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Abstract

In this thesis, we deal with several optimal guidance and control problems of the space-

crafts arising from the study of lunar exploration. The research is composed of three

parts: 1. Optimal guidance for the lunar module soft landing, 2. Spacecraft attitude

control system design basing on double gimbal control moment gyroscopes (DGCMGs),

and 3. Synchronization motion control for a class of nonlinear system.

To achieve a precise pinpoint lunar module soft landing, we first derive a three di-

mensional dynamics to describe the motion of the module for the powered descent part

by introducing three coordinate frames with consideration of the moon rotation. Then,

we move on to construct an optimal guidance law to achieve the lunar module soft land-

ing which is treated as a continuously powered descent process with a constraint on the

angle of the module between its longitudinal axis and the moon surface. When the mod-

ule reaches the landing target, the terminal attitude of the module should be within an

allowable small deviation from being vertical with reference to lunar surface. The fuel

consumption and the terminal time should also be minimized. The optimal descent tra-

jectory of the lunar module is calculated by using the control parameterization technique

in conjunction with a time scaling transform. By these two methods, the optimal control

problem is approximated by a sequence of optimal parameter selection problems which

can be solved by existing gradient-based optimization methods. MISER 3.3, a general

purpose optimal control software package, was developed based on these methods. We

make use of this optimal control software package to solve our problem. The optimal

trajectory tracking problem, where a desired trajectory is to be tracked with the least

fuel consumption in the minimum time, is also considered and solved.

With the consideration of some unpredicted situations, such as initial point perturba-

tions, we move on to construct a nonlinear optimal feedback control law for the powered

deceleration phase of the lunar module soft landing. The motion of the lunar module is

described in the three dimensional coordinate system. Based on the nonlinear dynamics

of the module, we obtain the form of an optimal closed loop control law, where a feedback

gain matrix is involved. It is then shown that this feedback gain matrix satisfies a Riccati-

like matrix differential equation. The optimal control problem is first solved as an open

loop optimal control problem by using the time scaling transform and the control param-

eterization method. By virtue of the relationship between the optimal open loop control

and the optimal closed loop control along the optimal trajectory, we present a practical
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method to calculate an approximate optimal feedback gain matrix, without having to

solve an optimal control problem involving the complex Riccati-like matrix differential

equation coupled with the original system dynamics.

To realize the spacecraft large angle attitude maneuvers, we derive an exact gen-

eral mathematical description of spacecraft attitude motion driven by DGCMGs system.

Then, a nonlinear control law is designed based on the second method of Lyapunov and

the stability of the attitude control system is established during the design process. A

singularity robustness plus null motion steering law is designed to realize the control law.

Principle of DGCMGs’ singularity is proved, and the singularity analysis of the orthogo-

nally mounted three DGCMGs system and that of the parallel mounted four DGCMGs

system are presented.

Finally, we consider a new class of nonlinear optimal tracking and synchronizing con-

trol problems subject to control constraints, where the motions of two distinct objects

are required to achieve synchronization at the minimum time while achieving the optimal

tracking of a reference target. We first provide a rigorous mathematical formulation for

this class of optimal control problems. A new result ensuring the synchronization of the

two distinct objects is obtained. On this basis, a computational method is developed

for constructing an optimal switching control law under which the motions of the two

distinct objects will achieve synchronization at the minimum time while achieving the

optimal tracking of a reference target. This computational method is developed based on

novel applications of the control parameterization method and a time scaling transform.

A practical problem arising from the study of the angular velocity tracking and synchro-

nization of two spacecrafts during their formation flight is formulated and solved by the

method proposed.
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CHAPTER 1

Introduction

1.1 Motivation and background

The moon is the nearest celestial body to our home planet — the earth. Exploration of

the lunar environments and recourses is of much importance and is the very first step that

mankind could reach out of the earth to the unknown deep space. Lunar exploration is

a tremendous system engineering whose benefits could promote the development of our

human society in many aspects such as science and technology, economy, military affairs

and politics.

Researches on the moon could improve the knowledge of human about the universe,

the formation, evolvement and characters of the solar system and the relationship between

space environment and the nature system of the earth. Such kind of outer space research

activities could also lead to a great development of many other kinds of science areas

such as artificial intelligence, robots, remote control, automation, ultrasonic flight, space

material, space life science and so on. It has been proved through investigation that the

moon contains many special kinds of recourses that could be utilized by human. The lunar

mineral reserve will be a very important supplement for the earth recourses. A clean and

efficient nuclear fusion recourse — He3 — stored abundantly in the lunar regolith — could

fulfill the demand for electricity of the human society for ten thousand years which would

be of great importance for the sustainable development of the human civilization. Due

to the stability and periodicity property of the lunar orbit, permanent lunar base could

be set up on the moon surface as an observation platform for the artificial satellites. The

lunar base could also be used as a relay station for the investigations of the Mars or other

planets. In general, lunar exploration will definitely speed up the development of science

and technology which would have a deep influence on the human civilization.

Since the late fifties, former Soviet Union and now Russia, America, China, Japan,

India and European Union have set out to explore the moon. Various projects have been

proposed. Satellites and probes have been sent out to the moon for investigations. The

unique recourses and strategic position of the moon have made it a focus of the modern

science.

1



2 Introduction

Since the first unmanned lunar probe was lunched by the former Soviet Union on 2nd

January 1959, by now, more than fifty lunar probes have been sent to the moon. Seven

manned lunar explorations were carried out by the American (the Apollo Program), six of

them were successfully accomplished and twelve astronauts reached the moon. Generally

speaking, the flight motions of all these lunar probes can be divided into three categories,

i.e., flying over, circling or landing on the moon. Those missions aiming to land the lunar

module safely on the surface of the moon are the most important ones.

There are two main approaches to the landing of the lunar module on the moon

surface — the hard landing approach and the soft landing approach. For the hard landing

approach, the lunar module flies to the moon from the earth in an elliptical transfer orbit.

The terminal velocity of the module is not constrained and the module will crash on the

moon surface with a high speed. Investigation information can be sent back to the earth

only during the phase that the module is approaching the moon. If the terminal velocity

of the module with respect to the moon is decelerated to a relatively safe value, the soft

landing approach can be achieved. The lunar module could perform ground experiments

on the moon surface and much more information can be acquired when compared with

the hard landing approach. It is obvious that the soft landing approach has more practical

uses against the hard landing approach.

There are also two main manners to achieve the lunar module soft landing. The first

one is the vertical soft landing method. The lunar module first speeds up and flies to the

moon from the parking orbit of the earth. Velocity and trajectory are modified during the

flight. When approaching the moon, the module is reoriented against the moon surface

vertically and a main thruster begins to work to reduce the velocity of the module. When

the module is close to the moon surface, the main thruster will be shut down and a set

of small thrusters start to work to achieve the soft landing. The vertical soft landing

method were adopted by the ‘Lunar 9’, ‘Lunar 13’ landing capsules of the former Soviet

Union and the ‘Lunar Prospector’ missions of NASA. The second method of soft landing

starts from a circular parking orbit of the moon (see Figure 1.1). The lunar module

is composed of two parts — an orbital module and a landing module. To achieve soft

landing, the landing module is first detached from the orbital module which will stay on

the parking orbit for other experiments and activities. Then, the soft landing procedure of

the landing module begins. According to the preselected landing target, the lunar module

is decelerated and enters into a lower energy elliptical orbit, i.e., the Hohmann transfer

orbit, which is coplanar with the parking orbit. The elliptical Hohmann transfer orbit has

the aposelene and the perilune which are, respectively, 100km and 15km distance away

from the moon surface. When the module reaches the perilune, the powered descent soft

landing begins. Normally, the lunar soft landing process from the perilune to the moon

surface can be divided into three phases (see Figure 1.2). The first part is the powered

deceleration phase, from 15km to 2km above the lunar surface, the module velocity is
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Moon

Parking Orbit

Aposelene

Perilune

Hohmann Transfer Orbit

Power Descent Fhase

Figure 1.1: The general view of sequence for lunar soft landing.

100km

15km

2km

Hohmann Transfer

Powered Deceleration

Attitude Adjustment

Vertical Descent

Landing

Moon Surface

Figure 1.2: The procedure of powered descent soft landing.

reduced to 0m/s by the propellant of the main thruster. The second part, from 2km

to 100m above the lunar surface, is the attitude adjustment phase, with the help of the

attitude control unit (thrusters or control moment gyros) the module attitude is adjusted

so that it is vertical to the moon surface. The last part is the vertical descent phase, a

set of small thrusters is employed to cancel the moon gravity to ensure the module soft

landing on the lunar surface vertically. The second soft landing method was adopted by

the Apollo Program.

Since there is negligible atmosphere surrounding the moon to be used by the lunar

module for deceleration, the lunar soft landing can not be performed in the same way as

landing on the earth or Mars. Thus, to realize the task of soft landing, one way is to use

the reverse force thruster to decelerate the velocity of the landing module starting from the

perilune. This together with the attitude control unit will guide the module to reach the

landing target with a small and safe final velocity. However, the fuel of the landing module

will be consumed substantially during this process. As the mass of the lunar module is

always limited, it is extremely important that the fuel consumption is minimized. In

this way, more payloads can be equipped (see, for example, [21, 79, 82, 84, 95]). From the
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open literature, we note that James S. Meditch [50] is one of the pioneers who studied

the fuel optimization problem of the lunar module soft landing as an optimal control

problem. He derived the optimal control law for the thrusters by using the Pontryagin

Maximum Principle. He then pointed out that, during the last phase of the soft landing,

the fuel consumption minimization is equivalent to the time optimal control. Christopher

N. D’Souza et al [11] studied the optimal guidance law of a planetary probe soft landing.

The guidance law is composed of a linear function of the system states and a nonlinear

function of the flight time. The flight time can be obtained through solving a quadratic

equation analytically. The advantage of this approach is that it gives rise to an explicit

solution and does not need iterations. Wang et al [89] designed a time and fuel optimal

descent trajectory for a lunar module with a constant thrust force. By comparing the

Kepler descent phase and the continuously powered descent phase, they pointed out that

choosing a point before the perilune as the initial point of the powered descent phase

rather than the perilune could further reduce the fuel consumption. But the difference

is insignificant. For the probe soft landing on a planet surface, Ma et al [47] proposed

a robust control law by using the sliding mode control method which is easy for real

applications. Based on the optimal guidance approach of a carrier rocket, Wang et al [83]

obtained a suboptimal guidance law for achieving the soft landing of a lunar module

under the assumption that the gravitational field on the moon surface is uniform. The

guidance law is expressed as a function of time-to-go. Hebertt [20] proposed a feedback

regulation scheme based on an off-line trajectory for a vertically controlled spacecraft to

achieve the soft landing on a planet without atmosphere. Ruan [64] developed a nonlinear

neurocontrol method based on the linearized system dynamics for the soft landing of a

lunar module. Xi et al [94] designed an optimal control law for the soft landing of a lunar

module by using the Pontryagin Maximum Principle. Liu et al [44] obtained an optimal

open loop control strategy for the soft landing of a lunar module with a pre-specified

terminal time by using the control parameterization technique in conjunction with a time

scaling transform. In most relevant papers in the literature, including those mentioned

above, the system of differential equations describing the motion of the lunar module is

in a two-dimensional polar coordinate system and the effect of the moon rotation is not

taken into account. That is, the module is assumed to descend along a vertical plane

in the Lunar Central Inertial Coordinate system. Because of the moon rotation, this

assumption is not realistic. A lunar module does not necessarily descend along such a

vertical plane. Hence, to perform a successful lunar soft landing, a three-dimensional

dynamic model that could precisely describe the motion of the module together with an

optimal fuel consumption control strategy are desirable.

For spacecrafts, attitude control system is of extreme importance among all the control

systems. The result of the mission is directly related to the performance of the attitude

control system. In the lunar exploration, the orbital module and the landing module both
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need a precise and reliable attitude control unit. The spacecraft attitude control system

is composed mainly of three parts, i.e., attitude sensors, controllers and actuators. There

are many different types of attitude sensors such as gyroscope, earth sensor, sun sensor,

star sensor and so on. Controller is the spacecraft onboard computer whose mission is

to receive information from the attitude sensors and output commands for the actuators.

The spacecraft attitude actuators normally include spin stabilizer, environment torque

stabilizer, magnetic torque controller, thruster and fly wheel system. Fly wheel system

consists of reaction wheel, momentum biased wheel, gimballed momentum wheel and

control moment gyros (CMGs). With the development of deep space exploration, higher

quality attitude control systems are expected for spacecraft. Reliability and precision are

the most important indexes for spacecraft attitude control systems.

Among all these attitude actuators, the spin stabilizer, environment torque stabilizer

and magnetic torque controller could generate small control torques which are suitable for

attitude stabilization, but not enough for the requirements of rapid attitude maneuver of

large spacecraft. The thruster is the most commonly used attitude control device due to

its simplicity in the design process. However, it is not effective for a long duration mission

because of the high fuel consumption. It is also unsuitable for a high accuracy attitude

control mission because the torque output is nonsmooth.

Fly wheel system could exchange the momentum stored in the wheel system with the

spacecraft body, so as to change the angular momentum of the spacecraft and realize

the attitude maneuver. The advantages of the fly wheel system are that it could output

smooth control torques and it only needs the electric power which can be supplied by the

solar array system. So the fly wheel system is suitable for long duration flight missions.

Reaction wheel, momentum biased wheel, gimballed momentum wheel are those that the

spin velocities of the wheels can be adjusted. The attitude stabilization and maneuver

are achieved by adjusting the velocities of the spin rotors. By this manner, from the

mechanical point of view, the system output torque is equal to the effort inputted into

the system. So the efficiency of the control is low and it’s hard to increase the spin velocity

to gain large control torques. The fly wheels with constant velocity spin rotors are called

control moment gyros. The CMGs are usually classified by the number of gimbals, i.e.,

single gimbal CMGs (SGCMGs) or double gimbal CMGs (DGCMGs) (see Figure 1.3 and

Figure 1.4). The control torques are acquired by rotation of the gyro gimbals. For the

rotors with high spin velocities, the CMGs system could output a large control torque

by only a small torque exerted on the gyro gimbals. Hence, the control efficiency of the

CMGs system is much higher when compared with the other fly wheel systems. Due to

their superior properties such as large torque amplification, momentum exchange capacity

and less power consumption, CMG-based attitude control systems are very attractive for

space applications. The CMGs systems are adopted as the main attitude control devices

not only for large spacecrafts but also for small agile satellites and space robots.
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Rotor Angular

 Momentum

Gimbal Axis

Figure 1.3: Configuration of SGCMG.
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Figure 1.4: Configuration of DGCMG.

A single SGCMG could provide the control torque for one axis of a spacecraft and one

DGCMG could control the rotation motions of two axes of a spacecraft. Hence, to realize

the three axes maneuver of a spacecraft, at least three SGCMGs or two DGCMGs are

needed. In practice, for the three axes attitude maneuver of a spacecraft, more SGCMGs

or DGCMGs are equipped to provide redundancy and improve system stability. For

instance, ‘Sky Lab’ utilized a three DGCMGs system as its attitude actuator and a

six SGCMGs system were adopted by the ‘Mir space station’. The ‘international space

station’ are using four DGCMGs to realize a Zero-Propellant Maneuver (ZPM).

The SGCMGs based spacecraft attitude control systems have been extensively studied

during the past four decades. Oh and Vadali [55] proposed the dynamic equations for

large angle rotational motion of spacecraft equipped with SGCMGs using Newton-Euler

approach, and derived a feedback control law based on Lyapunov stability theory. The

control inputs are gyro torques which can be acquired by gimbal angle velocity steering

law. The feedback control law and the angular velocity steering law could work well

even in the presence of a short time singularity. Singularity is one of the most severe

problems existed in the CMG-based control systems. They would significantly depress

the performance of the attitude control system. The singularity situation occurs when

all individual CMG torque output vectors are perpendicular to the commanded torque

direction. It means that no control torque is generated for the commanded gimbal rates

and the spacecraft attitude will lose controllability along the singularity direction. The
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singularity situations can be divided into two basic types – the external singularity and

the internal singularity. The external singularity is the simplest singular state which is

also named saturation singularity characterized by the momentum envelope. The momen-

tum envelope is a three dimensional surface representing the maximum available angular

momentum of CMGs along any given direction. Any singular status for which the total

CMG angular momentum is inside the momentum envelope is called the internal singu-

larity. Margulies [48] detailed the singularity situations for arbitrary SGCMGs clusters

by discussing the geometric properties of the singular surface and the algorithms for the

parametric construction of the angular momentum envelope. Vadali, Oh, and Walker [81]

discussed how to find the initial gimbal angles to avoid the system from entering into

singularity states and presented a feedback control strategy based on null motion to move

the gimbal angles to their preferred positions. Paradiso [56] proposed a guided depth-first

search that could manage null motions about torque producing trajectories which can

avoid singular states in the minimally redundant SGCMGs systems. Bedrossian et al [6]

proposed a steering law by using Moore-Penrose (MP) pseudo inverse and null motion to

realize the control command for SGCMGs system. When system approaches singularity,

the MP pseudo inverse is replaced by robust singularity steering law and the geometric

singularity could be transmitted. By replacing the pseudo inverse of Jacobian matrix with

its transpose, Wu [91] proposed a steering law that can make the steering error converge

to zero exponentially. Concerning the servo characters and parameter uncertainties of

the SGCMGs system, Wu and Chou [92] designed a robust steering law by estimating

the uncertain parameters. Under such a steering law, the steering error converges to zero

exponentially. With the assumptions that the system parameters and disturbances are

not exactly known, Zhou [103] proposed an adaptive nonlinear control law that could

drive a scissored pair of CMGs to achieve the synchronization precession so as to realize

the slewing motion of a space structure. Based on the singularity robust steering law,

Wei [90] presented a simple steering method which could transmit or escape from the

singular status efficiently. A non-diagonal weighting matrix is employed in solving the

least square solutions of a mixed norm. However, this steering law can not achieve precise

attitude maneuver in the presence of internal singularities. Vadali [80] proposed a subop-

timal method for choosing the gimbal angles of the SGCMGs system, the cost function

is the singularity measure of the system Jacobian Matrix. Zhang and Li [101] studied

the singularity measure of the CMGs system by utilizing the fuzzy decision method and

designed a steering law which could avoid singular status through searching the gradients

of the singularity measure. Bedrossian et al [5] compared the singularity problems that

exist in the robots and the CMGs system. They found that both systems have similar

singularity configurations.

It has been proved that the configuration of the SGCMGs clusters will directly influ-

ence the complexity of the singular status and the efficiency of the steering laws. Pyramid
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mounting arrangement of four SGCMGs is a typical configuration adopted by researchers,

see, for example, [32]. Jia and Xu [24] studied the singular status of a dual parallel

configured SGCMGs cluster. Zhang [100] stated that the regular pentagonal pyramid

arrangement is the optimal configuration. Concerning the index of the configuration ef-

ficiency and the complexity of the singular surface, Wu [93] pointed out that the regular

dodecahedron is an ideal configuration for the SGCMGs system.

Variable speed control moment gyroscope (VSCMG) is a promising alternative to

eliminate the singular statues of the CMGs system due to its extra freedom provided

by the variable speed rotor. Schaub and Junkins [65] presented a steering law with null

motion based on the VSCMG system. The steering law could continuously optimize the

condition number of the Jacobian matrix and drive the gimbal angles away from the

singular status without producing any torques. By virtue of the variable speed, VSCMG

system could reconfigure the momentum distribution of the whole CMG system with only

a small control torque input. VSCMG could serve as CMG as well as reaction wheel for

spacecraft attitude stabilization and maneuver. Schaub et al [66] proposed a steering law

which could realize both attitude missions simultaneously. Based on VSCMG system,

Avanzini and Guido [4] presented a feedforward steering law by utilizing a constraint

optimization method. The steering law could avoid singularities and deal with gimbal

failures. But it is rather complicated for real applications. Lappas et al [33] applied the

robust singularity method on VSCMGs system and designed a steering law which could

avoid singularities. Romano and Agrawal [63] studied the attitude dynamics and control

method for a spacecraft equipped with VSCMGs system.

Combined application of CMGs and reaction wheels could realize the integrated power

and attitude control of a spacecraft. Roithmayr [62] proposed a control law that could

achieve earth orientation and power management simultaneously. The reaction wheels

are rotated reversely to store the power. The angular momenta of the reaction wheels

and the CMGs are utilized to control the attitude of the spacecraft. Utilization of the

VSCMG could also realize the integrated power and attitude control. In Richie et al [60],

the variable speed SCMGs were used as the attitude control actuators as well as the power

management devices. Yoon and Tsiotras [99] proposed to realize the attitude and energy

tracking by accelerating the rotors of the VSCMGs system.

The SGCMG based spacecraft attitude control schemes have been studied extensively

in recent years. However, due to the complicated nature of the singular surfaces, it is dif-

ficult to design the SGCMGs steering law. Hence, the application of the SGCMGs system

is restricted. For its extra gimbal, each DGCMG has one more degree of freedom than a

SGCMG. So the singular configuration of the DGCMGs system is much more simple than

the SGCMGs system. Studies on the use of DGCMGs system as the attitude stabilization

and control devices can be found in some literatures. Ahmed and Bernstein [1] derived

the dynamic equations of a single DGCMG by using the Lagrange method and designed



1.1 Motivation and background 9

an adaptive feedback control law which could follow the gyro command. By comparing

the abilities of the SGCMG and the DGCMG on suppressing the vibrations of a space

beam, Muise et al [53] found that, under the same circumstances, the performance of the

DGCMG is 2-3 times better than that of the SGCMG and can not be influenced by the

directions of the disturbances. Liu et al [43] proposed an optimal attitude control law for

a spacecraft equipped with a variable speed DGCMGs system. As the explicit solutions

can not be obtained directly, they used the variational method to estimate the cost index

and obtained the optimal solutions by using the conjugate gradient method [10]. Dzielski

et al [13] linearized the attitude dynamics of the spacecraft driven by DGCMGs system,

and derived the attitude control law and the CMGs steering law. Several problems such

as redistribution of the rotors, bounds of the gimbal velocities, and how to ensure the

performance of the system when singularity occurs, are considered during the design pro-

cedure. Boyarski and Ben-Asher [9] studied the time optimal reorientation problem for

the inner gimbal of a DGCMG mounted on an immobilized platform. An explicit solution

was obtained which satisfies the Maximum Principle and the sufficient condition of the

Hamilton-Jacobi-Bellman equation. Tsuneo [78] proposed a steering law involving a gradi-

ent null motion method for the DGCMGs system. Under this steering law, the DGCMGs

could avoid or escape from the internal singularities. However, the computational effort is

very heavy. Kennel [27] designed a steering law which can be applied to parallel mounted

DGCMGs systems. The advantage of the steering law is that it considers all the DGCMGs

as a cluster. When the requirement of the DGCMGs angular momentum is increasing, it

only needs to add a few more DGCMGs to the original system, and the redesign of the

control system is avoided. He also proposed an isogonal distribution method for the three

DGCMGs system which could reduce the cross coupling effects, avoid antiparallel distri-

bution and enlarge the gain of the control law [28]. Although studies on DGCMGs system

can be found in many published papers, a precise three dimensional spacecraft attitude

dynamics based on DGCMGs system has not yet been found in the open literature.

There are mainly two methods for the landing module to ascend from the moon surface

and fly back to the earth. The first return method corresponds to the vertical landing

mode. The main thruster is ignited and the landing module ascends vertically from the

moon surface. When the velocity of the module reaches 3km/s, the thruster will be shut

down and the module flies directly back to the earth. At the moment when the module

escapes from the lunar gravitational field, the relative speed of the module with respect

to the earth is about 1km/s which will increase to 11km/s when reaching the border of

the earth atmosphere. The second return method corresponds to the soft landing mode

starting from the lunar parking orbit. When the investigations have been accomplished,

the landing module ascends vertically from the moon surface back to the parking orbit

and docks with the orbital module. Then, the entire module will speed up and return to

the earth.
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To realize the second return strategy, either in manned or unmanned missions, a crucial

step is to dock the landing module with the orbital module. When the two modules are

close enough, their attitudes and attitude velocities should achieve synchronization within

a limited time so as to ensure the safety of the modules to perform a successful docking.

Therefore, synchronization control technique plays a very important role in the rendezvous

and docking missions of the spacecrafts.

Synchronization control of different objects aims at achieving the synchronized motions

of the objects with reference to desired target motions. These objects can be mechanical

systems, robots, electrical motors, precision optical instruments, or spacecrafts [37, 40,

54, 69, 96], just to name a few. It has attracted an increasing attention in recent years.

There are two main approaches to the synchronization control – the master-slave mode

approach and the equal-status mode approach. For objects with distinct characteristics

in their dynamics, it is more suitable to use the master-slave mode approach, where the

object with a slower dynamics is taken as the master, while the object with a faster

dynamics is taken as the slave. Its objective is to ensure that the motion of the slave will

synchronize with that of the master. If the dynamic characteristics of the two objects are

close, it is more suitable to use the equal-status mode approach. In this approach, the

cross coupling terms for measuring the synchronization errors are introduced. Both these

approaches are well studied in the literature.

Arimoto et al [3] developed a cooperative motion control scheme for the synchro-

nization of a set of robot arms or fingers with tele-operation of the master-slave robotic

systems, where the second method of Lyapunov was utilized to show the asymptotic sta-

bility. Tao et al [73] proposed a compliant coordination control method for two moving

industrial robots by using the master-slave mode approach. A computational scheme was

then presented. Miyazaki et al [51] presented a bilateral servo controller for a master-

slave robot system through the stability analysis based on the Lyapunov theory. This

controller is easily implementable and assures the asymptotic stability even if the arms of

the master and the slave have complex nonlinear dynamics with different structures.

Adaptive control methods have been widely implemented for solving the cross-coupling

synchronization problems. An early application was proposed by Tomizuka et al [76] in

which an adaptive cross-coupling control law was utilized to synchronize the motions of

two DC motors whose models can be described by a first order linear dynamics. This

control law consists of a proportional feedback controller, an adaptive disturbance com-

pensator and an adaptive feedforward controller. A cross-coupling term is introduced to

deal with the synchronization errors. Due to the cross-coupling effect, the disturbances

on one motor will also appear on the other motor. However, the system synchronization

is achieved. Kamano et al [26] extended the adaptive feedforward control law to the posi-

tion synchronization problem of two objects. The model of each object is described by a

second order linear dynamics. In the two articles mentioned above, the stability of each
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system is established by Popov stability criterion [8]. It is, however, a very complicated

task to verify the positive definite property of the transfer function matrix. Thus, these

methods are only suitable for solving problems with first or second order linear dynamics.

Adaptive cross-coupling synchronization control can also be extended to higher order

linear or nonlinear systems. Based on Tomizuka’s work, Yang and Chang [96] designed an

adaptive synchronization control law for a scissored pair of CMGs which can be used to

control the slewing motion of a spacecraft structure. Both the synchronization problems

of the positions and velocities are considered. Tsao et al [77] applied the adaptive method

to the velocity synchronization control problem of two or four magnetic suspension mo-

tors. However, they did not provide system stability analysis in their works. In fact, for

high order linear or nonlinear systems, Lyapunov theory is a powerful tool for control

system design. System stability can be guaranteed during the design stage. Based on the

Lyapunov method, Sun [70] proposed an adaptive cross-coupling synchronization control

law which could be used for the synchronous manipulations of multi objects. Under the

presence of constant external disturbances, this control law could make the tracking error

of each object converge to zero as well as achieve the synchronization between different

objects. Sun [71] also applied this control method to the assembling system carried by

multi robots, and the punching and cutting synchronization control problems of the nu-

merical control machines. Liu and Sun [41] proposed a uniform synchronization strategy

for a multi-axis control problem. Under the uniform framework, the asymptotic conver-

gence of both tracking and synchronization errors are achieved and the performance of

the transient motion is improved by selecting proper position synchronization errors.

Applications of adaptive cross-coupling synchronization control also appear in the

research works on multi robots coordinate control problems. Namvar and Aghili [54]

studied the coordinate control problem of multi robots for grasping an object with an un-

known shape. Based on Lyapunov theory, they proposed an adaptive mixed force motion

controller to achieve robust stability against environmental frictions and nonparametric

uncertainties. By studying the assembly tasks performed by coordinate multiple robots,

Zhu [105] proposed an adaptive synchronization control algorithm, and pointed out that

the contact force at the end-effector of each robot should be a function of the states of

all the robots and also be a function of the control inputs when subject to rigid con-

straints. The algorithm was applied to a dual-arm case subject to both flexible and rigid

constraints, and was also extended to a multiple-arm case. Rodriguez-Angeles and Ni-

jmeijer [61] addressed the synchronization control problem of multiple-robots under the

circumstance that only the positions of the robots can be measured. The control algo-

rithm proposed consists of a feedback controller and a nonlinear observer which could

estimate the angular velocity information of each joint. The convergence properties of

the synchronization errors and the estimation errors were proved. They also presented

a master-slave synchronization method for the robot with flexible joints. With the feed-
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back linearization technique, the synchronization controller and the nonlinear observer

were designed based on Lyapunov theory. Koren [31] improved the performance of a con-

ventional biaxial system by introducing a symmetrical cross-coupling control, where the

whole system is considered as a single unit. Srinivasan and Kulkarni [68] designed a cross-

coupling controller to improve the accuracy of a high-speed contour that is independent

of the tracking accuracy in a biaxial machine tool feed driver.

Robust control theory could also be applied to synchronization control system de-

signs. By researching the motion synchronization problem for a dual-cylinder electro

hydraulic (EH) lift system, Sun and Chiu [72] designed an outer-loop motion synchro-

nization controller utilizing the linear multiple input/multiple output (MIMO) robust

control technique. A cross-coupling controller using a H∞ control scheme was proposed

by Fang and Chen [14] to reduce the contouring error for a two-axis, direct-drive robot in

tracking linear and circular contours. To achieve tracking and synchronization control of

two n-dimensional linear systems with reference to given commands, Zhou [102] designed

a H∞ control law by constructing a dual-input/dual-output system using the difference

between the output of the two original systems. The method was further extended to the

case in which the control objects have dual inputs and was applied to the synchronization

control problem of the Wafer-Retical Stage. Wang and Liu [88] designed a sliding mode

variable structure control law for the synchronization control of a chaotic system in the

presence of nonlinear inputs, parameter uncertainties and external disturbances. Gao et

al [17] proposed a robust finite time fast sliding mode controller and pointed out that, by

this controller, many chaotic systems can achieve synchronization with identical system

response through state transformation. Yau et al [98] studied the synchronization control

method for a class of chaotic systems with uncertainties.

Feedback linearization technique, backstepping method, fuzzy control and neural net-

work can also be utilized to solve the synchronization control problems of nonlinear sys-

tems. Moore and Chen [52] proposed a fuzzy coupling synchronization method. With the

synchronization errors and their derivatives, compensations for each loop are calculated

based on fuzzy rules. The method was verified by simulations. The stability analysis was,

however, not provided. Lee and Jeon [34] presented a neural network approach to the

synchronization of two motion axes. The weights of the neural network can be adjusted

by a learning law derived from the gradient algorithm.

Synchronization control has also been widely used in the areas of aeronautical engi-

neering and aerospace engineering such as aircraft/spacecraft formation flight, rendezvous

and docking, space arm coordinate operations, attitude actuators synchronization control

and so on. For instances, Liu et al [40] presented an adaptive synchronization control

law for the angular velocity synchronization problem of multiple aircrafts. Shan et al [67]

proposed a synchronized trajectory-tracking control strategy for multiple experimental

three-degrees-of-freedom helicopters. Asymptotic convergence is achieved by using Lya-
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punov theory. Zhou [103] proposed a synchronization approach to a scissored pair of

CMGs to manipulating the attitude motion of spacecrafts. During the missions of space-

craft rendezvous and docking (for example, space shuttle docks with the space station,

lunar landing module docks with the orbital module), synchronization control also plays a

very important role. A precise, reliable and fast synchronization strategy is always highly

in demand.

Optimal control, also named as Dynamic Optimization or Process Optimization, is

an important branch of modern control theory. The central issue of the optimal control

problem can be stated as: For a given dynamical system, find an admissible control law

which could bring the system from an initial state to a desired terminal state such that

a performance index is minimized/maximized subject to constraints on the control and

state. Applications of optimal control can be found in a wide range of disciplines, such

as space technology, life science, economics, social science and engineering. For example,

in the mission of lunar module soft landing, it is required that the module reaches the

moon surface with the least fuel consumption. For the synchronization motion control

of multiple objects, it aims to achieve the synchronization in minimum time. In supply

chain management, various raw materials are bringed into a finished product which will

be delivered to the end customer. The objective is to minimize the cost and maximize

the profit during the accomplishment of the whole process. To solve an optimal control

problem arising from practice, we need to construct a mathematical model to describe

the physical problem.

For an optimal control problem, it normally consists of four parts as described below.

1. Mathematical model expressed as a system of dynamic equations. It describes the

behaviors of the system, and is called system dynamics. One such system dynamics is:

ẋ(t) = f
(
t,x(t),u(t)

)
, t ∈ [t0, tf ], (1.1)

where x(t) ∈ Rn is the state vector at time t, u(t) ∈ Rr is the control vector at time

t, and f : R × Rn × Rr → Rn is a given function, while the time t0 and tf in (1.1) are

called the initial and terminal time, respectively, and the interval [t0, tf ] is called the time

horizon. Thus, the change rate of the state vector is a function of the time, the current

state and the control.

2. Conditions on the initial and terminal state, called the boundary conditions of the

system dynamic. In an optimal control problem, the initial time t0 and the initial state

vector x(t0) ∈ Rn are normally given. However, the situations for the terminal state x(tf )

at the terminal time tf vary from problem to problem. The terminal time could be free

or pre-determined. A terminal state constraint may be a fixed point or a manifold in the

state space. Sometimes, parts of the state elements are free while others are fixed. All
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these situations can be described as:

x(tf ) ∈ M (1.2)

where M is a target set.

3. Admissible controls. For a physical control problem, any measurable function u

such that u(t) ∈ U for almost all t ∈ [t0, tf ] is called an admissible control, where U ∈ Rr

is a specified control constraint set, which is often a compact subset of Rr. Let U be the

class of all such admissible controls. An optimal control must be an admissible control.

4. Objective function. Suppose there are many controls which could transfer the initial

state x(t0) to a target set M , i.e., x(tf ) ∈ M . Then, an important question arises: which

one is the best/optimal? To assess the quality of these controls, we need to construct a

function to describe the performance of the system under various controls. This function

is called an objective function or performance index. If the objective function is to be

maximized, then it is called a profit function. On the other hand, if it is to be minimized,

then it is called a cost function.

There are two classic theorems that can be used to deal with the optimal control

problems – Pontryagin’s minimum principle and Bellman’s principle of optimality. We

shall introduce them briefly.

Pontryagin’s minimum principle was proposed by Pontryagin and his colleagues in

1956, and it is probably the most famous theory in optimal control area. The basic idea

of Pontryagin’s minimum principle is to construct a Hamiltonian function by introducing

a new costate vector [10]. Then, the optimal control problem can be solved by minimizing

the Hamiltonian function which yields a two-point boundary-value problem (TPBVP) in

terms of the optimal state and the costate. Because the minimum principle is a necessary

condition for optimality, the solution of the TPBVP is a candidate solution of the original

optimal control problem [97].

Belleman’s principle of dynamic programming was derived during 1953 to 1957. The

solution to the well-known Hamilton-Jacobi-Bellman equation, if it exists, can be utilized

to construct an optimal controller for the optimal control problem. Belleman’s principle

of dynamic programming offers a sufficient condition for optimality.

The minimum principle and the dynamic programming are powerful tools. However, it

is often difficult to solve them analytically. Consequently, numerical methods for solving

optimal control problems are extensively studied. Many methods can be found in the

literature [2, 18, 30, 86, 87]. For example, the shooting method which is used to solve

the two-pint boundary-value problem is derived from the maximum principle. However,

the shooting method needs an accurate estimation of the costate initial value, which is

often difficult to obtain. An new alternative method is presented in [12, 15], where the

initial value of the costate is determined in advance and the state and costate equations
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are calculated forward in time simultaneously. However, if the problem only has a few

number of constraints, this approach would be more time consuming than the traditional

method.

The control parameterization method [15,45,74,85] is another numerical approach to

solve various optimal control problems. The main idea of the control parameterization

method is to approximate the control variables by a linear combination of some basic

functions. The coefficients of these functions are chosen as decision variables. Then,

the original optimal control problem is approximated by a sequence of optimal parameter

selection problems, each of which can be viewed as a mathematical programming problem.

Thus, standard mathematical programming techniques can be applied to solve each of

these optimal parameter selection problems.

To apply the control parameterization technique described above we need to partition

the time horizon in advance. The partition points, also named switching times, are fixed.

A better approach is to regard these points as variables and choose them optimally.

However, it has been proved [19, 74] that the gradient formulas of the cost function and

the constraint functions with respect to the variable partition points are discontinuous.

Thus, they are very difficult to implement. To overcome this difficulty, a time scaling

transform is introduced. The main idea is to map all these variable time points into fixed

time points in a new time horizon, such that the gradient formulas are continuous and

easy to calculate.

For the optimal control problems involving infinite many inequality constraints, the

conventional constrained optimization methods are not capable to solve such problems.

Hence, a constrained transcription method [23] is introduced, where the continuous in-

equality constraints are first transformed into equivalent equality constraints in integral

form. However, the integrands are nonsmooth. Thus, a local smoothing technique is used

to approximate these nonsmooth integrands by smooth functions. In this way, the origi-

nal problem is approximated by a sequence of optimization problems involving inequality

constraints in integral form, where each of which can be solved by using conventional

constrained optimization methods.

There are several software packages available for solving optimal control problems.

One of which is known as MISER 3.3 [22]. It was developed based on the control pa-

rameterization technique, a time scaling transform, and the control transcription method.

This software has been successfully applied to a variety of optimal control problems (see,

for example, [16, 35,38,39,49,58]).

1.2 Overview of this thesis

In the previous section, we briefly introduced the backgrounds of several kinds of space-

craft missions and the control methods used therein. In particular, three problems were
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discussed: (1) Lunar module soft landing with optimal fuel consumption control strategy;

(2) Spacecraft attitude control devices and the control methods utilized; and (3) Synchro-

nization control approaches to realize spacecraft formation flight, rendezvous and docking,

which could also be applied to relevant problems in industry and engineering. Thereafter,

the development and applications of optimal control methods are briefly discussed. In

this thesis, we will deal with all the three problems mentioned above. The rest of the

thesis is briefly described below.

In Chapter 2, we consider the optimal control problem of a lunar module soft landing,

starting from the perilune to the moon surface. In this problem, the motion of the module

is described in a three dimensional coordinate system and the control inputs are bounded.

By using the control parameterization technique and the time scaling transform, we design

an optimal control strategy to realize the soft landing of the lunar module such that the

fuel consumption and the terminal time are minimized. The terminal attitude of the

module is kept to be within an allowable small deviation from being vertical with respect

to lunar surface so as to ensure that the module could stand on the moon vertically. Then,

the optimal descent trajectory is obtained. We then move on to consider an optimal

trajectory tracking problem, where a desired trajectory is tracked such that the fuel

consumption and the flying time are minimized. This optimal tracking problem is solved

using the same approach to the first optimal control problem.

In Chapter 3, based on the same background of lunar module soft landing, we consider

the optimal control problem in which the system initial states are perturbed from the pre-

specified positions. To deal with such situations, an optimal closed loop control law is

designed for the powered deceleration phase. The proposed control law involves a feedback

gain matrix which satisfies a Riccati-like matrix differential equation. Then, a practical

method is presented to calculate an approximate optimal feedback gain matrix, without

having to solve an optimal control problem involving the complex Riccati-like matrix

differential equation coupled with the original system dynamics.

In Chapter 4, the control problem of spacecraft attitude maneuver is considered. Here,

we utilize the DGCMGs system as the attitude actuator of the spacecraft. First, an

exact mathematical description of the spacecraft attitude motion driven by DGCMGs is

derived. Then, a nonlinear feedback control law is proposed based on the second theorem

of Lyapunov and the system stability is proved during the design procedure. A singularity

robust plus null motion steering law is also presented which could avoid and escape from

the internal singularities of the DGCMGs system. Singularity situations that exist in two

kinds of DGCMG configurations, i.e., orthogonally mounted three DGCMGs and parallel

mounted four DGCMGs, are detailed.

In Chapter 5, a class of nonlinear optimal tracking and synchronization control prob-

lems are considered, where the motions of two distinct objects are required to achieve

synchronization at the minimum time while achieving the optimal tracking of a reference
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target. We develop a computational method to construct an optimal switching law to

realize such an optimal tracking and synchronization mission. The method proposed is

then used to solve a practical problem, which arises from the study of the angular velocity

tracking and synchronization of two spacecrafts during their formation flight.

Chapter 6 concludes the thesis with some concluding remarks and suggestions for

further research.





CHAPTER 2

Optimal guidance for lunar module soft

landing

2.1 Introduction

In this chapter, we consider an optimal control problem arising from the optimal guidance

of a lunar module to achieving soft landing during the powered descent part, i.e., from

15km height to the moon surface.

In most of the relevant papers in the literature, the descriptions of the system dynamics

of the lunar module soft landing are in a two-dimensional polar coordinate system. The

descent trajectory of the lunar module is assumed to remain in a vertical plane without

consideration of the lateral movement. Neither the influence of the moon rotation is

taken into account. However, the lunar module does not, in practice, descend along

such a vertical plane. To realize a precise pinpoint soft landing, we first derive a three-

dimensional dynamics for the motion of the lunar module. Then, we move on to construct

an optimal guidance law to achieve the soft landing of the module. In this chapter, we

assume that only the main reverse force thruster is equipped on board for deceleration,

and that all the three phases of the powered descent (powered deceleration phase, attitude

adjustment phase and vertical descent phase) are considered as a whole piece. The lunar

soft landing is treated as a continuously powered descent process with a constraint on

the angle of the module between its longitudinal axis and the moon surface. When the

module touches down on the moon surface, the terminal attitude of the module should be

within an allowable small deviation from being vertical with respect to lunar surface. The

aim is to achieve these goals in such a way that the fuel consumption and the terminal

time are minimized. The optimal descent trajectory of the lunar module is calculated by

using the control parameterization technique in conjunction with a time scaling transform

[75]. By these two methods, the optimal control problem is approximated by a sequence

of optimal parameter selection problems. Each of which is basically a mathematical

programming problem and hence can be solved by existing gradient-based optimization

methods [22, 25, 29]. A general purpose optimal control software package, called MISER

19
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Figure 2.1: Polar coordinate system of lunar soft landing.

3.3, was developed based on these methods. We make use of this optimal control software

package to solve our problem in this chapter.

The optimal trajectory tracking problem, where a desired trajectory is to be tracked

with the least fuel consumption in the minimum time, is also considered and the same

approach to the first optimal control problem is utilized to solve this optimal trajectory

tracking problem.

2.2 Two-dimensional coordinate system of lunar soft

landing

In this section, we will briefly introduce the commonly used polar coordinate system for

the lunar module soft landing (see Figure 2.1).

In Figure 2.1, o represents the origin of the coordinate system which is coincide with

the moon center. oY is from the center of the moon to the perilune which is orthogonal

to oX. r is the distance between the module and the center of the moon. θ is the angle

between oY and or. F (t) is the thrust force of the engine, satisfying 0 ≤ F (t) ≤ Fmax.

ψ(t) is the angle between the perpendicular of or and the direction of the thrust force,

satisfying 0 ≤ ψ(t) ≤ π/2.

With reference to the above coordinate system, the dynamic equations of the lunar

module are:
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ṙ = v

v̇ = F sinψ/m− µ/r2 + rω2

θ̇ = ω

ω̇ = −(F cosψ/m+ 2vω)/r

ṁ = −F/C

(2.1)

where v ∈ R is the velocity along the direction of or, µ is the gravitational force of the

moon, C represents the specific impulse of the thruster, m ∈ R is the mass of the module

and ω ∈ R is the angular velocity of the module with reference to the center of the moon.

From Figure 2.1, it is seen that (2.1) could only describe the motion of the module

in oXY plane, while the motion orthogonal to this plane is not considered. So, the

application of (2.1) is based on the assumption that the velocity of the module always

lies in the oXY plane, and the specified landing site is also in the same plane. However,

such an assumption can not always be satisfied in practice. For instance, if the initial

velocity of the module is not in the oXY plane, then the module will never reach the

landing target precisely, no matter what control policies are used. Thus, the limitation

of the two-dimensional polar coordinate system is obvious. In the next section, we will

derive a precise three-dimensional coordinate system to describe the motion of the lunar

module soft landing.

2.3 Three-dimensional coordinate system of lunar soft

landing

The moon is not a perfect sphere, and its shape is distorted slightly because of the tidal

effects caused by the gravitation of the earth. In the study of the lunar module soft

landing, we normally take the moon as a sphere with a mean radius which is about

1738km. The spin angular velocity of the moon is ωL = 2.661699×10−6 rad/s, which will

influence the guidance accuracy of the lunar soft landing, and the influence will increase

as the module approaches the moon equator. So, in this section, we will derive a three-

dimensional dynamics for the lunar soft landing, where the moon rotation will be taken

into consideration. The optimal guidance law to achieve the soft landing will be discussed

in next section.

As the influences of other celestial bodies on the lunar module are small when compared

with the moon gravity, the lunar module soft landing can be treated as a two-body system

[94]. The motion of the lunar module soft landing is described in a three-dimensional

coordinate system (Figure 2.2). Let oxyz and oxLyLzL be, respectively, the Lunar Central

Inertial Coordinate and Lunar Fixed Coordinate with the moon equator as the reference

plane. Ax1y1z1 is the orbit coordinate, A is the position of the lunar module. The three-
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Figure 2.2: Three-dimensional coordinate systems.

dimensional coordinate forms a right handed system. α and β represent, respectively,

the rotational angles between oxyz and Ax1y1z1. ϑ is the separation angle between P

(the thrust force) and Ay1. ψ is the separation angle of the projection of P onto the

plane Ax1z1 with reference to the negative direction of Ax1. So the direction of P in

the coordinate Ax1y1z1 can be expressed in terms of ϑ and ψ. γ is the rotational angle

between oxyz and oxLyLzL. Without loss of generality, we can assume that oxyz and

oxLyLzL coincide with each other at the time when the process of the soft landing begins.

Based on the above definitions, the coordinate transformation matrix from Ax1y1z1

to oxyz can be easily obtained as follows:

T1 =

 cosα cos β sin β − sinα cos β

− cosα sin β cos β sinα sin β

sinα 0 cosα

 . (2.2)

The coordinate transformation matrix from oxyz to oxLyLzL is

T2 =

 cos γ 0 − sin γ

0 1 0

sin γ 0 cos γ

 . (2.3)

Based on Newton’s second law, the dynamic equations of the module in the Lunar

Central Inertial Coordinate can be derived as:

[
d

⇀

V I

dt

]
I

= T1 ·

 QVr sinϑ cosψ/m

QVr cosϑ/m

QVr sinϑ sinψ/m

+

⇀

G1

m
(2.4)

where
⇀

V I and
⇀

G1 are, respectively, the module velocity vector and the lunar attraction
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force vector in the Lunar Central Inertial Coordinate, m is the mass of the lunar module,

Q and Vr represent, respectively, the fuel consumption rate and the specific impulse of the

thruster. The product of Q and Vr is the magnitude of the thrust force P whose direction

is defined as positive, while the direction of
⇀

G1 is defined as negative.

Let
⇀

R be the position vector of the module, and let
⇀

V L be the velocity vector of the

module in the Lunar Fixed Coordinate,
⇀
ω is the angular velocity vector of the Lunar

Fixed Coordinate with reference to the Lunar Central Inertial Coordinate. From Coriolis

Principle [7], we have
⇀

V I =
⇀

V L +
⇀
ω ×

⇀

R (2.5)

Differentiate (2.5), we obtain the acceleration vector of the module with reference to the

Lunar Central Inertial Coordinate given below.[
d

⇀

V I

dt

]
I

=

[
d

⇀

V L

dt

]
I

+
⇀
ω ×

[
d

⇀

R

dt

]
I

+

[
d

⇀
ω

dt

]
I

×
⇀

R (2.6)

According to Coriolis Principle, we have the following equations.[
d

⇀

V L

dt

]
I

=

[
d

⇀

V L

dt

]
L

+
⇀
ω ×

⇀

V L (2.7)

[
d

⇀

R

dt

]
I

=
⇀

V L +
⇀
ω ×

⇀

R (2.8)

As the lunar spin velocity is constant, it follows that[
d

⇀
ω

dt

]
I

= 0 (2.9)

Substitute (2.7), (2.8) and (2.9) into (2.6), we obtain[
d

⇀

V
L

dt

]
L

=

[
d

⇀

V
I

dt

]
I

− 2
⇀
ω ×

⇀

V L − ⇀
ω × (

⇀
ω ×

⇀

R) (2.10)

Thus, the dynamics of the module expressed in the Lunar Fixed Coordinate can be

written as:  V̇xL

V̇yL

V̇zL

 = T2 · T1 ·

 QVr sinϑ cosψ/m

QVr cosϑ/m

QVr sinϑ sinψ/m

+

⇀

G1L

m

− 2
⇀
ω ×

⇀

V L − ⇀
ω × (

⇀
ω ×

⇀

R) (2.11)
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where V̇xL, V̇yL and V̇zL are the components of the module acceleration vector on each

axis of the Lunar Fixed Coordinate, and
⇀

G1L represents the projection of
⇀

G1 in the Lunar

Fixed Coordinate. The lunar gravitational force
⇀
g consists of the attraction force and the

centrifugal force which can be written in the Lunar Fixed Coordinate as

⇀
gL =

⇀

G1L

m
− ⇀
ω × (

⇀
ω ×

⇀

R) (2.12)

Substitute (2.12) into (2.11), we have V̇xL

V̇yL

V̇zL

 = T2 · T1 ·

 QVr sinϑ cosψ/m

QVr cosϑ/m

QVr sinϑ sinψ/m

+
⇀
gL − 2

⇀
ω ×

⇀

V L (2.13)

Let xL, yL and zL be, respectively, the coordinates of the module in the Lunar Fixed

Coordinate. Then, by choosing the state vector as

xL = [xL, yL, zL, VxL, VyL, VzL,m]T ,

the system dynamic equations can be derived as:

ẋL = VxL

ẏL = VyL

żL = VzL

V̇xL = BQVr/m− gxL − 2ωLVzL

V̇yL = CQVr/m− gyL

V̇zL = DQVr/m− gzL + 2ωLVxL

ṁ = −Q

(2.14)

where

B = (cosα cos β cos γ − sinα sin γ) sinϑ cosψ

−(sinα cos β cos γ + cosα sin γ) sinϑ sinψ + sin β cos γ cosϑ

C = − cosα sin β sinϑ cosψ + cos β cosϑ+ sinα sin β sinϑ sinψ

D = (cosα cos β sin γ + sinα cos γ) sinϑ cosψ

−(sinα cos β sin γ − cosα cos γ) sinϑ sinψ + sin β sin γ cosϑ,

while gxL, gyL and gzL denote the respective components of the lunar gravitation in the

Lunar Fixed Coordinate.



2.4 Problem formulation 25

2.4 Problem formulation

For continuously powered descent soft landing, the reverse force thruster begins to work,

starting from the perilune to decelerate the initial velocity of the module. With the

cooperation of the attitude control devices, the module is guided to reach the landing

target vertically with an allowable small and safe final velocity. This is achieved under

the control constraints such that the fuel consumption and the flight time are minimized.

For (2.14), we introduce two new state equations

ϑ̇ = v (2.15)

ψ̇ = w (2.16)

Let

x = [xL, yL, zL, VxL, VyL, VzL, ϑ, ψ,m]T

= [x1, x2, x3, x4, x5, x6, x7, x8, x9]
T (2.17)

and

u = [Q, v, w]T = [u1, u2, u3]
T (2.18)

The original system dynamics (2.14) can be rewritten in the form of an affine nonlinear

system given below.

ẋ(t) = f(x(t)) +B(x(t))u(t) (2.19)

where

f(x) = [x4, x5, x6,−gxL − 2ωLx6,−gyL,−gzL + 2ωLx4, 0, 0, 0]
T , (2.20)

B(x) =

 0 0 0 M1 M2 M3 0 0 −1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0


T

, (2.21)

while

M1 = [(cosα cos β cos γ − sinα sin γ) sin x7 cos x8

−(sinα cos β cos γ + cosα sin γ) sin x7 sinx8 + sin β cos γ cos x7]Vr/x9,

M2 = [− cosα sin β sinx7 cos x8 + cosβ cosx7 + sinα sin β sin x7 sinx8]Vr/x9,
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and

M3 = [(cosα cos β sin γ + sinα cos γ) sin x7 cos x8

−(sinα cos β sin γ − cosα cos γ) sin x7 sin x8 + sin β sin γ cosx7]Vr/x9.

The boundedness constraints on the control vector u = [u1, u2, u3]
T are specified below:

α ≤ u(t) ≤ β, ∀ t ≥ 0, (2.22)

where α = [α1, α2, α3]
T and β = [β1, β2, β3]

T , while αi, i = 1, 2, 3, and βi, i = 1, 2, 3,

are given constants. Let U be the set of all such controls. Elements from U are called

admissible controls and U is referred to as the class of admissible controls.

The initial conditions of the soft landing are determined by the state of the lunar

module in the perilune at the initial time t0 = 0. The terminal constraints are specified

by the requirement of the soft landing, i.e., when the lunar module reaches the target at

the terminal time tf which is free, its velocity should be close to zero and its longitudinal

axis should be close to vertical to the moon surface. So the initial conditions and terminal

state constraints can be expressed as:

x(t0) = [xL0, yL0, zL0, VxL0, VyL0, VzL0, ϑ0, ψ0,m0]
T (2.23)

and

Φ =



xL(tf )− xLr

yL(tf )− yLr

zL(tf )− zLr

VxL(tf )− 0

VyL(tf )− 0

VzL(tf )− 0


= 0 (2.24)

ϑtf ≤ x7(tf ) ≤ 0 (2.25)

where (xLr, yLr, zLr) represents the position of the landing target in the Lunar Fixed

Coordinate, ϑtf is the terminal separation angle of the module between its longitudinal

axis and the direction of the plumb line. Our aim is to design an optimal control strategy

to achieve the task of soft landing of the lunar module such that conditions (2.24) and

(2.25) are satisfied and the fuel consumption and the flying time are minimized. The

task of minimizing the fuel consumption and the flying time is formulated as the task of

minimizing the following cost function

J = m0 − x9(tf ) + tf (2.26)

We may now formally state our optimal control problem as follows.
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Problem P. Given system (2.19), find a control u ∈ U such that the cost function (2.26)

is minimized subject to the control constraint (2.22), the initial condition (2.23) and the

terminal state constraints (2.24) and (2.25).

2.5 Parameterization of the Control

To solve Problem P, we shall utilize the control parameterization technique to approximate

the control vector u with piecewise constant functions over the time interval [0, tf ] as:

up1(t) =

np∑
k=1

σk
1χ[τk−1,τk)(t) (2.27a)

up2(t) =

np∑
k=1

σk
2χ[τk−1,τk)(t) (2.27b)

up3(t) =

np∑
k=1

σk
3χ[τk−1,τk)(t) (2.27c)

where

τ0, τ1, . . . , τnp , τk−1 < τk, k = 1, 2, . . . , np (2.28)

(with τ0 = 0 and τnp = tf ) are partition points of the time interval [0, tf ], and χI(t)

denotes the indicator function of I defined by

χI(t) =

{
1, t ∈ I

0, elsewhere
(2.29)

Let τ = [τ1, . . . , τnp ]
T and let Υp be the set which consists of all such τ . For each

j = 1, 2, 3, and k = 1, 2, . . . , np, σ
k
j is a constant control parameter, and τk, k =

1, . . . , np − 1, are the switching times. Let σj = [σ1
j , · · · , σ

np

j ]T , j = 1, 2, 3, and let

σ = [(σ1)
T , (σ2)

T , (σ3)
T ]T . Define up = [up1, u

p
2, u

p
3]

T .

As up ∈ U , it is clear that
αj ≤ σk

j ≤ βj (2.30)

for j = 1, 2, 3, and k = 1, 2, . . . , np. Let Ξ
p denote the set containing all such σ. Here,

for the soft landing of a lunar module, the terminal time τnp = tf is unknown and regarded

as a decision variable. So, the original control vector (2.18) is approximated by (2.27),

leading to an approximate optimal control problem to the optimal control Problem P

given below.

Problem Pp. Given system (2.19), find a control in the form of (2.27) such that the cost

function (2.26) is minimized subject to the control constraints (2.30), the initial condition
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(2.23) and the terminal state constraints (2.24) and (2.25).

Thus, by solving Problem Pp, we obtain an approximate solution to Problem P. It is

expected that this approximate solution will be closer to the optimal solution when the

number of the partition points is increased.

To enhance the performance of the approximation, we should regard the partition

points as decision variables to be selected optimally. However, it is known [19, 74] that

the gradient formulas of the cost function and the constraint functions with respect to

the variable partition points are discontinuous over [0, tf ]. Thus, they do not work well

in practice. To overcome this obstacle, a time scaling transform [75] is introduced to map

all these variable time points τk, k = 1, . . . , np, into fixed time points ςk, k = 1, . . . , np, in

a new time horizon [0, 1], such that

0 = ς0 < ς1 < · · · < ςnp−1 < ςnp = 1 (2.31)

For this, we introduce a new state equation defined on [0, 1]

dt(s)

ds
= µp(s) (2.32)

where t(0) = 0, t(1) = tf , and

µp(s) =

np∑
k=1

δkχ[ςk−1,ςk)(s) (2.33)

Here,

δk ≥ 0, k = 1, . . . , np (2.34)

are decision variables. µp(s) is called the time scaling control. It is a nonnegative piecewise

constant function with possible discontinuities at the pre-fixed knots ςk, k = 1, . . . , np−1.

Let δ = [δ1, · · · , δnp ]
T .

By applying the time scaling transform (2.32), system equations (2.19) and (2.32) are

transformed into

dx̃(s)

ds
=

[
µp(s)[f(t(s), x̂(s)) +B(t(s), x̂(s))ûp(s)]

µp(s)

]
= f̃(s, x̃,σ, δ) (2.35)

where x̃ = [x̃1, · · · , x̃9, x̃10]T = [(x̂)T , t]T , x̂(s) = x(t(s)), and ûp(s) = up(t(s)) given by

ûp(s) =

np∑
k=1

σkχ[ςk−1,ςk)(s) (2.36)
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The initial condition is

x̃(0) = [xL0, yL0, zL0, VxL0 , VyL0 , VzL0, ϑ0, ψ0,m0, 0]
T (2.37)

The cost function (2.26) and the terminal constraints (2.24) and (2.25) become

J̃ = m0 − x̃9(1) + x̃10(1) (2.38)

and

Φ̃ =



x̃1(1)− xLr

x̃2(1)− yLr

x̃3(1)− zLr

x̃4(1)− 0

x̃5(1)− 0

x̃6(1)− 0

x̃10(1)− tf


= 0 (2.39)

ϑtf ≤ x̃7(1) ≤ 0 (2.40)

respectively. They can be written in canonical form as:

g̃0(σ, δ) = Φ̃0(x̃(1|σ, δ), σ, δ) +
∫ 1

0

ℓ̃0(s, x̃(s|σ, δ), σ, δ)ds (2.41)

and

g̃i(σ, δ) = Φ̃i(x̃(1|σ, δ), σ, δ) +
∫ 1

0

ℓ̃i(s, x̃(s|σ, δ), σ, δ)ds = 0, i = 1, ..., 7, (2.42)

g̃i(σ, δ) = Φ̃i(x̃(1|σ, δ), σ, δ) +
∫ 1

0

ℓ̃i(s, x̃(s|σ, δ), σ, δ)ds ≤ 0, i = 8, 9, (2.43)

where ℓ̃i = 0, for i = 0, 1, ..., 9, while Φ̃i, i = 0, 1, ..., 9, are defined by (2.38), (2.39) and

(2.40), respectively.

The original optimal control problem is now approximated by a sequence of optimal

parameter selection problems depending on np, the number of the partition points of the

time horizon [0, tf ], given below.

Problem P̃p. Given system (2.35) with the initial condition (2.37) on the time interval

s ∈ [0, 1], find a control parameter vector σ ∈ Ξp and a switching time vector δ ∈ Υp,

such that the cost function (2.38) is minimized subject to the terminal constraints (2.39)

and (2.40).

For each np, Problem P̃p can be solved as a nonlinear optimization problem where the

cost function (2.38) is minimized subject to the terminal constraints (2.39) and (2.40)
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and the constraints on the decision vectors σ and δ given by (2.30) and (2.34), where the

dynamical system (2.35) is used to generate the values of the cost function (2.38) and the

constraint functions (2.39) and (2.40). Existing gradient-based optimization methods can

be used to solve Problem P̃p. For this, we need the gradient formulas of the objective

function and the constraint functions. For the constraints (2.30) and (2.34), their gradient

formulas are straightforward to derive. The gradient formulas of the objective function

(2.38) and the constraint functions (2.39) and (2.40) are given bellow. The proof follows

from a similar argument as that given for Theorem 5.2.1 Chapter 5 in [74].

Theorem 2.1. For each i = 0, 1, . . . , 9, the gradient of the function g̃i with respect to σ

and δ are given by

∂g̃i(σ, δ)

∂σ
=

∫ 1

0

∂H̃i(s, x̃(s),σ, δ, λ̃
i(s|σ, δ))

∂σ
ds (2.44)

and
∂g̃i(σ, δ)

∂δ
=

∫ 1

0

∂H̃i(s, x̃(s),σ, δ, λ̃
i(s|σ, δ))

∂δ
ds (2.45)

where

H̃i(s, x̃,σ, δ, λ̃
i) = ℓ̃i(s, x̃,σ, δ) + (λ̃i)T f̃(s, x̃,σ, δ) (2.46)

and, for each i = 0, 1, . . . , 9, λ̃i(s|σ, δ) is the solution of the following co-state system

corresponding to (σ, δ):

d(λ̃(s))
T

ds
= −∂H̃i(s, x̃(s|σ, δ),σ, δ, λ̃(s))

∂x̃
, s ∈ [0, 1) (2.47a)

with

(λ̃(1))T =
∂Φ̃i(x̃(1|σ, δ))

∂x̃
(2.47b)

Proof. Let σ ∈ Rnp be given and let ρ ∈ Rnp be arbitrary but fixed. Define

σ(ε) = σ + ερ (2.48)

where ε > 0 is an arbitrarily small real number. For brevity, let x̃(•) and x̃(• ; ε) denote,
respectively, the solution of the system (2.35) corresponding to σ and σ(ε). Clearly, from

(2.35), we have

x̃(s) = x̃0 +

∫ s

0

f̃ (τ, x̃ (τ) ,σ, δ)dτ (2.49)

and

x̃(s ; ε) = x̃0 +

∫ s

0

f̃ (τ, x̃ (τ ; ε) ,σ (ε) , δ)dτ (2.50)
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Thus,

∆x̃ (s) =
dx̃ (s ; ε)

dε

∣∣∣∣
ε=0

=

∫ s

0

{
∂f̃ (τ, x̃ (τ) ,σ, δ)

∂x̃
∆x̃ (τ) +

∂f̃ (τ, x̃ (τ) ,σ, δ)

∂σ
ρ

}
dτ

(2.51)

Clearly,

∆ ˙̃x (s) =
∂f̃ (s, x̃ (s) ,σ, δ)

∂x̃
∆x̃ (s) +

∂f̃ (s, x̃ (s) ,σ, δ)

∂σ
ρ (2.52a)

∆x̃ (0) = 0 (2.52b)

Now, g̃i (σ (ε) , δ) can be expressed as:

g̃i (σ (ε) , δ) = Φ̃i (x̃ (1 ; ε) ,σ (ε) , δ)

+

∫ 1

0

{
H̃i

(
s, x̃ (s ; ε) ,σ (ε) , δ, λ̃i (s)

)
−

(
λ̃i (s)

)T

f̃ (s, x̃ (s ; ε) ,σ (ε) , δ)

}
ds (2.53)

where λ̃i is yet arbitrary. Thus, it follows that

∆g̃i (σ (ε) , δ) =
dg̃i (σ (ε) , δ)

dε

∣∣∣∣
ε=0

=
∂g̃i (σ, δ)

∂σ
ρ

= ∆Φ̃i (x̃ (1) ,σ, δ)

+

∫ 1

0

{
∆H̃i

(
s, x̃ (s) ,σ, δ, λ̃i (s)

)
−

(
λ̃i (s)

)T

f̃ (s, x̃ (s) ,σ, δ)

}
ds

(2.54)

where

∆Φ̃i (x̃ (1) ,σ, δ) =
∂Φ̃i (x̃ (1) ,σ, δ)

∂x̃
∆x̃ (1) (2.55)

∆f̃ (s, x̃ (s) ,σ, δ) = ∆ ˙̃x (s) (2.56)

and

∆H̃i

(
s, x̃ (s) ,σ, δ, λ̃i (s)

)
=
∂H̃i

(
s, x̃ (s) ,σ, δ, λ̃i (s)

)
∂x̃

∆x̃ (s)

+
∂H̃i

(
s, x̃ (s) ,σ, δ, λ̃i (s)

)
∂σ

ρ (2.57)

Choose λ̃i to be the solution of the costate system (2.47) corresponding to σ. Then, by

substituting (2.47a) into (2.57), we obtain

∆H̃i

(
s, x̃ (s) ,σ, δ, λ̃i (s)

)
= −

(
˙̃λ
i

(s)

)T

∆x̃ (s) +
∂H̃i

(
s, x̃ (s) ,σ, δ, λ̃i (s)

)
∂σ

ρ (2.58)
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Hence, (2.54) yields

∂g̃i (σ, δ)

∂σ
ρ =

∂Φ̃i (x̃ (1) ,σ, δ)

∂x̃
∆x̃ (1)

+

∫ 1

0

− d

ds

[(
λ̃i (s)

)T

∆x̃ (s)

]
+
∂H̃i

(
s, x̃ (s) ,σ, δ, λ̃i (s)

)
∂σ

ρ

ds
=
∂Φ̃i (x̃ (1) ,σ, δ)

∂x̃
∆x̃ (1)−

(
λ̃i (1)

)T

∆x̃ (1) +
(
λ̃i (0)

)T

∆x̃ (0)

+

∫ 1

0

∂H̃i

(
s, x̃ (s) , σ, δ, λ̃i (s)

)
∂σ

ρ

 ds (2.59)

Substituting (2.47b) and (2.52b) into (2.59), we have

∂g̃i (σ, δ)

∂σ
ρ =

∫ 1

0

∂H̃i

(
s, x̃ (s) ,σ, δ, λ̃i (s)

)
∂σ

ρ

 ds (2.60)

Since ρ is arbitrary, (2.44) follows readily from (2.60). We obtain the gradient formula

(2.44). The proof of the validity of (2.45) is similar to that of (2.44). Thus, the proof is

complete.

For each np, Problem P̃p is an optimal parameter selection problem, which can be

viewed as a nonlinear optimization problem. The gradient formulas of the cost function

(2.41) and the constraint functions (2.39) and (2.40) are given in Theorem 2.1, while the

constraints (2.30) and (2.34) are just the bounds for the control parameter vector and the

time scaling control vector.

At this stage, we see that Problem P is approximated by a sequence of optimal pa-

rameter selection problems, each of which can be viewed as a mathematical programming

problem and hence can be solved by existing gradient-based optimization methods. The

optimal control software MISER 3.3 was implemented based on these ideas, where the

control is approximated by piecewise constant functions (i.e., in terms of zero order spline

basis functions) or piecewise linear functions (i.e., in terms of first order spline basis func-

tions). It is used here to solve our optimal control problem. Intuitively, the larger the np,

the closer Problem P̃p is to Problem P. This intuition is true. We shall briefly discuss the

convergence issue as follows. Let (σp,∗, δp,∗) be the optimal parameter vector of Problem

P̃p, and let ũp,∗ be the corresponding piecewise constant control given by

ũp,∗(s) =

np∑
k=1

σp,∗χ[ k−1
np

, k
np

)(s) (2.61)
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where

ũp,∗ = [ũp,∗1 , ũp,∗2 , ũp,∗3 ]T (2.62)

σp,∗ = [(σp,∗
1 )T , (σp,∗

2 )T , (σp,∗
3 )T ]T (2.63)

and

δp,∗ = [δp,∗1 , . . . , δp,∗np
]T (2.64)

In the original time horizon [0, tf ], we have

up,∗(t) =

np∑
k=1

σp,∗χ[τp,∗k−1,τ
p,∗
k )(t) (2.65)

where

τ p,∗i =
i∑

k=1

δp,∗k , i = 1, . . . , np (2.66)

Furthermore, let u∗ be the optimal control of Problem P. In the original time horizon, if

the number of the partition points np → ∞, then the objective value of the approximate

Problem Pp will converge to that of the original Problem P [74], which gives

g0(u
p,∗) → g0(u

∗) (2.67)

With the time scaling transform (2.32), the partition points become decision variables.

Thus, the search space is larger. The varying time points could capture the discontinuities

of the optimal control if the number of partition points in the new time horizon is greater or

equal to that in the original time horizon. Thus, the optimal value of the objective function

of Problem P̃p should be less than or equal to the optimal value of the objective function

of Problem Pp. Since the convergence of Problem Pp has been established (see [75]), the

convergence of Problem P̃p is guaranteed by the squeeze theorem.

From our extensive simulation study, we observe that np does not need to be chosen

to be too large. In fact, the difference in the cost values between np = 20 and those

with larger np is, in general, very insignificant. Thus, np = 20 is chosen in our numerical

simulation.

2.6 Optimal trajectory tracking

We now move on to consider a situation for which the spacecraft is required to track a

desired trajectory, such that the fuel consumption and the terminal time are minimized.

To realize such an optimal tracking control problem, we only need to modify the cost
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function J of Problem P as:

J = m0−x9(tf )+tf +
∫ tf

0

[(x1(t)− x̄r(t))
2 + (x2(t)− ȳr(t))

2 + (x3(t)− z̄r(t))
2]dt (2.68)

where (x̄r, ȳr, z̄r) denotes the desired reference trajectory. Let this optimal trajectory

tracking problem be referred to as Problem T. Using the control parameterization tech-

nique and the time scaling transform as described in Section 3, Problem T is transformed

into Problem T̃p, where the transformed cost function

J̃ = m0 − x̃9(1) + x̃10(1) +

∫ 1

0

[(x̃1(s)− x̂r(s))
2 + (x̃2(s)− ŷr(s))

2 + (x̃3(s)− ẑr(s))
2]ds

(2.69)

is to be minimized over Ξp×Υp subject to the system dynamic (2.35) with initial condition

(2.37) and the terminal state constraints (2.39) and (2.40), where x̂r(s) = x̄r(t(s)), ŷr(s) =

ȳr(t(s)), ẑr(s) = z̄r(t(s)).

The gradient formulas of the cost function (2.69) and constraint functions (2.39) and

(2.40) can be derived in the same way as those given for the gradient formulas of the cost

function and the constraint functions of Problem P̃p given in Theorem 2.1. The optimal

control parameter selection problem T̃p is thus solved by utilizing the optimal control

software MISER 3.3.

2.7 Numerical simulations

The initial conditions of the lunar module are given as: xL0 = 8.19371 × 105m, yL0 =

1.428867 × 106m, zL0 = 5.996306 × 105m, VxL0 = 1115m/s, VyL0 = −981.82m/s, VzL0 =

816m/s, m0 = 600kg. At the initial time of the soft landing, the rotational angle γ(t0) =

0◦. Specific impulse Vr = 300 × 9.8m/s and the angular velocity of the moon rotation

ωL = 2.661699× 10−6rad/s.

We first consider the task of achieving the soft landing of the lunar module. The

landing target is in Mare Imbrium on the moon surface, which is located at 38.628◦

North latitude and 36.806◦ West longitude. Control variables are chosen subject to the

bounds: 0 kg/s ≤ σk
1 ≤ 0.51 kg/s,

∣∣σk
2

∣∣ ≤ 1 ◦/s,
∣∣σk

3

∣∣ ≤ 1 ◦/s, k = 1, 2, . . . , np.

Terminal separation angle of the module between its longitudinal axis and the plumb line

is ϑtf = 5◦. The scaled time interval is s ∈ [0, 1], which is partitioned into 20 equal

subintervals. Terminal time of the soft landing is free to vary. The corresponding optimal

parameter selection problem is then solved by using the software MISER 3.3. Terminal

conditions of the lunar module obtained are listed below.

xL(tf ) = 1.0871218× 106m, yL(tf ) = 1.0849749× 106m, zL(tf ) = 8.134568× 105
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Figure 2.3: Module Velocity VL

VxL(tf ) = 1× 10−4m/s, VyL(tf ) = 0m/s, VzL(tf ) = 2× 10−4m/s

Figure 2.3 shows the time history of the lunar module velocity in the original time

horizon [0, tf ]. We see that it converges smoothly to zero as the module lands on the moon.

Figures 2.4 – 2.6 are optimal control outputs during the period of soft landing, also in

the original time horizon [0, tf ]. Here, we see that the reverse force thruster works at its

maximum thrust force all the time, while the two angular velocity controllers are operating

within their bounds. Under the optimal control law, the lunar module is guided to the

target precisely, and the optimal descent trajectory is shown in Figure 2.8. Terminal mass

of the module is 319.2728kg. Figure 2.7 depicts the time scaling control. Lunar module

lands on the moon surface vertically after 550.4455s, with the terminal separation angle

between the module longitudinal axis and the plumb line ϑ(tf ) = −4.998◦.

Our next task is to investigate the mission of the optimal trajectory tracking. Suppose

the desired trajectory is the one obtained from the solution of Problem P. Suppose that

the initial position of the lunar module is given as xL0 = 8.18348×105m, yL0 = 1.428821×
106m, zL0 = 6.01136× 105m, which are different from those for Problem P. It is obvious

that, from the perturbed initial point, the optimal control obtained by solving Problem P

can not guarantee a precise soft landing of the module to the desired target. Here, we let

this optimal tracking problem be referred to as Problem T. It is transformed to Problem

T̃p and solved by using the approach detailed in Section 4, where the optimal control

software MISER 3.3 is utilized. The optimal control obtained for Problem P is used as
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the initial guess for the search of the optimal control of Problem T̃p. Let the optimal

control of Problem T̃p obtained be denoted as υ∗. Then, under this control, the Lunar

module is guided to the target at the terminal time tf = 572.8s. The terminal velocity is

6.2e-4m/s, while the terminal mass is 315.43kg. From Figure 2.9, we see that the optimal

trajectory tracks the desired trajectory satisfactorily.

2.8 Conclusion

In this chapter, we studied the optimal control problem of the lunar module soft landing

with minimum fuel consumption and flight time. To describe the motion of the module

precisely, we derived the three-dimensional dynamics for the lunar module in the powered

descent phase, where the moon rotation is explicitly taken into consideration. The con-

straints on the control and the terminal state are also considered. By using the control

parameterization technique and the time scaling transform, the optimal control problem

is approximated as an optimal parameter selection problem which has a finite number

of decision variables. Then, the optimal control software package MISER 3.3, which is a

gradient-based method, is utilized to solve such a parameter selection problem, and an

optimal control law is thus obtained.

This optimal control law steers the lunar module to achieve the pre-specified land-

ing target precisely in such a way that the fuel consumption and the terminal time are

minimized. The module touches down on the moon vertically with reference to the lunar

surface. The same approaches are also used to deal with the task of optimal trajectory

tracking where a reference trajectory of the module is to be followed. Simulation results

demonstrate that the proposed approach is highly effective.





CHAPTER 3

Nonlinear optimal feedback control for lunar

module soft landing

3.1 Introduction

In Chapter 2, we designed an open loop optimal guidance law for achieving the lunar

module soft landing with the minimum fuel consumption and flying time. The flight of

the module starts from the perilune, which is 15km above the moon, and ends on the

lunar surface. In the open loop controller design, some unpredicted situations, such as

initial point perturbations, are not considered. The control law may be sensitive to these

situations. Thus, we propose, in this chapter, a feedback control law for the powered

deceleration phase of the lunar module soft landing, which starts from the perilune and

ends at a point 2km high above the moon surface. It is known that a feedback control law

is more preferable to an open loop control law due to its robustness against perturbations.

As in the previous chapter, the motion of the lunar module is described in a three

dimensional coordinate system. Based on the nonlinear dynamics of the module, we obtain

the form of an optimal closed loop control law, where a feedback gain matrix is involved.

It is then shown that this feedback gain matrix satisfies a Riccati-like matrix differential

equation. Then, it is approximated in terms of the third order B-spline functions. It is

known [59] that the third order B-spline functions are effective for continuous function

approximation. The optimal control problem is first solved as an open loop optimal

control problem by using the time scaling transform and the control parameterization

method. By virtue of the relationship between the optimal open loop control and the

optimal closed loop control along the optimal trajectory, we present a practical method

to calculate an approximate optimal feedback gain matrix, without having to solve an

optimal control problem involving the complex Riccati-like matrix differential equation

coupled with the original system dynamics.

41
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Figure 3.1: Three-dimensional coordinate systems.

3.2 Problem formulation

The motion of the lunar module soft landing is described in the three-dimensional coordi-

nate system as depicted in Figure 2.2, Chapter 2. For convenience, we redraw the figure

here, see Figure 3.1. Definitions of the elements appeared in Figure 3.1 are the same as

those in Figure 2.2, Chapter 2.

The dynamic equations that describe the motion of the lunar module are rewritten as:

ẋL = VxL

ẏL = VyL

żL = VzL

V̇xL = BQVr/m− gxL − 2ωLVzL

V̇yL = CQVr/m− gyL

V̇zL = DQVr/m− gzL + 2ωLVxL

ṁ = −Q

(3.1)

where

B = (cosα cos β cos γ − sinα sin γ) sinϑ cosψ

−(sinα cos β cos γ + cosα sin γ) sinϑ sinψ + sin β cos γ cosϑ,

C = − cosα sin β sinϑ cosψ + cos β cosϑ+ sinα sin β sinϑ sinψ,

D = (cosα cos β sin γ + sinα cos γ) sinϑ cosψ

−(sinα cos β sin γ − cosα cos γ) sinϑ sinψ + sin β sin γ cosϑ,

while xL, yL, zL and VxL, VyL, VzL are the positions and velocities in the Lunar Fixed
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Coordinate system, m is the mass of the lunar module, Q and Vr represent, respectively,

the fuel consumption rate and the specific impulse of the thruster, gxL, gyL and gzL denote

the respective components of the lunar gravity in oxLyLzL, and ωL is the angular velocity

of the moon rotation.

Introduce two new state equations

ϑ̇ = v (3.2)

ψ̇ = w (3.3)

and let

x = [xL, yL, zL, VxL, VyL, VzL, ϑ, ψ,m]T

= [x1, x2, x3, x4, x5, x6, x7, x8, x9]
T (3.4)

u = [Q, v, w]T = [u1, u2, u3]
T (3.5)

The original system dynamics (3.1) can be rewritten in the form of a nonlinear affine

system given below:

ẋ(t) = f(x(t)) +B(x(t), t)u(t), (3.6)

where x ∈ R9, u ∈ R3 and

f(x) = [x4, x5, x6,−gxL − 2ωLx6,−gyL,−gzL + 2ωLx4, 0, 0, 0]
T , (3.7)

B(x, t) =

 0 0 0 M1 M2 M3 0 0 −1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0


T

(3.8)

while
M1 = [(cosα cos β cos γ − sinα sin γ) sin x7 cos x8

− (sinα cos β cos γ + cosα sin γ) sin x7 sinx8

+sin β cos γ cos x7]Vr/x9,

(3.9)

M2 = (− cosα sin β sinx7 cos x8 + sinα sin β sinx7 sinx8

+cos β cos x7)Vr/x9,
(3.10)

and
M3 = [(cosα cos β sin γ + sinα cos γ) sinx7 cos x8

− (sinα cos β sin γ − cosα cos γ) sin x7 sin x8

+sin β sin γ cosx7]Vr/x9

(3.11)

For u1, the first component of the control u, it is required to satisfy the boundedness

conditions given below.

α1 ≤ u1(t) ≤ β1, ∀ t ∈ [0, T ] (3.12)
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We do not impose any bound on the other two components of the control u. Let U be the

set of all such controls u = [u1, u2, u3]
T . Elements from U are called admissible controls

and U is referred to as the class of admissible controls.

The initial conditions of the soft landing are determined by the state of the lunar

module in the perilune at the initial time t0 = 0 and are given by

x(t0) = [xL0, yL0, zL0, VxL0 , VyL0 , VzL0, ϑ0, ψ0,m0]
T (3.13)

Our aim is to design an optimal closed loop control law to achieve the powered decel-

eration phase of the lunar module soft landing such that a linear combination of the fuel

consumption and the terminal time are minimized, while the terminal velocity should be

approximately zero at the terminal time. This optimal control problem can be formulated

as follows.

Problem Q. Given system (3.6) with the initial condition (3.13), find a closed loop

control u ∈ U such that the cost function

J = a1Φ0(x(T )) + a2

∫ T

0

uTRu dt, (3.14)

is minimized, where Φ0(x(T )) = (x(T )− xd)
TS(x(T ) − xd) + T , T is the free terminal

time of the soft landing, xd is the desired terminal state vector, a1 and a2 are the weight-

ing parameters which can be chosen according to the magnitudes of their corresponding

terms in the cost function, S ∈ R9×9 and R ∈ R3×3 are, respectively, symmetric positive

semidefinite and symmetric positive definite weighting matrices.

3.3 Optimal computation control

We first proceed to solve Problem Q as an optimal open loop control problem by using

the time scaling transform and the control parameterization technique. This will provide

us with an optimal open loop control and the corresponding optimal trajectory.

Let the time horizon [0, T ] be partitioned into p subintervals as follows:

0 = t0 ≤ t1 ≤ · · · ≤ tp = T. (3.15)

The switching times tk , 1 ≤ k ≤ p , are regarded as decision variables. We shall employ

the time scaling transform to map these switching times into a set of fixed time points

ηk = k/p, k = 1, . . . , p, on a new time horizon [0, 1]. This is easily achieved by the

following differential equation

dt(s)

ds
= υp(s), s ∈ [0, 1], (3.16a)
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with initial condition

t(0) = 0, (3.16b)

where

υp(s) =

p∑
k=1

ζkχ[ηk−1, ηk](s). (3.17)

Here, χI(s) denotes the indicator function of I defined by

χI(s) =

{
1, s ∈ I

0, elsewhere
(3.18)

and ζk ≥ 0, k = 1, . . . , p,
p∑

k=1

ζk = T. (3.19)

Let ζ = [ζ1, . . . , ζp]
T and let Θ be the set containing all such ζ.

Taking integration of (3.16a) with initial condition (3.16b), it is easy to see that, for

s ∈ [ηl−1, ηl),

t(s) =
l−1∑
k=1

ζk + ζl(s− ηl−1)p, (3.20a)

where l = 1, . . . , p. Clearly,

t(1) =

p∑
k=1

ζk = T. (3.20b)

Thus, after the time scaling transform (3.16a) and (3.16b), it follows from (3.6), (3.16a)

and (3.16b) that
˙̂x(s) = υp(s) {f(x̂(s)) +B(x̂(s), s)ũ(s)} (3.21a)

with the initial condition

x̂(0) =

[
x0

0

]
, (3.21b)

where x̂(s) = [x̃(s)T , t(s)]T , x̃(s) = x(t(s)) and ũ(s) = u(t(s)).

We now apply the control parameterization technique to approximate the control

ũ(s) = [ũ1(s), ũ2(s), ũ3(s)]
T as follows.

ũpi (s) =

p+1∑
k=−1

σi
kΩ((

1

p
)s− k), i = 1, 2, 3, (3.22)

where

Ω(τ) =


0, |τ | > 2

−1
6
|τ |3 + τ 2 − 2 |τ |+ 4

3
, 1 ≤ |τ | ≤ 2

1
2
|τ |3 − τ 2 + 2

3
, |τ | < 1

(3.23)
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is the cubic spline basis function, σi
k, i = 1, 2, 3; k = −1, 0, 1, . . . , p + 1, are decision

variables.

From (3.12), we have

α1 ≤ σ1
k ≤ β1, k = −1, 0, 1, . . . , p+ 1. (3.24)

Define

σi = [σi
−1, · · · , σi

p+1]
T , i = 1, 2, 3, (3.25)

and

σ = [(σ1)T , (σ2)T , (σ3)T ]T (3.26)

Let Ξ denote the set containing all such σ. Then, ũp(s) = [ũp1(s), ũ
p
2(s), ũ

p
3(s)]

T is deter-

mined uniquely by the switching vector σ in Ξ, and vice verse. Thus, it is written as

ũp(•|σ). We may now state the optimal parameterization selection problem, which is an

approximation of Problem Q, as follows:

Problem Q̃p. Given system (3.21a) with initial condition (3.21b), find a combined vector

(σ, ζ) ∈ Ξ×Θ, such that the cost function

J(σ) = a1Φ̂0(x̂(1|σ)) + a2

∫ 1

0

υp(s|ζ)ũp(s|σ)TRũp(s|σ) ds (3.27)

is minimized, where Φ̂0(x̂(1|σ)) = (x̂(1|σ)− x̂d)
T Ŝ(x̂(1|σ) − x̂d), x̂d is the desired ter-

minal state vector, Ŝ ∈ R10×10, and ũp is given by (3.22).

As in Chapter 2, Problem Q is approximated by a sequence of optimal parameter

selection problems, each of which can be viewed as a mathematical programming problem

and hence can be solved by existing gradient-based optimization methods. Again, we use

MISER 3.3 to solve the optimal control problem. Here, our controls are approximated in

terms of cubic spline basis functions, and thus they are smooth. MISER 3.3 can be easily

modified to cater for this minor modification.

Suppose that (ũp∗, x̂∗) is the optimal solution of Problem Q̃p. Then, from (3.20a)

and (3.20b), it follows that the optimal solution to Problem Q is (u∗,x∗, T ∗), where

u∗ = [u∗1, u
∗
2, u

∗
3]

T is the optimal open loop control, x∗ is the corresponding optimal state

vector, and T ∗ is the optimal terminal time. In view of the optimal open loop control

obtained, we notice that the reverse force thruster, u∗1, works with its maximum thrust

force (i.e., at its upper bound which is a constant value) throughout the entire soft landing

process. This observation is confirmed by Pontryagin Maximum Principle (see [104]).

Thus, for the computation of the optimal closed loop control problem, we set the first

control variable of u to be equal to the constant value obtained through solving Problem

Q as an open loop optimal control problem.
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Correspondingly, system (3.6) can be rewritten as

ẋ(t) = f̄(x(t), t) + B̄ū(t), (3.28)

where

f̄(x, t) = [x4, x5, x6,−gxL − 2ωLx6 + cM1,−gyL + cM2,−gzL + 2ωLx4 + cM3, 0, 0,−c]T

(3.29)

B̄ =

[
0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

]T

(3.30)

while M1, M2 and M3 remain the same as given by (3.9), (3.10) and (3.11), respectively.

The new control vector ū is

ū = [v, w]T = [ū1, ū2]
T (3.31)

Let Ū be the set of all such controls. Elements from Ū are called admissible controls and

Ū is referred to as the class of admissible controls.

The initial condition of the soft landing remains the same as given by (3.13). The cost

function (3.14) can be rewritten as:

J̄ = a1Φ0(x(T )) + a2

∫ T

0

ūT R̄ ūdt, (3.32)

where R̄ ∈ R2×2 is a symmetric positive definite matrix obtained from R.

Now, the original optimal control Problem Q is reduced to Problem (Q̄) given below.

Problem Q̄. Given system (3.28) with the initial condition (3.13), find a closed loop

control such that the cost function (3.32) is minimized.

For Problem (Q̄), we have the following theorem.

Theorem 3.1. The optimal closed loop control ū∗ for Problem (Q̄) is given by

ū∗(t) =
1

2a2
R̄−1B̄TK(t)f̄(x∗(t), t), (3.33)

where x∗ is the optimal state, i.e. the solution of system (3.28) with initial condition (3.13)

corresponding to ū∗, and K(t) is the solution of the following Riccati-like differential

equation

(K̇ +KF + F TK +
1

2
KFB̄R̄−1B̄TK)f̄ +KD = 0, (3.34a)

Here, F = ∂ f̄
/
∂ x, D = ∂ f̄

/
∂ t, and

K(T )f̄(x(T ), T ) = a1
∂ Φ0(x(T ))

∂ x(T )
= 2a1(x(T )− xd)

TS. (3.34b)
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Proof. The proof is similar to that given for Theorem 3.1 in [36]. LetH be the Hamiltonian

function defined by

H(x(t), ū(t),λ(t)) = λT (t)f̄(x(t), t) + λT (t)B̄ū(t)− a2ū
T (t)R̄ū(t), (3.35)

where λ(t) ∈ R9 is the costate vector.

Suppose that (ū∗,x∗) is an optimal pair. Then, it follows from Pontryagin Maximum

Principle that

(i) ẋ∗(t) =
(

∂H∗

∂λ(t)

)T

= f̄(x∗(t), t) + B̄ū∗(t) (3.36)

(ii) x∗(0) = x0 (3.37)

(iii) λ̇∗(t) = −
(

∂H∗

∂x∗(t)

)T

(3.38)

(iv) λ∗(T ) = a1
∂Φ0(x∗(T ))

∂x∗(T )
= 2a1(x

∗(T )− xd)
TS (3.39)

(v) ∂H∗

∂ū∗(t)
= 0 (3.40)

(vi) H∗|t=T = 0 (3.41)

where H∗ = H(x∗(t), ū∗(t), λ∗(t)) and the terminal time T is determined by solving

Problem Q.

From (3.40), we obtain

ū∗(t) =
1

2a2
R̄−1B̄Tλ∗(t) (3.42)

As in [42], we postulate that the costate vector λ∗(t) can be expressed as

λ∗(t) = K(t)f̄(x∗(t), t) (3.43)

Then, it follows that

ū∗(t) =
1

2a2
R̄−1B̄TK(t)f̄(x∗(t), t) (3.44)

Differentiating (3.43) with respective to t, we deduce from (3.36) and (3.44) that

λ̇∗(t) = (K̇ +KF +
1

2a2
KFB̄R̄−1B̄TK)f̄(x∗(t), t) +KD (3.45)

From (3.38) and (3.43), we obtain

λ̇∗(t) = −F TK(t)f̄(x∗(t), t) (3.46)

Combining (3.45) and (3.46), we have

(K̇ +KF + F TK +
1

2a2
KFB̄R̄−1B̄TK)f̄ +KD = 0 (3.47)



3.4 A practical computational method 49

From (3.39), the terminal condition for the Riccati-like differential equation (3.47) is

obtained as

λ(T ) = a1
∂Φ0(x(T ))

∂x(T )
= 2a1(x(T )− xd)

TS (3.48)

This completes the proof.

By Theorem 3.1, we observe that the form of the optimal closed loop control law for

Problem (Q̄) is given by

ū(t) =
1

2a2
R̄−1B̄TK(t)f̄(x(t), t) (3.49)

However, the matrix function K(t) is still required to be obtained. This task is, in

fact, rather demanding. It involves solving a new optimal control problem, which we call

Problem R.

Problem R. subject to the dynamical systems given by (3.28), (3.13), (3.34a) and

(3.34b), with ū = R̄−1B̄TK(t)f̄(x(t), t)/2a2, find a K(t) such that the cost function

(3.32), also with ū = R̄−1B̄TK(t)f̄(x(t), t)/2a2, is minimized.

For Problem R, the dynamical system (3.28) is required to be solved forward in time

with initial condition given by (3.13). On the other hand, the dynamical system (3.34a)

should be solved backward in time with partial information on the terminal state given

by (3.34b). This optimal control problem is, indeed, very difficult to solve.

In this chapter, we propose an alternative approach to construct an approximate

optimal matrix function K∗(t) without having to solve this complicated optimal control

problem R. The basic idea is explained as follows. Suppose that u∗ = [u∗1, u
∗
2, u

∗
3]

T is an

optimal open loop control of Problem Q and that x∗ is the corresponding optimal state.

As u∗1 is a constant, we fix it to the constant obtained. This gives rise to Problem (Q̄). We

now consider Problem (Q̄) with x = x∗, i.e. along the optimal open loop path, and our

task is to find a K∗(t) such that ū# = R̄−1B̄TK∗(t)f̄(x∗(t), t)/2a2 best approximates

the control ū∗ in the mean square sense, where ū∗ = [u∗2, u
∗
3]

T . Since the cost value for

Problem (Q̄) with ū given by ū# = R̄−1B̄TK∗(t)f̄(x∗(t), t)/2a1 should be close to the

cost value for Problem Q with u = u∗, ū# can be regarded as a good approximate optimal

feedback control for Problem (Q̄).

In the next section, we present a practical method to find an approximate optimal

gain matrix K(t) without solving the complex optimal control problem R.

3.4 A practical computational method

As the matrix function K(t) is a solution of the Riccati-like-matrix differential equation,

the optimal closed loop control law (3.49) should be smooth throughout [0, T ], where
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T = T ∗. For this reason, K(t) is approximated in terms of cubic spline basis functions.

The time horizon [0, T ∗] is partitioned into p equal subintervals,

0 = t0 ≤ t1 ≤ · · · ≤ tp ≤ tp+1 = T ∗ (3.50)

Let

[K(t)]i,j ≈
p+1∑
k=−1

(ci,j,k)Ω((
T ∗

p
)t− k) (3.51)

where ci,j,k, i, j = 1, 2, . . . , 9; k = −1, 0, 1, 2, . . . , p + 1, are real constant coefficients that

are to be determined, p is the number of equal subintervals on [0, T ∗], p + 3 is the total

number of cubic spline basis functions used in the approximation of each [K(t)]i,j, and

Ω(τ) is defined as in (3.23).

Let

Υ(K) =

∫ T ∗

0

{
(u∗2(t)− ū1(t))

2 + (u∗3(t)− ū2(t))
2}dt, (3.52)

where

ū(t) =

[
ū1(t)

ū2(t)

]
=

1

2a2
R̄−1B̄TK(t)f̄(x∗(t), t). (3.53)

Here, we see that ū is of the same form as the optimal closed loop control given by

(3.33). Our task is to choose a K(t) such that (3.52) is minimized. Let K∗(t) be the

optimal matrix function obtained. It is substituted into (3.53) to give ū∗ = [ū∗1, ū
∗
2]

T ,

which is the best approximate optimal feedback control in the mean square sense of

Problem (Q̄).

Our task can be posed as the following optimization problem.

Find coefficients ci,j,k, i, j = 1, 2, . . . , 9; k = −1, 0, 1, 2, . . . , p + 1, such that the cost

function (3.52) is minimized. These optimal coefficients can be obtained by solving the

following optimality conditions

Γ =
∂Υ(K)

∂ ci,j,k
=

∫ T ∗

0

∂((u∗2 − ū1)
2 + (u∗3 − ū2)

2)

∂ ci,j,k
dt = 0 (3.54)

i, j = 1, 2, . . . , 9, k = −1, 0, 1, 2, . . . , p+ 1

These are linear equations, and hence are easy to solve.

Let ρi(Λ) and κi(Λ) denote the i− th row and i− th column of the matrix Λ. By a

careful examination of (3.53), it is noticed that K(t) appears with B̄T multiplied from

the left. If κi(B̄
T ) = 0 for all t ∈ [0, T ∗], then ρi(K(t)) does not affect B̄TK(t). From

(3.30), we see that κi(B̄
T ) = 0, i = 1, . . . , 6, 9, hence, there is no need to calculate those

coefficients ci,j,k corresponding to ρi(K(t)), i = 1, . . . , 6, 9. From (3.29) and (3.53), we

also notice that ρi(f̄(x
∗(t), t)) = 0, i = 7, 8, and K(t) is multiplied with f̄(x∗(t), t) from

the right. Thus, κi(K(t)), i = 7, 8, do not affect K(t)f̄(x∗(t), t), and hence there is
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no need to calculate the corresponding components κi(K(t)), i = 7, 8. Therefore, we

may set these components of K(t) to zero. In our problem, we only need to calculate 14

elements of K(t), i.e., [K(t)]i,j, i = 7, 8; j = 1, 2, . . . , 6, 9.

3.5 Numerical simulations

In this section, two examples are involved to show the effectiveness of the proposed

method. For easy illustration, we assume that the module flies from the Perilune to

the moon surface directly.

3.5.1 Problem without perturbation

The initial conditions for the soft landing of a lunar module are given as: xL0 = 819.371km,

yL0 = 1428.867km, zL0 = 599.6306km, VxL0 = 1115m/s, VyL0 = −981.82 m/s, VzL0 =

816m/s, m0 = 600kg. At the initial time of the soft landing, the rotational angle γ(t0) =

0◦, the specific impulse Vr = 300× 9.8m/s and the angular velocity of the moon rotation

ωL = 2.661699× 10−6rad/s. The landing target is in Mare Imbrium on the moon surface

with 38.3◦ North latitude and 35◦ West longitude. When the module reaches the moon

surface, the terminal velocity should be less than 3m/s. The bounds on u1(t) are: 0kg/s ≤
u1(t) ≤ 0.51kg/s.

In the simulation, the time horizon [0, T ] is partitioned into 30 subintervals. a1 = 10,

a2 = 1, S = diag(1e−3, 1e−3, 1e−3, 1e−3, 1e−3, 1e−3, 0, 0, 0) and R = diag(1, 1, 1). We first

use the time scaling transform (3.16) and the control parameterization method (3.22)

to construct the corresponding approximated Problem Q̃p. Then, MISER 3.3 is utilized

to solve it, giving rise to an optimal open loop control ũ∗(s) and the corresponding

optimal trajectory x̃∗(s). Then, by (3.20a) and (3.20b), we obtain the optimal open loop

solution, denoted by (u∗,x∗, T ∗) of Problem Q. Note that u∗1 = 0.51kg/s, i.e., the reverse

force thruster works with its maximum thrust force P = 1500N. With u∗1 = 0.51kg/s,

Problem Q is reduced to Problem (P̄) with ū = [ū1, ū2]
T , where R̄ is chosen from R to

be R̄ = diag(1, 1). Set ū∗1(t) = u∗2(t) and ū
∗
2(t) = u∗3(t). The corresponding optimal state

of Problem (P̄) remains the same as that of Problem Q. Substituting (u∗,x∗, T ∗) into

(3.54), the system of linear equations can be solved by a linear equations solver within

the Matlab environment. The feedback gain matrix K∗(t) obtained is substituted into

(3.53) to give the best approximate optimal feedback control law in the mean square sense

for achieving the soft landing of the lunar module.

Under the optimal feedback control, the terminal conditions of the module are xL(tf ) =

1117.2919km, yL(tf ) = 1077.1752km, zL(tf ) = 782.3021km, VxL(tf ) = 0.6345m/s, VyL(tf ) =

−0.9852m/s, VzL(tf ) = 0.178m/s.

Simulation results are depicted in Figure 3.2 to Figure 3.8. Figure 3.2 to Figure 3.4
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are the time histories of the control outputs. It is seen that the thruster works with

its maximum thrust force, the feedback angular velocity control laws coincide with the

open loop ones precisely. Under the optimal feedback control, the lunar module lands on

the moon surface after 542.268s, the velocities along the three directions in oxLyLzL are

approaching to zero (see Figure 3.5 to Figure 3.7), the terminal velocity of the module is

1.185m/s. The distance between the lunar module and the preselected landing target is

27.98m. The terminal mass of the module is 323.443kg. The optimal descent trajectory

is shown in Figure 3.8.

3.5.2 Problem with perturbation

Next, we let the lunar module soft landing start from a new perturbed initial point to

test the robustness of the optimal feedback control law against disturbances on initial

condition for the soft landing mission. The coordinates of the new starting point, which

is 30m away from the original starting point, are xL0N = 819.375km, yL0N = 1428.845km

and zL0N = 599.6507km. Under the optimal feedback control, the lunar module lands on

the moon surface after 542.26s, the terminal velocity is 1.22m/s, and the coordinates of

the landing position are xLC(tf ) = 1117.3007km, yLC(tf ) = 1077.1565km and zLC(tf ) =

782.3153km, which is 33.27m away from the preselected landing target.

For comparison, we let the lunar module soft landing start from the new initial point by

using the open loop optimal control u∗ obtained previously. Under the open loop optimal

control, the lunar module lands on the moon surface after 543.05s with the terminal

velocity which is 2.26m/s. The landing position is located at xLO(tf ) = 1117.1776km,

yLO(tf ) = 1077.1592km and zLO(tf ) = 782.4896km, which is 184.1m away from the

desired landing target.

To exam how close to optimal the feedback control is for the soft landing when the

initial position is perturbed to a new perturbed initial point, we calculate the open loop

optimal control for the perturbed problem by using the control parameterization technique

and the time scaling transform mentioned above. Under the new open loop optimal

control, we calculate the optimal descent trajectory from which we observe that the lunar

module lands on the desired landing target precisely after 542.541s. The finial velocity is

0m/s.

The simulation results are summarized in Table 3.1. Case 1, Case 2 and Case 3

represent the simulations from the perturbed initial point with the feedback control, the

original open loop optimal control u∗ and the new open loop optimal control, respectively.

As we can see, the feedback control is much superior to the open loop optimal control

obtained from the original initial condition under the situation when the initial position

is perturbed to a new perturbed initial point. The performance of the feedback control is

close to that of the optimal open loop control calculated from the perturbed initial point.



3.6 Conclusion 53

Table 3.1: Summary of simulations

simulation distance from target finial velocity objective value

Case 1 33.27m 1.22m/s 5574.72
Case 2 184.1m 2.26m/s 5910.73
Case 3 0m 0m/s 5566.53
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Figure 3.2: Thrust force P

The time histories of the descent trajectories are depicted in Figure 3.9.

3.6 Conclusion

The optimal control problem of lunar module soft landing was studied, where a three

dimensional dynamics is employed to describe the motion of the module. We first obtained

an optimal open loop control by using the control parametrization method and the time

scaling transform. Then, we obtained the form of the optimal closed loop control law,

where the feedback gain matrix is required to satisfy a Riccati-like matrix differential

equation. On this basis, a practical method was proposed to calculate the feedback gain

matrix without having to solve an optimal control problem involving a complex Riccati-

like differential equation coupled with the original dynamics. Simulation results showed

that the proposed method is highly efficient.
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Figure 3.8: Optimal descent trajectory
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CHAPTER 4

Spacecraft attitude control with DGCMGs

4.1 Introduction

SGCMGs based spacecraft attitude control systems have been extensively studied dur-

ing the past several decades. The most interesting aspects that the scientists focus on

are, for example, system mathematical modeling, spacecraft attitude control strategy de-

sign, SGCMGs system configuration, steering law design and singularity analysis. As the

DGCMG has one more degree of freedom (DOF) than the the SGCMG, the singularity

situations of the DGCMGs system are simpler than that of the SGCMGs system. It is

very promising to use the DGCMGs as the actuators for the spacecraft attitude control

system. NASA has already utilized three orthogonally mounted DGCMGs to maneuver

the attitude of the ‘Sky Lab’. DGCMGs system can also be used as the attitude actua-

tors for many other kinds of spacecrafts, such as the orbital module of the lunar probe,

space stations and small agile satellites. However, a precise three dimensional spacecraft

attitude dynamics, basing on the DGCMGs system, has not yet been found in the open

literature.

In this chapter, we first derive an exact general mathematical description of spacecraft

attitude motion driven by DGCMGs. With this mathematical description, a nonlinear

control law is designed based on the second method of Lyapunov for spacecraft large angle

attitude maneuvers. Stability of the attitude control system is proved during the design

process. The singularity robustness plus null motion (SRNM) steering law is designed

to realize the control law. Principle of DGCMGs’ singularity is proved, and singularity

analysis of the orthogonally mounted three DGCMGs system and that of the parallel

mounted four DGCMGs system are presented. Finally, numerical simulations are utilized

to verify the system performances.

59
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Figure 4.1: Structure of a DGCMG.

4.2 Spacecraft attitude system modeling with DGCMGs

4.2.1 Coordinates definition

First, we shall introduce some frames that will be used in this section.

a. Inertial frame oNxNyNzN , {N}.
b. Spacecraft vehicle frame oV xV yV zV , {V }. oV is the spacecraft centroid. oV xV ,

oV yV and oV zV are, respectively, the three principal inertia axes of the spacecraft.

c. DGCMG reference frame oxRyRzR, {R}. o is the centroid of a certain DGCMG.

d. DGCMG outer gimbal frame ox1y1z1, {Go}. ox1 and oz1 align, respectively, the

inner gimbal axis and the outer gimbal axis.

e. DGCMG inner gimbal frame oxyz, {Gi}. ox and oy coincide with, respectively, the

inner gimbal axis and the rotor axis.

The structure of a DGCMG is shown in Figure 4.1. When the inner gimbal angle and

the outer gimbal angle are all zero, the three frames ({R}, {Go} and {Gi}) are coincide

with each other.

4.2.2 Coordinates transformation

The relationships between these frames can be expressed by the coordinate transformation

matrices listed below.

a. Coordinate transformation matrix CV (q) from the inertial frame {N} to the vehicle

frame {V }, {V } = CV (q) {N}.
CV (q) is determined by the spacecraft attitude, q = [q0, q1, q2, q3]

T represents the

quaternion vector, and
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CV (q) =

 q
2
0 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q20 − q21 + q22 − q23 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q20 − q21 − q22 + q23

 (4.1)

b. Coordinate transformation matrix CR(β) from the vehicle frame {V } to the

DGCMG reference frame {R}, {R} = CR(β) {V }.
CR(β) is determined by the configuration of the DGCMGs system. β = [β1, β2, β3]

T

represents the mounting angle vector of the DGCMGs system with reference to the vehicle

frame.

c. Coordinate transformation matrix CoR(γ) from the DGCMG reference frame {R}
to the DGCMG outer gimbal frame {Go}, {Go} = CoR(γ) {R}.

γ denotes the precession angle of the DGCMG about the outer gimbal axis,

CoR(γ) =

 cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 (4.2)

d. Coordinate transformation matrix C(δ) from the DGCMG outer gimbal frame

{Go} to the DGCMG inner gimbal frame {Gi}, {Gi} = C(δ) {Go}.
δ denotes the precession angle of the DGCMG about the inner gimbal axis,

C(δ) =

 1 0 0

0 cos δ sin δ

0 − sin δ cos δ

 (4.3)

e. Coordinate transformation matrix Co from the vehicle frame {V } to the DGCMG

outer gimbal frame {Go}, {Go} = Co {V }.
Based on the previous definitions, Co can be expressed as:

Co = CoR(γ)CR(β) (4.4)

f. Coordinate transformation matrix Ci from the vehicle frame {V } to the DGCMG

inner gimbal frame {Gi}, {Gi} = Ci {V }.
Ci can be written as:

Ci = C(δ)CoR(γ)CR(β) = C(δ)Co (4.5)

In the rest of the chapter, for any vector x = [x1, x2, x3]
T , x̃ represents the skew
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symmetric cross product matrix

x̃ =

 0 −x3 x2

x3 0 −x1
−x2 x1 0

 (4.6)

4.2.3 Spacecraft attitude kinematics

The spacecraft attitude kinematic equation can be expressed as:

q̇ =
1

2
G(q)ω (4.7)

where

G(q) =


−q1 −q2 −q3
q0 −q3 q2

q3 q0 −q1
−q2 q1 q0

 , (4.8)

while ω is the angular velocity of the spacecraft with respect to the the inertial frame, and

ω = [ωx, ωy, ωz]
T . Here, ωx, ωy and ωz are the projections of ω onto the vehicle frame.

4.2.4 Spacecraft attitude dynamics

Assume that n identical DGCMGs are equipped in a rigid spacecraft. Let IS represent the

system inertia matrix with DGCMGs locked. Let Jo represent the outer gimbal inertia

matrix in {Go}, and let Ji and Jw be, respectively, the inertia matrix of inner gimbal and

rotor in {Gi}. The rotor angular momentum can be expressed as h = JwΩ, where Ω is

the angular velocity of the rotor. For the lth DGCMG, the outer gimbal rate in {Glo}
can be written as γ̇l = [0, 0, γ̇l]

T , and the inner gimbal rate in {Gli} can be written as

δ̇l = [δ̇l, 0, 0]
T .

The total angular momentum of the lth DGCMG in {V } can be expressed as:

H
G/CG
l = CT

lo(JoCloω + Joγ̇l) +CT
li (JiCliω + JiClγ̇l + Jiδ̇l)

+CT
li (JwCliω + JwClγ̇l + Jwδ̇l + JwΩ)

(4.9)

Equation (4.9) can be rewritten as:

H
G/CG
l = CT

lo(JoCloω + Joγ̇l) +CT
li (IiCliω + IiClγ̇l + Iiδ̇l) +CT

lih, (4.10)

where Ii = Ji + Jw.

The total angular momentum of the system about the spacecraft centroid can be
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written as:

HS/C = ISω +
n∑

l=1

H
G/CG
l

= ISω +
n∑
l

[
CT

lo(JoCloω + Joγ̇l) +CT
li (IiCliω + IiClγ̇l + Iiδ̇l) +CT

lih
] (4.11)

According to the momentum moment theorem [57], time derivative of the total angular

momentum in the inertia frame is the external torque Le exerted on the system about

the mass center. Hence,

Le =
dHS/C

dt N
= ISω̇ + ω̃ISω +

n∑
l=1

dH
G/CG
l

dt N
(4.12)

where dH
G/CG
l /dtN represents the torque exerted on the lth DGCMG and can be derived

as:

dH
G/CG
l

dt N
=
d(JoCloω + Joγ̇l)

dt N
+
d(IiCliω + IiClγ̇l + Iiδ̇l)

dt N
+
dh

dt N
(4.13)

Let
N−Glo
ωl represent the angular velocity vector of the lth outer gimbal frame {Glo}

with reference to the inertial frame {N} given by

N−Glo
ωl = ω + γ̇l (4.14)

and let
V−Glo
ωl be the angular velocity vector of the lth outer gimbal frame {Glo} with

reference to the vehicle frame {V } given by

V−Glo
ωl = γ̇l (4.15)

The first fraction on the right hand side of (4.13) can be derived in the outer gimbal

frame {Glo} as:

d(JoCloω + Joγ̇l)

dt N
=
d(JoCloω)

dt N
+
d(Joγ̇l)

dt N

=
d(JoCloω)

dt Glo

+
N−Glo
ωl ×(JoCloω) +

d(Joγ̇l)

dt Glo

+
N−Glo
ωl ×Joγ̇l

= Jo

[
Clo

d(ω)

dt V
− V−Glo

ωl ×(Cloω)

]
+ (ω + γ̇l)× (JoCloω) + Joγ̈l + (ω + γ̇l)× (Joγ̇l)

= JoCloω̇ − Jo
˜̇γ lCloω +Cloω̃CT

loJoCloω + ˜̇γ lJoCloω + Joγ̈l +Cloω̃CT
loJoγ̇l (4.16)

Let
N−Gli
ωl denote the angular velocity vector of the lth inner gimbal frame {Gli} with
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reference to the inertial frame {N} given by

N−Gli
ωl = ω + γ̇l + δ̇l (4.17)

and let
V−Gli
ωl be the angular velocity vector of the lth inner gimbal frame {Gli} with

reference to the vehicle frame {V } given by

V−Gli
ωl = γ̇l + δ̇l (4.18)

Glo−Gli
ωl represents the angular velocity vector of the lth inner gimbal frame {Gli} with

reference to the outer frame {Glo} given by

Glo−Gli
ωl = δ̇l (4.19)

The second fraction on the right hand side of (4.13) can be derived in the inner gimbal

frame {Gli} as:

d(IiCliω + IiClγ̇l + Iiδ̇l)

dt N
=
d(IiCliω)

dt N
+
d(IiClγ̇l)

dt N
+
d(Iiδ̇l)

dt N

=Ii
d(Cliω)

dt Gli

+
N−Gli
ω ×(IiCliω) + Ii

d(Clγ̇l)

dt Gli

+
N−Gli
ω ×(IiClγ̇l) + Iiδ̈l +

N−Gli
ω ×(Iiδ̇l)

=IiCliω̇ − IiCl
˜̇γlCloω − Ii

˜̇δlCliω +Cliω̃CT
li IiCliω +Cl

˜̇γlC
T
l IiCliω

+ ˜̇δlIiCliω + IiClγ̈l − Ii
˜̇δlClγ̇l +Cliω̃CT

li IiClγ̇l +Cl
˜̇γlC

T
l IiClγ̇l

+ ˜̇δlIiClγ̇lIiδ̈l +Cliω̃CT
li Iiδ̇l +Cl

˜̇γ lC
T
l Iiδ̇l (4.20)

The third fraction on the right hand side of (4.13) can be derived in the inner gimbal

frame {Gli} as:

dh

dt N
=
dh

dt Gi

+
N−Gi
ω ×h = (ω + γ̇l + δ̇l)× h = Cliω̃CT

lih+Cl
˜̇γ lC

T
l h+ ˜̇δlh (4.21)

Hence, the torque generated by the lth DGCMG can be expressed in the vehicle frame
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as:

LGl =
dH

G/CG
l

dt N

=CT
loJoCloω̇ −CT

loJo
˜̇γ lCloω + ω̃CT

loJoCloω +CT
lo
˜̇γlJoCloω

+CT
loJoγ̈l + ω̃CT

loJoγ̇l +CT
li IiCliω̇ −CT

li IiCl
˜̇γ lCloω −CT

li Ii
˜̇δlCliω

+ ω̃CT
li IiCliω +CT

lo
˜̇γlC

T
l IiCliω +CT

li
˜̇δlIiCliω +CT

li IiClγ̈l −CT
li Ii

˜̇δlClγ̇l

+ ω̃CT
li IiClγ̇l +CT

lo
˜̇γ lC

T
l IiClγ̇l +CT

li
˜̇δlIiClγ̇l +CT

li Iiδ̈l + ω̃CT
li Iiδ̇l

+CT
lo
˜̇γ lC

T
l Iiδ̇l + ω̃CT

lih+CT
lo
˜̇γ lC

T
l h+CT

li
˜̇δlh (4.22)

Substitute (4.22) into (4.12), we obtain

Le =Iω̇ + ω̃ISω +
n∑

l=1

ω̃(CT
loJoCloω +CT

li IiCliω +CT
lih)

+
n∑

l=1

[(CT
loJo +CT

li IiCl)γ̈l +CT
li Iiδ̈l]

+
n∑

l=1

(CT
lo
˜̇γ lJoClo −CT

loJo
˜̇γ lClo +CT

loγ̇lC
T
l IiCli −CT

li IiCl
˜̇γ lClo)ω

+
n∑

l=1

ω̃(CT
loJo +CT

li IiCl)γ̇l +
n∑

l=1

CT
lo
˜̇γlC

T
l h

+
n∑

l=1

(CT
li
˜̇δlIiCli −CT

li Ii
˜̇δlCli)ω +

n∑
l=1

ω̃CT
li Iiδ̇l +

n∑
l=1

CT
li
˜̇δlh

+
n∑

l=1

(CT
li
˜̇δlIiCl −CT

li Ii
˜̇δlCl)γ̇l +

n∑
l=1

CT
lo
˜̇γlC

T
l Ii(Clγ̇l + δ̇l) (4.23)

where

I = IS +
n∑

l=1

(CT
loJoClo +CT

li IiCli) (4.24)

Equation (4.23) can be rewritten as:

ω̇ =− I−1[ω̃ISω −Le +
n∑

l=1

ω̃(CT
loJoCloω +CT

li IiCliω +CT
lih)

+Bσ̈ +Do3γ̇ +Do2γ̇ +Do1γ̇ +Di3δ̇ +Di2δ̇ +Di1δ̇

+
n∑

l=1

(CT
li
˜̇δlIiCl −CT

li Ii
˜̇δlCl)γ̇l +

n∑
l=1

CT
lo
˜̇γ lC

T
l Ii(Clγ̇l + δ̇l)] (4.25)

where

γ̇ = [γ̇1, γ̇2, · · · , γ̇n]T (4.26)
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δ̇ =
[
δ̇1, δ̇2, · · · , δ̇n

]T
(4.27)

and

σ̈ =
[
γ̈T , δ̈T

]T
, (4.28)

while

Bσ̈ =
n∑

l=1

[(CT
loJo +CT

li IiCl)γ̈l +CT
li Iiδ̈l] (4.29)

Do3γ̇ =
n∑

l=1

(CT
lo
˜̇γlJoClo −CT

loJo
˜̇γ lClo +CT

loγ̇lC
T
l IiCli −CT

li IiCl
˜̇γlClo)ω (4.30)

Do2γ̇ =
n∑

l=1

ω̃(CT
loJo +CT

li IiCl)γ̇l (4.31)

Do1γ̇ =
n∑

l=1

CT
lo
˜̇γ lC

T
l h (4.32)

Di3δ̇ =
n∑

l=1

(CT
li
˜̇δlIiCli −CT

li Ii
˜̇δlCli)ω (4.33)

Di2δ̇ =
n∑

l=1

ω̃CT
li Iiδ̇l (4.34)

and

Di1δ̇ =
n∑

l=1

CT
li
˜̇δlh (4.35)

4.3 Spacecraft attitude control law design

Suppose the spacecraft attitude angular and angular velocity commands are given by qc

and ωc, respectively, as below.

q̇c =
1

2
G(qc)ωc (4.36)

Define the tracking errors as: {
e1 = q − qc

e2 = ω − ωc

(4.37)

Then, we have {
ė1 = q̇ − q̇c

ė2 = ω̇ − ω̇c

(4.38)

Assume that q and ω are measurable. We then utilize the second method of Lyapunov

to design the attitude control law. The control Lyapunov function (CLF) is constructed

as:

V (e1, e2) = keT
1 e1 +

1

2
eT
2 Ie2 (4.39)
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where k is a constant weighting coefficient. The time derivative of the CLF gives

V̇ =2keT
1 ė1 + eT

2 Iė2

=k(qT − qT
c )[G(q)ω −G(qc)ωc] + (ωT − ωT

c )I(ω̇ − ω̇c)

=k[−qTG(qc)ωc − qT
c G(q)ω] + (ωT − ωT

c )I(ω̇ − ω̇c)

=− (ωT − ωT
c )[kG

T (q)qc + Iω̇c + ω̃ISω −Le

+
n∑

l=1

ω̃(CT
loJoCloω +CT

li IiCliω +CT
lih) +Bσ̈ +Doγ̇ +Diδ̇

+
n∑

l=1

(CT
li
˜̇δlIiCl −CT

li Ii
˜̇δlCl)γ̇l +

n∑
l=1

CT
lo
˜̇γ lC

T
l Ii(Clγ̇l + δ̇l)] (4.40)

where Do = Do1 +Do2 +Do3 and Di = Di1 +Di2 +Di3.

From (4.40), it follows that a feedback attitude control law can be designed as follows.

Lr = K(ω − ωc)− kGT (q)qc − Iω̇c − ω̃ISω +Le

−
n∑

l=1

ω̃(CT
loJoCloω +CT

li IiCliω +CT
lih)

(4.41)

where K is a positive definite matrix with an appropriate dimension. To realize the

control law (4.41), the gimbal rates and accelerations must satisfy the following equation

Lr = K(ω − ωc)− kGT (q)qc − Iω̇c − ω̃ISω +Le

−
n∑

l=1

ω̃(CT
loJoCloω +CT

li IiCliω +CT
lih)

= Bσ̈ +Doγ̇ +Diδ̇ +
n∑

l=1

(CT
li
˜̇δlIiCl −CT

li Ii
˜̇δlCl)γ̇l

+
n∑

l=1

CT
lo
˜̇γ lC

T
l Ii(Clγ̇l + δ̇l)

(4.42)

Substituting (4.42) into (4.40) yields

V̇ = −(ωT − ωT
c )K(ω − ωc) < 0, ω ̸= ωc (4.43)

Thus, the tracking errors convergence to zero under the feedback control law (4.41).

However, the steering law of the system described by (4.25) is too complicated to be

realized. In practice, Jo, Ji and Jw are far less than IS, and hence they can be neglected

during the design process. Thus, (4.25) can be simplified as:

ω̇ = −(IS)−1[ω̃ISω −Le +
n∑

l=1

ω̃CT
lih+Do1γ̇ +Di1δ̇] (4.44)
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Consequently, the feedback attitude control law (4.41) can be simplified as:

Lr = K(ω − ωc)− kGT (q)qc − ISω̇c − ω̃ISω +Le −
n∑

l=1

ω̃CT
lih (4.45)

To realize this control law, the gimbal rates should satisfy the following equation

Do1γ̇ +Di1δ̇ = Lr (4.46)

Equation (4.46) can be written as:

Dσ̇ = Lr (4.47)

where D = [Do1,Di1], σ̇ =
[
γ̇T , δ̇T

]T
.

4.4 DGCMGs system singularity analysis and steer-

ing law design

Singular directions of a DGCMGs system are the directions along which the output torque

can not be produced. A single DGCMG has two gimbals – the outer gimbal and the inner

gimbal. Each gimbal can precess around its gimbal axis. Rotations of the two gimbals

provide two degree of freedom for the rotor, which can be pointed to any direction of the

inertial space. Hence the momentum envelop of the DGCMGs system is a sphere which is

much efficient in configuration. In practice, to avoid exorbitant outer gimbal rates, inner

gimbal angles are always restricted to be less than ±90◦, whereas restrictions on the outer

gimbal angles are not necessary.

4.4.1 Singularity theorem

Theorem 4.1. Consider the situations except the one in which the inner gimbal angles

are equal to ±90◦, i.e., the rotor axes align with the outer gimbal axes. Then, the necessary

and sufficient condition for singularity is that all the angular momentums of the rotors

are parallel or antiparallel.

Proof. Necessity. When all the angular momentums of the rotors are parallel or antipar-

allel along one direction, it follows from the theorem on moment of momentum [57] that

all the torques produced by the rotors lie in a plane which is perpendicular to the given

direction, i.e., no torque can be produced along this direction, so the singularity occurs.

Sufficiency. Suppose that the angular momentums (h1 and h2) of two identical rotors

are not parallel or antiparallel to each other (see Figure 4.2), and that the inner gimbal

angles are not equal to ±90◦. The control torques, which are perpendicular to their rotor
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Figure 4.2: Sketch of DGCMGs singularity principle.

axis, can be produced by the rotations of either the inner gimbals or the outer gimbals,

and they are not in the same direction.

From Figure 4.2, we observe that the torques τ11 and τ12 produced by the first DGCMG

are in the plane P1 which is perpendicular to h1, while the torques τ21 and τ22 produced

by the second DGCMG are in the plane P2 which is perpendicular to h2. If h1 and h2 are

not parallel, then the planes P1 and P2 will not be parallel. Thus, there must exist an

intersection line between them. Because τ21 and τ22 are not in the same line, at least one

of them is not coincide with the intersection line, and must lie out of the plane P1. This

means that the control torques can be produced in any direction of the three dimensional

space, showing that no singularity can occur. This completes the proof.

Suppose that the magnitude of each DGCMG angular momentum is 1. Then, it

follows from Theorem 4.1 that in the configuration where three DGCMGs are orthogonally

mounted (see Figure 4.3), it is clear that the internal singular surface and the external

singular surface are two spheres with the radii of 1 and 3, respectively (Figure 4.4). In

the configuration where four DGCMGs are parallel mounted (see Figure 4.5), the internal

singular surfaces are the original point and a sphere with radius 2. The external singular

surface is a sphere with radius 4 (Figure 4.6). As we can see, DGCMGs system has very

simple singular surfaces and is much efficient in configuration.

4.4.2 Steering law design

From (4.47), we can see that, for any given demanded control torque Lr, it can be ex-

pressed as a function of the gimbal angle σ and the gimbal angle velocity σ̇. To realize

the feedback control law (4.45), we must find a suitable combination of the inner gimbal
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Figure 4.3: Three DGCMGs in orthogonal configuration.

Figure 4.4: Singular surface of 3 DGCMGs orthogonally mounted.
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Figure 4.5: Four DGCMGs in parallel configuration.

Figure 4.6: Singular surface of 4 DGCMGs parallel mounted.
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angle velocities and the outer gimbal angle velocities such that (4.47) is satisfied.

In the following, we will derive a Singularity-Robustness plus null motion steering law

which could avoid the internal singularity states of the DGCMGs system.

First we shall introduce the well-known Moore-Penrose (MP) steering law [5]. From

the minimization of the cost function

fMP =
1

2
σ̇T σ̇ (4.48)

subject to (4.47), it follows that the MP steering law is given by

σ̇ = DT (DDT )−1Lr (4.49)

Clearly, the MP steering law aims to compute the desired gimbal velocities which could

generate the commanded torque with minimum gimbal velocity efforts. The idea of the

MP steering law is straightforward, and its form is concise. However, if rank(D) < 3, then

DDT is noninvertible, i.e., singularity occurs. The magnitude of σ̇ will also be increased

tremendously as the system approaching singularity. With these defects, the applicability

of the MP steering law is somewhat restricted.

To overcome this problem, a Singularity-Robustness (SR) steering law is proposed as

follows:

σ̇ = DT (DDT + αIn)
−1Lr (4.50)

It is obtained through minimizing the following cost function

fSR =
1

2
ασ̇T σ̇ +

1

2
(Dσ̇ −Lr)

T (Dσ̇ −Lr) (4.51)

subject to (4.47). In is an identity matrix with an appropriate dimension, α is a weighting

coefficient and can be chosen as:

α = α0 exp[− det(DDT )] (4.52)

where α0 is the maximum value of α. As DDT approaches to singularity, α will increase

to α0, and the inverse computation in (4.50) can be carried out. WhenDDT is moving far

away from the singularity status, α will decrease to zero exponentially. In this situation,

the SR steering law is equivalent to the MP steering law. The output torque, by using

the SR steering law, will have a small deviation from the desired torque when the system

is close to singularity. There is a tradeoff between the singularity status and the control

torque deviation.

By examining (4.47), we see that the MP steering law is the particular solution, while
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the homogeneous solution of (4.47) is obtained by solving the following equation

Dn = 0 (4.53)

where n is a vector in the null space of D and is expressed as:

n = (In −D+D)d (4.54)

D+ = DT (DDT )−1, and d is an arbitrary nonzero vector.

Thus, the general solution of (4.47) can be written as:

σ̇ = DT (DDT )−1Lr + ρn (4.55)

where ρ > 0 is a constant scalar.

From the SR steering law (4.50), we can design a Singularity-Robustness plus Null

Motion steering law given by

σ̇ = DT (DDT + αI)−1Lr + ρ(In −D+D)d (4.56)

Using different methods to choose d will yield different null motion steering laws.

Here, the preferred gimbal angle method [81] is used and hence we choose d as:

d = (σ∗ − σ) (4.57)

where σ∗ denotes the preferred gimbal angle vector. The steering law (4.56) can be

rewritten as:

σ̇ = DT (DDT + αI)−1Lr + ρ(In −D+D)(σ∗ − σ) (4.58)

4.5 Numerical simulations

In this section, we make use of a simulation program designed in the Matlab-Simulink

environment to verify the performance of the proposed feedback control law and the

SRNM steering law.

The spacecraft inertia matrix can be parameterized as:

IS =

 300 0 0

0 305 0

0 0 330

Kg ·m2 (4.59)
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The inertia matrices of the outer gimbal, inner gimbal and rotor of each DGCMG are:

Jo =

 0.05 0 0

0 0.055 0

0 0 0.05

Kg ·m2 (4.60)

Ji =

 0.01 0 0

0 0.02 0

0 0 0.01

Kg ·m2 (4.61)

and

Jw =

 0.04 0 0

0 0.05 0

0 0 0.04

Kg ·m2 (4.62)

The rotor spin velocity is:

Ω = [0, 1500, 0]T rad/s (4.63)

Substituting (4.62) and (4.63) into the equation h = JwΩ, we obtain the magnitude

of the rotor angular momentum, which is h = 75Kgm2/s. Assume that the constraints

on the gimbal velocities are

−7.64◦/s ≤ σ̇i ≤ 7.64◦/s, i = 1, . . . , r, (4.64)

where r/2 is the number of the DGCMGs used and σ̇ = [σ̇1, . . . , σ̇r]
T . Then, the maximum

control torque generated by the precession motion of each outer gimbal (or inner gimbal)

is 10Nm.

4.5.1 Simulation analysis on DGCMG steering law

A Three DGCMGs orthogonally mounted

The orthogonally mounted three DGCMGs system is shown in Figure 4.3. The initial

inner gimbal angles and outer gimbal angles are chosen as:

δ1(0) = 0◦, δ2(0) = 0◦, δ3(0) = 0◦ (4.65)

and

γ1(0) = 45◦, γ2(0) = 45◦, γ3(0) = 45◦ (4.66)

respectively. The total angular momentum of the three DGCMGs system is zero, i.e.,

3∑
i=1

hi = [0, 0, 0]T (4.67)
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Figure 4.7: Constant torque tracking (MP 3DGCMG).

The separation angles between h1, h2 and h3 are all 120◦. According to the principle of

isogonal distribution [28], such an initial condition avails to avoiding the singular states.

When the system is influenced by constant external disturbance torques, the DGCMGs

are required to output the corresponding control torques to stabilize the spacecraft. In

practice, the disturbances are usually small.

Suppose that the demanded control torque is:

Lr = [−1, 0, 1]TNm (4.68)

First, we use the MP steering law to generate the control torque. The simulation

results are shown in Figure 4.7 to Figure 4.9. It can be seen that the internal singularity

status occurs at 53s, where h1, h2 and h3 are in the position of antiparallel (Figure

4.8). Because in the numerical simulations, there are always calculation errors. Thus,

the system transits the internal singularity (Figure 4.9). However, when the system

approaches to singularity status, gimbal velocities are saturated. During this period, the

output control torque can not track the command precisely (Figure 4.7). Finally, the

system achieves external singularity for which the system can not transit without the

help of other torques.

In the second experiment, the SR steering law is used to produce the same control

torque given by (4.68). We see that the SR steering law can not avoid the system to

approach the internal singularity. However, it can transit such a singularity. (see Figure

4.11). The torque command is not well followed during the transition period (Figure 4.10)



76 Spacecraft attitude control with DGCMGs

0 20 40 60 80 100 120 140 160 180
0

100

200

a) t (s)

h1
 &

 h
2 

(d
eg

)

0 20 40 60 80 100 120 140 160 180
0

50

100

150

h1
 &

 h
3 

(d
eg

)

b) t (s)

0 20 40 60 80 100 120 140 160 180
0

100

200

c) t (s)

h2
 &

 h
3 

(d
eg

)

Figure 4.8: Separation angles (MP 3DGCMG).
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Figure 4.9: Gimbal angles and velocities (MP 3DGCMG).
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Figure 4.10: Constant torque tracking (SR 3DGCMG).

and the gimbal velocities are also saturated (Figure 4.12). The system achieves external

singularity eventually.

One way to avoid the internal singularity is to introduce zero motions into the steering

law. So, we use the SRNM steering law to perform the constant torque tracking task.

In order to avoid the singularities, the initial gimbal angles σi(0), i = 1, . . . , r, may not

be taken as the preferred gimbal angles. Here, we choose σ∗
i = 0, i = 1, . . . , r, as the

preferred gimbal angles, and the coefficient of the zero motion is ρ = 0.1. Simulation

results are shown in Figure 4.13 to Figure 4.15. From Figure 4.14, we notice that the

internal singularity status has been avoided. The torque command is followed precisely

(Figure 4.13). The DGCMGs system falls into the external singularity after about 159s

as a consequence of the constant torque tracking task (Figure 4.15).

B Four DGCMGs parallel mounted

The configuration of the parallel mounted four DGCMGs is shown in Figure 4.5. Based

on the principle of isogonal distribution, the initial inner and outer gimbal angles are

chosen as:

δ1(0) = 0◦, δ2(0) = 0◦, δ3(0) = 0◦, δ4(0) = 0◦ (4.69)

and

γ1(0) = 0◦, γ2(0) = 90◦, γ3(0) = 180◦, γ3(0) = 270◦ (4.70)



78 Spacecraft attitude control with DGCMGs

0 20 40 60 80 100 120 140 160 180
0

100

200

h1
 &

 h
2 

(d
eg

)

a) t (s)

0 20 40 60 80 100 120 140 160 180
0

100

200

h1
 &

 h
3 

(d
eg

)

b) t (s)

0 20 40 60 80 100 120 140 160 180
0

100

200

c) t (s)

h2
 &

 h
3 

(d
eg

)

Figure 4.11: Separation angles (SR 3DGCMG).
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Figure 4.12: Gimbal angles and velocities (SR 3DGCMG).
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Figure 4.13: Constant torque tracking (SRNM 3DGCMG).
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Figure 4.14: Separation angles (SRNM 3DGCMG).
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Figure 4.15: Gimbal angles and velocities (SRNM 3DGCMG).

The total angular momentum of the DGCMGs system is:

4∑
i=1

hi = [0, 0, 0]T (4.71)

where h1 is antiparallel to h3, h2 is antiparallel to h4, and h1, h3 are orthogonal to h2

and h4.

The torque command is:

Lr = [0, 1, 0]TNm (4.72)

For the four DGCMGs system, the simulation results of the MP and SR steering

laws are similar to those obtained from the three DGCMGs system. Both of these two

steering laws encounter internal singularities during the process of constant torque track-

ing. Hence, to avoid the internal singularity status, we need to introduce null motion

into the steering law. Again, the SRNM steering law is used in this simulation, and the

preferred gimbal angles are chosen as γ∗1 = 45◦, γ∗2 = 135◦, γ∗3 = 225◦, γ∗4 = 315◦ and

δ∗1 = δ∗2 = δ∗3 = δ∗4 = 0◦.

Simulation results are depicted in Figures 4.16 to 4.18. From Figure 4.17 showing

the relationships of the separation angles amongst h1 to h4, we can see that the internal

singularity does not occur during the system operation. After 300s, the system achieves

external singularity and the gimbal angle velocities are saturated (Figure 4.18). The

output torque can not track the command. Due to the action of the SRNM steering law,

the DGCMGs system retreats from the singularity after 410s and the torque command
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Figure 4.16: Constant torque tracking (SRNM 4DGCMG).

is followed once more (Figure 4.16). However, at 470s, the system falls into singularity

again and keep chattering about the singular direction from that moment onward.

By examining the simulation results mentioned above, we know that the internal

singularity can be avoided by introducing null motion into the steering law. But if the

system achieves external singularity, the singular situation can not be eliminated by only

using the null motion steering law. To entirely retreat the system from the external

singular status, some other torque generation devices must be utilized, such as the reverse

force thruster.

4.5.2 Spacecraft attitude maneuver

In this section, we verify the performance of the spacecraft attitude control system under

a large angle maneuver command. The spacecraft attitude motion is describe by the

kinematics (4.7) and dynamics (4.25). The simplified feedback attitude control law (4.45)

and the corresponding SRNM steering law (4.58) are used in the simulation.

Suppose that the initial attitude angles of the spacecraft are:

ψ(0) = 0◦, θ(0) = 0◦, ϕ(0) = 0◦ (4.73)

and the initial attitude velocities are

ωx(0) = 0◦/s, ωy(0) = 0◦/s, ωz(0) = 0◦/s (4.74)
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Figure 4.17: Separation angles (SRNM 4DGCMG).
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Figure 4.18: Gimbal angles and velocities (SRNM 4DGCMG).
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The parameters in the attitude feedback control law are selected as:

k = 40, K =

 300 0 0

0 300 0

0 0 300

 (4.75)

The external disturbance torque is set to be Le = [0, 0, 0]TNm, and the maximum output

torque of a single DGCMG is 10Nm.

The spacecraft attitude maneuver commands are given by

ϕc = −90◦, θc = 80◦, ψc = 180◦ (4.76)

and

ωxc = 0◦/s, ωyc = 0◦/s, ωzc = 0◦/s (4.77)

The parallel mounted four DGCMGs system is adopted in this simulation. The initial

outer gimbal angles and inner gimbal angles are chosen, respectively, as:

γ1 = 0◦, γ2 = 90◦, γ3 = 180◦, γ4 = 270◦ (4.78)

and

δ1 = 0◦, δ2 = 0◦, δ3 = 0◦, δ4 = 0◦ (4.79)

The preferred gimbal angle vector σ∗ is:

σ∗ = [30◦, 120◦, 210◦, 300◦, 0◦, 0◦, 0◦, 0◦]T (4.80)

Figure 4.19 illustrates the time histories of the attitude angles and velocities. It is

clear to observe that the attitude maneuver mission is well accomplished. The output

torque Lo follows the command Lr precisely (Figure 4.20). From the separation angles

between h1 to h4, we can see that the system does not encounter singularities (Figure

4.21). The precession angles and velocities of the outer gimbals and inner gimbals are

shown in Figure 4.22. All the inner gimbal angles are within 6◦, and the gimbal velocities

are smooth.

4.5.3 Spacecraft attitude maneuver with DGCMG failure

In the attitude control missions, some of the DGCMGs may fail during the precessions.

For this situation, in order to successfully achieve the attitude control target, the influence

of the failed DGCMGs must be cut off such that the attitude maneuver can still be

accomplished by the operations of the remaining DGCMGs. In practice, we can achieve

these by cutting off the power of the rotor motor of the failed DGCMGs whose inner and
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Figure 4.19: Attitude angles and velocities.
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Figure 4.20: Required torque and output torque.
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Figure 4.21: Separation angles.
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Figure 4.22: Precession angles and velocities.
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Figure 4.23: Attitude angles and velocities (1st fail).

outer gimbals should also be locked. In this section, we will use a numerical simulation to

verify the effectiveness of the proposed attitude control law and steering law in the case

of DGCMG failure.

The simulation environment is the same as that in Section 4.5.2. Suppose that the

first DGCMG fails at the time t = 10s. The simulation results are shown in Figures

4.23 to 4.26. It can be seen that, even with the failure of the first DGCMG, the attitude

maneuver command can still be well accomplished (Figure 4.23) and the output torque

can also follow the torque command precisely (Figure 4.24). From the relationship of the

separation angles shown in Figure 4.25, we can see that the system did not encounter any

singularity status during the simulation. The gimbal angle velocity of the failed DGCMG

becomes zero from the moment t = 10s onward and the gimbal angle is locked at the

position where the failure happens (Figure 4.26). Hence, it is clear that the proposed

feedback attitude control law and the steering law can ensure a good performance of the

DGCMGs system even in the presence of the DGCMG failure.

4.6 Conclusion

In this chapter, we derived an exact mathematical description of the spacecraft attitude

motion driven by DGCMGs system. Based on the second method of Lyapunov stability

theory, a feedback control law is designed so as to ensure that the tracking errors con-

verge to zero. The system stability is guaranteed during the design process. A singularity

theorem for the DGCMGs system is proposed, and the singularity analysis of the orthog-
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Figure 4.24: Required torque and output torque (1st fail).
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Figure 4.25: Separation angles (1st fail).
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Figure 4.26: Precession angles and velocities (1st fail).

onally mounted three DGCMGs system and that of the parallel mounted four DGCMGs

system are presented, singularity surfaces are described. Simulation results showed that

the proposed control law and the steering law could accomplish the large angle attitude

maneuver missions of the spacecraft even in the presence of the DGCMG failure.



CHAPTER 5

On a Class of Nonlinear Optimal

Synchronization and Tracking Control

Problems

5.1 Introduction

Synchronization control of different objects aiming at achieving the synchronized motions

of the objects with reference to desired target motions has been well studied in recent

years. In this chapter, we consider a new class of nonlinear optimal tracking and synchro-

nizing control problems subject to control constraints, where the motions of two distinct

objects are required to achieve synchronization at the minimum time while achieving the

optimal tracking of a reference target. This class of optimal control problems arises nat-

urally from the study of angular velocity tracking and synchronization of two spacecrafts

during their formation flight, where their system dynamics are in equal status mode. In

this chapter, we first provide a rigorous mathematical formulation for this class of optimal

control problems. A new result ensuring the synchronization of the two distinct objects

is obtained. On this basis, a computational method is developed for constructing an opti-

mal switching control law under which the motions of the two distinct objects will achieve

synchronization at the minimum time while achieving the optimal tracking of a reference

target. This computational method is developed based on novel applications of the con-

trol parameterization method and a time scaling transform. A practical problem arising

from the study of the angular velocity tracking and synchronization of two spacecrafts

during their formation flight is formulated and solved by the method proposed.

5.2 Problem Formulation

Consider a process described by the following system of nonlinear differential equations

on [0, T ].

ẋ1(t) = f(t,x(t),u1(t)) (5.1a)

89
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ẋ2(t) = g1(t,x(t)) +C1(t,x(t))u2(t) (5.1b)

ẋ3(t) = g2(t,x(t)) +C2(t,x(t))u3(t) (5.1c)

where x1 = [x1,1, . . . , x1,m]
T ∈ Rm, x2 = [x2,1, . . . , x2,n]

T ∈ Rn and x3 = [x3,1, . . . , x3,n]
T ∈

Rn are the state vectors, ẋi(t) = dxi(t)/dt, i = 1, 2, 3, and x = [xT
1 ,x

T
2 ,x

T
3 ]

T ∈ Rm+2n.

u1 = [u1,1, . . . , u1,r1 ]
T ∈ Rr1 , u2 = [u2,1, . . . , u2,r2 ]

T ∈ Rr2 and u3 = [u3,1, . . . , u3,r3 ]
T ∈ Rr3

are the control vectors, and u = [uT
1 ,u

T
2 ,u

T
3 ]

T ∈ Rr1+r2+r3 . The vector-valued functions

f : R×Rm+2n ×Rr1 → Rm, g1 : R×Rm+2n → Rn, g2 : R×Rm+2n → Rn and the matrix-

valued functions C1 : R × Rm+2n → Rn×r2 , C2 : R × Rm+2n → Rn×r3 are continuously

differentiable with respect to all their respective arguments.

The initial condition for (5.1a)-(5.1c) is:

x(0) = [xT
1,0 xT

2,0 xT
3,0]

T (5.1d)

The boundedness constraints on the control u(t) are specified below:

α ≤ u(t) ≤ β, ∀ t ∈ [0, T ] (5.2)

where α = [αT
1 ,α

T
2 ,α

T
3 ]

T and β = [βT
1 ,β

T
2 ,β

T
3 ]

T , while α1 ∈ Rr1 , α2 ∈ Rr2 , α3 ∈ Rr3

and β1 ∈ Rr1 , β2 ∈ Rr2 , β3 ∈ Rr3 are given constant vectors. A control u satisfying the

boundedness constraints (5.2) is called an admissible control. Let U be the set of all such

admissible controls.

Let τ ∈ (0, T ) be the time from which it holds that

∥x2(t)− x3(t)∥2 = 0, ∀ t ∈ [τ, T ] (5.3)

where ∥ • ∥ denotes the usual Euclidian norm. Such a τ is referred to as a synchronization

time.

We assume that the following condition is satisfied.

Assumption (A): rank(C1) = r2 or rank(C2) = r3. Without loss of generality, we

assume that rank(C2) = r3.

We wish to note that Assumption (A) is not restrictive, as it can be quite easily

satisfied in practice. For example, it is satisfied for the practical problem, which arises

from the study of the angular velocity tracking and synchronization of two spacecrafts

during their formation flight to be considered in Section 5.

Our aim is to find an admissible control u(t) ∈ U such that the synchronization time

of x2 and x3 and the deviation of the state vector x(t) from a desired trajectory are

minimized. This tracking and synchronization optimal control problem may be stated

formally as follows.
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Problem S. Subject to system (5.1a)-(5.1d), find an admissible control u ∈ U such that

the following cost function

J(u) = a0τ +

∫ T

0

{
a1∥x1(t)− x1r(t)∥2 + a2∥x2(t)− x2r(t)∥2 + a3∥x3(t)− x2r(t)∥2

}
dt

(5.4)

is minimized subject to (5.3), where x1r(t) and x2r(t) are the relevant components of the

desired trajectory, and ai, i = 0, 1, 2, 3, are weighting coefficients.

5.3 Switching Synchronization Control

In the following theorem, the form of the switching synchronization control is obtained.

Theorem 5.1. Consider system (5.1a)-(5.1d). Let τ ∈ (0, T ) be a synchronization time

of x2 and x3. Then,

û3(t) =

{
u3(t), t ∈ [0, τ ]

(CT
2 C2)

−1CT
2 (g1 − g2 +C1u2(t)), t ∈ (τ, T ],

(5.5)

where

α2 ≤ u2(t) ≤ β2, ∀ t ∈ [0, T ], (5.6)

α3 ≤ u3(t) ≤ β3, ∀ t ∈ [0, τ ], (5.7)

and

α3 ≤ (CT
2 C2)

−1CT
2 (g1 − g2 +C1u2(t)) ≤ β3, ∀ t ∈ (τ, T ] (5.8)

Proof. For the first part of the theorem, it suffices to show that, at t = τ ∈ (0, T ),

x2(τ) = x3(τ), (5.9)

and

ẋ2(t) = ẋ3(t), ∀ t ∈ (τ, T ]. (5.10)

For (5.10) to hold, it follows from (5.1b), (5.1c) and (A) that u3 is expressed explicitly in

terms of u2 as follows.

u3(t) = (CT
2 C2)

−1CT
2 (g1 − g2 +C1u2(t)), ∀ t ∈ (τ, T ] (5.11)

So, if (5.3) is to be satisfied, i.e., to achieve synchronization of x2 and x3 at the synchro-

nization time τ , we need only to replace u3 with that given by (5.11) from t = τ . Thus,

the required switching control vector û3 is given by (5.5). For (5.6) and (5.7), they follow

from (5.2), while (5.8) is obtained from (5.5) and (5.2). This completes the proof.
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Let û = (uT
1 ,u

T
2 , û

T
3 )

T and let Û ×(0, T ) be the set which consists of all those (û, τ) =

(uT
1 ,u

T
2 , û

T
3 , τ)

T such that constraints (5.6), (5.7) and (5.8) are satisfied. The optimal

tracking and synchronization control problem may now be stated equivalently below.

Problem Ŝ. Given the dynamical system

ẋ1(t) = f(t,x(t),u1(t)) (5.12a)

ẋ2(t) = g1(t,x(t)) +C1(t,x(t))u2(t) (5.12b)

ẋ3(t) = g2(t,x(t)) +C2(t,x(t))û3(t) (5.12c)

with initial condition (5.1d), where û3 is given by (5.5), find a (û, τ) = (uT
1 ,u

T
2 , û

T
3 , τ)

T ∈
Û × (0, T ) such that the cost function (5.4) is minimized subject to constraints (5.6), (5.7)

and (5.8).

5.4 Parameterization of the Control

To solve Problem Ŝ, we shall utilize the control parameterization technique to approximate

the control vector û with piecewise constant functions over the time interval [0, T ] as:

up
1(t) =

p∑
k=1

σk
1χ[τk−1,τk)(t), t ∈ [0, T ] (5.13)

up
2(t) =

p∑
k=1

σk
2χ[τk−1,τk)(t), t ∈ [0, T ] (5.14)

ûp
3(t) =


p̄∑

k=1

σk
3χ[τk−1,τk)(t), t ∈ [0, τ ]

(CT
2 C2)

−1CT
2 (g1 − g2 +C1

p∑
k=p̄+1

σk
2χ[τk−1,τk)(t)), t ∈ (τ, T ],

(5.15)

where p̄ < p,

τ0, τ1, . . . , τp̄, τp̄+1, . . . , τp, τk−1 < τk, k = 1, 2, . . . , p (5.16)

(with τ0 = 0, τp̄ = τ and τp = T ) are partition points of the time interval [0, T ], and χI(t)

denotes the indicator function of I defined by

χI(t) =

{
1, t ∈ I

0, elsewhere.
(5.17)

For each j = 1, 2, 3, and k = 1, 2, . . . , p, σk
j is a constant control vector, while τk,

k = 1, . . . , p − 1, are switching times. Let γ = [τ1, . . . , τp]
T , which is referred to as a

switching time vector. Let Υp be the set which consists of all such γ.
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Define

σ = [(σ1)
T , (σ2)

T , (σ3)
T ]T (5.18)

where σj = [(σ1
j )

T , · · · , (σp
j )

T ]T , j = 1, 2, 3. Let Ξp denote the set containing all such σ.

To solve Problem Ŝ by using a gradient-based optimization method, we need the

gradient formulas of the cost function and the constraint functions with respect to the

control vector σ and the switching time vector γ. However, the gradient formulas of

these functions with respect to the switching time vector γ are known to be discontinuous

(See Chapter 5 of [74] for details). For this reason, these gradient formulas were never

implemented for a practical problem.

To overcome this deficiency, we shall use the time scaling transform [75] to map all

these variable time points τk, k = 1, . . . , p− 1, into fixed time points ςk, k = 1, . . . , p− 1,

in a new time horizon [0, 1], such that

0 = ς0 < ς1 < · · · < ςp̄ < ςp̄+1 < . . . < ςp−1 < ςp = 1 (5.19)

where τp̄ is mapped to the fixed point ςp̄.

To achieve this, we introduce a new state equation defined on [0, 1]:

dt(s)

ds
= νp(s) (5.20)

where t(0) = 0, t(1) = T , and

νp(s) =

p∑
k=1

δkχ[ςk−1,ςk)(s) (5.21)

Here, δk ≥ 0, k = 1, . . . , p, are decision variables, and

p∑
k=1

δk = T. (5.22)

νp(s) is called the time scaling control. It is a nonnegative piecewise constant function with

possible discontinuities at the pre-fixed knots ςk, k = 1, . . . , p− 1. Let δ = [δ1, · · · , δp]T .
By applying the time scaling transform (5.20), the original system dynamics can be

rewritten as:

˙̃x1(s) = νp(s)f(t(s), x̃(s), ũ1(s)) (5.23a)

˙̃x2(s) = νp(s)[g1(t(s), x̃(s)) +C1(t(s), x̃(s))ũ2(s)] (5.23b)

˙̃x3(s) = νp(s)[g2(t(s), x̃(s)) +C2(t(s), x̃(s))ũ3(s)] (5.23c)

˙̃x4(s) = νp(s) (5.23d)
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with initial condition

x̃(0) = [x̃T
1,0, x̃

T
2,0, x̃

T
3,0, x̃4,0]

T (5.23e)

where x̃ = [x̃T
1 , x̃

T
2 , x̃

T
3 , x̃4]

T = [xT (t(s)), t(s)]T . ũp = [ũT
1 , ũ

T
2 ,

˜̂uT
3 , ν

p]T is given by

ũp(s) =



p∑
k=1

σk
1χ[ςk−1,ςk)(s)

p∑
k=1

σk
2χ[ςk−1,ςk)(s)

˜̂u3(s)
p∑

k=1

δkχ[ςk−1,ςk)(s)

, s ∈ [0, 1] (5.24)

while

˜̂u3(s) =


p̄∑

k=1

σk
3χ[ςk−1,ςk)(s), s ∈ [0, ςp̄]

(CT
2 C2)

−1CT
2 (g1 − g2 +C1

p∑
k=p̄+1

σk
2χ[ςk−1,ςk)(s)), s ∈ (ςp̄, 1]

(5.25)

Clearly, by integrating (5.20) with initial condition t(0) = 0, we obtain, for s ∈ [ςl−1, ςl]

t(s) =
l−1∑
k=1

δk + δl(s− ςl−1)p, (5.26)

where l = 1, . . . , p.

In particular, the switching times τi, i = 1, 2, . . . , p̄, p̄ + 1, . . . , p − 1, in the original

time horizon [0, T ], are given by

τi =
i∑

k=1

δk, i = 1, 2, . . . , p̄, p̄+ 1, . . . , p− 1 (5.27)

τp̄ =

p̄∑
k=1

δk = τ (5.28)

Thus, (5.23a)-(5.23e) can be written in the form below.

˙̃x(s) = q̃(t(s), x̃(s), ũp(s)) (5.29a)

with the initial condition

x̃(0) = [x̃T
1,0, x̃

T
2,0, x̃

T
3,0, x̃4,0]

T (5.29b)

where

q̃ = νp[fT , (g1 +C1ũ2)
T , (g2 +C2

˜̂u3)
T , 1]T

The cost function (5.3) is transformed into the following form in the new time horizon
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[0, 1]:

J̃(ũp) =

∫ 1

0

L̃0(s, x̃(s),σ, δ)ds (5.30)

where

L̃0(s, x̃(s),σ, δ) =

χ[0,ςp̄](s)
[
a0ν

p(s) + a1∥x̃1(s)− x̃1r(s)∥2 + a2∥x̃2(s)− x̃2r(s)∥2 + a3∥x̃3(s)− x̃2r(s)∥2
]

+χ(ςp̄,1](s)
[
a1∥x̃1(s)− x̃1r(s)∥2 + a2∥x̃2(s)− x̃2r(s)∥2

]
(5.31)

From (5.25), it is clear that

t(ςp̄) = τ (5.32)

t(1) = T (5.33)

i.e.,
p̄∑

k=1

δk = τ (5.34)

p∑
k=1

δk − T = 0 (5.35)

Let δ = [δ1, . . . , δp]
T and let Dp be the set containing all such δ. Furthermore, under the

time scaling transform, the interior point state equality constraint (5.4) is transformed

into

∥x̃2(ςp̄)− x̃3(ςp̄)∥2 = 0 (5.36)

where ςp̄ ∈ (0, 1). The cost function and the state constraint can be written in canonical

form as:

g̃0(σ, δ) = Φ̃0(x̃(1|σ, δ)) +
∫ 1

0

L̃0(s, x̃(s|σ, δ), σ, δ)ds (5.37)

and

g̃1(σ, δ) = Φ̃1(x̃(1|σ, δ)) +
∫ 1

0

L̃1(s, x̃(s|σ, δ), σ, δ)ds = 0 (5.38)

where L̃1 = 0 and Φ̃0 = 0, while Φ̃1(x̃(1|σ, δ)) = ∥x̃2(ςp̄)− x̃3(ςp̄)∥2, which is obtained

from (5.36).

The original optimal control problem is now approximated by a sequence of optimal

parameter selection problems depending on p, the number of the partition points of the

time horizon [0, T ], given below.

Problem S̃p. Given system (5.29a) with initial condition (5.29b) on the time interval

s ∈ [0, 1], find a control parameter vector σ ∈ Ξp and a switching time vector δ ∈ Dp,

such that the cost function (5.30) is minimized subject to the constraints (5.35) and (5.38).

For each p, Problem S̃p can be solved as a nonlinear optimization problem, where

the cost function (5.37) is minimized subject to constraints (5.35) and (5.38). Existing
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gradient-based optimization methods (see, for example, [46]) can be used to solve Problem

S̃p. For this, we need the gradient formulas of the cost function and the constraint

functions given bellow.

Remark 5.1. The gradient formula of the constraint function Φ̃2(δ) =
∑p

k=1 δk − T

(obtained from (5.35)) is:
∂Φ̃2(δ)

∂δ
= [1, . . . , 1︸ ︷︷ ︸

p

]T (5.39)

For the gradient formulas of the cost function (5.37) and the constraint function (5.38),

they are given in the following theorem.

Theorem 5.2. For each i = 0, 1, the gradient of the function g̃i with respect to σ and δ

are given by
∂g̃i(σ, δ)

∂σ
=

∫ 1

0

∂H̃i(s, x̃(s),σ, δ, λ̃
i(s|σ, δ))

∂σ
ds (5.40)

and
∂g̃i(σ, δ)

∂δ
=

∫ 1

0

∂H̃i(s, x̃(s),σ, δ, λ̃
i(s|σ, δ))

∂δ
ds (5.41)

where

H̃i(s, x̃,σ, δ, λ̃
i) = L̃i(s, x̃,σ, δ) + (λ̃i)T q̃(s, x̃,σ, δ) (5.42)

and, for each i = 0, 1, λ̃i(s|σ, δ) is the solution of the following costate system corre-

sponding to (σ, δ):

dλ̃(s)

ds
= −

[
∂H̃i(s, x̃(s|σ, δ),σ, δ, λ̃(s))

∂x̃

]T

, s ∈ [0, 1) (5.43)

with

λ̃(1) =

[
∂Φ̃i(x̃(1|σ, δ))

∂x̃

]T

(5.44)

Proof. The proof follows from arguments similar to that given for Theorem 2.1 of Chapter

2. Thus, it is omitted.

For each p, Problem S̃p is an optimal parameter selection problem, which can be viewed

as a nonlinear optimization problem. Thus, any existing gradient-based optimization

method, such as the sequential quadratic programming approximation algorithm, can

be used to solve Problem S̃p. Here the optimal control software MISER 3.3, which was

developed based on these ideas, is implemented to solve Problem S̃p.

Remark 5.2. Let ũp,∗ be the optimal piecewise constant control of Problem S̃p given by

ũp,∗(s) = [(˜̂u
p,∗
(s))T , νp,∗(s)]T (5.45)
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with ˜̂u
p,∗
(s) = [(ũp,∗

1 (s))T , (ũp,∗
2 (s))T , ( ˜̂u

p,∗
3 (s))T ]T . In the original time horizon , we have

ûp,∗ = [(up,∗
1 )T , (up,∗

2 )T , (ûp,∗
3 )T ]T (5.46)

Let û∗ be the optimal control of Problem Ŝ. As discussed in Section 2.5 of Chapter 2,

J(ûp,∗) will converge to J(û∗) as p → ∞. Furthermore, due to the time scaling control,

the optimal switching points in Problem S̃p will capture those in the original time horizon,

such that J(ũp,∗) ≤ J(ûp,∗) which means that J(ũp,∗) converges to J(û∗).

From our extensive simulation study, we observe that p does not need to be chosen

to be too large. In fact, the difference in the cost values between p = 20 and those with

larger p is, in general, insignificant. Thus, p = 20 is chosen in our numerical simulation

study.

5.5 Two Spacecrafts During Their Formation Flight

Consider the angular velocity tracking and synchronization problem of two spacecrafts

during their formation flight. The attitude dynamics of the two rigid axial symmetry

spacecrafts can be expressed, in the body-fixed coordinate system, as follows.

Jxiω̇xi + (Jzi − Jyi)ωziωyi =Mxi

Jyiω̇yi + (Jxi − Jzi)ωxiωzi =Myi

Jziω̇zi + (Jyi − Jxi)ωyiωxi =Mzi

, i = 1, 2, (5.47)

where ωxi, ωyi and ωzi, i = 1, 2, are the roll, pitch and yaw rates, respectively. Jxi, Jyi

and Jzi, i = 1, 2, represent the moments of inertia about the three axes of the body-fixed

coordinate system. Mxi, Myi and Mzi, i = 1, 2, are the applied moments.

The objective of the attitude angular velocity control mission is to design a con-

trol law such that the synchronization time of (ωy1, ωz1) and (ωy2, ωz2) is minimized,

while the tracking of the angular velocities of the two spacecrafts (i.e., (ωx1, ωy1, ωz1) and

(ωx2, ωy2, ωz2)) with reference to a desired trajectory is as close as possible.

Let

x(t) = [xT
1 ,x

T
2 ,x

T
3 ]

T (5.48)

u(t) = [uT
1 ,u

T
2 ,u

T
3 ]

T (5.49)

where

x1(t) = [ωx1, ωx2]
T = [x1,1(t), x1,2(t)]

T , x2(t) = [ωy1, ωz1]
T = [x2,1(t), x2,2(t)]

T ,

x3(t) = [ωy2, ωz2]
T = [x3,1(t), x3,2(t)]

T ,
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and

u1(t) = [Mx1,Mx2]
T = [u1,1(t), u1,2(t)]

T , u2(t) = [My1,Mz1]
T = [u2,1(t), u2,2(t)]

T ,

u3(t) = [My2,Mz2]
T = [u3,1(t), u3,2(t)]

T .

Then, the original system dynamics (5.47) can be rewritten as:

ẋ(t) = h(x(t)) +Gu(t) (5.50)

where

h(x(t)) =



−(Jz1 − Jy1)x2,2(t)x2,1(t)/Jx1

−(Jz2 − Jy2)x3,2(t)x3,1(t)/Jx2

−(Jx1 − Jz1)x1,1(t)x2,2(t)/Jy1

−(Jy1 − Jx1)x2,1(t)x1,1(t)/Jz1

−(Jx2 − Jz2)x1,2(t)x3,2(t)/Jy2

−(Jy2 − Jx2)x3,1(t)x1,2(t)/Jz2


(5.51)

and

G = diag(1/Jx1, 1/Jx2, 1/Jy1, 1/Jz1, 1/Jy2, 1/Jz2) (5.52)

The initial condition for the state is:

x(0) = [0, 0,−0.2,−0.5,−0.8,−1]T (deg/sec) (5.53)

The system inertia parameters are Jx1 = Jx2 = 350kgm2, Jy1 = Jy2 = 305kgm2 and

Jz1 = Jz2 = 300kgm2. The bounds on the control variables are:

−10Nm ≤ ui,j(t) ≤ 10Nm, i = 1, 2, 3; j = 1, 2. (5.54)

The angular velocity command in the x-axis is x1r(t) = [0, 0]T (deg/sec). x2 and x3

are required to track the trajectory x2r(t) = [ωyr(t), ωzr(t)]
T for t ∈ [0, 10], where

ωyr(t) = 4.5 cos(0.05πt)(deg/sec) and ωzr(t) = 4.5 cos(0.1πt)(deg/sec). Thus, the ob-

jective function of this problem can be formulated as

J(u) = a0τ +

∫ 10

0

{
a1∥x1(t)− x1r(t)∥2 + a2∥x2(t)− x2r(t)∥2 + a3∥x3(t)− x2r(t)∥2

}
dt

(5.55)

where τ is the synchronization time of x2 and x3, which is also required to be minimized.

The weighting coefficients are chosen as a0 = 1, ai = 104, i = 1, 2, 3.

We apply the switching synchronization control method, the control parameterization

technique and the time scaling transform to solve this optimal synchronization control

problem. The original time horizon [0, 10] is mapped into a new time horizon [0, 1] with
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Figure 5.1: Angular velocities ωx1, ωx2.

20 partition points. We map the synchronization time, τ , to the first partition point. The

cost function (5.55) is transformed into the form given below.

J̃(ũp) =
∫ 0.05

0

{
a0ν

p + a1∥x̃1 − x̃1r∥2 + a2∥x̃2 − x̃2r∥2 + a3∥x̃3 − x̃2r∥2
}
ds

+
∫ 1

0.05

{
a1∥x̃1 − x̃1r∥2 + a2∥x̃2 − x̃2r∥2

}
ds.

(5.56)

The cost function (5.56) is to be minimized subject to the control constraints (5.54)

and the following constraints.

x̃4(1) = 10 (5.57)

∥x̃2(0.05)− x̃3(0.05)∥2 = 0 (5.58)

This optimal control problem is solved by using the method detailed in Section 5.4,

where the optimal control software, MISER 3.3, is used. The time histories of the system

states and controls, in the original time horizon [0, 10], are shown in Figure 5.1 to Figure

5.6. From Figure 5.1 to Figure 5.3, we see that the roll rates of the two spacecrafts are

maintained at zero for all the simulation time, the pitch and yaw rates of the two space-

crafts achieve a precise synchronization at t = 0.1597sec, and the command trajectory

x2r(t) is well tracked. Figure 5.4 to Figure 5.6 depict the time histories of the optimal

control inputs. It is easy to see that all the controls operate within their bounds. The

time scaling control is shown in Figure 5.7. The tracking and synchronization missions of

the spacecraft angular velocities are well accomplished.
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Figure 5.2: Angular velocities ωy1, ωy2.
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5.6 Conclusion

The tracking and synchronization control problem for a class of nonlinear systems subject

to constraints on the controls was studied in this chapter. A new result for construct-

ing a switching synchronization control was obtained. With this result, this nonlinear

control problem was stated equivalently as an optimal control problem subject to con-

straints on the controls and an interior point state equality constraint. By applying the

control parameterization technique and the time scaling transform, it was shown that

the constrained optimal control problem can be solved as an optimal parameter selection

problem. Numerical simulation shows that the proposed method is highly effective.





CHAPTER 6

Finial remarks

6.1 Main contributions of this thesis

In this thesis, we addressed several optimal guidance and control problems of the space-

crafts arising from the study of lunar exploration. We summarize our main contributions

below.

In Chapter 2, by introducing three frames, we derived a three dimensional dynamics to

describe the motion of the lunar module for the powered descent part with consideration

of the moon rotation. The lunar module soft landing was treated as a continuously

powered descent process with a constraint on the terminal angle of the module between

its longitudinal axis and the moon surface. Then, an optimal guidance law was proposed

to realize a precise pinpoint soft landing at the desired landing target. The terminal

attitude of the module was restricted to be within a small deviation from being vertical

with respect to lunar surface, which ensured the module to stand vertically when it

touched down on the moon surface. The fuel consumption and the flight time were also

minimized. The optimal guidance law was realized by using the control parameterization

method in conjunction with a time scaling transform. By these two methods, the optimal

control problem was approximated by a sequence of optimal parameter selection problems

and solved by a general purpose optimal control software package, MISER 3.3. An optimal

trajectory tracking problem, where a desired trajectory is to be tracked with the least fuel

consumption in the minimum time, was also solved with the same approach.

In Chapter 3, we considered the lunar module soft landing problem under some un-

predicted situations, such as initial point perturbations. As in Chapter 2, the three

dimensional dynamics was utilized to describe the motion of the module. Based on the

nonlinear dynamics of the module, we obtained the form of an optimal closed loop con-

trol law, where a feedback gain matrix is involved. The feedback gain matrix satisfies

a Riccati-like matrix differential equation. Then, it was approximated in terms of the

third order B-spline functions. We first solved the optimal control problem as an open

loop optimal control problem by using the time scaling transform and the control param-

eterization method. Then, by virtue of the relationship between the optimal open loop

105
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control and the optimal closed loop control along the optimal trajectory, we presented

a practical method to calculate an approximate optimal feedback gain matrix, without

having to solve an optimal control problem involving the complex Riccati-like matrix dif-

ferential equation coupled with the original system dynamics. Simulation results showed

that, when the initial point is perturbed, the performance of the feedback control law is

much better than that of the open loop control law.

In Chapter 4, we discussed the attitude control problem of a spacecraft driven by

DGCMGs system. We derived an exact general mathematical description of spacecraft

attitude motion driven by DGCMGs. Based on the mathematical description, we designed

a nonlinear feedback control law which can realize the spacecraft large angle attitude

maneuver missions. The control law was constructed with the help of the second method of

Lynpunov, and the system stability was proved during the design process. The singularity

robustness plus null motion steering law was presented which could avoid the internal

singularity status. We also proved the Principle of DGCMGs’ singularity and analyzed

the singular configurations of the orthogonally mounted three DGCMGs and the parallel

mounted four DGCMGs. It is also shown that the proposed feedback control law and the

SRNM steering law can work well even in the presence of DGCMG failure.

In Chapter 5, we considered a class of nonlinear optimal synchronization control prob-

lems subject to control constraints arising from the study of spacecraft formation flight.

In this problem, the motions of two distinct objects are required to achieve synchroniza-

tion at the minimum time while achieving the optimal tracking of a reference target. We

provided a rigorous mathematical formulation for this class of optimal control problems

and then obtained a new result ensuring the synchronization of the two distinct objects.

By using the control parameterization method and a time scaling transform, we developed

a computational method for constructing an optimal switching control law under which

the motions of the two distinct objects will achieve synchronization at the minimum time

while achieving the optimal tracking of a reference target. An angular velocity tracking

and synchronization problem during the spacecraft formation flight was formulated and

solved by the proposed method.

6.2 Future research directions

In this thesis, we studied the optimal guidance problem of the lunar module soft landing.

The optimal descent trajectory was calculated. During the design process, we assumed

that the attitude information of the landing module can be obtained directly where the

design of the attitude actuators was not considered. In practice, to realize a fast and

accurate attitude maneuver of the landing module which requires large output torques,

we could use a united attitude control system consisting of the reverse force thrusters and

the DGCMGs. The numbers and the configurations of the thrusters and the DGCMGs
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should be optimally designed with consideration of the allowable mass allocation and the

required system performance. The singularity problem is one of the most crucial problems

among the CMG research area. Though the DGCMGs system has simpler singularity

configuration compared with the SGCMGs system, it does encounter singularities in some

situations. To avoid the singularity status, we shall design an optimal steering law by

searching the directions along which the system singularity measure will be maximized.

Thus, the CMGs system could be kept as far away as possible from the singularity status.

The null motion method could also help the CMGs system to avoid the singularity status

in many cases. There are numerous ways to choose the null motions. In this thesis,

we used the preferred gimbal angle null motion approach. However, in this approach,

a suitable computational method for choosing the preferred gimbal angles under various

conditions has not been found yet. Hence, it would be very interesting to design an

optimal steering law together with a suitable null motion to realize the maneuver of the

CMGs system without encountering any singularities. We could also use the thruster

system to help the CMGs to avoid internal singularity status and even withdraw from the

external singularities. The study of the optimal attitude control system consisting of the

thrusters and the CMGs would be very promising in future research.
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