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 I 

Abstract 

Braille, as a special written method of communication for the blind, has been 

globally accepted for years. It gives blind people another chance to learn and 

communicate more efficiently with the rest of the world. It also makes possible the 

translation of printed languages into a written language which is recognisable for 

blind people. Recently, Braille is experiencing a decreasing popularity due to the use 

of alternative technologies, like speech synthesis. However, as a form of literacy, 

Braille is still playing a significant role in the education of people with visual 

impairments. With the development of electronic technology, Braille turned out to be 

well suited to computer-aided production because of its coded forms. Software based 

text-to-Braille translation has been proved to be a successful solution in Assistive 

Technology (AT). However, the feasibility and advantages of the algorithm 

reconfiguration based on hardware implementation have rarely been substantially 

discussed. A hardware-based translation system with algorithm reconfiguration is 

able to supply greater throughput than a software-based system. Further, it is also 

expected as a single component integrated in a multi-functional Braille system on a 

chip. Therefore, this thesis presents the development of a system for text-to-Braille 

translation implemented in hardware. Differing from most commercial methods, this 

translator is able to carry out the translation in hardware instead of using software. 

To find a particular translation algorithm which is suitable for a hardware-based 

solution, the history of, and previous contributions to Braille translation are 

introduced and discussed. It is concluded that Markov systems, a formal language 

theory, were highly suitable for application to hardware based Braille translation. 

Furthermore, the text-to-Braille algorithm is reconfigured to achieve parallel 

processing to accelerate the translation speed. Characteristics and advantages of Field 
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Programmable Gate Arrays (FPGAs), and application of Very High Speed Integrated 

Circuit Hardware Description Language (VHDL) are introduced to explain how the 

translating algorithm can be transformed to hardware. Using a Xilinx hardware 

development platform, the algorithm for text-to-Braille translation is implemented 

and the structure of the translator is described hierarchically. 
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1. Introduction 

According to the latest statistical data on the magnitute of blindness and visual 

impairment from World Health Organization (WHO), more than 161 million people 

around the world were visually impaired, of whom 124 million people had low 

vision and 37 million were blind [1]. Many of them rely on Braille as a tool of 

learning and communication. Although Braille dots still do not resemble print letters, 

Braille has been adapted to almost every language in the world and remains the 

major medium of literacy for blind people everywhere [2]. Since Louis Braille 

published his first embossed Braille book in 1829, millions of books have been 

published in Braille for people with visual impairment [3]. 

Recently, Braille is suffering descreasing popularity due to the use of alternative 

technologies, like speech synthesis [4]. However, as a form of literacy, Braille is still 

playing a significant role in the education of people with visual impairments.  On the 

other hand, reading straight from the text can avoid potential errors or problems like 

indecipherable meanings or misspelling caused by speech synthesis. Therefore, 

Braille should still be a critical part of blind education and culture [5]. 

Automatic Braille Translation is a popular topic in the AT of visual impairment and 

has been wildly discussed and analysed since 1960s [6-8]. Currently, there are some 

commercially available programs and other computer-assisted applications which 

specialise in Braille translation. Some of these use personal computers to achieve 

translation and other functions, such as Duxbury, the most popular multi-language 

Braille translation software [8]. In this case, the speed of translation tends to be 

strongly related to particular computers utilised in the process. This kind of software 

is mainly designed for users with nomal eyesight, so it has low accessibility for 
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visually impaired users and are used by transcribers translating existing print texts. 

They have to read the computer screen by using some AT tools, such as screen-

reading software or Braille displays. There are also some portable devices specially 

designed for blind users which can perform text-to-Braille translation, such as 

Mountbatten Brailler [9]. These devices are based on a microcontroller running a 

translating program. As a small computer on a chip, a microcontroller is also able to 

perform multi-functional tasks, however, because a microcontroller is designed for 

general purposes, and the operations are based on sequential executions of 

instructions [10], therefore it may not be fast enough to perform mass translations of 

text documents. However, the advent of FPGAs made it possible to build a faster and 

stable hardware-based translation system which can also be integrated into a portable 

device, at a more affordable cost when compared to personal computers. To do this, 

the translating algorithm needs to be reconfigured so that the design can be applied to 

a parallel architecture in FPGAs. A hardware based translation system implemented 

in a FPGA is able to work as a single component, supplying greater throughput, and 

it also can be used as a module which is integrated in a universal Braille embedded 

system on a chip (SOC), supplying multi-functions. All of these components of the 

SOC will be integrated in one FPGA. 

In Chapter 2, some history about Braille will be presented and the main difficulties 

for text-to-Braille translation are discussed. In Chapter 3, the text-Braille translation 

problem is discussed using formal language. Furthermore, several translation systems 

are given and comparisons are made to find out an applicable method of 

implementing hardware-based Braille translation. In Chapter 4 some essential 

knowledge of FPGAs including structures and some important characteristics will be 

presented. Also, another powerful tool, VHDL is introduced. Based on the 
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information presented in Chapter 2, 3 and 4, a hardware based solution for Braille 

translation is discussed in Chapter 5. An implementation of fast translation based on 

FPGAs is explained, and some test results are included as well in this section. This 

section also includes how a text-to-Braille translator is integrated. Some conclusions 

and possibilities for future work are given in Chapter 6. 
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2. Background of Braille 

2.1  Overall Description 

The history of Braille can be traced back to the 1800s. The following text illustrates 

the origins of Braille, and it was published on the website of the Duxbury Systems 

Company [8]. “It was a French army captain, Charles Barbier de la Serre, who 

invented the basic technique of using raised dots for tactile writing and reading. His 

original objective was to allow soldiers to compose and read messages at night 

without illumination. Barbier later adapted the system and presented it to the 

Institution for Blind Youth, hoping that it would be officially adopted there. He 

called the system Sonography, because it represented words according to sound 

rather than spelling. However, Barbier's system was too complex for soldiers to learn. 

Based on Barbier’s system, in 1821, the young Frenchman, Louis Braille developed 

the system known as Braille that is widely used by blind people to read and write”. 

Each Braille character or "cell" is made up of 6 dot positions, shown in Figure 1, 

arranged in a rectangle comprising 2 columns of 3 dots each [11-13]. A dot may be 

raised at any of the 6 positions, so, counting the space, in which no dot is raised, 

there are 64 such combinations in total (that is, 2 to the power of 6). “There is no 

intentional relation between the arrangement of dots in a cell and the shape of the 

corresponding ink-print character” [11]. “For reference purposes, a particular 

combination may be described by naming the positions where dots are raised, the 

positions being universally numbered 1 through 3 from top to bottom on the left, and 

4 through 6 from top to bottom on the right.” For example, dots 1-3-4 would describe 

a cell with three dots raised, at the top and bottom in the left column and on top of 

the right column [8]. 
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Figure 1. Braille Cell 

The original Braille is a quite straightforward dots system which includes characters 

for each letter of the alphabet, punctuation marks, and numerals. This corresponds to 

Grade 1 Braille, where there is nearly a one-to-one correspondence between letters 

and Braille cells. Figure 2 [14] shows several single-cell letter codes. 

 

Figure 2. Single-Cell Letter Codes in Braille 

Although it is clearly easy to transcribe Braille by simply substituting the equivalent 

Braille character for its printed equivalent using Grade 1 Braille, such a character-by-

character transcription is used only by beginners [5] [12] [15] and the process is 

significantly time-consuming. On the other hand, “the size of the Braille cell is such 

that only about 25 lines of about 40 cells each, that is 1000 characters, can fit on a 

page of the usual size, which is the size of A4 page. This contrasts with the 3500 or 

so characters that will fit on a standard, smaller, typed page. Moreover, Braille paper 

must be much heavier to hold the dots, and the dots themselves considerably increase 
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the effective thickness of a page [13]. The result is that paper Braille is very bulky. 

To mitigate this problem somewhat, most larger Braille books are published in 

"interpoint", that is with the embossing done on both sides of each sheet, with a 

slight diagonal offset to prevent the dots on the two sides from interfering with each 

other. But even in interpoint, a standard desk dictionary is likely to occupy a whole 

bookcase in Braille” [8]. 

Partly because of the bulk problem, and partly to improve the speed of writing and 

reading, the literary Braille codes for English and many other languages employ 

"contractions" that substitute shorter sequences for the full spelling of commonly-

occurring letter groups. When contractions are used, the Braille is usually called 

"Grade 2," in contrast to "Grade 1" transcriptions where all words are spelled out 

letter-for-letter. In English-language Braille, for which 189 contractions have been 

developed, almost all Braille is written in Grade 2 [17]. Therefore, many Braille cells 

have multiple meanings. For example, the same cell which stands for the word “but” 

also means the single letter ‘b’. Some examples of Grade 2 Braille cells are shown in 

Figure 3. Grade 2 Braille can contain more information, and therefore it can be read 

and produced much faster than Grade 1 Braille [14]. 
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B BUT 

C CAN 

D 

P 

DO 

PEOPLE 

Q QUITE 

Grade 1 Grade 2 

 

 

 

 

 

 

Figure 3. Some contracted codes in Grade 2 Braille 

Grade 2 Braille, although an effective way for the blind to learn and communicate, 

had not been accepted and utilised widely. One reason is Grade 2 Braille has 

complex rules about how to use contractions, and also because translation between 

Braille and text was very time-consuming and expensive [16]. But with the 

development of digital technology and innovations in Braille education, Grade 2 

Braille has been accepted as one of most important ways for the blind to learn and 

communicate.  

2.2  Coding Difficulties in Grade 2 Braille 

Controversies continued for years among Braille rule makers which concentrated on 

the strings of letters to be contracted and those particular rules for specifying 

contractions [11]. Some of them insisted that particular strings of letters should 
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always be contracted, regardless of the context or syllable boundaries; while the 

other group, argued that constraints of syllable boundaries must be considered. For 

instance, the string “dis” should only be used when these letters form the first 

syllable of a word, so this string will be contracted in the word “distrust”, but will be 

separated in “dish”. Another example is that the rules for "syllabification" would not 

allow the "ea" letter string in "react" to be contracted, whereas the "sequence" 

proponents would allow the contraction.  

However, researchers realised that the necessity for a unified English Braille coding 

system could not be ignored, because the unified Braille is able to harmonise literary 

and technical codes into a systematic representation of print characters by unique and 

unambiguous Braille symbols [18][21]. Therefore, the International Council on 

English Braille (ICEB) was established in 1991 to develop the Unified English 

Braille (UEB). “In April 2004, the ICEB General Assembly declared Unified English 

Braille to be substantially complete and that it could be recognized as an 

international standard and considered for adoption by individual countries” [18]. If 

sequence rules are used, and syllable constraints are ignored, Braille translation 

becomes straightforward and easily implemented. However, in both British and 

American Braille syllabification was put into consideration [18] [19]. It resulted in a 

more complex system and a big increase in translation rules. Therefore context 

sensitivity becomes a very important characteristics of Grade 2 Braille [5] [20]. 

The main reason for using syllable constraints is that these linguistic units can easily 

be recognised as function units, which are helpful for the blind in comprehending 

Braille codes. Generally, these syllable units are of two types. Some are morphs, or 

basic lexical units of the language [11]. These include prefixes (com-, be-, mini-); 

roots, both free and bound (snow, boat, house, -turb, -ceive); derivational suffixes 
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which affect the meaning of a word (-dom, -ness, -ship, -al) and inflectional suffixes, 

which affect the grammatical role of a word (-s, -ed, -ing). The second type of 

linguistic unit which is contracted is the cluster. There are both consonant clusters (st, 

sh, ch, chr, fth) and vowel clusters (ea, ou, ai). Many of these units are also 

contracted in Braille [11]. 

Because of the complexities of defining Grade 2 Braille rules, the translation 

between text and Braille becomes very difficult to implement. Generally, the rules 

are based on the position of a letter sequence in a word, pronunciation of the letter 

string, and syllabification of the word. 

According to the British Grade 2 Braille rules, letters of the alphabet are also used in 

Braille to represent whole words; these are referred to as “wordsigns” [14]. As 

shown in Figure 3, the Braille cell for the letter ‘b’ is also a wordsign standing for 

“but”. In this particular case, the introduction of a wordsign will not increase any 

difficulties in translation. However, some cells representing contractions also can be 

used as wordsigns. For instance, the contraction “ch” is also a wordsign for “child”. 

The contraction “th” also means “this”. In this case, priorities between contraction 

strings and wordsigns have to be differentiated. Another example of priority 

difficulties is with the contraction “th” and wordsign “the”. Here, capital letters are 

used indicating strings to be contracted. When “th” appears in the word “THEn”, 

instead of using “th”, “the” has to be used. Another example is that the contraction 

“ou” is also used as a wordsign: it stands for “out”, but it may only be used where it 

represents the whole word and where no other letters are added to it. Therefore, “out” 

can be treated as wordsign but “outside” cannot. 

In British Grade 2 Braille, most wordsigns have a higher priority than letters of the 

alphabet [14]. However, there are some particular cases where wordsigns may not be 
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used. Wordsigns “to”, “into”, and “by”, for instance, may only be expressed by their 

respective wordsigns when they can be written adjoining a word that follows; where 

no word immediately follows, or where a word does follow but the sense does not 

permit this joining up, they may not be expressed by wordsigns. Therefore, in the 

following instances “to” and “by” must be written out, and “into” written “INto”: 

• where any one of these words occurs at the end of a Braille line, or 

immediately before a punctuation mark; 

• where any one of these words is followed by a conjunction, such as “and”, 

“or”, etc. For example “to and for”, “by and by”, or “by and large”; 

• where the sense indicates that a slight pause is made after any one of these 

words, even though there is no comma to mark it; 

• where any one of these words is joined to another word by a hyphen to form a 

compound word. 

The main difficulty of Grade 2 Braille is in relation to the usage of string 

contractions. Some string contractions are related to their positions in a word. For 

instance, contractions “er”, “ed”, and “ou” can be used in any part of a word. Yet, 

“ing”, and “ble” may be used in any part of a word except at the beginning of the 

word. Contractions “be”, “con”, “dis”, and “com” may only be used when they form 

the first syllable at the beginning of a word. Syllable boundaries are another 

important elements which are considered in determining string contractions. The 

same example can be used: "be", "con", and "dis" can be contracted only if they 

relate to syllables at the beginning of a word. Thus “CONcept”, but not “cone”; 

“DISturb”, but not “disc”, “Berate”, but not “bell”. Another example is the 

contraction “ea”: “lEAd” can be contracted, but “react” can not. 
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There are cases where two contractions overlap, a particular contraction has to be 

carefully chosen . For example, in words containing the letters “THEd” and “THEr”, 

the contraction “the” is used in preference to the contraction “th” and “ed” or “er”. 

The contraction “ea” is always to be used in preference to “ar”, except when “ea” 

occurs at the beginning of a word. Thus, not fEAr, but feAR, not lEArn, but leARn.  

Some general contraction rules are appended as a guide to their use. In the examples 

given below, the letters that may not be contracted are italicised, the contractions are 

written as capitals: 

Contractions may not be used: 

• to bridge the components of a compound word, as, cARthorse. 

• to bridge a prefix to an English root word, as, readmit, or preARange. 

• which would upset the usual pronunciation of syllables, as, asTHma. 

There are other aspects of written language that create complexity in Braille as well.  

It is difficult for blind people to detect numbers and capitalised letters, because each 

single Braille code normally has several representations. Therefore, compound 

punctuation signs are used to denote particular punctuation, or special characters 

such as numbers or single letters.  For instance, in Braille, letters used for special 

purposes, such as to denote Roman Numbers, or to designate persons or objects, 

must be immediately preceded by the Letter Sign, in order to show that they are 

being so used, and not as wordsign. Arabic figures 1-9 and 0 are represented in 

Braille by the letters A-I and J respectively, when they are immediately preceded by 

the numeral signs. 
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3. Translation Algorithm 

The coding difficulties in Grade 2 Braille make it very difficult to procduce elaborate 

conversion programs, because it is a difficult and time consuming job to describe 

contractions by using rules. Therefore, the production of rules for the Grade 2 Braille  

becomes the main issue in text-Braille translations. 

In this section, the text-Braille translation algorithm is going to be discussed by using 

essential concepts of formal language. Furthermore, several translation systems will 

be described, and comparisons are also going to be made, to find the most suitable 

method of implementing hardware-based Braille translation.  

3.1  Basic Concepts 

When translation between text and Braille is considered, there are two kinds of 

alphabets involved. One is the alphabet of Latin letters, Arabic numerals, punctuation 

marks, and some special symbols. The other includes 64 Braille codes. However, 

instead of using dot representations, there is a subset of the American Standard Code 

for Information Interchange (ASCII) character set which uses 64 of the printable 

ASCII characters to represent all possible six-dot combinations of Braille. This 

subset is called the Braille ASCII set, or computer Braille set [15].  

Braille ASCII uses the 64 ASCII characters between 32 and 95 inclusive. All capital 

letters in ASCII correspond to their equivalent values in Braille. Unlike standard 

print, all letters in Braille are lower-case by default, unless otherwise specified by 

preceding them with a capitalisation symbol. The Braille ASCII table is shown in 

Appendix I. 

Therefore, the translation process can be regarded as a symbol transformation from 

one kind of ASCII alphabet set into the other. 
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The two alphabets can be defined as follows: 

• A finite, nonempty set ∑1 of Latin letters, Arabic numerals, punctuation 

marks, and special marks is called Alphabet 1: 

∑1= {A, B, C, … , X, Y, Z, a, b, c, … , x, y, z, 0, 1, 2 , … , 9, ., ,, !, #, $, space …} 

• A finite, nonempty set ∑2 of 64 Braille ASCII characters is called Alphabet 2: 

∑2 = {space, !, ", #, $, %, ^, … , _ } 

For example, w1=x0 x1 … xm is a string, where x0 x1 … xm are elements of ∑1. To 

translate string w1, a particular group of rules have to be applied. The translation 

results should be another string w2=y0 y1 …yn (n<=m), where y0 y1 …yn are elements 

of ∑2. ‘m’ will be equal to or greater than ‘n’ because Braille ASCII codes must be 

reduced after applying contractions rules.   

The text to Grade 2 Braille translating process can be described as follows:  

  

Rules 

x0 x1 … xm               y0 y1 …yn 

 

Likewise, the Braille to text translation is given below: 

  

Rules 

 y0 y1 …yn           x0 x1 … xm 

 

As discussed in the previous sections, the translation between Grade 2 Braille and 

text is a context-sensitive process. This means that translation for a particular string 

might depend on the previous translated string. In this case, the basic principle for 
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Braille translation has been decided: to translate a string w1 into w2, the translation 

process must be in order, and start with the leftmost element x0 and end with the 

rightmost element xm; the same for translating w2 into w1. 

3.2  Finite State Machine (FSM) 

A finite state machine [22-24] is a model of behaviour composed of states, 

transitions and actions. FSMs are a formalism growing from the theory of finite 

automata in computer science. An FSM has a set of states and a set of transitions 

between states; the transitions are triggered by input vectors and produce output 

vectors. The states can be seen as recording the past input sequence, so that when the 

next input is seen, a transition can be made based on the previous information. 

A deterministic finite accepter (DFA) is used to explain how a particular string can 

be recognised [23-27]. To recognise strings is the first step in text-Braille translation. 

A DFA gives a binary output, saying either “yes” or “no” to answer whether the 

input is accepted by the machine or not. All states of the FSM are said to be either 

accepting or not accepting. If when an input is processed the current state is an 

accepting state, the input is accepted; otherwise it is rejected. Accepters can be used 

to recognise language by generating one-bit binary output, but they are not able to 

output strings of ASCII codes [26]. 

A DFA is defined by the quintuple 

M = (Q, ∑, δ, q0, F) 

where  

Q is a finite set of internal states; 

∑ is a finite set of symbols called the input alphabet, which is a set of printable 

ASCII codes; 
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δ: Q × ∑ → Q is a function called the transition function; For example, a transition 

function, δ (q0, b)= q1, where b ∈∑ and q0,q1∈Q, means when a character ‘b’ is 

received by this DFA, the state for the DFA will transit from q0 to  q1. 

q0  ∈ Q is the initial state, and;  

F ⊆ Q is a set of final states. 

A DFA operates in the following manner. At initiation, it is assumed to be in the 

initial state q0, with its input mechanism on the leftmost symbol of the input string. 

During each move of the state machine, the input mechanism advances one position 

to the right, so each move consumes one input symbol. When the end of the string is 

reached, the string is accepted if the machine is in one of its final states. Otherwise 

the string is rejected. The input mechanism can move only from left to right and 

reads exactly one symbol on each step. The transitions from one internal state to 

another are governed by the transition function δ [27]. 

Transition graphs are used to visualise and represent finite automata. In transition 

graphs, vertices represent states and edges represent transitions. The labels on the 

vertices are the names of the states, while the labels on the edges are current values 

of the input symbol. The initial state will be identified by an incoming, unlabeled 

arrow, not originating at any vertex. Finite states are drawn with a double circle. 

An example is given below to show how a DFA is going to achieve the recognition 

of the string “but”. 

The transition graph in figure 4 represents the DFA  

  M = ({q0, q1, q1, q2, q3, qb, qbu, qbut }, {printable ASCII codes}, δ, q0, {qbut}), 

where δ is given by 
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δ (q0, !b) = q1, δ (q0, b)= qb, δ (q1, *)= q1, 

δ (qb, !u) = q2, δ (qb, u)= qbu, δ (q2, *)= q2, 

δ (qbu, !t) = q3, δ (qbu, t)= qbut, δ (q3, *)= q3 (* means any input characters). 

q0 qb qbu qbut 
b 

!b 

!u 

u 

!t 

t 

q1 

q2 

q3 

* 

* 

* 

 

Figure 4. Transition Graph 

This DFA is able to recognise the string “but”. Starting in state q0, the first symbol 

which the DFA can recognise is the letter ‘b’. After receiving ‘b’, the DFA goes into 

state qb. However, if the DFA receives other input symbols in state q0, the next state 

is going to be q1 which is called a trap state. The reason we call q1 a trap state is that 

once the DFA goes into q1, it will never escape, no matter what the next input is. 

Likewise, states q2 and q3 are trap states. Therefore, the only string which this DFA 

is able to recognise is “but”. 

The example discussed above shows how to use a DFA to recognise one string. 

However, we can also use one DFA to recognise more than one string, and the set of 

those strings accepted by this DFA is called a language. Based on Grade 2 Braille 

rules, it is possible to build a DFA which is able to find particular strings to be 

contracted. For example, Figure 5 [28] shows a DFA to recognise strings, “herence”, 

“herer”, “hered”, and “here”. According to British Grade 2 Braille, the word “here” 

can be contracted to “h” in Braille, but when a letter ‘n’, ‘d’, or ‘r’ follows after it, 



 

 17 

the string “here” has to be separated into three parts: ‘h’, “er”, and ‘e’, where “er” is 

another contraction. Therefore, those cases need to be differentiated in a DFA. 

 

he her 
e 

n 

c 

d r 

r 

h 

 
here 

heren 

e 

e 

h 

herenc 
herence 

hered 

herer 
other 

 
Figure 5. A DFA of recognising several strings 

Here, we did not give a strict definition for the DFA given in Figure 5, because 

transition functions for this DFA are extensive and multiple. Starting with the 

recognition of the letter ‘h’, the DFA goes through four states to find the string 

“here”. But in every state, another transition function happens when receiving 

another letter. So a complete DFA beginning with ‘h’ can be used to describe all the 

rules originating from ‘h’.  Evidently the DFA is very big and contains huge sums of 

transition functions. The advantage of using a DFA to recognise strings is that 

superfluous comparisons can be prevented. For example, the DFA goes through four 

states to find “here”, and if it receives a space or a punctuation character, the 

recognition of a word “here” is completed. The DFA will never go back to find 

“herer”, “hered”, and “herence” which are exceptions with higher priorities. 

Therefore, DFAs are a fast and efficient method of using Grade 2 Braille rules to 

recognise strings. 

However, since DFAs are characterised by having no temporary storage, they are 

severely limited in their capacity to ‘remember’ things during computation [27]. The 

output generated by a DFA can only be one-bit binary code. Especially, a DFA has 
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significant difficulties in recognising strings when right contexts are introduced. 

Therefore, a more powerful automaton might be needed to perform text-Braille 

translation.  

As this discussion has indicated, using a finite state machine to perform Braille 

translation is not a wise option. This is because no matter how powerful the 

automaton is, the machine itself is a description of Braille translation rules. In this 

case, the state machine has a great number of states that make it very difficult to 

implement. Futhermore, when translation rules need to be revised, or new rules need 

to be added,  the finite state machine is not able to remain the valid function. 

Therefore, a better method for translation will be discussed in the next section. 

3.3  Markov System 

3.3.1 Definition 

A Markov algorithm is a string rewriting system that uses grammar-like rules to 

operate on strings of symbols [15] [26] [27]. This algorithm is named after the 

Russian mathematician, Andrey Markov. Although he is best known for his work on 

the theory of stochastic processes, which later were called Markov chains, Markov 

algorithms have proved to be one of his most important contributions. His algorithms 

have been shown to be Turing-complete, which means that they are suitable as a 

general model of computation, and can represent any mathematical expression from 

their simple notation [29]. 

A string rewriting system is a substitution system used to transform a given string 

according to specified rewriting rules. It includes an alphabet ∑ and a set of 

transformation rules. What distinguishes one rewriting system from another is the 

nature of ∑ and restrictions for the application of the production rules [30]. 
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A Markov algorithm is a rewriting system whose production rules 

x→y 

are considered ordered. In a derivation, the first applicable production rule must be 

used. The leftmost occurrence of the substring ‘x’ must be replaced by ‘y’. Some of 

the production rules may be singled out as terminal production rules; they will be 

shown as 

x→.y. 

A derivation starts with some strings w ∈ ∑ and continues until either a terminal 

production rule is used or until there are no applicable rules.  

The principles of using the Markov system are as follows [27]: 

• Check the rules in order from top to bottom to see whether any of the strings 

to the left of the arrow can be found in the symbol string.  

• If none are found, stop executing the algorithm.  

• If one or more is found, replace the leftmost matching text in the symbol 

string with the text to the right of the arrow in the first corresponding rule.  

• If the applied rule was a terminating one, stop executing the algorithm.  

• Return to step 1 and carry on.  

The following example shows the basic operation of a Markov algorithm. The 

Markov system of this example has a group of production rules listed as follows: 

1. “A” → “paper”  

2. “B” →  “Braille translator” 

3. “X” → “text” 
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4. “S” → “software”  

5. “T” → “the”  

6. “the software” → “hardware”  

7. “a never used” → .“terminating rule”. 

A symbol string, “This A describes a X to B implemented in T S.”, is going to be 

transformed by applying those production rules. Based on the algorithm, production 

rules need to be checked in order, and if a particular rule is applicable, the left hand 

side string must be replaced by the right hand side. 

If the algorithm is applied to the above example, the Symbol string will change in the 

following manner: 

1. “This paper describes a X to B implemented in T S.”  

2. “This paper describes a X to Braille translator implemented in T S.” 

3. “This paper describes a text to Braille translator implemented in T S.” 

4. “This paper describes a text to Braille translator implemmented in the 

S.” 

5. “This paper describes a text to Braille translator implemmented in the 

software.” 

6. “This paper describes a text to Braille translator implemented in 

hardware.” 

And then, the system will terminate. 

In Markov algorithms, the rewriting process is proved to be irreducible, because the 

rewriting process must be ended when the terminating rule is applied [31]. However, 

if a new Markov rewriting system is built properly, then a string obtained by 
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applying one Markov rewriting system can be transformed back to the original string. 

In the example given above, the original string can be generated by applying new 

production rules to the final string. The new rule set is shown as follows: 

1. “paper” → “A” 

2. “text” →  “X”  

3. “Braille translator” → “B”  

4. “hardware” → “the software”  

5. “the” → “T”  

6. “software” → “S” 

7. “a never used” → .“terminating rule”. 

This characteristic of the Markov algorithm indicates its potential capability for 

performing both text-to-Braille and Braille-to-text translations. However, when the 

Markov system is applied to text-Braille translation, the key issue is to find an 

effective method of generating production rules. As has been discussed, it is difficult 

to describe every kind of translation case using production rules, because of the 

complexities of the English language, and the language and its vocabulary are 

continually evolving.  

There are several software systems specially developed for text-Braille translation. 

The translating algorithms of these systems are based on the Markov system, 

although the name of this theory didn’t appear in the authors’ reports. Three types of 

text-to-Braille translation systems are given below to explain different methods of 

generating production rules; the systems and their characteristics will be discussed in 

the following sections. 
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3.3.2 DOTSYS II: Finite-State Syntax-Directed Braille Translation 

The renowned Braille translation software, Duxbury, is widely used by virtually all 

of the world's leading Braille publishers. It is a truly multilanguage-Braille 

translation software [8]. The original translation algorithm of Duxbury was based on 

the DOTSYS II system developed by Jonathen Millen in 1970 [28]. 

As a product of the 1970s, the system was described using COBOL language. Few 

concepts about formal language were used in Millen’s report, therefore, even people 

who are not familiar with automata theory can still understand the algorithm. Even 

though the Markov system was not mentioned in related reports or papers, the 

DOTSYS II system performs text-to-Braille translation in the same manner as the 

Markov system works. The main issues in Millen’s report on DOTSYS II are about a 

method of translating rule production and how the rules are organised. In this section,  

how the system works will be described in detail, since as the first successful 

automatic Braille translator, DOTSYS II built the foundation of automatic Braille 

translation, and was the first system to introduce methods and concepts which were 

later borrowed by other translating systems. 

3.3.2.1  Translation Procedures 

First, the procedures of how the system works are given. A mnemonic summary of 

the chronological steps in the algorithm is given in Table 1 [28]. The definitions in 

Table 1 will be discussed in the following paragraphs. 
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Table 1. Chronological form of the translation algorithm as loop of five steps 

 Procedures Tables needed in each step 

1 Index Alphabet table 

2 Search Contraction table, decision table, right-context table 

3 Output Contraction table or alphabet table, sign table 

4 Shift Contraction table 

5 Change Transition table 

DOTSYS II followed the same principle of Braille translation mentioned previously, 

which is to translate input text from left to right. For a specific application, the 

system uses a 10-character buffer as a sliding window to store the string to be 

translated. 

If ten or fewer characters beginning at the left end of the buffer are to be translated as 

a group in Braille, then the system puts out the Braille sign or signs and shifts the 

contents of the buffer left to move the contracted characters out of the buffer. The 

same number of new characters are read in the vacancies at the right end of the 

buffer. 

 

 

… IS TOO GOOD FOR EVERY PERSON … 

Translated Currently processed 

in buffer 

Not yet read 

 

Figure 6. The ten-character buffer 

Figure 6 [28]shows an example of a ten-character buffer. The word GOOD occurs at 

the left end of the buffer. Since GOOD can be contracted to the string GD, the 

system puts out the two Braille signs standing for the string GD, which are its Braille 

translation and then shifts the buffer contents left by four characters. As shown in 
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Figure 7 [28], a space becomes the left most character in the buffer after the word 

GOOD. 

… IS TOO GOOD FOR EVERY PERSON … 
 

 

Figure 7. Contents in the buffer after translating GOOD 

3.3.2.2  Method of Generating Production Rules 

To achieve text-to-Braille translation, an important issue is how to determine 

whether or not there is a character string beginning at the left end of the buffer which 

can be contracted. DOTSYS II uses a table containing all the character strings for 

which there are standard Braille contractions, i.e. the contraction table.  

The contraction table not only contains the 189 English Braille contractions, but also 

additional entries to implement some rules and indicate exceptions to others. Because 

it is based on Braille rules, some special cases have to be considered. For example, 

when the contracted letter groups EA and AR overlap, as in the word NEAR, the AR 

contraction is preferred. So a rule is created by putting the letter group EAR in the 

contraction table and specifying its translation to be the two Braille signs for E and 

AR.  

The alphabet table is conceptually part of the contraction table. It contains the Braille 

signs used for individual characters when they are not translated as part of a 

contraction. It also contains indexing entries for the efficient search of the 

contraction table. The sign table, which is used for output, sets up a correspondence 

between the numbers from 0 to 63 and the 64 Braille signs. This allows the 

numerical equivalent of the signs to be used in the program for indexing and for 

storage in tables. 
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The format for contraction table entries is shown in Figure 8 [28]. Each contraction 

table entry has five fields, containing: all but the first character of a character string 

to be represented, a right-context character, the input class number, the number of 

characters to shift out of the buffer, and the numerical codes of the Braille signs to be 

put out. 

String Right context Input class Shift Signs 

Figure 8. Format for contraction table entries 

The first field of the contraction table entry, the string field, comprises nine 

characters, and represents a character string recognised as a whole when encountered 

in the buffer. The first character in the string is encoded by the position of the entry 

in the table, and is not included in the string field. The string field consists of the 

second through to the last characters in the character string; if there are fewer than 

nine, they are followed by a dollar sign, and enough trailing blanks to make a total of 

nine characters. Figure 9 [28] is an example of the table entry for contraction EA. 

String Right Input class Shift Signs 

A$ L 4 2 2 99 99 99 

Figure 9. Contraction table entry for EA 

The second field of the contraction table entry, the right-context field, contains one 

character: either a blank or a character, such as ‘L’ or ‘P’. In Figure 9, the ‘L’ 

indicates that a letter must be found in the buffer immediately following the character 

group to which the entry would apply, in order for this contraction table entry to be 

applicable. A ‘P’ indicates that any character other than a letter must be found there, 

instead. A blank means the absence of a right-context condition. Right context, is an 

important contribution of Millen’s DOTSYS II, and is also used in both Slaby’s and 
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Paul Blenkhorn’s systems which will be discussed in following sections. But in 

comparison with Millen’s DOTSYS II, Blenkhorn’s right context contains more 

information. 

The third field of the contraction table entry is input class. Before discussing this 

field, it is necessary to mention the introduction of finite state memory in DOTSYS 

II.  

Sometimes left contexts also need to be considered in contraction rules. To solve this 

problem, DOTSYS II uses a finite memory to implement rules involving characters 

to the left of the characters currently under inspection. Unlike the right context 

mechanism, which tests only an immediately adjacent character, the finite state 

memory allows a contraction to be affected by characters which may have occurred 

previously. The finite state memory appears in DOTSYS II in the form of a state 

vector. The state vector is a number of consecutive storage locations called state 

variables. There are five variables in DOTSYS II which are shown in Table 2 [28]. 

Each variable contains the character Y for yes and N for no. The occurrence of some 

characters in the input text can change specific state variables from N to Y, or vice 

versa, as they are shifted out of the buffer. 

Table 2. State variables 

1 After the start of a number 

2 After the start of a word 

3 Grade 1 translation 

4 In a quotation 

5 In italicised text 

Another concept, input class, is also introduced. Because many different characters 

or contractions may have the same effect on the state vector, they are grouped into 
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numbered input classes. This way, the new value of each state variable depends on 

its old value plus the input class of the alphabet or contraction table entry. The 

definitions for input classes are shown in Table 3 [28]. 

Table 3. Input class 

1 Contractions always used in grade 2 

2 Digits 

3 Most punctuations 

4 Contractions used after the start of a word 

5 $G (grade switch) 

6 Contractions used only at the start of a word 

7 Isolated full-word contractions 

8 $P” (start paragraph in quotation) 

9 $P (start paragraph in italics) 

10 “ (left quote) 

11 ” (right quote) 

12 __ (begin italics) 

13 _ (last word of italics) 

14  (space) 

15 A to J occurring in a number 

Based on the state variables and input classes, the transition table and decision table 

are built into DOTSYS II. The transition table specifies the re-computation of the 

state vector. When a particular entry is applied, the value of a specific state variable 

will be evaluated depending on the input class.  

Figure 10 [28] shows how the transition table is organised. NIC and NSV are, 

respectively, the number of input classes and the number of state variables. Each row 

is associated with a state variable, and each column is associated with an input class. 

Each entry, which can be R, S, T, or -, specifies the effect of an input class on a state 

variable, as show in Table 4 [28]. 
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 Input Class 

 1 2 … (NIC) 

1 R S … R 

2 - T  - 

…     

State 
Variable 

(NSV) - R … R 

Figure 10. Transition table 

Table 4. Effect of input classes on state variables, as specified by transition table 
entries 

Transition table entry R S T - 

Old value of state variable Y N Y N Y N Y N 

New value of state variable N N Y Y N Y Y N 

The decision table has the final say on whether a contraction table entry is to be used 

to translate the initial part of the contents of the buffer. Its decision depends on the 

input class and on the state variables. The format of the decision table is shown in 

Table 5 [28]. 

Table 5. Decision table format 

Column  1 2 … (NDTC) 

1 Y - … - 

2 G G … G 

Input 
Class 

…     

1 - - … - 

2 - N … Y 

…     

State 
Variables 

(NSV) N N … N 

Each column gives the decision whether to use a contraction having a particular input 

class, conditional upon the values of some state variables. Given an input class, the 

leftmost column is found such that the corresponding decision entry is not a dash but 

Y, N, or G. Letter G, standing for go, means that a contraction with that input class is 

made, regardless of the values of the state variables. An entry Y means yes, and N 
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means no, but these apply only if the conditions on the state variables, stated in the 

lower part of the column, have been satisfied. A condition Y means that the 

corresponding state variable must have a value of Y; a condition N means that the 

corresponding state variable must have a value of N; a condition ‘-‘ means that the 

value may be either Y or N. 

If the conditions on the state variables are not satisfied, or if the decision entry is ‘-‘, 

this column does not give the decision, and the next column to the right is tested.  If 

no column gives a decision, then the decision is taken to be no; the contraction is not 

made, and the contraction table search must continue. 

According to the entry format discussed above, we can conclude that a character 

string beginning at the left end of the buffer is contracted if three conditions are 

satisfied: 

• It matches an entry in the contraction table; 

• It has an acceptable right-context character; 

• A valid value can be found in the decision table. 

The fourth field of the contraction table entry, the shift field, is a positive integer 

giving the number of characters to be shifted out of the buffer after this entry is 

applied. This field might appear redundant, because the length of the character string 

just translated is implied in the string field, but it is sometimes convenient to translate 

and shift out of the buffer only a part of the character string to which the entry 

applies.  

The last field is the signs field which contains four numbers representing the Braille 

translation of that part of the character strings which will be shifted out of the buffer. 

The correspondence between the numbers and Braille signs is given in the sign table. 
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If the translation is fewer than four Braille signs, the extra numbers are specified as 

99. 

3.3.2.3  Further Development 

After the introduction of DOTSYS II, the system was further revised and improved. 

Based on DOTSYS II, an American, Joseph Sullivan, developed DOTSYS III, which 

was a portable Braille translator, by refining the table sets and modifying the 

translating program [32] [33]. Although the system was able to achieve the text-to-

Braille translation, as Sullivan claimed, DOTSYS III represented a compromise 

between the perfect and the possible, and mistakes in its translations could only be 

identified and corrected by human intervention [33]. 

Fortunately, what Jonathan Millen and Joseph Sullivan contributed became the 

foundation of the multi-language Braille translation software, Duxbury [8]. This 

software is able to perform bidirectional translation (text-to-Braille and Braille-to-

text) covering dozens of major languages including English, French, Spanish, 

German, Danish, Italian, and Polish. It has the ability to include tactile graphics files 

for mixed text-and-graphic documents, and can handle diverse file formats. However, 

this software is powerful, but relatively expensive (595 US dollars with single license) 

[8]. Also, since the translation algorithm and data details are treated as confidential, 

commercial documents, it is difficult to determine how the system exactly works. 

Furthermore, DOTSYS has its own drawbacks. Because the system is driven by a set 

of tables, it becomes very difficult for non-experts to update or modify them when 

new rules need to be evaluated [37]. Therefore, there is a need for new systems to be 

developed which solve these problems. 
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3.3.3 Slaby’s System 

3.3.3.1  A Universal Braille Translator Based on the Markov System 

In 1975, a German, Wolfgang Slaby, made another attempt to apply the Markov 

system to text-to-Braille translation [34]. He realised that diverse languages lead to 

very different problems in automating the process of translation, because each of the 

translation algorithms possesses a lot of language-dependent components. Therefore, 

he tried to formalise an algorithm which is applicable to multi-language Braille 

translation, in other words, a universal system. In comparison with the finite-state 

syntax-directed Braille translation, this system provides a more formalised Braille 

translation process.  

In this system, a quadruple is defined, to explain the Markov system of production 

rules as follows: 

A quadruple m = (∑, ∆, Γ, R) is called a Markov system of production rules if, and 

only if, the following is valid: 

1. ∑, ∆, and Γ are alphabets with ∑ ⊆  Γ and ∆ ⊆  Γ. 

• ∑ is the input alphabet including Latin capital letters, Arabic numerals, 

punctuation marks and some other special characters. 

• ∆ is an alphabet which concludes 64 Braille cells. 

• Γ is the working alphabet, which is the union of ∑ and ∆. 

2. (Γ, R) is a system of production rules and R is an ordered set. 

The empty word, i.e., the word over ∑ consisting of zero symbols, is denoted by ζ. 

Let ∑* be a set of all words over the alphabet ∑, including ζ.  

Let w be any word over ∑*. If m is applicable to w, the following conditions have to 

be met: 

There exists u → v ∈  R, such that u → v is applicable to w. 
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 Let ∑ be applicable to w and let u0 → v0 be the first applicable production rule 

according to the order defined for R. Then since u0 is a sub-word of w there exists x, 

y ∈  ∑* such that w = x u0 y. 

Then we define  

m (w) = x v0 y,  

mn (w) = m (mn-1 (w)) for n ∈  N, provided that m is applicable to mn-1 (w). 

Thus, for each w symbol ∑*, there is one of the following two cases which is 

satisfied: 

Case 1: there exists an integer rw ∈  N such that m is applicable to m
r
w
-1 (w) and m is 

not applicable to mr
w (w). ( m

r
w
-1 (w) and mr

w (w) ∈  ∆
*) 

Case 2: for each n ∈  N, m is applicable to mn (w). (mn (w) symbol ∆*) 

It is easy to see that mr
w
-1 (w) or mn (w) is the result of the application of m to w. 

If the system focuses on translating any specific language into the corresponding 

Grade 2 Braille, the appropriate Markov system of production rules mspec.lang has the 

following form: 

mspec.lang = (∑1, ∑2, Γ, Rspec.lang). 

But when a complete Markov system of production rules is going to be built, it 

becomes a very difficult linguistic problem, because of language specific ambiguities. 

These ambiguities encountered by Slaby are the main difficulties of translating Grade 

2 Braille, as discussed in Chapter 2. Slaby’s system is able to overcome this problem, 

but the solution of these ambiguities results in a rapid increase in the number of 

production rules. For example, based on this model, a set of more than 6000 

replacement rules for German-contracted Braille was developed [35]. 

A severe disadvantage created by the large size of the rule set is that translating a 

word by iteratively scanning a large set of replacement rules sequentially will 
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significantly slow down the translation process. Therefore in 1974 a new model - a 

segment translation system - was developed by Slaby. 

3.3.3.2  Segment Translation System 

A segment translation system [35] is an ordered list of translation rules of type u → 

v[x, y] where: 

If the word w is to be translated, and if u is the segment of w that has to be 

translated next, then u is translated by the segment v, provided that u has x as a 

left neighbour and u as a right neighbour in w ( [x, y] is called a context 

condition). 

This system also uses some basic terms and definitions of formal language theory 

like alphabet ∑, finite string over ∑, nullstring ε, concatenation vw of two strings v 

and w, length l (v) of a string v, segment or substring u of a string w, prefix h (w) and 

suffix t (w) of length n of a string w, formal language over ∑, and concatenation of 

formal languages. 

The definition of a segment translation system is described as follows: 

A quadruple S = (∑, ∆, ◊, R) is called a segment translation system, if  

• ∑ and ∆ are alphabets. 

• ◊ ∈  ∑ U  ∆ (◊ is the frontier symbol). 

• R symbol {u → v[x, y] | u ∈  ∑*, u ≠ ε; v ∈  ∆*; x ∈  {◊, ε }·∑*; y ∈  ∑*·{◊, 

ε }}, R is a finite, non-empty set. Each u → v[x, y] ∈  R is called a segment 

translation rule. 

• For any u → v[x1, y1], u → v[x2, y2] ∈  R: (x1 = x2 and y1 = y2 => v1 = v2 ). 

• Let ls (R) = {u | u ∈  ∑* and there exists u → v[x, y] ∈  R}. Then for each u 

∈  ls (R) there exists v ∈  ∆*, such that u → v[ε, ε] ∈  R (the base rule). 
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In order to produce a translation z of a word w a concrete segment translation system 

is applied according to the following principles: 

1. Look for a suitable prefix u of the remainder of w not yet translated, 

for which there exists a segment translation rule u → v[x, y]. 

2. If there are several such prefixes u1 and u2 in ls (R) with l (u1) > l 

(u2), then u1 takes priority over u2. 

3. If u ∈  ls (R) is the longest prefix of the remainder of w not yet 

translated and if there exist segment translation rules u → v1[x1, y1] 

and u → v2[x2, y2] the context conditions of which are matched in w, 

then the rule with the longer context condition will be applied. 

Based on these principles, the translation algorithm can be specified as shown in 

Figure 11: 
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Start 

word != ε 

Look for longest u in 

lsides with u = hl(u) (word) 

Find u → v[x, y] in rules with x = tl(x)(left) 

and y = hl(y)(right) and with l (xy) being a 

maximum under this condition 

Left = left · u 

word = tl(word)-l(u)(word) 

result = result · v 

Right = tl(word)-l(u)(word) · ◊ 

Initialization: 

Word = w 

Result = ε 

Left = ◊ 

Lsides =ls (R) 

Y 

N 

END 

 

 

Figure 11. Translation algorithm of segment translation system 

The next issue was to build a complete rule table for the segment translation system. 

Slaby presented a general idea of generating production rules for a text-to-German 

contracted-Braille translator. The method is to examine the preceding and following 

letters of a particular string to be contracted so that a rule can be decided which 

describes the environment where a certain sequence of the string must be translated 

different from the normal translation rule. This method is very similar to the one 

proposed by Hermann Kamp [36]. Using this method, a system with 4510 different 



 

 36 

rules has been produced. With this system a correctness rate of one translation error 

per 20000 characters was achieved.  

Slaby’s method is also suitable for translating other Latin languages to Braille. 

However, since constructing a complete rule table is related to complicated linguistic 

problems, it is a highly complex and time-consuming task. 

The procedures of generating production rules for Slaby’s system are described as 

follows: 

1. Selecting suitable segment u to become a left side of a segment translation 

rule u → v[x, y]; a good beginning for this step is to take all those segments u 

for which a contraction is defined in the Braille system. 

2. Laying down the base rule u → v [ε, ε] for each such segment. 

3. Detecting words containing the segment u for which this segment is not 

translated correctly by the rules generated so far; using these words for 

generating additional rules. 

It is evident that the format of production rules for the segment translation system is 

much simpler and more straightforward than the Finite-State Syntax-Directed Braille 

Translation system. The production rules in a segment translation system consist of 

only four parts, which are respectively left context, a string to be translated, right 

context, and Braille codes. Therefore, the system performs translation in reference to 

only one table, whereas DOTSYS II employs several tables to do the same job. The 

advantage of using this simple format is that the table can very easily be updated 

when mistakes are found or new rules are needed, and even a person who is not 

familiar with Braille is able to modify the rules.  
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3.3.4 Paul Blenkhorn’s System 

Based on Slaby’s system, a British man, Paul Blenkhorn developed his own text-to-

Braille translation system [35]. This system has the same characteristics as Slaby’s, 

in that the system can be readily updated and modified by people who are not experts 

in computer algorithms. 

This system also borrowed some concepts from DOTSYS, such as input class, 

transition state and the decision table, so that it is able to operate with a finite number 

of states which can hold the current context, as well as having capabilities for both 

left and right-context matching. The system has been designed so that a wide range 

of options and data can be introduced using a set of tables, including Braille rules, 

which are presented in a clear manner. 

In the application of Slaby’s system to the conversion of Braille into print, the 

approach taken was predominantly to use the state machine and right-context 

matching capabilities of this system to achieve the translation. However, as noted 

above, the updates of tables for a state machine requires a good deal of care and a 

detailed understanding of the system’s operation. The use of context-matching rules 

is much more straightforward and easier to understand. Consequently, the print-to-

Braille application has been constructed so that the bulk of the translation is achieved 

by using context-specific rules. 

The state engine is only used for switching between grades of Braille and for 

handling letter signs. The decision table used by the state engine can be found in 

Table 6. 

The decision table has 5 states and 6 input classes. 

The States are: 
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1. Grade 2 Braille. 

2. Grade 1 Braille. 

3. After Letter Sign (Grade 2). 

4. After Letter Sign (Grade 1). 

5. Computer Braille. 

The Input Classes are: 

1. Any Braille except computer Braille. 

2. Grade 2 rule. 

3. Valid after Letter sign (Grade 2). (Used to switch back to Grade 2 after end of 

word.) 

4. Valid after Letter sign (Grade 1). (Used to switch back to Grade 1 after end of 

word.) 

5. Computer Braille. 

6. Always allowed. 

Table 6. State, Input Class, and Decision Table I 

state 6 input classes 

1 1 2 0 0 0 0 

2 1 0 0 0 0 0 

3 1 0 3 0 0 0 

4 1 0 0 4 0 0 

5 0 0 0 0 5 0 

In Blenkhorn’s system, there are a total of 1228 production rules. The complete rule 

table can be seen in Appendix II.  

The format of each row in the table is:  

Input class <TAB> Rule <TAB> New state 

If the new state is ‘-‘, then no change occurs in the current state. The input class is set 

for each rule and is used in conjunction with the decision table to set the level of 
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Braille (i.e., Grade 2, Grade 1, or Computer Braille), and for letter sign placement in 

words that mix letters and numbers. 

The rule is in the following format: 

Left context [focus] Right context = input text 

Several wildcards can be used in the left context and the right context. These are as 

follows: 

“!” a letter; 

“#” a number; 

“!” a space or punctuation (include apostrophe); 

“space” only a space character; 

“|” zero or more capital signs; 

“‘” one or more characters that are potentially roman numerals; 

“;” zero or more letters; 

“+” one or more digits. 

An example is given here to explain how Blenkhorn’s system works. A rule table 

shown in Table 7 is used for translation. 
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Assume that we want to translate the word “GO”. If the word is between two spaces, 

then we can use the spaces as the left and right contexts. For the first step, the system 

will find the table entry according to the first letter of this word. Obviously, the entry 

is letter ‘G’. Then, the system will go through the rules of letter ‘G’, and check the 

rules including focus, input class, present state, left and right context, one by one, 

until finding the rule “2~[GO]~=G-”. Because all the information of this rule matches 

the input, the translated result is “G”. The hyphen mark for the new state means that 

the new state remains unchanged. The original algorithm of Blenkhorn’s system is 

displayed in Appendix III. 

Blenkhorn’s algorithm has been implemented in a procedural program using C, 

proving that the algorithm works well. The reason for using C programming language 

is that C is a general-purpose structured programming language and it is portable, 

Table 7. Fragment of  Rule Table 

 Input 
Class 

Left 
Context 

Focus Right 
Context 

Output 
Text 

New 
State 

1 2 ~ G ;# ;G 3 

2 2 # G  ;G 3 

3 1 ~ G ;# ;G 4 

4 1 # G  ;G 4 

5 2 ! GHAI  GHAI - 

6 2 ! GHEAD  GH1D - 

7 2 ! GHEAP  GH1P - 

8 2 ! GHIL  GHIL - 

9 2 ! GHOL E GHOL - 

10 2 ! GHOR N GHOR - 

11 2 ! GHOUS E GH\S - 

12 2  GHUN T GHUN - 

13 2  GH  < - 

14 2  GOOD  GD - 

15 2  GOVERN ESS GOV]N - 

16 2 ~ GO ~ G - 

17 2 ! GG ! 7 - 

18 2 . GREAT  GRT - 

19 1  G .! G - 

20 1  G ~ G - 

21 1  G ~ G - 

22 1  G  G - 



 

 41 

which means C was designed to give access to any level of the computer down to raw 

machine language [38]. However, modifications are necessary for its implementation 

in hardware. 

In the system presented in this thesis, input class and states are not used, because 

when the system performs the Grade 1 and Grade 2 Braille translation, all the rules, 

except those for letter signs where the index input class is 1 or 2, have present states 

of either 1 or 2. Therefore, those rules always have a value of 1 according to the 

decision table. 

On the other hand, rules which have presented states 3 and 4 in the rule table are 

always valid and once the next space character is found, the system will change the 

state to 1 or 2. In summary, if Computer Braille is not going to be considered, the 

decision table is not necessary. 

3.3.5 Braille-to-Text Translation 

The early contributions of computerised Braille translation were basically concerned 

with text-to-Braille translation [39]. However, it has been found that there are many 

similarities between text-to-Braille and Braille-to-text translation processes. The 

translation of Braille to text is very helpful for sighted persons who are not Braille 

literate to understand documents printed in Braille [41].  The translation from 

Braille-to-text is a reverse process corresponding to text-to-Braille translation, and it 

is also considered to be a context-sensitive conversion. In fact, the algorithm used by 

text-to-Braille translation is perfectly suitable for the Braille-to-text translation. 

Therefore, Paul Blenkhorn developed both systems using the same method [40] [42].  

In contrast to the text-to-Braille converting system, when Blenkhorn constructed the 

rule table of the Braille-to-text translation, the left context was excluded from each 
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rule. Instead, he used a method similar to DOTSYS II, which was to build a decision 

table containing left-context information. The decision table contains input classes 

and finite states, shown in Table 8. 

This decision includes 6 states and 7 input classes. 

The states are: 

1. At the start of the word. 

2. In punctuation at the start of the word. 

3. After the start of the word. 

4. Within a number. 

5. Within members of the group “&!(A)”. 

6. Within the scope of a letter sign. 

The input classes are: 

1. Don’t care 

2. Valid at the start of the word. 

3. Valid in punctuation, or at the start of the word. 

4. Only valid after the start of the word. 

5. Valid for members of the group “&!(A)”. 

6. Valid within the scope of a letter sign. 

7. Valid within a number. 

Table 8. State, Input Class, and Decision Table II 

state 7 input classes 

1 1 2 3 0 0 0 0 

2 1 0 3 0 0 0 0 

3 1 0 0 4 0 0 0 

4 1 0 0 0 0 0 7 

5 0 0 0 0 5 0 0 

6 0 0 0 0 0 6 0 

 

The format of the rules is: 
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Input class <TAB> rule <TAB> new state 

The input class is set for each rule and is used in conjunction with the decision table 

to determine if a rule fires. 

The rule is in the following format: 

[focus] right context = output text 

Several wildcards can be used in the right context. They are: 

“!” --- one or more of the set “&!(A)”; 

“ ” --- any white space character; 

“~” --- one or more potential punctuation characters, and; 

“_” --- actual space character. 

In Blenkhorn’s Braille-to-text translation system, there are a total of 498 rules, and 

the rule table is shown in Appendix IV. 
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4. FPGA and VHDL Information 

4.1   About FPGAs 

Field Programmable Gate Arrays (FPGAs) are digital integrated circuits (ICs) that 

contain configurable (programmable) blocks of logic along with configurable 

interconnects between these blocks [43-50]. The “field programmable” portion of the 

FPGAs name refers to the fact that its programming takes place in the field. This 

means that FPGAs can be configured in the laboratory. With their introduction in 

1985, FPGAs have been an alternative for implementing digital logic in systems [43]. 

The applications of FPGAs conver many fields of digital electronics, including 

custom IC designs, digital signal processing (DSP) and development of embedded 

systems, etc. Especially, FPGAs have created a new area in their own right: 

reconfigurable computing (RC), which refers to exploiting the inherent parallelism 

and reconfigurability provided by FPGAs to hardware accelerate software algorithms 

[43]. 

4.1.1 Evolution of Programmable Logic 

FPGAs are one type of Programmable Logic Devices (PLDs). PLDs were invented in 

the late seventies [44]. Their growing popularity has seen them become one of the 

largest growing sectors in the semiconductor industry. PLDs provide designers 

ultimate flexibility and design integration, are easy to design with and can be 

reprogrammed time and time again even in the field to upgrade system functionality. 

The first type of user-programmable chip [45] that could implement logic circuits 

was the Programmable Read-Only Memory (PROM), in which address lines can be 

used as logic circuit inputs and data lines as outputs. Logic functions, however, 

rarely require more than a few product terms, and a PROM contains a full decoder 
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for its address inputs. PROMS are thus an inefficient architecture for realising logic 

circuits, and so are rarely used in practice for that purpose. 

The first device developed later specifically for implementing logic circuits was the 

Field-Programmable Logic Array (FPLA), or simply PLA for short. A PLA consists 

of two levels of logic gates: a programmable “wired” AND-plane followed by a 

programmable “wired” OR-plane. A PLA is structured so that any of its inputs (or 

their complements) can be AND’ed together in the AND-plane; each AND-plane 

output can thus correspond to any product term of the inputs. Similarly, each OR-

plane output can be configured to produce the logical sum of any of the AND-plane 

outputs. With this structure, PLAs are well-suited for implementing logic functions 

in sum-of-products form. They are also quite versatile, since both the AND terms and 

OR terms can have many inputs (this feature is often referred to as wide AND and 

OR gates). 

When PLAs were introduced in the early 1970s, by Philips, their main drawbacks 

were that they were expensive to manufacture and offered somewhat poor speed 

performance. Both disadvantages were due to the two levels of configurable logic, 

because programmable logic planes were difficult to manufacture and introduced 

significant propagation delays. To overcome these weaknesses, Programmable Array 

Logic (PAL) devices were developed. PALs feature only a single level of 

programmability, consisting of a programmable “wired” AND plane that feeds fixed 

OR-gates. To compensate for lack of generality incurred because the OR-plane is 

fixed, several variants of PALs are produced, with different numbers of inputs and 

outputs, and various sizes of OR-gates. PALs usually contain flip-flops connected to 

the OR-gate outputs so that sequential circuits can be realised. PAL devices are 

important because when introduced they had a profound effect on digital hardware 



 

 46 

design, and also they are the basis for some of the newer, more sophisticated 

architectures that will be described shortly. Variants of the basic PAL architecture 

are featured in several other products known by different acronyms. All small PLDs, 

including PLAs, PALs, and PAL-like devices are grouped into a single category 

called Simple PLDs (SPLDs), who’s most important characteristics are low cost and 

very high pin-to-pin speed-performance. 

As technology has advanced, it has become possible to produce devices with higher 

capacity than SPLDs. The difficulty with increasing capacity of a strict SPLD 

architecture is that the structure of the programmable logic-planes grows too quickly 

in size as the number of inputs is increased. The only feasible way to provide large 

capacity devices based on SPLD architectures is then to integrate multiple SPLDs 

onto a single chip and provide interconnect to programmably connect the SPLD 

blocks together. Many commercial field-programmable devices (FPD) products exist 

on the market today with this basic structure, and are collectively referred to as 

Complex PLDs (CPLDs). 

The highest capacity general purpose logic chips available today are the traditional 

gate arrays sometimes referred to as Mask-Programmable Gate Arrays (MPGAs). 

MPGAs consist of an array of pre-fabricated transistors that can be customized into 

the user’s logic circuit by connecting the transistors with custom wires. 

Customization is performed during chip fabrication by specifying the metal 

interconnect, and this means that in order for a user to employ an MPGA a large 

setup cost is involved and manufacturing time is long. Although MPGAs are clearly 

not FPDs, they are mentioned here because they motivated the design of the user-

programmable equivalent: FPGAs.  
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In 1985, a company called Xilinx introduced a completely new idea. The concept 

was to combine the user control and time to market of PLDs with densities and cost 

benefits of gate arrays. Like MPGAs, FPGAs comprise an array of uncommitted 

circuit elements, called logic blocks, and interconnect resources, but FPGA 

configuration is performed through programming by the end user. An illustration of a 

typical FPGA architecture appears in Figure 12 [45]. As the only type of FPD that 

supports very high logic capacity, FPGAs have been responsible for a major shift in 

the way digital circuits are designed. 

 

Figure 12.Structure of a FPGA 

4.1.2 Architecture of Xilinx FPGAs 

There are three main types of FPGAs according to programmable elements to be 

used. One is based on static RAM (SRAM), the second type based on antifuses, and 

the third is FLASH-based FPGAs. [48] [49]. 

The first, SRAM programming, involves static RAM bits as the programming 

elements. There bits can be combined in a single memory and used as Look-up Table 

(LUT) to implement any kind of combinational logic. An example of usage of 

SRAM-controlled switches is illustrated in Figure 13 [45], showing two applications 
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of SRAM cells: for controlling the gate nodes of pass-transistor switches and to 

control the select lines of multiplexers that drive logic block inputs. The figures gives 

an example of the connection of one logic block (represented by the AND-gate in the 

upper left corner) to another through two pass-transistor switches, and then a 

multiplexer, all controlled by SRAM cells. Whether an FPGA uses pass-transistors or 

multiplexers or both depends on the particular product. 

 
Figure 13.SRAM-controlled Programmable Switches 

The other type of programmable switch used in FPGAs is the antifuse. Antifuses are 

originally open-circuits and take on low resistance only when programmed. 

Antifuses are suitable for FPGAs because they can be built using modified CMOS 

technology. Antifuse FPGAs have the advantage of lower power over SRAM-based 

FPGAs, but an antifuse FPGA can only be programmable once. 

A new type of FPGAs using flash technology is called flash-based FPGAs. These 

devices are essentially the same as SRAM-based devices, except that they use flash 

EPROM bits for programming. Flash EPROM bits tend to be small and fast. They 

are non-volatile like antifuse, but reprogrammable like SRAM. 

Each FPGA vendor has its own FPGA architecture, but in general terms they all have 

a basic structure shown in Figure 12. The architecture consists of configurable logic 
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blocks (CLBs), configurable I/O blocks, and programmable interconnect to route 

signals between CLBs and I/O blocks. Also, there is clock circuitry for driving the 

clock signals to each flip-flop in each logic block. Additional logic resources such as 

arithmetic logic units (ALUs), memory, and decoders may also be available [50]. 

CLBs contain the programmable logic for the FPGA. The diagram in Figure 14 

shows a typical CLB, containing RAM for creating arbitrary combinational logic 

functions [51]. It also contains flip-flops for clocked storage elements and 

multiplexers (MUXes) in order to route the logic within the block and to route the 

logic to and from external resources. These MUXes also allow polarity selection, 

reset input, and clear input selection.  

 
Figure 14.FPGA configurable logic block (CLB) 

On the left of the CLB are two 4-input memories, also known as 4-input lookup 

tables or 4-LUTs. 4-input memories can produce any possible 4-input Boolean 

equation. Feeding the output of the two 4-LUTs into a 3-input LUT, produces a wide 

variety of outputs. Four signals labelled C1 through C4 enter at the top of the CLB. 

These are inputs from other CLBs or I/O blocks on the chip, allowing outputs form 

other CLBs to be input to this particular CLB. These interconnect inputs allow 
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designers to partition large logic functions among several CLBs. They also are the 

basis for connecting CLBs in order to create a large, functioning design. 

The MUXes throughout the CLB are programmed statically. In other words, when 

the FPGA is programmed, the select lines are set high or low and remain in that state. 

Some MUXes allow signal paths through the chip to be programmed. For example, 

MUX M1 is programmed so that the top right flip-flop data is either input C2, or the 

output of one of the two 4-LUTs or the output of the 3-LUT. 

Some MUXes are programmed to affect the operation of the CLB flip-flops. MUX 

M2 is programmed to allow the top flip-flop to transition on the rising or falling edge 

of the clock signal. MUX M3 is programmed to always enable the top flip-flop, or to 

enable only when input signal C4 is asserted to enable it. 

The I/O pins on a chip connect it to the outside world. The I/O pins on any chip 

perform some basic functions: 

• Input pins provide electrostatic discharge protection. 

• Output pins provide buffers with sufficient drive to produce adequate signals 

on the pins. 

• Three-state pins include logic to switch between input and output modes. 

The pins on one FPGA must be programmable to accommodate the requirements of 

the configured logic. A standard GPGA pin can be configured as an input, output, or 

three-state pin. 

Pins may also provide other features. Registers are typically provided at the pads so 

that input or output values may be held. The slew rate of outputs may be 

programmable to reduce electromagnetic interference; lower slew rates on output 
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signals generate less energetic high frequency harmonics that show up as 

electromagnetic interference (EMI). 

An FPGA has several kinds of interconnect: short wires, general-purpose wires, 

global interconnect, and specialized clock distribution networks. The reason that 

FPGAs need different types of wires is that wires can introduce a lot of delay, and 

wiring networks of different length and connectivity need different circuit designs.  

4.1.3 FPGAs vs. ASICs 

In comparison with PLDs, there is another kind of un-programmable digital devices 

called application specific integrated circuits (ASICs) [46]. An ASIC is an integrated 

circuit (IC) customized for a particular use, rather than intended for general-purpose 

use. By carefully tuning each ASIC to a given job, the computer designer can 

produce a smaller, cheaper, faster chip that consumes less power than a 

programmable processor. A custom graphics chip for a PC, for instance, can draw 

lines or paint pictures on the screen 10 or 100 times as quickly as a general-purpose 

central processing unit can [47]. 

An ASIC is not a programmable device, but it is important precursor to the 

developments leading up to CPLDs and FPGAs. Nowadays, the ASIC vendor has 

created a library of cells and functions that the designer can use without needing to 

know precisely how these functions are implemented in silicon. The ASIC vendor 

also typically supports software tools that automate such processes as circuit 

synthesis and circuit layout. 

The design of an ASIC goes down to the masks used to fabricate an IC. The ASIC 

must be fabricated on a manufacturing line, a process that takes several months, 

before it can be used or even tested. ASICs have some significant advantages 
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because they are designed for a particular purpose: they are very fast and the 

circuitry is dense, allowing lots of functionalities on a die; and the cost is low for 

high volume production. The disadvantage is that it takes time for the ASIC vendor 

to manufacture and test the parts. Also, the customer incurs a large charge up front, 

called a non-recurring engineering (NRE) expense, which the ASIC vendor charges 

to begin the entire ASIC process. And if there is a mistake, it is a long, expensive 

process to fix it and manufacture new ASICs. 

Hardware designers always wanted something that gave them the advantages of an 

ASIC, such as circuit density and speed, but with the shorter turnaround time of a 

programmable device. A new development in integrated circuits offers an ideal 

solution: large and fast FPGAs—highly tuned hardware circuits that can be modified 

at almost any point during use. FPGAs consist of arrays of configurable logic blocks 

that implement the logical functions of gates. Logic gates are like switches with 

multiple inputs and a single output. They are used in digital circuits to perform basic 

binary operations such as AND, NAND, OR, NOR and XOR. In most hardware that 

is used in computing today, the logical functions of gates are fixed and cannot be 

modified. In FPGAs, however, both the logic functions performed within the logic 

blocks and the connections between the blocks can be altered by sending signals to 

the chip. These blocks are structurally similar to the gate arrays used in some ASICs, 

but whereas standard gate arrays are configured during manufacture, the configurable 

logic blocks in FPGAs can be rewired and reprogrammed repeatedly, long after the 

integrated circuit has left the factory. Compared to ASICs, the design time of FPGAs 

is much shorter. FPGAs, because they are standard parts, have several advantages in 

design time. They can be used as prototypes, they can be programmed quickly, and 

they can be used as parts in the final design. Moreover, FPGAs are more affordable 
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and less risky than ASICs, because using FPGAs, we do not need to worry about 

high NRE cost, long delay in design and testing. Meanwhile, FPGAs have the same 

advantages as ASICs. They have high complexity and reliability, the circuits are 

dense, and the physical size is small. FPGAs consist of huge sum of standard 

programmable logic blocks which can be applied to massively parallel operation. 

4.1.4 Parallel Processes on FPGAs 

The use of programmable logic to accelerate computation, also called Reconfigurable 

Computing (RC) arose in the late 1980’s with the widespread commercial 

availability of FPGAs. RC researchers found that the speed of direct hardware 

execution on a FPGA is 10 times to 100 times faster than the equivalent software 

algorithm. FPGAs offer significant advantages over microprocessors for high 

performance, low volume applications, particularly for applications that can exploit 

customized bit widths and parallel processing [52].  

The speed advantage of FPGAs derives from the fact that the programmable 

hardware is customized to a particular algorithm. An FPGA can be configured to 

perform arbitrary fixed precision arithmetic, with the number of arithmetic units, 

their type, and their interconnection uniquely defined by the algorithm. In contrast, 

the design of a fixed instruction set processor must accommodate all possible 

operations that an algorithm might require for all possible data types. A comparison 

of a multiply-accumulator between reconfigured architecture in a FPGA and fixed 

processors are shown in Figure 15 [52]. In this example, the FPGA is configured to 

hold an array of application-specific processing units. Each processing unit contains 

four 8-bit adders and 16-bit multiply-accumulate unit which are operating in parallel. 

Hardware address generators are used to access off-chip data. The microprocessor in 

this example has a Harvard architecture. It accesses the sequential instruction stream 



 

 54 

through the Instruction Cache. The data memory hierarchy includes external memory, 

cache and integer and floating point register files, which supply operands to the 

arithmetic units. 

The example illustrates the major differences between reconfigurable and processor-

based computing. The FPGA is configured into a customized hardware 

implementation of the application. The hardware is usually data path driven, with 

minimal control flow, and is able to process data in parallel; processor-based 

computing depends on a linear instruction stream including loops and branches. 
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Figure 15.  Reconfigurable architecture in a FPGA and sequential architecture in 
Microprocessor 
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4.2  VHDL 

When Computer Aided Design (CAD) technology was developed, Hardware 

Description Language (HDL) became one of the main methods that designers used to 

implement hardware designs in CAD systems [53]. Although the method of 

describing hardware using Higher level programming language has been developed 

[54], HDL is still accepted as a standard and most popular tool for all kinds of digital 

designs. In this section, we will talk about the characteristics of VHDL, and the 

advantages of using VHDL in FPGA applications. 

There are two prevailing versions of hardware description languages: one is verilog 

HDL, and the other one is VHDL. The coding style of verilog HDL is more similar 

to some high-level software programming languages, such as C [55]. Therefore, it 

has more flexibility and can be accepted more easily by software programmers. 

However, beginners tend to make mistakes because of its flexibility. In this thesis, 

VHDL with the stricter coding style is preferred by the author. 

VHDL originated from the American Department of Defence, which recognised that 

they had a problem in their hardware procurement programmes. They suffered low 

compatibility which means it was very difficult to transfer design data to other 

companies for secondary sourcing, and there was no guarantee that these languages 

would survive for the life expectancy of the hardware they described.  

The solution was to have a single, standard hardware description language, and to 

achieve this the earliest version of VHDL was developed. Later on, the importance of 

the language development, and especially the importance of standardisation of the 

language, was recognised and so the formative language was passed into the public 
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domain by its inclusion in the Institute of Electrical and Electronics Engineers (IEEE) 

standard in 1986 [56] [57]. 

The combination of computing and electronics is the key to the success of VHDL 

[56]. Making use of advantages of software programming language, VHDL can be 

used to design hardware with complex functions and algorithms, and it helps 

designers significantly reduce design cycles in contrast with traditional design 

methods. 

VHDL is intended to cover every level of the design cycle from system specification 

to netlist, making it a tool capable of supporting all levels of the hardware design 

cycle [58-60]. 

The system level focuses on the description of the functionalities of the system [58-

60]. A constant concern at this level is to forget useless details, which would imply 

architectural choices too early in design methodology. A system description with too 

much detail is a drawback since it restricts further architectural choices or implies a 

given technology. Therefore, hiding the information structure is desirable and the 

notion of concurrency may not be necessary at this phase. But this level of 

description is not suitable to be synthesised. 

The synthesisable level, also named Register Transfer Level (RTL), focuses on logic 

synthesis for the design [58-60]. Logic synthesis offers an automated route from an 

RTL design to a gate-level design. This level is the potential input for synthesis tools. 

RTL is a high-level design methodology which can be used for any digital system. In 

RTL design, a circuit is described as a set of registers and a set of transfer functions 

indicating the flow of data between registers. The registers are implemented directly 

as flip-flops, while the transfer functions are implemented as blocks of combinational 
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logic. The language must allow a description of the model at this level with a 

sufficient level of abstraction towards the physical level. 

The netlist level is the potential output of synthesis tools [58-60]. It is a structural 

view appearing as a collection of model instantiations. This kind of description 

involves the existence of model libraries. The notion of time is often present in the 

description of these models, from the notion of propagation delay through a gate to 

very sophisticated delays. At this step, the language has to offer an optimal flexibility 

in terms of timing configuration or technology. 

Hierarchy is another outstanding character of VHDL [61]. There are a number of 

reasons for using hierarchy. First, using hierarchical methods, designers are able to 

divide a system into several parts. Third party components can be incorporated into a 

design more easily, and this leads to a higher degree of confidence in the integrity of 

the design. Each subcomponent can be designed and tested in isolation before being 

incorporated into the higher levels of the design. This testing of intermediate levels is 

much simpler than testing the whole system. Subcomponents can be used 

concurrently and also can be reused somewhere else. 
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5. Text-to-Braille Translation Based on Hardware 

5.1  Universal Design Methodology for Programmable Devices (UDM-

PD) 

The universal design methodology is used in the design of hardware Braille 

translation systems. Using universal design methodology, designers aim to design 

devices that are free from manufacturing defects, work reliably over their lifetime 

and function correctly in the whole system [59] [62]. UDM-PD is also able to help 

designers design a device with good time efficiency and with fewer resources used. 

UDM-PD outlines a specific design flow for creating a programmable device which, 

when followed, allows a good design to be reached. The design flow consists of the 

steps shown in Figure 16 [62]. Each particular design will require slight variations in 

the specifics of each step, but essentially the steps will be the same. 
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Specification 
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Synthesis 
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Product 

Choose Chip and Tools 

 

Figure 16. Design Flow of UDM 

A Top-Down design methodology is used in system implementations where high-

level functions are defined first, and the lower-level implementation details are filled 

in later [63]. 

5.2  Text-to-Braille Translation 

5.2.1 System Specification and Tools Selection 

A specification is an absolute necessity for a digital design. A specification allows 

each engineer to understand the entire design and how the part for which he/she is 
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responsible connects to the whole design. It allows the engineer to design the correct 

interface to the rest of the chip. It also saves time and thus cost, and helps avoid 

misunderstanding between co-designers. 

The system specification for the text-to-Braille translator includes the following 

information: 

• External block diagram showing how the chip fits into the system 

• Internal block diagram showing each major functional section 

• Description of the I/O pins 

• Gate count estimate 

• Test procedures 

A specification also should have descriptions about package type, power 

consumption target, price target, and timing estimate including setup and hold times 

for input pins, clock cycle time etc. However, in this system, the issues of price and 

packaging are not considered, since this system is not related to the development of a 

commercial product. Power consumption and timing constraints similarly are not 

discussed, as once development tools and chip are selected, it is very easy to obtain 

these data. 

The external block diagram, shown in Figure 17, indicates how the device fits into 

the testing system [65]. As well as a text-to-Braille translator, a simple universal 

asynchronous receiver/transmitter (UART) is integrated in FPGA for communicating 

with computers [64]. The serial receiver sends two output signals to the translator. 

The one-bit data-ready signal is indicated using a thin arrow, and the other signal is 

8-bits data indicated by a thick arrow. A handshake communication was built 
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between the serial transmitter and the translator. A one-bit signal is sent to the 

translator from the transmitter to indicate if the transmitter is ready to receive data. 

The thick arrow from the translator represents 8-bits data, while the black arrow is 

for data ready. For further development, the text-to-Braille translator is going to be 

used as a standalone component in a universal Braille device which is able to 

perform multi-tasks including Braille note taking, translation, speaking and interface 

to printers and embossers. Therefore, parallel communication is preferred in this 

particular application.  

  FPGA 

Serial 
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Serial 
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files 

 

Figure 17. External Block Diagram 

The internal block diagram is shown in Figure 18. The translating process is quite 

straightforward. Before translation starts, the rule table has to be stored in a look-up 

table first. The input block takes charge of this task as well as receiving characters to 

be translated. The translation block receives the string from the input block, fetches 

rules from the look-up table according to the entry character, and then translates it 

from leftmost character to the rightmost. This block implements text-to-Braille 

translation including left context, focus and right context checking functions. A 

feedback signal will be sent back to the input block indicating how many characters 
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have been translated. The translation results are sent to the output block which has a 

handshake communication with the serial transmitter. 

Translator 

Input Block 

Look-up 
Table 

Translation 

Output Block 

Serial 
Receiver 

Serial 

Transmitter 

 

Figure 18. Internal Block Diagram of the translator 

Xilinx FPGA products were chosen as a development platform for implementation. 

As the inventor of FPGAs, the Xilinx Company is able to supply consumers with 

several series of high quality FPGAs and powerful development tools.  

Because a big rule table is needed in text-to-Braille translation, the FPGA has to 

include enough memory to store the table. The size of the original table is 20 kilo-

bytes, but the format of the table has been changed to fit in the translator. As a result, 

the table has 33 kilo-bytes of data. Therefore, The Memec Virtex-4 FX12 LC 

Development Board was selected for the translation system, and correspondingly, a 

Xilinx Virtex family FPGA, XC4VFX12, is integrated on this board [66]. The Virtex 

XC4VFX12 FPGA includes 86 kilo-bits of distributed RAM and 648 kilo-bits of 

block RAMs, so it supplies abundant memory resources so that two rule tables for 

both text-to-Braille and Braille-to-text translation can be stored in the same chip.  

There is a hard PowerPC processor core is integrated in this FPGA, or a  alternative 

soft Intelectual Property of a microcontroller Microblaze can be configured in this 
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FPGA. Consequently, this FPGA can be used to build a universal Braille system on a 

chip (SOC). The Memec Virtex-4 FX12 LC Development board, shown in Figure 19, 

includes 64MB of DDR SDRAM, 4MB of Flash, USB-RS232 Bridge, a 10/100/1000 

Ethernet PHY, 100 MHz clock source, RS-232 port, and additional user  support 

circuitry to develop a complete system. So the board is able to satisfy the 

requirements of the translation system for testing purposes. 

 

Figure 19. Memec Virtex-4 FX12 LC FPGA Development board 

5.2.2 Design 

Figure 20 shows the block diagram of the text-to-Braille translator consisting of ten 

blocks. Before translation starts, the rule table needs to be sent to the look-up table. 

To do this, a block, called a data-controller was built in this system. While the 

translator is initialised, particular signals generated from the data-controller enable 

the look-up-table block and disable the translating block, and translating rules will be 

sent one by one to the look-up table. Every address in the look-up table corresponds 

to a single translating rule. To fit the rule table to the look-up table, the format of the 

rules has been changed. The redundant information such as square brackets, tabs and 
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equal marks has been removed. The length of each part of each rule is the same, and 

the short one has zeros following to indicate the end. 

 

 Translator 
Translating Block 

 
 

Look-Up 

Table 

Output Translated Codes 

Right 
Context 
Check 

 Left 
Context 
Check 

 
 

 
 

 

Output 

Rule 

Find 
Entry 

 
 

 
 

 

Load 

Translated 
Codes 

Translating Controller 

 
Data 

Controller 

Braille 
ASCII 

Text 

ASCII  Focus 
Check 

 

Figure 20. Block Diagram of Text to Braille Translator 

To explain how the translation is processed, behavioural simulation results for 

translating a string “SHOULD ” are given in Figure 21. Behavioural simulation is the 

first check which is to verify RTL code and to confirm that the design is functioning 

as intended [66].  

In this simulation, the translator receives a untranslated string “SHOULD ” and a 

one-bit signal “ready_rx” from the serial receiver, and sends translated codes to the 

serial transmitter through the output signal “out_char”. The “ready_rx” signal is to 

indicate that data are ready on the output “datain” of the serial receiver, which is the 

string “SHOULD ” in this example. The translation startes by detecting the input 

character “space”. Another input named “ready_tx” is a output signal from the serial 

transmitter. A handshaking scheme is used between the serial transmitter and 

translator. Both of these two signals are initialised to logic ‘1’. A logic ‘1’ on the 

signal “ready_tx” means the serial transmitter is ready to receive data. In this case, a 

logic ‘0’ will be generated on “wr” when the translator has translated codes to send. 
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The serial transmitter will store the translated data by detecting the falling adge of 

“wr”, and then generate a logic ‘0’ on “ready_tx” showing its busy with sending data. 

Conrrespondingly, the translator will set “wr” to logic ‘1’ again to wait for another  

high of “ready_tx”. 

The translating-controller block, shown in Figure 20, is to control the translating 

process. This block activate the translation process by sending a control signal 

“convert” and untranslated data “d1” to “d12” obtained from the serial receiver to 

other blocks. Meanwhile, it also gets feedback from the load-translated-codes block. 

In Figure 21, a intenal signal “empty” generated by the translating-controller block is 

used as a indicator to notice other blocks the state of the translator. When “empty” is 

in logic ‘1’, it represents the translator is receiving data from the serial transmitter, or 

sending data to the serial transmitter. On the contrary, a logic ‘0’ on “empty” shows 

the occurrence of translating processes. In this system, translation is carried out word 

by word, with spaces used as stop signs. In one translation period, the translating 

controller receives one word and the following space, translates it, and waits for the 

next word. 

The load-translated-codes block feeds back the number of translated characters and 

the translating controller will skip over those characters and find a new entry. In the 

simulation given in Figure 21, a internal signal “num_translated” is used as the 

feedback number. The original text contained in signal “d1” to “d12” will be sent to 

the focus-check block and right-context-check block, and the entry character “d1” to 

the find-entry block.  
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Figure 21. Behavioural simulation for translating a string “SHOULD ” 

T
ra
n
sl
at
io
n
 

in
d
ic
at
o
r 

U
n
tr
an
sl
at
ed
 

st
ri
n
g
 

T
ra
n
sl
at
ed
 

st
ri
n
g
 

In
p
u
ts
 

O
u
tp
u
ts
 

In
te
rn
al
 

si
g
n
al
s 



 

 67 

The find-entry block receives the entry character from the translating controller and 

outputs a particular address to the output-rule block. In this block, there is a look-up 

table which stores all the entry addresses. If an address corresponds to a particular 

entry character, this address signal “entry_n” and an address ready signal “act” will 

be sent to the output-rule block. However, if no entry address can be found 

corresponding to a particular character, this character and a find-address fail-signal 

will be sent to the output-translated-codes block, and these two signals will pass 

through the next four blocks. 

Two operations keep running in the output-rule block. One is reading rules from the 

look-up-table block, and the other one is sending every single rule to focus-check, 

right-context-check, left-context-check, and load-translated-codes blocks. Input 

signals for the output-rule block are all the outputs from the find-entry block, the 

look-up table block and feedback signals from load-translated-codes blocks which 

indicate if the output rule is used correctly or not. However, because no enough 

space is available, the internal signals for the the output-rule, focus-check, right-

context-check, and left-context-check are not included in the simulation. 

The look-up-table block consists of 18 block RAMs, which are configured to a 

1200*256 bits memory, and can accommodate the whole rule table with total 1031 

entries. The look-up-table block remains in read mode after writing the rule table. 

Therefore, once receiving the address from the find-entry block, the output-rule 

block will send the address to the look-up-table block to read one rule and send it 

separately to focus-check, right-context-check, left-context-check and out-rule block. 

If the rule cannot be used, a feedback signal will be generated and the output-rule 

block will get the next rule and send it until the focus is successfully translated. 
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The “focus” is one or more characters in the original text which should be translated. 

According to Paul Blenkhorn’s method, the same focus can have different left and 

right contexts. Therefore, checking left and right context is necessary. If a string is 

identical to the focus in a particular rule, the right and left contexts need to be 

checked as well. If all three parts match, the rule fires, and the string can be 

translated.  

Focus-check and right-context-check blocks receive not only the rule from output-

rule block, but also the whole group of words to be translated from the translating 

controller, because more than one letter of focus and right context might be checked. 

The structures of these three blocks are similar because they perform similar 

functions.  Therefore, here only the focus-check block will be described. 

Because Blenkhorn’s algorithm is based on software procedural programming, a 

sequential processing is used to achieve focus, right and left context checking, where 

these three functions are included in different blocks, and invoked one by one [37] 

[40]. Apparently, a sequential design can make implementation easier, but 

meanwhile the processing speed could be slown down. However, the hardware-based 

translator, as shown in Figure 20, provides a parallelism to make focus-check, right-

context-check and left-context-check blocks work concurrently, providing better 

performance than sequential implementations. Each block generates signals for the 

load-translated-codes block indicating if the focus, the right context or the left 

context were successfully matched. If one of the three fails, then a signal is sent back 

to the output-rule block requesting the next rule. If the focus, right context and left 

context match one of the rules, then the load-translated-codes block sends the 

translated codes to the output-translated-codes block, and informs to the translating-

controller block how many characters were translated. 
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As mentioned, the output-translated-codes block has a handshake connection with a 

serial transmitter.  After one group of characters has been translated, this block will 

send the characters one by one when the transmitter is ready. Then a new cycle starts.  

For instance, Figure 22 shows a post-place-and-route simulation for translating a 

string “SHOULD AND ”. Post-place-and-route simulation is to verify that the actual 

gate-level implementation matches the functional behavior simulated earlier [67]. It 

is a critical step, because a circuit which simulates correctly with time-unit delay 

may not work properly when actual routed delays are added to the design. In the 

simulation, the translator is synchronised by a 16.6 MHz clock, that is 60 nano 

seconds per clock cycle. When the string “SHOULD ” is sent to the translator 

through the serial receiver, it takes 13 microseconds to for the translator to do the 

conversion and another 10 microseconds to send the untranslated string to the serial 

transmitter. Then, the translator waits for the new feed-in “AND ”. 
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Figure 22. Post place and route simulation for translation a string “SHOULD AND ” 
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5.2.3 Implementation and Test 

In this particular implementation, the translator uses a 100 MHz clock source. The 

serial channel receives from a PC the text file to be translated at 4800 baud and sends 

the translated text back to the PC at 57600 baud. In this setting, the translator runs 

much faster than the serial communication channel. The translation process can be 

finished in the time required to transmit one bit of information back to the PC. 

However, because this system is only able to translate groups of characters, after 

translation is done, the serial transmitter has to send all the translated codes to the 

computer before the next group of text is received. That is why the baud rate for 

transmitting is 16 times faster than for receiving. However, in embedded applications, 

parallel communications can be used to increase the throughput. 

All the blocks of the serial communication and the translator have been built 

hierarchically using VHDL, and the coding program can be found in Appendix V. 

Xilinx’s ISE FPGA-development suite was used for system implementation, 

synthesis, simulation and FPGA configuration. The device utilisation summary of 

this implementation generated by the software is shown in Table 9. A Xinlix Virtex-

4 XC4FX12 FPGA is used for the system implementation. To test the system, text 

files were sent and received from a PC using Hyper Terminal, Windows’s terminal 

emulation tool. 

Table 9. Device Utilization Summary (Virtex-4 XC4FX12) 

Logic Utilization Used Available Utilization 

Number of Slices 2836 5472 51% 

Number of Slice Flip Flops 2619 10944 23% 

Number of 4 input LUTs 4621 10944 42% 

Number of bonded IOBs 5 320 1% 

Number of FIFO16/RAMB16s 19 36 52% 

Number of GCLKs 8 32 25 
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In some commercial Braille translation programs, there is an option to use only 

capital letters for the translation results. In this system, all the text is converted to 

capitals before translation. This is partly because the rule table in Blenkhorn’s system 

only includes capital letters, and also because this method can decrease the 

complexity of implementation. 

For comparison purposes the output of Duxbury, a commercial Braille translation 

program mentioned in Chapter 3, has been used. The text used is a fragment of Paul 

Blenkhorn’s paper [37].  

In Table 10, the results show that the hardware translator is able to complete the 

translation successfully.  

The main difference between the two translations is how quotation marks are 

translated. Duxbury translates them as @, while the hardware-based system 

translates them as 8 and 0. This is because Duxbury can not recognise 8-bit ASCII 

codes such as quotation marks and commas, but the hardware system can. 

The single most important issue that anyone interested in Braille translation must 

appreciate is that results must be essentially error-free. Standards for Braille 

translation are much higher than for print. This level of accuracy is necessary 

because Braille uses the same cells for different purposes in different contexts. As a 

consequence, even slight errors can cause extreme difficulties in interpretation. 

Therefore, all translations must be very precise. The results show that this hardware 

translating system is able to complete the translation successfully and precisely. 
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Table 10. Original text and translations generated by software and by hardware 

Original text 
Translation by Duxbury 
commercial software 

Translation by hardware 

THE PRODUCTION OF 
BRAILLE USING 
COMPUTERS IS NOW 
WELL ESTABLISHED, 
AND THERE HAVE BEEN 
A NUMBER OF 
METHODS EMPLOYED 
TO ACHIEVE THIS, 
PARTICULARLY FOR 
AMERICAN ENGLISH 
BRAILLE. HOWEVER, IT 
HAS BEEN NOTED THAT 
THERE IS A NEED 

FOR THE 
“DEVELOPMENT OF 
COMPUTER SOFTWARE 
WHICH IS EASILY 
ADAPTED FOR 
TRANSLATING TEXT TO 
CONTRACTED BRAILLE 
FOR LANGUAGES SUCH 
AS HINDI AND 
PORTUGUESE” [1, P. 30], 
AND ONE OF THE 
MAJOR GOALS OF THE 
WORK REPORTED HERE 
HAS BEEN TO ADDRESS 
THIS NEED. A FURTHER 
GOAL HAS BEEN TO 
DEVISE A SYSTEM 
THAT CAN BE READILY 
UPDATED AND 
MODIFIED, BY PEOPLE 
WHO ARE NOT EXPERTS 
IN COMPUTER 
ALGORITHMS, IN 
ORDER TO REFLECT 
CHANGES/- 
ENHANCEMENTS TO 
THE BRAILLE RULES OF 
A GIVEN LANGUAGE. 
MANY EARLIER 
SYSTEMS, ALTHOUGH 
EFFECTIVE 
TRANSLATORS, HAVE 
PROVED DIFFICULT TO 
MODIFY FOR EITHER 
SUCH MINOR CHANGES 
OR FOR NEW 
LANGUAGES. 

! PRODUC;N ( BRL US+ -
PUT]S IS N[ WELL 
E/ABLI%$1 & "! H BE5 A 
NUMB] ( ME?ODS 
EMPLOY$ 6A*IEVE ?1 
"PICUL>LY = AM]ICAN 
5GLI% BRL4 H["E1 X HAS 
BE5 NOT$ T "! IS A NE$  

=! @IDEVELOP;T ( -PUT] 
S(TW>E : IS EASILY 
ADAPT$ = TRANSLAT+ 
TEXT 63TRACT$ BRL = 
LANGUAGES S* Z H9DI & 
PORTUGUESE@I ,7#A1 P4 
#CJ7'1 & "O (! MAJOR 
GOALS (! "W REPORT$ "H 
HAS BE5 6A4RESS ? NE$4 
A FUR!R GOAL HAS BE5 
6DEVISE A SY/EM T C 2 
R1DILY UPDAT$ & 
MODIFI$1 0P :O >E N 
EXP]TS 9 -PUT] 
ALGORI?MS1 9 ORD] 
6REFLECT *ANGES/-
5H.E;TS 6! BRL RULES (A 
GIV5 LANGUAGE4 _M 
E>LI] SY/EMS1 AL? 
E6ECTIVE 
TRANSLATORS1 H PROV$ 
DI6ICULT 6MODIFY = EI S* 
M9OR *ANGES OR = NEW 
LANGUAGES4 AL? ? 
SY/EM HAS BE5 DESIGN$ 
6COPE )A L>GE NUMB] 
( DI6]5T LANGUAGES1 

! PRODUC;N ( BRL US+ -
PUT]S IS N[ WELL 
E/ABLI%$1 & "! H BE5 A 
NUMB] ( ME?ODS 
EMPLOY$ 6A*IEVE ?1 
"PICUL>LY = AM]ICAN 
5GLI% BRL4 H["E1 X HAS 
BE5 NOT$ T "! IS A NE$  

=! 8DEVELOP;T ( -PUT] 
S(TW>E : IS EASILY 
ADAPT$ = TRANSLAT+ 
TEXT 63TRACT$ BRL = 
LANGUAGES S* Z H9DI & 
PORTUGUESE0 ,7#A1 P4 
#CJ7'1 & "O (! MAJOR 
GOALS (! "W REPORT$ "H 
HAS BE5 6A4RESS ? NE$4 
A FUR!R GOAL HAS BE5 
6DEVISE A SY/EM T C BE 
R1DILY UPDAT$ & 
MODIFI$1 0 P :O >E N 
EXP]TS 9 -PUT] 
ALGORI?MS1 9 ORD] 
6REFLECT *ANGES/- 
5H.E;TS 6! BRL RULES (A 
GIV5 LANGUAGE4 _M 
E>LI] SY/EMS1 AL? 
E6ECTIVE 
TRANSLATORS1 H PROV$ 
DI6ICULT 6MODIFY = EI 
S* M9OR *ANGES OR = 
NEW LANGUAGES4 AL? ? 
SY/EM HAS BE5 DESIGN$ 
6COPE )A L>GE NUMB] 
( DI6]5T LANGUAGES1 
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Another significant issue to discuss is speed. The timing results show that under the 

same working frequency, the FPGA is able to perform translation much faster than a 

microcontroller. In Table 11, a Mitsubishi microcontroller M16c/62 is compared 

with the FPGA used in this design. In the microcontroller, the translation software 

achieves the same results as the FPGA does. Both of them have the same working 

frequency supplied by clock. However, when they translate the first rule of the A 

table, the FPGA is much faster. Especially, as the last rule of the A table is translated, 

it is easy to see that the FPGA shows a much higher efficiency than the 

microcontroller. 

Table 11. Timing Comparison between FPGA and Microcontroller 

Rule FPGA (16mHZ) MC-M16c/62 (16mHZ) 

[AND] → & 12 µs 300 µs 

[A] → A 46 µs 1200 µs 

 

5.3  Fast Text-to-Braille Translation 

5.3.1 Algorithm 

Since the translator follows the Markov algorithm, the rules have to be checked from 

top to bottom sequentially [71]. For instance, in Blenkhorn’s text-to-Braille translation 

system, all rules are listed in ASCII alphabetical order. For rules whose focuses start 

with the same character(s), the order in which they appear in the table is related to 

their priority. The first rule which is found has to be used.  

Take the rule table with the letter ‘A’ at the beginning as an example to explain the 

translation process. There are 50 rules in this group, and the terminating rule is “1 [A] 

= [A] -”. If a contraction “AR” needs to be translated, the system has to check the 5 

rules before the rule “2 [AR] = & -”. In this case, the string “AR” can be translated 
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quickly. But, if the word “ALTOGETHER” needs to be translated, the system has to 

check 36 rules before the rule “2 ~ [ALTOGETHER] = ALT -”. Especially, when only 

the terminating rule has to be used, the translation speed will be slowed down 

significantly. However, the translation process can be accelerated if the ‘A’ group is 

separated into small subgroups which can be used in parallel. 

The results show that based on Blenkhorn’s algorithm, the system is able to perform 

the translation precisely. However, when mass text documents need to be translated, a 

faster method for text-to-Braille translation is obviously preferred. Therefore, in the 

following paragraphs, a parallel translating method is discussed. 

To achieve faster translation, independent translating cells have been built. In each 

cell, there is an alphabetically ordered sub-table. During the translation process, those 

translating cells which are activated perform translation concurrently.  

The principles for generating subgroups can be described as follows: 

• Keep the original order of the rule table unchanged. 

• For letter rules, use original terminating rules as one single subgroup, called the 

terminating subgroup. The cell which stores the terminating rules is called the 

terminating cell. Therefore, when translation is performed, the terminating 

subgroup never fails to be used. 

• Rules have to be separated into groups properly, so that only one translating cell 

except the terminating cell is able to apply a particular rule successfully during the 

translating process. Therefore, if one rule’s focus is part of another rule’s, and 

there is no left and right context to distinguish between these two rules, they can 

not be separated. 
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Take the ‘A’ rules as an example to explain the principle of generating subgroups. In 

the ‘A’ table, those rules with focus “AND ” and “AND” are used as a subgroup. In 

this case, the contraction “AND” will never be translated by two cells. The rules 

beginning with the string “AFTER” need to be used in one subgroup. Using this 

method, the ‘A’ rules can be separated into 7 subgroups, while the biggest table, ‘B’ 

table with 122 rules, can be separated into 9 subgroups. For those tables with a small 

number of rules, such as the ‘J’ table which only has 10 rules, it is not necessary to 

separate these rules into subgroups. 

5.3.2 Architecture 

Figure 23 shows a block diagram of the text-to-Braille translator implemented in an 

FPGA. Before the translation starts, the data-controller receives the rule tables and 

distributes them to particular block RAMs located in translating cells. Then the data-

controller is ready to receive text. 
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Figure 23. Block Diagram of Text-to-Braille Translator  

The translating controller block gets feedback from the load-translated-codes block 

and also receives and stores the text data in registers. The load-translated-codes block 

feeds back the number of translated characters so that the translating controller can 
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skip over those characters and find a new entry. The entry character is sent to the find-

entry block. The original text is sent to translating cells. In this particular 

implementation, the translator carries out the conversion word by word and five 

words at a time. 

The find-entry block receives one entry character from the translating-controller and 

outputs addresses for the corresponding translating-cells. The entry character is the 

first un-translated character in the input text string. In the find-entry block, there is an 

address decoder that translates the entry characters into addresses. If no entry address 

can be found for a particular character, then the un-translated character and a fail 

signal are sent to the output-translated-codes block. 

The translating cells receive un-translated codes from the translating-controller as 

well as addresses from the find-entry block. The parallel translating processes is 

shown in Figure 24. Those cells which received addresses will carry out the 

translation.  
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Figure 24. Translating in Parallel 

Before the architecture of translating cells is given, it is necessary to discuss the 

scheme for constructing a rule look-up table with multiple access. The rule look-up 

table performs as a Read Only Memory (ROM), because it just needs to be written 



 

 78 

once, and then only read operations are allowed. To let each translation cell fetch 

particular rules from different addresses, an architecture given in Figure 25 would be 

the best solution. In this diagram, only a group of four 32-bit registers are used in the 

look-up table. To write a particular register, an address should be sent to the 2-bit 

input address, and meanwhile the input “write” must be set to logic high. The outputs 

of registers are connected to two 4-to-1 multiplexers Mux0 and Mux1. Hence, this 

look-up table supplies two output ports where any value from each of the registers can 

be read by selecting a particular address at inputs “Address A” and “Address B”. 

However, when this architecture is applied to the parallel text-Braille translation, it 

becomes very difficult to implement due to the size of the look-up table. For instance, 

to do the translation by using nine translation cells, a 1031*256 bits RAM with a 

group of nine 256-bit multipexers is needed, but there is no sufficient distributed 

RAM available in the FPGA currently used. Therefore, another solution has been used 

in this implementation, that is to use block RAMs integrated in FPGAs. 
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In each translation cell, there is a look-up table constructed using block RAMs. Figure 

26 shows the block diagram of a translating cell. Every cell has a block RAM where a 

subset rule table is stored in alphabetical order. Before the translation process starts, 

the un-translated codes from the translating-controller are sent to the focus and right-

context check blocks by the output-rule block. Then the output-rule receives an 

address and gets a particular rule from the rule table. The rule will be separately sent 

to the three following blocks. The focus, right-context and left-context check blocks 

are built using finite state machines which are able to check if the rule can be applied.  

As shown in Figure 26, the three blocks work concurrently, providing better 

performance than sequential implementations [68].  
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Figure 26. Block Diagram of a Translating Cell 

Each block generates signals for the output-focus block indicating if the focus, the 

right context or the left context were successfully matched. The translation output will 

be sent to the load-translated-codes block. If one of the three fails, then a signal is sent 

back to the output-rule block requesting the next rule. If no rule can be used, a signal 

will be generated and sent to the load-translated-codes block indicating that the 

translating cell cannot find a match for translation.  
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The load-translated-codes block will receive translation results from the terminating 

cell or one of the other cells. The terminating never will fail to be applied. However, 

compared with other cells, the terminating cell has lower priority. Therefore, if the 

load-translated-codes block receives translated codes from two cells respectively, the 

codes from the terminating cell will be discarded.  

Therefore, the load-translated-codes block will output the translation according to set 

priorities. Meanwhile, it will send signals to the translating-controller block to 

indicate how many characters were translated. 

After one group of characters has been translated, the output-translated-codes block 

transmits the corresponding Braille ASCII characters one by one. Then the translation 

of a new set of characters can begin. 

5.3.3 Implementation and Results 

The testing system follows the same method as the hardware based translation 

system, as show in Figure 18. The program for fast translation in VHDL can be 

found in Appendix VI. To show how the translating process is accelerated, sample 

translation results have been presented. 

The texts to be translated, as well as the results of the translation were stored in a PC 

as text files and transmitted using an RS-232 serial connection. 

The testing system works as follows:  

1. The text to be translated is sent to the FPGA through a serial link using Hyper 

Terminal. 

2. Part of the FPGA implements a receiver that converts serial data into bytes that 

are loaded into the translator. 
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3. The translator takes the new character and stores it in a buffer. Characters are 

stored until a space is detected. At this point the translation process described in 

section 2 takes place. 

4. The results of the translation are sent to a serial transmitter so that they can be 

received and stored in a text file by the computer.  

In this implementation, the FPGA receives the text file to be translated at 4,800 baud 

and sends the translated text back to the PC at 57,600 baud. The reason for using 

different baud rates for receiving and transmitting has been explained in Section 5.2.  

To simplify the implementation, all rules were modified to be the same length. ASCII 

code 0 was used as the end-sign for every part of the rule. As a consequence, a rule 

table with 1031 rules occupies 31Kilo Bytes memory. However, Virtex-4 FPGAs have 

dedicated memory blocks that can contain the complete table. 

For testing, outputs of the hardware translator were compared with the outputs of the 

previous work which uses the sequential translating method [65]. Using the 

simulation tool, ModelSim, the numbers of clock cycles using sequential and parallel 

methods can be accurately calculated. To show how the translation process goes 

inside the translator, only three translting cells are built for simulation purposes, 

because it is impossible to display all internal signals in one simulation with more 

than three cells.  

In this particular implementation of the parallel translator, the ‘A’ rule set is 

separated into three groups which are stored in three cells respectively. By 

comparison, a sequential translator is used to translate the same string as the parallel 

one does, and both translators use a 25 MHz clock source which is a clock with 40 

nano seconds per cycle. The behavioural simulation, shown in Figure 27, indicates 
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that translation processes are being operated concurrently in three translation cells. It 

takes 4110 nano seconds or 103 clock cycles to translate the string “ACROSS ”. 

Correspondingly, in Figure 28, a long delay, 28560 nano seconds or 741 clock cycles, 

is generated when the rules are checked sequentially. This is because the rule for 

translating a string “ACROSS” is stored as the first rule of ‘A’ rule set in the third 

translation cell. Therefore, the parallel is able to fectch this rule very fast. A further 

comparison is given in Table 12, by listing the sample test results which are based on 

six translation cells. The results show that the parallel method is able to perform 

translations with superior speed. 
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Figure 27. Behavioural simulation for translating a string “ACROSS ” in parallel 
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Figure 28.Behavioural simulation for translating a string “ACROSS ” in sequential 
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Table 12. Timing comparison between sequential and parallel methods 

Un-translated 
focuses 

Translation 
results 

Time by sequential 
method (clock 

cycles) 

Time by parallel 
method (clock 

cycles) 

ARIGHT  A”R  132 136 

AND  &  137 142 

AS  Z  392 105 

ABOUT  AB  410 129 

ABOVE  ABV  434 154 

AFTERNOON  AFN  477 104 

AFTERWARD  AFW  499 127 

AFTER  AF  571 190 

ALWAYS  ALW 595 104 

ALREADY ALR 660 133 

ALSO  AL  614 157 

ACROSS  ACR 714 103 

ACCORDING  AC 739 134 

AUND AUND 804 103 

AINES A9NES 843 128 

A A 926 207 

Although the parallel processing algorithm is able to supply a much greater 

throughput than the original translation algorithm, this is achieved at the price of 

more programmable logic needed and more complex structure developed. Compared 

to the device introduced in Section 5.2, a bigger Xilinx Virtex-4 xc4vsx35 FPGA is 

used in this design. The Virtex-4 xc4vsx35 FPGA contains 15360 programmable 

slices in total, and there are 4 configurable logic blocks (CLB) in one slice [70]. 

Table 13 shows how the occupancy of programmable slices of the translator grows 

with the number of translation cells. 
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Table 13.Resource occupation of Fast Braille Translation 

Number of slices occupied Number of 
translation cell Number Percentage 

1 2918 19% 

2 3379 22% 

3 3994 26% 

4 4608 30% 

5 5069 33% 

6 5530 36% 

7 6144 40% 

8 6758 44% 

9 7219 47% 
 

5.4  Braille-to-Text Translation 

5.4.1 Architecture 

As discussed in Chapter 3, Braille-to-text translation is referred to as a opposite 

string rewriting process compared to text-to-Braille translation. However, because 

both translations are context sensitive, so the algorithm of Braille-to-text translation 

is very similar to the one used in the text-to-Braille translation, and this decides that 

both the systems have similar architectures.  

Parallel architectures are not applied to the Braille-to-text translation because of two 

aspects to be considered. First, in contrast to a rule table with 1031 rules used in text-

to-Braille translator, the table for Braille-to-text translation only includes 498 

translating rules. Furthermore, the alphabetical rule subsets also have a much smaller 

size. For example, The ‘B’ table of text-to-Braille translator includes 122 rules, while 

the Braille-to-text translator only contains 10 rules in its ‘B’ table.  

On the other hand, Braille-to-text translation is mostly used as a functional module in 

Braille notetakers. Braille notetaker is a small, portable device that supplies a Braille 

entry for the the blind to take notes. The input mechanism of a Braille notetaker is a 

keyboard with six keys and a space bar which is used to enter either Grade I or Grade 
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II Braille [73]. When the blind use a notetaker to take notes, they also can select this 

function to translate their Braille codes into natural languages. In this circumstance, 

the translating speed is not a critical issue but translating accuracy. 

Figure 29 shows the architecture of the Braille-to-text translator. Instead of using 

left-context checking in text-to-Braille translation, the Braille-to-text translator uses a 

finite-state machine to achieve a decision table check. The decision check function is 

as described in Section 3.3.5. Since functions of other blocks are the same as those in 

text-to-Braille translator which have been described in detail, therefore, they won’t 

be repeated here. 
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Figure 29. Block Diagram of Braille-to-Text Translator 

Similarly, the testing system also follows the same method discussed in previous 

sections. Figure 30 shows a post-place-and-route simulation for translating a string of 

Braille “ABV ”. The translation process is activated when the last character, a space 

sign is received. Then, rules will be checked sequentially until the rule “3 

[ABV]=above 3” is found. The first number 3 is the input class indicating the rule 

can be used when the first letter of a string is at the start of a word. In this case, 
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because the letter ‘A’ is the first letter of the string “ABV”, so this rule fires. A 

translated string “ABOVE ” is sent to the serial transmitter through the output 

“out_char”. 
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Figure 30. Post-place-and-route simulation for translating a string “ABV ” 
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5.4.2 Braille Keyboard 

The testing system for the Braille-to-text translation is quite different from the 

version of text-to-Braille translation. Since Braille note takers are being widely used 

for the blind to take notes in Braille, and Braille-to-text translation is a typical 

application in these note takers, a Braille keyboard [72] [73] is integrated into the 

system and is used as an input device.  

Most commercial Braille note takers utilise microcontrollers with software running 

in them to perform multiple functions including note taking, translation, and real 

time speaking. 

When using a Braille keyboard, up to six buttons need to be pressed simultaneously. 

Because a simple matrix-like keyboard, shown in Figure 31, has deficiencies to deal 

with multiple key detections [74], so it is normally not referred to as an ideal solution 

for Braille keyboard. Instead, a popular one is to use optical detectors and a 

microcontroller to detect when buttons are depressed [75]. One example of this 

approach reported in D. G. Evans’s paper is to use infrared light source/sensor pairs 

and microcontrollers [76]. When using optical detectors, if a key is depressed, it 

breaks the light beam between the source and sensor. Thus, the sensor generates a 

pulse that can be received by a microcontroller. 
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Figure 31. Schematic of Braille Keyboard 

A new method was developed to implement a Braille keyboard using a simple 4 x 6 

push-button matrix [77]. The buttons have been organised and positioned so as to 

achieve multiple key detections. A keyboard controller described in VHDL was 

implemented to send and receive scan codes. 

Figure 32 shows the layout of the proposed Braille keyboard. In line with current 

designs, the keyboard has function and direction keys. The arrangment of six Braille 

keys and space follows Perkins-style keyboard. Perkins Brailler, invented by David 

Abrahams, is a Braille typewriter which has been widely used by blind people [72]. 

The layout of Perkins’ keyboard is adopted by most of commercial Braille note 

taking products due to its success. To build a machine that is easy to use for the 

visually-impaired, the function keys can be used for selecting functions including 

speaking, printing, translating, embossing. Thus the direction keys can be used as 

“shift”, “control”, “capital lock” and “backspace”.  
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Figure 32. Layout of Braille Keyboard 

Figure 33 shows the schematic diagram of the 4 x 6 matrix keyboard. The layout of 

the schematic shows that the six Braille keys are located in the first column, twelve 

functions keys in the second and third columns, and enter, space and direction keys 

in the fourth.  

The keyboard controller keeps sending 4-bit scan codes to the keyboard inputs from 

C0 to C3 and scans one column at a time. To do this, a circular shift register 

containing a intial binary value “0111” is used in the controller. For example, Figure 

32 indicates a process of scanning the first column of keys for the Braille keyboard. 

To scan the first column, the keyboard controller sends binary code “0111” to the 

inputs of the keyboard C0 to C3. If key S39, S43 and S44 are pressed down, the most 

significant bit ‘0’ will pass through these three keys to the output ports R1, R3 and 

R4. Therefore, a six-bit binary output signal “101001” has been generated and sent 

back to the keyboard controller. Likewise, to scan the second column, the shift 

register will shift right the code “0111” for one bit to generate the second scan code 

“1011”. 
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Figure 33. A process of scanning the first column of keys 

When a pushbutton is pressed or released, it does not generate a clear pulse. Instead, 

the output may toggle as illustrated in Figure 34. This is called bouncing problem 

[78]. The bouncing time is very short (usually less than 10ms). To overcome this 

problem, the controller reads the 6-bit output of the keyboard 13 milliseconds after 

sending the scan codes so that the bouncing process can be avoided. If no button is 

pressed, the outputs from the keyboard remain high, or logic ‘1’. Once one button is 

pressed, the output at the row where the button is located goes to logic ‘0’. 
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Figure 34. Bouncing process for a pushbutton 
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A big disadvantage of matrix keyboards is the problem of overlap. When one or two 

keys are pressed this type of keyboard works well. However, if more than two keys 

are to be pressed simultaneously, overlaps may happen. 

To explain what the overlap is, a example is given. In Figure 33, if keys s26, s39, and 

s40 are pushed down, the wire which is connected to C0, R0 and R1 is conductive. 

Therefore, when the controller sends a low signal to scan the second column, this 

low signal passes through three buttons and goes to the output R1. The result is that 

instead of getting three keys pressed, the controller gets four which are S26, s27, s39, 

and s40. To avoid this, the six Braille keys are kept in the same column.  

Figure 35 shows the block diagram of the Braille keyboard controller.  
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Figure 35. Block Diagram of Keyboard Controller 

The codes scanner block generates 4-bit outputs with only one of the bits set to zero; 

and gets 6-bit signals coming back from the keyboard. There is a state machine 

working in the FPGA to generate scan codes for the keys that are pressed. The state 

machine, given in Figure 36 works as follows: 
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Figure 36. State diagram for the keyboard controller 

� In the first state, the scanner sends 4 bits codes “0111”, scanning the first 

column. Two registers 6-bit called R1 and Reg1 are used in this state to store 

input signals and both are initialised to all ones. After the debouncing 

process which is about 13 milliseconds, the six bits input codes will be saved 

into register R1. Meanwhile, a result of a logic AND operation between the 

input and the current value of Reg2 will be stored in Reg2.  

� The same process is repeated in the next three states to scan the next three 

columns. But instead of “0111”, codes “1011”, “1101”, and “1110” are sent 

respectively in the three states. Likewise, in each state, two registers are used 

to store input and the result of the AND operation. There are totally two 

groups of 4 registers (R1, R2, R3, R4) and (Reg1, Reg2, Reg3, Reg4). 

� In the fifth state, the registers R1, R2, R3 and R4 are checked to see if the 

value for each register is all ones showing buttons have been released. If they 
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have not, the state machine will go back to the first state to repeat the 

operation. If all buttons are released, the data stored in registers Reg1, Reg2, 

Reg3 and Reg4 are sent to the decoder, and then these registers will be set to 

all ones. 

The decoder block receives the data from the codes scanner and decodes the 6-bit 

input to Braille ASCII codes or particular control codes corresponding to the 

particular buttons that were pressed. The transmitter block outputs the data to the 

serial transmitter or Braille-to-Text translator depending on the particular function to 

be selected.  

5.4.3 Implementation and Test 

Figure 37 shows a top level schematic diagram for the Braille notetaker. The current 

version of the notetaker only has three functions, which are note taking and Braille-

to-text translation using a standard keyboard, and Braille-to-text translation using the  

Braille keyboard. Therefore, only three function keys have been defined: F1 for 

translations using a standard keyboard, F2 for translations using the Braille keyboard, 

and F3 for Braille notetaking. Figure 38 shows the system that was implemented for 

testing purposes. 
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Figure 37. Schematic diagram for the Braille notetaker 
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Figure 38. Testing System of Braille Notetaker 

A Spartan-3 XC3S400 FPGA development board [79] is used in this design. The 

RS-232 serial connection is used to send the rule table to the look-up table and save 

the Braille codes or translation results in a text file. The system works as follows: 

� The rule table is sent to the translator in the FPGA through the serial reciever Rx 

using Hyper Terminal before the scan process starts, and then the function will 

be intialised as translations using a standard keyboard. 

� Then users can select a particular function to be performed using keys F1, F2 or 

F3 predifined on the Braille keyboard. If the note-taking function is selected, all 

Braille codes typed will be sent to a serial transmitter directly. A multiplexer 

MUX2 is used to select data from the translator or the keyboard controller to be 

outputs. 
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� If the translation function using a standard keyboard is selected, the untranslated 

Braille ASCII codes will be sent through the multiplexer MUX1 to the translator. 

The translator takes the Braille ASCIIs and stores them in a buffer. Characters 

are stored until a space or carriage return is detected. At this point the Braille to 

text translation process takes place. The results of the translation are sent to a 

serial transmitter Tx2 through MUX2 so that they can be received and stored in a 

text file by the computer.  

� If translation using the Braille is selected, the MUX1 will select data from the 

keyboard controller to be the untranslated codes, not those from Rx. Then the 

translation process happens as described before. 

The device utilisation summary for the implementation is shown in Table 14. The 

programs for the Braille notetaker has been coded in VHDL, which can be found in 

Appendix VII. As a stand-alone component, this system could be improved by 

exploring new functions. For instance, a real-time speaking function would supply 

auditory feedback to allow the detection and correction of typing errors. Interfaces to 

control a Braille embosser and a printing machine could also be incorporated. 

Table 14. Device Utilization Summary (Spartan-3 XC3S400) 

Logic Utilization Used Available Utilization 

Number of Slices 1927 3584 53% 

Number of Slice Flip Flops 2275 7168 31% 

Number of 4 input LUTs 3311 7168 46% 

Number of bonded IOBs 19 141 13% 

Number of BRAMs 6 16 37% 

Number of GCLKs 8 8 100% 

 

5.5  System Integration: A system for Text-to-Braille Translation 

This section has not been finished because of time limitation. However, it is 

necessary to discuss the feasibility and method, because the system integration is 
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able to supply users a complete design. It means it allows users to operate this 

translator without intervening the inside. For example, they do not need to program 

the FPGA and load the whole table to the FPGA for each time. What they need to 

know is just the particular function for each button on the Braille keyboard. Every 

time when the FPGA is powered on, it would perform as a Braille translator in a 

second. 

To do this, the configuration of the design must be saved somewhere on the 

development board. When the board is powered up, the configuration will be mapped 

to the FPGA [80]. From this ponit, each Xilinx FPGA development board supplies at 

least one Xilinx Platform Flash which allows designers to store an FPGA design in 

nonvolatile memory [79]. 

Another problem to be solved is how to pre-store the rule table before using it. In the 

testing systems discussed in previous sections, rule tables must be loaded to 

translators manually every time before further operations. However, this is not what 

users expect. Fortunately, a Virtex-4 FX12 LC development board supplies a 4 

mega-bit Flash memory [69]. Therefore, the rule table including Braille-to-text and 

text-to-Braille translation can be saved in this Flash memory beforehand. Every time 

when the design stored in Xilinx Platform Flash is configured as a translator to the 

FPGA, the translator will retrieve rules from the Flash memory one by one and save 

them in the block RAMs. The whole process can be finished when the board is 

powered up. 

Because the same algorithm is used by Braille-to-text and text-to-Braille translators, 

the architectures of these two translators’ are very similar. This fact makes possible 

the development of a translator which is capable of doing both jobs. In ths case, the 
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parallel translating scheme will be used in the text-to-Braille translation. However, 

creating a multi-functional translator is helpful to simplify the design. 

Figure 39 shows the block diagram of a bi-directional Braille translator. To perform 

both translations, a look-up table with a sufficient memory is needed to store both of 

the rule tables. Since two tables occupy 47 kilobytes of information, a Virtex-4 

FPGA XC4VF12 with 81 kilobytes of block RAM is capable of accommodating the 

rule table. A mode select input is used to switch between the two translation modes. 

The decision-table-check block is only for Braille-to-text translation, while left-

context-check is for text-to-Braille. The right-context-check block includes context 

information for both types of translation. 
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Figure 39. Block Diagram of Bi-directional Translator 

Figure 40 shows a general block diagram for the whole system. There is a on-board 

Flash memory containing the rule table for text-Braille translations. When the board 

is powered up, the write-LUT block will load the table to the look-up-table block 

from the Flash. Then, users can select particular operations using function keys on 
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the Braille keyboard. The functions are defined as text-to-Braille translation, Braille-

to-text translation using a standard keyboard or Braille keyboard, and Braille 

notaking. The multiplexer Mux1 is to select data from the Hyper terminal or Braille 

keyboard to the input for the translator, while Mux2 is to select data from the 

translator or Braille keyboard to be the input for the serial transmitter. Other blocks 

perform the functions as described in previous sections. 
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Figure 40. Block diagram of the translating and notetaking system 
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6. Conclusions 

The original motivation of this thesis is to build a sophisticated hardward-based text-

to-Braille translation system which can perform as a single module in a multi-

funcitonal Braille system on a chip. Since lots of functions need to be processed for 

the microcontroller or processor, having a hardware implementation of the 

translation system is very helpful and necessary to liberate the microcontroller from 

the heavy load of the translation.  

To find a suitable algorithm for the hardware-based text-Braille translation system, 

some background information is given in this thesis to explain how rules of Grade 2 

Braille are used and the main difficulties for the text-Braille translation. Further, 

several referenced translating systems have been presented and discussed. It has been 

found that these translating systems appear to be software-based and tend to use 

look-up tables containing rules to do string substitutions [28] [33-35] [37] [40].  

This look-up-table mechanism is referred to as a string rewriting system called the 

Markov system. What distinguishes one Markov system from another is the nature of 

the alphabet and the way to generate production rules. In this thesis, the rule formats 

of these translating systems have been analysed. In considering hardware 

implementation, a rule format containing context information was shown to be the 

most suitable because of its simplicity. 

A main issue in this thesis is the algorithm reconfiguration. Lots of contents are 

given to explain how the software-based algorithm is reconfigured to accelerate the 

translation process using FPGAs. Because the parallelism is well known as a popular 

method to accelerate the processing speed in FPGAs, this thesis tends to pursue a 

parallel architecture for the text-to-Braille translation. Several parallel architectures 
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have been used in the implementation. For example, make focus-check, right and left 

context-check work concurrently, and build several cells to do the translation. 

Moreover, in order to show that a parallelism is able to supply bigger throughput 

than a sequential structure, some substantial data were demonstrated. The testing 

results presented in this thesis prove that the parallel translation processing can be 7 

times or even more faster than the sequential, and it depends on how many 

translation cells are used. To achieve accurate text-to-Braille translations, the rule 

tables proposed by Paul Blenkhorn are used in this hardware implementation [37] 

[40]. This parallel scheme can also be used in other language-based Braille 

translations. For example, the German Braille has a similar Braille translation system 

which includes a table with 4510 rules. In this case, the use of parallel translation 

cells appears to be well suited to the system and is able to accelerate the translation 

speed effectively.  

However, a method of developing a very fast Braille embosser has not yet been 

found, and this may make fast text-to-Braille translation redundant. Yet, with the 

development of new technology, faster embossing could soon be possible. The 

present embossing machines are slow, mostly because they are based on mechanical 

parts. In the future, however, it is likely that the introduction of the laser technology 

and special paper sheets will make embossing speed hundreds or thousands of times 

faster. In that case, fast Braille translation hardware will find its own position in the 

marketplace. On the other hand, the design of the translation system presented a 

solution of using large look-up tables. The parallelisms used in the translator could 

be suitable for other applications. For example, the design given in Figure 25 

demonstrates a register file which can be accessed to any address from different 

output ports. This could be used to build a fast look-up-table-based multiplier.  
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Another component, a Braille keyboard interface has been described in the testing 

system for Braille-to-text translation. As explained in the thesis, the Braille keyboard 

employs a matrix-like structure which is quite different from most of Braille 

keyboards available in commercial markets. This supplies another solution of Braille 

keyboards, which proves to be stable, but more affordable. Using this Braille 

keyboard, the system is able to achieve the basic functions of a notetaker, including 

note taking and Braille-to-text translation. A method of how both text-Braille and 

Braille-text translations are integrated in one FPGA has also been discussed in the 

last section. The system integration is able to supply a complete Braille system with a 

bi-directional translator for users. 

At the present stage, the text-to-Braille translation chip is a stand-alone component, 

but it can be integrated in a bigger system. Therefore, future work will be to build a 

system on chip for multi-functional Braille system including translations. For 

instance, a real-time speaking function would supply auditory feedback to allow the 

detection and correction of typing errors. Interfaces for a Braille embosser and a 

printing machine could also be needed. Therefore, the system should consist of a 

microcontroller for interface and control, normal and Braille keyboard, the text-

Braille translator and a speaker or double talk device, shown in Figure 41. The on-

chip hardware-based translator is able to perform Braille translation very fast so that 

it can release the microcontroller from heavy burden of translations. Meanwhile, the 

Braille system is also able to access to internet resource, supplying on-line 

information for the blind. For further improvement, a multi-language-Braille 

translator should be considered. Look-up tables could be stored in flash memory so 

that when a particular translation is performed, the microcontroller will load the rule 

table from the flash memory, and send data to the translator.  
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8. Appendix 

Appendix I: Braille ASCII Set 

 
Table Origination: en.wikipedia.org 

Binary Dec Hex Glyph Braille 

Dots 

0010 0000 32 20 (space)   

0010 0001 33 21 ! 2-3-4-6 

0010 0010 34 22 " 5 

0010 0011 35 23 # 3-4-5-6 

0010 0100 36 24 $ 1-2-4-6 

0010 0101 37 25 % 1-4-6 

0010 0110 38 26 & 1-2-3-4-6 

0010 0111 39 27 ' 3 

0010 1000 40 28 ( 1-2-3-5-6 

0010 1001 41 29 ) 2-3-4-5-6 

0010 1010 42 2A * 1-6 

0010 1011 43 2B + 3-4-6 

0010 1100 44 2C , 6 

0010 1101 45 2D - 3-6 

0010 1110 46 2E . 4-6 

0010 1111 47 2F / 3-4 

0011 0000 48 30 0 3-5-6 

0011 0001 49 31 1 2 

0011 0010 50 32 2 2-3 

0011 0011 51 33 3 2-5 

0011 0100 52 34 4 2-5-6 

0011 0101 53 35 5 2-6 

0011 0110 54 36 6 2-3-5 

0011 0111 55 37 7 2-3-5-6 

0011 1000 56 38 8 2-3-6 

0011 1001 57 39 9 3-5 

0011 1010 58 3A : 1-5-6 

0011 1011 59 3B ; 5-6 

0011 1100 60 3C < 1-2-6 

0011 1101 61 3D = 1-2-3-4-
5-6 

0011 1110 62 3E > 3-4-5 

0011 1111 63 3F ? 1-4-5-6 

0100 0000 64 40 @ 4 

0100 0001 65 41 A 1 

0100 0010 66 42 B 1-2 

0100 0011 67 43 C 1-4 
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0100 0100 68 44 D 1-4-5 

0100 0101 69 45 E 1-5 

0100 0110 70 46 F 1-2-4 

0100 0111 71 47 G 1-2-4-5 

0100 1000 72 48 H 1-2-5 

0100 1001 73 49 I 2-4 

0100 1010 74 4A J 2-4-5 

0100 1011 75 4B K 1-3 

0100 1100 76 4C L 1-2-3 

0100 1101 77 4D M 1-3-4 

0100 1110 78 4E N 1-3-4-5 

0100 1111 79 4F O 1-3-5 

0101 0000 80 50 P 1-2-3-4 

0101 0001 81 51 Q 1-2-3-4-5 

0101 0010 82 52 R 1-2-3-5 

0101 0011 83 53 S 2-3-4 

0101 0100 84 54 T 2-3-4-5 

0101 0101 85 55 U 1-3-6 

0101 0110 86 56 V 1-2-3-6 

0101 0111 87 57 W 2-4-5-6 

0101 1000 88 58 X 1-3-4-6 

0101 1001 89 59 Y 1-3-4-5-6 

0101 1010 90 5A Z 1-3-5-6 

0101 1011 91 5B [ 2-4-6 

0101 1100 92 5C \ 1-2-5-6 

0101 1101 93 5D ] 1-2-4-5-6 

0101 1110 94 5E ^ 4-5 

0101 1111 95 5F _ 4-5-6 
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Appendix II: Rule Table for Text-to-Braille Translation [37] 

Rule format: input class <tab>left context [focus] right context =output<tab> next state 

   
2 [ 'EN] = 'EN - 
3 [ ]=  1 
4 [ ]=  2 
1 [ -- ]=-- - 

1 [ - ]=-- - 
1 [ ]=  - 
5 [ ]=  - 

1 [!]=6 - 
5 [!]=! - 
1  ["] ="1 - 
1 ["...]=8 ''' - 

1 ["=]=8; - 
1 ["]^=8 - 
1 ["]^^=8 - 

1 ["] (=8 - 
1 ["]~=0 - 
1 ["]=8 - 
5 ["]=" - 

1 [#]#=# - 
1 [#]=# - 
5 [#]=# - 

1 [$G1]= 2 
1 [$G2]= 1 
1 [$#]=  - 
1 [$+]=;6 - 

1 [$-]=;- - 
1 [$X]=;8 - 
1 [$D]=;4 - 

1 [$=]=;7 - 
1 [$/]=  - 
1 [$$]=$$ - 
1 [$]#=4 - 

5 [$]#=$ - 
1 [$]!=@4 - 
1 [%]=3P - 

5 [%]=% - 
2 [&ING]=&+ - 
1 [&]=& - 
5 [&]=& - 

2 ['CAUSE]='CAUSE - 
2 ['DO]='DO - 
1 !['D]~='D - 

2 ['FLU]='FLU - 
2 ['ER]='] - 
2 ['EN]='5 - 
2 ~['IN]=,8IN - 

2 ['IN]='IN - 
2 ['YOU]='Y\ - 
1 !['C]~='C - 

1 !['M]~='M - 
2 ['NEATH]='N1 - 
1 !['N]-='N - 
2 ['TIS]='TIS - 

2 ['TWAS]='TWAS - 
1 !['T]~='T - 
1 !['S]='S - 

1 #['S]='S - 
1 !['']=0' - 
1 ~['0]=#'J - 
1 ~['1]=#'A - 

1 ~['2]=#'B - 
1 ~['3]=#'C - 
1 ~['4]=#'D - 

1 ~['5]=#'E - 
1 ~['6]=#'F - 
1 ~['7]=#'G - 
1 ~['8]=#'H - 

1 ~['9]=#'I - 
1 ~[']~=' - 
1 ![']~=' - 

1 ~[']=,8 - 
1 [']=' - 
5 [']=' - 

1 [(]=7 - 
5 [(]=( - 
1 [)]=7 - 
5 [)]=) - 

1 [*]#=;8 - 
1 [*]=99 - 
5 [*]=* - 

1 [+]#=;6 - 
1 [+]=" - 
5 [+]=+ - 
1 #[,0]='J - 

2 [CANNOT]=_C - 
2 ~[CAN]~=C - 
2 ~[CATI]ON=CATI - 
2 ~[CENT]=C5T - 

2 [CCH]=C* - 
2 ![CC]!=3 - 
1  [C].~=C - 

1 .[C]=C - 
1 [C].!=C - 
1 ~[C]~=;C - 
1 [C]=C - 

5 [C]=C - 
2 ~[D];#=;D 3 
2 #[D]=;D 3 

1 ~[D];#=;D 4 
1 #[D]=;D 4 
2 [D'YOU]=D'Y\ - 
2 ~[DAFT]ER=DAFT - 

2 [DAY]="D - 
2 ~[DO']=DO@ - 
2 ~[DO]~=D - 

2 ~[DIS]HEA=4 - 
2 ~[DIS]HA=4 - 
2 ~[DIS]HO=4 - 
2 ~[DISH]=DI% - 

2 ~[DISK]S=DISK - 
2 ~[DIS]~=DISK - 
2 ~[DISC]S~=DISC - 

2 ~[DISC]~=DISC - 
2 [DISPIRIT]=DI_S - 
2 ~[DI]SULPH=DI - 
2 ~[DIS]!=4 - 

2 ~[DINGH]=D9< - 
2 ![DDAU]GHTER=DDAU - 
2 [DDAY]=D"D - 

2 ![DD]!=4 - 
2 [DECEIVE]=DCV - 
2 [DECEIVING]=DCVG - 
2 [DECLARING]=DCLG - 

2 [DECLARE]=DCL - 
2 ~[DE]NAT=DE - 
2 ~[DESH]ABILLE=DESH - 

2 [DEAW]=DEAW - 
2 ~[DEAC]T=DEAC - 
1  [D].~=D - 
1 .[D]=D - 

1 [D].!=D - 
1 ~[D]~=;D - 
1 [D]=D - 

5 [D]=D - 
2 ~[E];#=;E 3 
2 #[E]=;E 3 
1 ~[E];#=;E 4 

1 #[E]=;E 4 
2  |[ENOUGH] =5 - 
2 ![EDISH]=EDI% - 

2 ![ED]OOM=ED - 
2 ![ED]OM=ED - 
2 ![ED]OVE=ED - 
2 ![ED]OWN=ED - 

2 ![ED]EEP=ED - 
2 ![ED]REAM=ED - 
2 ![ED]ROP=ED - 

2 ![ED]RUM=ED - 
2 ![EDD]FO=E4 - 
2 ![EDAL]E=EDAL - 
2 [ED]=$ - 

2 [EDREAG]H=ER1< - 
2 [EROO]M=EROO - 
2 [ER]=] - 

2 [ELECTRO]=ELECTRO - 
2 [E]NAME=E - 
2 [ENCED]=5C$ - 

2 [ENCEA]=5C1 - 
2 [ENCER]=5C] - 
2 ![ENCE]=;E - 
2 [ENESS]=E;S - 

2 ![ENOO]K=ENOO - 
2 ~[ENOUGH'S]=5'S - 
2 ~[EN]~=EN - 

2 [EN]=5 - 
2 ![EAR]=E> - 
2 ![EALLY]=E,Y - 
2 ![EALO]GY=EALO - 

1  [O].~=O - 
1 .[O]=O - 
1 [O].!=O - 
1 ~[O]~=;O - 

1 [O]=O - 
5 [O]=O - 
2 ~[P];#=;P 3 

2 #[P]=;P 3 
1 ~[P];#=;P 4 
1 #[P]=;P 4 
2 ~[PH]ONEY=PH - 

2 [PHONES]S=PH"O - 
2 [PHONETI]=PHONETI - 
2 [PHONE]~=PH"O - 

2 ~[PAR]TH=P> - 
2 [PART]="P - 
2 [PAID]=PD - 
2 [PAINS]TAK=PA9S - 

2 [PAGODA]=PAGODA - 
2 ~[PEOPLE]~=P - 
2 ~[PERHAPS]=P]H - 

2 [PERCEIVE]=P]CV - 
2 [PERCEIVIN]G=P]CV - 
2 [PERSE]VER=P]SE - 
2 [PEACH]=PR1* - 

2 [PRED]AC=PR$A - 
2 [PREDA]TOR=PR$A - 
2 [PRED]ECES=PR$ - 

2 [PREDI]L=PR$I - 
2 [PREDI]C=PR$I - 
2 [PRENT]ICE=PR5T - 
2 [PRERO]G=PR]O - 

2 ~[PRE]=PRE - 
2 [POST]H=PO/ - 
1  [P].~=P - 

1 .[P]=P - 
1 [P].!=P - 
1 ~[P]~=;P - 
1 [P]=P - 

5 [P]=P - 
2 ~[Q];#=;Q 3 
2 #[Q]=;Q 3 

1 ~[Q];#=;Q 4 
1 #[Q]=;Q 4 
1 [Q].!=Q - 
1 ~[Q]~=;Q - 

1 [Q]=Q - 
5 [Q]=Q - 
1 ~'[RD]~=4RD - 

1 #[RD]~=RD - 
1 .[RD]~=RD - 
2 ~[R];#=;R 3 
2 #[R]=;R 3 

1 ~[R];#=;R 4 
1 #[R]=;R 4 
2 [RIGHT]="R - 

2 ~[RATHER]~=R - 
2 [RAFT]ER=RAFT - 
2 [RARED]~=RAR$ - 
2 ~[RANS]OME=RANS - 

2 [RAR]ENAL=RAR - 
2 ~[REA]B=REA - 
2 [REACHING]=R1*+ - 

2 ~[REACH]I=REA* - 
2 ~[REACH]=R1* - 
2 ~[RE]AC=RE - 
2 ~[READ]AP=READ - 

2 ~[REA]DD=REA - 
2 ~[READ]J=READ - 
2 ~[READ]M=READ - 

2 ~[READ]O=READ - 
2 ~[READ]V=READ - 
2 ~[REA]F=REA - 

2 ~[REA]G=REA - 
2 ~[REAL]IG=REAL - 
2 ~[REAL]IN=REAL - 
2 ~[RE]ALL=RE - 

2 ~[REAN]=REAN - 
2 ~[REAP]P=REAP - 
2 ~[REAS]C=REAS - 

2 ~[REAS]S=REAS - 
2 ~[REAT]T=REAT - 
2 [REAW]AKE=REAW - 
2 ~[REDEE]M=R$EE - 
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1 #[,1]='A - 
1 #[,2]='B - 
1 #[,3]='c - 

1 #[,4]='D - 
1 #[,5]='E - 
1 #[,6]='F - 

1 #[,7]='G - 
1 #[,8]='H - 
1 #[,9]='I - 
1 [,]#=' - 

1 [,]=1 - 
5 [,]=, - 
2 [-T]0~=-T - 

2 [-ING]~=-+ - 
2 [-IN]~=-9 - 
2 [-C]OM=-C - 
2 [-BY]=-BY - 

2 [--INTO|]=-}96 - 
2 [--IN]=--9 - 
2 [--C]OM=--C - 

1 ![----]=---- - 
1 [--]~=-- - 
1 [--]=- - 
1 #[-0]=-J - 

1 #[-1]=-A - 
1 #[-2]=-B - 
1 #[-3]=-C - 

1 #[-4]=-D - 
1 #[-5]=-E - 
1 #[-6]=-F - 
1 #[-7]=-G - 

1 #[-8]=-H - 
1 #[-9]=-I - 
1 [-]=- - 

5 [-]=- - 
1 [.] =4 - 
1 [....]='''4 - 
1 [...']='''0' - 

1 [..."]='''0 - 
1 [...]=''' - 
1 [.]+.= ? 

1 .+[.]= - 
1 #[.]## A.M.=  - 
1 #[.]## P.M.=  - 
1 #[.0]=1J - 

1 #[.1]=1A - 
1 #[.2]=1B - 
1 #[.3]=1C - 

1 #[.4]=1D - 
1 #[.5]=1E - 
1 #[.6]=1F - 
1 #[.7]=1G - 

1 #[.7]=1H - 
1 #[.8]=1I - 
1 [.0]=#1J - 

1 [.1]=#1A - 
1 [.2]=#1B - 
1 [.3]=#1C - 
1 [.4]=#1D - 

1 [.5]=#1E - 
1 [.6]=#1F - 
1 [.7]=#1G - 

1 [.8]=#1H - 
1 [.9]=#1I - 
1 [.]#=1 - 
1 [.]~=4 - 

1 [.]=4 - 
5 [.]=. - 
2 [/SUB ]=* - 

2 [/SUP ]=+ - 
1 [/]+/=  - 
1 /+[/]=  - 
1 ~[/]#=;4 - 

1 [/]=/ - 
5 [/]=/ - 
1 #[0]=J - 

1 [0]=#J - 
5 [0]=0 - 
2 #[1ST]=A/ - 
2 [1ST]=#A/ - 

1 #[1]=A - 
1 [1]=#A - 
5 [1]=1 - 

1 #[2]=B - 
1 [2]=#B - 
5 [2]=2 - 
1 #[3]=C - 

1 [3]=#C - 
5 [3]=3 - 
1 #[4]=D - 

1 [4]=#D - 
5 [4]=4 - 
1 #[5]=E - 

2 ![EADE]~=EADE - 
2 ![EADD]=1DD - 
2 ![EAX]=EAX - 

2 ![EAPP]=EAPP - 
2 ![EANCE]=E.E - 
2 ![EAND]=E& - 

2 ![EATION]=E,N - 
2 ![E]AWAY=E - 
2 ![EA]BLE=AE - 
2 ![EA]!=1 - 

2 [EEVER]=EEV] - 
2 ~[EVERY]~=E - 
2 ~[EVERTO]N="ETO - 

2 ~[EVERT]=EV]T - 
2 [EVERD]I~=EV]D - 
2 [EVER]="E - 
2 [EITHER]=EI - 

2 [ETHER]E=E!R - 
1  [E].~=E - 
1 .[E]=E - 

1 [E].!=E - 
1 ~[E]~=;E - 
1 [E]=E - 
5 [E]=E - 

2 ~[F];#=;F 3 
2 #[F]=;F 3 
1 ~[F];#=;F 4 

1 #[F]=;F 4 
2 ~[FOR ]THE~== - 
2 ~[FOR ]A~== - 
2 ~[FOREVER]=="E - 

2 ~[FOR]ENS== - 
2 ~[FORE]==E - 
2 [FOR]== - 

2 [FRUI]T=FRUI - 
2 [FRIEN]DE=FRI5 - 
2 [FRIEN]DI=FRI5 - 
2 [FRIEND]=FR - 

2 ~[FROM]~=F - 
2 [FIRST]=F/ - 
2 ~[FIAN]C!=FIAN - 

2 [FLEAR]IDD=FL1R - 
2 ![FULLE]=;LLE - 
2 ![FULLY]=;LLY - 
2 ![FULL]=FULL - 

2 ![FUL]=;L - 
2 [FFOR]=F= - 
2 ![FF]!=6 - 

2 [FATHER]="F - 
2 ~[FAERY]=FA]Y - 
1  [F].~=F - 
1 .[F]=F - 

1 [F].!=F - 
1 ~[F]~=;F - 
1 [F]=F - 

5 [F]=F - 
2 ~[G];#=;G 3 
2 #[G]=;G 3 
1 ~[G];#=;G 4 

1 #[G]=;G 4 
2 ![GHAI]=GHAI - 
2 ![GHEAD]=GH1D - 

2 ![GHEAP]=GH1P - 
2 ![GHIL]=GHIL - 
2 ![GHOL]E=GHOL - 
2 ![GHOR]N=GHOR - 

2 ![GHOUS]E=GH\S - 
2 ![GHUN]T=GHUN - 
2 [GH]=< - 

2 [GOOD]=GD - 
2 [GOVERN]ESS=GOV]N - 
2 ~[GO]~=G - 
2 ![GG]!=7 - 

2 [GREAT]=GRT - 
1  [G].~=G - 
1 .[G]=G - 

1 [G].!=G - 
1 ~[G]~=;G - 
1 [G]=G - 
5 [G]=G - 

2 ~[H];#=;H 3 
2 #[H]=;H 3 
1 ~[H];#=;H 4 

1 #[H]=;H 4 
2  |[HIS] =8 - 
2 [HADD]!=HA4 - 
2 ~[HADE]=HADE - 

2 ~[HADR]IAN]=HADR - 
2 ~[HAD]=_H - 
2 ~[HAVE]~=H - 

2 ~[HIMSELF]=HMF - 
2 ~[HIM]~=HM - 
2 [HEDGE]ROW=H$GE - 

2 ~[RED]EMPT=R$ - 
2 ~[RED]E=RED - 
2 ~[RED]I=RED - 

2 ~[REDOUB]T=R$\B - 
2 ~[REDOUND]=R$.D - 
2 ~[RE]DO=RE - 

2 ~[REDR]AW=REDR - 
2 ~[REDU]C=R$U - 
2 ~[REDU]ND=R$U - 
2 ~[REDU]=REDU - 

2 ~[RE]NAM=RE - 
2 ~[RENA]V=RENA - 
2 ~[RENO]M=RENO - 

2 ~[RENU]M=RENU - 
2 ~[REREDO]S=R]$O - 
2 ~[RE]R=RE - 
2 [REVER]EN=R"E - 

2 [REVER]IE=R"E - 
2 ~[REVER]=REV] - 
2 [REJOICE]=RJC - 

2 [REJOICING]=RJCG - 
2 [RECEIVE]=RCV - 
2 [RECEIVING]=RCVG - 
1  [R].~=R - 

1 .[R]=R - 
1 [R].!=R - 
1 ~[R]~=;R - 

1 [R]=R - 
5 [R]=R - 
1 #[S]~='S - 
2 ~[S];#=;S 3 

2 #[S]=;S 3 
1 ~[S];#=;S 4 
1 #[S]=;S 4 

2 ~[STILL]~=/ - 
2 ![STID]E=STID - 
2 ![STION]=S;N - 
2 ![STIME]=S"T - 

2 ![STHEAD]=/H1D - 
2 ![ST]HOOD=/ - 
2 ![S]TH=S - 

2 ![ST]OWN=ST - 
1 ~'[ST]~=4/ - 
2 ~[ST].~=ST - 
2 [ST]=/ - 

2 ~[SHALL]~=% - 
2 ![SHART]=SH>T - 
2 ![SHAW]K=SHAW - 

2 [SHOULD]ER=%\LD - 
2 [SHOULD]=%D - 
2 ![SHOUS]E=SH\S - 
2 ![SHOO]D=SHOO - 

2 ![SHOR]N=SHOR - 
2 ![SHOR]SE=SHOR - 
2 ![SHOUND]=SH.D - 

2 ![SHIL]L=SHIL - 
2 ![SHEAR]T=SHE> - 
2 ![SHEAD]=SH1D - 
2 ![SHUN]D~=SHUN - 

2 ~[SH]'=% - 
2 ~[SH]~=SH - 
2 [SH]=% - 

2 ![SION]=.N - 
2 ![SINGH]=S9< - 
2 [SAID]=SD - 
2 ![SOFAR]=SOF> - 

2 ![SOMED]~=SOM$ - 
2 ![SOME]TRY=SOME - 
2 ![SOME]TRIC=SOME - 

2 ![SOME]TER=SOME - 
2 [SOMER]!=SOM] - 
2 [SOME]="S - 
2 ~[SO]~=S - 

2 [SEVERED]=S"E$ - 
2 [SEVER]E=SEV] - 
2 [SEVER]ITY=SEV] - 

2 [SED]ATIV=S$ - 
2 [SPHER]=SPH] - 
2 [SPIRIT]=_S - 
2 ~[SUB]=SUB - 

2 [SUCH]=S* - 
2 ~[SSH]~=S%- 
2 [SS]H=SS - 

2 [SWED]ISH=SW$ - 
2 ~[SWOR]D=SWOR - 
2 [SQUA]LLY=SQUA - 
1 [S'']~=SO' - 

1 [S']~=S' - 
1  [S].~=S - 
1 .[S]=S - 

1 [S].!=S - 
1 ~[S]~=;S - 
1 [S]=S - 
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1 [5]=#E - 
5 [5]=5 - 
1 #[6]=F - 

1 [6]=#F - 
5 [6]=6 - 
1 #[7]=G - 

1 [7]=#G - 
5 [7]=7 - 
1 #[8]=H - 
1 [8]=#H - 

5 [8]=8 - 
1 #[9]=I - 
1 [9]=#I - 

5 [9]=9 - 
1 [:]#=  - 
1 [:]=3 - 
5 [:]=: - 

1 [;]=2 - 
5 [;]=5 - 
1 [<]=8 - 

5 [<]=< - 
2 ~[=T-SHI]IRT=;T-SHI - 
2 [=]!=; 3 
1 [=]!=; 4 

1 [=]=;8 - 
5 [=]== - 
1 [>]=0 - 

1 [>]=> - 
1 [?]=8 - 
5 [?]=? - 
2 [@EN]=@EN - 

2 [@ER]=@ER - 
2 [@ED]=@ED - 
2 [@O]NG=@O - 

2 [@AR]=@AR - 
1 [@]=@ - 
5 [@]=@ - 
2 ~[A];#=;A - 

2 #[A]=;A - 
1 ~[A];#=;A - 
1 #[A]=;A - 

2 [ARIGHT]=A"R - 
2 [AR]=> - 
2 ~[AND ]THE~=& - 
2 ~[AND ]A~=& - 

2 ~[AND ]OF~=& - 
2 ~[AND ]WITH~=& - 
2 ~[AND ]FOR~=& - 

2 [AND]=& - 
2 ~[ANTEA]TER=ANT1 - 
2 [ANTEN]NA=ANT5 - 
2 [ANTER]IOR=ANT] - 

2 ~[ANTE]=ANTE - 
2 [ANTIN]OM=ANT9 - 
2 ~[ANTI]=ANTI - 

2 ![ANCE]=.E - 
2 [ANEMONE]=ANEMONE
 - 
2 ![ATION]=,N - 

2 ~[AS]~=Z - 
2 [ABOUT]=AB - 
2 [ABOVE]=ABV - 

2 [AGAIN]=AG - 
2 [AFTERNOON]=AFN - 
2 [AFTERWARD]=AFW - 
2 ~[AFTER]E=AFT - 

2 ~[AFTER]I=AFT - 
2 [AFTER]=AF - 
2 ![ALLY]=,Y - 

2 ~[ALWAYS]~=ALW - 
2 ~[ALSO]~=AL - 
2 ~[ALMOST]~=ALM - 
2 ~[ALREADY]~=ALR - 

2 ~[ALTHOUGH]~=AL? - 
2 ~[ALTOGETHER]=ALT - 
2 ~[ACROSS]~=ACR - 

2 ~[ACCORDING]=AC - 
2 [AUND]ER=AUND - 
2 [AINES]S=A9ES - 
2 ![AED]~=A$ - 

2 [AE]D=AE - 
2 [AE]A=AE - 
2 [AERO]=A]O - 

2 ![AER]=AER - 
2 ~[AENE]AS=AENE - 
2 [AE]N=AE - 
1 [A]=A - 

5 [A]=A - 
2 ~[B];#=;B 3 
2 #[B]=;B 3 

1 ~[B];#=;B 4 
1 #[B]=;B 4 
2 [BRO']=BRO' - 

2 [HER]ESY=H] - 
2 [HERI]SI=H]E - 
2 [HERE]TI=H]E - 

2 [HERE]R=H]] - 
2 [HER]EN=H] - 
2 [HER]ED=H] - 

2 [HER]EF=H] - 
2 [HERE]="H - 
2 ~[HERSELF]=H]F - 
2 [HYDRO]=HYDRO - 

2 ~[HM]~=H'M - 
1  [H].~=H - 
1 .[H]=H - 

1 [H].!=H - 
1 ~[H]~=;H - 
1 [H]=H - 
5 [H]=H - 

2 ~[I];#=;I 3 
2 #[I]=;I 3 
1 ~[I];#=;I 4 

1 #[I]=;I 4 
2  |[IN] =9 - 
2 ~[INTO] AND =9TO - 
2 ~[INTO] AT =9TO - 

2 ~[INTO] BUT =9TO - 
2 ~[INTO] IF =9TO - 
2 ~[INTO] IN =9TO - 

2 ~[INTO] IS =9TO - 
2 ~[INTO] WAS =9TO - 
2 ~[INTO] WHEN =9TO - 
2 ~[INTO] FOR =9TO - 

2 ~[INTO] OF =9TO - 
2 ~[INTO] OR =9TO - 
2 ~[INTO] TO =9TO - 

2 ~[INTO HI]S =96HI - 
2 ~[INTO ENOU]GH=965\ - 
2 ~[INTO ]_=96 - 
2 ~[INTO ]!=96 - 

2 ~[INTO ]#=96 - 
2 [INDIA]RUB=9DIA - 
2 ![INGRA]=9GRA - 

2 ![ING]=+ - 
2 ![INESS]=I;S - 
2 ~[IN]-=9 - 
2 ~[IN] =IN - 

2 ~[IN]~=IN - 
2 ![IN]=9 - 
2 [IN]!=9 - 

2 ![ITY]=;Y - 
2 ~[ITSELF]~=XF - 
2 ~[ITS]~=XS - 
2 ~[IT]~=X - 

2 [IRRE]VERS=IRRE - 
2 [IEVER]=IEV] - 
2 [IETN]AMESE=IETN - 

2 ~[IMMEDIATE]=IMM - 
2 [IO]NE=IO - 
2 ~[ISOM]ER=ISOM - 
1  [IV]~=;IV - 

1  [II]~=;II - 
1  [III]~=;III - 
1 [I]=I - 

5 [I]=I - 
2 ~[J];#=;J 3 
2 #[J]=;J 3 
1 ~[J];#=;J 4 

1 #[J]=;J 4 
2 ~[JUST]~=J - 
1  [J].~=J - 

1 .[J]=J - 
1 [J].!=J - 
1 ~[J]~=;J - 
1 [J]=J - 

5 [J]=J - 
2 ~[K];#=;K 3 
2 #[K]=;K 3 

1 ~[K];#=;K 4 
1 #[K]=;K 4 
2 ~[KNOWLEDGE]~=K - 
2 [KNOW]="K - 

2 ~[KILO]=KILO - 
1  [K].~=K - 
1 .[K]=K - 

1 [K].!=K - 
1 ~[K]~=;K - 
1 [K]=K - 
5 [K]=K - 

2 ~[L];#=;L 3 
2 #[L]=;L 3 
1 ~[L];#=;L 4 

1 #[L]=;L 4 
2 ~[LATI]MER=LATE - 
2 [LAERT]ES=LA]T - 

5 [S]=S - 
1 ~'[TH]~=4? - 
1 #[TH]~=? - 

1 .[TH]~=? - 
2 ~[T];#=;T 3 
2 #[T]=;T 3 

1 ~[T];#=;T 4 
1 #[T]=;T 4 
2 ![THAND]=TH& - 
2 ![THART]=TH>T - 

2 ~[THAT]~=T - 
2 [THERER]=!R] - 
2 [THERED]=!R$ - 

2 [THERE]SA=!RE - 
2 [THERE]TT=!RE - 
2 [THEREEN]=!RE5 - 
2 [THERE]="! - 

2 ![THERD]=TH]D - 
2 ~[THEIR]=_! - 
2 [THESE]~=^! - 

2 ~[THEMSELVES]=!MVS - 
2 [THENCE]=?;E - 
2 [THEND]=?5D - 
2 [THEAST]=?1/ - 

2 ![THEAD]=TH1D - 
2 ![THEART]T=THE> - 
2 [THE]=! - 

2 ~[THIS]~=? - 
2 ![THIL]L=THIL - 
2 [THRO']=?RO' - 
2 [THROUGH]="? - 

2 ~[THOSE]=^? - 
2 ![THOO]D=THOO - 
2 ![THOO]K=THOO - 

2 ![THOR]SE=THOR - 
2 ![THOUS]E=TH\S - 
2 ![THOL]E=THOL - 
2 ![THOL]D=THOL - 

2 ~[THYSELF]=?YF - 
2 [TH]=? - 
2 ~[TO] AND~=TO - 

2 ~[TO] AT =TO - 
2 ~[TO BE]~=6BE - 
2 ~[TO] BUT=TO - 
2 ~[TO BY ]!=TO 0  - 

2 ~[TO] IF =TO - 
2 ~[TO] IN =TO - 
2 ~[TO] IS =TO - 

2 ~[TO] WAS =TO - 
2 ~[TO] WERE =TO - 
2 ~[TO] WHERE =TO - 
2 ~[TO] WITH =TO - 

2 ~[TO] FOR =TO - 
2 ~[TO] OF =TO - 
2 ~[TO] OR =TO - 

2 ~[TO] TO =TO - 
2 ~[TO HIS ]=6HIS  - 
2 ~[TO ENOUGH] =65\< - 
2 ~[TO _BE]=6.BE - 

2 ~[TO _]=6. - 
2 ~[TO =]=6 - 
2 ~[TO ]!=6 - 

2 ~[TO ]#=6 - 
2 ~[TOGETHER]=TGR - 
2 ~[TODAY]=TD - 
2 ~[TOMORROW]=TM - 

2 ~[TONIGHT]=TN - 
2 ~[TO-DAY]=TD - 
2 ~[TO-MORROW]=TM - 

2 ~[TO-NIGHT]=TN - 
2 ~[TORE]ADOR=TORE - 
2 ![TION]=;N - 
2 ![TI]MEN=TI - 

2 ![TIME]TER=TIME - 
2 [TIME]="T - 
2 [TEAROOM]=T1ROOM - 

2 [TWOULD]=TWD - 
2 ~[TWO]=TWO - 
2 [TLDE]DG=TLED - 
2 ![TLE]D!=TLE - 

2 ![TTLE]N=TTLE - 
1  [T].~=T - 
1 .[T]=T - 

1 [T].!=T - 
1 ~[T]~=;T - 
1 [T]=T - 
5 [T]=T - 

2 ~[U];#=;U 3 
2 #[U]=;U 3 
1 ~[U];#=;U 4 

1 #[U]=;U 4 
2 ~[UNDER]I=UND] - 
2 ~[UNDER]O=UND] - 
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2 ~[BUT]~=B - 
2 [BBLE]=B# - 
2 ![BB]!=2 - 

2  |[BE] =2 - 
2 ~[BEATI]F=2ATI - 
2 ~[BEATI]T=2ATI - 

2 ~[B]EA=B - 
2 ~[BECAUSE]=2C - 
2 ~[BECK]=BECK - 
2 ~[BEC]=2C - 

2 ~[BED]A=2D - 
2 ~[BED]E=2D - 
2 ~[BED]I=2D - 

2 ~[BEDRA]G=2DRA - 
2 ~[BED]=B$ - 
2 ~[BEET]HOVEN=BEET - 
2 ~[BE]E=BE - 

2 ~[BEFORE]=2F - 
2 ~[BE]F=2 - 
2 ~[BEG]A=2G - 

2 ~[BEG]E=2G - 
2 ~[BEG]I=2G - 
2 ~[BEG]O=2G - 
2 ~[BEG]R=2G - 

2 ~[BEG]U=2G - 
2 ~[BE]G=BE - 
2 ~[BEHIND]=2H - 

2 ~[BEH]=2H - 
2 ~[BEING]=2+ - 
2 ~[BEIN']=2IN - 
2 ~[BE]I=BE - 

2 ~[BEJ]=2J - 
2 ~[BEL]A=2L - 
2 ~[BEL]E=2L - 

2 ~[BE]LE=2 - 
2 ~[BELOW]=2L - 
2 ~[BEL]O=2L - 
2 ~[BEL]Y=2L - 

2 ~[BE]L=BE - 
2 ~[BE]M=2 - 
2 ~[BENEATH]=2N - 

2 ~[BEN]IGN=B5 - 
2 ~[BEN]I=2N - 
2 ~[BEN]U=2N - 
2 ~[BEN]=B5 - 

2 ~[BEQU]=2QU - 
2 ~[BERET]=B]ET - 
2 ~[BERG]=B]G - 

2 ~[BERK]=B]K - 
2 ~[BERL]=B]L - 
2 ~[BERM]=B]M - 
2 ~[BERN]=B]N - 

2 ~[BERR]=B]R - 
2 ~[BERS]=B]S - 
2 ~[BER]T=B] - 

2 ~[BER]W=B] - 
2 ~[BERYL]=B]YL - 
2 ~[BER]BECK=B] - 
2 ~[BE]R=2 - 

2 ~[BESIDE]=2S - 
2 ~[BESS]=BESS - 
2 ~[BESTEA]D=BE/1 - 

2 ~[BESTI]A=BE/I - 
2 ~[BESTING]=BE/+ - 
2 ~[BESTI]=2/I - 
2 ~[BEST]O=2/ - 

2 ~[BESTR]=2/R - 
2 ~[BEST]=BE/ - 
2 ~[BE]S=2 - 

2 ~[BET]A=2T - 
2 ~[BETEL]=2TEL - 
2 ~[BETH]I=2? - 
2 ~[BETH]O=2? - 

2 ~[BET]I=2T - 
2 ~[BET]O=2T - 
2 ~[BETR]=2TR - 

2 ~[BETWEEN]=2T - 
2 ~[BETW]=2TW - 
2 ~[BEW]=2W - 
2 ~[BEYOND]=2Y - 

2 ~[BEZ]=2Z - 
2 ~[BE']=2' - 
2 [BLESS]=B.S - 

2 [BLEN]D=BL5 - 
2 [BLEED]=BLE$ - 
2 ![BLEU]=BL1U - 
2 ![BLE]=# - 

2 [BLIN]DE=BL9 - 
2 [BLIN]DI=BL9 - 
2 [BLIND]=BL - 

2 ~[BLUE]=BLUE - 
2 ~[BY AND BY]~=BY & BY
 - 

2 ![LESS]=.S - 
2 [LETTER]=LR - 
2 ~[LIKE]~=L - 

2 [LITTLE]=LL - 
2 [LORD]="L - 
2 [LAHAD]=LA_H - 

2 ~[LLAN]D=LLAN - 
1  [L].~=L - 
1 .[L]=L - 
1 [L].!=L - 

1 ~[L]~=;L - 
1 [L]=L - 
5 [L]=L - 

1 ~[M]C`~=;M - 
2 ~[M];#=;M 3 
2 #[M]=;M 3 
1 ~[M];#=;M 4 

1 #[M]=;M 4 
2 ![MENT]=;T - 
2 ~[MAHA]=MAHA - 

2 [MANY]=_M - 
2 [MONTRE]AL=MONTRE - 
2 ~[MORE]'N=MORE - 
2 ~[MORE]~=M - 

2 ~[MORT]IMER=MORT - 
2 [MOTHEA]TEN=MO?1 - 
2 [MOTHER]APY=MO!R - 

2 [MOTHER]="M - 
2 ~[MIS]TI=MIS - 
2 ~[MIST]RIAL=MIST - 
2 ~[MIST]REA=MIST - 

2 ~[MIST]RU=MIST - 
2 ~[MIST]RANS=MIST - 
2 ~[MIS]TH=MIS - 

2 [MIST]=MI/ - 
2 ~[MIS]=MIS - 
2 [MICRO]=MICRO - 
2 [MUCH]=M* - 

2 [MUST]AFA=MU/ - 
2 ~[MUSTA]NG=MU/A - 
2 ~[MUSTAR]D=MU/> - 

2 ~[MUSTER]=MU/] - 
2 [MUST]=M/ - 
2 ~[MYSELF]~=MYF - 
2 ~[MC]=MC - 

1  [M].~=M - 
1 .[M]=M - 
1 [M].!=M - 

1 ~[M]~=;M - 
1 [M]=M - 
5 [M]=M - 
1 ~`[ND]~=4ND - 

1 #[ND]~=ND - 
1 .[ND]~=ND - 
2 ~[N];#=;N 3 

2 #[N]=;N 3 
1 ~[N];#=;N 4 
1 #[N]=;N 4 
2 ~[NIGHT]=NI<T - 

2 ~[NOBLES]SE=NO#S - 
2 ~[NOT]~=N - 
2 ~[NONE]~=N"O - 

2 ~[NONES]~=N"OS - 
2 ~[NON]ESS=NON - 
2 ~[N]ONES=N - 
2 ~[NONE]THE=N"O - 

2 ~[NON]=NON - 
2 [NOWI]SE=NOWI - 
2 [NOWA]Y=NOWA - 

2 [NO]WHERE=NO - 
2 [NA]MENT=NA - 
2 [NAME]="N - 
2 ![NESS]=;S - 

2 [NECESSARY]=NEC - 
2 [NCRE]A=NCRE - 
1  [N].~=N - 

1 .[N]=N - 
1 [N].!=N - 
1 ~[N]~=;N - 
1 [N]=N - 

5 [N]=N - 
2 ~[O];#=;O 3 
2 #[O]=;O 3 

1 ~[O];#=;O 4 
1 #[O]=;O 4 
2 ~[OF ]THE~=( - 
2 ~[OF ]A~=( - 

2 [OFOR]=O= - 
2 [OF]=( - 
2 ~[OUT]HELD=\T - 

2 ~[OUT]~=\ - 
2 ![OUND]=.D - 
2 ![OUNT]=.T - 

2 ~[UNFUL]F=UNFUL - 
2 [UNDER]="U - 
2 ~[UNEAS]=UN1S - 

2 ~[UNEAR]=UNE> - 
2 ~[UNLESS]~=UN.S - 
2 ~[UNITY]=UN;Y - 

2 ~[UN]=UN - 
2 [USEA]GE=USEA - 
2 ~[US]~=U - 
2 [UPON]=^U - 

1  [U].~=U - 
1 .[U]=U - 
1 [U].!=U - 

1 ~[U]~=;U - 
1 [U]=U - 
5 [U]=U - 
2 ~[V];#=;V 3 

2 #[V]=;V 3 
1 ~[V];#=;V 4 
1 #[V]=;V 4 

2 ~[VERY]~=V - 
2 ~[VICEN]=VIC5 - 
2 ~[VICE]=VICE - 
1  [V].~=V - 

1  [V].TH=;V - 
1 .[V]=V - 
1 [V].!=V - 

1 ~[V]~=;V - 
1 ~[VI]~=;VI - 
1 ~[VII]~=;VI - 
1 ~[VIII]~=;VI - 

1 [V]=V - 
5 [V]=V - 
2 ~[W];#=;W 3 

2 #[W]=;W 3 
1 ~[W];#=;W 4 
1 #[W]=;W 4 
2  |[WAS ]-=WAS - 

2  |[WAS] =0 - 
2  |[WERE ]-=WERE - 
2  |[WERE] =7 - 

2 [WA]F=WA - 
2 ~[WITH ]THE~=)  - 
2 ~[WITH ]A~=)  - 
2 [WITH]=) - 

2 ~[WIIL]~=W - 
2 ~[WHICH']=:I*' - 
2 ~[WHICH]~=: - 

2 ![WHID]E=WHID - 
2 ![WHERE]D=WH]D - 
2 [WHEREVER]=:]"E - 
2 [WHERE']ER=:]E' - 

2 [WHERE]=": - 
2 ~[WHOSE]~=^: - 
2 ![WHOUS]E=WH\S - 

2 [WH]=: - 
2 [WOULD]=WD - 
2 [WORK]="W - 
2 [WORD]=^W - 

2 [WORLD]=_W - 
1  [W].~=W - 
1 .[W]=W - 

1 [W].!=W - 
1 ~[W]~=;W - 
1 [W]=W - 
5 [W]=W - 

2 ~[X];#=;X 3 
2 #[X]=;X 3 
1 ~[X];#=;X 4 

1 #[X]=;X 4 
1 [X]:~=;X - 
1  [X].~=X - 
1 .[X]=X - 

1 [X].!=X - 
1 ~[X]~=;X - 
1 [X]=X - 

5 [X]=X - 
2 ~[Y];#=;Y 3 
2 #[Y]=;Y 3 
1 ~[Y];#=;Y 4 

1 #[Y]=;Y 4 
2 [YOUNG]="Y - 
2 ~[YOURSELF]=YRF - 

2 ~[YOURSELVES]=YRVS - 
2 [YOUR]=YR - 
2 ~[YOU']M=Y\' - 
2 ~[YOU]~=Y - 

1  [Y].~=Y - 
1 .[Y]=Y - 
1 [Y].!=Y - 

1 ~[Y]~=;Y - 
1 [Y]=Y - 
5 [Y]=Y - 
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2 ~[BY AND] =BY & - 
2 ~[BY] AT =BY - 
2 ~[BY BUT] =BY B - 

2 ~[BY IN] =BY 9 - 
2 ~[BY ]ON =BY  - 
2 ~[BY THE B]Y=0! B - 

2 ~[BY] TO =BY - 
2 ~[BY] WAS =BY - 
2 ~[BY] WITH~=BY - 
2 ~[BY] WITHOUT=BY - 

2 ~[BY HIS] =0HIS - 
2 ~[BY ENOUGH]=05\< - 
2 ~[BY =]==0 - 

2 ~[BY ]!=0 - 
2 ~[BY ]#=0 - 
2 ~[BRAILLE]=BRL - 
1  [B].~=B - 

1 .[B]=B - 
1 [B].!=B - 
1 ~[B]~=;B - 

1 [B]=B - 
5 [B]=B - 
2 ~[C];#=;C 3 
2 #[C]=;C 3 

1 ~[C];#=;C 4 
1 #[C]=;C 4 
2 [CHILDREN]=*N - 

2 ~[CHILD]~=* - 
2 [CHARACTER]="* - 
2 [CH]RISTO=* - 
2 [CHRIST]="C - 

2 [CH]=* - 
2 ~[COMIN']=-IN' - 
2 ~[COMMON]EST=-MON - 

2 ~[COM]!=- - 
2 ~[C]ONE=C - 
2 ~[CONO]=CONO - 
2 ~[CON]NED=CON - 

2 ~[CO]NA=CO - 
2 [CONY]=CONY - 
2 ~[CONKER]=3K] - 

2 [CONK]=CONK - 
2 ~[CONCEIVING]=3CVG - 
2 ~[CONCEIVE]=3CV - 
2 ~[CONCH]~=CON* - 

2 ~[CONS]~=CONS - 
2 ~[CON]!=3 - 
2 [COULD]=CD - 

2 [COEN]ZYME=CO5 - 
 

2 [OUGHT]="\ - 
2 ~[OURSELVES]~=\RVS - 
2 [OU]=\ - 

2 [OWORK]=O"W - 
2 [OW]=[ - 
2 ![ONG]=;G - 

2 [ONEA]=ON1 - 
2 [ONEC]K=ONEC - 
2 [ONENESS]="O;S - 
2 [ON]EN=ON - 

2 [ONER]=ON] - 
2 [ONED]=ON$ - 
2 [ONES]IA=ONES - 

2 [ONES]IM=ONES - 
2 [ONES]S~=ONES - 
2 ~[ONESELF]~="OF - 
2 [ONES]E~=ONES - 

2 [ONEST]="O/ - 
2 [ONE]E=ONE - 
2 [ONEOU]S=ONE\ - 

2 [ONEO]=ONEO - 
2 [ONEY]~="OY - 
2 [ONEU]M=ONEU - 
2 [ONE]UR=ONE - 

2 [ONET]ED=ONET - 
2 [ONET]S=ONET - 
2 [ONET]CY=ONET - 

2 [ONET]~=ONET - 
2 [ONET]TE=ONET - 
2 [ONEL]S=ONEL - 
2 ![O]NEL~=O - 

2 [ONE]="O - 
2 [O]IN=O - 
2 [OI]=OI - 

2 [OEN]=OEN - 
2 [OED]!=OED - 
2 ~[OVEREA]T=OV]1 - 
2 [QUICK]=QK - 

2 ~[QUITE]~=Q - 
2 [QUESTION]="Q - 
1  [Q].~=Q - 

1 .[Q]=Q - 
2 ~[OVER]=OV] - 
2 ~[O'CLOCK]~=O'C - 
2 [ORSE]RADISH=ORSE - 

2 [OON]E=OON - 
2 ~[OLE]A=OLE - 
2 ~[O]~MY=O - 

1 ~[O]~DEAR=O - 
 

2 ~[Z];#=;Z 3 
2 #[Z]=;Z 3 
1 ~[Z];#=;Z 4 

1 #[Z]=;Z 4 
1  [Z].~=Z - 
1 .[Z]=Z - 

1 [Z].!=Z - 
1 ~[Z]~=;Z - 
1 [Z]=Z - 
5 [Z]=Z - 

1 [[]=,7 - 
5 [[]=[ - 
1 [\]=/ - 

5 [\]=\ - 
1 []]=7' - 
5 []]=] - 
1 [^]=, - 

5 [^]=^ - 
1 [__]#=--# - 
1 [__]=.. - 

2 ~[_EN]~=.EN - 
2 [_ENOUGH]=.5 - 
2 [_TO ]_=.6  - 
2 [_IN] =.9 - 

2 [_INTO ]_=.96  - 
2 [_WAS] =.0 - 
2 [_WERE] =.7 - 

2 [_HIS] =.8 - 
2 [_BE] =.2 - 
2 [_BY ]_=.0  - 
1 [_/]=  - 

5 [_]=_ - 
1 [_]=  - 
1 [`]=^ - 

5 [`]=` - 
1 [{]=,7 - 
5 [{]={ - 
1 [|]=^ - 

5 [|]=| - 
1 [}]=7' - 
5 [}]=} - 

1 [~]=^ - 
5 [~]=~ - 
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Appendix III: Translation Algorithm Using Structured English [37] [40] 

program convert 

begin 

do 

read_word 
convert word into normal form  // use table to convert lower to upper case. 

// tidy up graphics characters etc. 
convert_print_into_braille 
TABLE II (Continued.) 

RULE TABLE FOR TEXT TO STANDARD ENGLISH BRAILLE 
while not end_of_input 

end // of main program 
 
procedure convert_print_into_braille 

begin // turn print word into braille 
set current_state to 1 
set current_character to first character in word 

while still converting do // do the whole word 

begin 

set match to FALSE // initialize for the loop 
start search in rule table at rule defined by 

current_character 

repeat 

if focus_matches and state_ok and right_context_ok 
and left_context_ok then 

begin 

output right hand side of rule  // i.e. the text 
after the equals 
sign 

set current_state to new_state  // get new state 
from end of the 
rule 

e 
move along word by size of current rule focus 

set match to TRUE 

end 
else go to next rule 
if not match 
and new rule does not start with same letter as current_character 

then 

begin // no more rules for that character 
output current_character // so use default option 
set current_state to 1 
set match to TRUE // and output braille 

character 

end 

until match // keep going round until done current character 
set current_character to first character in word 

end // while still converting – keep going until done whole word 
end // of convert print into braille 

 

function focus_matches 

begin 

set match to TRUE 
set input_index to index into input_buffer position for current_character 
set rule_index to index start of focus for rule 

TABLE II (Continued.) 
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RULE TABLE FOR TEXT TO STANDARD ENGLISH BRAILLE 

do 

if input_buffer[input_index] != rule[rule_index] then // not got a 
match 

set match to FALSE 
increment rule_index // move along rule 
increment input_index // move along input 

while match and (rule[rule_index] != ’]’) // Note: ’]’ terminates focus 
return match 

end // of focus_matches 

 

function state_ok 
begin // nonzero entry fires state 

if decision_table[input_class of current rule, current_state] > 0 then 
return FALSE 

else 

return TRUE 
end; // of state_ok 

 

function left_context_ok // similar to right_context_ok below 

 

function right_context_ok 

begin 

set match to TRUE 
increment input_index // step over ’]’ 

do 

if rule[rule_index] is a wildcard then // ‘!’, ‘#’, ‘_’, ‘ ’, ‘|’, ‘‘’, ‘;’ or ‘+’ 

begin 

if not valid_wildcard_match then //see wildcard definitions-Appendix 3 
// Note: this will move along input buffer 

set match to FALSE // and increment input_index appropriately 
else do wildcard match // see wildcard definitions-Appendix 3 

end 

else 

begin 

if input_buffer[input_index] != rule[rule_index] then // not got a match 
set match to FALSE 
increment input_index // move along rule 

end 

increment rule_index // move along input 
while match and (rule[rule_index] != TAB) // Note: TAB terminates 

// right hand context of rule 
return match 

end // of right_context_ok 
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Appendix IV: Rule Table for Braille-to-Text Translation [40]: 

Rule format: input class <tab>[focus] right context =output<tab> next state 

   

1 [ ]=  1 
6 [ ]=  1 
1 [!MVS]=themselves 3 

3 [!]!: =the 5 
5 [!]= the 5 
1 [!]=the 3 

3 ["1] =" 1 
1 ["D]=day 3 
1 ["E]=ever 3 
1 ["F]=father 3 

1 ["HAF]=hereafter 3 
1 ["H]=here 3 
1 ["K]=know 3 

1 ["L]=lord 3 
1 ["M]=mother 3 
1 ["N]=name 3 
1 ["OF]=oneself 3 

1 ["O]=one 3 
1 ["P]=part 3 
1 ["Q]=question 3 

1 ["R]=right 3 
1 ["S]=some 3 
1 ["T]=time 3 
1 ["U]=under 3 

1 ["W]=work 3 
1 ["Y]=young 3 
1 ["!]=there 3 

1 ["*]=character 3 
1 ["?]=through 3 
1 [":]=where 3 
1 ["\]=ought 3 

1 ["]=" 1 
7 [#]=: 4 
6 [#]= 4 

4 [#]=ble 3 
1 [#']=' 4 
1 [#]= 4 
6 [$]=ed 3 

1 [$]=ed 3 
1 [%D]=should 3 
3 [%]: =shall 3 

6 [%]=sh 3 
1 [%]=sh 3 
1 [&/OR]=and/or 3 
3 [&]!: =and 5 

5 [&]= and 5 
6 [&]=and 3 
1 [&]=and 3 

1 ['''0]: =..." 3 
1 ['''8]: =...? 3 
1 [''']=... 2 
6 ['S]='s 2 

3 [']=' 2 
7 ['S]='s 2 
7 [']: =' 4 

7 [']=, 4 
6 [']=' 2 
4 [']=' 3 

3 [']=' 2 
1 [']=' 2 
1 [`]=` 2 
3 [(]!: =of 5 

5 [(]= of 5  
1 [(]=of 3 
3 [)]!: =with 5 

5 [)]= with 5 
1 [)]=with 3 
3 [*N]=children 3 
3 [*]: =child 3 

1 [*]=ch 3 
1 [+]=ing 3 
7 [,]=  1 

6 [,,]=<SHIFT_WORD> 6 
6 [,]=<SHIFT_CHAR> 6 
3 [,,]=<SHIFT_WORD> 1 
3 [,]=<SHIFT_CHAR> 1 

4 [,N]=ation 3 
4 [,Y]=ally 3 
6 [,8]=' 2 

3 [,8]=' 2 
3 [,7]=[ 1 
7 [,G]: = grammes 3 
3 [,G]: =grammes 3 

3 [,G]#=grammes 3 
7 [,M]: =metres 3 
3 [,M]: =metres 3 

6 [6]=! 1 
1 [6]=! 1 
1 [7']=] 3 

6 [7']=] 3 
2 [7]_=were 3 
3 [7]=( 2 

1 [7]: =) 3 
6 [7]: =) 3 
6 [7]=( 2 
4 [7]=gg 3 

1 [7]=( 1 
1 [8''']="... 2 
6 [8']=' 3 

1 [8']: =' 3 
2 [8] =his 3 
3 [8]=" 2 
6 [8]: =? 31

 [8]: =? 3 
6 [8]=" 1 
1 [8]=" 1 

6 [99]=* 1 
1 [99]=* 1 
3 [96]=into  1 
6 [9]=in 3 

1 [9]=in 3 
3 [:]: =which 3 
6 [:]=wh 3 

1 [:]=wh 3 
1 [;6]=+ 1 
1 [;_]=" 1 
1 [;8]=* 1 

1 [;4]=/ 1 
1 [;7]== 1 
4 [;E]=ence 3 

4 [;G]=ong 3 
4 [;L]=ful 3 
4 [;N]=tion 3 
4 [;S]=ness 3 

4 [;T]=ment 3 
4 [;Y]=ity 3 
6 [;]= 6 

1 [;]= 6 
6 [<]=gh 3 
1 [<]=gh 3 
6 [>]=ar 3 

1 [>]=ar 3 
1 [?YF]=thyself 3 
3 [?]: =this 3 

6 [?]=th 3 
1 [?]=th 3 
1 [@4]!=$ 3 
6 [@]=' 1 

1 [@]=' 1 
7 [A]=1 4 
6 [A]=a 6 

3 [ABV]=above 3 
3 [AB]: =about 3 
1 [ACLY]=accordingly 3 

3 [AC]: =according 3 
3 [ACR]: =across 3 
3 [AF]B=after 3 
3 [AF]G=after 3 

3 [AF-]=lafter- 1 
3 [AFN]=afternoon 3 
3 [AFW]=afterward 3 

3 [AF]?=after 3 
3 [AF]M=after 3 
3 [AF]D=after 3 
1 [AF]: =after 3 

3 [AG/]=against 3 
3 [AG]: =again 3 
3 [ALM]: =almost 3 

3 [ALR]: =already 3 
3 [AL]: =also 3 
3 [AL?]: =although 3 
3 [ALT]: =altogether 3 

3 [ALW]: =always 3 
1 [A4M4]=a.m. 3 
3 [A]!: =a 5 

5 [A]= a 5 
1 [A]=a 3 
7 [B]=2 4 
6 [B]=b 6 

3 [BLLY]: =blindly 3 
3 [BL]F=blind 3 
3 [BL;S]: =blindness 3 

1 [I]=i 3 
7 [J]=0 4 
6 [J]=j 6 

3 [J]: =just 3 
1 [J]=j 3 
6 [K]=k 6 

3 [KC/S#]=kilocycles/s 4 
7 [KC/S]: = kilocycles/s 3 
3 [KC/S]: =kilocycles/s 3 
1 [KC#]=kilocycles 4 

7 [KC]: = kilocycles 3 
3 [KC]: =kilocycles 3 
3 [KW#]=kilowatts 4 

7 [KW]: = kilowatts 3 
3 [KW]: =kilowatts 3 
3 [K]: =knowledge 3 
1 [K]=k 3 

6 [L]=l 63 
 [LR]=letter 3 
3 [LL]A=ll 3 

3 [LL]E=ll 3 
3 [LL]I=ll 3 
3 [LL]O=ll 3 
3 [LL]U=ll 3 

3 [LL]=little 3 
3 [LB#]=pounds 4 
7 [LB]: = pounds 3 

3 [LB]: =pounds 3 
3 [L]: =like 3 
1 [L]=l 3 
6 [M]=m 6 

1 [M*]=much 3 
1 [M/]=must 3 
1 [MYF]=myself 3 

3 [MN#]=minutes 4 
3 [MN]: =minutes 3 
3 [MC/S#]=megacycles/s 4 
7 [MC/S]: = megacycles/s 3 

3 [MC/S]: =megacycles/s 3 
3 [MC#]=megacycles 3 
7 [MC]: = megacycles 3 

3 [MC]: =megacycles 3 
3 [M#]=miles 4 
3 [M]: =more 3 
1 [M]=m 3 

6 [N]=n 6 
1 [NEC]: =necessary 3 
3 [NEI]: =neither 3 

1 [NEWSLR]=newsletter 3 
3 [N]: =not 3 
1 [N]=n 3 
6 [O]=o 6 

3 [OZ#]=ounces 4 
7 [OZ]: =ounces 3 
3 [OZ]: = ounces 3 

3 [O'C]=o'clock 3 
1 [O]=o 3 
6 [P]=p 6 

1 [PD]: =paid 3 
1 [P}CVG]=perceiving 3 
1 [P}CV]=perceive 3 
1 [P}H]=perhaps 3 

3 [PT#]=pt 4 
3 [PT]: =pt 3 
3 [P>#]=paragraph 4 

7 [P>]: = paragraph 3 
3 [P>]: =paragraph 3 
1 [P4M4]=p.m. 3 
3 [P#]=p. 4 

3 [P]: =people 3 
1 [P]=p 3 
6 [Q]=q 6 

1 [QT#]=quarts 4 
7 [QT]: = quarts 3 
3 [QT]: =quarts3 
1 [QR#]=quaters 4 

7 [QR]: = quaters 3 
3 [QR]: =quaters 3 
1 [QK]=quick 3 

3 [Q]: =quite 3 
1 [Q]=q 3 
6 [R]=r 6 
1 [R4I4P4]=r.i.p 3 

1 [RCVG]=receiving 3 
1 [RCV]=receive 3 
1 [RJCG]=rejoicing 3 
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3 [,M]#=metres3 
7 [,L]: =litres 3 
3 [,L]: =litres 3 

3 [,L]#=litres 3 
1 [,,]=^^ 1 
1 [,]=^ 1 

7 [--]=- 2 
6 [--]=- 2 
1 [----]=---- 3 
1 [--]= -- 2 

7 [-]=- 4 
6 [-]~: =- 6 
4 [-]=- 2 

3 [-]=com 3 
1 [-]=- 2 
4 [.D]=ound 3 
4 [.E]=ance 3 

4 [.N]=sion 3 
4  [.S]=less 3 
4 [.T]=ount 3 

1 [.1]=> 3 
1 [.]=_ 1 
7 [/]#=/ 4 
7 [/]: =st 3 

3 [/]: =still 3 
6 [/;]=/ 6 
6 [/]=st 3 

1 [/]=st 3 
4 [0']=' 3 
2 [0]_=was 3 
3 [0]=by  1 

6 [0]=" 3 
1 [0]: =" 3 
1 [0]=" 1 

7 [1] =, 4 
7 [1]=. 4 
1 [1]: =, 3 
6 [1]=, 3 

4 [1]=ea 3 
1 [1]=, 1 
3 [2C]: =because 3 

3 [2F]H=before 3 
3 [2F]: =before 3 
3 [2H]H=behind 3 
3 [2H]: =behind 3 

3 [2LL]: =belittle 3 
3 [2L]: =below 3 
3 [2N]: =beneath 3 

3 [2SS]: =besides 3 
3 [2S]: =beside 3 
3 [2T]: =between 3 
3 [2Y]: =beyond 3 

3 [2]=be 3 
6 [2]=; 3 
1 [2]: =; 3 

4 [2]=bb 3 
1 [2]=; 1 
1 [3CVG]=conceiving 3 
1 [3CV]=conceive 3 

1 [3P#]=per cent 4 
7 [3P]= per cent 4 
1 [3P]=per cent 3 

1 [3#]=: 4 
6 [3]=: 3 
1 [3]: =: 3 
4 [3]=cc 3 

3 [3]=con 3 
1 [3]=: 1 
3 [4#]=dollars 4 

7 [4] =. 3 
6 [4]=. 6 
1 [4]: =. 3 
4 [4]=dd 3 

3 [4]=dis 3 
1 [4]=. 1 
3 [5]: =enough 3 

6 [5]=en 3 
1 [5]=en 3 
3 [6]=to  1 
1 [6]: =! 3 

4 [6]=ff 3 
 

1 [BL]M=blind 3 
3 [BL]: =blind 3 
1 [BRL]=braille 3 

3 [B]: =but 3 
1 [B]=b 3 
7 [C]=3 4 

6 [C]=c 6 
1 [C/O]=c/o 3 
3 [CW#]=hundredweight 4 
7 [CW]: = hundredweight 3 

3 [CW]: =hundredweight 3 
3 [CD]=could 3 
3 [C#]=cents 4 

3 [C]: =can 3 
1 [C]=c 3 
7 [D]=4 4 
6 [D]=d 6 

1 [DCVG]=deceiving 3 
1 [DCV]=deceive 3 
1 [DCLG]=declaring 3 

3 [DCL]=declare 3 
3 [DM#]=dm 4 
3 [DM]: =dm 3 
7 [DM]: = dm 3 

3 [DG#]=degrees 4 
7 [DG]: = degrees 3 
3 [DG]: =degrees 3 

3 [D#]=pence 4 
3 [D]: =do 3 
1 [D]=d 3 
7 [E]=5 4 

6 [E]=e 6 
3 [EI]: =either 3 
3 [EX#]=ex 4 

7 [EX]: = example 3 
3 [EX]-=ex 3 
3 [EX]: =example 3 
7 [EXS]: = examples 3 

3 [EXS]: =examples 3 
1 [E4G4]=e.g. 3 
3 [E]: =every 3 

1 [E]=e 3 
7 [F]=6 4 
6 [F]=f 6 
3 [F/]=first 3 

1 [FRS]=friends 3 
1 [FR]L=friend 3 
1 [FR]: =friend 3 

3 [FT#]=feet 4 
7 [FT]: = feet 3 
3 [FT]: =feet 3 
3 [F#]=francs 4 

3 [F]: =from 3 
1 [F]=f 3 
7 [G]=7 4 

6 [G]=g 6 
3 [GD]=good 3 
1 [GRT]=great 3 
3 [GL#]=gallons 4 

7 [GL]: = gallons 3 
3 [GL]: =gallons 3 
3 [G#]=guineas 4 

3 [G]: =go 3 
1 [G]=g 3 
7 [H]=8 4 
6 [H]=h 6 

3 [H}F]=herself 3 
3 [HMF]=himself 3 
3 [HMM]=hmm 3 

3 [HM]=him 3 
3 [HR#]=hours 4 
3 [HR]: =hours 3 
3 [H]: =have 3 

1 [H]=h 3 
7 [I]=9 4 
6 [I]=i 6 

1 [IMM;S]=immediateness 3 
1 [IMMLY]=immediately 3 
3 [IMM] =immeiate 3 
1 [I4E4]=i.e. 3 

3 [I#]=inches 4 
 

1 [RJC]=rejoice 3 
3 [R#]=rupees 4 
3 [R]: =rather 3 

1 [R]=r 3 
6 [S]=s 6 
1 [SD]: =said 3 

1 [S*]: =such 3 
3 [ST#]=stones 4 
7 [ST]: = stones 3 
3 [SE#]=seconds 4 

3 [SE]: =seconds 3 
3 [S#]=shillings 4 
3 [S'#]=section 4 

3 [S]: =so 3 
1 [S]=s 3 
6 [T]=t 6 
3 [TD]=today 3 

3 [TGR]=together 3 
3 [TM]=tomorrow 3 
3 [TN]=tonight 3 

3 [T#]=tons 4 
3 [T]:=that 3 
1 [T]=t 3 
3 [U4K4]=U.K. 6 

6 [U]=u 6 
3 [U]: =us 3 
1 [U]=u 3 

6 [V]=v 6 
3 [V]: =very 3 
1 [V]=v 3 
6 [W]=w 6 

3 [WD]=would 3 
3 [W]: =will 3 
1 [W]=w 3 

6 [X]=x 6 
3 [XS]: =its 3 
1 [XF]=itself 3 
3 [X]:=it 3 

1 [X]=x 3 
6 [Y]=y 6 
1 [YRF]=yourself 3 

1 [YRVS]=yourselves 3 
3 [YR]=your 3 
3 [YD#]=yards 4 
7 [YD]: = yards 3 

3 [YD]: =yards 3 
3 [Y]:=you 3 
1 [Y]=y 3 

6 [Z]=z 6 
3 [Z]: =as 3 
1 [Z]=z 3 
1 [\RVS]=ourselves 3 

3 [\]: =out 3 
6 [\]=ou 3 
1 [\]=ou 3 

1 [^U]=upon 3 
1 [^W]=word 3 
1 [^!]=these 3 
1 [^?]=those 3 

1 [^:]=whose 3 
1 [^]=` 1 
1 [_C]=cannot 3 

1 [_H]=had 3 
1 [_M]=many 3 
1 [_S]=spirit 3 
1 [_W]=world 3 

1 [_!]=their 3 
6 [_]=_ 1 
1 [_]=_ 1 

1 [{O]=. 3 
6 [[]=ow 3 
1 [[]=ow 3 
3 [=]!: =for 5 

5 [=]= for 5 
6 [=]=for 3 
1 [=]=for 3 

6 []]=er 3 
1 []]=er 3 
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Appendix V: VHDL Coding For Text-to-Braille Translation 

Included in the companion CD 

 

Appendix VI: VHDL Coding For Fast Text-to-Braille Translation   

Included in the companion CD 

 

Appendix VII: VHDL Coding For Braille Notetaker  

Included in the companion CD 

 


