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ABSTRACT 

 

Smoke derived taint in grapes and wine is an issue of increasing significance and 

severity for the wine industry internationally.  On commencement of this research, 

insufficient knowledge existed as to the effects of smoke on grapevines and the 

development of smoke taint in wine, with no substantial published information.  This 

research was undertaken to investigate the effect of smoke exposure to grapevines on the 

development of smoke aromas, flavours and compounds in final wines.  As such, this 

study pioneers the purposeful application of smoke to grape bunches and field-grown 

grapevines to establish the direct link between smoke exposure and the development of 

smoke taint in wine. 

 

This research identified key periods of grapevine sensitivity to smoke uptake as: (1) 

from shoots 10 cm in length to full-bloom (low levels of smoke taint); (2) from berries 

pea size to the onset of veraison (variable levels of smoke taint); and (3) from 7 days 

post veraison to harvest (high levels of smoke taint).  A novel smoke application 

methodology consisting of a smoke generator and greenhouse-grade tent was developed 

to facilitate the accurate application of smoke treatments to field-grown grapevines.  

Smoke treatments were applied to grapevines at key stages during the seasonal growth 

cycle, on repeated occasions and at a range of densities and durations. 

 

Elevated concentrations of guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-ethylphenol, 

eugenol and furfural were detected, by gas chromatography-mass spectrometry analysis, 

in wines made from fruit exposed to smoke; whereas these compounds were either not 

detected or detected in trace concentrations in wines produced from unsmoked (control) 

fruit.  Wine sensory analysis established a difference between smoked and unsmoked 

wines, with smoked wines exhibiting ‘smoky’, ‘dirty’, ‘earthy’, ‘burnt’ and ‘smoked 

meat’ aromas.  The density and duration of smoke exposure to grapevines was found to 

affect the chemical composition and sensory properties of wine and repeated smoke 

applications demonstrated a cumulative effect. 
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CHAPTER 1 INTRODUCTION AND OVERVIEW 

 

1.1 INTRODUCTION 

 

Smoke derived taint in grapes and wine is an issue of increasing frequency of occurrence 

and severity for the wine industry internationally.  Grapevines exposed to smoke during 

sensitive periods of growth can result in the occurrence of smoke-like aromas, flavours 

and smoke derived volatile compounds in the grapes and subsequent wines.  Such wines 

can exhibit ‘smoky’, ‘salami’, ‘smoked salmon’, ‘burnt’, ‘ash’ and ‘ashtray’ sensory 

characteristics (Høj et al. 2003) and are often unfit for purpose.  Wine regions 

internationally have been adversely affected by smoke taint resulting in a decrease in 

product quality, damage to wine brands, economic and social costs with Australian, 

Mediterranean, South African, Californian and British Columbian wine regions 

adversely impacted by smoke taint during the past decade (Høj et al. 2003, Krstic et al. 

2007, Mira de Orduña 2010, Zybach et al. 2009).  Due to the warming climate of Earth, 

an increase in fire-risk weather events is occurring (Hennessy et al. 2005, Pitman et al. 

2007, Westerling et al. 2006), resulting in increased smoke exposure to grapevines and 

frequency of smoke taint in wine (Mira de Orduña 2010). 

 

In the few published reports of smoke taint in wine that exist, a consistent theme of the 

lack of scientific research on the issue is apparent (Høj et al., Sheppard et al. 2009).  

When this study commenced, smoke taint was a new phenomenon for the wine industry 

and rapid research was required to assist with understanding and minimising the taint in 

wine.  This PhD research program was therefore undertaken to investigate the effects of 

smoke exposure to grapevines on the development of smoke taint in wine. 

 

The published papers compiled in this thesis have greatly contributed to the knowledge 

of smoke taint in grapes and wine.  Published Paper 1 entitled Kennison, K.R., 

Wilkinson, K.L., Williams, H.G., Smith J.H. and Gibberd, M.R. (2007) Smoke derived 

taint in wine: effect of postharvest smoke exposure of grapes on the chemical 

composition and sensory characteristics of wine. Journal of Agricultural and Food 
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Chemistry 55, 10897-10901 presents the first known peer-review scientific paper on the 

topic of smoke taint in grapes and wine.  This paper details the purposeful application of 

smoke to grape bunches post-harvest and demonstrates the direct link between smoke 

exposure and the occurrence of smoke taint in wine.  Research in Paper 1 established a 

clear sensory difference between unsmoked (control) wines and wines made from fruit 

exposed to smoke that exhibited ‘smoky’, ‘dirty’, ‘earthy’, ‘burnt’ and ‘smoked meat’ 

characters.  This research also identified the presence of volatile phenols guaiacol, 

4-methylguaiacol, 4-ethylguaiacol, 4-ethylphenol and eugenol in wines made from 

grapes exposed to smoke; compounds that were not detected in unsmoked wines and 

were therefore attributed to the application of smoke.  Wine sensory analysis was also 

employed to establish the aroma detection threshold of smoke taint in wine. 

 

The timing and duration of smoke exposure was shown to significantly affect the 

chemical and sensory properties of resultant wines in Published Paper 2.  Published 

Paper 2 entitled Kennison, K.R., Wilkinson, K.L., Pollnitz, A.P., Williams, H.G. and 

Gibberd, M.R. (2009) Effect of timing and duration of grapevine exposure to smoke on 

the composition and sensory properties of wine. Australian Journal of Grape and Wine 

Research 15, 228-237 is the first known paper detailing the intentional application of 

smoke to field-grown grapevines between the grapevine growth periods of veraison to 

harvest.  This paper investigated the effect of both the timing and duration of smoke 

exposure on the chemical composition and sensory properties of wine.  Novel research 

methodology was designed and successfully implemented to apply smoke to field-grown 

grapevines.  The application of smoke to field-grown grapevines was found to influence 

the accumulation of volatile phenols and smoke aromas such as ‘burnt rubber’, ‘smoked 

meat’, ‘leather’ and ‘disinfectant’ in resultant wines.  These characteristics were found 

to accumulate in wines made from fruit of grapevines exposed to repeated smoke 

applications.  The peak period of vine sensitivity to smoke uptake was determined to be 

at 7 days post verasion. 

 

The concentration of key smoke marker compounds was found to increase throughout 

the fermentation process, an occurrence that signalled the potential for underestimation 
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of smoke taint in fruit and juice samples.  Published paper 3 entitled Kennison, K.R., 

Gibberd, M.R., Pollnitz, A.P. and Wilkinson, K.L. (2008) Smoke-derived taint in wine: 

the release of smoke-derived volatile phenols during fermentation of Merlot juice 

following grapevine exposure to smoke. Journal of Agricultural and Food Chemistry 56, 

7379-7383 investigated the evolution of smoke taint during the fermentation process.  

The concentration of smoke marker compounds guaiacol, 4-methylguaiacol, 

4-ethylguaiacol, 4-ethylphenol and eugenol were found in low or undetectable levels in 

free-run juice but increased throughout alcoholic and malolactic fermentation.  

Subsequent investigation demonstrated the smoke marker compounds could be released 

from free-run juice by strong acid (pH 1.0) and enzyme (ß-glucosidase) hydrolysis, but 

not by mild acid (pH 3.2 to 3.7) hydrolysis, suggesting the presence of precursor forms. 

 

A breakthrough in knowledge regarding the timing of smoke exposure on grape and 

wine production was gained in Published Paper 4 entitled Kennison, K.R., Wilkinson, 

K.L., Pollnitz, A.P., Williams, H.G. and Gibberd, M.R. (2011). The effect of smoke 

application to field-grown Merlot grapevines at key phenological growth stages on wine 

sensory and chemical properties. Australian Journal of Grape and Wine Research 17, 

S5-S12.  This paper examined grapevine sensitivity to smoke uptake throughout the 

growing season and identified 3 key periods of sensitivity to smoke uptake by vines and 

the subsequent development of smoke taint characteristics in wine.  Period 1 (from the 

growth stage of shoots at 10 cm to full bloom) showed low levels of smoke uptake and 

taint development in wine; Period 2 (from berries at pea size through to the onset of 

varaison) showed variable (low to medium) levels of smoke taint development in wine 

with Period 3 (from 7 days post veraison to harvest) being a heightened period of 

grapevine sensitivity to smoke exposure and the development of smoke taint in wine.  

Fruit yields were also found to be significantly reduced one season subsequent to 

repeated smoke exposures, however smoke taint was not detectable in wines made from 

fruit of the same vines harvested in the year following smoke exposure by either 

chemical or sensory analysis. 
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A subsequent chapter (unpublished paper) has been added to this thesis to build on the 

established information regarding the development of smoke taint in grapes and wine.  

This paper is titled Kennison, K.R., Williams, H.G. and Gibberd, M.R. (2011) The 

density and duration of smoke exposure to grapevines influences the development of 

smoke-like compounds, flavours and aromas in resultant wine (Paper submitted to the 

Australian Journal of Grape and Wine Research).  This study determined the minimum 

amount of smoke exposure to field-grown grapevines (5% obs/m for 20 min, 20 % 

obs/m for 10 min and 10 % obs for 20 min) required to create smoke taint in resultant 

wines.  This is the first paper to demonstrate that the density and duration of smoke 

exposure to grapevines affects the chemical composition and sensory properties of wine. 

 

 

1.2 RESEARCH AIMS 

The overall aims of this research were to: (i) characterise the effects of smoke exposure 

to grapevines on the development of smoke taint in grapes and wine; and (ii) to 

investigate the impact of timing, density, duration and assimilation of smoke 

components by grapevines.  The overall aims and objectives of this thesis are detailed in 

the thesis flow chart (Figure 1). 
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Figure 1. Flow chart of thesis hypotheses, published (and unpublished) papers and 

direct research outcomes. 

 

 

The aims and objectives of this study involved the: 

• Determination of the effect of smoke exposure to grape bunches on the chemical 

composition and sensory properties of wine; 

• Investigation of the effect of smoke applied to grapevines at various key 

phenological stages of grapevine growth and development; 

• Evaluation of seasonal and yearly effects of smoke exposure on grapevine growth, 

function and development; 
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• Identification of specific volatile organic compounds in smoke that contribute smoke 

taint sensory characteristics in grapes and wine; 

• Determination of the effect of variation in smoke concentration and exposure 

duration on the development of smoke taint in wine; 

• Investigation of the effect of fermentation on the development of smoke taint in 

wine; 

• Wine sensory analysis to determine the sensory smoke taint effect on wine made 

from fruit harvested from grapevines exposed to smoke at key phenological stages of 

growth and development and with a range of smoke concentrations and durations. 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 COMPOSITION OF SMOKE 

Smoke contains a multitude of substances that can vary in structure and concentration 

depending on the origin and composition of the smoke source.  Aerosol smoke 

physically consists of vapour, an aerosol mixture of liquid, gas and solid phases (Simon 

et al. 2005).  Smoke vapour is comprised of inorganic gases such as carbon monoxide, 

nitrogen dioxide and ozone, as well as volatile and semi-volatile organic compounds 

(Lee et al. 2005, McKenzie et al. 1994).  Particulate matter (PM2.5 and PM10), polycyclic 

aromatic hydrocarbons (PAHs), benzene and aldehydes found to be detrimental to 

human health are also present in smoke (Austin et al. 2001, Naeher et al. 2007). The 

emission of these substances in smoke from fires is highly variable.  Research has shown 

volatile organic compounds, particulate matter and CO to be present in a wide range of 

concentrations in smoke from prescribed fires (De Vos et al. 2009).  Furthermore, 

pyrolytic conditions (including combustion temperature, oxygen availability and fuel 

moisture content) have been shown to influence the composition of smoke (Baltes et al. 

1981, Maga 1988a, Simoneit et al. 1993). 

 

Fuel composition also has an influence on the concentration of smoke components.  The 

variety and composition of fuel as the source for smoke generation is dependent on the 

plant species and the environment.  The chemical composition of wood can not be 

defined precisely for a plant species due to variation in plant components (root, stem, 

branch, leaves, bark), type of wood (normal, compression, tension) and growing 

conditions (Pettersen 1984).  However, wood produced from vegetative biomass, such as 

forested environments, is predominantly comprised of lignin (18-35%), cellulose (40-

45%) and hemicellulose (20-35%) (Maga 1989).  Other minor compound classes can 

also be present in wood; for example volatile oils, terpenes (0 to 5%), aliphatic fatty 

acids (0 to 5%), proteins and phenolic compounds (Maga 1988b).  The composition and 

concentration of such compounds varies depending on fuel type and composition. 
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Previous studies have investigated the concentrations of smoke-derived volatile 

compounds emitted during the pyrolysis of major wood components such as cellulose, 

hemicellulose and lignin (Mohan et al. 2006).  These studies have shown the wood 

component of lignin, and to a lesser extent, polysaccharides to be of interest in the 

emissivity of major volatile components during pyrolysis (McKenzie et al. 1994, 

Wittkowski et al. 1992).  The pyrolysis products of lignin included phenols and phenol 

derivatives such as guaiacol, 4-methylguaiacol, 4-ethylguaiacol and syringol (Edye and 

Richards 1991). 

 

 

2.2 EFFECT OF SMOKE COMPOUNDS ON GRAPES AND WINES 

Smoke has been used for centuries to impart pleasing organoleptic properties to food and 

for food preservation (Holley and Patel 2005).  Food processing technology has 

advanced to not only include smoking of foods but also the manufacture of smoke 

flavourings (both in the aqueous phase and as tar residues) that can be added to foods to 

impart smoke-like sensory and anti-microbial attributes (Bortolomeazzi et al. 2007, 

Kostyra and Barylko-Pikielna 2006).  Numerous studies have investigated the 

composition of smoke and liquid smoke flavourings in order to identify the compounds 

responsible for the smoke-like sensory characteristics.  These studies have found smoke 

and smoke flavourings to be comprised of key volatile compounds including phenols, 

lactones, pyrazines, furans, pyrans, acids and carbonyls (Guillén et al. 1995, Guillén and 

Ibargoitia 1998, Maga 1988a, Wittkowski et al. 1990, Wittkowski et al. 1992).  Of these 

volatiles the key smoke compounds of interest are guaiacol and 4-methylguaiacol 

(Baltes at al. 1981, Wittkowski et al. 1992).  Guaiacol is known to exhibit ‘smoky’, 

‘phenolic’ and ‘chemical’ aromas (Boidron et al. 1988, Eisele and Semon 2005) and 4-

methylguaiacol is reported to have ‘toasted’ and ‘ash’ aromas (Boidron et al. 1988). 

 

Guaiacol and 4-methylguaiacol are often detectable in wines that are fermented or 

matured in toasted oak barrels (Boidron et al. 1988, Maga 1989, Swan 2004).  Such 

compounds are released from barrels during the toasting process and extracted into wine 

during fermentation and/or storage (Maga 1989).  Guaiacol has been detected in wine at 
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concentrations from 0 to 100 µg/L (Pollnitz et al. 2000), with an aroma detection 

threshold of 20 µg/L in white wine (Simpson et al. 1986) and 75 µg/L in red wine 

(Boidron et al. 1988).  Whilst 4-methylguaiacol has been detected in wines at lower 

concentrations, being 0 to 20 µg/L (Pollnitz 2000), with an aroma detection threshold of 

65 µg/L in white and red wine (Boidron et al. 1988). 

 

In smoke tainted wine, guaiacol and 4-methylguaiacol have been identified as the most 

important volatile phenol compounds contributing to the sensory smoke taint (Høj et al. 

2003, Sheppard et al. 2009).  Sensory analysis of smoke tainted wine has identified 

‘smoky’, ‘burnt’, ‘earthy’, ‘ashtray’, ‘dirty’ and general ‘smoked meat/food’ aromas and 

flavours (Høj et al. 2003, Whiting and Krstic 2007).  In studies undertaken in British 

Columbia, Sheppard et al. (2009) purposefully applied smoke to grapevines and 

measured guaiacol and 4-methylguaiacol in grapes as key analytes of interest for the 

detection of smoke taint.  Guaiacol and 4-methylguaiacol were detected at elevated 

concentrations in grapes exposed to smoke (average 10.4 µg/kg and 2 µg/kg 

respectively) in comparison to control grapes (average 1.2 and 0.7 µg/kg respectively) 

(Sheppard et al. 2009).  Guaiacol and 4-methylguaiacol were positively correlated and 

elevated concentrations of these compounds, ranging from 2 to 26 µg/L, were detected 

in the more mature grapes (Sheppard et al. 2009).  The sensory characteristics of smoke 

tainted fruit were not evaluated and wines were not made in this study however authors 

speculated that the guaiacol concentrations were high enough to warrant sensory 

detection in final wines. 

 

Studies investigating the effect of smoke on grapes and wine have been limited in 

number and involved grape analysis only.  Sheppard et al. (2009) stated that the 

observed concentrations of guaiacol (average 10.4 µg/kg) and 4-methylguaiacol 

(average 2 µg/kg) in smoke tainted grapes would result in subsequent wines being 

impacted by smoke taint (Sheppard et al. 2009) however as wine was not produced from 

grapes in this study with the true chemical and sensory smoke taint effects unknown. 
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Besides guaiacol and 4-methylguaicol, other compounds are known to be present in 

smoke and to exhibit aromas that could be considered smoke-like and therefore 

contribute to smoke taint in wine.  4-Ethylguaiacol has been described as having a 

‘smoky’, ‘spicy’ and ‘toasted bread’ aroma and 4-ethylphenol a ‘horsy’, ‘stable’ and 

‘phenolic’ aroma (Boidron et al. 1988, López et al. 1999).  Other research has attributed 

the smoky aroma of some wines to other compounds, such as benzenemethanethiol, 

although these wines were not thought to be smoke tainted (Tominaga et al. 2003).  

Smoke and smoke flavouring contain numerous compounds (Guillén et al. 1995, Guillén 

and Ibargoitia 1998, Maga 1988a, Wittkowski et al. 1990, Wittkowski et al. 1992) that 

could potentially contribute to the smoke taint in wine.  Presently, guaiacol and 

4-methylguaiacol are measured as analytes of interest in grapes and wine as putative 

markers for the presence of smoke taint to the isolation of numerous other compounds.  

Researchers are endeavouring to discover additional compounds and their precursors 

detectable in both smoke exposed grapevine organs and smoke tainted wine that may 

contribute to the smoke taint (Dungey et al. 2011, Hayasaka et al. 2010b, 2010c).  

Guaiacol and 4-methylguaiacol are currently the most effective indicators of smoke taint 

in wine although the full implication and extent of the level of smoke taint in wine is 

unlikely to be provided by volatile phenol analysis alone. 

 

A number of winemaking and amelioration techniques to reduce negative smoke taint 

characteristics in wine have been trialled.  Ristic et al. (2011) demonstrated reduced skin 

contact time during fermentation could reduce smoke taint in wine.  This resulted in 

decreased ‘smoke’ aromas and flavours, whilst ‘fruit’ aromas and flavour were 

concurrently enhanced.  Interestingly, smoke taint characteristics in wine could be 

further reduced by the addition of oak chips or tannin during the fermentation process 

(Ristic et al. 2011).  Limited techniques are available for the amelioration of smoke taint 

in wine.  Fudge et al. (2011) investigated the use of solid phase adsorption treatment and 

reverse osmosis to reduce guaiacol and smoke-like aroma and flavour characteristics in 

wine.  These techniques were found to be successful immediately post amelioration 

treatment, however the smoke taint was found to slowly return with aging. 
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2.3 SMOKE EFFECTS ON PLANTS 

Studies have investigated the effect of pollution, including chemical and tobacco smoke, 

on plants (Schaeffer et al. 1987) however information does not exist as to the effect of 

smoke on fruit, grapes and grapevines.  As previously discussed, smoke contains a 

multitude of components including, but not limited to, carbon monoxide, nitrogen 

oxides, carbon dioxide, ozone, sulphur oxides and particulate matter (Goode et al. 1999, 

Radojevic 2003).  Many of these smoke components are known to damage plant 

biochemical processes; for instance ozone has been reported to reduce plant growth; 

sulfur dioxide can damage plant surfaces resulting in necrotic lesions (Schempp et al. 

2005); nitrogen (as NO, NH3 and NO2) has been discovered to affect both cellular and 

whole-plant metabolism (Stulen et al. 1998); and elevated CO2 has led to the increase of 

total biomass production including the increase in yield of fruit bearing plants and 

grapevines (Bindi et al. 2001).  Also, heavy smoke exposure with a high concentration 

of particulate matter can affect the amount of photosynthetically active radiation 

available to the plant (Yamascoe et al. 2006). 

 

Smoke has been used successfully to enhance the germination response of seeds from 

numerous plant species (Brown and van Staden 1997).  As such, smoke acts as a 

germination cue, indicating that conditions are favourable for germination and plant 

production (Brown and van Staden 1997).  The mechanism of action of smoke on seeds 

has been investigated, concentrating on smoke temperature effects (Tieu et al. 2001), 

aqueous smoke extracts of smoke dissolved in water (Baxter et al. 1994) and desiccating 

effects (Brown and van Staden 1997).  A compound in smoke that promotes the 

germination of fire dependent species was identified as butenolide 3-methyl-2H-

furo[2,3-c]pyran-2-one (Flematti et al. 2004).  Recently, Flematti et al. (2009) have 

discovered 5 additional germination promoting compounds that are all analogues of the 

butenolide compound. 

 

Few studies have investigated the direct effect of smoke on plants.  Davies and Unam 

(1999) showed the photosynthetic rates of some tree species (including Dryobalanops 
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rappa, Durio zibethinus and Gonystylus bancanus) to be reduced subsequent to 

prolonged exposure to smoke produced from Indonesian forest fires.  Gilbert and Ripley 

(2002) investigated the effect of smoke exposure on Chrysanthemoides monilifera and 

discovered a 1 min smoke exposure to reduce stomatal conductance, intercellular CO2 

concentration and CO2 assimilation rate for 5 hours post-smoke exposure.  Calder et al. 

(2010) applied smoke to 3 deciduous angiosperms and 3 evergreen conifers for 20 min 

and found, for the majority of species, more than a 50% reduction in photosynthetic 

capacity. 

 

 

2.4 SMOKE EFFECTS ON THE GRAPEVINE 

Documented research that investigates the occurrence of smoke exposure to grapevines, 

the effects of this smoke exposure on the function of the grapevine and subsequent 

development of taint in grapes and wine is limited.  Initial investigations into the nature 

and amelioration of smoke taint in grapes and wine were conducted by The Australian 

Wine Research Institute (Høj et al. 2003) subsequent to a significant bushfire event in 

south-eastern Australia.  This study predominantly concentrated on the taint 

characteristics that smoke had created in the grape berries, grape juice and wine with 

little understanding of the impact of smoke on the grapevine.  Høj et al. (2003) 

investigated the location of smoke taint within the grape berries and discovered the 

smoke-derived compounds guaiacol and 4-methylguaiacol to be detected in the skins of 

berries and not in grape berry pulp.  It is unknown how the smoke taint compounds came 

to reside within the skin of the berry, although Hayasaka et al. (2010a) reported guaiacol 

glycoconjugates to be translocated between grapevine leaves and berries to a limited 

extent. 

 

The effect of smoke timing, duration and density to field-grown grapevines is currently 

unknown which has industrial implications for management of the issue.  The grapevine 

phenological growth stages, when smoke exposure is detrimental to fruit quality, and the 

effects of smoke duration and density have a direct effect on wine grape management 

and wine production.  For instance, knowledge of the effect of smoke exposure to key 
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phenological growth stages would determine when a risk of smoke taint existed.  With 

knowledge of this risk, wine producers would therefore be able to adjust harvesting and 

winemaking techniques to minimise the smoke taint.  Information is not available on the 

effect of timing of smoke exposure to grapevines in the literature.  This could result in 

prescribed fires adjacent to vineyards scheduled for ignition at times which could 

conflict with wine production. 

 

The grapevine (Vitis vinifera) is a deciduous perennial plant that has a bi-annual growth 

cycle comprising phenological growth stages that include bud-burst, fruit initiation, fruit 

development, harvest and dormancy.  Each phenological stage is unique and has been 

characterised by an identification system referred to as the Modified Eichhorn-Lorenz 

System (E-L system) (Coombe 1995).  The E-L system is an important tool for 

classification of the grapevine stage of production and is applicable to commercial 

viticulture regardless of grapevine variety, clone, production system and region.  The 

smoke taint study by Høj et al. (2003) did not convey the stage of grapevine 

development at which smoke exposure occurred.  Sheppard et al. (2009) applied smoke 

to grapevines at preveraison, postveraison and maturity but unfortunately did not use the 

E-L system instead recording the number of days post flowering to indicate their smoke 

exposure timing.  Sheppard et al. (2009) numbering system is unable to be applied to 

other grape producing regions as the number of days for grapevine production can differ 

depending on the environmental and seasonal conditions (Coombe 1988).  Sheppard et 

al. (2009) found the concentration of guaiacol and 4-methylguaiacol to increase as the 

grapes matured, with concentrations generally higher in mature grapes.  However, the 

timing and number of smoke exposures were not described and it is therefore difficult to 

correspond these timings to an exact stage of vine development.  Furthermore, the 

Sheppard et al. (2009) study is inconclusive as it details the effects of smoke exposure to 

grapes only, ignoring the chemical and sensory effects on the wine product.  It is 

therefore unknown as to which phenological stages of grapevine growth and 

development are susceptible to smoke uptake and taint development in wine. 
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Effects of smoke composition on taint development in grapes are unknown.  Research 

documenting the implications of smoke exposure conditions on the development of 

smoke taint is lacking.  Sheppard et al. (2009) applied smoke to grapevines generated 

from the pyrolysis of 500 g of Ponderosa pine which produced smoke for approximately 

1 hour.  Whilst the fuel weight is known for this study, the exact density and duration of 

smoke exposure to the grapevine is unknown.  As previously described, smoke is a 

complex substance that is influenced by combustion conditions.  Smoke density, 

duration, temperature and humidity have been found to influence the chemical 

composition and sensory properties of smoked foods (Tóth and Potthast 1984, Boyle and 

Schmidt 1999, Ogbadu 2000) however studies have concentrated on the antimicrobial 

effect of smoke rather than the sensory effect (Fellows 2009).  The effect of smoke 

duration and density on the development of smoke taint in wine is therefore unknown. 

 

Recent studies have alluded to the mechanism of metabolism of guaiacol within the 

grapevine.  Hayasaka et al. (2010c) found guaiacol to be accumulated in glycosylated 

forms, i.e. as ß-D-glucopyranoside and was discovered in grape juice samples prepared 

from grapes exposed to smoke.  It was furthermore discovered that additional volatile 

phenols discovered in bushfire smoke, such as phenol, p-, m- and o-cresols, 

4-methylguaiacol, syringol and 4-methylsyringol, could also be detected in 

glyconconjugate forms in juice of grapes exposed to smoke (Dungey et al. 2011, 

Hayasaka et al. 2010b).  These discoveries endeavour to provide a more accurate 

estimation of the development of volatile phenols during winemaking and storage, and 

may be used as a predictive tool to determining the level of smoke taint in grapes though 

this has yet to be confirmed by wine sensory analysis. 

 

Of the few studies that investigate the effect of smoke on grapes and wine, the majority 

of these studies have been conducted subsequent to fire events with limited 

understanding of the smoke conditions that actually existed at such fire events.  That is, 

research has been conducted following fire and smoke events that have occurred in 

proximity to vineyards and has investigated the chemical and sensory smoke taint effects 

that have resulted from the smoke exposure to grapevines (Høj et al. 2003, Whiting and 
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Krstic 2007).  However, the research has been unable to quantitatively determine the 

smoke and grapevine conditions at the timing of smoke exposure.  Aspects such as the 

smoke density and duration are unknown, the grapevine phenological timing of smoke 

application is unknown and it is even difficult to ascertain whether grapes were actually 

sampled from grapevines exposed to smoke.  These studies have additionally made 

comparisons of smoke taint between varieties without considering the experimentation 

variance of grapevine phenological stage or the quantification of smoke exposure 

(Whiting and Krstic 2007).  As such, the investigations are limited in their application to 

the understanding of the effects of smoke exposure to grapevines. 

 

 

CHAPTER 3 RESEARCH DESIGN 

The research design for each experiment has been well documented in the attached 

papers.  However, additional information detailing specific aspects of the overall 

research design is presented below. 

 

3.1 SMOKE APPLICATION METHODOLOGY 

Initial smoke treatments, for the application of smoke to grape bunches post-harvest, 

were performed in a purpose built smoke facility located at Kings Park and Botanic 

Gardens (Perth, Western Australia).  This facility was purposely designed for smoke 

application to native seeds and as such comprised a small metal ‘smoke house’ structure 

(3 m L x 3 m H x 3m W) containing racks for the purpose of holding seed trays.  This 

facility was similar to that described by Dixon et al. (1995), with smoke produced within 

a metal drum (50 L) located adjacent to the facility.  Smoke was generated by the 

combustion of dry fuel and forced, by air, through metal pipes into the smoke house. 

 

For the purpose of applying smoke to potted grapevines and field-grown grapevines the 

research included the development of a smoke application apparatus.  This apparatus 

was developed utilising two major components including (a) a smoke generator and (b) a 

tent structure.  The smoke generator comprised a galvanised metal drum (50 L) and was 
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based on the model described by Dixon et al. (1995).  The smoke generator had an inlet 

pipe for air induction and an outlet pipe for smoke expiration.  The drum was lidded 

(galvanised metal) to contain fuel, fire and smoke and mounted on a steel trolley 

structure for easy manoeuvrability.  A remote control variable speed air pump (12 volt) 

was used to control the amount of air intake, and therefore smoke output from the drum. 

 

The tent structure, used to enclose grape bunches, potted grapevines and field-grown 

grapevines during the smoke application only was constructed from a galvanised metal 

frame.  The size of the frame varied depending whether the research was for smoke 

application to field-grown grapevines (6 m L x 2.5 m H x 2 m W) or to potted vines (0.8 

m L x 0.9 m H x 1.5 m W).  Frames were covered with a greenhouse grade Solarweave 

plastic (Gale Pacific, Australia) which enabled the containment of smoke and diffusion 

of sunlight for plant photosynthesis without causing high temperatures.  Control 

(unsmoked) grapevines were similarly enclosed within tents that were considered to be 

clean and free of smoke, i.e. had not been previously used for smoke treatments.  Each 

tent contained 2 fans to circulate air and smoke around the vines.  A generator was 

employed as a power source to run the air pump and tent fans.  Smoke was applied 

during the morning prior to high temperatures. 

 

In this study, the fuel used for the production of smoke was kept consistent throughout 

all smoke experimentation.  The pyrolysis of fuel can generate a multitude of 

compounds which is influenced by the fuel species (Maga 1988b).  Previous studies 

investigating the effect of smoke on the germination of native seeds utilised a variety of 

fuels for smoke production.  Many South African studies of smoke and seed germination 

have utilised smoke produced from native grasses (Baxter et al. 1994, Brown and van 

Staden 1997, Sparg et al. 2005).  Groundbreaking smoke studies conducted in Western 

Australia that identified compounds in smoke responsible for the germination of native 

seeds, utilised a basic cellulose and lignin composition fuel including filter paper 

(Flematti et al. 2004) and straw (Stevens et al. 2007, Flematti et al. 2009) for the 

production of smoke and smoke water.  For the purpose of our experiment, the choice of 

fuel was based on these previous studies and considered the requirement for the fuel to 
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be an economical, readily available source.  For this purpose dry barley straw was 

selected as a model fuel.  The straw was obtained at the commencement of the project 

and stored, under dry conditions, for utilisation throughout the duration of the project. 

 

Determining the consistency of smoke in all smoke applications was an important aspect 

of this research.  Many tools are available for the measurement of smoke with varying 

capabilities and reliabilities (Chow et al. 2008).  Typically, these tools include 

instruments that measure particle concentration and size, carbon concentration, gas 

emissions (CO2, CO, NOx, SO4) and chemical compounds (Chow 1995).  In this study, 

laser photometry was initially employed for the measurement of smoke particulate 

matter.  A DustTrack laser photometer (TSI Model 8520, TSI Inc., St. Paul, Minnesota, 

USA) that measured particulate matter (PM10 ≤ 10 µm in diameter) was employed in 

early experimentation.  This equipment was reliable to measure the reproducibility of 

smoke however did not contain sufficient filters to protect the equipment from smoke 

damage after repeated use.  Further investigation identified more reliable and 

sophisticated smoke detection equipment, i.e. a nephelometer (Adam et al. 2004).  The 

nephelometer employed in this study (VESDA Laser FOCUSTM VLF-250, Victoria, 

Australia) was portable and able to measure smoke density and duration within smoke 

tents.  Smoke density was recorded as the percentage of visual obscuration over a 

distance of one meter and recorded in measurements of % obs/m.   

 

3.1.2 Smoke treatments on field-grown grapevines 

Due to the lack of information on smoke exposure to grapevines and the development of 

smoke taint in wine, the concentration and duration of smoke exposure required to effect 

smoke taint in wine was unknown.  The duration of smoke application to grape bunches 

in the purpose-built smoke house relied on previous smoke experiments involving 

smoke application to native seeds using the same facility (Tieu et al. 2001) that resulted 

in the smoke application for 1 hr.  This smoke application was found to be successful in 

our experiments in creating smoke taint in wine however the concentration of the smoke 

taint was considered to be high.  Subsequent to smoke application to grape bunches in 

the purpose built smokehouse, applications of smoke to field-grown grapevines were 
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initiated.  Due to the high smoke levels experience from the smoke-bunch experiment, 

the smoke application to field grown grapevines was reduced to 30 min and maintained 

at a high smoke exposure of 30% obs/m.  The 30 % obs/m smoke exposure for 30 min 

was found to be effective in creating smoke taint in wine and was therefore maintained 

for field studies. 

 

Smoke application to field-grown grapevines investigated the effect of the timing of 

smoke application, throughout the grapevine growth season, on the development of 

smoke taint in wine.  Smoke was applied to Vitis vinifera cv. Merlot grapevines once at 

key Eichhorn-Lorenz (E-L) growth stages (Coombe 1995) from shoots at 10 cm (E-L 

12), full bloom (E-L 23), berries pea size (E-L 31), bunch closure (E-L 32), onset of 

veraison (E-L 35), veraison + 3 days (E-L 35 + 3 d), veraison + 7 days (E-L 35 + 7 d), 

veraison + 10 days (E-L 35 + 10 d), berries at intermediate sugar content (E-L 36), 

berries at intermediate sugar content + 3 days (E-L 36 + 3 d), berries not quite ripe (E-L 

37) and harvest (E-L 38).  This research was conducted over 3 seasons to account for 

climate variation and to test smoke exposure at all key grapevine growth stages.  In 

order to test the effect of repeated smoke applications, 8 smoke applications were also 

applied to Merlot grapevines (at an average of 3 day intervals) from veraison to harvest. 

 

As only one smoke density and duration (30% obs/m for 30 min) had been trialled, this 

study was continued to investigate the effect of lower smoke densities over a range of 

durations.  Smoke was applied to field-grown grapevines at high densities (5, 10 and 

20% obs/m) for short durations 5, 10 and 20 min then for one low density (2.5% obs/m) 

for longer durations (10, 20, 40 and 80 min). 

 

 

3.2 DETECTION OF SMOKE TAINT IN WINE 

Of importance to identifying any issue of taint in grapes and wine is the ability to be able 

to quantify the presence and intensity of the taint.  As the phenomenon of smoke taint in 

wine is a recent occurrence, the measurement of smoke taint has been limited to the 

analysis of key marker compounds.  Two compounds, guaiacol and 4-methylguaiacol, 
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were identified as key compounds responsible for the smoke taint in wine (Høj et al. 

2003).  Guaiacol and 4-methylguaiacol are present in smoke (Baltes at al. 1981, 

Wittkowski et al. 1992), are known to contribute to the smoke aromas and flavours in 

wine and to contribute ‘smoky’, ‘phenolic’, ‘chemical’ toasted’ and ‘ash’ aromas and 

flavours (Boidron et al. 1988, Eisele and Semon 2005).  However, smoke contains 

numerous additional compounds identified as being smoke-like in aroma and flavour 

(Boidron et al. 1988, López et al. 1999) that could therefore also contribute to smoke 

taint in wine.  Researchers are currently endeavouring to elucidate these compounds and 

to discover additional compounds that contribute to smoke taint (Dungey et al. 2011, 

Hayasaka et al. 2010b).  Guaiacol and 4-methylguaiacol are effective indicators of 

smoke taint in wine although are limited in their ability to quantify the entire intensity of 

the taint.  Therefore, in order to fully quantify the intensity of smoke taint in wine, this 

research has employed both chemical and sensory analysis techniques. 

 

3.2.1 Chemical analysis 

In order to quantitatively measure guaiacol and 4-methylguaicol in grapes and wine, gas 

chromatography-mass spectrometry (GC-MS) analysis has routinely been employed 

throughout this research.  In all research, quantitative analysis was performed by the 

Australian Wine Research Institute’s Analytical Services Laboratory (Adelaide, 

Australia).  Analysis was conducted using an Agilent 6890N gas chromatograph coupled 

to a 5975 inert source mass spectrometer.  The key compounds of interest for analysis in 

this study were guaiacol and 4-methylguaiacol however analysis of additional 

compounds, including 4-ethylguaiacol, 4-ethylphenol, eugenol and furfural, were 

conducted to determine their relative contributions.  Analysis was conducted using 

stable isotope dilution assay methods reported previously (Pollnitz 2000, Pollnitz et al. 

2000, Pollnitz et al. 2004). 

 

3.2.2 Organoleptic perceptions of smoke taint in wine 

Wine sensory analysis techniques were employed throughout this study to describe and 

quantify the effects of smoke taint in wine.  A combination of sensory methods were 
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utilised depending on the research objective.  Sensory analysis techniques included 

threshold determination, quantitative descriptive analysis and difference tests (Meilgaard 

et al. 2007, Lawless and Heymann 1998a and 1998b). 

 

3.2.2.1 Threshold determination 

Of initial interest in this study was the determination of the aroma detection threshold of 

smoke taint in wine.  Aroma detection threshold testing was utilised to establish the 

minimum amount of smoke taint aroma that could be detectable in wine by regular wine 

consumers.  For each wine tested, the aroma detection threshold was represented as the 

concentration of guaiacol and 4-methylguaiacol in wine that corresponded to the smoke 

taint character.  The aroma detection threshold was determined as per the American 

Society for Testing and Materials (ASTM) method 679E.  This method employed 33 

regular wine consumers, aged between 18 and 55 years with similar numbers of males 

and females.  The wines were presented in ascending order of concentration i.e. as 

dilutions of smoked wines in control wine (0.11, 0.33, 1.0, 3.0, 9.0, 27.0 and 81.0 ml).  

The wines were presented as part of a triangle test where consumers were asked to detect 

the sample that was different. 

 

Threshold determination testing was effective to determine the concentration of smoke 

taint in wine yet throughout this study it was revealed that additional compounds, other 

than guaiacol and 4-methylguaiacol, were likely to be responsible for the taint.  Utilising 

the aroma detection threshold method was useful in studies of a single compound 

however a multitude of compounds results in difficulty gaining a true result (Lawless 

and Heymann 1998a).  With smoke taint, this is further compounded by the lack of 

understanding of the precise compounds in smoke, and therefore smoke tainted wine, 

contributing to the taint.  Additional sensory techniques, such as quantitative descriptive 

analysis, were therefore employed to gain a greater understanding of the extent of smoke 

taint in wine. 
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3.2.2.2 Quantitative descriptive analysis 

It was furthermore imperative in this study to employ effective methods of wine sensory 

analysis that would identify and quantify the intensity of smoke taint.  A wine sensory 

evaluation technique known as Quantitative Descriptive Analysis (QDA) was employed 

(Meilgaard et al. 2007, Lawless and Heymann 1998b).  QDA is a process that involves a 

small number of participants that generate the language of product attributes to be tested 

and are trained to rank the intensity of such attributes (Stone and Siddell 2004).  In this 

study, QDA was conducted on two occasions with panels of up to 11 educated wine 

consumers aged between 21 and 50 years.  Panellists were selected based on a number 

of criteria including their availability, interest, experience (i.e. at least 100 hours of wine 

education), non-smokers, regular wine consumers, in good health and able to detect the 

aroma of smoke at a pre-determined threshold.  The panellists were trained during 8 

training sessions, 2 per week, in preparation for the formal QDA.  Wines were assessed 

for intensity of aroma and flavour attributes.  During these training sessions, the 

panellists isolated and agreed on descriptive terms to be used in the formal QDA.  

Panellists were further trained to rank the presence and intensity of the descriptive terms 

on an unstructured 100 point line scale.  During formal QDA each panellist received 20 

mL of wine in 3 digit coded ISO standard wine tasting glasses.  All glasses were lidded 

to avoid contamination of other wines and the tasting environment.  No one panellist 

received the same sample at the same time as the wine presentation was randomised, 

with the coding system being unique to each individual panellist.  No more than 6 wine 

samples were evaluated at any one time with panellists leaving the tasting area to an 

external environment for 10 min between each sample to avoid sensory fatigue. 

 

3.2.2.3 Difference test 

Additional wine sensory methods were undertaken to provide a greater understanding of 

the effect of smoke density and duration on wine.   For this purpose, difference testing 

was employed utilising regular wine consumers (Meilgaard et al. 2007) as per the 

Australian Standard 2542.2.2 (2005).  Due to the low level of smoke exposure to vines 

in this study, the difference test included tasting of wines.  Panellists were pre-screened 
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to ensure they were regular wine consumers, of good health, non-smokers, interested in 

wine tasting, available and over the age of 21 years.  Each wine was tested a total of 30 

times with a total of 130 panellists utilised in this study.  During the difference test 

panellists were presented with 3 wines in a randomised block design of smoke (A) and 

control (B) wines in a balanced reference (ABB, ABA, AAB, BAA, BAB, BBA).  Any 

one panellist did not receive the same wine sample at the same time.  Panellists were 

required to smell and taste the wines, indicate the sample that was different and to 

describe why they thought the sample was different. 
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Although smoke exposure has been associated with the development of smoke taint in grapes and 

subsequently in wine, to date there have been no studies that have demonstrated a direct link. In 

this study, postharvest smoke exposure of grapes was utilized to demonstrate that smoke significantly 

influences the chemical composition and sensory characteristics of wine and causes an apparent 

‘smoke taint’. Verdelho grapes were exposed to straw-derived smoke for 1 h and then fermented 

according to two different winemaking treatments. Control wines were made by fermenting unsmoked 

grapes. Sensory studies established a perceivable difference between smoked and unsmoked wines; 

smoked wines were described as exhibiting ‘smoky’, ‘dirty’, ‘earthy’, ‘burnt’ and ‘smoked meat’ 

characters. Quantitative analysis, by means of gas chromatography–mass spectrometry, identified 

guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-ethylphenol, eugenol, and furfural in each of the wines 

made from smoked grapes. However, these compounds were not detected in the unsmoked wines, 

and their origin is therefore attributed to the application of smoke. Increased ethanol concentrations 

and browning were also observed in wines made from grapes exposed to smoke. 

 

KEYWORDS:  Gas chromatography–mass spectrometry; grapes; guaiacol; smoke; taint; Vitis vinifera; wine 

 

INTRODUCTION 
 

Taint in grapes and wine as a consequence of grapevine 

exposure to smoke has resulted in a decline in product quality 
and significant financial losses for wine producers throughout 

the world. To date, the effects of smoke on either grapevine 

physiology or the organoleptic properties of grapes and wine 

have not been reported in the literature. However, some 
preliminary investigations have been carried out by the Aus- 

tralian Wine Research Institute (1). The role of smoke in 

stimulating the germination of dormant seeds of some native 

plant species has been well documented (for example refs 2-4), 

and the effect of smoke on the photosynthetic gas exchange of 

Chrysanthemoides monilifera has been reported (5), but largely, 
research relating the effect of smoke on plant physiology and 

on the composition of fruit and fruit-derived products is limited. 
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Smoke and liquid smoke flavoring preparations have long 
been employed by the food industry to enhance the aroma, 

flavor, and color characteristics of foodstuffs, in particular, meat, 
fish, and cheese (6–8). Consequently, considerable research has 

been undertaken to establish the chemical composition of such 

preparations. Smoke is generated during the pyrolysis (combus- 
tion) of wood, with the composition dependent upon the fuel 

composition, particle size, moisture content, combustion tem- 
perature, and availability of oxygen (9, 10). Wood is primarily 

composed of cellulose, hemicellulose, and lignin, contributing 
40-45%, 20-35%, and 18-35% of total dry weight, respec- 

tively (11). During the pyrolytic process, thermal degradation 
of wood components generates a complex mix of volatile 

organic compounds. Numerous volatile compounds have been 
reported in smoke, smoke flavoring preparations, and smoked 

food products, including phenol derivatives, carbonyls, organic 
acids and their esters, lactones, pyrazines, and furan and pyran 

derivatives (6, 10, 12, 13). Of these, smoke aroma has primarily 
been attributed to the phenol derivatives (7, 10); in particular, 

guaiacol (2-methoxyphenol) and 4-methylguaiacol, which exhibit 

‘smoky’, ‘phenolish’, ‘burning wood’, ‘ash’, ‘sharp’, ‘sweet’, 
‘burnt’ and ‘smoked bacon’ aroma characters (7, 14, 15). 

Guaiacol and 4-methylguaiacol are routinely identified in 

wines matured in oak barrels, at concentrations between 10 and 
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Table 1. Aroma Detection Thresholds for Guaiacol and 4-Methylguaiacol 
in Water, Model Wine, White Wine, and Red Winea

 

 

aroma detection threshold (µg/L) in 

water model wine white wine red wine 
 

guaiacol 5.5 20 95 75 
4-methylguaiacol 10 30 65 65 

 

a Reference 15. 

 

100  µg/L  for  guaiacol  and  between  1  and  20  µg/L  for 
4-methylguaiacol (16), both of which are derived from lignin 

degradation (7) during the toasting process of cooperage. The 
aroma detection thresholds of guaiacol and 4-methylguaiacol 
in water and wine are given in Table 1 (15). 

The contribution of oak-derived guaiacol to wine aroma has 

been  previously  reported.  In  an  oak-aged  Chardonnay,  the 
concentration of guaiacol has been shown to positively correlate 
to the perceived intensity of the smoky aroma (17), whereas 
Rapp and Versini (18) found guaiacol to have a negative effect 
on wine aroma at concentrations exceeding 80 µg/L. Simpson 

et al. (19) found guaiacol to be responsible for an off-flavor in 
wine;  the  taint,  originating  from  contaminated  corks,  was 
attributed to guaiacol levels ranging from 0.07 to 2.63 mg/L; a 
detection threshold of 20 µg/L was also reported in this study. 

It is therefore conceivable that guaiacol and other phenol 

derivatives could accumulate in grapes as a result of smoke 
exposure, and at elevated concentrations, they could lead to an 
apparent taint. This study was undertaken to test this hypothesis 
and to demonstrate that smoke exposure of grapes can influence 

the chemical composition and sensory characteristics of wine. 

 

MATERIALS AND METHODS 
 

Smoke Treatment. Smoke treatments were performed in a purpose- 
built smoke house (3 × 3 × 3 m) located at the Kings Park and Botanic 
Gardens (Perth, Western Australia), similar to that described by Dixon 
et al. (20). Whole bunches of grapes were placed on wire racks within 
the smoke house and exposed to smoke generated by the combustion 
of dry straw in a metal drum (50 L), for one hour at ambient temperature 

(25 °C). Following smoke exposure, bunches were randomly mixed to 
reduce variation in smoke exposure. 

Winemaking. Verdelho grapes (350 kg) were harvested when the 

total soluble solids (TSS) of the grapes reached 24 ( 0.5 °Brix, and a 
portion (130 kg) of the fruit was separated and exposed to smoke, as 
described above. The fruit was divided into parcels (approximately 60 
kg each), two smoked fruit parcels and two unsmoked fruit parcels. 
Each fruit parcel was (separately) stored overnight in cool rooms (5 

°C) and allowed to warm to ambient temperature (18 °C) before being 
crushed and destemmed. The fruit parcels were then processed and 
fermented to produce four experimental wines: (i) a wine made from 
free run juice of unsmoked grapes, the ‘unsmoked free run’ treatment; 
(ii) a wine made from free run juice of smoked grapes, the ‘smoked 

free run’ treatment; (iii) a wine made from free run juice fermented on 
skins from unsmoked grapes, the ‘unsmoked free run on skins’ 
treatment; and (iv) a wine made from free run juice fermented on skins 
of smoked grapes, the ‘smoked free run on skins’ treatment. These 
winemaking methods were specifically chosen to reflect commercial 
white and red wine production, that is, clarification and primary 

fermentation only for white wine production, and oxidative primary 
fermentation with skin contact, followed by malolactic fermentation, 
for red wine production. For free run wines, must was pressed 
immediately, the juice and pressings were combined, and tartaric acid 
was added to adjust the pH to 3.4 prior to settling (3 days at 5 °C). 
The clarified juice was then separated into 15 L demijohns (three 

replicates per treatment) and inoculated with EC1118 yeast (Lallemand 
Inc., Montreal, Canada). Following primary fermentation, the wines 
were racked and free SO2 adjusted (to 30 ppm) before being cold 
stabilized (-2  °C for 7 days), filtered, and bottled. For free run on 

 

skins wines, must was separated into 30 L fermentation vessels (three 
replicates per treatment), tartaric acid added to adjust the pH to 3.4, 
and the samples were inoculated with EC1118 yeast. The fermenting 
musts were plunged twice per day, and the wine was pressed at a total 

soluble solids level of 3.6 °Brix. The wines were transferred to 15 L 

demijohns and held at 25 °C until the residual sugar approached 0 g/L. 
The wines were then racked from gross lees and inoculated with 
OENOS culture (Chr. Hansen, Hoersholm, Denmark). Following 
malolactic fermentation, the wines were again racked and free SO2 

adjusted (to 30 ppm) before being cold stabilized (-2 °C for 7 days), 
filtered, and bottled. The remaining unsmoked fruit (100 kg) was 
fermented as above to produce a base free run wine and a base free 
run on skins wine, for the purpose of blending for sensory trials. Ethanol 
concentrations were determined by distillation, alcohol hydrometry, and 
spectral measurements according to the method described by Iland et 
al. (21). 

Gas Chromatography–Mass Spectrometry Analysis. Quantitative 
analyses were performed by the Australian Wine Research Institute’s 

Analytical Services Laboratory (Adelaide, Australia), using an Agilent 
6890N gas chromatograph coupled to a 5975 inert source mass 
spectrometer. Guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-ethylphe- 
nol, eugenol, and furfural were quantified by the stable isotope dilution 
assay methods reported previously (16, 22–24). 

Difference Testing of Smoked and Unsmoked Wines. Difference 
tests were conducted using the triangle test method described by 
Meilgaard et al. (25), using a panel of 24 members. Panelists were of 

European origin, aged between 18 and 55, with similar numbers of 
males and females. Wines were presented to the panel using a balanced, 
randomized presentation order where all possible configurations (ABB, 
BAA, AAB, BBA, ABA, BAB, where A denotes unsmoked wine and 
B denotes smoked wine) were presented an equal number of times. 
Panelists assessed two sets of wine; one set comprised of wines made 
from free run and one set comprised of wines made from free run on 
skins. Panellists smelt, but did not taste the samples, and were asked 

to identify the sample within each set that was different. 
Aroma Detection Thresholds of Taint in Smoked Wines. The 

detection threshold of smoke taint in free run wine was determined 
according to the American Society for Testing and Materials (ASTM) 
method 679E, using 33 judges. Judges were of European origin, aged 
between 18 and 55, with similar numbers of males and females. Wines 
were presented (as part of a triangle test) in ascending order of 
concentration spaced by a factor of 3, with the smoked free run wine 
(0.11, 0.33, 1.0, 3.0, 9.0, 27.0, and 81.0 mL) diluted with base free run 

wine to 250 mL. Panellists smelt, but did not taste the samples. Those 
panellists who could detect the spike at all of these concentrations were 
then tested at lower concentrations; conversely, those who could not 
detect the spike at any of the concentrations were tested at higher 
concentrations. The detection threshold of smoke taint in free run on 
skins wine was determined in the same manner. 

Statistical Methods. Data were analyzed by two-way analysis of 
variance (ANOVA) using GenStat (9th Edition, VSN International 

Limited, Herts, UK). Mean comparisons were performed by least 
significant difference (LSD) multiple comparison tests at P < 0.05. 

 
RESULTS AND DISCUSSION 

Postharvest smoke exposure by grapes resulted in detectable 
differences in the chemical composition and sensory charac- 
teristics of wine. Difference tests (25) established a clearly 
perceivable difference in the aroma profile of smoked and 
unsmoked wines. The sensory panel, comprising 24 judges, 

scored 22 correct responses for the free run wine set and 24 
correct responses for the free run on skins wine set. These results 
indicate smoked wines and unsmoked wines are significantly 
different at the 99.9% confidence level; hence, smoke exposure 

of grapes prior to vinification alters wine quality. 
The detection thresholds of smoke taint were then determined 

to evaluate the intensity of the taint and the potential for its 
reduction through blending. Thresholds (25) are reported as the 
volume of smoked wine (free run or free run on skins) diluted  
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Figure 1.  Histograms showing best-estimate threshold distributions for 
(a) smoke taint in smoked free run wine, and (b) smoke taint in smoked 

free run on skins wine. 

with base wine (to 250 mL). For each smoked wine, a group 
threshold was calculated as the geometric mean of each 

panelist’s individual best-estimate threshold, which was the 
geometric mean of the highest concentration missed and the 
next highest concentration tested. The aroma thresholds were 
calculated to be 3.9 mL for the smoked free run wine and 1.9 
mL for the smoked free run on skins wine, corresponding to 

dilutions of 1.6 and 0.8% of original concentrations, respectively. 
The distributions of best-estimate thresholds for individual 
panelists are shown in Figure 1. The difference and detection 
threshold tests indicate that smoke exposure has a significant 

effect on the sensory characteristics of wine. Furthermore, in 
this study, the taint persisted even with high levels of dilution 
(by more than 98%), thus limiting options for blending. 

The process by which smoke is generated involves the 

pyrolysis of wood (or other plant material) and is reminiscent 
of the toasting process of barrel cooperage. Both involve the 
thermal degradation of structural components, cellulose, hemi- 
cellulose, and lignin, resulting in the generation of volatile 

organic compounds. Stable isotope dilution assays have been 
developed to quantify oak-derived flavor compounds of orga- 
noleptic significance (including guaiacol and 4-methylguaiacol) 
in oak extracts and barrel-aged wines (16, 22–24). These assays 
were employed to ascertain the composition of smoked and 

unsmoked wines, and the results obtained indicate a significant 
treatment effect due to smoke exposure. Guaiacol, 4-meth- 
ylguaiacol, 4-ethylguaiacol, 4-ethylphenol, eugenol, and furfural 
were detected in wines made from smoked grapes, but not in 
wines made from unsmoked grapes, irrespective of the wine- 

making methods employed (Table 2). 
The smoked wines, both free run and free run on skins, 

contained unusually high levels of guaiacol (1470 and 969 µg/ 
L, respectively) and 4-methylguaiacol (326 and 250 µg/L, 

respectively). Typically, wines aged in oak (and not affected 
by smoke exposure) contain guaiacol and 4-methylguaiacol at 
concentrations of between 10 and 100 µg/L and between 1 and 
20 µg/L, respectively (16). It should be noted that guaiacol has 

also been identified as a component of acid and enzyme 
hydrolysates prepared from Merlot and Shiraz juice, at con- 
centrations  up  to  50  µg/L, apparently  deriving  from  grape 

 

Table 2. Concentrations of Guaiacol, 4-Methylguaiacol, 4-Ethylguaiacol, 
4-Ethylphenol, Eugenol, Furfural, 5-Methylfurfural, and Vanillin Present in 
Smoked and Unsmoked Wines 
 

concentrationa (µg/L) in 
 

 smoked 

free run 

unsmoked 

free run 

smoked free 

run on skins 

unsmoked free 

run on skins 

guaiacol 1470 a n.d. 969 b n.d. 
4-methylguaiacol 326 a n.d. 250 b n.d. 
4-ethylguaiacol 128 a n.d. 111 b n.d. 
4-ethylphenol 59 a n.d. 67 b n.d. 
eugenol 20 a n.d. 26 b n.d. 
furfural 16 a n.d. 13 b n.d. 
5-methylfurfural n.d. n.d. n.d. n.d. 
vanillin n.d. n.d. n.d. n.d. 

a Values followed by a different letter within rows are significantly different; 
n.d. ) not detected. Mean values from three replicates. Values were in agreement 
to ca. 5%. 
 

shikimic acids (26, 27). However, in the present study, guaiacol 
could not be detected in unsmoked wines, and its origin is 
therefore attributed to the application of smoke. Previous studies 
(1) have indicated that smoke-derived guaiacol and 4-methyl- 

guaiacol preferentially accumulate in the skins of grapes, so in 
our study, they were expected to occur at higher concentrations 
in the wines made from smoked grapes fermented on skins. 
That higher concentrations were instead observed in the smoked 

free run wines suggests permeation of smoke into the grape 
berry. The lower levels of guaiacol derivatives in smoked free 
run on skins wines might also be attributed to winemaking 
conditions, that is, the loss of volatile compounds through either 

volatilization due to the higher fermentation temperatures and 
oxidative conditions or adsorption by grape skins. It is important 
to note that, in this study, permeation may reflect a relatively 
high intensity of smoke exposure and the fact that smoke was 

applied postharvest to bunches, whereas previous studies were 
based on field applications. Indeed, postharvest application was 
selected as a treatment to minimize potential confounding effects 
of field exposure (such as time, intensity, and smoke type). 
Regardless, the guaiacol and 4-methylguaiacol concentrations 

measured far exceed both detection threshold concentrations and 
concentrations typically reported in barrel-aged wines. Conse- 
quently, at these levels, both compounds would undoubtedly 
contribute to the intense smoky character evident in the smoked 

wines. 
4-Ethylguaiacol, 4-ethylphenol, eugenol, and furfural were 

also detected in the smoked wines, albeit within concentration 
ranges previously reported in wine (15, 22). Therefore, although 
the presence of these compounds is attributed to postharvest 

smoke exposure, they are unlikely to be key contributors to 
smoke taint. Interestingly, in wine, 4-ethylguaiacol and 4-ethyl- 
phenol are typically formed from grape-derived p-coumaric acid 
and ferulic acid (respectively) through the action of Brettano- 

myces/Dekkera yeast (15, 28). In this study, the absence of these 
compounds in the unsmoked wines instead supports a formation 
pathway involving the thermal degradation of lignin, such as 
proposed by Fiddler et al. (29). 5-Methylfurfural and vanillin 

were not detected in any of the wines made from smoked grapes. 
These compounds were either not formed at detectable levels 
under the conditions employed in this experiment or they 
experienced further degradation. Vanillin has been reported as 

an intermediate in the thermal degradation of lignin, with its 
decomposition yielding vanillic acid and guaiacol (29). 

Quantitative GC-MS analysis established that the detection 
thresholds of smoke taint correspond to guaiacol and 4-methyl- 
guaiacol concentrations of 23 and 5 µg/L, respectively, for the  
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Figure 2.  Fermentation curves for (a) smoked and unsmoked free run 
wines, and (b) smoked and unsmoked free run on skins wines. Mean 

values from three replicates; standard errors are obscured by symbols, 
so they are not shown, but they were <0.5 in all cases. 

 

smoked free run wine and 7 and 2 µg/L, respectively, for the 
smoked free run on skins wine. Because these concentrations 

are near or below the detection thresholds reported for guaiacol 
and 4-methylguaiacol (15, 19), we therefore conclude that 
neither is solely responsible for the perception of smoke taint. 
The smoke taint threshold concentrations are also strongly 
supportive of this, with an increased threshold observed for the 

smoked free run wine relative to the smoked free run on skins 
wine; that is, threshold concentrations did not correlate with 
guaiacol and 4-methylguaiacol concentrations. It is quite likely 
that additional smoke-derived volatile compounds contribute to 
the taint observed in wines made from smoked grapes, and 

identification of these compounds is the subject of ongoing 
research. Nevertheless, guaiacol and 4-methylguaiacol are useful 
as indicators of smoke taint. 

To investigate the development of smoke taint during the 

winemaking process, grapes were vinified according to two 
different winemaking methods, reflecting commercial white and 
red wine production. Free run wines were clarified (3 days at 5 

°C) prior to fermentation, and free run on skins wines were 
fermented  in  open  vessels  with  skin  contact  followed  by 
malolactic fermentation. In the case of free run wines, posthar- 

vest smoke exposure resulted in an increased fermentation rate 
(completing fermentation 9 days earlier), but showed no effect 
on the fermentation rate of free run on skins wines (Figure 2). 

Significant differences in ethanol concentrations and wine 

color were also observed between smoked and unsmoked wines 
(Table 3). Smoked wines had higher alcohol contents than their 
corresponding unsmoked wines, indicating a higher attenuation 

of sugars to ethanol during the fermentation process. Wines 
fermented on skins showed increased levels of brown pigments 
as compared with free run wines; this is not unexpected, because 

of the oxidative nature of this winemaking method. However, 
smoked wines also exhibited increased browning as compared 
with their corresponding unsmoked wines, irrespective of the 
winemaking methods employed. The effect of smoke exposure 

on both fermentation rate and development of brown pigments 

 

Table 3. Ethanol Content and Color Analysis of Smoked and Unsmoked 
Winesa

 
 

 

smoked 
 

unsmoked 
 

smoked free 
 

unsmoked free  

free run free run run on skins run on skins 

ethanol content 
(% v/v)b 

estimated brown 

14.3 a 
 

0.097 a 

14.1 b 
 

0.060 b 

14.7 c 
 

0.203 c 

13.8 d 
 

0.142 d 
pigments (au)c 

 
a Values followed by a different letter within rows are significantly different. b Mean 

values from three replicates; values were in agreement to ca. 0.5%. c Mean values 

from three replicates; values were in agreement to ca. 10%. 

 

in white wine is the subject of ongoing further study. We 
anticipate that these observations may be explained by the effect 
of smoke compounds on membrane integrity within the grape 
berries and skins. Smoke exposure is likely to damage membrane- 

bound processes and, as such, may possibly lead to the release 
of proteases and other cellular enzymes associated with injury 
response. This response to smoke may then have the potential 
to considerably alter berry chemistry prior to fermentation, an 
effect which may have been exacerbated by our postharvest 

treatment. 
In this trial, dry straw was chosen as a model fuel for the 

application of a cold smoke treatment. Like wood, straw 
comprises cellulose, hemicellulose, and lignin, and its pyrolysis 

was therefore expected to generate smoke of similar composition 
to wood-derived smoke. The use of dry straw also enables the 
reproducible generation of smoke, as employed in current field 
trials involving the application of smoke to grapevines. Although 

it is recognized that forest fuels may contribute a broader range 
of potential smoke taint compounds the complexity of fuel 
composition, burn rates, combustion temperatures, and envi- 
ronmental conditions are confounding influences and are the 

subject of further studies. 
This study has demonstrated a direct link between the smoke 

exposure of grapes and the development of smoke taint in 
subsequent wines. Smoke taint was readily perceived by sensory 
analysis, with the sensory panel able to detect the taint at 

dilutions of less than 2% of the original concentration. Further 
studies involving field exposure of grapevines to smoke are 
currently underway. 
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Abstract 

Background and  Aims:  Grapevine  smoke exposure  has been reported  to produce  smoke aromas  in 

wine, resulting in ‘smoke taint’. This study describes the application of smoke to field-grown grapevines 

between veraison and harvest to investigate the effect of timing and duration  of smoke exposure on wine 

composition  and sensory attributes. 

Methods and Results:   Smoke was applied to grapevines as either a single smoke exposure to different 

vines at veraison or at 3, 7, 10, 15, 18 or 21 days post-veraison  or repeated smoke exposures to the same 

vines at veraison  and  then  at 3, 7, 10, 15, 18 and  21 days post-veraison.  Gas chromatography-mass 

spectrometry analysis of guaiacol, 4-methylguaiacol, 4-ethylguaiacol and 4-ethylphenol showed elevated 

levels in  all wines  produced  from  fruit  from  smoked  grapevines.  Repeated  smoke  exposures  had  a 

cumulative  effect on  the  concentration of these  compounds.  A trained  sensory  panel  identified  the 

aromas of ‘burnt  rubber’, ‘smoked meat’, ‘leather’ and ‘disinfectant’ in all wines derived from smoke- 

exposed grapevines but not in control wines. 

Conclusions: Smoke application to field-grown grapevines between veraison and harvest can influence 

the accumulation of volatile phenols and intensity of smoke aromas in resultant  wines. A peak period of 

vine sensitivity to smoke at 7 days post-veraison  is identified. Repeated smoke exposures have a cumu- 

lative effect. 

Significance of  the  Study:  This is the  first  study  to  report  the  deliberate  and  controlled  smoke 

application to field-grown grapevines demonstrating the timing and duration  of smoke exposure to 

significantly affect wine chemical and sensory characters. 
 

 

Abbreviations 
BET best estimate threshold;  FAN free amino  nitrogen;  GC-MS gas chromatography-mass 

spectrometry;  PCA principal component analysis; TSS total soluble solids. 
 

 

Keywords: gas chromatography-mass  spectrometry, grapevines, guaiacol, smoke taint, Vitis vinifera, 

volatile phenols 
 

 

 

 

 

Introduction 

Postharvest smoke exposure of grapes has been shown to 

influence the chemical composition and sensory charac- 

teristics of wine with the potential  to cause an apparent 

‘smoke taint’ (Kennison  et al. 2007).  However,  to date, 

smoke has not been deliberately applied to grapevines in 

a field situation  to determine  the  impact  on  grape  and 

wine composition under controlled conditions. Further- 

more,  the  effect  of  timing  and  duration   of  grapevine 

smoke exposure  on the  development of smoke taint  in 

wine has not been previously investigated.  As such, sci- 

entific literature relating to the in-field exposure of grape- 

vines to smoke in the development of smoke taint is scant 

despite the issue’s high relevance to viticulture in Austra- 

lia and overseas. 

Smoke is a highly complex substance, comprising par- 

ticulate matter, carbon monoxide, carbon dioxide, poly- 

cyclic aromatic hydrocarbons,  ozone (O3), various oxides 

of nitrogen  and sulfur as well as a multitude of volatile 

and  semi-volatile  organic  compounds   (McKenzie  et al. 

1994,  Nolte  et al.  2001,  Radojevic  2003,  Reisen  and 

Brown 2006). The composition of smoke can vary greatly 

depending  on both  the  fuel source and pyrolytic condi- 

tions,   in  particular   combustion   temperature,  oxygen 
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availability,  and  moisture   content   (Baltes  et al.  1981, 

Maga 1988, Simoneit et al. 1993). 

Smoke can impart desirable organoleptic properties to 

foods. These are largely attributed to the presence of 

smoke-derived volatile compounds including phenols, 

carbonyls,  acids,  esters,  lactones,  pyrazines,  furan  and 

pyran  derivatives  (Maga  1988,  Wittkowski  et al. 1990, 

McKenzie  et al. 1994,  Guillén  et al. 1995,  Guillén  and 

Ibargoitia 1998, Fine et al. 2001). Of these volatiles, guai- 

acol  and  4-methylguaiacol  are  considered   to  be  key 

smoke components  (Baltes et al. 1981, Wittkowski et al. 

1992). They are derived from the thermal  degradation  of 

wood  lignin  during  combustion   and  exhibit  ‘smoky’, 

‘musty’, ‘caramel’, ‘burning’, ‘sweet’, ‘phenolic’, ‘sharp’, 

and ‘smoked sausage’ aromas  and flavours (Baltes et al. 

1981, Boidron et al. 1988, Wittkowski et al. 1992, Rocha 

et al. 2004). 
In wine, guaiacol and 4-methylguaiacol typically 

originate  from  oak barrel  fermentation and/or  matura- 

tion  (Boidron  et al.  1988,  Maga  1989,  Swan  2004)  at 
concentrations of up to 100 and 20 mg/L for guaiacol and 

4-methylguaiacol,   respectively   (Pollnitz   et al.   2004). 

However, a range of volatile phenols, including guaiacol, 

4-methylguaiacol, 4-ethylguaiacol  and 4-ethylphenol, 

have  recently  been  identified  in juice, unwooded wine, 

acid and enzyme hydrolysates prepared from smoke- 

affected  grapes  (Kennison   et al.  2007,  2008).  Because 

these compounds were absent from the corresponding 

control samples (i.e., unsmoked  grapevines),  their origin 

was attributed directly to smoke exposure. 

The  aroma  descriptors,  aroma  detection   thresholds 

and     wine     concentrations    reported     for    guaiacol, 

4-methylguaiacol, 4-ethylguaiacol, and 4-ethylphenol are 

shown  in Table 1. Because guaiacol exhibits  the  lowest 

aroma detection  threshold  (Boidron et al. 1988) and was 

the most abundant volatile phenol detected in smoke- 

tainted wines (Kennison et al. 2007, 2008), it is considered 

to  be  of  greatest   importance.   Boidron   et al.  (1988) 

reported aroma thresholds for guaiacol in various media – 

5.5 mg/L in water, 20 mg/L in model wine, 95 mg/L in white 

wine and 75 mg/L in red wine – whereas  Simpson et al. 

(1986) reported a lower detection threshold,  just 20 mg/L, 

for guaiacol in a dry white table wine. However, the 

detection  thresholds  for guaiacol  and  4-methylguaiacol 

may in fact be even lower than these earlier data. Indeed, 

Eisele and Semon  (2005)  suggest that  guaiacol is by far 

more potent. They determined the best estimate threshold 

for guaiacol to be 0.48 mg/L in water and 0.91 mg/L in apple 

juice, with even lower taste detection thresholds reported 

at  0.17 mg/L  and  0.24 mg/L  in  water  and  apple  juice, 

respectively. In a previous study involving the postharvest 

application  of  smoke  to  grape  bunches,   a  perceptible 

‘smoke taint’ was still evident after considerable blending 

to   achieve   sub-threshold   concentrations  of  guaiacol 

and  4-methylguaiacol (Kennison  et al. 2007).  This sug- 

gests that guaiacol and 4-methylguaiacol might not be 

solely responsible for smoke taint in wine (Kennison et al. 

2007). 

The effects of grapevine smoke exposure  on the com- 
position and sensory properties of wine are currently  not 

well understood. This study was therefore  undertaken to 

address this knowledge gap, and investigates the effect of 
both  timing and  duration  of grapevine  smoke exposure 

on wine quality. 
 

 

Materials  and methods 

Trial establishment and smoke application 

The  trial  was  sited  in  the   locality  of  Capel  in  the 

Geographe region of Western Australia. The site was 

selected based on an infrequent history of smoke expo- 

sure  and  location  away  from  forested  areas.  No  inci- 

dences  of  externally   derived  smoke  were  observed  at 

this site throughout the duration  of the experimental 

period. 

Purpose-built  greenhouse-type tents  measuring  6 m 

long ¥ 2.5 m  high ¥ 2 m  wide  were   constructed   from 

galvanised steel framing to enclose grapevines for the 

application of smoke. The tents were covered with a 

greenhouse-grade Solarweave plastic (Gale Pacific, 

Australia)  designed  to enable  plant  photosynthesis and 

productivity. Smoke was generated  by the combustion  of 

dry barley straw in a (50 L) lidded metal drum for 30 min. 

A remotely  controlled  variable speed air pump was used 
 

 

 

Table 1.  Aroma   descriptors,   aroma    detection    thresholds    and   wine   concentrations   reported    for   guaiacol, 

4-methylguaiacol, 4-ethylguaiacol  and 4-ethylphenol. 
 

Compound Aroma descriptors  Aroma detection threshold (mg/L) Wine concentration (mg/L) 

Water    Model wine  White wine  Red wine 
 

 

Guaiacol 
 

Smoky†, phenolic§, chemical§ 
 

0.48§§ 
 

20† 
 

95† 
 

75† 
 

0–100¶ 

  5.5†  20‡   

4-methylguaiacol Toasted†, ash† 10† 30† 65† 65† 0–20†† 

4-ethylguaiacol Smoky†, spicy†, toasted, bread§ 25† 47† 70† 150† 2–437¶ 

     110‡‡  

4-ethylphenol Horsy†, stable†, phenolic§ 130† 440† 1100† 1200† 2–2200¶ 

     605‡‡  

 

†Boidron et al. (1988), ‡Simpson et al. (1986), §López et al. (1999), ¶Pollnitz et al. (2000), ††Pollnitz (2000), ‡‡Chatonnet et al. (1992), §§Eisele and Semon (2005). 
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to force air through an inlet pipe into the  lidded drum, 

which   subsequently  forced  smoke  through  an  outlet 

tubing   into   the   tent.   Particulate   matter   (PM10,  i.e., 
:::10 mm  in  diameter)   within  the  tent  was  monitored 

using a DustTrack laser photometer (TSI Model 8520; TSI 

Inc., St. Paul, Minnesota,  USA) to maintain  a maximum 

PM10  level of 200 mg/m3  for the duration  of each smoke 

treatment, a level considered comparative  to a high- 

pollution  incident  (Reisen and Brown 2006). 
 

 

Treatments 

Two  independent smoke  experiments   were  conducted 

using Vitis vinifera cv. Merlot grown in a commercial vine- 

yard. These were a single smoke exposure (for 30 min) of 

field-grown  grapevines  that  was applied at either  verai- 

son  or  3,  7,  10,  15,  18,  21  or  24 days  post-veraison. 

Alternatively, field-grown grapevines received eight con- 

secutive  smoke  exposures  (for 30 min  each)  applied  to 

the same vines at the beginning of veraison then  at 3, 7, 

10, 15, 18, 21 and 24 days post-veraison.  For each smoke 

experiment, a  control  (i.e.,  unsmoked)  treatment  was 

also established, where grapevines were enclosed in tents 

(as earlier) but without  the addition of smoke. Each treat- 

ment  was replicated three  times. 
 

 

Winemaking 

At harvest, the three replicates per treatment (approxi- 

mately 15 kg each) were harvested  on the same day for 

fruit  analysis and  wine  production.  Samples of smoked 

and  control  grape  juice were  analysed  for total  soluble 

solids (TSS) by refractometry  (Iland et al. 2004) and for 

free  amino   nitrogen   (FAN)  by  methods   described  by 

Dukes and Butzke (1998). Each fruit replicate was har- 

vested  at an  average  TSS of 21.6 ± 1.8 °Brix, crushed, 

destemmed    inoculated    with    Saccharomyces cerevisiae 

EC1118  yeast  (200 mg/L)  (Lallemand  Inc.,  Montreal, 

Canada) and fermented  in 15-L fermentation vessels. Fer- 

menting  musts  were  plunged  twice daily and  the  wine 

was pressed from the skins when  the TSS approached  0 

°Baumé.  All wines  were  stored  in  4.6 L enclosed  glass 

fermenters  at  15°C until  the  residual  sugar  was below 

2 g/L. After the wines were racked from gross lees, they 

were    inoculated    with    Leuconostoc oenos  (10 mg/L) 

(Vinaflora Oenos, Chr. Hansen, Denmark)  for malolactic 

fermentation. On the completion of malolactic fermenta- 

tion, as determined by quantitative malic acid analysis, 

wines  were  racked  from lees, free SO2  was adjusted  to 
30 ppm and the wines were cold stabilised (28 d at 2°C). 

Wines were then filtered (5 mm) and bottled. The alcohol 

content   of  final  wines  was  measured   by  ebulliometry 

(Iland et al. 2004). 
 

 

Quantitative determination of guaiacol, 4-methylguaiacol, 

4-ethylguaiacol, 4-ethylphenol, furfural, 5-methylfurfural, 

eugenol and vanillin 

Guaiacol, 4-methylguaiacol, 4-ethylguaiacol,  4- 

ethylphenol, furfural, 5-methylfurfural, eugenol and 

vanillin were quantified  by gas chromatography-mass 

spectrometry   (GC-MS)  using  methods   reported   previ- 

ously (Spillman  et al. 1997, Pollnitz 2000, Pollnitz et al. 

2000, 2004, Kennison  et al. 2008). 
 

 

Sensory analysis 

Sensory analysis of experimental wines (smoked and 

control) was conducted  by a panel of eight trained judges 

comprising  four  males  and  four  females  aged  between 

21 and 30 years. Panellists were selected on the basis of 

interest and availability, having experienced at least 100 h 

of tertiary wine sensory education and being regular wine 

consumers,  non-smokers, of good  health,  and  able  to 

detect smoke aroma of red and white smoked wines at 

predetermined thresholds  ascertained  by Kennison  et al. 

(2007).  Wines were assessed for aroma  only (not  tasted 

on  the  palate)  so as  to  reduce  any  potential  negative 

health   impacts  associated  with  the  tasting  of  smoke- 

tainted wine and in accordance with ethical requirements 

for  conducting   sensory   experiments   (Meilgaard   et al. 

2007). 

Panellists underwent eight quantitative descriptive 

analysis training  sessions (two per week) prior to formal 

evaluation   (Meilgaard  et al.  2007).  Descriptive  aroma 

terms, based on wines used in the study, were generated 

by panellists with the panel consensus  on six descriptive 

terms. Utilising experimental wines as references, panel- 

lists were trained  to measure  the smoke aroma presence 

and intensity  on an unstructured 100-point  line scale. 

Formal evaluation  of two  wine  replicates  from both 

the single and repeated smoke experiments  (i.e., 22 wines 

in total)  was conducted  over four sessions, each held at 

the  same time on different  days. Wine samples (20 mL) 

were presented to panellists at room temperature in three 

digit coded ISO standard  tasting glasses in a randomised 

order. All glasses were covered with glass covers to avoid 

contamination of the testing area and other  samples. To 

avoid sensory  fatigue,  panellists  were  required  to leave 

the testing area to an external  environment (for 10 min) 

after evaluating  each sample. 

 

Statistical methods 

All data  were  analysed  using SPSS version  14.0 for 

Windows (SPSS Inc., Chicago, Illinois, USA). Analysis of 

variance (ANOVA) was used to analyse chemical data at 

the 5% level of significance (P < 0.05). Wine sensory data 

were  analysed  by ANOVA and  principal  component 

analysis (PCA). 

 

Results 

Effect of smoke exposure on grapes and wine 

Smoke was applied to field-grown grapevines as either a 

single smoke  exposure  applied  at  either  veraison  or at 

3, 7, 10, 15, 18, 21 or 24 days post-veraison;  or as eight 

smoke exposures  applied to the  same vines at veraison 

and then at 3, 7, 10, 15, 18, 21 and 24 days post-veraison. 

Fruit from unsmoked  (control) vines obtained a higher 

average fruit TSS level (22.3 °Brix) than  fruit from vines 

subjected  to  smoke  application  (Table 2).  The TSS was 

lowest in grapes from vines that had received repeated 

smoke exposures (19.3 °Brix). These vines also produced 
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Table 2. Yield, total soluble solids (TSS) and free amino nitrogen (FAN) of grapes and alcohol content  of wine derived 

from smoked and control (unsmoked) grapevines. 
 

Treatment†   Fruit   Wine 

  Yield (kg/vine) TSS (°Brix) FAN (mg/L)  Alcohol (% v/v) 

 

Control 

Single smoke exposure at: 

 

 

0 day post veraison 

 

17.0a
 

12.1b
 

 

22.33a
 

20.93b
 

 

87.2f
 

96.0ef
 

 
 

12.80a
 

12.47ab
 

 

 

 

 

 

 

 

 

 

Repeated smoke exposure 

3 days post veraison 

7 days post veraison 

10 days post veraison 

15 days post veraison 

18 days post veraison 

21 days post veraison 

24 days post veraison 

16.1a
 

15.9a
 

15.7a
 

15.9a
 

14.8a
 

16.1a
 

15.2a
 

11.0b
 

19.73cd
 

21.07b
 

19.40d
 

21.03b
 

21.07b
 

20.67bc
 

21.23b
 

19.33d
 

112.8bcd
 

117.3b
 

114.0bc
 

102.8cde
 

100.1def
 

108.6bcde
 

101.7cde
 

134.4a
 

 11.23c
 

12.13b
 

10.93cd
 

12.07b
 

12.00b
 

11.93b
 

12.53ab
 

10.57d
 

LSD (5%)  2.36 1.018 13.3  0.6478 

 

†Smoked grapevines were subjected to either a single smoke application or eight repeated smoke applications between veraison and harvest (i.e., at 0, 3, 7, 10, 15, 

18, 21 and 24 days post-veraison). Means followed by the same letter within columns are not significantly different at P ::: 0.05, n = 3. 

 

 

the lowest fruit yields (11 kg/vine) as compared with the 

mean fresh fruit weight of 15.3 kg/vine for all other treat- 

ments   (Table 2).  Repeated   smoke   exposure   to  vines 

resulted in the development of necrotic lesions on leaves, 

effects that were not seen on control grapevines or grape- 

vines exposed to single smoke applications (not shown). 

FAN in grapes at harvest  was significantly higher  in 

fruit from vines subjected to repeated smoke exposures 

(134.4 mg/L,  P < 0.05)  compared  with  all  other  treat- 

ments,  with  the  unsmoked   treatments lowest  in  FAN 

(87.2 mg/L)   (Table 2).   Fruit   from   vines   subject   to 

repeated   smoke  exposures   also  had  higher   total  SO2 

(18 mg/L) and pH (3.8) values in grape juice at harvest 
compared with all other single smoke and control 

(unsmoked) treatments. 

The fermentation rate of must was faster for grapes 

from vines exposed to repeated smoke exposures. In com- 

parison  with  wines  from the  unsmoked  (control)  treat- 

ment  that  completed  fermentation after  12 days, wines 

from the  repeated  smoke exposure  treatment took only 

8 days  to  complete  fermentation (Figure 1).  Fermenta- 

tion rates of musts from all other smoke treatments were 

also faster (10–12 days). Ethanol content  was up to 17% 

lower in wines made from fruit from grapevines subject to 

repeated  smoke exposures (10.6%  v/v) than in the other 

wines, and the highest ethanol  content  was in the wines 

from   non-smoke-exposed  control   vines  (12.8%   v/v) 

(Table 2). Similarly, all wines  vinified from grapes from 

vines exposed to a single smoke exposure contained 

intermediate ethanol  concentrations between  10.9  and 

12.5%  v/v. 
 

 

Quantitative determination of smoke-derived volatiles in grapes 

and wine 

The volatile  phenols  guaiacol, 4-methylguaiacol, 4- 

ethylguaiacol  and  4-ethylphenol were  selected  as ana- 

lytes of interest  based on their  reported  contribution to 

14 
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Time (days) 

 
Figure 1. Fermentation curves for fruit harvested from grapevines 
exposed  to repeated  smoke applications  (0)  from veraison  to 
harvest (i.e., at 0, 3, 7, 10, 15, 18, 21 and 24 days post-veraison) and 
control (unsmoked) grapevines (e). Mean values from three repli- 
cates; standard  errors are obscured by symbols and so are not 
shown but are <0.5 in all cases. 
 

 

 

the  aroma  and flavour  of smoked food products  (Baltes 

et al.  1981)   and  provenance  in  smoke-tainted  wines 

(Kennison  et al. 2007, 2008).  Vanillin, eugenol,  furfural 

and  5-methylfurfural were  included  in the  quantitative 

GC-MS  analysis   but   because   of   being   detected   at 

levels that  have  a negligible effect on  aroma  properties 

(i.e.,     :::5 mg/L     for     vanillin,     eugenol,      and     5- 

methylfurfural and  :::40 mg/L  for furfural)  are  not  dis- 

cussed further. 

GC-MS analysis detected  large and  significant differ- 

ences  in  volatile  phenol  composition  between   control 

wines   and   wines   derived   from   smoked   grapevines 

(Table 3  and  Figure 2).  The  highest  levels  of  smoke- 

derived  volatile  phenols  occurred  in  wines  made  from 
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Table 3.  Mean concentrations and standard errors of guaiacol, 4-methylguaiacol, 4-ethylguaiacol 

and 4-ethylphenol in wines made from fruit harvested from smoked and control (unsmoked) 

grapevines. 

 

Treatment†                                                                   Concentration (mg/L)‡ 
 

Guaiacol 4-methylguaiacol 4-ethylguaiacol 4-ethylphenol 
 

Mean SE Mean SE mean  SE Mean SE 
 

Control                      4b                     1.4             n.d.b                          n/a                 tr.b                          n/a               tr.b                        n/a 

Smoked                  388a                  26.3              93a                            7.3                16a                         1.3               58a                        2.9 

 

†Smoked grapevines were subjected to eight repeated smoke exposures applied between veraison and harvest (i.e., at 0, 3, 7, 10, 15, 18, 

21 and 24 days post-veraison). 

‡For each analy te, means followed by the same letter are not significantly different at P ::: 0.05, n = 3. 

n.d., not detected; tr., trace (i.e., positive identification but <1 mg/L); SE, standard  error. 
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Figure 2. Guaiacol, 
4-methylguaiacol, 
4-ethylguaiacol and 
4-ethylphenol concentrations in 
wine made from grapes 
harvested from grapevines 
exposed to single smoke 
applications between veraison 
and harvest (i.e., at 0, 3, 7, 10, 
15, 18, 21 or 24 days 
post-veraison);  C, control.  Data 
are means (n = 3). Error bars 
show two standard errors of 
the mean. 
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vines  repeatedly   exposed  to  smoke,  i.e.,  388 mg/L  of 

guaiacol,   93 mg/L    of   4-methylguaiacol,   16 mg/L    of 

4-ethylguaiacol  and  58 mg/L  of 4-ethylphenol. In  con- 

trast, control wine contained  between  4 mg/L of guaiacol 

and non-detectable (<1 mg/L) levels of the other phenols. 

Wine derived from repeatedly smoked grapevines con- 

tained at least four-fold higher volatile phenol concentra- 

tions than  any of the wines derived from grapevines that 

received a single smoke treatment. 

Importantly,  the timing of grapevine smoke exposure 

was  found  to  influence   the  concentration  of  smoke- 

derived volatile phenols in wine. For the experiments 

involving single smoke applications, the highest concen- 

trations   of  guaiacol,   4-methylguaiacol, 4-ethyphenol 

and 4-ethylguaiacol corresponded to wine derived from 

grapevines    exposed   to   smoke   7 days   post-veraison 

(Figure 2).    Guaiacol    concentration   increased    from 

7 mg/L  for smoke exposure  at the  initial onset  of verai- 

son,  peaked  at  92 mg/L  for  smoke  exposure  at  7 days 

post-veraison,    then    decreased   to   between    34   and 

61 mg/L   for   each   subsequent  smoke   exposure   until 

harvest.     Similar    compositional     trends     were     ob- 

served for 4-methylguaiacol, 4-ethylguaiacol  and 4- 

ethylphenol. 

 

Sensory analysis of experimental wines 

Quantitative  descriptive analysis of wines made from fruit 

of  grapevines  exposed  to  smoke  identified  aromas  of 

‘burnt rubber’, ‘smoked meat’, ‘leather’, and ‘disinfectant 

and   hospital’   as  being   associated   with   smoke   taint 

(Boidron  et al. 1988, López et al. 1999).  Aromas of ‘red 

berry fruits’ and ‘confection’ were identified as wine char- 
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Table 4.  Analysis of variance for wine sensory attribute  ratings of ‘burnt rubber’, ‘smoked meat’, 

‘leather’, ‘disinfectant’/‘hospital’, ‘red berry fruits’ and ‘confection’ for wine (W), panellist (P), 

replicate  (R),  wine  by  panellist  (W ¥ P),  panellist  by  replicate  (P ¥ R) and  wine  by  replicate 

(W ¥ R). 
 

Aroma descriptor Wine (W) Panellist (P) Replicate (R) W ¥ P P ¥ R W ¥ R 

 

Burnt rubber 
 

14.34*** 
 

3.71*** 
 

0.13 
 

1.69* 
 

0.44 
 

0.65 

Smoked meat 21.56*** 3.13*** 0.02 0.97 0.65 0.52 

Leather 11.55*** 4.02*** 0.98 0.99 0.83 0.30 

Disinfectant/hospital 8.06*** 5.14*** 0.84 1.31 0.58 0.72 

Red berry fruits 9.65*** 6.19*** 1.37 2.18*** 0.35 0.41 

Confection 8.63*** 4.55*** 0.46 2.58*** 0.17 0.44 

 

F ratios  are shown as sources of variation. Significance indicated by *P < 0.05, **P < 0.01 and ***P < 0.001. 

 

 

acters common in distinguishing control wines from 

unsmoked  vines. ANOVA showed both the wines and the 

panellists to be sources of wine sensory variation  for all 

aroma  attributes   (P < 0.001)  (Table 4).  However,  there 

was  no  significant  variation  among  the  replicates  (i.e., 

wine by replication and panellist by replication),  indicat- 

ing consistency in panellist rating between sessions and 

wines. Other sources of variation  resulted from the wine 

by  panellist  interactions   for  the  aroma  descriptors  of 

burnt  rubber  (P < 0.05), red berry fruits (P < 0.001)  and 

 

 

 

 

Confection (0.6) 
 

 

 

 

 

Red berry fruits (0.6) 

Burnt rubber (0.6) 
8 

6 

4 

2 

0 

 

 

 

 

Smoked meat (0.4) 
 

 

 

 

 

Leather (0.8) 

confection  (P < 0.001),  indicating  that  individual  panel- 

lists have different thresholds or levels of sensitivity to the 

aromas of these compounds. 

Wines vinified from grapes of vines receiving repeated 

smoke exposures attained higher scores for off-aromas 

(‘burnt  rubber’,  ‘smoked meat’,  ‘leather’, and  ‘disinfec- 

tant   and   hospital’)   compared   with   all  other   wines 

(Figure 3).  Compared  with  wines  made  from  fruit  of 

vines exposed  to eight smoke applications,  wines  made 

from fruit produced from unsmoked (control) vines 

exhibited  significantly higher  scores for ‘confection’ and 

‘red berry fruits’ aromas  (P < 0.001).  Wines from single 

smoke exposure experiments  revealed the full range of 

aroma characters  from ‘red berry fruits’ and ‘confection’ 

through to ‘smoked meat’, ‘burnt  rubber’, ‘leather’, and 

‘disinfectant and hospital’ as displayed in the PCA biplot 

(Figure 4). The PCA of mean  aroma  results from single- 

smoked wines showed that principal component 1 (PC1) 

accounted  for 93% of the overall variation  and principal 

component 2 (PC2) accounted  for 4% of the variation 

(Figure 4). PC1 is largely characterised  by the contrast of 

positive loadings on smoke-like aromas (‘leather’, ‘burnt 

rubber’, ‘smoked meat’, and ‘disinfectant and hospital’ 

aromas) and negative loadings on fruit and wine aromas 

(‘red berry fruit’ and ‘confection’ aromas)  (Table 5). PC2 

is further  defined  with  a positive loading for the  ‘disin- 

fectant  and  hospital’ aroma  and  with  negative  loadings 

for smoke and fruit aroma descriptors. The smoke-like 

aroma descriptors of ‘leather’, ‘burnt rubber’ and ‘smoked 

meat’ were highly correlated with each other (r = 0.74 to 

0.79). Likewise, there was a high correlation between 

Merlot  wine  character  aroma  descriptors  of ‘red berry 

fruits’ and ‘confection’ (r = 0.87). The aroma descriptor of 

Disinfectant and hospital 

(0.9) 
 

 

Repeated smoke exposure  Unsmoked (control) 

 
Figure 3. Polar coordinate (cobweb) graph of mean aroma intensity 
ratings of ‘burnt rubber’, ‘smoked meat’, ‘leather’, ‘disinfectant and 
hospital’, ‘red berry fruits’ and ‘confection’ for wines made from 
grapes from grapevines exposed to eight smoke applications (—) 
(applied at veraison and then at 3, 7, 10, 15, 18, 21 and 24 days 
post-veraison) and control (unsmoked) treatments (----) (least sig- 
nificant difference (LSD)), P < 0.001 are indicated in parenthesis for 
each term). Aroma descriptor values for unsmoked (control) wines 
range from 0 (‘smoked meat’) to 0.3 (‘burnt rubber’). 
 

 

‘disinfectant and hospital’ was negatively correlated with 

wine  character  aromas  (r = -0.55  to -0.59)  and  weakly 

correlated  with smoke-like aromas (r = 0.48 to 0.52). 

The sensory properties  of each experimental wine 

varied  depending  on  the  timing  of smoke  application. 

Single  smoke  exposure   to  grapevines   at  either   7  or 

10 days  post-veraison   led  to  more   intense   ‘leather’, 

‘smoked meat’, ‘burnt rubber’, and ‘disinfectant and hos- 

pital’ aromas  in  resultant   wines  at  higher  levels  than 

other timings of smoke exposure (Figure 4). Single smoke 

exposure  to  grapevines  at  veraison  and  at  18,  21,  and 

24 days post-veraison  subsequently produced wines with 

high aromas of ‘red berry fruits’ and ‘confection’ and low 

smoke aroma characteristics. 
 

Discussion 
Previous research has shown that the postharvest smoke 

exposure  of grapes affects the chemical composition  and 

aroma of wine, leading to the development of perceivable 
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centrations  of the indicator compounds  were always less 

(63–93%) than wine corresponding to smoke exposure at 

7 days post-veraison.  The reasons  for variation  in sensi- 

tivity to smoke exposure  during the post-veraison  period 

are currently  unclear.  During veraison,  changes occur in 
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assimilate partitioning  of sugar uptake and metabolism 

(Conde et al. 2007) and in phloem  unloading  from sym- 

plastic to  apoplastic  pathways  (Zhang  et al. 2006).  The 

chemical and structural  characteristics of grape cell walls 

also  change   during   this   period   (Nunan   et al.  1998, 
-0.6 

CF  SM 
-5 Mullins et al. 2000).  The peak uptake  of volatile smoke 
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Figure 4. Principal component analysis (PCA) biplot of mean wine 
sensory scores from experiments that applied a single smoke expo- 
sure to field-grown grapevines between veraison and harvest (i.e., at 
0, 3, 7, 10, 15, 18, 21 or 24 days post-veraison)  and wine derived 
from control (unsmoked) vines (C). Aroma descriptors are indicated 
by arrows labelled  DH (‘disinfectant and hospital’), L (‘leather’), 
BR (‘burnt rubber’), SM (‘smoked meat’), CF (‘confection’)  and RBF 
(‘red berry fruits’). 

 

 

Table 5.  Factor loadings on principal component 1 (PC1) 

and principal component 2 (PC2) for aroma descriptors of 

‘burnt  rubber’,  ‘smoked  meat’,  ‘leather’,  ‘disinfectant’/ 

‘hospital’, ‘red berry fruits’ and ‘confection’ for wines 

derived from single smoke exposure applied to grapevines 

at  veraison  or at  3, 7, 10,  15,  18,  21 or 24 days post- 

veraison. 
 

A
  

roma descriptor 
 

Burnt rubber 

PC1 
 

0.41 

PC2 
 

-0.38 

Smoked meat 0.41 -0.48 

Leather 0.42 -0.31 

Disinfectant/hospital 0.40 0.20 

Red berry fruits -0.41 -0.42 

C  onfection -0.40 -0.56 

 

 

smoke taint  aromas (Kennison  et al. 2007).  The current 

study  demonstrates that  field exposure  of grapevines  to 

smoke  can  lead  to  the  development of smoke  taint  in 

wine, the timing of smoke exposure to grapevines can 

influence the chemical and sensory properties of resultant 

wine,  and  repeated  smoke  exposure  has  a  cumulative 

effect on the concentration of smoke-derived  volatile 

compounds  in resultant  wines. 

The  concentration  of  smoke  taint   indicator   com- 

pounds  (guaiacol,  4-methylguaiacol, 4-ethyphenol and 

4-ethylguaiacol) measured  in wine varied depending  on 

the timing and number of smoke exposures that the vines 

received. Levels of these compounds in wines from grape- 

vines subjected to a single smoke exposure at the onset of 

veraison  were  low,  with  guaiacol  levels comparable  to 

those  found  in control  treatments (6.7 mg/L).  However, 

smoke   exposure   at   7 days  post-veraison   resulted   in 

higher  levels of guaiacol  (92 mg/L).  Later smoke  expo- 

sures resulted  in significant levels of taint,  but the  con- 

components  by fruit following smoke exposure  at 7 days 

post-veraison may be related to these changes in berry 

physiology.  An  alternative  hypothesis  is that  the  peak 

period of uptake identified in this experiment may be 

independent of ontogeny and could also relate to changes 

in sensitivity to uptake of the compounds  at the leaf level 

associated with short-term environmental effects on vine 

physiology such as vine water  status.  These hypotheses 

are the subject of an ongoing study. 

Repeated smoke exposures  to field-grown grapevines 

led to accumulation of smoke compounds  to high levels. 

Irrespective   of  when   smoke   exposures   were   applied 

to  vines,  from  the  period  of  veraison  to  harvest,  the 

effects  on   the   levels  of  guaiacol,   4-methylguaiacol, 

4-ethylguaiacol  and  4-ethylphenol in wines  were  addi- 

tive. Indeed,  the sum of smoke taint-related compounds 

detected in wines generated  from single smoke exposure 

treatments closely approximates  the compound  levels 

detected in wines generated from repeated smoke expo- 

sures (Figure 5). These results imply that repeated or pro- 

longed vineyard smoke exposure, which can occur from 

frequent fire events, over the post-veraison period will 

potentially have a cumulative  negative effect on resultant 

wine quality and value. 

Quantitative  descriptive wine aroma analysis demon- 

strated an increase in smoke-related  aromas described as 

‘burnt rubber’, ‘smoked meat’, ‘leather’, and ‘disinfectant 

and hospital’ in wines from the repeated smoke exposure 

experiment. These aromas clearly dominated  the  wine’s 

sensory profile, overpowering  any ‘confection’ and ‘red 

berry  fruits’ aromas  (Figure 3).  Smoked  wine  from  the 

repeated  smoke exposure experiment contained  guaiacol 

and  4-methylguaiacol  at  levels  well  in  excess  of  the 

highest  published   aroma  detection   thresholds   for  red 

wine    (of   75   and    65 mg/L,    respectively),    although 

4-ethylguaiacol  and 4-ethylphenol were  present  at sub- 

threshold  concentrations (Boidron  et al. 1988).  In con- 

trast, the volatile phenols were either not detected or 

detected at trace levels only in control wines. Therefore, 

as in previous studies, the source of volatile phenols  can 

be  attributed directly  to  smoke  (Kennison  et al.  2007, 

2008).  Furthermore, the  accentuation of smoke taint  in 

wine derived from the repeatedly smoked grapevines is 

correlated   with   the   increased   levels  of  guaiacol  and 

4-methylguaiacol,  with  little  or  no  contribution  from 

4-ethylguaiacol  or 4-ethylphenol. 

Smoke-like   aromas   were   also  present   to  various 

degrees in all wines vinified from the single smoke expo- 

sure  experiment regardless of smoke application  timing  
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Figure 5. Sum of guaiacol, 
4-methylguaiacol (4-MeG), 
4-ethylguaiacol (4-EG) and 
4-ethylphenol (4-EP) 
concentration in eight wines 
made from Merlot grapes from 
vines that each received a 
single field-based smoke 
exposure (applied at veraison 
or at 3, 7, 10, 15, 18, 21 or 
24 days post-veraison  as 
indicated by bands) versus 
compound levels detected in 
wine from Merlot grapes from 
vines that received repeated 
smoke exposures (applied at 
veraison then again at 3, 7, 10, 
15, 18, 21 and 24 days 
post-veraison). 

Compound (per single and repeated treatments) 

 

 

 

and resultant  compound  level in wine. The levels of 

guaiacol,      4-methylguaiacol,     4-ethylguaiacol       and 

4-ethylphenol were detected by the panellists in all these 
wines below reported aroma thresholds for red wine 

(Boidron  et al. 1988,  Chatonnet et al. 1992)  except  for 
smoke application  at 7 days post-veraison  that  produced 

wine with guaiacol above the reported aforementioned 

aroma detection threshold  in red wine of 75 mg/L. Panel- 

lists detected  elevated  smoke aromas in the 7 days post- 

veraison  wines,  although  smoke aromas  were  also 

detected  in  all  other  wines  made  from  fruit  of  vines 

exposed to single smoke applications – even though  their 

compound   levels were  below  published  aroma  thresh- 
olds. It should be noted that there is some conjecture 

regarding the detection threshold for guaiacol; certainly 

there is disagreement  between  published thresholds,  i.e., 

75 mg/L  reported  by Boidron  et al. (1988)  and  20 mg/L 

reported  by Simpson  et al. (1986).  A recent  workshop 

demonstrated that all 60 delegates presented  with 70 

unidentified  wines including a control and a wine spiked 
with  guaiacol (20 mg/L) were  able to discern the  wines, 

giving descriptors for the latter such as ‘smoky’ and ‘burnt 

bacon’ (Mark Sefton, pers. comm., 2007). Given the intri- 

cate and complex nature  of smoke, indicator compounds 

play an important role in assessing the extent and impact 

of smoke taint on wine quality. In the present  study, the 

volatile  phenols,  together   with  sensory  analysis,  have 

been proven as effective smoke taint markers. However, it 
is acknowledged  that with time, additional  volatile com- 

pounds will likely be identified as components  of smoke, 

which are also responsible for the discernable aroma 

attributes  of smoke-tainted wine. 

Grapevine smoke exposure leads to increased levels of 

FAN in grapes, an effect most evident following repeated 

smoke applications. Interestingly, grapes harvested from 
repeatedly smoked grapevines also fermented  the most 

rapidly,  in  agreement   with  previous  studies  (Kennison 

et al. 2007).  While the  increase  in ferment  rate may be 

associated with the increased FAN in must (Henschke and 

Jiranek 1993, Bell and Henschke 2005), the basis for this 

increase is unclear.  Some direct contributions from 

nitrogenous smoke compounds  is possible as research has 
demonstrated the uptake and assimilation, by nitrite 

reductase,  of nitrogenous compounds  (NO and NO2) by 
plants (Hosker and Lindberg 1982, Nussbaum et al. 1993, 

Stulen  et al. 1998, Takahashi et al. 2001); however,  it is 

likely that any such contribution would be very minor 

based on simple mass balance. Increased FAN may also be 

linked  to  the  injury  response  of grapes  following  high 

levels of smoke exposure, for example, a biochemical 

response to necrotic lesion that developed on laminae 

following repeated  smoke treatment (Heath 1980). 

Field-based smoke exposure to grapevines showed an 
adverse  effect on  grape  ripening  (e.g., sugar  accumula- 

tion) irrespective of the timing and duration  of smoke 

application. In a recent study, the stomatal conductance, 

CO2 assimilation rate and intercellular  CO2 levels of Chry- 

santhemoides  monilifera were  reduced  for  5 h  following 

smoke exposure for 1 min, with 24 h required to achieve 

physiological  recovery   to  control   levels  (Gilbert  and 

Ripley 2002). Additionally, the presence of SO2 and O3 in 
smoke has been shown to induce stomatal closure in 

grapevines (Rosen et al. 1978). It is therefore  conceivable 

that  the photosynthetic capacity of grapevines  decreases 

following smoke exposure, which in turn inhibits grape 

maturation and ripening. Furthermore, these physiologi- 

cal effects would be further  exacerbated  by the loss of 

photosynthetically active leaf area because of the forma- 
tion  of  necrotic  lesions  on  laminae  (Heath  1980),  as 

occurred  in the current  study with grapevines  subjected 

to repeated  smoke treatments. 

In summary,  the  deliberate  application  of smoke  to 

field-grown grapevines between veraison and harvest 

affected  yield,  grape  composition  (sugar  accumulation 

and  FAN), wine  composition,  wine  sensory  properties, 

and most importantly,  wine quality.  The volatile phenol 
levels and intensity of smoke taint in wine was influenced 

by  both   the   timing   and   the   duration   of  grapevine  
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exposure  to  smoke.  For  single  smoke  treatments, the 

highest levels of volatile phenols were observed in wines 

corresponding  to smoke  exposure  7 days post-veraison. 

For  repeated   smoke   treatments,  a  cumulative   effect 

on smoke-derived volatile phenol concentrations was 

observed. 
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The release of smoke-derived volatile phenols during the fermentation of Merlot grapes, following 

grapevine exposure to smoke, has been investigated. The concentrations of guaiacol, 4-methylguai- 

acol, 4-ethylguaiacol, 4-ethylphenol, and eugenol were determined by gas chromatography-mass 

spectrometry and found to increase throughout the winemaking process. Only trace levels (e1 µg/L) 

of guaiacol and 4-methylguaiacol could be detected in free run juice derived from the fruit of smoked 

vines; the highest levels, 388 µg/L and 93 µg/L, respectively, were observed in the finished wine. 

Control wine (derived from fruit of unsmoked vines) contained 4 µg/L guaiacol, with the volatile phenols 

either not detected or detected at only trace levels (e1 µg/L) throughout fermentation. The role of 

enzyme and acid catalyzed hydrolysis reactions in releasing smoke-derived volatile compounds was 

also investigated. The volatile phenols were released from smoked free run juice by strong acid 

hydrolysis (pH 1.0) and enzyme (/i-glucosidase) hydrolysis, but not mild acid hydrolysis (juice pH 

3.2-3.7). Guaiacol was again the most abundant smoke-derived phenol, present at 431 µg/L and 

325 µg/L in strong acid and enzyme hydrolysates, respectively. Only trace levels of each phenol 

could be detected in each control hydrolysate. This study demonstrates the potential for under- 

estimation of smoke taint in fruit and juice samples; the implications for the assessment of smoke 

taint and quantification of volatile phenols are discussed. 

 

KEYWORDS:  P-Glucosidase; fermentation; grapes; grapevines; guaiacol; hydrolysis; 4-methylguaiacol; 

smoke exposure; smoke taint; volatile phenols; wine 

 

INTRODUCTION 
 

In recent years, significant forest fires have occurred in Asia, 
Africa, Europe, North America, South America, and Australia, 
and the incidence of such fires is expected to escalate as a result 

of climate-induced changes to weather, particularly increased 
temperature, drought, wind and natural ignition sources (1). In 
some cases, fires have occurred in close proximity to wine 
regions resulting in vineyard smoke exposure and smoke tainted 
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wines. The taint, characterized by objectionable ‘smoky’, ‘dirty’ 

and ‘burnt’ aromas and a lingering retro-nasal ‘ash’ character 

on the palate (2), has caused significant financial loss for grape 

and wine producers and is therefore an issue of increasing 
concern. 

Grape and grapevine exposure to smoke has been shown to 
affect  the  chemical  composition  and  sensory  properties  of 

wine (2, 3). A number of volatile phenols including guaiacol, 

4-methylguaiacol, 4-ethylguaiacol, 4-ethlyphenol and eugenol 

(4-allylguaiacol) were detected in wines made from grapes 

which had received a postharvest exposure to smoke. Since these 
compounds were not present in wines made from unsmoked 

grapes, their origin was attributed to smoke exposure (3). 

In wine, guaiacol, 4-methylguaiacol and eugenol are typically 

associated with oak barrel maturation (4–6), derived predomi- 

nantly from the thermal degradation of oak lignin during the 
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toasting process of cooperage (7), although there are significant 
levels of eugenol present in untoasted oak (5). In contrast, 

4-ethylguaiacol and 4-ethylphenol are bacterial in origin, arising 
from the action of Brettanomyces/Dekkera yeast on grape- 
derived p-coumaric acid and p-ferulic acid (6, 8). Numerous 
studies have identified these phenols as components of smoke 

and liquid smoke preparations (e.g, refs 9–12), with guaiacol 
and 4-methylguaiacol reported as two of the most abundant 

phenols occurring in wood smoke, in both the vapor phase and 
aqueous extracts (13). Additionally, these volatile phenols are 
associated with smoke-like aromas (Table 1); guaiacol and 
4-methylguaiacol in particular, which impart ‘smoky’, ‘pheno- 

lish’, ‘aromatic’, ‘sharp’ and ‘sweet’ aroma characters (6, 10, 11). 
Although guaiacol and 4-methylguaiacol are not considered 
solely responsible for smoke taint (3), they nevertheless 

represent useful marker compounds, with levels of guaiacol and 
4-methylguaiacol indicative of levels of smoke taint. 

In previous studies in this laboratory, the intensity of smoke 
taint has been observed to increase during the fermentation of 
smoke affected grapes. This is consistent with anecdotal 

evidence from industry that smoky characters either appeared 
during fermentation of grapes which had not previously 
exhibited smoke taint, or increased throughout the winemaking 
process. The release of volatile secondary metabolites from 

grape and oak-derived flavor precursors via enzyme and acid 
catalyzed hydrolysis has been previously demonstrated (e.g., 

refs 14–17). Accordingly, the hydrolytic release of smoke- 
derived volatiles from involatile precursors, such as glycocon- 
jugates, could be responsible for the intensification of smoke 
aroma during fermentation. Indeed guaiacol has been previously 

reported as a component of acid and enzyme hydrolysates 
prepared from Merlot and Shiraz juices (14, 16), presumably 
deriving from glycoconjugate precursor forms. To date, the 

assessment of smoke taint relies on either sensory evaluation 
or quantification of guaiacol and 4-methylguaiacol. The presence 
of conjugated precursors is therefore problematic for both 

sensory and chemical analysis. This study was undertaken to 
investigate (i) the evolution of smoke-derived volatile phenols 
during fermentation, following grapevine exposure to smoke; 

(ii) the release of volatile phenols under acid and enzyme 
catalyzed reaction conditions; and (iii) the implications of the 
results for carrying out analysis of smoke affected grapes and 

juice. 

 

MATERIALS AND METHODS 

Field Application of Smoke to Grapevines. Merlot grapevines 
within a vineyard located in Capel, Western Australia were exposed 
to eight successive smoke applications (30 min each) between veraison 

and harvest, i.e., at 0, 3, 7, 10, 15, 18, 21 and 24 days post-veraison. 
Smoke applications were performed (in triplicate) using a purpose built 
smoke tent similar to that described in seed germination experiments 
by Dixon et al. (18), constructed from galvanized steel and greenhouse 

film (Solarweave). Smoke was generated in a metal drum (50 L) by 
combustion of dry straw and pumped into the smoke tent with the 
grapevines (3 per replicate) enclosed. Dry barley straw was selected 
as a fuel source to minimize variation in combustion conditions, 

enabling reproducible smoke application. Control grapevines were 
similarly enclosed in identical (smoke-free) tents for the duration of 
each smoke treatment to minimize differences in environmental 
conditions (such as humidity, temperature and light exposure). Tents 
were removed following each experimental treatment. 

Winemaking. Grapes (three fruit replicates of approximately 16 kg 
each) were harvested from control (unsmoked) and smoked grapevines 
on the same day, corresponding to total soluble solids (TSS) contents 

of 22 °Brix and 19 °Brix, respectively. For each treatment, the fruit 
was processed to produce three replicate wines, according to standard 

 

Table 1. Structures and Aroma Descriptors of Smoke-Derived Volatile 
Phenols 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

small-lot winemaking procedures. The fruit was crushed, destemmed 
and fermented in 15 L fermentation vessels with EC1118 Saccharo- 

myces cereVisiae yeast (Lallemand Inc., Montreal, Canada). The 
fermenting musts were plunged twice per day and the wine was pressed 

from the skins at a TSS level of 3.6 °Brix. Wines were transferred to 
15 L demijohns and held at 15 °C until the residual sugar approached 
0 g/L. The wines were then racked from gross lees and inoculated with 
Leuconostoc oenos (Vinaflora Oenos, Chr. Hansen, Denmark). On 
completion of malolactic fermentation, wines were again racked and 

free SO2  adjusted (to 30 ppm) before being cold stabilized (2 °C for 
28 days), filtered and bottled. 

Sampling. Samples (approximately 50 mL aliquots) were collected 
from each smoked and control fermentation replicate, throughout the 

winemaking process. For smoked ferments, the sampling times were: 
after crushing (i.e., free run juice), after 1, 3, 5 and 7 days of maceration, 
at the end of alcoholic fermentation and after bottling (i.e., finished 
wine). The same sampling times were employed for control ferments, 
but with the inclusion of a sampling point after 10 days of maceration. 
The additional control sampling point was necessitated by differences 
in fermentation rates between smoked and control ferments. As in 

previous studies (3), smoke exposure increased fermentation rates, with 
smoked ferments completing alcoholic fermentation 3 days earlier than 
control ferments. Each ferment was also sampled immediately before 
and after pressing (i.e., at 7 and 10 days of maceration for smoked and 
control ferments, respectively); grape marc samples (approximately 
50 g) were also collected after pressing. Finished wines were reanalyzed 
approximately 12 months post-bottling. Prior to analysis, must and wine 

samples were clarified by centrifugation and grape marc samples were 
crushed in liquid nitrogen. 

Preparation of Acid and Enzyme Hydrolysates. Acid and enzyme 
hydrolysis experiments were conducted (in duplicate) using control and 
smoked free run juice, based on methodology described elsewhere 
(17, 19). Chemicals and enzymes were purchased from Sigma-Aldrich. 
Mild acid hydrolysates (i.e., juice pH: 3.2 for control juice and 3.7 for 
smoked juice) were prepared by heating grape juice (10 mL) for 1 h at 

100 °C. Strong acid hydrolysates (i.e., pH 1.0, achieved by addition of 
concentrated sulfuric acid) were prepared by heating grape juice (10 
mL) for 1 h at 100 °C. Enzyme hydrolysates were prepared by treating 

grape juice (10 mL) with almond emulsion /i-glucosidase enzyme (25 
mg) for 24 h at 30 °C. 

Quantitative Gas Chromatography-Mass Spectrometry Analy- 

sis. Guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-ethyphenol, eugenol, 
furfural and 5-methylfurfural were quantified by the stable isotope 
dilution assay methods reported previously (20–23). These publications 

include details of the syntheses of the internal standards used herein. 
For all analytes: the linear dynamic range was 0, and 1-1000 µg/L; 
the limit of detection was 1 µg/L; and the precision was <5% relative 
standard deviation. The purity of all standards was verified by GC- 
MS. 

Preparation of Must and Wine Samples for Analysis. A deuterated 

internal standards (I.S.) solution of d4-furfural (1.06 µg), d3-guaiacol 
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I.S. solution as above (100 µL) and the organic solvent as above (10 
mL) were added (to immerse the marc sample) and the lid screwed on. 
After 24 h at room temperature the vial was swirled briefly and then a 

portion of the organic layer (2 mL) was then placed in a vial ready for 
instrumental analysis. 

free run juice 
after 1 day maceration 
after 3 days maceration 
after 5 days maceration 
after 7 days maceration 

n.d. 
tr. 
tr. 
tr. 
tr. 

n.d. 
tr. 
tr. 
tr. 
tr. 

n.d. 
n.d. 
n.d. 
n.d. 
n.d. 

n.d. 
n.d. 
n.d. 
n.d. 
n.d. 

n.d. 
tr. 
tr. 
tr. 
tr. 

Reference Standards. Reference standards containing 100 µL of after 10 days maceration 1 tr. n.d. n.d. tr. 
deuterated internal standards ethanolic solution (as described above) after alcoholic fermentation 1 tr. n.d. n.d. tr. 

and 100 µL of normal unlabeled analytes ethanolic solution (furfural finished wine 4 n.d. tr. tr. tr. 

(1.674 µg), 5-methylfurfural (2.073 µg), guaiacol (4.646 µg), 4-meth- 12 months post-bottling 3 tr. tr. tr. n.d. 

ylguaiacol (1.536 µg), 4-ethylguaiacol (2.025 µg), eugenol (2.108 µg)   smoked    
and 4-ethylphenol (1.798 µg)) in diethyl ether/n-pentane (1:2 (v/v), free run juice 1 a tr. n.d. n.d. n.d. 

approximately 2 mL) were used. after 1 days maceration 68 b 11 a 10 a 5 a 2 ab 

Gas  Chromatography-Mass  Spectrometry  Analysis.  An  Agilent after 3 days maceration 168 c 26 b 8 a 5 a 1 a 

Technologies 6890 gas chromatograph (GC) was equipped with a 

Gerstel MPS2 multipurpose sampler and coupled to an Agilent 5973N 
after 5 days maceration 
after 7 days maceration 

203 cd 
249 d 

32 bc 
42 c 

9 a 
9 a 

15 b 
17 b 

2 a 
2 a 

mass selective detector. The gas chromatograph was fitted with an after alcoholic fermentation 249 d 43 c 8 a 23 c 1 a 

 
finished wine 388 e 93 d 16 b 58 d 3 b 

approximately 30 m × 0.25 mm, 0.25 µm J&W DB-Wax fused silica 
capillary column. The carrier gas was helium (BOC Gases, high purity), 

12 months post-bottling 371 e 124 e 29 c 94 e 4 c 

 

(1.13 µg), d3-4-methylguaiacol (0.840 µg) and d4-4-ethylphenol (0.721 
µg), in ethanol (100 µL) was added to the sample (5 mL) in a screw 
cap vial using a glass syringe (100 µL Hamilton). The organic solvent 
(diethyl ether/n-pentane 1:2 (v/v) ca. 3 mL) was added, and the mixture 
was shaken briefly. A portion of the organic layer (ca. 2 mL) was then 

Table 2. Concentrations of Guaiacol, 4-Methylguaiacol, 4-Ethylguaiacol, 
4-Ethylphenol, and Eugenol in Ferments Derived from the Fruit of Smoked 
and Unsmoked Grapevines Throughout the Winemaking Process 
 

concentrationa (µg/L) 

placed in a vial ready for instrumental analysis. 
Preparation of Marc Samples for Analysis. For each marc sample, 

a 4.0 g subsample was accurately weighed into a screw cap vial. The 

 
sample guaiacol 

4-methyl 

guaiacol 

4-ethyl 

guaiacol 

4-ethyl 

phenol   eugenol 

unsmoked 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

linear velocity 50 cm/sec; flow rate 1.2 mL/min. vacuum compensated 
at the mass spectrometer interface. The oven temperature was started 
at 50 °C, held at this temperature for 1 min, increased to 240 at 10 
°C/min, and held at this temperature for 20 min. The injector 
temperature was 200 °C and the transfer line was held at 240 °C. The 

sample volume injected was 2 µL. The splitter, at 30:1, was opened 
after 36 s, and the liner used was resilanized borosilicate glass, tapered, 
with a plug (2-4 mm) of resilanized glass wool at the column interface. 
The instrument was controlled with Agilent G1701CA ChemStation 
software in conjunction with the Gerstel MASter software (version 
1.81). For quantification of the smoke volatiles, positive ion electron 
impact mass spectra at 70 eV were recorded in Selective Ion Monitoring 
(SIM) mode. The ions monitored were m/z 98, 100 for d4-furfural (dwell 
50 ms); m/z 95, 96 for furfural (dwell 50 ms); m/z 95, 97, 112 for 
5-methylfurfural (dwell 50 ms); and m/z 77, 131, 149, 164 for eugenol 
(dwell 25 ms). The italicized ions were the ones used for quantitation 
(by peak area). 5-Methylfurfural was quantified versus d4-furfural as 

internal standard (IS). Eugenol was quantified versus d4-4-ethylphenol 
as IS. Other SIM conditions have been published previously (20, 21). 
The data was analyzed with Agilent MSD ChemStation software 
(Build 75). 

Statistical Methods. Data were analyzed by two-way analysis of 
variance (ANOVA) using GenStat (8th Edition, VSN International 
Limited, Herts, UK). Mean comparisons were performed by least 
significant difference (LSD) multiple comparison tests at P < 0.05. 

 

RESULTS AND DISCUSSION 

The volatile phenols, guaiacol, 4-methylguaiacol, 4-ethylguai- 
acol, 4-ethylphenol and eugenol, were either not detected or 
detected at only trace levels (e1 µg/L) in free run juice derived 

from fruit of smoke-exposed grapevines. However, the concen- 
tration of each compound increased dramatically and progres- 
sively throughout fermentation, with the highest levels observed 
in finished wine (Table 2). The corresponding finished control 

wine (derived from fruit of unsmoked grapevines) contained 4 
µg/L guaiacol, but 1 µg/L or less of the other phenols of interest. 
As in previous studies (3), the absence of these compounds (at 
significant concentrations) in control wines indicates that in 
smoked samples they derive almost exclusively from the 

application of smoke to grapevines. Of the smoke-derived 
volatile phenols measured, guaiacol and 4-methylguaiacol were 
the most abundant, present in the finished wine at 388 µg/L 
and 93 µg/L, respectively. This is consistent with previous 

 

a Values are the means from three replicates and were in agreement to ca. 
10%. Values followed by a different letter within columns are significantly different 

(P < 0.05). n.d. ) not detected; tr. ) trace (i.e., positive identification but <1 
µg/L). 

 

studies which reported guaiacol and 4-methylguaiacol as the 
most abundant phenolic components occurring in smoke (13). 
Eugenol was the least abundant phenol measured, with just 3 
µg/L detected in the finished wine. 

Preliminary studies conducted by the Australian Wine 

Research Institute showed guaiacol and 4-methylguaiacol ac- 
cumulated in skins, rather than pulp, of smoke affected grapes 
(2). As such, the increase in volatile phenol concentrations 
throughout winemaking could be attributed to ongoing extraction 
from skin tissues; except that phenol concentrations continued 

to increase during malolactic fermentation (i.e., after skins were 
pressed from the wine). The increased phenol content following 
pressing instead implies the presence of one or more precursor 
compounds. 

Pressing itself had no apparent effect on the composition of 

wine, with very similar phenol concentrations observed in wine 
immediately before and after pressing (Table 3). Comparable 
levels of guaiacol and 4-methylguaiacol were observed in both 
marc and wine derived from smoke-exposed vines; but the marc 

retained approximately 2.5 times as much 4-ethylguaiacol and 
4-ethylphenol than found in the wine. Small amounts of guaiacol 
and 4-methylguaiacol (6 µg/L and 2 µg/L, respectively) were 
observed in control grape marc, but only traces were detected 
in control wine, immediately before or after pressing. 

Hydrolytic studies confirmed the release of smoked-derived 

volatile phenols under acid and enzyme catalyzed reaction 
conditions (Table 4), further supporting their accumulation in 
smoke affected grapes in conjugated precursor forms. The 
evolution of phenols through /i-glucosidase activity alludes to 

glycoconjugate precursors, such as /i-D-glucopyranosides. Guai- 
acol, 4-methylguaiacol, 4-ethylguaiacol, and 4-ethylphenol were 
identified as components of both strong acid and enzyme 
hydrolysates of smoked free run juice. These hydrolysates 

smelled strongly of ‘smoke’ and ‘smoked meat’, respectively, 
by informal sensory evaluation. In contrast, the mild acid 
hydrolysates and each of the control hydrolysates exhibited 
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wine (pre-pressing) 
 

1 
unsmoked 

tr. 
 

n.d. 
 

n.d. 
 

tr. 
wine (post-pressing) tr. tr. n.d. n.d. tr. 
grape marc 6 2 n.d. n.d. n.d. 

 

wine (pre-pressing) 
 

249 a 
smoked 

42 a 
 

9 a 
 

17 a 
 

2 a 
wine (post-pressing) 246 a 41 a 9 a 15 a 1 a 
grape marc 251 a 38 a 22 b 52 b 6 b 

 

Table 3. Concentrations of Guaiacol, 4-Methylguaiacol, 4-Ethylguaiacol, 
4-Ethylphenol, and Eugenol in Ferments (Pre- and Post-Pressing) and 
Grape Marc Derived from the Fruit of Smoked and Unsmoked Grapevines 

 
1

 

similar guaiacol levels were observed, but 4-methylguaiacol, 
4-ethylguaiacol and 4-ethylphenol levels increased (Table 2), 
suggesting further hydrolysis of soluble precursors with bottle 

age. This is akin to the accumulation of (toasted) oak derived 
concentration (µg/L or µg/kg) 

volatile compounds in wine to different extents during aging, 
 

sample guaiacol 
4-methyl 
guaiacol 

4-ethyl 
guaiacol 

4-ethyl 
phenol eugenol 

even with no further contact with the oak (29). The nature and 

concentration of smoke taint precursor compounds may influ- 
ence the release of their free volatile aglycones under various 
conditions;  certainly,  the  evolution  of  phenol  derivatives 
post-bottling supports the presence of precursors in addition to 
simple /i-D-glucopyranosides. 

At juice pH and in the absence of glycosidase activity, 
glycoconjugates are relatively stable toward chemical hydrolysis 

(30), except where the carbohydrate unit is bonded to an 
activated hydroxyl group (15), which could explain the absence 

1 Values are the means from three replicates and were in agreement to ca. 
10%. Values followed by a different letter within columns are significantly different 
(P < 0.05). n.d. ) not detected; tr. ) trace (i.e., positive identification but <1 

µg/L). 

 

‘berry’, ‘fruit’ and ‘jammy’ aromas, with the volatile phenols 

detectable  at  only  trace  levels  (<1  µg/L).  Guaiacol  and 
4-methylguaiacol were again the most abundant smoke-derived 
phenols; present in the strong acid hydrolysate at 431 µg/L and 
162 µg/L, respectively, and in the enzyme hydrolysate at 325 
µg/L and 82 µg/L, respectively. Eugenol was again the least 

abundant phenol measured, with small quantities (5 µg/L or less) 
detected in strong acid hydrolysates of both smoked and control 
free run juice, respectively. 

Guaiacyl /i-D-glucopyranoside has been previously isolated 

from the fruit of anise (Pimpinella anisum L.) (24) and guaiacol 
has been identified in enzyme hydrolysates of several fruits, 
including tomato, mango and badea (25–27). This further 
supports our hypothesis of naturally occurring guaiacyl /i-D- 
glucopyranoside. It is possible that plants (including grapevines) 

may glycosylate some volatile compounds in order to minimize 
toxic effects to cells, or to increase their solubility to facilitate 
cellular transportation. Certainly, there is literature precedence 
for the glycosylation of phenol in cultured plant cells (28). 

The provenance of glycosylated volatile phenols in smoke 
affected grapes and wine is therefore the subject of ongoing 
research. 

Higher levels of guaiacol, 4-methylguaiacol and 4-ethylguai- 

acol were observed in the (smoked) strong acid hydrolysate 
compared to the (smoked) finished wine, suggesting incomplete 
hydrolysis of putative precursor compounds during fermentation. 
When the smoked wine was reanalyzed 12 months post-bottling, 

of smoke-derived phenols in the mild acid hydrolysate. Furfural 

and 5-methylfurfural were identified as acid hydrolysate com- 
ponents in both smoked and control samples, but their origin is 
likely attributable to acid catalyzed thermal degradation of 
carbohydrates, and not grapevine smoke exposure. The higher 

levels observed in the strong acid hydrolysates simply reflect 
the more aggressive hydrolysis conditions. 

Significant quantities of guaiacol or 4-methylguaiacol would 
not be expected to form through hydrolysis of glycoconjugate 
precursors at juice pH. However, micro-organisms with /i-glu- 

cosidase activity could certainly liberate these compounds during 
fermentation. The enzymatic release of smoked-derived volatile 
phenols therefore provides a plausible explanation for the 
observed intensification of smoke taint during fermentation. 

Most importantly, it should be recognized that if smoke-derived 
volatile compounds do indeed accumulate in grapes as odorless 
glycoconjugates following grapevine exposure to smoke, there 
may well be no apparent smoke taint at the time of harvest. 
However, the hydrolytic release of such volatiles could lead to 

the development of smoke aromas during fermentation, and 
subsequently smoke tainted wine. 

For assessment of smoke taint contingent on guaiacol and 

4-methylguaiacol determination, we recommend sample prepa- 
ration be taken into consideration to ensure hydrolysis of any 
glycoconjugate precursors which might be present. In the current 

trial, where grapevines were deliberately exposed to repeated and 
relatively high intensity smoke applications, strong acid hydrolysis 
yielded higher levels of smoke-derived volatile phenols than 
enzyme hydrolysis. The strong acid hydrolysis conditions used in 

this study, i.e., pH 1.0 for 1 h at 100 °C, are those employed in the 
glycosyl-glucose  assay  for  the  quantification of  glycosides  in 

 

Table 4. Concentrations of Guaiacol, 4-Methylguaiacol, 4-Ethylguaiacol, 4-Ethylphenol, Eugenol, Furfural and 5-Methylfurfural in Free Run Juice, and Acid 
and Enzyme Hydrolysates of Juice Derived from Fruit of Smoked and Unsmoked Grapevines 

 

  
 

concentrationa (µg/L) 
  

4-methyl 4-ethyl 4-ethyl   5-methyl 
sample guaiacol guaiacol guaiacol phenol eugenol furfural furfural 

 

free run juice 
 

n.d. 
 

n.d. 
unsmoked 

n.d. 
 

n.d. 
 

n.d. 
 

2 
 

tr. 
mild acid hydrolysate tr. tr. tr. tr. n.d. 76 2 
strong acid hydrolysate tr. tr. tr. tr. 2 15150 640 
enzyme hydrolysate tr. tr. tr. tr. n.d. 7 2 

 

free run juice 
 

1 
 

tr. 
smoked 
n.d. 

 

n.d. 
 

n.d. 
 

2 
 

tr. 
mild acid hydrolysate tr. tr. tr. tr. n.d. 40 2 
strong acid hydrolysate 431 162 31 48 5 12800 860 
enzyme hydrolysate 325 82 13 27 n.d. 8 2 

a Values are the means from three replicates for juice samples and two replicates for hydrolysate samples. Values were in agreement to ca. 10%. n.d. ) not detected; 

tr. ) trace (i.e., positive identification but <1 µg/L). 
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As in previous studies (3), the absence of these compounds (at 
significant concentrations) in control wines indicates that in 
smoked samples they derive almost exclusively from the 

application of smoke to grapevines. Of the smoke-derived 
volatile phenols measured, guaiacol and 4-methylguaiacol were 
the most abundant, present in the finished wine at 388 µg/L 
and 93 µg/L, respectively. This is consistent with previous 

glycoconjugate precursors, such as /i-D-glucopyranosides. Guai- 
acol, 4-methylguaiacol, 4-ethylguaiacol, and 4-ethylphenol were 
identified as components of both strong acid and enzyme 
hydrolysates of smoked free run juice. These hydrolysates 

smelled strongly of ‘smoke’ and ‘smoked meat’, respectively, 
by informal sensory evaluation. In contrast, the mild acid 
hydrolysates and each of the control hydrolysates exhibited 

 

wine (derived from fruit of unsmoked grapevines) contained 4 
µg/L guaiacol, but 1 µg/L or less of the other phenols of interest. 
As in previous studies (3), the absence of these compounds (at 

significant concentrations) in control wines indicates that in 
smoked samples they derive almost exclusively from the 
application of smoke to grapevines. Of the smoke-derived 
volatile phenols measured, guaiacol and 4-methylguaiacol were 
the most abundant, present in the finished wine at 388 µg/L 

and 93 µg/L, respectively. This is consistent with previous 

smoke affected grapes in conjugated precursor forms. The 
evolution of phenols through /i-glucosidase activity alludes to 
glycoconjugate precursors, such as /i-D-glucopyranosides. Guai- 
acol, 4-methylguaiacol, 4-ethylguaiacol, and 4-ethylphenol were 

identified as components of both strong acid and enzyme 
hydrolysates of smoked free run juice. These hydrolysates 
smelled strongly of ‘smoke’ and ‘smoked meat’, respectively, 
by informal sensory evaluation. In contrast, the mild acid 

hydrolysates and each of the control hydrolysates exhibited 

 

mild acid hydrolysate tr. tr. tr. tr. n.d. 76 2 
strong acid hydrolysate tr. tr. tr. tr. 2 15150 640 
enzyme hydrolysate tr. tr. tr. tr. n.d. 7 2 

 

free run juice 
 

1 
 

tr. 
smoked 
n.d. 

 

n.d. 
 

n.d. 
 

2 
 

tr. 
mild acid hydrolysate tr. tr. tr. tr. n.d. 40 2 
strong acid hydrolysate 431 162 31 48 5 12800 860 
enzyme hydrolysate 325 82 13 27 n.d. 8 2 

a Values are the means from three replicates for juice samples and two replicates for hydrolysate samples. Values were in agreement to ca. 10%. n.d. ) not detected; 

tr. ) trace (i.e., positive identification but <1 µg/L). 

 

 
grapes, juice and wine (19). However, since these reaction 
conditions could also catalyze various aglycone side reactions (for 

example aglycone degradation), enzyme hydrolysis may be more 
appropriate for commercial samples, where less intense smoke 
exposure would likely give lower volatile phenol levels. Accord- 
ingly, the potential under-estimation of smoke taint can be reduced. 
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Abstract 
Background and  Aims:  Smoke  exposure  of grapevines  and  development of smoke taint  in wine  are issues of 

increasing incidence and severity. There is limited understanding of the effect of phenological  stage at the time of 

smoke exposure on taint development. The aim of this study was to demonstrate the variation in smoke uptake and 

taint development between  and within  seasons. 

Methods and Results:  Smoke was applied to field-grown Merlot grapevines at 12 stages of vine development over 

three  growing seasons. Key periods of vine sensitivity to smoke taint in wine were (i) from shoots at 10 cm to full 

bloom (low levels of smoke taint); (ii) from berries at pea size to the onset of veraison (variable levels of smoke taint); 

and (iii) between  7 days post-veraison  and harvest (high levels of smoke taint). 

Conclusions: The severity  of taint  in  wine  varied  depending  on  the  phenological  timing  of grapevine  smoke 

exposure.  Taint was elevated when  exposure occurred between  7 days post-veraison  and harvest. The carry-over of 

smoke constituents  the following season was not detectable in wine but yields were reduced. 

Significance of the  Study:  This is the first study to demonstrate the timing of smoke exposure  to critically affect 

wine chemical and sensory characters.  These effects were consistent  and reproducible  over three  seasons. 
 

 

Keywords: gas chromatography-mass spectrometry, grapevine, guaiacol, phenology, smoke taint, Vitis vinifera, 
volatile phenol 

 

 

 

Introduction 
The exposure of grapevines to smoke and the subsequent devel- 

opment  of smoke taint  in wine is an important issue for wine 

producers  globally. Increases in the  incidence  of wildfires and 

fire-risk  weather  (actual  and  predicted)  in  Australia,  Canada 

and  the  USA have  been  attributed to climate  change  (Gillett 

et al. 2004,  Hennessy  et al. 2005,  Westerling  et al. 2006).  As 

such,  the  presence  of smoke  in  viticultural  areas  is likely to 

occur more frequently,  resulting in the increased occurrence  of 

smoke taint for wine producers. 

Smoke  produced  from  the  combustion  of vegetative 

biomass  contains   numerous  substances   including   inorganic 

gases (carbon monoxide,  ozone, nitrogen  dioxide), polycyclic 

aromatic hydrocarbons, volatile and semi-volatile organic 

compounds,  particulate  matter  (PM2.5  and  PM10) and  oxygen- 

ated  organics  (Schauer   et al.  2001,  Lee  et al.  2005,  Naeher 

et al.  2007).  The production  of these  substances  varies  with 

the combustion  conditions such as moisture  and oxygen avail- 

ability, temperature and  fuel composition  (Maga 1988b,  Hays 

et al.  2002,  Simon  et al.  2005).  Fuel  composition   can  also 

vary depending  on the fuel type and source and it is generally 

comprised of lignin (18–35%),  cellulose (40–45%) and hemi- 

cellulose   (20–35%;   Maga   1989).   To  date,   there   are   no 

published   reports   on  the   effect  of  different  fuels  and  fuel 

pyrolysis  conditions  on  the  development  of  smoke  taint  in 

wine. 

The presence of smoke taint in wine can result in the wine 

being unacceptable  for consumption with tainted  wines exhib- 

iting  ‘burnt  rubber’,  ‘smoked  meat’,  ‘leather’,  ‘disinfectant’, 

‘ash’, ‘smoked salmon’ and ‘salami’ characters  (Høj et al. 2003, 

Kennison  et al. 2009).  However,  smoking  of foods is one  of 

the  oldest  methods  of  food  processing  and  has  traditionally 

been used to impart flavours, aromas, colours and for food 

preservation   by  reducing  antimicrobial   spoilage  (Wittkowski 

et al. 1992, Fellows 2000). Smoke and liquid smoke flavourings 

utilised in food processing have been shown to contain com- 

pounds  including  carbonyls, aldehydes,  lactones,  ketones, 

furans,  pyrans  and  phenols  (Maga 1988a,  Guillén et al. 1995, 

Guillén and Manzanos 1996). The volatile phenols guaiacol and 

4-methylguaiacol, which  derive from the  thermal  degradation 

of  lignin,  are   present   in  smoke   and   have   been   reported 

to  exhibit   ‘smoky’,  ‘phenolic’,  ‘sharp’,  ‘smoked  meat’  and 
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‘burning’  aromas  and  flavours  (Baltes  et al.  1981,  Boidron 

et al.  1988,  Maga  1988a,  Rocha  et al.  2004).  Guaiacol  and 

4-methylguaiacol  are  routinely   detected   in  wines   aged  in 

toasted  oak barrels  at concentrations up  to 100 and  20 mg/L, 

respectively (Pollnitz et al. 2004). 

Research on the effects of smoke exposure at a range of 

grapevine growth stages and the subsequent development of 

smoke taint in wine is limited. A direct link between  smoke 

exposure  to  grapes  and  the  development of  smoke  taint  in 

wine has been established for both grapes exposed to smoke 

postharvest  (Kennison  et al. 2007) and field-grown  grapevines 

exposed  to  smoke  between   veraison  and  harvest  (Kennison 

et al. 2009).  The later study identified  a peak period of grape- 

vine  sensitivity  to  smoke  uptake  at  ‘veraison + 7d’. Further- 

more,   Kennison   et al.  (2009)   also  utilised  repeated   smoke 

exposures to grapevines to demonstrate an accumulation effect 

of volatile phenols in the final wine product (388 mg/L guaiacol, 

93 mg/L  4-methylguaiacol)  with   these   wines  demonstrating 

elevated  smoke-like  aromas  of ‘burnt  rubber’,  ‘smoked meat’ 

and ‘leather’. In another study conducted in British Columbia, 

application  of smoke  to  field-grown  grapevines  pre-veraison, 

post-veraison  and at maturity  resulted in the detection  of guai- 

acol (2 to 26 mg/L) in grapes; however,  the study did not inves- 

tigate   the   effects  of  smoke   exposure   on   resultant   wines 

(Sheppard   et al.  2009).  Therefore,  previous  studies,  to  date, 

have not considered  the implication  of smoke exposure  across 

the key phenological stages of an entire growing season nor 

between  subsequent growing seasons. 

The current  study builds on previous research to investigate 

the effect of smoke exposure  of grapevines over three  growing 

seasons. Smoke applications were made over a comprehensive 

range of phenological stages and the development of volatile 

phenols and sensory smoke aromas in resultant wines were 

investigated.  This enabled  the  assessment  of treatment effects 

both within  and between  seasons. 

 

Materials  and methods 

Trial establishment 
The trial was established on a commercial vineyard (Vitis vinifera 

cv. Merlot) located at Capel (33.575°S, 115.577°E) in the 

Geographe   region  of  Western   Australia.  The  trial  site  was 

selected because of its remote  location from forested areas and 

infrequent history of smoke exposure. During the 3-year period 

of the trial, no incidences of external smoke generation  and 

exposure  were observed. 

 

Smoke generation and application 
Proven methodology  previously employed for the application of 

smoke  to  field-grown  grapevines  (Kennison  et al. 2009)  was 

utilised in this study. In brief, smoke was produced from the 

combustion  of dry  barley  straw  in  a  50-L lidded  drum  and 

pumped   through outlet  piping  into  tents  (6 m  long ¥ 2.5 m 

high ¥ 2 m wide) which enclosed field-grown grapevines (three 

vines  per  replicate).  Tents  were  constructed   from  galvanised 

steel and greenhouse-grade plastic (Solaweave, Gale Pacific, 

Braeside, Vic., Australia)  that  enabled  light transmission.  The 

density (30% obscuration/m) and duration  (min) of smoke 

applications were measured using portable nephelometer 

equipment (VESDA Laser FOCUS™ VLF-250, Mount  Waverly, 

Vic., Australia). 

In order to assess smoke application to a range of grapevine 

growth   stages   and   the   reproducibility   of  this   application 

between seasons, smoke treatments were applied to field-grown 

grapevines over three growing seasons (2006/2007, 2007/2008 

and 2008/2009). In each season, different grapevines were 

selected for experimental treatments in order to minimise any 

potential carry-over effects. Experimental  treatments comprised 

the application of smoke to grapevines (in triplicate, three vines 

per replicate) for 30 min. Smoke was applied to different grape- 

vines at various phenological stages of grapevine growth as 

designated by the modified Eichhorn-Lorenz  (E-L) system 

(Coombe 1995).  The E-L system was further  modified for this 

study   to  incorporate   additional   smoke   application   timings 

(Table 1).  Smoke  was  applied  to  field-grown   grapevines   at 

least once  (n = 1 to 3) at the  growth  stages corresponding  to 

E-L:  12   (10-cm   shoots);   23   (full   bloom);   31   (pea-sized 

berries); 32 (bunch  closure); 35(a) (onset of veraison); 35(b) 

(veraison + 3d); 35(c)  (veraison + 7d); 35(d)  (veraison + 10d); 

36(a) (intermediate total soluble solids (TSS)); 36(b) (interme- 

diate TSS + 3d); 37 (berries not quite ripe); and 38 (harvest). 

Separate  smoke treatments were  performed  to investigate: 

the potential sequestration of smoke constituents  within the 

grapevine; the phenological carry-over potential of smoke con- 

stituents’ compounds;  and the recovery of grapevines from one 

season to another. In order to ensure a heavy smoke application, 

repeated  smoke  treatments (n = 8) were  applied  to  the  same 

vines from  the  onset  of veraison  to harvest  with  wine  made 

from fruit of these vines for sensory and chemical analysis. Wine 

was also made from fruit produced by the same vines in the 

following grapegrowing  season to investigate  grapevine  recov- 

ery and the potential  carry-over  of smoke aromas and flavours 

between  years. 

 

Winemaking 
Wine was produced  from all smoke and control  treatments in 

each year of the trial when grapes reached TSS of 21.4 ± 2.9°Brix 

as measured  by refractometry.  Fruit (approximately 15 kg) from 

each replicate (n = 3) of smoke and control (unsmoked) treat- 

ments  was processed separately  to avoid contamination. Fruit 

was crushed, destemmed  and inoculated  with Saccharomyces cer- 

evisiae EC1118 yeast (Lallemand Inc., Montreal, Canada) at a rate 

of 200 mg/L and fermented  in 15-L stainless steel fermentation 

vessels. On average, fermenting  musts were plunged twice daily 

until the wine approached  a TSS of 0°Brix before being pressed 

off skins. Wines were then inoculated for malolactic fermentation 

with  Oenococcus oeni (Viniflora Oenos, Chr. Hansen,  Hørsholm, 

Denmark) and were stored in 4.6-L glass fermenters at 15°C until 

completion of malolactic fermentation as determined by quanti- 

tative  malic  acid  analysis  (Iland  et al.  2004).  Post-malolactic 

fermentation, wine sulphur  dioxide (SO2) concentrations were 

measured   by  aspiration   (Iland  et al.  2004)  and  adjusted  to 

30 ppm. Wines were subsequently cold stabilised for 28 days at 

2°C. Wines were subsequently filtered (5 mm) and bottled. 

 

Quantitative analysis of guaiacol and 4-methylguaiacol 
Gas chromatography-mass spectrometry  (GC-MS) was utilised 

to determine  guaiacol and 4-methylguaiacol concentrations in 

both grape and wine samples using previously reported meth- 

odology  (Spillman  et al. 1997,  Pollnitz et al. 2004,  Kennison 

et al.  2008).  Guaiacol  and  4-methylguaicol   were  selected  as 

analytes of interest  as they have previously been used as indi- 

cators of smoke taint (Kennison  et al. 2009). 

 

Sensory analysis of wine aroma 
Sensory analysis of all wines in this study was conducted  by 

quantitative descriptive analysis (Meilgaard et al. 2007) using a 

trained panel of eight people (four males and four females). 

Panellists were  pre-screened and  selected for experience  with 
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Table 1.  Key grapevine growth stages from the modified E-L system and additional growth stages used for reference 

in this study. 

 

 

 

 

 

Stage 

number 

Modified E-L grapevine growth stage† Alternative interpretation of modified 

E-L growth stages for reference 

in this study 
 

Description Stage number Designation 

 

12 5 leaves separated; shoots approximately 10 cm in length; inflorescence clear 12 10-cm shoots 

23 17–20 leaves separated; 50% caps off; full bloom 23 Full bloom 

31 Pea-sized berries (7 mm diameter) 31 Pea-sized berries 

32 Beginning of bunch closure; berries touching (if bunches are tight) 32 Bunch closure 

35 Berry colouring and softening begins; berries begin to enlarge 35(a) Onset of veraison 

35(b) Veraison + 3d 

35(c) Veraison + 7d 

35(d) Veraison + 10d 

36 Berries with intermediate TSS values 36(a) Intermediate  TSS 

36(b) Intermediate TSS + 3d 

37 Berries not quite ripe 37 Berries not quite ripe 

38 Berries ripe for harvest 38 Harvest 

 

†Adapted from Coombe 1995. TSS, total soluble solids. 
 

 

wine sensory education  (i.e. >100 h), availability, interest in the 

study,  being non-smokers, regular  wine  drinkers  and  of good 

health.  Panellists’ ages ranged between  21 and 30 years and all 

were able to detect the aroma of smoke taint in red wines at a 

predetermined threshold  ascertained by Kennison et al. (2007). 

Prior to formal wine evaluation,  all panellists participated in 

eight training  sessions where  they identified and agreed on six 

descriptive aroma terms and learnt to measure the intensity of 

smoke aroma  on an unstructured 100-point  line scale. Formal 

wine aroma evaluation was conducted on 30 wines (i.e. two 

replicates of 15 wine treatments) over six sessions each held at 

the same time of day on different week days. Samples (20 mL) 

were presented  in three-digit  coded ISO standard  wine tasting 

glasses that  were lidded with glass covers to avoid contamina- 

tion of other samples and the testing area. Sample order was 

completely randomised  with each panellist receiving a different 

sample at any one time in order to avoid bias. In order to avoid 

sensory fatigue, each panellist left the testing area for approxi- 

mately 10 min to an outdoor environment after evaluating each 

sample. 
 

Statistical methods 
All data was analysed  using Genstat  11th  Edition (VSN Inter- 

national  Limited, Hemel Hempstead,  UK). Analysis of variance 

(ANOVA) was utilised  to analyse  wine  sensory  and  chemical 

data  at the  5%  level of significance (P < 0.05).  Further  wine 

sensory data was analysed by Principal Component Analysis 

(PCA). Chemical data from the phenological smoke application 

experiments  was analysed by the residual maximum  likelihood 

(REML) procedure  that was utilised to fit a linear mixed model 

over 3 years (fixed effect = smoke treatment). 

 

Results 

Effects of smoke exposure on chemical properties of wine 
The degree of smoke taint, according to guaiacol and 4- 

methylguaiacol  content  of wine, varied considerably depending 

on  the  phenological  timing  of grapevine  exposure  to  smoke. 

Over the three  growing seasons, the concentration of guaiacol 

and  4-methylguaiacol in wines  ranged  from a low of 0.6 and 

0.3 mg/L,  respectively,  for  wines  corresponding   to  grapevine 

smoke  exposure   at  ‘10-cm  shoots’,  to  a  high  of  60.7  and 

14.1 mg/L, respectively, for wines made from vines exposed to 

smoke  at ‘veraison + 7d’ (Figure 1). Control  wines,  i.e. wines 

produced from fruit harvested from unsmoked  vines, contained 

either  no  detectable  or  trace  concentrations of guaiacol  (i.e. 

<2 mg/L) and 4-methylguaiacol (i.e. <0.5 mg/L). As in previous 

studies    (Kennison    et al.    2007,    2008),    4-methylguaiacol 

occurred at lower concentrations than guaiacol in all wines, 

however,   followed  similar  trends   across  the  three   growing 

seasons. 

On the  basis of guaiacol and  4-methylguaiacol concentra- 

tion in wine, three key periods of susceptibility to smoke expo- 

sure were identified within the annual  cycle of active grapevine 

growth.  These were period 1 (P1), defined  as the  period from 

‘10-cm shoots’ to ‘full bloom’ when exposure to smoke resulted 

in relatively low concentrations of volatile phenols observed in 

wine; period 2 (P2) defined from the stage of ‘berries of pea size’ 

to the  ‘onset of veraison’ during  which  moderate  but variable 

concentrations of volatile phenols  were observed in wine; and 

period  3  (P3)  defined  from  the  stage  of  ‘veraison + 7d’  to 

‘harvest’ during which the highest concentrations of volatile 

phenols were observed in wine (Figure 1). Average guaiacol and 

4-methylguaiacol concentrations in wine were 1.0 and 0.5 mg/L, 

respectively, for P1; 21.4 and 5.0 mg/L, respectively, for P2; and 

48.9 and 8.9 mg/L, respectively, for P3. 

 

Effect of smoke exposure on sensory properties of wine 
Trained panellists rated the intensity of smoke-like aromas such 

as ‘burnt rubber’, ‘smoked meat’, ‘leather’ and ‘disinfectant/ 

hospital’  to  quantify   the   degree  of  taint   present   in  wine, 

together  with desired wine attributes  such as ‘red berry fruits’ 

and ‘confection’ (Table 2). An ANOVA of sensory data showed 

the  wine  treatments to be a source  of variation  (P < 0.001  to 

P < 0.05)  for all aroma  attributes  except  for the  wine  aroma 
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Figure 1. Concentration of 
guaiacol and 4-methylguaiacol 
in wine made from fruit of 
vines exposed to a single 
smoke application at either E-L 
12 (10-cm shoots), 23 (full 
bloom), 31 (pea-sized berries), 
32 (bunch closure), 35(a) 
(onset of veraison), 35(b) 
(veraison + 3d), 35(c) 
(veraison + 7d), 35(d) 
(veraison + 10d), 36(a) 
(intermediate TSS), 36(b) 
(intermediate  TSS + 3d), 37 
(berries not quite ripe) or 38 
(harvest). Three separate 
periods of vine sensitivity to 
smoke taint uptake are 
represented by P1 (low 
uptake), P2 (variable uptake) 
and P3 (high uptake). Data is 
from 2006 to 2008, analysed 
by REML to produce predicted 
means and standard errors. C, 
control; n = 3 to 9; error bars 
show two standard errors of 
the mean. 

 

 

Table 2.  Analysis of variance for wine sensory attribute  ratings of ‘burnt rubber’, ‘smoked meat’, 

‘leather’, ‘disinfectant/hospital’,  ‘red berry fruits’ and ‘confection’. 
 

Aroma descriptor Wine (W) Panellist (P) Rep (R) W ¥ P P ¥ R W ¥ R 

 

Burnt rubber 
 

4.922*** 
 

4.000*** 
 

2.133 
 

2.21** 
 

0.81 
 

1.15 

Smoked meat 5.844*** 2.994*** 0.08 1.36 0.65 1.84 

Leather 2.342* 3.747*** 1.052 1.78* 0.33 1.31 

Disinfectant/hospital 2.455* 9.265*** 0.881 1.89* 0.66 0.53 

Red berry fruits 2.399* 7.236*** 1.813 0.97 1.35 1.45 

Confection 1.812 8.161*** 3.358 0.73 1.20 2.12* 

 

F ratios  are shown as sources of variation. Significance indicated by *P < 0.05, **P < 0.01 and ***P < 0.001. 

Variance is represented for wine (W), panellist (P), replicate (R), wine by panellist (W ¥ P), panellist by replicate (P ¥ R) and wine by 

replicate (W ¥ R). 

 

 

attribute  of ‘confection’. Panellists were also a source of varia- 

tion (P < 0.001) in wine sensory data, however,  were consistent 

in their evaluation  between  sessions. A wine by panellist inter- 

action  in  the   aroma   of  ‘burnt   rubber’  (P < 0.01),   ‘leather’ 

(P < 0.05)    and    ‘disinfectant/hospital’    (P < 0.05)    was   also 

present.  Wine replicates showed  reproducibility  as not being a 

source  of  variation  except  for  the  wine  by  replicate  aroma 

attribute  of ‘confection’. 

Panellists determined all aroma  characters  to be present  in 

the 3-year wine set with wine-like  aromas of ‘red berry fruits’ 

and ‘confection’ in higher mean  intensities  (44.6 to 44.9) than 

smoke-like  aromas (15 to 18.1; Figure 2). However, while the 

intensity  of smoke-like aromas was more subtle the wines that 

exhibited higher expression of smoke-like aromas generally also 

exhibited  low wine-like  aromas  and  vice versa. PCA of mean 

aroma results accounted  for 94.4% of overall variation as being 

comprised of principal component 1 (88.5%)  and 2 (5.9%) 

(Figure 3). Principal component 1 consists of positive loadings 

on smoke-like  aromas of ‘burnt  rubber’ (0.42), ‘smoked meat’ 

(0.41),  ‘leather’  (0.41),  ‘disinfectant/hospital’  contrasted  with 

negative  loadings  on  wine-like  aromas  of  ‘red  berry  fruits’ 

(-0.41) and ‘confection’ (-0.4). Principal component 2 is domi- 

nated  by negative  loadings  on  all aroma  attributes  (-0.19  to 

-0.55) except for the attribute  of ‘disinfectant/hospital’  that has 

a positive loading (0.15). 

The intensity  of specific wine aromas was found to vary 

depending on the phenology at the time of smoke application to 

grapevines (Figure 3). Wines produced  from fruit of unsmoked 

(control)  grapevines  and fruit produced  from vines smoked in 

P1 contained  dominant wine-like  aromas  of ‘red berry  fruits’ 

and ‘confection’. Conversely, wines produced from grapevines 

exposed  to  smoke  at  E-L stage  35(b)  (veraison + 3d),  35(c) 

(veraison + 7d),  35(d)  (veraison + 10d)  and  36(a)  (onset   of 

veraison)   in  P3  were  dominated   by  smoke-like   aromas  of 

‘disinfectant/hospital’,    ‘burnt   rubber’,   ‘smoked   meat’   and 

‘leather’. Interestingly, wine made from fruit of grapevines 

exposed  to smoke  at E-L 31 (pea-sized  berries)  from  P2 had 

elevated smoke-like  aromas, levels similar to those detected in 

wines  made  from  fruit  of vines exposed  to smoke  at E-L 38 

(harvest;  Figure 2).  
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Figure 2. Mean aroma intensity descriptor scores of ‘burnt rubber’, ‘smoked meat’, ‘leather’, ‘disinfectant/hospital’, ‘red berry fruits’ and 
‘confection’ detected in wines made from grapes of vines exposed to smoke at either E-L stage 12 (10-cm shoots), 23 (full bloom), 31 
(pea-sized berries), 32 (bunch closure), 35(a) (onset of veraison), 35(b) (veraison + 3d), 35(c) (veraison + 7d), 35(d) (veraison + 10d), 36(a) 
(intermediate TSS), 36(b) (intermediate TSS + 3d), 37 (berries not quite ripe) or 38 (harvest). Error bars indicate two standard errors of the 
mean. 

 

 

A relationship  was also evident  between  the concentration 

of guaiacol and  4-methylguaiacol determined by GC-MS and 

that of the smoke and wine-like aromas in wine determined by 

sensory  analysis.  Regression analysis  (not  shown)  revealed  a 

strong  positive  linear  correlation   between   guaiacol  and  the 

smoke-like   aroma   characters    of   ‘burnt   rubber’   (r = 0.8), 

‘smoked meat’ (r = 0.78), ‘leather’ (r = 0.79) and ‘disinfectant/ 

hospital’  (r = 0.87)  and  a  strong  negative  linear  correlation 

between  guaiacol and the wine-like  aroma descriptors of ‘con- 

fection’ (r = -0.84)  and  ‘red berry  fruits’ (r = -0.88).  Guaiacol 

 

 



 

64 

64 

64 

S64 Effect of smoke on grapevine phenology Australian Journal of Grape and Wine Research 17, S5–S12, 2011 

P
ri

n
c
ip

a
l 
c
o

m
p

o
n
e
n

t 
2
 (

5
.9

%
) 

 

 

0.6 
 

0.4 

 

0.2 

-5  -3  -1  1  3  5 

5 

4 

3 

2 
36a  

DH 
1 

 

0 

 

-0.2 
 

-0.4 

C 
 

12 

 

 

 

RBF 

23  36b 

32 

37 
38&31 

35a 

 

 

35b 

35d 

0 
35c 

-1 
BR -2 

-3 
SM 

-4 
 

-0.6 
CF  L 

-5 

-0.6  -0.4  -0.2  0  0.2  0.4  0.6 

Principal component 1 (88.5%) 

 

Figure 3. PCA biplot  of mean wine sensory  scores (  ) made from fruit of vines exposed to smoke application at E-L stage 12 (10-cm shoots), 
23 (full bloom), 31 (pea-sized berries), 32 (bunch closure), 35(a) (onset of veraison), 35(b) (veraison + 3d), 35(c) (veraison + 7d), 35(d) 
(veraison + 10d), 36(a) (intermediate  TSS), 36(b) (intermediate  TSS + 3d), 37 (berries not quite ripe) and 38 (harvest). Aroma descriptors 
are indicated by arrows labelled BR (burnt rubber), SM (smoked meat), L (leather), DH (disinfectant/hospital),  RBF (red berry fruits) and 
CF (confection). C, control (unsmoked) wine. 

 

 

and 4-methylguaiacol were therefore adequate  indicators of the 

intensity  of smoke-like aromas in wine. 

 

Seasonal  effect of smoke exposure on grapes and wine 
In order to investigate grapevine recovery and the potential for 

carry-over  of smoke constituents  from one season to the next, 

repeated  smoke applications  (n = 8) were  applied to the  same 

vines in a single growing season. The most notable  carry-over 

Table 3.  Concentration of guaiacol and 4-methylguaiacol 

in wines made from fruit of vines exposed to eight repeated 

smoke applications from the period of veraison to harvest 

(2006), in comparison to wines made from fruit of the same 

vines  1 year  post-repeated smoke  exposure  (2007)  and 

wines from fruit of control (unsmoked) vines. 

effect was decreased fruit yield of grapevines in the subsequent 

season. In the season of repeated smoke application (i.e. year 1), 

Compound concentration 

(mg/L) in wine 

Yield components 

(average per vine) 

smoked grapevines yielded an average of 11 kg per vine of fruit 

at harvest,  in comparison  to control  vines,  which  yielded  an 
Guaiacol  4- 

methylguaiacol 

Fruit yield 

(kg) 
Bunch 

no. 
average of 15.8 kg per vine (Table 3). In the subsequent season    
(i.e. year 2), the same vines were not exposed to smoke but 

continued  to   produce   reduced   yields  (6.4 kg)  and   bunch 

numbers (73) in comparison to the unsmoked (control) vines, 

which yielded 12.9 kg from 115 bunches. 

However,  from  a  chemical  and  sensorial  perspective,  no 

carry-over  effect from repeated  smoke exposure  was observed 

in the subsequent season. Sensory analysis of wines made from 

grapes harvested  one season after smoke exposure  (i.e. year 2) 

indicated  a low level (not  significant  at P < 0.05)  of ‘smoked 

meat’ aroma,  but these wines also exhibited  intense  ‘red berry 

fruits’ and ‘confection’ aromas, i.e. at similar levels to those of 

the control wine (Figure 4). In the same wines, the concentra- 

tion  of guaiacol  (2 mg/L)  and  4-methylguaiacol (0 mg/L)  also 

showed no chemical carry-over  effect (Table 3). 

 

Discussion 
This study  builds on past research  (Kennison  et al. 2009)  and 

demonstrates that the development of smoke taint depends 

greatly on  the  phenological  timing  of grapevine  smoke  expo- 

sure. In particular,  the timing of peak periods of smoke uptake 

was consistent  over  the  three  growing  seasons.  Furthermore, 

this study has demonstrated that the carry-over effect of smoke 

exposure  between  seasons is limited to physiological responses 

(i.e. yield and  bunch  number) and  there  was no  evidence  of 

sequestration of smoke constituents  by grapevines. To our 

knowledge, this is the first study concerning the development of 

smoke taint as a function  of phenology  for any crop. 

Year 1: smoke applied to vines† 

Smoke 388.3a 93 11.0a 129.3ab
 

Control 4.3b n.d. 15.8b 148.3a
 

Year 2: 1 year post-smoke application 

Smoke 2b n.d. 6.4c  73.7c
 

Control 0b n.d. 12.9d 115.3b
 

 

Means followed by the same letter within columns are not significantly different 

at P ::: 0.05, results are per treatment replicate  (three vines), mean values are 

from three replicates. Fruit yield and average bunch number produced from the 

same grapevines (i.e. for the 2006 and 2007 seasons) are also represented. †Data 

from Kennison et al. 2009. n.d. = not detected. 
 

 

The demonstrable link between phenology and the intensity 

of  smoke  taint  in  wine  enabled  the  identification   of  three 

periods of susceptibility to smoke taint. The first period (P1) 

corresponded  to a low level of smoke  taint  susceptibility  and 

wine  produced   from  fruit  of  grapevines  exposed  to  smoke 

during  this period contained  trace levels of guaiacol (<1 mg/L) 

and  4-methylguaiacol (<0.5 mg/L)  only  (Figure 1).  The domi- 

nant sensory attributes of these wines were ‘red berry fruits’ and 

‘confection’.  The  sensory  panel  gave  low  scores  for  ‘burnt 

rubber’, ‘smoked meat’, ‘leather’ and ‘disinfectant/hospital’ 

aromas  (Figure 2).  The possible reasons  for the  low levels of 

taint following exposure during P1 are most likely related to the 

lack of fruit  because  of the  early  stage of fruit  development 
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and  translocated  between  leaves  and  berries.  In  their  study, 

which incorporated glasshouse-grown  vines, the rates of trans- 

location of the extrogenous  source of labelled guaiacol were 

considered to be slow. If translocation is an important con- 

tributor  to taint accumulation and if the rate is limited, then  it 

is logical that  it will be time  dependent. Smoke  exposure  in 

the late stages of P3 resulted  in markedly  lower levels of taint 

(40.3 mg/L   guaiacol   and   7.3 mg/L   4-methylguaiacol) than 

smoke exposure  in the earlier stages of P3 (60.6 mg/L guaiacol 

and  14.1 mg/L  4-methylguaiacol).  In  the  same  period  (P3), 

there was a strong negative correlation between the timing of 

smoke application  to vines and concentration of both guaiacol 

(r = -0.866)  and  4-methylguaiacol  (r = -0.882)  in  the  wine. 

Control Smoke† Recovery 

 
Figure 4. Mean intensity  ratings  of smoke-like  aromas of ‘burnt 
rubber’, ‘smoked meat’, ‘leather’, ‘disinfectant/hospital’ and wine-like 
aromas of ‘confection’ and ‘red berry fruits’ in smoke tainted wines, 
recovery effects (1 year post-smoke exposure) and wines made from 
fruit of control  (unsmoked)  grapevines. Scale represents 0 = non- 
detectable  aroma to  8 = highly detectable  aroma; †data from 
Kennison et al. 2009. 

 

rather than the lack of uptake by the vine per se. As P1 occurred 

prior  to  fruitset,  there  was  minimal  surface  area  for  direct 

uptake  by the fruit. Furthermore, translocation of smoke com- 

pounds  taken  up by the  vine would  have been limited by the 

lack of a strong source-sink relationship between  the leaves and 

fruit  (Ollat  and  Gaudillère  2000,  Ollat et al. 2002).  Likewise, 

compounds  taken up during this time would be expected to be 

diluted through subsequent vine and fruit growth and may also 

potentially  be  lost through volatilisation  or  degradation  in  a 

similar  manner   to  that  reported   for  pesticides  (Cabras  and 

Angioni 2000). 

During P2, when fruit was present on the vine, increased 

concentrations of taint  were  observed  in wines,  i.e. 21.4 mg/L 

for guaiacol and  5 mg/L  for 4-methylguaiacol. Compared  with 

P1, phenol levels were higher, but absolute levels were variable 

between  seasons and exposure timings. P2 wines exhibited 

enhanced ‘red berry fruits’ and ‘confection’ characters, but often 

also showed enhanced ‘burnt rubber’, ‘leather’, ‘smoked meat’ 

and ‘disinfectant/hospital’  characters. This period comprises the 

initial period of rapid berry growth via cell division, followed by 

a lag phase  of slowed  growth  and  seed maturation  (Coombe 

1992,  Mullins  et al. 2000).  During  this  phase,  bunches  are  a 

comparatively  weak sink for photosynthates until  the onset of 

veraison  (Hale and  Weaver  1962,  Ollat et al. 2002).  P2 con- 

cludes with a heightened level of smoke taint  for wines made 

from fruit of vines exposed to smoke 3 days after veraison. This 

may  represent  a transition  from  P1 to  P3 or  even  a distinct 

period in itself. 

The highest risk period (P3) for the development of smoke 

taint corresponded  to smoke exposure  between  ‘veraison + 7d’ 

and  harvest.  Elevated concentrations of volatile phenols  were 

measured in wines, being on average, 60.7 mg/L for guaiacol and 

14.1 mg/L  for 4-methylguaiacol. Wines  also exhibited  intense 

‘leather’, ‘smoked meat’ and ‘burnt rubber’ aromas and were 

generally disagreeable to panellists. The timing of P3 smoke 

applications  corresponded  with  the  grape  berry  ripening,  i.e. 

when  bunches  represent  major  carbohydrate sinks  (Coombe 

1992, Ollat et al. 2002). The development of smoke taint during 

P3 is therefore  likely to indicate both  direct berry uptake  and 

translocation from leaves to the berry. 

Hayasaka  et al.  (2010a)   demonstrated  that   the   marker 

compound,  guaiacol,  was  assimilated  by  leaves,  conjugated 

This indicates that  there  is likely to be a rate limitation  in the 

translocation of taint compounds  to the fruit and this has 

implications  for the  timing of harvest  relative to the  timing of 

smoke exposure. 

Smoke  taint  was not  found  to  carry-over  in  wine  in  the 

season that followed high levels of smoke exposure although 

grapevine yield was reduced. The reduced yield from smoke- 

exposed  vines (6.4 kg) was found  to be substantially  lower in 

relation to those vines that were not exposed to smoke (12.9 kg/ 

vine). The reduction in vine yield may be related to the negative 

impact that smoke could have on the photosynthetic capacity of 

the  vine.  A short  duration  (1 min)  of smoke  has been  docu- 

mented  to reduce  the  stomatal  conductance, CO2  assimilation 

rate and intercellular CO2 levels of Chrysanthemoides monilifera 

with  full  plant  recovery  not  achieved  for  24 h  (Gilbert  and 

Ripley 2002). In grapevines, smoke exposure has been shown to 

decrease the grapevines’ ability to accumulate sugar in grape 

berries and has produced  damage on leaf surfaces as evidenced 

by necrotic  lesions  (Kennison  et al. 2009).  The reduction  in 

grapevine  yield may therefore  likely be a consequence of the 

effect that smoke may have on the physiological functioning  of 

the vine. 

The current  study raises several important implications for 

the  wine industry.  Firstly, if grapevine  smoke exposure  occurs 

early in the grapevine growth cycle, i.e. prior to flowering, then 

the  intensity  of smoke  taint  in resulting  wines  is likely to be 

relatively low. However, if smoke exposure occurs between fruit 

set and harvest, then there is far greater potential for the devel- 

opment of smoke taint in wine, so the presence of marker 

compounds should be further investigated in smoke-exposed 

grapes prior to vinification.  Since it has now  been  established 

that smoke-derived volatile phenols are conjugated following 

smoke exposure  (Hayasaka  et al. 2010b),  detection  of marker 

compounds  should involve acid hydrolysis of juice samples (as 

described by Kennison et al. 2008), small-scale fermentations or 

direct measurement of guaiacol glycoconjugates (Dungey et al. 

2011). However, if smoke exposure occurs immediately prior to 

harvest then smoke taint could be minimised if fruit is harvested 

as soon as possible after the exposure.  To avoid the carry-over 

yield reduction  effect caused by high levels of smoke exposure, 

consideration may need to be given to retaining higher vine bud 

numbers  in the season following smoke exposure. 
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Abstract 

Background and aims: 

The study aimed to determine the minimum amount of smoke exposure required to 

create smoke taint in wine as detected by wine sensory and chemical analysis. 

Methods and results: 

Smoke was applied to field-grown Merlot grapevines at high densities (5, 10 and 20% 

obs/m) for short durations (5, 10 and 20 min) and a low smoke density (2.5% obs/m) for 

long durations (10, 20, 40 and 80 min).  The minimum smoke exposure that created a 

difference in wine characteristics was 5% obs/m for 5 min.  Wines produced from 2.5% 

obs/m smoke for 80 min and 20% obs/m smoke for 20 min contained accentuated levels 

of guaiacol, 4-methylguaiacol and smoke related wine sensory characters. 

Conclusions: 

This study demonstrates the duration and density of smoke exposure required to 

determine the development of smoke related aromas, flavours and compounds in wine.  

The minimum smoke application of 5% obs/m for 5 min was found to alter wine 

characteristics.  Higher smoke densities resulted in increased intensity of smoke related 

sensory characters in wine. 

Significance of the study: 

This is the first known paper investigating smoke density and duration effects on the 

development of smoke taint in wine providing information to the wine industry to 

determine the risk of potential smoke taint development subsequent to grapevine smoke 

exposure. 

 

 

 

 

Keywords: gas chromatography-mass spectrometry, grapevines, guaiacol, smoke taint, 

Vitis vinifera, volatile phenols, wine 
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Introduction 

Smoke derived taint in grapes and wine is an issue of increasing significance for wine 

production internationally.  Viticulture regions in both the northern and southern 

hemisphere have been negatively affected by smoke derived taint with costs flowing on 

to wine markets and adversely impacting wine brands (Høj et al. 2003, Krstic et al 2007, 

Mira de Orduña 2010, Zybach et al. 2009).  Due to climate change, an increase in fire 

events is occurring resulting in more frequent exposure of viticultural areas to smoke 

(Mira de Orduña 2010, Zybach et al. 2009). 

 

The connection between the atmospheric smoke exposure to grapevines and the 

development of smoke-like aromas in resultant wine has been well documented (Høj et 

al. 2003, Kennison et al. 2007, 2009, Sheppard et al. 2009).  Wines made from the fruit 

of vines exposed to smoke exhibit ‘smoky’, ‘burnt’, ‘salami’, ‘smoked meat’, ‘burnt 

rubber’, ‘leather’ and ‘ash’ aroma and flavour characteristics (Høj et al. 2003, Kennison 

et al. 2009).  When smoke taint characteristics are of a noticeable or high intensity to the 

wine consumer, the wine product can be unpalatable and is unfit for purpose.  These 

wines have been shown to contain elevated concentrations of key indicator compounds 

such as guaiacol and 4-methylguaiacol (Kennison et al. 2009, 2011).  In controlled 

studies, smoke application to field-grown grapevines, results in an elevation of smoke 

related aromas and compounds in final wines (Kennison et al. 2011).  In addition, smoke 

exposure to grapevines is cumulative with repeat smoke application from the post 

veraison period to harvest resulting in proportional increases in the concentration of 

smoke-like compounds and aromas in wine (Kennison et al. 2009). 

 

The extent of development of smoke taint in wine following smoke exposure varies 

during the annual grapevine growth cycle (Kennison et al. 2011).  Smoke exposure to 

grapevines (cv. Merlot) early in the grapevine growing season, from shoots 10 cm to 

full-bloom, imparted a negligible effect.  However, smoke exposure to grapevines mid-

season, from berries pea size to the onset of veraison, results in variable (low to 

medium) in smoke uptake and there is a high susceptibility to smoke uptake and taint 
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development late in the growing season, i.e. from 7 days post veraison to harvest 

(Kennison et al. 2011). 

 

Scientific information on the effect of smoke density and duration on the chemical and 

sensory properties of food is limited (Codex Alimentarius Commission 2009).  The 

smoking of food is a centuries old tradition utilized to impart smoke flavouring, colour 

and aroma and to improve food storage and preservation (Tóth and Potthast 1984, 

Fellows 2000).  The magnitude of smoke influence on food is a function of smoke 

density, velocity, duration, temperature and humidity indicating that the rate of 

absorption by food is limited by the rate of deposition (Tóth and Potthast 1984, Boyle 

and Schmidt 1999, Ogbadu 2000, Fellows 2009).  Rather than investigating the sensory 

implications of smoke exposure on food, studies have concentrated on the effect of 

smoke density, duration and generation conditions (such as temperature and humidity) 

on the food safety impacts in order to avoid bacterial contamination (Fellows 2009).  

There are no published studies that relate to fruit, grapes or wine. 

 

Given that smoke events within the landscape are frequent and highly variable, the wine 

industry needs to be able to ascertain the critical level of exposure which may create an 

industrial concern.  Research to date has investigated the role of bushfire smoke 

exposure to field-grown grapevines on the chemical and sensory effects of resultant 

wine.  The research has been conducted subsequent to fire events with no capacity to 

measure the smoke density or the exposure duration (Hoj et al. 2003, Whiting and Krstic 

2007).  Controlled applications of smoke to field-grown grapevines have been conducted 

however attempts to quantify the smoke intensity in these experiments are limited.  

Smoke applications have either been prepared from a known fuel quantity (Sheppard et 

al. 2009), have had a single duration (30 min) (Kennison et al. 2008) or single and 

repeated smoke applications (n = 8) to the same grapevines for only one smoke density 

and duration (200 µg/m3 for 30 min) (Kennison et al. 2009).  All treatments have proven 

that the elevation of smoke related properties in grapes and wine, including compounds, 

aromas and flavours, is possible subsequent to smoke exposure however the minimal 

level of smoke exposure that leads to the development of smoke taint in wine has not 
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been determined. As such, the risks associated with smoke exposure are unable to be 

managed by the wine industry. 

 

Optical properties of smoke derived from fire events are highly variable depending on 

the fire location and combustion conditions (Garland et al. 2008).  The measurement of 

smoke can be complex requiring the employment of numerous equipment and analysis 

methodologies (Adam et al. 2004, Lee et al. 2005) such as the highly sensitive and 

reliable nephelometry equipment for the detection of smoke (Adam et al. 2004). 

 

This study builds on previous research to investigate the effect of smoke density and 

duration on the development of smoke taint related sensory and chemical attributes in 

wine.  The aim of the study was to determine the minimal amount of smoke required to 

create a commercially significant level of smoke taint in wine. 

 

 

Methodology 

Smoke application apparatus 

Smoke apparatus and application was reproduced from previously proven methodology 

of smoke application to field-grown grapevines (Kennison et al. 2009).  In brief, the 

smoke application apparatus was comprised of a steel framed tent covered in greenhouse 

fabric (Solaweave, Gale Pacific, Braeside, Vic., Australia) constructed to surround field-

grown grapevines for the application of smoke at ambient temperature.  A smoke 

generator, constructed from a steel drum (50 L) as a vessel to contain fuel and fire, was 

used to produce smoke to be applied to grapevines.  A fuel of dry barley straw was 

ignited within the drum and the smoke from the fire was forced, by a 12 volt air pump, 

from the drum through outlet hosing into the tent.  Smoke production was controlled by 

an outlet valve that could be physically manipulated to regulate the density and duration 

of smoke production. 
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Smoke treatments to field-grown grapevines 

Smoke was applied to field-grown grapevines (cv. Merlot) within the grapevine growth 

period of 7 days post veraison to harvest as this is the period defined as possessing high 

sensitivity for smoke uptake by the grapevine and subsequent development of smoke 

taint in wine (Kennison et al. 2011).  Smoke treatments were developed in line with the 

project aim of ascertaining the minimum amount of smoke density and duration required 

to create smoke taint in wine.  Smoke was applied to field-grown grapevines at a range 

of high densities (5, 10 and 20% obs/m) and short durations (5, 10, 20 min).  This smoke 

experiment will be referred to as ‘high smoke density, short duration’.  Subsequent to 

the initial smoke application, it was established that further investigation was required to 

determine the effects of a lower smoke density for a longer duration.  Therefore, smoke 

was applied to field grown grapevines at one low density (2.5% obs/m) for long 

durations of 10, 20, 40 and 80 min.  This smoke experiment will be referred to as ‘low 

smoke density, long duration’.  All smoke applications applied to field-grown 

grapevines were replicated in triplicate.  A control treatment, consisting of fruit from 

unsmoked vines grown in identical conditions, was also included in each of the 

experiments and replicated in triplicate. 

 

The reproducibility of smoke application was monitored by use of nephelometry 

equipment (VESDA Laser FOCUSTM VLF-250, Victoria, Australia) that recorded the 

smoke density and duration over the course of the smoke treatment.  Nephelometry 

equipment is routinely used for the detection of smoke, has been successfully used in 

past experimentation of smoke application to grapevines (Kennison et al. 2011) and 

found to be accurate and precise in measurement of the concentration of smoke 

(Williamson and Bowman 2008).  Smoke density is recorded as the percentage of visual 

obscuration over a distance of one meter and recorded in measurements of % obs/m.  

The duration of smoke exposure was measured in minutes (min).   

 

Wine production 

Wines were produced from grapes of grapevines exposed to each smoke density and 

duration concentration and from fruit of control (unsmoked) vines.  Fruit (approx. 11 kg 
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per treatment replicate, n = 3) was harvested from grapevines when the total soluble 

solids (TSS) reached 22.2 ± 1.5 °Brix measured by refractometry (Iland et al. 2004).  

Samples of smoked and control grape juice were analysed for free amino nitrogen 

(FAN) as per methodology described by Dukes and Butzke (1989).  Fruit was 

destemmed and crushed, inoculated with EC1118 Saccharomyces cerevisiae yeast 

(Lallemand Inc., Montreal, Canada) at a rate of 200 mg/L.  Musts were fermented on-

skins in 15 L stainless steel fermentation vessels, the skin cap was plunged once daily 

until TSS approached 0 °Brix.  All wines were pressed from skins at the same time, 

transferred to 5 L enclosed glass fermentation vessels and inoculated with Oenococcus 

oeni (Viniflora Oenos. Chr. Hansen, Denmark) for malolactic fermentation.  On 

completion of malolactic fermentation (< 0.1 g/L malic acid) as determined by 

enzymatic analysis, wine was racked from malolactic lees, wine sulphur dioxide (SO2) 

concentrations were adjusted to 30 ppm and wines were cold stabilized at 2 oC for 28 

days.  Subsequent to cold stabilization SO2 concentrations were adjusted to a total of 60 

ppm and the wine was then filtered (5 µm) and bottled. 

 

Gas chromatography-mass spectrometry analysis 

Guaiacol and 4-methylguaiacol are known to have ‘smoky’, ‘toasted’ and ‘ash’ aromas 

(Boidron et al. 1988) and were measured in all grape and wine samples.  Guaiacol and 4-

methylguaiacol have been detected in elevated concentrations in grapes and wines made 

from fruit of grapevines exposed to smoke (Kennison et al. 2007).  As such, guaiacol 

and 4-methylguaiacol have been used as effective markers for the detection of smoke 

taint in grapes and wine following smoke exposure to vines.  In this study, guaiacol and 

4-methylguaiacol were analysed by gas chromatography-mass spectrometry (GC-MS) as 

per methods detailed by Pollnitz et al. (2000, 2004). 

 

Wine sensory analysis 

Experimental wines were analysed for the detection of difference by a panel of 130 

regular wine consumers.  Untrained wine consumers were used to determine if the 

regular wine consumer could detect a difference between the smoked and unsmoked 

wines and at what level of smoke density and duration a difference was readily 
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perceptible.  Panellists were pre-screened and selected on the basis of being non-

smokers, regular wine consumers, of good health, available, interested in wine tasting 

and over the age of 21 years.  The analysis method employed was the triangle test 

(Meilgaard et al. 2007) as per the Australian Standard 2542.2.2 (2005).  Wines were 

evaluated by panellists in a dedicated sensory facility containing 6 separate sensory 

booths with lighting used to mask colour differences in wines.  Wine samples (20 ml) 

were presented to panellists in 3 digit coded ISO wine glasses that were lidded to avoid 

aroma release and contamination.  An incomplete balanced block design was used such 

that each panelist assessed 9 wines but did not assess all wines however each wine 

produced in this research was tasted a total of 30 times during the wine sensory analysis.  

Samples of wine produced from fruit exposed to smoke (A) and the control (B) were 

presented so that all permutations of presentation order (i.e. AAB, ABA, BAA, BAB, 

ABB, BBA) were randomized across the panellists in order to control bias due to 

presentation order.  Each panellist evaluated 3 triangle tests (a total of 9 wine samples 

per panellist). 

 

Further wine sensory analysis, Quantitative Descriptive Analysis (QDA) (Meilgaard et 

al. 2007), was employed to quantitatively characterize the perceived differences in the 

aroma and flavour attributes of all wines.  A panel of 11 people (six males and five 

females) was selected for QDA based on their interest in wine tasting, availability, being 

regular wine consumers, in good health, non-smokers and having experienced wine 

sensory education at a tertiary level.  Panellists’ ages ranged between 21 and 50 years.  

Prior to formal wine sensory assessment, all panellists underwent training sessions 

where they identified and agreed on a total of nine aroma and flavour descriptive terms 

and learnt to measure the intensity of these descriptors on an unstructured 100-point line 

scale.  Prior to formal wine evaluation, all wines were informally tasted by a panel of 

five experienced wine tasters for the presence of off-flavours and to detect any wine 

faults.  Formal wine evaluation was conducted in a dedicated sensory facility with each 

panellist assigned to an isolated tasting station.  Wines (30 mL) were presented to 

panellists in three-digit coded standard ISO wine tasting glasses that were lidded to 

avoid contamination of the testing area and other samples.  All wines were coded and 
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presented in a randomized order so that no two panellists received the same code or the 

same wine at any one time.  In order to avoid sensory fatigue, panellists were required to 

wait at least 2 min between testing samples and were required to leave the tasting area to 

an external outdoor environment regularly. 

 

Statistical analysis 

All data were analysed using Genstat 11th Edition (VSN International Limited, Hemel 

Hempstead, UK).  The significance of the main effects of treatments and, where 

appropriate, their interaction were analysed using analysis of variance (ANOVA) with 

mean comparisons performed by least significant difference (LSD) multiple comparison 

tests at P ≤ 0.05.  Correlation analysis was performed on some variables.  Wine sensory 

data from triangle tests was analysed by use of statistical tables detailed by Meilgaard et 

al. (2007) and data from Quantitative Descriptive Analysis was analysed by ANOVA 

and Principal Component Analysis (PCA). 

 

Results 

Smoke effects on grapes and wine 

1. High smoke density, short duration experiment 

In this experiment smoke was applied to field-grown grapevines at a range of high 

smoke densities (5, 10 and 20% obs/m) for short durations (5, 10, 20 min).  These 

treatments did not produce a difference in grapevine fruit yield or alter the yield 

components of bunch weight, berry weight or bunch number per vine at harvest (data not 

shown).  Analysis of grape must at harvest also did not indicate a significant effect of 

treatments on total soluble solids (TSS) however a difference was detected in the free 

amino nitrogen (FAN) concentration.  FAN concentration ranged from 88 to 179 mg/L 

and was highest (179 mg/L) in grape must from grapevines exposed to 20% obs/m 

smoke for 20 min (Table 1).  The lowest FAN concentration (88 mg/L) was detected in 

the must from unsmoked (control) grapes. 

 

The duration of grape must fermentation was influenced by the application of high 

smoke densities for short durations.  The fermentation duration for unsmoked (control) 
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musts was 8.7 days with musts of grapes exposed to smoke completing primary 

fermentation in 5.7 to 8 days (Table 1).  Musts produced from grapes exposed to 20% 

obs/m smoke for 20 min completed fermentation in the shortest amount of time (5.7 

days). 

 

Guaiacol and 4-methylguaiacol were measured as analytes of interest in the detection of 

the presence of smoke taint in grapes and wine.  They were not detected in any grape 

samples from the high smoke density – short duration experiment.  However, elevated 

levels of these compounds were detected in wines produced from fruit in the high smoke 

density for short durations experiment.  For example, guaiacol and 4-methylguaiacol 

were elevated in wines produced from grapes exposed to 20% obs/m smoke for 20 min 

(6.3 and 2.7 µg/L, respectively) and 10% obs/m for 20 min (6.3 and 2.3 µg/L, 

respectively) in comparison to unsmoked (control) wines (2.3 and 1.3 µg/L, 

respectively) (Table 2).  All smoke treatments were equal or higher in the concentration 

of guaiacol and 4-methylguaiacol than the control ranging from 2.3 to 6.3 µg/L guaiacol 

and 1.3 to 2.7 µg/L 4-methylguaiacol (Table 2). 

 

For the concentration of guaiacol in wine, analysis of variance shows smoke density was 

not a source of variation on its own (P < 0.07).  However, smoke duration (P < 0.003) 

and the interaction of density x duration (P < 0.003) were significant sources of 

variation.  Graphical representation of this data (Figure 1) shows a positive interaction 

between smoke duration and the concentration of guaiacol for wines made from grapes 

exposed to 10 and 20% obs/m smoke for 5, 10 and 20 min.  The 5% obs/m smoke 

exposure treatment does not follow the same trend with no significant (P ≤ 0.05) effect 

of duration on the guaiacol concentration in wines. 

 

2. Low smoke density, long duration 

In experiment 2 smoke was applied to field grown grapevines at one (low) smoke 

density (2.5% obs/m) for long durations (10, 20, 40 and 80 min).  The low smoke 

density –long duration treatments did not influence grapevine yield, bunch weight or 

berry weight (data not shown).  However the TSS of grape must at harvest was reduced 
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by the application of 2.5% obs/m smoke for 80 min (to 22.3 oBrix) in comparison to all 

other grape musts including the control (23.2 oBrix) which contained higher TSS 

contents (Table 3).  The ethanol content of wine was lower in all wines made from 

grapes exposed to smoke (ranging from 12.4 to 13.9% v/v) in comparison to the control 

(14.3% v/v) (Table 3).  The lowest ethanol content occurred in wines made from grapes 

exposed to 2.5% obs/m smoke for 80 min (12.4% v/v). 

 

FAN concentration in grape must at harvest was significantly higher in those musts 

produced from grapes of vines exposed to smoke (P < 0.05, Table 3).  FAN 

concentration varied widely between treatments with the lowest levels (37 mg/L) 

detected in unsmoked (control) musts and the highest levels detected in musts produced 

from fruit of vines exposed to 2.5% obs/m smoke (60 to 71 mg/L) (Table 3).  The 

fermentation duration was faster in all musts of grapes exposed to smoke than musts of 

control (unsmoked) fruit which completed fermentation in 16.7 days (Table 3).  Grapes 

produced from smoked vines completed fermentation at 10.7 days for the 80 min smoke 

treatment and 12.7 days for the 10 min smoke treatment. 

 

GC-MS analysis did not detect guaiacol or 4-methylguaiacol in berry samples from 

vines exposed to low smoke densities for long durations.  Conversely, guaiacol and 4-

methylguaiacol were detected in elevated concentrations in wines made from the same 

grapes (Table 4).  Concentrations of guaiacol and 4-methylguaiacol were the lowest in 

wines made from unsmoked (control) fruit (1.7 µg/L and n.d. respectively) and highest 

in wines made from fruit of grapevines exposed to 2.5% obs/m of smoke for 80 min (10 

and 2 µg/L respectively).  A positive correlation existed between the duration of smoke 

application and guaiacol (r = 0.76) and 4-methylguaiacol (r = 0.78) concentration in 

wine. 

 

Sensory analysis of experimental wines 

Triangle tests of wines made from fruit of grapevines exposed to smoke showed that 

regular wine consumers could detect a difference in the majority of smoked wines when 

compared to unsmoked (control) wines.  Wine consumers could detect a difference (P ≤ 
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0.05 to 0.001) in all wines made from fruit of grapevines exposed to a low smoke 

density (2.5% obs/m) for long durations (results not shown).  For wines made from fruit 

of vines exposed to high smoke densities for various durations, a significant difference 

(P ≤ 0.05 to 0.001) was detected in all wines produced from grapes smoked for 20 min 

regardless of the smoke density (5, 10 or 20% obs/m) (Table 5).  Furthermore, a 

difference (P ≤ 0.01) was detectable in wines made from fruit exposed to 5% obs/m 

smoke for 5 min, 20% obs/m smoke for 5 min and 20% obs/m smoke for 10 min. 

 

Smoke and wine related sensory attributes of all wines in this study were found to vary 

depending on the density and duration of smoke application applied to the field-grown 

grapevines (Figure 2).  During QDA panellists identified and agreed on the aroma 

descriptors of ‘red berry’, ‘eucalypt’, ‘smoke’ and ‘hospital’ and palate attributes / 

flavours of ‘red berry’, ‘eucalypt’, ‘smoke’, ‘dried meat’ and ‘ashy palate’ to 

characterize both the smoke and wine related attributes of all wines.  The detection of 

these key smoke related and wine related aromas and flavours varied and was dependent 

on both smoke density and duration of smoke exposure to grapevines in the experiment 

of 5, 10 or 20% obs/m smoke for 5, 10 or 20 min.  Smoke related wine characteristics of 

‘dried meat flavour’ (5.2), ‘ashy palate’ (5.1), ‘smoke aroma’ (4.5) and ‘smoke flavour’ 

(4.1) were intensified in wines made of fruit of grapevines exposed to 20% obs/m smoke 

for 20 min in comparison to all other wines (Figure 3).  In comparison, these smoke-like 

descriptors were detected in low levels in unsmoked (control) wines that instead 

contained elevated detection of ‘red berry aroma’ (7.1) and ‘red berry flavour’ (7.4).  All 

other wines showed variable detection of aromas and flavours however, in general, 

smoke related wine characters were detected at lower levels than the 20% obs/m smoke 

exposure for 20 min and wine-like characters were detected in concentrations lower than 

the unsmoked (control) wines (Figure 3). 

 

Wines made from fruit of grapevines exposed to 2.5% obs/m smoke varied in their 

intensity of key descriptors that was dependent on the duration of smoke exposure 

(Figure 4).  Wines made from unsmoked (control) grapes had elevated values for wine 

related descriptors of ‘red berry flavour’ (7.4) and ‘red berry aroma’ (7.1) and low 
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detection of the smoke related descriptors of ‘smoke flavour’ (0.5), ‘smoke aroma’ (0.9), 

‘dried meat flavour’ (0.7) and ‘ashy palate’ (0.3) (Figure 4).  This is in stark contrast to 

wines made from fruit of vines exposed to 2.5% obs/m smoke for 80 min that displayed 

heightened detection of ‘smoke aroma’ (5.1), ‘smoke flavour’ (3.6), ‘ashy palate’ (4.1), 

‘dried meat flavour’ (3.5), ‘eucalypt aroma’ (4.7), ‘eucalypt flavour’ (4.9) with a low 

detection of ‘red berry flavour’ (4.8) and ‘red berry aroma’ (4.7).  The intensity of key 

aromas and flavours of wines made from fruit of vines exposed to 2.5% obs/m smoke 

for 10, 20 and 40 min were found to be detected at levels in-between those reported for 

the unsmoked (control) and 80 min wines except for wines made from fruit of vines 

exposed to smoke for 40 min that had heightened ‘hospital aroma’ (3.8). 

 

PCA of mean aroma and flavour descriptors accounted for 84.33% of the overall data 

variation comprised predominately of principal component 1 (PC1) (72.82%) and 

principal component 2 (PC2) (11.51%) (Figure 2).  PC1 is characterized by positive 

loadings on the smoke related wine descriptors of ‘ashy palate’ (0.54), ‘dried meat 

flavour’ (0.47), ‘hospital aroma’ (0.29), ‘smoke aroma’ (0.19) and ‘smoke flavour’ 

(0.45) in contrast to the negative loadings on the wine related descriptors of ‘eucalypt 

aroma’ (-0.12), ‘eucalypt flavour (-0.11)’, ‘red berry aroma’ (-0.22) and ‘red berry 

flavour’ (-0.3).  PC2 is converse to PC1 with negative loadings on ‘ashy palate’ (-0.03), 

‘dried meat flavour’ (-0.06), ‘smoke aroma’ (-0.38) and ‘smoke flavour’ (-0.02) and 

positive loadings on ‘red berry aroma’ (0.21) and ‘red berry flavour’ (0.01) however 

negative loadings were retained on ‘eucalypt aroma’ (-0.61) and ‘eucalypt flavour’ (-

0.65) and positive loading retained on ‘hospital aroma’ (0.11). 

 

Clear relationships were evident in the wine sensory data between the descriptors 

characterizing smoke related attributes and those characterizing the wine related 

attributes.  Correlation analysis (not shown) revealed a strong positive correlation 

between the descriptors of ‘smoke flavour’ and ‘ashy palate’ (r = 0.91), ‘smoke flavour’ 

and ‘dried meat flavour’ (r = 0.95) and ‘ashy palate’ and ‘dried meat flavour’ (r = 0.92) 

(n = 8, P < 0.05).  Similarly, a positive correlation was evident between ‘red berry 

aroma’ and ‘red berry flavour’ (r = 0.76).  Conversely strong negative correlations were 
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established between the wine-like descriptor of ‘red berry flavour’ and ‘ashy palate’ (r = 

-0.85), ‘dried meat flavour’ (-0.74) and ‘smoke flavour’ (r = -0.85) with a visual 

representation of these relationships presented in the PCA biplot (Figure 2). 

 

Interestingly, a relationship was also evident between the concentration of guaiacol and 

4-methylguaiacol in wine and the sensory descriptor of ‘dried meat flavour’ and ‘ashy 

palate’.  Correlation analysis revealed ‘dried meat flavour’ to be positively correlated 

with both wine guaiacol (r = 0.64) and wine 4-methylguaiacol (r = 0.76) whilst ‘ashy 

palate’ showed positive correlation with wine 4-methylguaiacol only (r = 0.65).  

Correlation between guaiacol and other wine and smoke related aromas and flavours 

was weak therefore showing guaiacol to be an inadequate indicator of the intensity of 

key aromas in smoke tainted wines. 

 

Discussion 

This study demonstrates that the density and duration of smoke application to field-

grown grapevines determines the concentration of smoke related compounds and the 

development of smoke-taint characteristics in wine.  Previous research has shown that 

smoke exposure to field-grown grapevines effects the chemical composition and sensory 

properties of resultant wine and, depending on the timing of smoke exposure, to create 

smoke taint in wine (Kennison et al. 2009, 2011).  This study builds on previous 

research and, as such, is the first paper to investigate the effect of high smoke densities 

(5, 10 and 20% obs/m) for short durations (5, 10 and 20 min) and a low smoke density 

(2.5% obs/m) for long durations (10, 20, 40 and 80 min) on the development of smoke 

taint compounds and characteristics in wine. 

 

The length of smoke exposure had a cumulative effect on the concentration of smoke 

compounds in wine. Demonstrating that longer periods of smoke exposure to grapevines 

have a higher potential to taint resultant wines.  The concentration of guaiacol and 4-

methylguaiacol varied among wines depending on the density and duration of smoke 

application to field-grown grapevines.  Smoke density x duration and smoke duration on 

its own were significant sources of variation (P < 0.003) for the concentration of 
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guaiacol in wine.  The influence of smoke duration was evident in those wines produced 

from grapes exposed to 10 and 20 % obs/m however the influence of duration was not 

evident for the 5% obs/m smoke.  Guaiacol and 4-methygluaiacol were elevated in 

wines produced from fruit of grapevines exposed to 20% smoke for 20 min (6.3 and 2.7 

µg/L, respectively) and 10% for 20 min (6.3 and 2.3 µg/L, respectively) yet 

concentrations were higher in wines produced from a lower smoke density (2.5%) for a 

longer duration (40 min 7.7 and 1.7 µg/L, respectively) (80 min 10 and 2 µg/L, 

respectively).  A 3 year duration study on Merlot by Kennison et al. (2011) showed a 

single smoke exposure of a high smoke density (PM10 level of 200 µg/m3) for 30 

minutes duration, resulted in wine guaiacol concentrations of < 1 to 60.7 µg/L and 4-

methylguaiacol concentrations of < 1 to 14.1 µg/L depending on the timing of smoke 

exposure.  Furthermore, 8 repeated smoke applications to the same field-grown 

grapevines imparted a cumulative effect on the concentrations of guaiacol (388 µg/L) 

and 4-methylguaiacol (93 µg/L) in resultant wine (Kennison et al. 2009).  Similarly, in 

this current study, the duration of smoke exposure was positively correlated with the 

concentration of guaiacol in wines produced from smoke exposed grapes. 

 

This study demonstrates that the density and duration of smoke application to field-

grown grapevines influences the sensory properties of wines.  The intensity of smoke 

related descriptors of ‘smoke flavour’, ‘ashy palate’ and ‘dried meat flavour’ were 

accentuated in wine made from a low smoke density (2.5%) for a long duration (80 min) 

and high smoke densities (10 and 20%) for lesser durations (10 and 20 min).  However, 

smoke related sensory descriptors were even evident in those wines made from 

grapevines exposed to low smoke densities for short durations (5% for 5 min).  There 

was conjecture over the relative importance of density and duration depending on the 

analysis method.  Instrument analysis (GC-MS) indicated the phenol concentration of 

smoke affected wines to be influenced predominantly by the duration of smoke exposure 

whereas the key contributing factor to the development of the smoke related aromas of 

‘dried meat flavour’ (P < 0.002), ‘smoke aroma’ (P < 0.016) and ‘smoke flavour’ (P < 

0.002), as determined by wine sensory analysis, was found to be smoke density.  The 

density of smoke exposure has been of key importance in the smoking of food products 
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and is well documented to affect the absorption of smoke aromas, flavours and volatile 

phenols with the higher the smoke density the greater absorption of smoke 

characteristics by food (Boyle and Schmidt 1999, Ogbadu 2000, Fellows 2009).  In 

grapes, the effect of smoke duration, from repeated smoke exposures (n = 8), to 

grapevines has been shown to result in the accentuation of wine aromas of ‘smoked 

meat’, ‘leather’, ‘burnt rubber’ and ‘disinfectant’ in comparison to wines made from 

fruit of grapevines exposed to one smoke exposure (Kennison et al. 2009).  This study 

therefore shows the potential negative influence of smoke events of a high smoke 

density and/or a prolonged duration in vineyards on the creation of smoke related 

characters in resultant wines. 

 

The key analytes of interest, the phenols guaiacol and 4-methylguaiacol, have been 

measured in smoked foods to indicate the extent of smoke exposure and deposition 

(Bratzler et al. 1969, Chan et al. 1975, Ogbadu 2000).  Interestingly, they were 

undetectable in any berry samples produced from grapevines exposed to smoke during 

this study.  Although undetectable in berries, the measurable guaiacol and 4-

methylguaiacol concentrations increased during the fermentation process and were 

found in detectable concentrations in final wines.  Previously, Merlot grapes exposed to 

smoke have shown similar results with low detection of guaiacol (1 µg/L) and 4-

methylguaiacol (<1 µg/L) in berries and the subsequent release of these compounds by 

strong acid (pH 1.0) and enzyme (ß-glucosidase) hydrolysis (Kennison et al. 2008).  

Recent advances in the analysis of smoke taint has resulted in the discovery of a 

glucoside (ß-D-glucopyranoside) of guaiacol in grapes and leaves following grapevine 

exposure to smoke (Hayasaka et al. 2010b, Dungey et al. 2011) and additional (n = 7) 

glycosylated metabolites in smoke exposed grapes and wine (Hayasaka et al. 2010c).  

The extraction rate of the additional glycosylated metabolites, from grapes to wine, is 

reported at 78% for Chardonnay and 67% for Cabernet sauvignon (Hayasaka et al. 

2010c).  In this study, guaiacol and 4-methylguaiacol concentration in wine have been 

effective indicators of the presence of smoke exposure to grapevines. 
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Smoke exposure was shown to adversely affect the fruit ripening ability of those 

grapevines exposed to smoke for long durations.  Smoke application of 2.5% obs/m for 

80 min decreased the TSS (oBrix) of grapes at harvest by over 1 oBrix.  This resulted in 

the ethanol content of final wines also being decreased by an average of 1.9% v/v.  This 

observation is supported by previous studies where a single heavy smoke exposure for 

30 min decreased the TSS content of fruit at harvest by an average of 1.6 oBrix and a 

repeated exposure treatment (8 successive smoke exposures for 30 min each) resulted in 

an average TSS decrease by 3 oBrix (Kennison et al. 2009).  The decrease in the 

grapevines ability to ripen fruit may be a consequence of the smoke and its effect on the 

photosynthetic capacity of the grapevine.  Smoke exposure to plants is known to reduce 

plant photosynthetic capacity with inhibition of plant gas exchange (Davies and Unam 

1999, Gilbert and Ripley 2002).  A 1 min smoke exposure to Chrysanthemoides 

monilifera reduced CO2 assimilation rate, stomatal conductance and internal CO2 

concentration which did not recover, to the control levels, for up to 24 hours (Gilbert and 

Ripley 2002).  Our own data (unpublished) supports these findings for grapevines and 

shows that exposures of greater than 16 min resulted in incomplete recovery after 5 

days. 

 

Smoke application to grapevines increased the concentration of free amino acids (FAN) 

in musts.  Previous studies have shown the fermentation rate of must to be influenced by 

nitrogen content (Ough 1964, Monteiro and Bisson 1992) which was also apparent in 

our current study with fermentation accelerated of all musts derived from smoked wines 

in comparison to unsmoked (control) musts.  Previous experiments of field-based smoke 

applications to grapevines, and smoke applications to grape bunches have also shown an 

increase the fermentation rate of Chardonnay (Kennison et al. 2007) and Merlot 

(Kennison et al. 2009).  As previously considered (Kennison et al. 2009) FAN increase 

may be a result of direct nitrogenous compound deposition from smoke onto the grape 

surface (Nussbaum et al. 1993, Stulen et al. 1998) or due to tissue damage caused by 

elevated smoke conditions (Heath 1980).  However, further investigation is required to 

indentify the cause of both the increase of FAN and the acceleration of fermentation of 

smoke-exposed grapes. 
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In summary, this study has investigated the effect on the development of smoke related 

compounds, aromas and flavours in resultant wines after the application of a range of 

smoke densities and durations to field-grown grapevines.  Sensory tests with regular 

wine consumers showed the minimum amount of smoke application to create a 

detectable difference in wine was found to be 5% obs/m for 5 min.  Accentuated levels 

of guaiacol (10 µg/L), 4-methylguaiacol (2 µg/L) and smoke related aromas and flavours 

were detected in wines made from fruit of grapevines exposed to 2.5% obs/m smoke for 

80 min.  Hence the intensity of smoke taint in wine was influenced by both smoke 

duration and smoke density.  As such, this research provides information to the wine 

industry to determine the risk of the potential development of smoke taint in wines 

following smoke exposure to grapevines. 
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TABLES 

Table 1. Concentration of free amino nitrogen (FAN mg/L) and fermentation rate (days) 

of grape must produced from fruit of grapevines exposed to smoke at high smoke 

densities (5, 10 and 20%) for short durations (5, 10 and 20 min). 

Treatment FAN (mg/L) Fermentation (days) 

Control 88.3d 8.7a 

5% 5 min 93.0d 8.0ab 

5% 10 min 109.0cd 8.0ab 

5% 20 min 171.3ab 6.0e 

10% 5 min 103.3d 7.3bcd 

10% 10 min 114.3cd 6.3de 

10% 20 min 100.3d 7.7abc 

20% 5 min 133.0bcd 6.7cde 

20% 10 min 153.0abc 6.7cde 

20% 20 min 179.0a 5.7e 

Means followed by the same letter within columns are not significantly different at P ≤ 0.05, n = 3. 
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Table 2. Concentration (µg/L) of guaiacol and 4-methylguaiacol detected in wines made 

from fruit of vines exposed to high smoke densities (5, 10 and 20%) for short durations 

(5, 10 and 20 min). 

Concentration (µg/L) of
‡ 

Treatment
†
 

guaiacol 4-methylguaiacol 

Control 2.3c 1.3c 

5% 5 min 4.0bc 2.0abc 

5% 10 min 4.3b 2.0abc 

5% 20 min 3.3bc 2.0abc 

10% 5 min 2.3c 1.3c 

10% 10 min 3.7bc 2.0abc 

10% 20 min 6.3a 2.3ab 

20% 5 min 3.0bc 1.7bc 

20% 10 min 3.7bc 2.0abc 

20% 20 min 6.3a 2.7a 

†Grapevines were exposed to smoke at high smoke densities (% obscuration / m) for short durations (min) 

‡For each analyte, means followed by the same letter are not significantly different at P ≤ 0.05, n = 3. 

 

Table 3. Total soluble solids (TSS oBrix), free amino nitrogen (FAN mg/L) and 

fermentation rate (days) of grape must from fruit harvested from smoked and unsmoked 

vines and alcohol content (% v/v) in resultant wines.  Smoked grapevines were exposed 

to smoke at one low density (2.5%) for long durations of 10, 20, 40 and 80 min. 

Must
†
   Wine

†
 Smoke 

duration 

(min) 

TSS 

(°Brix) 

FAN 

(mg/L) 

Fermentation 

(days)   

Alcohol (% 

v/v) 

Control 23.2a 36.7c 16.7a  14.3a 

10 23.7a 70.7ab 12.7b  13.9ab 

20 23.5a 76a 11.3bc  13.8ab 

40 23.2a 68.7ab 11.3bc  13.3bc 

80 22.3b 59.7b 10.7c   12.4c 

†Means followed by the same letter within columns are not significantly different at P ≤ 0.05, n = 3. 
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Table 4. Concentration (µg/L) of guaiacol and 4-methylguaiacol detected in wines made 

from fruit of vines exposed to a low smoke density (2.5% obs/m) for long durations (0, 

10, 20, 40 and 80 min). 

Concentration (µg/L) of
†
 Smoke 

duration (min) Guaiacol 4-methylguaiacol 

Control 1.7d n.d. 

10 2.6c n.d. 

20 3.3c 0.3b 

40 7.7b 1.7a 

80 10.0a 2a 

†For each analyte, means followed by the same letter within columns are not significantly different at P ≤ 

0.05, n = 3; n.d. = not detected. 

 

Table 5. Correct number of responses in a triangle test of wines made from fruit of vines 

exposed to high smoke densities ( 5, 10 and 20% obs/m) for long durations (5, 10 and 20 

min). 

Treatment No. of correct 

responses
†
 

5% 5 min 18** 

5% 10 min 13 

5% 20 min 19*** 

10% 5 min 13 

10% 10 min 13 

10% 20 min 15* 

20% 5 min 17** 

20% 10 min 17** 

20% 20 min 20*** 

†
Significance indicated by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 as defined by Meilgaard et al. (2007).  

Each wine tasted a total of 30 times by regular wine consumers. 

 

 



 

90 

90 

90 

FIGURES 

Smoke duration (min)

4 6 8 10 12 14 16 18 20 22

G
u
ai

ac
o

l 
µ

g
/L

1

2

3

4

5

6

7

8

5%

10% 

20% 

 

 

Figure 1. Concentration of guaicol in wines made from fruit of grapevines exposed to 5, 

10 and 20% obs/m smoke for 5, 10 and 20 min.  Error bars indicate two standard errors 

of the mean. 
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Figure 2. PCA biplot of mean wine sensory scores (�) of wine made from fruit of 

unsmoked grapevines (control) or wines made from fruit of grapevines exposed to 2.5% 

obs/m smoke for 10, 20, 40 or 80 min and 5, 10 or 20% obs/m smoke for either 5, 10 or 

20 min. 
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Figure 3. Mean intensity scores for ‘red berry aroma’, ‘red berry flavour’, ‘smoke 

aroma’, ‘smoke flavour’, ‘eucalypt aroma’, ‘eucalypt flavour’, ‘hospital aroma’, ‘dried 

meat flavour’ and ‘ashy palate’ for wines made from grapes of vines exposed to either 5, 

10 or 20% obs/m smoke for either 5, 10 or 20 min and wines made from unsmoked 

grapes (control).  Scale represents 0 = non-detectable to 8 = highly detectable aroma or 

flavour.  Error bars indicate two standard errors of the mean. 
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Figure 4. Mean intensity ratings of smoke related characteristics of ‘smoke aroma’, 

‘smoke flavour’, ‘ashy palate’, ‘dried meat flavour’, ‘hospital aroma’ and wine related 

characteristics of ‘red berry flavour’, ‘red berry aroma’, ‘eucalypt aroma’ and eucalypt 

flavour’ in wines made from fruit of grapevines exposed to 2.5% obs/m smoke for 10, 

20, 40 or 80 min and wines made from unsmoked grapes (control).  Scale represents 0 = 

non-detectable to 8 = highly detectable aroma or flavour.  LSD is indicated in 

parenthesis with significance at *P < 0.05, **P < 0.01 and ***P < 0.001. 
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CHAPTER 6 REVIEW AND DISCUSSION 

 

This thesis has been instrumental in enhancing the knowledge of the effects of smoke on 

grapevines, grapes and wine leading to the reduction of negative smoke taint 

characteristics in wine.  Key findings of this study include: 

• Establishing and proving the link between smoke exposure to grapevines and the 

identification of marker volatile phenols and smoke-like sensory characteristics in 

wine; 

• The seasonal timing of smoke exposure to grapevines to influence the chemical 

composition and sensory properties of wine; 

• Identifying that smoke exposure to grape bunches and field-grown grapevines affects 

the sensory and chemical properties of resultant wines; 

• The density and duration of smoke application to field-grown grapevines influences 

the intensity of smoke taint in resultant wines. 

 

As such, this research produced the first known refereed paper detailing the effects of a 

purposeful application of smoke to grapevines being the development of smoke taint in 

wine.  The research established the direct link between smoke exposure and the 

development of smoke taint in wine.  This proved the cause and effect response of 

smoke on grape production and led to the development of methodology and direction for 

further research.  Since then, the incidence and severity of smoke exposure to grapevines 

has greatly increased to become a developing challenge for the global wine industry.  

The research developed in this thesis has provided valuable information to understand 

the impacts of smoke taint in wine. 

 

An outcome of consequence from this research has been the identification of the key 

periods of grapevine sensitivity to smoke uptake and development of smoke taint in 

wine (Kennison et al. 2011).  Key periods of grapevine sensitivity to smoke uptake have 

been identified based on the grapevine phenological stage of growth.  Initial research 

identified the peak period of grapevine sensitivity to smoke uptake to be at 7 days post 

veraison.  Further to this research, an investigation of smoke effects throughout the 
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entire grapevine growing season identified 3 key periods of grapevine sensitivity to 

smoke uptake.  These periods have been defined as (1) from shoots 10 cm in length to 

full-bloom resulting in low levels of smoke taint in wine; (2) from berries pea size to the 

onset of veraison resulting in variable levels of smoke taint in wine; and (3) from 7 days 

post veraison to harvest resulting in high levels of smoke taint in wine.  These findings 

provide applications and benefits for wine production industry.  For instance, knowledge 

of the effects of smoke exposure to grapevines at particular seasonal growth stages 

provides an indication of the risk of smoke taint development in wine at any one time.  

Consequently if smoke exposure occurs, vignerons are able to determine appropriate 

management including if grape testing for the presence of smoke compounds or 

management techniques to minimise or avoid smoke taint in wine are required. 

 

Further to the understanding of the timing of grapevine sensitivity to smoke uptake, this 

research has advanced the understanding of the influence of smoke duration and density 

on the development of smoke taint in wine.  Smoke emissions have been proven to be 

highly variable in the environment (Garland et al. 2008) with the concentration of smoke 

exposure, and its associated effects, on grapevines unknown.  This thesis has explored 

the effects of a range of smoke durations and densities on the development of smoke 

taint in wine.  Results have proven that smoke exposure to grapevines alters the 

chemical composition and sensory properties of wine even at low smoke densities and 

durations of exposure.  Wine sensory analysis has demonstrated the alteration of wine 

attributes from smoke exposure to result in taint-like characters with the minimum 

amount of smoke required to create smoke taint aroma and flavour characteristics in 

wine determined to be 5 % obs/m for 20 min.  As such, this research has proven that the 

duration and density of smoke exposure is of prominent effect on the chemical and 

sensory properties of wine. 

 

Smoke exposure to grapevines is cumulative in its effect on the development of smoke 

taint in wine.  During this study, repeated smoke exposures to the same field-based 

grapevines resulted in an accumulation of smoke related marker compounds and aromas 

in resultant wines (Kennison et al. 2009).  The repeated smoke applications created a 
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greater duration in smoke exposure to the grapevine which reduced the vines 

physiological ability to ripen berries as evident in the decreased total soluble solids 

content (TSS) of fruit, at harvest, from smoke exposed vines.  Also other effects of the 

repeated smoke applications were observed in the form of physical damage, necrotic leaf 

lesions, on those grapevines exposed to repeated smoke application.  The physiological 

phenomenon of smoke on grapevines was not investigated in this study and provides an 

additional opportunity for further research in this area. 

 

A greater understanding of the development of smoke taint during the fermentation 

process of winemaking has been gained from this study (Kennison et al. 2008).  Samples 

taken during the fermentation of smoke affected fruit demonstrated the progressive 

release of key smoke marker compounds to occur.  That is, in initial juice samples at 

harvest, the level of smoke related marker compounds were low and during the 

fermentation of juice these compounds were released to be detected at elevated levels in 

the final wine.  This presented an implication for the under assessment of smoke taint in 

grapes prior to fermentation.  Further investigations revealed the smoke related marker 

compounds were released by acid and enzyme catalysed conditions and, as such, this 

methodology was employed for the determination of smoke taint in grape juice. 

 

Information gained from this study has been directly adopted by the wine industry to 

reduce the negative influence of smoke taint in grape and wine production.  Results from 

this research are currently being applied by the Department of Environment and 

Conservation (DEC), the Department of Agriculture and Food WA (DAFWA) and the 

University of Western Australia for the development of a smoke taint risk reduction tool.  

This smoke risk reduction tool is being developed for the wine industry nationally to 

predict the seasonal timing of grapevine sensitivity to smoke uptake and the impact of 

smoke exposure on taint development.  Key risk factors developed for this tool have 

been derived from published research contained within this thesis.  Furthermore, 

information from this research is currently being utilised by forest management agencies 

(DEC) to assist with the timing of prescribed burns in order to minimise the risk of 

smoke exposure to grapevines. 
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Throughout this experimentation, the development of novel research methodology for 

the application of smoke to field grown grapevines was successfully pioneered.  In this 

study, the controlled application of smoke to grapevines was an essential research 

element required for the research hypotheses to be tested.  A basic smoke application 

methodology was previously developed by Dixon et al. (1995) for the application of 

smoke to native seeds.  Our study built on this previous research to successfully develop, 

refine and employ a smoke generator and tent apparatus for smoke application to 

grapevines in the field.  Our research was unique in the sense that it was the first known 

controlled application of smoke to perennial plants on a trellis structure.  Due to the 

successful operation of the smoke application apparatus, similar methodology has 

subsequently been employed by other authors (Ristic et al. 2011). 

 

Opportunities for further research have been noted from this study.  In this study, a 

limited number of grapevine varieties were employed in field research and, as such, an 

opportunity exists to research the effect of smoke on alternative grapevine varieties.  

Field research detailed within this thesis predominantly concentrates on Vitis vinifera cv. 

Merlot and cv. Verdelho.  These varieties were selected based on their availability over 

the duration of the study and their current use in industry.  The selection of a limited 

number of varieties in this research has also been due to the limited time available to 

conduct this study, limited funding and physical resources.  Since the conclusion of this 

study, additional research has been undertaken and is currently focusing on the 

opportunities in this area to investigate the effects of smoke application to a wide range 

of grapevine varieties. 

 

Additional research opportunities have been identified from this study and concentrate 

on the area of chemical analysis of smoke related compounds.  During this study, the 

smoke-derived compounds guaiacol and 4-methylguaiacol have been used as indicators 

for the presence of smoke taint in grapes and wines.  As such, they have been effective 

indicators of the presence of smoke exposure and the development of smoke taint in 

wine however are limited in quantifying the true taint intensity.  To address this issue, 
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both wine chemical and sensory analysis have been employed in this study.  Recently, 

additional compounds that are produced in smoke are being investigated as to their 

contribute to the sensory smoke taint.  The determination of additional smoke 

compounds responsible for smoke taint in wine is outside the scope of this PhD however 

researchers are currently actively seeking to identify additional compounds that 

contribute to the sensory smoke taint. 
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