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Mikail F Lumentut 

 

Abstract 

This research investigates vibration energy harvesting by modelling several 

piezoelectric-based structures. The usage of piezoelectric transduction under input 

vibration environments can be profitable for obtaining electrical energy for powering 

smart wireless sensor devices for health condition monitoring of rotating machines, 

structures and defence communication technology. The piezoelectric transduction 

shows strong prospect in the application of power harvesting because it can be 

applied at the microelectromechanical system design level in compact configuration 

with high sensitivity with respect to low input mechanical vibration.  In this research 

work, the important aspects of the continuum thermopiezoelectric system associated 

with the laws of thermodynamics, Maxwell relations and Legendre transformations 

have been developed to explore the macroscopic thermopiezoelectric potential 

equations, the thermopiezoelectric equations of state and energy function forms. The 

application of the continuum thermopiezoelectric behaviour can be used to further 

formulate novel analytical methods of the electromechanical cantilevered 

piezoelectric bimorph beams with the tip mass using the weak and strong forms 

resulting from Hamiltonian’s principle. The constitutive electromechanical dynamic 

equations of the piezoelectric bimorph beam under one or two input base excitations 

can be used to derive the equations of the coupled electromechanical dynamic 

response of transverse-longitudinal form (CEDRTL), the coupled electromechanical 

dynamic response of longitudinal form (CEDRL) and the coupled electromechanical 
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dynamic response of transverse form (CEDRT). The derivation of the constitutive 

electromechanical dynamic equations using the weak form of Hamiltonian’s 

principle can be  further derived using the Ritz method associated with orthonomality 

whereas the closed form or distributed parameter reduced from strong form of 

Hamiltonian’s principle, can be further formulated using the convergent 

eigenfunction series with orthonormality. Laplace transformation can be used to give 

the solution in terms of the multi-mode transfer functions and multi-mode frequency 

response functions of dynamic displacement, velocity, electric voltage, current, 

power and optimal power. Moreover, the broadband multi-electromechanical 

bimorph beam with multi-resonance can also be explored showing the single- and 

multi-mode transfer functions and frequency response functions. A parametric case 

study of the piezoelectric bimorph beam with the tip mass and transverse input 

excitation is discussed to validate the weak and closed forms of the CEDRTL, under 

series and parallel connections, using the multi-mode frequency response functions 

with variable load resistance. A further case study of a broadband multi-

electromechanical piezoelectric bimorph beam is also discussed using the weak form 

of the CEDRT to give the frequency response functions under variable load 

resistance. Finally, the piezoelectric bimorph beams with and without tip masses 

under transverse base input excitation are also comprehensively discussed using  the 

weak forms of the CEDRTL and CEDRT models and compared with experimental 

results for  variable load resistance. A piezoelectric bimorph beam with tip mass is 

investigated to show the close agreement between the CEDRTL model and 

experimental results using the polar amplitudes from the combined action of 

simultaneous longitudinal and transverse base input excitation.  
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In the last few years, the investigation of energy conversion techniques utilising 

ambient vibration has been of great interest for many researchers. The energy 

extracted from vibrating devices and structures can be utilised for powering 

electronic devices, supplying direct current into rechargeable batteries or electrical 

power storage devices. One of many applications being considered is for powering 

smart wireless sensor devices for health condition monitoring of rotating machines or 

structures and defence communication technology. 

 

The action of mechanical vibration onto piezoelectric elements result in mechanical 

strain fields creating electric-polarity fields resulting in the generation of electric 

voltage. The input ambient vibration can be unused mechanical energies from 

numerous sources in industry, vehicles, airplane, humans’ movement, piping 

structures, fluid flow and bridges, etc. The usage of piezoelectric material in the 

application of energy conversion requires knowledge of analytical methods, circuit 

components, material properties and geometrical structure. Piezoelectric materials 

have major benefits as they can give a reasonable prospect for 

microelectromechanical system design, compact configuration, high sensitivity with 

respect to low input mechanical vibration and are suitable to be used as a patch or 

embedded with other substructures.  

 

An extensive review of piezoelectric element application for power harvesting has 

been discussed by Anton and Sodano [1] and Priya [2].  The piezoelectric bimorph 

beam represents a useful candidate for power harvesting as it gives high strain field 

due to the input vibration to induce the electrical field. The resulting extracted 

electrical energy can be optimised by utilising an electronic circuit capable of 

supplying the direct current into a rechargeable battery for the usage of wireless 

sensor communication, Roundy et al [3]. Moreover, there have been numerous 
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extensive analytical solutions of electromechanical piezoelectric systems associated 

with experimental validations. Smits and Choi [4] and Wang et al [5] derived an 

analytical solution for the static condition of the bending piezoelectric bimorph 

beam. However, their analytical methods cannot be applied to the vibration 

piezoelectric harvester due to the required coupled electromechanical response. 

Roundy and Wright [6] investigated the analytical solution using the electrical 

equivalent of the electromechanical transverse bending form for powering electrical 

devices but it was limited to the single mode. Some other investigations of analytical 

methods used the single mode of Rayleigh-Ritz’s analytical approach of the 

electromechanical transverse bending form of the piezoelectric bimorph as shown by 

duToit et al [7]. The normalised single mode dynamic equation of piezoelectric 

power harvesting was shown by Shu and Lien [8] and the multi-mode frequency 

response using the closed-form method of the piezoelectric bimorph was derived by 

Erturk and Inman [9]. The parametric geometric consideration of the 

micromechanical piezoelectric unimorph beam using the Rayleigh-Ritz method with 

condense matrix equation form was shown by Goldschmidtboeing and Woias [10].   

 

In this research work, novel analytical methods using the weak form and closed-form 

(reduced from strong form) Hamiltonian principle were considered. The coupled 

electromechanical dynamic response of the transverse-longitudinal model 

(CEDRTL), coupled electromechanical dynamic response of the transverse model 

(CEDRT) and coupled electromechanical dynamic response of the longitudinal 

model (CEDRL) of piezoelectric systems under two input base excitations will be 

developed mathematically in this dissertation. The derivations also include the 

single- and multi-mode transfer functions (TRs) and frequency response functions 

(FRFs). The analytical methods also provide the broadband multi-electromechanical 

piezoelectric bimorph beam with multi-frequency response for optimisation of the 

electrical output.  

 

1.1. Objectives of the Dissertation 

After reviewing the existing literature in the field of vibration energy 

harvesting and the applications for self-powered generators, it was found that the 

existing vibration power generators can be categorised into areas of piezoelectric, 

electromagnetic and electrostatic transductions. The aim of reviewing these types of 
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transductions are to discuss the comprehensive analytical and experimental methods, 

the characteristic materials, the primary areas of application, the electrical power 

output and  the advantage and disadvantage of the various transductions. After 

reviewing the transduction mechanisms of energy harvesting, the piezoelectric 

transduction was chosen for further study focusing on developing novel theoretical 

methods for multi-directional input response. The primary objective of this 

dissertation was to review and investigate the state-of-the art energy methods using 

continuum piezoelectric element models and to present mathematical derivations of 

the multi-directional vibration induced electromechanical piezoelectric bimorph 

beam including experimental validations. The aim of formulating the continuum 

thermopiezoelectric behaviour was to establish the energy phenomena of 

piezoelectric material which results from the interrelationship between the physical 

properties of elasticity, electricity and entropy in order to obtain the 

thermopiezoelectric equations of state and thermopiezoelectric coefficients using 

Maxwell’s relations and Legendre transformation. It was found that most researchers 

did not discuss the detail of the physical properties of thermopiezoelectricity. For the 

piezoelectric power harvester, the effect of electrical enthalpy of the 

thermopiezoelectric element under adiabatic and isothermal processes is presented.   

 

Moreover, the analytical models of the electromechanical dynamic equations of the 

piezoelectric bimorph with the tip mass under two input base excitations are derived 

using the Hamiltonian principle to formulate three different methods, which are the 

strong form analytical method, weak form analytical approaches and closed-form 

boundary value methods. At this case, the weak form analytical approach derived 

from the strong form method was further derived using the Ritz method by 

introducing Ritz coefficients and space- and time-dependent Ritz eigenfunction 

series which were further formulated using orthonormalisation. The closed-form 

boundary value method derived from the strong form method was further formulated 

using a direct analytical solution with orthonormalisation by introducing the space- 

and time-dependent eigenfunction series into boundary conditions. The weak form 

method can be formulated to provide the coupled electromechanical dynamic 

response of the transverse and longitudinal forms (CEDRTL), the coupled 

electromechanical dynamic response of the longitudinal form (CEDRL) and the 

coupled electromechanical dynamic response of the transverse form (CEDRT). The 
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closed form method using the strong form derivation can be formulated to provide 

the coupled electromechanical dynamic response of the transverse and longitudinal 

forms (CEDRTL). In this dissertation, the transfer functions (TR) and frequency 

response functions (FRFs) using the CEDRTL and CEDRT models have been 

comprehensively established using Laplace transformations.  

 

A further aim of this dissertation is to analyse the parametric case study of the  

piezoelectric bimorph under series and parallel electrical connections using the 

CEDRTL weak and strong forms. The results include the parametric FRF amplitudes 

including the multi-mode FRFs of tip absolute dynamic displacement, velocity, 

electrical voltage, current and power. Parametric analysis of the dynamic responses 

with respect to variations of load resistance, variations of bimorph geometry and the 

broadband multi-electromechanical piezoelectric beam with multi-frequency models 

are also presented. Moreover, the validations and comparison between the 

experimental and analytical results of the piezoelectric bimorph beam with and 

without tip masses are also discussed for the single- and multi-mode FRFs and the 

polar FRFs amplitudes.       

 

1.2. Significance and Innovation 

In this dissertation, the capabilities of the electromechanical response of the 

piezoelectric bimorph can be used to extract variable power from ambient vibration 

for future product applications of smart wireless sensor devices.  The core research 

will be the mathematical study of the piezoelectric system and its application for 

vibration power harvesting. This includes the complete derivations of continuum 

thermopiezoeletricity to explore the macroscopic phenomena of thermopiezoelectric 

potential equations, the thermopiezoelectric equations of state and energy function 

forms. Moreover, the application of continuum thermopiezoelectricity can be utilised 

for deriving analytical equations of the electromechanical piezoelectric bimorph 

beam with the tip mass under input excitations using the Hamiltonian principle for 

analysing the transfer functions and frequency response functions with variable load 

resistance for predicting the tip displacement, velocity, electrical voltage, current and 

power outputs. Moreover, the complete derivations of series and parallel multi-

electromechanical piezoelectric bimorph beams are discussed to analyse the 

broadband frequency response functions for optimisation study.  
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1.3. Research Method of the Dissertation  

The vibration power harvester using the piezoelectric effect has been an 

emerging research field over the past few years. After investigating the 

comprehensive literature review, the research methodology of the electromechanical 

piezoelectric in this dissertation covers the extended concept of thermopiezoelectrical 

energy forms, the mathematical methods of electromechanical piezoelectric bimorph 

beam with two input base excitations, the parametric case study and experimental 

validations.  

 

The piezoelectric behaviour underlies the macrostate thermodynamic principle 

covering the elasticity, quasi-static electrical energy and entropy. In this research 

method, the continuum thermopiezoelectricity representations are derived 

mathematically to establish the physical energy forms and thermopiezoelectric 

potentials of the Elastic-Electrical Gibbs Free Energy, Elastic Gibbs Free Energy, 

Electrical Helmholtz Free Energy, Elastic Helmholtz Free Energy, Elastic-Electrical 

Enthalpy and Electrical Enthalpy in terms of the entities of tensor 

thermopiezoelectric coefficients. The physical aspect of thermopiezoelectricity plays 

an important role in smart materials and structures. It was found that many 

researchers did not provide the in-depth interaction of the thermopiezoeletric 

equations of state based on the Maxwell’ relation and Legendre transformation. The 

most common piezoelectric constitutive equations, derived from the electrical 

enthalpy under the adiabatic and isothermal processes, includes the direct and 

converse modes, which are used directly by many researchers without exploring the 

physical properties and other energy function forms of the macroscopic  

thermopiezoelectric tensor as mentioned above.   

 

The vibration response of the piezoelectric bimorph beam with the tip mass under 

two input base excitations for power harvesting can be formulated using the potential 

energy from the substructure material (middle layer), electrical enthalpy of upper and 

lower layers of piezoelectric material, kinetic energy of the bimorph including the tip 

mass and external electrical energy into the piezoelectric element. The analytical 

methods, derived using the Hamiltonian principle, can be further formulated using 

three models. The first model represents strong form analytical method and the 

second model represents the analytical approach using the normalised Ritz 
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eigenfunction series (weak form) whereas the third model represents the closed-form 

analytical method using the normalised convergent eigenfunction series (reduced 

from strong form). Since the linear Lagrangian strain field of the piezoelectric 

bimorph associated with the two input base excitations is reduced from the kinematic 

of transverse and longitudinal displacement fields, the effect of coupled 

electromechanical dynamic behaviour of the bimorph based on the Hamiltonian 

principle are formulated into three further models. The first model represents the 

electromechanical dynamic response of the transverse-longitudinal form (CEDRTL), 

the second model represents the electromechanical dynamic response of the 

transverse form (CEDRT) and the third model represents the electromechanical 

dynamic response of the longitudinal form (CEDRL). The broadband frequency 

response of the multi-electromechanical piezoelectric bimorph beam is also derived 

analytically to analyse the frequency behaviour of the electrical current, voltage and 

power for optimisation study.  

 

The frequency analysis reduced from the Laplace transforms of the 

electromechanical bimorph beams (weak and closed forms) can be used to formulate 

the single and multi-mode transfer functions (TRs) and frequency response functions 

(FRFs) of the CEDRTL, CEDRT and CEDRL models. The overarching vibration 

power harvesting of the piezoelectric bimorph beam reflects the interrelations of the 

electromechanical dynamic response between the input vibrations and the electrical 

current, voltage and power outputs associated with the mechanical displacement and 

velocity outputs. This understanding reflects the profound continuum 

electromechanical dynamic behaviour of vibration power harvesting for future 

applications of self-powered smart sensor devices to be used for condition health 

monitoring of rotating machines or structures. 

 

The parametric case study of the piezoelectric bimorph beam with tip mass will be 

discussed according to the series and parallel electrical connections where two 

different analytical methods of the weak and closed forms of the multi-mode 

CEDRTL equations under series and parallel connections will be used to validate the 

results for variable load resistance. Moreover, the piezoelectric bimorph beam with 

and without tip masses using the weak forms of the CEDRTL and CEDRT equations 

can also be compared with experimental results. The trends between the CEDRTL 
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and CEDRT models and experiments are investigated over the frequency range. 

Programming code based on MATLAB was developed to model the theoretical 

simulations. In this dissertation, the experimental work was conducted in the 

vibration laboratory using equipment including the piezoelectric bimorph with and 

without tip mass, input base structure, FFT Analyzer, Laser vibrometer polytec PDV 

100, B & K exciter, B & K impedance head,  B & K charge amplifier, B & K power 

amplifier, wave function generator,  and computer.    

 

1.4. Layout of the Dissertation 

This dissertation consists of seven chapters, detailing the mathematical 

analysis of continuum thermopiezoelectric behaviour covering the analytical 

methods of electromechanical piezoelectric bimorph beams for power harvesting. 

The validations of the piezoelectric vibration harvester are also provided by 

comparing two different analytical methods and experimental results.  The detail and 

outline of each chapter is presented below: 

 

Chapter 1 presents the general introduction of vibration power harvesting in the field 

of smart structures with applications of self-powering smart wireless sensor devices 

for the health condition monitoring of rotating machines. The major contribution of 

piezoelectric devices is the development of profitable power harvesting technology 

from simple structures, which can be used from macro- to micro-electromechanical 

scale to capture the vibration environment and convert the dynamic response into 

electrical energy. The concept of the research study is presented including the 

research objectives, significance and methodology.   

 

Chapter 2 discusses the comprehensive review of the existing vibration power 

harvesting literature focusing on three major groups, represented by piezoelectric, 

electromagnetic and electrostatic generators. This review includes the physical aspect 

of the devices, mathematical models including the validations, analysis of the 

electromechanical dynamic system, implications for future smart sensor devices and 

the comparative modelling of the three different generators.   

 

Chapter 3 provides the comprehensive theory of continuum thermopiezoelectricity to 

model the physical characteristics of the piezoelectric effect using the divergence 

field of quasi-electrical form, Gauss’s electric displacement piezoelectric form, 
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piezoelectric polarisation, and thermodynamic laws  associated with Maxwell 

relations and Legendre transforms to formulate the interrelationship of 

thermopiezoelectric potentials, thermopiezoelectric equations of states and energy 

function forms including the tensor coefficients.  

 

Chapter 4 presents analytical methods for deriving the electromechanical dynamic 

equations of the piezoelectric bimorph beam with two input base excitations using 

the Hamiltonian principle. Since typical piezoelectric vibration power harvesting 

utilises the relatively thin bimorph beam, the Rayleigh and Euler-Bernoulli 

piezoelectric beam equations are formulated. The analytical methods are formulated 

using kinetic energy expressions for the bimorph and tip mass, the potential energy 

of the substructure, electrical enthalpy of the piezoelectric layers under adiabatic and 

isothermal processes and the applied mechanical and electrical work. The analytical 

derivations of the piezoelectric bimorph under series and parallel electrical 

connections can be split into three categories representing the strong form, weak 

form and closed form Hamiltonian principle. The weak form of the analytical method 

reduced from strong form can be further divided into three coupling 

electromechanical models (CEDRTL, CEDRT and CEDRL) for single- and multi-

mode frequency analysis using the Ritz eigenfunction series. The closed-form 

analytical method was also reduced from the strong form Hamiltonian principle to 

give the multi-mode CEDRTL frequency analysis. The broadband multi-

electromechanical piezoelectric bimorph beam is investigated to explore the multi-

frequency behaviour response of the bimorph electrical output. Since the bimorph is 

connected to the external varying load resistance, each electromechanical coupling 

effect can be further formulated into transfer functions (TRs) and frequency response 

functions (FRFs) using Laplace transforms. This provides the relative and absolute 

transverse and longitudinal displacements including the velocity, electrical voltage, 

current and power. Moreover, the generalised time dependent absolute displacement 

and velocity including the FRF can also be formulated to give compatible results for 

comparing with the experimental setup.     

 

Chapter 5 presents a parametric case study of a piezoelectric bimorph beam with tip 

mass and series and parallel electrical connection with varying load resistance. The 

CEDRTL weak form and closed form results can be compared to analyse the multi-
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mode FRFs of tip absolute displacement and velocity, electrical voltage, current, and 

power harvesting. Moreover, the short and open circuit resonance frequencies with 

respect to the varying load resistances and geometrical parametric properties are 

presented. The broadband multi-frequency behaviour of three piezoelectric bimorph 

beam models with series and parallel electrical connections are also presented. 

 

Chapter 6 presents the comparison between the analytical and experimental 

electromechanical dynamic response of the piezoelectric bimorph beam with and 

without tip mass. The CEDRTL and CEDRT weak form model results are 

investigated and compared with the experimental results from the bimorph with and 

without the tip mass. The single- and multi-mode FRFs of the tip absolute 

displacement and velocity, electrical voltage, current, and power relating to the input 

transverse excitation are presented. The two input base excitations of transverse and 

longitudinal excitations of the bimorph are also presented for discussion of the polar 

tip absolute displacement and velocity, electrical voltage, current and power under 

varying load resistance. 

 

Chapter 7 presents the summary of the major research findings of the 

electromechanical piezoelectric system and presents the major conclusions of the 

dissertation.   

 

The appendix provides the constitutive piezoelectric equations in matrix form, the 

mode shape of the piezoelectric bimorph and the MATLAB code developed and used 

in the research.    
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The development of embedded permanent computing-based technology equipment 

has increased the demand from the engineering industry to monitor or control the 

health condition of structures and rotating machinery. The prevalent technological 

equipment still requires electrical power from the mains power supply or battery in 

order to read and transfer the electrical data signal via the wireless sensor nodes into 

the computer including data acquisition, instrument control and/or analyzers to 

monitor the rotating shafts, turbines, bearings, gearboxes, bridge structures, pipe etc.  

In that case, the convention battery systems have a limited lifespan for power 

production.  The systems are still dependent upon the electrical power from the 

battery system or mains power supply for recharging. This leads to the tedious task 

of replacing the conventional battery from the smart sensor device often located in 

remote or inaccessible areas.  This situation has revealed challenges for scientists to 

identify alternate low power systems for supporting smart sensor devices. Moreover, 

the emerging technology in the MEMS scale would facilitate future applications of  

smart sensor systems with wireless communication to monitor engines and other 

machinery located in remote areas. At the same time, the need for self-power systems 

with rechargeable thin battery technology will also inevitably increase. This research 

area is still ongoing and includes the development applications for scavenging power 

for long lifespan duration. To power the computing technologies such as small 

electronic devices with thin batteries and wireless capabilities, the mechanical energy 

sources from unused or wasted vibration energy from industrial machinery, airplane, 

automobile, bridge, human motion etc. can be utilised for micro-generator power 

harvesting. Table 2.1 shows an example of power consumption needed for electronic 

devices as found in Vullers et al [11].  Other power supplies from household tools, 

computers etc. in Roundy et al [3] are shown in Table 2.2. It should be noted that one 

of most realisable candidates for power scavenging are piezoelectric components, 
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even though some researchers still use electromagnetic and electrostatic systems. In 

this literature review, other sources of macro power supply such as gas turbine, wind 

turbine and nuclear power plants were not considered. It should be noted that other 

micro power supplies like photovoltaic cells, fuel cells and thermoelectric devices 

were also not discussed, as the main focus in this section was on the potential micro 

scale energy supply from piezoelectric, electromagnetic and electrostatic 

transductions for the use in future applications of smart sensor equipment as shown 

in Figure 2.1. 

                                      

                    

Device type
 Power 

Consumption 

Energy 

autonomy 

Smartphone 1W 5 h

MP3 player 50 mW 15 h

Hearing aid 1 mW 5 days

Wireless sensor node 100 µW Lifetime

Cardiac pacemaker 50 µW 7 years

Quartz watch 5 µW 5 years

Vibration source A (m/s
2
) F peak (Hz)

Car engine compartment 12 200

Base of 3-axis machine tool 10 70

Blender casing 6.4 121

Clothes dryer 3.5 121

Person nervously tapping their heel 3 1

Car instrument panel 3 13

Door frame just after door closes 3 125

Small microwave oven 2.5 121

HVAC vents in office building 0.2–1.5 60

Windows next to a busy road 0.7 100

CD on notebook computer 0.6 75

Table 2.1 Characteristic of battery operation system, [11]   

Table 2.2  Acceleration magnitude and frequency of  fundamental vibration, [3] 
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Figure 2.1 Schematic Electromechanical Power Harvesting System.  

                 (Representation by Lumentut, 2010) 



 
13 

2.1. The Electromechanical Vibration-Based Piezoelectric Generator    

 

The piezoelectric element, subjected to input motion from the vibration 

environment, can create the strain field to induce the polarity-electric field to 

generate useful electrical energy capable of being stored on electrical power storage 

devices such as batteries or capacitors. Such a technique is generally referred to as 

the energy harvesting technique by using the unused energies from the dynamic 

motion, fluid flow, human’s motion, impact, etc. 

 

Extensive experimental studies of the piezoelectric power generation, conducted by 

Inman’s group at VirginiaTech, provided a comprehensive investigation of the 

performance of piezoelectric components. Sodano et al [12] investigated three 

different piezoelectric materials (MFC, Quick Pack and PZT ) using the cantilever 

piezoelectric models under dynamic response for accumulating the electric voltage 

and charge flowing into various batteries. They found that PZT gave more efficient 

charging time for the battery than Quick Pack. Even though MFC gave higher 

electric voltage than PZT, it was found to provide inefficient current for charging 

compared with the two other piezoelectric materials. Further experimental 

investigation of power harvesting with different material properties has been reported 

by Sodano et al [13]. They proposed three piezoelectric devices (Quick Pack, MFC 

and Quick Pack IDE) bonded onto nearby clamped supports of a cantilevered 

aluminum beam as shown in Figure 2.2. Over the first three modes of frequency 

response, the Quick Pack had the highest power harvesting capability, followed by 

MFC and Quick Pack IDE as shown by the result given in Table 2.3 at the end of this 

section. However, each of the piezoelectric devices, bonded onto the aluminum beam 

had different geometrical structures making them unfit for comparison. Moreover, 

the capacitance of the MFC depended on the geometry of the capacitor cell between 

the interdigitated electrodes and this also affected the power harvesting performance.  

Sodano et al [14] demonstrated the cantilever piezoelectric beam under random and 

resonance input vibration environments for generating electrical voltage for 

subsequent storage into rechargeable batteries and capacitors. The piezoelectric 

element was circuited with a full rectifier, capacitor and rechargeable battery. It was 

found that the charging voltage under random vibration conditions generated 

increased output voltage to the capacitor. However, it did not give the continuous 
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voltage output signal from the capacitor during the discharge operation. The second 

test showed that the electrical voltage under the random input vibration took 1.5 

hours to recharge the cell battery whereas the excited resonance frequency of the 

piezoelectric system charged the battery in around 20 minutes.    

  

 

 

The use of piezoelectric components in the application of human motion is of great 

interest to some researchers. Paradiso with his research group from MIT media Lab 

investigated several piezoelectric generators for human wearable electronic devices.  

Kymissis et al [15] discussed the application of piezoelectric PVDF and PZT 

components mounted between the insole and rubber sole of sport shoes, generating 

power harvesting from human walking as shown in Figure 2.3. The generated charge 

due to the mechanical contraction on the PVDF stave and the PZT of shoes during 

walking was investigated for optimisation of the electric voltage and energy 

harvesting, controlled using an electronic circuit to transmit the signal via radio 

transmitter. The average power during the brisk walk delivered by the PVDF stave at 

the shoe’s toe at the frequency of 1 Hz using 250 kΩ, was 1.1 mW while the PZT 

element on the shoe’s heel delivered an average power of 1.8 mW. Further 

improvement of piezoelectric power generation from a human walking was 

investigated by Shenck and Paradiso [16], where the PVDF stave placed in the insole 

of sports shoes delivered the average power of 1.3 mW  at load resistance of 250 kΩ 

at 0.9 Hz during walking pace whereas the PZT bonded into the insole of US Navy 

boots generated the average power of 8.3 mW  at 500 kΩ with the same frequency as 

shown in Figure 2.3.  

 

Starner and Paradiso [17] further reviewed the improvement of computing 

electronics such as disc capacity, processor speed and computer memory with an 

Figure 2.2 Piezoelectric transductions attached to the beam, [13]. 



 
15 

apparent increase of over 250 times with the available battery during 1990 and 2003. 

The power provided from the battery also has a limited lifespan and it is basic issue 

of the power storage for powering the electronic media. One of the trends in 

recovering the harvested power is that the piezoelectric sensor can act as a generator 

and be used to extract power due to the mechanical contraction from the human 

body. In Paradiso [18], this represents the well-known batteryless-based sensor 

model where the captured power never needs battery storage. This includes 

generating the harvested power from piezoelectric material bonded between the shoe 

insole and sole during human walking. Other researchers also completed similar 

work of scavenging power from human walking. The following work of the 

piezoelectric powered human walking was given by Mateu and Moll [19] where they 

optimised a bending piezoelectric beam in shoes using the simple support model. The 

typical layered piezoelectric beams of the homogeneous and heterogeneous bimorph 

as well as the heterogeneous unimorph were discussed under the application of point 

and distributed loads. Although the analytical dynamic response was not given, the 

author noticed that the triangular unimorph with the simple support provided the 

highest power under the distributed load.  The subsequent study by Mateu and Moll 

[20] developed their research by using the capacitors as storage media with controls 

and regulators for powering a load. The current waveform was used to predict the 

voltage waveform, generating prolonged low energy to be stored in the storage 

media, which depended on the conversion of the strain of the embedded piezoelectric 

element in the insole of the shoe during walking.  

 

 

The investigations of power harvesters using cantilever piezoelectric models under 

base motion and optimisation of the current signal using an autonomous converter 

circuit model, transmitted to the load via wireless communication has been discussed 

Figure 2.3 Wearable shoe power harvester, [16]. 
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by Ferrari et al [21]. The rotational vibration generator was modelled to give high 

amplitude resonant response which could be used for power harvesting with varying 

load resistances and capacitive loads. Arms et al [22] from Microsystems inc. 

presented an autonomous design fabrication of a power harvester using the 

cantilevered MFC piezoelectric beam associated with an electronic circuit system 

and an electrochemical thin film rechargeable battery for powering the wireless 

temperature and humidity sensor as shown in Figure 2.4. The extracted electrical 

power from an input vibration level of 0.1 g  achieved 2.8 mW with the modest strain 

level of 200 µε, where the generated power was from the resonance frequency of the 

piezoelectric structure. Lin et al [23] presented a MEMS power generator using a 

silicon cantilever beam with an attached piezoelectric element. The silicon beam 

with a proof mass under input base acceleration of 10 m/s
2
 at 100 Hz generated a 

power level of 2.59 μW. However, their result was not validated with the experiment 

and the analytical model of the piezoelectric beam failed to correctly model the 

coupled electromechanical dynamic system.  

 

 

 

 

There have been numerous research studies of the development of analytical models 

and associated experimental results of the electromechanical vibration power 

harvester. Some researchers also applied ANSYS software for the numerical model. 

Many of the piezoelectric prototypes used the cantilevered beam under input 

transverse excitation and sliding mass impact. Other prototypes such as the 

Figure 2.4. Fabricated  piezoelectric vibration power harvester and wireless 

temperature and humidity sensing node, [22]. 
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piezoelectric diaphragm and circular piezoelectric element under dynamic fluid 

pressure were also considered.   

 

Shu and Lien [8] discussed a cantilevered bimorph piezoelectric beam coupled with 

an electrical circuit, AC-DC rectifier and load resistance under the action of a 

dynamic input force. Although, their analytical solution only considered the single 

mode frequency response, they derived the complete non-dimensional analytical 

equations to obtain the optimal parameters of displacement, voltage and electrical 

power under the short and open circuits’ resonance frequency. The formulations also 

involved the coupling effect of electromechanical response and the uncoupling effect 

by ignoring the backward piezoelectric coupling. An analytical dynamic method with 

the curvature basis approach of the piezoelectric element bonded onto silicon layers 

has been discussed by Chen et al [24]. The cluster structure type was the unimorph 

model. The mathematical model was similar to dynamic admittance where the 

dynamic equation of the unimorph was developed without considering the coupling 

effect of piezoelectric behaviour as given in Table 2.3. However, the direct effect of 

the piezoelectric element was formulated to give the electrical voltage. This model 

showed the lack of mathematical components providing the interrelationship of 

direct and converse effects of the piezoelectric element for the multi-mode dynamic 

frequency response. 

 

Wardle’s group at MIT has investigated the cantilevered piezoelectric beam under 

the effect of load resistance and in duToit et al [7], they investigated a single mode of 

the mathematical model for scavenging low electrical power based on a range of 

frequency responses using the piezoelectric-based accelerometer and the cantilever 

piezoelectric models under input transverse base motion. In the analytical solution, 

the short and open circuit models of power harvesting were optimised to obtain 

power harvesting based on the frequency response under various load impedances. 

The strain effect from mechanical vibration of the cantilever piezoelectric beam 

structure gave more pronounce affect to the electrical power during the dynamic 

response. This situation depended on the series and parallel circuit systems of the 

bimorph piezoelectric beam and the {3-1} and {3-3} modes of operation as discussed 

by duToit et al [25]. They also further expanded their bimorph model using the 

cantilever piezoelectric element with the series connection of the bimorph beam 
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where the piezoelectric element was operating with the {3-1} mode. The comparison 

between the experiment and theory was also undertaken. However, the power at the 

resonance region seemed to give underpredicted results. Kim et al [26] further 

discussed the vibration energy harvester performance by considering the effects of 

geometrical tip mass onto the bimorph. The single mode of the electromechanical 

dynamic equations, stated as the scalar form given from duToit’s representation, was 

modelled and the solution form of their analytical approach was based on the 

Rayleigh-Ritz’s method. The trends of tip transverse displacement, voltage and 

power harvesting with and without tip masses were plotted with respect to the 

variation of load resistances where slight difference of results between the theoretical 

and experiment were found. They also noticed that the effect of geometrical tip mass, 

which created the offset centre of gravity from the bimorph tip, was an important 

issue affecting the dynamic behaviour of the piezoelectric beam. However, the 

authors did not provide the concentric bimorph proof mass to confirm the percentage 

difference of displacement and power from using the offset tip mass. In fact, the 

effect of proof mass onto the tip of bimorph was considered quite small for the power 

harvester application. This shows that the concentric bimorph tip mass should be 

preferable. The authors also did not provide the multi-mode FRFs of the 

electromechanical dynamic equations. Although, the purpose of simulation was the  

single mode FRFs, the multi-mode FRFs can provide a much more accurate 

representation and this can be adjusted through the graph to plot only the single 

mode simulation.  

 

Ajitsaria et al [27] discussed the analytical model of the piezoelectric bimorph beam 

with the Euler-Bernoulli and Timoshenko types. The conservative energy of the 

piezoelectric beam was formulated to give the electrical voltage and transverse 

function of dynamic displacement. The authors also considered the electrical circuit 

response, including the AC-DC rectifier, capacitor and resistor to simulate the DC 

voltage and DC current. However, the derivation of constitutive formulations did not 

clearly represent the coupled electromechanical dynamic response such as the 

transfer function of dynamic displacement. In fact, the Euler-Bernoulli beam’s 

dynamic equation was written with the misinterpretation. The research study led by 

Yang from the University of Nebraska, Jiang et al [28] discussed the single mode of 

the piezoelectric bimorph response using the method of boundary values to obtain 
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each coefficient of the dynamic equation to give the dynamic displacement and 

power density. In addition, the suggested analytical method did not gave the multi-

mode frequency response of the bimorph and the experimental validation. Yang and 

Yang [29] discussed the exact analytical study of the two piezoelectric bimorph 

beams with tip masses connecting each other with the elastic spring. The solution 

form of this model was reduced by using the boundary values. However, the effect of 

elastic spring attached to the structure did not give optimise power output from each 

piezoelectric element although the tuning power of the piezoelectric element was the 

main purpose on their analytical study, as it was not validated with the experimental 

results. In fact, the aim of using two piezoelectric elements should be increased 

power output from the multi-frequency response where the result was also shown in 

Table 2.3. 

 

Goldschmidtboeing and Woias [10] from IMTEK Germany investigated different 

shaped rectangle and truncated triangular piezoelectric beams with varying tip mass 

under base transverse excitation using Ritz-Rayleigh’s method. They showed that 

varying the mass ratio between tip mass and piezoelectric mass and truncated ratio or 

shape ratio between the rectangle and triangular portion of the piezoelectric beam 

could tune the optimum power where the result was given in Table 2.3. They noticed 

that the triangular shaped beam provided the optimum power compared with the 

rectangular beam.  

 

Renaud et al [30] discussed the unimorph piezoelectric beam under input impact load 

to generate the electric voltage. The sliding load was free to impact the tip of the 

piezoelectric element. A sliding mass of 750 mg moving along the piezoelectric 

beam with a distance of 1 cm produced the power of 40 µW for the first impact as 

shown in Figure 2.5. The input excitation to the piezoelectric harvester was 10 cm 

displacement. At this stage, the trend of transient responses from the experiment and 

theoretical were not given. Kuehne, et at [31] discussed a MEMS design of a circular 

piezoelectric plate diaphragm under dynamic motion from the inertia mass attached 

at the middle surface of the piezoelectric element. The Ritz method was used to 

establish the dynamic equation of the clamped circular piezoelectric plate to 

determine the charge and voltage. Minazara et al [32] discussed the coupled 

piezoelectric membrane and brass layer with a diameter of 25 mm under excitation 
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force from an actuator using the RLC circuit model controlled by a switching 

technique called synchronized switch harvesting on inductor (SSHI) where the result 

was given in Table 2.3. The power harvesting was found to increase 3 times at 

resonance regions compared with the normal system without SSHI. The maximised 

power obtained using the SSHI technique based on varying load impedances with the 

input force of 80 N gave power three times higher than using the standard technique. 

Further development of a piezoelectric disk for vibration-based energy harvester 

using the SSHI technique has been discussed by Lefeuvre et al [33]. The series-SSHI 

and parallel-SSHI techniques were optimised to maximise the power harvested from 

the piezoelectric element where the power output results gave a dramatic increase 

compared to that with the standard circuit techniques (bridge rectifier, capacitor and 

electrical load). Chao et al [34] optimised the harvested power from piezoelectric 

components under ambient vibration using the vibration tracking unit circuit to 

reduce the need of loss power, as it was known that the piezoelectric system provided 

only very low power from tens to hundreds of microwatts. This confirmed that power 

harvesting generated from the piezoelectric element can support the loss energy from 

the electronic circuit systems. Wang and Ko [35] presented the vibration energy 

harvester induced from fluid flow as shown in Figure 2.6. The fluid entered the 

chamber through a glass tube to create pressure onto the polydimethylsiloxane 

diaphragm where the piezoelectric beam was attached. When periodic pressure was 

applied onto the pressure chamber around with 1.196 kPa at a frequency of 26 Hz, 

the electric power generated was around 0.2 μW.  

 

 

 

 

 

Figure 2.5 Piezoelectric beam under impact mass, [30]. 
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Erturk and Inman [9] discussed a mathematical model for a vibration power 

harvester using the cantilever piezoelectric beam under input transverse excitation. 

The normalised eigenfunction form was used to simplify the constitutive 

electromechanical equations to give the frequency response analysis. The frequency 

response electrical voltage and power using the analytical results showed good 

agreement with the experimental results as given in Table 2.3. Feenstra et al [36] 

investigated power harvesting from a backpack using the piezoelectric stack actuator 

for the strap. The backpack model was analysed using Unigraphics CAD with Tetra4 

Mesh to model the amplification of the strap of the piezoelectric stack actuator. The 

amplified strap can be used to analyse the stack actuator using a single degree of 

freedom to obtain the power harvesting.   

 

The electrical equivalent representation of the electromechanical piezoelectric 

structure has been discussed by some researchers. Roundy and Wright [6] discussed 

the single mode of the piezoelectric beam with two different sizes of  tip mass in 

order to investigate the trend of electrical voltage. The effect of centre of tip mass’s 

gravity referred to the offset from the end of the bimorph’s length. Their analytical 

model failed to consider the offset’s length of bimorph due to the large tip mass 

attached to the bimorph. Later work from duToit et al [7] however, further 

considered the effect of the offset’s length of the bimorph. Moreover, the equivalent 

circuit model of the unimorph beam using ANSYS software for energy harvesting 

has been reported by Yang and Tang [37]. They investigated each parameter of the 

electromechanical system of the structure which could be converted into the 

equivalent circuit. The SPICE electrical software was further used to analyse the 

 

 

 

Figure 2.6  Piezoelectric film mounted onto the PDMS diaphragm under fluid  

flow  pressure, [35]. 
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voltage and power output frequency responses. Although, the equivalent electrical 

circuit gave the simple alternative solution, it still needed to solve each of the 

electromechanical dynamic parameters based on the multi-mode frequency response.  

Moreover, their unimorph beam design using solid5 element ANSYS did not show 

the required number of element meshes in order to meet the convergent criteria 

where each element node was attached with wires and connected to the resistor. If 

the number of nodes increased, the number of wires also increased making the 

simulation much more complex.  

 

Lee et al [38] discussed the utilisation of vibration environment from HVAC system 

(heating, ventilation, air conditioning) using the fabricated piezoelectric structure 

with the tip mass. The electrical circuit was also connected to the bimorph for 

supplying the electrical energy into the wireless sensors. The authors also provided 

the ANSYS simulation to analyse two different design optimisations from the 

rectangular and truncated triangular shapes of the piezoelectric element. They also 

provided the prototype model of a power harvester design. However, their design 

resulted in a complex model of a large attached tip mass located between two 

different shaped piezoelectric materials and also did not consider the mathematical 

computations to provide the electromechanical frequency responses. Yang et al [39] 

presented the application of a vibration power harvester using the three macro-fiber 

composites (MFC) patched onto the beam. Two MFCs were located nearby on the 

clamped beam support, extracting energy while another MFC acted as the input 

vibration to the beam (actuator). The electronic broadband measurement 

experimentally used an AC-DC rectifier and the storage capacitor to accumulate the 

electrical charge. The results were also validated with the electrical circuit simulation 

software, using the EDA software Multisim10.0. Although, the ABAQUS  software 

was also used to simulate the strain distribution and voltage  along the MFC patch 

with respect to the frequency response, their model only showed the prototype of 

energy harvesting without considering the mathematical implications.  

 

Mathers et al [40] presented the fabricated micro-piezoelectric cantilever beam with 

the proof mass for predicting the vibration power harvesting. The use of piezoelectric 

material from the single crystal relaxor ferroelectric (PMN-PT) with the 

interdigitated electrode (IDE) as shown in Figure 2.7 was aimed to improve the 
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energy conversion efficiency where the use of varying proof mass from the 

polydimethylsiloxane (PDMS) aimed to tune the natural frequency. The analytical 

model of the elastic vibrating beam associated with the direct effect of the 

piezoelectric equation was used to give the electrical voltage frequency response. 

However, the electromechanical dynamic behaviour of the piezoelectric beam from 

the derivations failed to give the effect of backward piezoelectric coupling for the 

power harvesting or to model the multi-mode frequency responses of displacement, 

voltage and power. Although the voltage and power results versus the base input  

displacement amplitude achieved agreement between the theoretical and experiment, 

the predicted voltage and power under the frequency response from the experiments 

was not validated using their analytical models as given detail in Table 2.3. Song et 

al [41] discussed the energy harvester using a single PMN-PT patch onto the steel 

beam with a proof mass. The PMN-PT element with the integrated electrical circuit 

consisting of an AC-DC rectifier with resistor and capacitor was experimentally 

measured to generate the DC voltage, current and electrical power frequency 

response functions. However, there were no validations using the theoretical model 

as given in Table 2.3. The power output versus load resistor using the theoretical and 

experimental results for four different tip masses was given where the theoretical 

power result for the open circuit load resistance was beyond that found from the 

experimental prediction.  Moreover, their analytical model of the PMN-PT patch on 

the steel beam failed to meet the mathematical continuity consideration because the 

length of the PMN-PT patch was much smaller than the steel beam, resulting in an 

oversimplification. 

                 

 

 

Figure 2.7 PMN-PT beam with proof mass under input transverse excitation, [40]. 



 
24 

Jeon et al [42] explored the conversion energy of a micro power harvester cantilever 

piezoelectric model using the base-motion of the ambient vibration source from an 

exciter as shown in Figure 2.8. The generated voltage using the {3-3} piezoelectric 

mode operation was found to be higher compared with the {3-1} piezoelectric mode 

operation. The operational scheme indicated that the fabrication of the piezoelectric 

device was made by attaching its top surface on the interdigitated electrode to 

produce the {3-3} piezoelectric mode. The {3-3} piezoelectric mode gave a voltage 

at least 20 times higher than the {3-1} piezoelectric mode. The generated AC current 

from the cantilever piezoelectric was rectified using the bridge rectifier to obtain DC 

current where it was then stored using a capacitor.  

  

 

 

Song et al [43] discussed the mathematical and experimental models of a cantilever 

piezoelectric beam structure under harmonic vibration. The piezoelectric component 

which was bonded on the top and bottom of the beam structure, was made from 

macro-fiber composite where it was circuited using a full bridge rectifier, capacitor 

and load resistance. The optimised power harvesting, electric voltage and current was 

obtained using 3-1 (d31) and 3-3 (d33) poling directions where they found that the 

MFC with the {3-3} poling direction gave very high power harvesting and electric 

voltage compared with the {3-1} poling direction. On the other hand, the MFC with 

the {3-1} direction gave very high current, which was very useful for power storage. 

They also found that the varying thickness of the beam affected the strain and hence 

the maximum power harvesting and electric voltage results.   

 

Figure 2.8 MEMS scale of interdigitated  electrode of the Piezoelectric material, [42]. 
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The broadband multi-piezoelectric beam with multi-frequency capability has also 

been investigated from some researchers. Ferrari et al [44] investigated an 

experimental multi-frequency array from three different bimorph beams using 

equivalent circuit systems. Each bimorph with different tip masses were connected to 

an AC-DC rectifier with the power stored into the single storage capacitor. Sharuz 

[45,46] from Berkeley Engineering Research Institute, attempted to discuss the 

analytical method of using mechanical band-pass filters of energy harvesting with the 

single mode multi-transverse bimorph beam effect with different lengths in order to 

maximise the frequency band. However, his mathematical method clearly failed to 

formulate the important issue of the coupled electromechanical strain and electric-

polarity fields to provide the power harvesting under the broadband multi-frequency 

system because the piezoelectric transduction itself consists not only the mechanical 

field but also the electrical field. His two published papers from the Journal of Sound 

and Vibration and the Journal of Vibration and Acoustics failed to provide the 

mathematical formulation of the electromechanical multi-piezoelectric vibration 

power harvesting. The research group led by Wereley from the University of 

Maryland, Song et al [47] investigated three frequency power harvesters using the 

macro-fiber composite (MFC) bonded on the bottom and top of each beam with tip 

masses. They used the analytical assumed mode method with the single mode 

electromechanical response without considering the orthonormality condition and the 

experimental comparison showed the modelling tended to give overestimated results. 

Xue et al [48] provided the theoretical study of the multiple piezoelectric bimorphs 

with different thicknesses using mix-connection pattern (mix series and parallel 

connections) to widen the resonance frequency band. Their mathematical model was 

based on the boundary value system of the single mode piezoelectric beams.      
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Geometry (mm
3
) Output 

power/

voltage

Sodano et 

al

1500 MFC 

:40.6×25.4×0.30

5   Quick Pack 

IDE 

:50.8×25.4×0.38

1  Quick Pack : 

50.8×25.4×0.381   

- MFC  : 

60.7062 

W/m
3
, 

Quick Pack 

IDE : 

60.7062 

W/m
3
, 

Quick Pack 

: 285.0246 

W/m
3

- Experiment given 

but no theoretical 

study.  The 

power density 

output was 

plotted for the 

first twelve 

modes of 

frequency 

response.

Variance such as; 

Piezo length : 

27,30, 33. Silicon 

subs. Length : 32, 

35, 38.

Yang & 

Yang
2x10

4
 to 

3.5x10
4

1 m/s
2 25×8×6 (each 

bimorph)

Quality factors 

of  bimorph 

:10
2 

2.5 W/m
3 

(max)

Exact method 

with the 

boundary values 

to analyse two  

bimorphs  

coupled via  

elastic spring 

No validation and 

only singe mode

Minazara et 

al

1710 80 N Diameter and 

thickness of 

piezoelectric : 25 

and 0.23, 

respectively 

- 1.7 mW Single mode of 

electromechanica

l equation

Experiment given 

including SSHI 

circuit system 

Detail

Chen et al Variance of 

damping ratio 

:0.0067 to 

0.0089

Piezo Thickness : 

0.002, Silicon 

Thickness : 0.3                 

Table 2.3. Summary of Piezoeletric Generator

reference Frequency 

range (Hz)

Input 

vibration

Damping Mathematical 

system

Validation with 

experiment. No tip 

mass and no multi-

mode FRFs.  

Damping ratios 

were associated 

with the  

geometries

Analytical 

method with 

curvature basis 

approach without 

converse 

piezoelectric 

coupling but 

having direct 

piezoelectric 

coupling    

0.8 V (max)10 µm250 -600 
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Cont. from Table 2.3

Analytical 

approach and no 

further 

derivations. No 

continuity 

criteria for the 

two different 

length of 

structures 

Analytical 

method using 

equivalent 

circuit for 

piezoelectric  

generation.  

PMN-PT 

bonded onto 

steel beam with 

tip mass 

without rotary 

inertia. 

Experiment 

was given. 

Single mode 

FRFs

Roundy & 

Wright

120 2.5 m/s
2 1000 0.015 375 µW/cm

3 Single mode 

analytical 

method

Song et al 60

Experiment 

given. Tip mass 

with its rotary 

included. Multi-

mode FRFs 

also included

Rect. : 4 V   

Triangular :  

6 V (first 

mode)

Analytical 

method without 

backward 

piezoelectric 

coupling 

0.2 g        -

Experiment 

given. Tip mass 

without its 

rotary inertia. 

Single mode 

FRFs for the 

voltage & 

power 

Erturk & 

Inman

30 to 70 1g 50.8×31.8×0.66 Damping ratio 

: 0.027

Analytical 

method with the 

solution form 

using  the 

normalised 

eigenfunction 

series

Mathers et 

al

1340  1.3 mm PMN-PT 

:7.4×2×0.120

0.123

6.8  

mW/g
2
/cm

3
(

under short 

circuit 

resonance )

0.5 mW or  

4.15 

mW/cm
3

0.73 

mW/cm
3

Rectangular  

:20×5×0.470   

Truncated 

triangular:   length : 

30, width I : 20, 

width II: 3, 

thickness : 0.560

Detail

Rect. : α = 80 

s
-1

, β=3x10
-6

 s  

Triangular : α 

= 120 s
-1

 , 

β=1x10-6 s

Geometry (mm
3
) Output 

power/ 

voltage

Steel : 

25.4×58.4×1.8  

PMN-PT : 

25×25×0.5

Goldschmi-

dtboeing & 

Woias

Analytical 

approach by  

Rayleigh-Ritz 

method

Experiment,  

damping 

constants and 

tip mass  were 

given. Rotary 

inertia from tip 

mass excluded

Reference Frequency 

range (Hz)

Input 

vibration

damping Mathematical 

system

4000 2.5 g
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2.2. The Electromechanical Vibration-Based Electromagnetic 

Generator    

 

The induced mechanical energy of a magnetic mass due to the vibration 

environment can create a change of magnetic flux through coils due to Faraday’s 

law. As a result, electrical voltage from the coils can be generated having potential 

for powering batteries or capacitors through the circuit control system.  Amirtharajah 

and Chandrakasan [49] demonstrated the use of ambient vibration to generate small 

electrical power, which was optimized using a DC-DC converter, and then controlled 

by DSP as a feedback signal. The DC Power obtained was 800 μW, which was then 

used as a feedback signal to a DSP with the input voltage sent to a regulator of 1 V.  

Further developments by Amirtharajah and Chandrakasan [50] used an 

electromagnetic coil transducer as a generator to convert ambient vibration to 

electrical energy, controlled by a DC regulator where the voltage output from the 

regulator was analysed using a DSP. The voltage output from the generator gave a 

peak level of 0.18 V which then abruptly dropped off to zero over a interval time of 

15 ms. They also increased the number of coils  and reduced the mass so that the 

output voltage could be increased. The maximum output power obtained was about 

400 μW with the resonant frequency of the generator of 2 Hz.  

 

Research led by Beeby from  the University of Southampton,  et al [51] discussed the 

electromagnetic micro-generator for energy harvesting. As shown in Figure 2.9, a 

cantilevered silicon beam with a tip mass of a copper coil, located at the middle 

between two-coupled NdFeB magnets under input vibration of 0.589 m/s
2
, produced 

electrical power of 6 μW and power density of 307 μW/ m
3
 with resonance frequency 

of 52 Hz. The power density was measured using the magnet volume of 0.15 cm
3
 as 

given in Table 2.4. The optimised coils and magnets was also shown where the 

number of coil turns increased the electrical voltages with different load resistances. 

The optimised magnet was also found by changing the size where the electrical 

power increased with increasing magnet size.   
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The work from Glynne-Jones et al [52], presented fabricated electromagnetic power 

generators with two different prototypes as given in Table 2.4. The first prototype 

which was initially proposed by El-hami et al [53],  had the coil located between two 

moving magnets, which were attached on the tip of the cantilevered beam. The 

difference was only in the geometrical structure and input vibration. The second 

prototype was the coil with four moving magnets. The first prototype with the beam 

volume of 0.84 cm
3
 generated electrical power of 180 µW under resonance 

frequency of 322 Hz with the amplitude of beam motion of 0.85 mm as shown in 

Table 2.4. Moreover, the second prototype was tested on a car engine with a distance 

of 1.24 km under an average speed of 25 km/h where the average power generated 

was around 157 µW with the beam volume of 3.15 cm
3
. The peak power achieved 

was around 3.9 mW. All results presented by authors were from the experimental 

study. The latest work from Beeby’s research group, Zhu et al [54], included the 

addition of  a tunable vibration system using the magnet with the micro-generator 

from Beeby et al [51]. The aim of this case was to adjust the resonance frequency 

from the generator where the resonance frequency shifted from 67.6 Hz to 98 Hz 

under input vibration of 0.59 m/s
2
. The power generated also increased from 61.5 to 

156.6 µW. However, the author stated that the electromagnetic generator was of 

small scale. The geometry of the beam and additional magnet for tuning the 

frequency also contributed to the larger size and weight. When the input vibration 

dropped drastically, the electromagnetic generator also drastically reduced its power 

output.  

 

Figure 2.9 Cantilevered beam with the electromagnetic component, [51]. 
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Sari et al [55] discussed the fabricated micro-electromagnetic power harvester using 

the multi-cantilever beam with printed planar coil and a magnet. The geometries of 

the beam and magnet size were given as 9.5×8×6 mm
3
 and 6×6×6 mm

3
, respectively. 

When the input vibration was given, the 20 beams with the planar coils vibrated 

around the magnet to induce the magnetic flux to create the electric charge. The 

number of coils printed on the beam was 16. The electrical power was measured 

experimentally giving around 56 pW for each cantilever under the vibration 

frequency of 3.4 kHz with the input displacement amplitude of 1 μm. At this stage, 

the authors did not provide the mathematical relationship of the coupled beam and 

electromagnetic system, but provided an oversimplified model of a single degree of 

freedom instead.  

 

Yang et al [56] presented the fabricated electromagnetic system for multi-frequency 

power harvesting. The acrylic beam with three NdFeB magnets bonded along the 

beam span induced the magnetic flux due to the input vibration to create the 

electrical charge flowing into the printing planar copper coils located at the bottom of 

each magnet as shown in Figure 2.10. The beam length and distance between coils or 

magnets were given as 54 mm and 10 mm, respectively. The vector magnetic field 

and resonance frequencies were determined using ANSYS where the increase of gap 

between the magnet and coils was found to decrease the magnetic flux. The model 

under input vibration of 14 μm generated electrical power of 0.6 μW from the middle 

coil under the first mode and 3.2 μW from the first coil under the second mode. The 

total power under the series connection from the three coils was quoted as 1.157 μW 

under the first mode as given in Table 2.4. The first three modes of resonance 

frequencies from ANSYS was compared with the experiment with less than 6 % 

difference. However, the electrical voltage frequency response with the first three 

modes was only determined by experiment, where the electrical voltage under the 

first mode was given as 0.09 mV. Moreover, the theoretical model of the single 

degree of freedom system failed to show good agreement with the experimental 

results where the results showed significant difference of power versus the load 

resistance.     
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Saha et al [57] presented the generator tube for electromagnetic energy harvesting 

induced from human motion. The generator tube, which included a coil wound from 

the outer surface, consisted of moving magnets located between two permanent 

magnets as shown in Figure 2.11. The input vibration of the tube resulted in the 

magnetic flux from the magnet moving up and down to induce coil electric voltage. 

When the generator tube was placed onto the rucksack, the tube generator with the 

input acceleration of 0.5 g with frequency of 2 Hz generated power from 300 µW to 

2.5 mW during walking and slow running. When the input acceleration from an 

exciter of 0.38259 m/s
2
 under frequency of 7.6 Hz was applied onto the generator 

tube, the power generated was around 14.55 µW with the load resistance of 7.3 kΩ 

as given in Table 2.4.   

 

 

 

Peter et al [58,59] from IMTEK Germany presented the tunable mechanical 

resonator using two piezoelectric actuators for controlling the vibrations as the 

electromagnetic system was attached for energy harvesting. One actuator was 

Figure 2.10 Beam with three poled magnets on the simple support beam, [56]. 

Figure 2.11  Tube Electromagnetic harvester with the moving magnet, [57]. 
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clamped and another actuator was free. Both actuators were connected to each other 

by three hinges attached between the actuator. The input voltage of ±5 V for the 

actuators was applied to adjust the resonance frequency to provide a shift of ±15 % 

from the ambient vibration environment. As a result of this effect, the free actuator 

controlled the vibration in order to induce the fluctuating magnetic flux resulting in 

induced electrical voltage generated from the coils. Although, the concept of tuning 

the voltage of the piezoelectric control system for the electromagnetic power 

harvester was sophisticated, the structure model was complex and needed two 

piezoelectric actuators, which were much larger than the electromagnetic 

components. In addition, the piezoelectric actuators still needed the external voltage 

for tuning the mechanical system to adjust one resonance frequency.  

 

Kim et al [60] presented two different electromagnetic power generators using wind 

flow as the input vibration as shown in Figure 2.12. The first generator was a 

windbelt power harvester using the strong air flow to vibrate the aeroelastic 

membrane  inducing the magnet to create the magnetic flux where the electrical 

voltage was generated from the coil.  The second generator was a Helmholtz 

resonator power harvester using the weaker airflow into the chamber to create audio 

acoustic response so that the electrical voltage was generated due to the moving 

resonator. Both the   generators used the coupled magnet and coil as the electrical 

energy source. The windbelt generator provided the open circuit voltage of 81 mV at 

the frequency of 0.53 kHz whereas the Helmholtz resonator generated voltage 

response of 4 mV at the frequency of 1.4 kHz due to the acoustic response with the 

input airflow velocity of 5 m/s. However, both generators used the air pressure 

fluctuations to create enough vibration to move the magnets.  

 

  

 Figure 2.12 Wind flow of electromagnetic generator : a) Windbelt power harvester 

using the strong air flow , b) Helmholtz resonator using the weaker airflow, [60]. 

a b 
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Park et al [61] presented the concept of a bulk-micro-electromagnetic power 

generator. The NdFeB magnet was attached to the centre of a silicon spiral spring 

directed to the centre of a copper coil where all parts were placed into the 

polydimethylsiloxane (PDMS) packaging mold as shown in Figure 2.13. The only 

difference between this model compared to others was the small scale of the bulk-

micromachined silicon spiral spring with the volume scale of 8 x 8 x 0.04 mm
3
 as it 

was only compatible for single degree of freedom response with the single poled 

magnet. The input vibration of 0.57 g onto the PDMS electromagnetic generator 

resulted in a power density of 590.4 µW/cm
3
.g

-2
 at the frequency of 54 Hz as given 

in Table 2.4. Stephen [62] derived the mathematical model of an electromechanical 

system, which consisted of a seismic mass with constant stiffness and damping 

coefficients from the coupled mechanical and electrical parts under base excitation 

moving through an electromagnetic coil circuited with the electrical parts from load 

resistance and electromechanical coupling coefficient. For this case, the predicted 

power harvesting was optimised using the matching of load resistance and coil 

resistance, the matching of mechanical and electrical damping coefficients, and the 

matching of electrical analogue of mechanical damping.  

 

 

            

Figure 2.13 Single degree of freedom of electromagnetic generator  with the plane spiral 

spring silicon, [61]. 
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Geometry 

(cm
3
)

Output 

power/

voltage

El-hami et 

al

322 25 µm 0.24 - 530 µW Beam with two poled 

magnets. Experiment 

only

Reference
Frequency 

range (Hz)

Input 

vibration
Damping Detail

Beam with four poled 

magnets. Experiment 

only

Saha et al 7.6 0.38259 m/s
2 0.0277 14.55 μ W Tube with two poled 

magnets.  Experiment 

only 

12.7 
 
(Tube)

0.15   

(Magnets)

Beeby et al 52 0.589 m/s
2 - 307 μ W/ m

3

322 2.7 m/s
2 - 180 µW Beam with  two poled 

magnets. Experiment 

only

0.84    

(beam)

Table 2.4 Summary of Electromagnetic Generator

Single poled Magnet 

attached on silicon 

spiral spring. 

Experiment and 

analysis of single 

degree of freedom     

0.6   

(packaging 

mold)

Yang el al 369 14 μm - 1.157 μW Beam with three poled 

magnets. Experiment 

only

0.32 
   

(beam)

Park et al 54 0.57 g 0.03 590.4 µW/cm
3 

.g
-2

Glynne-

Jones et al

                                        

2.3. The Electromechanical Vibration-Based Electrostatic Generator   

 

In the electrostatic generator, two parallel capacitors covering the electrode 

will polarise the electric charge when one of the plate capacitors is subjected to 

mechanical motion to overlap another capacitor periodically. The effect of polarised 

capacitors will vary the capacitance as it results in varying voltage and electrical 

current flow to the circuit. Roundy et al [6] discussed three basics prototypes of 

electrostatic energy generation as shown in Figure 2.14. The first prototype was an 

in-plane overlap converter. When the comb driven structure moved to change the 

overlapped area, the change of capacitance also varied. The second prototype was an 

in-plane gap closing converter. In this case, the capacitance changed due to the 

change of gap between two comb fingers. The third prototype was an out-of-plane 
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gap closing converter because the capacitance varied by changing the gap between 

the two large plates.   

 

 

 

  

 

                               

 

 

 

Starken et al [63] discussed the effect of the polarised electret of the micromachined 

electrostatic generator to produce the electrical charge due to the input mechanical 

motion. The basic prototype consisted of three wafers. The top wafer attached the 

electrets and the bottom wafer was used as the variable capacitor. The moving 

capacitor  electrode was located at the middle wafer with the bonded seismic mass 

suspended by silicon spring. The result is shown in Table 2.5. The effect of the 

electret was expected to polarise the high voltage capacitor in order to generate high 

power where the resonance frequency was excited under the sinusoidal wave. In that 

case, the change of capacitance per micrometre displacement needed to be high. The 

numerical and experimental studies of the effect of the electret bonded at the base 

electrode surface was reported by Tsutsumino et al [64] where the moving electrode 

(counter electrode)  was excited by the shaker to affect the polarisation of the 

electret. With the similar model of the electromechanical behaviour, Naruse et al 

[65] presented a new model for a micro-power electrostatic generator with two 

silicon substrates with the electret located at the middle between two glass substrates 

with collector electrodes as shown in Figure 2.15. The electrets with attached guard 

Figure 2.14 Types of Electrostatic generators: a) in-plane overlap converter, b) in-plane 

gap closing converter, c) out-of-plane gap closing converter, [6]. 

a 
b 

c 
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electrodes, functioned as the dielectric material for the quasi-permanent electrical 

charge. The basic principle of their model was the moving silicon mass with two 

electrets, guided using the micro-bearing ball to keep the separation gap stable where 

the silicon mass was connected with the spring and supported at the fixed glass in 

order to control the vibration. Once the electrets moved away from one collector 

electrode to another electrode at the glass substrates, the electrical power with 

frequency of 2 Hz generated around 40 µW with input acceleration of 0.4 g as given 

in Table 2.5. The problem with their model was that the output power decreased 

when the mover underwent reciprocating motion and then  collided with the edges of 

the device. The resulting power decreased dramatically.   

 

 

 

Hoffmann et al [66] presented the concept of the Micro-electrostatic generator with 

the model of in-plane motion varying the overlap electrode area as shown in Figure 

2.16. The comb mass with interdigitated electrodes moved the overlap area to create 

mechanical induction of the plate capacitors and electrical charges were generated 

due the change of capacitance as the results show in Table 2.5. Tvedt et al [67] also 

used the same model by introducing the equivalent circuit of linear and non-linear 

behaviour using the SPICE software. The mechanical stop was used in [66] and [67] 

to control the vibration of the comb mass. It was found that the power reduced 

because the impact of the comb mass with the mechanical stopper was strongly 

dependent on the acceleration excitation at the resonance frequency.       

Figure 2.15 Electrostatic generators with moving electrets, [65]. 
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Kiziroglou et al [68] from Imperial College London, presented the flexible substrate 

electrostatic plate generator using the rolling rod as the proof mass. The substrate 

material, which was mounted on a glass wafer, was made from a polyimide film 

wafer to allow for some flexibility as shown in Figure 2.17. The effect of the rolling 

rod on the different concave shape form of the substrate plate can change the 

capacitance to give higher power as it depended on the substrate curvature and 

allowed the rod to move periodically to induce the electrical voltage from the 

dielectric plate surface. However, their experiment only tested the rolling rod on the 

flat substrate. When the rod rolled over the flat dielectric-coated Cu plates, the 

capacitance varied periodically as it depended on the displacement of the rod. The 

input voltage of 20 V was needed for the substrate plate. When the rod rolled over 

the plate, the output voltage generated was around 48 V at the first peak which then 

decayed dramatically within 60 µs. With the similar model, Kiziroglou et al [69]  

also modified the shape of the substrate surface with low concave curvature of the 

plate which allowed the  rod  to roll periodically. The input voltage of 30 V into the 

substrate plate generated the peak voltage of 90 V that then abruptly decayed within 

160 µs. During the rolling rod motion of the substrate plate, the output capacitance of 

2 pF at the initial state increased up to 9 pF at the distance of 1.5 mm. The electrical 

power generated was around 0.5 µW at the frequency of 10 Hz. 

 
 

        

Figure 2.16 Electrostatic  generators :  in-plane overlap converter, [66]. 

Figure 2.17 Electrostatic generator  using moving rolling  steel associated with the 

electrical equivalent, [68]. 
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Output 

power/

voltage

Reference
Frequency 

range (Hz)

Input 

vibration
Damping

Table  2.5. Summary of Electrostatic Generator

Electrets moved 

between two fixed 

collectors. 

Experiment given

Despesse et 

al

50 Hz 8.8 m/s
2 - 1052 µW Moving capacitor 

with in-plane closing 

gap. Experiment 

given

1 g500 Hz

1.8 
   

(device)

-- 5 µWStarken et al

Detail

Moving capacitors 

with in-plane 

varying overlap.  

Experiment and 

theory were given

Naruse et al 2 Hz 0.4 g - Electrets moved 

between two fixed 

collectors. 

Experiment and 

theory were given

0.28
       

(device)

5x10
-5

 N-s/m

Geometry (cm
3
) 

40 μ W (exp)     

2232 μW 

(theory)

0.2     (device) 3.5  μ W 

(exp)         

5.5  μW 

(theory)

Hoffmann et 

al

1300 Hz & 

1500 Hz

13 g

 

2.4. Closing Remark 

 

In this chapter, the review of electromechanical vibration power harvesters has been 

presented including those based on the piezoelectric, electromagnetic and 

electrostatic generators. The wasted or unused mechanical energy from machine 

vibration, fluid flow and human motion can be used to convert motion into electrical 

energy by designing a self-powered electromechanical system to support the 

development of smart wireless sensor devices for future technology applications. The 

conventional wired/wireless sensor devices still depend on the power supply from the 

battery where it is a tedious task to replace and time consuming for maintenance 

during the system operation. The power generators have scalability and show 

potential for long-term autonomous operation that can be used for many applications 

and these are included but not limited to :  

 

1. Condition health monitoring such as of industrial rotating machines, bridge, pipe 

structure, automobile, airplane, train, ship, and etc. 
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2.  Defense global positioning system for embedded application such as in boots and 

shoes, army shirt, gloves, tanks, radio frequency for water police and Navy, and etc. 

3. Natural monitoring system: ocean wave for detecting ship smuggler and tsunami, 

wind flow to the leaves in the forest for detecting bush fire and etc.  

 

Moreover, the summary of the three major transductions have advantages and 

disadvantages as given in Table 2.6. It is important to note here that the overall 

inherent mechanism of transductions depends on the material design, the nature of 

the vibration environment and strategies to increase the power through tuning the 

mechanical and electrical systems in order to maximise the power for the smart 

wireless sensor systems. 

Type Advanteges Disadvantages

Piezoelectric no external voltage depolarisation

no mechanical stop brittleness of piezoceramic materials  

high power density high impedance

high output voltage

high sensitivity 

compatible with MEMS

Electromagnetic no external voltage difficult to integrate with MEMS

no mechanical stop low output voltage 

low sensitivity 

bulky size from the magnet and coil

Electrostatic compatible with MEMS need external voltage

complex design for  plate capacitor comb

low power density

need mechanical stop

Table 2.6 Summary of Three Different Types of Generators

 

However, unlike the electromagnetic and electrostatic transducers, the piezoelectric 

transducer has great capability for generating the highest electrical voltage and power 

as it has compact configuration, compatibility with MEMS standard and high 

sensitivity to capture the motion. Indeed, the coupling of an electromagnetic and 

piezoelectric power generator can be a good potential device, but it is still difficult 

for MEMS because the electromagnetic system results in a natural bulky size with 

the magnet and coil. However, in this thesis; the piezoelectric power harvester 

represents the major purpose of investigations not only for the chosen aspect of the 

profound material mechanism but also by providing novel analytical methods for 
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modelling the electromechanical system and the experimental study as given in the 

forthcoming chapters. In the next chapter, the exploration of continuum 

thermopiezoelectricity theory will be comprehensively presented to provide the 

indispensable relationships of the piezoelectric properties in terms of the 

thermopiezoelectric potentials, the thermopiezoelectric equations of state and energy 

function forms with the tensor coefficients.       
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This chapter deals with the energy phenomenon of piezoelectric materials. 

Piezoelectric elements have unique behaviours for energy generation depending upon 

either the induced mechanical, electrical or even thermal loads. Under these 

circumstances, the piezoelectric element exhibits elongations or contractions in three 

dimensional space. The elongations of the piezoelectric element are due to the 

reaction of changes of the ion crystalline structure from random domain polarization 

to aligned polarization. This creates net dipole moments to align the electric field and 

generate electric voltage during the application of dynamic loads onto any face of the 

piezoelectric element. Piezoelectric materials display important properties in the 

engineering field which can be derived using thermodynamic relationships where the 

energy phenomenon can be used to explore the interrelationship between properties 

with different physical treatments in order to obtain the thermopiezoelectric 

coefficients.  

This section mainly focuses on the mathematical continuum thermodynamic 

equations of the macroscopic piezoelectric element and develops the defining 

interrelationships between electricity, elasticity and entropy using Legendre’s 

transform and Maxwell’s theorem of thermopiezoelectricity. From basic 

thermodynamics, the concepts of macroscopic properties such as piezoelectricity, 

consisting of the stress, mass, and strain is found. From the perspective of 

microscopic properties, the piezoelectric element itself also has the nature of 

molecules of atoms. Moreover, the interactions between molecules of atoms in the 

system can be formulated at the macroscopic level using the concept of continuum 

thermopiezoelectricity instead of the quantum statistical thermodynamic equations as 

long as the thermodynamic coefficients can be determined. Sometimes these can be 

measured and derived in exact differential forms where these can be found from 

thermodynamic potentials. In other words, the macroscopic properties consist of the 

 

CHAPTER  
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Theory of Continuum Thermopiezoelectricity 
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numbers of molecules of atoms in the microscopic levels interacting to form the 

continuum energies, Desloge [70]. Apart from that, the solid macroscopic 

piezoelectric properties can be developed using the concepts of quasi-equilibrium 

thermodynamics or thermopiezoelectric equilibrium.  

3.1. Quasi-Electrical Energy of Piezoelectricity  

The basic concept is that the forces acting between two charges are 

proportional with the product of the magnitudes of each of the charges and the square 

of the distance between the charges      . The force is also proportional with the 

electric field E, resulting in the positive test charge heading toward the negative 

charge resulting in equipotential, Hayt and Buck [71]. The resulting simple electric 

force relationship is,    

             .                         (3.1) 

From this perspective, the applied work dW can be quantified due to the exerted 

force moving the charge Q along the path with distance dL, where the exerted force 

brings the charge opposite to the direction of the electric field E, creating the work W 

as shown in Figure (3.1). In this case, equation (3.1) can be formulated into the form 

of differential work done against the electric field by multiplying with the differential 

distance to give, 

                   .                         (3.2) 

Figure (3.1) shows the moving charge along the path i-a-b-c-f  with the direction of 

the electric field vector,  Hayt and Buck [71]. The charge moving through each path 

or the change rate of direction dL contains the same magnitude of electric field to 

create the electrical work. Integrating Eq. (3.2) using line integration from the initial 

state to the final state gives,  

                                                                                                                             
 

 

 

The electrical work for each section of the path shown in Figure 3.1 can be written 

as, 
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The work done on this path depends on the position vector of the charge’s 

displacement and electric field based on the initial and final states, Stratton [72]. 

Equation (3.4) can be reformulated into Eq. (3.5) to reflect the change in total 

electrical work,     

                                                                              (3.5) 

that can also be written as,  

                                               ,                      (3.6) 

assuming the electric field along the path remains constant with magnitude E,      

                                                              . 

The work done can also be expressed in terms of the total displacement function 

from i  to f as,  

                                                                .   

or it can be stated using the general expression, 

                                                                                                        (3.7) 

Equation (3.7) can be modified to yield the potential field as a result of the dot 

product between electric field and differential vector distance as,     

  
 

 
 
    

                                                                    

 

 

  

Figure 3.1 Illustration of the Work Done by the  electric field moving a  

                charge from point i  to f  

i 

f 

a b 

c 

Q 

Eia 

Eab 

Ebc 
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That can also be expressed as,  

                                                                           

 

 

 

Where the Potential at point i is given as Φi and point f , Φf , the change of potential 

can be written as,  

                

 

 

                                                         

or formulated to obtain,  

                                         .                                 (3.11) 

From the previous basic formulation of the work done in moving the charge, the 

infinitesimal coordinate system can be used to demonstrate the differential work on 

the charge as shown in Figure (3.2).  
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The electric field vector can be written in terms of the field strength E and the first 

order approximation of the space rate of change of axes                          

using Taylor’s series. The displacement vector can also be similarly expressed to 

give,   

 

         
  

 
       

   

  

  

 
             

  

 
       

   

  

  

 
  

         
  

 
       

   

  

  

 
             

  

 
       

   

  

  

 
    

Figure 3.2 Components of electric field vector on the Infinitesimal element  due to 

positive charge located in the middle of the element 



 
45 

         
  

 
      

   

  

  

 
           

  

 
      

   

  

  

 
        

         
  

 
      

   

  

  

 
           

  

 
       

   

  

  

 
    

         
  

 
      

   

  

  

 
           

  

 
       

   

  

  

 
     

         
  

 
      

   

  

  

 
           

  

 
       

   

  

  

 
      

It should be noted that the negative sign because the work is done against electric 

field. In this case, the work on the charge moving through the infinitesimal space 

element can be written to yield the total differential work as,        

                                                       

                                                                                                              

Substituting each electric field and distance from Eq. (3.12) into Eq. (3.13)  yields, 

                      
   

  

  

 
       

   

  

  

 
 

      
   

  

  

 
      

   

  

  

 
    

                                   
   

  

  

 
       

   

  

  

 
 

       
   

  

  

 
       

   

  

  

 
                                              

                                   
   

  

  

 
       

   

  

  

 
 

       
   

  

  

 
       

   

  

  

 
                                                   

Equation (3.14) can be further simplified by applying the total differential partial 

where the products of different terms are ignored. As an example, consider, 

                   
   

  

  

 
                                                                           

which can be expanded to give, 
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The last term can be assumed to be negligible because it is too small. Simplifying Eq. 

(3.16) by neglecting the products of differentials gives, 

                                                
 

 
  

   

  
                                       

Equation (3.14) can then be written as a function of the differential distances as,      

             
 

 
 
   

  
          

 

 
  

   

  
               

                     
 

 
 
   

  
          

 

 
  

   

  
      

                       
 

 
 
   

  
          

 

 
  

   

  
     

                        
 

 
 
   

  
          

 

 
  

   

  
     

                      
 

 
 
   

  
          

 

 
  

   

  
     

                        
 

 
 
   

  
          

 

 
  

   

  
                              

 

Multiplying the two components of the vector field in the bracket from each term of 

integrals of Eq. (3.17) gives,  

             
   

  
            

   

  
   

 

       
   

  
    

                                    

                       
   

  
          

   

  
           

   

  
                         

Equation (3.19) can be modified to give the form,  

        
          

  
       

         

  
  

 

   
         

  
                   

By taking consideration of the operator   in equation (3.20) which is the same as 

the ∂ operator in the differential equations. Equation (3.20) can be reformulated to 

yield, 

                                    
   

  
      

   

  
  

 
   

  

  
                             

This can be manipulated to give, 

        
   

  
     

   

  
  

 
  

   

  
                                   

This can also be restated as,  
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Equation (3.25) can now be written, 

                                                                         

                                    

Considering Eqs. (3.25) and (3.26) for   , the electric field can now be written 

proportional to potential field terms, Hayt and Buck [71],    

                     
   

  
     

   

  
  

 
  

   

  
                                           

Equation (3.27) can be simplified using the gradient operator (grad) or nabla ( ) to 

give,   

                                                                     .                                (3.28)             

It is clear that the gradient operator for the infinitesimal element in rectangular 

coordinates indicate the vector form of the solution whereas the potential fields 

provide a scalar representation of the electric field. At this point, two different 

solutions for cylindrical and spherical coordinates can be formulated.  In cylindrical 

form, the electric field can be formulated as, 

                             
  

  
     

 

 

  

  
     

  

  
                                      

In spherical form, the electric field can also be obtained as, 

                             
  

  
     

 

 

  

  
     

 

     

  

  
                                  

3.2. Electric Displacement of Piezoelectricity 

 Another vector term that can be developed for the piezoelectric element is the 

electric displacement field. The positive electric charge located at the centre from an 

arbitrary piezoelectric field  can be considered a continuous function. Consider an 

arbitrary surface vector dS  with unit vector normal n on the area surface dS which 

has an electric displacement Ds upwards from the surface as shown in Figure (3.3). In 

this case, the electrical charge can be formulated in terms of  Gauss’ theorem to give,  
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where,     charge per unit volume and     charge per unit surface. The general 

vector form of electric displacement can then be formulated in terms of the vector 

component in rectangular coordinates as                                        

 

 

 

 

 

 

 

 

Maxwell’s electric displacement theorem can be shown in terms of Eq. (3.31) using 

the rectangular coordinate system. Consider each electrical displacement D together 

with surface vector S on the infinitesimal element face of the rectangular box to give 

the function of rectangular axes, (x, y and z) as shown in Figure (3.4). The space rate 

of change of axes                         is located in the R
3
 space, where D is a 

continuous function on the closed surface whereas dS is a continuous derivative to 

the vector surface where                                   . The 

functional plane of D can be solved initially using the first two terms of the Taylor’s 

series where the higher order series are very small for the differential electric 

displacement and can be neglected.  
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Figure 3.3 Outward electric displacement vector at element surface due to positive charge  

Figure 3.4 Outward electric displacement vector at the surface of the infinitesimal rectangular box  

                   due to positive charge  
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It should be noted that the component vector of electrical displacement can be 

formulated as,  

                                                                 

Applying Taylor’s series while only considering the first two terms for Eq.(3.32) 

gives, 

                 
  

 
               

  

 

    

  
                     

              

                 
  

 
               

  

 

    

  
                    

              

                    
  

 
            

  

 

    

  
                  

                   

                    
  

 
            

  

 

    

  
                  

               

                       
  

 
         

  

 

    

  
                               

             

                       
  

 
         

  

 

    

  
                  

                 

Using Maxwell’s electrical displacement form in terms of Gauss’ theorem gives,  

                                            

            

 

                            

                            

    

                                                    

    

 

    

 

Solving each face of the infinitesimal element face of the rectangular box gives, 



 
50 

Face ABCD 
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Substituting Eqs. (3.34) to (3.39) into Eq. (3.33) gives,  

             
  

 

    

  
                 

  

 

    

  
       

                        
  

 

    

  
              

  

 

    

  
        

                         
  

 

    

  
              

  

 

    

  
                                   

Simplifying Eq. (3.40) results in the expression, 

          
    

  
  

    

  
   

    

  
         

   
    

  
  

    

  
   

    

  
                                    

It can be seen that Gauss’s theorem for electric displacement can be written as a 

divergence which is given as, 

                                                                             

This can be reformulated as, 

                                                                   

Equation (3.43) for     gives the electric charge per unit volume. This can be 

further manipulated to give,   

   
    

      

  
                                                                       



 
52 

The electric charge per unit volume has the relationship with electric displacement 

due to its continuous function on the closed surface in the space system. It can be 

seen that the limit    approaching to zero gives the electric charge per unit volume 

from the divergence of electric displacement which is the well-known Maxwell’s 

theorem, Hayt and Buck [71] and Stratton  [72]. Maxwell’s theorem for divergence 

of electric displacement has a relationship with Gauss’s theorem for the closed 

surface integral.  As shown in the derivations of infinitesimal element face of the 

rectangular box, it can obviously be expanded mathematically for other geometrical 

components such as for cylindrical and spherical surfaces.      

For the cylindrical surface, the convergence of electrical displacement or electrical 

flux density can be formulated as, 

         
 

 

      

 
  

 

 

   

  
   

   

  
                                                     

The convergence of electrical displacement for the spherical surface can also be 

formulated as, 

         
 

  

      

  
  

 

     

         

  
  

 

     
 
   

  
                  

As previously discussed, moving the charge in the path due to an applied force 

against an electric field requires work. The electrostatic energy of the piezoelectric 

element can be formulated in terms of the charge density and electric potential which 

has relationship with the Maxwell equation of electric displacement as given 

previously as,  

    
 

 
         

 

 
                                         

From Eq. (3.47), invoking operational multiplication of differential vector fields 

gives,  

                                                               

Inserting         from Eq. (3.48) into Eq. (3.47) obtains,  
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where  from Eq. (3.28)       , which can be inserted into Eq. (3.49) to give,  

                                 
 

 
                                                               

The first integral is Gauss’s theorem of divergence’s volume integral, so it can be 

replaced using the closed surface integral from Gauss’s theorem yielding,    

   
 

 
          

 

 
                                                 

The first integral contains the electric voltage function, electric displacement and 

surface area which can be interpreted as the proportional function,  

    
 

 
                               

 

  
                                                          

Corresponding to Eq. (3.52), applying the limit form at the first integral of Eq. (3.51) 

in terms of r approaching to infinity gives, 

   
   

                     
   

 

 

 

  
                                       

The resulting electrostatic energy of piezoelectricity then becomes,  

    
 

 
                                                                 

Electric displacement D can be considered to obtain the relationship with electric 

field E and polarization P. Parameter D has a natural intensive property of the free 

space of permittivity    whose property is proportional with extensive property of E 

which is further discussed in the next section,  

                    .                                               (3.55) 

Electric charge can now be further formulated by including polarization. In this case, 

the total charge flowing through the piezoelectric element in terms of the differential 

vector field  of E and P can be written as, 
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The negative sign from the bracket indicates the opposite direction with  respect to 

the electric field,  

                                                                    

Modifying Eq. (3.57) gives, 

                                                                         

or it can formulated as, 

                                                                                  

This can be compared with Eq. (3.43) solely having the relationship with electric 

field, polarisation and free space permittivity. Hence, the electric charge per unit 

volume also has a continuous function with polarization as proven in Eq. (3.56). The 

new formulation of electric displacement, Nye [73], can be written as,   

                                                                           

or  P can be formulated as, 

                                                                           

where     is the electric susceptibility of the piezoelectric material.  

Substituting Eq. (3.61) into Eq.(3.71)  gives, 

                                                                         

and equation (3.62) can be written as, 

                                                                          

where           is the relative permittivity. In this case, we can multiply the 

relative permittivity with the free space of permittivity to give, 

                           . 
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Finally, the electric displacement can be reformulated in terms of electric field, 

Stratton [72], Nye [73], Damjanovic [74] and Tiersten [75]  as, 

                                                                  

It is noted that D in Eq. (3.64) can be specified as the first rank tensor and the electric 

field can also be specified as the first rank tensor. The relative permittivity can be 

specified as the second rank tensor. The electric displacement vector can be 

formulated in the tensor form as, 

                                                                                                              

As can be seen, the quasi-electrical energy has been formulated using Maxwell’s 

theorem in terms of the electric displacement with the application of Gauss’s 

theorem.  

3.3. Piezoelectric Effect 

 The unique electromechanical behaviour of piezoelectric material can be 

divided into two piezoelectric effects, i.e. direct and converse piezoelectric effects. 

When the applied stress is exerted on the material, the electric charge can be 

produced on the surface of the material due to the electric moment which is 

proportional to the applied stress to create polarization, Nye [73], Ikeda [76] and 

Cady [77]. The applied stress alters the polarisation  to generate the electric voltage 

on the electrodes located between two faces of material with negative and positive 

charges.  This situation is called the direct piezoelectric effect which is formulated  

as, 

                         .          (3.66) 

where P represents the polarization charge per unit area, d the piezoelectric modulus 

or piezoelectric constant and σ the applied stress. It should be noted that the 

polarisation P from the direct piezoelectric effect can be modified in terms of the 

electrical displacement D with the constant electric field, equation (3.60) to give, 

                                                                         (3.67) 

With the electric field kept constant, equation (3.66) can be modified in terms of Eq. 

(3.67) as, 

           .           (3.68) 
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This indicates that equations (3.67) and (3.68) have similar form for the direct effect.  

It is noted that P in Eq. (3.67) can be specified as a first rank tensor and stress can be 

specified as a second rank tensor. The piezoelectric modulus can then be specified as 

a third rank tensor. The direct piezoelectric effect in tensor form can be formulated 

as, 

                                                      .          (3.69) 

When the electric field is applied onto the material, the shape of the material will 

change or deform due to the change of strain. This situation is called the converse 

piezoelectric effect which is formulated in tensor form as, 

                            .                                             (3.70) 

where     indicates the second rank tensor of strain and Ei indicates the first rank 

tensor of electric field. The piezoelectric effects imply that the ratio between 

polarization and the applied stress in direct effect will be equal with the ratio 

between the change of strain and electric field in the converse effect.  

 

3.4. Pyroelectric Effect 

 Certain piezoelectric materials have sensitivity with the change of 

temperature thereby forming the dipole moment to exhibit spontaneous polarisation 

with the constant electric field. This behaviour can be called the pyroelectric effect. 

Certain piezoelectric materials such as zinc oxide (ZnO), polyvinylidene fluoride 

(PVDF), lithium tantalate (LiTaO3), lead magnesium niobate-lead titanate (PMN-PT) 

and lead zirconate titanate (PZT) also exhibit the pyroelectric effect whereas all 

pyroelectric materials can behave as piezoelectric materials, Damjanovic [74], 

Neumann et al [78], Ploss et al [79], Porter [80]. The pyroelectric effect can be 

formulated in terms of the changes of temperature and polarization or can be 

formulated in differential form as, 

             ,           (3.71) 

where pi  represents the first rank tensor, pyroelectric coefficient (vector) Pi indicates 

spontaneous polarization and T indicates temperature. Equation (3.60) can be 

modified with second order polarisation which includes spontaneous polarisation Pi 

or Ps, Nye [73]. The electric displacement can then be formulated as,  

                                      .                    (3.72) 
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With respect to temperature, the pyroelectric coefficient can be obtained in 

differential form as, 

                                                    
  

  
     

  

  
  

   

  
                                                       

It is noted that the electric displacement not only depends on the pyroelectric 

coefficient but also on the electric field, and the change of permittivity with 

temperature. In this case, the effect of electric field can increase the transition of 

temperature on the pyroelectric effect and reduce the permittivity, Damjanovic [74]. 

If the effect of electric field was to be kept constant, the electric displacement will be 

equal with spontaneous polarisation as formulated by, 

                           
   

  
    

   
  

                                                                 

In the next section, theorems of thermodynamics in relation to properties of quasi-

electrical energy, elastic strain energy and entropy are given in order to formulate the 

thermopiezoelectric equation of states in terms of Legendre’s transform and 

Maxwell’s relations.   

 

3.5. Thermo-electric-elasticity of Piezoelectric Systems 

 The theory of thermodynamics plays an important role to identify all aspects 

of internal and external parameters of energies including mechanical work and heat 

affecting certain systems such as isolated, open and closed systems. The state of the 

system can be identified in the macroscopic properties because these properties 

include fundamental variables such as pressure  , temperature  , volume  , mole 

numbers   and so on. At the microscopic level, these properties consist of millions 

of  molecules and structures at the atomic level that affect overall system dynamic 

behaviours because they interact with each other to move continually and 

consequently form the kinetic and potential energies at the macroscopic level, 

Desloge [70] and Sears and Salinger [81]. This shows that the macroscopic 

behaviour depends explicitly on the microscopic properties at the level of 

thermodynamics categories. This level relates to the continuum hypothesis of the 

macroscopic structure. At the in-depth study of microscopic level behaviour, 

statistical quantum physics should be used to explore the physical interactions 

between molecules or particles the quantum levels. At this point, continuum 
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thermodynamics is an appropriate tool to analyse many properties of  systems at the 

macroscopic level, both experimental and mathematical, because the continuum 

thermodynamics is sometimes called the tangible physical study where it can identify 

clearly the level of energies in the internal system including the external energy from 

its surrounding.  

Furthermore, the continuum thermodynamics studies the behaviour of interactions of 

properties in the system based on the laws of thermodynamics as discussed over the 

long term from many scientists. It is noted that the piezoelectric system can be 

analysed according to the closed system where the state of the system can be 

identified in fundamental variables such as stress  , temperature  , strain ε and 

electric field E. The continuum thermodynamics of piezoelectricity has already been 

discussed experimentally and theoretically by Cady [77] and developed in tensor 

form by Nye [73], Munn [82], and Munn and Newham [83]. However in this chapter, 

the previous theories are reviewed and also discussed in more detail to present a 

clearer understanding of the constitutive equations of thermo piezoelectricity with its 

properties.   

The thermodynamic properties can generally be divided into two classifications, i.e. 

intensive properties and extensive properties. These properties depend on 

macroscopic element interactions between the internal and external system. The 

extensive properties can be independent variables of the element size in the entire 

system and its surrounding whereas the intensive properties can be dependent 

variables of the element size in the entire system and its surrounding. At this point, 

the physical properties can be explained in the following theorems, 

Theorem I. If X and Y indicate arbitrary intensive variables, then XY, X/Y, ∂X/∂Y and 

X+Y should be intensive variables. 

Theorem II. If X and Y indicate arbitrary extensive variables, then X+Y give 

extensive variable, and X/Y and ∂X/∂Y should be intensive variables.  

Theorem III. If X and Y indicate arbitrary intensive and extensive variables 

respectively, then XY, Y/X and ∂Y/∂X should be extensive variables.  

Theorem IV. If X(Y,Z) indicates extensive variable where Y and Z are also extensive 

variables, then exact differential form dX = ∂X/∂Z(dZ) + ∂X/∂Y(dY) should be 
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extensive variable. As stated from theorem II, ∂X/∂Z and ∂X/∂Y indicate intensive 

variables. 

Theorem V.  As given in theorem IV, ∂X/∂Z = A and ∂X/∂Y = B  indicate intensive 

variables. However, if A and B become the extended functional form stated as A(Y,Z) 

and B(Y,Z) where Y and Z are extensive variables based on theorem III, the exact 

differential forms of two functions dA = ∂A/∂Z(dZ) + ∂A/∂Y(dY) and dB = ∂B/∂Z(dZ) 

+ ∂B/∂Y(dY) should be extensive variables where the parameters ∂A/∂Z and ∂B/∂Z 

indicate intensive variables based on theorem II. 

To find other dependent intensive properties, Legendre transformation can be applied 

to obtain the interrelationship of internal energy with its independent extensive 

variables and other thermopiezoelectric potential. At this point, the thermodynamics 

properties can be further analysed from energy forms in the system using Maxwell’s 

theorem based on the laws of thermodynamics.  

The first law of thermodynamics, as proposed by Carnot, discusses the equilibrium 

process of the system under heat and work to form the transformation from initial to 

final states. In this case, whatever the change of heat and work under reversible or 

irreversible conditions, they should show the same summation results when the 

initial state moves to the final state. From the perspective of the second law of 

thermodynamics, it is impossible to construct the engine which will work for the 

complete cycle where the heat from a reservoir converts to mechanical work. This 

condition will allow us to discuss Clausius’ theory for the reversible and irreversible 

processes in the entropy due to the heat change in the system.  

In this case, the entropy is always positive real when the closed system is under 

irreversible process and the entropy will be zero for the reversible process. It should 

be noted that the change of entropy just depends on the transformation of heat from 

initial to final states. This means that the change of entropy for the reversible process 

will be equal with the change of entropy calculated using the irreversible process, as 

discussed by Kuiken [84].    

The total entropy change can be stated as the exchange of heat and matter with 

external system     and the irreversible process in the internal system due to the 
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internal thermodynamic forces or dissipation energy    , Verhas [85], Kondepudi 

and Prigogine [86] and Biot [87] to give, 

                                                                          

The equation (3.75) should meet the second law of thermodynamics where the 

Clausius inequality entropy can be formulated in terms of the reversible and 

irreversible processes as, 

                                                                          
  

 
                                                             

Equation (3.76) reflects the arbitrary cycles of the heat process. The reversible and 

irreversible process of entropy for the closed system can be further stated as, 

                           
  

 
                   

  

 
                              

and                         (3.77)

  

                           
  

 
                    

  

 
                                  

On this point, Gibbs considered      as a reversible process of heat and matter (open 

system) where he proposed the transformations of states in equilibrium 

thermodynamics in order to create the reversible process in the system whereas     

(closed system) indicated the process of heat flow only excluding matter that could 

be positive and negative.  

Total change of entropy from Eq. (3.76) gives the interrelationship of process states 

between reversible and irreversible. Since, the piezoelectric system considered as a 

closed form of solid system, is based on the change of entropy due to the reversible 

process for the entire transformation of state, Nye [73], there is no change of entropy 

due to the irreversibly internal piezoelectric system (parameter     is zero). The 

change of entropy for the closed system in terms of Eq. (3.75) can be formulated as, 

                                                         
      

 
                                                        

As mentioned previously, the macroscopic field of piezoelectric thermodynamics 

presented here, is based solely on the basic theory of thermodynamics. In this case, 

the Maxwell’s interrelation theorem from various differential partial extensive 

variables to give intensive variables will be further discussed where these can be 
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used to further  define the Enthalpy property, Gibbs Free Energy, and Helmholtz 

Free Energy. 

The first and second laws of thermodynamics were viewed as the equilibrium 

process of the changes of state in the system. The equilibrium process can be viewed 

as the macroscopic equilibrium properties of the system. The properties in the system 

in terms of thermodynamics potential such as internal energy U was a function of 

certain properties which were assumed as variable functions such as strain, entropy, 

and electric displacement. From this situation, other thermopiezoelectric potentials 

such as enthalpy H, Gibbs energy G, Helmholtz F can be achieved to obtain the 

interrelationship of independent state variables (intensive variables) and dependent 

state variables (extensive variables) in the equilibrium system. In this case, the 

macroscopic thermodynamics theory for continuum piezoelectricity can be further 

explored. The macroscopic piezoelectricity behaviour compounds the large numbers 

of microscopic matters like molecules of atoms bringing the positive and negative 

ions of the crystal lattice. The recent crystal structures in use were found to be 

polycrystalline such as barium titanate (BaTiO3) and Lead zirconate titanate (PZT), 

Damjanovic [74]. Moreover, the macroscopic piezoelectricity can be formulated in 

terms of thermopiezoelectric potentials.  

The internal energy of the system should be established first in terms of the laws of 

thermodynamics in order to explore other thermopiezoelectric potentials. The 

classical thermodynamic models gave the basic concepts to encounter the case of 

thermodynamics potentials of piezoelectricity which was affected from the thermal, 

mechanical and electrical interactions of the piezoelectric system.  As mentioned 

previously, piezoelectricity can be viewed as a solid element structure based on the 

theories of elasticity, quasi-electrical energy and heat. In this theory, the 

interrelationship of different states of the thermopiezoelectric potentials in the system 

of infinitesimal piezoelectric element will be further developed using Legendre’s 

transform in order to obtain intensive and extensive properties using Maxwell’s 

relations in partial differential forms in terms of Figure (3.5), Nye [73].  
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The first and second laws of thermodynamics of the piezoelectric element can be 

stated in terms of the internal energy as one of thermodynamic potentials which is a 

function of characteristic independent variables of strain    , electric displacement    

and entropy    as, 

                       .                             (3.79) 

Equation (3.79) needs to be proven to fulfill the first law of thermodynamics of the 

macroscopic piezoelectric element as, 

     
  

    
 
   

        
  

   
 
   

      
  

  
 
   

                                  

Intensive properties from Eq. (3.79) can be stated as, 

 
  

  
 
   

                  
  

  
 
   

                   
  

   
 
   

                      

Figure 3.5 The Relationship between Mechanical, Thermal and Electrical Effects  

                   of the Piezoelectric element, [73] 
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The macroscopic piezoelectric element can be viewed as a closed system which was 

in a state of thermal equilibrium with the surroundings. The system was presumed to 

undergo heat changes between initial to final states where this situation was called 

the reversible process of entropy as stated in Eqs. (3.77a) and (3.78). In this case, 

equation (3.80) can now be reformulated as, 

                                                                       .                           (3.82) 

Maxwell’s  relations can then be used to obtain, 

 
  

    
 
   

    
    

  
 
   

  
      

   
 

   

     
     

    
 
   

  
     

  
 
   

   
    

   
 
   

           

Equations (3.79) to (3.83) provided the basic formulations from the first and second 

laws of thermodynamics of piezoelectricity which can be used to develop the 

intensive and extensive properties from other thermodynamic potentials such as  

Gibbs Free Energy of elasticity, Electro-Elasticity Gibbs Free Energy, Helmholtz 

Free Energy, Enthalpy of Electro-Elasticity, and Electrical Helmholtz Free Energy. 

These energies can be explored using Legendre’s Transformation and Maxwell’s 

relations as further discussed in the next section. At this stage, the three base 

components of the exact differential energy forms for the piezoelectric system need 

to be established first before these energy forms can be developed into 

thermodynamic potentials. The exact differential elastic strain energy form can be 

formulated as, 

                                        
         

    
 
 

        
         

     
 
 

                      

Reformulating Eq. (3.84) gives,  

                                    .                     (3.85)   

The exact differential quasi-elastic energy can be formulated as,  

           
       

    
 
 

       
       

   
 
 

                               

Reformulating Eq. (3.86) gives,  

                                                               

The exact differential entropy form can also be formulated as, 
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or,                                                                     .                                (3.89)    

3.6. Elastic-Electrical Gibbs Free Energy (Type –      ) 

 The concept of Gibbs free energy can be further explored to investigate the 

intensive and extensive properties in order to give the thermodynamic, Gibbs 

equation of state of type-       which can be derived using Legendre transform and 

Maxwell’s relations. The independent variables of elastic-electrical Gibbs free 

energy can be obtained using Legendre’s transform where equation (3.81) can be 

used to replace independent variables from Eq. (3.80) of entropy S with  
  

  
 
   

  , 

strain            
  

    
 
    

     and electric displacement Di with  
  

   
 
   

   .  At 

this point,  elastic-electrical Gibbs free energy can be stated as the characteristic 

thermodynamics potential with a function of differential terms of T, σij and Ei in the 

macroscopic state using Legendre’s transform as, 

                                                                           

Corresponding with Eqs. (3.85), (3.87) and (3.89), equation (3.90) can be stated as, 

                                                     

                                              

                                                                                        

Simplifying Eq. (3.91)  gives, 

                                                                 

Electro-Elasticity Gibbs free energy can be stated as the exact partial differential 

form as, 

      
  

  
 
   

     
  

    
 

   

       
  

   
 
   

                              

The intensive properties from Eq. (3.93) can be obtained as, 
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Using Maxwell’s relations to obtain other interrelation of differential partial terms, 

gives, 

 
  

    
 
   

  
   

  
 
   

   
  

     
 

   

   
    

  
 
   

   
    

   
 

   

   
    

    
 

   

         

Corresponding with Eq. (3.93), equation (3.95) is reflected as the conceptual quantity 

where the characteristic measurable properties from Eq. (3.95) are mostly unknown. 

This equation is in exact differential form as indicated in the Maxwell’s relations. In 

this case, the intensive properties Di, εij, and S can be further considered as extensive 

properties in order to formulate the Gibbs thermodynamics equation of state to obtain 

the measurable quantities, where these properties are function of differential terms of 

extensive properties of T, σkl and Ek as,    

       
    

    
 
   

        
    

   
 
   

     
    

  
 
   

                      

         
    

    
 

   

      
    

   
 
   

     
    

  
 
   

                    

and 

      
  

    
 
   

       
  

   
 

   

     
  

  
 
   

                             

Corresponding with Eqs. (3.96), (3.97) and (3.98), Maxwell’s relations and the 

previous sections, the following intensive properties can be expressed as, 
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It should be noted that the relation given in Figure (3.5) can be used to explain Eqs. 

(3.99) to (3.102).  
    

  
 
   

   
  

    
 
   

 indicates the relationships between T   

    and        to give the same value where the coefficient of thermal expansion is 

the same as the piezocaloric effect. Moreover,  
    

  
 
   

  
  

   
 
   

indicates  the 

relationships between  T       and      S to give similarity between the coefficient 

of the pyroelectric and the electrocaloric effect and  
    

   
 
   

   
    

    
 
   

 indicates 

the equal value between the converse piezoelectric effect and the direct piezoelectric 

effect relating the stress-voltage function as shown in the relationship        

and         from Figure (3.5). Equations (3.99) to (3.102) were sometimes called 

the thermopiezoelectric coefficients in terms of elastic-electrical Gibbs free energy. 

Each coefficient was reflected as Maxwell’s relations of the measurable partial 

differential form. It should be noted that the coefficients are in tensor form where the 

coefficients    
        

      
        

       
            indicated permittivity, piezoelectric 

constant, pyroelectric constant, elastic compliance, thermal expansion and specific 

heat, respectively. Superscripts            indicated the quantities to be kept 

constant, referring to the stress, temperature and electric field. As can be seen, the 

coefficient of thermal expansion at constant electric field    
    and heat capacity at 

constant stress      were analogous with coefficient of volume expansion     and 

heat capacity at constant pressure Cp, respectively from classical thermodynamics.  

Corresponding with Eqs. (3.99) to (3.102), equations (3.96) to (3.98) can be 

reformulated to obtain the direct and converse effects of the piezoelectric expression 

including the entropy as, 

                          
          

           
      

                                                               
           

         
        .    (3.103) 

                                   
       

      
    

 
     

 

 



 
67 

                                                 

 

 

 

 

 

 

 

  

As can be seen, the complete thermopiezoelectric equation of state corresponding 

with elastic-electrical Gibbs free energy has been formulated. This equation 

considered the piezoelectric materials with the effect of temperature in terms of 

Figure (3.5). The non-piezoelectric system and pyroelectric effect under temperature 

effect can be separated from the previous equation and this is known as the 

thermoelastic behaviour. From Figure (3.6), the thermoelastic behaviour can be 

written using the relations of strain and entropy as the extensive properties (Type –σ, 

T), formulated in terms of Eq. (3.103) as,   

                                                              
                                   (3.104) 

and 

                                                                  
  

 
     

It is noted that there are only four coefficients relating the thermoelastic properties 

(Type – σ, T). As we can see from Figure (3.6), the relation  σkl       produces the 

elastic compliance (     
   and the relation       and       produces the thermal 

expansion at constant stress       and the piezocaloric coefficient       respectively, 

and both of these relations have the same value.  The final relation      gives the 

specific heat at constant stress     . Other relationships, specifically the 

thermoelastic type (Type – ε, T) can be proved using the electrical Helmholtz free 

energy for thermoelasticity as given in the next section.  

Mechanical Form  Thermal Form 

Piezocaloric effect Thermal Expansion

Thermoelastic effects (Type-σ, T) 

Elasticity
Heat Capacity

Temperature 

(T) 

Entropy 

(S) 

Strain 

(ε) 

Stress 

(σ) 

Figure 3.6 The Relations Between Mechanical and Thermal Effects of  

                 the Thermoelastic Material (Type – σ,T) 
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Furthermore, another relation between adiabatic and isothermal elastic compliances 

with constant electric field can also be obtained where equations (3.97) and (3.98) 

can be used in terms of the thermoelastic condition given in Eq. (3.104).  In this case, 

the adiabatic process  S =0 can be applied to Eq. (3.98) and then the differential 

temperature  T can be eliminated in Eq. (3.104a) using Eq. (3.104b) to give, 

                    
    

    
 

 

      

 
    

  
 
 
 

  

    
 
 
    

 
  

  
 
 

                           

Modifying Eq. (3.105) in terms of the elastic compliances gives, 

                   
    

    
 
 

     
    

    
 

 

 

 
    

  
 
 
 

  

    
 
 

 
  

  
 
 

                                       

Simplifying, equation (3.106) can be written as, 

                  
    

    
 
 

    
    

    
 

 

   
    

  
 
 

 
  

    
 
 

 
  

  
 
 
                               

Corresponding to the thermodynamic coefficients given from Eqs. (3.99b-c), 

(3.100b) and (3.102), equation (3.107) can be formulated as,  

     
        

            
 

                                                             

This indicates that the relations between adiabatic and isothermal elastic compliances 

can be obtained from the left side in Eq. (3.108) where the thermal expansion and 

heat capacity have positive values of coefficients. This indicates that the left side of 

Eq. (3.108) results in a negative value indicating that the elastic compliance due to 

the adiabatic effect has a smaller value than the elastic compliance for the isothermal 

process, Nye [73].  Assuming the thermoelastic property for constant strain field, the 

relations between heat capacity at constant strain and stress can be obtained from 

Eqs. (3.97) and (3.98) in terms of Eq. (3.104) to give, 
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Modifying Eq. (3.109) can give, 

 
   

   
 
 
   

  

  
 
 
    

 
  

    
 
 
 
    

  
 
 

 
    

    
 
 

                                              

Corresponding to the thermodynamic coefficients given from Eqs. (3.100b-c), 

(3.101b) and (3.102), equation (3.110) can then be formulated as,  

          
        

     
  

                                                     

This indicates that the relations between heat capacity at constant strain and stress 

can be obtained from the left side of Eq. (3.111) where the thermal expansion and 

elastic compliances always gave positive coefficient values. The right side of Eq. 

(3.111) always gives a negative value indicating that the heat capacity at constant 

strain has a smaller value than the heat capacity at constant stress and constant strain.   

 

3.7.  Elastic Gibbs Free Energy (             

 

 In this section, the elastic Gibbs free energy will be further discussed 

according to the independent properties of stress  , electric displacement D and 

temperature T where this implies that the elastic Gibbs free energy was a function of 

the independent properties because these properties can be used to investigate the 

thermodynamic equation of state or measurable equation of state.  The difference 

between elastic Gibbs free energy (type-σ, D,T) and electric Gibbs free energy (type-

σ,E,T) is the fundamental property of electrical terms (D and E) but both of these 

theorems show the interrelationship that can be expressed using matrix algebra. This 

indicates that Maxwell’s relations of the thermodynamic equations of state gave 

exact differential forms. Independent variables of elastic Gibbs free energy can be  

obtained using Legendre’s transform where equation (3.81) can be used to replace 

independent variables from Eq. (3.80) of entropy S with  
  

  
 
   

   and strain 

           
  

    
 
   

    . At this point, elastic Gibbs free energy can be stated in 
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terms of the characteristic thermodynamic potential with a function of differential 

terms T, σij  and Di in the macroscopic state, 

                        .                                             (3.112)    

Equation (3.112) needs to be proved by applying Legendre’s transform as, 

                                                                            

Expanding Eq. (3.113) in  differential form gives, 

                                                                             

Substituting Eq. (3.82) into Eq. (3.114) gives, 

                                                                 

Simplifying, equation (3.115) obtains,         

                                  .                          (3.116)   

Corresponding with Eq. (3.116), the exact partial differential for Gibbs free energy of 

elasticity can be stated as, 

               
  

    
 
   

     
  

     
 
   

      
  

   
 
   

                                

The intensive properties for Gibbs free energy of elasticity can also be obtained as,  

  
  

   
 
   

              
  

     
 
   

                  
  

   
 
   

                        

Maxwell’s relations can be used to give,   

                                  
  

    
 
   

    
    

  
 
   

       
  

     
 

   

    
    

   
 
   

    

                         
    

     
 

   

    
    

    
 
   

                                             

Corresponding with Eq. (3.119), equation (3.117) reflected a conceptual quantity as 

indicated in the exact differential form from Maxwell’s relations and the intensive 

properties Ei, εij and S. These properties become extensive properties to further 
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develop the elastic Gibbs thermodynamics equations of state in order to obtain the 

measurable quantities. At this point, Gibbs thermodynamic equation of state can be 

formulated where the extensive properties of          are held as the independent 

properties as,    

       
    

    
 
   

        
    

   
 

   

     
    

  
 
   

                      

         
    

    
 

   

      
    

   
 
   

     
    

  
 
   

                   

      
  

    
 
   

       
  

   
 

   

     
  

  
 
   

                           

The measurable quantities can be obtained from the intensive properties from Eqs. 

        to          to give, 

  
    

   
 
   

 
 

   
          

    

   
 
   

 
 

    
        

                                        

 
    

  
 
   

    
    

   
 
   

 
    

  
 
   

  
  

 

   
         

                                       

 
    

    
 
   

  
    

    
 
   

 
    

   
 
   

   
    

 

   
           

                        

 
    

    
 
   

      
           

    

  
 
   

    
                                                   

   
  

   
 
   

   
    

   
 
   

 
  

   
 
   

 
  

 

   
         

         
  

    
 
   

     
                      

      
  

  
 
   

 
  

  
            

  

  
 
   

   
    

 
                                     

Equations (     ) to (3.128) are sometimes called the thermopiezoelectric 

coefficients in terms of elastic Gibbs free energy (type-σ,D,T) or also the inverse of 

the thermopiezoelectric coefficients of elastic-electrical Gibbs free energy (type-

σ,E,T). It should be noted that equations (3.124), (3.125) and (3.127a) were obtained 
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due to the combinations or products of two partial differential forms from Maxwell’s 

relations. Moreover, from Figure (3.5), the relations of        and    

    indicate the direct and converse piezoelectric effects per unit permittivity 

(secondary terms of  direct and converse piezoelectric effect), respectively, where 

this also shows similar physical meaning with  
    

    
 
   

  
    

   
 
   

indicating the 

same numerical values between the secondary terms of direct and converse 

piezoelectric effects in terms of the stress-charge effect. The coefficient of thermal 

expansion  
    

  
 
   

is the same as the piezocaloric effect  
  

    
 
   

 where this 

indicates the relations       and      S. Moreover, the relation       with 

physical terms  
    

  
 
   

indicates the coefficient of the pyroelectric effect at constant 

stress per unit permittivity  (electrothermal) which is the same as the electrocaloric 

effect at constant stress per unit permittivity (heat of polarization)   
  

   
 
   

 with the 

relation      . Each coefficient reflects Maxwell’s relations of the measurable 

partial differential form. It should be noted that the coefficients in the tensor form 

   
        

      
        

       
            indicate permittivity at constant stress, 

piezoelectric constant per unit permittivity in terms of stress-charge, pyroelectric per 

unit permittivity in terms of stress-charge, elastic compliance at constant electric 

field, strain-temperature thermal expansion and specific heat at constant stress. 

Corresponding with Eqs. (3.123) to (3.128), equations (3.120) to (3.122) can be 

reformulated to obtain the direct and converse effects of piezoelectric including the 

entropy as, 

                                                      
       

 

   
          

      , 

                                          
           

        
                                             

            
       

       
    

 
       

3.8.  Electrical Helmholtz Free Energy  (Type-ε,E,T) 

 In this section, the thermodynamics potential from the electrical Helmholtz 

free energy can be further discussed where each independent property is used in 
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order to develop the intensive variables using the thermodynamic equation of state 

based on Maxwell’s relation. In terms of the Legendre’s transform, the independent 

properties of electrical Helmholtz free energy can be stated using Eq. (3.81)  by 

replacing independent variables from internal energy in Eq. (3.80) of the electric 

displacement Di with  
  

   
 
   

     and entropy S with  
  

  
 
   

   which is 

formulated as, 

                                                  .                             (3.130) 

Expanding Eq. (3.130) into exact differential form gives, 

                                     .              (3.131) 

Substituting Eq. (3.82) into Eq. (3.131) obtains, 

                                                            

Equation (3.132) can be simplified as, 

                                                                        

At this stage, equation (3.133) reflects the electrical Helmholtz free energy which 

can be stated in a more compact exact differential form as,  

     
  

    
 
   

      
  

   
 
   

     
  

  
 
   

                               

The intensive properties from Eq. (3.134) can be extracted into the dependent 

variables as, 

 
  

    
 
   

              
  

   
 
   

               
  

  
 
   

                    

Maxwell’s relations can be applied to Eq. (3.135) resulting in, 

 
        

   
     

   

    
          

     

  
     

  

    
          

    

  
     

  

   
             

The intensive variables from the electrical Helmholtz free energy provide conceptual 

properties as these variables imply unknown functional measurable properties. Since 

the thermodynamic equations of state need to be established in terms of the 
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differentiable functions of the independent variables and Maxwell’s relations, the 

intensive variables from Eq. (3.135) become extensive variables. Therefore, the 

electrical Helmholtz equations of state can be formulated as,  

        
     

    
 
   

       
     

   
 
    

     
     

  
 

   

                             

       
   

    
 
   

       
   

   
 
   

     
   

  
 
   

                                      

      
  

    
 
   

       
  

   
 
   

     
  

  
 
   

                                       

Equations (3.137) to (3.139) are known as the thermodynamic equation of state from 

the electrical Helmholtz free energy which represents as the measurable equation of 

state because the new intensive properties from Eqs. (3.137) to (3.139) give the 

coefficient of thermopiezoelectricity based on the exact differential form of 

Maxwell’s relation relating to the electrical Helmholtz free energy. The coefficients 

of thermopiezoelectricity can be formulated as, 

                        
     

    
 
   

       
   

   
         

     

   
 
    

      
                               

  
     

  
 
   

    
     

    
 

   

 
    
  

 
   

       
   

   
   

                          

 
   

    
 
   

      
       

   

   
 
   

     
                                                    

 
   

  
 
   

   
             

  

   
 
   

    
                                          

 
  

    
 
   

   
    

    
 
   

 
  

    
 

   

       
      

                                         

    
  

  
 
   

  
   

   
  

    

 
                                                                

Equations (3.140) to (3.145) represent the thermodynamic coefficients of the 

electrical Helmholtz free energy.  It should be noted that equations (3.141) and 
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(3.144) were obtained due to the product of partial differential forms from Maxwell’s 

relations. Moreover,  
     

   
 
    

  
   

    
 
   

indicates that the second term of the 

converse piezoelectric effect is numerically equal to the second term of the direct 

piezoelectric effect in terms of the strain-voltage effect where this is indicated in 

Figure (3.5) for the relations        and       , respectively. The relation T 

     indicates the product of coefficient of thermal expansion with elastic stiffness 

constant to give thermal pressure  
     

  
 
   

 which is the same as the product of 

piezocaloric effect and the elastic stiffness constant with relation        to give the 

heat of deformation   
  

    
 
   

. Moreover, the relations      and      indicate 

the pyroelectric effect at constant strain and  the electrocaloric effect at constant 

strain which shows the physical meaning that   
   

  
 
   

 has the same value as 

 
  

   
 
   

. Each thermodynamic coefficient was reflected as Maxwell’s relations of 

the measurable partial differential form. It should be noted that the coefficients are 

given in tensor form where    
        

      
       

                   
     indicate 

permittivity, piezoelectric constant in terms of strain-voltage, pyroelectric constant in 

terms of strain-voltage, elastic stiffness at constant electric field, stress-temperature 

thermal expansion (thermal pressure), heat of deformation and specific heat at 

constant strain. 

The equations (3.137) to (3.139) can be reformulated in terms of Eqs. (3.140) to 

(3.145)  as, 

                                                 
             

            

                                             
        

          
                                                        

                                                
       

    

 
      

The complete thermopiezoelectric equations of state corresponding with electrical 

Helmholtz free energy has been formulated. This equation considered the 

piezoelectric materials with the effect of entropy in terms of Figure (3.5). The 

previous equation can be reduced in terms of thermoelasticity with the non-

piezoelectric system and pyroelectric effect. At this point, thermoelastic (Type – ε,T) 
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behaviour can be established. From Figure (3.7), the thermoelastic behaviour can be 

considered using the relations of strain and entropy as the dependent properties 

(Type – ε,T) and can be formulated in terms of Eq. (3.146) as,   

                                                             
                     ,                            (3.147) 

             
  

 
        

It is noted that there are only four coefficients relevant to thermoelasticity  (Type – ε, 

T). As can be seen from Figure (3.7), the relation           produced the stiffness 

elastic coefficient (     
   and the relation T      and        produced the thermal 

pressure        and heat of deformation       , respectively and both of these 

relations show the same value. The final relation     gives the specific heat at 

constant strain       .  It should be noted that the thermoelastic equation (Type – ε, 

T) can also be stated as the inverse thermoelastic equation (Type – σ, T). 

 

 

 

 

 

 

Another relationship between the adiabatic and isothermal elastic stiffness can be 

obtained where equations (3.137) and (3.139) can be used in terms of the 

thermoelastic condition given in Eq. (3.147). In this case, for an adiabatic process, 

 S=0, that can be applied to Eq. (3.137) and then the differential temperature  T can 

be eliminated in Eq. (3.139) using Eq. (3.137) to give, 

                         
     

    
 

 

      

 
     

  
 
 
 

  

    
 
 
      

 
  

  
 
 

                    

Figure 3.7 The Relations Between Mechanical and  Thermal of  

                the Thermoelastic Material (Type-ε,T) 

Thermoelastics effects (Type - ε, T) 

Mechanical Form  Thermal Form 
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Modifying Eq. (3.148) in terms of the elastic compliances results in, 

                    
    

    
 
 

     
     

    
 

 

 

 
     

  
 
 
 

  

    
 
 
 

 
  

  
 
 

                                            

Simplifying Eq. (3.149) gives, 

                    
    

    
 
 

  
     

    
 

 

   
     

  
 
 

 
  

    
 
 

 
  

  
 
 
                             

Corresponding with the thermodynamic coefficients given from Eqs. (3.140a), 

(3.141b), (3.144) and (3.145),  equation (3.150) can be formulated as,  

     
        

            
 

                                                     

This indicates that the relations between adiabatic and isothermal elastic stiffness can 

be obtained from the left side in Eq. (3.151) where the thermal pressure and heat 

capacity always have positive value of coefficients. This indicates that the left side in 

Eq. (3.151) always has positive value indicating that the elastic stiffness for the 

adiabatic effect has a larger value than the elastic stiffness for the isothermal effect. 

 

3.9. Elastic Helmholtz Free Energy (Type-        

 In this section, the elastic Helmholtz Free Energy will be further discussed 

according to the independent properties of strain   , electric displacement D and 

temperature T. This implied that the elastic Helmholtz Free Energy was a function of 

independent properties as it indicated the fundamental functions for thermodynamic 

equation of state. Independent variables of Elastic Helmholtz Free Energy can be 

obtained using Legendre’s transform where equation (3.81) can be used to replace 

independent variable of Eq. (3.80) of entropy S with  
  

  
 
   

  . At this point, the 

elastic Helmholtz Free Energy can be stated as the characteristic thermodynamic 

potential with a function of differential terms ε, D and T in the macroscopic state. 

Elastic Helmholtz Free Energy can be stated as, 

                         .                                             (3.152) 

 Expanding Eq. (3.152) into differential form results in,  
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                                                             .                                     (3.153) 

Substituting Eq. (3.82) into Eq. (3.153) provides, 

                                                                    .              (3.154)    

Simplifying Eq. (3.154) gives,                  

                                                                           .                    (3.155) 

Equation (3.155) can be stated as an exact partial differential for elastic Helmholtz 

energy as, 

     
  

    
 
   

       
  

   
 
   

     
  

  
 
   

                            

The intensive properties for Helmholtz energy can be stated as,  

 
  

    
 
   

                
  

   
 
   

              
  

  
 
   

                     

Using Maxwell’s relations gives,   

 
     

   
 
   

  
    

    
 
   

  
       

  
 
   

    
    

    
 

   

  
     

  
 
   

   
    

   
 
   

            

At this point, the intensive properties for    , Ei, and S become extensive properties 

when the thermodynamic equation of state is formulated in terms of the Maxwell’s 

relations where the extensive properties of  εkl, Dj and T were kept constant as,    

       
    

    
 
   

        
    

   
 
   

     
    

  
 
   

                                    

              
    

    
 
   

      
    

   
 
   

     
    

  
 
   

                                 

       
  

    
 
   

      
  

   
 
   

     
  

  
 
   

                                          

Corresponding with Eqs. (3.159), (3.160) and (3.161), the thermodynamic 

coefficients in terms of Maxwell’s relations can be obtained as, 
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The thermodynamics coefficients  
    

    
 
   

  
    

   
 
   

indicate that the converse 

piezoelectric effect is numerically equal to the direct piezoelectric effect per unit 

permittivity in terms of the strain-charge effect with the relations        and 

      . The product of coefficient of thermal expansion with elastic stiffness 

constant  
     

  
 
   

 is known as the thermal pressure with relation       and the 

product of the piezocaloric effect with elastic stiffness constant   
  

    
 
   

 is known 

as the heat of deformation with relation      . Both of the physical properties have 

the same value   
     

  
 
   

   
  

    
 
   

. Moreover, the relations       and      

indicate the electrothermal and heat of polarisation, respectively and both of these 

relations show the same physical property values where  
    

  
 
   

indicate the 

coefficient of pyroelectric effect at constant strain per unit permittivity 

(electrothermal) which is the same as the electrocaloric effect at constant strain per 

unit permittivity (heat of polarization)   
  

   
 
   

. Each thermodynamic coefficient 

was written using Maxwell’s relations in measurable partial differential form. 

Moreover, the thermopiezoelectric coefficients are written in tensor form where the 

coefficients    
        

      
       

                   indicate permittivity at constant 

strain, piezoelectric constant, pyroelectric constant per unit permittivity, elastic 
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stiffness at constant charge, stress-temperature thermal expansion and specific heat at 

constant strain. Corresponding with Eqs. (3.162) to (3.168), equations (3.159) to 

(3.161) can be reformulated to obtain the constitutive equations of elastic Helmholtz 

Free Energy of piezoelectricity as, 

           
      

 

   
          

         

              
           

                                                       

and 

               
       

    

  
       

The previous thermopiezoelectric potentials represents the interrelationship of 

electromechanical, thermoelectric and electrothermal components with the various  

applicable intensive and extensive properties based on electrical Gibbs free energy, 

elastic Gibbs free energy, elastic Helmholtz free energy and electric Helmholtz free 

energy. The difference between Gibbs and Helmholtz is the use of the extensive and 

intensive properties. In the next section, the elastic enthalpy and electrical enthalpy 

with adiabatic and isothermal processes will be discussed. The electrical enthalpy is 

commonly used for formulating the constitutive equations of piezoelectric plate, shell 

and beam, Tiersten [75], Mindlin [88], and Tanaka [90]. 

 

3.10.  Elastic-Electrical Enthalpy (Type – σ, E) 

 The nature of conservation of energy from the piezoelectric element is  

discussed here according to the independent properties of stress and electric field.  

The formalised energy can be called the elastic-electrical enthalpy which depends on 

the internal energy, potential energy due to the change of strain and elastic-electrical 

energy without considering the changes of temperature and entropy. However, the 

formalised internal energy in the system purely follows the first law of 

thermodynamics and the transformation of heat with the reversible process from the 

second law of thermodynamics. At this point, the elastic-electrical enthalpy implies a 

dependent energy process on the material nature of piezoelectricity and its 

surrounding. The formalised elastic-electrical enthalpy can be formulated as a 

function of stress σ, electric field E and entropy S.  However, as presumed here, the 

system was under isothermal and adiabatic processes implying the temperature 
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change ∆T = 0 and the entropy change ∆S = 0. The remaining properties were 

assumed to have functions of stress and electric field where this can be stated as 

       . For the adiabatic and isothermal processes, the elastic-electrical Gibbs 

free energy becomes the elastic-electrical enthalpy to give, 

                                                                      .                           (3.170) 

Expanding Eq. (3.170) using the differential form gives, 

                                                             .                 (3.171) 

Substituting Eq. (3.82) into (3.171)  provides, 

                                                               .     (3.172) 

Simplifying Eq. (3.172) obtains, 

                     –                     .                                     (3.173) 

Equation (3.173) can be modified into the exact differential form to give, 

                                       

               
  

    
 
 

       
  

   
 
 

                                                   

The intensive properties can be obtained separately from Eq. (3.174) as, 

                        
  

    
 
 

             
  

   
 
 

                                                 

where the Maxwell’s relation can be obtained as,  

 
    

   
     

   

    
                                                                 

The intensive properties in Eq. (3.175) become extensive properties in order to 

formulate the enthalpy equation of state which are function of independent properties 

of     and    to give, 

       
   

   
 
 

      
   

    
 
 

                                                 

        
    

   
 
 

      
    

    
 
 

                                                       

The enthalpy coefficients in terms of Maxwell’s relations can be obtained from Eqs. 

(3.177) and (3.178) to give, 
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It should be noted that Maxwell’s relations implied four coefficients relating the 

elastic-electrical enthalpy. As we can see from Figure (3.8), the relation          

produced the elastic compliance (     
   and the relation         and          

produced the direct and converse piezoelectric constants, respectively and both of 

these relations show the same value. The final relation       gives the permittivity 

at constant stress.  Equations (3.179) and (3.180) are sometimes known as the 

thermodynamic coefficients. Each coefficient denotes the measurable quantities in 

terms of the partial differential forms. It should be noted that the tensor coefficients 

   
      

           
  indicate permittivity, piezoelectric constant and elastic compliance. 

Superscripts          indicate the quantities at constant stress and electric field. 

Corresponding with Eqs. (3.179) and (3.180), equations (3.177) to (3.178) can be 

reformulated to obtain the direct and converse effects of piezoelectricity as, 

                                         
          

           ,                                         (3.181) 
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Figure 3.8 The Relations Between Mechanical  and Electrical Effects of  

                 Piezoelectricity (Type – σ, E) 
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Furthermore, the relation between electrically clamped and free elastic compliances 

under isothermal condition can be further obtained, where equations (3.177) and 

(3.178) can be used in terms of the enthalpy of electro-elasticity condition given in 

Eq. (3.181).  In this case, the electrical displacement   Di =0 can be applied in Eq. 

(3.177) and then the differential electric field  Ek can be eliminated in Eq. (3.178) by 

using Eq. (3.177) to give, 

                                        

                
    

    
 
 

      

 
    

   
 
 
 

   

    
 
 
    

 
   

   
 
 

                                        

Modifying Eq. (3.182) in terms of the elastic compliances results in, 

                          
     

    
 
 

  
    

    
 

 

   

 
    

   
 
 
 

   

    
 
 

 
   

   
 
 

                                              

Corresponding with the thermodynamic coefficients given from Eqs. (3.179) and 

(3.180), equation (3.183) can be formulated as,  

                              
        

    
    

     
 

   
  

                                                          

This indicates that electrically clamped and free elastic compliances under isothermal 

effect can be obtained from the left side in Eq. (3.184) where the multiplication 

between piezoelectric constants always gives the positive value although the value of 

the piezoelectric constant is negative and the permittivity also has positive value. 

This shows that the left side of Eq. (3.184) always has negative value indicating that 

the elastic compliance at constant electric displacement has a smaller value than the 

elastic compliance at electric field because the tensile stress due to constant electrical 

charge creates the polarization and can reduce the strain dramatically compared with 

the tensile stress with constant electric field which can change the material shape to 

create high strain. Another relation in terms of the elastic-electrical enthalpy includes 

the clamped and free isothermal permittivities. Setting        in Eq. (3.178) and 

then eliminating       from Eq. (3.177) results in,  
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Modifying Eq. (3.185) in terms of the permittivity provides, 

 
    

   
 
 

  
   

   
 
 

    

 
   

    
 
 
 
    

   
 
 

 
    

    
 
 

                                 

Corresponding with the thermodynamic coefficients given from Eqs. (3.179) and 

(3.180), equation (3.186) can also be formulated as,  

   
      

      
    

     
 

     
   

                                                      

This indicates that electrically clamped and free permittivities under isothermal 

effect can be obtained from the left side of Eq. (3.187) where the product between 

the piezoelectric constants always has positive value although the value of the 

piezoelectric constant is negative and the elastic stiffness gives the positive value of 

coefficients. This indicates that the left side of Eq. (3.187) is negative and that the 

permittivity at constant stress has a larger value than the permittivity at constant 

strain.  

 

3.11. Electrical Enthalpy  (Type – ε, E) 

 The electrical enthalpy depends on the internal energy and electrical energy 

where this represents the most common use of the piezoelectric energy for a wide 

range of applications for plates, shells, and beams. Earlier researchers, Tiersten [75], 

Mindlin [88], D’Ottavio et al [89], Tanaka [90], and Yang [91] developed 

mathematical models of the electrical enthalpy in terms of Hamiltonian’s principle 

where the piezoelectric system was presumed as an adiabatic and isothermal 

processes. The transformation of energy in terms of the electrical enthalpy can be 

achieved by using Legendre’s transform in terms of Eq. (3.81) where the 

independent variable from Eq. (3.80) of electrical displacement Di can be replaced 

with  
  

  
 
   

     The electrical enthalpy can be formulated as, 
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Expanding Eq. (3.188) using the differential form gives,                                                          

                                                                                           

Substituting Eq. (3.82) into (3.189) results in, 

                                                                                             

Simplifying Eq. (3.190) provides, 

                                                                                                                    

Equation (3.191) can be modified into the exact differential form to give,      

                                     
  

    
 
 

       
  

   
 
 

                                               

The intensive properties can be obtained separately from Eq. (3.192) as, 

                                
  

    
 
 

           
  

   
 
 

                                         

where Maxwell’s relation can be obtained as, 

                                        
    

   
 

 

     
   

    
 
 

                                                  

The enthalpy equation of state can be formulated according to extensive properties 

reduced from intensive properties in Eq. (3.193) where the independent properties 

    and    are held constant as, 

                                     
   

    
 
 

       
   

   
 
 

                                           

                                       
    

    
 

 

       
    

   
 

 

                                        

The electrical enthalpy coefficients can be obtained from Eqs. (3.195) and (3.196) to 

give, 

 
     

    
 
 

       
            

     

   
 
  

      
                                    

 
   

    
 
 

      
           

   

   
 
 

     
                                          

It should be noted that Maxwell’s relations have four coefficients relating the 

enthalpy of electro-elasticity. As can be seen from Figure (3.9), the relation      

    produced the elastic stiffness and the relation         and         produced 

the second direct and second converse piezoelectric constants relating the strain-
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voltage, respectively and both of these relations show the same value.  The final 

relation       gives the permittivity at constant strain. The thermodynamic 

coefficients of the electrical enthalpy reflect the measurable quantities in terms of the 

exact differential forms. The tensor form of coefficients    
      

           
  indicate 

permittivity at constant strain, piezoelectric constant at constant electric field and 

elastic stiffness at constant electric field. Superscripts          indicate the quantities 

at constant strain and electric field. Corresponding with Eqs. (3.197) and (3.198), 

equations (3.195) and (3.196) can be reformulated to obtain the direct and converse 

effects of piezoelectricity as, 
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Another relation between the clamped and free permittivities at constant stress  can 

be further formulated, where equations (3.195) and (3.196) can be used in terms of 

the electrical enthalpy condition given in Eq. (3.199). In this case, the stress constant 

condition       , can be applied in Eq. (3.196) and then the differential strain  ε 

can be eliminated in Eq. (3.195) using Eq. (3.196) to give,         

Figure 3.9 The Relations Between Mechanical  and Electrical Effects of   

                Piezoelectric (Type – ε,E) 
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Corresponding with the thermodynamic coefficients given from Eqs. (3.197) and 

(3.198), equation (3.200) can be formulated as,  

            
      

        
    
     

 

     
                                                          

This indicates that electrically clamped and free permittivities under isothermal 

conditions can be obtained from the left side of Eq. (3.201) where the product 

between the second term of the piezoelectric constants always gives a positive value 

although the value of the second term of piezoelectric constant is negative and the 

elastic stiffness also gives a positive value. This means that the left side of Eq. 

(3.201) always gives positive value indicating that the permittivity at constant stress 

has larger value than the permittivity at constant strain under the isothermal effect. 

The thermopiezoelectric energy function forms can be formulated in terms of the 

thermopiezoelectric equations of states, Legendre’s transform and Maxwell’s 

relations as given in the previous section. The first thermopiezoelectric energy form 

is from the Elastic-Electrical Gibbs Free Energy (Type –      ) as, 
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The Elastic Gibbs Free Energy (            can also be formulated as 

                 
 

 
     
              

            
        

 

    
          

                   
         

    

  
                                                                                   

The Electrical Helmholtz Free Energy (Type – ε,E,T) can be formulated as, 

            
 

 
     

                
                  

 

 
   
          

                       
         

    

  
                                                        

The Elastic Helmholtz Free Energy  (Type – ε,D,T) can be formulated as, 
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The Elastic-Electrical Enthalpy (Type – σ, E) can be formulated as,                

                                  
 

 
     
        –             

 

 
   
                               

The Electrical Enthalpy (Type – ε, E) can be formulated as, 

                                 
 

 
     

                     
 

 
   
                                

The previous thermopiezoelectric energy function forms showed different physical 

equations indicating the physical relations of each property. This indicates that the 

chosen thermopiezoelectric energy form can be used in the applications of smart 

material and structures. In this case, the conditions of the system depend upon the 

plane strain or plane stress of the elasticity, boundary conditions, applied mechanical, 

electrical and thermal loads, and geometry of structure. The constitutive equations 

can be further analysed using the variational principle or Hamiltonian theorem, 

Tiersten [75], Mindlin [88] and Dokmeci [92]. In this dissertation, the Electrical 

Enthalpy or Electrical Helmholtz Free Energy under adiabatic and isothermal 

processes along with the energy potential of substructure and kinetic energy will be 

discussed for further mathematical development of the piezoelectric bimorph beam 

with tip mass under two input base excitations for power harvesting as discussed in 

chapter 4. The tensor notations can be condensed using Voigt’s notation to give the 

matrix forms which can be further applied into the piezoelectric material properties 

using Einstein’s summation convention as given in appendix A.  

In this chapter, the thermopiezoelectric relations in terms of Elastic-Electrical Gibbs 

Free Energy, Elastic Gibbs Free Energy, Electrical Helmholtz Free Energy and 

Elastic Helmholtz Free Energy are summarised in Table 1. It should be noted that the 

enthalpy will not be included in Table 1 because the enthalpy coefficients which 

were formulated previously, have covered the Elastic-electrical Gibbs Free Energy 

and Electrical Helmholtz Free Energy under adiabatic and isothermal processes. 
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Table 3.1 Gibbs and Helmholtz’s Thermopiezoelectric Relations  
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3.12. Closing remark  

 The main focus of this chapter has been the development of the continuum 

thermopiezoelectric equations of state with the entities of extensive and intensive 

properties using Legendre’s transform and Maxwell’s relations. Each of the 

properties of thermopiezoelectricity have interrelationships with other properties in 

order to find out the potential measurable properties which were known as the 

thermopiezoelectric coefficients based on the laws of thermodynamics and Gibbs and 

Helmholtz’s free energy and enthalpy. As considered here, the derivations of the 

mathematical thermodynamic expression can give the understanding of the physical 

behaviour of the piezoelectric material and its relations between the physical 

properties. As Einstein [93] said, “A theory is more impressive the greater the 

simplicity of its premises is, the more different kinds of things it relates, and the 

more extended its area of applicability. Therefore, the deep impression which 

classical thermodynamics made upon me. It is the only physical theory of universal 

content concerning which I am conceived that, within the framework of the 

applicability of the basic concepts, it will never be overthrown.” 

Einstein’s note has given the inspiration and ideas to develop the comprehensive 

derivations of the thermodynamic potentials especially the piezoelectric material in 

this chapter that was not discussed and presented previously in detail for many 

scientists. The constitutive thermodynamic potentials of the piezoelectric system can 

be used to explore further applications of areas of smart materials and structures. In 

the next chapter, the application of thermopiezoelectricity can be narrowed to the 

application of vibration power harvesters where the novel constitutive models of 

electromechanical dynamic equations of piezoelectric bimorph beam for power 

harvesting will be introduced.     
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This chapter outlines the development of novel mathematical methods for modelling 

the cantilevered piezoelectric bimorph beams with tip mass under two input base 

longitudinal and transverse motions. The piezoelectric bimorph beams were based on 

the Euler-Bernoulli and Rayleigh models coupled with polarity-electric field effects 

for low power harvesting. The Euler-Bernoulli and Rayleigh piezoelectric beams 

considered transverse bending by including the extensional longitudinal form of 

interlayer elements. The typical thin beam is suitable for the design of the vibration 

piezoelectric beam power harvester. It should be noted that the Rayleigh 

piezoelectric beam specifically only considered the rotary inertia of the structure 

element whereas the Euler-Bernoulli piezoelectric beam excluded it. Henceforth, the 

Rayleigh piezoelectric bimorph beam will be presented in the mathematical 

derivations. Once the equations are established, the Euler-Bernoulli piezoelectric 

beam models will be considered for neglecting the rotary inertia of the bimorph. The 

existences of input base excitations on the cantilevered piezoelectric beam not only 

affect the strain field of the interlayer elements but also affect the electrical 

behaviour of the coupled polarity-electric field. The mathematical derivations of the 

electromechanical system will be developed in the next section. The piezoelectric 

bimorph system will be analysed according to the electrical enthalpy or electrical 

Helmholtz free energy under adiabatic and isothermal processes of the piezoelectric 

layers, potential energy of substructure and kinetic energy, external energies due to 

input base excitations and electrical charge using the variational method of 

Hamiltonian’s principle. At this stage, strong form analytical method, weak form 

analytical approaches and closed-form boundary value methods will be discussed in 

detail. The weak form analytical approach derived from the strong form solution was 

 

CHAPTER  
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Constitutive Dynamic Equations of the Electromechanical 
Piezoelectric Bimorph Beam under Two input Base 

Excitations  
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further derived using the Ritz method by introducing an eigenvector function (Ritz 

coefficient) and space- and time-dependent Ritz eigenfunction series which were 

further formulated using orthonormalisation. The closed-form boundary value 

method derived from the strong-form method was further formulated using a direct 

analytical solution with orthonormalisation by introducing the space- and time-

dependent eigenfunction series into boundary conditions. The closed-form solution 

was shown to provide accurate results over the frequency response domain because 

of its convergence at any particular mode of interest whereas the weak form can give 

similar results with the closed form provided that the typical mode shapes and 

number of modes are chosen correctly in order to meet the convergence criteria. 

Moreover, the broadband electromechanical piezoelectric beam (multi-beam) for the 

multi-frequency situation is also discussed in this chapter. As the previous chapter 

mentioned, the electromechanical system using piezoelectric material has unique 

reversible effects to create both direct and converse modes where the charge material 

moves a certain distance to create a net dipole moment. The resulting polarity aligns 

the electric field generating the electric voltage. When the strain field was applied to 

the material element, the direct piezoelectric effect or polarity will be formed due to 

the mechanical field. The sensitivity of the piezoelectric material described by 

Maxwell’s relations underlies the interaction between the electrical and mechanical 

energies. The constitutive equations of the cantilevered piezoelectric bimorph with 

two input base motions along with the frequency analysis of Laplace transform will 

be analysed in this section.  

 

4.1. Mathematical Analysis 

The linear electrical enthalpy of the piezoelectric material in the tensor 

notation as discussed in chapter 3 was based on the continuum thermodynamics 

which can be condensed using Voigt’s notation and then further reduced using 

Einstein’s summation convention, Nye [73], Tiersten [75] and Tanaka [90] as, 

  
22

333133111131
2

1

2

1
, EEeQEĤ E   ,           (4.1) 
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
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    ,     

3

3

ˆ
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H
D




 ,             (4.2) 

 3311111 EeQ E       ,    3331313 EeD   .           (4.3) 
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The above formulations assume the adiabatic and isothermal processes. Here EQ11 , 

31e , 33  , 3E , 1 , 1  and  3D  represent the elastic coefficient at constant electric 

field, piezoelectric coefficient,  permittivity under constant strain, electric field, 

stress, strain and electric displacement, respectively. Some notations from Eqs. (4.1)-

(4.3) have been adapted in this thesis for further mathematical derivations. 

   

In this section, the piezoelectric bimorph beams under two input base motions are 

discussed. There are a number of researchers dealing with input base motion of the 

cantilevered beam. Mostly they discussed one input transverse base motion of the 

piezoelectric beams for predicting power harvesting from single mode [6,7,8,41] and 

multi-mode [9,10] frequency responses. At this point, as considered; the physical, 

mathematical and outcome benefits of these researches which are not found from 

other previous works are as follows: 

1. The coupling effects between mechanical and electrical behaviours under dynamic 

response are considered comprehensively to indicate the important issues either 

theoretical and mathematically.  

2. The strain and polarity-electric field which obviously depends not only on the 

physical characteristics of the material and its geometry but also on the 

understanding of the sign conventions (where the new coupling superposition 

methods for series and parallel electrical connections will be introduced) to 

determine the clear mathematical concepts and theories of forward and backward 

piezoelectric coupling coefficients under input dynamic excitations (longitudinal 

and transverse motions). 

3. The novel mathematical methods develop the electromechanical piezoelectric 

power harvester response where the comprehensive analytical models have been 

introduced both mathematically and physically.  

4. The electromechanical weak and closed form analytical methods provide deep 

insight into the physical system behaviours including convergence criteria 

strategy.  

5. The series and parallel multi-electromechanical piezoelectric bimorph beams are 

derived to provide the broadband multi-frequency response behaviour for 

optimisation study of electrical outputs. 
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Furthermore, the kinematic equations of the infinitesimal piezoelectric beam with 

two input base motions were developed to formulate the energies of the structure 

element. The effect of two input base motions of the structure not only affects the 

strain fields of each layer of the piezoelectric bimorph but also affects the 

piezoelectric couplings to create the electrical force and moment of the piezoelectric 

layers when the series and parallel connections are chosen for the bimorph. This also 

affects the prediction of power harvesting as discussed and analysed later in chapter.   

 

In Figure 4.1, let point P be an arbitrary point on the undeformed beam structure with 

positions x and z in the fixed frame of reference oXZ as defined by 31
op eeR zx  .  Let 

the base support at point o move to point 'o  in vector baseR  where point p  also 

moves to point 'p for the frame of reference of 'o xz as indicated. The position vector 

baseR  has the same magnitude as vector 
pp'

R  by defining 31base eeR basebase wu  .  

Because the base support undergoes motions, point 'p  undergoes deformation in the 

longitudinal extension and transverse bending forms as indicated by moving to  

point "p . Let the present position at point "p  have a condition of absolute 

displacement with respect to frame of reference oXZ defined by absw  and absu , 

where   3abs ew relbase ww   and   1abs eu relbase uu  .  

 

 

 

 

  

 

 

 

 

 

 

To obtain position vector 'pp'
R , 'op'

R needs to be defined as, 
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              Figure 4.1 Kinematic of Piezoelectric Bimorph Beam 
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As the position vector op
R  is defined, the position vector 'pp'

R can be obtained and 

differentiated with respect to time to give, 

    
  op'op''pp'

RRR  t,z,x , 

      
 

     3321

'pp'
eeeeR t,xwtwz

x

t,xw
tut,xut,z,x relbase

rel
baserel




 



 . (4.5)  

'pp'
R is defined as the absolute velocity of point p"  with respect to the fixed frame of 

reference oXZ.  The geometrical position of the tip mass from the bimorph can be  

measured from the fixed frame of reference oXZ to the deformation point and this 

vector can be differentiated with respect to time to give the absolute velocity of the 

tip mass in terms of the moving base support as, 

       
   

3121

m
eeeeR gmgm

rel
baserelgmgmgm zx

x

t,Lw
tut,Lut,z,xr,L 




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


 

     3et,Lwtw relbase
   .              (4.6) 

In this case, the centre of gravity of the tip mass was assumed to coincide with the 

end of the piezoelectric bimorph L where gmx and gmz  are distances from arbitrary 

elemental mass  dd ρm  to the centre of gravity of the tip mass.  The position 

vector 'p'p'
R specifies as the relative displacement due to moving base support at fixed 

frame oXZ, 

      31

pp''pp''p'p'
eeRRR t,xw

x

w
zut,z,x rel

rel
rel 












 .         (4.7) 

We note that, 'p'p'R can be further differentiated with respect to x to give the strain 

field of the element structure,  
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 .      (4.8) 

It should be noted that displacement fields are defined as relative displacement fields 

for the infinitesimal bimorph beam element. Similar methods can be used to 

formulate the relative displacement fields with initial relative longitudinal 

displacement field using the Euler-Bernoulli’s beam as, 

                relrelrel zθx,tux,z,tu  ,                                               (4.9)

 
 

                     x,twx,z,tw relrel  .                                                (4.10) 
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Lagrangian strain tensor for linear component, Reddy [94] can be applied to 

formulate the piezoelectric bimorph beam as, 

                                  ijjiij uuL ,,
2

1
  .                                                 (4.11)        

 Applying relative displacement fields from Eq. (4.9) into Eq. (4.11) gives,  

                         
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xx
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.          (4.12) 

Transverse shear deformation of the material element is not considered for Euler-

Bernoulli’s bimorph beam giving the relation,  
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Thus,
 

xwrelrel   represents the gradient transverse deformation or rotation that 

is substituted into Eq. (4.12) to give the resulting strain field in the x direction as,  

               
   1

1

0

12

2

1  z
x

w
z

x

u
L relrel

xx 


















 .                (4.14) 

As expected, equations (4.8) and (4.14) indicated the same result. The general 

constitutive equation of the piezoelectric element can be obtained by using 

Hamiltonian form, Tiersten [75] and Reddy [95], 
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Essentially, the functional forms from Hamiltonian’s principle can be extended using 

the Lagrangian theorem aL  incorporated with the external mechanical and electrical 

works fW  due to the input base motions. Each variable categorised in the functional 

forms aL and fW  in terms of the mathematical model can be stated as,   
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     v,Lu,Lw,u,wWW relrelrelrelff  .                     (4.17) 

Equations (4.16) and (4.17) can be further formulated using total differential 

equations as, 
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Here Hamiltonian’s principle from Eq. (4.15) can be restricted into the particular 

form of the constitutive electromechanical dynamic equation of the piezoelectric 

bimorph beam with substructure of brass shim and tip mass giving, 
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          dpm 1,3,1,2,3    .               (4.20) 

Each term from Eq. (4.20) can be stated as kinetic energy KE for every layer 

including tip mass, potential energy PE from centre brass shim or substructure, 

electrical enthalpy energy Ĥ from piezoelectric material at the lower and upper layers 

and applied mechanical and output electrical works Wf due to the input base motions. 

Superscripts k and i indicated the layers of bimorph and input inertia mechanical 

forces (input base excitations). It is noted that the electrical enthalpy can be stated 

as,
pp WEPEH  ˆ which implies the potential energy and electrical energy 

from the piezoelectric layers as also implied from Eqs. (4.1) to (4.3). 

 

It should be noted that the parameter potential energies of the piezoelectric and 

substructure, kinetic energy of bimorph and tip mass, electrical energy of the 

bimorph, external mechanical energy and external electrical energy are presented and 

derived separately for the next stage in order to arrange convenient formulations. 

After that, the constitutive electromechanical dynamic equations using Eq. (4.20) 

will be applied to model the strong and weak forms. The geometry of the 

piezoelectric bimorph beam with the tip mass can be modelled as shown in Figure 

4.2. Variables L, hs and hp indicate the bimorph length, substructure thickness and 

piezoelectric thickness (same thickness between bottom and top layers), respectively. 

Other geometry parameters of tip mass will be given in the forthcoming section.  
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The general stress field terms and displacement fields from the infinitesimal beam 

element can be stated as functions with respect to the x direction on the face of an 

infinitesimal element as, 

)(xA      )(xuuA   .         (4.21) 

Each element face has a stress vector term. Thus terms, )(xA    and )(xuuA  , 

applied to the element face on the x direction and allowing for the deformed 

infinitesimal element results in  2/xx d   and  2/xx d   in the opposite 

direction. Introducing the change of displacement vector  2x/xuu d  and 

 2x/xuu d  into the element face on the x direction will result in a stress field. 

Taylor’s series can be used to consider the change of stress field and vector 

displacement,   
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The changes of stress field and displacement vector for each face of the infinitesimal 

element in x direction are further formulated by applying Hamiltonian’s theorem for 

potential energy to give,   
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Corresponding to Eqs. (4.22) and (4.23), equation (4.24) can be reformulated as, 
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Figure 4.2 Piezoelectric Bimorph Beam with a Tip Mass 



 
99 

tzy
x

x

u
u

x

x

t

t

x
x

x
xx ddd

d

d

dd

d

d
 





















2

1
22




  .           (4.25) 

Modifying the differential displacement vector from Eq. (4.25) using the total partial 

differential, gives, 
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If  xd is too small, differential displacement vector terms can be restated as, 
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Performing the same operation on Bu  gives, 
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Modifying the differential displacement vector from Eq. (4.25) using Eqs. (4.26) and 

(4.27) gives,    
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Manipulating Eq. (4.28) provides 
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It should be noted that 0xσ xx dd using the first Newton’ Law, giving, 
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 As expected, 0xσ xx dd  after manipulating Eq. (4.30).  As a result, equation (4.29) 

represents the energy field in stress form multiplied by the differential (virtual) strain 

field to give the potential energy form with time based on the Hamiltonian theorem 

as follows,  
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where,        
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It should be noted that the piezoelectric bimorph has three layers, the upper and 

lower layers consisting of piezoelectric material with a centre brass shim. The three 

stress fields operate within these layers. Thus, equation (4.31) can be modified as,       
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Applying Eq. (4.14) into Eq. (4.32) to obtain the differential strain field, gives, 
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The in-plane force resultants per unit width for each layer are formulated as, 
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The in-plane moment resultants per unit width for each layer are formulated as, 
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The in-plane force and moment resultants represent the longitudinal extension field 

and transverse bending field respectively of the piezoelectric bimorph.  Superscripts 

pl, sm and pt indicate the lower layer of piezoelectric, brass centre shim and upper 

layer of piezoelectric element respectively.  Moreover, the in-plane force resultants 

due to the electric component of the piezoelectric bimorph are invoked as,      








2

2

)()(
31

2

2

)()(
31

)(

s

s

s

s
p

h
hp

h

pt
z

pt

h

h
h

pl
z

plo
xx zEezEeP dd .         (4.36) 

The in-plane moment resultant due to the electric component of the piezoelectric 

bimorph can be formulated as, 
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Since the piezoelectric bimorph couples the mechanical and electrical terms, 

equation (4.33) is the integro-differential equations with base elastic-electric field. 

By considering Eq. (4.33), each term inside the bracket can be formulated separately 

as follows,  
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Corresponding to Eq. (4.38), equation (4.33) can be reformulated as,  
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Superscripts D, E, F, G and H indicate the properties of stiffness coefficients for 

longitudinal extension, extensional-bending stiffness and transverse bending, 

backward piezoelectric couplings for longitudinal extension and transverse bending  

respectively. The coefficients 11C  and 31R  indicate the stiffness coefficients and 

backward piezoelectric couplings, respectively and superscript k indicates layers of 

the bimorph. It is noted that these coefficients will be further discussed in the next 

stage.  

The potential energy from Eq. (4.39) for Hamiltonian’s theorem can be manipulated 

as, 
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Modifying Eq. (4.40) by applying the variational lemma and divergence theorem 

gives, 
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The elastic stiffness coefficients of the piezoelectric bimorph C11 are formulated 

according to the characteristic material properties and the cross section of each layer 

of bimorph to give, 
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Parameter 11Q represents the plane stress-based elastic stiffness of the bimorph beam.  

Each stiffness coefficient can be expanded through the boundary value dimensions of 

the bimorph. In this case, each layer has three different stiffness coefficients 

depending on the thickness and material, RR  3nk  for each layer in 

differential volume domain 3Rd   because the thickness is a subset of d . The 

piezoelectric bimorph considered here has symmetrical geometry with the same 

material used for the upper and lower layers with a centre brass shim. The 

extensional stiffness coefficient of the interlayer of the piezoelectric bimorph can 

then be written as,   
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As
   3

11

1

11

,D,D QQ  , the extensional stiffness coefficient from Eq. (4.42) can be 

reformulated as,  
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The extensional-bending stiffness coefficient from Eq. (4.42) can also be formulated 

as, 
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It is found that the extensional-bending stiffness coefficient  kEC ,
11  tends to be zero 

due to the symmetrical geometry and material of the bimorph element structure. This 

gives,  
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Because the upper layer of the piezoelectric element has the same material and 

properties as the lower layer, the extensional-bending coefficient can be stated as,   

  011 kEC ,   .          (4.46)           
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Therefore, the coefficient 
 kE

C
,

11
 is not shown from Eq. (4.40). Furthermore, the 

bending stiffness coefficient can be formulated as, 
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 1

11

,FQ  and  3

11

,FQ have the same material located in the lower and upper piezoelectric 

layers, respectively, thus    3

11

1

11

,F,F QQ  . Equation (4.47) can then be reformulated 

as,  
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It should be noted that        3

11
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,F,F,D,D QQQQ   and    2

11

2
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,F,D QQ  indicate the 

plane stress-based elastic stiffness at constant electric field for piezoelectric material 

and plane stress-based elastic stiffness for brass material, respectively. 

 

Moreover, the second coefficient 31R  from Eq. (4.41), known as the backward 

piezoelectric coupling, will be discussed in terms of series and parallel connections 

of the piezoelectric bimorph. It is noted that the direct effect of the piezoelectric 

element, developed in potential form, indicates the backward piezoelectric coupling 

whereas the converse effect of the piezoelectric element gives the forward 

piezoelectric coupling which develops electrical energy as discussed in the 

forthcoming section. As the piezoelectric behaviour is reversible, the forward 

piezoelectric couplings have the same values as the backward piezoelectric 

couplings. This indicates that the piezoelectric couplings are affected by the 

electrical force and moment of the piezoelectric layers which depend on the strain 

fields and the polarity-electric field. Many researchers only showed the effects of 

transverse strain and polarity-electric field based on one input transverse base motion 

in terms of series and parallel connections, [4,6,7,8,9,41]. However, they still did not 

give detailed information and formulation of the piezoelectric coupling of the 

dynamic system. It should be noted that this affects all formulations of the 

constitutive dynamics equations. The focus here is with the piezoelectric bimorph 

beam with two input base transverse and longitudinal motions. In this section, the 

piezoelectric coupling associated with series and parallel connections will be 
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discussed in detail and new techniques of formulating the piezoelectric coupling will 

also be given. The electric field of the piezoelectric bimorph depends on the positive 

and negative terminals located at the lower and upper surfaces of the piezoelectric 

element, respectively. Each connection (the series and parallel connections) can be 

arranged into two types of poled configurations i.e. X-poled and Y-Poled which 

depends on the direction of polarities and strain effect between the piezoelectric 

benders  1,3k  (upper element and lower element). As  considered previously, the 

piezoelectric bimorph is not only assumed to undergo pure transverse bending but it 

also undergoes additional deformation i.e. longitudinal extension form, which is 

reflected in the strain fields of the Euler-Bernoulli’s beam expression. Therefore, 

such situation will affect the polarisation of the piezoelectric bimorph which depends 

on strain at the lower and upper layers due to input mechanical vibration and also the 

chosen type of connections. At this point, when the piezoelectric element was 

initially undefomed, the polarisation direction, for example, was in the z-axis called 

the initial polarized state. When the tensile stress acts perpendicular to the z-axis on 

the element, the polarisation will behave in the opposite direction to the z-axis as 

shown in Figure 4.3. Conversely, when the piezoelectric element was under 

compressive stress perpendicular with the z-axis, the polarisation will be in the same 

direction with the z-axis, [96]. This means that the change of stress from tensile to 

compressive or vice versa in the piezoelectric element will result in a reversal of the 

direction of polarisation, [73]. This situation is known as the direct piezoelectric 

effect where the polarisation is proportional to the stress field and the stress field is 

also proportional to the strain field or it can be stated in terms of the Einstein’s 

summation convention as jiji dP  . This has been reflected in the electrical enthalpy 

of the piezoelectric formulation, [75,76]. Based on this case, the piezoelectric 

bimorph under series and parallel connections can be further considered. For 

example, in series connection in Figure 4.4, when the piezoelectric element 

undergoes transverse input base motion, by assumption here, the upper and lower 

layers of piezoelectric bimorph will respectively deform with the tension and 

compressive strains and polarisation of the upper layer will create opposite directions 

compared with the lower layer (X-poled). It should be noted that the polarisation 

directions affect mathematically the piezoelectric coefficients due to the stress field 

on the element structure whilst the electric field generates electrical voltage. 
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Consequently, the electrical moments at both lower and upper layers will be formed. 

This process occurs continuously when the piezoelectric bimorph beam is under 

continuous vibration. With the same connection, when the piezoelectric bimorph was 

under input longitudinal base motion, the upper and lower layers of the bimorph have 

the same deformation, for example, compressive strain and then the polarisation at 

the upper and lower layers have the same direction (Y-poled), while the electric field 

will be generating electric voltage to create the electrical force at both the lower and 

upper layers. This situation exists when the piezoelectric bimorph beam operates 

under two input base motions which was considered here mathematically by 

backward coupling superposition of the elastic-polarity field. Smits and Choi [4] and 

Smits et al [97] discussed the sign conventions of electric field and piezoelectric 

coefficient for the series and parallel connections. However, their formulations of 

transverse bending bimorph beam only considered static condition. In this section, 

the complete piezoelectric couplings due to the effect of electric field and polarity 

directions are discussed here when the bimorph undergoes two input base motions. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

         

 

 

 

 

 

Figure 4.3 The effect of polarisation of  Piezoelectric Element, [96]  

Figure 4.4 Cantilevered piezoelectric bimorph beam with two input base longitudinal and transverse    

                   excitations under series connections 
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As shown in Figure 4.5, the piezoelectric bimorph under parallel connection also 

depends on the input base motions and direction of polarity. The strain fields 

between the upper and lower layers have similar behaviour with series connection 

when the piezoelectric bimorph has two input base motions. The difference lies with 

the polarisation and electric field directions due to the chosen parallel connection of 

the piezoelectric bimorph. This is achieved at the upper layer of the piezoelectric 

bimorph under X-poled series connection by applying a strong electric field to direct 

initial polarisation in the same direction with the lower layer or it can be provided 

according to the manufacturing company in such a way that the parallel connection 

can be arranged as shown in Figure 4.5. In this case, the polarisation tends to show 

the same directions each other when the strains are opposite between the lower and 

upper layers due to the input transverse base motion.  On the other hand, when the 

piezoelectric bimorph, with same materials, was treated to the input base longitudinal 

motion as shown in Figure 4.5, two polarisations at the upper and lower layers tend 

to give opposite directions due to the compressive strains in the piezoelectric 

elements, respectively.        

 

In this case, the sign conventions of electric field and piezoelectric coefficient needs 

to be considered for the series and parallel connections under two input base 

motions. As assumed here, the polarisation indicates the opposite direction with 

respect to electric field, with the piezoelectric constant having a resulting negative 

sign and vice versa. Series connection normally has two wires where one wire 

attaches to the electrode of the lower layer and one wire attaches to the electrode of 

the upper layer whereas parallel connection normally has three wires where one wire 

Figure 4.5 Cantilevered piezoelectric bimorph beam with two input base longitudinal and 

transverse excitations under parallel connections 
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connects to the centre shim and two wires are located at the electrodes of the lower 

and upper layers. It is noted that the common piezoelectric constant produced from 

the manufacturing company is in the form 31d  but this can be modified by 

multiplying the plane stress-based elastic stiffness at constant electric field to 

give EE CdQde 1131113131  . The complete form can be found in appendix A. 

 

Furthermore, the series connection of the piezoelectric bimorph results in the positive 

sign of electric field at both the lower and upper layers with the same direction as the 

positive z axis because the piezoelectric bimorph for series connection has a positive 

terminal at the electrode of the lower layer and a negative terminal at the upper layer. 

However, the parallel connection indicates a positive sign of the electric field for the 

lower layer and a negative sign for the upper layer because the piezoelectric bimorph 

for the parallel connection has a positive terminal at the electrodes of the lower and 

upper layers and a negative terminal between the centre brass shim. The electric field 

can be formulated as, 

        tvztzE
n,kkn

 ,
,

3  ,                            (4.49) 

              zztvtz
rn,kr
 1,1, ΞzΦwhere  . 

It is considered here that  z  represents the shape function of the electric voltage 

 tv  and it applies to each layer of the piezoelectric bimorph.   kn
z

,
 is the gradient 

operator of the electric voltage shape function and subscript r refers to 1 or 2 to be 

used for sign convention. This indicates the change of sign of the electric field due to 

the terminal connections of the upper and lower electrodes of the piezoelectric 

bimorph containing the charges normally flowing from positive to negative 

terminals. The modified piezoelectric constant can be formulated as,  

     kn,skn, e3131 1  .             (4.50) 

As previously discussed for series and parallel connections, the backward 

piezoelectric coupling will be further discussed including the relationship between 

the shape function of electric fields and piezoelectric coefficients for each layer.  

 

Superscript s refers to the change of sign of piezoelectric coefficient due to change of 

polarisation. The equation (4.41) for piezoelectric couplings 
 kn

R
,

31 can be formulated 

at each outside layers as, 
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
   
 

 

31ΞΨΞΨ
1 1

313131 dd .    (4.51) 

 kGR ,
31 represents the backward piezoelectric coupling for the longitudinal extension 

term and  kH,

31R represents the backward piezoelectric coupling for the transverse 

bending term. As mentioned previously, the backward piezoelectric couplings 

indicate equal form with the forward piezoelectric couplings where these properties 

can be shown at forthcoming section for electrical energy form. When the 

piezoelectric bimorph beam is arranged for series connection, two poled vector 

configurations apply in the piezoelectric material in the series connection, which is 

X-poled (opposite direction of polarisation) due to the transverse bending term and 

Y-poled (same direction of polarisation) due to the extensional term. On the other 

hand, the parallel connection with the same material can also have two poled effects, 

Y-poled due to the transverse bending term and X-poled due to the extension term. In 

this case, a cantilever piezoelectric bimorph with two input excitations was taken into 

consideration for two connection types i.e. series connection and parallel connection.  

 

Case 1.  Series connection.  Corresponding to Eq. (4.49), the electric voltage  tv  for 

series connection is considered to provide half the voltage between the electrodes of 

the piezoelectric bimorph. This means that the shape function of electric potential 

will be divided by the factor of two. Therefore, the shape function of the electric 

potential can be formulated based on the thickness of each layer of the piezoelectric 

bimorph to give,   
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
222

2 .  (4.52) 

a.  X-poled due to transverse bending form undergoes the change of sign of the 

piezoelectric constant where the polarisations in both layers have opposite direction 

each other. It is noted that only polarisation at bottom layer has the same direction as 

the electric field in the z direction. Equation (4.51) for transverse effect meets the 

function of polarisation for each layer  31,k  due to the conditions of Eqs. (4.49), 

(4.50) and (4.52),  
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Backward piezoelectric couplings of the X-poled transverse bending form can be 

formulated using Eq. (4.51) resulting in, 
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b. Y-poled due to longitudinal extension form does not undergo the change of sign 

of piezoelectric constant because the polarisations in both layers have the same 

direction as the electric field. Equation (4.51) for longitudinal effect meets the 

function of polarisation for each layer due to the condition of Eqs. (4.49), (4.50) and 

(4.52), 
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Backward piezoelectric couplings of the Y-poled longitudinal extension can be 

formulated using Eq. (4.51) resulting in, 
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Case 2. Parallel connection. The electric voltage  tv  for parallel connection is 

considered to give one voltage between the electrodes of the piezoelectric bimorph. 

This means that the shape function of the electric potential is divided by a factor of 

one. Therefore, the shape function of electric potential can be formulated based on 

the thickness of each layer of the piezoelectric bimorph, to give, 
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a. X-poled due to longitudinal extension form undergoes the change of sign of the 

piezoelectric constant where the polarisations has opposite direction. The 

polarisation in the lower layer is in the same direction as the electric field in the z 

direction which gives a positive sign of the piezoelectric coefficient. However, the 

upper layer has the electric field in the opposite sign with global direction of electric 

field in the z direction, thus resulting in a negative sign of the piezoelectric 
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coefficient. Equation (4.51) for longitudinal effect meets the function of polarisation 

for each layer due to the condition of Eqs. (4.49), (4.50) and (4.59), 
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Backward piezoelectric coupling of the X-poled longitudinal extension can be 

formulated using Eq. (4.51) resulting in, 

      
     

31
3

31
1

3131
2eeeR G,G,G,k 
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.                              (4.62) 

b. Y-poled due to transverse bending form does not undergo the change of sign of 

piezoelectric constant where the polarisations in both layers have the same direction 

as the global direction of the electric field in the z direction. It should be noted that 

the electric field at the upper layer has opposite sign with the global direction of the 

electric field in the z direction, therefore; a negative electric field at upper layer is 

applied. The backward piezoelectric coefficients in both layers have conditions as, 
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Backward piezoelectric coupling of the Y-poled transverse bending form can be 

formulated using Eq. (4.51) resulting in, 
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Furthermore, kinetic energy of the piezoelectric bimorph is considered according to 

the displacement vectors from Eqs. (4.5) and (4.6) and the density of the 

piezoelectric bimorph. This concept is further expanded using the Hamiltonian’s 

principle. It should be noted that the kinetic energy term of the piezoelectric bimorph 

not only represents the initial kinetic energies due to the zero-th mass moment of 

inertia but also rotary kinetic energy due to the second mass moment of inertia 

(rotary inertia). In addition, kinetic energy from the tip mass is also considered by 

two types of energies i.e. initial kinetic energy due to zero-th mass moment of inertia 

and rotary kinetic energy due to rotary inertia. Two rotary inertias exist in the 
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piezoelectric bimorph with a tip mass. As mentioned previously, the piezoelectric 

bimorph was under two base excitations, therefore; the potential energies present due 

to existing relative displacement  relu ,  relw  which is prescribed as the absolute 

displacement,  absu ,  absw  relative to base displacement  baseu ,  basew . Therefore, 

the strain field can be expressed in terms of the relative field motion. The kinetic 

energy can be written in terms of the absolute displacements,  absu ,  absw  because 

absolute displacement of beam element moves from its static condition to form the 

characteristic motion over the time interval  t. Therefore, the constitutive kinetic 

energy equations needs to be defined in terms of the relative velocity  relu  and
 

 relw  and base velocity  baseu  and  basew . At this point, the absolute velocity for 

longitudinal motion is baserel uu    and absolute velocity for transverse motion is 

baserel ww    as depicted in Figure 4.1. Corresponding with Eqs. (4.5) and (4.6), the 

kinetic energy can be formulated based on the mass density of piezoelectric bimorph 

and density of tip mass as, 
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It should be noted that symbol (  ) indicates dot product. In terms of Eq. (4.18), the 

parameter of virtual relative velocity from Eq. (4.66) will meet the conditions of 

continuity and differentiability over the length of the bimorph. Each energy term 

from Hamiltonian’s principle will be arranged in the next section. Modifying Eq. 

(4.66) by multiplying each term in the parenthesis and integrating with respect to z 

gives,   
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The inertia mass per unit area is formulated according with the characteristic 

materials and the cross sectional of each layer of bimorph,
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Each inertia mass can be expanded through the boundary values of dimensions of the 

bimorph. Superscript n and k indicate the mass density and layer, respectively. In this 

case, each layer has three different terms of inertia mass depending on the thickness 

and material, RR  3nk  for each layer in the domain 3Rd  where the 

thickness is a subset of d . However, the piezoelectric bimorph has the symmetrical 

geometry with the same material and thickness in the upper and lower layers with the 

centre brass shim. The zero-th mass moment of inertia per unit area gives the 

relationship of the interlayer piezoelectric bimorph as,   

        .3,2,1,, A
p

A
s

A
p

kA hhhI                       (4.69) 

or it can be simplified to be,  
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The densities
 

 1Aρ , and
 3Aρ , represent the material located within the upper and 

lower piezoelectric layers respectively which have the same piezoelectric material. 

The first mass moment of inertia per unit area from Eq. (4.68) can also be formulated 

as, 
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The first mass moment of inertia per unit area 
 kBI ,

tends to be zero, since the 

centroid of the section is located at the neutral axis of the bimorph which has 
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symmetrical geometry and the same material of the bimorph element structure. It 

becomes,  

    
   3,1, BB   ,                             (4.72) 

The upper layer of the piezoelectric element is assumed to have the same materials as 

the lower layer, giving the extensional-bending inertia mass resulting as,   

 
0

,
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kB
I .                             (4.73) 

Furthermore, the second mass moment inertia is formulated as, 

       3,

33

2,

3

1,

33

,

2423

1

423

1

24

Css
p

CsCs
p

skC hh
h

hh
h

h
I 














































 .  (4.74) 

It should be noted that the third term of mass moment inertia is also known as the 

rotary inertia. The mass densities  1,C  and  3,C  are assumed to have the same 

material located on the lower and upper piezoelectric layers, respectively, thus 

   3,1, CC    for which equation (4.74) is reformulated as,  
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Superscripts A and C indicate properties of mass moment of inertia for zero-th and 

second terms, respectively. In this case, the lower and upper layers indicate the 

piezoelectric structures for k = 1 and k = 3, respectively whereas the middle layer for 

k = 2 represents the brass shim of the substructure. It should be noted that 

       33 ,,,, C1CA1A ρρρρ  and
 

    .ρρ ,C,A 22   

 

A tip mass moment of inertia is also formulated as, 
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.(4.76) 

It is noted that the third integral term implies the second mass moment of inertia for 

the arbitrary geometric shapes where further detail can be found in Beer and 

Johnston [98]. Figure 4.2 indicated an example geometric shape of the tip mass 

where the zero-th tip mass moment of inertia is formulated,   

         

      A
tiptipbsptiptip

A
tip ρslhhlhI  2  .                  (4.77) 
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The first mass moment of inertia
 B
tipI tends to be zero because the geometric shape 

only has one centre of gravity where each moment with respect to the centroid has 

equal magnitude. The second tip mass moment of inertia is known as rotary inertia at 

the centre of gravity of the tip mass which is assumed to coincide with the end length 

of the piezoelectric bimorph beam. This results in, 
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where /2lxx tipg1  , /2lxx bg2  and gx is centre of gravity of geometry of  tip mass. 

The Hamiltonian’s kinetic energy can be reformulated by modifying Eq. (4.67) and 

integrating with respect to time and applying the divergence theorem to relieve the 

virtual displacement fields to give, 
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Each of the equation components which have subscript “base”  at  
base

kA uI ,  and 

 
base

kA wI ,  can be separated from Eq. (4.79) in order to consider as non-conservative 

virtual work of the distributed inertia input loads into the base support of the 

cantilevered piezoelectric bimorph beam. Since the bimorph does not have other 

external forces except for the input base excitation, the general equation for non-

conservative virtual work due to the input excitation and the applied charge can be 

written as,   

 



1i

if tqrFW  .          (4.80) 

It should be noted that the last term of Eq. (4.80) is considered as the applied charge 

on the top and bottom electrodes (i layers) of the piezoelectric bimorph which 

depends on the series and parallel connections where the minus sign indicates the 

electrical work done into the system. Since the bimorph generates the electrical 
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charge output, the parameter  



1i

i z,tδq   should indicate positive sign by 

modifying  z,t with  tv . In this case, the electrical work parameter needs to be 

proved. As mentioned previously, the electrical boundary condition of the bimorph 

electric voltage shape function can be used here to identify the electrical work. The 

electric charge output from the parallel connection can be simply formulated as 

qqq  21  where the bottom and top electrodes are denoted 1q and 2q , respectively. 

The generalised electric voltage in Eq. (4.49) can be restated as 

       tz1tz, r
vΦ  and the shape function  z  corresponding to the electrical 

boundary conditions of the piezoelectric element is given from Eq. (4.59). In this 

case, the parameter  z,tδq i  in the parallel connection can be modified to give 

      tδvqzqz 21 ΦΦ   =    tδvq/q/ 22   tvq . By doing the same thing for the 

series connection, the electric charge output qqq  21  associated with the electrical 

boundary condition in Eq. (4.52) can give          tδvqtδvqztδvq  21 ΦzΦ  for the 

bottom and top electrodes. As can be seen, the electrical work for the series and 

parallel connections of the bimorph have the same parameter with the negative sign 

but when the piezoelectric bimorph electromechanical dynamic responses with 

variable load resistance will be formulated, the electrical voltage for both electrical 

connections will differ. Corresponding with Eq. (4.80) from the last term, the 

electrical work due to the charge output from the system can be proved as  tvq . 

At this point, the non-conservative virtual work from Eq. (4.80) can be modified as,      
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The electrical energy of the piezoelectric element represents the coupling effect of 

the constitutive equations that can be developed using the Hamiltonian theorem. As 

formulated previously, the backward piezoelectric couplings for series and parallel 

connections were developed in potential energy form, because it can have a profound 

effect on the coupled elastic-electric field. In this case, the corresponding electric 

field and permittivity of the piezoelectric component can be used to formulate the 

internal capacitance of the piezoelectric layers and forward piezoelectric couplings 
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for both series and parallel connections. The electrical energy of the piezoelectric in 

the Hamiltonian form is stated as,  
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t

t

t

t
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33  .         (4.82) 

The electric displacement field of the piezoelectric element 3D is also known as the 

converse effect which is obtained from electrical enthalpy energy. Using Eq. (4.3), 

equation (4.80) can be written as, 
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The electrical energy term can be reformulated as,  
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The first and second terms of Eq. (4.84) represents the forward piezoelectric 

couplings and can also be formulated to give the similar form as shown from the 

backward piezoelectric couplings from Eq. (4.51). The third term from Eq. (4.84) can 

be used to obtain the capacitance of the piezoelectric element.  

 

The third term in Eq. (4.84) is prescribed as capacitance and it can be solved as, 
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The series and parallel connections can now be considered in the next part. 

Case 1. Series connection. The capacitance of the piezoelectric element was 

formulated in Eq. (4.85). The summation of capacitances between the upper and 

lower layers of the piezoelectric bimorph has a factor of 1/2. It is found that the 

piezoelectric bimorph under longitudinal and transverse motion fields did not affect 

the computation of piezoelectric capacitance itself but the result of the capacitance 

must be considered by the constitutive equation of the piezoelectric field due to the 

coupled electromechanical system. Equation (4.85) for series connection can be used 

to formulate the capacitance as, 
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It should be noted that the upper and lower layers of the piezoelectric bimorph have 

the same material and geometrical structure, thus the permittivity of the piezoelectric 

component gives 
   

33
3

33
1

33   .   

 

Case 2. Parallel connection. With the same formulation of Eq. (4.85), the parallel 

capacitance can be considered. The summation of capacitances between the upper 

and lower layers of the piezoelectric bimorph has a factor of 2. At this point, the 

capacitance of the piezoelectric element for parallel connection can be formulated as, 
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The forward piezoelectric coupling and capacitance can affect the electric 

displacement as a converse effect where it depends on the geometrical structure of 

the piezoelectric element and the electric voltage.  

 

The constitutive electromechanical dynamic equations of the piezoelectric bimorph 

can be obtained by considering Eqs. (4.41) (4.79), (4.81) and (4.84) into the 

Hamiltonian’s principle from Eq. (4.20). The constitutive electromechanical dynamic 

equation for the piezoelectric bimorph beam can be formulated in terms of virtual 

relative and base displacement forms  as, 
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It can be seen that the strong form of electromechanical dynamic equation from Eq. 

(4.88) was derived according to the variational method of Hamiltonian’s principle. 

Equation (4.88) reduced from the extremum of functional form with integration by 
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two instants of time t1  and  t2  for all domains in  La  and Wf   implied space of 

continuous differentiable function for all independent variables of relative 

longitudinal  txurel ,  L,C 02 3R and relative transverse displacements 

 txwrel ,  L,04C 3R  associated with electric potential      tvztz ,  
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11 CC
3R  in terms of actual forces and 

moments of the mechanical and electrical fields for the piezoelectric element as 

prescribed in the partial differential electromechanical dynamic equations in domain 

d  including the boundary conditions on the vector surface Sd  in terms of the 

divergence theorem. In this case, the reduced equation must fulfill the mathematical 

lemma of the variational method of duBois-Reymond’s theorem for each virtual 

displacement field. 

 

4.2. The Strong Form of Electromechanical Dynamic Equation 

 

As prescribed in Eq. (4.88), parameters of virtual relative base displacements and 

electrical potential forms can be separated in terms of partial differential dynamic 

equations for extensional, transverse and electrical fields. In this case, there are three 

constitutive electromechanical equations of the cantilevered piezoelectric bimorph 

beam associated with moving virtual displacement fields of relu , relw ,  Lurel , 

  xLwrel    and v . 

 

The first constitutive electromechanical dynamic equation in extensional form in 

terms of virtual relative longitudinal displacement field relu  can be formulated as, 
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The electromechanical dynamic equation in extensional form can be written as, 
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It is noted that the symbol ^ indicates the modified parameter after integrating with 

respect to y and the divergence theorem from sixth and seventh terms in Eq. (4.89) 
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can also be modified. The variable xn indicates the unit vector normal in the x axis 

where the boundary condition can be stated as, 
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It should be noted that the fourth term of Eq. (4.90) is zero because the electric 

voltage is only a function of time. However, equation (4.99) can be used to formulate 

the weak form of the Hamiltonian constitutive electromechanical dynamic equation. 

The second constitutive electromechanical dynamic equation for transverse bending 

form in terms of the virtual relative transverse displacement field relw  reduced from 

Eq. (4.88) can be formulated as, 
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The electromechanical dynamic equation for transverse bending can be written as, 
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The symbol ^ indicates the modified parameter after integrating with respect to y. 

The boundary condition can be stated after modifying the divergence theorem from 

sixth and seventh terms in Eq. (4.92) as, 
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It should be noted that the fifth term of Eq. (4.93) is zero because the electric voltage 

is a function of time. However, equation (4.93) can be modified to formulate the 

weak form of the Hamiltonian constitutive electromechanical dynamic equation. The 

third constitutive dynamic equation for electrical potential in terms of the virtual 

electrical potential field  tv  can be formulated as,  
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The equation (4.90) represents the electromechanical dynamic equation in terms of 

relative displacement relu  based on the moving virtual relative displacement relu . 

The similar dynamic equation can also be found from Eq. (4.92) based on virtual 

relative relw  transverse displacement fields.  Equation (4.91) indicates the essential 

boundary conditions and the natural boundary conditions. The similar model can also 

be found from Eq. (4.94) which contains the essential boundary conditions and the 

natural boundary conditions. It should be noted that essential boundary conditions 

are sometimes called static boundary conditions which depend on support conditions 

whereas the natural boundary conditions are sometimes called dynamic boundary 

conditions depending on the external loading conditions due to the inertia loads from 

the base and internal loading conditions from internal forces and moments at the 

piezoelectric beam element. In this case, the electromechanical dynamic equations of 

the cantilevered piezoelectric beam must fulfill the mathematical lemma of the 

variational method of duBois-Reymond’s theorem for each virtual displacement 

field.  

 

4.3. The Weak Solution form of Electromechanical Dynamic Equation 

 

As prescribed by Eq. (4.88), the form of the electromechanical dynamic equation 

represents the strong form (classical method) of Hamiltonian’s theorem. In this case, 

the weak form of Hamiltonian theorem can also be formulated by concerning only 

virtual relative extensional relu  and transverse relw  displacement fields to give the 

analytical integro-partial differential dynamic equation over the length of the 

piezoelectric bimorph beam. The weak form of Hamiltonian theorem includes the 

virtual displacements into the calculations of the constitutive electromechanical 

dynamic equation. In other words, the virtual displacements are assumed to be the 



 
121 

non-zero terms. Therefore, the solutions of the dynamic equation in terms of 

variables fields ( relu , relw , v ) and virtual variables fields ( relu , relw , v ) must be 

assumed as eigenfunction forms.  At this point, the weak form of the Hamiltonian 

theorem can be formulated in terms of Eq. (4.88) as, 
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The weak form of Hamiltonian’s principle can also be obtained alternatively in terms 

of Eqs. (4.90), (4.91), (4.93), (4.94) and (4.95) by applying the variational principle. 

It should be noted that respective parameters in the second parenthesis from Eq. 

(4.96) are in-plane force due to internal extensional force, in-plane shear force and 

moment due to internal transverse moment and in-plane shear force due to rotary of 

bimorph on the portion of differential vector surface Sd  in order to fulfill the 

divergence theorem of the natural boundary conditions with respect to differential 

surface area d . Equation (4.96) is called the weak form of electromechanical 

dynamic equation based on the continuity requirement of  transverse bending with 

the transformation from fourth to second continuous derivative function 

 txwrel ,     LL ,CC 0,0 24 3R  and the continuity requirement of 

longitudinal extension transformed from second to first continuous derivative 

function  txurel ,    LL ,C,C 00 12  3R  while the electric field is a 

gradient function of electric potential of each thickness of piezoelectric layer 
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It should be noted that equations (4.88) and (4.96) can be used to formulate the 

Rayleigh and Euler-Bernoulli piezoelectric bimorph beams.  The Rayleigh beam only 

considered the rotary inertias of the piezoelectric bimorph. The Euler-Bernoulli 

piezoelectric bimorph beam can also be formulated using the same equation by 

ignoring the rotary inertia of the piezoelectric bimorph. In forthcoming mathematical 

derivations, this equation will use the rotary inertia of the piezoelectric bimorph 

where this will be easier to neglect once the orthonormality property of 

electromechanical dynamic equations will be established.  It should be noted that the 

second integral represents the divergence theorem reflecting the boundary conditions 

on the surface S of the bimorph element in the direction nx of the unit vector normal 

to the x-axis.  The second integral is sometimes called the generalised internal force 

and moment for every element discretisation and these become necessary when the 

element boundary S coincides with boundary of domain Ω. The second integral can 

be a crucial part to be included in Eq. (4.96) when using finite element analysis 

where their existence depends on external loads on certain nodes of the structure. In 

terms of the analytical approach that is proposed here, the second integral can be 

ignored because the displacement fields ( relu , relw ) and virtual displacement fields 

( relu , relw ) reflected from Eq. (4.96) were assumed as eigenfunction forms which 

meet the continuity of mechanical form or strain field and boundary conditions. 

    

4.3.1. The Weak Form of Coupled Electromechanical Dynamic Response of 

Transverse-Longitudinal Form (Weak-CEDRTL) 

 

In this section, we discuss the solution form of Eq. (4.96) by using the 

convergent eigenfunction series forms. The solutions must meet continuity and also 

boundary conditions of the piezoelectric bimorph beam under longitudinal extension 

and transverse bending effects in order to give reasonable solutions. In the next 

section, the solution forms due to the effects of combinations of input longitudinal 

and transverse base motions, independent input longitudinal base motion and 

independent transverse base motion of the bimorph will be discussed 

comprehensively. It should be noted that equation (4.96) represents the dynamic 

equation of the electromechanical system under two input base motions. This 

equation can be formulated separately from the longitudinal and transverse forms as 

discuss further in the next section. As previously mentioned, the effects of input base 
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motions on the bimorph not only affects the mechanical domain (stress and strain 

fields) but also the electrical domain (electric field and polarity). The solution forms 

can be prescribed using the space- and time-dependent eigenfunction forms as,   

    
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Parameters  x  and  x  indicate the mode shapes or normal modes of the 

eigenfunction series which can be determined using analytical solution forms for the 

cantilevered piezoelectric beam with a tip mass where the mode shape of the Euler-

Bernoulli and Rayleigh beams will be formulated in appendix B. Two solution forms 

can be derived in the next section. It should be noted that parameters,  xr  and 

 xr  are defined as the independent mode shapes of relative motions to meet the 

continuity requirements of the mechanical strain field.       

 

Corresponding to Eq. (4.97), equation (4.96) can be formulated according to the 

eigenfunction series forms. Setting virtual displacement forms  turel ,  twrel , 

 tv  separately can be used to obtain three independent dynamic equations. 

Parameters of virtual displacements meet the duBois-Reymond’s lemma to indicate 

that only dynamic equations have solutions. At this point, three dynamic equations 

from the piezoelectric bimorph beam can be formulated.  

 

The first dynamic equation represents the electromechanical piezoelectric bimorph 

under longitudinal extension. Here it is written as, 
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The second dynamic equation represents the electromechanical piezoelectric 

bimorph under transverse bending. It can be stated as, 
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The third dynamic equation represents the electromechanical piezoelectric bimorph 

under electrical form. It can be written as, 
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or it can be differentiated with respect to time to obtain current function giving, 
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The constitutive electromechanical dynamic equations from Eqs. (4.98), (4.99) and 

(4.101) can be reformulated in matrix form by including the damping coefficients 

after integration with respect to y to give, 
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It should be noted that the ^ symbol refers to the modified variables after multiplying 

with the width b of the bimorph. Equation (4.102) is a non homogeneous differential 

dynamic equation of the piezoelectric bimorph beam with two input base-excitation. 

This equation can be used for modelling the piezoelectric bimorph with either series 

connection or parallel connection. The connections just depend on the chosen 

piezoelectric couplings from Eqs. (4.55), (4.58), (4.62) and (4.65) and also the 

chosen internal capacitance from Eqs. (4.86) and (4.87). In addition to that, other 

parameters from this research such as mass moment of inertia, stiffness coefficients, 

piezoelectric constant and permittivity are viewed as constant values. The geometry 

of the piezoelectric bimorph beam must also be considered where it will affect all 

aspects of power harvesting performance. It was previously stated that each 

connection has two different poled configurations under two input base excitations, 

where these have been invoked mathematically. This represents a significant 

difference from other researchers in which most of their studies of the piezoelectric 

bimorph only considered the pure bending (transverse bending) where each 

connection has one different poled configuration i.e. X-Poled for series connection or  

Y-Poled for Parallel connection.  

 

Corresponding with the eigenfunction series from Eq. (4.97), the results of mode 

shapes due to longitudinal and transverse form from appendix B can be substituted 

into Eqs. (4.98), (4.99) and (4.101) to obtain solutions of the piezoelectric bimorph 

under two input base motions. Equation (4.102) can be solved using Laplace 

transforms. In this case, the dynamic equation of the piezoelectric bimorph can be 

modified to give,   
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The longitudinal motion can be formulated using Cramer’s method as, 
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Equation (4.105) can be manipulated  as, 
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Equation (4.104) can be further modified to obtain the transverse motion using 

Laplace transforms and then applying Cramer’s method to give, 
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Equation (4.107) can be further extended using the determinant, resulting in the 

equation, 
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Electric voltage from Eq. (4.104) can also be formulated as, 
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Simplifying, equation (4.109) can be written to obtain, 
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As formulated the determinant of the homogenous dynamic form from Eq. (4.104) 

can be expressed as,  
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Expanding Eq. (4.111) and rearranging, the characteristic polynomial form can be 

written as, 
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The transfer function relating the input base-longitudinal acceleration to output 

longitudinal displacement can be obtained, if input transverse motion was not applied 

as, 
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The relative transfer function between the input base-transverse acceleration and 

output longitudinal displacement can be obtained as, 
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The transfer function between the input base-longitudinal acceleration and transverse 

displacement can be obtained as, 
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Corresponding to Eq. (4.108), the relative transfer functions of the input base-

transverse acceleration with respect to output transverse displacement can be 

obtained if longitudinal motion was not applied, which becomes, 
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With the same method, the transfer function between the input base-longitudinal 

acceleration and electric voltage can be obtained as, 
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The relative transfer function of the input base-transverse acceleration with respect to 

output electric voltage can be obtained if longitudinal motion was not applied. This 

gives, 
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The transfer function relating power harvesting to input transverse acceleration can 

be derived as, 
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The transfer function of power harvesting due to input longitudinal acceleration can 

be derived as, 

     
 

    

              

 2

2223

0

22
2

sZR

QPsKPCsPMs

sus

sP

load

u
q

u
r

w
qr

u
r

w
qr

u
r

w
qr

swbase
base






.        (4.120) 

Manipulating Eqs. (4.113) to (4.118) gives another relationship of transfer functions 

as formulated in Eqs. (4.121) to (4.126), 
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Corresponding with Eqs. (4.113) to (4.120), the frequency response function (FRF) 

can be formulated. The first FRF represents longitudinal motion with respect to input 

excitations. In the case where the input transverse acceleration is ignored, the FRF 

can be obtained from base-input longitudinal motion as it was formulated, 
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It is noted that
 tj

baseeu



2

 is input acceleration. Equation (4.127) can be 

modified to obtain the FRF as a function of position of the piezoelectric element (x) 

and frequency  j  by transforming it back into the eigenfunction. This then yields, 
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If base-input longitudinal motion was not applied, the FRF of base-input transverse 

motion can be obtained as, 
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Equation (4.129) can be modified in terms of the FRF as a function of position in the 

piezoelectric element (x) and frequency  j  as, 
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The second FRF represents transverse motion with respect to input motions. If base-

input transverse motion is ignored, the FRF of base-input longitudinal motion can be 

obtained as,  
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Equation (4.131) can be modified in terms of the FRF as a function of piezoelectric 

position (x) and frequency  j  as, 
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The FRF of transverse displacement with respect to base-input transverse 

acceleration can be obtained as, 
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By using the corresponding eigenfunction from Eq. (4.97) and the FRF from Eq. 

(4.133), the FRF as a function of piezoelectric element position (x) and frequency 

 j  can formulated as, 
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The FRF between output electric voltage and the input base-longitudinal acceleration 

can be obtained as,  
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The FRF of the output electric voltage with respect to the input base-transverse 

acceleration can be derived as base-input longitudinal acceleration is omitted. This 

can be written as, 

 
 

              

 









 jZ

QPKjPCPMj

ew

jv
jH

w
q

w
r

u
qr

w
r

u
qr

w
r

u
qr

js

tj
base









23

232
.    (4.136) 

The FRF of power harvesting related to the transverse acceleration can be derived as, 
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The FRF of power harvesting related to the longitudinal acceleration can be derived 

as, 
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where:         
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4.3.2. The Weak Form of Coupled Electromechanical Dynamic Response of 

Transverse form (Weak-CEDRT) 

 

 This section focuses on the constitutive electromechanical dynamic equation 

of the piezoelectric bimorph with tip mass due to the strain field from transverse 

bending and electric field under input transverse base excitation. The equation (4.96) 

can be reduced to formulate the coupled dynamic equation of bending transverse 

mechanical and electrical forms and other variables of Eq. (4.96) can be ignored.  
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The constitutive  electromechanical dynamic equation of the piezoelectric bimorph 

under input base transverse motion can be formulated as, 
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The solution form can be obtained using eigenfunction series and the solutions must 

meet continuity and also boundary conditions of the piezoelectric bimorph beam 

under transverse bending effects. The solution form can be prescribed as,  
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At this point, two dynamic equations of the piezoelectric bimorph beam can be 

formulated. The first dynamic equation represents the electromechanical 

piezoelectric bimorph under transverse bending form. It can be stated as, 
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The second dynamic equation represents the electromechanical piezoelectric 

bimorph under electrical form. It can be stated as, 
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Two dynamic equations can be formulated in matrix form as, 
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It should be noted that the each parameter in Eq. (4.144) can be obtained from Eq. 

(4.103). Laplace transforms can then be used to formulate the matrix equation as,
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The transfer function due to the input transverse acceleration related to the transverse  

displacement can be formulated as, 
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The electrical potential can be expressed as, 
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 where  : 
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Corresponding to Eq. (4.146), the frequency response function (FRF) of the 

transverse displacement related to the input transverse acceleration based on the 

bimorph element position  x  and frequency  j  can be formulated as, 
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The FRF of electrical potential related to the input transverse acceleration can be 

obtained as, 
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The time dependent relative transverse displacement can be formulated in terms of 

the FRF as, 
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Corresponding with Eq. (4.141), equation (4.150) can be modified to give the time 

dependant relative transverse displacement as a function of position in the 

piezoelectric element (x) and frequency  j  as, 
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Corresponding with the kinematic diagram from Figure (4.1), the absolute transverse 

displacement can be reduced as,                     
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The generalized time dependant electrical potential can be formulated as,   
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It should be noted that basew  represents the input base transverse displacement 

excitations on the bimorph.  Corresponding to Eq. (4.152), equation (4.148) can be 

modified in terms of the FRF of absolute displacement and velocity relating the input 

transverse displacement at any position along the bimorph respectively to give, 
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where : 
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4.3.3. The Weak Form of  the Coupled  Electromechanical Dynamic Response 

of Longitudinal Form (Weak-CEDRL) 

 

 This section focuses on the constitutive electromechanical dynamic response 

based on the coupled longitudinal strain and polarity-electric field of the bimorph 

under input base longitudinal motion. The equation (4.96) can be reduced to 

formulate the coupled dynamic equation of longitudinal extension mechanical and 

electrical forms and other variables of Eq. (4.96) can be ignored.  

 

The constitutive electromechanical dynamic equation can be written as  
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The solution form can be obtained using eigenfunction series and the solutions must 

meet continuity and also boundary conditions of the piezoelectric bimorph beam 

under longitudinal extension bending effects. The solution form can be prescribed as,  
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At this point, two dynamic equations of the piezoelectric bimorph beam can be 

formulated. The first dynamic equation represents the electromechanical 

piezoelectric bimorph under longitudinal form. It can be stated as, 



 
134 

                     
   

  



















m

q

m

r
r

rqkD
rrq

A
tiprrq

kA
yxtu

x

x

x

x
CtuLLIyxtuxxI

1 1

,
11

, dd
d

d

d

d
dd 

                  0)( ,,
31 










 


tutuLIyxtuxIyxtv
x

x
R qbaseq

A
tipbaseq

kAqkG  dddd
d

d
. (4.158) 

The second equation represents the electromechanical piezoelectric bimorph under 

electrical form. It can be stated as, 
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The two dynamic equations can be formulated in matrix form as, 
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The Laplace transform can be used to formulate the transfer function as, 
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The transfer function due to the longitudinal displacement related to the input base 

longitudinal acceleration can be formulated as, 
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The voltage transfer function can be written as,  
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where, 
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Corresponding to Eq. (4.157), the frequency response function (FRF) of the 

longitudinal displacement related to the input longitudinal acceleration based on the 

bimorph element position  x  and frequency  j  can be formulated as, 
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The frequency response function of electrical potential related to the input 

longitudinal acceleration can be expressed as, 
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where,  
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The time dependent relative longitudinal displacement can be formulated in terms of 

the FRF as, 

      tj
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1   .                  (4.166) 

Equation (4.166) can be modified to give the relative longitudinal displacement as a 

function of position in the piezoelectric element (x) and frequency  j  as, 
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Corresponding with Eq. (4.167), the absolute longitudinal displacement can be 

reduced as,                     
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The generalised electrical potential can be formulated as, 
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Corresponding to Eq. (4.168), equation (4.164) can be modified in terms of the FRF 

of absolute displacement and velocity relating the input longitudinal displacement at 

any position along the bimorph respectively to give, 
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4.4. Multi-mode Frequency Analysis of the Normalised  

Coupled   Electromechanical Dynamic Response of Longitudinal  

Form (Weak-CEDRL)  

 

 The multi-mode frequency analysis of the electromechanical dynamic 

equations can be extended using Eq. (4.165). The solution form complies the 

generalised longitudinal function of the Ritz eigenfunction series, which can be 

further formulated using the orthonormality, Ritz [99], Courant and Hilbert [100]. In 

this case, the extended convergent Ritz eigenfunction series can be stated as, 
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Substituting Eq. (4.172) into Eq. (4.156) by considering only the mechanical 

equations to give independent algebraic equations of the eigenvalues corresponding 

to the longitudinal form as, 
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The unknown Ritz coefficient  u
rc  is sometimes called the eigenvectors which need 

to be identified along with the natural frequencies. Therefore, the generalised Ritz 

mode shapes in terms of the r-degree of freedom can be formulated as,   
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The  normalised Ritz mode shapes can be formulated with respect to the generalised 

mass as,  

                   

                    

 
 

       

,....,m,r

LIxxI

x
x

r
A

tip

L

r
kA

r
r 21

ˆ

ˆ
2/1

2

0

2,











 




d

 .    (4.175) 

The normalised eigenfunction series associated with the generalised time dependent 

function can now be stated as,  
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Corresponding to Eq. (4.156), the orthonormalisations can be provided by using Eq. 

(4.175) and applying the orthogonality property of the mechanical dynamic equation 

as, 
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where rq is the Kronecker delta, defined as unity for rq   and zero for rq  . The 

mechanical damping can be reduced in terms of the orthonormalisation as, 
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Applying the orthonormalisations from Eqs. (4.177) and (4.178) into the 

electromechanical piezoelectric bimorph beam from Eq. (4.156) gives,
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Because equation (4.180) has been normalised by using Eq. (4.176) in terms of Eqs. 

(4.177) and (4.178), the parameters  u
rP ,  u
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rQ can be reduced as,  
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The Laplace transforms can be applied in Eq. (4.180) to give the transfer functions. 

The multi-mode transfer function between the input base longitudinal acceleration 

and relative longitudinal displacement can be obtained as,  
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The multi-mode transfer function of the input base longitudinal acceleration relating 

to the longitudinal displacement output in terms of the bimorph element position  x  

and subsidiary variable  s  can be formulated after simplifying to give,   
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With the same method, the multi-mode transfer function between the input base 

longitudinal acceleration and the electric voltage can be obtained as,  
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The multi-mode transfer function related to power harvesting with respect to the 

input base longitudinal acceleration can be derived as, 



 
138 

       

 

  

   

     

 

     

2

1
22

2

1
22

22

2

2

1



































m

r
u

r

u

r

u

r

u

r
LD

m

r
u

r

u

r

u

r

u

r

u

r

load

base

ss

sP
RsP

ss

QsP

R

sus

sP



  .                (4.184) 

Corresponding to Eqs. (4.181) – (4.184), the frequency response functions (FRFs) 

can be formulated by substituting variable  s  with  j .  The multi-mode FRF of 

the generalised time dependent function of the longitudinal displacement with 

respect to the input base longitudinal acceleration can be obtained as,  
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Equation (4.185) can be modified to obtain the FRF as a function of position of the 

piezoelectric element (x) and frequency  j  by transforming it back into the Ritz 

eigenfunction form to give, 
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The multi-mode FRF of the electric voltage related to the input base longitudinal 

acceleration can be derived as, 
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The multi-mode FRF of power harvesting related to the input longitudinal 

acceleration can be derived as,  
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The generalised time dependent function of relative transverse displacement can be 

reformulated in terms of Eqs. (4.176) and (4.185) as, 
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Corresponding to Eq. (4.189), the absolute transverse displacement can be reduced 

as,  
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The generalised electrical voltage can be formulated as, 
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Corresponding to Eq. (4.190), the equation (4.186)  can be modified in terms of the 

multi-mode FRF of the absolute displacement and velocity relating the input 

longitudinal displacement at any position along the bimorph respectively as, 
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4.5. Multi-mode Frequency Analysis of the Normalised Coupled 

Electromechanical Dynamic Response of Transverse Form  

(Weak-CEDRT) 

 

This section focuses on the multi-mode FRFs of the electromechanical 

dynamic equation of transverse bending form with input transverse base motion. The 

solution form of Eq. (4.140) can be stated as the Ritz eigenfunction series for 

identifying eigenvectors which can be further used to formulate the normalised Ritz 

eigenfunction form, Ritz [99], Courant and Hilbert [100]. The extended convergent 

Ritz eigenfunction series can be used as the solution form to give, 
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Substituting Eq. (4.193) into Eq. (4.140) where the mechanical equation is 

considered to give the independent algebraic expressions of the eigenvalues 

corresponding to the transverse bending form as, 
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It should be noted that  w
rc is called the unknown Ritz coefficients for the transverse 

bending form also referred to as the eigenvectors. Once the Ritz coefficients 

associated with the natural frequencies are determined, the generalized Ritz mode 

shapes in terms of the r-degrees of freedom can be formulated as,   
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The generalised Ritz eigenfunction form can be normalised with respect to mass as,   
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The normalised eigenfunction series forms associated with the generalised time 

dependent variable can now be stated as,  
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As mentioned previously, the derivation of the electromechanical dynamic equations 

in this section were based on the Rayleigh and Euler-Bernoulli beam assumptions.  

The Euler-Bernoulli beam assumption can be formulated by ignoring the rotary 

inertia of the bimorph beam at the third term from Eq. (4.140) and the first term from 

Eq. (4.196) or (4.198).  Corresponding to Eq. (4.196), the orthonormalisations can be 

proved by using Eq. (4.197) and applying the orthogonality property of the 

mechanical dynamic equations as, 
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where rq is the Kronecker delta, defined as unity for rq   and zero for rq  . The 

mechanical damping can be reduced in terms of orthonormalisation as, 
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In this case, although the modal mechanical damping ratios can be determined 

mathematically, the estimation of modal mechanical damping ratios from experiment 

preferable to give accurate results. Applying the orthonormalisations from Eqs. 

(4.198) and (4.199) into the electromechanical piezoelectric bimorph beam from Eq. 

(4.140) gives, 
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It is noted that equation (4.201) has been normalised due to Eq. (4.197). The 

parameters  w
rP ,  w

rP̂ and  w

rQ can then be reduced as,  
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Equation (4.201) can be solved using Laplace transforms. The multi-mode transfer 

function of the relative transverse displacement related to the base input transverse 

acceleration can be obtained as, 
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In this case, the multi-mode transfer function of the relative transverse displacement 

related to the input transverse acceleration based on the bimorph element position 

 x  and subsidiary variable  s  in terms of frequency response can be formulated 

after simplifying some equations as, 

 
 
 

 
     

   

 

     

























































m

r
m

r
w

r

w

r

w

r

w

r
LD

w

rLD

w

r

w

r

w

r

r

base

rel

ss

sP
RPj

QRsP

ss

x

sws

s,xw
s,xH

1

1
22

22221

2

2

ˆ






.  (4.203) 

The multi-mode transfer function of the input base transverse acceleration with 

respect to the electric voltage output can be obtained as, 
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The multi-mode transfer function relating power harvesting to the input transverse 

acceleration can be derived as, 
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Corresponding with Eqs. (4.202) to (4.205), the multi-mode FRFs of the 

electromechanical dynamic response can be obtained by substituting the subsidiary 

variable  s  with  j . The multi-mode FRF of transverse displacement with respect 

to input base transverse acceleration can be obtained as,  
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It should be noted that the input acceleration   jwbase

2  is equivalent to 

tj

baseew  2 . Equation (4.206) can be modified to obtain the FRF as a function of 

position of the piezoelectric element  x  and frequency  j  by transforming it back 

into the Ritz eigenfunction form (Eq. 4.197) to give, 
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The multi-mode FRF of the electric voltage output related to the input base 

transverse acceleration can be derived as,  
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The multi-mode FRF of the electric current output related to the input base transverse 

acceleration can be derived as,  

         

 
 

   

     

 

     
















m

r
w

r

w

r

w

r

w

r
LD

m

r
w

r

w

r

w

r

w

r

w

r

load

tj

base

j

Pj
RPj

j

QPj

R

ew

jI
jH

1
22

2

1
22

23

2

2

1
















.    (4.209) 

The multi-mode FRF of power harvesting related to the input transverse acceleration 

can be derived as, 
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To obtain the optimal multi-mode FRF power harvesting, equation (4.210) can be 

differentiated with respect to load resistance and the differentiable power function 

can be set to zero to give the optimal load resistance. It is noted that parameter 

LR represents per-unit load resistance loadR1 . Corresponding to Eq. (4.210), the 

optimal load resistance can be formulated as,   
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It should be noted that the optimal load resistance can be substituted back into Eq. 

(4.211) to give the optimal power harvesting.  

 

 

The time dependent function of relative transverse displacement can be obtained  

corresponding to Eq. (4.206) as, 
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The generalised time dependent relative transverse displacement can be formulated 

in terms of any position along the piezoelectric beam in terms of Eq. (4.196) as, 
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Corresponding to Eq. (4.211), the absolute transverse displacement can be reduced 

as,  
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The generalised electrical potential can be formulated as, 
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Corresponding to Eq. (4.214), equation (4.207)  can be modified in terms of the 

multi-mode FRF of the absolute displacements and velocities relating the input 

transverse acceleration at any position along the bimorph beam respectively as, 
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4.6. Multi-mode Frequency Analysis of the Normalised Coupled      

   Electromechanical Dynamic Response of Transverse-Longitudinal  

   Form  (Weak-CEDRTL)  

 

 This section focuses on the solution of the multi-mode electromechanical 

dynamic equations of the piezoelectric bimorph beam with tip mass based on the 

strain field due to the transverse bending and longitudinal extension under two input 

base excitations using Eq. (4.96). The solution presented here complies with the 

orthonormality of two independent Ritz eigenfunction forms. Corresponding with the 

convergent eigenfunction forms of Eq. (4.97), equations (4.98), (4.99) and (4.101) 

need to be modified in order to achieve the orthonormality conditions.   

 

To normalise Eq. (4.97), the convergent Ritz eigenfunction forms can be stated as, 
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In terms of the only mechanical equation, equation (4.217) can be substituted into 

Eq. (4.96) to give the independent algebraic equations of the eigenvalues 

corresponding to the longitudinal and transverse bending form as, 
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It should be noted that  u
rc and  w

rc are called the unknown Ritz coefficients for the 

respective longitudinal and transverse bending forms which refer to the eigenvectors 

in the mechanical domain. Once the Ritz coefficients are determined associated with 

natural frequencies, the generalized Ritz mode shapes in terms of  the r-degree of 

freedoms can be formulated as,   
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The generalised Ritz mode shapes can be normalised with respect to mass as, 
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The normalised eigenfunction series forms associated with the generalised time 

dependent function can now be stated as,  
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It is noted that this section is developed according to the Rayleigh piezoelectric 

bimorph beam. To formulate the Euler-Bernoulli piezoelectric bimorph beam, the 

rotary inertia of the bimorph beam in the second term from the Eq. (4.96) or the first 

term from Eq. (4.221) or (4.224) can be ignored. Corresponding to Eq. (4.96), the 

orthonormalisations can be proven by using Eq. (4.223) and applying the 

orthogonality property of the mechanical dynamic equations as, 
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where rq  is the Kronecker delta, defined as unity for rq   and zero for rq  . The 

Rayleigh mechanical damping can be reduced in terms of orthonormalisation as, 
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In this case, although the modal mechanical damping ratios can be determined 

mathematically, the chosen modal mechanical damping ratios  u

r  and  w

r were 

obtained here by experiment to give accurate results at the resonance frequency 

(4.224)
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amplitude regions. Applying the orthonormalisations from Eqs. (4.224), (4.225) and 

(4.226) into the electromechanical piezoelectric bimorph beam equation from Eq. 

(4.96) gives, 
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It is noted that because equation (4.229) has been normalised due to Eq. (4.223), the 

parameters  u
rP ,  w

rP ,  u
rP̂ ,  w

rP̂ , LR , DP ,  u

rQ and  w

rQ can be reduced as,  
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Equation (4.229) can be solved using Laplace transforms. In this case, the multi-

mode electromechanical dynamic equations of the piezoelectric bimorph system can 

be reduced as,   
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The characteristic polynomial form from Eq. (4.229) can be formulated as,    
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Corresponding to Eq. (4.230), the multi-mode transfer function of the longitudinal 

displacement related to the input base-longitudinal acceleration can be obtained after 

simplification, neglecting input transverse motion, to give, 
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It is noted that equation (4.234) can be formulated in terms of the generalised  

relative longitudinal displacement on the bimorph element position  x  and 

subsidiary variable  s  in terms of  applying Laplace transform to Eq. (4.221b) as, 
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The multi-mode transfer function between the input base-transverse acceleration and 

output longitudinal displacement can be obtained as, 
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The multi-mode transfer function of the generalised longitudinal displacement 

function related to the input base-transverse acceleration can be obtained as,  
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The transfer function between the input base-longitudinal acceleration and transverse 

displacement can be obtained as, 
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The multi-mode transfer function of the generalised transverse displacement field 

related to the input base-longitudinal acceleration can be obtained as,  
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Corresponding to Eq. (4.231), the multi-mode transfer function of the input base-

transverse acceleration with respect to output transverse displacement can be 

obtained, neglecting longitudinal excitation to give, 
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By applying Laplace transform from Eq. (4.223a), the multi-mode transfer function 

of the generalised transverse displacement field related to the input transverse 

acceleration can be obtained as, 
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With the same method, the multi-mode transfer function between the input base 

longitudinal acceleration and electric voltage can be obtained as,  
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The transfer function of the input base transverse acceleration with respect to output 

electric voltage can be obtained, neglecting longitudinal excitation to give, 
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The multi mode transfer function of the electric current related to the input base 

longitudinal acceleration can be stated as,  
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The multi-mode transfer function of the electric voltage output with respect to the 

input base transverse acceleration can be obtained, neglecting longitudinal excitation 

to give, 

 
 

 
 

   

     

 

     

 

     


















m

r
u

r

u

r

u

r

u

r
m

r
w

r

w

r

w

r

w

r
LD

m

r
w

r

w

r

w

r

w

r

w

r

load

susbase

ss

sP

ss

sP
RsP

ss

QsP

R

sws

sI
sH

base

1
22

2

1
22

2

1
22

0

242

22

2

1

2



 .      (4.245) 

The multi-mode transfer function relating power harvesting to input transverse 

acceleration can be derived as, 
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The multi-mode transfer function of power harvesting due to input longitudinal 

acceleration can be derived as,  
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Corresponding to Eqs. (4.234)-(4.247), the frequency response function (FRF) can be 

formulated. In this case, the electromechanical dynamic equation of the piezoelectric 

bimorph can be formulated in matrix FRF form as,  
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The first multi-mode FRF represents the generalised time dependent longitudinal 

function with respect to input motions. In the case when input transverse excitation is 

ignored, the FRF can be obtained from input base longitudinal excitation as,  
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Equation (4.249) can be modified to obtain the FRF as a function of position of the 

piezoelectric element (x) and frequency  j  by transforming it back into the Ritz 

eigenfunction form as 
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The FRF of the relative transfer function between the input base transverse 

acceleration and output longitudinal displacement can be obtained as, 
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Equation (4.251) can be modified as a function of position of the piezoelectric 

element (x) and frequency  j  by transforming it back into the Ritz eigenfunction 

form to give, 
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The second multi-mode FRF represents the transverse motion with respect to input 

motions. If base-input transverse motion is ignored, the FRF of transverse motion 

related to the base input longitudinal motion can be obtained as, 
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Equation (4.253) can be modified to obtain the FRF as a function of position of the 

piezoelectric element  x  and frequency  j  by transforming it back into the Ritz 

eigenfunction form to give, 
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The multi-mode FRF of transverse displacement with respect to input base transverse 

acceleration can be obtained as,  
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Equation (4.255) can be modified to obtain the FRF as a function of position of the 

piezoelectric element  x  and frequency  j  by transforming it back into the Ritz 

eigenfunction form to give, 
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The FRF between output electric voltage and the input base longitudinal acceleration 

can be obtained as, 
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The multi-mode FRF of the electric voltage output with respect to the input base 

transverse excitation can be derived, omitting the input base longitudinal excitation 

to give,  
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The multi-mode FRF of the electric voltage output related to the input base 

longitudinal acceleration can be obtained as, 
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The FRF of the electric voltage output related to the input base transverse exciatation 

can be derived, omitting the input base longitudinal excitation to give,  
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The multi-mode FRF of power harvesting related to the longitudinal acceleration can 

be expressed as, 
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The multi-mode FRF of power harvesting related the transverse acceleration can be 

derived as,  

 

 






js

tj
baseew

jP




22

 



 
154 

   

     

 

     

 

     

2

1
22

2

1
22

2

1
22

22

2

1






































m

r
u

r

u

r

u

r

u

r
m

r
w

r

w

r

w

r

w

r
LD

m

r
w

r

w

r

w

r

w

r

w

r

load

j

Pj

j

Pj
RPj

j

QPj

R














.(4.262) 

The optimal multi-mode FRF power harvesting related to the transverse acceleration 

can be derived by differentiating with respect to load resistance and setting the 

differentiable power function to zero. It is noted that parameter LR represents per-

unit load resistance loadR1 . Corresponding to Eq. (4.262), the optimal load 

resistance can be formulated as,   
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It should be noted that the optimal load resistance can be substituted back into Eq. 

(4.262) to give the optimal power harvesting.  

 

Corresponding to Eqs. (4.249) and (4.251), equation (4.230) can be reduced in terms 

of the generalised time dependent longitudinal function as, 
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Corresponding to Eq. (4.223b), modifying Eq. (4.264) in terms of any position along 

the piezoelectric beam gives the steady state relative longitudinal displacement under 

two input base excitations as, 
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The multi-mode absolute longitudinal displacement can be formulated in terms of 

Eq. (4.265) as, 
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It should be noted that the absolute displacement fields have been discussed at the 

beginning of this chapter in terms of kinematic diagram of beam where the equation 

(4.266) was formulated as      txututxu relbaseabs ,,  . The generalised time 

dependent relative transverse displacement in Eq. (4.231) can be modified 

corresponding with Eqs. (4.253) and (4.255) as, 
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The steady state relative transverse displacement can be reformulated in terms of any 

position on the piezoelectric beam as, 
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Corresponding to Eq. (4.268), the multi-mode absolute transverse displacement can 

be reduced as,  
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It should be noted that equation (4.269) is formulated according to the kinematics of 

the bimorph beam as discussed previously to give      txwtwtxw relbaseabs ,,  . The 

equation (4.232) can be modified into the generalised electrical potential response in 

terms of Eqs. (4.257) and (4.258) to give, 

   
 

      basebase wjHujHtv   3231  ,         (4.270) 
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It should be noted that baseu  and basew  refer to the input base longitudinal and 

transverse displacement excitations on the bimorph. Corresponding to Eqs. (4.266) 

and (4.269), equations (4.250)  and (4.256) can be modified to give the multi-mode 

FRF of the absolute displacements and velocities related to the base input 

longitudinal and transverse accelerations at any position along the bimorph 

respectively as, 
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It should be noted that equations (4.266), (4.269) and (4.272) are applicable for 

analysing the absolute dynamic responses when comparing the results using the 

Laser Doppler Vibrometer (LDV) because the signal output from the Vibrometer  

can be transferred into a digital signal FFT Analyzer to display the results. The 

results obtained from measurements can be the time dependent absolute 

displacement, velocity, acceleration, Fourier spectrum and frequency response 

function located at any position along the piezoelectric bimorph.  

 

4.7. Multi-mode Frequency Analysis of the Normalised Coupled    

          Electromechanical Dynamic Response of Transverse-Longitudinal Form   

          (Closed Form-CEDRTL)  

 

 This section focuses on the multi-mode frequency response using the closed 

form of the electromechanical dynamic equations under two input base excitations. 

The closed-form analytical method was formulated according to the strong form of 

the Hamiltonian principle which was formulated from Eq. (4.88). This included the 

electromechanical bimorph element with the boundary-value problem where the 

partial differential equations associated with the geometry and natural boundary 

conditions were formulated in section (4.2) from Eqs. (4.89) to (4.95).  The solution 

form from this analytical method involves the convergent eigenfunction forms which 

can be formulated as 
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1
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r

rrrel twxx,tw   ,
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
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ˆ,
r

rrrel tuxtxu .     (4.273) 

It should be noted that equation (4.280)  is sometimes called the mode superposition 

theorem which utilizes the normalised mode shapes and generalised time dependent 

coordinates. At this point, the equation considering the coupling electromechanical 

longitudinal and transverse forms of the piezoelectric element can be further 

formulated in terms of frequency analysis. As formulated in Eqs. (4.90) and (4.93), 

the boundary-value problem formulated for the piezoelectric bimorph element can be 

expressed using the normalised eigenfunction series under two input base excitations.  
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The first representation of the electromechanical piezoelectric bimorph under 

transverse bending, can be formulated using the Eq. (4.93), corresponding to Eq. 

(4.273a) as,
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Multiplying Eq. (4.274) with  xq̂  and integrating with respect to x  gives, 
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The boundary conditions from Eq. (4.94) can be further formulated by substituting 

Eq. (4.273a) as, 
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and two dynamic boundary conditions can be further formulated as, 
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In terms of conditions implied in Eqs. (4.277) and (4.278) and also using the 

orthogonality relations, the second and third terms of Eq. (4.275) can be further 

manipulated by using partial integration to give, 
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Applying the boundary conditions from Eq. (4.276) into Eq. (4.279) and multiplying 

by  twr , the dynamic equation of the geometry bimorph problem can be written as,       
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Substituting Eqs. (4.277) and (4.278) into Eq. (4.280b) gives, 
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Corresponding to Eq. (4.281), equation (4.275) can be reformulated as, 
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Corresponding with Eq. (4.280a), equation (4.282) can be modified to give a more 

compact dynamic equation as, 
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It should be noted that the normalised eigenfunction series in Eq. (4.273a) must meet 

the orthogonality relations to correctly represent the mode shapes. It is also noted 

that the mode shapes are given in appendix B. As mentioned previously, this section 

gives the piezoelectric bimorph beam equations based on Rayleigh’s beam 

assumption as it considers the rotary inertia of the bimorph beam. The Euler-

Bernoulli bimorph beam can be formulated by ignoring the rotary inertia of the 

bimorph beam. In this case, the normalised mass from Eq. (4.284) can be used to 

ignore the rotary inertia of the bimorph beam at the first integration to give the 

typical Euler-Bernoulli bimorph beam condition. The orthonormalisations can be 



 
159 

provided by using Eq. (4.273a) and applying the orthogonality property of the 

mechanical dynamic equations as, 
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where rq is the Kronecker delta, defined as unity for rq   and zero for rq  . It 

should be noted that equations (4.284) and (4.285) represent specific orthogonality 

conditions based on the boundary conditions. The mechanical damping based on the 

Rayleigh’s principle can be reduced in terms of orthonormality as, 
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Equation (4.283) can now be reformulated by including Rayleigh’s damping 

coefficient according to orthogonality conditions as, 
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The second case of the electromechanical dynamic equation associated with 

boundary conditions represents the electromechanical piezoelectric bimorph under 

longitudinal extension. Here it is formulated using Eq. (4.90) corresponding to Eq. 

(4.273b) to give,
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Multiplying Eq. (4.287) with  xq̂  and integrating with respect to x  gives, 
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The boundary conditions from Eq. (4.91) can be further formulated by substituting 

Eq. (4.273b) as, 
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In terms of conditions implied the Eq. (4.289) and the orthogonality relations, the 

second term of Eq. (4.288) can be further manipulated by using the partial integral 

form as, 
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Substituting the boundary conditions from Eq. (4.289) into (4.290) and multiplying 

by  tur in order to meet the dynamic equation of the geometry bimorph problem 

gives,  
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Corresponding to Eq. (4.291), equation (4.288) can be reformulated as, 

   
                 tuLIxtuxIxuxxI baseq

A
tip

L

baseq
kA

L

rqr
kA     ˆdˆˆdˆˆˆ

0

,

0

,  

                         0ˆˆ
ˆˆ

ˆˆˆ ,
31

0

,
11 


  tvLRxu

x

x

x

x
CuLLI q

kG
L

r
qrkD

rqr
A

tip d
d

d

d

d
 .(4.292) 

Modifying Eq. (4.292) gives , 
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In this case, the second part of the normalised eigenfunction series in Eq. (4.273b) 

must meet the orthogonality relations in order to correctly specify the longitudinal 

mode shapes as formulated in appendix B.  Furthermore, the specific orthogonality 

condition to Eq. (4.293) can be established as,    
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where rq is the Kronecker delta, defined as unity for rq   and zero for rq  . The 

mechanical damping constant based on Rayleigh’s principle can be reduced in terms 

of orthonormality as, 
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Equation (4.293) can now be reformulated by including the Rayleigh’s damping 

coefficient based on the orthonormality conditions as, 
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The third case of the electromechanical dynamic equation represents the 

piezoelectric bimorph under electrical form. Here it is formulated as, 
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Substituting Eq. (4.273) into Eq. (4.298) and differentiating it with respect to time to 

obtain the parameter velocity and electrical current gives, 
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The equation (4.299) can be reformulated as, 

   
            0ˆˆ

11










tvRtvPtwPtuP LD

r

r

w

rr

r

u

r
 .          (4.300) 

In this case, the electromechanical piezoelectric bimorph beam based on Eqs. 

(4.286), (4.297) and (4.300) can be reformulated to give, 
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It is clear that equation (4.299) provides the closed-form of electromechanical 

dynamic equations with two input base motions and this equation can be further 

formulated using Laplace transformations.  

 

It is noted that because equation (4.301) has been normalised due to Eqs. (4.284), 
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Equations (4.229) and (4.301) appear to be similar to each other but have different 

sign and operation for some parameters. Equation (4.301) can be solved using 

Laplace transformations. In this case, the multi-mode electromechanical dynamic 

equations of the piezoelectric bimorph can be reduced as,   
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The characteristic polynomial form from Eqs. (4.302) to (4.304) can be expressed as, 
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Corresponding to Eqs. (4.302) to (4.304), the multi-mode transfer function of the 

longitudinal displacement related to the base input longitudinal acceleration can be 

obtained after simplifying as,  
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The multi-mode transfer function of longitudinal displacement output related to  the 

input base longitudinal acceleration based on the element position  x  and subsidiary 

variable  s  can be obtained after neglecting the input transverse excitation to give, 
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The multi-mode transfer function of the longitudinal displacement related to the base 

input transverse acceleration can be formulated as,  
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The transfer function between the input base transverse acceleration and longitudinal 

displacement output based on the element position  x  and subsidiary variable 

 s can be obtained as, 
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The multi-mode transfer function of the input base longitudinal acceleration related 

to the transverse displacement can be obtained as, 
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The transfer function of the generalised relative transverse displacement with respect 

to the input base longitudinal acceleration can be obtained in terms of the element 

position  x  and subsidiary variable  s  as, 

 
 
  

  0

221

2 



swsbase

rel

base

sus

s,xw
s,xH  



 
164 

 
     

     

     

   

     

   

     








































































m

r m

r u
r

u
r

u
r

u
r

u
r

m

r w
r

w
r

w
r

w
r

w
r

LD

m

r w
r

w
r

w
r

u
r

w
r

u
r

w
r

w
r

w
r

r

ss

PPs

ss

PPs
RsP

ss

QPPs

ss

x

1

1
221

22

1
22

22

2

ˆ

2

ˆ

2

ˆ

2

ˆ







.(4.311)

  

 

Corresponding to Eq. (4.303), the multi-mode transfer function representing the input 

base transverse acceleration with respect to transverse displacement output can be 

obtained, neglecting longitudinal excitation as, 
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In terms of applying Laplace transforms to Eq. (4.273a), the multi-mode transfer 

function from Eq. (4.312) can be modified in terms of the position of the 

piezoelectric element (x) as,  
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With the same method, the multi-mode transfer function between the input base 

longitudinal acceleration and electric voltage can be obtained as,  
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The multi-mode transfer function of electric voltage output with respect to the input 

base transverse acceleration can be obtained, neglecting longitudinal excitation, 
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With the same method, the multi-mode transfer function between the input base 

longitudinal acceleration and electric voltage can be obtained as,  
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The multi-mode transfer function of electric voltage output with respect to the input 

base transverse acceleration can be obtained, neglecting longitudinal excitation as, 
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The multi-mode transfer function of power harvesting due to input longitudinal 

acceleration can be derived as,  
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The multi-mode transfer function relating power harvesting to input transverse 

excitation can be derived as, 
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Corresponding to Eqs. (4.306) to (4.319), the frequency response function (FRF) can 

be formulated. In this case, the electromechanical dynamic equation of the 

piezoelectric bimorph can be formulated in matrix form FRF as,  
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The first multi-mode FRF represents longitudinal motion with respect to input 

motions. In the case where input transverse motion is ignored, FRF can be obtained 

from base-input longitudinal motion as it was formulated,  
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Equation (4.321) can be modified to obtain the FRF as a function of position of the 

piezoelectric element  x  and frequency  j  by transforming it back into the Ritz 

eigenfunction form as 
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The multi-mode FRF of the relative transfer function between the input base 

transverse acceleration and output longitudinal displacement can be obtained as,
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Equation (4.323) can be modified as a function of position of the piezoelectric 

element  x  and frequency  j  by transforming it back into the Ritz eigenfunction 

form to give, 
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The second multi-mode FRF is the transverse motion with respect to input motions. 

If base-input transverse motion is ignored, the FRF of transverse motion related to 

the base input longitudinal motion can be obtained as,  

 
 







js

tj
base

r

eu

jw
jH





221

     

     

     

   

     

   

      














































1
22

1
22

1
22

22

2

ˆ

2

ˆ

2

ˆ

2

1

r
u

r

u

r

u

r

u

r

u

r

r
w

r

w

r

w

r

w

r

w

r
LD

r
u

r

u

r

u

r

u

r

w

r

u

r

w

r

w

r

w

r

j

PPj

j

PPj
RPj

j

QPPj

j
















.(4.325) 

Equation (4.325) can be modified to obtain the FRF as a function of position of the 

piezoelectric element  x  and frequency  j  by transforming it back into the Ritz 

eigenfunction form to give, 
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The multi-mode FRF of transverse displacement with respect to input base transverse 

acceleration can be obtained as,  
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Equation (4.327) can be modified to obtain the FRF as a function of position of the 

piezoelectric element  x  and frequency  j  by transforming it back into the Ritz 

eigenfunction form to give, 
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The multi-mode FRF between electric voltage output and the input base longitudinal 

acceleration can be obtained as, 

  
 








js

tj

baseeu

jv
jH





231

 

     

   

     

   

     

   

     
























1
22

1
22

1
22

2

ˆ

2

ˆ

2

ˆ

r
u

r

u

r

u

r

u

r

u

r

r
w

r

w

r

w

r

w

r

w

r
LD

r
u

r

u

r

u

r

u

r

u

r

j

PPj

j

PPj
RPj

j

QPj














.  (4.329) 

The multi-mode FRF of electric voltage output related to the input base transverse 

acceleration can be derived, where the base input longitudinal acceleration is omitted 

to give,  
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The multi-mode FRF of electric current output related to the input base longitudinal 

excitation can be stated as, 
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The multi-mode FRF of the electric current output related to the input base transverse 

acceleration can be derived, where the base input longitudinal acceleration is omitted 

to give,  
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The multi-mode FRF of power harvesting related to the longitudinal acceleration can 

be derived as, 
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The multi-mode FRF of power harvesting related to the transverse acceleration can 

be derived as,  
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Differentiating Eq. (4.334) with respect to the load resistance and setting the 

differentiable power to zero gives the optimal load resistance. It is noted that the 

parameter LR represents per-unit load resistance loadR1 . The optimal resistance 

can be formulated as,   
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It is noted that the optimal multi-mode FRF of power harvesting related to the 

transverse acceleration can be obtained by substituting the optimal load resistance 

into Eq. (4.334).  

 

Corresponding to Eqs. (4.321), (4.323), equation (4.302) can be reduced in terms of 

the FRF as, 

       basebaser wjHujHtu   1211  , 
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tj

baser ewjHeujHtu   2

12

2

11  .     (4.336)

  

 

Modifying Eq. (4.336) in terms of any position along the piezoelectric beam gives, 

       tj
base

tj
baserel ewjxHeujxHtxu   2
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11 ,,,  .      (4.337) 

The multi-mode absolute longitudinal displacement can be formulated as, 

       tj
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The generalised time dependent relative transverse displacement in Eq. (4.303) can 

be modified corresponding to the Eqs. (4.325) and (4.327) as, 

       basebaser wjHujHtw   2221   , 
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21   .      (4.339)

  

 

Corresponding to Eq. (4.273a), the relative transverse displacement can be 

reformulated in terms of any position along the piezoelectric beam as, 
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baserel ewjxHeujxHtxw   2

22
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21 ,,,  .      (4.340) 

Corresponding to Eq. (4.340), the absolute transverse displacement can be reduced 

as,  
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The generalised electrical potential can be formulated as, 

   
    

      basebase wjHujHtv   3231  ,       (4.342) 

  
       tj
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tj

base ewjHeujHtv   2

32

2

31    .      (4.343) 

It should be noted that baseu  and basew  are input base longitudinal and transverse 

displacement excitations on the bimorph. Corresponding to Eqs. (4.338) and (4.341), 

the equations (4.322)  and (4.328) can be modified in terms of the multi-mode FRF 
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of the absolute displacements and velocities relating the input longitudinal and 

transverse displacement at any position along the bimorph respectively as, 
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It should be noted that equations (4.338), (4.341) and (4.344) are applicable for 

analysing the absolute dynamic responses and comparing the results measured using 

the Laser Doppler Vibrometer (LDV) at any position along the piezoelectric bimorph 

beam.  

 

4.8. Effect of Broadband Multi-Electromechanical Piezoelectric Bimorph 

Beam with the Multi-Frequency 

 

This section focuses on an array of piezoelectric bimorph beams with 

different geometries attached to the base structure under input excitation. The 

bimorph beams can be modelled using series and parallel connections as shown in 

Figure (4.6). The multi-bimorph beam can be modelled with different geometric 

structures (thickness, width and length) in order to widen the frequency resonance of 

each bimorph beam. This also depends on the connection types of the bimorph and 

various load resistances. The effect of the multi-bimorph beam underlies the   

optimization design throughout the frequency domain. To solve the broadband multi-

frequency response for the multi-bimorph beam, the previous formulations can be 

extended into the generalised multi- electromechanical dynamic equations associated 

with the electrical form of the piezoelectric system.  
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In this case, the previous equations from the normalised weak form of CEDRT in 

section 4.4 can be used as an example case to formulate the multi-mode frequency 

analysis of the broadband multi-frequency bimorph beam. The multi-mode equation 

can be reduced into the mathematical model of electromechanical differential 

equations for each bimorph beam. The generalised electromechanical piezoelectric 

dynamic equations can be formulated in the multi-mode system mr ....3,2,1 in 

terms of the number of bimorph beam ni ....3,2,1  (the broadband multi-frequency) 

as,          
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. 

. 

. 

                   twQtvPtwtwtw base
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2
2   

Because the array of bimorph beams are clamped on the base structure with only one 

input excitation, the variable  twbase
  will be the same for all electromechanical 

piezoelectric dynamic equations. The second form of the electromechanical 

piezoelectric dynamic equations can be formulated for the single mode system as,   

Figure 4.6 Multi-Electromechanical Piezoelectric Bimorph Beam with the Tip   

                 Masses : a) Parallel Connection, b) Series Connection 

a 

b 
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The equations (4.345) and (4.346) have been normalised in terms of the normalised 

Ritz eigenfunction series as given in previous derivations. The parameters  w

riP ,  w

riP̂ , 

 w

riQ , DiP  and loadR  can then be stated  as,  
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It should be noted that each bimorph beam can be connected either using the parallel 

or series connections and the external load resistance can be an external circuit to 

connect all the bimorph beams in terms of the Kirchhoff's voltage law (KVL) and 

Kirchhoff's current law (KCL). The parallel connection of the multi-

electromechanical bimorph beam can be stated as, 

       tvtv.....tvtv i  21         
,           tqtq....tqtq i   21 .          (4.347) 

The series connection of the multi-electromechanical bimorph beam can be stated as, 

       tvtv....tvtv i  21       ,          tqtq.....tqtq i   21  .     (4.348) 

The electrical voltage from the load resistance as shown in Figure (4.6) can be stated 

as  

    loadRtqtv  .                                      (4.349)   

4.8.1.  The solution form of parallel connection  

 

The multi-electromechanical piezoelectric bimorph beams can be modelled  

with parallel connection as shown in Figure (4.6a). In this case, three bimorph beams 

can be used to represent the broadband model sample having a single mode system.  

Once the single mode constitutive frequency equations are established, the multi-

mode can simply be formulated in the forthcoming section because the mathematical 

derivations given in the previous section can be viewed as the frame of reference in 

representing the normalised multi-mode frequency analysis. Corresponding to Eq. 
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(4.347), the first form of the electromechanical piezoelectric dynamic equations from 

Eq. (4.345) can stated in terms of the three bimorphs under parallel connection as, 
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It is noted that the variable  tv  must indicate the same form. The second form of the 

electromechanical piezoelectric dynamic equations can be formulated, where 

equation (4.347) can be applied to Eq. (4.346) to give,  
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As shown in Eqs. (4.348) and (4.349), each equation indicates identical variable  tv . 

Corresponding to Eq. (4.349), Equations (4.350) and (4.351) can be algebraically 

solved using Laplace transforms, reduced into matrix form giving the linear 

superposition of equations. The single mode of electrical voltage transfer function of 

the three broadband piezoelectric bimorph beams can be expressed as, 
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The transfer function of electrical current can also be formulated as,  
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The single mode electrical power transfer function related to the input transverse 

acceleration can be obtained as, 
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The single mode frequency response function (FRF) of electrical voltage can be 

formulated as,
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The single mode FRF of electrical current related to the input acceleration can be 

obtained to give, 
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The single mode FRF of electrical power can be formulated as, 
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In terms of the multi-mode system reduced from Eqs. (4.352) to (4.357), these 

equations can be extended into the generalised multi-mode frequency response 

functions of the broadband piezoelectric bimorph beams to give the electrical 

voltage. Coefficient r indicates the first mode until the m
th

 mode and coefficient i 

indicates the first bimorph beam until the n
th

 bimorph, which is formulated as, 
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The multi-mode FRF of electrical current related to the input transverse acceleration 

can be obtained as, 
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The multi-mode FRF of electrical power can also be formulated to give,  

 

   

     

 

     

2

1 1
22

2

1

1 1
22

2

2

2

1















































 

 

n

i

m

r
w

ri

w

ri

w

ri

w

ri
L

n

i

Di

n

i

m

r
w

ri

w

ri

w

ri

w

ri

w

ri

load

tj

base

j

sP
RPj

j

QPj

R

ew

jP













.     (4.360) 

4.8.2.  The solution form of series connection  

 

In this section, the multi-electromechanical piezoelectric bimorph beam under 

series connection is discussed. Three piezoelectric bimorph beams under input 

transverse acceleration can be used to model the single mode frequency analysis of 

electrical voltage, current and power. Corresponding to Eq. (4.348), the first 

generalised electromechanical dynamic equation for the single mode can be 

formulated from Eq. (4.345) to give, 
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The second generalised electromechanical dynamic equations for the single mode can 

also be formulated in terms of Eq. (4.346) to give, 
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Corresponding to Eq. (4.349), equations (4.361) and (4.362) can be further 

manipulated in terms of Laplace transforms to give the matrix electromechanical 

dynamic equations. The multi-output electrical voltage related to the input transverse 

acceleration can be stated into the transfer function based on a linear superposition of 

equations as,  
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The single mode transfer function of electrical current can be formulated as, 
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The single mode electrical power transfer function can be formulated as, 
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The single mode frequency response function (FRF) of electrical voltage can be 

further formulated as, 
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The single mode FRF of electrical current related to the input transverse acceleration 

can be obtained as, 
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The single mode FRF of electrical power can also be reduced as, 
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The previous equations represent the three electromechanical piezoelectric bimorph 

beams in terms of the single mode TFs and FRFs. In the next case, the broadband 

piezoelectric bimorph beams can be further formulated to give the generalised multi-

mode FRFs of each beam. The multi-mode FRFs can also be found by further 

manipulating Eqs. (4.345) and (4.346) in terms of Eqs. (4.366), (4.367) and (4.368). 

The multi-mode FRF of the broadband electrical voltage can be formulated to give, 
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where coefficient r indicates the first mode until the m
th

 mode and coefficient i 

indicates the first bimorph beam until the n
th

 bimorph. The multi-mode FRF of the 

broadband electrical current related to the input transverse acceleration can be 

formulated as, 
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The multi-mode FRF of the broadband electrical power relating to the input 

transverse acceleration can be formulated as, 
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4.9. Closing Remark 

 

This chapter has considered novel analytical methods of modelling the 

electromechanical dynamic equations for one and two input base excitations of the 

piezoelectric bimorph beam with tip mass using the Rayleigh and Euler-Bernoulli’s 

beam assumptions. As mentioned previously, the Rayleigh piezoelectric bimorph 

beam only considers the second mass moment of inertia (rotary) of the bimorph 

where this can also be reduced to the Euler-Bernoulli’s piezoelectric bimorph beam 

by ignoring the rotary inertia of bimorph beam. Therefore, the electromechanical 

piezoelectric bimorph beam was formulated according to the Rayleigh beam 

assumption. Moreover, this chapter also discussed the strong form of 

electromechanical dynamic equations using Hamiltonian’s principle under series and 

parallel connections. The weak form reduced from the strong form method represents 

the analytical approach developed using the Ritz method whereas the closed form 

boundary value method reduced from the strong form method can be further 

formulated using the direct analytical solution with orthonormalisation by 



 
180 

introducing the space- and time-dependent eigenfunction series into boundary 

conditions. Moreover, the electromechanical closed-form method can give accurate 

results because of its convergence for the chosen frequency response mode of 

interest. In comparison with the electromechanical weak form solution based on the 

Ritz analytical approach method, the typical mode shapes or space-independent 

eigenfunction forms and number of modes must be chosen correctly in order to meet 

convergence criteria and give results similar to the closed-form method. For 

example, some FRFs results from the analytical weak form of piezoelectric bimorph 

with tip mass as discussed at Chapter 6 plotted the first mode but were iterated using 

three modes of interest to give accurate results. In this case, the weak form was 

chosen, having the same typical space-independent eigenfunctions (appendices A 

and B) as for the closed-form to reduce computation time and number of iterations to 

meet the speedy convergence criteria. The effect of strain field due to transverse 

bending and longitudinal extension affects not only the mechanical moment and 

force of the interlayer (all layers of bimorph) but also the electrical moment and 

force of the piezoelectric layers (top and bottom layers of bimorph). Concerning the 

electrical moment and force, the backward and forward piezoelectric couplings due 

to the transverse and longitudinal forms can also be formulated, where these give the 

electromechanical coupling of the piezoelectric layers. Furthermore, the weak form 

of the electromechanical dynamic equations were formulated using the 

orthonormality conditions to obtain the coupled electromechanical dynamic response 

of transverse form (CEDRT), coupled electromechanical dynamic response of 

longitudinal form (CEDRL) and the coupled electromechanical dynamic response of 

transverse-longitudinal form (CEDRTL) to give the multi-mode transfer functions 

(TRs) and frequency response functions (FRFs). The closed form of the 

electromechanical dynamic equations in terms of orthonormality conditions is also 

formulated according to the CEDRTL. The broadband piezoelectric bimorph beam 

based on the CEDRT was also formulated to give the single- and multi-mode 

frequency analysis of the bimorph beams. At the same time, the multi-frequency 

broadband piezoelectric bimorph beam equations were also provided. In the next 

section, the parametric case study based on the electromechanical dynamic equation 

of the Euler-Bernoulli piezoelectric bimorph beam with the tip mass will be 

discussed. 
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This chapter investigates parametric behaviour of the electromechanical piezoelectric 

bimorph beam with input base acceleration and variable load resistance, thickness 

and length. The electromechanical frequency responses of the bimorph utilized for 

the study include the tip displacement, tip velocity, electrical voltage and power. The 

normalised weak and closed forms of electromechanical dynamic response of the 

transverse-longitudinal equations (CEDRTL), which were derived in chapter 4, were 

applied in this chapter to analyse the series and parallel connections of the 

piezoelectric bimorph beam. The broadband multi-electromechanical piezoelectric 

bimorph beam using the weak form of CEDRT was also modelled to represent the 

optimised multi-frequency electrical voltage, current and power.  

 

5.1. The Piezoelectric Bimorph Properties  

 

 The choice of material properties and geometrical structure were found to be 

essential aspects for optimising the response of the cantilevered piezoelectric 

bimorph beam. The list of properties of the bimorph can be found in Table 5.1 where 

the piezoelectric property was based on the PZT PSI-5A4E element with the centre 

brass shim from Piezo Systems, INC. The effect of rotary inertia of the bimorph was 

ignored because the Euler-Bernoulli beam model was considered in this chapter. A 

tip mass and its rotary inertia located on the tip of the bimorph were also considered 

in terms of its geometry and material properties. The geometry of the tip mass was 

very small as given in Figure 5.1. The zero-th mass moment of inertia and the second 

mass moment of inertia (rotary inertia) at the centre of tip end of bimorph can be 

formulated as,
    

 

 
CHAPTER  

5 

 

Parametric Case Study of the Electromechanical 
Piezoelectric Bimorph Beams  
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It should be noted that variables hp and hs indicate the thickness of the layers of the 

piezoelectric bimorph and substructure (brass shim in the middle layer).  

 

5.2.  Electromechanical Dynamic Response of Piezoelectric Bimorph under  

      Parallel Connection 

 

 In this section, the piezoelectric bimorph with a tip mass will be discussed 

using the multi-mode FRFs and variable geometry and load resistance. In the next 

section, the mechanical damping ratios and load resistances need to be determined. 

The analysis of the piezoelectric bimorph beams under parallel and series 

connections were based on the coupled electrical dynamic responses from the 

transverse bending and longitudinal forms with polarity-induced electrical fields and 

internal capacitance. The transverse base acceleration input was used to excite the 

bimorph providing multi-output electrical dynamic responses. It should be noted that 

all results in the forthcoming sections were plotted according to the suggested 

formulations given previously.  

  

Table 5.1 Characteristic properties of the piezoelectric bimorph system. 

Material  properties Piezoelectric    Brass   Geometry properties  Piezoelectric  Brass 

Young’s modulus , 11Q   (GPa) 66 105 Length , L (mm) 30.1   30.1 

Density,  ρ   (kg/m
3
) 7800 9000 Thickness, h (mm) 0.15 (each) 0.13 

Piezoelectric constant, d31 (pm/V) -190 - Width, b (mm) 6.4 6.4 

Permittivity, T

33  (F/m) 1800 o  - First coefficient 
 A
tipI (kg)

†
 7.9872

410         

permittivity of free space, o (pF/m) 8.854 - Third coefficient
 C
tipI (kg m

2
)

†
       2.5103

910  

† Calculated according to the geometry and material properties of tip mass and the rotary inertia at centre of gravity of tip mass  

    coincident with the end of  bimorph length as shown in Figure 5.1 where mm2mm4  ah,ol and mm46.ab  (width).  

    First and third coefficients refer to zeroth and second mass moment of inertias respectively.  

Base 

Support

hp
hs

lo
ha

Tip 

Mass

L

 
Figure 5.1. Geometry of the Bimorph and Tip Mass 
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5.2.1. The Bimorph Multi-mode FRFs of Tip Absolute Dynamic Displacement  

 

 The trend of multi-mode FRFs of tip absolute dynamic displacement based on 

variable load resistance was simulated from 0 to 3000 Hz. In this case, the first three 

modes were shown with chosen resistor values of 500 Ω, 4 kΩ, 20 kΩ, 40 kΩ, 90 

kΩ, 400 kΩ, 3 MΩ. The results of resonance frequencies and amplitudes were only 

calculated using these load resistor values. All results depended on the properties of 

the bimorph, boundary geometry, input base acceleration, tip mass and the type of 

circuit connection. It should be noted that the base input transverse acceleration onto 

the cantilevered piezoelectric beam can be considered as a moving static support 

base to create the dynamic load base due to the product of acceleration and 

generalized mass of the bimorph and tip mass. This implies that the effect of the base 

dynamic motion creates the relative displacement field with respect to the absolute 

dynamic displacement along the piezoelectric beam. In this section, the absolute tip 

dynamic displacement, which was considered as the total tip dynamic displacement 

was applied to plot the first three FRFs. It should be noted that the power harvesting 

results reported here represent meter per unit square of the input base transverse 

acceleration. The input base transverse acceleration on the bimorph was chosen as 

9.81 m/s
2
 which is equivalent to 1 g (1 g = gravitational acceleration 9.81 m/s

2
). The 

multi-mode FRFs of tip relative dynamic displacement can be reformulated 

according to Eq. (4.213) in chapter 4 as, 
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The absolute dynamic displacement can then be reformulated as   

   

     


 jxHjxH disp ,
1

,ˆ
22222   .           (5.3) 

It is noted that equation (5.3), reduced from the weak form of CERDTL, represents 

the sample formulation of the multi-mode FRFs which can be used to analyse any 

position  x  and frequency  j  along the piezoelectric beam. In this case, the tip 

absolute dynamic displacement can be modeled by substituting x with L. The closed 
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form of CERDTL was not shown here but was given in chapter 4. It is important to 

notice that the mechanical damping ratios need to be determined theoretically.  It is 

convenient to determine the first two damping ratios based on the two specified 

frequencies around the first two modes and then determine the Rayleigh damping 

factors mathematically. The Rayleigh damping factors can be formulated, Clough 

and Penzien [101] as, 

          uwn
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Once equation (5.4) results were calculated, the mechanical damping ratio for higher 

modes can be stated as,  

         
22

21 r

n

r

n
n

r

aa 


   .                      (5.5) 

It should be noted that equations (5.2) and (5.3) require the FRFs of the coupled  

transverse and longitudinal response forms. This indicates that two initial mechanical 

damping ratios for transverse form need to be determined around two fundamental 

frequencies based on the transverse bending. In similar way, two initial mechanical 

damping ratios for longitudinal form can also be chosen around two fundamental 

frequencies. At this stage, two initial mechanical damping ratios for transverse form  

0098.01 w  and 011.02 w  together with the first two modes of  Hz 94.47
1
w  

and Hz967.56ω
2
w can be substituted into Eq. (5.4) to give Rayleigh damping 

factors of  1/saw 6646.11   and s.a -w 5

2 1009592  , respectively. The third damping 

ratio for the third mode can be obtained automatically after substituting the damping 

factors into Eq. (5.4) to give 026.03 w . In a similar way, the two initial damping 

ratios due to the longitudinal form can be specified as 0201 .u   and 02102 .u  , 

resulting  in the third damping ratio obtained from Eq. (5.5), 0213.03 u . It should 

be noted that the damping ratios due to longitudinal form only gave small effect to 

modes around the fundamental bending modes. However, this effect cannot be 

ignored when analysing the experimental study. In this case, although only the input 

base transverse motion was applied to the cantilevered piezoelectric beam, the effect 

of electric-strain fields due to transverse bending and longitudinal forms and 

piezoelectric couplings still affected the bimorph. In such situation, equation (5.2) as 

derived in detail in chapter 4 can be applied to this chapter. Moreover, it is important 
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to notice here that the damping ratios were chosen according to the short circuit of 

the frequency modes by setting the load resistance around 500 Ω. It is convenient to 

investigate the mechanical damping ratios under frequency response with very low 

electrical voltage due to the low load resistance connected to the piezoelectric. This 

means that the piezoelectric bimorph tended to show a pure mechanical form where 

the mechanical damping ratios were determined. Once the mechanical damping 

ratios were determined, the multi-mode FRFs with varying load resistances can be 

modelled. Although, the mechanical damping ratios can be determined 

mathematically from Eq. (5.5) in terms of Eq. (5.4), these may not fit accurately 

when comparing the FRFs with the experimental study. In such a situation, it was 

more important to specify the mechanical damping ratios based on the experimental 

study. 

 

As can be seen from Figure 5.2a, the FRF showing the first three modes of tip 

absolute dynamic displacement under varying load resistances was given as a result 

of the comparison between the weak and closed forms of CERDTL. The results of 

dynamic displacement amplitudes along the frequency domain seem to shift due to 

varying load resistances as shown in the enlarged view of the first mode in Figure 

5.2b. The highest displacements referred to the short and open circuits of resonance 

frequencies at the first mode where the frequency of 94.47 Hz with the short circuit 

load resistance of 500 Ω  shifted to the frequency of 98.60 Hz with the open circuit 

load resistance of 3 MΩ to yield the displacement magnitudes of 1.46 mm and 1.35 

mm, respectively. The tip absolute transverse displacement at the free end of the 

cantilevered piezoelectric bimorph beam with the load resistances of 20 kΩ and 90 

kΩ indicated amplitudes of 0.552 mm at the resonance of 92.25 Hz and 0.550 mm at 

the resonance of 97.88 Hz, respectively. Moreover, the second mode FRF seemed to 

give different trend compared with the first mode where the load resistances of 20 

kΩ, 40 kΩ, 90 kΩ, 400 kΩ and 3 MΩ were located at the same resonance frequency 

of 978.5 Hz as shown in Figure 5.2c. The open circuit resonance frequency still 

showed the highest displacement amplitude compared with other load resistances. 

Moreover, the anti-resonances slightly shifted from between 2700 Hz and 2900 Hz 

after the third mode was formed. It should be noted that the higher resonances such 

as the third mode and so on tended to give very low displacement amplitude.  
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Another important aspect mentioned previously was that the chosen mechanical 

damping ratios also affected the resonance amplitude response.  
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5.2.2. The Bimorph Multi-mode FRFs of Tip Absolute Velocity 

 

 In this section, the first three FRFs of tip absolute velocity of the cantilevered 

piezoelectric bimorph were investigated under varying load resistances. As 

considered here, the tip absolute velocity was modelled due to the transverse velocity 

of the base support and relative velocity of the bimorph as formulated from Eq. 

(4.227) in chapter 4, 

b b 

a 

80 85 90 95 100 105

10
-3

Frequency (Hz)

 

 

500 Ohms

4 kOhms

20 kOhms

40 kOhms

90 kOhms

400 kOhms

3 MOhms

Figure 5.2.  FRFs of tip absolute Dynamic Displacement with the Weak form (Solid line) and Closed 

form  (Round dot)  : a) The First three modes, b) First  mode and c) Second Mode  
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     


 jxHj
j

jxH vel ,
1

,ˆ
2222   .         (5.6) 

The relative velocity of the bimorph varied from the base to tip. The relative velocity 

at the base was zero because the base support was the input excitation point for the 

bimorph, as shown in chapter 4. This indicates that the absolute velocity at the base 

support was equal with the input transverse base velocity. It should be noted that 

equation (5.6) needs to be multiplied with 9.81 m/s
2
 as it indicates the input base 

acceleration onto the bimorph and substitute  x with L and frequency from 0-3000 Hz 

to model the tip absolute velocity.  

 

As can be seen in Figure 5.3a, the trend of the first three FRFs of tip velocity of the 

bimorph under varying load resistances tended to show consistency with each other 

where the first resonance frequency gave very high amplitude followed by the lower 

amplitude response of the second and third resonances. Figure 5.3a also showed the 

good agreement between the weak and closed forms of CERDTL. It is important to 

note here that the amplitude of the FRFs were affected not only due to the input 

transverse base acceleration and damping ratio but also due to the applied load 

resistances of the piezoelectric bimorph. The effect of load resistances on the 

electromechanical dynamic equations was viewed as resistive shunt damping 

behaviour. At this stage, the trend of the first mode can be seen on the enlarged view 

in Figure 5.3b where the frequency shift also occurred between the short and open 

circuits. The resonance frequencies of 94.47 Hz for short circuit and 98.60 Hz for 

open circuit around first mode gave high velocity amplitudes of 0.87 m/s.g and 0.84 

m/s.g, respectively. Moreover, the absolute tip velocity with the load resistances of 

20 kΩ and 90 kΩ indicated amplitudes of 0.33 m/s.g at the resonances of 92.25 Hz 

and 0.34  m/s.g at the resonance of 97.88 Hz, respectively as shown in the enlarged 

view of Figure 5.3a. The second mode results as given in Figure 5.3c appeared to 

give constant resonance frequency with different amplitudes at the load resistances of 

20 kΩ, 40 kΩ, 90 kΩ, 400 kΩ and 3 MΩ. The only resonance shift occurred at the 

lower load resistances of 500 Ω and 4 kΩ. The FRFs of tip absolute velocity at the 

third mode tended to overlap each other with the predominant load resistances. The 

velocity response trends were observed to be similar in form with the results obtained 

from the tip absolute dynamic displacement. This was worthwhile to clarify as it is 

known that the velocity response obtained in Eq. (5.6) was simply obtained from the 
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first derivative of the FRF displacement field. However, when analyzing the dynamic 

time dependent displacement and velocity, the trend of velocity is 90
o
 out of phase 

with respect to displacement. However this still implies the same natural frequency 

where this situation can be proved as,        

        t,xwjt,xw absabs   ,                  (5.7) 

where 

                       tjWjxHtjUjxHtjWtxw bbbabs  exp,exp,exp, 2

22

2

21   . (5.8) 
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Figure 5.3  FRFs of tip absolute Dynamic Velocity with the Weak form (Solid line) and Closed  

                  form (Round dot) : a) The First three modes , b) First mode and c) Second Mode  

950 955 960 965 970 975 980 985 990 995 1000
10

-3

10
-2

Frequency (Hz)

F
R

F
s
 o

f 
T

ip
 A

b
s
o
lu

te
 T

ra
n
s
v
e
rs

e
 D

y
n
a
m

ic
V

e
lo

c
it
y
 P

e
r 

u
n
it
 T

ra
n
s
v
e
rs

e
 A

c
c
e
le

ra
ti
o
n
 (

m
/s

.g
)

c 

a 



 
189 

5.2.3. The Bimorph Multi-mode FRFs of Electrical Voltage  

 

The first three mode FRFs of electrical voltage can be reformulated according 

with Eq. (4.215) in chapter 4 as, 
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 .  (5.9) 

As can be seen from Figure 5.4a, the first three mode FRFs of electrical voltage of 

the bimorph can be analysed with varying resistances as per the previous section. It is 

noted that when the resonance frequency approached the short circuit value, the load 

resistance approached zero 0loadR . Meanwhile, when the resonance frequency 

approached the open circuit value, the load resistance approached infinity loadR . 

At this point, it was noted that the fundamental frequency of the first mode varied 

with the resistance values where the short circuit resistance gave the lowest 

resonance frequency and open circuit resistance gave the highest resonance 

frequency. With varying load resistance, the electrical voltage amplitude also varied 

as shown in Figures 5.4b. The FRFs under varying resistance tend to show an 

different pattern compared with previous trends from the FRFs of the tip 

displacement and velocity. Another important aspect can also be seen from Figure 

5.4b where the electrical voltage increased with increasing load resistances around 

the first mode. Again, the FRFs of electrical voltage at the second mode as shown 

from Figure 5.4c tended to give the same resonance with different amplitudes for the 

majority of load resistances between 20 kΩ, 40 kΩ, 90 kΩ, 400 kΩ and 3 MΩ.  

Again, the trend of multi-mode FRFs under the weak and closed forms of CEDRTL 

indicated very good agreement. The third mode of electrical voltage also showed 

similar behaviour but the amplitudes under the majority of load resistances seemed to 

overlap each other.    
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Figure 5.4.  FRFs of Electrical Voltage with the Weak form (Solid line) and Closed form (Round dot) : a)   

                    The first three modes, b) First  mode and c) Second mode  
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5.2.4. The Bimorph Multi-mode FRFs of Electrical Current  

 

The first three mode FRFs of electrical current can be reformulated according 

to Eq. (4.216) in chapter 4 as, 
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.   (5.10) 

In this section, the first three mode FRFs of electrical current are shown in Figure 5.5 

for the variable load resistance. The trend of the FRFs of electrical current seemed to 

give the opposite pattern with the FRFs of electrical voltage where the short and 

open circuits of load resistances seemed to give the highest and lowest amplitudes, 

respectively. For example, the electrical current at the first mode decreased with 

increasing load resistances followed by increasing resonance frequencies from the 

short to open circuits as shown in Figure 5.5b. Again, the FRFs of electrical current 

at the second mode with the load resistances of 20 kΩ, 40 kΩ, 20 kΩ, 90 kΩ, 400 kΩ 

and 3 MΩ indicated the same variations in resonance frequency with different 

amplitudes as shown in Figure 5.5c where the trend of amplitudes again showed the 

opposite behaviour with the electrical voltage. Similar behaviour was also found at 

the third mode. Again, the comparison between the multi-mode FRFs under the weak 

and closed forms of CEDRTL showed good agreement as seen from the enlarged 

view of Figure 5.5a. 
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5.2.5. The Bimorph Multi-mode FRFs of Electrical Power  

 

 In this section, the first three modes of FRFs for power harvesting under input 

base transverse acceleration can be formulated as, 
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.(5.11)     

The equation (5.11) has been derived from chapter 4 where this formulation was 

applied to analyse the trend of power harvesting with variable load resistance. 

Equation (5.11) represents the weak form of the CEDRTL. The closed form of the 

power harvesting was not given here but was formulated in chapter 4. The power 

harvesting result can be seen from Figure 5.6a, where the trend from the weak and 

closed forms tended to give very good agreement as shown from the enlarged view 

in Figures 5.6b and 5.6c. In this case, Figure 5.6a showed the influence of the 

transverse strain field and the piezoelectric coupling effects for the cantilevered 

piezoelectric bimorph beam. The cantilevered piezoelectric bimorph beam has a 

predominant transverse bending strain where the input transverse acceleration was 

exerted on the base structure of the piezoelectric bimorph to create the electric-strain 

field to give the power harvesting at the dominant resonance frequencies starting 

from 94.47Hz to 98.60 Hz. It should be noted that these resonance frequencies 

c 

Figure 5.5 FRFs of Electrical Current with the Weak form (Solid line) and Closed form (Round dot) : 

                  a)  The First three modes, b) First  mode and c) Second mode  

b 



 
193 

indicated the short and open circuits with the load resistances of 500 Ω and 3 MΩ, 

respectively.   

 

Moreover, the short and open circuit response indicated the lowest value of power 

amplitudes. The resonance frequencies shown in Figure 5.6b seem to shift as the load 

resistance changed. This indicates that the load resistance affects the power 

harvesting response as a function of frequency. The trend of power amplitudes gave 

the symmetrical pattern of response at the first mode. Another important aspect 

which can be noticed here is that the trend of power harvesting depends not only on 

varying resistances but also on the chosen properties of the piezoelectric beam and 

the geometry of the bimorph model. For example, even though the geometry of the 

bimorph was chosen here, changes in the system properties like permittivity and 

piezoelectric constants would give different power harvesting results. The chosen 

load resistances need to be investigated first to provide a symmetrical frequency 

response at the first mode. The reason to investigate the symmetrical power 

harvesting frequency response was to analyse the short and open circuits response as 

a function of load resistance and to optimise the amplitude. It was also noted that 

once the symmetrical pattern was obtained at the first mode, the second and third 

modes and so on would not necessarily give the monotonic symmetrical pattern, as 

the trend of the power harvesting at these modes tend to give the same resonance 

frequency with the higher load resistances approaching open circuit. This means that 

the resonance frequencies above the first resonance do not always shift. For example, 

the load resistances of 20 kΩ, 40 kΩ, 90 kΩ, 400 kΩ and 3 MΩ for the second and 

third modes predominantly indicated the same resonance frequency. The open circuit 

load resistance of 3 MΩ tended to give the lowest amplitude response for the first 

three modes whereas the amplitude of short circuit load resistance of 500 Ω gave the 

lowest first mode response that increased for the second and third modes as load 

resistance approached the open circuit.  
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5.2.6.   Geometrical Parametric Analysis of the Bimorph for Generating  

           Electrical Power 

 

This section considers variable geometry of the bimorph and its affect on the 

response using parallel connection. The electrical power with varying load resistance 

was modelled around the first mode. The focus of the geometrical case study was 

based on changing the piezoelectric element thickness and length. The power 

harvesting amplitude around the first resonance frequency gave the trend based on 

the chosen varying resistances as shown from Figure 5.7. The power harvesting 

around the resonance frequency at the load resistance of 500 Ω tended to increase 

80 85 90 95 100 105

10
-3

Frequency (Hz)

 

 

500 Ohms

4 kOhms

20 kOhms

40 kOhms

90 kOhms

400 kOhms

3 MOhms

Figure 5.6 FRFs of Electrical Power with the Weak form (Solid line) and Closed form (Round dot) :  

                  a) The first three modes, b) First mode and c) Second mode  

b 
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with the increasing bimorph length and decreasing piezoelectric thickness as shown 

from Figure 5.7b. Although, the load resistance represents a very low value, the trend 

of power harvesting still increased slightly with the differences between maximum 

and minimum values being 49.4 μW/g
2
. It should be noted that the minimum power 

of 0.326 mW/g
2
 was located with the minimum bimorph length of 28.7 mm and the 

maximum piezoelectric thickness of 0.23 mm with the resonance frequency at 154.5 

Hz whereas the maximum power of 0.611 mW/g
2
 was located at the maximum 

bimorph length of 32.2 mm and the minimum piezoelectric thickness at 0.11 mm 

with the resonance frequency of 65.89 Hz. As expected, the resonance frequencies 

shifted with the change of geometrical bimorph parameters and also the variances of 

load resistance. It is noted that the effect of the change of geometrical parameters can 

affect the piezoelectric constants and internal capacitances as well as the inertia 

dynamic load onto the bimorph beam due to the product between the input base 

acceleration and the generalised inertia mass of bimorph including the tip mass. It 

should be noted that using the same input acceleration on the bimorph with different 

geometrical parameters, results in very different power amplitudes and also different 

resonance frequencies. The short and open circuit resonance frequencies, obviously, 

seemed to give the lowest value of power as shown in Figures 5.7b and 5.7d. 

  

The overall results of power amplitudes with varying load resistance can also be seen 

in Figure 5.7o based on the variation of bimorph length and thickness. The short and 

open circuit resonance response still showed very low values of power amplitudes 

and also seemed to be close with each other. The power amplitudes from Figures 

5.7p,q seemed to overlap each other for the coupled resistances, for example; the 

coupled power amplitudes with 4 kΩ and 400 kΩ ,  20 kΩ and 90 kΩ were close to 

each other and also gave an identical power amplitude trend with the different 

resonance frequencies. It should be noticed that the FRFs of power amplitude from 

Figure 5.6 was based on the constant geometrical bimorph with 30.1 mm length and 

0.15 mm thickness for the piezoelectric element. The results of power amplitudes 

from the constant geometrical bimorph also showed similar results as given from 

Figure 5.7. For example, as found at the bimorph length of 30.1 mm and 

piezoelectric thickness of 0.15 mm. The important aspect found here was that there 

were significant changes of the power amplitudes with the change of geometrical 

properties compared with the previous result. As shown in Figure 5.7, the power can 
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be increased by over 100 % by changing the thickness and length of the bimorph 

element. The trend of power amplitudes was affected not only from the load 

resistances but also from the variations of geometrical parameters of the bimorph. In 

this case, the optimal design of the bimorph represent an important aspect of the 

power harvesting.  
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Figure 5.7.  First Mode of power harvesting based on the geometrical parametric and Resonance frequency 

cases with the weak form : a, b)  500 Ω ; c,d) 4 kΩ ; e,f) 20 kΩ ; g,h) 40 kΩ ; i,j) 90 kΩ ; k,l) 400 kΩ ;  m,n) 3 

MΩ ; o) Variances of load resistance ;  p) Combined between 4 kΩ  and 400 kΩ ; q) combined between 20 

kΩ and 90 kΩ  
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q 



 
199 

5.3.  Electromechanical Dynamic Response of Piezoelectric Bimorph under  

       Series Connection 

 

 In this section, the multi-mode FRFs and parametric case studies of the 

piezoelectric bimorph with a tip mass are discussed as a function of load resistance. 

The mechanical damping ratios and load resistance were chosen similar to the values 

used for the parallel connection. The analysis of the piezoelectric bimorph under 

series connection was based on the weak and closed forms of the coupling 

electromechanical dynamic responses of the transverse-longitudinal form 

(CEDRTL). The trends obtained in this section were based on the formulation given 

in the previous chapter where the parameters of the piezoelectric couplings and 

capacitances were different for each connection type on the bimorph as given in 

chapter 4. Moreover, the comparison between the series and parallel connections 

were discussed according to the multi-mode FRFs of the bimorph.  

 

5.3.1. The Bimorph Multi-mode FRFs of Tip Absolute Dynamic Displacement  

 

 The trend of the first three FRFs of tip absolute dynamic displacement with 

varying load resistance was simulated according to the frequencies ranging from 0 to 

3000 Hz. The load resistances of 500 Ω, 4 kΩ, 20 kΩ, 40kΩ, 90kΩ, 400kΩ, 3MΩ 

were the same values as used for the parallel connection. The tip absolute dynamic 

displacement can be considered to model the absolute tip transverse dynamic 

displacement as formulated previously. It should be noted that the results of the tip 

absolute dynamic displacement reported here represent meter per unit input base 

transverse acceleration where the input base transverse acceleration on the bimorph 

was 9.81 m/s
2
 which is equivalent to 1 g (1 g = gravitational acceleration 9.81 m/s

2
). 

As mentioned previously, the mechanical damping ratios were chosen according to 

the suggested formulations where the damping ratios should be based on the 

experimental study as discussed in chapter 6. Moreover, the mechanical damping 

ratios determined at the previous section were also used in this section where the 

results of FRFs of the electromechanical dynamic system can be used for comparison 

between the series and parallel connections.  

 

As can be seen from Figure 5.8a, there has been a slight change of trend at the first 

mode series connection compared with the parallel connection based on the tip 



 
200 

absolute dynamic displacement under varying load resistances. The amplitudes 

around the range of resonance frequencies at the series connection with the lower 

load resistances of 500Ω, 4 kΩ, 20 kΩ and 40 kΩ showed a slight increase compared 

with the parallel connection as shown in Figure 5.2b. However, for the higher load 

resistances of 90 kΩ, 400 kΩ and 3 MΩ with the series connection, the amplitudes 

tended to give a slight decrease around the resonance frequencies compared with the 

parallel connection. In that case, Figures 5.9a,b clearly showed the different 

amplitude trends between the series and parallel connection short and open circuit 

resonance frequencies as the load resistance varies. The trend of displacement under 

the short circuit resonance frequency with the series connection gave a slightly 

higher result compared with the parallel connection whereas the trend of 

displacement under the open circuit resonance frequency with the parallel connection 

gave a slightly higher value compared with the series connection. The reason for this 

behaviour was that the effects of piezoelectric couplings due to the transverse and 

longitudinal forms contributed to change in the electromechanical damping and also 

stiffness. The internal capacitance of the piezoelectric material also contributed as 

electromechanical damping and the load resistance connecting to the bimorph was 

viewed as the resistive shunt damping. The electromechanical damping and stiffness 

and load resistance affects the pure mechanical behaviour of the bimorph resulting in 

the shift of the natural frequency and the amplitude response. It is important to note 

here that short or open circuit resonance frequency have different physical meaning 

with short or open circuit load resistance as discussed previous section. For example, 

the short circuit resonance frequency versus variable load resistance as given in Fig. 

5.9a was plotted according to single resonance frequency of short circuit load 

resistance having off-resonances with different amplitudes for other load resistance.        

 

The results of dynamic displacement amplitudes as a function of the frequency 

seemed to shift due to varying load resistances as shown in the enlarged view of the 

first mode in Figure 5.8b. It should be noticed here that with the same load 

resistances as used for the parallel connections, the series connection resonance 

frequencies shifted with different amounts. The lowest displacement amplitude at the 

first mode corresponded to the short circuit resonance frequency of 94.48 Hz with 

load resistance of 500 Ω and then shifted to the open circuit resonance frequency of 

98.62 Hz with load resistance of 3 MΩ. As can be seen from the two Figures 5.8b 
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and 5.2b, both the resonance frequencies for the parallel and series connections 

tended to give very low amplitudes for both the short and open circuits. Moreover, 

the second mode of the FRF tended to indicate the dominant trend of frequency 

amplitudes as shown in Figure 5.8c where the majority of load resistances of 40 kΩ, 

90 kΩ, 400 kΩ and 3 MΩ mostly tended to give the same resonance of 978.5 Hz 

with different amplitudes.  
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Figure 5.8 FRFs of tip absolute Dynamic Displacements with the Weak form (Solid line) and 

                  Closed form (Round dot): a) The first three modes, b) First mode and c) Second mode  
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5.3.2. The Bimorph Multi-mode FRFs of Tip Absolute Velocity  

 

The first FRFs of tip absolute velocity of the cantilevered piezoelectric 

bimorph under series connection were calculated with variable load resistance. As 

considered previously, the FRFs of tip absolute velocity was still used according to 

the suggested formulation with the coefficients of piezoelectric coupling and 

capacitance having different values. The trend of the first three modes of tip velocity 

FRFs of the bimorph tended to give similar results with varying load resistances as 

shown in Figure 5.10a.  The tip velocity at the fundamental resonance frequency for 

the series connection gave a slightly different trend compared with the parallel 

connection results as shown in Figures 5.10b and 5.3b, respectively. This indicates 

that with the same load resistances connected to the bimorph either under parallel or 

Figure 5.9 FRFs of tip absolute Dynamic Displacements under the series and parallel  

                 connections with the Weak form : a) Short Circuit, b) Open Circuit 

a 

b 
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series connection, the amplitudes of tip velocity on the bimorph would not 

necessarily give the same results and monotonic trends.  

 

At this stage, the shifting resonance frequency at the first mode also occurred clearly 

from short to open circuit load resistance as shown in the enlarged view in Figure 

5.10b. The resonance frequency of 94.47 Hz for short circuit and 98.60 Hz for open 

circuit gave very high velocity amplitudes of 0.91 m/s.g and 0.72 m/s.g, respectively. 

As shown in Figures 5.11a and 5.11b, the trend of velocity under the short circuit 

resonance frequency with the series connection gave a slightly higher result 

compared with the parallel connection whereas the trend of velocity under the open 

circuit resonance frequency with the parallel connection gave a slightly higher value 

compared with the series connection. Tip absolute velocity results for other 

frequencies can also be shown to have similar behaviour when comparing between 

the series and parallel connections. 
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Figure 5.10.  FRFs of tip absolute Dynamic velocity with the Weak form (Solid line) and   

                    Closed form (Round dot): a) The First three modes, b) First mode and c) Second mode  
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5.3.3. The Bimorph Multi-mode FRFs of Electrical Voltage  

 

 In this section, the first three modes of electrical voltage FRFs of the 

bimorph were analysed according to varying load resistances as shown in Figure 

5.12a where the weak and closed forms of CEDRTL seemed to overlap each other as 

shown clearly from the enlarged view from Figures 5.12b,c. The amplitude of short 

circuit resonance frequency with the load resistance of 500 Ω gave the lowest voltage 

where the amplitude of open circuit resonance frequency with the load resistance of 3 

MΩ indicated the highest voltage. With variation in the load resistance, the electrical 

voltage amplitude also varies where the electrical voltage increased with the 

increasing load resistances as shown in Figure 5.12b. The short circuit off-resonance 

response still indicated the lowest value of amplitude whereas the open circuit still 

Figure 5.11 FRFs of tip absolute Dynamic Velocity with the Weak form under the series and  

                    parallel connections : a) Short Circuit, b) Open Circuit 

a 
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indicated the highest value of amplitude off-resonance. The second mode FRFs of 

electrical voltage also seemed to increase with the increasing load resistance 

indicating a similar trend with the first mode. By considering the velocity with the 

load resistance approaching to the short circuit, the amplitude increased where the 

voltage amplitude seemed to decrease. Conversely, when the load resistance 

approached open circuit, the velocity amplitude increased with increasing electrical 

voltage. 

 

It should be noted that the chosen damping ratio in the FRFs can change the voltage 

amplitudes within the resonance regions. As shown in Figures 5.13a,b, when the load 

resistances under the short and open circuits resonance frequencies indicated over 

17.9 kΩ and 358 kΩ, the electrical voltage with the series connection tended to give 

the higher amplitude compared with the parallel connection. It is noted that the short 

circuit resonance frequency with the load resistances of 17.9 kΩ indicated the 

transitional point of electrical voltage amplitudes between the series and parallel 

connections whereas the open circuit’s resonance frequency with the load resistances 

of 358 kΩ also indicated the transitional point of electrical voltage amplitudes 

between the series and parallel connections. This transitional point of electrical 

voltage indicated the overlapped amplitudes between the series and parallel 

connections. The electrical voltage over the transitional point of resistance for the 

series connection always indicated the highest amplitude across the frequency 

domain. 
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Figure 5.12 FRFs of electric voltages with the Weak form (Solid line) and Closed form (Round dot):   

                    a) The first three modes, b) First mode and c) Second Mode  

a 

c 

Figure 5.13  FRFs of Electrical Voltage  under the series and parallel connections with the  

                   Weak form : a) Short Circuit, b) Open Circuit 

b 
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5.3.4. The Bimorph Multi-mode FRFs of Electrical Current  

 

 As can be seen from Figures 5.14a, the first three modes of electrical current 

under series connection was analysed according to varying resistances. As can be 

seen from the enlarged view in Figures 5.14b-c, the comparison between the weak 

and closed forms of the CEDRTL achieved good agreement. The trend of electrical 

current indicated the opposite pattern with the electrical voltage. The electrical 

current referred to the highest amplitude when the load resistance approached open 

circuit. The second mode of electrical current also seemed to have similar behaviour 

with the first mode where the electrical current amplitude increased with increasing 

load resistance. Another important aspect can also be considered to be the 

relationships between the dynamic velocity, displacement, electrical voltage and 

current. The velocity amplitude with the load resistance approaching short circuit 

seemed to increase, where the voltage amplitude decreased with the increasing 

electrical current for both connection types. Conversely, the velocity amplitude with 

the load resistance approaching open circuit tended to increase where the voltage 

amplitude increased with the decreasing electrical current.  

 

By considering Figures 5.15a-b, the electrical current under the short circuit still 

indicated a higher amplitude compared with the open circuit as indicated for both 

connection types.  However, the electrical current for the short and open circuits’ 

frequency resonances with the parallel connection seemed to give the higher 

amplitudes with the load resistances below 17.9 kΩ and 358 kΩ, respectively 

compared with the electrical current with the series connection. It was noted that the 

short circuit resonance frequency with the load resistance of 17.9 kΩ indicated the 

transitional point of amplitude between the series and parallel connections whereas 

the open circuit resonance frequency with the load resistances of 358 kΩ also 

indicated the transitional point of amplitude between the series and parallel 

connections. The transitional point of amplitude indicated the same electrical current 

between the series and parallel connections. The region below the transitional point 

of resistance with the parallel connection always indicates the highest amplitude for 

every frequency domain. That indicates that the maximum electrical current would 

be compatible with the parallel connection whereas the maximum electrical voltage 

would be compatible with the series connection.  
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Figure 5.14 FRFs of electric Current with the Weak form (Solid line) and Closed form (Round dot):   

                    a) The First three mode, b) First mode and c) Second Mode  
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5.3.5. The Bimorph Multi-mode FRFs of Electrical Power  

 

 As can be seen from Figure 5.16a, the weak and closed forms of CEDRTL 

were compared according to the first three mode power harvesting FRFs with 

varying load resistances under the series connection. The shifting resonance 

frequencies under varying load resistances were mostly affected from the transverse 

bending form of the cantilevered piezoelectric bimorph beam due to the input base 

transverse acceleration. It should be noted that although the load resistances were the 

same values as for the parallel connection type of the piezoelectric bimorph, the 

resonance frequencies displayed slightly different trends compared with the parallel 

connection. As expected, the power amplitudes of the resonance frequencies at the 

series connection with the lower load resistances of 500Ω, 4 kΩ, 20 kΩ and 40 kΩ 

from Figure 5.16b indicated a slight decrease compared with the parallel connection 

as shown in Figure 5.4b. However, the amplitudes around the resonance frequencies 

under the higher load resistances of 90 kΩ, 400 kΩ and 3 MΩ with the series 

connection tended to give a slight increase compared with the parallel connection. 

This indicates that when the load resistances approach the open circuit at the 

resonance frequency under the series connection, the amplitude of power harvesting 

tends to give higher values compared with the parallel connection under the same 

load resistances. In this case, the effect of electromechanical damping and stiffness 

of the bimorph under the series connection with the higher load resistances 

approaching open circuit indicated higher amplitudes compared with the parallel 

Figure 5.15 FRFs of Electrical Current  under the series and parallel connections with the   

                    Weak form : a) Short Circuit, b) Open Circuit 

b 
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connection at the resonance frequency. On the other hand, when the load resistances 

approach the short circuit at the resonance frequency under series connection, the 

amplitude of power harvesting tends to give lower values compared with the parallel 

connection under the same load resistances. In this case, the electromechanical 

damping and stiffness of the bimorph under the parallel connection with the load 

resistances approaching the short circuit indicated higher amplitudes at the resonance 

frequency compared with the series connection.   

 

Another important aspect shown from the frequency response was that the open 

circuit resonance frequency seemed to increase compared with the parallel 

connection from Figure 5.6b. However, the short circuit response still tended to give 

very low amplitude due to very low load resistance. It should be noted that if the 

symmetrical pattern of power trend around the first mode for both connections was 

preferable, the chosen load resistances for both connections would be different 

values. However, in this chapter; the purpose of using similar values of load 

resistances from the parallel connection is to display the different pattern of power 

harvesting trend under the series connection. As shown in Figures 5.17a-b, the 

electrical power under the short and open circuit resonance frequencies with the 

parallel connection seemed to give the highest amplitudes with the load resistances 

below the transitional points of 17.9 kΩ and 358 kΩ, respectively. Conversely, the 

electrical power with the load resistances over transitional points of 17.9 kΩ and 358 

kΩ with the series connection indicated the highest amplitude under the short and 

open circuit resonance frequencies.      
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Figure 5.17 FRFs of Electrical Power under the series and parallel connections with the Weak   

                    form : a) Short Circuit, b) Open Circuit 

Figure 5.16  FRFs of Electric Power with the Weak form (Solid line) and Closed form (Round dot): 

                     a) The First three mode, b) First mode and c) Second  Mode  

c 

a 
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5.3.6. Geometrical Parametric Analysis of the Bimorph for Generating  

          Electrical Power 

 

 The optimised electrical power with the variation in bimorph geometrical 

parameters was analysed for the series connection. The frequency domain around the 

first mode was the main focus to analyse the power harvesting under varying load 

resistances based on the variation of the piezoelectric element thickness and length. 

The trend of power harvesting with series connection gave similar response with 

respect to the parallel connection with the same chosen load resistances.  In Figure 

5.18a, the power harvesting around the resonance frequency at the load resistance of 

500 Ω tended to increase with the increasing bimorph length followed by the 

decreasing piezoelectric thickness. It was assumed that the load resistance of 500 Ω 

tended to give the short circuit resonance frequency where the trend of power 

amplitudes still indicated the lowest values compared with other load resistances. 

The comparison between the amplitude of power under the series and parallel 

connections with the same load resistance also tended to give slightly different 

values. The trend of power harvesting under the series connection gave lower 

amplitude values compared with the parallel connection when the load resistances 

approached the short circuit. On the other hand, the trend of power harvesting with 

the load resistances approaching open circuit under series connection gave higher 

values of amplitudes compared with the parallel connection. The reason for this 

behaviour was as discussed in the previous section. Other shapes of power amplitude 

with load resistances of 4 kΩ, 20 kΩ, 40 kΩ, 90 kΩ and 400 kΩ can be shown from 

Figures 5.18b-n where the mode shapes of power seemed to form the same shape but 

tended to give slight changes in amplitudes and different resonance frequencies. 

 

The results of all power amplitudes for varying load resistances is shown in Figure 

5.18o based on the changes to bimorph length and thickness. It should be noted that 

the resulting power amplitudes for each load resistance indicated a slightly different 

trend with the parallel connection as given in section 5.2.6. The power amplitudes 

from Figure 5.18p with the different resonance frequencies seemed to be close to 

each other under the load resistances of 20 kΩ and 90 kΩ. The trend of power 

amplitude FRFs from Figure 5.16a also indicated the same results of the amplitudes 

and the resonance frequencies with the 30.1 mm long of bimorph and 0.15 mm thick 

of piezoelectric layer as shown from Figures 5.6a-n. At this point, the trend of power 
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amplitudes under the changes of load resistance with the different geometrical 

bimorphs showed similar results. Once again it should be noted that power can 

increase by up to 100 % with correct choice of bimorph element length and 

thickness.  
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m n 

Figure 5.18  First Mode of power harvesting based on the geometrical parametric and Resonance frequency 

cases with the weak form: a, b) 500 Ω ; c,d) 4 kΩ ; e,f) 20 kΩ, g,h) 40 kΩ ;  i, j) 90 kΩ ; k, l) 400 kΩ ; m,n) 3 

MΩ ; o) Variances of load resistance ;  p) combined between 20 kΩ  and  90 kΩ  

o 

p 
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5.4. Multi-Electromechanical Piezoelectric Bimorph Beams 

 
In this section, multiple bimorph beams with tip masses under series and 

parallel connections are discussed as a function of variable load resistance. The 

chosen bimorphs had varying length with constant thickness as given in Table 5.1. 

The example case based on CERDT model had three bimorphs with lengths of 30.1 

mm, 30.8 mm and 31.5 mm to widen the frequency response at the first mode. It is 

noted that the results presented here were based on the formulation derived in chapter 

4.7 and consist of the voltage, current and power behaviour.  

 

5.4.1. Multi-Frequency Bimorph with Series Connection 

 

As shown in Figure 5.19a, the first mode multi-frequency array of electrical 

voltage is illustrated with variable load resistance. The trend of electrical voltage 

amplitude varies as load resistance changes where the amplitude increases with 

increasing load resistance within the multi-frequency band both off-resonance and 

on-resonance. This behaviour showed similar trend with the single bimorph response 

as given previously. The maximum amplitude was dominated by bimorph one. 

Figure 5.19b shows the comparisons between different frequency trends for the 

triple, double and single bimorphs with load resistances of 500 Ω, 4 kΩ, 20 kΩ, 40 

kΩ and 90 kΩ. The shifting resonance behaviour mostly occurred at bimorph one 

where the benefit of the triple bimorph response was the wider resonance frequency 

band.     

 

Furthermore, the multi-frequency array of electrical current was also given as shown 

in Figure 5.20a. The amplitudes with higher load resistances tended to be close to 

each other where the electrical current amplitude increased with decreasing load 

resistance within the multi-frequency band. The electrical current with the short 

circuit load resistance gave the highest amplitude where the trend of electrical 

voltage with the short circuit load resistance conversely switched to the lowest 

amplitude. As can be seen from Figure 5.20b, the frequency response trends of the 

triple, double and single bimorphs indicated different amplitudes within the multi-

frequency band. The first resonance amplitude from the single bimorph with load 

resistances of 500 Ω and 4 kΩ gave the higher amplitudes compared with the double 

and triple bimorphs. However, the first resonance frequency from the triple bimorph 



 
217 

with load resistances of 40 kΩ and 90 kΩ indicated the highest amplitudes. Overall, 

the triple bimorphs provided the expanded resonance frequency band. 

 

Figure 5.21a shows the multi-frequency band of electrical power with variable load 

resistance. The resonance frequency of bimorph one with load resistance of 90 kΩ 

gave the highest power amplitude. However, bimorph two and three at the load 

resistances of 400 kΩ and 3 MΩ indicated higher amplitudes compared with load 

resistance of 90 kΩ. In Figure 5.21b, the trend of electrical power with single, double 

and triple bimorphs with load resistances of 500 Ω, 4 kΩ, 20 kΩ, 40 kΩ and 90 kΩ 

indicated the change of resonance amplitude power response. The single bimorph 

with load resistances of 500 Ω and 4 kΩ gave the highest amplitude among the 

double and triple bimorphs. However, the triple bimorphs not only gave an expanded 

resonance response frequency band but also provided the highest amplitudes with the 

correct chosen load resistance. For example the load resistance of 90 kΩ showed the 

highest amplitude as expected. 

  

  

Figure 5.19 Electrical voltage FRFs : a)  Three bimorphs  b) Comparison with single (square dot),  

double (dash dot) and triple bimorphs (solid line)  

 

Figure 5.20 Electrical Current FRFs: a) Three bimorphs  b) Comparison with single (square dot),   

                    double (dash dot) and triple bimorphs (solid line)  

  

a b 

a 
b 
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5.4.2. Multi-Frequency Bimorph with Parallel Connection 

 
 Figure 5.22a shows the multiple resonance frequency response of electrical 

voltage under variable load resistance with parallel connection. The trend of 

electrical voltage with parallel connection indicated a different pattern compared 

with the series connection where bimorph three with higher load resistances 

indicated the highest resonance frequency amplitude. The electrical voltage 

amplitude over the multi-frequency band still increased slightly with increasing load 

resistance. It was noted that when the load resistance was close to open circuit, the 

amplitude stayed constant. This behaviour was also shown for the previous case with 

the single bimorph. Comparison between single, double and triple bimorphs over the 

frequency band with the load resistances of 500 Ω, 4 kΩ, 20 kΩ, 40 kΩ and 90 kΩ 

are shown in Figure 5.22b. The resonance frequency of bimorph three provided the 

highest amplitudes of the single and double bimorphs. Overall, the voltage 

amplitudes from the triple bimorph gave a broadened multi-frequency band where 

the single bimorph just provided the single frequency at the first mode.  

 

As shown in Figure 5.23a, the multi-frequency response of electrical current varied 

based on the varying load resistance. The trend of electrical current was different 

with that found with the electrical voltage. The electrical current amplitude for both 

parallel and series connections increased with increasing load resistance. However, 

the trend of electrical current between parallel and series connections indicated a 

Figure 5.21 Electrical Power FRFs: a) Three bimorphs  b) Comparison with single (square dot),  

double (dash dot) and triple bimorphs (solid line)  

 

a b 
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slight change. The bimorph three amplitude from parallel connection increased 

slightly, compared to that from bimorph one from series connection where a 

significant increase was observed. Figure 5.23b shows comparison between single, 

double and triple bimorphs over the frequency band with load resistances of 500 Ω, 4 

kΩ, 20 kΩ, 40 kΩ and 90 kΩ. It was found that the triple bimorph seemed to indicate 

the highest amplitude and widened the resonance frequency band as expected. 

 

As shown in Figure 5.24a the multi-frequency response of electrical power was 

modelled with variable load resistance. The resonance frequency of bimorph three 

with load resistance of 40 kΩ was close to that with 90 kΩ, where the highest 

amplitude was achieved with load resistance of 40 kΩ. However, by analysing the 

response from bimorph one and two, the resonance frequency amplitudes with load 

resistance of 40 kΩ seemed to drop slightly below that found with resistance of 20 

kΩ where the resonance amplitude at load resistance of 4 kΩ gave the highest 

amplitude followed by the load resistance of 20 kΩ. Moreover, Figure 5.24b shows 

the trend of electrical power with single, double and triple bimorphs with load 

resistances of 500 Ω, 4 kΩ, 20 kΩ, 40 kΩ and 90 kΩ. It can be seen that the triple 

bimorphs indicated higher amplitudes over an expanded frequency band under 

variable load resistance compared with that obtained using only single and double 

bimorphs.   

 

  

 
Figure 5.22 Electrical voltage FRFs: a)  Three bimorphs  b) Comparison with single (square dot),  

double (dash dot) and triple bimorphs (solid line)  

 

a b 
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5.5. Closing Remark  

 

 In this chapter, the multi-mode FRFs of the electromechanical dynamic 

responses under varying load resistances was discussed according to the weak and 

closed forms of the CEDRTL. The analysis of FRFs of the bimorph under the series 

and parallel connections consisted of the tip absolute dynamic displacement, tip 

absolute velocity, electrical current, electrical voltage, power harvesting and 

geometrical parametric bimorph analysis. The effect of changing load resistance was 

seen to shift the resonance frequencies from the short to open circuit for all of the 

FRFs of the bimorph. This indicated that the load resistance can be viewed as 

resistive shunt damping of the bimorph connection as it was clearly implied within 

Figure 5.23 Electrical current FRFs : a)  Three bimorphs  b) Comparison with single (square dot),  

double (dash dot) and triple bimorphs (solid line)  

 

Figure 5.24 Electrical power FRFs : a)  Three bimorphs  b) Comparison with single (square dot),  

double (dash dot) and triple bimorphs (solid line)  

b a 

b 
a 
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the electromechanical dynamic equation derived in chapter 4. The FRFs of the 

bimorph under parallel and series connections with the same load resistances did not 

necessary give monotonic trends. The trend of FRFs around the first mode for the 

dynamic displacement, velocity and electrical power displayed the symmetrical 

pattern with the chosen load resistances as indicated in the example from the parallel 

connection responses. 

 

It was found that the chosen load resistances for the series and parallel connections 

would have different values if the symmetrical pattern of power frequency response 

for both connections was preferable. On the other hand, once the symmetrical pattern 

was given for one of the connection types of bimorph, the other connection with the 

same load resistance indicated an unsymmetrical frequency response. In this chapter, 

the load resistances under the series and parallel connections used the same values. 

Apart from that, the trend of velocity amplitude with the load resistance approaching 

short circuit seemed to increase where the voltage amplitude decreased with the 

increasing electrical current for both connection types. Conversely, the velocity 

amplitude with the load resistance approaching open circuit tended to increase where 

the voltage amplitude increased with the decreasing electrical current. 

 

Moreover, when the load resistance went to the higher transitional point 

(approaching open circuit) under the series connection, the amplitudes of the 

electrical voltage, current and power tended to give higher amplitudes compared with 

the parallel connection under the same load resistances. This indicated that the effect 

of electromechanical damping and stiffness of the bimorph under the series 

connection with the higher load resistances approaching open circuit provided the 

highest amplitudes at the resonance frequency compared with the parallel 

connection. On the other hand, when the load resistances went to the lower 

transitional point (approaching short circuit) under the series connection, the FRF of 

the electrical voltage, current and power tended to give lower amplitudes compared 

with the parallel connection under the same load resistances. In this case, the effect 

of electromechanical damping and stiffness of the bimorph under parallel connection 

with the higher load resistances approaching short circuit provided the highest 

amplitude at the resonance frequency compared with the series connection. 

Moreover, by comparing the maximum levels of voltage and current amplitudes 
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versus varying load resistances, the maximum electrical current would be compatible 

with the parallel connection whereas the maximum electrical voltage would be 

compatible with the series connection. Finally, the results from changing the bimorph 

length and thickness indicated options for maximising the shape of the power 

response with variable load resistance. The results of power amplitudes FRFs from 

both connections with the same load resistances did not always give monotonic 

trends. The multi-electromechanical bimorph beam with the series and parallel 

connections was also given under variable load resistance. A three bimorph model 

was given as an example case, where the trend of electrical voltage, current and 

power for both electrical connections showed different pattern trends. The multi-

bimorph system can widen the resonance frequency band and also increase the 

amplitude based on the correct chosen load resistance, compared with the single or 

double bimorphs, providing significantly more power.  
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In this chapter, the analytical and experimental comparisons of the piezoelectric 

bimorph electromechanical dynamic responses are presented with and without the tip 

masses. The electromechanical dynamic response validation involved the CEDRT 

(coupling electromechanical dynamic response of the transverse form), CEDRTL 

(coupling electromechanical dynamic response of the transverse-longitudinal form) 

and experimental studies. The theoretical studies (CEDRT and CEDRTL) were based 

on the weak form of Hamiltonian’s principle (electromechanical analytic approach 

with normalised Ritz method) for comparison with the experimental study. The 

closed form or distributed parameter method (electromechanical analytic method 

reduced from the strong form of Hamiltonian’s principle) was not applied here 

because the validations between the weak and closed forms have been compared 

with very good agreement as discussed in the previous chapter. In the forthcoming 

sections, the frequency response functions (FRFs) of the bimorph under the input 

base transverse acceleration were validated using the tip absolute dynamic 

displacement, velocity, electrical voltage, current and power harvesting. In addition, 

the FRFs of the bimorph with the tip mass under the two input base accelerations of 

transverse and longitudinal are discussed to give the polar dynamic displacement, 

velocity, voltage, current and power harvesting. 

6.1. The Properties of the Piezoelectric Bimorph and Experimental Setup  

 The material properties and geometrical structure are essential aspects for 

analysing the cantilevered piezoelectric bimorph beam. The list of properties of the 

bimorph used in this investigation is given in Table 6.1 where the piezoelectric 

bimorph properties were based on the PZT PSI-5A4E element from Piezo Systems, 
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INC. with the centre brass shim. The effect of rotary inertia of the bimorph was 

ignored because the Euler-Bernoulli beam model was considered in this chapter. A 

proof mass and its rotary inertia located on the tip of the bimorph were also 

considered, including its geometry and material properties which were made from 

steel. The Euler-Bernoulli beam was a typical thin structure model with the 

appropriate application for power harvesting. The geometry of the tip mass was 

relatively small as shown in Figure 6.1. The zero-th mass moment of inertia of the tip 

mass can be formulated as, 

       

      A

tiptiposptiptip

A

tip ρslhhlhI  2  .                (1) 

The second mass moment of inertia, known as the rotary inertia at the centre of 

gravity of the tip mass coincident with the end of the piezoelectric bimorph beam can 

be formulated as,  
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 , (2) 

 where 2/1 tipg lxx  , 2/2 og lxx  . Other coefficients gx , tips , tiph and tipl  indicate 

the centre of gravity, width, height and length of geometry of the tip mass. The 

cantilevered piezoelectric bimorph beam with the tip mass was clamped at the 

protractor base structure for input base excitation. The B & K impedance head type 

8001, connected to the B & K Charge Amplifier Type 2635, was used to measure the 

input acceleration from the B & K exciter type 4809. Since the generating vibration 

signal amplitude needs to be regulated, the exciter was connected to B & K Power 

Amplifier Type 2706. Moreover, the wave function generator, connected to the 

Power Amplifier, was used to set specific harmonic input excitation. The vibration of 

the tip mass located at the end of the bimorph was measured using a laser digital 

vibrometer Polytec PDV 100 by attaching a small reflector tape onto the tip mass to 

measure the absolute dynamic displacement, velocity and frequency responses. All 

signal measurements from the charge amplifier, piezoelectric bimorph and 

vibrometer were connected to the B & K FFT pulse Analyzer 3560B. The processing 

signal through the Analyzer displayed the measurement results using the FFT pulse 

and MATLAB software. The complete experimental setup is shown in Figure 6.2.  
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6.2.  Electromechanical Dynamic Response of Piezoelectric Bimorph with a Tip   

       Mass 

      

 In this section, the FRFs of the electromechanical piezoelectric bimorph with 

a tip mass will be discussed as the load resistance varies. In the next section, the 

analysis of the electromechanical dynamic response was based on the derivation of 

FRFs as provided in chapter 4. The numerical methods, (CEDRTL and CEDRT) 

were validated here against the experimental results. The piezoelectric bimorph beam 

Figure 6.1 Geometry of he Bimorph and Tip Mass 

 

Figure 6.2  (a) Experimental Setup  and (b) Piezoelectric bimorph beam with tip mass  

                   under parallel connection  

(a) 

                                            

2 

3 

4 

5 

1 

6 

8 

7 

Tip Mass   

Piezoelectric Bimorph  

with parallel 

connection   

1.  Computer 

2.  B & K FFT Analyzer Type 3560B 
3.  B & K Power Amplifier Type 2706 

4.  B & K Charge Amplifier Type 2635 

5.  Arbitrary waveform Generator 
6.  B & K Exciter Type 4809 

7.  Piezoelectric Bimorph with    

 base structure connected to B & K 

impedance head Type 8001 

8. Laser Vibrometer Polytec PDV 100  

(a) 
(b) 

Material  properties Piezoelectric    Brass   Geometry properties  Piezoelectric  Brass 

Young’s modulus , 11Q   (GPa) 66 105 Length , L (mm) 30.1   30.1 

Density,  ρ   (kg/m
3
) 7800 9000 Thickness, h (mm) 0.19 (each) 0.13 

Piezoelectric constant, d31 (pm/V) -190 - Width, b (mm) 6.4 6.4 

Permittivity,
T

33  (F/m) 1800 o  - First coefficient 
 A
tipI (kg)

†
        0.0022        

permittivity of free space, o (pF/m) 8.854 - Third coefficient
 C
tipI (kg m

2
)

†
       7.3743

910  

† Calculated according to the geometry and material properties of tip mass and the rotary inertia at centre of gravity of tip mass  

    coincident with the end of  the bimorph length as shown in Figure 6.1 where mmtiphmmtipl 7.5,1.8  , mmol 5  and mmtips 4.6 (width). First     

     and third coefficients refer to zeroth and second mass moment of inertias of tip mass respectively.  

Table 6.1 Characteristic properties of the piezoelectric bimorph system. 
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was modelled here using the parallel connection. The input transverse base 

acceleration of the bimorph was considered to give the multi-output 

electromechanical dynamic response. The properties of the bimorph and geometrical 

tip mass were also based on the characteristic data given in the previous section. At 

this point, the mechanical damping ratios and load resistances need to be determined.  

6.2.1. FRFs of Bimorph Tip Absolute Dynamic Displacement  

 

In this section, the trend of the first mode of the tip absolute dynamic 

displacement FRF was investigated with  changing resistance of 560 Ω, 5.6 kΩ, 20 

kΩ, 30 kΩ, 51 kΩ, 60 kΩ, 79 kΩ, 150 kΩ, 200 kΩ and 602 kΩ. As discussed 

previously, the effect of the input base transverse acceleration on the bimorph will 

result in dynamic inertia forces due to the products of generalised mode shape  

displacement fields with the bimorph mass, lumped tip mass and rotary inertia of the 

tip mass. This can be used to obtain the generalised time dependent dynamic 

response along the length of the bimorph to give the relative dynamic displacement. 

In this case, the absolute dynamic displacement (considered as the total dynamic 

displacement) can also be obtained due to the input base dynamic inertia force and 

the relative dynamic displacement. The bimorph input base transverse acceleration 

was chosen to be 3 m/s
2
 which is equivalent to 306 mg (1 g = gravitational 

acceleration 9.81 m/s
2
). To analyse the tip absolute dynamic displacement on the end 

of the bimorph, equation (4.279c) in chapter 4 can be used by inserting the variable x 

= L for the tip end of the bimorph.  The results obtained were validated with an 

experimental study using a Laser Doppler Vibrometer (LDV) that measured the 

velocity of the centre of the tip mass coincident with the end of the bimorph as 

shown in Figure 6.2.  

In the previous chapter, the mechanical damping ratios were chosen theoretically. At 

this stage, the mechanical damping ratios were determined experimentally using a 

short circuit load resistance of 560 Ω. The mechanical damping ratios were identified 

by matching the amplitude of experimental and theoretical tip absolute displacement 

or velocity FRF. The physical reason for choosing damping ratios under very low 

load resistance was to minimise the amplitude of electrical voltage FRF generated 

from the piezoelectric bimorph in order to approach a pure mechanical form, since 

mechanical damping itself was viewed as mechanical resistance behaviour due to 
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energy losses during vibration of piezoelectric bimorph. Theoretically, the energy 

losses can be from strain-rate (Kelvin-Voigt) and external air (viscous) damping 

effects. However, in the experimental study, only one damping ratio can be measured 

from the FRF without specifying the strain-rate and viscous damping effects. 

Moreover, once the mechanical damping ratios were determined, other FRF model 

with varying electrical load resistances can be plotted. The damping ratios for the 

transverse and longitudinal forms around the fundamental resonant frequency were 

found to be 0139.01 w
 
and 030.01 u . These values should not be confused with 

the electromechanical damping effect due to the piezoelectric coupling as discussed 

in the previous chapter. The transverse behaviour of the electromechanical system 

response was known to be dominant at the lower frequency domain (first resonance). 

The effect of the longitudinal system response was also considered here from the 

initial strain field, contributing to the frequency response, but only with small effect. 

Figure 6.3 shows the resulting frequency response with variable load resistance. At 

some cases, the effect of longitudinal extension at the frequency domain can be 

ignored with lower load resistances (500 Ω, 5.6 kΩ, 20 kΩ and 30 kΩ) because the 

CERDT and CERDTL tended to overlap each other. However, for higher load 

resistances (51 kΩ, 60 kΩ, 79 kΩ, 150 kΩ, 200 kΩ and 602 kΩ), the effect of 

longitudinal extension seemed to be more pronounced, especially at load resistance 

of 602 kΩ with the maximum percentage difference between the CEDRTL and 

CEDRT of 16.4 %. Moreover, the FRFs of tip absolute transverse dynamic 

displacement with variable load resistance under the CEDRTL model seemed to be 

close with the experimental results as given in Figure 6.4, where the longitudinal 

strain-polarity field for the electromechanical dynamic response was also included 

here for the low frequency domain. When the actual bimorph dynamic response is 

considered for industrial applications, these results show that the longitudinal 

response could be included in the strain-polarity field along with the bending 

response.   

It should be noted from Figures 6.3 and 6.4 that the first resonance frequency shifts 

along the frequency domain with varying load resistances. When the load resistance 

tended toward short circuit at the frequency of 76.1 Hz, the amplitude tended to give 

the highest value. Similar behaviour was also found at the open circuit response at 

frequency of 79.6 Hz. This indicated that the effect of the lowest and highest load 
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resistances of 560 Ω and 602 kΩ on the bimorph tended to reduce the sensitivity of 

the electrical form around the resonance frequency region. This indicates that the 

system is dominated by the pure mechanical response of the bimorph with the 

electrical response for the short and open circuits showing the highest amplitudes as 

discussed in the forthcoming section. Obviously, the effect of mechanical damping 

ratio can be viewed as a constant value once the experimental result was taken and 

matched to the theoretical study. Moreover, the effect of piezoelectric coupling can 

further create electromechanical damping and these can also be viewed as constant 

values. In such situations, the damping effects encompassed both the mechanical and 

electrical forms from the electromechanical bimorph responses when the dimensional 

structure and material properties were kept constant. By considering the damping 

effect of the bimorph under dynamic response, the load resistance connected to the 

bimorph appeared to act as electromechanical attenuation and amplification of the 

amplitude across the frequency domain. In the next section, the electrical voltage 

frequency response with varying load resistances can be viewed, showing the 

dynamic amplification behaviour where the increase of load resistance can increase 

the amplitude of voltage with increasing resonance frequency. However, the 

electrical current frequency response with varying load resistances shows the 

electromechanical  attenuation behaviour with increase of load resistance resulting in 

a decrease of current with the increase of resonance frequency. Again, the validations 

between the analytical and experimental results were achieved with good agreement. 

Four samples of the individual trend of tip absolute displacement were also given as 

shown in Figure 6.5. Moreover, the experimental findings show that the maximum tip 

absolute displacement tended to give the lowest and highest electrical voltage for the 

short and open circuits, respectively. Conversely, the maximum tip absolute 

displacement tended to give the highest and lowest electrical current for short and 

open circuits, respectively. This shows that the maximum dynamic displacement does 

not necessarily result in the highest current or voltage. Beside, both of these circuits 

(short and open) were found to give the lowest power harvesting. In many cases of 

vibration, the maximum dynamic displacement is generally avoided for most 

structures. It should be noted here that the power harvesting can be determined to 

give the best results without having the maximum displacement and minimum 

current or voltage. This situation can easily be shown at the intermediate point of 

displacement trend around 60 kΩ as shown in Figure 6.4 where the amplitude of 
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displacement at this load resistance showed the lowest value but also gave convenient 

amplitudes for the electrical current, voltage and optimal power harvesting across the 

frequency range as discussed in the forthcoming section. Figure 6.6 shows the tip 

transverse displacement of the experimental and CEDRTL model at the short and 

open circuit resonance frequencies of 76.1 and 79.6 Hz. The results show the tip 

displacement response at these two frequencies while the load resistance 

subsequently changes. In Figure 6.6, the tip displacement from the CEDRTL model 

indicated good agreement with the experimental results where the trend of the highest 

amplitudes under the short circuit was achieved at the lower load resistance, shown 

conversely with the open circuit result.  
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Figure 6.3 FRFs of tip absolute Dynamic Displacement with the CEDRTL (Solid line) and CEDRT (Dash line) 

Figure 6.4 FRFs of tip absolute Dynamic Displacement with the CEDRTL (Solid line) and Experiment (Round dot) 
60 65 70 75 80 85 90

10
-5

10
-4

10
-3

Frequency (Hz)

T
ip

 T
ra

n
s
v
e
rs

e
 D

is
p
la

c
e
m

e
n
t 

P
e
r 

u
n
it

 I
n
p
u
tT

ra
n
s
v
e
rs

e
 A

c
c
e
le

ra
ti
o
n
 (

m
/3

0
6
 m

g
)

 

 

560 Ohms

5.6 kOhms

20 kOhms

30 kOhms

51 kOhms

60 kOhms

79 kOhms

150 kOhms

200 kOhms

602 kOhms



 

230 

  

  

 

 

 

 

Figure 6.5 FRFs of tip absolute Dynamic Displacement with the CEDRTL (Solid line) and Experiment (Round dot) : 

560 Ω , b) 602 kΩ , c) 51 kΩ and d) 60 kΩ 

 

 

b a 

c d 

Figure 6.6 Tip absolute Dynamic Displacement with the CEDRTL versus Load Resistance under the Short circuit 

Resonance Frequency of 76.1 Hz and Open Circuit Resonance Frequency of 79.6 Hz 
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6.2.2. FRF of Bimorph Tip Absolute Dynamic Velocity  

 

The first mode FRF of the tip absolute velocity of the cantilevered 

piezoelectric bimorph under parallel connection is shown here with varying load 

resistance. As can be seen in Figure 6.7, the trend of FRFs tip velocity using the 

CEDRTL and CEDRT models under varying load resistance is compared and the 

results showed good agreement except for the higher resistance results. The trends 

show the clear significance of incorporating the longitudinal form in the dynamic 

coupled behaviour. As mentioned previously, the contribution of longitudinal form 

not only affected the strain field but also the piezoelectric coupling. At this point, the 

use of the CEDRTL model was considered as the generalised base motion under 

multi-input vibration. The CEDRTL and CEDRT model results with the lower 

resistances seemed to overlap each other. However, the differences of the CEDRTL 

and CEDRT model results with the higher load resistances became more 

pronounced, especially at 602 kΩ with the maximum percentage difference of 16.7 

%. Moreover, very good agreement between the CEDRTL and the experimental 

results was observed under varying load resistance as shown in Figure 6.8, with the 

individual trend of dynamic velocity also found in Figure 6.10. The result as shown 

in Figure 6.8 gave similar frequency response to that shown in Figure 6.4. It should 

be noted here that the effect of load resistance on the piezoelectric bimorph can be 

viewed as resistive shunt damping effect resulting in shifting of the resonant 

frequency with different amplitudes as shown clearly in Figure 6.9. 

The contribution of load resistance into the electromechanical dynamic equations can 

also be viewed as the electrical stiffness equivalent. This provides one reason that the 

frequency trend increases from the short to open circuit result. The resonance 

frequency of 76.1 Hz for short circuit and 79.6 Hz for open circuit with the load 

resistances of 560 Ω and 602 kΩ, respectively gave high velocity amplitudes of 0.23 

m/(s. 306 mg) and 0.17 m/(s. 306 mg), respectively. Moreover, the absolute velocity 

at the bimorph tip with the load resistances of 51 kΩ and 60 kΩ from Figure 6.10 

indicated amplitudes of 0.089 m/(s.306 mg) at a resonance of 77.51 Hz and 0.087 

m/(s.306 mg) at a resonance of 77.83 Hz, respectively. As shown in Figure 6.11, the 

tip absolute transverse velocity under the short and open circuit resonance 

frequencies seemed to have similar trend pattern with the transverse tip absolute 

displacement. The maximum amplitudes of the short circuit resonance was reached 



 

232 

with the load resistance approaching the lower load resistance whereas the open 

circuit resonance gave the maximum amplitude with the load resistance approaching 

the highest load resistance. Therefore, the short and open circuit resonances were 

found to give the higher velocity amplitude with the lower and higher load 

resistances (short and open circuit load resistances), respectively.     
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Figure 6.7 FRFs of tip absolute Dynamic Velocity with the CEDRTL (Solid line) and CEDRT (Dash line) 

Figure 6.8 FRFs of tip absolute Dynamic Velocity with the CEDRTL (Solid line) and Experiment (Round dot) 
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Figure 6.10 FRFs of tip absolute Dynamic Velocity with the CEDRTL (Solid line) and Experiment (Round dot) : 

a) 560 Ω , b) 602 kΩ , c) 51 kΩ and d) 60 kΩ 

 

 

b a 

c 
d 

Figure 6.9  FRFs of tip absolute Dynamic Velocity: a) Amplitude Vs Frequency and Load resistance, b) Amplitude 

Pattern based on: Frequency Vs Load resistance   

a b 
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6.2.3. The FRF of Bimorph Electrical Voltage 

  As can be seen from Figure 6.12, the first mode FRF of electrical voltage is 

shown with varying resistance. As mentioned previously, the short circuit can be 

chosen with the lowest value of load resistance as 0loadR  and the open circuit can 

be set as the load resistance approaches infinity loadR . The trend of electrical 

voltage for short circuit conditions tended to give the lowest amplitude whereas the 

open circuit gave the highest amplitude. In this case, the increase of load resistance 

resulted in an increasing amplitude followed by an increasing shift in the resonance 

frequency. In this situation, the electrical voltage  frequency response with varying 

load resistance can be viewed as a dynamic amplification behaviour. The trend of 

electric voltage at the resonance frequency regions for each load resistance indicated 

a significant monotonic pattern from lowest to highest amplitudes. The off-resonance 

frequency regions also seemed to give the monotonic pattern with increasing 

resistance. The relationship between the trends of electrical voltage and tip absolute 

transverse displacement or velocity amplitudes were considered according to the load 

resistance where the short circuit electrical voltage at resonance indicated the lowest 

amplitude while the tip absolute dynamic displacement tended to give the highest 

amplitude. This shows that the electrical voltage under short circuit load resistance of 

Figure 6.11 Tip absolute Dynamic Velocity with the CEDRTL versus Load Resistance under the Short circuit  

                       Resonance Frequency of 76.1 Hz and Open Circuit Resonance Frequency of 79.6 Hz 
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around 560 Ω might result in a reduction of bimorph fatigue life. A convenient 

electrical voltage frequency response can be predicted around the intermediate curve 

of 60 kΩ load resistance where this can be compared with the tip absolute dynamic 

displacement and velocity to give the lowest amplitude values as shown in Figures 

6.4 and 6.8. Again, the CEDRTL response indicated a slight change when compared 

with the CEDRT response as shown in Figure 6.12. The comparison between 

CEDRTL and CEDRT results with the higher load resistances seemed to give 

maximum percentage difference of 22.2 % especially at 602 kΩ. Moreover, the 

comparison between the CEDRTL and experimental results were achieved with very 

good agreement for varying load resistance as shown in Figure 6.13. It should be 

noted that the inclusion of the longitudinal form into the electromechanical response 

resulted in an amplitude change compared with the CEDRT response. It is clearly 

seen from the three dimensional graph in Figure 6.14 that the region of maximum 

electrical voltage amplitude located at the open circuit load resistance gradually 

decreased to the minimum level at the short circuit load resistance followed by a shift 

in frequency. Although the bimorph structure was considered to have small 

dimensions with 30.1 mm length and 0.51 mm thickness, the bimorph tip mass with 

its rotary inertia has an important role to affect the CEDRTL dynamic response. As 

mentioned previously, the effect of tip mass under the input transverse base 

acceleration creates the inertia force onto the bimorph affecting the relative time 

dependent-displacement field function. The samples of electrical voltage trends 

shown in Figure 6.15 indicate very good agreement between the theoretical and 

experimental studies. Furthermore, Figure 6.16 also shows very good agreement 

between the short and open circuit resonance amplitudes versus load resistance. The 

maximum electrical voltage amplitudes with the short and open circuit resonances 

can be reached with increasing load resistance. However, the maximum level of open 

circuit resonance amplitude indicated a higher value compared with the short circuit 

when the short and open circuit amplitudes passed over the transitional point of 61.1 

kΩ.  



 

236 

            

        

 

 

 

 

60 65 70 75 80 85 90
10

-5

10
-4

10
-3

Frequency (Hz)

T
ip

 T
ra

n
s
v
e
rs

e
 D

is
p
la

c
e
m

e
n
t 

P
e
r 

u
n
it

 I
n
p
u
tT

ra
n
s
v
e
rs

e
 A

c
c
e
le

ra
ti
o
n
 (

m
/3

0
6
 m

g
)

 

 

560 Ohms

5.6 kOhms

20 kOhms

30 kOhms

51 kOhms

60 kOhms

79 kOhms

150 kOhms

200 kOhms

602 kOhms

Figure 6.12 FRFs of Electrical Voltage with the CEDRTL (Solid line) and CEDRT (Dash line) 

Figure 6.13 FRFs of Electrical Voltage with the CEDRTL (Solid line) and Experiment (Round dot) 60 65 70 75 80 85 90
10

-5

10
-4

10
-3

Frequency (Hz)

T
ip

 T
ra

n
s
v
e
rs

e
 D

is
p
la

c
e
m

e
n
t 

P
e
r 

u
n
it

 I
n
p
u
tT

ra
n
s
v
e
rs

e
 A

c
c
e
le

ra
ti
o
n
 (

m
/3

0
6
 m

g
)

 

 

560 Ohms

5.6 kOhms

20 kOhms

30 kOhms

51 kOhms

60 kOhms

79 kOhms

150 kOhms

200 kOhms

602 kOhms

Figure 6.14  FRFs of  Electrical Voltage : a)  Amplitude Vs Frequency and Load resistance ,  

                  b) Amplitude Pattern based on: Frequency Vs Load resistance   
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Figure 6.15 FRFs of Electrical Voltage with the CEDRTL (Solid line) and Experiment  (Round dot) : 

a) 560 Ω , b) 602 kΩ , c) 51 kΩ and d) 60 kΩ 

 

 

b a 

c d 

Figure 6.16 Electrical Voltage with the CEDRTL versus Load Resistance under the Short circuit 

Resonance Frequency of 76.1 Hz and Open Circuit Resonance Frequency of 79.6 Hz 
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6.2.4. The FRF of Bimorph Electrical Current  

In this section, the FRF of electrical current generated from the bimorph with 

input transverse acceleration is discussed under varying load resistance. The shifting 

frequency due to the change of load resistance indicates a different trend compared 

with that shown previously. Figure 6.17 shows that the comparison between the 

CEDRTL and CEDRT indicating a slight difference for some load resistances. When 

the load resistance approached short circuit, the CEDRTL and CEDRT results 

overlapped for the load resistances of 560 Ω, 5.6 kΩ and 20 kΩ. As shown in Figure 

6.17, there was a slight increase of electrical current amplitude with decreasing load 

resistance followed by decreasing resonance frequencies. In this case, the electrical 

current frequency response with varying load resistance shows the electromechanical 

attenuation behaviour. The trend of electrical current shows a monotonic pattern 

opposite to that of the electric voltage response shown in Figure 6.12. The CEDRTL 

and experimental results gave very good agreement under varying load resistances as 

shown in Figure 6.18. The short circuit frequency response seemed to give the 

highest amplitude at load resistance of 560 Ω and resulted in the lowest resonance 

around 76.1 Hz compared to other load resistances. This was also clearly seen in 

Figure 6.19 where the maximum current amplitude dropped dramatically when the 

load resistance increased from short circuit. The load resistance of 5.6 kΩ still 

indicated short circuit behaviour although the amplitude obtained was a bit lower 

than the load resistance of 560 Ω, while the resonance frequency still indicated the 

same value.  The open circuit load resistance of 602 kΩ seemed to give the lowest 

amplitude with the higher resonance frequency compared with other load resistances. 

Moreover, the trend of electric current response as a function of load resistance can 

be compared with the previous trends of tip absolute displacement, velocity and 

electric voltage. The minimum current amplitude at open circuit occurred with 

maximum amplitudes of tip absolute displacement and velocity. The electric voltage 

response had maximum amplitude at a resonance frequency of 79.6 Hz. Conversely, 

the maximum current amplitude at short circuit indicated the maximum amplitude of 

tip absolute displacement or velocity with decreasing voltage amplitude at the 

resonance frequency of 76.1 Hz. This shows that the electrical current increased 

when the load resistance approached short circuit, but the tip absolute displacement 

and velocity of the bimorph tended to give the highest amplitude. This indicates that 
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this situation would be unsuitable for power harvester optimisation as the highest tip 

absolute displacement or velocity amplitude did not result in the highest power 

harvesting under the short circuit resistance. Moreover, the electrical current FRF for 

the short circuit load resistance gave the highest amplitude whereas the electric 

voltage response also indicated the highest amplitude for open circuit load resistance. 

The sensitivity of the bimorph to generate the optimal power harvesting shows the 

importance of understanding the underlying strain-polarity field on the piezoelectric 

element from the bimorph under variable load resistance as discussed in the next 

section. The convenient electrical current amplitude would be from an intermediate 

curve of load resistance 60 kΩ where this value indicated the lowest tip absolute 

displacement or velocity amplitude around the resonance frequency but showed 

convenient values for voltage, current and optimal power harvesting. Furthermore, 

there was a slightly different trend in the specific current amplitude under the higher 

load resistances between the CEDRTL and the CEDRT response with the maximum 

percentage difference of 22.2 % observed within the non-resonance regions. The 

strain field model used here included the transverse form with initial longitudinal 

strain where this affected the internal force and moment due to the transverse 

bending and extensional longitudinal response at each bimorph interlayer resulting in 

the electrical force and moment response due to the coupling effects of the 

piezoelectric element. Finally, some examples of the individual trends of current with 

different load resistances were found from Figure 6.20 where good agreement 

between the theoretical and experimental studies was achieved. Moreover, the 

maximum amplitudes of electrical current for both short and open circuit resonance 

frequencies under varying load resistance was achieved with decreasing load 

resistance as shown in Figure 6.21. The level of maximum current amplitudes from 

short and open circuit resonances was shown to be different. Moreover, the short 

circuit resonance amplitude below the transitional point of 61.1 kΩ gave higher 

current value compared with the open circuit resonance amplitude. By looking over 

the transitional point, the open circuit current amplitude otherwise indicated higher 

values compared with the short circuit current amplitude.  
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Figure 6.17 FRFs of Electrical Current  with the CEDRTL (Solid line) and CEDRT (Dash line) 

Figure 6.18 FRFs of Electrical Current with the CEDRTL (Solid line) and Experiment (Round dot) 60 65 70 75 80 85 90
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Figure 6.19  FRFs of  Electrical Current : a)  Amplitude Vs Frequency and Load resistance ,  

                  b) Amplitude Pattern based on: Frequency Vs Load resistance   

 



 

241 

  

 

 

 

 

     

 

 

Figure 6.20  FRFs of Electrical Current  with the CEDRTL (Solid line) and Experiment  (Round dot) : 

b) 560 Ω (short circuit), b) 602 kΩ (open circuit), c) 51 kΩ and d) 60 kΩ 

 

 

b a 

c d 

Figure 6.21 Electrical Current with the CEDRTL versus Load Resistance under the Short circuit 

Resonance Frequency of 76.1 Hz and Open Circuit Resonance Frequency of 79.6 Hz 
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6.2.5. The FRF of Bimorph Electrical Power  

In this section, the electrical power harvesting frequency response of the 

bimorph is presented for varying load resistance. As can be seen from Figure 6.22, 

the comparison between the CEDRTL and the CEDRT response was shown to yield  

slightly different amplitudes with a maximum percentage difference being 49.11 % 

for the off-resonance regions with the higher load resistance approaching open 

circuit.  The existence of the longitudinal effect on the electromechanical bimorph 

response should not be ignored especially under two input base motion as discussed 

in the forthcoming section of polar FRFs. The addition of the tip mass on the 

bimorph might also create coupling of the extensional mechanical and electrical 

forces in the piezoelectric layers. In other words, the effect of a lumped mass can 

create additional longitudinal strains in the interlayers of the bimorph as shown in 

chapter 4. Moreover, the trend of the power harvesting FRF tended to give different 

results when compared with previous cases. Another important aspect which can be 

reported here is that the trend of power harvesting depends not only on the varying 

load resistances but also on the chosen properties of the piezoelectric layers and the 

geometry of the bimorph model. For example; even though, the geometry of the 

bimorph was chosen with the same parameters, it can still have different physical 

properties like capacitance and piezoelectric coupling resulting in different power 

harvesting values. This indicates that the chosen load resistances need to be 

investigated first to show the symmetrical pattern of frequency response around the 

first mode. It was observed that the power harvesting resonance frequency seemed to 

shift as the load resistance changed and formed the symmetrical pattern as a function 

of frequency. Both the short and open circuit resonance frequencies indicated the 

lowest value of power amplitudes. By comparing the different cases of FRFs like the 

tip absolute velocity, electrical current and voltage amplitudes; the short and open 

circuits resonance frequencies seemed to give different trends. For example, the FRF 

of voltage under the short circuit gave the lowest amplitude but the FRF of electrical 

current seemed to give the highest amplitude with the same resonance frequency. 

The FRF of velocity also showed the different trend referring to the highest 

amplitude. This indicates that the power harvesting under short and open circuit 

conditions might not be optimal because the tip absolute displacement or velocity 

indicated the maximum value while the electrical current and voltage amplitude 
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results appeared to have opposite trends to each other. As expected, on one hand the 

current with the short circuit had the maximum value while on the other hand the 

voltage with the open circuit had the maximum value or vice verse. Moreover, power 

harvesting under those circuits seemed to give the lowest amplitudes as shown in 

Figure 6.25a,b indicating that the short or open circuit is not the preferred system for 

power harvesting. The optimal power harvesting amplitude occurred with the load 

resistance of 60 kΩ at the resonance frequency region as this gave the lowest level of 

tip absolute dynamic displacement or velocity amplitude and was located at the 

intermediate curves from the dynamic displacement, velocity, electrical current and 

voltage. It should be noted that the optimal load resistance with local minimum point 

as shown in the black square curve from Figure 6.23 was coincidently overlapped 

with the load resistance of 60 kΩ. Two absolute maximum points from the optimal 

load resistance curve were also coincidently overlapped with the load resistances of 

20 kΩ and 200 kΩ, respectively. It is also noted that both local minimum and 

absolute maximum points indicated the optimal power harvesting. Moreover, the 

absolute maximum points indicated the higher transverse displacement and velocity 

amplitudes and also gave higher power harvesting results compared with the local 

minimum point. This can be seen clearly from Figure 6.24 where the maximum 

power amplitude region was achieved at the load resistance away from short and 

open circuits. Therefore, the power harvesting with the load resistance of 60 kΩ 

showed the most convenient value for the optimization with the lowest velocity or 

displacement amplitude. The four samples of individual power harvesting trends 

under the load resistances of 560 Ω, 602 kΩ, 51 kΩ and 60 kΩ are shown in Figure 

6.25 where the results obtained indicated good agreement between the theoretical 

and experimental studies. The short and open circuit resonance frequency power 

results are shown in Figure 6.26 under various load resistances. Both the short and 

open circuit resonance amplitudes can appear to reach the maximum level with 

different load resistances. However, when the short circuit resonance amplitude 

moved to the lower transitional point of 61.1 kΩ, the amplitude showed higher 

values compared with the open circuit. This conversely occurs when the open circuit 

resonance amplitude moved to the higher transitional point to give the higher value 

compared with the short circuit. 
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Figure 6.22 FRFs of Power Harvesting with the CEDRTL (Solid line) and CEDRT (Dash line) 

Figure 6.23 FRFs of Power Harvesting with the CEDRTL (Solid line) and Experiment (Round dot) 

                   Including Optimal Values From Local Minimum to Absolute Maximum (Black Square)   

60 65 70 75 80 85 90
10

-5

10
-4

10
-3

Frequency (Hz)

T
ip

 T
ra

n
s
v
e
rs

e
 D

is
p
la

c
e
m

e
n
t 

P
e
r 

u
n
it

 I
n
p
u
tT

ra
n
s
v
e
rs

e
 A

c
c
e
le

ra
ti
o
n
 (

m
/3

0
6
 m

g
)

 

 

560 Ohms

5.6 kOhms

20 kOhms

30 kOhms

51 kOhms

60 kOhms

79 kOhms

150 kOhms

200 kOhms

602 kOhms

60 65 70 75 80 85 90
10

-5

10
-4

10
-3

Frequency (Hz)

T
ip

 T
ra

n
s
v
e
rs

e
 D

is
p
la

c
e
m

e
n
t 

P
e
r 

u
n
it

 I
n
p
u
tT

ra
n
s
v
e
rs

e
 A

c
c
e
le

ra
ti
o
n
 (

m
/3

0
6
 m

g
)

 

 

560 Ohms

5.6 kOhms

20 kOhms

30 kOhms

51 kOhms

60 kOhms

79 kOhms

150 kOhms

200 kOhms

602 kOhms

Figure 6.24 FRFs of Electrical Power: a) Amplitude Vs Frequency and Load resistance,  

                  b) Amplitude Pattern based on: Frequency Vs Load resistance   
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Figure 6.25 FRFs of Power Harvesting  with the CEDRTL (Solid line) and Experiment (Round dot) : 

           c) 560 Ω (Short Circuit) , b) 602 kΩ  (Open Circuit), c) 51 kΩ and d) 60 kΩ 

 

 

a b 

c d 

Figure 6.26 Power Harvesting with the CEDRTL versus Load Resistance under the Short circuit   

                      Resonance Frequency of 76.1 Hz and Open Circuit Resonance Frequency of 79.6 Hz 
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6.3.  Electromechanical Dynamic Response of the Piezoelectric Bimorph without  

 Tip Mass 

      

 This section presents the electromechanical piezoelectric bimorph response 

without the tip mass using multi-mode FRFs with varying load resistance. The 

properties of the bimorph were the same as used previously. The mechanical 

damping ratios were used according to the experimental results. Moreover, the values 

of load resistances from the previous section were still used to analyse the multi-

mode electromechanical dynamic response based on the theoretical and experimental 

studies.  The bimorph response with and without the tip mass are also discussed.  

 

6.3.1. The Multi-mode Bimorph FRFs Tip Absolute Dynamic Displacement 

The multi-mode tip absolute dynamic displacement FRFs was simulated from 

0 to 2000 Hz with varying load resistance. In this case, the first two modes were 

plotted with the same variation of load resistance as chosen previously. The input 

base transverse acceleration to the cantilevered piezoelectric beam was kept constant 

with the value of 3 m/s
2
 which is equivalent to 306 mg (1 g = gravitational 

acceleration 9.81 m/s
2
). With the same procedure for measuring the dynamic 

displacement using the Laser Doppler Vibrometer (LDV) as given in the previous 

study, equation (4.279c) in chapter 4 can be used for comparison by replacing 

variable x with the tip end of the bimorph L. The results obtained can also be 

compared with the CEDRTL and CEDRT response including the results of the 

experimental study. It can be seen in Figures 6.29-6.30 that the comparison between 

the theoretical and experimental studies for the first two modes with load resistance 

of 560 Ω appeared to give very close results to each other. As the load resistance of 

560 Ω approached short circuit, the results were used to determine the mechanical 

damping ratios based on the experimental results, matched with the theoretical 

results as shown in Figure 6.30a. The mechanical damping ratios from the first and 

second modes were calculated to be 016.01 w and 0172.02 
w .  

In the previous study, the tip absolute dynamic displacement was analysed according 

to the comparisons between the experimental study, the CEDRTL and the CEDRT 

results. In the present study, the CEDRTL was still applied but the trend of the 

CEDRT model seemed to be closer to the experimental results compared with the 
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CEDRTL with the maximum percentage difference of 11.42 %. In this case, the 

noticeable difference between the CEDRTL and CEDRT response predominantly 

occurred around the off-resonance region with the higher load resistances as shown 

from Figure 6.27 with the enlarged view from Figure 6.28. This indicates that the 

existence of longitudinal effect at the bimorph interlayer element without the tip 

mass could reasonably be ignored. For obvious reasons, the bimorph without the tip 

mass cannot give the extra tip inertia dynamic loading due to the additional effects of 

extensional strain field and extensional kinetic energy. In other words, the inclusion 

of the tip mass onto the bimorph can create the strong effects of bending and 

electrical moments with the additional effects of the longitudinal extensional and 

electrical forces into the interlayer bimorph element under dynamic response 

conditions.  

It can be seen from Figure 6.29 with enlarged view from Figure 6.30a that the first 

mode of the FRFs of tip absolute dynamic displacement shifted as the load resistance 

changed. The short circuit resonance frequency of 267.4 Hz tended to give the 

highest amplitude of 48.5 µm and the open circuit frequency of 278.5 Hz also 

showed similar behaviour with an amplitude of 44.4 µm. Moreover, as mentioned 

previously, the effect of the maximum tip absolute displacement tended to give the 

lowest and highest electrical voltage for the short and open circuits, respectively. 

Conversely, the maximum tip absolute displacement tended to give the highest and 

lowest electrical current for short and open circuits, respectively.  This indicates that 

the maximum dynamic displacement does not provide the highest current or voltage. 

Beside, both of these circuit conditions result in low power harvesting. Another 

important aspect reported here is that the trend of the tip absolute dynamic 

displacement without tip mass tended to give a slightly different pattern compared 

with the results including the tip mass because the effect of tip mass can change the 

frequency response amplitude. This indicates that the tip mass tuned not only the 

mechanical system but also the electrical system. For example, this case can be found 

specifically at the load resistances of  20 kΩ, 30 kΩ, 51 kΩ, 60 kΩ and 79 kΩ where 

the resonance frequencies without the tip mass created the unsymmetrical pattern 

whereas the bimorph system with the tip mass tended to give the symmetrical 

response. Good agreement was again observed between the theoretical and 

experimental studies as shown in Figure 6.30.  It should be noted that the effect of tip 
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mass on the bimorph system resulted in higher amplitudes compared to that without 

the tip mass especially at the first mode. The advantage of including the tip mass 

onto the bimorph was the higher voltage and power harvesting amplitudes at the first 

mode and also the lower resonance frequency as given in the previous study.         

An irregular mode from Figure 6.29 occurred between the frequencies of 571.7 Hz 

and 773.9 Hz in the experimental results due to the imperfection of the clamped 

support of the bimorph onto the base protractor structure. The irregular mode was 

still away from the first and second modes, so its impact was thought to be 

insignificant. Close agreement between the theoretical and experimental studies from 

the first two modes was achieved. By looking especially at the second mode of the 

FRF, the tip absolute displacement tended to indicate different trends compared with 

the first mode. The same resonance frequency of 1697 Hz was obtained with the 

changing load resistances of 20 kΩ, 30 kΩ, 51 kΩ, 79 kΩ, 150 kΩ, 200 kΩ and 602 

kΩ. 

 

Figure 6.27  First two modes FRFs of tip absolute Dynamic Displacement with the CEDRT (Solid line)  

                     and CEDRTL (Dash line)  
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Figure 6.28 FRFs of tip absolute Dynamic Displacement with the CEDRT (Solid line)  

                      and CEDRTL (Dash line) : a) First Mode and  b) Second Mode 

 

 

Figure 6.30 FRFs of Tip Absolute Displacement with the CEDRT (Solid line)  

                    and Experiment (Round dot) : a) First Mode and  b) Second Mode 

 

 

Figure 6.29 FRFs of Tip Absolute Displacement with the CEDRT (Solid line) and Experiment (Round dot) 

a b 

a b 



 

250 

        

             

            

 

 

 

6.3.2. The Multi-mode Bimorph FRFs of Tip Absolute Dynamic Velocity  

In this section, the trend of the first two modes of tip absolute velocity of the 

cantilevered piezoelectric bimorph with varying load resistance is shown using the 

CEDRTL and CEDRT models indicating very close-fitting. As can be seen from 

Figure 6.32, with the enlarged view of Figure 6.33, the resonance frequencies with 

the CEDRT for the short and open circuits of 267.4 Hz and 278.5 Hz appeared to 

give the highest tip absolute velocity with amplitudes of 0.081 m/(s.306 mg)  and 

0.078 m/(s.306 mg), respectively. Moreover, the resonance frequency with the 

CEDRT for varying load resistance closely agreed with the experimental study. The 

Figure 6.31 FRFs of Tip Absolute Displacement with the CEDRT (Solid line) and Experiment (Round dot) 

     : a) 560 Ω (Short Circuit) and b) 602 kΩ (Open Circuit) 

 

 

a 
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trend of tip absolute velocity seemed to have the similar pattern to that with the FRF 

from the tip absolute displacement. Individual trends of electromechanical tip 

absolute velocity response with different load resistances also showed good 

agreement between the CEDRT and experimental results as given in Figure 6.34 as 

clearly seen from the enlarged view from Figure 6.35. 

The effect of the maximum tip absolute velocity tended to give the lowest and 

highest electrical voltage for short and open circuits, respectively. Conversely, the 

maximum tip absolute velocity tended to give the highest and lowest electrical 

current for short and open circuits, respectively.  This indicates that the maximum 

dynamic velocity does not necessarily provide the highest current or voltage.  In such 

situations, both of these circuits provided low power harvesting as shown further in 

the next section. Moreover, the irregular mode between the first and second modes as 

shown in Figure 6.34 still occurred due to the imperfect clamped support of the 

bimorph. However, this did not appear to affect the resonance frequency region 

amplitudes. Two examples of velocity FRFs with the short and open circuit load 

resistances as shown in Figure 6.36 still indicated very good agreement between the 

theoretical and experimental results except for the irregular response from the 

frequency range between 571.7 Hz and 773.9 Hz. 

          

Figure 6.32 First two modes FRFs of tip absolute Dynamic Velocity with the CEDRT (Solid line)  

                        and  CEDRTL (Dash line)  
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Figure 6.34 FRFs of Tip Absolute Velocity with the CEDRT (Solid line) and Experiment (Round dot) 

 

Figure 6.35 FRFs of Tip Absolute Velocity with the CEDRT (Solid line) and Experiment  (Round dot) 

                     a) First Mode and  b) Second Mode 

 

 

Figure 6.33 FRFs of tip absolute Dynamic Velocity with the CEDRT (Solid line) and CEDRTL (Dash line)  : 

a) First Mode and  b) Second Mode 
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6.3.3. The Multi-mode Bimorph FRFs of Electrical Voltage  

 As can be seen from Figure 6.37, the first two FRFs modes of electrical 

voltage are shown with variable load resistances based on the CEDRT and CEDRTL 

models. The resonance frequency of the first mode tended to increase from the short 

to open circuit load resistance along with the voltage amplitude. The CEDRT and 

CEDRTL models gave a maximum percentage difference of amplitude around 22.96 

% across the higher load resistances at the off-resonances as shown in the enlarged 

view from Figure 6.38. The CEDRT results for the first mode under the short and 

open circuits indicated a response of 0.053 V/306 mg and 1.88 V/306 mg with the 

Figure 6.36 FRFs of Tip Absolute Velocity  with the CEDRT (Solid line) and Experiment  (Round dot) 

                    : a) 560 Ω (Short Circuit) and b) 602 kΩ (Open Circuit) 

 

 

b 
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resonance frequencies of 267.4 Hz and 278.5 Hz, respectively as shown in Figures 

6.39, 6.40 and 6.41. The CEDRT results indicated closer agreement with the 

experimental result than that compared with the CEDRTL as shown in Figure 6.39. 

This can also be seen clearly from the enlarged view from Figure 6.40. The second 

FRF mode also showed good agreement between the CEDRT and experimental 

studies. Moreover, the second mode amplitudes with the higher load resistances 

tended to give close-fitting values at the same resonance frequency of 1698 Hz. Two 

individual samples of the electrical voltage FRFs with short and open circuit load 

resistance were also shown in Figure 6.41.  

 

 

 

 

 

Figure 6.37 First two modes FRFs of Electric Voltage with the CEDRT (Solid line) and CEDRTL (Dash line)  

 

 

Figure 6.38 FRFs of Electric Voltage with the CEDRT (Solid line) and CEDRTL (Dash line)   

                     : a) First Mode and  b) Second Mode 
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Figure 6.39 FRFs of Electrical Voltage with the CEDRT (Solid line) and Experiment  (Round dot) 

Figure 6.40 FRFs of Electrical Voltage with the CEDRT (Solid line) and Experiment (Round dot) : 

a) First Mode and  b) Second Mode 
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6.3.4. The Multi-mode Bimorph FRFs of Electrical Current 

Figure 6.42 showed the first two FRF modes of electrical current based on the 

CEDRT and CEDRTL models for variable load resistance. The first mode of 

electrical current showed the opposite trend with the electrical voltage as shown in 

the enlarged view of Figures 6.43a and 6.38a. The resonance frequencies of electrical 

current decreased from the short to open circuits whereas the electrical voltage (from 

short and open circuits) gave increasing resonance frequency followed by increasing 

amplitude. The second resonant mode of electric current seemed to consistently have 

the resonance frequency of 1698 Hz as the load resistance varied from 20 kΩ to 602 

kΩ with decreasing amplitude from 4.25 µA/306 mg until 0.16 µA/306 mg. 

Although the percentage difference between the CEDRT and CEDRTL models 

indicated around 23 %, the CEDRT model appeared to be closer with the 

experimental results compared with CEDRTL as shown in Figure 6.44. The second 

mode amplitude with the dominant higher resistances tended to approach constant 

resonance as shown in Figure 6.45b. Since two examples of current FRFs with the 

short and open circuit load resistances as shown in Figure 6.46 indicated very good 

agreement between the theoretical and experimental results, both of which clearly 

showed the highest and lowest amplitudes, respectively. Moreover, the FRFs of 

electrical current of the bimorph without tip mass seemed to give lower amplitudes 

and higher resonance frequencies for each load resistance compared with the 

bimorph system with the tip mass. The effect of the tip mass on the bimorph 

appeared to result in a significant increase of system amplitudes and a reduction of 

the resonance frequency especially at the first mode. However, the bimorph without 

Figure 6.41 FRFs of Electrical Voltage with the CEDRT (Solid line) and Experiment  (Round dot)  

                  :  a) 560 Ω (Short Circuit)  and b) 602 kΩ (Open Circuit) 

 

 

b 



 

257 

the tip mass resulted in smaller amplitude differences between the first, second and 

higher resonance frequency responses.  
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Figure 6.44 FRFs of Electrical Current with the CEDRT (Solid line) and Experiment  (Round dot) 

Figure 6.42 First two modes FRFs of Electric Current with the CEDRT (Solid line) and CEDRTL (Dash line)  

 

 

Figure 6.43 FRFs of  Electrical Current with the CEDRT (Solid line) and CEDRTL (Dash line) : 

a) First Mode and  b) Second Mode 
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Figure 6.45 FRFs of Electrical Current with the CEDRT (Solid line) and Experiment (Round dot) : 

a) First Mode and  b) Second Mode 

 

 

Figure 6.46 FRFs of Electrical Current with the CEDRT (Solid line) and Experiment (Round dot)   

:  a) 560 Ω (Short Circuit) and b) 602 kΩ (Open Circuit) 

 

 

b 

b 

a 

a 



 

259 

6.3.5. The Multi-mode Bimorph FRFs of Power Harvesting  

As can be seen from Figure 6.47, the first two FRFs power harvesting modes 

based on the CEDRTL and CEDRT models are shown with variable load resistance. 

The power harvesting FRFs without tip mass gave lower amplitudes than that with 

the addition of the tip mass. The contribution of the tip mass onto the bimorph also 

affected the change of the symmetrical pattern of the FRF amplitudes for the various 

load resistances. The change in resonance frequency of the first mode tended to 

change the amplitude response as the load resistance changed as shown from Figure 

6.48a. The second mode of power harvesting still showed the predominantly 

consistent resonance frequency of 1698 Hz as shown in Figure 6.48b. Good 

agreement of the FRFs between the CEDRT and experimental studies was achieved 

as shown in Figure 6.49 with the enlarged view from Figure 6.50. As mentioned 

previously, the irregular mode located between the first and second resonance 

frequencies occurred naturally under the measurement due to the imperfectly rigid 

clamped support from the base protractor structure. However this did not appear to 

affect the results from the first two FRFs modes. The short and open circuit power 

harvesting results for the first mode from Figure 6.51 still showed the lowest 

amplitudes, even though these circuits gave the highest amplitudes of tip absolute 

velocity and displacement. Moreover, by relating this with the FRFs electrical 

voltage results as given previously, the short and open circuits appeared to give the 

lowest and highest voltage amplitudes respectively with the increasing resonance 

frequencies. This trend was opposite to that given from the FRFs of electrical 

current. The chosen load resistances, viewed as resistive shunt damping, affects the 

electromechanical behaviour of the piezoelectric element resulting in the power 

harvesting behaviour, where the resonance frequency shifted as the load resistances 

changed. In addition, the piezoelectric bimorph itself, having the physical behaviour 

of the coupled electromechanical system, also involved piezoelectric couplings and 

internal capacitance, giving rise to electromechanical damping as well as 

electromechanical stiffness. This case has also been proven mathematically in 

chapter 4, and has given the results from the parametric case study shown in chapter 

5 and validated with the experimental study in this chapter.      
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Figure 6.49 FRFs of Power Harvesting with the CEDRT (Solid line) and Experiment (Round dot) 

Figure 6.47 First two modes FRFs of Power Harvesting with the CEDRT (Solid line) and CEDRTL (Dash line)  

 

 

Figure 6.48 FRFs of Power Harvesting with the CEDRT (Solid line) and CEDRTL (Dash line) : 

                    a) First Mode and  b) Second Mode 
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Figure 6.50 FRFs of Power Harvesting with the CEDRT (Solid line) and Experiment  (Round dot) : 

a) First Mode and  b) Second Mode 

 

 

Figure 6.51 FRFs of Power Harvesting with the CEDRT (Solid line) and Experiment  (Round dot) : 

                     a) 560 Ω (Short Circuit) and b) 602 kΩ (Open Circuit) 
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 6.4. Polar Electromechanical Dynamic Response due to Varying Base  

        Input Accelerations 

 

In this section, the piezoelectric bimorph with a tip mass under varying base 

input acceleration direction was studied with variable load resistance. The 

piezoelectric bimorph was clamped to a base protractor structure capable of being 

setup with different angles as shown in Figure 6.52. Only one input acceleration from 

the head impedance went to the base protractor structure. However, this protractor 

structure can be aligned with angles from 0
o
 – 180

o
 with incremental angles of 22.5

o
 

in order to vary the direction of the base input motion from transverse to 

longitudinal. In the theoretical study, the investigation of the effects of the bimorph 

electromechanical dynamic responses with CEDRTL model in the polar coordinate 

system with incremental angles of 1
o
 was discussed using the input base 

accelerations. The results were also compared and validated with the experimental 

results. 

 

 

 

 

 

 

 

 

 6.4.1. Bimorph Polar Dynamic Displacement Response 

 

The electromechanical dynamic displacements of the beam were investigated 

using the mounting protractor with angles from 0
o
 – 180

o
 across the chosen 

frequency and load resistance ranges. As can be seen from Figure 6.53, the polar 

electromechanical tip absolute dynamic displacement was measured at frequencies of 

72.67 Hz, 77.71 Hz, 75 Hz, 80 Hz. It should be noted that there were identical trends 

Figure  6.52  Input base acceleration with the bimorph beam protractor mounting  structure 
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of tip absolute displacement with the angles from 0
o
-90

o 
and 90

o
-180

o
 as indicated by 

the symmetrical pattern due to the base input acceleration level of 3 m/s
2
. It should 

be noted that the base input acceleration level was kept at the constant value by 

varying the angle incrementally by 22.5
o
 for experimental result and by 1

o
 for the 

numerical result. Moreover, the trends of the polar electromechanical tip absolute 

displacement gave very good agreement between the analytical and experimental 

results. As can be seen from Figure 6.53c, the maximum tip absolute displacement of 

the frequency of 75 Hz with the load resistances of 20 kΩ, 60 kΩ and 150 kΩ was 

reached at the angle of 90
o
 with the amplitudes of  0.22 mm/(306 mg)

2
, 0.14 

mm/(306 mg)
2
 and 0.12 mm/(306 mg)

2
, respectively. This case represents the 

situation with the dominant transverse bending form of the bimorph where the results 

obtained are similar to the amplitudes shown from the FRFs of the tip absolute 

displacement as given in Figure 6.4. The lowest tip absolute displacement can be 

found at the angles of 0
o
 and 180

o 
due to the dominant longitudinal response form at 

this condition. The effect of input base acceleration with the interval angles between 

0
o
 <θ<90

o
 and 90

o
 <θ<180

o
 can produce both transverse and longitudinal response 

forms due to the electromechanical response forms as formulated in equation (4.276). 

The other frequencies of 72.67 Hz, 77.71 Hz and 80 Hz also showed good agreement 

between the analytical and experimental results with the chosen load resistances. It 

should be noted that the FRF of the tip absolute dynamic displacement at the 

frequency of 77.71 Hz under the load resistances of 60 kΩ and 150 kΩ as shown in 

Figure 6.4 tended to be quite closed together. This can be compared to the result 

shown in Figure 6.53b, indicating the similar result. 
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6.4.2. Bimorph Polar Dynamic Velocity Response  

 

 In this section, the polar electromechanical dynamic velocities are shown in 

Figure 6.54 with frequencies of 72.67 Hz, 77.71 Hz, 75 Hz and 80 Hz at the load 

resistances of 20 kΩ, 60 kΩ and 150 kΩ. The resulting trend shows similar 

behaviour with the polar tip absolute displacement. The tip absolute displacement 

and velocity again showed similar results to those from the previous discussion on 

the FRF results shown in Figures 6.4 and 6.8. The maximum amplitude for the polar 

coordinate system velocity response shown in Figure 6.54 occurred at the angle of 

90
o
 as expected. The response at the frequency of 72.67 Hz resulted in amplitudes of  

0.0624 m/(s.306 mg), 0.0469 m/(s.306 mg) and 0.0402 m/(s.306 mg) with the load 

resistances of 20 kΩ, 60 kΩ and 150 kΩ respectively. This was also similar to the 

results shown in the FRF from Figure 6.8. The other angles with the same 

frequencies still indicated good agreement between the analytical and experimental 

results as shown in Figure 6.54. The transverse response again dominates the polar 

tip velocity, as seen from the angle of 90
o
 due to the base input transverse 

acceleration onto the bimorph. The response at angles between 0
o
 <θ<90

o
 and 90

o
 

<θ<180
o
 again contains the coupled electromechanical transverse and longitudinal 

forms with the dominant polar tip response coming from the transverse base motion.       
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Figure 6.53 FRFs of Polar Tip Absolute Transverse Displacement from measurement (m/306 mg) at 20 kΩ,                      

at 60 kΩ,      at 150 kΩ         and from theoretical at 20 kΩ,             at 60 kΩ,            at 150 kΩ             : 

(a) 72.67 Hz (b) 77.71 Hz (c) 75 Hz and (d) 80 Hz 
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6.4.3. Bimorph Polar Electrical Voltage Response  

 

The polar electrical voltage response at frequencies of 75 Hz, 80 Hz, 77.71 

Hz and 72.67 Hz are shown in Figure 6.55 with the load resistances of 20 kΩ, 60 kΩ 

and 150 kΩ as used previously. The maximum electrical voltage response was 

observed to occur at the protractor angles of 90
o
 as expected. The response at the 

frequency of 72.67 Hz resulted in amplitudes of 1.38 V/(306 mg), 2.4 V/(306 mg)  

and 2.8 V/(306 mg), for the different load resistances respectively. The polar 

electrical voltage response presented reasonable comparison between the numerical 
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Figure 6.54 FRFs of Polar Tip Absolute Transverse Velocity  from measurement (m/s.306 mg) at  

20 kΩ,      at 60 kΩ,      at 150 kΩ,      and from theoretical at 20 kΩ,             at 60 kΩ,             at 150 kΩ             : 

 (a) 72.67 Hz (b) 77.71 Hz (c) 75 Hz and (d) 80 Hz 
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and experimental results. Consistency of increasing amplitudes at the polar electrical 

voltage responses increased at each frequency with increasing load resistances of 20 

kΩ, 60 kΩ and 150 kΩ. This situation shows similar trends as observed previously as 

the electrical resistance goes from short circuit to open circuit.  

 
 

  

 

 

 

6.4.4. Bimorph Polar Electrical Current Response 

 

The polar electrical current response with the chosen frequencies still showed 

good agreement between the numerical and experimental results as shown in Figure 

6.56. The consistency of increasing polar electric current amplitudes occurred for 

decreasing load resistances of 150 kΩ, 60 kΩ and 20 kΩ for each frequency as 
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Figure 6.55 FRFs of Polar Electrical Voltage from measurement (V/306 mg) at 20 kΩ,      at 60 kΩ,      at 150 

kΩ,      and from theoretical at 20 kΩ,             at 60 kΩ,             at 150 kΩ             : (a) 72.67 Hz (b) 77.71 

Hz (c) 75 Hz and (d) 80 Hz 
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expected. This trend was opposite to that obtained for the electrical voltage as shown 

previously. Similar behaviour was also found with the FRFs of electrical current and 

voltage shown previously. The results for the protractor angle of 90
o
 again showed 

the maximum polar electrical amplitudes for each load resistance due to the input 

transverse acceleration. The results indicate the dominant effect of the transverse 

bending response of the bimorph, although the effect of the longitudinal response 

should not be ignored, especially at the higher load resistance as discussed previously 

with the comparisons between the CEDRT and CEDRTL.   
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Figure 6.56 FRFs of Polar Electrical Current from measurement (A/306 mg) at 20 kΩ,      at 60 kΩ,      at 150 

kΩ,      and from theoretical at 20 kΩ,             at 60 kΩ,             at 150 kΩ              : (a) 72.67 Hz (b) 

77.71 Hz (c) 75 Hz and (d) 80 Hz 
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6.4.5. Bimorph Polar Electrical Power Response 

 

Figure 6.57 shows the power harvesting amplitudes with variable load 

resistance in polar form for frequencies of 72.67 Hz, 77.71 Hz, 75 Hz and 80 Hz, 

respectively. The polar results of power show the symmetrical response for the 

angles from 0
o
-90

o
 and 90

o
-180

o
 due to the base input acceleration. The polar power 

harvesting amplitudes also showed very close agreement between the analytical and 

experimental results. The maximum power was measured at the angle of 90
o
 due to 

the dominant transverse bending form of the bimorph as expected from the CEDRTL 

analysis model. The lowest power can be found at the angles of 0
o
 and 180

o
 where 

this indicates the dominant longitudinal motion as again predicted by the CEDRTL 

model. The polar power harvesting results shown in Figures 6.57a and 6.57b for the 

load resistances of 20 KΩ and 150 kΩ tended to overlap each other. This situation 

can also be found from Figure 6.23 where the two lines of power amplitudes from 

the load resistances of 20 kΩ and 150 kΩ coincide for the frequencies of 77.71 Hz 

and 72.67 Hz. The comparisons between the analytical and experimental results still 

showed reasonable agreement. The polar power harvesting should be seen to be a 

result of the combination of both the transverse and longitudinal system response. 

Similar behaviour of power was also found from the protractor angles of 180
o
-270

o
 

and 270
o
-360

o
. It is noted that the dominant effect of transverse form of the bimorph 

was showed in the majority of angles resulting higher power compared with 

longitudinal form since the strain-polarity-electric field due to bending form 

predominantly affected to the bimorph under input base excitations creating 

mechanical and electrical moments. It is noted that the backward and forward 

piezoelectric couplings for transverse form were developed due to the electrical 

moments as discussed at chapter 4. Moreover, the longitudinal response at the load 

resistance approaching short circuit can be ignored as discussed in section 6.2.5, 

where the CERDTL and CEDRT models seemed to overlap each other.  

 

 

 



 

269 

      

 
 

 

 

 

6.5. Closing Remark  

This chapter has presented the results from analytical study and experimental 

measurements of the electromechanical dynamic response of the piezoelectric 

bimorph beam with and without a tip mass. The analytical studies of the CEDRTL 

and CEDRT analysis models were also plotted under various load resistance values 

from short circuit to open circuit. The effect of the CEDRTL model demonstrates the 

electromechanical principle where the strain field includes the coupling between the 

transverse bending and longitudinal extension forms, where the CEDRT model 

ignored the longitudinal effect. Both the CEDRTL and CEDRT models have been 

derived from the energy fields using the principle of continuum piezoelectric 
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Figure 6.57 FRFs of Polar Power Harvesting from measurement (W/(306 mg)
2
) at 20 kΩ,      at 60 kΩ,      at 150 

kΩ,      and from theoretical at 20 kΩ,             at 60 kΩ,             at 150 kΩ             : (a) 72.67 Hz (b) 77.71 

Hz (c) 75 Hz and (d) 80 Hz 
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thermodynamics with the assumptions of isothermal and adiabatic processes as 

further derived using Hamiltonian’s principle. The mechanical damping ratios were 

determined by matching the frequency amplitudes at the short circuit load resistance 

from the experimental results with the theoretical studies. The shifting of the 

resonance frequencies occurred as the load resistances changed where this case 

mostly occurred at the first mode. Moreover, the CEDRTL and CEDRT model 

comparisons gave slight changes of power amplitude trends especially where the 

load resistances approached the open circuit condition with the maximum difference 

percentage of 49.11 %. However, when the load resistance approached the short 

circuit, the frequency amplitudes given from CEDRTL and CEDRT model seemed to 

overlap each other. The FRFs from the CEDRTL model and the experimental results 

of the bimorph with the tip mass have been compared with good agreement. The 

effect of tip mass on the bimorph is known to create additional bending and electrical 

moment effects with the coupling effect of the longitudinal extension and electrical 

forces in the interlayer bimorph element. The tip mass provides extra dynamic inertia 

loading due to the additional effects of extensional kinetic energy. Apart from that, 

the tip absolute displacement or velocity with the load resistance approaching short 

and open circuits indicated the highest amplitudes. However, the voltage amplitude 

increased from short to open circuit resistance whereas increasing electrical current 

amplitude otherwise occurred from the open to short circuits. Therefore, the highest 

velocity or displacement is not the substantial basis for providing the maximum 

current and maximum voltage. In this case, the optimal power harvesting with the 

absolute maximum values achieved 0.43 mW/(306 mg)
2 

at the load resistances of 20 

kΩ and 200 kΩ. The optimal power at the absolute maximum value provided higher 

velocity or displacement amplitude compared with the optimal power at the local 

minimum value, with the load resistance of 60 kΩ giving the convenient value of 

power of 0.41 mW/(306 mg)
2
. The optimal power density at the local minimum 

value achieved 4.17 mW/(cm
3
.(

 
306 mg)

2
). It is noted that the standard volume was 

based on the geometry of the piezoelectric bimorph. Furthermore, the multi-mode 

FRFs of the bimorph without the tip mass was modelled with the CEDRT and the 

comparison with experimental results indicated that the CEDRT model was closer to 

the measurement compared with the CEDRTL. The maximum difference percentage 

of CEDRTL and CEDRT for power amplitude occurred at the load resistance 

approaching open circuit giving around 46 % difference. The effect of tip mass on 
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the piezoelectric bimorph with variable load resistance was found to increase power 

at the resonance region with the average increase of 96 % with decreasing resonance 

frequency of 72 %. The effect of longitudinal response under lower load resistance 

can be ignored, when the CEDRTL and CEDRT models overlap each other. 

However, the longitudinal response on the bimorph with the higher load resistance 

should not be ignored, especially when the tip mass is included for the two input base 

excitations. The bimorph system, when used in vibration environment with rotating 

equipment, will be subject to multidirectional input excitations. This will normally 

result in coupled bending and longitudinal input and subsequently coupled 

piezoelectric response. Finally, the polar electromechanical dynamic responses of the 

bimorph with the tip mass under two input base transverse and longitudinal 

accelerations has also been discussed, showing close agreement between the 

analytical and experimental results. The maximum power was achieved from the 

bimorph beam under input transverse excitation. 
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 This dissertation has presented various mathematical dynamic formulations of 

piezoelectric-based power harvester schemes. The impact benefit of piezoelectric 

transduction includes the ease of scalability, compact configuration, high energy 

density and high sensitivity which can be applied for future applications of self-

powered smart sensor devices for health condition monitoring and defence 

communication technology. The main focus of this research work has been the 

development of novel analytical methods for modelling the behaviour of the 

piezoelectric bimorph beam vibration power harvester. This included the 

electromechanical dynamic system behaviour using the electrical enthalpy of 

piezoelectric layers under adiabatic and isothermal processes associated with the 

mechanical fields of elasticity and dynamical systems. The physical aspect of the 

piezoelectric system as discussed in Chapter 3 has also been considered to draw  

clear insight of the physical properties of continuum thermopiezoelectricity in order 

to explore the interrelationships between the mechanical, electrical and thermal 

forms as there appear to be no research publications that present the detail of the 

theoretical development of the continuum thermopiezoelectricity.      

 The continuum thermopiezoelectric equations of state with extensive and intensive 

properties using the laws of thermodynamics, Legendre transformation and 

Maxwell’s relations have been derived comprehensively to establish equations that 

can be reduced in terms of Elastic-Electrical Gibbs Free Energy, Elastic Gibbs Free 

Energy, Electrical Helmholtz Free Energy, Elastic Helmholtz Free Energy, the 

Elastic-Electrical Enthalpy and the Electrical Enthalpy.  

The application of continuum thermopiezoelectricity can be extended into areas of 

smart materials and structures. In this dissertation, the continuum 

thermopiezoelectricity associated with the extended Hamiltonian principle has been 

CHAPTER  

7 

Summary and Conclusions 
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narrowed to consider novel analytical methods of the electromechanical piezoelectric 

power harvesters as discussed in Chapter 4. Two analytical methods representing the 

weak and closed forms of the Rayleigh and Euler-Bernoulli piezoelectric bimorph 

beams under the action of two input base excitations have been established according 

to the electrical enthalpy of the piezoelectric layers (bimorph top and bottom layers), 

potential energy of substructure material (middle layer), kinetic energy of bimorph 

including the tip mass with their rotary inertias and the non-conservative external 

works due to the input mechanical inertia force and electrical charge. It should be 

noted that the external work of inertia forces was derived according to the input base 

excitation in terms of the product of the generalised mode shape of displacement 

fields with the zero-th mass moment of inertia of the bimorph and tip mass. The 

Rayleigh piezoelectric beam only considers the rotary inertia of the bimorph in the 

resulting electromechanical dynamic equations. This can also be further reduced to 

give the electromechanical dynamic equations of the Euler-Bernoulli piezoelectric 

beam by ignoring the rotary inertia of the bimorph from the Rayleigh piezoelectric 

beam. The constitutive electromechanical dynamic equations of the piezoelectric 

bimorph beam according to the weak form have been formulated into three 

categories represented by the coupled electromechanical dynamic response of the 

transverse-longitudinal form (CEDRTL), coupled electromechanical dynamic 

response of the longitudinal form (CEDRL) and coupled electromechanical dynamic 

response of the transverse form (CEDRTL). 

All constitutive electromechanical dynamic equations as shown in Chapter 4 have 

been extended to derive the solutions using the Laplace transformation and Ritz 

eigenfunction series based on orthonormality. The extended solution forms give the 

multi-mode transfer functions, frequency response functions, optimal power 

functions and the generalised time-dependent amplitude functions which represent 

the relative and absolute dynamic displacement including velocity, electrical voltage, 

current and power. Moreover, the closed form reduced from the strong form of 

Hamiltonian’s principle has been formulated using the CEDRTL model which can 

also be further extended using Laplace transformation associated with the convergent 

eigenfunction series under the orthonormality condition. The broadband multi-

electromechanical piezoelectric bimorph beam with the multi-frequency response has 

also been formulated using the weak form of the CEDRT model to give the single- 
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and multi-mode transfer functions and frequency response system behaviour.  

Considering the analytical derivation of piezoelectric power harvesters, no research 

publications have been found focusing on the mathematical derivation of equations 

of the constitutive electromechanical dynamic behaviour represented by the 

CEDRTL, CEDRL and CEDRTL models.  

Furthermore, the parametric case study of the Euler-Bernoulli piezoelectric bimorph 

beam with the tip mass under input transverse excitation using the weak and closed 

forms of the CEDRTL model have been compared to give very good agreement with 

the multi-mode frequency response functions as given in chapter 5. Since the typical 

piezoelectric bimorph beam is a thin structure, the Euler-Bernoulli formulation 

represents an accurate formulation for applications of vibration power harvesting. 

The results of the parametric case study with series and parallel connections have 

been discussed using the multi-mode FRFs of the tip absolute dynamic displacement, 

velocity, electrical voltage, current and power relating to the input transverse base 

excitation with variable load resistance. In addition, the short to open circuit 

resonance frequency response for variable load resistance have been discussed for 

series and parallel connections. Since the load resistance behaves as resistive shunt 

damping, the shifting resonance frequency from short to open circuits affects the 

mechanical stiffness of the bimorph and electromechanical stiffness of the 

piezoelectric layers (backward and forward electromechanical piezoelectric 

couplings). 

It is noted that the electromechanical piezoelectric couplings have been formulated 

according to the electrical moment and force of the piezoelectric layers due to the 

piezoelectric direct mode and the piezoelectric converse mode of the electrical 

energy which implies backward and forward piezoelectric couplings, respectively, 

due to the transverse and longitudinal extension forms as given in chapter 4.  

Moreover, it was found that the short and open circuit load resistances gave the 

highest amplitudes of the first mode tip absolute dynamic displacement and velocity 

as shown in the FRFs. The use of the short and open circuit load resistance here was 

not the most important factor for increasing the electrical voltage, current and even 

power. This situation, in fact, has been proved, where the electrical voltage 

amplitudes increased from the short to open circuit load resistances with increasing 

resonance frequency. Conversely, the electrical current amplitude increased from the 
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open to short circuit load resistances with decreasing resonance frequency. 

Moreover, the FRFs of electrical power indicated the lowest amplitudes for both 

short and open circuit load resistance conditions. The parametric geometrical 

bimorph with varying piezoelectric thickness and length was discussed to see the 

resulting effect on the resonance frequencies as a function of load resistance. The 

broadband multi-electromechanical piezoelectric bimorph beam with variable load 

resistance has also been discussed by comparing the single-frequency and multi-

frequency models of the beams as it has potential benefit for tuning or widening the 

resonance frequency band for electrical voltage, current and power.  

In chapter 6, the validations of the theoretical and experimental results have been 

achieved with very good agreement. The mechanical damping ratios played an 

important role influencing the resonance peak amplitudes where the mechanical 

damping ratios have been given by matching the short circuit resonance frequency 

response from the theoretical studies with the experimental results. The piezoelectric 

bimorph beams with the tip mass under the input base transverse excitation using the 

weak form of the CEDRTL and CEDRT models have been compared to show the 

agreement with the experimental results. All results showed the frequency response 

functions of tip absolute dynamic displacement, velocity, electrical voltage, current 

and power. Since the piezoelectric bimorph with the tip mass using the CEDRTL 

model considered the effect of strain fields associated with the electromechanical 

piezoelectric couplings due to the transverse bending and longitudinal extension 

forms, the inclusion of tip mass also affected the input inertia forces due to the base 

transverse acceleration onto the bimorph. This creates coupling effects with 

mechanical bending and electrical moments with the additional effects of mechanical 

longitudinal extension and electrical forces into the interlayer bimorph element under 

the dynamic response. Therefore, the single mode frequency response results of the 

CEDRTL modelling with variable load resistance seemed to approach the 

experimental results closer as compared with the CEDRT results. The results 

indicated that for lower load resistances approaching short circuit, the CEDRTL and 

CEDRT tended to overlap whereas for higher load resistances approaching open 

circuit, the CERDTL and CEDRT models provided different results. Moreover, the 

multi-mode frequency response functions of the piezoelectric bimorph beam without 

tip mass has also been given by comparing the two theoretical methods (CEDRTL 
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and CEDRT) with the results of the experiment. The resulting experimental 

frequency response functions seemed closer with the CEDRT compared with the 

CEDRTL model.  

Finally, the piezoelectric bimorph beam with the tip mass under the two input base 

transverse and longitudinal excitations using the CEDRTL model have been 

validated with the experimental results to give very good agreement. It is noted that 

the results were based on the input base excitation of 3 m/s
2
 (306 mg) for the base 

protractor structure and attached piezoelectric bimorph beam. The protractor base 

structure was adjusted with incremental angle of 22.5
o
 from 0

o
 to 180

o
. For the 

theoretical model, the iteration of input base excitation was given with incremental 

angle of 1
o
.  As a result, the bimorph beam would be considered to have one and two 

input excitations. The input base transverse excitation was achieved with an angle of 

90
o
 and the input base longitudinal excitation was achieved with the setup angles of 

0
o
 and 180

o
. The angles between 0

o
 and 180

o
 (excluding 90

o
) created combinations of 

input base excitations. The results shown in this case gave the polar tip absolute 

dynamic displacement, velocity, electrical voltage, current and power under the 

chosen frequencies and load resistances. It was found that the input excitation with 

angle of 90
o
 on the bimorph seemed to give maximum amplitude under the dynamic 

response and load resistance, where that situation provided the predominant bending 

transverse response of the bimorph. In addition, the effect of input excitation with the 

angles of 0
o
 and 180

o
 attained the lowest amplitudes where this case implied the 

predominant longitudinal extension of the bimorph. Moreover, although the input 

excitation with the angles between 0
o
 and 180

o
 affected the transverse bending and 

longitudinal extension effects on the bimorph, the transverse bending still provided 

the dominant effect on the bimorph. It was also noted that the symmetrical trend of 

polar amplitude response was achieved at the angles from 0
o
 to 90

o
 and 90

o
 to 180

o
.   

Piezoelectric materials can be applied across a wide range of applications for the 

future development of self-powering smart wireless sensor devices. The extracted 

mechanical energy from the wasted or unused vibration environment can be used to 

obtain the electrical energy using piezoelectric elements for powering embedded 

batteries of smart wireless sensor devices in order to monitor the health condition of 

rotating machines located in remote area. The formulations provided previously can 

be applied into different aspects of material properties and micro-scale structures 
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where the purpose is the optimisation of the electromechanical dynamic power 

harvesters. 

 

Future Work and Recommendation  

As discussed in several cases in this dissertation, the vibration power harvester can 

be further investigated for future developments as stated in the following issues: 

1. The future research study can address the mathematical study with analytical and 

perturbation methods of the non-linear electromechanical piezoelectric bimorph 

beam behaviour under high amplitudes of input base excitation. 

 

2. Mathematical methods of topological piezoelectric design with/without the 

temperature effect for understanding the optimal power harvesting under input 

mechanical excitations. 

 

3.  The broadband multi-electromechanical piezoelectric beam coupled with multi-

electromagnetic transduction for multi-resonance behaviour can be investigated 

for multi-purpose applications of smart sensor devices.    

 

4. The design management electronic circuit with embedded battery and wireless 

sensor node can be the focus of investigation.  
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A.1 Piezoelectric Constitutive Equations   

 

The electrical enthalpy (H) as stated in chapter 3 can be reformulated as, 

 
kiikijkkijklij

E

ijkliij EEEeCE,H 
2

1

2

1
 .        (A1) 

In equation (A1), H is a function of kl  and kE  therefore deriving the partial 

differential of H with respect to ij and iE  to give constitutive equations, yields 

             
ij

ij

H







     ,     

i

i
E

H
D




 .                         (A2) 

This gives, 

         kijkkl

E

ijklij EeC   ,                              (A3) 

                        kikklikli EeD   .                                (A4) 

The elastic-electrical enthalpy (H) as stated in chapter 3 can also be reformulated as, 

 
kiikkliiklklij

E

ijkliij EEEdSEH 
2

1

2

1
,  .               (A5) 

Equation (A5) is a function of kl  and kE  therefore deriving the partial differential 

of H with respect to ij and iE  gives constitutive equations as, 

            
ij

ij

H







     ,     

i

i
E

H
D




 .          (A6) 

This gives, 

         kiklkl

E

ijklij EdS   ,                               (A7) 

                             kikklikli EdD   .                                   (A8) 

Equations (A3), (A4), (A7) and (A8) have similar forms with the electrical enthalpy 

and elastic-electrical enthalpy given in chapter 3. It should be noted that the electrical 

enthalpy and elastic-electrical enthalpy have physical relationship in terms of 
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constitutive equations. In this case, it is important to condense tensor forms from 

Eqs. (A1) - (A8) to matrix form by using the Voigt’s notation. It is also noted that 

double indices ij or kl can be replaced with single indices p or q. Tensor notations 

i,j,k and l take the values of 1,2 and 3 where p and q take the value of 1,2,3,4,5 and 6. 

The complete form of correlation between tensor double indices and the matrix form 

can be stated in terms of Voigt’s notation as, 

  ij  or kl   :  11  22 33 23 or 32 31 or 13 12 or 21 

   p or q    :    1  2  3       4      5                        6 

For example : 

pijiqiklpqijkl eeCC   ,, . 

In terms of Voigt’s notation, equations (A3) and (A4) from electrical enthalpy 

become, 

kkpq

E

pqp EeC   ,     (A9) 

               kikpiqi EeD   .              (A10) 

Equations (A7) and (A8) from elastic-electrical enthalpy can also be stated as, 

             qiqq

E

pqp EdS   ,                       (A11) 

                       kikqiqi EdD   .          (A12) 

Equations (A9) and (A10) can then be written in matrix form as, 

 
 

 
 
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x

EeC   ,    (A13) 

and, 

 
 

 
 

 
 

 
 

 
 1333166313 xxxxx

EeD   .    (A14) 

Equation (A11) can also be proven by manipulating the constitutive equations from 

(A9) to give, 
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where  
 

 
 

1

6666




x

E

x

E CS  represents the elastic material compliance by using the inverse 

of stiffness coefficient  and  
 

 
 

 
 36

1

6636 x
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 
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 666363 xxx

Cde   

or  
 

 
 

 
 666363 xxx

Sed   to represent the relation form of the piezoelectric constants. It is 

noted that equation (A15) has similar form with Eq. (A11). Moreover, equation 

(A12) can also be proven by substituting equation [A15] into equation [A14] 

yielding, 
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 
 1333166313 xxxxx

EdD      ,     (A16) 

where  
 

 
 

 
 

 
 36633333 x

T

xxx

de   . 

It is noted that equation (A16) has similar form with Eq. (A12). 

A.2 PZT Material Coefficients 

The Lead Zirconate Titanate (PZT) has characteristic piezoelectric coefficients in 

terms of the plane-stress relationship as,  
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.  (A.17) 

 

A.3 Piezoelectric Electrical Enthalpy Using Einstein’s Summation Convention  

 

Equation A1 can be restated in terms of Einstein’s summation convention as, 
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Corresponding to Eq. (A17), equation (A18) can be expanded to give, 
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EEEEeEeEe    .         (A20) 

where EE CC 2112  , EE CC 4455  , EEEE CCCC 32233113  , 3132 ee  and 1524 ee  . 

Since the electrical field induced from the piezoelectric element is in z-direction, the 

boundary condition for piezoelectric beams can be stated as 

021  EE .     (A21) 

The strain field of the Euler-Bernoulli-Beam and Rayleigh beam can be stated as 

065432   .    (A22) 

It should be noted that Eq. (A22) does not mean plane-strain condition for material 

coefficient. It was only beam condition reduced from equation (A20) which was 

derived under the plane-stress material from Eq. (A17). The strain field of 

Timoshenko Beam can be stated as, 

       06432    .                                   (A23) 

The strain field of Kirchhoff plate can be stated as, 

 0543   .                                               (A.24)                        

In terms of Eqs. (A21) and (A22), equation (A20) for the Euler-Bernoulli beam and 

Rayleigh beam can be reduced as, 

    2
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1

2
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EEeCE,H E

iij

  .           (A25) 

Corresponding to Eqs. (A9) and (A10), equation (A25) can be reduced in matrix 

form as,  
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.                     (A26) 

In terms of Eqs. (A21) and (A23), equation (A20) for Timoshenko Beam can be 

reduced as, 
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Corresponding to Eqs. (A9) and (A10), equation (A27) can be reduced in matrix 

form as,  
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.                 (A28) 

It is noted that shear correction factor k, which depends on the shape of the cross 

sectional beam, was included on the Timoshenko beam to give EkC55 .  

 

In terms of Eqs. (A21) and (A24), equation (A20) for Love-Kirchhoff plate can be 

reduced as, 
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Corresponding to Eqs. (A9) and (A10), equation (A29) can be reduced in matrix 

form as,  
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To obtain eigenfunction forms, the solution forms of mechanical dynamic equations 

of transverse bending and longitudinal extension for the cantilevered piezoelectric 

bimorph beam with tip mass must be established independently. The mode shapes 

are solution forms of the eigenfunction series to be used in chapter 4. It should be 

noted that normal modes (normalised eigenfunctions) are not formulated here 

because the orthonormality equations based on the orthogonality property of 

mechanical equations, both weak and closed forms, can be found in detail in chapter 

4.  

 

B.1 Rayleigh piezoelectric bimorph beam with tip mass 

 

The dynamic transverse bending equation for the Rayleigh cantilevered piezoelectric 

bimorph beam with tip mass can be formulated after simplification as,  
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.                      (B1)                      

It should be noted that the second terms of Eq. (B1) represents the rotary inertia of 

the piezoelectric element. Four roots of solution can be obtained from Eq. (B1) as,  
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1   ,                         (B2) 

 baai 4
2

1
, 2

2     ,                        (B3) 

where ; 
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The boundary condition of the transverse bending equation can be formulated with 

tip mass and rotary inertias from the piezoelectric beam and tip mass as, 
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  00   ,         00 


xd

d
.   (B6) 

After manipulating some complex equations according to boundary conditions, the 

characteristic equation can be formulated in matrix form as, 
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where, 
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Frequency equation and eigenvalues are calculated by solving for the determinant 

from equation (B7). Trial and error methods can be used to obtain the eigenvalues. 

The best way to solve the frequency equation and eigenvalues was found by using 

MATLAB.  The eigenfunction form can be formulated as,    
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B.2 Euler-Bernoulli piezoelectric bimorph beam with tip mass 

 

The mechanical dynamic equation in transverse bending form can be simplified by 

ignoring the rotary inertia of the piezoelectric beam from Eq. (B1) to give, 
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Four distinct roots can be obtained as,  

    j 4,32,1 , .                            (B10) 
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where    kFkA CI ,

11

2,4 ˆˆ   . The boundary condition of the cantilevered piezoelectric 

beam with the tip mass and rotary moment of inertia from the tip mass can be 

formulated as, 
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The characteristic equation can be obtained after manipulating Eqs. (B9) - (B13) to 

give,  
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where, 
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The frequency equation and eigenvalues can be calculated by analysing the 

determinant from Eq. (B14) to give,  
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After applying boundary conditions and some algebraic calculations, the 

eigenfunction can now be formulated as, 
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B.3 Longitudinal piezoelectric bimorph beam with tip mass 

 

The dynamic equation of longitudinal motion for the cantilevered piezoelectric 

bimorph beam can be written as, 
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Equation (B17) can be modified into a characteristic equation and two roots from the 

characteristic equation can be obtained as, 
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The boundary condition can be formulated as, 
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The frequency equation and eigenvalues can be calculated by applying boundary 

conditions to give, 
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After applying boundary conditions and some algebraic calculations, the mode shape 

can now be formulated as 

    xbx rr sin1   .                              (B21) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%    MATLAB Program of electromechanical Piezoelectric     %%%% 

%%%%% Bimorph Beam with tip mass using CEDRTL and CEDRT models %%%% 

%%%%%    (Weak form)        %%%% 

%%%%%           Programmed by Mikail F. Lumentut      %%%% 

%%%%%         Supervised by A/Prof. Ian M. Howard              %%%% 

%%%%%    Department of Mechanical Engineering             %%%% 

%%%%%   Curtin University of Technology     %%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clc 
clear 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%Input data of geometry and properties Piezoelectric bimorph%%%  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Piezoelectric bimorph   

hp=0.19e-3 ;   % Piezoelectric thickness  
hs=0.13e-3 ;  % substructure thickness 

bp=6.4e-3 ;    % Bimorph width 
L=30.1e-3  ;   % Length of Bimorph 

e31=-190e-12*Qp;   % Piezoelectric constant 
beta=1540*8.9e-12; % Permittivity of constant strain 
% Tip mass   

ha=5.7e-3 ;  % Mass thickness  
lo=8.1e-3  ; % Mass length 1 
lb=5e-3  ;   % Mass length 2 
bs=6.4e-3 ;  % Mass Width  

% density 
rhoa=7800 ;  % density of steel 
rhop=7800 ;  % density of piezoelectric 
rhos=9000 ;  % density of brass  

% Piezoelectric constant 

Rb=-2*(hp^2/2+(hp*hs)/2)*(b/hp)*e31;  % transverse form 

Ra=2*b*e31;   % longitudinal form 
% Internal capacitance of piezoelectric 
Pd=-2*b*L*beta/(hp); 

% elastic stiffness constants 
Qp=66e9;    % Piezoelectric modulus of elastic constant 
Qs=105e9; % Brass modulus of elastic constant 
Cc=b*(2/3*(hp+hs/2)^3-hs^3/12)*Qp+b*hs^3/4*Qs;  % transverse  

                                           % stiffness coefficient  

Ca=2*b*hp*Qp+b*hs*Qs;          % longitudinal stiffness coefficient 
% Zero-th mass moment of inertia of tip mass 

Ia=(ha*lo-(2*hp+hs)*lb)*bs*rhoa 
% Second mass of inertia moment of tip mass 
xg=(ha*lo*lo/2-(2*hp+hs)*lb*lb/2)/(ha*lo-(2*hp+hs)*lb); 
x1=xg-lo/2; 
x2=xg-lb/2; 
Ic=(((lo^2+ha^2)/12+x1^2)-(((2*hp+hs)^2+lb^2)/12)-x2^2)*(lo*ha-

(2*hp+hs)*lb)*bs*rhoa ; 

% Zero-th mass of inertia moment of bimorph 
Im=2*bp*hp*rhop+bs*hs*rhos; 
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296 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%% Calculating the eigenfunction forms, mass and stiffness %%%%%%  

%%%%% matrices, orthonormality and Piezoelectric coupling     %%%%%%            

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% First eigenfunction of transverse form 

syms x 

vn1=33.2379 :  
Aa1=(Ia*vn1)/Im; 
Bb1=(Ic*vn1^3)/Im; 
A11=-(cos(vn1*L)+cosh(vn1*L))+Bb1*(sin(vn1*L)+sinh(vn1*L)); 
A12=(sinh(vn1*L)+sin(vn1*L))+Bb1*(cos(vn1*L)-cosh(vn1*L)); 
A21=((sin(vn1*L)-sinh(vn1*L))+Aa1*(cos(vn1*L)-cosh(vn1*L))); 
A22=((cos(vn1*L)+cosh(vn1*L))-Aa1*(sin(vn1*L)-sinh(vn1*L))); 
zh1=(cos(vn1*x)-cosh(vn1*x)+(A21/A22)*(sin(vn1*x)-sinh(vn1*x)));  
zhm1=(cos(vn1*L)-cosh(vn1*L)+(A21/A22)*(sin(vn1*L)-sinh(vn1*L))); 
% Second eigenfunction of transverse form 

vn2= 120.01682; 
Aa2=(Ia*vn2)/Im; 
Bb2=(Ic*vn2^3)/Im; 
 An11=-(cos(vn2*L)+cosh(vn2*L))+Bb2*(sin(vn2*L)+sinh(vn2*L)); 
An12=(sinh(vn2*L)+sin(vn2*L))+Bb2*(cos(vn2*L)-cosh(vn2*L)); 
An21=((sin(vn2*L)-sinh(vn2*L))+Aa2*(cos(vn2*L)-cosh(vn2*L))); 
An22=((cos(vn2*L)+cosh(vn2*L))-Aa2*(sin(vn2*L)-sinh(vn2*L))); 
zh2=(cos(vn2*x)-cosh(vn2*x)+(An21/An22)*(sin(vn2*x)-sinh(vn2*x)));  
zhm2=(cos(vn2*L)-cosh(vn2*L)+(An21/An22)*(sin(vn2*L)-sinh(vn2*L))); 
% Third eigenfunction of transverse form 

vn3=186.990149; 
Aa3=(Ia*vn3)/Im; 
Bb3=(Ic*vn3^3)/Im; 
A311=-(cos(vn3*L)+cosh(vn3*L))+Bb3*(sin(vn3*L)+sinh(vn3*L)); 
A312=(sinh(vn3*L)+sin(vn3*L))+Bb3*(cos(vn3*L)-cosh(vn3*L)); 
A321=((sin(vn3*L)-sinh(vn3*L))+Aa3*(cos(vn3*L)-cosh(vn3*L))); 
A322=((cos(vn3*L)+cosh(vn3*L))-Aa3*(sin(vn3*L)-sinh(vn3*L))); 
zh3=(cos(vn3*x)-cosh(vn3*x)+(A321/A322)*(sin(vn3*x)-sinh(vn3*x)));  
zhm3=(cos(vn3*L)-cosh(vn3*L)+(A321/A322)*(sin(vn3*L)-sinh(vn3*L))); 
% Arranging the eigenfunction series into matrix forms   
zh=[zh1 zh2 zh3];  
zhl=[zhm1 zhm2 zhm3]; 
% Differential forms of the eigenfunction series 
dzhx=diff(zh,x,2); 
dzhy=diff(zh,x,1); 
dzhz=diff(zh,x,1); 
dzh1=subs(dzhy,L); 
% initialisation of mechanical mass and stiffness matrices for  

% transverse 
Mbb=zeros(3,3); 
Kbb=zeros(3,3); 

% Calculating the mechanical mass and stiffness matrices for 

% transverse form 
for s=1:3 
for n=1:3 
Mbb(s,n)=Mbb(s,n)+(Im*int((zh(:,n)*zh(:,s)),x,0,L)+Ia*(zhl(:,n)*zhl(

:,s))+Ic*(dzh1(:,n)*dzh1(:,s))); 
Kbb(s,n)=Kbb(s,n)+(Cc*int((dzhx(:,n)*dzhx(:,s)),x,0,L)); 
end 
end 
% Calculating the eigenvector and eigenvalues  
invm=inv(Mbb); 
kmmod=invm*Kbb; 
[V,D]=eig(kmmod); 
freq_nat=D;         
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% Calculating the Ritz transverse eigenfunction series   
Zt1=vpa(V(1,1)*zh1+V(2,1)*zh2+V(3,1)*zh3); 
Zt2=vpa(V(1,3)*zh1+V(2,3)*zh2+V(3,3)*zh3); 
Zt3=vpa(V(1,2)*zh1+V(2,2)*zh2+V(3,2)*zh3); 
% Arranging the Ritz transverse eigenfunction series into  

% matrix forms 
Nzh=[Zt1 Zt2 Zt3]; 

% Calculating transverse eigenfunction function series in terms of  

% bimorph length   
Nzhm1=subs(Zt1,x,L); 
Nzhm2=subs(Zt2,x,L); 
Nzhm3=subs(Zt3,x,L); 

% Arranging transverse eigenfunction function series in terms of  

% bimorph length  
Nzhl=[Nzhm1 Nzhm2 Nzhm3]; 

% calculating differential forms of eigenfunction function series 
dzhxn=diff(Nzh,x,2); 
dzhyn=diff(Nzh,x,1); 
dzhzn=diff(Nzh,x,1); 
dzh1n=subs(dzhyn,x,L); 
% Transverse mass normalisation  

NMbb=sqrt(1/(simplify(Im*int(Nzh(1,1)*Nzh(1,1),x,0,L)+Ia*Nzhl(1,1)*N

zhl(1,1)+Ic*dzh1n(1,1)*dzh1n(1,1)))); 
NMbb2=sqrt(1/(simplify(Im*int(Nzh(1,2)*Nzh(1,2),x,0,L)+Ia*Nzhl(1,2)*

Nzhl(1,2)+Ic*dzh1n(1,2)*dzh1n(1,2)))); 
NMbb3=sqrt(1/(simplify(Im*int(Nzh(1,3)*Nzh(1,3),x,0,L)+Ia*Nzhl(1,3)*

Nzhl(1,3)+Ic*dzh1n(1,3)*dzh1n(1,3)))); 
% Normalised first Ritz eigenfunction forms 
Nsh=vpa(simple(Nzh(1,1)*NMbb)); 
Nshm=subs(Nsh,x,L); 
Ndzhyn=diff(Nsh,x,1); 
Nshn=subs(Ndzhyn,x,L); 
Ndzhxn=diff(Nsh,x,2); 

% Checking whether normalisation is fulfilled and calculating the  

% first inertia force   
MbbN=vpa(Im*int(Nsh*Nsh,x,0,L)+Ia*Nshm*Nshm+Ic*Nshn*Nshn); 
NKbb=vpa(Cc*int(Ndzhxn*Ndzhxn,x,0,L)); 
NQw1=vpa(Im*int(Nsh,x,0,L)+Ia*Nshm); 
% Normalised second Ritz eigenfunction forms 

Nsh2=vpa(simple(Nzh(1,2)*NMbb2)); 
Nshm2=subs(Nsh2,x,L); 
Ndzhyn2=diff(Nsh2,x,1); 
Nshn2=subs(Ndzhyn2,x,L); 
Ndzhxn2=diff(Nsh2,x,2); 

% Checking whether normalisation is fulfilled and calculating the  

% second inertia force    
MbbN2=vpa(Im*int(Nsh2*Nsh2,x,0,L)+Ia*Nshm2*Nshm2+Ic*Nshn2*Nshn2); 
NKbb2=vpa(Cc*int(Ndzhxn2*Ndzhxn2,x,0,L)); 
NQw2=vpa(Im*int(Nsh2,x,0,L)+Ia*Nshm2); 
% Normalised third Ritz eigenfunction forms 
Nsh3=vpa(simple(Nzh(1,3)*NMbb3)); 
Nshm3=subs(Nsh3,x,L); 
Ndzhyn3=diff(Nsh3,x,1); 
Nshn3=subs(Ndzhyn3,x,L); 
Ndzhxn3=diff(Nsh3,x,2); 

% Checking whether normalisation is fulfilled is fulfilled and  

% calculating the second inertia force    

MbbN3=vpa(Im*int(Nsh3*Nsh3,x,0,L)+Ia*Nshm3*Nshm3+Ic*Nshn3*Nshn3); 
NKbb3=vpa(Cc*int(Ndzhxn3*Ndzhxn3,x,0,L)); 
NQw3=vpa(Im*int(Nsh3,x,0,L)+Ia*Nshm3); 
% transverse Piezoelectric coupling 
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Pw1=vpa(Rb*int((Ndzhxn),x,0,L)); 
Pw2=vpa(Rb*int((Ndzhxn2),x,0,L)); 
Pw3=vpa(Rb*int((Ndzhxn3),x,0,L)); 

% First eigenfunction of longitudinal form 

vv1=18.8287 ; 
zhl1=(sin(vv1*x)); 
zhlm1=subs(zhl1,x,L); 

% Second  eigenfunction of longitudinal form 

vv2=108.073; 
zhl2=(sin(vv2*x)); 
zhlm2=subs(zhl2,x,L); 
% Third eigenfunction of longitudinal form 

vv3=210.665; 
zhl3=(sin(vv3*x)); 
zhlm3=subs(zhl3,x,L); 
% arranging into matrix form   
zhlo=[zhl1 zhl2 zhl3]; 
zhlom=[zhlm1 zhlm2 zhlm3]; 
% Differential form 
dzhyo=diff(zhlo,x,1); 
% Calculating eigenfunction function form in terms of bimorph length   
dzho1=subs(dzhyo,L); 
% Calculating the mechanical mass and stiffness matrices for  

% longitudinal 
Maa=zeros(3,3); 
Kaa=zeros(3,3); 
for s=1:3 
for n=1:3 
Maa(s,n)=Maa(s,n)+vpa(Im*int(zhlo(:,n)*zhlo(:,s),x,0,L)+Ia*zhlom(:,n

)*zhlom(:,s)); 
Kaa(s,n)=Kaa(s,n)+vpa(Ca*int(dzhyo(:,n)*dzhyo(:,s),x,0,L)); 
end 
end 
% Calculating the eigenvector and eigenvalues 
invlo=inv(Maa); 
     kmlo=invlo*Kaa; 
     [V2,D2]=eig(kmlo); 
     freq_nat2=D2;         
% Calculating the Ritz longitudinal eigenfunction forms   
Zto1=vpa(V2(1,1)*zhl1+V2(2,1)*zhl2+V2(3,1)*zhl3); 
Zto2=vpa(V2(1,3)*zhl1+V2(2,3)*zhl2+V2(3,3)*zhl3); 
Zto3=vpa(V2(1,2)*zhl1+V2(2,2)*zhl2+V2(3,2)*zhl3); 
% Arranging the Ritz longitudinal eigenfunction forms into  

% matrix forms 
Nzho=[Zto1 Zto2 Zto3]; 

% Calculating longitudinal eigenfunction function form in terms of  

% bimorph length   
Nzho1=subs(Zto1,x,L); 
Nzho2=subs(Zto2,x,L); 
Nzho3=subs(Zto3,x,L); 

% Arranging longitudinal eigenfunction function form in terms of  

% bimorph length  
Nzhmo=[Nzho1 Nzho2 Nzho3]; 

% calculating differential form 
dzhxo=diff(Nzho,x,2); 
dzhyo=diff(Nzho,x,1); 
dzhzo=diff(Nzho,x,1); 
dzh1o=subs(dzhyo,x,L); 
% Longitudinal mass normalisation  

NMaa1=sqrt(1/(simple(Im*int(Nzho(1,1)*Nzho(1,1),x,0,L)+Ia*Nzhmo(1,1)

*Nzhmo(1,1)))); 
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NMaa2=sqrt(1/(simple(Im*int(Nzho(1,2)*Nzho(1,2),x,0,L)+Ia*Nzhmo(1,2)

*Nzhmo(1,2)))); 
NMaa3=sqrt(1/(simple(Im*int(Nzho(1,3)*Nzho(1,3),x,0,L)+Ia*Nzhmo(1,3)

*Nzhmo(1,3)))); 

% Normalised first Ritz longitudinal eigenfunction forms 
Nsho1=vpa(simple(Nzho(1,1)*NMaa1)); 
Nshmo1=subs(Nsho1,x,L); 
Ndzhyno1=diff(Nsho1,x,1); 
Nshno1=subs(Ndzhyno1,x,L); 
Ndzhxno1=diff(Nsho1,x,2); 

% Checking whether normalisation is fulfilled and calculating first 

% generalised input inertia force due to input motion  
MaaN1=vpa(Im*int(Nsho1*Nsho1,x,0,L)+Ia*Nshmo1*Nshmo1); 
NKaa1=vpa((Ca*int(Ndzhyno1^2,x,0,L))); 
NQu1=vpa(subs(Im*int(Nsho1,x,0,L)+Ia*Nshmo1)); 
% Normalised second Ritz longitudinal eigenfunction forms 
Nsho2=vpa(simple(Nzho(1,2)*NMaa2)); 
Nshmo2=subs(Nsho2,x,L); 
Ndzhyno2=diff(Nsho2,x,1); 
Nshno2=subs(Ndzhyno2,x,L); 
Ndzhxno2=diff(Nsho2,x,2); 

% Checking whether normalisation is fulfilled and calculating second  

% generalised input inertia force due to input motion  
MaaN2=vpa(Im*int(Nsho2*Nsho2,x,0,L)+Ia*Nshmo2*Nshmo2); 
NKaa2=vpa((Ca*int(Ndzhyno2^2,x,0,L))); 
NQu2=vpa(subs(Im*int(Nsho2,x,0,L)+Ia*Nshmo2)); 
% Normalised third Ritz longitudinal eigenfunction forms 
Nsho3=vpa(simple(Nzho(1,2)*NMaa3)); 
Nshmo3=subs(Nsho3,x,L); 
Ndzhyno3=diff(Nsho3,x,1); 
Nshno3=subs(Ndzhyno3,x,L); 
Ndzhxno3=diff(Nsho3,x,2); 

% Checking whether normalisation is fulfilled and calculating third 

% generalised input inertia force due to input motion  
MaaN3=vpa(Im*int(Nsho3*Nsho3,x,0,L)+Ia*Nshmo3*Nshmo3); 
NKaa3=vpa((Ca*int(Ndzhyno3^2,x,0,L))); 
NQu3=vpa(subs(Im*int(Nsho3,x,0,L)+Ia*Nshmo3)); 
% Longitudinal piezoelectric coupling  
Pu1= -subs(Ra*int(Ndzhyno1,x,0,L)); 
Pu2= -subs(Ra*int(Ndzhyno2,x,0,L)); 
Pu3= -subs(Ra*int(Ndzhyno3,x,0,L)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%% Generations of FRFs electrical voltage, current, power, %%%%%% 

%%%%% optimal power, polar power, tip transverse displacement %%%%%% 

%%%%%                         and velocity                    %%%%%%  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Iterating input frequency range 

freq_end=90; % input last frequency  
hrqf=freq_end*2*pi; 
hrqi=2*pi*60; % input initial frequency 
deltahrq=1; 
nhrq=fix((hrqf-hrqi)/deltahrq)+1; % the number of the generated 

                                  % frequency 
% Iteration of electromechanical FRFs  
 plotsol=3 ;  % Input iteration 
if plotsol==1 % iterating the tip absolute transverse displacement  

              % with CEDRT model    

zb1=0.0139; 
zb2=0.015; 
zb3=0.020; 
za1=0.03; 
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za2=0.036; 
za3=0.04; 
wra1=sqrt(NKaa1);    % first longitudinal natural frequency  
wra2=sqrt(NKaa2);  % second longitudinal natural frequency 
wra3=sqrt(NKaa3);  % third longitudinal natural frequency 
wrb1=sqrt(NKbb);  % first transverse natural frequency 
wrb2=sqrt(NKbb2);  % second transverse natural frequency 
wrb3=sqrt(NKbb3);  % third transverse natural frequency 
FRVw1=zeros(10,nhrq);   % Initialisation of generated frequency  

                        % response 

    nl=0; 

    s2=0; 

% Iterating input load resistance 
for Rdd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3  150e3 200e3 602e3]; 
    nl=nl+1; 

for n=hrqi:deltahrq:hrqf; % iterating input frequency  
    Rl=1/Rdd; 
    s2=s2+1;   
FRVw1(nl,s2)=FRVw1(nl,s2)+(-3/(n^2)+(((-Nshm/(wrb1^2-

n^2+2*i*zb1*n*wrb1))*((Pd*i*n-Rl)*NQw1*3)/.... 
    ((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)))+.... 
((-Nshm2/(wrb2^2-n^2+2*i*zb2*n*wrb2))*((Pd*i*n-Rl)*NQw2*3)/.... 
    ((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)))+... 
    ((-Nshm3/(wrb3^2-n^2+2*i*zb3*n*wrb3))*((Pd*i*n-Rl)*NQw3*3)/.... 
    ((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3))))); 
end 
    s2=0; 
end 
nqr=hrqi:deltahrq:hrqf; 
semilogy(nqr/(2*pi),(abs(FRVw1))); 

  
elseif plotsol==2 % iterating the tip absolute transverse 
       % velocity with CEDRT model    

zb1=0.0139; 
zb2=0.015; 
zb3=0.020; 
za1=0.03; 
za2=0.036; 
za3=0.04; 
wra1=sqrt(NKaa1);    % first longitudinal natural frequency  
wra2=sqrt(NKaa2);  % second longitudinal natural frequency 
wra3=sqrt(NKaa3);  % third longitudinal natural frequency 
wrb1=sqrt(NKbb);  % first transverse natural frequency 
wrb2=sqrt(NKbb2);  % second transverse natural frequency 
wrb3=sqrt(NKbb3);  % third transverse natural frequency 
FRVw2=zeros(10,nhrq);   % Initialisation of generated frequency  

                        % response 

    nl=0; 

    s2=0; 

% iterating input load resistance 
for Rdd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3  150e3 200e3 602e3]; 
    nl=nl+1; 
for n=hrqi:deltahrq:hrqf; % iterating input frequency  
    Rl=1/Rdd; 
    s2=s2+1;   
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FRVw2(nl,s2)=FRVw2(nl,s2)+(3/(i*n)+i*n*(((-Nshm/(wrb1^2-

n^2+2*i*zb1*n*wrb1))*((Pd*i*n-Rl)*NQw1*3)/.... 
    ((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)))+.... 
((-Nshm2/(wrb2^2-n^2+2*i*zb2*n*wrb2))*((Pd*i*n-Rl)*NQw2*3)/.... 
    ((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)))+... 
    ((-Nshm3/(wrb3^2-n^2+2*i*zb3*n*wrb3))*((Pd*i*n-Rl)*NQw3*3)/.... 
    ((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3))))); 
end 
    s2=0; 
end 
nqr=hrqi:deltahrq:hrqf; 
semilogy(nqr/(2*pi),(abs(FRVw2))); 

  
elseif plotsol==3 % iterating the electrical voltage  

% with CEDRT model    
zb1=0.0139; 
zb2=0.015; 
zb3=0.020; 
za1=0.03; 
za2=0.036; 
za3=0.04; 
wra1=sqrt(NKaa1);    % first longitudinal natural frequency  
wra2=sqrt(NKaa2);  % second longitudinal natural frequency 
wra3=sqrt(NKaa3);  % third longitudinal natural frequency 
wrb1=sqrt(NKbb);  % first transverse natural frequency 
wrb2=sqrt(NKbb2);  % second transverse natural frequency 
wrb3=sqrt(NKbb3);  % third transverse natural frequency 
FRVw3=zeros(10,nhrq);   % Initialisation of generated frequency  

                        % response 

nl=0; 

s2=0; 

% iterating input load resistance 
for Rdd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3  150e3 200e3 602e3]; 
    nl=nl+1; 
for n=hrqi:deltahrq:hrqf; % iterating input frequency  
    Rl=1/Rdd; 
    s2=s2+1;   
FRVw3(nl,s2)=FRVw3(nl,s2)+((Pw1*i*n*NQw1*3/(wrb1^2-

n^2+2*i*zb1*n*wrb1)+Pw2*i*n*NQw2*3/(wrb2^2-

n^2+2*i*zb2*n*wrb2)+Pw3*i*n*NQw3*3/(wrb3^2-n^2+2*i*zb3*n*wrb3))/.... 
    ((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3))); 
end 
    s2=0; 
end 
nqr=hrqi:deltahrq:hrqf; 
semilogy(nqr/(2*pi),(abs(FRVw3))); 

elseif plotsol==4 % iterating the electrical voltage  

% with CEDRT model    
zb1=0.0139; 
zb2=0.015; 
zb3=0.020; 
za1=0.03; 
za2=0.036; 
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za3=0.04; 
wra1=sqrt(NKaa1);    % first longitudinal natural frequency  
wra2=sqrt(NKaa2);  % second longitudinal natural frequency 
wra3=sqrt(NKaa3);  % third longitudinal natural frequency 
wrb1=sqrt(NKbb);  % first transverse natural frequency 
wrb2=sqrt(NKbb2);  % second transverse natural frequency 
wrb3=sqrt(NKbb3);  % third transverse natural frequency 
FRVw3=zeros(10,nhrq);   % Initialisation of generated frequency  

                        % response 

nl=0; 

s2=0; 

% iterating input load resistance 
for Rdd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3  150e3 200e3 602e3]; 
    nl=nl+1; 
for n=hrqi:deltahrq:hrqf; % iterating input frequency  
    Rl=1/Rdd; 
    s2=s2+1;   
FRVw3(nl,s2)=FRVw3(nl,s2)+((Pw1*i*n*NQw1*3/(wrb1^2-

n^2+2*i*zb1*n*wrb1)+Pw2*i*n*NQw2*3/(wrb2^2-

n^2+2*i*zb2*n*wrb2)+Pw3*i*n*NQw3*3/(wrb3^2-n^2+2*i*zb3*n*wrb3))/.... 
    ((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3))); 
end 
    s2=0; 
end 
nqr=hrqi:deltahrq:hrqf; 
semilogy(nqr/(2*pi),(abs(FRVw3))); 
elseif plotsol==5 % iterating the electrical current 

% with CEDRT model    
zb1=0.0139; 
zb2=0.015; 
zb3=0.020; 
za1=0.03; 
za2=0.036; 
za3=0.04; 
wra1=sqrt(NKaa1);    % first longitudinal natural frequency  
wra2=sqrt(NKaa2);  % second longitudinal natural frequency 
wra3=sqrt(NKaa3);  % third longitudinal natural frequency 
wrb1=sqrt(NKbb);  % first transverse natural frequency 
wrb2=sqrt(NKbb2);  % second transverse natural frequency 
wrb3=sqrt(NKbb3);  % third transverse natural frequency 
FRVw4=zeros(10,nhrq);   % Initialisation of generated frequency  

                        % response 

nl=0; 

s2=0; 
for Rdd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3  150e3 200e3 602e3]; 
    nl=nl+1; 
for n=hrqi:deltahrq:hrqf; % iterating input frequency  
    Rl=1/Rdd; 
    s2=s2+1;   
FRVw4(nl,s2)=FRVw4(nl,s2)+((Pw1*i*n*NQw1*3/(wrb1^2-

n^2+2*i*zb1*n*wrb1)+Pw2*i*n*NQw2*3/(wrb2^2-

n^2+2*i*zb2*n*wrb2)+Pw3*i*n*NQw3*3/(wrb3^2-n^2+2*i*zb3*n*wrb3))/.... 
    ((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)))/Rdd; 
end 
    s2=0; 
end 
nqr=hrqi:deltahrq:hrqf; 
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semilogy(nqr/(2*pi),(abs(FRVw4))); 
elseif plotsol==5 % iterating the electrical Power 

% with CEDRT model    
zb1=0.0139; 
zb2=0.015; 
zb3=0.020; 
za1=0.03; 
za2=0.036; 
za3=0.04; 
wra1=sqrt(NKaa1);    % first longitudinal natural frequency  
wra2=sqrt(NKaa2);  % second longitudinal natural frequency 
wra3=sqrt(NKaa3);  % third longitudinal natural frequency 
wrb1=sqrt(NKbb);  % first transverse natural frequency 
wrb2=sqrt(NKbb2);  % second transverse natural frequency 
wrb3=sqrt(NKbb3);  % third transverse natural frequency 
FRVw5=zeros(10,nhrq);   % Initialisation of generated frequency  

                        % response 

nl=0; 

s2=0; 
for Rdd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3  150e3 200e3 602e3]; 
    nl=nl+1; 
for n=hrqi:deltahrq:hrqf; % iterating input frequency  
    Rl=1/Rdd; 
    s2=s2+1;   
FRVw5(nl,s2)=FRVw5(nl,s2)+((Pw1*i*n*NQw1*3/(wrb1^2-

n^2+2*i*zb1*n*wrb1)+Pw2*i*n*NQw2*3/(wrb2^2-

n^2+2*i*zb2*n*wrb2)+Pw3*i*n*NQw3*3/(wrb3^2-n^2+2*i*zb3*n*wrb3))/.... 
    ((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)))^2/Rdd; 
end 
    s2=0; 
end 
nqr=hrqi:deltahrq:hrqf; 
semilogy(nqr/(2*pi),(abs(FRVw5))); 

 
elseif plotsol==6 % iterating the tip absolute transverse  

                  % displacement with CEDRTL model    
zb1=0.0139; 
zb2=0.015; 
zb3=0.020; 
za1=0.03; 
za2=0.036; 
za3=0.04; 
wra1=sqrt(NKaa1);    % first longitudinal natural frequency  
wra2=sqrt(NKaa2);  % second longitudinal natural frequency 
wra3=sqrt(NKaa3);  % third longitudinal natural frequency 
wrb1=sqrt(NKbb);  % first transverse natural frequency 
wrb2=sqrt(NKbb2);  % second transverse natural frequency 
wrb3=sqrt(NKbb3);  % third transverse natural frequency 
FRVw6=zeros(10,nhrq);   % Initialisation of generated frequency  

                        % response 

nl=0; 

s2=0; 
for Rdd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3  150e3 200e3 602e3]; 
nl=nl+1; 
for n=hrqi:deltahrq:hrqf; % iterating input frequency  
Rl=1/Rdd; 
s2=s2+1; 
FRVw6(nl,s2)=FRVw6(nl,s2)+(-3/(n^2)+(((-Nshm/(wrb1^2-

n^2+2*i*zb1*n*wrb1))*((Pd*i*n-Rl)*NQw1*3-Pu1^2*i*n*NQw1*3/(wra1^2-
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n^2+2*i*za1*n*wra1)-Pu2^2*i*n*NQw2*3/(wra2^2-n^2+2*i*za2*n*wra2)-

Pu3^2*i*n*NQw3*3/(wra3^2-n^2+2*i*za3*n*wra3))/.... 
((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))+.... 
((-Nshm2/(wrb2^2-n^2+2*i*zb2*n*wrb2))*((Pd*i*n-Rl)*NQw2*3-

Pu1^2*i*n*NQw1*3/(wra1^2-n^2+2*i*za1*n*wra1)-

Pu2^2*i*n*NQw2*3/(wra2^2-n^2+2*i*za2*n*wra2)-

Pu3^2*i*n*NQw3*3/(wra3^2-n^2+2*i*za3*n*wra3))/.... 
((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))+... 
((-Nshm3/(wrb3^2-n^2+2*i*zb3*n*wrb3))*((Pd*i*n-Rl)*NQw3*3-

Pu1^2*i*n*NQw1*3/(wra1^2-n^2+2*i*za1*n*wra1)-

Pu2^2*i*n*NQw2*3/(wra2^2-n^2+2*i*za2*n*wra2)-

Pu3^2*i*n*NQw3*3/(wra3^2-n^2+2*i*za3*n*wra3))/.... 
((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3))))); 
end 
s2=0; 
end 
nqr=hrqi:deltahrq:hrqf; 
semilogy(nqr/(2*pi),(abs(FRVw6))); 

 
elseif plotsol==7 % iterating the tip absolute transverse  

                  % velocity with CEDRTL model    
zb1=0.0139; 
zb2=0.015; 
zb3=0.020; 
za1=0.03; 
za2=0.036; 
za3=0.04; 
wra1=sqrt(NKaa1);    % first longitudinal natural frequency  
wra2=sqrt(NKaa2);  % second longitudinal natural frequency 
wra3=sqrt(NKaa3);  % third longitudinal natural frequency 
wrb1=sqrt(NKbb);  % first transverse natural frequency 
wrb2=sqrt(NKbb2);  % second transverse natural frequency 
wrb3=sqrt(NKbb3);  % third transverse natural frequency 
FRVw6=zeros(10,nhrq);   % Initialisation of generated frequency  

                        % response 

nl=0; 

s2=0; 
for Rdd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3  150e3 200e3 602e3]; 
nl=nl+1; 
for n=hrqi:deltahrq:hrqf; % iterating input frequency  
Rl=1/Rdd; 
s2=s2+1; 
FRVw6(nl,s2)=FRVw6(nl,s2)+(-3/(i*n)+i*n*(((-Nshm/(wrb1^2-

n^2+2*i*zb1*n*wrb1))*((Pd*i*n-Rl)*NQw1*3-Pu1^2*i*n*NQw1*3/(wra1^2-

n^2+2*i*za1*n*wra1)-Pu2^2*i*n*NQw2*3/(wra2^2-n^2+2*i*za2*n*wra2)-

Pu3^2*i*n*NQw3*3/(wra3^2-n^2+2*i*za3*n*wra3))/.... 
((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
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i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))+.... 
((-Nshm2/(wrb2^2-n^2+2*i*zb2*n*wrb2))*((Pd*i*n-Rl)*NQw2*3-

Pu1^2*i*n*NQw1*3/(wra1^2-n^2+2*i*za1*n*wra1)-

Pu2^2*i*n*NQw2*3/(wra2^2-n^2+2*i*za2*n*wra2)-

Pu3^2*i*n*NQw3*3/(wra3^2-n^2+2*i*za3*n*wra3))/.... 
((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))+... 
((-Nshm3/(wrb3^2-n^2+2*i*zb3*n*wrb3))*((Pd*i*n-Rl)*NQw3*3-

Pu1^2*i*n*NQw1*3/(wra1^2-n^2+2*i*za1*n*wra1)-

Pu2^2*i*n*NQw2*3/(wra2^2-n^2+2*i*za2*n*wra2)-

Pu3^2*i*n*NQw3*3/(wra3^2-n^2+2*i*za3*n*wra3))/.... 
((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3))))); 
end 
s2=0; 
end 
nqr=hrqi:deltahrq:hrqf; 
semilogy(nqr/(2*pi),(abs(FRVw7))); 
elseif plotsol==8 % iterating the electrical voltage  

% with CEDRTL model    
zb1=0.0139; 
zb2=0.015; 
zb3=0.020; 
za1=0.03; 
za2=0.036; 
za3=0.04; 
wra1=sqrt(NKaa1);    % first longitudinal natural frequency  
wra2=sqrt(NKaa2);  % second longitudinal natural frequency 
wra3=sqrt(NKaa3);  % third longitudinal natural frequency 
wrb1=sqrt(NKbb);  % first transverse natural frequency 
wrb2=sqrt(NKbb2);  % second transverse natural frequency 
wrb3=sqrt(NKbb3);  % third transverse natural frequency 
FRVw8=zeros(10,nhrq);   % Initialisation of generated frequency  

                        % response 

nl=0; 

s2=0; 
for Rdd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3  150e3 200e3 602e3]; 
    nl=nl+1; 
for n=hrqi:deltahrq:hrqf; % iterating input frequency  
    Rl=1/Rdd; 
    s2=s2+1;   
FRVw8(nl,s2)=FRVw8(nl,s2) +((Pw1*i*n*NQw1*3/(wrb1^2-

n^2+2*i*zb1*n*wrb1)+Pw2*i*n*NQw2*3/(wrb2^2-

n^2+2*i*zb2*n*wrb2)+Pw3*i*n*NQw3*3/(wrb3^2-n^2+2*i*zb3*n*wrb3))/.... 
    ((Pd*i*n+Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
    i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3))); 
end 
    s2=0; 
end 
nqr=hrqi:deltahrq:hrqf; 
semilogy(nqr/(2*pi),(abs(FRVw8))); 
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elseif plotsol==9 % iterating the electrical Current 

% with CEDRTL model    
zb1=0.0139; 
zb2=0.015; 
zb3=0.020; 
za1=0.03; 
za2=0.036; 
za3=0.04; 
wra1=sqrt(NKaa1);    % first longitudinal natural frequency  
wra2=sqrt(NKaa2);  % second longitudinal natural frequency 
wra3=sqrt(NKaa3);  % third longitudinal natural frequency 
wrb1=sqrt(NKbb);  % first transverse natural frequency 
wrb2=sqrt(NKbb2);  % second transverse natural frequency 
wrb3=sqrt(NKbb3);  % third transverse natural frequency 
FRVw9=zeros(10,nhrq);   % Initialisation of generated frequency  

                        % response 

nl=0; 

s2=0; 
for Rdd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3  150e3 200e3 602e3]; 
    nl=nl+1; 
for n=hrqi:deltahrq:hrqf; % iterating input frequency 
    Rl=1/Rdd; 
    s2=s2+1;   
FRVw9(nl,s2)=FRVw9(nl,s2) +((Pw1*i*n*NQw1*3/(wrb1^2-

n^2+2*i*zb1*n*wrb1)+Pw2*i*n*NQw2*3/(wrb2^2-

n^2+2*i*zb2*n*wrb2)+Pw3*i*n*NQw3*3/(wrb3^2-n^2+2*i*zb3*n*wrb3))/.... 
    ((Pd*i*n+Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
    i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))/Rdd; 
end 
    s2=0; 
end 
nqr=hrqi:deltahrq:hrqf; 
semilogy(nqr/(2*pi),(abs(FRVw9))); 
elseif plotsol==10 % iterating the electrical power  

 % with CEDRTL model    
zb1=0.0139; 
zb2=0.015; 
zb3=0.020; 
za1=0.03; 
za2=0.036; 
za3=0.04; 
wra1=sqrt(NKaa1);    % first longitudinal natural frequency  
wra2=sqrt(NKaa2);  % second longitudinal natural frequency 
wra3=sqrt(NKaa3);  % third longitudinal natural frequency 
wrb1=sqrt(NKbb);  % first transverse natural frequency 
wrb2=sqrt(NKbb2);  % second transverse natural frequency 
wrb3=sqrt(NKbb3);  % third transverse natural frequency 
FRVw10=zeros(10,nhrq);   % Initialisation of generated frequency  

                        % response 

nl=0; 

s2=0; 
for Rdd=[560 5.6e3 20e3 30e3 51e3 60e3 79e3  150e3 200e3 602e3]; 
    nl=nl+1; 
for n=hrqi:deltahrq:hrqf; % iterating input frequency 
    Rl=1/Rdd; 
    s2=s2+1;   
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FRVw10(nl,s2)=FRVw10(nl,s2) +((Pw1*i*n*NQw1*3/(wrb1^2-

n^2+2*i*zb1*n*wrb1)+Pw2*i*n*NQw2*3/(wrb2^2-

n^2+2*i*zb2*n*wrb2)+Pw3*i*n*NQw3*3/(wrb3^2-n^2+2*i*zb3*n*wrb3))/.... 
    ((Pd*i*n+Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
    i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))^2/Rdd; 
end 
    s2=0; 
end 
nqr=hrqi:deltahrq:hrqf; 
semilogy(nqr/(2*pi),(abs(FRVw10))); 
elseif plotsol==11 % iterating the polar tip absolute transverse   

 % displacement with CEDRTL model    
UWc=3; % input acceleration 
n=77.71*2*pi; % input frequency 
UW=UWc/(n)^2;  
s2=0; 
zb1=0.0139; 
zb2=0.015; 
zb3=0.020; 
za1=0.03; 
za2=0.036; 
za3=0.04; 
wra1=sqrt(NKaa1);    % first longitudinal natural frequency  
wra2=sqrt(NKaa2);  % second longitudinal natural frequency 
wra3=sqrt(NKaa3);  % third longitudinal natural frequency 
wrb1=sqrt(NKbb);  % first transverse natural frequency 
wrb2=sqrt(NKbb2);  % second transverse natural frequency 
wrb3=sqrt(NKbb3);  % third transverse natural frequency 
freq_end=0.05; % the number of the generated time history (second) 
frqf=freq_end; 
frqi=0; % the initial input time (second) 
deltahrq=1/1000; % the incremental time (second) 
fhrq=fix((frqf-frqi)/deltahrq)+1; 
fr=180; % the number of the generated angle (degree) 
hf=fr; 
hi=0; % the initial input angle (degree) 
drq=1; % the incremental angle (degree) 
hrq=fix((hf-hi)/drq)+1; 
FRVw11=zeros(hrq,fhrq); 
nl=0; 
Rdd=[60e3]; % input load resistance (ohm) 
Rl=1/Rdd; 
for thetapz=(hi:drq:hf)*(pi*2)/360; % iterating input angle 
    nl=nl+1; 
  for k=frqi:deltahrq:frqf; % iterating input time history 
        s2=s2+1;   
FRVw11(nl,s2)=FRVw11(nl,s2)+(UW*sin(thetapz)*exp(i*n*k)+(((-

Nshm/(wrb1^2-n^2+2*i*zb1*n*wrb1))*(Pu1*Pw1*i*n*NQu1/(wra1^2-

n^2+2*i*za1*n*wra1)+Pu2*Pw2*i*n*NQu2/(wra2^2-

n^2+2*i*za2*n*wra2)+Pu3*Pw3*i*n*NQu3/(wra3^2-

n^2+2*i*za3*n*wra3))/.... 
    ((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
    i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))+.... 
((-Nshm2/(wrb2^2-n^2+2*i*zb2*n*wrb2))*(Pu1*Pw1*i*n*NQu1/(wra1^2-

n^2+2*i*za1*n*wra1)+Pu2*Pw2*i*n*NQu2/(wra2^2-
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n^2+2*i*za2*n*wra2)+Pu3*Pw3*i*n*NQu3/(wra3^2-

n^2+2*i*za3*n*wra3))/.... 
    ((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
    i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))+... 
    ((-Nshm3/(wrb3^2-n^2+2*i*zb3*n*wrb3))*(Pu1*Pw1*i*n*NQu1/(wra1^2-

n^2+2*i*za1*n*wra1)+Pu2*Pw2*i*n*NQu2/(wra2^2-

n^2+2*i*za2*n*wra2)+Pu3*Pw3*i*n*NQu3/(wra3^2-

n^2+2*i*za3*n*wra3))/.... 
    ((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
    i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3))))*(-

n^2*UW*cos(thetapz)*exp(i*n*k))+.... 
    (((-Nshm/(wrb1^2-n^2+2*i*zb1*n*wrb1))*((Pd*i*n-Rl)*NQw1-

Pu1^2*i*n*NQw1/(wra1^2-n^2+2*i*za1*n*wra1)-Pu2^2*i*n*NQw2/(wra2^2-

n^2+2*i*za2*n*wra2)-Pu3^2*i*n*NQw3/(wra3^2-n^2+2*i*za3*n*wra3))/.... 
((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))+.... 
((-Nshm2/(wrb2^2-n^2+2*i*zb2*n*wrb2))*((Pd*i*n-Rl)*NQw2-

Pu1^2*i*n*NQw1/(wra1^2-n^2+2*i*za1*n*wra1)-Pu2^2*i*n*NQw2/(wra2^2-

n^2+2*i*za2*n*wra2)-Pu3^2*i*n*NQw3/(wra3^2-n^2+2*i*za3*n*wra3))/.... 
((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))+... 
((-Nshm3/(wrb3^2-n^2+2*i*zb3*n*wrb3))*((Pd*i*n-Rl)*NQw3-

Pu1^2*i*n*NQw1/(wra1^2-n^2+2*i*za1*n*wra1)-Pu2^2*i*n*NQw2/(wra2^2-

n^2+2*i*za2*n*wra2)-Pu3^2*i*n*NQw3/(wra3^2-n^2+2*i*za3*n*wra3))/.... 
((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3))))*(-

n^2*UW)*sin(thetapz)*exp(i*n*k)); 
  end 
    s2=0; 
end 

  
nqr=frqi:deltahrq:frqf; 
k=0; 
for thetapz=(hi:drq:hf)*(pi*2)/360; 
    k=k+1; 
    Fw11(k,:)=max(real(FRVw11(k,:))); 
end 
dw11=Fw11'; 
thetapz=(hi:drq:hf)*(pi*2)/360; 
polar (thetapz,dw11); 
elseif plotsol==12 % iterating the polar tip absolute transverse   

 % velocity with CEDRTL model    

 
UWc=3; % input acceleration 
n=77.71*2*pi; % input frequency 
UW=UWc/(n)^2;  
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s2=0; 
zb1=0.0139; 
zb2=0.015; 
zb3=0.020; 
za1=0.03; 
za2=0.036; 
za3=0.04; 
wra1=sqrt(NKaa1);    % first longitudinal natural frequency  
wra2=sqrt(NKaa2);  % second longitudinal natural frequency 
wra3=sqrt(NKaa3);  % third longitudinal natural frequency 
wrb1=sqrt(NKbb);  % first transverse natural frequency 
wrb2=sqrt(NKbb2);  % second transverse natural frequency 
wrb3=sqrt(NKbb3);  % third transverse natural frequency 
freq_end=0.05; % the number of the generated time history (second) 
frqf=freq_end; 
frqi=0; % the initial input time (second) 
deltahrq=1/1000; % the incremental time (second) 
fhrq=fix((frqf-frqi)/deltahrq)+1; 
fr=180; % the number of the generated angle (degree) 
hf=fr; 
hi=0; % the initial input angle (degree) 
drq=1; % the incremental angle (degree) 
hrq=fix((hf-hi)/drq)+1; 
FRVw12=zeros(hrq,fhrq); 
nl=0; 
Rdd=[60e3]; % input load resistance (ohm) 
Rl=1/Rdd; 
for thetapz=(hi:drq:hf)*(pi*2)/360; % iterating input angle 
    nl=nl+1; 
  for k=frqi:deltahrq:frqf; % iterating input time history 
        s2=s2+1;   
FRVw12(nl,s2)=FRVw12(nl,s2) +(UW*sin(thetapz)*i*n*exp(i*n*k)+(((-

Nshm/(wrb1^2-n^2+2*i*zb1*n*wrb1))*(Pu1*Pw1*i*n*NQu1/(wra1^2-

n^2+2*i*za1*n*wra1)+Pu2*Pw2*i*n*NQu2/(wra2^2-

n^2+2*i*za2*n*wra2)+Pu3*Pw3*i*n*NQu3/(wra3^2-

n^2+2*i*za3*n*wra3))/.... 
    ((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
    i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))+.... 
((-Nshm2/(wrb2^2-n^2+2*i*zb2*n*wrb2))*(Pu1*Pw1*i*n*NQu1/(wra1^2-

n^2+2*i*za1*n*wra1)+Pu2*Pw2*i*n*NQu2/(wra2^2-

n^2+2*i*za2*n*wra2)+Pu3*Pw3*i*n*NQu3/(wra3^2-

n^2+2*i*za3*n*wra3))/.... 
    ((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
    i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))+... 
    ((-Nshm3/(wrb3^2-n^2+2*i*zb3*n*wrb3))*(Pu1*Pw1*i*n*NQu1/(wra1^2-

n^2+2*i*za1*n*wra1)+Pu2*Pw2*i*n*NQu2/(wra2^2-

n^2+2*i*za2*n*wra2)+Pu3*Pw3*i*n*NQu3/(wra3^2-

n^2+2*i*za3*n*wra3))/.... 
    ((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
    i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3))))*(-

n^3*i*UW*cos(thetapz)*exp(i*n*k))+.... 
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    (((-Nshm/(wrb1^2-n^2+2*i*zb1*n*wrb1))*((Pd*i*n-Rl)*NQw1-

Pu1^2*i*n*NQw1/(wra1^2-n^2+2*i*za1*n*wra1)-Pu2^2*i*n*NQw2/(wra2^2-

n^2+2*i*za2*n*wra2)-Pu3^2*i*n*NQw3/(wra3^2-n^2+2*i*za3*n*wra3))/.... 
((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))+.... 
((-Nshm2/(wrb2^2-n^2+2*i*zb2*n*wrb2))*((Pd*i*n-Rl)*NQw2-

Pu1^2*i*n*NQw1/(wra1^2-n^2+2*i*za1*n*wra1)-Pu2^2*i*n*NQw2/(wra2^2-

n^2+2*i*za2*n*wra2)-Pu3^2*i*n*NQw3/(wra3^2-n^2+2*i*za3*n*wra3))/.... 
((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))+... 
((-Nshm3/(wrb3^2-n^2+2*i*zb3*n*wrb3))*((Pd*i*n-Rl)*NQw3-

Pu1^2*i*n*NQw1/(wra1^2-n^2+2*i*za1*n*wra1)-Pu2^2*i*n*NQw2/(wra2^2-

n^2+2*i*za2*n*wra2)-Pu3^2*i*n*NQw3/(wra3^2-n^2+2*i*za3*n*wra3))/.... 
((Pd*i*n-Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3))))*(-

n^3*i*UW*sin(thetapz)*exp(i*n*k))); 
  end 
    s2=0; 
end 
nqr=frqi:deltahrq:frqf; 
k=0; 
for thetapz=(hi:drq:hf)*(pi*2)/360; 
    k=k+1; 
    Fw12(k,:)=max(real(FRVw12(k,:))); 
end 
dw12=Fw12'; 
thetapz=(hi:drq:hf)*(pi*2)/360; 
polar (thetapz,dw12); 
elseif plotsol==13 % iterating the polar electrical voltage 

 % with CEDRTL model    
UWc=3; % input acceleration 
n=77.71*2*pi; % input frequency 
UW=UWc/(n)^2;  
s2=0; 
zb1=0.0139; 
zb2=0.015; 
zb3=0.020; 
za1=0.03; 
za2=0.036; 
za3=0.04; 
wra1=sqrt(NKaa1);    % first longitudinal natural frequency  
wra2=sqrt(NKaa2);  % second longitudinal natural frequency 
wra3=sqrt(NKaa3);  % third longitudinal natural frequency 
wrb1=sqrt(NKbb);  % first transverse natural frequency 
wrb2=sqrt(NKbb2);  % second transverse natural frequency 
wrb3=sqrt(NKbb3);  % third transverse natural frequency 
freq_end=0.05; % the number of the generated time history (second) 
frqf=freq_end; 
frqi=0; % the initial input time (second) 
deltahrq=1/1000; % the incremental time (second) 
fhrq=fix((frqf-frqi)/deltahrq)+1; 
fr=180; % the number of the generated angle (degree) 
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hf=fr; 
hi=0; % the initial input angle (degree) 
drq=1; % the incremental angle (degree) 
hrq=fix((hf-hi)/drq)+1; 
FRVw13=zeros(hrq,fhrq); 
nl=0; 
Rdd=[60e3]; % input load resistance (ohm) 
Rl=1/Rdd; 
for thetapz=(hi:drq:hf)*(pi*2)/360; % iterating input angle 
    nl=nl+1; 
  for k=frqi:deltahrq:frqf; % iterating input time history 
        s2=s2+1;   
FRVw13(nl,s2)=FRVw13(nl,s2)+(((((Pw1*i*n*NQw1/(wrb1^2-

n^2+2*i*zb1*n*wrb1)+Pw2*i*n*NQw2/(wrb2^2-

n^2+2*i*zb2*n*wrb2)+Pw3*i*n*NQw3/(wrb3^2-n^2+2*i*zb3*n*wrb3))/.... 
          ((Pd*i*n+Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
       i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))*(-

n^2)*UW*sin(thetapz)))*(exp(i*n*k))+.... 
      ((((Pu1*i*n*NQu1/(wra1^2-

n^2+2*i*za1*n*wra1)+Pu2*i*n*NQu2/(wra2^2-

n^2+2*i*za2*n*wra2)+Pu3*i*n*NQu3/(wra3^2-n^2+2*i*za3*n*wra3))/.... 
       ((Pd*i*n+Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
       i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))*(-

n^2)*UW*cos(thetapz)))*(exp(i*n*k))); 
  end 
    s2=0; 
end 
nqr=frqi:deltahrq:frqf; 
k=0; 
for thetapz=(hi:drq:hf)*(pi*2)/360; 
    k=k+1; 
    Fw13(k,:)=max(real(FRVw13(k,:))); 
end 
dw13=Fw13'; 
thetapz=(hi:drq:hf)*(pi*2)/360; 
polar (thetapz,dw13); 
elseif plotsol==14 % iterating the polar electrical current 

 % with CEDRTL model    
UWc=3; % input acceleration 
n=77.71*2*pi; % input frequency 
UW=UWc/(n)^2;  
s2=0; 
zb1=0.0139; 
zb2=0.015; 
zb3=0.020; 
za1=0.03; 
za2=0.036; 
za3=0.04; 
wra1=sqrt(NKaa1);    % first longitudinal natural frequency  
wra2=sqrt(NKaa2);  % second longitudinal natural frequency 
wra3=sqrt(NKaa3);  % third longitudinal natural frequency 
wrb1=sqrt(NKbb);  % first transverse natural frequency 
wrb2=sqrt(NKbb2);  % second transverse natural frequency 
wrb3=sqrt(NKbb3);  % third transverse natural frequency 
freq_end=0.05; % the number of the generated time history (second) 
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frqf=freq_end; 
frqi=0; % the initial input time (second) 
deltahrq=1/1000; % the incremental time (second) 
fhrq=fix((frqf-frqi)/deltahrq)+1; 
fr=180; % the number of the generated angle (degree) 
hf=fr; 
hi=0; % the initial input angle (degree) 
drq=1; % the incremental angle (degree) 
hrq=fix((hf-hi)/drq)+1; 
FRVw14=zeros(hrq,fhrq); 
nl=0; 
Rdd=[60e3]; % input load resistance (ohm) 
Rl=1/Rdd; 
for thetapz=(hi:drq:hf)*(pi*2)/360; % iterating input angle 
    nl=nl+1; 
  for k=frqi:deltahrq:frqf; % iterating input time history 
        s2=s2+1;   
FRVw14(nl,s2)=FRVw14(nl,s2)+(((((Pw1*i*n*NQw1/(wrb1^2-

n^2+2*i*zb1*n*wrb1)+Pw2*i*n*NQw2/(wrb2^2-

n^2+2*i*zb2*n*wrb2)+Pw3*i*n*NQw3/(wrb3^2-n^2+2*i*zb3*n*wrb3))/.... 
          ((Pd*i*n+Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
       i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))*(-

n^2)*UW*sin(thetapz))/Rdd)*(exp(i*n*k))+.... 
      ((((Pu1*i*n*NQu1/(wra1^2-

n^2+2*i*za1*n*wra1)+Pu2*i*n*NQu2/(wra2^2-

n^2+2*i*za2*n*wra2)+Pu3*i*n*NQu3/(wra3^2-n^2+2*i*za3*n*wra3))/.... 
       ((Pd*i*n+Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
       i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))*(-

n^2)*UW*cos(thetapz))/Rdd)*(exp(i*n*k))); 
  end 
    s2=0; 
end 
nqr=frqi:deltahrq:frqf; 
k=0; 
for thetapz=(hi:drq:hf)*(pi*2)/360; 
    k=k+1; 
    Fw14(k,:)=max(real(FRVw14(k,:))); 
end 
dw14=Fw14'; 
thetapz=(hi:drq:hf)*(pi*2)/360; 
polar (thetapz,dw14); 
elseif plotsol==15 % iterating the polar electrical power 

 % with CEDRTL model    
UWc=3; % input acceleration 
n=77.71*2*pi; % input frequency 
UW=UWc/(n)^2;  
s2=0; 
zb1=0.0139; 
zb2=0.015; 
zb3=0.020; 
za1=0.03; 
za2=0.036; 
za3=0.04; 
wra1=sqrt(NKaa1);    % first longitudinal natural frequency  
wra2=sqrt(NKaa2);  % second longitudinal natural frequency 
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wra3=sqrt(NKaa3);  % third longitudinal natural frequency 
wrb1=sqrt(NKbb);  % first transverse natural frequency 
wrb2=sqrt(NKbb2);  % second transverse natural frequency 
wrb3=sqrt(NKbb3);  % third transverse natural frequency 
freq_end=0.05; % the number of the generated time history (second) 
frqf=freq_end; 
frqi=0; % the initial input time (second) 
deltahrq=1/1000; % the incremental time (second) 
fhrq=fix((frqf-frqi)/deltahrq)+1; 
fr=180; % the number of the generated angle (degree) 
hf=fr; 
hi=0; % the initial input angle (degree) 
drq=1; % the incremental angle (degree) 
hrq=fix((hf-hi)/drq)+1; 
FRVw14=zeros(hrq,fhrq); 
nl=0; 
Rdd=[60e3]; % input load resistance (ohm) 
Rl=1/Rdd; 
for thetapz=(hi:drq:hf)*(pi*2)/360;  % iterating input angle 
    nl=nl+1; 
  for k=frqi:deltahrq:frqf;     % iterating input time history 
        s2=s2+1;   
FRVw15(nl,s2)=FRVw15(nl,s2)+(((((Pw1*i*n*NQw1/(wrb1^2-

n^2+2*i*zb1*n*wrb1)+Pw2*i*n*NQw2/(wrb2^2-

n^2+2*i*zb2*n*wrb2)+Pw3*i*n*NQw3/(wrb3^2-n^2+2*i*zb3*n*wrb3))/.... 
          ((Pd*i*n+Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
       i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))*(-

n^2)*UW*sin(thetapz))^2/Rdd)*(exp(i*n*k))+.... 
      ((((Pu1*i*n*NQu1/(wra1^2-

n^2+2*i*za1*n*wra1)+Pu2*i*n*NQu2/(wra2^2-

n^2+2*i*za2*n*wra2)+Pu3*i*n*NQu3/(wra3^2-n^2+2*i*za3*n*wra3))/.... 
       ((Pd*i*n+Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
       i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))*(-

n^2)*UW*cos(thetapz))^2/Rdd)*(exp(i*n*k))); 
  end 
    s2=0; 
end 
nqr=frqi:deltahrq:frqf; 
k=0; 
for thetapz=(hi:drq:hf)*(pi*2)/360; 
    k=k+1; 
    Fw15(k,:)=max(real(FRVw15(k,:))); 
end 
dw15=Fw15'; 
thetapz=(hi:drq:hf)*(pi*2)/360; 
polar (thetapz,dw15); 

 
else  % iterating the optimal power 

      % with CEDRTL model    
zb1=0.0139; 
zb2=0.015; 
zb3=0.020; 
za1=0.03; 
za2=0.036; 
za3=0.04; 
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wra1=sqrt(NKaa1);    % first longitudinal natural frequency  
wra2=sqrt(NKaa2);  % second longitudinal natural frequency 
wra3=sqrt(NKaa3);  % third longitudinal natural frequency 
wrb1=sqrt(NKbb);  % first transverse natural frequency 
wrb2=sqrt(NKbb2);  % second transverse natural frequency 
wrb3=sqrt(NKbb3);  % third transverse natural frequency 
FRVw16=zeros(1,nhrq);   % Initialisation of generated frequency  

                        % response 

nl=0; 

s2=0; 
 for n=hrqi:deltahrq:hrqf; % iterating input frequency 
    Rl=sqrt(((Pd*n-n*Pw1^2*(wrb1^2-n^2)/((wrb1^2-

n^2)^2+(2*zb1*n*wrb1)^2)-n*Pw2^2*(wrb2^2-n^2)/((wrb2^2-

n^2)^2+(2*zb2*n*wrb2)^2)-n*Pw3^2*(wrb3^2-n^2)/((wrb3^2-

n^2)^2+(2*zb3*n*wrb3)^2)-n*Pu1^2*(wra1^2-n^2)/((wra1^2-

n^2)^2+(2*za1*n*wra1)^2)-n*Pu2^2*(wra2^2-n^2)/((wra2^2-

n^2)^2+(2*za2*n*wra2)^2)-n*Pu3^2*(wra3^2-n^2)/((wra3^2-

n^2)^2+(2*za3*n*wra3)^2))^2+...... 
         (n*Pw1^2*2*zb1*n*wrb1/((wrb1^2-

n^2)^2+(2*zb1*n*wrb1)^2)+n*Pw2^2*2*zb2*n*wrb2/((wrb2^2-

n^2)^2+(2*zb2*n*wrb2)^2)+n*Pw3^2*2*zb3*n*wrb3/((wrb3^2-

n^2)^2+(2*zb3*n*wrb3)^2)+n*Pu1^2*2*za1*n*wra1/((wra1^2-

n^2)^2+(2*za1*n*wra1)^2)+n*Pu2^2*2*za2*n*wra2/((wra2^2-

n^2)^2+(2*za2*n*wra2)^2)+n*Pu3^2*2*za3*n*wra3/((wra3^2-

n^2)^2+(2*za3*n*wra3)^2))^2))/...... 
        ((Pd*n-n*Pw1^2*(wrb1^2-n^2)/((wrb1^2-

n^2)^2+(2*zb1*n*wrb1)^2)-n*Pw2^2*(wrb2^2-n^2)/((wrb2^2-

n^2)^2+(2*zb2*n*wrb2)^2)-n*Pw3^2*(wrb3^2-n^2)/((wrb3^2-

n^2)^2+(2*zb3*n*wrb3)^2)-n*Pu1^2*(wra1^2-n^2)/((wra1^2-

n^2)^2+(2*za1*n*wra1)^2)-n*Pu2^2*(wra2^2-n^2)/((wra2^2-

n^2)^2+(2*za2*n*wra2)^2)-n*Pu3^2*(wra3^2-n^2)/((wra3^2-

n^2)^2+(2*za3*n*wra3)^2))^2+...... 
         (n*Pw1^2*2*zb1*n*wrb1/((wrb1^2-

n^2)^2+(2*zb1*n*wrb1)^2)+n*Pw2^2*2*zb2*n*wrb2/((wrb2^2-

n^2)^2+(2*zb2*n*wrb2)^2)+n*Pw3^2*2*zb3*n*wrb3/((wrb3^2-

n^2)^2+(2*zb3*n*wrb3)^2)+n*Pu1^2*2*za1*n*wra1/((wra1^2-

n^2)^2+(2*za1*n*wra1)^2)+n*Pu2^2*2*za2*n*wra2/((wra2^2-

n^2)^2+(2*za2*n*wra2)^2)+n*Pu3^2*2*za3*n*wra3/((wra3^2-

n^2)^2+(2*za3*n*wra3)^2))^2) ; 
    s2=s2+1; 
FRVw16(1,s2)=FRVw16(1,s2)+((Pw1*i*n*NQw1*3/(wrb1^2-

n^2+2*i*zb1*n*wrb1)+Pw2*i*n*NQw2*3/(wrb2^2-

n^2+2*i*zb2*n*wrb2)+Pw3*i*n*NQw3*3/(wrb3^2-n^2+2*i*zb3*n*wrb3))/.... 
    ((Pd*i*n-1/Rl)-i*n*Pw1^2/(wrb1^2-n^2+2*i*zb1*n*wrb1)-

i*n*Pw2^2/(wrb2^2-n^2+2*i*zb2*n*wrb2)-i*n*Pw3^2/(wrb3^2-

n^2+2*i*zb3*n*wrb3)-.... 
    i*n*Pu1^2/(wra1^2-n^2+2*i*za1*n*wra1)-i*n*Pu2^2/(wra2^2-

n^2+2*i*za2*n*wra2)-i*n*Pu3^2/(wra3^2-n^2+2*i*za3*n*wra3)))^2/Rl;  
end 
nqr=hrqi:deltahrq:hrqf; 
semilogy(nqr/(2*pi),(abs(FRVw16))) 

end 

 


