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SUMMARY 

The Platelet Endothelial Cell Adhesion Molecule 1 (PECAM-1) has many functions 

including its roles in leukocyte extravasation as part of the inflammatory response, and 

in the maintenance of vascular integrity through its contribution to endothelial cell-cell 

adhesion. Various heterophilic ligands of PECAM-1 have been proposed. The 

possible interaction of PECAM-1 with glycosaminoglycans (GAGs) is the focus of 

this thesis. The three dimensional structure of the extracellular immunoglobulin (Ig)-

domains of PECAM-1 was constructed using homology modelling and threading 

methods. Potential heparin/heparan sulfate binding sites were predicted on the basis of 

their amino acid consensus sequences and a comparison with known structures of 

sulfate binding proteins. Heparin and other GAG fragments have been docked to 

investigate the structural determinants of their protein binding specificity and 

selectivity. It is predicted that two regions in PECAM-1 appear to bind heparin 

oligosaccharides. A high affinity binding region was located in Ig-domains 2 and 3 

and a low affinity region was located in Ig-domains 5 and 6. These GAG binding 

regions are distinct from regions involved in PECAM-1 homophilic interactions. 

Docking of heparin fragments of different size revealed that fragments as small as a 

pentasaccharide appear to be able to bind to domains 2 and 3 with high affinity. 

Binding of longer heparin fragments suggests that key interactions can occur between 

six sulfates in a hexasaccharide with no further increase in binding affinity for longer 

fragments. Molecular dynamics simulations were also used to characterise and 

quantify the interactions of heparin fragments with PECAM-1. These simulations 

confirmed the existence of regions of high and low affinity for GAG binding and 

revealed that both electrostatic and van der Waals interactions determine the 

specificity and binding affinity of GAG fragments to PECAM-1. The simulations also 

suggested the existence of ‘open’ and ‘closed’ conformations of PECAM-1 around 

domains 2 and 3. 

This is a brief synopsis of the thesis: 

CHAPTER 1. This chapter provides a historical and general introduction about GAGs 

and GAG-binding proteins. The biological characterisation of the interactions of 
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GAGs with various proteins such as cell adhesion molecules is reviewed, with 

particular attention to the biology of PECAM-1 and its implication in heterophilic 

interactions with other molecules including GAGs. The structural and molecular 

modelling studies of GAG-protein interactions are reviewed in detail. 

CHAPTER 2. This chapter discusses the theoretical background of various molecular 

modelling techniques such as homology modelling, threading, ligand-protein docking 

and MM/PBSA. 

CHAPTER 3. This chapter describes how homology modelling and threading 

methods were used to construct a three-dimensional model of PECAM-1. The model 

of PECAM-1 is analysed in detail, including a prediction of its likely heparin/HS 

binding regions. 

CHAPTER 4. This chapter describes how molecular docking was used to model the 

interactions of GAGs with PECAM-1. 

CHAPTER 5. This chapter describes how MM/PBSA simulations were used to 

characterise the interactions of heparin fragments with PECAM-1.  

CHAPTER 6. In this chapter the main conclusions derived from this study are 

outlined and the likely direction of future work is discussed. 
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C h a p t e r  1  

LITERATURE REVIEW 

INTRODUCTION 

The ubiquitous presence of glycosaminoglycans (GAGs) and their interactions with 

numerous immunologically-relevant proteins is now attracting considerable interest as 

a source of new therapeutics for the treatment of infectious diseases, inflammation, 

allergies and cancers. One of the key functions of GAGs is to regulate the activity of 

proteins that they bind. Site-directed mutagenesis, protein sequence mapping using 

synthetic peptides, NMR, X-ray crystallography and molecular modelling have 

assisted in understanding the molecular basis of such interactions. The complexity of 

the interactions occurring between GAGs and proteins is in part due to the 

conformational flexibility and underlying sulfation patterns of GAGs, the binding of 

metal ions to both protein and GAGs and the effects of pH on GAG-protein binding. 

New approaches to carbohydrate synthetic chemistry have allowed the synthesis of 

GAG oligosaccharides and GAG mimetics, some of which may be novel 

glycotherapeutics. This literature review provides an overview of the understanding of   

the structural attributes involved in GAG-protein interactions. The focus of this thesis 

is the interaction of GAGs with PECAM-1, a member of the Ig-super family of 

proteins. 

1.1 THE IMMUNOGLOBULIN SUPERFAMILY 

The immunoglobulin superfamily (IgSF) is a group of proteins recognised as one of 

the largest protein families in vertebrate genomes. All members of the IgSF have at 

least one immunoglobulin domain (Ig-domain). Ig-domains are named after 

immunoglobulin molecules, which have two identical heavy chains and two identical 

light chains connected by disulfide bonds. The immunoglobulin fold was first 

discovered nearly 35 years ago (Poljak et al. 1973). The characteristic structure of an 

Ig-domain which identifies this gene family is a two-layer sandwich of varying 
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number of antiparallel �-strands stabilised by disulfide bridges, taking the form of a 

conserved disulfide bridge packed against a tryptophan or tyrosine amino acid that 

stabilises the Ig-fold. The backbone switches repeatedly between the two �-sheets as 

they form a ‘pin’ structure or "X" arrangement in such a way that the N- and C-

terminal hairpins are facing each other.  

Two basic types of Ig-domains have been defined from crystallographic analysis, 

namely the variable (IgV; Interpro database: IPR013106) and constant (IgV; Interpro 

database: IPR013106) regions (Williams & Barclay 1988). IgV-domains are generally 

longer (with 9 beta-strands) than IgC-domains (with 7 beta-strands), as shown in 

Figure 1.1. The domain structure of a V region is dominated by a series of nine anti-

parallel � strands, connected by variable-length loop sequences and a conserved 

disulfide bridge between strands B and F. The IgV domains encompass five beta 

strands in one sheet and four beta strands in another, whilst the “a” strand can occupy 

a variable position (Bork et al. 1994). The IgC domains have four beta strands in one 

sheet and three on the other. The IgC domain lacks the pair of internal � strands (the c’ 

and c” strands are missing in these domains), but they otherwise assume the same 

general structure with a distinct but overlapping series of conserved residues. The lack 

of this extra pair of c’ and c” strands decreases the distance between the two cysteine 

residues in the strands relative to that of V regions. The Ig domains of some IgSF 

members resemble IgV-domains in their amino acid composition, yet they are similar 

in size to IgC-domains (Harpaz & Chothia 1994). These are the C2-set (constant-2; 

Interpro database: IPR008424) and the I-set (intermediate; Interpro database: 

IPR013098) Ig-domains.  

Proteins of the IgSF carry out numerous functions in the immune system, in cell-cell 

recognition and in structural organisation of muscle (Barclay 2003). IgSF domains are 

known to be present in cell surface receptors such as NCAM (Neural Cell Adhesion 

Molecule) and mediate homophilic (antiparallel inter-digitation of opposing receptor 

or protein molecules on adjacent cells) and heterophilic interactions (to other ligands). 

Members of IgSF share very low sequence similarity. The IgV domains are found in 

myelin membrane adhesion molecules, T-cell surface glycoproteins, junction adhesion 

molecules (JAM), Coxsackie virus, adenovirus Car receptors and viral 

haemagglutinin. IgC domains are found in immunoglobulin light and heavy chains 
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and in the major histocompatibility complex (MHC) class I and II molecules. The C2-

set topology is found primarily in mammalian T-cell surface antigens (Cluster of 

Differentiation) CD2, CD4 and CD80, in Vascular Cell Adhesion Molecule (VCAM) 

and Intercellular Cell Adhesion Molecule (ICAM). I-set topology is the key feature of 

cell adhesion molecules of the Ig-superfamily such as ICAM, VCAM, NCAM (Neural 

Cell Adhesion Molecule), Mucosal Addressin Cell Adhesion Molecule (MADCAM) 

as well as JAM. IgSF members with an I-set topology set have been shown to be 

involved in a variety of cell-cell interactions (Chothia & Jones 1997). PECAM-1, the 

biological target considered in this project is a member the Ig superfamily. 

 

Figure 1.1. Different topologies of the immunoglobulin fold based on the 

composition of beta strands and conserved disulfide bridges. The c-type domain has 

seven strands and v-type domain has nine strands forming a sandwich of 2 sheets. 

The structural core beta strands b, c, e and f (coloured in red) common to most Ig-

domains are surrounded by structurally more variable strands (coloured in green).  

The thin arrows represent the back sheet (a-b-e-d) whereas the thick arrows 

represent the front sheet (g-f-c-c’-c’’). Strand ‘a’ in V-type can assume slightly 

different positions. The figure was taken from Bork et al. (1994). 

1.2 BIOLOGY OF PECAM-1 

PECAM-1/CD31 is a member of the cell adhesion molecule (CAM) subgroup of 

IgSF, and is expressed on the surface of circulating platelets, monocytes, neutrophils 

and a subpopulation of circulating T-lymphocytes. It is also found in CD43+ 

haemopoietic progenitor cells in the bone marrow (Newman 1997). Its mRNA is 

highly expressed in the kidney, lung and trachea and, at lower levels, in the brain, 
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heart and liver. It is not expressed by fibroblasts, epithelial cells or red blood cells (Y. 

Wang et al. 2003). 

1.2.1 Structural features of PECAM-1 

The 130-kD translated sequence of PECAM-1/CD31 contains six extracellular C2-

type Ig-like domains (574 amino acids), one transmembrane domain and a 118-amino 

acid cytoplasmic domain (see Figure 1.2) (Newman 1997, 1999; Newman et al. 

1990). The extracellular domains of PECAM-1 are characterised by the Ig fold. Five 

out of the six Ig domains in PECAM-1 comprise a beta-sandwich made up of seven 

anti-parallel � strands joined with a Greek key topology forming a C2-type fold. 

Domain 5 is incomplete, having � strands that form only one side of the sandwich  

(Newman et al. 1990). When PECAM-1 was cloned, it was assigned a C-set topology; 

however, with the introduction of I-set topologies, new classifications for PECAM-1 

extracellular domains were inevitable. Six disulfide bridges are present in the Ig-

domains of human PECAM-1. The major structural features of the Ig-domains of 

human PECAM-1, as described in Swiss-Prot (P16284), are given in Table 1.1. 

 
 

Figure 1.2. Structural organization of the domains of PECAM-1. The line indicates 

the relative positions of the amino acids with various structural features of PECAM-

1 based on Swiss-Prot (P16284). Ig=Ig-like domains; TM= Transmembrane 

domains; ITIM= Immunoreceptor Tyrosine-based Inhibitory Motifs  

The cytoplasmic tail of PECAM-1 contains amino acid motifs recognised as having a 

role in cell signaling. These motifs are called immunoreceptor tyrosine-based 

inhibitory motifs (ITIMs). This intracellular region contains two tyrosines (Y663 and 

Y686) conforming to the ITIM (I/VxYxxL/V/I>20aa.I/VxxYxxL/V/I) sequence, 

where V is valine, L is leucine, I is isoleucine, Y is tyrosine and X can be any other 

amino acid. These two motifs are separated by more than 20 amino acids. When 

PECAM-1 interacts with a ligand, these ITIM motifs become phosphorylated by 

enzymes of the Src family of kinases, allowing them to recruit other enzymes such as 



 

 5

the phosphotyrosine phosphatases. These phosphatases decrease the activation of 

molecules involved in cell signalling. 

PECAM-1 is differentially glycosylated in both N-linked and O-linked glycosylation 

sites (Newton et al. 1999), which are important features in the regulation of PECAM-

1 cell surface interactions and signal transduction. PECAM-1 is glycosylated to the 

extent that approximately 39% of its molecular weight is attributable to carbohydrates, 

and the mature protein has nine putative consensus asparagine-linked (N-linked) 

glycosylation sites. Other post-translational modifications of PECAM-1 include 

palmitoylation of cysteine 595 (D. E. Jackson 2006) and phosphorylation of the 

cytoplasmic tail (D. E. Jackson 2003).  

Table 1.1. Structural features of human PECAM-1 as described in Swiss-Prot 

(P16284). 

Domain Sequence range in PECAM-1 
Signal 1-27 

Transmembrane 602-620 
Cytoplasmic 621-738 

Ig-like C2-type 1 
Ig-like C2-type 2 
Ig-like C2-type 3 
Ig-like C2-type 4 
Ig-like C2-type 5 
Ig-like C2-type 6 

35-121 
145-233 
236-315 
328-401 
424-493 
499-591 

Disulfide bridges 

57-109 
152-206 
256-304 
347-386 
431-476 
523-572 

N-linked glycosylation sites 52, 84, 151, 301, 320, 344, 356, 453, 551 

 

1.2.2 Genomic organisation of PECAM-1 

PECAM-1 has been mapped to human chromosome 17 in the region 17q23 and to 

mouse chromosome 6. The open reading frame of PECAM-1 is composed of 16 

exons. Exons 1 and 2 encode the 5'-untranslated region and the signal peptide, exons 

3–8 encode six Ig-like homology domains, exon 9 encodes the transmembrane portion 
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of the protein and exons 10–16 encode the cytoplasmic domain. There are several 

alternatively spliced variants of PECAM-1 that are expressed in a cell-type, tissue and 

species-specific pattern in human, rat and mouse. Figure 1.3 shows that there is 79% 

sequence identity between human PECAM-1 and PECAM-1 from mouse, pig, rat and 

bovine. Different isoforms of PECAM-1 are known to arise due to the alternative 

splicing of either the transmembrane or cytoplasmic domain exons (Y. Wang & 

Sheibani 2002; Y. Wang et al. 2003). The human PECAM-1 gene encodes full-length 

human PECAM-1, which is predominant in human tissue and endothelial cells, and 

five other isoforms, which lack exon 12, 13, 14, or 15, or exons 14 and 15 (Figure 

1.4). The PECAM-1 isoform lacking exons 14 and 15 is the predominant isoform in 

murine endothelium. The PECAM-1 isoform lacking exon 13 has been detected in 

human hematopoietic cells and endothelial cells. This isoform is absent in murine 

endothelium. 

1.2.3 PECAM-1 as a therapeutic target 

PECAM-1 has clinical importance in pathological disorders such as thrombosis, 

neuroinflammatory (Kalinowska & Losy 2006) and infectious diseases (Moseley & 

Jackson 2004; Newman 1994, 1999). It is also implicated in numerous functions, 

including angiogenesis (Cao et al. 2002) and neutrophil transmigration and T-cell 

activation (Zehnder et al. 1995). PECAM-1 governs endothelial cell (EC) migration 

during angiogenesis by binding to integrins (DeLisser et al. 1997). Initial studies using 

blocking anti-PECAM-1 antibodies inhibited cytokine and tumour induced 

angiogenesis and suggested that interactions of endothelial PECAM-1 are important in 

the formation of new vessels. This conclusion has been supported by the observation 

of reduced angiogenesis in mice deficient in PECAM-1 expression (O'Brien* et al. 

2004).  

PECAM-1 is a key participant in the adhesion cascade leading to extravasation of 

leukocytes during the inflammatory process. Leukocyte extravasation refers to the 

movement of leukocytes in post-capillary venules from the circulatory system into the 

interstitial fluid, towards the site of tissue damage or infection. The process of 

leukocyte extravasation (Figure 1.5) can be dissected into three distinct phases: 

rolling, adhesion and transmigration. These phases are mediated by the actions of  

 



 

 7

 

 

 

 
 

 

Continue... 

 

 



 

 8

Continued… 

 

 

Figure 1.3. Multiple sequence alignment of PECAM-1 sequences from human, 

mouse, pig, rat and bovine using ClustalX. Residues are coloured according to their 

physicochemical properties. 
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Figure 1.4. Multiple sequence alignment of alternatively spliced isoforms of human 

PECAM-1 using ClustalX. Isoforms of PECAM-1 have difference in their C-terminal 

regions due to the presence or absence of cytoplasmic domain exons. Residues in 

the multiple sequence alignment are colored according to their physicochemical 

properties.
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three distinct classes of adhesion molecules: selectins, integrins and IgSF members 

(Johnson-Leger 2000). Upon encountering an inflammatory stimulus, leukocytes 

move rapidly into the blood, come into contact with the endothelial surface and 

commence rolling along the endothelium. Leukocyte rolling is mediated 

predominantly by selectins and �4-integrins. Rolling leukocytes are able to detect 

chemoattractant molecules such as IL-1, TNF� and chemokines on the endothelial 

surface, inducing cell and integrin activation. Activated �2-integrins such as LFA-1 

and Mac-1 interact with ICAM-1 to mediate the firm adhesion of cells to the 

endothelium. Once adhered, leukocytes emigrate into the extravascular tissue through 

interendothelial junctions.  

 
 

Figure 1.5. Multi-step cascade of leukocyte extravasation. The interendothelial 

junction is closed due to the homophilic binding of adhesion molecules such as 

PECAM-1 and JAM. During the multi-step adhesion cascade, a leukocyte (green in 

color) emigrates into the extravascular tissue resulting in loosening of the junctions. 

PECAM-1 (black bars) is localized on the intercellular junctions of endothelial cells 

directing cells to migrate through the vessel wall via homophilic interactions on the 

leukocyte surface. The figure was extracted from Johnson-Leger et al. (2000).  



 

 11

PECAM-1 is localised on the intercellular junctions of endothelial cells and directs 

cells to migrate through the vessel wall through homophilic interactions on the 

leukocyte surface (Figure 1.5). Once in the interstitial fluid, leukocytes migrate along 

a chemotactic gradient towards the site of injury or infection. Blocking antibodies 

which recognise PECAM-1 can block diapedesis (migration of leukocytes across the 

endothelium upon inflammatory stimulus), with leukocytes being arrested on the 

apical surface of the endothelial cell border. 

PECAM-1 is a target glycoprotein in drug-induced immune thrombocytopenia (Kroll 

et al. 2000). The mechanism behind drug-induced thrombocytopenia is a decrease in 

platelet production caused by drug-dependent antibodies. Targets for drug-dependent 

antibodies are glycoproteins on the cell membrane of the platelets, such as 

glycoprotein (GP) Ib/IX and GPIIb/IIIa, which contain sites for platelet antigens. The 

drug classes that are most often associated with drug-induced immune 

thrombocytopenia are quinine, quinidine, sulfonamides, NSAIDs, anticonvulsants, 

disease modifying antirheumatic drugs and diuretics. Antibodies from patients with 

acute mild thrombocytopenia following treatment with anti-thyroid drug carbimazole 

were found to be specific for PECAM-1 (Kroll et al. 2000). In the same study, 

antibodies from patients with quinidine-induced thrombocytopenia reacted very 

weakly with PECAM-1.  

1.2.4 Role of PECAM-1 in signalling 

PECAM-1 has been shown to serve as a scaffolding molecule in a number of 

signalling pathways. Its cytoplasmic tail becomes phosphorylated on serine and 

tyrosine residues following cellular activation, creating binding sites for SHP-2 (Src 

homology 2-containing tyrosine phosphatases) and perhaps other cytosolic signaling 

molecules (D. E. Jackson 2003) as shown in Figure 1.6. As a scaffold for SHP-2, 

PECAM-1 modulates its recruitment and activation in a number of cellular pathways 

involving catenins, STATs and PI3 kinase. The intracellular interaction of PECAM-1 

with molecules of MAP kinase cascades occur independently of the ITIM motifs, 

whereas interaction of PECAM-1 with calmodulin is dependent on the sequence “599-

RKAKAK-604” in the PECAM-1 intracellular region. 
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Figure 1.6. The intracellular processes activated by PECAM-1 are illustrated.

Phosphorylation of tyrosines Y663/Y686 in the ITIM regions encoded in the 

cytoplasmic region occurs following ligation of PECAM-1 or activation of other 

receptors which may be dependent or independent of the ITIM motifs. The cysteine 

palmitoylation site at amino acid position 595 is also shown.  

1.2.5 Role of PECAM-1 in homophilc and heterophilic interactions 

The interactions of PECAM-1 with its ligands are complex. PECAM-1 exists in 

equilibrium between monomeric and dimeric forms (Sun 2000). It engages in both 

homophilic (antiparallel inter-digitation of opposing PECAM-1 molecules on adjacent 

cells) (Holness & Simmons 1994) and heterophilic binding (to other ligands), 

depending on the conditions of the interaction and the ligands available (Newman 

1997). PECAM-1-PECAM-1 interactions can be both cis (interactions between 

adjacent PECAM-1 molecules in the same membrane) and trans associations 

(interactions between two PECAM-1 molecules in distinct membranes) (Newton et al. 

1997; Zhao & Newman 2001). PECAM-1 trans-homophilic interactions require Ig-

domain 1 (Nakada et al. 2000), with residues Asp 11, Asp 33, Lys 50, Asp 51 and Lys 

89 having been implicated in this binding (Newton et al. 1997; Sun et al. 2004; Sun et 

al. 1996). Human-mouse chimeric studies have suggested that these homophilic 

interactions are species specific (Sun et al. 2004). Moreover, antibodies that recognise 
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the epitope “CAVNEG” in Ig-domain 6 have been shown to enhance homophilic 

adhesion (Yan et al. 1995).  

A number of heterophilic ligands of PECAM-1 have been proposed to interact with 

regions encompassing Ig-domains 1-3. These include integrin �v�3, CD38 and 

heparan sulfate proteoglycans (HSPGs) (Deaglio et al. 1998; DeLisser et al. 1993; 

Piali 1995; Prager 1996). The heterophilic interactions between PECAM-1 and �v�3 

may be the result of direct binding of PECAM-1 to another molecule or the result of 

secondary interactions mediated by non-PECAM-1 molecules whose activation is 

PECAM-1-dependent. The likelihood that PECAM-1 binds directly to �v�3 has been 

questioned (Brugge et al. 2000). PECAM-1 signaling is reported to activate integrin 

�v�3 on endothelial cells, and this interaction in turn �induces �1 integrin-mediated firm 

adhesion of eosinophils to endothelial cells (Chiba et al. 1999), thus suggesting that 

PECAM-1 does not bind directly to �v�3. However, other data provide evidence for a 

direct interaction (Piali 1995).   

PECAM-1 has been reported to have high affinity binding sites for Mn2+ cations, 

involving acidic residues in region 436-448 of Ig-domain 5 and a cluster of acidic 

residues in regions 485-495 and 534-549 in Ig-domain 6 (D. E. Jackson et al. 1997). 

The heterophilic interaction with CD177 involves the cation binding site of Ig-domain 

6 (Sachs et al. 2007). Monoclonal antibodies against CD177 and Ig-domain 6 of 

PECAM-1 inhibited adhesion of cells expressing CD177 to immobilised PECAM-1 in 

the presence of cations. These monoclonal antibodies also inhibited the 

transendothelial migration of human neutrophils, indicating a role for this divalent 

cation-dependent heterophilic association in the neutrophil transmigration pathway.  

A number of studies have suggested that cell surface GAGs act as ligands for 

PECAM-1 (DeLisser et al. 1993) by binding to a GAG consensus binding sequence 

(L-K-R-E-K-N) in Ig-domain 2 (DeLisser et al. 1993). Interestingly, a similar GAG 

recognition sequence (residues 131-148) is located in loop 2 of Ig-domain 2 of 

NCAM. NCAM is known as a heparin and heparan sulphate (HS) binding protein 

(Albelda 1991; DeLisser et al. 1993). The crystal structures of NCAM Ig-domains 

forming zipper adhesion complexes (a dimerisation pattern where at least two 

monomers are intertwined) reveal that heparin and HS binding sites are solvent 
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exposed, suggesting that the association of NCAM with heterophilic and homophilic 

ligands could occur simultaneously (Kasper et al. 2000; Soroka et al. 2003). However, 

whether this also occurs with PECAM-1 is not known. Experimental data has 

suggested that PECAM-1 could mediate L-cell aggregation by binding in a 

heterophilic fashion to HS on cell surfaces. Cell aggregation was blocked by iduronic 

acid-containing GAGs, including heparin, HS and dermatan sulfate (DS) (weakly 

effective), but not by hyaluronic acid (HA) or the chondroitin sulfates (CS), thus 

suggesting that PECAM-1 may bind iduronic acid containing GAGs (DeLisser et al. 

1993; Watt et al. 1993).  

Some research groups argued that cell surface GAGs are not ligands for PECAM-1 

(Sun et al. 1998) and that heparin affects PECAM-1 adhesion by indirect mechanisms 

that are downstream of the interactions of PECAM-1 with its ligands. The Molecular 

Immunology Group at Curtin University, headed by Assoc. Prof. Deirdre Coombe, 

have reinvestigated the binding of heparin/HS to PECAM-1 and report that the 

extracellular domains of PECAM-1 can bind heparin and HS in biochemical 

experiments, and that HS can also bind PECAM-1 on cell surfaces. Binding is pH 

sensitive, as stable binding occurs at a slightly acidic pH, which would allow the 

protonation of histidines. Moreover, domain deletion experiments revealed that the 

heparin/HS binding regions of PECAM-1 are distinct from those involved in 

homophilic binding and that these domains contain high and low affinity binding sites 

for heparin. The molecular modelling studies reported in this thesis were undertaken 

to provide a rationalisation at the molecular level of these experimental studies by 

seeking to determine whether PECAM-1 is indeed a GAG binding molecule. 

1.3. BASIC FEATURES AND FUNCTIONS OF GAGs  

GAGs are polyanionic molecules that bind to a wide range of proteins involved in 

physiological and pathological processes (R. L. Jackson et al. 1991). GAGs are 

sometimes known as mucopolysaccharides because of their viscous, lubricating 

properties, as found in mucous secretions. These molecules are present on all animal 

cell surfaces in the extracellular matrix (ECM), and some are known to bind and 

regulate a number of distinct proteins, including chemokines, cytokines, growth 

factors, morphogens, enzymes and adhesion molecules (Lindahl & Kjellen 1991). The 

key properties of GAGs are summarised in Table 1.2. 
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Table 1.2. Key properties of glycosaminoglycans. 

Physico-chemical properties of GAGs: Negatively charged, 

viscous, lubricating, Unbranched polysaccharides, Repeating 

disaccharide units, bind large amounts of water, low 

compressibility. 

Classification of GAGs: Chondrotin sulfates, Keratan sulfate, 

Dermatan sulfate, Hyaluron, Heparin and Heparan sulfate. 

Function of GAGs: Cell adhesion, cell growth and differentiation, 

cell signalling.  

 

1.3.1 Classification of GAGs 

There are two main types of GAGs: non-sulfated (hyaluronic acid) and sulfated 

(chondroitin sulfate (CS), dermatan sulfate (DS), heparin and HS). The highly sulfated 

analogues heparin and HS have been studied extensively (Capila & Linhardt 2002) 

due to their well understood functions in anti-coagulation.  

These linear, sulfated polysaccharides have molecular weights of roughly 10 ~ 100 

kDa. GAG chains are composed of disaccharide repeating units called disaccharide 

repeating regions (see Table 1.3). The repeating units are composed of uronic acid (D-

glucoronic acid or L-iduronic acid) and amino sugar (D-galactosamine or D-

glucosamine). The amino sugar may be sulfated on carbon 4 or 6 or on non-acetylated 

nitrogen. At physiological pH, the carboxylate groups in the acidic sugars and the 

sulfate groups are deprotonated and hence negatively charged. CS and DS that contain 

galactosamine are called galactosaminoglycans, whereas heparin and HS that contain 

glucosamine are called glucosaminoglycans. The sugar backbone can be sulfated at 

various positions.  As a result, a simple octasaccharide can have over 1,000,000 

different sulfation sequences (Sasisekharan & Venkataraman 2000). GAGs also vary 

in the geometry of the glycosidic linkage (� or �). 

 

 

 

 



 

 16

Table 1.3. Repeating disaccharide units of various glycosaminoglycans. 

Glycosaminoglycan Disaccharide units Features 
Chondroitin sulfates 
 O

H
H

O

H

H NHCOCH3

CH2OH

O

OH
H

H
H

OH

H OH

COO
-

O

O

O3
-
S

1 3

�

GlcA GlcNAc  
* The figure contains GalNAc 4-sulfate.  

� Disaccharide 
unit: N-
acetylgalatos
amine 
(GalNAc) 
with sulfate 
(SO3

-) on 
either C-4 or 
C-6 and 
glucoronic 
acid (GlcA). 

� Glycosidic 
linkage: beta 
(1, 3).  

� Molecular 
weight 5-50 
kDa. 

� Most 
abundant 
GAG in the 
body. 

� Found in 
cartilage, 
bone, heart 
valves. 

Dermatan sulfate  

O

H
HCOO
-H

OH

H OH

H
O

H
H

O

H

H NHCOCH3

CH2OH

O

O

O3
-
S

1
2

IdoA

3

�

GlcNAc  
* IdoA may be sulfated on C-2 position. In 
the figure, no sulfation is shown on IdoA. 

 

� Disaccharide 
unit: N-
acetylgalatos
amine 
(GalNAc) 
and L-
iduronic acid 
(IdoA) with 
variable 
amounts of 
glucuronic 
acid. 

� Glycosidic 
linkage: beta 
(1, 3).  

� Molecular 
weight 15-40 
kDa. 

� Localised in 
skin, blood 
vessels, heart 
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valves 
 

Keratan sulfates I 
and II 

�

GlcNAc

4 1
3

1

Gal

O

H
H

H
H

OH

H NHCOCH3

CH2OSO3
-

O
O

OH
H

H
OH

H

H OH

CH2OH

O

 
Gal may or maynot be sulfated at position 6. 
In the figure, no sulfation is shown on C-6 of 

Gal. 

� Disaccharide 
unit: N-
acetylglucosa
mine 
(GlcNAc) 
and galactose 
(Gal). Sulfate 
(SO3

-) 
content is 
variable and 
may be 
present on C-
6 of either 
sugar. 

� No uronic 
acid. 

� Glycosidic 
linkage: beta 
(1, 4).  

� Molecular 
weight 4-19 
kDa. 

� Most 
heterogeneou
s GAG. 

� KS I is 
localized in 
the cornea. 

� KS II is 
found in 
cartilage 
aggregated 
with 
chondroitin 
sulfates. 

 
Heparin/Heparan 
sulfate 

GlcNAc

4 1

O

O

H
H

H

OH

H NHOSO3
-

H

CH2OSO3
-

O

O

H
HCOO
-H

OH

H OSO3
-

H

1
�

2

IdoA  
In the figure, IdoA is sulfated at C-2 whereas 

GlcNAc have sulfation on C-2 and C-6. 
 

� Disaccharide 
unit: N-
acetylgucosa
mine 
(GlcNAc) 
and L-
iduronic acid 
(IdoA) or 
glucuronic 
acid (GlcA). 
Most 
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glucosamine 
residues are 
bound in 
sulfamide 
linkages. 
Sulfate (SO3

-) 
is found on 
C-3 or C-6 of 
glucosamine 
and C-2 of 
uronic acid. 

� Glycosidic 
linkage: 
alpha (1, 4).  

 
Hyaluronic acid 

O

H
H

H
H

OH

H NHCOCH3

CH2OH

O

OH
H

H
H

OH

H OH

COO
-

O

O
1 3

�

GlcA GlcNAc  
 

� Disaccharide 
unit: N-
acetylglucosa
mine 
(GlcNAc) 
and 
glucoronic 
acid (GlcA). 

� Glycosidic 
linkage: beta 
(1, 3). 

� Molecular 
weight 4-
8000 kDa.  

� Non-sulfated, 
not 
covalently 
attached to 
the protein in 
the ECM, 
also found in 
bacteria. 

� Usually 
localised in 
synovial 
fluid, vitreous 
humor, ECM 
of loose 
connective 
tissue. 

� Excellent 
lubricators 
and shock 
absorbers. 
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1.3.2 Clinical significance of GAGs 

GAGs play a major role in cell signalling and development, angiogenesis (Iozzo & 

San Antonio 2001), axonal growth (Holt & Dickson 2005), tumour progression, 

metastasis and anti-coagulation (Casu et al. 2004; Fareed et al. 2000). Anti-

coagulation was the first described function for a GAG. Heparin was first discovered 

in 1917 because of its capacity to prolong the process of blood clotting, an effect due 

to its potentiating interaction with the natural inhibitor of thrombin, antithrombin III 

(AT-III), with only about one third of all heparin chains processing the structures 

required for AT-III binding. Heparin is mainly used in pharmaceutical products as an 

anti-coagulant for the treatment of thrombosis, phlebitis and embolism. 

Pharmaceutical heparin is usually derived from bovine lung or porcine intestinal 

mucosa. It was originally isolated from canine liver cells, hence its name (from the 

Greek hepar for liver). It has different molecular weights due to variations in chain 

length and is structurally heterogeneous.  

More recently, it has become clear that, in addition to anti-coagulation, other roles can 

be attributed to various GAGs. In cancer, progenitor cell proliferation is no longer 

restricted, leading to malignant transformation (Sasisekharan et al. 2002; Yip et al. 

2006). GAGs and proteoglycans (PGs) are believed to play a very important role in 

cell proliferation because they serve as co-receptors for growth factors of the FGF 

(Fibroblast Growth Factor) family. Indeed, members of the FGF family need to 

interact with both a GAG chain and their high affinity receptor to realise their full 

signalling potential. Overexpression of these molecules could contribute to tumour 

progression. 

Sulfated GAGs are a common constituent in many different types of amyloid. They 

play an important role in the pathology of amyloid diseases such as Amyloid A-

amyloidosis, Alzheimer’s disease, type-2 diabetes, Parkinson’s disease and prion 

diseases (Kisilevsky et al. 2007). These diseases are characterised by deposition in 

tissues of fibrillar aggregates of polypeptides. HS is known to bind amyloidogenic 

peptides in vitro and in vivo, and this binding promotes fibril formation and enhances 

the disease condition. Sometimes HS is present within the amyloid �-containing 

amyloid deposits in Alzheimer’s diseased brains (Snow et al. 1987).  
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Diseases such as rheumatoid arthritis, inflammatory bowel disease and microbial 

infections are associated with inflammatory responses. Many proteins play a role in 

the inflammation cascade that leads to the activation of leukocytes and endothelial 

cells, and ultimately to the extravasation of leukocytes and leukocyte migration into 

the inflamed or diseased tissue. GAGs such as heparin have important roles in these 

processes, as adhesion ligands in leukocyte extravasation and carriers/presenters of 

chemokines and growth factors.  

GAGs are also known to promote microbial pathogenesis and invasion (Fry et al. 

1999; Rostand & Esko 1997) by interacting with several microbial pathogens on cell 

surfaces and in the ECM. Many pathogenic micro-organisms such as bacteria (e.g., 

Helicobacter pylori, Bordetella pertussis, Mycobacterium tuberculosis and Chlamydia 

trachomatis), viruses (e.g., herpes simplex), and protozoa (e.g., Plasmodium and 

Leishmania) express proteins capable of binding to HS, DS and CS on cell surfaces, 

and these interactions appear to mediate infection (Rostand & Esko 1997). Dengue 

and foot-and-mouth viruses interact with cell surface HSPGs (heparan sulfate 

proteoglycans) and promote the concentration of virus particles at the cell surface after 

subsequent binding to integrin receptors. Heparin is known to exert its anti-HIV-1 

activity by binding to the viral surface glycoprotein, gp120 (Rider 1997), thus 

blocking HIV-1 entry into cells. 

1.4. PROTEOGLYCANS  

In nature, all GAG chains with the exception of HA are covalently linked to a core 

protein (Figure 1.7) to give a PG. The linkage of GAGs to the protein core involves a 

specific trisaccharide composed of two galactose (Gal) residues and a xylose (Xyl) 

residue (GAG-GalGalXyl-O-CH2-protein). These saccharide residues are coupled to 

the protein core through an O-glycosidic bond to a serine residue in the protein. Some 

forms of keratan sulfates are linked to the protein core through an N-asparaginyl bond.  

Virtually all mammalian cells produce PGs and either secrete them into the ECM, 

insert them into the plasma membrane, or store them in secretory granules. A number 

of PGs have been characterised and named according to their structure and functional 

location. Examples of large PGs are aggrecan, the major PG in cartilage, and versican, 

which is present in many adult tissues including blood vessels and skin. A variety of 
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core proteins have been shown to carry HS chains in the ECM and at the cell surface. 

Some membrane PGs such as sydecan-1 (Figure 1.8) are hybrid structures known to 

contain both HS and CS (Kokenyesi & Bernfield 1994).  

 
Figure 1.7. Structure of the GAG linkage to proteins in proteoglycans. 

PGs exhibit tremendous structural variation due to a number of factors. Different 

numbers of GAG chains having different saccharide sequences can be attached to the 

various serine residues present in the core protein. There are two major types of 

HSPGs (Bernfield et al. 1999): the syndecans (Figure 1.8) and the glypicans. The core 

protein of each family differs: the syndecans are composed of an integral membrane 

protein whereas the glypicans have a GPI-anchored protein as their core protein. An 

HSPG with a core protein of a completely different structure is formed in ECM (Iozzo 

et al. 1994). Thus, HSPGs are formed both on the cell surface and in extracellular 

matrices.  
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Figure 1.8. Schematic representation of cell surface proteoglycans. Syndecans are 

transmembrane proteins that bear HS and CS chains distal from the plasma 

membrane. 

1.5 SULFATED GAGs: HEPARIN/HEPARAN SULFATE 

Heparin and HS are highly evolutionarily conserved in a broad range of organisms 

belonging to many different kingdoms (Nader et al. 1999). The difference between HS 

and heparin is quantitative and not qualitative, as can be seen from Table 1.4. HS 

contains higher acetylated glucosamine and is less sulfated than heparin (Lindahl & 

Kjellen 1991). Heparin is synthesised by and stored exclusively in mast cells, whereas 

HS is expressed, as part of a PG, on cell surfaces and in ECM (Varki 1999). Heparin 

has the highest negative charge density of any known biological macromolecule 

because of its high content of negatively charged sulfate and carboxylate groups.  

Heparin consists of repeating units of 1 4 linked pyranosyluronic acid and 2-amino-

2-deoxyglucopyranose (glucosamine) residues. The uronic acid residues typically 

consist of 90 % L-idopyranosyluronic acid (L-iduronic acid) and 10 % D-

glucopyranosyluronic acid (D-glucuronic acid). The amino group of the glucosamine 

residue may be substituted with an acetyl or sulfate group, or remain unsubstituted. 

The 3- and 6-positions of the glucosamine residues can either be substituted with an 

O-sulfate group or remain unsubstituted. The uronic acid, which can either be L-

iduronic or D-glucuronic acid, may also contain a 2-O-sulfate group. HS is structurally 
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related to heparin but is much less substituted with sulfate groups than heparin. Like 

heparin, HS is a repeating linear copolymer of an uronic acid 1 4 linked to 

glucosamine. D-glucuronic acid predominates in HS, but HS can also contain 

substantial amounts of L-iduronic acid. HS generally contains about one sulfate group 

per disaccharide, but it may have higher sulphate contents (Varki 1999). On the cell 

surface, the ester and amide sulfate groups are deprotonated in HS and attract 

positively charged counter ions to form a salt under physiological conditions.  

Table 1.4. Key differences between heparan sulfate and heparin. 

Property Heparan sulfate Heparin 
Sulfate versus 
hexosamine 
content 

0.8-1.8 1.8-2.4 

2-deoxy-2-
sulfamido-�-D-
glucopyranosyl 
content 

40-60% >85% 

�-L-iduronic 
acid content 

30-50% >70% 

Site of 
synthesis 

Extracellular component found 
in basement membrane and as a 
ubiquitous component of cell 
surfaces. 

Intracellular component of mast 
cells especially in liver, lungs 
and skin. 

Mass 10-70 kDa 10-12 kDa 
Major and 
minor 
disaccharide 
repeating units 
(X=H or SO3

-, 
Y=Ac, SO3

-, or 
H). 
 

HS chains also often contain domains of extended sequences having low sulfation 

compared to heparin, as illustrated in Figure 1.9. The non-sulfated regions that have a 

GlcA-GlcNAc (Acetylated glucosamine) sequence are the most common in the HS 

chain, with IdoA-containing sulfated regions (called S-domains) usually of about 5–10 

disaccharides (Lyon & Gallagher 1998). There are also relatively minor proportions of 

mixed sequences, which contain both GlcNSO3 and GlcNAc (called NA-domain). A 

substantial proportion of the HS chain may consist of alternating GlcA-GlcNAc 

residues with no sulfate substitution.  
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Figure 1.9. Multidomain structure of HS. The distributed sulfated domains of HS 

are separated by flexible spacers of low sulfation. The mixed sequences define 

transition zones between the S-domains and the unmodified N-acetyl–rich regions. 

Several monomeric or oligomeric proteins can bind to GAGs, often by recognising 

different structural features of the domain.  

The sulfated–acetylated–sulfated domain has been subsequently found to be 

recognised by a number of chemokines such as interleukin-8 (IL-8) (Spillmann et al. 

1998), platelet factor 4 (PF4) (Stringer & Gallagher 1997) and macrophage 

inflammatory protein 1 alpha (MIP-1���(Stringer et al. 2002). The IL-8 dimer consists 

of two �-helical monomers lying on top of two � sheets forming basic clusters on one 

face of the dimer. The two S-domains, each consisting of 5-6 saccharides in HS, 

accelerate the rate of dimer formation in IL-8. The flexibility in the N-acetyl–rich 

“spacer” or NA domain (6-7 saccharides) in HS allows more conformational freedom 

for simultaneous interactions of two S-domains and brings the monomers of IL-8 in 

close proximity to form dimers in an anti-parallel arrangement (Figure 1.10). On the 

other hand, interferon-gamma (IFN�) does not significantly interact with isolated S-

domains (Lortat-Jacob et al. 1995), in contrast to many other heparin binding proteins. 

Similarly, basic residues are clustered on both faces of the tetramer of PF4, requiring 

21 saccharides in the HS to form a more extended binding site on the charged surface 

of PF4. Heparin is assumed to be an analogue of the S-domains of HS, consisting 
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mainly of sequences of sulfated disaccharides with IdoA2S (Iduronic acid sulfated at 

C-2) and GlcNS6S (2,6-disulfoglucosamine). 

 

Figure 1.10. Schematic representation of the dimerisation of IL-8 by HS. HS is 

colored red and the IL-8 monomer in blue. The rate of dimer of formation of IL-8 is 

accelerated by the S-domains whereas the flexible spacer sequence (NA-domain) 

allows appropriate folding of the monomer in an antiparallel arrangement. 

Heparin and HS GAGs can often be structurally distinguished through their sensitivity 

towards microbial GAG degrading enzymes, the heparin lyases. Three major 

polysaccharide lyases heparin lyases I, II, and III, isolated from Flavobacterium 

heparinum, are capable of cleaving linkages present in heparin and HS chains (Lohse 

& Linhardt 1992). These three enzymes share very little homology at the DNA, 

protein or even structural level, which imparts specificity towards the substrates. 

Heparin lyase I is involved in heparin binding whereas heparin lyase III exhibits a 

strong specificity for heparan sulfate. Heparin lyase II is believed to act on heparin 

and as well as on HS through two distinct active sites.  

1.6 BIOSYNTHESIS OF HEPARAN SULFATE 

The structural heterogeneity of HS with respect to the size of the polysaccharide 

chain, the ratio of IdoA to GlcA units, and the amount and distribution of sulfate 

groups along the carbohydrate backbone is the result of variations in the biosynthesis 

of HSPGs. The fine structure of the chains depends on the regulated expression and 
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action of multiple biosynthetic enzymes, such as glycosyltransferases, 

sulfotransferases and an epimerase, which are arrayed in the lumen of the Golgi 

apparatus i.e. the enzymic reactions do not go to completion, yielding individual 

chains whose sequence is likely to be distinct from all other chains (Lindahl et al. 

1998). The biosynthesis of heparin/HS (Figure 1.11) can be conveniently separated 

into three steps: 

a. Formation of the linkage region to the core protein. Polysaccharide formation 

is initiated by the transfer of a xylose (Xyl) unit from UDP-Xyl by 

xylotransferase (XT) to a serine residue in the core protein. Two galactose 

units are then transferred by galactosyltransferases I and II (GalTI and 

GalTII) from corresponding UDP nucleotides to the xylosylated core protein. 

Amino acid sequences flanking the linking serine residue and/or the overall 

structure of the core protein seem to act as signals for directing the assembly 

of heparin/HS chains or CS or DS. Xylose attachment to the core protein is 

thought to occur in the endoplasmic reticulum (ER), with further assembly of 

the linkage region and the remainder of the chain occurring in the Golgi 

apparatus (Champe & Harvey 2005). 

b. Chain elongation or polymerisation. The non-reducing end of the neutral 

trisaccharide xylosyl-galactosyl-galactose becomes the primer for the 

elongation of the polysaccharide. In the case of HS and heparin, polymer 

formation occurs through an alternating transfer of GlcA and GlcNAc units 

to the growing chain. This is carried out by one or more related enzymes 

whose genes are members of the exostoses (EXT) gene family of tumour 

suppressor genes. The mechanisms that control the length of the fully grown 

polysaccharides have not been fully elucidated. In general, the length of the 

final chain increases with the availability of the UDP-sugar precursor and 

decreases with the availability of the core protein. 

c. Chain modifications. Subsequent to polymer formation, the repeating GlcA-

GlcNAc disaccharide chain undergoes a number of enzymatic modifications 

that occur in a specific order, carried out by four classes of sulfotransferases 

and an epimerase. The sulfate group, which is crucial to the activity of the 

sulfotransferases, is made available by PAPS (3’-phosphoadenosyl-5’-
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phosphosulfate), an AMP molecule with a sulfate group attached to its 5’-

phosphate). The various enzymatic chain modifications are: 

1) N-deacetylation of GlcNAc units originates GlcN residues and the N-

sulfation of newly formed GlcN residues. N-deacetylation/N-sulfation 

is carried out by one or more members of a family of four GlcNAc N-

deacetylase/N-sulfotransferase enzymes (NDSTs). 

2) C5 epimerization of GlcA residues, which leads to the formation of 

IdoA units. Epimerisation is catalysed by either GlcA C5 epimerase 

or heparosan-N-sulfate-glucuronate 5-epimerase.  

3) 2-O-sulfation of newly originated IdoA residues is catalysed by 

uronosyl-2-O-sulphotransferase (2OST). 

4) 6-O-sulfation of GlcN residues. Three glucosaminyl 6-O-transferases 

(6OSTs) enzymes have been identified that act on the formation of 

GlcNS6S adjacent to sulfated or non-sulfated IdoA. 

5) Sulfation can also occur at C3 of GlcN units in the presence of at least 

five glucosaminyl 3-O-sulfotransferases (3OSTs) and to a limited 

extent, at C2 or C3 of GlcA units.   

The regulation of the chain modification process leads to cell- or organ-specific HS 

structures that may allow fine modulation of their biological functions and specific 

binding with macromolecules such as growth factors, enzymes, ECM proteins and the 

cell surface proteins of pathogens. The enzymes described above also synthesise 

heparin. 
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Figure 1.11. Heparan sulfate chain biosynthesis. This figure was adapted from the 

reference by (Esko & Lindahl 2001). The symbols used are defined by the structures 

shown below the scheme. Structural domains (NA, NA/NS, NS) are defined with 

regard to the distribution of GlcN N-substituents, as indicated.  
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1.7 CONFORMATION OF HEPARIN 

Heparin is a linear, unbranched, highly sulfated polysaccharide. GAGs such as 

HS/heparin tend to have extended conformations in solution due to their strong 

hydrophilic nature resulting from their extensive degree of sulfation. These molecules 

are surrounded by a shell of water molecules and occupy an enormous hydrodynamic 

volume in solution. They tend to repel each other when brought together due to their 

same net electrostatic charge. When a solution of GAGs is compressed, the water is 

squeezed out and the GAGs are forced to occupy a smaller volume. When the 

compression is removed, GAGs regain their original hydrated volume because of the 

repulsion arising from their negative charges.  

Analysis of the conformations of individual sugars within heparin (Figure 1.12) 

indicates that unsubstituted IdoA residues exist predominantly in the 1C4 chair form, 

whereas IdoA residues, when bearing a sulfate group at position 2 (IdoA2S), exist in 

equilibrium between a number of different conformations, the most important being 

the chair (1C4) and skew-boat (2S0) forms (D. R. Ferro et al. 1990). Solution NMR 

studies suggest that IdoA2S prefers a 2S0
 conformation, whereas glucosamine sulfated 

at the N and O positions (GlcNS6S) prefers a 4C1 conformation (Mikhailov et al. 

1996). It seems that glucosamine and its derivatives are stable in the 4C1 chair 

conformation irrespective of substitution (Desai et al. 1993; D. R. Ferro et al. 1986; 

Yates et al. 1996).   

Heparin oligosaccharides sometimes contain a non-reducing terminal 4-deoxy-L-

threo-2-sulfohex-4-enopyranosyluronic acid (unsaturated �4-uronic acid, �UA2S) 

residue arising from heparin lyase cleavage of an HS chain. Based on the 

conformation of the 4,5-double bond, �UA2S can exist in either the 2H1 or 1H2 

conformations (Figure 1.12 I) and the equilibrium between these two conformations is 

controlled by their substitution pattern. The solution structures of heparin-derived 

oligosaccharides determined by NMR spectroscopy suggest that the terminal �UA2S 

residue exists predominantly in the 1H2 form, with a minor contribution from the 2H1 

form (Mikhailov et al. 1997). 

The solution structure of a heparin dodecasacchride composed of six GlcNS6S-

IdoA2S repeat units has been determined using a combination of NMR spectroscopy 
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and molecular modelling techniques (Mulloy et al. 1993). These two structures 

(Figure 1.12 II) have been deposited in the protein data bank (PDB) under code 

1HPN. One structure has all IdoA2S residues in the 2S0 conformation (A) and the 

other one has all IdoA2S residues in the 1C4 conformation (B). The three dimensional 

structure of heparin is complicated by the fact that iduronic acid may be present in 

either of two low energy conformations when internally positioned within an 

oligosaccharide. This conformational equilibrium can be influenced by the sulfation 

state of adjacent glucosamine sugars (van Boeckel et al. 1987). The 2S0 form appears 

to be slightly favoured in terms of conformational stability, as it tends to minimise the 

unfavourable 1,3 diaxial non-bonded interactions that are expected in the 1C4 form, 

where four of the substituents are axially oriented and only the carboxylate group is 

equatorial (Mikhailov et al. 1996). Whilst the spatial orientation of the 2-O-sulfate 

group in the IdoA2S residues is altered during 1C4-2S0 intercoversion, no significant 

conformational change can be seen in the backbone of the polysaccharide chain in the 

NMR structures. In these NMR structures heparin adopts a helical conformation, the 

rotation of which places clusters of sulfate groups at regular intervals of about 17 Å on 

either side of the helical axis. 

It is possible for the iduronate ring to adopt either the 2S0 and 1C4 forms in the protein-

bound state, which enables it to make specific electrostatic interactions with the 

electropositive surface regions of a protein. The helical parameters for heparin 

oligosaccharides are conserved in spite of the conformational flexibility of the L-

iduronate residues. NMR studies on a series of modified heparins with systematically 

altered substitution patterns indicate that all derivatives in the unbound form, 

regardless of the sulfation pattern, exhibit similar glycosidic bond � and � 

conformations (Mulloy et al. 1994). These conserved glycosidic linkages are also 

consistent with the X-ray structures of heparin in complex with proteins such as acidic 

fibroblast growth factors (DiGabriele et al. 1998) (PDB codes 1AXM and 2AXM) and 

many other heparin structures bound to proteins (PDB codes 1AZX, 1BFC, 1E03, 

1E0O, 1FQ9, 1G5N, 1GMN, 1QQP and 1TB6) . 



 

 31

I 

 

 

II 

 

Figure 1.12. I. Conformations of sulphated iduronate, glucosamine, glucuronic acid 

and �4-uronic acid derivatives. II. The solution structure of a heparin 

dodecasacchride (PDB code 1HPN), in which all IdoA(2S) are in the 2S0 

conformation (A) and in which they are in the 1C4 conformation (B). 

It is also possible that the degree of flexibility in a disaccharide, the surrounding 

solvent water and cations could considerably affect the conformation of HS/heparin 

oligosaccharides depending on their local sequence. A theoretical study was recently 

undertaken (Remko et al. 2007) to determine the stable conformations of 1-OMe 

IdoA2SNa2 (2H1 and 1H2 forms), 1-OMe GlcNS6SNa2, 1,4-DiOMe GlcNa, 1,4-

DiOMe GlcNS3S6SNa3, 1,4DiOMe IdoA2SNa2 (4C1, 1C4, and 2So conformations) of 

1,4-DiOMe GlcNS6SNa2 monomers and their ionised forms in the presence of 

solvent, cations as well as in isolation. In the gas-phase, the 2H1 conformation of the 
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uronate residue is more stable than the 1H2 form observed in the presence of water. 

The most stable structure of the sodium salt of heparin confirmed the presence of a 

skew-boat 2So conformation in water. With anions, the 1C4 conformation is the most 

stable form. In general, the results indicate that in water, the relative stability of 

cation-heparin ionic bonds is considerably diminished. 

Various studies of heparin conformations have revealed similar, well-defined 

molecular structures in terms of overall chain conformation, with versatility in the 

pyranose ring of iduronic acid (Remko & Hricovíni 2006). However, chemical 

parameters such as the primary sequence of GAGs and its degree of sulfation can 

result in different binding modes with proteins that can affect their activity. 

1.8 CONFORMATION OF HEPARIN FRAGMENTS BOUND TO 

PROTEINS 

Iduronate may exist in skew-boat, chair and intermediate ring forms in heparin-protein 

complex crystal structures. The central iduronate in the crystal structure of the foot 

and mouth virus complexed with a pentasaccharide (PDB code 1QQP) fits to the 

mixture of 1C4 and 2S0 forms (intermediate conformation), whereas the outer 

iduronates are in the 1C4 and 2,5B conformations (Fry et al. 1999). One of the iduronate 

rings in the hexasaccharide-bFGF complex crystal structure (PDB code 1BFC) adopts 

a 1C4 chair conformation and the other a 2S0 skew boat conformation (Faham et al. 

1996). However, in the annexin V–heparin tetrasaccharide complex, the IdoA2S 

residue in the 2S0 skew conformation was found to interact with the protein, whereas 

the non-interacting IdoA2S residue is in the 1C4 conformation (Capila et al. 2001). 

These data suggest that when heparin binds to a protein, a change in the conformation 

of the IdoA2S residue may be induced, resulting in a better fit and enhanced binding, 

whilst the conformation of the less flexible GlcNS6S residue remains unaltered. 

Various studies of the conformation and dynamics of heparin pentasaccharides have 

investigated their high affinity interactions with AT-III, both in the solid (Jin et al. 

1997) and solution states (Ragazzi et al. 1990). The protein-bound pentasaccharide has 

a conformation roughly similar to one of the conformations predicted for the 

pentasaccharide wherein the iduronate residue adopts a conformation between the 2S0 

skew-boat and 2,5B forms (Ragazzi et al. 1986). In contrast, NMR studies of the 
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dynamics of the conformation of heparin oligosaccharides bound to AT-III and FGFs 

suggest that their proposed structure when complexed with proteins may be different 

to that in solution (Hricovini et al. 1999; Hricovini et al. 2002). NMR studies of 

heparin tetrasaccharides in the presence of fibroblast growth factors aFGF and bFGF 

indicate that FGF binding stabilizes the 1C4 conformation of 2-O-sulfated iduronic 

acid (IdoA2S) residue directly involved in binding. On the other hand, the IdoA2S 

residue which is not directly involved in binding adopts an exclusively skew-boat 2S0 

conformation in the AT-III complex. In addition, complexation in both cases induces a 

change in the geometry around the glycosidic linkage between the non-reducing end 

glucosamine and the adjacent sugar residue as compared with the free aqueous 

solution state. 

1.9 INTERACTIONS OF HEPARIN/HEPARAN SULFATE WITH 

PROTEINS 

Extensive studies have identified common structural features in the heparin/HS 

binding sites of proteins. Different structural (NMR spectroscopy and X-ray 

crystallography) and molecular modelling approaches have been used to elucidate the 

three-dimensional features and structure-activity relationships of GAG–protein 

interactions (Sasisekharan et al. 2006). A list of the different proteins that have been 

crystallised in complex with heparin oligosaccharides and their characteristics such as 

the optimal length required for binding and their binding affinities can be found in 

Table 1.5. Crystal structures of some of the proteins such as IL-8, PF-4 and NCAM 

are not available in complex with GAGs. 

1.9.1 Sequence considerations of GAG binding proteins 

The use of structure and sequence-based statistical methods (Malik & Ahmad 2007; 

Shionyu-Mitsuyama et al. 2003; Taroni et al. 2000) indicate that residues Asn, Asp, 

Glu, Gln, Arg, His and Trp are more likely to form binding sites for non-sulfated 

carbohydrates than other amino acids. The aromatic residue Trp has a significantly 

higher mean solvent accessibility in carbohydrate binding locations, whereas aliphatic 

residues Ala, Gly, Ile and Leu, hydrophobic residues which are usually buried inside 

proteins, do not apparently participate in sugar binding. The aromatic ring in Trp can 

pack against the hydrophobic face of a sugar molecule. In the case of polyanionic 

carbohydrates such as GAGs, the hydroxyls on the sugars, charged groups such as 
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sulfates and the sugar backbone can mediate electrostatic, van der Waals (VDW) and 

hydrogen bonding interactions with the proteins. 

Table 1.5. Characteristics of a few of the known complexes between proteins and 

heparan sulfate or heparin fragments. 

PDB 
code 

Name of 
protein 

Type of protein Size of 
oligosaccharide 

Kd Reference

1G5N Annexin V Extracellular 
protein 

8-mer 20 nM (Capila et al. 
2001) 

2HYU, 
2HYV 

Annexin A2 Extracellular 
protein 

4- to 5-mer 30 nM (Shao et al. 
2006) 

1XT3 Cardiotoxin 
A3, A5, M4 
and M1 

Toxin 5- to 7-mer �M (S. C. Lee et 
al. 2005) 

- IL-8 Chemokine 18- to 20-mer 6 �M (Spillmann et 
al. 1998) 

- PF-4 Chemokine 12-mer nM (Stringer & 
Gallagher 
1997) 

1U4L, 
1U4M 

RANTES Chemokine 16- to 18-mer 32 nM (Shaw et al. 
2004) 

1BFB, 
1BFC 

Basic 
fibroblast 
growth 
factor 
(bFGF) 

Growth factor 4- to 6-mer nM (Faham et al. 
1996) 

1AXM, 
2AXM 

Acidic 
fibroblast 
growth 
factor 
(aFGF) 

Growth factor 4- to 6-mer nM (DiGabriele et 
al. 1998) 

1E0O  aFGF/ecto-
domain of 
FGF 
receptor 2 
(FGFR2) 

Growth 
factor/receptor 

12-mer nM (Pellegrini et 
al. 2000) 
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1FQ9 bFGF/ecto-
domain of 
FGF 
receptor 1 
(FGFR1) 

Growth 
factor/receptor 

12-mer nM (Schlessinger 
et al. 2000) 

1AZX, 
1E03, 
1NQ9 

AT-III Serpin 5-mer 20 nM (Jin et al. 
1997) 

1XMN Thrombin Protease 8-mer 	��M (Carter et al. 
2005) 

2GD4 AT-
III/factor Xa 

Serpin/protease 5-mer 100-
200 
nM 

(D. J. D. 
Johnson et al. 
2006) 

- NCAM Adhesion 
protein 

5-mer 52 nM (Kasper et al. 
2000; Soroka 
et al. 2003) 

1FNH Fibronectin  Adhesion 
protein 

8- to 14-mer �M (Calaycay et 
al. 1985) 

 

GAGs interact with residues that are prominently exposed on the surface of proteins. 

Ionic interactions are the most dominant type of interaction between heparin and a 

protein. Clusters of positively charged basic amino acids on proteins form ion pairs 

with spatially defined negatively charged sulfate or carboxylate groups on the heparin 

chain. The main contribution to binding affinity comes from an ionic interaction 

between the highly acidic sulphate groups and the basic side chains of arginine, lysine 

and, to a lesser extent, histidine (Fromm et al. 1997). The relative strength of heparin 

binding by basic amino acid residues has been compared and arginine was shown to 

bind 2.5 times more tightly than lysine. The guanidinio group in arginine forms more 

stable hydrogen bonds as well as stronger electrostatic interactions with sulfate groups. 

The ratio of these two residues is said to define, in part, the affinity of a protein site for 

GAGs (Hileman et al. 1998a). 

Protein–GAG binding also involves a variety of different types of interactions 

including VDW forces, hydrogen bonds and hydrophobic interactions with the 

carbohydrate backbone. Amino acids such as asparagine and glutamine present in 
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heparin-binding domains are capable of hydrogen bonding. Polar residues with 

smaller side chains like serine and glycine have been found to be the most frequent 

non-basic residues in heparin-binding proteins, providing minimal steric constraints 

and good flexibility for protein interaction with GAGs (Caldwell et al. 1996). The 

affinity of heparin to bFGF is partly due to the ionic and non-ionic interactions 

(Faham et al. 1996; L. D. Thompson et al. 1994b). Studies of the interaction of brain 

natriuretic peptide (BNP) with heparin revealed that only a small portion of the free 

energy of binding arises from ionic interactions, whereas the major contribution arises 

from hydrogen bonding between the polar amino acids on BNP and heparin (Hileman 

et al. 1998b). Hydrophobic forces may also play an important role in heparin-protein 

interactions. Based on NMR data, a tyrosine residue in a synthetic AT-III peptide has 

been reported to make specific, hydrophobic interactions with the N-acetyl group of a 

GAG pentasaccharide in porcine mucosal heparin (Bae et al. 1994). 

Structural studies of the heparin–AT-III complex showed that basic amino acids 

participate in 5 to 6 ionic interactions, contributing 40% of the binding energy, 

whereas non-ionic interactions are responsible for the remaining 60% of the binding 

energy. The two aromatic residues, Phe 121 and Phe 122, residing near basic amino 

acids of the heparin-binding domain make direct contact with the pentasaccharide 

(Jairajpuri et al. 2003). The Phe 121 was mutated to Ala and Phe 122 to Leu resulting 

in decreased affinity of heparin for AT-III. These residues thus appear to play a critical 

role in heparin binding and AT-III activation. 

1.9.2 Consensus sequences in GAG binding proteins 

The X-ray crystal structures of many GAG-binding proteins helped to explore the 

existence of a consensus sequence for GAG binding with common features such as the 

arrangement of basic amino acids. Cardin and Weintraub (Cardin & Weintraub 1989) 

analysed the structures of 21 heparin-binding proteins and proposed that typical 

heparin-binding sites have the sequence XBBXBX or XBBBXXBX, where B is a 

lysine or arginine (with a very rare occurrence of His) and X is a hydropathic residue. 

The “X” in the consensus sequences was defined as hydropathic residue using 

matrices based on the frequency of occurrence of residues at specific position from 

known heparin binding proteins. The residues Asn, Ser, Ala, Gly, Ile, Leu, and Tyr 

were preferred at position “X”. Residues such as Cys, Glu, Asp, Met, Phe, and Trp 
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exhibited a very low occurrence at position “X” in either the � helical or � sheet 

topology of heparin binding proteins.  

Depending on the secondary structure of the protein, very few residues in these 

consensus sequences may actually participate in GAG binding. GAG-binding sites are 

often found along one exposed face of a protein and sometimes wrapping around 

multiple faces in case of beta sheets. Spacing of clusters of basic residues can also 

provide information on the structural features within heparin-binding sites that are 

important for GAG interaction and can facilitate the design of peptides that bind 

heparin efficiently (Hileman et al. 1998a).  

The basic amino acids of the sequence XBBBXXBX, when modelled into an �-helix, 

are displayed on one side forming an amphiphatic helix arrangement (Figure 1.13A). 

Therefore, in order to interact with a linear GAG chain, it would be predicted that the 

positively charged amino acid residues in the alpha helical proteins would have to line 

up along the same side of the protein segment. Comparative analysis of heparin 

binding sequences have shown that basic amino acids are generally located about 20 

Å apart (Figure 1.13B) in an amphipathic helix structure, and the same spatial 

arrangement is preserved in a beta-strand structure (Margalit et al. 1993). For 

example, the sulfates that mimic HS in the Artemin crystal structure (Silvian et al. 

2006) were found to be separated by approximately 8-9 Å and arranged at the vertices 

of an approximate equilateral triangle in the pre-helix (having a positively charged 

heparin consensus sequence XBBXBX) and amino-terminal regions.  

In � strands, the positively charged residues in a GAG-binding protein should be 

located very differently compared to what is seen in �-helical structures. The basic 

amino acids in the sequence XBBXBX line up on one face of the ß-strand, whereas the 

hydropathic residues points back into the protein core. Examples of � sheet heparin 

binding proteins are the CTXs (cobra cardiotoxins), which contain 9 discontinuous 

basic residues (-B-X2n-1-B-, where X is any residue and B is basic residue) separated by 

an odd number of any residue (Vyas et al. 2005).  

A third consensus sequence was similarly proposed in the heparin binding protein von 

Willebrand factor: XBBBXXBBBXXBBX, where ‘‘B” represents a cationic residue 

(Sobel et al. 1992). The consensus sequence TXXBXXTBXXXTBB as shown in 
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Figure 1.13C was also observed in aFGF, bFGF and transforming growth factor �-1 

(TGF�-1), where T defines a turn, B a basic amino acid (arginine or lysine) and X a 

hydropathic residue. The spatial distance between each of the three turns present in the 

consensus of these crystal structures was 12 to 18 Å (Hileman et al. 1998a).  

 

Figure 1.13.  Types of GAG consensus sequences present in proteins. A: Example of 

a linear XBBBXXBX motif with basic arginine and lysine residues (blue) oriented on 

one surface of a helix (green, residues 53–72) based on the structure of interleukin-

8 X-ray coordinates (PDB code 3IL8) B: A linear motif, having basic arginine and 

lysine residues (blue) spaced at a 20 Å linear distance, located on opposite surfaces 

(green, residues 48–50 and 60–62) as observed in the X-ray monomeric structure of 

platelet factor-4 X-ray coordinates (PDB code HPF4). C: Linearly contiguous 

GAG-binding domains with the consensus TXXBXXTBXXXTBB based on the 

structure of TGF�-1 (PDB code 1KLC) shown in white with the consensus sequence 

shown in green (residues 23–41). The figures were adapted from Hileman et al. 

(1998). 

GAG binding sites are often not conserved between protein structures, as observed in 

the case of chemokines, which have high structural similarity (Z. Johnson et al. 2004). 
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PF4 and IL-8 are members of the �-chemokine family that have very similar 

monomeric three dimensional structures, with anti-parallel �-strands and the �-helix 

in the C-terminus. PF4 has a heparin/HS binding consensus sequence “KKIIKK”, 

where K is lysine and I is isoleucine protruding from the �-helix. The GAG consensus 

sequence in the equivalent �-helical domain of IL-8 is “KENWVQRVVEKFLKR”, 

which is responsible for heparin/HS binding. The heparin/HS binding proteins of the 

�-chemokine subfamily (e.g. MIP-1�, RANTES) use a different structural motif, 

“KRNR”. Members of both chemokine � and � families have additional residues and 

hence lack conservation in the GAG binding regions, allowing specificity and 

selectivity of HS binding across the chemokines.  

1.9.3 Structural considerations of GAG binding proteins 

The X-ray crystal structures of heparin-protein complexes have provided information 

on the structural features required for heparin binding, including the folding of the 

protein and the periodicity of clusters of basic residues, as well as the periodicity of 

sulfate clusters on the GAG chains and the sulfation level required for interactions 

with the binding site. Heparin binding sites can be formed by basic amino acids that 

are distant in sequence but are brought spatially close together through the folding of 

the protein. The end-to-end lengths of these extended clusters are comparable to the 

minimum GAG chain lengths that are required for binding (typically 6-12 

monosaccharide units, approximately 25-50 Å long). The binding of GAG fragments 

to chemokines has strong length dependence but it is clearly not the only determinant 

of selectivity (Kuschert et al. 1999).  

The periodicity of sulfate group clusters along an oligosaccharide chain can play a key 

role in determining the structure of a GAG binding site on the surface of either helical 

or �-sheet proteins. The regular periodicity of sulfate group clusters along one side of 

an oligosaccharide chain was consistent with the ability of heparin to induce an �-

helical structure in polylysine peptides, allowing electrostatic interactions every three 

peptide turns between a HS cluster and a zeta-amino group of the polylysine peptide 

(Mulloy et al. 1996). The heparin octasaccharide was the minimal fragment size 

required for such interactions to occur with the polylysine peptides. A similar 

phenomenon has been detected for several lysine-rich regions in the Tau protein 

(Sibille et al. 2006), wherein the heparin oligosaccharide wraps tightly around the 
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outer surface of the (double) pleated sheets, inducing secondary structural changes and 

thereby neutralising the inhibitory charge repulsions that would occur in a parallel 

stacking of the repeat regions formed by a polylysine stretch.  

The varying extent of N- and O-linked sulfate groups and N-linked acetyl groups in a 

GAG oligosaccharide can effect the interaction of proteins with heparin/HS. In the 

case of RANTES, O-sulfation was more important than N-sulfation (Kuschert et al. 

1999). MIP-1�, MCP-1 (monocyte chemoattractant protein-1) and IL-8 showed 

preference for both N- and O-sulfation. The binding of chemokines to GAG fragments 

requires both N- and O-sulfation (Kuschert et al. 1999). In addition, binding studies 

involving chemically modified heparins or HS preparations have shown that 2-O- and 

N-sulfate groups are important for interactions with bFGF (Figure 1.14) and doesnot 

require 6-O-sulfate group for binding. The HIV-Tat protein requires 2-O-, 6-O- and N-

sulfate groups for optimal interaction with heparin (Marco Rusnati et al. 1997). 

 

Figure 1.14. Distinct role of sulfate groups of heparin( represented in sticks)  in 

interactions with basic residues (represented as lines) of bFGF. bFGF is represented 

by secondary structure. 

1.9.4 Heparin-AT-III interactions: a case study of GAG-protein binding 

The anti-coagulant activity of heparin arises primarily through activation of AT-III-

mediated inhibition of blood coagulation factors such as thrombin and Factor Xa, as 

N-sulfate 
N-sulfate 2-O-sulfate 
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depicted in Figure 1.15. The interaction of AT-III and its coagulation factors with 

heparin moves through a number of affinity states to terminate in a high affinity 

interaction. First, the interaction between GAG and AT-III is mediated by a well-

defined unique pentasaccharide sequence within heparin. This binding generates a 

conformational change in the structure of AT-III, which enables additional interactions 

between AT-III and heparin, resulting in stronger binding. The conformational change 

also expels a protease reactive loop in AT-III. A ternary complex is formed, after 

which the AT-III interaction reverts to low-affinity binding, resulting in the release of 

heparin from the covalent AT-III–protease complex. Several theories have involved in 

relation to the length dependence of the interaction of heparin with AT-III and serine 

proteases. Heparin chains at least 16 saccharides in length are required to accelerate 

the reaction of AT-III with thrombin, even though only the pentasaccharide sequence 

is necessary to bind AT-III (Petitou et al. 1998). In contrast, heparin chains as small as 

the AT-III-binding pentasaccharide are able to accelerate the inactivation of the other 

target coagulation enzymes, such as Factor Xa.  

 

Figure 1.15. Heparin-binding domain of AT-III. Heparin enhances the actin of the 

plasma protease inhibitor AT-III, followed by inhibition of clotting factor proteases, 

(e.g. FIIa, Xa, Ixa and Xia), by forming stable complexes with them. Heparin speeds 

up the formation of these complexes by binding to AT-III and causing a 

conformational change, thereby activating AT-III. This figure was adapted from 
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Ontario Veterinary College’s online course modules, taken from the University of 

Guelph’s website (Guelph). 

1.9.5 GAG-fibroblast growth factor interactions  

Extracellular domains of fibroblast growth factors aFGF (FGF-1) and bFGF (FGF-2) 

have been extensively studied to determine the thermodynamics and kinetics of their 

interactions with heparin. These growth factors exert their biological effects by 

binding to different, specific cell surface FGFRs. High-resolution X-ray crystal 

structures of complexes of FGF, FGFR, and a heparin oligosaccharide provided 

insight into the stoichiometry and structural features of this physiologically relevant 

interaction. In the crystal structure of a 2:2:2 dimeric ternary complex of bFGF, 

FGFR-1, and a heparin decasaccharide, heparin makes numerous contacts with both 

bFGF and FGFR-1, stabilising the FGF-FGFR interaction (Schlessinger et al. 2000). 

Heparin also makes contacts with the FGFR-1 of the adjacent FGF-FGFR complex, 

thus seeming to promote FGFR dimerisation (Figure 1.16). The 6-O-sulfate group of 

heparin plays a major role in promoting these interactions (M. Rusnati et al. 1994).  

 

Figure 1.16. Schematic representation of the bFGF-FGFR1 complex. Heparin 

requires both 2-O, 6-O-sulfate and N-sulfate groups, to promote the binding of 
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bFGF to soluble FGFR-1. The binding of heparin/HS to bFGF, without 6-O-sulfate 

groups is not sufficient to induce bFGF interaction with FGFR. The figure was 

taken from the angiogenesis portal from the Department of Biomedical Sciences and 

Biotechnology, University of Brescia – Italy (Presta 2005).  

The crystal structure of a 2:2:1 complex of aFGF, FGFR-2, and a heparin 

decasaccharide has also been determined to a 2.8 Å resolution (Pellegrini et al. 2000). 

The complex is assembled around a central asymmetric heparin molecule linking two 

aFGF ligands into a dimer that bridges between two receptor chains (Figure 1.17). The 

heparin fragment makes contact with both aFGF molecules but only with one receptor 

chain. It is clear that different member of the FGF family and their respective 

receptors (FGFRs) may interact differently with heparin/HS due to the heterogeneity 

in the structure of HSPGs and FGF receptors on cell surfaces in different tissues. It has 

been reported that aFGF may recognise several conformations of the iduronic residues 

of a GAG hexasaccharide. It is believed that the hexasaccharide undergoes local 1C4-
2S0 equilibrium conformational changes as a result of ionic interactions with flexible 

Arg and Lys side chains present in the protein (Canales et al. 2005).  

 

Figure 1.17. Ribbon diagram of the aFGF-FGFR2-heparin complex (PDB code 

1E0O). The heparin fragment (shown in CPK) makes contact with both aFGF 

molecules (beta strands shown in green) but only with one FGFR2 receptor chain 



 

 44

(immunoglobulin domains shown in cyan and magenta). The figure was adapted 

from Pellegrini et al. (2000).  

1.10. ROLE OF pH IN GAG BINDING 

Certain HS-protein interactions are regulated by pH. Alteration of the pH can have 

profound effects on the ability of some proteins to bind heparin or HS. This is the case 

of the synthetic beta-amyloid peptide (A�) (Fraser et al. 1991), selenoprotein P (Arteel 

et al. 2000), granulocyte macrophage colony stimulating factor (GM-CSF) (Wettreich 

et al. 1999), the mouse mast cell protease 7 (Matsumoto 1995) and stromal cell-

derived factor-1 (SDF-1) (Veldkamp et al. 2005). This occurs particularly when the 

GAG binding site contains histidines, since these amino acids have a pKa of 

approximately 6. Hence, if the pH falls closer to 6 an increasingly larger proportion of 

histidines will become protonated and hence positively charged, thus favouring 

electrostatic interactions with the negatively charged sulfate groups of GAGs.  

A further example is that of mouse mast cell protease 6 (MCP-6). Molecular 

modelling of MCP-6 identified four conserved, pH dependent and surface exposed 

histidine residues, His 35, His 106, His 108, and His 238 (Figure 1.18), that mediate 

the interaction of mast cell tryptase 6 with heparin in a pH dependent fashion 

(Hallgren et al. 2004). The electropositive nature of the surface of the protease, as 

shown in Figure 1.18, is due to presence of pronated histidines that can make 

favourable interactions with GAGs, as compared to the surface accessible in the 

presence of deprotonated histidines.  Histidine proline-rich glycoprotein (HPRG) is 

another example wherein binding to heparin is minimal at neutral pH but increases 

rapidly to a maximum at pH 6.5 (Borza & Morgan 1998). At an intermediate pH, both 

protonation of histidines and the binding of zinc promote the interaction of HPRG 

with heparin. It is probable that there is a pH range where all histidines will be 

protonated, whereas most, if not all, of the glutamic and aspartic acid residues will still 

be negatively charged. This is likely to be most favourable situation for heparin 

binding. 
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Figure 1.18. Model of mouse Mast Cell Protease (mMCP-6) model reported by 

Hallgren et al 2004. His residues (shown in blue) are located at the edge of the A-B 

surface. The electrostatic potential surface is shown for both neutral (deprotonated 

His residues, positive charge contributed by Lys/Arg residues) and acidic pH 

(protonated His residues).

1.11. EFFECT OF METAL IONS ON GAG BINDING 

Sulfated GAG chains also bind strongly to divalent metal ions present in proteins or in 

solution. The binding of heparin/HS to proteins is enhanced in the presence of divalent 

cation such as zinc. The binding of endostatin to heparin and HS requires the presence 

of divalent cations (Ricard-Blum et al. 2004). The presence of Zn2+ metal ions 

enhances the binding of endostatin to heparin/HS.  

Crystallographic studies of human annexin A2 in complex with heparin-derived 

oligosaccharides suggest that annexin A2 exhibits significant Ca2+-dependent heparin-

binding properties (Figure 1.19) at pH 7.4, either as a monomeric protein or as a 

component of the A2t heterotetramer (Shao et al. 2006). In the complex of annexin V 

with a heparin oligosaccharide the calcium cation does not interact directly with the 

GAG fragment but it induces the conformation of protein loops necessary for binding 

(Capila et al. 2001). Prion proteins (PrP) also bind GAGs at pH values above the pKa 

of histidine and in a metal ion-dependent fashion (Gonza'lez-Iglesias et al. 2002). 

Prion protein-GAG complexes are stabilised by Cu2+ or Zn2+ and prion protein-GAG 

interactions are mediated largely by protonated and Cu(II)-bound His side-chains 

present at the N-terminal domain of PrP. Divalent cations were not a prerequisite for 

the interaction of GAGs with lipoproteins but were found to stabilise the lipoprotein 

complexes of heparin. It was observed that Mn2+ is better than Mg+2 or Ca+2 at 
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promoting stronger binding between the acidic groups of heparin and the phospholipid 

portion of LDL (Srinivasan et al. 1975).  

It is known that Zn2+ binds selectively to heparin rather than to other GAGs (Parrish & 

Fair 1981), which suggests that binding of divalent cations to GAG chains is not 

always a simple electrostatic interaction between the negatively charged groups on the 

carbohydrate and the positively charged metal ion. NMR evidence indicates that 

iduronic acid is the main binding site in heparin for divalent cations. It is also known 

that Zn2+ metal ion binding controls the ring conformation of iduronate in heparin and 

HS, as suggested by spectral data, showing that the 1C4 ring conformation of iduronic 

acid is stabilised over the 2So conformation (Whitfield et al. 1992; Whitfield & Sarkar 

1992). Consequently, divalent cation binding may be expected to influence the 

specificity and affinity of protein interactions with GAGs. 

 

Figure 1.19. Calcium coordination at the heparin-binding site in the crystal 

structure of Annexin A2. A: The heparin tetrasaccharide binding site. The Ca2+ ions 

are shown in green. B: The Ca+2 ions are shown as yellow spheres and water 

molecules as red spheres. Orange dashed lines denote the Ca+2 coordination bonds 

and interactions between water molecules and the oligosaccharide. The figures were 

extracted from (Shao et al. 2006). 

A 
B
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1.12. MOLECULAR MODELLING STUDIES OF GAGS AND GAG-

PROTEIN INTERACTIONS 

In view of the limited structural knowledge available on GAG-protein interactions and 

the phenomenal structural diversity of heparin and HS, molecular modelling 

approaches have assisted the understanding of GAG binding affinity and specificity. 

GAGs are challenging from a molecular modelling perspective because of their high 

negative charge density and their conformational flexibility. Protein side chains also 

have a high degree of conformational flexibility. This means that, if all possible 

conformations of the sulfate and hydroxyl groups on the oligosaccharide and all 

rotamers of charged side chains in the protein are taken into account, an accurate 

prediction of GAG-protein binding becomes an extremely challenging task. 

Several molecular modelling techniques have been described in the literature for the 

successful prediction of sulfated GAG binding sites on the surface of proteins and for 

the prediction of their relative affinities. These methods include energy mapping of 

ligand probes on the surface of proteins, molecular docking and scoring, and 

molecular dynamics simulations. 

1.12.1 Prediction of GAG binding sites on protein surfaces using GRID  

The prediction of the location of GAG binding sites on the surface of proteins has 

been attempted by searching for the most positively charged patches of amino acids. 

The GRID algorithm (Goodford 1985) has been useful for mapping the most 

energetically favourable positions where sulfate groups may bind to the surface of 

proteins (Figure 1.20). Such studies have been performed with a number of proteins 

such as aFGF, bFGF, antithrombin and IL-8 (Bitomsky & Wade 1999). The GRID 

program uses atom probes to represent polar or charged groups on saccharide 

molecules. Mapping sulfate interaction energies can be first computed using GRID 

and then followed by docking. In a different study, different HS binding modes were 

proposed for its interactions with chemokines RANTES, MIP-1�, and CDF 

(Chemokine Domain of Fractalkine),  illustrating that the types of interactions that 

may exist on the surface of proteins are determined by the three-dimernsional 

structure of the proteins (Lortat-Jacob et al. 2002). This study first used the GRID 

program, followed by docking to predict the most favourable anchoring position for a 

charged sulfate group on the surface of the chemokines. However, this study did not 
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allow for a fine analysis of the GAG sequence optimal for binding (i.e., effect of N 

and O-sulfation). 

1.12.2 Molecular docking  

Several ligand-protein docking studies have been reported for the prediction of 

heparin-binding sites on AT III, aFGFand bFGF. In these studies the docking 

predictions have been compared to crystallographic data available for complexes of 

these proteins with oligosaccharide fragments (Bitomsky & Wade 1999). After 

correctly predicting the binding sites for AT III, aFGF and bFGF, these authors used 

docking to predict the heparin-binding site on IL-8. Other molecular modelling studies 

have been carried out to predict the binding of a hexasaccharide to the multi-

component complex between bFGF and FGFR1. The results were consistent with 

experimental data of the binding mechanism of bFGF to its receptor, the receptor 

dimerisation, and site-specific mutagenesis and biochemical cross-linking data (Lam 

et al. 1998). Molecular docking studies have also been used to predict that a long 

heparin fragment such as a dodecasaccharide or tetradecasaccharide is required for  

 

Figure 1.20. Example of the docking of GAG saccharides onto bFGF using the GRID 

algorithm. The molecular surface of bFGF is shown with its electrostatic potential. 

The figure was adapted from the online course on computing methods in biochemistry 

(Pagel 1999).  
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binding to the chemokine SDF-1� dimers (Sadir et al. 2001). In another study, since 

the crystal structure of the chemokine was not available, different protein models for a 

MIP-1� dimer were built based on the crystal structures of PF4 and IL-8 (Stringer et 

al. 2002). Docking simulations using heparin penta- and endecasaccharides predicted 

the interaction of the S-domains (usually 12-14 saccharides long) and the 

electropositive surface on opposite faces of the MIP-1� dimer. 

A study of the interaction between a heparin pentasaccharide and AT-III has been 

carried out, despite the difficulty associated with the known conformational change 

that occurs in the protein upon ligand binding. Homology modelling of the protein 

structure and manual docking of the pentasaccharide were used to determine the basic 

amino acids involved in the recognition of the sulfate and carboxylate groups of the 

oligosaccharide. These predictions were confirmed by automated docking simulations 

(Grootenhuis & Van Boeckel 1991). The crystal structure of the complex between 

anti-thrombin and the pentasaccharide revealed the existence of contacts between 

heparin and arginine and lysine residues on three different helices of the protein (Jin et 

al. 1997). The crystal structures of ternary complexes of anti-thrombin, thrombin and 

heparin and anti-thrombin, Factor Xa and heparin provided further information about 

the large conformational changes that occur in anti-thrombin upon activation. 

Docking simulations have also been used to predict the binding mode of a heparin 

oligosaccharide on the surface of endostatin (Ricard-Blum et al. 2004), as well as to 

determine the binding mode of a hexasaccharide to aFGF (Canales et al. 2006). In the 

aFGF study, most of the low energy docked conformers of a hexasaccharide 

orientated towards Lys127 and Lys142 on the surface of the growth factor. Other 

studies have suggested the likely amino acid residues that comprise heparin binding 

sites in proteins such as the aFGF, bFGF and AT-III (Mulloy & Forster 2000). 

Docking methods have also been used for the screening of a combinatorial virtual 

library of hexasaccharides, identifying high specificity heparin/HS sequences using 

the AT-III-heparin crystal complex (Raghuraman et al. 2006). The combinatorial 

library consisted of 6859 unique heparin hexasaccharides which were generated on the 

basis of an 'average backbone'. The intra- and inter-glycosidic conformations were 

constrained, irrespective of sequence and intra-ring conformational variability to 
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mimic the crystallised hexasaccharide, and AT-III was considered rigid. The linear 

correlation between the GOLD docking score and the predicted free energy of binding 

suggested that GOLD scores correlated with protein binding affinity. Twenty-eight 

hexasaccharide sequences were predicted to bind with higher affinity to AT-III on the 

basis of higher GOLD score. These 28 sequences were again subjected to triplicate 

docking runs wherein a larger conformational space was searched for multiple 

geometries of ligands in the binding site. Out of the 28 high-affinity sequences, 10 

sequences were predicted to have high specificity of interaction. However, these 

binding affinity and specificity predictions lacked experimental validation.  

Different methods were used to dock heparin and activated protein C (APC) 

(Fernandez-Recio et al. 2002). A structure-based virtual screening approach has also 

been used to dock short heparin oligosaccharides onto APC. The modelling study 

supported by experimental data indicated that short heparin oligosaccharides bind to 

loop structures 37, 60 and 70 in APC and this binding impairs the interaction of APC 

with FVa (factor Va) during APC-catalysed cleavage. Recent developments in 

docking techniques of short oligosaccharide chains onto APC and hexasaccharides 

onto AT-III further demonstrate the effectiveness of virtual screening in glycobiology. 

1.12.3 Scoring methods to rank docked ligand conformations 

Specific scoring functions have been developed for ranking the binding modes of non-

GAG carbohydrates to proteins (Kerzmann et al. 2006; Laederach & Reilly 2003). 

These functions can also be used for GAGs. A structure-activity relationship study 

using docking calculations with various scoring functions has been done for calculated 

and observed binding affinities for the complexation of oligosaccharides to aFGF and 

bFGF. The predicted binding modes in both FGFs were similar and good correlations 

were obtained between the predicted and experimental binding affinities. 

The BLEEP (Biomolecular Ligand Energy Evaluation Protocol) method has been 

used successfully to identify low-energy binding modes of heparin fragments 

(Mitchell et al. 1999). This study was carried out in presence of a shell of water 

molecules. Various conformations for heparin were generated and the structure of 

human bFGF was kept rigid. The method correctly assigned the lowest energy to the 

binding modes observed in the crystal structure, indicating that its PMFscore 



 

 51

(Potential of Mean Force score) scoring function is able to rank well the interaction 

energies of molecules such as GAGs. 

1.12.4 Molecular dynamics simulations 

Molecular dynamics (MD) simulations have been reported for oligosaccharide 

complexes with proteins such as galectin-1 (Goodford 1985) and endo-1,4-b-xylanase 

II (XynII) (Laitinen et al. 2003), but very few MD simulations have been performed 

for sulfated GAGs such as heparin and HS. 

Some of the MD simulations of heparin fragments have been performed in aqueous 

solution. Simulations of a heparin decasaccharide-water-sodium system using the 

GROMACS forcefield and the SPC (Simple Point Charge) and SPC/E (Simple Point 

Charge/Extended) water models were in agreement with NMR data of the 

conformation of heparin in solution under physiological conditions (Verli & 

Guimarães 2004). In these simulations the conformational change in iduronic acid and 

the conformational flexibility of the glycosidic linkage were investigated. These 

simulations reported great variability in the conformation of heparin compared with 

the previously determined NMR structures of heparin, due possibly to the use of 

different partial atomic charges (Löwdin atomic charges). MD simulations have also 

been performed for a complex of a heparin pentasaccharide with AT-III in order to 

characterise the energetic contribution of important amino acids required for 

interactions with GAG fragments and the ability of GAG fragments to induce the 

observed conformational change in AT-III (Verli & Guimarães 2005). These 

simulations revealed that there is no specific conformational requirement for IdoA, as 

either of the skew-boat or chair conformations are appropriate for binding with a 

similar enthalpy to AT-III.  

The set of parameters representing force constants, equilibrium bond lengths and 

angles, partial charges and VDW interactions can significantly affect the accuracy of 

simulations of ligand-protein interactions. There is a variety of molecular mechanics 

force fields that have been designed for the modelling of carbohydrates. This include 

OPLS (Optimized Potential for Liquid Simulations) (Kony et al. 2002), GROMOS 

(GROningen MOlecular Simulation package) (Lins & Hünenberger 2005), CSFF 

(Carbohydrate Solution Force Field) (Kuttel et al. 2002), CHARMM (Brooks et al. 

1983), CHARMM CHEAT95 (Grootenhuis & Haasnoot 1993), Glycam/AMBER 



 

 52

(Woods et al. 1995), MM2 (Allinger 1977) and MM3 (Allinger et al. 1989), 

PEF95SAC (Fabricius et al. 1997) and PIM (set of carbohydrate parameters) (Imberty 

et al. 1999). These force-fields do not always contain parameters for sulfated 

carbohydrates such as GAGs, but various approaches can be followed to develop 

specific parameters for GAGs using the MM2 (D. R. Ferro et al. 1995; D. R. Ferro et 

al. 1997), AMBER and CHARMm force fields. Some non-bonded parameters not 

available from the work of Huige and Altona (Huige & Altona 1995) can be 

approximated from those for phosphates available from AMBER or CHARMm. 

1.13. THERAPEUTIC POTENTIAL OF GAG MOLECULES AND GAG 

MIMETICS 

In living cells, carbohydrates such as GAGs derive their activity through binding to 

their protein receptors. These carbohydrate-protein interactions could be mimicked to 

enhance the binding and affinity of the interaction for drug discovery purposes. X-ray 

crystallography, NMR spectroscopy and structure-based design have been used to 

investigate carbohydrate-protein interactions. The affinities of such interactions start at 

millimolar levels, whereas small molecule chemical entities used in drug discovery 

often have submicromolar or nanomolar binding affinities. Specifically designed 

synthetic compounds that can mimic the structure and interactions of carbohydrate 

ligands, such as GAG mimetics, may bind their receptors with higher affinity than the 

natural GAG oligosaccharide.  

The molecular diversity of heparin/HS interactions has led to the clinical progression 

of GAG mimetics (Fugedi 2003). Discrete GAG sequences can bind specifically and 

make unique interactions with a large number of proteins including chemokines (Z. 

Johnson et al. 2005), growth factors (Spillmann & Lindahl 1994), proteases such as 

the AT-III (Jin et al. 1997), and adhesion molecules (Lyon & Gallagher 1998). 

Nevertheless, the design of GAG mimetics requires an understanding of the 

pathophysiological role of a given GAG-protein interaction and its specificity. 

Potential strategies based on heparin/HS-protein interactions have recently been 

described to assist GAG-based drug discovery (Lindahl 2007). As shown in Figure 

1.21, GAG-based drugs can act in several ways:  
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1) Endogenous heparin, once released from mast cell granules, tends to exist as free 

GAG chains. The negatively charged sulfated regions provide interaction sequences 

for a variety of proteins, including growth factors, chemokines, enzymes/enzyme 

inhibitors, and various extracellular-matrix proteins (Figure 1.21A). 

2) Activate (agonists) or inactivate (antagonists) protein-based receptors. An example 

of a GAG acting as an agonist can be found in the interaction of a specific heparin 

pentasaccharide with AT-III, which potentiates AT-III to inhibit the serine proteases 

involved in blood coagulation (Petitou & van Boeckel 2004) (Figure 1.21B).  

3) Compete with endogenous GAGs. Receptor signalling can be inhibited by a GAG-

based drug that displaces a ligand from its receptor. The interactions of a GAG with 

the protein depend mainly on the charge density of the GAG. This charge density is 

due to the content of either N- or O-sulfated regions. These regions can be fine tuned 

to develop an effective drug. Another drug discovery strategy has been used in the 

case of endostatin (Figure 1.21D). An oligosaccharide comprising two N-sulfated 

regions separated by at least one N-acetylated glucosamine unit was reported to 

compete with endogenous HS for binding to endostatin (Ricard-Blum et al. 2004).  

4) Inhibit GAG biosynthesis. For example, some O-xyloside inhibitors specifically 

target xylosyltransferases that initiate HS biosynthesis (Figure 1.21E) and are known 

to have a role in cancer therapy (Belting et al. 2002). 

 

Figure 1.21. Potential strategies for drug development based on HS-protein 

interactions, as illustrated by U. Lindahl (2007a). Most of the examples shown 

relate to HS (shown in red)-dependent binding of a protein ligand (shown in dark 



 

 54

blue, e.g. a growth factor) to its cell-surface receptor (shown in light blue); 

however, similar principles would apply to a variety of interaction systems. A) 

Binding of protein ligand to the receptor, assisted by endogenous HS. B) Activation 

of the receptor by a GAG mimetic that forms a ternary complex with the ligand and 

receptor, and displaces endogenous HS. Direct binding of a GAG mimetic to target 

a protein may promote or inhibit bioactivity. C) Inhibition of receptor signalling by 

a drug that displaces a ligand from its receptor. D) Inhibition of receptor signalling 

by a GAG mimetic that blocks the protein binding site of HS. E) GAG mimetics (not 

indicated) interfering with HS biosynthesis. 

Very few GAG fragments have been developed for therapeutic use (Figure 1.22), 

mostly because the synthesis of such fragments is chemically challenging. The 

synthetic challenges posed by the complex structure of these oligosaccharides are the 

availability of L-idose and L-iduronic acid from commercial or natural sources and the 

lack of efficient synthetic routes to access sufficient amounts of these 

monosaccharides. Other challenges are the development of a suitable protecting-group 

strategy to allow the implementation of a high degree of functionalisation of 

heparin/HS fragments and the stereo selective and efficient formation of 

interglycosidic bonds in the carbohydrate backbone (Codée et al. 2004). 

The most recognised pharmaceutical application of GAGs is in anti-coagulation. 

Many pharmaceutical companies like Organon and Sanofi-Aventis are working on the 

development of commercial GAG-based drugs that can bind AT-III and thereby cause 

anti-coagulation. Their goal is to produce a GAG-based drug that is efficacious but is 

less frequently administered than full length heparin. An example of such drug is the 

synthetic pentasaccharide Arixtra
� (fondaparinux or SR90107/Org31540) (Choay et 

al. 1983). Fondaparinux is known to bind AT-III and to have better efficacy at low 

doses (half-life of 17 hours). The crystal structure of Arixtra complexed with AT-III 

confirms the importance of basic residues Arg 46, Arg 47, Lys 114, Lys 125, Arg 129 

and Lys 114 for this interaction (Jin et al. 1997).  
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Figure 1.22.  Heparin sequences of therapeutic significance. 

Fondaparinux has been followed by the development of several other clinical 

candidates, such as idraparinux (SANORG 34006), which also selectively inhibits 

coagulation Factor Xa as well as binds AT-III (Herbert et al. 1998). Idraparinux is 

currently in phase III trials for the treatment of venous thromboembolism. The 

synthesis of idraparinux is much easier than that of fondaparinux or heparin. It also 

has higher affinity (Kd of 1 nM) and better efficacy than fondaparinux (Kd of 25 nM). 

Idraparinux and fondaparinux differ from each other in the type of sulfation and the 

methylation of all hydroxyl groups. The hydroxyl groups in idraparinux are 

methylated and the N-sulfate groups in fondaparinux are replaced by O-sulfates in 

idraparinux. Idraparinux has an increased half-life (120 hours) in the bloodstream. The 

higher activity was observed in an idraparinux pentasaccharide due to the presence of 

methyl ethers, which interact with complementary lipophilic groups at the protein 

surface. 

AT-III in the absence of coagulation factors has been crystallised complexed with 

fondaparinux. The structural requirements for heparin binding to AT-III were 

determined on the basis of the crystal structure and structure-activity relationships for 

a series of pentasaccharides, as shown in Figure 1.23 below, with various 

combinations of sulfate and carboxylate groups (Petitou & van Boeckel 2004). The 3-

O sulfate group at position H of fondaparinux exhibits stronger binding to AT-III by 

interacting with positively charged amino acids, whereas the lack of the 3-O-sulfate 
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group at position F results in a decreased binding affinity to AT-III of nearly 20,000-

fold. 

 

Figure 1.23. The structural requirement for heparin binding to AT-III based on the 

structure activity relationships of fondaparinux (Maurice Petitou & Boeckel 2004). 

The groups highlighted in the boxes are absolutely essential for the activation of AT-

III, whereas the groups in the circles only help to increase the biological activity. 

Sulfate group at the 3-O position H of the fondaparinux pentasaccharide can exhibit 

stronger binding to AT-III and the N-sulfated groups can be replaced by methyl 

groups to form more potent pentasaccharide idraparinux. The 3-O-sulfate group on 

the GlcN unit F of pentasaccharide is very specific for to the AT-III binding sequence, 

and is absent in the heparin molecules. The figure was adapted from Petitou et al. 

(2004). 

Heparin binds both AT-III and thrombin simultaneously to form a ternary complex, as 

well as bind and inhibit Factor Xa. The required size of an oligosaccharide that can 

inhibit thrombin activity is much larger than the specific pentasaccharide that is 

required to bind AT-III and inhibit Factor Xa. The synthetic hexadecasaccharide 

SR123781 has tailor-made Factor Xa and Thrombin inhibitory activities combined 

with less specific binding. The molecular interactions of this hexadecasaccharide have 

been determined from X-ray crystal structures of ternary complexes of AT-

III/thrombin (Li et al. 2004). This oligosaccharide consists of an AT-III binding 

domain (S12–S16) at the reducing end of the non-sulfated linker, a non-sulfated linker 
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region (S6-S11), and a thrombin-binding domain (S1–S5) at the non-reducing end of 

the linker (Figure 1.22). This synthetic oligosaccharide contains methylated hydroxyls 

and 2-O-sulfo substituted glucose in the AT-III binding domain instead of the N-sulfo 

substituted glucosamine (S12–S16) that occurs in the natural pentasaccharide. The 

highly sulfated glucose units allow non-specific binding to thrombin. This binding to 

thrombin is thus dependent primarily on the overall charge density of the GAG 

fragment rather than on a precise sequence of variously substituted sugar residues. All 

of the monosaccharide units in the AT-III binding domain are in the chair 

conformation, with the exception of the iduronic acid (S15) at the reducing end, which 

is in the “skew-boat” conformation. The eight non-sulfated linker region (S6-S11) 

does not interact with any protein residues, but rather it enhances the formation of the 

ternary complex giving rise to increased AT-III activity but with minimal interaction 

with PF4. 

PI-88 (Progen) (Figure 1.22) has progressed to clinical trials to treat inflammatory 

diseases, thrombosis, virus infections and cancer (V. Ferro & Don 2003). PI-88 acts as 

a substrate analogue to inhibit heparanase activity and so prevents HS degradation. It 

is targeted for conditions such as tumour cell invasion, metastasis, and angiogenesis. 

PI-88 is a phosphomannopentose sulphate (6-O-PO3H2-�-D-Man-(1	3)-�-D-Man-

(1	3)-�-D-Man-(1	3)-�-D-Man-(1	2)-D-Man), wherein the chain length, sugar 

composition and glycosidic linkages �1->3 and �1->2 play important roles in its anti-

coagulation activity compared to the anti-coagulant activity of sulfated glucose-

containing oligosaccharides with �1->4, �1->3 linkages (Wall et al. 2001).  

A variety of different approaches such as solution-phase and solid-phase chemistry to 

the polymer-supported synthesis of GAG and non-GAG derivatives has been reported 

over the years for the development of a large variety of GAGs (Codée et al. 2004). 

Nonetheless, the introduction of non-anionic structural motifs into heparin/HS should 

provide a route for the development of novel, potent drug-like GAG mimetic 

molecules to treat various diseases. 

SIGNIFICANCE AND AIMS OF THIS STUDY 

PECAM-1 is important in the extravasation of leukocytes during inflammation. In 

PECAM-1 knock-outs, cells (leukocytes) get caught between the endothelium and the 
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basement membrane. It is possible that the interaction of HS with PECAM-1 in vivo is 

critical for both the initial interaction of leukocytes with endothelial cells and the final 

passaging across the basement membrane. There is a large amount of HS on the 

endothelial cell surface which could be important for interactions with the 

extracellular domains of PECAM-1. In contrast to other heparin binding cell adhesion 

molecules such as NCAM, GAG interactions with PECAM-1 are still controversial. 

An understanding of the nature of the interactions of GAGs with PECAM-1 will play 

an important role in the discovery of small molecule selective inhibitors of these 

interactions. The crystal structure of PECAM-1 has not yet been determined, either on 

its own or in complex with heparin fragments. Consequently, the use of molecular 

modelling techniques in this research project provides an alternative route to the 

investigation of the structure of PECAM-1 and its interactions with GAGs. 

The aims of this study are: 

� To predict the structure of the extracellular domains of the PECAM-1 

molecule using protein modelling techniques 

� To identify and characterise the homophilic, heterophilic, metal binding and 

sulfate binding sites of the PECAM-1 molecule. 

� To predict the binding of various GAG fragments to the putative GAG binding 

sites of PECAM-1 and their associated binding affinities. 

� To predict the free energies of binding in aqueous solution of various GAG 

fragments using molecular dynamics simulation methods.  

� To rationalise the structural determinants of binding specificity and selectivity 

in the interaction of PECAM-1 with various GAG fragments. 
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C h a p t e r  2  

MOLECULAR MODELLING METHODS 

A variety of computational approaches have been used in this research to construct a 

model of the three dimensional structure of PECAM-1 and investigate its 

intermolecular interactions with GAGs. This chapter provides an introduction to the 

concepts and methods of homology modelling, fold recognition, ligand-protein 

docking and molecular dynamics simulations. 

2.1 HOMOLOGY MODELLING 

One of the main challenges in biochemistry is the ‘protein folding problem’, an 

understanding of how the overall fold of a protein is determined by its amino acid 

sequence (Anfinsen 1972). The function of a protein is a consequence of its three-

dimensional (3D) structure (i.e. its fold) and hence the determination of its structure is 

essential. The 3D structure of a protein can be determined through X-ray 

crystallography or nuclear magnetic resonance (NMR) spectroscopy. However, both 

of these methods are expensive, cumbersome and time-consuming techniques.   

A 3D model of the structure of a protein is necessary when an X-ray or NMR structure 

is not available. Homology modelling or comparative modelling methods are able to 

predict the 3D structure of a protein sequence by using information derived from 

homologous proteins of common evolutionary origin whose structures are known. 

Homology modelling involves combining the sequence of a macromolecule of 

unknown structure with the structure (template) of another structurally similar 

macromolecule in order to obtain an approximate model of the structure of the protein 

of interest. Homology models of proteins are used to understand protein stability and 

function, perform structure-based drug design and optimisation, or design experiments 

such as site-directed mutagenesis.  
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 Figure 2.1 outlines certain features that apply to all protein structure prediction 

methods (Marti-Renom et al. 2000), in particular: 

� Homology modelling requires the availability of similar structures. 

� 40% amino acid identity or higher is best for performing comparative modelling 

as shown by the conservation in structural folds in protein 3D structure databases.  

� 20% to 40% or lower amino acid identity may be of limited value, although 

successful examples have been reported. With such low amino acid identity it is 

better to use methods like threading (modelling with folds) (D. T. Jones et al. 

1992). 20% - 35% amino acid sequence identity is often referred to as the 

“twilight” zone. 

� 0% - 20% amino acid sequence identity is often referred to as the “midnight zone” 

(previously referred to as “twilight zone” as shown in Figure 2.1). Ab initio 

prediction methods can be used. These methods predict structure on the basis of 

identifying low-energy conformations of the target protein. This field is of great 

theoretical interest but, so far, of little practical application. However, threading 

and ab initio methods have been applied to the modelling of membrane-bound 

proteins such as GPCRs (Becker et al. 2004; Fleishman & Ben-Tal 2006). 

 

Figure 2.1. Structure prediction methods. Comparative or knowledge-based 

modelling is used when sequence identity is greater than 40%, whilst threading or 
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fold recognition are preferable when sequence identity is between 20% and 40%. 

These methods can model 3D structures reliably because structural identity 

increases with the increase in similarity between the query sequence and the 

homologous templates. If sequence identity drops below 20% (i.e. the ‘midnight’ or 

‘twilight zone’) it becomes difficult to predict the structure of the sequence in 

consideration.  

In order to build the 3D homology model of a protein its amino acid sequence is 

required, along with the high-resolution structure(s) and the sequences of related 

proteins. Figure 2.2  provides a flow diagram of the standard process of homology 

modelling. A number of key steps are involved in the construction of the 3D model of 

a protein using homology modelling:  

 

Figure 2.2. Homology modelling flow chart. A similarity search is performed with 

the query sequence against a 3D structure database such as PDB. Sequence and 
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structural alignments are carried out between the homologous template and the 

query sequence. The SCRs (structurally conserved regions) and VRs are modeled 

using comparative modelling followed by optimisation algorithms. Finally, the model 

is verified using Ramachandran plots and other structure prediction methods. In the 

absence of a known template from the database, modelling is performed using fold 

recognition or ab initio methods.  

2.1.1 Template detection 

Comparative model building of a new (target) protein sequence involves the 

extrapolation of a known 3D structure of one or more related family members 

(templates). Comparative protein modelling requires at least one sequence of known 

3D structure with significant similarity to the target sequence. BLAST (Altschul et al. 

1997) and FASTA (Pearson & Lipman 1988) searches against structural databases 

like the PDB enable detection of homologous templates. Statistical methods 

implemented in BLAST and FASTA searches can determine the likelihood of a 

particular alignment between sequences arising by chance given the size and 

composition of the database being searched. BLAST can also perform genome 

specific similarity searches and conserved domain database searches. FASTA uses the 

Smith-Waterman dynamic programming algorithm for protein and nucleotide 

searches, which are slower but more sensitive when full-length protein sequences are 

used as queries. As a result FASTA is more specific compared to BLAST algorithm 

when identifying long regions of low similarity, especially for highly divergent 

sequences. BLAST is designed to find local regions of similarity whereas FASTA is 

preferred for global pair wise alignments. Position-specific iterated (PSI)-BLAST 

(Altschul et al. 1997) is the most sensitive BLAST program, which is used for finding 

very distantly related proteins. PSI-BLAST iteratively expands the set of homologues 

of the target sequence based on a position-specific scoring matrix (PSSM or profile). 

This matrix is created from an alignment of the sequences returned with higher score 

(E-values). This PSSM created in the first iteration becomes the query in the next 

iteration search. Any new database hits below the inclusion threshold are included in a 

new PSSM. The search converges when no more new database sequences are added in 

subsequent iterations.  
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These similarity searches allow the selection of several suitable templates for a given 

target sequence in the modelling process. The function of the target protein can also be 

predicted on the basis of the homology between the target and template sequence. The 

best template(s) structure(s) is the one with the highest sequence similarity to the 

target and with better crystallographic parameters (such as resolution) and the 

completeness of the structure. Such template serves as the reference structure. In the 

case of distantly related proteins, the sequence alignment may not indicate the correct 

fold assignment of the target sequence. In this case, the templates are superimposed 

onto the query sequence depending on their structural folds. 

The next step is to predict secondary structure. The aim of secondary structure 

prediction is to look for patterns of residue conservation that are indicative of known 

secondary structures, such as alpha helices and beta strands, within a protein or protein 

family. PSIPRED (Bryson et al. 2005) and PredictProtein (Rost et al. 2004) are some 

of the tools available used to predict secondary structure with greater confidence 

(although the prediction of �-strands is still imperfect).  

PSIPRED is a secondary structure prediction method based on two feed-forward 

neural networks. Sequence similarity searches are made using PSI-BLAST and a final 

position-specific scoring matrix (PSSM) after three iterations of PSI-BLAST. This 

PSSM is used as input to a single hidden layer neural network. This method achieved 

an average Q3 score of between 76.5% and 78.3% in CASP3 (Critical Assessment of 

techniques for protein Structure Prediction) because of its ability to predict secondary 

structure precisely amongst 187 unique folds, achieving the highest published score 

compared to any other method in that competition (D. T. Jones 1999). Recent versions 

of PSIPRED average the output from up to four separate neural networks in the 

prediction process, and achieved an average Q3 score of 80% in CASP4.  

PredictProtein is a secondary structure prediction method that considers various 

aspects of protein sequence and structure analysis, such as multiple sequence 

alignments and database search, ProSite sequence motifs, low-complexity regions, 

ProDom domain assignments, nuclear localisation signals, disulfide bridges, 

secondary structure, solvent accessibility, globular regions, transmembrane helices 

and coiled-coil regions. This method uses algorithms based on PHD methods, namely 

PHDsec (Rost 2001; Rost & Sander 1994) or PROFsec for secondary structure 
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prediction. PHDsec prediction is based on the generation of a pair wise profile-based 

multiple sequence alignment created by the program MaxHom. This alignment is then 

fed into a neural network with three layers (input, hidden, and output). The output of 

the first level (sequence-to-structure network) based on the conversation profile from 

the neural network is fed into a second level consisting of structure-to-structure 

network. The three output units in PHDsec code for �-helix, strand, and unconserved 

regions. PHDsec focuses on predicting hydrogen bonds and, as a consequence, helices 

may be renamed as strands after highly reliable secondary structure predictions.  

2.1.2 Sequence alignment and optimisation 

This is the most important step in the construction of the 3D model of a protein. The 

target sequence needs to be aligned with the template sequence or, if several templates 

have been selected, with the structurally corrected multiple sequence alignment. This 

can be achieved by using multiple sequence alignment methods such as ClustalW 

(Chenna et al. 2003). ClustalW uses pair wise alignments between all the input 

sequences on the basis of similarity using scoring matrices like PAM (Point Accepted 

Mutation) and BLOSUM (BLOck SUbstitution Matrix), and assigning gap penalties 

for insertions or deletions in the sequence alignment. The distances are calculated by 

looking at the non-gapped positions and counting the number of mismatches between 

the two sequences, and then dividing this value by the number of non-gapped pairs 

from the alignments. A matrix is formed once all distances corresponding to all pairs 

have been calculated. ClustalW constructs a similarity tree using this matrix and a 

neighbour joining algorithm is used to construct the phylogenetic tree. In the end all 

alignments are clustered on the basis of this progressive guiding tree starting from the 

closest related groups. 

The factors that need to be considered when performing sequence alignments are (1) 

algorithm used for the alignment, (2) scoring methods applied and (3) assignment of 

gap penalties. Residues such as those located in non-conserved loops should be 

modeled after modelling of the conserved regions. For proteins with low homology 

sequence with the query protein (~<40% percentage sequence identity), the model can 

be improved by using secondary structure prediction (i.e. align-model-realign-

remodel). 
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The next step is to transfer the coordinates of the atoms in SCRs from the template 

structure(s) to the target. Methods based on the satisfaction of spatial restraints like 

MODELLER (Sali & Blundell 1993) are based on generating as many constraints (or 

restraints) as possible from the structural alignments of the parents and building the 

target structure, in a similar fashion to NMR structure determination methods (using 

additional energy restraints according to the correct stereochemistry of the protein 

chain). MODELLER starts to build a model using distance and dihedral angle 

restraints on the target sequence derived from its alignment with template 3D 

structures. Spatial restraints and CHARMM force field terms, which enforce proper 

stereochemistry, are then combined into an objective function. Restraints can include 

distances between alpha carbons, other distances within the main chain, and main 

chain and side chain dihedral angles. Finally, the model is generated by optimising the 

objective function in Cartesian space. One of the strengths of carrying out modelling 

in this way is that constraints or restraints derived from a number of different sources 

can easily be added to homology-derived restraints. It is clear that regions where the 

structure of the homologous templates cannot be structurally aligned, or where an 

alignment between the target and the multiple alignments of the templates is not 

given, need to be built with an additional function. Most of the structural changes are 

produced in loop regions, but occasional secondary structures may also be involved in 

variable regions. In the case of multiple superimposed template structures, the 

coordinates are separated into conserved secondary structural elements and conserved 

loops.  

2.1.3 Modelling of variable regions 

Almost every protein model contains non-conserved loops (variable regions), which 

are expected to be the least reliable portions of a protein model. In most cases, these 

loops also correspond to the most flexible parts of the structure, as evidenced by high 

crystallographic temperature factors in template structure(s). After the backbone of the 

target protein is generated, loops for which no structural information is available in the 

template structures (non-conserved regions in the alignment which are not defined) 

need to be constructed. This can be done by finding peptide segments in other proteins 

that fit into the spatial constraints of the model after a search for high resolution 

fragments in databases such as the PDB. There are two methods for predicting loop 
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conformations: ab initio methods (Moult & James 1986) and database searching 

techniques or knowledge-based approaches (van Vlijmen & Karplus 1997).  

In the case of ab initio loop prediction methods, a conformational search or 

enumeration of conformations in a given environment is carried out guided by a 

scoring or energy function. There are many such methods which use different protein 

representations, energy function terms, and optimisation or enumeration algorithms. 

Search algorithms include sampling of main chain dihedral angles biased by their 

distributions in known protein structures, the minimum perturbation random tweak 

method, systematic conformational searches, Monte Carlo simulated annealing, Monte 

Carlo and molecular dynamics simulations, search of discrete conformations by 

dynamic programming, random sampling of conformations that rely on dimers from 

known protein structures, enumeration based on graph theory, etc. (Olson et al. 2007; 

Samudrala & Moult 1998) 

Database approaches to loop prediction aim to find a segment of main chain that fits 

between two stem regions of a loop (Greer 1981). A residue range is chosen to include 

the undefined loop as well as a few residues (usually three) on either side of the loop 

for which coordinates have been defined. Segments are examined for their ability to fit 

in the undefined region without making bad contacts with other atoms but overlapping 

well with the residues on either side of the loop. The loop may then be subjected to 

conformational searches to identify low energy conformers. Coordinates for side chain 

atoms in these loop regions may be copied if the residues are similar, although often 

side chain rotamer libraries are used to define coordinates in these regions. Loops are 

modelled from database searches consisting of 1) homologous structures, 2) a cluster 

database of loops, and 3) a non-redundant database of proteins with less than 25% 

homology and resolution higher than 2.5 Å (van Vlijmen & Karplus 1997).  

The database search is valid only for short and medium sized loops or for special cases 

where homologous proteins share structural commonalities in the loops although still 

being considered variable regions. Hybrid methods have been proposed (Martin et al. 

1989) which use both database search and ab initio methods to predict loops in 

antibodies. CODA (Deane & Blundell 2001) is a combination of two algorithms: 

FREAD, a knowledge-based method, and PETRA, an ab initio method. 
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Two types of energy functions are supported by MODELER’s Loop Refinement: 

DOPE_Loop (Shen & Sali 2006)  and (Fiser) Loop (Fiser et al. 2000). Both include 

bonded terms (bond length, bond angle, main chain dihedral angles, side chain 

dihedral angles, etc.) but differ mainly in their non-bonded terms. DOPE_Loop uses 

non-bonded terms such as Lennard-Jones, DOPE (Discrete Optimised Protein Energy) 

statistical potential (an all-atom potential that computes a residue-by-residue energy 

profile of a homology model), charge-charge interactions and an electrostatic 

contribution to the solvation free energy, whereas (Fiser) Loop uses the Melo 

statistical potential, which is a residue based distance-dependent statistical potential of 

mean force.  

2.1.4 Replacement of template side chains with model side chains 

The coordinates of the side chains are transferred to the model if the residue type in 

the target structure is identical or very similar to that in the known homologues. The 

number of side chains that need to be built is dictated by the degree of sequence 

identity between target and template sequences. In the case of disulphide bridges, 

these are modelled using secondary structural information from proteins using 

program like PredictProtein and from conserved disulfide bridges in related structures. 

For other side chains a rotamer library can be used in conjunction with a systematic 

search to explore possible side chain conformations depending on the associated 

backbone conformation (Dunbrack Jr & Karplus 1993). The rotamer library generally 

provides lists of 
1 and 
2 angle pairs for residues for given � and � angle values, and 

explores these pairs to try to minimise side chain-backbone clashes and side chain-

side chain clashes. Consequently, a library of rotamers taken from a database of 

protein structures can be used as an alternative to model the conformations of side 

chains.  

Force field terms can be incorporated for the prediction of side chain conformations to 

include solvation corrections. Side Chain Refinement modules in Accelrys tools can 

optimise side chain conformations based on systematic searches of side chain 

conformations and CHARMm energy minimisation using the ChiRotor algorithm (V. 

Z. Spassov et al. 2007). In this algorithm, the side chain atoms from the residues to be 

optimised are minimised keeping the backbone fixed. This step is followed by 

conformational sampling of the side-chains, followed by minimisation using 
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CHARMm. The lowest two energy conformations are then saved while the atoms of 

side-chains with higher energy conformations are deleted, and this process is repeated 

iteratively through all the residues which are selected for optimisation. The lowest 

energy conformation of all side chains are assembled into the structure framework and 

energy minimised using CHARMm. The first residue starting from the N-terminus is 

replaced by the second lowest energy side-chain conformer in the framework and 

energy minimised. If the second side-chain conformer has lower energy after 

minimisation, it replaces the first one. For some residues such as Trp, His, Asn, and 

Gln, in the second cycle an additional rotation is performed corresponding to a change 

of 180o in the terminal 
 angle, due to the presence of asymmetric groups in the side-

chains of these residues. Residues Ala, Gly, Cys in disulfide bridges and Pro are not 

subject to side-chain refinement but are kept in their original confirmation.  

2.1.5 Optimisation of the model 

The homology modelling procedure continues with a molecular mechanics 

minimisation in order to reduce irregularities in the structure and find an optimum 

molecular geometry. Various energy minimisation algorithms can be utilised, such as 

the Newton Raphson method, steepest descents and conjugate gradients methods, 

using force fields such as CFF (Consistent Force Field), CHARMM or AMBER. The 

refinement of a primary model is initially performed by approximate 100 steps of 

steepest descents, followed by 200-300 steps of conjugate gradient energy 

minimisation. This process can be repeated until some convergence criteria are 

satisfied. Sometimes models optimised by energy minimisation (or molecular 

dynamics) methods usually change their conformation away from their initial 

structure. Constraining the positions of selected atoms (such as C� atoms or the 

backbone atoms of transmembrane regions in GPCRs) in each residue generally helps 

to avoid excessive structural drift during minimisations and molecular dynamics 

simulations (Patny et al. 2006). 

Optimisation of the model also involves refining the flexible regions formed by a 

loop. Loop Refinement is a CHARMm based protocol integrated in Accelrys 

Discovery Studio. The initial stage in the algorithm “LOOPER” (V.Z. Spassov et al. 

2008) includes a systematic conformational search of loop structures by sampling the 

backbone phi and psi dihedral angles keeping the rest of the protein fixed. A minimum 
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set of dihedral angles for each residue is chosen based on the lowest energy 

conformation. The loop is divided into two halves: the N-terminal half and the C-

terminal half. Each half has N/2 residues for an even number residue loop, whereas in 

case of an odd number residue loop, the N-terminal half is one residue longer than the 

C-terminal. Two conformational states are sampled for each residue [(�=-90, �=120) 

and (�=-60, �=-40)] in each half with the exception of glycine. Energy minimisation 

is carried out for half of the loop in absence of the other half, wherein 50 

conformations for each half are retained. This step is followed by ranking of the N and 

C- terminal half loop conformations on the basis of CHARMm energy evaluations. 

Full loop conformations are constructed from all combinations of the retained half 

loops by constructing the peptide bond between the two half loops and energy 

minimising using CHARMm. The side-chain atoms in these loops are positioned 

using the approach of ChiRotor (V. Z. Spassov et al. 2007). Finally, a full energy 

minimisation of the resulting loop is carried out and the top ranked conformation is 

retained on the basis of CHARMm energies.  

2.1.6 Detection of errors (model verification) 

All models built by homology have errors. Side chains can be placed incorrectly, 

whole loops can be misplaced or novel folds may not be predicted correctly. In the 

latter case, the model will be more similar to the template than the real structure. It has 

thus been necessary to develop criteria with sufficient discriminatory power to 

distinguish a good model from a bad one. The quality of protein models can be 

assessed by measuring the root mean square deviation from the crystal structure, the 

proportion of main chain conformations in acceptable regions of the Ramachandran 

plot, the presence of planar peptide bonds, the existence of side chain conformations 

that correspond to those in the rotamer library, the presence of hydrogen bonds 

between polar atoms if they are buried, the presence of proper environments for 

hydrophobic and hydrophilic residues, and the lack of bad atom-atom contacts. 

These parameters can be evaluated using the program WHAT IF (Vriend 1990).  

Analyses of Ramachandran plots (PROCHECK) (Laskowski et al. 1993) as well as 

Profile 3D and Verify 3D methods can be used to evaluate the quality of a protein 

model. PROCHECK is based on an analysis of �/� angles, peptide bond planarity, 

bond lengths, bond angles, hydrogen-bond geometry, and side chain conformations 
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through a comparison with the expected values of these parameters obtained from 

known protein structures, as a function of atomic resolution of the structures from 

which the model was developed.  

The Profile 3D method is based on the statistical preferences of each of the 20 amino 

acids for particular environments within the protein. Preferred environments for amino 

acids are derived from known three-dimensional structures and are defined by three 

parameters: (1) the area of each buried residue, (2) the fraction of side chain area that 

is covered by polar atoms (i.e., O and N), and (3) the local secondary structure. Based 

on these environment variables, a 3D structure is converted into a 1-D profile that 

describes each residue in the folded protein structure. Examination of these profiles 

reveals the regions of a sequence that appear to be folded correctly.  

Verify 3D is used to evaluate sequence-structure compatibility in a crystal structure or 

homology model with at least 100 residues (Eisenberg et al. 1997). Verify 3D assesses 

the environment of the 3D structure or model based on the solvent exposed side 

chains. The compatibility score of the sequence to the structure segments (1D to 3D 

profile) is plotted for all residues according to their sequence number. Scores are 

averaged over a 21-residue window. The Verify 3D scores below or near 0.0 reflect 

structures that are almost certainly incorrect, whilst scores near 1.0 reflect scores 

similar to those expected for a valid protein of the same size.  

2.1.7 Iteration over all steps to remove errors 

After verification of the structure using the above methods, a final step in the 

construction of a protein model may required an iterative process through the steps 

outlined in the flowchart in Figure 2.2, particularly errors in template selection or a 

correction of the sequence alignments.   

2.2 THREADING OR FOLD RECOGNITION 

Homology modelling becomes increasingly unreliable when the sequence identity 

between two proteins falls to 40% or less.  In this case, threading or fold recognition 

methods can be more useful for assessing protein sequence-structure compatibility. 

The terms threading and fold recognition are frequently used synonymously. In these 

methods, a protein sequence of interest is firstly used to search a database of known 
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protein structures with the aim of finding the overall protein fold that the sequence is 

likely to adopt. Apart from these methods, a database search using fragments can be 

carried out using the query sequence against the known protein(s) to identify a number 

of structurally conserved regions/motifs or regions of well defined secondary structure 

motifs or signatures (i.e. helices or strands). This method is sometimes referred to as 

fragment based homology modelling (Kolodny et al. 2002).  

Fold recognition methods can be broadly divided into two types:  

1. Methods that uses the information like secondary structure or accessible surface 

area of the query protein - 2D Threading or Prediction Based Methods 

This method uses databases such as DSSP (Database of Secondary Structures for 

Proteins), containing sequences, secondary structures and solvent accessible 

surface area (Rost et al. 1997). The method tries to align the query sequence 

against the database using dynamic programming and ranks the alignment in 

accordance with the fold. The performance of these algorithms increases if the 

database size is considerably large. 2D fold recognition methods are much faster 

than the 3D counterparts but the limitation of this method is that it cannot produce 

a 3D model at the end of the process.  

2. Methods that consider the full 3D structure of the protein template - 3D Threading 

or Distance Based Methods (DBM).  

In the 3D representation, the structure is modelled as sets of interatomic distances 

i.e. the distances are calculated between some or all of the atom pairs in the 

structure (Bryant & Lawrence 1993). This is a much better description of the 

structure, but these methods generate poor sequence alignments. This method can 

be based on profile or PSSM. The method based on profile is the 1D-3D profile 

(Bowie et al. 1991; Luthy et al. 1992). This method derives a 1D profile for each 

structure in the fold library and aligns the target sequence to these profiles. A 

simple example of a profile representation takes each amino acid in the structure 

and labels it according to 18 structural environments on the basis of secondary 

structure, solvent accessibility and burial by polar atoms. Scoring functions are 

then used to verify the statistical significance of the profiles with the preliminary 
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sequence in the homology model or the known structure. Those sequences that 

produce high compatibility scores are likely to be structurally related to the probe 

(3D profile), and regions having low scores are likely to be placed where the 

backbone has been incorrectly modelled. The disadvantage of this method is that 

the structural environments or residue classes do not define the structural context, 

e.g. amphiphatic helices or strands with the distant sequence homologues. 

Web-servers such as 3D-PSSM and Phyre (Protein Homology/analogY 

Recognition Engine) perform a profile-profile matching algorithm (PSSM, 

Position Specific Scoring Matrices) together with predicted secondary structure 

matching (Kelley et al. 2000). These methods generate structural alignments of 

homologous proteins using three passes of a global dynamic programming 

algorithm to search the structural classification of proteins (SCOP) database. The 

resulting multiple alignment based on superfamily classification is converted into 

a PSSM. The score (residue equivalence) for a match between a residue in the 

query sequence and a residue in the library sequence is calculated as the sum of 

the secondary structure, solvation potential and PSSM scores. Each iteration of 

search differs in the PSSM used for the scoring, with secondary structure and 

solvation held constant. Finally, the program uses a statistical parameter-E value, 

which is a measure of confidence in the prediction. Combined with secondary 

structure matching and solvation potentials, 3D-PSSM and Phyre can confidently 

model proteins undetectable by PSI-BLAST (Bennett-Lovsey et al. 2007). 3D-

PSSM or Phyre is also used for large scale annotation of genomes. Recently, 

Phyre has been developed as an ensemble (meta or cluster) fold recognition 

system (Bennett-Lovsey et al. 2007; Kelley et al. 2000). A protein query sequence 

is processed by a pool of fold recognition algorithms such as profile-profile or 

sequence-profile to detect homologies from the SCOP database as described in 

3D-PSSM. This results in formation of a pool of candidate protein structural 

models. These models are clustered according to one of the SVM (Support Vector 

Machines) and Greedy protocols. 

2.3 FORCE FIELD METHODS 

A force field is a term used to describe the functional form and parameter sets of the 

molecular mechanics potential energy of a molecular system. ‘All atom’ force fields 
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contain parameters for every atom in a molecule, including hydrogens. The set of 

parameters describe the force constants and equilibrium lengths and angles of 

chemical bonds, as well as partial charges and VDW interaction parameters. These 

parameters are usually derived from experimental and ab initio quantum mechanical 

calculations (Burkert & Allinger 1982). The energy, E, is a function of the atomic 

positions, R, of all the atoms in the system. The energy (equation 1) is calculated as a 

sum of ‘bonded’ terms (Ebonded), which describe the bonds, angles and conformations 

in a molecule (equation 2), and of non-bonded terms (Enon-bonded) shown in equation 3, 

which describe electrostatic and VDW interactions (Burkert & Allinger 1982). 

V(R) = Ebonded + Enon-bonded (1) 

Where Ebonded = Ebond+Eangle+Etorsion; Enon-bonded = Eelectrostatic + EvdW (2) 

Equation 2 can be written as the sum of all the bonded (equations 3, 4 and 5) and non-

bonded (equation 6) interactions (refer to Figure 2.3). 
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Equation 3 describes the interaction between atom pairs separated by a covalent bond 

through a harmonic potential (following Hooke’s law). This equation is an 

approximation to the energy of a bond as a function of deviations from its ideal bond 

length, r0. r is the length of the bond (i.e., the distance between the two nuclei of the 

atoms). The force constant, Kb, determines the steepness of the potential, controlling 

how difficult it is to stretch a bond.  
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Equation 4 describes the harmonic potential associated with the alteration of a bond 

angle theta 
 (the angle between two bonds) from its ideal value 
0. The values of 
0 

and K
 depend on the chemical type of atoms constituting the angle. 
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Equation 5 describes the torsional potential of a dihedral angle. Such angles are 

assumed to be periodic and are often expressed as a cosine function, which models the 

periodic presence of steric barriers between atoms separated by three covalent bonds. 

K� represents the energy barrier to rotation, n is the multiplicity (the number of 

maxima or minima in one full rotation), � is the torsion angle and � determines the 

angular offset.  

 

Figure 2.3. Energy terms in a molecular mechanics force field. The total energy of 

the system is given by the sum of bonded interactions (bond stretching, bond angle 

bending and torsional changes) and non-bonded terms such as VDW and 

electrostatic interactions. 

VDW interactions are most often modelled using the Lennard-Jones potential, which 

expresses the interaction energy as a sum of a repulsive and an attractive term, using 

atom-type dependent constants A and B. The electrostatic interaction between a pair of 

atoms ri and rj is represented by Coulomb’s equation. �0 is the permittivity of free 

space, �r, is the relative dielectric constant of the medium in which the charges are 

placed, and rij is the separation between two atoms having charges qi and qj. 
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A force field can thus describe the energy of a molecule as a function of the 

coordinates of its atoms. Some of the most popular force fields are:  
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AMBER (Assisted Model Building and Energy Refinement): This force field uses 

a united atom approach (wherein non-polar hydrogen atoms are not represented 

explicitly), and was developed by Peter Kollman and his group at the University of 

California, San Francisco (Cornell et al. 1995). The parameter sets for proteins and 

DNA in AMBER is referred to as “ff94” or “ff99”. GAFF (Generalized AMBER 

force field) provides parameters for small organic molecules (J. Wang et al. 2004). 

Parameters for carbohydrates have been developed in the form of the GLYCAM force 

field by Robert Woods (Woods et al. 1995). The AMBER force field functional form 

is: 
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where K r , K 
 and K � are the respective force constants, r is the bond length, r0 is the 

equilibrium bond length, � is the angle value, �0 is the equilibrium bond angle value, � 

is the dihedral angle value, n is the periodicity, qi and qj are the charges of the atoms, � 

is the effective dielectric constant and rij is the distance between two atoms.  

GLYCAM: The GLYCAM force fields (Woods et al. 1995) has been developed for 

oligosaccharides but lacks parameters for charged carbohydrates such as GAGs. 

Dihedral angle parameters and ensemble-averaged partial atomic charges are derived 

by selecting 100-200 conformations from a solvated MD run (Basma et al. 2001). The 

initial charges are derived after a quantum mechanical energy optimisation of the 

geometries at the HF/6-31G* level, keeping exocyclic torsion angles fixed in their 

MD conformation. RESP (Restrained ElectroStatic Potential fit) charges are used to 

reproduce the electrostatic potential and dipole moment of the molecule using basis 

set theory (Bayly et al. 1993). The RESP method involves generation of multiple 

conformations of molecule to perfom the fiting of the charges on the atom. GLYCAM 

versions 93, 94 and 2000 were augmented with AMBER parameter sets. The recent 

version GLYCAM06 (Kirschner et al. 2007) has parameter sets applicable to any 

stereoisomer and to all monosaccharide ring sizes and conformations, and is 

independent of AMBER force field parameters. 
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CHARMM (Chemistry at HARvard Macromolecular Mechanics): This molecular 

force field and dynamics program was developed by Martin Karplus and his group at 

Harvard (Brooks et al. 1983). The CHARMM22 and CHARMM27 sets of parameters 

are used for the simulation of protein, DNA and lipids. The commercial version of this 

force field implemented in Accelrys programs is referred to as CHARMm. CHARMM 

uses the following energy function: 

Epotential = Ebond + Eangle + Etorsion + Eoop + EUB + Eelec + Evdw  
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where Eoop is the out-of-plane potential or improper torsion used to select the correct 

geometry or chirality of atoms, EUB is the Urey-Bradley component (cross-term 

accounting for angle bending using 1,3 nonbonded interactions). 

K b , K 
 , K � , K � and K �  are the respective force constants, b is the bond length, b0 is 

the equilibrium bond length, � is the angle value, �0 is the equilibrium bond angle 

value, � is the dihedral angle value, n is the periodicity, � is the improper angle value, 

�0 is the ideal improper angle value, � is UB 1,3 distance, �0 is the ideal UB 1,3 

distance,  � is the Lennard-Jones well depth, Rminij is the distance at the Lennard-Jones 

minimum, qi and qj are the charges of the atoms, � is the effective dielectric constant 

and rij is the distance between two atoms. 

CFF (Consistent Force Field): This force field was developed by Halgren and the 

Biosym Consortium based upon ab initio quantum mechanical calculations on small 

molecules (Hagler & Ewig 1994). The CFF force field uses quartic polynomials for 

bond stretching and angle bending, and uses three-term Fourier expansion for torsions. 

VDW interactions are represented by an inverse 9th power term for repulsive 

behaviour instead of the inverse Lennard-Jones 12th power term. 
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2.4 ENERGY MINIMISATION METHODS 

The potential energy surface (PES) is a mathematical representation of the total 

potential energy of a molecule or molecular system as a function of its coordinates and 

resulting from all interactions between the atoms (Leach 2001), as described in the 

previous section. A complex PES can be compared with a mountain range having 

energy barriers (peaks), energy minima (valleys), and saddle points (passes). Energy 

minimisation is performed on macromolecular structures and small molecules to relax 

their conformation and remove any steric overlap that produces bad contacts (high 

energy states) between atoms. Different minimisation algorithms can be applied on a 

molecule to find an energetically preferred conformation of a molecule (which will 

rarely be the absolute energy minimum). These algorithms are classified according to 

the order of the Taylor series expansion of the energy as a function of all coordinates 

(x): 
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where the second term in Equation 9 is known as the gradient (force) and the third 

term is known as the Hessian (force constant). The most important first and second 

order energy minimisation methods (Leach 2001) are the steepest descent, conjugate 

gradient and adapted basis set Newton-Raphson methods. 

Steepest Descent (SD): This is a very simple and first derivative minimisation 

method. It considers only the current location of the coordinates from iteration to 

iteration, resulting in the gradient and the direction of successive steps parallel to each 

other. SD is superior to other methods when the starting structure is far from the 

minimum, as it can rapidly move away from high energy conformations. However, 

this method converges very slowly to a local minimum in a complex PES and, 

consequently, it is used mostly in the early stages of a minimisation algorithm to 

remove unfavorable steric contacts.  

Conjugate Gradient (CONJ): This is also a first order derivative method. It is an 

iterative method that makes use of the previous history of minimisation steps and the 

current gradient to determine the next step. The gradients and the directions of 
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successive steps are orthogonal. This method exhibits better convergence than the 

steepest descent method. A variation of the conjugate gradient method with improved 

efficiency is called the Powell algorithm. 

Adapted Basis-set Newton-Raphson (ABNR): This is a second order derivative 

method. It performs energy minimisation using a Newton-Raphson algorithm applied 

to a subspace of the coordinate vector spanned by the displacement coordinates of the 

last positions. The second derivative matrix is constructed numerically from the 

change in the gradient vectors, and is inverted by an eigenvector analysis that allows 

the algorithm to recognise and avoid saddle points in the energy surface. At each step, 

the residual gradient vector is calculated and used to add a steepest descent step, 

incorporating the new direction into the basis set. 

The performance of these algorithms is monitored on the basis of convergence criteria 

(a sufficiently small change in the energy gradient and RMS gradient), the number of 

minimisation steps carried out within a specific time, and the memory storage 

requirement. SD requires little memory whereas Newton-Raphson methods require lot 

of memory and computation. SD or CONJ is usually recommended for the initial 

minimisation of a system, followed by a few steps of ABNR (if there is enough 

memory). 

2.5 MOLECULAR DOCKING  

The non-covalent binding of a small molecule to its target protein receptor is one of 

the most common biomolecular interactions. Molecular docking is a computational 

method that seeks to model interactions between the ligand and protein and make 

predictions about the geometry of the ligand-protein complex (the ‘binding mode’) 

and the associated free energy of binding. Most proteins contain pockets, cavities, 

surface depressions or grooves where small molecules can easily bind. The small 

molecule or substrate complements the shape and physio-chemical properties of the 

binding/active site of a protein/enzyme. In the case of enzymes, binding of a substrate 

to the active site leads to the catalysis a particular chemical reaction and this term in 

biochemistry is called “docking”. This is based on the “lock-and-key” principle 

postulated in 1894 by Emil Fischer, wherein receptors (in analogy with lock) and 

ligands or substrates (analogy with the keys) fit together tightly on the basis of 
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structural (shape) and interaction complementarities. The “lock and key” model is 

rigid model but most often the substrate plays a role in determining the final shape of 

the enzyme inducing partial flexibility within the enzyme (Koshland 1995). This 

flexible model is called induced fit theory. Both these theories form the basis of 

docking algorithms.  

The most common technique used in many docking programs is the shape 

complementarity method, which aims to match the receptor and the ligand by finding 

an optimal binding pose (DesJarlais et al. 1988). Structural complementarity may 

require matching of the solvent accessible surface area and of overall shape and 

geometric constraints between atoms in the protein and ligand. Interaction 

complementarity takes into account hydrogen bonding interactions, hydrophobic 

contacts and VDW interactions, in order to describe how well a particular ligand binds 

to a protein.  

The challenge in molecular docking is to search for and accurately predict the binding 

mode of a ligand and its associated binding affinity. The correct binding mode of a 

ligand molecule may be found after extensive sampling of the conformational space of 

the molecule in the protein binding site. The typical output of a docking program is a 

set of ligand binding modes ranked by a docking score. The docking score is assigned 

by a scoring function, which should be able to distinguish the correct binding mode 

from other putative modes. The protein-ligand complex with the highest ranking score 

should then resemble the actual (observed) binding mode. 

There are a variety of methods that have been developed to perform conformational 

searches, such as incremental step construction, as implemented in PatchDock, and 

simulated annealing and genetic algorithms, as integrated in AutoDock. 

2.5.1 PatchDock  

This is a rigid molecular docking algorithm for small molecule-protein, protein-

protein and antibody-antigen interactions based on shape complementarity principles 

(Duhovny et al. 2002; Schneidman-Duhovny et al. 2005; Schneidman-Duhovny et al. 

2003). It is used for protein-protein docking based on the identification of ’hot spot’ 

residues. It is also used for docking of antigen-antibody molecules on the basis of the 

complementarity-determining regions (CDRs) or hyper variable (HV) regions. The 
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CDRs are detected in PatchDock by aligning the sequence of a given antibody to a 

consensus sequence of a library of antibodies. 

PatchDock makes use of a geometry-based molecular docking algorithm that aims to 

find docking transformations that yield good molecular shape complementarity. The 

algorithm divides the Connolly dot surface representation of the molecules into 

concave, convex and flat patches. These complementary patches (convex, concave 

and flat) are calculated using a hybrid of the geometric hashing and pose-clustering 

matching techniques in order to generate rigid molecule candidate transformations. 

Each candidate transformation is further evaluated by a scoring function that considers 

both geometric fit (the complementarity molecular shape score) and atomic 

desolvation energy (C. Zhang et al. 1997). Finally, a clustering method can be applied 

to the candidate solutions based on the complementarity molecular shape score in 

order to reduce the number of potential solutions.  

PatchDock uses a high density representation of the molecular surface using 

Connolly’s MS Surface algorithm (Connolly 1983) and a low density representation, 

using a sparse surface for the unbound docking of rigid molecules. The denser surface 

is used to detect steric clashes and for fine geometric scoring. The algorithm divides 

the receptor into shells (according to the distance from the molecular surface) for 

primary scoring of the transformations. The number of surface points in each shell is 

counted at each stage of a candidate transformation. The geometric score is a weighted 

average of all the shells, with a preference for candidate complexes with a large 

number of points in the outer shell, and a lower preference for possible points in the 

’penetrating’ inner shells. 

A PatchDock run reports the surface area, atomic contact energy, distance 

transformations and the geometric fit score of the ligand-protein complex. The atomic 

contact energy (ACE) is a desolvation free energy score (C. Zhang et al. 1997) based 

on the method of Miyazawa and Jernigan (Miyazawa & Jernigan 1985) with 

improvements. It is defined as the free energy of replacing a protein-atom/water 

contact, by a protein-atom/protein-atom contact. The ACE scores were obtained for all 

pairs of 18 atom types as observed in case of 91 representatives protein monomeric 

structures. The total ACE score of a protein (equation 10), �EC, is calculated in 

dimensionless RT units and can be given as the difference between two terms: the 
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total number of atom-water contacts in the fully solvated conformation and the total 

number of atom-water contacts in the native conformation: 

�EC=EC(native structure) �EC(solvated conformation) 
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where different terms are defined for an individual protein p. ei is the average contact 

energy for the i th atom type of the protein p, nr is the total number of solute atoms, ni 

is the number of atoms of type i, nir is the total number of solute contacts made by 

atom type i, nr0 are the total numbers of solute-solvent contacts, qi is the coordination 

number for residues of type i, ev and es are the contact energies averaged, respectively 

over all the atom-water contacts in the solvated state and over all the atom-water 

contacts in the native state.  

2.5.2 AutoDock 

AutoDock is a set of docking algorithms developed at the Scripps Research Institute 

and the University of California at San Diego. AutoDock uses three docking 

protocols: simulated annealing (SA), genetic algorithm (GA) and Lamarckian genetic 

algorithms (LGA).  

SA was the first method used for optimisation in AutoDock (Morris et al. 1996). This 

algorithm translates the ligand from an arbitrary point in space into the protein binding 

site through a series of translation and rotation steps. The ligand is treated as a flexible 

entity, whilst the protein target remains rigid. SA docking is a global optimisation 

technique based on the Metropolis Monte Carlo method. During each constant 

temperature cycle of simulated annealing, random changes are made to the ligand's 

current position, orientation, and conformation (if flexible). The new configuration is 

then compared to its predecessor. If its new energy is lower than the previous, this 

new configuration is immediately accepted. However, if the energy of the new 
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configuration is higher than the previous one, it is accepted with a probability given by 

its Boltzmann factor (equation 11): 

P(	E) = e(	E /KT)   (11)  

where 	E is the difference in energy between the new and previous configurations, 

and K is the Boltzmann constant. This probability depends upon the energy and cycle 

temperature. Each cycle contains a large number of individual steps which are 

accepted or rejected upon the current temperature. After a specified number of 

acceptances or rejections, the next cycle begins with a lower temperature as specified 

by equation 12: 

Ti = g Ti-1 (12)  

where Ti is the temperature at cycle i , and g is a constant between 0 and 1. At high 

temperatures, many high energy configurations will be accepted, whilst at low 

temperatures, the majority of these configurations will be rejected. In general, this 

method performs a global energy search when the high temperature allows the 

exploration of the PES of the interaction to predict the energy minima, and performs a 

local search at low temperature. This method performs better than steepest descent 

where SA is able to accept all the low-lying energy states of the clusters in the narrow 

valley with probability P as per the equation 11 that are rejected by SD.  

GA constitutes a general purpose optimisation method that works by mimicking the 

process of Darwinian evolution. GA is used for multidimensional global search 

problems where the search space potentially contains multiple local minima. An 

advantage of GAs over many search or optimisation algorithms is that derivatives of 

the scoring functions are not required.  

All living organisms consist of cells. In each cell there is the same set of 

chromosomes. A chromosome (large portions of DNA) consists of genes which 

encode proteins. The genome encodes all of the physical characteristics of the 

organism, known as the "phenome". A particular set of genetic information is a 

"genotype", and likewise a particular set of physical characteristics, or "traits", is a 

"phenotype".  
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During reproduction, genes are transferred from parents to their offsprings through 

recombination or crossover. The new created offspring can have mutations, which are. 

mainly caused by errors in copying genes from parents. The suitability of a given 

organism to its environment is usually measured by its "fitness" in analogy with the 

idea of the "Survival of the fittest", as introduced by Darwin. Computationally, it is 

usual to evaluate the "fitness" of an organism directly, without considering any kind of 

phenome.    

In an optimisation algorithm, a chromosome contains information about the system 

that it represents. In AutoDock, the phenotype is described by the set of Cartesian co-

ordinates of the protein-ligand complex, whilst the genotype encodes information 

describing how to put together the ligand and protein into a bound complex. The 

particular arrangement of a ligand and a protein can be defined by a set of variables 

describing the translation, orientation and conformation of the ligand with respect to 

the protein. They are composed of a 3D translational vector, Eulerian rotation angles 

and a collection of torsion angles that describe bond rotations in the ligand and 

protein. These values correspond to a ligand’s state variables and each state variable 

is referred to as one gene. The configuration of the ligand can now be referred to as 

genotype, whilst the conversion of the configuration into atomic co-ordinates defines 

its phenotype. A docking simulation generates a series of generations. Each 

generation is composed of a population of individuals, i.e. protein-ligand complexes. 

A population of different genes is generated at random, and each is scored using a 

fitness function such as the AutoDock energy function. Genes are selected to form the 

next population based on the scoring function, with better scoring poses or 

conformations more likely to be selected. Pairs of the selected genes or poses are 

allowed to cross over with each other in order to gradually find a better solution. 

A basic GA applied for molecular docking (G. Jones et al. 1995b) in general, is 

outlined below: 

1. A set of reproduction operators such as crossover and mutations are chosen 

and each operator is assigned weight. 

2. An initial population is randomly created and the fitness of its members is 

determined. 
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3. An operator is chosen using a selection algorithm based on the weights of the 

operators. 

4.  The parents required by the operator are selected using selection algorithms 

based on scaled fitness.  

5.  The operator is applied and the child chromosomes are produced. The fitness 

of the offspring is evaluated. 

6. If not already present in the population, the children replace the least fit 

members of the population. 

7. If an acceptable solution is found, stop, or else go to step 3. 

The characteristics of the GA that have a major impact on the outcome are the 

implementation of crossover and the fitness factor (see further below). GA 

implemented in AutoDock also follows the basic genetic algorithm but differs in 

terms of few parameters as described below: 

Generations/Initial Populations: The initial population for a GA optimisation is 

usually chosen at random in AutoDock. For each random individual in the initial 

population, a translation is assigned on the basis of the randomly distributed values 

between the minimum and maximum x, y, and z extents of the grid maps, an 

orientation is assigned on the basis of a quaternion having a random vector and a 

random rotation angle between -180° and 180°, with torsion angles assigned random 

values between -180° and 180°. The generation of populations continues until the 

maximum number of generations or the maximum number of energy evaluations is 

reached, whichever is encountered first. 

Fitness factors: Setting the values of the fitness factors in GA involves assigning a 

value, its probability, to one or more strings (strings in AutoDock is referred to as the 

set of genes in the chromosomes consisting of three cartesian coordinates for the 

ligand translation; four variables defining a quaternion specifying the ligand 

orientation and one real-value for each ligand torsion, in that order) as a measure of 

improvement of the solution compared to other strings that result from reproduction, 

crossover and mutation. The fitness function in AutoDock is the docking energy 
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function, which is the sum of the intermolecular interaction energy between the ligand 

and the protein, and the intramolecular energy of the ligand. 

Selection: Chromosomes are selected from the population to become parents to 

reproduce, and these are selected according following Darwinian evolution (‘survival 

of the fittest’). Hence, the best chromosomes survive and create new offspring. In 

AutoDock, the selection is made in accordance with: 

no
f w f i

f w <f>
fffffffffffffffffffffff w <f> (13) 

where no is the integer number of offspring to be allocated to the individual; fi is the 

fitness of the individual (i.e. the energy of the ligand); fw is the fitness of the worst 

individual (i.e the ligand with the highest energy) in the last N generations (number of 

docking runs) and <f> is the mean fitness of the population. If the numerator in 

equation 13, fwfi, is greater than the denominator fw<f> then such individuals will be 

allocated at least one child and will be able to reproduce. 

Cross-over: The cross-over in GA refers to swapping of a single bit of a chromosome, 

which is more like a single-point mutation, or of several bits, where a distinction is 

made between the two parents (bit strings, chromosomes) as being identical, different 

and single parent. Cross-over can occur at multiple sites. Two-point crossover is used 

in AutoDock with breaks occurring only between genes in parents chromosomes 

resulting into three pieces. For example, ABC and abc are the set of genes in each 

parent chromosomes. The chromosomes of the resulting offspring after twopoint 

crossover would be AbC and aBc. 

Mutation: After a crossover is performed, a mutation takes place. This is to prevent 

all chromosomes in a population from falling into a local optimum. Mutations change 

randomly the new offspring. The mutation depends on the encoding as well as the 

crossover. Mutation in AutoDock is performed by adding a random real number that 

has a Cauchy distribution to the real variables (i.e the translational, orientational, and 

torsional genes are represented by real variables in AutoDock). 

Other Parameters: The user-defined integer parameter elitism determines how many 

of the top individuals automatically survive into the next generation. If the elitism 
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parameter is non-zero, the new population that has resulted from the proportional 

selection, crossover, and mutation is sorted according to its fitness.  

There are two primary parameters concerning the behaviour of genetic algorithms: the 

crossover rate (Cr) and the mutation rate (Mr). The crossover rate controls the 

frequency with which the crossover operator is applied. If there are N individuals 

(population size=N) in each generation then, in each generation, N*Cr individuals will 

undergo crossover. The higher the crossover rate, the more quickly new individuals 

are added to the population. If the crossover is too high, high-performance individuals 

are discarded faster than selection can produce improvements. A high crossover rate 

of about 80%-95% for GAs is often recommended. On the other hand, a low crossover 

rate may stagnate the search due to loss of exploration power. Mutation is the operator 

that maintains diversity in the population. A genetic algorithm with a mutation rate too 

high will become a random search. After the selection phase, each bit position of each 

individual in the intermediate population undergoes a random change with a 

probability equal to the mutation rate Mr. Consequently, approximately Mr*N*L 

mutations occur per generation, where L is the length of the chromosome. A low 

mutation rate is recommended for chromosomes with binary encoding. Best rates 

reported are about 0.5%-1%. 

The rate of genetic crossover is set to zero in AutoDock. The rate of genetic mutation 

is increased compared to the rate of genetic crossover. Another important parameter is 

the population size. This defines how many chromosomes exist in a population (in one 

generation). If there are too few chromosomes, the GA has a small chance to perform 

crossover and only a small part of search space will be explored. If there are too many 

chromosomes, the GA will slow down. Population sizes of 50-100 are recommended.  

AutoDock uses both Darwinian and Lamarckian inheritance (Morris et al. 1998). A 

LGA is similar to a standard (Darwinian) GA except that each conformation or 

chromosome is subjected to energy minimisation before scoring. The LGA decodes 

the chromosomes and optimises obtained parameters, i.e. the phenome. The 

optimised version is scored and the genetic data is re-evaluated. That is, during the 

'life' of a conformer or chromosome, it may experience local changes so that some 

characteristics can be transmitted to its offspring. Since the local search alters the 

phenotype of the strings, and is then recorded into its genotype, it is described as a 
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Lamarckian process. The differences between traditional GA and LGA are outlined 

in Table 2.1 (Blansché et al. 2005).  

Table 2.1. Differences between genetic algorithms and Lamarckian genetic 

algorithms. Figures adapted from Morris et al. (1998). 

 

1. In standard GA, the genotype (x, y, 

z coordinates and 

rotational/torsional angles) are 

mapped onto the fitness function 

f(x). 

2. New generation based on parent’s 

genes. 

3. Genotypes of parents with high 

f(x) values are mutated, forming 

child genotypes with lower f(x) 

values. 

 

1. LGA finds lowest fitness function 

(energy) values first and then maps 

these values onto their respective 

genotypes. 

2. Each new child is allowed to create a 

new generation. 

3. It also includes Soils and Wets local 

search. 

4. Better performance than GA or 

simulated annealing algorithm. 

 

The traditional and Lamarckian GAs in more recent versions can handle ligands with 

more degrees of freedom than the SA method used in earlier versions of AutoDock. 
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The LGA algorithm implements an adaptive global optimiser with local search. The 

local search method is based on the optimisation algorithm of Solis and Wets (SW), 

which is independent of gradient information (Solis & Wets. 1981). The local search 

modifies the phenotype, which is then allowed to update the genotype. The SW local 

search uses fixed variances for probabilistically determining the change to a particular 

state variable, like a translation or rotation. These variances are either doubled or 

halved during the search, depending on the number of consecutive successful or failed 

moves resulting in a drop in energy. AutoDock also has a modified version of SW 

called pseudo-Solis and Wets (pSW) to take into account in the variances the relative 

magnitudes of translations and rotations. 

An energy evaluation is performed every time the GA or the local search computes the 

fitness of a candidate docking. AutoDock stops a docking simulation if either the 

maximum number of evaluations or the maximum number of generations is reached, 

whichever occurs first. The number of energy evaluations needed for a docking 

simulation will depend on the number of torsion angles in the ligand (and receptor, if 

it is flexible). For rigid ligands and rigid receptors some general guidelines are 

outlined in Table 2.2. In the case of docking simulations of highly flexible molecules, 

such as carbohydrates, ‘ga_num_evals’ is set to a very large number as observed in 

the case of blind docking (Hetenyi & van der Spoel 2002). In the case of blind 

docking, it is important to increase ‘ga_pop_size’ from 50 to 300 in steps of 50 whilst 

keeping other parameters constant. The most robust docking results are obtained with 

a population size of 300. The AutoDock authors recommend to run at least 50 docking 

runs, specified by the ‘ga_run’ parameter.   

Table 2.2. Recommended values for AutoDock parameters for docking rigid ligands 

to rigid receptors. 

Number of Torsions ga_num_evals ga_num_generations 

0 25 000  to  250 000 27 000 

1-10 250 000  to  25 000 000 27 000 

>10 >25 000 000 27 000 
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AutoDock uses a force field scoring function to provide a fast calculation of the 

potential energy term in the free energy of binding (Morris et al. 1998). The rigid 

receptor is represented as a potential energy grid and an atom is treated as a probe. For 

each atom type, charge, and placement within the grid, an energy value is computed, 

according to the scoring function (as described below). In version 3.0 of AutoGrid and 

AutoDock, the scoring function is based on the principles of quantitative structure-

activity relationships (QSAR) and it was parameterised using a large number of 

protein-ligand complexes for which both their structures and inhibition constants Ki 

were known. AutoDock employs a molecular mechanics term (equation 19) in the 

scoring function with solvation and entropy terms: 

Molecular Mechanics Terms:   

� VDW (Lennard-Jones 12-6 attraction/repulsion) 
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where Aij / rij
12  is the repulsive term and - Bij / rij

6 is the dispersion interaction, 

both shown to vary according to the inverse powers of the distance between 

the two atoms rij. 
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where E(t) is a directional weight based on the angle, t, between the probe and 

the target atom and rij = distance between atoms i and j. 

� Electrostatics – according to Coulomb's Law 
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where qi and qj are the magnitude of the charges and rij is their separation.  

� Desolvation (AutoDock 3) 
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where i and j are the index of atoms, Si = solvation term for atom I , Vj = 

atomic fragmental volume of atom I, rij = distance between atom i and atom j 

(in Å) and 
 = gaussian distance constant = 3.5 Å 
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The estimated change in torsional free energy when a ligand goes from an unbound to 

a bound state is calculated as:   

� Torsional        
	Gtor = Ntor (non-H rotors) (18) 

 

Finally, the AutoDock scoring function can be expressed (equation 16) as  
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The inhibition constant (Ki) is calculated from the computed free energy of binding, 

�Gbind:  

	Gbind= RT ln Ki (20) 

where R is the gas constant, 1.987 cal K-1 mol-1, and T is the absolute temperature 

(assumed to be room temperature, 298.15 K).  

Various terms in the molecular mechanics energy function in Autodock 3.0 and 4.0 

have been re-scaled by coefficients that were derived using linear regression analysis. 

New terms include the desolvation free energy of the ligand and an estimate of the 

loss of conformational degrees of freedom of the ligand upon binding. The parameters 

for the different terms are self-consistent and are based on the AMBER force field for 

the protein and any metallic ions, along with the GLYCAM force field for the 

carbohydrate. The values used in the AutoDock 3.0 scoring function are given as the 

VDW coefficients and well depth energies, e, scaled by 0.1485, the electrostatic 

energy scaled by 0.1146, and the hydrogen bonding terms scaled by 0.0656. The new 

terms for loss of torsional degrees of freedom upon binding and the ligand desolvation 

free energy are scaled by 0.3113 and 0.1711, respectively. The torsional term is 

actually the number of rotatable bonds in the ligand involving heavy atoms, multiplied 

by the coefficient, 0.3113. Hydroxyl groups are not considered.  
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2.6 MOLECULAR DYNAMICS SIMULATIONS 

Molecular dynamics (MD) allows the study of the fluctuations and conformational 

changes of large macromolecules such as proteins, nucleic acids (DNA, RNA), 

membranes, as well as small molecules. MD simulations track the time evolution of a 

molecular system after the atoms are given an initial velocity and are allowed to move 

according to the forces exerted upon them. The time evolution of the system is 

computed by solving numerically the equations of motion according to the laws of 

Newtonian mechanics (Leach 2001). 

In Newtonian mechanics, the force F exerted on a particle is equal to the produce of 

the mass m of the particle and the acceleration a: F=ma. It is thus possible to 

determine the acceleration of each atom in a system using the above equation if the 

forces can be calculated. Integration of the equations of motion yields a trajectory (a 

series of ‘snapshots’ of the configuration of all atoms) that describes the positions, 

velocities and accelerations of the particles at each time step. 

 Fi � mi ai � mi
dvi

dt
ffffffffff� mi

d2 xi

dt 2
ffffffffffffff  (21) 

Equation 21 denotes Newton’s second law of motion for i atoms in a system where m 

is the mass and a is the acceleration, which is given by the rate of change of velocity, 

which is in turn the rate of change of displacement.   

The force can also be expressed as the gradient of the potential energy:  

 Fi �@�i V   (22) 

where V is the potential energy of the system. Combining equations 18 and 19 yields 

the derivative of the potential energy, which relates to the change in position as a 

function of time. 

 @ dV
dxi

ffffffffff� mi
d2 xi

dt 2
ffffffffffffff  (23) 
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Many force fields such as AMBER and CHARMM have been developed to 

approximate the forces exerted on atoms using classical mechanics. The position of all 

atoms in a system thus gives complete information about the system's forces and 

energy, whilst the velocities of the atoms are determined by the forces. 

The initial positions of the atoms may be taken from experimental structures, such as 

the X-ray crystal structure of a protein or the crystal lattice of ice. The initial 

velocities, vi, are often chosen randomly from a Maxwell-Boltzmann or Gaussian 

distribution at a given temperature (equation 24). 

 p vix
` a

�
mi

2�k bT

fffffffffffffffffffff g1
2
fffff

e
@ mi vix

2

2k b T
ffffffffffffffffffffffffffffff

  (24) 

where p is the probability that an atom i of mass mi has a velocity vx in the x direction 

at a temperature T and kb is the Boltzmann constant. 

In general, the positions (equation 22), velocities (equation 23) and accelerations 

(equation 24) can be approximated by a Taylor series expansion: 

 r t � �t
` a

� r t
` a

� v t
` a

�t � 1
2
fffa t
` a

�t 2 ��  (25) 

 v t � �t
` a

� v t
` a

� a t
` a

�t � 1
2
fffb t
` a

�t 2 ��  (26) 

 a t � �t
` a

� a t
` a

� b t
` a

�t ��  (27) 

where r is the position, v is the velocity (the first derivative with respect to time), a is 

the acceleration (the second derivative with respect to time), etc. Integrating the 

equations of motions can be computationally expensive for a large macromolecular 

system and various integration methods have been developed for this purpose. 

2.6.1 Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) 

method 

Electrostatic interactions, solvation effects and hydrophobic interactions play a crucial 

role in ligand-protein and protein–protein binding. Contributions to the free energy of 

binding arising from these interactions can be calculated using continuum solvation 



 

 93

models based on Poisson-Boltzmann (PB) calculations of the solvation energy and 

solvent accessible surface area (SA) approximations to hydrophobic hydration (Reddy 

& Erion 2001). These methods can be used in conjunction with MD simulations to 

accurately model the behaviour of a macromolecule in aqueous solution. The 

MM/PBSA (Molecular Mechanics-Poisson-Boltzmann Surface Area) and MM/GBSA 

(Molecular Mechanics-Generalized Born Surface Area) methods have been developed 

to calculate the free energy difference between two states, such as the bound and 

unbound states of two solvated molecules, or two different solvated conformations 

(Fogolari et al. 2003). The MM/PBSA/GBSA approach has been successfully applied 

to study protein-peptide/protein interactions (Massova & Kollman 1999), protein-

ligand interactions (Chong et al. 1999), protein-carbohydrate interactions (Goodford 

1985; Laitinen et al. 2003), protein-nucleic acid interactions (Reyes & Kollman 2000) 

and protein folding (M. R. Lee et al. 2000). The MM/PBSA method has also been 

used to compute changes in the free energy of binding upon alanine scanning 

mutagenesis between mutant and the wild-type protein complexes (Laitinen et al. 

2003). 

The MM/PBSA is referred to as continuum solvation method because calculations of 

the electrostatic contribution to the solvation free energy are carried out assuming that 

the molecule (i.e protein or small molecule) can be modelled as a dielectric continuum 

of low polarisability embedded in a dielectric continuum (the solvent) of high 

polarisability. The solvent is represented as a homogeneous continuum with a 

dielectric constant of 80, which is taken to be equal to the value for pure water. The 

solute (i.e. protein or ligand) is represented by a dielectric constant between 1 and 20. 

The protein dielectric constant can vary depending on the protein. The electrostatic 

contribution to the solvation free energy arises from the non-uniform charge 

distribution between the solute charge distribution and the dielectric continuum, which 

is calculated using the Poisson–Boltzmann equation given below: 

 @� � r@Q
b c

�� r@Q
b cD E

� 4��solute r@Q
b c

� �
i
zi

0 e
@ z i � r

` a@@@@Q

kT
fffffffffffffffffffffffffffffffffffffffffffffffffffffff

  (28) 
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where k is the Boltzmann constant, T is the temperature, � is the electrostatics 

potential, �solute is the fixed charge density and �  is the dielectric constant.  � , �and 

�are all functions of position vector r. 

In the MM/PBSA method the different contributions to the free energy of binding are 

calculated on the basis of a thermodynamic cycle (Massova & Kollman 1999). It is of 

utmost importance to calculate all terms that contribute to the free energy of binding, 

such as the solvation energies of the ligand, protein and complex, the interaction 

energy between the protein and the ligand, the vibrational and conformational entropy 

changes in ligand and protein upon complex formation.   

Figure 2.4 shows the thermodynamic cycle for the binding of an enzyme, E, and an 

inhibitor, I, in both the solvated phase and in vacuo. The solvent molecules are 

indicated by filled circles. Solvent molecules tend to be ordered around the larger 

molecules, but when E and I bind, several solvent molecules are released and become 

disordered. This is an entropic effect and is the basis of the hydrophobic effect. The 

solvent ordering around E and I, when both bound and unbound, is strongly 

influenced by the hydrogen bonding between these molecules. These hydrogen bonds 

between solvent and E, and solvent and I, contribute to the enthalpy stabilisation of 

the complex.  

Since the free energy is function of state, the change in free energy between two states 

is the same regardless of the path between the two states. Hence the free energy of 

binding in solution can be expressed as  

	Gbinding, sol = 	Gbinding, vaccum + 	Gsol (EI) – 	Gsol (E+I) (29)  

The 	Gbinding, vaccum can be calculated using molecular mechanics force fields, whilst 

the free energy changes upon solvation for the separate molecules E and I, and for the 

complex, EI, 	Gsol(EI) and 	Gsol(E+I) respectively, can be calculated by the above 

continuum methods. This allows the calculation of the free energy change upon 

binding of the inhibitor to the enzyme in solution, 	Gbinding,sol. The inhibition constant, 

Ki, for the inhibitor, I, can also be estimated. 
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The electrostatic contribution to the solvation free energy can be calculated by either 

solving the linearised Poisson Boltzmann (PB) or the Generalised Born (GB) equation 

for each of the three states. The GB equation calculates the solvation free energy by 

assigning effective radius (Born radii) to each atom as shown in Equation 27. It 

captures the physics of the Poisson-Boltzmann equation, whist improving the speed of 

calculations (Bashford & Case 2000). 

 �G �p@ �w

elec �@
1
2
ffff 1

� p

ffffff@ 1
�w

ffffffff g
�
ij

qiq j

rij
2 � i � j
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e
@ r ij

2

F� i � j

ffffffffffffffffffffffffswwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

   (30) 

where �p and �w are the interior and exterior dielectric constants, respectively, rij is the 

distance between atoms i and j, and �i is the so-called generalized Born radius of atom 

i. F is the empirical factor, which modulates the Gaussian factor scaling the Born 

radii. It may range from 2 to 10, with 4 being the most commonly used value. The 

atomic Born radius is the distance of a given charge location from the solvent 

boundary; for atoms at the center of a spherical cavity. 

 

Figure 2.4. The free energy of binding for a ligand-receptor complex is determined 

by the thermodynamic equation: 	Gbinding, solution = 	Gbinding, vaccum + 	Gsol (EI) – 	Gsol 
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(E+I) where E is the receptor, I is the ligand and EI is the ligand-receptor complex. In 

the figure, 4 = 1 + 2 – 3. The figure was adapted from AutoDock 3.0.5. User Guide.  

An empirical term for the hydrophobic hydration component can then be added as 

shown in equation 28. 

	Gsol = G electrostatic, �= 80 - G electrostatic, �= 1 + 	Ghydrophobic
  (31) 

where � is the permittivity of the medium, also known as dielectric constant. 

	Gvacuum  is obtained by calculating the average molecular mechanics interaction 

energy between receptor and ligand and the vibrational entropy change upon binding. 

	G vaccum= 	H molecular mechanics - T	S (32) 

The vibrational entropy change 	S is approximated from quasi-harmonic models 

which assume the protein to be a system of coupled harmonic oscillators. The 

vibrational entropy can be computed by performing normal modes analysis on the 

three species. In practice vibrational entropy contributions can be neglected if, for 

example, two ligands binding to the same protein are compared, as they will have 

similar vibrational entropies. Normal mode analysis is computationally expensive and 

provides an approximation to the vibrational entropy. The average interaction energies 

of receptor and ligand are usually obtained by performing calculations on an ensemble 

of uncorrelated snapshots collected from an equilibrated MD simulation. 

The MM/PBSA and MM/GBSA methods are integrated in MD simulation packages 

like AMBER to evaluate free energies of binding in solution. The electrostatic 

contribution to the solvation free energy is calculated with the Poisson-Boltzmann 

method implemented in the DelPhi program (Gilson & Honig 1987) or with the 

program GB in AMBER 8.0 and 9.0, which uses the generalised Born equation to 

estimate the electrostatic contribution to the solvation free energy (Jayaram et al. 

1998). The mm_pbsa script in AMBER can be used to analyse a simulation trajectory 

by extracting the energies of the species of interest and calculating the corresponding 

PBSA energies. Vibrational entropies can be computed using the nmode module in 

AMBER.  
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C h a p t e r  3  

HOMOLOGY MODELLING OF THE EXTRACELLULAR DOMAINS OF 

PECAM-1  

The preceding chapter provided an overview of the theoretical background of the 

various molecular modelling techniques that have been used in this work. This chapter 

describes the use of homology modelling, threading methods and other techniques to 

construct a three-dimensional model of PECAM-1. This structural model is discussed 

in detail along with predictions of the likely heparin/HS binding regions of PECAM-1. 

3.1 HOMOLOGY MODELLING OF PECAM-1 

Sequences of the human, mouse, pig, rat and porcine PECAM-1, as well as various 

alternatively spliced isoforms, were retrieved from the Swiss-Prot protein sequence 

database (Boeckmann et al. 2003). The sequences of human, mouse, pig, rat and 

bovine PECAM-1 correspond to P16284, Q08481, Q95242, Q3SWT0 and P51866 

Swiss-Prot accession numbers. Multiple sequence alignment was performed with 

ClustalW (J. D. Thompson et al. 1994a) using BLOSUM (BLOcks of Amino Acid 

SUbstitution Matrix) matrices in order to quantify the sequence similarity between 

individual subunits of PECAM-1 in different species (Figure 1.3) and different 

isoforms (Figure 1.4). Initially, a PSI-BLAST (Altschul et al. 1997) search against the 

Protein Data Bank (PDB) was performed in order to find sequences that were 

homologous with human PECAM-1, so that proteins of known structure could be 

identified and used as a global template for standard homology modelling. Proteins 

with the required sequence similarity (>35%) were not found following a global 

search using the entire extracellular region of PECAM-1 or when individual PECAM-

1 Ig-domains were considered. In local sequence similarity searches, the identities of 

the aligned sequences varied from 18% to 23%.  

Different sequence analysis tools were used for analysis of the PECAM-1 secondary 

structural features. Secondary structure prediction algorithms such as PredictProtein 
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(Rost et al. 2004) and PSIPRED (Bryson et al. 2005) were used to predict the residues 

comprising the different subunits. The Ig-domain sequences, as classified by Swiss-

Prot (see Table 1.1), were submitted to the fold recognition servers Phyre (Kelley et 

al. 2000) and CBS Meta Server (Douguet & Labesse 2001a). These servers predicted 

various I set topologies (Harpaz & Chothia 1994) for Ig folds with various templates, 

including VCAM-1 (E. Y. Jones et al. 1995a; J. H. Wang et al. 1995), NCAM 

(Kasper et al. 2000; Soroka et al. 2003), ICAM-1 (Casasnovas et al. 1998), CEA 

(Boehm et al. 2000) and different isoforms of Fc�R (Maxwell et al. 1999; Powell et 

al. 1999; Sondermann et al. 1999a; Sondermann et al. 1999b; Sondermann et al. 

2001; Y. Zhang et al. 2000). The crystal structures of VCAM-1, NCAM and ICAM-1 

confirmed the existence of the I-type topology in these cell adhesion molecules 

(Kasper et al. 2000).  

In the past, various sequence similarity searches were performed to determine 

relationships between PECAM-1 and various cell adhesion molecules of the Ig 

superfamily (Ig-CAM) (Newman et al. 1990; Simmons 1990; Stockinger 1990). 

Similarly, we have performed alignments of the Ig-domains of PECAM-1 with crystal 

structures of known Ig folds using LALIGN/PLALIGN (Pearson & Lipman 1988) and 

PAM 120 matrices. This allowed us to include new structural information available 

from time to time in the subsequent stages of our modelling studies. The statistical 

significance of an alignment was computed by aligning the two sequences and then 

shuffling the second sequence between 200 and 1000 times using the PRSS module 

(Pearson & Lipman 1988).  

A preliminary sequence analysis with the collected sequences of PECAM-1 and its 

relatives was carried out in order to investigate its evolutionary relationships and, 

consequently, we chose to derive the models with the above templates. The Ig-domain 

1 of PECAM-1 was modelled with NCAM (Ig-domain 2) and VCAM (Ig-domain 1) 

as templates. Ig-domain 2 of PECAM-1 was modelled using the structural features of 

NCAM (Ig-domain 3) and VCAM (Ig-domains 1 and 2). The Ig I set topology in 

domain 3 of PECAM-1 was modelled with multiple templates including CD8 and 

ICAM. Extracellular domains 4-6 of PECAM-1 showed preference for various folds 

of Fc�R, as predicted by fold recognition programs like Phyre (Kelley et al. 2000). 

The alignment between the PECAM-1 sequence and the template obtained from Phyre 
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(Kelley et al. 2000) was used to build the global alignment. The signal, 

transmembrane and cytoplasmic regions were not modelled due to a lack of proper 

protein folds. The amino acid numbering from Swiss-Prot was retained label the 

PECAM-1 sequence. 

Threading and comparative modelling techniques were used to model the extracellular 

domains of PECAM-1. Firstly, individual models of Ig-domains were obtained using 

the information obtained from Phyre (Kelley et al. 2000). A complete structure of the 

human PECAM-1 model was obtained by merging all the individual extracellular 

domains together by constructing the loops spanning the two domains. Assignment of 

six disulfide bridges, optimisation and visualisation were carried out using DS 

Modelling 1.7 (Accelrys, Inc). Loops were built using the loop modelling protocol 

implemented in MODELLER (Fiser et al. 2000; Sali & Blundell 1993). Essential 

hydrogens and charges were added to the structure. Different side chains rotamers of 

residues Asp 38, Asp 60, Lys 77, Asp 78 and Lys 116 were searched and replaced in 

order to make these residues exposed to the surface. The metal coordination site in Ig-

domain 6 was modelled with a metal-oxygen distance of between 2.15 and 2.25 Å, 

which is a key characteristic of metals bound to proteins (Harding 2006). Energy 

minimisation of the modelled structure was carried out in order to remove any 

unfavourable interactions. The CHARMm force field (Brooks et al. 1983) was used 

with the smart minimiser method, which begins with the steepest descent method and 

is followed by the conjugate gradients method until the gradient reached a value 

below 0.001 kcal/mol. This was followed by molecular dynamics simulations (with a 

non-bonded cut-off of 10 Å, a dielectric constant of 4, at a temperature of 300K for 20 

ps using a time step of 1 fs) with the backbone atoms of the Ig-domains kept fixed. 

The structural quality of the resultant protein structure was tested using PROCHECK 

(Laskowski et al. 1993), Eval23D (Douguet & Labesse 2001b) and Verify3D 

(Douguet & Labesse 2001b). Electrostatic potential calculations were done using the 

DELPHI program (Gilson & Honig 1987) implemented in DS Modelling 1.7 

(Accelrys, inc.) using the atomic partial charges assigned by CHARMm with a protein 

interior dielectric constant of 4, a solvent dielectric constant of 80 and an ionic 

strength of 0.145 M. 
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3.2 SURVEY OF THE SULFATE BINDING REGIONS 

The PDB was surveyed for sulfate binding motifs using BLAST searches for short 

overlapping segments for the six Ig-domains. It was assumed that a preliminary search 

for sulfates in the known crystal structures having similar residue composition to that 

of Ig-domains of PECAM-1 might give an indication of likely binding sites of GAGs 

having charged sulfate groups attached to their pyranose rings. For added precision, 

the Ig-domains were split into a set of overlapping fragments 15 amino acids long, 

each overlapping by 5 amino acids. For each fragment a sequence similarity search 

was performed from the PDB. Each hit from the similarity search for PECAM-1 

fragments was checked for sulfate interactions in the protein of corresponding crystal 

structures in PDBsum (Laskowski et al. 2005).  

3.3 RESULTS 

A standard homology building procedure was adopted to construct a three-

dimensional model of PECAM-1, starting with similarity searches and followed by 

solvent accessibility composition (core/surface ratio) and secondary structure 

predictions, as shown in Table 3.1 and Figure 3.1, respectively. The predictions of 

secondary structure correlated well with the known annotation of human PECAM-1 

sequence from Swiss-Prot. PECAM-1 Ig-domains are predominantly classified as all 

beta proteins.These predictions also suggest the presence of a helix in the N-terminal 

and transmembrane regions, and between two beta sheets in Ig-domains 1, 3 and 6. 

The presence of a smaller percentage of alpha helix is also observed in the crystal 

structures of NCAM (PDB codes 1QZ1 and 1EPF). BLAST searches detected 

conserved Ig regions in domains 1, 4 and 6. The percentage identity of various 

alignments was found to be very low, as shown in Table 3.2.  

Table 3.1. Predicted secondary structure composition and solvent accessibility 

composition  for human PECAM-1 using PredictProtein (Rost et al. 2004).  

Secondary structure type Solvent accessibility 
composition 

 

Helix �-sheet Loop B* E* 
% in protein 3.93 40.79 55.28 45.53 54.47 

* Classes used: E: residues exposed with more than 16% of their surface; B: all other 
residues. 
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Continued… 

 

 

Figure 3.1. Secondary structure predictions for the aligned protein sequences of the 

subunits of human PECAM-1 using PSIPRED (Bryson et al. 2005). Alpha helices 

and coils were predicted with higher confidence as indicated by the blue bars by 

PSIPRED as compared to the coil prediction. The secondary structure prediction is 

in agreement with Swiss-Prot annotation.  



 

 
10

4

T
ab

le
 3

.2
.  T

em
pl

at
es

 u
se

d 
fo

r b
ui

ld
in

g 
th

e 
in

iti
al

 m
od

el
s o

f t
he

 Ig
-d

om
ai

ns
 o

f P
EC

A
M

-1
 id

en
tif

ie
d 

by
 L

A
LI

G
N

/P
LA

LI
G

N
 (P

ea
rs

on
 &

 

Li
pm

an
 1

98
8)

. T
he

 d
at

a 
in

 th
e 

ta
bl

e 
re

po
rt 

th
e 

pe
rc

en
ta

ge
 id

en
tit

y 
an

d 
th

e 
le

ng
th

 o
f 

th
e 

am
in

o 
ac

id
 (

A
A

) 
al

ig
ne

d 
ra

ng
e 

th
at

 s
ha

re
s 

id
en

tit
y 

w
ith

 th
e 

qu
er

y 
se

qu
en

ce
 (e

xt
ra

ce
llu

la
r d

om
ai

ns
 o

f P
EC

A
M

-1
) o

bt
ai

ne
d 

by
 lo

ca
l s

eq
ue

nc
e 

al
ig

nm
en

ts
.  

A
m

in
o 

ac
id

 r
an

ge
 in

 P
EC

A
M

-1
 

Ig
-d

om
ai

n 
1 

(3
4-

12
8)

 
Ig

-d
om

ai
n 

2 
(1

39
-2

34
) 

Ig
-d

om
ai

n 
3 

(2
32

-3
42

) 
Ig

-d
om

ai
n 

4 
(3

28
-4

14
) 

Ig
-d

om
ai

n 
5 

(4
15

-5
10

) 
Ig

-d
om

ai
n 

6 
(4

99
-6

04
) 

Te
m

pl
at

e 
cr

ys
ta

l 
st

ru
ct

ur
es

 
PD

B 
co

de

%
 

id
en

tit
y 

A
A

%
 

id
en

tit
y 

A
A

%
 

id
en

tit
y 

A
A

%
 

id
en

tit
y 

A
A

%
 

id
en

tit
y 

A
A

%
 

id
en

tit
y 

A
A

 

V
C

A
M

 (I
) -

 C
2 

se
t 

1V
C

A
 

19
.8

 
81

 
18

.7
 

75
 

41
.2

 
17

 
25

.9
 

81
 

19
 

76
 

21
.6

 
74

 
V

C
A

M
(II

) -
 I 

se
t 

1V
C

A
 

43
.8

 
16

 
22

.2
 

72
 

30
.4

 
23

 
21

 
81

 
25

 
45

 
33

.3
 

18
 

C
D

8 
(I)

 –
 V

 se
t 

1H
N

F 
25

 
40

 
27

.8
 

18
 

21
.7

 
83

 
27

 
37

 
- 

- 
27

.3
 

22
 

C
D

8 
(II

) -
 C

2 
se

t 
1H

N
F 

- 
- 

50
 

6 
31

.6
 

19
 

27
 

63
 

26
.9

 
52

 
23

.1
 

78
 

C
EA

 (I
) –

 V
 se

t 
1L

6Z
 

(m
ou

se
) 

22
.5

 
40

 
36

.6
 

11
 

15
.2

 
33

 
25

.6
 

39
 

- 
- 

24
.6

 
61

 

C
EA

 (I
I) 

– 
I s

et
 

1L
6Z

 
20

.9
 

67
 

24
.1

 
83

 
25

 
40

 
23

.5
 

85
 

24
.6

 
61

 
- 

- 
C

D
16

/F
cG

R
 (I

) -
 I 

se
t 

1F
CG

 
23

.7
 

76
 

50
 

6 
33

.3
 

36
 

27
.7

 
65

 
20

.7
 

58
 

50
 

12
 

C
D

16
/F

cG
R

 (I
I) 

- I
 

se
t 

1F
CG

 
26

.5
 

68
 

22
.7

 
44

 
30

.2
 

63
 

26
.2

 
84

 
24

.6
 

65
 

24
.7

 
81

 

N
C

A
M

 (I
) -

 I 
se

t 
1Q

Z1
 

(R
at

) 
28

.1
 

32
 

33
.3

 
12

 
20

.4
 

49
 

20
.4

 
49

 
20

 
40

 
20

 
30

 

N
C

A
M

 (I
I) 

- I
 se

t 
1Q

Z1
 

20
.7

 
82

 
40

 
10

 
35

 
40

 
21

.2
 

66
 

38
.1

 
21

 
31

.2
 

64
 

N
C

A
M

 (I
II)

 - 
I s

et
 

1Q
Z1

 
38

.1
 

21
 

27
.3

 
55

 
22

.7
 

22
 

23
.8

 
63

 
22

.4
 

67
 

21
.2

 
99

 
IC

A
M

 (I
) -

 C
2 

se
t 

1P
53

 
37

.5
 

24
 

31
.2

 
32

 
25

.3
 

79
 

25
 

88
 

31
.8

 
22

 
21

.4
 

28
 

IC
A

M
 (I

I) 
- I

 se
t 

1P
53

 
38

.5
 

13
 

35
.3

 
34

 
29

.2
 

24
 

19
.3

 
83

 
42

.9
 

14
 

29
.4

 
17

 
IC

A
M

 (I
II)

 - 
I s

et
 

1P
53

 
29

.2
 

24
 

36
.4

 
11

 
25

.8
 

31
 

23
.8

 
42

 
33

.3
 

33
 

38
.5

 
13

 



 

 105

The alignment of the PECAM-1 Ig-like domains with other members of the Ig-CAM 

family performed with LALIGN/PLALIGN suggests that PECAM-1 evolved through 

a process of gene duplication (Newman et al. 1990). The evolutionary analysis using 

ClustalW suggested that NCAM, CEA and Fc�R are more closely related to human 

PECAM-1 (Figure 3.2) Ig-domains 1 and 2 were modelled with multiple templates 

including NCAM and VCAM, as reported by others (Nakada et al. 2000; Newton et 

al. 1997).  

 

Figure 3.2. Phylogenetic analysis of human PECAM-1 with sequences from known 

crystal structures of human ICAM, CD8 and isoforms of Fc�R, NCAM-1 (Rat), and 

NMR structure of CEA. 

The quality of the final model of human PECAM-1 (having all the extracellular 

domains together) was evaluated by means of the PROCHECK program (Laskowski 

et al. 1993) at a 2.5 Å resolution, which gives Ramachandran plots and a quantitative 

distribution of the geometric parameters within the allowed conformational space. The 

percentage of residues in the most favoured, allowed and disallowed conformations, 

were 82.7, 13.7 and 1.0, respectively. As shown in Figure 3.3, the distribution of the 

Psi/Phi angles of the model is within the allowed regions and only five residues are in 

disallowed regions. These residues were not further optimised due to the extensive 

presence of loops and residues like glycine and proline in the structure. Eval23D 

(Douguet & Labesse 2001b) and Verify 3D (Douguet & Labesse 2001b) also 

predicted a good model, with 3D profile scores of 0.035 and 0.117, respectively. The 

models of various Ig-domains 4, 1, 2 and 3, and 5 and 6 of the human PECAM-1 

model that were derived are illustrated in Figure 3.4, Figure 3.5, Figure 3.6 and Figure 
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3.7, respectively. The electrostatic potential surface representations show that Ig-

domains 2, 3, 4, 5 and 6 have positive electrostatic surfaces (coloured blue in Figure 

3.4, Figure 3.6 and Figure 3.7) and may constitute binding surfaces for predominantly 

anionic ligands such as GAGs.   

 

Figure 3.3. Ramachandran plot for the final model (with all the six extracellular 

domains) of PECAM-1. 

The identification of sulfate binding sites is important for predicting the binding of 

heparin and other GAGs. Various approaches have been used to identify heparin/GAG 

binding sites on the surface of proteins on the basis of amino acid composition 

(Caldwell et al. 1996; Fromm et al. 1997), secondary structure (Hileman et al. 1998a), 

spatial distribution of the basic amino acids (Margalit et al. 1993) and the surface 

properties of proteins (Forster & Mulloy 2006). While consensus sequences such as 

XBBXBX and XBBBXXBX (where B is a basic residue and X can be any residue) 
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have been suggested for heparin binding (Cardin & Weintraub 1989), they are neither 

necessary nor sufficient to define a GAG binding site. GAG binding sites generally 

consist of a cluster of basic residues on the protein surface, but not necessarily in a 

continuous sequence. Consequently, it was decided to perform a database search for 

sulfate binding structural motifs. It has been observed that arginine and lysine have the 

highest propensity to bind to GAGs in general. There are fewer tryptophans than any 

other amino acids in the PECAM-1 sequence. This is indicated by the percentage 

composition of amino acids predicted using the PHD module of PredictProtein (Rost 

et al. 2004) (see Table 3.3). Nonetheless, basic residues like arginine and lysine 

(approximately 13%) present in various domains of PECAM-1 may contribute 

towards GAG binding. 

Table 3.3. Percentage residue composition for human PECAM-1 sequence. 

Ala: 5.7 Cys: 2.2 Asp: 4.2 Glu: 7.7 Phe: 3.1 
Gly: 4.1 His: 2.4 Ile: 6.9 Lys: 8.0 Leu: 6.5 
Met: 2.6 Asn: 5.0 Pro: 4.3 Gln: 4.9 Arg: 3.4 
Ser: 9.8 Thr: 6.5 Val: 9.1 Trp: 0.7 Tyr: 3.0 

 

A survey of sulfate binding regions revealed the existence of several positively 

charged regions in Ig-domains 2 as reported earlier (DeLisser et al. 1993), 3, 4 and 6 

as described in Table 3.4. Residues 177-182 in Ig-domain 2 have a high sequence 

identity with the sulfate binding site in bacterial protein disulfide oxidoreductase 

(PDB code 2AYT). Other sulfate binding motifs were also found: (1) residues 207-

223 in Ig-domain 2, which are homologous to sulfate binding motifs in bacterial SecA 

translocation ATPase (PDB code 1M6N and PDB code 1M74); (2) residues 254-258 

and 278-286 in Ig-domain 3, which are homologous to sulfate binding motifs in snake 

phospholipase A2 (MIPLA3) (PDB code 1OZY); (3) residues 330-342 in Ig-domain 

4, which are homologous to sulfate binding motifs in the multiple sugar binding 

transport ATP-binding protein (PDB code 2D62) and ribosomal protein S6 kinase 

alpha 5 (PDB code 1VZO). Interestingly, the region 563-571 in Ig-domain 6 of 

PECAM-1 showed homology to the sulfate binding motifs in the crystal structure of 

HIV-2 reverse transcriptase (PDB code 1MU2). In the final model of human PECAM-

1, the relative distance between each sulfate was found to be approximately 8-9 Å in 

Ig-domains 2 and 3, as observed in the crystal structure of Artemin (PDB code 2ASK) 
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(Silvian et al. 2006). Two sulfate binding motifs were identified in Ig-domain 4 

(Figure 3.4) placed at a distance of 24 Å from each other. No sulfate binding motif 

was identified in Ig-domain 5. A single sulfate binding motif was predicted by the 

survey in Ig-domain 6. The clusters of basic amino acids in Ig-domains 2 and 3 are 

located approximately 20 Å apart. A comparison of the spatial distribution of basic 

amino acids in other heparin binding proteins that have a �-sheet topology (such as 

apolipoprotein E, AT-III and NCAM) suggests that this 20 Å-long region can 

accommodate a GAG pentasaccharide (Margalit et al. 1993). All the predicted sulfate 

binding sites (and the accompanying sulfates) were incorporated into the complete 

model of human PECAM-1. 

Table 3.4. Prediction of the sulfate binding motifs in Ig-domains of PECAM-1 from 

known crystal structures. 

Sulphate binding motif predicted 
in Ig-domains of PECAM-1 

Corresponding alignment of 
sulphate binding motifs from 
known PDB structure 

PDB code 

176-KLKREK-181 221-KLKREK-226 2AYT: A, B
207-QAR---IISGIHMQTSESTK-
223 

216-EARTPLIISG---
QAAKSTK-232 

1M6N: A 
1M74: A 

254-IKCTI-258 9-IKCTI-13 1OZY: A, B
278-IVAHNRHGN-286 
 

133-IVAHQR-GN-140 
 

1AQZ: A, B

331-ESSFTHLD-338 229-DASFTHLD-306 2D62: A 
329-ELESSFTHLDQGER-342 145-EL---FTHLDQGER-155 1VZO: A 
563-SKEQEGEYY-571 306-SQEQEGHYY-314 1MU2: A,B 
The colour encoding in blue indicates that residues in the structural fold of protein are 
known to bind sulfates directly according to the interactions defined in PDBsum. 
 

Ig-domain 5 of PECAM-1 is connected to Ig-domain 4 through a long flexible loop. 

Ig-domain 5 forms only half of the Ig-fold since it lacks the characteristic � strands a, 

b, d and e, as reported earlier (Newman et al. 1990). The b strand was obtained from 

the structure of the KK50.4 T-cell receptor beta chain (PBD code 2ESV: E). The 

region 449-507, including the d and e strands in Ig-domain 5, showed 49% homology 

with monomeric isocitrate dehydrogenase in complex with isocitrate and Mn2+ (PDB 

code 1ITW) when a PSI-BLAST search was performed. However, after surveying 3D 

fragments of domain 5 in the PBD no sulfate binding motifs were detected.  
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Construction of the Ig-like domains 1 and 2 of PECAM-1 was carried out by 

modelling the side chains of specific surface-exposed amino acids in order to facilitate 

the interactions involved in homophilic and heterophilic binding of ligands. The side 

chains of the key residues Asp 38, Asp 60, Lys 77, Asp 78 and Lys 116 (Swiss-Prot 

numbering) that mediate PECAM-1 homophilic binding were repositioned in Ig-

domain 1 (see Figure 3.5) on the basis of PECAM-1 models described earlier based on 

the VCAM-1 structure (Nakada et al. 2000; Newton et al. 1997). A ClustalW (J. D. 

Thompson et al. 1994a) sequence analysis of PECAM-1 shows that residues Asp 60, 

Lys 77, Asp 78 and Lys 116 are highly conserved in species such as human, bovine, 

pig, rat and mouse, whereas Asp 38 in human PECAM-1 is replaced by His 38 in 

other species. This correlates with the fact that homophilic interactions of PECAM-1 

mediated by Ig-domain 1 are species specific, as reported earlier (Nakada et al. 2000).  

Ig-domains 1-3 of PECAM-1 have also been proposed to participate in �v�3-

mediated heterotypic binding. This binding was inferred to be cation and temperature 

dependent (Buckley 1996); however, the validity of some of these presumed ligand 

interactions has been challenged (Sun et al. 1996). Ig-domains 1-3 lack the integrin 

binding motifs found in members of the integrin-binding Ig superfamily (IgSF) 

described to date, including the Ig-domains of VCAM, ICAM-1 and ICAM-2. The 

integrin and metal binding motifs were not found upon survey of structural motifs 

from the PDB in Ig-domains 1 and 2, anticipating the fact that PECAM-1 may 

modulate heterophilic adhesion by an indirect mechanism, as reported previously (Sun 

et al. 1996).  

PECAM-1 has a large presence of charged residues on the surface of Ig-domains 1, 2 

and 3. Modelling of the protonated and unprotonated states of these residues may 

provide useful information. Basic amino acids are clustered in the model of PECAM-

1, with histidine side chains from the �-sheets positioned within 3.0 to 5.0 Å of the 

sulfate binding motifs. Ig-domains 2 and 3 are brought into close contact by a loop of 

only 3 residues long. However, the flexibility of this loop results in either an open or a 

closed conformation of that portion of the PECAM-1 molecule. In the homology 

model, the best fit loop modeled connects Ig-domains 2 and 3 in a closed 

conformation. In a closed conformation, it is expected that a GAG fragment may be 

able to bind to PECAM-1 in a way that involves domains 2 and 3. Modelling of these 
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domains (see Figure 3.6) showed the sulfates bound to two clusters of residues: Q-A-

R (207-209) and L-K-R-E-K-N (177-182), with His 162 in close vicinity in Ig-domain 

2. The side chains of His 239 and His 253 are oriented towards the region I-K-C-T-I 

(254-258), and His 281 and His 298 are in close vicinity of the region 278-286 in Ig-

domain 3 (see Figure 3.6). Histidines were modelled in a positively charged form with 

both N� and N� atoms protonated. Modelling of surface-exposed histidines in Ig-

domains 2 and 3 in close vicinity to the sulfate binding motifs suggests that these 

histidines may assist in the binding of PECAM-1 to heparin or HS in a pH-dependent 

manner, as was observed for the chemokine CXCL 12 (Veldkamp et al. 2005), the 

cytokine Vascular Endothelial Growth Factor (VEGF) (Coombe & Kett 2005), and 

the mouse mast cell protease 7 (Matsumoto 1995). A fully open conformation was 

seen to result in the clusters of basic residues in Ig-domains 2 and 3 being too far apart 

to constitute a GAG binding site due to a twist in the relative orientation of these 

domains. 

 

Figure 3.4. Ribbon diagram of Ig-domain 4 is shown in a schematic representation 

according to secondary structure with the sulfate binding motifs indicated by 

highlighted residues (in stick representation). The surface of Ig-domain 4 is 

represented by electrostatic potential (negative potential in red and positive potential 

in blue). The sulfates are shown in CPK. 
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Figure 3.5. Ribbon diagram of Ig-domain 1 is shown in a schematic representation 

according to secondary structure. Homophilic binding sites reported by Newton et al. 

(1997) in Ig-domain 1 are shown in CPK representation. The disulfide bond between 

Cys 57 and Cys 109 is shown in sticks.   

 

Figure 3.6. Toothpaste representation of Ig-domains 2 and 3 according to 

secondary structure. Numbers 1 and 2 indicate the disulfide bridges. The protonated 

histidines are shown in ball and stick representation and the positive electrostatic 

potential (shown in blue) surface represents the regions consisting of basic residues 
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found by a survey of sulfate binding motifs (in orange), which may constitute high 

affinity binding sites for GAGs. 

 

Figure 3.7. The cation coordination site in Ig-domains 5 and 6, as described by 

Jackson et al. (D. E. Jackson et al. 1997), is represented by a yellow tube. Numbers

1 and 2 indicate the disulfide bridges. The cation binding regions in Ig-domains 5 

and 6 are flanked by 310-helix. The homophilic binding site identified in Ig-domain 6 

(Yan et al. 1995) is shown in orange. The regions of positive electrostatic potential 

(shown in blue) may contribute to low affinity binding site for GAGs. 

Cation coordination sites were also modelled in Ig-domains 5 and 6 of PECAM-1. A 

survey of the PDB for metal binding sites in this region could not detect any metal 

binding motif. It was noticed that the acidic residues in the region 463-475 are placed 

at a distance of 8-9 Å, making them too far apart to constitute a metal coordination site 

(see Figure 3.7). However, the presence of a cluster of basic residues in the vicinity 
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(second coordination shell) of the cation binding site may nonetheless act as an 

electrostatic anchor for the metal ion. A new canonical fold was found in region 565-

572 in Ig-domain 6, as described for the anti-HIV-1 V3 Fab 2219 structure (PDB 

codes 2B0S: L and 2B1A: L) and the CD8 alpha ectodomain fragment (PDB code 

1BQH: G, H, I, K), which consists of a beta-sheet followed by a 310-helix. This fold is 

similar to the predicted secondary structure in the region 565-572 of Ig-domain 6 

(Figure 3.7).   

The PECAM-1 cation binding site in Ig-domain 6 has been demonstrated to have 

higher affinity for Mn2+ than for Ca2+ or Zn2+ (D. E. Jackson et al. 1997). 

Consequently, it was decided to model the conformation of the cation coordination 

site MIDAS (metal ion-dependent adhesion site) for Ig-domain 6 in the presence of 

Mn2+, as described in the past (Legge et al. 2002; Leitinger & Hogg 2000; Yang et al. 

2005). In those reports, Mac-1(CD11b/CD18/�M�2), LFA-1(�L�2) and CD2 had the 

metal coordinated to water molecules as well as serine, aspartate and glutamate 

residues in both open and closed conformation of the receptor as shown in figure 

below (Figure 3.8).  

In the final model, Glu 514, Asp 518 and Glu 569 are located at a distance of 6 Å 

from each other and so it is possible that these residues may coordinate to the Mn2+ 

through water molecules in the MIDAS site as observed for Mac-1 and LFA-1 cell 

adhesion molecules (Leitinger & Hogg 2000). It is predicted that serine residues 515 

and 563 present in the metal binding motif in domain 6 are available to complete the 

metal ion coordination, but there are no experimental data available to support this 

prediction. The mutagenesis data is only available for the acidic residues in the cation 

binding regions. The model of Ig-domain 6 appears to be different in terms of the 

position of the metal coordination site flanked by 310-helix to that of the hypothetical 

model described by Jackson and coworkers (D. E. Jackson et al. 1997). The modelling 

of the topology of the cation binding site was further validated by performing searches 

in the Conserved Domain Database (CDD) (Marchler-Bauer et al. 2005; Marchler-

Bauer et al. 2007) for Ig-domains 5 and 6. These searches suggested structures with 

similar folds to those we derived in the final model. The aromatic residues Phe 545 

and Tyr 546 located near the metal-binding sites as observed in case of metal binding 

protein CD2 (Yang et al. 2005). The rationale behind the existence of divalent cation 
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binding sites proximal to the protein surface is that Mn2+ might interact efficiently 

with histidine-containing ligands (Babor et al. 2005; Bock et al. 1999). Such 

interactions would stabilise the adhesive and downstream signaling properties of 

PECAM-1, providing a structural basis for PECAM-1 mediated cellular interactions.   

 

Figure 3.8. Schematic view the metal ion coordination of the “I domain” (MIDAS 

motif) upon ligand binding as described for Mac-1 and LFA-1 (Bella & Berman 

2000; Leitinger & Hogg 2000). A: In the absence of ligands, the metal ion is 

directly coordinated by three side chains (2 Ser and 1 Asp residues) and three water 

molecules. Another Asp and Thr are indirectly involved in metal coordination via 

hydrogen bonds. B: Octahedral coordination of ions such as Mg2+ or Mn2+ (purple 

sphere) in the open or liganded conformation of an “I domain”. An aspartate 

residue (labelled in grey) that coordinates directly to the metal ion in the closed 

form does so indirectly through a water molecule in the open form (upon ligand 

binding such the “I domain” of integrin receptor �L�2 interacts with its ligand 

ICAM-1). Yellow lines represent hydrogen bonds. Side chains in red correspond to 

the ligand molecule. Residues labelled in black are directly coordinated to the metal 

ion, including the threonine residue that was indirectly coordinated in the closed 

form. 
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C h a p t e r  4  

MOLECULAR DOCKING OF GAGS TO THE EXTRACELLULAR 

DOMAINS OF PECAM-1 

The previous chapter described the construction of a homology model of PECAM-1 

and the prediction of likely sulfate binding sites. This chapter describes the use of this 

homology model in molecular docking simulations in order to predict and model the 

interactions of various GAG fragments with PECAM-1. 

4.1 DOCKING OF GAG FRAGMENTS 

Two programs were used for docking GAG fragments to domains 2 and 3 as 

mentioned in Figure 3.6 and domains 5 and 6 as mentioned in Figure 3.7. The sulfates 

were removed from the homology models of the Ig-domains 2 and 3, and 5 and 6. 

PatchDock (Schneidman-Duhovny et al. 2005; Schneidman-Duhovny et al. 2003) was 

used to dock heparin and other GAG fragments to the homology model of PECAM-1. 

PatchDock is a fast geometry-based molecular docking algorithm that works by 

optimizing shape complementarity (hence, it is not an energy grid-based method). No 

constraints were used to define the binding site in order to allow the program to 

explore the entire surface of PECAM-1 and find appropriate interaction regions using 

an RMSD clustering in order to reduce the number of potential binding modes 

(Schneidman-Duhovny et al. 2005).  

Most three-dimensional X-ray structures of GAG-protein complexes determined so far 

involve relatively small oligosaccharides (di- to hexasaccharides) of varying affinity 

for their protein targets. Hence, in order to determine the minimal length of the 

heparin fragments required for binding to the Ig-domains of PECAM-1, docking 

simulations with di- and pentasaccharides were performed. The structure of the 

heparin pentasaccharide was obtained from the crystal structure of annexin A2 

complexed with a �hexasaccharide (� indicates the presence of 1,4–dideoxy–5-

dehydro glucoronic acid at the non-reducing end) in PDB code 2HYV. Since no 
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electron density was observed for the sixth saccharide (Shao et al. 2006), the 

pentasaccharide was extracted directly from the structure. The residue at the non-

reducing end was modified from the unsaturated UA2S by in-silico addition of 

hydrogen to the double bond between C-4 and C-5 to create a 4-deoxy IdoA2S residue 

(4dIdoA2S). The sequence of the modelled pentasaccharide (Figure 4.1) consisted of 

IdoA2S(1�4)GlcNS6S(1�4)IdoA2S(1�4)GlcNS6S(1�4)IdoA2S. The pyranose 

rings of the glucosamine residues adopt a 4C1 chair conformation whereas iduronic 

acids can adopt either a 1C4 chair or a 2So skew-boat conformation. The 

pentasaccharide was modelled with the iduronic acid at the non-reducing end in 1H2, 

the central and terminal iduronic acids in the 1C4 chair conformation. The structure of 

the disaccharide (IdoA2S(1�4)GlcNS6S) was extracted from the reported NMR 

structures of a heparin dodecasaccharide fragment (PDB structure 1HPN) (Mulloy et 

al. 1993). The iduronic acid was chosen in the 1C4 chair conformation and the 

glucosamine in the 4C1 chair conformation to compare the docking results with those 

obtained for a similar conformation of the pentasaccharide.  

 

 

Figure 4.1. Structure of pentasaccharide (UAP-SGN-IDU-SGN-IDU; SGN - N,o6-

disulfo-glucosamine, IDU - 1,4-dideoxy-o2-sulfo-glucuronic acid, UAP - 1,4-

dideoxy-5-dehydro-o2-sulfo-glucuronic acid) extracted from its crystal structure 

(Shao et al. 2006). The UAP residue was modified to IDU for the docking 

simulations. A, B, C, D, and E refer to the labels of each of the residues of the 

pentamer UAP-SGN-IDU-SGN-IDU, respectively.  

Docking of the DS tetrasaccharide (PDB code 1HM2) and a pentasaccharide extracted 

from CS (PDB code 1C4S) was also performed. There is no crystal structure available 

for the DS pentasaccharide. The modelled DS tetrasaccharide consisted of 
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IdoA(1�3)GalNAc4S(1�4)IdoA(1�3)GalNAc4S and the modeled CS consisted of 

GlcA(1�3)GalNAc4S(1�4)GlcA(1�3)GalNAc4S(1�4)GlcA. Hydrogen atoms 

were added to these oligosaccharides and the resultant structures were energy 

minimised to optimise the orientation of rotatable groups. The surface area, atomic 

contact energy and the binding score computed by PatchDock for the heparin 

pentasaccharide were extracted. 

Further docking simulations were carried out using the program AutoDock 3.0 

(Morris et al. 1998). This program allows for flexibility in the ligand structure but uses 

a rigid body approximation for the protein receptor in order to speed up the 

calculation. This assumes that no conformational changes affect the structure of the 

receptor, which is a necessary approximation given the many degrees of 

conformational freedom in the GAG molecules. Chapter 5 discusses the modelling of 

the conformation of the receptor through molecular dynamics simulations. AutoDock 

Tools (ADT) (Sanner 1999) were used to prepare the PECAM-1 molecule by adding 

appropriate hydrogens, partial atomic charges and solvation parameters. The atom 

type of sulfur and oxygen atoms in sulfate groups of all oligosaccharide ligands were 

modified to S.o2 and O.co2, respectively, and bond type between these atoms was 

modified to aromatic bond in SYBYL (Tripos, Inc.). Ligand rotatable bonds for all 

docked ligands were defined using the AutoTors module of AutoDock. The ligands 

were atom-typed manually to ensure that they complied with the carbohydrate force 

field in AMBER (Weiner et al. 1984). The ligands were energy minimised in order to 

optimise the orientation of its hydrogen atoms. A grid spacing of 0.37 Å and a 

distance-dependent dielectric constant of 4.0 (Mehler & Solmajer 1991) were used for 

the binding energy calculations, covering the putative binding site surface. Using 

AutoDock’s Lamarckian genetic algorithm, heparin fragments were subjected to 200 

search runs using a population of 200 individuals. A grid box was defined with a 

constant grid spacing of 0.37 Å around each heparin fragment using the binding poses 

obtained from PatchDock with respect to Ig-domains 2 and 3, Ig-domain 4, and Ig-

domains 5 and 6 of PECAM-1. 

Due to the flexibility and size of the di- and pentasaccharides of heparin, the number 

of energy evaluations and the size of the genetic population were optimised in order to 

ensure convergence of the calculated energies, starting with a minimum of 5x106 and 
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a maximum of 50x106 energy evaluations, as reported earlier for blind docking 

(Hetenyi & van der Spoel 2002). Cluster analysis was performed on the resulting 

binding poses using an RMSD tolerance of 1.0 Å. Since AutoDock cannot handle 

more than 32 rotatable bonds, the docking of the heparin fragments was performed 

keeping the hydroxyl groups fixed. The lowest docking energy binding scores of the 

disaccharides with full rotational freedom of their hydroxyl groups were similar to 

those obtained when the hydroxyl groups were fixed, confirming that the initial 

orientation of the hydroxyl groups was appropriate for interactions with PECAM-1 

(these interactions were more important for non-heparin fragments, as discussed 

below). 

Docking of heparin fragments of various sizes (refer to Table 4.1 further below) was 

also performed with AutoDock version 3.0, using the same docking protocol to 

identify the optimal length of heparin fragment required for binding to Ig-domains 2 

and 3 of PECAM-1. The heparin fragments that were modelled varied in size from 

two to six saccharide subunits. The di- and trisaccharides were defined to have fixed 

glycosidic torsion angles as taken from a reported NMR structure of heparin (PDB 

code 1HPN). The tetrasaccharide (obtained from PDB code 2HYU) consisted of 

residue A UA2S (1H2 form), residues B and D GlcNS6S (in the predominant 4C1 

conformation) and residue C IdoA2S (in the 1C4 chair form). Different conformations 

of the pentasaccharide and hexasaccharide were considered. The first pentasaccharide 

(obtained from PDB code 2HYV) consisted of 3 iduronic residues separated by 

glucosamine residues, as mentioned above. Another pentasaccharide was also 

considered (obtained from PDB code 1QQP (Fry et al. 1999)), wherein the GlcNS6S 

sugar rings and one of the terminal IdoAp2S rings adopt the energetically favourable 
4C1 or 1C4 chair conformations, the other terminal iduronic ring appears to adopt a 2,5B 

conformation and the central iduronic ring adopts a skew boat 2So conformation. The 

different conformations of the hexasaccharide were extracted from two different 

structures. In the bFGF-heparin complex (PDB code 1BFC) the iduronic rings exists 

in two conformations: iduronic acid in the 1C4 chair conformation and in the 2So skew 

boat conformation (Faham et al. 1996). In the cobra cardiotoxin A3-heparan sulfate 

complex (PDB code 1XT3) (S. C. Lee et al. 2005) the ring conformations of 

glucosamine residues are all in 4C1, the first and second iduronic acids are in the 2S0 

and 1C4 conformation, respectively, and the terminal uronate adopts a 1H2 
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conformation. A third hexasaccharide (referred to hereafter as Construct 1) was also 

built from a pentasaccharide (PDB code 2HYV) by adding an extra glucosamine 

residue “A” in 4C1 conformation to the non-reducing end of the sequence. The 1H2 

conformation of the iduronic acid “B” was substituted with the 1C4 conformation 

similar to the iduronic acid “D”. The terminal saccharide in 1BFC structure is 

glucuronic acid where as in all the other structures from pdb do not have any 

glucuronic acids. 

4.2 RESULTS 

A heparin pentasaccharide (Figure 4.1) was docked to all Ig domains of PECAM-1 on 

the basis of shape complementarity using PatchDock in order to attempt to obtain 

initial binding modes of the saccharides with each domain. The best binding mode of 

the pentasaccharide to Ig-domains 2 and 3 was determined to have an approximate 

interaction surface area of 1200 Å2, an atomic contact energy (ACE) (C. Zhang et al. 

1997) of 290 and a geometric shape complementarity score of 9830. The second best 

binding mode of the pentasaccharide was obtained with Ig-domains 5 and 6, having an 

approximate interaction surface area of 865 Å2, an ACE of 152 and a geometric shape 

complementarity score of 7598. While there is no evidence of the accuracy of these 

measures for carbohydrate-protein interactions, these scores suggest the presence of 

high and low affinity GAG binding sites in Ig-domains 2 and 3 and Ig-domains 5 and 

6, respectively. 

In order to obtain more accurate free energies of binding, the AutoDock program was 

used to dock heparin fragments to PECAM-1. The top ranking binding mode of 

heparin obtained resulted in an improved fit between the negatively charged 

pentasaccharide and the positively charged regions in both Ig-domains 2 and 3 (see 

Figure 4.2). Docking of disaccharides to Ig-domains 5 and 6 of PECAM-1 using 

AutoDock suggested a better fit and lower free energies of binding on the 

electropositive surface of these domains (see below) compared with the 

pentasaccharide as predicted by PatchDock.   

The results of the docking studies indicating a heparin pentasaccharide binds a region 

on Ig-domains 2 and 3 are consistent with the predicted location of the sulfate binding 

motifs. The key interactions of the heparin pentasaccharide and Ig-domains 2 and 3 
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identified by the docking simulations involve Lys 176, Leu 177, Arg 179, His 239, 

Lys 255, Gln 259 and Ile 258 (Figure 4.3). The protonated N�2 in His 239 makes an 

electrostatic interaction with the 2-O-sulfate of the central iduronic acid of the 

pentasaccharide (as defined in Figure 4.1). Residues Ile 258 (main chain) and Lys 255 

(side chain) make hydrogen bonding and electrostatic contacts with the 2-O-sulfate in 

residue A and the O-sulfate in residue B, respectively. The side chain of Gln 259 

makes a hydrogen bond with the N-sulfate in residue B in the top ranked binding 

mode obtained, but makes a hydrogen bond with the hydroxyl group of residue B in 

the second ranked binding mode. The O-sulfates in residue E and D establish ionic 

interactions with the charged side chains of Lys 176 and Arg 179, respectively. 

Furthermore, Arg 209 in Ig-domain 2 is in close proximity to of the GAG consensus 

region (“L-K-R-E-K-N”) and hence it is possible that its guanidine group may interact 

with the charged residues of the pentasaccharide. However, this was not observed in 

the docking simulations, as it would require a change in the conformation of the main 

chain of residues 207-209 to bring Arg 209 closer to this cluster of basic residues.  

 

Figure 4.2. Predicted binding modes for sulfated pentasaccharide with Ig-domains 

2 and 3 of human PECAM-1, which is represented with an electrostatic potential 

surface (negative potential in red and positive potential in blue). The electrostatic 
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potential surfaces were calculated and displayed using the DELPHI module in 

Discovery Studio (Accelrys, Inc.). The pentasaccharide fragment is shown in sticks. 

 

Figure 4.3. Predicted binding mode for a sulfated pentasaccharide in Ig-domains 2 

and 3 of PECAM-1, showing those amino acids (in purple) that interact with the 

fragment. The pentasaccharide fragment is shown in sticks. 

The docking calculations predicted the free energy of binding and the dissociation 

constant (Kd) of the ligands with the extracellular domains of PECAM-1 at slightly 

acidic pH. The predicted free energy of binding of the best binding mode of the 

heparin pentasaccharide with Ig-domains 2 and 3 was computed to be -17.22 kcal/mol, 

which results in a predicted dissociation constant of 4.93 nM. The second ranked 

binding mode was predicted to have a free energy of binding of -16.91 kcal/mol, 

resulting in a predicted dissociation constant of 9.04 nM. These calculations were 

repeated at a neutral pH (leaving the histidine residues in an unprotonated, neutral 

state). This resulted in the free energy of binding increasing to approximately -3 

kcal/mol, due to the loss of ionic interactions with His 239 (Figure 4.4).  
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These calculations were made assuming a closed configuration of Ig-domains 2 and 3 

and the 1C4 chair conformation of the IdoA2S. It is likely that in nature Ig-domains 2 

and 3 will not always be in such close proximity, hence allowing longer fragments to 

interact with both domains. Moreover, although IdoA residues exist in two 

conformations of nearly equal energy (1C4 chair and 2So skew-boat), internal IdoA 

residues will favor the 2So skew-boat conformation because in the 1C4 form the bulky 

carboxylate group is equatorial and all other substituents are in axial positions (Capila 

& Linhardt 2002). Docking of the pentasaccharide with these alternative IdoA 

conformations would likely result in lower affinity of binding, and hence experimental 

determinations would reflect an average lower binding affinity, as we discuss further 

below. 

 

Figure 4.4. Predicted binding mode for a sulfated pentasaccharide in Ig-domains 2 

and 3 of PECAM-1, showing histidines in an unprotonated state. The free energy of 

binding of the heparin pentasaccharide is comparatively lower to the docked 

solution obtained with histidine in protonated form. 

The docking simulations also predicted the binding of heparin fragments to Ig-

domains 5 and 6. Docking of heparin fragments such as di, tri, tetra and penta 

saccharides were carried out for prediction of binding affinities for Ig-domains 5 and 

6. In this case, docking of sulfated disaccharides resulted in two clusters with 

significant numbers of related binding modes (see Figure 4.5). The disaccharides with 
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the lowest energies of binding in each cluster were seen to interact with the positively 

charged accessible surfaces of Ig-domains 5 and 6. However, the interactions are 

predicted to be weak: the computed free energies of binding in clusters 1 (Ig-domain 

5) and 2 (Ig-domain 6) were -6.54 kcal/mol and -6.23 kcal/mol, respectively, resulting 

in dissociation constants of 15.4 �M and 26.9 �M, respectively. The third lowest 

energy cluster was predicted to have a free energy of binding and dissociation constant 

of -6.13 kcal/mol and 32.2 �M, respectively. A number of amino acids (Lys 423, Lys 

446, Lys 449, Asn 467, Arg 577 and His 580) in Ig-domains 5 and 6 interact with the 

disaccharides, mostly through ionic interactions with negatively charged sulfates. In 

addition, the main chain of Phe 464 interacts with the ionised carboxylate, and Thr 

533 (main chain) interacts with the 2-O-sulfate of the IdoA residue of the 

disaccharide. The side chain of Glu 470 makes a hydrogen bond with the amide group 

of glucosamine, whereas the main chains of Gly 528 and Ser 529 make hydrogen 

bonds with the hydroxyl groups of the disaccharides. No significant free energies were 

detected upon docking of tri, tetra and pentasaccharides for these Ig-domains.  

 

Figure 4.5. Predicted binding modes for sulfated disaccharides with Ig-domains 5 

and 6. The protein surface is colored according to the sign of the electrostatic 

potential (blue for positive and red for negative areas). Low binding energy clusters 

are depicted for the disaccharides, showing that amino acids form basic (positively 

charged) clusters on the surface of the protein. The electrostatic potential surfaces 
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were calculated and displayed using the DELPHI module in Discovery Studio 

(Accelrys, Inc.). The disaccharide fragments are shown in sticks. 

The binding of the disaccharides to Ig-domains 5 and 6 did not involve the cation 

binding region. The predicted sulfate binding motif (region 563-571) in Ig-domain 6 

partially overlaps with the cation binding region (formed by residues 512-522 and 

560-572). The surface of this region in Ig-domain 6 is electropositive in nature. 

Consequently docking simulations of disaccharides to the cation binding region in Ig-

domain 6 were carried out. However, these simulations resulted in predicted positive 

free energies of binding, so no binding would be expected. Despite the fact that the 

sulfate binding region 563-571 in Ig-domain 6 showed a high level of identity and a 

similar structural topology with the template structure 1MU2 (HIV-2 reverse 

transcriptase), the presence of Glu 569 in Ig-domain 6 of PECAM-1, instead of 

histidine, eliminates the possibility of forming favorable ionic interactions with a 

sulfate group, as it occurs in the template 1MU2 structure.  

In the case of Ig-domain 4, docking of the sulfated disaccharide fragments resulted in 

extremely low binding affinity (dissociation constants in the molar range). A cluster of 

binding poses for the disaccharides were found to interact with Ser 333, Arg 342 and 

Asn 344, as predicted by the survey of sulfate binding motifs, but no significant 

affinity was measured. It is likely that the lack of conservation of the protein fold 

required to coordinate the sulfate on the surface of Ig-domain 4, as compared with the 

templates 2D62 (multiple sugar binding transport ATP-binding protein) and 1VZO 

(ribosomal protein S6 kinase alpha 5), result in a lack of binding affinity of GAGs for 

Ig-domain 4 compared to Ig-domains 2, 3, 5 and 6. The sulfates in the template 

structures are also coordinated by additional residues from neighboring structural 

folds (residues Ser 346 and Lys 347 in the case of template 2D62, and residues Thr 

151 and Glu 151 in the 1VZO structure). The fold in Ig-domain 4 of PECAM-1 lacks 

this coordination from the neighboring �-sheet despite the high sequence similarity 

with the template structures in the sulfate binding regions.  

The distribution of amino acids in the predicted sulfate binding regions of the Ig-

domains of PECAM-1 in other species was also examined. Multiple sequence 

alignment of the human sequence with Bos Taurus (bovine), Mus musculus (mouse), 
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Sus scrofa (pig) and Rattus norvegicus (rat) species reflect the fact that the Ig-domains 

in other species may bind GAGs with different affinity due to differences in the 

sequence conservation of sulfate binding motifs in regions 177-182 and 207-209 in Ig-

domain 2, and 239, 254-258 and 278-286 in Ig-domain 3 (Figure 4.6). The charged 

residues Arg 179, involved in the interaction of Ig-domain 2 of human PECAM-1 

with the GAG pentasaccharide, are replaced by Ile 179 in mouse. Arg 209 present in 

the sulfate binding motif 207-209 is mutated to Gly 209 in the mouse and Asn 209 in 

the pig. His 239 in human PECAM-1, predicted to interact strongly with the GAG 

pentasaccharide at slightly acidic pH, is replaced by the more acidic residues Glu 239 

in mouse and Gln 239 in rat. His 281, found in the predicted sulfate binding motif of 

Ig-domain 3 of human PECAM-1, is replaced by Thr 281 in mouse and rat. 

A DS tetrasaccharide was also docked to Ig-domains 2 and 3 in order to determine the 

effect of the number of electrostatic interactions on the binding affinity of GAGs. The 

predicted binding mode showed that the hydroxyl groups present in the sugars of DS 

tetrasaccharide contribute to hydrogen bonding with Arg 179 and Gln 259, whereas 

these residues in Ig-domains 2 and 3 of PECAM-1 make ionic interactions with the 

sulfate group of heparin/HS. The sulfate group of DS makes an ionic interaction with 

Lys 255, resulting in dissociation constant and free energy of binding of 18 �M and -

6.46 kcal/mol, respectively. The binding modes of dermatan sulfate and heparin 

tetrasaccharides are shown in Figure 4.7. It is important to note that residue A at the 

non-reducing end of the heparin tetrasaccharide is in the 1H2 form, residues B and D 

are in the 4C1 conformation, and residue C of IdoA2S adopts the 1C4 chair form, 

whereas the uronic acids of dermatan sulfate are in the 1C4 conformation, resulting in 

different protein-oligosaccharide interactions. This suggests that the biological 

activities of heparin and DS are modulated not only by electrostatic interactions but 

also by the flexibility of the iduronic acid subunits and the presence of optimal VDW 

interactions between the oligosaccharides and the protein. 

Docking of a CS pentasaccharide to Ig-domains 2 and 3 resulted in a predicted 

positive free energy of binding due to the presence of a lower degree of sulfation and 

lower flexibility of saccharide subunits compared to heparin/HS and DS 

tetrasaccharides, giving rise to fewer interactions with the electropositive regions 

found on the surface of Ig-domains 2 and 3 of PECAM-1 (see Figure 4.8). The 
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charged sulfate and carboxylate groups make ionic interactions with Lys 255 and Lys 

176, respectively, and hydrogen bonding is observed between the hydroxyl of CS and 

the backbone of Ile 258. 

 

 

 

 

Figure 4.6. Multiple sequence alignment of PECAM-1 sequences from various 

species including Homo sapiens, Bos Taurus, Mus musculus, Sus scrofa and Rattus 

norvegicus, showing sequence conservation in the sulfate binding motifs in Ig-

domains 2 and 3. Residues are colored according to their physicochemical 

properties. Amino acids in the sulfate binding motifs are indicated with blue boxes.  



 

 127

These results support the experimental evidence that PECAM-1 cannot bind HA and 

CS, but may bind DS with low affinity (Watt et al. 1993). The simulations suggest 

that this occurs because heparin can easily establish electrostatic interactions with the 

Ig-domains of PECAM-1 due to the conformational flexibility of its iduronic acid-

containing sugars, compared to rigid glucuronic acid-rich GAGs. These results also 

indicate that Ig-domains 2 and 3 of PECAM-1 are critical for heparin recognition and 

binding. These observations explain the main effects of the sulfation pattern of 

iduronic acid-containing GAGs, including heparin and HS, on the binding to the 

extracellular domains of PECAM-1 at slightly acidic pH. The sulfation patterns in 

GAG oligosaccharides are the result of the chemical identity of the saccharide 

subunits, the linkage between glucosamine and uronic acid, the distribution of sulfate 

groups along the chain and the conformational flexibility of the saccharide subunits. 

This model of the interactions of various GAG molecules with PECAM-1 is in 

agreement with a study demonstrating that GAG consensus “LKREKN” (177-182) in 

the Ig-domain 2 of PECAM-1 is involved in GAG binding (DeLisser et al. 1993).  

 

Figure 4.7. Predicted binding mode for a dermatan sulfate tetrasaccharide (shown 

in sticks and colored by atom type), superimposed on a heparin tetrasaccharide 

(shown in blue) in Ig-domains 2 and 3 of PECAM-1. The amino acids that interact 

with the fragment are shown in purple.  
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Figure 4.8. Predicted binding modes for chondroitin sulfate pentasaccharides with 

Ig-domains 2 and 3 of PECAM-1. The amino acids that interact with the fragment 

are shown in purple. 

Heparin is predicted to have direct electrostatic interactions with positively charged 

residues located in loops in Ig-domains 2 and 3, providing the basis for the existence 

of a high affinity GAG binding region in PECAM-1. The docking simulations indicate 

that this GAG binding region involves major interactions from Ig-domain 3 (residues 

His 239, Lys 255 and Gln 259), with further contributions from Ig-domain 2 (residue 

Arg 179). An additional low affinity heparin binding region appears to be located in 

Ig-domain 5, with contributions from Ig-domain 6. Importantly, these two putative 

GAG binding regions are distinct from those involved in homophilic and heterophilic 

interactions in Ig-domains 1 and 6, as well as the cation binding sites in Ig-domains 5 

and 6 of PECAM-1.  

Earlier studies have reported that binding of GAG fragments to chemokines has strong 

GAG-length dependence (Kuschert et al. 1999). It would thus be desirable to provide 

a quantitative assessment at the molecular level of the effect of varying the size and 

conformation of a GAG fragment on its binding affinity to PECAM-1. An attempt 

was made to determine the size range of heparin fragments that can bind to Ig-
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domains 2 and 3 of PECAM-1 by docking heparin fragments of various lengths (from 

the disaccharide to the hexasaccharide) and comparing their binding affinities as 

computed by AutoDock. In AutoDock, the free energy of binding is the sum of the 

ligand-receptor intermolecular energy and the internal energy of the ligand (Morris et 

al. 1998), which can be separated to distinguish the variations in energy due to 

changes in the nature and number of intermolecular interactions and those that arise 

from changes in the geometry of the interacting molecules. 

Docking of the smaller fragments showed that the binding affinity of heparin to Ig-

domains 2 and 3 increased with increasing length of the heparin fragment (see Table 

4.1). The disaccharide showed the highest free energy of binding (approximately -5 

kcal/mol, with a dissociation constant of 42 �M), which decreased steadily as the 

heparin fragment increased in size until it reached a minimum for the pentasaccharide 

in the conformation found in PDB structure 1HYV (with a free energy of binding of 

approximately -11.3 kcal/mol and a dissociation constant of 4.93 nM). 

Docking of one of the heparin hexasaccharide conformations (from PDB structure 

1BFC) resulted in a substantial increase in the predicted free energy of binding to 

+15.0 kcal/mol, as can be seen in Table 4.1. This is accompanied by an increase in the 

intermolecular energy (4.49 kcal/mol) and a large increase in the internal energy 

(+21.68 kcal/mol) of the hexasaccharide. It was observed that none of the docked 

binding poses showed a good fit between the negative charged sulfates in this 

hexasaccharide conformation and the positively charged basic amino acid clusters of 

Ig-domains 2 and 3. This was due to the distinct conformations of iduronic acid and 

glucosamine in residues D, E and F. The hydroxyl of the GlcNS6S, residue B, made a 

hydrogen bond with the side chain of Lys 255, and the 6-O-sulfate makes electrostatic 

interactions with His 239, but most of the 2-O-sulfate groups on the IdoA2S residues 

protrude away from the protein surface. 

This apparent loss of interactions between the hexasaccharide and Ig-domains 2 and 3 

(and the resulting increase in intermolecular energy) as a result of unfavourable 

changes in molecular conformation required additional validation. For this purpose 

alternative conformations of the hexasaccharide were docked, as found in another 

reported crystal structure (PDB structure 1XT3) and in Construct 1. Additionally,
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an alternative conformation of the pentasaccharide extracted from a different crystal 

structure (PDB structure 1QQP) was docked. 

Docking of the pentasaccharide extracted from PDB structure 1QQP showed a 

reasonable low binding affinity as compared to the pentasaccharide extracted from 

PDB structure 2HYV due to the difference in the conformation of their iduronic rings 

and their glycosidic angles. The 2-O-sulfate groups in subunits D and E of the 

pentasaccharide make electrostatic interactions with Lys 176 and Arg 179, whereas 

the carboxylate groups of residue A and E make electrostatic interactions with the side 

chain of His 239 and the backbone of Leu 177. Additional hydrogen bonding 

interactions were detected between the hydroxyl groups of subunits A, C and D and 

residues Lys 255, Thr 257 and Gln 259, respectively. The best docking pose obtained 

with the pentasaccharide extracted from PDB 1QQP resulted in a free energy of 

binding of -0.91 kcal/mol (see Table 4.1), with a significant loss in interactions 

between the GlcNS6S of residue B and Ig-domains 2 and 3 of PECAM-1. 

Docking of heparin hexasaccharide fragments to Ig-domains 2 and 3 was also 

performed using several conformations. Docking results using the hexasaccharide 

conformation extracted from PDB structure 1XT3 resulted in a worsening of the 

binding affinity. The top ranking binding pose resulted in a free energy of binding of - 

4.09 kcal/mol (see Table 4.1). Analysis of the binding modes of the hexasaccharide 

fragment with respect to Ig-domains 2 and 3 in the conformations extracted from PDB 

structures 1XT3 and 1BFC reveals that it has significantly fewer electrostatic 

interactions and hydrogen bonds than the pentasaccharide fragment in the 

conformation extracted from PDB structure 2HYV. In the case of Construct 1, 

docking was carried out with restrained inter-glycosidic torsions but flexible 

substituents (except hydroxyl groups). A significantly more favourable predicted free 

energy of binding of -7.66 kcal/mol was computed as shown in Table 4.1. This free 

energy of binding was corrected to take into account the missing conformational 

entropy arising from the additional glycosidic bond constraints with respect to the 

docking of smaller fragments. The predicted binding mode of Construct 1 was similar 
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to that of the pentasaccharide fragment from which it was constructed (PDB structure 

2HYV), with an RMSD of 0.759 Å. 

 
 

Figure 4.9. Predicted binding mode of the heparin hexasaccharide (Construct 1) to 

Ig-domains 2 and 3 of PECAM-1. The interactions between the hexasaccharide 

fragment and the protein are similar to those predicted to be important for the 

binding of the pentasaccharide fragment, with the additional sixth residue 

interacting with His 253. The protonated histidines (purple in color) and 

arginine(magenta in color) are shown in CPK representation and the Ig-domains 

are also represented as CPK.  

Despite its greater length, the hexasaccharide fragment Construct 1 makes the same 

interactions with Ig-domains 2 and 3 through its five saccharides, with the N-sulfate 

of residue 6 establishing an additional electrostatic interaction with the protonated 

N�2 in His 253, as shown in Figure 4.9. In this longer fragment, the other 6-O-sulfate 

group and sugar of subunit 6 point away from the protein surface and does not 
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contribute to an increase in binding affinity with PECAM-1. The weaker electrostatic 

interactions of Construct 1 with the surface of the molecule have contributed to the 

relatively large RMSD value as compared to pentasaccharide. The different binding 

modes of the various hexasaccharides seem to arise as a consequence of differences 

in the conformation of their iduronic acid subunits. In the case of the hexasaccharide 

in the conformations extracted from PDB structures 1XT3 and 1QQP the iduronic 

acid subunits are in the 2So conformation, whereas all the iduronic acid subunits in 

Construct 1 have a 4C1 conformation. 

The intermolecular and free energies for each heparin fragment predicted by the 

docking simulations have also been plotted (Figure 4.10). These energies correspond 

to oligosaccharides that have similar conformations as it became obvious (see 

previous discussion) that alternative subunit conformations resulted in significantly 

higher (less favourable) energies of interaction. Hence the energies plotted for the 

penta and hexasaccharides correspond to the conformations extracted from PDB 

structure 2HYV and Construct 1 (Figure 4.10), respectively. The shape of the energy 

plots suggests that the optimum size required for a GAG fragment to have maximal 

affinity of binding to Ig-domains 2 and 3 is the pentasaccharide, with a clear 

preference for iduronic acid subunits in either 4C1 or 1C4 conformations. Comparison 

of the docking of various heparin fragments suggests that five saccharides are critical 

for recognition and binding of heparin to Ig-domains 2 and 3 of PECAM-1 but no 

experimental evidence of this has been obtained. The comparison between the 

pentasaccharide, 2HYV, and the hexasaccharide, Construct 1, which includes the 

2HYV structure, suggests that key interactions occur between six sulfates in the 

2HYV structure and, although saccharide A’ of Construct 1 established an additional 

electrostatic interaction with His 253, no increase in binding affinity was recorded. 

These observations are consistent with previous crystallographic studies of annexin 

A2-heparin complexes, wherein the electron density beyond the pentasaccharide was 

not observed (Shao et al. 2006), suggesting a high level of disorder due to either a 

large degree of molecular flexibility and/or weak binding to the protein. This is also 
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consistent with previous suggestions that proteins with patches of basic residues on 

their surface at a distance of about 20 Å between each other can best accommodate a 

heparin pentasaccharide (Margalit et al. 1993). Overall, these results indicate that the 

conformational flexibility of sugar residues, the chemical identity of the saccharide 

subunits, the linkage between glucosamine and uronic acid, the distribution of sulfate 

groups along the chain and the substitution pattern of sugar residues attached to the 

non-reducing end of the oligosaccharide may play a key role in the recognition and 

binding properties of heparin fragments to a protein molecule.  
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Figure 4.10. Plot of the free energy (filled circles) and intermolecular energy (filled 

triangles) predicted by AutoDock for the binding of heparin fragments to Ig-

domains 2 and 3 in PECAM-1. The trend lines are indicative only. The energies for 

penta and hexasaccharide refer to structures 2HYV and Construct 1, respectively. 
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C h a p t e r  5  

MM/PBSA SIMULATIONS 

This chapter details the use of the MM/PBSA method within MD simulations in 

explicit solvent to predict the free energy of interaction between heparin fragments 

and the high and low affinity GAG-binding regions of the PECAM-1 receptor. The 

simulations also provide information about the conformational changes that affect the 

receptor and heparin fragments upon their interaction.  

5.1 MM/PBSA ANALYSIS 

The coordinates of Ig-domains 2-3 and 5-6 were extracted from the homology model 

of the extracellular domains of PECAM-1 discussed in Chapter 3. Complexes of a 

heparin pentasaccharide consisting of a sequence of 

IdoAp2S(1�4)GlcNpS6S(1�4)IdoAp2S(1�4)GlcNpS6S(1�4)IdoAp2S with Ig-

domains 2-3, and of a disaccharide consisting of a sequence of 

IdoAp2S(1�4)GlcNpS6S with Ig-domains 5-6 were taken from our previous docking 

simulations, as discussed in Chapter 4. All histidine sidechains in the binding regions 

were protonated as these residues have been determined to be essential for the 

interaction of GAGs at slightly acidic pH (see Chapter 4). 

The docking simulations discussed in Chapter 4 identified a number of residues in Ig-

domains 2, 3, 5 and 6 that are involved in the binding of heparin. The docking 

simulations identified a high affinity region in Ig-domains 2 and 3 involving Lys 176, 

Leu 177, Arg 179, His 239, Lys 255, Gln 259 and Ile 258 (Figure 5.1), and a low 

affinity region in domains 5 and 6 involving residues Lys 423, Lys 446, Lys 449, Asn 

467, Arg 577 and His 580. The MD simulations of the disaccharide fragment 

described here considered the third cluster found in the docking simulations, which 

involve interactions with both Ig-domains 5 and 6 and were predicted to have a free 



 

 136

energy of binding and dissociation constant of -6.13 kcal/mol and 32.2 �M, 

respectively (Figure 5.2). 

 

Figure 5.1. Schematic representation of a heparin pentasacchride ABCDE which 

was docked to Ig-domains 2 and 3 of PECAM-1. Circled anionic groups are critical 

for high-affinity interactions with Ig-domains 2 and 3. The amino acids with which 

they interact are indicated. 

 

Figure 5.2. Predicted binding mode of a heparin disaccharide docked to Ig-domains 

5 and 6. The disaccharide fragment is shown in sticks. 
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5.1.1 Parameterisation of the AMBER/GLYCAM force field for heparin 

fragments.   

The Parm94 (Cornell et al. 1995) force field in AMBER 9.0 (Case et al. 2005) was 

used with the GLYCAM04 extension for carbohydrates (Woods et al. 1995). Existing 

non-bonded parameters for sulfates and sulfamates were used (Huige & Altona 1995). 

Some parameters such as bond, angles and torsion parameters that were not available 

for sulfates were approximated by taking those for phosphates available in the 

GLYCAM04 force field. 

Partial atomic charges for the disaccharide (Figure 5.3) and pentasaccharide (Figure 

5.4) were obtained using the restricted electrostatic potential (RESP) method (Bayly et 

al. 1993; Cornell et al. 1993) using the leap and sander modules from AMBER 9.0. 

For this purpose both molecules were initially subjected to a full geometry 

optimisation with a 6-31G* basis set using Gaussian 98 (Frisch et al. 1998). A SCF 

convergence criterion of 10-8 kcal/mol and a ‘tight’ optimisation threshold were used. 

The resulting minimum energy conformation of each saccharide was then subjected to 

a single point energy calculation with a 6-31G* basis set and the POP=CHelpG charge 

option. The resulting RESP partial charges of these oligosaccharides are shown in 

Figure 5.3 for the disaccharide and Figure 5.4 for the pentasaccharide. 
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Figure 5.3. Partial atomic RESP charges of a heparin disaccharide and 

pentasaccharide. The charges on the hydrogens and carbons of the pyranose ring 

are not shown for clarity. 
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Figure 5.4. Partial atomic RESP charges of a heparin pentasaccharide. The 

charges on the hydrogens and carbons of the pyranose ring are not shown for 

clarity. 

5.1.2 MD simulations.  

Following the MM/PBSA protocol (see below), separate MD simulations were carried 

out for the relevant Ig-domains of PECAM-1, the heparin fragment of interest, and a 

complex between the two. During heating and equilibration, weak restraints (with a 
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force constant of 25 kcal/(molxÅ2) were applied to all heavy atoms in the protein 

domains, except those in the binding sites. The homology modelling studies indicated 

that the receptor may exist in an open or closed conformation due to the presence of 

loops connecting the two domains (Chapter 3). As a consequence, full flexibility of 

the receptor and ligand were allowed during the production stage of the simulations. 

The binding site regions included residues 176-182, 207-209, 250-260 and 278-288 of 

Ig-domains 2 and 3. The selected complex of a dissacharide with Ig-domains 5 and 6 

has the following initial interactions: the 2-O-sulfate of IdoA2S makes an electrostatic 

interaction with Lys 423, the 6-O-sulfate of GlcNS6S makes hydrogen bonds with the 

backbone of Thr 533 and Arg 577, and the N-sulfate makes an electrostatic interaction 

with Lys 423.  

All energy minimisations and MD simulations were performed using the AMBER 9.0 

program (Case et al. 2005). A box of TIP3P water molecules (Jorgensen et al. 1983) 

was added to solvate the complex, keeping a minimum distance of 12.0 Å between 

each face of the box and the solute. The number of water molecules added to the 

complex of the pentasaccharide with Ig-domains 2 and 3 was 7181, whereas 5651 

water molecules were added to the complex of the disaccharide with Ig-domains 5 and 

6. Net charges in the protein or heparin fragment were neutralised by adding counter 

ions (Na+ or Cl-) as required. The Particle Mesh Ewald (PME) method was used to 

compute long range electrostatic interactions (Tom et al. 1993), using a 1.0 Å grid 

spacing and a fourth-order spline for interpolation. The non-bonded cutoff was set to 

8.0 Å and the SHAKE algorithm (Ryckaert et al. 1977) was used to constrain all 

bonds involving hydrogen atoms. The MD simulation was carried out using isobaric-

isothermal ensemble (NPT). Isotropic scaling for pressure regulation was used. The 

external pressure was set to 1 atm. The temperature was kept at 300 K using Langevin 

dynamics (Pastor et al. 1988) with a collision frequency of 2 ps-1. A timestep of 1.0 fs 

was used in all simulations. Periodic boundary conditions were applied throughout.  

In each simulation initial unfavourable contacts with the solvent were removed by 

energy minimisation after performing 10 steps of steepest descents followed by 990 

steps of conjugate gradients. A 150-ps period of simulated annealing was then carried 
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out, during which the temperature was raised from 5 to 300 K over 50 ps, with a 

further 50 ps at 300 K, before cooling back to 5 K over 50 ps. The system was energy 

minimised again as before, followed by heating from 5 K to 300 K over 50 ps, upon 

which the systems were deemed to have equilibrated. The production phases of the 

simulations without constraints were then run at 300 K for 8.0 ns for the complex and 

protein, and for 4.0 ns for the heparin fragments. Various parameters (density, 

temperature, pressure, kinetic energy and potential energy) were monitored during the 

simulations to ensure that proper equilibration had been achieved. 

For the 8.0 ns simulations 800 snapshots were taken at regular intervals for the binding 

energy analyses and post-processed after removing all solvent molecules and counter 

ions. The free energies of binding reported are averages over these 800 snapshots or 

portions thereof.  

5.1.3 MM/PBSA calculations.  

The MM/PBSA module of AMBER 9.0 was used to compute the components of the 

free energy as dicssued in Chapter 2. For the 8.0 ns simulations, 800 snapshots of the 

coordinates of the system were taken at 10 ps intervals. All solvent molecules and 

counterions were removed in order to analyse the snapshots. These snapshots were 

analysed with the modified GB solvation model (Tsui & Case 2001), modified for use 

with the PARM94 parameters to obtain energies of solvation. Poisson-Boltzmann 

calculations were also used to obtain solvation energies, with an ionic strength of 0.14 

M, a dielectric constant (�) of 1 for the solute and 80 for the solvent. A probe solvent 

radius of 1.4 Å and the PARSE atomic radii parameter set (Sitkoff et al. 1994) were 

used to determine the molecular surface. Different surface parameters were used: in 

the case of GB calculations, � = 0.0072 kcal/Å2 and b = 0.0 kcal/mol, and in the case 

of PB calculations, � = 0.00542 kcal/Å2 and b = 0.92 kcal/mol. 

The vibrational entropy of the systems was computed by performing normal modes 

calculations (Kollman et al. 2000) using the Nmode module of AMBER (Kollman et 

al. 2000) on 40 snapshots, corresponding to 200 ps intervals. In the case of the 

simulations of Ig-domains 2/3, 20 snapshots were collected for each 2 ns portion of 
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the trajectory. Prior to these normal modes calculations, the selected snapshots of the 

complex, protein and ligand were subjected to a full conjugate gradient energy 

minimisation using a � = 4r and a convergence criterion of 0.0001 kcal/mol. The 

reported vibrational entropies are the averages over all selected snapshots. 

MM/PBSA calculations were carried out using only the 8.0 ns trajectories of the 

heparin fragment complexes with either Ig-domains 2/3 or 5/6. This was done as the 

protein exhibited significant conformational changes, which made it difficult to 

compare the various free energy contributions from independent simulations of the 

protein and saccharides. 

5.2 RESULTS 

Upon equilibration, the temperature and potential energy were monitored during the 

course of the simulations. Figure 5.5 (A and B) and Figure 5.6 (A and B) show 

corresponding plots for the simulations of the pentasaccharide complexed to Ig-

domains 2 and 3 and the disaccharide complexed with Ig-domains 5 and 6, 

respectively. It can be seen that the potential energy and temperature fluctuate around 

converged average values. Recently, the role of potential energy as a function of 

conformation has been reviewed using MM/PBSA methods (Gilson & Zhou 2007). In 

the case of Ig-domain 2 and 3 of PECAM-1, its fluctuations are related to changes in 

the structure of the protein, as discussed below (see Figure 5.7). 

The root mean square deviation (RMSD) of the coordinates of the heparin fragment 

complexes with their corresponding Ig-domains in each snapshot of the simulation 

with respect to the coordinates in the initial snapshot were also monitored. A 

significant amount of backbone motion (up to ~ 9 Å) in Ig-domains 2 and 3 can be 

observed in Figure 5.5 (C). The high RMSD values indicate that there is a significant 

conformational change in Ig-domains 2 and 3. Similarly, the high RMSD values (up to 

~ 9 Å) observed with Ig-domains 5 and 6 indicate a conformational change in the 

backbone structure of domains Figure 5.6 (C).  
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Figure 5.5. Time evolution of MD simulations of the complex of a heparin 

pentasaccharide complex with Ig-domains 2 and 3. (A) Temperature, (B) Potential 

energy, (C) RMSD of the coordinates of protein main chain atoms (C�, C and N) in 

each snapshot with respect to the coordinates in the first snapshot. 
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Figure 5.6. Time evolution of MD simulations of the complex of a heparin 

disaccharide complex with Ig-domains 5 and 6. (A) Temperature, (B) Potential 

energy, (C) RMSD of the coordinates of protein main chain atoms (C�, C and N) in 

each snapshot with respect to the coordinates in the first snapshot. 
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5.2.1 Structural analysis of the Ig-domains of PECAM-1 and their interactions 

with heparin fragments.  

The docking studies discussed in Chapter 4 suggested that electrostatic interactions 

between heparin fragments and positively charged residues located on the surface of 

Ig-domains 2 and 3 were responsible for the existence of a high affinity GAG binding 

region in PECAM-1. This GAG binding region involves major contributions from Ig-

domain 3 (residues His 239, Lys 255 and Gln 259), with further contributions from Ig-

domain 2 (residue Arg 179).  
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Figure 5.7. Time evolution of internal potential energy of Ig-domains 2 and 3. The 

gradual decrease in the potential energy is associated with a favourable 

conformational change. The plot has been scaled by a factor of 10 for clarity. 

Analysis of the simulation trajectory of the complex of the heparin pentasaccharide 

fragment with Ig-domains 2 and 3 revealed that the 2-O-sulfate and carboxylate of the 

first IdoA2S (residue A) form ionic interactions with the positively charged side 
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chains of Lys 287 and His 239 (protonated N�2), respectively. The first GlcNS6S 

(residue B) is not involved either in electrostatic interactions or hydrogen bonding. 

The 2-O-sulfate group of the second IdoA2S (residue C) forms a strong hydrogen 

bond with the side chain of Gln 259. The N-sulfate of the second GlcNS6S (residue D) 

forms an ionic interaction with the positively charged side chain of Lys 237. The 6-O-

sulfate group in this residue makes a strong hydrogen bond with the backbone of Val 

175. The third IdoA2S (residue E) is not involved in any interaction. The interactions 

with amino acids Lys 176 and Arg 179 observed in earlier docking studies were not 

seen in the MD simulations due to the conformational change in the hinge region 

connecting the Ig-domains 2 and 3.  

Analysis of the first 2 ns of the simulation trajectory showed that the carboxylate and 

2-O-sulfate of IdoA2S at position E make electrostatic interactions with the protonated 

N�2 in His 239 and the positively charged Lys 287, respectively. The N-sulfate of 

GlcNS6S at position B and the 2-O-sulfate of IdoA2S at position C also make 

electrostatic interactions with Lys 237. The 6-O-sulfate of GlcNS6S makes a strong 

hydrogen bond with the backbone of Val 175. None of the sulfates in residues A and 

D make any electrostatic or hydrogen bonding interactions with Ig-domains 2 and 3, 

in contrast to what was observed in the docking simulations discussed in Chapter 4. 

Analysis of the simulation trajectory between 2-4 ns revealed that the pentasaccharide 

retains the interactions of residues B, C and E with the protein observed during the 

first 2 ns. In addition, the 2-O-sulfate of the first IdoA (residue A) makes a further 

ionic interaction with Lys 176. 

The last 4 ns of the simulation trajectory showed the formation of favourable 

electrostatic interactions of the ligand with the receptor. The 2-O-sulfate of the first 

IdoA2S (residue A) makes an electrostatic interaction with Lys 255. The 6-O-sulfate 

of the second GlcNS6S (residue D) makes an electrostatic interaction with His 239. 

The N-sulfate in the first GlcNS6S (residue B) makes an electrostatic interaction with 

Lys 237 and the 2-O-sulfate of the second IdoA2S (residue C) makes a strong 

hydrogen bond with Gln 259. The 2-O-sulfate in the first IdoA2S (residue A) makes 

further electrostatic interactions with His 162 in Ig-domain 2.  
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Figure 5.8. Tube representation of the average structure of Ig-domains 2 and 3 

obtained during the 0-2 ns portion of the simulation. Coils are coloured in green 

and the beta sheets in blue. Purple colour marks the presence of glycines and 

prolines. Sulfate binding regions are shown in orange. The grey colour shading 

indicates the loss of beta propensity.  

 

 
Figure 5.9. Tube representation of the average structure of Ig-domains 2 and 3 

obtained during 2-4 ns portion of the simulation. Coils are coloured in green and 

the beta sheets in blue. Sulfate binding regions are shown in orange. The grey 

colour shading indicates the loss of beta propensity.  
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Inspection of the whole 8.0 ns trajectory of the complex of the pentasaccharide with 

Ig-domains 2 and 3 revealed the occurrence of a significant conformational change in 

Ig-domains 2 and 3 of PECAM-1. There is a transition from the predominant beta-

sheet structure of Ig-domains 2 and 3 to a disordered random coil structure (Figure 5.8 

and Figure 5.9). This transition is similar to the one observed in the globular structure 

of Fibronectin-III (FN-III), where its beta sheeted Ig-domains adopt a random coil 

structure (Penkett et al. 1997) at acidic pH in solution. This conformational transition 

in Ig-domains can be rationalised by the presence of large numbers of glycine residues 

(which impart conformational flexibility) and proline (which have structure breaking 

properties).  

A hinge region is present in the binding site shared by Ig-domains 2 and 3 of PECAM-

1, which can open up to expose more basic residues that may interact with a longer 

heparin oligosaccharide. As a consequence, during the simulation a hinge movement 

opened up and increased the size of the binding site (see Figure 5.10). This 

conformational change may allow a longer oligosaccharide (such as an 

octasaccharide) to interact with basic residues such as Lys 176 and Arg 179. Since the 

change in conformation of the binding site is likely to affect the computed free energy 

of binding of the pentasaccharide, the MM/PBSA analysis described further below 

was carried out separately for four 2 ns portions of the whole trajectory with a normal 

mode analysis of 20 snapshots.  

Docking studies suggested the existence of a low affinity GAG-binding region in Ig-

domain 5, with contributions from Ig-domain 6 (Chapter 4). The MD simulations have 

confirmed that the interactions between the heparin disaccharide and the protein are 

stable. Analysis of the 8 ns trajectory revealed that the carboxylate of Glu 527 makes a 

strong hydrogen bond with the amine of GlcNS6S, whereas the main chain NH of Gly 

528 makes a hydrogen bond with the 2-O-sulfate of the iduronic acid, resulting in the 

loss of the electrostatic interaction between the 2-O-sulfate of IdoA2S and Lys 423. 

The 2-O-sulfate of IdoA2S makes a hydrogen bond with the sidechain of Ser 529, the 

6-O-sulfate of GlcNS6S makes an electrostatic interaction with Lys 423 and the amine 

of GlcNS6S makes a strong hydrogen bond with Glu 527. No interactions between the 
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disaccharide and Thr 533 and Arg 577 were detected, as opposed to what was seen in 

docking simulations discussed in Chapter 4. This loss of interactions of the 

disaccharide with the Ig-domains 5/6 is due a conformational change from a 

predominantly �-sheet structure in Ig-domains 5/6 to a disordered random coil 

structure (Figure 5.6 C).  

 

Figure 5.10. Final binding mode of a heparin pentasaccharide complexed with Ig 

domains 2 and 3 of PECAM-1 after 8 ns. The open conformation of the Ig-domains 

can interact with a longer heparin fragment through its basic residues exposed on 

the surface. The Ig-domains 2 and 3 of human PECAM-1 are represented with an 

solvent accessible surface (negative potential in red and positive potential in blue). 

The potential surfaces were calculated and displayed using the DELPHI module in 

Discovery Studio (Accelrys, Inc.). The pentasaccharide fragment is shown as sticks. 

The glycosidic bonds of the pentasaccharide are not shown for clarity. 

5.2.2 Structural analysis of the conformation of free and protein-bound heparin 

fragments.  

An analysis and comparison of the structure of the heparin pentasaccharide bound to 

Annexin-A2 (PDB code 2HYV), bound to Ig-domains 2 and 3 of PECAM-1 and in 

aqueous solution were carried out to investigate any differences in the conformation of 
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the glycosidic linkages between each saccharide monomer. The conformations of the 

heparin pentasaccharide bound to Ig-domains 2 and 3 and in aqueous solution were 

analysed from the 4 ns trajectories. Table 5.1 lists the average values of the four 

glycosidic torsion angles in the pentasaccharide for each case. 

Table 5.1. Average values of the glycosidic torsion angles for the heparin 

pentasaccharide extracted from Annexin crystal structure 2HYV, the 

pentasaccharide complexed with Ig-domains 2 and 3 of PECAM-1 after 4 ns and the 

pentasaccharide in solution after 4 ns.  
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The���and���angles in � (1, 4) linkages are defined as C1-Ox-Cx-Hx and H1-C1-Ox-
Cx, respectively. The standard deviations are shown in brackets.  
 

The glycosidic linkage �(1,4)1, �(1,4)2,� �(1,4)3 and ��(1,4)4 of the pentasaccharide 

exhibited greater fluctuations when bound to PECAM-1 than in aqueous solution. The 

torsion angles � of the �(1,4)1 linkage of the pentasaccharide in aqueous solution as 

well as in the protein bound structure exhibited large fluctuations due the change in 

the conformation of the first iduronic acid residue (present in the 1H2 conformation). 

The conformation of the glycosidic linkage �(1,4)2 in solution and in bound form to 

the Ig-domains 2 and 3 is similar to that found in the crystal structure of Annexin-A2. 

There is no clear pattern in the conformations of linkage �(1,4) 3 when comparing the 
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structures in solution, protein bound or Annexin-A2. A similar conformation is 

observed in the �(1,4)4 glycosidic linkage between the crystal structure of Annexin-A2 

and the aqueous solution form. These observations suggest that the heparin 

pentasaccharide undergoes a conformational change upon binding to a protein. In the 

case of Annexin-2, this conformational change may be also due to interactions 

between the heparin fragment and calcium ions present on the protein surface. The 

larger fluctuation in the case of the PECAM-1 bound pentasaccharide fragment with 

respect to the conformation in aqueous solution is likely to be due to the change in the 

receptor conformation, as described above.  Comparison of these average glycosidic 

linkages with values obtained by NMR measurements, MD simulations and crystal 

structures of heparin bound proteins like aFGF (Mikhailov et al. 1997) shows that the 

�(1,4)2, �(1,4)3 and �(1,4)4 linkages remain quite stable, whereas rather large changes 

in the �(1,4)1 linkage are observed. The fluctuations in the �(1,4)1 linkage may occur 

because of the modification at the non-reducing end of the unsaturated UA2S to create 

a 4-deoxy IdoA2S residue (4dIdoA2S), since the residue adopts a different 

conformation to its original 1H2 conformation (see Chapter 4).  

5.2.3 Calculations of the free energy of binding. 

Docking studies predicted that the free energy of binding of the heparin 

pentasaccharide fragment to Ig-domains 2 and 3 is -17.22 kcal/mol, which results in a 

predicted dissociation constant of 4.93 nM. Table 5.2 summarises the results of the 

calculations of the free energies of binding using the MM/PBSA and MM/GBSA 

methods. Calculation of energy terms was carried out for 800 snapshots whilst 

vibrational entropy calculations were done on 40 snapshots. The predicted free 

energies of binding were -18 kcal/mol with MM/PBSA and -15 kcal/mol with 

MM/GBSA, which translate into dissociation constants of 0.43 and 3.85 pM, 

respectively.  

These affinity values for the heparin pentasaccharide fragment are influenced by 

changes in the conformation of the Ig-domain. The existence of an open conformation 

suggests that a longer oligosaccharide with appropriate sulfation may interact with Ig-

domains 2/3 with varying affinity. The calculated �Gbinding-PBSA for 200 snapshots for 
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different portions of the trajectory were -6.7 kcal/mol for 0-2 ns (Table 5.3), -10.76 

kcal/mol for 2-4 ns (Table 5.4), -22.81 kcal/mol for 4-6 ns (Table 5.5) and -19.79 

kcal/mol for 6-8 ns (Table 5.6). The vibrational entropy change contributions to the 

free energy of binding are nearly of the same magnitude as the other terms, suggesting 

that both enthalpy and entropy play a key role in determining the free energy of 

binding.  

There is a gradual decrease in free energy of binding as the simulation progresses. 

During the first 4 ns of the simulation there is an absence of interactions between 

residues A and D of the pentasaccharide and the protein. The binding affinity then 

increases as Ig-domains 2/3 of the receptor adopt an open conformation and the 

pentasaccharide makes more electrostatic and hydrogen bonding interactions with 

residues Lys 255, His 239, Lys 237, Gln 259 and His 162 during the last 4 ns of the 

simulation. There is a gradual decrease in the potential energy of Ig domains 2/3 along 

the simulation (Figure 5.7). This is also mirrored by a gradual decrease in the free 

energy of solvation of the pentasaccharide (Figure 5.11) and the protein. This suggests 

that the conformational change is thermodynamically favourable and is independent of 

the interactions with the heparin fragment.  

Docking studies predicted that the free energy of binding of the heparin disaccharide 

fragment with Ig-domains 5 and 6 is -6.5 kcal/mol, resulting in a dissociation constant 

of 15.4 �M, suggesting weak binding. Table 5.7 summarises the results of the 

calculations of the free energies of binding using the MM/PBSA and MM/GBSA 

methods. The predicted free energies of binding (+4.21 kcal/mol with MM/PBSA and 

+9.21 kcal/mol with MM/GBSA) translate into dissociation constants in the mM 

range, indicating very weak binding. In this case, the favourable sum of the interaction 

and solvation energy terms (PBTOTAL and GBTOTAL) was not large enough to 

overcome the unfavorable contribution of the vibrational entropy change.  
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Figure 5.11.  Time evolution of the (polar + non-polar) solvation energy of the 

heparin  pentasaccharide. The graph has been scaled by a factor of 10 for clarity. 

Both MM/PBSA and MM/GBSA calculations suggest that electrostatic interactions 

contribute significantly to the interactions between heparin fragments and PECAM-1. 

Interestingly, these calculations also reveal that VDW interactions play an equally 

important role in driving the interaction with the protein. The results of calculations 

using MM/GBSA differ only by a few kcal/mol with respect to MM/PBSA energy 

values.  

The PBTOTAL and GBTOTAL energies (the sum of all interaction and solvation 

terms) for the complex of the heparin disaccharide with Ig-domains 5 and 6 are much 

lower than those for the complex of the heparin pentasaccharide with Ig-domains 2 

and 3. This confirms previous docking and experimental studies indicating the 

presence of a high affinity GAG binding site in Ig-domains 2 and 3 and of a low 

affinity GAG binding site in Ig-domains 5 and 6 of PECAM-1. 
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Table 5.2. MM/PBSA energy component analysis of the interactions of the heparin 

pentasaccharide with Ig-domains 2-3 averaged over 8 nsa. 

 Complex Receptor Ligand ��
 MEAN STD MEAN STD MEAN STD MEAN STD 

ELE -4696.88 118.36 -3374.69 142.57 1277.96 32.82 -2600.15 113.69 

VDW -476.13 27.96 -445.64 24.08 3.95 5.28 -34.44 8.48 

INT 2154.66 45.29 2092.51 43.86 62.14 9.88 0 0 

GAS -3018.36 118.67 -1727.81 143.34 1344.05 31.43 -2634.6 111.89 

PBSUR 73.9 2.67 71.8 2.5 8.11 0.14 -6.01 0.51 

PBCAL -3338.24 127.35 -3635.36 150.61 -2287.91 28.23 2585.03 108.51 

PBSOL -3264.34 125.31 -3563.56 148.67 -2279.8 28.34 2579.02 108.49 

PBELE -8035.12 43.56 -7010.05 36.25 -1009.95 8.92 -15.12 14.83 

PBTOT -6282.69 51.84 -5291.37 49.14 -935.75 8.3 -55.57 8.68 

GBSUR 96.95 3.55 94.16 3.32 9.55 0.18 -6.76 0.68 

GB -3321.74 127.89 -3687.6 154.28 -2222.68 28.94 2588.55 108.7 

GBSOL -3224.79 125.25 -3593.44 151.73 -2213.13 29.08 2581.79 108.71 

GBELE -8018.62 38.91 -7062.29 34.05 -944.73 8.7 -11.6 11.9 

GBTOT -6243.15 49.77 -5321.26 49.2 -869.08 8.96 -52.81 7.89 

         

T�Sb -2090.38 10.03 -1987.91 10.47 -139.80 0.37 -37.34 7.88 

�Gbinding-PBSA       -18.23  

�Gbinding-GBSA       -15.47  
 

a Average over 800 snapshots from trajectory.  

b Entropy calculations were based on normal mode analysis using only 40 snapshots. 

ELE, non-bonded electrostatic energy; VDW, non-bonded van der Waals energy; INT, bond, angle, dihedral energies; GAS, 

ELE+VDW+INT; PBSUR, hydrophobic contribution to solvation free energy for PB calculations; PBCAL, reaction field energy 

calculated by PB; PBSOL=PBSUR+PBCAL; PBELE=PBCAL+ELE; PBTOTAL=PBSOL+GAS; GBSUR, hydrophobic 

contributions to solvation free energy for GB calculations; GB, reaction field energy calculated by GB; GBSOL=GBSUR+GB; 

GBELE=GBCAL+ELE; GBTOTAL=GBSOL+GAS; T�S, T(temperature)* �S(sum of rotational, translational and vibrational 

entropies); �G
binding, total binding energy of the system.  
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Table 5.3. MM/PBSA energy component analysis of the interactions of the heparin 

pentasaccharide with Ig-domains 2-3 averaged during 0-2 nsa. 

 Complex Receptor Ligand � 
 MEAN STD MEAN STD MEAN STD MEAN STD 

ELE -4751.91 103.21 -3457.97 69.47 1267.03 22.39 -2560.96 107.24 

VDW -499.8 22.7 -462.07 24.48 2.43 4.63 -40.16 7.69 

INT 2904.75 46.41 2842.88 46.13 61.87 9.76 0 0 

GAS -2346.95 101.21 -1077.16 75.5 1331.33 20.92 -2601.12 103.57 

PBSUR 71.05 1.74 69.14 1.92 8.14 0.11 -6.23 0.36 

PBCAL -3239.32 110.57 -3518.58 63.8 -2275.54 17.98 2554.8 100.39 

PBSOL -3168.26 109.3 -3449.44 63.23 -2267.4 18.05 2548.57 100.47 

PBELE -7991.22 33.79 -6976.55 35.84 -1008.51 8.59 -6.16 12.54 

PBTOT -5515.22 47.64 -4526.6 47.99 -936.07 8.14 -52.54 7.98 

GBSUR 93.17 2.31 90.62 2.55 9.59 0.14 -7.05 0.48 

GB -3225.66 109.32 -3568.82 65.23 -2211.85 18.6 2555.01 101.2 

GBSOL -3132.49 107.72 -3478.19 64.66 -2202.26 18.69 2547.96 101.31 

GBELE -7977.56 27.14 -7026.79 28.98 -944.83 8.44 -5.95 10.58 

GBTOT -5479.44 46.07 -4555.35 45.87 -870.93 8.57 -53.16 6.23 

         

T�Sb -2078.93 9.55 -1982.92 5.75 -141.84 0.15 -45.84 9.43 

�Gbinding-PBSA       -6.7  

�Gbinding-GBSA       -7.32  

 

a Average over 200 snapshots from trajectory.  

b Entropy calculations were based on normal mode analysis using only 20 snapshots. 

ELE, non-bonded electrostatic energy; VDW, non-bonded van der Waals energy; INT, bond, angle, dihedral energies; GAS, 

ELE+VDW+INT; PBSUR, hydrophobic contribution to solvation free energy for PB calculations; PBCAL, reaction field energy 

calculated by PB; PBSOL=PBSUR+PBCAL; PBELE=PBCAL+ELE; PBTOTAL=PBSOL+GAS; GBSUR, hydrophobic 

contributions to solvation free energy for GB calculations; GB, reaction field energy calculated by GB; GBSOL=GBSUR+GB; 

GBELE=GBCAL+ELE; GBTOTAL=GBSOL+GAS; T�S, T(temperature)* �S(sum of rotational, translational and vibrational 

entropies); �G
binding, total binding energy of the system.  
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Table 5.4. Energy MM/PBSA energy component analysis of the interactions of the 

heparin pentasaccharide with Ig-domains 2-3 averaged during 2-4 nsa. 

 Complex Receptor Ligand ��
 MEAN STD MEAN STD MEAN STD MEAN STD 

ELE -4731.55 83.16 -3456.73 81.11 1260.58 20.12 -2535.4 74.86 

VDW -487.6 20.98 -452.69 18.87 4.67 4.85 -39.58 6.9 

INT 2112.77 38.13 2097.54 36.06 15.23 10.01 0 0 

GAS -3106.39 88.36 -1811.88 86.81 1280.48 21.13 -2574.99 75.55 

PBSUR 72.2 1.01 70.49 0.91 8.17 0.07 -6.46 0.3 

PBCAL -3292.78 73.21 -3549.73 67.5 -2273.59 17.82 2530.54 74.52 

PBSOL -3220.58 72.99 -3479.24 67.48 -2265.41 17.87 2524.08 74.41 

PBELE -8024.33 33.58 -7006.46 27.99 -1013.01 7.83 -4.86 12.04 

PBTOT -6326.97 40.86 -5291.13 38.09 -984.93 8.25 -50.91 7.27 

GBSUR 94.69 1.34 92.42 1.21 9.64 0.1 -7.36 0.4 

GB -3273.23 72.16 -3595.96 69.86 -2208.2 17.8 2530.93 73.58 

GBSOL -3178.54 71.98 -3503.54 69.89 -2198.57 17.86 2523.57 73.46 

GBELE -8004.79 26.8 -7052.69 22.93 -947.62 8.1 -4.48 8.52 

GBTOT -6284.93 38.49 -5315.42 36.35 -918.08 8.82 -51.42 5.81 

         

T�Sb -2093.52 4.49 -1992.42 8.06 -141.25 0.04 -40.15 10.66 

�Gbinding-PBSA       -10.76  

�Gbinding-GBSA       -11.27  

 

a Average over 200 snapshots from trajectory.  

b Entropy calculations were based on normal mode analysis using only 20 snapshots. 

ELE, non-bonded electrostatic energy; VDW, non-bonded van der Waals energy; INT, bond, angle, dihedral energies; GAS, 

ELE+VDW+INT; PBSUR, hydrophobic contribution to solvation free energy for PB calculations; PBCAL, reaction field energy 

calculated by PB; PBSOL=PBSUR+PBCAL; PBELE=PBCAL+ELE; PBTOTAL=PBSOL+GAS; GBSUR, hydrophobic 

contributions to solvation free energy for GB calculations; GB, reaction field energy calculated by GB; GBSOL=GBSUR+GB; 

GBELE=GBCAL+ELE; GBTOTAL=GBSOL+GAS; T�S, T(temperature)* �S(sum of rotational, translational and vibrational 

entropies); �G
binding, total binding energy of the system.  
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Table 5.5. MM/PBSA energy component analysis of the interactions of the heparin 

pentasaccharide with Ig-domains 2-3 averaged during 4-6 nsa. 

 Complex Receptor Ligand � 
 MEAN STD MEAN STD MEAN STD MEAN STD 

ELE -4713.93 128.46 -3397.42 110.24 1267.91 23.43 -2584.42 91.61 

VDW -456.35 20.26 -437.48 18.97 7.11 4.83 -25.98 4.91 

INT 2141.04 39.59 2078.84 37.75 62.19 9.73 0 0 

GAS -3029.24 129.92 -1756.06 110.9 1337.21 24.21 -2610.39 92.92 

PBSUR 75.56 1.12 72.88 0.98 8.17 0.11 -5.49 0.44 

PBCAL -3356.68 119.87 -3629.63 104.31 -2281.69 20.58 2554.64 88.15 

PBSOL -3281.12 119.12 -3556.75 103.71 -2273.52 20.65 2549.15 87.85 

PBELE -8070.6 27.34 -7027.05 25.18 -1013.78 7.84 -29.78 9.32 

PBTOT -6310.36 38.99 -5312.8 36.29 -936.31 8.27 -61.25 7.92 

GBSUR 99.16 1.49 95.6 1.3 9.63 0.15 -6.07 0.59 

GB -3338.42 122.08 -3686.56 108.9 -2213.76 21 2561.89 86.11 

GBSOL -3239.27 121.09 -3590.96 108.12 -2204.13 21.09 2555.82 85.72 

GBELE -8052.35 23.6 -7083.98 20.63 -945.85 8.19 -22.53 9.48 

GBTOT -6268.51 40.48 -5347.02 36.96 -866.92 8.69 -54.58 9.51 

         

T�Sb -2090.56 5.36 -1989.04 12.41 -139.96 0.21 -38.44 15.56 

�Gbinding-PBSA       -22.81  

�Gbinding-GBSA
      -16.14  

 

a Average over 200 snapshots from trajectory.  

b Entropy calculations were based on normal mode analysis using only 20 snapshots. 

ELE, non-bonded electrostatic energy; VDW, non-bonded van der Waals energy; INT, bond, angle, dihedral energies; GAS, 

ELE+VDW+INT; PBSUR, hydrophobic contribution to solvation free energy for PB calculations; PBCAL, reaction field energy 

calculated by PB; PBSOL=PBSUR+PBCAL; PBELE=PBCAL+ELE; PBTOTAL=PBSOL+GAS; GBSUR, hydrophobic 

contributions to solvation free energy for GB calculations; GB, reaction field energy calculated by GB; GBSOL=GBSUR+GB; 

GBELE=GBCAL+ELE; GBTOTAL=GBSOL+GAS; T�S, T(temperature)* �S(sum of rotational, translational and vibrational 

entropies); �G
binding, total binding energy of the system.  
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Table 5.6. Energy MM/PBSA energy component analysis of the interactions of the 

heparin pentasaccharide with Ig-domains 2-3 averaged during 6-8 nsa. 

 Complex Receptor Ligand � 
 MEAN STD MEAN STD MEAN STD MEAN STD 

ELE -4590.15 78.65 -3186.62 90.85 1316.31 29.44 -2719.84 77.44 

VDW -460.77 21.12 -430.33 19.73 1.6 5.01 -32.05 4.54 

INT 2128.75 39.04 2073.07 36.53 55.68 10.27 0 0 

GAS -2922.17 85.1 -1543.88 98.71 1373.59 27.8 -2751.88 78 

PBSUR 76.78 1.08 74.69 1.09 7.96 0.11 -5.86 0.32 

PBCAL -3464.16 70.5 -3843.49 83.17 -2320.83 25.43 2700.16 75.62 

PBSOL -3387.38 69.91 -3768.81 82.55 -2312.88 25.52 2694.3 75.43 

PBELE -8054.31 30.23 -7030.11 27.16 -1004.52 8.17 -19.68 8.43 

PBTOT -6309.56 42.58 -5312.69 40.48 -939.28 8.22 -57.59 7.47 

GBSUR 100.77 1.43 97.99 1.44 9.35 0.15 -6.57 0.42 

GB -3449.63 72.46 -3899.08 83.66 -2256.93 25.89 2706.37 72.39 

GBSOL -3348.86 71.71 -3801.08 82.87 -2247.58 26.01 2699.81 72.14 

GBELE -8039.78 24.25 -7085.7 21.93 -940.62 8.56 -13.46 9.37 

GBTOT -6271.03 39.89 -5344.96 39.25 -873.99 9.15 -52.08 9.02 

         

T�Sb -2096.65 9.33 -1993.95 7.64 -140.5 0.61 -37.8 11.8 

�Gbinding-PBSA       -19.79  

�Gbinding-GBSA       -14.28  

 

a Average over 200 snapshots from trajectory.  

b Entropy calculations were based on normal mode analysis using only 20 snapshots. 

ELE, non-bonded electrostatic energy; VDW, non-bonded van der Waals energy; INT, bond, angle, dihedral energies; GAS, 

ELE+VDW+INT; PBSUR, hydrophobic contribution to solvation free energy for PB calculations; PBCAL, reaction field energy 

calculated by PB; PBSOL=PBSUR+PBCAL; PBELE=PBCAL+ELE; PBTOTAL=PBSOL+GAS; GBSUR, hydrophobic 

contributions to solvation free energy for GB calculations; GB, reaction field energy calculated by GB; GBSOL=GBSUR+GB; 

GBELE=GBCAL+ELE; GBTOTAL=GBSOL+GAS; T�S, T (temperature)* �S (sum of rotational, translational and vibrational 

entropies); �G
binding, total binding energy of the system.  
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Table 5.7. Energy MM/PBSA energy component analysis of the interactions of the 

heparin disaccharide with Ig-domains 5-6 averaged during 0-8 nsa. 

 Complex Receptor Ligand � 
 MEAN STD MEAN STD MEAN STD MEAN STD 

ELE -4827.81 111.08 -4711.05 112.35 64.67 8.76 -181.43 31.25 

VDW -600.46 20.82 -587.52 20.34 8.08 3.54 -21.03 3.9 

INT 2323.65 44.32 2299.91 43.92 23.74 6.07 0 0 

GAS -3104.62 118.29 -2998.65 121.27 96.49 9.11 -202.46 31.56 

PBSUR 79.15 1.07 78.5 1.09 4.58 0.04 -3.93 0.26 

PBCAL -3726.98 93.86 -3373.83 98.8 -548.34 6.7 195.19 30.28 

PBSOL -3647.83 93.41 -3295.33 98.25 -543.76 6.72 191.25 30.14 

PBELE -8554.79 35.68 -8084.88 30.73 -483.67 4.79 13.76 7.67 

PBTOT -6752.45 53.64 -6293.98 51.99 -447.27 5.36 -11.2 5.96 

GBSUR 103.92 1.43 103.06 1.45 4.86 0.06 -4 0.35 

GB -3741.22 99.36 -3417.39 101.68 -524.7 6.56 200.86 29.6 

GBSOL -3637.3 98.82 -3314.32 100.97 -519.83 6.59 196.86 29.45 

GBELE -8569.03 26.42 -8128.44 24.99 -460.03 4.49 19.43 4.45 

GBTOT -6741.91 48.33 -6312.98 49.01 -423.34 5.36 -5.6 4.47 

         

T�Sb -2302.42 11.52 -2250.36 10.2 -67.46 0.53 -15.41 17.74 

�Gbinding-PBSA       +4.21  

�Gbinding-GBSA
      +9.81  

 

a Average over 800 snapshots from trajectory.  

b Entropy calculations were based on normal mode analysis using only 40 snapshots. 

ELE, non-bonded electrostatic energy; VDW, non-bonded van der Waals energy; INT, bond, angle, dihedral energies; GAS, 

ELE+VDW+INT; PBSUR, hydrophobic contribution to solvation free energy for PB calculations; PBCAL, reaction field energy 

calculated by PB; PBSOL=PBSUR+PBCAL; PBELE=PBCAL+ELE; PBTOTAL=PBSOL+GAS; GBSUR, hydrophobic 

contributions to solvation free energy for GB calculations; GB, reaction field energy calculated by GB; GBSOL=GBSUR+GB; 

GBELE=GBCAL+ELE; GBTOTAL=GBSOL+GAS; T�S, T(temperature)* �S (sum of rotational, translational and vibrational 

entropies); �G
binding, total binding energy of the system.  
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C h a p t e r  6  

CONCLUSIONS AND SCOPE FOR FUTURE WORK 

SUMMARY OF MAIN FINDINGS 

A homology model of human PECAM-1 was successfully constructed using 

homology modelling and threading techniques. Similarity searches against structural 

databases were used to locate putative sulfate binding motifs in the Ig-domains of 

PECAM-1. This homology model was used in combination with docking simulations 

of representative heparin fragments to predict their interactions with PECAM-1. 

The docking simulations have predicted that the heparin fragments may have direct 

electrostatic interactions with positively charged residues located in loops in Ig-

domains 2 and 3, providing the basis for the existence of a high affinity GAG binding 

region in PECAM-1 at slightly acidic pH. The docking simulations indicate that the 

GAG binding region involves Ig-domain 3, residues His 239, Lys 255 and Gln 259, 

with further contributions from Ig-domain 2 residue Arg 179. An additional low 

affinity heparin binding region appears to be located in Ig-domain 5, with 

contributions from Ig-domain 6. Importantly, these two putative GAG binding regions 

are distinct from regions involved in homophilic and heterophilic interactions in Ig-

domains 1 and 6, as well as the cation binding sites in Ig-domains 5 and 6. These 

findings suggest that PECAM-1 may be capable of mediating heterophilic aggregation 

through interactions with specific GAGs on adjacent cells, as in the case of NCAM. 

Furthermore, the binding of homophilic and heterophilic ligands like heparin/HS to 

PECAM-1 may occur simultaneously.  

The docking simulations also suggest that PECAM-1 cannot bind HA and CS, but 

may bind DS with low affinity due to differences in sulfation and the glycosidic 

linkages present in these oligosaccharides. This is consistent with experimental data. 

Docking of smaller heparin fragments showed that the binding affinity of heparin to 

Ig-domains 2 and 3 increased with increasing length of the heparin fragment. For a 
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closed conformation of Ig-domains 2 and 3, the simulations suggest that a heparin 

pentasaccharide is the optimal fragment for binding to Ig-domain 2 and 3. Docking of 

various oligosaccharides with diverse conformations suggest that the preferred 

conformation of iduronic acids is the 1C4 conformation for binding to Ig-domains 2 

and 3. 

MD simulations using the MM/PBSA and MM/GBSA methods have been used here 

for the first time to investigate the binding of heparin fragments to the receptor 

PECAM-1. There are differences in the affinity prediction from both methods, i.e. 

docking and MM/PBSA. The binding affinties predicted using MM/PBSA are 

considerable higher due to the lack of proper forcefield parameterisation for GAGs 

and the combination of different forcefields for geometry generation and energy 

calculations. The high binding affinities using MM/PBSA were also observed for 

galectin-1-oligosaccharide complexes (Ford et al. 2003). The magnitude of such 

affinities using MM/PBSA is the result of changes in the electrostatic interactions due 

to the flexibility induced in the Ig-domains of PECAM-1 and the heparin fragments, 

which was not taken into account whilst performing docking studies. The MM/PBSA 

calculations have been shown to be in good agreement with the docking simulations, 

confirming the prediction of the existence of high and low affinity GAG-binding 

regions in the receptor, as has been recently found experimentally (Coombe et al. 

2008). 

Binding of heparin fragments to the Ig-domains of PECAM-1 appears to be 

dominated by favourable VDW and electrostatic interactions, as expected from the 

polyanionic nature of heparin and the cationic nature of the binding site of the 

receptor. The vibrational entropy contribution has similar magnitude to the VDW and 

electrostatic interactions and hence it also plays a critical role in determining the free 

energy of binding of the oligosaccharides to the Ig-domains. Calculations of the 

solvation free energies using the generalised Born model as well as the Poisson-

Boltzmann approach resulted in similar predictions of the free energy of binding of 

heparin fragments to PECAM-1.  

The MD simulations also revealed the existence of a hinge-type conformational 

change affecting Ig-domains 2 and 3. This conformational change in the receptor 

exposes more basic residues on the surface, which may facilitate the binding of 
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longer-sized heparin fragments, such as an octasaccharide. This conformational 

change is responsible for fluctuations in the free energy of binding of heparin 

fragments. The MD simulations revealed the presence of conformational changes 

from a predominantly beta-sheet structure in Ig-domains 2/3 and 5/6 to a disordered 

random coil due to the presence of large numbers of glycine residues (which impart 

conformational flexibility) and proline (which have structure breaking properties).  

In conclusion, the analysis of the predicted interactions of GAGs with PECAM-1 

provide further understanding of the interaction forces, the specific sulfation patterns 

and the conformational preferences of GAGs involved in determining the specificity 

and selectivity of GAG binding.  

SCOPE FOR FUTURE WORK 

The purpose of docking GAG fragments to the surface of a protein such as a cell 

adhesion molecule is to identify the likely position of the heparin-binding site(s), 

predict the binding mode of GAG fragments and obtain a rough estimate of the free 

energy of binding (and dissociation constant). Most docking methods perform coarse 

docking. As a consequence, two model oligosaccharide fragments were needed for 

improved accuracy, one in which all IdoA2S residues are in the 1C4 ring form and 

another one in which the 2S0 ring form is adopted. Nowadays, there are plenty of 

docking programs which would allow flexibility of both, the glycosidic torsions as 

well as the exocyclic torsion angles. 

Current methods aimed at predicting high affinity GAG sequences fail to take into 

account any conformational changes that may occur in the protein receptor. In 

addition, many docking programs impose limits on the number of rotatable bonds that 

can be modelled (AutoDock, for example, can handle up to 32 rotatable bonds in the 

ligand), resulting in oligosaccharides longer than a pentasaccharide being treated as 

semi-rigid molecules. The accurate computational prediction of the affinity of binding 

for GAG-protein complexes is still in its infancy, particularly because of the poorly 

defined contribution of water (solvation/desolvation) to the binding interaction and 

limitations in the force field and scoring functions used to represent GAG structure, 

dynamics and interactions. These limitations can be overcomed by using advanced 

methods for docking and scoring such as the one implemented in Glide and AutoDock 
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4.0. These programs can take into account partial flexibility of the protein and allow 

full treatment of ligand flexibility. Statistical analysis of protein ensembles obtained 

from molecular dynamics simulations can also help in studying the fluctutaions 

corresponding to different conformations and the correlations of the amino acids in the 

transition state.   

There is much further work to be done to build on the predictions reported in this 

thesis. Of particular interest is the use of structure-based drug design methods to 

provide a rationale for the development of new selective, potent drug-like GAG-

mimetic molecules for the treatment of inflammatory diseases. The combination of 

these approaches with experimental information (structural and binding activity data) 

may assist the identification of chemical modifications that should be performed on 

known GAG fragments to optimise their binding. Similarly, these approaches may be 

used to predict the structure of new small molecules that can mimic the sulfation 

patterns required for binding specificity and selectivity to PECAM-1.  

Recent progress in the understanding of GAG biosynthesis, structure and function 

create the opportunity to capitalise on the large structural diversity of GAGs in drug 

discovery programs. Heparin/HS GAGs are an important subset of complex 

polysaccharides that can be exploited to treat inflammatory diseases, thrombosis, virus 

infections and cancer. Approaches like combinatorial virtual screening (Raghuraman 

et al. 2006) and focused libraries (introduction of non-anionic structural motifs into 

heparin/HS) (Fernandez et al. 2006; Huang & Kerns 2006) can further provide a 

rationale for the development of novel charge-reduced, potent drug-like GAG mimetic 

molecules.  

Molecular dynamics methods such as computational alanine mutagenesis can aid in 

elucidating the nature of the molecular interactions between GAGs and PECAM-1. A 

systematic scanning mutagenesis of the GAG binding sites in PECAM-1 could be 

carried out to measure the contributions of specific amino acid residues of Ig-domains 

2 and 3 to the specificity and affinity of GAG interactions using MM/PBSA methods 

or free energy perturbation methods. These methods are capable of providing 

predictions that can be tested experimentally and hence have an important role to play 

in early drug discovery programs.      
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APPENDIX A 

 
The coordinates and charges derived using RESP method for the GAG 

pentasaccharide are listed below: 

 

Atom  
Resi
-due 
Unit 

x y z 

GLY-
CAM 
atom 
type 

GAG 
residue Charge 

1 A -4.5094 6.1614 -11.5252 CG IdoA2S 0.6199 

2 A -4.8853 5.4091 -12.6686 OS IdoA2S -0.5144 

3 A -4.6315 7.6707 -11.7596 CG IdoA2S -0.0031 

4 A -4.7103 5.9857 -13.9517 CG IdoA2S 0.3865 

5 A -3.5573 6.9996 -13.9594 CG IdoA2S -0.3701 

6 A -4.4728 4.8862 -14.9455 C IdoA2S 0.874 

7 A -5.0142 4.7823 -16.0785 O2 IdoA2S -0.8757 

8 A -3.6507 4.0136 -14.5578 O2 IdoA2S -0.8757 

9 A -3.8332 8.1548 -12.9887 CG IdoA2S 0.6564 

10 A -6.0094 7.935 -11.9955 OS IdoA2S -0.4346 

11 A -6.9372 8.6047 -10.8929 S IdoA2S 1.3992 

12 A -6.6647 10.0181 -10.8552 O2 IdoA2S -0.7516 

13 A -8.227 8.4257 -11.5078 O2 IdoA2S -0.7516 

14 A -6.9024 7.778 -9.7144 O2 IdoA2S -0.7516 

15 A -2.5856 8.7458 -12.6535 OH IdoA2S -0.8804 

16 A -5.364 5.9519 -10.8874 H2 IdoA2S 0.015 

17 A -4.3342 8.2898 -10.9032 H1 IdoA2S 0.1016 
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18 A -5.6412 6.5115 -14.219 H1 IdoA2S -0.1117 

19 A -2.648 6.4648 -13.6392 HC IdoA2S 0.0447 

20 A -3.3792 7.3852 -14.9773 HC IdoA2S 0.0447 

21 A -4.4338 8.9183 -13.5174 H1 IdoA2S -0.0437 

22 A -2.6655 9.528 -12.1162 HO IdoA2S 0.4988 

23 B -3.9379 5.1591 -7.0007 CG GlcNS6S 0.7036 

24 B -2.9935 6.2999 -7.3977 CG GlcNS6S 0.0849 

25 B -3.8993 4.1107 -7.948 OS GlcNS6S -0.6635 

26 B -3.15 6.6881 -8.8726 CG GlcNS6S 0.228 

27 B -3.0565 5.4366 -9.7438 CG GlcNS6S 0.362 

28 B -2.1353 7.5956 -9.259 OH GlcNS6S -0.704 

29 B -4.1549 4.4565 -9.2951 CG GlcNS6S 0.2757 

30 B -4.1923 3.1579 -10.1081 CG GlcNS6S 0.2906 

31 B -2.898 2.5705 -10.1708 OS GlcNS6S -0.4445 

32 B -2.0919 2.243 -11.5004 S GlcNS6S 1.375 

33 B -3.0463 1.9713 -12.5439 O2 GlcNS6S -0.7417 

34 B -1.4745 3.514 -11.7776 O2 GlcNS6S -0.7417 

35 B -1.0332 1.3262 -11.1654 O2 GlcNS6S -0.7417 

36 B -3.2013 5.8136 -11.1039 OS GlcNS6S -0.6564 

37 B -3.2003 7.454 -6.5318 N GlcNS6S -0.8341 

38 B -2.092 7.7591 -5.3635 S GlcNS6S 1.4426 

39 B -0.9335 6.9375 -5.6012 O2 GlcNS6S -0.7562 

40 B -1.6937 9.1368 -5.4936 O2 GlcNS6S -0.7562 

41 B -2.6828 7.3591 -4.1127 O2 GlcNS6S -0.7562 
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42 B -3.5293 4.7393 -6.0669 H2 GlcNS6S -0.0107 

43 B -1.9703 5.8968 -7.3565 H1 GlcNS6S 0.0796 

44 B -4.1444 7.1544 -8.9454 H1 GlcNS6S 0.034 

45 B -2.0581 4.9861 -9.6303 H1 GlcNS6S -0.0114 

46 B -2.1488 7.8226 -10.1819 HO GlcNS6S 0.4612 

47 B -5.1881 4.8114 -9.1735 H1 GlcNS6S 0.0048 

48 B -4.5797 3.3733 -11.1143 H1 GlcNS6S 0.004 

49 B -4.8684 2.4282 -9.635 H1 GlcNS6S 0.004 

50 B -4.2076 7.513 -6.1642 H GlcNS6S 0.3954 

51 C -7.7931 6.9653 -4.6179 CG IdoA2S 1.0259 

52 C -6.2928 7.0027 -4.3175 CG IdoA2S -0.009 

53 C -5.7119 5.5855 -4.4837 CG IdoA2S 0.2153 

54 C -6.0275 4.9943 -5.8636 CG IdoA2S 0.0494 

55 C -7.5331 5.1203 -6.1437 CG IdoA2S 0.4008 

56 C -7.8283 4.726 -7.5616 C IdoA2S 0.8714 

57 C -7.6078 3.5466 -7.9464 O2 IdoA2S -0.8448 

58 C -8.2358 7.9249 -4.8854 H2 IdoA2S -0.1116 

59 C -8.2912 5.5759 -8.3684 O2 IdoA2S -0.8448 

60 C -7.9966 6.4388 -5.9161 OS IdoA2S -0.7046 

61 C -6.2399 4.6704 -3.5391 OH IdoA2S -0.6728 

62 C -6.1422 7.3393 -3.2784 H1 IdoA2S 0.1381 

63 C -5.582 7.9113 -5.1579 OS IdoA2S -0.493 

64 C -5.8721 9.4672 -5.2987 S IdoA2S 1.4028 

65 C -4.6803 10.1226 -5.7715 O2 IdoA2S -0.7247 
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66 C -6.7945 9.4391 -6.4041 O2 IdoA2S -0.7247 

67 C -6.619 9.9134 -4.1512 O2 IdoA2S -0.7247 

68 C -4.6307 5.6552 -4.2882 H1 IdoA2S 0.0456 

69 C -5.8051 3.9121 -5.9114 H1 IdoA2S 0.0887 

70 C -8.1013 4.4373 -5.49 H1 IdoA2S -0.119 

71 C -5.8365 3.8073 -3.5456 HO IdoA2S 0.4162 

72 C -5.26 5.6489 -6.8545 OS IdoA2S -0.4898 

73 D -8.3575 6.139 -3.6217 OS GlcNS6S -0.6496 

74 D -9.737 6.2156 -3.3666 CG GlcNS6S 0.2902 

75 D -10.1813 4.9394 -2.6537 CG GlcNS6S 0.1918 

76 D -9.9607 7.3926 -2.4151 CG GlcNS6S 0.1109 

77 D -11.6235 5.0695 -2.1507 CG GlcNS6S 0.1047 

78 D -10.0693 3.8406 -3.5387 OH GlcNS6S -0.6585 

79 D -11.9211 6.4214 -1.4684 CG GlcNS6S 0.7418 

80 D -11.9288 3.9494 -1.2665 N GlcNS6S -0.7856 

81 D -12.8917 2.747 -1.8264 S GlcNS6S 1.372 

82 D -12.1419 2.021 -2.8185 O2 GlcNS6S -0.7295 

83 D -14.1291 3.3555 -2.2412 O2 GlcNS6S -0.7295 

84 D -13.1724 1.8603 -0.7271 O2 GlcNS6S -0.7295 

85 D -11.351 7.4955 -2.195 OS GlcNS6S -0.5805 

86 D -9.4262 8.7301 -2.9402 CG GlcNS6S 0.304 

87 D -10.4623 9.4634 -3.5837 OS GlcNS6S -0.4388 

88 D -10.8842 10.9018 -3.0565 S GlcNS6S 1.38 

89 D -11.9529 10.7489 -2.1035 O2 GlcNS6S -0.7424 
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90 D -11.4493 11.4398 -4.2668 O2 GlcNS6S -0.7424 

91 D -9.6902 11.6581 -2.7811 O2 GlcNS6S -0.7424 

92 D -10.3133 6.3351 -4.2997 H1 GlcNS6S 0.0313 

93 D -9.5213 4.7668 -1.7844 H1 GlcNS6S 0.0445 

94 D -9.4281 7.1269 -1.4793 H1 GlcNS6S 0.0453 

95 D -12.2518 5.0261 -3.0585 H1 GlcNS6S 0.076 

96 D -10.3024 3.0104 -3.1357 HO GlcNS6S 0.4345 

97 D -12.9954 6.6408 -1.5841 H2 GlcNS6S -0.0711 

98 D -12.5492 4.3295 -0.4999 H GlcNS6S 0.3455 

99 D -8.3692 8.9222 -3.0663 H1 GlcNS6S 0.0166 

100 D -9.4804 9.2239 -1.9522 H1 GlcNS6S 0.0166 

101 E -11.481 6.4363 -0.1209 OS IdoA2S -0.5451 

102 E -12.4747 6.371 0.8918 CG IdoA2S 0.2483 

103 E -12.2069 5.2317 1.8939 CG IdoA2S 0.2489 

104 E -12.5398 7.707 1.6591 CG IdoA2S 0.2938 

105 E -13.377 5.1087 2.6903 OH IdoA2S -0.705 

106 E -10.9569 5.546 2.7408 CG IdoA2S 0.1847 

107 E -11.1128 6.9266 3.3977 CG IdoA2S 0.2955 

108 E -11.3599 7.9056 2.4105 OS IdoA2S -0.5808 

109 E -12.7212 8.8758 0.735 C IdoA2S 0.8735 

110 E -13.321 8.8576 -0.3729 O2 IdoA2S -0.8488 

111 E -12.2221 9.9504 1.1637 O2 IdoA2S -0.8488 

112 E -9.807 5.4781 1.8946 OS IdoA2S -0.493 

113 E -8.6211 6.532 1.806 S IdoA2S 1.4587 
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114 E -7.7233 5.7913 0.958 O2 IdoA2S -0.7704 

115 E -7.9896 6.636 3.0959 O2 IdoA2S -0.7704 

116 E -9.0545 7.6741 1.0436 O2 IdoA2S -0.7704 

117 E -13.4963 6.1913 0.5117 H1 IdoA2S 0.0164 

118 E -11.9855 4.2288 1.5029 H1 IdoA2S 0.0415 

119 E -13.4084 7.7213 2.3396 H1 IdoA2S -0.1036 

120 E -13.3095 4.4546 3.3792 HO IdoA2S 0.4466 

121 E -10.8086 4.7943 3.5347 H1 IdoA2S 0.0759 

122 E -11.948 6.9055 4.1171 H1 IdoA2S -0.0241 

123 E -10.2175 7.2146 3.9649 H1 IdoA2S -0.0241 
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APPENDIX B 

 
The coordinates and charges derived using RESP method for the GAG disaccharide 

are listed below: 

 
Atom Residue 

Unit 
x y z GLY-

CAM 
atom 
type 

GAG 
residue 

Charge 

1 A 27.999 40.517 56.351 CG IdoA2S 0.3101 

2 A 26.473 40.594 56.527 CG IdoA2S 0.1793 

3 A 28.429 41.255 55.069 CG IdoA2S 0.0639 

4 A 25.786 40.873 55.188 CG IdoA2S 0.2559 

5 A 26.325 42.173 54.567 CG IdoA2S 0.784 

6 A 27.652 42.426 54.929 OS IdoA2S -0.6333 

7 A 26.146 42.091 53.183 OH IdoA2S -0.8105 

8 A 29.916 41.587 55.014 C IdoA2S 1.0159 

9 A 30.392 42.516 55.72 O2 IdoA2S -0.8762 

10 A 30.71 40.941 54.28 O2 IdoA2S -0.8762 

11 A 24.4 41.029 55.422 OS IdoA2S -0.5491 

12 A 23.291 39.929 55.438 S IdoA2S 1.4394 

13 A 22.265 40.43 54.466 O2 IdoA2S -0.7313 

14 A 23.919 38.641 54.998 O2 IdoA2S -0.7313 

15 A 22.782 39.89 56.849 O2 IdoA2S -0.7313 

16 A 26.01 39.37 57.054 OH IdoA2S -0.7302 

17 A 28.3077 39.474 56.2807 H1 IdoA2S 0.0311 
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18 A 26.2344 41.4095 57.2098 H1 IdoA2S 0.0037 

19 A 28.2542 40.5755 54.2349 H1 IdoA2S -0.049 

20 A 25.9796 40.0449 54.5062 H1 IdoA2S 0.049 

21 A 25.7692 43.0271 54.9539 H2 IdoA2S -0.0642 

22 A 26.4315 42.9984 52.7383 HO IdoA2S 0.4502 

23 A 24.9715 39.4219 57.2004 HO IdoA2S 0.4576 

24 B 29.338 40.365 58.342 CG GlcNS6S 0.1754 

25 B 28.744 40.43 59.758 CG GlcNS6S 0.1293 

26 B 28.928 41.839 60.339 CG GlcNS6S 0.514 

27 B 30.41 42.236 60.265 CG GlcNS6S -0.2763 

28 B 30.887 42.09 58.81 CG GlcNS6S 0.327 

29 B 30.678 40.757 58.363 OS GlcNS6S -0.4869 

30 B 28.598 41.164 57.465 OS GlcNS6S -0.3837 

31 B 27.333 40.049 59.717 N GlcNS6S -0.7547 

32 B 26.81 38.849 60.697 S GlcNS6S 1.4132 

33 B 27.803 37.727 60.634 O2 GlcNS6S -0.7418 

34 B 26.684 39.454 62.065 O2 GlcNS6S -0.7418 

35 B 25.482 38.446 60.126 O2 GlcNS6S -0.7418 

36 B 28.535 41.839 61.695 OH GlcNS6S -0.7998 

37 B 32.374 42.396 58.584 CG GlcNS6S 0.1844 

38 B 33.136 41.637 59.497 OS GlcNS6S -0.4482 

39 B 34.691 41.631 59.656 S GlcNS6S 1.397 

40 B 35.14 43.059 59.732 O2 GlcNS6S -0.7334 

41 B 34.92 40.895 60.944 O2 GlcNS6S -0.7334 
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42 B 35.233 40.896 58.467 O2 GlcNS6S -0.7334 

43 B 29.2874 39.3359 57.9863 H2 GlcNS6S 0.1214 

44 B 29.2668 39.7291 60.4087 H1 GlcNS6S 0.1029 

45 B 28.3226 42.5435 59.7686 H1 GlcNS6S -0.0282 

46 B 30.9973 41.5831 60.9107 H1 GlcNS6S 0.0505 

47 B 30.5292 43.2702 60.588 H1 GlcNS6S 0.0505 

48 B 30.3025 42.8252 58.2568 H1 GlcNS6S 0.0788 

49 B 27.1175 39.7503 58.7124 H GlcNS6S 0.3538 

50 B 27.5259 41.558 61.7674 HO GlcNS6S 0.4329 

51 B 32.6522 42.13 57.5642 H1 GlcNS6S 0.0073 

52 B 32.5586 43.4579 58.7463 H1 GlcNS6S 0.0073 
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