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Piezoelectric Energy Harvesters

Mikail F Lumentut

Abstract

This research investigates vibration energy harvesting by modelling several
piezoelectric-based structures. The usage of piezoelectric transduction under input
vibration environments can be profitable for obtaining electrical energy for powering
smart wireless sensor devices for health condition monitoring of rotating machines,
structures and defence communication technology. The piezoelectric transduction
shows strong prospect in the application of power harvesting because it can be
applied at the microelectromechanical system design level in compact configuration
with high sensitivity with respect to low input mechanical vibration. In this research
work, the important aspects of the continuum thermopiezoelectric system associated
with the laws of thermodynamics, Maxwell relations and Legendre transformations
have been developed to explore the macroscopic thermopiezoelectric potential
equations, the thermopiezoelectric equations of state and energy function forms. The
application of the continuum thermopiezoelectric behaviour can be used to further
formulate novel analytical methods of the electromechanical cantilevered
piezoelectric bimorph beams with the tip mass using the weak and strong forms
resulting from Hamiltonian’s principle. The constitutive electromechanical dynamic
equations of the piezoelectric bimorph beam under one or two input base excitations
can be used to derive the equations of the coupled electromechanical dynamic
response of transverse-longitudinal form (CEDRTL), the coupled electromechanical

dynamic response of longitudinal form (CEDRL) and the coupled electromechanical



dynamic response of transverse form (CEDRT). The derivation of the constitutive
electromechanical dynamic equations using the weak form of Hamiltonian’s
principle can be further derived using the Ritz method associated with orthonomality
whereas the closed form or distributed parameter reduced from strong form of
Hamiltonian’s principle, can be further formulated using the convergent
eigenfunction series with orthonormality. Laplace transformation can be used to give
the solution in terms of the multi-mode transfer functions and multi-mode frequency
response functions of dynamic displacement, velocity, electric voltage, current,
power and optimal power. Moreover, the broadband multi-electromechanical
bimorph beam with multi-resonance can also be explored showing the single- and
multi-mode transfer functions and frequency response functions. A parametric case
study of the piezoelectric bimorph beam with the tip mass and transverse input
excitation is discussed to validate the weak and closed forms of the CEDRTL, under
series and parallel connections, using the multi-mode frequency response functions
with variable load resistance. A further case study of a broadband multi-
electromechanical piezoelectric bimorph beam is also discussed using the weak form
of the CEDRT to give the frequency response functions under variable load
resistance. Finally, the piezoelectric bimorph beams with and without tip masses
under transverse base input excitation are also comprehensively discussed using the
weak forms of the CEDRTL and CEDRT models and compared with experimental
results for variable load resistance. A piezoelectric bimorph beam with tip mass is
investigated to show the close agreement between the CEDRTL model and
experimental results using the polar amplitudes from the combined action of

simultaneous longitudinal and transverse base input excitation.
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CHAPTER
1

Introduction

In the last few years, the investigation of energy conversion techniques utilising
ambient vibration has been of great interest for many researchers. The energy
extracted from vibrating devices and structures can be utilised for powering
electronic devices, supplying direct current into rechargeable batteries or electrical
power storage devices. One of many applications being considered is for powering
smart wireless sensor devices for health condition monitoring of rotating machines or

structures and defence communication technology.

The action of mechanical vibration onto piezoelectric elements result in mechanical
strain fields creating electric-polarity fields resulting in the generation of electric
voltage. The input ambient vibration can be unused mechanical energies from
numerous sources in industry, vehicles, airplane, humans’ movement, piping
structures, fluid flow and bridges, etc. The usage of piezoelectric material in the
application of energy conversion requires knowledge of analytical methods, circuit
components, material properties and geometrical structure. Piezoelectric materials
have major benefits as they can give a reasonable prospect for
microelectromechanical system design, compact configuration, high sensitivity with
respect to low input mechanical vibration and are suitable to be used as a patch or

embedded with other substructures.

An extensive review of piezoelectric element application for power harvesting has
been discussed by Anton and Sodano [1] and Priya [2]. The piezoelectric bimorph
beam represents a useful candidate for power harvesting as it gives high strain field
due to the input vibration to induce the electrical field. The resulting extracted
electrical energy can be optimised by utilising an electronic circuit capable of
supplying the direct current into a rechargeable battery for the usage of wireless

sensor communication, Roundy et al [3]. Moreover, there have been numerous




extensive analytical solutions of electromechanical piezoelectric systems associated
with experimental validations. Smits and Choi [4] and Wang et al [5] derived an
analytical solution for the static condition of the bending piezoelectric bimorph
beam. However, their analytical methods cannot be applied to the vibration
piezoelectric harvester due to the required coupled electromechanical response.
Roundy and Wright [6] investigated the analytical solution using the electrical
equivalent of the electromechanical transverse bending form for powering electrical
devices but it was limited to the single mode. Some other investigations of analytical
methods used the single mode of Rayleigh-Ritz’s analytical approach of the
electromechanical transverse bending form of the piezoelectric bimorph as shown by
duToit et al [7]. The normalised single mode dynamic equation of piezoelectric
power harvesting was shown by Shu and Lien [8] and the multi-mode frequency
response using the closed-form method of the piezoelectric bimorph was derived by
Erturk and Inman [9]. The parametric geometric consideration of the
micromechanical piezoelectric unimorph beam using the Rayleigh-Ritz method with

condense matrix equation form was shown by Goldschmidtboeing and Woias [10].

In this research work, novel analytical methods using the weak form and closed-form
(reduced from strong form) Hamiltonian principle were considered. The coupled
electromechanical dynamic response of the transverse-longitudinal model
(CEDRTL), coupled electromechanical dynamic response of the transverse model
(CEDRT) and coupled electromechanical dynamic response of the longitudinal
model (CEDRL) of piezoelectric systems under two input base excitations will be
developed mathematically in this dissertation. The derivations also include the
single- and multi-mode transfer functions (TRs) and frequency response functions
(FRFs). The analytical methods also provide the broadband multi-electromechanical
piezoelectric bimorph beam with multi-frequency response for optimisation of the

electrical output.

1.1. Objectives of the Dissertation

After reviewing the existing literature in the field of vibration energy
harvesting and the applications for self-powered generators, it was found that the
existing vibration power generators can be categorised into areas of piezoelectric,

electromagnetic and electrostatic transductions. The aim of reviewing these types of




transductions are to discuss the comprehensive analytical and experimental methods,
the characteristic materials, the primary areas of application, the electrical power
output and the advantage and disadvantage of the various transductions. After
reviewing the transduction mechanisms of energy harvesting, the piezoelectric
transduction was chosen for further study focusing on developing novel theoretical
methods for multi-directional input response. The primary objective of this
dissertation was to review and investigate the state-of-the art energy methods using
continuum piezoelectric element models and to present mathematical derivations of
the multi-directional vibration induced electromechanical piezoelectric bimorph
beam including experimental validations. The aim of formulating the continuum
thermopiezoelectric behaviour was to establish the energy phenomena of
piezoelectric material which results from the interrelationship between the physical
properties of elasticity, electricity and entropy in order to obtain the
thermopiezoelectric equations of state and thermopiezoelectric coefficients using
Maxwell’s relations and Legendre transformation. It was found that most researchers
did not discuss the detail of the physical properties of thermopiezoelectricity. For the
piezoelectric power harvester, the effect of electrical enthalpy of the
thermopiezoelectric element under adiabatic and isothermal processes is presented.

Moreover, the analytical models of the electromechanical dynamic equations of the
piezoelectric bimorph with the tip mass under two input base excitations are derived
using the Hamiltonian principle to formulate three different methods, which are the
strong form analytical method, weak form analytical approaches and closed-form
boundary value methods. At this case, the weak form analytical approach derived
from the strong form method was further derived using the Ritz method by
introducing Ritz coefficients and space- and time-dependent Ritz eigenfunction
series which were further formulated using orthonormalisation. The closed-form
boundary value method derived from the strong form method was further formulated
using a direct analytical solution with orthonormalisation by introducing the space-
and time-dependent eigenfunction series into boundary conditions. The weak form
method can be formulated to provide the coupled electromechanical dynamic
response of the transverse and longitudinal forms (CEDRTL), the coupled
electromechanical dynamic response of the longitudinal form (CEDRL) and the
coupled electromechanical dynamic response of the transverse form (CEDRT). The




closed form method using the strong form derivation can be formulated to provide
the coupled electromechanical dynamic response of the transverse and longitudinal
forms (CEDRTL). In this dissertation, the transfer functions (TR) and frequency
response functions (FRFs) using the CEDRTL and CEDRT models have been

comprehensively established using Laplace transformations.

A further aim of this dissertation is to analyse the parametric case study of the
piezoelectric bimorph under series and parallel electrical connections using the
CEDRTL weak and strong forms. The results include the parametric FRF amplitudes
including the multi-mode FRFs of tip absolute dynamic displacement, velocity,
electrical voltage, current and power. Parametric analysis of the dynamic responses
with respect to variations of load resistance, variations of bimorph geometry and the
broadband multi-electromechanical piezoelectric beam with multi-frequency models
are also presented. Moreover, the validations and comparison between the
experimental and analytical results of the piezoelectric bimorph beam with and
without tip masses are also discussed for the single- and multi-mode FRFs and the
polar FRFs amplitudes.

1.2. Significance and Innovation

In this dissertation, the capabilities of the electromechanical response of the
piezoelectric bimorph can be used to extract variable power from ambient vibration
for future product applications of smart wireless sensor devices. The core research
will be the mathematical study of the piezoelectric system and its application for
vibration power harvesting. This includes the complete derivations of continuum
thermopiezoeletricity to explore the macroscopic phenomena of thermopiezoelectric
potential equations, the thermopiezoelectric equations of state and energy function
forms. Moreover, the application of continuum thermopiezoelectricity can be utilised
for deriving analytical equations of the electromechanical piezoelectric bimorph
beam with the tip mass under input excitations using the Hamiltonian principle for
analysing the transfer functions and frequency response functions with variable load
resistance for predicting the tip displacement, velocity, electrical voltage, current and
power outputs. Moreover, the complete derivations of series and parallel multi-
electromechanical piezoelectric bimorph beams are discussed to analyse the

broadband frequency response functions for optimisation study.




1.3. Research Method of the Dissertation

The vibration power harvester using the piezoelectric effect has been an
emerging research field over the past few years. After investigating the
comprehensive literature review, the research methodology of the electromechanical
piezoelectric in this dissertation covers the extended concept of thermopiezoelectrical
energy forms, the mathematical methods of electromechanical piezoelectric bimorph
beam with two input base excitations, the parametric case study and experimental

validations.

The piezoelectric behaviour underlies the macrostate thermodynamic principle
covering the elasticity, quasi-static electrical energy and entropy. In this research
method, the continuum thermopiezoelectricity representations are derived
mathematically to establish the physical energy forms and thermopiezoelectric
potentials of the Elastic-Electrical Gibbs Free Energy, Elastic Gibbs Free Energy,
Electrical Helmholtz Free Energy, Elastic Helmholtz Free Energy, Elastic-Electrical
Enthalpy and Electrical Enthalpy in terms of the entities of tensor
thermopiezoelectric coefficients. The physical aspect of thermopiezoelectricity plays
an important role in smart materials and structures. It was found that many
researchers did not provide the in-depth interaction of the thermopiezoeletric
equations of state based on the Maxwell’ relation and Legendre transformation. The
most common piezoelectric constitutive equations, derived from the electrical
enthalpy under the adiabatic and isothermal processes, includes the direct and
converse modes, which are used directly by many researchers without exploring the
physical properties and other energy function forms of the macroscopic

thermopiezoelectric tensor as mentioned above.

The vibration response of the piezoelectric bimorph beam with the tip mass under
two input base excitations for power harvesting can be formulated using the potential
energy from the substructure material (middle layer), electrical enthalpy of upper and
lower layers of piezoelectric material, kinetic energy of the bimorph including the tip
mass and external electrical energy into the piezoelectric element. The analytical
methods, derived using the Hamiltonian principle, can be further formulated using
three models. The first model represents strong form analytical method and the

second model represents the analytical approach using the normalised Ritz




eigenfunction series (weak form) whereas the third model represents the closed-form
analytical method using the normalised convergent eigenfunction series (reduced
from strong form). Since the linear Lagrangian strain field of the piezoelectric
bimorph associated with the two input base excitations is reduced from the kinematic
of transverse and longitudinal displacement fields, the effect of coupled
electromechanical dynamic behaviour of the bimorph based on the Hamiltonian
principle are formulated into three further models. The first model represents the
electromechanical dynamic response of the transverse-longitudinal form (CEDRTL),
the second model represents the electromechanical dynamic response of the
transverse form (CEDRT) and the third model represents the electromechanical
dynamic response of the longitudinal form (CEDRL). The broadband frequency
response of the multi-electromechanical piezoelectric bimorph beam is also derived
analytically to analyse the frequency behaviour of the electrical current, voltage and

power for optimisation study.

The frequency analysis reduced from the Laplace transforms of the
electromechanical bimorph beams (weak and closed forms) can be used to formulate
the single and multi-mode transfer functions (TRs) and frequency response functions
(FRFs) of the CEDRTL, CEDRT and CEDRL models. The overarching vibration
power harvesting of the piezoelectric bimorph beam reflects the interrelations of the
electromechanical dynamic response between the input vibrations and the electrical
current, voltage and power outputs associated with the mechanical displacement and
velocity outputs. This understanding reflects the profound continuum
electromechanical dynamic behaviour of vibration power harvesting for future
applications of self-powered smart sensor devices to be used for condition health

monitoring of rotating machines or structures.

The parametric case study of the piezoelectric bimorph beam with tip mass will be
discussed according to the series and parallel electrical connections where two
different analytical methods of the weak and closed forms of the multi-mode
CEDRTL equations under series and parallel connections will be used to validate the
results for variable load resistance. Moreover, the piezoelectric bimorph beam with
and without tip masses using the weak forms of the CEDRTL and CEDRT equations

can also be compared with experimental results. The trends between the CEDRTL
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and CEDRT models and experiments are investigated over the frequency range.
Programming code based on MATLAB was developed to model the theoretical
simulations. In this dissertation, the experimental work was conducted in the
vibration laboratory using equipment including the piezoelectric bimorph with and
without tip mass, input base structure, FFT Analyzer, Laser vibrometer polytec PDV
100, B & K exciter, B & K impedance head, B & K charge amplifier, B & K power

amplifier, wave function generator, and computer.

1.4. Layout of the Dissertation

This dissertation consists of seven chapters, detailing the mathematical
analysis of continuum thermopiezoelectric behaviour covering the analytical
methods of electromechanical piezoelectric bimorph beams for power harvesting.
The validations of the piezoelectric vibration harvester are also provided by
comparing two different analytical methods and experimental results. The detail and

outline of each chapter is presented below:

Chapter 1 presents the general introduction of vibration power harvesting in the field
of smart structures with applications of self-powering smart wireless sensor devices
for the health condition monitoring of rotating machines. The major contribution of
piezoelectric devices is the development of profitable power harvesting technology
from simple structures, which can be used from macro- to micro-electromechanical
scale to capture the vibration environment and convert the dynamic response into
electrical energy. The concept of the research study is presented including the

research objectives, significance and methodology.

Chapter 2 discusses the comprehensive review of the existing vibration power
harvesting literature focusing on three major groups, represented by piezoelectric,
electromagnetic and electrostatic generators. This review includes the physical aspect
of the devices, mathematical models including the validations, analysis of the
electromechanical dynamic system, implications for future smart sensor devices and

the comparative modelling of the three different generators.

Chapter 3 provides the comprehensive theory of continuum thermopiezoelectricity to
model the physical characteristics of the piezoelectric effect using the divergence

field of quasi-electrical form, Gauss’s electric displacement piezoelectric form,




piezoelectric polarisation, and thermodynamic laws associated with Maxwell
relations and Legendre transforms to formulate the interrelationship of
thermopiezoelectric potentials, thermopiezoelectric equations of states and energy

function forms including the tensor coefficients.

Chapter 4 presents analytical methods for deriving the electromechanical dynamic
equations of the piezoelectric bimorph beam with two input base excitations using
the Hamiltonian principle. Since typical piezoelectric vibration power harvesting
utilises the relatively thin bimorph beam, the Rayleigh and Euler-Bernoulli
piezoelectric beam equations are formulated. The analytical methods are formulated
using kinetic energy expressions for the bimorph and tip mass, the potential energy
of the substructure, electrical enthalpy of the piezoelectric layers under adiabatic and
isothermal processes and the applied mechanical and electrical work. The analytical
derivations of the piezoelectric bimorph under series and parallel electrical
connections can be split into three categories representing the strong form, weak
form and closed form Hamiltonian principle. The weak form of the analytical method
reduced from strong form can be further divided into three coupling
electromechanical models (CEDRTL, CEDRT and CEDRL) for single- and multi-
mode frequency analysis using the Ritz eigenfunction series. The closed-form
analytical method was also reduced from the strong form Hamiltonian principle to
give the multi-mode CEDRTL frequency analysis. The broadband multi-
electromechanical piezoelectric bimorph beam is investigated to explore the multi-
frequency behaviour response of the bimorph electrical output. Since the bimorph is
connected to the external varying load resistance, each electromechanical coupling
effect can be further formulated into transfer functions (TRs) and frequency response
functions (FRFs) using Laplace transforms. This provides the relative and absolute
transverse and longitudinal displacements including the velocity, electrical voltage,
current and power. Moreover, the generalised time dependent absolute displacement
and velocity including the FRF can also be formulated to give compatible results for

comparing with the experimental setup.

Chapter 5 presents a parametric case study of a piezoelectric bimorph beam with tip
mass and series and parallel electrical connection with varying load resistance. The

CEDRTL weak form and closed form results can be compared to analyse the multi-
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mode FRFs of tip absolute displacement and velocity, electrical voltage, current, and
power harvesting. Moreover, the short and open circuit resonance frequencies with
respect to the varying load resistances and geometrical parametric properties are
presented. The broadband multi-frequency behaviour of three piezoelectric bimorph

beam models with series and parallel electrical connections are also presented.

Chapter 6 presents the comparison between the analytical and experimental
electromechanical dynamic response of the piezoelectric bimorph beam with and
without tip mass. The CEDRTL and CEDRT weak form model results are
investigated and compared with the experimental results from the bimorph with and
without the tip mass. The single- and multi-mode FRFs of the tip absolute
displacement and velocity, electrical voltage, current, and power relating to the input
transverse excitation are presented. The two input base excitations of transverse and
longitudinal excitations of the bimorph are also presented for discussion of the polar
tip absolute displacement and velocity, electrical voltage, current and power under

varying load resistance.

Chapter 7 presents the summary of the major research findings of the
electromechanical piezoelectric system and presents the major conclusions of the

dissertation.

The appendix provides the constitutive piezoelectric equations in matrix form, the
mode shape of the piezoelectric bimorph and the MATLAB code developed and used
in the research.




CHAPTER
2

Review of Electromechanical Vibration Power Harvester

The development of embedded permanent computing-based technology equipment
has increased the demand from the engineering industry to monitor or control the
health condition of structures and rotating machinery. The prevalent technological
equipment still requires electrical power from the mains power supply or battery in
order to read and transfer the electrical data signal via the wireless sensor nodes into
the computer including data acquisition, instrument control and/or analyzers to
monitor the rotating shafts, turbines, bearings, gearboxes, bridge structures, pipe etc.
In that case, the convention battery systems have a limited lifespan for power
production. The systems are still dependent upon the electrical power from the
battery system or mains power supply for recharging. This leads to the tedious task
of replacing the conventional battery from the smart sensor device often located in
remote or inaccessible areas. This situation has revealed challenges for scientists to
identify alternate low power systems for supporting smart sensor devices. Moreover,
the emerging technology in the MEMS scale would facilitate future applications of
smart sensor systems with wireless communication to monitor engines and other
machinery located in remote areas. At the same time, the need for self-power systems
with rechargeable thin battery technology will also inevitably increase. This research
area is still ongoing and includes the development applications for scavenging power
for long lifespan duration. To power the computing technologies such as small
electronic devices with thin batteries and wireless capabilities, the mechanical energy
sources from unused or wasted vibration energy from industrial machinery, airplane,
automobile, bridge, human motion etc. can be utilised for micro-generator power
harvesting. Table 2.1 shows an example of power consumption needed for electronic
devices as found in Vullers et al [11]. Other power supplies from household tools,
computers etc. in Roundy et al [3] are shown in Table 2.2. It should be noted that one

of most realisable candidates for power scavenging are piezoelectric components,
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even though some researchers still use electromagnetic and electrostatic systems. In
this literature review, other sources of macro power supply such as gas turbine, wind
turbine and nuclear power plants were not considered. It should be noted that other
micro power supplies like photovoltaic cells, fuel cells and thermoelectric devices
were also not discussed, as the main focus in this section was on the potential micro
scale energy supply from piezoelectric, electromagnetic and electrostatic
transductions for the use in future applications of smart sensor equipment as shown

in Figure 2.1.

Table 2.1 Characteristic of battery operation system, [11]

SR Power. Energy
Consumption | autonomy

Smartphone 1W 5h
MP3 player 50 mW 15h
Hearing aid 1mwW 5 days
Wireless sensor node {100 pw Lifetime
Cardiac pacemaker (gq HW 7 years
Quartz watch 5 UW 5 years

Table 2.2 Acceleration magnitude and frequency of fundamental vibration, [3]

Vibration source A (m/s®) |F peak (H2)
Car engine compartment 12 200
Base of 3-axis machine tool 10 70
Blender casing 6.4 121
Clothes dryer 35 121
Person nervously tapping their heel |3 1
Car instrument panel 3 13
Door frame just after door closes 3 125
Small microwave oven 25 121
HVAC vents in office building 0.2-1.5 60
Windows next to a busy road 0.7 100
CD on notebook computer 0.6 75
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Figure 2.1 Schematic Electromechanical Power Harvesting System.
(Representation by Lumentut, 2010)

12

——
| —



2.1. The Electromechanical Vibration-Based Piezoelectric Generator

The piezoelectric element, subjected to input motion from the vibration
environment, can create the strain field to induce the polarity-electric field to
generate useful electrical energy capable of being stored on electrical power storage
devices such as batteries or capacitors. Such a technique is generally referred to as
the energy harvesting technique by using the unused energies from the dynamic

motion, fluid flow, human’s motion, impact, etc.

Extensive experimental studies of the piezoelectric power generation, conducted by
Inman’s group at VirginiaTech, provided a comprehensive investigation of the
performance of piezoelectric components. Sodano et al [12] investigated three
different piezoelectric materials (MFC, Quick Pack and PZT ) using the cantilever
piezoelectric models under dynamic response for accumulating the electric voltage
and charge flowing into various batteries. They found that PZT gave more efficient
charging time for the battery than Quick Pack. Even though MFC gave higher
electric voltage than PZT, it was found to provide inefficient current for charging
compared with the two other piezoelectric materials. Further experimental
investigation of power harvesting with different material properties has been reported
by Sodano et al [13]. They proposed three piezoelectric devices (Quick Pack, MFC
and Quick Pack IDE) bonded onto nearby clamped supports of a cantilevered
aluminum beam as shown in Figure 2.2. Over the first three modes of frequency
response, the Quick Pack had the highest power harvesting capability, followed by
MFC and Quick Pack IDE as shown by the result given in Table 2.3 at the end of this
section. However, each of the piezoelectric devices, bonded onto the aluminum beam
had different geometrical structures making them unfit for comparison. Moreover,
the capacitance of the MFC depended on the geometry of the capacitor cell between
the interdigitated electrodes and this also affected the power harvesting performance.
Sodano et al [14] demonstrated the cantilever piezoelectric beam under random and
resonance input vibration environments for generating electrical voltage for
subsequent storage into rechargeable batteries and capacitors. The piezoelectric
element was circuited with a full rectifier, capacitor and rechargeable battery. It was
found that the charging voltage under random vibration conditions generated

increased output voltage to the capacitor. However, it did not give the continuous
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voltage output signal from the capacitor during the discharge operation. The second
test showed that the electrical voltage under the random input vibration took 1.5
hours to recharge the cell battery whereas the excited resonance frequency of the

piezoelectric system charged the battery in around 20 minutes.

f—508mm
£ demm—
7/
T
T
Quick Pack | 254mm
L
i .
MFC 5 4mm Aluminum Beam 101.6mm
—
Quick Pack 3;;:6
IDE "l n
II f= 52.1mm —
k 838.2mm

Figure 2.2 Piezoelectric transductions attached to the beam, [13].

The use of piezoelectric components in the application of human motion is of great
interest to some researchers. Paradiso with his research group from MIT media Lab
investigated several piezoelectric generators for human wearable electronic devices.
Kymissis et al [15] discussed the application of piezoelectric PVDF and PZT
components mounted between the insole and rubber sole of sport shoes, generating
power harvesting from human walking as shown in Figure 2.3. The generated charge
due to the mechanical contraction on the PVDF stave and the PZT of shoes during
walking was investigated for optimisation of the electric voltage and energy
harvesting, controlled using an electronic circuit to transmit the signal via radio
transmitter. The average power during the brisk walk delivered by the PVDF stave at
the shoe’s toe at the frequency of 1 Hz using 250 kQ, was 1.1 mW while the PZT
element on the shoe’s heel delivered an average power of 1.8 mW. Further
improvement of piezoelectric power generation from a human walking was
investigated by Shenck and Paradiso [16], where the PVDF stave placed in the insole
of sports shoes delivered the average power of 1.3 mW at load resistance of 250 kQ
at 0.9 Hz during walking pace whereas the PZT bonded into the insole of US Navy
boots generated the average power of 8.3 MW at 500 kQ with the same frequency as

shown in Figure 2.3.

Starner and Paradiso [17] further reviewed the improvement of computing

electronics such as disc capacity, processor speed and computer memory with an
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apparent increase of over 250 times with the available battery during 1990 and 2003.
The power provided from the battery also has a limited lifespan and it is basic issue
of the power storage for powering the electronic media. One of the trends in
recovering the harvested power is that the piezoelectric sensor can act as a generator
and be used to extract power due to the mechanical contraction from the human
body. In Paradiso [18], this represents the well-known batteryless-based sensor
model where the captured power never needs battery storage. This includes
generating the harvested power from piezoelectric material bonded between the shoe
insole and sole during human walking. Other researchers also completed similar
work of scavenging power from human walking. The following work of the
piezoelectric powered human walking was given by Mateu and Moll [19] where they
optimised a bending piezoelectric beam in shoes using the simple support model. The
typical layered piezoelectric beams of the homogeneous and heterogeneous bimorph
as well as the heterogeneous unimorph were discussed under the application of point
and distributed loads. Although the analytical dynamic response was not given, the
author noticed that the triangular unimorph with the simple support provided the
highest power under the distributed load. The subsequent study by Mateu and Moll
[20] developed their research by using the capacitors as storage media with controls
and regulators for powering a load. The current waveform was used to predict the
voltage waveform, generating prolonged low energy to be stored in the storage
media, which depended on the conversion of the strain of the embedded piezoelectric
element in the insole of the shoe during walking.

PZT

PZT unlmorph
dimorph PVDE
stave
Metal

PZT h
midplate unimorp

Figure 2.3 Wearable shoe power harvester, [16].
The investigations of power harvesters using cantilever piezoelectric models under
base motion and optimisation of the current signal using an autonomous converter

circuit model, transmitted to the load via wireless communication has been discussed
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by Ferrari et al [21]. The rotational vibration generator was modelled to give high
amplitude resonant response which could be used for power harvesting with varying
load resistances and capacitive loads. Arms et al [22] from Microsystems inc.
presented an autonomous design fabrication of a power harvester using the
cantilevered MFC piezoelectric beam associated with an electronic circuit system
and an electrochemical thin film rechargeable battery for powering the wireless
temperature and humidity sensor as shown in Figure 2.4. The extracted electrical
power from an input vibration level of 0.1 g achieved 2.8 mW with the modest strain
level of 200 ue, where the generated power was from the resonance frequency of the
piezoelectric structure. Lin et al [23] presented a MEMS power generator using a
silicon cantilever beam with an attached piezoelectric element. The silicon beam
with a proof mass under input base acceleration of 10 m/s® at 100 Hz generated a
power level of 2.59 xW. However, their result was not validated with the experiment
and the analytical model of the piezoelectric beam failed to correctly model the

coupled electromechanical dynamic system.

Figure 2.4. Fabricated piezoelectric vibration power harvester and wireless
temperature and humidity sensing node, [22].

There have been numerous research studies of the development of analytical models
and associated experimental results of the electromechanical vibration power
harvester. Some researchers also applied ANSYS software for the numerical model.
Many of the piezoelectric prototypes used the cantilevered beam under input
transverse excitation and sliding mass impact. Other prototypes such as the
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piezoelectric diaphragm and circular piezoelectric element under dynamic fluid

pressure were also considered.

Shu and Lien [8] discussed a cantilevered bimorph piezoelectric beam coupled with
an electrical circuit, AC-DC rectifier and load resistance under the action of a
dynamic input force. Although, their analytical solution only considered the single
mode frequency response, they derived the complete non-dimensional analytical
equations to obtain the optimal parameters of displacement, voltage and electrical
power under the short and open circuits’ resonance frequency. The formulations also
involved the coupling effect of electromechanical response and the uncoupling effect
by ignoring the backward piezoelectric coupling. An analytical dynamic method with
the curvature basis approach of the piezoelectric element bonded onto silicon layers
has been discussed by Chen et al [24]. The cluster structure type was the unimorph
model. The mathematical model was similar to dynamic admittance where the
dynamic equation of the unimorph was developed without considering the coupling
effect of piezoelectric behaviour as given in Table 2.3. However, the direct effect of
the piezoelectric element was formulated to give the electrical voltage. This model
showed the lack of mathematical components providing the interrelationship of
direct and converse effects of the piezoelectric element for the multi-mode dynamic

frequency response.

Wardle’s group at MIT has investigated the cantilevered piezoelectric beam under
the effect of load resistance and in duToit et al [7], they investigated a single mode of
the mathematical model for scavenging low electrical power based on a range of
frequency responses using the piezoelectric-based accelerometer and the cantilever
piezoelectric models under input transverse base motion. In the analytical solution,
the short and open circuit models of power harvesting were optimised to obtain
power harvesting based on the frequency response under various load impedances.
The strain effect from mechanical vibration of the cantilever piezoelectric beam
structure gave more pronounce affect to the electrical power during the dynamic
response. This situation depended on the series and parallel circuit systems of the
bimorph piezoelectric beam and the {3-1} and {3-3} modes of operation as discussed
by duToit et al [25]. They also further expanded their bimorph model using the

cantilever piezoelectric element with the series connection of the bimorph beam
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where the piezoelectric element was operating with the {3-1} mode. The comparison
between the experiment and theory was also undertaken. However, the power at the
resonance region seemed to give underpredicted results. Kim et al [26] further
discussed the vibration energy harvester performance by considering the effects of
geometrical tip mass onto the bimorph. The single mode of the electromechanical
dynamic equations, stated as the scalar form given from duToit’s representation, was
modelled and the solution form of their analytical approach was based on the
Rayleigh-Ritz’s method. The trends of tip transverse displacement, voltage and
power harvesting with and without tip masses were plotted with respect to the
variation of load resistances where slight difference of results between the theoretical
and experiment were found. They also noticed that the effect of geometrical tip mass,
which created the offset centre of gravity from the bimorph tip, was an important
issue affecting the dynamic behaviour of the piezoelectric beam. However, the
authors did not provide the concentric bimorph proof mass to confirm the percentage
difference of displacement and power from using the offset tip mass. In fact, the
effect of proof mass onto the tip of bimorph was considered quite small for the power
harvester application. This shows that the concentric bimorph tip mass should be
preferable. The authors also did not provide the multi-mode FRFs of the
electromechanical dynamic equations. Although, the purpose of simulation was the
single mode FRFs, the multi-mode FRFs can provide a much more accurate
representation and this can be adjusted through the graph to plot only the single

mode simulation.

Ajitsaria et al [27] discussed the analytical model of the piezoelectric bimorph beam
with the Euler-Bernoulli and Timoshenko types. The conservative energy of the
piezoelectric beam was formulated to give the electrical voltage and transverse
function of dynamic displacement. The authors also considered the electrical circuit
response, including the AC-DC rectifier, capacitor and resistor to simulate the DC
voltage and DC current. However, the derivation of constitutive formulations did not
clearly represent the coupled electromechanical dynamic response such as the
transfer function of dynamic displacement. In fact, the Euler-Bernoulli beam’s
dynamic equation was written with the misinterpretation. The research study led by
Yang from the University of Nebraska, Jiang et al [28] discussed the single mode of
the piezoelectric bimorph response using the method of boundary values to obtain
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each coefficient of the dynamic equation to give the dynamic displacement and
power density. In addition, the suggested analytical method did not gave the multi-
mode frequency response of the bimorph and the experimental validation. Yang and
Yang [29] discussed the exact analytical study of the two piezoelectric bimorph
beams with tip masses connecting each other with the elastic spring. The solution
form of this model was reduced by using the boundary values. However, the effect of
elastic spring attached to the structure did not give optimise power output from each
piezoelectric element although the tuning power of the piezoelectric element was the
main purpose on their analytical study, as it was not validated with the experimental
results. In fact, the aim of using two piezoelectric elements should be increased
power output from the multi-frequency response where the result was also shown in
Table 2.3.

Goldschmidtboeing and Woias [10] from IMTEK Germany investigated different
shaped rectangle and truncated triangular piezoelectric beams with varying tip mass
under base transverse excitation using Ritz-Rayleigh’s method. They showed that
varying the mass ratio between tip mass and piezoelectric mass and truncated ratio or
shape ratio between the rectangle and triangular portion of the piezoelectric beam
could tune the optimum power where the result was given in Table 2.3. They noticed
that the triangular shaped beam provided the optimum power compared with the

rectangular beam.

Renaud et al [30] discussed the unimorph piezoelectric beam under input impact load
to generate the electric voltage. The sliding load was free to impact the tip of the
piezoelectric element. A sliding mass of 750 mg moving along the piezoelectric
beam with a distance of 1 cm produced the power of 40 uW for the first impact as
shown in Figure 2.5. The input excitation to the piezoelectric harvester was 10 cm
displacement. At this stage, the trend of transient responses from the experiment and
theoretical were not given. Kuehne, et at [31] discussed a MEMS design of a circular
piezoelectric plate diaphragm under dynamic motion from the inertia mass attached
at the middle surface of the piezoelectric element. The Ritz method was used to
establish the dynamic equation of the clamped circular piezoelectric plate to
determine the charge and voltage. Minazara et al [32] discussed the coupled

piezoelectric membrane and brass layer with a diameter of 25 mm under excitation
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force from an actuator using the RLC circuit model controlled by a switching
technique called synchronized switch harvesting on inductor (SSHI) where the result
was given in Table 2.3. The power harvesting was found to increase 3 times at
resonance regions compared with the normal system without SSHI. The maximised
power obtained using the SSHI technique based on varying load impedances with the
input force of 80 N gave power three times higher than using the standard technique.
Further development of a piezoelectric disk for vibration-based energy harvester
using the SSHI technique has been discussed by Lefeuvre et al [33]. The series-SSHI
and parallel-SSHI techniques were optimised to maximise the power harvested from
the piezoelectric element where the power output results gave a dramatic increase
compared to that with the standard circuit techniques (bridge rectifier, capacitor and
electrical load). Chao et al [34] optimised the harvested power from piezoelectric
components under ambient vibration using the vibration tracking unit circuit to
reduce the need of loss power, as it was known that the piezoelectric system provided
only very low power from tens to hundreds of microwatts. This confirmed that power
harvesting generated from the piezoelectric element can support the loss energy from
the electronic circuit systems. Wang and Ko [35] presented the vibration energy
harvester induced from fluid flow as shown in Figure 2.6. The fluid entered the
chamber through a glass tube to create pressure onto the polydimethylsiloxane
diaphragm where the piezoelectric beam was attached. When periodic pressure was
applied onto the pressure chamber around with 1.196 kPa at a frequency of 26 Hz,
the electric power generated was around 0.2 4W.

Processing electronics

Free sliding mass Piezoelectric material

Metal electrodes
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' Structural
' support

Piezoelectric benders

Figure 2.5 Piezoelectric beam under impact mass, [30].
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Figure 2.6 Piezoelectric film mounted onto the PDMS diaphragm under fluid
flow pressure, [35].

Erturk and Inman [9] discussed a mathematical model for a vibration power
harvester using the cantilever piezoelectric beam under input transverse excitation.
The normalised eigenfunction form was used to simplify the constitutive
electromechanical equations to give the frequency response analysis. The frequency
response electrical voltage and power using the analytical results showed good
agreement with the experimental results as given in Table 2.3. Feenstra et al [36]
investigated power harvesting from a backpack using the piezoelectric stack actuator
for the strap. The backpack model was analysed using Unigraphics CAD with Tetrad
Mesh to model the amplification of the strap of the piezoelectric stack actuator. The
amplified strap can be used to analyse the stack actuator using a single degree of
freedom to obtain the power harvesting.

The electrical equivalent representation of the electromechanical piezoelectric
structure has been discussed by some researchers. Roundy and Wright [6] discussed
the single mode of the piezoelectric beam with two different sizes of tip mass in
order to investigate the trend of electrical voltage. The effect of centre of tip mass’s
gravity referred to the offset from the end of the bimorph’s length. Their analytical
model failed to consider the offset’s length of bimorph due to the large tip mass
attached to the bimorph. Later work from duToit et al [7] however, further
considered the effect of the offset’s length of the bimorph. Moreover, the equivalent
circuit model of the unimorph beam using ANSYS software for energy harvesting
has been reported by Yang and Tang [37]. They investigated each parameter of the
electromechanical system of the structure which could be converted into the

equivalent circuit. The SPICE electrical software was further used to analyse the
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voltage and power output frequency responses. Although, the equivalent electrical
circuit gave the simple alternative solution, it still needed to solve each of the
electromechanical dynamic parameters based on the multi-mode frequency response.
Moreover, their unimorph beam design using solid5 element ANSYS did not show
the required number of element meshes in order to meet the convergent criteria
where each element node was attached with wires and connected to the resistor. If
the number of nodes increased, the number of wires also increased making the

simulation much more complex.

Lee et al [38] discussed the utilisation of vibration environment from HVAC system
(heating, ventilation, air conditioning) using the fabricated piezoelectric structure
with the tip mass. The electrical circuit was also connected to the bimorph for
supplying the electrical energy into the wireless sensors. The authors also provided
the ANSYS simulation to analyse two different design optimisations from the
rectangular and truncated triangular shapes of the piezoelectric element. They also
provided the prototype model of a power harvester design. However, their design
resulted in a complex model of a large attached tip mass located between two
different shaped piezoelectric materials and also did not consider the mathematical
computations to provide the electromechanical frequency responses. Yang et al [39]
presented the application of a vibration power harvester using the three macro-fiber
composites (MFC) patched onto the beam. Two MFCs were located nearby on the
clamped beam support, extracting energy while another MFC acted as the input
vibration to the beam (actuator). The electronic broadband measurement
experimentally used an AC-DC rectifier and the storage capacitor to accumulate the
electrical charge. The results were also validated with the electrical circuit simulation
software, using the EDA software Multisim10.0. Although, the ABAQUS software
was also used to simulate the strain distribution and voltage along the MFC patch
with respect to the frequency response, their model only showed the prototype of

energy harvesting without considering the mathematical implications.

Mathers et al [40] presented the fabricated micro-piezoelectric cantilever beam with
the proof mass for predicting the vibration power harvesting. The use of piezoelectric
material from the single crystal relaxor ferroelectric (PMN-PT) with the

interdigitated electrode (IDE) as shown in Figure 2.7 was aimed to improve the
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energy conversion efficiency where the use of varying proof mass from the
polydimethylsiloxane (PDMS) aimed to tune the natural frequency. The analytical
model of the elastic vibrating beam associated with the direct effect of the
piezoelectric equation was used to give the electrical voltage frequency response.
However, the electromechanical dynamic behaviour of the piezoelectric beam from
the derivations failed to give the effect of backward piezoelectric coupling for the
power harvesting or to model the multi-mode frequency responses of displacement,
voltage and power. Although the voltage and power results versus the base input
displacement amplitude achieved agreement between the theoretical and experiment,
the predicted voltage and power under the frequency response from the experiments
was not validated using their analytical models as given detail in Table 2.3. Song et
al [41] discussed the energy harvester using a single PMN-PT patch onto the steel
beam with a proof mass. The PMN-PT element with the integrated electrical circuit
consisting of an AC-DC rectifier with resistor and capacitor was experimentally
measured to generate the DC voltage, current and electrical power frequency
response functions. However, there were no validations using the theoretical model
as given in Table 2.3. The power output versus load resistor using the theoretical and
experimental results for four different tip masses was given where the theoretical
power result for the open circuit load resistance was beyond that found from the
experimental prediction. Moreover, their analytical model of the PMN-PT patch on
the steel beam failed to meet the mathematical continuity consideration because the
length of the PMN-PT patch was much smaller than the steel beam, resulting in an

oversimplification.

w(t)

o ; Proof mass M,

Vibration

(a)

(b)
Figure 2.7 PMN-PT beam with proof mass under input transverse excitation, [40].
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Jeon et al [42] explored the conversion energy of a micro power harvester cantilever
piezoelectric model using the base-motion of the ambient vibration source from an
exciter as shown in Figure 2.8. The generated voltage using the {3-3} piezoelectric
mode operation was found to be higher compared with the {3-1} piezoelectric mode
operation. The operational scheme indicated that the fabrication of the piezoelectric
device was made by attaching its top surface on the interdigitated electrode to
produce the {3-3} piezoelectric mode. The {3-3} piezoelectric mode gave a voltage
at least 20 times higher than the {3-1} piezoelectric mode. The generated AC current
from the cantilever piezoelectric was rectified using the bridge rectifier to obtain DC
current where it was then stored using a capacitor.
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Figure 2.8 MEMS scale of interdigitated electrode of the Piezoelectric material, [42].

Song et al [43] discussed the mathematical and experimental models of a cantilever
piezoelectric beam structure under harmonic vibration. The piezoelectric component
which was bonded on the top and bottom of the beam structure, was made from
macro-fiber composite where it was circuited using a full bridge rectifier, capacitor
and load resistance. The optimised power harvesting, electric voltage and current was
obtained using 3-1 (ds;) and 3-3 (ds3) poling directions where they found that the
MFC with the {3-3} poling direction gave very high power harvesting and electric
voltage compared with the {3-1} poling direction. On the other hand, the MFC with
the {3-1} direction gave very high current, which was very useful for power storage.
They also found that the varying thickness of the beam affected the strain and hence

the maximum power harvesting and electric voltage results.

24

——
| —



The broadband multi-piezoelectric beam with multi-frequency capability has also
been investigated from some researchers. Ferrari et al [44] investigated an
experimental multi-frequency array from three different bimorph beams using
equivalent circuit systems. Each bimorph with different tip masses were connected to
an AC-DC rectifier with the power stored into the single storage capacitor. Sharuz
[45,46] from Berkeley Engineering Research Institute, attempted to discuss the
analytical method of using mechanical band-pass filters of energy harvesting with the
single mode multi-transverse bimorph beam effect with different lengths in order to
maximise the frequency band. However, his mathematical method clearly failed to
formulate the important issue of the coupled electromechanical strain and electric-
polarity fields to provide the power harvesting under the broadband multi-frequency
system because the piezoelectric transduction itself consists not only the mechanical
field but also the electrical field. His two published papers from the Journal of Sound
and Vibration and the Journal of Vibration and Acoustics failed to provide the
mathematical formulation of the electromechanical multi-piezoelectric vibration
power harvesting. The research group led by Wereley from the University of
Maryland, Song et al [47] investigated three frequency power harvesters using the
macro-fiber composite (MFC) bonded on the bottom and top of each beam with tip
masses. They used the analytical assumed mode method with the single mode
electromechanical response without considering the orthonormality condition and the
experimental comparison showed the modelling tended to give overestimated results.
Xue et al [48] provided the theoretical study of the multiple piezoelectric bimorphs
with different thicknesses using mix-connection pattern (mix series and parallel
connections) to widen the resonance frequency band. Their mathematical model was

based on the boundary value system of the single mode piezoelectric beams.
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Table 2.3. Summary of Piezoeletric Generator

reference  |Frequency |Input Geometry (mm®) |Damping Output Mathematical |Detail
range (Hz) |vibration power/ system
voltage
Sodano et |1500 MFC - MFC : - Experiment given
al :40.6%25.4x0.30 60.7062 but no theoretical

5 Quick Pack wim?, study. The

IDE Quick Pack power density

:50.8%25.4x0.38 IDE : output was

1 Quick Pack : 60.7062 plotted for the

50.8x25.4%0.381 Wim?, first twelve

Quick Pack modes of

. 285.0246 frequency

Wim? response.
Chenetal 250 -600 10 um [Variance such as; |Variance of 0.8 V (max) |Analytical Validation with

Piezo length : damping ratio method with experiment. No tip

27,30, 33. Silicon |:0.0067 to curvature basis  |mass and no multi-

subs. Length : 32, [0.0089 approach without [mode FRFs.

35, 38. converse Damping ratios
piezoelectric were associated
coupling but with the

Piezo Thickness : having direct  |geometries

0.002, Silicon piezoelectric

Thickness : 0.3 coupling

Yang & 2%10% to 1m/s® |25%8x6 (each Quality factors 2.5 \W/m®  |Exact method No validation and
Yang 3.5x10% bimorph) of bimorph | (max) with the only singe mode
102 boundary values

to analyse two

bimorphs

coupled via

elastic spring
Minazara et 1710 80N |Diameter and - 1.7 mw Single mode of  |Experiment given
al thickness of electromechanica |including SSHI

piezoelectric : 25 | equation circuit system
and 0.23,
respectively
(%)




Cont. from Table 2.3

Reference [Frequency |Input Geometry (mm®) [damping Output Mathematical |[Detail
range (Hz) |vibration power/ system
voltage
Goldschmi- 14000 259 Rectangular Rect.: ¢ =80 |Rect.:4V [Analytical Experiment,
dtboeing & :20x5%0.470 s [3:3X10'65 Triangular : |approach by damping
\Woias Truncated Triangular : o |6V (first |Rayleigh-Ritz  [constants and
triangular: length :|- 190 st mode) method tip mass were
30, width I : 20, B=1x10-6 5 given. Rotary
width 1I: 3, inertia from tip
thickness : 0.560 mass excluded
Erturk & 30to 70 19 50.8x31.8x0.66 Damping ratio |6.8 Analytical Experiment
Inman :0.027 mW/g’/cm?®( |method with the [given. Tip mass
under short [solution form  |with its rotary
circuit using the included. Multi
resonance ) |normalised mode FRFs
eigenfunction  |also included
series
Mathers et |1340 1.3mm |PMN-PT 0.123 0.5mWor [Analytical Experiment
al :7.4%x2x0.120 4.15 method without |given. Tip mass
mwW/cm®  [backward without its
piezoelectric rotary inertia.
coupling Single mode
FRFs for the
voltage &
power
Songetal |60 0.2¢ Steel : - 0.73 Analytical PMN-PT
25.4x58.4x1.8 mwW/em®  [approach and no |bonded onto
PMN-PT : further steel beam with
25%25%0.5 derivations. No |tip mass
continuity without rotary
criteria for the  [inertia.
two different Experiment
length of was given.
structures Single mode
FRFs
Roundy & [120 25m/s?  [1000 0.015 375 pw/cm?[Single mode Analytical
\Wright analytical method using
method equivalent
circuit for
piezoelectric
generation.
(2]




2.2. The Electromechanical Vibration-Based Electromagnetic
Generator

The induced mechanical energy of a magnetic mass due to the vibration
environment can create a change of magnetic flux through coils due to Faraday’s
law. As a result, electrical voltage from the coils can be generated having potential
for powering batteries or capacitors through the circuit control system. Amirtharajah
and Chandrakasan [49] demonstrated the use of ambient vibration to generate small
electrical power, which was optimized using a DC-DC converter, and then controlled
by DSP as a feedback signal. The DC Power obtained was 800 pW, which was then
used as a feedback signal to a DSP with the input voltage sent to a regulator of 1 V.
Further developments by Amirtharajah and Chandrakasan [50] used an
electromagnetic coil transducer as a generator to convert ambient vibration to
electrical energy, controlled by a DC regulator where the voltage output from the
regulator was analysed using a DSP. The voltage output from the generator gave a
peak level of 0.18 V which then abruptly dropped off to zero over a interval time of
15 ms. They also increased the number of coils and reduced the mass so that the
output voltage could be increased. The maximum output power obtained was about

400 uW with the resonant frequency of the generator of 2 Hz.

Research led by Beeby from the University of Southampton, et al [51] discussed the
electromagnetic micro-generator for energy harvesting. As shown in Figure 2.9, a
cantilevered silicon beam with a tip mass of a copper coil, located at the middle
between two-coupled NdFeB magnets under input vibration of 0.589 m/s?, produced
electrical power of 6 W and power density of 307 W/ m* with resonance frequency
of 52 Hz. The power density was measured using the magnet volume of 0.15 cm® as
given in Table 2.4. The optimised coils and magnets was also shown where the
number of coil turns increased the electrical voltages with different load resistances.
The optimised magnet was also found by changing the size where the electrical

power increased with increasing magnet size.
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Figure 2.9 Cantilevered beam with the electromagnetic component, [51].

The work from Glynne-Jones et al [52], presented fabricated electromagnetic power
generators with two different prototypes as given in Table 2.4. The first prototype
which was initially proposed by El-hami et al [53], had the coil located between two
moving magnets, which were attached on the tip of the cantilevered beam. The
difference was only in the geometrical structure and input vibration. The second
prototype was the coil with four moving magnets. The first prototype with the beam
volume of 0.84 cm® generated electrical power of 180 PW under resonance
frequency of 322 Hz with the amplitude of beam motion of 0.85 mm as shown in
Table 2.4. Moreover, the second prototype was tested on a car engine with a distance
of 1.24 km under an average speed of 25 km/h where the average power generated
was around 157 pW with the beam volume of 3.15 cm®. The peak power achieved
was around 3.9 mW. All results presented by authors were from the experimental
study. The latest work from Beeby’s research group, Zhu et al [54], included the
addition of a tunable vibration system using the magnet with the micro-generator
from Beeby et al [51]. The aim of this case was to adjust the resonance frequency
from the generator where the resonance frequency shifted from 67.6 Hz to 98 Hz
under input vibration of 0.59 m/s®. The power generated also increased from 61.5 to
156.6 puW. However, the author stated that the electromagnetic generator was of
small scale. The geometry of the beam and additional magnet for tuning the
frequency also contributed to the larger size and weight. When the input vibration
dropped drastically, the electromagnetic generator also drastically reduced its power
output.
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Sari et al [55] discussed the fabricated micro-electromagnetic power harvester using
the multi-cantilever beam with printed planar coil and a magnet. The geometries of
the beam and magnet size were given as 9.5x8x6 mm? and 6x6x6 mm®, respectively.
When the input vibration was given, the 20 beams with the planar coils vibrated
around the magnet to induce the magnetic flux to create the electric charge. The
number of coils printed on the beam was 16. The electrical power was measured
experimentally giving around 56 pW for each cantilever under the vibration
frequency of 3.4 kHz with the input displacement amplitude of 1 xm. At this stage,
the authors did not provide the mathematical relationship of the coupled beam and
electromagnetic system, but provided an oversimplified model of a single degree of

freedom instead.

Yang et al [56] presented the fabricated electromagnetic system for multi-frequency
power harvesting. The acrylic beam with three NdFeB magnets bonded along the
beam span induced the magnetic flux due to the input vibration to create the
electrical charge flowing into the printing planar copper coils located at the bottom of
each magnet as shown in Figure 2.10. The beam length and distance between coils or
magnets were given as 54 mm and 10 mm, respectively. The vector magnetic field
and resonance frequencies were determined using ANSYS where the increase of gap
between the magnet and coils was found to decrease the magnetic flux. The model
under input vibration of 14 um generated electrical power of 0.6 W from the middle
coil under the first mode and 3.2 xW from the first coil under the second mode. The
total power under the series connection from the three coils was quoted as 1.157 uW
under the first mode as given in Table 2.4. The first three modes of resonance
frequencies from ANSYS was compared with the experiment with less than 6 %
difference. However, the electrical voltage frequency response with the first three
modes was only determined by experiment, where the electrical voltage under the
first mode was given as 0.09 mV. Moreover, the theoretical model of the single
degree of freedom system failed to show good agreement with the experimental
results where the results showed significant difference of power versus the load

resistance.
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Figure 2.10 Beam with three poled magnets on the simple support beam, [56].

Saha et al [57] presented the generator tube for electromagnetic energy harvesting
induced from human motion. The generator tube, which included a coil wound from
the outer surface, consisted of moving magnets located between two permanent
magnets as shown in Figure 2.11. The input vibration of the tube resulted in the
magnetic flux from the magnet moving up and down to induce coil electric voltage.
When the generator tube was placed onto the rucksack, the tube generator with the
input acceleration of 0.5 g with frequency of 2 Hz generated power from 300 uW to
2.5 mW during walking and slow running. When the input acceleration from an
exciter of 0.38259 m/s? under frequency of 7.6 Hz was applied onto the generator
tube, the power generated was around 14.55 uW with the load resistance of 7.3 kQ

as given in Table 2.4.
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Figure 2.11 Tube Electromagnetic harvester with the moving magnet, [57].

Peter et al [58,59] from IMTEK Germany presented the tunable mechanical
resonator using two piezoelectric actuators for controlling the vibrations as the

electromagnetic system was attached for energy harvesting. One actuator was

l31

A



clamped and another actuator was free. Both actuators were connected to each other
by three hinges attached between the actuator. The input voltage of +5 V for the
actuators was applied to adjust the resonance frequency to provide a shift of +15 %
from the ambient vibration environment. As a result of this effect, the free actuator
controlled the vibration in order to induce the fluctuating magnetic flux resulting in
induced electrical voltage generated from the coils. Although, the concept of tuning
the voltage of the piezoelectric control system for the electromagnetic power
harvester was sophisticated, the structure model was complex and needed two
piezoelectric actuators, which were much larger than the electromagnetic
components. In addition, the piezoelectric actuators still needed the external voltage

for tuning the mechanical system to adjust one resonance frequency.

Kim et al [60] presented two different electromagnetic power generators using wind
flow as the input vibration as shown in Figure 2.12. The first generator was a
windbelt power harvester using the strong air flow to vibrate the aeroelastic
membrane inducing the magnet to create the magnetic flux where the electrical
voltage was generated from the coil. The second generator was a Helmholtz
resonator power harvester using the weaker airflow into the chamber to create audio
acoustic response so that the electrical voltage was generated due to the moving
resonator. Both the generators used the coupled magnet and coil as the electrical
energy source. The windbelt generator provided the open circuit voltage of 81 mV at
the frequency of 0.53 kHz whereas the Helmholtz resonator generated voltage
response of 4 mV at the frequency of 1.4 kHz due to the acoustic response with the
input airflow velocity of 5 m/s. However, both generators used the air pressure
fluctuations to create enough vibration to move the magnets.
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Figure 2.12 Wind flow of electromagnetic generator : a) Windbelt power harvester
using the strong air flow , b) Helmholtz resonator using the weaker airflow, [60].
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Park et al [61] presented the concept of a bulk-micro-electromagnetic power
generator. The NdFeB magnet was attached to the centre of a silicon spiral spring
directed to the centre of a copper coil where all parts were placed into the
polydimethylsiloxane (PDMS) packaging mold as shown in Figure 2.13. The only
difference between this model compared to others was the small scale of the bulk-
micromachined silicon spiral spring with the volume scale of 8 x 8 x 0.04 mm® as it
was only compatible for single degree of freedom response with the single poled
magnet. The input vibration of 0.57 g onto the PDMS electromagnetic generator
resulted in a power density of 590.4 pW/cm?®.g at the frequency of 54 Hz as given
in Table 2.4. Stephen [62] derived the mathematical model of an electromechanical
system, which consisted of a seismic mass with constant stiffness and damping
coefficients from the coupled mechanical and electrical parts under base excitation
moving through an electromagnetic coil circuited with the electrical parts from load
resistance and electromechanical coupling coefficient. For this case, the predicted
power harvesting was optimised using the matching of load resistance and coil
resistance, the matching of mechanical and electrical damping coefficients, and the

matching of electrical analogue of mechanical damping.

PDMS

Figure 2.13 Single degree of freedom of electromagnetic generator with the plane spiral
spring silicon, [61].
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Table 2.4 Summary of Electromagnetic Generator

. Input Geometry Output

requency npu 3 . .

Reference L Dampin ower/ Detail

range (Hz) | vibration i) pIng P

voltage
Beeby et al 52 0.589 m/s2 0.15 307 W/ m* |Beam with four poled
(Magnets) magnets. Experiment

only

Saha et al 7.6 0.38259 m/s?| 12.7 (Tube) | 0.0277  |14.55uW Tube with two poled
magnets. Experiment
only

Glynne- 322 2.7 m/s? 0.84 180 pw Beam with two poled

Jones et al (beam) magnets. Experiment
only

El-hami et 322 25 um 0.24 530 pW Beam with two poled

al magnets. Experiment
only

Yang el al 369 14pum 1032 (beam) 1.157 yW  |Beam with three poled
magnets. Experiment
only

Park et al 54 0.57¢ 0.6 0.03 590.4 uW/cm3 Single poled Magnet

(packaging _g-z attached on silicon
mold) spiral spring.

Experiment and
analysis of single
degree of freedom

2.3. The Electromechanical Vibration-Based Electrostatic Generator

In the electrostatic generator, two parallel capacitors covering the electrode
will polarise the electric charge when one of the plate capacitors is subjected to
mechanical motion to overlap another capacitor periodically. The effect of polarised
capacitors will vary the capacitance as it results in varying voltage and electrical
current flow to the circuit. Roundy et al [6] discussed three basics prototypes of
electrostatic energy generation as shown in Figure 2.14. The first prototype was an
in-plane overlap converter. When the comb driven structure moved to change the
overlapped area, the change of capacitance also varied. The second prototype was an
in-plane gap closing converter. In this case, the capacitance changed due to the

change of gap between two comb fingers. The third prototype was an out-of-plane
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gap closing converter because the capacitance varied by changing the gap between
the two large plates.

|<— 5-10 mm —>|

||||||||||||Tlooum

e

Figure 2.14 Types of Electrostatic generators: a) in-plane overlap converter, b) in-plane
gap closing converter, ¢) out-of-plane gap closing converter, [6].

Starken et al [63] discussed the effect of the polarised electret of the micromachined
electrostatic generator to produce the electrical charge due to the input mechanical
motion. The basic prototype consisted of three wafers. The top wafer attached the
electrets and the bottom wafer was used as the variable capacitor. The moving
capacitor electrode was located at the middle wafer with the bonded seismic mass
suspended by silicon spring. The result is shown in Table 2.5. The effect of the
electret was expected to polarise the high voltage capacitor in order to generate high
power where the resonance frequency was excited under the sinusoidal wave. In that
case, the change of capacitance per micrometre displacement needed to be high. The
numerical and experimental studies of the effect of the electret bonded at the base
electrode surface was reported by Tsutsumino et al [64] where the moving electrode
(counter electrode) was excited by the shaker to affect the polarisation of the
electret. With the similar model of the electromechanical behaviour, Naruse et al
[65] presented a new model for a micro-power electrostatic generator with two
silicon substrates with the electret located at the middle between two glass substrates
with collector electrodes as shown in Figure 2.15. The electrets with attached guard
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electrodes, functioned as the dielectric material for the quasi-permanent electrical
charge. The basic principle of their model was the moving silicon mass with two
electrets, guided using the micro-bearing ball to keep the separation gap stable where
the silicon mass was connected with the spring and supported at the fixed glass in
order to control the vibration. Once the electrets moved away from one collector
electrode to another electrode at the glass substrates, the electrical power with
frequency of 2 Hz generated around 40 pW with input acceleration of 0.4 g as given
in Table 2.5. The problem with their model was that the output power decreased
when the mover underwent reciprocating motion and then collided with the edges of
the device. The resulting power decreased dramatically.

Guard electrode

. Electret
Spring
\‘ 1

Proof mass
Collector electrode

Guard glectrode Colle‘ctor electrode

Si Motion

Electret
. Load

L |
Glassl | | 1 | | :

Current

Figure 2.15 Electrostatic generators with moving electrets, [65].

Hoffmann et al [66] presented the concept of the Micro-electrostatic generator with
the model of in-plane motion varying the overlap electrode area as shown in Figure
2.16. The comb mass with interdigitated electrodes moved the overlap area to create
mechanical induction of the plate capacitors and electrical charges were generated
due the change of capacitance as the results show in Table 2.5. Tvedt et al [67] also
used the same model by introducing the equivalent circuit of linear and non-linear
behaviour using the SPICE software. The mechanical stop was used in [66] and [67]
to control the vibration of the comb mass. It was found that the power reduced
because the impact of the comb mass with the mechanical stopper was strongly
dependent on the acceleration excitation at the resonance frequency.
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Proof Mass With
Movable Comb “
Electrodes

Mechanical

Fixed Comb Suspension Units

Electrode U

in-plane overlap converter, [66].

Figure 2.16 Electrostatic generators :

Kiziroglou et al [68] from Imperial College London, presented the flexible substrate
electrostatic plate generator using the rolling rod as the proof mass. The substrate
material, which was mounted on a glass wafer, was made from a polyimide film
wafer to allow for some flexibility as shown in Figure 2.17. The effect of the rolling
rod on the different concave shape form of the substrate plate can change the
capacitance to give higher power as it depended on the substrate curvature and
allowed the rod to move periodically to induce the electrical voltage from the
dielectric plate surface. However, their experiment only tested the rolling rod on the
flat substrate. When the rod rolled over the flat dielectric-coated Cu plates, the
capacitance varied periodically as it depended on the displacement of the rod. The
input voltage of 20 V was needed for the substrate plate. When the rod rolled over
the plate, the output voltage generated was around 48 V at the first peak which then
decayed dramatically within 60 ps. With the similar model, Kiziroglou et al [69]
also modified the shape of the substrate surface with low concave curvature of the
plate which allowed the rod to roll periodically. The input voltage of 30 V into the
substrate plate generated the peak voltage of 90 V that then abruptly decayed within
160 ps. During the rolling rod motion of the substrate plate, the output capacitance of
2 pF at the initial state increased up to 9 pF at the distance of 1.5 mm. The electrical

power generated was around 0.5 uW at the frequency of 10 Hz.

Stainless Steel Rod
Input Output
Contacts Contacts

\ / X X |
f ; 1 — Rolling Rod Vout
Vin  —
/ —— Cu plates l
) Glass Substrate =
plates

Figure 2.17 Electrostatic generator using moving rolling steel associated with the
electrical equivalent, [68].

|

(=)



Table 2.5. Summary of Electrostatic Generator

Frequenc Input Output
Reference range (Hz); vibrztion Geometry (cm®) | Damping | power/ Detail
voltage
Naruse et al |2 Hz 049 0.28 (device) - 40 u'W (exp) |Electrets moved
2232 uW between two fixed
(theory) collectors.
Experiment and
theory were given
Hoffmann et|{1300 Hz & |13 g 0.2 (device) 5x10° N-s/m 3.5 ©W Moving capacitors
al 1500 Hz (exp) with in-plane
5.5 uW varying overlap.
(theory) Experiment and
theory were given
Starken et al |500 Hz 19 - - 5 uwW Electrets moved
between two fixed
collectors.
Experiment given
Despesse et |50 Hz 8.8 m/s> 1.8 (device) - 1052 pW Moving capacitor
al with in-plane closing
gap. Experiment
given

2.4. Closing Remark

In this chapter, the review of electromechanical vibration power harvesters has been

presented including those based on the piezoelectric, electromagnetic and
electrostatic generators. The wasted or unused mechanical energy from machine
vibration, fluid flow and human motion can be used to convert motion into electrical
energy by designing a self-powered electromechanical system to support the
development of smart wireless sensor devices for future technology applications. The
conventional wired/wireless sensor devices still depend on the power supply from the
battery where it is a tedious task to replace and time consuming for maintenance
during the system operation. The power generators have scalability and show
potential for long-term autonomous operation that can be used for many applications

and these are included but not limited to :

1. Condition health monitoring such as of industrial rotating machines, bridge, pipe

structure, automobile, airplane, train, ship, and etc.
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2. Defense global positioning system for embedded application such as in boots and
shoes, army shirt, gloves, tanks, radio frequency for water police and Navy, and etc.
3. Natural monitoring system: ocean wave for detecting ship smuggler and tsunami,

wind flow to the leaves in the forest for detecting bush fire and etc.

Moreover, the summary of the three major transductions have advantages and
disadvantages as given in Table 2.6. It is important to note here that the overall
inherent mechanism of transductions depends on the material design, the nature of
the vibration environment and strategies to increase the power through tuning the
mechanical and electrical systems in order to maximise the power for the smart

wireless sensor systems.

Table 2.6 Summary of Three Different Types of Generators

Type Advanteges Disadvantages
Piezoelectric no external voltage depolarisation
no mechanical stop brittleness of piezoceramic materials
high power density high impedance

high output voltage
high sensitivity
compatible with MEMS

Electromagnetic  |no external voltage difficult to integrate with MEMS
no mechanical stop low output voltage

low sensitivity

bulky size from the magnet and coil

Electrostatic compatible with MEMS  [need external voltage

complex design for plate capacitor comb
low power density

need mechanical stop

However, unlike the electromagnetic and electrostatic transducers, the piezoelectric
transducer has great capability for generating the highest electrical voltage and power
as it has compact configuration, compatibility with MEMS standard and high
sensitivity to capture the motion. Indeed, the coupling of an electromagnetic and
piezoelectric power generator can be a good potential device, but it is still difficult
for MEMS because the electromagnetic system results in a natural bulky size with
the magnet and coil. However, in this thesis; the piezoelectric power harvester
represents the major purpose of investigations not only for the chosen aspect of the

profound material mechanism but also by providing novel analytical methods for
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modelling the electromechanical system and the experimental study as given in the
forthcoming chapters. In the next chapter, the exploration of continuum
thermopiezoelectricity theory will be comprehensively presented to provide the
indispensable relationships of the piezoelectric properties in terms of the
thermopiezoelectric potentials, the thermopiezoelectric equations of state and energy

function forms with the tensor coefficients.
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CHAPTER
3

Theory of Continuum Thermopiezoelectricity

This chapter deals with the energy phenomenon of piezoelectric materials.
Piezoelectric elements have unique behaviours for energy generation depending upon
either the induced mechanical, electrical or even thermal loads. Under these
circumstances, the piezoelectric element exhibits elongations or contractions in three
dimensional space. The elongations of the piezoelectric element are due to the
reaction of changes of the ion crystalline structure from random domain polarization
to aligned polarization. This creates net dipole moments to align the electric field and
generate electric voltage during the application of dynamic loads onto any face of the
piezoelectric element. Piezoelectric materials display important properties in the
engineering field which can be derived using thermodynamic relationships where the
energy phenomenon can be used to explore the interrelationship between properties
with different physical treatments in order to obtain the thermopiezoelectric

coefficients.

This section mainly focuses on the mathematical continuum thermodynamic
equations of the macroscopic piezoelectric element and develops the defining
interrelationships between electricity, elasticity and entropy using Legendre’s
transform and Maxwell’s theorem of thermopiezoelectricity. From basic
thermodynamics, the concepts of macroscopic properties such as piezoelectricity,
consisting of the stress, mass, and strain is found. From the perspective of
microscopic properties, the piezoelectric element itself also has the nature of
molecules of atoms. Moreover, the interactions between molecules of atoms in the
system can be formulated at the macroscopic level using the concept of continuum
thermopiezoelectricity instead of the quantum statistical thermodynamic equations as
long as the thermodynamic coefficients can be determined. Sometimes these can be
measured and derived in exact differential forms where these can be found from

thermodynamic potentials. In other words, the macroscopic properties consist of the
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numbers of molecules of atoms in the microscopic levels interacting to form the
continuum energies, Desloge [70]. Apart from that, the solid macroscopic
piezoelectric properties can be developed using the concepts of quasi-equilibrium

thermodynamics or thermopiezoelectric equilibrium.
3.1. Quasi-Electrical Energy of Piezoelectricity

The basic concept is that the forces acting between two charges are
proportional with the product of the magnitudes of each of the charges and the square
of the distance between the charges ~ 1/72. The force is also proportional with the
electric field E, resulting in the positive test charge heading toward the negative
charge resulting in equipotential, Hayt and Buck [71]. The resulting simple electric

force relationship is,

F =QE . (3.2)
From this perspective, the applied work dW can be quantified due to the exerted
force moving the charge @ along the path with distance dL, where the exerted force
brings the charge opposite to the direction of the electric field E, creating the work W
as shown in Figure (3.1). In this case, equation (3.1) can be formulated into the form
of differential work done against the electric field by multiplying with the differential

distance to give,

dw = —QE.dL . (3.2)

Figure (3.1) shows the moving charge along the path i-a-b-c-f with the direction of
the electric field vector, Hayt and Buck [71]. The charge moving through each path
or the change rate of direction dL contains the same magnitude of electric field to
create the electrical work. Integrating Eq. (3.2) using line integration from the initial

state to the final state gives,

f
Wi = —Qf E.dL . (3.3)

The electrical work for each section of the path shown in Figure 3.1 can be written

as,

a b c f
Wi = -0 fEiadLia + fEadeab + fEbchbc+ fchchf . (34)
i a b c
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Figure 3.1 lllustration of the Work Done by the electric field moving a
charge from pointi to f

The work done on this path depends on the position vector of the charge’s
displacement and electric field based on the initial and final states, Stratton [72].
Equation (3.4) can be reformulated into Eq. (3.5) to reflect the change in total

electrical work,

Wi = —Q|Eiq.-OLjg + Egp.ALgy + Epe.ALpc+ Ecp.ALyf ], (3.5)

that can also be written as,
Wi = —QE [ALj, + ALy, + ALp.+ ALy ] (3.6)
assuming the electric field along the path remains constant with magnitude E,

Ey,=Ey = Ebc:ch =E.

The work done can also be expressed in terms of the total displacement function

fromi tofas,
or it can be stated using the general expression,

AW = —QE.AL (3.7)

Equation (3.7) can be modified to yield the potential field as a result of the dot
product between electric field and differential vector distance as,

f
[%]H = - lf EdL (3.8)
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That can also be expressed as,

f
i
Where the Potential at point i is given as @; and point f, ®; , the change of potential

can be written as,

f
i
or formulated to obtain,
AP = —E.AL . (3.11)

From the previous basic formulation of the work done in moving the charge, the
infinitesimal coordinate system can be used to demonstrate the differential work on
the charge as shown in Figure (3.2).

Ezr

z
Figure 3.2 Components of electric field vector on the Infinitesimal element due to
positive charge located in the middle of the element

The electric field vector can be written in terms of the field strength E and the first
order approximation of the space rate of change of axes (dx/2 ,dy/2, and dz/2)

using Taylor’s series. The displacement vector can also be similarly expressed to

give,

E —E(X+dX)—E +6EXdX L —L<X+dX 1 JdLy dX
Xa = 2 X7 9x 2 XA 2) X7 ooax 2’
E —E<X dX) B JEy dX L —L(X dX) _ 0Ly dX
xe 2) X a9x 2 X 2] % ox 2




dy dEy dY dy dLy dY
EYB:E(Y+ 7):EY W 2 ) YB:L(Y+ 7):Ly W7,(312)

dy OEy dY dy dLy dY
EYD=E<Y‘7) =B =5y v L(Y‘7 =by=5y 7

dy JE,dZ dz dL,dZ
EZE=E(Y+7)=EZ az?ZfL(“?):LZ 2

dy 0E,dZ dz dL,dZ
EZF—E(Y‘T) =By 5 Lo L(Z‘7> =l 7

It should be noted that the negative sign because the work is done against electric
field. In this case, the work on the charge moving through the infinitesimal space

element can be written to yield the total differential work as,
oW = ~Q|[ Bxadlus — [ Excolxc + [ Bypolys = [ EvooLyy

+fEZE6LZE _jEZF(SLZF:l . (3.13)

Substituting each electric field and distance from Eqg. (3.12) into Eq. (3.13) yields,

SW = U(E +aEXdX)6(L +6LXdX)
=0 X1 ax 2 X1 ox 2

J‘(E J0Ey dX)S(L JOLy dX)
£oax 2 X 0X 2
dE, dY aLy dY
+J(EY+ 7 2)8 (bt 57 7)
f(E JEy dy)6<L JdLy dY)
ey 2 Yoay 2
0E, dZ dL, dZ
+J(Ez+ﬁ7)5(Lz+ 77)
j (E J0E, dZ) 5 (L JdL, dZ)] 314
Z 97 2 Z 9z 2 ' (3.14)

Equation (3.14) can be further simplified by applying the total differential partial

where the products of different terms are ignored. As an example, consider,

X X X 2 ( ' )
which can be expanded to give,
0Ly = 6Ly + 15( )dX + 1 6(dX) 3.16
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The last term can be assumed to be negligible because it is too small. Simplifying Eq.

(3.16) by neglecting the products of differentials gives
x = OLyx + 9)T . (3.17)

Equation (3.14) can then be written as a function of the differential distances as,
= U E aEX)dX)((SL + 16(aLx>dx>
[ (= 55 ) o - 30 (55 )
X 0X X 0X
o[ (e 355 o) (om+ 39 (G7) )
v 2 \ay
dEy 1 /0Ly
J (B~ 3(G7) o) om - 32 Gy ) )
O0E oL
[ (ko 5(57)02) (o1 + 39 (55) )

(e ) o o] o

Multiplying the two components of the vector field in the bracket from each term of

integrals of Eq. (3.17) gives,
W = £y 5 (2x) ax £,5(2 ar + [ E,6(22)az
B _QU X (W) * f Y (aY) J z (az)
O« 6 LydX + O« 6LydY + o0E 6L,dZ 3.19
+j<ax> X J(E)Y) v f(az) z ] (3.19)

Equation (3.19) can be modified to give the form,

B d(Ey .0Ly) (E,.0Ly) (E,.0L,)
oW = —-Q l]de-l- deY + Jsz (3.20)

By taking consideration of the operator 6 in equation (3.20) which is the same as
the 0 operator in the differential equations. Equation (3.20) can be reformulated to

yield,
—Q| S5 Xdx + [Zrdy + [2dz | . (3.23)

This can be manipulated to give,

GCDX 0Dy 0d,
W = —Qj e, + Sy & + ﬁez>.(ede + e,dY + e,dZ). (3.24)

This can also be restated as,
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L L L
( Xe + —Le, + —Zez>.(ex5X + e,0Y + e,6Z).  (3.25)

W=-q ay Y ' 9z

Equation (3.25) can now be written,

SW = —QE.SL , (3.26)

where, 0L = (ex6X + e,6Y + eZSZ)

Considering Egs. (3.25) and (3.26) for §W, the electric field can now be written
proportional to potential field terms, Hayt and Buck [71],

ox &7 Ty & T 5z

Equation (3.27) can be simplified using the gradient operator (grad) or nabla (V) to

(3.27)

(6(I>X 0Dy 09D, >
eZ

give,

E=-VV = —grad (V) . (3.28)
It is clear that the gradient operator for the infinitesimal element in rectangular
coordinates indicate the vector form of the solution whereas the potential fields
provide a scalar representation of the electric field. At this point, two different
solutions for cylindrical and spherical coordinates can be formulated. In cylindrical

form, the electric field can be formulated as,

P 1 P ad
E=—VV=—<a a¢>e¢’+ Z) (3.29)
In spherical form, the electric field can also be obtained as,
E— vy — (adb N 100 N 1 09 ) 330
B - ar 6T T 736 %0 T Tsing o) €s (330)

3.2. Electric Displacement of Piezoelectricity

Another vector term that can be developed for the piezoelectric element is the
electric displacement field. The positive electric charge located at the centre from an
arbitrary piezoelectric field can be considered a continuous function. Consider an
arbitrary surface vector dS with unit vector normal n on the area surface dS which
has an electric displacement Ds upwards from the surface as shown in Figure (3.3). In

this case, the electrical charge can be formulated in terms of Gauss’ theorem to give,
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Q = j@DS_ds = ngS_ndS = f ppdV = f pedS (3.31)
S

v

where, p,, = charge per unit volume and p, = charge per unit surface. The general
vector form of electric displacement can then be formulated in terms of the vector

component in rectangular coordinates as D, = Dse; = Dye, + Dye, + D,e, .

Figure 3.3 Outward electric displacement vector at element surface due to positive charge

Maxwell’s electric displacement theorem can be shown in terms of Eq. (3.31) using
the rectangular coordinate system. Consider each electrical displacement D together
with surface vector S on the infinitesimal element face of the rectangular box to give
the function of rectangular axes, (X, y and z) as shown in Figure (3.4). The space rate
of change of axes (dx/2 ,dy/2,and dz/2) is located in the R® space, where D is a
continuous function on the closed surface whereas dS is a continuous derivative to
the vector surface where V D,,, D, D,0,AS € {D,ScR?> —R?}. The
functional plane of D can be solved initially using the first two terms of the Taylor’s
series where the higher order series are very small for the differential electric

displacement and can be neglected.

Dyo /
H
==
|
5 G —#(C Ay
Y el XeYozol T | D
S B

z

Figure 3.4 Outward electric displacement vector at the surface of the infinitesimal rectangular box
due to positive charge
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It should be noted that the component vector of electrical displacement can be

formulated as,

D(x,,Y0,25) = Dyo€x + Dy,€y + Dype,. (3.32)

Applying Taylor’s series while only considering the first two terms for Eq.(3.32)

gives,
Ax Ax 0D,
D,,(ABCD) = D(xo + 7,yo,zo) = (on + )ex ; AS(ABCD)
= AyAz.e, ,
Ax Ax dD,,
D,,(EFGH) = D(xo - —,yo,zo) = ( o — — )ex . AS(EFGH)
2 2 Ox
= —AyAz. e, ,

Ay Ay dD,,
DyO(CDGH) = D(xo,yo + 7,20) = [ Dy, + 7W ey ; AS(CDGH)

= AxAz. ey,

Ay Ay dD,,
D,,,(ABEF) = D(xo, Y, — —,zo) = (D,o - XZ2%)e, ; AS(ABEF)
2 2 0y
= —AxAz.ey
Az Az dD,,
D,,(AECG) = D(xo,yo,zo + 7) = ( 0 T > oy )ez ; AS(AECG)

= AxAy.e, ,

Az AzoD,,
Dzo(BFDH) = D(xo'yo'zo - _) = ( zo 7 97

> >ez ; AS(BFDH)

= —AxAy.e, .

Using Maxwell’s electrical displacement form in terms of Gauss’ theorem gives,

Q = ngs_dS = jDS,dS + jDS_dS+ JDS_dS

ABCD EFGH CDGH

+ fDS,ds+ fps_ds+ fDS,ds . (3.33)
ABEF AECG BFDH

Solving each face of the infinitesimal element face of the rectangular box gives,
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Face ABCD

f D.dS = D,,(ABCD).AS(ABCD)
ABCD

Face EFGH

f D.dS = D,,(EFGH).AS(EFGH)
EFGH

Ax dD,,
= ( xo —

> ox >(—AyAzex.ex)

Ax 0Dy,
f DS.dS = (—on+ 7 Ox

) AyAz . (3.35)

EFGH

Face CDGH

D,dS = D,,(CDGH).AS(CDGH)

Ay aD
= <Dy0 + > a;o >AxAzey.ey

CDGH

Ay dD,,
] DSdS = Dyo + TW AxAz , (336)

CDGH

Face ABEF

Ay dD,,
f D,dS = D,,(ABEF).AS(ABEF) = |D,, — > oy (—AxAzey.e,)

ABEF

Ay dD,,
fDS_dS = =Dy, + > 3y AxAz , (3.37)
ABEF
Face AECG
Az0dD,,
j D,dS = D,,(AECG).AS(AECG) = (DZO+ = o, )AxAyeZ.eZ

AECG
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AzoD,,

f D.dS = (DZO + )AxAy , (3.38)

AECG
Face BFDH
Az aD,,
D.dS = D,,(BFDH).AS(BFDH) = (DZO— == )(—AxAyeZ.ez)
BFDH
Az dD,,

f D.dS = (—DZO+ e )AxAy , (3.39)

BFDH

Substituting Egs. (3.34) to (3.39) into Eq. (3.33) gives,

ng dS—(D +Aan’“’)A Az + ( D +Aan’“’)A A
s =\ LYxo > ox yaz X0 > ox yAaz
Ay dD,, Ay dD,,
+ <Dy0+ 7 ay AxAz + —Dy0+ 7W AxAz
+(D + AZ@DZ")A A +( D,, + AZ@DZ")A A 3.40
Z0o 2 aZ X y Zo 2 aZ X y' ( . )

Simplifying Eq. (3.40) results in the expression,

0Dy, 0Dy, 0D,
D.. = AxAyA
i s-ds < o + 3y + 57 xAyAz

(8D, 0Dy, 9Dy,
_<6x N vl Pl LA (3.41)

It can be seen that Gauss’s theorem for electric displacement can be written as a

divergence which is given as,
36 D,.dS = (V.D)AV = DivD.AV . (3.42)
This can be reformulated as,

3€D5.ds = ]V.DdV = fp,,dV =Q . (3.43)

Equation (3.43) for V.D gives the electric charge per unit volume. This can be

further manipulated to give,

 $D.dS
lim

Am s =DivD= p, . (3.44)
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The electric charge per unit volume has the relationship with electric displacement
due to its continuous function on the closed surface in the space system. It can be
seen that the limit AV approaching to zero gives the electric charge per unit volume
from the divergence of electric displacement which is the well-known Maxwell’s
theorem, Hayt and Buck [71] and Stratton [72]. Maxwell’s theorem for divergence
of electric displacement has a relationship with Gauss’s theorem for the closed
surface integral. As shown in the derivations of infinitesimal element face of the
rectangular box, it can obviously be expanded mathematically for other geometrical

components such as for cylindrical and spherical surfaces.

For the cylindrical surface, the convergence of electrical displacement or electrical

flux density can be formulated as,

10(rD,) 10Dy 0D,

Div.D = — P + 57 (3.45)

The convergence of electrical displacement for the spherical surface can also be
formulated as,
1 0(rD,) 1 9(sin6Dy) 1 0Dy

Div.D = — . 3.46
v r2 or + rsiné a6 +rsin0 d¢ ( )

As previously discussed, moving the charge in the path due to an applied force
against an electric field requires work. The electrostatic energy of the piezoelectric
element can be formulated in terms of the charge density and electric potential which
has relationship with the Maxwell equation of electric displacement as given

previously as,

1 1
W, = Efpvcbou/ = Ef(v.D)cde , (3.47)

From Eq. (3.47), invoking operational multiplication of differential vector fields

gives,
V(®D) = ®(V.D) + D.(VD) . (3.48)

Inserting ®(V.D ) from Eq. (3.48) into Eq. (3.47) obtains,

1
W, =5 f (V.®D — D.V)dV . (3.49)
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where from Eq. (3.28) E = —V®, which can be inserted into Eq. (3.49) to give,

1
W, = Ef(v. ®D + D.E)dV . (3.50)

The first integral is Gauss’s theorem of divergence’s volume integral, so it can be

replaced using the closed surface integral from Gauss’s theorem Yyielding,
1 _ 1
We=§j£CDD.ndS+§fD.EdV : (3.51)

The first integral contains the electric voltage function, electric displacement and

surface area which can be interpreted as the proportional function,

1 1 ,
CDN; , DNT'_Z ) as ~ r . (352)

Corresponding to Eqg. (3.52), applying the limit form at the first integral of Eq. (3.51)

in terms of r approaching to infinity gives,

11
lim ®D.dS or lim—-—7r? > 0 . (3.53)

r—oo r—oo 7 TZ

The resulting electrostatic energy of piezoelectricity then becomes,
1
w, = EfD.EdV . (3.54)

Electric displacement D can be considered to obtain the relationship with electric
field E and polarization P. Parameter D has a natural intensive property of the free
space of permittivity €, whose property is proportional with extensive property of E

which is further discussed in the next section,
D = €,E . (3.55)

Electric charge can now be further formulated by including polarization. In this case,
the total charge flowing through the piezoelectric element in terms of the differential

vector field of E and P can be written as,

0=0,— 0, = feov. EdS — (—f V. PdS) . (3.56)
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The negative sign from the bracket indicates the opposite direction with respect to
the electric field,

Q = jgeov. EdS + fv.Pds . (3.57)
Modifying Eq. (3.57) gives,
Q= j€V(eoE + P)dS . (3.58)
or it can formulated as,
Q = fv.nds . (3.59)

This can be compared with Eq. (3.43) solely having the relationship with electric
field, polarisation and free space permittivity. Hence, the electric charge per unit
volume also has a continuous function with polarization as proven in Eq. (3.56). The
new formulation of electric displacement, Nye [73], can be written as,

D= ¢E+P , (3.60)
or P can be formulated as,
P =x,e,E , (3.61)
where x, is the electric susceptibility of the piezoelectric material.
Substituting Eq. (3.61) into Eqg.(3.71) gives,
D = €,E+x.€e,E , (3.62)
and equation (3.62) can be written as,
D = (1+x,)e,E . (3.63)

where €, =1+ x, is the relative permittivity. In this case, we can multiply the

relative permittivity with the free space of permittivity to give,

€= €€ .
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Finally, the electric displacement can be reformulated in terms of electric field,
Stratton [72], Nye [73], Damjanovic [74] and Tiersten [75] as,

D= ¢€,€,E = €E . (3.64)

It is noted that D in Eq. (3.64) can be specified as the first rank tensor and the electric
field can also be specified as the first rank tensor. The relative permittivity can be
specified as the second rank tensor. The electric displacement vector can be
formulated in the tensor form as,

D;= €xE, . (3.65)
As can be seen, the quasi-electrical energy has been formulated using Maxwell’s
theorem in terms of the electric displacement with the application of Gauss’s

theorem.
3.3. Piezoelectric Effect

The unique electromechanical behaviour of piezoelectric material can be
divided into two piezoelectric effects, i.e. direct and converse piezoelectric effects.
When the applied stress is exerted on the material, the electric charge can be
produced on the surface of the material due to the electric moment which is
proportional to the applied stress to create polarization, Nye [73], lkeda [76] and
Cady [77]. The applied stress alters the polarisation to generate the electric voltage
on the electrodes located between two faces of material with negative and positive
charges. This situation is called the direct piezoelectric effect which is formulated
as,

P=do . (3.66)
where P represents the polarization charge per unit area, d the piezoelectric modulus
or piezoelectric constant and o the applied stress. It should be noted that the
polarisation P from the direct piezoelectric effect can be modified in terms of the
electrical displacement D with the constant electric field, equation (3.60) to give,

P = D- ¢,E . (3.67)

With the electric field kept constant, equation (3.66) can be modified in terms of Eq.
(3.67) as,

D =do . (3.68)

55

——
| —



This indicates that equations (3.67) and (3.68) have similar form for the direct effect.
It is noted that P in Eq. (3.67) can be specified as a first rank tensor and stress can be
specified as a second rank tensor. The piezoelectric modulus can then be specified as
a third rank tensor. The direct piezoelectric effect in tensor form can be formulated
as,
P; = d;jyoj . (3.69)

When the electric field is applied onto the material, the shape of the material will
change or deform due to the change of strain. This situation is called the converse
piezoelectric effect which is formulated in tensor form as,

gix = dijkE; . (3.70)
where ¢, indicates the second rank tensor of strain and E; indicates the first rank
tensor of electric field. The piezoelectric effects imply that the ratio between
polarization and the applied stress in direct effect will be equal with the ratio
between the change of strain and electric field in the converse effect.

3.4. Pyroelectric Effect

Certain piezoelectric materials have sensitivity with the change of
temperature thereby forming the dipole moment to exhibit spontaneous polarisation
with the constant electric field. This behaviour can be called the pyroelectric effect.
Certain piezoelectric materials such as zinc oxide (ZnO), polyvinylidene fluoride
(PVDF), lithium tantalate (LiTaO3), lead magnesium niobate-lead titanate (PMN-PT)
and lead zirconate titanate (PZT) also exhibit the pyroelectric effect whereas all
pyroelectric materials can behave as piezoelectric materials, Damjanovic [74],
Neumann et al [78], Ploss et al [79], Porter [80]. The pyroelectric effect can be
formulated in terms of the changes of temperature and polarization or can be
formulated in differential form as,

dP; = p;dT (3.72)
where p; represents the first rank tensor, pyroelectric coefficient (vector) P; indicates
spontaneous polarization and T indicates temperature. Equation (3.60) can be
modified with second order polarisation which includes spontaneous polarisation P;
or P, Nye [73]. The electric displacement can then be formulated as,

D = (e,E+ P)+ P, = €E + P,. (3.72)
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With respect to temperature, the pyroelectric coefficient can be obtained in
differential form as,
db _ pde  db,
dT dr = dT
It is noted that the electric displacement not only depends on the pyroelectric

(3.73)

coefficient but also on the electric field, and the change of permittivity with
temperature. In this case, the effect of electric field can increase the transition of
temperature on the pyroelectric effect and reduce the permittivity, Damjanovic [74].
If the effect of electric field was to be kept constant, the electric displacement will be
equal with spontaneous polarisation as formulated by,

S 3.74
ar ~ dr ~ Pi - (3.74)

In the next section, theorems of thermodynamics in relation to properties of quasi-
electrical energy, elastic strain energy and entropy are given in order to formulate the
thermopiezoelectric equation of states in terms of Legendre’s transform and

Maxwell’s relations.

3.5. Thermo-electric-elasticity of Piezoelectric Systems

The theory of thermodynamics plays an important role to identify all aspects
of internal and external parameters of energies including mechanical work and heat
affecting certain systems such as isolated, open and closed systems. The state of the
system can be identified in the macroscopic properties because these properties
include fundamental variables such as pressure P, temperature T, volume V, mole
numbers N and so on. At the microscopic level, these properties consist of millions
of molecules and structures at the atomic level that affect overall system dynamic
behaviours because they interact with each other to move continually and
consequently form the kinetic and potential energies at the macroscopic level,
Desloge [70] and Sears and Salinger [81]. This shows that the macroscopic
behaviour depends explicitly on the microscopic properties at the level of
thermodynamics categories. This level relates to the continuum hypothesis of the
macroscopic structure. At the in-depth study of microscopic level behaviour,
statistical quantum physics should be used to explore the physical interactions

between molecules or particles the quantum levels. At this point, continuum
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thermodynamics is an appropriate tool to analyse many properties of systems at the
macroscopic level, both experimental and mathematical, because the continuum
thermodynamics is sometimes called the tangible physical study where it can identify
clearly the level of energies in the internal system including the external energy from

its surrounding.

Furthermore, the continuum thermodynamics studies the behaviour of interactions of
properties in the system based on the laws of thermodynamics as discussed over the
long term from many scientists. It is noted that the piezoelectric system can be
analysed according to the closed system where the state of the system can be
identified in fundamental variables such as stress o, temperature T, strain & and
electric field E. The continuum thermodynamics of piezoelectricity has already been
discussed experimentally and theoretically by Cady [77] and developed in tensor
form by Nye [73], Munn [82], and Munn and Newham [83]. However in this chapter,
the previous theories are reviewed and also discussed in more detail to present a
clearer understanding of the constitutive equations of thermo piezoelectricity with its

properties.

The thermodynamic properties can generally be divided into two classifications, i.e.
intensive properties and extensive properties. These properties depend on
macroscopic element interactions between the internal and external system. The
extensive properties can be independent variables of the element size in the entire
system and its surrounding whereas the intensive properties can be dependent
variables of the element size in the entire system and its surrounding. At this point,

the physical properties can be explained in the following theorems,

Theorem 1. If X and Y indicate arbitrary intensive variables, then XY, X/Y, 0X/0Y and
X+Y should be intensive variables.

Theorem 1I. If X and Y indicate arbitrary extensive variables, then X+Y give

extensive variable, and X/Y and 0X/0Y should be intensive variables.

Theorem 1Il. If X and Y indicate arbitrary intensive and extensive variables
respectively, then XY, Y/X and 0Y/0X should be extensive variables.

Theorem V. If X(Y,Z) indicates extensive variable where Y and Z are also extensive
variables, then exact differential form dX = 0X/0Z(dz) + oX/oY(dY) should be

( o )
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extensive variable. As stated from theorem Il, 0X/0Z and 0X/oY indicate intensive

variables.

Theorem V. As given in theorem IV, 0X/0Z = A and 0X/0Y = B indicate intensive
variables. However, if A and B become the extended functional form stated as A(Y,Z)
and B(Y,Z) where Y and Z are extensive variables based on theorem llI, the exact
differential forms of two functions dA = 0A/0Z(dZ) + 0A/oY(dY) and dB = 0B/0Z(dZ)
+ 0B/oY(dY) should be extensive variables where the parameters 6A/0Z and oB/oZ

indicate intensive variables based on theorem I1.

To find other dependent intensive properties, Legendre transformation can be applied
to obtain the interrelationship of internal energy with its independent extensive
variables and other thermopiezoelectric potential. At this point, the thermodynamics
properties can be further analysed from energy forms in the system using Maxwell’s
theorem based on the laws of thermodynamics.

The first law of thermodynamics, as proposed by Carnot, discusses the equilibrium
process of the system under heat and work to form the transformation from initial to
final states. In this case, whatever the change of heat and work under reversible or
irreversible conditions, they should show the same summation results when the
initial state moves to the final state. From the perspective of the second law of
thermodynamics, it is impossible to construct the engine which will work for the
complete cycle where the heat from a reservoir converts to mechanical work. This
condition will allow us to discuss Clausius’ theory for the reversible and irreversible

processes in the entropy due to the heat change in the system.

In this case, the entropy is always positive real when the closed system is under
irreversible process and the entropy will be zero for the reversible process. It should
be noted that the change of entropy just depends on the transformation of heat from
initial to final states. This means that the change of entropy for the reversible process
will be equal with the change of entropy calculated using the irreversible process, as
discussed by Kuiken [84].

The total entropy change can be stated as the exchange of heat and matter with

external system d.S and the irreversible process in the internal system due to the
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internal thermodynamic forces or dissipation energy d;S, Verhas [85], Kondepudi

and Prigogine [86] and Biot [87] to give,

dS =d,S+ d;S . (3.75)
The equation (3.75) should meet the second law of thermodynamics where the
Clausius inequality entropy can be formulated in terms of the reversible and
irreversible processes as,

do

>
dS_T

(3.76)

Equation (3.76) reflects the arbitrary cycles of the heat process. The reversible and

irreversible process of entropy for the closed system can be further stated as,

dQ dQ :
jg T = 0, d.,S= T for the reversible process
and (3.77)

dQ dQ : :
%T >0, d;$= T for the irreversible process

On this point, Gibbs considered d,S as a reversible process of heat and matter (open
system) where he proposed the transformations of states in equilibrium
thermodynamics in order to create the reversible process in the system whereas d,S
(closed system) indicated the process of heat flow only excluding matter that could

be positive and negative.

Total change of entropy from Eqg. (3.76) gives the interrelationship of process states
between reversible and irreversible. Since, the piezoelectric system considered as a
closed form of solid system, is based on the change of entropy due to the reversible
process for the entire transformation of state, Nye [73], there is no change of entropy
due to the irreversibly internal piezoelectric system (parameter d;S is zero). The

change of entropy for the closed system in terms of Eq. (3.75) can be formulated as,

dU + od¢
ds = d,S = — (3.78)

As mentioned previously, the macroscopic field of piezoelectric thermodynamics
presented here, is based solely on the basic theory of thermodynamics. In this case,
the Maxwell’s interrelation theorem from various differential partial extensive

variables to give intensive variables will be further discussed where these can be
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used to further define the Enthalpy property, Gibbs Free Energy, and Helmholtz
Free Energy.

The first and second laws of thermodynamics were viewed as the equilibrium
process of the changes of state in the system. The equilibrium process can be viewed
as the macroscopic equilibrium properties of the system. The properties in the system
in terms of thermodynamics potential such as internal energy U was a function of
certain properties which were assumed as variable functions such as strain, entropy,
and electric displacement. From this situation, other thermopiezoelectric potentials
such as enthalpy H, Gibbs energy G, Helmholtz F can be achieved to obtain the
interrelationship of independent state variables (intensive variables) and dependent
state variables (extensive variables) in the equilibrium system. In this case, the
macroscopic thermodynamics theory for continuum piezoelectricity can be further
explored. The macroscopic piezoelectricity behaviour compounds the large numbers
of microscopic matters like molecules of atoms bringing the positive and negative
ions of the crystal lattice. The recent crystal structures in use were found to be
polycrystalline such as barium titanate (BaTiO3) and Lead zirconate titanate (PZT),
Damjanovic [74]. Moreover, the macroscopic piezoelectricity can be formulated in

terms of thermopiezoelectric potentials.

The internal energy of the system should be established first in terms of the laws of
thermodynamics in order to explore other thermopiezoelectric potentials. The
classical thermodynamic models gave the basic concepts to encounter the case of
thermodynamics potentials of piezoelectricity which was affected from the thermal,
mechanical and electrical interactions of the piezoelectric system. As mentioned
previously, piezoelectricity can be viewed as a solid element structure based on the
theories of elasticity, quasi-electrical energy and heat. In this theory, the
interrelationship of different states of the thermopiezoelectric potentials in the system
of infinitesimal piezoelectric element will be further developed using Legendre’s
transform in order to obtain intensive and extensive properties using Maxwell’s

relations in partial differential forms in terms of Figure (3.5), Nye [73].
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Figure 3.5 The Relationship between Mechanical, Thermal and Electrical Effects
of the Piezoelectric element, [73]

The first and second laws of thermodynamics of the piezoelectric element can be
stated in terms of the internal energy as one of thermodynamic potentials which is a

function of characteristic independent variables of strain &;;, electric displacement D;

and entropy S as,
U=U(g;D;S) . (3.79)

Equation (3.79) needs to be proven to fulfill the first law of thermodynamics of the

macroscopic piezoelectric element as,

U = (au) de;; + (a—U) db, +(6—U> ds . (3.80)
0¢;j sp J oD/, ' 0S/ep
Intensive properties from Eq. (3.79) can be stated as,
(a_U) 7 (a_U) . <au> —E . (381)
0S/ep de/sp J oD/, '
(%)



The macroscopic piezoelectric element can be viewed as a closed system which was
in a state of thermal equilibrium with the surroundings. The system was presumed to
undergo heat changes between initial to final states where this situation was called
the reversible process of entropy as stated in Egs. (3.77a) and (3.78). In this case,

equation (3.80) can now be reformulated as,

Maxwell’s relations can then be used to obtain,

(), - (3. ), - (65), 65, G, om
0¢€;; S.D 95 s,D’ aD; &S ey D,s’ 05 Jpe oD S,s. .

Equations (3.79) to (3.83) provided the basic formulations from the first and second

laws of thermodynamics of piezoelectricity which can be used to develop the
intensive and extensive properties from other thermodynamic potentials such as
Gibbs Free Energy of elasticity, Electro-Elasticity Gibbs Free Energy, Helmholtz
Free Energy, Enthalpy of Electro-Elasticity, and Electrical Helmholtz Free Energy.
These energies can be explored using Legendre’s Transformation and Maxwell’s
relations as further discussed in the next section. At this stage, the three base
components of the exact differential energy forms for the piezoelectric system need
to be established first before these energy forms can be developed into
thermodynamic potentials. The exact differential elastic strain energy form can be

formulated as,

9(ai7) 9(aii7)
d(o::e::) = [ —222L) do:: —~ YY) (de:: . 3.84
(a”e”) ( doy,; ] g + de;; ] €ij ( )
Reformulating Eq. (3.84) gives,

d(o-ijgij) = Sijdo'ij + O-ij dsij . (385)

The exact differential quasi-elastic energy can be formulated as,

q _ (9(E:Dy) d(E;D;)
ED) = () dE + (552) db; (3.86)

Reformulating Eq. (3.86) gives,

The exact differential entropy form can also be formulated as,
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d(TS) = <@> dr + <@> ds (3.88)
or | as ). '

or, d(TS) = SdT + TdS . (3.89)
3.6. Elastic-Electrical Gibbs Free Energy (Type —a,E,T)

The concept of Gibbs free energy can be further explored to investigate the
intensive and extensive properties in order to give the thermodynamic, Gibbs
equation of state of type- g, E, T which can be derived using Legendre transform and
Maxwell’s relations. The independent variables of elastic-electrical Gibbs free

energy can be obtained using Legendre’s transform where equation (3.81) can be

used to replace independent variables from Eq. (3.80) of entropy S with (3—?) =T,
&,D

ou

) =E. At

s,

strain ¢;; with (a—U) = o;; and electric displacement D; with (
%¢ij/ g p

this point, elastic-electrical Gibbs free energy can be stated as the characteristic
thermodynamics potential with a function of differential terms of T, ;; and E; in the

macroscopic state using Legendre’s transform as,
G= (U—-oae;—ED;—TS) . (3.90)
Corresponding with Egs. (3.85), (3.87) and (3.89), equation (3.90) can be stated as,
dG = d(U — 0;j&;j — E;D; — TS) = TdS + 0y;de;; + E;dD; — &;;doy;
—o;;de;; — D;dE; — E;dD; — ST — TdS . (3.91)
Simplifying Eq. (3.91) gives,
dG = —SdT — ¢;;do;; — D,dE; . (3.92)

Electro-Elasticity Gibbs free energy can be stated as the exact partial differential

form as,

dG—(aG) ar+ (25) 4 +< ) dE 3.93
—\oT/,. da;), U " \GE e (3.93)

The intensive properties from Eq. (3.93) can be obtained as,
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(66) s < 06 ) 0G D (3.94)
—_ e , —_ = —&;: , _ - . . .
0T/ gk 00ij) 1 Y (0Ei)T‘a l

Using Maxwell’s relations to obtain other interrelation of differential partial terms,

gives,

as aDl as aeij aeij aDl
(_) =(_) (=) = (ZY) = (=—=~) .(3.95)
aEi T.o 6T o.E aO'ij TE OT GE (?El T.o aO'ij TE

Corresponding with Eq. (3.93), equation (3.95) is reflected as the conceptual quantity

where the characteristic measurable properties from Eq. (3.95) are mostly unknown.

This equation is in exact differential form as indicated in the Maxwell’s relations. In
this case, the intensive properties Dj, ¢jj, and S can be further considered as extensive

properties in order to formulate the Gibbs thermodynamics equation of state to obtain
the measurable quantities, where these properties are function of differential terms of

extensive properties of T, oy and Ey as,

aDl aDl aDl
ET o,T oE

aO'kl aEk

and

5= (5) aner (2) wn+(D) ar . o
= |\ ) -_— -_— . .
GUkl ET kl aEk oT k aT o,E

Corresponding with Egs. (3.96), (3.97) and (3.98), Maxwell’s relations and the

previous sections, the following intensive properties can be expressed as,

aDl‘ oT (')Dl ) aDl
= o =d’, ( ) =P, 3.99
<6Ek>” Cik (aakl pp K T Jop (3.99)
68U> <6£i-> aEi'
=d’, | J =sET ) =df 3.100
<6Ek o ijk aUkl r ijkl oT op lj ( )
<as) pg ( 05 ) E (3.101)
—_— = N = o B .
aEk oT k aO-kl ET kel
TdS=dH — T (as) AH _ or <as) c” 3.102
= - —_— = —_= ’ i -_— == .
0T )y p  dT oT),r T (3.102)




It should be noted that the relation given in Figure (3.5) can be used to explain Egs.

(3.99) to (3.102). (ﬂ) = (ﬁ) indicates the relationships between T —
,E

oT /4 oy ET

gjand oy, — S to give the same value where the coefficient of thermal expansion is

: . aD; as o
the same as the piezocaloric effect. Moreover, ( ‘) = (—) indicates the
oT o,E 0E oT

relationships between T — D; and E; — S to give similarity between the coefficient

- - a ij i - -
of the pyroelectric and the electrocaloric effect and (%) = (:ai) indicates
kZo,T k" ET

the equal value between the converse piezoelectric effect and the direct piezoelectric
effect relating the stress-voltage function as shown in the relationship Ej — &;
and oy; — D; from Figure (3.5). Equations (3.99) to (3.102) were sometimes called
the thermopiezoelectric coefficients in terms of elastic-electrical Gibbs free energy.
Each coefficient was reflected as Maxwell’s relations of the measurable partial
differential form. It should be noted that the coefficients are in tensor form where the
coefficients ef;”, dfy; , P{ ,sijx, afy and C7F indicated permittivity, piezoelectric
constant, pyroelectric constant, elastic compliance, thermal expansion and specific
heat, respectively. Superscripts o,T,and E indicated the quantities to be kept
constant, referring to the stress, temperature and electric field. As can be seen, the
coefficient of thermal expansion at constant electric field afj and heat capacity at

constant stress C?* were analogous with coefficient of volume expansion ;; and

heat capacity at constant pressure C,, respectively from classical thermodynamics.

Corresponding with Eqgs. (3.99) to (3.102), equations (3.96) to (3.98) can be
reformulated to obtain the direct and converse effects of the piezoelectric expression

including the entropy as,
Di = d’lrkl (%] + E?I;'T Ek + PL-O-AT
&ij = Sfj'szUkl + diTjkEk + aiEj AT . (3.103)

CO',E
AS = a,]flakl +Pk0 Ek +TAT
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Figure 3.6 The Relations Between Mechanical and Thermal Effects of
the Thermoelastic Material (Type —o,7)

As can be seen, the complete thermopiezoelectric equation of state corresponding
with elastic-electrical Gibbs free energy has been formulated. This equation
considered the piezoelectric materials with the effect of temperature in terms of
Figure (3.5). The non-piezoelectric system and pyroelectric effect under temperature
effect can be separated from the previous equation and this is known as the
thermoelastic behaviour. From Figure (3.6), the thermoelastic behaviour can be
written using the relations of strain and entropy as the extensive properties (Type —o,
T), formulated in terms of Eq. (3.103) as,

& = Shuow + a;; AT (3.104)
and

AS = a0 + SAT
It is noted that there are only four coefficients relating the thermoelastic properties
(Type — o, T). As we can see from Figure (3.6), the relation ox — ¢;; produces the
elastic compliance (SiTjkl) and the relation T — ¢;; and o); — S produces the thermal
expansion at constant stress (a;;) and the piezocaloric coefficient (a;;) respectively,

and both of these relations have the same value. The final relation T — S gives the
specific heat at constant stress (C?). Other relationships, specifically the
thermoelastic type (Type — ¢, T) can be proved using the electrical Helmholtz free

energy for thermoelasticity as given in the next section.
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Furthermore, another relation between adiabatic and isothermal elastic compliances
with constant electric field can also be obtained where equations (3.97) and (3.98)
can be used in terms of the thermoelastic condition given in Eq. (3.104). In this case,
the adiabatic process dS =0 can be applied to Eqg. (3.98) and then the differential
temperature dT can be eliminated in Eg. (3.104a) using Eq. (3.104b) to give,

aei]- aS
afij ( oT )0' (FM)T do-kl
dSij = ﬁ Ok — 35 (3105)
i (5)0
Modifying Eqg. (3.105) in terms of the elastic compliances gives,
6si]- aS
<0£ij> _ (aSU> _(aT )0' (FH)T (3 106)
do ~ \do 9 '
kl/ g kL) (6T)a

Simplifying, equation (3.106) can be written as,

<asij> <6£ij> _ <6$ij> (05) <6T> (3 107)
aO'kl S aO'kl T aT o aO'kl T as o . .

Corresponding to the thermodynamic coefficients given from Egs. (3.99b-c),
(3.100b) and (3.102), equation (3.107) can be formulated as,

Sisjkl - SiTjkl = _aijakl(T/Cd) . (3.108)

This indicates that the relations between adiabatic and isothermal elastic compliances
can be obtained from the left side in Eq. (3.108) where the thermal expansion and
heat capacity have positive values of coefficients. This indicates that the left side of
Eq. (3.108) results in a negative value indicating that the elastic compliance due to
the adiabatic effect has a smaller value than the elastic compliance for the isothermal
process, Nye [73]. Assuming the thermoelastic property for constant strain field, the
relations between heat capacity at constant strain and stress can be obtained from
Egs. (3.97) and (3.98) in terms of Eq. (3.104) to give,

( as ) (a&i]')
oy ET aT o,E

s
ds = (ﬁLE ar — &

aO'kl

(3.109)

E,T
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Modifying Eqg. (3.109) can give,

) - @) - - Gk
T,

aO'kl

Corresponding to the thermodynamic coefficients given from Egs. (3.100b-c),
(3.101b) and (3.102), equation (3.110) can then be formulated as,

aijale

T
Sijki

CE—Co = — (3.111)

This indicates that the relations between heat capacity at constant strain and stress
can be obtained from the left side of Eq. (3.111) where the thermal expansion and
elastic compliances always gave positive coefficient values. The right side of Eq.
(3.111) always gives a negative value indicating that the heat capacity at constant

strain has a smaller value than the heat capacity at constant stress and constant strain.
3.7. Elastic Gibbs Free Energy (Type —a,D,T)

In this section, the elastic Gibbs free energy will be further discussed
according to the independent properties of stress g, electric displacement D and
temperature T where this implies that the elastic Gibbs free energy was a function of
the independent properties because these properties can be used to investigate the
thermodynamic equation of state or measurable equation of state. The difference
between elastic Gibbs free energy (type-c, D,T) and electric Gibbs free energy (type-
o,E,T) is the fundamental property of electrical terms (D and E) but both of these
theorems show the interrelationship that can be expressed using matrix algebra. This
indicates that Maxwell’s relations of the thermodynamic equations of state gave
exact differential forms. Independent variables of elastic Gibbs free energy can be

obtained using Legendre’s transform where equation (3.81) can be used to replace

independent variables from Eg. (3.80) of entropy S with (‘;—Z) =T and strain
&£D

g;j with <%) = g;;. At this point, elastic Gibbs free energy can be stated in
Y’/ s,D
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terms of the characteristic thermodynamic potential with a function of differential
terms T, ¢j; and D; in the macroscopic state,

G= G(0y,D;,T) . (3.112)
Equation (3.112) needs to be proved by applying Legendre’s transform as,
dG = d(U - o6, —TS) . (3.113)
Expanding Eq. (3.113) in differential form gives,
dG = dU — g;do;; — o;;de;; — SAT — TdS . (3.114)
Substituting Eq. (3.82) into Eqg. (3.114) gives,
dG = TdS + 0y;deg;j + E;dD; — g;5do;j — o0y;de;j — SAT —TdS . (3.115)
Simplifying, equation (3.115) obtains,
dG = E;dD; — &;;do;; — SAT . (3.116)

Corresponding with Eq. (3.116), the exact partial differential for Gibbs free energy of

elasticity can be stated as,

dG ( 06 ) dD; + < 06 > do;; + <ac) dr (3.117)
= . O‘ . — . .
aDi oT ' aO'ij DT Y aT D,

The intensive properties for Gibbs free energy of elasticity can also be obtained as,

<aG) =F oG = (aG) = -5 3.118
oD o,T S aaij DT - u - \aT D,o B . ( . )

Maxwell’s relations can be used to give,

(65) 3 (aEi> <65> 3 <aeij>
(')Dl- o, oT D,o" aO'ij DT oT Do ’

T

aEi > <6€U)

— = —|=— . 3.119
(aO'ij DT aDl o ( )

Corresponding with Eq. (3.119), equation (3.117) reflected a conceptual quantity as
indicated in the exact differential form from Maxwell’s relations and the intensive

properties E;, & and S. These properties become extensive properties to further
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develop the elastic Gibbs thermodynamics equations of state in order to obtain the
measurable quantities. At this point, Gibbs thermodynamic equation of state can be

formulated where the extensive properties of a;;, D;, T are held as the independent

properties as,

dE; = (aEi) do,, + 9%\ +(aEi> dT 3.120
¢ = G/ . % T\ aD; i+ \5r),, 4T - (120

’ J o, T ’
de;; = il dow, + 0¢y dD, + 0¢y dT 3.121
&j = 901, or o oD, i K 3T - ,  (3.121)

ds—(as) doy + (2 dD+(aS) dT 3.122
~ 6o/, "7 " \ap i\or),, ¢ (3122)

o,T

The measurable quantities can be obtained from the intensive properties from Egs.
(3.120) to (3.122) to give,

==, =7 = g jk » )
oD; oT Efj'T 0Dy oT eiTjk Y
( = - =) =-L=-p, (3.124)
0T /ps aD; o oT oD glf’j
(')Ei ) <6DJ > <(’)El > d]Tkl T
~ (25 S [—. (3.125)
(aakl g 00y, . aD; o el.aj’T '
(')eij ET (')eij
(E) = Sij,kl , ﬁ = aiDj , (3.126)
D, T o,D
< aS > <6Ei ) ( as) pP? fo ( N ) b (3127)
— = — = = iy — = akl ) .
OD] oT aDJ oT aEl oT El.aj’T ] aO'kl DT
. <65> dH oD (65) coP 3128
—_— = —= ’ e d -_— = . .
aT)yp  dT oT)yp T (3.128)

Equations (3.123) to (3.128) are sometimes called the thermopiezoelectric
coefficients in terms of elastic Gibbs free energy (type-o,D,T) or also the inverse of
the thermopiezoelectric coefficients of elastic-electrical Gibbs free energy (type-
o,E,T). It should be noted that equations (3.124), (3.125) and (3.127a) were obtained
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due to the combinations or products of two partial differential forms from Maxwell’s
relations. Moreover, from Figure (3.5), the relations ofoy; - E; and D, —
g;jindicate the direct and converse piezoelectric effects per unit permittivity

(secondary terms of direct and converse piezoelectric effect), respectively, where

= (@) indicating the

this also shows similar physical meaning with (ai) —
k/ e T

aO'kl ET

same numerical values between the secondary terms of direct and converse
piezoelectric effects in terms of the stress-charge effect. The coefficient of thermal

is the same as the piezocaloric effect (aa_S) where this
E,T

expansion (ae” )
P oT Okl

o,E

indicates the relations T — ¢;; and oy, — S. Moreover, the relation T — E; with

physical terms (aai;) indicates the coefficient of the pyroelectric effect at constant
D,o

stress per unit permittivity (electrothermal) which is the same as the electrocaloric

as

effect at constant stress per unit permittivity (heat of polarization) ( 35 ) with the
,T

/e

relation D; — S. Each coefficient reflects Maxwell’s relations of the measurable
partial differential form. It should be noted that the coefficients in the tensor form
€ g St @ and C%P  indicate permittivity at constant stress,
piezoelectric constant per unit permittivity in terms of stress-charge, pyroelectric per
unit permittivity in terms of stress-charge, elastic compliance at constant electric
field, strain-temperature thermal expansion and specific heat at constant stress.
Corresponding with Egs. (3.123) to (3.128), equations (3.120) to (3.122) can be
reformulated to obtain the direct and converse effects of piezoelectric including the
entropy as,

E; = —gl O + EO'LT D; — f7AT

ij
&ij = Sfj'zfszkz +gijDe +af; AT (3.129)

CG,D
AS = allglo-kl +fja Dj + TAT .

3.8. Electrical Helmholtz Free Energy (Type-¢E,T)

In this section, the thermodynamics potential from the electrical Helmholtz

free energy can be further discussed where each independent property is used in
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order to develop the intensive variables using the thermodynamic equation of state
based on Maxwell’s relation. In terms of the Legendre’s transform, the independent
properties of electrical Helmholtz free energy can be stated using Eq. (3.81) by

replacing independent variables from internal energy in Eq. (3.80) of the electric

au

. a . .
aD) = E; and entropy S with (a—Z) =T which is

displacement D; with (
i’S¢e &,D

formulated as,
dF = d(U — E;D; — TS) . (3.130)
Expanding Eq. (3.130) into exact differential form gives,
d(U — E;D; — TS) = dU — E;dD; — D;dE; — TdS — SdT . (3.131)
Substituting Eq. (3.82) into Eg. (3.131) obtains,
dF = TdS + g;;de;; + E;dD; — E;dD; — D;dE; — TdS — SdT . (3.132)
Equation (3.132) can be simplified as,
dF = oy;de;; — D;dE; — SAT . (3.133)

At this stage, equation (3.133) reflects the electrical Helmholtz free energy which
can be stated in a more compact exact differential form as,

0= (2) aegr () are () ar
a (')eij ET &ij (')El ‘ aT &E . ( )

T

The intensive properties from Eq. (3.134) can be extracted into the dependent

variables as,

JF JoF JoF
a&'ij ET JE; aT &E

VET

Maxwell’s relations can be applied to Eq. (3.135) resulting in,

aO'l'j aDl aO'l'j aS aDl 0S
= (9B (Qou)\_ (G2 _(_)z—(—> .(3.136)

aEi aeij aoT aeij oT 6El
The intensive variables from the electrical Helmholtz free energy provide conceptual

properties as these variables imply unknown functional measurable properties. Since

the thermodynamic equations of state need to be established in terms of the

( 2 )
1 3}



differentiable functions of the independent variables and Maxwell’s relations, the
intensive variables from Eq. (3.135) become extensive variables. Therefore, the

electrical Helmholtz equations of state can be formulated as,

dor = (290} gey+ (29)  ap,+ (%L ar (3.137)
! Ok ET OEj e, oT &E
d; = (aD") dey, + (%) dE, +(6D"> dr (3.138)
a&'kl ET aEk eT aT &E
S aS S
a&'kl ET aEk eT aT &E

Equations (3.137) to (3.139) are known as the thermodynamic equation of state from
the electrical Helmholtz free energy which represents as the measurable equation of
state because the new intensive properties from Egs. (3.137) to (3.139) give the
coefficient of thermopiezoelectricity based on the exact differential form of
Maxwell’s relation relating to the electrical Helmholtz free energy. The coefficients

of thermopiezoelectricity can be formulated as,

d0;; .
<agl] ) = Cllj,le , <_aEl'] ) = _eiTjk , (3140)
ki) gy e r
d0; doy; 0 [
K = —Cjj = —Bi 141
( aT )&E <(’)skl e ( oT )G'E Cijir Ok Bij » (3.141)
aDi) r ((’)Di) o7
= Gk = €k 3.142
<65kl ET e 0Ey/ . 1 tk ( )
0Dl-) as
=Pk, (—) = P{, 3.143
<6T eE ' IEy/ ¢ k ( )
65) <60'U> < 65) ET
<_ =\3) |32 = Gjuai=Ba (3.144)
0k ET 0€p ET d0i; T

(3.145)

(65> _Tas _ C*F
oT/).g TOT T

Equations (3.140) to (3.145) represent the thermodynamic coefficients of the

electrical Helmholtz free energy. It should be noted that equations (3.141) and
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(3.144) were obtained due to the product of partial differential forms from Maxwell’s

. do;;
relations. Moreover, (J)

0Ey

= (aD") indicates that the second term of the
O/ g1

e,T
converse piezoelectric effect is numerically equal to the second term of the direct
piezoelectric effect in terms of the strain-voltage effect where this is indicated in
Figure (3.5) for the relations E, — o;; and &, — D;, respectively. The relation T

- g;; indicates the product of coefficient of thermal expansion with elastic stiffness
: 9y L
constant to give thermal pressure (%) which is the same as the product of
sE

piezocaloric effect and the elastic stiffness constant with relation ,; = S to give the

heat of deformation (aag_s) . Moreover, the relations T — D; and E} — S indicate
Kkl ET

the pyroelectric effect at constant strain and the electrocaloric effect at constant

strain which shows the physical meaning that (%) has the same value as
&E

(;TS) . Each thermodynamic coefficient was reflected as Maxwell’s relations of
k7 eT

the measurable partial differential form. It should be noted that the coefficients are

given in tensor form where elk, ek, ,PE,C Bij Brand C5F indicate

L ijl'
permittivity, piezoelectric constant in terms of strain-voltage, pyroelectric constant in
terms of strain-voltage, elastic stiffness at constant electric field, stress-temperature
thermal expansion (thermal pressure), heat of deformation and specific heat at

constant strain.

The equations (3.137) to (3.139) can be reformulated in terms of Egs. (3.140) to
(3.145) as,

O-L'j = CS’]Z;SRZ —eiTjkEk _BU AT
D; = elyew + € Ex + PEAT . (3.146)

AS = e + PEE + ?AT
The complete thermopiezoelectric equations of state corresponding with electrical
Helmholtz free energy has been formulated. This equation considered the
piezoelectric materials with the effect of entropy in terms of Figure (3.5). The
previous equation can be reduced in terms of thermoelasticity with the non-

piezoelectric system and pyroelectric effect. At this point, thermoelastic (Type —¢,T)
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behaviour can be established. From Figure (3.7), the thermoelastic behaviour can be
considered using the relations of strain and entropy as the dependent properties
(Type —¢&,T) and can be formulated in terms of Eq. (3.146) as,

Oij = CiTjkzgkl - B AT (3.147)

&

C
AS = Bklgij + TAT

It is noted that there are only four coefficients relevant to thermoelasticity (Type — ¢,
T). As can be seen from Figure (3.7), the relation ¢,; — o;; produced the stiffness
elastic coefficient (Ciﬂ,d) and the relation T- o;; and g,; — S produced the thermal
pressure (B;;) and heat of deformation (By;), respectively and both of these
relations show the same value. The final relation T — S gives the specific heat at
constant strain (C#£). It should be noted that the thermoelastic equation (Type — &,

T) can also be stated as the inverse thermoelastic equation (Type — o, 7).

Strain Heat of Deformation‘ Entropy
(€) N (9)
o L
as\\ at C
stress\ Thermal Pressure Temprature

<

(o) (1)

Thermoelastics effects (Type - €, T)
Mechanical Form Thermal Form

Figure 3.7 The Relations Between Mechanical and Thermal of
the Thermoelastic Material (Type-¢,T)

Another relationship between the adiabatic and isothermal elastic stiffness can be
obtained where equations (3.137) and (3.139) can be used in terms of the
thermoelastic condition given in Eq. (3.147). In this case, for an adiabatic process,
dS=0, that can be applied to Eq. (3.137) and then the differential temperature dT can
be eliminated in Eq. (3.139) using Eq. (3.137) to give,

(3.148)

do;; = <aaij> dey, — (a;%)g (%)T degy
T

o @)
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Modifying Eqg. (3.148) in terms of the elastic compliances results in,

(3.149)

<60ij> _ <60ij> _(ag%)g(%)T
s T

0k 0k (g—;)
&

Simplifying Eqg. (3.149) gives,

601-]- 601-]- aO'l'j aS aoT
Do) _ (2w} oo (2w} () (Z) - gaso
agkl S aekl T oT e agkl T aS c
Corresponding with the thermodynamic coefficients given from Egs. (3.140a),
(3.141b), (3.144) and (3.145), equation (3.150) can be formulated as,

Corr— Clia = BijPr (T/CE) : (3.151)

This indicates that the relations between adiabatic and isothermal elastic stiffness can
be obtained from the left side in Eq. (3.151) where the thermal pressure and heat
capacity always have positive value of coefficients. This indicates that the left side in
Eqg. (3.151) always has positive value indicating that the elastic stiffness for the

adiabatic effect has a larger value than the elastic stiffness for the isothermal effect.

3.9. Elastic Helmholtz Free Energy (Type- &, D, T)

In this section, the elastic Helmholtz Free Energy will be further discussed
according to the independent properties of strain &, electric displacement D and
temperature T. This implied that the elastic Helmholtz Free Energy was a function of
independent properties as it indicated the fundamental functions for thermodynamic
equation of state. Independent variables of Elastic Helmholtz Free Energy can be

obtained using Legendre’s transform where equation (3.81) can be used to replace

independent variable of Eg. (3.80) of entropy S with (Z—IS]) = T. At this point, the
gD

elastic Helmholtz Free Energy can be stated as the characteristic thermodynamic
potential with a function of differential terms ¢, D and T in the macroscopic state.
Elastic Helmholtz Free Energy can be stated as,

dF =d(U —TS) . (3.152)

Expanding Eq. (3.152) into differential form results in,
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dF = dU — TdS — SdT . (3.153)
Substituting Eq. (3.82) into Eq. (3.153) provides,
dF =TdS + o;;de + E;dD; — TdS — SdT . (3.154)
Simplifying Eq. (3.154) gives,
dF = o;de; + E;dD; — ST . (3.155)

Equation (3.155) can be stated as an exact partial differential for elastic Helmholtz

energy as,

ar = (25 4 + (6F> dD; + (6F> dT 3.156
~ \ag; ™ \ap, tr\oT/,, ' (3.156)
D,T &T ,

ij

The intensive properties for Helmholtz energy can be stated as,

0F oF JoF
agij D,T aDl T ot &b

Using Maxwell’s relations gives,

<80'ij> _ <6El> (6017 > _ <65 ) <6El ) _
()Di eT asij D,T’ oT eD aeij T,D’ aoT D,

At this point, the intensive properties for g;;, E;, and S become extensive properties

(g; ) . (3.158)

U Te

when the thermodynamic equation of state is formulated in terms of the Maxwell’s

relations where the extensive properties of &g, Dj and T were kept constant as,

dE; = (ai> deg + (ai) dD; +(ai> ar (3.159)
0/ oD; &T T /ep
doy = (299 e, + (2% de 9%\ 4r (3.160)
Y agkl D.T aD oT £D ’
3s
aSkl DT aT &D

Corresponding with Egs. (3.159), (3.160) and (3.161), the thermodynamic

coefficients in terms of Maxwell’s relations can be obtained as,

A = )] A =T ik )] .
aDj &T EiSJ:T 0Dy &T dgk U
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oT Jop  \OD; oo\ 0T CesT e (3.163)

&E 3]
OE; ) <8Ei ) (aDj > el (60U> DT
R el it =L =pr (== =C., 3.164
(askl DT d j eT askl ET EiSJfT Ll aekl DT Lkl ( )
00;; day; (agkl) DT E
- _ —x =-c> = -0, 3.165
<aT > b <a€kl o NOT Vo e (5:169)
g, ’
<65> 3 <6El-> (65) _Ff _ e (3.166)
aD] or aD] or aEl - Eij J .
aS) <60'11> (as) DT E
(— aii =Pr (3.167)
agkl DT agkl DT OO'U BT Ukl J
TdS = dH T(as) a7 _ cep <as) i 3.168
- _— = ’ d _— = . .
aT/).p  dT aT) . p T ( )

: - : 00\ ..
The thermodynamics coefficients (g%) = (%) indicate that the converse
kl”p,T kZeT

piezoelectric effect is numerically equal to the direct piezoelectric effect per unit
permittivity in terms of the strain-charge effect with the relations ¢,; — E; and

Dy — o0;j. The product of coefficient of thermal expansion with elastic stiffness

da;; : . .
constant (%) is known as the thermal pressure with relation T — g;; and the
&E

product of the piezocaloric effect with elastic stiffness constant (;TS) is known
kKl ET

as the heat of deformation with relation &;; — S. Both of the physical properties have

9oy ,
the same value (ﬂ) = (i) . Moreover, the relations T » E; and D; - S
aT BT

&E 0&gy

indicate the electrothermal and heat of polarisation, respectively and both of these
relations show the same physical property values where (%") indicate the
&D

coefficient of pyroelectric effect at constant strain per unit permittivity
(electrothermal) which is the same as the electrocaloric effect at constant strain per

unit permittivity (heat of polarization) (%) . Each thermodynamic coefficient
1 erT

was written using Maxwell’s relations in measurable partial differential form.

Moreover, the thermopiezoelectric coefficients are written in tensor form where the

m’

coefficients e;,dl; ,f%,Clyy» Bra and C#P indicate permittivity at constant

strain, piezoelectric constant, pyroelectric constant per unit permittivity, elastic
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stiffness at constant charge, stress-temperature thermal expansion and specific heat at
constant strain. Corresponding with Egs. (3.162) to (3.168), equations (3.159) to
(3.161) can be reformulated to obtain the constitutive equations of elastic Helmholtz

Free Energy of piezoelectricity as,

T 1 &
E; = hien + —7 Dj — fi AT,
ij
0y = Chmen + D —ByAT (3.169)

and

&,D

AS = Bklgkl_i_f)'e D] + AT .

o

The previous thermopiezoelectric potentials represents the interrelationship of
electromechanical, thermoelectric and electrothermal components with the various
applicable intensive and extensive properties based on electrical Gibbs free energy,
elastic Gibbs free energy, elastic Helmholtz free energy and electric Helmholtz free
energy. The difference between Gibbs and Helmholtz is the use of the extensive and
intensive properties. In the next section, the elastic enthalpy and electrical enthalpy
with adiabatic and isothermal processes will be discussed. The electrical enthalpy is
commonly used for formulating the constitutive equations of piezoelectric plate, shell
and beam, Tiersten [75], Mindlin [88], and Tanaka [90].

3.10. Elastic-Electrical Enthalpy (Type — 6, E)

The nature of conservation of energy from the piezoelectric element is
discussed here according to the independent properties of stress and electric field.
The formalised energy can be called the elastic-electrical enthalpy which depends on
the internal energy, potential energy due to the change of strain and elastic-electrical
energy without considering the changes of temperature and entropy. However, the
formalised internal energy in the system purely follows the first law of
thermodynamics and the transformation of heat with the reversible process from the
second law of thermodynamics. At this point, the elastic-electrical enthalpy implies a
dependent energy process on the material nature of piezoelectricity and its
surrounding. The formalised elastic-electrical enthalpy can be formulated as a
function of stress o, electric field E and entropy S. However, as presumed here, the

system was under isothermal and adiabatic processes implying the temperature

( o0 )
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change AT = 0 and the entropy change AS = 0. The remaining properties were
assumed to have functions of stress and electric field where this can be stated as
H = (o, E). For the adiabatic and isothermal processes, the elastic-electrical Gibbs
free energy becomes the elastic-electrical enthalpy to give,
Expanding Eq. (3.170) using the differential form gives,
dH =dU — gijdo-ij - O-ijdgij - EidDi - DidEi . (3171)
Substituting Eq. (3.82) into (3.171) provides,
dH = O'ijdsij + EidDi — gijdo—ij — O-ijdgij - EidDi - DidEi . (3172)
Simplifying Eqg. (3.172) obtains,
dH = —sijdaij - DidEi . (3173)

Equation (3.173) can be modified into the exact differential form to give,

ar = (21 o, + (aH) dE 3.174
= doy,; 0ij JE; i - (3.174)
E g
The intensive properties can be obtained separately from Eq. (3.174) as,
a = ; (GH) = =D 3.175
ao_ij . - gij ) aEl . - i ) ( . )
where the Maxwell’s relation can be obtained as,
aEk N aUkl | ( ' )

The intensive properties in Eq. (3.175) become extensive properties in order to
formulate the enthalpy equation of state which are function of independent properties

of ay; and Ej, to give,

aD; aD;
dD; = (—‘) dE, + (—‘) doy,; (3.177)
aEk o aO'kl E
dey = (250) ag, + (250) 4o (3.178)
5] aEk . k ao_kl c kl .

The enthalpy coefficients in terms of Maxwell’s relations can be obtained from Egs.
(3.177) and (3.178) to give,

(ﬂ) _ o (_aDi) — dE (3.179)
aEk . ik ikl '




aé'ij o aé'ij E
(E)G =dije (Wm T Sijkl - (3.180)

It should be noted that Maxwell’s relations implied four coefficients relating the
elastic-electrical enthalpy. As we can see from Figure (3.8), the relation o); — ¢;;
produced the elastic compliance (sfjkl) and the relation oy, = D; and Ex — &;
produced the direct and converse piezoelectric constants, respectively and both of
these relations show the same value. The final relation E;,, — D; gives the permittivity
at constant stress. Equations (3.179) and (3.180) are sometimes known as the
thermodynamic coefficients. Each coefficient denotes the measurable quantities in
terms of the partial differential forms. It should be noted that the tensor coefficients
€ dii, and s, indicate permittivity, piezoelectric constant and elastic compliance.
Superscripts o,and E indicate the quantities at constant stress and electric field.
Corresponding with Egs. (3.179) and (3.180), equations (3.177) to (3.178) can be

reformulated to obtain the direct and converse effects of piezoelectricity as,
Di = E?I-(Ek + dng'kl , (3181)

_ o E
&j = dijk Ex + Sijr0n -

Mechanical Form Electromechanical effects Electrical Form
(Type - O, E)
Stress Electric
(0) Field

(E)

Electric
Strain Displacement

(o) (D)

Figure 3.8 The Relations Between Mechanical and Electrical Effects of
Piezoelectricity (Type — g, E)
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Furthermore, the relation between electrically clamped and free elastic compliances
under isothermal condition can be further obtained, where equations (3.177) and
(3.178) can be used in terms of the enthalpy of electro-elasticity condition given in
Eq. (3.181). In this case, the electrical displacement dD; =0 can be applied in Eg.
(3.177) and then the differential electric field dEk can be eliminated in Eq. (3.178) by
using Eq. (3.177) to give,

aeij aDi
dei; (a)a (ml)E doi
dgij =\ Ok1 — (3182)
E

aD;
e,
Modifying Eqg. (3.182) in terms of the elastic compliances results in,

(asi,-> _<a€ij> _ (%)a (%)E _ (3.183)
D E

k’ o

Corresponding with the thermodynamic coefficients given from Egs. (3.179) and
(3.180), equation (3.183) can be formulated as,

de.. dE
D E _ ijk*%ikl
Sijie = Sijit = T " ca - (3.184)
ik

This indicates that electrically clamped and free elastic compliances under isothermal
effect can be obtained from the left side in Eq. (3.184) where the multiplication
between piezoelectric constants always gives the positive value although the value of
the piezoelectric constant is negative and the permittivity also has positive value.
This shows that the left side of Eq. (3.184) always has negative value indicating that
the elastic compliance at constant electric displacement has a smaller value than the
elastic compliance at electric field because the tensile stress due to constant electrical
charge creates the polarization and can reduce the strain dramatically compared with
the tensile stress with constant electric field which can change the material shape to
create high strain. Another relation in terms of the elastic-electrical enthalpy includes

the clamped and free isothermal permittivities. Setting de;; = 0 in Eq. (3.178) and

then eliminating day,; from Eq. (3.177) results in,
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aD; LS,
oD, Got) (G2) dEe
dp; = (a—E;)od L — E%ZE)" 2 . (3.185)
E

Modifying Eqg. (3.185) in terms of the permittivity provides,

(3.186)

(aDi) 3 <6Di) _ (;TD,;)E (%)0
& o -

dE, dEy (37,; )E

Corresponding with the thermodynamic coefficients given from Egs. (3.179) and
(3.180), equation (3.186) can also be formulated as,
dgczdijk

Eik _Eik = — SE . (3187)
ijkl

This indicates that electrically clamped and free permittivities under isothermal
effect can be obtained from the left side of Eq. (3.187) where the product between
the piezoelectric constants always has positive value although the value of the
piezoelectric constant is negative and the elastic stiffness gives the positive value of
coefficients. This indicates that the left side of Eq. (3.187) is negative and that the
permittivity at constant stress has a larger value than the permittivity at constant

strain.

3.11. Electrical Enthalpy (Type —¢, E)

The electrical enthalpy depends on the internal energy and electrical energy
where this represents the most common use of the piezoelectric energy for a wide
range of applications for plates, shells, and beams. Earlier researchers, Tiersten [75],
Mindlin [88], D’Ottavio et al [89], Tanaka [90], and Yang [91] developed
mathematical models of the electrical enthalpy in terms of Hamiltonian’s principle
where the piezoelectric system was presumed as an adiabatic and isothermal
processes. The transformation of energy in terms of the electrical enthalpy can be
achieved by using Legendre’s transform in terms of Eq. (3.81) where the

independent variable from Eq. (3.80) of electrical displacement D; can be replaced

with (a—U) = E;. The electrical enthalpy can be formulated as,
oD/ ¢
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Expanding Eq. (3.188) using the differential form gives,

Substituting Eq. (3.82) into (3.189) results in,
H = o;;de;; + E;dD; — E;dD; — D;dE; . (3.190)
Simplifying Eq. (3.190) provides,
dH = o;de;; — D;dE; . (3.191)

Equation (3.191) can be modified into the exact differential form to give,

dH <6H> de;; + (6H> dE (3.192)
= (=—] dg; + |=— ;. .
a&'ij E ] (?El <

The intensive properties can be obtained separately from Eq. (3.192) as,

J0H 0H
(agi])E = o , <5_El>g = -D; , (3.193)
where Maxwell’s relation can be obtained as,
(aa"’) - <aDi> . (3.194)
JE; . 0g;j E

The enthalpy equation of state can be formulated according to extensive properties
reduced from intensive properties in Eq. (3.193) where the independent properties

&, and Ej, are held constant as,

dp (aDi) d (aDi> dE (3.195)
= £ — , .
l agkl ‘ kl aEk . k
aO'ij aO'ij
dO'ij = Fkl dekl + aEk dEk . (3196)
E &
The electrical enthalpy coefficients can be obtained from Egs. (3.195) and (3.196) to
give,
aO'l'j P 801-]- e
— | =CE —2 ) = —¢f N
A aDy\ .
(agkl)E —_ elkl ) (E)s —_ Elk . (3.198)

It should be noted that Maxwell’s relations have four coefficients relating the
enthalpy of electro-elasticity. As can be seen from Figure (3.9), the relation g, —
a;; produced the elastic stiffness and the relation &, — D; and E; — o;; produced

the second direct and second converse piezoelectric constants relating the strain-
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voltage, respectively and both of these relations show the same value. The final
relation E, — D; gives the permittivity at constant strain. The thermodynamic
coefficients of the electrical enthalpy reflect the measurable quantities in terms of the
exact differential forms. The tensor form of coefficients €5, e, and Cﬁ-kl indicate
permittivity at constant strain, piezoelectric constant at constant electric field and
elastic stiffness at constant electric field. Superscripts € and E indicate the quantities
at constant strain and electric field. Corresponding with Egs. (3.197) and (3.198),
equations (3.195) and (3.196) can be reformulated to obtain the direct and converse
effects of piezoelectricity as,

0ij = Cluen —efiEr (3.199)

D; = efqei + €xEr -

Mechanical Form Electrical Form

Electromechanical effects

Type- &, E .

(Type ) Electric

Stress < Field
(o) Second Term of Converse (E)

piezoelectric Effect

f\x\?‘}sca

Electric
Strain Displacement
(e) W (D)

Second Term of Direct
Piezoelectric Effect

Figure 3.9 The Relations Between Mechanical and Electrical Effects of
Piezoelectric (Type — ¢,E)

Another relation between the clamped and free permittivities at constant stress can
be further formulated, where equations (3.195) and (3.196) can be used in terms of

the electrical enthalpy condition given in Eq. (3.199). In this case, the stress constant
condition do;; = 0, can be applied in Eq. (3.196) and then the differential strain de
can be eliminated in Eq. (3.195) using Eq. (3.196) to give,
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(%) —(%) = ——(STD"’)E(%)S : (3.200)
0E./ . \OE/, (60_])
Oext/ g

Corresponding with the thermodynamic coefficients given from Egs. (3.197) and
(3.198), equation (3.200) can be formulated as,

E _¢
o e _ CikiCijk
€k — €k = CE

ijkl

(3.201)

This indicates that electrically clamped and free permittivities under isothermal
conditions can be obtained from the left side of Eq. (3.201) where the product
between the second term of the piezoelectric constants always gives a positive value
although the value of the second term of piezoelectric constant is negative and the
elastic stiffness also gives a positive value. This means that the left side of Eq.
(3.201) always gives positive value indicating that the permittivity at constant stress

has larger value than the permittivity at constant strain under the isothermal effect.

The thermopiezoelectric energy function forms can be formulated in terms of the
thermopiezoelectric equations of states, Legendre’s transform and Maxwell’s
relations as given in the previous section. The first thermopiezoelectric energy form
is from the Elastic-Electrical Gibbs Free Energy (Type — g, E, T) as,
1 T 1 o,T
G(oi,E;,T) = Uklal]akl df 0 E; - ogjaf; AT —Seix Bk
AT? . (3.202)

o,E

2T

—EkPgAT—

The Elastic Gibbs Free Energy (Type — o, D, T) can also be formulated as

1 E,T T
G(0i,D;,T) = =5 Sijia%j% ~ 9ijkjDr —aoAT + —= D; D;
D Y
g,
~f? DjAT = ——AT? . (3.203)

The Electrical Helmholtz Free Energy (Type — ¢,E,T) can be formulated as,

1 T 1 &T
F(ej, ET) = Uklgkzgu —ejjkExei; — Bij €;AT — 5 ik Eic Ei
&E

2T
The Elastic Helmholtz Free Energy (Type —¢,D,T) can be formulated as,

— PFE;AT — —AT? | (3.204)
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_ 1 D,T T 1
F(Sij, Di, T) = ECijklgijgkl + hijka Sl'j - ﬁUSUAT + ﬁ D] Di
ij

&E

—fE D AT — —=

AT? . (3.205)

The Elastic-Electrical Enthalpy (Type — o, E) can be formulated as,

1 1
H(oi, E;) = — Es{~j.,doija,d - E;dy 01 —Eechi Ep . (3.206)

The Electrical Enthalpy (Type — ¢, E) can be formulated as,
1 . 1,
H(gij'Ei) = ECijklgijgkl — e;jkEk €i;j _EeikEk E; . (3.207)

The previous thermopiezoelectric energy function forms showed different physical
equations indicating the physical relations of each property. This indicates that the
chosen thermopiezoelectric energy form can be used in the applications of smart
material and structures. In this case, the conditions of the system depend upon the
plane strain or plane stress of the elasticity, boundary conditions, applied mechanical,
electrical and thermal loads, and geometry of structure. The constitutive equations
can be further analysed using the variational principle or Hamiltonian theorem,
Tiersten [75], Mindlin [88] and Dokmeci [92]. In this dissertation, the Electrical
Enthalpy or Electrical Helmholtz Free Energy under adiabatic and isothermal
processes along with the energy potential of substructure and kinetic energy will be
discussed for further mathematical development of the piezoelectric bimorph beam
with tip mass under two input base excitations for power harvesting as discussed in
chapter 4. The tensor notations can be condensed using Voigt’s notation to give the
matrix forms which can be further applied into the piezoelectric material properties

using Einstein’s summation convention as given in appendix A.

In this chapter, the thermopiezoelectric relations in terms of Elastic-Electrical Gibbs
Free Energy, Elastic Gibbs Free Energy, Electrical Helmholtz Free Energy and
Elastic Helmholtz Free Energy are summarised in Table 1. It should be noted that the
enthalpy will not be included in Table 1 because the enthalpy coefficients which
were formulated previously, have covered the Elastic-electrical Gibbs Free Energy

and Electrical Helmholtz Free Energy under adiabatic and isothermal processes.
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Table 3.1 Gibbs and Helmholtz’s Thermopiezoelectric Relations

W X Y Z (OY) W X Y Z <6Y)
0X w,Z 0X w,Z
o E Di T €ik E €kl O-ij T Cijkl
o T D E P; e T o5 E  —Cjg ag= —Py
o E. & T diji E & D T Cik
E o & T Sijk ¢ E D T €ik
g T Ei]' E aij & T Dl E Pi
o Ek S T Pk & Ek S T Pk
E oqg S T Ay E ey S T Cijuij = Brir
s T S E ¢ e T S E ¢
T T
1 1
o D E T GJ—T € D; E; T ?
ij ij
1 1
o D, & T — = Yijk e¢ Dy oy T —— = hy
€ijk diji
p i
D T E o -—2L=-f e T E D —-L=-f
€;j €ij
dir L
D oy E T - = —gin D & E T L= = hyg
EU EU
D oy & T Sijki D & o5 T Cijri
D T &ij D a'l-j & T Oij D —Cijkla'kl = _,Bij
P, P,
o D s T Lo e D S T L=
€ €
D O-kl S T akl D Skl S T Cijklaij = Bkl
s T S E ¢ e T S D ¢
T T
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3.12. Closing remark

The main focus of this chapter has been the development of the continuum
thermopiezoelectric equations of state with the entities of extensive and intensive
properties using Legendre’s transform and Maxwell’s relations. Each of the
properties of thermopiezoelectricity have interrelationships with other properties in
order to find out the potential measurable properties which were known as the
thermopiezoelectric coefficients based on the laws of thermodynamics and Gibbs and
Helmholtz’s free energy and enthalpy. As considered here, the derivations of the
mathematical thermodynamic expression can give the understanding of the physical
behaviour of the piezoelectric material and its relations between the physical
properties. As Einstein [93] said, “A theory is more impressive the greater the
simplicity of its premises is, the more different kinds of things it relates, and the
more extended its area of applicability. Therefore, the deep impression which
classical thermodynamics made upon me. It is the only physical theory of universal
content concerning which | am conceived that, within the framework of the

applicability of the basic concepts, it will never be overthrown.”

Einstein’s note has given the inspiration and ideas to develop the comprehensive
derivations of the thermodynamic potentials especially the piezoelectric material in
this chapter that was not discussed and presented previously in detail for many
scientists. The constitutive thermodynamic potentials of the piezoelectric system can
be used to explore further applications of areas of smart materials and structures. In
the next chapter, the application of thermopiezoelectricity can be narrowed to the
application of vibration power harvesters where the novel constitutive models of
electromechanical dynamic equations of piezoelectric bimorph beam for power

harvesting will be introduced.
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CHAPTER
4

Constitutive Dynamic Equations of the Electromechanical
Piezoelectric Bimorph Beam under Two input Base
Excitations

This chapter outlines the development of novel mathematical methods for modelling
the cantilevered piezoelectric bimorph beams with tip mass under two input base
longitudinal and transverse motions. The piezoelectric bimorph beams were based on
the Euler-Bernoulli and Rayleigh models coupled with polarity-electric field effects
for low power harvesting. The Euler-Bernoulli and Rayleigh piezoelectric beams
considered transverse bending by including the extensional longitudinal form of
interlayer elements. The typical thin beam is suitable for the design of the vibration
piezoelectric beam power harvester. It should be noted that the Rayleigh
piezoelectric beam specifically only considered the rotary inertia of the structure
element whereas the Euler-Bernoulli piezoelectric beam excluded it. Henceforth, the
Rayleigh piezoelectric bimorph beam will be presented in the mathematical
derivations. Once the equations are established, the Euler-Bernoulli piezoelectric
beam models will be considered for neglecting the rotary inertia of the bimorph. The
existences of input base excitations on the cantilevered piezoelectric beam not only
affect the strain field of the interlayer elements but also affect the electrical
behaviour of the coupled polarity-electric field. The mathematical derivations of the
electromechanical system will be developed in the next section. The piezoelectric
bimorph system will be analysed according to the electrical enthalpy or electrical
Helmholtz free energy under adiabatic and isothermal processes of the piezoelectric
layers, potential energy of substructure and kinetic energy, external energies due to
input base excitations and electrical charge using the variational method of
Hamiltonian’s principle. At this stage, strong form analytical method, weak form
analytical approaches and closed-form boundary value methods will be discussed in

detail. The weak form analytical approach derived from the strong form solution was
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further derived using the Ritz method by introducing an eigenvector function (Ritz
coefficient) and space- and time-dependent Ritz eigenfunction series which were
further formulated using orthonormalisation. The closed-form boundary value
method derived from the strong-form method was further formulated using a direct
analytical solution with orthonormalisation by introducing the space- and time-
dependent eigenfunction series into boundary conditions. The closed-form solution
was shown to provide accurate results over the frequency response domain because
of its convergence at any particular mode of interest whereas the weak form can give
similar results with the closed form provided that the typical mode shapes and
number of modes are chosen correctly in order to meet the convergence criteria.
Moreover, the broadband electromechanical piezoelectric beam (multi-beam) for the
multi-frequency situation is also discussed in this chapter. As the previous chapter
mentioned, the electromechanical system using piezoelectric material has unique
reversible effects to create both direct and converse modes where the charge material
moves a certain distance to create a net dipole moment. The resulting polarity aligns
the electric field generating the electric voltage. When the strain field was applied to
the material element, the direct piezoelectric effect or polarity will be formed due to
the mechanical field. The sensitivity of the piezoelectric material described by
Maxwell’s relations underlies the interaction between the electrical and mechanical
energies. The constitutive equations of the cantilevered piezoelectric bimorph with
two input base motions along with the frequency analysis of Laplace transform will
be analysed in this section.

4.1. Mathematical Analysis

The linear electrical enthalpy of the piezoelectric material in the tensor
notation as discussed in chapter 3 was based on the continuum thermodynamics
which can be condensed using Voigt’s notation and then further reduced using

Einstein’s summation convention, Nye [73], Tiersten [75] and Tanaka [90] as,

“ 1 2 1 2
H(s, E3) = EQﬁgl — e31B36 — E§§3E3 , 4.1)
o, = 8_H , D3 :_a_H , (42)
o0&, oE,
01 = QIEgl - e31E3 ’ D3 = €56 + g‘§3E3 (43)

92

——
| —



The above formulations assume the adiabatic and isothermal processes. Here Q5
€31, ¢33 ,E3, 01, & and Dj represent the elastic coefficient at constant electric

field, piezoelectric coefficient, permittivity under constant strain, electric field,
stress, strain and electric displacement, respectively. Some notations from Egs. (4.1)-
(4.3) have been adapted in this thesis for further mathematical derivations.

In this section, the piezoelectric bimorph beams under two input base motions are
discussed. There are a number of researchers dealing with input base motion of the
cantilevered beam. Mostly they discussed one input transverse base motion of the
piezoelectric beams for predicting power harvesting from single mode [6,7,8,41] and
multi-mode [9,10] frequency responses. At this point, as considered; the physical,
mathematical and outcome benefits of these researches which are not found from
other previous works are as follows:

1. The coupling effects between mechanical and electrical behaviours under dynamic
response are considered comprehensively to indicate the important issues either
theoretical and mathematically.

2. The strain and polarity-electric field which obviously depends not only on the
physical characteristics of the material and its geometry but also on the
understanding of the sign conventions (where the new coupling superposition
methods for series and parallel electrical connections will be introduced) to
determine the clear mathematical concepts and theories of forward and backward
piezoelectric coupling coefficients under input dynamic excitations (longitudinal
and transverse motions).

3. The novel mathematical methods develop the electromechanical piezoelectric
power harvester response where the comprehensive analytical models have been
introduced both mathematically and physically.

4. The electromechanical weak and closed form analytical methods provide deep
insight into the physical system behaviours including convergence criteria
strategy.

5. The series and parallel multi-electromechanical piezoelectric bimorph beams are
derived to provide the broadband multi-frequency response behaviour for

optimisation study of electrical outputs.
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Furthermore, the kinematic equations of the infinitesimal piezoelectric beam with
two input base motions were developed to formulate the energies of the structure
element. The effect of two input base motions of the structure not only affects the
strain fields of each layer of the piezoelectric bimorph but also affects the
piezoelectric couplings to create the electrical force and moment of the piezoelectric
layers when the series and parallel connections are chosen for the bimorph. This also

affects the prediction of power harvesting as discussed and analysed later in chapter.

In Figure 4.1, let point P be an arbitrary point on the undeformed beam structure with
positions x and z in the fixed frame of reference 0XZ as defined by R* =xe, +ze,. Let
the base support at pointo move to point o' in vector Ry Wwhere point p also
moves to point p' for the frame of reference of o' xz as indicated. The position vector
Ry has the same magnitude as vector R™ by defining Ry = Use €1 + Woae: €3 .

Because the base support undergoes motions, point p' undergoes deformation in the

longitudinal extension and transverse bending forms as indicated by moving to

point p". Let the present position at point p" have a condition of absolute
displacement with respect to frame of reference oXZ defined by W, and U,

where Wabs :(Wbase +Wre| )e3 and uabs :(ubase + urel )el-

OX

.....

Figure 4.1 Kinematic of Piezoelectric Bimorph Beam

To obtain position vector R, R needs to be defined as,

R°p":[x+uabs—zm#(x’t)jel+(w +2)e; (4.9)

abs
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As the position vector R® is defined, the position vector R™ can be obtained and

differentiated with respect to time to give,
RP (x,z2,t) = R — R% |

aWrel (X’t)
OX

Rpp" (X’Z’t) :(urel (X't)+ubase(t))el - ez X ZeB + (Wbase(t)+wrel (X’t))e3 ' (45)

R""is defined as the absolute velocity of point p" with respect to the fixed frame of

reference 0XZ. The geometrical position of the tip mass from the bimorph can be
measured from the fixed frame of reference 0XZ to the deformation point and this
vector can be differentiated with respect to time to give the absolute velocity of the
tip mass in terms of the moving base support as,

aw,, (L.t)

6X ezx(xgm el+zgmeS)

R™ Lty € fyn 2 1) = (O (L) Ut e,

t (Waeolt) Vi (L)) - (4.6)
In this case, the centre of gravity of the tip mass was assumed to coincide with the
end of the piezoelectric bimorph L where x ,andz are distances from arbitrary
elemental mass dm = pdI" to the centre of gravity of the tip mass. The position

vector RP"" specifies as the relative displacement due to moving base support at fixed

frame oXZ,

RP?"(x,z,t) =R™ —R™ = (ure, -z %jeﬁwre, (x,t)e, . 4.7

We note that, RP" can be further differentiated with respect to x to give the strain

field of the element structure,

a(R PP el ) — ou rel aZWrel (0)

ox OX ox? !

It should be noted that displacement fields are defined as relative displacement fields

=gl= _ngl) . (4-8)

for the infinitesimal bimorph beam element. Similar methods can be used to
formulate the relative displacement fields with initial relative longitudinal

displacement field using the Euler-Bernoulli’s beam as,

u()('Z1t)r(al = Urel (X’t)_ 20l » (4.9)

W(XZ,t) o) = Wrer (X11). (4.10)
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Lagrangian strain tensor for linear component, Reddy [94] can be applied to

formulate the piezoelectric bimorph beam as,

1
L, = E(uLj T (4.12)
Applying relative displacement fields from Eqg. (4.9) into Eq. (4.11) gives,
LXX _ 6urel _5 66?re| ' (412)
OX OX

Transverse shear deformation of the material element is not considered for Euler-
Bernoulli’s bimorph beam giving the relation,

L, = 1 -0+ Mg =0. (4.13)
2 OX

Thus, 6,q =0W,e /O represents the gradient transverse deformation or rotation that

Is substituted into Eq. (4.12) to give the resulting strain field in the x direction as,

2
&=L, = (a“fe' L Wfé') =&~ zeY. (4.14)

OX ox?

As expected, equations (4.8) and (4.14) indicated the same result. The general
constitutive equation of the piezoelectric element can be obtained by using
Hamiltonian form, Tiersten [75] and Reddy [95],
t t
[5(Ly +Wy Jat = [(KE - PE + OWE + oW, fit=0 .  (4.15)
L} L}
Essentially, the functional forms from Hamiltonian’s principle can be extended using

the Lagrangian theorem L, incorporated with the external mechanical and electrical
works W, due to the input base motions. Each variable categorised in the functional

formsL,and W, in terms of the mathematical model can be stated as,

o . W,y (| O°W,, OU,,
I-a:La(Wrel ’urel ’WreI(L)’urel(L)’ aXI (L)’ 6‘x2 I ! é’xl ’EJ ’ (416)
Wf :Wf (Wrel ’urel 1WreI(L)1urel(L)’V)' (417)

Equations (4.16) and (4.17) can be further formulated using total differential

equations as,

éLa = a!‘a aNrel +a.ia]rel + aL’a 5 awrel + .aLa aNrel (L)+ .aLa aJrel (L)
aerel ou rel a( a\Nrel ] OX avvrel (L) au rel (L)
OX
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i 2
+ ?La S aWreI (L) + aLa S 0 Wzrel + 6La S aurel +8La SE (418)
OW,, OX o°w OX OU,q OX oE
o (L) g ¢ Ve g Lret
OX ox? OX
ow ow ow ow ow
Mf = f aNrel + f a"Irel + f &Nrel (L)+ : aJrel (L)+ f - (419)
a\Nrel aU rel 6\Nrel (L) 6“ rel (L) 6\/

Here Hamiltonian’s principle from Eq. (4.15) can be restricted into the particular
form of the constitutive electromechanical dynamic equation of the piezoelectric
bimorph beam with substructure of brass shim and tip mass giving,

ty ty . n )
[o(La +wy Jat = j[kza(E(kMa(Eﬁp - T () gPESUDS 4 3w (')Jdt =0
7] L\ Kem ep i=1

vme{l,2,3},pei{l,3}cdl . (4.20)
Each term from Eq. (4.20) can be stated as kinetic energy KE for every layer

including tip mass, potential energy PE from centre brass shim or substructure,

electrical enthalpy energy H from piezoelectric material at the lower and upper layers
and applied mechanical and output electrical works W; due to the input base motions.
Superscripts k and i indicated the layers of bimorph and input inertia mechanical

forces (input base excitations). It is noted that the electrical enthalpy can be stated
as, oH = PEP — SWEP which implies the potential energy and electrical energy

from the piezoelectric layers as also implied from Egs. (4.1) to (4.3).

It should be noted that the parameter potential energies of the piezoelectric and
substructure, kinetic energy of bimorph and tip mass, electrical energy of the
bimorph, external mechanical energy and external electrical energy are presented and
derived separately for the next stage in order to arrange convenient formulations.
After that, the constitutive electromechanical dynamic equations using Eq. (4.20)
will be applied to model the strong and weak forms. The geometry of the
piezoelectric bimorph beam with the tip mass can be modelled as shown in Figure
4.2. Variables L, hs and hy indicate the bimorph length, substructure thickness and
piezoelectric thickness (same thickness between bottom and top layers), respectively.

Other geometry parameters of tip mass will be given in the forthcoming section.
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Figure 4.2 Piezoelectric Bimorph Beam with a Tip Mass

The general stress field terms and displacement fields from the infinitesimal beam
element can be stated as functions with respect to the x direction on the face of an

infinitesimal element as,

o, =0o(X) u, =u(x) . (4.22)
Each element face has a stress vector term. Thus terms, o, = o(x) andu, = u(X),
applied to the element face on the x direction and allowing for the deformed
infinitesimal element results in o = o(x + dx/2) and & = o(x — dx/2) in the opposite
direction. Introducing the change of displacement vector u= u(x + dx/2) and
u = u(x — dx/2) into the element face on the x direction will result in a stress field.

Taylor’s series can be used to consider the change of stress field and vector
displacement,

d dx du, dx
A= oxct gt uaswergte . (42)
_ _ doy, dx _ .. duydx 423
OB = Oxx ax 2 Upg = Uy dx 2 (4.23)

The changes of stress field and displacement vector for each face of the infinitesimal
element in x direction are further formulated by applying Hamiltonian’s theorem for
potential energy to give,

t 21 21
Corresponding to Egs. (4.22) and (4.23), equation (4.24) can be reformulated as,

t2 t do, dx u, dx
SPEdt = + X— 5| u, + =% — |dydzdt
tjl t_l;]_[(o-xx dx Zj ( X dx ZJ Y
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_doy dx du, dx
ol u dzdt . 4.25
-] I( dx 2] ( " ax 2 S (4.25)

Modifying the differential displacement vector from Eq. (4.25) using the total partial

differential, gives,

du, dx 1 (du
Ay > Up=0u, +—2—| =&, +=5 =2
A A (x dx 2) X 2(

1
Em jdx + Edux5(dx) ,

If 5(dx) is too small, differential displacement vector terms can be restated as,

du,
Mp =y +=0 dx. 4.26
A *3 ( Ix j (4.26)
Performing the same operation on du, gives,
du,
Apg = Ay ——5 dx. 4.27
o =30 @27

Modifying the differential displacement vector from Eq. (4.25) using Egs. (4.26) and

(4.27) gives,
t t do,, dx du,
IéPEdt = J.J.(O-XX + Txx?j &JX +§§[ d jdx ddedt

t 4

-] I( ddax dzx}(omx—z [d; jdx]dydzdt . (4.28)

Manipulating Eq. (4.28) provides

jéPEdt i j[axx " dgxx A dedydzdt. (4.29)

It should be noted that do,, /dx = Ousing the first Newton’ Law, giving,

do,, dx do,, dx
(O‘XX + d)?x 7jdydz - (O‘XX 3 ;X 7jdydz =0. (4.30)

As expected, doy, /dx =0 after manipulating Eq. (4.30). As a result, equation (4.29)

represents the energy field in stress form multiplied by the differential (virtual) strain
field to give the potential energy form with time based on the Hamiltonian theorem

as follows,

t t
jzéPEdt = jz [ 040 e dldt
t t T
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where, | PEAt = [ (SPE US4 oPEP it (4.31)
t ty

It should be noted that the piezoelectric bimorph has three layers, the upper and
lower layers consisting of piezoelectric material with a centre brass shim. The three
stress fields operate within these layers. Thus, equation (4.31) can be modified as,

t, i

[oPEdt = [ [(Ngae© - Myse® —PO&© + PO &0 hxdydt.  (4.32)
ty 4O

Applying Eq. (4.14) into Eq. (4.32) to obtain the differential strain field, gives,

t2 t2 ou o%w ou 2w
SPEdt = [ [| N & fe'J—M 5 L el | _ P(°)5(—m'j + pWs| C Vel |lqydydt -(4-33)
t{ t{sz . ( OX " ( ox? 7oL o L ax? Y

The in-plane force resultants per unit width for each layer are formulated as,

h hs hs
__° _° h 4+
2 | 2 P2 X
Ny = | J)((f )dz + | 0')(()S(m)dz+ | O')(OE Az . (4.34)
hS hS hS
Y 2 2

The in-plane moment resultants per unit width for each layer are formulated as,

hS hs hs
) o hp+?
My= [ 2oz + [zoEMdz+ [ zo{fVdz. (4.35)
ho s _hs hs
P 2 >

The in-plane force and moment resultants represent the longitudinal extension field
and transverse bending field respectively of the piezoelectric bimorph. Superscripts
pl, sm and pt indicate the lower layer of piezoelectric, brass centre shim and upper
layer of piezoelectric element respectively. Moreover, the in-plane force resultants

due to the electric component of the piezoelectric bimorph are invoked as,

—2; hp+2§
PO = [ eVEMPdz + [ efVE(PVdz . (4.36)
_hohs hs
p 2 2

The in-plane moment resultant due to the electric component of the piezoelectric

bimorph can be formulated as,

—I%i hp—rtgi
PW = [ ze{PEPdz + [ ze{PVE{Pdz. (4.37)
h hg
,hp,7 >
( 1
l 100 J



Since the piezoelectric bimorph couples the mechanical and electrical terms,
equation (4.33) is the integro-differential equations with base elastic-electric field.
By considering Eq. (4.33), each term inside the bracket can be formulated separately

as follows,
Ny PR _CEND M _cER0_cFR, pl0)_Rl6Hy () pl) Rk (4.38)
Corresponding to Eqg. (4.38), equation (4.33) can be reformulated as,

t OUye o° re
e i (clg - clE {2 ) -l -l ot S

ty

- Rgf'k)v(t)5(%j + Rg'f'k)v(t)a(%J dxdydt. (4.39)
Superscripts D, E, F, G and H indicate the properties of stiffness coefficients for
longitudinal extension, extensional-bending stiffness and transverse bending,
backward piezoelectric couplings for longitudinal extension and transverse bending
respectively. The coefficients C,, and R, indicate the stiffness coefficients and
backward piezoelectric couplings, respectively and superscript k indicates layers of

the bimorph. It is noted that these coefficients will be further discussed in the next

stage.

The potential energy from Eq. (4.39) for Hamiltonian’s theorem can be manipulated

as,

fopEat - tf{

f |

2 2
J {Cl(lD K0 L?X“' + W) T Mt ;A;“' - Ré?‘k)v(t)—a?;' + R ) L Pl ;’Zre' }Q}dt (4.40)
Q

Modifying Eg. (4.40) by applying the variational lemma and divergence theorem
gives,

)826‘:{1)

t ty 55(0) ov 0%y

Kk k k Jk

IdDEdt = J. .[ _Cl(lD ) al é‘Urel + Cl(f &Nrel +R§C1; )G_&Jrel + RCST )_géwrel Xdy
t, t,| Q X X OX

M(F’k)

0
+{nNPHsiy ,ds —{nX%aNre,ds +fn M) Ex el
S S S

0el g5 - § n RS N, ds
OX

85W

—anRgT'k)%ﬁNre,dS+§an§T afe' ds |dt . (4.41)
S

S
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The elastic stiffness coefficients of the piezoelectric bimorph Cy; are formulated
according to the characteristic material properties and the cross section of each layer

of bimorph to give,

3 hk+l 3 hk+1 _ 3 hk+l _
velte Zhj QP¥az 2 hj 2QFMdz | > hj 20F¥dz |, vkene DEF ). (4.42)
ih S =

Parameter Q,, represents the plane stress-based elastic stiffness of the bimorph beam.

Each stiffness coefficient can be expanded through the boundary value dimensions of

the bimorph. In this case, each layer has three different stiffness coefficients
depending on the thickness and material, kcneR® >R for each layer in

differential volume domain dI” =R? because the thickness is a subset of dI". The

piezoelectric bimorph considered here has symmetrical geometry with the same
material used for the upper and lower layers with a centre brass shim. The
extensional stiffness coefficient of the interlayer of the piezoelectric bimorph can

then be written as,
Cl(l ‘- hpQ1(1D l)"'thl(lD 2)+hpQ1( 3) . (4.43)

AsQPY = QP the extensional stiffness coefficient from Eg. (4.42) can be

reformulated as,
cPW = 20 QPYn QP2 (4.44)

The extensional-bending stiffness coefficient from Eq. (4.42) can also be formulated

h,2 hohs | hy>  hph
cifh) = —(% 2 JQ&E"{ : Jol( ). (@449)

It is found that the extensional-bending stiffness coefficientcl(f"‘) tends to be zero

as,

due to the symmetrical geometry and material of the bimorph element structure. This
gives,

O.EY _ O (E3)
11 T N -

Because the upper layer of the piezoelectric element has the same material and
properties as the lower layer, the extensional-bending coefficient can be stated as,

cEY=0 . (4.46)
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Therefore, the coefficient Cl(lE’k) is not shown from Eq. (4.40). Furthermore, the

bending stiffness coefficient can be formulated as,

he 1 h ) = hS - 1 h ) he
c{ =[§§(hp?j JQl(ll:’l)—I' TQ1(1F’2)+[§[hP+?j ﬂle(lF's) (4.47)

Q.Y and Q,*'have the same material located in the lower and upper piezoelectric

layers, respectively, thus Q% = Q7. Equation (4.47) can then be reformulated

as,
2 hY hd e h ~
Cfflk) = [g(hp +?) E}Qﬂ:’l)+ TQ]_(]'_:'Z) . (448)

It should be noted that QP =QP¥=Q, Y=Q, ¥ and Q°? =Q," ?indicate the
plane stress-based elastic stiffness at constant electric field for piezoelectric material
and plane stress-based elastic stiffness for brass material, respectively.

Moreover, the second coefficient R;, from Eq. (4.41), known as the backward

piezoelectric coupling, will be discussed in terms of series and parallel connections
of the piezoelectric bimorph. It is noted that the direct effect of the piezoelectric
element, developed in potential form, indicates the backward piezoelectric coupling
whereas the converse effect of the piezoelectric element gives the forward
piezoelectric coupling which develops electrical energy as discussed in the
forthcoming section. As the piezoelectric behaviour is reversible, the forward
piezoelectric couplings have the same values as the backward piezoelectric
couplings. This indicates that the piezoelectric couplings are affected by the
electrical force and moment of the piezoelectric layers which depend on the strain
fields and the polarity-electric field. Many researchers only showed the effects of
transverse strain and polarity-electric field based on one input transverse base motion
in terms of series and parallel connections, [4,6,7,8,9,41]. However, they still did not
give detailed information and formulation of the piezoelectric coupling of the
dynamic system. It should be noted that this affects all formulations of the
constitutive dynamics equations. The focus here is with the piezoelectric bimorph
beam with two input base transverse and longitudinal motions. In this section, the

piezoelectric coupling associated with series and parallel connections will be
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discussed in detail and new techniques of formulating the piezoelectric coupling will
also be given. The electric field of the piezoelectric bimorph depends on the positive
and negative terminals located at the lower and upper surfaces of the piezoelectric
element, respectively. Each connection (the series and parallel connections) can be
arranged into two types of poled configurations i.e. X-poled and Y-Poled which
depends on the direction of polarities and strain effect between the piezoelectric

bendersk e {1,3} (upper element and lower element). As considered previously, the

piezoelectric bimorph is not only assumed to undergo pure transverse bending but it
also undergoes additional deformation i.e. longitudinal extension form, which is
reflected in the strain fields of the Euler-Bernoulli’s beam expression. Therefore,
such situation will affect the polarisation of the piezoelectric bimorph which depends
on strain at the lower and upper layers due to input mechanical vibration and also the
chosen type of connections. At this point, when the piezoelectric element was
initially undefomed, the polarisation direction, for example, was in the z-axis called
the initial polarized state. When the tensile stress acts perpendicular to the z-axis on
the element, the polarisation will behave in the opposite direction to the z-axis as
shown in Figure 4.3. Conversely, when the piezoelectric element was under
compressive stress perpendicular with the z-axis, the polarisation will be in the same
direction with the z-axis, [96]. This means that the change of stress from tensile to
compressive or vice versa in the piezoelectric element will result in a reversal of the
direction of polarisation, [73]. This situation is known as the direct piezoelectric
effect where the polarisation is proportional to the stress field and the stress field is
also proportional to the strain field or it can be stated in terms of the Einstein’s

summation convention as P, =d;;o; . This has been reflected in the electrical enthalpy

of the piezoelectric formulation, [75,76]. Based on this case, the piezoelectric
bimorph under series and parallel connections can be further considered. For
example, in series connection in Figure 4.4, when the piezoelectric element
undergoes transverse input base motion, by assumption here, the upper and lower
layers of piezoelectric bimorph will respectively deform with the tension and
compressive strains and polarisation of the upper layer will create opposite directions
compared with the lower layer (X-poled). It should be noted that the polarisation
directions affect mathematically the piezoelectric coefficients due to the stress field

on the element structure whilst the electric field generates electrical voltage.
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Consequently, the electrical moments at both lower and upper layers will be formed.
This process occurs continuously when the piezoelectric bimorph beam is under
continuous vibration. With the same connection, when the piezoelectric bimorph was
under input longitudinal base motion, the upper and lower layers of the bimorph have
the same deformation, for example, compressive strain and then the polarisation at
the upper and lower layers have the same direction (Y-poled), while the electric field
will be generating electric voltage to create the electrical force at both the lower and
upper layers. This situation exists when the piezoelectric bimorph beam operates
under two input base motions which was considered here mathematically by
backward coupling superposition of the elastic-polarity field. Smits and Choi [4] and
Smits et al [97] discussed the sign conventions of electric field and piezoelectric
coefficient for the series and parallel connections. However, their formulations of
transverse bending bimorph beam only considered static condition. In this section,
the complete piezoelectric couplings due to the effect of electric field and polarity

directions are discussed here when the bimorph undergoes two input base motions.

Xk

|
|

compr ession t‘.\(PEII'ISil)TI

Figure 4.3 The effect of polarisation of Piezoelectric Element, [96]
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Figure 4.4 Cantilevered piezoelectric bimorph beam with two input base longitudinal and transverse
excitations under series connections
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Figure 4.5 Cantilevered piezoelectric bimorph beam with two input base longitudinal and
transverse excitations under parallel connections
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As shown in Figure 4.5, the piezoelectric bimorph under parallel connection also
depends on the input base motions and direction of polarity. The strain fields
between the upper and lower layers have similar behaviour with series connection
when the piezoelectric bimorph has two input base motions. The difference lies with
the polarisation and electric field directions due to the chosen parallel connection of
the piezoelectric bimorph. This is achieved at the upper layer of the piezoelectric
bimorph under X-poled series connection by applying a strong electric field to direct
initial polarisation in the same direction with the lower layer or it can be provided
according to the manufacturing company in such a way that the parallel connection
can be arranged as shown in Figure 4.5. In this case, the polarisation tends to show
the same directions each other when the strains are opposite between the lower and
upper layers due to the input transverse base motion. On the other hand, when the
piezoelectric bimorph, with same materials, was treated to the input base longitudinal
motion as shown in Figure 4.5, two polarisations at the upper and lower layers tend
to give opposite directions due to the compressive strains in the piezoelectric

elements, respectively.

In this case, the sign conventions of electric field and piezoelectric coefficient needs
to be considered for the series and parallel connections under two input base
motions. As assumed here, the polarisation indicates the opposite direction with
respect to electric field, with the piezoelectric constant having a resulting negative
sign and vice versa. Series connection normally has two wires where one wire
attaches to the electrode of the lower layer and one wire attaches to the electrode of

the upper layer whereas parallel connection normally has three wires where one wire
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connects to the centre shim and two wires are located at the electrodes of the lower
and upper layers. It is noted that the common piezoelectric constant produced from

the manufacturing company is in the form d,, but this can be modified by
multiplying the plane stress-based elastic stiffness at constant electric field to

givee,, =d,,Q° =d,,CF. The complete form can be found in appendix A.

Furthermore, the series connection of the piezoelectric bimorph results in the positive
sign of electric field at both the lower and upper layers with the same direction as the
positive z axis because the piezoelectric bimorph for series connection has a positive
terminal at the electrode of the lower layer and a negative terminal at the upper layer.
However, the parallel connection indicates a positive sign of the electric field for the
lower layer and a negative sign for the upper layer because the piezoelectric bimorph
for the parallel connection has a positive terminal at the electrodes of the lower and
upper layers and a negative terminal between the centre brass shim. The electric field
can be formulated as,

EMY = —vg(z,t) = 52) ™) | (4.49)
where p(z,t)=— (-1 ®(z\M({t), E(z)™ =— (1) va(z).

It is considered here that (I)(z) represents the shape function of the electric voltage

I

v(t) and it applies to each layer of the piezoelectric bimorph. :(z)(”"‘) is the gradient

operator of the electric voltage shape function and subscript r refers to 1 or 2 to be
used for sign convention. This indicates the change of sign of the electric field due to
the terminal connections of the upper and lower electrodes of the piezoelectric
bimorph containing the charges normally flowing from positive to negative
terminals. The modified piezoelectric constant can be formulated as,

Wi = (-1 ef}) (4.50)
As previously discussed for series and parallel connections, the backward
piezoelectric coupling will be further discussed including the relationship between
the shape function of electric fields and piezoelectric coefficients for each layer.

Superscript s refers to the change of sign of piezoelectric coefficient due to change of
polarisation. The equation (4.41) for piezoelectric couplings Ré’}'k)can be formulated

at each outside layers as,
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hk+1 hk+1
R ¢ z | pGKE(7fCKg z | 2922 az | vkefidlcne (G H).  (451)

Rg‘f’k) represents the backward piezoelectric coupling for the longitudinal extension

term and RéT*") represents the backward piezoelectric coupling for the transverse

bending term. As mentioned previously, the backward piezoelectric couplings
indicate equal form with the forward piezoelectric couplings where these properties
can be shown at forthcoming section for electrical energy form. When the
piezoelectric bimorph beam is arranged for series connection, two poled vector
configurations apply in the piezoelectric material in the series connection, which is
X-poled (opposite direction of polarisation) due to the transverse bending term and
Y-poled (same direction of polarisation) due to the extensional term. On the other
hand, the parallel connection with the same material can also have two poled effects,
Y-poled due to the transverse bending term and X-poled due to the extension term. In
this case, a cantilever piezoelectric bimorph with two input excitations was taken into

consideration for two connection types i.e. series connection and parallel connection.

Case 1. Series connection. Corresponding to Eq. (4.49), the electric voltage v(t) for

series connection is considered to provide half the voltage between the electrodes of
the piezoelectric bimorph. This means that the shape function of electric potential
will be divided by the factor of two. Therefore, the shape function of the electric
potential can be formulated based on the thickness of each layer of the piezoelectric

bimorph to give,

-2 h h - h h
@(z)ﬁ”‘l):—z ,——s—hp <z7<-=2 ;Q)(z)(sn'3) -2 , =<z <=+h . (4.52)
2, 2 2 2h, ' 2 2

a. X-poled due to transverse bending form undergoes the change of sign of the
piezoelectric constant where the polarisations in both layers have opposite direction
each other. It is noted that only polarisation at bottom layer has the same direction as

the electric field in the z direction. Equation (4.51) for transverse effect meets the
function of polarisation for each layer ke{1,3} due to the conditions of Egs. (4.49),
(4.50) and (4.52),

(Rg'f’k))series = { TgT’k)E(Z)(H’k)| s=2,r=2Vk=lcneHcQx [—h—zs—hp — %:ICI}, (4.53)
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(Re(,T'k))series _ { ngT'k)E(z)(H'k” s=1,r=1vk=3cneHcQx {% ,%+hp} CF} . (4.54)

Backward piezoelectric couplings of the X-poled transverse bending form can be
formulated using Eq. (4.51) resulting in,

H)(h? hh ) eH3(h? hh e..[h? hh
Rtk G| Mo Tl | s po s | Bl Thh
o)™ "ol 2 T2 ) o 2 2 hi2 2/ (4.55)

b. Y-poled due to longitudinal extension form does not undergo the change of sign
of piezoelectric constant because the polarisations in both layers have the same
direction as the electric field. Equation (4.51) for longitudinal effect meets the
function of polarisation for each layer due to the condition of Eqgs. (4.49), (4.50) and
(4.52),

(REY)... = {\Pg‘iv”a(z)(‘a*w s=2,r=2,vk=1cneGcQx [—h—g—hp - h—g}cr} , (4.56)

(Réf'k))series - { L}JS((f,k)E(Z)(G,k)| s=2,r=1,vk=3cneGcQx [h—zs, h—25+hp} Cl—}, (4.57)

Backward piezoelectric couplings of the Y-poled longitudinal extension can be
formulated using Eq. (4.51) resulting in,
h el h ele?)
RI:(’(l?j(’ske)ries): P + — =€
2h, 2h,

(4.58)

Case 2. Parallel connection. The electric voltage v(t) for parallel connection is

considered to give one voltage between the electrodes of the piezoelectric bimorph.
This means that the shape function of the electric potential is divided by a factor of
one. Therefore, the shape function of electric potential can be formulated based on
the thickness of each layer of the piezoelectric bimorph, to give,

z

o(z)=—2 ISP L o(z)?=—2 h—zss z sh—25+hp. (4.59)
a. X-poled due to longitudinal extension form undergoes the change of sign of the
piezoelectric constant where the polarisations has opposite direction. The
polarisation in the lower layer is in the same direction as the electric field in the z
direction which gives a positive sign of the piezoelectric coefficient. However, the
upper layer has the electric field in the opposite sign with global direction of electric

field in the z direction, thus resulting in a negative sign of the piezoelectric

109

——
| —



coefficient. Equation (4.51) for longitudinal effect meets the function of polarisation
for each layer due to the condition of Egs. (4.49), (4.50) and (4.59),

RE9) = {Lpgﬁwa(z)(w S=2,r-2,v k=1cneG O x th*‘z}cr} (4.60)

Gk Gk)— Gk _ _ _ h h
(Rgl ))parallel = {\Pgl ):(Z)( ) | s=1,r=2Vk=3cneGcQx {?5 ,?S-I—hp} Cl—}. (4.61)

Backward piezoelectric coupling of the X-poled longitudinal extension can be

formulated using Eq. (4.51) resulting in,

R3c]-:‘.(1|;z)irallel eg(f Y + 61(3? ) = 2631 : (462)

b. Y-poled due to transverse bending form does not undergo the change of sign of
piezoelectric constant where the polarisations in both layers have the same direction
as the global direction of the electric field in the z direction. It should be noted that
the electric field at the upper layer has opposite sign with the global direction of the
electric field in the z direction, therefore; a negative electric field at upper layer is

applied. The backward piezoelectric coefficients in both layers have conditions as,

Hk Hk) =(5\(Hk h h
RE9) { WEO (R 522,122 vk =LeneH cg{_zs_hp,_;}cr}, (4.69)

Hk HK) =(\HK) | « o B hy h
(Rgl ))parallel 2{\11(31 ):(Z)( ) ‘ s=2,r=2Vk=3cneHcQ x[?s ,?S+hp} Cl—}. (4.64)

Backward piezoelectric coupling of the Y-poled transverse bending form can be
formulated using Eq. (4.51) resulting in,

M) (h? hoh ) e h? hoh 2e..(h.? h.h
R(HK) _ €31 Lops | G poyps | sl s |,
31(parallel) = h 2 2 h 2 2 h 2 2 (4 65)

p p p

Furthermore, Kkinetic energy of the piezoelectric bimorph is considered according to
the displacement vectors from Eqgs. (4.5) and (4.6) and the density of the
piezoelectric bimorph. This concept is further expanded using the Hamiltonian’s
principle. It should be noted that the kinetic energy term of the piezoelectric bimorph
not only represents the initial kinetic energies due to the zero-th mass moment of
inertia but also rotary kinetic energy due to the second mass moment of inertia
(rotary inertia). In addition, Kinetic energy from the tip mass is also considered by
two types of energies i.e. initial kinetic energy due to zero-th mass moment of inertia

and rotary Kkinetic energy due to rotary inertia. Two rotary inertias exist in the
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piezoelectric bimorph with a tip mass. As mentioned previously, the piezoelectric
bimorph was under two base excitations, therefore; the potential energies present due
to existing relative displacement(u,,, ),(w,,) which is prescribed as the absolute
displacement, (U, ), (W, ) relative to base displacement (Up,g. ), (Wyae ). Therefore,

the strain field can be expressed in terms of the relative field motion. The kinetic

energy can be written in terms of the absolute displacements, (U, ), (W, ) because

absolute displacement of beam element moves from its static condition to form the
characteristic motion over the time interval t. Therefore, the constitutive kinetic

energy equations needs to be defined in terms of the relative velocity (U, ) and
(W) and base velocity (Upase) and (Wpase). At this point, the absolute velocity for
longitudinal motion is U, + Upase @nd absolute velocity for transverse motion is
Wye + Whase as depicted in Figure 4.1. Corresponding with Egs. (4.5) and (4.6), the

Kinetic energy can be formulated based on the mass density of piezoelectric bimorph

and density of tip mass as,

tf SKEdt =tj2 { [

. . avvre| 5 . . aVVre|
P| Urel €1 + Upage€1— €)X ZE3 | 0| Upei€ +Upgge€q — €)X Z€3
r OX OX

t t

+ p(Wbase"‘WreI )e3‘ 5(Wbase+wrel )e3+ ptip(urel (L)el + Upase®1— Z a)r(el (L)ez ><(Xgm €1+ ng €3 )j

® 5(urel (L)el +Upase®1 — a)r(el ('—)ez x (Xgm €1+ ng €3 )J
+ ptip(wbase(l—)el + Wl (L)el )' 5(Wbase(|—)e1 + Wl (L)el ) }dF] dt. (466)

It should be noted that symbol (.) indicates dot product. In terms of Eq. (4.18), the
parameter of virtual relative velocity from Eq. (4.66) will meet the conditions of
continuity and differentiability over the length of the bimorph. Each energy term
from Hamiltonian’s principle will be arranged in the next section. Modifying Eqg.
(4.66) by multiplying each term in the parenthesis and integrating with respect to z

gives,
2 2 iy ) o OW oW,
SKEAt = {| (11K o+ 1CK)] Drel |f Mrel | (MK sy — 1 BKYy s el
tjl t{lZsjl{ rel?Yrel ox X base‘s rel rel ox
- I(B’k)ubaseé(a\g/;el)_ I(B’k) av(;/)r(el 5Urel + I(A’k)Wrel‘SWreI + I(A’k)\"Vbaseév'\/rel} dXdy
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+ 13800, (L), (L)+ |t(,p)(8wf9'(L)Ja(awfe'(")} 180, (L )00, (L)

OX OX
12008 (L0, (1)1, (L 2 1) 10 L 220
+ It(lAp)Wrel(L)éWrel(L)"' It%)wbase(l—)éwrel(l-)ht : (4-67)

The inertia mass per unit area is formulated according with the characteristic

materials and the cross sectional of each layer of bimorph,

hk-¢-1 k+1 hk+1
\va| ( ) % J‘ p Ak) Z I Zp(B k) , % J‘ Zzp(C,k)dz:| , vkcne {A,B,C} (468)
k=Lh, K=Lh, K=Lh,

Each inertia mass can be expanded through the boundary values of dimensions of the
bimorph. Superscript n and k indicate the mass density and layer, respectively. In this
case, each layer has three different terms of inertia mass depending on the thickness
and material, kcneR®*—R for each layer in the domain dI" eR3where the
thickness is a subset of dI". However, the piezoelectric bimorph has the symmetrical

geometry with the same material and thickness in the upper and lower layers with the
centre brass shim. The zero-th mass moment of inertia per unit area gives the

relationship of the interlayer piezoelectric bimorph as,
[(AK) _ h, AU (A2, hy oA (4.69)
or it can be simplified to be,
1A= on pAYp p(A2) (4.70)
The densities p*Yand p(*3represent the material located within the upper and

lower piezoelectric layers respectively which have the same piezoelectric material.
The first mass moment of inertia per unit area from Eq. (4.68) can also be formulated

as,

2 2
64 {__}u [__Ju  am

The first mass moment of inertia per unit area 1 B tends to be zero, since the

centroid of the section is located at the neutral axis of the bimorph which has
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symmetrical geometry and the same material of the bimorph element structure. It

becomes,

LB _ 63 (4.72)

The upper layer of the piezoelectric element is assumed to have the same materials as

the lower layer, giving the extensional-bending inertia mass resulting as,
1(BK) _ o, (4.73)

Furthermore, the second mass moment inertia is formulated as,

3 3 3 3 3
| (X :[_%_%(-hp —h?j }p% %pc’2+(%(hp+h—£j —%}Cﬁ . (4.74)

It should be noted that the third term of mass moment inertia is also known as the

1) ,3)

rotary inertia. The mass densities pC and pC are assumed to have the same

material located on the lower and upper piezoelectric layers, respectively, thus

P = p© for which equation (4.74) is reformulated as,
2 h 3 h 3 h 3

Superscripts A and C indicate properties of mass moment of inertia for zero-th and
second terms, respectively. In this case, the lower and upper layers indicate the
piezoelectric structures for k = 1 and k = 3, respectively whereas the middle layer for
k = 2 represents the brass shim of the substructure. It should be noted that
(A1) _ (A3)

(ca) c2),

pA =phd) = (€2 = 52 ang p(A2) = p

A tip mass moment of inertia is also formulated as,
VIt,p j Piin Jdxdydz , j t(pr dxdydz ,j(xgm2+zgm2)pt(|%)dxdydz] , Vm e {AB,C}.(4.76)
r

It is noted that the third integral term implies the second mass moment of inertia for
the arbitrary geometric shapes where further detail can be found in Beer and
Johnston [98]. Figure 4.2 indicated an example geometric shape of the tip mass

where the zero-th tip mass moment of inertia is formulated,

118 =(hliy — (20, +0 1 Jippld 4.77)
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The first mass moment of inertia It(ig)tends to be zero because the geometric shape
only has one centre of gravity where each moment with respect to the centroid has
equal magnitude. The second tip mass moment of inertia is known as rotary inertia at
the centre of gravity of the tip mass which is assumed to coincide with the end length
of the piezoelectric bimorph beam. This results in,

2 oh +h, [ +1 2)
It(ig) = (I“%thlp) -")_(12 - (( i +12) o _)_(22 (Itiphtip _(th +hs )Ib) Stippt(icp) ) (478)

where X, =x, —1;,/2, X, =X, —I,/2and x, is centre of gravity of geometry of tip mass.

tip
The Hamiltonian’s Kinetic energy can be reformulated by modifying Eq. (4.67) and
integrating with respect to time and applying the divergence theorem to relieve the
virtual displacement fields to give,
t, t)
[oKEdt = j{ |

t 4| Q

2.
{_ | (A’k)ureléurel + I(C’k)%(swrel - I(A'k)‘)\'/reléwrel

—1 (A'k)ubaseéurel - I(A'k)\;\‘/baseév"rel }dXdy - It(l'g)urd(l‘)éurel(l_)

W,y 1 OOw,y (L y .
1) P )20y (g (1)1 L (1)
- It(lAp)Wbase(L)éWrel(L) - {I(C’k)nx a\g)r(el 5Wrelds:|dt ' (4'79)
S
Each of the equation components which have subscript “base” at I(A"‘)utJase and

| ANy can be separated from Eq. (4.79) in order to consider as non-conservative

virtual work of the distributed inertia input loads into the base support of the
cantilevered piezoelectric bimorph beam. Since the bimorph does not have other
external forces except for the input base excitation, the general equation for non-
conservative virtual work due to the input excitation and the applied charge can be

written as,
MW, =—For—-> qdp(t). (4.80)
i=1

It should be noted that the last term of Eq. (4.80) is considered as the applied charge
on the top and bottom electrodes (i layers) of the piezoelectric bimorph which
depends on the series and parallel connections where the minus sign indicates the

electrical work done into the system. Since the bimorph generates the electrical
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charge output, the parameter — 3 gjd¢(z,t) should indicate positive sign by
i=1

modifying ¢(z,t) with v(t). In this case, the electrical work parameter needs to be

proved. As mentioned previously, the electrical boundary condition of the bimorph
electric voltage shape function can be used here to identify the electrical work. The

electric charge output from the parallel connection can be simply formulated as

o, +d, =q where the bottom and top electrodes are denoted g, andq,, respectively.
The generalised electric voltage in Eg. (4.49) can be restated as

@(z,t)=—(~1) ®(z)v(t) and the shape function ®(z) corresponding to the electrical
boundary conditions of the piezoelectric element is given from Eq. (4.59). In this
case, the parameter — qiégo(z,t) in the parallel connection can be modified to give
(@(2)qy + @(2)g2 ou(t) = (@/2+0/2)ot) = qév(t). By doing the same thing for the
series connection, the electric charge output @, = g, = q associated with the electrical
boundary condition in Eq. (4.52) can give ®(z)qout)= ®(z)q,0Mt)=qout) for the
bottom and top electrodes. As can be seen, the electrical work for the series and
parallel connections of the bimorph have the same parameter with the negative sign
but when the piezoelectric bimorph electromechanical dynamic responses with

variable load resistance will be formulated, the electrical voltage for both electrical
connections will differ. Corresponding with Eq. (4.80) from the last term, the

electrical work due to the charge output from the system can be proved as +q§\/(t).

At this point, the non-conservative virtual work from Eqg. (4.80) can be modified as,

t t
IéWf dt = II: H— I (A'k)ubaseé”rel - I(A'k)\]\'/based""rel }dXdy

- It(lg)ubase(l-)‘surel(l-) - It(lg)wbase(l-)éwrel(l-) + qé‘/(t)}it . (4.81)

The electrical energy of the piezoelectric element represents the coupling effect of
the constitutive equations that can be developed using the Hamiltonian theorem. As
formulated previously, the backward piezoelectric couplings for series and parallel
connections were developed in potential energy form, because it can have a profound
effect on the coupled elastic-electric field. In this case, the corresponding electric
field and permittivity of the piezoelectric component can be used to formulate the

internal capacitance of the piezoelectric layers and forward piezoelectric couplings
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for both series and parallel connections. The electrical energy of the piezoelectric in
the Hamiltonian form is stated as,

t t
[OWEPdt = [ [ Dy5(E; )drdt . (4.82)
t 4y

The electric displacement field of the piezoelectric element D, is also known as the

converse effect which is obtained from electrical enthalpy energy. Using Eq. (4.3),

equation (4.80) can be written as,

t t
JOWEPdt = [ [e31315(E3)+ gnggcs(Eg)}irdt. (4.83)
Y 4y

The electrical energy term can be reformulated as,

J

Q

tjzéWE Pdt = tf[ dt.  (4.84)

Y Y

2
(Rgf,m%_ RH) O Wret o

k
x oL g2 33)\/}%9

The first and second terms of Eq. (4.84) represents the forward piezoelectric
couplings and can also be formulated to give the similar form as shown from the
backward piezoelectric couplings from Eq. (4.51). The third term from Eq. (4.84) can
be used to obtain the capacitance of the piezoelectric element.

The third term in Eq. (4.84) is prescribed as capacitance and it can be solved as,

hk+
vsi)=| = ]
h,

2)Melz(2)dz |, vke L3}, (4.85)

The series and parallel connections can now be considered in the next part.

Case 1. Series connection. The capacitance of the piezoelectric element was
formulated in Eq. (4.85). The summation of capacitances between the upper and
lower layers of the piezoelectric bimorph has a factor of 1/2. It is found that the
piezoelectric bimorph under longitudinal and transverse motion fields did not affect
the computation of piezoelectric capacitance itself but the result of the capacitance
must be considered by the constitutive equation of the piezoelectric field due to the
coupled electromechanical system. Equation (4.85) for series connection can be used
to formulate the capacitance as,

1) (3)
sk = Nosss | Mosss _ €3 (4.86)
ah)?  4h?  2hy
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It should be noted that the upper and lower layers of the piezoelectric bimorph have
the same material and geometrical structure, thus the permittivity of the piezoelectric

component gives g:%) = g§3) = Ga3.

Case 2. Parallel connection. With the same formulation of Eq. (4.85), the parallel
capacitance can be considered. The summation of capacitances between the upper
and lower layers of the piezoelectric bimorph has a factor of 2. At this point, the
capacitance of the piezoelectric element for parallel connection can be formulated as,

o (3)
sk = Mocss | Mocss _ 2635 . (4.87)

2 2
hp hp p
The forward piezoelectric coupling and capacitance can affect the electric

displacement as a converse effect where it depends on the geometrical structure of

the piezoelectric element and the electric voltage.

The constitutive electromechanical dynamic equations of the piezoelectric bimorph
can be obtained by considering Egs. (4.41) (4.79), (4.81) and (4.84) into the
Hamiltonian’s principle from Eq. (4.20). The constitutive electromechanical dynamic
equation for the piezoelectric bimorph beam can be formulated in terms of virtual

relative and base displacement forms as,

t;
J.[J-{_ I(A’k)l‘jreléi*lrel + 1
| Q

N C(D,k) a51(0)

1, Mre _Cll’)

a W .. .o
X aXrEI &Vrel - I( ) reI&NreI - I(A,k)l'lbase&-lrel - I(A'k)wbaseﬁl\’rel

o°ef) v 0% ou
‘ ok k G k
% OWyel = Rgl )&a’rel B Rgf )y&vrel + Rgl ) (;el N

- Rg'f,k) aaWrel N + S§3)v&/}dxdy+ qév— t(,p) et (L)oUg (L) - |(C)8‘Nrel (L) Wpe| L)
X

1P ox oX
tlp reI(L)Mrel( ) tlp ubase(L)a'lrel( ) tlp Wbase(L)aNrel( )
M(F’k)
— NP S + 0y 2 Gy dS — §n M () a‘?’fe' d3+§n RIGKNdl g dS
S S X
+fn R gy yds — fn, R Ky FMWrel g5 §| (€X)p, Mrel 5 4 |dt=0.(4.88)
OX S OX X

It can be seen that the strong form of electromechanical dynamic equation from Eq.
(4.88) was derived according to the variational method of Hamiltonian’s principle.

Equation (4.88) reduced from the extremum of functional form with integration by
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two instants of time t; and t, for all domains in L, and W; implied space of
continuous differentiable function for all independent variables of relative

longitudinal u,¢(x,t)e C2[0,L]c Q< R®and relative transverse displacements

Weel (X, 1) € C*[0, L]= Q@<= R? associated with electric potential ¢(z,t)=®(z)v(t)

€ Eze {Cl{—h?—h —h?} Cl{h? h?+h :l}CQC R2 in terms of actual forces and

moments of the mechanical and electrical fields for the piezoelectric element as
prescribed in the partial differential electromechanical dynamic equations in domain
dQ including the boundary conditions on the vector surface dS in terms of the
divergence theorem. In this case, the reduced equation must fulfill the mathematical
lemma of the variational method of duBois-Reymond’s theorem for each virtual

displacement field.

4.2. The Strong Form of Electromechanical Dynamic Equation

As prescribed in Eq. (4.88), parameters of virtual relative base displacements and
electrical potential forms can be separated in terms of partial differential dynamic
equations for extensional, transverse and electrical fields. In this case, there are three
constitutive electromechanical equations of the cantilevered piezoelectric bimorph

beam associated with moving virtual displacement fields of &u., dw., &u, (L),

aWrel(l-)/ax and ov.

The first constitutive electromechanical dynamic equation in extensional form in

terms of virtual relative longitudinal displacement field s, can be formulated as,

b . . 88( ) 8V .
I{J‘{_ I (A'k)urelajrel -1 (A’k)ubase&'rel + C1(1 ¥ al &'rel gf + & reI dXdy t&p)ubaseé‘urel (L)

- It(i;/;\)urel (L)a'lrel (L) - j.aniEYk)&JreldS + fangf’k)VéUmdS j|dt =0 . (489)
S S
The electromechanical dynamic equation in extensional form can be written as,
. . A 00 ov
g (t)  + =T, — TAKG X —- RIGH) =0, (490

It is noted that the symbol » indicates the modified parameter after integrating with

respect to y and the divergence theorem from sixth and seventh terms in Eq. (4.89)
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can also be modified. The variable n, indicates the unit vector normal in the x axis

where the boundary condition can be stated as,
. A 2(D,k) OUrel Gk

ajrel(l-'t) : It(|p)ubase It(|p) reI(L) - Cl(l )a_)r(e Rgl ) =0

and u_ (0,t)=0. (4.91)
It should be noted that the fourth term of Eq. (4.90) is zero because the electric
voltage is only a function of time. However, equation (4.99) can be used to formulate
the weak form of the Hamiltonian constitutive electromechanical dynamic equation.
The second constitutive electromechanical dynamic equation for transverse bending

form in terms of the virtual relative transverse displacement field dw,, reduced from

EqQ. (4.88) can be formulated as,

t 0%
k ,k .
jlij{l (C ) 8)( rel &Nl’el B l( ) re|(iNre| - l(A )Wbase aNrel

2_() 2
(Fk) 0”& (H.k) OV C) Mgl () \OMrgl
-Cjy 2 W) — Ra; 2 dxdy — It(lp a)r(e (L) aXre (L)

oM (F k) e
- It(i'?)\)v‘./rel (L)a’vrel (L)_ It(|p)Wba365 Wrel( ) {f n reI - f an >(<>'?k) Trel
S
0w, ov oW,
~{ nXRgT'k)VTreH { nXRgT'k)&aNre,— fI (C’k>nxa—;‘*'a/vre,}ds ]dt - 0. (4.92)
S S S

The electromechanical dynamic equation for transverse bending can be written as,

. 2.0
0% L Y P (2 k)a g _A(H,k)a_z"
2 | rel | Wbase C11 2 |:{31 2
X X X

The symbol » indicates the modified parameter after integrating with respect to y.

&Nrel (X't): IA(C’k)

Sy = 0. (4.93)

The boundary condition can be stated after modifying the divergence theorem from

sixth and seventh terms in Eq. (4.92) as,

) i} “(C k) OW A(FK) O [ 0PWg (M) OV
5Wrel(|-’t) : _It(l/;)wbase _lt(lAp)Wrel(L)_ I(C’k)&(l-)"' (fk)&[ - I](L) +R§T’k)&: 0,

ox°

OMWye) . c) Wy 2(FK) O°Wigy 5 (H K
LY —|t(,p a)f(e (L)-clf )aTZre(L)_ RV =0 , (494

Weg (0,)=0 %(G,t)zo.
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It should be noted that the fifth term of Eq. (4.93) is zero because the electric voltage
is a function of time. However, equation (4.93) can be modified to formulate the
weak form of the Hamiltonian constitutive electromechanical dynamic equation. The
third constitutive dynamic equation for electrical potential in terms of the virtual

electrical potential field ¢v(t) can be formulated as,

L 2
. 5(G,k) OU 5(H k) O°W 2 (k
S0 - g(Rgl )a_)r(el_ 34 >aT;e'+ Sgg)deH q=0. (4.95)

The equation (4.90) represents the electromechanical dynamic equation in terms of

relative displacement u, based on the moving virtual relative displacementdu,,, .

The similar dynamic equation can also be found from Eq. (4.92) based on virtual

relative dw,¢ transverse displacement fields. Equation (4.91) indicates the essential

boundary conditions and the natural boundary conditions. The similar model can also
be found from Eq. (4.94) which contains the essential boundary conditions and the
natural boundary conditions. It should be noted that essential boundary conditions
are sometimes called static boundary conditions which depend on support conditions
whereas the natural boundary conditions are sometimes called dynamic boundary
conditions depending on the external loading conditions due to the inertia loads from
the base and internal loading conditions from internal forces and moments at the
piezoelectric beam element. In this case, the electromechanical dynamic equations of
the cantilevered piezoelectric beam must fulfill the mathematical lemma of the
variational method of duBois-Reymond’s theorem for each virtual displacement
field.

4.3. The Weak Solution form of Electromechanical Dynamic Equation

As prescribed by Eq. (4.88), the form of the electromechanical dynamic equation
represents the strong form (classical method) of Hamiltonian’s theorem. In this case,
the weak form of Hamiltonian theorem can also be formulated by concerning only

virtual relative extensional du,, and transverse dw,, displacement fields to give the

rel
analytical integro-partial differential dynamic equation over the length of the
piezoelectric bimorph beam. The weak form of Hamiltonian theorem includes the
virtual displacements into the calculations of the constitutive electromechanical

dynamic equation. In other words, the virtual displacements are assumed to be the
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non-zero terms. Therefore, the solutions of the dynamic equation in terms of
variables fields (U, W, ,V) and virtual variables fields (U, W, V) must be

assumed as eigenfunction forms. At this point, the weak form of the Hamiltonian

theorem can be formulated in terms of Eq. (4.88) as,

t 2
| J] clp a2 ST o Clf M) Sl RGPl
f,| O OxX OX ox

2
RN TG 1 AN g - SEMO)
X

|(C k) Vel 85( rel) |( ) W MWy — R(G k) OUrel &/( )
OX OX oX

o%w,
+ RS(’H k) GX rel 5‘/( ) ( ubaseaJrel + I( WbasedNrel )dXdy

) el (1 1O,
_q&(t)"‘It(lﬁ)urel(L)aJrel(L)"‘ |t(|([:) 8XEI (L) o el (L)
* It('ﬁ)ubaseaj rel (L) + It(lAp)WbasedNrel (L)+ It(lAp)V\./rel (L)ﬁNrel (L)
(F k)

aM .
 f] = NGy + 1y — G - o MER e ey Mret o i |t 0. (4.96)
S ox oX X

The weak form of Hamiltonian’s principle can also be obtained alternatively in terms
of Egs. (4.90), (4.91), (4.93), (4.94) and (4.95) by applying the variational principle.
It should be noted that respective parameters in the second parenthesis from Eq.
(4.96) are in-plane force due to internal extensional force, in-plane shear force and
moment due to internal transverse moment and in-plane shear force due to rotary of
bimorph on the portion of differential vector surface dS in order to fulfill the
divergence theorem of the natural boundary conditions with respect to differential
surface area dQ2. Equation (4.96) is called the weak form of electromechanical
dynamic equation based on the continuity requirement of transverse bending with

the transformation from fourth to second continuous derivative function
Wer (X, t) e C*[0,L] »C?[0,L]c o= R® and the continuity requirement of
longitudinal extension transformed from second to first continuous derivative
function U (x,t)e C?[0,L]— CY0,L] c < R? while the electric field is a

gradient function of electric potential of each thickness of piezoelectric layer

p(z,t)=D(z)v(t) e Ege {c{_%—h _hs } c{h h25+hp}} cQcR3.

2 2
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It should be noted that equations (4.88) and (4.96) can be used to formulate the
Rayleigh and Euler-Bernoulli piezoelectric bimorph beams. The Rayleigh beam only
considered the rotary inertias of the piezoelectric bimorph. The Euler-Bernoulli
piezoelectric bimorph beam can also be formulated using the same equation by
ignoring the rotary inertia of the piezoelectric bimorph. In forthcoming mathematical
derivations, this equation will use the rotary inertia of the piezoelectric bimorph
where this will be easier to neglect once the orthonormality property of
electromechanical dynamic equations will be established. It should be noted that the
second integral represents the divergence theorem reflecting the boundary conditions
on the surface S of the bimorph element in the direction ny of the unit vector normal
to the x-axis. The second integral is sometimes called the generalised internal force
and moment for every element discretisation and these become necessary when the
element boundary S coincides with boundary of domain Q. The second integral can
be a crucial part to be included in Eqg. (4.96) when using finite element analysis
where their existence depends on external loads on certain nodes of the structure. In

terms of the analytical approach that is proposed here, the second integral can be
ignored because the displacement fields (U, W) and virtual displacement fields

(OUy, OW, ) reflected from Eq. (4.96) were assumed as eigenfunction forms which

meet the continuity of mechanical form or strain field and boundary conditions.

4.3.1. The Weak Form of Coupled Electromechanical Dynamic Response of

Transverse-Longitudinal Form (Weak-CEDRTL)

In this section, we discuss the solution form of Eq. (4.96) by using the
convergent eigenfunction series forms. The solutions must meet continuity and also
boundary conditions of the piezoelectric bimorph beam under longitudinal extension
and transverse bending effects in order to give reasonable solutions. In the next
section, the solution forms due to the effects of combinations of input longitudinal
and transverse base motions, independent input longitudinal base motion and
independent transverse base motion of the bimorph will be discussed
comprehensively. It should be noted that equation (4.96) represents the dynamic
equation of the electromechanical system under two input base motions. This
equation can be formulated separately from the longitudinal and transverse forms as

discuss further in the next section. As previously mentioned, the effects of input base
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motions on the bimorph not only affects the mechanical domain (stress and strain
fields) but also the electrical domain (electric field and polarity). The solution forms

can be prescribed using the space- and time-dependent eigenfunction forms as,
W,y (X )= D w, (1), (x) C o Ug(xt)= Yume,(x) . 4.97)
r=1 r=1

Parameters W(x) and ©(x) indicate the mode shapes or normal modes of the

eigenfunction series which can be determined using analytical solution forms for the
cantilevered piezoelectric beam with a tip mass where the mode shape of the Euler-
Bernoulli and Rayleigh beams will be formulated in appendix B. Two solution forms
can be derived in the next section. It should be noted that parameters, ¥, (x) and

©,(x) are defined as the independent mode shapes of relative motions to meet the

continuity requirements of the mechanical strain field.

Corresponding to Eq. (4.97), equation (4.96) can be formulated according to the

eigenfunction series forms. Setting virtual displacement forms & (t) , W, (t),

&/(t) separately can be used to obtain three independent dynamic equations.

Parameters of virtual displacements meet the duBois-Reymond’s lemma to indicate
that only dynamic equations have solutions. At this point, three dynamic equations

from the piezoelectric bimorph beam can be formulated.

The first dynamic equation represents the electromechanical piezoelectric bimorph

under longitudinal extension. Here it is written as,

ZHI' o0y oL [l RO

dx
- R(G’k)d®q(x)v(t)dxd + (1RO (XipaseltJaxdy + 11510 (LNipaselt) g (t) =0.  (4.98
31 dx y q base y tip ~q base gq\t) =Y ( . )

Q 0
The second dynamic equation represents the electromechanical piezoelectric

bimorph under transverse bending. It can be stated as,
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g=1{r=1 O dx dx

%{%@H vt oy 169 LDy Ly

2 2 2
g a2ty ), Jclfkddz()ddx() <t)dxdy]+fR3 9 y(ekindy
+ gfz | AR (i 5oty + 1 {3 (L)Wbase(t)}&vq (t)=0. (4.99)

The third dynamic equation represents the electromechanical piezoelectric bimorph

under electrical form. It can be written as,

51| -rig 9O, 0 S E oy

r= X2
— [ v(t)ov(t)dxdy— a(t)(t) =0 , (4.100)
Q

or it can be differentiated with respect to time to obtain current function giving,

-3 [righ 0:, (t)dxdy+§jR<de;I;() (0)ixdy

r=10

- j S k)v(t)dxdy— =——v(t)=0. (4.101)
load

The constitutive electromechamcal dynamic equations from Egs. (4.98), (4.99) and
(4.101) can be reformulated in matrix form by including the damping coefficients

after integration with respect to y to give,

M(U) 0 Our C(”)

b b ? 0l(6,) [KY o P[] [-Q¥ 0 0][ine

o M ol pel 0l ool el o KW P w =l 0 QW 0|l f.(4.102)
0 0 ofi| [PY pM pllv) [0 0 R ||v 0 0 0|V
where
L
M = [ 1400, (8, (xhx + {30, (Lo (L)
0
) _ FilaK) (0 Sl (0 ) - (a) ©)@¥q (¥,
Mgr g | ‘I’q(x)‘}’r(x)dx+£ | N dx+ Ly W (L) (L)+ 1y = (L) T (L),
L +(0.x) 40¢(X) d®, (x) L () A7Fq (%) A2, (x)
K(u): C(Dk) q r\*)q W) _ [ A(F.k) q r
ar 511 x ax XK !,Cll dx? dx? &
2
P = - [Rlg 0 90y, gt i 4
0 0 X




= [T (e 15 1) L O = aMg A G

o —~
=
~—
O‘—-I_

Cit) = My + 4, K, T =Dl 100 =p1 e CIPH) —befp)

G ZbClE®) | RSH ZpRIGK | R _prE | §K)Zps()

31 !

It should be noted that the ~ symbol refers to the modified variables after multiplying
with the width b of the bimorph. Equation (4.102) is a non homogeneous differential
dynamic equation of the piezoelectric bimorph beam with two input base-excitation.
This equation can be used for modelling the piezoelectric bimorph with either series
connection or parallel connection. The connections just depend on the chosen
piezoelectric couplings from Egs. (4.55), (4.58), (4.62) and (4.65) and also the
chosen internal capacitance from Eqgs. (4.86) and (4.87). In addition to that, other
parameters from this research such as mass moment of inertia, stiffness coefficients,
piezoelectric constant and permittivity are viewed as constant values. The geometry
of the piezoelectric bimorph beam must also be considered where it will affect all
aspects of power harvesting performance. It was previously stated that each
connection has two different poled configurations under two input base excitations,
where these have been invoked mathematically. This represents a significant
difference from other researchers in which most of their studies of the piezoelectric
bimorph only considered the pure bending (transverse bending) where each
connection has one different poled configuration i.e. X-Poled for series connection or

Y-Poled for Parallel connection.

Corresponding with the eigenfunction series from Eq. (4.97), the results of mode
shapes due to longitudinal and transverse form from appendix B can be substituted
into Eqgs. (4.98), (4.99) and (4.101) to obtain solutions of the piezoelectric bimorph
under two input base motions. Equation (4.102) can be solved using Laplace
transforms. In this case, the dynamic equation of the piezoelectric bimorph can be

modified to give,

Mér)s +C( )5_|_ K( u) 0 Pq(u) u,(s) —Q(gu)szubase(s)
0 Mé,)s +C§| )5+ K( W) Pq(W) w,(s)b= —Qéw)szwbase(s) .(4.104)
P P Pos+Ry |[v¢(s) 0

The longitudinal motion can be formulated using Cramer’s method as,
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1 _Q((1 )S ubase(s) 0 Pq(u)
Uy ():ﬂ Q152 eels) MIWs2+cWs k™ P | (4.105)
0 Pr(W)s Pys+R,

Equation (4.105) can be manipulated as,

1 \ w u w u
ur(s):z(s)[—{(M( )52+ €5+ K Pos+ R ) PRI 9852 (5)- sPRLIQU 2 (5)] -(4.106)

Equation (4.104) can be further modified to obtain the transverse motion using

Laplace transforms and then applying Cramer’s method to give,

Mé )52 +C( s + K( u) —Qé“)szubase(s) p¥)
W, (s)= =~ 0 —QWsPwpaee(s) P | (4.107)

plU)s 0 Pos+R,

Equation (4.107) can be further extended using the determinant, resulting in the

equation,

w,(s):zzs)—sP( IPIMQY)s 2y s)- {(M( 52 el kY )XPD5+RL)— sppY) béw)szwbase(s)]-(4-108)

Electric voltage from Eq. (4.104) can also be formulated as,

Mt(Ir)s +C( )5+ K( ) 0 _Qfgu)szubase(s)
v(s) = 1 0 M Ws? +C( )s+K( W Q2w (s):  (4-109)
2(s) o) oW, !
P\"s P\s 0

Simplifying, equation (4.109) can be written to obtain,

ér)s +C( )s+K( )b( S Wbase ] (4.110)

v(s)=zts) sPr(“)(M( )s2 +C( )s + K( )b( )$ 2 peo(S)+ sPr(W)(M

As formulated the determinant of the homogenous dynamic form from Eq. (4.104)

can be expressed as,

MWs? +clWs+ kY 0 pY
Z(s)= 0 M((”)s +C( )s+K((1"rV) Pq(W) . (4111)
Pr(u Js Pr("")s Pps+R,

Expanding Eq. (4.111) and rearranging, the characteristic polynomial form can be
written as,
Z(S)ZSSPDMS;)M(SW) ( (gl:) (W)+p C( )M( )+RLM(gL|J’)M((1\:’V))
s3(Pocc + R MUC! (W) +Rchﬁ)MerV)—Pr(“)P(](“)MerV)
_pr(W)pq( )M( )+K( w)p ((1) ()p M(W))+32(R C(U)C(W)
_pr(u)pq(u)c((]"r\’)_pr( ) (w ) ()Jr ( ) ()+K( )R M( )+K( )pDC( w)
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KWRMW) +s(KWR clt) - kWRWRW + kIR cW)

— KWRWRWL KWK WR, ) +KWK WIR, . (4.112)
The transfer function relating the input base-longitudinal acceleration to output
longitudinal displacement can be obtained, if input transverse motion was not applied

as,

_ B {(M ((1VrV)52 + Cf(ler)s + KSY’V)XPDS"l' RL)_ SPI’(W)PQ(W) }Q((JU) .(4.113)

szwbase(s):0 . (S)

The relative transfer function between the input base-transverse acceleration and

ur(5)
Szubase(s)

Hiy(s) =

output longitudinal displacement can be obtained as,

uy (s) AR Qg
Hoo(s) = __ . 4.114
12(s) %Wy 556(S) g (5)0 Z(s) (4.114)

The transfer function between the input base-longitudinal acceleration and transverse

displacement can be obtained as,

t b
H =" = 4,115
() $%Upgse(S) P (5)0 Z(s) (4419

Corresponding to Eq. (4.108), the relative transfer functions of the input base-
transverse acceleration with respect to output transverse displacement can be
obtained if longitudinal motion was not applied, which becomes,

w, (s) :-{(Mg”r)sz+C§‘;)s+K((;;)XPDHRL)-sPr(“)Péu)bgW)  (4.116)
S Woase(5) 4, 510 26

With the same method, the transfer function between the input base-longitudinal

Ho(s) =

acceleration and electric voltage can be obtained as,

i sB()(MWs? 4 s+ k(W) [plv) 11
Z(s) o

The relative transfer function of the input base-transverse acceleration with respect to

RO
H3l() Szubase(s)

Sszase(S):O

output electric voltage can be obtained if longitudinal motion was not applied. This
gives,
sR"(MWs? +.cWs 1 kW) v
= 7 . (4.118)
Szubase(s)ZO (S)

The transfer function relating power harvesting to input transverse acceleration can

g Vs
H32() Sszase(S)

be derived as,
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u)p(w u)p(w u)plw w)?
. (SSMcgr)Pr( )... szCér)Pr( )+5Kc(4r)Pr( ))ZQ((I ) . (4.119)

Rloadz(s)2

P(s)
(szwbase(s))2

The transfer function of power harvesting due to input longitudinal acceleration can

wzubase(s)zo

be derived as,
P(s)
(Szubase(s))2

Manipulating Egs. (4.113) to (4.118) gives another relationship of transfer functions
as formulated in Egs. (4.121) to (4.126),

) (ssM((]vrv)pr(U) + s,zc:((1 )+ SK )qu _ (4.120)

RIoadz( )

mzwbase(s):()

Sp(“)p(W)
w, ) = . (4.121)
Ur(8)lgzg, o0 (M2 1l k(W XPDS+RL) sRWp{")
u,(s) _ sPr("")Pq(“)  @122)
W () gz, -0 (MGs? +cWs+ K@) Pps+R, )-sPWRM)
u,(s) _ (Mér)s +C( )s+K XPDS+R|_)+ sP(W)P( w) . 4.123)
V() |52, (s)-0 sp )(M ()52 +C( Js Kk )) '
U s) - mich , (4.124)
v(s) |2y, (5)-0 MWs2 +cWs 4+ kW
w; (s) _ ‘P( " | (4.125)
V(S) $2Wpase(5)=0 M((] )S +C( )S—i— K( w)
w, (s) _ —(Mé )52 +C( s+K XPDS+RL)+SP( )Pq( ) (4.126)
V(S) 52Uy 5e(5)=0 Spr( )(M( )5 +C( )S+K( ))

Corresponding with Egs. (4.113) to (4.120), the frequency response function (FRF)
can be formulated. The first FRF represents longitudinal motion with respect to input
excitations. In the case where the input transverse acceleration is ignored, the FRF
can be obtained from base-input longitudinal motion as it was formulated,

Y\ — ur(ja))
Hiy(jo) = ~ wzubasee(jwt)

1 \ w W
= Z(Ja))[(M ((qr)RLa)Z + CUZPDC(gr) — K((”-)RL)

+ i (PoMWe® - wClR. — P KW + wPWRW o) . (4.127)
(jat)

. 2 . : .
It is noted that— @ Upy,E£ is input acceleration. Equation (4.127) can be

modified to obtain the FRF as a function of position of the piezoelectric element (x)

and frequency(ja)) by transforming it back into the eigenfunction. This then yields,
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. 1 W " "
Hu(xjo) = ij)[(M ((]r)RLa)Z +w2PDC((]r) - Kér)RL)

+i(PoMPe® — aClIR, — Pk )+ RMRM R 0, (x). (4.128)

If base-input longitudinal motion was not applied, the FRF of base-input transverse

motion can be obtained as,

le(jw)=% =- 4.~q (4.129)

Equation (4.129) can be modified in terms of the FRF as a function of position in the

piezoelectric element (x) and frequency(jco) as,

joP"PMQW e, (x)
Z(je)

The second FRF represents transverse motion with respect to input motions. If base-

Hyy (Xjow) = — (4.130)

input transverse motion is ignored, the FRF of base-input longitudinal motion can be

obtained as,

- i opUWpW5(u)
. W, Jo JoP P Q
H21(Jw)=—_w2u£ ziwt - Z(jqa)) . (@131)
asé! s=jw

Equation (4.131) can be modified in terms of the FRF as a function of piezoelectric

position (x) and frequency (jo) as,

_jePMRMQly, (x)
Z(jo)

The FRF of transverse displacement with respect to base-input transverse

(4.132)

Hy(x, jo) =

acceleration can be obtained as,

. w,(jo
HZZ(Ja)) = _wz\:vij 210;{
ase

1 MUR w2 +w?P.c) _ k)
. Z(Ja))[(Mqr RLCU + @ PDqu qu RL)

+i(PoMYWe® — CWR, — Pk )+ a)Pr(”)Pq(“))]QéW) . (4.133)
By using the corresponding eigenfunction from Eq. (4.97) and the FRF from Eg.
(4.133), the FRF as a function of piezoelectric element position (x) and frequency

(jw) can formulated as,

H 1 u u u
H22(X, Ja)) = Z(Ja))[(M ér)Rsz +a)2PDC((]r) - K((]I')RL)

+j (PDM((#)a)g — oCWR, — Pk + wPr(“)Pé”))béW) ¥, (x). (4.134)
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The FRF between output electric voltage and the input base-longitudinal acceleration
can be obtained as,

[ieMiRe) - 2c(< wp )< J+jok§PRE)  (4.135)
Jo

The FRF of the output electric voltage with respect to the input base-transverse

. v(ja))
H W)= ——F"—"—
31(.' ) _a)zu[)aseejwt

s=jw

acceleration can be derived as base-input longitudinal acceleration is omitted. This

can be written as,

i [ jo*mUpM — o2cWRM 4 jok Wp Qi |

Z(jo)

. v(ja))
H W)= ——F—"—
z(jo) PN

(4.136)

s=jw
The FRF of power harvesting related to the transverse acceleration can be derived as,

Plio) | z(—iwsMS“r)Pr(W) W*CWRM + jok Wp f Qw” . (4.137)
(—a)zwbaseej“’t)2 Rloadz(lw)

s=jw
The FRF of power harvesting related to the longitudinal acceleration can be derived
as,

P(jw) ‘ (— jo*M WP — u2cWp) ¢ ijSVrV)Pr(”))ZQé“)z . (4.138)

(— a)zub‘.,lseej“’t)2 B RioadZ(j®)’

where:

s=io
Z(jo) = o*(PoMECiep, MW R MM W)

~oRecleic - pr<u>pq(u>c(<]vrv> PURMICLE) 4 K WpoCll) 4 R, w2
+KYWRcl M ek WK WR +j[a)PM um )

—w (Pchr)cgrh RLMC(")C( )+RLC( MW —RWpUim W)

- pRMIM W)+ k Wpom Ut k WM w )| (4.139)

4.3.2. The Weak Form of Coupled Electromechanical Dynamic Response of

Transverse form (Weak-CEDRT)

This section focuses on the constitutive electromechanical dynamic equation
of the piezoelectric bimorph with tip mass due to the strain field from transverse
bending and electric field under input transverse base excitation. The equation (4.96)
can be reduced to formulate the coupled dynamic equation of bending transverse

mechanical and electrical forms and other variables of Eq. (4.96) can be ignored.
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The constitutive electromechanical dynamic equation of the piezoelectric bimorph

under input base transverse motion can be formulated as,

t 2 ..
J~|:J'{C(F k). ® aj‘Nrel +R(H k) ()5 ai"\;rel L 1€ agl)r(m a5(8W)(re|)+ |(A’k)Wre|5Nre|
4| 0

+ R o a\:(vre' Su(t) — SENE)F(E) + 1A i gy }dxdy — qlt)ov(t)

P ax OX tp
The solution form can be obtained using eigenfunction series and the solutions must

1) Mot (1) 20Wea) ) Wy (Lo (L)+ ntﬁe)wbase(ume.(tﬂdt ~0.(4:40)

meet continuity and also boundary conditions of the piezoelectric bimorph beam
under transverse bending effects. The solution form can be prescribed as,
m
Wre () = 2w, (¥, (x) (4.141)
r=1
At this point, two dynamic equations of the piezoelectric bimorph beam can be
formulated. The first dynamic equation represents the electromechanical

piezoelectric bimorph under transverse bending form. It can be stated as,

z{z@ 0 N )y + md‘”)d‘”)wr<tmdy+u.p o (L% L)

o=t |r= dx dx
d‘P L d“¥,
g B, g, jer el /O (t)dxdy} RS0 iy
+ ,[ I (A’k)qu( )Wbase(t)dXdy + It(lAp (L)Wbase(t)}a’vq (t) =0. (4'142)
Q

The second dynamic equation represents the electromechanical piezoelectric

bimorph under electrical form. It can be stated as,

%jR(H k)dd\P—() W, (t )dxdy — js(k)v(t)dxdy— v(it)=0. (4.143)
X 0 33

load

Two dynamic equations can be formulated in matrix form as,

M o {Wr} e o Wil S {Wr}: Q" 0 {Wbase}.(4.144)
o oflv] [P™ IV |0 RV 0 0] Vbase

It should be noted that the each parameter in Eq. (4.144) can be obtained from Eq.

(4.103). Laplace transforms can then be used to formulate the matrix equation as,

MUs2 sk pW {Wr(S)}: UMl
PI‘(W)S PD S+ RL V(S) 0
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The transfer function due to the input transverse acceleration related to the transverse

displacement can be formulated as,

i) _ ~(Pos+RUsQL (4.146)
S Wbase(s) Z(S)
The electrical potential can be expressed as,
pW)o (W)
vs) _SRTQT (4.147)

SPWoase(s)  Z(5)
where :
Z(s) = MWPs*+MWR s2+CWRys2+CWR s+K{WPys +KWR - RWRWs
Corresponding to EqQ. (4.146), the frequency response function (FRF) of the
transverse displacement related to the input transverse acceleration based on the

bimorph element position (x) and frequency (je) can be formulated as,

Weer (X, j) _ - (joPo +R. )chw)‘{'r (x)
— 0* Wy Z(jo) |

Hy(x, jo) = (4.148)

The FRF of electrical potential related to the input transverse acceleration can be

obtained as,

dio) _ iePlaf?

___ _ (4.149)
— 0* W Z(jo)

Hz(ja))z

The time dependent relative transverse displacement can be formulated in terms of
the FRF as,

W, (t) =H,(jo)o’ W, . (4.150)
Corresponding with Eq. (4.141), equation (4.150) can be modified to give the time
dependant relative transverse displacement as a function of position in the
piezoelectric element (x) and frequency(ja)) as,
W,q (X, 1) =H, (X, jo)— W) . (4.151)
Corresponding with the kinematic diagram from Figure (4.1), the absolute transverse
displacement can be reduced as,
W (X, 1) = W@ + H, (X, jo)- o®w,,e'). (4.152)
The generalized time dependant electrical potential can be formulated as,
v(t) =H, (jo)- o’w,,.e**) . (4.153)
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It should be noted that wy,s. represents the input base transverse displacement

excitations on the bimorph. Corresponding to Eq. (4.152), equation (4.148) can be
modified in terms of the FRF of absolute displacement and velocity relating the input

transverse displacement at any position along the bimorph respectively to give,

A (di ]a)t
Hl(d'Sp)(X, jo)= Whase ' +We (x,) _ —%+H1 (x, jo): (4.154)

@

2 joot
— 0 Whasef

[Wbase + Wrel (X t)] 1
w

A I .
-0 Wbasee

where :

Z(jo) == jo*MWPy- w?MR -2+ jaCWR, + joK (P, - joP MR +K R, .

4.3.3. The Weak Form of the Coupled Electromechanical Dynamic Response
of Longitudinal Form (Weak-CEDRL)

This section focuses on the constitutive electromechanical dynamic response
based on the coupled longitudinal strain and polarity-electric field of the bimorph
under input base longitudinal motion. The equation (4.96) can be reduced to
formulate the coupled dynamic equation of longitudinal extension mechanical and

electrical forms and other variables of Eq. (4.96) can be ignored.

The constitutive electromechanical dynamic equation can be written as

2 ) ) Oy, OUre
J.LJ;[I (A'k)urelwrel +1 (A'k)ubaseajrel + Cl(llj'k)ﬁ(o) TI Rgf ) ( )TI - S:(glé)v(t)&/(t)
Lo}

ou
- ch,?’k)wrel&(t)j dXdy_qﬁv( )+ It(l';)urel( ) reI(L)"' ItS ubaseaJrel( )}dt '(4'156)
The solution form can be obtained using eigenfunction series and the solutions must

meet continuity and also boundary conditions of the piezoelectric bimorph beam

under longitudinal extension bending effects. The solution form can be prescribed as,
U (X1) = DU, (00, (x) . (4.157)
r=1

At this point, two dynamic equations of the piezoelectric bimorph beam can be
formulated. The first dynamic equation represents the electromechanical

piezoelectric bimorph under longitudinal form. It can be stated as,
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1) 494 () do
S

er(X) r(t)dxdy]

q%l{ﬁlLry 04 (X)0, (x)i (ixdy + 1180, (U)o, <L>u<>r

()

- IR v(t)dxdy + J Ak (X)Ubase(t)dXdy"' It(r/r)\)G)q(L)Ubase(t)}an (t) =0. (4.158)

The second equation represents the electromechanical piezoelectric bimorph under

electrical form. It can be stated as,

ZjRdedTT() (t)dxdy — jS V(t)dxdy — Rl

load

v(t)=0 . (4.159)

The two dynamic equations can be formulated in matrix form as,

Mgy o e ey o [fur] ) R ful- Qi o ] w160
0 0|V Pr(“) Po |V 0 R |LV 0 0 | (Vbase
The Laplace transform can be used to formulate the transfer function as,
Mér)s +C( )S+K() Pq(u) {Ur(s)}: —Sch(ru)Ubase(S) . (4.161)
Pr(W)s Pos+Ry | v(s) 0
The transfer function due to the longitudinal displacement related to the input base

longitudinal acceleration can be formulated as,

ur(s) _ —(PDS+RL)Q§|U)

- (4.162)
82ubase(s) Z(S)
The voltage transfer function can be written as,
ONO

v(s)  sRTQy (4.163)

SUpasels)  2(5)
where,
Z(s) = MYWprys+MWR s2+CWPys2+CYWR s+KWRys +KWR - PURWs.
Corresponding to Eq. (4.157), the frequency response function (FRF) of the

longitudinal displacement related to the input longitudinal acceleration based on the

bimorph element position (x) and frequency (jw) can be formulated as,

ure| (Xa Ja)) _ - (Ja)PD + RL )Q(SU)\PI' (X)

H jw) = L=
1(X,Ja)) —a)zubaseejwt Z(ja))

. (4.164)

The frequency response function of electrical potential related to the input

longitudinal acceleration can be expressed as,
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~ J a,pr(U)Q(gU)

Hz(ja’): V(ja))

— = , 4.165
_wzubaseejwt Z(ja)) ( )

where,
2(jo) = jo*M{Po- MR -0"C Ryt joClRL+ jaK Ro - joR VR +K (R

The time dependent relative longitudinal displacement can be formulated in terms of
the FRF as,

U (t) =H,(jo)o’u,,e™* . (4.166)
Equation (4.166) can be modified to give the relative longitudinal displacement as a
function of position in the piezoelectric element (x) and frequency(ja)) as,
U (%,1) =H, (X, joo)— 0?Uye™) . (4.167)
Corresponding with Eq. (4.167), the absolute longitudinal displacement can be
reduced as,
Upo(X,1) = Uy +H (X, jo)— 0?Up,™). (4.168)
The generalised electrical potential can be formulated as,
v(t) =H, (jo)- 0’uy,e™) . (4.169)
Corresponding to Eq. (4.168), equation (4.164) can be modified in terms of the FRF

of absolute displacement and velocity relating the input longitudinal displacement at

any position along the bimorph respectively to give,

A (oo Upase ™ + Uy (X, 1 :
AL, jo) = Yo"t - L o), aaro
base
d jot
. T ubaseejw +Urel(xvt)] 1
Hl(vel)(x, ja))= dt > o =+ jH, (x, Ja)) (4.171)
— @ Upas® Jo

4.4.  Multi-mode Frequency Analysis of the Normalised
Coupled Electromechanical Dynamic Response of Longitudinal
Form (Weak-CEDRL)

The multi-mode frequency analysis of the electromechanical dynamic
equations can be extended using EQ. (4.165). The solution form complies the
generalised longitudinal function of the Ritz eigenfunction series, which can be
further formulated using the orthonormality, Ritz [99], Courant and Hilbert [100]. In

this case, the extended convergent Ritz eigenfunction series can be stated as,
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Ura (k1) = Yo, (et . (4.172)
r=1

Substituting Eq. (4.172) into Eq. (4.156) by considering only the mechanical
equations to give independent algebraic equations of the eigenvalues corresponding
to the longitudinal form as,

S (u)

> KW — o M(“)H“) =0, q=12,...m. (4.173)

r=1
The unknown Ritz coefficientcﬁ”) Is sometimes called the eigenvectors which need
to be identified along with the natural frequencies. Therefore, the generalised Ritz
mode shapes in terms of the r-degree of freedom can be formulated as,

0, ()= >.clf

k=1

0, (x) r=12,...m . (4.174)

-‘C

The normalised Ritz mode shapes can be formulated with respect to the generalised

mass as,

0, (x)= 6:(x) r=12,..m . (4.175)

@W (xPax+ 11, (L)ij

The normalised eigenfunction series associated with the generalised time dependent

function can now be stated as,
m .
Uper ()= 20, (X, (t) (4.176)
r=1
Corresponding to Eq. (4.156), the orthonormalisations can be provided by using Eq.
(4.175) and applying the orthogonality property of the mechanical dynamic equation

as,
Zf (Ak)G (x)@ (x)dx + |t,p r(L)@q(L):(Srq, (4.177)
] .
A(D, ) (x)d®q(x) (P
(j)c:l - i dx=ap") 6y (4.178)

where o6, is the Kronecker delta, defined as unity for q = r and zero for g = r. The
mechanical damping can be reduced in terms of the orthonormalisation as,

c = a5, +BYol’s,, = 2cW0s

(4.179)

rq*
Applying the orthonormalisations from Egs. (4.177) and (4.178) into the

electromechanical piezoelectric bimorph beam from Eq. (4.156) gives,
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U, (1) + 2¢Y0, (t) + oy, t)+ PUV(1t) = -QWi,, () (4.180)

r r

PYWu, (t) + Pv(t)+ R v(t)=0

r

Because equation (4.180) has been normalised by using Eq. (4.176) in terms of Egs.
(4.177) and (4.178), the parameters P¥), B R_, P, and Q" can be reduced as,

L . e . m
pb) _ _ jRG0 Oy, g $pw) g L
0 dx r=0 RIoad

L N ~ a

Po=—[8®ax, Q) = [IA06, (ax+ 1106, (L) -
0 0

The Laplace transforms can be applied in Eq. (4.180) to give the transfer functions.

The multi-mode transfer function between the input base longitudinal acceleration

and relative longitudinal displacement can be obtained as,

Hy(s) = u(s) 1 (sPy +R, QY . (4.181)
1(s) = - _
Szubase(s) 52 + ngu)wgu)s_’_wgu)z jwp R E: SF’r(u)2
D L™

r152 1 20 Vp(W)s + wsu)z
The multi-mode transfer function of the input base longitudinal acceleration relating
to the longitudinal displacement output in terms of the bimorph element position (x)

and subsidiary variable (s) can be formulated after simplifying to give,

()= altd) s 6, (5P +R Q! . (4.182)
o szubase(s) 1| %+ 2§(“)w(”)s+a)(“)2 i SP(U)Z
T " | joPy+R - r

=57+ 200Ys + o

With the same method, the multi-mode transfer function between the input base

longitudinal acceleration and the electric voltage can be obtained as,

g Spr(U)QSU)
H (S) _ V(S) _ I’=1S2 + Zé/r(u)a)gu)3+ a)t(u)z . (4183)
‘ 82Ubase(s) SP- +R % Sl:’r(u)2
D L™

Fis? 1 2¢ Mo + o0
The multi-mode transfer function related to power harvesting with respect to the

input base longitudinal acceleration can be derived as,
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1 & sP“QW

KON VRias 5%+ 24“5”)605:))52 + o . (4.184)
2 m u
(S ubase(s)) SPD + RL _ Z i SPr

51 20 WepVs 4 o
Corresponding to Egs. (4.181) — (4.184), the frequency response functions (FRFs)
can be formulated by substituting variable (s) with (je). The multi-mode FRF of

the generalised time dependent function of the longitudinal displacement with

respect to the input base longitudinal acceleration can be obtained as,

uljo) 1 (joP, +R QY (4.185)

—ofu, el WP _ 2 o) () m [ 52
0 Uy, ® —0'+ j2 . P
bas o, 0"+ 20 0 o joP, +R - JaP,

Hl(jw)z

= a)ﬁu)z —0'+ j2t Yo e
Equation (4.185) can be modified to obtain the FRF as a function of position of the
piezoelectric element (x) and frequency (Ja)) by transforming it back into the Ritz

eigenfunction form to give,

= u’e'(x’ Jw) :_i (:)Y(X) (ja)PD+RL)Qr(u) (4186)
s ey e I S

T -0+ j2 Yo e

The multi-mode FRF of the electric voltage related to the input base longitudinal
acceleration can be derived as,
; joR"Qr"
H, (jo) = v(jo) ; o’ -+ jz_g“,(”)(a))ﬁ:)a) . (4.187)
i joR"
B ; o~ + j2c Voo

The multi-mode FRF of power harvesting related to the input longitudinal

acceleration can be derived as,

2

L3 joR Q"
P(jo) _ VRoas T’ —0? + j20Y0 0 | (4.188)
wu_e )] | m 'a)P,(“)Z
( base ) JCUPD + RL _ Z e J

= o -0’ + j2¢ Voo
The generalised time dependent function of relative transverse displacement can be
reformulated in terms of Egs. (4.176) and (4.185) as,

ureI (X’t) = Hl(x’j a))(_ a)zubaseejwt ) (4189)
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Corresponding to Eq. (4.189), the absolute transverse displacement can be reduced

as,

Uge (1) = Uppe® +H, (X joo)— U, ). (4.190)

€

The generalised electrical voltage can be formulated as,
V() =H, (j0 )i = Ha(jo)- 0,8 (4.191)
Corresponding to Eq. (4.190), the equation (4.186) can be modified in terms of the

multi-mode FRF of the absolute displacement and velocity relating the input

longitudinal displacement at any position along the bimorph respectively as,

o 2 jo
Hl(d'SP)(X1 Ja)) _ w ubasee +ure| (X,t) — _%_’_ Hl (X, Ja))’

2 jot
—@ Uy, L

d jo
. (vel) ] d,[[ubaseeJ ' tUpg| (X’t)]
H{ (X’ Ja)) =

=Lt joH, (xjo) . (4192)

— Uy [ jo

4.5. Multi-mode Frequency Analysis of the Normalised Coupled
Electromechanical Dynamic Response of Transverse Form
(Weak-CEDRT)

This section focuses on the multi-mode FRFs of the electromechanical
dynamic equation of transverse bending form with input transverse base motion. The
solution form of Eq. (4.140) can be stated as the Ritz eigenfunction series for
identifying eigenvectors which can be further used to formulate the normalised Ritz
eigenfunction form, Ritz [99], Courant and Hilbert [100]. The extended convergent

Ritz eigenfunction series can be used as the solution form to give,
m ot
Wit (x1) = Yo, (xe' (4.193)
r=1

Substituting Eq. (4.193) into Eq. (4.140) where the mechanical equation is
considered to give the independent algebraic expressions of the eigenvalues
corresponding to the transverse bending form as,

Sk —oMWE

W -0, g=12,..m. (4.194)

It should be noted that cﬁw)is called the unknown Ritz coefficients for the transverse
bending form also referred to as the eigenvectors. Once the Ritz coefficients
associated with the natural frequencies are determined, the generalized Ritz mode

shapes in terms of the r-degrees of freedom can be formulated as,
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¥, ()= ey, (x) r=12,.,m . (4.195)

@ ()~ ¥, (x) —12..m » (4.196)

(Tf(c'k)[wjzdmh(“ (P 10, (L +|t<,p>[‘”’r (L)]z]

0 dx 0

The normalised eigenfunction series forms associated with the generalised time

dependent variable can now be stated as,

Wyer (%) = zw () (4.197)

As mentioned previously, the derivation of the electromechanical dynamic equations
in this section were based on the Rayleigh and Euler-Bernoulli beam assumptions.
The Euler-Bernoulli beam assumption can be formulated by ignoring the rotary
inertia of the bimorph beam at the third term from Eq. (4.140) and the first term from
Eqg. (4.196) or (4.198). Corresponding to Eq. (4.196), the orthonormalisations can be
proved by using Eq. (4.197) and applying the orthogonality property of the

mechanical dynamic equations as,

" d " . o p(L)d¥

ZM“‘I;X() “;X() oA Py 38, (L) 1) ¢ 1) S ‘I;qx(”: 4 (4.198)
L (F k) A28, (x) d° %, (x) 2
jep IR ol (4.199)

where &y is the Kronecker delta, defined as unity for g = r and zero for g = r. The

mechanical damping can be reduced in terms of orthonormalisation as,

cW = a5 + g 5. = 20 M5

. (4.200)

rq-
In this case, although the modal mechanical damping ratios can be determined
mathematically, the estimation of modal mechanical damping ratios from experiment
preferable to give accurate results. Applying the orthonormalisations from Egs.
(4.198) and (4.199) into the electromechanical piezoelectric bimorph beam from Eq.

(4.140) gives,
W, (1) + 2¢ oW, () + 0" w(t)}+ POV = —QNift) . (4.201)

P, (t) + Pov(t)+ R v(t)=0.

r
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It is noted that equation (4.201) has been normalised due to Eq. (4.197). The

parameters P, B™)and Q™ can then be reduced as,

0 G SR g e
dX2 1 H L R H
0 r=0 load
L L . R R
Py = ({ SMax .+ Q") = {)I(A’k)‘Pr(x)dx+ 1O, (L)

Equation (4.201) can be solved using Laplace transforms. The multi-mode transfer
function of the relative transverse displacement related to the base input transverse

acceleration can be obtained as,

w, (s) 1 (sPp +R, QW (4.202)
s PWaeelS) 524 20 W) (W)g 4 02 n p(w)? '
ase s2+ { a)r s+ao," joPy +R - 3 sPy

52 4 oM ol

In this case, the multi-mode transfer function of the relative transverse displacement
related to the input transverse acceleration based on the bimorph element position
(x) and subsidiary variable (s) in terms of frequency response can be formulated

after simplifying some equations as,

H(xs)= Nalks) S ‘i’r (X) (5P, +R Q! . (4.203)
1 Z Wz
=1 S +2§ s+a)

The multi-mode transfer function of the input base transverse acceleration with

respect to the electric voltage output can be obtained as,

g sP(W)Q(W)
H,(s) = v(s) _ r1s2 4 20 WeWs 4 W w)? , (4.204)
SZWbase(S) SP- + R % SP,.(W)
D +RL—

Fis? 4 2 Mas + o
The multi-mode transfer function relating power harvesting to the input transverse

acceleration can be derived as,

1 m Sp(W)Q(W)
R Z (W) (W) (w)?
P(s) VRioad 152 4 26" as 1 . (4.205)
(S Wbase(s))z SPD +RL_ g SPI‘(W)
i P2 1 2eMWeos + o
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Corresponding with Eqgs. (4.202) to (4.205), the multi-mode FRFs of the
electromechanical dynamic response can be obtained by substituting the subsidiary

variable (s) with (je). The multi-mode FRF of transverse displacement with respect

to input base transverse acceleration can be obtained as,

Hy(jo) = Melie) 1 (joPy +R_JOM (4.206)
_(‘)ZWbaseeja}t a)(w)z—a)2+ j2 (W)a)(w)a) m 'a)P(W)Z
r j2¢y oy joPp +R_ ~ 3 joP,

lea)gw)z ~0?+ j2 Moo
It should be noted that the input acceleration —w’w,,(jw) is equivalent to
—w’w,, e’ . Equation (4.206) can be modified to obtain the FRF as a function of

position of the piezoelectric element (x) and frequency (j) by transforming it back

into the Ritz eigenfunction form (Eq. 4.197) to give,

Hy(xj o) = WreI(erw). =_§ ¥ (x) (jWPD+RL)Q£W) .(4.207)
—0PWhe €0 (D wgw)z_ Wit jZng)wﬁw)w oBy R, - g ja)Pr(W)z
U Aot jarefM

The multi-mode FRF of the electric voltage output related to the input base

transverse acceleration can be derived as,

m ja)pr(W)ng)
R w)?2 . w w
H (C())_ V(J(()) _ r=1 C()S ) —o’+ ngr( )(05 )60 . (4208)
) - _a)zwbaseejwt - W ja)P(W)z
joP, +R - >’ r

— a)fw)2 —0’+ j2¢ Moo
The multi-mode FRF of the electric current output related to the input base transverse

acceleration can be derived as,

1§ JeRQr
H(jo)=—09) _ _ Rau Tl o'+ 2600 (409
? - a)zwbasee ot . C J C()Pr(W)2
joPo +R = > —

= o — o+ i2¢ Mo

r

The multi-mode FRF of power harvesting related to the input transverse acceleration

can be derived as,
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1o jorQM)
P(jw) _ VRioad rzla)gw)z —w?+ j2§,§w)wgw)w . (4210)

Y - 2
(—mzwbaseej‘”t) . TR Zm jor ™)
oo TR T 2 W)? 52 ¢ e (W) ,(w)

=1y -0+ j2¢ o @

To obtain the optimal multi-mode FRF power harvesting, equation (4.210) can be
differentiated with respect to load resistance and the differentiable power function
can be set to zero to give the optimal load resistance. It is noted that parameter

R, represents per-unit load resistance —1/R,,,4 . Corresponding to Eq. (4.210), the

optimal load resistance can be formulated as,

e _ VX (@) +Y(0)
Rload - X(co)z +Y(a))2 ! (4211)

where

e R (20l 0)
Y(a))= Z ; -
r1 (a)iw) = a)z)2 + <2§ fw)wfw)w)
It should be noted that the optimal load resistance can be substituted back into Eq.
(4.211) to give the optimal power harvesting.

The time dependent function of relative transverse displacement can be obtained
corresponding to Eq. (4.206) as,

w, (t) =H,(joW.. = H,(jo)-o?w,.e) (4.212)
The generalised time dependent relative transverse displacement can be formulated
in terms of any position along the piezoelectric beam in terms of Eq. (4.196) as,

W,y (1) = Hy(x joo)— 0’ W,,.e). (4.213)

Corresponding to Eq. (4.211), the absolute transverse displacement can be reduced
as,

e, (4.214)

)

jo H 2
Wabs(x’t) = WbaseeJ t + Hl(x’ Ja))(_a) Wbas
The generalised electrical potential can be formulated as,

V(t) =H, (j@ Wiy = H,(j0)- 0?wexp(jat)). (4.215)
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Corresponding to Eq. (4.214), equation (4.207) can be modified in terms of the
multi-mode FRF of the absolute displacements and velocities relating the input

transverse acceleration at any position along the bimorph beam respectively as,

Wbaseejwt + Wrel (X’t) 1

|_‘|1(di5p)(x’ Ja)) — BT = _E-'_ H, (X, Ja)) )
base

d joot ]

A~ (vel) . a base® + Wi (X,t) 1 - -

H]_ (X,Ja)): 2 jot =—+ Ja)Hl (X,Ja))- (4216)
— @ Whasee Jo

4.6. Multi-mode Frequency Analysis of the Normalised Coupled
Electromechanical Dynamic Response of Transverse-Longitudinal
Form (Weak-CEDRTL)

This section focuses on the solution of the multi-mode electromechanical
dynamic equations of the piezoelectric bimorph beam with tip mass based on the
strain field due to the transverse bending and longitudinal extension under two input
base excitations using Eqg. (4.96). The solution presented here complies with the
orthonormality of two independent Ritz eigenfunction forms. Corresponding with the
convergent eigenfunction forms of Eq. (4.97), equations (4.98), (4.99) and (4.101)
need to be modified in order to achieve the orthonormality conditions.

To normalise Eq. (4.97), the convergent Ritz eigenfunction forms can be stated as,
3 (w) it I ) it
Wy (%) = S, (x)e U () = S ee, (xe' . (4.217)
r=1 r=1

In terms of the only mechanical equation, equation (4.217) can be substituted into
Eg. (4.96) to give the independent algebraic equations of the eigenvalues
corresponding to the longitudinal and transverse bending form as,

SKY-6MOLO =0, q=12..m, (4.218)

r=1

SKY -o™M@E® 0, q=12...m . (4.219)
=1

It should be noted thatcﬁ“)and cﬁw)are called the unknown Ritz coefficients for the

respective longitudinal and transverse bending forms which refer to the eigenvectors
in the mechanical domain. Once the Ritz coefficients are determined associated with
natural frequencies, the generalized Ritz mode shapes in terms of the r-degree of

freedoms can be formulated as,
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= icg“)\yk(x) . ©,(x)= icw@k(x) r=12,..m . (4.220)
k=1 k=1

The generalised Ritz mode shapes can be normalised with respect to mass as,

¥ (x)= ) — r=12..m, (4.221)
[Zf(“)[dq(;fx(x)j dx+zf( g (xfx + 11 (L)Mﬁﬁ’(‘idqj(uj]
0, (x)= : 0:(x) o =L12..m. (4.222)
( (18, (xPox + 1o, (Lf J

The normalised eigenfunction series forms associated with the generalised time

dependent function can now be stated as,

m

w,, (xt)= i‘i’r(x)wr(t) Uy (x 6,(x), () . (4.223)

It is noted that this section is developed according to the Rayleigh piezoelectric
bimorph beam. To formulate the Euler-Bernoulli piezoelectric bimorph beam, the
rotary inertia of the bimorph beam in the second term from the Eq. (4.96) or the first
term from Eq. (4.221) or (4.224) can be ignored. Corresponding to Eq. (4.96), the
orthonormalisations can be proven by using Eq. (4.223) and applying the

orthogonality property of the mechanical dynamic equations as,

Loc 09, (x)d¥(x) L. . dy, (L) d¥,
e T, i, 05,0 T
1859, (064 00k + 16, (Log (L) =g, [CL04) d(x)—d®q(x)dx:w§ 6 (4.225)
0 0 X dx

La(a) PH () () |

T g g2 e e (.220)

where &y is the Kronecker delta, defined as unity for q = r and zero for g = r. The
Rayleigh mechanical damping can be reduced in terms of orthonormalisation as,

W _ 0 W W25 _ oW
cY =g, +p ! 5rq =205, (4.227)

(w) _ 9 (w) (w)
er = 5 +,B O =286, (4.228)
In this case, although the modal mechanical damping ratios can be determined
mathematically, the chosen modal mechanical damping ratios {r(“) and ;fw)were

obtained here by experiment to give accurate results at the resonance frequency

[145]



amplitude regions. Applying the orthonormalisations from Egs. (4.224), (4.225) and
(4.226) into the electromechanical piezoelectric bimorph beam equation from Eqg.
(4.96) gives,

G, (t) + 2610, (£) + @ u, (O + PUV(E) = - Q1)
W, (t) + 22 W™ (t) + o™ w(t)+ PMv(t) = — QWi (t). (4.229)
PYu, (t) + P\, (t) + Pov(t)+ Rv(t)=0
It is noted that because equation (4.229) has been normalised due to Eq. (4.223), the
parameters PY), W), pUW) pW R P Q®Wand Q™ can be reduced as,

p) _ _ [RE0 IOy pw) _ [ (0
0 dx 0 dX2
B = SRW W= $pm g =t p o ek,
r=0 r=0 Rload 0 3
L
QY = [14196, (xax + 1096, (L) + Q") = [T (xx + 1340, (L) -
0 0

Equation (4.229) can be solved using Laplace transforms. In this case, the multi-
mode electromechanical dynamic equations of the piezoelectric bimorph system can

be reduced as,

ure,(s):—z(ls)rH(s +2¢MoWs + " )sP +R,) ZSP } (57U e(5))

+ Y sRURUIQY (SZWbase(S))} , (4.230)
w,(s)=~ Z(ls) H(S +20 Vs + o )(SPD +R)- iSR(U)Z}QSW)(SZWbase(S))
+ iSF’r(w)F’r(”)Qr(”)(SZUbase(S))}, (4.231)

|:Z{SP (s +2¢WoWs + o) stwbase(s))}
+Z {sP (s +2¢ s 4 o stubase(s))}} . (4.232)
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The characteristic polynomial form from Eg. (4.229) can be formulated as,

Z(s), = (s +2¢ Wols + o’ )(s +2¢ WeWs + o’ XSPD+RL)

r
m

- > sp™ (s +2¢WVpWs + @ ) ZSP (s +2¢ WepMs 4 o)

r=1

). (4.233)

Corresponding to Eq. (4.230), the multi-mode transfer function of the longitudinal
displacement related to the input base-longitudinal acceleration can be obtained after

simplification, neglecting input transverse motion, to give,

H11(5) = Ur(S)

Szubase(s) Szwbase(s):()
m (w2 u)
(sPy+R_ QY - SR Qr .
N 1 fls 24 20 WpWs 4 oW . (4.234)
s24 2§£u)a)su)s+ a)gu)z Py +R, - % SP( wp? B m SPr(u)2

=152 1 20 WopWs 4 o =1 2§§”)w§“)s+a)§“)2
It is noted that equation (4.234) can be formulated in terms of the generalised
relative longitudinal displacement on the bimorph element position (x) and

subsidiary variable (s) in terms of applying Laplace transform to Eq. (4.221b) as,

H , rel (X S)
11(X S) S ubase(s) oo

m W2 U
sP, +R Q" - Q
m @,(x) Ro+R 21 s2+ zgr s+ "’ . (4.235)

2 2
=] st+ 200l s+ o J sp" N SPr(u)
P, +R - . -

T 5%+ 20y o T 524 20 Wpst o

The multi-mode transfer function between the input base-transverse acceleration and

output longitudinal displacement can be obtained as,

H12(S) = Ur(S)

S 2Wbase(s) S2Upase(s)=0

% spr(u)pr(W)ng)
- 1 152 4 27 W 4 WP . (4.236)
T2y 9 ) ), P (w? ()
S+ 287wy s+ oy Py +R, - g sPr - % sk .
1152+ 2 WpWs 1 oW 21524 20 WUs 4 oY)

The multi-mode transfer function of the generalised longitudinal displacement

function related to the input base-transverse acceleration can be obtained as,
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u.(x,s
o) = )
base

szubase(s):o
i U)p(W)Q(W)
o (:),(x) =57+ 20 WpMs 1 o .(4.237)
7| 52+ 20V0ls+ 0" u sP(W)2 u sP(“)2
f sPy+R.- D — , o T2 , 7
=S +2§ s+a) =] +2§ s+a)

The transfer function between the input base-longitudinal acceleration and transverse

displacement can be obtained as,

H 21(5) = * (S)

S 2ubase (S) Wy 05e(S)=0

m Spr(U) pr(W)Q gu)

B 1 52 4+ 20 WpWs 4 oW .(4.238)
B (W) )5 1 o2 m (w)2 n (u)2
52 + 20" S+ oy Py +R - Y sP; -3 sP,

r-lg? 4 2§£W)w§W)s+w£W)z r-1g? 4 2{,(u)a)£“)s+w£”)2
The multi-mode transfer function of the generalised transverse displacement field

related to the input base-longitudinal acceleration can be obtained as,

Wiy (x,5)

H,.(xs)=
21( ) J Ubase(s) Szwbase(s):O
2 sl ]
oo ¥ (x) 152 4 2¢ W 4 Q,SU)z .(4.239)
T w w w 2 w 2 2
r=1 52 4 2§r( >w£ )s+a)£ ) Py R, - g sPr( ) : _g sPr(“) :
ity 2 Mas ol 571 200l s o)

Corresponding to Eq. (4.231), the multi-mode transfer function of the input base-
transverse acceleration with respect to output transverse displacement can be
obtained, neglecting longitudinal excitation to give,

sz(s) = Wr(S)

SZWbase(s) 52Up5e(S)=0

m (U)2 (W)
P. +R Sw) _ s Qp
. SPo 4R -2 2t Wl 1 ol (4.240)
T2, o), (W), (W2 0 (w)? n (02
ST+ 26wy s+ oy Py R - 3 sP, Z sP,

R = K Y LN
By applying Laplace transform from Eq. (4.223a), the multi-mode transfer function
of the generalised transverse displacement field related to the input transverse

acceleration can be obtained as,
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W, (X,s
sz(x,s)zizfe'( (s))
Szubase(s)ZO

n Rl
i R Z s() (Q ()
_3 #y (x) =152+ 20 s + o . (4.241)
121 624 20 W)W 4 WP m (wf? m ()
18+ 28 oy s+ oy SPD+R|_—Z P\ - P :
5?4 oMo of P st 260+ oY

With the same method, the multi-mode transfer function between the input base
longitudinal acceleration and electric voltage can be obtained as,

sPUigW)
152 4 205 4 o u)? (4.242)
$%Upase(s) AT m Sp( w)? m Spr(U)2

PR, - Y i -
r152 4 2¢ W s + a)p"’)2 152 4 2¢ s + a)su)z

The transfer function of the input base transverse acceleration with respect to output

electric voltage can be obtained, neglecting longitudinal excitation to give,

T
v(s) 52 4 2 WpWs 4 oW (4.243)
Ha,(5) = = 2 2
$“WygselS)| 2 m pw) m plu)
asel™/ls Ubase(s):o SPD +RL _ Z Sk _ z SFy

R N =KV N
The multi mode transfer function of the electric current related to the input base

longitudinal acceleration can be stated as,

1 & sP! )Q
H (5) = & _ Rload r=1 S + 2§ S+ a)( u? . (4244)
o B SZU (S) - m (w)2 m (u)2
basel\> /52wy (s)-0 sP, s,pr
SPy+R - Y - - .
=5+ 20Mos+ " T2+ 20Vos+ o)

The multi-mode transfer function of the electric voltage output with respect to the

input base transverse acceleration can be obtained, neglecting longitudinal excitation

to give,
1 Z spQ™
I(s) Roas 13 52+ 20 Wps + o . (4.245)
H42(S): Sszase(S) 2 ) ul (W)z n SP(u)z
s ubase( SP + R Z _ z r
T2+ 2 MeWs 4 o™ T2+ 20 Wels+ o

The multi-mode transfer function relating power harvesting to input transverse
acceleration can be derived as,

P(s)

(S 2 Wbase (S ))2

52Wbase(3):0
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- 2
L g s
JRuas = 5%+ 2 Mep™s 1+ o
m ( )2 m SP(U)Z . (4246)
P, +R, — - f
o rzl:SZ+2§ (s 1 "’ Z_lls 21 20 Wepls + o |

The multi-mode transfer function of power harvesting due to input longitudinal

acceleration can be derived as,

LS RYQY
_ VRioag = 8%+ 24’ cof”)s+a)( u)? (4.247)
P AR — i P’ C sP(”)2 ' '
sk, + - ’
7T 38 2MeMs o Hs2t 20Ves+ ol |

Corresponding to Eqs. (4.234)-(4.247), the frequency response function (FRF) can be
formulated. In this case, the electromechanical dynamic equation of the piezoelectric

bimorph can be formulated in matrix FRF form as,

(4.248)

The first multi-mode FRF represents the generalised time dependent longitudinal
function with respect to input motions. In the case when input transverse excitation is

ignored, the FRF can be obtained from input base longitudinal excitation as,

Hll(ja)) = Lja))

2 ot
- ubas;eeJ s=jo
m i W)z (u
(JO)PD +R|_)Qr(U) - Z 2 Ja)Pr( Qr |
__ 1 S oM -0+ j20 Moo .(4.249)
W2 _ 7 4 190 ) n ol " e
O 0+ ] é/r o, o ja)PD+RL_Z Ja)r _ Ja)

o —0’+ 2o F o -+ j2 e
Equation (4.249) can be modified to obtain the FRF as a function of position of the
piezoelectric element (x) and frequency (Ja)) by transforming it back into the Ritz

eigenfunction form as

reI (X Jw)
jot
-0 uhasee s=jo

Hll(xljw)
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. m H (W)ZQ(”)
WP, +R, i
2 6, (oo R Zw —w+124, , (4.250)

= 2 _ 2 27 W W) m H m p) )2
11 @O w+]§r o0 ja)PD+RL_Z prr Jwr

o —0?+ 20 YoM T o —w?+ 20 el

The FRF of the relative transfer function between the input base transverse

acceleration and output longitudinal displacement can be obtained as,

: u,(jo)
le(Jw) = W
ase s=jw
m ja)P(u)P(W)Q(W)
1 oM -0+ j2r oMo .(4.251)

o’ -0’ + j2 V0w joP™’ 3 jop*

joP, +R, -
’ Zw ~o*+j Moo ol -0+ 2o

Equation (4.251) can be modified as a function of position of the piezoelectric
element (x) and frequency(ja)) by transforming it back into the Ritz eigenfunction

form to give,

. X, Jo
le(x7 ja)) = LJJ)M
— O Wyyf s=jw
m joP Wp (W)Q(W)
_3 0,(9 S ot o + 2000 .(4.252)
pwr} a)ﬁu)z_a)z_*' Jzé/r(u)a)su)w pr +R Zm: jCUPr(W)Z ) m ja)Pr(u)z
D

T -0t + 2 Yoo Fel -0+ 20V
The second multi-mode FRF represents the transverse motion with respect to input
motions. If base-input transverse motion is ignored, the FRF of transverse motion

related to the base input longitudinal motion can be obtained as,

: w,(jo)

HZl(Jw) = zr jat
— O Upyef s=jo
m j wpr(u)pr(W)QEU)

_ 1 r=1 a)gu)z —a)2 + ngfu)wgu)g) . (4253)
Y o (W) (w m Y m . 2

a)§ ot 124( )a)f o joP. +R _Z ijr( ) _Z ij(“)

p TR, w

=g )2—w2+j2§r(w)a)£w)w rla)ﬁ“ —0*+ 20!
Equation (4.253) can be modified to obtain the FRF as a function of position of the
piezoelectric element (x) and frequency (Ja)) by transforming it back into the Ritz

eigenfunction form to give,

reI Wy (X, jo)

HZl(X’ja)) —w u eja)t
base

s=jo
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m ja)p(u)p(W)Q(U)
ul ‘i’, (X) = wf“’z —0*+ j2§r(”)a)f“)w -(4-254)
oy ih S jop"” g jop"
P th o -0+ j20 oMo = o’ - +j20 Y00
r r r r r r

= a)ﬁw)z —0"+ j20 oMo

The multi-mode FRF of transverse displacement with respect to input base transverse

acceleration can be obtained as,

. W, (jo)
Halio)= o o™
. W o joP QW
joP, +R ﬁ ) - —
_ 1 (iR R R =2 ot ool (4.255)
—_ T N + (w2 m + 5(u)?
, 0] +12§r w0 ijD_l_RL_z JC()P, _Z prr

T —o*+ju Moo Fo -0+ 20V
Equation (4.255) can be modified to obtain the FRF as a function of position of the

piezoelectric element (x) and frequency (Ja)) by transforming it back into the Ritz

eigenfunction form to give,

: W,y (X, jo)
sz(xi Ja)) = rez—mt
= O Whyef s=jo
( o i jort QY
A joP, +R QM - o
< ¢ (x) T A a)f‘”z—a)z-!— j20 0w .(4.256)
- w 2 H w w m H w 2 m H u 2
=} wi) —w2+12§r( >a)£ o i, +R _z jop™ _Z Ja)Pr()
D L
T —0+ ] &Moo = wﬁ”)z o'+ 2o o

r

The FRF between output electric voltage and the input base longitudinal acceleration

can be obtained as,

- v(jo)
H,(jo)= .
31(J ) - a)zl'lbaseejwt s=jo
3 joP"Qr
_ T ol — o'+ j2eVolw . (4.257)
m H (w)2 m . ()2
. JoP, JoP,
JoPy + R — -
oot rzzl o™’ — @’ + j2¢ Moo rz:l o’ — 0+ j2c Voo

The multi-mode FRF of the electric voltage output with respect to the input base

transverse excitation can be derived, omitting the input base longitudinal excitation

to give,
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V(i)

HSZ(j a)) B - a)ZWbaseejwt s=jo
m jCOPr(W)Qr(W)
\ 2 H W w
_ r=1 a)f ) —a)2+ ng“r( )a)ﬁ )a) (4 258)
o Zm: jcoP(W)2 Zm: ja)P(“)2 o
joP, + R, — r — r
ot F a)SW)2 —o’+ j2dYoMe = a)iu)2 —o’+ j2dYow

The multi-mode FRF of the electric voltage output related to the input base

longitudinal acceleration can be obtained as,

I(je)

H,(jo) = —5——
41(J ) _a)zubaseejwt s=jo
13 ieR¥QY
_ Rioas 77 0’ —0® + j2¢ Yo . (4.259)
m ja)P(W)z m jC()P(u)Z

JoPy +R — -
o ; a)ﬁw)z —a?+ j2dMoVeo = a)f”)z —?+ 2V o
The FRF of the electric voltage output related to the input base transverse exciatation

can be derived, omitting the input base longitudinal excitation to give,

(i)

H 42( ] a)) = o
- a)zwbaseej ' s=jw
L$ joR™Q™
) Rioas 5 o’ — 0 + j20 Moo (4.260)
) : joP? Y R

joP, +R, — f -
SR ga)(w)z—a)2+ j2¢WoMe ga)(”)z—a)2+ i2¢V0We0

r r r r

The multi-mode FRF of power harvesting related to the longitudinal acceleration can

be expressed as,

P(jo)

i 2
2 joot
(_w Upase € ) s=jo

r 1 o P T
u 2 H u u
_ \ Rload r=1 a)f ) _a)2 + Jzé/r( )a)s )60 (4261)
. i joP, (w)? i j P’
joP, +R, - i - i
i -~ a)fw)z 0+ j20 MoV  H a)fu)2 —0*+ j2¢ Yoo ]

The multi-mode FRF of power harvesting related the transverse acceleration can be

derived as,

P(jo)

2 joot 2
(_a) Whase € ) s=jo
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1 & joP™Q
v Rioag ™= a)fw)2 0+ j2 Moo
- m ; (w)2 m . (u)2 (4262)
JoP JoP!

joP, +R, - f -
1O rz—l“a)ﬁw)z—a)2+ j2§fw)wsw)w ;w£u)2_0)2+ j2§r(u)a’( ‘o

The optimal multi-mode FRF power harvesting related to the transverse acceleration
can be derived by differentiating with respect to load resistance and setting the

differentiable power function to zero. It is noted that parameter R, represents per-
unit load resistance—1/R,,q. Corresponding to Eq. (4.262), the optimal load

resistance can be formulated as,

ot _ X (@F Y ()
Ricas = X(@F +Y(@f (4.263)
where
m P’ ( (w)? —a)z) RS coPr(“)z(a)f”)2 —a)z)
lel(a) - )2 2§r )W) )2 fz—l:(6¢)£”)2—a)2)2 +(2§’r(“)a)£”)a))2 |
& P2 M) o wP (200 )
V)= ;(wﬁw)z—wz)z +(2cW o ZL‘( 0"~ )2 + (2t Waef

It should be noted that the optimal load resistance can be substituted back into Eq.

(4.262) to give the optimal power harvesting.

Corresponding to Egs. (4.249) and (4.251), equation (4.230) can be reduced in terms

of the generalised time dependent longitudinal function as,
U (£) =Hyu(J Mpase+ Hio 0 Whgee,
u, (t) =Hy,(jo) (- 0%ty )+ Hy,(jo)— cw,.e'). (4.264)
Corresponding to Eq. (4.223b), modifying Eq. (4.264) in terms of any position along

the piezoelectric beam gives the steady state relative longitudinal displacement under

two input base excitations as,
Uy (%,8) =Hyy(%, jo)(= 02Uy )+ Hip(X, jo)— o?w.e'). (4.265)
The multi-mode absolute longitudinal displacement can be formulated in terms of
EqQ. (4.265) as,
Uppo(X,1) =Upae@ + Hyy(X, j00) (= 02U ') + Hyy(X, jo)— o®Wy, ') . (4.266)
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It should be noted that the absolute displacement fields have been discussed at the
beginning of this chapter in terms of kinematic diagram of beam where the equation

(4.266) was formulated as Ugpg(X,t) =Upase(t)+Upei(X,t). The generalised time

dependent relative transverse displacement in Eqg. (4.231) can be modified

corresponding with Egs. (4.253) and (4.255) as,
W, (£) =Ha(J 0 )yae Hao( 1),
W, (1) =H,,(jo)(- 0%y, ) + Hyy(jo)— 0w %), (4.267)
The steady state relative transverse displacement can be reformulated in terms of any

position on the piezoelectric beam as,

elt).  (4.268)

Wy (%,1) = Hyy(X, jo)(= 0y, ') + Hyy(X, joo)— W,
Corresponding to Eg. (4.268), the multi-mode absolute transverse displacement can
be reduced as,

W (1) = Wy + Hyy(X, jo)(— 02Uy @) + Hyp(X, joo)— 0P8 ). (4.269)

abs
It should be noted that equation (4.269) is formulated according to the kinematics of

the bimorph beam as discussed previously to give w,, (x,t) = w,,(t)+ W, (x,t). The

rel
equation (4.232) can be modified into the generalised electrical potential response in
terms of Eqs. (4.257) and (4.258) to give,

V(1) =Hsy (J iy + Hip (100, (4.270)

V(t) =Ha,(jo)- 0ty ) + Hy,(joo) - 0wy ) (4.271)

It should be noted that u,,, and w,, refer to the input base longitudinal and
transverse displacement excitations on the bimorph. Corresponding to Eqgs. (4.266)
and (4.269), equations (4.250) and (4.256) can be modified to give the multi-mode
FRF of the absolute displacements and velocities related to the base input

longitudinal and transverse accelerations at any position along the bimorph

respectively as,

U, +u,(x,t 1 :
base . rel_( ) - _ +H (X, JCO)
jot 2 11
- Ubasee w

HE(x, jo) =

d

A —[ub el 4y ,(x,t)]
H:E\iel)(x,Ja)): dt ase re

=—+] a)Hll(X, Jw)

- a)zubaseejwt Jo
joot
1 (disp) : _ WbaseeJ + Whel (X’t) — _ 1 i
HZ ™ (x jo)= —otw, e o +H (X jo) (4.272)
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d .
Fe) &[Wbasee“‘“wre.(x,t)] | |
22 (X,Ja)): =—+ Ja)sz(X,Ja))

— W™ jo

It should be noted that equations (4.266), (4.269) and (4.272) are applicable for
analysing the absolute dynamic responses when comparing the results using the
Laser Doppler Vibrometer (LDV) because the signal output from the Vibrometer
can be transferred into a digital signal FFT Analyzer to display the results. The
results obtained from measurements can be the time dependent absolute
displacement, velocity, acceleration, Fourier spectrum and frequency response

function located at any position along the piezoelectric bimorph.

4.7. Multi-mode Frequency Analysis of the Normalised Coupled
Electromechanical Dynamic Response of Transverse-Longitudinal Form
(Closed Form-CEDRTL)

This section focuses on the multi-mode frequency response using the closed
form of the electromechanical dynamic equations under two input base excitations.
The closed-form analytical method was formulated according to the strong form of
the Hamiltonian principle which was formulated from Eq. (4.88). This included the
electromechanical bimorph element with the boundary-value problem where the
partial differential equations associated with the geometry and natural boundary
conditions were formulated in section (4.2) from Egs. (4.89) to (4.95). The solution
form from this analytical method involves the convergent eigenfunction forms which

can be formulated as

w,, (xt) = g‘i’r(x)wr(t) U (xt)= 2@)r(x)ur(t) . (4213
It should be noted that equation (4.280) is sometimes called the mode superposition
theorem which utilizes the normalised mode shapes and generalised time dependent
coordinates. At this point, the equation considering the coupling electromechanical
longitudinal and transverse forms of the piezoelectric element can be further
formulated in terms of frequency analysis. As formulated in Egs. (4.90) and (4.93),
the boundary-value problem formulated for the piezoelectric bimorph element can be

expressed using the normalised eigenfunction series under two input base excitations.
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The first representation of the electromechanical piezoelectric bimorph under
transverse bending, can be formulated using the Eq. (4.93), corresponding to Eqg.
(4.273a) as,

2 23 23
R0, i ) éff“jz[d f;(”]wr )+ 14— 10 YWy ) . 4.274)
X X

Multiplying Eq. (4.274) with lifq(x) and integrating with respect to x gives,

A8, (0 o ()~ T4 90 o,

0 dx

2 23
v fEE0 9 I ODNG om,  + [IAO (ipaaix 0. (4275)
0 dx dx 0

The boundary conditions from Eq. (4.94) can be further formulated by substituting
Eq. (4.273a) as,

¥.(0t)=0 |, d‘f’(rl_(o't):o | (4.276)
X

and two dynamic boundary conditions can be further formulated as,

W~ 1 (L (1) + CLE ”[M}w)— e 9% (L )0, (4277)

dx| dx? dx
A Oy - g0 Ty - R =0 @2

In terms of conditions implied in Egs. (4.277) and (4.278) and also using the
orthogonality relations, the second and third terms of Eq. (4.275) can be further

manipulated by using partial integration to give,

L . .
GRE ‘Pz(x) Py (x)ax= 1) A () s — fites 4% (x) ¥q(0) o
0 dX d 0 0 dX dX
L a2 (d%¥, d (d?¥,
icl(f k)dxz{ dxz(X)}Pq (X)dx - Cl(f k)dx[ dxz(X)] q( %
0
L < 2
_ él(fk) dz\PrZ(X) dLPq (X)| + Tél(f k) dZ\PrZ(X) d \qu(x) dx. (4.279)
dx dx ‘o 0 dx dx

Applying the boundary conditions from Eq. (4.276) into Eq. (4.279) and multiplying

by w,(t), the dynamic equation of the geometry bimorph problem can be written as,

W, dx ,
dx dx dx

Zf(:k ) d2¥ () i (Xt (t)x = _ick) A(L)li,q(l_)wr_Zf(c,k)md‘i’q(x)..
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Substituting Egs. (4.277) and (4.278) into Eq. (4.280b) gives,

e 8 [dz‘i’;(x)]@q<xm<t>dx= 0 Ui 000 O )19 S

dx dx dx

O'—-

%, (t)dx-(4.281)
Corresponding to Eq. (4.281), equation (4.275) can be reformulated as,

TN oty b )~ 114 ) iy s 131 L
0 0

(i) + 19 9Fe Ly Ly 0 SE L L)y,

! dx
L. 24 (x)d*¥q(x . v (L) L.y .
+ ICl(f,k) d ‘I’rZ(X) qz( )dX+R§T’k)V(t) q( ) +I|(A’k)‘1’q (Xilppeedx = 0 - (4.282)
0 dx dx dx 0

Corresponding with Eq. (4.280a), equation (4.282) can be modified to give a more

compact dynamic equation as,

UV . 0, (L) (L)
ARG, (X1 ()t (€) + 148 (L) (L) () + 118) SHAEV PFa B )

DB g i 0O g, g Pl

L
,“ Ak (X)dXWbase tlp \P (L)Wbase ) (4283)

It should be noted that the normalised eigenfunction series in Eq. (4.273a) must meet
the orthogonality relations to correctly represent the mode shapes. It is also noted
that the mode shapes are given in appendix B. As mentioned previously, this section
gives the piezoelectric bimorph beam equations based on Rayleigh’s beam
assumption as it considers the rotary inertia of the bimorph beam. The Euler-
Bernoulli bimorph beam can be formulated by ignoring the rotary inertia of the
bimorph beam. In this case, the normalised mass from Eq. (4.284) can be used to
ignore the rotary inertia of the bimorph beam at the first integration to give the

typical Euler-Bernoulli bimorph beam condition. The orthonormalisations can be
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provided by using Eq. (4.273a) and applying the orthogonality property of the

mechanical dynamic equations as,

L 08 (0% 00 L o d¥, (L) d¥q(L)
(j) f(CK) dx() L (j) [ARR (0, () 1) (L) g (L) + 1C) dx( ) ;X =5, (4.284)
jc(F 10 429 (x) 44 (x )dx=w$W)25 (4.285)

0 dx? dx2 &
where 5, is the Kronecker delta, defined as unity for g =r and zero for q=r. It
should be noted that equations (4.284) and (4.285) represent specific orthogonality
conditions based on the boundary conditions. The mechanical damping based on the

Rayleigh’s principle can be reduced in terms of orthonormality as,
w) _ W) W) W2 s _ 5w (w)
Cp =0+ w6,y =24, @

Equation (4.283) can now be reformulated by including Rayleigh’s damping
coefficient according to orthogonality conditions as,

W, (t) + 2™\ (t) + o™ w(t)+ PWy(t) = —QWhi,, (t). (4.286)
The second case of the electromechanical dynamic equation associated with
boundary conditions represents the electromechanical piezoelectric bimorph under
longitudinal extension. Here it is formulated using Eq. (4.90) corresponding to Eq.
(4.273b) to give,
k) d°0,(x)
dx?

— ARG, (x)i, — TAKG(t) + P u =0 . (4.287)

Multiplying Eq. (4.287) with ©,(x) and integrating with respect to x gives,

—[iAKg O, ()0 ()i dx -

The boundary conditions from Eq. (4.91) can be further formulated by substituting
Eq. (4.273b) as,

2A
[1ARE, (XNipaselt)iX +Té{?’k)®q( )OI ? ), (dx=0. (4.288)
0 X

O'—;I_
O'—.l—

) dO, (L)

®(07t)=0' - It(llg)ubase(t)_ It(iﬁ)(:)l’(l‘)"jl’ - él(lD'k ur + R(G k) ( ): O-(4-289)

In terms of conditions implied the Eq. (4.289) and the orthogonality relations, the

second term of Eq. (4.288) can be further manipulated by using the partial integral

form as,
L oxra v d [, (x (o) dO. (L) » L (o4 0. (x) 4O ()
£ Cl(?’”@q(x)&[ dfx( )]urdx =¢ow O{X( oy, - J Cf?‘k)%d—qxur dx .(4.290)

=
[EEN
a
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Substituting the boundary conditions from Eq. (4.289) into (4.290) and multiplying
by ur(t) in order to meet the dynamic equation of the geometry bimorph problem

gives,

O'—ul_

d X

O b e IR EX RO L XY

~(D k) d(:)r(x) d@)q (X)
dx

S uy dx+ RSO (Lv(t)- (4.291)

|
o—r
O

Corresponding to Eq. (4.291), equation (4.288) can be reformulated as,

_IIIA(A'k)(:)r(X)@q(X)UrdX - IJTI Ak (X)ubase(t)jx Itlp q(L)Ubase(t)
0 0

uy dx+ RSO, (L) = 0.(4.292)

(e b0 10,0 9400
10,0, (L) - el 0t

Modifying Eq. (4.292) gives,

440 (00, (i + 156 (L (L3 + 2" 40,0990, o _ gie e (Ln)

d dx

O'—-l_

= TR, (X Naset) — 18O (Lhipaelt) . (4203)
0

In this case, the second part of the normalised eigenfunction series in Eq. (4.273b)
must meet the orthogonality relations in order to correctly specify the longitudinal
mode shapes as formulated in appendix B. Furthermore, the specific orthogonality
condition to Eq. (4.293) can be established as,

O‘Ak)ér(x)é)q(x)dx 100, (L)0, (L) = 64, (4.294)
L+ (ox) 4O, (x) 4O, (x) 2

G(Dk) Z2r W ax = oY 4.295
(I) 1 dx dx X= O O ( )

where J,, is the Kronecker delta, defined as unity for g =r and zero for q=r. The

mechanical damping constant based on Rayleigh’s principle can be reduced in terms

of orthonormality as,
) — W (), W2 s _ o) (u)
C =ao,+Bw," 6,, =28, w,75,,. (4.296)

Equation (4.293) can now be reformulated by including the Rayleigh’s damping
coefficient based on the orthonormality conditions as,

G, () + 26 (t) + o P wlt)+ RV =~ QN ft).  (4.297)
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The third case of the electromechanical dynamic equation represents the
piezoelectric bimorph under electrical form. Here it is formulated as,

L 2 R
g(@é‘f,k)% - ﬁ§'}”%+ sgkg)v(t)Jqu(t) 0. (4.298)

Substituting Eq. (4.273) into Eq. (4.298) and differentiating it with respect to time to
obtain the parameter velocity and electrical current gives,

i?fz 040 (X) g, uy (t)- T dT() xwr(t)+T§(k)dxv(t)+ L ut)=0.4.299)
r=1o

dx dx? 0o ¥ load

The equation (4.299) can be reformulated as,

> B, (t) + i P )+ Pov(t)+ Rv(t) =0 . (4.300)

r=1 r=
In this case, the electromechanical piezoelectric bimorph beam based on Egs.
(4.286), (4.297) and (4.300) can be reformulated to give,

G, () + 2¢,')0, (t) + 0"y, (0} RUV(E) =~ QN e t)
W, () + 260 N () + o Wit)+ POV = ~ Qi t)  (4.300)

3RO (t) + 3 B, (t) + Pov(t)+ Rv(t) =0

r

Il
JuN
-

Il
U

It is clear that equation (4.299) provides the closed-form of electromechanical
dynamic equations with two input base motions and this equation can be further

formulated using Laplace transformations.

It is noted that because equation (4.301) has been normalised due to Egs. (4.284),
(4.285), (4.294) and (4.295), the parameters PY) p™) pYW W) p R Q¥and

Q™ can be reduced as,

dx 33
o o L - © ol 23
Zpr(u) _ ZIRs(’(i; k) d®r(x) dx , 3 r(w) _ ZIRQS k) d lPrz(X)dx ,
r=1 r=10 dx r=1 r=10 dx
R =, QP = 1896, (i + 196, (1) Q) =[T44, ape+ 1E 1)
load 0 0
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Equations (4.229) and (4.301) appear to be similar to each other but have different
sign and operation for some parameters. Equation (4.301) can be solved using
Laplace transformations. In this case, the multi-mode electromechanical dynamic

equations of the piezoelectric bimorph can be reduced as,

u,(s)=- 1)rH(s +20Wes 4 o) )sP +R,) ZSP } QYs?u,,.(s)

Z(s

+Y sPMpLQ (szwbase(s))} , (4.302)

w,(s)= - 1)r H(s +20WeMs + o’ )sP +R.) SZP } 52w, .(s)

Z(s

+ ZSF’ Vs Ubase(S)} (4.303)
[Z {sP (s 2ot ol )s ols)

r=1
+Z % sPW) (s +2¢ Wep™s 4 " )s ubase(s)ﬂ . (4.304)
The characteristic polynomlal form from Eqs. (4.302) to (4.304) can be expressed as,
Z(s), = (s +2Yols + o) )(s + 2L Wes 4 o XSPDJFRL)

—ZSP (s +2§ s+a) ) ZSP (s +2§ s+a)( w2 ) (4.305)

Corresponding to Eqgs. (4.302) to (4.304), the multi-mode transfer function of the
longitudinal displacement related to the base input longitudinal acceleration can be

obtained after simplifying as,

H11(5)= Ur(S)

Szubase(s) $2Wyae()=0
m 5(w)p(w)ny(u)
(Po+RQY -3 R 5
-- L =52+ 20"+ o . (4.306)
2+ 2§r(“)a)£“)s+a)§“)2 P+ R, - % sp")p(¥) m splIpt)

2
5?1 2o P 55571 20l ofP
The multi-mode transfer function of longitudinal displacement output related to the
input base longitudinal acceleration based on the element position (x) and subsidiary

variable (s) can be obtained after neglecting the input transverse excitation to give,

Hll(x S) — Upg (X’ S)
Szubase(s) SZWbase(S):O
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P pr(W)Qr(U)

m
. (SPD‘FRL)QI{U) z 2 ()
_ 3 6,(x) 7 s7+ 20 s+w”A" . (4.307)
7| s+ 20 Vols ol P +R _zm: spWpt _i pUpL) 2
52+ 20 MoMs+ o r1sz+2§r a)”s+a)()

The multi-mode transfer function of the longitudinal displacement related to the base
input transverse acceleration can be formulated as,

Hals) =

S 2\Nbase(s) 52Upee(S)=0

0 splvpliig

r

- 1 1%+ 2 Mofs + of . (4.308)
2+ 20 Su)Q)Su)S + a)su ? SRy + R~ i Slsr(W)Pr(W) oo sﬁr(u)pr(u)

r=1% 4+ 2, r(W)a)SW)S+ a)gw)z r=152 4 2, r(“)a)gu Js.+ a)ﬁ” ?
The transfer function between the input base transverse acceleration and longitudinal
displacement output based on the element position (x) and subsidiary variable

(s)can be obtained as,

H (X,S) — Ure (X S)
. S Wbase(s) 52Upase(5)=0

i sﬁr(w) pr(u )QEW)
K

_ 3 0,(x) =57+ 20 MeMs+ oM . (4.309)
r=1 S + 2( U)COSU)S-I-(()SU)Z SP. 4R — i SPr(W)Pr(W) ~ m SP u) P u)
oot 2, 0 W)Wy w2 (0)2
=187+ 28w, 's+ o, =1§ +2§r s+a)

The multi-mode transfer function of the input base longitudinal acceleration related

to the transverse displacement can be obtained as,

w(s)

Hails)= ST
n o spUpigl)
- L S, 205+ o : (4.310)
s+ 20 WpWs 4 0 Py rR - B sﬁ,(W)Pr(W) n spUpW
2152 1 20 Mo s 1 o =K + 20 WoWs 1 o0

The transfer function of the generalised relative transverse displacement with respect
to the input base longitudinal acceleration can be obtained in terms of the element

position (x) and subsidiary variable (s) as

W, (X,5)
H S)= rel
21(X S) szubase(s) o1
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g st(u>p<w)qu)

o ¥, (x) r1s2 4 20 WpWs 1 W w? .(4.311)
r=ll s2 4 Zé/lgw)a)lgw)5+a)£w)2 SP, +R, - m SP( )P( W) m SFA’( )P( u)
r-1g2 4 24“ s+a)( W r-1g2 4 2§ s+w( w?

Corresponding to Eqg. (4.303), the multi-mode transfer function representing the input
base transverse acceleration with respect to transverse displacement output can be
obtained, neglecting longitudinal excitation as,

H 22(5) = (S)

Szwbase(s) szubase(5)=0

n WpU)oW)
P. +R S SRR
; PR = e afls s o . (4.312)
524 2, W)W 4 wSW)Z SFp +R, - % sPWpW) % Sﬁr(u)pru)

r=lg? +2§( W ( s+w( w)? f—152+2§ ()s+a)£”)2
In terms of applying Laplace transforms to Eq. (4.273a), the multi-mode transfer
function from Eq. (4.312) can be modified in terms of the position of the

piezoelectric element (x) as,

Wiy (,5)

H.,(x,s)=
22( ) S Wbase<s) 52Ubase(5)=0
(SP +R p(w) B g sﬁr(U)Pr(U)QI(W)
o @, (1) =TI N 1 (4.313)
i1 52 4 27 )w§Ws+w£W)2 $Po R, - % slf’("“)P(W 2 m sf)r(u)pr(u) 2
r-1g2 +2§ s+a)() rls +2§ S+a)()

With the same method, the multi-mode transfer function between the input base
longitudinal acceleration and electric voltage can be obtained as,

m spQ)

52 4 20 ols+ o) (4.314)
m spp) m splt)plv)

S Wbase( )—0 SPD -I—RL - z -
2+ 2L Mol o 524 220afs ol

N
H31() szubase()

The multi-mode transfer function of electric voltage output with respect to the input
base transverse acceleration can be obtained, neglecting longitudinal excitation,

0 sl
2 ;
Hols) = v(s) ) r=1 ( )+(2§)( s+ o) - . (4.315)
2 m 5(W)pl(w m 5U)plu
s Wbase(s) $pase(s)=0 sPy+R. - Z R SR

Fist 2l of P 552 2P ofP
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With the same method, the multi-mode transfer function between the input base

longitudinal acceleration and electric voltage can be obtained as,

1 M Sﬁr(U)Qﬁu)
I(s) Rioad r1g2 4 2§§u)w$“)s+a)$“)2 . (4.316)
H4l(s) = 52U (S) - m S|S(W)|5(W) m SFA)( )P( )
base Szwbase(s)zo SPD + RL - z r r 2 7
152 1 97 W pWs 1 (") -1s + 20 W05 4 o)

The multi-mode transfer function of electric voltage output with respect to the input
base transverse acceleration can be obtained, neglecting longitudinal excitation as,

1 m spWigW)
Haolo) o~ Roat 352 + 95+ of” . @aw)
O ) 0 P 0w Y

sPy +R - -
O g Mool Fist s 2ol o

The multi-mode transfer function of power harvesting due to input longitudinal

acceleration can be derived as,

P(s)
(Szubase (S))Z %W ge(S)=0

Z sPQW) 2
u u 2
_ '\/ load r=1 S + Zgl’ C()S )S+ a)s ) _ ) (4318)
» SP( )p( w) © SPF(U)PI’(U)
sPy+RL - D W T2 o e
1S +2§r S+a) 18 +2§r o,'sS+ w,

The multi-mode transfer function relating power harvesting to input transverse

excitation can be derived as,

__ Pl
2
(5 2 Whase (S )) szubase(s )=0

2

1 © Slﬁ(W)Q(W)
— v Rload r=1 32 + 2§rW)w£W)S + a)éW)z . (4319)
a » 5 (w)p (w) o 5up ()
sP,+R, — Z 5 SPr Pr SPr Pr

=1 S+ 2§fw)wfw)s+a)£w)2 = 2¢WepWs + o uy?
Corresponding to Egs. (4.306) to (4.319), the frequency response function (FRF) can

be formulated. In this case, the electromechanical dynamic equation of the

piezoelectric bimorph can be formulated in matrix form FRF as,
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Hll(Ja)) le(Ja))
. Hu(jo) Hy(jo)
Hlje)- Hai(jo) Ha(jo) . (4.320)

41(]”) H42(ja))
The first multi-mode FRF represents longitudinal motion with respect to input
motions. In the case where input transverse motion is ignored, FRF can be obtained

from base-input longitudinal motion as it was formulated,

. uc(jo
H11(Ja’):72r( )J-wt
~® Upase® ™ " |g_j,
© WP ) (W)Q(U)
(joPy +RQ! =3 f
3 1 rla) -t + JZ{ . (4.321)
T WP 2 190 © (P -
o -’ + j20 e joP, 4R, - Z R _Z 160P
o —o +12§ _10)( ) +12§

Equation (4.321) can be modified to obtain the FRF as a function of position of the
piezoelectric element (x) and frequency (jw) by transforming it back into the Ritz
eigenfunction form as

. Uper(X, ]
Hya(x, joo) = o ja ar)i'u( Jajz,t
base® s=jw

( J O)PD + RL )qu) - i J a)ISr(W) Pr(W)Q'(U)

:_i ©;(x) . 2-1)w£w)2_w2+ j2§£w)a)£w)cz)) . (4.322)
u)? i9U) (u © + Bw)plw - M
Aol -0+ 2l o) jopy g 3 SR g eR'R

r=1a;§W)2 ~0?+ j2r WMo r:1605“)2 ~ 0+ j2 el
The multi-mode FRF of the relative transfer function between the input base
transverse acceleration and output longitudinal displacement can be obtained as,

u(jo)

HlZ(ja)) = —a)ZWb ej“’t
ase

s=jow

i jwﬁr(w) pr(U)ng)
1 oM -0+ j20 Yoo .(4.323)
W?_ 2, 9 ) (3 ioPWpw) = ioPpWpW)
o -0+ 20 0 0 jWPD+RL_Z : Jor ™ H N : Jor,
To" —0’+j2tMeMe T ol -0+ 20w

r

Equation (4.323) can be modified as a function of position of the piezoelectric

element (x) and frequency (jw) by transforming it back into the Ritz eigenfunction

form to give,
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urel (X’ Ja))

Hy, (X, jo) = Cotw e .
e joPYIpligW
N 0,(x) T 0+ j2 Moo (4.324)
] a)ﬁ“)z—a)2+ j20 oY 0P, 4R, - i joP"pW E joPUpt

oo r1a)( —0'+j2 Ve

rl(() 0)2+j2§r(w] )
The second multi-mode FRF is the transverse motion with respect to input motions.
If base-input transverse motion is ignored, the FRF of transverse motion related to

the base input longitudinal motion can be obtained as,

: w, (jo)
Hoi(jo) = ﬁ
@ Upase® ™ |s_j,
i ij”)(U)p(W)Q(U)
- 1 T -0+ j2 Voo .(4.325)
o ~ o'+ j2¢ Moo P, 4R — Z’: joPR Ry J'wls(u)P(u)

1 wﬁw)z —0*+ 2o rla)f” —0*+ 200
Equation (4.325) can be modified to obtain the FRF as a function of position of the
piezoelectric element (x) and frequency (jw) by transforming it back into the Ritz

eigenfunction form to give,

: Wiy (X, jo)
Hou(x, jo) = rze(m
— @ Upase® s=jo
i j w|5r<u) pr(W)Qiu)
N W, (x) T -0+ j2t VeV .(4.326)
(w)? © 5(w)p(w) » : B)pl)
| o - o+ ng” e ja’Po+RL_Z joP, _z JoR R

= a)fw)z ~0"+ ] 2§r o = wf”)z —0*+ 200V
The multi-mode FRF of transverse displacement with respect to input base transverse
acceleration can be obtained as,

. w,(jo
H22(Ja)): Zr( )Ja)t
O Whase® " [_jq
(0P, +R QY -5 SR
. 1 T o -0+ j20" 0w , (4.327)
WP 2 120wl = jP™pt) © i oPWpl)
0" - J(rwrwaPDJrRLZW J - Jor

T " -0+ 20 Moo r_1a)§” —0* + 20

Equation (4.327) can be modified to obtain the FRF as a function of position of the
piezoelectric element (x) and frequency (jw) by transforming it back into the Ritz

eigenfunction form to give,
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Weel (X’ Jw)

Hao(x, jo) = — ot
— @ Whasef

s=jw

© 5U)pu)n W)
) pr +R )Q Z prr Pr Qr
K- ¥ (x) To —o’+ j2¢ Ve e .(4.328)

joR"PM & jeRR

W r1a)( a)+12§, r

P a)ﬁw -0 +12§r r

The multi-mode FRF between electric voltage output and the input base longitudinal

acceleration can be obtained as,

R $ 1),
Hy,(jo) = Wszjw
$ joR QY
u)2 - u u
_ T o -0+ j2c Voo . (4.329)
- 5w W) 2 joP P
joPy, +R — Z Jor - o

1 cofw)2 —0*+ j2c oMo = a)Eu)2 —w?+j2¢ Wl
The multi-mode FRF of electric voltage output related to the input base transverse
acceleration can be derived, where the base input longitudinal acceleration is omitted
to give,

v(jo)

jat
- Wbas e

Haz(jw)

s=jw

5 joP"Q
w)2 - w w
- = o™ -0+ j2¢ Moo . (4.330)
- T BWpW) o0 i HPWp)
_ joP™P! JoB P,
JoPy +R, — Z W2 2 iosw) (W) W?2_ 2. o) (u)
Ao —0'+j25 oMo T o -0+ 2 e o

r

The multi-mode FRF of electric current output related to the input base longitudinal

excitation can be stated as,

1 (joo)

2 jat
— @ Up, £

H41(ja’) =

s=jw
L ¢ jeRlo
Rigaa T wﬁ“)z —?+ j2 Yoo . (4.331)
s i oPWpw) o i oPWpU)
. JoP"P, JoP P,
JoPy, + R — -
>t rz=1: a)fw)z —0*+ j2 Moo r2=1: w}”)z —0?*+j2¢ Voo

r

The multi-mode FRF of the electric current output related to the input base transverse
acceleration can be derived, where the base input longitudinal acceleration is omitted

to give,
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H,(jo)=
42(J ) _a)zwbaseejwt .
1 0 ja)lf) w Q(W)
_ Risd 75 0" — 0? + j2¢Ma, (4.332)
joP, +R, — Zw: joR™R™ '~ ja)’sr(u)Pr(u)
T B ot j2 el T o —o?+ 20w

The multi-mode FRF of power harvesting related to the longitudinal acceleration can

be derived as,

P(jw) |

2 joot 2‘
(—60 Upase© ) s=jw

2

z J a)lsr(u )QSU)

_ \/ o 1 O — 0 + 200w . (4.333)
o j a)p(W)p w) o j wf)r(u)pr(u)

joP, +R, — r -
1% T rzzl“a)fw)z—a)zﬁLjZQ’r(W)a)fW)a) ga)ﬁ“)z—a}ZJer(f”)a)( )

The multi-mode FRF of power harvesting related to the transverse acceleration can

be derived as,

P(jo) |

2 jat P
(_a) Whase© ) s=jw

2

I I L
w 2 H w w
_ VRias 71 0" — 0 + j20 Moo (4.334)
1 a)f"")2 —*+ j2c WMo wi“)z —0?*+j2¢ YoV

Differentiating Eqg. (4.334) with respect to the load resistance and setting the
differentiable power to zero gives the optimal load resistance. It is noted that the

parameter R, represents per-unit load resistance —1/R,,,q - The optimal resistance

can be formulated as,

. X(w) +Y(w)
Rlogtd = \/ ((a)))z +Y((a)))2 1 (4335)
where
NSV S 2 it I SNl i
= P, - — ,
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= ( o — wz)z 2ot (wguﬁ _ wz)z +(20¥0V0f

It is noted that the optimal multi-mode FRF of power harvesting related to the

Y(0)= i PP Wee) & PUPY (20l )

transverse acceleration can be obtained by substituting the optimal load resistance
into Eq. (4.334).

Corresponding to Eqgs. (4.321), (4.323), equation (4.302) can be reduced in terms of
the FRF as,

U, (t) =Hy,(§0Nipage t Hip(J0Wpace,
u, (t) =H,,(jo)(- @ty )+ Hy,(jo)— oPw,.e') (4.336)
Modifying Eqg. (4.336) in terms of any position along the piezoelectric beam gives,

Upey (X,1) =Hy, (X, ja))(— a)zubaseej“")+ Hy, (X, ja))(— a)zwbaseej“‘). (4.337)
The multi-mode absolute longitudinal displacement can be formulated as,

Upp (1) == @°U ' + Hyy(X, j0)(- 07U )+ Hoy(X, joo ) oW ). (4.338)
The generalised time dependent relative transverse displacement in Eq. (4.303) can
be modified corresponding to the Egs. (4.325) and (4.327) as,

W, (£) =Ha(J @ )yae Hoo( 1),

w, (t) =H,,(jo)(- @’u,,e'*) + H,(jo)- 0w, o).  (4.339)
Corresponding to Eq. (4.273a), the relative transverse displacement can be
reformulated in terms of any position along the piezoelectric beam as,

Wiy (%,1) = Hyy(X, jo)(— @0y, 87%) + Hyy(X, jo)l— o, e'”).  (4.340)
Corresponding to Eq. (4.340), the absolute transverse displacement can be reduced
as,

W, (X,1) = — Wy, 87 + Hyy(X, joo)(— 02Uy ) + Hyy(X, joo)— w0 ).(4.341)
The generalised electrical potential can be formulated as,
V(t) =Ha, (o Nipaee + Hao (0 Wil e (4.342)

v(t) =Ha, (] a))(— a)zubaseej‘”‘) +Ha,(j a))(— a)zwbaseej“‘) : (4.343)
It should be noted that u,,. and w,, are input base longitudinal and transverse

displacement excitations on the bimorph. Corresponding to Egs. (4.338) and (4.341),
the equations (4.322) and (4.328) can be modified in terms of the multi-mode FRF
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of the absolute displacements and velocities relating the input longitudinal and

transverse displacement at any position along the bimorph respectively as,

jo
Hl(cliisp)(XJa)) _ Upase® - +ureljc(utx’t) _ —LZ+H11(X,J'60)
—@ U, E @

[ubaseejwt + Upg (th)] 1 ( )
= —+ ja)Hll X,ja)

ALe(x, jo) = At

—&)Zubaseejwt Jo
A~ . J(x)t
H)(x, jo) = oase® *Wre;gtx’t) =L H,(x o) (4.344)
—0"W,, £ (0
d

[Wbaseeja)t"'wreI(X’t)] . ( . )
- =—+4 JoH (X o
_a)ZWbaseert o #
It should be noted that equations (4.338), (4.341) and (4.344) are applicable for

analysing the absolute dynamic responses and comparing the results measured using

gz jo) = 4

the Laser Doppler Vibrometer (LDV) at any position along the piezoelectric bimorph

beam.

4.8.  Effect of Broadband Multi-Electromechanical Piezoelectric Bimorph

Beam with the Multi-Frequency

This section focuses on an array of piezoelectric bimorph beams with
different geometries attached to the base structure under input excitation. The
bimorph beams can be modelled using series and parallel connections as shown in
Figure (4.6). The multi-bimorph beam can be modelled with different geometric
structures (thickness, width and length) in order to widen the frequency resonance of
each bimorph beam. This also depends on the connection types of the bimorph and
various load resistances. The effect of the multi-bimorph beam underlies the
optimization design throughout the frequency domain. To solve the broadband multi-
frequency response for the multi-bimorph beam, the previous formulations can be
extended into the generalised multi- electromechanical dynamic equations associated

with the electrical form of the piezoelectric system.
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W,

ase
Figure 4.6 Multi-Electromechanical Piezoelectric Bimorph Beam with the Tip
Masses : a) Parallel Connection, b) Series Connection
In this case, the previous equations from the normalised weak form of CEDRT in
section 4.4 can be used as an example case to formulate the multi-mode frequency
analysis of the broadband multi-frequency bimorph beam. The multi-mode equation
can be reduced into the mathematical model of electromechanical differential
equations for each bimorph beam. The generalised electromechanical piezoelectric
dynamic equations can be formulated in the multi-mode system r=2123...min

terms of the number of bimorph beam i=1,2,3....n (the broadband multi-frequency)

as,
W, () + 243wl (t) + ol w, (t)+ Py (t) =~ QN (t)
( )+ Zgrz ( ) + wW) WrZ(t ( ) = _ng\g)wbase(t) ( 4345)

W, (£) + 260N (1) + W (0)+ PV () = — Qi Wihsl(t)
Because the array of blmorph beams are clamped on the base structure with only one
input excitation, the variable Wi,,.(t) will be the same for all electromechanical
piezoelectric dynamic equations. The second form of the electromechanical
piezoelectric dynamic equations can be formulated for the single mode system as,
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Isr(1W)Wr1(t) + PD2v1(t) = Q1 (t)

If\)r(;N)V'VrZ (t) + PDZVZ (t) = qz (t)
(4.346)

I:’Sr(iW)W (t) + PDIVI( ) = qi (t)
The equations (4.345) and (4.346) have been normalised in terms of the normalised

Ritz eigenfunction series as given in previous derivations. The parameters Pr(iw), pw,

r

QW, P, and R, can then be stated as,

rn

pi) = TRE0 Mg g - $pw g 1
0 dx? i—lr=1 Rioad
Poi J.S(k dx Q .‘. (A IP (XﬁX + IIIpI\PI’I(L)
0

It should be noted that each bimorph beam can be connected either using the parallel
or series connections and the external load resistance can be an external circuit to
connect all the bimorph beams in terms of the Kirchhoff's voltage law (KVL) and
Kirchhoff's current law (KCL). The parallel connection of the multi-
electromechanical bimorph beam can be stated as,

V)=V (t)=....=vit)=v(t) , @)+ at)+..+6(t)=q). (4.347)
The series connection of the multi-electromechanical bimorph beam can be stated as,
Vi(t)+va(t) +tvi(t)=v(t) . at)=ax(t) = ... =qi(t)=a(t) . (4.348)

The electrical voltage from the load resistance as shown in Figure (4.6) can be stated

as
V(t) = 4(t)Rpa- (4.349)

4.8.1. The solution form of parallel connection

The multi-electromechanical piezoelectric bimorph beams can be modelled
with parallel connection as shown in Figure (4.6a). In this case, three bimorph beams
can be used to represent the broadband model sample having a single mode system.
Once the single mode constitutive frequency equations are established, the multi-
mode can simply be formulated in the forthcoming section because the mathematical
derivations given in the previous section can be viewed as the frame of reference in

representing the normalised multi-mode frequency analysis. Corresponding to Eq.
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(4.347), the first form of the electromechanical piezoelectric dynamic equations from
EqQ. (4.345) can stated in terms of the three bimorphs under parallel connection as,

W (1) + 24l (0) + off w01+ PEV(E) =~ QWi 1)
i, (£) + 26 0l t) + 0y w0+ REM(E) = ~ QWi (t) . (4.350)

Y w W)\ w)>2 w W),
W13(t) + 241(3 )6()1(3 )WlS(t) + a):IFS) WlS(t)+ Pl(?: )V(t) = _Ql(s )Wbase(t)
It is noted that the variable v(t) must indicate the same form. The second form of the

electromechanical piezoelectric dynamic equations can be formulated, where
equation (4.347) can be applied to Eq. (4.346) to give,

ls1(1W )Wl (t) + PDlv(t) =4, (t)
F31(2W)V.Vz (t) + PDZV(t) =0, (t) . (4.351)

I:A)1(3W)V.V3 (t) + Pst(t) =0, (t)
As shown in Egs. (4.348) and (4.349), each equation indicates identical variable\'/(t).
Corresponding to Eq. (4.349), Equations (4.350) and (4.351) can be algebraically

solved using Laplace transforms, reduced into matrix form giving the linear
superposition of equations. The single mode of electrical voltage transfer function of

the three broadband piezoelectric bimorph beams can be expressed as,

; R"Qy"

V(S) _ i s+ 24'“ W)S—O—a)lI w)? . (4.352)
2 sp"’

2
S Wbase(s) 323: PDi I RL _ {Z
i=1

i1 S%+ 2§1IW 601. )s+a)1(, w)?

The transfer function of electrical current can also be formulated as,

1 3 Sp(W)Q(W)
|(S) _ Rload i=1 32 + 2; )S+ a)( w)?

S*W, (S 3 3
b ( ) SZ PDi +RL— {Z SP
i=1

7 5%+ 20 Ml s+a)l(,W) J

(4.353)

The single mode electrical power transfer function related to the input transverse

acceleration can be obtained as,
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1 < sPiQL
P(S) Rload i=1 Sz + Zé/(w)a)fl )S + a)( )2 (4 354)
Sszase(S) SP(W)2 o

si Py +R, — [

i=1

3
; 52+ 2 MalMs + a)l(,"v)

).

The single mode frequency response function (FRF) of electrical voltage can be

formulated as,

i p(W)Q(W)
V( . ) - (w)2 + 24’ (W)
Jow _ i=1 C() J 1i a)ll (4355)
- wzwbasee Jot 3 3 SP-
Z JoPy, + R — Z (w)2 2 1I. (W) (w)
i=1 i=L @y —w + | 2§1i ;@

The single mode FRF of electrical current related to the input acceleration can be

obtained to give,

1 jooPy"Qs
1(jo) _ Rioas i1 a)l(.w) —0’ + J2§1| a)ll (4.356)
— o'W, 8" 3. 3 spW)
> Py +R - D] s
i1 i1 a)l(w) —0?+ 2o
The single mode FRF of electrical power can be formulated as,
Ly Jerroy
P(jw) _ VRiuw T o —0” + j2¢" wl. (4.357)
- Wbaseejwt i . i SP:L'
joPy, +R - :
= R = a)l(iw)Z ~0’+j2¢ Moo i

In terms of the multi-mode system reduced from Eqgs. (4.352) to (4.357), these
equations can be extended into the generalised multi-mode frequency response
functions of the broadband piezoelectric bimorph beams to give the electrical
voltage. Coefficient r indicates the first mode until the m™ mode and coefficient i

indicates the first bimorph beam until the n™ bimorph, which is formulated as,

p( Q(W)
. ZZ (w)?2 2, W) (W)
v(Jw)_ _ T A o)) -0+ j20 . (4.358)
a)zwbas eJ(ut SI:>ri

=1 r=1

S ion, R{zz

o —o’ + j2¢ Vol

The multi-mode FRF of electrical current related to the input transverse acceleration

can be obtained as,
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L s jorP "y
(w)

. w)2 H w w
IZ(Ja)) __ Roas 77 7= 0l —0® + j 28 )?Ei o . (4.359)
—oW, aseejw n n.m (w)
D ST D 33 o
i=1 i=1 r=1 C()S:N) —a) + J Zg(w)

The multi-mode FRF of electrical power can also be formulated to give,

— 2

1 n i joP (W)Q(W)

P(jo) _ VRoas T T 0 —0® + j2 Mo . (4.360)
_wZWbaseejwt . L P(W)
Pt R~ | D e
E o —o"+ 20505 0 ) |

4.8.2. The solution form of series connection

In this section, the multi-electromechanical piezoelectric bimorph beam under
series connection is discussed. Three piezoelectric bimorph beams under input
transverse acceleration can be used to model the single mode frequency analysis of
electrical voltage, current and power. Corresponding to Eq. (4.348), the first
generalised electromechanical dynamic equation for the single mode can be
formulated from Eq. (4.345) to give,

Wll(t) + zé’l(z\l)a)l(\f)wll(t) + a)JF\:{V)Zwll(t)_'_ Pl(fV)Vl(t) = _Ql(\:{V)Wbase(t)
le(t) + ZJfZV)a)l(‘év)le(t) + a)fév)zwlz(t)*‘ Pl(ZW)Vz(t) = _Ql(;v)wbase(t) . (4_361)
Wls(t) + ngg)a)l(;\I)WIS(t) + a):E;V)ZWIS(t)+ RL(SW)VS(t) = _Q:L(;V)Wbase(t)

The second generalised electromechanical dynamic equations for the single mode can
also be formulated in terms of Eq. (4.346) to give,

lf)l(IW)Wll(t) + PDlvl(t) = q(t)
I:A)l(zw)wlz(t) + PooV, (t) = d(t) , (4.362)

PN (t) + Pog¥s (t) = 4
Corresponding to Eq. (4.349), equations (4.361) and (4.362) can be further
manipulated in terms of Laplace transforms to give the matrix electromechanical
dynamic equations. The multi-output electrical voltage related to the input transverse
acceleration can be stated into the transfer function based on a linear superposition of

equations as,
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3 P 1i
_Z Di (W)Z
P52 opWps p? P
V(S) _ 1i 1i Ppo;
Szwbase(s) Pl(iw)z
2
iSR'—_ +1+R, 23; SPoi )
o T2 2ol s o -

The single mode transfer function of electrical current can be formulated as,

S
g ool
Rioad i-1 2 s ), (W) (. Plgw)z
Is) 7+ 20y oy S + T p,
$“Whase(S) Pl(iw)z
2
ilsR +1+R, 21 i ()2
T T ageflss oft? B
Di

The single mode electrical power transfer function can be formulated as,

— 12

(W)Q(W)
i Poi
,/Rload i=1 242 (w) (W)S+ w2 Pl(iW)
P(s) _ cu ST Po
SZWbase(s) F’l(iw)
23: Ry +1+R, Z SPbi
i-15Pp;j i-1 ,  pw?
2 2ol oy -
Poi

(4.363)

(4.364)

(4.365)

The single mode frequency response function (FRF) of electrical voltage can be

further formulated as,

P

1 (w)
i PDi Qll
i-1 2 (w)2
o) -0’ +j24 Mol 02—
vt) Poi
- a)ZWbasee jot P1$W)2
S R e sPy;”
> —Lt+1+R, z 2l -
= JoPo T2 iop gy P
a)l(l —0°+ 20" 0 0 ———

Di

(4.366)
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The single mode FRF of electrical current related to the input transverse acceleration
can be obtained as,

i

(w)
1 i PDi Qll
. (w)?
Rioas 7 0)1(iw)2 i+ jzé/l(iW)a)l(iW)a)_ﬂ . (4367)
0
- a)zwbasee et Plg‘N)z

Z : RL +l+ RL z S Di 5
i JaPy, w2 2 o w) (w) )
oy -0+ 20 o) o —P—

Di

The single mode FRF of electrical power can also be reduced as,

r -2
PlfW) (w)
13 P
Z Di
Rigag i1 a)(w)2 R jzé/(w)a)(w)w_ PlSW)Z
P(t) -: 1i 1i 1i X
O Wy R (4.368)
23: R 14R 23: P
i1 Py, k= 2, pw?
o —ot+ j2g el e - —
Di

The previous equations represent the three electromechanical piezoelectric bimorph
beams in terms of the single mode TFs and FRFs. In the next case, the broadband
piezoelectric bimorph beams can be further formulated to give the generalised multi-
mode FRFs of each beam. The multi-mode FRFs can also be found by further
manipulating Egs. (4.345) and (4.346) in terms of Eqgs. (4.366), (4.367) and (4.368).

The multi-mode FRF of the broadband electrical voltage can be formulated to give,

ﬂQ(}N)
T WPy 12r W Pa
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where coefficient r indicates the first mode until the m™ mode and coefficient i
indicates the first bimorph beam until the n™ bimorph. The multi-mode FRF of the

broadband electrical current related to the input transverse acceleration can be
formulated as,
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The multi-mode FRF of the broadband electrical power relating to the input
transverse acceleration can be formulated as,
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4.9. Closing Remark

This chapter has considered novel analytical methods of modelling the
electromechanical dynamic equations for one and two input base excitations of the
piezoelectric bimorph beam with tip mass using the Rayleigh and Euler-Bernoulli’s
beam assumptions. As mentioned previously, the Rayleigh piezoelectric bimorph
beam only considers the second mass moment of inertia (rotary) of the bimorph
where this can also be reduced to the Euler-Bernoulli’s piezoelectric bimorph beam
by ignoring the rotary inertia of bimorph beam. Therefore, the electromechanical
piezoelectric bimorph beam was formulated according to the Rayleigh beam
assumption. Moreover, this chapter also discussed the strong form of
electromechanical dynamic equations using Hamiltonian’s principle under series and
parallel connections. The weak form reduced from the strong form method represents
the analytical approach developed using the Ritz method whereas the closed form
boundary value method reduced from the strong form method can be further

formulated using the direct analytical solution with orthonormalisation by
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introducing the space- and time-dependent eigenfunction series into boundary
conditions. Moreover, the electromechanical closed-form method can give accurate
results because of its convergence for the chosen frequency response mode of
interest. In comparison with the electromechanical weak form solution based on the
Ritz analytical approach method, the typical mode shapes or space-independent
eigenfunction forms and number of modes must be chosen correctly in order to meet
convergence criteria and give results similar to the closed-form method. For
example, some FRFs results from the analytical weak form of piezoelectric bimorph
with tip mass as discussed at Chapter 6 plotted the first mode but were iterated using
three modes of interest to give accurate results. In this case, the weak form was
chosen, having the same typical space-independent eigenfunctions (appendices A
and B) as for the closed-form to reduce computation time and number of iterations to
meet the speedy convergence criteria. The effect of strain field due to transverse
bending and longitudinal extension affects not only the mechanical moment and
force of the interlayer (all layers of bimorph) but also the electrical moment and
force of the piezoelectric layers (top and bottom layers of bimorph). Concerning the
electrical moment and force, the backward and forward piezoelectric couplings due
to the transverse and longitudinal forms can also be formulated, where these give the
electromechanical coupling of the piezoelectric layers. Furthermore, the weak form
of the electromechanical dynamic equations were formulated using the
orthonormality conditions to obtain the coupled electromechanical dynamic response
of transverse form (CEDRT), coupled electromechanical dynamic response of
longitudinal form (CEDRL) and the coupled electromechanical dynamic response of
transverse-longitudinal form (CEDRTL) to give the multi-mode transfer functions
(TRs) and frequency response functions (FRFs). The closed form of the
electromechanical dynamic equations in terms of orthonormality conditions is also
formulated according to the CEDRTL. The broadband piezoelectric bimorph beam
based on the CEDRT was also formulated to give the single- and multi-mode
frequency analysis of the bimorph beams. At the same time, the multi-frequency
broadband piezoelectric bimorph beam equations were also provided. In the next
section, the parametric case study based on the electromechanical dynamic equation
of the Euler-Bernoulli piezoelectric bimorph beam with the tip mass will be

discussed.
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CHAPTER
5

Parametric Case Study of the Electromechanical
Piezoelectric Bimorph Beams

This chapter investigates parametric behaviour of the electromechanical piezoelectric
bimorph beam with input base acceleration and variable load resistance, thickness
and length. The electromechanical frequency responses of the bimorph utilized for
the study include the tip displacement, tip velocity, electrical voltage and power. The
normalised weak and closed forms of electromechanical dynamic response of the
transverse-longitudinal equations (CEDRTL), which were derived in chapter 4, were
applied in this chapter to analyse the series and parallel connections of the
piezoelectric bimorph beam. The broadband multi-electromechanical piezoelectric
bimorph beam using the weak form of CEDRT was also modelled to represent the

optimised multi-frequency electrical voltage, current and power.

5.1. The Piezoelectric Bimorph Properties

The choice of material properties and geometrical structure were found to be
essential aspects for optimising the response of the cantilevered piezoelectric
bimorph beam. The list of properties of the bimorph can be found in Table 5.1 where
the piezoelectric property was based on the PZT PSI-5A4E element with the centre
brass shim from Piezo Systems, INC. The effect of rotary inertia of the bimorph was
ignored because the Euler-Bernoulli beam model was considered in this chapter. A
tip mass and its rotary inertia located on the tip of the bimorph were also considered
in terms of its geometry and material properties. The geometry of the tip mass was
very small as given in Figure 5.1. The zero-th mass moment of inertia and the second
mass moment of inertia (rotary inertia) at the centre of tip end of bimorph can be

formulated as,
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Table 5.1 Characteristic properties of the piezoelectric bimorph system.

Material properties Piezoelectric Brass Geometry properties Piezoelectric Brass
Young’s modulus , Q,, (GPa) 66 105 Length, L (mm) 30.1 30.1
Density, p (kg/m°) 7800 9000 Thickness, h (mm) 0.15 (each)  0.13
Piezoelectric constant, ds; (pm/V) -190 - Width, b (mm) 6.4 6.4
Permittivity, ¢1, (F/m) 1800 ¢, - First coefficient It(iﬁ)(kg)* 7.9872x 107
permittivity of free space, ¢, (pF/m)  8.854 - Third coefficient It(i%) (kgm?)"  2.5103x 107°

1 Calculated according to the geometry and material properties of tip mass and the rotary inertia at centre of gravity of tip mass
coincident with the end of bimorph length as shown in Figure 5.1 where |, = 4mm h, =2mm and b, =6.4mm (width).
First and third coefficients refer to zeroth and second mass moment of inertias respectively.

Base lo
Support ~yha
Fy
A
P L Tip
) " Mass

Figure 5.1. Geometry of the Bimorph and Tip Mass

It should be noted that variables h, and hs indicate the thickness of the layers of the

piezoelectric bimorph and substructure (brass shim in the middle layer).

5.2. Electromechanical Dynamic Response of Piezoelectric Bimorph under
Parallel Connection

In this section, the piezoelectric bimorph with a tip mass will be discussed
using the multi-mode FRFs and variable geometry and load resistance. In the next
section, the mechanical damping ratios and load resistances need to be determined.
The analysis of the piezoelectric bimorph beams under parallel and series
connections were based on the coupled electrical dynamic responses from the
transverse bending and longitudinal forms with polarity-induced electrical fields and
internal capacitance. The transverse base acceleration input was used to excite the
bimorph providing multi-output electrical dynamic responses. It should be noted that
all results in the forthcoming sections were plotted according to the suggested

formulations given previously.
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5.2.1. The Bimorph Multi-mode FRFs of Tip Absolute Dynamic Displacement

The trend of multi-mode FRFs of tip absolute dynamic displacement based on
variable load resistance was simulated from 0 to 3000 Hz. In this case, the first three
modes were shown with chosen resistor values of 500 Q, 4 kQ, 20 kQ, 40 kQ, 90
kQ, 400 kQ, 3 MQ. The results of resonance frequencies and amplitudes were only
calculated using these load resistor values. All results depended on the properties of
the bimorph, boundary geometry, input base acceleration, tip mass and the type of
circuit connection. It should be noted that the base input transverse acceleration onto
the cantilevered piezoelectric beam can be considered as a moving static support
base to create the dynamic load base due to the product of acceleration and
generalized mass of the bimorph and tip mass. This implies that the effect of the base
dynamic motion creates the relative displacement field with respect to the absolute
dynamic displacement along the piezoelectric beam. In this section, the absolute tip
dynamic displacement, which was considered as the total tip dynamic displacement
was applied to plot the first three FRFs. It should be noted that the power harvesting
results reported here represent meter per unit square of the input base transverse
acceleration. The input base transverse acceleration on the bimorph was chosen as
9.81 m/s® which is equivalent to 1 g (1 g = gravitational acceleration 9.81 m/s?). The
multi-mode FRFs of tip relative dynamic displacement can be reformulated

according to Eq. (4.213) in chapter 4 as,

bele)
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The absolute dynamic displacement can then be reformulated as

A

99 (x, jo) = _(j+ H,,(x, jo) . (5.3)

2
It is noted that equation (5.3), reduced from the weak form of CERDTL, represents
the sample formulation of the multi-mode FRFs which can be used to analyse any
position (x) and frequency (jw) along the piezoelectric beam. In this case, the tip

absolute dynamic displacement can be modeled by substituting x with L. The closed
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form of CERDTL was not shown here but was given in chapter 4. It is important to
notice that the mechanical damping ratios need to be determined theoretically. It is
convenient to determine the first two damping ratios based on the two specified
frequencies around the first two modes and then determine the Rayleigh damping

factors mathematically. The Rayleigh damping factors can be formulated, Clough

a'| _ 200, @ T[T ] 5.4
{ag}_a)zz—wf[_ ” %]{4} - el 4)

Once equation (5.4) results were calculated, the mechanical damping ratio for higher

and Penzien [101] as,

modes can be stated as,

n n

n_ & B0 55
- 2w T2 (5.5)

It should be noted that equations (5.2) and (5.3) require the FRFs of the coupled
transverse and longitudinal response forms. This indicates that two initial mechanical
damping ratios for transverse form need to be determined around two fundamental
frequencies based on the transverse bending. In similar way, two initial mechanical
damping ratios for longitudinal form can also be chosen around two fundamental

frequencies. At this stage, two initial mechanical damping ratios for transverse form
¢'=00098 and &," = 0.011 together with the first two modes of ;= 94.47 Hz
and ®; =967.56 Hz can be substituted into Eq. (5.4) to give Rayleigh damping

factors of a'= 1.6646 1/s and a) =2.0959x10° s, respectively. The third damping

ratio for the third mode can be obtained automatically after substituting the damping

factors into Eq. (5.4) to give ¢'= 0.026. In a similar way, the two initial damping
ratios due to the longitudinal form can be specified as ¢ = 002 and ¢, = 0.021,

resulting in the third damping ratio obtained from Eq. (5.5), {5 = 0.0213. It should

be noted that the damping ratios due to longitudinal form only gave small effect to
modes around the fundamental bending modes. However, this effect cannot be
ignored when analysing the experimental study. In this case, although only the input
base transverse motion was applied to the cantilevered piezoelectric beam, the effect
of electric-strain fields due to transverse bending and longitudinal forms and
piezoelectric couplings still affected the bimorph. In such situation, equation (5.2) as

derived in detail in chapter 4 can be applied to this chapter. Moreover, it is important
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to notice here that the damping ratios were chosen according to the short circuit of
the frequency modes by setting the load resistance around 500 Q. It is convenient to
investigate the mechanical damping ratios under frequency response with very low
electrical voltage due to the low load resistance connected to the piezoelectric. This
means that the piezoelectric bimorph tended to show a pure mechanical form where
the mechanical damping ratios were determined. Once the mechanical damping
ratios were determined, the multi-mode FRFs with varying load resistances can be
modelled. Although, the mechanical damping ratios can be determined
mathematically from Eq. (5.5) in terms of Eq. (5.4), these may not fit accurately
when comparing the FRFs with the experimental study. In such a situation, it was
more important to specify the mechanical damping ratios based on the experimental

study.

As can be seen from Figure 5.2a, the FRF showing the first three modes of tip
absolute dynamic displacement under varying load resistances was given as a result
of the comparison between the weak and closed forms of CERDTL. The results of
dynamic displacement amplitudes along the frequency domain seem to shift due to
varying load resistances as shown in the enlarged view of the first mode in Figure
5.2b. The highest displacements referred to the short and open circuits of resonance
frequencies at the first mode where the frequency of 94.47 Hz with the short circuit
load resistance of 500 Q shifted to the frequency of 98.60 Hz with the open circuit
load resistance of 3 MQ to yield the displacement magnitudes of 1.46 mm and 1.35
mm, respectively. The tip absolute transverse displacement at the free end of the
cantilevered piezoelectric bimorph beam with the load resistances of 20 kQ and 90
kQ indicated amplitudes of 0.552 mm at the resonance of 92.25 Hz and 0.550 mm at
the resonance of 97.88 Hz, respectively. Moreover, the second mode FRF seemed to
give different trend compared with the first mode where the load resistances of 20
kQ, 40 kQ, 90 kQ, 400 kQ and 3 MQ were located at the same resonance frequency
of 978.5 Hz as shown in Figure 5.2c. The open circuit resonance frequency still
showed the highest displacement amplitude compared with other load resistances.
Moreover, the anti-resonances slightly shifted from between 2700 Hz and 2900 Hz
after the third mode was formed. It should be noted that the higher resonances such

as the third mode and so on tended to give very low displacement amplitude.

185

——
| —



Another important aspect mentioned previously was that the chosen mechanical
damping ratios also affected the resonance amplitude response.

-2

10 T T T T : E!
a ——500 Ohms |
10” —4kOhms |3
— 20 kohms |
10 H
——40 kOhms |
10° —90 kOhms H
400 kOhms |

10 ——3 MOhms

FRFs of Tip Absolute Transverse Dynamic
Displacement Per unit Transverse Acceleration (m/g)

LI B L2 B B A U B A0 R I LY B R P

[ [ L L
0 500 1000 1500 2000 2500 3000
Frequency (Hz)

FRFs of Tip Absolute Transverse Dynamic
Displacement Per unit Transverse Acceleration (m/g)

FRFs of Tip Absolute Transverse Dynamic
Displacement Per unit Transverse Acceleration (m/g)

10° '

10
Frequency (Hz) Frequency (Hz)

L L 7 L L I I L L I I L
85 90 9% 100 105 950 955 960 965 970 975 980 985 990 995 1000

Figure 5.2. FRFs of tip absolute Dynamic Displacement with the Weak form (Solid line) and Closed
form (Round dot) : a) The First three modes, b) First mode and c) Second Mode

5.2.2. The Bimorph Multi-mode FRFs of Tip Absolute Velocity

In this section, the first three FRFs of tip absolute velocity of the cantilevered
piezoelectric bimorph were investigated under varying load resistances. As
considered here, the tip absolute velocity was modelled due to the transverse velocity
of the base support and relative velocity of the bimorph as formulated from Eq.
(4.227) in chapter 4,
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A0 jo) = -+ Jokaln o) (5.6)

The relative velocity of the bimorph varied from the base to tip. The relative velocity
at the base was zero because the base support was the input excitation point for the
bimorph, as shown in chapter 4. This indicates that the absolute velocity at the base
support was equal with the input transverse base velocity. It should be noted that
equation (5.6) needs to be multiplied with 9.81 m/s® as it indicates the input base
acceleration onto the bimorph and substitute x with L and frequency from 0-3000 Hz
to model the tip absolute velocity.

As can be seen in Figure 5.3a, the trend of the first three FRFs of tip velocity of the
bimorph under varying load resistances tended to show consistency with each other
where the first resonance frequency gave very high amplitude followed by the lower
amplitude response of the second and third resonances. Figure 5.3a also showed the
good agreement between the weak and closed forms of CERDTL. It is important to
note here that the amplitude of the FRFs were affected not only due to the input
transverse base acceleration and damping ratio but also due to the applied load
resistances of the piezoelectric bimorph. The effect of load resistances on the
electromechanical dynamic equations was viewed as resistive shunt damping
behaviour. At this stage, the trend of the first mode can be seen on the enlarged view
in Figure 5.3b where the frequency shift also occurred between the short and open
circuits. The resonance frequencies of 94.47 Hz for short circuit and 98.60 Hz for
open circuit around first mode gave high velocity amplitudes of 0.87 m/s.g and 0.84
m/s.g, respectively. Moreover, the absolute tip velocity with the load resistances of
20 kQ and 90 kQ indicated amplitudes of 0.33 m/s.g at the resonances of 92.25 Hz
and 0.34 m/s.g at the resonance of 97.88 Hz, respectively as shown in the enlarged
view of Figure 5.3a. The second mode results as given in Figure 5.3c appeared to
give constant resonance frequency with different amplitudes at the load resistances of
20 kQ, 40 kQ, 90 kQ, 400 kQ and 3 MQ. The only resonance shift occurred at the
lower load resistances of 500 Q and 4 kQ. The FRFs of tip absolute velocity at the
third mode tended to overlap each other with the predominant load resistances. The
velocity response trends were observed to be similar in form with the results obtained
from the tip absolute dynamic displacement. This was worthwhile to clarify as it is

known that the velocity response obtained in Eq. (5.6) was simply obtained from the
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first derivative of the FRF displacement field. However, when analyzing the dynamic
time dependent displacement and velocity, the trend of velocity is 90° out of phase
with respect to displacement. However this still implies the same natural frequency
where this situation can be proved as,

Vigs(,t) = Joolwp(X,t)} , (5.7)
where

W, (%) = W, exp(jeot) + Hay (x, joo)(— 02U, exp(jeot)) + Hy, (X, joo)— oW, exp(jot)) . (5.8)
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Figure 5.3 FRFs of tip absolute Dynamic Velocity with the Weak form (Solid line) and Closed
form (Round dot) : a) The First three modes , b) First mode and ¢) Second Mode
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5.2.3. The Bimorph Multi-mode FRFs of Electrical Voltage

The first three mode FRFs of electrical voltage can be reformulated according
with Eq. (4.215) in chapter 4 as,

5 joP QY
V(jo) _ T —0t+j 2 Moo . (5.9)
Wbase Uy =0 . S ja)P (2 S JCOP (o)?
w0 P +R, - i - f
C ; o -0+ 2 Moo ; o’ —0?+ 200V

As can be seen from Figure 5.4a, the first three mode FRFs of electrical voltage of
the bimorph can be analysed with varying resistances as per the previous section. It is
noted that when the resonance frequency approached the short circuit value, the load

resistance approached zeroR,,,—0. Meanwhile, when the resonance frequency
approached the open circuit value, the load resistance approached infinity R, ,,—.

At this point, it was noted that the fundamental frequency of the first mode varied
with the resistance values where the short circuit resistance gave the lowest
resonance frequency and open circuit resistance gave the highest resonance
frequency. With varying load resistance, the electrical voltage amplitude also varied
as shown in Figures 5.4b. The FRFs under varying resistance tend to show an
different pattern compared with previous trends from the FRFs of the tip
displacement and velocity. Another important aspect can also be seen from Figure
5.4b where the electrical voltage increased with increasing load resistances around
the first mode. Again, the FRFs of electrical voltage at the second mode as shown
from Figure 5.4c tended to give the same resonance with different amplitudes for the
majority of load resistances between 20 kQ, 40 kQ, 90 kQ, 400 kQ and 3 MQ.
Again, the trend of multi-mode FRFs under the weak and closed forms of CEDRTL
indicated very good agreement. The third mode of electrical voltage also showed
similar behaviour but the amplitudes under the majority of load resistances seemed to
overlap each other.
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5.2.4. The Bimorph Multi-mode FRFs of Electrical Current

The first three mode FRFs of electrical current can be reformulated according
to EqQ. (4.216) in chapter 4 as,
L jerQY
. w)2 . W w
|(ja)) Rigag 1 a)r( )2 —0’+ JZ{r( )a)r( )a) : ) (510)
i coPr(W) S i coPr(“)

Wbase i =0 S
Upase™= Ja)PD + RL _ Z _

To!" -0+ oMo Tl -0 +j20 a0

In this section, the first three mode FRFs of electrical current are shown in Figure 5.5
for the variable load resistance. The trend of the FRFs of electrical current seemed to
give the opposite pattern with the FRFs of electrical voltage where the short and
open circuits of load resistances seemed to give the highest and lowest amplitudes,
respectively. For example, the electrical current at the first mode decreased with
increasing load resistances followed by increasing resonance frequencies from the
short to open circuits as shown in Figure 5.5b. Again, the FRFs of electrical current
at the second mode with the load resistances of 20 kQ, 40 kQ, 20 k€, 90 kQ, 400 kQ
and 3 MQ indicated the same variations in resonance frequency with different
amplitudes as shown in Figure 5.5¢ where the trend of amplitudes again showed the
opposite behaviour with the electrical voltage. Similar behaviour was also found at
the third mode. Again, the comparison between the multi-mode FRFs under the weak
and closed forms of CEDRTL showed good agreement as seen from the enlarged

view of Figure 5.5a.
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5.2.5. The Bimorph Multi-mode FRFs of Electrical Power

In this section, the first three modes of FRFs for power harvesting under input

base transverse acceleration can be formulated as,

- 12
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The equation (5.11) has been derived from chapter 4 where this formulation was
applied to analyse the trend of power harvesting with variable load resistance.
Equation (5.11) represents the weak form of the CEDRTL. The closed form of the
power harvesting was not given here but was formulated in chapter 4. The power
harvesting result can be seen from Figure 5.6a, where the trend from the weak and
closed forms tended to give very good agreement as shown from the enlarged view
in Figures 5.6b and 5.6c. In this case, Figure 5.6a showed the influence of the
transverse strain field and the piezoelectric coupling effects for the cantilevered
piezoelectric bimorph beam. The cantilevered piezoelectric bimorph beam has a
predominant transverse bending strain where the input transverse acceleration was
exerted on the base structure of the piezoelectric bimorph to create the electric-strain
field to give the power harvesting at the dominant resonance frequencies starting
from 94.47Hz to 98.60 Hz. It should be noted that these resonance frequencies
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indicated the short and open circuits with the load resistances of 500 Q and 3 MQ,

respectively.

Moreover, the short and open circuit response indicated the lowest value of power
amplitudes. The resonance frequencies shown in Figure 5.6b seem to shift as the load
resistance changed. This indicates that the load resistance affects the power
harvesting response as a function of frequency. The trend of power amplitudes gave
the symmetrical pattern of response at the first mode. Another important aspect
which can be noticed here is that the trend of power harvesting depends not only on
varying resistances but also on the chosen properties of the piezoelectric beam and
the geometry of the bimorph model. For example, even though the geometry of the
bimorph was chosen here, changes in the system properties like permittivity and
piezoelectric constants would give different power harvesting results. The chosen
load resistances need to be investigated first to provide a symmetrical frequency
response at the first mode. The reason to investigate the symmetrical power
harvesting frequency response was to analyse the short and open circuits response as
a function of load resistance and to optimise the amplitude. It was also noted that
once the symmetrical pattern was obtained at the first mode, the second and third
modes and so on would not necessarily give the monotonic symmetrical pattern, as
the trend of the power harvesting at these modes tend to give the same resonance
frequency with the higher load resistances approaching open circuit. This means that
the resonance frequencies above the first resonance do not always shift. For example,
the load resistances of 20 kQ, 40 kQ, 90 kQ, 400 kQ and 3 MQ for the second and
third modes predominantly indicated the same resonance frequency. The open circuit
load resistance of 3 MQ tended to give the lowest amplitude response for the first
three modes whereas the amplitude of short circuit load resistance of 500 Q gave the
lowest first mode response that increased for the second and third modes as load

resistance approached the open circuit.
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5.2.6. Geometrical Parametric Analysis of the Bimorph for Generating
Electrical Power

This section considers variable geometry of the bimorph and its affect on the
response using parallel connection. The electrical power with varying load resistance
was modelled around the first mode. The focus of the geometrical case study was
based on changing the piezoelectric element thickness and length. The power
harvesting amplitude around the first resonance frequency gave the trend based on
the chosen varying resistances as shown from Figure 5.7. The power harvesting

around the resonance frequency at the load resistance of 500 Q tended to increase
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with the increasing bimorph length and decreasing piezoelectric thickness as shown
from Figure 5.7b. Although, the load resistance represents a very low value, the trend
of power harvesting still increased slightly with the differences between maximum
and minimum values being 49.4 pW/g?. It should be noted that the minimum power
of 0.326 mW/g” was located with the minimum bimorph length of 28.7 mm and the
maximum piezoelectric thickness of 0.23 mm with the resonance frequency at 154.5
Hz whereas the maximum power of 0.611 mW/g? was located at the maximum
bimorph length of 32.2 mm and the minimum piezoelectric thickness at 0.11 mm
with the resonance frequency of 65.89 Hz. As expected, the resonance frequencies
shifted with the change of geometrical bimorph parameters and also the variances of
load resistance. It is noted that the effect of the change of geometrical parameters can
affect the piezoelectric constants and internal capacitances as well as the inertia
dynamic load onto the bimorph beam due to the product between the input base
acceleration and the generalised inertia mass of bimorph including the tip mass. It
should be noted that using the same input acceleration on the bimorph with different
geometrical parameters, results in very different power amplitudes and also different
resonance frequencies. The short and open circuit resonance frequencies, obviously,

seemed to give the lowest value of power as shown in Figures 5.7b and 5.7d.

The overall results of power amplitudes with varying load resistance can also be seen
in Figure 5.70 based on the variation of bimorph length and thickness. The short and
open circuit resonance response still showed very low values of power amplitudes
and also seemed to be close with each other. The power amplitudes from Figures
5.7p,q seemed to overlap each other for the coupled resistances, for example; the
coupled power amplitudes with 4 kQ and 400 kQ , 20 kQ and 90 kQ were close to
each other and also gave an identical power amplitude trend with the different
resonance frequencies. It should be noticed that the FRFs of power amplitude from
Figure 5.6 was based on the constant geometrical bimorph with 30.1 mm length and
0.15 mm thickness for the piezoelectric element. The results of power amplitudes
from the constant geometrical bimorph also showed similar results as given from
Figure 5.7. For example, as found at the bimorph length of 30.1 mm and
piezoelectric thickness of 0.15 mm. The important aspect found here was that there
were significant changes of the power amplitudes with the change of geometrical
properties compared with the previous result. As shown in Figure 5.7, the power can
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be increased by over 100 % by changing the thickness and length of the bimorph

element. The trend of power amplitudes was affected not only from the load

resistances but also from the variations of geometrical parameters of the bimorph. In

this case, the optimal design of the bimorph represent an important aspect of the

power harvesting.
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5.3. Electromechanical Dynamic Response of Piezoelectric Bimorph under
Series Connection

In this section, the multi-mode FRFs and parametric case studies of the
piezoelectric bimorph with a tip mass are discussed as a function of load resistance.
The mechanical damping ratios and load resistance were chosen similar to the values
used for the parallel connection. The analysis of the piezoelectric bimorph under
series connection was based on the weak and closed forms of the coupling
electromechanical dynamic responses of the transverse-longitudinal form
(CEDRTL). The trends obtained in this section were based on the formulation given
in the previous chapter where the parameters of the piezoelectric couplings and
capacitances were different for each connection type on the bimorph as given in
chapter 4. Moreover, the comparison between the series and parallel connections

were discussed according to the multi-mode FRFs of the bimorph.
5.3.1. The Bimorph Multi-mode FRFs of Tip Absolute Dynamic Displacement

The trend of the first three FRFs of tip absolute dynamic displacement with
varying load resistance was simulated according to the frequencies ranging from 0 to
3000 Hz. The load resistances of 500 Q, 4 kQ, 20 kQ, 40kQ, 90kQ, 400k, 3MQ
were the same values as used for the parallel connection. The tip absolute dynamic
displacement can be considered to model the absolute tip transverse dynamic
displacement as formulated previously. It should be noted that the results of the tip
absolute dynamic displacement reported here represent meter per unit input base
transverse acceleration where the input base transverse acceleration on the bimorph
was 9.81 m/s* which is equivalent to 1 g (1 g = gravitational acceleration 9.81 m/s?).
As mentioned previously, the mechanical damping ratios were chosen according to
the suggested formulations where the damping ratios should be based on the
experimental study as discussed in chapter 6. Moreover, the mechanical damping
ratios determined at the previous section were also used in this section where the
results of FRFs of the electromechanical dynamic system can be used for comparison

between the series and parallel connections.

As can be seen from Figure 5.8a, there has been a slight change of trend at the first

mode series connection compared with the parallel connection based on the tip
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absolute dynamic displacement under varying load resistances. The amplitudes
around the range of resonance frequencies at the series connection with the lower
load resistances of 50002, 4 kQ, 20 kQ and 40 kQ showed a slight increase compared
with the parallel connection as shown in Figure 5.2b. However, for the higher load
resistances of 90 kQ, 400 kQ and 3 MQ with the series connection, the amplitudes
tended to give a slight decrease around the resonance frequencies compared with the
parallel connection. In that case, Figures 5.9a,b clearly showed the different
amplitude trends between the series and parallel connection short and open circuit
resonance frequencies as the load resistance varies. The trend of displacement under
the short circuit resonance frequency with the series connection gave a slightly
higher result compared with the parallel connection whereas the trend of
displacement under the open circuit resonance frequency with the parallel connection
gave a slightly higher value compared with the series connection. The reason for this
behaviour was that the effects of piezoelectric couplings due to the transverse and
longitudinal forms contributed to change in the electromechanical damping and also
stiffness. The internal capacitance of the piezoelectric material also contributed as
electromechanical damping and the load resistance connecting to the bimorph was
viewed as the resistive shunt damping. The electromechanical damping and stiffness
and load resistance affects the pure mechanical behaviour of the bimorph resulting in
the shift of the natural frequency and the amplitude response. It is important to note
here that short or open circuit resonance frequency have different physical meaning
with short or open circuit load resistance as discussed previous section. For example,
the short circuit resonance frequency versus variable load resistance as given in Fig.
5.9a was plotted according to single resonance frequency of short circuit load

resistance having off-resonances with different amplitudes for other load resistance.

The results of dynamic displacement amplitudes as a function of the frequency
seemed to shift due to varying load resistances as shown in the enlarged view of the
first mode in Figure 5.8b. It should be noticed here that with the same load
resistances as used for the parallel connections, the series connection resonance
frequencies shifted with different amounts. The lowest displacement amplitude at the
first mode corresponded to the short circuit resonance frequency of 94.48 Hz with
load resistance of 500 Q and then shifted to the open circuit resonance frequency of
98.62 Hz with load resistance of 3 MQ. As can be seen from the two Figures 5.8b
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and 5.2b, both the resonance frequencies for the parallel and series connections
tended to give very low amplitudes for both the short and open circuits. Moreover,
the second mode of the FRF tended to indicate the dominant trend of frequency
amplitudes as shown in Figure 5.8c where the majority of load resistances of 40 kQ,
90 kQ, 400 kQ and 3 MQ mostly tended to give the same resonance of 978.5 Hz

with different amplitudes.
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5.3.2. The Bimorph Multi-mode FRFs of Tip Absolute Velocity

The first FRFs of tip absolute velocity of the cantilevered piezoelectric
bimorph under series connection were calculated with variable load resistance. As
considered previously, the FRFs of tip absolute velocity was still used according to
the suggested formulation with the coefficients of piezoelectric coupling and
capacitance having different values. The trend of the first three modes of tip velocity
FRFs of the bimorph tended to give similar results with varying load resistances as
shown in Figure 5.10a. The tip velocity at the fundamental resonance frequency for
the series connection gave a slightly different trend compared with the parallel
connection results as shown in Figures 5.10b and 5.3b, respectively. This indicates

that with the same load resistances connected to the bimorph either under parallel or
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series connection, the amplitudes of tip velocity on the bimorph would not

necessarily give the same results and monotonic trends.

At this stage, the shifting resonance frequency at the first mode also occurred clearly
from short to open circuit load resistance as shown in the enlarged view in Figure
5.10b. The resonance frequency of 94.47 Hz for short circuit and 98.60 Hz for open
circuit gave very high velocity amplitudes of 0.91 m/s.g and 0.72 m/s.g, respectively.
As shown in Figures 5.11a and 5.11b, the trend of velocity under the short circuit
resonance frequency with the series connection gave a slightly higher result
compared with the parallel connection whereas the trend of velocity under the open
circuit resonance frequency with the parallel connection gave a slightly higher value
compared with the series connection. Tip absolute velocity results for other
frequencies can also be shown to have similar behaviour when comparing between

the series and parallel connections.
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5.3.3. The Bimorph Multi-mode FRFs of Electrical Voltage

In this section, the first three modes of electrical voltage FRFs of the
bimorph were analysed according to varying load resistances as shown in Figure
5.12a where the weak and closed forms of CEDRTL seemed to overlap each other as
shown clearly from the enlarged view from Figures 5.12b,c. The amplitude of short
circuit resonance frequency with the load resistance of 500 Q gave the lowest voltage
where the amplitude of open circuit resonance frequency with the load resistance of 3
MQ indicated the highest voltage. With variation in the load resistance, the electrical
voltage amplitude also varies where the electrical voltage increased with the
increasing load resistances as shown in Figure 5.12b. The short circuit off-resonance

response still indicated the lowest value of amplitude whereas the open circuit still
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indicated the highest value of amplitude off-resonance. The second mode FRFs of
electrical voltage also seemed to increase with the increasing load resistance
indicating a similar trend with the first mode. By considering the velocity with the
load resistance approaching to the short circuit, the amplitude increased where the
voltage amplitude seemed to decrease. Conversely, when the load resistance
approached open circuit, the velocity amplitude increased with increasing electrical

voltage.

It should be noted that the chosen damping ratio in the FRFs can change the voltage
amplitudes within the resonance regions. As shown in Figures 5.13a,b, when the load
resistances under the short and open circuits resonance frequencies indicated over
17.9 kQ and 358 kQ, the electrical voltage with the series connection tended to give
the higher amplitude compared with the parallel connection. It is noted that the short
circuit resonance frequency with the load resistances of 17.9 kQ indicated the
transitional point of electrical voltage amplitudes between the series and parallel
connections whereas the open circuit’s resonance frequency with the load resistances
of 358 kQ also indicated the transitional point of electrical voltage amplitudes
between the series and parallel connections. This transitional point of electrical
voltage indicated the overlapped amplitudes between the series and parallel
connections. The electrical voltage over the transitional point of resistance for the
series connection always indicated the highest amplitude across the frequency

domain.
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5.3.4. The Bimorph Multi-mode FRFs of Electrical Current

As can be seen from Figures 5.14a, the first three modes of electrical current
under series connection was analysed according to varying resistances. As can be
seen from the enlarged view in Figures 5.14b-c, the comparison between the weak
and closed forms of the CEDRTL achieved good agreement. The trend of electrical
current indicated the opposite pattern with the electrical voltage. The electrical
current referred to the highest amplitude when the load resistance approached open
circuit. The second mode of electrical current also seemed to have similar behaviour
with the first mode where the electrical current amplitude increased with increasing
load resistance. Another important aspect can also be considered to be the
relationships between the dynamic velocity, displacement, electrical voltage and
current. The velocity amplitude with the load resistance approaching short circuit
seemed to increase, where the voltage amplitude decreased with the increasing
electrical current for both connection types. Conversely, the velocity amplitude with
the load resistance approaching open circuit tended to increase where the voltage
amplitude increased with the decreasing electrical current.

By considering Figures 5.15a-b, the electrical current under the short circuit still
indicated a higher amplitude compared with the open circuit as indicated for both
connection types. However, the electrical current for the short and open circuits’
frequency resonances with the parallel connection seemed to give the higher
amplitudes with the load resistances below 17.9 kQ and 358 kQ, respectively
compared with the electrical current with the series connection. It was noted that the
short circuit resonance frequency with the load resistance of 17.9 kQ indicated the
transitional point of amplitude between the series and parallel connections whereas
the open circuit resonance frequency with the load resistances of 358 kQ also
indicated the transitional point of amplitude between the series and parallel
connections. The transitional point of amplitude indicated the same electrical current
between the series and parallel connections. The region below the transitional point
of resistance with the parallel connection always indicates the highest amplitude for
every frequency domain. That indicates that the maximum electrical current would
be compatible with the parallel connection whereas the maximum electrical voltage

would be compatible with the series connection.
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5.3.5. The Bimorph Multi-mode FRFs of Electrical Power

As can be seen from Figure 5.16a, the weak and closed forms of CEDRTL
were compared according to the first three mode power harvesting FRFs with
varying load resistances under the series connection. The shifting resonance
frequencies under varying load resistances were mostly affected from the transverse
bending form of the cantilevered piezoelectric bimorph beam due to the input base
transverse acceleration. It should be noted that although the load resistances were the
same values as for the parallel connection type of the piezoelectric bimorph, the
resonance frequencies displayed slightly different trends compared with the parallel
connection. As expected, the power amplitudes of the resonance frequencies at the
series connection with the lower load resistances of 500Q2, 4 kQ, 20 kQ and 40 kQ
from Figure 5.16b indicated a slight decrease compared with the parallel connection
as shown in Figure 5.4b. However, the amplitudes around the resonance frequencies
under the higher load resistances of 90 kQ, 400 kQ and 3 MQ with the series
connection tended to give a slight increase compared with the parallel connection.
This indicates that when the load resistances approach the open circuit at the
resonance frequency under the series connection, the amplitude of power harvesting
tends to give higher values compared with the parallel connection under the same
load resistances. In this case, the effect of electromechanical damping and stiffness
of the bimorph under the series connection with the higher load resistances

approaching open circuit indicated higher amplitudes compared with the parallel
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connection at the resonance frequency. On the other hand, when the load resistances
approach the short circuit at the resonance frequency under series connection, the
amplitude of power harvesting tends to give lower values compared with the parallel
connection under the same load resistances. In this case, the electromechanical
damping and stiffness of the bimorph under the parallel connection with the load
resistances approaching the short circuit indicated higher amplitudes at the resonance

frequency compared with the series connection.

Another important aspect shown from the frequency response was that the open
circuit resonance frequency seemed to increase compared with the parallel
connection from Figure 5.6b. However, the short circuit response still tended to give
very low amplitude due to very low load resistance. It should be noted that if the
symmetrical pattern of power trend around the first mode for both connections was
preferable, the chosen load resistances for both connections would be different
values. However, in this chapter; the purpose of using similar values of load
resistances from the parallel connection is to display the different pattern of power
harvesting trend under the series connection. As shown in Figures 5.17a-b, the
electrical power under the short and open circuit resonance frequencies with the
parallel connection seemed to give the highest amplitudes with the load resistances
below the transitional points of 17.9 kQ and 358 kQ, respectively. Conversely, the
electrical power with the load resistances over transitional points of 17.9 kQ and 358
kQ with the series connection indicated the highest amplitude under the short and

open circuit resonance frequencies.
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5.3.6. Geometrical Parametric Analysis of the Bimorph for Generating

Electrical Power

The optimised electrical power with the variation in bimorph geometrical
parameters was analysed for the series connection. The frequency domain around the
first mode was the main focus to analyse the power harvesting under varying load
resistances based on the variation of the piezoelectric element thickness and length.
The trend of power harvesting with series connection gave similar response with
respect to the parallel connection with the same chosen load resistances. In Figure
5.18a, the power harvesting around the resonance frequency at the load resistance of
500 Q tended to increase with the increasing bimorph length followed by the
decreasing piezoelectric thickness. It was assumed that the load resistance of 500 Q
tended to give the short circuit resonance frequency where the trend of power
amplitudes still indicated the lowest values compared with other load resistances.
The comparison between the amplitude of power under the series and parallel
connections with the same load resistance also tended to give slightly different
values. The trend of power harvesting under the series connection gave lower
amplitude values compared with the parallel connection when the load resistances
approached the short circuit. On the other hand, the trend of power harvesting with
the load resistances approaching open circuit under series connection gave higher
values of amplitudes compared with the parallel connection. The reason for this
behaviour was as discussed in the previous section. Other shapes of power amplitude
with load resistances of 4 kQ, 20 kQ, 40 kQ, 90 kQ and 400 kQ can be shown from
Figures 5.18b-n where the mode shapes of power seemed to form the same shape but

tended to give slight changes in amplitudes and different resonance frequencies.

The results of all power amplitudes for varying load resistances is shown in Figure
5.180 based on the changes to bimorph length and thickness. It should be noted that
the resulting power amplitudes for each load resistance indicated a slightly different
trend with the parallel connection as given in section 5.2.6. The power amplitudes
from Figure 5.18p with the different resonance frequencies seemed to be close to
each other under the load resistances of 20 kQ and 90 kQ. The trend of power
amplitude FRFs from Figure 5.16a also indicated the same results of the amplitudes
and the resonance frequencies with the 30.1 mm long of bimorph and 0.15 mm thick

of piezoelectric layer as shown from Figures 5.6a-n. At this point, the trend of power

212

——
| —



First Mode of Resonace Frequency (Hz)

First Mode of Resoance Frequency (Hz)

First Mode of Resonance Frequency (Hz)

amplitudes under the changes of load resistance with the different geometrical

bimorphs showed similar results. Once again it should be noted that power can

increase by up to 100 % with correct choice of bimorph element length and

thickness.
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5.4. Multi-Electromechanical Piezoelectric Bimorph Beams

In this section, multiple bimorph beams with tip masses under series and
parallel connections are discussed as a function of variable load resistance. The
chosen bimorphs had varying length with constant thickness as given in Table 5.1.
The example case based on CERDT model had three bimorphs with lengths of 30.1
mm, 30.8 mm and 31.5 mm to widen the frequency response at the first mode. It is
noted that the results presented here were based on the formulation derived in chapter
4.7 and consist of the voltage, current and power behaviour.

5.4.1. Multi-Frequency Bimorph with Series Connection

As shown in Figure 5.19a, the first mode multi-frequency array of electrical
voltage is illustrated with variable load resistance. The trend of electrical voltage
amplitude varies as load resistance changes where the amplitude increases with
increasing load resistance within the multi-frequency band both off-resonance and
on-resonance. This behaviour showed similar trend with the single bimorph response
as given previously. The maximum amplitude was dominated by bimorph one.
Figure 5.19b shows the comparisons between different frequency trends for the
triple, double and single bimorphs with load resistances of 500 Q, 4 kQ, 20 kQ, 40
kQ and 90 kQ. The shifting resonance behaviour mostly occurred at bimorph one
where the benefit of the triple bimorph response was the wider resonance frequency
band.

Furthermore, the multi-frequency array of electrical current was also given as shown
in Figure 5.20a. The amplitudes with higher load resistances tended to be close to
each other where the electrical current amplitude increased with decreasing load
resistance within the multi-frequency band. The electrical current with the short
circuit load resistance gave the highest amplitude where the trend of electrical
voltage with the short circuit load resistance conversely switched to the lowest
amplitude. As can be seen from Figure 5.20b, the frequency response trends of the
triple, double and single bimorphs indicated different amplitudes within the multi-
frequency band. The first resonance amplitude from the single bimorph with load
resistances of 500 Q and 4 kQ gave the higher amplitudes compared with the double

and triple bimorphs. However, the first resonance frequency from the triple bimorph
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Electric Voltage FRF Per unit
Input Transverse Acceleration (V/g)
S

with load resistances of 40 kQ and 90 kQ indicated the highest amplitudes. Overall,
the triple bimorphs provided the expanded resonance frequency band.

Figure 5.21a shows the multi-frequency band of electrical power with variable load
resistance. The resonance frequency of bimorph one with load resistance of 90 kQ
gave the highest power amplitude. However, bimorph two and three at the load
resistances of 400 kQ and 3 MQ indicated higher amplitudes compared with load
resistance of 90 kQ. In Figure 5.21b, the trend of electrical power with single, double
and triple bimorphs with load resistances of 500 Q, 4 kQ, 20 kQ, 40 kQ and 90 kQ
indicated the change of resonance amplitude power response. The single bimorph
with load resistances of 500 Q and 4 kQ gave the highest amplitude among the
double and triple bimorphs. However, the triple bimorphs not only gave an expanded
resonance response frequency band but also provided the highest amplitudes with the
correct chosen load resistance. For example the load resistance of 90 kQ showed the

highest amplitude as expected.
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Figure 5.19 Electrical voltage FRFs : a) Three bimorphs b) Comparison with single (square dot),
double (dash dot) and triple bimorphs (solid line)
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Figure 5.20 Electrical Current FRFs: a) Three bimorphs b) Comparison with single (square dot),
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Figure 5.21 Electrical Power FRFs: a) Three bimorphs b) Comparison with single (square dot),

double (dash dot) and triple bimorphs (solid line)

5.4.2. Multi-Frequency Bimorph with Parallel Connection

Figure 5.22a shows the multiple resonance frequency response of electrical
voltage under variable load resistance with parallel connection. The trend of
electrical voltage with parallel connection indicated a different pattern compared
with the series connection where bimorph three with higher load resistances
indicated the highest resonance frequency amplitude. The electrical voltage
amplitude over the multi-frequency band still increased slightly with increasing load
resistance. It was noted that when the load resistance was close to open circuit, the
amplitude stayed constant. This behaviour was also shown for the previous case with
the single bimorph. Comparison between single, double and triple bimorphs over the
frequency band with the load resistances of 500 Q, 4 kQ, 20 kQ, 40 kQ and 90 kQ
are shown in Figure 5.22b. The resonance frequency of bimorph three provided the
highest amplitudes of the single and double bimorphs. Overall, the voltage
amplitudes from the triple bimorph gave a broadened multi-frequency band where

the single bimorph just provided the single frequency at the first mode.

As shown in Figure 5.23a, the multi-frequency response of electrical current varied
based on the varying load resistance. The trend of electrical current was different
with that found with the electrical voltage. The electrical current amplitude for both
parallel and series connections increased with increasing load resistance. However,

the trend of electrical current between parallel and series connections indicated a
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slight change. The bimorph three amplitude from parallel connection increased
slightly, compared to that from bimorph one from series connection where a
significant increase was observed. Figure 5.23b shows comparison between single,
double and triple bimorphs over the frequency band with load resistances of 500 Q, 4
kQ, 20 kQ, 40 kQ and 90 kQ. It was found that the triple bimorph seemed to indicate

the highest amplitude and widened the resonance frequency band as expected.

As shown in Figure 5.24a the multi-frequency response of electrical power was
modelled with variable load resistance. The resonance frequency of bimorph three
with load resistance of 40 kQ was close to that with 90 kQ, where the highest
amplitude was achieved with load resistance of 40 kQ. However, by analysing the
response from bimorph one and two, the resonance frequency amplitudes with load
resistance of 40 kQ seemed to drop slightly below that found with resistance of 20
kQ where the resonance amplitude at load resistance of 4 kQ gave the highest
amplitude followed by the load resistance of 20 kQ. Moreover, Figure 5.24b shows
the trend of electrical power with single, double and triple bimorphs with load
resistances of 500 Q, 4 kQ, 20 kQ, 40 kQ and 90 kQ. It can be seen that the triple
bimorphs indicated higher amplitudes over an expanded frequency band under
variable load resistance compared with that obtained using only single and double

bimorphs.
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Figure 5.22 Electrical voltage FRFs: a) Three bimorphs b) Comparison with single (square dot),
double (dash dot) and triple bimorphs (solid line)
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Figure 5.24 Electrical power FRFs : a) Three bimorphs b) Comparison with single (square dot),
double (dash dot) and triple bimorphs (solid line)

5.5. Closing Remark

In this chapter, the multi-mode FRFs of the electromechanical dynamic
responses under varying load resistances was discussed according to the weak and
closed forms of the CEDRTL. The analysis of FRFs of the bimorph under the series
and parallel connections consisted of the tip absolute dynamic displacement, tip
absolute velocity, electrical current, electrical voltage, power harvesting and
geometrical parametric bimorph analysis. The effect of changing load resistance was
seen to shift the resonance frequencies from the short to open circuit for all of the
FRFs of the bimorph. This indicated that the load resistance can be viewed as

resistive shunt damping of the bimorph connection as it was clearly implied within
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the electromechanical dynamic equation derived in chapter 4. The FRFs of the
bimorph under parallel and series connections with the same load resistances did not
necessary give monotonic trends. The trend of FRFs around the first mode for the
dynamic displacement, velocity and electrical power displayed the symmetrical
pattern with the chosen load resistances as indicated in the example from the parallel

connection responses.

It was found that the chosen load resistances for the series and parallel connections
would have different values if the symmetrical pattern of power frequency response
for both connections was preferable. On the other hand, once the symmetrical pattern
was given for one of the connection types of bimorph, the other connection with the
same load resistance indicated an unsymmetrical frequency response. In this chapter,
the load resistances under the series and parallel connections used the same values.
Apart from that, the trend of velocity amplitude with the load resistance approaching
short circuit seemed to increase where the voltage amplitude decreased with the
increasing electrical current for both connection types. Conversely, the velocity
amplitude with the load resistance approaching open circuit tended to increase where

the voltage amplitude increased with the decreasing electrical current.

Moreover, when the load resistance went to the higher transitional point
(approaching open circuit) under the series connection, the amplitudes of the
electrical voltage, current and power tended to give higher amplitudes compared with
the parallel connection under the same load resistances. This indicated that the effect
of electromechanical damping and stiffness of the bimorph under the series
connection with the higher load resistances approaching open circuit provided the
highest amplitudes at the resonance frequency compared with the parallel
connection. On the other hand, when the load resistances went to the lower
transitional point (approaching short circuit) under the series connection, the FRF of
the electrical voltage, current and power tended to give lower amplitudes compared
with the parallel connection under the same load resistances. In this case, the effect
of electromechanical damping and stiffness of the bimorph under parallel connection
with the higher load resistances approaching short circuit provided the highest
amplitude at the resonance frequency compared with the series connection.

Moreover, by comparing the maximum levels of voltage and current amplitudes
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versus varying load resistances, the maximum electrical current would be compatible
with the parallel connection whereas the maximum electrical voltage would be
compatible with the series connection. Finally, the results from changing the bimorph
length and thickness indicated options for maximising the shape of the power
response with variable load resistance. The results of power amplitudes FRFs from
both connections with the same load resistances did not always give monotonic
trends. The multi-electromechanical bimorph beam with the series and parallel
connections was also given under variable load resistance. A three bimorph model
was given as an example case, where the trend of electrical voltage, current and
power for both electrical connections showed different pattern trends. The multi-
bimorph system can widen the resonance frequency band and also increase the
amplitude based on the correct chosen load resistance, compared with the single or

double bimorphs, providing significantly more power.
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CHAPTER

6

Piezoelectric Bimorph Analytical and Experimental
Electromechanical Dynamic Responses

In this chapter, the analytical and experimental comparisons of the piezoelectric
bimorph electromechanical dynamic responses are presented with and without the tip
masses. The electromechanical dynamic response validation involved the CEDRT
(coupling electromechanical dynamic response of the transverse form), CEDRTL
(coupling electromechanical dynamic response of the transverse-longitudinal form)
and experimental studies. The theoretical studies (CEDRT and CEDRTL) were based
on the weak form of Hamiltonian’s principle (electromechanical analytic approach
with normalised Ritz method) for comparison with the experimental study. The
closed form or distributed parameter method (electromechanical analytic method
reduced from the strong form of Hamiltonian’s principle) was not applied here
because the validations between the weak and closed forms have been compared
with very good agreement as discussed in the previous chapter. In the forthcoming
sections, the frequency response functions (FRFs) of the bimorph under the input
base transverse acceleration were validated using the tip absolute dynamic
displacement, velocity, electrical voltage, current and power harvesting. In addition,
the FRFs of the bimorph with the tip mass under the two input base accelerations of
transverse and longitudinal are discussed to give the polar dynamic displacement,

velocity, voltage, current and power harvesting.
6.1. The Properties of the Piezoelectric Bimorph and Experimental Setup

The material properties and geometrical structure are essential aspects for
analysing the cantilevered piezoelectric bimorph beam. The list of properties of the
bimorph used in this investigation is given in Table 6.1 where the piezoelectric

bimorph properties were based on the PZT PSI-5A4E element from Piezo Systems,
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INC. with the centre brass shim. The effect of rotary inertia of the bimorph was
ignored because the Euler-Bernoulli beam model was considered in this chapter. A
proof mass and its rotary inertia located on the tip of the bimorph were also
considered, including its geometry and material properties which were made from
steel. The Euler-Bernoulli beam was a typical thin structure model with the
appropriate application for power harvesting. The geometry of the tip mass was
relatively small as shown in Figure 6.1. The zero-th mass moment of inertia of the tip

mass can be formulated as,
It(lg) :(htipltip - (th +hs )Io)stippt(ig) ' (1)

The second mass moment of inertia, known as the rotary inertia at the centre of
gravity of the tip mass coincident with the end of the piezoelectric bimorph beam can
be formulated as,

2 +h2

2 2
It(ig) = (I“pl—zt'p) +X, — ((th +:;) +1, )_7(22 (Itiphtip —(th +hs)lo) Sﬁppt(i(;) , (2)

where X, =x, —ly, /2, X, =X, —1,/2. Other coefficients Xy , i, hyjpandly;, indicate

tip
the centre of gravity, width, height and length of geometry of the tip mass. The
cantilevered piezoelectric bimorph beam with the tip mass was clamped at the
protractor base structure for input base excitation. The B & K impedance head type
8001, connected to the B & K Charge Amplifier Type 2635, was used to measure the
input acceleration from the B & K exciter type 4809. Since the generating vibration
signal amplitude needs to be regulated, the exciter was connected to B & K Power
Amplifier Type 2706. Moreover, the wave function generator, connected to the
Power Amplifier, was used to set specific harmonic input excitation. The vibration of
the tip mass located at the end of the bimorph was measured using a laser digital
vibrometer Polytec PDV 100 by attaching a small reflector tape onto the tip mass to
measure the absolute dynamic displacement, velocity and frequency responses. All
signal measurements from the charge amplifier, piezoelectric bimorph and
vibrometer were connected to the B & K FFT pulse Analyzer 3560B. The processing
signal through the Analyzer displayed the measurement results using the FFT pulse

and MATLAB software. The complete experimental setup is shown in Figure 6.2.
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Table 6.1 Characteristic properties of the piezoelectric bimorph system.

Material properties Piezoelectric Brass Geometry properties Piezoelectric Brass
Young’s modulus ,Q,, (GPa) 66 105  Length, L (mm) 30.1 30.1
Density, p (kg/m°) 7800 9000 Thickness, h (mm) 0.19 (each) 0.13
Piezoelectric constant, ds; (pm/V) -190 - Width, b (mm) 6.4 6.4
Permittivity, ci, (F/m) 1800¢, - First coefficient It(i’;) (kg)’ 0.0022
permittivity of free space, ¢, (opF/m)  8.854 - Third coefficient It(ig) (kgm?)'  7.3743x107°

T Calculated according to the geometry and material properties of tip mass and the rotary inertia at centre of gravity of tip mass

coincident with the end of the bimorph length as shown in Figure 6.1 where Itip =8.1mm, htip =57 mm | =5mm and Stjp =6.4mm (width). First

and third coefficients refer to zeroth and second mass moment of inertias of tip mass respectively.

|tip
A
A _
! hs htip
A
T | A
Base hp Ol e
Support .
PP Tip
Figure 6.1 Geometry of he Bimorph and Tip Mass Mass
(b)
Piezoelectric Bim
with parallel
connection

Tip Mass

/

. Computer

. B & KFFT Analyzer Type 3560B

. 3. B & K Power Amplifier Type 2706

. B & K Charge Amplifier Type 2635

. Arbitrary waveform Generator

. B & K Exciter Type 4809

. Piezoelectric Bimorph with
base structure connected to B & K
impedance head Type 8001

8. Laser Vibrometer Polytec PDV 100

Figure 6.2 (a) Experimental Setup and (b) Piezoelectric bimorph beam with tip mass
under parallel connection

6.2. Electromechanical Dynamic Response of Piezoelectric Bimorph with a Tip
Mass
In this section, the FRFs of the electromechanical piezoelectric bimorph with
a tip mass will be discussed as the load resistance varies. In the next section, the
analysis of the electromechanical dynamic response was based on the derivation of
FRFs as provided in chapter 4. The numerical methods, (CEDRTL and CEDRT)

were validated here against the experimental results. The piezoelectric bimorph beam
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was modelled here using the parallel connection. The input transverse base
acceleration of the bimorph was considered to give the multi-output
electromechanical dynamic response. The properties of the bimorph and geometrical
tip mass were also based on the characteristic data given in the previous section. At

this point, the mechanical damping ratios and load resistances need to be determined.

6.2.1. FRFs of Bimorph Tip Absolute Dynamic Displacement

In this section, the trend of the first mode of the tip absolute dynamic
displacement FRF was investigated with changing resistance of 560 Q, 5.6 kQ, 20
kQ, 30 kQ, 51 kQ, 60 kQ, 79 kQ, 150 kQ, 200 kQ and 602 k. As discussed
previously, the effect of the input base transverse acceleration on the bimorph will
result in dynamic inertia forces due to the products of generalised mode shape
displacement fields with the bimorph mass, lumped tip mass and rotary inertia of the
tip mass. This can be used to obtain the generalised time dependent dynamic
response along the length of the bimorph to give the relative dynamic displacement.
In this case, the absolute dynamic displacement (considered as the total dynamic
displacement) can also be obtained due to the input base dynamic inertia force and
the relative dynamic displacement. The bimorph input base transverse acceleration
was chosen to be 3 m/s* which is equivalent to 306 mg (1 g = gravitational
acceleration 9.81 m/s®). To analyse the tip absolute dynamic displacement on the end
of the bimorph, equation (4.279c¢) in chapter 4 can be used by inserting the variable x
= L for the tip end of the bimorph. The results obtained were validated with an
experimental study using a Laser Doppler Vibrometer (LDV) that measured the
velocity of the centre of the tip mass coincident with the end of the bimorph as

shown in Figure 6.2.

In the previous chapter, the mechanical damping ratios were chosen theoretically. At
this stage, the mechanical damping ratios were determined experimentally using a
short circuit load resistance of 560 Q. The mechanical damping ratios were identified
by matching the amplitude of experimental and theoretical tip absolute displacement
or velocity FRF. The physical reason for choosing damping ratios under very low
load resistance was to minimise the amplitude of electrical voltage FRF generated
from the piezoelectric bimorph in order to approach a pure mechanical form, since

mechanical damping itself was viewed as mechanical resistance behaviour due to
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energy losses during vibration of piezoelectric bimorph. Theoretically, the energy
losses can be from strain-rate (Kelvin-Voigt) and external air (viscous) damping
effects. However, in the experimental study, only one damping ratio can be measured
from the FRF without specifying the strain-rate and viscous damping effects.
Moreover, once the mechanical damping ratios were determined, other FRF model
with varying electrical load resistances can be plotted. The damping ratios for the

transverse and longitudinal forms around the fundamental resonant frequency were
found to be ¢"=0.0139 and ¢;'= 0.030. These values should not be confused with

the electromechanical damping effect due to the piezoelectric coupling as discussed
in the previous chapter. The transverse behaviour of the electromechanical system
response was known to be dominant at the lower frequency domain (first resonance).
The effect of the longitudinal system response was also considered here from the
initial strain field, contributing to the frequency response, but only with small effect.
Figure 6.3 shows the resulting frequency response with variable load resistance. At
some cases, the effect of longitudinal extension at the frequency domain can be
ignored with lower load resistances (500 Q, 5.6 kQ, 20 kQ and 30 kQ) because the
CERDT and CERDTL tended to overlap each other. However, for higher load
resistances (51 kQ, 60 kQ, 79 kQ, 150 kQ, 200 kQ and 602 kQ), the effect of
longitudinal extension seemed to be more pronounced, especially at load resistance
of 602 kQ with the maximum percentage difference between the CEDRTL and
CEDRT of 16.4 %. Moreover, the FRFs of tip absolute transverse dynamic
displacement with variable load resistance under the CEDRTL model seemed to be
close with the experimental results as given in Figure 6.4, where the longitudinal
strain-polarity field for the electromechanical dynamic response was also included
here for the low frequency domain. When the actual bimorph dynamic response is
considered for industrial applications, these results show that the longitudinal
response could be included in the strain-polarity field along with the bending

response.

It should be noted from Figures 6.3 and 6.4 that the first resonance frequency shifts
along the frequency domain with varying load resistances. When the load resistance
tended toward short circuit at the frequency of 76.1 Hz, the amplitude tended to give
the highest value. Similar behaviour was also found at the open circuit response at

frequency of 79.6 Hz. This indicated that the effect of the lowest and highest load
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resistances of 560 Q and 602 kQ on the bimorph tended to reduce the sensitivity of
the electrical form around the resonance frequency region. This indicates that the
system is dominated by the pure mechanical response of the bimorph with the
electrical response for the short and open circuits showing the highest amplitudes as
discussed in the forthcoming section. Obviously, the effect of mechanical damping
ratio can be viewed as a constant value once the experimental result was taken and
matched to the theoretical study. Moreover, the effect of piezoelectric coupling can
further create electromechanical damping and these can also be viewed as constant
values. In such situations, the damping effects encompassed both the mechanical and
electrical forms from the electromechanical bimorph responses when the dimensional
structure and material properties were kept constant. By considering the damping
effect of the bimorph under dynamic response, the load resistance connected to the
bimorph appeared to act as electromechanical attenuation and amplification of the
amplitude across the frequency domain. In the next section, the electrical voltage
frequency response with varying load resistances can be viewed, showing the
dynamic amplification behaviour where the increase of load resistance can increase
the amplitude of voltage with increasing resonance frequency. However, the
electrical current frequency response with varying load resistances shows the
electromechanical attenuation behaviour with increase of load resistance resulting in
a decrease of current with the increase of resonance frequency. Again, the validations
between the analytical and experimental results were achieved with good agreement.
Four samples of the individual trend of tip absolute displacement were also given as
shown in Figure 6.5. Moreover, the experimental findings show that the maximum tip
absolute displacement tended to give the lowest and highest electrical voltage for the
short and open circuits, respectively. Conversely, the maximum tip absolute
displacement tended to give the highest and lowest electrical current for short and
open circuits, respectively. This shows that the maximum dynamic displacement does
not necessarily result in the highest current or voltage. Beside, both of these circuits
(short and open) were found to give the lowest power harvesting. In many cases of
vibration, the maximum dynamic displacement is generally avoided for most
structures. It should be noted here that the power harvesting can be determined to
give the best results without having the maximum displacement and minimum
current or voltage. This situation can easily be shown at the intermediate point of

displacement trend around 60 kQ as shown in Figure 6.4 where the amplitude of
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displacement at this load resistance showed the lowest value but also gave convenient
amplitudes for the electrical current, voltage and optimal power harvesting across the
frequency range as discussed in the forthcoming section. Figure 6.6 shows the tip
transverse displacement of the experimental and CEDRTL model at the short and
open circuit resonance frequencies of 76.1 and 79.6 Hz. The results show the tip
displacement response at these two frequencies while the load resistance
subsequently changes. In Figure 6.6, the tip displacement from the CEDRTL model
indicated good agreement with the experimental results where the trend of the highest
amplitudes under the short circuit was achieved at the lower load resistance, shown

conversely with the open circuit result.
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6.2.2. FRF of Bimorph Tip Absolute Dynamic Velocity

The first mode FRF of the tip absolute velocity of the cantilevered
piezoelectric bimorph under parallel connection is shown here with varying load
resistance. As can be seen in Figure 6.7, the trend of FRFs tip velocity using the
CEDRTL and CEDRT models under varying load resistance is compared and the
results showed good agreement except for the higher resistance results. The trends
show the clear significance of incorporating the longitudinal form in the dynamic
coupled behaviour. As mentioned previously, the contribution of longitudinal form
not only affected the strain field but also the piezoelectric coupling. At this point, the
use of the CEDRTL model was considered as the generalised base motion under
multi-input vibration. The CEDRTL and CEDRT model results with the lower
resistances seemed to overlap each other. However, the differences of the CEDRTL
and CEDRT model results with the higher load resistances became more
pronounced, especially at 602 kQ with the maximum percentage difference of 16.7
%. Moreover, very good agreement between the CEDRTL and the experimental
results was observed under varying load resistance as shown in Figure 6.8, with the
individual trend of dynamic velocity also found in Figure 6.10. The result as shown
in Figure 6.8 gave similar frequency response to that shown in Figure 6.4. It should
be noted here that the effect of load resistance on the piezoelectric bimorph can be
viewed as resistive shunt damping effect resulting in shifting of the resonant

frequency with different amplitudes as shown clearly in Figure 6.9.

The contribution of load resistance into the electromechanical dynamic equations can
also be viewed as the electrical stiffness equivalent. This provides one reason that the
frequency trend increases from the short to open circuit result. The resonance
frequency of 76.1 Hz for short circuit and 79.6 Hz for open circuit with the load
resistances of 560 Q and 602 kQ, respectively gave high velocity amplitudes of 0.23
m/(s. 306 mg) and 0.17 m/(s. 306 mg), respectively. Moreover, the absolute velocity
at the bimorph tip with the load resistances of 51 kQ and 60 kQ from Figure 6.10
indicated amplitudes of 0.089 m/(s.306 mg) at a resonance of 77.51 Hz and 0.087
m/(s.306 mg) at a resonance of 77.83 Hz, respectively. As shown in Figure 6.11, the
tip absolute transverse velocity under the short and open circuit resonance
frequencies seemed to have similar trend pattern with the transverse tip absolute

displacement. The maximum amplitudes of the short circuit resonance was reached
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with the load resistance approaching the lower load resistance whereas the open
circuit resonance gave the maximum amplitude with the load resistance approaching
the highest load resistance. Therefore, the short and open circuit resonances were
found to give the higher velocity amplitude with the lower and higher load

resistances (short and open circuit load resistances), respectively.
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6.2.3. The FRF of Bimorph Electrical Voltage

As can be seen from Figure 6.12, the first mode FRF of electrical voltage is
shown with varying resistance. As mentioned previously, the short circuit can be

chosen with the lowest value of load resistance as R,,,—0 and the open circuit can
be set as the load resistance approaches infinity R ,,—o. The trend of electrical

voltage for short circuit conditions tended to give the lowest amplitude whereas the
open circuit gave the highest amplitude. In this case, the increase of load resistance
resulted in an increasing amplitude followed by an increasing shift in the resonance
frequency. In this situation, the electrical voltage frequency response with varying
load resistance can be viewed as a dynamic amplification behaviour. The trend of
electric voltage at the resonance frequency regions for each load resistance indicated
a significant monotonic pattern from lowest to highest amplitudes. The off-resonance
frequency regions also seemed to give the monotonic pattern with increasing
resistance. The relationship between the trends of electrical voltage and tip absolute
transverse displacement or velocity amplitudes were considered according to the load
resistance where the short circuit electrical voltage at resonance indicated the lowest
amplitude while the tip absolute dynamic displacement tended to give the highest

amplitude. This shows that the electrical voltage under short circuit load resistance of
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around 560 Q might result in a reduction of bimorph fatigue life. A convenient
electrical voltage frequency response can be predicted around the intermediate curve
of 60 kQ load resistance where this can be compared with the tip absolute dynamic
displacement and velocity to give the lowest amplitude values as shown in Figures
6.4 and 6.8. Again, the CEDRTL response indicated a slight change when compared
with the CEDRT response as shown in Figure 6.12. The comparison between
CEDRTL and CEDRT results with the higher load resistances seemed to give
maximum percentage difference of 22.2 % especially at 602 kQ. Moreover, the
comparison between the CEDRTL and experimental results were achieved with very
good agreement for varying load resistance as shown in Figure 6.13. It should be
noted that the inclusion of the longitudinal form into the electromechanical response
resulted in an amplitude change compared with the CEDRT response. It is clearly
seen from the three dimensional graph in Figure 6.14 that the region of maximum
electrical voltage amplitude located at the open circuit load resistance gradually
decreased to the minimum level at the short circuit load resistance followed by a shift
in frequency. Although the bimorph structure was considered to have small
dimensions with 30.1 mm length and 0.51 mm thickness, the bimorph tip mass with
its rotary inertia has an important role to affect the CEDRTL dynamic response. As
mentioned previously, the effect of tip mass under the input transverse base
acceleration creates the inertia force onto the bimorph affecting the relative time
dependent-displacement field function. The samples of electrical voltage trends
shown in Figure 6.15 indicate very good agreement between the theoretical and
experimental studies. Furthermore, Figure 6.16 also shows very good agreement
between the short and open circuit resonance amplitudes versus load resistance. The
maximum electrical voltage amplitudes with the short and open circuit resonances
can be reached with increasing load resistance. However, the maximum level of open
circuit resonance amplitude indicated a higher value compared with the short circuit
when the short and open circuit amplitudes passed over the transitional point of 61.1
kQ.
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6.2.4. The FRF of Bimorph Electrical Current

In this section, the FRF of electrical current generated from the bimorph with
input transverse acceleration is discussed under varying load resistance. The shifting
frequency due to the change of load resistance indicates a different trend compared
with that shown previously. Figure 6.17 shows that the comparison between the
CEDRTL and CEDRT indicating a slight difference for some load resistances. When
the load resistance approached short circuit, the CEDRTL and CEDRT results
overlapped for the load resistances of 560 Q, 5.6 kQ and 20 kQ. As shown in Figure
6.17, there was a slight increase of electrical current amplitude with decreasing load
resistance followed by decreasing resonance frequencies. In this case, the electrical
current frequency response with varying load resistance shows the electromechanical
attenuation behaviour. The trend of electrical current shows a monotonic pattern
opposite to that of the electric voltage response shown in Figure 6.12. The CEDRTL
and experimental results gave very good agreement under varying load resistances as
shown in Figure 6.18. The short circuit frequency response seemed to give the
highest amplitude at load resistance of 560 Q and resulted in the lowest resonance
around 76.1 Hz compared to other load resistances. This was also clearly seen in
Figure 6.19 where the maximum current amplitude dropped dramatically when the
load resistance increased from short circuit. The load resistance of 5.6 kQ still
indicated short circuit behaviour although the amplitude obtained was a bit lower
than the load resistance of 560 Q, while the resonance frequency still indicated the
same value. The open circuit load resistance of 602 kQ seemed to give the lowest
amplitude with the higher resonance frequency compared with other load resistances.
Moreover, the trend of electric current response as a function of load resistance can
be compared with the previous trends of tip absolute displacement, velocity and
electric voltage. The minimum current amplitude at open circuit occurred with
maximum amplitudes of tip absolute displacement and velocity. The electric voltage
response had maximum amplitude at a resonance frequency of 79.6 Hz. Conversely,
the maximum current amplitude at short circuit indicated the maximum amplitude of
tip absolute displacement or velocity with decreasing voltage amplitude at the
resonance frequency of 76.1 Hz. This shows that the electrical current increased
when the load resistance approached short circuit, but the tip absolute displacement

and velocity of the bimorph tended to give the highest amplitude. This indicates that
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this situation would be unsuitable for power harvester optimisation as the highest tip
absolute displacement or velocity amplitude did not result in the highest power
harvesting under the short circuit resistance. Moreover, the electrical current FRF for
the short circuit load resistance gave the highest amplitude whereas the electric
voltage response also indicated the highest amplitude for open circuit load resistance.
The sensitivity of the bimorph to generate the optimal power harvesting shows the
importance of understanding the underlying strain-polarity field on the piezoelectric
element from the bimorph under variable load resistance as discussed in the next
section. The convenient electrical current amplitude would be from an intermediate
curve of load resistance 60 kQ where this value indicated the lowest tip absolute
displacement or velocity amplitude around the resonance frequency but showed
convenient values for voltage, current and optimal power harvesting. Furthermore,
there was a slightly different trend in the specific current amplitude under the higher
load resistances between the CEDRTL and the CEDRT response with the maximum
percentage difference of 22.2 % observed within the non-resonance regions. The
strain field model used here included the transverse form with initial longitudinal
strain where this affected the internal force and moment due to the transverse
bending and extensional longitudinal response at each bimorph interlayer resulting in
the electrical force and moment response due to the coupling effects of the
piezoelectric element. Finally, some examples of the individual trends of current with
different load resistances were found from Figure 6.20 where good agreement
between the theoretical and experimental studies was achieved. Moreover, the
maximum amplitudes of electrical current for both short and open circuit resonance
frequencies under varying load resistance was achieved with decreasing load
resistance as shown in Figure 6.21. The level of maximum current amplitudes from
short and open circuit resonances was shown to be different. Moreover, the short
circuit resonance amplitude below the transitional point of 61.1 kQ gave higher
current value compared with the open circuit resonance amplitude. By looking over
the transitional point, the open circuit current amplitude otherwise indicated higher

values compared with the short circuit current amplitude.
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6.2.5. The FRF of Bimorph Electrical Power

In this section, the electrical power harvesting frequency response of the
bimorph is presented for varying load resistance. As can be seen from Figure 6.22,
the comparison between the CEDRTL and the CEDRT response was shown to yield
slightly different amplitudes with a maximum percentage difference being 49.11 %
for the off-resonance regions with the higher load resistance approaching open
circuit. The existence of the longitudinal effect on the electromechanical bimorph
response should not be ignored especially under two input base motion as discussed
in the forthcoming section of polar FRFs. The addition of the tip mass on the
bimorph might also create coupling of the extensional mechanical and electrical
forces in the piezoelectric layers. In other words, the effect of a lumped mass can
create additional longitudinal strains in the interlayers of the bimorph as shown in
chapter 4. Moreover, the trend of the power harvesting FRF tended to give different
results when compared with previous cases. Another important aspect which can be
reported here is that the trend of power harvesting depends not only on the varying
load resistances but also on the chosen properties of the piezoelectric layers and the
geometry of the bimorph model. For example; even though, the geometry of the
bimorph was chosen with the same parameters, it can still have different physical
properties like capacitance and piezoelectric coupling resulting in different power
harvesting values. This indicates that the chosen load resistances need to be
investigated first to show the symmetrical pattern of frequency response around the
first mode. It was observed that the power harvesting resonance frequency seemed to
shift as the load resistance changed and formed the symmetrical pattern as a function
of frequency. Both the short and open circuit resonance frequencies indicated the
lowest value of power amplitudes. By comparing the different cases of FRFs like the
tip absolute velocity, electrical current and voltage amplitudes; the short and open
circuits resonance frequencies seemed to give different trends. For example, the FRF
of voltage under the short circuit gave the lowest amplitude but the FRF of electrical
current seemed to give the highest amplitude with the same resonance frequency.
The FRF of velocity also showed the different trend referring to the highest
amplitude. This indicates that the power harvesting under short and open circuit
conditions might not be optimal because the tip absolute displacement or velocity

indicated the maximum value while the electrical current and voltage amplitude
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results appeared to have opposite trends to each other. As expected, on one hand the
current with the short circuit had the maximum value while on the other hand the
voltage with the open circuit had the maximum value or vice verse. Moreover, power
harvesting under those circuits seemed to give the lowest amplitudes as shown in
Figure 6.25a,b indicating that the short or open circuit is not the preferred system for
power harvesting. The optimal power harvesting amplitude occurred with the load
resistance of 60 kQ at the resonance frequency region as this gave the lowest level of
tip absolute dynamic displacement or velocity amplitude and was located at the
intermediate curves from the dynamic displacement, velocity, electrical current and
voltage. It should be noted that the optimal load resistance with local minimum point
as shown in the black square curve from Figure 6.23 was coincidently overlapped
with the load resistance of 60 kQ. Two absolute maximum points from the optimal
load resistance curve were also coincidently overlapped with the load resistances of
20 kQ and 200 kQ, respectively. It is also noted that both local minimum and
absolute maximum points indicated the optimal power harvesting. Moreover, the
absolute maximum points indicated the higher transverse displacement and velocity
amplitudes and also gave higher power harvesting results compared with the local
minimum point. This can be seen clearly from Figure 6.24 where the maximum
power amplitude region was achieved at the load resistance away from short and
open circuits. Therefore, the power harvesting with the load resistance of 60 kQ
showed the most convenient value for the optimization with the lowest velocity or
displacement amplitude. The four samples of individual power harvesting trends
under the load resistances of 560 Q, 602 kQ, 51 kQ and 60 kQ are shown in Figure
6.25 where the results obtained indicated good agreement between the theoretical
and experimental studies. The short and open circuit resonance frequency power
results are shown in Figure 6.26 under various load resistances. Both the short and
open circuit resonance amplitudes can appear to reach the maximum level with
different load resistances. However, when the short circuit resonance amplitude
moved to the lower transitional point of 61.1 kQ, the amplitude showed higher
values compared with the open circuit. This conversely occurs when the open circuit
resonance amplitude moved to the higher transitional point to give the higher value

compared with the short circuit.
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6.3. Electromechanical Dynamic Response of the Piezoelectric Bimorph without
Tip Mass

This section presents the electromechanical piezoelectric bimorph response
without the tip mass using multi-mode FRFs with varying load resistance. The
properties of the bimorph were the same as used previously. The mechanical
damping ratios were used according to the experimental results. Moreover, the values
of load resistances from the previous section were still used to analyse the multi-
mode electromechanical dynamic response based on the theoretical and experimental

studies. The bimorph response with and without the tip mass are also discussed.

6.3.1. The Multi-mode Bimorph FRFs Tip Absolute Dynamic Displacement

The multi-mode tip absolute dynamic displacement FRFs was simulated from
0 to 2000 Hz with varying load resistance. In this case, the first two modes were
plotted with the same variation of load resistance as chosen previously. The input
base transverse acceleration to the cantilevered piezoelectric beam was kept constant
with the value of 3 m/s?> which is equivalent to 306 mg (1 g = gravitational
acceleration 9.81 m/s?). With the same procedure for measuring the dynamic
displacement using the Laser Doppler Vibrometer (LDV) as given in the previous
study, equation (4.279c) in chapter 4 can be used for comparison by replacing
variable x with the tip end of the bimorph L. The results obtained can also be
compared with the CEDRTL and CEDRT response including the results of the
experimental study. It can be seen in Figures 6.29-6.30 that the comparison between
the theoretical and experimental studies for the first two modes with load resistance
of 560 Q appeared to give very close results to each other. As the load resistance of
560 Q approached short circuit, the results were used to determine the mechanical
damping ratios based on the experimental results, matched with the theoretical
results as shown in Figure 6.30a. The mechanical damping ratios from the first and

second modes were calculated to be £Y= 0.016 and ¢}'= 0.0172.

In the previous study, the tip absolute dynamic displacement was analysed according
to the comparisons between the experimental study, the CEDRTL and the CEDRT
results. In the present study, the CEDRTL was still applied but the trend of the

CEDRT model seemed to be closer to the experimental results compared with the

246

——
| —



CEDRTL with the maximum percentage difference of 11.42 %. In this case, the
noticeable difference between the CEDRTL and CEDRT response predominantly
occurred around the off-resonance region with the higher load resistances as shown
from Figure 6.27 with the enlarged view from Figure 6.28. This indicates that the
existence of longitudinal effect at the bimorph interlayer element without the tip
mass could reasonably be ignored. For obvious reasons, the bimorph without the tip
mass cannot give the extra tip inertia dynamic loading due to the additional effects of
extensional strain field and extensional kinetic energy. In other words, the inclusion
of the tip mass onto the bimorph can create the strong effects of bending and
electrical moments with the additional effects of the longitudinal extensional and
electrical forces into the interlayer bimorph element under dynamic response

conditions.

It can be seen from Figure 6.29 with enlarged view from Figure 6.30a that the first
mode of the FRFs of tip absolute dynamic displacement shifted as the load resistance
changed. The short circuit resonance frequency of 267.4 Hz tended to give the
highest amplitude of 48.5 um and the open circuit frequency of 278.5 Hz also
showed similar behaviour with an amplitude of 44.4 um. Moreover, as mentioned
previously, the effect of the maximum tip absolute displacement tended to give the
lowest and highest electrical voltage for the short and open circuits, respectively.
Conversely, the maximum tip absolute displacement tended to give the highest and
lowest electrical current for short and open circuits, respectively. This indicates that
the maximum dynamic displacement does not provide the highest current or voltage.
Beside, both of these circuit conditions result in low power harvesting. Another
important aspect reported here is that the trend of the tip absolute dynamic
displacement without tip mass tended to give a slightly different pattern compared
with the results including the tip mass because the effect of tip mass can change the
frequency response amplitude. This indicates that the tip mass tuned not only the
mechanical system but also the electrical system. For example, this case can be found
specifically at the load resistances of 20 kQ, 30 kQ, 51 kQ, 60 kQ and 79 kQ where
the resonance frequencies without the tip mass created the unsymmetrical pattern
whereas the bimorph system with the tip mass tended to give the symmetrical
response. Good agreement was again observed between the theoretical and

experimental studies as shown in Figure 6.30. It should be noted that the effect of tip
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mass on the bimorph system resulted in higher amplitudes compared to that without
the tip mass especially at the first mode. The advantage of including the tip mass
onto the bimorph was the higher voltage and power harvesting amplitudes at the first

mode and also the lower resonance frequency as given in the previous study.

An irregular mode from Figure 6.29 occurred between the frequencies of 571.7 Hz
and 773.9 Hz in the experimental results due to the imperfection of the clamped
support of the bimorph onto the base protractor structure. The irregular mode was
still away from the first and second modes, so its impact was thought to be
insignificant. Close agreement between the theoretical and experimental studies from
the first two modes was achieved. By looking especially at the second mode of the
FRF, the tip absolute displacement tended to indicate different trends compared with
the first mode. The same resonance frequency of 1697 Hz was obtained with the
changing load resistances of 20 kQ, 30 kQ, 51 kQ, 79 kQ, 150 kQ, 200 kQ and 602
kQ.
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88 { —51kohms
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Figure 6.27 First two modes FRFs of tip absolute Dynamic Displacement with the CEDRT (Solid line)

and CEDRTL (Dash line)
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6.3.2. The Multi-mode Bimorph FRFs of Tip Absolute Dynamic Velocity

In this section, the trend of the first two modes of tip absolute velocity of the
cantilevered piezoelectric bimorph with varying load resistance is shown using the
CEDRTL and CEDRT models indicating very close-fitting. As can be seen from
Figure 6.32, with the enlarged view of Figure 6.33, the resonance frequencies with
the CEDRT for the short and open circuits of 267.4 Hz and 278.5 Hz appeared to
give the highest tip absolute velocity with amplitudes of 0.081 m/(s.306 mg) and
0.078 m/(s.306 mg), respectively. Moreover, the resonance frequency with the

CEDRT for varying load resistance closely agreed with the experimental study. The
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trend of tip absolute velocity seemed to have the similar pattern to that with the FRF
from the tip absolute displacement. Individual trends of electromechanical tip
absolute velocity response with different load resistances also showed good
agreement between the CEDRT and experimental results as given in Figure 6.34 as

clearly seen from the enlarged view from Figure 6.35.

The effect of the maximum tip absolute velocity tended to give the lowest and
highest electrical voltage for short and open circuits, respectively. Conversely, the
maximum tip absolute velocity tended to give the highest and lowest electrical
current for short and open circuits, respectively. This indicates that the maximum
dynamic velocity does not necessarily provide the highest current or voltage. In such
situations, both of these circuits provided low power harvesting as shown further in
the next section. Moreover, the irregular mode between the first and second modes as
shown in Figure 6.34 still occurred due to the imperfect clamped support of the
bimorph. However, this did not appear to affect the resonance frequency region
amplitudes. Two examples of velocity FRFs with the short and open circuit load
resistances as shown in Figure 6.36 still indicated very good agreement between the
theoretical and experimental results except for the irregular response from the

frequency range between 571.7 Hz and 773.9 Hz.
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6.3.3. The Multi-mode Bimorph FRFs of Electrical Voltage

As can be seen from Figure 6.37, the first two FRFs modes of electrical
voltage are shown with variable load resistances based on the CEDRT and CEDRTL
models. The resonance frequency of the first mode tended to increase from the short
to open circuit load resistance along with the voltage amplitude. The CEDRT and
CEDRTL models gave a maximum percentage difference of amplitude around 22.96
% across the higher load resistances at the off-resonances as shown in the enlarged
view from Figure 6.38. The CEDRT results for the first mode under the short and
open circuits indicated a response of 0.053 V/306 mg and 1.88 V/306 mg with the
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resonance frequencies of 267.4 Hz and 278.5 Hz, respectively as shown in Figures
6.39, 6.40 and 6.41. The CEDRT results indicated closer agreement with the
experimental result than that compared with the CEDRTL as shown in Figure 6.39.
This can also be seen clearly from the enlarged view from Figure 6.40. The second
FRF mode also showed good agreement between the CEDRT and experimental
studies. Moreover, the second mode amplitudes with the higher load resistances
tended to give close-fitting values at the same resonance frequency of 1698 Hz. Two
individual samples of the electrical voltage FRFs with short and open circuit load

resistance were also shown in Figure 6.41.
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Figure 6.41 FRFs of Electrical Voltage with the CEDRT (Solid line) and Experiment (Round dot)
: a) 560 Q (Short Circuit) and b) 602 kQ (Open Circuit)

6.3.4. The Multi-mode Bimorph FRFs of Electrical Current

Figure 6.42 showed the first two FRF modes of electrical current based on the
CEDRT and CEDRTL models for variable load resistance. The first mode of
electrical current showed the opposite trend with the electrical voltage as shown in
the enlarged view of Figures 6.43a and 6.38a. The resonance frequencies of electrical
current decreased from the short to open circuits whereas the electrical voltage (from
short and open circuits) gave increasing resonance frequency followed by increasing
amplitude. The second resonant mode of electric current seemed to consistently have
the resonance frequency of 1698 Hz as the load resistance varied from 20 kQ to 602
kQ with decreasing amplitude from 4.25 pA/306 mg until 0.16 pA/306 mg.
Although the percentage difference between the CEDRT and CEDRTL models
indicated around 23 %, the CEDRT model appeared to be closer with the
experimental results compared with CEDRTL as shown in Figure 6.44. The second
mode amplitude with the dominant higher resistances tended to approach constant
resonance as shown in Figure 6.45b. Since two examples of current FRFs with the
short and open circuit load resistances as shown in Figure 6.46 indicated very good
agreement between the theoretical and experimental results, both of which clearly
showed the highest and lowest amplitudes, respectively. Moreover, the FRFs of
electrical current of the bimorph without tip mass seemed to give lower amplitudes
and higher resonance frequencies for each load resistance compared with the
bimorph system with the tip mass. The effect of the tip mass on the bimorph
appeared to result in a significant increase of system amplitudes and a reduction of

the resonance frequency especially at the first mode. However, the bimorph without
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the tip mass resulted in smaller amplitude differences between the first,

higher resonance frequency responses.
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6.3.5. The Multi-mode Bimorph FRFs of Power Harvesting

As can be seen from Figure 6.47, the first two FRFs power harvesting modes
based on the CEDRTL and CEDRT models are shown with variable load resistance.
The power harvesting FRFs without tip mass gave lower amplitudes than that with
the addition of the tip mass. The contribution of the tip mass onto the bimorph also
affected the change of the symmetrical pattern of the FRF amplitudes for the various
load resistances. The change in resonance frequency of the first mode tended to
change the amplitude response as the load resistance changed as shown from Figure
6.48a. The second mode of power harvesting still showed the predominantly
consistent resonance frequency of 1698 Hz as shown in Figure 6.48b. Good
agreement of the FRFs between the CEDRT and experimental studies was achieved
as shown in Figure 6.49 with the enlarged view from Figure 6.50. As mentioned
previously, the irregular mode located between the first and second resonance
frequencies occurred naturally under the measurement due to the imperfectly rigid
clamped support from the base protractor structure. However this did not appear to
affect the results from the first two FRFs modes. The short and open circuit power
harvesting results for the first mode from Figure 6.51 still showed the lowest
amplitudes, even though these circuits gave the highest amplitudes of tip absolute
velocity and displacement. Moreover, by relating this with the FRFs electrical
voltage results as given previously, the short and open circuits appeared to give the
lowest and highest voltage amplitudes respectively with the increasing resonance
frequencies. This trend was opposite to that given from the FRFs of electrical
current. The chosen load resistances, viewed as resistive shunt damping, affects the
electromechanical behaviour of the piezoelectric element resulting in the power
harvesting behaviour, where the resonance frequency shifted as the load resistances
changed. In addition, the piezoelectric bimorph itself, having the physical behaviour
of the coupled electromechanical system, also involved piezoelectric couplings and
internal capacitance, giving rise to electromechanical damping as well as
electromechanical stiffness. This case has also been proven mathematically in
chapter 4, and has given the results from the parametric case study shown in chapter

5 and validated with the experimental study in this chapter.
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6.4. Polar Electromechanical Dynamic Response due to Varying Base
Input Accelerations

In this section, the piezoelectric bimorph with a tip mass under varying base
input acceleration direction was studied with variable load resistance. The
piezoelectric bimorph was clamped to a base protractor structure capable of being
setup with different angles as shown in Figure 6.52. Only one input acceleration from
the head impedance went to the base protractor structure. However, this protractor
structure can be aligned with angles from 0° — 180° with incremental angles of 22.5°
in order to vary the direction of the base input motion from transverse to
longitudinal. In the theoretical study, the investigation of the effects of the bimorph
electromechanical dynamic responses with CEDRTL model in the polar coordinate
system with incremental angles of 1° was discussed using the input base
accelerations. The results were also compared and validated with the experimental

results.

Figure 6.52 Input base acceleration with the bimorph beam protractor mounting structure

6.4.1. Bimorph Polar Dynamic Displacement Response

The electromechanical dynamic displacements of the beam were investigated
using the mounting protractor with angles from 0° — 180° across the chosen
frequency and load resistance ranges. As can be seen from Figure 6.53, the polar
electromechanical tip absolute dynamic displacement was measured at frequencies of
72.67 Hz, 77.71 Hz, 75 Hz, 80 Hz. It should be noted that there were identical trends
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of tip absolute displacement with the angles from 0°-90° and 90°-180° as indicated by
the symmetrical pattern due to the base input acceleration level of 3 m/s?. It should
be noted that the base input acceleration level was kept at the constant value by
varying the angle incrementally by 22.5° for experimental result and by 1° for the
numerical result. Moreover, the trends of the polar electromechanical tip absolute
displacement gave very good agreement between the analytical and experimental
results. As can be seen from Figure 6.53c, the maximum tip absolute displacement of
the frequency of 75 Hz with the load resistances of 20 kQ, 60 kQ and 150 kQ was
reached at the angle of 90° with the amplitudes of 0.22 mm/(306 mg)? 0.14
mm/(306 mg)? and 0.12 mm/(306 mg)? respectively. This case represents the
situation with the dominant transverse bending form of the bimorph where the results
obtained are similar to the amplitudes shown from the FRFs of the tip absolute
displacement as given in Figure 6.4. The lowest tip absolute displacement can be
found at the angles of 0° and 180° due to the dominant longitudinal response form at
this condition. The effect of input base acceleration with the interval angles between
0° <0<90° and 90° <0<180° can produce both transverse and longitudinal response
forms due to the electromechanical response forms as formulated in equation (4.276).
The other frequencies of 72.67 Hz, 77.71 Hz and 80 Hz also showed good agreement
between the analytical and experimental results with the chosen load resistances. It
should be noted that the FRF of the tip absolute dynamic displacement at the
frequency of 77.71 Hz under the load resistances of 60 kQ and 150 kQ as shown in
Figure 6.4 tended to be quite closed together. This can be compared to the result
shown in Figure 6.53b, indicating the similar result.
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Figure 6.53 FRFs of Polar Tip Absolute Transverse Displacement from measurement (m/306 mg) at 20 kQ, O
at 60 kQ, © at 150 kQ O and from theoretical at 20 kQ, at 60 kQ, at 150 kQ) =
(@) 72.67 Hz (b) 77.71 Hz (c) 75 Hz and (d) 80 Hz

6.4.2. Bimorph Polar Dynamic Velocity Response

In this section, the polar electromechanical dynamic velocities are shown in
Figure 6.54 with frequencies of 72.67 Hz, 77.71 Hz, 75 Hz and 80 Hz at the load
resistances of 20 kQ, 60 kQ and 150 kQ. The resulting trend shows similar
behaviour with the polar tip absolute displacement. The tip absolute displacement
and velocity again showed similar results to those from the previous discussion on
the FRF results shown in Figures 6.4 and 6.8. The maximum amplitude for the polar
coordinate system velocity response shown in Figure 6.54 occurred at the angle of
90° as expected. The response at the frequency of 72.67 Hz resulted in amplitudes of
0.0624 m/(s.306 mg), 0.0469 m/(s.306 mg) and 0.0402 m/(s.306 mg) with the load
resistances of 20 kQ, 60 kQ and 150 kQ respectively. This was also similar to the
results shown in the FRF from Figure 6.8. The other angles with the same
frequencies still indicated good agreement between the analytical and experimental
results as shown in Figure 6.54. The transverse response again dominates the polar
tip velocity, as seen from the angle of 90° due to the base input transverse
acceleration onto the bimorph. The response at angles between 0° <6<90° and 90°
<0<180° again contains the coupled electromechanical transverse and longitudinal

forms with the dominant polar tip response coming from the transverse base motion.
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6.4.3. Bimorph Polar Electrical Voltage Response

The polar electrical voltage response at frequencies of 75 Hz, 80 Hz, 77.71
Hz and 72.67 Hz are shown in Figure 6.55 with the load resistances of 20 kQ, 60 kQ
and 150 kQ as used previously. The maximum electrical voltage response was
observed to occur at the protractor angles of 90° as expected. The response at the
frequency of 72.67 Hz resulted in amplitudes of 1.38 V/(306 mg), 2.4 V/(306 mg)
and 2.8 V/(306 mg), for the different load resistances respectively. The polar

electrical voltage response presented reasonable comparison between the numerical
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and experimental results. Consistency of increasing amplitudes at the polar electrical
voltage responses increased at each frequency with increasing load resistances of 20
kQ, 60 kQ and 150 kQ. This situation shows similar trends as observed previously as
the electrical resistance goes from short circuit to open circuit.
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120°

150°/

180°

210°\

270° 270°

Figure 6.55 FRFs of Polar Electrical Voltage from measurement (V/306 mg) at 20 kQ, O at 60 kQ, at 150
kQ, O and from theoretical at 20 kQ, at 60 kQ, at 150 kQ : (@) 72.67 Hz (b) 77.71
Hz (¢) 75 Hz and (d) 80 Hz

6.4.4. Bimorph Polar Electrical Current Response

The polar electrical current response with the chosen frequencies still showed
good agreement between the numerical and experimental results as shown in Figure
6.56. The consistency of increasing polar electric current amplitudes occurred for
decreasing load resistances of 150 kQ, 60 kQ and 20 kQ for each frequency as
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expected. This trend was opposite to that obtained for the electrical voltage as shown
previously. Similar behaviour was also found with the FRFs of electrical current and
voltage shown previously. The results for the protractor angle of 90° again showed
the maximum polar electrical amplitudes for each load resistance due to the input
transverse acceleration. The results indicate the dominant effect of the transverse
bending response of the bimorph, although the effect of the longitudinal response

should not be ignored, especially at the higher load resistance as discussed previously
with the comparisons between the CEDRT and CEDRTL.
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Figure 6.56 FRFs of Polar Electrical Current from measurement (A/306 mg) at 20 kQ2, O at 60 kQ, at 150
kQ, O and from theoretical at 20 kQ, at 60 kQ, at 150 kQ : (a) 72.67 Hz (b)
77.71 Hz (c) 75 Hz and (d) 80 Hz
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6.4.5. Bimorph Polar Electrical Power Response

Figure 6.57 shows the power harvesting amplitudes with variable load
resistance in polar form for frequencies of 72.67 Hz, 77.71 Hz, 75 Hz and 80 Hz,
respectively. The polar results of power show the symmetrical response for the
angles from 0°-90° and 90°-180° due to the base input acceleration. The polar power
harvesting amplitudes also showed very close agreement between the analytical and
experimental results. The maximum power was measured at the angle of 90° due to
the dominant transverse bending form of the bimorph as expected from the CEDRTL
analysis model. The lowest power can be found at the angles of 0° and 180° where
this indicates the dominant longitudinal motion as again predicted by the CEDRTL
model. The polar power harvesting results shown in Figures 6.57a and 6.57b for the
load resistances of 20 KQ and 150 kQ tended to overlap each other. This situation
can also be found from Figure 6.23 where the two lines of power amplitudes from
the load resistances of 20 kQ and 150 kQ coincide for the frequencies of 77.71 Hz
and 72.67 Hz. The comparisons between the analytical and experimental results still
showed reasonable agreement. The polar power harvesting should be seen to be a
result of the combination of both the transverse and longitudinal system response.
Similar behaviour of power was also found from the protractor angles of 180°-270°
and 270°-360°. It is noted that the dominant effect of transverse form of the bimorph
was showed in the majority of angles resulting higher power compared with
longitudinal form since the strain-polarity-electric field due to bending form
predominantly affected to the bimorph under input base excitations creating
mechanical and electrical moments. It is noted that the backward and forward
piezoelectric couplings for transverse form were developed due to the electrical
moments as discussed at chapter 4. Moreover, the longitudinal response at the load
resistance approaching short circuit can be ignored as discussed in section 6.2.5,
where the CERDTL and CEDRT models seemed to overlap each other.
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6.5. Closing Remark

This chapter has presented the results from analytical study and experimental
measurements of the electromechanical dynamic response of the piezoelectric
bimorph beam with and without a tip mass. The analytical studies of the CEDRTL
and CEDRT analysis models were also plotted under various load resistance values
from short circuit to open circuit. The effect of the CEDRTL model demonstrates the
electromechanical principle where the strain field includes the coupling between the
transverse bending and longitudinal extension forms, where the CEDRT model
ignored the longitudinal effect. Both the CEDRTL and CEDRT models have been

derived from the energy fields using the principle of continuum piezoelectric
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thermodynamics with the assumptions of isothermal and adiabatic processes as
further derived using Hamiltonian’s principle. The mechanical damping ratios were
determined by matching the frequency amplitudes at the short circuit load resistance
from the experimental results with the theoretical studies. The shifting of the
resonance frequencies occurred as the load resistances changed where this case
mostly occurred at the first mode. Moreover, the CEDRTL and CEDRT model
comparisons gave slight changes of power amplitude trends especially where the
load resistances approached the open circuit condition with the maximum difference
percentage of 49.11 %. However, when the load resistance approached the short
circuit, the frequency amplitudes given from CEDRTL and CEDRT model seemed to
overlap each other. The FRFs from the CEDRTL model and the experimental results
of the bimorph with the tip mass have been compared with good agreement. The
effect of tip mass on the bimorph is known to create additional bending and electrical
moment effects with the coupling effect of the longitudinal extension and electrical
forces in the interlayer bimorph element. The tip mass provides extra dynamic inertia
loading due to the additional effects of extensional kinetic energy. Apart from that,
the tip absolute displacement or velocity with the load resistance approaching short
and open circuits indicated the highest amplitudes. However, the voltage amplitude
increased from short to open circuit resistance whereas increasing electrical current
amplitude otherwise occurred from the open to short circuits. Therefore, the highest
velocity or displacement is not the substantial basis for providing the maximum
current and maximum voltage. In this case, the optimal power harvesting with the
absolute maximum values achieved 0.43 mW/(306 mg)® at the load resistances of 20
kQ and 200 kQ. The optimal power at the absolute maximum value provided higher
velocity or displacement amplitude compared with the optimal power at the local
minimum value, with the load resistance of 60 kQ giving the convenient value of
power of 0.41 mW/(306 mg)>. The optimal power density at the local minimum
value achieved 4.17 mW/(cm?®.( 306 mg)?). It is noted that the standard volume was
based on the geometry of the piezoelectric bimorph. Furthermore, the multi-mode
FRFs of the bimorph without the tip mass was modelled with the CEDRT and the
comparison with experimental results indicated that the CEDRT model was closer to
the measurement compared with the CEDRTL. The maximum difference percentage
of CEDRTL and CEDRT for power amplitude occurred at the load resistance
approaching open circuit giving around 46 % difference. The effect of tip mass on
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the piezoelectric bimorph with variable load resistance was found to increase power
at the resonance region with the average increase of 96 % with decreasing resonance
frequency of 72 %. The effect of longitudinal response under lower load resistance
can be ignored, when the CEDRTL and CEDRT models overlap each other.
However, the longitudinal response on the bimorph with the higher load resistance
should not be ignored, especially when the tip mass is included for the two input base
excitations. The bimorph system, when used in vibration environment with rotating
equipment, will be subject to multidirectional input excitations. This will normally
result in coupled bending and longitudinal input and subsequently coupled
piezoelectric response. Finally, the polar electromechanical dynamic responses of the
bimorph with the tip mass under two input base transverse and longitudinal
accelerations has also been discussed, showing close agreement between the
analytical and experimental results. The maximum power was achieved from the

bimorph beam under input transverse excitation.
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CHAPTER

7

Summary and Conclusions

This dissertation has presented various mathematical dynamic formulations of
piezoelectric-based power harvester schemes. The impact benefit of piezoelectric
transduction includes the ease of scalability, compact configuration, high energy
density and high sensitivity which can be applied for future applications of self-
powered smart sensor devices for health condition monitoring and defence
communication technology. The main focus of this research work has been the
development of novel analytical methods for modelling the behaviour of the
piezoelectric bimorph beam vibration power harvester. This included the
electromechanical dynamic system behaviour using the electrical enthalpy of
piezoelectric layers under adiabatic and isothermal processes associated with the
mechanical fields of elasticity and dynamical systems. The physical aspect of the
piezoelectric system as discussed in Chapter 3 has also been considered to draw
clear insight of the physical properties of continuum thermopiezoelectricity in order
to explore the interrelationships between the mechanical, electrical and thermal
forms as there appear to be no research publications that present the detail of the

theoretical development of the continuum thermopiezoelectricity.

The continuum thermopiezoelectric equations of state with extensive and intensive
properties using the laws of thermodynamics, Legendre transformation and
Maxwell’s relations have been derived comprehensively to establish equations that
can be reduced in terms of Elastic-Electrical Gibbs Free Energy, Elastic Gibbs Free
Energy, Electrical Helmholtz Free Energy, Elastic Helmholtz Free Energy, the
Elastic-Electrical Enthalpy and the Electrical Enthalpy.

The application of continuum thermopiezoelectricity can be extended into areas of
smart materials and structures. In this dissertation, the continuum

thermopiezoelectricity associated with the extended Hamiltonian principle has been

272

——
| —



narrowed to consider novel analytical methods of the electromechanical piezoelectric
power harvesters as discussed in Chapter 4. Two analytical methods representing the
weak and closed forms of the Rayleigh and Euler-Bernoulli piezoelectric bimorph
beams under the action of two input base excitations have been established according
to the electrical enthalpy of the piezoelectric layers (bimorph top and bottom layers),
potential energy of substructure material (middle layer), kinetic energy of bimorph
including the tip mass with their rotary inertias and the non-conservative external
works due to the input mechanical inertia force and electrical charge. It should be
noted that the external work of inertia forces was derived according to the input base
excitation in terms of the product of the generalised mode shape of displacement
fields with the zero-th mass moment of inertia of the bimorph and tip mass. The
Rayleigh piezoelectric beam only considers the rotary inertia of the bimorph in the
resulting electromechanical dynamic equations. This can also be further reduced to
give the electromechanical dynamic equations of the Euler-Bernoulli piezoelectric
beam by ignoring the rotary inertia of the bimorph from the Rayleigh piezoelectric
beam. The constitutive electromechanical dynamic equations of the piezoelectric
bimorph beam according to the weak form have been formulated into three
categories represented by the coupled electromechanical dynamic response of the
transverse-longitudinal form (CEDRTL), coupled electromechanical dynamic
response of the longitudinal form (CEDRL) and coupled electromechanical dynamic

response of the transverse form (CEDRTL).

All constitutive electromechanical dynamic equations as shown in Chapter 4 have
been extended to derive the solutions using the Laplace transformation and Ritz
eigenfunction series based on orthonormality. The extended solution forms give the
multi-mode transfer functions, frequency response functions, optimal power
functions and the generalised time-dependent amplitude functions which represent
the relative and absolute dynamic displacement including velocity, electrical voltage,
current and power. Moreover, the closed form reduced from the strong form of
Hamiltonian’s principle has been formulated using the CEDRTL model which can
also be further extended using Laplace transformation associated with the convergent
eigenfunction series under the orthonormality condition. The broadband multi-
electromechanical piezoelectric bimorph beam with the multi-frequency response has

also been formulated using the weak form of the CEDRT model to give the single-
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and multi-mode transfer functions and frequency response system behaviour.
Considering the analytical derivation of piezoelectric power harvesters, no research
publications have been found focusing on the mathematical derivation of equations
of the constitutive electromechanical dynamic behaviour represented by the
CEDRTL, CEDRL and CEDRTL models.

Furthermore, the parametric case study of the Euler-Bernoulli piezoelectric bimorph
beam with the tip mass under input transverse excitation using the weak and closed
forms of the CEDRTL model have been compared to give very good agreement with
the multi-mode frequency response functions as given in chapter 5. Since the typical
piezoelectric bimorph beam is a thin structure, the Euler-Bernoulli formulation
represents an accurate formulation for applications of vibration power harvesting.
The results of the parametric case study with series and parallel connections have
been discussed using the multi-mode FRFs of the tip absolute dynamic displacement,
velocity, electrical voltage, current and power relating to the input transverse base
excitation with variable load resistance. In addition, the short to open circuit
resonance frequency response for variable load resistance have been discussed for
series and parallel connections. Since the load resistance behaves as resistive shunt
damping, the shifting resonance frequency from short to open circuits affects the
mechanical stiffness of the bimorph and electromechanical stiffness of the
piezoelectric layers (backward and forward electromechanical piezoelectric

couplings).

It is noted that the electromechanical piezoelectric couplings have been formulated
according to the electrical moment and force of the piezoelectric layers due to the
piezoelectric direct mode and the piezoelectric converse mode of the electrical
energy which implies backward and forward piezoelectric couplings, respectively,
due to the transverse and longitudinal extension forms as given in chapter 4.
Moreover, it was found that the short and open circuit load resistances gave the
highest amplitudes of the first mode tip absolute dynamic displacement and velocity
as shown in the FRFs. The use of the short and open circuit load resistance here was
not the most important factor for increasing the electrical voltage, current and even
power. This situation, in fact, has been proved, where the electrical voltage
amplitudes increased from the short to open circuit load resistances with increasing

resonance frequency. Conversely, the electrical current amplitude increased from the
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open to short circuit load resistances with decreasing resonance frequency.
Moreover, the FRFs of electrical power indicated the lowest amplitudes for both
short and open circuit load resistance conditions. The parametric geometrical
bimorph with varying piezoelectric thickness and length was discussed to see the
resulting effect on the resonance frequencies as a function of load resistance. The
broadband multi-electromechanical piezoelectric bimorph beam with variable load
resistance has also been discussed by comparing the single-frequency and multi-
frequency models of the beams as it has potential benefit for tuning or widening the

resonance frequency band for electrical voltage, current and power.

In chapter 6, the validations of the theoretical and experimental results have been
achieved with very good agreement. The mechanical damping ratios played an
important role influencing the resonance peak amplitudes where the mechanical
damping ratios have been given by matching the short circuit resonance frequency
response from the theoretical studies with the experimental results. The piezoelectric
bimorph beams with the tip mass under the input base transverse excitation using the
weak form of the CEDRTL and CEDRT models have been compared to show the
agreement with the experimental results. All results showed the frequency response
functions of tip absolute dynamic displacement, velocity, electrical voltage, current
and power. Since the piezoelectric bimorph with the tip mass using the CEDRTL
model considered the effect of strain fields associated with the electromechanical
piezoelectric couplings due to the transverse bending and longitudinal extension
forms, the inclusion of tip mass also affected the input inertia forces due to the base
transverse acceleration onto the bimorph. This creates coupling effects with
mechanical bending and electrical moments with the additional effects of mechanical
longitudinal extension and electrical forces into the interlayer bimorph element under
the dynamic response. Therefore, the single mode frequency response results of the
CEDRTL modelling with variable load resistance seemed to approach the
experimental results closer as compared with the CEDRT results. The results
indicated that for lower load resistances approaching short circuit, the CEDRTL and
CEDRT tended to overlap whereas for higher load resistances approaching open
circuit, the CERDTL and CEDRT models provided different results. Moreover, the
multi-mode frequency response functions of the piezoelectric bimorph beam without

tip mass has also been given by comparing the two theoretical methods (CEDRTL
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and CEDRT) with the results of the experiment. The resulting experimental
frequency response functions seemed closer with the CEDRT compared with the
CEDRTL model.

Finally, the piezoelectric bimorph beam with the tip mass under the two input base
transverse and longitudinal excitations using the CEDRTL model have been
validated with the experimental results to give very good agreement. It is noted that
the results were based on the input base excitation of 3 m/s* (306 mg) for the base
protractor structure and attached piezoelectric bimorph beam. The protractor base
structure was adjusted with incremental angle of 22.5° from 0° to 180°. For the
theoretical model, the iteration of input base excitation was given with incremental
angle of 1°. As a result, the bimorph beam would be considered to have one and two
input excitations. The input base transverse excitation was achieved with an angle of
90° and the input base longitudinal excitation was achieved with the setup angles of
0° and 180°. The angles between 0° and 180° (excluding 90°) created combinations of
input base excitations. The results shown in this case gave the polar tip absolute
dynamic displacement, velocity, electrical voltage, current and power under the
chosen frequencies and load resistances. It was found that the input excitation with
angle of 90° on the bimorph seemed to give maximum amplitude under the dynamic
response and load resistance, where that situation provided the predominant bending
transverse response of the bimorph. In addition, the effect of input excitation with the
angles of 0° and 180° attained the lowest amplitudes where this case implied the
predominant longitudinal extension of the bimorph. Moreover, although the input
excitation with the angles between 0° and 180° affected the transverse bending and
longitudinal extension effects on the bimorph, the transverse bending still provided
the dominant effect on the bimorph. It was also noted that the symmetrical trend of

polar amplitude response was achieved at the angles from 0° to 90° and 90° to 180°.

Piezoelectric materials can be applied across a wide range of applications for the
future development of self-powering smart wireless sensor devices. The extracted
mechanical energy from the wasted or unused vibration environment can be used to
obtain the electrical energy using piezoelectric elements for powering embedded
batteries of smart wireless sensor devices in order to monitor the health condition of
rotating machines located in remote area. The formulations provided previously can

be applied into different aspects of material properties and micro-scale structures
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where the purpose is the optimisation of the electromechanical dynamic power

harvesters.

Future Work and Recommendation

As discussed in several cases in this dissertation, the vibration power harvester can

be further investigated for future developments as stated in the following issues:

1. The future research study can address the mathematical study with analytical and
perturbation methods of the non-linear electromechanical piezoelectric bimorph
beam behaviour under high amplitudes of input base excitation.

2. Mathematical methods of topological piezoelectric design with/without the
temperature effect for understanding the optimal power harvesting under input

mechanical excitations.

3. The broadband multi-electromechanical piezoelectric beam coupled with multi-
electromagnetic transduction for multi-resonance behaviour can be investigated

for multi-purpose applications of smart sensor devices.

4. The design management electronic circuit with embedded battery and wireless
sensor node can be the focus of investigation.
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Appendix A

A.1 Piezoelectric Constitutive Equations
The electrical enthalpy (H) as stated in chapter 3 can be reformulated as,

1 1,
H (gij ’Ei): ECijEklgijgkl — €j Ekgij - Egik EE,. (Al)

In equation (Al), H is a function of ¢, and E, therefore deriving the partial
differential of H with respect to ¢;and E; to give constitutive equations, yields

_oH _oH

ot _8_(9”. , D, = ’E . (A2)

This gives,
o = CijEk,Ek, — ey By, (A3)
D =e,&q +siE- (A4)

The elastic-electrical enthalpy (H) as stated in chapter 3 can also be reformulated as,
1 1 .
H (o-ij = ) = _EsijEmO'ijo'm - dyEoy - Egik E.E,. (A5)

Equation (A5) is a function of ¢, and E, therefore deriving the partial differential

of H with respect to o;;and E; gives constitutive equations as,

& = —8% ) =—2—; | (A6)

This gives,
& = Sjuou + dyE, (A7)
D, =d, o4 +sE,. (A8)

Equations (A3), (A4), (A7) and (A8) have similar forms with the electrical enthalpy
and elastic-electrical enthalpy given in chapter 3. It should be noted that the electrical

enthalpy and elastic-electrical enthalpy have physical relationship in terms of
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constitutive equations. In this case, it is important to condense tensor forms from
Egs. (Al) - (A8) to matrix form by using the Voigt’s notation. It is also noted that
double indices ij or kl can be replaced with single indices p or q. Tensor notations
i,j,k and | take the values of 1,2 and 3 where p and g take the value of 1,2,3,4,5 and 6.
The complete form of correlation between tensor double indices and the matrix form

can be stated in terms of Voigt’s notation as,

ij orkl : 11 22 33 23 or 32 3lor13 12 or 21
porqg : 1 2 3 4 5 6
For example :
Ciw > Cpq , € € o —>0,.

In terms of Voigt’s notation, equations (A3) and (A4) from electrical enthalpy
become,

_ ~E
Oy _Cpqg

= (A9)

D, = eq&, +GiEx- (A10)

Equations (A7) and (A8) from elastic-electrical enthalpy can also be stated as,

£, =S50 + 0, Ey, (A1)
D, = d,,oq + S E,. (A12)

Equations (A9) and (A10) can then be written in matrix form as,

o} = LCE]{e} -] fE). (A13)

(6x1) 6x6) (6x1) 6x3)(3x1)

and,

D} = [¢] e} +Lgf]{E} - (A14)

(3x1 (3x6)(6x1)  (3x3) (3x1)

Equation (All) can also be proven by manipulating the constitutive equations from
(A9) to give,

6} -le]* fo) - T T fe)

(6x1) (6x6) (6x1) 6x6)  (6x3)(3x1)
or le} = SEJ{O'}-F Ed I €}, (A15)
(6x1) (6x6)(6x1) (6x3)(3x1)
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where [SEJ: [CE]fl represents the elastic material compliance by using the inverse
6x6] (6x6)

of stiffness coefficient and Ld]T :([Cl‘l !e]T or [ds]): le] ([Cl‘l and [e] = [da])([Cl

6x3) 6x6 6x3) (3x (3x6)(6x6 (3x6) (3x6)(6x6

or [d])z le] [S]) to represent the relation form of the piezoelectric constants. It is
(3x6)  (3x6)(6x6

noted that equation (Al15) has similar form with Eq. (All). Moreover, equation
(A12) can also be proven by substituting equation [A15] into equation [Al4]
yielding,

or o} = [d] fo)+ [g“J{E} , (A16)

(6x1)

where [gUJZ[g8J+ [e] Ed]T .

3x3 3x3)  (3x6)
It is noted that equation (A16) has similar form with Eq. (A12).
A.2 PZT Material Coefficients

The Lead Zirconate Titanate (PZT) has characteristic piezoelectric coefficients in

terms of the plane-stress relationship as,

o] [CE CECE 0 0 0 0 0 ela
o, |CE CECE 0 0 0 0 0 ells
o] |[CE CL CEL 0 0 0 0 0 e,lls
o,/ |0 0 0 C5 0 0 0 e, 0]ls
ost=0 0 0 0 CE O e O 0. (AL7)
ol [0 0 0 0 0 C& 0 0 0]|e&
D] [0 0 0 0 e 0 ¢ 0 O0]|FE
D, |0 0 0 e O 0 0 ¢, O0][E

A.3 Piezoelectric Electrical Enthalpy Using Einstein’s Summation Convention

Equation A1 can be restated in terms of Einstein’s summation convention as,

6.6 1 3 6 3. 31
(u' ) Zzchq p€q Zzekp ZZEg (Al18)

p=1g=1 k=1 p=1 i=1 k=1
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Corresponding to Eq. (A17), equation (A18) can be expanded to give,

H (g E. ) = %Cflglz +Clee, + Clee,+ %szgzz +Cr8y8,

ijr i
1 2 1 2 1 2 1 2
+ Eceggs +E CAIIEA‘C"A + EcsEsgs +§C(§6‘c"6 —e5,E,6 —€;,E,8,

1. 1. 1.
—e3B6,—6,E,6,— 6B & _E gllElz - Eg 2Ez2 - E§33E32- (A20)

where C5=C;,, C5=C/, , C5=C;=C;,=C., e,=¢,and e,,=€.
Since the electrical field induced from the piezoelectric element is in z-direction, the
boundary condition for piezoelectric beams can be stated as
E,=E, =0. (A21)

The strain field of the Euler-Bernoulli-Beam and Rayleigh beam can be stated as

&,=6,=6,=6,=6,=0. (A22)
It should be noted that Eq. (A22) does not mean plane-strain condition for material
coefficient. It was only beam condition reduced from equation (A20) which was

derived under the plane-stress material from Eq. (Al7). The strain field of

Timoshenko Beam can be stated as,
£,=8,=6,=6;=0 . (A23)
The strain field of Kirchhoff plate can be stated as,
&,=&,=&=0. (A.24)
In terms of Egs. (A21) and (A22), equation (A20) for the Euler-Bernoulli beam and
Rayleigh beam can be reduced as,

1 1,
H (‘9 E ): §C1Ef912 —€;,E8 - EG'33E32- (A25)

ij » =i

Corresponding to Egs. (A9) and (Al10), equation (A25) can be reduced in matrix

{0-1 } :|:C1E1 _631j|{81} . (A26)
D, €:  6a3 | Es

In terms of Egs. (A21) and (A23), equation (A20) for Timoshenko Beam can be

reduced as,

form as,

1 1 1,
E ): §C1El‘912 +EC:SEsgsz —e5,E.8 — §§33E32 . (A27)
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Corresponding to Egs. (A9) and (A10), equation (A27) can be reduced in matrix
form as,
o, C, 0 -—e,l[g
o.r=| 0 KkC§ 0 |<&¢ . (A28)
D, €5, 0 Gss | |E;
It is noted that shear correction factor k, which depends on the shape of the cross

sectional beam, was included on the Timoshenko beam to give kC.; .

In terms of Eqgs. (A21) and (A24), equation (A20) for Love-Kirchhoff plate can be
reduced as,

1 1 1 1.
H (Sij E; ) = EClElng +ClEzglgz + ECzEzgz2 +§C§6‘962 —€5,F36 —€5,F,8,— §§33E32 . (A29)

Corresponding to Egs. (A9) and (A10), equation (A29) can be reduced in matrix
form as,

O, ClEl ClEz 0 -6l |&
0, _ ClEz ClEl 0 -6l ]& . (A30)
O, 0O O CSE6 0 &

D, €; €; O Ga3 E,
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Appendix B

To obtain eigenfunction forms, the solution forms of mechanical dynamic equations
of transverse bending and longitudinal extension for the cantilevered piezoelectric
bimorph beam with tip mass must be established independently. The mode shapes
are solution forms of the eigenfunction series to be used in chapter 4. It should be
noted that normal modes (normalised eigenfunctions) are not formulated here
because the orthonormality equations based on the orthogonality property of
mechanical equations, both weak and closed forms, can be found in detail in chapter
4,

B.1 Rayleigh piezoelectric bimorph beam with tip mass

The dynamic transverse bending equation for the Rayleigh cantilevered piezoelectric
bimorph beam with tip mass can be formulated after simplification as,
4 2
4" () 4% ()
dx* dx?
It should be noted that the second terms of Eq. (B1) represents the rotary inertia of

- b¥,(x) =0. (B1)

the piezoelectric element. Four roots of solution can be obtained from Eq. (B1) as,

L=ty , u=\/%(—a+\/m>, (B2)
A, =*iv, u:\/%(—a—w/az +4b) , (B3)

where ;

(Ck) g2
e vt

(A,k)a)Z

RN

_—
_—

The boundary condition of the transverse bending equation can be formulated with

tip mass and rotary inertias from the piezoelectric beam and tip mass as,

2
CFENA 1y je,2 Y )

SRR tip @ dax =0, (B4)
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3
SR () e, 2 ¥ ) 2 )2 o, (B5)

¥0)=0 01—LP(o):o. (B6)

After manipulating some complex equations according to boundary conditions, the

characteristic equation can be formulated in matrix form as,
C
|:All 'Alz:|{ 1}20 . (B?)
A21 A22 C4

A =—CEY 2 cos(ud) + 118 uw? sin(ul) — €50 cosh(ol) + 15ve? sinh(uL)
L

where,

©)pw? cosh(vl) + ( VP sin(ud) + 1) po? cos(yL))

tip

A, = CF9?sinh(uL) — |

A =CiiMpdsin(ul) — 1€ ue S'”(ﬂ'—)+ L\ w® cos(xd) -

(M »? cosh(ul)

tip

CF¥p2sinh(vL) — 1CYpew? sinh(vl) — |

A,, = CF¥p3 cosh(vl) + 1€Ypw? cosh(vl) + 1M w? sinh(vl) +

tip
2(Cfl(f"‘),u?’ cos(zl) — 1% yw? cos(yL)—It(,p)a)Zsin(yL))
U

Frequency equation and eigenvalues are calculated by solving for the determinant
from equation (B7). Trial and error methods can be used to obtain the eigenvalues.
The best way to solve the frequency equation and eigenvalues was found by using
MATLAB. The eigenfunction form can be formulated as,

¥, () = c{«:os ) osh(on) — 22 s - ;sunw)jj. =)

B.2 Euler-Bernoulli piezoelectric bimorph beam with tip mass

The mechanical dynamic equation in transverse bending form can be simplified by

ignoring the rotary inertia of the piezoelectric beam from Eq. (B1) to give,

d*w, (x
—;() - u* (=0 . (B9)
dx
Four distinct roots can be obtained as,
ﬂi,z =tu ' /13,4 = xju . (B10)
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where x4 = ["2/C[FY . The boundary condition of the cantilevered piezoelectric

beam with the tip mass and rotary moment of inertia from the tip mass can be

formulated as,

2
1 (F k) 47 C),2 ¥ (1) _
¢lF dxzr L)-1 o d_xf(L) 0, (B11)
A(F k) A3
() + 1o (L)=0, (B12)
dx
d¥,
v (0)=0 : (0)=0 . (B13)
dx
The characteristic equation can be obtained after manipulating Egs. (B9) - (B13) to
give,
|:A11 '0‘12:|{C1} — O ’ (814)
AZl A22 C4
where,
|(C),u3
A, = —(cos(zL) + cosh(pL )) + ;"() o (sin(uL) + sinh(xd) )
(c) 3

A, = (sin(uz) + sinh(uL)) + 'ﬁm_”y(cosw) _ cosh(uz)

oy
A, = (sin(uL) — sinh(ul)) + A(Ak) (cos(uL) — cosh(uL))

(A)
Ay, = (cos(uL) + cosh(uL)) - %p—uj(sm(pL) — sinh(uL))

The frequency equation and eigenvalues can be calculated by analysing the
determinant from Eq. (B14) to give,

(c) 3

(1+ cos( L )cosh (sl ) — I( ’u) (cos zLsinh g +sin gl cosh )
|t(A)/1 | t(IA) | t(lc)ﬂzl
+ (p ) (cos zLsinh g —sin zlcosh 4l ) + %(1— cos pLcosh z.) = 0. (B15)
) (A

After applying boundary conditions and some algebraic calculations, the

eigenfunction can now be formulated as,

‘Pr(x):clr(cos(yx)—cosh(/zx) +A(sin(ﬂx)_sinh(w))J  (B16)

22
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B.3 Longitudinal piezoelectric bimorph beam with tip mass

The dynamic equation of longitudinal motion for the cantilevered piezoelectric
bimorph beam can be written as,
d20(x)
dx?

+ 7%0(x) =0 . (B17)

Equation (B17) can be modified into a characteristic equation and two roots from the
characteristic equation can be obtained as,
Ay =%y, (B18)

, a)z I"(A,k)
where, y°=—

The boundary condition can be formulated as,

éf?’k)i—(f(t)— INw?eL) =0,  ©(0)=0. (B19)
The frequency equation and eigenvalues can be calculated by applying boundary
conditions to give,

CitMy

It(i;\)a)2

tan)L = (B20)

After applying boundary conditions and some algebraic calculations, the mode shape
can now be formulated as
0, (x)=b, sinyx . (B21)
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Appendix C

5%%%%%5%5%5%5%5%55%5555555%5%5%5%555%%%5%5%5%5%55%5%5%5%5%5%5%%%5%5%55555555555555%5%5%5%5%5%%%%
00000 3 3 0. 0 0 0O
3%%%% MATLAB Program of electromechanical Piezoelectric %%%
0. 0 000 a a a a 0. 0 0 0
%$%%%% Bimorph Beam with tip mass using CEDRTL and CEDRT models %%%%
0. 0 000 0.0 0 O
$%%%% (Weak form) $%%%
0. 0 000 a a 0.0 0 O
$%%%% Programmed by Mikail F. Lumentut %%%
00000 3 0. 0 0 0O
%%%% Supervised by A/Prof. Ian M. Howard 3%%%
0 0000 3 3 3 0.0 0 O
%%%% Department of Mechanical Engineering 3%%%
0. 0 000 a2 a2 a2 0.0 0 O
3%5%%% Curtin University of Technology 3%%%
999000000000 0000000000000000000000000000000000000000000000000000000
OO0OO0OO0OOO0ODOOOODOOODODOODODODODODODOODODODODODODOODODODOODODOODODODOODODODODODODODODODOOODODOODODOOODOOODODOOO™©
clc

clear
©900000000000000000000000000000000000000000000000000000000000000000
OO0OO0OO0OOODOOOODOOODOOODODODOODODOODODODODODODOODODODOODODOODODODOODODOODODODODODODOOODODOODODOODOOODOD©OOOT©O™©
00000 2 2 2 0.0 0O
$%%%%Input data of geometry and properties Piezoelectric bimorph%%%
5%%%%%%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%5%%%%%%%%%%5%55%5%5%5%5%5%5%5%%%5%5%5%5%5%5%55%5%5%5%5%5%5%5%5%5%5%5%5%5%%%

hp=0.19%e-3 ; % Piezoelectric thickness
hs=0.13e-3 ; % substructure thickness
bp=6.4e-3 ; % Bimorph width

L=30.1le-3 ;
e31=-190e-12*Qp;
beta=1540*8.9%e-12;
% Tip mass
ha=5.7e-3 ;
lo=8.1le-3 ;

o

Length of Bimorph
Piezoelectric constant
Permittivity of constant strain

o oo

o

Mass thickness
Mass length 1

o°

1b=5e-3 ; % Mass length 2
bs=6.4e-3 ; % Mass Width
% density

rhoa=7800 ; density of steel

rhop=7800 ; density of piezoelectric

rhos=9000 ; density of brass

% Piezoelectric constant

Rb=-2* (hp"2/2+ (hp*hs) /2) * (b/hp) *e31; % transverse form

Ra=2*b*e31; % longitudinal form

% Internal capacitance of piezoelectric

Pd=-2*b*L*beta/ (hp) ;

% elastic stiffness constants

Qp=66e9; % Piezoelectric modulus of elastic constant

0s=105e9; % Brass modulus of elastic constant

Cc=b* (2/3* (hp+hs/2)*3-hs”*3/12) *Qp+b*hs*3/4*Qs; % transverse
% stiffness coefficient

Ca=2*b*hp*Qp+b*hs*Qs; % longitudinal stiffness coefficient

% Zero-th mass moment of inertia of tip mass

ITa=(ha*lo-(2*hp+hs) *1b) *bs*rhoa

% Second mass of inertia moment of tip mass

xg=(ha*lo*1lo/2- (2*hp+hs) *1b*1b/2) / (ha*lo- (2*hp+hs) *1b) ;

x1l=xg-1l0/2;

x2=xg-1b/2;

Ic=(((lo*2+ha”2)/12+x172) - (((2*hp+hs) *2+1b"*2) /12) -x2"2) * (lo*ha-

(2*hp+hs) *1b) *bs*rhoa ;

% Zero-th mass of inertia moment of bimorph
Im=2*bp*hp*rhoptbs*hs*rhos;

o o

o°
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890099009 000090009000000090000090000000900000000

$%%%% Calculating the eigenfunction forms, mass and stiffness %%%%%%
%$%$%%% matrices, orthonormality and Piezoelectric coupling %%%%%%
999000000000 00000000000000000000000000000000000000000000000000000000
OO0OO0OO0OOO0OO0OOOODODOODODOODODODOODODOODODODODODODOODODODOODODODODODODOODODOODODODODODODOODODOODODOOODOOOODOOODO©OO

% First eigenfunction of transverse form

Syms x

vnl=33.2379

Aal=(Ia*vnl)/Im;

Bbl=(Ic*vnl”"3)/Im;

All=-(cos (vnl*L)+cosh(vnl*L))+Bbl* (sin(vnl*L)+sinh (vnl*L)
Al2=(sinh (vnl*L)+sin(vnl*L))+Bbl* (cos(vnl*L)-cosh(vnl*L)) ;
A21=((sin(vnl*L)-sinh (vnl*L))+Aal* (cos(vnl*L)-cosh(vnl*L)));
A22=((cos (vnl*L)+cosh(vnl*L))-Aal* (sin(vnl*L)-sinh (vnl*L)));
zhl=(cos (vnl*x)-cosh(vnl*x)+ (A21/A22) * (sin(vnl*x)-sinh(vnl*x)));
zhml=(cos (vnl*L)-cosh(vnl*L)+ (A21/A22)* (sin(vnl*L)-sinh(vnl*L)));
% Second eigenfunction of transverse form

vn2= 120.01682;

Aa?2=(Ia*vn2)/Im;

Bb2=(Ic*vn2"3)/Im;

Anll=-(cos (vn2*L)+cosh (vn2*L))+Bb2* (sin(vn2*L)+sinh (vn2*L)) ;
Anl2=(sinh(vn2*L)+sin (vn2*L))+Bb2* (cos (vn2*L) -cosh (vn2*L)) ;
An2l=((sin(vn2*L)-sinh (vn2*L))+Aa2* (cos (vn2*L) —cosh (vn2*L))) ;
An22=((cos (vn2*L) +cosh (vn2*L) ) -Aa2* (sin (vn2*L) -sinh (vn2*L))) ;
zh2=(cos (vn2*x)-cosh (vn2*x)+ (An21/An22) * (sin (vn2*x) -sinh (vn2*x))) ;
zhm2=(cos (vn2*L) —cosh (vn2*L) + (An21/An22) * (sin (vn2*L) -sinh (vn2*L))) ;
% Third eigenfunction of transverse form
vn3=186.990149;

Aa3=(Ia*vn3)/Im;

Bb3=(Ic*vn3"3)/Im;

A311l=-(cos (vn3*L)+cosh (vn3*L))+Bb3* (sin (vn3*L)+sinh (vn3*L)

A312=(sinh (vn3*L) +sin (vn3*L) ) +Bb3* (cos (vn3*L) —cosh (vn3*L))
)) )
)

)7

)7

A321=((sin(vn3*L)-sinh (vn3*L))+Aa3* (cos (vn3*L) -cosh (vn3*L)));
A322=((cos (vn3*L)+cosh (vn3*L))-Aa3* (sin (vn3*L) -sinh (vn3*L))) ;
zh3=(cos (vn3*x)-cosh (vn3*x)+ (A321/A322) * (sin(vn3*x) -sinh (vn3*x))) ;
zhm3= (cos (vn3*L) —cosh (vn3*L) + (A321/A322) * (sin(vn3*L) -sinh (vn3*L))) ;
% Arranging the eigenfunction series into matrix forms
zh=[zhl zh2 zh3];

zhl=[zhml zhm2 zhm3];

% Differential forms of the eigenfunction series
dzhx=diff (zh,x,2);

dzhy=diff (zh,x,1);
dzhz=diff (zh,x,1);
dzhl=subs (dzhy, L) ;

% initialisation of mechanical mass and stiffness matrices for

% transverse

Mbb=zeros (3, 3) ;

Kbb=zeros (3, 3);

% Calculating the mechanical mass and stiffness matrices for

% transverse form

for s=1:3

for n=1:3

Mbb (s, n)=Mbb (s, n)+ (Im*int ((zh(:,n)*zh(:,s)),x,0,L)+Ia*(zhl(:,n)*zhl(
:,8))+Ic*(dzhl(:,n)*dzhl(:,s)));

Kbb (s,n)=Kbb (s, n)+ (Cc*int ( (dzhx(:,n) *dzhx(:,s)),x,0,L));

end

end

% Calculating the eigenvector and eigenvalues

invm=inv (Mbb) ;

kmmod=invm*Kbb;

[V,D]=eig (kmmod) ;

freq nat=D;
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Q

% Calculating the Ritz transverse eigenfunction series
Ztl=vpa(V(1l,1)*zhl+Vv(2,1)*zh2+V (3,1) *zh3) ;

Zt2=vpa (V(1,3)*zhl+V (2,3) *zh2+V (3, 3) *zh3) ;

Zt3=vpa (V(1,2)*zhl+V (2,2)*zh2+V (3,2) *zh3) ;

% Arranging the Ritz transverse eigenfunction series into

% matrix forms

Nzh=[Ztl Zt2 Zt3];

% Calculating transverse eigenfunction function series in terms of
% bimorph length

Nzhml=subs (Ztl,x,L);

Nzhm2=subs (Z2t2, x, L) ;

Nzhm3=subs (Z2t3, x, L) ;

% Arranging transverse eigenfunction function series in terms of

% bimorph length

Nzhl=[Nzhml Nzhm2 Nzhm3];

% calculating differential forms of eigenfunction function series
dzhxn=diff (Nzh,x,2);

dzhyn=diff (Nzh,x,1);

dzhzn=diff (Nzh,x,1);

dzhln=subs (dzhyn,x, L) ;

% Transverse mass normalisation

NMbb=sqgrt (1/ (simplify (Im*int (Nzh(1,1) *Nzh(1,1),x,0,L)+Ia*Nzhl (1,1)*N
zhl(1,1)+Ic*dzhln(1,1)*dzhln(1,1)))):;

NMbb2=sqrt (1/ (simplify (Im*int (Nzh(1,2) *Nzh(1,2),x,0,L)+Ia*Nzhl(1,2)*
Nzhl (1,2)+Ic*dzhln(1,2)*dzhln(1,2)))):;

NMbb3=sqrt (1/ (simplify (Im*int (Nzh(1,3) *Nzh(1,3),x,0,L)+Ia*Nzhl (1,3)*
Nzhl (1,3)+Ic*dzhln(1,3)*dzhlin(1,3))));

% Normalised first Ritz eigenfunction forms

Nsh=vpa (simple (Nzh (1,1) *NMbb) ) ;

Nshm=subs (Nsh,x,L) ;

Ndzhyn=diff (Nsh,x,1);

Nshn=subs (Ndzhyn, x, L) ;

Ndzhxn=diff (Nsh, x,2);

% Checking whether normalisation is fulfilled and calculating the

% first inertia force

MbbN=vpa (Im*int (Nsh*Nsh, x, 0, L) +Ia*Nshm*Nshm+Ic*Nshn*Nshn) ;

NKbb=vpa (Cc*int (Ndzhxn*Ndzhxn,x,0, L)) ;

NQwl=vpa (Im*int (Nsh,x,0,L)+Ia*Nshm) ;

% Normalised second Ritz eigenfunction forms

Nsh2=vpa (simple (Nzh (1, 2) *NMbb2) ) ;

Nshm2=subs (Nsh2, x,L) ;

Ndzhyn2=diff (Nsh2,x,1);

Nshn2=subs (Ndzhyn2, x, L) ;

Ndzhxn2=diff (Nsh2,x,2);

% Checking whether normalisation is fulfilled and calculating the
% second inertia force

MbbN2=vpa (Im*int (Nsh2*Nsh2,x,0,L)+Ia*Nshm2*Nshm2+Ic*Nshn2*Nshn2) ;
NKbb2=vpa (Cc*int (Ndzhxn2*Ndzhxn2,x,0,L)) ;

NQw2=vpa (Im*int (Nsh2,x,0,L)+Ia*Nshm2) ;

% Normalised third Ritz eigenfunction forms

Nsh3=vpa (simple (Nzh (1, 3) *NMbb3) ) ;

Nshm3=subs (Nsh3, x, L) ;

Ndzhyn3=diff (Nsh3,x,1);

Nshn3=subs (Ndzhyn3, x, L) ;

Ndzhxn3=diff (Nsh3,x,2);

% Checking whether normalisation is fulfilled is fulfilled and

% calculating the second inertia force

MbbN3=vpa (Im*int (Nsh3*Nsh3,x,0,L)+Ia*Nshm3*Nshm3+Ic*Nshn3*Nshn3) ;
NKbb3=vpa (Cc*int (Ndzhxn3*Ndzhxn3,x,0,L)) ;

NQw3=vpa (Im*int (Nsh3,x,0,L)+Ia*Nshm3) ;

% transverse Piezoelectric coupling
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Pwl=vpa (Rb*int ( (Ndzhxn) ,x,0,L));
Pw2=vpa (Rb*int ( (Ndzhxn2),x,0,L));
Pw3=vpa (Rb*int ( (Ndzhxn3),x,0,L));
% First eigenfunction of longitudinal form
vv1=18.8287 ;
zhll=(sin (vv1l*x));
zhlml=subs (zhll,x,L);
% Second eigenfunction of longitudinal form
vv2=108.073;
zhl2=(sin (vv2*x));
zhlm2=subs (zhl2,x,L);
% Third eigenfunction of longitudinal form
vv3=210.665;
zhl3=(sin (vv3*x));
zhlm3=subs (zhl3,x,L);
% arranging into matrix form
zhlo=[zhll zhl2 zhl3];
zhlom=[zhlml zhlm2 zhlm3];
% Differential form
dzhyo=diff (zhlo,x,1);
% Calculating eigenfunction function form in terms of bimorph length
dzhol=subs (dzhyo, L) ;
Calculating the mechanical mass and stiffness matrices for
longitudinal
Maa=zeros (3, 3);
Kaa=zeros (3, 3);
for s=1:3
for n=1:3
Maa (s, n)=Maa (s,n) +vpa (Im*int (zhlo(:,n) *zhlo(:,s),x,0,L)+Ia*zhlom(:,n
) *zhlom(:,s));
Kaa (s,n)=Kaa (s, n)+vpa (Ca*int (dzhyo (:,n) *dzhyo(:,s),x,0,L));
end
end
% Calculating the eigenvector and eigenvalues
invlo=inv (Maa) ;
kmlo=invlo*Kaa;
[V2,D2]=eig (kmlo) ;
freq nat2=D2;
% Calculating the Ritz longitudinal eigenfunction forms
Ztol=vpa (V2 (1,1)*zhl11+Vv2(2,1) *zhl12+V2(3,1) *zhl3);
Zto2=vpa (V2 (1,3)*zhl11+V2(2,3) *zh12+V2(3,3) *zhl3);
Zto3=vpa (V2 (1,2)*zhl11+V2(2,2)*zh12+V2(3,2) *zhl3);
Arranging the Ritz longitudinal eigenfunction forms into
matrix forms
zho=[Ztol Zto2 Zto3];
Calculating longitudinal eigenfunction function form in terms of
bimorph length
Nzhol=subs (Ztol,x,L);
Nzho2=subs (Zto2,x,L) ;
Nzho3=subs (Zto3,x,L) ;
% Arranging longitudinal eigenfunction function form in terms of
% bimorph length
Nzhmo=[Nzhol Nzho2 Nzho3];
% calculating differential form
dzhxo=diff (Nzho, x,2) ;
dzhyo=diff (Nzho,x,1);
dzhzo=diff (Nzho,x,1);
dzhlo=subs (dzhyo, x, L) ;
% Longitudinal mass normalisation
NMaal=sqrt (1/ (simple (Im*int (Nzho(1,1) *Nzho(1,1),x,0,L)+Ia*Nzhmo(1,1)
*Nzhmo (1,1))));

o\

o\

o\

o\

o0 oo =
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NMaa2=sqrt (1/ (simple (Im*int (Nzho (1,2) *Nzho(1,2),x,0,L)+Ia*Nzhmo (1,2)
*Nzhmo (1,2))));

NMaa3=sqgrt (1/ (simple (Im*int (Nzho (1, 3) *Nzho (1,3),x%,0,L)+Ia*Nzhmo (1, 3)
*Nzhmo (1,3))));

% Normalised first Ritz longitudinal eigenfunction forms
Nshol=vpa (simple (Nzho (1, 1) *NMaal) ) ;

Nshmol=subs (Nshol, x,L) ;

Ndzhynol=diff (Nshol,x,1);

Nshnol=subs (Ndzhynol, x, L) ;

Ndzhxnol=diff (Nshol, x,2);

% Checking whether normalisation is fulfilled and calculating first
% generalised input inertia force due to input motion

MaaNl=vpa (Im*int (Nshol*Nshol, x,0,L)+Ia*Nshmol*Nshmol) ;

NKaal=vpa ((Ca*int (Ndzhynol”"2,x,0,L)));

NQul=vpa (subs (Im*int (Nshol,x,0,L)+Ia*Nshmol)) ;

% Normalised second Ritz longitudinal eigenfunction forms
Nsho2=vpa (simple (Nzho (1, 2) *NMaaZ2) ) ;

Nshmo2=subs (Nsho2, x, L) ;

Ndzhyno2=diff (Nsho2,x,1);

Nshno2=subs (Ndzhyno2, x, L) ;

Ndzhxno2=diff (Nsho2,x,2);

% Checking whether normalisation is fulfilled and calculating second
% generalised input inertia force due to input motion

MaaN2=vpa (Im*int (Nsho2*Nsho2,x,0,L) +Ia*Nshmo2*Nshmo?2) ;

NKaa2=vpa ( (Ca*int (Ndzhyno2"2,x,0,L)));

NQu2=vpa (subs (Im*int (Nsho2,x,0,L)+Ia*Nshmo2)) ;

% Normalised third Ritz longitudinal eigenfunction forms
Nsho3=vpa (simple (Nzho (1, 2) *NMaa3)) ;

Nshmo3=subs (Nsho3,x,L);

Ndzhyno3=diff (Nsho3,x,1);

Nshno3=subs (Ndzhyno3, x, L) ;

Ndzhxno3=diff (Nsho3, x,2);

% Checking whether normalisation is fulfilled and calculating third
% generalised input inertia force due to input motion

MaaN3=vpa (Im*int (Nsho3*Nsho3,x,0,L) +Ia*Nshmo3*Nshmo3) ;

NKaa3=vpa ((Ca*int (Ndzhyno3"2,x,0,L)));

NQu3=vpa (subs (Im*int (Nsho3,x,0,L)+Ia*Nshmo3)) ;

% Longitudinal piezoelectric coupling

Pul= -subs (Ra*int (Ndzhynol,x,0,L));

Pu2= -subs (Ra*int (Ndzhyno2,x,0,L

99000000000000000000000000000000

%%%%% Generations of FRFs electrical voltage, current, power, %$%%%%%
$%%%% optimal power, polar power, tip transverse displacement $%%%%%%
$%5%%% and velocit $%%%%%

o)
5 5555555555555 5555555555555 5555555555555555555556566660666666665

% Iterating input frequency range

freg end=90; % input last frequency

hrgf=freq end*2*pi;

hrgi=2*pi*60; % input initial frequency

deltahrg=1;

nhrg=fix ( (hrgf-hrqgi) /deltahrqg)+1; % the number of the generated

% frequency

% Iteration of electromechanical FRFs

plotsol=3 ; % Input iteration

if plotsol==1 % iterating the tip absolute transverse displacement
% with CEDRT model

zb1=0.0139;

zb2=0.015;

zb3=0.020;

zal=0.03;
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za2=0.036;
za3=0.04;
wral=sqgrt (NKaal

o\

first longitudinal natural frequency
second longitudinal natural frequency
third longitudinal natural frequency
first transverse natural frequency
second transverse natural frequency
third transverse natural frequency
Initialisation of generated frequency
response

( )7
wra2=sqgrt (NKaa2) ;
wra3=sqgrt (NKaa3)
(
(

o\

’

o\

o

wrbl=sqrt (NKbb) ;
wrb2=sqrt (NKbb2) ;
wrb3=sqgrt (NKbb3) ;
FRVwl=zeros (10, nhrq) ;

o o oP

o\

nl=0;
s2=0;
% Iterating input load resistance

for RAd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3 150e3 200e3 602e3];

nl=nl+1;

for n=hrgi:deltahrqg:hrqgf; % iterating input frequency
R1=1/Rdd;
s2=s2+1;

FRVwl (nl, s2)=FRVwl (nl,s2)+(-3/(n"2)+(((-Nshm/ (wrbl"2-

n"2+2*i*zbl*n*wrbl) ) * ((Pd*1*n-R1) *NQwl*3)/....

((Pd*1*n-R1) -i*n*Pwl”"2/ (wrbl”*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw2"2/ (Wrb272-n"24+2*1i*zb2*n*wrb2) -i*n*Pw3"2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3)))+....

((-Nshm2/ (wrb272-n"2+2*1*zb2*n*wrb2) ) * ((Pd*1*n-R1) *NQw2*3) /....

((Pd*1*n-R1) —-i*n*Pwl” 2/ (wrbl*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw272/ (Wrb272-n"24+2*1i*zb2*n*wrb2) -i*n*Pw3"2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3)))+...

((=Nshm3/ (wrb3"2-n"2+2*i*zb3*n*wrb3) ) * ((Pd*i*n-R1) *NQw3*3)/....

((Pd*1*n-R1) —-i*n*Pwl” 2/ (wrbl*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw2"2/ (Wwrb2"2-n"2+2*1*zb2*n*wrb2) -i*n*Pw3"*2/ (wrb372-
n"2+2*i*zb3*n*wrb3)))));
end

end

ngr=hrqgi:deltahrg:hrqgf;

semilogy (ngr/ (2*pi), (abs (FRVwl))) ;
elseif plotsol==2 % iterating the tip absolute transverse
% velocity with CEDRT model

zb1=0.
zb2=0.
zb3=0.
zal=0.
za2=0.

0139;
015;
020;
03;
036;

za3=0.04;
wral=sqgrt (NKaal

( ) ;
wra2=sqrt (NKaa?2) ;
wra3=sqgrt (NKaa3)
(
(

o©

first longitudinal natural frequency
second longitudinal natural frequency
third longitudinal natural frequency
first transverse natural frequency
second transverse natural frequency
third transverse natural frequency
Initialisation of generated frequency
response

o©

’

o

wrbl=sqrt (NKbb) ;
wrb2=sqgrt (NKbb2) ;
wrb3=sqgrt (NKbb3) ;
FRVw2=zeros (10,nhrq) ;

oC o° o o

o\°

nl=0;
s2=0;

% ilterating input load resistance

for RAd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3
nl=nl+1;

for n=hrqgi:deltahrg:hrgf; % iterating input frequency
R1=1/Rdd;
s2=s2+1;

150e3 200e3 602e3];
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FRVw2 (nl, s2)=FRVw2 (nl,s2)+(3/ (i*n)+i*n* ( ( (-Nshm/ (wrbl1l"2-
n"2+2*i*zbl*n*wrbl) ) * ((Pd*1*n-R1) *NQwl*3)/....

((Pd*1*n-R1) —-i*n*Pwl”2/ (wrbl"2-n"2+2*1i*zbl*n*wrbl) -
1*n*Pw2"2/ (Wrb272-n"24+2*1*zb2*n*wrb2) —-1*n*Pw3*2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3)))+....

((-Nshm2/ (wrb272-n"2+2*i*zb2*n*wrb2) ) * ((Pd*1*n-R1) *NQw2*3) /....

((Pd*1*n-R1) -i*n*Pwl”"2/ (wrbl”*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw272/ (Wrb2"2-n"24+2*1*zb2*n*wrb2) —-1*n*Pw3*2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3)))+...

((-Nshm3/ (wrb372-n"24+2*1*zb3*n*wrb3) ) * ( (Pd*i*n-R1) *NQw3*3) /.. ..

((Pd*1*n-R1) -i*n*Pwl”"2/ (wrbl”*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw2"2/ (Wwrb272-n"242*1i*zb2*n*wrb2) -1i*n*Pw3"2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3)))));
end

end
ngr=hrqgi:deltahrg:hrqgf;
semilogy (ngr/ (2*pi), (abs (FRVW2))) ;

elseif plotsol==3 % iterating the electrical wvoltage

% with CEDRT model
zp1=0.0139;
zb2=0.015;
zb3=0.020;
zal=0.03;
za2=0.036;
za3=0.04;
wral=sqgrt (NKaal

( ) ;
wra2=sqrt (NKaa?2) ;
wra3=sqrt (NKaa3)
(
(

o

first longitudinal natural frequency
second longitudinal natural frequency
third longitudinal natural frequency
first transverse natural frequency
second transverse natural frequency
third transverse natural frequency
Initialisation of generated frequency
response

o

’

o

wrbl=sqgrt (NKbb) ;
wrb2=sqgrt (NKbb2) ;
wrb3=sqgrt (NKbb3) ;
FRVw3=zeros (10,nhrq) ;

oC o0 o o

o

nl=0;
s2=0;
% i1terating input load resistance
for Rdd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3 150e3 200e3 602e3];
nl=nl+1;
for n=hrgi:deltahrg:hrgf; % iterating input frequency
R1=1/Rdd;
s2=s2+1;
FRVw3 (nl, s2)=FRVw3 (nl,s2)+ ((Pwl*1i*n*NQwl*3/ (wrbl"2-
n"2+2*i*zbl*n*wrbl) +Pw2*1*n*NQw2*3/ (wrb2"2-

n"2+2*1*zb2*n*wrb2) +Pw3*1*n*NQw3*3/ (wrb3"2-n"2+2*1*zb3*n*wrb3))/....

((Pd*1i*n-R1) —-i*n*Pwl” 2/ (wrbl*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw2"2/ (Wwrb272-n"24+2*1i*zb2*n*wrb2) -1i*n*Pw3"2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3)));
end

end

ngr=hrqgi:deltahrg:hrgf;

semilogy (ngr/ (2*pi), (abs (FRVwW3))) ;

elseif plotsol==4 % iterating the electrical wvoltage
% with CEDRT model

zb1=0.0139;

zb2=0.015;

zb3=0.020;

zal=0.03;

za2=0.036;
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za3=0.04;
wral=sqgrt (NKaal

( ) ;
wra2=sqgrt (NKaa2) ;
wra3=sqgrt (NKaa3)
(
(

o\

first longitudinal natural frequency
second longitudinal natural frequency
third longitudinal natural frequency
first transverse natural frequency
second transverse natural frequency
third transverse natural frequency
Initialisation of generated frequency
response

o\

’

o\

o\

wrbl=sqrt (NKbb) ;
wrb2=sqrt (NKbb2) ;
wrb3=sqgrt (NKbb3) ;
FRVw3=zeros (10, nhrq) ;

o o0 oP

o\

nl=0;
s2=0;
% 1lterating input load resistance
for RAd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3
nl=nl+1;
for n=hrgi:deltahrg:hrgf; % iterating input frequency
R1=1/Rdd;
s2=s2+1;
FRVw3 (nl, s2)=FRVw3 (nl,s2)+ ((Pwl*i*n*NQwl*3/ (wrbl"2-
n"2+2*i*zbl*n*wrbl) +Pw2*1*n*NQw2*3/ (wrb2"2-

150e3 200e3 602e3];

n"2+2*i*zb2*n*wrb2) +Pw3*1*n*NQw3*3/ (wrb3"2-n"24+2*1*zb3*n*wrb3))/....

((Pd*1i*n-R1) —-i*n*Pwl” 2/ (wrbl*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw2"2/ (Wrb272-n"24+2*1i*zb2*n*wrb2) -i*n*Pw3"2/ (wrb3"2-
n"24+2*i*zb3*n*wrb3))) ;
end

end

ngr=hrqgi:deltahrg:hrqgf;

semilogy (ngr/ (2*pi), (abs (FRVwW3))) ;

elseif plotsol==5 % iterating the electrical current
% with CEDRT model

zb1=0.
zb2=0.
zb3=0.
zal=0.
za2=0.
za3=0.

0139;
015;
020;
03;
036;
04,

( ) ;
wra2=sqrt (NKaa2) ;
wra3=sqgrt (NKaa3)
(
(

o©

wral=sqgrt (NKaal first longitudinal natural frequency
second longitudinal natural frequency
third longitudinal natural frequency
first transverse natural frequency
second transverse natural frequency
third transverse natural frequency

Initialisation of generated frequency

o

’

o

wrbl=sqrt (NKbb) ;
wrb2=sqrt (NKbb2) ;
wrb3=sqgrt (NKbb3) ;
FRVw4=zeros (10, nhrq) ;

o o o©

o°

% response
nl=0;
s2=0;
for Rdd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3 150e3 200e3 602e3];
nl=nl+1;
for n=hrgi:deltahrqg:hrgf; % iterating input frequency
R1=1/Rdd;
s2=s2+1;

FRVw4 (nl, s2)=FRVw4 (nl,s2)+ ((Pwl*1i*n*NQwl*3/ (wrbl"2-
n"2+2*i*zbl*n*wrbl) +Pw2*1*n*NQw2*3/ (wrb2"2-

n"24+2*1*zb2*n*wrb2) +Pw3*1*n*NQw3*3/ (wrb3"2-n"2+2*1*zb3*n*wrb3))/....

((PA*i*n-R1) -1i*n*Pwl’ 2/ (wrbl"2-n"2+2%i*zbl*n*wrbl) -
1*n*Pw2"2/ (wrb2"2-n"2+2*1*zb2*n*wrb2) -1i*n*Pw3"2/ (wrb372-
n*"2+2*i*zb3*n*wrb3)) ) /Rdd;
end

end
ngr=hrqgi:deltahrg:hrqgf;
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semil
elsei

zb1=0.
zb2=0.
zb3=0.

zal=0

za2=0.
za3=0.

ogy (ngr/ (2*pi
==5

f plotsol==

0139;
015;
020;
.03;
036;
04;

, (abs (FRVw4) ) ) ;
iterating the electrical Power

with CEDRT model

( ) ;
wra2=sqgrt (NKaa2) ;
wra3=sqgrt (NKaa3)
(
(

o°

wral=sqgrt (NKaal first longitudinal natural frequency
second longitudinal natural frequency
third longitudinal natural frequency
first transverse natural frequency
second transverse natural frequency
third transverse natural frequency

Initialisation of generated frequency

o\

’

o\

wrbl=sqgrt (NKbb) ;
wrb2=sqrt (NKbb2) ;
wrb3=sqgrt (NKbb3) ;
FRVwb=zeros (10, nhrq) ;

o o° oP

oe

% response
nl=0;
s2=0;
for RAd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3 150e3 200e3 602e3];
nl=nl+1;
for n=hrgi:deltahrg:hrgf; % iterating input frequency
R1=1/Rdd;
s2=s2+1;

FRVW5 (nl, s2) =FRVwW5 (nl, s2) + ( (Pwl*i*n*NQwl*3/ (wrbl"2-
n"2+2*i*zbl*n*wrbl) +Pw2*1*n*NQw2*3/ (wrb2"2-

n"2+2*i*zb2*n*wrb2) +Pw3*1*n*NQw3*3/ (wrb3"2-n"24+2*1*zb3*n*wrb3))/....

((Pd*1*n-R1) —-i*n*Pwl” 2/ (wrbl*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw2"2/ (Wwrb2"2-n"2+2*i*zb2*n*wrb2) -1*n*Pw3"2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3))) ~2/Rdd;
end

end
ngr=hrqgi:deltahrg:hrqgf;
semilogy (ngr/ (2*pi), (abs (FRVw5))) ;

elseif plotsol==6 % iterating the tip absolute transverse
displacement with CEDRTL model

o

zb1=0.0139;

zb2=0.015;

zb3=0.020;

zal=0.03;

za2=0.036;

za3=0.04;

wral=sqgrt (NKaal) ; % first longitudinal natural frequency
wra2=sqrt (NKaa2) ; % second longitudinal natural frequency
wra3=sqgrt (NKaa3) ; % third longitudinal natural frequency
wrbl=sqrt (NKbb) ; % first transverse natural frequency
wrb2=sqrt (NKbb2) ; % second transverse natural frequency
wrb3=sqgrt (NKbb3) ; % third transverse natural frequency

FRVw6=zeros (10, nhrq) ;

nl=0;
s2=0;

o°

o\°

Initialisation of generated frequency
response

for Rdd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3
nl=nl+1;

for n=hrqgi:deltahrg:hrgf; % iterating input frequency

R1=1/Rdd;

s2=s2+1;

FRVw6 (nl, s2)=FRVw6 (nl,s2)+(-3/(n"2)+ (((-Nshm/ (wrbl"2-

N 2+42*i*zbl*n*wrbl) ) * ((PA*i*n-R1) *NQwl*3-Pul”2*1i*n*NQwl*3/ (wral” 2-

150e3 200e3 602e3];
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n"2+2*i*zal*n*wral) —Pu2”2*1i*n*NQw2*3/ (wra2”2-n"2+2*i*za2*n*wra2) -
Pu3”2*1i*n*NQw3*3/ (wra3"2-n"2+2*i*za3*n*wra3l))/....

((Pd*1*n-R1) —-i*n*Pwl”2/ (wrbl"2-n"2+2*1i*zbl*n*wrbl) -

1*n*Pw2"2/ (Wrb272-n"24+2*1*zb2*n*wrb2) —-1*n*Pw3*2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3)-....

i*n*Pul”2/ (wral”2-n"2+42*i*zal*n*wral)-1i*n*Pu2°2/ (wra2"2-
n"2+2*i*za2*n*wra?2) -i*n*Pu3”*2/ (wral3*2-n"2+2*i*zal3*n*wral)))+....
((-Nshm2/ (wrb272-n"2+2*1*zb2*n*wrb2) ) * ((Pd*1*n-R1) *NQw2*3-
Pul”2*1i*n*NQwl*3/ (wral”2-n"2+2*i*zal*n*wral) -

Pu2”2*1*n*NQw2*3/ (wra2”2-n"2+2*i*za2*n*wra?) -

Pu3”2*1i*n*NQw3*3/ (wra3"2-n"2+2*i*za3*n*wral))/....

((Pd*1*n-R1) -i*n*Pwl”"2/ (wrbl”*2-n"2+2*i*zbl*n*wrbl) -

1*n*Pw272/ (Wrb272-n"24+2*1*zb2*n*wrb2) —-1*n*Pw3*2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3)-....

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral)-1i*n*Pu2°2/ (wra2"2-
n"2+2*i*za2*n*wra?2) -i*n*Pu3”*2/ (wral3*2-n"2+2*i*zal3*n*wral3)))+...
((-Nshm3/ (wrb372-n"2+2*1i*zb3*n*wrb3) ) * ( (Pd*1*n-R1) *NQw3*3-
Pul”2*1i*n*NQwl*3/ (wral”2-n"2+2*i*zal*n*wral) -

Pu2”2*1*n*NQw2*3/ (wra2”2-n"2+2*i*za2*n*wra?) -

Pu3”"2*1*n*NQw3*3/ (wra3"2-n"2+2*i*zal3*n*wra3))/....

((Pd*1i*n-R1) —-i*n*Pwl” 2/ (wrbl*2-n"2+2*i*zbl*n*wrbl) -

1*n*Pw2"2/ (Wrb272-n"24+2*1i*zb2*n*wrb2) -i*n*Pw3"2/ (wrb3"2-
n"24+2*i*zpb3*n*wrb3)-....

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral)-1*n*Pu22”2/ (wra2"2-
n"2+2*i*za2*n*wra?2) —i*n*Pu3d”2/ (wral3*2-n"2+2*i*zal3*n*wral))))):
end

s2=0;

end

ngr=hrqgi:deltahrqg:hrqgf;

semilogy (ngr/ (2*pi), (abs (FRVwW6))) ;

elseif plotsol==7 % iterating the tip absolute transverse
% velocity with CEDRTL model

zb1=0.
zb2=0.
zb3=0.
zal=0.

0139;
015;
020;
03;

za2=0.036;
za3=0.04;
wral=sqgrt (NKaal

o

) 7
wra2=sqrt (NKaa?2) ;
)

( first longitudinal natural frequency
(
wra3=sqgrt (NKaa3
(
(

second longitudinal natural frequency
third longitudinal natural frequency
first transverse natural frequency
second transverse natural frequency
third transverse natural frequency
Initialisation of generated frequency

o©

’

o©

o

wrbl=sqrt (NKbb) ;
wrb2=sqrt (NKbb2) ;
wrb3=sqgrt (NKbb3) ;
FRVwé=zeros (10, nhrq) ;

o° oo

o\

% response
nl=0;
s2=0;
for RAd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3 150e3 200e3 602e3];
nl=nl+1;
for n=hrgi:deltahrg:hrgf; % iterating input frequency
R1=1/Rdd;
s2=s2+1;
FRVwW6 (nl, s2)=FRVw6 (nl,s2)+(-3/(i*n)+i*n* (( (-Nshm/ (wrbl"2-

n"2+2*i*zbl*n*wrbl) ) * ((Pd*1*n-R1) *NQwl*3-Pul”2*1*n*NQwl*3/ (wral”2-
n"2+2*i*zal*n*wral) —Pu2”2*1i*n*NQw2*3/ (wra2”2-n"2+2*i*za2*n*wra2) -
Pu3”2*i*n*NQw3*3/ (wra3”2-n"2+2*i*zal3*n*wra3))/....

((Pd*1*n-R1) —i*n*Pwl” 2/ (wrbl”2-n"2+2*i*zbl*n*wrbl) -

1*n*Pw272/ (Wwrb272-n"24+2*1*zb2*n*wrb2) -1*n*Pw3"2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3)-....
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i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral)-1i*n*Pu2°2/ (wra2"2-
n"2+2*i*za2*n*wra?2) -i*n*Pu3”*2/ (wral3*2-n"2+2*i*zal3*n*wral)))+....
((-Nshm2/ (wrb272-n"2+2*1*zb2*n*wrb2) ) * ((Pd*1*n-R1) *NQw2*3—-
Pul”2*1i*n*NQwl*3/ (wral”2-n"2+2*i*zal*n*wral) -
Pu2”2*1*n*NQw2*3/ (wra2”2-n"2+2*1i*za2*n*wra?) -
Pu3”"2*1i*n*NQw3*3/ (wra3"2-n"2+2*i*za3*n*wra3l))/....
((Pd*1*n-R1) -i*n*Pwl”"2/ (wrbl”*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw272/ (Wrb2"2-n"24+2*1*zb2*n*wrb2) —-1*n*Pw3*2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3)-....
i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral)-1i*n*Pu2°2/ (wra2"2-
n"2+2*i*za2*n*wra?2) -i*n*Pu3”*2/ (wral3*2-n"2+2*i*zal3*n*wral3)))+...
((-Nshm3/ (wrb372-n"2+2*i*zb3*n*wrb3) ) * ( (Pd*1*n-R1) *NQw3*3-
Pul”2*1i*n*NQwl*3/ (wral”2-n"2+2*i*zal*n*wral) -
Pu2”2*1*n*NQw2*3/ (wra2”2-n"2+2*1i*za2*n*wra?) -
Pu3”2*i*n*NQw3*3/ (wral3”"2-n"2+2*i*za3*n*wral3))/....
((Pd*1*n-R1) -i*n*Pwl”"2/ (wrbl”*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw2"2/ (Wwrb272-n"242*1i*zb2*n*wrb2) -1i*n*Pw3"2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3)-....
i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral)-1*n*Pu2”2/ (wra2"2-
n"2+2*i*za2*n*wra?2) —i*n*Pu3d”"2/ (wral3*2-n"2+2*i*zal3*n*wral))))):
end
s2=0;
end
ngr=hrqgi:deltahrg:hrqgf;
semilogy (ngr/ (2*pi), (abs (FRVw7))) ;
elseif plotsol==8 % iterating the electrical wvoltage

% with CEDRTL model

zb1=0.
zb2=0.
zb3=0.
zal=0.
za2=0.
za3=0.

0139;
015;
020;
03;
036;
04;

( ) ;
wra2=sqrt (NKaa2) ;
wra3=sqgrt (NKaa3)
(
(

o

wral=sqgrt (NKaal first longitudinal natural frequency
second longitudinal natural frequency
third longitudinal natural frequency
first transverse natural frequency
second transverse natural frequency
third transverse natural frequency

Initialisation of generated frequency

o

’

oe

o©

wrbl=sqrt (NKbb) ;
wrb2=sqgrt (NKbb2) ;
wrb3=sqgrt (NKbb3) ;
FRVw8=zeros (10, nhrq) ;

o° oo

o°

% response
nl=0;
s2=0;
for RAd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3 150e3 200e3 602e3];
nl=nl+1;
for n=hrgi:deltahrg:hrgf; % iterating input frequency
R1=1/Rdd;
s2=s2+1;

FRVWS (nl, s2) =FRVwS (nl,s2) +( (Pwl*i*n*NQwl*3/ (wrbl”2-
N 2+42%i*zbl*n*wrbl) +Pw2*i*n*NQw2*3/ (wrb2"2—

n"2+2*1*zb2*n*wrb2) +Pw3*1*n*NQw3*3/ (wrb3"2-n"24+42*i*zb3*n*wrb3))/....

((Pd*1*n+R1) —i*n*Pwl”2/ (wrbl*2-n"2+2*1i*zbl*n*wrbl) -
1*n*Pw272/ (Wrb272-n"24+2*1*zb2*n*wrb2) -1i*n*Pw3"2/ (wrb3"2-
n*"2+2*i*zb3*n*wrb3)-....

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral) -1i*n*Pu2”2/ (wra2"2-
n"2+2*i*zal2*n*wral2) -i*n*Pu3"2/ (wra3*2-n"2+2*i*za3*n*wral))) ;
end

end
ngr=hrqgi:deltahrg:hrgf;
semilogy (ngr/ (2*pi), (abs (FRVwWS8))) ;
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elseif plotsol==9

zb1=0

zb2=0.
zb3=0.
zal=0.
za2=0.

.0139;
015;
020;
03;
036;

iterating the electrical Current
with CEDRTL model

o©° o

za3=0.04;

wral=sqgrt (NKaal

o\

first longitudinal natural frequency
second longitudinal natural frequency
third longitudinal natural frequency
first transverse natural frequency
second transverse natural frequency
third transverse natural frequency
Initialisation of generated frequency

( )
wra2=sqrt (NKaa?2) ;
wra3=sqgrt (NKaa3)
(
(

o

’

o

o

wrbl=sqrt (NKbb) ;
wrb2=sqgrt (NKbb2) ;
wrb3=sqgrt (NKbb3) ;
FRVw9=zeros (10, nhrq) ;

o° oo

o°

% response
nl=0;
s2=0;
for Rdd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3 150e3 200e3 602e3];
nl=nl+1;
for n=hrgi:deltahrqg:hrgf; % iterating input frequency
R1=1/Rdd;
s2=s2+1;

FRVw9 (nl, s2)=FRVw9 (nl,s2) + ((Pwl*i*n*NQwl*3/ (wrbl"2-
n"2+2*i*zbl*n*wrbl) +Pw2*1*n*NQw2*3/ (wrb2"2-

n"2+2*1*zb2*n*wrb2) +Pw3*1*n*NQw3*3/ (wrb3"2-n"2+2*1*zb3*n*wrb3))/....

((Pd*1i*n+R1) —-i*n*Pwl” 2/ (wrbl*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw272/ (wrb2"2-n"2+2*1*zb2*n*wrb2) -i*n*Pw3"2/ (wrb372-
n"24+2*i*zb3*n*wrb3)-....

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral)-i*n*Pu2°2/ (wra2"2-
n"2+2*i*za2*n*wral2) -i*n*Pu3”2/ (wra3*2-n"2+2*i*za3*n*wra3l))) /Rdd;
end

end
ngr=hrqgi:deltahrg:hrqgf;
semilogy (ngr/ (2*pi), (abs (FRVwW9))) ;

elseif plotsol==10 % iterating the electrical power
% with CEDRTL model
zb1=0.0139;
zb2=0.015;
zb3=0.020;
zal=0.03;
za2=0.036;
za3=0.04;
wral=sqgrt (NKaal) ; % first longitudinal natural frequency
wra2=sqgrt (NKaa?) ; % second longitudinal natural frequency
wra3=sqgrt (NKaa3) ; % third longitudinal natural frequency
wrbl=sqrt (NKbb) ; % first transverse natural frequency
wrb2=sqgrt (NKbb2) ; % second transverse natural frequency
wrb3=sqgrt (NKbb3) ; % third transverse natural frequency
FRVwl0O=zeros (10,nhrq) ; % Initialisation of generated frequency
% response

nl=0;
s2=0;
for RAd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3 150e3 200e3 602e3];

nl=nl+1;
for n=hrgi:deltahrg:hrqgf; % iterating input frequency

R1=1/Rdd;

s2=s2+1;
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FRVw1l0 (nl,s2)=FRVwl0 (nl,s2) + ((Pwl*1i*n*NQwl*3/ (wrbl”*2-
n"2+2*i*zbl*n*wrbl) +Pw2*1*n*NQw2*3/ (wrb2"2-

N 2+2*1*zb2*n*wrb2) +Pw3*1i*n*NQw3*3/ (wrb372-n"24+42*i*zb3*n*wrb3)) /.. ..

((Pd*1*n+R1) —i*n*Pwl”2/ (wrbl"2-n"2+2*1i*zbl*n*wrbl) -
1*n*Pw2"2/ (Wrb2"2-n"24+2*1*zb2*n*wrb2) —-1*n*Pw3"2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3) -

i*n*Pul”2/ (wral”2-n"2+42*i*zal*n*wral)-i*n*Pu2°2/ (wra2"2-
n*"2+2*i*zal2*n*wral2) -i*n*Pu3”2/ (wra3*2-n"2+2*i*zal3*n*wra3l))) ~2/Rdd;
end

end
ngr=hrqgi:deltahrqg:hrqgf;
semilogy (ngr/ (2*pi), (abs (FRVwW10))) ;
elseif plotsol==11 % iterating the polar tip absolute transverse
% displacement with CEDRTL model
UWc=3; % input acceleration
n=77.71*2*pi; % input frequency
UW=UWc/ (n) *2
s2=0;
zb1=0.0139;
zb2=0.015;
zb3=0.020;
zal=0.03;
za2=0.036;
za3=0.04;
wral=sqrt (NKaal) ;
wra2=sqrt (NKaa2) ;
wra3=sqgrt (NKaa3) ;
(
(

o

first longitudinal natural frequency
second longitudinal natural frequency
third longitudinal natural frequency
first transverse natural frequency
second transverse natural frequency
third transverse natural frequency

the number of the generated time history (second)

o

o

wrbl=sqrt (NKbb) ;
wrb2=sqrt (NKbb2) ;
wrb3=sqgrt (NKbb3) ;
freq end=0.05; %
frgf=freq end;
frgi=0; % the initial input time (second)
deltahrg=1/1000; % the incremental time (second)
fhrg=fix ((frgqf-frqgi)/deltahrq)+1;
fr=180; % the number of the generated angle (degree)
hf=fr;
hi=0; % the initial input angle (degree)
drg=1; % the incremental angle (degree)
hrg=fix ((hf-hi)/drq)+1;
FRVwll=zeros (hrqg, thrq) ;
nl=0;
Rdd=[60e3]; % input load resistance (ohm)
R1=1/Rdd;
for thetapz=(hi:drg:hf)* (pi*2)/360; % iterating input angle
nl=nl+1;
for k=frgi:deltahrqg:frqgf; % iterating input time history
s2=s2+1;
FRVwll (nl, s2)=FRVwll (nl,s2)+ (UW*sin (thetapz) *exp (1*n*k)+ (( (-
Nshm/ (wrbl”2-n"2+2*i*zbl*n*wrbl) ) * (Pul*Pwl*i*n*NQul/ (wral”2-
n"2+2*i*zal*n*wral) +Pu2*Pw2*i*n*NQu2/ (wra2”"2-
n"2+2*i*za2*n*wra?2) +Pu3*Pw3*i*n*NQu3/ (wral3”"2-
n"2+2*i*zal3*n*wra3d))/....

((Pd*1*n-R1) -1i*n*Pwl”"2/ (wrbl”*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw2"2/ (Wwrb272-n"2+2*i*zb2*n*wrb2) -1*n*Pw3"2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3) -

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral) -i*n*Pu2”2/ (wra2”2-
n"2+2*i*za2*n*wral2) -i*n*Pu3”2/ (wra3"2-n"2+2*i*za3*n*wral)) )+
((-Nshm2/ (wrb272-n"2+2*i*zb2*n*wrb2) ) * (Pul*Pwl*i*n*NQul/ (wral”2-
n*"2+2*i*zal*n*wral) +Pu2*Pw2*1i*n*NQu2/ (wra2"2-

o

o

’

o
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n"2+2*i*za2*n*wra?2) +Pu3*Pw3*i*n*NQu3/ (wral3”*2-
n"2+2*i*zal3*n*wra3d))/....

((Pd*1*n-R1) —-i*n*Pwl”2/ (wrbl"2-n"2+2*1i*zbl*n*wrbl) -
1*n*Pw2"2/ (Wrb272-n"24+2*1*zb2*n*wrb2) —-1*n*Pw3*2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3) -....

i*n*Pul”2/ (wral”2-n"2+42*i*zal*n*wral)-i*n*Pu2°2/ (wra2"2-
n"2+2*i*za2*n*wra?2) -i*n*Pu3”*2/ (wral3*2-n"2+2*i*zal3*n*wral3)))+...

((-Nshm3/ (wrb372-n"2+2*1*zb3*n*wrb3) ) * (Pul*Pwl*i*n*NQul/ (wral”2-
n"2+2*i*zal*n*wral) +Pu2*Pw2*i*n*NQu2/ (wra2"2-
n"2+2*i*za2*n*wral) +Pu3*Pw3*i*n*NQu3/ (wra3"2-
n*"2+2*i*za3*n*wra3))/....

((Pd*1*n-R1) -i*n*Pwl”"2/ (wrbl”*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw272/ (Wrb272-n"24+2*1*zb2*n*wrb2) —-1*n*Pw3*2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3) -....

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral)-1i*n*Pu2°2/ (wra2"2-
n"2+2*i*za2*n*wra?2) —-i*n*Pu3”*2/ (wral3”2-n"2+2*i*zal3*n*wral)))) * (-
n*2*UW*cos (thetapz) *exp (i*n*k))+....

(((-Nshm/ (wrbl*2-n"2+2*i*zbl*n*wrbl) ) * ((Pd*1*n-R1) *NQwl-
Pul”2*1*n*NQwl/ (wral”2-n"2+2*i*zal*n*wral)-Pu2”2*1*n*NQw2/ (wra2”"2-
n"2+2*i*za2*n*wra?2) -Pu3"2*1*n*NQw3/ (wra3"2-n"2+2*i*zal3*n*wra3))/....
((Pd*1i*n-R1) —-i*n*Pwl” 2/ (wrbl*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw2"2/ (Wrb272-n"24+2*1i*zb2*n*wrb2) -i*n*Pw3"2/ (wrb3"2-
n"24+2*i*zpb3*n*wrb3)-....
i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral)-1*n*Pu22”2/ (wra2"2-
n"2+2*i*za2*n*wra?2) -1i*n*Pu3d”"2/ (wral3*2-n"2+2*i*zal3*n*wral)))+....
((-Nshm2/ (wrb272-n"2+2*i*zb2*n*wrb2) ) * ((Pd*1*n-R1) *NQw2-
Pul”2*i*n*NQwl/ (wral”2-n"2+2*i*zal*n*wral) -Pu2”2*1*n*NQw2/ (wra2”2-
n"2+2*i*za2*n*wra?2) -Pu3"2*1*n*NQw3/ (wra3"2-n"2+2*i*zal3*n*wra3))/....
((Pd*1*n-R1) -i*n*Pwl” 2/ (wrbl*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw2"2/ (Wwrb2"2-n"2+2*1*zb2*n*wrb2) -i*n*Pw3"*2/ (wrb372-
n*"2+2*i*zb3*n*wrb3)-....
i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral)-i*n*Pu2°2/ (wra2"2-
n"2+2*i*za2*n*wra?2) -i*n*Pu3”*2/ (wral3*2-n"2+2*i*zal3*n*wral)))+...
((-Nshm3/ (wrb372-n"2+2*1*zb3*n*wrb3) ) * ((Pd*1*n-R1) *NQw3-
Pul”2*1*n*NQwl/ (wral”2-n"2+2*i*zal*n*wral)-Pu2”"2*1*n*NQw2/ (wra2”"2-
n"2+2*i*za2*n*wra?2) -Pu3"2*1i*n*NQw3/ (wra3"2-n"24+2*i*za3*n*wra3l))/....
((Pd*1i*n-R1) —-i*n*Pwl” 2/ (wrbl*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw2"2/ (wrb2"2-n"2+2*1*zb2*n*wrb2) -1i*n*Pw3"2/ (wrb372-
n"2+2*i*zb3*n*wrb3)-....
i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral) -i*n*Pu2”2/ (wra2”2-
n"2+2*i*za2*n*wral2) -i*n*Pu3”2/ (wra3*2-n"2+2*i*za3*n*wra3l)))) * (-
n*2*UW) *sin (thetapz) *exp (1*n*k)) ;

end

s2=0;

end

ngr=frgi:deltahrqg:frqf;

k=0;
for thetapz=(hi:drg:hf)* (pi*2)/360;
k=k+1;
Fwll (k, :)=max (real (FRVwll (k, :)));
end

dwll=Fwll';

thetapz=(hi:drqg:hf)
polar (thetapz,dwll
elseif plotsol==12

(pi*2)/360;

iterating the polar tip absolute transverse
velocity with CEDRTL model

o0~ %

oe

UWc=3; % input acceleration
n=77.71*2*pi; % input frequency
UW=UWc/ (n) *2;
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s2=0;
zb1=0.0139;
zb2=0.015;
zb3=0.020;
zal=0.03;
za2=0.036;
za3=0.04;
wral=sqgrt (NKaal

o\

first longitudinal natural frequency
second longitudinal natural frequency
third longitudinal natural frequency
first transverse natural frequency
second transverse natural frequency
third transverse natural frequency

the number of the generated time history (second)

( )7
wra2=sqgrt (NKaa2) ;
wra3=sqgrt (NKaa3)
(
(

o\

’

o\

o°

wrbl=sqrt (NKbb) ;
wrb2=sqrt (NKbb2)
wrb3=sqgrt (NKbb3) ;
freq end=0.05; %
frgf=freq _end;
frgqi=0; % the initial input time (second)
deltahrg=1/1000; % the incremental time (second)
fhrg=fix ((frgf-frqgi)/deltahrq)+1;
fr=180; % the number of the generated angle (degree)
hf=fr;
hi=0; % the initial input angle (degree)
drg=1l; % the incremental angle (degree)
hrg=fix ((hf-hi) /drqg)+1;
FRVwl2=zeros (hrqg, fthrq);
nl=0;
Rdd=[60e3]; % input load resistance (ohm)
R1=1/Rdd;
for thetapz=(hi:drg:hf)* (pi*2)/360; $ iterating input angle

nl=nl+1;

for k=frgi:deltahrqg:frgf; % iterating input time history
s2=s2+1;

FRVw1l2 (nl,s2)=FRVwl2 (nl,s2) +(UW*sin (thetapz)*i*n*exp (i*n*k)+ (((-
Nshm/ (wrbl"2-n"2+2*i*zbl*n*wrbl) ) * (Pul*Pwl*i*n*NQul/ (wral”2-
n"2+2*i*zal*n*wral) +Pu2*Pw2*1i*n*NQu2/ (wra2"2-
n"2+2*i*za2*n*wra2) +Pu3*Pw3*i*n*NQu3/ (wra3"2-
n"2+2*i*za3*n*wral3))/....

((Pd*1i*n-R1) —-i*n*Pwl” 2/ (wrbl*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw2"2/ (wrb2"2-n"2+2*1*zb2*n*wrb2) -1i*n*Pw3"2/ (wrb372-
n"2+2*i*zb3*n*wrb3)-....

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral) -i*n*Pu2”2/ (wra2”2-
n"2+2*i*za2*n*wra?2) -i*n*Pu3”*2/ (wral3*2-n"2+2*i*zal3*n*wral3)))+....
((-Nshm2/ (wrb272-n"2+2*i*zb2*n*wrb2) ) * (Pul*Pwl*i*n*NQul/ (wral”2-
n"2+2*i*zal*n*wral) +Pu2*Pw2*1i*n*NQu2/ (wra2"2-
n"2+2*i*za2*n*wral) +Pu3*Pw3*i*n*NQu3/ (wra3"2-
n"2+2*i*za3*n*wra3d))/....

((Pd*1i*n-R1) -i*n*Pwl” 2/ (wrbl*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw2"2/ (Wwrb272-n"24+2*1i*zb2*n*wrb2) -1i*n*Pw3"2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3)-....

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral) -i*n*Pu2”°2/ (wra2”2-
n"2+2*i*za2*n*wra?2) -i*n*Pu3”*2/ (wral3*2-n"2+2*i*zal3*n*wral3)))+...

((-Nshm3/ (wrb372-n"24+2*1*zb3*n*wrb3) ) * (Pul*Pwl*i*n*NQul/ (wral”2-
n"2+2*i*zal*n*wral) +Pu2*Pw2*i*n*NQu2/ (wra2”"2-
n"2+2*i*za2*n*wra?2) +Pu3*Pw3*i*n*NQu3/ (wral3”"2-
n"2+2*i*zal3*n*wra3d))/....

((Pd*1*n-R1) -1i*n*Pwl”"2/ (wrbl”*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw2"2/ (Wrb272-n"24+2*1*zb2*n*wrb2) -1*n*Pw3"2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3)-....

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral) -i*n*Pu2”2/ (wra2”2-
n"2+2*i*za2*n*wra?2) -i*n*Pu3”*2/ (wral3*2-n"2+2*i*zal3*n*wral)))) * (-
n*3*1*UW*cos (thetapz) *exp (1*n*k) ) +....

’

o

o\
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(((-Nshm/ (wrbl*2-n"2+2*i*zbl*n*wrbl) ) * ((Pd*1i*n-R1) *NQwl-
Pul”2*i*n*NQwl/ (wral”2-n"2+2*i*zal*n*wral) -Pu2”2*1*n*NQw2/ (wra2”2-

n"2+2*i*za2*n*wral2) -Pu3”2*1*n*NQw3/ (wra3"2-n"2+2*i*za3*n*wra3l))/....

((Pd*1*n-R1) —-i*n*Pwl”2/ (wrbl"2-n"2+2*1i*zbl*n*wrbl) -

1*n*Pw2"2/ (Wrb2"2-n"24+2*1*zb2*n*wrb2) —-1*n*Pw3"2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3) -

i*n*Pul”2/ (wral”2-n"2+42*i*zal*n*wral)-i*n*Pu2°2/ (wra2"2-
n"2+2*i*za2*n*wra?2) -i*n*Pu3”"2/ (wral3"2-n"2+2*i*zal3*n*wra3l)) )+
((-Nshm2/ (wrb2"2-n"2+42*1*zb2*n*wrb2) ) * ((Pd*1*n-R1) *NQw2-
Pul”2*1i*n*NQwl/ (wral”2-n"2+2*i*zal*n*wral) -Pu2”2*1*n*NQw2/ (wra2"2-

n"2+2*i*za2*n*wra?2) -Pu3”2*1i*n*NQw3/ (wra3"2-n"2+2*i*za3*n*wra3l))/....

((Pd*1*n-R1) -i*n*Pwl”"2/ (wrbl”*2-n"2+2*i*zbl*n*wrbl) -

1*n*Pw272/ (Wrb272-n"24+2*1*zb2*n*wrb2) —-1*n*Pw3*2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3) -

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral)-1i*n*Pu2°2/ (wra2"2-
n"2+2*i*za2*n*wra?2) -i*n*Pu3”*2/ (wral3*2-n"2+2*i*zal3*n*wral3)))+...
((-Nshm3/ (wrb372-n"2+2*i*zb3*n*wrb3) ) * ((Pd*1*n-R1) *NQw3-
Pul”2*1i*n*NQwl/ (wral”2-n"2+2*i*zal*n*wral) -Pu2”2*1*n*NQw2/ (wra2"2-

n"2+2*i*za2*n*wra?2) -Pu3"2*1*n*NQw3/ (wra3"2-n"2+2*i*zal3*n*wra3))/....

((Pd*1*n-R1) -i*n*Pwl” 2/ (wrbl"2-n"2+2*1i*zbl*n*wrbl) -
1*n*Pw272/ (Wrb272-n"242*i*zb2*n*wrb2) -i*n*Pw3"2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3) -

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral)-1*n*Pu2”2/ (wra2"2-

n"2+2*i*za2*n*wra?2) -i*n*Pu3”*2/ (wral3*2-n"2+2*i*zal3*n*wral)))) * (-
n"3*1*UW*sin (thetapz) *exp (i*n*k)));
end
s2=0;
end
ngr=frqgi:deltahrqg: frqgf;
k=0;
for thetapz=(hi:drg:hf)* (pi*2)/360;
k=k+1;
Fwl2 (k, :)=max (real (FRVwl2 (k, :)));
end

dwl2=Fwl2';
thetapz=(hi:drg:hf) * (pi*2)/360;
polar (thetapz,dwl2);
elseif plotsol==13 % iterating the polar electrical voltage
% with CEDRTL model
UWc=3; % input acceleration
n=77.71*2*pi; % input frequency
UW=UWc/ (n) *2;
s2=0;
zb1=0.0139;
zb2=0.015;
zb3=0.020;
zal=0.03;
za2=0.036;
za3=0.04;
wral=sqgrt (NKaal) ;
wra2=sqrt (NKaa2) ;
wra3=sqgrt (NKaa3) ;
(
(

o©

first longitudinal natural frequency
second longitudinal natural frequency
third longitudinal natural frequency
wrbl=sqrt (NKbb) ; first transverse natural frequency
wrb2=sqrt (NKbb2) ; second transverse natural frequency
wrb3=sqgrt (NKbb3) ; s third transverse natural frequency
freq end=0.05; % the number of the generated time history (second)
frgf=freq end;

frgqi=0; % the initial input time (second)

deltahrg=1/1000; % the incremental time (second)

fhrg=fix ((frgf-frqgi)/deltahrq)+1;

fr=180; % the number of the generated angle (degree)

o oo o©

oe

’

\o
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hf=fr;

hi=0; % the initial input angle (degree)
drg=1; % the incremental angle (degree)
hrg=fix ((hf-hi) /drqg)+1;
FRVwl3=zeros (hrqg, fthrq) ;

nl=0;
Rdd=[60e3]; % input load resistance (ohm)
R1=1/Rdd;
for thetapz=(hi:drg:hf)* (pi*2)/360; % iterating input angle
nl=nl+1;
for k=frgi:deltahrqg:frgf; % iterating input time history
s2=s2+1;
FRVw13 (nl, s2)=FRVwl3(nl,s2)+ (((((Pwl*1i*n*NQwl/ (wrbl"2-

n"2+2*i*zbl*n*wrbl) +Pw2*1*n*NQw2/ (wrb2"2-
n " 2+2*1*zb2*n*wrb2) +Pw3*1*n*NQw3/ (wrb372-n"2+2*i*zb3*n*wrb3))/....
((Pd*1*n+R1) —-i*n*Pwl”2/ (wrbl*2-n"2+2*i*zbl*n*wrbl) -

1*n*Pw2"2/ (Wwrb272-n"242*1i*zb2*n*wrb2) -1i*n*Pw3"2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3) -

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral)-1*n*Pu2”2/ (wra2"2-
n"2+2*i*za2*n*wra?2) —i*n*Pu3”2/ (wral3*2-n"2+2*i*zal3*n*wral))) * (-
n*2) *UW*sin (thetapz))) * (exp (i*n*k) )+

((((Pul*i*n*NQul/ (wral”2-
n"2+2*i*zal*n*wral) +Pu2*1*n*NQu2/ (wra2"2-
n"2+2*i*za2*n*wra?2) +Pu3*i*n*NQu3/ (wra3"2-n*2+2*i*za3*n*wra3))/....

((Pd*1*n+R1) —i*n*Pwl” 2/ (wrbl*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw272/ (Wrb272-n"24+2*i*zb2*n*wrb2) -i*n*Pw3"2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3) -

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral)-1*n*Pu22”2/ (wra2"2-

n"2+2*i*za2*n*wra?2) -i*n*Pu3”2/ (wral3*2-n"2+2*i*zal3*n*wral))) * (-
n"2) *UW*cos (thetapz))) * (exp (1*n*k)));
end
s2=0;
end
ngr=frqgi:deltahrqg: frqgf;
k=0;
for thetapz=(hi:drg:hf)* (pi*2)/360;
k=k+1;
Fwl3 (k, :)=max (real (FRVwl1l3(k, :)));
end

dwl3=Fwl3';
thetapz=(hi:drg:hf) * (pi*2)/360;
polar (thetapz,dwl3);
elseif plotsol==14 % iterating the polar electrical current
% with CEDRTL model
UWc=3; % input acceleration
n=77.71*2*pi; % input frequency
UW=UWc/ (n) *2;
s2=0;
zb1=0.0139;
zb2=0.015;
zb3=0.020;
zal=0.03;
za2=0.036;
za3=0.04;
wral=sqgrt (NKaal) ;
wra2=sqgrt (NKaa2) ;
wra3=sqgrt (NKaa3) ;
(
(

oe

first longitudinal natural frequency
second longitudinal natural frequency
third longitudinal natural frequency
first transverse natural frequency
second transverse natural frequency
third transverse natural frequency

the number of the generated time history (second)

o° oo

oe

wrbl=sqgrt (NKbb) ;

oe

wrb2=sqrt (NKbb2) ;
wrb3=sqgrt (NKbb3) ;
freq end=0.05; %

’

oe
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frgf=freq end;

frqgqi=0; % the initial input time (second)
deltahrg=1/1000; % the incremental time (second)
fhrg=fix ((frgf-frqgi)/deltahrqg)+1;

fr=180; % the number of the generated angle (degree)
hf=fr;

hi=0; % the initial input angle (degree)

drg=1; % the incremental angle (degree)

hrg=fix ((hf-hi) /drqg)+1;

FRVwl4=zeros (hrqg, fthrq) ;

nl=0;
Rdd=[60e3]; % input load resistance (ohm)
R1=1/Rdd;
for thetapz=(hi:drg:hf)* (pi*2)/360; % iterating input angle
nl=nl+1;
for k=frgi:deltahrqg:frgf; % iterating input time history
s2=s2+1;
FRVw14 (nl,s2)=FRVwl4 (nl,s2)+ (((((Pwl*1*n*NQwl/ (wrbl"2-

n"2+2*i*zbl*n*wrbl) +Pw2*1*n*NQw2/ (wrb2"2-
n"2+2*1i*zb2*n*wrb2) +Pw3*1*n*NQw3/ (wrb3"2-n*2+2*1*zb3*n*wrb3))/....
((Pd*1i*n+R1) —-i*n*Pwl” 2/ (wrbl”2-n"2+2*i*zbl*n*wrbl) -

1*n*Pw2"2/ (Wrb272-n"24+2*1i*zb2*n*wrb2) -i*n*Pw3"2/ (wrb3"2-
n"24+2*i*zpb3*n*wrb3)-....

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral)-1*n*Pu22”2/ (wra2"2-
n"2+2*i*za2*n*wra?2) —i*n*Pu3”2/ (wral3*2-n"2+2*i*zal3*n*wral))) * (-
n"2) *UW*sin (thetapz)) /Rdd) * (exp (i*n*k))+....

((((Pul*i*n*NQul/ (wral”2-
n"2+2*i*zal*n*wral) +Pu2*1*n*NQu2/ (wra2"2-

n"2+2*i*za2*n*wra?2) +Pu3*i*n*NQu3/ (wra3"2-n*2+2*i*za3*n*wra3))/....

((Pd*1*n+R1) —-i*n*Pwl”2/ (wrbl*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw2"2/ (Wrb272-n"24+2*i*zb2*n*wrb2) -i*n*Pw3"2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3)-....

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral)-1*n*Pu22”2/ (wra2"2-

n"2+2*i*za2*n*wra?2) —i*n*Pu3”2/ (wral3*2-n"2+2*i*zal3*n*wral))) * (-
n"2) *UW*cos (thetapz) ) /Rdd) * (exp (i*n*k))) ;
end
s2=0;
end
ngr=frgi:deltahrqg:frqf;
k=0;
for thetapz=(hi:drg:hf)* (pi*2)/360;
k=k+1;
Fwld (k, :)=max (real (FRVwl4d (k, :)));
end

dwld=Fwld"';
thetapz=(hi:drg:hf) * (pi*2)/360;
polar (thetapz,dwld);
elseif plotsol==15 % iterating the polar electrical power
% with CEDRTL model
UWc=3; % input acceleration
n=77.71*2*pi; % input frequency
UW=UWc/ (n) ~2;
s2=0;
zb1=0.0139;
zb2=0.015;
zb3=0.020;
zal=0.03;
za2=0.036;
za3=0.04;
wral=sqgrt (NKaal) ; % first longitudinal natural frequency
wra2=sqgrt (NKaa2) ; % second longitudinal natural frequency
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wra3=sqgrt (NKaa3) ;
wrbl=sqgrt (NKbb) ;
wrb2=sqgrt (NKbb2) ;
wrb3=sqgrt (NKbb3) ;
freq end=0.05; %
frgf=freq end;
frgqi=0; % the initial input time (second)
deltahrg=1/1000; % the incremental time (second)
fhrg=fix ((frgf-frqgi)/deltahrqg)+1;

fr=180; % the number of the generated angle (degree)
hf=fr;

hi=0; % the initial input angle (degree)

drg=1; % the incremental angle (degree)

hrg=fix ((hf-hi) /drqg)+1;

FRVwl4=zeros (hrqg, fthrq) ;

third longitudinal natural frequency
first transverse natural frequency
second transverse natural frequency
third transverse natural frequency

the number of the generated time history (second)

o oo

o\

nl=0;
Rdd=[60e3]; % input load resistance (ohm)
R1=1/Rdd;
for thetapz=(hi:drg:hf)* (pi*2)/360; % iterating input angle
nl=nl+1;
for k=frgi:deltahrqg:frqgf; % iterating input time history
s2=s2+1;
FRVw15 (nl,s2)=FRVwl5 (nl,s2)+ (((( (Pwl*i*n*NQwl/ (wrbl”*2-

n"2+2*i*zbl*n*wrbl) +Pw2*1*n*NQw2/ (wrb2"2-
n"2+2*1i*zb2*n*wrb2) +Pw3*1*n*NQw3/ (wrb3"2-n*2+2*1*zb3*n*wrb3))/....
((Pd*1i*n+R1) —-i*n*Pwl” 2/ (wrbl*2-n"2+2*i*zbl*n*wrbl) -

1*n*Pw272/ (Wrb272-n"24+2*1i*zb2*n*wrb2) -i*n*Pw3"2/ (wrb3"2-
n"24+2*i*zb3*n*wrb3)-....

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral)-1*n*Pu22”2/ (wra2"2-
n"2+2*i*za2*n*wra?2) —i*n*Pu3d”2/ (wral3*2-n"2+2*i*zal3*n*wral))) * (-
n"2) *UW*sin (thetapz))*2/Rdd) * (exp (1*n*k) ) +....

((((Pul*i*n*NQul/ (wral”2-
n"2+2*i*zal*n*wral) +Pu2*1*n*NQu2/ (wra2"2-
n"2+2*i*za2*n*wra?2) +Pu3*i*n*NQu3/ (wra3"2-n*2+2*i*za3*n*wra3))/....

((Pd*1*n+R1) —-i*n*Pwl”2/ (wrbl*2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw2"2/ (Wwrb272-n"24+2*1i*zb2*n*wrb2) -1i*n*Pw3"2/ (wrb3"2-
n"2+2*i*zb3*n*wrb3)-....

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral) -i*n*Pu2”2/ (wra2"2-

n"2+2*i*za2*n*wra?2) —1i*n*Pu3”2/ (wral3*2-n"2+2*i*zal3*n*wral))) * (-
n"2) *UW*cos (thetapz) ) "2/Rdd) * (exp (i*n*k))) ;
end
s2=0;
end
ngr=frgi:deltahrqg:frqf;
k=0;
for thetapz=(hi:drg:hf)* (pi*2)/360;
k=k+1;
Fwl5 (k, :)=max (real (FRVwl5(k, :)));
end

dwl5=Fwl5"';
thetapz=(hi:drg:hf) * (pi*2)/360;
polar (thetapz,dwlb);

else % iterating the optimal power
% with CEDRTL model

zb1=0.0139;

zb2=0.015;

zb3=0.020;

zal=0.03;

za2=0.036;

za3=0.04;
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wral=sqgrt (NKaal) ;
wra2=sqrt (NKaa2) ;

( first longitudinal natural frequency
(
wra3=sqgrt (NKaa3) ;
(
(

second longitudinal natural frequency
third longitudinal natural frequency
first transverse natural frequency
second transverse natural frequency
third transverse natural frequency
Initialisation of generated frequency
response

o oo

o\

wrbl=sqrt (NKbb) ;
wrb2=sqgrt (NKbb2) ;
wrb3=sqgrt (NKbb3) ;
FRVwlo6=zeros (1,nhrq);

o° o° oo

o\

nl=0;
s2=0;
for n=hrgi:deltahrqg:hrqgf; % iterating input frequency
Rl=sqgrt ( ((Pd*n-n*Pwl”"2* (wrbl*2-n"2)/ ((wrbl"2-

n*2) "2+ (2*zbl*n*wrbl) *2) -n*Pw2"2* (wrb272-n"2) / ( (wrb2"2-
n*2) "2+ (2*zb2*n*wrb2) *2) -n*Pw3"2* (wrb372-n"2) / ( (wrb3"2-
n*2) "2+ (2*zb3*n*wrb3) *2) -n*Pul”"2* (wral”2-n"2)/ ((wral”2-
n"2) "2+ (2*zal*n*wral) *2) -n*Pu2”2* (wra2”2-n"2)/ ((wra2"2-
n"2) "2+ (2*za2*n*wra2) *2)-n*Pu3"2* (wra3*2-n"2)/ ((wra3"2-
n"2) "2+ (2*zal3*n*wral3) "2)) " 2+......

(n*Pwl” 2*2*zbl*n*wrbl/ ( (wrbl”"2-
n"2) "2+ (2*zbl*n*wrbl) *2) +n*Pw2"2*2*zb2*n*wrb2/ ( (wrb2"2-
n"2) "2+ (2*zb2*n*wrb2) *2) +n*Pw3"2*2*zb3*n*wrb3/ ( (wrb3"2-
n"2) "2+ (2*zb3*n*wrb3) *2) +n*Pul”2*2*zal*n*wral/ ((wral”2-
n"2)"2+(2*zal*n*wral) *2)+n*Pu2”2*2*zal2*n*wra2/ ( (wra2"2-
n"2) "2+ (2*za2*n*wra2) *2)+n*Pu3”2*2*zal3*n*wral3/ ( (wra3"2-
n"2) "2+ (2*za3*n*wral3)*2))"2)) /... ...

((Pd*n-n*Pwl”2* (wrbl”2-n"2)/ ( (wrbl”*2-
n"2) "2+ (2*zbl*n*wrbl) *2) -n*Pw2"2* (wrb2"2-n"2) / ((wrb2"2-
n"2) "2+ (2*zb2*n*wrb2) *2) -n*Pw3"2* (wrb3*2-n"2) / ((wrb3"2-
n"2) "2+ (2*zb3*n*wrb3) *2) -n*Pul”2* (wral”2-n"2)/ ((wral”2-
n"2) "2+ (2*zal*n*wral) *2) -n*Pu2”2* (wra2”2-n"2)/ ((wra2"2-
n"2) "2+ (2*za2*n*wra2) ~2) -n*Pu3"2* (wra3*2-n"2)/ ((wra3"2-
n"2) "2+ (2*za3*n*wra3)"2)) " 2+......

(n*Pwl 2*2*zbl*n*wrbl/ ((wrbl”2-
n"2) "2+ (2*zbl*n*wrbl) *2) +n*Pw2"2*2*zb2*n*wrb2/ ( (wrb2"2-
n"2) "2+ (2*zb2*n*wrb2) *2) +n*Pw3"2*2*zb3*n*wrb3/ ( (wrb3"2-
n"2) "2+ (2*zb3*n*wrb3) *2)+n*Pul”2*2*zal*n*wral/ ((wral”2-
n"2) "2+ (2*zal*n*wral) *2)+n*Pu2”2*2*za2*n*wra2/ ((wra2"2-
n"2) "2+ (2*za2*n*wra2) *2)+n*Pu3”2*2*zal3*n*wral3/ ( (wra3"2-
n"2) "2+ (2*za3*n*wra3) "2))"2) ;

s2=s2+1;

FRVW16 (1,52)=FRVw16 (1,s2)+((Pwl*i*n*NQwl*3/ (wrbl”2-
N 242%i*zbl*n*wrbl) +Pw2*1i*n*NQw2*3/ (wrb2"2—

n"2+2*1*zb2*n*wrb2) +Pw3*1*n*NQw3*3/ (wrb3"2-n"24+42*i*zb3*n*wrb3))/....

((Pd*1i*n-1/R1)-1*n*Pwl”2/ (wrbl"2-n"2+2*i*zbl*n*wrbl) -
1*n*Pw2"2/ (wrb2"2-n"2+2*1*zb2*n*wrb2) -1i*n*Pw3"2/ (wrb372-
n"2+2*i*zb3*n*wrb3) -

i*n*Pul”2/ (wral”2-n"2+2*i*zal*n*wral)-i*n*Pu2°2/ (wra2"2-
n"2+2*i*za2*n*wra?2) -i*n*Pu3”2/ (wral3*2-n"2+2*i*zal3*n*wral))) ~2/R1l;
end
ngr=hrgi:deltahrqg:hrqgf;
semilogy (nqgr/ (2*pi), (abs (FRVw16)))
end
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