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Abstract

This study consists of three parts. The first part focuses on bifurcation analysis

of epidemic models with sub-optimal immunity and saturated treatment/recovery

rate as well as nonlinear incidence rate. Different from classical models, sub-

optimal immunity models are more realistic for modelling the spread of the mi-

croparasitic infectious diseases such as Pertussis and Influenza A. By carrying out

the bifurcation analysis, we find that for certain values of the model parameters,

Hopf bifurcation, Bogdanov-Takens bifurcation and its associated homoclinic bi-

furcation occur. From the bifurcation curves established, one can predict the persis-

tence or extinction of the diseases.

The second part of the research focuses on the problem of estimating the

domain of attraction (DOA) for compartmental ordinary differential equation epi-

demic models. Determination of the domain of attraction for epidemic models is

important for understanding the dynamic behaviour of the spread of diseases as a

function of the initial population distribution. In this work, we focus on the sub-

optimal immunity models investigated in the first part of this thesis. The theories

of autonomous dynamical systems are utilized for the analysis, and a procedure has

been established successfully to determine the maximal Lyapunov function in the

form of rational functions and consequently the DOA.

In the third part of the research, we develop a bond percolation model for

community clustered networks with an arbitrarily specified joint degree distribu-

tion. Our model is based on the probability generating function (PGF) formalism for
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multitype networks, but incorporate also the free-excess degree distribution, which

makes it applicable for clustered networks. In the context of contact network epi-

demiology, our model serves as a special case of community clustered networks

which are more suitable for modelling the disease transmission in community net-

works with clustering effects. Beyond the percolation threshold, we have obtained

the probability that a randomly chosen community-i node leads to the giant com-

ponent; and in the context of contact network epidemiology, this probability refers

to the probability that an individual in a community is affected by the infectious

disease. Besides that, we have established the method to determine the size of the

giant component and the average small-component size (excluding the giant compo-

nent). When taking into account the clustering effect through the free-excess degree

distribution, our study shows that the clustering effect will lead to the decrease in

the size of the giant component. In short, our model enables one to numerically

simulate the disease transmission in community networks taking into account the

community structure effects and clustering effects.
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Chapter 1

Introduction

1.1 Background

The spread of infectious diseases has always been a big concern both in developed

and developing countries. For instance, in the pass 30 years, the Human Immunod-

eficiency Virus (HIV), which cause Acquired Immunodeficiency Syndrome (AIDS)

has become a serious sexually-transmitted disease throughout the world. In 2009,

the World Health Organization (WHO) estimated that there were 33.4 million peo-

ple worldwide living with HIV/AIDS, with 2.7 million new HIV infections per year

and 2.0 million annual deaths due to AIDS.

Epidemics such as the 2002 outbreak of SARS, the 2009 outbreak of H1N1,

and the Ebola virus outbreaks bring certain chaos to the society. It poses a threat

to public health, economic and social development of the human society. For in-

stance, the 1918 Spanish flu epidemic caused millions of deaths. Far before that,

the bubonic plague (Black Death) had affected half of the population in Europe in

600 AD. The recurrent of this disease between 1346 and 1350 had caused the death

of more than 10 000 people every day, and the death is as much as one-third of the

population. Thus, the prevention and control of epidemics become very important

and in fact, fighting with infectious diseases has a long history.

In less developed countries, every year, millions of people die of measles,

respiratory infections, diarrhea and other infectious diseases that can be treated and

not considered dangerous in the developed countries. Besides that, diseases such
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as malaria, schistosomiasis, typhus, sleeping sickness, dengue and cholera, are en-

demic in many parts of the world.

In order to prevent and to control infectious diseases more effectively, or even

to eradicate the diseases, at very first, it is very important to fully understand the

mechanism of the transmission dynamics of the diseases. This kind of work in-

cludes the use of mathematical models to describe the diseases transmission pro-

cesses. Based on the occurrence and progression of diseases and the surroundings,

mathematical models can be formulated to characterize the infectious agents, to

analyze the origins of the diseases and the factors involved in the transmissions,

and even to predict the prevalence of the diseases and their patterns. Based on the

analysis, the authorities can provide useful guidance or predictions so that better

strategies and plans can be managed. In other words, quantitative studies based

on mathematical models are able to describe the mechanisms of disease transmis-

sion and provide a foundation for prevention and control of the infectious diseases.

Hence, there emerges a field of study which is called mathematical epidemiology.

More specifically, for epidemic modelling, one will study both epidemics which are

sudden outbreaks of a disease, and endemic situations in which a disease is always

present. The existing mathematical models can be categorized in few groups, based

on the described diseases, environments and populations, as linear, nonlinear, au-

tonomous, or non-autonomous models. There exist, moreover, modelling variations

in each category.

Mathematicians and physicists are among the academic workers who con-

tribute to the knowledge of mathematical epidemiology. They keep up working in

modelling the epidemics outbreak. One of the main parts of epidemiological re-

search is focused on rate-based differential-equation models, i.e. compartmental

models on completely mixing population. This epidemiology modelling has been

used in planning, implementing and evaluating various prevention therapy and con-

trol programs. Before the era of research in complex networks, the theoretical ap-

proach to epidemic spreading is based on compartmental models in term of system

of ordinary differential equations. Two typical epidemiology models in the ODEs

2



form, are the SIS (susceptible-infected-susceptible) model and the SIR (susceptible-

infected-refractory) model [66]. In the SIS model, an individual has two possible

statuses: susceptible and infected. A susceptible individual may become infected

once it contacts an infected one. After certain time, the infected individuals recover

and return to the susceptible state. In the SIR model, an individual has three pos-

sible statuses: susceptible, infected, and refractory (i.e. removal). The infected in-

dividuals cannot go back to the susceptible status but can become refractory, which

describes the phenomenon of long-time immunity. In addition to these two typ-

ical models, there are many other models, such as the SI (susceptible-infected)

model and the SIRS (susceptible-infected-refractory-susceptible) model, and the

sub-optimal immunity model which lies in between the SIS and the SIR models.

The sub-optimal immunity model is our major concern in this thesis. Examples of

this kind of diseases include Pertussis (temporary immunity) and Influenza A (par-

tial immunity). This kind of models is less studied in comparison to the existing SIS

and SIR models. In this thesis, we will study the bifurcation of this kind of models.

Basically, the ODEs form of epidemic models uses the assumption that all the

details, such as the individual habits, the geographical location and the presence of

community structures, are averaged out. The mixing of individuals is considered as

homogeneous mixing. But what in the reality is that the spreading of an infectious

disease, i.e. epidemic process, on a social network is a heterogeneous process.

Furthermore, humans tend to respond to the emergence of an epidemic by avoiding

contacts with infected individuals. Such situation needs to be considered when

we come to the epidemic modelling. In this context, we have to use nonlinear

incidence rate which is more appropriate for describing the homogeneous mixing

of population. On the other hand, the complex networks play an important role to

obtain good representation for heterogeneous mixing in epidemics modelling.[8, 9,

12, 23, 31, 37, 62, 77–79]

In this aspect, the last decade has witnessed the active researches in com-

plex networks, i.e. the networks in which the structure is irregular, complex and

dynamically evolving in time. In the real world application, the dynamics of com-
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plex networks has recently received much attention [14, 28, 84]. In this area, most

researches have been directed in two major directions. The first direction is the

dynamics of networks: the research in this direction focuses on structure of the

networks, revealing that simple dynamical rules, such as preferential attachment or

selective rewiring, can be used to generate complex topologies. The second direc-

tion is the dynamics on networks: research in this direction has focused on large

ensembles of dynamical systems, where the interaction between individual units is

described by a complex networks [38].

On top of that, researchers from various disciplines are trying to model the

real world into certain type of network models. Apart from the random graph by

Erdos and Renyi in 1959, other important work has been done by Watts and Strogatz

in 1998 [92], Barabasi and Albert in 1999 [6] where two important properties, the

small-world effect and the scale-free networks (i.e. power law distribution), were

discovered. Another property which many networks have in common is clustering,

or community structure, where a seminal paper appeared in 2002 by Girvan and

Newman [34] who proposed a new algorithm for detecting community structure in

networks [70, 71]. Various analytic and numerical studies have been carried out

for the model itself [21, 64, 68, 72, 86] and one of the important applications is in

epidemics modelling [56, 73]. Apart from that, many authors proposed modifica-

tions and generalization to make the complex network model to more realistically

represent real networks.[6, 74].One of the phenomena that shows this feature is the

spreading process such as opinions and diseases on social networks. In this project,

apart from the bifurcation analysis for the sub-optimal immunity model, we also

focus on the study of the spreading of diseases in community networks. Our ob-

jective is to obtain the more realistic model for epidemics outbreaks so as to obtain

the analytical solution for counting the size of epidemic. Our model is based on

the probability generating function which can be used to represent any degree dis-

tribution. In more general context, according to their degree distribution, networks

can be categorized into homogeneous networks and heterogeneous networks. In the

context of epidemic spreading, for homogeneous networks, the dynamics can be
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shown by the mean field or fully mixed approaches [63], while for the heteroge-

neous networks, the influence of degree distribution must be considered. Examples

of the homogeneous network include the Erdos and Renyi (ER) random network

and the small-world network (SW) in which the node degree distribute around a

mean value and decay exponentially. An example of heterogeneous networks is the

Barabasi and Albert’s scale free network in which the degree distribution satisfies

the power law. Hence the use of the probability generating function has an advan-

tage here because it enables the derivation of network models with arbitrary degree

distributions.

In short, apart from the bifurcation analysis for the sub-optimal immunity

models, we aim to model the epidemics outbreak in the sense of complex networks.

We will build the complex network model based on the probability generating func-

tion formalism.

1.2 Objectives

The main purpose of the work is to study the rich dynamics of the sub-optimal im-

munity model with saturated treatment rate through bifurcation analysis and com-

putation of the domain of attraction. Apart from that, we will build the model based

on the probability generating function formalism to cater the need of investigating

the disease transmission in community networks. More specifically, this project has

the following objectives:

(i) Investigate the rich dynamics of an epidemic model with sub-optimal immu-

nity and saturated treatment/recovery rate through bifurcation analysis.

(ii) Formulate an epidemic model with sub-optimal immunity, nonlinear inci-

dence and saturated treatment/recovery rate and investigate its rich dynamics

through bifurcation analysis.

(iii) Determine the domain of attraction of the sub-optimal immunity models.

(iv) Develop a model based on the probability generating function formalism to
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study the disease transmission in community networks and obtain the analyt-

ical solution through the bond percolation method.

1.3 Main contributions of this thesis

The main contributions of this thesis include the following aspects:

(i) Development of analytical results to demonstrate the existence of Bogdonov-

Takens bifurcation in the sub-optimal immunity model with saturated recov-

ery rate.

(ii) Construction of a new model which combines nonlinear incidence rate and

nonlinear treatment/recovery rate for sub-optimal immunity type models.

(iii) Development of a new robust procedure for determining the maximal Lya-

punov function in the form of rational functions.

(iv) Development of a bond percolation model of community clustered networks

with an arbitrary joint degree distribution (i.e. the degree distribution is arbi-

trarily specified).

1.4 Outline of the thesis

This thesis consists of seven chapters. Chapter One provides a brief introduction of

the research and presents the objectives of the study. Chapter Two discusses some

necessary background information and knowledge highly relevant to this research

and also reviews previous work closely related to the scope of this project. The

more specific literature review for each topic in this research is in the first section

of each chapter from Chapter Three to Six.

Chapter Three discusses the epidemic model with sub-optimal immunity and

saturated treatment/recovery rate. Different from classical models, sub-optimal im-

munity models are more realistic to explain the microparasitic infectious diseases

such as Pertussis and Influenza A. By carrying out the bifurcation analysis of the
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model, we show that for certain values of the model parameters, Hopf bifurcation,

Bogdonov-Takens bifurcation and its associated homoclinic bifurcation occur. By

studying the bifurcation curves, one can predict the persistence or extinction of the

diseases.

Chapter Four presents a new epidemic model with sub-optimal immunity,

nonlinear incidence and saturated treatment/recovery rate. Beside the bifurcation

analysis similar to that in Chapter Three, due to the combination of the nonlinear-

ities in both incidence rate and recovery rate, the work involves a more complex

analysis of equilibrium through a higher order polynomial and thus, some analysis

involves numerical analysis.

Chapter Five deals with the problem of estimating the domain of attraction

(DOA) for epidemic models. In this work, we establish a procedure to determine

the maximal Lyapunov function in the form of rational functions. The estimation

of domain of attraction for epidemic models is important for understanding the dy-

namic behaviour of the spread of diseases as a function of the initial population

distribution. We focus on the sub-optimal immunity models with saturated treat-

ment rate which we study in Chapter Three and Four.

Chapter Six presents a bond percolation model for community clustered net-

works with an arbitrary joint degree distribution (i.e. the degree distribution is spec-

ified). Our model is based on the probability generating function (PGF) formalism

for multitype networks and incorporate the free-excess degree distribution, which

makes it applicable for clustered networks. In the context of contact network epi-

demiology, our model serves as a special case of community clustered networks

which are more suitable for modelling the disease transmission in community net-

works with clustering effects. Beyond the percolation threshold, we obtain the prob-

ability that a randomly chosen community-i node leads to the giant component and

in the context of contact network epidemiology, the probability refers to the prob-

ability that an individual in a community is affected by the infective disease. In

addition, we establish formulae to calculate the size of the giant component and the

average small-component size (excluding the giant component). When taking into
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account the clustering effect through the free-excess degree distribution, our model

shows that the clustering effect will lead to decrease in the size of the giant com-

ponent. In short, our model enables us to find the numerical calculation related to

the disease transmission in community networks with various community structure

effects and clustering effects.

Chapter Seven presents the conclusions from this study. Further research is

also provided in this chapter.

We conclude the Chapter 1 by showing the structure of this thesis and the

links of chapters in the thesis.
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Chapter 2

Literature Review

The transmission of infectious diseases is one of the biological problems. By using

certain assumption, one can describe it by mathematical models, and through math-

ematical analysis, solution can be obtained. Simulation will be done to compare the

mathematical models with the actual biological problems, before it can be used for

prediction of real phenomena. These rely very much on the assumptions used in the

models.

In the past few decades, many different types of mathematical models have

been developed for the study of disease transmission, including the differential

equation models and complex network models. Different models offer different ad-

vantages over others on some aspects but also have limitation on other aspects. Gen-

erally, it is almost impossible to establish an unified epidemic model to represent all

the aspects. In this research, we focus on a compartmental model, namely the sub-

optimal immunity model, which is more realistic in explaining the microparasitic

infectious diseases such as Pertussis and Influenza A. We will extend the existing

models to include some special features such as nonlinear incidence rate and satu-

rated treatment recovery rate, so that the model is capable of simulating nonlinear

phenomena such as outbreak of diseases. We will also develop a bond percolation

model which is more appropriate for the study of disease transmission in commu-

nity structure networks with extra consideration of the clustering effect. We will

review and discuss previous works relevant to our research in this chapter.

The rest of this chapter is organized as follows. In Section 2.1, we review
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the basic modelling aspect of compartmental ordinary differential equation (ODE)

models, including the structure of the SIR type models, the threshold condition,

equilibrium and stability analysis, types of incidence rate, types of recovery rate

and sub-optimal immunity models. In Section 2.2, we focus on the mathematical

analysis aspect for compartmental ODE models, including particularly the Hopf

bifurcation, Bogdanov-Takens bifurcation and domain of attraction (DOA). In Sec-

tion 2.3, we will review some basic concepts to be used for our community struc-

ture networks, with particular focus on the probability generating function (PGF)

formalism.

2.1 General overview for compartmental models

Besides complex network models, there are two main branches in epidemic model-

ing, namely stochastic models and deterministic models. Deterministic models pro-

vide a useful approximation to the epidemic evolution of highly infectious agents

that appear ubiquitous throughout large populations [4], while stochastic models

replace the actual values of the numbers of susceptible and infectious individuals

with probability distributions.

In deterministic models, the most common approach is using a compartmen-

tal representation of the various stages in the spreading of diseases. Normally, the

models are expressed by a system of ordinary differential equations (ODEs). The

first compartmental model was developed by Kermack and McKendrick in 1927

where the compartments in the model represent the subpopulations including sus-

ceptible, infectious and removal individuals. The model is applicable for the viral

diseases such as measles and chickenpox for which the individuals gain immunity

to the same virus. Later in 1932, Kermack and McKendrick proposed a SIS model

which explains the disease transmission dynamics in bacterial diseases such as en-

cephalitis and gonorrhea where the recovered individuals gain no immunity and can

be reinfected. Since then, various researches extended the classical models in many

aspects so that they can describe well the complex epidemiological characteristics.
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Typical models include the sub-optimal immunity models [35, 76], the models with

latent period [52, 53], the models with nonconstant population [16, 25], and the

models with the effects of quarantine on disease transmissions [32, 75, 94]. Epi-

demic models have been used in many applications and for more details, we refer

the reader to the references [4, 15, 19, 26, 44]. Various studies have also been un-

dertaken specific to certain kinds of diseases such as the Chikungunya disease [65],

the hands-foot-mouth disease [81], dengue fever [33], tuberculosis [11, 20], West

Nile virus [93] and Malaria [22].

2.1.1 SIR framework models

For the compartmental epidemic models, the host population is divided into three

non-overlapping classes that distinguish an individual’s state of disease as either

susceptible, S, infective, I or recovered, R. Assuming a fixed population, N =

S(t) + I(t) + R(t), which means the population is closed and hence there is no

change in demographic as no individuals leave or enter the population, Kermack

and McKendrick (1927) derived the following equations:

dS

dt
= −βSI

dI

dt
= βSI − µI

dR

dt
= µI,

(2.1)

with initial condition : S(0) = S0 > 0 , I(0) = I0 > 0 , R(0) = 0 and where all

the parameters are positive. β is the disease transmission rate, while µ is the natural

death rate . βSI is called incidence rate while µI is removal rate.

From dI
dt

= βSI − µI , we have dI
dt
|t=0 = βS0I0 − µI0 . Let ρ = µ/β , if

S0 > ρ,then dI
dt
|t=0 = βS0I0 − µI0 > 0 and so I(t) > I0 for some t > 0 , i.e.

epidemic occurs. If S0 < ρ,then dI
dt

= βSI − µI0 ≤ 0 for all t ≥ 0, and so the

infection dies out, i.e. no epidemic can occur. ρ = µ/β is sometimes called the

relative removal rate and its reciprocal β/µ is the infection contact rate.

For β, we can let it be fb, where the parameter f is the rate at which an

individual makes contacts with others and b is the transmission probability that a

12



contact between an infective and susceptible leads to transmission of the infection.

Equation dR
dt

= µI is redundant, as one can calculateR asN−S−I . The quantities

S, I and R are all bounded above by N . Hence, mathematical analysis can be

carried out with the reduced system having lower dimension.

Besides the typical three compartment SIR model, many other similar types

of epidemiology models have been developed such as the MSEIR, MSEIRS, SEIR,

SEIRS, SIRS, SEI, SEIS, SI and the SIS model, where M is the passively immune

class and E is the latent period class. Each model is used to study certain particular

infectious diseases. For instance, the SEIR model, which includes an exposed or

latent period class of individuals who are not yet infectious, is appropriate for the

yellow fever.

2.1.2 Threshold condition

In compartmental epidemic models, one of the important parameters is the basic re-

production numberR0, which is the average number of secondary infections caused

by an average infective. For the classical model (2.1), the basic reproduction num-

ber is given by R0 = fb/µ or more generally R0 = Nfb/µ. If R0 > 1 , epidemic

can occur. R0 gives the average number of secondary infection that arise when an

infectious individual is introduced into an otherwise entirely susceptible popula-

tion. The value of R0 does not depend on the distribution of infectious periods. By

definition, the basic reproductive number R0 can be written as

R0 =

(
infection
contact

)(
contact

time

)(
time

infection

)
. (2.2)

Mathematically, the basic reproduction number, R0, can be computed by using the

survival function or the next generation matrix method [27].

In the next generation matrix method, the basic steps for calculating the basic

reproduction number,R0, for the compartmental epidemic models are as follows.

Step 1: Find Fi(x0) and Vi(x0), where Fi are the new infections in compartment i , Vi

denote the infections transformed from other compartments to compartment

i, x0 is the disease-free equilibrium state.
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Step 2: Find the next generation matrixGwhereG = FV −1 and , F =
[
∂Fi(x0)
∂xj

]
,V =[

∂Vi(x0)
∂xj

]
.

Step 3: The spectral radius of G = FV −1 is the basic reproduction number, R0.

Further notes on the basic reproduction number,R0, for the compartmental epidemic

models are available in [41, 87].

2.1.3 Equilibrium and stability analysis

A general way to determine the stability at an equilibrium point is by calculating

the eigenvalues of the Jacobian matrix, J , at the equilibrium point. For example,

for the SIR model (2.1), the Jacobian matrix for the reduced system is

J =
( −βI∗ −βS∗

βI∗ βS∗ − µ
)
,

where (S∗, I∗) is the state at an equilibrium point. For the disease free equilibrium,

(S∗, I∗) = (N, 0), and the eigenvalues of the Jacobian matrix are λ1 = 0 and

λ2 = βN − µ. In order for the system (2.1) to be stable, we need Re(λ) < 0, that

is R0 = βN/µ < 1 . At the stable equilibrium point (S∗, I∗), the solutions in the

neighbourhood of the equilibrium point are attracted to the point.

In summary, for the epidemic model ẋ = f(x) with n equations and n un-

knowns, the procedure for the equilibrium and stability analysis is as follows:

Input: ẋ = f(x).

Output: Stability analysis for the equilibrium point(s).

Step 1: Determine the fixed points x∗ where f(x∗) = 0, including the disease free

equilibrium (DFE),P0, and the endemic equilibrium (EE), P ∗.

Step 2: Find the Jacobian matrix, J(P ), at the equilibrium point.

Step 3: Find the eigenvalues of J(P ).

Step 4: If all the eigenvalues have negative real parts, the equilibrium point is locally

asymptotically stable.
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2.1.4 Types of incidence

There are two categories of incidence rate, namely bilinear incidence rate and sat-

urated incidence rate. Bilinear incidence is simply βN S
N
I , or βSI and models

based on this have a trivial equilibrium (corresponding to the disease-free state)

and nontrivial equilibrium (corresponding to the endemic state) which are usually

asymptotically stable. The bilinear incidence rate is based on the law of mass ac-

tion, which is appropriate for communicable diseases such as influenza, but not for

sexually transmitted diseases. But as the number of susceptible population is large,

it is unreasonable to consider the bilinear incidence rate because the number of con-

tact between the susceptible population and the infective population within a certain

time is limited. Furthermore, the assumption of homogeneous mixing of population

may be invalid.

Hence, one may prefer saturated incidence such as the standard incidence,

β S
N
I , which is the proportionate mixing incidence, when the total population sizeN

is not too large. Other forms of saturated incidence include βSI/(1+aI) ,βSI/(1+

aS) and βSIh/(1 + aIh), where 1/(1 + aI) measures the inhibition effect from the

behavioral change due to the increasing number of susceptible individuals. Apart

from that, it is more appropriate to explain the crowding effect of the infective

individuals. Besides that, one may use nonlinear incidence in the form of βSpIq.

All these incidence rates are more appropriate to explain the situation when the

number of infectives is very high and the exposure to the disease agent is virtually

limited. Hence these incidence rates will respond more slowly than the linear form

of incidence rate. We will study a special case of nonlinear incidence, βSI2, in

Chapter Four.

For compartmental epidemic models, different incidence rate was discussed

in the references [2, 42, 51, 57, 58, 83], and most of the articles focus on discussion

on the dynamics of the related epidemic models.
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2.1.5 Types of recover/removal/treatment rates

In classical epidemic models, the classical removal rate is represented by the linear

function, µI . But this classical removal rate, µI , is unsatisfactory because the

treatment capacity such as medicines and sickbeds may be limited or insufficient

in some epidemic outbreak. In [24], the authors proposed a saturation recovery

function, h(I) = vI + cI/(b+ I), as the recovery rate function in which c/(b+ I)

and v are respectively the recovery rate of the infected population with and with

no treatment. The authors studied how the saturation recovery affects the dynamics

of epidemic models and showed that the saturation recovery would cause multiple

endemic equilibria and backward bifurcation. Apart from this saturated recovery

rate, in [91], the authors suggested an epidemic model with a constant removal

rate of infective individuals and showed that it can be used to study the effect of

limited resources for treatment of the infective to the spread of infectious disease.

In contrast with these, the author in [90] proposed a piecewise saturation recovery

function to study the dynamical behavior of epidemic models.

In short, there are various considerations for epidemic models. For some other

consideration such as the type of population, one may consider constant population

or varying population. The varying population is considered if the disease causes

fatal reduction in the population. Besides that, there are different types of trans-

missions which include vertical transmission ( i.e. from mother to son, without

monotonicity) and horizontal transmission (with monotonicity).

2.1.6 Sub-optimal immunity models

Although the SIR and SIS frameworks for infectious diseases have been success-

fully applied, most of the diseases do not fall into either of these extreme categories.

It is because for certain diseases, the recovered individuals may obtain immunity to

prevent her/him to get re-infection as the immune protection may wane over time

(temporary immunity), or immunity may not be fully protective but reduces the risk

of re-infection (partial immunity) [35]. The temporary immunity normally happens

for some childhood diseases which are controlled by vaccination such as Pertus-
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sis. The partial immunity protection will be received by infected individuals who

suffer from diseases such as Influenza, Neisseria meningitides and Mycobacterium

tuberculosis. The classical SIR epidemic model is appropriate for diseases such as

measles and mumps which give permanently immune to the infected population,

while the SIS type structures are most appropriate for diseases such as gonorrhoea

which does not produce sufficient immunity against reinfection [19]. In this thesis,

we will focus on the bifurcation analysis for this sub-optimal immunity epidemic

models. We will study the models with nonlinear incidence rate and saturated re-

covery rate.

2.2 Qualitative analysis of compartmental epidemic
models

For the compartmental epidemic models without delay and constant polpulation,

for the sake of simplicity, one can always use the reduced system to do the analysis.

The basic steps for the qualitative analysis are as follows,

1. Determine the basic reproduction number by the next generation matrix or

other appropriate methods. Find the disease free equilibrium (DFE) and the

endemic equilibrium (EE), the Jacobian matrix, the characteristic equation

and its eigenvalues.

2. Investigate whether the DFE or EE are locally asymptotically stable by using

the Routh-Hurwitz criteria or globally asymptotically stable by the Lyapunov

function.

3. Study the limit cycle phenomena by using Dulac’s criterion, Bendixson’s cri-

terion and the Poincare-Bendixson Theorem.

4. Undertake bifurcation analysis including backward bifurcation, Hopf bifur-

cation and Bogdanov-Takens bifurcation.
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2.2.1 Hopf bifurcation

In this thesis, we mainly focus on bifurcation analysis including analysis of Hopf

bifurcation and Bogdanov-Takens bifurcation for the sub-optimal immunity mod-

els. Mathematically, the Hopf bifurcation point in compartmental epidemic models

can be determined when its Jacobian matrix at the equilibrium point of the system

ODEs has a pair of purely imaginary eigenvalues and the remaining eigenvalues

have nonzero real parts. In other words, Hopf or Poincaré-Andronov-Hopf bifur-

cation is a local bifurcation in which a fixed point of a dynamical system loses

stability, as a pair of complex conjugate eigenvalues of the linearization around the

fixed point cross the imaginary axis of the complex plane. More generally, for a

dynamical system such as the compartmental epidemic models, for example an au-

tonomous system ẋ = f(x, µ) where µ is the bifurcation parameter, the following

methods may be used to check whether Hopf bifurcation occurs or not.

1. Let µ0 = 0. If the eigenvalues for the Jacobian matrix is purely imaginary

pair, Hopf bifurcation may occur. This condition is named as transversality

condition, i.e. d
dµ
Re(λ(µ))|µ=µ0 6= 0.

2. Numerical analysis or linear algebra methods. The methods allow us to get

the Hopf bifurcation point without checking its eigenvalues. Among that the

famous ones include Hopf algorithms using polynomial resultants [40], bial-

ternate product algorithms or additive compound matrix method [40], Bor-

dering Methods [36]. The application of such methods in epidemic models

can be found in [39, 43, 54]. More specifically, there are direct methods and

indirect methods for obtaining the Hopf bifurcation point. In direct meth-

ods,the Hopf bifurcation point is obtained directly from its linearized system

(i.e. Jacobian matrix). Typical direct methods include tensor product ( Kro-

necker product method) , bialtenate product and induced matrices method.

On the other hand, indirect methods allow one to determine the Hopf bifur-

cation point from the characteristic polynomial derived from the linearized

system. Typical indirect methods include Hopf algorithms using polynomial
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resultants [40], Hurtwitz Determinant, Hermite criterion, Markov criterion

and Lienard-Chipart criterion.

3. Apply the center manifold theorem to reduce the dimension of the ODEs

system and hence compare with the normal forms.

4. Use the Levinson-Smith Theorem if the autonomous system can be written as

a Lienard’s system.

In compartmental epidemic models or any autonomous systems, once the Hopf bi-

furcation point is determined, it is important to know whether the Hopf bifurcation

is supercritical or subcritical. The supercritical Hopf bifurcation appears when the

equilibrium becomes unstable, while the periodic solutions are stable. On the con-

trary, the subcritical Hopf bifurcation appears when the equilibrium becomes stable,

while the periodic solutions are unstable.

Consider a two dimensional ODE systems as follows,

dI

dt
= G(I, R),

dR

dt
= H(I, R),

(2.3)

the procedure for the Hopf bifurcation analysis is as follows:

Step 1: Find all equilibrium points, say (I1, R1) which fulfill the Hopf bifurcation

condition.

Step 2: Translate (I1, R1) to the origin by using the transformation , x = I − I1,y =

R−R1
dx

dt
= a11x+ a12y + f1(x, y)

dy

dt
= a21x+ a22y + f2(x, y),

(2.4)

where f1(x, y) and f2(x, y) represent the higher order terms.

Step 3: Transform the system of ODEs to the new form by using the transformation

X = x , Y = a11x+ a12y. More specifically, from

dx

dt
= a11x+ a12y + f1(x, y),
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we get,
dX

dt
= Y + f1

(
X,

Y − a11X
a12

)
.

From
dy

dt
= a21x+ a22y + f2(x, y),

we get

dY

dt
=
dY

dx

dx

dt
+
dY

dy

dy

dt

= a11(a11x+ a12y + f1(x, y)) + a12(a21x+ a22y + f2(x, y))

= (a211 + a12a21)X + (a11a12 + a12a22)

(
Y − a11X

a12

)
+ a11f1

(
X,

Y − a11X
a12

)
+ a12f2

(
X,

Y − a11X
a12

)
= (a211 + a12a21)X + (a11a12 + a12a22)

(
Y

a12

)
− (a211 + a11a22)X

+ a11f1

(
X,

Y − a11X
a12

)
+ a12f2

(
X,

Y − a11X
a12

)
= (a12a21 − a11a22)X + (a11 + a12)Y + a11f1

(
X,

Y − a11X
a12

)
+ a12f2

(
X,

Y − a11X
a12

)
.

(2.5)

It is shown that

a11 + a12 = 0.

Hence

dY

dt
= −k1X + a11f1

(
X,

Y − a11X
a12

)
+ a12f2

(
X,

Y − a11X
a12

)
,

where k1 = a11a22 − a12a21.

Step 4: Transform the system of ODE in step 3 to the normal form by using the trans-

formation u = −X , v = Y/
√
k1 to obtain

du

dt
= −

√
k1v + f(u, v)

dv

dt
=
√
k1u+ g(u, v),

(2.6)

where f(u, v) and g(u, v) represent the higher order terms.
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Step 5: Find the first Lyapunov coefficient

Λ1 =
1

16
(fuuu + fuvv + guuv + gvvv)

+
1

16
√
k1

(fuv(fuu + fvv)− guv(guu + gvv)− fuuguu + fvvgvv).
(2.7)

If Λ1 > 0 , we have subcritical Hopf bifurcation, while if Λ1 < 0, we have

supercritical Hopf bifurcation.

2.2.2 Bogdanov-Takens bifurcation

Apart form Hopf bifurcation, Bogdanov-Takens bifurcation is another important

dynamical behaviour of compartmental epidemic models [83, 85, 103]. Bogdanov-

Takens bifurcation is co-dimension two, namely two parameters must be varied for

the bifurcation to occur. An epidemic system will undergoes Bogdanov-Takens

bifurcation if its linearized system around a fixed point has a double eigenvalue at

zero when the technical nondegeneracy conditions are satisfied.

In a seminal paper [83], the writers used the normal form theory to show

that the epidemic model considered undergoes Bogdanov-Takens bifurcation. The

normal form is given by

dx

dt
= y

dy

dt
= τ1 + τ2x+ x2 + xy ±O(|x, y, λ|3).

(2.8)

Then, the system of epidemic model admits the following bifurcation

(a) there is a saddle-node bifurcation curve when τ1 = 1
4
τ 22 ,

(b) there is a Hopf bifurcation curve when τ1 = 0 and τ2 < 0 ,

(c) there is a homoclinic bifurcation curve when τ1 = − 6
25
τ 22 .

2.2.3 Domain of attraction

The study of the domain of attraction (DOA) for the compartmental epidemic mod-

els has a great importance in forecasting and predicting the status of the infection
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and evaluating the efficiency of the control strategies. Basically, if the initial state

lies within the DOA, the disease will evolve towards an endemic state. On the other

hand, if the initial state is outside the DOA, the system will converge to the disease

free state. Although a considerable number of studies on DOA estimation and opti-

mized DOA for the epidemic dynamical models have been conducted, such as those

in [45, 49, 60] , all the epidemic models investigated in the literature mentioned

above are limited to relatively simple epidemic models, and none of them include

either nonlinear incidence rates or saturated recovery rates. In Chapter Five, we will

thus study the DOA for the models we proposed in Chapter Three and Four, namely

the sub-optimal immunity models with nonlinear incidence rates and saturated re-

covery rates by using the maximal Lyapunov function derived by [88].

2.3 Probability generating function

As mentioned in Chapter One, since the emerge of random graph theory by Erdos

and Renyi in 1959, the theory had been extended in a variety of ways to make the

random graphs a better representation of real world networks, such as those works

done by [7, 92] addressing two important network properties, small-world effect

and scale-free networks (i.e. power law distribution). Apart from that, Newman

et. al. [18, 69, 74] had used the probability generating function (PGF) to generate

graphs with a given degree distribution, in which the degree of nodes are indepen-

dently distributed random integers drawn from a given pk. This formalism is able

to include the network models with non-Poisson degree distribution. Furthermore,

it has been shown that the percolation problems can be solved in random graphs by

means of the generating functions formalism, and hence one can obtain exact solu-

tions for the presence and the size of an epidemic in random graphs with arbitrary

degree distributions [18, 69, 74].

In this section, we briefly discuss some basic properties for PGF formalism

and its application in percolation problems to obtain some solution in epidemic

modelling on complex networks. In Chapter Six, we use this PGF formalism in
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order to obtain the solution for the spreading of epidemic diseases in the community

clustered networks through the bond percolation model.

Definition 2.1. A probability distribution G0(x) =
∑∞

k=0 pkx
k is called the gener-

ating function where pk is the probability that a randomly chosen vertex (i.e. node)

on the graph has degree k, where
∑∞

k=0 pk = 1 and 0 ≤ x ≤ 1 .

Definition 2.2. A probability distribution G1(x) =
∑∞

k=1 qk−1x
k−1 is the generat-

ing function for the excess degree where qk−1 is the probability that a vertex (i.e.

node) has excess degree k − 1 , where
∑∞

k=0 qk = 1 and 0 ≤ x ≤ 1 .

qk−1 can be found by using qk−1 = kpk
〈k〉 . G1(x) can be calculated by using

G1(x) =
G′0(x)

G′0(1)
= 1
〈k〉G

′
0(x). Normally 〈k〉 = z where z is the average degree of a

node. Below are some of the properties of PGF.

Proposition 2.1. Let p be a probability distribution and Gp its generating function.

1. Gp(1) = 1. i.e.G0(1) = 1 and G1(1) = 1.

2. Gp(x) converges for 0 ≤ x ≤ 1 .

3. Derivatives, pk = 1
k!
∂kG0

∂xk
|x=0.

4. Mean or moment, 〈k〉 =
∑

k kpk = G′p(1). Generally, we have 〈kn〉 =∑
k k

npk =
[
(x d

dx
)nG0(x)

]
x=1

.

5. V ar =
∑

k k(k − 1)p(k).

In the context of epidemic spreading on complex networks, we can obtain the

basic reproduction number by R0 = TG′1(1) where T denotes the disease transmis-

sibility and G′1(1) = 〈ke〉 is the mean excess degree. If all the contacts transmit the

disease, we will have T = 1 . However, in reality, the probability that exactly m

infections are transmitted by an infective node of degree k is(
k

m

)
Tm(1− T )k−m. (2.9)
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To represent the transmissibility of a disease, we let Γ0(x, T ) be the generating func-

tion for the distribution of the infection transmitted by a randomly chosen individual

for any (fixed) transmissibility T (Sometime written as G0(x, T )). The relationship

between Γ0 and G0 is given below.

Γ0(x, T ) =
∞∑
m=0

[
∞∑
k=m

pk

(
k

m

)
Tm(1− T )k−m

]
xm

=

[
∞∑
k=0

pk

(
k

0

)
T 0(1− T )k−0

]
x0 +

[
∞∑
k=1

pk

(
k

1

)
T 1(1− T )k−1

]
x1 + . . .

=
∞∑
k=0

pk

[
∞∑
m=0

pk

(
k

m

)
(xT )m(1− T )k−m

]

=
∞∑
k=0

pk [xT + (1− T )]k = G0(1 + (x− 1)T ).

(2.10)

The above equality can be obtained through the Binomial Theorem. It is always

important to consider secondary infection. In this case, we define Γ1(x, T ) be the

generating function for the probability distribution of occupied edges leaving a node

arrived at by following a randomly chosen edge is generated by (2.11).

Γ1(x, T ) =
∞∑
m=1

[
∞∑
k=m

qk−1

(
k − 1

m

)
(xT )m(1− T )k−1−m

]
xm−1

=

[
∞∑
k=1

qk−1

(
k − 1

m

)
(xT )m(1− T )k−1−m

]
=
∞∑
k=1

qk−1 [xT + (1− T )]k−1

=
∞∑
k=0

qk [xT + (1− T )]k = G1(1 + (x− 1)T ).

(2.11)

Remark 2.1. We can also derive the above equation from

Γ1(x, T ) =
∞∑
m=0

[
∞∑
k=m

qk

(
k

m

)
(xT )m(1− T )k−m

]
xm. (2.12)

If we let T = 1 , Equations (2.10) and (2.11) will be Γ1(x, 1) = G0(x) and

Γ1(x, 1) = G1(x) , or more precisely, it is the generating functions in Definition 2.1

and Definition 2.2. Note that G0(x, 1) = G0(x) , G0(1, T ) = G0(1) , G′0(1, T ) =
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TG′0(x), and that the basic reproduction number , R0 = TG′1(1) = Γ′1(x, T ) .

In this equation, we can calculate the critical transmissibility, Tc, which is defined

by Tc = G′1(1) = 1 . This value is equivalent to the R0 value obtained from

compartmental ODE models.

2.3.1 The distribution of disease outbreak and epidemic size

In this section, for simplicity, we will first discuss in detail the distribution of disease

outbreak and epidemic size without considering transmissibility, T . Hence, we

briefly present the formalism with the transmissibility, T , taken into account.

2.3.1.1 The distribution of disease outbreak and epidemic size without con-
sidering transmissibility

Let H1(x) be the total number of vertices (i.e. nodes) reachable by following an

edge and satisfy the self consistency condition.

H1(x) = xq0 + xq1H1(x) + xq2[H1(x)]2 + xq3[H1(x)]3 + . . .

= x
∑
k

qk[H1(x)]k
(2.13)

or in short form

H1(x) = xG1(H1(x)). (2.14)

The above equation says that when we follow an edge, we find at least one node

at the other end (the factor of x on the RHS), plus some other clusters of vertices

(each represented by H1 ) which are reachable by following other edges attached to

that node. The number of the clusters is distributed according to qk , and hence the

appearance of G1 . In fact, this is the burning (breath-first-search) algorithm.

Let H0(x) be the total number of vertices reachable from a randomly chosen

node, i.e. the size of the component to which such a node belongs to, is generated

by

H0(x) = xG0(H1(x)) (2.15)

or written as H0(x) = x
∑

k pk[H1(x)]k. We know that the mean size of disease
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outbreak is given by H ′0(x). By implicit differentiation of (2.14), we get

H ′1(x) = G1(H1(x)) + xG′1(H1(x))H ′1(x). (2.16)

Lemma 2.1. The equationH ′1(x) = G1(H1(x))+xG′1(H1(x))H ′1(x) can be written

as

(a) H ′1(1) = 1
1−G′1(1)

,

(b) H ′1(1) = 1 +G′1(1)H ′1(1).

Proof. (a) RearrangeH ′1(x) = G1(H1(x))+xG′1(H1(x))H ′1(x), we haveH ′1(x) =

G1(H1(x))
1−xG′1(H1(x))

. Hence, we get H ′1(1) = G1(H1(1))
1−G′1(H1(1))

. From G0(1) = 1, G1(1) =

1 , we have H0(1) = 1 , H1(1) = 1, and hence H ′1(1) = G1(1)
1−G′1(1)

= 1
1−G′1(1)

.

(b) From H ′1(x) = G1(H1(x)) + xG′1(H1(x))H ′1(x), we have

H ′1(1) = G1(H1(1)) + G′1(H1(1))H ′1(1) = G1(1) + G′1(1)H ′1(1) = 1 +

G′1(1)H ′1(1) .

By implicit differentiation of (2.15) and using Lemma 2.1, we get

H ′0(x) = G0(H1(x)) + xG′0(H1(x))H ′1(x)

= G0(H1(x)) + xG′0(H1(x))

[
G1(H1(x))

1− xG′1(H1(x))

]
.

(2.17)

Since H1(1) = 1 and G1(H1(1)) = G1(1) = 1, by using Lemma 2.1, we have

H ′0(1) = G0(H1(1)) +G′0(H1(1))

[
G1(H1(1))

1−G′1(H1(1))

]
= G0(1) +G′0(1)

[
1

1−G′1(1)

]
= 1 +G′0(1)

[
1

1−R0

]
.

(2.18)

Alternatively we can write (2.18) as

〈s〉 = H ′0(1) = 1 +G′0(1)H ′1(1), (2.19)
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where 〈s〉 is the average cluster size. From Lemma 2.1(a), we get the mean compo-

nent size as follows,

〈s〉 = H ′0(1) = 1 +G′0(1)

[
1

1−G′1(1)

]
= 1 +

z21
z1 − z2

, (2.20)

where z1 = 〈k〉 and z2 is the mean number of the second neighbours of a node. This

tells us that the critical point is given by G′1(1) . Hence, we have the following two

cases :

Case I: G′1(1) < 1 . Assumption : No giant component in the network (i.e. no giant

cluster).

Case II: G′1(1) > 1. Assumption : There is a giant component in the network, but

by definition, H0(x) generates the probability distribution of the sizes of the

components excluding the giant component. Hence H0(1) 6= 1 , but H0(x) =

1−S , where S is the fraction of the graph occupied by the giant component.

S − 1−G0(u) where u ≡ H1(1) is the smallest non-negative real solution of

u = G1(u) .

We illustrate the calculation of the distribution through the following example.

Example 2.1. Based on the Random graphs (i.e. network) / Erdos-Renyi graphs,

for Poisson-distribution graphs G0(x) = ez(x−1) ,G1(x) = 1
z
G′0(x) = 1

z
zez(x−1) =

ez(x−1) , find the probability that a randomly chosen node belongs to a component

of size s, where s is an integer.

Let H1(x) = q0x where q0 = e−z. From

ez(x−1) = e−zezx = e−z
[
1 +

zx

1!
+
z2x2

2!
+
z3x3

3!
+ . . .

]
= e−z

∞∑
k=0

zkxk

k!

H
(1)
1 (x) = xG1(H1(x)) = xe−z

[
1 +

z(e−zx)

1!
+
z2(e−zx)2

2!
+
z3(e−zx)3

3!
+ . . .

]
= xe−z +O(x2)
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H
(2)
1 (x) = xG1(H

(1)
1 (x)) = xe−z

[
1 +

z(e−zx)

1!
+
z2(e−zx)2

2!
+
z3(e−zx)3

3!
+ . . .

]
= xe−z + x2ze−2z +O(x3)

H
(3)
1 (x) = xG1(H

(2)
1 (x))

= xe−z{1 +
z(xe−z + x2ze−2z)

1!
+
z2(xe−z + x2ze−2z)2

2!

+
z3(xe−z + x2ze−2z)3

3!
+ . . .}

= xe−z + x2ze−2z +
3

2
x3z2e−3z +O(x4).

Similar to this and after some algebra works, we obtain

H
(4)
1 (x) = xe−z + x2ze−2z +

3

2
x3z2e−3z +

5

3
x4z3e−4z +O(x5).

Since G0(x) = G1(x) = ez(x−1) and H1(x) = xG1(H1(x)),H0(x) = xG0(H1(x)) ,

from the result above, we have

H0(x) = xe−z + x2ze−2z +
3

2
x3z2e−3z +

5

3
x4z3e−4z +O(x5).

Compared with H0(x) =
∑∞

s=0 Psx
s = P0 + P1x + P2x

2 + P3x
3 + P4x

4 + . . .,

we get the probability, Ps that a randomly chosen node belongs to the component of

size s is P0 = 0, P1 = e−z,P2 = ze−2z,P3 = 3
2
z2e−3z,P4 = 5

3
z3e−4z.

2.3.1.2 The distribution of disease outbreak and epidemic size with consider-
ation of transmissibility

Let H1(x, T ) be the generating function for the distribution of the size of clusters of

connected vertices reached by following a randomly chosen edge, and let H0(x, T )

be the generating function for the distribution of the outbreak size corresponding to

a randomly chosen individual for any (fixed) transmissibility T (corresponding to a

randomly chosen node). Note that

H0(x, T ) =
∞∑
s=0

Ps(T )xs. (2.21)

Let
H1(x, T ) = xG1(H1(x, T );T ),

H0(x, T ) = xG0(H1(x, T );T ).
(2.22)
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More precisely,

H1(x, T ) = x

∞∑
m=0

[
∞∑
k=m

qk

(
k

m

)
(T )m(1− T )k−m

]
(H1(x, T ))m

= xG1(1 + (H1(x, T )− 1)T ).

(2.23)

The mean size of the disease outbreak is H ′0(1;T ).

Similar to the previous subsection, differentiating the first equation in (2.22) and

after some calculation, we get

H ′1(x;T ) = xG′1(H1(x;T );T )H ′1(x;T ) +G1(H1(x;T );T )

H ′1(1;T ) = G′1(H1(1;T );T )H ′1(1;T ) +G1(H1(1;T );T ).
(2.24)

From G0(1) = 1,G1(1) = 1, we have H0(1) = 1,H1(1) = 1 . Hence

H ′1(1;T ) = G′1(1;T )H ′1(1;T ) +G1(1;T )

H ′1(1;T ) = 1 +G′1(1;T )H ′1(1;T )
(2.25)

or

H ′1(1;T ) =
1

1−G′1(1;T )
. (2.26)

From the above, we obtain the mean outbreak size, 〈s〉(i.e. average cluster

size), as follows

〈s〉 = H ′0(1;T ) = 1 +G′0(1;T )H ′1(1;T )

= 1 +
G′0(1;T )

1−G′1(1;T )
= 1 +

TG′0(1)

1− TG′1(1)
.

(2.27)

Obviously, the 〈s〉 diverges when TG′1(1) = 1 . Hence the critical transmissibility

is Tc = 1
G′1(1)

.

This tells us that the critical point is given by G′1(1) = 1 . Hence, we have the

following two cases :

Case I: G′1(1) < 1 . Assumption : No giant component in the network (i.e. no giant

cluster).

Case II: G′1(1) > 1 . Assumption : There is a giant component in the network. But

by definition, H0(x;T ) generates the probability distribution of the sizes of

the components excluding the giant component. Hence H0(1;T ) 6= 1 . But
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H0(1;T ) =
∑

s Ps = 1−S(T ) , where S is the fraction of the graph occupied

by the giant component. S(T ) = 1 − G0(u;T ) where u ≡ H1(1;T ) is the

smallest non-negative real solution of u = G1(u;T ) .

2.4 Concluding remarks

Throughout this chapter, a wide range of epidemic characteristics have been de-

scribed within the framework of this PhD study, namely epidemic modelling by

differential equations and complex networks. The focus for the first part of the

framework is bifurcation analysis for the sub-optimal immunity epidemic models

and calculation of the domain of attraction, while the later part focuses on the prob-

ability generating function formalism.
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Chapter 3

Bifurcation of an Epidemic Model
with Sub-optimal Immunity and
Saturated Recovery Rate

In this chapter, we study the bifurcation of an epidemic model with sub-optimal

immunity and saturated treatment/recovery rate. Different from classical models,

sub-optimal immunity models are more realistic for modelling the microparasitic

infectious diseases such as Pertussis and Influenza A. By carrying out the bifurca-

tion analysis of the model, we show that for certain values of the model parameters,

Hopf bifurcation, Bogdonov-Takens bifurcation and its associated homoclinic bi-

furcation occur. By studying the bifurcation curves, one can predict the persistence

or extinction of diseases.

3.1 General

In recent years, extensive research has been carried out worldwide to develop more

realistic epidemic models. For compartmental ODE models, several new models

for different incidence rate and treatment/recovery rate have been introduced. Sub-

sequent analytical studies show that some of these epidemic models possess rich

dynamics.

In a seminal paper [83], the authors presented a SIR epidemic model with the

nonlinear incidence rate in the form of (βSI2)/(1 + aI2). In the paper, they con-
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sider a reduced system and perform an elaborative analysis of equilibrium through

a quadratic equation. Using transformation to normal form, they show that the

model undergoes Hopf bifurcation, homoclinic bifurcation and Bogdonov-Takens

bifurcation. Following the paper, a few other papers discuss about the same dynam-

ical behavior in the SIR model but with different forms of incidence rates such as

(βSI)/(1 + aI + bI2)[103] and (βSI2)/(1 + aI + bI2)[85] .

Similarly, different treatment/recovery/removal rate are considered in order to

predict the trend of disease transmission more accurately. Unlike the earlier mod-

els, the recent models may have two endemic equilibria when R0 < 1. Hence,

the eradication of diseases depends not only on R0 , but also on the initial sizes

of all sub-populations. The work in [91] is a pioneer work for bifurcation analysis

which shows the existence of Hopf bifurcation and Bogdonov-Takens bifurcation

for the model with constant removal rate. After the work of [91], various studies

of bifurcation for the models with other forms of treatment/recovery rate have been

carried out. Backward bifurcation is shown in a SIR model with piecewise function

treatment in [90], meanwhile the work in [100] claims the existence of Hopf bifur-

cation in a SIR model with saturated treatment rate. Furthermore, in the SIR model

with saturated incidence rate and saturated treatment rate [99], only backward bi-

furcation is shown to exist, while reference [24]suggests that a SIS model with a

saturated recovery rate possesses Bogdonov-Takens bifurcation. However, to date,

no analysis has been done to study the existence of Bogdonov-Takens bifurcation

in the SIR model with saturated recovery rate. Hence, we intend to further study

the bifurcation of the SIR model, and we will use the more generalized form of the

model, namely the sub-optimal immunity model which lies in between the SIS and

SIR models.

In this chapter, we undertake the bifurcation analysis for an epidemic model

with sub-optimal immunity and saturated treatment/recovery rate. Apart from us-

ing the saturated treatment/recovery rate, an additional parameter σ is used to form

the sub-optimal immunity model as in [76]. The new model lies in between the

SIS and SIR models. The sub-optimal immunity model will be more appropriate
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for the study of microparasite infections which usually occurs during childhood.

After a primary infection, one may get temporary immunity (immune protection

will wane over time) or partial immunity (immunity that may not fully protective).

Examples of this kind of diseases include Pertussis (temporary immunity) and In-

fluenza (partial immunity) [35]. Different to that in [76], we show in this chapter

that Bogdonov-Takens bifurcation and its associated homoclinic bifurcation exist in

this sub-optimal immunity model.

Throughout the chapter, for simplicity, we choose some specific values for the

parameters as [103] did. The parameter values can be easily replaced by other val-

ues as long as the conditions are fulfilled. Our analysis was carried out for the case

where the basic reproduction number, R0, is less than unity. Apart from the discus-

sion of Hopf bifurcation, we show that the sub-optimal immunity model undergoes

Bogdonov-Takens bifurcation and its associated homoclinic bifurcation.

The rest of the chapter is organized as follows. In Section 3.2, we discuss the

qualitative analysis of the model. In Sections 3.3 and 3.4, we study the Hopf bifur-

cation and Bogdanov-Takens Bifurcation. Some conclusions are given in Section

3.5.

3.2 Qualitative analysis

We consider a model with sub-optimal immunity and saturated recovery rate
dS

dt
= A− βSI + σT (I)− µS,

dI

dt
= βSI − T (I)− µI,

dR

dt
= (1− σ)T (I)− µR.

(3.1)

where all the parameters are positive, A is the recruitment rate of susceptible popu-

lation, β is the disease transmission rate, µ is the natural death rate and T (I) is the

recovery rate.

In our analysis at equilibrium point, we assume that S + I + R = A/µ, and

we take T (I) = vI + cI/(1 + aI) in which c/(1 + aI) and v are respectively the

recovery rate of the infected population with and with no treatment.
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Defining the basic reproduction number by R0 = βA/(µ(µ + T ′(0))) with

T (I) = vI + cI/(1 + aI) , we obtain R0 = βA/(µ(µ + v + c)) . Define R1 =

βAa/(βk(v + c) + βµ+ µa(µ+ v)) .

Now, we consider the following reduced system

dI

dt
= β(

A

µ
− I −R)I − vI − cI

1 + aI
− µI,

dR

dt
= k(vI +

cI

1 + aI
)− µR,

(3.2)

where k = 1− σ. At equilibrium,dI/dt = 0,dR/dt = 0, and hence from (3.2), we

obtain R = kI(v(1 + aI) + c)/(µ(1 + aI)). Then by substituting this into the first

equation in (3.2), after some algebra work, we obtain

(βa(kv+µ))I2+(β(kv+kc+µ−Aa)+µa(µ+v))I+µ(µ+v+c)−βA = 0. (3.3)

Let

M= (β(kv+kc+µ−Aa)+µa(µ+v))2−4βa(kv+µ)(µ(µ+v+c)−βA). (3.4)

Lemma 3.1. (a) System (3.2) has a unique positive equilibrium E∗(I∗, R∗) un-

der any of the following three conditions.

(i) R0 = 1 and (β(kv + kc+ µ− Aa) + µa(µ+ v)) < 0 for which

I∗ =
−(β(kv + kc+ µ− Aa) + µa(µ+ v))

βa(kv + µ)
, R∗ =

kI∗(v(1 + aI∗) + c)

µ(1 + aI∗)

(ii) R0 > 1 for which

I∗ =
−(β(kv + kc+ µ− Aa) + µa(µ+ v)) +

√
M

2βa(kv + µ)
, R∗ =

kI∗(v(1 + aI∗) + c)

µ(1 + aI∗)

(iii) M= 0 and (β(kv + kc+ µ− Aa) + µa(µ+ v)) < 0 for which

I∗ =
−(β(kv + kc+ µ− Aa) + µa(µ+ v))

2βa(kv + µ)
, R∗ =

kI∗(v(1 + aI∗) + c)

µ(1 + aI∗)

.
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(b) System (3.2) has two positive equilibriaE1(I1, R1) andE2(I2, R2) if and only

if R0 < 1, M> 0 and (β(kv + kc+ µ− Aa) + µa(µ+ v)) < 0 where

I1 =
−(β(kv + kc+ µ− Aa) + µa(µ+ v))−

√
M

2βa(kv + µ)
, R1 =

kI1(v(1 + aI1) + c)

µ(1 + aI1)

I2 =
−(β(kv + kc+ µ− Aa) + µa(µ+ v)) +

√
M

2βa(kv + µ)
, R2 =

kI2(v(1 + aI2) + c)

µ(1 + aI2)

The Jacobian matrix for system (3.2) is

M =

(
−βI + β(A

µ
− I −R)I − v − c

1+aI
+ caI

(1+aI)2
− µ −βI

k(v + c
1+aI
− caI

(1+aI)2
) −µ

)
.

The determinant of M is as follows

det(M) =
S1

(1 + aI)2
,

where
S1 = 2βa2(kv + µ)I3 + (βa(4kv + kc+ 4µ− Aa) + µa2(µ+ v))I2

+ (2β(µ− Aa+ kc+ kv) + 2µa(v + µ))I + µ(µ+ v + c)− βA.
The sign of the determinant is determined by the sign of S1.

Using (3.3), we get

S1 = (βa(2kv − kc+ 2µ+ Aa)− µa2(µ+ v))I2

+ (2β(µ+ kc+ kv)− 2µca)I + µ(µ+ v + c)− βA.
Lemma 3.2.

(a) The unique positive equilibrium E∗(I∗, R∗) in system (3.2) is

(i) a degenerate equilibrium if M= 0,(β(kv + kc+ µ− Aa) + µa(µ+ v)) < 0 .

(ii) a center-type equilibrium if R0 > 1 while tr(M) = 0.

(b) The positive equilibrium E1(I1, R1) in system (3.2) leads to S1(I1) < 0 while

M> 0 , R0 < 1 and (β(kv + kc + µ − Aa) + µa(µ + v)) < 0 . It is thus a saddle

point.

(c) The positive equilibrium E2(I2, R2) in system (3.2) leads to S1(I2) < 0 while

M> 0 , R0 < 1 and (β(kv + kc + µ − Aa) + µa(µ + v)) < 0 . It is thus a node,

focus or center.
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3.3 Hopf bifurcation

In this section, we will show that the model in (3.2) undergoes Hopf bifurcation for

some values.

Let (β, v, c, a, µ, k) = (1/2, 8, 8, 3, 1, 1/4) for (I2, R2) and set tr(M) = 0 ,

then we obtain A = 51/2 while (I2, R2) = (1, 5/2) . This happens when R0 =

3/4 < 1 . Replacing I and R by x and y, namely (I2, R2) = (x2, y2) , we have

dx

dt
=

1

2
(
51

2
− x− y)x− 9x− 8x

1 + 3x
,

dy

dt
= 2x+

2x

1 + 3x
− y.

(3.5)

To translate (x2, y2) to the origin, we set , X = x − 1, Y = y − 5/2 and rename

X ,Y as x,y respectively. Then

dx

dt
=

1

2
(
51

2
− (x+ 1)− (y +

5

2
))(x+ 1)− 9(x+ 1)− 8(x+ 1)

1 + 3(x+ 1)
,

dy

dt
= 2(x+ 1) +

2(x+ 1)

1 + 3(x+ 1)
− (y +

5

2
).

(3.6)

Using the Taylor expansion for (3.6), we have

dx

dt
= −1

2
y + (1− 1

2
y)x− 1

8
x2 − 9

32
x3 +

27

128
x4 +O(|x, y|5),

dy

dt
= −y +

17

8
x− 3

32
x2 +

9

128
x3 − 27

512
x4 +O(|x, y|5).

(3.7)

The Jacobian matrix for (3.7) at (x2, y2) is

M =

 1 −1

2
17

8
−1

 .

We thus have tr(M) = 0 and det(M) =
1

16
> 0 , and hence Hopf bifurcation

occurs. By carrying out transformation X = x , Y = x− 1

2
y , and then renaming

X ,Y as x,y respectively, (3.7) becomes

dx

dt
= y − 9

8
x2 + xy − 9

32
x3 +

27

128
x4 +O(|x, y|5),

dy

dt
= − 1

16
x− 69

64
x2 + xy − 81

256
x3 +

243

1024
x4 +O(|x, y|5).

(3.8)

36



Making the change of variables u = −x, v = 4y , we obtain

du

dt
= −1

4
v +

9

8
u2 +

1

4
uv − 9

32
u3 − 27

128
u4 +O(|u, v|5),

dv

dt
=

1

4
u− 69

64
u2 − uv − 81

64
u4 +

243

256
u4 +O(|u, v|5).

(3.9)

Let k1 =
1

16
, from (3.9), we obtain

du

dt
= −

√
k1v + F1(u, v),

dv

dt
=
√
k1u+ F2(u, v).

(3.10)

where
F1(u, v) =

9

8
u2 +

1

4
uv − 9

32
u3 − 27

128
u4 +O(|u, v|5),

F2(u, v) = −69

64
u2 − uv +

81

256
u4 +

243

256
u4 +O(|u, v|5).

We can get the first Liapunov constant, σ , by

σ =
1

16

[
∂3F1

∂u3
+

∂3F1

∂u∂v2
+

∂3F2

∂u2∂v
+
∂3F2

∂v3

]
+

1

16
√
k1

[
∂2F1

∂u∂v

(
∂2F1

∂u2
+
∂2F1

∂v2

)
− ∂2F2

∂u∂v

(
∂2F2

∂u2
+
∂2F2

∂v2

)]
+

1

16
√
k1

[
−∂

2F1

∂u2
∂2F2

∂u2
+
∂2F1

∂v2
∂2F2

∂v2

]
=

699

256
.

Hence, there is an unstable periodic orbit whenA increases from 51/2 .

0

1

2

3

4

Recovered,R

0.5 1 1.5 2
Infectious,I

Figure 3.1: An unstable orbit for (β, v, c, a, µ, k) = (1/2, 8, 8, 3, 1, 1/4) and A =
25.52
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Figure 3.1 shows an unstable orbit for the system (3.2) when (β, v, c, a, µ, k) =

(1/2, 8, 8, 3, 1, 1/4) and A = 25.52 .

In the following, we choose A as a bifurcation parameter. Let A = 51/2 + ε .

From (3.5), we obtain,

dx

dt
=

1

2
(
51

2
+ ε− x− y)x− 9x− 8x

1 + 3x
,

dy

dt
= 2x+

2x

1 + 3x
− y.

(3.11)

It is easy to show that

(x∗2, y
∗
2) =

(
35

36
+
ε

6
+

√
36ε2 + 564ε+ 1

36
,
2021

828
+

43ε

138
+

49
√

36ε2 + 564ε+ 1

828

)
is the positive equilibrium of the system (3.11). The Jacobian matrix is given by

M =

(
M11 −

x∗2
2

M21 −1

)
,

where

M11 = −x∗2 +
15

4
+
ε

2
− y∗2

2
− 8

1 + 3x∗2
+

24x∗2
(1 + 3x∗2)

2
,

M21 = 2 +
2

1 + 3x∗2
− 6x∗2

(1 + 3x∗2)
2
.

Hence, the characteristic equation is given by

λ2 + (1−M11)λ−M11 +
x∗2
2
M21 = 0.

We thus obtain λ =
mA ±

√
mB

mC

, where

mA = 1339− 36378ε− 6156ε2 − 216ε3 + (−1339− 744ε− 36ε2)
√

1 + 564ε+ 36ε2,

mB = −32696110− 1957294879ε− 13313554632ε2 − 2408256576ε3

− 149198112ε4 − 1399680ε5 + 93312ε6

+ {−397285586− 826878324ε− 246740976ε2 − 21607776ε3

− 355104ε4 + 15552ε5}
√

1 + 564ε+ 36ε2,

mC = 72(1105 + 564ε+ 36ε2 + (47 + 6ε)
√

1 + 564ε+ 36ε2).

Hence, we have
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(a) Reλ(ε) = 0 when ε = 0.

(b) Imλ(ε) =

√
429981696

82944
6= 0 when ε = 0.

(c) Re
d

dε
λ(ε) = −5 6= 0 when ε = 0.

Theorem 3.1. There exist a σ1 > 0 and a function ε = ε(x1) defined on 0 <

x1 − 1 ≤ σ1 , which satisfy ε(1) = 0 and when ε = ε(x1) < 0, system (3.11) has a

unique unstable limit cycle which passes through (x1, 5/2) .

3.4 Bogdanov-Takens bifurcation

In this section, we will study the Bogdanov-Takens bifurcation for some values of

the model in (3.2).

We choose (β, v, a, µ, k) = (1/2, 2, 1/2, 1, 1/4) for model (3.2) and letM= 0,

and we obtain c = 8 . Setting A = 19 , we obtain (I∗, R∗) = (2, 3) , tr(M) = 0

and det(M) = 0 . Writing I and R as x and y, namely (I∗, R∗) = (x∗, y∗), we have

dx

dt
=

1

2
(19− x− y)x− 3x− 8x

1 +
1

2
x
,

dy

dt
=

1

2
x+

2x

1 +
1

2
x
− y.

(3.12)

To translate (x∗, y∗) to the origin, we set X = x − 2, Y = y − 3 and rename X ,Y

as x,y respectively. Then

dx

dt
=

1

2
(19− (x+ 2)− (y + 3))(x+ 2)− 3(x+ 2)− 8(x+ 2)

1 +
1

2
(x+ 2)

,

dy

dt
=

1

2
(x+ 2) +

2(x+ 2)

1 +
1

2
(x+ 2)

− (y + 3).

(3.13)

Using the Taylor expansion for (3.13), we have

dx

dt
= −y + (1− 1

2
y)x− 1

8
x3 +

1

32
x4 +O(|x, y|5),

dy

dt
= −y + x− 1

8
x2 +

1

32
x3 − 1

128
x4 +O(|x, y|5).

(3.14)
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The Jacobian matrix for (3.14) at (x∗, y∗) is

M =
(

1 −1
1 −1

)
.

We thus have tr(M) = 0 and det(M) = 0. Clearly, the matrix M has two

zero eigenvalues, and thus the Bogdanov-Takens bifurcation occurs. By carrying

out transformation X = x , Y = x − y , and renaming X ,Y as x,y respectively,

(3.14) becomes

dx

dt
= y − 1

2
x2 +

1

2
xy − 1

8
x3 +

1

32
x4 +O(|x, y|5),

dy

dt
= −3

8
x2 +

1

2
xy − 5

32
x3 +

5

128
x4 +O(|x, y|5).

(3.15)

In order to obtain the canonical normal form, we follow the procedure as in [80].

Setting u = x− 1

4
x2 , v = y − 1

2
y2 , we obtain

du

dt
= v +O(|u, v|3),

dv

dt
=

1

2
uv − 3

8
u2 +O(|u, v|3).

(3.16)

In the following, we find the universal unfolding of (I∗, R∗) = (2, 3) by choos-

ing the parameters A and c as bifurcation parameters in a small neighbourbood of

(β, v, a, µ, k) = (1/2, 2, 1/2, 1, 1/4). Let A = 19 + λ1 and c = 8 + λ2. We have

dx

dt
=

1

2
(19 + λ1 − x− y)x− 3x− (8 + λ2)x

1 +
1

2
x
,

dy

dt
=

1

2
x+

(8 + λ2)x

4(1 +
1

2
x)
− y.

(3.17)

To translate (x∗, y∗) to the origin, we set X = x − 2 ,Y = y − 3 and rename X ,Y

as x,y respectively. Then

dx

dt
=

1

2
((19 + λ1)− (x+ 2)− (y + 3))(x+ 2)− 3(x+ 2)− (8 + λ2)(x+ 2)

1 +
1

2
(x+ 2)

,

dy

dt
=

1

2
(x+ 2) +

(8 + λ2)(x+ 2)

4(1 +
1

2
(x+ 2))

− (y + 3).

(3.18)
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Using the Taylor expansion for (3.18), we have
dx

dt
= λ1 − λ2 − y + (−1

4
λ2 +

1

2
λ1 + 1− 1

2
y)x+

1

16
λ2x

2 + (−1

8
− 1

64
λ2)x

3

+ (
1

32
+

1

256
λ2)x

4 +O(|x, y|5),

dy

dt
=

1

4
λ2 − y + (

1

16
λ2 + 1)x+ (−1

8
− 1

16
λ2)x

2 + (
1

32
+

1

256
λ2)x

3

+ (− 1

128
− 1

1024
λ2)x

4 +O(|x, y|5).
(3.19)

Let X = x,

Y = λ1 − λ2 − y + (−1

4
λ2 +

1

2
λ1 + 1− 1

2
y)x+

1

16
λ2x

2 + (−1

8
− 1

64
λ2)x

3

+ (
1

32
+

1

256
λ2)x

4 +O(|x, y|5)

and rename X ,Y as x,y respectively. Then we obtain
dx

dt
= y,

dy

dt
= a0 + a1x+ a2y + a3x

2 + a4xy + a5y
2 +O(|x, y, λ|3),

where a0 = λ1 − 5/4λ2,a1 = 1/2λ1 − 7/16λ2,a2 = 1/4λ2,a3 = −3/8,a4 = −1/2

and a5 = 1/2. By setting X = x+ a2/a4 (i.e. X = x− 1/2λ2 ) and rewriting X as

x, we have
dx

dt
= y,

dy

dt
= b0 + b1x+ a3x

2 + a4xy + a5y
2 +O(|x, y, λ|3),

where b0 = λ1−5/4λ2+1/4λ1λ2−5/16λ22,b1 = 1/2λ1−13/16λ2,a3 = −3/8,a4 =

−1/2 and a5 = 1/2. By rewriting the equation using the new time τ with dt =

(1− a5x)dτ (i.e.dt = (1− 1/2x)dτ ) and then rewriting τ as t , we obtain
dx

dt
= y(1− 1

2
x),

dy

dt
= (1− 1

2
x)(b0 + b1x+ a3x

2 + a4xy + a5y
2 +O(|x, y, λ|3)).

Carrying out the transformation X = x , Y = y(1− 1

2
x) , and then renaming X ,Y

as x,y respectively, we have
dx

dt
= y,

dy

dt
= b0 + c1x+ c2x

2 + a4xy +O(|x, y, λ|3),
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where b0 = λ1−5/4λ2+1/4λ1λ2−5/16λ22,c1 = −1/2λ1+7/16λ2,c2 = −3/8,a4 =

−1/2 .

By the change of variables X = a24/c2x , Y = a34/c
2
2y , τ = c2/a4t , and then

renaming X , Y , as x, y, t respectively, we obtain

dx

dt
= y,

dy

dt
= τ1 + τ2x+ x2 + xy +O(|x, y, λ|3),

where τ1 = b0a
4
4/c

2
2, τ2 = c1a

2
4/c

2
2. By putting τ1 = 1/4τ 22 and simplifying it,

system (3.12) has a saddle-node bifurcation, and the saddle-node bifurcation curve

is given by −384λ1 + 480λ2 + 16λ1λ2 − 64λ21 + 71λ22 +O(|λ1, λ2|2) = 0.

Theorem 3.2. At the Bogdanov point, the model (3.2) with A = 19, c = 8 and

(β, v, a, µ, k) = (1/2, 2, 1/2, 1, 1/4) , in a small neighbourhood of (I∗, R∗) =

(2, 3), has the following bifurcation :

(a) saddle-node bifurcation: the saddle-node bifurcation curve is given by

−384λ1 + 480λ2 + 16λ1λ2 − 64λ21 + 71λ22 +O(|λ1, λ2|2) = 0,

(b) Hopf bifurcation : the Hopf bifurcation curve is given by

16λ1 − 20λ2 + 4λ1λ2 − 5λ22 +O(|λ1, λ2|2)) = 0,

(c) Homoclinic bifurcation : the homoclinic bifurcation curve is given by

−600λ1 + 750λ2 − 318λ1λ2 + 96λ21 + 261λ22 +O(|λ1, λ2|2) = 0.

Figure 3.2 shows the homoclinic bifurcation when λ1 = 0.05 and λ2 =

0.03997138969 for system (3.17).

From the result in Theorem 3.2, we study the bifurcation curves near the ori-

gin on the (λ1, λ2) plane. The curves pass through the origin and there are four

regions separated by these bifurcation curves. If we take λ1 ≈ 0.2 , we obtain the

region as shown in Figure 3.3.

42



0

1

2

3

4

Recovered,R

1 2 3 4
Infectious,I

Figure 3.2: The homoclinic bifurcation when λ1 = 0.05, λ2 = 0.03997138969

The Jacobian matrix for system (3.17) is

M =

(
M11 −

x

2
M21 −1

)
,

where

M11 =
1

2(2 + x)2
(
−2x3 + (5 + λ1 − y)x2 + (4λ1 + 44− 4y)x− 8λ2 − 12− 4y

)
and

M12 =
1

2(2 + x)2
(
x2 + 4x+ 2λ1 + 20

)
.

If we takeλ1 = 0.2 , after some simple calculation, we obtain the result as shown in

Table 3.1.

When (λ1, λ2) lies in the region I as in Figure 3.3, there is no limit cycle or

homoclinic orbit and E2 is a stable focus. If (λ1, λ2) lies in the region II, there is

a unique limit cycle inside the positive orbits of the system (3.17) and the orbits

approach E2 as t tends to infinity. In this situation, the disease is persistent inside

the cycle. When (λ1, λ2) lies in the region III, E2 becomes an unstable focus and

the limit cycle disappears. In this stage, at finite time, any positive orbits, except for

the two equilibria E1 and E2 , will tend to the axis R = 0, i.e. the disease becomes

extinct. When (λ1, λ2) lies in the region IV, there is no positive equilibrium and

the disease will disappear. The classification of the equilibrium points can be easily

checked by the eigenvalues of the Jacobian matrix,M .
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Table 3.1: The classification of equilibrium points
λ2 Ei det(M) tr(M) Q Conclusion

I 0.1590 E1 (-) (+) (+) Unstable saddle
E2 (+) (-) (-) Stable focus

II 0.1596 E1 (-) (+) (+) Unstable saddle
E2 (+) (-) (-) Stable focus

III 0.1602 E1 (-) (+) (+) Unstable saddle
E2 (+) (+) (-) Unstable focus

IV 0.1610 No positive equilibrium

Q = (tr(M))2 − 4(det(M)).

H L

H

S N

I 
I I

I I I

I V

0.156

0.158

0.16

0.162

0.164

0.196 0.198 0.2 0.202 0.204

Figure 3.3: The four typical regions separated by the bifurcation curves. The hori-
zontal axis is the λ1-axis and the vertical axis is the λ2-axis
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3.5 Concluding remarks

In this chapter, we have proposed an epidemic model with sub-optimal immu-

nity and saturated treatment/recovery rate. Through global analysis, the system in

(3.2) has been shown to have rich dynamical behaviour including Hopf bifurcation,

Bogdonov-Takens bifurcation and its associated homoclinic bifurcation. We also

show that when the bifurcation parameters are within certain regions, the disease

will be persistent or extinct.

45



Chapter 4

Bifurcation of an Epidemic Model
Taking into Account Nonlinear
Incidence

In this chapter, we study the bifurcation of an epidemic model with sub-optimal

immunity, nonlinear incidence rate and saturated treatment/recovery rate. Due to

the combination of the nonlinearities in both incidence rate and recovery rate, the

analysis of equilibrium involves a cubic polynomial. By carrying out the bifurcation

analysis of the model, we show that there exist some values of the model param-

eters such that Hopf bifurcation, Bogdanov-Takens bifurcation and its associated

homoclinic bifurcation occur. By studying the bifurcation curves, one can predict

the persistence or extinction of diseases.

4.1 General

In recent years, intensive research has been carried out in mathematical epidemi-

ology to develop more realistic epidemic models. For compartmental ordinary dif-

ferential equation (ODE) models, various new forms of incidence rate and treat-

ment/recovery rate were introduced recently. A number of analytical techniques

have been developed to study the underlying ODE models and it has been shown

that the dynamics for some of these epidemic models is rich and challenging.

In a seminal paper, Ruan and Wang [83] presented a SIR epidemic model with
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the specific nonlinear incidence rate (βSI2)/(1 + aI2), namely

dS

dt
= A− βSI2

1 + aI2
− µS + wR,

dI

dt
=

βSI2

1 + aI2
− (µ+ γ)I,

dR

dt
= γI − (µ+ w)R,

(4.1)

where A is the recruitment rate of susceptible population,β is the disease transmis-

sion rate, µ is the natural death rate, γ is the recovery rate of infective individuals,

w is the rate of removed individuals who lose immunity and return to susceptible

class. In the paper, the authors consider a reduced system and perform an elabora-

tive analysis of the state equilibrium through a quadratic equation. By transforma-

tion of the underlying differential equations to the normal form, they show that the

model undergoes Hopf bifurcation, Bogdanov-Takens bifurcation and its associated

homoclinic bifurcation. Following this work, various attempts have been made to

study the problem with different assumptions on the form of the incidence rate, for

example, the form of (βSI)/(1 + aI + bI2)[103], (βSI2)/(1 + aI + bI2) [85]

,(β1I + β2I)Sp [17] and sigmoidal function [50].

Different forms of the treatment/recovery rate were proposed in the attempts

to simulate the dynamics of the disease transmission more accurately. In [91], a

constant removal rate, r, due to the treatment of infectives is used in the model,

namely
dS

dt
= A− βSI − µS,

dI

dt
= βSI − (µ+ γ)I − h(I),

dR

dt
= γI + h(I)− µR,

(4.2)

with h(I) = r, for I > 0 and h(I) = 0, for I = 0. The authors showed the

existence of Hopf bifurcation and Bogdanov-Takens bifurcation. In [99], the au-

thors established a model with a saturated incidence rate and a saturated treatment

rate; while, in [55], the authors proposed a model with a saturated incedence rate

and a treatment function with low capacity. Both authors show that the backward

bifurcation exists in their proposed models.
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In this chapter, we analyze a more general epidemic model with sub-optimal

immunity, nonlinear incidence rate and saturated treatment/recovery rate, namely

dS

dt
= A− βSI2 + σT (I)− µS,

dI

dt
= βSI2 − T (I)− µI,

dR

dt
= (1− σ)T (I)− µR,

(4.3)

where all the parameters are positive, A is the recruitment rate of susceptible pop-

ulation, β is the disease transmission rate, µ is the natural death rate and T (I) is

the recovery rate. We take T (I) = vI + cI/(1 + aI) as the recovery rate function

in which c/(1 + aI) and v are respectively the recovery rate of the infected popu-

lation with and with no treatment. In comparison with previous works, our work

presented here has various new features and contributions. Firstly, it is more general

and includes some previous models as special cases. For example, if the nonlinear

incidence rate βSI2 is replaced by a bilinear function, then it reduces to the sub-

optimal immunity model [76], while it reduces to the nonlinear SIR model if T (I)

is taken to be zero. It should also be addressed that σ = 1 corresponds to the SIS

model in which immunity is assumed not to protect against reinfection, while σ = 0

corresponds to the SIR model in which immunity is assumed to be fully protective

and prevents any reinfection. The sub-optimal immunity model where σ ∈ [0, 1]

are more appropriate for the study of microparasite infections which usually occur

during childhood. After a primary infection, one may get temporary immunity (im-

mune protection will wane over time) or partial immunity (immunity that may not

fully protective). Examples of this kind of diseases include Pertussis (temporary

immunity) and Influenza A (partial immunity) [35]. Secondly, due to the combina-

tion of the nonlinearities in both incidence rate and recovery rate, the work involves

more complex analysis of equilibrium through a higher order polynomial and thus,

it is hard to obtain exact solution in simple form. Hence, some analysis using numer-

ical results are required. In similar scenario,the authors in [102] obtained positive

real equilibrium from a cubic equation which derives from a mathematical model

of Schistosoma Mansoni. Throughout the chapter, we choose some specific values
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for the parameters as in [103]. The values can be easily replaced by other values

whenever necessary as long as the conditions are fulfilled.

The rest of the chapter is organized as follows. In Section 4.2, we discuss the

existence of equilibria. In Section 4.3 and 4.4, we study the Hopf bifurcation and

Bogdanov-Takens Bifurcation. Some conclusions are given in Section 4.5.

4.2 Existence of equilibria

Summing up the three equations in (4.3), we obtain dN/dt = A − µN(t) ,where

N(t) = S(t) + I(t) +R(t) which gives N(t) = A/µ(1− e−µt) +N0e
−µt implying

that N(t) tends to a constant value, A/µ , as t → ∞. Let S + I + R = A/µ and

k = 1− σ , we can obtain from (4.3) the following reduced system

dI

dt
= β(

A

µ
− I −R)I2 − vI − cI

1 + aI
− µI,

dR

dt
= k(vI +

cI

1 + aI
)− µR.

(4.4)

We have the following lemma.

Lemma 4.1. Let K = β(kv+kc+µ−Aa)
βa(kv+µ)

, M = −βA+vµa+µ2a
βa(kv+µ)

,N = cµ+µ2+vµ
βa(kv+µ)

and

q = M − 1
3
K2, p = 2

27
K3 − 1

3
KM + N ,M= p2

4
+ q3

27
. Suppose a > 1

A
(kv +

kc + µ) or a < βA
vµ+µ2

. If M< 0 , system (4.4) has two positive equilibria,

Ej

(
Ij,

kIj(v+vaIj+c)

(1+aIj)µ

)
for j = 1, 2. If M= 0 , system (4.4) has a unique positive

equilibrium, E∗
(
I∗, kI

∗(v+vaI∗+c)
(1+aI∗)µ

)
. If M> 0, system (4.4) has no positive equilib-

rium.

Proof. Assume equilibrium occurs at te , then dI/dte = 0 , dR/dte = 0 and

N(te) = A/µ(1 − e−µte) + N0e
−µte := Ae. Thus from the second equation of

(4.4), we obtain R = kI(v(1+aI)+c)
µ(1+aI)

. After some algebra work, we obtain

[βa(kv+µ)]I3+[β(kv+kc+µ−Aa)]I2+[−βA+vµa+µ2a]I+[cµ+µ2+vµ] = 0,

(4.5)

which can be written as

I3 +KI2 +MI +N = 0, (4.6)
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where K = β(kv+kc+µ−Aa)
βa(kv+µ)

, M = −βA+vµa+µ2a
βa(kv+µ)

,and N = cµ+µ2+vµ
βa(kv+µ)

. As all the

parameters are positive, N is positive. By the Descartes’ rule of sign for the roots

of cubic equations, if both of K and M are positive, then there is no positive root;

or otherwise there is no positive root or have two positive roots (i.e. at most two

positive roots) if

a >
1

A
(kv + kc+ µ) or a <

βA

vµ+ µ2
. (4.7)

Further from (4.6), let I = x− K
3

, we obtain

x3 + qx+ p = 0,

where q = M − 1
3
K2,and p = 2

27
K3 − 1

3
KM +N . Let

M=
p2

4
+
q3

27
. (4.8)

Then we have

(a) If M> 0, there is one real root.

(b) If M= 0, there are two distinct real roots ( or all roots are real, and two equal).

(c) If M< 0, there are three distinct real roots.

Combining the result from the Descartes’ rule of sign, (4.7) and (4.8), we have

the following conclusion. If M< 0 , system (4.4) has two positive equilibria,

Ej

(
Ij,

kIj(v+vaIj+c)

(1+aIj)µ

)
for j = 1, 2. If M= 0 , system (4.4) has a unique positive

equilibrium, E∗
(
I∗, kI

∗(v+vaI∗+c)
(1+aI∗)µ

)
. If M> 0, system (4.4) has no positive equilib-

rium.

Remark 4.1. Graphically, the surface M= p2/4 + q3/27 = 0 or 1/108(4K3N −

K2M2 − 18KMN + 27N2 + 4M3) is a saddle node bifurcation surface. That

is, on one side of the surface, there are two positive equilibria. On the surface of

the curve, there is only one positive equilibrium, and on the other side of surface,

the system has no positive equilibrium. We will show that this is the saddle node

bifurcation curve by difference analysis in Section 4.4 later.
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Let the basic reproduction number be R0 = βA/(µ(c+µ+ v)) , the Jacobian

matrix for (4.4) is

M =

(
−βI2 + 2βI(A

µ
− I −R)− v − c

1+aI
+ caI

(1+aI)2
− µ −βI2

k
(
v + c

1+aI
− caI

(1+aI)2

)
−µ

)
.

At the disease free equilibrium, O(0, 0) , the eigenvalues are −µ and −µ − v − c

which are less than 0. So O is locally asymptotically stable. At endemic equilib-

rium, E(I, R), the characteristic polynomial is λ2 + P1λ+ P2 where

P1 = −2βI(
A

µ
− I −R) + βI2 + v +

c

(1 + aI)2
+ 2µ,

P2 =

(
−2βI(

A

µ
− I −R) + βI2 + v +

c

(1 + aI)2
+ µ

)
µ+βI2k

(
v +

c

(1 + aI)2

)
.

If P2 > 0, after some algebra work, we can show that the eigenvalues have negative

real part if

1

c+ µ+ v

(
Rβ +

3βI2 + v + 2µ

2I
+

c

2I(1 + aI)2

)
> R0,

So E(I, R) is locally asymptotically stable when

1

c+ µ+ v

(
Rβ +

3βI2 + v + 2µ

2I
+

c

2I(1 + aI)2

)
> R0,

and P2 > 0.

Example 4.1. Let (β, v, c, a, µ, k, A) = (1/2, 1.27, 2, 4, 1, 1/2, 6) in system (4.4).

From (4.8), we have M= −0.0414 < 0 which concludes that there are two posi-

tive equilibria. Solving (4.5), we obtain E1(I1, R1) = (1.615353698, 1.242243888)

and E2(I2, R2) = (2.046474276, 1.522295468). For E2(I2, R2) , we have P2 =

0.766804631 > 0 and

1

c+ µ+ v

(
Rβ +

3βI2 + v + 2µ

2I
+

c

2I(1 + aI)2

)
= 0.7261661363 > R0,

whereR0 = 0.7025761124. It means that the conditions for existence and asymptot-

ically stable as discussed above are satisfied. Figure 4.1 shows the stable endemic

equilibrium when the parameters are taken as (β, v, c, a, µ, k, A) = (1/2, 1.27, 2, 4,

1, 1/2, 6).
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Figure 4.1: Stable endemic equilibrium when the parameters are taken as
(β, v, c, a, µ, k, A) = (1/2, 1.27, 2, 4, 1, 1/2, 6) for model (4.4). The values of
(I, R) at equilibrium are (2.046474276, 1.522295468).

4.3 Hopf bifurcation

In this section, we will show that the model in (4.4) undergoes Hopf bifurcation for

some values. For simplicity, let µ = 1 . The Jacobian matrix for (4.4) is

M =

(
−βI2 + 2βI(A− I −R)− v − c

1+aI
+ caI

(1+aI)2
− 1 −βI2

k
(
v + c

1+aI
− caI

(1+aI)2

)
−1

)
.

Theorem 4.1. Suppose that the condition of (4.7) are satisfied and let µ = 1. If

there exists a limit cycle for (4.4), it must include a positive equilibrium,E+(I+, R+).

Proof. If a limit cycle exists, we have tr(M) = 0 , then we obtain

−βI2 + 2βI(A− I −R)− v − c

1 + aI
+

caI

(1 + aI)2
− 2 = 0.

At equilibrium,R = kI(v(1 + aI) + c)/(µ(1 + aI)) . So we get

A =
P3

2βI(1 + aI)2
,

where

P3 = a2β(2kv + 3)I4 + βa(6 + 4kv + 2kc)I3

+ (β(2kc+ 2kv + 3) + a2(2 + v))I2 + 2a(2 + v)I + 2 + v + c.

Substituting the above into (4.5), after some algebra work, we obtain

1

2(1 + aI)

(
−a2βI4 − 2βaI3 + (va2 − β)I2 + 2a(c+ v)I + v + c

)
= 0.
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By the Descartes rule of sign, we will have at most one positive root (real or imag-

inary root). Since all the parameters are real and positive and the quartic equation

has real coefficients, the complex value roots will be in conjugate pair. Hence,

we can rule out the case of having any complex root with a positive real part.

In other words, if there exists a limit cycle in (4.4), it must include a positive

equilibrium,E+(I+, R+), if (4.7) is satisfied.

With Theorem 4.1 and avoiding the condition in (4.7), let (β, v, c, a, µ, k)

= (1/2, 8, 8, 3, 1, 1/2), then the positive real root is approximated to 4.270040762

or 12571
2944

. Hence, we find that the positive endemic equilibrium E+(I+, R+) is

(12571
2944

, 548108171
29923552

) . With the parameters as mentioned, we obtainA = 3312503940005049139
122351215219281152

,

or ≈ 27.07373142.

Writing I andR in term of x and y, then (I+, R+) = (x+, y+) = (12571
2944

, 548108171
29923552

)

and we have

dx

dt
=

1

2

(
3312503940005049139

122351215219281152
− x− y

)
x2 − 9x− 8x

1 + 3x
,

dy

dt
= 4x+

4x

1 + 3x
− y.

(4.9)

To translate (x+, y+) to the origin, we set X = x − 12571
2944

and Y = y − 548108171
29923552

,

then rename X ,Y as x,y respectively. Hence

dx

dt
=

1

2

(
3312503940005049139

122351215219281152
− (x+

12571

2944
)− (y +

548108171

29923552
)

)
(x+

12571

2944
)2

− 9(x+
12571

2944
)−

8(x+ 12571
2944

)

1 + 3(x+ 12571
2944

)
,

dy

dt
= 4(x+

12571

2944
) +

4(x+ 12571
2944

)

1 + 3(x+ 12571
2944

)
− (y +

548108171

29923552
).

(4.10)
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Using the Taylor expansion for (4.10), we have

dx

dt
= − 2331843754045

168711259576927780864
− 158030041

17334272
y + (1− 12571

2944
y)x

− (
20072413090211610137691

9948866714340627593728
+

1

2
y)x2 − 2743198563151458625

5464762783327478402
x3

+
47768629289768976384

111090430240872644695057
x4 +O(|x, y|5),

dy

dt
= −y +

6646635140

1652991649
x− 306192580608

67205681473393
x2 +

2704292871929856

2732381391663739201
x3

− 23884314644884488192

111090430240872644695057
x4 +O(|x, y|5).

(4.11)

The Jacobian matrix for (4.11) at(x, y) = (0, 0) is

M =
( m11 m12m21 m22

)
=

(
1 −158030041

17334272
6646635140
1652991649

−1

)
and thus tr(M) = 0 and det(M) ≈ 35.65770109 > 0 . In this case, the eigenvalues

are ±
√
71075066462383315864674

44645939584
i (or ±5.971406960i ). Hence Hopf bifurcation occurs.

By taking transformation X = x , Y = m11x + m12y ,where Y = x− 158030041
17334272

y ,

and then renaming X ,Y as x,y respectively, (4.11) becomes

dx

dt
= − 2331843754045

168711259576927780864
+ y − 24732259340632230237275

9948866714340627593728
x2

+
5888

12571
xy − 480871623656803883565750297

863596686704515528294674482
x3 +

8667136

158030041
x2y

+
47768629289768976384

111090430240872644695057
x4 +O(|x, y|5),

dy

dt
= − 2331843754045

168711259576927780864
− 255428654207186553

7163351714373632
x

− 24319025069373392327771

9948866714340627593728
x2 +

5888

12571
xy

− 488663775692796160606312473

863596686704515528294674482
x3 +

8667136

158030041
x2y

+
265512946592970178560

111090430240872644695057
x4 +O(|x, y|5).

(4.12)

Let k1 = 255428654207186553
7163351714373632

. Making the change of variables u = −x, v = 1√
k1
y , we

obtain
du

dt
= −

√
k1v + F1(u, v),

dv

dt
=
√
k1u+ F2(u, v),

(4.13)
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where

F1(u, v) =
2331843754045

168711259576927780864
+

24732259340632230237275

9948866714340627593728
u2

+
5888

12571

√
k1uv −

480871623656803883565750297

863596686704515528294674482
u3

− 8667136

158030041

√
k1u

2v − 47768629289768976384

111090430240872644695057
u4 +O(|x, y|5),

F2(u, v) = − 2331843754045

168711259576927780864
√
k1
− 24319025069373392327771

9948866714340627593728
√
k1
u2

− 5888

12571
uv +

488663775692796160606312473

863596686704515528294674482
√
k1
u3

− 8667136

158030041
u2v +

265512946592970178560

111090430240872644695057
u4 +O(|x, y|5).

(4.14)

We can get the first Liapunov constant, σ , by

σ =
1

16

[
∂3F1

∂u3
+

∂3F1

∂u∂v2
+

∂3F2

∂u2∂v
+
∂3F2

∂v3

]
+

1

16
√
k1

[
∂2F1

∂u∂v

(
∂2F1

∂u2
+
∂2F1

∂v2

)
− ∂2F2

∂u∂v

(
∂2F2

∂u2
+
∂2F2

∂v2

)]
+

1

16
√
k1

[
−∂

2F1

∂u2
∂2F2

∂u2
+
∂2F1

∂v2
∂2F2

∂v2

]
= −0.01781784460.

Hence, there is a stable periodic orbit whenA increases from 3312503940005049139
122351215219281152

( ≈ 27.07373142) .

Figure 4.2 shows a stable orbit for system (4.4) when (β, v, c, a, µ, k) =

(1/2, 8, 8, 3, 1, 1/2) while (I+, R+) = (12571
2944

, 548108171
29923552

) and A = 27.1 .

In the following, we choose A as a bifurcation parameter. Let A = A0 + ε ,

where A0 = 3312503940005049139
122351215219281152

. From (4.9), we obtain,

dI

dt
= β(

A0 + ε

µ
− I −R)I2 − vI − cI

1 + aI
− µI,

dR

dt
= k(vI +

cI

1 + aI
)− µR.

(4.15)

Let µ = 1 , similar to (4.5), we obtain

[βa(kv+1)]I3+[β(kv+kc+1−(A0+ε)a)]I2+[−β(A0+ε)+va+a]I+[c+1+v] = 0.

Write I and R as x and y, and (β, v, c, a, µ, k) = (1/2, 8, 8, 3, 1, 1/2), then from

55



16.5

17

17.5

18

18.5

19

19.5

R

2 3 4 5 6 7
I

Figure 4.2: A stable orbit for system (4.4) when (β, v, c, a, µ, k) =
(1/2, 8, 8, 3, 1, 1/2) while (I+, R+) = (12571

2944
, 548108171

29923552
) and A = 27.1

(4.9), we obtain,

dx

dt
=

1

2
(A0 + ε− x− y)x2 − 9x− 8x

1 + 3x
,

dy

dt
= 4x+

4x

1 + 3x
− y.

(4.16)

In this case, let (x+, y+) be the positive equilibrium of the system (4.16). The

Jacobian matrix is

M =

(
m11 − (x+)2

2
m21 −1

)
,

where

m11 = x+(A0 + ε− x+ − y+)− 9− (x+)2

2
− 8

1 + 3x+
+

24x+

(1 + 3x+)2
,

m21 = 4 +
4

1 + 3x+
− 12x+

(1 + 3x+)2
.

Hence, the characteristic equation is given by

λ2 + (1−m11)λ−m11 +
(x+)2

2
m21 = 0,

which gives λ = 1
2
(m11 − 1)±

√
m2

11 + 2m11 + 1− 2m21(x+)2.

We can obtain the following values

(a) Reλ(ε) = 0 when ε = 0.
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(b) Imλ(ε) = 5.971406945 6= 0 when ε = 0.

(c) Re
d

dε
λ(ε) = −0.3575405923 6= 0 when ε = 0.

Therefore, by the Hopf bifurcation theory, we obtain the following result

Theorem 4.2. There exist a σ1 > 0 and a function ε = ε(x1) defined on 0 <

x1− 12571
2944
≤ σ1 , which satisfy ε(12571

2944
) = 0 and when ε = ε(x1) < 0, system (4.16)

has a unique stable limit cycle which passes through (x1,
548108171
29923552

) .

4.4 Bogdanov-Takens bifurcation

In this section, we will study the Bogdanov-Takens bifurcation for some values of

the model in (4.4). Let µ = 1, the Jacobian matrix for (4.4) is

M =

(
−βI2 + 2βI(A− I −R)− v − c

1+aI
+ caI

(1+aI)2
− 1 −βI2

k
(
v + c

1+aI
− caI

(1+aI)2

)
−1

)
.

Theorem 4.3. Suppose that we choose (β, c, a, µ, k) = (1/2, 2, 4, 1, 1/2). Then

there exists a positive equilibrium, (I+, R+), when Bogdanov-Takens bifurcation

occurs.

Proof. We choose (β, c, a, µ, k) = (1/2, 2, 4, 1, 1/2) for (I+, R+) and set tr(M) =

0 , det(M) = 0 . Knowing R = kI(v(1+aI)+c)
µ(1+aI)

= I(4vI+v+2)
2(1+4I)

, we get

A =
1

2I3(16I2 + 8I + 1)

(
48I6 + 32I5 + 131I4 + 64I3 + 136I2 + 64I + 8

)
,

v =
2

I2(16I2 + 8I + 1)

(
31I2 + 16I + 2

)
.

Substituting the above into (4.5) , after some algebra work, we obtain

− 1

4I2(4I + 1)

(
16I6 + 8I5 + I4 − 32I3 − 128I2 − 64I − 8

)
= 0.

By the Descartes rule of sign, we will have at most one positive root (real or imag-

inary root) for the polynomial of degree six above. Since all the coefficients of

the polynomial equation are real, the complex value root will be in conjugate pair.

Hence, we can rule out there is any complex root with positive real part. In other

words, the positive root in the six degree polynomial is a real root.
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By settingA = 1
2I3(16I2+8I+1)

(48I6 + 32I5 + 131I4 + 64I3 + 136I2 + 64I + 8)

, v = 2
I2(16I2+8I+1)

(31I2 + 16I + 2) , and (β, c, a, µ, k) = (1/2, 2, 4, 1, 1/2). we

obtain (I+, R+) = (x+, y+) = (31623
17444

, 212322110622679
163787945597952

) . Writing I and R in term of

x and y, we have

dx

dt
=

1

2
(A− x− y)x2 − vx− 2x

1 + 4x
− x,

dy

dt
=

1

2
(vx+

2x

1 + 4x
)− y.

(4.17)

To translate (x+, y+) to the origin, we set X = x − 31623
17444

, Y = y − 212322110622679
163787945597952

and rename X ,Y as x,y respectively. Then

dx

dt
=

1

2

(
A− (x+

31623

17444
)− (y +

212322110622679

163787945597952
)

)
(x+

31623

17444
)2

− v(x+
31623

17444
)−

2(x+ 31623
17444

)

1 + 4(x+ 31623
17444

)
− (x+

31623

17444
),

dy

dt
=

1

2

(
v(x+

31623

17444
) +

2(x+ 31623
17444

)

1 + 4(x+ 31623
17444

)

)
− (y +

212322110622679

163787945597952
).

(4.18)

Using the Taylor expansion for (4.18), we have

dx

dt
= ε− 1000014129

608586272
y + (1− 31623

17444
y)x

− (−367915877679335877709266090025

803218343493008013524397190656
− 1

2
y)x2

− 26559071628444065

52394750189570048
x3 +

1577358583287077801

471343172705372151808
x4 +O(|x, y|5),

dy

dt
= −y +

608586272

1000014129
x− 82938897881

11648454910976
x2 +

361696533659041

104789500379140096
x3

− 1577358583287077801

942686345410744303616
x4 +O(|x, y|5),

(4.19)

where ε = 22145673427690019
6792195847043662205369856

≈ 0.326× 10−8.

The Jacobian matrix for (4.19) at (x, y) = (0, 0) is

M =

(
1 −1000014129

608586272
608586272
1000014129

−1

)
.

We have tr(M) = 0 and det(M) = 0. Clearly, the matrix M has two zero

eigenvalues, and thus the Bogdanov-Takens bifurcation occurs.

58



Let ε = 0, by carrying out transformation X = x , Y = m11x + m12y , (i.e.

Y = x− 1000014129
608586272

y) and renaming X , Y as x, y respectively, (4.19) becomes

dx

dt
= y − 1254064616501840497000262174761

803218343493008013524397190656
x2 +

34888

31623
xy

− 42502809726687967683784913

52395490474995476435208192
x3 +

304293136

1000014129
x2y

+
1577358583287077801

471343172705372151808
x4 +O(|x, y|5),

dy

dt
= −6127592468937776168214312531277

3954305691042500989658570784768
x2 +

34888

31623
xy

− 210707590840887796256735861

257947030030746960911794176
x3 +

304293136

1000014129
x2y

− 14145463004235472301

2320458696395678285824
x4 +O(|x, y|5).

(4.20)

In order to obtain the canonical normal forms, set u = x + Kx2 + Lxy

,v = y + Mx2 + Nxy where K = −17444
31623

, M = −1254064616501840497000262174761
803218343493008013524397190656

,

L = N = 0, and make the change of variables . In the selection of the value for K,

L, M and N , we follow the procedures in [80] and we obtain

du

dt
= v +O(|u, v|3),

dv

dt
=

34888

31623
uv − 6127592468937776168214312531277

3954305691042500989658570784768
u2 +O(|u, v|3).

(4.21)

This implies that (I+, R+) = (31623
17444

, 212322110622679
163787945597952

) is a cusp of dimension 2.

In the following, we find the universal unfolding of (x+, y+) = (31623
17444

, 212322110622679
163787945597952

)

by choosing the parameters A and v as bifurcation parameters in a small neighbour-

bood of (β, c, a, µ, k) = (1/2, 2, 4, 1, 1/2). Let A = A0 + λ1 and v = v0 + λ2,

where A0 = 4135897419891758227459912927
714289322803919976455666688

and v0 = 769008283214884223
647433275455504512

. Then, we have,

dx

dt
=

1

2
(A0 + λ1 − x− y)x2 − (v0 + λ2)x−

2x

1 + 4x
− x,

dy

dt
=

1

2

(
(v0 + λ2)x−

2x

1 + 4x

)
− y.

(4.22)

To translate (x+, y+) to the origin, we setX = x−31623
17444

,Y = y−212322110622679
163787945597952
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and rename X ,Y as x,y respectively. Then

dx

dt
=

1

2

(
A0 + λ1 − (x+

31623

17444
)− (y +

212322110622679

163787945597952
)

)
(x+

31623

17444
)2

− (v0 + λ2)(x+
31623

17444
)−

2(x+ 31623
17444

)

1 + 4(x+ 31623
17444

)
− (x+

31623

17444
),

dy

dt
=

1

2

(
(v0 + λ2)(x+

31623

17444
)−

2(x+ 31623
17444

)

1 + 4(x+ 31623
17444

)

)
− (y +

212322110622679

163787945597952
).

(4.23)

Using the Taylor expansion for (4.23), we have

dx

dt
=

1000014129

608586272
(λ1 − y)− 31623

17444
λ2 + ε1 +

(
31623

17444
(λ1 − y)− λ2 + 1

)
x

+

(
−1

2
y +

1

2
λ1 −

367915877679335877709266090025

803218343493008013524397190656

)
x2

+ (
26559071628444065

52394750189570048
)x3 +

1577358583287077801

471343172705372151808
x4 +O(|x, y|5),

dy

dt
=

31623

34888
λ2 − y + (

1

2
λ2 +

608586272

1000014129
)x− 82938897881

11648454910976
x2

+
361696533659041

104789500379140096
x3 − 1577358583287077801

942686345410744303616
x4 +O(|x, y|5),

(4.24)

where ε1 = 22145673427690019
6792195847043662205369856

≈ 0.3260× 10−8.

Let X = x,

Y =
1000014129

608586272
(λ1 − y)− 31623

17444
λ2 + ε1 +

(
31623

17444
(λ1 − y)− λ2 + 1

)
x

+

(
−1

2
y +

1

2
λ1 −

367915877679335877709266090025

803218343493008013524397190656

)
x2

+ (
26559071628444065

52394750189570048
)x3 +

1577358583287077801

471343172705372151808
x4 +O(|x, y|5),

and rename X ,Y as x,y respectively. Then we obtain

dx

dt
= y,

dy

dt
= a0 + a1x+ a2y + a3x

2 + a4xy + a5y
2 +O(|x, y, λ|3),

where a0 = 1000014129
608586272

λ1− 70114094160279
21232357857536

λ2,a1 = 31623
17444

λ1− 4217214931
1217172544

λ2,a2 = λ2,a3 =

−6127592468937776168214312531277
3954305691042500989658570784768

,a4 = −810990247090588187354764132393
401609171746504006762198595328

and a5 = 34888
31623

.
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By setting X = x+ a2
a4

and rewriting X as x, we have

dx

dt
= y,

dy

dt
= b0 + b1x+ a3x

2 + a4xy + a5y
2 +O(|x, y, λ|3),

where

b0 = a0 + 728049004708764973964744678976
810990247090588187354764132393

λ1λ2

−6011255707583674130527724275461678157476142272513596332728934242
2868252293800468362298091248846586563534736985872087577144024089

λ22,

b1 = 31623
17444

λ1 − 1233773736458635710949245998948737799201
246778765552609955614736722386185154448

λ2,

and a3,a4 and a5 still remain the same.

By rewriting the equation using the new time τ with dt = (1 − a5x)dτ and

then rewriting τ as t , we obtain

dx

dt
= y (1− a5x) ,

dy

dt
= (1− a5x)

(
b0 + b1x+ a3x

2 + a4xy + a5y
2 +O(|x, y, λ|3)

)
.

Carrying out the transformation X = x , Y = y(1− a5x) , and then renaming X ,Y

as x,y respectively, we have

dx

dt
= y,

dy

dt
= b0 + c1x+ c2x

2 + a4xy +O(|x, y, λ|3),

where b0 and a4 remain the same and c1 = −31623
17444

λ1

+70542878915449180223120519806428674911
30847345694076244451842090298273144306

λ2,c2 = −6127592468937776168214312531277
3954305691042500989658570784768

.

By the change of variables X = a24/c2x , Y = a34/c
2
2y , τ = c2/a4t , and then

renaming X , Y , as x, y, t respectively, we obtain

dx

dt
= y,

dy

dt
= τ1 + τ2x+ x2 + xy +O(|x, y, λ|3),

where τ1 = b0a
4
4/c

3
2, τ2 = c1a

2
4/c

2
2. By putting τ1 = 1/4τ 22 and simplifying it, sys-

tem (4.17) has a saddle-node bifurcation, and the saddle-node bifurcation curve is

given by−10.18506042λ1+20.46853347λ2+2.726814689λ1λ2−3.286351254λ21+
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7.760920653λ22 + O(|λ1, λ2|2) = 0. It can be easily checked that the curve is well

approximated by using M= p2/4 + q3/27 = 0 as shown in (4.8). By using the

same parameters, the curve is represented by −7.342993075λ1 + 14.75693746λ2 +

7.956010841λ1λ2−1.520873020λ21−9.869429450λ22−0.000000271+O(|λ1, λ2|2) =

0.

Theorem 4.4. At the Bogdanov point, the model (4.4) with (β, c, a, µ, k) = (1/2, 2, 4,

1, 1/2), A = 4135897419891758227459912927
714289322803919976455666688

and v = 769008283214884223
647433275455504512

, in a small neigh-

bourhood of (x+, y+) = (31623
17444

, 212322110622679
163787945597952

) , has the following bifurcation :

(i) saddle-node bifurcation and the saddle-node bifurcation curve is given by

− 10.18506042λ1 + 20.46853347λ2 + 2.726814689λ1λ2 − 3.286351254λ21

+ 7.760920653λ22 +O(|λ1, λ2|2) = 0,

(ii) Hopf bifurcation and the Hopf bifurcation curve is given by

1.643175627λ1 − 3.302228355λ2 + 0.8977284342λ1λ2 − 2.095790430λ22

+O(|λ1, λ2|2) = 0,

(iii) Homoclinic bifurcation and the homoclinic bifurcation curve is given by

− 63.65662763λ1 + 127.9283342λ2 − 84.52577134λ1λ2 + 19.71810752λ21

+ 112.5686913λ22 +O(|λ1, λ2|2) = 0.

Figure 4.3(a) shows the homoclinic bifurcation when λ2 = 0.02477285891,

λ1 = 0.05 for system (4.22). Figure 4.3(b) shows a detail look for the phase portrait

in Figure 4.3(a).

From the above results, we study the bifurcation curves near the origin on

the (λ1, λ2) plane. The curves pass through the origin and there are four regions

separated by these bifurcation curves. If we take λ1 ≈ 0.1 , we obtain the region as

in Figure 4.4.

The Jacobian matrix for system (4.22) is

M =

(
M11 −x2

2
M21 −1

)
,
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Figure 4.3: (a)Homoclinic bifurcation when λ1 = 0.05, λ2 = 0.02477285891 for
system (4.22), (b)A detail look for the phase portrait in (a)
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Figure 4.4: The four typical regions separated by the bifurcation curves. The hori-
zontal axis is the λ1-axis and the vertical axis is the λ2-axis
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Table 4.1: The classification of equilibrium points
λ2 Ei det(M) tr(M) Q Conclusion

I 0.0493 E1 (-) (+) (+) Unstable saddle
E2 (+) (-) (-) Stable focus

II 0.0495 E1 (-) (+) (+) Unstable saddle
E2 (+) (-) (-) Stable focus

III 0.0497 E1 (-) (+) (+) Unstable saddle
E2 (+) (+) (-) Unstable focus

IV 0.05 No positive equilibrium

Q = (tr(M))2 − 4(det(M)).

where

M11 = −x
2

2
+ (A0 + λ1 − x− y)x− v0 + λ2 −

2

1 + 4x
+

8x

(1 + 4x)2
− 1,

and

M12 =
1

2
v0 +

1

2
λ2 +

1

1 + 4x
− 4x

(1 + 4x)2
.

Figure 4.4 shows the four typical regions separated by the bifurcation curves. The

horizontal axis is the λ1-axis and the vertical axis is the λ2-axis.

If we takeλ1 = 0.1 , after some simple calculation, we obtain the result as

shown in Table 4.1.

When (λ1, λ2) lies in the region I as in Figure 4.4, there is no limit cycle or

homoclinic orbit and E2 is a stable focus. If (λ1, λ2) lies in the region II, there is a

unique limit cycle inside the positive orbits of system (4.22) and the orbits approach

E2 as t tends to infinity. In this situation, the disease is persistent inside the cycle.

When (λ1, λ2) lies in the region III, E2 becomes an unstable focus and the limit

cycle disappears. In this stage, at finite time, any positive orbits, except for the two

equilibria E1 and E2 , will tend to the axis R = 0, i.e. the disease becomes extinct.

When (λ1, λ2) lies in the region IV, there is no positive equilibrium and the disease

will disappear. The classification of the equilibrium points can be easily checked by

the eigenvalues of the Jacobian matrix,M .

64



4.5 Concluding remarks

In this chapter, we have proposed an epidemic model with sub-optimal immunity,

nonlinear incidence rate and saturated treatment/recovery rate. The model leads to

an elaborative analysis of equilibrium through a third and forth orders polynomial.

By carrying out global analysis, the system in (4.4) has been shown to have rich

dynamical behaviour which include Hopf bifurcation, Bogdanov-Takens bifurcation

and its associated homoclinic bifurcation. We also show that when the bifurcation

parameters are within certain regions, the disease will be persistent or extinct.
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Chapter 5

Computation of the Domain of
Attraction for the Epidemic Models
using the Maximal Lyapunov
Function

In this chapter, we are concerned with the estimation of the domain of attraction

(DOA) for compartmental ODE epidemic models, expressed by autonomous dy-

namical systems. Based on the definition of the DOA and the maximal Lyapunov

function, a theorem and subsequently a numerical procedure are established to de-

termine the maximal Lyapunov function in the form of rational function and the

DOA. Determination of the domain of attraction for epidemic models are very im-

portant for understanding the dynamic behaviour of the disease transmission as a

function of the state of population distribution in different categories of disease

state. We focus on the sub-optimal immunity model with saturated treatment rate

which we study in Chapter Three and Four.

5.1 General

The computing of domain of attraction (DOA), i.e. the region where the dynami-

cal system is asymptotically stable, is an interesting research topic in the stability

analysis of nonlinear systems such as the systems for the compartmental ODE epi-

demic models. In other words, the mathematical analysis of epidemic models often
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involves computing the asymptotic stability region for both the disease free equi-

librium and the endemic equilibrium. The set of initial states whose corresponding

trajectories converge to an asymptotically stable equilibrium point as time increases

is known as the stability region or domain of attraction (DOA), of the equilibrium

under study. If the initial state lies within the DOA, the disease will evolve towards

an endemic state. On the contrary, if the initial state is outside the DOA, the system

will converge to a disease free state. Therefore, it is important to study the DOA of

endemic equilibrium.

Lyapunov’s second method (the direct method) is generally used to analyze

the stability of epidemic models. In this method, the asymptotic stability of the ori-

gin can be examined if a positive definite function whose derivative along the solu-

tions of the system is negative definite. However, it is not only difficult to construct

the Lyapunov Function, but also it is hard to guarantee the asymptotical stability of

the equilibrium. Apart from that, it is known that if the Lyapunov function exists

to an autonomous ODE, then it is not unique. A maximal Lyapunov function is a

special Lyapunov function on S (where S denotes the DOA) which indicates the

DOA for a given locally asymptotical stable equilibrium point.

Considerable work on DOA estimation and optimized DOA for epidemic dy-

namical models has been done. In [60], the authors had computed the DOA in

epidemiological models with constant removal rates of infected individuals. An op-

timization approach for finding the DOA of a class of SIR models, based on the

moment theory, is presented in [49]. Recently, the authors in [101] had adopted a

recurrence formulae established by E. Kaslik et. al. [47] by using an R-Analytical

function and the sequence of its Taylor polynomial to construct Lyapunov function,

and solved the Linear Matrix Inequality (LMI) relaxations of a global optimiza-

tion problem to obtain the DOA. However, all the epidemic models in the papers

mentioned above are limited to relatively simple epidemic models, without taking

into account nonlinear incidence rates or saturated recovery rates. In this chapter,

we study the DOA for the models we proposed previously, namely the sub-optimal

immunity models with nonlinear incidence rates and saturated recovery rates, by
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using the maximal Lyapunov function derived by A. Vannelli and M. Vidyasagar

[88]. Although the method is relatively old and complex, but the advantage is that

it does not require to obtain the exact solution of the autonomous system ẋ = f(x).

Furthermore, as the Lyapunov function candidates are rational functions, the Lya-

punov function, V (x) = N(x)
D(x)

, tends to ∞ as x approaches ∂S (the boundary of

DOA), i.e. D(x) tends to 0. Hence, it will lead to a larger DOA especially if the

number of terms in the Lyapunov Function candidates is increased.

Throughout the chapter, we focus on DOA for the sub-optimal immunity

models. These sub-optimal immunity models will be more appropriate for the study

of microparasite infections which usually occurs during childhood. After a primary

infection, one may get temporary immunity (immune protection will wane over

time) or partial immunity (immunity that may not fully protective). Examples of

this kind of diseases include Pertussis (temporary immunity) and Influenza (partial

immunity)

The remaining part of the chapter is structured as follows. In Section 5.2,

we will establish a theorem which is based on [88] and an iterative procedure for

the construction of the maximal Lyapunov function. In Section 5.3, two examples

are given to demonstrate the validity of the procedure and we will focus on the sub-

optimal immunity models which we study in Chapter Three and Four. We give a

conclusion of this chapter in Section 5.4.

5.2 The maximal Lyapunov function

Consider the following system

ẋ = f(x), (5.1)

where f : Rn → Rn is an analytical function with the following properties.

(a) f(0) = 0 , i.e. x = 0 is an equilibrium point of system (5.1),

(b) all the eigenvalues of the Jacobian matrix at x = 0, i.e. ∂f
∂x

(0), has negative

real parts , namely x = 0 is an asymptotically stable equilibrium point.
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It is well known that in the Lyapunov sense, if there exists a Lyapunov func-

tion for the equilibrium point x = 0 of the system (5.1), then x = 0 is asymptoti-

cally stable.

Definition 5.1. (Lyapunov Function). Let V (x) be a continuously differentiable

real-valued function defined on a domain R(0) ⊆ Rn containing the equilibrium

point x = 0 . The function V (x) is a Lyapunov function of the equilibrium x = 0

of the system (5.1) if the following conditions hold:

(a) V (x) is positive definite on R(0).

(b) The time derivative of V (ẋ) is negative definite on R(0).

If V (x) is a Lyapunov function which fulfills the conditions in the Definition

5.1, the estimation of DOA is given by the following definition.

Definition 5.2. Given an autonomous system (5.1) where x ∈ Rn and f(0) = 0, the

domain of attraction (DOA) of x = 0 is SA = {x0 ∈ Rn : limt→∞ x(t,x0) = 0},

where x(·,x0) denotes the solution of the autonomous system corresponding to the

initial condition x(0) = x0 .

The Lyapunov function is not unique. A maximal Lyapunov function, V (x),

is a special Lyapunov function on S (where S denotes the DOA) which indicates

the DOA for a given locally asymptotically stable equilibrium point.

Definition 5.3. (Maximal Lyapunov function, [88]). A function Vm(x) : Rn →

R+ ∪ {∞} is called a maximal Lyapunov function for the system (5.1) if

(a) Vm(0) = 0 , Vm(x) > 0,∀x ∈ S,x 6= 0,

(b) Vm(x) <∞ if and only if x ∈ S ,

(c) Vm(x)→∞ as x→ ∂S and/or ‖x‖ → ∞,

(d) V̇m is well defined and negative definite over S,

where S denotes the DOA.
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We have the following definition for the DOA of an asymptotically stable

equilibrium point which derives from the maximal Lyapunov function.

Definition 5.4. Suppose we can find a set E ⊆ Rn containing the origin in its

interior and a continuous function V (x) : E → R+ such that

(a) V (x) is positive definite on E,

(b) V̇ (x) is negative definite on E,

(c) V (x)→∞ as x→ ∂S and/or as ‖x‖ → ∞ ,

then E = S where S denotes the DOA.

From the above definition, based on the work in [88],we derive the following

theorem,

Theorem 5.1. Consider the nonlinear system of equations ẋ = f(x) =
∑∞

i=1 Fi(x),

where Fi(�) is a homogeneous function of degree i. Suppose that the linearized

system ẋ = F1(x) = Ax is asymptotically stable at x = 0. Let Ri, Qi are ho-

mogeneous function of degree i, and the function Ri and Qi satisfy the following

recursive equations.

(∇R2)
TF1 = −xTQx, (5.2)

(∇R2)
TFk−1 +

k∑
j=3

(
(∇Rj)

T +

j−2∑
i=1

(Qi(∇Rj−i)
T − (∇Qi)

TRj−i)

)
Fk−j+1

= −xTQx

(
2Qk−2 +

k−3∑
i=1

QiQk−2−i

)
,

(5.3)

where Q is a fixed positive definite matrix and k ≥ 3. Then, we have the following

Lyapunov Function

Vn(x) =
R2(x) +R3(x) + . . .+Rn(x)

1 +Q1(x) + . . .+Qn−2(x)
. (5.4)
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Proof. Rewrite

Vn(x) =
R2(x) +R3(x) + . . .+Rn(x)

1 +Q1(x) + . . .+Qn−2(x)
=

∑∞
i=2Ri(x)

1 +
∑∞

i=1Qi(x)
, (5.5)

which satisfies condition (a) in the Definition 5.3. Differentiating (5.5) with respect

to x, we have

V̇n(x)

=


(

1 +
∞∑
i=1

Qi(x)

)
∞∑
i=1

(∇Ri(x))T −

(
∞∑
i=1

(∇Qi(x))T

)
∞∑
i=2

Ri(x)(
1 +

∞∑
i=1

Qi(x)

)2


∞∑
i=1

Fi(x).

(5.6)

One of the choices to ensure that V̇n(x) is negative definite is V̇n(x) = −xTQx.

Then from (5.6), we have((
1 +

∞∑
i=1

Qi(x)

)
∞∑
i=1

(∇Ri(x))T −

(
∞∑
i=1

(∇Qi(x))T

)
∞∑
i=2

Ri(x)

)
∞∑
i=1

Fi(x)

= −xTQx

(
1 +

∞∑
i=1

Qi(x)

)2

.

(5.7)

Equating the coefficients of the same degrees k of the two sides of (5.7), we get the

following recursive relations. For k = 2,

(∇R2)
TF1 = −xTQx,

(∇R2)
TFk−1 +

k∑
j=3

(
(∇Rj)

T +

j−2∑
i=1

(Qi(∇Rj−i)
T − (∇Qi)

TRj−i)

)
Fk−j+1

= −xTQx

(
2Qk−2 +

k−3∑
i=1

QiQk−2−i

)
,

where Q is a fixed positive definite matrix, and k ≥ 3.

Based on Theorem 5.1, the procedure for obtaining the maximal Lyapunov

function and calculating the DOA is established as follows :

Consider the nonlinear system of equations ẋ = f(x) =
∑∞

i=1 Fi(x).
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Step 1: From the linearized system, F1 = Ax , find P > 0 such that ATP + PA =

−Q , then set

V2(x) = R2 = xTPx,

where R2 = a1x
2 + a2xy + a3y

2 . In this case, Q is a fixed positive definite

matrix. Hence, one of the good choices for Q is the identity matrix.

Step 2: For n = 3, using (5.3) where k = 3, we have

(∇R2)
TF2 +

(
(∇R3)

T +Q1(∇R2)
T − (∇Q1)

TR2

)
, F1 = −xTQx(2Q1),

(5.8)

where R3 = a1x
3 + a2x

2y + a3xy
2 + a4y

3 and Q1 = b1x + b2y . Equating

the coefficients of same degree in (5.8), we will obtain a system of linear

equations in terms of a1,a2,a3,a4, b1 and b2. The solution of these linear

equations will be used as constraints in the minization problem to get en(y)

in the later step.

Step 3: For n = 4 , using (5.3) where k = 4, we have

(∇R2)
TF3 +

(
(∇R3)

T +Q1(∇R2)
T − (∇Q1)

TR2

)
F2

+
(
(∇R4)

T +Q1(∇R3)
T − (∇Q1)

TR3 −Q2(∇R2)
T − (∇Q2)

TR2

)
F1

= −xTQx(2Q2 +Q2
1),

(5.9)

where R4 = a1x
4 + a2x

3y+ a3x
2y2 + a4xy

3 + a4y
4 and Q2 = b1x

2 + b2xy+

b3y
2. Hence, one need to solve the system of linear equations in this step as

in Step 2.

Step 4: (optional) For n = 5 , which can be extended to n = 5 or more when neces-

sary

(∇R2)
TF4 +

(
(∇R3)

T +Q1(∇R2)
T − (∇Q1)

TR2

)
F3

+
(
(∇R4)

T +Q1(∇R3)
T − (∇Q1)

TR3 +Q2(∇R2)
T − (∇Q2)

TR2

)
F2

+ {(∇R5)
T +Q1(∇R4)

T − (∇Q1)
TR4 +Q2(∇R3)

T − (∇Q2)
TR3

+Q3(∇R2)
T − (∇Q3)

TR2}F1

= −xTQx(2Q3 + 2Q1Q2),
(5.10)
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where R5 = a1x
5 + a2x

4y + a3x
3y2 + a4x

2y3 + a5xy
4 + a6y

5 and Q3 =

b1x
3 + b2x

2y + b3xy
2 + b4y

3. Hence, one needs to solve the system of linear

equations in this step as in Step 2.

For each of the steps 2 to 4, one will lead to a number of choices for the value

of the coefficients for Rn and Qn−2. Consider

V̇n(x) = −xTQx +
en(y)(

1 +
∑n−2

i=1 Qi(x)
)2 , (5.11)

where en(y) is the squared 2-norm of the coefficients of degree greater than

or equal to n+ 1 in the expression of V̇n. This ensures that V̇n(x) is negative

definite over a neighbourhood of the origin. To have it as similar as possible

to V̇2(x) = −xTQx , we take en(y) as small as possible. Hence, it creates

a new condition that can be formulated as a minimization problem where

the constraints are obtained from the recursive relations in each of the steps

above.

Step 5: Once we get en(y) sufficiently small, say at step 3, we obtain the maximal

Lyapunov function as

V4(x) =
R2(x) +R3(x) +R4(x)

1 +Q1(x) +Q2(x)
. (5.12)

To obtain the DOA, one needs to find the largest possible value C∗ when

V4(x) = C∗ such that the interior of the resulting ellipsoid is entirely fix in

the region given by Ω = {x : V̇n(x) ≤ 0}. In this case, one can determine C∗

by solving an optimization problem.

V4(x) =
R2(x) +R3(x) +R4(x)

1 +Q1(x) +Q2(x)
= C∗,

C∗ = minV4(x),

subject to the constraintsV̇4(x) = 0.

(5.13)

Then, the set SA = {x : V4(x) < C∗} is contained in the DOA S. Ap-

propriate C∗ also can be determined manually as suggested in [82]. In this

case, one can choose the largest positive value C∗ such that the sublevel set

73



SA = {x : V4(x) < C∗} is contained in the region given by {x : V̇4(x) < 0}.

Hence, we obtain the DOA in the form of SA.

For the problem in (5.11), we perform the calculation using the Optimization

packages in Maple 14 as follows:

> with(Optimization):

> objective := ;

> constraints := ;

> bounds := ;

> solution := NLPSolve(objective,constraints,bounds);

5.3 Numerical examples

Example 1: We consider the following reduced system for the sub-optimal immu-

nity model in Chapter Three.

dI

dt
= β(

A

µ
− I −R)I − vI − cI

1 + aI
− µI,

dR

dt
= k(vI +

cI

1 + aI
)− µR,

(5.14)

where (A, β, v, c, a, µ, k) = (19.2, 0.5, 1, 10, 0.5, 1, 0.25) . Rewrite X and Y for

I and R, and translate the equilibrium point to the origin by using x = X +

4.549349206 and y = Y + 4.424023809 .By using the numerical procedure in Sec-
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tion 5.2, we have the following result

V4(x) =
R2(x) +R3(x) +R4(x)

1 +Q1(x) +Q2(x)
,

R2 = 0.3022747584x2 − 0.5489131064xy + 0.7627668376y2,

R3 = −0.1906560890547x3 + 0.4815774872748x2y − 0.6165924190417xy2

+ 0.4585192403196y3,

R4 = 0.007811814325017x4 − 0.03492153517471x3y − 0.05336496715089x2y2

+ 0.04128157637850xy3 − 0.06092067012745y4,

Q1 = −0.06282269989259x+ 0.1095295671604y,

Q2 = −0.2970068157810x2 + 0.3716413661196xy − 0.4183114315558y2,

and C∗ = 0.284. Thus,SA = {x : V4(x) < 0.284} is an estimate of S for the system

(5.14) when (A, β, v, c, a, µ, k) = (19.2, 0.5, 1, 10, 0.5, 1, 0.25) . This estimate and

its phase portrait are given in Figure 5.1.
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Figure 5.1: The DOA when (A, β, v, c, a, µ, k) = (19.2, 0.5, 1, 10, 0.5, 1, 0.25) for
the model (5.14)

Consider smaller k, which means the model is more toward the SIS model.

Let (A, β, v, c, a, µ, k) = (19.2, 0.5, 1, 10, 0.5, 1, 0.15) . Rewrite X and Y for I and

R, and translate the equilibrium point to the origin by using x = X + 7.494893880

and y = Y + 3.492315487 . By using the numerical procedure as given in Section
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5.2, we have the following result

V4(x) =
R2(x) +R3(x) +R4(x)

1 +Q1(x) +Q2(x)
,

R2 = 0.4648333096x2 − 0.07770850670xy + 0.2509240187y2,

R3 = −0.0103476214205x3 + 0.0197320143477x2y − 0.0291440548148xy2

+ 0.0390387604663y3,

R4 = 0.000967433200671x4 − 0.00183392836942x3y − 0.000331164573248x2y2

− 0.00185999715174xy3 + 0.00320488908290y4,

Q1 = −0.0153579530898x+ 0.0484049077942y,

Q2 = −0.0188227332305x2 + 0.0118205411592xy − 0.00704546632408y2,

and C∗ = 0.4. Thus,SA = {x : V4(x) < 0.4} is an estimate of S for the system

(5.14) when (A, β, v, c, a, µ, k) = (19.2, 0.5, 1, 10, 0.5, 1, 0.15) . This estimate and

its phase portrait are given in Figure 5.2.
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Figure 5.2: The DOA when (A, β, v, c, a, µ, k) = (19.2, 0.5, 1, 10, 0.5, 1, 0.15) for
the model (5.14)

Example 2: We consider the following reduced system for the sub-optimal model

in Chapter Four

dI

dt
= β(

A

µ
− I −R)I2 − vI − cI

1 + aI
− µI,

dR

dt
= k(vI +

cI

1 + aI
)− µR.

(5.15)

For this example, we consider the nonlinear incidence rate βSI2. According to

[58], one of the reasons to consider the nonlinear incidence rate, βSpIq, is to rep-

76



resent heterogeneous mixing. Take (A, β, v, c, a, µ, k) = (6, 0.5, 1.27, 2, 4, 1, 0.5) .

Rewrite X and Y for I and R, and translate the equilibrium point to the origin by

using x = X + 2.046474176 and y = Y + 1.522295468. By using the numerical

procedure in Section 5.2, we have the following result ,

V5(x) =
R2(x) +R3(x) +R4(x) +R5(x)

1 +Q1(x) +Q2(x) +Q3(x)
,

R2 = 0.3762413699x2 − 0.8519913644xy + 0.9464782714y2,

R3 = −0.126181821512x3 + 0.173193705351x2y + 0.570250486120xy2

+ 0.0690548525960y3,

R4 = −0.105927461038x4 + 0.356193079263x3y − 0.518348042762x2y2

+ 0.765173017380xy3 − 0.518220094340y4,

R5 = −0.0125629412858x5 − 0.278448382561x4y + 0.788615459079x3y2

− 1.85902079923x2y3 + 1.38491789447xy4 − 1.09987599898y5,

Q1 = 3.17302544294x− 4.63120513014y,

Q2 = −2.99749941519x2 + 1.05587625048xy − 5.75817945157y2,

Q3 = 1.48286905974x3 − 11.5305874770x2y + 10.9212904075xy2

− 11.6184182953y3,

and C∗ = 0.0002. Thus,SA = {x : V5(x) < 0.0002} is an estimate of S for the

system (5.15) when (A, β, v, c, a, µ, k) = (6, 0.5, 1.27, 2, 4, 1, 0.5). This estimate

and its phase portrait are given in Figure 5.3.

Here, we study the effect of the value a for the DOA. Let (A, β, v, c, a, µ, k) =

(6, 0.5, 1.27, 2, 40, 1, 0.5) where the value of a is ten fold of the previous calculation.

Rewrite X and Y for I and R, and translate the equilibrium point to the origin by

using x = X + 2.561174171 and y = Y + 1.651103929. By using the numerical
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Figure 5.3: (a)The DOA when (A, β, v, c, a, µ, k) = (6, 0.5, 1.27, 2, 4, 1, 0.5) for
the model (5.15), (b)A detail look for the phase portrait in (a)

procedure as in Section 5.2, we have the following results,

V5(x) =
R2(x) +R3(x) +R4(x) +R5(x)

1 +Q1(x) +Q2(x) +Q3(x)
,

R2 = 0.003578383960x2 − 0.004275326810xy + 0.01184451697y2,

R3 = −0.00143947851169x3 + 0.00137383162785x2y + 0.00388197475475xy2

+ 0.000772525621974y3,

R4 = 0.000276577054304x4 − 0.000324162597520x3y − 0.000204916381848x2y2

+ 0.000107606340123xy3 − 0.0000451580448282y4,

R5 = 0.0000533208751600x5 − 0.0000416190488560x4y + 0.0000894460564105x3y2

− 0.000374374857674x2y3 − 0.000460737371773xy4 − 0.000456992688012y5,

Q1 = 0.706952511101x− 0.577082269086y,

Q2 = −0.104792704737x2 − 0.246689057581xy − 0.104749443691y2,

Q3 = −0.00279459100782x3 − 0.00352025797534x2y − 0.00315115011888xy2

− 0.0581955306735y3,

and C∗ = 0.043 . Thus, SA = {x : V4(x) < 0.043} is an estimate of the DOA

for the system (5.15) when (A, β, v, c, a, µ, k) = (6, 0.5, 1.27, 2, 40, 1, 0.5). This

estimate and its phase portrait are given in Figure 5.4.

By applying the same procedure, we calculate the DOA when a = 12, and

we obtain the DOA as in Figure 5.5. It is clear that with (A, β, v, c, a, µ, k) =
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Figure 5.4: The DOA when a = 40 for the model given by (5.15)

(6, 0.5, 1.27, 2, 12, 1, 0.5) , increasing the value of a will increase the DOA for the

this sub-optimal immunity model in (5.15).
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Figure 5.5: The DOA when a = 12 for model (5.15)

5.4 Concluding remarks

In this chapter, we deal with the problem of estimating the domain of attraction

(DOA) for the sub-optimal immunity epidemic model. We establish a procedure

to determine the maximal Lyapunov function in the form of rational functions and

compute the domain of attraction for the epidemic models. Determination of the

DOA is important in order to understand the dynamic behaviour of the transmission

of diseases as a function of the initial population distribution. In our first example,

we show that for certain values of the model parameters, larger k value (i.e. the
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model is more toward the SIR model ) leads to a smaller DOA. In our second ex-

ample, we show that within certain values of the model parameters, decreasing the

a value will yield a smaller DOA.
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Chapter 6

Analytical Solution for the Spread of
Epidemic Diseases in Community
Clustered Networks

In this chapter, we present a bond percolation model for community clustered net-

works with an arbitrarily specified joint degree distribution. Our model is based

on the probability generating function (PGF) method for multitype networks, but

incorporate the free-excess degree distribution, which makes it applicable for clus-

tered networks. In the context of contact network epidemiology, our model serves

as a special case of community clustered networks which are more appropriate for

modelling the disease transmission in community networks with clustering effects.

Beyond the percolation threshold, we are able to obtain the probability that a ran-

domly chosen community-i node leads to the giant component. In the context of

contact network epidemiology, the probability refers to the probability that an indi-

vidual in a community will be affected from the infective disease. Besides that, we

also establish method to calculate the size of the giant component and the average

small-component size (excluding the giant component). When the clustering effect

is taken into account through the free-excess degree distribution, the model shows

that the clustering effect will decrease the size of the giant component. In short,

our model enables one to carry out numerical calculations to simulate the disease

transmission in community networks with different community structure effects and

clustering effects.
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6.1 General

It has long been recognized that two of the key features of social networks are com-

munity structure and clustering effect. The former one emphasizes that the links are

dense in a community but sparse between communities, while the later one refers

to the relative number of triangles in a network. For the community structure effect,

the links between communities will make the network less heterogeneous and result

in larger epidemic prevalence in the exponential degree distribution networks [98].

For other types of degree distributions such as the power-law degree distribution,

the authors of [95] developed an algorithm to obtain a social network model with a

multiple-community structure with adjustable clustering coefficients and adjustable

degree of community. They showed that the heterogeneous network is less effi-

cient than the homogeneous network in spreading of epidemic. Different to [95],

we study the bond percolation model of community clustered networks with an ar-

bitrary joint degree distribution by using the probability generating function (PGF)

formalism.

In a series of papers [62, 69, 74], M.E.J. Newman used probability generating

function for random graphs with arbitrary distributions of vertex degree. With the

mathematics of generating functions, the author managed to calculate exactly some

statistical properties of such graphs in the limit of large numbers of vertices, includ-

ing the mean of component size and the giant component. Using the combination

of mapping to percolation models and the generating function method, Newman es-

tablished the analytic expressions for the size of epidemic outbreaks and the mean

degree of individuals affected in an epidemic.

Following Newman’s work, many researchers consider more features to im-

prove the percolation models based on the generating function method. For exam-

ple, in [89], the author developed a model to represent heterogeneous populations

so as to study the mixing patterns. Apart from that there are many other models,

including percolation models for random directed networks [13], models for two

competing disease spreading over the same network at the same time [46].
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There are some other models which use other mathematical tools or simula-

tion to predict the transmission of infectious diseases in social networks. One of the

areas which get considerable attention from researchers is clustered networks. In

[13], the author introduced a class of random clustered networks and showed that

the clustered networks had small component sizes and bigger epidemic threshold in

comparison to the same preferential mixing unclustered networks.

In this chapter, we present a bond percolation model of community clustered

networks with an arbitrary joint degree distribution (i.e. the degree distribution can

be specified arbitrarily). Our model is based on the probability generating function

(PGF) formalism for multitype networks introduced by Antoine Allard et.al. [3].

Their multitype network model is the extension of the PGF formalism which in-

vestigated by M.E.J. Newman. In addition, we incorporate the free-excess degree

distribution, which was introduced in [10] to make it applicable for clustered net-

works. We focus on complex networks with arbitrary joint degree distribution. In

the context of contact network epidemiology, our model serves as a special case of

community clustered networks which are more suitable for modelling the disease

transmission in community networks with the clustering effect. For certain cluster-

ing coefficient and beyond the percolation threshold, we obtain the probability that

a randomly chosen community-i node leads to the giant component. In the context

of contact network epidemiology, this probability refers to the probability that an in-

dividual in a community is affected by the infectious disease. In addition, we derive

formulae to calculate the size (i.e. fraction) of the giant component and the average

small-component size (excluding the giant component) in the community structure

network. If the disease transmission rate between each pair of communities is the

same in both direction, the size of the giant component in each community-i is

equivalent to the probability that a randomly chosen community-i node leads to the

giant component. When the clustering effect is taken into account through the free-

excess degree distribution , our model shows that the clustering effect leads to the

reduce of the size of the giant component.

The rest of the chapter is organized as follows. In Section 6.2, we discuss
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some assumptions to be used in our community clustered networks. In Section 6.3,

we present the PGF formamlism for the proposed community clustered networks.

In Sections 6.4 and 6.5, we focus on the calculation of the outbreak size distribution

and the percolation threshold, followed by numerical simulations in Section 6.6.

Some conclusions are given in Section 6.7.

6.2 Community clustered networks

We discuss a model with 2 communities which can be generalized to multi-communities.

Throughout the discussion, we assume that

(a) there exist realizable degree sequences which lead to simple graphs (i.e. net-

works) with no self loop,

(b) the inter-community edges will be redistributed according to the three ways

as explained in Section 6.3.1.3,

(c) the isolated nodes in each community will remain isolated,

(d) the highest degree is 8 for model 1, and 6 for model 2,

(e) it is possible for two nodes connecting to a mutual node to connect them-

selves, thereby forming a triangle. It is represented by the clustering coeffi-

cient, C,

(f) One link is counted as two edges.

Assumption (b) implies that power-law distribution will not be applied here.

In other words, nodes with higher degree do not necessarily have more inter-community

edges. In assumption (c), we assign some isolated nodes to each community. In a

finite time, the isolated nodes remain isolated when we randomly connect the inter-

community edges to the nodes with different degrees in each community. This can

serve as a check point for our computer program when we use it to find distribution

for the size of small component. There is no contact for every isolated node, namely

there is no transmissibility of disease. Hence, the number of isolated nodes in each
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community will remain the same. Apart from that, we set the highest degree at 8.

In other words, the network is not a highly right skewed network and does not have

super infection nodes.

In some of our analysis, we will further make the following assumptions.

(a) One of the communities has a low vaccination rate and thus a higher rate of

disease transmissibility among their members.

(b) The rate of disease transmissibility along the inter-community edges is low,

as sick individuals will travel less.

For our models, we assume that the exact number of nodes having degree k,

denoted by nk, is known. Hence, we can write the exact generating function for the

probability distribution in the form of a finite polynomial.

6.3 Formalism

We now present a formalism that describes the bond percolation model of commu-

nity networks. It is based on the probability generating function (PGF) formalism

for multitype networks introduced by Antoine Allard et.al. [3]. Their multitype

network model is the extension of the well-known PGF formalism introduced by

MEJ Newman in a series of papers [62, 69, 74].

6.3.1 Degree distribution

First, we assume that the arbitrarily specified degree distribution will produce a re-

alizable degree sequence. Let Pi=1(k1, k2, ..., kM) and Pi=2(k1, k2, ..., kM) be the

probability degree distributions that a randomly chosen community-i node is con-

nected to k1 nodes, k2 nodes, k3 nodes and so on. Since we deal with community

structure networks, among the edges of a node, there are some edges which may

connect to nodes in other community.

For the sake of simplicity, we discuss the PGF formalism for the model with

two communities. In this case, we have two ways to represent the degree distribu-

tion.
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(a) Number of nodes in each community.

(b) Number of nodes connecting community-i node to community-j.

6.3.1.1 Degree distribution for number of nodes in each community

In the first way, we need to have degree distribution for the number of nodes in each

community. As an example, we consider the following degree distribution,

p1(k) = {10, 10, 10, 45, 205, 135, 85},

p2(k) = {10, 10, 5, 85, 110, 185, 135},

where k = {kl}6l=0 = {l}6l=0 = (0, 1, 2, 3, 4, 5, 6) and the value of pi(kl) is the

number of nodes with degree l in the community-i. In the above example, there

are 10 nodes with 0 degree (i.e. isolated nodes) in community 1, 10 nodes with 1

degree, 10 nodes with 2 degree, 45 nodes with 3 degree and so on in community

1. Apart from that, we can get the information about the number of edges in each

community, namely

(10×0)+(10×1)+(10×2)+(45×3)+(205×4)+(135×5)+(85×6) = 2170

(10×0)+(10×1)+(5×2)+(85×3)+(110×4)+(185×5)+(135×6) = 2450

There are 2170 and 2450 edges respectively in communities 1 and 2 in our model

example and the total edges is 4620. Note that here one link is counted as two edges.

If we divide Pi(k) byNi whereNi denotes the number of nodes in community-

i, we will have a probability degree distribution.

P1(k) = 1
500
{10, 10, 10, 45, 205, 135, 85},

P2(k) = 1
540
{10, 10, 5, 85, 110, 185, 135},

Without considering the rate of transmissibility of diseases, we have the following

PGF

Gi(x) =
∞∑
k=0

Pi(k)
M∏
l=1

xkll , (6.1)

where i = 1, 2; M denotes the number of communities which is 2 in this example

and xkll denotes node in community-l with degree kl.
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6.3.1.2 Degree distribution for number of nodes connecting community-i to
community-j

The second way of representing the degree distribution is by considering the number

of nodes connecting community-i to community-j. We have the following degree

distribution:

p1(k1) = {10, 10, 20, 80, 200, 120, 60},

p1(k2) = {420, 50, 20, 10, 0, 0, 0},

p2(k1) = {460, 50, 20, 10, 0, 0, 0},

p2(k2) = {10, 10, 10, 100, 140, 180, 90},

where pi(ki) is as defined before, while pi(kjl) denotes the number of nodes in

community-i with kjl edges linking to community j in which kjl = l for l =

0, 1, 2, . . ..

For the above example, p1(k1) shows that there are 10 nodes with 0 degree

(i.e. isolated nodes) in community 1, 10 nodes with 1 degree, 20 nodes with 2

degree, 80 nodes with 3 degree and so on in community 1; The data of p1(k2)

shows that there are 420 nodes in community 1 with no edge linking to community

2, 50 nodes in community 1 having one edge linking to community 2, 20 nodes

in community 1 having two edges linking to community 2 and so on. The same

will apply to the nodes in community 2. We can also get the information about

the number of inter-community edges and the number of intra-community edges in

each community. The number of intra-community edge is calculated as follows.

• Community 1:(10×0)+(10×1)+(20×2)+(80×3)+(200×4)+(120×5)+

(60×6)+(420×0)+(50×1)+(20×2)+(10×3)+(0×4)+(0×5)+(0×6) =

2170,

• Community 2:(460×0)+(50×1)+(20×2)+(10×3)+(0×4)+(0×5)+(0×

6)+(10×0)+(10×1)+(10×2)+(100×3)+(140×4)+(180×5)+(90×6) =

2450.

For the two communities model, k = k1 + k2, hence the total edges must be the

same as that by the first way mentioned in Section 6.3.1.1 (where it is 4620). The
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number of inter-community edges for communities 1 and 2 must be the same, which

is calculated as follows,

• Community 1: (420× 0) + (50× 1) + (20× 2) + (10× 3) + (0× 4) + (0×

5) + (0× 6) = 120,

• Community 2: (460× 0) + (50× 1) + (20× 2) + (10× 3) + (0× 4) + (0×

5) + (0× 6) = 120.

We can rewrite the degree distribution above as probability degree distribu-

tion as follows

P1(k1) = 1
500
{10, 10, 20, 80, 200, 120, 60},

P1(k2) = 1
500
{420, 50, 20, 10, 0, 0, 0},

P2(k1) = 1
540
{460, 50, 20, 10, 0, 0, 0},

P2(k2) = 1
540
{10, 10, 10, 100, 140, 180, 90},

Without considering the rate of transmissibility of diseases, let Gij be the gener-

ating function where the subscript ij represents the chosen node in community-i

connected to node in community-j, and let Pi(kuv) be the probability that a ran-

domly chosen community-i node with u edges connects to the nodes in community

v. Then, we have the following PGF

G11(x) = P1(k01) + P1(k11)x1 + P1(k21)x
2
1 + P1(k31)x

3
1 + P1(k41)x

4
1

+ P1(k51)x
5
1 + P1(k61)x

6
1

=
10

500
+

10

500
x1 +

20

500
x21 +

80

500
x31 +

200

500
x41 +

120

500
x51 +

60

500
x61,

G12(x) = P1(k02) + P1(k12)x2 + P1(k22)x
2
2 + P1(k32)x

3
2 + P1(k42)x

4
2

+ P1(k52)x
5
2 + P1(k62)x

6
2

=
420

500
+

50

500
x2 +

20

500
x22 +

10

500
x32,

G21(x) = P2(k01) + P2(k11)x1 + P2(k21)x
2
1 + P2(k31)x

3
1 + P2(k41)x

4
1

+ P2(k51)x
5
1 + P2(k61)x

6
1

=
460

540
+

50

540
x1 +

20

540
x21 +

10

540
x31,
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G22(x) = P2(k02) + P2(k12)x2 + P2(k22)x
2
2 + P2(k32)x

3
2 + P2(k42)x

4
2

+ P2(k52)x
5
2 + P2(k62)x

6
2

=
10

540
+

10

540
x2 +

10

540
x22 +

100

540
x32 +

140

540
x42 +

180

540
x52 +

90

540
x62,

and dG11(1)
dx1

= 41
10

, dG12(1)
dx2

= 6
25

, dG21(1)
dx1

= 2
9
, dG22(1)

dx2
= 233

54
,

where dGij(1)
dx denotes the average number of edges connecting nodes in community-

i to nodes in community-j, and we represent it as zij .

Definition 6.1. Let zij be the average number of edges connecting nodes in community-

i to nodes in community-j, then

zij =
∞∑
k1=0

· · ·
∞∑

kM=0

kjPi(k1, k2, · · · , kM) ≡
∞∑
k=0

kjPi(k).

In matrix form, for two communities, we have

z =
( z11 z12z21 z22

)
.

Let the community-i nodes occupy a fraction wi of the network, and define

w =
(
w1 0
0 w2

)
.

We have wz = (wz)T ,tr(w) = 1 and w1 = z21
z12+z21

,w2 = z12
z12+z21

. In our model, we

have w1 = z21
z12+z21

= 2/9
6/25+2/9

= 25
52

,w2 = z12
z12+z21

= 6/25
6/25+2/9

= 27
52

. This means that

we have 25
52

fraction of nodes in community 1 and 27
52

fraction of nodes in community

2. The followings two ways can be used to determine how strong the community

structure is:

(a) Let Z be the number of edges connecting nodes in community-i to nodes in

community-j, then we will have Z = n
2m
z where n is the number of nodes

and m is the number of edges. Hence we can use the information to obtain

the modularity which is given by Q = Tr(Z)− ‖Z2‖.

(b) In [59], the degree of community σ , is given by σ = p/q where p is the

probability for the event that there exist links within the community and q is

the probability for the event that there exist links between the communities. In

this work, we redefine σ = tr(z)∑
i 6=j zij

where σ >> 1 implies strong community.

It is easy to show that our model has Q = 0.446 or σ = 18.02.
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6.3.1.3 Algorithm for redistributing the intercommunity links

There are a few possible ways to consider the distribution of intercommunity links

including

(i) the links are randomly attached to the nodes in each community.

(ii) the links are equally attached to the nodes in each community.

(iii) the links are preferably attached to the nodes with higher degrees in each

community.

Consider the two communities model, where the links are equally attached to the

nodes in each community. Let n be the number of intercommunity links, and let M

be the highest degree of the nodes in the respectively community. If n mod M = R,

then we have YM +R = n . Assuming that P and Q are the number of nodes with

degree 1 and degree M , then we have

(a) The number of nodes with degree M + 1 is Y +R .

(b) The number of nodes with degree M is P − R where P is the number of

nodes with degree 1.

(c) The number of nodes with degree 1 is Q−Y where Q is the number of nodes

with degree M .

6.3.2 The occupied degree distribution

For the discussion of the PGF formalism involving rate of disease transmission, we

should consider the occupied degree distribution. For the two communities model,

we define a bond occupation probability matrix as

T =
(
T11 T12
T21 T22

)
.

Definition 6.2. The probability that a randomly chosen degree-k node has k̃ occu-

pied edges is

Pi(k̃|k) =
M∏
i=1

(
kl
k̃l

)
(Til)

k̃l(1− Til)kl−k̃l .
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The occupied degree distribution, P̃i(k̃), is

P̃i(k̃) =
∞∑
k=k̃

Pi(k̃|k)Pi(k) =
∞∑
k=k̃

Pi(k)
M∏
l=1

(
kl
k̃l

)
(Til)

k̃l(1− Til)kl−k̃l .

Hence, the PGF is

Gi(x;T) =
∞∑
k̃=0

P̃i(k̃)
M∏
l=1

xk̃ll =
∞∑
k=0

Pi(k)
M∏
l=1

kl∑
k̃l=0

(
kl
k̃l

)
(xlTil)

k̃l(1− Til)kl−k̃l ,

Gi(x;T) =
∞∑
k=0

Pi(k)
M∏
l=1

[1− (xl − 1)Til]
kl ,

where Gi(1;T) = 1 if Pi(k) is properly normalized.

From Definition 6.2, we can get the average occupied degree connecting

nodes in community-i to nodes in community-j as z̃ij = ∂Gi(1;T)
∂xj

= Tij
∑∞

k=0 kjPi(k)

= Tijzij . For example,∂G1(x;T)
∂x2

|x1=1,x2=1 gives T12z12 .

For two communities (we assume each node has at most degree 6 as for in

model 2) , we have the following generating functions when we consider the rate of

transmissibility,

G1(x;T) = P1(k0)

[
L11

L1

(1− (x1 − 1)T11)
L12

L1

(1− (x2 − 1)T12)

]k0
+ P1(k1)

[
L11

L1

(1− (x1 − 1)T11)
L12

L1

(1− (x2 − 1)T12)

]k1
+ P1(k2)

[
L11

L1

(1− (x1 − 1)T11)
L12

L1

(1− (x2 − 1)T12)

]k2
+ P1(k3)

[
L11

L1

(1− (x1 − 1)T11)
L12

L1

(1− (x2 − 1)T12)

]k3
+ P1(k4)

[
L11

L1

(1− (x1 − 1)T11)
L12

L1

(1− (x2 − 1)T12)

]k4
+ P1(k5)

[
L11

L1

(1− (x1 − 1)T11)
L12

L1

(1− (x2 − 1)T12)

]k5
+ P1(k6)

[
L11

L1

(1− (x1 − 1)T11)
L12

L1

(1− (x2 − 1)T12)

]k6
,
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G2(x;T) = P2(k0)

[
L21

L2

(1− (x1 − 1)T21)
L22

L2

(1− (x2 − 1)T22)

]k0
+ P2(k1)

[
L21

L2

(1− (x1 − 1)T21)
L22

L2

(1− (x2 − 1)T22)

]k1
+ P2(k2)

[
L21

L2

(1− (x1 − 1)T21)
L22

L2

(1− (x2 − 1)T22)

]k2
+ P2(k3)

[
L21

L2

(1− (x1 − 1)T21)
L22

L2

(1− (x2 − 1)T22)

]k3
+ P2(k4)

[
L21

L2

(1− (x1 − 1)T21)
L22

L2

(1− (x2 − 1)T22)

]k4
+ P2(k5)

[
L21

L2

(1− (x1 − 1)T21)
L22

L2

(1− (x2 − 1)T22)

]k5
+ P2(k6)

[
L21

L2

(1− (x1 − 1)T21)
L22

L2

(1− (x2 − 1)T22)

]k6
,

where L1 and L2 are the total number of edges in communities 1 and 2 respectively

and Lij is the total number of edges which link nodes in community-i to nodes in

community-j. Note that G1(1;T) = 1 and G2(1;T) = 1.

6.3.3 The occupied excess degree distribution

Definition 6.3. The occupied excess degree distribution is given by

Q̃ij(k̃) =
1

zji

∞∑
k=k̃

(ki + 1)Pj(k + δi)
M∏
l=1

(
kl
k̃l

)
(Tjl)

k̃l(1− Tjl)kl−k̃l .

Hence, the PGF is given by

Fij(x;T) =
∞∑
k̃=0

Q̃ij(k̃)
M∏
l=1

xk̃ll =
1

zji

∞∑
k=0

kiPj(k)
M∏
l=1

[1− (xl − 1)Tjl]
kl−δil ,

where the ij represents the chosen edges connecting community-i and community-j.

For our 2-community model, we can obtain Fij(x;T) by

Fij(x;T) =
1

z̃ji

∂Gj(x;T)

∂xi
. (6.2)

For two communities networks with nodes of at most degree 6, using (6.2),
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after some algebra work, we have

F11(x1, x2;T) = p0 + p01x2 + p02x
2
2 + p03x

3
2 + p04x

4
2 + p05x

5
2

+ p10x1 + p11x1x2 + p12x1x
2
2 + p13x1x

3
2 + p14x1x

4
2

+ p20x
2
1 + p21x

2
1x2 + p22x

2
1x

2
2 + p23x

2
1x

3
2 + p30x

3
1 + p31x

3
1x2 + p32x

3
1x

2
2

+ p40x
4
1 + p41x

4
1x2 + p50x

5
1,

where the parameter puv denotes the probability that a node with excess degree v is

reached by following a randomly chosen edge with excess degree u. Similar formu-

lae can be established for F12(x1, x2;T) , F21(x1, x2;T) and F22(x1, x2;T) where

the parameter p in the above equation will be replaced by q,r,and s respectively.

6.3.4 The occupied free-excess degree distribution

In order to consider the clustered network (C > 0 ), we apply the free-excess

degree distribution concept introduced in [12]. Analogously to the excess degree,

we follow one of the edges of node v0 to reach a neighbour v1 having degree d(v1) =

i + 1( i is the excess degree). We are interested in calculating the probability that

the node has k neighbours that are not connected back to v0 (via a triangle), which

is given by
(
i
k

)
(1− C)kCi−k

Definition 6.4. The free excess degree distribution is given by

Gc(x) =
∞∑
k=0

ekx
k =

∞∑
k=0

∞∑
i=0

qi

(
i

k

)
Ci

(
1− C
C

)k
xk

=
∞∑
i=0

qiC
i

∞∑
k=0

(
i

k

)(
1− C
C

x

)k
=
∞∑
i=0

qiC
i

(
1 +

1− C
C

x

)i
=
∞∑
i=0

qi [C + (1− C)x]i = G1 [C + (1− C)x] ,

ek =
∞∑
i=0

qi

(
i

k

)
(1− C)kCi−k =

∞∑
i=0

qi

(
i

k

)
Ci

(
1− C
C

)k
.

By Definition 6.4, we use the generating function associated with the occupied

excess degree distribution as given in Definition 6.3. Thus, we have the following

relationship

Fcij(x;T) = Fij(C + (1− C)x;T). (6.3)
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6.4 Outbreak size distribution

In this section, we discuss an iteration method to obtain the probability that a ran-

domly chosen community-i node leads to the giant component. Although the dis-

cussion applies to the model without considering the clustering coefficient C, for

the model with clustering coefficient C, we will have Fcij instead of Fij as in (6.3).

Let Hij(x;T) be the generating function for the size distribution of the com-

ponent reached by following an i→ j edge.

Hij(x;T) = xjFij(Hj(x;T);T). (6.4)

The solution for the equation (6.4) can be found by seeking the stable fixed point of

the mapping

H
(n)
ij (x;T) = xjFij(H

(n−1)
jM (x;T);T), (6.5)

as i = 1 . . .M and n→∞ for initial conditionsH0
ij(x;T) = xj . The equation says

that when we follow an i → j edge, we find at least one node at the other end (the

factor of x1 , x2 on the RHS), plus some other clusters of nodes (each represented

by Hij(x;T) ) which are reachable by following other edges attached to that node.

The number of the clusters is distributed according to the coefficients of x1 , x2 in

Fij(x;T) = 1
z̃ij

∂Gj(x;T)

∂xi
, and hence the appearance of Fij(x;T) .

For our model, using (6.4) and (6.5), we have the following iteration process

H
(n)
11 (x1, x2;T) = x1F11(H

(n−1)
11 (x1, x2;T), H

(n−1)
12 (x1, x2;T);T)

H
(n)
12 (x1, x2;T) = x2F12(H

(n−1)
21 (x1, x2;T), H

(n−1)
22 (x1, x2;T);T)

H
(n)
21 (x1, x2;T) = x1F21(H

(n−1)
11 (x1, x2;T), H

(n−1)
12 (x1, x2;T);T)

H
(n)
22 (x1, x2;T) = x2F22(H

(n−1)
21 (x1, x2;T), H

(n−1)
22 (x1, x2;T);T),

where the initial condition is given by H(0)
11 (x1, x2;T) = p0x1, H(0)

12 (x1, x2;T) =

q0x2, H
(0)
21 (x1, x2;T) = r0x1, and H(0)

22 (x1, x2;T) = s0x2. For the first iteration in
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our model 2, we have

H
(1)
11 (x1, x2;T)

= x1F11(H
(0)
11 (x1, x2;T), H

(0)
12 (x1, x2;T);T)

= x1F11(p0x1, q0x2;T)

= x1{p0 + p01(q0x2) + p02(q0x2)
2 + p03(q0x2)

3 + p04(q0x2)
4 + p05(q0x2)

5

+ p10(p0x1) + p11(p0x1)(q0x2) + p12(p0x1)(q0x2)
2 + p13(p0x1)(q0x2)

3

+ p14(p0x1)(q0x2)
4 + p20(p0x1)

2 + p21(p0x1)
2(q0x2) + p22(p0x1)

2(q0x2)
2

+ p23(p0x1)
2(q0x2)

3 + p30(p0x1)
3 + p31(p0x1)

3(q0x2) + p32(p0x1)
3(q0x2)

2

+ p40(p0x1)
4 + p41(p0x1)

4(q0x2) + p50(p0x1)
5}

= p0x1 + p01q0x1x2 + p10p0x
2
1 +O(x1, x2)

3.

Similarly, we have

H
(1)
11 (x1, x2;T) = q0x2 + q10r0x1x2 + q01s0x

2
2 +O(x1, x2)

3

H
(1)
21 (x1, x2;T) = r0x1 + r01q0x1x2 + r10p0x

2
1 +O(x1, x2)

3

H
(1)
22 (x1, x2;T) = s0x2 + s10r0x1x2 + s01s0x

2
2 +O(x1, x2)

3.

For the second iteration, we have

H
(2)
11 (x1, x2;T)

= x1F11(H
(1)
11 (x1, x2;T), H

(1)
12 (x1, x2;T);T)

= x1F11(p0x1 + p01q0x1x2 + p10p0x
2
1, q0x2 + q10r0x1x2 + q01s0x

2
2;T).

After some algebra work, we obtain

H
(2)
11 (x1, x2;T) = p0x1 + p01q0x1x2 + p10p0x

2
1 + (p01q01s0 + p02q

2
0)x1x

2
2

+ (p10p01q
2
0 + p11p0q0 + p01q10r0)x

2
1x2 + (p210p0 + p20p

2
0)x

3
1

+O(x1, x2)
4.

Similarly, we have

H
(2)
12 (x1, x2;T) = x2F12(H

(1)
21 (x1, x2;T), H

(1)
22 (x1, x2;T);T)

H
(2)
21 (x1, x2;T) = x1F21(H

(1)
11 (x1, x2;T), H

(1)
12 (x1, x2;T);T)

H
(2)
22 (x1, x2;T) = x2F22(H

(1)
21 (x1, x2;T), H

(1)
22 (x1, x2;T);T),
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and the iteration process continues until obtaining H(4)
ij (x1, x2;T) for model 2.

Denoting Ki(x;T) as the generating function for the size distribution of the whole

component, we have the

Ki(x;T) = xiGi(Hi(x;T);T), (6.6)

now we can have the following definition.

Definition 6.5. Let Ki(x;T) be the total number of nodes reachable from a ran-

domly chosen vertex in community-i , i.e. the size of the component to which such a

node belongs, is generated by

Ki(x;T) = xiGi(Hi(x;T);T).

Since type-i nodes occupy a fraction wi of the network, the size distribution

of the component reached from a randomly chosen node is generated by

K(x;T) =
M∑
i=1

wiKi(x;T) =
M∑
i=1

wixiGi(Hi(x;T);T). (6.7)

For our 2-communities model, using (6.7), we have

K1(x1, x2;T) = x1G1(H
(n)
11 (x1, x2;T), H

(n)
12 (x1, x2;T);T),

K2(x1, x2;T) = x2G2(H
(n)
21 (x1, x2;T), H

(n)
22 (x1, x2;T);T).

Above the percolation threshold, we will find the giant component. Hence the prob-

ability that a randomly chosen community-i node leads to the giant component is

Pi = 1−Ki(1;T). (6.8)

According to [3], for symmentric transmissibility T = TT , the size of the giant

component, S, is equal to P .

6.5 Percolation threshold

Using the moment property of the PGF, the average number of community-i nodes

in the small component reached from a randomly chosen node is obtained by differ-

entiatingH(n)
ij (x;T) with respect to xi . Hence, the average number of community-i
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nodes in the small component, 〈si〉,is given by

〈si〉 = wi +
M∑
l=1

wl

M∑
j=1

z̃ljα
(i)
lj , (6.9)

where α(i)
lj ≡

∂Hlj(x;T)

∂xi
|x=1. α

(i)
lj is well approximated by the solution of α(i)

lj =

δij +
∑M

n=1 Tjnβ
(n)
lj α

(i)
jn and where the average excess degree is given by B(n)

lj =

1
Tjn

∂Flj(x;T)

∂xn
|x=1.

Define [Aij]µv = Tijβ
(j)
µv δiv. If there are only two communities, A can be obtained

by

A =


T11β

(1)
11 0 T12β

(2)
11 0

T11β
(1)
21 0 T12β

(2)
21 0

0 T21β
(1)
12 0 T22β

(2)
12

0 T21β
(1)
22 0 T22β

(2)
22

 , (6.10)

with the average of s given by

〈s〉 =
M∑
i=1

〈si〉 ∝
1

det(I − A)
. (6.11)

Hence, the phase transition occurs when det(I − A) = 0.

6.6 Numerical simulations

Model 1 :We summarize the model 1 as follows : There are two communities ( i.e.

M = 2) with probability degree distribution: Pi(k1, k2) ≡ Pi(k) as shown below :

P1(k1) = 1
5700
{10, 2910, 2120, 480, 10, 70, 60, 20, 20}

P1(k2) = 1
5700
{5300, 300, 100, 0, 0, 0, 0, 0, 0}

P2(k1) = 1
5900
{5500, 300, 100, 0, 0, 0, 0, 0, 0}

P2(k2) = 1
5900
{10, 3010, 2210, 450, 40, 80, 60, 20, 20}.

After redistributing the intercommunity links, we obtain

P1(k) = 1
5700
{10, 2910− Y, 2120, 480, 10, 70, 60, 20, 20− Y, Y +R}

P2(k) = 1
5900
{10, 3010− Y, 2210, 450, 40, 80, 60, 20, 20− Y, Y +R},

where Y = 62 and R = 4. We have average edges z =

(
482
285

5
57

5
59

100
59

)
and the

distribution of nodes among the communities is w =

(
57
116

0
0 59

116

)
. More details

are shown in Table 6.1.
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Table 6.1: Number of edges in each community in model 1
Community 1 Community 2

Total nodes 5700 5900
Total inter community edges 9640 10000
Total intra community edges 500 500

The modularity for this model is σ = 19.634 or Q = 0.451. First, we study

the effect of transmissibility rate. In this case, we have the same transmissibility

rate for all the links, namely either inter or intra community edges within the same

community have the same transmissibility rate. For example, T = 0.1 means that

T =
(

0.1 0.1
0.1 0.1

)
. Figure 6.1 shows the probability, P , that a randomly chosen

community-i node (community 1 + community 2) leads to the giant component

versus transmissibility rate, T , and the fraction of the giant component , in commu-

nities 1 and 2 (S1 and S2) versus transmissibility rate, T .
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Figure 6.1: Diagram showing the probability, P , that a randomly chosen
community-i node leads to the giant component versus tranmissiblity rate, T , for
model 1. The diagram also shows the fraction of giant component in communities
1 and 2 (S1 and S2) versus tranmissiblity rate, T . The epidemic threshold in this
example is 0.599.

Secondly, we study the effect of clustering in this mode. Using (6.11), the

epidemic threshold is determined to be 0.599. Above the epidemic threshold, clus-

tering will reduce the probability that a randomly chosen community-i node leads
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to the giant component. In this case we use T =
(

0.64 0.64
0.64 0.64

)
. Figure 6.2 shows

the probabability, P , that a randomly chosen community-i node (community 1 +

community 2) leads to the giant component versus clustering coefficient, C. The

fraction of the giant component in communities 1 and 2 (S1 and S2) versus the

clustering coefficient,C, is also show in Figure 6.2.
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Figure 6.2: The probability, P , that a randomly chosen community-i node leads to
the giant component versus clustering coefficients, C, for model 1 when T = 0.64.
S1 and S2 are the fraction of giant component in communities 1 and 2 respectively

Thirdly, by using (6.9), we determine the average number of community-

i nodes in the small component, 〈si〉, reached from a randomly chosen node for

different clustering coefficient, C, in Figure 6.3.

Model 2 :We summarize the model 2 as follows : There are two communities ( i.e.

M = 2) with probability degree distribution: Pi(k1, k2) ≡ Pi(k) as shown below :

P1(k1) = 1
500
{10, 10, 20, 80, 200, 120, 60}

P1(k2) = 1
500
{420, 50, 20, 10, 0, 0, 0}

P2(k1) = 1
540
{460, 50, 20, 10, 0, 0, 0}

P2(k2) = 1
540
{10, 10, 10, 100, 140, 180, 90}.

For analysis, we distribute the inter-community edges randomly across nodes in

each community, we get

P1(k) = 1
500
{10, 10, 10, 45, 205, 135, 85}

P2(k) = 1
540
{10, 10, 5, 85, 110, 185, 135}.
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Figure 6.3: A diagram showing the average number of community-i nodes in the
small component, 〈si〉, reached from a randomly chosen node for different cluster-
ing coefficient, C, for model 1 when T = 0.64.

Table 6.2: Number of edges in each community in model 2
Community 1 Community 2

Total nodes 500 540
Total inter community edges 2050 2330
Total intra community edges 120 120

We have average edges z =

(
41
10

6
25

2
9

233
54

)
and the distribution of nodes among the

community is w =

(
25
52

0
0 27

52

)
. More details are shown in Table 6.2.

The modularity for this model is σ = 18.20 or Q = 0.446. For transmissibil-

ity, T =

(
3
10

1
5

1
5

6r
10

)
. Using (6.11), we obtain det(I − A) = −0.0464 + 0.1002r.

When r = 0.4633 , phase transition occurs, namely the giant component first ap-

pears. If r = 1 , that is when T =

(
3
10

1
5

1
5

6
10

)
, there exists a giant component.

(i.e. outbreak of disease)

Figure 6.4 shows the probabability, P , that a randomly chosen community-i

node (community 1 + community 2) leads to the giant component versus the clus-

tering coefficient,C. The fraction of the giant component in communities 1 and 2

(S1 and S2) versus the clustering coefficient,C, is also shown.

Figure 6.5 shows the average number of community-i nodes in the small com-
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Figure 6.4: The probability,P , that a randomly chosen community-i node leads to
the giant component versus the clustering coefficient,C, for model 2. S1 and S2 are
the fraction of the giant component in communities 1 and 2 respectively.

ponent, 〈si〉, by using (6.11), reached from a randomly chosen node for different

values of the clustering coefficient, C.
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Figure 6.5: A diagram showing the average number of community-i nodes in the
small component, 〈si〉, reached from a randomly chosen node for different cluster-
ing coefficient, C, for model 2.

6.7 Concluding remarks

In this chapter, we focus on complex networks with an arbitrary joint degree dis-

tribution. We study community clustered networks which are more suitable for

modelling the disease transmission in community networks with clustering effects.
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With certain clustering coefficient and beyond the percolation threshold, we obtain

the probability that a randomly chosen community-i node leads to the giant com-

ponent. In the context of contact network epidemiology, this probability refers to

the probability that an individual in a community is affected by the infectious dis-

ease. We have also derived formulae to calculate the size of the giant component

and the average small-component size (excluding the giant component). Taking into

account the clustering effect through the free-excess degree distribution, the model

shows that the clustering effect will decrease the size of the giant component.
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Chapter 7

Conclusions and Further Work

7.1 Summary of research

This study mainly consists of three parts. In the first part of the research, we fo-

cus on the bifurcation analysis of an epidemic model with sub-optimal immunity

and saturated treatment/recovery rate. Furthermore, nonlinear incidence rate is also

taken into account as an additional feature in Chapter Four. Due to the combina-

tion of the nonlinearities in both incidence rate and recovery rate, the analysis of

equilibrium involves a cubic polynomial instead of a quadratic polynomial as in

previous works. Different from classical models, sub-optimal immunity models are

more realistic to model the microparasite infectious diseases such as Pertussis and

Influenza A. By carrying out the bifurcation analysis of the models, we have shown

that for certain values of the model parameters, Hopf bifurcation, Bogdanov-Takens

bifurcation and its associated homoclinic bifurcation occur. By studying the bifur-

cation curves, one can predict the persistence or extinction of diseases. The main

results and key findings in this part are summarized below.

(a) For the sub-optimal immunity epidemic model with saturated treatment/recovery

rate, the reduced system is given by

dI

dt
= β(

A

µ
− I −R)I − vI − cI

1 + aI
− µI,

dR

dt
= k(vI +

cI

1 + aI
)− µR,

(7.1)

where k = 1− σ.
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(i) The system (7.1) has a unique positive equilibrium E∗(I∗, R∗) under any of

the three conditions in Lemma 3.1 and the type of unique positive equilibrium

is shown in Lemma 3.2.

(ii) With (β, v, c, a, µ, k) = (1/2, 8, 8, 3, 1, 1/4), the system (7.1) has an unstable

periodic orbit as A increases from 51/2.

(iii) With (β, v, a, µ, k) = (1/2, 2, 1/2, 1, 1/4),c = 8 and A = 19, the system

(7.1) has the bifurcation as shown in Theorem 3.2.

(b) For the sub-optimal immunity epidemic model with nonlinear incidence rate

and saturated treatment/recovery rate, the reduced system is given by

dI

dt
= β(

A

µ
− I −R)I2 − vI − cI

1 + aI
− µI,

dR

dt
= k(vI +

cI

1 + aI
)− µR,

(7.2)

where k = 1− σ.

(i) The system (7.2) has no, or unique, or two positive equilibria under the con-

ditions given in Lemma 4.1.

(ii) With (β, v, c, a, µ, k, A) = (1/2, 1.27, 2, 4, 1, 1/2, 6), the system (7.2) has an

stable orbit as A increases from 27.07373142.

(iii) With (β, c, a, µ, k) = (1/2, 2, 4, 1, 1/2) and setting A and v to the values

according to Theorem 4.3, the system (7.2) has the bifurcation as shown in

Theorem 4.4.

The second part of the research focuses on the problem of estimating the

domain of attraction (DOA) for compartmental ODE epidemic models, which is one

of the examples of autonomous dynamical systems. In this contribution, we have

established a procedure to determine the maximal Lyapunov function in the form of

rational functions. The estimation of the domain of attraction for epidemic models

are very important for understanding the dynamic behaviour of the transmission of

diseases as a function of the initial population distribution. For the calculation of
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the DOA, we focus on the sub-optimal immunity models which we study in the first

part. The main results and key findings in this part are summarized below.

(i) We have established a numerical procedure based on the work in [88] to de-

termine the maximal Lyapunov function in the form of rational functions in

Section 5.2.

(ii) We have showed that for certain values of the parameters, larger k value (i.e.

the model is more toward the SIR model ) leads to a smaller DOA in the

model (7.1) and smaller a value will yield a smaller DOA in the model (7.2).

In the third part of the research, we establish a bond percolation model of

community clustered networks with an arbitrary joint degree distribution (i.e. the

degree distribution is arbitrarily specified). Our model is based on the PGF for-

malism for multitype networks and incorporates the free-excess degree distribution,

which makes it applicable for clustered networks. In the context of contact network

epidemiology, our model serves as a special case of community clustered networks

which are more suitable for modelling the disease transmission in community net-

works with clustering effects. Beyond the percolation threshold, we obtain the prob-

ability that a randomly chosen community-i node leads to the giant component. In

the context of the contact network epidemiology, the probability refers to the proba-

blity that an individual in a community is affected by the infectious disease. Besides

that, we derive formulae to calculate the size of the giant component and the average

small-component size (excluding the giant component). When taking into account

the clustering effect through the free-excess degree distribution, our model shows

that the clustering effect will lead to a significant decrease in the size of the giant

component. In short, our model enables one to carry out numerical calculations to

study the disease transmission in community networks taking into account the com-

munity structure effects and clustering effects. The main results and key findings in

this part are summarized below.

(i) We presented a bond percolation model for community clustered networks

with an arbitrary joint degree distribution. The model is based on the proba-
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bility generating function (PGF) method for multitype networks, but incorpo-

rates the free-excess degree distribution, which makes it applicable for clus-

tered community structure networks.

(ii) The clustering effect will lead to a significant decrease in the size of the giant

component as shown in Figure 6.2 and 6.4.

(iii) Our model enables us to numerically simulate the disease transmission in

community networks taking into account the community structure effects and

clustering effects.

7.2 Future works

A potential extension of our sub-optimal immunity models in Chapter Three and

Four is to include the effect of delay in the models. Many researches have been

carried out to consider the delay in epidemic models [1, 30, 67, 96]. There are

various biological reasons for the introduction of time delays in epidemic models,

including results from assumptions on the sojourn time in a certain epidemiological

state, e.g., the infective state [5]. Apart from that, the effect of vaccination in the

susceptible individuals in which the vaccine waning time is arbitrarily distributed

also contribute to the time delay in epidemic models. Besides, to study the effect

of delay in our sub-optimal immunity models with saturated recovered rate or /and

nonlinear incidence rate, it is important to compare the sub-optimal immunity mod-

els with parameter, σ, as in (7.3) and the time delay as in the equation (7.4).

dR

dt
= (1− σ)T (I)− µR, (7.3)

dR

dt
= e−µ1τT (t− τ)− µR, (7.4)

where τ ≥ 0 is a constant representing the time delay which may represent the

length of the immunity period, and µ1 addresses that an individual has survived

natural death in a recovery pool before becoming susceptible.

Another possible extension for our sub-optimal immunity model is develop-

ing a discrete-type epidemic model which can be obtained from the forward Euler
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method. Discrete models are more appropriate to directly fit the statistical data con-

cerning infectious diseases with a latent period, such as malaria [29]. One of the

possible studies in this field is to study the conditions of existence for the Neimark-

Sacker bifurcation which are derived from the bifurcation theory in [97].

In Chapter Five, we use Maple 14-Optimization package for solving the opti-

mization problem which is needed in the process of estimating the DOA. Researches

in this computation area is still an important area and many computation techniques

have been developed such as the sum-of-square optimization [45] and the global

optimization approach [61].

For our bond percolation model using PGF in Chapter Six, we dealt with

two communities only. Hence, the obvious extension is to apply the method to the

cases with more than two communities. Better algorithms for the redistribution of

community links are also deserve to have more specific study. Apart from that, we

have to consider the overlapping community as introduced in [48] and its effect in

disease transmission in our Chapter Six model.

Apart from that, in the PhD study, we also attempt to relate the bialternate ma-

trix product method with the concept of subresultant by John Guckenheimer et.al.

[40] for computing the Hopf bifurcations, which we briefly explained in Section

2.2.1. It is important to know if periodic solutions exist in the compartmental epi-

demic models. We have obtained an additional condition which is applicable for

dimension up to 3. Further work can be done to solve this problem for higher di-

mension.
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[9] Marc Barthélemy, Alain Barrat, Romualdo Pastor-Satorras, and Alessandro

Vespignani. Dynamical patterns of epidemic outbreaks in complex heteroge-

neous networks. Journal of Theoretical Biology, 235(2):275–288, 2005.

[10] Yakir Berchenko, Yael Artzy-Randrup, Mina Teicher, and Lewi Stone. Emer-

gence and size of the giant component in clustered random graphs with a

given degree distribution. Physical Review Letters, 102(13):138701, 2009.

[11] S. M. Blower, P. M. Small, and P. C. Hopewell. Control strategies for tubercu-

losis epidemics: new models for old problems. Science, 273(5274):497–500,

1996.
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