desired accuracy.
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Table 4.1: Procedure of applying the golden section search (GSS) to find the
optimal α in the problem (4.31)-(4.35).

1. Set a feasible bound [a, b] on α.

2. Define c1 = (φ− 1)a+ (2− φ)b and c2 = (2− φ)a+ (φ− 1)b.

3. Solve the problem (4.31)-(4.35) for α = c1;
Compute the MSE value defined in (4.31), fMSE(c1) for α = c1.

4. Repeat Step 3 for α = c2.

5. If fMSE(c1) < fMSE(c2), then assign b = c2.
Otherwise, assign a = c1.

6. If |b− a| ≤ ε, then end.
Otherwise, go to step 2.

4.3.3 Retrieving the Multipath Channel Vectors

Based on (4.12) and (4.14), the second-hop channels hir
k,n, i = 1, 2 can be directly

obtained from θ̂i,k. The first-hop channels hr1
n,m and hr2

n,m can be estimated based

on θ̂i,k as follows. Since hir
k,n ∗ hr1

n,m = T(hir
k,n)h

r1
n,m, where T(h) stands for a

(2Q− 1)×Q circulant matrix taking [hT , 01×(Q−1)]
T as its first column, we have

Nr
∑

n=1

hir
k,n ∗ hr1

n,m =

Nr
∑

n=1

T(hir
k,n)h

r1
n,m = di1

k,m, k,m = 1, · · · , Ns (4.42)

Nr
∑

n=1

hir
k,n ∗ hr2

n,m =
Nr
∑

n=1

T(hir
k,n)h

r2
n,m = di2

k,m, k,m = 1, · · · , Ns. (4.43)

Equations (4.42) and (4.43) can be represented in matrix form as

Ψirh
r1
m = ei1m, m = 1, · · · , Ns (4.44)

Ψirh
r2
m = ei2m, m = 1, · · · , Ns (4.45)
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where

Ψir ,
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



















T(hir
1,1), · · · , T(hir

1,Nr
)

...
. . .

...

T(hir
Ns,1

), · · · , T(hir
Ns,Nr

)

























, hri
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
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















hri
1,m

...

hri
Nr ,m

























, i = 1, 2,

eijm ,

























dij
1,m

...

dij
Ns,m

























, j = 1, 2. (4.46)

In the following, we develop an LMMSE estimator to retrieve the first-hop

multipath channel vectors {hri
n,m}. Taking into account the estimation errors in

hir
k,m and dij

n,m, we have

hir
k,m = ĥir

k,m + κir
k,m, dij

n,m = d̂ij
n,m + ιijn,m (4.47)

where ĥir
k,m and d̂ij

n,m are the estimates of hir
k,m and dij

n,m, respectively, obtained

from θ̂i,k, and κir
k,m and ιijn,m are the estimation error vectors. Substituting (4.47)

back into (4.44) and (4.45), we have

(

Ψ̂ir +∆i

)

hrj
m = êijm + gij

m, m = 1, · · · , Ns, j = 1, 2 (4.48)
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where
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
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ι
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1,m
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
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



.

We can rewrite (4.48) as

êijm = Ψ̂irh
rj
m + εijm, m = 1, · · · , Ns, j = 1, 2 (4.49)

where εijm is the equivalent estimation error vector given by

εijm , ∆ih
rj
m − gij

m. (4.50)

Using a linear estimator to estimate hrj
m at node i, we have

ĥrj
m = VH

ijmê
ij
m, m = 1, · · · , Ns, j = 1, 2 (4.51)

where Vijm is the weight matrix of the LMMSE estimator at node i. From (4.49)

and (4.51), the sum MSE of the first-hop channel estimation at node i is given

by

MSEi =
2
∑

j=1

Ns
∑

m=1

tr
(

E
[

(ĥrj
m − hrj

m)(ĥrj
m − hrj

m)H
])

=
2
∑

j=1

Ns
∑

m=1

tr
(

E
[

(VH
ijmΨir − INrQ)Rh

rj
m
(VH

ijmΨir − INrQ)
H

+VH
ijmRε

ij
m
Vijm

])

(4.52)

where R
ε
ij
m
, E

[

εijm
(

εijm
)H
]

is the estimation error covariance matrix and R
h
rj
m
,

E
[

hrj
m

(

hrj
m

)H
]

is the covariance matrix of hrj
m . From (4.46), we have

R
h
rj
m
= Bdiag[Drj

1,m, · · · ,Drj
Nr ,m

], m = 1, · · · , Ns, j = 1, 2
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where Drj
n,m , diag[σrj

n,m,1, · · · , σrj
n,m,Q].

The estimation error covariance matrix R
ε
ij
m
is obtained from (4.50) as

R
ε
ij
m

= E
[

(

∆ih
rj
m − gij

m

) (

∆ih
rj
m − gij

m

)H
]

= E
[

∆iRh
rj
m
∆H

i

]

+ E
[

gij
m

(

gij
m

)H
]

, m = 1, · · · , Ns, j = 1, 2.

Due to the circulant structure of ∆i and the fact that R
h
rj
m
is a diagonal matrix,

we have

R
ε
ij
m
= Bdiag

[

R1,m
i,j , · · · ,RNs,m

i,j

]

+R
g
ij
m

m = 1, · · · , Ns, j = 1, 2

where R
g
ij
m
= E

[

gij
m (gij

m)
H
]

can be obtained from (4.30) and Rk,m
i,j =

∑Nr
n=1 diag(

σrj
n,m∗dκi

k,n
). Here σrj

n,m is defined in the line after (4.19) and dκi
k,n

contains the

diagonal elements of Rκi
k,n

, E
[

κir
k,n

(

κir
k,n

)H
]

, which can be obtained from the

MSE expression (4.30).

The weight matrices Vijm, j = 1, 2, m = 1, · · · , Ns, that minimize MSEi in

(4.52) are given by

Vijm =
(

ΨirRh
rj
m
ΨH

ir +R
ε
ij
m

)−1

ΨirRh
rj
m
. (4.53)

Substituting (4.53) back into (4.52), we obtain the MSE of channel estimation at

node i as

MSEi =
2
∑

j=1

Ns
∑

m=1

tr

(

[

(

R
h
rj
m

)−1
+ΨH

ir

(

R
ε
ij
m

)−1
Ψir

]−1
)

. (4.54)

It can be seen from (4.54) that the MSE of the first-hop channel estimation

depends on the covariance matrix of the second-hop channel estimation error

R
ε
ij
m
. When the MSE of the second-hop channel estimation increases, the MSE

of the first-hop channel estimation also increases.

4.4 Numerical Examples

In this section, we study the performance of the proposed superimposed chan-

nel training algorithm for two-way MIMO relay systems operating in frequency-

selective fading environments through numerical simulations. We consider a

three-node two-way MIMO relay system where all nodes are equipped with the
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same number of antennas, i.e., Ns = Nr = N . For simplicity, we assume that all

channel taps have unit variances. We use the shortest length of training sequence

possible with L = (5Q− 2)N . For all scenarios, the NMSE of channel estimation

at nodes 1 and 2 are computed.

For the first three simulation examples, we assume that all nodes have the

same transmission power pi = p, i = 1, 2, r. In the first example, we investigate

the performance of the superimposed channel training algorithm for different α.

Fig. 4.3 shows the NMSE of the proposed algorithm versus p with different α

when N = 2 and Q = 4. The optimal α curve is obtained by applying the GSS

technique to the proposed superimposed channel training algorithm to obtain the

optimal α for different p. It can be observed from Fig. 4.3 that the optimal α

curve consistently has the lowest MSE level for all p. This proves that the GSS

technique is able to obtain the optimal α at different p efficiently.
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α = 0.01
α = 0.04
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α = 0.1

Figure 4.3: Example 4.1: NMSE versus p for different α with N = 2 and Q = 4.

Interestingly, we notice from Fig. 4.3 that the optimal α varies with respect to

p, indicating that using a constant α is strictly suboptimal. Although the NMSE

with α = 0.06 is close to the NMSE using the optimal α for p between 10dB and

30dB, α = 0.06 yields a higher NMSE than α = 0.04 at p = 5dB. Moreover, for

other simulation examples (e.g. different N and Q), the NMSE with α = 0.06
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Conventional, N = 4, Q = 6

Figure 4.4: Example 4.2: NMSE versus p for different N with Q = 6.

might not be close to the NMSE using the optimal α. In practical systems, a table

containing the value of the optimal α at different p, N , and Q can be constructed

for reference.

In the second example, we study the performance of the proposed superim-

posed channel training algorithm when the optimal α is used under different sim-

ulation parameters. We compare the proposed algorithm with the conventional

two-stage MMSE channel estimation algorithm, where the second-hop channel

matrices are estimated at the first stage by using the training sequence sent from

the relay node, and the first-hop channel matrices are estimated at the second

stage by exploiting the training signals sent from the source nodes [86]. Fig. 4.4

demonstrates the NMSE performance of both methods versus p for different N

and Q = 6. As expected, when the number of antennas increases, the NMSE of

channel estimation at both sides also increases as there are more unknowns to be

estimated. It can also be seen from Fig. 4.4 that the performance of the proposed

algorithm is always better than the conventional two-stage channel estimation

method, especially at high power levels.

Fig. 4.5 demonstrates the NMSE performance of the algorithm proposed in

Section 4.3.3 which retrieves the individual CSI {hir
k,n} and {hri

n,m}. It can be



Chapter 4. Frequency-Selective Two-Way MIMO Relay Systems 72

5 10 15 20 25 30
10

−2

10
−1

10
0

10
1

p (dB)

N
M

S
E

 

 

H
ri
 − N = 2, Q = 6

H
ir
 − N = 2, Q = 6

H
ri
 − N = 4, Q = 6

H
ir
 − N = 4, Q = 6

Figure 4.5: Example 4.2: Individual channel NMSE versus p for different N
with Q = 6.

observed that the NMSE performance for the estimation of {hir
k,n} is always better

than that for the estimation of {hri
n,m}, as the estimation of {hri

n,m} depends on

the estimation of {hir
k,n}.

In the third example, the effect of the number of multipath Q on the perform-

ance of the proposed superimposed channel training algorithm is investigated.

The results are shown in Fig. 4.6 for the case of N = 2. It can be seen that

the NMSE performance of channel estimation improves when Q increases, as all

channel taps are set to have unit variance. It can also be seen from Fig. 4.6 that

such improvement diminishes when Q becomes larger.

The fourth simulation example studies the scenario where the power con-

straints at the source nodes and relay node are different. Fig. 4.7 shows the

NMSE of the proposed algorithm versus p1 = p2 = ps for different fixed pr when

N = 2 and Q = 6. It can be seen that as expected, the proposed algorithm has a

better NMSE performance when the power at the source/relay node is increased.
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Figure 4.6: Example 4.3: NMSE versus Q for different p and N = 2.
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Figure 4.7: Example 4.4: NMSE versus ps for different pr with N = 2 and
Q = 6.
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4.5 Conclusions

We have applied the method of superimposed channel training to two-way MIMO

relay communication systems in frequency-selective fading environments. The

proposed algorithm can efficiently estimate the individual CSI for two-way MIMO

relay systems with frequency-selective fading channels. We also derived the op-

timal structure of the training sequences that minimize the MSE of the channel

estimation and optimize the power allocation between the source and relay train-

ing sequences.

4.A Proof of Theorem 4.1

The MSE in (4.24) can be rewritten as

MSE =

2
∑

i=1

Ns
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k=1

tr
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)
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(4.55)

where

ηi,k ,

(

α

Nr
∑

n=1

Q
∑

j=1

σir
k,n,j + 1

)−1

, i = 1, 2, k = 1, · · · , Ns. (4.56)

It can be seen that (4.55) is minimized only if all off-diagonal matrices of the

second term are zero, i.e.,

ΦH(s)Φ(t) = 0 ΦH(s)Φ(r) = 0 ΦH(r)Φ(t) = 0. (4.57)
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Based on (4.7)-(4.9) and (4.57), we have that for m,n = 1, · · · , Ns, p = 1, · · · , Nr

CH
2Q−1(sm)C2Q−1(tn) = 0, CH

2Q−1(sm)CQ(rp) = 0,

CH
2Q−1(tn)CQ(rp) = 0. (4.58)

Using (4.57), MSE in (4.55) can be written as

MSE =

2
∑

i=1

Ns
∑

k=1

tr
(

[(

Ck
i1

)−1
+ αηi,kΦ

H(s)Φ(s)
]−1

+
[(

Ck
i2

)−1
+ αηi,kΦ

H(t)Φ(t)
]−1

+
[(

Ck
ir

)−1
+ ηi,kΦ

H(r)Φ(r)
]−1
)

.

(4.59)

Since from (4.18) and (4.19), Ck
i1, Ck

i2, and Ck
ir are all diagonal, to minimize

(4.59), ΦH(s)Φ(s), ΦH(t)Φ(t), and ΦH(r)Φ(r) must be diagonal, and together

with (4.7)-(4.9), we have

CH
2Q−1(sm)C2Q−1(sm) = Ds,m, CH

2Q−1(tn)C2Q−1(tn) = Dt,n,

CH
Q (rp)CQ(rp) = Dr,p (4.60)

where Ds,m and Dt,n are (2Q − 1)× (2Q − 1) diagonal matrices, while Dr,p is a

Q×Q diagonal matrix.

It is worth noting that (4.58) and (4.60) do not change the value of sHmsm,

tHmtm, and rHn rn in the constraints (4.25)-(4.27). Moreover, it can be deduced that

tr
(

CQ(sm)D
r1
n,mC

H
Q (sm)

)

in the constraint (4.27) is minimized if CH
Q (sm)CQ(sm)

is diagonal and its diagonal elements are in the inverse order to that of Dr1
n,m

[101]. Similarly, the term of tr
(

CQ(tm)D
r2
n,mC

H
Q (tm)

)

in (4.27) is minimized if

CH
Q (tm)CQ(tm) is diagonal and its diagonal elements are in the inverse order to

that of Dr2
n,m. Obviously, these two requirements are satisfied by (4.60).

Considering (4.58), (4.60), and the circulant structure ofC2Q−1(sm),C2Q−1(tn),

and CQ(rp), we have

Ds,m = βmI2Q−1, Dt,n = γnI2Q−1, Dr,p = δpIQ

where sHmsm = βm, t
H
n tn = γn, and rHp rp = δp. ✷
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4.B Proof of Theorem 4.2

By introducing ξ1,m , αβm, ξ2,m , αγm, m = 1, · · · , Ns, the problem (4.31)-

(4.35) can be equivalently rewritten as

min
ξ1,ξ2,δ,α

Ns
∑

m=1

Ns
∑

k=1

2Q−1
∑

q=1

2
∑

i=1

(

1

ci1k,m,q + ξ1,mηi,k
+

1

ci2k,m,q + ξ2,mηi,k

)

+
Nr
∑

n=1

Ns
∑

k=1

Q
∑

p=1

2
∑

i=1

1

cirk,n,p + δnηi,k
(4.61)

s.t. 1Tξi ≤ αpi, i = 1, 2 (4.62)

κT
1 ξ1 + κT

2 ξ2 + 1Tδ ≤ pr − αLNr (4.63)

α > 0, ξi,m ≥ 0, i = 1, 2, m = 1, · · · , Ns, δn ≥ 0, n = 1, · · ·, Nr (4.64)

where κi , [κi,1, · · · , κi,Ns
]T , ξi , [ξi,1, · · · , ξi,Ns

]T , i = 1, 2, and 1 is a column

vector of all ones with a commensurate dimension.

Let us first ignore the effect of α on all ηi,k by treating them as known variables.

Then the problem (4.61)-(4.64) becomes a convex optimization problem, as (4.61)

is a convex function of ξ1, ξ2, δ, and (4.62)-(4.64) are linear inequality constraints.

When α has a sufficiently small value, the value of (4.61) is strongly governed by

the constraints in (4.62), since the constraint (4.63) is inactive compared with the

constraints in (4.62) for small value of α. Once α increases from a small value, the

feasible region specified by (4.62) expands, and thus, the value of (4.61) decreases.

On the other hand, when α is large (close to pr/(LNr)), the value of (4.61) is

strongly governed by the constraint (4.63), as the constraints in (4.62) are inactive

compared with that of (4.63) when α is large. Once α decreases from a large value,

the feasible region specified by (4.63) expands, leading to the decreasing of (4.61).

Now we consider the effect of α on ηi,k. It can be seen from (4.56) that

ηi,k monotonically decreases with increasing α, and (4.61) increases when ηi,k

decreases. From the analysis above, it can be deduced that when α increases

from a significantly small positive number, the objective function (4.61) starts to

decrease since the potential decrease of (4.61) due to the expanded feasible region

of (4.62) dominates the potential increase of (4.61) caused by the decreasing ηi,k.

The value of (4.61) keeps decreasing till a ‘turning point’ where the decreasing of

ηi,k starts to dominate the effect of relaxed feasible region in (4.62). After such
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turning point, the value of (4.61) is monotonically increasing with an increasing α.

Therefore, the objective function (4.31) subjecting to (4.32)-(4.35) is a unimodal

function with respect to α. ✷



Chapter 5

Blind Channel Estimation for

MIMO Relay Systems

In this chapter, we propose a blind channel estimation and signal retrieving al-

gorithm for two-hop MIMO relay systems. We first introduce the background

knowledge on blind channel estimation for one-way MIMO relay systems in Sec-

tion 5.1. The system model of a one-way MIMO relay system is presented in

Section 5.2. We propose a new blind channel estimation algorithm which in-

tegrates two BSS methods to estimate the individual CSI of the source-relay

and relay-destination links. In particular, a first-order Z-domain precoding tech-

nique is developed in Section 5.3 for the blind estimation of the relay-destination

channel matrix, where the signals received at the relay node are pre-processed

by a set of precoders before being transmitted to the destination node. With

the estimated signals at the relay node, we propose an algorithm based on the

constant modulus and signal mutual information properties in Section 5.4 to es-

timate the source-relay channel matrix. Compared with training-based MIMO

relay channel estimation approaches, the proposed algorithm has a better band-

width efficiency as no bandwidth is wasted for sending the training sequences.

Numerical examples are shown in Section 5.5 to demonstrate the performance

of the proposed algorithm. Conclusions are drawn in Section 5.6. We show the

proof of Theorem 5.1 and Corollary 5.1 in Section 5.A and 5.B, respectively.

78
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5.1 Introduction

In general, there are two types of channel estimation techniques, which are

training-based channel estimation and blind channel estimation. Several training-

based channel estimation algorithms have been proposed in Chapter 2, 3, and 4.

A tensor-based channel estimation algorithm is developed in [102] for a two-way

MIMO relay system. Since the algorithm in [102] exploits the channel reciprocity

in a two-way relay system, its application in one-way MIMO relay systems is not

straightforward.

The main drawback of the training-based channel estimation algorithms is

the high cost involved in sending the training sequences, considering the limited

bandwidth available for wireless communication. Moreover, in some applica-

tions such as asynchronous wireless network and message interception, training-

based algorithms are unrealistic and not suitable for implementation [71], [72].

In these applications, blind channel estimation techniques, which do not require

training sequences, become important. Recursive least squares (RLS) and least

mean squares (LMS) subspace-based adaptive algorithms were proposed in [73]

for blind channel estimation in code-division multiple access (CDMA) systems. A

subspace-based blind channel estimation algorithm with reduced time averaging

was proposed in [74] for MIMO-OFDM systems. However, the algorithms in [73]

and [74] were developed for point-to-point (single-hop) communication systems,

and the extension to MIMO relay systems is not straightforward. A blind chan-

nel estimation based on the deterministic maximum likelihood (DML) approach

was developed in [75] for two-way relay networks with constant-modulus signal-

ing. However, this algorithm only estimates the cascaded source-relay-destination

channel in a single-input single-output (SISO) relay system, and does not provide

the estimation of the individual second-hop channel in MIMO relay systems which

is important for the optimal receiver design at the destination node.

In this chapter, we develop a blind channel estimation algorithm for two-hop

MIMO relay communication systems by exploiting the link between BSS and

channel estimation. BSS techniques are able to separate a mixture of signals

into individual source signals, without the knowledge (or little knowledge) of the

source signals or the channel between the source and receiver. The proposed
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algorithm integrates two BSS methods to estimate the instantaneous CSI for the

individual source-relay and relay-destination links. We would like to note that

channel matrices of the first-hop and second-hop are estimated at the destina-

tion node. The advantage of directly estimating both channel matrices at the

destination node is to avoid sending the CSI from the relay node to the destina-

tion node [68], [82]. As the blind channel estimation algorithm we proposed uses

the communication data for channel estimation, unlike [86], there is no need for

sending training signal from the relay node to the destination node. Therefore,

the proposed algorithm does not require more signalling bits.

In particular, we first develop a first-order Z-domain precoding technique for

the blind estimation of the relay-destination channel matrix using signals received

at the destination node. In this algorithm, the signals received at the relay

node are filtered by properly designed precoders before being transmitted to the

destination node. By utilizing the Z-domain properties of the precoded signals, an

estimation criterion is derived to recover the relay-destination channel matrix and

signals received at the relay node. Note that in this algorithm, the order of the

precoders is fixed to one, while a second-order Z-domain precoding algorithm was

developed in [76] for blind separation of spatially correlated signals. Obviously,

the computational complexity of the first-order precoder is smaller than that of

the second-order precoder.

With the estimated received signals at the relay node, we then develop a blind

channel estimation algorithm based on the constant modulus and signal mutual

information (MI) properties to estimate the source-relay channel matrix. The

constant modulus property of many modulated communication signals such as

phase-shift keying (PSK) and quadrature amplitude modulation (QAM) is ex-

ploited in this blind estimation algorithm. However, using the constant modulus

property of signals alone does not guarantee the complete separation of the source

signals and the channel matrix, as the constant modulus algorithm might capture

the same signal even though there are multiple signal streams. To overcome this

problem, we minimize a cost function which includes the MI of the estimated

signals in addition to the constant modulus property, to ensure that all estimated

signals are distinct. This algorithm does not have the problem of estimation error
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propagation as in [103] and [104]. A similar method was adopted in [72] for the

extraction of unknown source signals, essentially in single-hop (point-to-point)

MIMO wireless networks.

Comparing the proposed blind channel estimation algorithm with the training-

based channel techniques, the former one has a better bandwidth efficiency as all

the bandwidth is used for the transmission of the communication signals. We

would like to note that the proposed algorithm can be applied in two-hop MIMO

relay systems with multiple distributed source nodes and multiple distributed

relay nodes.

5.2 System Model

Let us consider a three-node two-hop MIMO communication system where the

source node transmits information to the destination node through a relay node as

shown in Fig. 5.1. The source, relay, and destination nodes are equipped with Ns,

Nr, and Nd antennas, respectively. We would like to mention that the algorithm

developed in this chapter can be easily extended to MIMO relay systems with

multiple sources and relay nodes. In this chapter, we assume that the direct link

between the source node and the destination node is sufficiently weak and thus

can be ignored. This scenario occurs when the direct link is blocked by obstacles,

such as tall buildings or mountains.

H1 H2

Source Relay Destination

s(n)
vr(n)

yr(n)
vd(n)

y(n)

1 Ns 1 Nr 1 Nd

Figure 5.1: Block diagram of a general two-hop MIMO relay communication
system.

The communication process is completed in two time slots. In the first time

slot, the source signal vector s(n) = [s1(n), s2(n), · · · , sNs
(n)]T is transmitted
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from the source node. The signal vector received at the relay node can be ex-

pressed as

yr(n) = H1s(n) + vr(n) (5.1)

where yr(n) is the Nr×1 received signal vector, H1 is the Nr×Ns MIMO channel

matrix between the source node and the relay node, and vr(n) is the Nr×1 noise

vector at the relay node.

In the second time slot, each received signal stream in yr(n) is preprocessed

separately by a first-order precoder pi(z) as

pi(z) = 1− riz
−1, i = 1, · · · , Nr (5.2)

where ri is the zero of the precoder pi(z). Note that all zeros are distinct and

satisfy 0 < |ri| < 1, for i = 1, · · · , Nr, and are known at the destination node.

From (5.2), the ith precoded signal at the relay node can be written as

xi(n) = pi(z)yr,i(n)

= yr,i(n)− riyr,i(n− 1), i = 1, · · · , Nr (5.3)

where yr,i(n) is the ith element of yr(n). It is worth noting that the precoding

operation (5.3) can be readily implemented at physically distributed relay nodes,

as there is no need for cooperation among different signal streams. The first-

order precoding operation in (5.3) serves for the blind estimation of the relay-

destination channel matrix, where the estimation criterion will be derived by

exploiting the Z-domain properties of the precoders as shown in Section 5.3.

The precoded signal vector x(n) = [x1(n), x2(n), · · · , xNr
(n)]T is transmitted

to the destination node, and the received signal vector at the destination node

can be expressed as

y(n) = H2x(n) + vd(n) (5.4)

where H2 is the Nd ×Nr channel matrix between the relay node and the destin-

ation node and vd(n) = [vd,1(n), vd,2(n), · · · , vd,Nd
(n)]T is the noise vector at the

destination node. We assume that:

1. All noises are i.i.d. AWGN.

2. The source signals in s(n) are temporally white and have constant modulus.
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3. The noises are independent of the source signals.

4. The number of antennas at the receiving sides is equal or greater than that

of the transmitting sides, i.e., Nd ≥ Nr ≥ Ns.

The model in (5.4) has a similar structure to the classical BSS problem. In

BSS techniques, signal separation is usually achieved by exploiting the statist-

ical properties of the source signals, either based on the higher-order statistics

(HOS) or second-order statistics (SOS). Independent component analysis (ICA)

is one example of the HOS-based BSS methods, and is generally applied for non-

Gaussian source signals. One of the drawbacks of the HOS-based methods is the

large number of data samples required for a satisfactory result. On the contrary,

the number of data samples required by the SOS-based BSS methods is gener-

ally much smaller than the HOS-based BSS techniques. However, the SOS-based

BSS methods usually require the source signals to be mutually uncorrelated. This

limits the application of the SOS-based BSS methods in MIMO relay communic-

ation systems as the signals received at the relay node (yr in (5.1)) are mutually

correlated.

A second-order precoding-based BSS algorithm has been developed in [76]

to separate mutually correlated sources. However, this algorithm might not be

applicable to MIMO relay systems. This is because the algorithm in [76] does

not allow any source signal to be linear combination of the other source signals,

while in a MIMO relay system, the received signal at the relay node (5.1) is a

linear combination of the source signals. Thus, when the noise at the relay node

is sufficiently small, the signal at the relay node does not satisfy the requirement

of the second-order precoding technique. This motivates us to develop the first-

order precoding technique for blind channel estimation in MIMO relay systems

as presented in the next section.
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5.3 First-Order Z-Domain Precoding Based Chan-

nel Estimation

In this section, we develop a first-order Z-domain precoding algorithm for the

blind estimation of the relay-destination channel matrix H2. The main idea of

this approach is to preprocess the received signals at the relay node with the first-

order Z-domain precoders before retransmitting them to the destination node.

Then, by utilizing the Z-domain properties of the precoders, this blind channel

estimation aims to find a separation matrix B1 to separate x(n) and H2 in (5.4)

with only the observable output at the destination node y(n). Compared with

[76], the first-order precoding technique requires less transmission time at the

relay node and simplifies the implementation of the precoders at the relay node

in practical MIMO relay systems.

Let B1 = [b1,1,b1,2, · · · ,b1,Nr
] be an Nd ×Nr matrix, the desired outcome of

the blind channel estimation algorithm is given by

x̂(n) = BH
1 y(n) = Λx(n) +BH

1 vd(n) (5.5)

where x̂(n) is an estimation of the precoded signal vector and Λ , BH
1 H2 is a

diagonal matrix of scaling ambiguity inherited in the blind estimation algorithm.

Note that the permutation ambiguity usually associated with BSS methods does

not exist in (5.5) due to the filtering operation (5.3) at the relay node before

retransmitting the signals, as each signal stream in yr(n) is preprocessed by a

distinct precoder. The scaling ambiguity can be resolved, for example, through

normalization as in [83] and [105]. Once the separation matrix B1 is obtained,

H2 and yr(n) can be efficiently estimated as shown later on. In the following sub-

section, we will first propose an estimation criterion by exploiting the Z-domain

properties of the precoders and find the separation matrix B1 based on this cri-

terion.
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5.3.1 Estimation Criterion

Let us define the autocorrelation matrix of yr(n) at time lag k as

Cyryr
(k) = E

[

yr(n)yr(n− k)H
]

= H1Css(k)H
H
1 +Cvrvr

(k) (5.6)

where Css(k) = E
[

s(n)s(n − k)H
]

and Cvrvr
(k) = E

[

vr(n)vr(n − k)H
]

are the

autocorrelation matrices of s(n) and vr(n), respectively. Note that Cvrvr
(k) = 0

for k 6= 0 as the noises are temporally independent. Based on (5.6), the power

spectral matrix of yr(n) is defined as

Qyryr
(z) =

∞
∑

k=−∞
Cyryr

(k)z−k. (5.7)

As the noise covariance matrix at the relay node Cvrvr
(0) is of full rank, the

following proposition is established.

Proposition 5.1: The power spectral matrix Qyryr
(z) is of full rank at

z = ri for i = 1, · · · , Nr.

Let us denote the autocorrelation matrices of y(n) and vd(n) as Cyy(k) and

Cvdvd
(k), respectively. It follows from (5.4) that

Cyy(k) = E
[

y(n)y(n− k)H
]

= H2Cxx(k)H
H
2 +Cvdvd

(k) (5.8)

where Cxx(k) = E
[

x(n)x(n − k)H
]

is the autocorrelation matrix of x(n) and

Cvdvd
(k) = E

[

vd(n)vd(n − k)H
]

= 0 for k 6= 0 as the noises are temporally

independent. Similarly, the power spectral matrix of y(n) can be derived based

on (5.3), (5.7), and (5.8) as

Qyy(z) =

∞
∑

k=−∞
Cyy(k)z

−k

= H2Qxx(z)H
H
2 +Qvdvd

(z)

= H2P(z)Qyryr
(z)P(z−1)HHH

2 +Qvdvd
(z) (5.9)

where Qxx(z) =
∑∞

k=−∞Cxx(k)z
−k and Qvdvd

(z) =
∑∞

k=−∞Cvdvd
(k)z−k are the

power spectral matrices of x(n) and vd(n), respectively, and P(z) = diag(p1(z),

p2(z), · · · , pNr
(z)) is a diagonal matrix.
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Let us introduce

Ti(z) = Pi(z)Qyryr
(z)P(z−1)H , i = 1, · · · , Nr

where Pi(z) is the matrix P(z) with the ith diagonal entry replaced by zero, i.e.,

Pi(z) = diag(p1(z), · · · , pi−1(z), 0, pi+1(z), · · · , pNr
(z)). (5.10)

It can be shown that for any ri,

rank(Pi(ri)) = Nr − 1

while the matrix P(r−1
i )H is of full rank, since r−1

i is not a zero of any precoder.

It can be shown using (5.10) that all elements in the ith row of Ti(ri) are zero.

Using these results and Proposition 5.1, the following lemma can be established.

Lemma 5.1: The rank of Ti(ri) is Nr − 1, for i = 1, · · · , Nr, and all rows of

Ti(ri) except for the ith row are linearly independent.

Let H2,i be equal to H2 with the ith column replaced by a zero vector, i.e.,

H2,i = [h2,1, · · · ,h2,i−1, 0,h2,i+1, · · · ,h2,Nr
]. (5.11)

We can rewrite (5.9) as

Qyy(ri) = H2P(ri)Qyryr
(ri)P(r−1

i )HHH
2 +Qvdvd

(ri)

= H2,iPi(ri)Qyryr
(ri)P(r−1

i )HHH
2 +Cvdvd

(0)

= H2,iTi(ri)H
H
2 +Cvdvd

(0). (5.12)

Assuming thatCvdvd
(0) can be estimated, which will be shown later, and removed

from (5.12), we have

Q̄yy(ri) = H2,iTi(ri)H
H
2 . (5.13)

The following theorem establishes the estimation criterion for our blind channel

estimation algorithm.

Theorem 5.1: For i = 1, · · · , Nr, b1,i is an Nd×1 separation vector ensuring

bH
1,iH2 = [0, · · · , 0, ci, 0, · · · , 0], ci 6= 0 (5.14)

if and only if

{

bH
1,iQ̄yy(ri) = 0 (5.15)

bH
1,iCyy(1)b1,i 6= 0. (5.16)
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Proof: See Appendix 5.A. ✷

Theorem 5.1 holds when the autocorrelation matrix of y(n) has a time lag

of τ = 1, i.e., Cyy(1). Interestingly, it is shown in the following corollary that

Theorem 5.1 is not valid for Cyy(τ) with other time lag values.

Corollary 5.1: Theorem 5.1 does not hold for Cyy(τ), τ 6= 1.

Proof: See Appendix 5.B. ✷

It can be seen that the proposed first-order precoding algorithm has differ-

ent requirements on the selection of parameters compared with the second-order

precoding algorithm in [76]. The implementation of the first-order Z-domain

precoding based blind channel estimation algorithm is shown in the following

subsection.

5.3.2 Algorithm Implementation

The following blind channel estimation procedures are applied to obtain the relay-

destination channel matrix H2.

1. Compute the autocorrelation matrix of y(n) as

Cyy(k) ≈
1

L

L−1
∑

n=0

y(n)y(n− k)H (5.17)

where L ≥ Nd is the number of samples of the received signal.

2. Compute the power spectral matrix of y(n) as

Qyy(ri) ≈
∑

k

Cyy(k)r
−k
i , i = 1, · · · , Nr. (5.18)

3. Estimate the noise covariance matrix Cvdvd
(0). It follows from (5.8) that

Cyy(0) = H2Cxx(0)H
H
2 +Cvdvd

(0). (5.19)

Since the noises are assumed to be i.i.d. white Gaussian, we have

Cvdvd
(0) = σ2

vd
INd

(5.20)

where σ2
vd

is the noise variance. Let us introduce the EVD of

Cyy(0) = UYΛYU
H
Y (5.21)
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where UY is the unitary eigenvector matrix and ΛY is the diagonal eigen-

value matrix with descending diagonal elements. Obviously, from (5.19)

there is

ΛY = ΛX + σ2
vd
INd

(5.22)

where ΛX is the eigenvalue matrix of H2Cxx(0)H
H
2 with descending diag-

onal elements.

If Nd > Nr, i.e., H2 is a tall matrix, from (5.22), we have

λy,i = λx,i + σ2
vd
, i = 1, · · · , Nr

λy,i = σ2
vd
, i = Nr + 1, · · · , Nd (5.23)

where λy,i, i = 1, · · · , Nd, and λx,j, j = 1, · · · , Nr, are the diagonal elements

of ΛY and ΛX , respectively. From (5.23), we can estimate σ2
vd

as

σ2
vd

=
1

Nd −Nr

Nd
∑

i=Nr+1

λy,i. (5.24)

If Nd = Nr, i.e., H2 is a square matrix, the noise covariance matrix can

be estimated prior to the transmission of data, i.e., when y(n) = vd(n),

n = 1, · · · , J , we have

Cvdvd
(0) ≈ 1

J

J−1
∑

n=0

y(n)y(n)H .

4. Estimate Q̄yy(ri) as

Q̄yy(ri) , Qyy(ri)−Cvdvd
(0), i = 1, · · · , Nr. (5.25)

5. Obtain separation matrix B1 as follows. From Lemma 5.1, it can be seen

that Q̄yy(ri) has a rank of Nr − 1. Since Q̄yy(ri) is an Nd × Nd matrix,

there are Nd − Nr + 1 zero singular values. As we assume Nd ≥ Nr, there

exists at least one zero singular value. Let Vi be an Nd × (Nd − Nr + 1)

matrix whose columns consist of the Nd −Nr + 1 left singular vectors cor-

responding to the zero singular values of Q̄yy(ri), and column vector ui be

the eigenvector corresponding to any nonzero eigenvalue λ of VH
i Cyy(1)Vi.

It can be proven that

uH
i V

H
i Q̄yy(ri) = 0
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and

uH
i V

H
i Cyy(1)Viui = λuH

i ui 6= 0.

Then, the separation vector b1,i can be selected as bH
1,i = uH

i V
H
i . The

operations in this step are carried out for i = 1, · · · , Nr.

6. The precoded signals can be estimated by

x̂(n) = BH
1 y(n), n = 1, · · · , L. (5.26)

7. The relay-destination channel matrix is estimated as

Ĥ2 = YX̂† (5.27)

where Y = [y(1),y(2), · · · ,y(L)] and X̂ = [x̂(1), x̂(2), · · · , x̂(L)]. Note

that since L ≥ Nr, we have the right inverse of X̂ as

X̂† = X̂T (X̂X̂T )−1. (5.28)

5.4 Channel Estimation Based on Signal MI Mod-

ified Constant Modulus Algorithm

In this section, we develop a signal MI modified constant modulus algorithm to

estimate the first-hop channel matrix H1. Based on the estimated precoded sig-

nals x̂i(n), i = 1, · · · , Nr, the signals received at the relay node can be estimated

by

ŷr,i(n) = x̂i(n) + riŷr,i(n− 1), i = 1, · · · , Nr. (5.29)

Let us introduce an Nr ×Ns separation matrix B2 and let

ŝ(n) = BH
2 ŷr(n) = Cs(n) +BH

2 vr(n) (5.30)

where ŝ(n) is the estimated source signal vector and C , BH
2 H1. This blind

channel estimation algorithm aims to obtain the separation matrix B2 in order

to recover the first-hop channel H1, only from the estimated relay channel output

signals ŷr(n). Obviously, the estimation of H1 is affected by the accuracy of the
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estimation of yr(n). Due to the unaccessible source signals, there are inherent

scaling and permutation ambiguities in this algorithm, i.e.,

C = BH
2 H1 = P∆

where P is a permutation matrix and ∆ is a diagonal matrix.

5.4.1 Development of the Algorithm

The general cost function for the constant modulus algorithm is given by

Ns
∑

i=1

E
[

(|ŝi(n)|2 − γ)2
]

where ŝi(n) is the ith element of ŝ(n) and γ is a priori constant dispersion. As

mentioned earlier, the constant modulus algorithm is capable of retrieving one

source signal at a time. However, it does not guarantee the extraction of all

source signals as the constant modulus algorithm might extract the same signal.

Similar to [72], we propose to exploit the MI property of the estimated signals,

along with the constant modulus algorithm, to ensure that the channel matrix

and source signals are completely separated. In particular, the following cost

function with the addition of the MI term is minimized

J(B2) =
Ns
∑

i=1

E
[

(|ŝi(n)|2 − γ)2
]

+ β

[

Ns
∑

i=1

log(rii)− log|Rŝŝ|
]

(5.31)

where β is a positive real number that balances the constant modulus term and

the MI term, rii is the diagonal element of Rŝŝ, and Rŝŝ , E
[

ŝ(n)ŝ(n)H
]

is the

covariance matrix of ŝ(n). From [72], we have the following proposition.

Proposition 5.2: The MI term is zero when Rŝŝ is a diagonal matrix, i.e.,

when the elements of ŝ(n) are uncorrelated.

Proposition 5.2 is important to ensure that all source signals are separated

from the channel matrix H1 at the destination node. The cost function (5.31)

can be rewritten as

J(B2) = E

[

Ns
∑

i=1

(

eTi B
H
2 ŷr(n)ŷr(n)

HB2ei − γ
)2

]

+β

[

Ns
∑

i=1

log
(

eTi B
H
2 Rŷrŷr

B2ei
)

− log
∣

∣BH
2 Rŷrŷr

B2

∣

∣

]
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where Rŷrŷr
, E

[

ŷr(n)ŷr(n)
H
]

is the covariance matrix of ŷr(n) and ei is an

Ns × 1 column vector whose elements are zero except for the ith element which

is one. The gradient of J(B2) is given by

∇J(B2) =
∂J(B2)

∂B∗
2

= 2
Ns
∑

i=1

E
[

(

|ŝi(n)|2 − γ
)

ŷr(n)e
T
i

(

ŷr(n)
HB2ei

)

]

+ βRŷrŷr
B2

[

(diag(Rŝŝ))
−1 −R−1

ŝŝ

]

. (5.32)

5.4.2 Algorithm Implementation

The procedure of applying the signal MI modified constant modulus algorithm

to estimate the source-relay channel matrix H1 is listed below.

1. Initialize B
(0)
2 and R

(0)
ŷrŷr

; Set i = 1.

2. Update R
(i)
ŷrŷr

through

R
(i)
ŷrŷr

= (1− κ)R
(i−1)
ŷrŷr

+ κŷr(i)ŷr(i)
H (5.33)

where 0 < κ < 1 is a small positive real number.

3. Estimate ŝ(i) =
(

B
(i−1)
2

)H

ŷr(i).

4. Calculate R
(i)
ŝŝ =

(

B
(i−1)
2

)H

R
(i)
ŷrŷr

B
(i−1)
2 .

5. From step 1)-4), an estimation of (5.32) is obtained by removing the ex-

pectation operator E in the equation. Let us denote this estimation as

∇̂J(B2).

6. Update the separation matrix B2 as

B
(i)
2 = B

(i−1)
2 − µ∇̂J(B2)|B2=B

(i−1)
2

. (5.34)

7. Repeat steps 2) – 6) for i = 2, 3, · · · , L to obtain B2 = B
(L)
2 .

8. The source signals are estimated as

ŝ(n) = BH
2 ŷr(n), n = 1, · · · , L (5.35)
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9. Estimate the source-relay channel matrix as

Ĥ1 = ŶrŜ
† (5.36)

where Ŷr = [ŷr(1), ŷr(2), · · · , ŷr(L)] and Ŝ = [ŝ(1), ŝ(2), · · · , ŝ(L)]. Note

that since L ≥ Ns, we have the right inverse of Ŝ as

Ŝ† = ŜT (ŜŜT )−1. (5.37)

We would like to note that the algorithm proposed in [72] was developed for

blind signal separation in one-hop systems, whereas in this chapter we apply this

algorithm for channel estimation in two-hop MIMO relay communication systems.

5.5 Numerical Examples

In this section, we study the performance of the proposed blind MIMO relay chan-

nel estimation algorithm through numerical simulations. We consider a three-

node two-hop MIMO relay system with Ns, Nr, and Nd antennas equipped at the

source, relay, and destination node, respectively. For the proposed first-order Z-

domain precoding based channel estimation algorithm, the zeros of the precoders

in (5.2) are chosen as

ri = ηie
jπ(2i−1)

2Nr , i = 1, · · · , Nr (5.38)

where j =
√
−1 and 0 < ηi < 1, i = 1, · · · , Nr. This model ensures that all

zeros are distinct and satisfy 0 < |ri| < 1, i = 1, · · · , Nr, and the angles of zeros

are equally spaced on the Z-plane. For the signal MI modified constant modulus

based channel estimation algorithm, unless explicitly mentioned, the matrices

B
(n)
2 and R

(n)
ŷrŷr

are initialized as B
(0)
2 =

[

INs
, 0Ns×(Nr−Ns)

]H
and R

(0)
ŷrŷr

= INr
,

respectively. We choose µ = 0.0005, κ = 0.05, β = 1, and γ = 1. The simulation

parameters are assigned with reasonable values. The step size of the gradient

descent algorithm µ is chosen to be small enough to ensure the convergence of

the algorithm, while γ is chosen to be 1 as the absolute value of the source signals

has a constant unit value. We assume that the channel matrices H1 and H2 are

complex Gaussian distributed with zero mean and unit variance, and channels do
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Figure 5.2: Example 5.1: BER versus number of samples for different Ns and
Nr with SNRr−d = SNRs−r = 20dB.

not change within one cycle of transmission. All simulation results are averaged

over 1000 random channel realizations. The SNR of the source-relay and relay-

destination link is denoted as SNRs−r and SNRr−d, respectively.

In the first example, we evaluate the performance of the proposed blind chan-

nel estimation algorithm at various number of samples L of the received signal.

Fig. 5.2 shows the bit-error-rate (BER) of the proposed algorithm versus L for

various Ns and Nr with SNRs−r and SNRr−d fixed at 20dB. It can be seen from

Fig. 5.2 that the BER performance of the proposed algorithm improves when L

increases. This is because in the proposed first-order Z-domain precoding based

channel estimation algorithm, the accuracy of estimating the autocorrelation mat-

rix Cyy(k) is affected by L, i.e., the estimated Cyy(k) approaches its theoretical

at a large L. Moreover, the performance of the signal MI modified constant mod-

ulus algorithm improves when a larger L is used as more iterations are involved

in finding the separation matrix. In the following simulation examples, the num-

ber of samples is chosen as L = 5000 to achieve a good tradeoff between the

performance and the computational complexity.

In the second example, we study the performance of the proposed blind estim-

ation algorithms in finding the separation matrix. For each channel realization,
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the mean interference rejection level (MIRL) for the first-order Z-domain precod-

ing algorithm is calculated as

MIRLH2 = 10log10

(

1

Nr(Nr − 1)

Nr
∑

i=1

Nr
∑

j=1,j 6=i

|(BH
1 H2)ij|2

|(BH
1 H2)ii|2

)

(5.39)

while the MIRL of the signal MI modified constant modulus algorithm is given

by

MIRLH1 = 10log10

(

1

Ns(Ns − 1)

Ns
∑

i=1

Ns
∑

j=1

|(C)ij|2 −max
j

(|(C)ij|2)

max
j

(|(C)ij|2)

)

. (5.40)

Note that a smaller value of MIRL indicates a better performance of the blind

channel estimation algorithm.

Fig. 5.3 shows the MIRL for the proposed blind channel estimation algorithms

versus SNRr−d with Ns = Nr = 3, Nd = 4, and SNRs−r = 20dB. It can be seen

from Fig. 5.3 that the MIRL performance of the proposed blind channel estima-

tion algorithm improves with the increase of SNRr−d. Interestingly, the first-order

Z-domain precoding technique performs better than the signal MI modified con-

stant modulus algorithm, as the latter algorithm is affected by the accuracy of

the estimation of yr(n). Note that for the first-order Z-domain precoding tech-

nique, theoretically the derivation of the separation matrix is not affected by the

noise at the destination node, thus only a small improvement is observed when

SNRr−d increases. A plot of the MIRL of the proposed blind channel estimation

algorithms versus SNRr−d for SNRs−r = 20dB and different Ns and Nr is shown

in Fig. 5.4. It can be seen from Fig. 5.4 that when the number of antennas at the

source node and relay node increases, the MIRL also increases.

In the third example, we demonstrate the performance of the proposed blind

channel estimation algorithms in terms of the NMSE. For the relay-destination

channel, the NMSE is calculated as

NMSEH2 =
‖H2 − Ĥ2‖2F

NrNd
. (5.41)

Similarly, the NMSE for the estimation of the source-relay channel matrix is given

by

NMSEH1 =
‖H1 − Ĥ1‖2F

NsNr

. (5.42)
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Figure 5.5: Example 5.3: Normalized MSE versus SNRr−d for different Ns and
Nr with SNRs−r = 20dB.

Similar to [76], the scaling ambiguity in estimating H2 is removed by minimizing

the mean square error between H2 and Ĥ2. The scaling and permutation ambi-

guity in the estimation of H1 is removed by minimizing the mean square error

between s(n) and ŝ(n).

Fig. 5.5 shows the NMSE of the proposed blind estimation algorithm versus

SNRr−d for different Ns and Nr with SNRs−r fixed at 20dB. It can be seen from

Fig. 5.5 that the NMSE of estimating H1 and H2 decreases when the number of

antennas at the source and relay nodes decreases. Note that only small improve-

ment is observed in the estimation of H2 when SNRr−d increases as theoretically,

the estimation of H2 is not affected by SNRr−d. We also investigate the perform-

ance of signal MI modified constant modulus channel estimation scheme when the

algorithm is initialized with random matrices. It can be seen from Fig. 5.5 that

the NMSE of the first-hop channel estimation with random matrices initialization

is very similar to the NMSE when the scheme is initialized with identity matrix.

In the fourth example, we compare the proposed blind MIMO relay channel

estimation algorithm with the training-based MIMO relay channel estimation

algorithm developed in [86], where the training sequences are optimized with

proper adjustment of simulation parameters for a fair comparison. The channel
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Figure 5.6: Example 5.4: Normalized MSE versus SNRr−d for Ns = Nr = 2
and Nd = 4 with SNRs−r = 20dB.

correlation matrices used in the training-based algorithm [86] are set to identity

matrices to have the same statistical distribution as the channel model used in

our proposed blind channel estimation algorithm. Fig. 5.6 shows the NMSE

performance of estimating H2 and H1 versus SNRr−d with SNRs−r = 20dB, Ns =

Nr = 2, andNd = 4. The MSE performance of two algorithms versus SNRr−d with

SNRs−r = 20dB, Ns = Nr = 3, and Nd = 4 is demonstrated in Fig. 5.7. It can

be seen from Figs. 5.6 and 5.7 that at low SNR, the performance of the proposed

algorithm is comparable to that of the training-based algorithm. However, at

high SNR, the training-based algorithm outperforms the proposed algorithm at

the expense of bandwidth efficiency.

Fig. 5.8 illustrates the BER performance of two algorithms versus SNRr−d

when Ns = Nr = 2, Nd = 4, and SNRs−r is fixed at 20dB. As a benchmark, we also

show the BER performance of the MIMO relay system when the channel matrices

are perfectly known. It can be seen from Fig. 5.8 that the BER performance of

our proposed blind channel estimation algorithm is close to the performance of

the training-based algorithm.

Finally, we compare the computational complexity of the proposed blind chan-

nel estimation algorithm and the training-based channel estimation technique.
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The complexity of the first-order Z-domain precoding based channel estimation

algorithm is governed by the EVD and the SVD operations required in deriving

the separation matrix, while the complexity of the signal MI modified constant

modulus algorithm is governed by the matrix inversion operation in the gradi-

ent descent method. Thus, the computational complexity of the proposed blind

channel estimation algorithm can be estimated as O(N3
d + LN3

s ), where the first

term represents the complexity of the first-order Z-domain precoding based chan-

nel estimation algorithm, and the second term is the complexity of the signal MI

modified constant modulus algorithm.

The complexity of the training-based channel estimation technique can be

estimated as O(dνdcN
2
r + dadµ1dλF

Ns + dadµ2dµ3dλS
Nd), where dν, dµ1 , dµ2 , and

dµ3 stand for the number of iterations required to obtain the optimal Lagrangian

multipliers associated with the optimization problem in [86], dc and dλS
represent

the number of bisection operations required to obtain the optimal training se-

quences, dλF
is the number of bisection operations required to derive the optimal

relay amplification matrix, and da stands for the number of iterations required to

find the local optimal solution to the problem.

5.6 Conclusions

We have developed a new blind channel estimation algorithm for two-hop MIMO

relay systems. The proposed algorithm is able to estimate the individual source-

relay and relay-destination CSI at the destination node, which is necessary for

retrieving the source signals at the destination node. In particular, a novel first-

order Z-domain precoding technique has been developed for the blind estimation

of the relay-destination channel matrix. The proposed algorithm has a similar

BER performance to the training-based channel estimation algorithm, and bet-

ter bandwidth efficiency as all the bandwidth is used for sending communication

signals. The proposed algorithm can be extended to other MIMO relay com-

munication systems such as multiuser MIMO relay systems with multiple relay

nodes.



Chapter 5. Blind Channel Estimation for MIMO Relay Systems 100

5.A Proof of Theorem 5.1

We prove Theorem 5.1 through verifying the necessity and sufficiency conditions.

Assuming that (5.14) is satisfied, we prove the necessity of (5.15) as follow

bH
1,iQ̄yy(ri) = bH

1,iH2,iTi(ri)H
H
2 = 0. (5.43)

Since we assumed the source signals to be temporally white, from (5.3), (5.8),

and (5.14), we prove the necessity condition for (5.16) as

bH
1,iCyy(1)b1,i = bH

1,iH2Cxx(1)H
H
2 b1,i

= cic
∗
iE
[

xi(n)xi(n− 1)∗
]

= |ci|2E
[

(

yr,i(n)− riyr,i(n− 1)
)(

yr,i(n− 1)− riyr,i(n− 2)
)∗
]

= |ci|2E
[

− riyr,i(n− 1)yr,i(n− 1)∗
]

= −|ci|2riσ2
i

6= 0

where σ2
i , E[yr,i(n− 1)yr,i(n− 1)∗].

Now we prove the sufficiency of (5.15) and (5.16). Since bH
1,iQ̄yy(ri) = 0, from

(5.13) we have

bH
1,iH2,iTi(ri)H

H
2 = 0. (5.44)

The matrix HH
2 is of full row rank, and thus implying that

bH
1,iH2,iTi(ri) = 0. (5.45)

From Lemma 5.1, all the rows of the matrix Ti(ri) excluding the ith row are

linearly independent, and therefore we obtain that

bH
1,ih2,j = 0, j = 1, · · · , Nr, j 6= i. (5.46)

Subsequently, from (5.11) and (5.46), we have

bH
1,iH2 =

[

0, · · · , 0,bH
1,ih2,i, 0, · · · , 0

]

. (5.47)

Next, we consider bH
1,iCyy(1)b1,i 6= 0. From (5.8), we have

bH
1,iH2Cxx(1)H

H
2 b1,i 6= 0 (5.48)

which implies that bH
1,iH2 6= 0, and from (5.47), we can infer that

bH
1,iH2 = [0, · · · , 0, ci, 0, · · · , 0] (5.49)

where ci = bH
1,ih2,i 6= 0. ✷
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5.B Proof of Corollary 5.1

5.B.1 For τ = 0

For the case of Nd > Nr, the channel matrix H2 has a row-rank deficiency, i.e.,

the rows of H2 are linearly dependent. Subsequently, an Nd × 1 non-zero vector

bi exists such that

bH
i H2 = 0. (5.50)

From (5.13) and (5.50), we have

bH
i Q̄yy(ri) = bH

i H2,iTi(ri)H
H
2 = 0. (5.51)

Based on (5.8) and (5.50), there is

bH
i Cyy(0)bi = bH

i H2Cxx(0)H
H
2 bi + bH

i Cvdvd
(0)bi

= bH
i Cvdvd

(0)bi

= σ2
wb

H
i bi

6= 0. (5.52)

It can be observed from (5.50)-(5.52) that bH
i Q̄yy(ri) = 0 and bH

i Cyy(0)bi 6= 0

do not guarantee (5.14).

5.B.2 For τ ≥ 2

Assuming (5.14) is satisfied, we have

bH
i Cyy(τ)bi = bH

i H2Cxx(τ)H
H
2 bi

= cic
∗
iE
[

xi(n)xi(n− τ)∗
]

= |ci|2E
[

(

yr,i(n)− riyr,i(n− 1)
)(

yr,i(n− τ)− riyr,i(n− τ − 1)
)∗
]

= 0.

This indicates that no separation vector bi can satisfy the condition bH
i Cyy(τ)bi 6=

0 for time lag τ ≥ 2. ✷
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Conclusions and Future Work

In practical MIMO wireless relay communication networks, the knowledge of the

instantaneous CSI is unavailable at both transmitter and receiver. As CSI is

important for the retrieval of the source information and the optimization of

MIMO relay networks, it is necessary to estimate the instantaneous CSI. In this

thesis, several efficient channel estimation techniques have been developed for

cooperative MIMO wireless communication systems. Some final remarks and

possible future works are given in Section 6.1 and Section 6.2, respectively.

6.1 Concluding Remarks

This thesis investigates the channel estimation problem for MIMO relay net-

works using two methods, the training-based scheme and the blind technique.

Chapter 2, 3, and 4 focus on the development of training-based channel estima-

tion algorithm while Chapter 5 addresses the channel estimation issue using the

blind technique. In Chapter 2, a robust channel estimation algorithm for one-

way MIMO relay networks is studied. This robust algorithm incorporates the

effect of the mismatch between the estimated and true relay-destination channel

into the estimation of source-relay channel. It has been proven that the overall

channel estimation algorithm performs better when the mismatch is taken into

consideration.

In Chapter 3, two channel estimation algorithms, which are the superimposed

channel training and two-stage channel estimation schemes, are proposed and

102
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compared for frequency-flat two-way MIMO relay communication systems. The

proposed algorithms are able to estimate the individual channel matrices involved

in the communication efficiently. In comparison, the two-stage channel estima-

tion scheme has a better performance than the superimposed channel training

algorithm at the expense of higher computational complexity.

This work is extended in Chapter 4 by applying the method of superimposed

channel training to a more general situation where two-way MIMO relay commu-

nication networks are operating in the frequency-selective fading environments.

The proposed algorithm can efficiently estimate the individual channel matrices

for two-way MIMO relay networks with frequency-selective fading channels. The

optimal structure of the training sequences and the optimal power allocation

between the source and relay training sequences are derived.

Last but not least, a blind channel estimation algorithm for two-hop MIMO

relay systems is developed in Chapter 5. This algorithm integrates two BSS

methods, namely first-order Z-domain precoding technique and signal MI modi-

fied constant modulus algorithm, to estimate the individual CSI for the source-

relay and relay-destination links. Compared with training-based methods, the

proposed blind channel estimation algorithm has a better spectrum efficiency as

no transmission of training sequence is required.

6.2 Future Works

Several efficient channel estimation algorithms for cooperative MIMO wireless

communication networks have been developed in this thesis. Nonetheless, the

works in this thesis can be further extended in many possible ways. In Chapter 2,

a local optimal solution is found for the channel estimation problem in one-way

MIMO relay network. It will be interesting to develop an algorithm that gives a

global solution to the channel estimation problem in Chapter 2.

Channel estimation problem for MIMO relay networks with frequency-flat

fading channels and frequency-selective fading channels have been investigated

in Chapter 3 and 4, respectively. These works can be extended to consider the

channel estimation issue for MIMO relay networks operating in time-selective
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fading environments, where the users are moving at a high speed.

In Chapter 5, a blind channel estimation algorithm is proposed for one-way

MIMO relay networks. Further research can be done on developing blind channel

estimation algorithms for two-way MIMO relay networks. Moreover, any possible

method to improve the convergence and accuracy of the blind channel estimation

algorithm can be an interesting future work.

This thesis focuses on the MIMO relay networks with the amplify-and-forward

relaying scheme. It will also be interesting to compare the works in this thesis

with the channel estimation algorithms developed for MIMO relay networks with

decode-and-forward relaying scheme in terms of the complexity and performance.

Such tradeoff between the complexity and performance can be investigated to

maximize the benefits of the MIMO relay networks.

In addition, the algorithms derived in this thesis do not consider OFDM mod-

ulated relay networks as an option. The channel estimation problem for MIMO-

OFDM relay networks can be included in future works.

Finally, any novel channel estimation algorithm, either using the training-

based or blind technique, is of great interest.
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