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ABSTRACT 

Maps of the location and density of weeds have an important role in management 

programs. Remote sensing has the potential to map weed infestations over regional 

scales; however this potential has not been fully realised in the past for many species, 

due to inadequate spatial/spectral resolution, poor timing of acquisition, and 

inadequate methods. In recent years, new sensors and techniques have been 

developed, which can potentially overcome past limitations. This thesis investigated 

the utility of high spectral and spatial resolution remotely sensed datasets for 

detecting and mapping the pasture weed Paterson’s curse (Echium plantaginium) in 

the Wheatbelt Region of Western Australia. Three types of remote sensing data were 

used: field spectroscopy, high spatial resolution airborne multispectral, and satellite 

hyperspectral. Using these datasets, as well as different classification, statistical, and 

quantitative validation approaches, the thesis found that spectral resolution and 

timing of image capture were the most important factors for discriminating 

Paterson’s curse and producing acceptable levels of mapping accuracy.  

 

The characteristic reflectance peak of Paterson’s curse flowers in the blue region of 

the electromagnetic spectrum resulted in a good relationship between percentage 

floral cover of Paterson’s curse and a Normalised Difference Blue Index (NDBI) 

derived from field spectroscopy (R² = 0.75). Paterson’s curse was mapped from high 

spatial resolution airborne multispectral imagery using two non-parametric 

classifiers: artificial neural networks (multi-layer perceptron) and k-nearest 

neighbour. A low user’s accuracy (23–70%), producer’s accuracy (40–73%) and per-

class Kappa (0.2–0.4) for Paterson’s curse from the two classifiers was due to 

spectral confusion with pasture and crop. Satellite hyperspectral imagery (EO-1 

Hyperion) and a matched filter classification mapped Paterson’s curse with good 

accuracy: 81% user’s accuracy, 83% producer’s accuracy and a Kappa statistic of 

0.64. The most likely reason for the accuracy was that Paterson’s curse was mapped 

later in the season when co-occurring pasture was senescent. Despite the promising 

results from the field spectroscopy and satellite hyperspectral data, field survey 

remains the most reliable method for mapping Paterson’s curse. Future satellite 

hyperspectral sensors with high-signal-to-noise ratios and increased area coverage 

have the potential to provide accurate maps of Paterson’s curse at regional scales.  



ii 
 

 

ACKNOWLEDGEMENTS 

This PhD has been a long journey—a flowing but sometimes stuttering narrative, 

filled with trials, tribulations and the occasional but wonderful Eureka moment. Over 

the years, numerous people have directly or indirectly contributed. Of those whose 

names I have unintentionally omitted below, you are still gratefully acknowledged. 

 

This research was partially funded by an Australian Research Council Linkage grant 

(LP0454890) awarded to Professor Graciela Metternicht. Graciela was my supervisor 

for the first two and a half years of this PhD and I warmly thank her for the valuable 

direction and advice. An Australian Postgraduate Award scholarship provided 

personal funding. 

 

Thanks to my supervisor Dr Robert Corner, and my associate supervisor Dr Tom 

Schut. Tom in particular provided valuable advice on the more technical aspects of 

the thesis. I am grateful to Mrs Lori Patterson from the Curtin Spatial Sciences 

Department for proof-reading this thesis and assisting with formatting. 

 

Thanks to my former PhD lab-mates from the Curtin Spatial Sciences Department: 

Dr Todd Robinson, Dr Georgina Warren, and Dr Deavi Purnomo. In particular, I 

would like to acknowledge Todd for those valuable exchanges of ideas over the years 

about remote sensing of weeds. Thanks also to the student volunteers from Curtin: 

Paula, Roman and Alberto, who assisted at various times in the field. 

 

Thanks to the PhD students and staff from the Tropical Spatial Sciences Group at 

Charles Darwin University in Darwin, in particular Dr Guy Boggs, Dr Diane Pearson 

and the late Dr Frank van der Sommen. 

 

My former work colleagues at Energy Resources of Australia were encouraging and 

helpful along the way, especially Dr Philippe Puig, Dr Matthew Daws, Dr Geoffrey 

Tsang, Ms Cherie Gellert, and Ms Linda Pugh.  

 



iii 

Thanks to the Specterra team in Perth, in particular the managing director Mr 

Andrew Malcom, and Mr Craig Baldacchino who provided valuable logistic support 

in the field at a crucial time in the project.  

Thanks to Dr David Jupp (CSIRO) for kindly providing the ENVI Hyperion toolkit. 

Mr Jeff Watson from the Department of Agriculture and Food, Western Australia, 

was very accommodating of my numerous requests for spatial data over the years. 

The Catholic Agricultural College Bindoon was very supportive of the project from 

the initial contact. Thanks to the former principal Mr Brad Hall and the farm 

manager Mr Kevin Marshall who gave unrestricted access to the property during the 

fieldwork in 2005 and 2006. The College provided comfortable accommodation, 

hearty meals and friendly hospitality during my stay.  

Thanks to Mr Ranford and Mr Huppennen, owners of Morden Downs and Bindarie 

respectively, for permission to access and conduct fieldwork on their properties. 

Thanks also to the managers of Bindarie: Mr Dudley Lewis and Mr Norman Lewis 

for the tour of the property prior to the fieldwork. 

My parents Michael and June McIntyre always appreciated the value of education, 

and those ‘little bits of paper’ that open up exciting opportunities in life.  

My wife Laila and sons Benjamin and Alexander were very patient and 

understanding over the years, especially of those Sunday absences and the leave from 

work that didn’t involve recreation or holidays. 

'It is good to have an end to journey toward; but it is the journey that matters in the 

end'. 

Ursula K. Le Guin 



iv 
 

 

TABLE OF CONTENTS 

ABSTRACT .................................................................................................................. i 

ACKNOWLEDGEMENTS ......................................................................................... ii 

TABLE OF CONTENTS ............................................................................................ iv 

LIST OF FIGURES ..................................................................................................... x 

LIST OF TABLES .................................................................................................... xiii 

1 INTRODUCTION ............................................................................................... 1 

1.1 Agricultural Weeds in Australia................................................................... 1 

1.2 Case Study: Paterson’s Curse ...................................................................... 1 

1.3 Weed Management....................................................................................... 3 

1.4 Problem Statement ....................................................................................... 4 

1.5 Research Objectives ..................................................................................... 5 

1.6 Benefits of the Research............................................................................... 6 

1.7 Research Methods ........................................................................................ 6 

1.8 Thesis Structure ............................................................................................ 7 

2 METHODOLOGICAL AND LITERATURE REVIEW .................................... 9 

2.1 Introduction .................................................................................................. 9 

2.1.1 Definition and scope of remote sensing ................................................. 9 

2.2 Analysis of Remotely Sensed Data .............................................................. 9 

2.3 Selection of Appropriate Data .................................................................... 10 

2.3.1 Spatial resolution .................................................................................. 10 

2.3.2 Spectral resolution ................................................................................ 11 

2.3.3 Radiometric resolution ......................................................................... 13 

2.3.4 Temporal resolution ............................................................................. 14 

2.4 Selection of Appropriate Method ............................................................... 15 

2.4.1 Vegetation indices ................................................................................ 15 

2.4.2 Field spectroscopy ................................................................................ 16 

2.4.3 Classification ........................................................................................ 18 

2.4.3.1 Per-pixel classifiers ....................................................................... 21 

2.4.3.1.1 Parametric unsupervised: ISODATA ....................................... 22 

2.4.3.1.2 Parametric supervised: maximum likelihood ........................... 22 

2.4.3.1.3 Non-parametric supervised: minimum distance to means........ 22 

2.4.3.1.4 Non-parametric supervised: parallelepiped .............................. 23 



v 
 

 

2.4.3.1.5 Non-parametric supervised: support vector machines ............. 23 

2.4.3.1.6 Non-parametric supervised: k-nearest neighbour ..................... 24 

2.4.3.1.7 Non-parametric supervised: decision tree classification .......... 24 

2.4.3.1.8 Non-Parametric supervised: artificial neural networks ............ 25 

2.4.3.1.9 Non-parametric supervised: spectral angle mapper ................. 26 

2.4.3.1.10 Non-parametric supervised: Fuzzy c-means .......................... 27 

2.4.3.1.11 Non-parametric supervised: Linear spectral unmixing .......... 27 

2.4.3.1.12 Non-parametric supervised: Matched filtering and mixture 
tuned   matched filtering ............................................................................ 29 

2.4.3.2 Per-field classification .................................................................. 30 

2.4.3.3 Contextual classification ............................................................... 31 

2.5 Validation ................................................................................................... 32 

2.5.1 Sampling and validation data ............................................................... 33 

2.5.2 Error matrix approach .......................................................................... 34 

2.5.3 Kappa ................................................................................................... 34 

2.5.4 Soft classification validation ................................................................ 36 

2.6 Remote Sensing of Weeds ......................................................................... 39 

2.6.1 Remote sensing of vegetation .............................................................. 40 

2.6.2 Properties of vegetation for remote sensing detection ......................... 40 

2.6.3 Characteristics of weeds for detection using remote sensing ............... 42 

2.6.3.1 Foliage properties ......................................................................... 43 

2.6.3.1.1 Orientation ................................................................................ 43 

2.6.3.1.2 Colour ....................................................................................... 43 

2.6.3.1.3 Density ...................................................................................... 44 

2.6.3.1.4 Timing ...................................................................................... 45 

2.6.3.2 Floral properties ............................................................................ 45 

2.6.4 Spectroscopy ........................................................................................ 46 

2.6.5 Aerial photography............................................................................... 49 

2.6.6 Airborne videography .......................................................................... 49 

2.6.7 Airborne digital imagery ...................................................................... 50 

2.6.8 Satellite multispectral imagery ............................................................. 52 

2.6.9 Airborne hyperspectral ......................................................................... 57 

2.6.10 Satellite hyperspectral .......................................................................... 59 

2.7 Remote Sensing of Paterson’s Curse ......................................................... 60 

2.8 Summary .................................................................................................... 62 

3 STUDY AREA, STUDY SPECIES, AND DATASETS................................... 65 

3.1 Introduction ................................................................................................ 65 



vi 
 

 

3.2 Characteristics of the Study Area ............................................................... 65 

3.2.1 Selection and rationale ......................................................................... 65 

3.2.2 Physical features................................................................................... 66 

3.2.3 Vegetation and soils ............................................................................. 68 

3.2.4 Topography .......................................................................................... 68 

3.2.5 Climate ................................................................................................. 69 

3.3 Paterson’s Curse ......................................................................................... 70 

3.3.1 Description ........................................................................................... 70 

3.3.2 Impacts and benefits ............................................................................. 70 

3.3.2.1 Negative impacts........................................................................... 71 

3.3.2.2 Benefits ......................................................................................... 72 

3.3.3 Management ......................................................................................... 72 

3.4 Remote Sensing Data ................................................................................. 73 

3.4.1 Digital Multi-spectral Imagery (DMSI) ............................................... 73 

3.4.2 EO-1 Hyperion satellite hyperspectral imagery ................................... 75 

3.4.2.1 Description and background ......................................................... 75 

3.4.2.2 Acquisition of EO-1 Hyperion data .............................................. 78 

3.4.3 Field spectroscopy data ........................................................................ 79 

3.5 Validation and Field Data .......................................................................... 80 

3.6 Software and Hardware .............................................................................. 80 

3.6.1 Remote sensing and GIS software ....................................................... 80 

3.6.2 Statistical software ............................................................................... 81 

3.6.3 Global Positioning System (GPS) ........................................................ 81 

3.7 Summary .................................................................................................... 81 

4 IDENTIFYING OPTIONS TO DETECT PATERSON’S CURSE USING 

FIELD SPECTROSCOPY ......................................................................................... 83 

4.1 Introduction ................................................................................................ 83 

4.2 Methods ...................................................................................................... 84 

4.2.1 Data collection ..................................................................................... 85 

4.2.2 Data processing .................................................................................... 88 

4.2.3 Comparison of spectra.......................................................................... 88 

4.2.4 Derivative analysis ............................................................................... 88 

4.2.5 Relationships between spectra and floral cover ................................... 89 

4.2.5.1 Derivation of band ratios and indices ........................................... 89 

4.2.5.2 Spectral unmixing ......................................................................... 89 

4.2.5.3 Correlation and regression analysis .............................................. 90 

4.3 Results ........................................................................................................ 90 



vii 
 

 

4.3.1 Comparison of spectra.......................................................................... 90 

4.3.2 Derivative analysis ............................................................................... 91 

4.3.3 Relationships between spectra and floral cover ................................... 92 

4.3.3.1 Derivation of band ratios and indices ........................................... 92 

4.3.3.2 Correlation and regression analysis .............................................. 96 

4.4 Discussion and Conclusion ........................................................................ 98 

5 MAPPING PATERSON’S CURSE WITH MULTISPECTRAL AIRBORNE 

IMAGERY ............................................................................................................... 101 

5.1 Introduction .............................................................................................. 101 

5.2 Methods .................................................................................................... 102 

5.2.1 Image acquisition ............................................................................... 102 

5.2.2 Image pre-processing ......................................................................... 103 

5.2.3 Training area selection ....................................................................... 103 

5.2.4 Training area analysis ........................................................................ 104 

5.2.5 Image classification ............................................................................ 105 

5.2.5.1 Multi-layer perceptron classifier ................................................. 105 

5.2.5.2 k-nearest neighbour classifier ..................................................... 107 

5.2.6 Accuracy assessment .......................................................................... 107 

5.2.6.1 Field survey................................................................................. 107 

5.2.6.2 Quantitative accuracy assessment ............................................... 109 

5.3 Results ...................................................................................................... 111 

5.3.1 Training area analysis ........................................................................ 111 

5.3.2 Accuracy assessment .......................................................................... 113 

5.3.2.1 Hard classification results ........................................................... 113 

5.3.2.1.1 Multi-layer perceptron ............................................................ 113 

5.3.2.1.2 k-nearest neighbour ................................................................ 117 

5.3.2.2 Soft classification results ............................................................ 120 

5.3.2.2.1 Multi-layer perceptron ............................................................ 120 

5.3.2.2.2 k-nearest neighbour ................................................................ 122 

5.4 Discussion and Conclusion ...................................................................... 123 

6 DISCRIMINATING PATERSON’S CURSE WITH SATELLITE 

HYPERSPECTRAL IMAGERY ............................................................................. 127 

6.1 Introduction .............................................................................................. 127 

6.2 Methods .................................................................................................... 128 

6.2.1 Processing .......................................................................................... 129 

6.2.1.1 Specialised Hyperion pre-processing.......................................... 130 



viii 
 

 

6.2.1.2 Standard hyperspectral processing.............................................. 132 

6.2.2 Classification ...................................................................................... 134 

6.2.2.1 Spectral sampling ........................................................................ 135 

6.2.2.2 Matched filter classification........................................................ 135 

6.2.2.3 Analysis of band ratios and indices ............................................ 136 

6.2.3 Validation ........................................................................................... 136 

6.2.3.1 Data collection ............................................................................ 136 

6.2.3.2 Quantitative accuracy assessment ............................................... 139 

6.3 Results ...................................................................................................... 140 

6.3.1 Processing .......................................................................................... 140 

6.3.2 Classification ...................................................................................... 141 

6.3.2.1 Spectral sampling ........................................................................ 141 

6.3.2.2 Matched filter classification........................................................ 145 

6.3.2.3 Analysis of band ratios and indices ............................................ 146 

6.3.3 Validation ........................................................................................... 148 

6.3.3.1 Matched filter threshold independent ......................................... 148 

6.3.3.2 Matched filter threshold dependent ............................................ 151 

6.3.3.3 Band ratio/index threshold independent ..................................... 152 

6.3.3.4 Band ratio/index threshold dependent ........................................ 154 

6.4 Discussion and Conclusion ...................................................................... 155 

7 SUMMARY AND RECOMMENDATIONS .................................................. 161 

7.1 Introduction .............................................................................................. 161 

7.2 The Optimum Spatial and Spectral Resolution ........................................ 161 

7.2.1 Recommendations .............................................................................. 162 

7.3 The Optimum Timing of Remote Sensing ............................................... 163 

7.3.1 Recommendations .............................................................................. 164 

7.4 Suitable Image Processing and Classification Techniques ...................... 164 

7.4.1 Recommendations .............................................................................. 166 

7.5 Methods of Integrating Remotely Sensed Data and Field Data ............... 167 

7.5.1 Recommendations .............................................................................. 168 

7.6 Contribution to Knowledge ...................................................................... 168 

7.7 Conclusion ............................................................................................... 169 

REFERENCES ......................................................................................................... 171 

APPENDIX A .......................................................................................................... 196 

APPENDIX B .......................................................................................................... 206 

APPENDIX C .......................................................................................................... 216 



ix 
 

 

APPENDIX D .......................................................................................................... 226 

APPENDIX E .......................................................................................................... 228 

APPENDIX F ........................................................................................................... 230 

APPENDIX G .......................................................................................................... 240 

APPENDIX H .......................................................................................................... 251 

APPENDIX I ............................................................................................................ 254 

APPENDIX J ........................................................................................................... 260 

APPENDIX K .......................................................................................................... 262 

 

  



x 
 

 

LIST OF FIGURES 

Figure 1.1 Examples of dense infestations of Paterson’s curse in the Chittering 

Shire, Western Australia. ....................................................................... 2 

Figure 2.1 Summary of the major classification approaches................................. 18 

Figure 2.2 Spectral angle mapper concept (adapted from Campbell, 2008). ........ 27 

Figure 2.3 Example of a hyper-plane triangle (Adapted from Mather and Koch 

2011). ................................................................................................... 28 

Figure 2.4 Example of two ROC plots showing false positive and false negative 

values.................................................................................................... 38 

Figure 2.5 Reflectance spectra for green and senescent vegetation (sourced from 

Chapter 4). Parts of the electromagnetic spectrum: B = blue, G = green, 

R = red, RE = red-edge, NIR = near infrared, and MIR = mid infrared.

 .............................................................................................................. 41 

Figure 3.1 Location of properties used as study sites: 1) Catholic Agricultural 

College Bindoon; 2) Morden Downs; and 3) Bindarie. ....................... 66 

Figure 3.2 Land use on the three study area properties, and  the general area 

around the town of Bindoon (from Beeston, et al. 2001). ................... 67 

Figure 3.3 Extent of DMSI mosaic image (outlined in white) at the Catholic 

Agricultural College Bindoon property (outlined in yellow). .............. 75 

Figure 3.4 EO-1 and Landsat 7 ground tracks. Adapted from Ungar, et al. (2003).

 .............................................................................................................. 76 

Figure 4.1 Flowchart outlining the methodology for the spectroscopy analysis. .. 84 

Figure 4.2 Location of sampling sites A and B at the Catholic Agricultural College 

Bindoon. Site A: Systematic sampling grid; B: Horse paddock where 

dense Paterson’s curse spectra were measured. ................................... 87 

Figure 4.3 Spectral reflectance curves for components of Paterson’s curse and 

other cover types across the full spectral range (351-2400 nm). ......... 91 

Figure 4.4 First order derivatives for Paterson’s curse and green vegetation 

spectra. ................................................................................................. 92 



xi 
 

 

Figure 4.5 Spectral response difference between spectra from green vegetation 

(GV), Paterson’s curse flowers (PCF), Dense Paterson’s curse (DPC), 

and senescent vegetation (SV) spectra. ................................................ 93 

Figure 4.6 Scatter plot, regression line (R² = 0.829), and 95% upper and lower 

confidence intervals for the NDBI and Paterson’s curse floral cover 

(proportion). ......................................................................................... 97 

Figure 4.7 Scatter plot, regression line (R² = 0.75), and 95% upper and lower 

confidence intervals for Paterson’s curse floral cover (proportion) and 

estimated floral abundance from linear unmixing. .............................. 97 

Figure 5.1 Training classes used and representative oblique photographs: a) crop; 

b) pasture; c) fallow; d) Paterson’s curse. .......................................... 104 

Figure 5.2 Location of stratified random points at Catholic Agricultural College 

Bindoon that were surveyed in the field. ........................................... 109 

Figure 5.3 Mean DN spectral plot values for final DMSI training signatures. ... 112 

Figure 5.4 Hard classification output for the 3-class MLP classification. .......... 115 

Figure 5.5 Oblique photograph of an area of pasture in a field (background) that 

was misclassified by the 3-class MLP classification (labelled as ‘G’ in 

Figure 5.4) as crop and Paterson’s curse. ........................................... 115 

Figure 5.6 Hard classification output from the 2-class MLP classification. ....... 117 

Figure 5.7 Hard classification output from 2-class, 3-band classification (k = 45).

 ............................................................................................................ 120 

Figure 5.8 Logistic regression model output (probability of presence) of 

Paterson’s curse from the two-class MLP classification.................... 121 

Figure 5.9 Oblique photograph of Area ‘A’ on Figure 5.8 showing the Paterson’s 

curse infestation south of the dam that was identified with a probability 

of 0.75–1. ........................................................................................... 122 

Figure 5.10 Logistic regression model output (probability of presence) of 

Paterson’s curse from two-class kNN classification (4-band, k = 5). 123 

Figure 6.1 Flowchart of methodology for 1) processing and 2) classifying and 

validating Hyperion data. ................................................................... 129 



xii 
 

 

Figure 6.2 Location of sample sites for Paterson’s curse, non-Paterson’s curse. 

Bands 8 (428 nm), 20 (550 nm), and 30 (652 nm) are represented as 

blue, green, and red. ........................................................................... 138 

Figure 6.3 Examples of field plots representing the five density classes of 

Paterson’s curse. ................................................................................. 139 

Figure 6.4 a) Before and b) after de-striping and noise removal was applied to 

VNIR band 8 (428 nm). Bands 25 (601 nm) and 55 (906 nm) shown for 

comparison where no striping effect was apparent. ........................... 140 

Figure 6.5 Location of Paterson’s curse non-Paterson’s curse spectral samples. 141 

Figure 6.6 Spectral samples of dense Paterson’s curse and the derived mean end-

member spectrum. .............................................................................. 142 

Figure 6.7 Spectra of the dense Paterson’s curse end-member and co-occurring 

vegetation types. ................................................................................. 143 

Figure 6.8 Reflectance differences between the dense Paterson’s curse end-

member spectrum (PC) and spectral samples representing green 

vegetation (GV), senescent vegetation (SV) and Eucalypt woodland 

(EW). .................................................................................................. 144 

Figure 6.9 Spectra of the Paterson’s curse density classes from the field validation 

plots, with green and senescent vegetation spectra shown for 

comparison. ........................................................................................ 145 

Figure 6.10 Matched filter image derived from Paterson’s curse end-member. ... 146 

Figure 6.11 ROC plots for the matched filter validation result, with cut-off value 

indicated by arrow. ............................................................................. 149 

Figure 6.12 Paterson’s curse model (probability of presence) derived from logistic 

regression. .......................................................................................... 150 

Figure 6.13 Threshold image showing Paterson’s curse (purple) at a) Bindoon 

Catholic Agricultural College b) Morden Downs, and c) Bindarie. .. 151 

Figure 6.14 ROC plots for three best performing indices, with cut-off values 

indicated by arrows. ........................................................................... 153 

  



xiii 
 

 

LIST OF TABLES 

Table 2.1 Spatial resolution of currently available multispectral and hyperspectral 

remote sensing data. ............................................................................. 12 

Table 2.2 Spectral resolution of currently available multispectral and 

hyperspectral remote sensing data. ...................................................... 13 

Table 2.3 Temporal resolution of currently available multispectral and 

hyperspectral remote sensing data. ...................................................... 15 

Table 2.4 ROC contingency table (Adapted from Eastman 2006). ..................... 38 

Table 2.5 Summary of field spectroscopy studies for weeds, with application type 

(AT) (P: prediction, C: calibration, M: modelling), and instrument type 

(IT) (S: spectrometer, R: radiometer)................................................... 48 

Table 3.1 Mean monthly rainfall data for Gingin Airport from 1996-2010: 

(Source: Bureau of Meteorology 2010). .............................................. 69 

Table 3.2 Mean temperature and humidity data for Gingin Airport from 1996-

2010  (Source: Bureau of Meteorology 2010). .................................... 69 

Table 3.3 Spectral band centres and spectral feature properties for DMSI bands. 

Modified from Canci, et al. (2006). ..................................................... 74 

Table 3.4 Characteristics of Hyperion, with ALI, and Landsat 7 ETM+ for 

comparison. Adapted from Ungar, et al. (2003). ................................. 77 

Table 3.5 Properties of acquired Hyperion image (from product metadata). ...... 79 

Table 3.6 Summary of the field datasets used in the research by chapter............ 80 

Table 4.1 Summary statistics for Paterson’s curse floral proportion cover from 

the systematic field grid at Catholic Agricultural College Bindoon. ... 86 

Table 4.2 List of band ratios and indices used to determine a relationship with 

floral cover. .......................................................................................... 95 

Table 4.3 Pearson correlation coefficient (r) and coefficient of determination of 

regression (R²) for first order (a) or second order (b) polynomial 

relationships between abundance estimates using linear unmixing and 

selected indices, with percentage floral cover of Paterson’s curse. ..... 96 



xiv 
 

 

Table 5.1 Summary statistics of Paterson’s curse random sampled locations on 

the Bindoon Agricultural College study site. ..................................... 109 

Table 5.2 Training area statistics for each band (B), including number of pixels 

(N) with mean and standard deviation (SD). Key: C = crop, P = 

pasture, F = fallow, PC = Paterson’s curse. ....................................... 112 

Table 5.3 Transformed divergence results for the final classes. ........................ 113 

Table 5.4 Summary of accuracy assessment of the MLP classification. ........... 116 

Table 5.5 Summary of accuracy assessment of the k-nearest neighbour (kNN) 

classification. Key: C = class, B = bands. .......................................... 119 

Table 5.6 Logistic regression and ROC (AUC) results for MLP classifications.

 ............................................................................................................ 121 

Table 6.1 Centre wavelengths of the 158 band image produced by spectral sub-

setting for the visible/near infrared (VNIR) and the short-wave infrared 

(SWIR). .............................................................................................. 131 

Table 6.2 Band centre wavelengths and full width half maximum (FWHM) for 

the 49 band subset. ............................................................................. 134 

Table 6.3 Density classes and description of Paterson’s curse assessed from 

random field plots. ............................................................................. 137 

Table 6.4 Hyperion indices derived from equivalent indices from Chapter 4. .. 147 

Table 6.5 Comparison of peak spectral differences of green vegetation/Paterson’s 

curse spectra derived from Hyperion image, and field spectroscopy in 

Chapter 4. ........................................................................................... 148 

Table 6.6 Chi-square results and ROC statistics from logistic regression of the 

matched filter classification output. ................................................... 148 

Table 6.7 Threshold dependent accuracy results of matched filter classification 

with validation dataset (n = 184). ....................................................... 152 

Table 6.8 Chi-square, AUC and accuracy statistics from logistic regression of 

band ratios and indices with validation dataset (n = 184). ................. 153 

Table 6.9 Threshold dependent accuracy results of band ratios and indices with 

validation dataset (n = 184). ............................................................... 155 



1 
 

 

1 INTRODUCTION 

1.1 Agricultural Weeds in Australia 

Australia has a long history of introduced plant species becoming weeds. These 

species have either been deliberately introduced e.g. for ornamental value or 

agricultural benefit, or arrived unintentionally e.g. from ships and cargo (Adair and 

Groves 1998). The unintended consequence for many of these species is that they 

became successful colonisers and invaders, resulting in significant economic, 

environmental, and social impacts. The Australian agriculture sector in particular has 

been adversely impacted by weeds. The most recent estimate of the financial impact 

of agricultural weeds in Australia is between $3.4 to $4.4 billion per year (Sinden, et 

al. 2004). The cost of weed impacts on winter crops alone in Australia is estimated 

by Jones et al. (2000) to be $1.2 billion.  In Western Australia’s agricultural regions, 

weed control costs have been estimated to comprise twenty percent of production 

costs (State Weed Plan Steering Group 2001). The costs associated with pasture 

weeds in Australia have been estimated at $792 million per year. The impacts of 

agricultural weeds include loss of production due to weeds outcompeting desired 

species, loss of value of products due to contamination (e.g. seeds in cotton), control 

costs, loss of value of products due to herbicide residue, and new production methods 

that are required in heavily affected weed areas (Jones, et al. 2000; Nordblom, et al. 

2001). 

1.2 Case Study: Paterson’s Curse 

Paterson’s curse or Salvation Jane (Echium plantagineum) is an agricultural weed of 

particular concern in agricultural regions of Australia. The species is an erect winter 

annual or biennial herb that can grow to 1.5 m in height, although the average is 

between 30 to 60 cm (Piggin and Sheppard 1995). Paterson’s curse originates from 

the Mediterranean region and was introduced to Australia as an ornamental plant in 

the mid-19th century on account of its attractive flowers (Piggin and Sheppard 1995) 

and was intentionally distributed (Sheppard and Smyth 2012). Since then, Paterson’s 

curse has invaded approximately 33 million hectares in southern Australia 

(Sheppard, et al. 2001).  The cost of Paterson’s curse to Australia is estimated to be 

$90 million per year: a figure based on the loss of the carrying capacity of livestock 

in areas affected by the weed (Nordblom, et al. 2001). Paterson’s curse has invaded 
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approximately 220,000 hectares in Western Australia (Parsons and Cuthbertson 

2001), mostly in the northern and central Wheatbelt Regions, and the South West 

Region (Dodd, et al. 1993), with particularly dense infestations in the vicinity of 

Northampton and in the Avon and Swan Valley regions (Hussey, et al. 1997). The 

purple flowers of Paterson’s curse can produce a ‘blanket’ appearance in areas of 

dense infestation (Figure 1.1). This feature makes Paterson’s curse one of the most 

conspicuous weeds of roadsides, pastures and disturbed lands in Western Australia 

(Dodd, et al. 1993). 

 

  

Figure 1.1 Examples of dense infestations of Paterson’s curse in the Chittering 
Shire, Western Australia. 

The main characteristics of Paterson’s curse that favour it as a pasture weed can be 

summarised as follows (Piggin 1976): 

 

(i) High productivity in autumn and winter compared with other pasture 

species; 

(ii) Remaining green in late spring and early summer, when other pasture 

species have already matured;  

(iii) Seedling establishment and survival that are suited to a Mediterranean-

type climate; 

(iv) Seeds that retain viability after passing through the alimentary tract of 

grazing herbivores (Parsons and Cuthbertson 2001); and 

(v) A lack of natural enemies and competing pasture species in Australia 

(Piggin and Sheppard 1995). 
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Paterson’s curse is a declared noxious weed in all Australian states and territories 

(Piggin and Sheppard 1995). In Western Australia, Paterson’s curse has been 

declared as category P1 (introduction of the plant into, or movement of the plant 

within, an area is prohibited) for the entire state, and Category P3 (Plant to be 

controlled by reduction in number or distribution of the plant or both) and P4 (Spread 

of plant beyond where it currently occurs to be prevented) for selected municipal 

districts (Government of Western Australia 1976). Section 49 of the Agriculture and 

Related Resources Protection Act (1976) states that private landowners in Western 

Australia with Paterson’s curse (or any other declared plant species) are under a 

legislative obligation to control it on their property (Government of Western 

Australia 1976).  

1.3 Weed Management 

The three main strategies for managing weeds are: prevention and exclusion; early 

detection and rapid assessment; and control, containment and eradication (Rejmánek 

2000). Weed surveys are essential for containment and eradication to be successful, 

and early detection is vital, as smaller satellite infestations have the potential to 

spread more rapidly than large infestations (Moody and Mack 1988), and can make 

the difference between being able to contain and/or eradicate a species, or having to 

invest in the long term management of the species (Rejmánek 2000). The main 

benefits of surveys to weed management are: 

 

(i)   Empowering weed management plans and enabling control measures to 

be planned and funded appropriately (Casady, et al. 2005; McGowen 

1998); 

(ii)   The spread of a weed species can be documented by repeat surveys 

(McGowen 1998); 

(iii)   The economic impact of a weed species can be assessed (McGowen 

1998); 

(iv)   Studies of the biology and ecology of the species based on the survey data 

can assist with  its control (Casady, et al. 2005); 

(v)   Public awareness of a particular species can be increased (Casady, et al. 

2005) which benefits weed management at a community level; and 
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(vi)   Information on the  location of a weed species at a given time  can be 

used to predict the potential distribution of the species (Lawes and 

Wallace 2008). 

 

Survey methods can be simple questionnaires directed to land managers or 

interviews on-site (McGowen 1998), or complex  regional scale ground surveys 

involving large teams. There are several approaches to ground survey, which involve 

varying degrees of complexity: recording presence/absence of a species; ordinal 

ranking of weed density through visual estimation; sampling grids, transects or 

randomly generated locations; or conducting a complete census of weeds within 

weed management zones or districts. Ground based surveys have several advantages, 

including a higher level of detail on cover and spatial variability when smaller areas 

are surveyed; they can be the sole source for historical and contemporary description 

of land use, which are valuable for deriving associated land cover; and information 

can be provided on other related features such as hydrology and soil type (Wyatt 

2000). Ground survey however is typically expensive, labour intensive and 

logistically difficult, especially over large areas, rough terrain, or remote areas (Pitt 

and Miller 1988; Wyatt 2000). A minimum standard of skills and training is required 

for personnel, and there can be issues with consistency and accuracy if quality 

control is lacking (Wyatt 2000). Large areas usually require a sampling approach, 

rather than a census of all weeds infestations present, and revisiting sites on a regular 

(e.g. annual) basis is commonly not feasible (Wyatt 2000). 

1.4 Problem Statement 

Reliable and cost effective methods for mapping agricultural weeds like Paterson’s 

curse can play an important role in the success of management strategies. Previous 

survey methods for Paterson’s curse in Western Australia were on-ground visual 

assessments of the approximate area of Paterson’s curse on a property by property 

basis, with no information on the density of an infestation or the spatial distribution.  

This approach involved a significant investment in time and resources to survey all 

affected properties in the south-west of Western Australia at a regional scale. 

Regularly updating a database of Paterson’s curse distribution is likely to be time 

consuming and costly. In addition to the requirement to map Paterson’s curse at a 

regional scale, there is also a need for data to assess the density of Paterson’s curse 
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on each affected property, in order to make an assessment of the success of control 

measures.  

 

Remote sensing is a possible alternative means of surveying Paterson’s curse, given 

the limitations and cost of other survey methods. Remote sensing can provide data 

with a synoptic coverage of large areas, with a repetitive and consistent data 

collection protocol. This protocol allows regional scale distributions of weeds to be 

mapped with significant savings in cost and time over conventional methods. Remote 

sensing has not been widely accepted as an operationally based tool for weed 

management due to several limitations: the spatial and/or spectral resolution of 

sensors have not been adequate in many past applications for resolving a target 

species (particularly for Paterson’s curse); data processing methods have been too 

specialised or inadequate; and remotely sensed data were expensive and/or 

unavailable. In the past decade, many of these problems have been addressed by new 

sensors with improved spatial/spectral resolution (e.g. high spatial resolution and 

hyperspectral satellite sensors), improvements in computer architecture and 

processing power, availability of computer software, and reductions in operational 

costs of acquiring remotely sensed data.  

 

For remote sensing to be a successful tool for detecting and mapping weeds, a 

number of important criteria have to be met: the difference between the spectral 

reflectance of a weed infestation and background cover (e.g. soil, vegetation) must be 

sufficient. Therefore, the spectral resolution (number of bands and bandwidth) of the 

sensor must also be sufficient to detect these differences. The timing of remote 

sensing acquisition must align with an optimum stage of growth that allows the 

weeds to be discriminated. Finally, remote sensing must provide information to 

management agencies that is cost effective and in a readily interpretable format 

(Lamb 1998; Lawes and Wallace 2008; McGowen 1998). 

1.5 Research Objectives 

From the Problem Statement described above, the overall objective of the research is 

to investigate suitable remote sensing tools for mapping and monitoring Paterson’s 

curse in the Wheatbelt Region of Western Australia. Ideally, these tools will have the 
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capability to be used in an operational setting. The following objectives will be 

addressed in the research: 

 

(i) Determine the optimal spectral and spatial resolution, and the optimal 

time of remote sensing data acquisition, based on the phenological and 

structural characteristics of Paterson’s curse. This includes detection 

limits with regards to spectral and spatial resolution with different 

sensors, and the threshold of weed density that can be detected (such as 

floral density) according to the resolution of the data. 

(ii) Investigate suitable image processing and classification techniques for 

mapping Paterson’s curse. This objective will include the development of 

a quantitative method that can relate floral density to the spectral 

information of a sensor.  

(iii) Investigate methods for successfully integrating remotely sensed data and 

field data to map Paterson’s curse. The research will determine the most 

suitable sampling strategies for integrating these data at different scales 

and image resolution. 

1.6 Benefits of the Research 

(i) Explore previously untested remote sensing data and techniques to 

Paterson’s curse, and provide a critical review of the limitations; 

(ii) The research will be the first application of airborne and satellite remote 

sensing to Paterson’s curse in Western Australia; 

(iii) The remote sensing methodology developed in this research may be 

appropriate for mapping Paterson’s curse in other regions of Australia; 

(iv) The research will make a contribution to addressing the problem of 

matching the correct resolution of remotely sensed data to mapping 

weeds. 

1.7 Research Methods 

The major aspects of the research are: 

 

(i) The application of high spectral resolution hyperspectral satellite and high 

spatial resolution multi-spectral data to detect Paterson’s curse; 
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(ii) A comparative analysis of a range of remote sensing image classifiers 

applied to airborne digital imagery and 

(iii)  Investigating methods of integrating field data with remote sensing data 

classification, including field spectroscopy and appropriate validation 

approaches. 

1.8 Thesis Structure 

This thesis is comprised of seven chapters. Chapter 1 outlines the research problem 

and the background information for the development of remote sensing methods for 

mapping and monitoring Paterson’s curse. Following this, the research objectives are 

defined, as well as the expected outcomes and benefits of the research. Finally, the 

research methods are presented, and the thesis structure is outlined. 

 

Chapter 2 reviews the relevant literature and methodologies in order to select the 

most appropriate approach for detecting and mapping Paterson’s curse. The chapter 

first examines the remote sensing properties that are relevant to weed detection and 

mapping, including selecting the appropriate imagery for the task (incorporating 

spatial, spectral, radiometric, and temporal resolution, and scale issues), and 

appropriate classification and validation methods. The literature that pertains to 

remote sensing of weeds is reviewed, including the properties of weeds that are 

applicable to detection with remote sensing. Lastly, the remote sensing literature for 

Paterson’s curse is reviewed, and the most relevant findings are discussed. 

 

Chapter 3 describes the study area, the study species (Paterson’s curse), and datasets 

used in the research. The chapter includes the rationale for selecting the study area, 

the physical and climate conditions, and the characteristics of the remotely sensed 

datasets and field data.  

 

Chapter 4 uses field spectroscopy to investigate the spectral properties of Paterson’s 

curse which may allow it to be discriminated from co-occurring cover types with 

remote sensing, and which can be up-scaled to airborne and satellite sensors. The 

spectral properties of Paterson’s curse flower, stem, and plant material with co-

occurring cover types such as green and senescent vegetation is examined; and the 

relationship between Paterson’s curse density (through floral percentage cover 
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measured in the field) with band ratios/indices and proportion cover estimated from 

linear spectral unmixing is investigated. 

 

Chapter 5 presents a comparative analysis of two different classification methods for 

discriminating Paterson’s curse using airborne high spatial resolution multispectral 

imagery. Both hard and soft classification outputs are produced from the non-

parametric multilayer perceptron and k-nearest neighbour classifiers. The 

classifications are validated using the quantitative statistical methods of receiver 

operating characteristic (ROC) analysis and Kappa statistics. 

 

Chapter 6 presents the results of the application of satellite hyperspectral imagery 

(EO-1 Hyperion) for mapping Paterson’s curse. Matched filter classification outputs 

are produced; and the relationship between band ratios/indices and Paterson’s curse 

presence/absence is investigated using logistic regression. As with Chapter 6, both 

hard and soft classification outputs are produced and validated using ROC analysis 

and Kappa statistics. 

 

Chapter 7 presents a summary of the research, based on the objectives in Section 1.5, 

and includes recommendations for further research against each objective.  
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2 METHODOLOGICAL AND LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews the role of remote sensing for detecting and mapping invasive 

plants, in order to select the most appropriate approach for detecting and mapping 

Paterson’s curse. The first section examines the remote sensing properties that are 

relevant to weed detection and mapping, including selecting the appropriate imagery 

for the task (incorporating spatial, spectral, radiometric, and temporal resolution, and 

scale issues), and the appropriate classification and validation methods. The second 

section reviews the literature pertaining to remote sensing of weeds, including the 

properties of weeds that are applicable to detection with remote sensing. The third 

section reviews previous remote sensing work relating to Paterson’s curse. The final 

section outlines the most relevant findings of the review that could be applied to 

Paterson’s curse. 

2.1.1 Definition and scope of remote sensing 

Remote sensing is defined as the art and science of recording information about 

objects without being directly in contact with those objects (Campbell 2008). It has 

been successfully applied in many different fields, including geology, seismology, 

meteorology and ecology. Data can be recorded from satellites, aircraft, boats, 

unmanned aerial vehicles, and by human operators. In the context of the research 

presented in this thesis, the definition of remote sensing will pertain to information 

about vegetation, using the visible and infrared parts of the electromagnetic 

spectrum, and using data from satellite, aircraft, and field spectroscopy.  

2.2 Analysis of Remotely Sensed Data 

There are five major stages in deriving information from remote sensing data (Lu and 

Weng 2007): 

 

(i) Selection of appropriate remote sensing data;  

(ii) Processing;  

(iii) Selection of appropriate method (e.g. classification); 

(iv) Post-processing; and 

(v) Validation. 
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Of the five stages, (i), (iii), and (v) will be described in sections 2.3, 2.4, and 2.5 

respectively, with examples of applications from the literature. Processing and post-

processing are described in detail in reference texts such as Mather and Koch (2011) 

and Campbell (2008). 

2.3 Selection of Appropriate Data 

The utility of imagery from a particular sensor for an earth observation application is 

determined by the type of sensor used (e.g. multi-spectral, hyperspectral, radar), and 

the resolution properties of the sensor (spatial, spectral, radiometric, and temporal). 

In order for different features to be extracted from an image and discriminated from 

each other, the user must carefully consider the attributes of the features of interest, 

and match these with the appropriate resolution. In most remote sensing applications, 

a favourable combination of resolution types is required for success, with some more 

critical than others. There are also trade-offs between increasing one resolution type 

over another. The following section will examine the four types of resolution, as well 

as the scale considerations of the target species or object type to be mapped using 

remote sensing. 

2.3.1 Spatial resolution 

A pixel (picture element) is the fundamental unit of measure from a remotely sensed 

image. A pixel is the smallest object in the image, and can be considered as a sub-

division of the study area (Fisher 1997). Pixel size is dependent on the instantaneous 

field of view (IFOV) of a particular sensor i.e. the area on the ground where the 

sensor receives energy at a particular moment (Tso and Mather 2001). The IFOV is 

largely fixed for  satellite sensors, but  not for airborne sensors, where the IFOV can 

be modified by varying the altitude of capture (Atkinson 1997). Spatial resolution 

has direct bearing on the area that an image covers; high resolution sensors generally 

are used to capture smaller areas due to cost, whereas sensors with a coarser spatial 

resolution can cover continental scales. Sensors can broadly be classified into high 

spatial resolution (< 10 m pixel size), medium resolution (10–30 m), and coarse (> 

30 m).  A list of common sensors and the spatial resolution and area covered is 

shown in Table 2.1. 
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The value (or digital number) for a given pixel is determined by the average 

brightness from features contained within the area of that pixel. A homogeneous land 

cover class within a pixel will contribute consistent brightness values, whereas if a 

pixel contains multiple land cover classes, the average brightness value may not 

represent any of the land cover classes (Campbell 2008). The problem of mixed 

pixels has been widely discussed in the remote sensing literature (e.g. Atkinson and 

Aplin 2004; Fisher 1997; Woodcock and Strahler 1987). The main factors that 

influence mixed pixels were identified by Fisher (1997): 1) The degree of sharpness 

or fuzziness between classes; 2) the presence of eco-tones between classes, which are 

especially common between vegetation communities in natural environments, where 

a mixture of each class occurs; 3) the presence of linear objects within pixels (e.g. 

roads, streams) that have a high contrast to the surrounding features in a pixel, and 

can be more easily discerned; 4) the presence of sub-pixel objects (e.g. tree crowns, 

houses) that are smaller than the area covered by a pixel, but can still be 

discriminated due to a high contrast with the background. 

2.3.2 Spectral resolution 

The spectral resolution of a sensor is defined by the total number of bands, and the 

width of the bands. The position of the bands in the electromagnetic spectrum 

influences the type of materials or cover types that can be sensed. Sensors used in 

remote sensing can be divided into two types based on the number of bands: 

hyperspectral and multi-spectral (Table 2.2). Hyperspectral sensors contain large 

numbers of bands, but also encompass small sections of the electromagnetic 

spectrum, and therefore have a high spectral resolution. A sensor is generally 

regarded as being hyperspectral when it has more than 48 bands, and a bandwidth of 

20 nm or less (Aspinall, et al. 2002). Multi-spectral sensors contain fewer bands 

(usually less than 20) and the band-width is usually wide, especially with satellite 

sensors. For multi-spectral airborne sensors with limited bands (e.g. < 5), filters can 

be applied to selected narrow areas of the electromagnetic spectrum that area of most 

interest in detecting features of interest. Both the width of bands and the spatial 

resolution (Section 2.3.1) determine how much energy is received by the sensor.   
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Table 2.1 Spatial resolution of currently available multispectral and 
hyperspectral remote sensing data. 

Sensor Type Pixel Size (m) Scene Size  
Landsat 8 (Operational Land 

Imager) Satellite 30  185 x 185 km (full) 

IKONOS Satellite 3.2  11 km swath width 

Quickbird Satellite 2.4  16.5 km swath width 

GeoEye-1 Satellite 2  15.2 km swath width 

WorldView-2 Satellite 2.4  16.4 km swath width 

MODIS Satellite 250 - 1000  2330 km (length) x 10 
km (width) 

NOAA AVHRR Satellite 1001  2600 km swath width 

EO-1 Hyperion Satellite 30  185 x 45 km 

SPOT 5 Satellite 20 60 x 60 km 

SPOT 6 Satellite 6  60 x 60 km 

ASTER Satellite 15–30  60 km swath width 

ALOS (AVNIR-2) Satellite 10  70 x 70 km 

Airborne (analogue and 
digital) Airborne Varies according to 

altitude 
Varies according to 

altitude 

AVIRIS Airborne 20  Varies 

CASI Airborne 0.25–1.5 Varies 

HYMAP Airborne 3–12 Varies 

AISA Airborne 1–4 (typical) Varies 
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Table 2.2 Spectral resolution of currently available multispectral and 
hyperspectral remote sensing data. 

Sensor Type No. of 
Bands Spectral Coverage (nm) 

Landsat 8 (Operational 
Land Imager) Satellite 6 

430–450; 450–510; 530–590; 640–
670; 850–880; 1570–1650; 2110–

2290; 1360–1380 
IKONOS Satellite 5 445–516; 506–595; 632–698; 757–

853 
Quickbird Satellite 5 450–520; 520–600; 630–690; 760–

900 

WorldView-2 Satellite 8 
400–450; 450–510; 510–580;  585–
625; 630–690; 705–745; 770–895; 

860–1040 
GeoEye-1 Satellite 4 450–510; 510–580; 655–690; 780–

920 
MODIS Satellite 19 438–2155 

NOAA AVHRR Satellite 3 580–680; 725–1000; 1580–1640 
EO-1 Hyperion Satellite 220 (196 

unique) 400–2500 

SPOT 5 Satellite 4 500–590; 610–680; 780–890; 1580–
1750 

SPOT 6 Satellite 4 450–525; 530–590; 625–695; 760–
890) 

ASTER Satellite 9 520-2430 
ALOS (AVNIR-2) Satellite 5 420–500; 520–600; 610–690; 760–

890 
Airborne (analogue and 

digital) Airborne Variable Variable 

AVIRIS Airborne 224 400–2500 

CASI Airborne 288 400–1000 

HYMAP Airborne 128 400–2450 

AISA Airborne 20–70 430–1000 

 

2.3.3 Radiometric resolution 

The radiometric resolution of a sensor is denoted by the number of grey (or 

brightness) levels that can be recorded. For digital sensors, the number of levels is 

dependent on the number of bits, which are binary (base 2) digits (Mather and Koch 

2011). For example, 8-bit sensors record 256 levels of brightness, whereas 

contemporary 16-bit sensors record 65536 levels. Increased radiometric resolution 

provides greater contrast in parts of the electro-magnetic spectrum where the 

separability between feature and background/others features is greatest. The 

radiometric resolution of sensor is also influenced by the spatial resolution. A smaller 
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pixel size (or IFOV) will result in less energy being received by a sensor, thereby 

reducing the signal-to-noise ratio, and the sensor may be less sensitive to minor 

differences in energy levels (Tso and Mather 2001). There is a trade-off between 

increasing band widths to improve radiometric resolution, and reducing band widths 

to focus on specific regions of the electromagnetic spectrum (Tso and Mather 2001).  

2.3.4 Temporal resolution 

Temporal resolution is defined as the period required by a given sensor to re-image 

the same location on the Earth’s surface. For satellite mounted sensors, the orbital 

characteristics (e.g. altitude) determine the revisit frequency. The revisit frequency 

for common satellite systems are shown in Table 2.3. For airborne mounted sensors, 

the revisit capability is far greater than satellite sensors. For example aircraft can be 

deployed at short notice to take advantage of favourable meteorological conditions. 

The temporal resolution of some satellites (e.g. SPOT, IKONOS, Quickbird, and 

Geoeye) can be increased due to their ability to be pointed off-nadir to increase 

revisit frequency. However these off-nadir images do not have the same viewing 

geometry as an image captured at nadir.  Some satellite sensors such as Landsat 8 

and the Moderate Resolution Imaging Spectroradiometer (MODIS) generally capture 

data during every overpass, whereas other sensors like GeoEye, WorldView, and 

Earth Observing 1 (EO-1) require specific tasking. The availability of imagery is 

dependent on factors such as cloud cover, haze, and smoke over the capture area.  
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Table 2.3 Temporal resolution of currently available multispectral and 
hyperspectral remote sensing data. 

Sensor Type Revisit 
Period  

Landsat 8 Satellite 16 days 

IKONOS Satellite ~ 3 days 

Quickbird Satellite 4.1 days 

WorldView-1 Satellite 3.8 days 

WorldView-2 Satellite 2.7 days 

GeoEye-1 Satellite ~ 3 days 

MODIS Satellite 1–2 days 

NOAA AVHRR Satellite Daily 

EO-1 Hyperion Satellite 16 days 

SPOT 5 Satellite 2–3 days 

SPOT 6 Satellite 1–2 days 

ASTER Satellite 16 days 

ALOS (AVNIR-2) Satellite 2 days 

Airborne (analogue and digital) Airborne Variable 
 

2.4 Selection of Appropriate Method  

2.4.1 Vegetation indices 

A vegetation index is a combination of two or more bands from a remotely sensed 

image that represents a quantitative measurement of the vigour of vegetation 

(Bannari, et al. 1995). Vegetation indices can focus on specific regions of the 

electromagnetic spectrum where differences exist between vegetation species or 

types. The large difference in the spectral response of vegetation in the near infrared 

and red was a particular focus for developing vegetation indices, and one of the first 

studies to use a ratio of the two bands from these regions was Jordan (1969), for 

mapping tropical rainforest canopy. Since the early applications, a large number of 

vegetation indices have been developed for different applications and environmental 

conditions. A comprehensive review of the history of the development of vegetation 

indices in the field of remote sensing is provided by Bannari, et al. (1995), including 

a summary of the more common vegetation indices. One of the most widely used 
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vegetation indices has been the Normalised Difference Vegetation Index (NVDI), 

represented in Equation 2.1 (Rouse, et al. 1973): 

 

𝑁𝐷𝑉𝐼 =  𝑁𝐼𝑅−𝑅𝑒𝑑
𝑁𝐼𝑅+𝑅𝑒𝑑

       (2.1) 
 

The NDVI has an advantage over simple ratios (non-normalised) as it is able to 

account for variable illumination across an image (Jones and Vaughan 2010). 

However NDVI is less effective where vegetation is sparse, and modified indices 

such as the Soil Adjusted Vegetation Index (SAVI) have been developed to account 

for the soil background (Haboudane, et al. 2004). Other indices have been developed 

for detecting water stress (Hunt and Rock 1989), and monitoring the health of 

vegetation using the red-edge (Cloutis, et al. 1996). 

 

Vegetation indices have been widely used in calibration models (e.g. using linear or 

non-linear regression) in conjunction with information on the biophysical properties 

of vegetation measured in the field, such as leaf area index, biomass, and cover to 

estimate those properties over large areas (Chen and Cihlar 1996). Vegetation indices 

derived from multi-spectral satellite imagery from Landsat TM, SPOT, AVHRR, and 

MODIS have been used to estimate vegetation biophysical attributes for agricultural 

areas (e.g. Houborg, et al. 2007; Salazar, et al. 2008; Wiegand, et al. 1991); forested 

environments (e.g. Chen and Cihlar 1996; Fassnacht, et al. 1997); and rangeland 

(e.g. Purevdorj, et al. 1998). Indices derived from hyperspectral sensors such as 

CASI and HyMap have been used to estimate leaf area index (LAI) and crown 

volume from forests (Schlerf, et al. 2005) and LAI and chlorophyll content from 

agricultural areas (e.g. Haboudane, et al. 2004; Haboudane, et al. 2002). 

2.4.2 Field spectroscopy 

Field spectroscopy is defined by Milton (1987) as ‘the study of the interrelationships 

between the spectral characteristics of objects and their biophysical attributes in the 

field environment’ (pg. 1808). Quantitative measurements of radiance, irradiance, 

reflectance or transmission (from ambient solar illumination) for vegetation are 

recorded by an instrument and calibrated with attributes such as LAI, biomass, or 

cover (Curtiss and Goetz 1994). The two main types of instrument used in field 

spectroscopy are spectroradiometers and radiometers, in which the former measure 
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spectral information over a continuous range of spectral bands and the latter over a 

limited number of discrete bands (Milton 1987). The sampling interval of 

spectrometers is usually smaller than the spectral resolution (bandwidth), which 

results in oversampling and less degradation when re-sampling spectra to match 

other hyperspectral instruments (Curtiss and Goetz 1994). The three main remote 

sensing applications for field spectroscopy are defined by Milton (1987) as 

prediction, calibration, and modelling. Each of these terms has a particular meaning 

in the context of field spectroscopy. 

 

Prediction is an approach in which field spectra are collected from cover types and 

target materials to determine their suitability (i.e. predicting success) for up-scaling 

and detection using airborne and satellite remote sensing sensors (Curtiss and Goetz 

1994). Field spectroscopy can be used to locate optimum spectral bands for a certain 

application, the best conditions (e.g. time of day, look angle), and the best time of 

year (Milton 1987).  

 

Calibration involves using spectra of invariant surfaces collected on the ground by 

spectrometers in order to correct aerial or satellite imagery for atmospheric effects 

and convert the data from at-sensor radiance to at-surface reflectance (Milton, et al. 

2009). There are two main types of calibration: reflectance, and radiance. For the 

former, the reflectance of a large flat and bare homogeneous area (near Lambertian 

surface) is measured with a spectrometer or radiometer, used in a radiative transfer 

model with atmospheric information to predict the radiance at the top of the 

atmosphere for each image band (Milton, et al. 2009; Slater, et al. 1987). The latter 

is similar to reflectance calibration, except measurements are taken for a helicopter 

or plane, rather than from the ground (Slater, et al. 1987). 

 

In the context of field spectroscopy, modelling is an approach to determining 

relationships between the biophysical properties of vegetation and spectral 

properties. Band ratios and indices, in conjunction with a statistical approach such as 

linear or non-linear regression have been used to determine relationships between 

vegetation properties such as leaf area index, biomass, leaf chlorophyll, and leaf 

water content (Milton 1987). Studies have measured small scale features in the field 

such as individual leaves, as well as scaling up leaf measurements to that of a 
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vegetation canopy (Milton, et al. 2009). Spectra from vegetation species have been 

modelled from a variety of environmental settings, including agricultural (e.g. Broge 

and Mortensen 2002; Thenkabail, et al. 2000; Tucker 1979), tropical forests 

(Cochrane 2000), and greenhouse experiments for various plant species (e.g. 

Gitelson and Merzlyak 1994; Slaton, et al. 2001).  In particular, the technique has 

been used extensively in precision agriculture, generating a large body of literature 

pertaining to field spectroscopy of crop and pasture biophysical attributes (Hatfield, 

et al. 2008). 

2.4.3 Classification 

Classification in a remote sensing context can be defined as the process of assigning 

pixels in an image to categories (e.g. land cover types) by means of a mathematical 

algorithm (Mather and Koch 2011). Producing thematic maps by image classification 

is one of the most common procedures in remote sensing (Foody 2004). Another 

term commonly used for image classification is pattern recognition, in which the 

pattern is a group of pixels in multi-dimensional feature space, and the recognition is 

of a set of one or more features about that pattern, such as brightness, elevation, or 

texture (Tso and Mather 2001). Image classification techniques can be divided into a 

general hierarchy (Figure 2.1), where the main classification types are per-pixel, per-

field and contextual. Each type is discussed in the following sections, with examples 

of individual classification algorithms. 
 

 

Figure 2.1 Summary of the major classification approaches.  

Per-pixel Per-field Contextual

Parametric Non-parametric

Supervised Unsupervised Supervised

* Maximum Likelihood 
(hard/soft)

* Minimum Distance to Means 
(hard/soft)

* Fuzzy c-means 
(soft)

* ISODATA 
(hard) 

* K-nearest Neighbour 
(hard/soft)

* Artificial Neural Networks 
(hard/soft)

* Decision Trees (hard/soft)
* Support Vector Machines 

(hard/soft)

* Spectral Angle Mapper 
(hard/soft)

* Object-based

* Linear Spectral Un-mixing (soft)
* Matched Filtering (soft)
* Mixture-tuned Matched Filtering

(soft) 
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Classification algorithms are broadly divided into parametric and non-parametric. 

Parametric algorithms have an assumption of normally distributed training data sets, 

which incorporates statistical parameters such as mean and covariance (Lu and Weng 

2007). It can be common for the normality assumption of parametric classifiers not 

to be met (especially with heterogeneous environments), due to training samples 

lacking in size, having multi-modal distributions, and not representing the full 

spectral properties of the classes of interest (Lu and Weng 2007). Non-parametric 

algorithms lack the requirement of normally distributed data and can incorporate 

ancillary data, such as texture and elevation (Lu and Weng 2007).  

 

Parametric algorithms can be either supervised or unsupervised, whereas non-

parametric classifiers are only supervised. Unsupervised classification is a parametric 

approach that uses an algorithm to generate clusters in multi-dimensional feature 

space, based on statistical information (e.g. mean) from the image (Lu and Weng 

2007; Tso and Mather 2001). The clusters, or spectral classes are areas of similar 

brightness across two or more image bands (Campbell 2008). Most unsupervised 

classifiers are cluster based, in which a pixel is assigned to a class (cluster) in image 

feature space based on the shortest distance to the cluster mean (Mather and Koch 

2011). Initial clusters in feature space are randomly selected, and the mean pixel 

value of each cluster around the mean changes until a convergence threshold 

(proportion of unclassified pixels remaining) or iteration limit is reached (Tso and 

Mather 2001). At the completion of the classification, the spectral classes are 

labelled by the analyst (Tso and Mather 2001).  

 

The advantages of unsupervised classification are: no prior knowledge is required of 

land cover classes or the environment in the area to be classified; error is reduced by 

the automated computer algorithm and minimal interference by the analyst during the 

process; the output classes are more spectrally homogeneous than those from a 

supervised classification approach; and there is a greater potential to delineate 

smaller clusters that would be otherwise be mixed with larger classes (Campbell 

2008; Mather and Koch 2011). The disadvantages of unsupervised classification are: 

the spectral classes may not adequately represent the land cover classes of interest; 

the analyst has no control over the algorithm once started; the spectral properties of 

clusters (and labelled classes) are fixed for a particular image and classification, and 
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classifications cannot be applied directly across images and/or dates (Campbell 

2008). Unsupervised classification is rarely used as a stand-alone classifier, and is 

more typically used as an exploratory method to ascertain the spectral properties of 

an image and how they relate to land cover classes of interest (Mather and Koch 

2011), and to create spectrally homogenous and normally distributed classes to input 

into other algorithms, especially parametric supervised classifiers (Tso and Mather 

2001). 

 

Supervised classification is a parametric or non-parametric approach in which the 

analyst has some prior knowledge of the environment and land cover classes from 

the image to be classified (Lu and Weng 2007). ‘Training area' samples are collected 

from representative areas of the image in order to train the classifier to determine the 

decision boundaries in feature space and assign class labels to pixels (Tso and 

Mather 2001).The training samples representing each class need to be homogeneous, 

and not contain mixtures of other classes. (Campbell 2008). In order to avoid bias in 

a classification, training areas should not be included in the validation dataset used to 

assess accuracy (Congalton and Green 1999). Training areas can be chosen at 

random (and subsequently removed) from a validation data set (Mather and Koch 

2011), or located away from validation sites.  

 

The advantages of supervised classification are that the classes created by the analyst 

may better represent a particular application or region; classifications can be more 

readily compared between geographic areas or between dates; training data can be 

analysed prior to the classification to determine statistical validity (e.g. for a 

parametric approach) and whether classes are properly represented (Campbell 2008). 

The disadvantages of the approach are that the training samples of classes may not 

adequately represent their spectral properties (non-homogeneous), especially in 

complex landscapes; smaller sized classes may not be represented; and creating 

representative training areas can be challenging and time consuming (Campbell 

2008). 

 

A ‘hard’ classification is where there is a one-to-one relationship between pixels and 

class labels, and a pixel is assigned to a single class (Tso and Mather 2001). The 

success of a hard classifier depends on the algorithm used and the variability between 
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classes in feature space. Where cover types are mixed, there can be significant 

mixing of the spectral signal recorded within a pixel. The problem of mixing is worse 

when the cover type of interest occurs in low proportions in a study area. Hard 

classifiers are most effective where spectral variability is minimal in the image to be 

classified, and in the associated land cover classes or types. Hard classifiers have 

limited effectiveness where there are numerous boundary pixels, where there are 

ecotones, or the image has a large amount of spectral variation (Foody 1996; Settle 

and Drake 1993). 

 

‘Soft’ classification is a method to determine the degree to which a pixel belongs to a 

particular class, and the overall mixture of classes within that pixel (Eastman 2006) It 

is in essence a one-to-many relationship between pixels and class labels (Tso and 

Mather 2001). Where the decision boundaries in feature space are fixed in hard 

classifiers, in soft classification these boundaries can overlap (Tso and Mather 2001). 

Some common hard classification methods have the option to output soft 

classification equivalents (e.g. artificial neural networks, maximum likelihood and k 

nearest neighbour). 

 

Soft classification has several distinct advantages over hard classification: i) they can 

assess the uncertainty of a classification; ii) additional knowledge can be 

incorporated into a classification prior to the individual class memberships being 

included in a decision rule, to produce a hard classification containing the most 

suitable class; iii) classes can be considered that are only partially represented in a 

pixel; and iv) the areal extent of a particular class can be more accurately estimated 

(Eastman 2006; Eastman and Laney 2002; Foody 1996). A limitation with soft 

classifiers is that the accuracy is difficult to quantify, compared to the error matrix 

approach (Section 2.5.2) of hard classifiers (Lu and Weng 2007). An overview of 

methods to assess the accuracy of soft classifiers is provided in Section 2.5.4.  

2.4.3.1 Per-pixel classifiers 

Per-pixel (or per-point) classification approaches consider each pixel as an 

independent entity, and a class is assigned to that pixel based only on its spectral 

properties (Jones and Vaughan 2010; Mather and Koch 2011). A brief description of 

the main per-pixel classification methods is provided in the following sections.  
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2.4.3.1.1 Parametric unsupervised: ISODATA  

The most common unsupervised clustering algorithm has been the Iterative Self 

Organising Data Analysis Technique (ISODATA). The technique is described in 

detail in Ball and Hall (1967) but can be summarised as follows: 

 

(i) The initial cluster locations are randomly chosen by the algorithm, based   

on a user defined number of pixel coordinate pairs. The locations can also 

be defined from training data; 

(ii) Pixels are assigned to a cluster based on the shortest distance (e.g. 

Euclidian); 

(iii) The location of the cluster means change with each iteration based on the 

pixels assigned to them; and 

(iv) The algorithm stops when a certain condition is reached – for example if  

the cluster means remain unchanged from one iteration to the next, or the 

change is below a certain threshold (Campbell 2008; Mather and Koch 

2011; Tso and Mather 2001). 

2.4.3.1.2 Parametric supervised: maximum likelihood 

Maximum likelihood is one of the most common supervised classification 

algorithms. It is based on Bayesian probability theory, in which each training class 

has a probability density function, derived from the mean and co-variance, and 

represented in three dimensions as a bell shaped surface (Campbell 2008; Lillesand 

and Kiefer 2000). Each pixel is assigned to the class to which it has the highest 

probability of membership (Tso and Mather 2001). The classifier is computationally 

more complex than minimum distance to means and parallelepiped, but can account 

for variability between classes more effectively. There is an assumption that training 

classes have a multivariate normal (Gaussian) distribution and that they are 

homogeneous in representing a particular land cover type (Campbell 2008). If the 

training classes do not meet these assumptions, the classifier can result in low 

accuracy (Eastman 2006).   

2.4.3.1.3 Non-parametric supervised: minimum distance to means 

This classifier is based on the distance of pixels in feature space to a mean (vector) 

from a set of training classes (Campbell 2008). The similarity of the mean vector and 
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the value of an unclassified pixel in feature space increases at smaller distances, 

based on a dissimilarity coefficient (Tso and Mather 2001). Although the 

classification is computationally faster than maximum likelihood, the accuracy is 

limited where there is high variance between classes. A pixel can be misclassified 

into a class with low variance and a smaller distance in feature space, rather than the 

correct class - with high variance and a longer distance in feature space (Lillesand 

and Kiefer 2000). 

2.4.3.1.4 Non-parametric supervised: parallelepiped 

The parallelepiped classifier is based on range of upper and lower threshold values 

(or standard deviation) in a training class, which are bound within a rectangular 

region (paralellepiped) in n-dimensional feature space (Lillesand and Kiefer 2000). 

Although the method is faster than minimum distance to means or maximum 

likelihood, classification results can be poor where there is high co-variance between 

classes. A pixel located on the boundary of two classes (pararlellepipeds) can be 

assigned to both classes, and large areas of an image can remain unclassified due to 

pixels being located outside the parallelepipeds in feature space. The classifier is not 

widely used, due to the emergence of superior methods such maximum likelihood 

and artificial neural networks; the absence of computing power limitations which 

once made the method popular; and the high potential for low accuracy. 

2.4.3.1.5 Non-parametric supervised: support vector machines  

Support vector machines (SVM) are a supervised non-parametric classification 

approach that uses an algorithm to find the optimal boundary between training 

classes in multi-dimensional feature space (Huang, et al. 2002). The boundary is a 

hyper-plane with a margin of two parallel lines. The hyper-plane can be linear or 

non-linear, where a mapping function (kernel) is used to separate classes (Mather and 

Koch 2011). The support vectors are the pixels within the margin that determine the 

margin size that results in maximum separability of the two classes (Mountrakis, et 

al. 2011). The main advantages of SVM are the non-parametric assumption about the 

input data, and that smaller training samples are required, which represent the 

support vector pixels on class boundaries (Mather and Koch 2011). SVM have been 

demonstrated to produce similar or higher classification accuracy than other 

classifiers (e.g. Dixon and Candale 2008; Foody and Mathur 2004; Su, et al. 2007). 
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The disadvantages of SVM are that the algorithms can be complex and difficult to 

understand compared to other classifiers; the choice of kernel can have a big 

influence on the classification result; and SVM can be affected by noisy data or 

hyperspectral data with high dimensionality (Mountrakis, et al. 2011).  

2.4.3.1.6 Non-parametric supervised: k-nearest neighbour  

The k-nearest neighbour (kNN) classifier is a non-parametric supervised approach. 

For each image pixel, kNN calculates the k-nearest pixels in feature space (which is 

always an odd number to avoid ties), and the pixel is assigned to the class that has 

the majority of its training pixels within the k-neighbours (Campbell 2008). kNN can 

produce both hard and soft classification output. The soft classification produces an 

output image that contains the degree of membership of each pixel to a class based 

on the proportion of k-nearest neighbours (Eastman 2006). The advantages of kNN 

are that it is a relatively simple algorithm, and it is a suitable classifier for non-

Gaussian multi-modal training data (Campbell 2008). The disadvantages are that 

large training classes may overshadow smaller ones (Eastman 2006); selecting a k-

value requires cross-validation; and individual bands cannot be weighted (Campbell 

2008).  

 

The kNN method has been extensively used in national forest inventory mapping in 

North America and northern Europe, for estimating basal area, volume, and cover 

type based on training data from field plots (e.g. Franco-Lopez, et al. 2001; 

McRoberts 2008; Tokola, et al. 1996; Tomppo and Halme 2004). The technique was 

also used for mapping tropical rainforest in South America (Thessler, et al. 2008).  

2.4.3.1.7 Non-parametric supervised: decision tree classification  

Decision tree classification (DTC) is an approach where an image is progressively 

divided into homogeneous spectral regions based on decision criteria (Friedl and 

Brodley 1997). The process is analogous to the hierarchical top-down method in the 

fields of environmental and life sciences for classifying organisms (Tso and Mather 

2001). A decision tree contains a root node, which comprises the complete data set 

(e.g. an image), which is divided into splits (internal nodes) and finally leaves 

(terminal nodes) which are given a class label (Friedl and Brodley 1997). The four 

types of decision tree are manual, univariate, multivariate, and hybrid. The manual 
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method or manual design approach (Swain and Hauska 1977) utilises a user created 

hierarchy and information on class separability from class statistics and spectral plots 

to create decision boundaries (Tso and Mather 2001). The manual method can be 

difficult to implement when the image data and the environment are complex, and an 

in that case an algorithmic approach is required (Friedl and Brodley 1997; Tso and 

Mather 2001). Univariate decision trees split the input data into two or more subsets 

based on a single feature (e.g. a band ratio), whereas multivariate decision trees split 

the data into two or more subsets based on more than one feature in the input data 

(Friedl and Brodley 1997). Hybrid decision trees combine different classification 

algorithms and have the advantage of being used for complex classifications, and can 

be applied to different subsets of a larger dataset that may have different properties 

or characteristics (Friedl and Brodley 1997). 

 

DTC has several advantages over other  pixel based classification methods by being 

flexible, less complex, computationally faster, and being non-parametric, makes no 

statistical assumptions about the data (Friedl and Brodley 1997). The output of 

decision trees is easier to interpret than complex classifiers like artificial neural 

networks and requires less training time (Pal and Mather 2003). The decision tree 

approach has been compared with other classification methods, and has produced 

higher classification accuracy (e.g. Friedl and Brodley 1997; Otukei and Blaschke 

2010); or similar accuracy (e.g. Duro, et al. 2012; Pal and Mather 2003). Pal and 

Mather (2003) reported that DTC produced lower classification accuracy than other 

methods when used with image data with high dimensionality (greater than 20 

bands), thereby potentially limiting its utility in classifying hyperspectral data. 

2.4.3.1.8 Non-Parametric supervised: artificial neural networks 

Artificial neural networks (ANN) started to be used in the late 1980s for classifying 

remotely sensed images (Kanellopoulos and Wilkinson 1997). They are based on a 

simplified model of the human brain that applies artificial intelligence to pattern 

recognition (Tso and Mather 2001), with the premise that the human brain is 

effective in processing large volumes of data from different sources (Atkinson and 

Tatnall 1997). The main advantage of ANN classifiers for remote sensing is that they 

are non-parametric and subsequently do not require normally distributed training 

data. This means that multi-source data can be integrated into classifiers more 
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effectively (Benediktsson, et al. 1990), and training areas can be distributed in 

feature space as separate clusters (Atkinson and Tatnall 1997).   

 

ANN classifiers are structured in a similar way to statistical classifiers, having a 

training stage and classification stage (Paola and Schowengerdt 1995). ANNs ‘learn’ 

about the data during the training phase, and subsequent decision rules are applied 

during the classification phase (Tso and Mather 2001). The most common algorithm 

used for training ANNs is back-propagation, where the network is trained until a 

minimum error threshold is reached between the desired and actual output values of 

the network (Paola and Schowengerdt 1995). Once the network has been trained, it is 

fed forward to produce an image classification.  The most commonly used back-

propagation algorithm has been the multi-layer perceptron (MLP). Artificial neural 

networks are generally more accurate than statistical classifiers, and can process 

large image datasets more quickly once the network has been trained (Atkinson and 

Tatnall 1997). The disadvantages of ANNs are that they require larger training 

samples than other classification methods (Benediktsson, et al. 1990) in order to 

properly train the network and are more complex and difficult to interpret than other 

classifiers. 

2.4.3.1.9 Non-parametric supervised: spectral angle mapper  

Spectral angle mapper (SAM) is a classification method most commonly used for 

hyperspectral, and sometimes multi-spectral data. The method determines the 

spectral similarity between two spectra (a pixel and reference) in feature space along 

vectors (Campbell 2008). The reference spectra can be derived from an image or a 

spectral library. The size of the angle between the two vectors determines the degree 

of similarity (from 0 to 1) between the pixel and the reference spectra (Figure 2.2). 

The strength of SAM is that the vector angles are not affected by differences in 

vector length caused by factors such as illumination differences in an image (Kruse, 

et al. 1993). The disadvantage of the method is that SAM requires training (end-

member) classes to be comprised of pure spectra, with no mixed pixels (Campbell 

2008).  
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Figure 2.2 Spectral angle mapper concept (adapted from Campbell, 2008). 

2.4.3.1.10 Non-parametric supervised: Fuzzy c-means 

The fuzzy c-means algorithm (Bezdek, et al. 1984) has been  a commonly used soft 

classifier (e.g. Canon, et al. 1986; Foody 2000). The algorithm assigns a fuzzy 

membership grade (from 0 to 1) to a given pixel based on its Mahalanobis or 

Euclidian distance to a set of clusters in feature space (Mather and Koch 2011). The 

clusters can be user-defined or randomly generated, and the outcome of the 

classification is not dependent on the initial cluster location, as is the case with 

ISODATA (Tso and Mather 2001). 

2.4.3.1.11 Non-parametric supervised: Linear spectral unmixing  

Linear spectral unmixing (LSU) is a method which estimates  the proportion of each 

cover type within a pixel (Settle and Drake 1993). Each cover type is represented as 

a spectrally ‘pure’ end-member that contains pixels with 100% abundance of that 

cover. The weighted linear sum of all the end-members for a given pixel determines 

the total energy that reaches a sensor, and is represented in Equation 2.2 (Mather and 

Koch 2011):  

 

𝑟𝑖 =  ∑ 𝑎𝑖𝑗𝑓𝑗𝑛
𝑗=1 + 𝑒𝑖        (2.2) 

 

Where 𝑟𝑖 is the reflectance of a pixel of band i, j is the number of end-member 

components,  𝑓𝑗 is the value of the jth fractional component that constitutes r, and 𝑎𝑖𝑗 

is the reflectance of end-member j in band i. 
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Each end-member is a point in n-dimensional features space, where the number of 

dimensions is determined by the number of bands (Settle and Drake 1993). Where 

two end-members are used, the mixture of those two materials for a given pixel will 

be somewhere along a two-dimensional line joining the two end-members. For three 

or more end-members, the mixture will be within a triangle (Figure 2.3) or a multi-

dimensional shape, in which the number of dimensions will be determined by the 

number of image bands.  

Figure 2.3 Example of a hyper-plane triangle (Adapted from Mather and Koch 
2011). 

There are two variations of linear unmixing: constrained/partially constrained, and 

un-constrained. For the former, the fractional abundances for individual cover types 

must be between 0 and 1, and the sum of all cover types must be less than or equal to 

1 (Mather and Koch 2011). For the latter, the fractional abundances can be greater 

than 1 (‘overshoots’) or be negative (‘undershoots’), and the sum of cover types does 

not need to sum to 1 (ITT Visual Information Solutions 2006a; Mather and Koch 

2011). 

Linear spectral unmixing has two main assumptions: i) the number of end-members 

must be less than the number of image bands (ITT Visual Information Solutions 

2006a), which is why LSU has been mainly used with hyperspectral data, as there are 

usually too few bands with multispectral data to satisfy the assumption; and ii) the 
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linear mixing occurs when photons interact with more than one cover type before 

being received by a sensor (Tso and Mather 2001), and the problem is particularly 

prevalent with heterogeneous cover types with dispersed patterns, where there is a 

multiple scattering and subsequent mixing of photons (Campbell 2008; Tso and 

Mather 2001). The other limitation with LSU that can affect model fit, is that all 

materials or land cover types present in an image must be included as end-members 

(Mather and Koch 2011). This can present particular problems when only a small 

number of cover types are of interest, or not all land cover types within a particular 

scene are known (Tso and Mather 2001). 

2.4.3.1.12 Non-parametric supervised: Matched filtering and mixture tuned   

matched filtering   

The matched filter technique was developed for electrical engineering applications 

for detecting signals amongst mixed backgrounds (e.g. radio and radar) and 

introduced to remote sensing in the late 1980’s (Boardman 1998). The matched filter 

maximises the contrast between an end-member and the background by suppressing 

the background (Boardman 1998). The advantage of matched filter over LSU is that 

only one end-member at a time is input into the classifier, which is valuable where a 

material type is present in the scene in lower abundances or there is a lack of 

knowledge of other materials in the scene (Boardman 1998). The disadvantage of 

matched filter is the instance of false positives that occur, particularly where image 

datasets are noisy or where a particular material is uncommon (ITT Visual 

Information Solutions 2006a). 

 

Mixture tuned matched filtering (MTMF) is a combination of LSU and matched 

filtering but does not have the disadvantages of each (Boardman 1998). The output 

of MTMF is a matched filter score, and an image of infeasibility (noise sigma units) 

that can reduce the number of false positives (Boardman 1998). Plots of the matched 

filter score against infeasibility can be produced in two dimensional feature space, 

allowing the end-user to manually threshold the image based on low infeasibility 

values and corresponding matched filter scores above background values of zero 

(ITT Visual Information Solutions 2006a). 
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2.4.3.2 Per-field classification 

Per-field classification is a method developed for agricultural regions, to overcome 

the limitations of per-pixel classifiers where there is high spectral variability between 

similar land cover types, such as crop and pasture (Lobo, et al. 1996). The method 

integrates vector and raster data types, in which spectral information from a remote 

sensing image is obtained from within a core area of a vector parcel shape, and a 

buffer area on the outside is excluded from the statistics to reduce mixed pixel 

effects; the final class label is assigned to the entire shape, including the buffer area 

(Dean and Smith 2003).  

 

The main strengths of per-field classification over a per-pixel approach are that it is 

repeatable and operational, and existing classification maps can be updated based on 

new vector information for land cover (Smith and Fuller 2001). The method also 

eliminates the problem from per-pixel classifiers where misclassification can occur 

within areas of homogeneous classes e.g. grass in cropped areas (Smith and Fuller 

2001). The per-field approach has been found to improve classification accuracy 

over the per-pixel approach (e.g. Aplin and Atkinson 2001; Dean and Smith 2003; 

Erol and Akdeniz 2005; Lloyd, et al. 2004; Lobo, et al. 1996; Smith and Fuller 2001; 

Turker and Ozdarici 2011).  

 

There are several disadvantages with the per-field classification method: the process 

can be hampered by the differences in the data types of vector and raster information; 

(Lu and Weng 2007); up-to-date vector data of land parcels is required, which may 

not be available in many regions (Smith and Fuller 2001); and the landscape to be 

classified needs to be comprised of land cover parcels that are homogeneous and 

represent pure examples of cover types (Smith and Fuller 2001). Dean and Smith 

(2003) suggested that per-pixel classification may be a better alternative if multiple 

land cover types occur within parcels. The method has been shown to be effective in 

agricultural areas (crop and grassland) where one cover type tends to dominate, but 

less so in natural or semi-natural areas where a mosaic of cover types can occur (e.g. 

Dean and Smith 2003; Smith and Fuller 2001). 
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2.4.3.3 Contextual classification 

A limitation of per-pixel classifiers is that  each pixel is considered as a separate 

entity, with no association with neighbouring pixels (Blaschke and Strobl 2001). Per-

pixel approaches were very effective with coarse and medium resolution satellite 

imagery (e.g. Landsat) where objects or features were of a similar size to the pixels 

(Blaschke 2010), but were shown to be less effective when high spatial resolution 

imagery like IKONOS and Quickbird became available (Blaschke and Strobl 2001). 

At high spatial resolution, a single pixel is smaller than single features or objects 

(e.g. buildings and tree canopies), which are represented as multiple pixels (Blaschke 

2010). Pixel based classification of high spatial resolution imagery can result in a 

'salt and pepper' appearance which has limited value for some applications and is not 

readily transferable into a usable format (e.g. for a geographic information system 

(GIS)). Spectral information used in isolation therefore only conveys a limited 

amount of information from a remote sensing image (Daniels 2006). 

 

Contextual classification is an approach that assumes pixels in the neighbourhood of 

a given pixel share similar spatial information and hence are likely to be the same 

cover type (Magnussen, et al. 2004). There are three main categories of contextual 

classification: morphological and textural; Markov Random Fields and Bayesian and 

neural networks; and object based classification (Thoonen, et al. 2012). 

 

Morphological information in the form of spatial datasets derived from a GIS can be 

incorporated into a contextual classification, such as slope, rainfall, location, land 

use, and any other additional information that might improve classification accuracy 

(e.g. Daniels 2006; Magnussen, et al. 2004). Textural information, in the form of 

filters can be applied pre-or post-classification to remove the ‘salt and pepper’ 

appearance of a classification, particularly in heterogeneous environments, and 

produce improvements in classification accuracy (Luo and Mountrakis 2011). 

Texture filters can also be used to produce additional layers to incorporate into a 

classifier, for example the grey level co-occurrence matrix of Haralick, et al. (1973).  

Contextual classification approaches such as Markov Random Fields (e.g. 

Kasetkasem, et al. 2005; Melgani and Serpico 2003; Zhao, et al. 2007), Bayesian 

(Aspinall and Veitch 1993; Osborne, et al. 2001), Dempster Shaefer decision theory 
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(Momani, et al. 2006) and neural networks have been used extensively for 

incorporating additional information into image classification.  

 

Object based classification—or object based image analysis (OBIA) is a contextual 

classification approach that uses an algorithm to simulate the way the human brain 

interprets and classifies the patterns of features observable in an image (Blaschke 

2010; Blaschke and Strobl 2001; Harris 1980). The basic procedure of object 

classification is to first divide (or segment) an image into objects based on spectral 

and spatial properties. These generated objects are considered analogous to pixels, 

and may be further classified using a range of properties including spectral, spatial, 

association, context and the inclusion of ancillary (GIS) data. Object classification 

emerged in the 1970's, starting with segmentation algorithms that generated objects 

from scenes. These early algorithms were essentially texture based (e.g. Haralick, et 

al. 1973), and provided input layers to classifiers, rather than being a classifier in 

their own right. In the early 2000s a software package called eCognition (Definiens 

Imaging) emerged and resulted in a major increase in object based applications 

(Benz, et al. 2004). The program integrated a segmentation algorithm, a decision tree 

hierarchical structure with fuzzy class boundaries, and a collection of object 

properties that include spatial, spectral, and context. A thorough review of the 

development and application of object based classification is presented in Blaschke 

(2010).  

2.5 Validation 

Accuracy assessment is an essential procedure for ratifying the quality of maps and 

other products derived from remote sensing (Congalton and Green 1999). Prior to the 

availability of satellite remotely sensed imagery and computer based classification 

techniques, the accuracy of what were mostly photo-interpreted map products was 

not assessed. Early maps from satellite remote sensing were assessed using a single 

accuracy value that was non site-specific i.e. spatially located samples on the map 

were not used (Congalton 1991). It was also common to use the same dataset to both 

train and validate the classification, which violated the assumption of independence 

of the validation data (Congalton 1991). The main components of an accuracy 

assessment are the type of data used to validate the classification; the method used to 

assess the accuracy (whether it is quantitative or qualitative); and where applicable, 
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the statistical approach used. These components are discussed in the following 

sections. 

2.5.1 Sampling and validation data 

The concept of sampling for training, and in particular validation, of remotely sensed 

data has been discussed in depth in the remote sensing literature (e.g. Atkinson and 

Aplin 2004; Curran and Williamson 1985; 1986; Dungan, et al. 2002; Stehman 

2009). Sample data are used to determine the accuracy of an output classification 

product based on reference data (Tso and Mather 2001). The reference data can be 

obtained from field survey or from other remote sensing data (e.g. aerial 

photography). Discrete (or statistical) sampling is the most common method, in 

which a portion of the study area is sampled (Curran and Williamson 1986), given 

that remote sensing accuracy assessment is costly in time and money (Congalton 

1988).  

 

Curran and Williamson (1985) identified five aspects to consider when designing a 

field sampling program for validating remote sensing products: 1) number of sites; 2) 

number of samples per site; 3) area of each sample; 4) how the samples are processed 

or classified; and 5) competency of field staff. There are three additional aspects to 

consider: the design of the sampling scheme (e.g. simple random, stratified random, 

cluster, and systematic); the distance between samples (to minimise spatial 

autocorrelation); and the method for collecting the samples. Stehman (2009) outlined 

the major criteria for designing a sampling program for validating remotely sensed 

data: 1) the sampling should be probability based to allow for quantitative statistical 

analysis; 2) it should be realistic and cost effective; 3), there should be an even 

distribution of samples across the classification area; 4) there should be a small 

sampling error, which can be addressed through random rather than systematic 

sampling; 5) the standard error should be minimised by collecting a large sample 

size.; and 6) the sampling design should incorporate some flexibility to change the 

sample size and distribution to account for changing conditions during the survey 

(e.g. to reduce the original sample size or collect extra samples).  
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2.5.2 Error matrix approach 

The error matrix, also known as a confusion matrix or contingency table (Story and 

Congalton 1986) was used increasingly from the late 1970’s and became the most 

common method for assessing the accuracy of a classification derived from remotely 

sensed imagery (Congalton 1991). An error matrix is comprised of a square array of 

rows and columns, where the rows typically represent the classification data, and the 

columns the reference data (Congalton and Green 1999). The advantages of the error 

matrix approach are that descriptive and analytical statistical tests can be used to 

compare the performance of one or more classifications (Congalton 1991), and the 

accuracy of individual classes and overall accuracy can be quantified (Congalton and 

Green 1999).  

The overall accuracy of an error matrix is calculated by dividing the sum of the 

correctly classified samples (diagonal), by the total number of samples in the matrix 

(Congalton and Green 1999). There are two measures of accuracy for individual 

classes: producer’s and user’s accuracy. Both are calculated by dividing the number 

of samples correctly allocated into a particular class (on the diagonal) by the number 

of reference samples for that class. The reference samples are derived from the 

column total for producer’s accuracy, and from the row total for user’s accuracy 

(Congalton 1991). The user’s accuracy describes the quality of a map for 

representing a particular class on the ground (i.e. reality), whereas the producer’s 

accuracy describes the effectiveness of a classification for mapping a particular class 

(Foody 2004; Story and Congalton 1986). User’s accuracy is also known as 

commission error and producer’s accuracy as omission error. These two error types 

are proportionally linked, as a misclassification will not only omit a given sample 

from the correct category, but include that sample into another category (Story and 

Congalton 1986).  

2.5.3 Kappa 

A statistical approach (rather than a direct comparison of accuracy) is required if the 

significance of the results of one or more classifications are compared (Foody 2004). 

The most common approach is Kappa - a discrete multivariate analysis technique 

(Congalton, et al. 1983). Kappa was first described by Cohen (1960), for the medical 

sciences, and the first published account of Kappa in the remote sensing literature 

was Congalton, et al. (1983). A KHAT statistic is produced from Kappa, which is the 
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difference between the actual agreement in the error matrix (major diagonal), and the 

chance agreement which is denoted by the row and column totals (Congalton and 

Green 1999). The equation for Kappa is provided below in Equation 2.3 (Congalton, 

et al. 1983): 

 

𝐾� =  ∑ 𝑛𝑖𝑖 𝑟
𝑖=1 −∑ (𝑛𝑖+ 𝑛+𝑖   )𝑟

𝑖=1
𝑛2− ∑ (𝑛𝑖+𝑛+𝑖 )𝑟

𝑖=1
                           (2.3) 

 

Where n is the total number of samples for all classes, 𝑛𝑖𝑖  is the number of correctly 

assigned samples for class i, 𝑛𝑖+ is the row total for class i, and 𝑛+𝑖   is the column 

total for class i. 

 

In addition to overall kappa, conditional kappa (per-class) can be calculated to 

determine agreement in individual categories. The equations for conditional Kappa 

from user and producer perspective are given below in equations 2.4 and 2.5 

(Congalton and Green 1999): 

 

𝐾�𝑖 =  𝑛𝑛𝑖𝑖−𝑛𝑖+𝑛+𝑖
𝑛𝑛𝑖+−𝑛𝑖+𝑛+𝑖

          (2.4) 

 

 

𝐾�𝑖 =  𝑛𝑛𝑖𝑖−𝑛𝑖+𝑛+𝑖
𝑛𝑛+𝑖−𝑛𝑖+𝑛+𝑖

          (2.5) 

 

The parameters in the equations are described for Equation 2.3. 

 

The large sample variance for the user’s class i is given in Equation 2.6 (Congalton 

and Green 1999):  

 

𝑣𝑎𝑟� �𝐾�𝑖� =  𝑛(𝑛𝑖+−𝑛𝑖𝑖)
[𝑛𝑖+(𝑛−𝑛+𝑖)]3

[(𝑛𝑖+ − 𝑛𝑖𝑖)(𝑛𝑖+𝑛+𝑖 − 𝑛𝑛𝑖𝑖) + 𝑛𝑛𝑖𝑖(𝑛 − 𝑛𝑖+ − 𝑛+𝑖 +
𝑛𝑖𝑖)]         (2.6) 

 

The parameters in the equation are as described for Equations 2.3 and 2.4. The 

producer’s large sample variance is calculated by reversing the row and column 

totals (𝑛𝑖+ and 𝑛+𝑖). 

 



36 
 

 

The equations for testing the statistical significance of one classification and for a 

statistically significant difference between two classifications are shown in Equations 

2.7 and 2.8  respectively (Congalton, et al. 1983): 

 

𝑍 =  𝐾�1 

 �𝜎� 1
2
   (2.7)   𝑍 =  𝐾�1 − 𝐾�2 

 �𝜎� 1
2+ 𝜎� 2

2
   (2.8) 

 

Where 𝐾�1 and 𝐾�2 refer to the Kappa statistic of classification 1 and 2, and 𝜎� 12 and 𝜎� 22 

refer to the large sample variance derived from Equation 2.6 (Congalton and Green 

(1999). 

2.5.4 Soft classification validation 

The error matrix approach for assessing accuracy and the corresponding Kappa 

statistic described in the previous sections are only applicable to the output from hard 

classifiers (Lu and Weng 2007). In contrast, the output from soft classifiers 

comprises a continuum of membership values for each class, and the approaches 

used for hard classification are therefore not applicable. A soft classification can be 

hardened by retaining the class with the highest probability (mixed classes excluded) 

in order to use error matrices and Kappa, but the accuracy of the original soft 

classification may not be properly assessed (Foody 1996). There have been different 

methods proposed in the literature for assessing soft classifiers with mixed classes 

such as fuzzy error matrices (Silván-Cárdenas and Wang 2009), measures of 

closeness (Foody 1996), and entropy (Maselli, et al. 1994), however no single 

method has yet been able to properly account for confusion between classes (Silván-

Cárdenas and Wang 2009). 

 

For classification methods that produce a single continuous output, such as matched 

filtering, there are two assessment methods that can find an optimum threshold and 

provide a quantitative measure of accuracy: density dependent and density 

independent. For the density dependent approach, the continuous classification 

output is divided into sections, Kappa values are then calculated for each section and 

the optimum cut-off point (based on the highest Kappa value) is used to produce a 

hard classification (Fielding and Bell 1997). This technique was used by Aspinall 
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(2002) to determine the optimum threshold value for a matched filter score from a 

MTMF classification of large woody debris from a CASI hyperspectral image. 

 

For the density independent approach, the most common method used has been the 

receiver operating characteristic (ROC), which provides a quantitative measure of the 

predictive accuracy of a model (Fielding and Bell 1997; Pontius Jr. and Schneider 

2001; Zweig and Campbell 1993). The approach been widely used for validating 

spatial predictive models in the environmental sciences (Osborne, et al. 2001; 

Pontius Jr. and Schneider 2001). For example Aspinall (2002) used ROC to assess 

the accuracy of a matched filter classification of large woody debris, and to 

determine the optimum cut-off point for hardening the classification. In other 

examples, Bradley and Mustard (2005) used ROC to determine the accuracy of a 

threshold NDVI classification of Landsat TM and AVHRR imagery for detecting the 

weed Cheatgrass (Bromus tectorum); Ishii and Washitani (2013) used ROC to 

validate generalised linear models of the relationship between the weed Solidago 

altissima and MNF bands and to produce a binary classification map. 

 

ROC compares the values from a probability dataset with a corresponding validation 

dataset, made up of presence and absence records. The probability values are divided 

into percentile groups (e.g. 1%), where the top 1% of all records with the highest 

suitability are assigned to that class. The process continues until there are 100 

groups, each containing 1% of the total records. A table (Table 2.5) is produced that 

shows the proportion of pixels in each suitability group that are classified as 

present/absent (Pontius Jr. and Schneider 2001). The true positive value is derived 

from A/(A + C) while the false positive value is derived from B/(B + D), where A, B, 

C and D are record counts in the contingency table for each threshold (Eastman 

2006). The false positive and true positive are also referred to as 1-specificity and 

sensitivity respectively (Fielding and Bell 1997). ROC plots the false positive/true 

positive values from the range of decision thresholds over the range of the results 

(Zweig and Campbell 1993) (Figure 2.4).  
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Table 2.4 ROC contingency table (Adapted from Eastman 2006). 

  Validation Data 

  In class of 
interest (1) 

Not in class 
of interest (0) 

Classified 
Image 

In class of 
interest 

A                  
(true 

positive) 

B                      
(false 

positive) 

Not in class of 
interest 

C                  
(false 

negative) 

D                 
(true 

negative) 
 

 

Figure 2.4 Example of two ROC plots showing false positive and false negative 
values. 

The ROC index statistic (Equation 2.9) is determined by the area under the curve 

(AUC) that connects the plotted points (Pontius Jr. and Schneider 2001). 

 

𝐴𝑈𝐶 =  ∑ [𝑥𝑖+1 − 𝑥𝑖][𝑦𝑖 + 𝑦𝑖+1 − 𝑦𝑖/2]𝑛
𝑖=1         (2.9)

  
 

Where 𝑥𝑖  is the rate of false positives, 𝑦𝑖  is the rate of true positives, and n is the 

number of suitability groups. 
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The AUC value denotes the probability that a presence site will have a higher 

probability value than an absence site when the two are selected at random from a 

population (Elith, et al. 2006). An AUC value of 1 denotes a perfect match between 

the probability and validation data sets. Tests with higher accuracy (and  

corresponding AUC value) will have a curve that is close to the upper left corner of 

the plot, whereas tests with no discrimination ability (i.e. completely random) will be 

similar to a 45 degree line running from the lower left corner to the upper right 

corner, and have an AUC value of 0.5 (Pontius Jr. and Schneider 2001; Zweig and 

Campbell 1993). 

 

For assessing the accuracy of band ratios and indices, most studies have used 

calibration methods such as linear and non-linear regression, due to the independent 

variable being a continuous data type. In an example where the independent variable 

was categorical (presence/absence), Apan, et al. (2004) used discriminant analysis to 

assess the accuracy of indices and band ratios derived from EO-1 Hyperion imagery 

to detect rust disease in sugarcane. 

2.6 Remote Sensing of Weeds 

In Chapter 1, remote sensing was identified as a potentially valuable source of 

information to assist with managing Paterson’s curse, by providing regional scale 

information on the distribution and density of the species. The first part of this 

chapter reviewed the literature for appropriate methods of remote sensing for 

detecting and mapping invasive species and vegetation in general. The next part of 

this chapter will: 1) briefly describe the role of remote sensing for detecting 

vegetation, and briefly describe the properties of vegetation related to detection; 2) 

highlight the characteristics of weeds from previous applications of remote sensing 

that allowed them to be discriminated from surrounding vegetation and land cover; 

and 3) review previous applications of remote sensing to weeds, in order to 

determine what methods were used, what imagery types, and what level of success 

was obtained. The scope of this section will be agricultural environments, including 

pastures, rangelands, as well as weeds in natural environments, including riparian 

areas, and forests. Site specific weed management applications involving remote 

sensing will not be reviewed, as they are more relevant to precision agriculture in 
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croplands, where automated control of weeds is done through mechanised means 

(e.g. robotic vision).  

2.6.1 Remote sensing of vegetation 

Vegetation has physical and chemical properties that make it especially amenable to 

being detected with remote sensing. These properties are covered in Section 2.6.2. 

Remote sensing of vegetation has a long history, and there are a diverse range of 

successful examples in the literature including: 

 

(i) Long term vegetation cover trends (> 40 years) obtained from historical 

aerial photography (e.g. Bowman and Dingle 2006; Fensham, et al. 2005; 

Kadmon and Harari-Kremer 1999; Sharp and Bowman 2004), and 

satellite imagery (e.g. Furby, et al. 2008; Liangyun, et al. 2013); 

(ii) Monitoring changes in the structure and composition of Northern 

Hemisphere forests (Song and Woodcock 2003); deforestation in tropical 

rainforests (Arai, et al. 2011), and the impact of fire on savanna 

vegetation in sub-tropical Australia (Edwards, et al. 2001) and Africa 

(Archibald, et al. 2010); 

(iii) Satellite imagery has been used on a continental and global scale to 

determine vegetation health and vigour, and for inclusion in global 

climate change models (e.g. Zhang, et al. 2006); 

(iv) Emerging high spatial resolution satellite sensors and high spectral 

resolution airborne digital sensors are being used to map vegetation 

communities in increasing detail, including Light Detection and Ranging 

(LiDAR) that can detect the height of individual trees and species (e.g. 

Cho, et al. 2012; Whiteside, et al. 2011). 

2.6.2 Properties of vegetation for remote sensing detection 

The way in which light interacts with vegetation, and the proportion of light that is 

reflected, absorbed, and transmitted from vegetation, is wavelength dependent (Jones 

and Vaughan 2010). The spectral information received by a particular sensor from a 

canopy (or plant) is a mixture of the spectral response from individual leaves, stem 

and trunk material, multiple interactions with leaves, and the soil or water 

background (Jones and Vaughan 2010; Knipling 1970). Each species of plant has 
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leaves with a varying type of surface, thickness, internal architecture, and pigment 

content (Knipling 1970) which results in different proportions of reflected, absorbed, 

or emitted energy. The overall reflectance from a dense vegetation canopy will be 

less than that from a single leaf, due to a greater number of reflectance interactions; 

similarly the contribution of soil or water will be greater in sparser vegetation (Jones 

and Vaughan 2010). 

 

A typical reflectance spectrum for green plant material is shown in Figure 2.5.  Leaf 

reflectance in the visible wavelengths (400–700 nm) is determined by photosynthetic 

pigments like chlorophyll and carotenoids (Gates, et al. 1965). Absorption of light 

(70-90%) by leaves for photosynthesis is strong in the blue and red parts of the 

spectrum, but low in the green (500-600 nm) (Gates, et al. 1965; Mather and Koch 

2011). In the near infrared (700-1350 nm), absorption of light is low, and reflectance 

is mainly determined by leaf structure (Gates, et al. 1965; Mather and Koch 2011). In 

the mid infrared (1350-2500 nm) wavelengths, reflectance is determined by water 

content, with water absorption troughs occurring at 1450 and 1950 nm (Gates, et al. 

1965). 

 
Figure 2.5 Reflectance spectra for green and senescent vegetation (sourced from 

Chapter 4). Parts of the electromagnetic spectrum: B = blue, G = 
green, R = red, RE = red-edge, NIR = near infrared, and MIR = mid 
infrared. 
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One of the strengths of remote sensing is the ability to detect stress in plants, even if 

the stress if not readily apparent to the human eye, which is restricted to the visible 

part of the electromagnetic spectrum. Carter (1993) found that spectral reflectance 

differences between stressed and healthy leaves were most likely to occur between 

535 to 640 nm and 685 to 700 nm, and are characterised by low absorption by 

Chlorophyll a. Carter (1993) observed that even a small decrease in Chlorophyll-a 

from stress could result in decreased absorption and higher reflectance in stressed 

leaves. Infrared reflectance did not show a consistent or significant change as a result 

of stress, and was only significantly affected when leaves became dehydrated (Carter 

1993). The spectrum of senescent vegetation (Figure 2.5) is distinct from green 

vegetation and shows a lower reflectance in the near infrared and a consistently 

higher reflectance in the visible wavelengths. 

 

The red-edge feature has been demonstrated to be important for determining the 

health and condition of vegetation. The red-edge is defined as the transition between 

the red region of the spectrum and the near infrared (680-740 nm), where the 

reflectance of green vegetation shows a rapid increase (Dawson and Curran 1998; 

Slaton, et al. 2001). This property is unique to vegetation, and is caused by high 

internal leaf scattering producing high near infrared reflectance, and chlorophyll 

absorption in the red part of the spectrum (Horler, et al. 1983). Gates, et al. (1965) 

observed that the red-edge shifted towards longer wavelengths in the leaves of white 

oak (Quercus alba) during a growth cycle, and proposed that it may be a good 

indicator of the amount of chlorophyll in a plant. A number of studies have either 

confirmed the relationship (e.g. Curran, et al. 1990; Horler, et al. 1983), or have 

shown that red-edge differences can be used to detect plant stress, and differences in 

the spectral properties of plants at different growth stages (e.g. Broochs, et al. 1990; 

Filella and Penuelas 1994; Smith, et al. 2004). 

2.6.3 Characteristics of weeds for detection using remote sensing 

An understanding of the characteristics of a target weed species is important for 

making an informed decision about the type of sensor, and the classification and 

analysis methods to be employed in a remote sensing application. A ground-up 

approach to weed detection with remote sensing can minimise the likelihood of the 

wrong sensor or method being employed, and a potential erroneous conclusion being 
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drawn about the utility of a sensor and/or method (Aspinall, et al. 2002). A review of 

the remote sensing literature (summarised in Appendix A) shows that differences in 

foliage and floral characteristics were the dominant mechanisms for discriminating 

weed species from the background vegetation and soil. However there were other 

characteristics which were unrelated to floral and foliage, including form (e.g. shrub, 

herb, grass, tree), spatial characteristics (e.g. density, patchiness), and life history 

(e.g. annual or perennial). Examples of these characteristics from the literature are 

described below. 

2.6.3.1 Foliage properties 

2.6.3.1.1 Orientation 

Orientation relates to how foliage in a vegetation canopy is arranged, for example 

vertical (erectophile) or horizontal (planophile). These differences in canopy 

arrangement affect the way in which electromagnetic energy interacts within the 

canopy. For example the erectophile canopy structure of false broomweed 

(Ericameria austrotexana) was distinctive from co-occurring vegetation due to more 

gaps and shadowing, which resulted in a lower reflectance in the near infrared 

(Everitt, et al. 1984). In a similar study, Everitt, et al. (1987) reported lower near 

infrared reflectance from the erectophile canopy of Spiny aster (Aster spinosus), 

which made it spectrally distinctive from co-occurring vegetation. In contrast, when 

the species was flowering, it was not distinctive from co-occurring vegetation. A 

combination of small leaves and an erectophile canopy allowed Everitt, et al. 

(2007b) to discriminate Ashe juniper (Juniperus ashei) from co-occurring vegetation 

in the near infrared due to the lower reflectance from shadowing and reduced canopy 

density. In instances where Asche juniper had similar near infrared reflectance to co-

occurring vegetation, it could be discriminated in the visible wavelengths. 

2.6.3.1.2 Colour 

Foliage colour is determined by the composition of pigments and other chemicals in 

leaves. Colour can vary within and between species, due to factors such as the health 

and stress of a plant and the time of year. For example, the bright red leaves of 

Chinese tallow (Sapium sebiferum)  in autumn produced a distinct spectral contrast 

to green woodlands and scrublands, and brown grasslands in the visible wavelengths 

(Ramsey III, et al. 2002). In a similar example, the yellow orange foliage of the 
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deciduous shrub tamarisk (Tamarix spp.) had higher visible reflectance in late 

autumn-early winter (550 and 650 nm) compared to the surrounding native 

vegetation (Evangelista, et al. 2009; Everitt and Deloach 1990; Frazier and Wang 

2011; Wang, et al. 2013). Another species with different coloured foliage to native 

vegetation in winter was the evergreen shrub/small tree Redberry juniper (Juniperus 

pinchotii), with dark green leaves (Everitt, et al. 2001). In an aquatic environment, 

the floating macrophyte water lettuce (Pistia stratiotes) had light green foliage which 

produced higher reflectance in the green and red wavelengths than darker co-

occurring vegetation (Everitt, et al. 2003). In contrast, the submersed macrophyte 

Hydrilla (Hydrilla verticillata) had dark green foliage with lower green and red 

reflectance than lighter co-occurring vegetation (Everitt, et al. 1999). 

2.6.3.1.3 Density 

The density of foliage in a canopy is related to the number and size of leaves per unit 

area. The higher the density of green vegetation in a canopy, the higher the 

corresponding near infrared reflectance and associated chlorophyll absorption in the 

red wavelengths (Gates, et al. 1965). The density of vegetation stands has some 

bearing of the density of canopies, for example whether they grow in clumps, or are 

dispersed into single trees or shrubs. Big bend loco (Astragalus mollissimus var. 

earlei) and Wooton loco (Astragalus wootonii) on west Texas rangelands had 

consistently higher near infrared reflectance than co-occurring vegetation due to a 

higher density canopy (Everitt, et al. 1994). Similarly, redberry juniper (Juniperus 

pinchotii) on northwest Texas rangelands had higher vegetation density and higher 

near infrared reflectance than co-occurring vegetation, which was in winter 

dormancy (Everitt, et al. 2001). In temperate forests, the evergreen tree glossy privet 

(Ligustrum lucidum) had a denser canopy and higher NIR reflectance than native 

forest species (Gavier-Pizarro, et al. 2012). The dense green foliage in the crowns of 

blackberry (Rubus fruticosus sp. agg.) was reported by Ullah, et al. (1989a) and 

Dehaan, et al. (2007)  to be a good cue for discriminating the species, especially 

when it occurred in mono-specific patches in the landscape. However Ullah, et al. 

(1989a) found that there was spectral confusion with mixed vegetation types when 

blackberry was not in mono-specific stands.  
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2.6.3.1.4 Timing 

The life history of a weed species can be an important factor to determine its 

suitability for detection with remote sensing. It relates to whether a species is annual 

or perennial, the timing of foliage and flowering, and the spectral and spatial 

relationship between the weed species and co-occurring vegetation. The foliage of 

the introduced perennial pasture species para grass (Urochloa mutica) had higher 

near infrared reflectance than senescent co-occurring vegetation on a floodplain in 

the mid-dry season (July) (Boyden, et al. 2013; Catt and Thirarongnarong 1992). In a 

similar example, Lass, et al. (2002) found that the success of detecting the annual 

herb spotted knapweed (Centaurea maculosa) was also dependent on the co-

occurring vegetation being sparse and in a senescent stage. The combination of new 

blue-green stems and residual red-brown stems produced a higher reflectance in the 

near infrared compared with co-occurring vegetation. The understory shrub Amur 

honeysuckle could be detected at the time of year when it retained its foliage while 

the over-story was senescent (Wilfong, et al. 2009). The understory herb late 

goldenrod (Solidago altissima) could be detected in spring as understory before 

overstory grass species were dominant (Ishii and Washitani 2013). Two other 

understory species - Common (Frangula alnus) and glossy buckthorn (Rhamnus 

cathartica) produced foliage earlier in the growing season than the overstory forest 

species and retained it for longer (Becker, et al. 2013). 

2.6.3.2 Floral properties 

The floral characteristics of a weed species pertains to the colour of the flowers, the 

density of the flowers, and the timing and duration of flowering. There are examples 

in the literature where the spectrally distinct flowers of weed species provided the 

dominant spectral cue for discrimination, and other examples where species were not 

detectable in the non-flowering phase. For example the dense bloom of yellow 

flowers on Mexican palo-verde (Parkinsonia aculeata) on south Texas rangelands 

made the species spectrally separable from co-occurring vegetation in the green 

wavelengths due to the flowers, but was not separable when not flowering (Everitt 

and Villarreal 1987). The dense canopy coverage of orange-yellow flowers of 

huisache (Acacia farnesiana) was found by Everitt and Villarreal (1987) to have 

higher reflectance in 550 and 650 nm than other co-occurring vegetation species in 

March, but huisache could not be distinguished from co-occurring vegetation outside 
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of the flowering period. Other species with distinctive flowers that were only 

detectable during flowering included common goldenweed (Isocoma coronopifolia) 

and Drummond goldenweed (Isocoma drummondii) on south Texas rangelands 

(Everitt, et al. 1992), leafy spurge (Euphorbia esula) on rangelands in North Dakota 

and Montana (Everitt, et al. 1995), and broom snakeweed (Gutierrezia sarothrae) on 

rangelands in New Mexico and Texas (Everitt, et al. 1987). 

 

The duration and timing of flowering has been shown to be important for detecting 

weed species. For example during the two week peak flowering period of yellow 

hawkweed (Hieracium pratense) in mountain meadows of the northwest United 

States of America, the bright yellow flower heads were spectrally distinctive from 

co-occurring pasture species, with reflectance differences in the yellow-green and 

yellow-red wavelengths (Lass and Callihan 1997). The species could be 

discriminated from pasture species at different stages of flowering, but not during the 

non-flowering phase. Andrew and Ustin (2006) found that during peak flowering for 

perennial pepperweed (Lepidium latifolium) in California (USA), the numerous small 

white flowers produced higher visible and near infrared reflectance compared to co-

occurring vegetation. Similarly the woody legume Mexican palo-verde (Parkinsonia 

aculeata) had a limited flowering period, but produced a dense bloom of yellow 

flowers which produced a distinctive tone on colour infrared aerial photography 

(Everitt and Villarreal 1987). 

2.6.4 Spectroscopy 

In section 2.4.2, spectroscopy was highlighted as a valuable technique for remote 

sensing of vegetation. There were three main applications: 1) measuring the spectral 

properties of a plant species to determine the most suitable areas of the spectrum to 

discriminate and to relate those properties to airborne and satellite sensors 

(prediction); 2) Collecting ground spectra to calibrate airborne and satellite sensors 

(calibration); and 3) Determining the relationship between the spectral and 

biophysical properties of plants (modelling). 

 

There are numerous examples in the literature where spectra of a target weed species 

have been captured with radiometers or spectrometers in the field, and compared 

with airborne and satellite remote sensing data collected on similar dates (Table 2.5).  
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In applications using multispectral imagery, the bands of the radiometers were 

similar to the bands from the airborne or satellite remote sensing sensors, which 

allowed a better assessment of the capabilities of the sensor. Spectroradiometers have 

been used in studies to examine the spectral properties of target weeds based on 

discrete areas of the electromagnetic spectrum that allows discrimination from other 

cover types.  (e.g. Glenn, et al. 2005; Parker-Williams and Hunt 2002; Yang and 

Everitt 2007).  

 

Several studies have used the reflectance from invariant targets captured with a 

spectroradiometer to calibrate imagery and perform atmospheric correction (Bradley 

and Mustard 2005; Underwood, et al. 2003; Yang and Everitt 2007). A particularly 

innovative study by Ramsey III and Nelson (2005) calibrated a EO-1 Hyperion 

hyperspectral satellite image using reflectance spectra from Chinese tallow (Triadica 

sebifera) in order to detect the species at low density. 

 

Some studies have used band ratios and indices derived from field spectroscopy to 

map a weed species, or to determine the relationship between the band ratios/indices 

and the biophysical properties of the weed. For example Andrew and Ustin (2006) 

used band ratios within decision tree models to map perennial pepperweed (Lepidium 

latifolium) in California’s San Francisco Bay/Sacramento–San Joaquin River Delta. 

In another example, Mirik, et al. (2006) investigated the relationship between the 

biophysical properties of Musk thistle (density, percent ground cover, height, and 

flower head density) and band ratios/indices using data from three sources: a 

spectroradiometer, radiometer and airborne hyperspectral imagery.  
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Table 2.5 Summary of field spectroscopy studies for weeds, with application 
type (AT) (P: prediction, C: calibration, M: modelling), and 
instrument type (IT) (S: spectrometer, R: radiometer). 

Reference Common Name AT  IT 

Everitt, et al. (1984) False broomweed (Ericameria austrotexana) P R 

Everitt and Villarreal 
(1987) 

Huisache & Mexican palo-verde (Acacia 
farnesiana & Parkinsonia aculeata) P R 

Everitt, et al. (1987) Broom snakeweed & spiny aster (Gutierrezia 
sarotbrae & Aster spinosus) P R 

Everitt and Deloach 
(1990) Chinese tamarisk (Tamarix chinensis) P R 

Everitt, et al. (1992) Common & Drummond goldenweed (Isocoma 
coronopifolia & Isocoma drummondii) P R 

Everitt, et al. (1994) Big bend loco & Wooton Loco (Astragalus 
mollissimus var. Earlei & Astragalus wootonii) P R 

Everitt, et al. (1995) Leafy spurge (Euphorbia esula) P R 

Lass, et al. (1996) Yellow starthistle (Centaurea solstitialis) P S 

Lass and Callihan (1997) Yellow hawkweed & oxeye daisy (Hieracium 
pratense & Chrysanthemum leucanthemum) P S 

Everitt, et al. (2001) Redberry juniper (Juniperus pinchotii) P R 

Parker-Williams and Hunt 
(2002) Leafy spurge (Euphorbia esula) P S 

Underwood, et al. (2003) Iceplant & jubata grass (Carpobrotus edulis & 
Cortaderia jubata) P/C S 

Parker-Williams and Hunt 
(2004) Leafy spurge (Euphorbia esula) P S 

Andrew and Ustin (2006) Perennial pepperweed ()Lepidium latifolium) P/M S 

Everitt, et al. (2007b) Ashe juniper (Juniperus ashei) P R 

Dehaan, et al. (2007) Blackberry (Rubus fruticosus sp. agg.) P S 

Mitchell and Glenn (2009) Leafy spurge (Euphorbia esula) P S 

Yang, et al. (2009) Ashe juniper (Juniperus ashei) P S 

Martin, et al. (2011) Avena sterilis & Lolium rigidum P/M S 

Ramsey III, et al. (2005c) Chinese tallow (Triadica sebifera) P/C R 

Yang and Everitt (2007) Waterhyacinth (Eichhornia crassipes) P/C S 

Bradley and Mustard 
(2005) Cheatgrass (Bromus tectorum) C S 

Everitt, et al. (1999) Waterhyacinth, hydrilla (Eichhornia crassipes & 
Hydrilla verticillata) P R 

Everitt, et al. (2003) Waterlettuce (Pistia stratiotes) P R 

Everitt, et al. (2004) Giant reed (Arundo donax) P R 

Mirik, et al. (2006) Musk thistle (Carduus nutans) M S/R 
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2.6.5 Aerial photography 

Aerial photography was the most common source of remotely sensed data for weed 

mapping prior to the widespread availability of digital airborne and high resolution 

satellite imagery (e.g. Everitt, et al. 1992; Everitt, et al. 1995; Everitt and Deloach 

1990; Everitt, et al. 1993; Everitt, et al. 1984; Everitt, et al. 1994; Everitt and 

Villarreal 1987; Everitt, et al. 2001; Ramsey III, et al. 2002). An advantage of an 

aerial platform (for either aerial photography or digital imagery) is that the altitude of 

the aircraft can be set to capture photographs at a high spatial resolution, which 

enables small infestations of weeds to be detected. Aerial photography has been used 

to detect weed infestations down to the level of individual plants, such as for leafy 

spurge (Euphorbia esula) (Everitt, et al. 1995), big bend loco (Astragalus 

mollissimus var. Earlei) (Everitt, et al. 1994) and shin oak (Quercus havardii) 

(Everitt, et al. 1993). The large number of aerial photography applications in the 

literature provides a useful means to predict the success of newer high resolution 

satellite sensors and aerial digital imagery. These new high resolution image sources 

can also be combined with historic aerial photography to map weed species at a 

similar spatial scale (Müllerová, et al. 2013). 

2.6.6 Airborne videography 

Aerial videography was another common remote sensing data source from the 1980s 

to 2000s for vegetation mapping, prior to the availability of cost effective digital 

aerial imagery (e.g. Everitt, et al. 1991; Everitt and Nixon 1985; Menges, et al. 2001; 

Nixon, et al. 1985). It has several advantages over aerial photography: it does not 

require chemical processing, and is quickly available after capture for analysis 

(Everitt, et al. 1992; Everitt, et al. 1993; Everitt, et al. 1994); the cost of aerial video 

imagery is lower than an equivalent area captured by aerial photography (Everitt, et 

al. 1992) and is considered a low cost means of assessing the accuracy of medium 

resolution satellite imagery, such as Landsat and SPOT (Everitt, et al. 1993). Even 

with a lower cost factor compared to aerial photography and aerial digital imagery, 

the cost of using airborne video to detect weeds over similar large areas to Landsat 

and SPOT is considered too high for most applications (Everitt, et al. 1994). 

 

The spatial resolution of airborne video imagery is typically coarser than 

conventional film, and has been shown in some examples to be less effective than the 
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latter for detecting individual plants or small patchy infestations (Everitt, et al. 1992). 

For example Everitt, et al. (1992) found that that classified video imagery with a 

0.15-0.2 m spatial resolution could not be used to map small patches and individual 

plants of common and Drummond goldenweed, and Everitt, et al. (1993) using 

imagery at a spatial resolution of 1.3-2.6 m, could only detect small stands of shin 

oak, in contrast to individual plants with aerial photography.  

 

For non-woody weeds, the coarser spatial resolution of video may be more 

appropriate when the spectral reflectance of the target weeds species dominates a 

pixel. For example giant salvinia (Salvinia molesta) was mapped by Fletcher, et al. 

(2010) with 3 m spatial resolution CIR video imagery to a similar level of accuracy 

to CIR photography (Everitt, et al. 1999) due to high NIR reflectance from dense 

mono-specific mats of giant salvinia in the study area.   

2.6.7 Airborne digital imagery 

Airborne digital sensors record information from visible and near-IR bands at high 

spatial resolution. This high spatial resolution allows features as small as individual 

trees and shrubs to be detected, and the information is in a digital format which 

facilitates computer classification. Other advantages of digital aerial sensors include: 

a spatial resolution that can vary according to the flying height of the aircraft, which 

allows the end user to choose the pixel size, and the size of a given scene; a flexible 

deployment capability compared to satellite sensors, to take advantage of favorable 

meteorological conditions or limited periods in which weed species may be most 

detectable; and (for recent scanners and cameras), a high radiometric resolution of 12 

or 16 bits, allowing tens of thousands of grey levels to be utilised by image 

classification algorithms. The disadvantages of airborne imagery include a 

potentially high cost of acquisition, and many images may be required to cover a 

large area. 

 

High spatial resolution airborne imagery has been used in several applications to 

detect weeds in pasture. Carson, et al. (1995) used four band (blue, green, red, near 

infrared) Airborne Data Acquisition and Registration (ADAR)  imagery at 1 m 

spatial resolution to map yellow hawkweed (Hieracium pratense) in pasture and 

meadow in Northwest Idaho. The omission error for maximum likelihood and 
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unsupervised classification ranged from 20 to 60% and 60 to 95% respectively when 

density classes were greater than 30%. Lass and Callihan (1997) used similar density 

classes to Carson, et al. (1995) to map yellow hawkweed (Hieracium pratense) with 

four band 1 m spatial resolution ADAR imagery. Yellow hawkweed could be 

discriminated from co-occurring vegetation species at > 20% cover, however the 20 

to 60% class had a 30% omission error, which was attributed to spectral overlap 

between hawkweed and grass/forb mixes. Lass, et al. (1996) applied an unsupervised 

algorithm to four band imagery at a range of spatial resolutions (0.5–4 m) for yellow 

starthistle (Centaurea solstitialis) and common St. John’s wort (Hypericum 

perforatum). The detection threshold for the two species was higher than Carson, et 

al. (1995), with density classes that ranged from 30% to100%. The lack of a weed 

density class below 20 to 30% was a common theme across all three studies, and 

highlights the potential limitations of multi-spectral airborne data for mapping low 

densities of weed species in pastures. 

 

High resolution airborne imagery has been used to detect shrubs in rangelands and 

semi-arid environments. For example Everitt and Yang (2007b) mapped broom 

snakeweed in Southern Texas rangeland using 0.5 m spatial resolution digital 

airborne imagery (Kodak Megaplus1.4i digital camera) and ISODATA unsupervised 

classification. Broom snakeweed could be discriminated from co-occurring 

vegetation with > 80% user’s and producer’s accuracies (overall Kappa 0.76–0.82). 

A notable weakness of that study was that no density classes or minimum patch sizes 

for detection were used. In a Western Australian rangeland study, Robinson, et al. 

(2008) reported an R² of 0.98 between field and image derived canopy cover of 

Mesquite (Prosopis sp) from 1.4 m spatial resolution digital multispectral imagery 

(DMSI). The minimum estimated canopy cover for detection of Mesquite shrubs was 

3 m. In another semi-arid application to woody vegetation, Stow, et al. (2000) 

mapped invasive Acacia in native shrub-land in South Africa using 0.5 m spatial 

resolution imagery from a DCS 420 camera . Individual shrubs and trees (down to 

1.5 m canopy diameter) could be visually identified on the imagery prior to 

classification, but within canopy variation in shadow and illumination caused 

spectral confusion when classified, although an accuracy assessment was not 

conducted to quantify it. All three previous rangeland studies (Everitt and Yang 

2007b; Robinson, et al. 2008; Stow, et al. 2000) were more suited to an object 
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classification approach, given the spatial arrangement of woody vegetation was in 

clusters or patches. 

2.6.8 Satellite multispectral imagery 

The first commercial land resource satellites were launched in the early 1970s, and 

they provide a valuable time series of land monitoring data across the globe. Satellite 

based sensors have a number of advantages over aircraft, including geometric 

consistency over an entire image (less distortion at the periphery of imagery); regular 

capture (overpass) times; and lower cost than airborne imagery, especially over large 

areas. 

 

In 1972, the Landsat 1 satellite was launched, carrying the Multi-spectral Scanner 

(MSS). Landsat 1 was the first of the Landsat series of satellites, and was typical of 

the series by having spatial and regular temporal coverage that made it suitable for 

monitoring vegetation at the landscape scale (Lawes and Wallace 2008). The first 

study to use data from Landsat MSS for weed detection was McDaniel, et al. (1975) 

who mapped areas of treated brush cover in Malheur County, Oregon, USA. Other 

studies to use Landsat MSS include Martinko (1982) and Boyd (1986). The main 

limitation with Landsat MSS from these early studies was the coarse spatial 

resolution (80 x 80 m), which meant that weed infestations had to be very large and 

at high density. 

 

An opportunity to discriminate weeds at finer spatial scales and lower densities than 

Landsat MSS was provided by Landsat 4 and 5 Thematic Mapper (TM) and Landsat 

7 Enhanced Thematic Mapper Plus (ETM+). These sensors had improved spectral 

and radiometric resolution, and a higher spatial resolution (30 m) than Landsat MSS. 

The relatively coarse spatial resolution of Landsat TM and ETM+ (compared to 

aerial imagery) still presented problems with classification accuracy due to mixed 

pixels and spectral overlap between weeds and co-occurring vegetation. For example 

Somodi, et al. (2012) used two dates of Landsat ETM+ and a four-band CIR 

orthophoto to predict the occrrance of Robinia pseudacacia in lowland forest in 

north-east Slovenia. A generalised linear model used image bands as predictor 

variables and presence of Robinia pseudacacia as response variable. The Landsat 

images did not perform well as an 4-band CIR orthophoto due to the mixing of 
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Robinia with other vegetation species within the pixels. Peterson (2005) addressed 

the issue of spectral overlap between cheatgrass (Bromus tectorum) and native 

grasses on Nevada rangelands by using the difference between two Landsat ETM+ 

images where cheatgrass and native grass were both green in  the first  image, and 

where cheatgrass was in senescence and native grass was green in the second image. 

Using such an approach, they obtained a R² of 0.71 from stepwise regression of 

cheatgrass cover in the field and vegetation indices and ancillary data (e.g. 

elevation). 

 

Other studies using Landsat TM and ETM+ were successful due to the target weed 

species retaining its spectral distinctiveness when co-occurring vegetation was 

senescent, in early stages of growth or had experienced leaf fall. For example 

Wilfong, et al. (2009) reported an R² of 0.77 between NDVI derived from TM and 

ETM+ images, and percentage cover of Amur honeysuckle (Lonicera maackii). At 

the time of image acquisition, the overstory was in a senescent stage and the leaves 

of Amur honeysuckle in the understory were still green. In a similar example, Cuneo, 

et al. (2009) applied a maximum likelihood classifier to ETM+ imagery to map 

African olive with low commission and omission errors of 5.4% and 7.7% 

respectively. The delectability of African olive (Olea europaea L. ssp. Cuspidata) 

was enhanced by being spectrally distinct from co-occurring vegetation; being 

present as a mono-specific closed forest canopy (> 80%) or as a dominant understory 

beneath a sparse Eucalypt canopy; and the slow growing (10 years to maturity) habit 

of the species made it easier to collect representative ground validation data.  

Saltcedar (Tamarisk) was accurately mapped (Kappa 0.79–0.94) by Frazier and 

Wang (2011) and Evangelista, et al. (2009) along riparian zones in the Rio Grande 

and Lower Arkensas River, due to the species having distinctive yellow brown leaves 

when most co-occurring native vegetation species had shed their leaves.   

 

In one example, a weed species was detected from Landsat TM imagery due to a 

year-round lack of co-occurring vegetation that could otherwise cause spectral 

confusion. Lawes and Wallace (2008) used Landsat TM mosaics from 8 dates from 

1989 to 2004 to map prickly Acacia (Acacia nilotica) on the Mitchell grass plains of 

Northern Queensland. A discriminant analysis between vegetation indices and 

prickly Acacia tree density found the weed could be discriminated from the native 
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grassland species, but the authors noted that the success of the method was due to a 

lack of perennial woody species causing spectral confusion with prickly Acacia. 

 

Some studies have combined a multi-temporal coverage of Landsat TM and ETM+ 

to include all relevant phenological stages of the weed species to enhance detection. 

For example Becker, et al. (2013) combined 49 Landsat TM/ETM+ images from 

2007-2011 to map common (Frangula alnus) and glossy (Rhamnus cathartica) 

buckthorn in mixed prairie and forest in the Oak Openings Region in north-west 

Ohio and south-east Michigan. A parallelepiped classification was performed on 

separate image stacks comprised of tasselled cap greenness index, enhanced 

vegetation index and NDVI, of which the greenness index had the best accuracy 

(overall accuracy 83%, Kappa 0.73). Using a similar approach, Gavier-Pizarro, et al. 

(2012) mapped glossy privet (Ligustrum lucidum) on temperate to semi-arid slopes 

of the Sierras Chicas of Córdoba Argentina, using a stack of Landsat TM/ETM+ 

images from 1983 to 2006. From the stack, eight classes that included individual 

dates (1983 and 2006) and various periods of expansion were input into a Support 

Vector Machines classification. The best accuracy result for glossy privet was from 

the 2006 image (overall Kappa of 0.76 and per-class Kappa 0.88). 

 

The first commercial satellite alternative to Landsat was SPOT 1, which launched in 

1986. The main feature of SPOT was the 20 m spatial resolution, which was finer 

than the 30 m of Landsat TM. Anderson, et al. (1993) found that SPOT imagery was 

inferior to high resolution (0.6 m) aerial video imagery for detecting small stands (> 

0.5 ha) of false broomweed (Ericameria austrotexana) on native rangeland in South 

Texas, USA. The SPOT imagery produced low accuracy during non-drought periods, 

when the spectral signature of false broomweed was confused with co-occurring 

herbaceous vegetation. They suggested a compromise, where SPOT imagery would 

be useful to map likely locations of false broomweed, and high resolution imagery 

for mapping the actual locations of infestations. In another rangeland study in Texas, 

the spatial resolution of SPOT was found by Everitt, et al. (1993) to be too coarse for 

mapping small stands of shin oak, although the larger area covered by the imagery 

was an advantage over airborne video and colour infrared photography. 
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In an study that combined image classification and spatial modelling, Lu, et al. 

(2013) used a temporal series (1988-2007) of SPOT 1 and 2 images to map and 

predict the distribution of Leucaena leucocephala in mixed tropical environments in 

Taiwan. The mapped expansion of the weed for the preiod 1988–1997 was used in a 

backward stepwise linear regression against various predictor variabled (e.g. distance 

to roads, 1988 mapped coverage, slope). The acucarcy of the model (93% overall and 

0.70 Kappa) was tested using the 2007 classification and showed that the distribution 

of Leucaena in 1988 contributed most to the spread of the species over time. A 

weakness of the study was that the model was only tested using pixels that contained 

Leucaena. at a density of greater than 50%.  

 

Coarse spatial resolution satellite sensors such as MODIS and NOAA provide scenes 

that cover thousands of square kilometres. In one of the early applications of coarse 

resolution imagery to weeds, Peters, et al. (1992) found that the 1 km spatial 

resolution of NOAA-10 satellite imagery was inadequate for discriminating broom 

snakeweed (Gutierrezia sarothrae) in 19 km² plots on New Mexican prairie due to 

the spectral mixing with co-occurring prairie vegetation.  A comparison of field sites 

containing moderate and light density broom snakeweed with NDVI values showed 

no significant difference between the sites. Although Peters, et al. (1992) suggested 

that more homogenous training areas and ground truth information were needed to 

represent the variety of grasslands in the study area, it is unlikely that this would 

overcome the limitations of mixed pixels for such a coarse spatial resolution.  

 

Despite the coarse resolution of sensors such as MODIS and NOAA, they do have 

the advantage of providing data from daily overpasses which provide a much greater 

opportunity to take advantage of favourable meteorological conditions, or plan field 

validation. For example Huang, et al. (2009) utilized the capability of the MODIS 

sensor to acquire a time series of images to map the tufted perennial grass Lehmann 

lovegrass (Eragrostis lehmanniana) in semi-desert grassland. A regression 

coefficient (R²) of 0.23 was obtained between NDVI and biomass, with over 20 

images being used for each year between 2000 and 2004. The lack of success in 

detecting the weed was not due to spatial resolution, but the spectral limitation of the 

sensor. Field verification showed that Lehmann lovegrass during its growing season 

did not have a higher spectral response than native vegetation during summer due to 
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bright inflorescences and litter suppressing the green signal in the near infrared, and 

the spectral response being diluted by a bright soil background.  

 

The era of high spatial resolution commercial satellite sensors started with the launch 

of IKONOS in 1999, followed by QuickBird in 2001, and then a further series 

including Worldview 1 and 2. The imagery from these sensors have the advantages 

of being captured from a stable platform; provided to end users in a ready to use 

format (e.g. geometrically corrected); a lack of deployment costs; and the ability to 

cover large areas without the need to mosaic large numbers of small photo frames. 

High resolution satellite imagery has similar drawbacks to aerial high resolution data 

such as being more expensive compared to medium or coarse resolution data to cover 

similar sized areas. The high cost factor means that frequent recapture for monitoring 

may not be feasible for most research/management agencies. Another disadvantage is 

that a higher level of geometric correction is required to align field validation sites 

with the imagery (e.g. requires differential GPS). 

 

High spatial resolution satellite imagery can detect smaller weed infestations in a 

similar manner to aerial photography and aerial imagery. Everitt, et al. (2007b) 

compared the results of a Quickbird image and scanned colour infrared photography 

for detecting Ashe juniper. An ISODATA classification of a Quickbird image 

resulted in user’s and producer’s accuracy from 93% and 90% compared to the 89 % 

and 90% for colour infrared photography. Casady, et al. (2005) reported that 

IKONOS imagery had a similar detection ability for leafy spurge to airborne 

videography and colour infrared photography. When leafy spurge patches were < 

200 m² or < 30% cover, they were not reliably detected by a maximum likelihood 

classification method, which was similar to findings by Everitt, et al. (1995) where 

videography and colour infrared (CIR) aerial photography could not detect leafy 

spurge when the canopy cover was < 25%, even with a spatial resolution of 0.3 m. 

Everitt, et al. (2004) achieved similar accuracy results from an unsupervised 

classification of Quickbird imagery and CIR videography and photography for 

mapping giant reed (Arundo donax). User’s and producer’s accuracy for giant reed 

were 100% and 78 to 83% respectively, with Kappa at 0.72 for the Quickbird 

classification and 0.78 for the videography and CIR aerial photography. In another 

study, Everitt, et al. (2007a) used the same distinctive dark tone (spectral response) 
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of spiny aster on Quickbird imagery to discriminate it from co-occurring vegetation 

as was reported by Everitt, et al. (1987)  for CIR and colour photography. 

2.6.9 Airborne hyperspectral 

Airborne hyperspectral sensors (airborne spectroscopy) have been used since the 

early 1980s for detecting and mapping vegetation (e.g. Goetz, et al. 1985). Some 

benefits of airborne hyperspectral remote sensing are analogous to aerial 

photography and airborne digital imagery: a high spatial resolution, flexible temporal 

capture, and a choice in the spatial resolution based on flying height. The advantage 

of airborne hyperspectral over airborne and satellite multispectral sensors is that 

spectral information is recorded over hundreds of narrow bands rather than several 

wide bands. This increases the likelihood of detecting a weed species that is 

spectrally distinct from co-occurring cover types in discrete areas of the 

electromagnetic spectrum. As a consequence, airborne hyperspectral sensors have 

been increasingly utilised in recent years for mapping weeds (e.g. Andrew and Ustin 

2008; Atkinson, et al. 2014; Cheng, et al. 2007; Dehaan, et al. 2007; Glenn, et al. 

2005; Ishii and Washitani 2013; Mirik, et al. 2013; Silván-Cárdenas and Wang 2009; 

Wang, et al. 2013). 

 

A particular emphasis of hyperspectral applications for weeds has been to improve 

on previous multi-spectral applications that have had less success in accurately 

mapping weed infestations, especially in cases where there were lower density or 

patchy distributions. For example Glenn, et al. (2005) detected Leafy spurge with 

HyMap imagery at a spatial resolution of 3.5 m down to 40% cover with a user’s and 

producer’s accuracy of 78% and 68% respectively, and in some instances to less than 

10% cover with a lower accuracy level. The outcome was similar to Everitt, et al. 

(1995) who found that small patches of Leafy spurge could be reliably detected down 

to 25% canopy cover with 0.3 m spatial resolution aerial photography, and 1.2 m 

spatial resolution airborne video imagery. Dehaan, et al. (2007) mapped blackberry 

(Rubus fruticosus) with a high classification accuracy (81% and 92% user and 

producer accuracy) with 3.5 m spatial resolution Hymap imagery, compared to the 

79% overall accuracy of Frazier (1998) with 1m spatial resolution multispectral 

video airborne imagery. Miao, et al. (2006) found that yellow star thistle could be 

mapped at densities of < 10% cover with 3 m spatial resolution CASI-2 data, which 
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was a significant improvement in the detection of yellow starthistle compared to the 

airborne multispectral classification of Lass et al. (1996).  

 
Even high spatial resolution hyperspectral data are heavily influenced by the 

environment type in terms of maximising spectral differences between the weed and 

co-occurring cover types. For example, Andrew and Ustin (2008) found that 

variations in environmental complexity and in particular the presence of co-occurring 

vegetation affected the accuracy of mapping perennial pepperweed (Lepidium 

latifolium) with Hymap data at three different sites. The user’s accuracy (86–93%) 

and producer’s accuracy (86–74%) at two sites was high, but low at the third site 

(18% and 23%), where perennial pepperweed could not be distinguished from sparse 

vegetation. In a study that proved to be an exception, Cheng, et al. (2007) achieved 

user’s and producer’s accuracy of 83% and 73% for mapping kudzu (Pueraria 

Montana) with AVIRIS imagery. The weed was difficult to detect when mixed with 

oak hardwood forest, but a noise reduction prior to the classifications enhanced the 

difference between oak and kudzu spectral signatures. The ability to detect kudzu 

was attributed to the combined high spatial and spectral resolution of the AVIRIS 

imagery, even when spectrally similar to co-occurring vegetation. Brazilian 

waterweed (Egeria densa) and water hyacinth (Eichhornia crassipes) were mapped 

by Underwood, et al. (2006) with 3 m spatial resolution HyMap imagery over the 

entire Sacramento-San Joaquin Delta and at smaller 50 ha site, with user’s accuracies 

of 73% and 65%  for the former, and 93% and 29% for the latter. The low mapping 

accuracy of Brazilian waterweed was attributed by Underwood, et al. (2006) to 

variability in water levels across the larger delta, particularly when the species was 

partially submerged, and also to higher levels of turbidity and algae in some areas of 

the delta. 

 

In a rare example of remote sensing of a weed species with prominent purple 

flowers, Mirik, et al. (2013) mapped musk thistle (Carduus Nutans) in semi-arid 

grassland in Palmer County, Texas. Two images at 1 m spatial resolution from the 

Airborne Imaging Spectrometer for Applications (AISA) were classified using 

Support Vector Machines: one from pre-flowering in April and one from the peak 

flowering period in June. The June image had superior classification accuracy (user’s 
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accuracy 90%, producer’s accuracy 88%) compared to the April image (72% and 

79%), which was variously attributed to lack of co-occurring native vegetation in 

June as well as spectral differences arising from differences in water content or 

phenology. Of particular note was that the AISA imagery did not include a blue 

band, which may have further increased the detectability of musk thistle during peak 

flowering.  

2.6.10 Satellite hyperspectral 

In 2001, the era of satellite hyperspectral remote sensing began with the launch of the 

EO-1 Hyperion sensor (Pearlman, et al. 2003). Hyperion imagery has the same 30 m 

spatial resolution as Landsat 8, but with the advantage of being a hyperspectral 

sensor with 198 bands and a 10 nm bandwidth (Pearlman, et al. 2003). This means 

that hyperspectral imagery can be captured over larger areas then airborne 

hyperspectral imagery, and without the high cost. 

 

The first applications of the EO-1 Hyperion sensor to weeds were Ramsey III and 

Nelson (2005), Ramsey III, et al. (2005b) and Ramsey III, et al. (2005c), who 

developed an approach to map the low percentage canopy cover of Chinese tallow 

across a study area that included coastal and upland areas along the Texas and 

Louisiana borders. The method allowed Chinese tallow to be detected at 10% and 

15% cover within pixels at 68% and 85% percent accuracy, which was equivalent to 

10 m x 10 m and 15 m x 15 m areas respectively (Ramsey III, et al. 2005c).  

 

In an application of EO-1 Hyperion to aquatic weeds, Pengra, et al. (2007) used an 

approach equivalent to the SAM to map the weed Phragmites australis at Green Bay, 

Wisconsin. The accuracy of the classification (user’s and producer’s accuracy of 

61% and 69%) was similar to a previous mapping attempt using high spatial 

resolution hyperspectral imagery (Bachmann, et al. 2002). The spatial arrangement 

of Phragmites along shorelines in strips of 20 m or less precluded it from being 

represented in pure pixels, but the authors noted that the advantage of Hyperion 

imagery was that it covers large areas, and is a means of locating hotspots of the 

species, which could then be surveyed in the field. 
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In a recent study, Somers and Asner (2013) mapped the weed Morella faya and a co-

occurring native tree Metrosideros polymorpha in montane rainforest on the island of 

Hawaii using a time series of Hyperion images and Multiple End-member Spectral 

Mixture Analysis (MESMA). A feature selection approach was used to select the 

optimum bands and maximise separability between end-members in order to 

highlight small spectral and phenological differences between Morella faya and 

Metrosideros polymorpha. A threshold independent approach identified the optimum 

threshold (Kappa) for single band images ranged from 0.51 to 0.69 and 0.78 for a 

multiple image dataset. The results indicate that the feature selection approach could 

produce acceptable accuracy results even when a temporal series of images did not 

cover all phonological stages (e.g. due to cloud cover). 

2.7 Remote Sensing of Paterson’s Curse 

The first application of remote sensing to Paterson’s curse was Ullah, et al. (1989b) 

at a study site east of Albury-Wodonga near Lake Hume, New South Wales. Contrast 

enhancement and de-correlation stretches were applied to two 1988 Landsat TM sub-

scenes (5th and 29th of November) in order to map medium to dense Paterson’s curse 

infestations in areas of pasture. The de-correlation stretches highlighted dense 

Paterson’s curse infestations on the imagery, but also forest cover types. The value of 

the study was in identifying possible instances of spectral overlap between Paterson’s 

curse and co-occurring vegetation, but was comprised by the lack of a formal 

accuracy assessment, and no description of the dense and medium classes mapped on 

the imagery (e.g. percentage cover).  

 

In a later study at the same location, Bulman (2004) used Landsat TM and high 

spatial resolution (1.2 m) CASI hyperspectral imagery. An index called the 

Paterson’s Curse Index (PCI) was derived from the spectral differences of CSIRO 

laboratory spectra of Paterson’s curse flowers and whole plant material. Using the 

same 1988 Landsat TM images as Ullah, et al. (1989b), Bulman (2004) tested a 

range of techniques including principal component analysis, decorrelation stretch, 

ISODATA unsupervised classification, and maximum likelihood classification. 

Paterson’s curse was mapped from the CASI image from a SAM classification and 

the PCI. The Landsat TM imagery over-estimated the spatial extent of Paterson’s 

curse in adjacent forested areas, while less dense infestations went undetected due to 
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spectral overlap with pasture species. In contrast, the CASI imagery was more 

effective in discriminating smaller infestations, and the greater number of spectral 

bands was superior over Landsat TM for highlighting the spectral differences 

between Paterson’s curse and surrounding land cover. As with the work of Ullah, et 

al. (1989b), no formal accuracy assessment was performed. The classification results 

were visually assessed and evaluated through field knowledge of the study area.   

 

Bulman (2004) quantitatively modelled the floral proportion cover of Paterson’s 

curse with remotely sensed imagery. The percentage cover of Paterson’s curse 

flowers in 1 m² quadrats was visually estimated from vertical field photographs and 

band-combinations and indices from CASI hyperspectral data were modelled with 

floral percentage using linear regression. No significant relationships between image 

and field data were reported, and the floral density estimates were too low to show 

any meaningful relationship with image pixel values. Bulman (2004) acknowledged 

the limitations of visual estimation for deriving floral cover estimates, and 

recommended the development of a method to quantitatively extract the floral 

percentage of Paterson’s curse from field photography.   

 

Bulman (2004) identified three aspects for further work that were relevant for the 

current research, and could make a contribution towards determining the utility of 

remote sensing for mapping and monitoring Paterson’s curse: 

 

(i) The development of a quantitative method that can relate floral density to 

a sensor. Bulman (2004) suggested a ‘Floral Area Index’, analogous to 

the common Leaf Area Index (LAI) used in many quantitative studies 

linking remotely sensed data to field data. A method of deriving such 

estimates from photographs collected in the field was an idea worth 

further investigation; 

 

(ii) The relationship between floral density and plant density of Paterson’s 

curse in the field. Bulman (2004) proposed that floral density could be a 

surrogate for plant (infestation) density; and 
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(iii) The detection limits of Paterson’s curse with regards to spectral and 

spatial resolution from different sensors. The detection limit defines the 

threshold of weed density that can be detected (e.g. floral density) 

according to the resolution of the data.   

 

The spectral properties of Paterson’s curse and other cover types were investigated 

by Schut and McIntyre (2009) at two study sites in south west Western Australia. 

Spectra of Paterson’s curse flower and plant material were recorded with a 

spectroradiometer, and concurrent digital field photographs of Paterson’s curse floral 

cover were captured. Linear unmixing was applied to end-members, and increasing 

abundance of Paterson’s curse was simulated by producing linear mixtures from the 

flower and green stem material of Paterson’s curse, and senescent vegetation 

material. Linear regression of the spectral unmixing and floral cover resulted in R² 

values of 0.67 and 0.54 for the two study sites. An index called the Normalised 

Difference Blue Index (NDBI) was derived from the spectral differences at 430 and 

490 nm. The R² values from the NDBI for the two sites were 0.71 and 0.46. The blue 

peak from Paterson’s curse flowers of the modelled spectra at 430 nm was ‘diluted’ 

when mixed with green or dead material, and flower fraction was difficult to extract 

when mixed, and was dependent on the ratio of green and dead material. 

2.8 Summary 

The following section summarises the key findings from the methodological and 

literature review, and links them to the following chapters in the thesis. 

 

Vegetation has been particularly amenable to detection with remote sensing, due to 

chemical and physical properties that make it spectrally different to other materials, 

especially in the red-edge region. Applying remote sensing to weeds requires a 

consideration of the properties of the weed species that makes it distinct from co-

occurring vegetation and land cover types. Successful examples of remote sensing 

for a weed species have utilised features that maximise differences, such as timing of 

flowering and flower colour, foliage density and colour, structure, and spatial 

patterning. For example the purple flowers of Paterson’s curse and the dense 

coverage are a particularly distinctive feature, and have been the impetus for 

previous remote sensing applications to detect and map the species. 
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The resolution of a sensor is an important consideration for any remote sensing 

application to weeds. The spatial, spectral, radiometric, and temporal resolution has 

to be considered in the light of which combination will maximise the ability of the 

sensor to discriminate the weed species. Often a compromise between the different 

resolution types is necessary. Three types of remote sensing data with different 

resolution will be considered in this thesis: field spectroscopy in Chapter 4, airborne 

high spatial resolution multispectral imagery in Chapter 5, and satellite hyperspectral 

imagery in Chapter 6. Field spectroscopy has been another valuable technique for 

determining the utility of remote sensing for detecting weeds, and for calibrating 

field and image data. Medium resolution satellite remote sensing has been shown to 

be inadequate for detecting Paterson’s curse due to spectral confusion with other 

vegetation types. Therefore, in this thesis, high spatial resolution multi-spectral data 

will be investigated. Satellite hyperspectral data with medium spatial resolution 

could be useful for detecting Paterson’s curse, given the limited area coverage and 

higher cost of airborne hyperspectral data. EO-1 Hyperion was used in Chapter 6, as 

it covers a larger area than airborne, but has a spectral resolution similar to airborne 

hyperspectral sensors. 

 

The literature review highlighted the advantages and limitations of various image 

classification algorithms and approaches. Traditional non-parametric classifiers were 

shown to be inferior to non-parametric classifiers, and per-pixel classification 

approaches were not as effective as contextual or per-area approaches. In Chapter 5, 

two non-parametric approaches - ANN and kNN are used to classify DMSI imagery. 

The review showed that matched filtering and mixture tuned matched filtering were 

both effective for classifying hyperspectral imagery when not all end-members or 

cover types were known. The matched filter approach is used in Chapter 6 for 

classifying satellite hyperspectral imagery. 

 

A quantitative approach to accuracy assessment is important for the current research, 

given the inadequacies in past weed remote sensing work, especially for Paterson’s 

curse. For hard classification output, the error matrix and Kappa statistic provide a 

quantitative and robust method of assessing the accuracy, and is utilised in the digital 

multispectral imagery (DMSI) classification in Chapter 5. For soft classification, 
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density dependent (Kappa threshold) and density independent (e.g. ROC) methods 

have been shown to be robust approaches. These approaches will be used in Chapters 

5 and 6 for assessing the accuracy of the DMSI and Hyperion soft classification 

output. 

 

The next chapter describes the study area, study species (Paterson’s curse) and the 

datasets used in the research (remote sensing and field data). The software and 

hardware used in the research are also described. 
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3 STUDY AREA, STUDY SPECIES AND DATASETS 

3.1 Introduction 

The following chapter describes the characteristics of the study area and the datasets 

used in the research. Section 3.2 describes the rationale for selecting the study area, 

and then describes the general characteristics such as climate, topography, and land 

use. Section 3.3 provides a general description of Paterson’s curse, followed by its 

impacts and benefits, and management strategies. Sections 3.4 to 3.7 describe the 

datasets used for the research, including the remotely sensed datasets, the field data 

used to validate the analyses, and a brief description of the software and hardware 

used.  

3.2 Characteristics of the Study Area 

3.2.1 Selection and rationale 

Potential study sites were selected from a database of Paterson’s curse infestation 

records provided by the Department of Agriculture and Food, Western Australia. The 

database records were overlaid on property boundaries in a GIS, and properties 

located within 150 km of Perth, and containing more than 100 ha of Paterson’s curse 

were short-listed. Some properties located at a distance greater than 150 km north of 

Perth had very large infestations, but the logistics of travelling that far from Perth for 

fieldwork was considered to be too restrictive, and permission to conduct fieldwork 

on these properties was not forthcoming. Based on the initial study area selection 

process, the Chittering Shire was found to have some of the largest infestations of 

Paterson’s curse within a reasonable distance (less than a 1.5 hour drive) from Perth.   

 

The chosen study area was located approximately 100 km north of Perth, within 10 

km of the town of Bindoon (Figure 3.1), and comprised three properties: Catholic 

Agricultural College Bindoon (CACB) (3643 ha), Morden Downs (664 ha), and 

Bindarie (1163 ha). The study area was located within an hour’s drive of the Perth 

metropolitan area. This was an important issue when considering short windows of 

opportunity for collecting field data concurrently with image data. In general, 

property sizes closer to Perth are smaller, and hence the management of Paterson’s 

curse and other pasture weeds tends to be more active.  



66 
 

 

  

Figure 3.1 Location of properties used as study sites: 1) Catholic Agricultural 
College Bindoon; 2) Morden Downs; and 3) Bindarie. 

3.2.2 Physical features 

The primary land use in the area around Bindoon is dominated by dry-land 

agriculture (mainly cropping) and conservation and natural environments (Figure 

3.2). In the vicinity of the Bindoon township, the land use is described as ‘intensive 

use’, which includes residential, recreational, and manufacturing and industrial, and 

animal production (Beeston, et al. 2001). There are also smaller areas of irrigated 

agriculture (e.g. horticulture). The CACB property is comprised of similar 

proportions of dry-land agriculture and conservation and natural environments, as 
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well as small area of intensive animal production. The conservation and natural 

environment is characterised by areas of remnant vegetation dominated by Eucalypt 

woodland (Department of the Environment and Water Resources 2007). The 

property has a fully functional farm as part of an educational institution, which 

includes approximately 300 head of cattle, 6000 sheep, a piggery, poultry and horses 

(Catholic Agricultural College Bindoon 2007). The land use of the Bindarie and 

Morden Downs properties is mostly comprised of dry-land agriculture and small 

areas of remnant Eucalypt woodland. 

 

Figure 3.2 Land use on the three study area properties, and  the general area 
around the town of Bindoon (from Beeston, et al. 2001). 
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3.2.3 Vegetation and soils 

The vegetation and soils described for the study sites are based on the landscape unit 

descriptions from Schoknecht, et al. (2004).   

A summary table and map of the landscape units for the CACB property are 

shown in Appendix B (Table B.1 and Figure B.1). The dominant unit for the 

property (253Ju_2c) comprises 39% of the area, and is comprised of very gentle to 

moderate hill slopes, with red and yellow duplex soils, which cover most of the 

areas on the property that are utilised for cropping and pasture. Three other units 

(253Ju_2a, 253Bn_2x, and 253WnYa6) comprise 10 to 12% of the property area 

each, with the remaining units comprising less than 5% each. The 253Ju_2a unit is 

characterised by remnant Eucalyptus spp. woodland, particularly on some steeper 

slopes and knolls not suitable for pasture or cropping. The property is 

intersected by gentle to moderately sloping valleys with alluvial soils 

(253Ju_3an and 253Ju_3a). These areas are moderately saline, and are 

comprised of lower lying areas prone to inundation. 

A summary table and map of the landscape units for Bindarie and Morden Downs 

properties are shown in Appendix B (Table B.2 and Figure B.2). The properties 

are dominated by gentle to moderate hill slopes (1–15%), with dominant Eucalypt 

spp. woodland, and some saline prone areas. The soil types are highly variable, 

with duplexes (red, yellow), sandy loams, clay, shallow gravels, sands and laterite. 

3.2.4 Topography 

Topographic information for the three properties was derived from a high spatial 

resolution 1 m Digital Elevation Model (DEM) supplied by the Department of 

Agriculture and Food Western Australia: the mean elevation of the CACB property 

is 234 m (Australian Height Datum) with a range of 164 to 291 m (35 m standard 

deviation); the mean elevation of the Morden Downs property is 275 m with a range 

of 237 to 307 m (11 m standard deviation); and the mean elevation over Bindarie is 

223 m with a range of 162 to 285 m (26 m standard deviation). 
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3.2.5 Climate 

The climate in the study area is hot-summer Mediterranean, characterised by long 

warm dry summers and winter dominant rainfall (Bureau of Meteorology 2010). The 

nearest rain gauge station to the Bindoon study sites is located approximately 50 km 

away at Gingin Airport (31.46° S, 115.86° E). Climate data were available from 

Bureau of Meteorology records collected between 1996 and 2010 (Table 3.1). The 

average annual rainfall for Gingin Airport for the period was 661 mm, with most of 

the annual rainfall occurring in the winter/spring months of May to September, as 

well as the highest number of rain days (> 10 days per month).  

Table 3.1 Mean monthly rainfall data for Gingin Airport from 1996-2010: 
(Source: Bureau of Meteorology 2010).  

 J F M  A M J J A S O N D 
Mean monthly 
rainfall (mm) 16 5 16 30 79 119 128 106 84 39 18 7 
Highest 
monthly 
rainfall (mm) 96 26 52 70 139 236 214 141 126 93 51 32 
Mean number 
of rain days  2 2 4 7 11 14 17 15 14 8 5 3 
 

The mean temperature and humidity data for Gingin Airport is shown in Table 3.2. 

The number of days above 30°C increases from 2.9 to 9.1 from October to 

November (spring to summer transition). The mean maximum daily temperature 

increases incrementally through spring (August-October), and increases significantly 

from November to a maximum of 33ºC in February. 

Table 3.2 Mean temperature and humidity data for Gingin Airport from 1996-
2010  (Source: Bureau of Meteorology 2010). 

 J F M A M J J A S O N D 
Mean daily max 

temp (°C) 33 33 31 27 23 20 18 19 20 24 28 30 
Mean daily min 

temp (°C) 16 17 15 12 9 7 6 6 7 9 12 14 
Mean number of 

days temp > 
30°C 20 19 16 6 1 0 0 0 0 3 9 13 

Mean daily 9 am 
rel. humidity (%) 48 51 55 65 71 78 80 77 70 59 51 48 
Mean daily 3 pm 
rel. humidity (%) 33 33 35 43 49 56 58 55 54 46 39 35 
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3.3 Paterson’s Curse 

3.3.1 Description 

The distinctive flowers of Paterson’s curse are 18 to 30 mm long, funnel shaped, 

usually purple in colour but can be blue, pink or (rarely) white (Piggin and Sheppard 

1995). The normal flowering period for Paterson’s curse plants is between two to 

five months, but can be reduced by drought conditions (especially in shallow soils), 

or increased by moisture availability, and defoliation (Piggin and Sheppard 1995). 

Under Australian conditions, seedlings usually emerge in late summer/early autumn 

(February to April), flower in late winter/early spring, then die in summer (Piggin 

and Sheppard 1995). Those plants growing near areas of higher moisture availability 

(e.g. drains, rivers, dams, and roadsides) can flower into summer, and die in late 

summer/early autumn (Piggin and Sheppard 1995). 

 

Paterson’s curse is a prolific seed producer, with a single mature plant capable of 

producing up to 10,000 seeds in a year (Piggin and Sheppard 1995). A consequence 

of the high seed production is a large seed bank in the soil.  In New South Wales, the 

seed bank in un-grazed pasture has been as high as 30,000 seeds m², and 2000–

18,000 seeds m² in grazed areas (Piggin and Sheppard 1995). Although the seeds are 

small and heavy, and subsequently not easily spread by wind, other seed vectors 

include ants, water birds, and anthropogenic activities. Seeds can be spread between 

farms and districts by transport in soil, animal fodder and grain (especially during 

drought), movement of livestock, and by vehicle (Parsons and Cuthbertson 2001). 

3.3.2 Impacts and benefits 

Paterson’s curse has been listed as a noxious weed Australia-wide for its numerous 

negative impacts on the agricultural industry. However, the species does possess 

productive or positive values which make it valuable. This apparent ambiguity 

between positive and negative outcomes of the species was the reason behind a 

senate enquiry in the 1980’s in light of proposed introduction of biological control 

vectors (Delfosse 1985). The negative and positive aspects of Paterson’s curse are 

described below. 
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3.3.2.1 Negative impacts 

Paterson’s curse plant material contains pyrrolizidine alkaloids, which have been 

demonstrated to have deleterious effects on animals and livestock. Pigs and horses 

(non-ruminants) are most susceptible to alkaloid poisoning as they lack the necessary 

micro-organisms in the stomach to break down the alkaloids, and suffer damage to 

the liver tissue (Parsons and Cuthbertson 2001). Ruminants such as sheep, goats, and 

cattle are less affected by the toxins (Parsons and Cuthbertson 2001). Culvenor et al. 

(1984) found that sheep were not adversely affected by the toxins, but subsequent 

work by Seaman et al. (1989) and Seaman and Dixon (1989) found that Merino 

weaners died from poisoning when fed a sole diet of Paterson’s curse, and lost health 

and condition when grazing on a mixed diet. Smyth et al. (1997) advocated that 

careful grazing management of Paterson’s curse on a paddock by paddock basis 

during the flowering period can reduce the exposure of livestock to the toxicity of the 

plants, especially if the more toxic resistant Merino wethers were used (Piggin 1979). 

 

Paterson’s curse can reduce the productivity of pastures by replacing more desirable 

pasture species. For example the nitrogen content of soils can be reduced when 

nitrogen fixing species are outcompeted (Parsons and Cuthbertson 2001). The 

seedling density of Paterson’s curse can dominate other species and the large broad 

rosette leaves shade and smothers other species (Parsons and Cuthbertson 2001). 

Other impacts of Paterson’s curse include: the pollen affecting human health and 

causing hay fever (Parsons and Cuthbertson 2001); irritation to livestock and humans 

by the hairy stems and leaves (Parsons and Cuthbertson 2001); a reduction in 

economic value of hay and grain contaminated with Paterson’s curse seeds 

(Sheppard and Smyth 2012); and the reduced market value of properties infested 

with the species (Sheppard and Smyth 2012). 

 

Anecdotal accounts from farmers in Western Australia, particularly those in high 

rainfall areas show a general consensus that it is a competitive weed in pastures 

which excludes beneficial plants and does not improve the forage value of the 

pastures (Dodd, et al. 1993). However a contrasting set of attitudes has emerged 

between Australian farmers who lack Paterson’s curse on their properties and are 

serious about enforcing control measures to ensure their property is not infested, 

versus other farmers who already have the weed on their property, and have adopted 
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a ‘leave it be’ attitude towards the weed and its control (Parsons and Cuthbertson 

2001). 

3.3.2.2 Benefits 

Paterson’s curse is an important plant to the honey industry in Australia. The large 

amounts of pollen and nectar produced by the species enables bee populations to 

increase early in the flowering season, which allows both plentiful honey to be 

produced and a better harvest of plant species that flower later in the season (Parsons 

and Cuthbertson 2001). Piggin (1977) demonstrated that Paterson’s curse remained a 

useful pasture species due to its nutritive value and high productivity in autumn and 

winter, when other pasture species are less productive. Some farmers in marginal and 

semi-arid lands in Australia value the species for increasing pasture production and 

as a drought resistant fodder (Dodd, et al. 1993; Parsons and Cuthbertson 2001).  

3.3.3 Management  

A variety of control methods for Paterson’s have been proposed, but the 

effectiveness of the methods has largely gone unreported (Piggin 1979). The 

methods include burning, hand pulling, herbicide treatment, grazing, and cultivation 

(Piggin and Sheppard 1995). These methods can be costly, and have a negative 

impact on other pasture species, soil, and livestock (Smyth, et al. 1997). Spray 

grazing is a control technique in which a moderate amount of herbicide is applied to 

Paterson’s curse seedlings in autumn, followed by a short intense period of grazing 

by ruminants (Piggin 1979; Smyth, et al. 1997). The method has shown to 

significantly reduce the cover of Paterson’s curse, while reducing herbicide costs and 

the environmental impact (Piggin 1979). Another method is ‘graze topping’, where 

flowering Paterson’s curse infestations are grazed by livestock, resulting in a 

reduction of seed production in the short term, and a long term impact on the seed 

bank (Dowling and Wong 1993; Smyth, et al. 1997).  

 

Sheppard and Smyth (2002) observed that the seed bank of Paterson’s curse under 

normal pasture conditions declined rapidly in cultivated and grazed (simulated) 

pastures. In cultivated areas, Paterson’s curse can be controlled more effectively, due 

to a reduction in seed germination in hot bare soil, and control methods such as 

herbicide application are more effective (Sheppard and Smyth 2012). The presence 
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of perennial grasses can benefit the control of Paterson’s curse by occupying 

recruitment space, but have no impact on the decline of the underground seed bank 

(Sheppard and Smyth 2012). The control of Paterson’s curse relies on a long term 

strategy of eliminating the seed bank by controlling emergent seedlings (Sheppard 

and Smyth 2002). Sheppard and Smyth (2002) highlighted the risky nature of 

strategies to reduce the seeding capacity of Paterson’s curse populations: without a 

long term management strategy of the pastures, any remaining plants after short to 

medium term treatment have the capacity to return the seed bank to pre-control 

conditions.  

 

Australia is the presently the only country to use biological control on Paterson’s 

curse (Sheppard and Smyth 2012). In 1972 CSIRO investigated a range of possible 

agents from Europe. After subsequent trials, eleven insects were tested, starting in 

1981 with a moth (Dialectica scalariella), followed between 1988 and 1994 by two 

root weevils (Morgulones larvatus and M. geographicus), two flea beetles 

(Longitarsus echii and L. aencus), a cerambycid beetle (Phytoecia coerulescems), 

and a pollen beetle (Meligethes planiusculus) (Sheppard and Smyth 2012). Of the 

introduced insects, M. larvatus and L. echii have been shown by field to studies to 

cause mortality in plants prior to flowering and have led to a large decline of 

Paterson’s curse where introduced (Sheppard and Smyth 2012). 

3.4 Remote Sensing Data 

3.4.1 Digital Multi-spectral Imagery (DMSI) 

DMSI imagery was provided by Specterra Services, a Perth-based remote sensing 

company. The DMSI is a frame transfer type-imaging sensor designed for mapping 

and monitoring vegetation at high spatial, spectral, and radiometric resolution (Canci, 

et al. 2006). The sensor is made up of four 12-bit digital charge-coupled device 

cameras, recording 1024 x 1024 pixels per frame. Four inter-changeable narrow (20 

nm width) band-pass interference filters are standard (Table 3.3). The band centres 

are located in close proximity to the prominent vegetation reflectance features in the 

electromagnetic spectrum.   
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Table 3.3 Spectral band centres and spectral feature properties for DMSI bands. 
Modified from Canci, et al. (2006). 

Band Wavelength 
(nm) 

Bandwidth 
(nm) Features 

1 450 20 Plant pigment absorption 
2 550 20 High transmission and reflectance 
3 675 20 Chlorophyll absorption 
4 780 20 High scattering and transmission 

 

Airborne digital imagery such as DMSI has a number of advantages over satellite 

remotely sensed imagery: imagery can be captured during optimum periods at 

relatively short notice, which presents an opportunity for researchers to take 

advantage of breaks in the weather, and also allowing field data collection and image 

capture times to be co-incident; the aircraft platform allows variable spatial 

resolution to be chosen, decided by the altitude of the aircraft at time of capture; the 

DMSI sensor has a small base-to-height ratio compared to other airborne 

photogrammetric cameras, which allows images to be captured at high solar angles 

and illumination levels, whilst minimising view angle and illumination angle effects; 

DMSI has narrow field of view, which minimises the look angle, and produces a 

more consistent spectral response across an image (Canci, et al. 2006). 

 

DMSI data was captured over the Catholic Agricultural College Bindoon on October 

14 2005 at noon on a clear dry day. A Cessna 182 flew at an altitude of 5500 feet to 

capture image data with a spatial resolution of one metre. The spatial resolution of 

one metre was considered optimum for the study for the following reasons: a higher 

spatial resolution was possible (e.g. 0.5 m) but considered redundant for the purpose 

of mapping non-woody vegetation and would increase the costs associated with 

increased flying time; the pixel size allowed a substantial area to be captured, and the 

resulting dataset was of a size that was manageable on an average personal computer.   

 

Image processing was performed in-house by SpecTerra Services. Each image frame 

was registered to ortho-rectified aerial photography using first order polynomial 

warping and nearest-neighbour re-sampling. A final mosaic of 4534 columns by 

5475 rows (4.5 x 5.5 km) was produced using cut-line feathering over three pixels. 

The mosaic was radiometrically corrected by SpecTerra using in-house software. The 
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effects of the BDRF were minimised by an algorithm (developed by SpecTerra)  

which was applied to the imagery (Roujean, et al. 1992). The algorithm reduces 

BRDF from 20% of the dynamic range of individual frames to less than 5%, 

producing a radiometrically seamless image mosaic containing a significant 

reduction in BRDF and solar hotspot effects (Canci, et al. 2006). The location of the 

mosaic image at the Catholic Agricultural College Bindoon property is shown in 

Figure 3.3. 

 

Figure 3.3 Extent of DMSI mosaic image (outlined in white) at the Catholic 
Agricultural College Bindoon property (outlined in yellow). 

3.4.2 EO-1 Hyperion satellite hyperspectral imagery 

3.4.2.1 Description and background 

The Earth Observing 1 (EO-1) satellite was launched on November 21 2000 as part 

of the NASA New Millennium Program (NMP). The purpose of the program was to 

showcase new technologies and strategies for improved earth observations (Ungar, et 
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al. 2003). The EO-1 mission would evaluate experimental earth observation sensors 

by directly measuring performance with a diverse range of applications (Ungar, et al. 

2003). The EO-1 satellite contains three sensors: Hyperion, Advanced Land Imager 

(ALI), and the Linear Etalon Imaging Spectral Array (LEISA) Atmospheric 

Corrector (LAC) (Ungar, et al. 2003). The EO-1 sensors were assembled under time 

constraints using backup components from the Lewis HyperSpectral Imager (HSI), 

which failed to achieve a stable orbit after launch and never captured any imagery 

(Jupp and Datt 2004). The orbit path of EO-1 is the same as Landsat 7 (Figure 3.4) in 

order to provide direct comparison between the data types, but crosses the equator 

one minute later (Ungar, et al. 2003).  

 

 

Figure 3.4 EO-1 and Landsat 7 ground tracks. Adapted from Ungar, et al. (2003). 

The main characteristics of the Hyperion sensor are shown in Table 3.4. Hyperion 

has a single telescope and two spectrometers; a visible/near infrared (VNIR) and a 

short-wave infrared (SWIR) spectrometer (Pearlman, et al. 2003). Hyperion has a 

total of 220 bands (bandwidth = 10 nm), but only 198 bands are unique due to non-

functioning detectors on the array (Pearlman, et al. 2003). Hyperion is a push-broom 

sensor, with a swath width of 7.7 km, and an along-track length of 185 km.  
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Table 3.4 Characteristics of Hyperion, with ALI, and Landsat 7 ETM+ for 
comparison. Adapted from Ungar, et al. (2003).  

  Landsat 7 
ETM+ EO-1 ALI EO-1 

Hyperion 
Spectral range 

(µm) 0.4–2.4  0.4–2.4  0.4–2.5  

Spatial resolution 
(m) 30  30  30  

Swath width (km) 185  37  7.7  
Spectral resolution 

(nm) variable variable 10  

Spectral coverage discrete  discrete continuous 
Number of bands 7 10 220 

 

Following launch and establishment of a stable orbit by the EO-1 satellite, a NASA 

Science Validation Team (SVT) was established to provide validation and scientific 

evaluation. A quantitative validation approach was used, in conjunction with Landsat 

7 imagery, airborne imagery, and field data (Ungar, et al. 2003). The SVT for the 

Southern Hemisphere campaign was represented by an Australian component of 23 

principal and co-investigators (Jupp and Datt 2004). Three sites in Australia were 

used (Lake Frome, Mount Fitton, and Coleambally) to assess performance against 

specifications (Jupp and Datt 2004). Two years were spent on validating different 

applications from sites in Argentina, North America, and Australia. Many of the 

validation studies were reported in the Earth Observing 1 Special Issue of IEEE 

Transactions in Geoscience and Remote Sensing in June 2003. Some examples of the 

validation studies conducted in Australia include agriculture at Coleambally (Datt, et 

al. 2003); forestry at Tumbarumba (Coops, et al. 2003); water quality at Moreton 

Bay and Lake Argyle (Brando and Dekker 2003); coral reefs at the Great Barrier 

Reef; rangelands at Kunoth; and minerals at Mounts Fitton and Panorama.   

 

During the two years of validation, there were no reported failures of the spacecraft 

or the sensor components , and the original EO-1 mission objectives were all 

satisfied (Ungar, et al. 2003). Some issues with Hyperion imagery did emerge during 

the validation phase including a low signal-to-noise ratio, reduced performance from 

atmospheric interference and noise in the regions below 500 nm, 950-1000 nm, and > 

2300 nm, streaking from malfunctioning detectors, and the requirement for 

specialised atmospheric correction software (Jupp and Datt 2004).  
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The demand from users for EO-1 imagery after the validation period prompted 

NASA to start the ‘Extended Mission’ in February 2002, making it possible to task 

the satellite for specific data acquisitions (Ungar, et al. 2003). The EO-1 mission was 

extended to take into account the lack of satellite hyperspectral platforms, after the 

OrbView-4 mission failed in September 2001 (Jupp and Datt 2004). EO-1 (ALI and 

Hyperion) data were available via the Australian Centre for Remote Sensing 

(ACRES) and the United States Geological Survey (USGS) for users in Australia and 

overseas. The Hyperion sensor has been utilised during the Extended Mission for a 

number of applications, including invasive plant mapping (Pengra, et al. 2007; 

Ramsey III and Nelson 2005; Ramsey III, et al. 2005a), discriminating different 

sugar cane species (Galvao, et al. 2005); (Galvao, et al. 2006), classifying vegetation 

and crop species (Thenkabail, et al. 2004), and detecting rust disease in sugarcane 

(Apan, et al. 2004).  

3.4.2.2 Acquisition of EO-1 Hyperion data  

Hyperion data for this research was obtained from a Data Acquisition Request 

(DAR) that was lodged with ACRES. The DAR consisted of the geographic 

coordinates of the area of interest and a time period (or capture window) over which 

the capture of an image was desired. During any particular window, the EO-1 

satellite makes a limited number of overpasses. On each overpass date during the 

window, image data will be captured and inspected at NASA for cloud cover. If a 

particular image contains less than 25% cloud cover, the acquisition is considered to 

be successful, and the image is processed and sent to the user. If a capture is not 

successful, then further attempts are made on subsequent overpasses. The individual 

overpass dates were sourced from the USGS EO-1 website acquisition schedule 

(United States Geological Survey 2014). This schedule was used for this research to 

plan fieldwork and a ground truth data collection campaign to coincide with the date 

(s) of the satellite overpass.      

 

The capture window for the research was from October 10 to November 10 2006.  

This window was chosen as it coincided with the peak flowering period of Paterson’s 

curse, and there was a reduced likelihood of cloud cover over the study area from the 

end of spring (mid-October). Images were captured during overpasses on October 23 

and 28, but most of the study area contained cloud and associated shadow, so the 
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images from those dates were not used. A suitable image was captured on Thursday 

November 2nd 2006 (Table 3.5). Conditions during the time of overpass (10:30 am 

Western Standard Time) were clear and cloud free. The Hyperion product was 

supplied as a Level 1R radiometric corrected image in 16-bit signed radiance values. 

The dimensions of the image were 45 km in the along-track direction (length) and 

7.65 km in the across-track direction (width).  

Table 3.5 Properties of acquired Hyperion image (from product metadata). 

Acquisition Date November 2, 2006 
NW Corner 31°01'41.25"S, 116°12'54.73"E 

NE Corner 31°02'38.74"S, 116°17'39.26"E 
SW Corner 31°52'04.25"S, 115°59'01.19"E 
SE Corner 31°53'02.20"S, 116°03'48.31"E 

Image Cloud Cover (%) 0-9   
Scene Start Time (GMT) 2006:306:01:54:27.019 
Scene Stop Time (GMT) 2006:306:01:54:42.019 

Path 112 
Row 82 

Sun Azimuth  66.63° 
Sun Elevation 56.97° 

Satellite Inclination 98.16° 
Look Angle -5.93° 

 

3.4.3 Field spectroscopy data 

Radiance spectra of Paterson’s curse and other cover types were collected in the field 

using an Analytical Spectral Devices (ASD) Fieldspec Pro Jr. spectroradiometer 

(Analytical Spectral Devices Inc. 1999). This instrument captures data from 2150 

bands between 350 nm and 2500 nm.  In the 350 to 1100 nm range, the sampling 

interval is 1.4 nm between spectral samples (full width half maximum FWHM = 3 

nm) and 2 nm interval between spectral samples (FWHM = 10–12 nm) in the 1000 to 

2500 nm range. Data from the spectroradiometer was output into a raw digital 

number (16 bit) reflectance or radiance values in a binary and ASCII file. The 

procedure for processing the field spectroscopy data from this research is described 

in Chapter 4. 

javascript:show_guide('http://edcsns17.cr.usgs.gov/helpdocs/dict/EO1.html%23acquisition_date')
javascript:show_guide('http://edcsns17.cr.usgs.gov/helpdocs/dict/EO1.html%23ul_lat')
javascript:show_guide('http://edcsns17.cr.usgs.gov/helpdocs/dict/EO1.html%23ur_lat')
javascript:show_guide('http://edcsns17.cr.usgs.gov/helpdocs/dict/EO1.html%23ll_lat')
javascript:show_guide('http://edcsns17.cr.usgs.gov/helpdocs/dict/EO1.html%23lr_lat')
javascript:show_guide('http://edcsns17.cr.usgs.gov/helpdocs/dict/EO1.html%23cloud_cover')
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3.5 Validation and Field Data 

Chapter 2 highlighted the importance of validation data for assessing the accuracy of 

maps derived from remotely sensed data. The Paterson’s curse validation datasets 

used in the thesis were derived from on-ground field survey, and non-Paterson’s 

curse classes were derived from a combination of field survey and random selection 

from a GIS, based on field knowledge. Validation using other remotely sensed data 

(e.g. aerial photography) was not possible due to the lack of high resolution imagery 

close to the DMSI and Hyperion image capture dates. Field data provided a detailed 

and flexible approach to providing training data for image classification algorithms, 

and for validating the accuracy of a classification.  

 

Table 3.6 provides a summary of the field data used in the thesis. Random point data 

were collected in October 2005 to validate the classification of DMSI imagery 

discussed in Chapter 5. Field data were recorded from a systematic grid in October 

2006 for determining relationships between the floral density of Paterson’s curse and 

field spectroscopy data from the CACB study site discussed in Chapter 4. Random 

plot data were recorded in October 2006 at different properties in the Bindoon area 

for the purpose of providing validation data for indices and a matched filter 

classification of EO-1 Hyperion data. A description of these data is provided in 

Chapter 6. 

Table 3.6 Summary of the field datasets used in the research by chapter. 

Date collected Type Chapter No. PC 
records 

Mean floral 
cover (%) 

October 2006 Systematic (grid) 4 69 2.05 
October 2005 Stratified random 5 115 1.28  
October 2006 Random 6 84 N/A 

 

3.6 Software and Hardware  

3.6.1 Remote sensing and GIS software 

Several remote sensing and GIS software packages were used for the research. The 

remote sensing software packages used were: eCognition v. 4.0 (Baatz, et al. 2004), 

ERDAS Imagine v. 8.7 (Leica Geosystems 2005) , ENVI v. 4.5 (ITT Visual 

Information Solutions 2006c), and IDRISI Andes (Clark University 2006). For GIS 
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analysis, ESRI ArcGIS v. 9.x (ESRI 2004) was mostly used, although IDRISI Andes 

was used for some analyses due to its integrated GIS/remote sensing functionality. 

3.6.2 Statistical software 

The statistical software used for the research was SPSS for Windows v. 15 (SPSS 

Inc. 2007). The software was used for the correlation and regression analyses in 

Chapters 4 and 5, and logistic regression and receiver operating characteristic (ROC) 

analysis in Chapters 5 and 6.   

3.6.3 Global Positioning System (GPS) 

A handheld GPS (Lowrance iFinder H²O) was used to collect validation data in 

Chapters 5 and 6. This GPS used the Global Navigation Satellite System (GNSS) 

common to all handheld GPS units in Australia.  The location accuracy of the unit 

depends on the quality of the line-of-site between receiver unit and the satellites. The 

GPS had a location accuracy of approximately 5–10 m in open areas away from tree 

canopies, which was typical of the pasture areas sampled during the field surveys in 

Chapters 5 and 6.   

 

A differential GPS (DGPS) was used to mark out transects for a survey at the CACB 

property to measure the floral cover of Paterson’s curse (reported in Appendix C). 

The DGPS Max (CSI Wireless Inc.) is a real-time DGPS, using the OmniSTAR 

Wide Area DGPS Service. Network stations are located in selected geographic 

locations around Australia, and they produce GPS correction data for a particular 

region, and transfer the data to an L-band receiving geostationary satellite. The 

corrected data is then transmitted over a large area to the DGPS Max L-band 

receiver, where the spatial coordinates are processed using Virtual Base Station 

(VBS) algorithms. The location accuracy of the receiver is approximately one metre, 

and depends on the quality of the line-of-sight between the GPS receiver and the 

satellite. 

3.7 Summary 

In this chapter, the properties selected for the study, and the general Bindoon area 

were described in terms of the physical and climatic properties, and the rationale for 

choosing them for the current research. The target weed species Paterson’s curse was 

described in terms of its physical characteristics, negative and positive impacts, and 
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management. The datasets selected for the research (DMSI and EO-1 Hyperion) are 

described, as well as the supporting field data, software and hardware. 
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4 IDENTIFYING OPTIONS TO DETECT PATERSON’S CURSE 
USING FIELD SPECTROSCOPY 

4.1 Introduction 

Field spectroscopy was highlighted in Chapter 2 as a valuable method for 

determining the utility of airborne and satellite remotely sensed imagery for mapping 

weed species. In that regard, it has been employed to: 1) determine the spectral 

separability of a target weed species from co-occurring vegetation and other cover 

types, according to parts of the electromagnetic spectrum that correspond to 

attributes of the target weed species, such as leaf and flower colour and canopy 

density; and 2) examine the effects of seasonality on the spectral properties of both a 

weed species and co-occurring vegetation, to determine the optimum period of the 

season to use remote sensing (e.g. Dehaan, et al. 2007; Everitt, et al. 1995; Everitt, et 

al. 1984; Everitt, et al. 1994; Everitt and Villarreal 1987; Lass and Callihan 1997; 

Martin, et al. 2011; Mitchell and Glenn 2009; Underwood, et al. 2003). Another 

advantage of field spectroscopy, as identified in Chapter 2, is that data are recorded 

over hundreds of narrow discrete bands, which allows band ratios and indices to be 

derived that exploit the maximum spectral differences between weeds and co-

occurring vegetation. These derived band ratios and indices can be related to bio-

physical attributes of weeds, such as foliage and flower cover (e.g. Bulman 2004; 

Martin, et al. 2011; Mirik, et al. 2006). 

 

The spectral properties of Paterson’s curse flowers have been investigated in several 

previous studies using spectroscopy (Bulman 2004; McGowen 1998; Mitchell, et al. 

2006; Schut and McIntyre 2009). The flowers have been shown to have distinct 

spectral differences to whole plants in two regions of the spectrum: 1) a shift in the 

red-edge to shorter wavelengths; and 2) a distinctive reflectance peak in the blue 

(400-500 nm) region. There has been previous work on the spectral properties of 

pigments in flowers, in which the reflection properties for flowers are related to 

pigment content, and has been measured spectrally (Hunt, et al. 2004). However 

there is no prior knowledge about the detection of Paterson’s curse by means of the 

spectral properties of the pigments in the purple flowers. In addition it is not clear 

how accurately pigment signatures from Paterson’s curse sampled in the field can be 

measured. In the absence of knowledge of the pigments in Paterson’s curse flowers, 
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using spectroscopy to detect Paterson’s curse will be based on a statistical 

relationship between spectral features (e.g. indices) and the percentage cover of 

flowers.   

 

This chapter analyses the spectral characteristics of Paterson’s curse and co-

occurring materials using field spectroscopy. The objectives of the chapter are to: 1) 

highlight the regions of the electromagnetic spectrum where differences between the 

spectra of Paterson’s curse and co-occurring materials are greatest; 2) determine if 

there is a relationship between the floral cover of Paterson’s curse and indices/band 

ratios and estimated floral cover from linear spectral un-mixing; and 3) assess 

whether the approach used in this chapter can be up-scaled (Milton, et al. 2009) to 

airborne and satellite multispectral sensors—given that such an approach was not 

within the scope of this research. 

4.2 Methods 

An outline of the methodology is shown in Figure 4.1, and the steps are described in 

the following sections. 

 

Figure 4.1 Flowchart outlining the methodology for the spectroscopy analysis. 
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4.2.1 Data collection 

A field survey was conducted in late October/early November 2006 to coincide with 

the acquisition of EO-1 Hyperion satellite data (Chapter 6). Field measurements of 

Paterson’s curse spectra were collected within a systematic sampling grid on the 

Catholic Agricultural College Bindoon (CACB) property on October 27, 2006. The 

location of the sampling grid (-31.291° S, 116.198° E) is shown as Site A in Figure 

4.2. The grid was located in an area of the CACB property where there was good 

variation in the floral density of Paterson’s curse for generating correlations with 

spectral information (see Section 4.2.5.3). The grid had dimensions of 150 m x 120 

m, and incorporated eight parallel transects located 15 m apart, and each transect 

included 10 sampling points at 15 m intervals. The 15 m spacing between 

measurements ensured that spatial variation in Paterson’s curse abundance was 

adequately captured. The sampling grid was marked by four survey poles positioned 

on the corners, and wooden stakes marked with flagging tape were placed at the 

beginning and end of each transect. A measuring tape was used to position the 

wooden stakes, and a compass and pacing were used to determine the locations of the 

sampling points along each transect.  

 

Radiance measurements were made with a Fieldspec Pro JR spectroradiometer and a 

fibre optic cable with a 25° field of view fore-optic. Each measurement was recorded 

at a consistent height of 1.7 m from the ground. In accordance with CSIRO 

guidelines, the elevation angle of the fore-optic was 58° from the horizontal plane 

and the azimuth angle was at 90° to the plane of the sun (Phinn, et al. 2008). A 

ground sampling area of approximately 0.45 m² was obtained using these parameters. 

At each location, four spectral measurements were made in a 2 x 2 pattern, separated 

by 1 m. Dark current and reference measurements were taken after every ten 

samples, using a 5 x 5 cm pure white Spectralon calibration panel with Lambertian 

reflectance properties. Spectrum averaging of ten samples was used for the reference 

and dark current measurements, and twenty-five samples for the field radiance 

measurements.  

 

All measurements were recorded between the hours of 10:30 and 13:00 to reduce the 

impact of shadow and low sun-angle on the measurements. Weather conditions 
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during the sampling were dry and warm: 26–28 degrees C, a relative humidity of 31–

39%, with no cloud cover (Bureau of Meteorology 2010). There was no evidence of 

recent rainfall at the survey site that would influence the spectral response of 

vegetation. No precipitation was recorded at Gingin Airport in the 48 hours prior to 

the sampling so it can be assumed that no precipitation occurred at the sampling site 

for that period due to the close proximity of Gingin Airport to the study area 

(approximately 50 km). 

 

The influence of other sources of radiance was minimal, as measurements were taken 

in large open area, separated by at least 50 m from potential sources of interference 

such as trees. Of the original 80 measurements recorded within the sampling grid, 11 

were corrupted and subsequently discarded. The remaining 69 were used in the 

subsequent analysis.  

 

A digital vertical photograph was captured at each measurement location. A wide-

angle lens (28 mm) digital camera (Ricoh Caplio 400G) was positioned 

approximately 1.7 m above the centre of each quadrat (nadir) on a modified camera 

tripod/lighting stand (Manfrotto 420b). Floral percentage cover was derived post-

survey using the object classification method described in Appendix C. The statistics 

of the floral cover measured from the grid are summarised in Table 4.1. The mean 

floral percentage of the 69 measurements was 2.1% with a standard deviation of 

1.2%.  

Table 4.1 Summary statistics for Paterson’s curse floral proportion cover from 
the systematic field grid at Catholic Agricultural College Bindoon. 

N Min 
(%) 

Max 
(%) 

Mean 
(%) 

SD 
(%) 

69 0.29  5.71  2.05  1.21  
 

Spectral measurements of dense Paterson’s curse were made from a site located on 

the CACB property, shown as Site B in Figure 4.2 (-31.31°S, 116.17°E). Radiance 

data were recorded from 30 measurements along a transect at 5 m intervals. At each 

location a digital photograph was captured. The floral cover from this transect was 

determined from the photographs using an object classification method described in 

Appendix C, and had a mean floral cover of 3.5% and a maximum of 8.8%.  
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Figure 4.2 Location of sampling sites A and B at the Catholic Agricultural 
College Bindoon. Site A: Systematic sampling grid; B: Horse 
paddock where dense Paterson’s curse spectra were measured. 

Spectra for flowers and green plant material from Paterson’s curse were recorded in 

the field on November 2, 2006 at the CACB. Approximately 20 measurements each 

were taken from flower and green material from mature Paterson’s curse plants. The 

fore-optic from the fibre optic cable was positioned as close to the target material as 

possible in order to collect a pure sample and minimise spectral mixing with other 

materials. Spectra of senescent plant material, green pasture material and soils were 

sourced from Schut, et al. (2010). These spectra represented the mean spectral 

response of the main cover types expected to co-occur with Paterson’s curse at a 

regional scale. 
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4.2.2 Data processing 

The raw radiance data from the spectrometer were converted to reflectance data 

using radiance measurements from the Spectralon reference panel. Signals between 

1361 and 1414 nm, 1801 and 1959 nm, and above 2401 nm were removed as 

attenuation of solar radiance by atmospheric water vapour caused high noise levels. 

For each measurement, a mean and a smoothed spectrum were calculated using a 

Gaussian filter with a sum of weights equal to one and a standard deviation of 12 nm. 

These smoothed spectra were subsequently used to calculate the first derivative and 

the continuum removed spectra (Heinz and Chang 2001; Kokaly and Clark 1999). 

The continuum was forced to include points at minor peaks around 555, 755, 1300, 

1700, 1800, 2020 and 2230 nm.  

4.2.3 Comparison of spectra 

The spectra of Paterson’s curse flowers, green stems, and dense Paterson’s curse 

were compared with reflectance spectra for green and senescent vegetation and 

common soils in south-west Western Australia from Schut, et al. (2010). The 

purpose of comparing spectra was to determine the general spectral properties of 

Paterson’s curse, relative to other cover types, and to previous studies that have 

examined the spectral properties of Paterson’s curse. The green vegetation spectra 

represented lush and dense cover and the senescent vegetation spectra represented 

brown vegetation that was covering the ground.  

4.2.4 Derivative analysis 

The red-edge position (REP) was calculated for the spectra of green vegetation, 

Paterson’s curse flowers and green stems, and dense (mixed) Paterson’s curse. First 

derivative spectra were derived from a first order difference, shown in Equation 4.1 

(Dawson and Curran 1998):  

 

      
             

  
                                                              (4.1)

      

Where       is the first difference transformation at a wavelength i midpoint between 

bands j and j+1; Rλ(j) is the reflectance at the j+1 waveband; and ∆λ is the difference 

in wavelength between j and j+1. 
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4.2.5 Relationships between spectra and floral cover 

4.2.5.1 Derivation of band ratios and indices 

Band indices were created by pairing each of the Paterson's curse spectra (dense 

Paterson's curse or Paterson's curse flowers) with a non-Paterson's curse spectra 

(senescent vegetation and green vegetation). For each pair, the reflectance values 

from the Paterson’s curse spectrum were subtracted from those of the non-Paterson's 

curse spectrum and the difference in reflectance was plotted. From each plot, 

appropriate bands were selected from regions of the electromagnetic spectrum where 

there were large but opposite spectral differences (i.e. a positive and negative 

difference). The purpose of the simple spectral difference approach was to produce 

indices that had the highest sensitivity to Paterson's curse. 

 

Other band ratios and indices were sourced from the literature and included the 

Normalised Difference Blue Index (NDBI) (Schut and McIntyre 2009), Paterson’s 

Curse Index (PCI) (Bulman 2004), the Red-Edge Normalised Difference Vegetation 

Index (reNDVI) (Gitelson, et al. 1996), the Normalised Difference Red-Edge 

(NDRE) (Barnes, et al. 2000), and the Red-Edge 2 (RE 2) ratio (Cloutis, et al. 1996). 

Also included was a red-edge band ratio derived from a first order derivative analysis 

of spectra from Paterson’s curse flowers and green vegetation (Section 4.2.4).  

4.2.5.2 Spectral unmixing 

Linear spectral unmixing (Section 2.5.3.2.1) was conducted on the spectra of 

Paterson’s curse from the systematic sampling grid at CACB, using end-members 

derived from Paterson’s curse flowers and stems, soils, and senescent and green 

vegetation (Section 4.2.1). Fractional coverage of soil, green and floral parts of 

Paterson’s curse plants and dead material was determined for each measurement 

location with a fully constrained, exhaustive search linear unmixing procedure (Schut 

and McIntyre 2009). With this procedure, sets of mixtures were created, including 

various combinations of the pre-defined end-members and four contrasting soil-

spectra. Sums of squared differences were calculated between the spectra and the 

mixtures over all bands between 500 nm and 2250 nm of the continuum removed 

spectra. The best matching mixture, i.e. the mixture with the smallest sum of squared 

differences, was subsequently selected. This procedure yielded the abundance of soil, 

flowers and dead material for each measurement location. 
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4.2.5.3 Correlation and regression analysis 

Relationships between the band ratios/indices and estimated floral cover from the 

spectral unmixing with Paterson’s curse floral cover were investigated using 

correlation and regression in the SPSS software package (SPSS Inc. 2007). The 

Spearman rank non-parametric correlation was used, as several of the variables 

lacked a normal distribution when tested with the Shapiro-Wilk test (Appendix D). A 

first or second order linear regression was used to fit a relationship between the 

independent (x) variable (floral cover) and the dependent (y) variable (ratio, index or 

unmixing). 

4.3 Results 

4.3.1 Comparison of spectra 

The reflectance spectra from the spectroradiometer are shown in Figure 4.3. White 

sand and grey sand soil spectra were distinctive from the other spectra, due to a 

consistently higher response in the visible region of the spectrum and a relatively 

smooth transition through the visible and near infrared. The green vegetation spectra 

showed a ‘textbook’ vegetation spectral response (Section 2.1.3). 

 

The spectrum for Paterson’s curse flowers had a characteristic peak in the blue (400–

500 nm), a higher reflectance than green vegetation from the violet/blue through the 

blue (400–500 nm) and part of the green wavelength range of the spectrum (500–510 

nm). The flower spectrum also showed a distinctive red-edge increase in reflectance 

at approximately 630 nm, compared to 685 nm for green vegetation and material of 

Paterson’s curse. The spectrum of green Paterson’s curse material had similar 

reflectance to green vegetation throughout the spectral range. The reflectance spectra 

of dense Paterson’s curse had similar reflectance to green vegetation in the blue part 

of the spectrum (400–500 nm); lower reflectance in the green (500–600 nm) and part 

of the red (600–620 nm); higher reflectance in the remainder of the red part of the 

spectrum (620–700 nm); and a lower reflectance in the near infrared (700–1360 nm).  
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Figure 4.3 Spectral reflectance curves for components of Paterson’s curse and 

other cover types across the full spectral range (351–2400 nm). 

4.3.2 Derivative analysis 

The first order derivative spectra for Paterson’s curse green, flower, dense, and green 

vegetation are shown in Figure 4.4. The presence of multiple peaks in derivative 

spectra is common in spectra derived from spectroscopy data with a high spectral 

resolution (Smith, et al. 2004). Subsequently, no smoothing was performed on the 

derivative spectra, as the peaks were not attributable to sensor noise. Green 

vegetation had two peaks at 703 nm and 728 nm; Paterson’s curse flowers had three 

peaks at 656 nm, 694 nm and 720 nm; Paterson’s curse green had two peaks at 701 

nm and 719 nm; and dense Paterson’s curse had two peaks at 702 and 718 nm. The 

REP (Equation 4.1) for green Paterson’s curse was 719 nm, 694 nm for Paterson’s 

curse flowers, 718 nm for dense Paterson’s curse, and 728 nm for green vegetation. 
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Figure 4.4 First order derivatives for Paterson’s curse and green vegetation 
spectra. 

4.3.3 Relationships between spectra and floral cover 

4.3.3.1 Derivation of band ratios and indices 

The difference plots of Paterson’s curse flowers with green vegetation and senescent 

vegetation are shown in Figure 4.5. For flowers and green vegetation, the greatest 

differences were at 898 nm, 908 nm and 691 nm. Smaller differences occurred at 

553 nm and 438 nm. For flowers and senescent vegetation the greatest 

differences are at 1415 nm, 2007 nm and 684 nm, with a small difference at 391 nm. 
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Figure 4.5 Spectral response difference between spectra from green vegetation 
(GV), Paterson’s curse flowers (PCF), Dense Paterson’s curse (DPC), 
and senescent vegetation (SV) spectra. 

Four indices were derived from the difference between green vegetation and 

Paterson’s curse flowers, and two indices were derived from the difference between 

senescent vegetation and Paterson’s curse flowers (Table 4.2). For the green 

vegetation indices, the first index (GVPCF 1) was derived from bands of the visible 

part of the spectrum; the remaining three indices (GVPCF 2 and GVPCF 3) were 

derived from visible and near infrared bands, where GVPCF 2 was a Normalised 

Difference Vegetation Index (NDVI). For the two senescent vegetation indices, the 

first index (SVPCF 1), highlighted the difference between the red (634 nm) and the 

violet/blue (391 nm) part of the spectrum and the second (SVPCF 2) index 

highlighted the difference between the mid infrared (2007 nm) and the near infrared 

(1415 nm) bands. 

 

The difference plots for dense Paterson’s curse with green vegetation and senescent 

vegetation are shown in Figure 4.5. The largest difference between dense Paterson’s 

curse and green vegetation was at 865 nm, with smaller peak differences at 555 nm 

and 684 nm.  For dense Paterson’s curse and senescent vegetation, there were peak 
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differences in reflectance at 1358 nm, 2007 nm, 685 nm, and 984 nm. Three indices 

were derived from the difference between dense Paterson’s curse and green 

vegetation and, and two indices were derived from the difference between dense 

Paterson’s curse and senescent vegetation and (Table 4.2). For the green vegetation 

indices, the first index (GVDPC 1) was derived from bands from the visible portion 

of the spectrum, while the remaining two indices were derived from bands from the 

visible and near infrared, with GVDPC 2 being a Normalised Difference Vegetation 

Index (NDVI), and GVDPC 3 a Normalised Difference Green Index (NDGI). For the 

two senescent vegetation indices, the first index (SVDPC 1) highlighted the 

differences between the near infrared (984 nm) and the red-edge (685 nm), and was a 

Normalised Difference Vegetation Index (NDVI). The second index (SVDPC 2) 

highlighted the difference between mid-infrared near infrared bands (2007 nm and 

1358 nm).  

 

An additional four ratios were included, which utilised spectral information from the 

red-edge part of the spectrum. Three of the ratios were derived from the literature 

and represented common red-edge ratios (Table 4.2). The fourth red-edge ratio was 

identified from the 1st order derivative of the Paterson’s curse flower spectra (Section 

4.3.2) and highlighted the difference between the first peak at 656 nm and the second 

peak at 720 nm. 
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Table 4.2 List of band ratios and indices used to determine a relationship with 
floral cover. 

Ratio/Index Bands 

NDBI  
(Schut and McIntyre 2009) 

(490 nm –  430 nm)
(430 nm +  490 nm)

 

PCI  
(Bulman 2004) 

(650 nm +  450 nm)
(650 nm +  550 nm +  450 nm)

 

GVPCF Index 1 
(553 nm –  438 nm)

(553 nm +  438 nm)
 

GVPCF Index 2 
 (908 nm –  691 nm)
(908 nm +  691 nm)

 

GVPCF Index 3 
 (898 nm –  438 nm)
(898 nm +  438 nm)

 

GVPCF Index 4 
(691 nm –  438 nm)

(691 nm +  438 nm)
 

SVPCF Index 1 
(634 nm –  391 nm)

 (634 nm +  391 nm)
 

SVPCF Index 2 
(2007 nm –  1415 nm)

(2007 nm +  1415 nm)
 

GVDPC Index 1 
 (684 nm –  555 nm)
(684 nm +  555 nm)

 

GVDPC Index 2 
 (865 nm –  684 nm)
(865 nm +  684 nm)

 

GVDPC Index 3 
(865 nm –  555 nm)

(865 nm +  555 nm)
 

SVDPC Index 1 
 (984 nm –  685 nm)
(984 nm +  685 nm)

 

SVDPC Index 2 
(2007 nm –  1358 nm)

(1358 nm +  2007 nm)
 

Red-Edge NDVI (reNDVI) 
(Gitelson, et al. 1996) 

(750 nm − 710 nm)
(750 nm +  710 nm)

 

Normalised Difference Red-Edge (NDRE) 
(Barnes, et al. 2000) 

(790 nm –  720 nm)
(790 nm +  720 nm)

 

Red-Edge 2 (RE 2) 
(Cloutis, et al. 1996) 

(712 nm –  680 nm)
(712 nm +  680 nm)

 

Normalised Flower Red-Edge (NFRE) 
(720 nm –  656 nm)

(720 nm +  656 nm)
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4.3.3.2 Correlation and regression analysis 

Table 4.3 shows the correlation and regression coefficients from the relationship 

between the Paterson’s curse floral proportion data from the systematic sampling 

grid and the band ratios and indices described in Section 4.3.3.1. The correlation 

coefficients were significant for all variables (at α = 0.01) except the non-significant 

GVPCF 1 index. The NDBI had the highest correlation of all the variables, with a 

Spearman coefficient of -0.83. A second-order polynomial fitted to the data produced 

an R² of 0.75 (Figure 4.6). The abundance of Paterson’s curse flowers estimated with 

linear unmixing (UNMIX) had the second highest correlation coefficient of 0.73 with 

an R² of 0.68 (Figure 4.7). The remainder of the variables had correlation coefficients 

from 0.42 (GVPCF 3) to 0.71 (NFRE) and R² values from 0.20 to 0.49.  

Table 4.3 Pearson correlation coefficient (r) and coefficient of determination of 
regression (R²) for first order (a) or second order (b) polynomial 
relationships between abundance estimates using linear unmixing and 
selected indices, with percentage floral cover of Paterson’s curse. 

Variable r R² 
NDBI -0.829 0.745b 

UNMIX 0.731 0.678b 
NFRE 0.706 0.487b 

ReNDVI 0.566 0.434a 
SVPCF 1 -0.5 0.414b 
GVDPC 3 0.601 0.401b 

RE 2 0.595 0.382b 
PCI -0.564 0.37b 

NDRE 0.492 0.37a 
GVDPC 2 0.546 0.369b 
GVPCF 2 0.523 0.366b 
SVDPC 1 0.516 0.336b 
SVDPC 2 0.546 0.33b 
GVPCF 4 -0.482 0.32b 
SVPCF 2 0.481 0.246b 
GVDPC 1 -0.446 0.24b 
GVPCF 3 0.416 0.197b 
GVPCF 1 0.133 -  
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Figure 4.6 Scatter plot, regression line (R² = 0.829), and 95% upper and lower 
confidence intervals for the NDBI and Paterson’s curse floral cover 
(proportion). 

 
Figure 4.7 Scatter plot, regression line (R² = 0.75), and 95% upper and lower 

confidence intervals for Paterson’s curse floral cover (proportion) and 
estimated floral abundance from linear unmixing. 
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4.4 Discussion and Conclusion 

The high spectral resolution of the spectroradiometer data highlighted differences 

between Paterson’s curse and other material types over small discrete regions of the 

electromagnetic spectrum. There were several strong correlations between some 

ratios/indices and the floral proportion cover of Paterson’s curse. The ratios and 

indices were not an exhaustive collection, but did represent the areas of the spectrum 

where there was a large difference between Paterson’s curse and other materials, and 

they provide a good indication of which spectral band combinations could be used if 

an airborne or satellite hyperspectral sensor is used. For example the Normalised 

Difference Blue Index (R² = 0.75) takes advantage of the higher reflectance response 

of Paterson’s curse flowers in the blue region of the spectrum. Similarly, the 

relationship between spectral unmixing and Paterson’s curse floral cover data (R² = 

0.61) demonstrates the potential of spectral unmixing and hyperspectral data to 

detect Paterson’s curse at different densities, and for discriminating it from pasture 

and crops.  

 

The spectral properties of the Paterson’s curse flower, stem and plant spectra from 

the current research are similar to those reported from other studies. The distinctive 

peak in the blue portion of the spectrum (400-500 nm) for Paterson’s curse flowers, 

and lack of such a peak for the Paterson’s curse (whole) plant spectrum has also been 

reported by McGowan (1998) and Mitchell et al. (2006). A shift in the red-edge to 

shorter wavelengths by Paterson’s curse flower material relative to plant material 

(flowers and stems) has also been noted by Bulman (2004) and Mitchell et al. (2006). 

The REP for the flower, plant, and green vegetation spectra described in this research 

are not comparable to previous studies which reported the red-edge as being the start 

of the increase in reflectance towards the red-edge rather than a REP. However the 

start of the increase in reflectance of the Paterson’s curse flower spectrum at 630 nm 

from this research is similar to the 640 nm observed by Bulman (2004), and similarly 

the green Paterson’s curse spectrum had a similar increase towards the red-edge at 

685 nm compared to the 690 nm of Bulman (2004).  

 

The regression results from the spectral unmixing of Paterson’s curse flowers (R² = 

0.61) and the NDBI (R² = 0.75) confirms that the flowers of Paterson’s curse are an 
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important cue for detection. A similar result was reported by Schut and McIntyre 

(2009) at Muresk with linear spectral unmixing of Paterson’s curse flowers (R² = 

0.54), but a lower R² of 0.46 was produced by the NDBI. A possible explanation for 

the poorer relationship was the lower percentage cover range of Paterson’s curse 

flowers at Mursek (2.5%), compared to Bindoon (5.7%). The only other known study 

to use field spectroscopy to relate the floral properties of weed species to spectral 

indices was Mirik, et al. (2006), who obtained an R² of 0.46 for the flower head 

density of Musk thistle (Carduus nutans), and attributed the result to the low density 

of flower heads. The NDBI result from this research shows that indices for a specific 

spectral feature of the flowers of a weed (e.g. blue peak), rather than vegetation 

indices (cf. Mirik, et al. 2006) can produce good correlations and if floral density is 

sufficiently high, the difference can be enough to spectrally discriminate the weed. 

 

The relationship of percentage floral cover with the four red-edge ratios was weak to 

moderate (R² of 0.37 to 0.49), compared to the strong relationship with the NDBI 

and linear spectral unmixing. The spectra of Paterson’s curse from the systematic 

field grid were comprised of a mixture of flowers (2% mean floral percentage cover), 

green material from Paterson’s curse, and senescent pasture. The poor performance 

of the red-edge ratios was likely due to a decrease in the magnitude of the red-edge 

shift in the mixed Paterson’s curse spectra, compared to the larger observed shift in 

the Paterson’s curse flower spectra. Infestations of Paterson’s curse with a floral 

proportion cover range of less than 10% are therefore unlikely to show strong 

relationships with red-edge ratios due to the small difference in the red-edge shift 

across that range. 

 

Of all the ratios and indices analysed in this section, the NDBI is worth further 

investigation for up scaling to airborne and satellite multispectral sensors. If this 

index is to be effectively scaled up, there are three main considerations: First, the 

spectra of vegetation from a spectroradiometer are derived from a precision 

instrument with a greater signal-to-noise ratio and a higher spectral resolution than 

aerial and (especially) satellite multispectral sensors. In particular, noise in the blue 

region for satellite sensors is pronounced due to atmospheric path scattering (Jones 

and Vaughan 2010). Therefore, rigorous radiometric and atmospheric correction, and 

calibration (Milton, et al. 2009) will be required to reduce noise from the two blue 
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bands in the NDBI.  Secondly, the sensor needs to contain a blue band with a small 

bandwidth to capture the reflectance peak at of Paterson’s curse flowers at 430 nm. 

Due to the former criterion, the DMSI data (Section 3.4.1) lacks two blue bands, and 

the NDBI cannot be applied. Examples of current multispectral satellites with two 

blue bands are WorldView 2 and Landsat 8 (Table 2.2).  

 

Thirdly, spatial resolution is another important consideration when scaling up to 

multispectral sensors, given the relationship between increasing pixel size and the 

likelihood of cover types being mixed (Fisher 1997). At the sub-metre spatial 

resolution of the spectroradiometer measurements (0.25 m²), the mixture of 

Paterson’s curse with pasture or other cover types within the sample area was 

minimal. When scaling up to sensors such as a Landsat 8 (900 m² pixel area), it is 

likely that the problem of spectral overlap of Paterson’s curse with other cover types 

reported by Bulman (2004) and Ullah, et al. (1989b) will be encountered. Airborne 

sensors and satellite sensors with a similar higher spatial resolution to that of 

WorldView 2 (3.24 m² pixel area) are likely to contain less of a mixture of other 

cover types, especially for areas of lower density (and patchy) Paterson’s curse and 

along margins with other cover types such as Eucalypt woodland. 
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5 MAPPING PATERSON’S CURSE WITH MULTISPECTRAL 
AIRBORNE IMAGERY 

5.1 Introduction 

The field spectroscopy analysis in Chapter 4 highlighted the spectral differences 

between Paterson’s curse and other cover types, using a high spectral resolution 

sensor with narrow bands in the visible and near infrared. The next step is to 

investigate whether the spectral differences between Paterson’s curse and the co-

occurring cover types are applicable over a larger area, and with a spectral resolution 

coarser than field spectroscopy. As already highlighted in the literature review in 

Chapter 2, multi-spectral medium spatial resolution sensors (Landsat 5 and 7) have 

had limited success in reliably detecting and mapping Paterson’s curse (Bulman 

2004; Ullah, et al. 1989b) due to spectral overlap between Paterson’s curse and other 

cover types. Airborne multispectral imagery therefore is a potentially useful source 

of remote sensing data for mapping Paterson’s curse. 

 

Airborne multispectral data are inexpensive compared to airborne hyperspectral data 

and do not require specialised processing. Airborne sensors also have a number of 

advantages over satellite platforms. The new generation of satellite-borne sensors 

(e.g. World View 2) provide high spatial resolution multispectral imagery, but these 

sensors have limitations with temporal acquisitions of imagery, due to a limited 

revisit capability, and the associated problem of cloud cover. Airborne sensors have 

the flexibility to be deployed at short notice to take advantage of favourable 

meteorological conditions. This is a particularly important consideration for 

Paterson’s curse, as cloud cover is common over the Bindoon study area during 

October, which coincides with the short (peak) flowering period. 

 

As shown in the literature review in Chapter 2, high spatial resolution multi-spectral 

sensors have been successful for detecting weed species in semi-arid regions and 

rangelands (Everitt and Yang 2007b; Robinson, et al. 2008; Stow, et al. 2000),  and 

pasture (Carson, et al. 1995; Lass and Callihan 1997; Lass, et al. 1996). These 

studies have used supervised and unsupervised classification methods, such as 

maximum likelihood (Carson, et al. 1995) and minimum distance to means (Lass and 
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Callihan 1997) for the former, and ISODATA (Everitt and Yang 2007b; Robinson, et 

al. 2008; Stow, et al. 2000) for the latter. The smaller pixel size reduced the effect of 

mixed pixels, and allowed smaller infestation sizes and densities to be detected. 

These mapped species also had distinctive characteristics compared to co-occurring 

cover types that resulted in higher accuracy from the classifiers. In a similar manner, 

the purple flowers of Paterson’s curse are a potentially good feature for detection 

with airborne multispectral remote sensing.  

 

This chapter investigates the utility of airborne multispectral imagery to detect and 

map Paterson’s curse at the Catholic Agricultural College Bindoon (CACB) study 

site. It represents the first application of this type of remote sensing data for 

Paterson’s curse. The objectives of the research reported in this chapter are:  

 

i) To determine if Paterson’s curse can be detected and mapped from 

airborne multispectral imagery using image classification techniques; 

ii) To produce quantitative measures of classification accuracy for 

Paterson’s curse and associated cover types from each of the classifiers 

and compare their performance; and 

iii) To highlight the spectral and spatial limitations of the image data and the 

classifiers for detecting and mapping Paterson’s curse. 

5.2 Methods 

The approach described in this chapter followed a standard remote sensing 

classification workflow, in which imagery was acquired and processed, and 

classifications were trained and implemented. Field and ancillary data were used to 

collect training data and validate the classification results. 

5.2.1 Image acquisition 

Digital airborne multispectral imagery (DMSI) was acquired over the CACB 

property by Specterra, a Perth based company. A description of the DMSI image 

capture and pre-processing is provided in Section 3.3. In summary, DMSI imagery 

was captured on October 14 2005, at a spatial resolution of 1 m. The imagery was 

processed in-house by Specterra to produce an ortho-rectified mosaic (see Figure 3.5, 

Chapter 3). 
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5.2.2 Image pre-processing 

The DMSI mosaic was spatially subset to an area of 1132 ha, with dimensions of 

3.19 km x 3.55 km. This area was chosen to restrict the analysis to within the 

property boundary of the CACB, and to provide a representative area of Paterson’s 

curse and other cover types. Regions of the image not relevant to the analysis were 

masked, which included Eucalypt woodland, swampland, roads and tracks, buildings 

and other cleared areas devoid of ground cover. A semi-automated approach was 

used to create the mask: a segmentation algorithm was applied to the image using the 

eCognition software package (Baatz, et al. 2004) and the resulting objects (polygons) 

were assigned to the mask based on field knowledge and conventional image 

interpretation cues. 

 

Atmospheric correction was not performed on the DMSI image prior to classification 

for the following reasons: (i) a single date of imagery was used; (ii) the capture time 

was at noon, under clear dry meteorological conditions; (iii) the topographic 

variation over the study area was minimal; and (iv) atmospheric haze was minimal 

(Chavez 1988).   

5.2.3 Training area selection 

Training signatures were created from four land cover classes (crop, pasture, fallow, 

and Paterson’s curse) to be used for supervised classification (Section 5.2.5). The 

training areas for Paterson’s curse and the other classes were derived from locations 

where field reconnaissance was previously conducted with a digital camera and a 

handheld GPS. Examples of field photos of the classes are shown in Figure 5.1 and 

the classes are briefly described below: 
 

i) Crop: a dense cover of green vegetation, with a bare soil background. 

Most cropped areas on the CACB property occurred as a dense 

monoculture of a particular crop species. 

ii) Pasture: green vegetation of varying density of ground cover, which was 

dependent on the level of grazing. In grazed pastures, the vegetation cover 

was light, and in un-grazed pastures the cover was typically dense and 

similar to that of cropped areas. 
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iii) Fallow: bare soil and senescent plant material from previous growing 

seasons.  

iv) Paterson’s curse: Paterson’s curse at floral cover of up to approximately 

15%. Multiple density classes were not used due to the low range (0.1–

7%) and mean (< 2%) floral percentage cover from the validation dataset, 

which represented the general distribution of Paterson’s curse in the study 

area.  

 

Figure 5.1 Training classes used and representative oblique photographs: a) crop; 
b) pasture; c) fallow; d) Paterson’s curse. 

Training areas for all classes were digitised manually on-screen from the DMSI 

image. Paterson’s curse signatures were extracted from several training areas at 

different floral densities to account for spectral variability. Multiple signatures were 

created for each class (from 3 to 9) to include as much of the spectral variation 

present within the particular cover types as possible. Training areas were located at 

least 10 metres from the nearest validation point to remove bias in the classification 

results. 

5.2.4 Training area analysis 

The spectral properties of the training areas were analysed using spectral plots of 

training classes, and the spectral separability of classes was measured with 

Transformed Divergence using the ERDAS Imagine software (Leica Geosystems 
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2005). For the latter method, various band combinations were tested to determine the 

influence of removing bands on separability. The separability of signatures was 

assessed according to indicative values from Jensen (1996): separability greater than 

1900 was considered good; separability between 1700 and 1900 was fair; and 

separability below 1700 was poor. The final training signatures for the crop, pasture, 

fallow and Paterson’s curses classes and for each band were also tested for the 

assumption of normal distribution in the SPSS software package (SPSS Inc. 2007) 

using a skewness metric and a Shapiro-Wilk test of significance. The results from the 

normality test are shown in Appendix E.  

5.2.5 Image classification 

Two non-parametric classification algorithms were used: multi-layer perceptron 

(MLP) and k-nearest neighbour (kNN). These two classification algorithms were 

chosen as the training signatures did not satisfy the assumption of normality for 

parametric classifiers (Campbell 2008), and the two algorithms have been shown to 

be superior to parametric approaches (e.g. maximum likelihood). 

 

For the MLP and kNN algorithms, separate classifications were run on two separate 

class sets (A and B). Set A was comprised of crop, pasture and Paterson’s curse; and 

Set B was comprised of pasture and Paterson’s curse. Crop was removed in Set B in 

order to determine if the accuracy of the classification could be improved in the 

absence of potential spectral overlap between the crop and Paterson’s curse classes.  

5.2.5.1 Multi-layer perceptron classifier  

The MLP classification was performed using the IDRISI Andes software (Eastman 

2006). The back-propagating network of the classifier contained one input layer, one 

output layer, and one or more hidden layers. The input layer consisted of the four 

DMSI image bands (blue, green, red and near infrared), and the output (classified) 

layer consisted of the four classified land cover classes from the training areas 

(Paterson’s curse, crop, pasture and fallow). Prior to implementing the classification, 

the values of pixels from all four bands were scaled from 0 to 1, by dividing the 

digital number value of each pixel by the band maximum. This was done in order to 

match the activation function range (percentage) order of magnitude instead of the 
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range of the sensor (12-bit), to prevent the network from being saturated 

(Kanellopoulos and Wilkinson 1997). 

 

The MLP network was trained with signatures from Paterson’s curse, pasture, crop 

and fallow. Each input signature was divided into training and validation sets 

comprised of an equal number of pixels. The purpose of training the network was to 

obtain the appropriate weights for both for the connection between the input and 

hidden layer, and between the hidden and the output layer for the classification of the 

unknown pixels (Eastman 2006). The network learnt the properties of each training 

class through a series of successive forward and backward passes (Eastman 2006). 

Each sample (pixel) from a training class was fed by the network into the input layer 

and the activities of the neurons were updated on the way through to the output layer, 

according to a mapping function (Tso and Mather 2001). A non-linear sigmoid 

mapping function was applied to the weighted sum of inputs before the signal was 

passed to the next layer (Eastman 2006). When the forward pass was completed the 

activities of the output nodes were compared with their expected activities (Eastman 

2006). The network error was the difference between the actual and expected 

outcomes, and was distributed through the network by means of a backward pass 

which updated the weights (Tso and Mather 2001).  

 

An adaptive learning rate algorithm (Eastman 2006) was used during training to 

prevent oscillation from over training, and a local minimum on the error surface from 

under-training (Mas and Flores 2008). The algorithm decreased the learning rate if 

the overall training error increased, and increased the learning rate if the overall error 

decreased (Paola and Schowengerdt 1995). The initial learning rate value was not 

considered critical, and the classifier was trained faster due to the learning rate being 

adjusted to the highest value that did not cause instability (Paola and Schowengerdt 

1995). A momentum term of 0.5 was used as recommended by Eastman (2006) and 

Kavzoglu and Mather (2003), which would increase the time to convergence and 

reduce the likelihood of oscillation problems. A stopping threshold of 80% training 

accuracy was used, after several training trial iterations found that the training and 

testing error began to diverge when the training accuracy exceeded 80%. The 

stopping threshold corresponded to a root mean square error of 0.38. 
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Following network training, the neural network classifier was run to produce hard 

and soft output classification images. The hard classification images were comprised 

of the same classes as the training areas: Paterson’s curse, pasture, crop and fallow. 

The soft classification output was comprised of a set of maps, each map representing 

one class. The maps were created from the output of the activation levels for each 

output layer (class), which were ‘fuzzified’ into a 0–1 range using an activation 

function (Eastman 2006). The fuzzy range represented the degree of membership of 

each pixel to a class, with higher values representing higher degrees of membership 

(Eastman, 2006). 

5.2.5.2 k-nearest neighbour classifier 

The kNN classifier from the IDRISI Andes software package was applied to a three-

class signature set comprised of crop, pasture and Paterson’s curse; and a two class 

set comprised of pasture and Paterson’s curse. Both hard and soft classification was 

applied to each set. The hard classification output consisted of an image containing 

either three or two classes (Set A and B respectively). The soft classification output 

produced a soft image for each class, and the proportion among the k-nearest 

neighbours was assigned to each pixel as a degree of membership to that class 

(Eastman 2006). For each set, the most separable band combinations identified in the 

training area analysis in Section 5.2.4 were used. An iterative series of classifications 

was then performed, to determine if different k-values resulted in a significant 

difference in accuracy, measured by the Kappa statistic (refer Section 5.2.6.2). 

Classification output was generated using between 5 and 55 k-neighbours, in 

increments of 10.  

5.2.6 Accuracy assessment 

5.2.6.1 Field survey 

A stratified random sampling scheme was used to collect validation data to assess 

classification accuracy (Congalton 1991). The sampling was conducted less than a 

week after the DMSI imagery was captured. The DMSI image was stratified to 

include areas of crop, pasture and Paterson’s curse, and to exclude areas not relevant 

to the analysis, which included Eucalypt woodland, swampy areas, and cleared areas 

such as roads, tracks, and infrastructure. A field reconnaissance was conducted on 

October 15 2005 to define a stratified area of Paterson’s curse. A total of 86 locations 
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across the property were recorded with a handheld GPS and oblique digital photos 

were captured. The stratification was performed by segmenting the image into 

objects using the Definins eCognition software (Baatz, et al. 2004). The objects were 

assigned to one of four general classes: Paterson’s curse, pasture, crop and mask. 

Each image object was manually assigned into an appropriate class based on field 

knowledge and conventional image interpretation cues. 

 

From the area of Paterson’s curse (77 ha) digitized from the DMSI image, 150 

random sample locations were generated using a geographic information system 

(GIS). The points were surveyed in the field from October 17 to 19 2005. A handheld 

GPS (Lowrance iFinder H²O) was used to navigate to each location. At each 

location, five vertical photographs and one oblique photograph were captured within 

a 1 m² quadrat. The vertical photographs were captured at a distance of four metres 

from the centre of the plot in each of the four cardinal compass directions. This 

distance was chosen to account for location uncertainty from the GPS and the 

rectification of the DMSI image. A hand-held compass was used in conjunction with 

measured pacing to determine the distances and bearings.  

 

From the 150 random points sampled in the field, 115 were Paterson’s curse, 11 

pasture, 4 crop and 7 fallow. The remaining 13 samples occurred in areas of 

woodland and land cover types not relevant to the analysis (e.g. swamp, cleared 

areas). An additional 104 pasture and 111 crop random points were generated within 

the pasture and crop strata from a GIS to produce the same number of samples as the 

Paterson’s curse class (Figure 5.2). A total of 345 random samples were produced, 

with the crop, Paterson’s curse and pasture classes each comprised of 115 sample 

points. The fallow samples were subsequently not used for validation due to the 

small sample size and limited area coverage in the study area. 

 

The percentage cover of Paterson’s curse flowers for each quadrat was determined 

by an object classification approach described in Appendix C. Summary statistics of 

percentage cover are shown in Table 5.1, and the statistics for all Paterson’s curse 

random samples are listed in Appendix F.  
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Table 5.1 Summary statistics of Paterson’s curse random sampled locations on 
the Bindoon Agricultural College study site. 

N Minimum 
(%) 

Maximum 
(%) 

Mean 
(%) 

SD  
(%) 

115 < 0.1 7.14 1.28 1.70 
 

 

Figure 5.2 Location of stratified random points at Catholic Agricultural College 
Bindoon that were surveyed in the field. 

5.2.6.2 Quantitative accuracy assessment 

The hard classifications were assessed using an error matrix approach, which 

included overall accuracy, user’s and producer’s accuracy for each class, an overall 

Kappa statistic and conditional (per-class) Kappa. Significant differences in the 

overall Kappa statistic within and between each classifier were assessed by 
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comparing z-scores. The classes were extracted from each hard classification image 

using a 5 x 5 pixel modal filter to address location uncertainty.  

 

The images from the MLP and kNN soft classifications were assessed using binary 

logistic regression and receiver operating characteristic (ROC) analysis in the SPSS 

software package (SPSS Inc. 2007). Binary logistic regression was preferred over 

discriminant analysis, as logistic regression does not require the predictor variables 

to be normally distributed (Pohar, et al. 2004). The advantages of using binary 

logistic regression were the simplicity in the field validation data required 

(presence/absence) compared to density class data, and probability maps could be 

derived from the soft classification output (Aspinall 2002). Logistic regression fits a 

model of the relationship between the outcome (dependent or response variable) that 

is categorical (usually dichotomous) and a set of independent (predictor or 

explanatory) variables which are usually continuous (Pohar, et al. 2004). The 

predicted dependent variable represents a function of the probability that the subject 

will be present given the value of a predictor variable. The logistic regression model 

predicts the logit, which is the natural logarithm of the odds of the dichotomous 

dependent variable. The odds are calculated from the natural logarithm of the 

variables in the logistic regression equation, which is shown in Equation 5.1: 
 

𝑂𝐷𝐷𝑆 =  𝑒𝑎+𝑏𝑋       (5.1) 
 

Where a is the constant, b is the slope of the logistic regression equation, and X is the 

predictor variable 

 

The odds from Equation 5.1 were converted to predicted probabilities (Ŷ) using 

Equation 5.2: 

 

Ŷ =  𝑂𝐷𝐷𝑆
1+𝑂𝐷𝐷𝑆

        (5.2) 
 

The predictor variable was the output from the kNN and MLP soft classifications, 

and the output probability images were generated from Equations 5.1 and 5.2. The 

validation datasets were comprised of Paterson’s curse records comprising the 

present (1) set, and crop and pasture comprising the absent (0) set.  
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A Pearson Chi square statistic was generated from the logistic regression model. The 

statistic tested the null hypothesis that the independent variable (the output from the 

soft classification) was not linearly related to the log-odds of the dependent variable  

(presence/absence of Paterson’s curse) (Aspinall 2002).  

 

ROC area-under-curve (AUC) statistics (see Section 2.6.4) were generated from the 

SPSS software package. Predicted probabilities (Equation 5.2) were applied from the 

binary logistic regression to the soft outputs of the MLP and kNN classifications. 

False positive and true positive fractions from progressive 1% thresholds of the 

predicted probabilities were produced from ROC contingency tables (Table 2.4). The 

resulting values were plotted on a curve, and an overall ROC statistic (AUC) was 

calculated using the trapezoidal rule (Equation 2.9). 

 

A qualitative accuracy assessment was conducted to complement the quantitative 

accuracy assessment of the hard and soft classifiers. Qualitative accuracy assessment 

has been demonstrated to have an important role in accuracy assessment, as 

information on the success of a classifier can be obtained from qualitative assessment 

that may not be obtained through a statistically rigorous quantitative method (Mundt, 

et al. 2005). The assessment was performed by examining the classified images and 

using field knowledge to ascertain the success of the classifier in regions of the 

image where such information was available.  

5.3 Results 

5.3.1 Training area analysis 

The statistics for each class, including number of pixels, mean, and standard 

deviation for each band are listed in Table 5.2. The spectra for the final four classes 

are shown in Figure 5.3. There was a minimal difference between the means of all 

classes for band 1 except the fallow class. Pasture and Paterson’s curse had very 

similar means for band 4, with crop having the highest digital number (DN), but 

there was still overlap at 1 standard deviation (SD). The pasture training area had the 

highest mean DN in band 2 (green), with fallow and Paterson’s curse having a 

similar mean DN. The means of Paterson’s curse, pasture, and crop in band 3 (red) 

were separable.  
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Table 5.2 Training area statistics for each band (B), including number of pixels 
(N) with mean and standard deviation (SD). Key: C = crop, P = 
pasture, F = fallow, PC = Paterson’s curse. 

Class N Mean 
(B1) 

SD 
(B1) 

Mean 
(B2) 

SD 
(B2) 

Mean 
(B3) 

SD 
(B3) 

Mean 
(B4) 

SD 
(B4) 

C 843 702.58 26.71 1198.06 86.23 431.77 49.55 1667.04 111.19 
P 1093 775.30 49.12 1486.45 135.08 681.48 101.95 1549.04 70.93 
F 377 907.28 42.10 1298.74 114.45 862.67 111.99 923.26 87.29 

PC 956 739.32 32.20 1272.82 117.50 549.59 76.83 1539.91 239.43 
 

 

Figure 5.3 Mean DN spectral plot values for final DMSI training signatures. 

The results of the transformed divergence measures between Paterson’s curse, crop 

and pasture, and the best band combinations are shown in Table 5.3. The Paterson’s 

curse class had poor separability from crop and pasture (1522 and 1687) in all four 

bands. The separability improved to fair with band two removed (1764 and 1853), 

and improved to good with pasture with bands 3 and 4 (1954). Separability remained 

fair (1732) with crop for these two bands. The separability between crop and 

Paterson’s curse was good (1909) with band 3 and fair (1872) with bands 3 and 4.   
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Table 5.3 Transformed divergence results for the final classes. 

1-4        1,3,4       
 P C PC    P C PC 

P  1940 1687  P  2000 1853 
C   1522  C   1764 

PC     PC    
 

3,4        3       
  P C PC    P C PC 
P  2000 1954  P  2000 1872 
C   1732  C   1909 

PC     PC    
 

5.3.2 Accuracy assessment 

5.3.2.1 Hard classification results 

The results of the accuracy assessment for the MLP and kNN classifications are 

summarised below in Tables 5.4 and 5.5. The results for each classifier are described 

in detail below. The error matrices for all classifications are in Appendix G. 

5.3.2.1.1 Multi-layer perceptron  

The overall accuracy, commission and omission error for the 3-class MLP 

classification are shown in the first row of Table 5.4. Paterson’s curse had the highest 

commission and omission error (0.52 and 0.67) of the three classes. The dominant 

source of commission error for Paterson’s curse was pasture, with 27 of 79 records 

misclassified, and crop to a lesser extent with 14 of the 79 records misclassified. The 

errors of omission for Paterson’s curse were due to 33 (29%) and 44 (38%) of the 

115 records being misclassified by crop and pasture respectively. In the case of 

pasture, the number of misclassified records was greater than the number of correctly 

classified Paterson’s curse records. The overall Kappa statistic (0.35) and the Kappa 

per class (user’s and producer’s) for Paterson’s curse were between 0.13 and 0.22, 

which classified them as poor according to the Monserud and Leemans (1992) Kappa 

threshold. All of the Kappa statistics were statistically significant at the 5% (z > 

1.96) level. Across all three classes (crop, pasture and Paterson’s curse), the Kappa 

per-class for user’s and producer’s were below 0.50. 
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The hard image for the 3-class MLP classification is shown in Figure 5.4. Crop was 

correctly classified in the large paddock at ‘A’, but incorrectly mapped (commission 

error) in some areas of pasture (e.g. at B and C). There was an occurrence of 

commission error when crop was misclassified in a paddock known to contain 

Paterson’s curse (D). Another occurrence of commission error occurred where crop 

was classified in a small area of Paterson’s curse surrounding a dam at ‘E’. Most of 

the areas of pasture in the west and south-west of the image were correctly classified 

as pasture (F). An area of pasture in the field between a road and a tree line (G) was 

incorrectly classified as Paterson’s curse (Figure 5.5). Paterson’s curse was mapped 

correctly at ‘H’ and some parts of the southern area of the field at ‘C’, but was 

incorrectly mapped in a semi-circular crop area at ‘I’. A large field containing crop in 

the east of the image had some areas incorrectly classified as Paterson’s curse (J). 
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Figure 5.4 Hard classification output for the 3-class MLP classification. 

 

Figure 5.5 Oblique photograph of an area of pasture in a field (background) that 
was misclassified by the 3-class MLP classification (labelled as ‘G’ in 
Figure 5.4) as crop and Paterson’s curse. 
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The overall accuracy, user’s accuracy and producer’s accuracy for the 2-class MLP 

classification are shown in the second row of Table 5.4. There was a small increase 

in the overall accuracy (62%) compared to the 3-class classification (56%). 

Paterson’s curse had a higher producer’s and user’s accuracy (73 and 42%) 

compared to the 3-band classification (48 and 33% respectively). The overall Kappa 

statistic of 0.26 was statistically significant at the five percent (z > 1.96) level, but 

was not statistically different to the 3-class classification (0.35). The per-class Kappa 

(user’s) at 0.46 was statistically different (z > 1.96) to the 0.22 of the 3-class 

classification, but the 0.20 per class Kappa (producer’s) was not statistically different 

to the Kappa of 0.13 for the 3-class classification.  

Table 5.4 Summary of accuracy assessment of the MLP classification.  

Type Set 
Overall 

Accuracy 
(%) 

Producer’s 
Accuracy 

(%) 

User’s 
Accuracy 

(%) 

Overall 
Kappa 

User’s 
Kappa 

Producer’s 
Kappa 

MLP 3-class 56 48 33 0.35 0.22 0.13 

MLP 2-class 62 73 42 0.26 0.46 0.20 

 

The hard image for the 2-class MLP classification is shown as Figure 5.6. Previous 

commission error from crop in the 3-class classification was eliminated in the 2-class 

classification, particularly in the northern section of the field labelled as ‘A’, where 

there was a mixture of Paterson’s curse and pasture. Paterson’s curse was present in 

the area around the dam at ‘B’, whereas in the 3-class image, this area was 

misclassified as crop. The area of pasture in the field between the road and tree line 

(C) was misclassified as Paterson’s curse, and ‘filled in’ the areas previously 

misclassified as crop in the 3-class classification. Paterson’s curse was correctly 

classified in the ‘horse paddock’ (D) that was misclassified as crop in the 3-class 

classification (also labelled as ‘D’ in Figure 5.4). 
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Figure 5.6 Hard classification output from the 2-class MLP classification. 

5.3.2.1.2 k-nearest neighbour 

The overall accuracy, user’s accuracy and producer’s accuracy for all classes are 

summarised in rows 1 to 3 of Table 5.5. The overall accuracy across the full range of 

band sets and k-neighbours was low, and ranged from 55 to 57%. The best overall 

accuracy of 57% was shared between 4 classifications (4-band, k = 5; 2-band, k = 5, 

35 and 45). The producer’s accuracy for Paterson’s curse ranged from 40% (4-band, 

k = 25) to 44% (2-band, k = 45), and the user’s accuracy ranged from 23% (3-band, k 

= 15) to 49% (3-band, k = 5). 

 

The overall Kappa statistics were all significant at the five percent (z >1.96) level. 

The two- and four-band classifications had the highest overall Kappa statistic (0.348) 
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at a k-value of 5; however the three-band classification had the most consistently low 

Kappa statistic across the range of k-values. The Kappa per-class (user’s) for 

Paterson’s curse was between 0.10 and 0.16, with a small amount of variation across 

the range of k-values. The 2-band classification at a k-value of 45 produced the 

highest per-class Kappa (user’s) statistic (0.157). The per-class Kappa (producer’s) 

were between 0.10 and 0.17, and the highest Kappa statistic was the 3-band 

classification at a k-value of 5, although there was no statistical difference between 

the 2 and 3-band classifications across the range of k-values. The four-band 

classifications had the lowest Kappa statistics (overall and per-class), with the k-

values of 15 through to 55 being statistically non-significant. 

 

The overall accuracy, user’s accuracy, producer’s accuracy, overall Kappa and 

Kappa per-class (user’s and producer’s) are summarised in rows 4-6 of Table 5.4. 

The overall accuracy ranged from 62% (4 bands, k = 15) to 66% (2 bands, k = 45). 

The producer’s accuracy for Paterson’s curse ranged from 60% (3 bands, k = 35) to 

63% (2 bands, k = 45), and the user’s accuracy ranged from 61% (4 bands, k = 15, 

35, and 45) to 73% (3 bands, k = 5). The overall Kappa statistics were consistently 

lower than the three-class kNN classifications (all with Kappa of < 0.30), and Kappa 

increased with the number of k-neighbours in contrast to the 3-band classification. 

The highest overall Kappa statistic (0.315) was the two-band classification at 45 k-

neighbours. The per-class Kappa (user’s) results were all higher than the 3-class 

classifications, and ranged from 0.21 to 0.27, with a gradual trend of increasing 

Kappa with the number of k-neighbours. The 4-band classification at 65 k-

neighbours and the 2-band classification at 45 k-neighbours both had the highest 

Kappa statistic (0.27). The per-class Kappa (producer’s) results were consistently 

higher than the 3-class classifications (0.10 – 0.17). 
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Table 5.5 Summary of accuracy assessment of the k-nearest neighbour (kNN) 
classification. Key: C = class, B = bands. 

Type Set Overall 
Acc. (%) 

Prod’s 
Acc. (%) 

User’s 
Acc. (%) 

Overall 
Kappa 

User’s 
Kappa 

Producer’s 
Kappa 

kNN 3C/4B 56–57 40–42 37–44 0.34-0.35 0.10-0.13 0.10-0.14 

kNN 3C/3B 55–56 41–42 23–49 0.33-0.34 0.12-0.14 0.15-0.17 

kNN 3C/2B 55–57 41–44 42–46 0.33-0.35 0.12-0.16 0.12-0.16 

kNN 2C/4B 62–64 61–63 61–67 0.24-0.27 0.23-0.27 0.23-0.27 

kNN 2C/3B 63–65 61–62 72–73 0.27-0.30 0.21-0.25 0.29-0.34 

kNN 2C/2B 63–66 61–63 69–71 0.27-0.32 0.22-0.27 0.27-0.31 

 

The hard classification map for the best (Kappa) performing kNN combination (2-

class, 3-bands, k = 45) is shown in Figure 5.7. A larger number of pixels were 

classified as Paterson’s curse, compared with the MLP 2-class classifier in Figure 

5.6, which represents higher commission error for Paterson’s curse. For example the 

field at ‘A’ was almost completely classified as Paterson’s curse, even though the 

area contained a mixture of pasture and Paterson’s curse. The area between the road 

and tree-line at ‘C’ was almost completely misclassified as Paterson’s’ curse, 

however the small paddock at ‘D’ was classified correctly as Paterson’s curse.  
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Figure 5.7 Hard classification output from 2-class, 3-band classification (k = 45). 

5.3.2.2 Soft classification results 

5.3.2.2.1 Multi-layer perceptron 

The logistic regression and ROC analysis results for the two MLP classifications are 

shown in Table 5.6. Set B had a Chi-square statistic result that was significant at > 

0.01, whereas the Set A Chi-square result (4.998) was significant at 0.025. The AUC 

statistic of Set B (0.656) was higher than set A (0.579) and significant at > 0.001. 

The probability map (denoting presence of Paterson’s curse) from the Set B soft-

classification is shown as Figure 5.8. The areas where there was 0.75–1 probability 

mostly occurred over a small proportion of the study area and tended to be in 

locations where there were low levels of co-occurring pasture vegetation. For 
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example an area around the dam labelled in Figure 5.8 as ‘A’ (shown in Figure 5.9) 

was correctly classified as Paterson’s curse by the 2-class MLP classification (Figure 

5.6, label ‘B’). Another example was the ‘horse paddock’ (B) that was also correctly 

classified in the 2-class MLP classification (Figure 5.6, label ‘D’). 

Table 5.6 Logistic regression and ROC (AUC) results for MLP classifications. 

Set Chi-
Square Sig. AUC SE Lower 

Bound 
Upper 
Bound Sig. 

A 4.998 0.025 0.579 0.031 0.519 0.640 0.017 
B 19.036 0.01 0.656 0.036 0.585 0.727 0.000 

 

 

Figure 5.8 Logistic regression model output (probability of presence) of 
Paterson’s curse from the two-class MLP classification. 
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Figure 5.9 Oblique photograph of Area ‘A’ on Figure 5.8 showing the Paterson’s 
curse infestation south of the dam that was identified with a 
probability of 0.75–1. 

5.3.2.2.2 k-nearest neighbour 

The logistic regression and ROC analysis results for sets A and B are shown in 

Appendix H. For Set A, the AUC statistic ranged from a high of 0.615 (3-band, k = 

35) to a low of 0.513 (3-band, k = 5). The highest AUC statistic of 0.615 (significant 

at 0.001) had a Chi-square statistic of 9.374 (significant at 0.01). For Set B, the AUC 

statistic ranged from a high of 0.677 (shared between 4-band, k = 5; and 3-band, k = 

25), to a low of 0.585 (3-band, k = 5). 

 

The probability map (presence of Paterson’s curse) for the Set B classification (4 

bands, k = 5) is shown in Figure 5.10. There were no areas on the classified image 

that had a probability of Paterson’s curse greater than 0.75, in contrast to the MLP 

probability image in Figure 5.8. The majority of the 0.5–0.75 probability range 

occurred in the north-west of the classified image, which had known infestations of 

Paterson’s curse based on field knowledge. The range produced a salt and pepper 

pattern across the rest of the image.  
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Figure 5.10 Logistic regression model output (probability of presence) of 
Paterson’s curse from two-class kNN classification (4-band, k = 5). 

5.4 Discussion and Conclusion 

The classification of DSMI imagery presented in this chapter used quantitative 

measures of accuracy, such as error matrices (Story and Congalton 1986) and the 

Kappa statistic (Congalton, et al. 1983), which had not been used in previous studies 

where image classification techniques had been used to map Paterson’s curse 

(Bulman 2004; Ullah, et al. 1989b). The accuracy assessment result from the MLP 

and kNN classifications shows that Paterson’s curse can be detected with high spatial 

resolution multispectral airborne imagery, but with low accuracy and a low Kappa 

statistic. The overall accuracy of the MLP and kNN classifiers was low (< 66%), and 

in particular the omission and commission error of Paterson’s curse was high. The 
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overall Kappa statistics of < 0.35, and the corresponding per-class Kappa statistics 

for Paterson’s curse were generally in the poor category (0.2 – 0.4) of Monserud and 

Leemans (1992) classification. The level of accuracy is not enough to satisfy the 

general standard of 85% for a thematic map output derived from remote sensing 

(Foody 2008). 

 

The user’s accuracy (23–73%) and producer’s accuracy (40–73%) of Paterson's curse 

for the kNN and MLP classifications was similar to other remote sensing studies that 

have used high spatial resolution multispectral airborne imagery to map weeds in 

grassland and pasture (Carson, et al. 1995; Casady, et al. 2005; Lass and Callihan 

1997). A higher user’s accuracy (low omission error) is more desirable from a weed 

management perspective, as it minimises the likelihood that infestations are missed 

on the ground (Andrew and Ustin 2008; Mitchell and Glenn 2009). Omission error 

was reduced for both the MLP and kNN classifications by excluding crop; however 

there was no approach to similarly mask pasture, as it co-occurred with Paterson's 

curse across the property. Similarly there was no approach that could reduce 

commission error.  

 

The limitations of the MLP and kNN classifiers and the resulting low accuracy of the 

detection of Paterson’s curse with DMSI are attributable to the spectral resolution of 

the sensor (and the derived training signatures) and the environment. Artificial neural 

network classifiers have been shown to be generally more accurate than other 

classifiers (Kavzoglu and Mather 2003) but were dependent on choice of network 

architecture and training data that adequately represented the cover types of interest 

(Atkinson and Tatnall 1997). The network architecture used for the MLP was set by 

the number of input and output classes (training and mapped) classes; the training 

signatures for the classes were representative of the major cover types, but the high 

variance for the training classes most likely resulted in misclassification when 

applied to the entire image. The kNN classifier has been shown to be effective for 

forest inventory mapping in the northern hemisphere (e.g. Haapanen, et al. 2004), 

based on an assumption that forest types are similar across an image and differences 

in the radiometric properties of a particular type are due to differences in physical 

properties, e.g. stand volume (Franco-Lopez, et al. 2001). The majority of forest 

inventory applications of kNN used medium spatial resolution imagery (e.g. Landsat 
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5 and 7), which contributed to lower spectral variability within classes and across an 

image, compared to high spatial resolution imagery such as DMSI.  

 

A minimum detection threshold is a desirable outcome for detecting weeds like 

Paterson’s curse with remote sensing (Bulman 2004). However, the approach used in 

this chapter precluded the use of multiple density classes of Paterson’s curse for 

training and validation, and subsequently a detection threshold could not be 

determined. Several studies using high spatial resolution data have used multiple 

density classes (Lass and Callihan 1997; Lass, et al. 1996) but percentage green 

cover was used rather than flower density, even where the flowers were the dominant 

spectral discrimination cue. The pasture species from those studies—yellow 

hawkweed (Lass and Callihan 1997) and yellow starthistle (Lass, et al. 1996) had a 

patchy distribution and tended to dominate an area with green cover, which were 

more amenable to multiple density classes. In contrast, Paterson’s curse occurred in 

the study area as a fuzzy continuum of floral density, with few areas of high 

flowering density and was mixed with pasture (especially at lower densities).  

 

The output probability maps produced by soft classification were a useful 

complement to the hard classifiers. A probability output allows a classification to be 

assessed on a location (pixel-by-pixel) basis, in contrast to a hard classification 

output where only the class or overall measure of accuracy is provided (Foody, et al. 

1992). Combining the soft and hard classification outputs has potential utility for 

weed management, as it provides an option for end-users to interpret the hard 

classification based on the probability of a mapped infestation at a particular location 

being at that location when visited in the field. The main limitation of soft classifiers 

is that their accuracy is equivalent to their corresponding hard classification. This 

was demonstrated in the results of this chapter, where the best performing kNN and 

MLP soft classifications for Paterson’s curse had AUC statistics of 0.677 and 0.656, 

but the corresponding per-class Kappa statistic for Paterson’s curse were less than 

0.32 for the kNN and in the range of 0.2 to 0.46 for the MLP. The overall and user 

accuracies of Paterson’s curse need to be higher (i.e. > 70%) in order to produce 

equivalent soft classification output maps that would represent higher probabilities of 
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infestations across a study site and most importantly, include lower density 

infestations. 

 

The results from this chapter indicate that spectral resolution may be more important 

than spatial resolution in order to accurately map Paterson’s curse. This was 

demonstrated by the spectral confusion between Paterson’s curse and pasture from 

the 1 m multispectral DMSI data, which was a similar result to previous studies 

(Bulman 2004; Ullah, et al. 1989b) that used medium spatial resolution multispectral 

imagery. The spectral contribution of the purple flowers of Paterson’s curse within a 

DMSI pixel would have been less than that of green vegetative material, and is likely 

to produce a similar response within a larger pixel. This situation is similar for other 

weed species growing in agricultural settings, due to a limited spectral contrast of the 

species with green pasture (e.g. Carson, et al. 1995; Lass, et al. 1996). In contrast, 

high spatial resolution airborne multi-spectral applications have been successful for 

woody weed species because the pixel size was smaller than the vegetation canopy 

(e.g. Everitt and Yang 2007b; Robinson, et al. 2008). Another factor that benefited 

the delectability of the weed species in those applications was a non-weed 

background that produced a strong spectral contrast, e.g. green foliage against water 

or soil, or lighter or senescent vegetation.  
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6 DISCRIMINATING PATERSON’S CURSE WITH 
SATELLITE HYPERSPECTRAL IMAGERY 

6.1 Introduction  

Hyperspectral remote sensing from aerial and satellite platforms has contributed to 

knowledge on the ecology of weeds since the 1980s and has been a proven approach 

for mapping and modelling various species (He, et al. 2011). Airborne platforms in 

particular have been used to detect weeds at low densities (Glenn, et al. 2005; Lass, 

et al. 2002) and improve the mapping accuracy compared to multispectral sensors 

(Dehaan, et al. 2007; Mundt, et al. 2005). Despite this success, there are continuing 

issues with accurately geo-referencing imagery and matching field data (Aspinall, et 

al. 2002), which can affect the ability to quantitatively determine accuracy 

(Lawrence, et al. 2006; Mundt, et al. 2005). A major limitation of airborne 

hyperspectral remote sensing is the high expensive if weeds are to be mapped over a 

large area (He, et al. 2011).  

 

Medium spatial resolution imagery is important for regional scale operational remote 

sensing, (Lawes and Wallace 2008; Rejmánek 2000), especially if the application of 

the technology is to be cost effective to management. Multispectral medium 

resolution sensors have been generally unsuccessful in detecting and mapping weeds 

(He, et al. 2011) except when they have distinctive characteristics for detection, are 

present in high densities, or cover large areas (Cuneo, et al. 2009; Lawes and 

Wallace 2008; Peterson 2005; Wilfong, et al. 2009). Multi-spectral remotely sensed 

imagery with medium spatial resolution (Landsat 5 and 7) have been shown in 

previous studies to lack the spectral resolution required to discriminate Paterson’s 

curse from co-occurring vegetation (Bulman 2004; Ullah, et al. 1989b).  

 

In Chapter 5, Paterson’s curse was mapped at a low to medium accuracy from high 

spatial resolution multispectral imagery. The accuracy results demonstrated that high 

spatial resolution imagery may also be limited by spectral resolution, especially if 

there is a lack of spectral contrast between the weed species and co-occurring 

vegetation—as was the case with Paterson’s curse and pasture. In Chapter 4, the field 

spectroscopy analysis showed that narrow discrete bands from a hyperspectral sensor 

could detect reflectance difference peaks between Paterson’s curse and co-occurring 
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vegetation, and there was a good relationship between linear spectral unmixing, band 

ratios, indices and floral percentage cover. The results indicated that hyperspectral 

remote sensing could be a useful source of data for detecting and mapping Paterson’s 

curse. 

 

Satellite hyperspectral sensors represent the best of both worlds in spectral and 

spatial resolution: they can overcome the inherent spectral limitations of multi-

spectral sensors and capture imagery over larger areas than airborne hyperspectral 

sensors. The Earth Observation 1 (EO-1) Hyperion sensor combines a hyperspectral 

resolution (196 unique bands) with the same 30 m spatial resolution as Landsat 8 

(Jupp and Datt 2004). The large number of bands allows materials to be mapped with 

hyperspectral classification approaches such as mixture tuned matched filtering 

(MTMF) and linear spectral unmixing (LSU). The narrow spectral bandwidth of 

Hyperion is an advantage over multi-spectral sensors (e.g. DMSI), as the bands can 

be more closely matched with field spectroscopy data. Hyperion data are not used 

widely (operationally) because of processing and noise issues, but have been used in 

a number of studies to successfully map vegetation (e.g. Apan, et al. 2004; Datt, et 

al. 2003; Pu, et al. 2003) and weeds (Pengra, et al. 2007; Ramsey III and Nelson 

2005; Ramsey III, et al. 2005b; Ramsey III, et al. 2005c). Given that Hyperion is 

currently the only operational hyperspectral satellite sensor, it provides an 

opportunity to foreshadow the performance of planned satellite hyperspectral sensors 

for mapping Paterson’s curse. 

 

The aim of this chapter is to investigate the utility of EO-1 Hyperion imagery to 

detect and map Paterson’s curse. Two approaches are used: 1) a matched filter 

classification using image derived end-members; and 2) logistic regression, to 

determine the relationship between Paterson’s curse and band ratios and indices from 

Chapter 4. 

6.2 Methods 

A Level 1R EO-1 Hyperion image was acquired on November 2 2006. A full 

description of the EO-1 Hyperion sensor and pervious applications, as well as the 

acquisition process for the November 2 image and its properties is provided in 

Section 3.4.2. 
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The analysis of the Hyperion data was comprised of two main components 1) 

processing; and 2) classification and validation. The two components, and the major 

steps associated with each are shown as a flowchart in Figure 6.1.  

 

Figure 6.1 Flowchart of methodology for 1) processing and 2) classifying and 
validating Hyperion data. 

6.2.1 Processing 

Processing hyperspectral data is more specialised compared than multi-spectral, and 

the rigor of the processing can have a strong influence on the overall accuracy of a 

classification (Aspinall, et al. 2002). The large number of bands in hyperspectral data 
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necessitates noise reduction protocols and compensating for atmospheric attenuation. 

Hyperion data in particular can involve additional processing, due to the low signal-

to-noise ratio, and detectors that are prone to malfunction (Jupp and Datt 2004). 

6.2.1.1 Specialised Hyperion pre-processing 

Hyperion level 1R images are pre-processed before delivery to users, however a 

number of artefacts are still present that require further processing. The following 

section describes the workflow to correct these image artefacts. A set of tools 

developed by the CSIRO during the Hyperion 2002–2004 validation experiments 

(Jupp and Datt 2004) were used for the processing in the ENVI software (ITT Visual 

Information Solutions 2006c). 

 

Hyperion data have 44 bands that are non-calibrated, leaving 198 bands out of the 

original 242 (Pearlman, et al. 2003). Hyperion images can also have ‘bad’ pixels 

(columns) with zero values due to malfunctioning detectors in an array. A description 

of the types of abnormal or bad pixels that may be found in Hyperion data is 

provided by Han, et al. (2002). The CSIRO "Apply Bad Pixel List" tool was applied 

to the raw radiance image to correct instances of bad pixels. Image bands were 

selected for a mask that had either non-calibrated detectors (zero values) or bands 

that were visually assessed and considered very noisy. Each band was also inspected 

for abnormal columns, which were caused by malfunctioning detectors. These 

columns typically had zero values throughout, or very high or low values 

consistently throughout the length of the column. Appendix J lists the bad/noisy 

bands, along with the bad columns for selected bands. 

 

The image was spatially subset to exclude areas outside the general locality of the 

study sites. The first and last columns of the image were removed, as these columns 

in Hyperion Level 1R datasets have zero values due to the process of pixel shifting 

the visible/near (VNIR) and short-wave infrared (SWIR) detectors to align them. A 

further spatial subset was made, where an along-track subset of 600 lines was 

selected from rows 1347-2047, which encompassed the along-track spatial extent of 

the validation data. A spectral subset of 158 bands was selected (Table 6.1). The 

bands 121–128, 167–178, and 224 were removed, as they were identified by Jupp 

and Datt (2004) as being deep water absorption areas. The bands removed were not 
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located in the water vapour areas (820, 940 and 1135 nm) used by the Fast Line-of-

sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) atmospheric 

correction module (see Section 6.2.1.2). 

Table 6.1 Centre wavelengths of the 158 band image produced by spectral sub-
setting for the visible/near infrared (VNIR) and the short-wave 
infrared (SWIR). 

Array Band Wavelength (nm) 
VNIR 8–57 428–927 

SWIR 81–119 938–1322 

 131–164 1442–1774 

 182–184 1957–1977 

 187–218 2007–2321 
 

Hyperion data can contain outlier pixels with anomalous values, which appear as 

spikes and unnatural peaks in the band statistics. Although not ‘bad’, the presence of 

such pixels can compromise the results of the de-striping procedure. The CSIRO 

‘Remote Outliers’ tool identified outliers from the median threshold test of Datt, et 

al. (2003) and replaced them by taking the mean value from the five neighbouring 

columns. 

 

Image striping occurs in Hyperion images when pixels (columns) have a different 

mean and standard deviation (gain and offset) to neighbouring pixels in the image 

(Datt, et al. 2003). Stripes can also occur in blocks, e.g. across two or more adjacent 

columns of data. There are two common methods for dealing with stripes: replacing 

column pixel values with the mean of the two neighbouring pixels, or using the 

global and local de-striping method of Datt, et al. (2003). While the former method is 

simple, it has the tendency to smooth or even remove potentially valuable features by 

the averaging process, and does not deal effectively with instances where blocks of 

pixels have different gain and offset to the rest of the image (Datt, et al. 2003). The 

latter method was preferred, as it can restore the value of a pixel to match the gain 

and offset of the neighbouring pixels without fundamentally changing the value of 

the pixel (Datt, et al. 2003). The local de-striping was applied separately on the 

VNIR and SWIR bands.  The VNIR window was 4 pixels wide (9 pixels in total) and 

the SWIR window was 20 pixels wide (41 pixels in total). The parameters were 
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similar to those used by Datt, et al. (2003) for an agricultural application, where a 

local filter size of 5 pixels was used for VNIR striping and windows of up to 41 

pixels for block striping in the SWIR.  

6.2.1.2 Standard hyperspectral processing 

A Minimum Noise Fraction (MNF) transform was applied to the de-striped image, 

followed by an inverse MNF. The entire image was used to generate the noise 

statistics rather than a homogeneous spatial subset, as it was found to be more visibly 

effective in reducing noise, compared to a homogeneous spatial subset recommended 

by Green, et al. (1988) The first 20 bands were retained, as they contained the least 

noise, and retained most of the image information. The cut-off was chosen according 

to where the curve levelled out for both the eigenvalue and the percentage of 

variance.  

  

The image was atmospherically corrected using the FLAASH add-in for ENVI. 

FLAASH uses a physics-based algorithm to correct for atmospheric influence such 

as molecular and particulate scattering and absorption from an original ‘radiance at 

detector’ image (Felde, et al. 2003). The surface reflectance is calculated for each 

pixel in each band by a MODTRAN4 calculation that utilises user provided 

information such as viewing and solar angle, mean surface elevation, atmospheric 

model type, aerosol type and atmospheric visibility (ITT Visual Information 

Solutions 2006b). 

 

A potential source of error during atmospheric correction is wavelength calibration 

uncertainty, which is caused by small misalignments of optical elements in the 

detector array, which can result in a constant spectral shift in all bands and 

wavelength errors of up to several nanometres (Felde, et al. 2003). Prior to 

atmospheric correction, the wavelength recalibration option in FLAASH was utilised 

to correct for the potential error. The recalibration used Normalized Optical Depth 

Derivative (NODD) and MODTRAN4, which compares radiance spectra from areas 

of atmospheric absorption bands to simulated spectra with correct atmospheric 

column densities in the same bands, and produces new calibrated band wavelength 

centres that showed a minimum root mean square area shift (Felde, et al. 2003). The 
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new band wavelength centres were applied to the Hyperion image by updating the 

image header information.  

 

The original level 1R image radiance units of W/m² * μm * sr were converted to the 

units of μW/cm² * nm * sr required by FLAASH by dividing the original pixel values 

for the VNIR and SWIR bands by scaling factors of 400 and 800 respectively. The 

parameters used for the atmospheric correction in FLAASH are listed in Appendix 

K. A mid-latitude summer atmospheric model was used, which was the 

recommended model for the 30º S latitude of the study area, and for the month of 

November (ITT Visual Information Solutions 2006b). A default visibility option of 

100 km was used, as previous attempts at atmospheric correction using the water 

vapour and aerosol options resulted in an output image with many negative values, 

especially in vegetated regions. Following atmospheric correction, a second spectral 

subset was conducted, to produce a 49 band image. The central (calibrated) 

wavelengths for the image are shown in Table 6.2. Bands 8 and 9 were retained 

despite residual noise, as spectral differences between Paterson’s curse and other 

materials were prominent in the blue region of the electromagnetic spectrum 

(Chapter 4). 
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Table 6.2 Band centre wavelengths and full width half maximum (FWHM) for 
the 49 band subset. 

Band Centre
(nm) 

FWHM 
(nm) Band Centre 

(nm) 
FWHM 

(nm) Band Centre 
(nm) 

FWHM 
(nm) 

8 428.44 11.39 25 601.19 10.56 42 774.23 10.79 
9 438.61 11.39 26 611.34 10.48 43 784.43 10.88 

10 448.79 11.39 27 621.50 10.41 44 794.64 10.99 
11 458.96 11.39 28 631.66 10.36 45 804.84 11.10 
12 469.14 11.39 29 641.83 10.32 46 815.04 11.20 
13 479.31 11.39 30 652.00 10.29 47 825.24 11.26 
14 489.49 11.38 31 662.17 10.29 48 835.42 11.28 
15 499.65 11.35 32 672.35 10.30 49 845.59 11.28 
16 509.82 11.31 33 682.53 10.33 50 855.77 11.28 
17 519.98 11.26 34 692.72 10.39 51 865.94 11.28 
18 530.13 11.19 35 702.92 10.46 52 876.12 11.28 
19 540.29 11.11 36 713.11 10.53 53 886.29 11.28 
20 550.44 11.02 37 723.30 10.60 54 896.47 11.28 
21 560.59 10.93 38 733.49 10.66 55 906.64 11.28 
22 570.74 10.84 39 743.68 10.69 56 916.82 11.28 
23 580.89 10.74 40 753.86 10.71     
24 591.04 10.65 41 764.04 10.73       

 

The image was rectified to a base image comprised of a level 1G (terrain corrected) 

Landsat 5 image, captured on December 6 2006. The Landsat 5 base image was used 

instead of a higher resolution (0.5 m) ortho-rectified image due to coincident timing 

of the capture of the two images, and features were easier to identify and use as 

ground control points on the Landsat image compared to the high-resolution image. 

A total of 25 ground-control points were selected from easily identified and stable 

features, and an even coverage across the image was obtained. The rectification was 

performed with a second order polynomial function, and nearest neighbour re-

sampling to maintain as much spectral fidelity as possible, resulting in an overall root 

mean square (RMS) error of 9.15 m (approximately one-third of a pixel).  

6.2.2 Classification  

A top-down hyperspectral classification approach was used, in which image derived 

end-members were input into the classification, rather than end-members derived 

from field or laboratory spectra of the target (Aspinall, et al. 2002).  
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6.2.2.1 Spectral sampling  

An end-member representing dense flowering Paterson’s curse was derived directly 

from the image. A sample size of 3 x 3 pixels (90 m x 90 m, or 0.81 ha) was used, as 

it allowed a representative end-member to be obtained whilst minimising the 

influence of mixed pixels from neighbouring cover types. There were three locations 

in the study area where a nine pixel sample of dense Paterson’s curse was possible: 

one on the Morden Downs property, and two on the Bindarie property. The final end-

member spectrum was derived from the mean of the three spectra.  

 

Spectral samples of three non-Paterson’s curse vegetation types were extracted from 

the image: 1) Senescent vegetation, which represented the condition of most pastures 

in the region during the time of year the image was captured; 2) Eucalypt woodland, 

since large areas of the image and part of the study site properties contained that land 

cover; and 3) Green vegetation, which represented areas of crop, irrigated areas, and 

riparian vegetation which was still green and lush, and with high reflectance in the 

near infrared region of the spectrum. Spectral samples from the five Paterson’s curse 

density classes from the field survey sites described in Section 6.2.3 were also 

collected.  

6.2.2.2 Matched filter classification 

On the basis of the literature review in Chapter 2, the matched filter and MTMF 

methods were preferred over linear spectral un-mixing (LSU) and spectral angle 

mapper (SAM). These methods have been demonstrated to be superior over LSU 

when a single end-member is mapped and the extent of the other end-members is not 

known (Boardman 1998). In addition MTMF has been used in past studies to detect 

weed infestations at low densities (e.g. Mundt, et al. 2005), which is advantageous 

for Paterson’s curse. In many applications, a region of high matched filter/low 

infeasibility pixels has been manually selected from a two-dimensional feature space 

plot of the matched filter and infeasibility output (Glenn, et al. 2005; Mitchell and 

Glenn 2009). However this procedure is arbitrary and may not represent the limits of 

detection of the target feature (Aspinall 2002). On this basis, the dense Paterson’s 

curse end-member spectrum described in Section 6.2.2.1 was input into a matched 

filter. 
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6.2.2.3 Analysis of band ratios and indices 

Band ratios and indices were selected from the field spectrometry analysis (Chapter 

4) and from a search of the literature. The Hyperion bands were assigned to the 

nearest equivalent bands from the ratios and indices derived from the 

spectroradiometer data.  

6.2.3 Validation 

6.2.3.1 Data collection 

A stratified random sampling approach was used for validation purposes, where a 

Geographic Information System (GIS) was used to stratify the study area according 

to where Paterson’s curse was present or absent, and random plots were generated 

within the two strata. The area where Paterson’s curse was absent was determined 

from field knowledge obtained from earlier reconnaissance with a handheld GPS and 

digital camera, and consisted predominantly of pasture and cropped areas. A 45 m-

wide buffer was created around the extent of the stratified regions in the GIS, to 

reduce the likelihood of plots containing mixed pixels from nearby Eucalypt 

woodland and cleared areas. A total of 85 random plots were generated for the 

Paterson’s curse class and 100 plots for the non-Paterson’s curse class. The 

dimensions of the field plots were 90 m x 90 m (3 x 3 pixels) to account for geo-

registration error. 

 

A field survey of the Paterson’s curse plots was conducted on October 18, 2006, 

between the daylight hours of 08:00 and 17:00. The non-Paterson’s curse plots were 

not surveyed in the field as Paterson’s curse was known to be absent.  A handheld 

GPS (Lowrance Ifinder H²O) was used to locate the coordinates of each plot in the 

field. At each plot, four oblique digital photos were captured, each orientated towards 

one of the four cardinal compass directions. The approximate infestation density of 

Paterson’s curse was visually estimated post-survey for each plot based on the 

oblique photographs. A classification key was used to assign a ranking to each plot 

(Table 6.3). Appendix I contains a list of the attributes for each plot.  
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Table 6.3 Density classes and description of Paterson’s curse assessed from 
random field plots. 

Density Class Description 

0 Paterson’s curse absent 
1 Isolated plants 

2 Small patches of Paterson’s curse, or up to total 
25% Paterson’s curse 

3 Approx. 50% of plot covered by Paterson’s cure 
4 Up to 75% of plot covered by Paterson’s curse 
5 Plot nearly 100% Paterson’s curse 

 

The locations of the field plots are shown in Figure 6.2. The number of plots 

represented for each Paterson’s curse density class was 24 for class 1, 26 for class 2, 

13 for class 3, 10 for class 4, and 11 for class 5. All but one of the 85 plots contained 

Paterson’s curse. Examples of different density classes for the plots from field 

photographs are shown in Figure 6.3.  
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Figure 6.2 Location of sample sites for Paterson’s curse, non-Paterson’s curse. 
Bands 8 (428 nm), 20 (550 nm), and 30 (652 nm) are represented as 
blue, green, and red. 
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Figure 6.3 Examples of field plots representing the five density classes of 
Paterson’s curse. 

6.2.3.2 Quantitative accuracy assessment 

The accuracy of the matched filter classification and band ratios/indices was assessed 

from the presence/absence field plots (Section 6.2.3.1), using both a threshold 

dependent and threshold independent approach. For the threshold dependent 

approach, a Kappa statistic was calculated for all possible thresholds of the matched 

filter scores from the field plots. The maximum Kappa statistic was used as a 

threshold value to convert the soft classification into a hard classification map (Liu, 

et al. 2005). For the threshold independent approach, logistic regression and receiver 

operating characteristic (ROC) statistics were generated from the SPSS (v.17) 

software package (SPSS Inc. 2007). For the former, a Chi-square statistic and 

predicted probabilities were generated. For the latter an area under curve (AUC) 

statistic (Equation 2.9) was calculated from the predicted probabilities of the logistic 

regression. The predicted probabilities were also used to produce a hard (binary) 
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image output based on the maximum efficiency method (Lippitt, et al. 2008): a 

threshold value was determined at the point where there was the greatest difference 

between the false positive rate and true positive rate across all possible threshold 

values of a validation dataset. This threshold value also corresponds to the closest 

point on the ROC curve to the top left-hand corner of the plot (Cantor, et al. 1999; 

Liu, et al. 2005). 

6.3  Results  

6.3.1 Processing  

The de-striping and minimum noise fraction resulted in an improvement to the 

aesthetic quality of the imagery, and a reduction in noise. In particular, noise and 

striping present in the VNIR bands was effectively removed, as shown in Figure 6.4. 

Striping effects were most apparent in bands 8 to 13 (428 nm–489 nm) from the blue 

region of the spectrum. Bands in the green, red and near infrared wavelengths were 

not visibly affected by striping.  

 

Figure 6.4 a) Before and b) after de-striping and noise removal was applied to 
VNIR band 8 (428 nm). Bands 25 (601 nm) and 55 (906 nm) shown 
for comparison where no striping effect was apparent. 
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6.3.2 Classification 

6.3.2.1 Spectral sampling  

The locations of the sites from which Paterson’s curse end-member spectra and the 

non-Paterson’s curse spectral samples were derived are shown in Figure 6.5. 

Senescent vegetation was sampled from 6 sites (54 pixels), Eucalypt woodland from 

10 sites (90 pixels), and green vegetation from 6 sites (54 pixels). The Eucalypt 

woodland class was spectrally heterogeneous across the image compared with the 

other two classes, and four additional sites were sampled to incorporate the 

variability. 

 

Figure 6.5 Location of Paterson’s curse non-Paterson’s curse spectral samples. 
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The three spectral samples and the mean spectrum for dense Paterson’s curse mean 

spectrum are shown in Figure 6.6. The general trend with all the spectra was a noise 

affected decrease in reflectance from 424 nm to 448 nm, then gradual increase 

through the rest of blue, and into the green and red. The spectra had similar 

reflectance in the blue, and became more separable in the green and beyond. The red-

edge was located at approximately 662 nm (band 31), and the reflectance increased 

sharply into the near infrared until 733 nm (band 38). There was a gradual increase in 

reflectance from 733 nm until 815 nm (band 46). Spectrum 2 had a greater 

reflectance in the near infrared, compared to the other plots. Spectrum 3 had a similar 

reflectance trend to the mean plot. 

 

Figure 6.6 Spectral samples of dense Paterson’s curse and the derived mean end-
member spectrum. 

The spectra of the Paterson’s curse end-member and co-occurring vegetation types 

(senescent vegetation, Eucalypt woodland, and healthy vegetation) are shown in 

Figure 6.7. The red-edge for green vegetation was located at 741 nm (c.f. 662 nm for 

Paterson’s curse) and showed a characteristic sharp increase into the near infrared, 

where it had the highest near infrared reflectance beyond 713 nm of all three classes. 
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Senescent vegetation showed the highest reflectance until 713 nm, and had the 

second highest reflectance to green vegetation for the remainder of the spectral 

range. The green vegetation, Paterson’s curse and Eucalypt woodland had similar 

reflectance in the blue wavelengths. Senescent vegetation and Paterson’s curse had a 

similar red-edge shift at approximately 662 nm. 

 

Figure 6.7 Spectra of the dense Paterson’s curse end-member and co-occurring 
vegetation types. 

The reflectance differences between the Paterson’s curse end-member spectrum and 

the spectra for green vegetation, senescent vegetation and Eucalypt woodland are 

shown in Figure 6.8. For green vegetation and Paterson’s curse, there was a small 

difference in blue and green until a small peak at 550 to 560 nm (bands 20 and 21). 

There was a negative peak at 682 to 692 nm (bands 33 and 34), followed by a sharp 

increase in the reflectance difference after the red-edge and a maximum difference in 

the near infrared at approximately 896 nm (band 54). Senescent vegetation and 

Paterson’s curse showed a gradual increase in the reflectance difference through the 

visible and near infrared, with a peak at 693 nm, then a decrease from 703 to 765 nm, 

then a plateau through the remainder of the near infrared. Eucalypt woodland and 

Paterson’s curse showed a similar trend to senescent vegetation and Paterson’s curse, 
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with a gradual increase from blue into the near infrared, with a small plateau, and 

then a gradual increase through rest of the near infrared. Peaks in the reflectance 

difference for this pair occurred at bands 35 (703 nm) and 55 (907 nm).  

 

Figure 6.8 Reflectance differences between the dense Paterson’s curse end-
member spectrum (PC) and spectral samples representing green 
vegetation (GV), senescent vegetation (SV) and Eucalypt woodland 
(EW).  

The spectra for Paterson’s curse from the density class plots, along with green 

vegetation and senescent vegetation are shown in Figure 6.9. Class 1 had the lowest 

reflectance across the near infrared, and there was a general trend of higher near 

infrared reflectance as the density of the Paterson’s curse classes increased. 

Generally all of the Paterson’s curse classes had a similar reflectance across the full 

range. 

Wavelength (nm)

400 500 600 700 800 900

R
ef

le
ct

an
ce

 d
iff

er
en

ce

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

GV/PC
SV/PC
EW/PC



145 

Figure 6.9 Spectra of the Paterson’s curse density classes from the field 

validation plots, with green and senescent vegetation spectra shown 

for comparison. 

6.3.2.2 Matched filter classification 

The matched filter output (representing the abundance of the Paterson’s curse end-

member) for the matched filter classification is shown in Figure 6.10. Higher 

matched filter scores were generally present in pasture and cropped areas of the 

image (A) and areas infested by Paterson’s curse. Matched filter scores were 

generally low for areas of Eucalypt woodland, water bodies, and fallow/cleared areas 

(B). Other areas of Eucalypt woodland had a ‘speckle’ effect caused by a large range 

of matched filter values (C). 
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Figure 6.10 Matched filter image derived from Paterson’s curse end-member.  

6.3.2.3 Analysis of band ratios and indices 

The Hyperion indices derived from the field spectroscopy analysis in Chapter 4 are 

shown in Table 6.4. Out of the eleven indices from Chapter 4, three were not used: 

SVPCF 1 due to the index containing a band that was not represented by the range of 

Hyperion (391 nm); SVDPC 2 (2007 nm and 1358 nm) and SVPCF 2 (2007 nm and 
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1415 nm) as the bands had been removed from the Hyperion image earlier due to 

noise. The spectral differences between spectra from Chapter 4 mostly translated 

well across to the equivalent Hyperion bands, and were within +/- 5 nm. For the 

green vegetation/Paterson’s curse spectra, the Hyperion bands were similar to the 

bands identified from the radios derived from the spectroradiometer data in Chapter 

4 (Table 6.5). For the senescent vegetation/Paterson’s curse indices there were no 

similar wavelength peaks between the spectroradiometer indices and Hyperion 

spectra. The Normalised Difference Blue Index (NDBI) (Schut and McIntyre 2009) 

from Chapters 4 was used, as were four red-edge band ratios: the Red-Edge 

Normalised Difference Vegetation Index (NDVI) (RENDVI), Normalised Difference 

Red-Edge (NDRE), Red-Edge 2 (RE 2), and the Normalised Flower Red-Edge 

(NFRE).  

Table 6.4 Hyperion indices derived from equivalent indices from Chapter 4. 

Index 
 

Formula 
 

Reference 
 

GVDPC 1 
(683 nm –  550 nm)

(550 nm +  683 nm)
 Chapter 4 

GVDPC 2 
(866 nm –  683 nm)

(683 nm +  866 nm)
 Chapter 4 

GVDPC 3 
(866 nm –  550 nm)

(550 nm +  866 nm)
 Chapter 4 

GVPCF 1 
(550 nm –  439 nm)

(439 nm +  550 nm)
 Chapter 4 

GVPCF 2 
(907 nm –  693 nm)

(693 nm +  907 nm)
 Chapter 4 

GVPCF 3 
(896 nm −  439 nm)
(439 nm +  896 nm)

 Chapter 4 

GVPCF 4 
(693 nm −  439 nm)
(439 nm +  693 nm)

 Chapter 4 

NDBI 
(489 nm −  428 nm)
(428 nm +  489 nm)

 Schutt & McIntyre (2009) 

RENDVI 754nm –  713 nm
713 nm + 754 nm

 Gitelson et al. (1994) 

NDRE 795 nm –  723 nm
723 nm +  795 nm

 Barnes et al. (2000) 

RE 2 
713 nm –  683 nm
683nm + 713 nm

  Cloutis et al. (1996) 

NFRE 723 nm –  652 nm
652 nm +  723 nm

 Chapter 4 
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Table 6.5 Comparison of peak spectral differences of green 
vegetation/Paterson’s curse spectra derived from Hyperion image, and 
field spectroscopy in Chapter 4.   

Hyperion Peaks 
(nm) 

Spectroradiometer 
Peaks (nm) 

550 -  561 555  

683 - 693  684  

896  865  

 

6.3.3 Validation 

6.3.3.1 Matched filter threshold independent 

The Chi-square and ROC results for the matched filter image are shown in Table 6.6. 

The logistic regression model showed good agreement with the validation data. The 

model ƛ2 of 86.95 rejects the null hypothesis that the matched filter score is not 

linearly related to the log-odds of presence/absence of Paterson’s curse. The AUC 

statistic of 0.87 from the ROC analysis also indicated good agreement between the 

matched filter output and the validation data (Figure 6.11). The resulting matched 

filter cut-off value represented the top 54% of the dataset, in which 81% of 

Paterson’s curse records were correctly identified (user’s accuracy) and 17% of non-

Paterson’s curse records were misidentified (83% producer’s accuracy). 

Table 6.6 Chi-square results and ROC statistics from logistic regression of the 
matched filter classification output. 

N Chi-
Square Sig. ROC SE Sig. 

User’s 
accuracy 

(%) 

Producer’s 
accuracy 

(%) 

184 86.94 0.0001 0.870 0.027 0.01 81 83 
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Figure 6.11 ROC plots for the matched filter validation result, with cut-off value 
indicated by arrow. 

The probability image of Paterson’s curse from the logistic regression is shown as 

Figure 6.12. There was a good association of the higher matched filter values with 

corresponding areas of high (> 0.70) probability, particularly in areas of pasture. 

Areas of Eucalypt woodland on the three properties had lower probability. 
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Figure 6.12 Paterson’s curse model (probability of presence) derived from logistic 
regression. 

The hard classification image from the ROC cut-off for the matched filter 

classification is shown in Figure 6.13 for the three properties. Small areas of 

sclerophyll woodland are incorrectly classified as Paterson’s curse in the northern 

part of the CACB property (Figure 6.13a). Some areas of crop were misclassified in 

the eastern part of the property (A). In the south and south-west area of the property, 

some areas of pasture (B) were classified as Paterson’s curse, where these areas are 

known not to contain Paterson’s curse. The western portion of the Morden Downs 

property (Figure 6.13b) was not investigated on the ground, so it was not certain 

whether Paterson’s curse was correctly classified. The main core areas of Paterson’s 

curse found in the eastern section of the property was correctly classified (C). The 

areas on the Bindarie property (Figure 6.13c) classified as Paterson’s curse were 

mostly open areas of pasture, although not all of these areas were surveyed on the 

ground, and could have contained some Paterson’s curse. There were some instances 

of Eucalyptus woodland (D) being misclassified as Paterson’s curse. 
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Figure 6.13 Threshold image showing Paterson’s curse (purple) at a) Bindoon 
Catholic Agricultural College b) Morden Downs, and c) Bindarie. 

6.3.3.2 Matched filter threshold dependent 

The error matrix for the cut-off value (the top 46% of the dataset) of the matched 

filter classification (Table 6.7) shows a high overall accuracy (82%), and a high 

user’s (80%) and producer’s accuracy (81%) for Paterson’s curse. The overall Kappa 

statistic of 0.64 was statistically significant (z > 1.96) and showed a good agreement 

with the validation data, based on the ranges proposed by Monserud and Leemans 

(1992). Similarly the per-class Kappa statistics for Paterson’s curse from a user’s and 

producer’s perspective were above 0.6 and considered good.   
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Table 6.7 Threshold dependent accuracy results of matched filter classification 
with validation dataset (n = 184). 

  Present Absent Totals 

User’s 
accuracy 

(%) 
Kappa per-

class (User's) 

 Present 68 17 85 80 0.632 
Absent 16 83 99 84 

  Totals 84 100 184 
   Producer’s 

accuracy (%) 81 83 
    Kappa per-class 

(Producer's) 
  

0.646 
   Overall 

accuracy (%) 
  

82 
   Overall Kappa 

  
0.640 

   

6.3.3.3 Band ratio/index threshold independent 

The Chi-square results from the logistic regression and the ROC (AUC) statistics for 

the ratios/indices are shown in Table 6.8. The best performing indices in terms of the 

AUC statistic were the GVPCF 4 (0.756), GVPCF 1 (0.721) and GVDPC 1 (0.702).  

The cut-off value for these indices represented 30%, 50% and 52% of the top values 

of the datasets respectively. The model Chi-square values for the three indices 

(44.86, 33.09 and 9.69) rejects the null hypothesis that the range of values is not 

linearly related to the log-odds of presence/absence of Paterson’s curse. The 

remaining ratios/indices had low AUC statistics, between 0.51 and 0.59 and non-

significant Chi-square values. Of particular note was the low AUC statistic for the 

NDBI (0.565), which was the best performing index in the field spectroscopy 

analysis in Chapter 5.  

 

The producer’s accuracy was higher (70–96%) than that of user’s accuracy (21–

69%). This was due to a high prevalence of Paterson’s curse being misclassified into 

non-Paterson’s curse records, and a low amount of non-Paterson’s curse being 

classified in Paterson’s curse records. This trend is exemplified by the GVPCF 4 

index, which had a low user’s accuracy of 48%, but a higher producer’s accuracy of 

92%. Exceptions to this trend were the GVPCF 1 and GVDPC 1 indices, which had 

similar user’s (66% and 69%) and producer’s accuracy (70%).  
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Table 6.8 Chi-square, AUC and accuracy statistics from logistic regression of 
band ratios and indices with validation dataset (n = 184). 

Ratio/Index Threshold 
(%) 

Chi-
Square Sig. AUC Sig. 

User’s 
accuracy 

(%) 

Producer’s 
accuracy 

(%) 
GVPCF 4 30.43 44.861 0.001 0.756 0.001 48 92 
GVPCF 1 50.00 30.09 0.001 0.721 0.001 66 70 
GVDPC 1 51.63 9.694 0.002 0.702 0.001 69 70 
GVPCF 2 34.78 3.224 0.073 0.592 0.031 48 82 
GVDPC 2 22.83 2.349 0.125 0.585 0.048 35 93 

NFRE 26.63 1.688 0.194 0.580 0.063 36 86 
RENDVI 20.65 0.462 0.497 0.571 0.099 33 95 

RE2 19.57 0.975 0.323 0.566 0.122 29 93 
NDBI 14.67 4.064 0.044 0.565 0.127 22 95 

GVPCF 3 36.41 2.062 0.151 0.562 0.147 46 76 
NDRE 30.43 0.231 0.631 0.543 0.318 42 85 

GVDPC 3 13.59 0.009 0.924 0.514 0.737 21 96 
 

The ROC plots with cut-off values for the top ROC results (AUC > 0.7) are shown in 

Figure 6.12. The cut-off values were 50% for GVPCF 1, 30% for GVPCF 4, and 

52% for GVDPC 1.  

 

Figure 6.14 ROC plots for three best performing indices, with cut-off values 
indicated by arrows. 
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6.3.3.4 Band ratio/index threshold dependent 

The threshold dependent results for the band ratios/indices are shown in Table 6.9. In 

terms of overall Kappa, the best performing ratios/indices were the same three as for 

the threshold independent method in Section 6.3.3.3: GVDPC 1, GVPCF 1 and 

GVPCF4. The Kappa statistic for GVDPC 1 (0.41) shows a fair agreement with the 

validation data, according to the ranges proposed Monserud and Leemans (1992); 

however the GVPCF 1 (0.36) and GVPCF 4 (0.35) had a poor agreement. The 

remaining band ratios had poor overall agreement, with Kappa statistics less than 0.3. 

The Kappa per class (user’s and producer’s) for GVDPC 1 and GVPCF 4 was 

between 0.29 and 0.45; whereas the per-class Kappa statistics for GVPCF 1 were < 

0.1. The ratio with the least agreement with the validation dataset in terms of overall 

Kappa and Kappa per-class (user’s) was the NDBI, which was the best performing 

ratio from the field spectroscopy analysis in Chapter 5. 

 
The overall accuracy ranged from 49% for NDBI, to 71% for GVDPC 1. There was a 

general trend of the producer’s accuracy increasing, with a corresponding decrease in 

the user’s accuracy. This was due to a greater number of correctly identified 

Paterson’s curse records in the lower Kappa ratios/indices, and a corresponding 

increase in the number of non-Paterson’s curse records being mislabelled as 

Paterson’s curse. An exception was the GVPCF 4 index, which had the highest user’s 

accuracy (70%), but a low producer’s accuracy, which resulted in a lower overall 

kappa and kappa per-class (user’s).  
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Table 6.9 Threshold dependent accuracy results of band ratios and indices with 
validation dataset (n = 184). 

Ratio/index Kappa 
Threshold 

(%) 
UA 
(%) 

PA 
(%) 

OA 
(%) 

KPC 
(U) 

KPC 
(P) 

GVDPC 1 0.412 48.91 66.67 71.43 70.65 0.387 0.441 
GVPCF 1 0.359 50.54 47.2 70.24 50.54 0.028 0.072 
GVPCF 4 0.352 34.78 70.31 53.57 68.48 0.454 0.288 
GVPCF 2 0.291 65.76 57.03 82.14 63.59 0.209 0.478 
RENDVI 0.266 79.89 54.42 95.24 61.41 0.161 0.763 
GVDPC 2 0.264 77.71 54.55 92.86 61.41 0.164 0.679 

NDRE 0.247 72.83 54.48 86.91 60.87 0.162 0.518 
NFRE 0.207 65.76 53.72 77.38 59.24 0.148 0.339 
RE2 0.206 80.98 52.35 92.86 58.15 0.123 0.624 

GVDPC 3 0.150 85.33 50.32 94.05 54.89 0.086 0.594 
GVPCF 3 0.117 90.76 49.1 97.62 52.72 0.063 0.742 

NDBI 0.050 93.00 47.09 96.43 48.91 0.027 0.452 
Key: UA – producer’s accuracy; PA – user’s accuracy; OA – overall accuracy; KPC 
(U) – Kappa per-class (user’s); KPC (P) – Kappa per-class (producer’s) 

 

6.4 Discussion and Conclusion 

The result from the matched filter classification indicates that Paterson’s curse can be 

accurately mapped with EO-1 Hyperion imagery. The user’s accuracy (81 and 80%)  

from the threshold independent and dependent validation methods was similar to 

other non-woody weeds that have been mapped from airborne hyperspectral imagery, 

such as musk thistle (Mirik, et al. 2013), hoary cress (Mundt, et al. 2005) and 

Solidago altissima (Ishii and Washitani 2013). Overestimation of weeds with 

hyperspectral remote sensing has been reported by a number of authors (e.g. Lass, et 

al. 2002; Mirik, et al. 2013; Parker-Williams and Hunt 2004) and is more likely to 

occur when images cover large areas (e.g. EO-1 Hyperion) and have correspondingly 

higher environmental variability (Andrew and Ustin 2008). The effect of this 

variability can be ameliorated by masking regions of the image prior to the 

classification that may cause spectral confusion with the target weed (Pengra, et al. 

2007). For this research, overestimation was reduced by masking Eucalypt 

woodland; however additional sources of commission error are likely to include 

cropped areas, and pasture that retains greenness longer into the season.  

 

The producer’s accuracy from the threshold independent and dependent validation 

methods (83 and 81%) was also similar to other airborne hyperspectral applications 
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and higher than the producer’s accuracy of 69% obtained by Pengra, et al. (2007) 

from mapping the aquatic weed Phragmites with EO-1 Hyperion imagery. A likely 

source of omission error was lower density (patchy) areas of Paterson’s curse that 

could not be reliably discriminated from senescent pasture. This result is indicative 

of the ongoing challenge amongst remote sensing practitioners to accurately detect 

low density weed infestations (refer Section 2.6), even with the enhanced spatial and 

spectral resolution of airborne hyperspectral sensors (Glenn, et al. 2005; Mundt, et 

al. 2005). A satellite hyperspectral sensor such as EO-1 Hyperion is further limited in 

its ability to detect weeds at low density due to the coarser spatial resolution and 

lower signal-to-noise ratio. Within the context of this research, the producer’s 

accuracy is acceptable, given that the rationale for using EO-1 Hyperion data was to 

map the distribution of Paterson’s curse over a larger area in a more cost effective 

manner than airborne sensors, and to highlight areas that can be further investigated 

in detail (e.g. airborne hyperspectral or field visit). 

 

Quantitative measurements of weed density (or proportion cover) from hyperspectral 

imagery are a desirable output, given that a relationship between weed cover and 

estimated cover can be used to determine a detection threshold for a sensor (e.g. 

Parker-Williams and Hunt 2002). The main limitation with this approach is that the 

abundance measure from matched filter and MTMF are more representative of the 

presence of a material, rather than true abundance (Mitchell and Glenn 2009). In 

addition, only a small number of studies have related quantitative vegetation 

attributes to matched filter abundance with good correlations, and these studies 

mostly used airborne hyperspectral data with a higher signal to noise ratio than 

Hyperion (Andrew and Ustin 2008; Mitchell and Glenn 2009; Parker-Williams and 

Hunt 2002). Hyperion data was used by Ramsey III, et al. (2005c) to derive a good 

correlation between estimated cover of Chinese tallow (Triadica sebifera) and 

ground cover, but this approach required extensive field data and a rigorous 

calibration approach which is unlikely to be applicable to operational weed 

management. 

 

The reduction in flower cover over the two week period between the fieldwork and 

image capture was not a limitation to detecting Paterson’s curse with hyperspectral 

imagery. The feature that allowed Paterson’s curse to be detected was the tendency 
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for Paterson’s curse to retain living green material the end of spring when pasture is 

senescent (Piggin 1976). This result is similar to other studies that detected weeds 

with delayed senescence, for example para grass (Boyden, et al. 2013) and spotted 

knapweed (Lass, et al. 2002). In contrast, other studies could not reliably detect a 

weed species when in a reduced or absent flowering stage, due to spectral confusion 

with green co-occurring vegetation (Andrew and Ustin 2006; Everitt and Villarreal 

1987; Lass and Callihan 1997). At the time of the image capture, most of the study 

area contained senescent pasture, except for irrigated cropped areas and pasture in 

wetter areas. In contrast, when the field data was collected there was more green 

pasture. If an image from that period was classified using a similar approach to this 

chapter, it is likely that despite the peak flowering condition, there would be spectral 

overlap between Paterson’s curse and green pasture and a lower producer’s accuracy.  

 

The threshold dependent (maximum Kappa) and independent (ROC) methods 

produced similar user’s and producer’s accuracy for the matched filter classification. 

Similar accuracy results between different models are expected when there are equal 

numbers of presence and absence records (50% convergence) (Liu, et al. 2005).  

However for this research there was a convergence of 46% due to fewer presence 

records (85) than absence (100).  The accuracy result indicates that the two methods 

may be sufficiently robust to compensate for moderately lower (or higher) 

convergence values; and that the two methods produce a complimentary 

measurement of accuracy, and it is advantageous to use them together when 

assessing the accuracy of a hardened classification.  

 

A commonly cited advantage of the AUC statistic over threshold dependent 

approaches (e.g. maximum Kappa) is that all possible thresholds for a given model 

are incorporated (e.g. Fielding and Bell 1997; Zweig and Campbell 1993). However 

the statistic provides no information about the spatial distribution of errors, and most 

of the threshold values from the ROC curve used to derive the statistic are of no 

relevance to an end-user (Lobo, et al. 2008). Consequently, some authors have 

recommended the AUC statistic for stand-alone model assessment – but not as a 

comparative statistic for comparing the performance of different models (Robinson, 

et al. 2010; Termansen, et al. 2006). The main benefit of ROC (which was 

demonstrated from the current research) is the flexibility to determine an appropriate 
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threshold over a range of true positive and false positive values (Jiménez-Valverde 

and Lobo 2007; Lobo, et al. 2008; Robinson, et al. 2010).  

 

One disadvantage of the maximum efficiency method is that omission and 

commission error are equally weighted (Lobo, et al. 2008). This is undesirable for 

predicting the distribution of weed with spatial models, because a higher user’s 

accuracy is required to identify potential areas of invasion (Robinson, et al. 2010). 

Similarly for weed distribution maps derived from remote sensing, it is desirable to 

minimise weed infestations on the ground being misclassified into a non-weed class 

(omission error) (Andrew and Ustin 2008). To achieve this, a threshold value could 

be used that provides the highest user’s accuracy possible whilst keeping commission 

error to an acceptable level. The output could be further optimised by masking the 

regions of the hardened classification where the weed species has been previously 

mapped, and attention focussed on the newly identified areas. 

 

This study was the first to use quantitative statistical methods to measure the 

accuracy of Paterson’s curse from remote sensing. Subsequently, the accuracy results 

cannot be directly compared to previous research (Bulman 2004; Ullah, et al. 1989b) 

that used qualitative methods (e.g. visual inspection) to determine the accuracy of 

mapped Paterson’s curse from satellite imagery. Quantitative accuracy assessment is 

an important part of any product derived from remote sensing (Congalton and Green 

1999) especially if the end purpose is to benefit weed management (McGowen 

1998). Weed maps can be used to monitor the spread or reduction in weeds, or assist 

with locating specific infestations in the field. For the latter, soft classification maps 

akin to the probability maps derived from logistic regression from this study can 

complement the hard (threshold) classification map by providing a measure of 

certainty at each location on the map.  

 

The poor accuracy of the Hyperion derived band ratios and indices was similar to the 

field spectroscopy analysis in Chapter 5, with the exception of the NDBI. There are 

three possible reasons for the poor performance of this index. First, there was a 

reduction in Paterson’s curse flower density in the two week period between the 

collection of field data collection and image acquisition. This highlights the 

importance of concurrent field and image data collection, especially for annual 
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weeds species like Paterson’s curse, in which the flowing is short-lived; however it 

also highlights the challenges of tasking sensors to capture satellite imagery during 

periods in which meteorological conditions are variable. Second, the low signal to 

noise ratio of Hyperion - particularly in the blue bands would have reduced the 

sensitivity of the NDBI to detect subtle differences between Paterson’s curse and 

pasture. Third, the spatial resolution of the Hyperion imagery could not adequately 

measure the contribution of flowers, relative to the small spectral sampling area (0.45 

m²) for the field spectroscopy. A mixture of Paterson’s curse and senescent pasture 

within an area of ground covered by a Hyperion pixel will result in a low 

contribution of the flowers to the overall reflectance, especially given a reduction in 

flower density.   

 

The presence/absence approach from this study was effective for accurately mapping 

Paterson’s curse over a large area without a lengthy period of field validation. This 

result is similar to other remote sensing applications that have mapped the 

presence/absence of weeds from medium spatial resolution imagery (Bradley and 

Mustard 2005; Cuneo, et al. 2009; Dewey, et al. 1991; Pengra, et al. 2007). The  

approach is particularly suited to weed species such as Paterson’s curse that have 

short phonological stages (e.g. flowering and delayed senescence) for detection with 

remote sensing, and is favourable from a management perspective as the fieldwork is 

less labour intensive (Lawes and Wallace 2008). In contrast, studies that have 

mapped  proportion cover of a weed species conducted field surveys over longer 

periods (e.g. 1–2 months) (Wilfong, et al. 2009), or in the case of Ramsey III and 

Nelson (2005), required a helicopter to capture field data.  

 

Despite the limitations of the Hyperion sensor (primarily the low signal-to-noise 

ratio), the previous limitations on detecting Paterson’s curse with medium spatial 

resolution data were overcome to an acceptable extent by the higher spectral 

resolution of the Hyperion sensor. The application of Hyperion represents an 

improvement over the previous method of visual estimation on the ground, given that 

it could map the spatial destruction of Paterson’s curse over a large area, with less 

field time. Next-generation sensors with a larger swath width (30 km) and a higher 

signal-to-noise ratio than Hyperion, such as EnMAP (Segal, et al. 2010) and 

Precursore Iperspettrale della Missione Applicativa (PRISMA) (Labate, et al. 2009) 



160 
 

 

will provide greater consistency in image quality and processing, and be more 

amenable with operational requirements for mapping Paterson’s curse and other 

weeds over regional scales.  
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7 SUMMARY AND RECOMMENDATIONS 

7.1 Introduction 

The research presented in this thesis investigated the utility of remote sensing for 

mapping and monitoring Paterson’s curse at study sites in the Wheatbelt Region of 

Western Australia. Three remote sensing data types at different spectral and spatial 

resolution were used to address the research objectives: 

 

(i) Field spectroscopy (Chapter 4); 

(ii) Airborne multispectral high spatial resolution imagery (Chapter 5); and 

(iii) Satellite hyperspectral imagery (Chapter 6). 

 

The three objectives from Chapter 1 are evaluated below, with reference to the three 

remote sensing datasets. 

7.2 The Optimum Spatial and Spectral Resolution  

The results from Chapters 4, 5 and 6 indicate that spectral resolution may be more 

important than spatial resolution for detecting Paterson’s curse. In Chapter 4, the 

characteristic reflectance peak of Paterson’s curse flowers in the blue region of the 

electromagnetic spectrum resulted in a good relationship (R² = 0.75) between a 

Normalised Difference Blue Index (NDBI) derived from field spectroscopy and 

percentage floral cover of Paterson’s curse. The relationship between linear spectral 

unmixing of Paterson’s curse flowers and floral percentage cover produced an R² of 

0.68. The relationship between the red-edge ratios in Chapter 4 and Paterson’s curse 

floral cover were weak, and are most likely the result of an insufficient red-edge shift 

in the dense Paterson’s curse spectrum, due to mixing between Paterson’s curse 

flower material and green and dead plant material.  

 

High spatial resolution multispectral imagery has the same detection limitations as 

medium spatial resolution imagery, due to spectral confusion between Paterson’s 

curse and co-occurring vegetation (Chapter 5). The prevalence of green pasture 

resulted in spectral mixing within pixels and low classification accuracy, despite the 

imagery being captured in the peak flowering period for Paterson’s curse. This 

outcome is similar to other studies that mapped weeds in pasture where co-occurring 
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vegetation caused confusion (Lass and Callihan 1997; Lass, et al. 1996). In contrast 

to pasture weeds, remote sensing applications to woody weeds have shown that 

higher spatial resolution improves classification accuracy when objects (discrete 

vegetation canopies) are larger than the pixel size (Everitt and Yang 2007b; 

Robinson, et al. 2008). The results from Chapter 5 indicate that reducing the pixel 

size of remotely sensed data is not sufficient for reliability detecting pasture weeds if 

matched with inadequate spectral resolution.  

 

The results from the analysis of EO-1 Hyperion data in Chapter 6 showed that 

medium spatial resolution imagery (30 m) with hyperspectral resolution could 

accurately map Paterson’s curse. The user’s and producer’s accuracy of Paterson’s 

curse for the matched filter classification was 81 to 83% and 80 to 81% respectively, 

with a Kappa statistic of 0.64. The high spectral resolution of Hyperion mitigated the 

past limitations of medium spatial resolution imagery from other studies (Bulman 

2004; Ullah, et al. 1989b) in which Paterson’s curse was spectrally confused with 

pasture. The accuracy results in this research however could not be directly 

compared to these previous studies that mapped Paterson’s curse with satellite 

multispectral imagery (Bulman 2004; Ullah, et al. 1989b) as they lacked quantitative 

accuracy assessment. 

 

In Chapter 5, multiple density classes (and a detection limit) could not be determined 

for Paterson’s curse from DMSI imagery. Paterson’s curse occurred in the study area 

as a fuzzy continuum of floral density, with few areas of high flowering density, with 

a low mean floral cover, and was mixed with pasture in all densities, especially in 

lower density areas. In Chapter 6, the presence/absence classification approach was 

effective for mapping and validating Paterson’s curse over a large area and 

favourable from a management perspective (i.e. cost effective). 

7.2.1 Recommendations 

The findings of the field spectroscopy analysis in Chapter 4, the Hyperion 

classification in Chapter 6, and previous studies (Bulman 2004; Mitchell, et al. 

2006), demonstrate that airborne hyperspectral imagery has the potential to reliably 

detect and map Paterson’s curse. Given the high cost of imagery, a practical 

approach could be to use maps of Paterson’s curse from classified satellite 
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hyperspectral imagery to narrow down potential sites to capture airborne 

hyperspectral imagery. Airborne hyperspectral imagery could be used in those 

circumstances where the cost of acquisition, processing, and field time is justified; 

for example to evaluate biological control or in a research capacity.  

 

The NDBI is shown by the field spectroscopy analysis in Chapter 4 to be a 

potentially useful index to apply to multispectral remote sensing. There are currently 

two multispectral satellite platforms with sensors that contain two blue bands (World 

View 2 and Landsat 8), which could be investigated for detecting Paterson’s curse 

with the NDBI. Airborne multispectral sensors similar to DMSI could be used in a 

similar capacity, if an extra blue band could be included through a filter. The 

recommended band centres to be filtered, based on the NDBI from Chapters 4 are 

430 nm and 480 to 490 nm respectively. When these two bands are used together in 

an index, atmospheric correction will be essential to reduce the noise from 

atmospheric attenuation, especially for satellite sensors such as Landsat 8. 

 

The Hyperion classification results in Chapter 6 foreshadows the potential of future 

hyperspectral satellites such as EnMAP (Segal, et al. 2010) and PRISMA (Labate, et 

al. 2009) for providing accurate regional scale maps of Paterson’s curse. 

Investigations into the utility of these data types could be conducted using 

appropriate classification methods such as MTMF, and validated using quantitative 

datasets derived from field survey. The Bindoon study sites (properties) used for this 

research represent an ideal location for such studies, due to the prevalence of 

Paterson’s curse, close proximity to Perth, and active management of Paterson’s 

curse by landowners. Future opportunities to assess the success of control of 

Paterson’s curse are therefore possible with satellite hyperspectral data. 

7.3 The Optimum Timing of Remote Sensing 

The timing of remote sensing is an important factor for detecting and mapping 

Paterson’s curse. The research highlights some important considerations about the 

temporal nature of Paterson’s curse, and the most appropriate time to capture remote 

sensing imagery. In Chapter 4, there were good relationships between Paterson’s 

curse and spectral values from field spectroscopy later in the season, when flower 

cover was lower than the peak period in October. In Chapter 5, airborne multispectral 
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imagery was captured during the peak flowering period in October, however the 

presence of green co-occurring pasture resulted in low accuracy results (user, 

producer, and Kappa) from the multi-layer preceptron (MLP) and k-nearest 

neighbour (kNN) classifiers (Section 7.4). In Chapter 6, satellite hyperspectral 

imagery was shown to accurately detect Paterson’s curse later in the flowering 

season (November), due to the green material of Paterson’s curse persisting longer 

than co-occurring pasture vegetation.  

7.3.1 Recommendations 

Remotely sensed imagery could be acquired during the peak flowering period of 

Paterson’s curse (October), or later in the season when pasture is senescent (late 

October/early November). Which period is chosen will depend on the sensor and the 

environmental conditions during the course of a given year (e.g. rainfall), and the 

type of imagery. For airborne and satellite hyperspectral sensors, imagery from the 

either period may be suitable. For airborne multispectral sensors, imagery captured 

later in the season may be preferable from a detection perspective, when Paterson’s 

curse retains its green material relative to pasture.  

 

The influence of seasonal variability on the ability to detect and map Paterson’s curse 

using remotely sensing is a potential area of investigation through landscape ecology 

studies. For example the flowering patterns of Paterson’s curse and the spectral 

properties within individual seasons, and across several seasons could be analysed 

from field spectroscopy and digital field photography. It could be used to determine 

how the spectral separability of Paterson’s curse changes with co-occurring 

vegetation such as pasture and crop. Such a study would benefit from several years 

of data, to capture seasonality trends, and over a larger area to capture geographic 

variability. An understanding of the influence of rainfall (amount and timing) on 

Paterson’s curse (flowering intensity and timing, and retention of green material) 

over a given geographic area could be a useful guide to remote sensing. 

7.4 Suitable Image Processing and Classification Techniques 

The literature review in Chapter 2 ensured that the processing and classification 

methods used in the research were well matched to the remotely sensed imagery. In 

order to demonstrate the utility of image classification to Paterson’s curse, a selection 
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of classifiers were used in the research, including both parametric and non-

parametric.  

 

In the field spectroscopy analysis in Chapter 4, band ratios and indices were useful 

for determining the relationship between floral proportion cover of Paterson’s’ curse. 

Band ratios and indices were derived from the literature (e.g. red-edge and Paterson’s 

Curse Index) and an analysis of spectral differences between Paterson’s curse and 

pasture. The linear and non-linear regression technique was valuable for determining 

whether floral proportion cover could be predicted based on the ratio and index 

values.  

 

In Chapter 5, the kNN and MLP non-parametric image classifiers were used to 

classify the DMSI image, as these classifiers have produced superior classification 

accuracy in past applications, compared to parametric classifiers. Despite this, the 

classification accuracy of Paterson’s curse from the kNN and MLP classifiers was 

low. Overall classification accuracy was < 66%, with an overall Kappa statistics of < 

0.35. The user’s accuracy ranged from 23 to 73% and the producer’s accuracy from 

40 to 73%. The per-class Kappa statistic for Paterson’s curse for the two classifiers 

was between 0.2 and 0.4.  

 

A complex classifier (MLP) was shown not to provide any benefits over a simpler 

classifier (kNN) when there was spectral overlap between classes in the training data 

resulting from high within-class variance. The classification results demonstrate that 

the complexity of a classification algorithm will not compensate for the limitations of 

spectral resolution in multi-spectral sensors, and are unlikely to produce 

improvements in classification accuracy over traditional classifiers (e.g. maximum 

likelihood). 

 

In Chapter 6, the Hyperion data required substantial processing to maximise the 

spectral information content whilst reducing the inherent noise, and remove artefacts 

such as striping. A minimum noise fraction combined with a matched filter was the 

best approach to classifying the data, as it reduced noise, and was suitable for cover 

types such as Paterson’s curse that contribute a relatively small proportion of the 

reflected signal. 
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The receiver operating characteristic (ROC) analysis and logistic regression in 

Chapters 5 and 6 were shown to be a useful technique to assess the accuracy of soft 

classification output. The threshold approach generated a hard classification image in 

addition to the ‘soft’ probability image output. Hard and soft classification images 

were used as complimentary datasets, by attributing a measure of uncertainty (a 

probability value) to a particular location (pixel) on a map produced from a hard 

classification. This approach has value for weed managers, who can ‘screen’ a weed 

map for infestations with higher probabilities prior to a field visit. One limitation of 

soft classification is that the value of a soft classification output was only as good as 

its accompanying hard classification – shown in Chapter 5 by the relationships 

between the Kappa statistic and the ROC statistic for the MLP and kNN classifiers. 

A higher accuracy (e.g. > 70%) may be required to detect lower density infestations 

of Paterson’s curse with a corresponding higher probability in the image output.  

7.4.1 Recommendations 

In Chapter 5, the analysis of multispectral data suggested that using other image 

classification algorithms is not likely to overcome the spectral limitations for 

detecting Paterson’s curse. However a procedure to improve classification accuracy 

of existing classifiers could be implemented through stratification pre- and post-

classification, as was done in Chapters 5 and 6 for crop and pasture areas. Another 

approach to improve accuracy could be to incorporate on-ground knowledge on the 

status of Paterson’s curse and other cover types. An example of such knowledge 

could be areas of a given property that were grazed or sprayed and free of Paterson’s 

curse at the time of image acquisition. 

 

The Hyperion results in Chapter 6 shows that the matched filter is an effective 

classification method for detecting Paterson’s curse with satellite hyperspectral data. 

Such a method is likely to be equally effective for airborne hyperspectral imagery, 

given the higher signal-to-noise ratio. Appropriate processing techniques for 

maximising the information content, such as minimum noise fraction, should be part 

of a standard processing workflow. 
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7.5 Methods of Integrating Remotely Sensed Data and Field Data 

Remotely sensed data and field data were integrated by deriving relationships 

between band ratios and indices with floral proportion cover (Chapter 4) and 

presence/absence data (Chapter 6), and using field data for training and validation 

(Chapters 5 and 6). In Chapter 4, the floral proportion cover from a systematic 

sampling grid was used to investigate relationships between band ratios/indices and 

linear spectral unmixing derived from field spectroscopy. In Chapter 5 training areas 

were selected from representative areas of Paterson’s curse and associated cover 

types for input into MLP and kNN classifiers, and validation data were derived from 

stratified random point data collected in the field. ROC analysis and logistic 

regression were used to determine the accuracy of soft classification output; error 

matrices and Kappa were used to determine the accuracy of hard classification. In 

Chapter 6 a matched filter classification and band ratios and indices derived from 

Hyperion imagery were validated with stratified random presence/absence field data 

of Paterson’s curse. As with Chapter 5, ROC analysis and logistic regression was 

used as well as error matrices and Kappa. 

 

In Chapter 6 the poor performance of all Hyperion derived band ratios and indices 

was similar to the field spectroscopy analysis in Chapter 4, with the exception of the 

NDBI. The most likely factors that contributed to this were the reduction in 

flowering between the date of field data collection and image acquisition, the low 

signal-to-noise ratio of the data (Jupp and Datt 2004) and the spatial resolution of the 

sensor.  

 

An important prerequisite for integrating field and image data in Chapters 4 and 5 

was to derive floral proportion cover using a quantitative method  (as recommended 

by Bulman (2004)) to reduce bias and maintain consistency. An object classification 

approach was used to derive floral proportion cover from digital field photographs 

captured at nadir (Appendix C). This method is a consistent and accurate way to 

derive floral percentage cover. The data were used to determine relationships 

between Paterson’s curse and band ratios and indices in Chapter 4, and for accuracy 

assessment in Chapter 5. 
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7.5.1 Recommendations 

If the relationship between floral proportional cover and band ratios and indices from 

high spatial resolution multispectral or hyperspectral imagery was to be investigated, 

high registration accuracy would be required. To obtain such accuracy, additional 

field work would be required to collect ground control points with a differential GPS. 

An alternative strategy might be to employ reflective markers at the start and end of 

transects, or employ a systematic grid. As an alternative, the top-down approach 

described in Aspinall, et al. (2002) may be more realistic, as it would negate the 

requirement for a rigorous geo-rectification. A disadvantage of this approach is that 

locations cannot be located on the ground with high accuracy.  

 

Quantitative methods of assessing classification accuracy, such as Kappa and ROC 

analysis are suggested for future applications of remote sensing of Paterson’s curse. 

In addition, statistically vigorous methods such as random sampling should be 

employed where possible as part of field validation. 

 

Presence/absence is shown to be a robust and accurate method for mapping 

Paterson’s curse with satellite hyperspectral data in Chapter 6. However an 

investigation of the relationship between Paterson’s curse cover with band 

ratios/indices and matched filter output could be useful for determining a detection 

threshold. Green cover of Paterson’s curse could be measured in addition to flower 

density, given that green material was shown in Chapter 6 to contribute more to the 

spectral signal late in the season than flowers. Field sampling would have to be 

conducted over a short period of time to take advantage of higher flower density 

and/or green material, and multiple field personnel may be required. A quantitative 

method similar to the one described in Appendix C could be used to determine cover 

in plots. 

7.6 Contribution to Knowledge 

This research made the following specific contributions to knowledge: 

 

As far as the author is aware, this is first study to use airborne multispectral and 

satellite hyperspectral remotely sensing to detect and map Paterson’s curse. The 

study shows that classification methods are secondary to the limitations imposed by 
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the spectral and spatial resolution of a sensor. It also shows that spectral resolution is 

more important than spatial resolution for mapping pasture weeds like Paterson’s 

curse. This is demonstrated by the low-medium accuracy from the high spatial 

resolution multispectral imagery in Chapter 5, and from the high accuracy from the 

medium spatial resolution hyperspectral imagery in Chapter 6. The research in 

particular demonstrates that hyperspectral satellite data has the potential to produce 

accurate regional scale maps of Paterson’s curse. 

 

The study provides knowledge on the detection abilities of remote sensing for 

Paterson’s curse during the peak flowering period—in particular that multispectral 

airborne remote sensing does not result in improvements over satellite multispectral 

imagery for mapping Paterson’s curse if co-occurring pasture is green. It challenges 

the perception that highly visible pasture weed species on-ground (for instances 

where their detection features are most prominent) can be easily detected from air 

and space by remote sensing. This is exemplified by the purple flowers of Paterson’s 

curse, which has a low measured cover (< 20%), when viewed from a sensor 

perspective (nadir), but the flower cover from a viewer’s (oblique) perspective is 

higher (> 80%). 

 

This research is the first remote sensing study to quantitatively measure the accuracy 

of maps of Paterson’s curse derived from image classification. The research 

emphasises the importance of using quantitative measures of accuracy for mapping 

vegetation and weeds in remote sensing: to provide a statistically rigorous measure 

of accuracy that compliments a qualitative assessment. The research investigated 

optimum field sampling approaches that maintained statistical integrity while 

considering the limited time available to collect field data. This will benefit future 

remote sensing applications of Paterson’s curse from the knowledge that acceptable 

levels of accuracy can be provided from satellite hyperspectral data with economical 

validation data (presence/absence). 

7.7 Conclusion 

The research demonstrated that despite some promising results from the datasets and 

methods employed, remote sensing is not a viable operational tool for routine 

mapping and monitoring Paterson’s curse, especially at a regional scale. Regional 
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scale remote sensing of Paterson’s curse is an assessment tool that could provide the 

greatest returns to land managers. The regional scale detection ability of satellite 

hyperspectral remote sensing could narrow down areas of Paterson’s curse for further 

investigation, either from the ground, or using airborne hyperspectral data. However, 

until new-generation hyperspectral satellite sensors are available and can be 

evaluated, traditional methods of survey for Paterson’s curse (e.g. field survey) will 

remain superior to remote sensing for making assessments of the extent and density 

of Paterson’s curse. 
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Table A.1 Summary of remote sensing applications of weeds with reference to detection characteristics. 

 

Common 
Name 

Scientific 
Name Form/type Characteristics Distinguishing Features References Other Notes 

Chinese 
tamarisk Tamarix sp. Deciduous shrub to 

 4.5 m in height Foliage colour 

Yellow-orange foliage - distinguished 
from native vegetation due to higher 
reflectance in visible (550 & 650 nm) 

wavelengths 

Everitt and 
Deloach (1990) 

Similar near 
infrared 

reflectance to co-
occurring native 

vegetation 

Broom 
snakeweed 

Gutierrezia 
sarothrae Deciduous shrub Flower colour 

Bright golden flowers, higher green 
and red reflectance compared to co-

occurring vegetation 

Everitt, et al. 
(1987); Peters, et 

al. (1992)  

Blackberry Rubus fruticosus 

Perennial, 
semi-deciduous, 

scrambling shrubs, up 
to several metres in 

height 

Canopy 
reflectance 

Higher near infrared reflectance 
compared to co-occurring vegetation 

due to higher canopy density 

Dehaan, et al. 
(2007); Frazier 

(1998); Ullah, et 
al. (1989a)  

Paterson's 
curse 

Echium 
plantagineum 

Annual/bi-annual 
herb Flower colour 

Higher reflectance in visible (blue and 
red) compared to co-occurring pasture 
species; higher near infrared when co-
occurring pasture species in senescent 

phase 

Bulman (2004); 
Ullah, et al. 

(1989b) 
 

Leafy spurge Euphorbia esula  Perennial herb to 1.2 
m in height Flower colour 

Bright yellow-green bracts, higher 
visible reflectance than co-occurring 

vegetation 

Everitt, et al. 
(1995); Hunt, et 

al. (2004)  

Spotted 
knapweed 

Centaurea 
maculosa 

Perennial herb to 1.2 
m in high Not provided 

Nothing in paper to relate spectral 
distinctiveness to remote sensing 

results 
Lass, et al. (2002) 
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Common 
Name 

Scientific 
Name Form/type Characteristics Distinguishing Features References Other Notes 

Babysbreath Gypsophila 
paniculata 

Shrub. Multiple 
branched stems up to 

1 m in height 
Not provided 

Nothing in paper about spectral 
distinctiveness and relation to remote 

sensing 
Lass, et al. (2005) 

 

Hoary cress Phragmites 
australis 

Perennial x; 30–60 
cm in height; 
rhizomatous 

Flower colour, 
arrangement 

Dense white flowers forming a flat and 
mat-like structure 

Mundt, et al. 
(2005) 

 

Chinese tallow Sapium sebiferum Deciduous tree to 8 m 
in height Foliage colour Bright red leaves during autumn Ramsey III, et al. 

(2002) 
 

Ashe juniper Juniperus ashei 

Evergreen 
shrub/small tree; 

multi-stemmed; up to 
6 m in height 

Leaf arrangement 
Erectophile leaves, lower visible & 
near infrared reflectance than co-

occurring vegetation 

Everitt, et al. 
(2007b); Yang, et 

al. (2009)  

Para grass Urochloa mutica Perennial grass Canopy 
architecture  

Boyden, et al. 
(2013); Catt and 
Thirarongnarong 

(1992)  

Mimosa Mimosa pigra 
Perennial shrub; 

spreading; up to 4 m 
in height 

Canopy 
reflectance 

Shrub structure against grass/sedge 
background; retains small green leaves 
when floodplain in senescent condition 

Barano and 
Hartono (2004); 

McIntyre and 
Menges (2004)  

Perennial 
pepperweed 

Lepidium 
latifolium 

Perennial herb; up to 
2 m in height Flower colour 

Many small white flowers in clusters at 
the end of leafy branches; Mostly 

occurs as monocultures; Flowering & 
fruiting phenology: canopy top panicle 

inflorescence of white flowers, 
produces high reflectance in the visible 

part of the spectrum  

Andrew and Ustin 
(2006; 2008) 
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Common 
Name 

Scientific 
Name Form/type Characteristics Distinguishing Features References Other Notes 

Iceplant Carpobrotus 
edulis Succulent perennial Not provided 

Nothing in paper about spectral 
distinctiveness and relation to remote 

sensing 

Underwood, et al. 
(2003) 

 

Jubata grass Cortaderia jubata 

Perennial tussock 
grass; can form mats 
up to 20 m wide, 50 

cm in depth 

Not provided 
Nothing in paper about spectral 

distinctiveness and relation to remote 
sensing 

Underwood, et al. 
(2003) 

 

False 
broomweed 

Ericameria 
austrotexana 

Perennial shrub to 1 
m in height Leaf arrangement 

Has an erectophile canopy (erect leaf), 
compared with co-occurring species 

with planophile (horizontal leaf) 
canopies 

Anderson, et al. 
(1993) 

 

Yellow 
starthistle 

Centaurea 
solstitialis 

Annual herb to 1 m in 
height 

Foliage 
reflectance 

Yellow flowers; lower near infrared 
reflectance than co-occurring 

vegetation, but confused with rock/soil 
Lass, et al. (1996) 

 

Common St. 
Johnswort 

Hypericum 
perforatum Perennial Foliage colour 

Clusters of golden yellow flowers; 
lower radiance in the visible bands 

than co-occurring vegetation 
Lass, et al. (1996) 

 

Yellow 
hawkweed 

Hieracium 
pratense Creeping perennial  Flower colour 

Bright yellow flowers; spectrally 
separable from co-occurring vegetation 

in the visible wavelengths (yellow-
green-red) 

Lass and Callihan 
(1997) 

 

Huisache Acacia 
farnesiana Woody legume Flower colour 

Bright orange-yellow flowers, higher 
reflectance in green and red 

wavelengths 

Everitt and 
Villarreal (1987) 
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Common 
Name 

Scientific 
Name Form/type Characteristics Distinguishing Features References Other Notes 

Mexican palo-
verde 

Parkinsonia 
aculeata Woody legume Flower colour 

Dense yellow flowers; higher 
reflectance in green wavelength than 

co-occurring vegetation  

Everitt and 
Villarreal (1987) 

 

Spiny aster Aster spinosus Perennial herb to 1.5 
m in height 

Canopy 
architecture 

 Less dense erecophile canopy, 
discriminated from co-occurring 
vegetation by lower near infrared 

reflectance 

Everitt, et al. 
(1987) 

Similar 
reflectance to co-

occurring 
vegetation when 

flowering 
Common 

goldenweed 
and 

Drummond 
goldenweed 

Isocoma 
coronopifolia and 

Isocoma 
drummondii 

Small shrub Flower colour 

Golden yellow flowers; higher visible 
reflectance than co-occurring 

vegetation, lower visible reflectance 
than soil 

Everitt, et al. 
(1992) 

 

Big bend loco 
Astragalus 

mollissimus var. 
earlei 

Short lived perennial Canopy 
reflectance 

Higher near infrared reflectance 
compared to co-occurring vegetation 

due to higher canopy density 

Everitt, et al. 
(1994) 

 

Wooton loco Astragalus 
wootonii Annual or biennial Canopy 

reflectance 

Higher near infrared reflectance 
compared to co-occurring vegetation 

due to higher canopy density 

Everitt, et al. 
(1994) 

Similar 
reflectance to co-

occurring 
vegetation when 

not flowering 

Redberry 
juniper 

Juniperus 
pinchotii 

Evergreen 
shrub/small tree; up to 

3 m in height 
Foliage colour 

Higher vegetation density and darker 
green foliage than co-occurring 

vegetation in February 

Everitt, et al. 
(2001) 

 

Giant reed Arundo donax L. Perennial grass; 2–8 
m in height 

Canopy 
reflectance 

Forms dense stands with higher 
vegetation density; higher near infrared 

reflectance than co-occurring 
vegetation 

Everitt, et al. 
(2004) 

Spectrally 
distinctive from 

co-occurring 
vegetation in 
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Common 
Name 

Scientific 
Name Form/type Characteristics Distinguishing Features References Other Notes 

summer and 
autumn 

Water lettuce Pistia stratiotes 
L. 

Free floating 
macrophyte Foliage colour 

Light green foliage colour results in 
higher green and red reflectance than 
darker green co-occurring vegetation 

Everitt, et al. 
(2003)  

Hydrilla Hydrilla 
verticillata Submersed plant Foliage colour 

Very dark green foliage results in less 
green and red reflectance than lighter 

green co-occurring vegetation  

Everitt, et al. 
(1999) 

Not spectrally 
distinctive in 
green and red 

from dark green 
co-occurring 
vegetation 

Kudzu Pueraria 
montana 

Herbaceous to semi-
woody vine 

Canopy 
reflectance 

Produces large leaves and grows 
amongst and over native vegetation, 

resulting in high near infrared 
reflectance 

Cheng, et al. 
(2007)  

Water 
hyacinth 

Eichhornia 
crassipes 

Emergent floating 
perennial macrophyte 

Canopy 
reflectance 

Dense dark green foliage results in 
higher near infrared reflectance than 

co-occurring vegetation 

Everitt and Yang 
(2007a); Everitt, 

et al. (1999); 
Underwood, et al. 

(2006) 

 

Willow Salix spp. Large deciduous 
spreading shrub 

Canopy 
reflectance 

Leaf fall in winter reduces near 
infrared reflectance compared to native 

evergreen vegetation. Can be 
discriminated from native vegetation 
due to difference between seasonal 

leaf-on and leaf-off condition 

Noonan and 
Chafer (2007) 

Spectrally similar 
to pasture grass 

which has similar 
phenology 

(senescent in 
winter) 

Amur 
honeysuckle Lonicera maackii Tall understory shrub Canopy 

reflectance 

The species retains green leaves longer 
into autumn than deciduous co-

occurring over story species; Higher 

Wilfong, et al. 
(2009)  
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Common 
Name 

Scientific 
Name Form/type Characteristics Distinguishing Features References Other Notes 

near infrared reflectance 

Cheatgrass Bromus tectorum Annual grass Canopy 
reflectance 

Establishes earlier than co-occurring 
vegetation, and becomes senescent 
earlier. Can be discriminated due to 
seasonal differences of green and 

senescent 

Clinton, et al. 
(2010); Peterson 

(2005) 
 

Prickly acacia Acacia nilotica 
Tree; 5–20 m in 

height with spreading 
canopy 

Canopy 
reflectance 

Dense stands of the species can be 
discriminated from background soil 
and vegetation due to higher near 

infrared reflectance 

Lawes and 
Wallace (2008) 

Medium and low 
density stands are 

less reliably 
discriminated 

from background 
soil and 

vegetation 

African olive Olea europaea L. 
ssp. Cuspidata 

Evergreen small-
medium tree 

Canopy 
reflectance 

Forms dense stands (> 80% cover) or 
as dominant understory of lower 
density Eucalyptus woodland; 

Spectrally discriminated from native 
vegetation by higher near infrared 

reflectance  

Cuneo, et al. 
(2009)  

Shin Oak Quercus havardii Deciduous shrub Foliage colour 
Lower visible and near infrared 
reflectance than co-occurring 

vegetation 

Everitt, et al. 
(1993)  

Mesquite Prosopis spp. Deciduous shrub/tree Canopy 
architecture 

Canopy distinctive against soil 
background 

Robinson, et al. 
(2008)  
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Common 
Name 

Scientific 
Name Form/type Characteristics Distinguishing Features References Other Notes 

Hoary cress Lepidium draba Perennial herb Flower colour 
Spectrally distinct from co-occurring 
vegetation due to dense mats of white 

flowers  

Mundt, et al. 
(2005)  

Brazilian 
waterweed Egeria densa Submerged aquatic 

perennial  
Foliage 

reflectance 

Green cover near surface has high near 
infrared reflectance, compared to water 

background with low near infrared 
reflectance  

Underwood, et al. 
(2006) 

Foliage in deeper 
water difficult to 

discriminate 

Musk thistle Carduus nutans Biennial or 
Annual herb 

Foliage 
reflectance 

Lower NIR reflectance than native 
vegetation that persisted in June; Most 
native vegetation senescent in June 

 

Mirik, et al. 
(2013); Mirik, et 

al. (2006) 
 

False 
acacia/black 

locust 

Robinia 
pseudacacia 

Deciduous tree to 
average height of 10 
m with white flowers 

 

Canopy 
reflectance/flower 

colour 

More foliage than native vegetation 
species in spring 

Somodi, et al. 
(2012)  

Late goldenrod 
Solidago 
altissima 

 

Erect perennial herb 
to 1.2 m. Single or 

multi-stemmed, with 
small yellow flowers 

on upper side of 
branches 

 

Canopy 
reflectance 

Can be detected in spring as understory 
before over-story grass species became 

dominant 

Ishii and 
Washitani (2013)  

Lantana Lantana camara 

Thicket forming 
perennial shrub to 
height of 5 m or 

climbing to height of 
15 m 

 

Foliage 
reflectance 

Retains foliage when the deciduous 
understory species shed their leaves 

 

Kimothi, et al. 
(2010)  
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Common 
Name 

Scientific 
Name Form/type Characteristics Distinguishing Features References Other Notes 

Saltcedar Tamarisk spp. Tree or shrub that can 
form dense thickets Foliage colour 

Foliage turns a yellow-orange-brown 
colour in late autumn-early winter, and 
the spectral characteristics are different 
from the surrounding native vegetation 

 

Evangelista, et al. 
(2009); Frazier 

and Wang (2011); 
Wang, et al. 

(2013) 

 

Coffee bush Leucaena 
leucocephala 

Shrub or tree to 
height of 10–20 m 

Canopy shape and 
reflectance 

Low NIR/high visible compared to 
native vegetation when defoliated in 
March dry period; opposite in in July 

during monsoon 

Lu, et al. (2013)  

Giant Salvinia Salvinia molesta Floating aquatic herb Foliage 
reflectance Dense coverage over surface of water Fletcher, et al. 

(2010)  

Common and 
glossy 

buckthorn 

Frangula alnus & 
Rhamnus 
cathartica 

Deciduous woody 
shrub/small tree to 
height of 6–7.5 m 

Foliage 
reflectance 

Species form dense thickets; Produces 
foliage earlier in year than other 

vegetation species and remains green 
longer in the season. 

 

Becker, et al. 
(2013)  

Giant hogweed Heracleum 
mantegazzianum 

Biennial or 
monocarpic perennial 

to height of 5 m  

Foliage 
reflectance/flower 

cover 

Distinctive texture from the flowers 
and properties such as shape, context 

(individual plants) allows accurate 
detection with high spatial resolution 

remote sensing 
 

Müllerová, et al. 
(2013)  

Bugweed Solanum 
mauritianum 

Shrub or small tree 2–
12 m in height; well-

developed canopies of 
pale (yellow) to dark 

green foliage.  
 

Foliage 
reflectance 

A dominant understory species with 
green and yellow foliage. Can be 

detected when it grows in gaps in pine 
forest 

Atkinson, et al. 
(2014)  
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Common 
Name 

Scientific 
Name Form/type Characteristics Distinguishing Features References Other Notes 

Fire tree Morella faya Tree to height of 20 m Foliage 
reflectance 

Morella experiences leaf flushing in 
summer (July, August, September) to 
produce a denser canopy (higher LAI) 

than native forest species 
Metrosideros; Morella foliage yellows 
in summer-winter transition period and 
has lower NIR reflectance than native 

forest; Difference in water content 
between Morella and Metrosideros in 

winter. 
 

Somers and Asner 
(2013)  

Glossy privet Ligustrum 
lucidum 

Evergreen tree to 
height of 10 m; dark 

green leaves 
 

Foliage 
reflectance 

Privet canopies are denser than native 
forest 

 

Gavier-Pizarro, et 
al. (2012)  
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APPENDIX B 

DESCRIPTION OF LANDSCAPE UNITS OF THE STUDY AREA 

 

(CHAPTER 3)  
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Table B.1 Landscape unit descriptions for units found on the Catholic Agricultural College Bindoon property. 

 

Unit Landscape Dominant Soil Dominant Vegetation Area 
(ha) 

% of 
Property 

253Ju_2c 
Very gentle to moderate hill 

slopes with some 
breakaways 

Red and yellow duplex and 
some uniform fine soils 

which may be gravelly near 
crests 

Dominated by E. wandoo woodland 
but with some E. loxophleba.  Acacia 

spp. on the sandier topsoil areas 
1458 39 

253Ju_2a 

Very gentle to moderate hill 
slopes (< 10–15%) and some 

breakaways on mid and 
upper slopes 

Shallow rocky sandy gravelly 
earths with some uniform 

fine and duplex soils 

Woodland of E. loxophleba , low E. 
wandoo with E. calophylla on soils 
with sandy topsoil. E.marginata on 

laterite 

426 11 

253Bn_2x 
Very gentle to moderate (< 
5–15%) middle and lower 

hill slopes 

Mixed red and yellow duplex 
soils with some uniform fine 

and medium textured, 
structured soils. 

Dominated by E. wandoo with a few 
E. calophylla on light textured 

topsoils with E. marginata and E. 
accedens on lateritic outcrops 

398 11 

253WnYA6 Very gentle to gentle hill 
slopes (< 10%) 

Deep uniform medium 
textured and duplex pisolitic 

gravelly earths 

Woodland of E. marginata, E. 
calophylla and E. wandoo with some 

Dryandra spp. and E. accedens 
391 10 

253Ju_3a Gently to moderately sloping 
valleys 

Alluvial red and yellow 
duplex and uniform fine soils 

which are often gravelly.  
Moderately saline 

Dominated by E. wandoo but with 
some and E. marginata and small 

areas of  E. accedens, E. loxophleba, 
acacias and Casuarina obesa in 

saline areas 

180 5 

253Ju_2cs 
Gentle to moderate hill 

slopes with some 
breakaways 

Red and yellow duplex and 
some uniform fine soils 

which maybe gravelly near 
crests 

Dominated by E. wandoo woodland 
but with some E. loxophleba and 
Acacia spp. on the sandier topsoil 

areas 

145 4 

253WNnA5 Very gentle to gentle hill 
slopes (< 10%) 

Shallow pisolitic gravelly 
loams and clay loams over 

laterite 

Mixed woodland and low woodland.  
Dominated by mixed E. wandoo, E. 

loxophylla associated with E. 
marginata and E. accedens 

122 3 
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Unit Landscape Dominant Soil Dominant Vegetation Area 
(ha) 

% of 
Property 

253Ju_2d Very gentle to gentle 
hillslopes 

Shallow sandy loams 
overlying the country rock 

Low woodland of E.marginata,  
E.calophylla and dryandra spp. 

111 3 

253Ju_3an Saline gently to moderately 
sloping valleys 

Alluvial red and yellow 
duplex and uniform fine soils 

which are often gravelly.  
Moderately saline 

Dominated by E. wandoo but with 
some and E. marginata and small 

areas of  E. accedens 
99 3 

253WnYA3 Very gentle to gentle upper 
slopes (< 10%) and crests 

Shallow, pisolitic clayey 
sands of varying depths 

overlying laterite 

Low woodland and shrubland with 
scattered trees.  Dominated by E. 
marginata and with some Banksia 
grandis and Nuytsia floribunda in 

sandier areas 

82 2 

253Nn_2x 
Very gently sloping valley 

floors of the upper 
Brockman river valley 

Heavy grey clay alluvium 
often cracking and gleyed at 
depth. Not saline at the time 
of survey, but very prone to 

salinity 

Varied vegetation with the major 
species E.  rudis and melaleucas in 

the less salt prone areas and E. 
loxophleba and C. obesa in more salt 

prone areas 

67 2 

253Ju_2ds Gentle to moderate hillslopes 
(1–15%) 

Shallow sandy loams 
overlying the country rock 

Low woodland of E. marginata and 
Dryandra spp. 

57 2 

253Bn_3x Very gentle to gentle foot 
and lower slopes 

Generally not gravelly. 
Colluvial soils accumulate to 

form sandy loam to med. 
clays with highly variable % 

of coarse fraction. 

Varies greatly to E. calophylla on 
sandier soils to E. loxophleba and E. 

wandoo on the clays 
51 1 

253Nn_1x Very gently sloping valley 
floors 

Yellow gradational and 
duplex soils, occasionally 
with coarse, gleyed salty 

sandy clays and gravelly soils 
below a metre 

E. rudis dominates with E. 
camaldulensis, Melaleuca spp. and 

occasionally E. loxophleba with 
Casuarina obesa in the most salt 

prone areas 

32 < 1 
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Unit Landscape Dominant Soil Dominant Vegetation Area 
(ha) 

% of 
Property 

253Bn_1x 
Very gentle to moderately 
sloping (< 15%) crests and 

hill slopes 

Light to medium textured and 
shallow clay soils with 

varying percentages of coarse 
fraction 

Dominated by Eucalyptus marginata, 
E.  calophylla, E. E. wandoo, E. 

accedens and some Allocasuarina 
huegeliana (associated rock outcrops) 

31 < 1 

253Bn_4n Saline very gently to gently 
sloping (< 10%) valley floors 

Saline alluvial red and yellow 
duplex and uniform fine soils 

which are often gravelly 

Dominated by acacias and Casuarina 
obesa. in saline areas and with E. 
wandoo, E. marginata and small 

areas of E. accedens, E. loxophleba 
in less salt  

24 < 1 

253Ju_2b Gently to very gently sloping 
drainage depressions 

Yellow and red duplex 
uniform fine and gradational 

soils 

Mainly E. wandoo woodland but with 
some E. calophylla on sandy surfaced 

soils and E. marginata on lateritic 
soils 

22 < 1 

253Bn_1s Gentle to moderately crests 
and upper hillslopes 

Light to medium textured and 
shallow clay soils with 

varying percentages of coarse 
fraction 

Dominated by E. marginata, E. 
calophylla, E. wandoo, E. accedens 
and some Allocasuarina huegeliana 

20 < 1 

253WnYA4 Very gentle to gentle upper 
slopes (< 10%) and summits 

Deep pisolitic gravelly clayey 
sands 

Low woodland to woodland to with 
some shrubland with scattered trees.  

Dominated by E. marginata and 
some B. grandis 

16 < 1 

253Ug_1a 

Residual plateau, very gently 
to gently inclined (< 10%) 

undulating plain and 
hillslopes 

loamy gravel, some shallow 
gravel and sandy gravels 

Woodland, heath and some mallee 
spp. E. wandoo and E. calophylla, D. 

polycephala, D. hewardiana, D. 
echinata, E. drummondii, E. 

eudesmioides 

12 < 1 

253Bn_4x Very gently to gently alluvial 
valleys 

Alluvial soils are highly 
variable ranging from sandy 

loams to duplex red and 
yellow soils and may have 
pans underlying them.  Not 

gravelly 

Woodland of E. rudis, E. 
camaldulensis and low Melaleucas 
spp.  With some E. calophylla and 

Casuarina obesa in the more salinity 
prone areas 

1 < 1 
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Unit Landscape Dominant Soil Dominant Vegetation Area 
(ha) 

% of 
Property 

253Bn_2s Gentle to moderate (3–25%) 
middle and lower hill slopes 

Mixed red and yellow duplex 
soils with some uniform fine 

and medium textured, 
structured soils. 

Dominated by E. wandoo, with a few 
E. calophylla on sandy textured soils 
and E.  marginata and E. accedens on 

lateritic outcrops 

< 1 < 1 
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Figure B.1 Map showing landscape units for CACB property. 
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Table B.2 Landscape unit descriptions for the Bindarie and Morden Downs properties. 

 

Unit Landscape Dominant Soil Dominant Vegetation Area % of 
Properties 

253Bn_1x 
Very gentle to moderately 
sloping (< 15%) crests and 

hill slopes 

Light to medium textured and 
shallow clay soils with 

varying percentages of coarse 
fraction 

Dominated by Eucalyptus marginata, 
E.  calophylla, E. E. wandoo, E. 

accedens and some Allocasuarina 
huegeliana (associated rock 

outcrops) 

286 16 

253Ju_2d Very gentle to gentle 
hillslopes 

Shallow sandy loams 
overlying the country rock 

Low woodland of E.marginata,  
E.calophylla and Dryandra spp. 232 13 

253WnYA6 Very gentle to gentle hill 
slopes (< 10%) 

Deep uniform medium 
textured and duplex pisolitic 

gravelly earths 

Woodland of E. marginata, E. 
calophylla and E. wandoo with some 

Dryandra spp. and E. accedens 
197 11 

253Ju_2c 
Very gentle to moderate hill 

slopes with some 
breakaways 

Red and yellow duplex and 
some uniform fine soils 

which may be gravelly near 
crests 

Dominated by E. wandoo woodland 
but with some E. loxophleba.  Acacia 

spp. on the sandier topsoil areas 
195 11 

253Ju_2b Gently to very gently sloping 
drainage depressions 

Yellow and red duplex 
uniform fine and gradational 

soils 

Mainly E. wandoo woodland but 
with some E. calophylla on sandy 
surfaced soils and E. marginata on 

lateritic soils 

191 10 

253WnYA4 Very gentle to gentle upper 
slopes (< 10%) and summits 

Deep pisolitic gravelly clayey 
sands 

Low woodland to woodland to with 
some shrubland with scattered trees.  

Dominated by E. marginata and 
some B. grandis 

160 9 



213 
 

 

Unit Landscape Dominant Soil Dominant Vegetation Area % of 
Properties 

253WnYA3 Very gentle to gentle upper 
slopes (< 10%) and crests 

Shallow, pisolitic clayey 
sands of varying depths 

overlying laterite 

Low woodland and shrubland with 
scattered trees.  Dominated by E. 
marginata and with some Banksia 
grandis and Nuytsia floribunda in 

sandier areas 

146 8 

253WnYA5 Very gentle to gentle hill 
slopes (< 10%) 

Shallow pisolitic gravelly 
loams and clay loams over 

laterite 

Mixed woodland and low woodland.  
Dominated by mixed E. wandoo, E. 

loxophylla associated with E. 
marginata and E. accedens 

102 6 

253WnYA5s Gentle to moderate hill 
slopes (3–15%) 

Shallow pisolitic gravelly 
loams and clay loams over 

laterite 

Mixed woodland and low woodland.  
Dominated by mixed E. wandoo, E. 

loxophylla associated with E. 
marginata and E. accedens 

90 5 

253WnPN6 

Very gently to gently 
sloping, poorly drained  
floors and foot slopes of 
valleys of the central and 
eastern Darling Ranges 

Alluvial red and yellow 
loams and clays that may be 

gravelly and are prone to 
salinity.  Pans may underly 

these soils. 

Dominated by E.wandoo, with 
E.loxophleba and rudis and Acacia. 

Casuarina obesa in saline areas 
45 2 

253WnPN8 

Level to gently sloping 
valley floors and foot slopes 

of the upper reaches of 
streams 

Lighter soils of loams and 
sandy duplexes 

E. wandoo woodland, some E. rudis 
and E. camaldulensis. E. marginata 
where soils are sandy and gravelly. 

Acacia ssp., Teatree and reeds 

40 2 

253Bn_3x Very gentle to gentle foot 
and lower slopes 

Generally not gravelly. 
Colluvial soils accumulate to 
form sandy loam to medium 
clays with highly variable 

percentages of coarse fraction 

Varies greatly to E. calophylla on 
sandier soils to E. loxophleba and E. 

wandoo on the clays 
37 2 



214 
 

 

Unit Landscape Dominant Soil Dominant Vegetation Area % of 
Properties 

253Ju_3a Gently to moderately sloping 
valleys 

Alluvial red and yellow 
duplex and uniform fine soils 

which are often gravelly.  
Moderately saline 

Dominated by E. wandoo but with 
some and E. marginata and small 

areas of  E. accedens, E. loxophleba, 
acacias and Casuarina obesa in 

saline areas 

29 2 

253WnYA4s Gentle to moderate hill 
slopes (3–15%) 

Shallow pisolitic gravelly 
loams and clay loams over 

laterite 

Mixed woodland and low woodland.  
Dominated by mixed E. wandoo, E. 

loxophylla associated with E. 
marginata and E. accedens 

25 1 

253Ju_2cs 
Gentle to moderate hill 

slopes with some 
breakaways 

Red and yellow duplex and 
some uniform fine soils 

which maybe gravelly near 
crests 

Dominated by E. wandoo woodland 
but with some E. loxophleba and 
Acacia spp. on the sandier topsoil 

areas 

21 1 

253Bn_2x 
Very gentle to moderate (< 
5–15%) middle and lower 

hill slopes 

Mixed red and yellow duplex 
soils with some uniform fine 

and medium textured, 
structured soils 

Dominated by E. wandoo with a few 
E. calophylla on light textured 

topsoils with E. marginata and E. 
accedens on lateritic outcrops 

21 1 

253Bn_1s Gentle to moderately crests 
and upper hillslopes 

Light to medium textured and 
shallow clay soils with 

varying percentages of coarse 
fraction 

Dominated by E. marginata, E. 
calophylla, E. wandoo, E. accedens 
and some Allocasuarina huegeliana 

6 < 1 

253WnPN6n 

Very gently to gently 
sloping, poorly drained  
floors and foot slopes of 
valleys of the central and 
eastern Darling Ranges 

Saline alluvial red and yellow 
loams and clays that may be 

gravelly and are prone to 
salinity.  Pans may underly 

these soils 

Dominated by E.wandoo, with 
E.loxophleba and rudis and Acacia. 

Casuarina obesa in saline areas. 
4 < 1 
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Figure B.2 Landscape units for Binarie and Morden Downs properties. 
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APPENDIX C 

QUANTIFYING THE FLORAL COVER OF PATERSON’S CURSE 

FROM OBJECT-BASED CLASSIFICATION OF DIGITAL FIELD 

PHOTOGRAPHY 

 

(CHAPTERS 4 & 5) 
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1 Introduction 

There has been an emphasis in the remote sensing literature on optimum approaches 

for collecting validation data (Stehman 2009), and techniques for assessing the 

accuracy of products derived from remote sensed imagery (Congalton and Green 

1999). However there has been less emphasis on how the training and validation data 

(e.g. percentage cover) are classified (Curran and Williamson 1985). Errors in field 

data have been shown to be as high as those from the processing and classification 

stage of the imagery, and can result from factors such as spatial variability in terrain, 

processing error, and variation between personnel due to bias or competency (Curran 

and Williamson 1985). 

 

Most remote sensing applications for weeds have derived proportion cover of the 

target species (and other ground cover) either through in-situ visual estimation in the 

field by a human observer from an oblique perspective (e.g. Casady, et al. 2005; 

Lawrence, et al. 2006; Mitchell and Glenn 2009), or field photos have been assessed 

post-survey by a human interpreter (Andrew and Ustin 2008; Everitt, et al. 1994). 

Some published studies have used digital methods to classify field photography to 

derive cover estimates, including density slicing (Birdsall, et al. 1997), per-pixel 

classification algorithms (Yang, et al. 2000), object based classification (Luscier, et 

al. 2006), and manual classification of pixels from digital imagery (Ngouajio, et al. 

1998). These applications however were stand-alone, and not used to classify or 

validate remotely sensed data. 

 

Quantitative classification of field photographs can reduce the variance and error that 

results from visual estimation techniques (Kercher, et al. 2003). A per-pixel approach 

to classifying field photography can encounter similar problems to aerial and satellite 

imagery (Blaschke and Strobl 2001), especially when the field imagery is of a very 

high spatial resolution. A contextual classification approach (Refer Section 2.4.3.4) 

may be more desirable, as information other than the spectral properties of the target 

feature is used, such as shape, size, and association with other pixels or objects 

(Magnussen, et al. 2004).  
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This appendix describes an approach for classifying Paterson’s curse floral cover 

from digital field photos using object based classification (Blaschke 2010) and 

decision trees (Friedl and Brodley 1997) at the Catholic Agricultural College 

Bindoon (CACB) study site. Object classification is a potentially useful type of 

contextual classification for extracting the floral percentage of Paterson’s curse from 

the field data described in Section 3.5. Given that Paterson’s curse flowers occur as 

discrete objects within a very high resolution field photograph, an object 

classification may be more effective than a pixel based approach. The overall 

objective was to address a recommendation of Bulman (2004) to derive an accurate 

quantitative method for determining floral percentage of Paterson’s curse flowers 

from digital field photographs.  

2 Methods 

The approach consisted of four stages: 1) data collection; 2) image segmentation; 3) 

development of a classification hierarchy; and 4) accuracy assessment. These stages 

are described in the following sections. 

2.1 Data collection 

Transects were surveyed at the Catholic Agriculture College Bindoon (CACB) 

property between October 9 to 14, 2005, which coincided with the peak flowering 

period for Paterson’s curse at the property for that year. A total of five transects were 

surveyed in areas where gradients of Paterson’s curse densities were observed 

(Figure 1 and 2). The transects were pegged out prior to the survey using a real-time 

differential GPS (DGPS-Max). A series of digital photographs were taken at intervals 

of 4 metres along each transect. At each interval, three separate photographs were 

captured of a 1 m² quadrat: one quadrat positioned on the transect line, and a quadrat 

positioned to the immediate left and right of the first (Figure 3). A wide-angle lens 

(28 mm) digital camera (Ricoh Caplio 400G) was positioned approximately 1.7 m 

above the centre of each quadrat (nadir) on a modified camera tripod/lighting stand 

(Manfrotto 420b). The camera height was chosen to allow the operator to manually 

operate the timer delay for capturing photographs. The survey was conducted 

between the hours of 08:00 and 17:00, to maximise available time and to reduce the 

effects of shadow from low sun angle on images. 
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Figure 1 Photos showing representative conditions of the transects at the time 

of field survey: a) transect 1 b) transect 2; c) transect 3 and d) 
transects 4 and 5. 

 

 
Figure 2 Location of transects at CACB overlaid on true-colour DMSI image. 

Non-relevant areas are masked in grey.  
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Figure 3 Schematic showing the arrangement of quadrats at each interval along 

a given transect. Dots denote centres of quadrats. 
 

2.2 Image segmentation 

A segmentation algorithm in the eCognition (version 4) software package (Baatz, et 

al. 2004) was used to derive objects for each image. The segmentation process used 

colour, shape, and a scale factor. The colour or spectral heterogeneity property (h) is 

the sum of the standard deviations of spectral values in each layer (Baatz, et al. 2004) 

and is given in Equation 1 

 

ℎ =  ∑ 𝑊𝑐 × 𝜎𝑐 𝑐        (1) 
  

Where 𝑊𝑐 is the weighting assigned to a given layer.     

 

The shape property denotes the smoothness and compactness of generated image 

objects and is given in Equation 2.   

 

ℎ =  𝑙
√𝑛

         (2) 
 

Where 𝑙 is the perimeter of an object and n is the sum of pixels within the object. 

 

The scale factor determined the average size of the created objects. The value of the 

factor was arbitrary and was not related to any quantitative measure of object size. 

The final output from the segmentation was determined from a combination of the 

scale factor (25), the heterogeneity colour and shape (both set at 0.5).  
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2.3 Development of classification hierarchy 

A manual decision tree approach (Swain and Hauska 1977) was used to 

progressively reduce the number of misclassified objects, by dividing them into 

successive sub-classes in the hierarchy. An exploratory analysis was conducted with 

the features properties tool in the software, to determine which object features 

(spectral and spatial properties) were optimal for separating flowers from 

background. A summary of the properties and values used to derive each class is 

presented in Table 1, and are described in detail in the following section. 

 

Image objects were classified first into two classes: ‘Flowers 1’ and ‘Non-flowers 1’ 

using the mean brightness property for band 1 (blue), given in Equation 3. 

 

𝑏 =  1
𝑛𝐿

 ×  ∑ 𝑐𝑖
𝑛𝐿
𝑖=1         (3) 

 

Where 𝑛𝐿 is the number of pixels comprising a given image object, and 𝑐𝑖 is the 

mean value for the pixels comprising a given image object for a given band. 
 

The ‘Flowers 1 ‘class was separated into two sub classes: ‘Non flowers 2’ and 

‘Flowers 2’ using the ratio property for band 2 (green). Two further sub-classes: 

‘Non Flowers 3’ and ‘Flowers 3’ were derived from Flowers using the shape index 

property, given in Equation 4 (Baatz, et al. 2004): 

 

𝑠 =  𝑒
4 × √𝐴

        (4) 
 

Where e is the border length of the image object and A is its area. 

 

The property was used to filter out areas of shadow that were very spectrally similar 

to flowers in the image.  These shadow areas typically occurred on the surface of the 

quadrat, where shadows from the vegetation were cast, and were typically long and 

elongated. To remove areas of high reflectance, the mean difference to scene 

property (Equation 5) for band 2 was used to create Non-flowers 4 and the final 

flowers class called ‘Final flowers’: 
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∆𝐶𝐿 =  𝐶𝐿̅,𝑂𝑏𝑗𝑒𝑐𝑡 − 𝐶𝐿̅,𝑆𝑐𝑒𝑛𝑒      (5) 
 
Where 𝐶𝐿̅,𝑂𝑏𝑗𝑒𝑐𝑡 is the mean value for a given object for a given band, and 𝐶𝐿̅,𝑆𝑐𝑒𝑛𝑒 is 

the mean value for the entire image for a given band. 

 

Table 1 Summary of parameters and values used to derive classes in the 
classification hierarchy. 

 
Class Property Band Value 

Non-Flowers 1/Flowers 1 Mean brightness value 1 > 61 
Non-Flowers 2/Flowers 2 Mean brightness ratio 2 < 0.295 
Non-Flowers 3/Flowers 3 Shape index N/A < 2.096 
Non-flowers 4/Flowers final Mean difference to scene 3 < -7 

 

2.4 Accuracy assessment 

The classification accuracy was assessed from a random sample of 50 photos from 

transect data (Section 2.1) that contained Paterson’s curse. A traditional error matrix 

approach was not used as the small size of the classified images was conducive to a 

systematic assessment of misclassification, rather than using a randomly generated 

sample. The alternative approach to assessing the accuracy was done by calculating 

the percentage of pixels in each image that were correctly classified into the final 

flower class. Accordingly, two new classes were added to the class hierarchy: 

‘omission’ and ‘commission’. Omission referred to instances of error where objects 

that were flowers were not identified as such, and commission referred to instances 

of error where non-flower objects were classified as flowers. Misclassified objects 

were manually assigned into the correct class.   

3 Results 

The results of the transect survey are shown in Table 2. The lengths of individual 

transects ranged from 120 m to 348 m. There was a total of 264 sample points and 

Paterson’s curse was present in 787 (94%) of the photos. There was high variability 

in floral cover across all transects, as indicated by the high ranges and standard 

deviation. Transect 2 had the highest mean floral cover of 7.25% (sd. 3.17%) 

compared with a mean of 4.02% (sd. 3.29%) for transect 2. The maximum floral 
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cover for all transects was 19.7%, and the mean floral cover was 2.96%.  Figure 4 

shows an example of an image where Paterson’s curse flowers have been classified. 

 

Table 2 Statistics for floral percentage data for each transect, and all transects 

combined. 

 

 1 2 3 4 5 All 

PC present  241 226 133 97 90 787 

No. samples 81 76 46 31 31 264 

Length (m) 348 300 188 144 120 N/A 

Min (%) < 1  < 1  < 1  < 1  < 1  < 1  

Max (%) 12.76  16.53  12.80  14.43  19.65  19.65  

Range (%) 12.73  16.08  12.79  14.42  19.62  19.64  

Mean (%) 4.02  7.25  2.97  2.72  3.56  2.97  

SD (%) 3.29  3.17  3.16  3.41  3.27  3.20  

 

 

Figure 4 Digital images of a quadrat containing Paterson’s curse, with a) 

classified image; and b) original image. 

 

3.1 Accuracy assessment 

The results of the accuracy assessment are summarised in Table 3. The mean floral 

percentage for the 50 classified validation photographs was 3.8% (SD = 3.2%) with a 

maximum cover of 11.4%.  Omission errors were very low (< 1%) with a mean of 

0.11% and a maximum of 0.92%. The maximum commission error was 4.64%, but 

the mean error was still less than 1%.    

  

a) b) a) 
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Table 3 Summary of floral cover, omission and omission errors from the 
random sample of field photographs.  

 

 Floral 
Cover 
(%) 

Omission 
Error (%) 

Commission 
Error (%) 

Mean 3.80 0.11 0.75 
SD 3.24 0.12 1.02 
Min 0 0 0 
Max 11.40 0.92 4.64 

 

The higher instances of commission error occurred due to areas of shadow in the 

quadrat being misclassified as flowers. There was a variable amount of shadow 

present in each image, depending on the amount of vegetation present. These shadow 

areas had very similar spectral properties to flowers where the misclassification 

occurred. 

4 Discussion 

The decision tree approach using object based classification was a robust quantitative 

method for classifying digital field photography, and represented an improvement 

over the visual estimate of Paterson’s curse used by Bulman (2004). The generated 

cover values were suitable for statistical empirical methods, and classification error 

could be quantified. The two strengths of the method were that misclassified regions 

could be reclassified ‘on the fly’, and that the classification hierarchy could be run as 

a macro, therefore large numbers of images with variable illumination and ground 

conditions could be classified accurately and rapidly; The method did not rely on 

observer experience, and therefore did not produce variance or error within and 

between observers. The decision tree method has the potential to be successfully 

applied to other invasive plants and ground cover types, given appropriate 

discrimination cues.  

 

The other published study which classified field imagery with object based 

classification was Luscier, et al. (2006), who used a nearest-neighbour algorithm 

rather than a decision tree, and classified multiple cover types rather an a single 

cover type. The advantage of the nearest neighbour method is that it is rapid and 

simple—a classification will progress through several iterations until an acceptable 
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level of accuracy is obtained (Baatz, et al. 2004).  A disadvantage of the method is 

that the iterative classification process may not be feasible for a large number of 

images. Another disadvantage of the nearest-neighbour approach is that the training 

areas are particular to a certain image, and cannot be applied across multiple images, 

unlike the classification hierarchy approach that was described in this Appendix. 

 

Shadow was the dominant feature that was spectrally similar to Paterson’s curse 

flowers in the images and caused the most spectral overlap. The impact of shadow 

varied according to the time of day (sun angle), the meteorological conditions at time 

of capture (e.g. clouds), and the colour and design of the quadrat. Olmstead, et al. 

(2004) minimised shadow in vertical photographs of crop cover by only capturing 

images during cloudy conditions and using a flash to ensure uniform lighting. 

However cloudy conditions are not common in the Bindoon study area in October 

and November. The light grey colour of the quadrat produced commission errors 

where shadow cast by vegetation on the quadrat surface was misclassified. To reduce 

or eliminate the problem, a wire quadrat, or painting the quadrat a darker colour, 

such as black, may be appropriate. The dark colour may also eliminate bands of haze 

along the periphery of the quadrat. 

 

The influence of shadow across the entire range of field photos could not be fully 

addressed by the classification hierarchy. For example, when shadow was reduced in 

one image by modifying the class parameters, there was misclassification in 

subsequent images. The process of altering the parameters of classes should be done 

cautiously in order to maintain a stable and consistent hierarchy. Given the 

variability of the illumination and other conditions, it’s unlikely that image based 

classification of field photos will ever be a fully automated process. Even if 

conditions are controlled as much as possible by the operator when capturing photos, 

there will always be misclassification, especially when large numbers of photos are 

captured.  
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APPENDIX D 

NORMALITY TESTING OF VARIABLES FROM FIELD 

SPECTROSCOPY ANALYSIS  

 

(CHAPTER 4) 
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Variable Sharpio-
Wilk Sig. Distribution N 

NDBI 0.913 0.001 NP 69 
UNMIX 0.957 0.018 NP 65 
NFRE 0.964 0.044 NP 69 

reNDVI 0.965 0.051 N 69 
GVDPC 3 0.972 0.124 N 69 

RE 2 0.964 0.044 N 69 
GVPCF 2 0.969 0.087 N 69 

PCI 0.976 0.200 N 69 
NDRE 0.970 0.098 N 69 

SVDPC 1 0.968 0.075 N 69 
SVDPC 2 0.979 0.287 N 69 
SVPCF 1 0.985 0.568 N 69 
GVDPC 2 0.965 0.048 NP 69 
GVPCF 4 0.989 0.807 N 69 
GVDPC 1 0.982 0.413 N 69 
SVPCF 2 0.982 0.417 N 69 
GVPCF 3 0.969 0.083 N 69 
GVPCF 1 0.967 0.069 N 69 

Floral % cover 0.940 0.003 N 69 
N = normal distribution; NP = non-parametric 
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APPENDIX E 

DMSI TRAINING CLASS STATISTICS  

 

(CHAPTER 5) 
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Crop 
    

 
 

Band N Mean SD SE 
Shapio-

Wilk Sig. 
1 839 702.51 26.57 0.92 0.992 0.001 
2 839 1197.8 86.02 2.97 0.968 0.001 
3 839 431.75 49.22 1.7 0.951 0.001 
4 839 1667.17 110.42 3.81 0.990 0.001 

     
 

 Pasture 
    

 
 

Band N Mean SD SE 
Sharpio-

Wilk Sig. 
1 1081 775.54 48.82 1.49 0.946 0.001 
2 1084 1487.23 134.53 4.09 0.973 0.001 
3 1076 682.04 101.41 3.09 0.948 0.001 
4 1084 1549.08 70.65 2.15 0.997 0.2 

     
 

 Fallow 
    

 
 

Band N Mean SD SE 
Sharpio-

Wilk Sig. 
1 369 906.22 41.30 2.15 0.909 0.001 
2 372 1297.48 113.51 5.89 0.845 0.001 
3 372 861.31 111.03 5.76 0.865 0.001 
4 372 923.26 87.415 4.53 0.946 0.001 

     
 

 Paterson's curse 
  

 
 

Band N Mean SD SE 
Sharpio-

Wilk Sig. 
1 951 739.54 31.86 1.03 0.980 0.001 
2 951 1274.29 117.72 3.82 0.979 0.001 
3 951 549.35 76.92 2.49 0.977 0.001 
4 951 1543.6 241.41 7.83 0.839 0.001 
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APPENDIX F 

VALIDATION DATA SHEETS  

 

(CHAPTER 5) 
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Table F.1 Random points for Paterson’s curse class, with floral percentage 
cover (F) measured from field photographs. Coordinates in UTM 
GDA 94, zone 50. 

ID Easting Northing Floral 
% 1 

Floral 
% 2 

Floral 
% 3 

Floral 
% 4 

Floral 
% 5 

Mean 
% 

1 422204 6535466 4.24 0.02 3.69 4.70 2.68 3.07 
2 422237 6535474 - 0.39 - 1.31 2.48 0.84 
3 422259 6535519 4.02 0.79 1.45 - 0.56 1.37 
4 422243 6535531 - 0.09 1.75 - 5.48 1.46 
5 422209 6535545 2.40 5.32 4.18 4.74 5.25 4.38 
6 422157 6535501 3.33 5.95 1.03 3.45 2.44 3.24 
7 422030 6535548 1.87 1.19 0.83 2.82 - 1.68 
8 422405 6537258 5.38 6.53 2.08 2.06 5.25 4.26 
9 422425 6537204 0.03 1.20 - - - 0.25 
10 422385 6537144 2.15 0.17 0.14 - - 0.49 
11 422349 6537066 - - 0.11 - - 0.02 
12 422377 6537047 2.78 1.60 4.95 3.30 3.00 3.13 
13 422437 6537129 0 0.66 0 0 0 0.13 
14 422470 6537105 0.78 2.28 0 0.89 1.25 1.04 
15 422467 6537137 2.87 5.34 2.62 4.04 7.47 4.47 
16 422478 6537180 2.09 2.46 2.04 1.52 1.91 2.00 
17 422543 6537145 0.30 1.48 0.12 0.17 - 0.52 
18 422545 6537206 0.11 0 2.45 2.29 3.18 1.61 
19 422563 6537184 2.42 4.22 4.07 0.88 - 2.90 
20 422595 6537161 4.30 3.29 5.95 3.47 - 4.25 
21 422687 6537138 7.59 5.51 6.25 8.42 5.24 6.60 
22 422758 6537066 4.79 8.42 5.89 4.74 4.37 5.64 
23 422797 6537042 0.20 0.25 0.24 0 3.55 0.85 
24 422862 6537022 6.86 4.20 5.60 3.44 5.06 5.03 
25 422874 6537003 5.02 2.97 7.61 2.43 5.50 4.70 
26 422975 6536891 0 1.36 0.00 2.04 0 0.68 
27 423010 6536898 1.19 2.62 2.68 1.78 2.68 2.19 
28 422216 6536101 0 0.02 0.04 0.09 0.06 0.04 
29 422253 6536122 1.19 0.72 1.21 1.19 0.49 0.96 
30 422240 6536064 0.49 0 0 0.14 0.06 0.14 
31 422154 6536050 0.52 0.61 0.46 1.61 0.29 0.70 
32 422204 6536024 1.46 0.04 1.34 0.79 0.56 0.84 
33 422180 6535992 0.99 0.34 0.97 0.32 1.38 0.80 
34 422187 6535938 0.16 0.12 0.09 0.03 0.16 0.11 
35 422261 6535871 0.09 0.07 0.55 0 0.05 0.15 
36 422234 6535845 0.51 0 0 0 0 0.10 
37 422331 6535787 0.62 1.18 0.61 1.12 0 0.71 
38 422302 6535702 0.04 0 0 0 0 0.01 
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ID Easting Northing Floral 
% 1 

Floral 
% 2 

Floral 
% 3 

Floral 
% 4 

Floral 
% 5 

Mean 
% 

39 422414 6535658 0 0.59 0 0.14 0 0.15 
40 422408 6535540 0.05 0 0 0.55 0.47 0.21 
41 422352 6535547 0 0 0.44 0.03 0.27 0.15 
42 422301 6535611 0.23 0.13 3.61 0 0 0.79 
43 422168 6535701 2.52 1.69 0.00 3.74 0.98 1.78 
44 422142 6535688 0.19 0.62 0.13 0.07 0.52 0.30 
45 422084 6535719 0.30 3.53 0.65 2.17 1.16 1.56 
46 422062 6535763 0 0 0 0.02 0 0 
47 422108 6535792 0.08 0 0.21 0 0.29 0.12 
48 422072 6535819 1.23 1.57 1.93 0.48 0.39 1.12 
49 422139 6535843 0.42 0 0.06 0 0.08 0.11 
50 422171 6535850 0.09 0.06 0.11 0.40 0.06 0.14 
51 422018 6535892 1.08 0.29 2.22 0.78 0.79 1.03 
52 422059 6535930 0.64 0.99 0.07 0.18 0.25 0.42 
53 422022 6535934 0.39 0 0.19 0.02 0.09 0.14 
54 422039 6535964 0.32 0.04 0.06 0.18 0.04 0.13 
55 422014 6535978 0.05 0 0.27 0.14 0.12 0.12 
56 422054 6535996 1.11 0.11 0.19 0.55 0.15 0.42 
57 422050 6536019 0.61 1.44 0.52 2.54 0.14 1.05 
58 422351 6537460 0.08 0.05 0.05 0 0.17 0.07 
59 422405 6537490 0.51 0.45 1.02 0.90 0.43 0.66 
60 422423 6537521 0.44 0.03 0.34 0.13 0.34 0.26 
61 422444 6537523 0.28 0.35 0.95 0.02 0.40 0.40 
62 422428 6537565 0.28 0.14 0.45 0.21 1.12 0.44 
63 422504 6537598 0.21 0.08 0.44 0.13 0.04 0.18 
64 422515 6537607 0.03 0.19 3.31 0.09 0.03 0.73 
65 422528 6537622 0.03 0.08 1.13 0.21 0.10 0.31 
66 422554 6537705 0.41 0.95 0.17 0.10 2.00 0.73 
67 422616 6537803 0.07 0.02 0.39 0.24 0.04 0.15 
68 422524 6537732 0.03 0.28 0.00 0.01 0.28 0.12 
69 422442 6537783 0.80 0.12 0.54 0.07 0.38 0.38 
70 422417 6537742 0.09 0.02 0.17 0.08 0.03 0.08 
71 422305 6537685 0.11 0.47 1.11 0.42 0.37 0.50 
72 422296 6537655 0.30 0.08 0.20 0.08 0.04 0.14 
73 422233 6537680 0.36 0.08 0.03 0.11 0.06 0.13 
74 422208 6537650 0.07 0.10 0 0 0.21 0.08 
75 422227 6537574 0.12 0.02 0 0.14 0 0.05 
76 422329 6537592 0.06 0.09 0.34 0.65 0.44 0.32 
77 422306 6537545 0 0 0 0 0.13 0.03 
78 422264 6537508 0.04 0 0 0 0.22 0.05 
79 422320 6537794 0.35 0.20 0.44 0.21 0.24 0.29 
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ID Easting Northing Floral 
% 1 

Floral 
% 2 

Floral 
% 3 

Floral 
% 4 

Floral 
% 5 

Mean 
% 

80 422288 6537465 0.59 0.35 0.09 0.71 0.34 0.41 
81 422275 6537457 0.01 0.06 0.05 0.35 0.09 0.11 
82 422219 6537427 0.02 0.09 0.11 0.07 5.60 1.18 
83 422183 6537475 0.07 0.33 0.03 0.16 0.22 0.16 
84 422113 6537465 0.03 0.03 0 0.04 0.05 0.03 
85 422090 6537540 0.15 0.14 0.22 0.32 0.06 0.18 
86 422123 6537603 0.31 0 0.10 0.34 0.17 0.18 
87 422044 6537687 0.04 0 0.20 0 0 0.05 
88 422037 6537644 0.07 0 0 0.03 0 0.02 
89 421967 6537501 0.17 4.60 1.29 0.74 0.64 1.49 
90 421962 6537477 0.15 0.60 0.33 0.14 0.03 0.25 
91 421925 6537492 0.19 7.58 0.15 0.77 0.09 1.76 
92 421932 6537467 0.58 0.43 0 0 0.19 0.24 
93 421890 6537367 0.30 0 0 0 0 0.06 
94 421833 6537116 2.52 2.26 1.79 2.20 4.81 2.72 
95 421722 6537156 7.97 3.33 5.11 0.82 9.29 5.31 
96 421699 6537093 0 22.89 0 0 4.17 5.41 
97 421569 6536988 2.01 3.95 0.91 2.76 0.32 1.99 
98 421585 6536969 0 0 5.21 0.17 0 1.08 
99 421625 6537003 0.18 0.04 0 0.91 0 0.23 

100 421840 6536894 3.61 2.87 4.29 1.90 3.97 3.33 
101 421911 6536951 1.65 0.80 3.39 2.59 1.20 1.93 
102 421804 6536950 2.88 5.44 7.38 6.94 4.87 5.50 
103 421785 6536973 0.06 0 0.06 0 0.06 0.04 
104 421848 6537010 0 0 0.28 0 0 0.06 
105 421856 6537072 0.25 0 2.19 0 0.44 0.58 
106 421934 6537043 0 0 2.32 0 1.43 0.75 
107 422042 6537015 3.21 0 3.98 7.68 - 3.72 
108 422007 6537063 4.23 6.28 4.94 2.05 4.07 4.32 
109 421978 6537077 0.04 0.05 0.11 0 0 0.04 
110 422063 6537157 10.30 0 2.95 0.24 11.47 4.99 
111 422182 6537161 0 0 0 0.94 0 0.19 
112 422183 6537118 9.79 3.27 8.31 3.34 10.97 7.14 
113 422120 6537086 6.19 2.57 3.99 1.90 4.77 3.88 
114 422191 6537075 0 0 0.14 0 0 0.03 
115 422286 6537036 3.27 0 0 0 0.22 0.70 
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Table F.2 Random points for non-Paterson’s curse classes. Key: F = derived 
from field survey; D = derived from desktop (GIS). Coordinates in 
UTM GDA 94, zone 50. 

ID Easting Northing Type Class 

116 421647 6537161 F CROP 
117 422092 6537220 F CROP 
118 422144 6537216 F CROP 
119 422207 6537217 F CROP 
120 422494 6534882 D CROP 
121 423229 6536053 D CROP 
122 424234 6535635 D CROP 
123 422960 6536309 D CROP 
124 422799 6536162 D CROP 
125 423431 6536281 D CROP 
126 423023 6536124 D CROP 
127 422659 6534633 D CROP 
128 424189 6535564 D CROP 
129 422765 6535884 D CROP 
130 421236 6536138 D CROP 
131 421542 6537277 D CROP 
132 421542 6537266 D CROP 
133 423010 6536049 D CROP 
134 422772 6536099 D CROP 
135 422002 6537336 D CROP 
136 423801 6535671 D CROP 
137 423258 6536045 D CROP 
138 422427 6534806 D CROP 
139 422726 6534801 D CROP 
140 423317 6535934 D CROP 
141 422019 6537384 D CROP 
142 421683 6537255 D CROP 
143 424110 6535433 D CROP 
144 423783 6536083 D CROP 
145 422551 6534776 D CROP 
146 424145 6535368 D CROP 
147 423315 6536162 D CROP 
148 421165 6536404 D CROP 
149 422241 6537302 D CROP 
150 424148 6535466 D CROP 
151 421839 6537216 D CROP 
152 423089 6536470 D CROP 
153 421500 6537068 D CROP 
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ID Easting Northing Type Class 

154 423504 6536028 D CROP 
155 423762 6536217 D CROP 
156 423364 6536412 D CROP 
157 422831 6536417 D CROP 
158 422732 6534833 D CROP 
159 423665 6536239 D CROP 
160 422001 6537278 D CROP 
161 421122 6536087 D CROP 
162 423999 6535831 D CROP 
163 424146 6535254 D CROP 
164 422999 6536560 D CROP 
165 424025 6535981 D CROP 
166 424212 6535474 D CROP 
167 423201 6535920 D CROP 
168 423281 6536029 D CROP 
169 421690 6537176 D CROP 
170 423102 6536498 D CROP 
171 421810 6537171 D CROP 
172 423177 6536314 D CROP 
173 423851 6536044 D CROP 
174 424165 6535412 D CROP 
175 422876 6536154 D CROP 
176 424203 6535710 D CROP 
177 421668 6537299 D CROP 
178 423092 6536158 D CROP 
179 423624 6536247 D CROP 
180 423812 6535833 D CROP 
181 421687 6537271 D CROP 
182 421525 6537309 D CROP 
183 423743 6535779 D CROP 
184 424256 6535600 D CROP 
185 423594 6535994 D CROP 
186 423207 6536029 D CROP 
187 424248 6535495 D CROP 
188 422451 6534891 D CROP 
189 422970 6536075 D CROP 
190 424144 6535516 D CROP 
191 422472 6534893 D CROP 
192 424120 6535264 D CROP 
193 423077 6536367 D CROP 
194 423090 6536511 D CROP 
195 423972 6535201 D CROP 
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ID Easting Northing Type Class 

196 424085 6535317 D CROP 
197 423995 6535920 D CROP 
198 423848 6535666 D CROP 
199 423009 6536306 D CROP 
200 423562 6536313 D CROP 
201 422121 6537205 D CROP 
202 421202 6536248 D CROP 
203 424290 6535811 D CROP 
204 422718 6534609 D CROP 
205 423702 6535881 D CROP 
206 421249 6536094 D CROP 
207 424038 6535525 D CROP 
208 422488 6534651 D CROP 
209 423888 6535873 D CROP 
210 423954 6535788 D CROP 
211 422758 6536298 D CROP 
212 422548 6534858 D CROP 
213 424029 6535731 D CROP 
214 421700 6537223 D CROP 
215 423386 6535976 D CROP 
216 423216 6536212 D CROP 
217 421224 6536153 D CROP 
218 422748 6536038 D CROP 
219 422866 6536234 D CROP 
220 424290 6535623 D CROP 
221 424084 6535593 D CROP 
222 422974 6535951 D CROP 
223 421137 6536303 D CROP 
224 422921 6536407 D CROP 
225 423574 6536259 D CROP 
226 422785 6534745 D CROP 
227 422761 6534647 D CROP 
228 424202 6535414 D CROP 
229 422514 6534835 D CROP 
230 422785 6534768 D CROP 
231 422065 6536139 F PASTURE 
232 422379 6535696 F PASTURE 
233 422412 6535644 F PASTURE 
234 422093 6535871 F PASTURE 
235 422327 6537431 F PASTURE 
236 422046 6537062 F PASTURE 
237 422261 6537200 F PASTURE 
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ID Easting Northing Type Class 

238 422292 6537184 F PASTURE 
239 422207 6537054 F PASTURE 
240 422282 6537022 F PASTURE 
241 422204 6537099 F PASTURE 
242 422718 6535843 D PASTURE 
243 421135 6537179 D PASTURE 
244 421410 6535826 D PASTURE 
245 422280 6536592 D PASTURE 
246 422754 6535835 D PASTURE 
247 421333 6537190 D PASTURE 
248 424117 6536338 D PASTURE 
249 422489 6536351 D PASTURE 
250 421211 6537169 D PASTURE 
251 422384 6536435 D PASTURE 
252 421301 6537467 D PASTURE 
253 421910 6535022 D PASTURE 
254 422028 6535193 D PASTURE 
255 424110 6536418 D PASTURE 
256 421268 6537620 D PASTURE 
257 422387 6536476 D PASTURE 
258 421490 6535739 D PASTURE 
259 422544 6535904 D PASTURE 
260 421622 6535966 D PASTURE 
261 421480 6536006 D PASTURE 
262 421147 6537528 D PASTURE 
263 421371 6537397 D PASTURE 
264 422626 6536500 D PASTURE 
265 421269 6534988 D PASTURE 
266 421309 6537249 D PASTURE 
267 421386 6535652 D PASTURE 
268 421870 6535072 D PASTURE 
269 421568 6534660 D PASTURE 
270 422546 6536241 D PASTURE 
271 421248 6537578 D PASTURE 
272 422631 6535752 D PASTURE 
273 421510 6535472 D PASTURE 
274 421415 6535071 D PASTURE 
275 422537 6536642 D PASTURE 
276 422379 6535272 D PASTURE 
277 422647 6536204 D PASTURE 
278 421217 6536859 D PASTURE 
279 421167 6535725 D PASTURE 
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ID Easting Northing Type Class 

280 421360 6536812 D PASTURE 
281 421347 6537448 D PASTURE 
282 422604 6536520 D PASTURE 
283 422591 6535809 D PASTURE 
284 421705 6534850 D PASTURE 
285 421250 6537504 D PASTURE 
286 422721 6536634 D PASTURE 
287 424235 6536348 D PASTURE 
288 421276 6535807 D PASTURE 
289 421286 6536758 D PASTURE 
290 421531 6537544 D PASTURE 
291 422543 6536427 D PASTURE 
292 424148 6536594 D PASTURE 
293 422354 6536426 D PASTURE 
294 421339 6537621 D PASTURE 
295 421220 6535107 D PASTURE 
296 421438 6535441 D PASTURE 
297 422501 6536385 D PASTURE 
298 421396 6534920 D PASTURE 
299 422501 6536417 D PASTURE 
300 422739 6535803 D PASTURE 
301 422866 6535806 D PASTURE 
302 422555 6536232 D PASTURE 
303 421906 6534625 D PASTURE 
304 422614 6536497 D PASTURE 
305 422881 6535777 D PASTURE 
306 421966 6534643 D PASTURE 
307 421444 6535412 D PASTURE 
308 421322 6536785 D PASTURE 
309 421289 6534730 D PASTURE 
310 421490 6534765 D PASTURE 
311 421645 6534639 D PASTURE 
312 421419 6534893 D PASTURE 
313 421316 6537083 D PASTURE 
314 421357 6535788 D PASTURE 
315 421275 6537177 D PASTURE 
316 421330 6535759 D PASTURE 
317 422563 6536640 D PASTURE 
318 421694 6535224 D PASTURE 
319 421340 6535030 D PASTURE 
320 421195 6535120 D PASTURE 
321 421841 6534755 D PASTURE 
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ID Easting Northing Type Class 

322 421253 6536846 D PASTURE 
323 421325 6534998 D PASTURE 
324 422722 6536326 D PASTURE 
325 424194 6536468 D PASTURE 
326 421422 6534757 D PASTURE 
327 422477 6536672 D PASTURE 
328 421989 6534665 D PASTURE 
329 421132 6535117 D PASTURE 
330 422073 6535317 D PASTURE 
331 421416 6535463 D PASTURE 
332 422673 6536166 D PASTURE 
333 422386 6535309 D PASTURE 
334 421678 6535167 D PASTURE 
335 421443 6534879 D PASTURE 
336 421158 6537546 D PASTURE 
337 421769 6535133 D PASTURE 
338 422622 6535798 D PASTURE 
339 421587 6535913 D PASTURE 
340 422863 6535675 D PASTURE 
341 422805 6535777 D PASTURE 
342 421341 6537096 D PASTURE 
343 422183 6536640 D PASTURE 
344 422530 6535935 D PASTURE 
345 421362 6534630 D PASTURE 
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APPENDIX G 

ERROR MATRICES FROM DMSI CLASSIFICATION RESULTS  

 

(CHAPTER 5) 
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Appendix G.1  Error matrices for MLP classifications. 
 
3-Class 

  C P PC Totals UA Kappa 
(U) 

C 72 9 26 107 67 0.51 
P 15 37 34 86 43 0.15 

PC 28 69 55 152 36 0.04 
Totals 115 115 115 345     

PA 63 32 48    
Kappa 

(P) 0.46 0.1 0.07  OA 48 

 
 

2-Class 

  P PC Totals UA Kappa 
(U) 

P 62 38 100 62 0.24 
PC 53 77 130 59 0.19 

Totals 115 115 230     
PA 54 67    

Kappa 
(P) 0.19 0.28  OA 60 

 
 
Appendix G.2  Error matrices from kNN classification (4 bands, 3 classes). 
 

kNN = 5 
     

  C P PC Totals UA Kappa 
(U) 

C 73 2 26 101 72 0.59 
P 14 68 36 118 12 0.36 

PC 24 44 49 117 42 0.13 
Totals 111 114 111 336     

PA 66 60 44    
Kappa 

(P) 0.51 0.38 0.14  OA 57 

       kNN = 15 
     

  C P PC Totals UA Kappa 
(U) 

C 73 3 27 103 71 0.57 
P 14 70 40 124 57 0.34 

PC 24 41 44 109 40 0.11 
Totals 111 114 111 336     

PA 66 61 40    
Kappa 

(P) 0.51 0.39 0.11  OA 56 
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kNN = 25 
     

  C P PC Totals UA Kappa 
(U) 

C 74 3 28 105 71 0.56 
P 13 72 41 126 57 0.35 

PC 24 39 42 105 40 0.1 
Totals 111 114 111 336     

PA 67 63 38    
Kappa 

(P) 0.52 0.41 0.1  OA 56 

       kNN = 35 
     

  C P PC Totals UA Kappa 
(U) 

C 73 3 28 104 70 0.56 
P 14 73 40 127 58 0.36 

PC 24 38 43 105 41 0.12 
Totals 111 114 111 336     

PA 66 64 39    
Kappa 

(P) 0.50 0.42 0.11  OA 56 

       kNN = 45 
     

  C P PC Totals UA Kappa 
(U) 

C 74 4 29 107 69 0.54 
P 15 73 40 128 57 0.35 

PC 22 37 42 101 42 0.13 
Totals 111 114 111 336     

PA 67 64 38    
Kappa 

(P) 0.511 0.42 0.11  OA 56 

       kNN = 55 
     

  C P PC Totals UA Kappa 
(U) 

C 74 4 29 107 69 0.54 
P 16 74 41 131 57 0.34 

PC 21 36 41 98 42 0.13 
Totals 111 114 111 336     

PA 67 65 37    
Kappa 

(P) 0.51 0.43 0.11  OA 56 
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Appendix G.3  Error matrices from kNN classification (3 bands, 3 classes). 
 

kNN = 5 
     

  C P PC Totals UA Kappa 
(U) 

C 73 1 25 99 74 0.61 
P 15 61 31 107 57 0.35 

PC 23 52 54 129 42 0.13 
Totals 111 114 110 335     

PA 66 54 49    
Kappa 

(P) 0.51 0.32 0.17  OA 56 

       kNN = 15 
     

  C P PC Totals UA Kappa 
(U) 

C 72 2 26 100 72 0.58 
P 14 60 31 105 57 0.35 

PC 25 52 54 131 41 0.12 
Totals 111 114 111 336     

PA 65 53 23    
Kappa 

(P) 0.50 0.31 0.16  OA 55 

       kNN = 25 
     

  C P PC Totals UA Kappa 
(U) 

C 71 3 27 101 70 0.56 
P 15 64 31 110 58 0.37 

PC 25 47 52 124 42 0.14 
Totals 111 114 110 335     

PA 64 56 47    
Kappa 

(P) 0.48 0.35 0.16  OA 56 

       kNN = 35 
     

  C P PC Totals UA Kappa 
(U) 

C 70 3 27 100 70 0.55 
P 14 62 31 107 58 0.36 

PC 27 49 52 128 40 0.11 
Totals 111 114 110 335     

PA 63 54 47    
Kappa 

(P) 0.47 0.33 0.15  OA 55 
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Appendix G.4  Error matrices from kNN classification (2 bands, 3 classes). 
 

kNN = 5 
     

  C P PC Totals UA Kappa 
(U) 

C 71 3 28 102 70 0.54 
P 14 69 35 118 59 0.38 

PC 25 38 46 109 42 0.14 
Totals 110 110 109 329     

PA 65 63 42    
Kappa 

(P) 0.49 0.42 0.14  OA 57 

       kNN = 15 
     

  C P PC Totals UA Kappa 
(U) 

C 68 3 27 98 69 0.54 
P 14 67 32 113 59 0.39 

PC 28 40 50 118 42 0.14 
Totals 110 110 109 329     

PA 62 61 46    
Kappa 

(P) 0.46 0.41 0.16  OA 56 

         

kNN = 45 

 C P PC Totals U.A. Kappa 
(U) 

C 71 3 28 102 70 0.55 
P 14 64 31 109 59 0.38 
PC 26 47 52 125 42 0.13 
Totals 111 114 111 336 

  PA 64 56 47    
Kappa 
(P) 0.48 0.35 0.15  OA 56 

       kNN = 55 
     

 C P PC Totals UA Kappa 
(U) 

C 70 3 28 101 69 0.54 
P 14 65 31 110 59 0.38 
PC 27 46 52 125 42 0.13 
Totals 111 114 111 336 

  PA 63 57 47    
Kappa 
(P) 0.47 0.36 0.15  OA 56 
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kNN = 25 

     
  C P PC Totals UA Kappa 

(U) 
C 67 7 28 102 66 0.49 
P 13 67 34 114 59 0.38 

PC 30 36 48 114 42 0.13 
Totals 110 110 110 330     

PA 61 61 44    
Kappa 

(P) 0.43 0.40 0.14  OA 55 

       kNN = 35 
     

  C P PC Totals UA Kappa 
(U) 

C 70 5 28 103 68 0.52 
P 13 67 32 112 60 0.4 

PC 27 38 49 114 43 0.15 
Totals 110 110 109 329     

PA 64 61 45    
Kappa 

(P) 0.47 0.41 0.16  OA 57 

 
 

      kNN = 45 
     

  C P PC Totals UA Kappa 
(U) 

C 68 5 29 102 67 0.5 
P 15 70 32 117 60 0.4 

PC 27 35 48 110 45 0.16 
Totals 110 110 109 329     

PA 62 64 44    
Kappa 

(P) 0.45 0.44 0.16  OA 57 

       kNN = 55 
     

  C P PC Totals UA Kappa 
(U) 

C 67 4 30 101 66 0.49 
P 15 68 33 116 59 0.38 

PC 28 38 46 112 41 0.12 
Totals 110 110 109 329     

PA 61 62 42    
Kappa 

(P) 0.43 0.41 0.12  OA 55 
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Appendix G.5  Error matrices from kNN classification (4 bands, 2 classes). 
 

kNN = 5 
    

  P PC Totals UA Kappa 
(U) 

P 67 37 104 64 0.28 
PC 47 74 121 61 0.23 

Totals 114 111 225     
PA 59 67    

Kappa 
(P) 0.23 0.27  OA 63 

      kNN = 15 
    

  P PC Totals UA Kappa 
(U) 

P 71 43 114 62 0.24 
PC 43 68 111 61 0.23 

Totals 114 111 225     
PA 62 61    

Kappa 
(P) 0.24 0.23  OA 62 

      kNN = 25 
    

  P PC Totals UA Kappa 
(U) 

P 72 42 114 63 0.25 
PC 42 69 111 62 0.25 

Totals 114 111 225     
PA 63 62    

Kappa 
(P) 0.25 0.24  OA 63 

      kNN = 35 
    

  P PC Totals UA Kappa 
(U) 

P 73 43 116 63 0.25 
PC 41 68 109 62 0.25 

Totals 114 111 225     
PA 64 61    

Kappa 
(P) 0.26 0.24  OA 63 
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kNN = 45 
    

  P PC Totals UA Kappa 
(U) 

P 74 43 117 63 0.26 
PC 40 68 108 63 0.26 

Totals 114 111 225     
PA 65 61    

Kappa 
(P) 0.27 0.25  OA 63 

      kNN = 55 
    

  P PC Totals UA Kappa 
(U) 

P 73 42 115 64 0.26 
PC 41 69 110 63 0.26 

Totals 114 111 225     
PA 64 62    

Kappa 
(P) 0.26 0.25  OA 63 

      kNN = 65 
    

  P PC Totals UA Kappa 
(U) 

P 74 42 116 64 0.27 
PC 40 69 109 63 0.27 

Totals 114 111 225     
PA 65 62    

Kappa 
(P) 0.28 0.26  OA 64 

 
 
Appendix G.6  Error matrices from kNN classification (3 bands, 2 classes). 
 

kNN = 5 
    

  P PC Totals UA Kappa 
(U) 

P 62 30 92 67 0.34 
PC 52 81 133 61 0.22 

Totals 114 111 225     
PA 54 73    

Kappa 
(P) 0.23 0.32  OA 64 
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kNN = 15 

    
  P PC Totals UA Kappa 

(U) 
P 62 31 93 67 0.32 

PC 52 80 132 61 0.22 
Totals 114 111 225     

PA 54 72    
Kappa 

(P) 0.22 0.31  OA 63 

      kNN = 25 
    

  P PC Totals UA Kappa 
(U) 

P 63 30 93 68 0.34 
PC 51 80 131 61 0.22 

Totals 114 110 224     
PA 55 73    

Kappa 
(P) 0.24 0.31  OA 64 

      kNN = 35 
    

  P PC Totals UA Kappa 
(U) 

P 62 31 93 67 0.32 
PC 52 79 131 60 0.21 

Totals 114 110 224     
PA 54 72    

Kappa 
(P) 0.22 0.29  O.A. 63 

      kNN = 45 
    

  P PC Totals UA Kappa 
(U) 

P 64 31 95 67 0.34 
PC 50 80 130 62 0.23 

Totals 114 111 225     
PA 56 72    

Kappa 
(P) 0.24 0.32  OA 64 

      kNN = 55 
    

  P PC Totals UA Kappa 
(U) 

P 66 31 97 68 0.35 
PC 48 80 128 63 0.25 

Totals 114 111 225     
PA 58 72    

Kappa 
(P) 0.26 0.34  OA 65 
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kNN = 65 
    

  P PC Totals UA Kappa 
(U) 

P 65 31 96 68 0.35 
PC 49 80 129 62 0.24 

Totals 114 111 225     
PA 57 72    

Kappa 
(P) 0.25 0.33  OA 64 

 
 
Appendix G.7  Error matrices from kNN classification (2 bands, 2 classes). 
 

kNN = 5 
    

  P PC Totals UA Kappa 
(U) 

P 65 34 99 66 0.30 
PC 49 76 125 61 0.22 

Totals 114 110 224     
PA 57 69    

Kappa 
(P) 0.23 0.27  OA 63 

      kNN = 15 
    

  P PC Totals UA Kappa 
(U) 

P 66 32 98 67 0.34 
PC 48 78 126 62 0.24 

Totals 114 110 224     
PA 58 71    

Kappa 
(P) 0.25 0.31  OA 64 

      kNN = 25 
    

  P PC Totals UA Kappa 
(U) 

P 65 32 97 67 0.33 
PC 49 78 127 61 0.23 

Totals 114 110 224     
PA 57 71    

Kappa 
(P) 0.24 0.3  OA 64 
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kNN = 35 
    

  P PC Totals UA Kappa 
(U) 

P 66 32 98 67 0.34 
PC 48 78 126 62 0.24 

Totals 114 110 224     
PA 58 71    

Kappa 
(P) 0.25 0.31  OA 64 

      kNN = 45 
    

  P PC Totals UA Kappa 
(U) 

P 69 32 101 68 0.36 
PC 45 78 123 63 0.27 

Totals 114 110 224     
PA 60 71    

Kappa 
(P) 0.28 0.33  OA 66 

      kNN = 55 
    

  P PC Totals UA Kappa 
(U) 

P 66 33 99 67 0.32 
PC 48 77 125 62 0.23 

Totals 114 110 224     
PA 58 70    

Kappa 
(P) 0.25 0.29  OA 64 

      kNN = 65 
    

  P PC Totals UA Kappa 
(U) 

P 67 33 100 67 0.33 
PC 47 77 124 62 0.24 

Totals 114 110 224     
PA 59 70    

Kappa 
(P) 0.26 0.30  OA 64 
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APPENDIX H 

LOGISTIC REGRESSION AND ROC ANALYSIS RESULTS  

 

(CHAPTER 5) 
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Table H.1 Logistic regression and ROC analysis results for 3-class 
(Paterson’s curse, crop, and pasture) subset (Set A). Records 
are order from highest to lowest AUC statistic. 

 

Set Bands kNN N Chi-
square Sig. AUC Lower 

Value 
Upper 
Value SE Sig. 

A 3 35 327 9.374 0.002 0.615 0.552 0.677 0.032 0.001 
A 4 55 328 6.621 0.01 0.613 0.552 0.674 0.031 0.001 
A 3 25 323 9.125 0.003 0.613 0.55 0.676 0.032 0.001 
A 3 55 331 8.73 0.003 0.612 0.55 0.674 0.032 0.001 
A 2 55 333 8.434 0.004 0.612 0.55 0.673 0.031 0.001 
A 3 45 328 8.834 0.003 0.611 0.548 0.674 0.032 0.001 
A 3 15 316 8.241 0.004 0.607 0.543 0.671 0.033 0.002 
A 4 45 327 6.589 0.01 0.606 0.543 0.668 0.032 0.002 
A 2 25 323 7.133 0.008 0.606 0.543 0.668 0.032 0.002 
A 2 45 332 7.62 0.006 0.606 0.543 0.668 0.032 0.002 
A 4 5 294 6.165 0.013 0.604 0.538 0.669 0.033 0.003 
A 4 25 322 6.375 0.012 0.601 0.537 0.664 0.032 0.003 
A 2 35 327 6.933 0.008 0.601 0.539 0.664 0.032 0.003 
A 4 15 316 6.168 0.013 0.6 0.536 0.664 0.033 0.004 
A 4 35 325 6.198 0.012 0.6 0.537 0.663 0.032 0.003 
A 2 15 316 6.072 0.014 0.599 0.535 0.663 0.032 0.004 
A 2 5 300 4.506 0.034 0.585 0.52 0.651 0.033 0.015 
A 3 5 297 5.179 0.023 0.58 0.513 0.647 0.034 0.022 
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Table H.2 Logistic regression and ROC analysis results for the 2-class 
(Paterson’s curse and pasture) subset (Set B). Records are 
ordered from highest to lowest AUC statistic. 

 

Set Bands kNN N Chi-
square Sig AUC Lower 

Value 
Upper 
Value SE Sig. 

B 4 5 197 18.108 > 0.01 0.677 0.603 0.752 0.038 > 0.01 
B 3 25 214 19.615 > 0.01 0.677 0.605 0.749 0.037 > 0.01 
B 3 35 217 20.001 > 0.01 0.675 0.604 0.747 0.036 > 0.01 
B 2 25 215 19.054 > 0.01 0.673 0.601 0.745 0.037 > 0.01 
B 3 15 207 16.156 > 0.01 0.67 0.597 0.743 0.037 > 0.01 
B 3 55 221 19.167 > 0.01 0.67 0.599 0.741 0.036 > 0.01 
B 2 55 222 19.247 > 0.01 0.67 0.599 0.741 0.036 > 0.01 
B 3 45 218 18.943 > 0.01 0.669 0.597 0.741 0.037 > 0.01 
B 3 65 221 19.187 > 0.01 0.669 0.598 0.74 0.036 > 0.01 
B 4 55 217 19.615 > 0.01 0.668 0.596 0.741 0.037 > 0.01 
B 4 15 208 17.362 > 0.01 0.667 0.593 0.74 0.038 > 0.01 
B 4 25 212 18.431 > 0.01 0.667 0.595 0.74 0.037 > 0.01 
B 4 45 216 19.24 > 0.01 0.667 0.595 0.74 0.037 > 0.01 
B 2 45 221 18.488 > 0.01 0.667 0.596 0.739 0.036 > 0.01 
B 2 15 208 15.718 > 0.01 0.666 0.593 0.739 0.037 > 0.01 
B 2 5 200 14.499 > 0.01 0.665 0.59 0.74 0.038 > 0.01 
B 2 65 223 18.193 > 0.01 0.665 0.594 0.736 0.036 > 0.01 
B 4 35 214 17.974 > 0.01 0.662 0.589 0.736 0.037 > 0.01 
B 2 35 217 17.204 > 0.01 0.662 0.59 0.735 0.037 > 0.01 
B 3 5 201 13.372 > 0.01 0.66 0.585 0.736 0.038 > 0.01 
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APPENDIX I 

FIELD DATA SHEET FROM 2006 HYPERION VALIDATION 
SURVEY  
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Ranking Key 
 

  0: No Paterson’s curse   
1: Barely any Paterson’s curse, except for isolated plants 
2: Small patches of Paterson’s’ curse, or up to total 1/4 
Paterson’s curse 
3: Approx. 1/2 of area covered by Paterson’s curse 
4: Up to 3/4 of area covered by Paterson’s curse 
5: Area nearly 100% covered by Paterson’s curse 

 

Property: 
       
MORD: Morden Downs   
BIND: Bindarie 

 
  

CACB: 
Catholic Agricultural College 
Bindoon 

 

* Geocentric Datum of Australia 1994, UTM Zone 5
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Direction & ranking 

   No. Property Easting* Northing* N E S W Mode Median Comments 
1 CACB 422085 6537480 3 3 3 3 3 3   
2 MORD 419810 6528912 2 2 2 2 2 2   
4 BIND 419296 6521558 0 1 1 1 1 1   
5 CACB 423122 6537535 2 2 2 2 2 2   
6 CACB 422982 6537104 2 2 1 2 2 2   
7 CACB 422485 6537151 3 4 2 2 2 2.5   
10 BIND 419975 6521707 5 5 5 5 5 5   
11 CACB 421887 6535667 4 4 4 4 4 4   
12 BIND 420248 6519980 1 1 1 1 1 1   
13 CACB 422654 6537206 3 2 3 3 3 3   
14 BIND 419984 6522156 3 2 2 2 2 2   
15 BIND 419667 6523770 3 3 3 2 3 3   
16 BIND 418892 6521812 3 3 2 2 3 2.5   
18 BIND 419683 6521947 0 1 1 1 1 1   
19 BIND 420308 6520259 1 1 1 1 1 1   
20 BIND 419447 6523699 2 2 2 2 2 2   
21 BIND 418885 6522167 2 3 2 3 2 2.5   
22 MORD 420218 6528380 5 4 5 5 5 5   
23 MORD 419852 6528614 5 5 5 4 5 5   
24 MORD 420051 6528104 4 4 5 5 4 4.5   
25 MORD 419722 6527688 5 4 5 5 5 5   
26 MORD 419964 6528713 4 4 4 3 4 4   
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Direction & ranking 

   No. Property Easting* Northing* N E S W Mode Median Comments 
27 BIND 420214 6521629 3 3 3 3 3 3   
28 CACB 422896 6537153 2 2 2 3 2 2   
29 CACB 422328 6537582 2 2 2 3 2 2   
31 BIND 418956 6521204 2 2 2 2 2 2 Dry soil, senescent pasture 
32 MORD 419721 6528178 4 3 4 4 4 4   
33 MORD 420008 6528497 5 5 4 5 5 5   
34 MORD 419748 6528800 2 3 3 3 3 3   
35 BIND 420370 6520153 1 1 0 0 1 0.5   
36 BIND 419593 6523557 2 N/A N/A N/A 2 2   
37 BIND 419997 6523727 1 1 1 1 1 1   

38 BIND 418235 6522347 5 3 3 4 3 3.5 
Very dense mature PC, & clear 

patches 
40 MORD 420063 6528196 4 4 4 4 4 4 Some crop species 
41 CACB 423994 6537673 5 5 4 4 5 4.5   
42 BIND 420633 6520621 1 1 1 1 1 1 Dry paddock, some capeweed 
43 CACB 422948 6537481 2 2 1 1 2 1.5   
44 BIND 418866 6521011 2 2 1 2 2 2   
45 BIND 420443 6520990 2 2 2 2 2 2   
46 BIND 419347 6522882 2 2 1 2 2 2   
47 CACB 423405 6537674 2 2 2 2 2 2   
48 MORD 420168 6527853 5 5 5 5 5 5   
51 BIND 419296 6523269 2 3 3 2 2 2.5   
53 BIND 419838 6521655 1 1 2 1 1 1 Rocky 
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Direction & ranking 

   No. Property Easting* Northing* N E S W Mode Median Comments 
54 BIND 420263 6520355 0 1 1 1 1 1 Small tree in plot 
55 BIND 420644 6521180 1 1 1 1 1 1   
56 BIND 419065 6521984 2 3 2 2 2 2   
57 CACB 423290 6536804 2 2 2 2 2 2   
59 CACB 423697 6537838 3 3 3 3 3 3   
60 BIND 420414 6522505 1 1 0 1 1 1   
61 BIND 418668 6522048 3 3 2 2 3 2.5   
62 CACB 423751 6537043 3 2 3 2 3 2.5   
63 BIND 419745 6521872 1 1 0 1 1 1   
64 BIND 420515 6520243 0 0 0 0 0 0 Dry paddock, no PC 
65 BIND 420614 6522667 1 1 1 1 1 1   
66 BIND 418650 6522455 5 5 5 5 5 5   
67 BIND 420062 6521606 3 3 3 3 3 3   
68 CACB 422295 6537675 3 3 2 3 3 3   
69 BIND 419837 6522082 1 1 1 1 1 1   
70 BIND 420123 6521427 4 2 2 2 2 2   
71 BIND 419932 6523550 1 1 1 1 1 1   
72 CACB 422235 6534897 4 2 2 2 2 2 Dry paddock 
73 MORD 420165 6528729 4 3 2 2 2 2.5   
76 MORD 420376 6527957 4 4 4 4 4 4   
77 CACB 424032 6537539 5 4 3 4 4 4   
78 BIND 419010 6522097 4 4 5 5 4 4.5   
80 BIND 419831 6521844 1 1 1 1 1 1   
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Direction & ranking 

   No. Property Easting* Northing* N E S W Mode Median Comments 
82 BIND 419651 6523147 1 1 1 1 1 1   
83 MORD 420385 6528117 5 5 5 4 5 5 Some crop 
84 BIND 418880 6521679 2 2 2 2 2 2   

85 CACB 422364 6534913 1 1 2 1 1 1 
Dry paddock, mature PC, but few 

flowers left 
86 BIND 419117 6522321 2 2 2 2 2 2   
87 CACB 423407 6537245 4 5 4 5 4 4.5   
88 MORD 419870 6528291 3 3 4 3 3 3   
89 BIND 418784 6523209 4 4 4 4 4 4   
90 MORD 419975 6527718 2 2 3 3 2 2.5   
91 BIND 419546 6521729 1 0 1 1 1 1 Very rocky plot, dry 
93 MORD 420460 6527694 5 4 4 5 5 4.5   
94 BIND 419785 6522314 1 1 1 2 1 1   
95 BIND 419546 6521863 1 1 1 0 1 1 Rocky plot, dry 

96 BIND 419904 6523675 1 0 1 1 1 1 
Awkward plot, on fence line near 

track 
97 BIND 419796 6521474 1 1 1 1 1 1   
98 BIND 419989 6523453 1 1 1 1 1 1   
99 BIND 418371 6523822 5 5 5 5 5 5 Very dense mature PC 

100 CACB 422742 6537268 2 2 1 2 2 2   
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APPENDIX J 

 HYPERION BAD COLUMN LISTING  
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Band 
Number 

Bad Column 
Number 

8  6, 68, 114, 246 

9 
6, 68, 114, 148, 
229 

10  6, 114, 199 
11 114, 199 
12 114 
13 114 
14 114 
15 114 
16 114 
27 47 
54 25 
77 246, 247 
78 246, 247 
94 92 
99 91 
116 137 
119 239 
120 239 
165 147 
190 112 
200 7 
201 7 
203 114 
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APPENDIX K 

FLAASH ATMOSPHERIC CORRECTION PARAMETERS  

 

(CHAPTER 6) 
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Attribute Parameter 
Visibility (km) 30 

Scene Center Location  Lat -31 18 45.72,  Long 116 10 58.80 
Sensor Altitude (km) 705  

Ground Elevation (km) 0.2 
Pixel Size (m) 30 

Flight Date  Nov 2 2006 
Flight Time (GMT)   1:54:27 
Atmospheric Model   Mid-Latitude Summer 

Water Retrieval  None 
Water Absorption Feature  N/A 

Aerosol Model  Rural 
Aerosol Retrieval None 

Initial Visibility (km) 100 
Spectral Polishing No 

Wavelength Recalibration No 
Aerosol Scale Height (km) 2 
CO2 Mixing Ratio (ppm) 390 
Use Square Slit Function No 

Use Adjacency Correction Yes 
Reuse MODTRAN 

Calculations No 
Modtran Resolution (cm-1) 15 

Modtran Multiscatter Model Scaled DISTORT 
Number of DISTORT Streams 8 

Zenith Angle 180° 
Azimuth Angle 0° 

Output Reflectance Scale 
Factor 10000 

 




