
Department of Mathematics and Statistics

Optimisation of Large Scale

Network Problems

Mark Ted Grigoleit

This thesis is presented for the Degree of

Doctor of Philosophy

of

Curtin University of Technology

April 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195632091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

To the best of my knowledge and belief this thesis contains no material previously

published by any other person except where due acknowledgement has been made.

This thesis contains no material which has been accepted for the award of any

other degree or diploma in any university.

Signature: ..

Date:

i

Summary

The Constrained Shortest Path Problem (CSPP) consists of finding the short-

est path in a graph or network that satisfies one or more resource constraints.

Without these constraints, the shortest path problem can be solved in polyno-

mial time; with them, the CSPP is NP-hard and thus far no polynomial-time

algorithms exist for solving it optimally.

The problem arises in a number of practical situations. In the case of vehicle

path planning, the vehicle may be an aircraft flying through a region with ob-

stacles such as mountains or radar detectors, with an upper bound on the fuel

comsumption, the travel time or the risk of attack. The vehicle may be a subma-

rine travelling through a region with sonar detectors, with a time or risk budget.

These problems all involve a network which is a discrete model of the physical

domain. Another example would be the routing of voice and data information in

a communications network such as a mobile phone network, where the constraints

may include maximum call delays or relay node capacities. This is a problem of

current economic importance, and one for which time-sensitive solutions are not

always available, especially if the networks are large.

We consider the simplest form of the problem, large grid networks with a single

side constraint, which have been studied in the literature. This thesis explores

the application of Constraint Programming combined with Lagrange Relaxation

to achieve optimal or near-optimal solutions of the CSPP. The following is a brief

outline of the contribution of this thesis.

Lagrange Relaxation may or may not achieve optimal or near-optimal results on

its own. Often, large duality gaps are present. We make a simple modification

to Dijkstra’s algorithm that does not involve any additional computational work

ii

in order to generate an estimate of path time at every node. We then use this

information to constrain the network along a bisecting meridian. The combina-

tion of Lagrange Relaxation (LR) and a heuristic for filtering along the meridian

provide an aggressive method for finding near-optimal solutions in a short time.

Two network problems are studied in this work. The first is a Submarine Transit

Path problem in which the transit field contains four sonar detectors at known

locations, each with the same detection profile. The side constraint is the total

transit time, with the submarine capable of 2 speeds. For the single-speed case,

the initial LR duality gap may be as high as 30%. The first hybrid method uses a

single centre meridian to constrain the network based on the unused time resource,

and is able to produce solutions that are generally within 1% of optimal and

always below 3%. Using the computation time for the initial Lagrange Relaxation

as a baseline, the average computation time for the first hybrid method is about

30% to 50% higher, and the worst case CPU times are 2 to 4 times higher.

The second problem is a random valued network from the literature. Edge costs,

times, and lengths are uniform, randomly generated integers in a given range.

Since the values given in the literature problems do not yield problems with a

high duality gap, the values are varied and from a population of approximately

100,000 problems only the worst 200 from each set are chosen for study. These

problems have an initial LR duality gap as high as 40%.

A second hybrid method is developed, using values for the unused time resource

and the lower bound values computed by Dijkstra’s algorithm as part of the LR

method. The computed values are then used to position multiple constraining

meridians in order to allow LR to find better solutions. This second hybrid

method is able to produce solutions that are generally within 0.1% of optimal,

with computation times that are on average 2 times the initial Lagrange Relax-

ation time, and in the worst case only about 5 times higher.

The best method for solving the Constrained Shortest Path Problem reported

in the literature thus far is the LRE-A method of Carlyle et al. (2007), which

uses Lagrange Relaxation for preprocessing followed by a bounded search using

aggregate constraints. We replace Lagrange Relaxation with the second hybrid

method and show that optimal solutions are produced for both network problems

iii

with computation times that are between one and two orders of magnitude faster

than LRE-A.

In addition, these hybrid methods combined with the bounded search are up to 2

orders of magnitude faster than the commercial CPlex package using a straight-

forward MILP formulation of the problem.

Finally, the second hybrid method is used as a preprocessing step on both network

problems, prior to running CPlex. This preprocessing reduces the network size

sufficiently to allow CPlex to solve all cases to optimality up to 3 orders of mag-

nitude faster than without this preprocessing, and up to an order of magnitude

faster than using Lagrange Relaxation for preprocessing.

Chapter 1 provides a review of the thesis and some terminology used. Chapter 2

reviews previous approaches to the CSPP, in particular the two current best

methods. Chapter 3 applies Lagrange Relaxation to the Submarine Transit Path

problem with 2 speeds, to provide a baseline for comparison. The problem is

reduced to a single speed, which demonstrates the large duality gap problem

possible with Lagrange Relaxation, and the first hybrid method is introduced.

Chapter 4 examines a grid network problem using randomly generated edge costs

and weights, and introduces the second hybrid method. Chapter 5 then applies

the second hybrid method to both network problems as a preprocessing step,

using both CPlex and a bounded search method from the literature to solve to

optimality.

The conclusion of this thesis and directions for future work are discussed in Chap-

ter 6.

iv

Acknowledgements

After a long and sometimes frustrating 15-year sojourn in the land of computing,

with this thesis I am returning at last to my first love, mathematics. I would

like to first thank Dr. Stephen Hill, with whom I worked in my last IT job, for

helping me get the Research Assistant position at Curtin University and for his

assistance and advice on this project. Secondly, I would like to thank my senior

supervisor Professor Lou Caccetta for employing me in the Western Australia

Centre of Excellence in Industrial Optimisation (WACEIO), and for providing

support for the project.

Professor Caccetta’s work has been supported in part by the Australian Research

Council grant (DP 034639), and I am grateful to the ARC for their support. I

would also like to thank the Defence Science Technology Organisation (DSTO)

for providing the data on the sonar detector functions.

Apart from the generous financial and technical support from WACEIO and the

Department of Mathematics, there have been those who provided emotional sup-

port every bit as necessary to the completion of this work. I would like to express

my deep appreciation to the many fine whisky distilleries of Scotland, my AA

sponsor, my parole officer and my psychotherapist. More seriously, without the

lunchtime talks and dark humour of the two people who embody all these roles,

I think I would have been too discouraged to continue. Thank you both, Carey

and Stephen. You’ve helped more than you can know.

v

Contents

1 Introduction 1

1.1 Contributions of the Thesis . 2

1.2 Terminology . 3

1.3 Outline of the Thesis . 4

2 Background 6

2.1 Review of Previous Work . 6

2.1.1 Approximation Schemes 6

2.1.2 Dynamic Programming and Label Setting 7

2.1.3 Lagrange Relaxation . 9

2.1.4 2-Step Methods . 9

2.1.5 Constraint Programming 11

2.1.6 Conclusion . 12

2.2 Our Approach . 13

2.3 Problem Formulation and Methods 14

2.3.1 MILP Formulation . 14

2.3.2 Lagrange Relaxation . 15

2.3.3 Dijkstra’s Algorithm . 16

2.3.4 Modification to Dijkstra’s Algorithm 17

vi

2.3.5 Problem Reduction . 17

2.3.6 Multiplier Search . 18

2.3.7 Bounded Search . 20

2.3.8 Computing Platform . 23

3 Submarine Transit Path Problem 24

3.1 Problem Description . 24

3.1.1 Detector Functions . 28

3.1.2 Multiplier Search . 37

3.1.3 CPlex Reference . 37

3.2 Initial LR Results . 40

3.2.1 2-speed case . 40

3.2.2 1-speed case . 43

3.2.3 LR Gap Problem . 47

3.3 Hybrid Approach . 47

3.3.1 LR with 1-speed Network 47

3.3.2 Slack Time and the Duality Gap 51

3.3.3 The Hybrid LR-CP Approach 53

3.3.4 Results of LR-CP on 1-speed Network 56

3.3.5 Refinements . 58

3.3.6 LR-CP on the 2-speed network 61

3.4 Summary . 63

4 Random Valued Networks 64

4.1 Network Structures . 64

4.2 Initial LR and LR-CP Results . 68

vii

4.3 LR-CP Meridian Scan . 70

4.4 Second Hybrid Method . 74

4.4.1 Theory . 74

4.4.2 Procedure . 80

4.4.3 Key tests . 87

4.5 LR-ZR Results for Net1 and Net2 93

4.6 Summary . 95

5 Using LR-ZR For Preprocessing 96

5.1 Random Valued Networks . 97

5.2 Submarine Transit Path Problem 102

5.3 Summary . 110

6 Conclusion and Future Work 112

6.1 Conclusion . 112

6.2 Future Work . 114

A Sonar Detector Locations 116

Bibliography 122

viii

Chapter 1

Introduction

A great many practical problems of optimisation may be represented by a network

model, consisting of nodes connected by edges. For example, we may wish to

model the movement or transport of people through a rail or airline network,

the path of a road through a mountainous area, the delivery of goods on a road

network, or the transmission of data through a communications network. The

nodes then represent destinations or way points, and the edges are the paths or

connections between them.

One of the fundamental network problems is finding the best path from a starting

node to a terminal node in a network. We may assign a cost to each edge, and

then search for the path with the lowest cost. This is the classic shortest path

problem, and there exist efficient polynomial time algorithms for it (eg. Dijkstra

(1959)).

In practical problems, we usually have additional resources or weights associated

with each edge, such as travel time or fuel consumption, which we need to place

upper limits on. This turns the problem into the constrained shortest path problem

which is known to be NP-complete (Garey and Jonhson (1979), p. 214). There

are no known algorithms for solving this problem exactly in polynomial time.

What makes this class of problem interesting, both theoretically and in prac-

tise, is the computational complexity. The solution space, and therefore the time

needed to search that solution space, grows exponentially with the size of the

1

problem. Even with advances in computer technology, there will always be prac-

tical problems for which the networks are large and the solution times very long.

Very large networks may arise if we need to model, for example, the flight of

an aircraft through airspace that is monitored with radar detectors, or the path

of a submarine though a field of sonar detectors. These types of problems are

modelled by laying a grid network over the transit area, and calculating the cost

of each edge as the probability of being detected. The goal is to find the path

which minimises the risk of detection while observing limits on the transit time,

fuel consumption, or other limited resource. Of course, the more accurately we

need to model the transit area, the larger this grid will be.

1.1 Contributions of the Thesis

Most approaches to the constrained shortest path problem (CSPP) invariably

use a preprocessing step to remove infeasible edges and provide upper and lower

bounds on the path cost, followed by a search of the remaining network to reduce

the gap between these bounds and find optimal or near-optimal paths. The best

known method for solving the CSPP reported in the literature is from Carlyle

et al. (2007). This method uses Lagrange Relaxation with an enumeration of

near-shortest paths.

Lagrange Relaxation is a powerful tool for the first step, although on problems

that are not tightly constrained the network reduction is ineffective, and where

the objective function is not convex there may be a large duality gap between the

lower and upper bounds on path cost.

In this thesis we consider the CSPP on grid networks with a single side constraint.

Two networks are studied. The first concerns the optimal path of a submarine

through a region which contains passive sonar detectors, with an upper bound on

the transit time. The submarine is capable of two speeds, and the location of the

sonar detectors is known. The second problem is a grid network with randomly

generated edge costs and times, similar to networks described in the literature.

Two directions of transit are considered, one between opposite corners, as in the

2

Submarine Transit Path problem, and the other from any edge node on one side

to any edge node on the opposite side.

In this thesis we explore the effectiveness of Lagrange Relaxation on these prob-

lems, identify problems for which Lagrange Relaxation produces solutions with

a large duality gap because of local minima, and develop a heuristic for identify-

ing local minima in the network responsible for the duality gap. We apply this

heuristic in combination with Lagrange Relaxation to arrive at a hybrid method

which produces improved upper and lower bounds, which in turn significantly

speeds up the search phase. This approach dramatically improves the solution

time for a selection of singly-constrained grid network problems that have a large

initial duality gap.

1.2 Terminology

In this section we provide definitions of the basic terminology used to describe

the network problems in this thesis.

A graph G(V, E) consists of a set of vertices or nodes V and a set of connecting

arcs or edges E. The number of nodes is defined as |V | = n and the number of

edges given by |E| = m.

An edge e = (u, v) ∈ E connects node u and node v, has a cost ce ≥ 0 and one

or more weights fie ≥ 0 for i ∈ I, where I indexes a set of side constraints. Each

side constraint i has a weight limit gi ≥ 0 defined.

A directed path from s to t is an ordered set of edges of the form

Ep = {(s, v1), (v1, v2), ...(vk−1, t)}. A path is simple if no vertices are repeated.

Given two distinct vertices s, t ∈ V , the CSPP seeks to find a simple path Ep

from s to t such that the path cost
∑

e∈Ep
ce is minimal and the side constraints∑

e∈Ep
fie ≤ gi for all i ∈ I are satisfied.

A meridian is defined as a set of nodes which bisect the network, such that any

feasible path must pass through at least one of these nodes.

3

1.3 Outline of the Thesis

Chapter 2 provides a critical review of previous work. In particular, there are two

approaches which are the current state of the art. These approaches are used as

a basis for motivating the work of this thesis.

Chapter 3 introduces the Submarine Transit Path problem, which seeks to find

the path with lowest cost which observes an upper bound on the transit time. The

transit field is a square area of ocean 80 km on a side, which contains 4 identical

passive sonar detectors arranged in 30 different location patterns. The submarine

is considered to be capable of 2 speeds. Initial results of Lagrange Relaxation on

the singly-constrained optimisation problem with 2 speeds are first produced as

a baseline.

We then focus on the 1-speed version of the problem which has no parallel edges,

and show how the Lagrange duality gap may be as high as 30%. The problem

set is then expanded by introducing 3 new detector functions, two of which are

smoothed variants of the original function and a third which is a monotonically

decreasing function.

A hybrid method is developed which uses a systematic constraint on the un-

used transit time along a bisecting meridian, and Lagrange Relaxation is used to

propagate these constraints. By introducing this temporary constraint, Lagrange

Relaxation is then able to produce solutions which are generally within 1% of op-

timal, while taking on average only about twice as much CPU time as the initial

application of Lagrange Relaxation.

Chapter 4 introduces two grid network problems based on problems reported in

the literature. These problems have randomly generated edge costs and times,

and a single side constraint. The structure of the two network problems is the

same, but in the first problem the path traverses the network diagonally, and in

the second network the path traverses horizontally. Problem sets of 5 different

sizes are generated. From a population of roughly 100,000 problems for each size,

a subset of the worst 200 cases for each network are chosen for study. These

problems have an initial Lagrange Relaxation duality gap as high as 40%.

4

A second hybrid method is developed which expands on the first method, using

values for the unused time resource and the Lagrange Relaxation lower bound

information calculated at each node. This information is used to calculate a

ratio which indicates where the Lagrange Relaxation solution is likely to be in a

local minimum. The computed values are used to position multiple constraining

meridians which allow Lagrange Relaxation to produce better solutions.

This second hybrid method is able to produce solutions for the random valued

networks that are generally within 0.1% of optimal, with computation times that

are on average only 2 times longer than the initial Lagrange Relaxation time.

Chapter 5 uses this second hybrid method as a preprocessing step on both the

Submarine Transit Path problem and the two random valued network problems,

and optimal solutions are produced using either CPlex or a bounded search. This

hybrid method preprocessing is able to reduce the average CPlex CPU times by

up to 3 orders of magnitude.

In Chapter 6 we present our conclusions and consider directions for future re-

search.

5

Chapter 2

Background

This chapter provides a review of previous work in the literature on the con-

strained shortest path problem (CSPP). We focus on the most recent approach

which uses Lagrange Relaxation with enumeration, and describe it in detail. Us-

ing key observations from previous approaches we motivate the approach used in

this thesis.

2.1 Review of Previous Work

Approaches to the CSPP can be broadly divided into either exact methods or

approximation schemes. Exact methods may further be divided into label set-

ting algorithms based on dynamic programming, Lagrange Relaxation to produce

upper and lower bounds on the path cost, and gap-closing methods which use

bounded search or path enumeration. Preprocessing to reduce the problem size

is often implicit in many approaches, but rarely mentioned on its own. These

methods may also be combined. The following sections discuss the available

methods described in the literature and their relative merits.

2.1.1 Approximation Schemes

Let P be a minimisation problem. Given ε > 0, algorithm A is called an ε-

approximation algorithm for P if it finds a feasible solution to any instance I of

6

P with value A(I) such that

OPT (I) ≤ A(I) ≤ (1 + ε)OPT (I) (2.1)

where OPT (I) is optimal cost of instance I. An approximation scheme for P

is a sequence of algorithms Aε such that for all ε > 0, Aε is an ε-approximation

algorithm for P . In addition, we say that Aε is a fully polynomial approximation

scheme (FPAS) if its complexity is a polynomial function of the length of the

instance data and 1
ε
.

Approximation schemes make use of scaling and rounding to reduce the range of

the input data, thus reducing the complexity. However, because of this scaling

and rounding, the solution obtained will not necessarily be a solution to the

original problem. It will instead be an approximate one, with an error which can

be bounded.

Hassin (1992) gives two fully polynomial approximation schemes for the CSPP

with one side constraint, but does not give any computational results.

2.1.2 Dynamic Programming and Label Setting

Joksch (1966) described one of the first dynamic programming approaches. No

computational results are given, but this is hardly surprising given the lack of

computing resources available at the time. Dynamic programming involves a

recursive method to calculate and update values at each node. These methods

typically have pseudopolynomial time complexity, but may require a lot of storage

space for intermediate results, and cannot always guarantee optimal results.

Aneja et al. (1983) describe a 2-step method which first reduces the network

by removing nodes and edges which cannot be part of a feasible solution, then

uses a label setting algorithm based on Dijkstra’s algorithm (1959) to search to

optimality. Space complexity results from having to store labels for each node.

No computational results are given.

Desrochers and Soumis (1988) propose a label setting algorithm with pseudopoly-

7

nomial time complexity, which was widely regarded as the best method for the

CSPP for many years. However, their original computational work was carried

out on a computer with very limited memory, and the resulting memory limita-

tions occured on networks with as few as 250 nodes.

Dumitrescu and Boland (2003) analyse the effectiveness of a modified version of

the label setting algorithm (LSA) of Desrochers and Soumis (1988) on a variety

of different network problems. Problems include grid networks with randomly

generated costs, and two real problems - a road path planning and a digital

elevation model. A small number of problems in each class are considered (7, 8

and 28) with the largest being a grid of 450x300 nodes. A 10 minute time limit

on computation is imposed.

Because of space complexity issues, none of the 200x200 problems with random

edge costs could be solved by the modified label setting algorithm (MLSA) in the

10 minute limit. They observe that preprocessing using Lagrange Relaxation is

much stronger than their original MLSA, and the preprocessing step often solves

the problem without any further work. However, the space complexity would

suggest that LSA is not suitable for very large network problems.

Zabarankin et al. (2002) model the path of an aircraft through a radar field

using two methods: an analytical model based on calculus of variations, and a

discrete network model. The models seek to find the lowest risk path of a single

aircraft with a single radar. The network model has 1849 nodes and 28,056 edges.

Experiments confirm that the discrete model can produce solutions within 1% of

the optimal analytic solutions.

In Zabarankin et al. (2006) the same model is expanded to 3 dimensions and

includes up to 25,662 nodes and 2.2 million edges. Once again, a label setting

algorithm is used based on the MLSA of Dumitrescu and Boland (2003), using

real values instead of integers. The number of labels produced can be very large,

almost 10 million, and computation times on a Xeon 3.08 GHz processor with

3.37Gb of memory were as high as 192 minutes. Path smoothing to limit the

path turn radius reduces the number of labels by up to 50%, thus reducing the

solution times accordingly while incurring an insignificant increase in path cost.

The authors comment that the number of labels that need to be generated is

8

determined by how good the upper bound on cost is, and suggest (but do not

implement) preprocessing based on Lagrange Relaxation.

2.1.3 Lagrange Relaxation

Everett (1963) is one of the first to describe the general approach of Lagrange

Relaxation to combinatorial optimisation problems. He observes that Lagrange

relaxation is well-suited to large problems, but that gaps may exist because the

objective function may not be convex. Lagrange relaxation grew in popularity

during the 1970s as it was applied to a broad range of combinatorial optimisation

problems. Fisher (1981) gives a review of the developments.

Whether or not Lagrange Relaxation produces an optimal solution, its chief bene-

fit is producing a lower bound on the path cost. Any feasible solution can provide

the upper bound, and the optimal solution cost lies somewhere in this gap. Gap

closing methods attempt to reduce this gap to zero, thus yielding an optimal

solution.

2.1.4 2-Step Methods

Handler and Zang (1980) describe a 2-step method using Lagrange Relaxation to

perform preprocessing followed by the k-shortest path algorithm of Yen (1971) to

close the duality gap. The problems under study were small, containing at most

500 nodes, with randomly generated edge values and a single side constraint.

Comparison of solution times with and without Lagrange Relaxation showed that

Lagrange Relaxation can speed up the computation time by up to 2 orders of

magnitude.

Beasley and Christofides (1989) use a similar 2-step method, applying prepro-

cessing and a binary depth-first tree search. They test 24 problems of up to 500

nodes with either 1 or 10 side constraints. The preprocessing step alone solves

the problem in about half the cases. Using Lagrange Relaxation they are able to

reduce the network by up to 95%. All problems are solved within 30 seconds on

a CDC-7600.

9

Mehlhorn and Ziegelmann (2000) propose yet another 2-step approach. They

use a novel formulation of the dual that is similar to Lagrange Relaxation, but

uses a geometric hull approach to find the best lower bounds. The second step

is a gap closing method that uses spanning tree path ranking. Three problem

sets are included: a road path planning problem with up to 77,059 nodes, a

DEM problem with up to 40,000 nodes, and a curve approximation problem with

up to 10,000 nodes. The authors claim to get much better bounds using the

hull approach than the subgradient optimisation step of Lagrange Relaxation,

thus leading to faster solution times with the gap-closing step. However, they

terminate the subgradient optimisation early, which may produce non-optimal

multipliers. Comparisons are made with label setting, k-shortest paths and the

MILP formulation solved with CPlex. Their 2-step method is shown to be an

order of magnitude faster than LSA on some problems. A rather short 5-minute

computation time limit is imposed, which on a Sun Enterprise 333 MHz computer

restricts the solution time so much that most of the k-shortest path and MILP

problems are not solved. Full details are give in Ziegelmann (2001).

The approach of Carlyle et al. (2007) is of particular interest as it appears to

be the leading method reported thus far. This approach combines Lagrange Re-

laxation with a bounded search to enumerate near-shortest paths. The bounded

search is strengthened by aggregating the constraints to further limit the search.

Grid networks with sizes up to 450x300 are considered, with 1 to 10 side con-

straints. On grid networks with randomly generated costs and a single side con-

straint, this method is found to be up to an order of magnitude faster than the

label setting approach of Dumitrescu and Boland (2003). On problems with mul-

tiple constraints computation times are more variable, especially for problems

with a large duality gap. One way to improve these cases is to refilter the net-

work whenever the bounded search finds an improved solution that significantly

improves the upper bound. Despite the added overhead, the approach with this

reprocessing is invariably faster than the label setting approach.

The exponential time complexity of the bounded search can be a problem, how-

ever. To illustrate, on one grid problem of size 450x300 this approach takes only

0.3 seconds to find a solution that is within 0.5% of optimal, but a further 789

10

seconds to solve optimally, in a problem set where the average computation time

is a only a few seconds. In an earlier 2005 draft of Carlyle et al. (2007), a de-

composition method is proposed to handle this. A set of edges which bisect the

network exactly in the middle – a meridian consisting of edges – is chosen, and

on each pass only one of these edges is permitted. With the solution forced to

use only one edge in the centre of the grid network, the authors report much

better lower bounds, and the optimal solution is found in 61 seconds. By using

multiplier information and improved upper bounds from preceeding passes, this

is a form of reprocessing which helps to reduce the network and speed up the

search. We will use elements of this decomposition in our approach.

2.1.5 Constraint Programming

Constraint programming, or the constraint satisfaction problem, is a relatively

new approach to solving combinatorial problems. Arising from the field of com-

puting science, constraint programming uses logic based tools to reason about

discrete valued problems, implicitly eliminating infeasible regions of the solution

space. Another way to describe it is rule-based domain reduction. A very good

introduction to the topic is found in a recent book review by van Emden (2003).

Hooker (2000) gives a good account of how constraint satisfaction applies to op-

timisation.

Several authors have applied constraint programming (CP) to the CSPP with

some success. Sellmann (2003) provides a theoretical analysis of the time and

space complexity of providing consistency checking in a CP approach to the CSPP

which uses cost-based filtering. It is shown that relaxed consistency checking can

be performed in the same time as a shortest path algorithm, making CP suitable

for this type of problem.

Sellman and Fahle (2003) show how Lagrange Relaxation can be incorporated in

a CP approach and apply this method to a multimedia recording problem which

is NP-hard. Gellermann et al. (2005) apply the cost-based filtering approach to

the CSPP and compare the effectiveness with the filtering of Aneja et al. (1983)

and Beasley and Christofides (1989), showing that the CP approach of cost-based

11

filtering is superior.

The central concept of CP is to select a constraint on the domain of a problem

variable, then use a propagation algorithm to work out how the rest of the prob-

lem is affected by that choice. We will apply this principle in this thesis, using

Lagrange Relaxation as the propagation algorithm.

2.1.6 Conclusion

Preprocessing plays an important, if not critical, role in first reducing the problem

size. This is especially important given the exponential time complexity of any

bounded search algorithm. In some cases preprocessing may succeed in finding

an optimal solution on its own.

For larger problems, label setting methods may require too much space to store

the potentially large number of labels, as observed in Dumitrescu and Boland

(2003) and Zabarankin et al. (2006). The bounded search of Carlyle et al.

(2007) is more attractive for this reason.

Lagrange Relaxation is a very powerful tool, producing upper and lower bounds

on the solution cost which then help restrict the search. Much of the success of

Lagrange Relaxation depends on how tight the bounds are, as large duality gaps

may occur in practise.

And finally, a comment on computational power. It is difficult to directly com-

pare previous computational results without implementing them, as computing

power has advanced so much in recent years. Rough comparisons can be made

by comparing the relative computing power of the computers that were used.

One common measure of computing power is millions of operations per second

(MIPS), but for mathematical analysis a more practical measure is to count the

floating point operations per second (FLOPS). For example, the CDC 6600 used

by Handler and Zang (1980) was a supercomputer introduced in 1964, was capable

of 2-3 Mflops and had the equivalent of 0.94 Mbytes of memory. By comparison,

a Pentium 4 desktop with a 3.0 GHz processor is capable of 4 Gflops, or about

3 orders of magnitude faster. In addition, the amount of memory available on

12

a common desktop is many orders of magnitude greater than that of the former

supercomputer.

The combination of processing power and memory storage available today makes

it possible to consider problems of ever increasing size. It is on large problems

of practical importance that we are able to test the limitations of available algo-

rithms.

2.2 Our Approach

In this thesis we will use the approach of Carlyle et al. (2007) as a basis. Three

key observations that motivate this decision are:

1. the effectiveness of Lagrange Relaxation in preprocessing

2. improvements to the bounded search provided by aggregating the con-

straints

3. the potential of the decomposition method to improve the bounds

Very few authors address the basic problem of what causes Lagrange Relaxation

to have a duality gap in the first place. In order to find out how large duality gaps

occur and how we may improve the solution times, we will deliberately choose

problem instances where the duality gap is large, as these are the problems that

pose the greatest challenge to gap closing methods.

We will use additional information gathered when finding the optimal Lagrange

multiplier to predict where local minima are, and use a CP-like approach to

achieve optimal or near-optimal upper bounds.

13

2.3 Problem Formulation and Methods

In this section we define the algorithms to be used in this thesis.

2.3.1 MILP Formulation

The CSPP may be expressed as an integer programming problem. Here we con-

sider the grid based graph to be a network G = (V,A), where V is the set of

vertices or nodes and A is the set of arcs or edges. The model can be formulated

so that G is directed or undirected. Associated with each edge eij from node i

to node j there is a cost cij, and as we have only one edge resource which is the

transit time, we denote this fij. Let g be the upper bound on path time. We

assume non-negative values for cost and time. When G is directed, the CSPP

can be specified as:

min z =
∑

(i,j)∈V

cijxij (2.2)

subject to

fx ≤ g (2.3)

xij ≥ 0 and is integer. (2.4)

∑
j

xij −
∑

j

xji =

1, if i = S,

−1, if i = T,

0 otherwise

(2.5)

Equation (2.3) is the time constraint, and (2.5) ensures that a path from the

starting node S to terminating node T is obtained. Note that the problem (2.2),

(2.4) and (2.5) is just the standard shortest path problem which can be solved

efficiently.

14

2.3.2 Lagrange Relaxation

The basic principle of Lagrangian Relaxation (LR) is to relax the problem by

removing the side constraints and adding them to the objective function with

a multiplier. Taking the single side contraint of equation (2.3), fx ≤ g, and

rearranging this to (fx− g) ≤ 0, we observe that this term may be added to the

objective function with a multiplier λ ≥ 0 to give

z∗ ≥ z(λ) = min
∑

(i,j)∈V

cijxij + λ(fx− g) (2.6)

where z(λ) is the Lagranian dual function and forms the lower bound of the

solution value z∗. The second step of the relaxation is to find the value of λ

which gives the highest minimum value for z(λ). Rearranging the terms we get

z(λ) = min
∑

(i,j)∈V

(cij + λfij)xij − λg (2.7)

Note that equation (2.7) now expresses the edge costs with a modified cost c′ij =

cij + λfij that is a function of both the original edge cost cij and the weighted

time fij of the edge, and that this relationship is linear. The search for λ now

reduces to the task of setting a value for λ, calculating the modified edge costs

cij’ and using Dijkstra’s algorithm to find the minimum value for z(λ). The value

of λ which maximises z(λ) while preserving the relationship (fx − g) ≤ 0 leads

us to the solution z∗. If the gap between z∗ and z(λ) is zero, then z∗ is optimal.

15

2.3.3 Dijkstra’s Algorithm

At the heart of LR is the calculation of min z(λ) which is done using Dijkstra’s

algorithm (Dijkstra (1959)). This is a well-known algorithm for finding the short-

est path in a graph with directed edges and with non-negative edge weights. The

pseudocode for this is shown in Algorithm 1.

Algorithm 1 Dijkstra’s Algorithm
1: set Q is empty
2:
3: for each node v in Graph do
4: if v is the source node then
5: set v[total] to zero
6: set v[state] to ACTIVE
7: add v to Q
8: else
9: set v[total] to INFINITY

10: set v[state] to IDLE
11: end if
12: end for
13: repeat
14: get from set Q vertex u with lowest total and state is not DONE
15: for each edge e leaving u do
16: get destination node v
17: if state of v is IDLE then
18: set v[state] to ACTIVE
19: add v to Q
20: end if
21: if state of v is ACTIVE then
22: cost = u[total] + e[cost]
23: if v[cost] > cost then
24: v[cost] = cost {update cost total for v}
25: end if
26: end if
27: end for
28: set u state DONE
29: remove u from set Q
30: until set Q is empty

The first loop initialises the totals and state for each node, and adds the source

node to the active set. For each iteration of the second loop, one node is chosen

and every outgoing edge is explored. For each destination node, if the cost of

reaching it through this edge is less than the current total, the total is updated.

Then the intermediate source node is retired. Thus, on every iteration exactly

16

one node is explored.

The time complexity of Dijkstra’s algorithm depends on the method used to

extract the next node to explore. If every node in the set Q is searched, then

the worst case time complexity is O(n2). However, improvements are possible by

using a special data structure to store the nodes that are active. Fredman and

Tarjan (1987) show that by using a Fibonacci heap the time complexity may be

reduced to O(n log n + m).

2.3.4 Modification to Dijkstra’s Algorithm

The pseudocode for Dijkstra’s algorithm in Algorithm 1 shows the calculation of

the shortest path in terms of edge cost. However, we may use Dijkstra’s algorithm

to calculate the shortest path in terms of any edge variable, including the time

or the Lagrangian modified cost.

In order to facilitate the analysis in this thesis, we make one small modification

to Dijkstra’s algorithm. At line 24 where the total cost for node v is updated,

we may also update another total, the Lagrangian path time. This is especially

useful when calculating the shortest path in terms of the Lagrangian modified

cost z(λ). Of course, the total for this time needs to be initialised to zero at line

5.

Whenever Dijkstra’s algorithm is used to calculate the minimum z(λ) path length,

as a side effect this small modification will also update a time total. By applying

Dijkstra’s algorithm in both directions, we then get a node total for the minimum

z(λ) as well as an estimate of the time taken by the min z(λ) path. Of course,

this value is only an estimate, because the more a path deviates from the min

z(λ) path, the less accurate this time value will be.

2.3.5 Problem Reduction

Dijkstra’s algorithm may be used in either direction, either to calculate the mini-

mum path length from each node forward to the terminating node T, or from each

node backwards to the source node S. Each edge has an array of values for cost,

17

modified cost, and time, and we may use Dijkstra’s algorithm to calculate the

shortest path in terms of these edge variables. Each node also contains an array

of values to store the minimum path lengths to S and T in terms of these edge

variables. By applying Dijkstra’s algorithm in both directions and then summing

these node totals, we are able to determine whether a node can be on a feasible

path.

For example, consider a node u. If we apply Dijkstra’s algorithm in both direc-

tions to find the shortest path time, then node u will have the shortest time from

S to u and from u to T. If that total is greater than the time upper bound, we

may remove u since no time-feasible path can go through it.

Similarly, once we have a feasible solution with a path cost of z, we may compute

the shortest path costs in both directions and any node u for which the minimum

cost from S to u plus the minimum cost from u to T is greater than z may be

eliminated.

Finally, once we have an optimal value for λ and z(λ), we may calculate the

shortest paths in both directions in terms of z(λ) to S and T. Any node for which

this total z(λ) is greater than z we may eliminate.

Removing nodes in this manner is called cost-based filtering.

2.3.6 Multiplier Search

The purpose of the multiplier search is to find the value of λ which maximises the

value of z(λ) in Equation(2.7). For example, Figure 2.1 shows the values for z and

z(λ) as a function of λ for a typical case. The minimum value for z corresponds

to a maximum value for z(λ). The method we use is a modification of Kelley’s

cutting plane algorithm (Kelley (1960)) reported by Handler and Zang (1980).

The y-intercept of z(λ) at λ=0 corresponds to zmin, the unconstrained shortest

path cost. If we use a sufficiently large value of λ we can guarantee that z(λ) will

be less than zmin. Let us call this λmax.

To find λopt we first get initial solutions using λ=0 and λ=λmax. By using the

edges of these two solutions we may approximate the tangent line to the z(λ)

18

z, zL vs lambda for Pattern (5,1)

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8

lambda

co
st

z zL

Figure 2.1: Initial Path Cost vs λ

curve at these points by allowing λ to vary. The intersection of these two lines

then provides an updated value for λopt.

A straight line is given by y = mx + b, and the intersection point of two lines

(where y1 = y2) is given by

m1x + b1 = m2x + b2 (2.8)

or

x =
(b1 − b2)

(m2 + m1)
(2.9)

Since b1 and b2 are simply the y-intercepts when x=0, this amounts to the path

cost z which we calculate for our two solutions by setting λ=0. The slopes of the

two tangent lines at λ=λmax are given by

19

m1 =
(y1 − b1)

λmax

(2.10)

m2 =
(y2 − b2)

λmax

(2.11)

Using these values in (2.9) gives the new value for λ. We set the edge costs with

this new λ and calculate a new z(λ) path. Using the above method, we find the

slope of this line and decide whether to update the left hand (positive slope) or

right hand (negative slope) value of λ and initial path. This process is repeated

until λ does not change. In practise this may take up to 8 iterations, but usually

4 to 6 iterations are sufficient. We thus have a fast method for calculating λopt.

2.3.7 Bounded Search

Carlyle et al. (2007) use a bounded search method to close the duality gap be-

tween the lower bound of z(λ) and the upper bound z̄. Although this type of

search can have exponential time complexity, they describe an innovative ap-

proach which combines the constraints to further reduce the search time.

First, we describe the basic path enumeration algorithm. The initialisation steps

are:

1. Computing the minimum distance d(v) for each v ∈ V to T with respect to

the modified edge costs c′ij = cij + λfij

2. Computing the minimum distance d0(v) for each v ∈ V to T with respect

to edge costs cij

3. For each constraint i ∈ I, computing the minimum distance di(v) for each

v ∈ V to T with respect to edge weights fi

Let EP (u) = {(s, v1), (v1, v2), ..., (vk−1, u)} denote a directed s−u subpath. The

path enumeration begins at S but extends subpath EP (u) along edge e = (u, v)

if and only if the following conditions hold:

20

1. EP (u)∪{e} can be extended to a path for which the Lagrangianised length

does not exceed z̄, that is, L(u) + (ce +
∑

i∈I λifie) + d(v) ≤ z̄, where L(u)

denotes the Lagrangianised length of EP (u) and where, by convention, we

define L(s) = −λg.

2. EP (u)∪ {e} can be extended to a path for which the true length is strictly

less than z̄, that is, L0(u) + ce + d0(v) < z̄, where L0(u) denotes the length

of EP (u).

3. For all i ∈ I, EP (u) ∪ {e} can be extended to a path for which the i-th

weight does not exceed gi, that is, Li(u) + fie + di(v) ≤ gi, where Li(u)

denotes the i-th total weight of EP (u).

This algorithm is actually a branch-and-bound procedure which uses a depth-first

enumeration along with feasibility checks. The partial path is stored in a stack,

and as the feasibility checks are performed the path is extended or contracted.

Whenever the algorithm extends the path from S to T and an improved cost is

found, z̄ is updated which further limits the search. The lower bound z(λ) is not

updated.

Once an optimal λ is found, the path enumeration procedure checks that the

following constraints are satisfied.

cx < z̄ (2.12)

−λg + (c + λF)x ≤ z(λ) (2.13)

Fx ≤ g (2.14)

The path is not extended along an edge, say e′ = (u, v) if doing so would violate

any of the constraints (2.12), (2.13) and (2.14).

Let us label equations (2.12), (2.13) and (2.14) as [A], [B] and [C], respectively.

These constraints may be combined with multipliers to πi further limit path

enumeration. The combinations possible are given in Equations (2.15) through

(2.19).

21

π1[C] (2.15)

π2[A] + π2[B] (2.16)

π3[A] + π1[C] (2.17)

π3[B] + π1[C] (2.18)

π3[A] + π3[B] + π1[C] (2.19)

The values for πi reported in Carlyle et al. (2007) are π1 = (1/g1...1/g|I|), π2 = 1,

and π3 = 1/z(λ). In this thesis we only consider problems with a single side

constraint, thus |I| = 1, and (2.15) is redundant.

Substituting these values for πi into the above equations yields the following

additional path feasibility checks:

UB + LB ≤ 2z̄ (2.20)

UB +
TBz(λ)

g
≤ z̄ + z(λ) (2.21)

LB +
TBz(λ)

g
≤ z̄ + z(λ) (2.22)

UB + LB +
TBz(λ)

g
≤ 2z̄ + z(λ) (2.23)

(2.24)

where

UB = L0(u) + ce + d0(v) (2.25)

LB = L(u) + (ce + λfe) + d(v) (2.26)

TB = L1(u) + fe + d1(v) (2.27)

22

2.3.8 Computing Platform

All software for this work was developed using Microsoft Visual C++ version 6,

and run on a 3.0 GHz Pentium 4 desktop computer with 2 Gb of RAM running

Windows XP Service Pack 2.

23

Chapter 3

Submarine Transit Path Problem

This chapter explores the application of Lagrange Relaxation (LR) to the Subma-

rine Transit Path problem, a constrained shortest path problem with a single side

constraint. One appealing feature of this problem is that it can easily be scaled

up to produce large network problems while retaining the underlying topology.

The original model includes two vehicle speeds, which introduces parallel edges

to the network. On this model, LR is shown to produced near optimal results in

most cases.

In addition, we also consider the problem with only one vehicle speed, which has

no parallel edges. In this model, LR often produces solutions with very large

duality gaps, making this a problem of interest.

We examine the cause of these large duality gaps, and propose an algorithm

which combines aspects of constraint programming with LR to produce a hybrid

method for arriving at near optimal solutions in every case, with computation

times that are up to several orders of magnitude faster than CPlex.

3.1 Problem Description

The task of planning a submarine path through a field of sonar detectors has

strategic importance in marine defence. Caccetta et al. (2007) approach this

problem using a 2-phase method. First, a simple heuristic is first used to generate

24

Figure 3.1: Submarine Transit Path grid

an intial path on a discretised approximation of the problem modeled with a grid

network, and then an optimal control model of the original problem is solved

using MISER3 (Jennings et al. (2004)). As with the aircraft flight planning

problems studied by Zabarankin et al. (2006) and Carlyle et al. (2007), these

types of vehicle path planning problems in a risk environment lend themselves

very well to discrete modeling. We will use a similar grid network model in this

work.

The field of traversal is a square area of ocean 80 km on a side. The path starts

in the lower left corner and ends at the upper right corner. A grid network

consisting of directed horizontal, vertical and diagonal edges is superimposed on

this area. Although the submarine speed can take any value up to the maximum

speed possible, in order to limit the size of the resulting network model we will

restrict our analysis to a small number of discrete speed values.

We consider two possible vehicle speeds, 8 km/h and 14 km/h. Figure 3.1 shows

the structure of edges at each node in the 2-D grid network. For a 2-speed

Submarine Transit Path network there are 4 edges between any two adjacent

nodes, in each direction an edge for the 8 km/h and the 14km/h speed. With a

nodes per side, the total number of vertices is given by

|V | = a2 (3.1)

25

and the total number of edges is given by

|E| = 8(a− 1)(2a− 1) = 16a2 − 24a + 8 (3.2)

As a increases, the number of vertices is roughly proportional to the number of

edges. For example, if a = 41 then there are 1681 nodes and 25,920 edges, and

the ratio of edges to nodes is 15.42. This corresponds to a scale of 2 km per

horizontal or vertical edge.

The transit field contains four identical sonar detectors placed randomly at nodes

in the network. For our test purposes we use a reference set of 30 detector

patterns, each containing 4 sonar detectors. The full list of detector location

patterns is given in Appendix A.

Let gmin be the shortest possible path time, and gmax be the transit time of

the shortest unconstrained path. We want to provide 4 different time bounds

between these extremes. Each of the 30 problem sets has the same lower bound

on the time constraint gmin = 11.43 hours and an upper bound gmax that varies

by problem set but is around 19 hours. We use 4 different time constraints per

detector pattern, with upper bounds gi chosen by

gi = gmin + α(gmax − gmin) (3.3)

where α={0.2, 0.4, 0.6, 0.8}. This gives a total of 120 test cases.

26

Several simplifying assumptions are made:

• The detectors are stationary

• The vehicle depth is not important

• There are no islands or other obstructions to travel or to signals

• Ocean currents, which affect speed, are ignored

• Vehicle propulsion issues (battery charge and fuel) are not considered

• The vehicle may only travel at one of 2 speeds along each edge

• There is no cost to change speeds

• All detectors share the same detector function.

• All detectors are independent, ie. do not communicate with one another

The single constraint for this problem is an upper bound on the total transit

time. A solution consists of a list of nodes and edges from the start node s to the

terminal node t. A feasible solution is one for which the total transit time is less

than or equal to the upper time bound.

The optimisation problem is to minimise the cost function within the given transit

time constraint. The cost associated with each edge is determined by the detector

function, which is discussed in the next section.

27

Detector Function F1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

distance (km)

P
ro

b

F1 slow F1 fast

Figure 3.2: Original detector function F1

3.1.1 Detector Functions

The probability of detection depends on many factors. A passive sonar detector is

essentially a microphone that picks up undersea sounds, and the transmission of

sound in water depends on many factors including temperature, salinity, depth,

currents and even the shape of the ocean floor. Details of how these many factors

affect undersea acoustics are described in Etter (1991). Analytic models are

often not available and so, in practise, values based on observed measurements

are computed for discrete ranges.

One such probability function as reported by Hallam (1997) is given in Figure 3.2.

This is based on the source and detector both at a depth of 6 meters, with the

detector tuned to receive an acoustic frequency of 190 Hz. There are different

plots for the 8 km/h (slow) and 14 km/h (fast) speeds. Obviously, the faster a

submarine travels the more noise it makes, hence the higher probability for the

fast speed.

The general trend is for the probability to decrease with distance, however there

are several interesting features that highlight the difficulty of modeling underwa-

ter acoustics. There is a minimum near 11 km which is indicative of a dead zone,

28

and a surprisingly sharp peak at 64 km. This peak is an example of how sound

waves under water can converge.

The probability of detection at each node in the network may be computed as a

function of the distance from each of the 4 detectors. Suppose that sensors are

located at coordinates (xi, yi), i = 1, 2, 3, 4, and the target at point (xt, yt). The

distance from the target to sensor i is given by

ri =
√

(xt − xi)2 + (yt − yi)2 (3.4)

and the probability of being detected at point (xt, yt) by sensor i is given by the

probability function in Figure 3.2 with ri as the distance. As we have 2 possible

speeds with different probability functions, let us define Dz(ri) as the probability

of being detected at distance ri while travelling at speed z, where z = 1 for the

slow speed and z = 2 for the fast speed.

Assuming the detectors are independent, the combined probability of detection

at a given point (xt, yt) for a given speed z is given by

Pz(xt, yt) =
4∏

i=1

Dz(ri) (3.5)

The probability fields for the first test case (pattern 1, time bound 1) for both the

slow (8 kmph) and fast (14 kmph) speeds are shown in Figure 3.3 and Figure 3.4,

respectively. Note how the peak in the probability function at 64 km manifests

as a ring of high probability in the transit field.

There are two ways to model path risk reported in the literature. The first

involves the routing of military aircraft through a region of radar detectors, and

has been studied by Zabarankin et al. (2006) and Carlyle et al. (2007). In both

of these approaches, the probability of detection along an edge pe is calculated

by integrating with respect to the distance travelled along the edge. In this

approach, the speed of the aircraft does not affect the detection probability, only

the distance along which the aircraft is exposed to the radar. The probability of

not being detected is therefore (1− pe).

29

Figure 3.3: Sample probability field for 8 kmph

0101_f1fast

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 3.4: Sample probability field for 14 kmph

Assuming that the probabilities of detection for each edge are independent, the

probability of mission success is then the product of the individual edge proba-

bilities along the path. For a path from s to t using edges E, this is

30

max Pst =
∏
e∈E

(1− pe) (3.6)

A logarithmic transformation turns this product into a summation given by

min Pst =
∑
e∈E

−log(1− pe) (3.7)

since −log(1− pe) ≥ 0.

The second approach to modeling path risk, the approach we will use, is reported

by Hallam (1997) in solving the Submarine Transit Path problem. Unlike radar

detection, the risk of sonar detection is a function of vehicle speed, as seen in

Figure 3.2. Instead of integrating the probability of detection in terms of edge

length, the edge probability pe may be considered to be a function of the time

spent at that probability.

We construct the edge costs ce as follows. Equation (3.5) gives us the instanta-

neous probability of detection while travelling through node (xt, yt) at speed z.

An edge eAB going from node A to node B has an average probability of

PAB =
(PA + PB)

2
(3.8)

and we consider the contribution of this edge to the total cumulative detection

probability to be a function of the time spent at that probability PAB. If the

transit time of an edge is te, then the edge cost ce is given by

ce = tepe (3.9)

If the total path transit time is T , then the total probability of detection along a

path from s to t is given by

Pst =

∑
e∈E tepe

T
(3.10)

31

This gives us a time-weighted average probability. If we assume that the path

transit time is close to the upper bound on path time, and therefore constant for

a given problem, we may ignore the transit time term T in the denominator.

With this one detector function, 30 detector patterns and 4 time bounds for each,

we have a set of 120 test cases. We would like to expand this set and explore how

variations in the detector function may affect the optimal solution.

The first step is to remove the peak at 64 km by manually replacing the unusually

high and low values in this region to produce a smoother profile in this section.

This produces F2 which is shown in Figure 3.5.

The next step is to apply general smoothing on F2. This is achieved by averaging

each value and its immediate neighbours,

Pz(r) =
Pz(r − 1) + Pz(r) + Pz(r + 1)

3
, r ∈ {2, 3, ..., 79} (3.11)

This smoothing is applied twice. The values at either extreme, Pz(0) and Pz(80),

are left unchanged. This produces the function values for F3 as shown in Fig-

ure 3.6.

Finally, we also construct a very smooth, monotonic detector function F5 as a

reference (Figure 3.7). This last function F5 is similar to the detection probability

of a radar used in problems of path planning for aircraft.

The effect of these different detector functions on the transit field are illustrated

in Figure 3.8 through Figure 3.11. These plots show the transit field probabilities

at the slow speed for detector pattern 1.

For F2 and F3 the time bounds do not need to change so we use the same time

bounds as F1, but for F5 we must calculate a new set of time bounds. If gmax

is the time of the unconstrained shortest path and gmin is the shortest possible

path time, then our time bounds are chosen such that

gi = gmin + α(gmax − gmin) (3.12)

where α={0.2, 0.4, 0.6, 0.8} and i={1,2,3,4}.

32

Detector Function F2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

distance (km)

P
ro

b
F2 slow F2 fast

Figure 3.5: Original minus peak

Detector Function F3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

distance (km)

P
ro

b

F3 slow F3 fast

Figure 3.6: Original minus peak and smoothed

33

Detector Function F5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

distance (km)

P
ro

b

F5 slow F5 fast

Figure 3.7: Very smooth function

Figure 3.8: F1 sample probability field for 8 kmph

34

Figure 3.9: F2 sample probability field for 8 kmph

Figure 3.10: F3 sample probability field for 8 kmph

35

Figure 3.11: F5 sample probability field for 8 kmph

For each detector function and problem size we have 30 detector patterns and 4

time bounds, and we refer to each problem case by (pattern, time). For example,

(5,3) refers to detector pattern 5 with time bound 3 (α=0.6).

36

z, zL vs lambda for Pattern (5,1)

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8

lambda

co
st

z zL

Figure 3.12: Lagrange dual z(λ) and path cost z vs λ

3.1.2 Multiplier Search

Figure 3.12 once again shows a sample plot of the Lagrange dual z(λ) and cor-

responding path cost z as a function of λ. Note how there are discontinuities in

the plot for z, which indicate that the function
∑

e∈E ce is not convex.

For singly constrained problems such as ours, the Lagrange multiplier search using

Kelley’s cutting plane algorithm is very fast. However, in practise it is possible for

the algorithm to cycle between two intersecting tangent lines. This is especially

true if the z(λ) curve is not smooth. Since we want to make sure that we have a

value for λ that is close to optimal, we add a bisection search to ensure that the

value for λ we achieve is within 1% of optimal.

3.1.3 CPlex Reference

Reference solutions were obtained using CPlex version 9 on the mixed-integer

linear program (MILP) model given by (2.2) through (2.5). The edge cost values

were truncated to 3 significant figures (ie. 0.000 to 0.999) in order to allow CPlex

37

CPlex gap N=160, 4 hours cpu

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

1 11 21 31 41 51 61 71 81 91 101 111

g
ap

 %

F1
F2
F3
F5

Figure 3.13: CPlex gap (sorted) for N=160 with 4 hr time limit

to converge more easily. The code for both methods was written in C++ using

STL container classes, and run on a 3.0 GHz Pentium 4 desktop computer with 2

Gb of RAM running Windows XP SP2. The tolerance between the best integer

solution and the lower bound was set to 0.01% and CPlex was allowed to run

for a maximum of 4 hours, or until this gap was reached. Table 3.1 shows the

average CPU times.

N
20 40 80 160

F1 0.519 25.97 1047.5 3730
F2 0.591 11.60 870.7 3326
F3 0.656 16.25 908.6 3641
F5 0.402 6.76 1188.6 3987

Table 3.1: CPlex Average CPU Times (seconds)

For problem sizes N={20, 40, 80} the 4 hour time limit was sufficient to achieve

optimal results. However, for N=160 this was not always the case. Figure 3.13

shows the CPlex gap for all detector functions for N=160. F1 has 19 cases where

the gap is greater than 1%, F2 has 15 cases, F3 has 15 cases, and F5 has 16

such cases, with the worst case being just above 8%. Despite these gaps for the

largest problem size, we will use these CPlex solutions as reference values, with

38

the knowledge that the values for N=160 may not be optimal.

These reference solutions provide path costs zopt which we can then use to calcu-

late the relative error (RE) as

RE = 100 ∗ (z∗ − zopt)/zopt (3.13)

We also calculate the LR duality gap as

LGAP = 100 ∗ (z∗ − z(λ))/z(λ) (3.14)

Both these terms will be used as percentages throughout. In addition, the net-

works are all square arrays with N edges per side.

39

3.2 Initial LR Results

3.2.1 2-speed case

We implement Lagrange Relaxation using the formulation for z(λ) given in Equa-

tion 2.7. Dijkstra’s algorithm shown in Algorithm 1 is used to calculate the short-

est path using the modified edge costs provided by λ, and the multiplier search

method of Section 2.3.6 is used to find the optimal multiplier λopt.

Table 3.2 shows the LR results on the 2-speed Submarine Transit Path problem.

For each detector function and for N={20,40,80,160}, the average and maximum

values of RE, LGAP and CPU seconds are given for each set of 120 cases.

LR
%RE %LGAP CPU (sec)

avg max avg max avg max
F1 20 0.36 5.49 1.11 11.18 0.015 0.032

40 0.45 5.62 1.14 11.08 0.093 0.141
80 0.35 6.16 0.96 11.69 0.446 0.656

160 0.32 4.73 1.05 10.37 2.377 3.906

F2 20 0.28 5.79 1.02 9.46 0.015 0.032
40 0.29 6.28 0.88 9.57 0.090 0.141
80 0.31 6.36 0.84 9.53 0.414 0.672

160 0.24 5.99 0.86 10.34 2.219 3.625

F3 20 0.30 5.46 1.03 9.70 0.015 0.032
40 0.35 5.52 0.95 9.56 0.088 0.156
80 0.27 5.54 0.83 9.65 0.417 0.672

160 0.10 2.28 0.80 9.40 2.168 3.765

F5 20 0.17 3.88 1.20 10.47 0.017 0.032
40 0.13 3.12 0.92 9.38 0.114 0.141
80 0.10 2.54 0.84 10.03 0.573 0.687

160 0.09 2.63 0.77 9.11 3.128 3.516

Table 3.2: LR results for 2-speed networks, all problem sets

For all problem sets, the average RE is below 0.5%, and the average LGAP is

around 1%. In about one third of all cases for F1, F2 and F3 the upper time

bound was not active, resulting in a lower average. Instead of the average value,

we focus our attention on the maximum values. For F1, F2 an F3 the maximum

%RE is generally less than 6%, and below 4% for F5. On the other hand, the

40

LR %RE for N=80, 2 speeds

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 11 21 31 41 51 61 71 81 91 101 111

%
R

E

F1 F2 F3 F5

Figure 3.14: LR %RE for all functions with N=80, sorted

maximum value for the LR duality gap is around 10%, so we don’t always have

very strong bounds on our LR results. This illustrates the central problem of LR.

The CPU times given include the problem setup time and the LR solution. For

those problems that have an active time bound, the number of calls to Dijkstra’s

algorithm is between 17 and 18. For the largest problems, the maximum total

CPU time is less than 4 seconds. While we are not yet producing optimal solu-

tions, these times are 3 orders of magnitude smaller than CPlex, indicating at

least the potential for LR to produce optimal or near-optimal solutions in much

less time.

In order to see what proportion of the problem cases have a high RE, we may plot

the RE for all 120 cases for each detector function for a chosen size. Figure 3.14

shows this for N=80, sorted by ascending RE. The results for F1, F2 and F3

are very similar, indicating that the relative smoothness of these functions has

only a slight affect on the optimality of LR. Only the very smooth F5 shows a

significantly lower RE, the worst case of 2.54% being about half that of the other

functions. Note that for all detector functions, with the exception of a small

number of cases, the RE is below 3%.

Similarly, we may plot the LGAP for N=80 for all detector functions, as shown

41

LR % Duality Gap, sorted

0

2

4

6

8

10

12

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116

%
 g

ap

F1 F2 F3 F5

Figure 3.15: LR duality gap for N=80, sorted

Figure 3.16: LR and CPlex paths for F1-80 (5,2)

42

Figure 3.17: z(λ) node sums for F1-80 (5,2)

in Figure 3.15. Again, only a small number of cases have a LGAP over 5%.

The worst case of F1-80 is (5,2), with RE=6.16%. Figure 3.16 shows the CPlex

and LR paths on a plot of the transit field in terms of node probabilities, and

Figure 3.17 shows the same in terms of z(λ) node sums. The value at each node

represents the sum of the minimum z(λ) distances to S and T. Note how much

smoother the plot of z(λ) is by comparison.

Plots such as Figure 3.17 are useful for analysis because they show the regions

where LR will find the best path. If we interpret the z(λ) values as conventional

3-D topography, with high values corresponding to high elevations, then LR will

find a path through one of the valleys, shown here in dark blue.

3.2.2 1-speed case

In most published works on the constrained shortest path problem, networks

under study do not have any parallel edges. In fact, not having any parallel

edges is a requirement. To see how much the parallel edges may be contributing

to the results, we may take away all the fast edges from the network, leaving only

the slow edges. To differentiate these problem sets from the 2-speed case, we add

43

the suffix ’s’ to the problem size. For example, F1-80 refers to the 2-speed case,

and F1-80s refers to the 1-speed case.

Of course, we then need to calculate new time bounds. If gmax is the time of the

unconstrained shortest path and gmin is the time of the shortest possible path

from s to t, then our time bounds are chosen such that

gi = gmin + α(gmax − gmin) (3.15)

where α={0.2, 0.4, 0.6, 0.8}. Once again, CPlex is used to generate a set of

reference solutions. Table 3.3 shows the CPlex duality gap and the CPU times

for all problem sets.

Fcn N Gap CPU (sec)
avg max avg max

F1 20s 0.00 0.00 0.39 3.69
40s 0.00 0.00 9.90 134.38
80s 0.13 5.64 2088.00 43299.10

160s 2.04 10.83 47048.96 173013.00
F2 20s 0.00 0.00 0.21 2.63

40s 0.00 0.00 4.71 133.41
80s 0.18 5.40 922.39 14400.70

F3 20s 0.00 0.00 0.21 1.19
40s 0.00 0.00 5.90 208.77
80s 0.16 6.14 788.11 14400.60

F5 20s 0.00 0.09 0.19 1.20
40s 0.02 0.10 2.47 32.00
80s 0.05 2.16 389.52 14400.50

160s 0.63 9.27 3491.47 14410.70

Table 3.3: CPlex times for 1-speed problems

For the N=160 problem size we only produce CPlex reference solutions for F1

and F5. We use a time limit of 4 hours for all problem sets except for F1-160, in

which the time limit is raised to 48 hours.

Table 3.4 shows the RE, LGAP and CPU times for all problem sets. Both average

and maximum values are given.

For the 1-speed problem, the maximum RE and LGAP values are significantly

higher that for the 2-speed problem, while the CPU times are roughly the same.

These 1-speed LR results clearly demonstrate the basic problem with Lagrange

44

LR
%RE %LGAP CPU (sec)

avg max avg max avg max
F1 20s 1.98 28.45 4.233 31.152 0.015 0.031

40s 2.65 38.92 4.750 40.423 0.088 0.125
80s 2.81 29.37 4.539 31.037 0.507 0.750

160s 2.83 29.62 4.593 30.803 3.190 6.641

F2 20s 1.90 27.78 3.872 29.935 0.015 0.032
40s 2.40 28.20 4.056 30.115 0.086 0.125
80s 2.58 28.54 3.990 30.558 0.449 0.718

F3 20s 1.82 28.53 3.661 30.277 0.014 0.032
40s 2.11 28.50 3.652 30.110 0.081 0.125
80s 2.40 28.59 3.738 30.265 0.407 0.734

F5 20s 1.68 17.55 3.038 19.185 0.014 0.031
40s 1.83 30.44 2.817 33.111 0.091 0.140
80s 2.14 32.14 2.965 33.163 0.503 0.766

160s 2.03 23.88 3.053 32.450 2.972 4.782

Table 3.4: LR results for 1-speed networks, all problem sets

Relaxation: the possibility for high duality gaps.

N=80 1-speed, %RE and %LGAP

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

1 11 21 31 41 51 61 71 81 91 101 111

RE LGAP

Figure 3.18: LR RE and Lgap for 120 cases, N=80, 1 speed

45

Figure 3.18 shows a graph of the RE and LGAP for N=80, in sorted order as

before. Clearly, these results are much worse than for the 2-speed case. On the

one hand, the time bounds are always active and yet we have 71 out of 120 cases

where the RE is below 1%. But in 20 out of 120 cases the RE is over 5%, with

the worst case being 29.37% above optimal. The parallel edges do indeed have

an effect on the LR results.

Figure 3.19: LR solution for (2,3), N=80 1-speed

46

Figure 3.19 shows a plot of the F1-80s worst case, (2,3), which has RE=29.37%.

Note how there are two valleys or channels of low z(λ), with the LR path going

through the centre and the CPlex path going the longer way through the second

channel.

3.2.3 LR Gap Problem

So far, we have applied LR to the Submarine Transit Path problem, a constrained

shortest path problem with a single time constraint, using a model with 2 speeds

and one with just a single speed. For the original problem containing parallel

edges, the resulting solutions were generally within 3% of optimal. For the re-

duced network case with no parallel edges, however, the results are not nearly so

good. The worst case RE rises from 6.16% to 29.37%, with almost half the cases

having RE > 3%.

This raises several questions. Why is it that LR works much better on the network

with parallel edges than the one without? What causes LR to produce solutions

with a very high duality gap?

Now that we have established that there can be a problem with LR duality gaps,

the next section explores these questions and develops a hybrid method to improve

the performance of Lagrange Relaxation.

3.3 Hybrid Approach

3.3.1 LR with 1-speed Network

The first thing to note is that the maximum LGAP is very high for all 1-speed

problem sets, with a worst case of 40.423% for F1-40s. The corresponding maxi-

mum RE for this set is 38.92%. A typical case from F1-40s is (2,3), which has a

RE=31.83%. Figure 3.20 shows the node sums for z(λ) using the optimal value

of λ for this problem case, with both CPlex and LR solutions. In this plot there

are two distinct regions of min z(λ), one straight through the centre (the path

taken by LR) and another region in the lower right quadrant (the path produced

47

Figure 3.20: z(λ) sums for F1-40s (2,3)

by CPlex).

The LR path has a cost of 7.181 and a transit time of 14.306 hours, while the

optimal CPlex solution has a cost of 5.447 and a transit time of 16.788 hours.

The upper bound on time for this problem is 16.825. The LR solution uses only

85% of the available time, but the CPlex path uses 99.8% of the time. We may

call this unused time the slack time, and express it as a percentage of the upper

time bound. Thus, the LR solution for (2,3) has a slack time of about 15%. We

may also express the slack time as a fraction of the upper time bound, and call

this the slack time margin. For example, the slack time margin for (2,3) would

be 0.15.

What causes LR to find such a suboptimal solution? This is not a software bug,

but a result of how LR works. Recall that each edge has a cost c and a time

t, and we define the modified cost as c
′
= c + λt. For any given value of λ we

calculate the shortest path in terms of c
′
, which gives us the value z(λ). The

value of λ which gives us the highest value for min z(λ) is considered the optimal

value for λ, and the corresponding value for z∗ is therefore correct, although it is

not optimal.

48

To see why, note the two valleys in the z(λ) plot of Figure 3.20. LR calculates

the min z(λ) solution as the one going straight through the centre, where the min

z(λ) value is 5.35571. The second valley, where CPlex finds the optimal path, has

a slightly higher min z(λ) value of 5.42019. In searching for a global minimum

for z, we instead get a local minimum. This outcome is the same for all of the

1-speed cases where the RE and LGAP are both very high.

Figure 3.21: Slack time for problem F1-40s (2,3)

Let us look now at the plot of slack time for our sample problem F1-40s (2,3).

By applying Dijkstra’s algorithm in both directions on the modified edge costs,

we have been able to calculate, for each node v, the total of the min z(λ) paths

from v back to S and from v forward to T . Our simple modification to Dijkstra’s

algorithm also stores the corresponding totals for time. Thus we are able to plot

the slack time through every node in the network.

49

Figure 3.22: z(λ) sums for (2,3) with island

Figure 3.21 shows such a plot of slack time for our (2,3) problem from F1-40s.

To avoid negative numbers, we plot the absolute value of the slack time as a

percentage of the time upper bound.

Comparing this plot with Figure 3.20, notice how the area of high slack time

through the centre (where the LR path is) corresponds to the valley of min z(λ)

through the centre, and that the valley with the slightly higher z(λ) valley (where

the CPlex path is) has a much lower slack time.

A simple experiment is proposed: let us introduce an artificial island of high cost

to the middle of the network, effectively blocking any min z(λ) path through the

centre. If we make this island large enough, we make it impossible for an LR path

to lie in that region. We then apply the LR method as before on this modified

transit field.

50

The result, shown in Figure 3.22, is striking. With LR applied to this modified

network we achieve an optimal result, with the CPlex path and the LR path

overlapping completely.

We can see from this example how LR fails to find an optimal solution because of

a local minima. The slack time along the resulting LR path is very high. We may

be able to use this slack time information to determine whether LR has fallen into

a local minima. Although this is only one case, we see the possibility to achieve

optimal results on a network which has been reduced to avoid non-optimal paths.

It seems reasonable to assume that the optimal path is one which uses as much

of the time allowed in order to provide the lowest path cost. We may consider

adding an additional penalty function to give a weight to the unused time, but

this approach involves calculating yet another multiplier. We will explore another

approach, one that keeps the original LR formulation but temporarily modifies

the network based on slack time.

The next section looks at the slack time in more detail.

3.3.2 Slack Time and the Duality Gap

What we know about the Submarine Transit Path problem so far is that the LR

method often produces paths which pass through areas of the field where the

slack time (as we can calculate it) is high, and the optimal paths pass through

areas where this slack time is lower. If we were able to apply a constraint on

the amount of slack time allowed, we may then use LR to perform constraint

propagation.

If we go back to our definition of z∗ and z(λ), we might see how to formulate the

duality gap in terms of slack time.

51

duality gap = z∗ − z(λ)

=
∑

(i,j)∈V

cijxij − (
∑

(i,j)∈V

(cij + λfij)xij − λg)

= λg−
∑

(i,j)∈V

λfijxij

= λ(g−
∑

(i,j)∈V

fijxij)

= λ(slackTime) (3.16)

From this we see that, for a given LR path using the optimal value of λ, the

duality gap is a function of λ and the slack time. An easy assumption would be

that to minimise the duality gap all we have to do is minimise the slack time.

However, there are two problems with this. The first is that it is not sufficient

to simply minimise the slack time. Inspection of the CPlex reference solutions

for the F1-40s data set shows that the slack time varies from 0.01% to 13.02%,

with an average of 1.62%, so it is possible to have an optimal solution that has a

non-zero LR duality gap.

Remember that the core idea of LR is to balance the edge costs with the edge

times subject to the upper bound on the total time. A path that tries to use all of

the allowed time may fail to minimise the path cost. Secondly, further inspection

of the CPlex paths reveals that the slack time is only minimal along part of the

path, and generally in the centre of the transit field.

Is there a general correlation between the LR duality gap and the slack time?

Figure 3.23 shows a plot of the LR gap and the slack time for problem set F1-80s.

Although there is quite a spread in the data points, for slack time values over 2%

there seems to be a rough correlation, enough to suggest that if were to reduce

the slack time of a solution we might also be able to lower the LR duality gap,

and thus provide tighter bounds on the solution.

In order to explore this approach, we need to find a way to use the slack time to

constrain the network.

52

LGAP vs Slack Time F1-80s

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20

Slack Time %

L
G

A
P

 %

Figure 3.23: LR duality gap vs slack time for F1-80s

3.3.3 The Hybrid LR-CP Approach

If we look again at the slack times of the transit field in Figure 3.21 we see that

the lowest values tend to appear in the middle region, and the highest values are

found in the upper left and lower right corners. The slack time values near the

origin S and the terminus T don’t appear to be very useful. Therefore we focus

our attention on the line that bisects the transit field through the middle from

the upper left to the lower right, and call this the meridian.

For a square grid with N nodes per side, we define meridian nodes as those for

which x + y = N − 1, which describes a line from (0,N-1) to (N-1, 0). Since we

also have diagonal edges in this network which might pass through this line of

nodes, we also add the row of nodes on either side, defined by x + y + 1 = N − 1

and x + y− 1 = N − 1. After initially applying LR to the network and summing

the slack times at each node, we can then calculate the slack time for nodes along

this meridian. By disabling or enabling nodes on this meridian according to a

given slack time threshold, we can then constrain the crossing point of the LR

path.

We then select a range of slack time threshold or slack margin (SM) values be-

53

Slack Time Margin Path Cost
0.200 7.181
0.190 7.181
0.180 7.181
0.170 7.181
0.160 7.181
0.150 7.181
0.140 7.299
0.130 7.299
0.120 6.645
0.110 6.645
0.100 6.645
0.090 7.047
0.080 6.645
0.070 5.447
0.060 5.447
0.050 5.447
0.040 5.447
0.030 5.447
0.020 5.447
0.010 5.447
0.009 5.447
0.008 5.447
0.007 5.447
0.006 5.447
0.005 5.447
0.004 5.447
0.003 5.447
0.002 5.447

Table 3.5: Path cost vs Slack Time Margin for F1-40s (2,3)

54

tween 0.20 and 0.001 of the upper time bound g. The 29 values used (with the

exception of 0.001) are shown in Table 3.5.

Starting with the highest threshold of 0.20, we disable any meridian nodes which

have a slack time greater than 0.20g, and then apply the LR method to the

modified network. For each successive threshold value we find the resulting LR

path and store it. At the point where the LR path is no longer within the time

bound or no feasible path exists, we stop. At the end of this process we select the

best solution from the ones stored and using the cost of this path as the the z

upper bound, we filter out nodes which are suboptimal. Applying LR then finds

the final path.

As this approach is similar to Constraint Programming (CP), in which the domain

of the problem (in this case, the nodes and edges of our network) is reduced by

propagating constraints (such as the limit on slack time), we therefore call this

the LR-CP approach. The algorithm is shown in Algorithm 2.

Algorithm 2 LR-CP method

1: Apply LR, store solution
2: Set initial threshold to 0.20
3: repeat
4: disable meridian nodes with slack time greater than the threshold
5: Apply LR, store solution
6: Decrease slack time threshold to next value
7: until (no feasible solution possible) OR (SM = 0.001)
8: Get best solution cost z
9: Enable all meridian nodes

10: Apply LR
11: Remove any nodes which have z(λ) > z
12: Apply LR
13: Report solution

Note that we temporarily disable meridian nodes while progressively constraining

the slack time along the meridian. When all the thresholds have been applied,

we re-enable all meridian nodes and use the lowest path cost found to filter out

nodes which we now know to be infeasible based on z(λ).

Table 3.5 shows the LR path cost for each threshold value for problem F1-40s

(2,3). Notice how the path cost both increases and decreases as the threshold

varies, finally reaching a minimal value with a threshold of 0.07. The thresh-

55

Figure 3.24: Optimal solution using LR-CP on F1-40s (2,3)

old 0.001 is not shown because no solution is possible when the slack time is

constrained this much. Figure 3.24 shows the resulting LR-CP path, which is

optimal. The meridian is shown only to illustrate its location in the transit field.

Applying LR-CP with 29 thresholds on all 120 problems for F1-40s, we get an

average RE of 0.0087% and a maximum of 0.533%. This is a dramatic improve-

ment over LR, which had an average and maximum RE of 2.65% and 38.92%,

respectively. In addition, the average cpu time for LR-CP is 0.096 seconds, only

slightly higher than the average of 0.088 seconds for LR.

The LR-CP method has been shown to work well on this one problem set of

F1-40s. In the next section we apply it to all 1-speed problem sets.

3.3.4 Results of LR-CP on 1-speed Network

Before discussing the full set of results, a comment on the 1-speed reference values

generated by CPlex is in order. As with the 2-speed network, the CPlex reference

solutions for N=20 and N=40 are solved optimally, with no duality gap. For N=80

there are a few cases where CPlex did not run to completion within the time limit

of 4 hours, and for N=160 a significant number of solutions still had a duality

56

gap of more than 3% after 4 hours. It was decided to keep the 4 hour time limit

for CPlex, and use these reference solutions as is (we will revisit the optimality

of these solutions in the final chapter). The resulting reference solutions for the

N=160 problem set are therefore not all optimal, and a negative %RE indicates

those cases where LR-CP is able to find better solutions than CPlex did in the

time allowed.

Looking then at the 1-speed networks using the all detector functions and the

sizes N={20,40,80,160}, the results of LR-CP with 29 thresholds are summarised

in Table 3.6.

Fcn Size %RE %LGAP CPU (sec)
avg max avg max avg max

F1 20s 0.000 0.000 0.067 1.928 0.019 0.047
40s 0.009 0.533 0.119 1.721 0.112 0.343
80s 0.016 0.896 0.097 1.888 0.826 3.782

160s -0.107 1.053 0.094 2.347 5.137 19.625

F2 20s 0.000 0.000 0.033 1.875 0.017 0.063
40s 0.006 0.536 0.035 0.842 0.103 0.391
80s 0.037 1.689 0.060 1.689 0.630 3.282

F3 20s 0.000 0.000 0.024 1.144 0.015 0.032
40s 0.000 0.000 0.017 0.544 0.095 0.375
80s 0.011 0.989 0.027 1.102 0.535 2.063

F5 20s 0.000 0.000 0.000 0.022 0.017 0.047
40s 0.000 0.000 0.000 0.001 0.100 0.187
80s -0.001 0.000 0.000 0.001 0.603 1.515

160s -0.188 0.000 0.000 0.007 3.383 9.625

Table 3.6: LR-CP results for 1-speed networks, 29 thresholds

Comparing these results to the LR results of Table 3.4, we see a remarkable

improvement. The maximum RE has dropped from around 30% to no more than

1.689% for F2-80s, the LGAP has been reduced from a maximum of 40.423% to

2.347% for F1-160s, and the average CPU time has only been increased by about

50%. Note the negative values for average %RE, which are due to the CPlex

reference values not being optimal.

With the LGAP less than 3% in all cases, we can say that these results are near-

optimal. The next step is to see if we can reduce the CPU time while retaining

57

the low LGAP. That is the subject of the following section.

3.3.5 Refinements

With every slack time threshold we use we must apply LR, which means optimis-

ing the value for λ, and if our goal is to minimise the CPU time then we need to

question how many thresholds are really necessary. The original set of thresholds

has 29 values. We may reduce this set by about half to 15, again to 8 and finally

to 4. Table 3.7 shows the four resulting SM threshold sets, with SM29 being the

original one.

SM29 SM15 SM08 SM04
0.200 0.200 0.200
0.190
0.180
0.170 0.175
0.160
0.150 0.150
0.140
0.130
0.120 0.125
0.110
0.100 0.100 0.100
0.090
0.080
0.070 0.075
0.060
0.050 0.050 0.050 0.050
0.040
0.030
0.020 0.025 0.025
0.010 0.010 0.010
0.009
0.008
0.007 0.0075
0.006
0.005 0.005 0.005 0.005
0.004 0.004
0.003 0.003 0.003
0.002 0.002
0.001 0.001 0.001

Table 3.7: Slack time threshold sets

We are interested in what effect these different sets have on RE and the CPU

58

time. We therefore apply the LR-CP method with each threshold set, and plot

the results for F1 across all network sizes. The results are shown in Table 3.8 and

Table 3.9.

%RE N20 N40 N80 N160
LR avg 1.98 2.65 2.81 2.83

MAX 28.45 38.92 29.37 29.62
SM04 avg 0.00 0.06 0.02 -0.06

MAX 0.56 3.82 1.12 2.40
SM08 avg 0.00 0.01 0.01 -0.10

MAX 0.56 0.53 0.77 1.05
SM15 avg 0.00 0.01 0.02 -0.11

MAX 0.56 0.53 0.90 1.05
SM29 avg 0.00 0.01 0.02 -0.11

MAX 0.00 0.53 0.90 1.05

Table 3.8: LR-CP on F1 1-speed with varying thresholds, %RE

CPU (sec) N20 N40 N80 N160
LR avg 0.01 0.09 0.51 3.19

MAX 0.03 0.13 0.75 6.64
SM04 avg 0.02 0.09 0.57 3.29

MAX 0.03 0.19 1.28 7.34
SM08 avg 0.02 0.10 0.61 3.58

MAX 0.03 0.25 1.56 9.25
SM15 avg 0.02 0.10 0.68 4.10

MAX 0.05 0.27 2.27 12.66
SM29 avg 0.02 0.11 0.83 5.14

MAX 0.05 0.34 3.78 19.63

Table 3.9: LR-CP on F1 1-speed with varying thresholds, CPU

Observe first how dramatically SM04 improves both the average and maximum

RE over LR for all cases, with a gradual improvement for SM08, SM15 and SM29.

The average RE changes little after SM08. The best tradeoff between number of

thresholds (and therefore CPU time) and optimality is achieved with SM08.

59

With the SM08 threshold set chosen, we now apply LR-CP to all the 1-speed

problem sets. Table 3.10 shows the final results of this, and provides the original

LR results for comparison.

LR LRCP-sm08
Fcn Size %RE CPU (sec) %RE CPU (sec)

avg max avg max avg max avg max
F1 20s 1.98 28.45 0.015 0.031 0.00 0.56 0.016 0.032

40s 2.65 38.92 0.088 0.125 0.01 0.53 0.096 0.203
80s 2.81 29.37 0.507 0.750 0.01 0.77 0.589 1.516

160s 2.83 29.62 3.190 6.641 -0.10 1.05 3.711 9.359

F2 20s 1.90 27.78 0.015 0.032 0.00 0.00 0.016 0.032
40s 2.40 28.20 0.086 0.125 0.01 0.54 0.093 0.234
80s 2.58 28.54 0.449 0.718 0.04 1.69 0.497 1.266

F3 20s 1.82 28.53 0.014 0.032 0.00 0.00 0.014 0.032
40s 2.11 28.50 0.081 0.125 0.00 0.00 0.088 0.235
80s 2.40 28.59 0.407 0.734 0.01 0.99 0.441 1.094

F5 20s 1.68 17.55 0.014 0.031 0.00 0.00 0.016 0.032
40s 1.83 30.44 0.091 0.140 0.00 0.00 0.094 0.141
80s 2.14 32.14 0.503 0.766 0.00 0.00 0.526 0.922

160s 2.03 23.88 2.972 4.782 -0.19 0.00 3.139 6.313

Table 3.10: LR and LR-CP SM08 results for 1-speed networks

Using LR-CP with 8 thresholds, we have been able to reduce the average RE on

the 1-speed networks from almost 3% with LR to less than 0.05%, with average

CPU times that are only up to 16% longer than LR. In the worst case, for F1-80s,

the maximum CPU time is double that for LR.

60

3.3.6 LR-CP on the 2-speed network

Returning to the original 2-speed Submarine Transit Path problem, we apply the

same sets of SM thresholds and compare the average and maximum LR-CP RE

with LR, shown in Table 3.11 and Table 3.12.

%RE N20 N40 N80 N160
LR avg 0.36 0.45 0.35 0.32

max 5.49 5.62 6.16 4.73
SM04 avg 0.11 0.12 0.06 -0.06

max 3.54 2.99 1.69 1.50
SM08 avg 0.07 0.11 0.05 -0.07

max 1.15 2.99 1.31 0.28
SM15 avg 0.05 0.09 0.05 -0.06

max 0.96 0.91 1.31 0.28
SM29 avg 0.05 0.08 0.05 -0.07

max 0.96 0.91 1.31 0.26

Table 3.11: LR-CP on F1 2-speed with varying thresholds, %RE

CPU (sec) N20 N40 N80 N160
LR avg 0.02 0.09 0.45 2.38

max 0.03 0.14 0.66 3.91
SM04 avg 0.02 0.11 0.54 2.96

max 0.05 0.22 1.48 8.34
SM08 avg 0.02 0.11 0.58 3.20

max 0.03 0.27 1.83 9.81
SM15 avg 0.02 0.12 0.67 3.67

max 0.05 0.39 2.58 12.94
SM29 avg 0.02 0.15 1.04 4.88

max 0.06 0.64 4.91 22.36

Table 3.12: LR-CP on F1 2-speed with varying thresholds, CPU

As with the 1-speed networks, we see a large drop in RE with SM04, a further

improvement with SM08, and very little change after that. The average RE values

for N={20,40,80} are quite close together, and the overall RE drops with N=160.

This drop in RE reflects the quality of the CPlex solutions at the larger sizes,

with CPlex optimality decreasing as the network size increases.

Once again, as was the case for the 1-speed networks, the optimum tradeoff

between RE and CPU time occurs with SM08.

With the SM08 threshold set chosen, we now apply LR-CP to all the 2-speed

61

problem sets. Table 3.13 shows the final results of this, and provides the original

LR results for comparison.

LR LRCP-sm08
Fcn Size %RE CPU (sec) %RE CPU (sec)

avg max avg max avg max avg max
F1 20 0.36 5.49 0.015 0.032 0.07 1.15 0.018 0.032

40 0.45 5.62 0.093 0.141 0.11 2.99 0.111 0.266
80 0.35 6.16 0.446 0.656 0.05 1.31 0.580 1.828

160 0.32 4.73 2.377 3.906 -0.07 0.28 3.203 9.813

F2 20 0.28 5.79 0.015 0.032 0.07 1.55 0.018 0.032
40 0.29 6.28 0.090 0.141 0.05 0.97 0.105 0.328
80 0.31 6.36 0.414 0.672 0.02 0.55 0.534 1.719

160 0.24 5.99 2.219 3.625 -0.07 0.89 2.868 9.328

F3 20 0.30 5.46 0.015 0.032 0.05 1.11 0.018 0.047
40 0.35 5.52 0.088 0.156 0.04 1.24 0.106 0.391
80 0.27 5.54 0.417 0.672 0.02 0.46 0.540 2.453

160 0.10 2.28 2.168 3.765 -0.12 0.43 2.793 11.594

F5 20 0.17 3.88 0.017 0.032 0.01 0.34 0.019 0.046
40 0.13 3.12 0.114 0.141 0.01 0.46 0.123 0.250
80 0.10 2.54 0.573 0.687 -0.01 0.34 0.645 1.750

160 0.09 2.63 3.128 3.516 -0.03 0.25 3.529 9.094

Table 3.13: LR and LR-CP SM08 results for 2-speed networks

The LR-CP results for the 2-speed network are similar in quality to the 1-speed

case. The average RE, which was already better for the 2-speed case, has been

reduced from a worst case of 0.45% to 0.11%, while the maximum RE has been

reduced from 6.36% to 2.99%. The average CPU time has increased by at most

29%, while the maximum CPU time has increased by a factor of 3.65. Considering

the overall improvement in RE, the increase in CPU of less than 4 times over LR

makes this a computationally effective method.

62

3.4 Summary

In this chapter we introduced the first of two network problems studied in this

thesis, the Submarine Transit Path problem, which is a singly constrained minimi-

sation problem. Applying Lagrange Relaxation to the original 2-speed problem

revealed that the average RE was less than 1% with a maximum of about 6%

across 16 problem sets.

By reducing the network problem to have only one speed, the results are very

different. The average RE rises to about 3%, but the maximum RE rises to

almost 40%, with a maximum LR duality gap just over 40%. Examination of

the resulting solutions shows a connection between high LR duality gap and an

excessive slack time (unused resource). In its straightforward implementation,

Lagrange Relaxation may find local minima instead of global minima.

A hybrid method is developed using a bisecting row of nodes, called a meridian,

and a system of successively constraining the slack time along this meridian while

using LR to produce updated solutions on the now restricted network. The result

is improved solutions in every case. The best cost z produced is then used by

LR to filter the network of local minima, allowing LR to find much improved

solutions.

This hybrid method, relying on a combination of LR and ideas from constraint

programming, we call LR-CP. With a selected list of 8 slack time thresholds, this

method is able to find optimal or near-optimal solutions for both the 2-speed and

1-speed Submarine Transit Path problems with CPU times that are in the worst

case only 2 to 4 times longer than with LR, and on average are 30% to 50% higher

than LR.

63

Chapter 4

Random Valued Networks

In this chapter we turn our attention to grid networks similar to those which

have been studied in the literature. In contrast to the networks of the Submarine

Transit Path problem, which have smoothly varying edge costs and uniform edge

times, these grid networks have randomly generated edge costs and times.

We consider two variants, one with start and end nodes on opposite corners of

the grid, and one with the path starting at any node on one side and ending at

any node on the opposite side. As with the Submarine Transit Path problem, we

construct a minimum path cost problem with a single side constraint, and focus

on problems for which the initial Lagrange Relaxation duality gap is the largest.

4.1 Network Structures

The random valued networks are structured the same as those studied by Du-

mitrescu and Boland (2003) and Carlyle et al. (2007). Each vertex in the grid

has up to three directed edges connecting it to adjacent vertices above, below and

to the right. Figure 4.1 shows the first network, Net1, which has the path start at

s in the lower left corner and the terminus at the upper right corner. The second

network, Net2, is shown in Figure 4.2. This network allows the path to start at

any vertex along the left edge and terminate at any vertex along the right edge.

The starting vertex s is external to the grid and is connected with zero-cost edges

to every vertex along the left side; the terminating vertex t is also external to the

64

Figure 4.1: Network Net1

Figure 4.2: Network Net2

grid and is connected to every vertex along the right side with zero-cost edges.

Values for edge weights and lengths are set using the built-in C language function

rand(), which produces pseudorandom integers. As with all pseudorandom num-

ber generators, this function is first initialised with a seed value, a 15-bit integer

from 0 to 32,767. Using such a pseudorandom function allows the networks to be

constructed repeatably at runtime without the need to store and read in a large

array of values.

The cost of a path from s to t is the sum of all the edge costs along the path.

65

Constraining the problem is a single side constraint, an upper bound on the total

path time. Time bounds are calculated as follows: if gmax is the time of the

unconstrained shortest path and gmin is the shortest possible path time, then our

time bounds are chosen such that

gi = gmin + α(gmax − gmin) (4.1)

where α={0.05, 0.50, 0.95}.

With a set of 32,768 possible networks with 3 time bounds each, this provides a

population of 98,304 possible problem cases. We denote each problem (c, t) by

the seed value c, which is an integer between 0 and 32,767, and the time bound

t which is 1, 2 or 3. For example, a problem labeled (3777, 1) is generated using

the seed value 3,777 and has the low time bound produced with α=0.05, while

problem (3777, 3) uses the high time bound produced with α=0.95. Since we only

consider square grids, the size N of the network indicates the number of vertices

along each side. Thus, N50 denotes a square grid with 2,500 vertices.

The random valued networks studied in other works use vertical edge weights

in the range [1,10], horizontal edge weights in the range [80,100], and all edge

lengths in the range [1,10]. Using these values, the first pass of LR on Net1 N50

revealed, however, that of the 98,304 test cases not a single case had an initial

LR duality gap above 5%. Network Net2 N50 had only 26 such cases in total,

the worst of these having a duality gap of only 7.2%. Of interest in this work

are cases in which the initial duality gap is quite large, since this is the type of

problem that prevents LR from finding near-optimal solutions. To that end, we

change the horizontal edge weights from [80,100] to be in the range [10,30] with

the assumption that on average this balances the horizontal and vertical edge

weights.

Applying LR to all 98,304 test cases of both network types of size N50 with these

new edge weights reveals a very different situation. Net1 now has 1896 cases with

a duality gap more than 5% and Net2 has 5314 such cases. The Net1 cases have a

duality gap of between 9.0 and 16.6%, the Net2 cases between 12.7% and 28.7%.

In terms of RE, the worst case for Net1 is (6591,2) with a 16.1% RE and 16.6%

66

LR duality gap, and the Net2 worst case is (10161,1) with 24.3% RE and 28.7%

LR duality gap.

Table 4.1 lists for N={25,50,100,200} the number of cases which have an initial

LR duality gap greater than 5%.

N25 N50 N100 N200
Net1 5,325 1,896 495 85
Net2 11,010 5,314 2,148 523

Table 4.1: Number of cases with LR duality gap over 5% for Net1 and Net2

It is immediately obvious that as the size of the network increases the number of

large duality gap cases decreases. Net1 N200 has only 85 such cases where the

gap is greater than 5%. For the purposes of our study we choose the 200 cases

(where we have that many) from each network with the largest duality gap. This

group is the T200 set. In addition to the top 200 cases, we also select for N50

a second set of 200 cases which have an initial duality gap of about 3%. These

problems are the low 200 or L200 cases.

CPlex reference solutions are produced as before, and solved to optimality. Ta-

ble 4.2 shows the CPU times for the T200 cases of both Net1 and Net2 for

N={25,50,100,200}.

CPlex CPU (sec)
N avg max

Net1 25 0.38 2.41
50 2.24 15.86

100 31.64 163.66
200 544.51 1635.91

Net2 25 0.40 3.94
50 3.25 16.75

100 35.96 236.92
200 441.24 2355.69

Table 4.2: CPlex CPU times for T200 cases, Net1 and Net2

The average CPU values for Net1 and Net2 are comparable, although the maxi-

mum times for Net2 are about 44% longer for N100 and N200.

67

4.2 Initial LR and LR-CP Results

We focus our initial attention on the N50 sizes for each network. The first step is

to apply LR and LR-CP with the eight thresholds of SM08 to the T200 and L200

test sets of both Net1 and Net2 to see how far from optimal the initial solutions

are. For LR-CP we use a single centre meridian as for the Submarine Transit

Path problem in Chapter 3. Table 4.3 summarises the LR and LR-CP results.

LR %RE LR-CP %RE
min avg max min avg max

Net1 T200 3.65 8.96 16.07 0.00 1.59 11.06
Net1 L200 1.36 2.47 3.11 0.00 1.38 3.04
Net2 T200 3.85 11.07 24.27 0.00 1.21 10.89
Net2 L200 0.21 2.10 3.03 0.00 1.04 2.98

Table 4.3: Net1 and Net2 N50 initial LR and LR-CP results, 8 thresholds

As might be expected from the large initial LR duality gaps in the T200 cases,

the LR solutions are far from optimal. The initial LR solutions for Net1 T200

vary from 3.65% to 16.07% above optimal, and the Net2 T200 cases range from

3.85% to 24.27% above optimal. The L200 cases, with a low LR duality gap,

have low RE values but on average are still 2.47% and 2.10% for Net1 and Net2,

respectively.

LR-CP is able to produce a significant improvement over LR, bringing the Net1

T200 average RE down from 8.96% to 1.59%, and for Net2 T200 from 11.07%

down to an average of 1.21%. Still, there remain high maximum values for RE,

11.06% for Net1 and and 10.89% for Net2.

These LR-CP results are not as good as were seen with the Submarine Transit

Path problem, where a single centre meridian was able to bring the RE% below

3% for every case. It appears that a single centre meridian is not sufficient for

these networks.

Two problems are chosen for comment.

Figure 4.3 shows that for Net1 (15878,1) in the lower left quadrant and the upper

right quadrant there are two competing channels of low z(λ) for a near-optimal

path to take. The LR path has RE = 11.06%, and the LR-CP path only lowers

this slightly to 10.22%.

68

Figure 4.3: Net1 N50 worst case (15878,1) z(λ) sums

Figure 4.4: Net2 N50 worst case (17088,1) z(λ) sums

69

The same situation occurs with problem Net2 (17088,1) as shown in Figure 4.4.

The LR and CPlex paths diverge on the right side of the plot, the LR path taking

the branch with lower z(λ). The LR path has RE = 13.17%, the LR-CP path

(not shown) lowering this again only slightly to 10.89%.

One property both of these plots share is that the areas where parallel valleys of

low z(λ) appear are not in the centre. Also, they do not run the whole length

of the field but are more local. It is hardly surprising, then, that LR-CP with a

centre meridian was not able to improve these solutions much.

These two cases demonstrate one thing clearly: for these grid networks with

random edge costs, we cannot rely on a single meridian that bisects the grid in

the centre. The reason why this is so has to do with the nature of the network. In

the Submarine Transit Path problem, the edge costs were determined by a small

number of sources which covered the entire field. As a result, the z(λ) sum plots

had wide, distinct valleys of low z(λ) that stretched the entire length of the field.

Also, the peak slack times tended to occur in the centre, making that the logical

place to put the meridian.

In these networks, the edge costs and edge times are not smooth but random.

There can be many parallel channels on the z(λ) plot, and they can occur any-

where in the field.

4.3 LR-CP Meridian Scan

In this section, to show if the LR-CP method can achieve near-optimal results

on these problems using a single meridian we test all possible meridians, assess

the results, and consider if we might be able to predict where the best meridian

might be placed.

For network Net1 the meridian is a diagonal line of vertices bisecting the network

at the midway line, such that x + y = N − 1. Because we do not have diagonal

edges, this meridian is sufficient to provide an adequate barrier. We may apply an

offset from the centre, describing a line given by x+y+offset = N−1, of between

-20 and +20 to give a total of 41 different meridians. Each of these meridians is

70

used in an iteration of the LR-CP method, using 8 thresholds of {0.2, 0.1, 0.05,

0.025, 0.010, 0.005, 0.003, 0.001}, and the best solution is reported. Similarly,

for Net2 we may apply an offset from the centre to the meridian, but because the

path may start at any node along the left edge of the grid, we may use offsets in

the larger range of -25 to +24. The meridian is a vertical column of nodes given

by x = N/2 + offset where x = 0..N − 1.

Table 4.4 and Table 4.5 show the LR and LR-CP meridian scan results for N50.

LR %RE LR-CP mscan %RE
min avg max min avg max

Net1 N50 T200 3.65 8.843 16.07 0 1.071 10.60
Net1 N50 L200 1.36 2.455 3.04 0 1.188 3.04
Net2 N50 T200 3.85 10.989 24.27 0 0.361 6.68
Net2 N50 L200 0.21 2.071 3.02 0 0.675 2.73

Table 4.4: Initial LR and LR-CP mscan %RE, 8 thresholds

LR CPU (sec) LR-CP mscan CPU (sec)
min avg max min avg max

Net1 50T 0.031 0.052 0.079 0.094 0.356 1.391
Net1 50L 0.046 0.053 0.094 0.109 0.338 1.141
Net2 50T 0.031 0.056 0.079 0.078 0.270 2.375
Net2 50L 0.046 0.052 0.078 0.078 0.236 1.438

Table 4.5: Initial LR and LR-CP mscan CPU, 8 thresholds

These results are only a minor improvement on LR-CP with a single centre merid-

ian. Note that the average RE for Net1 N50 T200 has been reduced from 1.59%

to 1.07%, with a maximum RE of 10.60%. The Net2 results are better, the

average %RE for N50 T200 dropping from 1.21% to 0.361%, with a maximum

of 6.68%. Not as good as we might have expected, however. It appears that for

these random valued networks a single meridian is not sufficient, no matter where

it is placed.

Another consideration is the CPU time required for such a meridian scan. Note

how the average meridian scan CPU times are 4.5 to 6 times longer than for LR,

for which we see a modest improvement in the maximum RE.

71

BSCAN: 115 1: 000000000000000000000000000001100000000000 :

BSCAN: 294 2: 000000000111110000000000000000000000000000 :

BSCAN: 384 1: 000000000000000011111111111111000000000000 :

BSCAN: 761 1: 000000000000000000000000000000001000000000 :

BSCAN: 934 1: 000001111111111111111111111111111000000000 :

BSCAN: 1038 1: 000001000000110100010000100000000000000000 :

BSCAN: 1165 1: 000000110000000000000000000000000000000000 :

BSCAN: 1169 1: 011111111111111111111111110000000000000000 :

BSCAN: 1276 1: 011111111001111111111111111111111111111111 :

BSCAN: 1355 1: 000000011111111110001111111010000000011000 :

BSCAN: 1913 1: 000000000000000000000111111000000000000000 :

BSCAN: 2196 1: 000000000000000000000001111110000000000000 :

BSCAN: 2234 1: 000000000000000001100111000000000000000000 :

BSCAN: 2398 1: 000011111111111111111111110000000000000000 :

BSCAN: 2429 1: 0100 :

BSCAN: 2439 1: 000000000000000000000000000000101111000000 :

BSCAN: 2601 1: 000000000000011011000000000000000000000000 :

BSCAN: 3777 1: 000000000000000000110000110000001111111111 :

Figure 4.5: Net1 N50 T200 cases, selection of BSCAN results

In the cases where we do get near-optimal results, where do these near-optimal

meridians occur? Each row of Figure 4.5 shows a sample of the results, indicating

which meridians produced a solution with the same cost as the best one. Each

row shows the 41 meridian results from offset=[-20,20] and a ’1’ if that meridian

produced the best result.

From this there appears at first to be no clear pattern. Some cases have only one

or two successful meridians, while others such as (1276,1) can have them almost

anywhere.

72

BSCAN: 192 1: 0000000000000000000000000000000000000100000000000000 :
BSCAN: 431 1: 011000 :
BSCAN: 444 2: 0000000000000000000000111111100000000000000000000000 :
BSCAN: 463 1: 0101110001111100001100111111111110011111111111110010 :
BSCAN: 667 1: 0000000000000001111000000000000011111111111111111110 :
BSCAN: 803 1: 0110 :
BSCAN: 1575 2: 0000000000000000000000000000111111110000000000111000 :
BSCAN: 1913 1: 0110 :
BSCAN: 2138 1: 0110 :
BSCAN: 2258 1: 0111111111111111110111111111111111111110000000000010 :
BSCAN: 2396 1: 0000000000000000000100000000000000000000000000000000 :
BSCAN: 2413 1: 0111100110111111111111111011111111111111111111111110 :
BSCAN: 2843 2: 00000111111100 :
BSCAN: 2879 1: 0110 :
BSCAN: 2983 1: 0000000000000000000000100000000000000000000000000000 :
BSCAN: 3079 1: 0111111111111111111111111111111111100000000000000000 :
BSCAN: 3126 1: 0000000000000000000000000000000000100000000000000000 :
BSCAN: 4710 1: 000111111000 :
BSCAN: 4817 1: 0000000000000000000000000001111111111100000000000000 :
BSCAN: 5092 1: 0110 :

Figure 4.6: Net2 N50 T200 cases, selection of BSCAN results

Figure 4.6 shows a sample of the Net2 results, with the same wide variation in

where the best meridians can occur.

In conclusion, using the LR-CP method on these random valued grid networks

does not produce the quality of results we saw for the Submarine Transit Path

problem. There seems to be no pattern in where to place the meridian. Trying

all possible meridians takes too long, and even then we might need more than

one meridian. Another approach is needed, and the answer is to be found by

comparing the LR paths with the optimal paths produced with CPlex. This is

the subject of the following section.

73

4.4 Second Hybrid Method

In this section we look at the optimal CPlex paths, to see what properties they

have that might give us clues as to why the LR paths do not follow the optimal

paths. From this analysis we will be able to calculate a value for each node in the

network, after a single application of LR, which will allow us to position meridians

that effectively filter out non-optimal paths.

4.4.1 Theory

Recall that in our implementation of Dijkstra’s algorithm (DA) we have made

a modification so that when we sum the shortest z(λ) value for a node we also

store the sum of the edge times leading to that node. If we apply DA in both

directions we then have, for each node, forward and reverse totals for z(λ) and

for the transit time corresponding to the min z(λ) paths.

Furthermore, the nodes along the path of the LR solution have the property that

the two-way totals for z(λ) are constant and the total time is also constant. If

we look at the optimal paths produced by CPlex we find this is not the case.

Rather, the z(λ) values rise and fall as does the slack time as defined by the DA

path times. If we calculate the deviations from min z(λ) and the value of slack

time along the CPlex paths, we observe that in most cases the z(λ) value will

rise slightly at the same place that slack time falls. This is shown for (115,1) and

(1165,1) in Figure 4.7.

74

Figure 4.7: Plots of z(λ) and slack time margin (SM) along CPlex path, expressed
as percentage deviations from the LR path values. SM is the percentage of slack
time, zL is the percent rise in z(λ) above z(λ)min.

75

Now consider just the two Net1 cases (115,1) and (1165,1) below. In either case

there are only 2 meridians where the best solution is found.

BSCAN: 115 1: 000000000000000000000000000001100000000000 :

BSCAN: 1165 1: 000000110000000000000000000000000000000000 :

BSCAN: 1276 1: 011111111001111111111111111111111111111111 :

BSCAN: 1355 1: 000000011111111110001111111010000000011000 :

BSCAN: 2196 1: 000000000000000000000001111110000000000000 :

BSCAN: 3777 1: 000000000000000000110000110000001111111111 :

Referring back to Figure 4.7, note how the areas of the plot where z(λ) rises

and slack time drops correspond to the meridian offset where LR-CP found the

best solution. This indicates that the optimal path is one in which more of the

available time is used in areas that allow the z(λ) value to rise only slightly.

This general behaviour is observed in every case, and is similar to the behaviour

observed in the previous chapter, where the optimal path lay in a region with

slightly higher z(λ) but much lower slack time.

The corresponding plots for the remaining four cases are shown in Figure 4.8 and

Figure 4.9.

76

Figure 4.8: Plots of z(λ) and slack time margin (SM) along CPlex path for Net1
(1276,1) and (1355,1).

77

Figure 4.9: Plots of z(λ) and slack time margin (SM) along CPlex path for Net1
(2196,1) and (3777,1).

78

Making use of this property, we may calculate a new parameter R given by

Ratio R =
(T2 − T1)

(z(λ)2 − z(λ)1)
(4.2)

where T is the node sum of time calculated by DA and z(λ) is the two-way sum of

the modified edge costs for each node. If T1 is the time of the LR path and z(λ)1

is the z(λ) of that path, which are constant for a given value of λ, then for every

node with T2 and z(λ)2 we may then calculate the value of R. The value zL1 is

the minimum for z(λ) and T2 ≥ T1, so the value of R will always be positive.

What this R value gives us is a ratio of path time to change in z(λ), and where

this ratio is highest is an indicator of places in the network where the path time

rises higher (thus using more of the available time) while the z(λ) value rises

slightly. These should indicate where the parallel valleys are in the z(λ) plot.

Figure 4.10 shows a plot of these R values for Net1 case (1165,1).

Figure 4.10: Net1 (1165,1) ZR with key 1

Notice where the CPlex path and the LR path diverge is where the R value is the

highest. The term ’key 1’ will be explained shortly. Figure 4.11 shows the plot

of R values for Net1 case (15878,1), which was previously identified as the worst

79

Net1 T200 case with a RE of 11.06% and was shown in Figure 4.3. In this plot

there are two branches where the LR and CPlex paths diverge, and both of the

CPlex branches show a higher R value.

Figure 4.11: Net1 (15878,1) ZR with key 1

Now that we have established a link between our R value and the possible location

of optimal paths, we proceed with the application and testing of this approach.

4.4.2 Procedure

Now that we can potentially identify areas of the network where the LR path de-

viates from the optimal path, we need some way to use this information. We may

use a meridian to temporarily constrain the network as before, but we then face

two questions: where to place the meridian, and what value of R is appropriate?

From the plots shown so far it appears that the best place to use a meridian to

constrain the network is at the point where the distance between the LR path

and the path of high R value is the greatest.

Let us set a node flag INI to true if the node lies on the initial LR path, and

we set another flag RMAX to true if that node has a high value of R (which we

define shortly). We have two choices here: we can disable all but the meridian

80

RMAX nodes and force the LR path to go through that small opening, or we

can disable only the meridian INI nodes and allow LR to find an alternate path

without them. We call the first approach aggressive and the second approach

conservative. This is our first variable.

The first step after applying LR is to calculate the R values for every feasible

node in the network. We also calculate the mean R and the standard deviation

σ given by

σ =
1

N

√∑
i

(Ri −R)2 (4.3)

We set the threshold for RMAX as RTH = R + iσ, for i = [5, 4, 3, 2, 1, 0] where

i is the highest value for which the maximum value of R is greater than RTH .

For any node with R > RTH we set the RMAX flag. We may also choose to

arbitrarily set RTH = R. This choice becomes our second variable.

After calculating the R values, we then examine the nodes in each meridian to

see what the maximum distance is between the INI node and any RMAX node

on that meridian. After scanning all meridians, we select the one with the largest

such distance. We do this in order to find the place where the potential optimal

path differs the most from the initial LR path.

Before proceeding to the algorithm, it must be noted that there are cases where

the R value does not indicate the optimal path. One such case is Net1 (3777,1)

shown in Figure 4.12.

81

Figure 4.12: Net1 (3777,1) ZR with key 1

Note how there is a region of high R value that does not correspond to the optimal

path. This arises because our calculation of the path time using DA allows the

time to exceed the time upper bound. If we disable the nodes where this is the

case before we calculate R, we get the situation shown in Figure 4.13.

82

Figure 4.13: Net1 (3777,1) ZR with key 3

Once again, the optimal path is seen to pass through an area of high R. The choice

of whether to ignore nodes for which the time total exceeds the time bound is

our third variable.

Figure 4.14 and Figure 4.15 show Net2 case (10161,1). Notice that key 3 is able

to identify the optimal path exactly.

83

Figure 4.14: Net2 (10161,1) ZR with key 1

Figure 4.15: Net2 (10161,1) ZR with key 3

84

RTH Slack Time
key Max Avg ST < 0 ST ≥ 0 Aggressive
1 X X X
2 X X
3 X X X
4 X X
5 X X X
6 X X
7 X X X
8 X X

Table 4.6: The 8 key values

We thus have three variables to consider: (i) the aggressive and conservative ap-

plication of meridians, (ii) allowing or disallowing nodes for which the calculated

path time based on z(λ) is within the time upper bound or not, and (iii) the

choice of RTH . This leads us to define 8 key values, shown in Table 4.6.

The meaning of k1 and k3 in Figure 4.12 and Figure 4.13 is now clear. The

only difference between key 1 and key 3 is that key 1 allows the slack time

to be negative. In other words, with key 1 the path time as calculated by our

modifications to Dijkstra’s algorithm are allowed to exceed the time upper bound.

To apply a meridian, we disable the nodes in question (either just the INI nodes,

or all but the RMAX nodes) and apply LR. There are several possible outcomes:

1. LR fails - critical nodes have been disabled

2. LR succeeds but cost is higher

3. LR succeeds and cost is lower

If LR fails, then we have disabled a critical node and need to invert the state of

the disabled flag for every node on the meridian. We apply LR again and move

on to the next meridian.

If the resulting path cost is higher, we have made the wrong move. We invert the

disabled flag for every node on the meridian, and apply LR again. If the path

cost is still higher, then we unset the disabled flags, mark this meridian as having

been tried, and move on to the next one.

The final algorithm is given in Algorithm 3.

85

Algorithm 3 ZR Method: Applying R-valued meridians

1: apply LR, get initial path and cost
2: for i = 1 to 10 do
3: calculate R for all nodes
4: set R threshold
5: set RMAX flags
6: scan all meridians and calculate distance from INI to RMAX (distR)
7: select meridian with max distR
8: if aggressive then
9: disable all meridian nodes except RMAX

10: else
11: disable all INI meridian nodes
12: end if
13: apply LR
14: if new cost is lower then
15: keep this barrier
16: store cost
17: else
18: if LR fails then
19: invert meridian flags
20: apply LR
21: else if LR cost is higher than initial cost then
22: if aggressive then
23: disable all but INI nodes
24: else
25: invert meridian flags
26: end if
27: apply LR
28: end if
29: if new LR cost is still higher than initial cost then
30: unset all meridian flags
31: mark this meridian as done
32: apply LR, store cost
33: end if
34: end if
35: end for

86

4.4.3 Key tests

In order to see which keys are most effective, we begin by applying the ZR method

of Algorithm 3 with a maximum of 10 passes on the Net1 T200 cases, using each

of the 8 keys on its own, ignoring the CPU times for now. Table 4.7 shows

the total, mean and maximum RE for all 200 cases, with the initial LR results

included for comparison. Table 4.8 shows these same results for Net2 N50.

%RE LR k1 k2 k3 k4 k5 k6 k7 k8
total 1730.5 109.6 196.3 167.9 234.0 111.6 206.1 444.6 296.4
avg 8.65 0.55 0.98 0.84 1.17 0.56 1.03 2.22 1.48
max 16.07 10.37 7.19 7.68 6.82 4.67 6.48 11.20 7.93

Table 4.7: Net1 N50 T200 LR-ZR %RE using 8 separate keys, 10 passes

%RE LR k1 k2 k3 k4 k5 k6 k7 k8
total 2213.5 176.4 311.0 335.4 376.8 183.2 342.3 451.1 329.3
avg 11.07 0.88 1.55 1.68 1.88 0.92 1.71 2.26 1.65
max 24.27 8.03 11.58 11.87 16.17 9.96 17.54 12.69 18.11

Table 4.8: Net2 T200 LR-ZR %RE using 8 separate keys, 10 passes

It is remarkable that by using key 1 and performing 10 passes (which is to say,

testing 10 meridians), the average RE for Net1 has been reduced from 8.96% to

0.55%, and for Net2 from 11.07% to 0.88%. However, the lowest maximum RE

for Net1 is still 4.67% with key 5. While no one key seems to solve every case,

many cases which could not be solved optimally by one key are solved by using

another. Recall the difference between key 1 and key 3: the slack time is allowed

to be negative for 1, and strictly non-negative for 3.

Hence it is only a question of which combination of keys we need to use. If we

consider the minimum RE values among a combination of keys from Table 4.7 we

see in Table 4.9 the best RE values obtained if we were to use that combination

of key values in sequence, that is, to apply Algorithm 3 with each of the keys

individually.

87

%RE all k1357 k2468 k1234 k5678 k135 k13 k123 k12
total 21.90 30.73 105.52 27.73 40.59 37.84 41.89 29.91 50.67
avg 0.11 0.15 0.53 0.14 0.19 0.20 0.21 0.15 0.25
max 1.40 1.40 6.48 1.40 1.45 1.75 2.87 1.40 3.90

Table 4.9: Net1 N50 T200 %RE using different keys combinations, 10 passes

Using all 8 keys it is possible to reduce the average RE to 0.11% and the worst case

%RE down to 1.40% for Net1, as shown in the first column. We may also achieve

nearly the same result using only the 4 keys of k1234. The k1357 combination

represents all the aggressive approaches, while k2468 uses all the conservative

approaches; the aggressive approach appears to perform better. However, the

mix of aggressive k13 and conservative k24 in k1234 gives us the best overall

result if we had to choose only 4 keys.

Similarly, Table 4.10 shows for Net2 how the worst case RE can be reduced from

8.03% to 2.49% by using all 8 keys, while the key combination k1234 can achieve

nearly the same result.

%RE all k1357 k2468 k1234 k5678 k135 k13 k123 k12
total 21.82 43.76 166.68 30.88 54.31 60.89 66.64 34.71 62.25
avg 0.11 0.22 0.83 0.15 0.27 0.30 0.33 0.17 0.31
max 2.49 5.10 8.34 2.85 5.07 5.97 5.97 2.85 3.14

Table 4.10: Net2 N50 T200 %RE using different keys combinations, 10 passes

Extending these key tests to the T200 sets of all sizes for both Net1 and Net2,

we now present the single key test results in Table 4.11 and the combination key

test results in Table 4.12.

88

N
et

S
iz

e
R

E
L
R

k
1

k
2

k
3

k
4

k
5

k
6

k
7

k
8

N
et

1
25

av
g

10
.7

8
0.

24
0.

23
0.

80
0.

66
0.

31
0.

29
1.

47
1.

33
m

a
x

2
2
.0

8
4
.6

4
4
.6

4
6
.8

3
5
.3

2
3
.9

0
3
.9

0
1
0
.9

3
9
.1

9

50
av

g
8.

84
0.

22
0.

19
0.

84
0.

60
0.

28
0.

28
1.

68
1.

36
m

a
x

1
6
.0

7
3
.7

2
3
.7

2
7
.6

8
4
.3

9
3
.0

6
3
.0

6
9
.5

8
9
.5

8

10
0

av
g

6.
84

0.
23

0.
21

0.
63

0.
43

0.
29

0.
25

1.
67

1.
41

m
a
x

1
2
.6

8
6
.9

5
6
.9

5
5
.1

2
2
.7

2
3
.0

2
2
.6

1
7
.2

5
6
.2

6

20
0

av
g

5.
29

0.
05

0.
05

0.
38

0.
39

0.
34

0.
28

1.
34

0.
97

m
a
x

8
.1

3
1
.1

7
1
.1

7
1
.7

2
2
.3

7
1
.7

5
1
.4

3
3
.9

4
4
.5

4

N
et

2
25

av
g

14
.3

1
0.

96
1.

35
2.

11
1.

71
0.

63
0.

84
2.

32
2.

16
m

a
x

3
6
.9

8
1
4
.9

4
2
1
.2

9
1
5
.8

8
1
5
.2

3
1
1
.7

5
1
1
.5

9
1
4
.6

3
1
6
.3

2

50
av

g
10

.9
9

0.
37

0.
40

1.
06

0.
85

0.
36

0.
36

1.
39

1.
26

m
a
x

2
4
.2

7
7
.4

5
6
.6

5
1
0
.8

8
1
2
.4

0
5
.0

4
4
.6

6
8
.8

9
1
0
.2

5

10
0

av
g

9.
20

0.
34

0.
43

1.
24

0.
88

0.
41

0.
50

1.
90

1.
40

m
a
x

1
6
.1

7
8
.2

2
9
.0

5
7
.8

3
8
.2

9
7
.7

2
9
.0

5
9
.7

0
9
.7

0

20
0

av
g

6.
95

0.
17

0.
26

1.
04

0.
85

0.
50

0.
45

1.
75

1.
35

m
a
x

1
0
.2

8
5
.4

8
7
.3

5
6
.2

7
6
.1

1
4
.1

3
7
.3

5
7
.3

1
5
.1

3

T
ab

le
4.

11
:

S
in

gl
e

ke
y

te
st

s
%

R
E

on
T

20
0

ca
se

s,
10

p
as

se
s

89

N
et

S
iz

e
R

E
a
ll

k
1
3
5
7

k
2
4
6
8

k
1
2
3
4

k
5
6
7
8

k
1
2
3

k
1
2

k
1
3

k
1
3
5

N
et

1
25

av
g

0.
06

0.
09

0.
08

0.
09

0.
17

0.
10

0.
19

0.
12

0.
10

m
a
x

1
.4

5
1
.4

5
1
.5

4
1
.4

5
3
.5

6
1
.4

5
4
.6

4
1
.5

2
1
.4

5

50
av

g
0.

07
0.

08
0.

10
0.

09
0.

16
0.

11
0.

18
0.

14
0.

09
m

a
x

1
.3

2
1
.3

2
1
.3

2
1
.8

5
1
.7

5
2
.5

4
3
.7

2
3
.0

2
1
.3

2

10
0

av
g

0.
04

0.
05

0.
06

0.
06

0.
16

0.
07

0.
19

0.
08

0.
06

m
a
x

0
.7

8
1
.2

9
1
.6

7
0
.7

8
1
.3

8
1
.2

9
6
.9

5
1
.6

2
1
.2

9

20
0

av
g

0.
05

0.
05

0.
05

0.
05

0.
28

0.
05

0.
05

0.
05

0.
05

m
a
x

1
.1

7
1
.1

7
1
.1

7
1
.1

7
1
.4

3
1
.1

7
1
.1

7
1
.1

7
1
.1

7

N
et

2
25

av
g

0.
21

0.
35

0.
45

0.
52

0.
37

0.
61

0.
79

0.
69

0.
38

m
a
x

4
.1

5
8
.1

7
6
.4

3
1
4
.9

4
4
.6

2
1
4
.9

4
1
4
.9

4
1
4
.9

4
9
.2

5

50
av

g
0.

09
0.

14
0.

16
0.

12
0.

20
0.

16
0.

24
0.

23
0.

17
m

a
x

2
.6

0
4
.4

4
3
.8

1
2
.7

0
3
.6

9
6
.1

9
6
.6

5
6
.1

9
4
.4

4

10
0

av
g

0.
07

0.
10

0.
17

0.
10

0.
23

0.
13

0.
26

0.
14

0.
11

m
a
x

2
.6

1
2
.6

1
3
.3

9
2
.6

1
3
.3

9
3
.3

2
7
.7

2
3
.3

2
2
.6

1

20
0

av
g

0.
07

0.
10

0.
12

0.
08

0.
27

0.
09

0.
11

0.
11

0.
10

m
a
x

2
.0

8
2
.0

8
2
.0

8
2
.0

8
2
.0

8
2
.0

8
2
.0

8
2
.0

8
2
.0

8

T
ab

le
4.

12
:

C
om

b
in

at
io

n
ke

y
te

st
s

%
R

E
on

T
20

0
ca

se
s,

10
p
as

se
s

90

In Table 4.11 we see a comparison between LR and the individual key tests.

In every key test, the RE is lower than for LR, sometimes substantially so. In

addition, key 1 appears to deliver the consistently lowest average RE of any key.

We will use this information shortly.

In Table 4.12 we see the effect of key combinations, including the use of all 8 keys,

in reducing the maximum and average RE. Using all 8 keys, we see uniformly good

results, with the average RE less than 0.1% for all but the Net2 N25 set. For

Net1, the maximum RE using all 8 keys is always less than 1.5%, while for Net2

the maximum RE is slightly higher. These results are nonetheless impressive,

given that the initial LR results for these data sets have average RE of between

5.29% and 14.31%.

So far we have not used any preprocessing to reduce the network size, as we have

thus far been concerned only with achieving better solutions. If the best results

are produced by using all 8 keys, then we need to consider the computation time

of applying the ZR method with each of the 8 keys.

Recall that if we have a feasible solution cost z, we may eliminate any node from

the network if the z(λ) sum through that node is higher than z. Since we are

able to use LR-ZR to reduce the RE more than LR, and therefore lower the path

cost z, it follows that LR-ZR will be able to reduce the network more than LR.

Net Size Num N1 % avg N2 % avg
Net1 25 200 46.24 16.99

50 200 36.48 10.55
100 200 35.96 6.48
200 85 35.82 3.64

Net2 25 200 52.30 16.74
50 200 31.04 7.40

100 200 34.35 4.65
200 200 50.52 3.02

Table 4.13: Network reduction using 3 passes with key 1

The LR-ZR method using key 1 is able to offer the most consistent reduction in

RE. If we were to first apply LR-ZR with key 1 and only use a small number of

passes, we might be able to substantially reduce the network prior to applying all

8 keys. Table 4.13 shows the average network reduction on all T200 cases using

91

LR compared with using 3 passes of LR-ZR with key 1.

The N1 column shows the percentage of nodes remaining after applying LR, then

using the LR path cost to filter out infeasible nodes. Similarly, the column N2

shows the corresponding reduction using the path cost achieved after 3 passes of

LR-ZR with key 1. Note that LR is only able to reduce the network on average

to about 30%, while LR-ZR is able to achieve an average of 3%, or up to an order

of magnitude better. With the network thus reduced, we also reduce the CPU

time of applying LR-ZR with the entire set of 8 keys.

Also, it is observed from experimental results that most cases do not improve

much after 5 passes of LR-ZR. Thus, our final LR-ZR method will consist of 3

inital passes with key 1, followed by up to 7 passes with each of the 8 keys. The

steps are outlined in Algorithm 4, which uses Algorithm 3 as a subroutine.

Algorithm 4 ZR Method: Applying LR-ZR

1: apply LR, get initial path and cost z
2: filter infeasible nodes using z
3: apply LR-ZR, 3 passes with key 1
4: store cost z and path
5: remove all meridians
6: apply LR
7: filter infeasible nodes using z
8: for i = 1 to 8 do
9: apply LR-ZR, 5 passes with key i

10: store cost z and path
11: remove all meridians
12: apply LR
13: retrieve best path and cost z
14: filter infeasible nodes using z
15: end for
16: remove all meridians
17: apply LR
18: retrieve best path and cost z
19: filter infeasible nodes using z
20: apply LR
21: report final cost z and path

The results of this approach are discussed in the next section.

92

4.5 LR-ZR Results for Net1 and Net2

Table 4.14 shows the RE, LGAP and CPU average and maximum values for

all T200 problem sets of Net1 and Net2 using LR, and Table 4.15 shows the

corresponding results using LR-ZR.

LR
%RE %LGAP CPU (sec)

Net Size Num N2 % avg avg max avg max avg max
Net1 25 200 46.24 10.78 22.08 14.811 23.140 0.008 0.016

50 200 36.48 8.84 16.07 10.388 16.485 0.052 0.079
100 200 35.96 6.84 12.68 7.439 14.211 0.495 0.719
200 85 35.82 5.29 8.13 5.586 8.357 3.671 3.828

Net2 25 200 52.30 14.31 36.98 21.777 40.614 0.009 0.031
50 200 31.04 10.99 24.27 14.998 28.453 0.056 0.079

100 200 34.35 9.20 16.17 10.474 18.044 0.572 0.828
200 200 50.52 6.95 10.28 7.421 10.717 4.065 4.313

Table 4.14: LR results for Net1 and Net2 T200

LR-ZR
%RE %LGAP CPU (sec)

Net Size Num N2 % avg avg max avg max avg max
Net1 25 200 12.24 0.07 1.62 0.821 7.019 0.025 0.078

50 200 7.14 0.08 2.54 0.633 4.511 0.109 0.296
100 200 4.78 0.05 0.56 0.441 2.108 0.877 2.000
200 85 3.21 0.07 0.29 0.344 1.168 6.131 9.234

Net2 25 200 9.26 0.28 7.20 1.248 10.890 0.026 0.141
50 200 4.15 0.08 2.69 0.663 9.469 0.102 0.468

100 200 2.51 0.08 2.61 0.518 3.859 0.939 3.938
200 200 2.10 0.09 2.08 0.443 2.812 8.740 20.97

Table 4.15: LR-ZR results for Net1 and Net2 T200

The column N2 indicates the average size of the network after filtering out infea-

sible nodes. For the larger network sizes N100 and N200, LR-ZR is able to reduce

the network by over 95%, where LR is only able to reduce by at most 65%.

The average LR-ZR RE is below 0.1% for all test sets except for Net2 N25, which

has an average of 0.28%. Again, with the exception of Net2 N25, the maximum

RE is below 3%. The average %LGAP is similarly low for all test sets, however

the maximum values are still quite high for the smaller sizes of N25 and N50.

Since this is our only measure of optimality when we do not have CPlex reference

93

solutions, these LGAP figures are not sufficient to give a confident bound on

optimality. Doing this is the subject of the next chapter.

The CPU times for LR-ZR are on average about double than for LR, and in the

worst case are only about 5 times higher. Note that the average LR-ZR CPU

times for N50 are roughly one third smaller than using the LR-CP meridian scan

in Section 4.3, and the maximum CPU times for N50 are about 5 times smaller

for LR-ZR. In addition to taking less CPU time, the LR-ZR method is able to

produce far better results than LR-CP on these random valued grid networks.

Even though there is much more processing involved in the LR-ZR method, our

use of preprocessing effectively reduces the network so that we can afford to run

LR-ZR with all 8 keys on a strongly reduced network.

Finally, there is a clear trend in the RE and LGAP figures: as the network size

increases, these values decrease. This is consistent with the decrease in number of

cases which have an initial LR duality gap over 5% as the network size increases, as

was shown previously in Table 4.1. Recall that for Net1 N200, we only had 85 such

cases out of a population of almost 100,000 possible problems. The conclusion

we may draw is that for grid networks with randomly generated edge costs and

times, as the network size increases LR-ZR is able to produce correspondingly

better solutions.

94

4.6 Summary

In this chapter we have considered random valued grid networks similar to those

studied in the literature. We have altered the randomly generated edge weights

to produce problems with much higher initial duality gaps, from which we select

the worst 200 cases of each size out of a possible set of almost 100,000. Thus,

we are considering only the very worst problems, ones for which LR is unable to

produce quality solutions.

The LR-CP hybrid method was shown to be insufficient for these networks, as

the single central meridian does not always intersect an area where the slack time

is high. In fact, the areas where the LR and CPlex (optimal) paths diverge may

occur in several local places, unlike in the networks of the Submarine Transit

Path problem.

We therefore have developed a second hybrid method, which uses information

gathered by our modified Dijkstra’s algorithm, to calculate a ratio value R which

we use to predict where the LR path may not be optimal. Using this ratio to

position meridians, we temporarily constrain the network and apply LR in order

to seek improved paths with lower cost z. These improved z values are then used

to further reduce the network of suboptimal nodes.

The resulting method uses a combination of LR preprocessing and two applica-

tions of the LR-ZR method to produce optimal or near-optimal results on the

selected problem sets, which represent for each problem size the worst 200 cases

out of a population of almost 100,000 problems. The average CPU times for

LR-ZR are about 2 times higher than LR, and in the worst case almost 5 times

higher.

95

Chapter 5

Using LR-ZR For Preprocessing

In this thesis we have developed two hybrid methods based on Lagrange Re-

laxation, the LR-CP method which was applied to the Submarine Transit Path

problem, and the LR-ZR method which was developed for the random valued

network problem. Although the LR-ZR method is able to produce optimal or

near-optimal solutions for the random valued networks, the gap between the so-

lution cost z and the LR lower bound z(λ) may still be significant, and thus we

cannot always guarantee that LR-ZR will find an optimal solution. If a guarantee

of optimality is required, then we need an additional processing step to close this

gap. We consider two methods to do this, the bounded search method of Carlyle

et al. (2007) and the commercial LP solver package CPlex. In this sense, we are

using LR-ZR as a preprocessing step before gap closing.

First, we introduce the bounded search method LRE-A of Carlyle et al. (2007),

which uses Lagrange Relaxation preprocessing and path enumeration with ag-

gregated constraints to perform a bounded search. We then apply LR-ZR as

a preprocessing step on the random valued network problems and close the gap

with both the bounded search and CPlex. Secondly, we apply the LR-ZR method

(with the LRE-A search) to the Submarine Transit Path problem, and compare

how well this method performs on the two distinct types of networks we have

studied.

We begin with a discussion of the LRE-A method on the random valued grid

networks.

96

5.1 Random Valued Networks

The first step is to apply LRE-A to all random valued network problem sets,

in order to determine how well the bounded search method works with only LR

preprocessing. We use a duality gap tolerance of 1% and set a search time limit

of 300 seconds. For comparison, we also use CPlex with no preprocessing, set

the gap tolerance to 1% and allow it to run to completion. Table 5.1 shows the

results.

Num N2 LRE-A %RE CPU (sec) No. CPlex 1% CPU
avg avg max avg max TO avg max

Net1 25 200 46% 0.03 0.70 0.009 0.016 0 0.23 1.53
50 200 36% 0.11 0.88 0.070 0.454 0 2.13 11.11

100 200 36% 0.48 7.20 9.701 300.7 2 29.6 124.8
200 85 36% 1.15 5.37 136.3 304.1 27 525.7 1582.1

Net2 25 200 52% 0.00 0.00 0.009 0.031 0 0.26 2.56
50 200 31% 0.02 0.53 0.059 0.079 0 3.10 15.09

100 200 34% 0.14 0.95 2.494 150.1 0 31.78 215.3
200 200 51% 0.70 3.66 49.66 304.5 20 420.2 1939.5

Table 5.1: T200 LRE-A results with 1% tolerance and 300 sec time limit

The column N2 shows the average size of the reduced network after LR prepro-

cessing. The average ranges from 31% to 52%, indicating that for these problems

LR is not that effective in filtering out non-optimal nodes. This is hardly surpris-

ing, given the large initial duality gaps of these problem sets. The column “No.

TO” shows how many cases timed out, reaching the 300 second time limit during

the LRE-A search. For Net1 N200, 27 of the 85 problem cases reached the time

limit, or almost one third of the cases in this problem set.

The weakness of LR filtering is reflected in the CPU times needed for the search.

For the N25 and N50 sizes, all cases ran to optimality, while in the N200 problem

sets there were a significant number of cases which reached the time limit before

reaching 1% optimality. The maximum RE is over 5% for these cases. However,

comparing CPU times for the N25 and N50 problem sets which did complete

within the time limit, we see that LRE-A is on average about 20 times faster

than CPlex. For the N100 and N200 problem sets the ratio of average CPlex

CPU times to average LRE-A times is much lower, between 3 and 6, indicating

that the bounded search performance declines as the networks increase in size.

97

CPU1 CPU2 CPU3 CPU4 CPU5
Num Init Setup PP Search Total

Net1 50 200 0.014 0.030 0.008 0.018 0.070
100 200 0.087 0.316 0.094 9.205 9.701
200 85 0.522 2.478 0.726 132.596 136.321

Net2 50 200 0.014 0.034 0.007 0.003 0.059
100 200 0.093 0.376 0.105 1.920 2.494
200 200 0.558 2.721 0.797 45.586 49.663

Table 5.2: T200 LRE-A CPU averages

Table 5.2 shows the breakdown of average CPU times for each part of the LRE-A

method. CPU1 is the problem initialisation time, CPU2 is the time to apply LR

for the first time, CPU3 is the preprocessing time to filter out infeasible nodes

and edges, and CPU4 is the bounded search time. CPU5 is the total processing

time. The values for CPU1, CPU2 and CPU3 for Net1 and Net2 are similar,

but the CPU4 values vary considerably. For the N100 and N200 problem sizes,

the bounded search time CPU4 makes up most of the processing time. For Net1

N200 the search time accounts for 97% of the total average CPU time.

The next step is to replace the LR preprocessing step with the LR-ZR method,

in order to find near-optimal values for the z upper bound, and then apply the

bounded search as before. We denote this approach as LRE-ZR, and although

we omit the ‘A’ we are still using aggregate constraints. We set the gap tolerance

to 0% and search for optimality. We also solve these problems using CPlex with

a gap tolerance of 0%, and let the problems run to completion. No preprocessing

is used with CPlex. Table 5.3 shows these results.

Num N2 LRE-ZR CPU (sec) No. CPlex CPU
avg avg max TO avg max

Net1 25 200 12.2 % 0.025 0.078 0 0.38 2.41
50 200 7.14 % 0.111 0.313 0 2.26 15.9

100 200 4.78 % 0.889 2.000 0 32.05 163.7
200 85 3.21 % 13.62 212.99 0 556.8 1635.9

Net2 25 200 9.26 % 0.027 0.157 0 0.40 3.94
50 200 4.15 % 0.102 0.468 0 3.25 16.8

100 200 2.51 % 0.938 3.953 0 35.98 236.9
200 200 2.10 % 9.011 28.08 0 447.8 2355.7

Table 5.3: T200 LRE-ZR results, 0% tolerance and 300 sec time limit

As before, the N2 column shows the average network size remaining after pre-

98

processing, and the “No. TO” column shows the number of cases that timed

out during the search (ie. none). The first thing to note is how much lower the

N2 values are, compared with the previous table. The best average has been

reduced from 31% to 2.1%. Indeed, as the network size increases, the N2 average

decreases.

If we compare the CPlex run times, the result of running CPlex on the original

networks without preprocessing, we see that the average CPU times for the Net1

and Net2 N200 sets are 41 and 49.7 times faster, respectively, using LRE-ZR.

Also, comparing the average CPU times for LRE-A from Table 5.1 with the

LRE-ZR times in Table 5.3 we see that LRE-ZR can be an order of magnitude

faster than LRE-A.

All problems run to optimality within the time limit, so there are no timeout

cases. The longest time is about 213 seconds, from the Net1 200 set. Of the 85

cases in this set, all but 10 complete in under 10 seconds. Excluding these 10

cases, the average search time for the remaining problems in this set is about 4%

of the total running time.

CPU1 CPU2 CPU3 CPU4 CPU5
Num Init Setup LR-ZR Search Total

Net1 50 200 0.015 0.031 0.065 0.000 0.111
100 200 0.086 0.316 0.477 0.010 0.889
200 85 0.515 2.449 3.179 7.473 13.616

Net2 50 200 0.015 0.034 0.054 0.000 0.102
100 200 0.093 0.375 0.470 0.001 0.938
200 200 0.558 2.736 5.533 0.184 9.011

Table 5.4: T200 LRE-ZR CPU averages

Table 5.4 shows, in the same manner as in Table 5.2, the breakdown of average

CPU times for each part of the LRE-ZR method. The values for CPU1, CPU2

and CPU3 for Net1 and Net2 are similar, but the CPU4 values for Net2 are an

order of magnitude smaller than for Net1. The reason for this difference is not

immediately clear. However, recall that Net1 has paths that traverse the network

diagonally, while the Net2 paths traverse horizontally. This means that Net2

paths will generally be shorter than the Net1 paths, resulting in a shorter search

tree.

99

C
P

le
x

n
o

p
p

C
P

le
x

L
R

p
p

C
P

le
x

L
R

-Z
R

p
p

L
R

E
-Z

R
N

u
m

av
g

m
ax

av
g

m
ax

av
g

m
ax

av
g

m
ax

N
et

1
25

20
0

0.
38

2.
41

0.
11

1.
70

0.
09

0.
53

0.
02

5
0.

07
8

50
20

0
2.

26
15

.8
6

0.
59

8.
05

0.
35

1.
14

0.
11

1
0.

31
3

10
0

20
0

32
.0

5
16

3.
66

4.
60

39
.2

7
1.

88
4.

06
0.

88
9

2.
00

0
20

0
85

5
5
6
.7

9
16

35
.9

1
7
0
.2

2
25

3.
37

1
0
.9

1
18

.7
0

1
3
.6

1
6

21
2.

98
5

N
et

2
25

20
0

0.
40

3.
94

0.
15

1.
47

0.
09

0.
84

0.
02

7
0.

15
7

50
20

0
3.

25
16

.7
5

0.
83

16
.8

4
0.

31
1.

42
0.

10
2

0.
46

8
10

0
20

0
35

.9
8

23
6.

92
4.

97
52

.1
5

1.
80

6.
50

0.
93

8
3.

95
3

20
0

20
0

4
4
7
.7

8
23

55
.6

9
1
1
5
.1

4
55

4.
19

1
3
.9

8
28

.6
7

9
.0

1
1

28
.0

78

T
ab

le
5.

5:
C

P
le

x
C

P
U

ti
m

es
fo

r
ra

n
d
om

va
lu

ed
n
et

w
or

k
s

N
et

1
an

d
N

et
2,

T
20

0
ca

se
s

L
R

E
-Z

R
1%

L
R

E
-Z

R
0%

N
u
m

N
2

%
R

E
C

P
U

(s
ec

)
C

P
U

(s
ec

)
av

g
av

g
m

ax
av

g
m

ax
av

g
m

ax
N

et
1

50
18

96
7.

80
%

0.
04

3
0.

78
2

0.
10

6
0.

32
8

0.
10

7
0.

34
4

10
0

49
5

4.
92

%
0.

05
1

0.
62

8
0.

87
2

2.
86

0
0.

87
8

3.
32

8
20

0
85

3.
21

%
0.

06
5

0.
29

4
8.

53
7

21
2.

9
14

.7
35

21
3.

0
N

et
2

50
53

14
4.

67
%

0.
03

4
0.

93
8

0.
10

2
0.

43
8

0.
10

2
0.

48
4

10
0

21
48

3.
02

%
0.

05
3

0.
85

2
0.

98
5

4.
86

0.
98

7
4.

91
20

0
52

3
2.

18
%

0.
06

3
0.

62
0

8.
50

4
59

.2
1

8.
77

2
59

.7
7

T
ab

le
5.

6:
T
op

5
L
R

E
-Z

R
re

su
lt

s,
1%

an
d

0%
to

le
ra

n
ce

w
it

h
30

0
se

c
ti

m
e

li
m

it

100

So far we have not considered the effect of preprocessing on CPlex solution times.

We have two methods for preprocessing, LR and LR-ZR. Table 5.5 shows the

average and maximum CPU times for CPlex to solve to optimality the T200

cases for Net1 and Net2, with comparison values for the LRE-ZR method also

solving to optimality.

The columns represent CPlex with no preprocessing, with LR preprocessing, and

with LR-ZR preprocessing. The final columns show the CPU times for LRE-ZR.

Just applying LR preprocessing dramatically reduces the CPU times for CPlex,

while LR-ZR preprocessing further reduces the CPU time. For example, Net1

N200 average CPU time for CPlex with no preprocessing is 556.79 seconds, which

reduces to 70.22 seconds with LR preprocessing, and is further reduced to 10.91

seconds with LR-ZR preprocessing. The corresponding average CPU time for

LRE-ZR is 13.616 seconds, with a maximum time of about 213 seconds. In this

problem set of 85 there are 3 cases which take more than 126 seconds to solve.

Without these 3 cases, the average total solution time is 7.98 seconds. These 3

cases illustrate the problem with using a bounded search method that has, in the

worst case, exponential time complexity.

Finally, we apply the LRE-ZR method to all the Net1 and Net2 cases with an

initial LR duality gap over 5%. The number of such cases for N={25,50,100,200}

was previously presented in Table 4.1. We ignore the N25 size since these prob-

lems are small enough to be solved easily by LRE-A. The LRE-ZR results for

N={50,100,200}, using 1% and 0% tolerances, are shown in Table 5.6.

Across these larger problem sets, the N2 averages are consistent with the previous

sets of 200 cases, as are the average CPU times to find optimality. What is

interesting is how close the running times are with a 1% tolerance and a 0%

tolerance. This indicates that the difference in CPU time to complete the search

to optimality is not significant. For Net2 the average time taken to do the search

is less than 4% of the total time, as was noted for the Net1 200 set. Thus for

most problems, the search time is small compared to the preprocessing time.

This is in marked contrast to the LRE-A method of Table 5.1, where the search

time accounts for up to 97% of the total CPU time. The LR-ZR method is thus

very effective at reducing the network size and thus dramatically speeding up the

101

bounded search.

5.2 Submarine Transit Path Problem

In the previous section we applied LRE-A to the random valued network prob-

lems, and then compared this with LR-ZR preprocessing followed by the bounded

search. In this section we repeat the same steps with the 1-speed Submarine

Transit Path problem, using both LR-CP and LR-ZR to do the preprocessing.

The first step is to apply LRE-A, and again we use a time limit of 300 seconds

but a tolerance of 0%. The results are shown in Table 5.7.

N2 LRE-A %RE CPU (sec) No.
Fcn Size avg avg max avg max TO
F1 20s 29.5 % 0.00 0.00 0.015 0.032 0

40s 19.3 % 0.00 0.00 1.185 80.703 0
80s 15.8 % 0.61 21.80 88.1 301.0 31

F2 20s 33.4 % 0.00 0.00 0.015 0.032 0
40s 27.6 % 0.00 0.00 1.139 72.500 0
80s 30.0 % 0.64 24.53 70.6 301.0 26

F3 20s 40.8 % 0.00 0.00 0.014 0.031 0
40s 37.6 % 0.00 0.00 0.902 50.485 0
80s 38.9 % 0.59 22.22 71.9 301.1 26

F5 20s 23.6 % 0.00 0.00 0.015 0.032 0
40s 15.8 % 0.00 0.00 0.098 0.250 0
80s 14.7 % 0.20 9.26 35.9 300.9 11

Table 5.7: 1-speed Submarine Transit Path Problem, LRE with 0% tolerance and
300 sec time limit

The N20 and N40 cases are all solved to optimality, but the N80 cases start to

have timeout problems. Each of these problem sets has 120 cases, so to have 31

of them exceed the 5 minute time limit indicates that LR is unable to reduce the

network size sufficiently.

Before applying the bounded search with LR-ZR as a preprocessing step, let us

first apply LR-ZR on its own. Applying LR-ZR to the Submarine Transit Path

problem is a straightforward matter, as the layout of the grid network for this

problem is essentially the same as for the random valued network Net1. However,

one small difference is the use of diagonal edges which necessitate using a wider

102

meridian to produce an effective barrier. As before, the meridian consists of 3

rows of nodes. No other changes are required to the LR-ZR method.

The results, shown in Table 5.8, compare the results of LR-ZR with those of LR-

CP using the set of 8 slack time thresholds. The initial LR results are included

for comparison.

103

L
R

L
R

-Z
R

L
R

-C
P

sm
08

F
cn

S
iz

e
%

R
E

C
P

U
%

R
E

C
P

U
%

R
E

C
P

U
av

g
m

ax
av

g
m

ax
av

g
m

ax
av

g
m

ax
av

g
m

ax
av

g
m

ax
F
1

20
s

1.
98

28
.4

5
0.

01
5

0.
03

1
0.

00
0.

00
0.

01
6

0.
03

2
0.

00
0.

56
0.

01
6

0.
03

2
40

s
2.

65
38

.9
2

0.
08

8
0.

12
5

0.
00

0.
00

0.
09

9
0.

25
0

0.
01

0.
53

0.
09

6
0.

20
3

80
s

2.
81

29
.3

7
0.

50
7

0.
75

0
-0

.0
1

0.
38

0.
68

9
1.

75
0

0.
01

0.
77

0.
58

9
1.

51
6

16
0s

2.
83

29
.6

2
3.

19
0

6.
64

1
-0

.1
4

0.
50

3.
70

6
11

.1
72

-0
.1

0
1.

05
3.

71
1

9.
35

9
F
2

20
s

1.
90

27
.7

8
0.

01
5

0.
03

2
0.

00
0.

00
0.

01
5

0.
03

2
0.

00
0.

00
0.

01
6

0.
03

2
40

s
2.

40
28

.2
0

0.
08

6
0.

12
5

0.
00

0.
33

0.
09

2
0.

20
3

0.
01

0.
54

0.
09

3
0.

23
4

80
s

2.
58

28
.5

4
0.

44
9

0.
71

8
0.

00
0.

34
0.

49
7

1.
53

2
0.

04
1.

69
0.

49
7

1.
26

6
F
3

20
s

1.
82

28
.5

3
0.

01
4

0.
03

2
0.

00
0.

00
0.

01
5

0.
03

2
0.

00
0.

00
0.

01
4

0.
03

2
40

s
2.

11
28

.5
0

0.
08

1
0.

12
5

0.
00

0.
00

0.
08

7
0.

17
2

0.
00

0.
00

0.
08

8
0.

23
5

80
s

2.
40

28
.5

9
0.

40
7

0.
73

4
0.

00
0.

99
0.

43
8

1.
34

4
0.

01
0.

99
0.

44
1

1.
09

4
F
5

20
s

1.
68

17
.5

5
0.

01
4

0.
03

1
0.

00
0.

00
0.

01
5

0.
03

2
0.

00
0.

00
0.

01
6

0.
03

2
40

s
1.

83
30

.4
4

0.
09

1
0.

14
0

0.
00

0.
00

0.
09

4
0.

14
1

0.
00

0.
00

0.
09

4
0.

14
1

80
s

2.
14

32
.1

4
0.

50
3

0.
76

6
0.

00
0.

00
0.

52
2

0.
87

5
0.

00
0.

00
0.

52
6

0.
92

2
16

0s
2.

03
23

.8
8

2.
97

2
4.

78
2

-0
.1

9
0.

00
3.

09
9

5.
81

3
-0

.1
9

0.
00

3.
13

9
6.

31
3

T
ab

le
5.

8:
C

om
p
ar

is
on

of
L
R

-Z
R

an
d

L
R

-C
P

on
1-

sp
ee

d
n
et

w
or

k
s

104

The small negative RE averages for N80 and N160 indicate that LR-ZR and

LR-CP are each able to find better solutions than CPlex did in the given time.

LR-ZR is able to produce a maximum RE below 1% for all problem sets, which

is better than the LR-CP worst-case maximum RE of 1.69% for F2-80s, while

using approximately the same CPU time. This is impressive given the extra

computation needed by LR-ZR.

Also note that for F5 both LR-ZR and LR-CP are able to find optimal solutions

for all problem sizes without a bounded search. For the F5-160s problem set,

there are 3 cases for which CPlex, having run for 4 hours, still had a gap of more

than 5%. For these cases, both LR-ZR and LR-CP were able to find optimal

solutions in about 5 seconds.

Adding the LRE-A bounded search method to find optimality after LR-ZR and

LR-CP preprocessing, we get the results shown in Table 5.9.

A search time limit of 300 seconds is used, and this limit is reached in only one

problem set, F1-160s. For LRE-ZR the time limit is reached a total of 10 times,

and for LRE-CP a total of 11 times. Even though the time limit for the bounded

search was reached in these 21 cases, in no case were the solutions worse than the

CPlex results.

105

L
R

L
R

E
-Z

R
L
R

E
-C

P
sm

08
F
cn

S
iz

e
%

R
E

C
P

U
%

R
E

C
P

U
%

R
E

C
P

U
av

g
m

ax
av

g
m

ax
av

g
m

ax
av

g
m

ax
av

g
m

ax
av

g
m

ax
F
1

20
s

1.
98

28
.4

5
0.

01
5

0.
03

1
0.

00
0.

00
0.

01
6

0.
03

2
0.

00
0.

00
0.

01
6

0.
03

2
40

s
2.

65
38

.9
2

0.
08

8
0.

12
5

0.
00

0.
00

0.
09

9
0.

23
4

0.
00

0.
00

0.
09

7
0.

20
3

80
s

2.
81

29
.3

7
0.

50
7

0.
75

0
-0

.0
2

0.
00

0.
60

9
2.

03
1

-0
.0

2
0.

00
0.

61
5

2.
01

6
16

0s
2.

83
29

.6
2

3.
19

0
6.

64
1

-0
.1

5
0.

00
32

.0
24

3
1
1
.2

3
-0

.1
3

0.
19

34
.4

38
3
0
9
.5

6
F
2

20
s

1.
90

27
.7

8
0.

01
5

0.
03

2
0.

00
0.

00
0.

01
5

0.
04

7
0.

00
0.

00
0.

01
6

0.
03

2
40

s
2.

40
28

.2
0

0.
08

6
0.

12
5

0.
00

0.
00

0.
09

3
0.

18
8

0.
00

0.
00

0.
09

3
0.

21
9

80
s

2.
58

28
.5

4
0.

44
9

0.
71

8
0.

00
0.

00
0.

51
6

1.
86

0
0.

00
0.

00
0.

52
5

2.
90

6
F
3

20
s

1.
82

28
.5

3
0.

01
4

0.
03

2
0.

00
0.

00
0.

01
5

0.
03

2
0.

00
0.

00
0.

01
4

0.
03

2
40

s
2.

11
28

.5
0

0.
08

1
0.

12
5

0.
00

0.
00

0.
08

8
0.

18
8

0.
00

0.
00

0.
08

7
0.

23
4

80
s

2.
40

28
.5

9
0.

40
7

0.
73

4
0.

00
0.

00
0.

45
7

1.
53

1
0.

00
0.

00
0.

46
2

1.
84

4
F
5

20
s

1.
68

17
.5

5
0.

01
4

0.
03

1
0.

00
0.

00
0.

01
8

0.
03

2
0.

00
0.

00
0.

01
4

0.
03

2
40

s
1.

83
30

.4
4

0.
09

1
0.

14
0

0.
00

0.
00

0.
09

5
0.

14
1

0.
00

0.
00

0.
09

5
0.

14
1

80
s

2.
14

32
.1

4
0.

50
3

0.
76

6
0.

00
0.

00
0.

52
8

0.
98

4
0.

00
0.

00
0.

52
9

0.
92

2
16

0s
2.

03
23

.8
8

2.
97

2
4.

78
2

-0
.1

9
0.

00
3.

32
9

28
.8

6
-0

.1
9

0.
00

3.
36

9
28

.8
90

T
ab

le
5.

9:
1-

sp
ee

d
S
u
b
m

ar
in

e
T
ra

n
si

t
P
at

h
P

ro
b
le

m
,
co

m
p
ar

is
on

of
L
R

E
-Z

R
an

d
L
R

E
-C

P

106

Finally, we consider how LR-ZR may be used as a preprocessing step for CPlex.

Recall that even with a time limit of up to 48 hours (for F1-160s), CPlex was

unable to close the duality gap in many cases, especially for the N80 and N160

problem sizes. For example, the largest duality gap after 48 hours of computation

was 10.83% for one case in F1-160s. Throughout this work we have been using

these original CPlex reference solutions for the Submarine Transit Path problem

with the knowledge that they may not be optimal. Now we have the chance to

see if LR-ZR preprocessing can speed up CPlex.

Table 5.10 shows the results of using LR and LR-ZR as preprocessing steps prior

to solving the mixed integer LP with CPlex with a 1 hour time limit. Where

preprocessing has been used, the CPU times include this preprocessing time.

107

N
o

p
re

p
ro

ce
ss

in
g

L
R

p
re

p
ro

c.
L
R

-Z
R

p
re

p
ro

c.
F
cn

S
iz

e
G

ap
C

P
U

(s
ec

)
C

P
U

(s
ec

)
C

P
U

(s
ec

)
av

g
m

ax
av

g
m

ax
av

g
m

ax
av

g
m

ax
F
1

20
s

0.
00

0.
00

0.
39

3.
69

0.
05

0.
14

0.
05

0.
16

40
s

0.
00

0.
00

9.
90

13
4.

38
0.

30
3.

58
0.

25
0.

56
80

s
0.

13
5.

64
20

88
.0

0
43

29
9.

10
1.

71
18

.0
6

1.
45

4.
69

16
0s

2.
04

10
.8

3
47

04
8.

96
17

30
13

.0
0

7
5
.0

1
36

04
.4

7
7
.5

2
22

.1
1

F
2

20
s

0.
00

0.
00

0.
21

2.
63

0.
05

0.
11

0.
06

0.
19

40
s

0.
00

0.
00

4.
71

13
3.

41
0.

27
0.

53
0.

27
0.

53
80

s
0.

18
5.

40
92

2.
39

14
40

0.
70

1.
96

6.
59

1.
87

5.
20

F
3

20
s

0.
00

0.
00

0.
21

1.
19

0.
06

0.
11

0.
06

0.
11

40
s

0.
00

0.
00

5.
90

20
8.

77
0.

31
0.

56
0.

31
0.

55
80

s
0.

16
6.

14
78

8.
11

14
40

0.
60

2.
29

6.
27

2.
30

5.
48

F
5

20
s

0.
00

0.
09

0.
19

1.
20

0.
05

0.
09

0.
05

0.
09

40
s

0.
02

0.
10

2.
47

32
.0

0
0.

23
0.

56
0.

23
0.

59
80

s
0.

05
2.

16
38

9.
52

14
40

0.
50

1.
33

5.
41

1.
37

5.
41

16
0s

0.
63

9.
27

34
91

.4
7

14
41

0.
70

13
.0

4
81

.6
3

13
.2

9
81

.5
3

T
ab

le
5.

10
:

1-
sp

ee
d

S
u
b
m

ar
in

e
T
ra

n
si

t
P
at

h
P

ro
b
le

m
,
C

P
le

x
ti
m

es
w

it
h

L
R

an
d

L
R

-Z
R

p
re

p
ro

ce
ss

in
g

108

The first surprise is that, with either LR or LR-ZR preprocessing, the average

CPlex CPU times are up to 3 orders of magnitude faster for F1-80s. The second

surprise is how close the average and maximum CPU times are for both prepro-

cessing methods, with one notable exception: F1-160s. The large maximum time

using LR preprocessing is due to one specific problem case, F1-160s (13,4). With

no preprocessing, after 48 hours CPlex still had a gap of 4.88%. With only LR

preprocessing, CPlex gets gap of 2.05% after 1 hour and 0.6% after 4 hours. But

with LR-ZR preprocessing, which takes 8.515 seconds, CPlex is then able to find

the optimal solution in a further 0.469 seconds, for a total time of 8.984 seconds.

(By way of comparison, LRE-ZR was able to achieve an optimal result for this

problem in 6.14 seconds.)

The most-improved case is (3,3) from the F1-160s set. The original CPlex so-

lution (without preprocessing, taking 48 hours) had a gap of 8.9%. With LR

preprocessing CPlex takes 23.265 to find an optimal solution; the combination of

LR-ZR preprocessing and CPlex takes 8.156 seconds, and both methods have a

duality gap of 0.004%. LRE-ZR finds the optimal solution in 4.844 seconds with

a duality gap of 0.004%.

These results clearly demonstrate the value of using either LR or LR-ZR prepro-

cessing to improve the CPlex running times on large problems. They also show

that the LR-ZR method, while able to achieve near-optimal results on its own, is

also superior to LR in preprocessing a large grid network prior to running CPlex.

109

5.3 Summary

In this chapter we have used the LR-ZR method as a preprocessing step prior

to using a bounded search or CPlex to close the duality gap and find optimal

solutions. In both cases, LR-ZR is superior to LR as a preprocessing method as

it is more effective at reducing the network size.

On the random valued network problems Net1 and Net2,

• The combination of LR-ZR preprocessing and the bounded search, LRE-ZR,

is up to 2 orders of magnitude faster than CPlex with no preprocessing.

• On larger network sizes, LRE-ZR is an order of magnitude faster than LRE-

A.

• When LR-ZR is used as a preprocessing step for CPlex, the average CPU

times are reduced by up to 3 orders of magnitude.

• Compared to LR preprocessing, LR-ZR preprocessing is able to reduce the

average CPU times for CPlex a further 6 to 8 times.

On the Submarine Transit Path problem,

• LRE-ZR is up to 2 orders of magnitude faster than LRE-A

• LR and LR-ZR are comparable as a preprocessing step in reducing the

CPlex CPU time.

• For one problem set (F1-160s), LR-ZR may further reduce the average

CPlex CPU time by an order of magnitude, and the maximum CPU time

is reduced by 2 orders of magnitude.

As a preprocessing step, LR-ZR allows CPlex to find optimal solutions for large

network problems in a very short time, improving on Lagrange Relaxation pre-

processing by up to an order of magnitude.

The LR-ZR method has been shown to be effective on both the Submarine Tran-

sit Path problem, with its smoothly varying edge costs, and the grid network

problems Net1 and Net2 which have randomly varying edge costs and weights.

110

And finally, the LR-ZR method developed in this thesis, when used in conjunction

with the bounded search method of Carlyle et al. (2007), improves on the best

reported method from the literature by one to two orders of magnitude.

111

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The Constrained Shortest Path Problem (CSPP) is a well-known problem in

optimisation and is known to be NP-hard. Until recently, label setting methods

have been regarded as the best approach, but these methods suffer from space

complexity issues which limit the size of networks that may be considered. More

recent work has focussed on using Lagrange Relaxation to perform preprocessing,

with a bounded search to close the remaining duality gap. Lagrange Relaxation

is a simple yet powerful technique for solving constrained optimisation problems,

but it may not achieve optimal or near-optimal results on its own. Often, large

duality gaps may be present, and the bounded search may then take exponential

time.

This thesis builds on the latter approach. We make a simple modification to

Dijkstra’s algorithm, one that does not involve any additional work, in order to

generate an estimate of path time at every node. We then combine this informa-

tion with a heuristic method for determining where to apply a bisecting meridian,

which temporarily constrains the network to find improved solutions. This hy-

brid method, combining Lagrange Relaxation with a simple heuristic based on

constraint programming, is shown to be superior at reducing the network at the

preprocessing stage, delivering optimal or near-optmal solutions with computa-

tion times that are only a few times longer than the initial Lagrange Relaxation

112

time.

The following is a brief outline of the contribution of this thesis.

In this thesis we consider rectangular grid networks with a single side constraint,

similar to the kind that have been studied in the literature. We select problems

that have a large duality gap when Lagrange Relaxation is applied, as these are

the problems of interest. We study a large number of problems from two different

types of grid network problems.

The first network studied is a Submarine Transit Path problem in which the

transit field contains four sonar detectors at known locations, each with the same

detection profile, and the submarine capable of 2 speeds. The single side con-

straint is an upper bound on the total transit time. For the original 2-speed case

the initial duality gap may be as high as 10%, but for the 1-speed case the initial

duality gap may be as high as 30%. The first hybrid LR-CP method uses a single

central bisecting meridian along which an additional constraint on slack time is

applied, using Lagrange Relaxation to propagate this constraint. This method

is able to produce improved solutions that are generally within 1% of optimal.

Using the computation time for the initial Lagrange Relaxation as a baseline, the

total computation time for the first hybrid method is on average about 2 times

this.

The second problem is a grid network from the literature. Edge costs, times, and

lengths are randomly generated. As the values given in the literature problems

do not yield problems with a sufficiently high duality gap, the ranges of the

random edge values are varied slightly and from a population of approximately

100,000 possible problems, only the worst 200 from each problem size are chosen

for study. These problems have an initial duality gap as high as 40%. The second

hybrid method, LR-ZR, uses a calculated ratio and multiple bisecting meridians,

and is able to produce solutions that are generally within 0.1% of optimal, with

computation times that are on average 2 to 4 times the initial Lagrange Relaxation

time.

The second hybrid method, LR-ZR, is also used as a preprocessing step on both

network problems. This method is able to reduce the network up to 10 times more

113

than Lagrange Relaxation on its own. For the Submarine Transit Path problem,

when LR-ZR is used to perform preprocessing the average CPU time for CPlex

to solve to optimality is reduced by up to 3 orders of magnitude. Compared with

Lagrange Relaxation preprocessing, the LR-ZR preprocessing is able to further

reduce the CPlex CPU time by up to an order of magnitude on one problem set.

On the random valued network problems, Net1 and Net2, LR-ZR preprocessing

is able to reduce average CPlex CPU times by 6 to 8 times more than if Lagrange

Relaxation preprocessing is used.

A bounded search method from the literature, which uses aggregate constraints

to limit the search, is also used to close the gap and find optimal solutions. For

the random valued network problems, LR-ZR preprocessing combined with the

bounded search is able to find optimal solutions up to 50 times faster than using

CPlex without preprocessing. Compared to the LRE-A method of Carlyle et al.

(2007), this LRE-ZR method is up to an order of magnitude faster on the random

valued networks, and up to 2 orders of magnitude faster on the Submarine Transit

Path problem.

6.2 Future Work

In this thesis we have limited the problems under study to square grid networks

with a single side constraint, in order to fully test the effectiveness of these hybrid

methods on simple problems.

One obvious extension is to include problems with more than one side constraint.

With multiple side constraints, finding Lagrange multipliers cannot be done with

Kelley’s cutting plane algorithm, but must use another method such as sub-

gradient optimisation. This may require more computation, leading to longer

computation times for Lagrange Relaxation, which is the central algorithm used

in this thesis. In addition, subgradient optimisation may or may not provide the

same quality of lower bounds, an issue that would need to be explored.

Future work may also include networks that are not grids, that is, networks with

a more arbitrary structure. The two hybrid methods described in this work rely

114

on the existence of a bisecting meridian to temporarily constrain the network. As

long as such a meridian can be constructed for any given network, there is every

reason to believe that these hybrid methods could be applied to any network

structure or problem.

115

Appendix A

Sonar Detector Locations

The coordinates x, y for the 4 detectors in each of the 30 patterns are given below.

The values are km from the origin, with x and y in the range 0 to 79.

static int detectorArray[][numDetectors][2] = {

{ {65,13}, { 3,60}, {21,13}, {19, 8} }, // 1

{ { 7,20}, {38,66}, {35,45}, {28,56} }, // 2

{ {17,25}, {69,41}, {55,27}, {37,45} }, // 3

{ {55,62}, {53,75}, { 6,20}, {59,49} }, // 4

{ {15,61}, { 0,25}, {41,44}, { 0,78} }, // 5

{ {65,16}, {18,22}, {23,60}, {79,10} }, // 6

{ {18,33}, {66,76}, {17,78}, {37,15} }, // 7

{ {77,21}, {60,75}, {51,55}, { 7, 9} }, // 8

{ {35,22}, {48,12}, {21,47}, {56, 7} }, // 9

{ { 6,35}, {55,58}, {10,38}, { 8,39} }, // 10

{ {64,31}, {14,10}, {48, 4}, {42, 5} }, // 11

{ {26,57}, {57,29}, {22,32}, {21,58} }, // 12

{ { 9,62}, {47,45}, {50,41}, { 1,58} }, // 13

{ {49,34}, {62, 7}, {30,33}, {53,71} }, // 14

{ {74, 3}, {18,22}, {32,54}, {68,56} }, // 15

{ {12,66}, {44,56}, {76,15}, { 5,28} }, // 16

{ {66,20}, {75, 3}, { 7,55}, {66,72} }, // 17

{ {37,11}, {71,26}, {51,67}, {17,50} }, // 18

116

{ {44,70}, {65,46}, {36, 5}, {53,61} }, // 19

{ {75,27}, {49,47}, {33,26}, {72,56} }, // 20

{ {77,51}, {15, 4}, {61,65}, {53,24} }, // 21

{ {38,28}, {37,65}, {18,62}, { 3,31} }, // 22

{ {70,17}, { 6,29}, {62,58}, {35, 9} }, // 23

{ {22,24}, {68, 3}, {73, 0}, {18,13} }, // 24

{ {52,43}, {69,66}, {49,35}, {47,13} }, // 25

{ {79,48}, {39, 6}, {23,74}, {25,65} }, // 26

{ { 4,24}, {59,29}, {32,71}, {38,64} }, // 27

{ {78,51}, {14,75}, {16,18}, {57,25} }, // 28

{ {28,69}, {25,11}, {39, 8}, { 5, 4} }, // 29

{ {12,61}, {49,33}, {26,43}, {51,38} } // 30

};

117

Bibliography

[1] Y.P. Aneja, V. Aggarwal, and K.P.K. Nair. Shortest chain subject to side

constraints. Networks, 13:295–302, 1983.

[2] Y.P. Aneja and K.P.K. Nair. The constrained shortest path problem. Naval

Research Logistics Quarterly, 25:549–553, 1978.

[3] M.O. Ball, T.L. Magnanti, C.L. Monma, and G. Nemhausser. Network

routing. In Handbooks in Operations Research and Management Science Vol

8. North Holland, Amsterdam, 1995.

[4] J.E. Beasley and N. Christofides. An algorithm for the resource constrained

shortest path problem. Networks, 19:379–394, 1989.

[5] Dimitri P. Bersekas. Convex Analysis and Optimization. Athena Scientific,

Belmont, Massachusetts, 2003.

[6] Thomas H. Byers and Michael S. Waterman. Determining all optimal and

near-optimal solutions when solving shortest path problems by dynamic pro-

gramming. Operations Research, 32(6):1381–1384, November 1984.

[7] L. Caccetta, I. Loosen, and V. Rehbock. Computational methods for a

class of discrete valued optimal control problems. In Proceedings of the

7th International Conference on Optimization: Techniques and Applications

(ICOTA7), Kobe, Japan, Curtin University of Technology, Western Aus-

tralia, 2007.

[8] W. Matthew Carlyle and R. Kevin Wood. Lagrangian relaxation and enu-

meration for solving constrained shortest-path problems. In Proceedings

118

of the 38th Annual ORSNZ Conference, Operations Research Department,

Naval Postgraduate School, Monterey, California, 2003.

[9] W.M. Carlyle, J.O. Royset, and R.K. Wood. Lagrangian relaxation and enu-

meration for solving constrained shortest-path problems. in review, March

2007.

[10] W.M. Carlyle, J.O. Royset, and R.K. Wood. Routing military aircraft with

a constrained shortest-path algorithm. in review, April 2007.

[11] W.M. Carlyle and R.K. Wood. Near-shortest and k-shortest simple paths.

Networks, 46:98–109, 2003.

[12] M. Desrochers and F. Soumis. A generalized permanent labelling algorithm

for the shortest path problem with time windows. INFOR, 26(3):191–212,

1988.

[13] E.W. Dijkstra. A note on two problems in connexion with graphs. Nu-

merische Mathematik, 1:269–271, 1959.

[14] I. Dumitrescu and N. Boland. Algorithms for the weight constrained shortest

path problem. International Transactions in Operations Research, 8:15–29,

2001.

[15] I. Dumitrescu and N. Boland. Improved preprocessing, labeling and scal-

ing algorithms for the weight-constrained shortest path problem. Networks,

42(3):135–153, 2003.

[16] Paul C. Etter. Underwater Acoustic Modeling: Principles, Techniques and

Applications. Elsevier Applied Science, 1991.

[17] M.L. Fisher. The lagrangian relaxation method for solving integer program-

ming problems. Management Science, 27(1):1–18, January 1981.

[18] B.L. Fox and D.M. Landi. Searching for the multiplier in one-constraint

optimization problems. Operations Research, 18(2):253–262, March 1970.

[19] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their

uses in improved network optimisation algorithms. Journal of the ACM,

34(3):596–615, July 1987.

119

[20] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their

uses in improved network optimization algorithms. Journal of the Associa-

tion for Computing Machinery, 34(3):596–615, July 1987.

[21] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W.M. Freeman and Co., San Francisco,

1979.

[22] T. Gellermann, M. Sellmann, and R. Wright. Shorter path constraints for the

resource constrained shortest path problem. In Lecture Notes in Computer

Science, Issue 3524, pages 201–216. Springer-Verlag, Germany, 2005.

[23] C.L. Hallam. Hierarchical Path Generation: An Application to Submarine

Transit Paths. Honours Dissertation, Murdoch University, Western Aus-

tralia, 1997.

[24] G. Handler and I. Zang. A dual algorithm for the constrained shortest path

problem. Networks, 10:293–310, 1980.

[25] R. Hassin. Approximation schemes for the restricted shortest path problem.

Mathematics of Operations Research, 17(1):36–42, February 1992.

[26] J. Hooker. Logic-Based Methods for Optimization - Combining Optimization

and Constraint Satisfaction. John Wiley and Sons, New York, 2000.

[27] Hugh Everett III. Generalized lagrange multiplier method for solving prob-

lems of optimum allocation of resources. Operations Research, 11(3):399–417,

May 1963.

[28] J.M. Jaffe. Algorithms for finding paths with multiple constraints. Networks,

14:95–116, 1984.

[29] L.S. Jennings, M.E. Fisher, K.L. Teo, , and C.J. Goh. MISER3 Optimal Con-

trol Software: Theory and User Manual Version 3. Department of Mathe-

matics, The University of Western Australia, Nedlands, WA 6907, Australia,

2004.

[30] H.C. Joksch. The shortest route problem with constraints. Journal of Math-

ematical Analysis and Applications, 14:191–197, 1966.

120

[31] J.E. Kelley Jr. The cutting-plane method for solving convex programs. Jour-

nal of the SIAM, 8(4):703–712, December 1960.

[32] Myungsoo Jun and Raffaello D’Andrea. Path planning for unmanned aerial

vehicles in uncertain and adversarial environments. In S. Butenko et al.,

editor, Cooperative Control: Models, Applications and Algorithms, chapter 6,

pages 95–110. Kluwer Academic Publishers, 2003.

[33] F. Kuipers, T. Korkmaz, M. Krunz, and P. Van Mieghem. Performance

evaluation of constraint-based path selection algorithms. IEEE Network,

2004.

[34] Kurt Mehlhorn and Mark Ziegelmann. Resource constrained shortest paths.

In European Symposium on Algorithms, pages 326–337, 2000.

[35] George L. Nemhauser and Zev Ullmann. A note on the generalized lagrange

multiplier solution to an integer programming problem. Operations Research,

16(2):450–453, 1968.

[36] A.K. Pujari, S. Agarwal, and V.P. Gulati. A note on the constrained shortest

path problem. Naval Research Logistics Quarterly, 31:87–89, 1984.

[37] C. Ribeiro and M. Minoux. Solving hard constrained shortest path prob-

lems by lagrangian relaxation and branch-and-bound algorithms. Methods

of Operations Research, 53:303–316, 1986.

[38] R.T. Rockafellar. Lagrange multipliers and optimality. SAIM Review,

35(2):183–238, June 1993.

[39] M. Sellmann. Cost-based filtering for shorter path constraints. In Proceedings

of the 9th International Conference on Principles and Practise of Constraint

Programming (CP). Volume LNCS 2833., Springer-Verlag, pages 694–708,

2003.

[40] Meinolf Sellmann and Torsten Fahle. Constraint programming based la-

grangian relaxation for the automatic recording problem. Annals of Opera-

tions Research, 118:17–33, 2003.

121

[41] C.C. Skiscim and B.L. Golden. Solving k-shortest and constrained shortest

path problems efficiently. Annals of Operations Research, 20:249–282, 1989.

[42] Maarten van Emden. Review of: Principles of constraint programming by

krzysztof r. apt. available online, published in SIAM Review 2006, 48(2),

2003.

[43] J.Y. Yen. Finding the k-shortest, loopless paths in a network. Management

Science, 17:711–715, 1971.

[44] Michael Zabarankin, Stanislav Uryasev, and Robert Murphey. Aircraft rout-

ing under the risk of detection. Wiley InterScience, 2006.

[45] Michael Zabarankin, Stanislav Uryasev, and Panos Pardalos. Optimal risk

path algorithms. In R. Murphey and P.M. Paradalos, editors, Coopera-

tive Control and Optimisation, chapter 13, pages 273–298. Kluwer Academic

Publishers, 2002.

[46] Mark Ziegelmann. Constrained Shortest Paths and Related Problems. PhD

thesis, Universitaet des Saarlandes, 2001.

Every reasonable effort has been made to acknowledge the owners of copyright

material. I would be pleased to hear from any copyright owner who has been

omitted or incorrectly acknowledged.

122

