
Faculty of Science 

Department of Applied Chemistry 

 

 

 

 

 

 

 

Controlling Precipitation of Value Added Zirconia 
 

 

 

 

 

Geoffrey A Carter 

 

 

 

 

 

 

 

 
This thesis is presented for the Degree of 

Doctor of Philosophy 

of 

Curtin University of Technology 
 

 

 

 

 

June 2009



Declaration 

 

 

 

 

 

 

 

 

“To the best of my knowledge and belief this thesis contains no material previously 

published by any other person except where due acknowledgment has been made. 

This thesis contains no material which has been accepted for the award of any other 

degree or diploma in any university”. 

 

Geoffrey A Carter 

 

 

 

 

  

Signature:  

 

Date: 30 of April 2009 

 i



Abstract 

 

Advanced zirconia-based materials have many important applications in electronics 

and medical applications, and of most interest to this research, solid oxide fuel cells 

(SOFC) which is a key technology for alternative and hydrogen-based energy 

generation. The SOFC in its most basic form is a device for converting hydrogen and 

oxygen into water with a resulting generation of power. Most SOFC 

manufacturers/developers are using zirconia doped with yttria as the electrolyte with 

variations on the amount of yttria. The SOFC places high demands on the ceramic 

components, placing significant demands on powder processing technology to enable 

fabrication of reliable components. It has been shown that the process of co-

precipitation of three initially mixed chlorides, aluminium chloride, yttrium chloride 

and zirconium oxychloride in aqueous solutions, can produce an oxide powder that 

can be used in SOFC manufacture. Zirconia powders synthesised from aqueous 

solution in this way have been found, however, to include hard agglomerates which 

are detrimental to further processing and applications. 

 

Industrial manufacture of zirconia and zirconia-yttria products can best be 

summarised as four step operation; (1) hydrolyse of zirconyl chloride and mixing of 

other solutions, (2) precipitation, (3) calcination (4) forward processing for particle 

size, surface area and handle-ability characteristics . The use of aqueous solutions 

allows for lower costs of production and reduced waste. However such production is 

hampered by limited understanding of the fundamental chemistry particularly during 

aqueous processing which limits the development of better powders for the 

widespread use of SOFC’s. The aim of this project was to develop an understanding 

of these problems based on an industrial process that is in use within Western 

Australia. The work has been broken up into five sections, with the first four dealing 

with predominately non-stabilized zirconia and tracks the process from aqueous 

chemistry through to final ceramic. The final section does the same for a 3 mole% 

yttrium partially stabilised zirconia. 

 

The influence of concentration and added chloride salts on the solution speciation of 

zirconyl chloride solutions, and the precipitate formed upon addition of aqueous 
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ammonia, has been investigated using a combination of techniques, such as SAXS, 

DLS, ICP-OES, TEM and SEM. 

 

To further investigate the precipitation process the effect of pH of precipitation, 

starting solution concentration, and agitation levels on the particle size of hydrous 

zirconia precipitates have been investigated. The pH of precipitation was also found 

to have a significant impact on the type of hydrous zirconia produced. TGA/DTA, 

micro combustion and TEM / EDS were used to investigate the difference in the 

powders produced at pH 3 and 12.  

 

The two hydrous zirconium manufactured at pH 3 and 12 have been studied as 

further processing consistent with industrial procedures was undertaken, including 

how the differences in structure due to the pH of precipitation, may effect the 

calcination, in situ and ex situ x-ray diffraction was used for this. 

 

With the knowledge developed thus far, two 3 mol% partially stabilised zirconia (P-

SZ) samples suitable for the SOFC market were manufactured from solutions 

through to ceramics.  

 

The combination of SAXS, DLS, in situ XRD, TEM, ICP, TGA/DTA, micro 

combustion, and standard ceramic testing was found to be excellent for providing 

comprehensive information on changes through an industrial process and will allow 

optimisation to produce powders suitable for SOFC applications.  
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1. Introduction & Overview 
 

1.1. Introduction 

 

1.1.1. Introduction to Project 

 

Doral Specialty Chemical (DSC) is based in the Kwinana industrial area located in 

Western Australia. The manufacturing plant was initially constructed by ICI 

chemicals in the 1980’s. ICI sold the establishment to Hanwa Advanced ceramics in 

the early 1990’s who ran the plant until it was sold to Millennium Inorganic 

Chemicals in 2000. Millennium sold the plant to Doral Specialty Chemicals in 2004. 

 

The plant has manufactured zirconia and zirconium chemicals since its construction. 

ICI chemicals developed a method for direct extraction of the zirconia from zircon 

sands which was colloquially termed the “double salt method”, covered under patent 

no. AU-B-53972/86. This method of manufacture proved commercially non-

competitive and was not pursued by Hanwa who introduced the manufacture of 

zirconium chemicals from imported zirconium oxy-chloride crystals. This is the 

processing route that is used currently and the methods developed are a mixture of 

the old ICI methods and the new method of manufacture using a different raw 

material. 

 

Zircon is the mineral (ZrSiO4) from which all zirconia materials are derived. It is 

separated from other mineral sand ores by a wet-gravity technique followed by dry-

separation magnetic and electrostatic processes.  World production of zircon was 

900,000 tonnes in 1998; of which 300,000 tonnes was supplied by Western Australia.  

Industrial zirconia is principally used as an opacifier in ceramic glazes and 

refractories. High quality zirconia is used for the electronics market, mostly for 

multilayer ceramic capacitors and piezoelectric applications, and potentially as solid 

oxide fuel cells in both hydrogen and natural gas powered systems. The value of 

zircon exported as zircon sand is $1500 per tonne.  The value of zircon as yttria 

stabilized zirconia is $300,000 per tonne (Internal Millennium Inorganic Chemicals 

Document 2002).   
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The market for zirconia has increasingly become more competitive and DSC and its 

previous owners have developed new products to take to the market place. One such  

product is yttria doped zirconia for use in the Solid Oxide Fuel Cell (SOFC) market. 

The ceramic of most interest is cubic zirconia (ZrO2), in its fully stabilised cubic 

form using 10 mole % yttria (Y2O3).  Yttria stabilised zirconia SOFC has the 

advantage of being able to use both hydrogen and lower grade fuels such as natural 

gas, and will therefore serve as the transitional technology through which the 

infrastructure of the hydrogen economy can mature. 

 

Hydrogen can be used instead of, or in combination with, conventional fuels. In 

advanced technologies such as fuel cells, hydrogen can be directly converted to 

electricity and thermal energy with greater than 80% efficiency. The Australian 

Government released the “National Hydrogen Study” in November 2003 

(Commonwealth Department of Industry, Tourism & Resources, 2003), which 

clearly recognised the critical role of hydrogen as a future energy source and the 

importance of research and development in all facets of the hydrogen economy.   

 

DSC has developed a method of homogenously chemically mixing alumina into the 

zirconia-yttria matrix. However the development of larger scale manufacturing 

techniques is currently significantly hampered by a lack of fundamental 

understanding of the chemical processes that exist within the manufacturing system. 

Much of this is due to poor knowledge of zirconia aqueous solution chemistry in 

mixing tanks etc. 

 

1.1.2. Yttria Doped Zirconia for Fuel Cells 

 

The SOFC in its most basic form is a device for converting hydrogen and oxygen 

into water with a resulting electrical generation of power. The obvious difference 

between a SOFC and other fuel cells is that the major component in the anodes, 

cathodes and electrolytes are all or partially made from an oxide ceramic. 

 

The SOFC is an intricate multi-component device requiring fabrication technologies 

that are complex, with each material in the device having to perform not only in its 

 2



own right but in conjunction with other components (Badwal, Fogger 1997). SOFC 

place high demands on both the materials that they are manufactured from as well as 

the manufacturing method. In addition, the components themselves are required to 

have good ionic/electrical properties as well as be able to withstand high operating 

temperatures whilst maintaining the mechanical properties that are required. They 

also must be reliable with typical life times of 40,000 - 50,000 hours (Badwal, 

Fogger 1997). For these reasons and more, most SOFC manufactures/developers are 

using zirconia doped with yttria as the electrolyte with variations on the amount of 

yttria (Ciacchi, Crane, Badwal, 1994). 

 

Bellon, Ratnaraj, Rodrigo (2002) outline some of the important physical 

characteristics that a precursor powder requires for the manufacture of a planer 

SOFC and how these requirements effect the manufacturing of the components. 

Carter et. al. (2003) showed that the process of co-precipitation of three initially 

mixed chlorides, alumina chloride, yttrium chloride and zirconium chloride, can 

produce an oxide powder that has a homogeneous distribution of all three 

constituents. This homogeneity in solid solution allows for control of the zirconia 

polymorphs and leads to better processing ability in the manufacture of the parts of 

the SOFC. 

 

1.1.3. Plant Design and Process 

 

The plant built to manufacture the yttria doped zirconia at DSC evolved from the 

existing plant which was designed for the original ICI process and had evolved to 

manufacture monoclinic zirconia. The existing plant could thus be used for the 

manufacture of monoclinic zirconia with the new smaller plant used for the high 

purity, high value fuel cell market. The plant process can be broken down into 8 

stages; hydrolysis, mixing, precipitation, washing/air drying, humidity drying, 

calcination, milling and spray drying. 

 

During the development cycle for the yttria doped zirconia it became evident that the 

product was not meeting the success criteria as defined by the requirements of 

Ceramic Fuel Cells Ltd., who were an integral part of the development cycle. This 

was due wholly to the presence of hard particles that were unmilled and/or 
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significantly larger than the required powder size present in the final product (Figure 

1). The presence of this large particle fraction was new to the experience of the 

manufacturing plant, however, numerous researchers have noted the presence of hard 

agglomerates found in zirconia powders synthesised by aqueous precipitation, with 

some suggesting ways of preventing development of the agglomerates, which whilst 

useful in laboratory situations are not practical on a large commercial scale 

(Kaliszewski, and Heuer 1990, Lauci 1997, Bannister and Garrett 1975, Rajendran 

1993, Li, Gao and Guo 1998). Monoclinic powder produced by the same process did 

not and has never developed the hard agglomerates and as such their presence was 

not anticipated. 

 

 
Figure 1. Optical micrograph of particles taken from ZY10A. Scale bar in top right 

hand corner. 

 

A method for separating out the large agglomerates using sedimentation and 

ultrasonic de-agglomeration was developed by Carter and Titkov (2001) that allowed 

the agglomerates to be investigated using Scanning Electron Microscope (SEM) 

imaging and Energy Dispersive Spectroscopy (EDS). This work showed that the 

agglomerates had the same composition as that of the other powders. Since no major 

differences could be found in the composition, and the available literature suggested 

that the formation of the agglomerates was due to the precipitation process 

(Kaliszewski, and Heuer 1990, Lauci 1997, Bannister and Garrett 1975, Rajendran 

1993, Li, Gao and Guo 1998), two plant trials were undertaken to develop a better 

understanding of the mechanisms at work. The two plant trials were both 2x2 full 

factorial Design of Experiment (DOE) trials and whilst not elucidating the actual 
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mechanisms at work demonstrated that the precipitation and changes in precipitation 

states influenced the presence of the problematic agglomerates (Carter 2002, Carter 

2003). 

 

1.1.4. This Research 

 

Research was initiated to help improve the fundamental understanding of the 

precipitation-agglomeration process for the aqueous precipitation processes 

conducted at DSC with a focus on compositions used for the manufacture of SOFC. 

 

The first step is to investigate the solution speciation of Zirconium Oxy Chloride 

(ZOC) and ZOC with yttrium chloride in aqueous solutions. This investigation was 

undertaken using Small Angle X-ray Scattering (SAXS) analysis. Zirconyl chloride 

was investigated using SAXS with differing concentrations in the solution (these 

solutions are distributed around commercially useful concentrations) as well as 

different trace element compositions in the starting solution as determined by ICP-

OES. Further to this, zirconyl chloride doped with yttrium chloride solutions were 

made and investigated using SAXS. These solutions were mixed at the appropriate 

ratios for use in SOFC applications. 

 

The second stage of the research was to develop an understanding of the precipitation 

process using a combination of SAXS and dynamic light scattering techniques. 

Crystallisation facilities were built and used to replicate the continuous precipitation 

process as used in DSC. A number of starting solution concentrations were tried 

along with time dependent investigations. In each case samples were taken from the 

precipitation process with a steric hindrance added and the flocculent size 

investigated using dynamic light scattering. 

 

It is hoped that this improved understanding will allow DSC to optimise the 

manufacture of yttrium stabilised zirconia for SOFC applications and zirconia 

precipitation generally, and thus be more competitive in the market place. 
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1.1.5. Experimental Design 

 

The principle aim of this research is to further the understanding of the fundamental 

chemistry of precipitated zirconia-yttria ceramics, focusing on the solution chemistry and 

precipitation/co-precipitation methods used by industrial manufactures and in line with the 

requirements of the SOFC market. The key principles points of interest in undertaking this 

research were; 

i) Study of the solution phase structure of the zirconyl chloride system under 

industrially relevant conditions. 

ii) Study of the precipitation process, characterising the products formed as a 

function of the precipitation conditions. 

iii) Investigate links between the solution phase structure and the precipitated 

products through to sintered ceramics. 

 

With this in mind it is relevant to discuss how such an investigation is to be 

undertaken and outline the experimental methods to be used. 

 

It is clear from the above statement that this investigation is some what linear in its 

approach due to the cumulative knowledge affect. Thus it is important to develop an 

understanding of the solution dynamics prior to precipitating them. The constraining 

points are that the research has to be of industrial relevance so sample selection both 

in concentrations and compositions where predetermined. 

 

1.2. Doral Specialty Chemicals’ Process 

 

Doral Specialty Chemicals owns the Rockingham zirconium chemicals plant located 

at 1 Ward Rd Rockingham. This plant was initially owned and developed by ICI 

Chemicals. 

 

The original plant process revolved around an ICI process known as the “Double Salt 

Method” (Australian Patent number AU-B-53972/86 and acceptance No 586467). 

The first part of the method is described in the patent documentation as: 

 

“ 1) A process for the preparation of Zirconium sulphate tetra hydrate comprising 

the steps of : 
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(i) Leaching a zirconium source with sulphuric acid to produce an acid 

leach slurry; 

(ii) Diluting the resulting acid leach slurry to produce zirconium sulphate 

tetra hydrate crystals in a diluted sulphuric acid slurry; 

(iii) Separating said zirconium sulphate tetra hydrate crystals from the diluted 

acid;” 

 

The remaining process is described as being 

 

“A process for the preparation of zirconium compositions which on calcinations 

form Zirconia, which process comprises: 

Preparing an aqueous zirconium sulphate solution of pH not greater than zero; 

adding an ammonia source to said zirconium sulphate solution until the pH of said 

solution is in the range of from 0.1 to 2.5; and collecting the precipitated zirconium 

composition.” 

 

This plant and process was sold to Hanwa Advanced Ceramics in the early 1990’s. 

Hanwa modified the process by commencing the process with imported zirconium 

oxy chloride crystals. The process was developed to run using existing plant 

equipment (developed to operate using the above double salt method with respect to 

the precipitation). The development of the new process was not documented (or the 

documents were not made available when the plant was purchased) and was 

rudimentary in its development. In the year 2000 Hanwa sold the Rockingham 

operation to Millennium Performance chemicals. 

 

In the year 2001 Millennium Performance Chemicals started developing co-

precipitated yttria zirconia powders. This was initiated using a newly built and 

commissioned small stream plant.  

 

Doral Specialty Chemical purchased the Rockingham operations in the year 2004. 
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The basic process for both the production of zirconia-yttria based products and 

monoclinic zirconia products is shown in Figure 2. 

 

 
 

Figure 2. DSC diagrammatic description of process. 1) Mixing of acids and bases 

(a:- zirconyl chloride + water, b:- anhydrous ammonia + water), 2) 

Precipitation, (c:- zirconyl chloride solution + aqueous ammonia, d:- 

Flocculants from c + aqueous ammonia), 3) filtering/washing, (e:- belt 

filter flocculants + water + vacuum, f:- frame filter press cake from e + 

water + air), 4) Heat drying, 5)  Calcinations, 6) Milling, 7) Spray drying. 

 

The basic understanding of the chemical reactions at each stage is listed in the first 

instance for the production of monoclinic zirconia with yttria-zirconia solid solutions 

following: 

 

1) Hydrolysis 

 

( )[ ] OHClOHOHZrOHZrOCl
water

2
8
42222 128484 ++⋅⇒⋅ −+  

 

j 

k 

ba 
1 g

h

4

2 3

c

d

e 

f

5

6 

7
l 

i
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2)  Precipitation 

 

( ) ClNHOHZrOOHNHClZrO 424
2 222 +⇔++ −+  

 

3) Drying 

 

( ) HOZrOOHZrO H 22 +−⎯→⎯Δ  

 

4) Calcination 

 

2ZrOOZrO H⎯→⎯− Δ  

 

For yttria-zirconia solid solutions the hydrolysis of the zirconium is the same, with 

the general form of the precipitation equation being 

 

( ) { } +−
−

−++ ⎯⎯ →⎯+++− )48(
16284)44(2

34 )()(168444 x
xx

aqueous OHOHYZrOHOHxYZrx
 

 

Where x is the mole fraction of yttria in the composition, i.e. for ZY3, x = 0.03. 

 

Therefore substituting in  

 

{ } +−++ ⎯⎯ →⎯+++ 88.7
162812.088.32

34 )()(16812.088.3 OHOHYZrOHOHYZr aqueous  

 

After drying; 

 

{ } { } OHOHYZrOHOHYZr H
2

88.7
812.088.3

88.7
162812.088.3 16)()()( +⎯→⎯ +Δ+  

 

After calcination 

 

{ } 94.712.088.3
88.7

812.088.3 )( OYZrOHYZr H⎯→⎯Δ+  
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These equations are as supplied by the Millennium Research Centre in 2001, and will 

be discussed further in the appropriate section. A number of assumptions are made in 

formulating the equations, and there is some discussion on their validity in literature. 

An example of such is the exact species obtained after drying which may be the 

product Zr(OH)4 or alternatively ZrO(OH)2 as suggested by Huang, Tang and Zhang 

(2001). 

 

1.3. Solid Oxide Fuel Cells 

 

1.3.1. Fundamentals of Solid Oxide Fuel Cells 

 

William Grove first demonstrated a fuel cell in principle in 1939 when he separated 

oxygen and hydrogen from water using an electric current, and then replaced the 

electrical power supply in the circuit with an ammeter which indicated a small 

current, thus showing that the electrolysis is reversible (Larminie and Dicks 2000 

p.1). The basic chemical reaction is; 

 

OHOH 222 22 →+  

 

Fuel cells are a means of power generation, being different to conventional power 

generation technologies, in that electricity is produced electrochemically and not via 

a heat generation step (Foger and Badwal, 1997). The main driving force to develop 

fuel cells has been due to environmental concerns and the need to reduce carbon 

dioxide emissions, and their high energy conversion efficiency (Larminie and Dicks 

2000 p. xi., Foger and Badwal 1997). Most fuel cells are limited in the fuels that they 

use, however the SOFC as well as the molten carbonate fuel cell can use both 

hydrogen and carbon monoxide as fuels (Larminie and Dicks 2000 p. 164). 

 

The SOFC is a solid state device that uses an oxide ion-conducting ceramic material 

as the electrolyte. The SOFC allows negatively charged ion (O2-) to be transferred 

from the cathode through the electrolyte to the anode (see Figure 3) (Larminie, Dicks 

2000 p. 164). 
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Foger and Badwal (1997) discuss the general material requirements for fuel cell 

components at operating temperatures of 950 – 1000 oC and suggest that materials 

which fulfil such requirements are scarce. The first mentioned requirement is 

chemical stability and compatibility with other fuel cell components for which they 

are in direct contact with during the operation and fabrication. The stability must 

extend to the fuel cell operating environment, for example the air electrode must be 

stable in a highly oxidising atmosphere and the fuel electrode in a reducing 

environment, with the interconnects, manifolds, sealing and electrolyte material 

experiencing fuel environments on one side and oxidising conditions on the other 

(Foger and Badwal 1997).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Operation of SOFC (after Larminie and Dicks 2000 p164). 
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2H2 + 2O= → 2H2O + 4e- 
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O2 + 4e- → 2O=
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Hydrogen fuel 

Oxygen, usually from the air 

Electrons flow round 
the external circuit 

Anode 

Cathode 

LOAD 

2CO + 2O= → 2CO2 + 4e- 

O= ions through electrolyte 

O2 + 4e- → 2O=

Carbon monoxide fuel 

Oxygen, usually from the air 

Electrons flow round 
the external circuit 
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The second listed point by Foger and Badwal (1997) is for the right level of 

conductivity, and of the right type to be part of the materials characteristics. Both 

electrodes require high conductivity for electronic or a mixture of ionic and 

electronic conductivity. The electrolyte needs predominantly ionic conductivity with 

the interconnects being mainly electronic. The seals and manifolds in contrast need 

to be mainly insulators (Foger and Badwal 1997). 

 

This is complicated if the cathode and anode materials have a mix of ionic and 

electronic conductivity (with high diffusion rates of O2-), since then oxygen transfer 

can take place at the gas/electrode interface and this is not dependent on the 

existence of substantial three phase boundary between electrode, electrolyte and gas. 

This has the advantage of enhancing electrolyte/electrode contact area and reaction 

rates sites, thereby reducing over-potential losses (Foger and Badwal 1997). 

 

Point three of  Foger’s and Badwal (1997) treatment on general materials 

requirements is that low vapor pressure will avoid loss of material which may lead to 

reaction or reactions with other components, or the formation of new phases with 

changes in its properties. This third point leads nicely into the fourth, being that the 

material needs to have structural phase stability from room temperature to the 

operating temperature of the fuel cell. This dovetails into microstructural stability 

requirements for the full range of temperatures experienced by the parts (Foger and 

Badwal 1997). 

 

Structural support to the stack is provided by interconnects and electrolyte material 

in self supporting designs, as such the material needs to have the appropriate strength 

and toughness characteristics not only at room temperature (in terms of handling, 

processing of cell components), but also at the operating temperature that the parts 

are subjected to during operation of the SOFC. Additionally it is advantageous for 

these materials to have high thermal and mechanical shock resistance (Foger and 

Badwal  1997).  

 

Fuel and air electrodes must have high catalytic activity to fuel oxidation and oxygen 

reduction reactions respectively with porous, but stable microstructure during the 

operating life of the cell. The fuel electrode should not promote carbon deposition as 
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this would adversely affect the performance of the cell and one of the advantages of 

SOFC’s is that carbonaceous fuels can be used (Foger and Badwal  1997). 

 

The final point made by Foger and Badwal  (1997) is that the materials and 

fabrication methods must be economical and as easy as possible.  

 

McEvoy (2001) states that the ideal solid electrolyte was identified by Nernst as 

zirconium oxide with a mixture of di- or trivalent substitutes in solid solution, with 

the material of preference being that of 8% yttria-zirconia. There have been 

investigations into a number of formulations used by SOFC manufactures and not all 

have used yttria with a number of authors investigating a number of novel 

formulations (Badwal et. Al. 1998. Badwal and Ciacchi 2000. Hassan et. al. 2002. 

Ciacchi, Crane, Badwal 1994. Badwal Ciacchi and Milosovic 2000. Bannister, 

Garrett, 1975. Bellon, Ratnaraj, Rodrigo 2002. Ahmed, Love, Ratnaraj, 2001. Ralph, 

Schoeler, Krumplet 2001.). It is however not practical to cover the full range of these 

and as such further discussion will be limited to yttria-zirconia based powders. 

 

Stevens has a useful summary of zirconia as an electrolyte (1986 pp. 38-39). Zirconia 

as an oxygen ion conducting electrolyte has a cubic fluorite structure similar to other 

oxide electrolytes, and in particular it has a defect structure with a finite 

concentration of octahedral interstitial voids (Stevens 1986 p. 38). These interstitial 

voids have been calculated to be larger for the O2- anions than for the Zr4+ as was 

found in practice, therefore it was assumed that the O2- ions were the rate controlling 

species in the diffusion process. As the structure is fluorite in nature a complication 

arises since the zirconia needs to be stabilised with other oxides such as CaO, MgO 

and Y2O3 in solid solutions and is limited to specific compositions and also these 

ranges have a temperature dependence (Stevens 1986 p. 38). A further complication 

is added to this in that the solid solutions may undergo decomposition reactions 

(Stevens 1986 p. 38). 

 

The basic/idealised electrochemical cell composition is based on the system 

 

p1O2, Pt/zirconia electrolyte/Pt, p11O2 
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were p1 and p11 are the pressure of the oxygen present. 

 

As such an EMF (E) is generated across the electrolyte by the passage of oxygen 

ions. Thus the value obtained is related to the partial pressures of the oxygen at the 

electrodes which is given by: 

 

 ∫=
211

21

)(ln
4 2

Op

Op

pOtd
F

RTE  (1) 

 

For ionic conductivity tion ≅ 1, the EMF generated is  

 

 21

211ln
4 Op
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F

RTE =
 (2) 

 

where F is the Faraday’s constant, R is the gas constant and T is the temperature. 

 

Such analysis is based on the assumption that thermodynamic equilibrium exists, and 

that the kinetics of the electrode interface reactions are sufficiently fast enough for 

representative voltages to be measured (Stevens 1986 p. 38). It can be seen from the 

equations that the EMF is also proportional to temperature. 

 

Such analysis is stated for idealised systems, specifically for perfect single crystals. 

Commercially available zirconia electrolyte differs from this by having impurities 

present, in particular SiO2 and or Al2O3. Incorporating these and other factors the real 

conduction process was first modelled by Bauerle (1969), with this work being used 

by Stevens (1986) to describe a network consisting of an electrode impedance, a 

grain boundary impedance and a bulk resistance of the zirconia. The diagrammatic 

representation is contained in Figure 4. 
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Figure 4. (A) The equivalent circuit for zirconia solid electrolyte with a porous 

platinum electrode. RB = Bulk resistance, RGB = grain boundary 

resistance, RCT = charge transfer (boundary layer resistance), CGB = grain 

boundary capacitance and CDL = boundary or double layer capacitance. 

(B) Schematic of a complex admittance plot. (after Stevens 1986 p. 39). 

 

1.3.2. Manufacture of Solid Oxide Fuel Cells 

 

The manufacture of a typical self supporting planar SOFC in four steps is described 

below. 

 

Step 1:- Powder and binder addition 

 

In a batch materials fabrication process, the key ingredient is the metallic, ceramic or 

composite powder, this is self evident when one considers that once the binder is 

removed, the consolidated product is the only thing left (Mistler and Twiname 2000 

p. 7). Therefore binders, plasticisers, solvents and surfactants are used simply to 

facilitate the fabrication process. Essentially the tape casting process is used to obtain 

and hold the powder particles in the desired configuration so that after sintering the 

final part has the desired size, shape and properties (Mistler and Twiname 2000 p. 7). 
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Tape casting is unique as a process in that the densification of the green ceramic 

comes from the forces generated wholly by the drying of the tape (slip casting whilst 

being a drying process has the added advantage of the capillary force generated by 

the plaster mould) (Mistler and Twiname 2000 p. 7). Particle size, size distribution 

and shape all play an important role in the densification of ceramics (Reed 1988 pp. 

185-251). The surface area, or the specific surface area to be more precise, is of most 

importance in the tape casting process as it is the surface area that interacts with the 

organic additives (Mistler and Twiname 2000 p. 7).  

 

It is common to group all of the organic groups into the generic term of “binders”; 

these are in reality a grouping of different products where the most common are 

solvents, homogenisers, surfactants and binders.  The solvent allows the powder to 

flow as a fluid, with the homogeniser being an agent that works to make a system 

uniform, with the surfactant modifying the surface of the powder to impart the 

desired characteristics and the binders supplying the network that holds the entire 

chemical system together for further processing (Mistler and Twiname 2000 pp. 7-

62). 

 

The first stage is thus mixing the binder package with the powder to achieve the 

required rheological properties. Chapter 4 in Mistler and Twiname (2000 p. 83-185) 

outlines a number of ways to achieve this mixing, however the process can be seen 

as basically the same as mixing paint.  

 

Step 2:- Tape Casting 

 

Tape casting is a forming technique for producing flat ceramics. The tape thickness 

that can be achieved is generally in the range of 25 μm up to 1 mm, however it is 

possible to produce tapes down to 5 μm (Svenska Keraminstitutet 2003).  
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Figure 5. Tape Casting process (After Svenska Keraminstitutet 2003). 

 

The basic process can be seen in Figure 5. In essence it is a moving casting 

membrane that travels under a doctor blade. The slip is contained behind the doctor 

blade, which has a gap between itself and the casting membrane. The height of the 

gap can be seen as one of the main controlling points of the height of the green cast. 

 

Step 3:- Shaping 

 

Once the slip has been cast and dried the required shape is cut. As new technology 

becomes available, new and improved methods are introduced, however the most 

common in use today is blanking which is a punching process that uses a tool to cut 

the edges of the part (Mistler and Twiname 2000 p. 199). After blanking, the next 

step is the hole generation (some times refered to as Via generation), which can be 

achieved by hole punches and/or laser (Mistler and Twiname 2000 pp. 199-203). 

 

It is obvious to the competent materials scientist that the above process is difficult in 

that the parts must be formed so that they are the right size and shape taking into 

account any shrinkage as well as not leading to any adverse changes in the material, 

such as cracking, or phase changes.  
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Step 4:- Sintering 

 

Rahaman (2003) has an excellent treatment of sintering and a detailed discussion is 

not warranted here. It is pertinent to say that sintering needs to be controlled to give 

the required materials properties such as phase and grain size, but these are also 

material intrinsic properties and the combination of the right sintering cycle to 

material is of the utmost importance. 

 

1.4. Zirconium Chemistry 

 

1.4.1. Hydrolysis of Zirconium Oxy Chloride 

 

The first stage of the manufacturing process of DSC is to hydrolyse crystals of 

Zirconium Oxy Chloride (ZOC) (This is also known as Zirconyl Chloride or 

Zirconyl Chloride Octahydrate). This is achieved by mixing ZOC in an agitated tank 

with water that has been treated to remove impurities. This step makes it difficult to 

directly relate the DSC process to much of the literature on zirconium chemistry as 

many researchers have avoided using aqueous solutions of zirconium due to its 

complex nature (Bradly et al 1952. Nabivanets, 1961. Zaitsev, Bochkarev 1962. 

Nabivanets, 1962. Yuranova, Komissarova, Plyushchev 1962. Zaitsev, Bochkarev, 

1962. Marov, Ryabchikov, 1962. Milonjic, Ilic, Kopecni 1983). The research 

conducted on zirconium in aqueous solutions is often confusing. Elinson and Petrov 

(1969 p. 16) who conducted research in zirconium state “The numerous published 

data on the chemistry of zirconium in aqueous solutions is often of a contradictory 

nature,”. Their useful summary outlines numerous authors’ work and the 

contradictions that have been experienced. For the reasons outlined above the 

following discussion is a useful introduction in terms of the current research being 

undertaken. 

 

1.4.2. Zirconium Oxy Chloride 

 

The starting material used by DSC is ZOC which is imported from China. The 

manufacturing process for the ZOC is usefully outlined by Choi (1965) and can be 

summarised as fritting zircon sand with caustic soda, the frit is thus a mixture of 
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sodium zirconate and sodium silicate. Water is then used to remove the soluble 

sodium silicate, this also hydrolyses the zirconate to an impure hydrous zirconium 

oxide, which is readily soluble in dilute acids. The washed frit may still contain 5% 

insoluble silica (Beyer et. al. 1954). For production of ZOC the frit is dissolved in 

hot concentrated hydrochloric acid in reaction vessels which yield the ZOC crystals 

when cooled.  

 

The presence of silica in the product reduces its attractiveness as a commodity and a 

number of methods have been used to try and economically remove it including 

mechanochemical treatment (Puclin, Kaczmarek, Ninham, 1994). 

 

The manufacturing process used in China is convoluted with numerous modifications 

and repeated steps so as to reduce the overall level of impurities in the ZOC. The 

process used by one manufacturer is detailed in point form below to highlight the 

difficulty of manufacturing  ZOC. 

 

Step 1 Process of Fusion 

• Add 50% NaOH and maintain at temperature of 500oC to evaporate any 

water, then add Zircon sand. 

• Raise temperature to 600oC. Leave at temperature for 5 hours 

 

Step 2 Cooling 

• Cool for three hours. 

• Remove powder from reaction kettle 

 

Step 3 Water Leaching 

• Slurry using de-mineralised water in agitated tank reaction takes 3 hours at 

60oC 

• Decant and filter 

• Repeat three times 

 

Step 4 transformation and filtration 
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• The filtrate is added to glass lined reaction vessel. pH is adjusted to three 

using 6% HCl at room temperature 

• Temperature is increased to 60oC and left to stand for 30 minutes. 

• Temperature is again raised to 105oC for 3 hours 

• Product is then filtered 

• Water wash then removes NaCl 

 

Step 5 Acidify 

• Mix filtrate with 33% HCl 

• Heat to 110oC and maintain at temperature for three hours 

• Steam is injected to maintain temperature 

• Process is continued until a final concentration of ZrO2 of 200 g/L is reached 

 

Step 6 Cooling and Crystallisation 

• Cooling can be through natural or forced cooling 

• Once crystals have formed a centrifuge is used to filter product 

 

Step 7 Hydrolysis 

• Add flocculent and crystals to water 

• Increase temperature to 80oC 

• Filter using a centrifuge 

 

Step 8 Concentration and cooling 

• Transfer solution to glass lined concentrator 

• Temperature is increased to 110oC using steam for approximately 5 hours 

• The composition of the solution is then 200g/L ZrO2 and HCl at 6.8 M. 

• The solution is then aspirated and passed through a vertical condenser 

• Once through the condenser the product is cooled for 72 hours were it 

crystallises out. 

 

Step 9 Filtration 

• The product is passed through a centrifuge 
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• The solid is then washed with HCl two or more times using 6.0 mol HCl 

followed by 4.5 mol HCl, with further washes being with concentrations 

above 15% of HCl. The number of washes is dependent on the trace element 

level of impurities required.  

 

An area neglected in many studies of zirconium chemistry is that the manufacture of 

ZOC as outlined starts with a raw material that is mined and as with most geological 

products the composition of ore body can vary resulting in variations of types and 

levels of impurities being carried through to the final product. In the case of ZOC 

this is important as the concentration of hafnium in the product, whilst considered the 

same as zirconium by most manufacturers, is variable. This variability is related to 

the variation of concentration in the original ore body. The effect of such differences 

is not clear and has not been well researched. 

 

From the previously described process the ZOC is in fact ZrOCl2.8H2O. Clearfield 

summarises the structure of the ZOC as having a metal coordination number of 8 

with a square-antiprism coordination geometry. The structural features listed are 

Zr4(OH))8.16H2O8+ + 16Cl- and the bond distance for the Zr-O bonds is given as 2.09 

- 2.37 Å (Clearfield, Vaughan, 1956). This work was confirmed by infrared 

absorption spectra that confirmed the absence of a Zr-O double bond (Elinson, 

Petrov, 1969, p.18). 

 

X-Ray diffraction studies of zirconyl halides (zirconium tetrachloride, bromide and 

iodide react with water to form salts which are commonly referred to as zirconyl 

halides) provided direct proof of the existence of polymeric species (Clearfield 

1964). The stable phase that crystallizes from aqueous media is comprised of 

ZrOX2⋅8H2O where X is Cl, Br or I, and the zirconyl ‘ion’ is in reality a tetramer of 

the form [Zr(OH)2⋅4H2O]4
8+. The four zirconium atoms are located at the corners of a 

square that is slightly distorted and these are linked together by –ol bridges above 

and below the plane of the square (Clearfield 1964). The metal ion coordination is 

completed by four water molecules bonded to each metal centre with the eight 

oxygen atoms surrounding each zirconium as shown in Figure 6 . The halide ions are 

not bonded to the zirconium atoms but are held in the structure by electrostatic forces 
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and weak hydrogen bonds with the remainder of the water molecules along with the 

halide ions forming a matrix that holds the zirconyl complexes together (Clearfield 

1964). 

 

 
Figure 6. Projection of one unit cell of ZrOCl2⋅H2O on (001). The unit cell 

dimensions are a = b = 17.08, c = 7.689 Å. The z parameters in fractions 

of the c axis are Zr = 0.001, Cl1 = 0.364, Cl2 = 0.488,  O8 = - 0.184, O2 = 

- 0.281, O3 = - 0.007, O4 = + 0.007, O9 = + 0.282 (after Clearfield 1964). 

 

1.4.3. Aqueous Chemistry of Zirconium 

 

When the ZOC is added to water the pH of the resulting solution is approximately 

equal to that of HCl solutions of the same molarity (Blumenthal 1962). A variety of 

physicochemical methods have been applied to the study of aqueous solutions of 
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zirconium to elucidate the ion species. These studies are complicated by the 

sensitivity of the species to their environments and the slowness with which the 

systems attain equilibrium. When comparing the work of different authors it is 

particularly important to be cognizant of the exact conditions under which the 

experiments were conducted (Clearfield 1964). With this in mind Clearfield (1964) 

describes x-ray diffraction curves obtained from concentrated solutions of zirconyl 

and hafnyl halides indicated complexes, [M4(OH)8(H2O)16]X8, where M = Zr or Hf 

and X = Cl or Br. In this work the halide ions were found to occupy specific sites 

which are marked as Cl2 in Figure 6. There are eight such halide occupied sites in an 

isolated zirconyl ion; four are above the plane of the zirconium atoms and four below 

the plane. In contrast the crystal contains only four such sites, determined by 

symmetry and spatial considerations, thus in the crystal the remaining halogens 

occupy a second position (Figure 6) (Clearfield 1964). The exact number of halide 

ions associated with the tetramer was not determined with certainty but for the 

chloride ion it appeared to be eight. 

 

Table 1. Ionic strength of solution and reaction equilibrium constant after 

Solovkin and Tsvetkova (1962). 

 Reaction equilibrium constant 

Zr4+
aq + H2O ⇔ Zr(OH)3+

aq + H+
aq K1 = 0.60 ± 0.05 

Zr(OH)3+
aq + H2O ⇔ Zr(OH)2

 2+
aq + H+

aq K2 = 0.24 ± 0.01 

Zr(OH)2
 2+

aq + H2O ⇔ Zr(OH)3
 +

aq + H+
aq K1 = 0.60 ± 0.05 

Zr(OH)3
 +

aq + H2O ⇔ Zr(OH)4
 +

aq + H+
aq K1 = 0.60 ± 0.05 

 

The x-ray studies carried out using high solution concentrations yielded different 

results to other testing completed at lower concentrations. Slovokin and Tsvetkova 

(1962) built on the work of Connick and McVey (1949) and Connick and Reas 

(1951) in using chelating agents to determine the species of zirconium in aqueous 

solutions and perchloric acid solutions with Slovokin and Tsvetkova calculating the 

equilibrium constants for the four species that exist when Zr4+ is hydrolysed (Table 

1). Elinson and Petrov (1969 p. 21) show that the hydrolysis of zirconium salts 

follow general rules with the hydrolysis of zirconium halides increasing with time 

and higher temperatures. The degree of hydrolysis of zirconium is affected by the 
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nature of the acid, for instance in perchloric acid solutions of zirconium salts it is less 

than in hydrochloric and nitric acid solutions (Elinson and Petrov 1969, p. 21). 

 

The work of Connick and Reas (1951) showed that in solutions of 1 - 2 M perchloric 

acid and concentration of less than 10-4 M/L the system is monomeric. As the 

concentration is increased polymerisation starts, with only low molecular weight 

species being present (Clearfield 1964). Johnson and Kraus (1956), Kraus and 

Johnson (1953) studied ultracentrifugation of zirconium and hafnium in both 

chloride and perchlorate media and determined the polymerisation of zirconium and 

hafnium as a function of acidity (using HCl) (Figure 7). They found that zirconium 

was mono-dispersed in the range of 0.5 - 2 M HCl, while hafnium was mono-

dispersed in the range 0.2 - 2M HCl. Clearfield (1964) found that the degree of 

polymerisation was between three and four and the charge per metal atom was about 

one. 

 

 
Figure 7. Average degree of polymerisation, Ne, of Hf(IV) and Zr(IV) solutions as 

a function of acidity (after Johnson and Kraus 1956) Copyright 1956 

American Chemical Society. 

 

Angstadt and Tyree (1962) conducted light scattering experiments on zirconyl 

chloride and concluded that in 2.8 M HCl the principle species is a trimer with a 
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charge of plus three ( [Zr3(OH)6Cl3]3+ ) but in 0.75 M HCl the predominant species is 

a hexamer with a charge between plus five and plus six. A degree of polymerisation 

of close to four was calculated from the diffusion coefficients of the zirconium 

species in 1.5 M HCl. 

 

In solutions of strong acids, for example greater than two molar HClO4 or HCl the 

zirconium may only exist predominantly as water-solvated Zr4+. This is dependent on 

the concentration of the zirconium and the presence of the complexing ions (Elinson 

and Petrov 1969, p.20). Solovkin and Tsevtkova (1962) showed that the actual extent 

of the hydrolysis depends on the acidity of the solution, the nature of the acid, the 

temperature, concentration of zirconium and other salts, types of anions in solution 

and the time. For example hydrolysis is greater in hydrochloric and nitric acid, than 

in perchloric acid. For the case of hydrochloric acid the initial hydrolysis is rapid, 

however equilibrium may not be reached for up to 10 days for solutions of 0.0022 - 

0.125 M zirconyl chloride. Elinson and Petrov (1969, p. 27) cite the work of Starik 

et. al., who studied the pH of solutions in relation to the state of microquantates of 

radioactive zirconium (Zr95) in solutions. They show that in aqueous solutions, 

zirconium exists as simple or complex positively charged ions in concentrations of 

10-9 to 10-11 M (pH 0-1.5), and as pH is increased negatively charged, highly 

dispersed colloids form (pH 1.5 - 5). This is summarised in Table 2 for Zr95 present 

in 10-9 M nitric acid solutions as various hydrolysed forms (Elinson and Petrov 1969, 

p. 27). 

 

Table 2. Forms of Zr in solution in the absence of ligands (after Elinson and 

Petrov 1969, p. 27). 

pH Ions and Molecules 

0 Zr4+, Zr(OH)3+ (monomers) 

0 - 1 Zr4+, Zr(OH)3+, Zr(OH)2
2+, Zr(OH)3+, Zr(OH)4

0 (monomers) 

1.0 - 1.5 Zr(OH)3+, Zr(OH)4
0 (monomers) 

1.5 - 4.0 Zr(OH)4
0 (monomers), [Zr(OH)x

4-x] (polymers, pseudocolloids) 

4.0 - 12 [Zr(OH)4]n (true crystals) 

> 12 Zirconates 
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Clearfield (1964) relates with the aid of Figure 7 that as acid concentrations increase 

beyond 2 M the system becomes polydispersed and depolymerisation occurs. 

Nabivanets (1961) and Lister and McDonald (1952), using electro-mitigation and ion 

exchange methods at high acidities, generally conclude that the proportion of 

cationic species decreases rapidly with increasing acid concentration up to 7 – 8 M 

HCl and then increases slightly (Clearfield 1964). Cationic species were detected 

even in 15 M HCl , however appreciable amounts of anionic-zirconium species were 

not obtained until the HCl concentration exceeded 6 M. This then allows us to say 

that the zirconium cations must initially form neutral species with increasing chloride 

ion concentration (Clearfield 1964). This can be visualised using Figure 6 as 

occurring by the chloride ions occupying all eight of the sites, and depolymerisation 

is then thought to occur by displacement of hydroxyl by chloride ions with formation 

of Zr-Cl bonds (Clearfield 1964). Such depolymerisation can theoretically be 

repeated until monomeric, completely chlorinated species are obtained. However it 

was found that the species absorbed by an anion exchange resin in 15.3 M HCl had a 

Cl:Zr ratio of 4, thus even at high concentration hydroxo complexes are still present. 

This leads to the inference that it is not unlikely that the tetramer is present to some 

extent over the whole range of HCl concentrations and that it is possible to crystallise 

out zirconyl chloride from such solutions (Clearfield 1964). This can be neatly 

summarised in Figure 8. 

 
Tetramer 

cation 

(H+ + Cl-) 

⇔ 

Neutral 

tetramer 

(H+ + Cl-) 

⇔ 

Lower mol 

wt cationic 

and neutral 

hydroxo, 

chloro 

species 

Cl- 

⇔ 

Anionic 

hydroxo, 

chloro 

species 

Cl- 

⇔ 

ZrCl6
2- 

Figure 8. Representation of depolymerisation sequence (after Clearfield 1964). 

 

From Figure 7 it is obvious that as the acidity is reduced below approximately 0.5 M 

the system becomes polydispersed and the degree of polymerisation increases 

rapidly. Since the solution used did not reach equilibrium even after 10 days of 

centrifuging the curve is shown as dashed (Clearfield 1964). 

 

Singhal et al (1996) conclude that speciation in the solution is inversely related to 

acidity i.e. that the species are larger as the acidity falls. These authors also offer 
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some modelled scattering curves for different chemical compositions. It is interesting 

that the Cl- ions influence the modeling results with the conclusion that the scattering 

entity in 1.0M [H+] added to a 0.2M zirconyl chloride solution is 

[Zr4(OH)8(H2O)16Clx](8-x). This conclusion is drawn from the fact that Rg (radius of 

gyration) is 3.8 ± 0.2 Å.  

 

Toth, Lin and Felker (1990) also used SAXS to investigate the Rg of zirconium in 

aqueous solutions however the starting material dissolved in water was Zr(NO3)4. 

They determined Rg for 0.035M, 0.3M and 1M Zr as 4.6, 4.5 and 4.7 Å respectively. 

Southon et. al. (2002) determined a similar Rg of 0.4 ± 0.04 nm for zirconyl nitrate 

solutions. It thus appears that there is a disparity between these authors (Toth, Lin 

and Felker 1990, Southon et. al. 2002, Singhal et. al 1996). 

 

1.4.4. Precipitation of Zirconium 

 

The basic understanding of general precipitation is well documented and provides a 

basis to understand the precipitation of zirconium and zirconium-yttrium mixtures 

(Dirksen and Ring 1991, Nielsen 1964). Of particular significance here is the 

precipitation from aqueous solutions of zirconyl chloride as the pH is raised, the 

raising of the pH is typically achieved by the addition of NH4OH although other 

bases can be used. Ammonia is the base of choice for zirconia manufacturers aiming 

for the advanced ceramic market as it produces zirconia with fewer trace element 

contaminants, such as Na as in the case of using NaOH as a replacement base. 

However it is recognised that ammonia is a more unfavourable waste product than 

caustic soda. 

 

The precipitate that is formed from most solutions containing zirconium by the 

addition of a base is described as gelatinous white to seemingly clear amorphous 

product (Clearfield 1964, Mukherji 1970 pp.3-5, Solovkin and Tsevtkova 1962). 

 

Again as listed previously the equation for the precipitation with aqueous ammonia 

as the medium for raising the pH is; 
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( ) ClNHOHZrOOHNHClZrO 424
2 222 +⇔++ −+  

 

As previously mentioned this is the equation as supplied by Millennium Chemicals 

Research Centre Baltimore (USA). Whilst the form of the equation is reasonable a 

number of authors list an alternative product being Zr(OH)4 . The basis of several 

authors’ work including Kovalenko and Bragdasarov (1961) revolves around 

assuming one structure over another, but as Kirby (2003) articulates, zirconium 

hydroxide is not of a definitive composition and is typically closer in structure to 

hydrated oxide, where the degree of hydration is dependent on many factors (Britton 

1925; Singh and Banerjee 1961; Elinson and Petrov 1969, pp 7 – 8; Zaitsev and 

Bochkarev 1962a; Solovkin and tsevtkova 1962). Elinson and Petrov (1967 pp. 7-8) 

suggest that when solutions containing mostly Zr4+, which is present in 

predominantly hot strong acids ( > 1 N HCl), are precipitated the structure is of a 

composition closer to Zr(OH)4. In comparison in weakly acidic solutions (≅ 0.01 N), 

where the Zr is present in its hydrolysed polymeric form, the precipitate 

compositions are closer to ZrO(OH)2. 

 

As has been experienced with the zirconium in aqueous solutions, understanding the 

precipitates of zirconium is not simple and the literature can be of a contradictory 

nature. Thus it is prudent to start the discussion with Britton (1925) and move 

forward from this ground work. One of the key points from Britton’s work, in which 

he carried out electrometric studies of the precipitation of hydroxides, was that the 

Cl- to Zr ratio influenced the size of the precipitates. The inference within the work is 

that clear solutions mean smaller particles whilst the solutions that were opalescent 

have larger particles. The work, whilst not giving definitive answers, suggests that 

differences in the solution chemistry affect the precipitation process. 

 

Larsen and Gammill (1950) conducted electrometric titration studies on zirconium 

and hafnium using zirconyl chloride as the base solution. In this work they produce 

tables and curves showing pH vs moles of OH- added per mole of metal. On these 

curves (figure 1 p. 3615) are marked points at which precipitation and coagulation 

occur. These curves, apart from showing that both hafnium and zirconium behave in 

a very similar manner, show perchlorate, chloride and nitrate solutions behaving in 
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an almost identical fashion with respect to pH changes vs moles of OH- added. 

Differences are observed however for the precipitation points. In the case of the 

zirconium species the chloride solution precipitated with almost 0.5 moles of OH- 

added (this is equivalent to a pH of approximately 2) with the perchlorate and nitrate 

solutions precipitating at 1.0 mole added, an increase of 0.5 mole of OH-. The 

coagulation point is depicted above 1.5 moles of added OH- (equivalent to 

approximately 6 pH points) with very little difference in the three solutions. Further 

points of interest on the curves are that the hafnium curve shows little difference in 

the precipitation points or coagulation points with the notable exception that both the 

chloride and perchlorate solutions precipitate at a point between 0.5 and 1.0 moles of 

added OH- and the nitric solution’s precipitation point is between 1.0 and 1.5 moles 

of added OH-. 

 

The tables (in particular table 1 p. 3616) given by Larsen and Gammill (1950) 

summarise the concentration effects depicting the metal ion and salt concentration in 

moles per litre at the precipitation point. The other information given is the pH of 

precipitation and R, were R is the ratios of moles of hydroxyl ion added to the metal 

ion concentration. The R value is of importance in the context of the paper as the 

changes in this parameter are used as supporting evidence that in the case of the 

chloride solutions there is more than one species being precipitated out. Where an 

insoluble salt is precipitated out during a titration it could be expected that the R 

value would be a constant at all metal ion concentrations if the composition of the 

precipitate remains constant. The other proviso to this is that the cation-anion ratio 

was constant, with the exception of the salt effect on the solubility of the compound. 

This behaviour was found for the hafnium chloride solution, however for the 

zirconium nitrate and chloride solutions a pronounced decrease was observed. It was 

postulated that this was due to the formation of insoluble basic salts and that 

zirconium has a higher tendancy to form such basic salts than hafnium (Larsen and 

Gammill 1950). 

 

To conclude the discussion on Larsen and Gammill‘s (1950) work it is appropriate to 

review their six conclusions. The first pointed out that in all cases in their work the 

pH of precipitation of hafnium was higher than that of zirconium. The second was 

that for perchlorate solutions the differences between hafnium and zirconium was 
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small, however the differences seen in the nitric and chloride solutions was marked 

and in the case of the zirconium chloride solution the zirconium precipitates at 

progressively lower ratios of hydroxyl ion added to the metal ion concentration as the 

metal ion concentration is reduced. Conclusion three was that in all cases increased 

anion concentration increases the pH of precipitation. The fourth relates that with 

sulphate solutions, the hafnium precipitates at lower pH’s than the zirconium and that 

the precipitates are in all probability basic sulphates. The penultimate concluding 

point proposes a chemical formula for the precipitate from perchlorate solutions 

based around the slope of a straight line function of the logarithm of the hydroxyl ion 

concentration. The last point was that they had calculated the solubility products of 

the hydroxides for both hafnium and zirconium (Larsen and Gammill 1950). 

 

The range of pH values for the precipitation points for differing concentrations of 

chloride ions was 1.88 to 2.29 (Larsen and Gammill 1950). These values are in line 

with the values postulated by Kovalenko and Bagdasaov (1961) who conducted 

dissolution studies on what they call solid Zr(OH)4 where they found that dissolution 

in nitric acid occurs at a pH of 1.9 and increases up to a pH of 1.8. They thus detail 

that the precipitation must occur at these pH values as well. The solubility product 

was also calculated using a stoichiometric formula of Zr(OH)4 in which they clarify 

the work by stating that the formula is assumed to be Zr(OH)4. This suggests that 

they may not be confident in the validity of the formula.  

 

Singh and Banerjee (1961), whilst conducting titration experiments on various 

solutions of zirconium, suggested that variations experienced whilst letting solutions 

of zirconyl chloride stand could be due to an equilibrium attained between the free 

acid and the salt and that this in turn affects how much base is needed to affect 

precipitation. This is one example of how it is thought that the solution chemistry 

influences the precipitation. Whilst they did not work on the speciation of the 

solution or the precipitate it does show a trend within the literature.  

 

It is prudent to discuss the work of Huang et. al. (2001) who investigated the 

differences between zirconium hydroxide (Zr(OH)4⋅nH2O) and hydrous zirconia 

(ZrO2⋅nH2O). This structure is potentially different to the other structure described as 

ZrO(OH)2  previously, but equally could be the same. No justification for its use over 
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the previously suggested structure (Britton 1925; Singh and Banerjee 1961; Elinson 

and Petrov 1969, pp 7 – 8; Zaitsev and Bochkarev 1962a; Solovkin and Tsevtkova 

1962) is made in the paper by Huang et. al. (2001),  but does show through the use of 

XPS and TGA that a difference does exist between hydrous zirconia and zirconium 

hydroxide and proposes a structure for the hydrous zirconia (see  

Figure 9). The binding energy found using XPS was 181.6 eV for zirconia (calcined 

at 500 Co), 181.8 eV for hydrous zirconia and 183.6 eV for zirconium hydroxide. 

The method of manufacture for the hydrous zirconia used by Huang et. al. (2001) 

was detailed in earlier work by the same author (Huang et. al. 2000) in which they 

use agitated sodium hydroxide to which they add zirconium oxychloride. This is a 

semi solid state reaction in which the water contained within the zirconium oxy-

chloride is used in the reaction. After the reaction is complete it is then washed using 

distilled water. The paper then goes on to state that after quickly precipitating, the 

product was filtered and washed. From this statement, one is left with many 

questions on the exact methods used and raises the following question. Is the reaction 

in fact a solid state reaction, or has the acid and base been dry-mixed then upon 

adding water the reaction occurs? 

 

 
(A) (B) 

 
Figure 9. (A) Schematic structure of Zr(OH)4. (B) Schematic structure of Hydrous 

zirconia. (·) Zr; ( ) oxide bond; ( ) OH-; ( ) H2O. (After Huang et. al.  

2001) Copyright 2001 American Ceramics Society. 

 

The considerable work of Matsui et. al. (1995, 1997, 2000 and 2001) involves 

discussion of the formation of hydrous-zirconia using forced hydrolysis. Again the 

formula used is ZrO2⋅nH2O. The first paper in the series employs Raman 
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spectroscopy to investigate the formation process of hydrous zirconia. This work 

involved differing concentrations of zirconyl chloride solutions from 0.02 mol/l to 

0.8 mol/l undergoing forced hydrolyses by heating, with the product undergoing 

Raman investigation. Figure 10 shows the spectra which has clear differences 

dependent on the concentration. For comparison Figure 11 is also supplied which is a 

Raman spectra of monoclinic zirconia. It is proposed in the work that the dependence 

of the Raman on the concentration is in fact a dependence on the H+ and Cl-. The 

chlorine content is summarised in Figure 12 which was used as justification for such 

claims. To investigate the Cl impact they added  HCl and found that with 0.2 mol/l of 

HCl the peaks broaden which can be seen at the 180 cm-1 Raman band as the two 

peaks become one (see Figure 13). To separate out whether the effect was due to the 

Cl- or the H+ they used aqueous ammonia to change the H+ concentration whilst 

keeping the Cl- constant. They found that the line width of the Raman spectra of 

hydrous zirconia was affected by the H+ ion concentration. A mechanism is then 

suggested as to how this occurs, when the ZrOCl2 ⋅8H2O is added to water, the 

tetramer complexes [Zr(OH)2⋅4H2O]4
8+ which are coordinated by water molecules 

are formed. Deprotonation then occurs to release H+ from the coordinated water as 

described in the following; 

 

( )[ ] ( ) ( )[ ]( ) ++−
+

+ +−⋅⇔⋅ xHOHxOHZrOHOHZr x
x 444 48

422
8
422  

 

If the solution is heated the response is a shift towards the right and thus the 

concentrations of the H+ ion and of [Zr(OH)2+x⋅(4-x)H2O]4
(8-4x)+ increase. As 

previously mentioned, Clearfield (1964) reported that crystalline hydrous zirconia is 

produced by the polymerisation of such a species. Kimura et. al (1991) found that 

crystalline zirconia has a positive ζ-potential at pH below 7.8, and Matsui et. al. 

(1995) used this information to propose that an electric double layer forms between 

the absorbed H+ ions on the surface hydroxyl groups of the particle surface and Cl- 

attracted from the solution. Therefore as the H+ ions increases so does the Cl- , and as 

the Cl- ion interferes with the polymerisation between the crystal nucleus and the 

[Zr(OH)2+x⋅(4-x)H2O]4
(8-4x)+ growth of the zirconia particle is affected by the 

concentration of the attracted Cl-. 
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Matsui et. al. (1995) used a combination of XRD, TEM and Raman spectroscopy to 

investigate the particle size produced with varying concentrations of zirconyl 

chloride and HCl. Unfortunately the figure they show relates only to a single 

concentration of zirconyl chloride (although this is not clear in the text) with varying 

levels of HCl. The particle size changes from approximately 70 Å at zero added HCl 

through to 30 Å with approximately 0.8 mol/l added HCl. The XRD and Raman 

work that was carried out additionally indicated that a structural change was taking 

place above a Cl/ZrO2 ratio of ∼0.5 wt% with the spectra of hydrous zirconia 

containing chlorine differing from the spectral patterns of monoclinic zirconia, with a 

weakened intensity of the Raman band. The TEM however indicated that the particle 

size was the same (Matsui et. al. 1995). With these experimental details and the work 

of Clearfield (1964) a proposed mechanism for the changes was put forward which 

can be summarised in the following. For solutions with high HCl concentrations the 

coordinated water molecules are substituted by Cl- , with 

[Zr(OH)2Clm⋅(4-m)H2O]4
(8-4m)+ seeming to form as described by; 

 

( )[ ] ( ) ( )[ ]( ) OmHOHmClOHZrmClOHOHZr m
m 2

48
422

8
422 4444 +−⋅⇔+⋅ +−−+  

 

Thus hydrous zirconia containing chlorine is formed by the polymerisation of the 

tetramer complexes containing the Cl- ions (Matsui et. al. 1995). This is not however 

a new explanation as Alison and Petrov (pp. 26 - 27) have an assumed structure for 

both coordinated water and the alternate Cl- coordination. They also state that the 

bond between the Zr and OH are stronger than between the Zr and Cl ions, and relate 

the structure formation to acidity. 
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Figure 10. Raman spectra of hydrous-zirconia fine particles synthesized from 

aqueous solutions of various concentrations of ZrOCl2. (After Matsui et. 

al. 1995) Copyright 1995 American Ceramics Society. 

 

 
Figure 11. Raman spectra of monoclinic crystalline zirconia prepared by calcining 

hydrous zirconia synthesized from ZrOCl2 concentrations of 0.4 mol/l. 

(After Matsui et. al. 1995) Copyright 1995 American Ceramics Society. 
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Figure 12. Chemical analysis of chlorine content in hydrous zirconia particles 

synthesized from aqueous solutions of various concentrations of ZrOCl2. 

(After Matsui et. al. 1995) Copyright 1995 American Ceramics Society. 

 

 
Figure 13. Raman spectra of hydrous zirconia synthesized from 0.02 mol/l ZrOCl2 

solutions with and without an addition of HCl (After Matsui et. al. 1995) 

Copyright 1995 American Ceramics Society. 

 

1.5. Industrial Chemistry 

 

1.5.1. General Industrial Precipitation 

 

Batch or semi batch precipitation is the most commonly used precipitator in industry; 

generally there are two types, the single jet and the double jet (Myerson 2002 
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pp.158-159). With the double jet the two reactants are injected into an agitated 

vessel. It is common for the vessel to initially contain a certain amount of the solvent 

at preset conditions, and the reactant concentrations usually reflect the stoichiometry 

of the compound being precipitated as do the flow rates (Myerson 2002 pp.158 -

159). It is possible to control the feeds outside that required by stoichiometry 

however, so as to obtain one species above another, or to control the formation of a 

specific morphology of the precipitate (Myerson 2002 pp.158-159). This is the 

system that DSC’s process is based around as they use a large agitated vessel into 

which the acid (zirconyl chloride) is injected, along with the base (aqueous 

ammonia), through separate injection lines. The control is achieved by monitoring 

the pH of the process as mentioned previously. 

 

Within the general term “double jet” there are a number of variations. These centre 

about the point of injection of the two reactants in relation to each other and the 

impeller, as well as the height (in relation to distance from the base of the vessel) 

(Myerson 2002 pp.158 - 159). A specific example of how these factors may effect 

the precipitate is given by Myerson (2002 pp.158 - 159), where it is stated that a 

double jet system gives much larger precipitates and that the average size seems to 

be sensitive to the impeller stirring speed. Baldyga and Orciuch (2001) look at 3 

aspects of the hydrodynamics of precipitation and give some good treatments of the 

effects of mixing on crystal size using computational fluid modelling by which they 

show that decreasing the diffusivity ratio Dpt/Dt increases the size of the precipitate; 

here the term Dpt is the particle turbulent diffusivity and has the units of m2s-1 and Dt 

is the turbulent diffusivity with the same units. What this provides, in general terms, 

is a way at looking at the velocity field for a marked average fluid particle verses the 

average behaviour of an added solid particle. They present data for barium sulfate 

which shows such a dependence, and also use the standard method of the Reynolds 

number to describe the level of turbulence within the fluid system (Reynolds number 

is a standard concept within fluids studies and will not be treated here. It will 

however be briefly discussed in the experimental section with a calculation method 

used within this work being outlined). David (2001) also makes a differentiation 

between the two flow velocity fields and defines two terms. These are micro-mixing 

and macro-mixing, with micro-mixing being that which occurs around a reactant 

molecule, that is separate to the macro-mixing as experienced by the total fluid 
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stream. David’s (2001) discussion is interesting not only in respect to such a 

differentiation, but also discusses the effects that different configurations of 

precipitators can have. In relation to the relevant flow fields however it is simple to 

summarise and to visualise, in that if a particle is agitated so that fluid around it is the 

same within the greater volume of the agitated vessel this will have an effect on the 

growth rate that differs to that of a particle that has a changing fluid volume 

surrounding it. 

 

Roosen and Hausner (1988) discuss some ways in which agglomeration of 

precipitates can be influenced, they list nucleation rate, nucleation growth as being 

important to the strength of the agglomerates formed within the precipitation process. 

In this case the term agglomerates is used to describe; “a limited arrangement of 

primary particles, which forms a network of interconnective pores”. The primary 

particles are held together by adhesion forces which are fully discussed in Pietsch 

(1991) particularly chapter 2, however the whole book is dedicated to the practical 

aspects of agglomeration and is useful reading. To summarize the adhesion forces, 

they are van der Waals forces, magnetic forces, electrostatic forces and liquid 

bridging (Pietsch 1991). Roosen and Hausner (1988) give a similar list but give 

additional, subdivisions being; electrostatic, van der Waals, liquid bridges, capillary 

forces, polymer bridges and solid bridges. They relate that the strength of the 

adhesion forces increases in the given sequence. The strength of such agglomerates 

can also be influenced by important precipitation parameters such as temperature, 

pH, concentration and type of reagents and solvents, sequence of mixing, reaction 

rate, method of mixing as well as the aging of the precipitates (Roosen and Hausner 

1988, Myerson 2002 pp. 141 - 160). 

 

Due to the high concentration and small particle sizes, the surface chemistry of 

precipitation systems as well as the colloidal stability is of importance (Myerson 

2002 p. 143). The forces can be attractive or repulsive, the repulsive forces are due to 

the charged layer surrounding the particles and are thus electromagnetic, which is 

often termed the electrical double layer. The surface of the particles have a charged 

layer formed as a result of selective adsorption of ions. This part of the double layer 

is immobile and consists of tightly adsorbed ions in direct contact with the particle 

surface (Myerson 2002 p. 143). The solution adjacent to the particle comprises a 
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second layer in which the ions are more diffusely distributed, which penetrates into 

the liquid (termed the diffusion layer). The electrolyte concentration controls the 

extent of the diffusion layer. Increasing the electrolyte concentration causes this 

diffuse double layer to shrink closer to the particle, so that the electrostatic potential 

falls (Myerson 2002 p. 143). 

 

In this work these parameters are not explored in detail but some aspects such as 

stirring rate will be considered while the precipitation process will be carefully 

controlled to ensure reproducibility. 
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7. Conclusions and Further Work 
 

7.1. Conclusions 

 

This work investigated some of the fundamental processing of Zirconium into 

zirconia for value-added markets, the peak of this market being the SOFC market. 

This work was based on the proprietary process as used by Doral Specialty 

Chemicals and the aim throughout has been to optimise this process; this 

precondition led to the experimental design being laid out in a relatively linear 

fashion. The focus has thus been to develop a greater understanding of the science 

underlying the Doral process and the hope is that this translates into success in the 

market place. It has been mentioned previously that the process can be divided into 

stages and that is how this research has been conducted. Figure 14 is a schematic of 

the research process used for the monoclinic type zirconia with the main tools used 

in the investigation of each stage. 

 

 
 

Figure 14. Schematic of Monoclinic Zirconia Research Process. 
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The aim after developing the understanding of the monoclinic process was then to 

transfer that knowledge to the production of the yttrium stabilised zirconia. As stated 

in the introduction the key points of interest in undertaking this research were; 

 

i) Study of the solution phase structure of the zirconyl chloride system 

under industrially relevant conditions. 

ii) Study of the precipitation process, characterising the products formed as a 

function of the precipitation conditions. 

iii) Investigate links between the solution phase structure and the precipitated 

products through to sintered ceramics. 

 

Each published paper clearly addresses one or more of these three key research 

objectives. 

 

7.1.1. Overview Conclusion 
 

Industrial manufacturing typically involves finding compromises in the optimum 

parameters for individual parts of the process to achieve the best product. Thus 

taking any one part of the process in isolation may lead to developing inelegant 

solutions. This work demonstrates this. For example, if one looks at the filtration 

rates vs. pH of precipitation to achieve the best through-put for the process then one 

would be precipitating at low pH. As was shown in this work, however, such 

precipitation conditions produce inherently inferior ceramics. The lesson therefore 

from this project is to develop fundamental understanding for industry, the work 

must not only develop the basic knowledge but should further integrate that basic 

knowledge with the whole framework. 

 

It is evident from this work that by targeting a particular concentration of starting 

solutions, and having a pH of precipitation that develops a particular speciation of 

zirconium hydroxide, the ceramic properties of any subsequently manufactured 

pieces can be influenced. Thus consideration must be given to the process to 

optimise such inputs. Applying what has been learnt in this work would suggest that 

optimum conditions may be pH 12 precipitation with high agitation and solution 
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concentration that is between the two used in this work. This system may also offer 

the most controllable calcination process and it appears the better ceramic properties. 

 

The following sections hold the conclusions drawn in each paper contained in this 

work and highlight assertions such as those made in the previous paragraph. 

 

7.1.2. Solution Chemistry/Precipitation of Zirconyl Chloride 
 
Samples of industrially available crystalline zirconium oxychloride octahydrate were 

investigated. ICP-OES found that the major trace elements were only present at the 

limit of detection. SAXS investigation of solutions at two concentrations of zirconyl 

chloride (0.81 and 1.62 M) suggested that the zirconyl speciation was unchanged. 

Addition of yttrium chloride also had little effect on the SAXS measurement particle 

radii.  

 

Precipitation was performed using aqueous ammonia as the base. The precipitate 

particle sizes were measured by DLS with the 1.62 M solution found to have a 

significantly larger particle size than the 0.81 M solution (4.2 μm , 1.0 μm). The 

particle sizes were confirmed by electron microscopy, and were found to be in 

reasonable agreement. The effect on particle size of adding yttrium chloride was also 

investigated. Samples of 3, 5, 8 and 10 mole% yttrium-zirconium were found to have 

increasing particle size with increasing yttrium concentration (2.0, 3.7, 4.5, and 4.9 

μm respectively). Experiments were carried out to determine if the change in particle 

size was predominantly a result of the added cations, or anions. Precipitations were 

performed with added cesium chloride and calcium chloride, such that the chloride 

concentration matched that of the 8 mole% yttrium-zirconium solution in each case. 

The precipitate particles sizes increased with the cation charge (ZrCs13, 1.8 μm; 

ZrCa4 2.6 μm; ZrY8, 4.5 μm), all being larger than the system with no additives (1.0 

μm), despite the fact that the chloride concentration is constant. Thus, it appears from 

these data that the particle size increase is dependent on the charge of the added 

cation, and less so on the chloride concentration.  

 

From this work it is evident that the growth rate of precipitated particles for zirconyl 

chloride solutions is dependent on the concentration of the starting solution as well as 
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the concentration of added cation and the type of cation present. Controlling these 

factors may enable optimisation of the precipitate particle size. The impact of added 

cations on properties such as particle surface charge, and on downstream processing 

of the zirconia is under investigation.  

 

7.1.3. Precipitation Effects of Processing Parameters 

 

Concentration of starting solutions, agitation levels and the pH that the precipitation 

is conducted at all affect the particle size distribution for the hydrous zirconium that 

is produced. The largest change is due to pH with the smallest change occurring 

when comparing a pH 12 sample with low agitation and a starting concentration of 

1.62 M (PS of 743 nm) with a pH 3 sample with the other processing parameters 

remaining the same (3390 nm); this is an increase by 4.5 times. The largest change 

occurred when comparing a pH 12 precipitation with high agitation and 1.62 M 

solution concentration (PS 73 nm) with the same processing parameters except for 

the precipitation being carried out at pH 3 (2160 nm) which is an increase of greater 

than 29 times. The effect of the pH of precipitation is most remarkable in that it 

overshadows all of the other processing parameters with the PS being smaller by 1 to 

2 orders of magnitude for those samples precipitated at a pH 12 in comparison to 

those produced at pH 3. From an industrial processing perspective, the small PS of 

the precipitate at pH 12 (743 to 49 nm dependent on processing parameters) leads to 

significant difficulty in filtering which is an important issue.  

 

An order of magnitude change in PS is not limited to pH changes however as within 

those precipitations tests carried out at pH 12 changes in the level of agitation also 

produced order of magnitude differences. The higher agitation in all cases produced 

smaller PS. As expected lower solutions concentrations were found to produce 

smaller PS. 

 

The differences seen in the filtering and subsequent differences in morphology of the 

dried powders, was investigated initially using XRD which showed that those 

powders produced at pH 3 had retained greater amounts of ammonium chloride. To 

further investigate the composition of the precipitates TGA/DTA and TGA-MS 

along with micro-combustion analysis were used with the results suggesting that the 
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pH of precipitation causes differences in the structure of the hydrated zirconium. The 

pH 3 powders are thought to have a structure most closely resembling Zr[OH]4 

whilst those produced at pH 12 are consistent with a formulation of ZrO[OH]2.  

 

TEM with EDS was used to investigate the zirconium to oxygen content of powders 

produced at both pH values as well as a zirconia sample. It was found that the pH 3 

sample had almost 43 wt% O while the pH 12 sample had approximately 32 wt% O. 

The difficulty in using TEM EDS for light elements precludes detailed analysis but 

the results returned are in accordance with the different degrees of hydration 

suggested by the TGA/DTA, and micro-combustion work. The effect that the 

differing degrees of hydration has on the ceramic process further down stream in the 

manufacturing process is unclear. 

 

It makes some sense, however, in operational situations to use lower pH precipitation 

as this will have the double benefit of allowing for lower base input with associated 

cost reduction and the PS that allows for the most economical filtering. The tuning of 

both solution concentration and agitation may allow for the targeting of specific PS. 

In all cases, however, the final ceramic properties must be considered. The structural 

differences and or other differences between the manufacture systems may impact on 

the final ceramics. 

 

7.1.4. Non-Stabilised Zirconia Ceramics 

 
The two zirconia powders produced at differing pH’s namely pH 3 and 12 behave 

differently through the processing from hydrous zirconium precipitate to sintered 

ceramic. The two precipitates have almost the same physically bound water content 

after filtering and vacuum drying as shown by the LOD values while the pH 3 

product has more chemically bound water. The SSA of the dried precipitates show a 

further difference with the pH 3 sample having a lower SSA; the SSA response to 

calcination temperature has the two powders overlapping at approximately 1000 oC. 

The response by the pH 12 product is more linear however, and may allow for 

simpler fine tuning of temperature to achieve a target SSA.  
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X-ray diffraction revealed that the two powders once calcined were essentially the 

same from a crystallographic stand point, with a crystallite size in the order of 35 nm 

and 90% of the phase being monoclinic zirconia. 

 

The two calcined powders were attrition milled to a target D90 below 2 μm with the 

pH 3 powder taking 29 hours and the pH 12 sample 26 hours. The pH 12 sample had 

the D90 drop below 5 μm after approximately 9 hours as opposed to 16 hours for the 

pH 3. The milling curves for the pH 12 show a more orderly size reduction as the 

milling progresses which again may allow target PSD to be reached in a more 

uniform fashion in reduced time offering cost reduction and reduced complexity in a 

plant setting. 

 

The two powders when uniaxially pressed and sintered produced in the order of 88% 

theoretical dense samples, that underwent approximately 20% linear shrinkage. 

Whilst both powders produced similar values the variability that the pH 3 sample 

displayed was more marked than that of the pH 12 sample, suggesting that the 

processing needs to be refined or that less predictable results can be achieved using 

such powder. This trend was mirrored in the tape casting of the two powders with the 

pH 12 sample producing a ceramic that was more in line with what was expected, 

whilst the pH 3 sample produced a ceramic with striations and different opacity 

despite the use of the same processing conditions. 

 

7.1.5. In-Situ XRD of Non-Stabilised Zirconia 

 
In situ and ex situ XRD along with TEM has been used to study the calcination of 

zirconia precipitated from zirconyl chloride solutions of different concentrations and 

pH. The path taken during calcination was found to vary depending on the 

precipitation conditions. These differences are strongly related to the initial particle 

size and the structure of the precipitated hydrous zirconia. The sample made at pH 12 

and a concentration of 0.81 M has a distinctly different response to temperature than 

the other three samples, consistent with the small particle size and composition of 

this sample. The in situ XRD experiments provided clear evidence that increases in 

particle size of tetragonal zirconia with increasing temperature precedes the 

transformation to the monoclinic phase. 
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7.1.6. Yttrium Stabilised Zirconia 

 
Two Y-PSZ powders were produced using the same initial chemical mix and the 

same processing with the exception of pH of precipitation, and both were processed 

through to ceramics. The two pH values used were 3 and 12 and throughout the 

processing the two samples behaved remarkably similarly. The precipitated particle 

sizes, filtration rate and SSA for the pH 3 sample was found to be 2.7(1) μm, 5 

minutes and 197(5) m2/g while the pH 12 sample had 1.8(2) μm, 7 minutes and 

215(3) m2/g, both samples calcining at approximately 400ºC. In situ XRD used to 

determine the phase evolution with temperature from 350 ºC through to 1000 ºC and 

returning to room temperature which showed that the pH 3 sample obtained 

approximately 75% tetragonal phase whilst the pH 12 sample obtained 90% 

tetragonal phase. The total milling time for both samples was 22 hours although 

slight differences were noted in the milling curves. The spray dried mill slip 

produced a free flowing powder for both samples that when investigated using SEM 

and powder compaction methods showed a well formed and regular powder. 

 

The mechanical properties of the final sintered ceramics showed differences in the 

results for density, hardness, toughness and MOR measurements. The pH 3 sample 

was harder but had lower toughness and MOR than the pH 12 sample. Differences in 

the XRD patterns of the final sintered ceramic were noted with the pH 3 sample 

having higher levels of the monoclinic phase. The similarity of the pH 3 sample to 

that in literature for a 2.6 mol% Y-PSZ suggested that the yttrium level was lower 

than expected from the starting solution concentrations. TEM-EDS investigation 

revealed that the pH 3 precipitated sample had 3.3(8) wt% and pH 12 = 5.5(4) wt% 

(≈ 2 and 3 mol% respectively). This difference in yttria content explains the 

differences in the mechanical properties with the density of the pH 3 sample 

matching well to the theoretical density of a powder made from between 1.7 to 2.2 

mol% Y-PSZ. 

 

Subsequent testing using ICP-OES indicated that when the processing is conducted 

at pH 3, high levels (797 ppm) of yttrium are found in the liquor after filtering with 

lower levels (149 ppm) found in the wash solution after filtering. In contrast only 7 

ppm was found in both the liquor and wash for the pH 12 precipitated sample. 
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Precipitation at such low pH for Y-PSZ powders is not feasible as the loss of yttrium 

in the filtering and washing of precipitate adversely affects the final properties of the 

ceramic. 

 

Comparisons made to products currently available in the market for use in SOFC 

manufacture indicate that the process used to produce the pH 12 sample would be 

suitable for the manufacture of SOFC. 

 
 

7.2. Further Work 

 

It is possible to break down the further work into sections relating to each individual 

section. 

 

7.2.7. Solution Chemistry/Precipitation of Zirconyl Chloride 

 

The starting place for further work would be to investigate the speciation changes 

during hydrolysis of zirconyl chloride with time. Literature indicates that there are 

changes but these have not been quantified. As the work that was completed here 

shows that SAXS and subsequent data analysis of the solutions is possible, this 

would not be experimentally difficult. The only issue is that laboratory-based SAXS 

instruments do not have the intensity of photons required to achieved small enough 

time increments, but this of course can be resolved by the use of synchrotron 

facilities. 

 

The other area of fundamental research would be to determine the mechanism behind 

the size increase in precipitated particle size with cation charge. This would also 

involve the determination of the role that the chloride ions play in the solution 

chemistry of zirconyl chloride which is still poorly understood within the available 

literature. 

 

7.2.8. Precipitation Effects of Processing Parameters 
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Whilst this work determined that precipitation of zirconyl chloride under the acidic 

or basic regimes developed different structures assigned as ZrO[OH]2 or Zr[OH]4 

these studies could be extended to determine the structure changes at specific pH 

values, and also to find the specific bonding arrangements of each structure. 

 

7.2.9. Non-Stabilised Zirconia Ceramics 

 

The mechanisms behind the differences seen in the two ceramics produced from the 

powders which were manufactured at different pH is unclear. The in-situ calcination 

work indicated differences in crystallite size, however strain data was not available 

from this work and this may give some indications of the underlying causes of the 

differences seen. A full investigation into micro-cracking, grain growth, strain and 

other microstructure effects due to the differences seen in the calcination between the 

different zirconia products is warranted.   

   

 

7.2.10. In-Situ XRD of Non-Stabilised Zirconia 

 

Incorporating a mass spectrometer to analyse the evolved gas whilst the calcination 

process is underway would deliver significant insight regarding the mode of 

transformation and would allow differences seen to be related back to the degree of 

hydration of the zirconia species. 

 

7.2.11. YSZ  

 

This work only investigated the 3 mol% YSZ from solutions to ceramics, the obvious 

extension would be to further investigate the 5, 8 and 10 mol% YSZ which are used 

in SOFC manufacture. 
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8. Appendix A:- Supplementary Information for 

Publications 
 

8.1. Appendix A-1: Supplementary Information for ‘Ammonia-Induced 

Precipitation of Zirconyl Chloride and Zirconyl-Yttrium Chloride 

Solutions Under Industrially Relevant Conditions’ 

 

Carter G. A., Ogden M. I., Buckley C. E., Maitland C., Paskevicius M., 2009, 

‘Ammonia-Induced Precipitation of Zirconyl Chloride and Zirconyl-Yttrium Chloride 

Solutions Under Industrially Relevant Conditions’, Journal of Powder Technology, 

vol. [188], pp 222-228.  
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Ammonia-induced precipitation of zirconyl chloride and zirconyl-yttrium 

chloride solutions under industrially relevant conditions. Part 1. 

 

Geoffrey. A. Carter, Mark I. Ogden and Craig E. Buckley, Clinton Maitland and 

Mark Paskevicius. 

 

Supporting Information 

 

 
Fig. S1 SEM micrograph of spun coated 0.81 M precipitates. 

 

Small Angle X-ray Scattering – Data Analysis 

 

The UFM was applied to the data from SAXS for the 0.81 M solutions using Irena. 

In Irena, the data is fitted using the following model (Beaucage and Schaefer 1994), 

  (1) I q( )= IU q( )S q( )

where IU q( ) is intensity due to the unified model given by 

 100



IU q( ) ≈ G1 exp −q 2Rg1
2 3( )+ B1 erf qkR g1 6( )⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 

3

q
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

P1

+ Gi exp −q 2Rgi
2 3( )+ Bi exp −q 2Rg i−1( )

2( ) erf qkR gi 6( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

3

q
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

Pi⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ (2) 

⎟ 
⎟ 

i= 2

n

∑

 

 Gi is the Guinier law prefactor, Pi is the power law, Bi is the power law 

prefactor, k = 1.06 for mass fractals or k = 1 for every other case, i is the level and 

S(q) is the structure factor for spherical particles given by 

 
S q( )=

1
1+ kφ  (3) 

where k = 8VH/Vo is the packing factor, VH is the hard core volume of a domain and 

Vo is the average volume available to a domain (for face centred Cubic (FCC) 

packing of spheres k = 5.92). 

 
φ = 3

sin qη( )− qηcos qη( )
q 3η3

 (4) 

where η is the average radial distance between particles. Equations 1, 3 & 4 are for 

weakly correlated systems and for these equations to be applicable the value of k 

must be less than four (Beaucage 1995).  

 For the 1.62 M solutions the structure factor S1(K1) for spherical particles 

used in the HPMSA model (Hayter and Penfold 1981) is given by (5) 

S1 K1( )=
1

1− 24ξ a(K1 )   (5) 

where ξ is the volume fraction and a(K1) is a dimensionless quantity described in full 

detail in the literature (Hayter and Penfold 1981). 

 Fig. S2 shows the fit to the scattering data achieved using the UFM for the 

0.81 M solution (sample Zr1). This is a typical fit to the data for all the 0.81 M 

solutions measured and represents close agreement between the experimental 

intensities and that of the model. From Table S2, k < 4 for samples Zr1, Zr23 & Zr3, 

and hence the application of equation (1) is appropriate for these samples. Fig. S3 

displays the scattering data for the same starting raw material, with the solution 

concentration at 1.62 M (sample Zr6). The model doesn’t fit as neatly as for the 0.81 

M solutions, particularly at low q. From Table S2, k < 4 for samples Zr5 & Zr6, but 

only just (k = 3.8 and 3.7 respectively) and since k > 4 for sample Zr4 the criteria to 
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use equation 1 is not satisfied, therefore the HPMSA model was used for the 1.62 M 

solutions (Fig. S4). The HPMSA model offers a more refined method than the UFM 

in the case of the 1.62 M solutions as it takes into account the particle to particle 

interactions using a screened coulomb approach.  When the 0.81 M solutions were 

modelled using the HPMSA the method failed to converge, which makes sense since 

in general the mean spherical approximation fails at low density (Hayter and Penfold 

1981; Hansen and Hayter 1982). This result coupled with the success of the UFM for 

the 0.81 M solutions and the success of the HPMSA for the 1.62 M solutions 

validates the analysis method. 
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Fig. S2 Data and fitted model for sample Zr1 concentration of 0.81 M. The plot 

shows the contribution from the Guinier and the power law parts of the UFM 

equation. 

 

 Fig. S5 displays the fit to a similar scattering pattern, for a 0.81 M solution 

with 8 mol % yttrium-zirconium mixture. Samples ZrY3, ZrY5, ZrY8 & ZrY10 all 

have values of k < 4, therefore η (Table S2) will be a more accurate representation of 

the average radial particle to particle distance than dp. The result for all of the 0.81 M 

solutions, are essentially identical irrespective of yttrium levels. 
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Fig. S3 Data and fitted model using the UFM for sample Zr67, concentration 1.62 M. 

The plot shows the contribution from the Guinier and the power law parts of the 

UFM equation. 
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Fig. S4 Data and Fitted model using the HPMSA for sample Zr6, concentration 1.62 

M. 
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Fig. S5 Data and model (UFM) for sample ZrYy8 concentration 0.81 M with 8 mole 

%  yttrium added. The plot shows the contribution from the Guinier and the power 

law  parts of the UFM equation. 
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Table S2. Results of SAXS and precipitate particle size analyses, including pH, 

concentration, radius of gyration Rg (Å), particle radius R (Å), packing factor k 

and particle to particle interaction distance dp (Å) and η (Å), and precipitate 

particle size mean diameter p (μm). 

 

Sample Conc. (M) Added  

Cations 

pH Rg 

±0.3 Å

η 

±1.0 Å

k R 

±0.4 Å 

dp 

(Å)

p 

(μm) 

Zr1 0.81  0.74 4.4 16.1 1.64 5.7 21 1.0(1)

Zr2 0.81  0.74 4.3 15.9 1.80 5.6 21  

Zr3 0.81  0.73 4.4 16.0 1.62 5.7 21 1.1(1)

          

Zr4 1.62  0.45 3.9 14.9 5.24 5.1 14  

Zr5 1.62  0.46 3.9 15.0 3.80 5.1 15  

Zr6 1.62  0.47 4.1 15.2 3.70 5.3 16 4.2(1)

          

ZrY3 0.81 YCl3 (3 mol%) 0.77 4.3 16.3 1.60 5.6 22 2.0(1)

ZrY5 0.81 YCl3 (5 mol%) 0.76 4.3 15.7 1.31 5.6 21 3.7(2)

ZrY 0.81 YCl3 (8 mol%) 0.77 4.3 15.6 1.70 5.6 22 4.5(1)

ZrY10 0.81 YCl3 (10 mol%) 0.72 4.3 15.2 1.74 5.6 20 4.9(2)

ZrCa4 0.81 CaCl2 (4.2 mol%)       2.6(1)

ZrCs13 0.81 CsCl (12.7 mol%)       1.8(1)

 

Anstis, G. R., P. Chantikul, et al. (1981). "A Critical Evaluation of Indentation 

Techniques for Measuring Fracture toughness: I, Direct Crack 

Measurements." Journal of the American Ceramic Society 64(9): 533-538. 

ASTM (1990). ASTM E 384-89 1990, ‘Standard Test Method for Microhardness of 

Materials’, , ASTM Standards. 

ASTM C 112-96 1999 (1999). ASTM C 112-96 1999, ‘Standard Test Method for 

Determining Average Grain Size’, . 
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Beaucage, G. and D. W. Schaefer (1994). "Structural Studies of Complex-Systems 

using Small-Angle Scattering - A Unified Guinier Power-Law Approach." 

Journal of Non-Crystalline Solids 172: 797-805. 

Callister, J., W.D. (1997). Materials Science and Engineering: An Introduction 4th 

edn. New York., John Wiley & Sons, Inc. 

Hansen, J. P. and J. B. Hayter (1982). "A Rescaled MSA Structure Factor for Dilute 

Charged Colloidal Dispersions." Molecular Physics 46(3): 651-656. 

Hayter, J. B. and J. Penfold (1981). "An Analytic Structure Factor for Macroion 

Solutions." Molecular Physics 42(1): 109-118. 

Mahdjoub, H., P. Roy, et al. (2003). "The effect of slurry formation upon the 

morphology of spray-dried yttria stabilised zirconia particals." Journal of the 

European Ceramic Society 23: 1637-1648. 
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8.2. Appendix A-2: Supplementary Information for ‘Industrial 

Precipitation of Yttria Partially Stabilised Zirconia’ 

 

Carter G., Hart R., Rowles M., Ogden M., Buckley C., 2009 ‘Industrial 

Precipitation of Yttria Partially Stabilised Zirconia’, Journal of Alloys and 

Compounds, DOI:10.1016/j.jallcom.2009.02.005. 

 

Industrial precipitation of yttrium chloride and zirconyl chloride: Effect of pH 

on ceramic properties for yttria partially stabilised zirconia 

 
G. A. Carter,a+b* R. D. Hartb, M. Rowlesc M. I. Ogden a and C. E. Buckley b 

a Nanochemistry Research Institute, Curtin University of Technology, PO Box U1987, Perth, Western 

Australia, 6845, Australia 
b Centre for Materials Research, Curtin University of Technology, PO Box U1987, Perth, Western 

Australia, 6845, Australia 
c Commonwealth Scientific, Industrial Research Organisation (CSIRO), Minerals Division, Clayton 

Vic  

 
 

Sintered samples where investigated using a Siemens D500 Bragg-Brentano X-ray 

diffractometer with Cu Kα with α1 and α2 weighted average radiation (λ = 1.54178 

Å). The instrument was operated with an accelerating voltage of 40 kV and a 

filament current of 30 mA. The goniometer settings were 20 - 120o 2θ with a step 

size of 0.02o 2θ, the slit size (1/2/3) used were 1o/1o/1o. Pattern investigation and 

Rietveld analysis was conducted using the software package Rietica 1.7.7 (1997). 

Powder diffraction of the hydrous cake through calcination up to 1000ºC were 

obtained using an X-ray diffractometer incorporating a platinum resistance-strip 

heater, with an Inel CPS-120 curved, position-sensitive detector. The angular range 

                                                 
Corresponding Author current affiliation Nanochemistry Research Institute, Curtin University of Technology, PO Box U1987, 

Perth, Western Australia, 6845, Australia  Tel:- +61 8 9266, Fax:- +61 8 9266 4699 Email:-  
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of the detector is 120 deg 2θ, facilitating rapid, simultaneous data accumulation. 

Data were collected in the reflection mode using Co K radiation operated at 35 kV 

and 30 mA. Datasets of 60 s in duration were collected in 10ºC increments as the 

temperature was increased from room temperature to 1000ºC and every 20ºC whilst 

cooling. The Pt strip of the heater contained a small sample well measuring 20.0 x 

7.0 x 0.4 mm. Each sample was hand ground in a mortar and pestle with ethanol and 

was applied directly onto the Pt strip heater as a thick slurry. 

 

The samples were milled in a 01HD Union Process (Akron Ohio) Szegvari Attritor 

system. The attritor had a 500 ml volume with 0.8 mm diameter partially stabilised 

zirconia (PSZ) milling media, agitation was achieved using a PSZ attritor arm. Mill 

slip was made from 1 kg of calcined powder and milli-q water, the solids content was 

45%. A flow through system was used with the mill slip being gravity fed to the top 

of the attritor from an external tank. The slip then passed through the milling 

chamber and a pump, with an inlet at the bottom of the attritor, delivering the mill 

slip back to the top of the external tank closing the loop. Pump speed and gravity 

feed rate were matched so a constant level was kept in the attritor. Sampling and 

testing were conducted on a slip collected from the gravity feed discharge. The 

samples were milled until two consecutive PSD tests taken hourly returned a D90 of 

approximately 2 μm. The use of statistical measures in particle sizing is common 

within the chemical powder industry; the three most common measures that are used 

are the D90 being the 90th percentile, D50 and D10, which are both the 50th and 10th 

percentile respectively. 
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Figure S 1 pH 3 milling Curve 

 

0

5

10

15

20

25

0 5 10 15 20 25
Time (hours)

PS
D

 ( μ
m

) D90
D50
D10

 

Figure S 2   pH 12 milling curve 

 109



0

10

20

30

40

50

60

600 700 800 900 1000 1100 1200

Temperature (ºC)

SS
A

 (m
2 /g

)

pH 3
pH 12

 

Figure S 3   SSA Variation with Calcination Temperature for pH 3 and pH 12 samples 

 

Slurry suitable for spray drying was formed using the constituents listed in Table S 1. 

The products were mixed together using a TABULAR shaker mixer for 40 minutes 

then rolled for 24 hours in a plastic drum with alumina beads to break up any 

aggregates. The slurry was then spray dried with a Niro Mobile Minor using a two 

fluid nozzle.  Spray drying is a method for drying slurries into homogeneous free 

flowing powders. It also allows the final spherical agglomerate particle size to be 

controlled. 

 

Table S 1 Spray drying slurry constituents 

Material wt% 
Zirconia powder  45 
Distilled water  52 
Dispex   1 
Glycerol  1 
Polyvinyl acetate  1 
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The feed slurry was mixed to produce a solids content of approximately 47% which 

was fed into the system at a controlled rate so that an outlet temperature of 105 ºC 

was retained for an inlet temperature of 350 ºC. The atomising air rate was set to the 

mid point of the rotameter with an air pressure of 7 Bar (0.7 MPa). 

 

Mahdjoub et. al. (Mahdjoub, Roy et al. 2003) discusses the effect of slurry formation 

upon the morphology of spray-dried zirconia yttria composites and lists conditions 

that produce misshapen agglomerates that result in powders that are not free flowing 

and are difficult to compact in subsequent processing. An investigation of the spray-

dried powder shape was undertaken using SEM they both were found to be spherical 

with Figure S 4 being typical. 

 

 

Figure S 4 SEM of spray-dried agglomerate (pH 3) 
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The following is a brief account of the procedures used in the testing. 

All pellets and bars used in this testing were initially formed using a 316 SS die with 

stearic acid dissolved in methanol as a die lubricant. The die and powder was pressed 

at 30 MPa with a dwell of approximately 30 seconds. The powder was removed from 

the die and bagged in standard balloons for cold isostatic pressing at 200 MPa. 

 

All samples tested were fired using the same sintering regime, the firing regime used 

is a standard regime used for comparative testing and has not been optimised to find 

the best conditions for firing. The sintering profile is described in Table S 2. 

 

 

Table S 2 Sintering regime 

Temperature Time Taken Rate 

0ºC to 30ºC 10 mins 3ºC/min 

30ºC to 400ºC 6 hrs 10 mins 1ºC/min 

Dwell at 400ºC 30 mins  

400ºC to 1550ºC 9 hrs 35 mins 2ºC/min 

Dwell at 1550ºC 3 hrs  

1550ºC to 30ºC  8 hrs 27 mins 3ºC/min 

 

The sintering was conducted in a muffle furnace with molybdenum di-silicide 

(MoSi2) heating elements in a standard air atmosphere. 
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All physical characterisation was conducted using the following well documented 

procedures 

 

1) Hardness (Vickers indentation ASTM E 384-89 (1997)) (ASTM 1990) 

2) Toughness (K1c Vickers crack propagation method as per Anstis et 

al.)(Anstis, Chantikul et al. 1981) 

3) Modulus Of Rupture (MOR ASTM method C1161-94 (1996))(ASTM C 

1161-94 1996 1996) 

4) Grain sizing (Abrahm’s three ring method with ASTM E-112)(ASTM C 

112-96 1999 1999) 

5) Linear Shrinkage 

6) Green and sintered density (ASTM C20 (1992)) 

 

Samples used in Hardness, toughness and grain sizing after pressing/firing were 

polished to 1 μm finish using a Struers Pedimat with diamond polish. The polishing 

consisted of mounting in epoxy resin and grinding using a 40 μm Pedimat pad until 

flat. The remaining polishing at 9, 6, 3 and 1 μm was for 30 minutes with a force of 

20 N. 

 

MOR test pieces were diamond machined parallel to the specimen axis to an 

approximately 6 μm, then polished to a 3 μm finish with diamond polish using a 

Struers Pedimat. 
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The Vickers microhardness test defined in ASTM E 384-89 (1997) was used to 

determine the hardness of the ZY3. A Zwick hardness tester type 3212B was 

used for hardness measurements. Indentations were made with a 1 kg load 

applied for 20 seconds. The indentation was  inspected using the optical and 

digital system of a Nikon Eclipse ME600 materials microscope. The objective 

lens used was 50x magnification resulting in an effective magnification of 

500x. Five replicates of each composition were tested with each sample being 

tested a number of times. An Asahi standardised block for hardness (Test 

certificate number 75308) was used prior to testing the zirconia samples the 

values returned were within the calibration range (hardness value of 964.3 ± 

4%). 

 

Toughness is defined as a measure of the energy that a material is able to absorb 

before fracture (Callister 1997). By measuring the crack length initiated by a 

hardness test indentation and using the formula below the value of the fracture 

toughness can be determined. 

 

2
3

2
16.0

−

⎟
⎠
⎞

⎜
⎝
⎛=

d
cdHvkc   

 

Where Hv is the hardness and d is the mean distance of the indent diagonals and c is 

the mean distance of the fracture diagonals (Anstis, Chantikul et al. 1981). 

Modulus of rupture (MOR), preformed to ASTM Designation C1161-94 (1996) also 

known as the bend strength, is the maximum stress or stress at fracture was 

developed using the four point bending test.  Samples were 55 mm x 3 mm x 4 mm 

with a chamfer on one of the corners as per the ASTM. Breaks were made using a 

Lloyds 6000R test instrument. 
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The grain sizing was conducted using the Abrams three circle method in line with 

ASTM E-112. The samples were thermally etched by heating with a ramp rate of 1 

oC/minute to 1500 oC with a dwell of 30 minutes. Imaging was conducted using a 

Phillips XL30 tungsten filament SEM. The SEM was operated at 25kV secondary 

electron imaging at a magnification of either 1000 or 1500x dependent on particle 

size. 

The green density of a pressed pellet was determined by a measurement of its 

dimensions to ascertain its volume and a measurement of its weight. Dividing the 

pellets weight by its volume allows the density to be calculated. The radius and 

height of the pellet was ascertained by the use of vernier callipers or a micrometer. 

The measurements of the dimensions of the pellet were taken at three different places 

on the pellet and an average used for the calculation. The pellet was weighed to four 

decimal places on a balance. 

The samples were fired in accordance with the firing regime as specified in the 

relevant section of this document. The sintered density of the pellet was obtained by 

Archimedes principle. 

 

The linear shrinkage, a measure of the linear dimensional change during firing, was 

developed by measuring the green powder dimensions and then measuring 

dimensions of the fired part. 
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Figure S 5 SEM micrograph used for grain sizing pH 12 Typical. 

 

 
Figure S 6 Optical micrograph showing a Vickers indentation. 
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Figure S 7 Optical Micrograph of 2 MOR bars showing difference in optical properties 
 

[28] H. Mahdjoub, P. Roy, C. Filiatre, G. Bertrand, C. Coddet, J. Eur. Ceram. Soc. 
2003, 23, 1637. 
[29] ASTM, ASTM E 384-89 1990, ‘Standard Test Method for Microhardness of 
Materials’, , Vol. 1990, ASTM Standards,  1990. 
[30] ASTM C 1161-94 1996, ASTM C 1161-94 1996, ‘Stanard test method for 
flexural strength of advanced ceramics at ambient temperature’, Vol. 03.01, ASTM 
Standards,  1996. 
[31] ASTM C 112-96 1999, ASTM C 112-96 1999, ‘Standard Test Method for 
Determining Average Grain Size’, , Vol. 03.01,  1999. 
[32] J. Callister, W.D. , Materials Science and Engineering: An Introduction 4th 
edn, John Wiley & Sons, Inc., New York. 1997. 
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9. Appendix B:- Experimental Information – Small Angle 

Scattering 
 

Most materials scientists if not all know the Brag equation θλ sin2d=  for 

diffraction and its derivation. What is less understood is that for the majority of the 

observed lattice spacing’s are of the same order of magnitude as the X-ray wave 

lengths that are in the most cases used, this thus leads to the angle θ  being relatively 

large (Guinier, Fournet 1955). With the need to study macromolcules the study of 

small angle X-ray diffraction was introduced to allow the detection of large lattice 

spacing’s (Guinier, Fournet 1955). 

 

The obvious place to start such a discussion on theory would be to describe the 

interaction of the neutrons and x-rays with the sample, this will be a simplistic 

version of that that will move into some of the basic mathematical discussions. 

For neutrons the interaction is with the nucleus of the particle in question, this is 

termed nuclear interaction, neutrons can also interact with the electronic structure by 

way of the dipole, as such is known as magnetic interaction. Neutrons are particles 

(as defined in the physical sciences when dealing with quantum type objects). There 

energy is kinetic and can be determined by the standard equation of 2

2
1 mvE = this is 

well known equation and the elements are E being the energy, and  being the 

mass and velocity respectively. 

m v

 

Electromagnetic interaction is the term used to describe the interaction that x-rays 

undergo. This is due to the interaction with the x-rays be contributed to by the 

electron cloud. As is well known x-rays energy of an x-ray can be defined by 

mv
h

=λ  where λ  is the wave length, is Plank’s constant with the momentum being 

which have been defined previously. 

h

mv
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It is possible to define the following parameters to explain a scattering event; if we 

have a wave vector  in the direction of v that can be determined as k
λ
π2

=k  which 

can then be related as below: 

fk

θ2
ik

λ  

ik

Sample 

Scattering angle 

X-rays or 
neutrons 

 
thus the term θ2  is the scattering angle. 

 

The scattering vector can be related to this by Q fi kkQ −=  which can be understood 

diagrammatically by; 

fk

Q  
θ2  

ik
 

If we take the case of inelastic scattering we have a slightly different case as shown; 

fk

Qθ2  

ik
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Now if we introduce Bragg’s law ( θλ sin2d= ) where  is conventionally thought 

of as the lattice plane spacing we can rearrange to make 

d

θ
λ

sin2
=d  and then 

substitute in for k  we can end up with 
Q

d π

θ
λ
π

π 2
=

sin

2

⎟
⎠
⎞4

⎜
⎝
⎛

=  which is thus moved to 

allow a relation ship between the scattering vector Q and d where as d increases Q 

decreases. 

 

The scattering cross section is a measure of the ability of an object to remove 

photons from a direct beam and send them into new directions. This can be 

understood with the following diagram; 

 

 
Figure 15. Scattering cross section line diagram. 

 

The incident flux  has the units of (s-1 cm-1) with dS  being the scattered area and Φ

r the radius. These can be used to define the differential cross section; 

 

 

( )( )
ΩΦ

=Ω⋅⋅⋅
=

Ω d
r

dSd

d
d 2toinsec/edNo.Scatterσ

 (B-1) 

 

This can then become the total cross section (σ ); 

 120



 

 
Ω

Ω
= ∫ d

d
dσσ

 (B-2) 

 

It is possible to define 
Ωd

dσ  for a single electron using classical physics as 

 

 

( )
⎥
⎦

⎤
⎢
⎣

⎡ +
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Ω 2
2cos1 2

2

2 θσ
mc
r

d
d e

 (B-3) 

 

The scattering length density can be calculated for a molecule from  

 

 
∑

=
⎟
⎠
⎞

⎜
⎝
⎛=

n

i
j

m
aes Z

MW
Nr

1

ρρ
 (B-4) 

 

In this sρ is the scattering length density of the species, mρ  mass density of the 

species, MW is the molecular weight,  is Avogadro’s number,  is the atomic 

number of atom j in the molecule. 

aN jZ

 

These parameters are all important as the most practical way to make use of the 

information generated by a SAXS experiment is to use the general equation; 

 

 
( )Q

d
dvI sm Ω

ΔΩ⋅Φ∝
στη

 (B-5) 

 

From equation B-5 it can be seen that the measured intensity ( ) is proportional to 

the differential cross section, it does however have other factors involved. These are 

the solid angle ( ΔΩ ), the detector efficiency (

mI

sτ ), and the volume ( v ). These are 

mostly to do with the instrument used, thus they are instrument specific which 

includes the type of radiation used (in λ  terms) (King 1995, Higgins and Benoit 

1994, Buckley 2002). 
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If an alternate understanding is required then it is possible to take the most general 

case for dilute spherical particles in a vacuum and calculate through and develop a 

more practical approach. The most general equation for particles in a vacuum is 

given by Guinier and Fournet (1955) and the following equations and derivations 

where achieved with the assistance Kirby (2006) and Buckley (2004)  

 

 
2

QeQQ FNII =  (B-6) 

 

Here IQ is the observed intensity of transmission (units = photons.cm-2), whilst N  is 

the average number of particles in the analysis volume (this has no units and is a 

number). 

 

IeQ is the scattering intensity of a single electron and can be determined by 

2
2cos1 2

2
0

2 θ+
= −pIRI eeQ  this can be reduced for small angles to  

within this equation I0 is the incident intensity (units = photons.cm-2), and p is the 

distance between the sample and detector. 

2
0

2 −= pIRI eeQ

 
2

F is a function of the form factor were and is equal too QinF 22
=   here  the form  

factor (iQ) of the particles and can be determined for spherical particles by 

( ) ( )
( )

2

3

cossin3 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

Qr
QrQrQriQ , with n2 being the number of electrons in the particle 

which can be determined by ρvn =   with ρ  being the average electron density and 

v being the volume of the particle and r being the real space radius. 

 

If the whole thing is bought together we are left with equation B-7 for spheres  
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 (B-7) 
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This however neglects the practicalities of experimentation and dose not have a 

transmission factor (T) or the detector efficiency (Ed) and it also can be simplified 

some what. If we make use of the fact that 
v

VN φ
⋅=  where V is the volume of the 

sample in the beam, V is able to expressed as DAV .=  with A being the area of the 

beam and D being the thickness of the sample. φ  is the volume fraction of particles 

in suspension and v is the volume of a single particle (same as previously used the 

volume of a sphere 3

3
4 rv π= ). 

If all of the components are bought together then equation B-7 becomes equation 

B-8; 
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 (B-8) 

 

The incident flux ( ) has been used as defined before but as a reminder can be seen 

to be . 

Φ

AI0=Φ

 

One important factor to note is that all of the equations used above are working in 

units of photons.cm-2  

 

Typically in an experiment that uses counting detectors you will know the Apixel 

which is the area subtended by each pixel of the detector, with the specimen to 

detector distance being known the solid angle for each pixel can be calculated ( Ωd ). 

The number of photons on each pixel is then , therefore the 

fundamental equation can be written ; (after Kirby 2006, Buckley 2004) 

2pdAIJ pixelQQ Ω=

 

 
Dq Ed

d
dAdTIJ Ω
Ω

=
σ

0
 (B-9) 

 

This can then be used along equation B-8 and rearranged to give absolute cross 

section of a colloid of spherical particles in solution. 
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This thus will give the observed pattern on an absolute scale assuming that the 

corrections for the transmission, absolute scaling and background have been 

accounted for. 
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