

Department of Electrical and Computer Engineering

Hardware-Based Text-to-Braille Translation

Xuan Zhang

This thesis is presented for the Degree of

Master of Engineering

of

Curtin University of Technology

July 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195632037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

To the best of my knowledge and belief this thesis contains no material previously

published by any other person except where due acknowledgment has been made.

This thesis contains no material which has been accepted for the award of any other

degree or diploma in any university.

Signature:

Date:

 I

Abstract

Braille, as a special written method of communication for the blind, has been

globally accepted for years. It gives blind people another chance to learn and

communicate more efficiently with the rest of the world. It also makes possible the

translation of printed languages into a written language which is recognisable for

blind people. Recently, Braille is experiencing a decreasing popularity due to the use

of alternative technologies, like speech synthesis. However, as a form of literacy,

Braille is still playing a significant role in the education of people with visual

impairments. With the development of electronic technology, Braille turned out to be

well suited to computer-aided production because of its coded forms. Software based

text-to-Braille translation has been proved to be a successful solution in Assistive

Technology (AT). However, the feasibility and advantages of the algorithm

reconfiguration based on hardware implementation have rarely been substantially

discussed. A hardware-based translation system with algorithm reconfiguration is

able to supply greater throughput than a software-based system. Further, it is also

expected as a single component integrated in a multi-functional Braille system on a

chip. Therefore, this thesis presents the development of a system for text-to-Braille

translation implemented in hardware. Differing from most commercial methods, this

translator is able to carry out the translation in hardware instead of using software.

To find a particular translation algorithm which is suitable for a hardware-based

solution, the history of, and previous contributions to Braille translation are

introduced and discussed. It is concluded that Markov systems, a formal language

theory, were highly suitable for application to hardware based Braille translation.

Furthermore, the text-to-Braille algorithm is reconfigured to achieve parallel

processing to accelerate the translation speed. Characteristics and advantages of Field

 II

Programmable Gate Arrays (FPGAs), and application of Very High Speed Integrated

Circuit Hardware Description Language (VHDL) are introduced to explain how the

translating algorithm can be transformed to hardware. Using a Xilinx hardware

development platform, the algorithm for text-to-Braille translation is implemented

and the structure of the translator is described hierarchically.

 III

Key words

Braille translation, Assistive technology, Markov theory, Algorithm reconfiguration,

FPGA, VHDL

 IV

Acknowledgements

I would like to thank my supervisor, Cesar Ortega-Sanchez, and co-supervisor, Iain

Murray, for their continued help and direction. Without them, it would have been

difficult for me to achieve all that I have done. I also want to say thanks to Dr.

Jonathen K. Millen, a friend from America. The technical report on DOTSYS II he

supplied was very helpful and important for this research project. Thanks to Leigh

Harrison, for his support in designing the Braille keyboard.

 V

Nomenclature

AT Assistive Technology

FPGA Field Programmable Gate Array

VHDL Very high speed integrated circuit Hardware Description Language

ICEB International Council on English Braille

UEB Unified English Braille

ASCII American Standard Code for Information Interchange

FSM Finite State Machine

WHO World Health Organization

DFA Deterministic Finite Acceptor

PLD Programmable Logic Device

RAM Random Access Memory

PROM Programmable Read-Only Memory

EPROM Erasable Programmable Read Only Memory

PLA Programmable Logic Array

FPLA Field-Programmable Logic Array

PAL Programmable Array Logic

SPLD Simple Programmable Logic Device

CPLD Complex Programmable Logic Device

FPD Field-Programmable Devices

MPGA Mask-Programmable Gate Arrays

NRE Non-Recurring Engineering

IC Integrated Circuits

ASIC Application Specific Integrated Circuits

LUT Look-up Table

CLB Configurable Logic Block

MUX Multiplexer

ALU Arithmetic Logic Unit

EMI Electromagnetic Interference

RC Reconfigurable Computing

IEEE Institute of Electrical and Electronics Engineers

RTL Register Transfer Level

UDM-PD Universal Design Methodology for Programmable Devices

UART Universal Asynchronous Receiver/Transmitter

SOC System On Chip

 VI

Table of Contents

HARDWARE BASED TEXT-TO-BRAILLE TRANSLATION .. I

ABSTRACT... I

KEY WORDS...III

ACKNOWLEDGEMENTS... IV

NOMENCLATURE...V

TABLE OF CONTENTS...VI

TABLE OF FIGURES..VIII

TABLES.. IX

1. INTRODUCTION .. 1

2. BACKGROUND OF BRAILLE.. 4

2.1 OVERALL DESCRIPTION ... 4
2.2 CODING DIFFICULTIES IN GRADE 2 BRAILLE ... 7

3. TRANSLATION ALGORITHM .. 12

3.1 BASIC CONCEPTS ... 12
3.2 FINITE STATE MACHINE (FSM) ... 14
3.3 MARKOV SYSTEM .. 18

3.3.1 Definition.. 18
3.3.2 DOTSYS II: Finite-State Syntax-Directed Braille Translation..................................... 22
3.3.3 Slaby’s System .. 31
3.3.4 Paul Blenkhorn’s System.. 37
3.3.5 Braille-to-Text Translation... 41

4. FPGA AND VHDL INFORMATION... 44

4.1 ABOUT FPGAS .. 44
4.1.1 Evolution of Programmable Logic ... 44
4.1.2 Architecture of Xilinx FPGAs... 47
4.1.3 FPGAs vs. ASICs.. 51
4.1.4 Parallel Processes on FPGAs .. 53

4.2 VHDL ... 55

5. TEXT-TO-BRAILLE TRANSLATION BASED ON HARDWARE................................... 58

5.1 UNIVERSAL DESIGN METHODOLOGY FOR PROGRAMMABLE DEVICES (UDM-PD)............ 58
5.2 TEXT-TO-BRAILLE TRANSLATION.. 59

5.2.1 System Specification and Tools Selection... 59
5.2.2 Design .. 63
5.2.3 Implementation and Test .. 71

5.3 FAST TEXT-TO-BRAILLE TRANSLATION... 74
5.3.1 Algorithm.. 74
5.3.2 Architecture.. 76
5.3.3 Implementation and Results ... 80

5.4 BRAILLE-TO-TEXT TRANSLATION.. 86
5.4.1 Architecture.. 86
5.4.2 Braille Keyboard .. 90
5.4.3 Implementation and Test .. 96

5.5 SYSTEM INTEGRATION: A SYSTEM FOR TEXT-TO-BRAILLE TRANSLATION 99

6. CONCLUSIONS... 103

7. REFERENCES ... 107

8. APPENDIX ... 115

 VII

APPENDIX I: BRAILLE ASCII SET... 115
APPENDIX II: RULE TABLE FOR TEXT-TO-BRAILLE TRANSLATION [37]... 117
APPENDIX III: TRANSLATION ALGORITHM USING STRUCTURED ENGLISH [37] [40]...................... 122
APPENDIX IV: RULE TABLE FOR BRAILLE-TO-TEXT TRANSLATION [40]: 124
APPENDIX V: VHDL CODING FOR TEXT-TO-BRAILLE TRANSLATION ... 126
APPENDIX VI: VHDL CODING FOR FAST TEXT-TO-BRAILLE TRANSLATION 126

 VIII

Table of Figures

FIGURE 1. BRAILLE CELL... 5
FIGURE 2. SINGLE-CELL LETTER CODES IN BRAILLE .. 5
FIGURE 3. SOME CONTRACTED CODES IN GRADE 2 BRAILLE... 7
FIGURE 4. TRANSITION GRAPH.. 16
FIGURE 5. A DFA OF RECOGNISING SEVERAL STRINGS .. 17
FIGURE 6. THE TEN-CHARACTER BUFFER .. 23
FIGURE 7. CONTENTS IN THE BUFFER AFTER TRANSLATING GOOD................................. 24
FIGURE 8. FORMAT FOR CONTRACTION TABLE ENTRIES .. 25
FIGURE 9. CONTRACTION TABLE ENTRY FOR EA... 25
FIGURE 10. TRANSITION TABLE... 28
FIGURE 11. TRANSLATION ALGORITHM OF SEGMENT TRANSLATION SYSTEM 35
FIGURE 12.STRUCTURE OF A FPGA... 47
FIGURE 13.SRAM-CONTROLLED PROGRAMMABLE SWITCHES... 48
FIGURE 14.FPGA CONFIGURABLE LOGIC BLOCK (CLB)... 49
FIGURE 15. RECONFIGURABLE ARCHITECTURE IN A FPGA AND SEQUENTIAL

ARCHITECTURE IN MICROPROCESSOR.. 54
FIGURE 16. DESIGN FLOW OF UDM ... 59
FIGURE 17. EXTERNAL BLOCK DIAGRAM... 61
FIGURE 18. INTERNAL BLOCK DIAGRAM OF THE TRANSLATOR.. 62
FIGURE 19. MEMEC VIRTEX-4 FX12 LC FPGA DEVELOPMENT BOARD 63
FIGURE 20. BLOCK DIAGRAM OF TEXT TO BRAILLE TRANSLATOR 64
FIGURE 21. BEHAVIOURAL SIMULATION FOR TRANSLATING A STRING “SHOULD ”.... 66
FIGURE 22. POST PLACE AND ROUTE SIMULATION FOR TRANSLATION A STRING

“SHOULD AND ”.. 70
FIGURE 23. BLOCK DIAGRAM OF TEXT-TO-BRAILLE TRANSLATOR.................................. 76
FIGURE 24. TRANSLATING IN PARALLEL.. 77
FIGURE 25. A LOOK-UP TABLE TO 2 OUTPUT PORTS.. 78
FIGURE 26. BLOCK DIAGRAM OF A TRANSLATING CELL ... 79
FIGURE 27. BEHAVIOURAL SIMULATION FOR TRANSLATING A STRING “ACROSS ” IN

PARALLEL.. 83
FIGURE 28.BEHAVIOURAL SIMULATION FOR TRANSLATING A STRING “ACROSS ” IN

SEQUENTIAL ... 84
FIGURE 29. BLOCK DIAGRAM OF BRAILLE-TO-TEXT TRANSLATOR.................................. 87
FIGURE 30. POST-PLACE-AND-ROUTE SIMULATION FOR TRANSLATING A STRING

“ABV ” ... 89
FIGURE 31. SCHEMATIC OF BRAILLE KEYBOARD .. 91
FIGURE 32. LAYOUT OF BRAILLE KEYBOARD ... 92
FIGURE 33. A PROCESS OF SCANNING THE FIRST COLUMN OF KEYS 93
FIGURE 34. BOUNCING PROCESS FOR A PUSHBUTTON ... 93
FIGURE 35. BLOCK DIAGRAM OF KEYBOARD CONTROLLER... 94
FIGURE 36. STATE DIAGRAM FOR THE KEYBOARD CONTROLLER 95
FIGURE 37. SCHEMATIC DIAGRAM FOR THE BRAILLE NOTETAKER 97
FIGURE 38. TESTING SYSTEM OF BRAILLE NOTETAKER .. 98
FIGURE 39. BLOCK DIAGRAM OF BI-DIRECTIONAL TRANSLATOR................................... 101
FIGURE 40. BLOCK DIAGRAM OF THE TRANSLATING AND NOTETAKING SYSTEM 102
FIGURE 41. MULTI-FUNCTIONAL BRAILLE SYSTEM... 106

 IX

Tables

TABLE 1. CHRONOLOGICAL FORM OF THE TRANSLATION ALGORITHM AS LOOP OF
FIVE STEPS... 23

TABLE 2. STATE VARIABLES .. 26
TABLE 3. INPUT CLASS... 27
TABLE 4. EFFECT OF INPUT CLASSES ON STATE VARIABLES, AS SPECIFIED BY

TRANSITION TABLE ENTRIES ... 28
TABLE 5. DECISION TABLE FORMAT.. 28
TABLE 6. STATE, INPUT CLASS, AND DECISION TABLE I .. 38
TABLE 7. FRAGMENT OF RULE TABLE.. 40
TABLE 8. STATE, INPUT CLASS, AND DECISION TABLE II ... 42
TABLE 9. DEVICE UTILIZATION SUMMARY (VIRTEX-4 XC4FX12)....................................... 71
TABLE 10. ORIGINAL TEXT AND TRANSLATIONS GENERATED BY SOFTWARE AND BY

HARDWARE ... 73
TABLE 11. TIMING COMPARISON BETWEEN FPGA AND MICROCONTROLLER................ 74
TABLE 12. TIMING COMPARISON BETWEEN SEQUENTIAL AND PARALLEL METHODS 85
TABLE 13.RESOURCE OCCUPATION OF FAST BRAILLE TRANSLATION 86
TABLE 14. DEVICE UTILIZATION SUMMARY (SPARTAN-3 XC3S400) 99

 1

1. Introduction

According to the latest statistical data on the magnitute of blindness and visual

impairment from World Health Organization (WHO), more than 161 million people

around the world were visually impaired, of whom 124 million people had low

vision and 37 million were blind [1]. Many of them rely on Braille as a tool of

learning and communication. Although Braille dots still do not resemble print letters,

Braille has been adapted to almost every language in the world and remains the

major medium of literacy for blind people everywhere [2]. Since Louis Braille

published his first embossed Braille book in 1829, millions of books have been

published in Braille for people with visual impairment [3].

Recently, Braille is suffering descreasing popularity due to the use of alternative

technologies, like speech synthesis [4]. However, as a form of literacy, Braille is still

playing a significant role in the education of people with visual impairments. On the

other hand, reading straight from the text can avoid potential errors or problems like

indecipherable meanings or misspelling caused by speech synthesis. Therefore,

Braille should still be a critical part of blind education and culture [5].

Automatic Braille Translation is a popular topic in the AT of visual impairment and

has been wildly discussed and analysed since 1960s [6-8]. Currently, there are some

commercially available programs and other computer-assisted applications which

specialise in Braille translation. Some of these use personal computers to achieve

translation and other functions, such as Duxbury, the most popular multi-language

Braille translation software [8]. In this case, the speed of translation tends to be

strongly related to particular computers utilised in the process. This kind of software

is mainly designed for users with nomal eyesight, so it has low accessibility for

 2

visually impaired users and are used by transcribers translating existing print texts.

They have to read the computer screen by using some AT tools, such as screen-

reading software or Braille displays. There are also some portable devices specially

designed for blind users which can perform text-to-Braille translation, such as

Mountbatten Brailler [9]. These devices are based on a microcontroller running a

translating program. As a small computer on a chip, a microcontroller is also able to

perform multi-functional tasks, however, because a microcontroller is designed for

general purposes, and the operations are based on sequential executions of

instructions [10], therefore it may not be fast enough to perform mass translations of

text documents. However, the advent of FPGAs made it possible to build a faster and

stable hardware-based translation system which can also be integrated into a portable

device, at a more affordable cost when compared to personal computers. To do this,

the translating algorithm needs to be reconfigured so that the design can be applied to

a parallel architecture in FPGAs. A hardware based translation system implemented

in a FPGA is able to work as a single component, supplying greater throughput, and

it also can be used as a module which is integrated in a universal Braille embedded

system on a chip (SOC), supplying multi-functions. All of these components of the

SOC will be integrated in one FPGA.

In Chapter 2, some history about Braille will be presented and the main difficulties

for text-to-Braille translation are discussed. In Chapter 3, the text-Braille translation

problem is discussed using formal language. Furthermore, several translation systems

are given and comparisons are made to find out an applicable method of

implementing hardware-based Braille translation. In Chapter 4 some essential

knowledge of FPGAs including structures and some important characteristics will be

presented. Also, another powerful tool, VHDL is introduced. Based on the

 3

information presented in Chapter 2, 3 and 4, a hardware based solution for Braille

translation is discussed in Chapter 5. An implementation of fast translation based on

FPGAs is explained, and some test results are included as well in this section. This

section also includes how a text-to-Braille translator is integrated. Some conclusions

and possibilities for future work are given in Chapter 6.

 4

2. Background of Braille

2.1 Overall Description

The history of Braille can be traced back to the 1800s. The following text illustrates

the origins of Braille, and it was published on the website of the Duxbury Systems

Company [8]. “It was a French army captain, Charles Barbier de la Serre, who

invented the basic technique of using raised dots for tactile writing and reading. His

original objective was to allow soldiers to compose and read messages at night

without illumination. Barbier later adapted the system and presented it to the

Institution for Blind Youth, hoping that it would be officially adopted there. He

called the system Sonography, because it represented words according to sound

rather than spelling. However, Barbier's system was too complex for soldiers to learn.

Based on Barbier’s system, in 1821, the young Frenchman, Louis Braille developed

the system known as Braille that is widely used by blind people to read and write”.

Each Braille character or "cell" is made up of 6 dot positions, shown in Figure 1,

arranged in a rectangle comprising 2 columns of 3 dots each [11-13]. A dot may be

raised at any of the 6 positions, so, counting the space, in which no dot is raised,

there are 64 such combinations in total (that is, 2 to the power of 6). “There is no

intentional relation between the arrangement of dots in a cell and the shape of the

corresponding ink-print character” [11]. “For reference purposes, a particular

combination may be described by naming the positions where dots are raised, the

positions being universally numbered 1 through 3 from top to bottom on the left, and

4 through 6 from top to bottom on the right.” For example, dots 1-3-4 would describe

a cell with three dots raised, at the top and bottom in the left column and on top of

the right column [8].

 5

Figure 1. Braille Cell

The original Braille is a quite straightforward dots system which includes characters

for each letter of the alphabet, punctuation marks, and numerals. This corresponds to

Grade 1 Braille, where there is nearly a one-to-one correspondence between letters

and Braille cells. Figure 2 [14] shows several single-cell letter codes.

Figure 2. Single-Cell Letter Codes in Braille

Although it is clearly easy to transcribe Braille by simply substituting the equivalent

Braille character for its printed equivalent using Grade 1 Braille, such a character-by-

character transcription is used only by beginners [5] [12] [15] and the process is

significantly time-consuming. On the other hand, “the size of the Braille cell is such

that only about 25 lines of about 40 cells each, that is 1000 characters, can fit on a

page of the usual size, which is the size of A4 page. This contrasts with the 3500 or

so characters that will fit on a standard, smaller, typed page. Moreover, Braille paper

must be much heavier to hold the dots, and the dots themselves considerably increase

 6

the effective thickness of a page [13]. The result is that paper Braille is very bulky.

To mitigate this problem somewhat, most larger Braille books are published in

"interpoint", that is with the embossing done on both sides of each sheet, with a

slight diagonal offset to prevent the dots on the two sides from interfering with each

other. But even in interpoint, a standard desk dictionary is likely to occupy a whole

bookcase in Braille” [8].

Partly because of the bulk problem, and partly to improve the speed of writing and

reading, the literary Braille codes for English and many other languages employ

"contractions" that substitute shorter sequences for the full spelling of commonly-

occurring letter groups. When contractions are used, the Braille is usually called

"Grade 2," in contrast to "Grade 1" transcriptions where all words are spelled out

letter-for-letter. In English-language Braille, for which 189 contractions have been

developed, almost all Braille is written in Grade 2 [17]. Therefore, many Braille cells

have multiple meanings. For example, the same cell which stands for the word “but”

also means the single letter ‘b’. Some examples of Grade 2 Braille cells are shown in

Figure 3. Grade 2 Braille can contain more information, and therefore it can be read

and produced much faster than Grade 1 Braille [14].

 7

B BUT

C CAN

D

P

DO

PEOPLE

Q QUITE

Grade 1 Grade 2

Figure 3. Some contracted codes in Grade 2 Braille

Grade 2 Braille, although an effective way for the blind to learn and communicate,

had not been accepted and utilised widely. One reason is Grade 2 Braille has

complex rules about how to use contractions, and also because translation between

Braille and text was very time-consuming and expensive [16]. But with the

development of digital technology and innovations in Braille education, Grade 2

Braille has been accepted as one of most important ways for the blind to learn and

communicate.

2.2 Coding Difficulties in Grade 2 Braille

Controversies continued for years among Braille rule makers which concentrated on

the strings of letters to be contracted and those particular rules for specifying

contractions [11]. Some of them insisted that particular strings of letters should

 8

always be contracted, regardless of the context or syllable boundaries; while the

other group, argued that constraints of syllable boundaries must be considered. For

instance, the string “dis” should only be used when these letters form the first

syllable of a word, so this string will be contracted in the word “distrust”, but will be

separated in “dish”. Another example is that the rules for "syllabification" would not

allow the "ea" letter string in "react" to be contracted, whereas the "sequence"

proponents would allow the contraction.

However, researchers realised that the necessity for a unified English Braille coding

system could not be ignored, because the unified Braille is able to harmonise literary

and technical codes into a systematic representation of print characters by unique and

unambiguous Braille symbols [18][21]. Therefore, the International Council on

English Braille (ICEB) was established in 1991 to develop the Unified English

Braille (UEB). “In April 2004, the ICEB General Assembly declared Unified English

Braille to be substantially complete and that it could be recognized as an

international standard and considered for adoption by individual countries” [18]. If

sequence rules are used, and syllable constraints are ignored, Braille translation

becomes straightforward and easily implemented. However, in both British and

American Braille syllabification was put into consideration [18] [19]. It resulted in a

more complex system and a big increase in translation rules. Therefore context

sensitivity becomes a very important characteristics of Grade 2 Braille [5] [20].

The main reason for using syllable constraints is that these linguistic units can easily

be recognised as function units, which are helpful for the blind in comprehending

Braille codes. Generally, these syllable units are of two types. Some are morphs, or

basic lexical units of the language [11]. These include prefixes (com-, be-, mini-);

roots, both free and bound (snow, boat, house, -turb, -ceive); derivational suffixes

 9

which affect the meaning of a word (-dom, -ness, -ship, -al) and inflectional suffixes,

which affect the grammatical role of a word (-s, -ed, -ing). The second type of

linguistic unit which is contracted is the cluster. There are both consonant clusters (st,

sh, ch, chr, fth) and vowel clusters (ea, ou, ai). Many of these units are also

contracted in Braille [11].

Because of the complexities of defining Grade 2 Braille rules, the translation

between text and Braille becomes very difficult to implement. Generally, the rules

are based on the position of a letter sequence in a word, pronunciation of the letter

string, and syllabification of the word.

According to the British Grade 2 Braille rules, letters of the alphabet are also used in

Braille to represent whole words; these are referred to as “wordsigns” [14]. As

shown in Figure 3, the Braille cell for the letter ‘b’ is also a wordsign standing for

“but”. In this particular case, the introduction of a wordsign will not increase any

difficulties in translation. However, some cells representing contractions also can be

used as wordsigns. For instance, the contraction “ch” is also a wordsign for “child”.

The contraction “th” also means “this”. In this case, priorities between contraction

strings and wordsigns have to be differentiated. Another example of priority

difficulties is with the contraction “th” and wordsign “the”. Here, capital letters are

used indicating strings to be contracted. When “th” appears in the word “THEn”,

instead of using “th”, “the” has to be used. Another example is that the contraction

“ou” is also used as a wordsign: it stands for “out”, but it may only be used where it

represents the whole word and where no other letters are added to it. Therefore, “out”

can be treated as wordsign but “outside” cannot.

In British Grade 2 Braille, most wordsigns have a higher priority than letters of the

alphabet [14]. However, there are some particular cases where wordsigns may not be

 10

used. Wordsigns “to”, “into”, and “by”, for instance, may only be expressed by their

respective wordsigns when they can be written adjoining a word that follows; where

no word immediately follows, or where a word does follow but the sense does not

permit this joining up, they may not be expressed by wordsigns. Therefore, in the

following instances “to” and “by” must be written out, and “into” written “INto”:

• where any one of these words occurs at the end of a Braille line, or

immediately before a punctuation mark;

• where any one of these words is followed by a conjunction, such as “and”,

“or”, etc. For example “to and for”, “by and by”, or “by and large”;

• where the sense indicates that a slight pause is made after any one of these

words, even though there is no comma to mark it;

• where any one of these words is joined to another word by a hyphen to form a

compound word.

The main difficulty of Grade 2 Braille is in relation to the usage of string

contractions. Some string contractions are related to their positions in a word. For

instance, contractions “er”, “ed”, and “ou” can be used in any part of a word. Yet,

“ing”, and “ble” may be used in any part of a word except at the beginning of the

word. Contractions “be”, “con”, “dis”, and “com” may only be used when they form

the first syllable at the beginning of a word. Syllable boundaries are another

important elements which are considered in determining string contractions. The

same example can be used: "be", "con", and "dis" can be contracted only if they

relate to syllables at the beginning of a word. Thus “CONcept”, but not “cone”;

“DISturb”, but not “disc”, “Berate”, but not “bell”. Another example is the

contraction “ea”: “lEAd” can be contracted, but “react” can not.

 11

There are cases where two contractions overlap, a particular contraction has to be

carefully chosen . For example, in words containing the letters “THEd” and “THEr”,

the contraction “the” is used in preference to the contraction “th” and “ed” or “er”.

The contraction “ea” is always to be used in preference to “ar”, except when “ea”

occurs at the beginning of a word. Thus, not fEAr, but feAR, not lEArn, but leARn.

Some general contraction rules are appended as a guide to their use. In the examples

given below, the letters that may not be contracted are italicised, the contractions are

written as capitals:

Contractions may not be used:

• to bridge the components of a compound word, as, cARthorse.

• to bridge a prefix to an English root word, as, readmit, or preARange.

• which would upset the usual pronunciation of syllables, as, asTHma.

There are other aspects of written language that create complexity in Braille as well.

It is difficult for blind people to detect numbers and capitalised letters, because each

single Braille code normally has several representations. Therefore, compound

punctuation signs are used to denote particular punctuation, or special characters

such as numbers or single letters. For instance, in Braille, letters used for special

purposes, such as to denote Roman Numbers, or to designate persons or objects,

must be immediately preceded by the Letter Sign, in order to show that they are

being so used, and not as wordsign. Arabic figures 1-9 and 0 are represented in

Braille by the letters A-I and J respectively, when they are immediately preceded by

the numeral signs.

 12

3. Translation Algorithm

The coding difficulties in Grade 2 Braille make it very difficult to procduce elaborate

conversion programs, because it is a difficult and time consuming job to describe

contractions by using rules. Therefore, the production of rules for the Grade 2 Braille

becomes the main issue in text-Braille translations.

In this section, the text-Braille translation algorithm is going to be discussed by using

essential concepts of formal language. Furthermore, several translation systems will

be described, and comparisons are also going to be made, to find the most suitable

method of implementing hardware-based Braille translation.

3.1 Basic Concepts

When translation between text and Braille is considered, there are two kinds of

alphabets involved. One is the alphabet of Latin letters, Arabic numerals, punctuation

marks, and some special symbols. The other includes 64 Braille codes. However,

instead of using dot representations, there is a subset of the American Standard Code

for Information Interchange (ASCII) character set which uses 64 of the printable

ASCII characters to represent all possible six-dot combinations of Braille. This

subset is called the Braille ASCII set, or computer Braille set [15].

Braille ASCII uses the 64 ASCII characters between 32 and 95 inclusive. All capital

letters in ASCII correspond to their equivalent values in Braille. Unlike standard

print, all letters in Braille are lower-case by default, unless otherwise specified by

preceding them with a capitalisation symbol. The Braille ASCII table is shown in

Appendix I.

Therefore, the translation process can be regarded as a symbol transformation from

one kind of ASCII alphabet set into the other.

 13

The two alphabets can be defined as follows:

• A finite, nonempty set ∑1 of Latin letters, Arabic numerals, punctuation

marks, and special marks is called Alphabet 1:

∑1= {A, B, C, … , X, Y, Z, a, b, c, … , x, y, z, 0, 1, 2 , … , 9, ., ,, !, #, $, space …}

• A finite, nonempty set ∑2 of 64 Braille ASCII characters is called Alphabet 2:

∑2 = {space, !, ", #, $, %, ^, … , _ }

For example, w1=x0 x1 … xm is a string, where x0 x1 … xm are elements of ∑1. To

translate string w1, a particular group of rules have to be applied. The translation

results should be another string w2=y0 y1 …yn (n<=m), where y0 y1 …yn are elements

of ∑2. ‘m’ will be equal to or greater than ‘n’ because Braille ASCII codes must be

reduced after applying contractions rules.

The text to Grade 2 Braille translating process can be described as follows:

Rules

x0 x1 … xm y0 y1 …yn

Likewise, the Braille to text translation is given below:

Rules

 y0 y1 …yn x0 x1 … xm

As discussed in the previous sections, the translation between Grade 2 Braille and

text is a context-sensitive process. This means that translation for a particular string

might depend on the previous translated string. In this case, the basic principle for

 14

Braille translation has been decided: to translate a string w1 into w2, the translation

process must be in order, and start with the leftmost element x0 and end with the

rightmost element xm; the same for translating w2 into w1.

3.2 Finite State Machine (FSM)

A finite state machine [22-24] is a model of behaviour composed of states,

transitions and actions. FSMs are a formalism growing from the theory of finite

automata in computer science. An FSM has a set of states and a set of transitions

between states; the transitions are triggered by input vectors and produce output

vectors. The states can be seen as recording the past input sequence, so that when the

next input is seen, a transition can be made based on the previous information.

A deterministic finite accepter (DFA) is used to explain how a particular string can

be recognised [23-27]. To recognise strings is the first step in text-Braille translation.

A DFA gives a binary output, saying either “yes” or “no” to answer whether the

input is accepted by the machine or not. All states of the FSM are said to be either

accepting or not accepting. If when an input is processed the current state is an

accepting state, the input is accepted; otherwise it is rejected. Accepters can be used

to recognise language by generating one-bit binary output, but they are not able to

output strings of ASCII codes [26].

A DFA is defined by the quintuple

M = (Q, ∑, δ, q0, F)

where

Q is a finite set of internal states;

∑ is a finite set of symbols called the input alphabet, which is a set of printable

ASCII codes;

 15

δ: Q × ∑ → Q is a function called the transition function; For example, a transition

function, δ (q0, b)= q1, where b ∈∑ and q0,q1∈Q, means when a character ‘b’ is

received by this DFA, the state for the DFA will transit from q0 to q1.

q0 ∈ Q is the initial state, and;

F ⊆ Q is a set of final states.

A DFA operates in the following manner. At initiation, it is assumed to be in the

initial state q0, with its input mechanism on the leftmost symbol of the input string.

During each move of the state machine, the input mechanism advances one position

to the right, so each move consumes one input symbol. When the end of the string is

reached, the string is accepted if the machine is in one of its final states. Otherwise

the string is rejected. The input mechanism can move only from left to right and

reads exactly one symbol on each step. The transitions from one internal state to

another are governed by the transition function δ [27].

Transition graphs are used to visualise and represent finite automata. In transition

graphs, vertices represent states and edges represent transitions. The labels on the

vertices are the names of the states, while the labels on the edges are current values

of the input symbol. The initial state will be identified by an incoming, unlabeled

arrow, not originating at any vertex. Finite states are drawn with a double circle.

An example is given below to show how a DFA is going to achieve the recognition

of the string “but”.

The transition graph in figure 4 represents the DFA

 M = ({q0, q1, q1, q2, q3, qb, qbu, qbut }, {printable ASCII codes}, δ, q0, {qbut}),

where δ is given by

 16

δ (q0, !b) = q1, δ (q0, b)= qb, δ (q1, *)= q1,

δ (qb, !u) = q2, δ (qb, u)= qbu, δ (q2, *)= q2,

δ (qbu, !t) = q3, δ (qbu, t)= qbut, δ (q3, *)= q3 (* means any input characters).

q0 qb qbu qbut
b

!b

!u

u

!t

t

q1

q2

q3

*

*

*

Figure 4. Transition Graph

This DFA is able to recognise the string “but”. Starting in state q0, the first symbol

which the DFA can recognise is the letter ‘b’. After receiving ‘b’, the DFA goes into

state qb. However, if the DFA receives other input symbols in state q0, the next state

is going to be q1 which is called a trap state. The reason we call q1 a trap state is that

once the DFA goes into q1, it will never escape, no matter what the next input is.

Likewise, states q2 and q3 are trap states. Therefore, the only string which this DFA

is able to recognise is “but”.

The example discussed above shows how to use a DFA to recognise one string.

However, we can also use one DFA to recognise more than one string, and the set of

those strings accepted by this DFA is called a language. Based on Grade 2 Braille

rules, it is possible to build a DFA which is able to find particular strings to be

contracted. For example, Figure 5 [28] shows a DFA to recognise strings, “herence”,

“herer”, “hered”, and “here”. According to British Grade 2 Braille, the word “here”

can be contracted to “h” in Braille, but when a letter ‘n’, ‘d’, or ‘r’ follows after it,

 17

the string “here” has to be separated into three parts: ‘h’, “er”, and ‘e’, where “er” is

another contraction. Therefore, those cases need to be differentiated in a DFA.

he her
e

n

c

d r

r

h

here

heren

e

e

h

herenc
herence

hered

herer
other

Figure 5. A DFA of recognising several strings

Here, we did not give a strict definition for the DFA given in Figure 5, because

transition functions for this DFA are extensive and multiple. Starting with the

recognition of the letter ‘h’, the DFA goes through four states to find the string

“here”. But in every state, another transition function happens when receiving

another letter. So a complete DFA beginning with ‘h’ can be used to describe all the

rules originating from ‘h’. Evidently the DFA is very big and contains huge sums of

transition functions. The advantage of using a DFA to recognise strings is that

superfluous comparisons can be prevented. For example, the DFA goes through four

states to find “here”, and if it receives a space or a punctuation character, the

recognition of a word “here” is completed. The DFA will never go back to find

“herer”, “hered”, and “herence” which are exceptions with higher priorities.

Therefore, DFAs are a fast and efficient method of using Grade 2 Braille rules to

recognise strings.

However, since DFAs are characterised by having no temporary storage, they are

severely limited in their capacity to ‘remember’ things during computation [27]. The

output generated by a DFA can only be one-bit binary code. Especially, a DFA has

 18

significant difficulties in recognising strings when right contexts are introduced.

Therefore, a more powerful automaton might be needed to perform text-Braille

translation.

As this discussion has indicated, using a finite state machine to perform Braille

translation is not a wise option. This is because no matter how powerful the

automaton is, the machine itself is a description of Braille translation rules. In this

case, the state machine has a great number of states that make it very difficult to

implement. Futhermore, when translation rules need to be revised, or new rules need

to be added, the finite state machine is not able to remain the valid function.

Therefore, a better method for translation will be discussed in the next section.

3.3 Markov System

3.3.1 Definition

A Markov algorithm is a string rewriting system that uses grammar-like rules to

operate on strings of symbols [15] [26] [27]. This algorithm is named after the

Russian mathematician, Andrey Markov. Although he is best known for his work on

the theory of stochastic processes, which later were called Markov chains, Markov

algorithms have proved to be one of his most important contributions. His algorithms

have been shown to be Turing-complete, which means that they are suitable as a

general model of computation, and can represent any mathematical expression from

their simple notation [29].

A string rewriting system is a substitution system used to transform a given string

according to specified rewriting rules. It includes an alphabet ∑ and a set of

transformation rules. What distinguishes one rewriting system from another is the

nature of ∑ and restrictions for the application of the production rules [30].

 19

A Markov algorithm is a rewriting system whose production rules

x→y

are considered ordered. In a derivation, the first applicable production rule must be

used. The leftmost occurrence of the substring ‘x’ must be replaced by ‘y’. Some of

the production rules may be singled out as terminal production rules; they will be

shown as

x→.y.

A derivation starts with some strings w ∈ ∑ and continues until either a terminal

production rule is used or until there are no applicable rules.

The principles of using the Markov system are as follows [27]:

• Check the rules in order from top to bottom to see whether any of the strings

to the left of the arrow can be found in the symbol string.

• If none are found, stop executing the algorithm.

• If one or more is found, replace the leftmost matching text in the symbol

string with the text to the right of the arrow in the first corresponding rule.

• If the applied rule was a terminating one, stop executing the algorithm.

• Return to step 1 and carry on.

The following example shows the basic operation of a Markov algorithm. The

Markov system of this example has a group of production rules listed as follows:

1. “A” → “paper”

2. “B” → “Braille translator”

3. “X” → “text”

 20

4. “S” → “software”

5. “T” → “the”

6. “the software” → “hardware”

7. “a never used” → .“terminating rule”.

A symbol string, “This A describes a X to B implemented in T S.”, is going to be

transformed by applying those production rules. Based on the algorithm, production

rules need to be checked in order, and if a particular rule is applicable, the left hand

side string must be replaced by the right hand side.

If the algorithm is applied to the above example, the Symbol string will change in the

following manner:

1. “This paper describes a X to B implemented in T S.”

2. “This paper describes a X to Braille translator implemented in T S.”

3. “This paper describes a text to Braille translator implemented in T S.”

4. “This paper describes a text to Braille translator implemmented in the

S.”

5. “This paper describes a text to Braille translator implemmented in the

software.”

6. “This paper describes a text to Braille translator implemented in

hardware.”

And then, the system will terminate.

In Markov algorithms, the rewriting process is proved to be irreducible, because the

rewriting process must be ended when the terminating rule is applied [31]. However,

if a new Markov rewriting system is built properly, then a string obtained by

 21

applying one Markov rewriting system can be transformed back to the original string.

In the example given above, the original string can be generated by applying new

production rules to the final string. The new rule set is shown as follows:

1. “paper” → “A”

2. “text” → “X”

3. “Braille translator” → “B”

4. “hardware” → “the software”

5. “the” → “T”

6. “software” → “S”

7. “a never used” → .“terminating rule”.

This characteristic of the Markov algorithm indicates its potential capability for

performing both text-to-Braille and Braille-to-text translations. However, when the

Markov system is applied to text-Braille translation, the key issue is to find an

effective method of generating production rules. As has been discussed, it is difficult

to describe every kind of translation case using production rules, because of the

complexities of the English language, and the language and its vocabulary are

continually evolving.

There are several software systems specially developed for text-Braille translation.

The translating algorithms of these systems are based on the Markov system,

although the name of this theory didn’t appear in the authors’ reports. Three types of

text-to-Braille translation systems are given below to explain different methods of

generating production rules; the systems and their characteristics will be discussed in

the following sections.

 22

3.3.2 DOTSYS II: Finite-State Syntax-Directed Braille Translation

The renowned Braille translation software, Duxbury, is widely used by virtually all

of the world's leading Braille publishers. It is a truly multilanguage-Braille

translation software [8]. The original translation algorithm of Duxbury was based on

the DOTSYS II system developed by Jonathen Millen in 1970 [28].

As a product of the 1970s, the system was described using COBOL language. Few

concepts about formal language were used in Millen’s report, therefore, even people

who are not familiar with automata theory can still understand the algorithm. Even

though the Markov system was not mentioned in related reports or papers, the

DOTSYS II system performs text-to-Braille translation in the same manner as the

Markov system works. The main issues in Millen’s report on DOTSYS II are about a

method of translating rule production and how the rules are organised. In this section,

how the system works will be described in detail, since as the first successful

automatic Braille translator, DOTSYS II built the foundation of automatic Braille

translation, and was the first system to introduce methods and concepts which were

later borrowed by other translating systems.

3.3.2.1 Translation Procedures

First, the procedures of how the system works are given. A mnemonic summary of

the chronological steps in the algorithm is given in Table 1 [28]. The definitions in

Table 1 will be discussed in the following paragraphs.

 23

Table 1. Chronological form of the translation algorithm as loop of five steps

 Procedures Tables needed in each step

1 Index Alphabet table

2 Search Contraction table, decision table, right-context table

3 Output Contraction table or alphabet table, sign table

4 Shift Contraction table

5 Change Transition table

DOTSYS II followed the same principle of Braille translation mentioned previously,

which is to translate input text from left to right. For a specific application, the

system uses a 10-character buffer as a sliding window to store the string to be

translated.

If ten or fewer characters beginning at the left end of the buffer are to be translated as

a group in Braille, then the system puts out the Braille sign or signs and shifts the

contents of the buffer left to move the contracted characters out of the buffer. The

same number of new characters are read in the vacancies at the right end of the

buffer.

… IS TOO GOOD FOR EVERY PERSON …

Translated Currently processed

in buffer

Not yet read

Figure 6. The ten-character buffer

Figure 6 [28]shows an example of a ten-character buffer. The word GOOD occurs at

the left end of the buffer. Since GOOD can be contracted to the string GD, the

system puts out the two Braille signs standing for the string GD, which are its Braille

translation and then shifts the buffer contents left by four characters. As shown in

 24

Figure 7 [28], a space becomes the left most character in the buffer after the word

GOOD.

… IS TOO GOOD FOR EVERY PERSON …

Figure 7. Contents in the buffer after translating GOOD

3.3.2.2 Method of Generating Production Rules

To achieve text-to-Braille translation, an important issue is how to determine

whether or not there is a character string beginning at the left end of the buffer which

can be contracted. DOTSYS II uses a table containing all the character strings for

which there are standard Braille contractions, i.e. the contraction table.

The contraction table not only contains the 189 English Braille contractions, but also

additional entries to implement some rules and indicate exceptions to others. Because

it is based on Braille rules, some special cases have to be considered. For example,

when the contracted letter groups EA and AR overlap, as in the word NEAR, the AR

contraction is preferred. So a rule is created by putting the letter group EAR in the

contraction table and specifying its translation to be the two Braille signs for E and

AR.

The alphabet table is conceptually part of the contraction table. It contains the Braille

signs used for individual characters when they are not translated as part of a

contraction. It also contains indexing entries for the efficient search of the

contraction table. The sign table, which is used for output, sets up a correspondence

between the numbers from 0 to 63 and the 64 Braille signs. This allows the

numerical equivalent of the signs to be used in the program for indexing and for

storage in tables.

 25

The format for contraction table entries is shown in Figure 8 [28]. Each contraction

table entry has five fields, containing: all but the first character of a character string

to be represented, a right-context character, the input class number, the number of

characters to shift out of the buffer, and the numerical codes of the Braille signs to be

put out.

String Right context Input class Shift Signs

Figure 8. Format for contraction table entries

The first field of the contraction table entry, the string field, comprises nine

characters, and represents a character string recognised as a whole when encountered

in the buffer. The first character in the string is encoded by the position of the entry

in the table, and is not included in the string field. The string field consists of the

second through to the last characters in the character string; if there are fewer than

nine, they are followed by a dollar sign, and enough trailing blanks to make a total of

nine characters. Figure 9 [28] is an example of the table entry for contraction EA.

String Right Input class Shift Signs

A$ L 4 2 2 99 99 99

Figure 9. Contraction table entry for EA

The second field of the contraction table entry, the right-context field, contains one

character: either a blank or a character, such as ‘L’ or ‘P’. In Figure 9, the ‘L’

indicates that a letter must be found in the buffer immediately following the character

group to which the entry would apply, in order for this contraction table entry to be

applicable. A ‘P’ indicates that any character other than a letter must be found there,

instead. A blank means the absence of a right-context condition. Right context, is an

important contribution of Millen’s DOTSYS II, and is also used in both Slaby’s and

 26

Paul Blenkhorn’s systems which will be discussed in following sections. But in

comparison with Millen’s DOTSYS II, Blenkhorn’s right context contains more

information.

The third field of the contraction table entry is input class. Before discussing this

field, it is necessary to mention the introduction of finite state memory in DOTSYS

II.

Sometimes left contexts also need to be considered in contraction rules. To solve this

problem, DOTSYS II uses a finite memory to implement rules involving characters

to the left of the characters currently under inspection. Unlike the right context

mechanism, which tests only an immediately adjacent character, the finite state

memory allows a contraction to be affected by characters which may have occurred

previously. The finite state memory appears in DOTSYS II in the form of a state

vector. The state vector is a number of consecutive storage locations called state

variables. There are five variables in DOTSYS II which are shown in Table 2 [28].

Each variable contains the character Y for yes and N for no. The occurrence of some

characters in the input text can change specific state variables from N to Y, or vice

versa, as they are shifted out of the buffer.

Table 2. State variables

1 After the start of a number

2 After the start of a word

3 Grade 1 translation

4 In a quotation

5 In italicised text

Another concept, input class, is also introduced. Because many different characters

or contractions may have the same effect on the state vector, they are grouped into

 27

numbered input classes. This way, the new value of each state variable depends on

its old value plus the input class of the alphabet or contraction table entry. The

definitions for input classes are shown in Table 3 [28].

Table 3. Input class

1 Contractions always used in grade 2

2 Digits

3 Most punctuations

4 Contractions used after the start of a word

5 $G (grade switch)

6 Contractions used only at the start of a word

7 Isolated full-word contractions

8 $P” (start paragraph in quotation)

9 $P (start paragraph in italics)

10 “ (left quote)

11 ” (right quote)

12 __ (begin italics)

13 _ (last word of italics)

14 (space)

15 A to J occurring in a number

Based on the state variables and input classes, the transition table and decision table

are built into DOTSYS II. The transition table specifies the re-computation of the

state vector. When a particular entry is applied, the value of a specific state variable

will be evaluated depending on the input class.

Figure 10 [28] shows how the transition table is organised. NIC and NSV are,

respectively, the number of input classes and the number of state variables. Each row

is associated with a state variable, and each column is associated with an input class.

Each entry, which can be R, S, T, or -, specifies the effect of an input class on a state

variable, as show in Table 4 [28].

 28

 Input Class

 1 2 … (NIC)

1 R S … R

2 - T -

…

State
Variable

(NSV) - R … R

Figure 10. Transition table

Table 4. Effect of input classes on state variables, as specified by transition table
entries

Transition table entry R S T -

Old value of state variable Y N Y N Y N Y N

New value of state variable N N Y Y N Y Y N

The decision table has the final say on whether a contraction table entry is to be used

to translate the initial part of the contents of the buffer. Its decision depends on the

input class and on the state variables. The format of the decision table is shown in

Table 5 [28].

Table 5. Decision table format

Column 1 2 … (NDTC)

1 Y - … -

2 G G … G

Input
Class

…

1 - - … -

2 - N … Y

…

State
Variables

(NSV) N N … N

Each column gives the decision whether to use a contraction having a particular input

class, conditional upon the values of some state variables. Given an input class, the

leftmost column is found such that the corresponding decision entry is not a dash but

Y, N, or G. Letter G, standing for go, means that a contraction with that input class is

made, regardless of the values of the state variables. An entry Y means yes, and N

 29

means no, but these apply only if the conditions on the state variables, stated in the

lower part of the column, have been satisfied. A condition Y means that the

corresponding state variable must have a value of Y; a condition N means that the

corresponding state variable must have a value of N; a condition ‘-‘ means that the

value may be either Y or N.

If the conditions on the state variables are not satisfied, or if the decision entry is ‘-‘,

this column does not give the decision, and the next column to the right is tested. If

no column gives a decision, then the decision is taken to be no; the contraction is not

made, and the contraction table search must continue.

According to the entry format discussed above, we can conclude that a character

string beginning at the left end of the buffer is contracted if three conditions are

satisfied:

• It matches an entry in the contraction table;

• It has an acceptable right-context character;

• A valid value can be found in the decision table.

The fourth field of the contraction table entry, the shift field, is a positive integer

giving the number of characters to be shifted out of the buffer after this entry is

applied. This field might appear redundant, because the length of the character string

just translated is implied in the string field, but it is sometimes convenient to translate

and shift out of the buffer only a part of the character string to which the entry

applies.

The last field is the signs field which contains four numbers representing the Braille

translation of that part of the character strings which will be shifted out of the buffer.

The correspondence between the numbers and Braille signs is given in the sign table.

 30

If the translation is fewer than four Braille signs, the extra numbers are specified as

99.

3.3.2.3 Further Development

After the introduction of DOTSYS II, the system was further revised and improved.

Based on DOTSYS II, an American, Joseph Sullivan, developed DOTSYS III, which

was a portable Braille translator, by refining the table sets and modifying the

translating program [32] [33]. Although the system was able to achieve the text-to-

Braille translation, as Sullivan claimed, DOTSYS III represented a compromise

between the perfect and the possible, and mistakes in its translations could only be

identified and corrected by human intervention [33].

Fortunately, what Jonathan Millen and Joseph Sullivan contributed became the

foundation of the multi-language Braille translation software, Duxbury [8]. This

software is able to perform bidirectional translation (text-to-Braille and Braille-to-

text) covering dozens of major languages including English, French, Spanish,

German, Danish, Italian, and Polish. It has the ability to include tactile graphics files

for mixed text-and-graphic documents, and can handle diverse file formats. However,

this software is powerful, but relatively expensive (595 US dollars with single license)

[8]. Also, since the translation algorithm and data details are treated as confidential,

commercial documents, it is difficult to determine how the system exactly works.

Furthermore, DOTSYS has its own drawbacks. Because the system is driven by a set

of tables, it becomes very difficult for non-experts to update or modify them when

new rules need to be evaluated [37]. Therefore, there is a need for new systems to be

developed which solve these problems.

 31

3.3.3 Slaby’s System

3.3.3.1 A Universal Braille Translator Based on the Markov System

In 1975, a German, Wolfgang Slaby, made another attempt to apply the Markov

system to text-to-Braille translation [34]. He realised that diverse languages lead to

very different problems in automating the process of translation, because each of the

translation algorithms possesses a lot of language-dependent components. Therefore,

he tried to formalise an algorithm which is applicable to multi-language Braille

translation, in other words, a universal system. In comparison with the finite-state

syntax-directed Braille translation, this system provides a more formalised Braille

translation process.

In this system, a quadruple is defined, to explain the Markov system of production

rules as follows:

A quadruple m = (∑, ∆, Γ, R) is called a Markov system of production rules if, and

only if, the following is valid:

1. ∑, ∆, and Γ are alphabets with ∑ ⊆ Γ and ∆ ⊆ Γ.

• ∑ is the input alphabet including Latin capital letters, Arabic numerals,

punctuation marks and some other special characters.

• ∆ is an alphabet which concludes 64 Braille cells.

• Γ is the working alphabet, which is the union of ∑ and ∆.

2. (Γ, R) is a system of production rules and R is an ordered set.

The empty word, i.e., the word over ∑ consisting of zero symbols, is denoted by ζ.

Let ∑* be a set of all words over the alphabet ∑, including ζ.

Let w be any word over ∑*. If m is applicable to w, the following conditions have to

be met:

There exists u → v ∈ R, such that u → v is applicable to w.

 32

 Let ∑ be applicable to w and let u0 → v0 be the first applicable production rule

according to the order defined for R. Then since u0 is a sub-word of w there exists x,

y ∈ ∑* such that w = x u0 y.

Then we define

m (w) = x v0 y,

mn (w) = m (mn-1 (w)) for n ∈ N, provided that m is applicable to mn-1 (w).

Thus, for each w symbol ∑*, there is one of the following two cases which is

satisfied:

Case 1: there exists an integer rw ∈ N such that m is applicable to m
r
w
-1 (w) and m is

not applicable to mr
w (w). (m

r
w
-1 (w) and mr

w (w) ∈ ∆
*)

Case 2: for each n ∈ N, m is applicable to mn (w). (mn (w) symbol ∆*)

It is easy to see that mr
w
-1 (w) or mn (w) is the result of the application of m to w.

If the system focuses on translating any specific language into the corresponding

Grade 2 Braille, the appropriate Markov system of production rules mspec.lang has the

following form:

mspec.lang = (∑1, ∑2, Γ, Rspec.lang).

But when a complete Markov system of production rules is going to be built, it

becomes a very difficult linguistic problem, because of language specific ambiguities.

These ambiguities encountered by Slaby are the main difficulties of translating Grade

2 Braille, as discussed in Chapter 2. Slaby’s system is able to overcome this problem,

but the solution of these ambiguities results in a rapid increase in the number of

production rules. For example, based on this model, a set of more than 6000

replacement rules for German-contracted Braille was developed [35].

A severe disadvantage created by the large size of the rule set is that translating a

word by iteratively scanning a large set of replacement rules sequentially will

 33

significantly slow down the translation process. Therefore in 1974 a new model - a

segment translation system - was developed by Slaby.

3.3.3.2 Segment Translation System

A segment translation system [35] is an ordered list of translation rules of type u →

v[x, y] where:

If the word w is to be translated, and if u is the segment of w that has to be

translated next, then u is translated by the segment v, provided that u has x as a

left neighbour and u as a right neighbour in w ([x, y] is called a context

condition).

This system also uses some basic terms and definitions of formal language theory

like alphabet ∑, finite string over ∑, nullstring ε, concatenation vw of two strings v

and w, length l (v) of a string v, segment or substring u of a string w, prefix h (w) and

suffix t (w) of length n of a string w, formal language over ∑, and concatenation of

formal languages.

The definition of a segment translation system is described as follows:

A quadruple S = (∑, ∆, ◊, R) is called a segment translation system, if

• ∑ and ∆ are alphabets.

• ◊ ∈ ∑ U ∆ (◊ is the frontier symbol).

• R symbol {u → v[x, y] | u ∈ ∑*, u ≠ ε; v ∈ ∆*; x ∈ {◊, ε }·∑*; y ∈ ∑*·{◊,

ε }}, R is a finite, non-empty set. Each u → v[x, y] ∈ R is called a segment

translation rule.

• For any u → v[x1, y1], u → v[x2, y2] ∈ R: (x1 = x2 and y1 = y2 => v1 = v2).

• Let ls (R) = {u | u ∈ ∑* and there exists u → v[x, y] ∈ R}. Then for each u

∈ ls (R) there exists v ∈ ∆*, such that u → v[ε, ε] ∈ R (the base rule).

 34

In order to produce a translation z of a word w a concrete segment translation system

is applied according to the following principles:

1. Look for a suitable prefix u of the remainder of w not yet translated,

for which there exists a segment translation rule u → v[x, y].

2. If there are several such prefixes u1 and u2 in ls (R) with l (u1) > l

(u2), then u1 takes priority over u2.

3. If u ∈ ls (R) is the longest prefix of the remainder of w not yet

translated and if there exist segment translation rules u → v1[x1, y1]

and u → v2[x2, y2] the context conditions of which are matched in w,

then the rule with the longer context condition will be applied.

Based on these principles, the translation algorithm can be specified as shown in

Figure 11:

 35

Start

word != ε

Look for longest u in

lsides with u = hl(u) (word)

Find u → v[x, y] in rules with x = tl(x)(left)

and y = hl(y)(right) and with l (xy) being a

maximum under this condition

Left = left · u

word = tl(word)-l(u)(word)

result = result · v

Right = tl(word)-l(u)(word) · ◊

Initialization:

Word = w

Result = ε

Left = ◊

Lsides =ls (R)

Y

N

END

Figure 11. Translation algorithm of segment translation system

The next issue was to build a complete rule table for the segment translation system.

Slaby presented a general idea of generating production rules for a text-to-German

contracted-Braille translator. The method is to examine the preceding and following

letters of a particular string to be contracted so that a rule can be decided which

describes the environment where a certain sequence of the string must be translated

different from the normal translation rule. This method is very similar to the one

proposed by Hermann Kamp [36]. Using this method, a system with 4510 different

 36

rules has been produced. With this system a correctness rate of one translation error

per 20000 characters was achieved.

Slaby’s method is also suitable for translating other Latin languages to Braille.

However, since constructing a complete rule table is related to complicated linguistic

problems, it is a highly complex and time-consuming task.

The procedures of generating production rules for Slaby’s system are described as

follows:

1. Selecting suitable segment u to become a left side of a segment translation

rule u → v[x, y]; a good beginning for this step is to take all those segments u

for which a contraction is defined in the Braille system.

2. Laying down the base rule u → v [ε, ε] for each such segment.

3. Detecting words containing the segment u for which this segment is not

translated correctly by the rules generated so far; using these words for

generating additional rules.

It is evident that the format of production rules for the segment translation system is

much simpler and more straightforward than the Finite-State Syntax-Directed Braille

Translation system. The production rules in a segment translation system consist of

only four parts, which are respectively left context, a string to be translated, right

context, and Braille codes. Therefore, the system performs translation in reference to

only one table, whereas DOTSYS II employs several tables to do the same job. The

advantage of using this simple format is that the table can very easily be updated

when mistakes are found or new rules are needed, and even a person who is not

familiar with Braille is able to modify the rules.

 37

3.3.4 Paul Blenkhorn’s System

Based on Slaby’s system, a British man, Paul Blenkhorn developed his own text-to-

Braille translation system [35]. This system has the same characteristics as Slaby’s,

in that the system can be readily updated and modified by people who are not experts

in computer algorithms.

This system also borrowed some concepts from DOTSYS, such as input class,

transition state and the decision table, so that it is able to operate with a finite number

of states which can hold the current context, as well as having capabilities for both

left and right-context matching. The system has been designed so that a wide range

of options and data can be introduced using a set of tables, including Braille rules,

which are presented in a clear manner.

In the application of Slaby’s system to the conversion of Braille into print, the

approach taken was predominantly to use the state machine and right-context

matching capabilities of this system to achieve the translation. However, as noted

above, the updates of tables for a state machine requires a good deal of care and a

detailed understanding of the system’s operation. The use of context-matching rules

is much more straightforward and easier to understand. Consequently, the print-to-

Braille application has been constructed so that the bulk of the translation is achieved

by using context-specific rules.

The state engine is only used for switching between grades of Braille and for

handling letter signs. The decision table used by the state engine can be found in

Table 6.

The decision table has 5 states and 6 input classes.

The States are:

 38

1. Grade 2 Braille.

2. Grade 1 Braille.

3. After Letter Sign (Grade 2).

4. After Letter Sign (Grade 1).

5. Computer Braille.

The Input Classes are:

1. Any Braille except computer Braille.

2. Grade 2 rule.

3. Valid after Letter sign (Grade 2). (Used to switch back to Grade 2 after end of

word.)

4. Valid after Letter sign (Grade 1). (Used to switch back to Grade 1 after end of

word.)

5. Computer Braille.

6. Always allowed.

Table 6. State, Input Class, and Decision Table I

state 6 input classes

1 1 2 0 0 0 0

2 1 0 0 0 0 0

3 1 0 3 0 0 0

4 1 0 0 4 0 0

5 0 0 0 0 5 0

In Blenkhorn’s system, there are a total of 1228 production rules. The complete rule

table can be seen in Appendix II.

The format of each row in the table is:

Input class <TAB> Rule <TAB> New state

If the new state is ‘-‘, then no change occurs in the current state. The input class is set

for each rule and is used in conjunction with the decision table to set the level of

 39

Braille (i.e., Grade 2, Grade 1, or Computer Braille), and for letter sign placement in

words that mix letters and numbers.

The rule is in the following format:

Left context [focus] Right context = input text

Several wildcards can be used in the left context and the right context. These are as

follows:

“!” a letter;

“#” a number;

“!” a space or punctuation (include apostrophe);

“space” only a space character;

“|” zero or more capital signs;

“‘” one or more characters that are potentially roman numerals;

“;” zero or more letters;

“+” one or more digits.

An example is given here to explain how Blenkhorn’s system works. A rule table

shown in Table 7 is used for translation.

 40

Assume that we want to translate the word “GO”. If the word is between two spaces,

then we can use the spaces as the left and right contexts. For the first step, the system

will find the table entry according to the first letter of this word. Obviously, the entry

is letter ‘G’. Then, the system will go through the rules of letter ‘G’, and check the

rules including focus, input class, present state, left and right context, one by one,

until finding the rule “2~[GO]~=G-”. Because all the information of this rule matches

the input, the translated result is “G”. The hyphen mark for the new state means that

the new state remains unchanged. The original algorithm of Blenkhorn’s system is

displayed in Appendix III.

Blenkhorn’s algorithm has been implemented in a procedural program using C,

proving that the algorithm works well. The reason for using C programming language

is that C is a general-purpose structured programming language and it is portable,

Table 7. Fragment of Rule Table

 Input
Class

Left
Context

Focus Right
Context

Output
Text

New
State

1 2 ~ G ;# ;G 3

2 2 # G ;G 3

3 1 ~ G ;# ;G 4

4 1 # G ;G 4

5 2 ! GHAI GHAI -

6 2 ! GHEAD GH1D -

7 2 ! GHEAP GH1P -

8 2 ! GHIL GHIL -

9 2 ! GHOL E GHOL -

10 2 ! GHOR N GHOR -

11 2 ! GHOUS E GH\S -

12 2 GHUN T GHUN -

13 2 GH < -

14 2 GOOD GD -

15 2 GOVERN ESS GOV]N -

16 2 ~ GO ~ G -

17 2 ! GG ! 7 -

18 2 . GREAT GRT -

19 1 G .! G -

20 1 G ~ G -

21 1 G ~ G -

22 1 G G -

 41

which means C was designed to give access to any level of the computer down to raw

machine language [38]. However, modifications are necessary for its implementation

in hardware.

In the system presented in this thesis, input class and states are not used, because

when the system performs the Grade 1 and Grade 2 Braille translation, all the rules,

except those for letter signs where the index input class is 1 or 2, have present states

of either 1 or 2. Therefore, those rules always have a value of 1 according to the

decision table.

On the other hand, rules which have presented states 3 and 4 in the rule table are

always valid and once the next space character is found, the system will change the

state to 1 or 2. In summary, if Computer Braille is not going to be considered, the

decision table is not necessary.

3.3.5 Braille-to-Text Translation

The early contributions of computerised Braille translation were basically concerned

with text-to-Braille translation [39]. However, it has been found that there are many

similarities between text-to-Braille and Braille-to-text translation processes. The

translation of Braille to text is very helpful for sighted persons who are not Braille

literate to understand documents printed in Braille [41]. The translation from

Braille-to-text is a reverse process corresponding to text-to-Braille translation, and it

is also considered to be a context-sensitive conversion. In fact, the algorithm used by

text-to-Braille translation is perfectly suitable for the Braille-to-text translation.

Therefore, Paul Blenkhorn developed both systems using the same method [40] [42].

In contrast to the text-to-Braille converting system, when Blenkhorn constructed the

rule table of the Braille-to-text translation, the left context was excluded from each

 42

rule. Instead, he used a method similar to DOTSYS II, which was to build a decision

table containing left-context information. The decision table contains input classes

and finite states, shown in Table 8.

This decision includes 6 states and 7 input classes.

The states are:

1. At the start of the word.

2. In punctuation at the start of the word.

3. After the start of the word.

4. Within a number.

5. Within members of the group “&!(A)”.

6. Within the scope of a letter sign.

The input classes are:

1. Don’t care

2. Valid at the start of the word.

3. Valid in punctuation, or at the start of the word.

4. Only valid after the start of the word.

5. Valid for members of the group “&!(A)”.

6. Valid within the scope of a letter sign.

7. Valid within a number.

Table 8. State, Input Class, and Decision Table II

state 7 input classes

1 1 2 3 0 0 0 0

2 1 0 3 0 0 0 0

3 1 0 0 4 0 0 0

4 1 0 0 0 0 0 7

5 0 0 0 0 5 0 0

6 0 0 0 0 0 6 0

The format of the rules is:

 43

Input class <TAB> rule <TAB> new state

The input class is set for each rule and is used in conjunction with the decision table

to determine if a rule fires.

The rule is in the following format:

[focus] right context = output text

Several wildcards can be used in the right context. They are:

“!” --- one or more of the set “&!(A)”;

“ ” --- any white space character;

“~” --- one or more potential punctuation characters, and;

“_” --- actual space character.

In Blenkhorn’s Braille-to-text translation system, there are a total of 498 rules, and

the rule table is shown in Appendix IV.

 44

4. FPGA and VHDL Information

4.1 About FPGAs

Field Programmable Gate Arrays (FPGAs) are digital integrated circuits (ICs) that

contain configurable (programmable) blocks of logic along with configurable

interconnects between these blocks [43-50]. The “field programmable” portion of the

FPGAs name refers to the fact that its programming takes place in the field. This

means that FPGAs can be configured in the laboratory. With their introduction in

1985, FPGAs have been an alternative for implementing digital logic in systems [43].

The applications of FPGAs conver many fields of digital electronics, including

custom IC designs, digital signal processing (DSP) and development of embedded

systems, etc. Especially, FPGAs have created a new area in their own right:

reconfigurable computing (RC), which refers to exploiting the inherent parallelism

and reconfigurability provided by FPGAs to hardware accelerate software algorithms

[43].

4.1.1 Evolution of Programmable Logic

FPGAs are one type of Programmable Logic Devices (PLDs). PLDs were invented in

the late seventies [44]. Their growing popularity has seen them become one of the

largest growing sectors in the semiconductor industry. PLDs provide designers

ultimate flexibility and design integration, are easy to design with and can be

reprogrammed time and time again even in the field to upgrade system functionality.

The first type of user-programmable chip [45] that could implement logic circuits

was the Programmable Read-Only Memory (PROM), in which address lines can be

used as logic circuit inputs and data lines as outputs. Logic functions, however,

rarely require more than a few product terms, and a PROM contains a full decoder

 45

for its address inputs. PROMS are thus an inefficient architecture for realising logic

circuits, and so are rarely used in practice for that purpose.

The first device developed later specifically for implementing logic circuits was the

Field-Programmable Logic Array (FPLA), or simply PLA for short. A PLA consists

of two levels of logic gates: a programmable “wired” AND-plane followed by a

programmable “wired” OR-plane. A PLA is structured so that any of its inputs (or

their complements) can be AND’ed together in the AND-plane; each AND-plane

output can thus correspond to any product term of the inputs. Similarly, each OR-

plane output can be configured to produce the logical sum of any of the AND-plane

outputs. With this structure, PLAs are well-suited for implementing logic functions

in sum-of-products form. They are also quite versatile, since both the AND terms and

OR terms can have many inputs (this feature is often referred to as wide AND and

OR gates).

When PLAs were introduced in the early 1970s, by Philips, their main drawbacks

were that they were expensive to manufacture and offered somewhat poor speed

performance. Both disadvantages were due to the two levels of configurable logic,

because programmable logic planes were difficult to manufacture and introduced

significant propagation delays. To overcome these weaknesses, Programmable Array

Logic (PAL) devices were developed. PALs feature only a single level of

programmability, consisting of a programmable “wired” AND plane that feeds fixed

OR-gates. To compensate for lack of generality incurred because the OR-plane is

fixed, several variants of PALs are produced, with different numbers of inputs and

outputs, and various sizes of OR-gates. PALs usually contain flip-flops connected to

the OR-gate outputs so that sequential circuits can be realised. PAL devices are

important because when introduced they had a profound effect on digital hardware

 46

design, and also they are the basis for some of the newer, more sophisticated

architectures that will be described shortly. Variants of the basic PAL architecture

are featured in several other products known by different acronyms. All small PLDs,

including PLAs, PALs, and PAL-like devices are grouped into a single category

called Simple PLDs (SPLDs), who’s most important characteristics are low cost and

very high pin-to-pin speed-performance.

As technology has advanced, it has become possible to produce devices with higher

capacity than SPLDs. The difficulty with increasing capacity of a strict SPLD

architecture is that the structure of the programmable logic-planes grows too quickly

in size as the number of inputs is increased. The only feasible way to provide large

capacity devices based on SPLD architectures is then to integrate multiple SPLDs

onto a single chip and provide interconnect to programmably connect the SPLD

blocks together. Many commercial field-programmable devices (FPD) products exist

on the market today with this basic structure, and are collectively referred to as

Complex PLDs (CPLDs).

The highest capacity general purpose logic chips available today are the traditional

gate arrays sometimes referred to as Mask-Programmable Gate Arrays (MPGAs).

MPGAs consist of an array of pre-fabricated transistors that can be customized into

the user’s logic circuit by connecting the transistors with custom wires.

Customization is performed during chip fabrication by specifying the metal

interconnect, and this means that in order for a user to employ an MPGA a large

setup cost is involved and manufacturing time is long. Although MPGAs are clearly

not FPDs, they are mentioned here because they motivated the design of the user-

programmable equivalent: FPGAs.

 47

In 1985, a company called Xilinx introduced a completely new idea. The concept

was to combine the user control and time to market of PLDs with densities and cost

benefits of gate arrays. Like MPGAs, FPGAs comprise an array of uncommitted

circuit elements, called logic blocks, and interconnect resources, but FPGA

configuration is performed through programming by the end user. An illustration of a

typical FPGA architecture appears in Figure 12 [45]. As the only type of FPD that

supports very high logic capacity, FPGAs have been responsible for a major shift in

the way digital circuits are designed.

Figure 12.Structure of a FPGA

4.1.2 Architecture of Xilinx FPGAs

There are three main types of FPGAs according to programmable elements to be

used. One is based on static RAM (SRAM), the second type based on antifuses, and

the third is FLASH-based FPGAs. [48] [49].

The first, SRAM programming, involves static RAM bits as the programming

elements. There bits can be combined in a single memory and used as Look-up Table

(LUT) to implement any kind of combinational logic. An example of usage of

SRAM-controlled switches is illustrated in Figure 13 [45], showing two applications

 48

of SRAM cells: for controlling the gate nodes of pass-transistor switches and to

control the select lines of multiplexers that drive logic block inputs. The figures gives

an example of the connection of one logic block (represented by the AND-gate in the

upper left corner) to another through two pass-transistor switches, and then a

multiplexer, all controlled by SRAM cells. Whether an FPGA uses pass-transistors or

multiplexers or both depends on the particular product.

Figure 13.SRAM-controlled Programmable Switches

The other type of programmable switch used in FPGAs is the antifuse. Antifuses are

originally open-circuits and take on low resistance only when programmed.

Antifuses are suitable for FPGAs because they can be built using modified CMOS

technology. Antifuse FPGAs have the advantage of lower power over SRAM-based

FPGAs, but an antifuse FPGA can only be programmable once.

A new type of FPGAs using flash technology is called flash-based FPGAs. These

devices are essentially the same as SRAM-based devices, except that they use flash

EPROM bits for programming. Flash EPROM bits tend to be small and fast. They

are non-volatile like antifuse, but reprogrammable like SRAM.

Each FPGA vendor has its own FPGA architecture, but in general terms they all have

a basic structure shown in Figure 12. The architecture consists of configurable logic

 49

blocks (CLBs), configurable I/O blocks, and programmable interconnect to route

signals between CLBs and I/O blocks. Also, there is clock circuitry for driving the

clock signals to each flip-flop in each logic block. Additional logic resources such as

arithmetic logic units (ALUs), memory, and decoders may also be available [50].

CLBs contain the programmable logic for the FPGA. The diagram in Figure 14

shows a typical CLB, containing RAM for creating arbitrary combinational logic

functions [51]. It also contains flip-flops for clocked storage elements and

multiplexers (MUXes) in order to route the logic within the block and to route the

logic to and from external resources. These MUXes also allow polarity selection,

reset input, and clear input selection.

Figure 14.FPGA configurable logic block (CLB)

On the left of the CLB are two 4-input memories, also known as 4-input lookup

tables or 4-LUTs. 4-input memories can produce any possible 4-input Boolean

equation. Feeding the output of the two 4-LUTs into a 3-input LUT, produces a wide

variety of outputs. Four signals labelled C1 through C4 enter at the top of the CLB.

These are inputs from other CLBs or I/O blocks on the chip, allowing outputs form

other CLBs to be input to this particular CLB. These interconnect inputs allow

 50

designers to partition large logic functions among several CLBs. They also are the

basis for connecting CLBs in order to create a large, functioning design.

The MUXes throughout the CLB are programmed statically. In other words, when

the FPGA is programmed, the select lines are set high or low and remain in that state.

Some MUXes allow signal paths through the chip to be programmed. For example,

MUX M1 is programmed so that the top right flip-flop data is either input C2, or the

output of one of the two 4-LUTs or the output of the 3-LUT.

Some MUXes are programmed to affect the operation of the CLB flip-flops. MUX

M2 is programmed to allow the top flip-flop to transition on the rising or falling edge

of the clock signal. MUX M3 is programmed to always enable the top flip-flop, or to

enable only when input signal C4 is asserted to enable it.

The I/O pins on a chip connect it to the outside world. The I/O pins on any chip

perform some basic functions:

• Input pins provide electrostatic discharge protection.

• Output pins provide buffers with sufficient drive to produce adequate signals

on the pins.

• Three-state pins include logic to switch between input and output modes.

The pins on one FPGA must be programmable to accommodate the requirements of

the configured logic. A standard GPGA pin can be configured as an input, output, or

three-state pin.

Pins may also provide other features. Registers are typically provided at the pads so

that input or output values may be held. The slew rate of outputs may be

programmable to reduce electromagnetic interference; lower slew rates on output

 51

signals generate less energetic high frequency harmonics that show up as

electromagnetic interference (EMI).

An FPGA has several kinds of interconnect: short wires, general-purpose wires,

global interconnect, and specialized clock distribution networks. The reason that

FPGAs need different types of wires is that wires can introduce a lot of delay, and

wiring networks of different length and connectivity need different circuit designs.

4.1.3 FPGAs vs. ASICs

In comparison with PLDs, there is another kind of un-programmable digital devices

called application specific integrated circuits (ASICs) [46]. An ASIC is an integrated

circuit (IC) customized for a particular use, rather than intended for general-purpose

use. By carefully tuning each ASIC to a given job, the computer designer can

produce a smaller, cheaper, faster chip that consumes less power than a

programmable processor. A custom graphics chip for a PC, for instance, can draw

lines or paint pictures on the screen 10 or 100 times as quickly as a general-purpose

central processing unit can [47].

An ASIC is not a programmable device, but it is important precursor to the

developments leading up to CPLDs and FPGAs. Nowadays, the ASIC vendor has

created a library of cells and functions that the designer can use without needing to

know precisely how these functions are implemented in silicon. The ASIC vendor

also typically supports software tools that automate such processes as circuit

synthesis and circuit layout.

The design of an ASIC goes down to the masks used to fabricate an IC. The ASIC

must be fabricated on a manufacturing line, a process that takes several months,

before it can be used or even tested. ASICs have some significant advantages

 52

because they are designed for a particular purpose: they are very fast and the

circuitry is dense, allowing lots of functionalities on a die; and the cost is low for

high volume production. The disadvantage is that it takes time for the ASIC vendor

to manufacture and test the parts. Also, the customer incurs a large charge up front,

called a non-recurring engineering (NRE) expense, which the ASIC vendor charges

to begin the entire ASIC process. And if there is a mistake, it is a long, expensive

process to fix it and manufacture new ASICs.

Hardware designers always wanted something that gave them the advantages of an

ASIC, such as circuit density and speed, but with the shorter turnaround time of a

programmable device. A new development in integrated circuits offers an ideal

solution: large and fast FPGAs—highly tuned hardware circuits that can be modified

at almost any point during use. FPGAs consist of arrays of configurable logic blocks

that implement the logical functions of gates. Logic gates are like switches with

multiple inputs and a single output. They are used in digital circuits to perform basic

binary operations such as AND, NAND, OR, NOR and XOR. In most hardware that

is used in computing today, the logical functions of gates are fixed and cannot be

modified. In FPGAs, however, both the logic functions performed within the logic

blocks and the connections between the blocks can be altered by sending signals to

the chip. These blocks are structurally similar to the gate arrays used in some ASICs,

but whereas standard gate arrays are configured during manufacture, the configurable

logic blocks in FPGAs can be rewired and reprogrammed repeatedly, long after the

integrated circuit has left the factory. Compared to ASICs, the design time of FPGAs

is much shorter. FPGAs, because they are standard parts, have several advantages in

design time. They can be used as prototypes, they can be programmed quickly, and

they can be used as parts in the final design. Moreover, FPGAs are more affordable

 53

and less risky than ASICs, because using FPGAs, we do not need to worry about

high NRE cost, long delay in design and testing. Meanwhile, FPGAs have the same

advantages as ASICs. They have high complexity and reliability, the circuits are

dense, and the physical size is small. FPGAs consist of huge sum of standard

programmable logic blocks which can be applied to massively parallel operation.

4.1.4 Parallel Processes on FPGAs

The use of programmable logic to accelerate computation, also called Reconfigurable

Computing (RC) arose in the late 1980’s with the widespread commercial

availability of FPGAs. RC researchers found that the speed of direct hardware

execution on a FPGA is 10 times to 100 times faster than the equivalent software

algorithm. FPGAs offer significant advantages over microprocessors for high

performance, low volume applications, particularly for applications that can exploit

customized bit widths and parallel processing [52].

The speed advantage of FPGAs derives from the fact that the programmable

hardware is customized to a particular algorithm. An FPGA can be configured to

perform arbitrary fixed precision arithmetic, with the number of arithmetic units,

their type, and their interconnection uniquely defined by the algorithm. In contrast,

the design of a fixed instruction set processor must accommodate all possible

operations that an algorithm might require for all possible data types. A comparison

of a multiply-accumulator between reconfigured architecture in a FPGA and fixed

processors are shown in Figure 15 [52]. In this example, the FPGA is configured to

hold an array of application-specific processing units. Each processing unit contains

four 8-bit adders and 16-bit multiply-accumulate unit which are operating in parallel.

Hardware address generators are used to access off-chip data. The microprocessor in

this example has a Harvard architecture. It accesses the sequential instruction stream

 54

through the Instruction Cache. The data memory hierarchy includes external memory,

cache and integer and floating point register files, which supply operands to the

arithmetic units.

The example illustrates the major differences between reconfigurable and processor-

based computing. The FPGA is configured into a customized hardware

implementation of the application. The hardware is usually data path driven, with

minimal control flow, and is able to process data in parallel; processor-based

computing depends on a linear instruction stream including loops and branches.

Memory Address Generator

8-bit Register 8-bit Register 8-bit Register 8-bit Register

8-bit Adder 8-bit Adder

8-bit Register 8-bit Register

16-bit Muti-Acc

16-bit Register

Memory Address Generator

Parallel

applications in

a FPGA

I-Cache D-Cache

Fetch Decode

Dispatch

Float Point Units

Integer

Registers

Float Point

Register

Integer Units

To External

Memory

Sequential instruction

stream in a

Microprocessor

Figure 15. Reconfigurable architecture in a FPGA and sequential architecture in
Microprocessor

 55

4.2 VHDL

When Computer Aided Design (CAD) technology was developed, Hardware

Description Language (HDL) became one of the main methods that designers used to

implement hardware designs in CAD systems [53]. Although the method of

describing hardware using Higher level programming language has been developed

[54], HDL is still accepted as a standard and most popular tool for all kinds of digital

designs. In this section, we will talk about the characteristics of VHDL, and the

advantages of using VHDL in FPGA applications.

There are two prevailing versions of hardware description languages: one is verilog

HDL, and the other one is VHDL. The coding style of verilog HDL is more similar

to some high-level software programming languages, such as C [55]. Therefore, it

has more flexibility and can be accepted more easily by software programmers.

However, beginners tend to make mistakes because of its flexibility. In this thesis,

VHDL with the stricter coding style is preferred by the author.

VHDL originated from the American Department of Defence, which recognised that

they had a problem in their hardware procurement programmes. They suffered low

compatibility which means it was very difficult to transfer design data to other

companies for secondary sourcing, and there was no guarantee that these languages

would survive for the life expectancy of the hardware they described.

The solution was to have a single, standard hardware description language, and to

achieve this the earliest version of VHDL was developed. Later on, the importance of

the language development, and especially the importance of standardisation of the

language, was recognised and so the formative language was passed into the public

 56

domain by its inclusion in the Institute of Electrical and Electronics Engineers (IEEE)

standard in 1986 [56] [57].

The combination of computing and electronics is the key to the success of VHDL

[56]. Making use of advantages of software programming language, VHDL can be

used to design hardware with complex functions and algorithms, and it helps

designers significantly reduce design cycles in contrast with traditional design

methods.

VHDL is intended to cover every level of the design cycle from system specification

to netlist, making it a tool capable of supporting all levels of the hardware design

cycle [58-60].

The system level focuses on the description of the functionalities of the system [58-

60]. A constant concern at this level is to forget useless details, which would imply

architectural choices too early in design methodology. A system description with too

much detail is a drawback since it restricts further architectural choices or implies a

given technology. Therefore, hiding the information structure is desirable and the

notion of concurrency may not be necessary at this phase. But this level of

description is not suitable to be synthesised.

The synthesisable level, also named Register Transfer Level (RTL), focuses on logic

synthesis for the design [58-60]. Logic synthesis offers an automated route from an

RTL design to a gate-level design. This level is the potential input for synthesis tools.

RTL is a high-level design methodology which can be used for any digital system. In

RTL design, a circuit is described as a set of registers and a set of transfer functions

indicating the flow of data between registers. The registers are implemented directly

as flip-flops, while the transfer functions are implemented as blocks of combinational

 57

logic. The language must allow a description of the model at this level with a

sufficient level of abstraction towards the physical level.

The netlist level is the potential output of synthesis tools [58-60]. It is a structural

view appearing as a collection of model instantiations. This kind of description

involves the existence of model libraries. The notion of time is often present in the

description of these models, from the notion of propagation delay through a gate to

very sophisticated delays. At this step, the language has to offer an optimal flexibility

in terms of timing configuration or technology.

Hierarchy is another outstanding character of VHDL [61]. There are a number of

reasons for using hierarchy. First, using hierarchical methods, designers are able to

divide a system into several parts. Third party components can be incorporated into a

design more easily, and this leads to a higher degree of confidence in the integrity of

the design. Each subcomponent can be designed and tested in isolation before being

incorporated into the higher levels of the design. This testing of intermediate levels is

much simpler than testing the whole system. Subcomponents can be used

concurrently and also can be reused somewhere else.

 58

5. Text-to-Braille Translation Based on Hardware

5.1 Universal Design Methodology for Programmable Devices (UDM-

PD)

The universal design methodology is used in the design of hardware Braille

translation systems. Using universal design methodology, designers aim to design

devices that are free from manufacturing defects, work reliably over their lifetime

and function correctly in the whole system [59] [62]. UDM-PD is also able to help

designers design a device with good time efficiency and with fewer resources used.

UDM-PD outlines a specific design flow for creating a programmable device which,

when followed, allows a good design to be reached. The design flow consists of the

steps shown in Figure 16 [62]. Each particular design will require slight variations in

the specifics of each step, but essentially the steps will be the same.

 59

Specification

Design

Simulate

Synthesis

Place & Route

Simulate, Formal Verification

System integration and test

Product

Choose Chip and Tools

Figure 16. Design Flow of UDM

A Top-Down design methodology is used in system implementations where high-

level functions are defined first, and the lower-level implementation details are filled

in later [63].

5.2 Text-to-Braille Translation

5.2.1 System Specification and Tools Selection

A specification is an absolute necessity for a digital design. A specification allows

each engineer to understand the entire design and how the part for which he/she is

 60

responsible connects to the whole design. It allows the engineer to design the correct

interface to the rest of the chip. It also saves time and thus cost, and helps avoid

misunderstanding between co-designers.

The system specification for the text-to-Braille translator includes the following

information:

• External block diagram showing how the chip fits into the system

• Internal block diagram showing each major functional section

• Description of the I/O pins

• Gate count estimate

• Test procedures

A specification also should have descriptions about package type, power

consumption target, price target, and timing estimate including setup and hold times

for input pins, clock cycle time etc. However, in this system, the issues of price and

packaging are not considered, since this system is not related to the development of a

commercial product. Power consumption and timing constraints similarly are not

discussed, as once development tools and chip are selected, it is very easy to obtain

these data.

The external block diagram, shown in Figure 17, indicates how the device fits into

the testing system [65]. As well as a text-to-Braille translator, a simple universal

asynchronous receiver/transmitter (UART) is integrated in FPGA for communicating

with computers [64]. The serial receiver sends two output signals to the translator.

The one-bit data-ready signal is indicated using a thin arrow, and the other signal is

8-bits data indicated by a thick arrow. A handshake communication was built

 61

between the serial transmitter and the translator. A one-bit signal is sent to the

translator from the transmitter to indicate if the transmitter is ready to receive data.

The thick arrow from the translator represents 8-bits data, while the black arrow is

for data ready. For further development, the text-to-Braille translator is going to be

used as a standalone component in a universal Braille device which is able to

perform multi-tasks including Braille note taking, translation, speaking and interface

to printers and embossers. Therefore, parallel communication is preferred in this

particular application.

 FPGA

Serial

Receiver

Serial

Transmitter

T
ra
n
sl
a
to
r

Text

files

Figure 17. External Block Diagram

The internal block diagram is shown in Figure 18. The translating process is quite

straightforward. Before translation starts, the rule table has to be stored in a look-up

table first. The input block takes charge of this task as well as receiving characters to

be translated. The translation block receives the string from the input block, fetches

rules from the look-up table according to the entry character, and then translates it

from leftmost character to the rightmost. This block implements text-to-Braille

translation including left context, focus and right context checking functions. A

feedback signal will be sent back to the input block indicating how many characters

 62

have been translated. The translation results are sent to the output block which has a

handshake communication with the serial transmitter.

Translator

Input Block

Look-up
Table

Translation

Output Block

Serial
Receiver

Serial

Transmitter

Figure 18. Internal Block Diagram of the translator

Xilinx FPGA products were chosen as a development platform for implementation.

As the inventor of FPGAs, the Xilinx Company is able to supply consumers with

several series of high quality FPGAs and powerful development tools.

Because a big rule table is needed in text-to-Braille translation, the FPGA has to

include enough memory to store the table. The size of the original table is 20 kilo-

bytes, but the format of the table has been changed to fit in the translator. As a result,

the table has 33 kilo-bytes of data. Therefore, The Memec Virtex-4 FX12 LC

Development Board was selected for the translation system, and correspondingly, a

Xilinx Virtex family FPGA, XC4VFX12, is integrated on this board [66]. The Virtex

XC4VFX12 FPGA includes 86 kilo-bits of distributed RAM and 648 kilo-bits of

block RAMs, so it supplies abundant memory resources so that two rule tables for

both text-to-Braille and Braille-to-text translation can be stored in the same chip.

There is a hard PowerPC processor core is integrated in this FPGA, or a alternative

soft Intelectual Property of a microcontroller Microblaze can be configured in this

 63

FPGA. Consequently, this FPGA can be used to build a universal Braille system on a

chip (SOC). The Memec Virtex-4 FX12 LC Development board, shown in Figure 19,

includes 64MB of DDR SDRAM, 4MB of Flash, USB-RS232 Bridge, a 10/100/1000

Ethernet PHY, 100 MHz clock source, RS-232 port, and additional user support

circuitry to develop a complete system. So the board is able to satisfy the

requirements of the translation system for testing purposes.

Figure 19. Memec Virtex-4 FX12 LC FPGA Development board

5.2.2 Design

Figure 20 shows the block diagram of the text-to-Braille translator consisting of ten

blocks. Before translation starts, the rule table needs to be sent to the look-up table.

To do this, a block, called a data-controller was built in this system. While the

translator is initialised, particular signals generated from the data-controller enable

the look-up-table block and disable the translating block, and translating rules will be

sent one by one to the look-up table. Every address in the look-up table corresponds

to a single translating rule. To fit the rule table to the look-up table, the format of the

rules has been changed. The redundant information such as square brackets, tabs and

 64

equal marks has been removed. The length of each part of each rule is the same, and

the short one has zeros following to indicate the end.

 Translator
Translating Block

Look-Up

Table

Output Translated Codes

Right
Context
Check

 Left
Context
Check

Output

Rule

Find
Entry

Load

Translated
Codes

Translating Controller

Data

Controller

Braille
ASCII

Text

ASCII Focus
Check

Figure 20. Block Diagram of Text to Braille Translator

To explain how the translation is processed, behavioural simulation results for

translating a string “SHOULD ” are given in Figure 21. Behavioural simulation is the

first check which is to verify RTL code and to confirm that the design is functioning

as intended [66].

In this simulation, the translator receives a untranslated string “SHOULD ” and a

one-bit signal “ready_rx” from the serial receiver, and sends translated codes to the

serial transmitter through the output signal “out_char”. The “ready_rx” signal is to

indicate that data are ready on the output “datain” of the serial receiver, which is the

string “SHOULD ” in this example. The translation startes by detecting the input

character “space”. Another input named “ready_tx” is a output signal from the serial

transmitter. A handshaking scheme is used between the serial transmitter and

translator. Both of these two signals are initialised to logic ‘1’. A logic ‘1’ on the

signal “ready_tx” means the serial transmitter is ready to receive data. In this case, a

logic ‘0’ will be generated on “wr” when the translator has translated codes to send.

 65

The serial transmitter will store the translated data by detecting the falling adge of

“wr”, and then generate a logic ‘0’ on “ready_tx” showing its busy with sending data.

Conrrespondingly, the translator will set “wr” to logic ‘1’ again to wait for another

high of “ready_tx”.

The translating-controller block, shown in Figure 20, is to control the translating

process. This block activate the translation process by sending a control signal

“convert” and untranslated data “d1” to “d12” obtained from the serial receiver to

other blocks. Meanwhile, it also gets feedback from the load-translated-codes block.

In Figure 21, a intenal signal “empty” generated by the translating-controller block is

used as a indicator to notice other blocks the state of the translator. When “empty” is

in logic ‘1’, it represents the translator is receiving data from the serial transmitter, or

sending data to the serial transmitter. On the contrary, a logic ‘0’ on “empty” shows

the occurrence of translating processes. In this system, translation is carried out word

by word, with spaces used as stop signs. In one translation period, the translating

controller receives one word and the following space, translates it, and waits for the

next word.

The load-translated-codes block feeds back the number of translated characters and

the translating controller will skip over those characters and find a new entry. In the

simulation given in Figure 21, a internal signal “num_translated” is used as the

feedback number. The original text contained in signal “d1” to “d12” will be sent to

the focus-check block and right-context-check block, and the entry character “d1” to

the find-entry block.

 66

Figure 21. Behavioural simulation for translating a string “SHOULD ”

T
ra
n
sl
at
io
n

in
d
ic
at
o
r

U
n
tr
an
sl
at
ed

st
ri
n
g

T
ra
n
sl
at
ed

st
ri
n
g

In
p
u
ts

O
u
tp
u
ts

In
te
rn
al

si
g
n
al
s

 67

The find-entry block receives the entry character from the translating controller and

outputs a particular address to the output-rule block. In this block, there is a look-up

table which stores all the entry addresses. If an address corresponds to a particular

entry character, this address signal “entry_n” and an address ready signal “act” will

be sent to the output-rule block. However, if no entry address can be found

corresponding to a particular character, this character and a find-address fail-signal

will be sent to the output-translated-codes block, and these two signals will pass

through the next four blocks.

Two operations keep running in the output-rule block. One is reading rules from the

look-up-table block, and the other one is sending every single rule to focus-check,

right-context-check, left-context-check, and load-translated-codes blocks. Input

signals for the output-rule block are all the outputs from the find-entry block, the

look-up table block and feedback signals from load-translated-codes blocks which

indicate if the output rule is used correctly or not. However, because no enough

space is available, the internal signals for the the output-rule, focus-check, right-

context-check, and left-context-check are not included in the simulation.

The look-up-table block consists of 18 block RAMs, which are configured to a

1200*256 bits memory, and can accommodate the whole rule table with total 1031

entries. The look-up-table block remains in read mode after writing the rule table.

Therefore, once receiving the address from the find-entry block, the output-rule

block will send the address to the look-up-table block to read one rule and send it

separately to focus-check, right-context-check, left-context-check and out-rule block.

If the rule cannot be used, a feedback signal will be generated and the output-rule

block will get the next rule and send it until the focus is successfully translated.

 68

The “focus” is one or more characters in the original text which should be translated.

According to Paul Blenkhorn’s method, the same focus can have different left and

right contexts. Therefore, checking left and right context is necessary. If a string is

identical to the focus in a particular rule, the right and left contexts need to be

checked as well. If all three parts match, the rule fires, and the string can be

translated.

Focus-check and right-context-check blocks receive not only the rule from output-

rule block, but also the whole group of words to be translated from the translating

controller, because more than one letter of focus and right context might be checked.

The structures of these three blocks are similar because they perform similar

functions. Therefore, here only the focus-check block will be described.

Because Blenkhorn’s algorithm is based on software procedural programming, a

sequential processing is used to achieve focus, right and left context checking, where

these three functions are included in different blocks, and invoked one by one [37]

[40]. Apparently, a sequential design can make implementation easier, but

meanwhile the processing speed could be slown down. However, the hardware-based

translator, as shown in Figure 20, provides a parallelism to make focus-check, right-

context-check and left-context-check blocks work concurrently, providing better

performance than sequential implementations. Each block generates signals for the

load-translated-codes block indicating if the focus, the right context or the left

context were successfully matched. If one of the three fails, then a signal is sent back

to the output-rule block requesting the next rule. If the focus, right context and left

context match one of the rules, then the load-translated-codes block sends the

translated codes to the output-translated-codes block, and informs to the translating-

controller block how many characters were translated.

 69

As mentioned, the output-translated-codes block has a handshake connection with a

serial transmitter. After one group of characters has been translated, this block will

send the characters one by one when the transmitter is ready. Then a new cycle starts.

For instance, Figure 22 shows a post-place-and-route simulation for translating a

string “SHOULD AND ”. Post-place-and-route simulation is to verify that the actual

gate-level implementation matches the functional behavior simulated earlier [67]. It

is a critical step, because a circuit which simulates correctly with time-unit delay

may not work properly when actual routed delays are added to the design. In the

simulation, the translator is synchronised by a 16.6 MHz clock, that is 60 nano

seconds per clock cycle. When the string “SHOULD ” is sent to the translator

through the serial receiver, it takes 13 microseconds to for the translator to do the

conversion and another 10 microseconds to send the untranslated string to the serial

transmitter. Then, the translator waits for the new feed-in “AND ”.

 70

Figure 22. Post place and route simulation for translation a string “SHOULD AND ”

 71

5.2.3 Implementation and Test

In this particular implementation, the translator uses a 100 MHz clock source. The

serial channel receives from a PC the text file to be translated at 4800 baud and sends

the translated text back to the PC at 57600 baud. In this setting, the translator runs

much faster than the serial communication channel. The translation process can be

finished in the time required to transmit one bit of information back to the PC.

However, because this system is only able to translate groups of characters, after

translation is done, the serial transmitter has to send all the translated codes to the

computer before the next group of text is received. That is why the baud rate for

transmitting is 16 times faster than for receiving. However, in embedded applications,

parallel communications can be used to increase the throughput.

All the blocks of the serial communication and the translator have been built

hierarchically using VHDL, and the coding program can be found in Appendix V.

Xilinx’s ISE FPGA-development suite was used for system implementation,

synthesis, simulation and FPGA configuration. The device utilisation summary of

this implementation generated by the software is shown in Table 9. A Xinlix Virtex-

4 XC4FX12 FPGA is used for the system implementation. To test the system, text

files were sent and received from a PC using Hyper Terminal, Windows’s terminal

emulation tool.

Table 9. Device Utilization Summary (Virtex-4 XC4FX12)

Logic Utilization Used Available Utilization

Number of Slices 2836 5472 51%

Number of Slice Flip Flops 2619 10944 23%

Number of 4 input LUTs 4621 10944 42%

Number of bonded IOBs 5 320 1%

Number of FIFO16/RAMB16s 19 36 52%

Number of GCLKs 8 32 25

 72

In some commercial Braille translation programs, there is an option to use only

capital letters for the translation results. In this system, all the text is converted to

capitals before translation. This is partly because the rule table in Blenkhorn’s system

only includes capital letters, and also because this method can decrease the

complexity of implementation.

For comparison purposes the output of Duxbury, a commercial Braille translation

program mentioned in Chapter 3, has been used. The text used is a fragment of Paul

Blenkhorn’s paper [37].

In Table 10, the results show that the hardware translator is able to complete the

translation successfully.

The main difference between the two translations is how quotation marks are

translated. Duxbury translates them as @, while the hardware-based system

translates them as 8 and 0. This is because Duxbury can not recognise 8-bit ASCII

codes such as quotation marks and commas, but the hardware system can.

The single most important issue that anyone interested in Braille translation must

appreciate is that results must be essentially error-free. Standards for Braille

translation are much higher than for print. This level of accuracy is necessary

because Braille uses the same cells for different purposes in different contexts. As a

consequence, even slight errors can cause extreme difficulties in interpretation.

Therefore, all translations must be very precise. The results show that this hardware

translating system is able to complete the translation successfully and precisely.

 73

Table 10. Original text and translations generated by software and by hardware

Original text
Translation by Duxbury
commercial software

Translation by hardware

THE PRODUCTION OF
BRAILLE USING
COMPUTERS IS NOW
WELL ESTABLISHED,
AND THERE HAVE BEEN
A NUMBER OF
METHODS EMPLOYED
TO ACHIEVE THIS,
PARTICULARLY FOR
AMERICAN ENGLISH
BRAILLE. HOWEVER, IT
HAS BEEN NOTED THAT
THERE IS A NEED

FOR THE
“DEVELOPMENT OF
COMPUTER SOFTWARE
WHICH IS EASILY
ADAPTED FOR
TRANSLATING TEXT TO
CONTRACTED BRAILLE
FOR LANGUAGES SUCH
AS HINDI AND
PORTUGUESE” [1, P. 30],
AND ONE OF THE
MAJOR GOALS OF THE
WORK REPORTED HERE
HAS BEEN TO ADDRESS
THIS NEED. A FURTHER
GOAL HAS BEEN TO
DEVISE A SYSTEM
THAT CAN BE READILY
UPDATED AND
MODIFIED, BY PEOPLE
WHO ARE NOT EXPERTS
IN COMPUTER
ALGORITHMS, IN
ORDER TO REFLECT
CHANGES/-
ENHANCEMENTS TO
THE BRAILLE RULES OF
A GIVEN LANGUAGE.
MANY EARLIER
SYSTEMS, ALTHOUGH
EFFECTIVE
TRANSLATORS, HAVE
PROVED DIFFICULT TO
MODIFY FOR EITHER
SUCH MINOR CHANGES
OR FOR NEW
LANGUAGES.

! PRODUC;N (BRL US+ -
PUT]S IS N[WELL
E/ABLI%$1 & "! H BE5 A
NUMB] (ME?ODS
EMPLOY$ 6A*IEVE ?1
"PICUL>LY = AM]ICAN
5GLI% BRL4 H["E1 X HAS
BE5 NOT$ T "! IS A NE$

=! @IDEVELOP;T (-PUT]
S(TW>E : IS EASILY
ADAPT$ = TRANSLAT+
TEXT 63TRACT$ BRL =
LANGUAGES S* Z H9DI &
PORTUGUESE@I ,7#A1 P4
#CJ7'1 & "O (! MAJOR
GOALS (! "W REPORT$ "H
HAS BE5 6A4RESS ? NE$4
A FUR!R GOAL HAS BE5
6DEVISE A SY/EM T C 2
R1DILY UPDAT$ &
MODIFI$1 0P :O >E N
EXP]TS 9 -PUT]
ALGORI?MS1 9 ORD]
6REFLECT *ANGES/-
5H.E;TS 6! BRL RULES (A
GIV5 LANGUAGE4 _M
E>LI] SY/EMS1 AL?
E6ECTIVE
TRANSLATORS1 H PROV$
DI6ICULT 6MODIFY = EI S*
M9OR *ANGES OR = NEW
LANGUAGES4 AL? ?
SY/EM HAS BE5 DESIGN$
6COPE)A L>GE NUMB]
(DI6]5T LANGUAGES1

! PRODUC;N (BRL US+ -
PUT]S IS N[WELL
E/ABLI%$1 & "! H BE5 A
NUMB] (ME?ODS
EMPLOY$ 6A*IEVE ?1
"PICUL>LY = AM]ICAN
5GLI% BRL4 H["E1 X HAS
BE5 NOT$ T "! IS A NE$

=! 8DEVELOP;T (-PUT]
S(TW>E : IS EASILY
ADAPT$ = TRANSLAT+
TEXT 63TRACT$ BRL =
LANGUAGES S* Z H9DI &
PORTUGUESE0 ,7#A1 P4
#CJ7'1 & "O (! MAJOR
GOALS (! "W REPORT$ "H
HAS BE5 6A4RESS ? NE$4
A FUR!R GOAL HAS BE5
6DEVISE A SY/EM T C BE
R1DILY UPDAT$ &
MODIFI$1 0 P :O >E N
EXP]TS 9 -PUT]
ALGORI?MS1 9 ORD]
6REFLECT *ANGES/-
5H.E;TS 6! BRL RULES (A
GIV5 LANGUAGE4 _M
E>LI] SY/EMS1 AL?
E6ECTIVE
TRANSLATORS1 H PROV$
DI6ICULT 6MODIFY = EI
S* M9OR *ANGES OR =
NEW LANGUAGES4 AL? ?
SY/EM HAS BE5 DESIGN$
6COPE)A L>GE NUMB]
(DI6]5T LANGUAGES1

 74

Another significant issue to discuss is speed. The timing results show that under the

same working frequency, the FPGA is able to perform translation much faster than a

microcontroller. In Table 11, a Mitsubishi microcontroller M16c/62 is compared

with the FPGA used in this design. In the microcontroller, the translation software

achieves the same results as the FPGA does. Both of them have the same working

frequency supplied by clock. However, when they translate the first rule of the A

table, the FPGA is much faster. Especially, as the last rule of the A table is translated,

it is easy to see that the FPGA shows a much higher efficiency than the

microcontroller.

Table 11. Timing Comparison between FPGA and Microcontroller

Rule FPGA (16mHZ) MC-M16c/62 (16mHZ)

[AND] → & 12 µs 300 µs

[A] → A 46 µs 1200 µs

5.3 Fast Text-to-Braille Translation

5.3.1 Algorithm

Since the translator follows the Markov algorithm, the rules have to be checked from

top to bottom sequentially [71]. For instance, in Blenkhorn’s text-to-Braille translation

system, all rules are listed in ASCII alphabetical order. For rules whose focuses start

with the same character(s), the order in which they appear in the table is related to

their priority. The first rule which is found has to be used.

Take the rule table with the letter ‘A’ at the beginning as an example to explain the

translation process. There are 50 rules in this group, and the terminating rule is “1 [A]

= [A] -”. If a contraction “AR” needs to be translated, the system has to check the 5

rules before the rule “2 [AR] = & -”. In this case, the string “AR” can be translated

 75

quickly. But, if the word “ALTOGETHER” needs to be translated, the system has to

check 36 rules before the rule “2 ~ [ALTOGETHER] = ALT -”. Especially, when only

the terminating rule has to be used, the translation speed will be slowed down

significantly. However, the translation process can be accelerated if the ‘A’ group is

separated into small subgroups which can be used in parallel.

The results show that based on Blenkhorn’s algorithm, the system is able to perform

the translation precisely. However, when mass text documents need to be translated, a

faster method for text-to-Braille translation is obviously preferred. Therefore, in the

following paragraphs, a parallel translating method is discussed.

To achieve faster translation, independent translating cells have been built. In each

cell, there is an alphabetically ordered sub-table. During the translation process, those

translating cells which are activated perform translation concurrently.

The principles for generating subgroups can be described as follows:

• Keep the original order of the rule table unchanged.

• For letter rules, use original terminating rules as one single subgroup, called the

terminating subgroup. The cell which stores the terminating rules is called the

terminating cell. Therefore, when translation is performed, the terminating

subgroup never fails to be used.

• Rules have to be separated into groups properly, so that only one translating cell

except the terminating cell is able to apply a particular rule successfully during the

translating process. Therefore, if one rule’s focus is part of another rule’s, and

there is no left and right context to distinguish between these two rules, they can

not be separated.

 76

Take the ‘A’ rules as an example to explain the principle of generating subgroups. In

the ‘A’ table, those rules with focus “AND ” and “AND” are used as a subgroup. In

this case, the contraction “AND” will never be translated by two cells. The rules

beginning with the string “AFTER” need to be used in one subgroup. Using this

method, the ‘A’ rules can be separated into 7 subgroups, while the biggest table, ‘B’

table with 122 rules, can be separated into 9 subgroups. For those tables with a small

number of rules, such as the ‘J’ table which only has 10 rules, it is not necessary to

separate these rules into subgroups.

5.3.2 Architecture

Figure 23 shows a block diagram of the text-to-Braille translator implemented in an

FPGA. Before the translation starts, the data-controller receives the rule tables and

distributes them to particular block RAMs located in translating cells. Then the data-

controller is ready to receive text.

 Translator
Translating Block

Output
Translated
Codes

Translating

Cells

Find

Entry

Translating Controller

Data

Controller

Braille

ASCII

Text

ASCII

Load
Translated
Codes

Figure 23. Block Diagram of Text-to-Braille Translator

The translating controller block gets feedback from the load-translated-codes block

and also receives and stores the text data in registers. The load-translated-codes block

feeds back the number of translated characters so that the translating controller can

 77

skip over those characters and find a new entry. The entry character is sent to the find-

entry block. The original text is sent to translating cells. In this particular

implementation, the translator carries out the conversion word by word and five

words at a time.

The find-entry block receives one entry character from the translating-controller and

outputs addresses for the corresponding translating-cells. The entry character is the

first un-translated character in the input text string. In the find-entry block, there is an

address decoder that translates the entry characters into addresses. If no entry address

can be found for a particular character, then the un-translated character and a fail

signal are sent to the output-translated-codes block.

The translating cells receive un-translated codes from the translating-controller as

well as addresses from the find-entry block. The parallel translating processes is

shown in Figure 24. Those cells which received addresses will carry out the

translation.

Cell

Cell

Cell

Find Entry
Load

Translated
Codes

Figure 24. Translating in Parallel

Before the architecture of translating cells is given, it is necessary to discuss the

scheme for constructing a rule look-up table with multiple access. The rule look-up

table performs as a Read Only Memory (ROM), because it just needs to be written

 78

once, and then only read operations are allowed. To let each translation cell fetch

particular rules from different addresses, an architecture given in Figure 25 would be

the best solution. In this diagram, only a group of four 32-bit registers are used in the

look-up table. To write a particular register, an address should be sent to the 2-bit

input address, and meanwhile the input “write” must be set to logic high. The outputs

of registers are connected to two 4-to-1 multiplexers Mux0 and Mux1. Hence, this

look-up table supplies two output ports where any value from each of the registers can

be read by selecting a particular address at inputs “Address A” and “Address B”.

However, when this architecture is applied to the parallel text-Braille translation, it

becomes very difficult to implement due to the size of the look-up table. For instance,

to do the translation by using nine translation cells, a 1031*256 bits RAM with a

group of nine 256-bit multipexers is needed, but there is no sufficient distributed

RAM available in the FPGA currently used. Therefore, another solution has been used

in this implementation, that is to use block RAMs integrated in FPGAs.

RAM (Look-up table)

Register 0 And

0 1 2 3

Decoder

0

1

2 Mux0

3
And

And

And

Register 1

Register 2

Register 3

0

1

2 Mux1

3

Data-in

32 bits

32 bits

32 bits

32 bits

Write

Input Address 2 bits

Address A 2 bits Address B

2 bits

Figure 25. A look-up table to 2 output ports

 79

In each translation cell, there is a look-up table constructed using block RAMs. Figure

26 shows the block diagram of a translating cell. Every cell has a block RAM where a

subset rule table is stored in alphabetical order. Before the translation process starts,

the un-translated codes from the translating-controller are sent to the focus and right-

context check blocks by the output-rule block. Then the output-rule receives an

address and gets a particular rule from the rule table. The rule will be separately sent

to the three following blocks. The focus, right-context and left-context check blocks

are built using finite state machines which are able to check if the rule can be applied.

As shown in Figure 26, the three blocks work concurrently, providing better

performance than sequential implementations [68].

Translating Cell

Right
Context

Check

 Left Context
Check

Output
Rule

Output

Focus

Focus Check Translating

Controller

Find Entry

Block

RAM
Data

Controller

Figure 26. Block Diagram of a Translating Cell

Each block generates signals for the output-focus block indicating if the focus, the

right context or the left context were successfully matched. The translation output will

be sent to the load-translated-codes block. If one of the three fails, then a signal is sent

back to the output-rule block requesting the next rule. If no rule can be used, a signal

will be generated and sent to the load-translated-codes block indicating that the

translating cell cannot find a match for translation.

 80

The load-translated-codes block will receive translation results from the terminating

cell or one of the other cells. The terminating never will fail to be applied. However,

compared with other cells, the terminating cell has lower priority. Therefore, if the

load-translated-codes block receives translated codes from two cells respectively, the

codes from the terminating cell will be discarded.

Therefore, the load-translated-codes block will output the translation according to set

priorities. Meanwhile, it will send signals to the translating-controller block to

indicate how many characters were translated.

After one group of characters has been translated, the output-translated-codes block

transmits the corresponding Braille ASCII characters one by one. Then the translation

of a new set of characters can begin.

5.3.3 Implementation and Results

The testing system follows the same method as the hardware based translation

system, as show in Figure 18. The program for fast translation in VHDL can be

found in Appendix VI. To show how the translating process is accelerated, sample

translation results have been presented.

The texts to be translated, as well as the results of the translation were stored in a PC

as text files and transmitted using an RS-232 serial connection.

The testing system works as follows:

1. The text to be translated is sent to the FPGA through a serial link using Hyper

Terminal.

2. Part of the FPGA implements a receiver that converts serial data into bytes that

are loaded into the translator.

 81

3. The translator takes the new character and stores it in a buffer. Characters are

stored until a space is detected. At this point the translation process described in

section 2 takes place.

4. The results of the translation are sent to a serial transmitter so that they can be

received and stored in a text file by the computer.

In this implementation, the FPGA receives the text file to be translated at 4,800 baud

and sends the translated text back to the PC at 57,600 baud. The reason for using

different baud rates for receiving and transmitting has been explained in Section 5.2.

To simplify the implementation, all rules were modified to be the same length. ASCII

code 0 was used as the end-sign for every part of the rule. As a consequence, a rule

table with 1031 rules occupies 31Kilo Bytes memory. However, Virtex-4 FPGAs have

dedicated memory blocks that can contain the complete table.

For testing, outputs of the hardware translator were compared with the outputs of the

previous work which uses the sequential translating method [65]. Using the

simulation tool, ModelSim, the numbers of clock cycles using sequential and parallel

methods can be accurately calculated. To show how the translation process goes

inside the translator, only three translting cells are built for simulation purposes,

because it is impossible to display all internal signals in one simulation with more

than three cells.

In this particular implementation of the parallel translator, the ‘A’ rule set is

separated into three groups which are stored in three cells respectively. By

comparison, a sequential translator is used to translate the same string as the parallel

one does, and both translators use a 25 MHz clock source which is a clock with 40

nano seconds per cycle. The behavioural simulation, shown in Figure 27, indicates

 82

that translation processes are being operated concurrently in three translation cells. It

takes 4110 nano seconds or 103 clock cycles to translate the string “ACROSS ”.

Correspondingly, in Figure 28, a long delay, 28560 nano seconds or 741 clock cycles,

is generated when the rules are checked sequentially. This is because the rule for

translating a string “ACROSS” is stored as the first rule of ‘A’ rule set in the third

translation cell. Therefore, the parallel is able to fectch this rule very fast. A further

comparison is given in Table 12, by listing the sample test results which are based on

six translation cells. The results show that the parallel method is able to perform

translations with superior speed.

 83

Figure 27. Behavioural simulation for translating a string “ACROSS ” in parallel

 84

Figure 28.Behavioural simulation for translating a string “ACROSS ” in sequential

 85

Table 12. Timing comparison between sequential and parallel methods

Un-translated
focuses

Translation
results

Time by sequential
method (clock

cycles)

Time by parallel
method (clock

cycles)

ARIGHT A”R 132 136

AND & 137 142

AS Z 392 105

ABOUT AB 410 129

ABOVE ABV 434 154

AFTERNOON AFN 477 104

AFTERWARD AFW 499 127

AFTER AF 571 190

ALWAYS ALW 595 104

ALREADY ALR 660 133

ALSO AL 614 157

ACROSS ACR 714 103

ACCORDING AC 739 134

AUND AUND 804 103

AINES A9NES 843 128

A A 926 207

Although the parallel processing algorithm is able to supply a much greater

throughput than the original translation algorithm, this is achieved at the price of

more programmable logic needed and more complex structure developed. Compared

to the device introduced in Section 5.2, a bigger Xilinx Virtex-4 xc4vsx35 FPGA is

used in this design. The Virtex-4 xc4vsx35 FPGA contains 15360 programmable

slices in total, and there are 4 configurable logic blocks (CLB) in one slice [70].

Table 13 shows how the occupancy of programmable slices of the translator grows

with the number of translation cells.

 86

Table 13.Resource occupation of Fast Braille Translation

Number of slices occupied Number of
translation cell Number Percentage

1 2918 19%

2 3379 22%

3 3994 26%

4 4608 30%

5 5069 33%

6 5530 36%

7 6144 40%

8 6758 44%

9 7219 47%

5.4 Braille-to-Text Translation

5.4.1 Architecture

As discussed in Chapter 3, Braille-to-text translation is referred to as a opposite

string rewriting process compared to text-to-Braille translation. However, because

both translations are context sensitive, so the algorithm of Braille-to-text translation

is very similar to the one used in the text-to-Braille translation, and this decides that

both the systems have similar architectures.

Parallel architectures are not applied to the Braille-to-text translation because of two

aspects to be considered. First, in contrast to a rule table with 1031 rules used in text-

to-Braille translator, the table for Braille-to-text translation only includes 498

translating rules. Furthermore, the alphabetical rule subsets also have a much smaller

size. For example, The ‘B’ table of text-to-Braille translator includes 122 rules, while

the Braille-to-text translator only contains 10 rules in its ‘B’ table.

On the other hand, Braille-to-text translation is mostly used as a functional module in

Braille notetakers. Braille notetaker is a small, portable device that supplies a Braille

entry for the the blind to take notes. The input mechanism of a Braille notetaker is a

keyboard with six keys and a space bar which is used to enter either Grade I or Grade

 87

II Braille [73]. When the blind use a notetaker to take notes, they also can select this

function to translate their Braille codes into natural languages. In this circumstance,

the translating speed is not a critical issue but translating accuracy.

Figure 29 shows the architecture of the Braille-to-text translator. Instead of using

left-context checking in text-to-Braille translation, the Braille-to-text translator uses a

finite-state machine to achieve a decision table check. The decision check function is

as described in Section 3.3.5. Since functions of other blocks are the same as those in

text-to-Braille translator which have been described in detail, therefore, they won’t

be repeated here.

 Translator
Translating Block

Look-Up
Table

Output Translated Codes

Right

Context
Check

 Decision
Table
Check

Output
Rule

Find
Entry

Load

Translated
Codes

Translating Controller

Data
Controller

Text
ASCII

Braille

ASCII Focus
Check

Figure 29. Block Diagram of Braille-to-Text Translator

Similarly, the testing system also follows the same method discussed in previous

sections. Figure 30 shows a post-place-and-route simulation for translating a string of

Braille “ABV ”. The translation process is activated when the last character, a space

sign is received. Then, rules will be checked sequentially until the rule “3

[ABV]=above 3” is found. The first number 3 is the input class indicating the rule

can be used when the first letter of a string is at the start of a word. In this case,

 88

because the letter ‘A’ is the first letter of the string “ABV”, so this rule fires. A

translated string “ABOVE ” is sent to the serial transmitter through the output

“out_char”.

 89

Figure 30. Post-place-and-route simulation for translating a string “ABV ”

 90

5.4.2 Braille Keyboard

The testing system for the Braille-to-text translation is quite different from the

version of text-to-Braille translation. Since Braille note takers are being widely used

for the blind to take notes in Braille, and Braille-to-text translation is a typical

application in these note takers, a Braille keyboard [72] [73] is integrated into the

system and is used as an input device.

Most commercial Braille note takers utilise microcontrollers with software running

in them to perform multiple functions including note taking, translation, and real

time speaking.

When using a Braille keyboard, up to six buttons need to be pressed simultaneously.

Because a simple matrix-like keyboard, shown in Figure 31, has deficiencies to deal

with multiple key detections [74], so it is normally not referred to as an ideal solution

for Braille keyboard. Instead, a popular one is to use optical detectors and a

microcontroller to detect when buttons are depressed [75]. One example of this

approach reported in D. G. Evans’s paper is to use infrared light source/sensor pairs

and microcontrollers [76]. When using optical detectors, if a key is depressed, it

breaks the light beam between the source and sensor. Thus, the sensor generates a

pulse that can be received by a microcontroller.

 91

Figure 31. Schematic of Braille Keyboard

A new method was developed to implement a Braille keyboard using a simple 4 x 6

push-button matrix [77]. The buttons have been organised and positioned so as to

achieve multiple key detections. A keyboard controller described in VHDL was

implemented to send and receive scan codes.

Figure 32 shows the layout of the proposed Braille keyboard. In line with current

designs, the keyboard has function and direction keys. The arrangment of six Braille

keys and space follows Perkins-style keyboard. Perkins Brailler, invented by David

Abrahams, is a Braille typewriter which has been widely used by blind people [72].

The layout of Perkins’ keyboard is adopted by most of commercial Braille note

taking products due to its success. To build a machine that is easy to use for the

visually-impaired, the function keys can be used for selecting functions including

speaking, printing, translating, embossing. Thus the direction keys can be used as

“shift”, “control”, “capital lock” and “backspace”.

 92

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

Dot 3 Dot2

Dot1 Dot4

Dot5 Dot6

Space Space

Up

Left

Down

Right

Enter

Figure 32. Layout of Braille Keyboard

Figure 33 shows the schematic diagram of the 4 x 6 matrix keyboard. The layout of

the schematic shows that the six Braille keys are located in the first column, twelve

functions keys in the second and third columns, and enter, space and direction keys

in the fourth.

The keyboard controller keeps sending 4-bit scan codes to the keyboard inputs from

C0 to C3 and scans one column at a time. To do this, a circular shift register

containing a intial binary value “0111” is used in the controller. For example, Figure

32 indicates a process of scanning the first column of keys for the Braille keyboard.

To scan the first column, the keyboard controller sends binary code “0111” to the

inputs of the keyboard C0 to C3. If key S39, S43 and S44 are pressed down, the most

significant bit ‘0’ will pass through these three keys to the output ports R1, R3 and

R4. Therefore, a six-bit binary output signal “101001” has been generated and sent

back to the keyboard controller. Likewise, to scan the second column, the shift

register will shift right the code “0111” for one bit to generate the second scan code

“1011”.

 93

0 1 1 1

1

0

1

0

0

1

Scan 1st column

Keyboard controller in FPGA

K
ey
b
o
ard
 co
n
tro
ller in

 F
P
G
A

Figure 33. A process of scanning the first column of keys

When a pushbutton is pressed or released, it does not generate a clear pulse. Instead,

the output may toggle as illustrated in Figure 34. This is called bouncing problem

[78]. The bouncing time is very short (usually less than 10ms). To overcome this

problem, the controller reads the 6-bit output of the keyboard 13 milliseconds after

sending the scan codes so that the bouncing process can be avoided. If no button is

pressed, the outputs from the keyboard remain high, or logic ‘1’. Once one button is

pressed, the output at the row where the button is located goes to logic ‘0’.

Logic

level

‘1’

‘0’
Time (ms)

Button

pressed

Button

released

Figure 34. Bouncing process for a pushbutton

 94

A big disadvantage of matrix keyboards is the problem of overlap. When one or two

keys are pressed this type of keyboard works well. However, if more than two keys

are to be pressed simultaneously, overlaps may happen.

To explain what the overlap is, a example is given. In Figure 33, if keys s26, s39, and

s40 are pushed down, the wire which is connected to C0, R0 and R1 is conductive.

Therefore, when the controller sends a low signal to scan the second column, this

low signal passes through three buttons and goes to the output R1. The result is that

instead of getting three keys pressed, the controller gets four which are S26, s27, s39,

and s40. To avoid this, the six Braille keys are kept in the same column.

Figure 35 shows the block diagram of the Braille keyboard controller.

FPGA
Keyboard Controller

Transmitter

Decoder

Codes

Scanner

6 bit

scan
input

4 bit
scan

output

K
ey
b
o
ard

S
erial

tran
sm
itter

T
ran
slato

r

Figure 35. Block Diagram of Keyboard Controller

The codes scanner block generates 4-bit outputs with only one of the bits set to zero;

and gets 6-bit signals coming back from the keyboard. There is a state machine

working in the FPGA to generate scan codes for the keys that are pressed. The state

machine, given in Figure 36 works as follows:

 95

State0

State1

State2

State3

State4

Scan 1
st
 column

R1=input

Reg1=Reg1 and input

Scan 2
nd
 column

R2=input

Reg2=Reg2 and input

Scan 3
rd
 column

R3=input

Reg3=Reg3 and input

Scan 4
th
 column

R4=input

Reg4=Reg4 and input

If R1=R2=R3=R4=”111111”

Output Reg1, Reg2, Reg3,

and Reg4

Go to State0

Else

Go to State0

Reset and

initialised

Figure 36. State diagram for the keyboard controller

� In the first state, the scanner sends 4 bits codes “0111”, scanning the first

column. Two registers 6-bit called R1 and Reg1 are used in this state to store

input signals and both are initialised to all ones. After the debouncing

process which is about 13 milliseconds, the six bits input codes will be saved

into register R1. Meanwhile, a result of a logic AND operation between the

input and the current value of Reg2 will be stored in Reg2.

� The same process is repeated in the next three states to scan the next three

columns. But instead of “0111”, codes “1011”, “1101”, and “1110” are sent

respectively in the three states. Likewise, in each state, two registers are used

to store input and the result of the AND operation. There are totally two

groups of 4 registers (R1, R2, R3, R4) and (Reg1, Reg2, Reg3, Reg4).

� In the fifth state, the registers R1, R2, R3 and R4 are checked to see if the

value for each register is all ones showing buttons have been released. If they

 96

have not, the state machine will go back to the first state to repeat the

operation. If all buttons are released, the data stored in registers Reg1, Reg2,

Reg3 and Reg4 are sent to the decoder, and then these registers will be set to

all ones.

The decoder block receives the data from the codes scanner and decodes the 6-bit

input to Braille ASCII codes or particular control codes corresponding to the

particular buttons that were pressed. The transmitter block outputs the data to the

serial transmitter or Braille-to-Text translator depending on the particular function to

be selected.

5.4.3 Implementation and Test

Figure 37 shows a top level schematic diagram for the Braille notetaker. The current

version of the notetaker only has three functions, which are note taking and Braille-

to-text translation using a standard keyboard, and Braille-to-text translation using the

Braille keyboard. Therefore, only three function keys have been defined: F1 for

translations using a standard keyboard, F2 for translations using the Braille keyboard,

and F3 for Braille notetaking. Figure 38 shows the system that was implemented for

testing purposes.

 97

Figure 37. Schematic diagram for the Braille notetaker

 98

Serial input

Power and

serial output

Braille keyboard

FPGA

Figure 38. Testing System of Braille Notetaker

A Spartan-3 XC3S400 FPGA development board [79] is used in this design. The

RS-232 serial connection is used to send the rule table to the look-up table and save

the Braille codes or translation results in a text file. The system works as follows:

� The rule table is sent to the translator in the FPGA through the serial reciever Rx

using Hyper Terminal before the scan process starts, and then the function will

be intialised as translations using a standard keyboard.

� Then users can select a particular function to be performed using keys F1, F2 or

F3 predifined on the Braille keyboard. If the note-taking function is selected, all

Braille codes typed will be sent to a serial transmitter directly. A multiplexer

MUX2 is used to select data from the translator or the keyboard controller to be

outputs.

 99

� If the translation function using a standard keyboard is selected, the untranslated

Braille ASCII codes will be sent through the multiplexer MUX1 to the translator.

The translator takes the Braille ASCIIs and stores them in a buffer. Characters

are stored until a space or carriage return is detected. At this point the Braille to

text translation process takes place. The results of the translation are sent to a

serial transmitter Tx2 through MUX2 so that they can be received and stored in a

text file by the computer.

� If translation using the Braille is selected, the MUX1 will select data from the

keyboard controller to be the untranslated codes, not those from Rx. Then the

translation process happens as described before.

The device utilisation summary for the implementation is shown in Table 14. The

programs for the Braille notetaker has been coded in VHDL, which can be found in

Appendix VII. As a stand-alone component, this system could be improved by

exploring new functions. For instance, a real-time speaking function would supply

auditory feedback to allow the detection and correction of typing errors. Interfaces to

control a Braille embosser and a printing machine could also be incorporated.

Table 14. Device Utilization Summary (Spartan-3 XC3S400)

Logic Utilization Used Available Utilization

Number of Slices 1927 3584 53%

Number of Slice Flip Flops 2275 7168 31%

Number of 4 input LUTs 3311 7168 46%

Number of bonded IOBs 19 141 13%

Number of BRAMs 6 16 37%

Number of GCLKs 8 8 100%

5.5 System Integration: A system for Text-to-Braille Translation

This section has not been finished because of time limitation. However, it is

necessary to discuss the feasibility and method, because the system integration is

 100

able to supply users a complete design. It means it allows users to operate this

translator without intervening the inside. For example, they do not need to program

the FPGA and load the whole table to the FPGA for each time. What they need to

know is just the particular function for each button on the Braille keyboard. Every

time when the FPGA is powered on, it would perform as a Braille translator in a

second.

To do this, the configuration of the design must be saved somewhere on the

development board. When the board is powered up, the configuration will be mapped

to the FPGA [80]. From this ponit, each Xilinx FPGA development board supplies at

least one Xilinx Platform Flash which allows designers to store an FPGA design in

nonvolatile memory [79].

Another problem to be solved is how to pre-store the rule table before using it. In the

testing systems discussed in previous sections, rule tables must be loaded to

translators manually every time before further operations. However, this is not what

users expect. Fortunately, a Virtex-4 FX12 LC development board supplies a 4

mega-bit Flash memory [69]. Therefore, the rule table including Braille-to-text and

text-to-Braille translation can be saved in this Flash memory beforehand. Every time

when the design stored in Xilinx Platform Flash is configured as a translator to the

FPGA, the translator will retrieve rules from the Flash memory one by one and save

them in the block RAMs. The whole process can be finished when the board is

powered up.

Because the same algorithm is used by Braille-to-text and text-to-Braille translators,

the architectures of these two translators’ are very similar. This fact makes possible

the development of a translator which is capable of doing both jobs. In ths case, the

 101

parallel translating scheme will be used in the text-to-Braille translation. However,

creating a multi-functional translator is helpful to simplify the design.

Figure 39 shows the block diagram of a bi-directional Braille translator. To perform

both translations, a look-up table with a sufficient memory is needed to store both of

the rule tables. Since two tables occupy 47 kilobytes of information, a Virtex-4

FPGA XC4VF12 with 81 kilobytes of block RAM is capable of accommodating the

rule table. A mode select input is used to switch between the two translation modes.

The decision-table-check block is only for Braille-to-text translation, while left-

context-check is for text-to-Braille. The right-context-check block includes context

information for both types of translation.

Text

ASCII

 Translator
Translating Block

Look-Up

Table

Output Translated Codes

Right Context

Check

 Decision
Table
Check

Output

Rule

Find

Entry

Load
Translated

Codes

Translating Controller

Data
Controller

Text

ASCII

Braille

ASCII Focus Check

Left Context
Check

Braille
ASCII

Mode
Select

Figure 39. Block Diagram of Bi-directional Translator

Figure 40 shows a general block diagram for the whole system. There is a on-board

Flash memory containing the rule table for text-Braille translations. When the board

is powered up, the write-LUT block will load the table to the look-up-table block

from the Flash. Then, users can select particular operations using function keys on

 102

the Braille keyboard. The functions are defined as text-to-Braille translation, Braille-

to-text translation using a standard keyboard or Braille keyboard, and Braille

notaking. The multiplexer Mux1 is to select data from the Hyper terminal or Braille

keyboard to the input for the translator, while Mux2 is to select data from the

translator or Braille keyboard to be the input for the serial transmitter. Other blocks

perform the functions as described in previous sections.

FPGASerial

receiver

Serial

transmitter

4 Mega-bit

Flash

Keyboard

controller

Bi-direction translator

Look-up table

Translating block

Mux1

Mux2

Write LUT

Data

8

8

8

8

Addr

Addr Data

QWERTY

keyboard

or

Hyper

Terminal

Braille

keyboard
4

6

Mode

8

Hyper

terminal

Figure 40. Block diagram of the translating and notetaking system

 103

6. Conclusions

The original motivation of this thesis is to build a sophisticated hardward-based text-

to-Braille translation system which can perform as a single module in a multi-

funcitonal Braille system on a chip. Since lots of functions need to be processed for

the microcontroller or processor, having a hardware implementation of the

translation system is very helpful and necessary to liberate the microcontroller from

the heavy load of the translation.

To find a suitable algorithm for the hardware-based text-Braille translation system,

some background information is given in this thesis to explain how rules of Grade 2

Braille are used and the main difficulties for the text-Braille translation. Further,

several referenced translating systems have been presented and discussed. It has been

found that these translating systems appear to be software-based and tend to use

look-up tables containing rules to do string substitutions [28] [33-35] [37] [40].

This look-up-table mechanism is referred to as a string rewriting system called the

Markov system. What distinguishes one Markov system from another is the nature of

the alphabet and the way to generate production rules. In this thesis, the rule formats

of these translating systems have been analysed. In considering hardware

implementation, a rule format containing context information was shown to be the

most suitable because of its simplicity.

A main issue in this thesis is the algorithm reconfiguration. Lots of contents are

given to explain how the software-based algorithm is reconfigured to accelerate the

translation process using FPGAs. Because the parallelism is well known as a popular

method to accelerate the processing speed in FPGAs, this thesis tends to pursue a

parallel architecture for the text-to-Braille translation. Several parallel architectures

 104

have been used in the implementation. For example, make focus-check, right and left

context-check work concurrently, and build several cells to do the translation.

Moreover, in order to show that a parallelism is able to supply bigger throughput

than a sequential structure, some substantial data were demonstrated. The testing

results presented in this thesis prove that the parallel translation processing can be 7

times or even more faster than the sequential, and it depends on how many

translation cells are used. To achieve accurate text-to-Braille translations, the rule

tables proposed by Paul Blenkhorn are used in this hardware implementation [37]

[40]. This parallel scheme can also be used in other language-based Braille

translations. For example, the German Braille has a similar Braille translation system

which includes a table with 4510 rules. In this case, the use of parallel translation

cells appears to be well suited to the system and is able to accelerate the translation

speed effectively.

However, a method of developing a very fast Braille embosser has not yet been

found, and this may make fast text-to-Braille translation redundant. Yet, with the

development of new technology, faster embossing could soon be possible. The

present embossing machines are slow, mostly because they are based on mechanical

parts. In the future, however, it is likely that the introduction of the laser technology

and special paper sheets will make embossing speed hundreds or thousands of times

faster. In that case, fast Braille translation hardware will find its own position in the

marketplace. On the other hand, the design of the translation system presented a

solution of using large look-up tables. The parallelisms used in the translator could

be suitable for other applications. For example, the design given in Figure 25

demonstrates a register file which can be accessed to any address from different

output ports. This could be used to build a fast look-up-table-based multiplier.

 105

Another component, a Braille keyboard interface has been described in the testing

system for Braille-to-text translation. As explained in the thesis, the Braille keyboard

employs a matrix-like structure which is quite different from most of Braille

keyboards available in commercial markets. This supplies another solution of Braille

keyboards, which proves to be stable, but more affordable. Using this Braille

keyboard, the system is able to achieve the basic functions of a notetaker, including

note taking and Braille-to-text translation. A method of how both text-Braille and

Braille-text translations are integrated in one FPGA has also been discussed in the

last section. The system integration is able to supply a complete Braille system with a

bi-directional translator for users.

At the present stage, the text-to-Braille translation chip is a stand-alone component,

but it can be integrated in a bigger system. Therefore, future work will be to build a

system on chip for multi-functional Braille system including translations. For

instance, a real-time speaking function would supply auditory feedback to allow the

detection and correction of typing errors. Interfaces for a Braille embosser and a

printing machine could also be needed. Therefore, the system should consist of a

microcontroller for interface and control, normal and Braille keyboard, the text-

Braille translator and a speaker or double talk device, shown in Figure 41. The on-

chip hardware-based translator is able to perform Braille translation very fast so that

it can release the microcontroller from heavy burden of translations. Meanwhile, the

Braille system is also able to access to internet resource, supplying on-line

information for the blind. For further improvement, a multi-language-Braille

translator should be considered. Look-up tables could be stored in flash memory so

that when a particular translation is performed, the microcontroller will load the rule

table from the flash memory, and send data to the translator.

 106

FPGA

Double Talk

Ethernet
(Internet)

USB Hub

Braille
Keyboard

Translating
System

Microcontroller

USB
Device

Braille
Embosser

USB
Printer

USB
QWERTY

Figure 41. Multi-functional Braille systemsystem

 107

7. References

1. www.who.int

2. www.rnzfb.org.nz

3. www.brailler.com

4. I. Bruce, A. McKennell and E. Walker, 1991 “Blind and Partially-Sighted

Adults in Britain: the RNIB Survey”, London, Volume 1, H.M.S.O

5. A. King, “Text and Braille Computer Translation”, 2001, Project Report,

Department of Computation, Institute of Sci & Tech, University of

Manchester, http://alasdairking.me.uk/brailletrans

6. H. Werner, 1975, “The Historical Development of Automatic Braille

Production in Germany”, ACM SIGCAPH Computers and the Physically

Handicapped, issue 15, pp. 41-43

7. P. Coleman, 1975, “Some Reflections on the Current State of Automatic

Braille Translation”, ACM SIGCAPH Computers and the Physically

Handicapped, issue 15, pp. 8-11

8. www.duxburysystems.com

9. www.mountbattenbrailler.com

10. P. Spasov, Microcontroller Technology, the 68HC11 and 68HC12, 5th edition,

New Jersey, Pearson/Prentice Hall, 2004, ISBN: 0131247913

11. A. Jonathen, 1972, “Recent Improvement in Braille Transcription”, in

Proceedings of the ACM annual Conference, vol. 1, Boston, pp. 208-218

 108

12. M. Truquet, 1976, “Braille Grade II Translation Program”, ACM SIGCAPH

Computers and the Physically Handicapped, issue 20, pp. 25-33

13. Personal Report, 1975, “150 Years of Braille”, Applied Ergonomics, Volume

6, issue 4, pp. 237-238

14. British Braille, A Restatement of Standard English Braille Compiled and

Authorised by the Braille Authority of the United Kingdom, 2004, ISBN:

0909797901

15. en.wikipedia.org

16. www.dotlessbraille.org

17. J. Viding, 1975, “Computerised Braille Production”, ACM SIGCAPH

Computers and the Physically Handicapped, issue 15, pp. 35-40

18. www.iceb.org

19. English Braille American Edition, 2002, Braille Authority of North America,

www. Brailleauthority.org

20. P. K. Das, R. Das and A. Chaudhuri, 1995, “A Computerised Braille

Transcriptor For the Visually Handicapped”, 14th Conference of the

Biomedical Engineering, New Delhi, PP. 3/7-3/8

21. W. Jolley, 2006, “Unified English Braille: A Literacy Bedrock in the Digital

Age”, twelfth ICEVI world coference, Kuala Lumpur

22. T. Kam, Synthesis of finite state machines: functional optimization, Boston:

Mass Kluwer Acadmic Publishers, 1997, ISBN: 0792398424

 109

23. J. E. Hopcroft, R. Motwani and J. Ullman, Introduction to Automata Theory,

Languages, and Computation, 3rd edition, Boston, Mass: Pearson Addison-

Wesley, 2006, ISBN: 0321455363

24. M. Lawson, Finite Automata, Boca Raton: Chapman & Hall/CRC, 2004,

ISBN: 1584882557

25. J. Carroll and L. Darrell, Theory of Automata: With An Introduction of

Formal Language, N.J. : Prentice Hall, 1989, ISBN: 0139137084

26. R. Floyd and R. Beigel, The Language of Machines: An Introduction to

Computability and Foamal Languages, New York: Computer Science Press,

1994, ISBN: 0716782669

27. L. Peter, Introduction to Formal Languages and Automata, Boston: Jones and

Bartlett, 2001, ISBN: 0763714224

28. J. K. Millen, 1970, “Finite-State Syntax-Directed Braille Translation”,

Technical Report MTR-1829, MITRE Corporation, Bedford, Massachusetts

29. Caracciolo di Forino, 1968, “String processing languages and generalized

Markov algorithms: In Symbol manipulation languages and techniques”, D.

G. Bobrow (Ed.), North-Holland Publ. Co., Amsterdam, The Netherlands, pp.

191-206.

30. K. H. Blasius and Hans-Jurgen Burckert, Deduction System in Artificial

Intelligence, Chichester, England: Ellis Horwood, 1989, ISBN: 0745804098

31. H. B. Enderton, A Mathematical Introduction to Logic, New York, Academic

Press, 1972, ISBN: 0122384504

 110

32. R. Gildea, 1975, “Automatic Braille Translation in the United States of

America”, ACM SIGCAPH Computers and the Physically Handicapped,

issue 15, pp.12-13

33. J. E. Sullivan, 1975, “DOTSYS III: A Portable Braille Translator”, in

proceedings of the ACM annual conference, issue 15, New York, pp. 14-19

34. W. A. Slaby, 1975, “The Markov System of Production Rules: A Universal

Braille Translator”, ACM SIGCAPH computers and the physically

handicapped, issue 15, pp. 53-59

35. W. A. Slaby, 1990, “Computerized Braille Translation”, journal of

microcomputer appl., vol. 13, issue n2, pp. 107-113

36. H. Kamp, 1975, “Gaining Production Rules For A Markov Braille

Translation Algorithm”, ACM SIGCAPH computers and the Physically

Handicapped, issue 15, pp. 60-61

37. P. Blenkhorn, 1997, “A System For Converting Print into Braille”, IEEE

transactions on rehabilitation engineering, vol. 5, no. 2, pp. 121-129

38. B. A. Forouzan, and R. F. Gilberg, Computer Science: A Structured

Programming Approach Using C, Pacific Grove, Canada: Brookes/Cole 2001,

ISBN: 0534374824

39. D. W. Croisdale, H. Camp, Computerized Braille Production: Today and

Tomorrow, Springer, 1983, ISBN: 0387120572

40. P. Blenkhorn, 1995, “A System For Converting Braille into Print”, IEEE

transactions on rehabilitation engineering, vol. 3, no. 2, pp. 215-221

 111

41. I. Murray and A. Pasquale, 2006, “A portable device for the translation of

braille to text”, Proceedings of the 8th international ACM SIGACCESS

conference on Computers and accessibility, pp. 231 - 232

42. A. Andras, V. Theresa, E. Gareth and P. Blenkhorn, 2002, “Braille to Text

Translation for Hungarian”, in Proceedings of Computer Helping People with

Special Needs 8th International Conference, ICCHP 2002, Linz, Austria, pp.

610-617

43. Maxfield Clive, The Design Warrior’s Guide to FPGAs: devices, tools, and

flows, Amsterdam, London: Newnes, 2004, ISBN: 9780750676045

44. W. Wolf, FPGA-Based System Design, Upper Saddle River, N. J.: Prentice

Hall PTR, 2004, ISBN: 0131424610

45. S. Brown and J. Rose, Architecture of FPGAs and CPLDs: A Tutorial,

Department of Electrical and Computer Engineering, University of Toronto

46. M. Richard, ASIC & FPGA verification: a guide to component modelling,

Amsterdam: Elsevier/Morgan Kaufmann, 2005, ISBN: 0125105819

47. J. Villasenor and W. H Mangione-Smith, “Configurable Computing”,

Scientific American, June, 1997, pp. 66-71

48. J. V. Oldfield and R. C. Dorf, Field-Programmable Gate Arrays:

Reconfigurable Logic For Rapid Prototyping and Implementation of Digital

Systems, New York: John Wiley & Sons, Inc., 1995, ISBN: 0471556653

49. Q. Lu, F. Yi, H. Yu, and X. Xu, Embedded System Design Based on FPGA,

Jiang, S and Wang, J (Eds), China Machine Press, 2005, ISBN: 7111153375

50. www.fpga.com.cn

 112

51. Xilinx Company, Spartan-3 User Guide, electronic documentation, version

1.4, 2005

52. M. B. Gokhale and P. S. Graham, Reconfigurable Computing: Accelerating

Computation With Field-Programmable Gate Arrays, Dordrecht, The

Netherlands : Springer, 2005, ISBN: 0387261052

53. P. J. Ashenden, The Designer’s Guide to VHDL, 2nd edition, San Francisco,

Calif.: Morgan Kaufmann, 2002, ISBN: 1558606742

54. D. Pellerin and S. Thibault, Pratical FPGA Programming in C, NJ: Prentice

Hall Professional Technical Reference, 2005, ISBN: 0131543180

55. S. Palnitkar, Verilog HDL: A Guide to Digital Design and Synthesis, 2nd

edition, NJ: SunSoft Press, 2003, ISBN: 0130449113

56. B. Steven, Fundamentals of Digital Logic With VHDL Design,

Boston: McGraw-Hill, 2000, ISBN: 0070125910

57. Z. Mark, Digital System Design with VHDL, New York: Prentice Hall, 2000,

ISBN: 0201360632

58. K. C. Chang, Digital Systems Design With VHDL and Synthesis, Los

Alamitos, Calif.: IEEE Computer Society, 1999, ISBN: 0769500234

59. B. Cohen, VHDL Coding Style and Methodologies, 2nd edition,

Boston: Kluwer Academic Publishers, 1999, ISBN: 0792384741

60. R. Andrew, VHDL for Logic Synthesis, 2nd edition, New York: Wiley Sons,

1998, ISBN: 047198325X

61. M, Morris, Logic and Computer Design Fundamentals, 2nd edition, New

Jersey: Prentice Hall, 2000, ISBN: 0130124680

 113

62. B. Zeidman, Designing with FPGAs and CPLDs, CMP books, 2002, ISBN:

1-57820-112-8

63. A. R. Hambley, Electronics: A Top-Down Approach to Computer-Aided

Circuit Design, New York: Maxwell Macmillan International, 1994, ISBN:

0023493356

64. W. Walter and A. Singh, The 8088 and 8086 microprocessors: programming,

interfacing, software, hardware, and applications, New Jersey: Prentice Hall,

1991, ISBN: 0132483378

65. X. Zhang, C. Ortega-Sanchez, and I. Murray, “Text-to-Braille Translator in a

Chip”, International Conference on Electrical and Computer Engineering,

2006, Dhaka, Bangladesh, pp. 530-533

66. Xilinx ISE 8.2 Quick Start Tutorial

67. A. Mignotte, E. Villar, and L. Horobin, System On Chip Design Languages,

Springer 2002, ISBN: 1402070462

68. X. Zhang, C. Ortega-Sanchez, and I. Murray, “Hardware-Based Text-to-

Braille Translator”, the 8th International ACM SIGACCESS Conference on

Computers & Accessibility, Portland, Oregon, USA, 2006, pp. 229-230

69. Memec Inc. Virtex-4(TM) FX12 LC Development Board User’s Guide,

electronic documentation, version 1.0, 2005

70. Xilinx Company, Virtex-4 Family Overview, electronic documentation,

version 1.5, 2006

71. X. Zhang, C. Ortega-Sanchez, and I. Murray, “A System For Fast Text to

Braille Translation Based on FPGAs”, 3rd Southern Conference on

Programmable Logic (SPL), 2007, Mar del Plata, Argentina, pp. 125-130

 114

72. www.perkins.org

73. Technical Considerations in Production Selection, codi.buffalo.edu

74. B. R. Sanchez and G. G. Garcia, 2006, “Keyboard of Automatic Teller in

Braille Code”, 16th International Conference of Electronics, Communication

and Computers, pp. 39-46

75. J. Spragg, 1984, “Interfacing a Perkins Brailler to a BBC micro,”

Microprocessors Microsyst, vol. 8, pp. 524-527

76. D.G. Evans, S. Pettitt, P. Blenkhorn, 2002, “A Modified Perkins Brailler for

Text Entry into Windows Applications”, Neural Systems and Rehabilitation

Engineering, IEEE Transactions on Rehabilitation Engineering, Volume: 10,

Issue: 3, pp. 204-206

77. X. Zhang, C. Ortega-Sanchez, and I. Murray, 2007, “A Hardware Based

Braille Note Taker”, 3rd Southern Conference on Programmable Logic (SPL),

2007, Mar del Plata, Argentina, pp. 131-136

78. M. Jones, A Practical Introduction to Electronic Circuits, 3rd edition,

Cambridge; New York: Cambridge University Press, 1995, ISBN:

0521472865

79. Memec Inc. Spartan-3 LC Development Board User’s Guide, electronic

documentation, version 2.0, 2004

80. Virtex-4 Configuration Guide, Xilinx Company, www.xilinx.com

“Every reasonable effort has been made to acknowledge the owners of copyright

material. I would be pleased to hear from any copyright owner who has been omitted

or incorrectly acknowledged.”

 115

8. Appendix

Appendix I: Braille ASCII Set

Table Origination: en.wikipedia.org

Binary Dec Hex Glyph Braille

Dots

0010 0000 32 20 (space)

0010 0001 33 21 ! 2-3-4-6

0010 0010 34 22 " 5

0010 0011 35 23 # 3-4-5-6

0010 0100 36 24 $ 1-2-4-6

0010 0101 37 25 % 1-4-6

0010 0110 38 26 & 1-2-3-4-6

0010 0111 39 27 ' 3

0010 1000 40 28 (1-2-3-5-6

0010 1001 41 29) 2-3-4-5-6

0010 1010 42 2A * 1-6

0010 1011 43 2B + 3-4-6

0010 1100 44 2C , 6

0010 1101 45 2D - 3-6

0010 1110 46 2E . 4-6

0010 1111 47 2F / 3-4

0011 0000 48 30 0 3-5-6

0011 0001 49 31 1 2

0011 0010 50 32 2 2-3

0011 0011 51 33 3 2-5

0011 0100 52 34 4 2-5-6

0011 0101 53 35 5 2-6

0011 0110 54 36 6 2-3-5

0011 0111 55 37 7 2-3-5-6

0011 1000 56 38 8 2-3-6

0011 1001 57 39 9 3-5

0011 1010 58 3A : 1-5-6

0011 1011 59 3B ; 5-6

0011 1100 60 3C < 1-2-6

0011 1101 61 3D = 1-2-3-4-
5-6

0011 1110 62 3E > 3-4-5

0011 1111 63 3F ? 1-4-5-6

0100 0000 64 40 @ 4

0100 0001 65 41 A 1

0100 0010 66 42 B 1-2

0100 0011 67 43 C 1-4

 116

0100 0100 68 44 D 1-4-5

0100 0101 69 45 E 1-5

0100 0110 70 46 F 1-2-4

0100 0111 71 47 G 1-2-4-5

0100 1000 72 48 H 1-2-5

0100 1001 73 49 I 2-4

0100 1010 74 4A J 2-4-5

0100 1011 75 4B K 1-3

0100 1100 76 4C L 1-2-3

0100 1101 77 4D M 1-3-4

0100 1110 78 4E N 1-3-4-5

0100 1111 79 4F O 1-3-5

0101 0000 80 50 P 1-2-3-4

0101 0001 81 51 Q 1-2-3-4-5

0101 0010 82 52 R 1-2-3-5

0101 0011 83 53 S 2-3-4

0101 0100 84 54 T 2-3-4-5

0101 0101 85 55 U 1-3-6

0101 0110 86 56 V 1-2-3-6

0101 0111 87 57 W 2-4-5-6

0101 1000 88 58 X 1-3-4-6

0101 1001 89 59 Y 1-3-4-5-6

0101 1010 90 5A Z 1-3-5-6

0101 1011 91 5B [2-4-6

0101 1100 92 5C \ 1-2-5-6

0101 1101 93 5D] 1-2-4-5-6

0101 1110 94 5E ^ 4-5

0101 1111 95 5F _ 4-5-6

 117

Appendix II: Rule Table for Text-to-Braille Translation [37]

Rule format: input class <tab>left context [focus] right context =output<tab> next state

2 ['EN] = 'EN -
3 []= 1
4 []= 2
1 [--]=-- -

1 [-]=-- -
1 []= -
5 []= -

1 [!]=6 -
5 [!]=! -
1 ["] ="1 -
1 ["...]=8 ''' -

1 ["=]=8; -
1 ["]^=8 -
1 ["]^^=8 -

1 ["] (=8 -
1 ["]~=0 -
1 ["]=8 -
5 ["]=" -

1 [#]#=# -
1 [#]=# -
5 [#]=# -

1 [$G1]= 2
1 [$G2]= 1
1 [$#]= -
1 [$+]=;6 -

1 [$-]=;- -
1 [$X]=;8 -
1 [$D]=;4 -

1 [$=]=;7 -
1 [$/]= -
1 [$$]=$$ -
1 [$]#=4 -

5 [$]#=$ -
1 [$]!=@4 -
1 [%]=3P -

5 [%]=% -
2 [&ING]=&+ -
1 [&]=& -
5 [&]=& -

2 ['CAUSE]='CAUSE -
2 ['DO]='DO -
1 !['D]~='D -

2 ['FLU]='FLU -
2 ['ER]='] -
2 ['EN]='5 -
2 ~['IN]=,8IN -

2 ['IN]='IN -
2 ['YOU]='Y\ -
1 !['C]~='C -

1 !['M]~='M -
2 ['NEATH]='N1 -
1 !['N]-='N -
2 ['TIS]='TIS -

2 ['TWAS]='TWAS -
1 !['T]~='T -
1 !['S]='S -

1 #['S]='S -
1 !['']=0' -
1 ~['0]=#'J -
1 ~['1]=#'A -

1 ~['2]=#'B -
1 ~['3]=#'C -
1 ~['4]=#'D -

1 ~['5]=#'E -
1 ~['6]=#'F -
1 ~['7]=#'G -
1 ~['8]=#'H -

1 ~['9]=#'I -
1 ~[']~=' -
1 ![']~=' -

1 ~[']=,8 -
1 [']=' -
5 [']=' -

1 [(]=7 -
5 [(]=(-
1 [)]=7 -
5 [)]=) -

1 [*]#=;8 -
1 [*]=99 -
5 [*]=* -

1 [+]#=;6 -
1 [+]=" -
5 [+]=+ -
1 #[,0]='J -

2 [CANNOT]=_C -
2 ~[CAN]~=C -
2 ~[CATI]ON=CATI -
2 ~[CENT]=C5T -

2 [CCH]=C* -
2 ![CC]!=3 -
1 [C].~=C -

1 .[C]=C -
1 [C].!=C -
1 ~[C]~=;C -
1 [C]=C -

5 [C]=C -
2 ~[D];#=;D 3
2 #[D]=;D 3

1 ~[D];#=;D 4
1 #[D]=;D 4
2 [D'YOU]=D'Y\ -
2 ~[DAFT]ER=DAFT -

2 [DAY]="D -
2 ~[DO']=DO@ -
2 ~[DO]~=D -

2 ~[DIS]HEA=4 -
2 ~[DIS]HA=4 -
2 ~[DIS]HO=4 -
2 ~[DISH]=DI% -

2 ~[DISK]S=DISK -
2 ~[DIS]~=DISK -
2 ~[DISC]S~=DISC -

2 ~[DISC]~=DISC -
2 [DISPIRIT]=DI_S -
2 ~[DI]SULPH=DI -
2 ~[DIS]!=4 -

2 ~[DINGH]=D9< -
2 ![DDAU]GHTER=DDAU -
2 [DDAY]=D"D -

2 ![DD]!=4 -
2 [DECEIVE]=DCV -
2 [DECEIVING]=DCVG -
2 [DECLARING]=DCLG -

2 [DECLARE]=DCL -
2 ~[DE]NAT=DE -
2 ~[DESH]ABILLE=DESH -

2 [DEAW]=DEAW -
2 ~[DEAC]T=DEAC -
1 [D].~=D -
1 .[D]=D -

1 [D].!=D -
1 ~[D]~=;D -
1 [D]=D -

5 [D]=D -
2 ~[E];#=;E 3
2 #[E]=;E 3
1 ~[E];#=;E 4

1 #[E]=;E 4
2 |[ENOUGH] =5 -
2 ![EDISH]=EDI% -

2 ![ED]OOM=ED -
2 ![ED]OM=ED -
2 ![ED]OVE=ED -
2 ![ED]OWN=ED -

2 ![ED]EEP=ED -
2 ![ED]REAM=ED -
2 ![ED]ROP=ED -

2 ![ED]RUM=ED -
2 ![EDD]FO=E4 -
2 ![EDAL]E=EDAL -
2 [ED]=$ -

2 [EDREAG]H=ER1< -
2 [EROO]M=EROO -
2 [ER]=] -

2 [ELECTRO]=ELECTRO -
2 [E]NAME=E -
2 [ENCED]=5C$ -

2 [ENCEA]=5C1 -
2 [ENCER]=5C] -
2 ![ENCE]=;E -
2 [ENESS]=E;S -

2 ![ENOO]K=ENOO -
2 ~[ENOUGH'S]=5'S -
2 ~[EN]~=EN -

2 [EN]=5 -
2 ![EAR]=E> -
2 ![EALLY]=E,Y -
2 ![EALO]GY=EALO -

1 [O].~=O -
1 .[O]=O -
1 [O].!=O -
1 ~[O]~=;O -

1 [O]=O -
5 [O]=O -
2 ~[P];#=;P 3

2 #[P]=;P 3
1 ~[P];#=;P 4
1 #[P]=;P 4
2 ~[PH]ONEY=PH -

2 [PHONES]S=PH"O -
2 [PHONETI]=PHONETI -
2 [PHONE]~=PH"O -

2 ~[PAR]TH=P> -
2 [PART]="P -
2 [PAID]=PD -
2 [PAINS]TAK=PA9S -

2 [PAGODA]=PAGODA -
2 ~[PEOPLE]~=P -
2 ~[PERHAPS]=P]H -

2 [PERCEIVE]=P]CV -
2 [PERCEIVIN]G=P]CV -
2 [PERSE]VER=P]SE -
2 [PEACH]=PR1* -

2 [PRED]AC=PR$A -
2 [PREDA]TOR=PR$A -
2 [PRED]ECES=PR$ -

2 [PREDI]L=PR$I -
2 [PREDI]C=PR$I -
2 [PRENT]ICE=PR5T -
2 [PRERO]G=PR]O -

2 ~[PRE]=PRE -
2 [POST]H=PO/ -
1 [P].~=P -

1 .[P]=P -
1 [P].!=P -
1 ~[P]~=;P -
1 [P]=P -

5 [P]=P -
2 ~[Q];#=;Q 3
2 #[Q]=;Q 3

1 ~[Q];#=;Q 4
1 #[Q]=;Q 4
1 [Q].!=Q -
1 ~[Q]~=;Q -

1 [Q]=Q -
5 [Q]=Q -
1 ~'[RD]~=4RD -

1 #[RD]~=RD -
1 .[RD]~=RD -
2 ~[R];#=;R 3
2 #[R]=;R 3

1 ~[R];#=;R 4
1 #[R]=;R 4
2 [RIGHT]="R -

2 ~[RATHER]~=R -
2 [RAFT]ER=RAFT -
2 [RARED]~=RAR$ -
2 ~[RANS]OME=RANS -

2 [RAR]ENAL=RAR -
2 ~[REA]B=REA -
2 [REACHING]=R1*+ -

2 ~[REACH]I=REA* -
2 ~[REACH]=R1* -
2 ~[RE]AC=RE -
2 ~[READ]AP=READ -

2 ~[REA]DD=REA -
2 ~[READ]J=READ -
2 ~[READ]M=READ -

2 ~[READ]O=READ -
2 ~[READ]V=READ -
2 ~[REA]F=REA -

2 ~[REA]G=REA -
2 ~[REAL]IG=REAL -
2 ~[REAL]IN=REAL -
2 ~[RE]ALL=RE -

2 ~[REAN]=REAN -
2 ~[REAP]P=REAP -
2 ~[REAS]C=REAS -

2 ~[REAS]S=REAS -
2 ~[REAT]T=REAT -
2 [REAW]AKE=REAW -
2 ~[REDEE]M=R$EE -

 118

1 #[,1]='A -
1 #[,2]='B -
1 #[,3]='c -

1 #[,4]='D -
1 #[,5]='E -
1 #[,6]='F -

1 #[,7]='G -
1 #[,8]='H -
1 #[,9]='I -
1 [,]#=' -

1 [,]=1 -
5 [,]=, -
2 [-T]0~=-T -

2 [-ING]~=-+ -
2 [-IN]~=-9 -
2 [-C]OM=-C -
2 [-BY]=-BY -

2 [--INTO|]=-}96 -
2 [--IN]=--9 -
2 [--C]OM=--C -

1 ![----]=---- -
1 [--]~=-- -
1 [--]=- -
1 #[-0]=-J -

1 #[-1]=-A -
1 #[-2]=-B -
1 #[-3]=-C -

1 #[-4]=-D -
1 #[-5]=-E -
1 #[-6]=-F -
1 #[-7]=-G -

1 #[-8]=-H -
1 #[-9]=-I -
1 [-]=- -

5 [-]=- -
1 [.] =4 -
1 [....]='''4 -
1 [...']='''0' -

1 [..."]='''0 -
1 [...]=''' -
1 [.]+.= ?

1 .+[.]= -
1 #[.]## A.M.= -
1 #[.]## P.M.= -
1 #[.0]=1J -

1 #[.1]=1A -
1 #[.2]=1B -
1 #[.3]=1C -

1 #[.4]=1D -
1 #[.5]=1E -
1 #[.6]=1F -
1 #[.7]=1G -

1 #[.7]=1H -
1 #[.8]=1I -
1 [.0]=#1J -

1 [.1]=#1A -
1 [.2]=#1B -
1 [.3]=#1C -
1 [.4]=#1D -

1 [.5]=#1E -
1 [.6]=#1F -
1 [.7]=#1G -

1 [.8]=#1H -
1 [.9]=#1I -
1 [.]#=1 -
1 [.]~=4 -

1 [.]=4 -
5 [.]=. -
2 [/SUB]=* -

2 [/SUP]=+ -
1 [/]+/= -
1 /+[/]= -
1 ~[/]#=;4 -

1 [/]=/ -
5 [/]=/ -
1 #[0]=J -

1 [0]=#J -
5 [0]=0 -
2 #[1ST]=A/ -
2 [1ST]=#A/ -

1 #[1]=A -
1 [1]=#A -
5 [1]=1 -

1 #[2]=B -
1 [2]=#B -
5 [2]=2 -
1 #[3]=C -

1 [3]=#C -
5 [3]=3 -
1 #[4]=D -

1 [4]=#D -
5 [4]=4 -
1 #[5]=E -

2 ![EADE]~=EADE -
2 ![EADD]=1DD -
2 ![EAX]=EAX -

2 ![EAPP]=EAPP -
2 ![EANCE]=E.E -
2 ![EAND]=E& -

2 ![EATION]=E,N -
2 ![E]AWAY=E -
2 ![EA]BLE=AE -
2 ![EA]!=1 -

2 [EEVER]=EEV] -
2 ~[EVERY]~=E -
2 ~[EVERTO]N="ETO -

2 ~[EVERT]=EV]T -
2 [EVERD]I~=EV]D -
2 [EVER]="E -
2 [EITHER]=EI -

2 [ETHER]E=E!R -
1 [E].~=E -
1 .[E]=E -

1 [E].!=E -
1 ~[E]~=;E -
1 [E]=E -
5 [E]=E -

2 ~[F];#=;F 3
2 #[F]=;F 3
1 ~[F];#=;F 4

1 #[F]=;F 4
2 ~[FOR]THE~== -
2 ~[FOR]A~== -
2 ~[FOREVER]=="E -

2 ~[FOR]ENS== -
2 ~[FORE]==E -
2 [FOR]== -

2 [FRUI]T=FRUI -
2 [FRIEN]DE=FRI5 -
2 [FRIEN]DI=FRI5 -
2 [FRIEND]=FR -

2 ~[FROM]~=F -
2 [FIRST]=F/ -
2 ~[FIAN]C!=FIAN -

2 [FLEAR]IDD=FL1R -
2 ![FULLE]=;LLE -
2 ![FULLY]=;LLY -
2 ![FULL]=FULL -

2 ![FUL]=;L -
2 [FFOR]=F= -
2 ![FF]!=6 -

2 [FATHER]="F -
2 ~[FAERY]=FA]Y -
1 [F].~=F -
1 .[F]=F -

1 [F].!=F -
1 ~[F]~=;F -
1 [F]=F -

5 [F]=F -
2 ~[G];#=;G 3
2 #[G]=;G 3
1 ~[G];#=;G 4

1 #[G]=;G 4
2 ![GHAI]=GHAI -
2 ![GHEAD]=GH1D -

2 ![GHEAP]=GH1P -
2 ![GHIL]=GHIL -
2 ![GHOL]E=GHOL -
2 ![GHOR]N=GHOR -

2 ![GHOUS]E=GH\S -
2 ![GHUN]T=GHUN -
2 [GH]=< -

2 [GOOD]=GD -
2 [GOVERN]ESS=GOV]N -
2 ~[GO]~=G -
2 ![GG]!=7 -

2 [GREAT]=GRT -
1 [G].~=G -
1 .[G]=G -

1 [G].!=G -
1 ~[G]~=;G -
1 [G]=G -
5 [G]=G -

2 ~[H];#=;H 3
2 #[H]=;H 3
1 ~[H];#=;H 4

1 #[H]=;H 4
2 |[HIS] =8 -
2 [HADD]!=HA4 -
2 ~[HADE]=HADE -

2 ~[HADR]IAN]=HADR -
2 ~[HAD]=_H -
2 ~[HAVE]~=H -

2 ~[HIMSELF]=HMF -
2 ~[HIM]~=HM -
2 [HEDGE]ROW=H$GE -

2 ~[RED]EMPT=R$ -
2 ~[RED]E=RED -
2 ~[RED]I=RED -

2 ~[REDOUB]T=R$\B -
2 ~[REDOUND]=R$.D -
2 ~[RE]DO=RE -

2 ~[REDR]AW=REDR -
2 ~[REDU]C=R$U -
2 ~[REDU]ND=R$U -
2 ~[REDU]=REDU -

2 ~[RE]NAM=RE -
2 ~[RENA]V=RENA -
2 ~[RENO]M=RENO -

2 ~[RENU]M=RENU -
2 ~[REREDO]S=R]$O -
2 ~[RE]R=RE -
2 [REVER]EN=R"E -

2 [REVER]IE=R"E -
2 ~[REVER]=REV] -
2 [REJOICE]=RJC -

2 [REJOICING]=RJCG -
2 [RECEIVE]=RCV -
2 [RECEIVING]=RCVG -
1 [R].~=R -

1 .[R]=R -
1 [R].!=R -
1 ~[R]~=;R -

1 [R]=R -
5 [R]=R -
1 #[S]~='S -
2 ~[S];#=;S 3

2 #[S]=;S 3
1 ~[S];#=;S 4
1 #[S]=;S 4

2 ~[STILL]~=/ -
2 ![STID]E=STID -
2 ![STION]=S;N -
2 ![STIME]=S"T -

2 ![STHEAD]=/H1D -
2 ![ST]HOOD=/ -
2 ![S]TH=S -

2 ![ST]OWN=ST -
1 ~'[ST]~=4/ -
2 ~[ST].~=ST -
2 [ST]=/ -

2 ~[SHALL]~=% -
2 ![SHART]=SH>T -
2 ![SHAW]K=SHAW -

2 [SHOULD]ER=%\LD -
2 [SHOULD]=%D -
2 ![SHOUS]E=SH\S -
2 ![SHOO]D=SHOO -

2 ![SHOR]N=SHOR -
2 ![SHOR]SE=SHOR -
2 ![SHOUND]=SH.D -

2 ![SHIL]L=SHIL -
2 ![SHEAR]T=SHE> -
2 ![SHEAD]=SH1D -
2 ![SHUN]D~=SHUN -

2 ~[SH]'=% -
2 ~[SH]~=SH -
2 [SH]=% -

2 ![SION]=.N -
2 ![SINGH]=S9< -
2 [SAID]=SD -
2 ![SOFAR]=SOF> -

2 ![SOMED]~=SOM$ -
2 ![SOME]TRY=SOME -
2 ![SOME]TRIC=SOME -

2 ![SOME]TER=SOME -
2 [SOMER]!=SOM] -
2 [SOME]="S -
2 ~[SO]~=S -

2 [SEVERED]=S"E$ -
2 [SEVER]E=SEV] -
2 [SEVER]ITY=SEV] -

2 [SED]ATIV=S$ -
2 [SPHER]=SPH] -
2 [SPIRIT]=_S -
2 ~[SUB]=SUB -

2 [SUCH]=S* -
2 ~[SSH]~=S%-
2 [SS]H=SS -

2 [SWED]ISH=SW$ -
2 ~[SWOR]D=SWOR -
2 [SQUA]LLY=SQUA -
1 [S'']~=SO' -

1 [S']~=S' -
1 [S].~=S -
1 .[S]=S -

1 [S].!=S -
1 ~[S]~=;S -
1 [S]=S -

 119

1 [5]=#E -
5 [5]=5 -
1 #[6]=F -

1 [6]=#F -
5 [6]=6 -
1 #[7]=G -

1 [7]=#G -
5 [7]=7 -
1 #[8]=H -
1 [8]=#H -

5 [8]=8 -
1 #[9]=I -
1 [9]=#I -

5 [9]=9 -
1 [:]#= -
1 [:]=3 -
5 [:]=: -

1 [;]=2 -
5 [;]=5 -
1 [<]=8 -

5 [<]=< -
2 ~[=T-SHI]IRT=;T-SHI -
2 [=]!=; 3
1 [=]!=; 4

1 [=]=;8 -
5 [=]== -
1 [>]=0 -

1 [>]=> -
1 [?]=8 -
5 [?]=? -
2 [@EN]=@EN -

2 [@ER]=@ER -
2 [@ED]=@ED -
2 [@O]NG=@O -

2 [@AR]=@AR -
1 [@]=@ -
5 [@]=@ -
2 ~[A];#=;A -

2 #[A]=;A -
1 ~[A];#=;A -
1 #[A]=;A -

2 [ARIGHT]=A"R -
2 [AR]=> -
2 ~[AND]THE~=& -
2 ~[AND]A~=& -

2 ~[AND]OF~=& -
2 ~[AND]WITH~=& -
2 ~[AND]FOR~=& -

2 [AND]=& -
2 ~[ANTEA]TER=ANT1 -
2 [ANTEN]NA=ANT5 -
2 [ANTER]IOR=ANT] -

2 ~[ANTE]=ANTE -
2 [ANTIN]OM=ANT9 -
2 ~[ANTI]=ANTI -

2 ![ANCE]=.E -
2 [ANEMONE]=ANEMONE
 -
2 ![ATION]=,N -

2 ~[AS]~=Z -
2 [ABOUT]=AB -
2 [ABOVE]=ABV -

2 [AGAIN]=AG -
2 [AFTERNOON]=AFN -
2 [AFTERWARD]=AFW -
2 ~[AFTER]E=AFT -

2 ~[AFTER]I=AFT -
2 [AFTER]=AF -
2 ![ALLY]=,Y -

2 ~[ALWAYS]~=ALW -
2 ~[ALSO]~=AL -
2 ~[ALMOST]~=ALM -
2 ~[ALREADY]~=ALR -

2 ~[ALTHOUGH]~=AL? -
2 ~[ALTOGETHER]=ALT -
2 ~[ACROSS]~=ACR -

2 ~[ACCORDING]=AC -
2 [AUND]ER=AUND -
2 [AINES]S=A9ES -
2 ![AED]~=A$ -

2 [AE]D=AE -
2 [AE]A=AE -
2 [AERO]=A]O -

2 ![AER]=AER -
2 ~[AENE]AS=AENE -
2 [AE]N=AE -
1 [A]=A -

5 [A]=A -
2 ~[B];#=;B 3
2 #[B]=;B 3

1 ~[B];#=;B 4
1 #[B]=;B 4
2 [BRO']=BRO' -

2 [HER]ESY=H] -
2 [HERI]SI=H]E -
2 [HERE]TI=H]E -

2 [HERE]R=H]] -
2 [HER]EN=H] -
2 [HER]ED=H] -

2 [HER]EF=H] -
2 [HERE]="H -
2 ~[HERSELF]=H]F -
2 [HYDRO]=HYDRO -

2 ~[HM]~=H'M -
1 [H].~=H -
1 .[H]=H -

1 [H].!=H -
1 ~[H]~=;H -
1 [H]=H -
5 [H]=H -

2 ~[I];#=;I 3
2 #[I]=;I 3
1 ~[I];#=;I 4

1 #[I]=;I 4
2 |[IN] =9 -
2 ~[INTO] AND =9TO -
2 ~[INTO] AT =9TO -

2 ~[INTO] BUT =9TO -
2 ~[INTO] IF =9TO -
2 ~[INTO] IN =9TO -

2 ~[INTO] IS =9TO -
2 ~[INTO] WAS =9TO -
2 ~[INTO] WHEN =9TO -
2 ~[INTO] FOR =9TO -

2 ~[INTO] OF =9TO -
2 ~[INTO] OR =9TO -
2 ~[INTO] TO =9TO -

2 ~[INTO HI]S =96HI -
2 ~[INTO ENOU]GH=965\ -
2 ~[INTO]_=96 -
2 ~[INTO]!=96 -

2 ~[INTO]#=96 -
2 [INDIA]RUB=9DIA -
2 ![INGRA]=9GRA -

2 ![ING]=+ -
2 ![INESS]=I;S -
2 ~[IN]-=9 -
2 ~[IN] =IN -

2 ~[IN]~=IN -
2 ![IN]=9 -
2 [IN]!=9 -

2 ![ITY]=;Y -
2 ~[ITSELF]~=XF -
2 ~[ITS]~=XS -
2 ~[IT]~=X -

2 [IRRE]VERS=IRRE -
2 [IEVER]=IEV] -
2 [IETN]AMESE=IETN -

2 ~[IMMEDIATE]=IMM -
2 [IO]NE=IO -
2 ~[ISOM]ER=ISOM -
1 [IV]~=;IV -

1 [II]~=;II -
1 [III]~=;III -
1 [I]=I -

5 [I]=I -
2 ~[J];#=;J 3
2 #[J]=;J 3
1 ~[J];#=;J 4

1 #[J]=;J 4
2 ~[JUST]~=J -
1 [J].~=J -

1 .[J]=J -
1 [J].!=J -
1 ~[J]~=;J -
1 [J]=J -

5 [J]=J -
2 ~[K];#=;K 3
2 #[K]=;K 3

1 ~[K];#=;K 4
1 #[K]=;K 4
2 ~[KNOWLEDGE]~=K -
2 [KNOW]="K -

2 ~[KILO]=KILO -
1 [K].~=K -
1 .[K]=K -

1 [K].!=K -
1 ~[K]~=;K -
1 [K]=K -
5 [K]=K -

2 ~[L];#=;L 3
2 #[L]=;L 3
1 ~[L];#=;L 4

1 #[L]=;L 4
2 ~[LATI]MER=LATE -
2 [LAERT]ES=LA]T -

5 [S]=S -
1 ~'[TH]~=4? -
1 #[TH]~=? -

1 .[TH]~=? -
2 ~[T];#=;T 3
2 #[T]=;T 3

1 ~[T];#=;T 4
1 #[T]=;T 4
2 ![THAND]=TH& -
2 ![THART]=TH>T -

2 ~[THAT]~=T -
2 [THERER]=!R] -
2 [THERED]=!R$ -

2 [THERE]SA=!RE -
2 [THERE]TT=!RE -
2 [THEREEN]=!RE5 -
2 [THERE]="! -

2 ![THERD]=TH]D -
2 ~[THEIR]=_! -
2 [THESE]~=^! -

2 ~[THEMSELVES]=!MVS -
2 [THENCE]=?;E -
2 [THEND]=?5D -
2 [THEAST]=?1/ -

2 ![THEAD]=TH1D -
2 ![THEART]T=THE> -
2 [THE]=! -

2 ~[THIS]~=? -
2 ![THIL]L=THIL -
2 [THRO']=?RO' -
2 [THROUGH]="? -

2 ~[THOSE]=^? -
2 ![THOO]D=THOO -
2 ![THOO]K=THOO -

2 ![THOR]SE=THOR -
2 ![THOUS]E=TH\S -
2 ![THOL]E=THOL -
2 ![THOL]D=THOL -

2 ~[THYSELF]=?YF -
2 [TH]=? -
2 ~[TO] AND~=TO -

2 ~[TO] AT =TO -
2 ~[TO BE]~=6BE -
2 ~[TO] BUT=TO -
2 ~[TO BY]!=TO 0 -

2 ~[TO] IF =TO -
2 ~[TO] IN =TO -
2 ~[TO] IS =TO -

2 ~[TO] WAS =TO -
2 ~[TO] WERE =TO -
2 ~[TO] WHERE =TO -
2 ~[TO] WITH =TO -

2 ~[TO] FOR =TO -
2 ~[TO] OF =TO -
2 ~[TO] OR =TO -

2 ~[TO] TO =TO -
2 ~[TO HIS]=6HIS -
2 ~[TO ENOUGH] =65\< -
2 ~[TO _BE]=6.BE -

2 ~[TO _]=6. -
2 ~[TO =]=6 -
2 ~[TO]!=6 -

2 ~[TO]#=6 -
2 ~[TOGETHER]=TGR -
2 ~[TODAY]=TD -
2 ~[TOMORROW]=TM -

2 ~[TONIGHT]=TN -
2 ~[TO-DAY]=TD -
2 ~[TO-MORROW]=TM -

2 ~[TO-NIGHT]=TN -
2 ~[TORE]ADOR=TORE -
2 ![TION]=;N -
2 ![TI]MEN=TI -

2 ![TIME]TER=TIME -
2 [TIME]="T -
2 [TEAROOM]=T1ROOM -

2 [TWOULD]=TWD -
2 ~[TWO]=TWO -
2 [TLDE]DG=TLED -
2 ![TLE]D!=TLE -

2 ![TTLE]N=TTLE -
1 [T].~=T -
1 .[T]=T -

1 [T].!=T -
1 ~[T]~=;T -
1 [T]=T -
5 [T]=T -

2 ~[U];#=;U 3
2 #[U]=;U 3
1 ~[U];#=;U 4

1 #[U]=;U 4
2 ~[UNDER]I=UND] -
2 ~[UNDER]O=UND] -

 120

2 ~[BUT]~=B -
2 [BBLE]=B# -
2 ![BB]!=2 -

2 |[BE] =2 -
2 ~[BEATI]F=2ATI -
2 ~[BEATI]T=2ATI -

2 ~[B]EA=B -
2 ~[BECAUSE]=2C -
2 ~[BECK]=BECK -
2 ~[BEC]=2C -

2 ~[BED]A=2D -
2 ~[BED]E=2D -
2 ~[BED]I=2D -

2 ~[BEDRA]G=2DRA -
2 ~[BED]=B$ -
2 ~[BEET]HOVEN=BEET -
2 ~[BE]E=BE -

2 ~[BEFORE]=2F -
2 ~[BE]F=2 -
2 ~[BEG]A=2G -

2 ~[BEG]E=2G -
2 ~[BEG]I=2G -
2 ~[BEG]O=2G -
2 ~[BEG]R=2G -

2 ~[BEG]U=2G -
2 ~[BE]G=BE -
2 ~[BEHIND]=2H -

2 ~[BEH]=2H -
2 ~[BEING]=2+ -
2 ~[BEIN']=2IN -
2 ~[BE]I=BE -

2 ~[BEJ]=2J -
2 ~[BEL]A=2L -
2 ~[BEL]E=2L -

2 ~[BE]LE=2 -
2 ~[BELOW]=2L -
2 ~[BEL]O=2L -
2 ~[BEL]Y=2L -

2 ~[BE]L=BE -
2 ~[BE]M=2 -
2 ~[BENEATH]=2N -

2 ~[BEN]IGN=B5 -
2 ~[BEN]I=2N -
2 ~[BEN]U=2N -
2 ~[BEN]=B5 -

2 ~[BEQU]=2QU -
2 ~[BERET]=B]ET -
2 ~[BERG]=B]G -

2 ~[BERK]=B]K -
2 ~[BERL]=B]L -
2 ~[BERM]=B]M -
2 ~[BERN]=B]N -

2 ~[BERR]=B]R -
2 ~[BERS]=B]S -
2 ~[BER]T=B] -

2 ~[BER]W=B] -
2 ~[BERYL]=B]YL -
2 ~[BER]BECK=B] -
2 ~[BE]R=2 -

2 ~[BESIDE]=2S -
2 ~[BESS]=BESS -
2 ~[BESTEA]D=BE/1 -

2 ~[BESTI]A=BE/I -
2 ~[BESTING]=BE/+ -
2 ~[BESTI]=2/I -
2 ~[BEST]O=2/ -

2 ~[BESTR]=2/R -
2 ~[BEST]=BE/ -
2 ~[BE]S=2 -

2 ~[BET]A=2T -
2 ~[BETEL]=2TEL -
2 ~[BETH]I=2? -
2 ~[BETH]O=2? -

2 ~[BET]I=2T -
2 ~[BET]O=2T -
2 ~[BETR]=2TR -

2 ~[BETWEEN]=2T -
2 ~[BETW]=2TW -
2 ~[BEW]=2W -
2 ~[BEYOND]=2Y -

2 ~[BEZ]=2Z -
2 ~[BE']=2' -
2 [BLESS]=B.S -

2 [BLEN]D=BL5 -
2 [BLEED]=BLE$ -
2 ![BLEU]=BL1U -
2 ![BLE]=# -

2 [BLIN]DE=BL9 -
2 [BLIN]DI=BL9 -
2 [BLIND]=BL -

2 ~[BLUE]=BLUE -
2 ~[BY AND BY]~=BY & BY
 -

2 ![LESS]=.S -
2 [LETTER]=LR -
2 ~[LIKE]~=L -

2 [LITTLE]=LL -
2 [LORD]="L -
2 [LAHAD]=LA_H -

2 ~[LLAN]D=LLAN -
1 [L].~=L -
1 .[L]=L -
1 [L].!=L -

1 ~[L]~=;L -
1 [L]=L -
5 [L]=L -

1 ~[M]C`~=;M -
2 ~[M];#=;M 3
2 #[M]=;M 3
1 ~[M];#=;M 4

1 #[M]=;M 4
2 ![MENT]=;T -
2 ~[MAHA]=MAHA -

2 [MANY]=_M -
2 [MONTRE]AL=MONTRE -
2 ~[MORE]'N=MORE -
2 ~[MORE]~=M -

2 ~[MORT]IMER=MORT -
2 [MOTHEA]TEN=MO?1 -
2 [MOTHER]APY=MO!R -

2 [MOTHER]="M -
2 ~[MIS]TI=MIS -
2 ~[MIST]RIAL=MIST -
2 ~[MIST]REA=MIST -

2 ~[MIST]RU=MIST -
2 ~[MIST]RANS=MIST -
2 ~[MIS]TH=MIS -

2 [MIST]=MI/ -
2 ~[MIS]=MIS -
2 [MICRO]=MICRO -
2 [MUCH]=M* -

2 [MUST]AFA=MU/ -
2 ~[MUSTA]NG=MU/A -
2 ~[MUSTAR]D=MU/> -

2 ~[MUSTER]=MU/] -
2 [MUST]=M/ -
2 ~[MYSELF]~=MYF -
2 ~[MC]=MC -

1 [M].~=M -
1 .[M]=M -
1 [M].!=M -

1 ~[M]~=;M -
1 [M]=M -
5 [M]=M -
1 ~`[ND]~=4ND -

1 #[ND]~=ND -
1 .[ND]~=ND -
2 ~[N];#=;N 3

2 #[N]=;N 3
1 ~[N];#=;N 4
1 #[N]=;N 4
2 ~[NIGHT]=NI<T -

2 ~[NOBLES]SE=NO#S -
2 ~[NOT]~=N -
2 ~[NONE]~=N"O -

2 ~[NONES]~=N"OS -
2 ~[NON]ESS=NON -
2 ~[N]ONES=N -
2 ~[NONE]THE=N"O -

2 ~[NON]=NON -
2 [NOWI]SE=NOWI -
2 [NOWA]Y=NOWA -

2 [NO]WHERE=NO -
2 [NA]MENT=NA -
2 [NAME]="N -
2 ![NESS]=;S -

2 [NECESSARY]=NEC -
2 [NCRE]A=NCRE -
1 [N].~=N -

1 .[N]=N -
1 [N].!=N -
1 ~[N]~=;N -
1 [N]=N -

5 [N]=N -
2 ~[O];#=;O 3
2 #[O]=;O 3

1 ~[O];#=;O 4
1 #[O]=;O 4
2 ~[OF]THE~=(-
2 ~[OF]A~=(-

2 [OFOR]=O= -
2 [OF]=(-
2 ~[OUT]HELD=\T -

2 ~[OUT]~=\ -
2 ![OUND]=.D -
2 ![OUNT]=.T -

2 ~[UNFUL]F=UNFUL -
2 [UNDER]="U -
2 ~[UNEAS]=UN1S -

2 ~[UNEAR]=UNE> -
2 ~[UNLESS]~=UN.S -
2 ~[UNITY]=UN;Y -

2 ~[UN]=UN -
2 [USEA]GE=USEA -
2 ~[US]~=U -
2 [UPON]=^U -

1 [U].~=U -
1 .[U]=U -
1 [U].!=U -

1 ~[U]~=;U -
1 [U]=U -
5 [U]=U -
2 ~[V];#=;V 3

2 #[V]=;V 3
1 ~[V];#=;V 4
1 #[V]=;V 4

2 ~[VERY]~=V -
2 ~[VICEN]=VIC5 -
2 ~[VICE]=VICE -
1 [V].~=V -

1 [V].TH=;V -
1 .[V]=V -
1 [V].!=V -

1 ~[V]~=;V -
1 ~[VI]~=;VI -
1 ~[VII]~=;VI -
1 ~[VIII]~=;VI -

1 [V]=V -
5 [V]=V -
2 ~[W];#=;W 3

2 #[W]=;W 3
1 ~[W];#=;W 4
1 #[W]=;W 4
2 |[WAS]-=WAS -

2 |[WAS] =0 -
2 |[WERE]-=WERE -
2 |[WERE] =7 -

2 [WA]F=WA -
2 ~[WITH]THE~=) -
2 ~[WITH]A~=) -
2 [WITH]=) -

2 ~[WIIL]~=W -
2 ~[WHICH']=:I*' -
2 ~[WHICH]~=: -

2 ![WHID]E=WHID -
2 ![WHERE]D=WH]D -
2 [WHEREVER]=:]"E -
2 [WHERE']ER=:]E' -

2 [WHERE]=": -
2 ~[WHOSE]~=^: -
2 ![WHOUS]E=WH\S -

2 [WH]=: -
2 [WOULD]=WD -
2 [WORK]="W -
2 [WORD]=^W -

2 [WORLD]=_W -
1 [W].~=W -
1 .[W]=W -

1 [W].!=W -
1 ~[W]~=;W -
1 [W]=W -
5 [W]=W -

2 ~[X];#=;X 3
2 #[X]=;X 3
1 ~[X];#=;X 4

1 #[X]=;X 4
1 [X]:~=;X -
1 [X].~=X -
1 .[X]=X -

1 [X].!=X -
1 ~[X]~=;X -
1 [X]=X -

5 [X]=X -
2 ~[Y];#=;Y 3
2 #[Y]=;Y 3
1 ~[Y];#=;Y 4

1 #[Y]=;Y 4
2 [YOUNG]="Y -
2 ~[YOURSELF]=YRF -

2 ~[YOURSELVES]=YRVS -
2 [YOUR]=YR -
2 ~[YOU']M=Y\' -
2 ~[YOU]~=Y -

1 [Y].~=Y -
1 .[Y]=Y -
1 [Y].!=Y -

1 ~[Y]~=;Y -
1 [Y]=Y -
5 [Y]=Y -

 121

2 ~[BY AND] =BY & -
2 ~[BY] AT =BY -
2 ~[BY BUT] =BY B -

2 ~[BY IN] =BY 9 -
2 ~[BY]ON =BY -
2 ~[BY THE B]Y=0! B -

2 ~[BY] TO =BY -
2 ~[BY] WAS =BY -
2 ~[BY] WITH~=BY -
2 ~[BY] WITHOUT=BY -

2 ~[BY HIS] =0HIS -
2 ~[BY ENOUGH]=05\< -
2 ~[BY =]==0 -

2 ~[BY]!=0 -
2 ~[BY]#=0 -
2 ~[BRAILLE]=BRL -
1 [B].~=B -

1 .[B]=B -
1 [B].!=B -
1 ~[B]~=;B -

1 [B]=B -
5 [B]=B -
2 ~[C];#=;C 3
2 #[C]=;C 3

1 ~[C];#=;C 4
1 #[C]=;C 4
2 [CHILDREN]=*N -

2 ~[CHILD]~=* -
2 [CHARACTER]="* -
2 [CH]RISTO=* -
2 [CHRIST]="C -

2 [CH]=* -
2 ~[COMIN']=-IN' -
2 ~[COMMON]EST=-MON -

2 ~[COM]!=- -
2 ~[C]ONE=C -
2 ~[CONO]=CONO -
2 ~[CON]NED=CON -

2 ~[CO]NA=CO -
2 [CONY]=CONY -
2 ~[CONKER]=3K] -

2 [CONK]=CONK -
2 ~[CONCEIVING]=3CVG -
2 ~[CONCEIVE]=3CV -
2 ~[CONCH]~=CON* -

2 ~[CONS]~=CONS -
2 ~[CON]!=3 -
2 [COULD]=CD -

2 [COEN]ZYME=CO5 -

2 [OUGHT]="\ -
2 ~[OURSELVES]~=\RVS -
2 [OU]=\ -

2 [OWORK]=O"W -
2 [OW]=[-
2 ![ONG]=;G -

2 [ONEA]=ON1 -
2 [ONEC]K=ONEC -
2 [ONENESS]="O;S -
2 [ON]EN=ON -

2 [ONER]=ON] -
2 [ONED]=ON$ -
2 [ONES]IA=ONES -

2 [ONES]IM=ONES -
2 [ONES]S~=ONES -
2 ~[ONESELF]~="OF -
2 [ONES]E~=ONES -

2 [ONEST]="O/ -
2 [ONE]E=ONE -
2 [ONEOU]S=ONE\ -

2 [ONEO]=ONEO -
2 [ONEY]~="OY -
2 [ONEU]M=ONEU -
2 [ONE]UR=ONE -

2 [ONET]ED=ONET -
2 [ONET]S=ONET -
2 [ONET]CY=ONET -

2 [ONET]~=ONET -
2 [ONET]TE=ONET -
2 [ONEL]S=ONEL -
2 ![O]NEL~=O -

2 [ONE]="O -
2 [O]IN=O -
2 [OI]=OI -

2 [OEN]=OEN -
2 [OED]!=OED -
2 ~[OVEREA]T=OV]1 -
2 [QUICK]=QK -

2 ~[QUITE]~=Q -
2 [QUESTION]="Q -
1 [Q].~=Q -

1 .[Q]=Q -
2 ~[OVER]=OV] -
2 ~[O'CLOCK]~=O'C -
2 [ORSE]RADISH=ORSE -

2 [OON]E=OON -
2 ~[OLE]A=OLE -
2 ~[O]~MY=O -

1 ~[O]~DEAR=O -

2 ~[Z];#=;Z 3
2 #[Z]=;Z 3
1 ~[Z];#=;Z 4

1 #[Z]=;Z 4
1 [Z].~=Z -
1 .[Z]=Z -

1 [Z].!=Z -
1 ~[Z]~=;Z -
1 [Z]=Z -
5 [Z]=Z -

1 [[]=,7 -
5 [[]=[-
1 [\]=/ -

5 [\]=\ -
1 []]=7' -
5 []]=] -
1 [^]=, -

5 [^]=^ -
1 [__]#=--# -
1 [__]=.. -

2 ~[_EN]~=.EN -
2 [_ENOUGH]=.5 -
2 [_TO]_=.6 -
2 [_IN] =.9 -

2 [_INTO]_=.96 -
2 [_WAS] =.0 -
2 [_WERE] =.7 -

2 [_HIS] =.8 -
2 [_BE] =.2 -
2 [_BY]_=.0 -
1 [_/]= -

5 [_]=_ -
1 [_]= -
1 [`]=^ -

5 [`]=` -
1 [{]=,7 -
5 [{]={ -
1 [|]=^ -

5 [|]=| -
1 [}]=7' -
5 [}]=} -

1 [~]=^ -
5 [~]=~ -

 122

Appendix III: Translation Algorithm Using Structured English [37] [40]

program convert

begin

do

read_word
convert word into normal form // use table to convert lower to upper case.

// tidy up graphics characters etc.
convert_print_into_braille
TABLE II (Continued.)

RULE TABLE FOR TEXT TO STANDARD ENGLISH BRAILLE
while not end_of_input

end // of main program

procedure convert_print_into_braille

begin // turn print word into braille
set current_state to 1
set current_character to first character in word

while still converting do // do the whole word

begin

set match to FALSE // initialize for the loop
start search in rule table at rule defined by

current_character

repeat

if focus_matches and state_ok and right_context_ok
and left_context_ok then

begin

output right hand side of rule // i.e. the text
after the equals
sign

set current_state to new_state // get new state
from end of the
rule

e
move along word by size of current rule focus

set match to TRUE

end
else go to next rule
if not match
and new rule does not start with same letter as current_character

then

begin // no more rules for that character
output current_character // so use default option
set current_state to 1
set match to TRUE // and output braille

character

end

until match // keep going round until done current character
set current_character to first character in word

end // while still converting – keep going until done whole word
end // of convert print into braille

function focus_matches

begin

set match to TRUE
set input_index to index into input_buffer position for current_character
set rule_index to index start of focus for rule

TABLE II (Continued.)

 123

RULE TABLE FOR TEXT TO STANDARD ENGLISH BRAILLE

do

if input_buffer[input_index] != rule[rule_index] then // not got a
match

set match to FALSE
increment rule_index // move along rule
increment input_index // move along input

while match and (rule[rule_index] != ’]’) // Note: ’]’ terminates focus
return match

end // of focus_matches

function state_ok
begin // nonzero entry fires state

if decision_table[input_class of current rule, current_state] > 0 then
return FALSE

else

return TRUE
end; // of state_ok

function left_context_ok // similar to right_context_ok below

function right_context_ok

begin

set match to TRUE
increment input_index // step over ’]’

do

if rule[rule_index] is a wildcard then // ‘!’, ‘#’, ‘_’, ‘ ’, ‘|’, ‘‘’, ‘;’ or ‘+’

begin

if not valid_wildcard_match then //see wildcard definitions-Appendix 3
// Note: this will move along input buffer

set match to FALSE // and increment input_index appropriately
else do wildcard match // see wildcard definitions-Appendix 3

end

else

begin

if input_buffer[input_index] != rule[rule_index] then // not got a match
set match to FALSE
increment input_index // move along rule

end

increment rule_index // move along input
while match and (rule[rule_index] != TAB) // Note: TAB terminates

// right hand context of rule
return match

end // of right_context_ok

 124

Appendix IV: Rule Table for Braille-to-Text Translation [40]:

Rule format: input class <tab>[focus] right context =output<tab> next state

1 []= 1
6 []= 1
1 [!MVS]=themselves 3

3 [!]!: =the 5
5 [!]= the 5
1 [!]=the 3

3 ["1] =" 1
1 ["D]=day 3
1 ["E]=ever 3
1 ["F]=father 3

1 ["HAF]=hereafter 3
1 ["H]=here 3
1 ["K]=know 3

1 ["L]=lord 3
1 ["M]=mother 3
1 ["N]=name 3
1 ["OF]=oneself 3

1 ["O]=one 3
1 ["P]=part 3
1 ["Q]=question 3

1 ["R]=right 3
1 ["S]=some 3
1 ["T]=time 3
1 ["U]=under 3

1 ["W]=work 3
1 ["Y]=young 3
1 ["!]=there 3

1 ["*]=character 3
1 ["?]=through 3
1 [":]=where 3
1 ["\]=ought 3

1 ["]=" 1
7 [#]=: 4
6 [#]= 4

4 [#]=ble 3
1 [#']=' 4
1 [#]= 4
6 [$]=ed 3

1 [$]=ed 3
1 [%D]=should 3
3 [%]: =shall 3

6 [%]=sh 3
1 [%]=sh 3
1 [&/OR]=and/or 3
3 [&]!: =and 5

5 [&]= and 5
6 [&]=and 3
1 [&]=and 3

1 ['''0]: =..." 3
1 ['''8]: =...? 3
1 [''']=... 2
6 ['S]='s 2

3 [']=' 2
7 ['S]='s 2
7 [']: =' 4

7 [']=, 4
6 [']=' 2
4 [']=' 3

3 [']=' 2
1 [']=' 2
1 [`]=` 2
3 [(]!: =of 5

5 [(]= of 5
1 [(]=of 3
3 [)]!: =with 5

5 [)]= with 5
1 [)]=with 3
3 [*N]=children 3
3 [*]: =child 3

1 [*]=ch 3
1 [+]=ing 3
7 [,]= 1

6 [,,]=<SHIFT_WORD> 6
6 [,]=<SHIFT_CHAR> 6
3 [,,]=<SHIFT_WORD> 1
3 [,]=<SHIFT_CHAR> 1

4 [,N]=ation 3
4 [,Y]=ally 3
6 [,8]=' 2

3 [,8]=' 2
3 [,7]=[1
7 [,G]: = grammes 3
3 [,G]: =grammes 3

3 [,G]#=grammes 3
7 [,M]: =metres 3
3 [,M]: =metres 3

6 [6]=! 1
1 [6]=! 1
1 [7']=] 3

6 [7']=] 3
2 [7]_=were 3
3 [7]=(2

1 [7]: =) 3
6 [7]: =) 3
6 [7]=(2
4 [7]=gg 3

1 [7]=(1
1 [8''']="... 2
6 [8']=' 3

1 [8']: =' 3
2 [8] =his 3
3 [8]=" 2
6 [8]: =? 31

 [8]: =? 3
6 [8]=" 1
1 [8]=" 1

6 [99]=* 1
1 [99]=* 1
3 [96]=into 1
6 [9]=in 3

1 [9]=in 3
3 [:]: =which 3
6 [:]=wh 3

1 [:]=wh 3
1 [;6]=+ 1
1 [;_]=" 1
1 [;8]=* 1

1 [;4]=/ 1
1 [;7]== 1
4 [;E]=ence 3

4 [;G]=ong 3
4 [;L]=ful 3
4 [;N]=tion 3
4 [;S]=ness 3

4 [;T]=ment 3
4 [;Y]=ity 3
6 [;]= 6

1 [;]= 6
6 [<]=gh 3
1 [<]=gh 3
6 [>]=ar 3

1 [>]=ar 3
1 [?YF]=thyself 3
3 [?]: =this 3

6 [?]=th 3
1 [?]=th 3
1 [@4]!=$ 3
6 [@]=' 1

1 [@]=' 1
7 [A]=1 4
6 [A]=a 6

3 [ABV]=above 3
3 [AB]: =about 3
1 [ACLY]=accordingly 3

3 [AC]: =according 3
3 [ACR]: =across 3
3 [AF]B=after 3
3 [AF]G=after 3

3 [AF-]=lafter- 1
3 [AFN]=afternoon 3
3 [AFW]=afterward 3

3 [AF]?=after 3
3 [AF]M=after 3
3 [AF]D=after 3
1 [AF]: =after 3

3 [AG/]=against 3
3 [AG]: =again 3
3 [ALM]: =almost 3

3 [ALR]: =already 3
3 [AL]: =also 3
3 [AL?]: =although 3
3 [ALT]: =altogether 3

3 [ALW]: =always 3
1 [A4M4]=a.m. 3
3 [A]!: =a 5

5 [A]= a 5
1 [A]=a 3
7 [B]=2 4
6 [B]=b 6

3 [BLLY]: =blindly 3
3 [BL]F=blind 3
3 [BL;S]: =blindness 3

1 [I]=i 3
7 [J]=0 4
6 [J]=j 6

3 [J]: =just 3
1 [J]=j 3
6 [K]=k 6

3 [KC/S#]=kilocycles/s 4
7 [KC/S]: = kilocycles/s 3
3 [KC/S]: =kilocycles/s 3
1 [KC#]=kilocycles 4

7 [KC]: = kilocycles 3
3 [KC]: =kilocycles 3
3 [KW#]=kilowatts 4

7 [KW]: = kilowatts 3
3 [KW]: =kilowatts 3
3 [K]: =knowledge 3
1 [K]=k 3

6 [L]=l 63
 [LR]=letter 3
3 [LL]A=ll 3

3 [LL]E=ll 3
3 [LL]I=ll 3
3 [LL]O=ll 3
3 [LL]U=ll 3

3 [LL]=little 3
3 [LB#]=pounds 4
7 [LB]: = pounds 3

3 [LB]: =pounds 3
3 [L]: =like 3
1 [L]=l 3
6 [M]=m 6

1 [M*]=much 3
1 [M/]=must 3
1 [MYF]=myself 3

3 [MN#]=minutes 4
3 [MN]: =minutes 3
3 [MC/S#]=megacycles/s 4
7 [MC/S]: = megacycles/s 3

3 [MC/S]: =megacycles/s 3
3 [MC#]=megacycles 3
7 [MC]: = megacycles 3

3 [MC]: =megacycles 3
3 [M#]=miles 4
3 [M]: =more 3
1 [M]=m 3

6 [N]=n 6
1 [NEC]: =necessary 3
3 [NEI]: =neither 3

1 [NEWSLR]=newsletter 3
3 [N]: =not 3
1 [N]=n 3
6 [O]=o 6

3 [OZ#]=ounces 4
7 [OZ]: =ounces 3
3 [OZ]: = ounces 3

3 [O'C]=o'clock 3
1 [O]=o 3
6 [P]=p 6

1 [PD]: =paid 3
1 [P}CVG]=perceiving 3
1 [P}CV]=perceive 3
1 [P}H]=perhaps 3

3 [PT#]=pt 4
3 [PT]: =pt 3
3 [P>#]=paragraph 4

7 [P>]: = paragraph 3
3 [P>]: =paragraph 3
1 [P4M4]=p.m. 3
3 [P#]=p. 4

3 [P]: =people 3
1 [P]=p 3
6 [Q]=q 6

1 [QT#]=quarts 4
7 [QT]: = quarts 3
3 [QT]: =quarts3
1 [QR#]=quaters 4

7 [QR]: = quaters 3
3 [QR]: =quaters 3
1 [QK]=quick 3

3 [Q]: =quite 3
1 [Q]=q 3
6 [R]=r 6
1 [R4I4P4]=r.i.p 3

1 [RCVG]=receiving 3
1 [RCV]=receive 3
1 [RJCG]=rejoicing 3

 125

3 [,M]#=metres3
7 [,L]: =litres 3
3 [,L]: =litres 3

3 [,L]#=litres 3
1 [,,]=^^ 1
1 [,]=^ 1

7 [--]=- 2
6 [--]=- 2
1 [----]=---- 3
1 [--]= -- 2

7 [-]=- 4
6 [-]~: =- 6
4 [-]=- 2

3 [-]=com 3
1 [-]=- 2
4 [.D]=ound 3
4 [.E]=ance 3

4 [.N]=sion 3
4 [.S]=less 3
4 [.T]=ount 3

1 [.1]=> 3
1 [.]=_ 1
7 [/]#=/ 4
7 [/]: =st 3

3 [/]: =still 3
6 [/;]=/ 6
6 [/]=st 3

1 [/]=st 3
4 [0']=' 3
2 [0]_=was 3
3 [0]=by 1

6 [0]=" 3
1 [0]: =" 3
1 [0]=" 1

7 [1] =, 4
7 [1]=. 4
1 [1]: =, 3
6 [1]=, 3

4 [1]=ea 3
1 [1]=, 1
3 [2C]: =because 3

3 [2F]H=before 3
3 [2F]: =before 3
3 [2H]H=behind 3
3 [2H]: =behind 3

3 [2LL]: =belittle 3
3 [2L]: =below 3
3 [2N]: =beneath 3

3 [2SS]: =besides 3
3 [2S]: =beside 3
3 [2T]: =between 3
3 [2Y]: =beyond 3

3 [2]=be 3
6 [2]=; 3
1 [2]: =; 3

4 [2]=bb 3
1 [2]=; 1
1 [3CVG]=conceiving 3
1 [3CV]=conceive 3

1 [3P#]=per cent 4
7 [3P]= per cent 4
1 [3P]=per cent 3

1 [3#]=: 4
6 [3]=: 3
1 [3]: =: 3
4 [3]=cc 3

3 [3]=con 3
1 [3]=: 1
3 [4#]=dollars 4

7 [4] =. 3
6 [4]=. 6
1 [4]: =. 3
4 [4]=dd 3

3 [4]=dis 3
1 [4]=. 1
3 [5]: =enough 3

6 [5]=en 3
1 [5]=en 3
3 [6]=to 1
1 [6]: =! 3

4 [6]=ff 3

1 [BL]M=blind 3
3 [BL]: =blind 3
1 [BRL]=braille 3

3 [B]: =but 3
1 [B]=b 3
7 [C]=3 4

6 [C]=c 6
1 [C/O]=c/o 3
3 [CW#]=hundredweight 4
7 [CW]: = hundredweight 3

3 [CW]: =hundredweight 3
3 [CD]=could 3
3 [C#]=cents 4

3 [C]: =can 3
1 [C]=c 3
7 [D]=4 4
6 [D]=d 6

1 [DCVG]=deceiving 3
1 [DCV]=deceive 3
1 [DCLG]=declaring 3

3 [DCL]=declare 3
3 [DM#]=dm 4
3 [DM]: =dm 3
7 [DM]: = dm 3

3 [DG#]=degrees 4
7 [DG]: = degrees 3
3 [DG]: =degrees 3

3 [D#]=pence 4
3 [D]: =do 3
1 [D]=d 3
7 [E]=5 4

6 [E]=e 6
3 [EI]: =either 3
3 [EX#]=ex 4

7 [EX]: = example 3
3 [EX]-=ex 3
3 [EX]: =example 3
7 [EXS]: = examples 3

3 [EXS]: =examples 3
1 [E4G4]=e.g. 3
3 [E]: =every 3

1 [E]=e 3
7 [F]=6 4
6 [F]=f 6
3 [F/]=first 3

1 [FRS]=friends 3
1 [FR]L=friend 3
1 [FR]: =friend 3

3 [FT#]=feet 4
7 [FT]: = feet 3
3 [FT]: =feet 3
3 [F#]=francs 4

3 [F]: =from 3
1 [F]=f 3
7 [G]=7 4

6 [G]=g 6
3 [GD]=good 3
1 [GRT]=great 3
3 [GL#]=gallons 4

7 [GL]: = gallons 3
3 [GL]: =gallons 3
3 [G#]=guineas 4

3 [G]: =go 3
1 [G]=g 3
7 [H]=8 4
6 [H]=h 6

3 [H}F]=herself 3
3 [HMF]=himself 3
3 [HMM]=hmm 3

3 [HM]=him 3
3 [HR#]=hours 4
3 [HR]: =hours 3
3 [H]: =have 3

1 [H]=h 3
7 [I]=9 4
6 [I]=i 6

1 [IMM;S]=immediateness 3
1 [IMMLY]=immediately 3
3 [IMM] =immeiate 3
1 [I4E4]=i.e. 3

3 [I#]=inches 4

1 [RJC]=rejoice 3
3 [R#]=rupees 4
3 [R]: =rather 3

1 [R]=r 3
6 [S]=s 6
1 [SD]: =said 3

1 [S*]: =such 3
3 [ST#]=stones 4
7 [ST]: = stones 3
3 [SE#]=seconds 4

3 [SE]: =seconds 3
3 [S#]=shillings 4
3 [S'#]=section 4

3 [S]: =so 3
1 [S]=s 3
6 [T]=t 6
3 [TD]=today 3

3 [TGR]=together 3
3 [TM]=tomorrow 3
3 [TN]=tonight 3

3 [T#]=tons 4
3 [T]:=that 3
1 [T]=t 3
3 [U4K4]=U.K. 6

6 [U]=u 6
3 [U]: =us 3
1 [U]=u 3

6 [V]=v 6
3 [V]: =very 3
1 [V]=v 3
6 [W]=w 6

3 [WD]=would 3
3 [W]: =will 3
1 [W]=w 3

6 [X]=x 6
3 [XS]: =its 3
1 [XF]=itself 3
3 [X]:=it 3

1 [X]=x 3
6 [Y]=y 6
1 [YRF]=yourself 3

1 [YRVS]=yourselves 3
3 [YR]=your 3
3 [YD#]=yards 4
7 [YD]: = yards 3

3 [YD]: =yards 3
3 [Y]:=you 3
1 [Y]=y 3

6 [Z]=z 6
3 [Z]: =as 3
1 [Z]=z 3
1 [\RVS]=ourselves 3

3 [\]: =out 3
6 [\]=ou 3
1 [\]=ou 3

1 [^U]=upon 3
1 [^W]=word 3
1 [^!]=these 3
1 [^?]=those 3

1 [^:]=whose 3
1 [^]=` 1
1 [_C]=cannot 3

1 [_H]=had 3
1 [_M]=many 3
1 [_S]=spirit 3
1 [_W]=world 3

1 [_!]=their 3
6 [_]=_ 1
1 [_]=_ 1

1 [{O]=. 3
6 [[]=ow 3
1 [[]=ow 3
3 [=]!: =for 5

5 [=]= for 5
6 [=]=for 3
1 [=]=for 3

6 []]=er 3
1 []]=er 3

 126

Appendix V: VHDL Coding For Text-to-Braille Translation

Included in the companion CD

Appendix VI: VHDL Coding For Fast Text-to-Braille Translation

Included in the companion CD

Appendix VII: VHDL Coding For Braille Notetaker

Included in the companion CD

