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Abstract 

 
Geared systems have been widely used in mechanical applications for more than a 

hundred years. A large range of literature has been published especially for 

spur/helical gear systems and the investigations into technical areas of spur/helical 

gears have been very well developed, including understanding of condition 

monitoring systems, diagnostic and prognostic methods. However, there is a lack of 

understanding on the general dynamic behavior of planetary gear systems with tooth 

faults. Planetary gears are normally used as effective power transmission elements 

with high power to weight/volume ratios, large speed reductions in compact volume, 

and high reliability. They tend to have high efficiency and are used in many 

applications, such as automotive, heavy truck/tractor, helicopter, wind turbines and 

bucket wheel reclaimer gearboxes. 

 

The purpose of this research is to develop a vibration analysis system that simulates 

dynamic behavior of large low speed, high torque planetary spur gear systems such 

as used in bucket wheel reclaimer and wind turbine gearboxes, with and without gear 

element faults. This thesis investigates lumped mass modelling methods for planetary 

gearbox dynamic behavior based on previous gearbox modelling research including 

the use of the coupled torsional-transverse behavior of the gear body. The dynamic 

model of the planetary spur gear system includes effects such as: variable tooth mesh 

stiffness, dynamic transmission error effects, and pitch and profile excitation for gear 

fault detection purposes. Different tooth faults are simulated using the concept of 

combined torsional mesh stiffness. The dynamics of spur planetary gear systems with 

and without tooth faults are compared and analyzed to improve the understanding of 

fault detection in the present gear systems. 

 

Dynamic modelling of gear systems, such as outlined in this thesis can assist in 

understanding the consequence of large transient events, including the fluctuations in 

tooth loads which can reduce gear fatigue life and lead to further tooth damage. Early 

detection of faults on gear teeth can be used to initiate maintenance actions in order 

to reduce repair work and avoid catastrophic breakdown.  
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Nomenclature 
 

Symbol Symbol in  
Mfile Meaning 

1a  a1 constant coefficient for mesh stiffness 

2a  a2 constant coefficient for mesh stiffness 

3a  a3 constant coefficient for mesh stiffness 

B  B face width 

B -- point, shown in Figure 4-12 

b  -- gear face width 

1b  b1 constant coefficient for mesh stiffness 

2b  b2 constant coefficient for mesh stiffness 

3b  b3 constant coefficient for mesh stiffness 

3QBr  calculated length, shown in Figure 4-12 

BsCs calculated length, shown in Figure 4-12 

BsDs calculated length, shown in Figure 4-12 

BsEs calculated length, shown in Figure 4-12 

BsNs calculated length, shown in Figure 4-12 

BsPs calculated length, shown in Figure 4-12 

BrCr calculated length, shown in Figure 4-12 

BrDr calculated length, shown in Figure 4-12 

BrEr calculated length, shown in Figure 4-12 

BrPr calculated length, shown in Figure 4-12 

carrier  c (short as) carrier arm 

C -- point, shown in Figure 4-12 

cc  ccx; ccy shaft transverse damping (shaft-carrier) 

couplingC  calculated damping of coupling 

ctc  cct shaft torsional damping (shaft-carrier) 

pxc  Cpx damping between planet gear and carrier arm, representing 
bearing damping, x direction  

pyc  Cpy damping between planet gear and carrier arm, representing 
bearing damping, y direction  
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rc  crx; cry base transverse damping (base-ring) 

irpc  Crp gear mesh damping between ring and planet i 

rtc  crt base torsional damping (base-ring) 

sc  csx; csy shaft transverse damping (shaft-sun) 

pc  -- tooth tip clearance of planet gear 

rc  
-- tooth tip clearance of ring gear 

sc  -- tooth tip clearance of sun gear 

ispc  Csp gear mesh damping between sun and planet i 

stc  cst shaft torsional damping (shaft-sun) 

D -- point, shown in Figure 4-12 

pd  dp pitch diameter of planet gear 

rd  dr pitch diameter of ring gear 

rbD  calculated relative displacement between ring gear and base 

ircpD  Drcp radial direction change from planet gear design center to real 
center  

sd  ds pitch diameter of sun gear 

ssD  -- relative displacement between sun gear and sun gear shaft 

itcpD  Dtcp direction change (perpendicular to radial direction) from planet 
gear design center to real center 

E -- point, shown in Figure 4-12 

E  ipdata(21) Young‟s Modulus 

Emesh  calculated coefficient of equal stiffness effect  

)(tepitch  
esppp; espps; 
erppp; erppr pitch error 

)(teprofile  espp; erpp profile error 

)(tE
ir

 fEr run out functions 

)(te
irp  ferp gear combined gear error (pitch and profile), ring-planet pair i 

)(tE
irp  fErp run out functions 

)(tE
is  fEs run out functions 

)(te
isp  fesp gear combined gear error (pitch and profile), sun-planet pair i 

)(tE
isp  fEsp run out functions 

F  
calculated force 

G1 -- 1st gear of reduction gearbox 

G2 -- 2nd gear of reduction gearbox 

G3 -- 3rd gear of reduction gearbox 
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G4 -- 4th gear of reduction gearbox 

G5 -- 5th gear of reduction gearbox 

G6 -- 6th gear of reduction gearbox 

f  ipdata(32) supply frequency 

ph  h tooth addendum height of planet gear 

pah
 ha tooth dedendum height of planet gear 

pfh
 hf tooth height of planet gear  

rh  h tooth addendum height of ring gear 

rah  ha tooth dedendum height of ring gear 

rfh
 hf tooth height of ring gear  

sh  h tooth addendum height of sun gear 

sah  ha tooth dedendum height of sun gear 

sfh
 hf tooth height of sun gear  

i  i or j the ith 

I  -- tooth inertia 

binertia  calculated inertia of a single bucket 

oinertia  calculated inertia of a full bucket of ore 

winertia  calculated inertia of bucket wheel body 

cJ  calculated mass moment of inertia, carrier arm 

pJ  calculated mass moment of inertia, planet gear 

rJ  calculated mass moment of inertia, ring gear 

sJ  calculated mass moment of inertia, sun gear 

K  
calculated stiffness 

bgK  calculated body stiffness of gear 

bpK  calculated body stiffness of pinion  

ck  kcx; kcy shaft transverse stiffness (shaft-carrier) 

ctk  kct shaft torsional stiffness (shaft-carrier) 

gK  calculated stiffness of gear 

pK  calculated stiffness of pinion  

pxk  Kpx stiffness between planet gear and carrier arm, representing 
bearing stiffness, x direction  

pyk  Kpy stiffness between planet gear and carrier arm, representing 
bearing stiffness, y direction  

rk  krx; kry base transverse stiffness (base-ring) 

)(tk
irp  Krp gear mesh stiffness between ring and planet i 
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rtk  krt base torsional stiffness (base-ring) 

sk  ksx; ksy shaft transverse stiffness (shaft-sun) 

)(tk
isp  Ksp gear mesh stiffness between sun and planet i 

stk  kst shaft torsional stiffness (shaft-sun) 

tgK  calculated tooth stiffness of gear 

tpK  calculated tooth stiffness of pinion  

m  module module 

bmass  calculated mass of a single bucket 

omass  calculated mass of a full bucket of ore 

wmass  calculated mass of bucket wheel body 

)(tMD
irp  MDrpi relative mesh displacement along the line of action (ring-planet) 

)(tMD
isp  MDspi relative mesh displacement along the line of action (sun-planet) 

cm  massC mass of carrier arm 

pm  mass(10); 
mass(11) mass of planet gear 

rm  mass(4); 
mass(5) mass of ring gear 

sm  mass(1); 
mass(2) mass of sun gear 

MsBs calculated length, shown in Figure 4-12 

MsEs calculated length, shown in Figure 4-12 

MsNs calculated length, shown in Figure 4-12 

MsPs calculated length, shown in Figure 4-12 

MrBr calculated length, shown in Figure 4-12 

MrNr calculated length, shown in Figure 4-12 

MrPr calculated length, shown in Figure 4-12 

n  n; nofp number of planetary gears 

on  -- number of buckets with the same loading condition  

Oc  -- center of carrier arm coordinate system  

Olcc  ipdata(92) ore loading condition coefficient 

Op  -- design position of planet gear center on carrier arm 

pO   -- real position of planet gear center on carrier arm 

Or  -- center of ring gear coordinate system  

Os  -- center of sun gear coordinate system  

P -- point, shown in Figure 4-12 
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p calculated circular pitch  

p  p  number of poles 

ip  P (short as) the ith planet gear 

np  
ipdata(20i) 
(partial) 

an integer that varies for each planet gear corresponding to 
planet phasing 

op  -- percentage of ore in a single bucket  

rbp  calculated circular pitch  

3QPr  calculated length, shown in Figure 4-12 

sbp  calculated circular pitch  

rs PP  calculated length, shown in Figure 4-12 

ccq  qcc coupling damping coefficient 

1Q  -- image of sP  when the contact line ss NM  is wrapped on the 
planet base circle 

2Q  -- point, an arc-length tb  away from  1Q  

rBQ2  calculated length, shown in Figure 4-12 

3Q  -- 
point, the first point in the ring gear - planet gear contact region 

rr EB  that is an integer number of base pitches away from 2Q  

paR  Rpa addendum circle diameter of planet gear 

pbR  Rpb base circle radius of planet gear 

pfR  dpf, (2*
pfR ) root circle radius of planet gear 

raR  Rra addendum circle diameter of ring gear 

rbR  Rrb base circle radius of ring gear 

rfR  drf, (2*
rfR ) root circle radius of ring gear 

saR  Rsa addendum circle diameter of sun gear 

sbR  Rsb base circle radius of sun gear 

sfR  dsf, (2*
sfR ) root circle radius of sun gear 

cr  rc design radial distance between the centers of planet gear and 
carrier arm 

icpr  rcp real radial distance between the centers of the ith planet gear and 
carrier arm 

ring  r (short as) ring gear 

ipr  rp base circle of the ith planet gear 

rr  rr base circle of ring gear 

)(irrn  rrn(i) relative phase between the nth ring gear - planet gear mesh and 
the arbitrarily chosen first ring gear - planet gear mesh 
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rbr  rrb radius of relative displacement measure point to ring gear center 

sr  rs base circle of sun gear 

)(irsn  rsn(i) relative phase between the nth sun gear - planet gear mesh and 
the arbitrarily chosen first sun gear - planet gear mesh 

ssr  rss radius of relative displacement measure point to sun gear shaft 
center 

rrs  rss phase difference between sun gear - planet gear mesh and ring 
gear - planet gear mesh 

s  -- tooth thickness 

irpSP  SPrp tooth separation phenomenon (ring-planet) description function 

ispSP  SPsp tooth separation phenomenon (sun-planet) description function  

sun  s (short as) sun gear 

bt  tb planet tooth thickness at the base circle 

cT  Tc carrier arm output torque 

flT  calculated full load torque 

gT  calculated torque applied on gear 

imumTmax  calculated maximum torque 

pT  calculated torque applied on pinion  

rbT  Trb torque between ring gear and ring gear base 

ssT  Tss torque between sun gear and sun gear shaft 

upstartT   calculated start-up torque 

cu  uc design circle linear speed of carrier arm (planet mounted circle)  

piu  up base circle linear speed of the ith planet gear 

ru  ur base circle linear speed of ring gear 

su  us base circle linear speed of sun gear 

ru*  calculated ring gear total torsional displacement (in terms of linear 
displacement on pitch circle) 

su*  calculated sun gear total torsional displacement (in terms of linear 
displacement on pitch circle) 

cx  xc x axis of carrier arm 

pix  xp x axis of the ith planet gear 

rx  xr x axis of ring gear 

sx  xs x axis of sun gear 

pix*  calculated planet gear displacement in x direction from the original sun 
gear centre 
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cy  yc y axis of carrier arm 

piy  yp y axis of the ith planet gear 

ry  yr y axis of ring gear 

sy  ys y axis of sun gear 

piy*  calculated planet gear displacement in y direction from the original sun 
gear centre 

gZ  calculated tooth number of gear 

pZ  calculated tooth number of pinion  

pz  zp teeth number of planet gear 

rz  zr teeth number of ring gear 

sz  zs teeth number of sun gear 

i  Dfae angular change of the ith planet gear center position about carrier 
arm center  

  -- coefficient of pitch/profile error amplitude 

p  ap pressure angle, planet gear 

r  ar pressure angle, ring gear 

s  as pressure angle, sun gear 

  
calculated angular displacement 

c  calculated torsional angle displacement of carrier arm 

g  calculated angular displacement of gear 

p  calculated angular displacement of pinion  

pi  calculated torsional angle displacement of the ith planet gear 

r  calculated torsional angle displacement of ring gear 

s  calculated torsional angle displacement of sun gear  

t  calculated number of teeth have meshed 

i  fae the ith planet gear angle position about sun gear/ring gear 
coordinate system   

n  ipdata(20i) circumferential angle of planet gears measured positive counter-
clockwise 



symbol  
D; d differential symbol  
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1. Introduction 
 

1.1. THE RESEARCH TITLE 
 

Dynamic Modelling of Planetary Gear Systems for Gear Tooth Fault Detection is the 

title of this research. 

 

1.2. THE RESEARCH OVERVIEW 
 

This research project aims to develop a general torsional-transverse coupled dynamic 

model of planetary spur gear system vibration using the lumped mass approach to 

improve the understanding of the dynamic behavior with and without tooth faults 

under extreme conditions such as very low speed and high torque. The model 

includes effects such as variable tooth mesh stiffness, dynamic transmission error 

effects and tooth stiffness, pitch and profile excitation and gear tooth faults (cracking 

and spalling) for gear fault detection purposes. The model is also developed to be 

general enough to contain components external to the planetary gear stage such as a 

motor, a reduction gearbox, a coupling and load along with extra details. To do so, 

matrix techniques are used. In order to conduct the simulation and calculation 

automatically, the MATLAB simulation program with symbolic math was employed.  

 

The dynamic vibration results of all degrees of freedom were analyzed using signal 

averaging, frequency spectrum analysis (FSA) and continuous wavelet analysis 

(CWTA). The effects of different sizes of tooth cracks and spalls on the system 

dynamic behavior were compared and examined. Discussion and conclusion are 

included based on the overall results and analysis and future works are proposed.  

 

1.3. THE RESEARCH OBJECTIVE 
 

The purpose of this research is to develop a vibration model that simulates dynamic 

behavior of large spur planetary gear systems such as used in bucket wheel 
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reclaimers, with and without gear element faults. A 9+3n (n representing the number 

of planetary gears) degree of freedom 2-dimensional dynamic model is built for 

comparison of fault-free and simulated tooth fault cases. 

 

The difference and comparison between the vibration signals with undamaged teeth, 

cracked teeth, and teeth with spalling is discussed by investigating some of the 

common diagnostic functions and changes to the frequency spectra results.  

 

Based on the understanding and outcomes of the vibration simulation, improved fault 

detection, diagnosis and prognostic techniques will be discussed as well as further 

investigation with more detailed models and growth of faults. Dynamic modelling 

developed in this research can assist in understanding of the consequence of large 

transient events, including the fluctuations in tooth loads which can reduce gear 

fatigue life and lead to further tooth damage. Early detection of faults on gear teeth 

can be used to initiate maintenance actions in order to reduce repair work and avoid 

catastrophic breakdown. 

 

1.4. SIGNIFICANCE 
 

This study has the potential to benefit industry by providing an understanding of 

dynamic behavior of planetary gear sets and vibration fault detection methods 

applied to tooth faults as well as diagnosis and prognostic techniques, such as for the 

large gearbox systems as found in the mining industry. The early detection of 

incipient gear failure can be used to initiate maintenance actions and changes in 

operational loading before catastrophic breakdown occurs. In instances where the 

early stages of gear failure remains undetected, extensive repairs with considerable 

downtime and loss of production can result. 

 

Although comprehensive analysis has been conducted on the fault detection and 

dynamic analysis of spur/helical gear systems, early fault detection and analysis of 

planetary drive systems are still in their infancy, especially for large low speed 

systems. This study can improve the understanding of these areas and develop viable 

methods for low speed applications. 
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1.5. THE RESEARCH METHOD 
 

Lumped mass techniques (Newton‟s 2nd Law) are employed in order to efficiently 

develop the model differential equations. The model includes the following 

components; 

 

(i) Bucket wheel mass, inertia and assumed torque loading (provides large transient 

torque) 

(ii) Carrier arm mass, inertia and torsional stiffness 

(iii) Shaft torsional, lateral stiffness 

(iv) Bearing stiffness (associated with (iii) is considered as supporting stiffness for 

gear-shaft elements) 

(v) Gear teeth numbers and gear ratios 

(vi) Gear geometric characteristics 

(vii) Time variable gear tooth-tooth stiffness (as part of the mesh stiffness) 

(viii) Combined mesh stiffness 

(ix) Sun gear shaft input characteristics 

(x) Gear casing and support resonance (considered as supporting stiffness on 

assumed fixed elements). 

 

The assumptions in developing the dynamic model normally include simplifications 

that are made to reduce the model to a solvable form within a limited time frame. 

The following items are normally considered to have negligible effect in the early 

stages of gear dynamic modelling; 

 

(i) Tooth static transmission error 

(ii) Tooth mesh friction 

 

Industry standard methods will be used for solving the simultaneous differential 

equations using MATLAB and/or SIMULINK tools. 

 

In this research, step-by-step detailed planetary gear set models were developed. 
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Initially, the planetary gear set was modeled without consideration of shafts and 

bearings. The simplest first stage model can even neglect gear mesh stiffness, ignore 

shaft effects and include a rigid ring gear. More detailed models with gear mesh 

stiffness, time varying mesh stiffness, shaft torsional/lateral stiffness, bearing 

stiffness; non-rigid ring gear, large inertia and large transient torque introduced by 

the  bucket wheel, and different tooth faults were developed and analyzed step by 

step. 

 

1.6. SPECIAL FEATURES 
 

(i) Fluid coupling was modeled by using an extra degree of freedom (torsional 

damping was taken into account) to simulate start up. 

(ii) MATLAB m-files were formed using symbolic math in order to create the 

differential equations, adjustable for different amounts of inputs automatically. 

(iii) Models with different numbers of planet gears with and without 

torsional/transverse responses can be easily simulated due to the advantage of (ii). 

 

1.7. OVERVIEW OF CHAPTERS 
 

In Chapter 2, the research background is introduced and background literature is 

reviewed. 

  

In Chapter 3, a generalized lumped mass dynamic model of a single stage planetary 

gear set is developed with an overall equation obtained using matrix techniques. 

Detailed development of equations are shown and the advantages of matrix 

formulation is discussed. 

 

In Chapter 4, pitch and profile excitations of single spur gear pair with one tooth in 

mesh and multiple teeth in mesh are developed. Tooth mesh variation is analyzed in 

terms of  time variation of number of teeth in mesh. Pitch and profile excitations of 

the multiple gear pairs in the planetary gear set are examined. The simulation of 

random excitation is also included.  
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In Chapter 5, a common formulation of combined torsional mesh stiffness is 

developed which can simulate high contact ratio gear mesh stiffness. The formulation 

is capable of introducing damaged teeth with both cracking and spalling with 

simulation results shown. The advantages and limitations of the method are also 

discussed. 

 

In Chapter 6, the major modelling parameters of a typical bucket wheel reclaimer are 

introduced, including detailed arrangement, detailed parameters and relative 

calculations which are needed for this research. 

 

In Chapter 7, the flow chart of the overall software model is illustrated and the 

overall inputs are listed. MATLAB m-files used for each chapter (Chapter 3 to 

Chapter 9) are introduced with corresponding flow charts where applicable. 

 

In Chapter 8, 32 assumptions are listed and explained, and the corresponding 

purposes are indicated. The overall dynamic model is applied to an undamaged 

planetary gear set. The results of all degree of freedom are then analyzed using signal 

averaging and frequency analysis method. Comparison of simulations for different 

cases is also demonstrated.  

 

In Chapter 9, signal averaging, FSA and CWTA are applied to the resulting signals of 

overall dynamic models with different sizes of tooth cracks and spalls. The 

detectabilities of all three methods are determined, compared and discussed. 

 

In Chapter 10 and Chapter 11, discussion and conclusion are made and future works 

are proposed.  

 

In the appendix, all MATLAB mfiles are listed with detailed codes along with results 

from signal averaging, FSA and CWTA except those already presented in the text.  
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2. LITERATURE REVIEW 
 

2.1. OVERVIEW 
 

Over the last half century, there has been a significant amount of literature on 

dynamic modelling of gear systems for multiple purposes including the estimation of 

dynamic load sharing, further understanding of vibration generation and propagation, 

noise control and recently for condition monitoring, diagnostic and prognostic 

behavior of gears and other element faults. 

 

A numbers of researchers have classified gear/gearbox dynamic modelling 

models/projects with respect to different points of view such as Ozguven and 

Houser1, Zakrajsek2, and Shu Du3. In this research, a classification based on that 

found by Shu Du is presented in Figure 2-1. 

 
 

 In the next sections, each group of the classification will be reviewed and major 

Gear/gearbox dynamic modelling 

Models with tooth only Models with tooth and other 
elements Models with overall gearbox 

Models 
with single 

tooth 

Models 
with multi 

teeth 

Cantilever/
mass spring 

models 
or FEM 
models 

Simulating 
gear faults 

or not 

Parametric 
/FEM models 
or Hertz/FEM 

contact 
models 

Simulating 
gear faults 

or not 

Parametric 
(torsional 
models or 

torsional & 
translational 

models) 
 

 
FEM  

models 

Simulating 
gear 

faults/other 
elements 
faults or 

not 

 
Single 
stage 

models 
 

Multi-
stage/complex 
arrangements  

Simulating 
gear 

faults/other 
elements 
faults or 

not 

Simulating 
gear 

faults/other 
elements 
faults or 

not 

Simulating 
gear 

faults/other 
elements 
faults or 

not 

Figure 2-1 Classification of gear/gearbox dynamic modelling3 
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publications will be highlighted. 

 

2.2. DYNAMIC MODELLING OF GEARS IN MESH 

WITH SINGLE TOOTH ONLY 
 

When only the compliance or stiffness of one meshing gear tooth is considered and 

all other elements are assumed to be perfectly rigid, the dynamic models can be 

called single tooth models. These models are mainly based on the cantilever beam 

theory. In 1973, Wallace and Seireg4 analyzed the stress, deformation and fracture 

patterns in a single tooth model when subjected to dynamic loading using the FEA 

method. In the late 1980s, Ramamurti and Rao5 developed a more advanced FEM 

approach (model with asymmetry of the load on the teeth and with a cyclic system of 

gear teeth allowing the stress distribution in the adjacent teeth to be calculated by 

analyzing one tooth only) to analysis the stress of spur gear teeth.  

 

Single tooth models give the important initial understanding of gear dynamics. 

However, by the limitation of understanding and interests, faulted tooth features were 

not introduced into single tooth models as a major concern.  

 

To consider the meshing and contact forces between meshing teeth, models with 

more than one tooth are needed. In 1958, Harris‟ work6 pointed out the importance of 

transmission error and parametric excitation of the gear mesh and introduced three 

vibration sources (manufacture errors, tooth stiffness vibration and loss of contact) 

into the dynamic model. In 1988, Vijayakar, Busby and Houser7 used a simplex type 

algorithm to impose frictional contact conditions on finite element models. In the 

same year, Ozguven and Houser8 developed a non-linear model with a single degree 

of freedom to calculate dynamic mesh and tooth forces using two methods. One was 

using dynamic factors based on stresses. Another used dynamic transmission error or 

loaded static transmission errors. In 1989, Kahraman and Singh9 focused on the 

backlash non-linearity as excited primarily by the transmission error between the 

spur gear pair both external and internal. In 1990, Sundarajan and Young10, as well as 

with Amin11 had an important development using the three dimensional finite 

element substructure method associated with pre-processing software to gain high 
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accuracy and efficiency of computation. In 1993, Vijayakar and Houser12 used a 

combined finite element (refined elements near contact zone and normalized 

elements out of contact zone) and surface integral method for contact analysis of 

meshing gears.  

 

Recently, tooth faults have been introduced into gear dynamic models. For instance, 

Choy, et al., analyzed the effects of surface pitting and wear on the vibration of gear 

transmission systems13. Yesilyurt, Gu and Andrew14 studied the influence of gear 

wear faults by measurement of gear tooth stiffness reduction in their model analysis. 

Chaari, Bassar and Haddar analysed15 the effect of spalling and tooth breakage on 

gear mesh stiffness. Chaari, Fakhfakh and Haddar16 developed an analytical model 

with a spur gear tooth crack to study the influence on gear mesh stiffness.  

 

2.3. DYNAMIC MODELLING OF GEARS IN MESH 

WITH TOOTH AND OTHER ELEMENTS 
 

A model with other elements (shafts, bearing and host flexibility) other than with a 

single tooth only is considered necessary for a more general and more realistic model 

with fewer assumptions. 

 

The models with torsional stiffness of gear-carrying shafts and/or supporting 

bearings, with both torsional and transverse stiffness of gear-carrying shafts and/or 

supporting bearings and the models using FEM which includes gear-carrying shafts 

and/or supporting bearings are classified in this group. 

 

In the early 1960s, Johnson17 introduced a receptance coupling technique to calculate 

the natural frequencies from the receptance equation obtained by first separately 

finding the receptances at the meshing point of each of a pair of geared shafts. In 

1969, Seager18 included flexible bearings in a three-degree-of-freedom model. In 

1972, Wang and Morse19 developed a torsional model with shaft and constant mesh 

stiffness. In 1975, Rettig20 modeled a single gear stage with four lateral and two 

torsional degrees. In 1980, Iida, et al., constructed a model with coupled torsional-

flexural vibration of two shafts in a spur gear system, one output shaft assumed 
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flexible in bending and one input shaft rigid in bending21. In the later work, Iida and 

Tamura22 introduced a third shaft into the model. In 1984, Kucukay23 developed an 

eight-degree-of-freedom model to include the rocking and axial motions of the rigid 

shafts. In 1985, Neriya, et al., also investigated the coupled torsional-flexural 

vibration of a geared system, but using FEM to solve the model24. In 1987, Lin, et al., 

included motor and load inertias in a three-degree-of-freedom torsional model25. In 

1992, a finite element model of a geared rotor system on flexible bearings was 

constructed by Kahraman, et al.26. By the same researcher, a linear dynamic model 

with helical gears was investigated in 1993.  

 

In 2000, Bartelmus27 constructed a torsional gear mesh model for gear fault diagnosis 

with a broken tooth simulated. High consistency was shown between the simulation 

and experimental work. In 2001, Lin and Kuang28 investigated the effect of tooth 

wear on the vibration spectrum for condition monitoring based on their gear dynamic 

model.  

 

2.4. DYNAMIC MODELLING OF OVERALL 

GEARBOX 
 

Compared to the two former groups, dynamic modelling of the overall gearbox 

includes elements other than a gear pair or gear train and associated supporting shafts 

and bearings, such as a motor (input load), load (output load), casing and flexible or 

rigid mounts. The major advantage of this work has been the inclusion of non-

rotating elements and input-output load features to accomplish more general models.  

 

In 1991, T.C. Lim and R. Singh29 developed linear time-invariant, discrete dynamic 

models of an overall gearbox by using lumped parameter and finite element methods 

and the effect of casing mass and mount stiffness has been studied. Also in 1991, 

Choy, et al., presented an analysis of a multi-stage gear transmission vibration 

focusing on the effect of casing motion and mass imbalance30. In the same year, E.L. 

Saeidy and Fawzi31 constructed a vibration model for the simulation of a spur 

gearbox with major emphasis being the effect of tooth backlash and ball bearing dead 

band clearance. One year later, Choy32 continued their research with the multi-stage 
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gearbox coupled with gearbox casing by using the modal synthesis approach and the 

finite element method with a verification by experimental work in 199333. In 1996, 

Velex and Maatar34 employed geometrical analysis to simulate shape deviation and 

mounting errors and developed a mathematical model for analysis of the relative 

influence. In 1997, Shu Du35 developed a dynamic model of an overall gearbox 

including loaded static transmission error, time varying tooth mesh stiffness and 

effects of other connected elements and obtained good agreement with experimental 

results. In 2002, Lin and Parker36 studied the instabilities in a two-stage gear system 

due to mesh stiffness variation by using assumed square wave mesh stiffness.  

 

In 1994, Kahraman37 developed a three dimensional dynamic simulation of a single-

stage planetary gear train with six rigid body motions of the gears and carrier arm. 

Also in 1994, Kahraman38 refined the previous model to include manufacturing 

errors, assembly errors, tooth separations and time-varying mesh stiffness.  

 

Based on the dynamic model of Shu Du‟s work35, in 2001, Howard, et al., developed 

a lumped parameter model including tooth friction and a local tooth crack to 

investigate the influence of the tooth crack on gearbox vibration signature39. In 2004, 

Jia40 developed a more detailed dynamic model to simulate gear faults such as a 

tooth crack and spalling. He also included geometry errors and friction forces to 

study the effects of these factors on the gearbox vibration signal.  

 

In 2004, Yuksel and Kahraman41 employed a computational model of a planetary 

gear set to study the influence of surface wear on the dynamic behavior of a typical 

planetary gear set.  In 2005, Vecchiato42 developed a planetary gear train model 

which is capable of self-regulation for compensation of various errors of alignment.  

In 2006, Jia and Howard presented a 26 degree of freedom gear dynamic model of 

three shafts and two pairs of spur gears in mesh for comparison of localized tooth 

spalling and damage43.  

 

In 2006, Abousleiman and Velex44 developed a three-dimensional finite element 

model/ lumped parameter model to analyze the dynamic behavior of planetary spur 

and helical gears. In 2007, Ambarisha and Paker presented a work45 examining the 

complex, nonlinear dynamic behavior of spur planetary gears using both analytical 
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and finite element models. The models included mesh stiffness variation excitation, 

corner contact, and gear tooth contact loss. In 2008, Inalpolat and Kahraman 

proposed a generalized dynamic model for multi-stage planetary gear trains46. 

 

This thesis presents a general torsional-transverse coupled dynamic model of 

planetary spur gear system vibration which is based on Kahraman‟s model37, 

including more details and some major modifications such as detailed pitch and 

profile excitation, detailed time variable tooth mesh stiffness, capability of modelling 

tooth faults, inclusion of motor, reduction gearbox and flexible coupling drive. 
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3. DYNAMIC MODELLING OF PLANETARY 

GEAR SYSTEMS 
 

A single-stage planetary gear system contains one sun gear, one ring gear, one carrier 

arm and a number of planet gears which can be mounted as shown in Figure 3-1. To 

achieve the full understanding of the reactions between each part of the gear system 

and generate the equations of motion easily, the overall system will be considered 

separately as three sub-systems, namely a sun gear - planet gear pair, a ring gear - 

planet gear pair and a carrier arm - planet gear pair. In this chapter, the first three 

sections examine each of the three pairs respectively and the equations of motion will 

be subsequently obtained including essential supporting shafts and bearings. Within 

the following section the equations of motion of the overall system will be assembled 

based on the equations from the first three sections. In order to form the overall 

equations with no difficulty and to introduce further detailed in-system and external 

supporting reactions into the system of equations, matrix techniques will be used.  

 

 
Figure 3-1 A single-stage planetary gear system with three single planet gears (yellow colored 

gears), one sun gear (red colored gear), one ring gear (green colored gear) and one carrier arm 

(purple colored part) 
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3.1. SUN GEAR – PLANET GEAR PAIR 
 

A sun gear - planet gear pair is examined in this section with consideration of the 

interaction between sun-planet gears and sun gear shaft.  

 

Figure 3-2 shows a sun gear and a planet gear in mesh with the ith planet gear at an 

angle  about the sun gear using the Descartes coordinate system.  
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Figure 3-2 A sun-planet pair (with the contact point in Ⅱquadrant about the sun gear) 
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The sun gear is allowed to translate in both x and y directions, and rotate about its 

center of the plane of gears. The torsional angular displacement of the sun gear is 

shown as , and  for the ith planet gear respectively. 

 

The rigid bodies of both sun gear and planet gear are connected through the gear 

mesh stiffness and gear mesh damping along the line of action, also with a 

combined gear error . 

 

The relative mesh displacement defined along the line of action is , so the 

displacement defined with respect to  is, 

 

and the displacement with respect to  is, 

 

where s  is the pressure angle of the sun gear - planet gear pair. The positive sign of 

 occurs when the action line is under compression, and the different 

conditions when the planet gear rotates about the sun gear are shown and examined 

in Figure 3-3 and 3-4. 

 

According to Figure 3-2, 3-3, and 3-4,  can be described as, 
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-                                                                                                                     (3.1) 

where, ,  is the base circle of the sun gear,  represents torsional angular 

displacement of the sun gear; ,  is the base circle of the ith planet gear, 

 is the torsional angular displacement of the ith planet gear;  is the 
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Figure 3-3 A sun-planet pair (with the contact point in four quadrants about the sun 
gear respectively) 
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Tooth separation phenomenon is simulated by using the following unit step function, 

                                                                                           (3.2) 

As the equation shows, when , the teeth will lose contact and the 

resulting reaction force between the gear pair will be equal to zero.  
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planet gear positioned in the four quadrants about the sun gear respectively as shown in 

Figure 3-3 
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A free body diagram of the planet gear is shown in Figure 3-5 (sun-planet pair only). 

 

 

In the direction of pix* , the resulting differential equation becomes, 
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Figure 3-5 Free body diagram of planet gear (sun-planet pair only) 
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( / )  +  +  = 0                                   (3.5) 

where ,                                                                                                    (3.6)   

and where  is the time differential of  which is expressed from Eqs 

3.1, as follow,  

= cos( )  -sin( ) -cos( ) +sin( )

+sin( ) +cos( ) -sin( ) -cos( )

+ + + + -                                                      (3.7) 

                             

Substituting Eqs 3.7 into Eqs 3.3, Eqs 3.4 and Eqs 3.5 gives, 

In the direction of , the resulting differential equation becomes,  

ipp xm *  - sin( )cos( )  + sin( )sin( )  

 + sin( )cos( ) - sin( )sin( )  

- sin( )sin( ) - sin( )cos( )  

+ sin( )sin( ) + sin( )cos( )  
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- sin( )cos( )   

+ sin( )cos( )   

- sin( )sin( )   

+ sin( )sin( )  

- sin( ) - sin( )  

- sin( ) - sin( )  

+ sin( ) =0                                                               (3.8) 

 

In the direction of , the resulting differential equation becomes,   
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+ cos( )sin( ) + cos( )cos( )  

- cos( ) - cos( ) - cos( )  

- cos( ) + cos( )  

- cos( )cos( )  

+ cos( )cos( )   

- cos( )sin( )   

+ cos( )sin( )  

- cos( ) - cos( )  

- cos( ) - cos( )  

+ cos( ) =0                                                        (3.9) 

 

For the torsional degree of freedom, the resulting differential equation becomes, 

( / )  + cos( )  - sin( ) - cos( )  

+ sin( ) + sin( ) + cos( )  

- sin( ) - cos( ) + +  

+ + + + cos( )   

- cos( )  + sin( )  

        - sin( ) + +  

+ + - =0       (3.10) 

 

A free body diagram of the sun gear is shown in Figure 3-6 (sun-planet pair only). 
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In the direction of , the resulting differential equation becomes,  

 + sin( ) + sin( )  

+  +  = 0                                                                                (3.11) 

In the direction of , the resulting differential equation becomes,  

 + cos( ) + cos( )  

+  +  = 0                                                                                              (3.12) 
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Figure 3-6 Free body diagram of sun gear 
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For the torsional degree of freedom, the resulting differential equation becomes, 

( / ) su*  +   +   +   + 

  - /  = 0                                                                                   (3.13) 

where sss ru **  ,                                                                                                 (3.14) 

and where  is the input torque applied to sun gear.  

 

Substituting Eqs 3.7 into Eqs 3.11, Eqs 3.12 and Eqs 3.13 gives (excluding 

supporting damping and stiffness),  

In the direction of , the resulting differential equation becomes,  
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In the direction of , the resulting differential equation becomes,   
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+ cos( )  + cos( ) + cos( )  

+ cos( ) - cos( )  

+ cos( )cos( )  

- cos( )cos( )   

+ cos( )sin( )   

- cos( )sin( )  

+ cos( ) + cos( )  

+ cos( ) + cos( )  

- cos( ) =0                                                             (3.16) 

 

For the torsional degree of freedom, the resulting differential equation becomes, 

( / ) su*  + cos( )  - sin( ) - cos( )  

+ sin( ) + sin( ) + cos( )  

- sin( ) - cos( ) + +  

+ + -  + cos( )   

- cos( )  + sin( )  

      - sin( ) + +  

+ + - = /            

(3.17) 

 

It should be noticed that pix*
 denotes the planet gear displacement in the x direction 

with reference to the origin of the sun gear centre, piy*
 denotes the planet gear 

displacement in the y direction with reference to the origin of the sun gear centre, 

and su*  denotes the sun gear total torsional displacement (in terms of linear 

displacement on pitch circle). pix* , piy* , and su*  are defined in detail in Sec 3.4. 
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3.2. RING GEAR – PLANET GEAR PAIR 
 

A ring gear - planet gear pair is examined in this section with consideration of the 

interaction between ring gear and ring gear supporting structure. 

 

Figure 3-7 shows a ring gear and a planet gear in mesh, with the ith planet gear at an 

angle 
i  about the ring gear using the Descartes coordinate system. Positive 

direction for the ring gear have been defined as anticlockwise as shown in Figure 3-7. 

 

 
 

 

The ring gear is allowed to translate in both x and y directions, and rotate about its 
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Figure 3-7 A ring-planet pair (with the contact point in Ⅱquadrant about the ring gear) 
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center on the plane of gears. The torsional angular displacement of the ring gear is 

shown as r , and 
pi  for the ith planet gear respectively. 

 

The rigid bodies of the ring gear and planet gear are connected through the gear mesh 

stiffness )(tk
irp

and gear mesh damping 
irpc along the line of action, also with a 

combined gear error )(te
irp

. 

 

Defining the relative mesh displacement along the line of action as )(tMD
irp

, the 

displacement with respect to ry  is, 

)(tMD
irp )cos( ri    

and the displacement with respect to rx  is, 

)(tMD
irp )sin( ri    

where 
r  is the pressure angle of the ring gear - planet gear pair. The positive sign of 

)(tMD
irp

 occurs when the action line is under compression, and the different 

conditions when the planet gear rotates about the ring gear are shown and analyzed 

in Figure 3-8 and 3-9. 

 

According to Figure 3-7, 3-8, and 3-9, )(tMD
irp

 can be described as, 

)(tMD
irp

= (
ipr yy  )cos(

ri   )+(
ipr xx  )sin(

ri   )+(
ipr uu  )+ )(te

irp
 

+ )(tE
ir

- )(tE
irp

                                                                            (3.18) 

where, rrr ru  , rr  is the base circle of the ring gear, r  is the torsional angular 

displacement of the ring gear; 
iii ppp ru  , 

ipr  is the base circle of the ith planet gear, 

ip  is the torsional angular displacement of the ith planet gear; )(te
irp

 is the 

combined gear error; )(tE
ir

 and )(tE
irp

 are run out functions. 



Page 45 of 278 
 

 

 
 

 

 

ip  

ip
 

pix  

piy  

)(tk
irp  

irpc  

)(te
irp  

ring  

rx  

ry  

r  

r  

i  

rk
 

rc
 

ring  

rk
 

rc
 rtk  

rtc  

rk  

Line of contact 

ip
 

pix
 

piy
 

)(tk
irp

 

irpc

 

)(te
irp

 

ring
 

rx
 

ry
 

r
 

r
 

i
 

Line of contact 

ip
 

rk
 

rc
 

ring  

rk
 

rc
 rtk  

rtc  

rk  

Figure 3-8 A ring-planet pair (with the contact point in the other three quadrants about the ring 
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Figure 3-9 The sign-relationship between axial relative displacement and )(tMD
irp

 with the planet 
gear positioned in the four quadrants about the ring gear respectively as shown in Figure 3-8 
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Tooth separation phenomenon is simulated by using the following unit step function, 










0)(
0)(

0
1

tMD

tMD
SP

i

i

i

rp

rp

rp                                                                (3.19) 

As the equation shows, when 0)( tMD
irp

, the teeth will lose contact and the 

resulting reaction force between the gear pair will be equal to zero.  

 

A free body diagram of the planet gear is shown in Figure 3-10 (ring-planet pair 

only). 

 

 
 

 

In the direction of pix* , the resulting differential equation becomes,  

ipp xm *  -  )(tDMc
ii rprp

 sin(
ri   ) - 

irpSP  )()( tMDtk
ii rprp

sin(
ri   ) = 0    (3.20) 

In the direction of piy* , the resulting differential equation becomes,   

ipp ym *  - cos( ) - cos( ) = 0  (3.21) 

For the torsional degree of freedom, the resulting differential equation becomes, 

(
pJ / 2

pr )
ipu  - )(tDMc

ii rprp
  - 

irpSP )()( tMDtk
ii rprp   = 0                                          (3.22) 

where 
iii ppp ru  ,                                                                                                  (3.23) 

and where )(tDM
irp

  is the time differential of )(tMD
irp

 which is expressed from Eqs 

3.18, as follow,  

 )(tDMc
ii rprp


ri   

irpSP  )()( tMDtk
ii rprp ri  

ip  

ip  

pix  

piy  Line of contact 

)(tk
irp

 

irpc  

)(te
irp

 

r  

ri    

)()( tMDtk
ii rprp   

 )(tDMc
ii rprp

  

Figure 3-10 Free body diagram of planet gear (ring-planet pair only) 
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)(tDM
irp

 = cos(
ri   )
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i ry -cos(
ri   )
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i
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ri   )
i rx -sin(

ri   )
ipx - cos(

ri   )
i

ipx  

+ ru -
ipu + )(te
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 + )(tE
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 - )(tE

irp
                                                                 (3.24) 

                             

Substituting Eqs 3.24 into Eqs 3.20, Eqs 3.21 and Eqs 3.22 gives, 

In the direction of 
pix , the resulting differential equation becomes,  
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=0                                                           (3.25) 

 

In the direction of , the resulting differential equation becomes,   
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+ cos( )cos( )   

- cos( )sin( )   

+ cos( )sin( )  

- cos( ) + cos( )  

- cos( )  - cos( )  

+ cos( ) =0                                                          (3.26) 

 

For the torsional degree of freedom, the resulting differential equation becomes, 

(
pJ / 2
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(3.27) 

 

A free body diagram of the ring gear is shown in Figure 3-11 (ring-planet pair only). 
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Figure 3-11 Free body diagram of ring gear 
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In the direction of rx , the resulting differential equation becomes,  

rr xm   +  )(tDMc
ii rprp

 sin(
ri   ) + 

irpSP  )()( tMDtk
ii rprp

sin(
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+ rr xc   + rr xk   = 0                                                                                                         (3.28) 

In the direction of , the resulting differential equation becomes,   

 + cos( ) + cos( )  

+  +  = 0                                                                                                        (3.29) 

For the torsional degree of freedom, the resulting differential equation becomes, 

( rJ / 2
rr ) ru*  +  )(tDMc

ii rprp
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irpSP )()( tMDtk
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where rrr ru **  ,                                                                                                 (3.31) 

and where 
rbT  is the reaction torque applied to the outer circle of the ring gear by the 

ring gear supporting structure. 

 

Substituting Eqs 3.24 into Eqs 3.28, Eqs 3.29 and Eqs 3.30 gives (excluding 

supporting damping and stiffness), 

In the direction of rx , the resulting differential equation becomes,  
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- 
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In the direction of , the resulting differential equation becomes,   
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For the torsional degree of freedom, the resulting differential equation becomes, 
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It should be noticed that pix*
 denotes the planet gear displacement in the x direction 
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with reference to the origin of the sun gear centre, piy*
 denotes the planet gear 

displacement in the y direction with reference to the origin of the sun gear centre, 

and ru*  denotes the ring gear total torsional displacement (in terms of linear 

displacement on pitch circle). pix* , piy* , and ru*  are defined in detail in Sec 3.4. 
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3.3. CARRIER ARM – PLANET GEAR PAIR 
 

A carrier arm - planet gear pair is examined in this section with the consideration of 

planet pin-bearing assembly.  

 

Figure 3-12 shows a carrier arm and a planet gear pair, with the ith planet gear having 

a theoretical angle 
i  about the carrier arm‟s coordinates. The carrier arm is allowed 

to translate in both x and y directions, and rotate about its center on the plane of 

gears.  

 
 

 
 

 

The ith planet gear is mounted on the carrier arm through the planet pin-bearing 
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Figure 3-12 A carrier arm and a planet gear pair (with the pin-bearing positioned in Ⅱquadrant 
about the carrier arm) 
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assembly which is simulated with introduced stiffness and damping features to 

simplify the equations of motion shown in Figure 3-12. The rotational motion of the 

planet is completely uncoupled from the carrier arm‟s motion, as zero rotational 

friction force is assumed to simplify the system.  

 

In Figure 3-13 the equations relating the planet gear mounted in position with the 

carrier arm and the resulting transversal interaction forces are analyzed.  
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Figure 3-13 The equations relating the planet gear mounted in position on the carrier arm and the 

resulting transversal relative displacements 
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A free body diagram of the planet gear is shown in Figure 3-14 (carrier-planet pair 

only). 

 

 
 

 

 

In the direction of pix* , the resulting differential equation becomes,  

ipp xm *  + 
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spOO cos i ) - 

itcpD sin i  + 
ircpD cos i ) = 0,                                             (3.35) 

ccc ru                                                                                                                    (3.36) 

In the direction of piy* , the resulting differential equation becomes,  
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itcpD cos i ) = 0                                                 (3.37) 

 

ipx

 

ipy  

ip

 

pO   

ip  

pyk  
pyc

 

pxk  

pxc

 

pxk ( ipx* - cx  -  

(-cos( cu /
spOO + initiali )+

spOO cos i ) - 
itcpD sin i  + 

ircpD cos i ) 

pxc ( ipx* - cx  - 

(-cos( cu /
spOO + initiali ))) 

pyk  ( ipy* - cy  -  

(sin( cu /
spOO + initiali )-

spOO sin i ) - 
ircpD sin i  - 

itcpD cos i ) 

pyc  ( ipy* - cy  - (sin( cu /
spOO + initiali ))) 

Figure 3-14 Free body diagram of planet gear (carrier-planet pair only) 



Page 56 of 278 
 

A free body diagram of the carrier arm is shown in Figure 3-15. 

 
 

In the direction of 
cx , the resulting differential equation becomes,  

cm cx  - 
pxc ( ipx* - cx  - (-cos( cu /

spOO + initiali ))) - 
pxk ( ipx* - cx  - (-cos( cu /

spOO +

initiali )+
spOO cos i ) - 

itcpD sin i  + 
ircpD cos i ) = 0                                          (3.38) 

 

In the direction of 
cy , the resulting differential equation becomes,  

cm cy  - 
pyc  ( ipy* - cy  - (sin( cu /

spOO + initiali ))) - 
pyk  ( ipy* - cy  - (sin( cu /

spOO +

initiali )-
spOO sin i ) - 

ircpD sin i  - 
itcpD cos i ) = 0                                            (3.39) 

 

For the torsional degree of freedom, the resulting differential equation becomes, 

( cJ / 2
cr ) cu  - 

pxc ( ipx* - cx  - (-cos( cu /
spOO + initiali ))) sin i  - 

pxk ( ipx* - cx  - (-cos( cu

cx  

cy  

ipx

 

ipy  

ip

 

Oc  

pO   

carrier
 

i  

c  pxk ( ipx* - cx  - (-cos( cu /
spOO +

initiali )+
spOO cos i ) - 

itcpD

sin i  + 
ircpD cos i ) 

pxc ( ipx* - cx  -  

(-cos( cu /
spOO + initiali ))) 

pyk  ( ipy* - cy  - (sin( cu /
spOO +

initiali )-
spOO sin i ) - 

ircpD

sin i  - 
itcpD cos i ) 

pyc  ( ipy* - cy  - 

 (sin( cu /
spOO + initiali ))) 

cT  

Figure 3-15 Free body diagram of carrier arm 
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/
spOO + initiali )+

spOO cos i ) - 
itcpD sin i  + 

ircpD cos i )sin i  - 
pyc  ( ipy* - cy  - 

(sin( cu /
spOO + initiali )))cos i  - 

pyk  ( ipy* - cy  - (sin( cu /
spOO + initiali )-

spOO sin

i ) - 
ircpD sin i  - 

itcpD cos i ) cos i  = - cT / cr                                            (3.40) 

where 
cT  is the load applied to the outer circle of the carrier arm. 

 

It should be noticed that pix*
 denotes the planet gear displacement in the x direction 

with reference to the origin of the sun gear centre and piy*
 denotes the planet gear 

displacement in the y direction with reference to the origin of the sun gear centre. 

pix*  and piy*
 are defined in detail in Sec 3.4. 
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3.4. OVERALL PLANETARY GEAR SYSTEM 
 

Based on the equations developed in the previous three sections, an overall equation 

can be formed using matrix techniques.  

 

Keeping the matrix equation general, gives the ability to handle any arbitrary 

arrangement of planet gears using the same overall equation. In this research, three 

degrees of freedom have been considered for each component (gear and carrier arm) 

so that the overall model has a total of 3*(3 + n) degree of freedom (one sun gear, 

one ring gear, one carrier arm, n planet gears) . In this specific case, 3 planet gears 

are simulated so overall 3*(3+3) =18 degrees of freedom are contained in the overall 

equation. The equation of motion representing the entire planetary gear model is 

given as, 

)()(][][ tFtFDKKDCCDM kcss                                                                (3.41) 

where matrix M represents the mass matrix, which has the form of 3*(3+n) by 

3*(3+n), (in this specific case, 18 by 18), shown in Figure 3-16; D  represents the 

acceleration vector, which has a form of 3*(3+n) by 1, (in this specific case, 18 by 1), 

shown in Figure 3-17(a); D   represents the velocity vector, which has a form of 

3*(3+n) by 1, (in this specific case, 18 by 1), shown in Figure 3-17(b); D  represents 

the displacement vector, which has a form of 3*(3+n) by 1, (in this specific case, 18 

by 1), shown in Figure 3-17(c); )(tFc  and )(tFk  denotes the force vector containing 

damping and stiffness features respectively, and both of them have a form of 3*(3+n) 

by 1, (in this specific case, 18 by 1), shown in Figure 3-18; ][C  and ][ sC  are the 

mesh damping matrix and support structure damping matrix respectively, and both of 

them are of form 3*(3+n) by 3*(3+n), (in this specific case, 18 by 18), shown in 

Figure 3-19; ][k  and ][ sk  are the mesh stiffness matrix and the support structure 

stiffness matrix respectively, and both of them are of form 3*(3+n) by 3*(3+n), (in 

this specific case, 18 by 18), shown in Figure 3-20.   
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Figure 3-16 Mass matrix of overall equation 

Figure 3-17 (a) acceleration vector (b) velocity vector (c) displacement vector 
of overall equation 
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(a) 

Figure 3-18 Force vector containing (a)damping  and (b) stiffness  features respectively 



 

Page 61 of 278 
 

 
(b) 

Figure 3-18(continued) Force vector containing (a)damping  and (b) stiffness  features respectively 
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(a) 

(b)     
Figure 3-19 (a) Mesh damping matrix (above) and continued (middle) and (b) support structure damping matrix 

∑cspisin(ψi-αs)sin(ψi-αs) ∑cspisin(ψi-αs)cos(ψi-αs) ∑cspisin(ψi-αs)  -csp1sin(ψ1-αs)sin(ψ1-αs)
∑cspicos(ψi-αs)sin(ψi-αs) ∑cspicos(ψi-αs)cos(ψi-αs) ∑cspicos(ψi-αs)  -csp1cos(ψ1-αs)sin(ψ1-αs)
∑cspisin(ψi-αs) ∑cspicos(ψi-αs) ∑cspi  -csp1sin(ψ1-αs)

∑crpisin(ψi+αr)sin(ψi+αr) ∑crpisin(ψi+αr)cos(ψi+αr)  -∑crpisin(ψi+αr)  -crp1sin(ψ1+αs)sin(ψ1+αs)
∑crpicos(ψi+αr)sin(ψi+αr) ∑crpicos(ψi+αr)cos(ψi+αr)  -∑crpicos(ψi+αr)  -crp1cos(ψ1+αs)sin(ψ1+αs)
 -∑crpisin(ψi+αr)  -∑crpicos(ψi+αr) ∑crpi crp1sin(ψ1+αs)

∑cpx ∑cpxsinψi  -cpx

∑cpy ∑cpycosψi

∑cpxsinψi ∑cpycosψi ∑cpxsinψisinψi+∑cpycosψicosψi  -cpxsinψi

 -csp1sin(ψ1-αs)sin(ψ1-αs)  -cspisin(ψi-αs)cos(ψi-αs)  -csp1sin(ψ1-αs)  -crp1sin(ψ1+αs)sin(ψ1+αs)  -crp1sin(ψ1+αr)cos(ψ1+αr) crpisin(ψi+αr)  -cpx  -cpxsinψi csp1sin(ψ1-αs)sin(ψ1-αs)+crp1sin(ψ1+αs)sin(ψ1+αs)+cpx

 -csp1cos(ψ1-αs)sin(ψ1-αs)  -csp1cos(ψ1-αs)cos(ψ1-αs)  -csp1cos(ψ1-αs)  -crp1cos(ψ1+αs)sin(ψ1+αs)  -csp1cos(ψ1-αs)cos(ψ1-αs) crp1cos(ψ1+αr)  -cpy  -cpycosψi csp1cos(ψ1-αs)sin(ψ1-αs) +crp1cos(ψ1+αs)sin(ψ1+αs)
 -csp1sin(ψ1-αs)  -csp1cos(ψ1-αs)  -csp1 crp1sin(ψ1+αs) crp1cos(ψ1+αr)  -crp1 csp1sin(ψ1-αs)-crp1sin(ψ1+αs)

 -cspnsin(ψn-αs)sin(ψn-αs)  -cspnsin(ψn-αs)cos(ψn-αs)  -cspnsin(ψn-αs)  -crpnsin(ψn+αs)sin(ψn+αs)  -crpnsin(ψn+αr)cos(ψn+αr) crpnsin(ψn+αr)  -cpx  -cpxsinψn

 -cspncos(ψn-αs)sin(ψn-αs)  -cspncos(ψn-αs)cos(ψn-αs)  -cspncos(ψn-αs)  -crpncos(ψn+αs)sin(ψn+αs)  -crpncos(ψn+αr)cos(ψn+αr) crpncos(ψn+αr)  -cpy  -cpycosψn

 -cspnsin(ψn-αs)  -cspncos(ψn-αs)  -cspn crpnsin(ψn+αs) crpncos(ψn+αr)  -crpn

csx

csy

cst

crx

cry

crt

ccx

ccy

cct

 -csp1sin(ψ1-αs)cos(ψ1-αs)  -csp1sin(ψ1-αs)  -cspnsin(ψn-αs)sin(ψn-αs)  -cspnsin(ψn-αs)cos(ψn-αs)  -cspnsin(ψn-αs)
 -csp1cos(ψ1-αs)cos(ψ1-αs)  -csp1cos(ψ1-αs)  -cspncos(ψn-αs)sin(ψn-αs)  -cspncos(ψn-αs)cos(ψn-αs)  -cspncos(ψn-αs)
 -csp1cos(ψ1-αs)  -csp1  -cspnsin(ψn-αs)  -cspncos(ψn-αs)  -cspn

 -crp1sin(ψ1+αr)cos(ψ1+αr) crp1sin(ψ1+αr)  -crpnsin(ψn+αs)sin(ψn+αs)  -crpnsin(ψn+αr)cos(ψn+αr) crpnsin(ψn+αr)
 -crp1cos(ψ1+αr)cos(ψ1+αr) crp1cos(ψ1+αr)  -crpncos(ψn+αs)sin(ψn+αs)  -crpncos(ψn+αr)cos(ψn+αr) crpncos(ψn+αr)
crp1cos(ψ1+αr)  -crp1 crpnsin(ψn+αs) crpncos(ψn+αr)  -crpn

 -cpx

 -cpy  -cpy

 -cpycosψi  -cpxsinψn  -cpycosψn

csp1sin(ψ1-αs)cos(ψ1-αs)+crp1sin(ψ1+αr)cos(ψ1+αr) csp1sin(ψ1-αs)-crp1sin(ψ1+αr)
csp1cos(ψ1-αs)cos(ψ1-αs)+crp1cos(ψ1+αr)cos(ψ1+αr) +cpy csp1cos(ψ1-αs)-crp1cos(ψ1+αr)
csp1cos(ψ1-αs)-crp1cos(ψ1+αr) csp1+crp1

cspnsin(ψn-αs)sin(ψn-αs)+crpnsin(ψn+αs)sin(ψn+αs)+cpx cspnsin(ψn-αs)cos(ψn-αs)+crpnsin(ψn+αr)cos(ψn+αr) cspnsin(ψn-αs)-crpnsin(ψn+αr)
cspncos(ψn-αs)sin(ψn-αs) +crpncos(ψn+αs)sin(ψn+αs) cspncos(ψn-αs)cos(ψn-αs)+crpncos(ψn+αr)cos(ψn+αr) +cpy cspncos(ψn-αs)-crpncos(ψn+αr)
cspnsin(ψn-αs)-crpnsin(ψn+αs) cspncos(ψn-αs)-crpncos(ψn+αr) cspn+crpn



 

Page 63 of 278 
 

 

               Figure 3-20 Mesh stiffness matrix (above) and continued (middle and below)

∑cspisin(ψi-αs)cos(ψi-αs)ψ'i+∑SPspikspi(t)sin(ψi-αs)sin(ψi-αs) ∑-cspisin(ψi-αs)sin(ψi-αs)ψ'i+∑SPspikspi(t)sin(ψi-αs)cos(ψi-αs) ∑SPspikspi(t)sin(ψi-αs)
∑cspicos(ψi-αs)cos(ψi-αs)ψ'i+∑SPspikspi(t)cos(ψi-αs)sin(ψi-αs) ∑-cspicos(ψi-αs)sin(ψi-αs)ψ'i+∑SPspikspi(t)cos(ψi-αs)cos(ψi-αs) ∑SPspikspi(t)cos(ψi-αs)
∑cspicos(ψi-αs)ψ'i+∑SPspikspi(t)sin(ψi-αs) ∑-cspisin(ψi-αs)ψ'i+∑SPspikspi(t)cos(ψi-αs) ∑SPspikspi(t)

∑crpisin(ψi+αr)cos(ψi+αr)ψ'i+∑SPrpikrpi(t)sin(ψi+αr)sin(ψi+αr) ∑-crpisin(ψi+αr)sin(ψi+αr)ψ'i+∑SPrpikrpi(t)sin(ψi+αr)cos(ψi+αr)  -∑SPrpikrpi(t)sin(ψi+αr)
∑crpicos(ψi+αr)cos(ψi+αr)ψ'i+∑SPrpikrpi(t)cos(ψi+αr)sin(ψi+αr) ∑-crpicos(ψi+αr)sin(ψi+αr)ψ'i+∑SPrpikrpi(t)cos(ψi+αr)cos(ψi+αr)  -∑SPrpikrpi(t)cos(ψi+αr)
 -∑crpicos(ψi+αr)ψ'i-∑SPrpikrpi(t)sin(ψi+αr) ∑crpisin(ψi+αr)ψ'i-∑SPrpikrpi(t)cos(ψi+αr) ∑SPrpikrpi(t)

 -csp1sin(ψ1-αs)cos(ψ1-αs)ψ'1-SPsp1ksp1(t)sin(ψ1-αs)sin(ψ1-αs) csp1sin(ψ1-αs)sin(ψ1-αs)ψ'1-SPsp1ksp1(t)sin(ψ1-αs)cos(ψ1-αs)  -SPsp1ksp1(t)sin(ψ1-αs)  -crp1sin(ψ1+αr)cos(ψ1+αr)ψ'1-SPrp1krp1(t)sin(ψ1+αr)sin(ψ1+αr) crp1sin(ψ1+αr)sin(ψ1+αr)ψ'1-SPrp1krp1(t)sin(ψ1+αr)cos(ψ1+αr) SPrp1krp1(t)sin(ψ1+αr)
 -csp1cos(ψ1-αs)cos(ψ1-αs)ψ'1-SPsp1ksp1(t)cos(ψ1-αs)sin(ψ1-αs) csp1cos(ψ1-αs)sin(ψ1-αs)ψ'1-SPsp1ksp1(t)cos(ψ1-αs)cos(ψ1-αs)  -SPsp1ksp1(t)cos(ψ1-αs)  -crp1cos(ψ1+αr)cos(ψ1+αr)ψ'1-SPrp1krp1(t)cos(ψ1+αr)sin(ψ1+αr) crp1cos(ψ1+αr)sin(ψ1+αr)ψ'1-SPrp1krp1(t)cos(ψ1+αr)cos(ψ1+αr) SPrp1krp1(t)cos(ψ1+αr)
 -csp1cos(ψ1-αs)ψ'1-SPsp1ksp1(t)sin(ψ1-αs) csp1sin(ψ1-αs)ψ'1-SPsp1ksp1(t)cos(ψ1-αs)  -SPsp1ksp1(t) crp1cos(ψ1+αr)ψ'1+SPrp1krp1(t)sin(ψ1+αr)  -crp1sin(ψ1+αr)ψ'1+SPrp1krp1(t)cos(ψ1+αr)  -SPrp1krp1(t)

 -cspnsin(ψn-αs)cos(ψn-αs)ψ'n-SPspnkspn(t)sin(ψn-αs)sin(ψn-αs) cspnsin(ψn-αs)sin(ψn-αs)ψ'n-SPspnkspn(t)sin(ψn-αs)cos(ψn-αs)  -SPspnkspn(t)sin(ψn-αs)  -crpnsin(ψn+αr)cos(ψn+αr)ψ'n-SPrpnkrpn(t)sin(ψn+αr)sin(ψn+αr) crpnsin(ψn+αr)sin(ψn+αr)ψ'n-SPrpnkrpn(t)sin(ψn+αr)cos(ψn+αr) SPrpnkrpn(t)sin(ψn+αr)
 -cspncos(ψn-αs)cos(ψn-αs)ψ'n-SPspnkspn(t)cos(ψn-αs)sin(ψn-αs) cspncos(ψn-αs)sin(ψn-αs)ψ'n-SPspnkspn(t)cos(ψn-αs)cos(ψn-αs)  -SPspnkspn(t)cos(ψn-αs)  -crpncos(ψn+αr)cos(ψn+αr)ψ'n-SPrpnkrpn(t)cos(ψn+αr)sin(ψn+αr) crpncos(ψn+αr)sin(ψn+αr)ψ'n-SPrpnkrpn(t)cos(ψn+αr)cos(ψn+αr) SPrpnkrpn(t)cos(ψn+αr)
 -cspncos(ψn-αs)ψ'n-SPspnkspn(t)sin(ψn-αs) cspnsin(ψn-αs)ψ'n-SPspnkspn(t)cos(ψn-αs)  -SPspnkspn(t) crpncos(ψn+αr)ψ'n+SPrpnkrpn(t)sin(ψn+αr)  -crpnsin(ψn+αr)ψ'n+SPrpnkrpn(t)cos(ψn+αr)  -SPrpnkrpn(t)

 -csp1sin(ψ1-αs)cos(ψ1-αs)ψ'1-SPsp1ksp1(t)sin(ψ1-αs)sin(ψ1-αs) csp1sin(ψ1-αs)sin(ψ1-αs)ψ'1-SPsp1ksp1(t)sin(ψ1-αs)cos(ψ1-αs)
 -csp1cos(ψ1-αs)cos(ψ1-αs)ψ'1-SPsp1ksp1(t)cos(ψ1-αs)sin(ψ1-αs) csp1cos(ψ1-αs)sin(ψ1-αs)ψ'1-SPsp1ksp1(t)cos(ψ1-αs)cos(ψ1-αs)
 -csp1cos(ψ1-αs)ψ'1-SPsp1ksp1(t)sin(ψ1-αs) csp1sin(ψ1-αs)ψ'1-SPsp1ksp1(t)cos(ψ1-αs)
 -crp1sin(ψ1+αr)cos(ψ1+αr)ψ'1-SPrp1krp1(t)sin(ψ1+αr)sin(ψ1+αr) crp1sin(ψ1+αr)sin(ψ1+αr)ψ'1-SPrp1krp1(t)sin(ψ1+αr)cos(ψ1+αr)
 -crp1cos(ψ1+αr)cos(ψ1+αr)ψ'1-SPrp1krp1(t)cos(ψ1+αr)sin(ψ1+αr) crp1cos(ψ1+αr)sin(ψ1+αr)ψ'1-SPrp1krp1(t)cos(ψ1+αr)cos(ψ1+αr)
crp1cos(ψ1+αr)ψ'1+SPrp1krp1(t)sin(ψ1+αr)  -crp1sin(ψ1+αr)ψ'1+SPrp1krp1(t)cos(ψ1+αr)

∑kpx ∑kpxsinψi  -kpx

∑kpy ∑kpycosψi  -kpy

∑kpxsinψi ∑kpycosψi ∑kpxsinψisinψi+∑kpycosψicosψi  -kpxsinψi  -kpycosψi

 -kpx  -kpxsinψi csp1sin(ψ1-αs)cos(ψ1-αs)ψ'1+SPsp1ksp1(t)sin(ψ1-αs)sin(ψ1-αs)+crp1sin(ψ1+αr)cos(ψ1+αr)ψ'1+SPrp1krp1(t)sin(ψ1+αr)sin(ψ1+αr)+kpx  -csp1sin(ψ1-αs)sin(ψ1-αs)ψ'1+SPsp1ksp1(t)sin(ψ1-αs)cos(ψ1-αs)-crp1sin(ψ1+αr)sin(ψ1+αr)ψ'1+SPrp1krp1(t)sin(ψ1+αr)cos(ψ1+αr)
 -kpy  -kpycosψi csp1cos(ψ1-αs)cos(ψ1-αs)ψ'1+SPsp1ksp1(t)cos(ψ1-αs)sin(ψ1-αs)+crp1cos(ψ1+αr)cos(ψ1+αr)ψ'1+SPrp1krp1(t)cos(ψ1+αr)sin(ψ1+αr)  -csp1cos(ψ1-αs)sin(ψ1-αs)ψ'1+SPsp1ksp1(t)cos(ψ1-αs)cos(ψ1-αs)-crp1cos(ψ1+αr)sin(ψ1+αr)ψ'1+SPrp1krp1(t)cos(ψ1+αr)cos(ψ1+αr)+kpy

csp1cos(ψ1-αs)ψ'1+SPsp1ksp1(t)sin(ψ1-αs)-crp1cos(ψ1+αr)ψ'1-SPrp1krp1(t)sin(ψ1+αr)  -csp1sin(ψ1-αs)ψ'1+SPsp1ksp1(t)cos(ψ1-αs)+crp1sin(ψ1+αr)ψ'1-SPrp1krp1(t)cos(ψ1+αr)

 -kpx  -kpxsinψn

 -kpy  -kpycosψn

 -SPsp1ksp1(t)sin(ψ1-αs)  -cspnsin(ψn-αs)cos(ψn-αs)ψ'n-SPspnkspn(t)sin(ψn-αs)sin(ψn-αs) cspnsin(ψn-αs)sin(ψn-αs)ψ'n-SPspnkspn(t)sin(ψn-αs)cos(ψn-αs)  -SPspnkspn(t)sin(ψn-αs)
 -SPsp1ksp1(t)cos(ψ1-αs)  -cspncos(ψn-αs)cos(ψn-αs)ψ'n-SPspnkspn(t)cos(ψn-αs)sin(ψn-αs) cspncos(ψn-αs)sin(ψn-αs)ψ'n-SPspnkspn(t)cos(ψn-αs)cos(ψn-αs)  -SPspnkspn(t)cos(ψn-αs)
 -SPsp1ksp1(t)  -cspncos(ψn-αs)ψ'n-SPspnkspn(t)sin(ψn-αs) cspnsin(ψn-αs)ψ'n-SPspnkspn(t)cos(ψn-αs)  -SPspnkspn(t)
SPrp1krp1(t)sin(ψ1+αr)  -crpnsin(ψn+αr)cos(ψn+αr)ψ'n-SPrpnkrpn(t)sin(ψn+αr)sin(ψn+αr) crpnsin(ψn+αr)sin(ψn+αr)ψ'n-SPrpnkrpn(t)sin(ψn+αr)cos(ψn+αr) SPrpnkrpn(t)sin(ψn+αr)
SPrp1krp1(t)cos(ψ1+αr)  -crpncos(ψn+αr)cos(ψn+αr)ψ'n-SPrpnkrpn(t)cos(ψn+αr)sin(ψn+αr) crpncos(ψn+αr)sin(ψn+αr)ψ'n-SPrpnkrpn(t)cos(ψn+αr)cos(ψn+αr) SPrpnkrpn(t)cos(ψn+αr)
 -SPrp1krp1(t) crpncos(ψn+αr)ψ'n+SPrpnkrpn(t)sin(ψn+αr)  -crpnsin(ψn+αr)ψ'n+SPrpnkrpn(t)cos(ψn+αr)  -SPrpnkrpn(t)

 -kpx

 -kpy

 -kpxsinψn  -kpycosψn

SPsp1ksp1(t)sin(ψ1-αs)-SPrp1krp1(t)sin(ψ1+αr)
SPsp1ksp1(t)cos(ψ1-αs)-SPrp1krp1(t)cos(ψ1+αr)
SPsp1ksp1(t)+SPrp1krp1(t)

cspnsin(ψn-αs)cos(ψn-αs)ψ'n+SPspnkspn(t)sin(ψn-αs)sin(ψn-αs)+crpnsin(ψn+αr)cos(ψn+αr)ψ'n+SPrpnkrpn(t)sin(ψn+αr)sin(ψn+αr)+kpx  -cspnsin(ψn-αs)sin(ψn-αs)ψ'n+SPspnkspn(t)sin(ψn-αs)cos(ψn-αs)-crpnsin(ψn+αr)sin(ψn+αr)ψ'n+SPrpnkrpn(t)sin(ψn+αr)cos(ψn+αr) SPspnkspn(t)sin(ψn-αs)-SPrpnkrpn(t)sin(ψn+αr)
cspncos(ψn-αs)cos(ψn-αs)ψ'n+SPspnkspn(t)cos(ψn-αs)sin(ψn-αs)+crpncos(ψn+αr)cos(ψn+αr)ψ'n+SPrpnkrpn(t)cos(ψn+αr)sin(ψn+αr)  -cspncos(ψn-αs)sin(ψn-αs)ψ'n+SPspnkspn(t)cos(ψn-αs)cos(ψn-αs)-crpncos(ψn+αr)sin(ψn+αr)ψ'n+SPrpnkrpn(t)cos(ψn+αr)cos(ψn+αr)+kpy SPspnkspn(t)cos(ψn-αs)-SPrpnkrpn(t)cos(ψn+αr)
cspncos(ψn-αs)ψ'n+SPspnkspn(t)sin(ψn-αs)-crpncos(ψn+αr)ψ'n-SPrpnkrpn(t)sin(ψn+αr)  -cspnsin(ψn-αs)ψ'n+SPspnkspn(t)cos(ψn-αs)+crpnsin(ψn+αr)ψ'n-SPrpnkrpn(t)cos(ψn+αr) SPspnkspn(t)+SPrpnkrpn(t)
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Figure 3-20 (continued) Support structure stiffness matrix 

 

The detailed equations shown in Figure 3-16 to Figure 3-20 will be constructed in the 

following chapters. During the simulations Eqs 3.41 will be developed by the 

MATLAB m-file automatically. The writing and usage of m-files will be 

demonstrated in Chapter 7.3. 

 

As defined in Sec 3.1 to 3.3, pix*
 denotes the planet gear displacement in the x 

direction with reference to the origin of the sun gear centre, piy*
 denotes the planet 

gear displacement in the y direction with reference to the origin of the sun gear 

centre, su*  denotes the sun gear total torsional displacement (in terms of linear 

displacement on pitch circle), and ru*  denotes the ring gear total torsional 

displacement (in terms of linear displacement on pitch circle). The development of 

these terms is shown in the rest of this section. 

 

The planetary gear ratios are calculated by Table 3-1 as below, 

 

 

 

 

ksx

ksy

kst

krx

kry

krt

kcx

kcy

kct
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 Sun gear 
Subscript s 

Planet gears 
Subscript p 

Ring gear 
Subscript r 

Carrier arm 
Subscript c 

Step 1 
Lock all gears and 
carrier arm; 
Rotate all parts as one 
through a in CW 

+a +a +a +a 

Step 2 
Lock carrier arm; 
Rotate ring gear through  
b in CCW 

-b 










s

r

Z

Z
 b















p

r

Z

Z
 b 0 

Step 3 
Sum step 1 and step 2 

a+b 










s

r

Z

Z
 

(CW) 

b














p

r

Z

Z
-a 

(CCW) 

b-a 
(CCW) 

a 
(CW) 

Table 3-1 The Tabular Method for the planetary gear ratios 
 

For the ring-planet pair, 















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p

p
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Z
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b
r

u

r

r
r                                                                                                                              (3.43) 

Solving Eqs 3.41 and 3.42, gives, 
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r

r
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p
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u *

                                                                                                     (3.45)     

 

For the sun and ring, 
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r

u

r

r
r 

*
*                                                                                                                   (3.46) 

a
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s 





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r                                                                                                                              (3.48) 
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











s

r

s

s

s
Z

Z
b
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Solving Eqs 3.46 and 3.47, gives, 
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

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
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araruu srrs  **
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Substituting Eqs 3.52 and 3.46 into Eqs 4.48, gives, 
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Substituting Eqs 3.52 and 3.47 into Eqs 4.49, gives, 
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For the planet displacement in the x and y directions, 

idealpipipi xxx  *
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In this research, MATLAB programs were developed to generate and solve the 

dynamic equations of the overall system which was presented in Eq 3.41 with 

substitution of Eqs 3.53-56.  
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3.5. SUMMARY OF CHAPTER  
 

In this chapter, a generalized lumped mass dynamic model of the single stage 

planetary gear set is developed based on Kahraman‟s model37 with major 

modifications. The overall system is considered separately as three sub-systems, 

namely a sun gear - planet gear pair, a ring gear - planet gear pair and a carrier arm - 

planet gear pair. Each sub-system is isolated from the others and after equations of 

motion have been obtained for each sub-system, the overall equations are combined 

using matrix techniques. In the first two sub systems, the rigid gear bodies are 

connected by damping and stiffness along the gear mesh action line, which also 

simulates the combined gear error, run out functions and tooth separation 

phenomenon. In the third sub-system, planet gears are mounted on the carrier arm 

through the planet pin-bearing assembly which is simulated with introduced stiffness 

and damping features. The rotational motion of the planet gears is completely 

uncoupled from the carrier arm‟s motion. To combine the three sub-systems to form 

the overall equations of motion, four key terms ( pix* , piy* , su* , ru* ) are defined 

and corresponding equations are developed (Section 3.4). By introducing these four 

terms the equations of motion for planet gears of two different rotations (one rotation 

is about sun gear centre, and another is about planet gear mounted point) can be 

combined.  

 

The nomenclatures used in this chapter are given in the nomenclature list (pp.10-13 

of this thesis). The matrix form of the overall equations of motion is developed and 

listed in Section 3.4. 

 

The matrix form of the overall equations gives three advantages. First of all, adding 

and deleting any term in the sub-system equations can be done without difficulty and 

relative change can be made to the overall equations with convenience.  Secondly, 

support flexibilities (such as shafts, bearings, and housing structures) can be 

combined into the overall equations on an overall scale rather than on a sub-system, 

which significantly simplifies the procedure to obtain both the overall and sub-

system equations. Finally, every combination of torsional and /or transverse systems 

can be represented simply by deleting the relative rows and columns. 
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4. PITCH AND PROFILE EXCITATION 

 
Transmission error, according to Harris47 and Munro48, is defined as a measure of 

departure from ideal (perfectly mounted rigid bodies with perfect geometry) motion 

transfer between the drive gear and pinion. Transmission error is one of the most 

important sources of vibration in geared systems and is usually due to the amplitude 

and phase deviations of the tooth profile from the true involute profile49, as well as 

pitch, pressure angle and mounting (eccentricities and misalignments) errors.  

 

In this research, transmission error is considered to be the primary feature that affects 

the vibration of planetary gear trains, and is further analyzed in this section. 

According to Ozguven and Houser50, in high precision spur gears (which is the gear 

type in the planetary gear system studied in this research), the effect of pitch errors 

on the dynamic gear forces and stresses is not as important as the excitation due to 

mesh stiffness variation. For this reason, an approximate numerical approach is used 

to simulate the pitch errors for all the gear pairs. For the same reason and to simplify 

the overall equations, the same approach is used to simulate the gear profile errors. 

To reach a relatively accurate and realistic simulation of transmission error, a random 

(both amplitude and phase) impulse excitation is introduced into the simulation to 

represent the effect of impurity in lubrication of the meshing teeth. These three types 

of excitations are analyzed in section 4.1 for one spur gear pair. In order to simulate 

the excitations for the entire planetary gear system with n planet gears, the tooth 

meshing variation is introduced in section 4.2. The pitch, profile and random 

excitations of the planetary gear system are simulated and the numerical results are 

listed in section 4.3. 

 

For the reason of simplification, the variations in pressure angle, mounting errors as 

well as tooth, gear body and supporting structure deformation are ignored for the 

simulation of transmission error in this research.  
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4.1. GEAR GEOMETRY ERRORS AND RANDOM 

EXCITATION FOR A SPUR GEAR PAIR 
 
4.1.1. Pitch excitation of a spur gear pair 

 

As analyzed in section 4, the theoretical pitch excitation model considers the spur 

gear pair (either sun gear - planet gear or ring gear - planet gear) as a single-degree-

of-freedom lumped system shown in the simplified figure below (Figure 4-1). Each 

gear pair is represented by two rigid disks coupled along the line of action through a 

time varying mesh stiffness k(t) and a time varying damping c(t).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this model, transmission errors are simulated by a displacement excitation at the 

mesh.  

Line of contact 

sx  

pix  

sy  

ip  

sun  

s  

)(tk
isp

 

ispc  

)(te
isp

 

 Figure 4-1 Torsional model of a spur gear pair (sun gear - planet gear, 
shown in this figure/ or ring gear - planet gear) 
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The pitch errors are simulated as a forcing function input into the model and are 

represented by a combination of an arbitrary number of harmonic terms as shown in 

Eqs 4.151,52,  









26

1

)*sin()(






za

aa

tpitch ate                                                                   (4.1) 

where )(tepitch
denotes either pitch error of the sun gear, ring gear or planet gear; „a‟ 

denotes the coefficient of pitch error amplitude, with a sum of all the coefficients 

from a to z less than 10 m  (the effect of geometrical error amplitude has been 

investigated by S. Jia, et al.53);  corresponding to coefficient „a‟, coefficient  has 

values from 1 to 26 (with 26 values for coefficient „a‟, from „a‟ to „z‟); t  denotes the 

number of teeth that have meshed (with a decimal form).  

 

A typical numerical result of planet gear (32 teeth) pitch error is shown in Figure 4-2. 

 
Figure 4-2 Planet gear pitch error (detailed program in Sec 7.4.4.1) 

 

Figure 4-2 shows that the curve of the simulated planet gear pitch error is repeated 

once the planet gear rotates one revolution (32 teeth). The result shown in Figure 4-2 

is based on Eqs 4.1 with three harmonics. 

 

The numerical results of ring gear (83 teeth) pitch error is shown in Figure 4-3. 



 

Page 71 of 278 
 

 
Figure 4-3 Ring gear pitch error (detailed program in Sec 7.4.4.2) 

 
Figure 4-3 shows that the curve of the simulated ring gear pitch error is repeated 

once the ring gear rotates one revolution (83 teeth). The result shown in Figure 4-3 is 

also based on Eqs 4.1 with three harmonics. 

 

The numerical results of sun gear (19 teeth) pitch error is shown in Figure 4-4. 

 
Figure 4-4 Sun gear pitch error (detailed program in Sec 7.4.4.3) 

 

Figure 4-4 shows that the curve of the simulated sun gear pitch error is repeated once 
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the sun gear rotates one revolution (19 teeth). The result shown in Figure 4-4 is also 

based on Eqs 4.1 with three harmonics. 

 

4.1.2. Profile excitation of a spur gear pair  

 

All processes used in manufacturing gears cannot avoid the gears having deviation 

from the theoretical gear profile shown in Figure 4-5. 

 
Figure 4-5 Relation between the profile error chart and the involute tooth profile54 

 

When two teeth are in mesh the profile error can be seen as in Figure 4-6. 

 
Figure 4-6 Profile error along the action line by reference55 

 
From Figure 4.6, it can be seen that the profile error of the pair of meshing teeth is 

the geometrical sum of the geometrical profile error of each of the two gears in mesh. 

In this research, an equation having the same structure as Eqs 4.1 is used to represent 

the profile error of one gear pair, shown in Eqs 4.2, 


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



26

1

)*sin()(



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Pinion 
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Line of action 

e(t)<0 
lack of material 

Actual 
profile 
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where )(te profile
denotes either profile error of the sun gear - planet gear mesh or the 

ring gear - planet gear mesh; „a‟ denotes the coefficient of profile error amplitude, 

with a sum of all the coefficients from a to z less than 10 m  (the effect of 

geometrical error amplitude has been investigated by S. Jia, et al.53);  corresponding 

to coefficient „a‟, coefficient  has values from 1 to 26 (with 26 values for 

coefficient „a‟, from „a‟ to „z‟); t  denotes the number of teeth that have meshed 

(with a decimal form). This solution is suitable to model spur gear pairs having low 

contact ratio equal to 1 only; the solution suitable to model spur gear pairs with 

realistic contact ratio (>1) is examined in section 4.3. 

 

The numerical results of an example sun gear - planet gear mesh profile error is 

shown in Figure 4-7. 

 
Figure 4-7 Sun gear - planet gear pair profile error (assumed contact ratio equal to 1) 

 

Figure 4-7 shows that the curve of the simulated sun gear - planet gear pair profile 

error is repeated once for each new pair of teeth in mesh (assumed contact ratio equal 

to 1). The result shown in Figure 4-7 is based on Eqs 4.2 with three harmonics. 

 

The numerical results of an example ring gear - planet gear mesh profile error is 

shown in Figure 4-8. Figure 4-8 shows that the curve of the simulated ring gear - 

planet gear pair profile error is repeated once for each new pair of teeth in mesh 

(assumed contact ratio equal to 1). The result shown in Figure 4-8 is again based on 

Eqs 4.2 with three harmonics. 
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Figure 4-8 Ring gear - planet gear pair profile error (assumed contact ratio equal to  1) 

 

4.1.3. Random excitation 

 

In order to simulate the effect of impurities in lubrication and random impulses due 

to variation in the damaged tooth surface, a random (both amplitude and phase) 

impulse excitation is introduced in this section. 

 

A random impulse excitation can be simulated as shown in Figure 4-9. 

 
Figure 4-9 Random impulse excitation (400 samples) (detailed program in Sec 7.4.4.6) 
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4.2. TOOTH MESHING VARIATION 
 

Planetary gear systems have multiple tooth meshes and those meshes have varying 

numbers of teeth in contact when the gears are in operation. As all the planet gears 

are generally under the same dynamic motion against the sun gear and ring gear, the 

numbers of teeth in contact all vary at the same frequency56.  

 

The time variations of numbers of teeth in contact at the multiple sun gear - planet 

gear meshes have an identical shape and same periodicity, however, the time 

variation of each pair generally have different phases. With the matching phase 

delays between pairs, the time variations of numbers of teeth in contact at the 

multiple ring gear - planet gear meshes also have an identical shape and same 

periodicity. The shape and periodicity functions for the multiple ring gear - planet 

gear meshes are different from the sun gear - planet gear meshes.  

 

The phasing relationships analyzed in this research are based on the same method as 

in that by Parker and Lin56 where variation functions of numbers of teeth in contact 

were introduced. In this section, functions Ymrn(Xmr) and Ymsn(Xms) represent the 

numbers of teeth in contact at the nth sun gear - planet gear and ring gear - planet 

gear meshes with zero load. The numerical values of Ymrn(Xmr) and Ymsn(Xms) 

are integers only. In the functions, Xmr and Xms denote the number of mesh cycles 

in the sun gear - planet gear and ring gear - planet gear meshes respectively.  

 

The development of equations representing the mesh phasing variation is shown in 

Table 4-1. 

 

Symbol Meaning  Equation Value in this research 

np  An integer that varies for each 
planet -- 0; 34; 68 

rz  Ring gear teeth number -- 83 

sz  Sun gear teeth number  -- 19 

Table 4-1 Development of equations representing mesh phasing variation 
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Symbol Meaning  Equation Value in this research 

n  
Circumferential angle of planets 
measured positive counter-
clockwise sr

nn
zz

p






2  0; 

3
2

; 3
4

 

)1(rsn  Arbitrarily chosen first sun gear - 
planet gear mesh 0 0 

)(nrsn  

Relative phase between the nth sun 
gear - planet gear mesh and the 
arbitrarily chosen first sun gear - 
planet gear mesh (within the form 
of decimal less than 1) 





2
)( nsz

nrsn   0; 3
1

 ; 3
2

  

)1(rrn  Arbitrarily chosen first ring gear - 
planet gear mesh 0 0 

)(nrrn  

Relative phase between the nth ring 
gear - planet gear mesh and the 
arbitrarily chosen first ring gear - 
planet gear mesh (within the form 
of decimal less than 1) 





2
)( nrz

nrrn   
0; 3

1
 ; 3

2
 or 0; 3

2
;

3
1

 

Table 4-1(continued) Development of equations representing mesh phasing variation 
 

Figure 4-10 shows the mesh phasing variation of the sun gear - planet gear mesh, 

with )1(rsn =0 and time=0 corresponding to the pitch point contact at the first sun 

gear - planet gear mesh. The symbol „o‟ denotes pitch point contact. The mesh 

phasing variation is based on the time variation of numbers of teeth in contact which 

differ from 1 to 2 (integers only) for all three sun gear - planet gear pairs. These 

variations of all three pairs have an identical shape and same periodicity with phase 

differences rsn  between each other. Figure 4-11 shows the mesh phasing variation of 

the ring gear - planet gear mesh, with )1(rrn =0 and time=0 corresponding to the 

pitch point contact at the third ring gear - planet gear mesh. The mesh phasing 

variation is also based on the time variation of numbers of teeth in contact. The ring 

gear - planet gear mesh has higher contact ratio than sun gear - planet gear mesh. 

Numbers of teeth in contact differ from 2 to 3 (integers only) for all three ring gear - 

planet gear pairs. These variations of all three pairs also have an identical shape and 

same periodicity with phase differences rrn  between each other. It should be noticed 

that )(irsn  equals )(irrn  for 3,2,1i .  
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Figure 4-10 Mesh phasing variation of sun gear - planet gear meshes (top figure, mesh 1; middle 

figure, mesh 2; bottom figure, mesh 3) 
 

rsn(3)=-2/3 

rsn(2)=-1/3 
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Figure 4-11 Mesh phasing variation of ring gear - planet gear meshes (top figure, mesh 1; middle 

figure, mesh 2; bottom figure, mesh 3) 
 

rrn(2)=-1/3 

rrn(3)=-2/3 
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In order to calculate the phase difference between the sun gear - planet gear mesh 

and the ring gear - planet gear mesh and to form the shape of each teeth mesh 

variation, a detailed mesh figure can be drafted as shown in Figure 4-12. 

 
Figure 4-12 Detailed mesh representative of the planetary gear system 

 

A description of symbols contained in Figure 4-12 and the corresponding gear mesh 

parameters are listed in Table 4-2.  

 

Symbol Meaning  Equation Value  

sO  Origin of sun gear -- -- 

sz  Sun gear teeth number  -- 19 

s  Pressure angle  -- 20  

m Module  -- 16 

p  Circular pitch mp   50.2655 mm 

Table 4-2 Symbols contained in Figure 4-12 and the corresponding gear mesh parameters 

p 

B 

C D 

E 

p 
p 
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Symbol Meaning  Equation Value 

sd  Pitch diameter of sun gear ss mzd   304 mm 

sah  Tooth addendum height of sun gear mhh asa

 ; 1

ah  16 mm 

sfh  Tooth dedendum height of sun gear 
mchh asf )(   ;

25.0c  
20 mm 

sh  Tooth height of sun gear  sfsas hhh   36 mm 

sc  Tooth tip clearance of sun gear mccs

  4 mm 

saR  Addendum circle diameter of sun 
gear 2

*2 sas

sa

hd
R


  168 mm 

sfR  Root circle radius of sun gear  
2

*2 sfs

sf

hd
R


  132 mm 

sbR  Base circle radius of sun gear sssb dR cos  142.8333 mm 

pO  Origin of planet gear -- -- 

pz  Planet gear teeth number  -- 32 

p  Pressure angle  -- 20  

pd  Pitch diameter of planet gear pp mzd   512 mm 

pah  Tooth addendum height of planet 
gear 

mhh apa

 ; 1

ah  16 mm 

pfh  Tooth dedendum height of planet 
gear 

mchh apf )(   ;
25.0c  

20 mm 

ph  Tooth height of planet gear  pfpap hhh   36 mm 

pc  Tooth tip clearance of planet gear mcc p

  4 mm 

paR  Addendum circle diameter of 
planet gear 2

*2 pap

pa

hd
R


  272 mm 

pfR  Root circle radius of planet gear  
2

*2 pfp

pf

hd
R


  236 mm 

pbR  Base circle radius of planet gear pppb dR cos  240.5613 mm 

rz  Ring gear teeth number  -- 83 

r  Pressure angle  -- 20  

rd  Pitch diameter of ring gear rr mzd   1328 mm 

rah  Tooth addendum height of ring 
gear 

mhh ara

 ; 1

ah  16 mm 

Table 4-2 (continued) Symbols contained in Figure 4-12 and the corresponding gear mesh 
parameters 
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Symbol Meaning  Equation Value 

rfh  Tooth dedendum height of ring 
gear 

mchh arf )(   ;
25.0c  

20 mm 

rh  Tooth height of ring gear  rfrar hhh   36 mm 

rc  Tooth tip clearance of ring gear mccr

  4 mm 

raR  Addendum circle diameter of 
ring gear 2

*2 rar

ra

hd
R


  680 mm 

rfR  Root circle radius of ring gear  
2

*2 rfr

rf

hd
R


  644 mm 

rbR  Base circle radius of ring gear rrrb dR cos  623.9559 mm 

B  Point, where second tooth enters 
contact  -- -- 

C  Point, where first tooth exits 
contact -- -- 

P  Point, where second tooth at 
pitch point -- -- 

D  Point, where third tooth enters 
contact -- -- 

E  Point, where second tooth exits 
contact -- -- 

ss EM  Length, shown in Figure 4-12 22
sbsass RREM   88.4458 mm 

ss NB  Length, shown in Figure 4-12 22
pbpass RRNB   126.9419 mm 

ss NM  Length, shown in Figure 4-12 
spbsb

ss

RR

NM

tan)( 


 139.5442 mm 

ss EB  Length, shown in Figure 4-12  
ss

ssssss

NM

NBEMEB




 75.8435 mm 

ss PM  Length, shown in Figure 4-12 ssbss RPM tan  51.9871 mm 

ss BM  Length, shown in Figure 4-12 
ss

sbsass

EB

RRBM



 22

 12.6023 mm 

ss PB  Length, shown in Figure 4-12 ssssss BMPMPB   39.3848 mm 

sbp  Base pitch ssb pp cos  47.2341 mm 

ssCB  Length, shown in Figure 4-12 sbssss pEBCB   28.6094 mm 

ss DB  Length, shown in Figure 4-12 sbss pDB   47.2341 mm 

Table 4-2 (continued) Symbols contained in Figure 4-12 and the corresponding gear mesh 
parameters 
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Symbol Meaning  Equation Value in this 
research 

rr NM  Length, shown in Figure 4-12 rpsrr OONM sin*  139.5442 mm 

rr EN  Length, shown in Figure 4-12 22
pbparr RREN   126.9419 mm 

rr BM  Length, shown in Figure 4-12 22
rbrarr RRBM   159.4209 mm 

rr EB  Length, shown in Figure 4-12 
rr

rrrrrr

BM

ENNMEB




 107.0652 mm 

rr PM  Length, shown in Figure 4-12 rrbrr RPM tan  227.1014 mm 

rr PB  Length, shown in Figure 4-12 rrrrrr BMPMPM   67.6804 mm 

rbp  Base pitch rrb pp cos  47.2341 mm 

rr CB  Length, shown in Figure 4-12 rbrrrr pEBCB   107.0180 mm 

rr DB  Length, shown in Figure 4-12 rbrr pDB   47.2341 mm 

1Q  
Image of sP  when the contact 

line ss NM  is wrapped on the 
planet base circle 

-- -- 

tb  
Planet tooth thickness at the 
base circle )/22/(* smtb    26.7327 mm 

2Q  Point, an arc-length tb  away 
from  1Q  -- -- 

3Q  

Point, the first point in the ring 
gear - planet gear contact region 

rr EB  that is an integer number 
of base pitches away from 2Q  

-- -- 

rs PP  Length, shown in Figure 4-12 

rpb

rspb

spbrs

R

R

RPP







tan

)(

tan







 762.9 mm 

rBQ2  Length, shown in Figure 4-12 tbPBPPBQ rrrsr 2  668.5 mm 

3QBr  Length, shown in Figure 4-12 
)]/([ 2

3

rbrrb

rbr

pBQdecp

pQB 
 40 mm 

3QPr  Length, shown in Figure 4-12 || 33 rrrr PBQBQP   27.6804 mm 

rrs  
Phase difference between sun 
gear - planet gear mesh and ring 
gear - planet gear mesh;  

rbr pQPrrs /|| 3  0.5859 mesh circle 

Table 4-2 (continued) Symbols contained in Figure 4-12 and the corresponding gear mesh 
parameters 

 

As calculated in Table 4-2, the shape of functions Ymrn(Xmr) and Ymsn(Xms) are 
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fully defined by terms ss EB , ss PB , ssCB , ss DB , rr EB , rr PB , rrCB , and rr DB .  

 

The mesh phasing variation analysis is completed with the phase difference rrs . To 

determine the sign of rrs , Table 4-3 is used. 

 

Ring gear - planet gear 
contact progression 0rrs  0rrs  

From 
rB  to 

rE  From 
rB  to 

rP  to 
rQ  to 

rE   From 
rB  to 

rQ  to 
rP  to 

rE  

From 
rE  to 

rB  From 
rE  to 

rP  to 
rQ  to 

rB  From 
rE  to 

rQ  to 
rP  to 

rB  

Table 4-3 Determining the sign of rrs 56 

 
Figure 4-13 shows the phase difference between sun gear - planet gear mesh and ring 

gear - planet gear mesh rrs .  

 
Figure 4-13 Phase difference between sun gear - planet gear mesh and ring gear - planet gear 

mesh   
  

rrs=0.5859 
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4.3. SIMULATION OF PITCH AND PROFILE 

EXCITATION WITH RANDOM IMPULSE FOR 

PLANETARY GEAR SYSTEMS 
 

As defined in section 4.1, a numerical model for assumed contact ratio spur gear pair 

was introduced and two pitch and profile simulations were carried out as shown in 

Figure 4-7 and Figure 4-8. However this model is not suitable for gear pairs having a 

contact ratio greater than 1, such as the sun gear - planet gear pairs and ring gear - 

planet gear pairs in this research. To solve this problem, the combination of 

techniques introduced in section 4.1 and section 4.2 must be made.  

 

As shown in Figure 4-10, also detailed in Figure 4-14, the second pair of teeth enters 

contact at approximate 0.2 mesh circle and exits contact at approximate 1.8 mesh 

circle. Approximately 0.4 mesh circle after the first gear pair exits contact (at 0.8 

mesh circle) the third gear pair enters contact (at 1.2 mesh circle). Therefore during 

the mesh circle between 1.2 and 1.8, there are two gear pairs in contact (second pair 

and third pair). This periodicity repeats in the entire sun gear - planet gear mesh. The 

same occurs to the ring gear - planet gear pair as shown in Figure 4-11 where the 

number of gear pairs in mesh differs from two to three.  
 

As defined in section 4.1, every tooth mesh has some profile error and as generally 

caused by the method of manufacture, an identical profile error can occur with all the 

meshes in the same gear pair. When only one pair of teeth is in mesh, the profile 

error carried by this pair of teeth solely (with other errors rather than tooth profile 

error) affects the dynamic motion of the transmission.  When two (shown in Figure 

4-10) or more pair (shown in Figure 4-11) of teeth are in mesh, the profile errors of 

each gear pair will interfere with each other as shown in Figure 4-15. In Figure 4-15, 

the different contact areas of two meshing gear pairs have unequal profile errors.  
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Figure 4-14 Number of teeth in mesh, the 1st sun gear - planet gear pair 

 

 
Figure 4-15 Profile error along the action line, two pairs of teeth in contact 

True  involute  
profile 

Line of action 

Pinion 

Gear 

Line of action 

e(t)<0 
lack of material 

Actual 
profile 

e(t)<0 
lack of material 

Line of action 

Actual 
profile 

 mesh point:   0.2        0.8     1.2        1.8     2.2         2.8   3.2         3.8 

third pair of teeth  

second pair of teeth  

first pair of teeth  

fourth pair of teeth  
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In this research, the geometric sum of different profile errors is used when a number 

of profile errors exist at the same time when more than one pair of teeth are in 

contact. The combined profile error will have the same value as the largest amount of 

excess material (positive profile error) or smallest amount of reduction of material 

(negative profile error); in another words, the combined profile error has the same 

value as the largest numerical value among all the profile errors when they occur at 

the same time. 

 

The numerical results of the sun gear - planet gear mesh profile error (with same 

profile error values of each pair of teeth to those shown in Figure 4-7) are shown in 

Figure 4-16. 

 
Figure 4-16 Sun gear - planet gear pair profile error with consideration of tooth meshing 

variation, first pair 
 

The numerical results of the ring gear - planet gear mesh profile error (with same 

profile error values of each pair of teeth to those shown in Figure 4-8) are shown in 

Figure 4-17. 
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Figure 4-17 Ring gear - planet gear pair profile error with consideration of tooth meshing 

variation, first pair 
 

To obtain the combined sum of the pitch errors (both sun gear pitch error and planet 

gear pitch error; or both ring gear pitch error and planet gear pitch error), profile 

errors (sun gear - planet gear pair profile error or ring gear - planet gear pair profile 

error) and random impulse excitation, the simple numerical sum is used. 

 

The combined tooth mesh error is shown in Figure 4-18 for sun gear - planet gear 

pairs and in Figure 4-19 for ring gear - planet gear pairs respectively. 
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(a) 

 
(b) 

 
(c) 

Figure 4-18 Combined gear error excitation for sun gear - planet gear pairs; (a) for first pair; (b) 
for second pair; (c) for third pair; 
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(a) 

 
(b) 

 
(c) 

Figure 4-19 Combined gear error excitation for ring gear - planet gear pairs; (1) for first pair; (2) 
for second pair; (3) for third pair; 
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4.4. SUMMARY OF CHAPTER  
 

For a simplified simulation of gear transmission error, only pitch and profile 

excitations with random pulses are developed in this thesis.  

 

Both pitch and profile errors are simulated as a forcing function input into the gear 

dynamic model by a combination of an arbitrary number (3, for numerical simulation) 

of harmonic terms in the case of single teeth pair in mesh and contact ratio assumed 

to be one at all time (detailed equation: Eq 4.1 and Eq 4.2).  

 

When more than one pair of teeth are in mesh (contact ratio is greater than one), a 

method is used to sum the total profile errors as it will have the same value as the 

largest amount of excess material (positive profile error) or smallest amount of 

reduction of material (negative profile error).  

 

Tooth mesh variation is analyzed in terms of  time variation of number of teeth in 

mesh. The pitch and profile excitations of the multiple gear pairs in the planetary 

gear set are simulated with introduced random pulses.  
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5. TOOTH MESH STIFFNESS ANALYSIS 

 

5.1. COMBINED TORSIONAL MESH STIFFNESS OF 

MESHING GEARS 
 

Based on the method used by Sirichai57 and Wang58, the combined torsional mesh 

stiffness was defined by Jia, Howard and Wang39 as the ratio of the torque applied to 

the pinion and the relative angular rotation between the pinion and the gear shaft 

circles. There is no contribution to the combined torsional mesh stiffness from the 

relative angular rotation or displacement of both shafts as they are considered 

separately in the dynamic system.  

 

In this research, the common formulation of combined torsional mesh stiffness 

developed in Jia‟s work40 is used with modifications. The development is briefly 

shown as follows. 

 

When two gears are in mesh, the contact force between meshing teeth applies a 

torque T  to both of the gears and a resulting angular displacement will occur if the 

gears are not assumed perfectly rigid. The angular displacements can be expressed as, 

p

p

p
K

T
                                                                                     (5.1) 

g

g

g
K

T
                                                                                                   (5.2) 

The transmission ratio of the meshing gears is defined as, 

p

g

Z

Z
Tratio                                                                                 (5.3)  

Therefore the total displacement referenced to the pinion is, 

p

g

gp
Z

Z
                                                                                              (5.4) 

The torque applied to the gear can be expressed in terms of the torque applied to the 

pinion as, 
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p

g

pg
Z

Z
TT                                                                                                              (5.5) 

Substituting Eqs 5.1, 5.2 and 5.5 into Eqs 5.4, gives, 






























2
111

p

g

gp

p

p

g

p

p

g

gp

p

Z

Z

KK
T

Z

Z
T

Z

Z

KK

T
                                                          (5.6) 

If the effects of teeth bending and gear body torsional displacement are both included 

as springs in series, the refined form of Eqs 5.6 is shown as, 













































22
1111

p

g

Bgp

g

TgBpTp

p
Z

Z

KZ

Z

KKK
T                                                           (5.7) 

where subscript T  and B  denotes tooth bending and body torsional displacement 

terms respectively. 

 

When defining the torsional stiffness of teeth as a linear stiffness k  multiplied by the 

pitch circle radius squared 2r , the torsional stiffness of the body defined as a linear 

stiffness multiplied by the root circle radius squared 2
fr  and the torque applied at the 

meshing point defined as a contact force multiplied by the pitch circle, the Eqs 5.7 

can be rewritten to give,  



























BgBppfTgTpp kkr

F

kkr

F 1111


                               

                                               (5.8)

 

 

 

When two gears are in mesh, the contact force can be expressed as in Eqs 5.9 as it is 

along the line of action which is at a tangent to the base circle of the two gears. 



pbrF
K




                         

                                                                                   (5.9) 

Substituting Eqs 5.8 into Eqs 5.9 gives,  





























BgBppfTgTpp

pb

kkrkkr

r
K

111111          
                                                                  (5.10) 

As defined in Jia‟s work [5.3], tooth stiffness and body stiffness can be expressed as, 

3

2

3













h

IE
kT

                                                                                       (5.11) 
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shaftf

shaft

B
rr

rbE
k




                                                                                                                   (5.12) 

where E  represents Young‟s Modulus, tooth inertia I  is defined as 12/3sbI   
with b  denotes the gear face width and S  denotes tooth thickness.  

 

Substituting Eqs 5.11 and 5.12 into Eqs 5.10 gives the expression of torsional mesh 

stiffness as developed in Jia‟s work40. 


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                       (5.14) 

where a  and b are constant coefficients calculated by numerical methods from FEA 

results over 16 pairs of meshing with very different parameters chosen40. Also in Jia‟s 

work40, 1a  was calculated to be 2.7462, 2a  1.9479, 1b  2.2932, and 2b  2.2853, 

respectively. Shown in Jia‟s work40, the numerical results by using Eqs 5.13 and 5.14 

gave reasonable accuracy compared to FEA results. 

 

An assumption made in this research is that the second pair of teeth and the third pair 

of teeth in mesh have an equal effect, Emesh , on changing the mesh stiffness. This 

can be expressed as,  

21
21 a

Emesh

a



                                                                                                                    (5.15) 

31
31 a

EmeshEmesh

a



                                                                                                    (5.16) 

Solving Eqs 5.15 and 5.16 gives 7755.13 a . 

By the same method, 3b  was calculated to be 2.2827. 
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5.2. SIMULATION OF MESH STIFFNESS WITHOUT 

TOOTH FAULTS 
 

Based on the equations introduced in section 5.1 and tooth meshing variation 

analysis in section 4.2, the simulations of sun gear - planet gear and ring gear - planet 

gear mesh stiffness are obtained using an input set of variables as listed in section 7.2. 

 

The values of mesh stiffness in this research are kept constant so the mesh stiffness 

diagrams have lines instead of curves similar to that in Jia‟s work40. This is for the 

purpose of reducing computational time. More realistic simulations can also be 

obtained by using the program (Sec 7.5) developed in this research with a 

modification on the curve simulation equations (explained in Sec 7.5), however, the 

required computational time will be significantly increased. 

 

The resulting time varying mesh stiffness is shown in Figure 5-1. 

 
(a) 

Figure 5-1 Torsional mesh stiffness of ring-planet pair (a, b, c) and sun-planet pair (d, e, f) 
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(b) 

 
(c) 

Figure 5-1 (continued) Torsional mesh stiffness of ring-planet pair (a, b, c) and sun-planet pair 
(d, e, f) 
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(d) 

 
(e) 

Figure 5-1 (continued) Torsional mesh stiffness of ring-planet pair (a, b, c) and sun-planet pair 
(d, e, f) 
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(f) 

Figure 5-1 (continued) Torsional mesh stiffness of ring-planet pair (a, b, c) and sun-planet pair 
(d, e, f) 

 

The time varying mesh stiffness results shown in Figure 5-1 perfectly match the time 

variation of number of teeth in contact analyzed in section 4.2. They also show the 

mesh phase differences between each sun gear - planet gear pair and between each 

ring gear - planet gear pair, as well as between sun gear - planet gear pairs and ring 

gear - planet gear pairs. More importantly the time varying mesh stiffness results 

show that the ring gear - planet gear mesh has much higher stiffness than sun gear - 

planet gear mesh. Even the lowest mesh stiffness (7.6873e+008 Nm/rad) in the ring 

gear - planet gear mesh is much higher than the highest value (1.7448e+008 Nm/rad) 

in the sun gear - planet gear mesh. This leads the conclusion that the ring gear teeth 

are much stiffer than the sun gear teeth. 

 

5.3. MODELLING OF TOOTH CRACK  
 

In this research the modelling of a tooth crack is conducted in two steps: calculation 

of the constant value of torsional mesh stiffness change and simulation of the cracked 
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mesh stiffness curve. 

 

When a tooth with a crack is in mesh, the torsional mesh stiffness is less than that 

without tooth damage due to the reduced tooth thickness at the point the crack occurs. 

The change of tooth thickness will affect the rigidity of the tooth as it is taken into 

account in Eqs 5.13 and 5.14.  In this research, localized tooth root cracks can be 

introduced by inputting the crack length (equivalent length along root circle) to the 

relative tooth in the MATLAB program. An arbitrary arrangement of number of 

cracks, locations of cracks, as well as crack length respectively can be easily 

simulated by simply placing the relative inputs into the program (see Sec 7.5).  

 

The resulting cracked mesh stiffness curve can also be simulated by simply changing 

the curve equations in the program (see Sec 7.5). The curve demonstrates the 

resulting time varying mesh stiffness while the cracked tooth is in mesh.  

 

Figure 5-2 shows the torsional mesh stiffness of the ring-planet pair with a crack 

(length, 5% of tooth thickness based on the root circle; width, 100% of tooth face 

width) on the 83rd tooth of the ring gear. 

 
(a) 

Figure 5-2 Torsional mesh stiffness of ring-planet pairs with a crack on the 83rd tooth of the ring 
gear 
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(b) 

 
(c) 

Figure 5-2 (continued) Torsional mesh stiffness of ring-planet pairs with a crack on the 83rd 
tooth of the ring gear 
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The resulting cracked (5% of tooth thickness based on the root circle) mesh stiffness 

in Figure 5-2 shows that the stiffness change is small (approximately 2% of 

undamaged tooth mesh stiffness), the change is introduced gradually rather than 

suddenly, and the stiffness change occurs from the point the cracked tooth entered 

contact until the crack left contact (in this case, the cracked tooth left contact). In 

conclusion, small tooth cracks change the mesh stiffness slightly, gradually and 

widely (depending on the location of crack).  

 

5.4. MODELLING OF TOOTH SPALLING 
 

In this research the modelling of spalling is conducted by taking four factors into 

account. They are the location of the spall (central position of spall along the center 

line of tooth face width), the width of spall (equivalent effective radius), the depth of 

spall (average or maxima deduction on the mesh stiffness, in terms of percentage) 

and the curve function including the former three factors as inputs.  

 

An arbitrary arrangement of number of spalls, locations of spalls, width of spalls, 

depth of spalls, as well as the calculated stiffness curve can be easily simulated by 

simply placing the relative inputs into the program (see Sec 7.5).  

 

The stiffness reduction due to a spall is calculated as the stiffness change at the point 

of location of the spall (central position) where the thickness of the tooth reduces. 

The calculation can be conducted using Eqs 5.13, 5.14 and 5.19. It is to be noticed 

that the tooth thickness change used in the equations is an equivalent change at the 

root circle in terms of percentage.  

 

Figure 5-3 shows the torsional mesh stiffness of ring-planet pairs with a spall 

(located at the point 60% of the contact line along the tooth surface; 10% equivalent 

radius; 0.4mm reduction on full depth spall; match curve function of 5
1

cos ) on the 

3rd tooth of ring gear and a smaller spall (5% equivalent radius and 0.2mm reduction) 

on the 4th tooth. 
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(a) 

 
(b) 

Figure 5-3 Torsional mesh stiffness of ring-planet pairs with two spalls 
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 (c) 

Figure 5-3 (continued) Torsional mesh stiffness of ring-planet pairs with two spalls 
 

The resulting mesh stiffness (with two spalls) in Figure 5-3 shows that the stiffness 

change is very small (approximately 1% of undamaged tooth mesh stiffness for 

smaller spall, 5% equivalent radius and 0.2mm reduction), the change is introduced 

gradually rather than suddenly, and the stiffness change occurs from the point the 

spalled tooth entered contact until the spall left contact. In conclusion, tooth spalls 

change the mesh stiffness slightly (generally much smaller change than those with 

tooth cracks), gradually (generally more gradually than those with tooth cracks) and 

locally (depending on the equivalent radius of spall).  

 

5.5. SUMMARY OF CHAPTER 
 

In this paper, the common formulation of combined torsional mesh stiffness (defined 

by Jia, Howard and Wang39) developed in Jia‟s work40 was used with modifications 

to suit tooth mesh with contact ratio up to 3. Eqs 5.17 to 5.19 give the expression of 

torsional mesh stiffness. As these equations are based on FEA results, contact 
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stiffness is assumed to be contained by adjusting the coefficients ( a  and b ) (to get 

satisfied results which are similar with the FEA results). 

                                                                                                                                                              
(5.17)  

  

                                                                                                                                                   
(5.18) 

 

 

                                                                                                                                                              
(5.19) 

 

 

 

The phasing relationships between mesh pairs were analyzed based on the teeth 

number variations previously developed. 

 

The modelling of tooth cracks was conducted in two steps: calculation of the 

constant value of torsional mesh stiffness change and simulation of the cracked mesh 

stiffness curve. Reduction in tooth thickness at the point where the crack occurs 

causes the reduced mesh stiffness for the cracked tooth compared with the 

undamaged tooth.  

 

The modelling of spalling was conducted by taking four factors into account. They 

are the location of the spall (central position of spall along the center line of tooth 

face width), the width of spall (equivalent effective radius), the depth of spall 

(average or maxima reduction on the mesh stiffness, in terms of percentage) and the 

curve function including the former three factors as inputs.  

 

Using the MATLAB simulation program developed in this research, an arbitrary 

arrangement of cracks and spalls can be simulated with easy control of parameters.  

 

It should be noticed that the methods (Sec 5.3 & 5.4) used in this research for tooth 

fault modelling are based on the calculated/equivalent stiffness variations and 

assumed curves. The simulation results are greatly affected by how accurate and 
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realistic the inputs are, especially the time varying mesh stiffness curves. However, 

by choosing parameters carefully and eventually using FEA to generate time varying 

mesh stiffness within one mesh cycle as well as time varying mesh stiffness curves  

with tooth faults as samples, these methods can be used to gain satisfying simulations 

with high accuracy for a range of arbitrary tooth faults with relatively low 

computational time.  
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6. LARGE LOW SPEED, HIGH TORQUE 

PLANETARY SPUR GEAR SYSTEMS-

BUCKET WHEEL RECLAIMER DESIGN 
 

In this section, the major modelling parameters of a typical bucket wheel reclaimer 

are introduced, including detailed arrangement, detailed parameters and relative 

calculations which are needed for this research. 

 

6.1. BUCKET WHEEL RECLAIMER DESIGN 
 

A bucket wheel reclaimer (or bucket wheel excavator) forms an important part of 

continuous mining operations, especially for surface mining equipment as shown in 

Figure 6-1.  

 
Figure 6-1 Compact bucket wheel reclaimer59 

 

Bucket wheel reclaimers vary in design to suit the needs of operational conditions 

and can range from small sized machines with a capacity of 100 cubic meters per 

hour to large machines with a capacity over 12500 cubic meters per hour60. 

 

In Western Australia, compact bucket wheel reclaimers similar to that shown in 

Figure 6-1 are widely used in mining operations such as for transferring iron ore. In 

this research, all the modelling is made for one typical design of compact bucket 

wheel reclaimer which is introduced with detailed arrangement and parameters in the 

rest of this section.  



 

Page 106 of 278 
 

 

6.2. BUCKET WHEEL DRIVE 
 

The compact bucket wheel reclaimer will be assumed to be driven by a slip ring AC 

induction motor. The motor is connected to the multistage reduction gearbox via an 

elastic coupling. A planetary gear box is connected after the reduction gearbox and 

supporting the bucket wheel via a flange, bolted to the carrier arm.  

 

6.3. THE MOTOR 
 

For the type of bucket wheel reclaimers under analysis in this research, the speed of 

rotation of the bucket wheel is in the range of 6rpm. The gearbox speed reduction 

ratio is 157.2789, (see section 6.5 and 6.6) including the multistage reduction 

gearbox and the planetary gearbox, requiring a motor with an operation speed of 950 

rpm. 

 

The speed of an AC induction motor is given by, 

p

f
n

120
                                                                            (6.1) 

where n is the speed of motor, f is the supply frequency in Hz and p is the number of 

poles. To supply 950 rpm at 50 Hz, a 6-pole motor is needed.  

 

In the modelling of this research, specifications of the motor are based on a squirrel 

cage, three phase induction motor with a rated power of 450KW provided by ABB61.  

 

The full load torque of the drive system is taken to be at 950rpm, and is calculated as,  

NmT fl 4.4342

60
2*950

96.0*1000*450


                                                              (6.2) 

NmTT flupstart 6.9987*3.2                                                                   (6.3) 

NmTT flimum 11290*6.2max                                                                          (6.4) 

The inertia of the motor was estimated to be 20 2kgm . 
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The assumed torque-speed curve of the motor is shown in Figure 6-2. 

 
Figure 6-2 Torque-speed curve for a 450kw induction motor 

 

6.4. FLUID COUPLING 
 

The torque provided from the induction motor can be transient and very large. In that 

case, damage to the motor and gearboxes may occur. In order to avoid damage and 

absorb vibration and shock, a fluid coupling is generally employed to transfer the 

input torque from the motor to the reduction gearbox. A fluid coupling will also 

provide a more gentle acceleration of the rotational parts62. 

 

Due to the nature of fluid couplings, they cannot operate at 100% efficiency63. The 

slip between input and output during normal operation is generally in a range of 1 to 

3 percent64. In this research the coupling is assumed to have a slip of 3% at full load 

condition. The slip of a fluid coupling is calculated by,  

motor

gearboxmotor
S











                                                                 (6.5) 

and the damping of the coupling is represented by, 

motorcccoupling qC


 *                                                                                  (6.6) 

where ccq  is the damping coefficient with a value of 15.  
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6.5. REDUCTION GEAR BOX 
 

In order to reduce the input rotational speed of the system from approximately 

950rpm (motor speed) to the bucket wheel operational speed in the range of 6 rpm, a 

reduction gear box is needed.  

 

A typical gearbox arrangement of a compact bucket wheel reclaimer is shown in 

Figure 6-3. 

 
Figure 6-3 A typical gearbox arrangement of the bucket wheel drive (reduction gear box with 

gears G1 to G6, and a planetary gear box)65 
 

The gears selected for the reduction gear box have parameters as listed in Table 6-1. 

 

Gear number Module Number of teeth Pressure angle  Helix angle  

G1 12 (mean) 13 20 30 

G2 12 (mean) 38 20 30 

G3 9 21 20 12 

G4 9 68 20 12 

G5 12 21 20 10 

G6 12 65 20 10 

Table 6-1 Parameters of reduction gears 
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This reduction gear box gives a total reduction ratio of  

2971.29
21
65

21
68

13
38Re ioductionRat                                                                 (6.7)

 

It should be noticed that specifications other than the total reduction ratio of the 

reduction gearbox are not a concern in this research.  

 

6.6. PLANETARY GEAR BOX 
 

As shown in Figure 6-3 a planetary gearbox is connected between the reduction 

gearbox and the bucket wheel to provide a low speed and large torque transaction 

with a relatively compact gear arrangement.  

 

The selected sun gear, ring gear and planet gears of the planetary gearbox have the 

parameters as listed and calculated in Table 6-2. 

 

Parameters Symbol Sun gear Planet gear Ring gear 

Module  m 16 16 16 

Number of teeth z 19 32 83 

Pressure angle )(    20 20 20 

Face width (mm) b 245 245 245 

Pitch diameter (mm) d=m*z 304 512 1328 

Addendum (mm) mmhh aa  *  16 16 16 

Dedendum (mm) 
m

mchh af

25.1

)( **




 20 20 20 

Tooth height (mm) fa hhh   36 36 36 

Addendum circle  
Diameter (mm) aa hdd 2  336 544 1360 

Dedendum circle  
Diameter (mm) fa hdd 2  264 472 1288 

Base circle  
Diameter (mm) 

cosddb   285.6666 481.1226 1247.9 

Circular pitch (mm) mp   50.2655 50.2655 50.2655 

Base pitch (mm) cosppb   47.2341 47.2341 47.2341 

Table 6-2 Parameters of planetary gears 
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Parameters Symbol Sun gear Ring gear Planet gear 

Tooth thickness  
(mm) 2

m
s


  25.1327 25.1327 25.1327 

Centre distance  
(mm) )(

2 ps zz
m

a   0.4080 ----- 0.4080 

Table 6-2(continued) Parameters of planetary gears 

 

The planetary gear ratios are calculated by Table 6-3 as below, 

 Sun gear Planet gears Ring gear Carrier arm 

Step 1 
Lock all gears and 
carrier arm; 
Rotate all parts as one 
through +1 

+1 +1 +1 +1 

Step 2 
Lock carrier arm; 
Rotate ring gear through 
-1 

-(83/32)* 
(-32/19) -(83/32) -1 0 

Step 3 
Sum step 1 and step 2 5.3684 -1.5938 0 +1 

Table 6-3 The Tabular Method for the planetary gear ratios 
 

In Table 6-3, the rotational speed ratio (5.3684 to 1) between sun gear and carrier 

arm is shown with the ring gear being locked which simulates the conditions of the 

bucket wheel reclaimer drive.  The ratio associated with the reduction gearbox ratio 

(29.2971 in Eqs 6.7) provides a total speed reduction ratio of 157.2792:1 

(5.3684*29.2971) from the motor to the bucket wheel. This design keeps the 

rotational speed of the bucket wheel in the range of 6rpm (950/157.2792=6.04 rpm). 

 

In this research, to simplify the modelling and the calculation of the mass and inertia 

of the sun gear, ring gear, planet gears and carrier arm, they are assumed to be hollow 

cylinders.  

 

The mass of a hollow cylinder66 is given by, 































22

22
idd

bmass                                                   (6.8)
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where   is the density of material, where d for the gears is the pitch diameter and 

for the carrier arm is the outer diameter, and where id  denotes shaft diameter for sun 

gear and planet gears, host diameter for ring gear, and inner diameter for carrier arm.  

 

The inertia of a hollow cylinder is, 






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4422

222
1

222
1 ii dd

b
dd

minertia                                                    (6.9) 

 

6.7. BUCKET WHEEL AND LOAD MATERIAL 
 

The wheel body of the bucket wheel is simplified and approximated to be modeled as 

a hollow cylinder with dimensions woutr

 

for outer radius, winr

 

for inner radius, and wl  

for length. The bucket wheel is bolted to the carrier arm for simplification and the 

shaft can be modeled with shaft mass and inertia.  

 

The mass of the wheel body is therefore calculated as,   

  wwinwoutww lrrmass
22

 

                                                                                              

(6.10) 

and the inertia of the wheel body is calculated as, 

  wwinwoutww lrrinertia
44

2
1

 

  

                                                                          (6.11) 

 

A number bn

 
of buckets are mounted on the outer circle of the wheel body. Every 

bucket is modeled as a quarter cylinder with hollow centers, having outer width of 

boutw , outer radius of boutr , inner width of binw , and inner radius of binr .  

 

The mass of a single bucket is therefore calculated as,   

 binbinboutboutbb wrwrmass
22

4
1

 

                                                                               

  (6.12) 

and the inertia of a single bucket about the centre of carrier arm is calculated as, 

    22244

4
1

2
1

4
1

woutbinbinboutboutbbinbinboutboutbb rwrwrwrwrinertia        (6.13) 
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The mass of a full bucket of ore is calculated as,        

binbinoo wrmass
2

4
1


                                                                                                          

(6.14) 

and the inertia of a full bucket of ore about the centre of carrier arm is calculated as,        

224

4
1

2
1

4
1

woutbinbinobinbinoo rwrwrinertia  

                                                              

(6.15) 

 

When the bucket wheel is in operation, not all the buckets are full of ore. An 

approximated loading condition is introduced here to simulate the mass and inertia of 

loaded ore. The ore loading condition coefficient is, 

  oo pnOlcc

                                                                                   

(6.16) 

where op  denotes the percentage of ore in a single bucket and on  is the number of 

buckets with the same loading condition.  

 

6.8. SUMMARY OF CHAPTER 
 

The major components of the typical compact bucket wheel reclaimer used in this 

thesis are summarized in Figure 6-4. 

 

 

 
Figure 6-4 Major components used in this thesis 

 

The major parameters are summarized in Table 6-4. 

 

Component Symbol  Parameter Value 

AC induction motor 

n speed of motor 950 rpm 

p number of poles 6 

f  supply frequency  50 Hz 

Table 6-4 Major parameters of the bucket wheel reclaimer components 
 
 
 

AC 
induction 
motor 

Multistage 
reduction 
gearbox 

Fluid 
coupling 

Single stage 
planetary 
gearbox 

Bucket 
wheel and 
buckets 
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Component Symbol  Parameter Value 

AC induction motor 

flT  full load torque 4342.4 Nm 

upstartT 
 start-up torque 9942.9 Nm 

imumTmax  maximum torque 11240 Nm 

-- inertia of the motor 20 2kgm  

Fluid coupling ccq   damping coefficient 15 

Reduction gear box ioductionRatRe  reduction ratio 29.2971 

Planetary gear box 

--
 

mass of sun gear 98.9691 kg 

-- mass of ring gear 2015.1 kg 

-- mass of carrier arm 3699.2 kg 

-- mass of planet gear 284.2189 kg 

-- inertia of sun gear 1.4760 2kgm  

-- inertia of ring gear 1224.4 2kgm  

-- inertia of carrier arm 1849.6 2kgm  

-- inertia of planet gear 11.9417 2kgm  

-- reduction ratio 5.3681 

Bucket wheel and 
load material  

woutr  outer radius 2 m 

winr  inner radius 1 m 

wl
 length 0.1 m 

wmass
 mass of bucket wheel 

body 7398.5 kg 

winertia
 inertia of bucket 

wheel body 18496 2kgm  

bmass
 mass of a single 

bucket 1277.8 kg 

binertia  inertia of a single 
bucket 6048.3 2kgm  

omass
 mass of a full bucket 

of ore 3664.6 kg 

oinertia
 inertia of a full bucket 

of ore 16312 2kgm  

Olcc  loading condition 
coefficient 3*0.8+1*0.6+1*0.1 

Table 6-4(continued) Major parameters of the bucket wheel reclaimer components 
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7. GENERALISED SOFTWARE MODEL 
 

In this thesis, all the calculations and simulations are conducted using the MATLAB 

program. The MATLAB program was developed using symbolic math and written in 

M-files. The entire program includes 49 mfiles with most inputs listed in one mfile 

and a few located in other mfiles.  

 

In this chapter, the flow chart of the overall software model is illustrated and the 

overall inputs are listed. MATLAB programs used for each chapter (Chapter 3 to 

Chapter 9) are introduced with corresponding flow chart where it is applicable. The 

detailed code of each MATLAB program is listed in Appendix 13.1.  

 

7.1. FLOW CHART OF PROGRAMS 
 

This flow chart divides the entire programs into 4 levels. The first level represents 

the input and  output level, which is shown using single-line circles and texted 

arrows. The second level contains programs for sub-system level calculations and 

simulations, which are presented using rounded corner rectangles. The third level is 

the sub-system overall level, which is shown using double-line circles. There are 8 

groups of third level programs. The fourth level is the main program which contains 

the ODE function and solver. It is shown using a triple-line circle.  

 

Between each part there are line-arrows, which represents the connections and data 

flow directions.  

 

This overall flow chart represents the detail down to the level of a single program 

and hence does not include the code level within the single program.  
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Figure 7-1 Flow chart of program developed in this research 

Inputs 
ipdata.m 

Mesh Point stiffness 
calculator  
mstiffr.m, msitffs.m 

Mesh cycle 
 determinator 
ymrr.m, ymss.m 

Mesh stiffness output 
Kmr1.m, Kmr2.m, Kmr3.m 

Kms1.m, Kms2.m, Kms3.m 

 

Mesh stiffness output 
Kmr1.m, Kmr2.m, Kmr3.m 

Kms1.m, Kms2.m, Kms3.m 

Displacement vector 
generator 
displacementvector.m 

Ode function generator 
cunfangMCKF.m 

Velocity vector generator 
velocityvector.m Planet pitch error 

generator 
erppp.m, esppp.m 

Ring gear pitch error 
generator 
erppr.m 

Sun gear pitch error 
generator 
espps.m 

Ring gear profile error 
generator 
erpp.m 

Sun gear profile error 
generator 
espp.m 

Random excitation 
generator 
esppran.m, erppran.m 

Combined excitation  
generator 
erp1.m, erp2.m, erp3.m 

esp1.m, esp2.m, esp3.m 

 

Inputs 
    ipdata.m 

Mass of carrier  
& bucket & 
load massC.m 

Inertia of carrier  
& bucket & 
load inertiaC.m  

Torque of motor 
TorM.m,  

TorqueM.m 

Torque applied  
on sun gear  
TorqueS.m 

Torque applied  
on carrier 
torqueOUT.m 

 
Output program for 
solver ode15s 
vdp1.m 

 

RESULTS 

Manual input 

Manual input 

Manual input 

Manual input 

Inputs 
ipdata.m Manual input 

Tooth mesh variation 
program package 
ymr1.m, ymr2.m,  
ymr3.m, ymrr.m, 
 yms1.m, yms2.m,  
yms3.m, ymss.m 

Program package 
(profile error associated 
with spalling only) 
emr1.m, emr2.m, emr3.m, 
emrrr.m, ems1.m, ems2.m, 
ems3.m, and emsss.m 

Mesh cycle 
 determinator 
ymrr.m, ymss.m 

Manual input 

Inputs 
ipdata.m 

Manual input 
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7.2. INPUT 
 

The program developed to introduce input values into the program is named ipdata.m. 

It includes all inputs needed in the entire program except displacement factors of 

action line of mesh (Sec 7.3), setting for profile and pitch excitation (Sec 7.4), and 

settings for tooth faults (Sec 7.5).  

 

The value of each input can be arbitrary; however, realistic values are needed to gain 

realistic results. 

 

The inputs employed in this research are listed in Table 7-1. 

 

Input Symbol Value Meaning 

ipdata(1) sz  19 teeth number of sun gear 

ipdata(2) pz  32 teeth number of planet gear 

ipdata(3) rz  83 teeth number of ring gear 

ipdata(4) s  20 pressure angle, sun gear, degrees 

ipdata(5) r  20 pressure angle, ring gear, degrees 

ipdata(6) m  16/1000 Module 

ipdata(7) n  3 number of planets 

ipdata(8) bB /  245/1000 face width (m) 

ipdata(9) cr  calculated 
centre distance of sun & planet / design radial 
distance between the centers of planet gear and 
carrier arm 

ipdata(14) -- 82/1000 sun gear shaft radius (m) 

ipdata(15) -- 136/1000 planet gear shaft radius (m) 

ipdata(16) -- 880/1000 ring gear host radius (m) 

ipdata(21) E  210*10^9 Young‟s Modulus (Pa) 

ipdata(22)   7850 density of gear/carrier arm material ( 3/ mkg ) 

ipdata(23) o  4700 density of ore ( 3/ mkg ) 

ipdata(31) p 6 number of poles  

ipdata(32) f 50 supply frequency (Hz) 

ipdata(33) n 950 operating speed of motor (rpm) 

ipdata(34) -- 450000 rated power of motor (Watts) 
Table 7-1 List of inputs 
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Input Symbol Value Meaning 

ipdata(35) -- 29.2971 reduction gear box ratio 

ipdata(36) -- calculated gear box ratio 

ipdata(37) -- 20 inertia of motor ( 2kgm ) 

ipdata(41) -- 5 output torque control ratio   

ipdata(42) -- 12 number of buckets 

ipdata(43) -- 5 corresponding to in(92), number of buckets with 
ore when in operation 

ipdata(44) -- calculated starting up end point/loading up start point 

ipdata(45) -- calculated loading up end point 

ipdata(46) -- calculated unloading start point 

ipdata(47) -- calculated unloading end point 

ipdata(48) -- calculated single bucket load loading up/unloading period 

ipdata(49) -- calculated overloading start point 

ipdata(50) -- calculated overloading end point 

ipdata(51) cd 3 condition controller 

ipdata(53) 
ispSP  1 SPsp controller 

ipdata(54) 
irpSP  1 SPrp controller 

ipdata(55) -- 0.001 differential step controller 

ipdata(56) -- 0 shaft-frequency excitation controller 

ipdata(61) 
ispc  10 damping of sun-planet meshing (Ns/m) 

ipdata(62) 
irpc  10 damping of ring-planet meshing (Ns/m) 

ipdata(63) pxc  10^10 damping of planet-carrier connection in x direction 
(Ns/m) 

ipdata(64) pyc  10^10 damping of planet-carrier connection in y direction 
(Ns/m) 

ipdata(65) pxk  10^8 stiffness of planet-carrier connection in x direction 
(N/m) 

ipdata(66) pyk  10^8 stiffness of planet-carrier connection in y direction 
(N/m) 

ipdata(67) 
icpr  calculated 

centre distance of sun & planet / real radial 
distance between the centers of planet gear and 
carrier arm (m) 

ipdata(71) rbT  0 torque from base to ring gear (Nm) 

ipdata(72) ccq  15 coupling damping coefficient  

ipdata(81) cinr  0/1000 inner radius of carrier arm (m) 
Table 7-1(continued) List of inputs 
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Input Symbol Value Meaning 

ipdata(82) coutr  1 outer radius of carrier arm (m) 

ipdata(83) cl  150/1000 average width of carrier arm (m) 

ipdata(84) winr  1 inner radius of wheel (m) 

ipdata(85) woutr  2 outer radius of wheel (m) 

ipdata(86) wl  0.1 average width of wheel (m) 

ipdata(87) bn  in(42) number of buckets 

ipdata(88) boutr  1 bucket dimension, outer radius (m) 

ipdata(89) boutw  1.2 bucket dimension, outer width (m) 

ipdata(90) binr  0.95 bucket dimension, inner radius (m) 

ipdata(91) binw  1.1 bucket dimension, inner width (m) 

ipdata(92) Olcc  3.1 ore loading condition 

ipdata(93) -- 0.8 single bucket ore drop 

ipdata(94) -- calculated ore drop period 

ipdata(95) -- 10 overloading rate 

ipdata(101) sc  300 damping of sun gear support in x direction (Ns/m) 

ipdata(102) sc  300 damping of sun gear support in y direction (Ns/m) 

ipdata(103) stc  100 damping of sun gear support in torsional direction 
(Ns/m) 

ipdata(104) rc  450 damping of ring gear support in x direction (Ns/m) 

ipdata(105) rc  450 damping of ring gear support in y direction (Ns/m) 

ipdata(106) rtc  10^6 damping of ring gear support in torsional direction 
(Ns/m) 

ipdata(107) cc  500 damping of carrier arm support in x direction 
(Ns/m) 

ipdata(108) cc  500 damping of carrier arm support in y direction 
(Ns/m) 

ipdata(109) ctc  100 damping of carrier arm support in torsional 
direction (Ns/m) 

ipdata(111) sk  10^7 stiffness of sun gear support in x direction (N/m) 

ipdata(112)  10^7 stiffness of sun gear support in y direction (N/m) 

ipdata(113) stk  0 stiffness of sun gear support in torsional direction 
(N/m) 

ipdata(114) rk  10^8 stiffness of ring gear support in x direction (N/m) 

ipdata(115)  10^8 stiffness of ring gear support in y direction (N/m) 
Table 7-1(continued) List of inputs 

 

sk

rk
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Input Symbol Value Meaning 

ipdata(116) rtk  10^10 stiffness of ring gear support in torsional direction 
(N/m) 

ipdata(117) ck  5*10^7 stiffness of carrier arm support in x direction (N/m) 

ipdata(118)  5*10^7 stiffness of carrier arm support in y direction (N/m) 

ipdata(119) ctk  0 stiffness of carrier arm support in torsional 
direction (N/m) 

ipdata(201) 1  0 planet spacing 1 (rad) 

ipdata(202) 2  34/51*pi planet spacing 2 (rad) 

ipdata(203) 3  68/51*pi planet spacing 3 (rad) 

ipdata(301) -- 0.00 angular error of the 1st planet position on carrier 
arm (degree) 

ipdata(302) -- 0.00 angular error of the 2nd planet position on carrier 
arm (degree) 

ipdata(303) -- 0.00 angular error of the 3rd planet position on carrier 
arm (degree) 

Table 7-1(continued) List of inputs 
 

7.3. AUTOMATIC ASSEMBLY OF EQUATIONS  OF 

MOTION (PROGRAM USED FOR CHAPTER 3)  
 

The program presented here is aimed at developing a common generator of ODE 

(ordinary differential equations) functions automatically for the overall dynamic 

system. The arbitrary arrangement of planet gears and arbitrary parameter settings 

can be simply simulated by including the data listed in ipdata.m. Also additional 

details including reactions along the action line of mesh can be introduced without 

difficulty (only two terms MDsp and MDrp need to be changed, Sec 13.1.4). The 

flow chart for the ODE generation program is shown in Figure 7-2. 

ck
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Program displacementvector.m is developed to generate the displacement vector and 

optionally display each term in the displacement vector with associated physical 

meaning respectively (by using code after line 26).  

 

Program velocityvector.m is developed to generate the velocity vector and optionally 

display each term in the velocity vector with associated physical meaning (by using 

code after line 26).  

 

Program cunfangMCKF.m is developed to generate the ODE function67. It requires 

ipdata.m, displacementvector.m, velocityvector.m and manual inputs (MDsp and 

MDrp at line 32, 103, 148, 173, 472, 543, 588, 614, 905, 939, 964, 1030, 1096, 1130, 

1155, 1221, and governing equations at line 277, 285, 293, 301, 309, 317, 710, 718, 

726, 734, 742, 750, 1288, 1296, 1304, 1312, 1320, 1332, and submission of Eqs3.53-

56 at line 1380, 1394, 1410, 1424, 1440, 1500, 1514, 1533, 1547). The 

corresponding flow chart is shown in Figure 7-3. 

  

Inputs 
ipdata.m 

Displacement vector 
generator 
displacementvector.m 

Ode function generator 
cunfangMCKF.m 

Velocity vector generator 
velocityvector.m 

Manual input 

Figure 7-2 Flow chart of program for generation of ODE equations 
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Figure 7-3 Flow chart of Ode function generator cunfangMCKF.m 

Inputs and setting of variables 

Forming MDspi & DMDspi 

Inputs ipdata.m 

Manual input, MDsp 

Numbering MDspi 

Forming terms in stiffness, 
damping and force  
matrices corresponding to 
sun-planet meshes.  

Manual input, MDsp 

Manual input, 
 governing equations 

Forming MDrpi & DMDrpi 
Manual input, MDrp 

Numbering MDrpi 

Forming terms in stiffness, 
damping and force  
matrices corresponding to 
ring-planet meshes.  

Manual input, MDrp 

Manual input, 
 governing equations 

Forming MDxcpi & DMDxcpi 
Manual input, MDxcp 

Numbering MDxcpi 

Forming terms in stiffness, 
damping and force  
matrices corresponding to 
ring-planet meshes.  

Manual input, MDxcp 

Forming MDycpi & DMDycpi 
Manual input, MDycp 

Numbering MDycpi Manual input, MDycp 

Forming mass matrices 

Forming supporting 
stiffness matrices 

Forming overall 
stiffness matrices 

Forming mesh 
stiffness matrices 

Forming supporting 
damping matrices 

Forming overall 
damping matrices 

Forming mesh 
damping matrices 

Forming force vector 

Velocity vector 
generator 
velocityvector.m 

 

Displacement vector 
 generator 
displacementvector.m 

 
Ode function  
dydt 

 

Manual input, 
governing equations 
replacement 
equations 
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7.4. GENERATION PROGRAM OF TRANSMISSION 

ERRORS (PROGRAM USED FOR CHAPTER 4) 
 

7.4.1. PLANET GEAR PITCH ERROR 

 

Programs erppp.m and esppp.m are developed to generate planet gear pitch error for 

ring-planet pairs and sun-planet pairs respectively. The same pitch error pattern is 

applied to all planet gears starting from the defined first tooth respectively.  

 

It should be noticed that all coefficients used in each program should have the same 

corresponding value.  

 

7.4.2. RING GEAR PITCH ERROR 

 

Program erppr.m was developed to generate the ring gear pitch error for ring-planet 

pairs. 

 

7.4.3. SUN GEAR PITCH ERROR 

 

Program espps.m was developed to generate the sun gear pitch error for sun-planet 

pairs. 

 

7.4.4. SUN GEAR - PLANET GEAR PAIR PROFILE ERROR 

 

Program espp.m was developed to generate the assumed sun-planet profile error over 

the time of mesh for one pair of teeth.  

 

7.4.5. RING GEAR - PLANET GEAR PAIR PROFILE ERROR 

 

Program erpp.m was developed to generate the assumed ring-planet profile error 

over the time of mesh for one pair of teeth.  

 

7.4.6. RANDOM EXCITATION 
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Programs erppran.m and esppran.m were developed to model random excitation due 

to random tooth profile errors for ring-planet pairs and sun-planet pairs respectively. 

 

7.4.7. TOOTH MESHING VARIATION 

 

Program package (including ymr1.m, ymr2.m, ymr3.m, ymrr.m, yms1.m, yms2.m, 

yms3.m, and ymss.m) was developed to determine the number of teeth in mesh based 

on the time of meshing for all ring-planet and sun-planet pairs. It takes values in 

ipdata.m as inputs and gives out the number of teeth in mesh as a function of  mesh 

cycle for different pairs respectively. 

 

7.4.8. COMBINED PITCH AND PROFILE EXCITATION 

 

A program package (including erp1.m, erp2.m, erp3.m, esp1.m, esp2.m, and esp3.m) 

was developed to generate the combined excitation due to pitch error, profile error 

and random features. It takes values in ipdata.m and outputs from programs listed in 

Sec 7.4.1 to 7.4.7 as inputs and gives out the combined excitation against mesh cycle 

for each pair in mesh respectively. 

 

7.5. TOOTH MESH STIFFNESS (PROGRAM USED 

FOR CHAPTER 5)  
 

The program used for chapter 5 was written to develop a common simulating method 

of torsional mesh stiffness of teeth in mesh. Features namely tooth mesh variation, 

equivalent root crack, localized spall, and arbitrary fault arrangement and resulting 

stiffness curves are included. The flow chart is shown in Figure 7-4. 
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The program named Mesh Cycle Determinator takes the location of a mesh point 

along the mesh cycle as input and calculates whether or not the previous teeth are in 

mesh.  

 

The program named Mesh Point Stiffness Calculator takes the location of a mesh 

point along the mesh cycle, number of teeth in mesh, which teeth are in mesh for 

both gears, and locations of mesh points along tooth meshing line as inputs and gives 

out a numerical result for torsional mesh stiffness at the mesh point. This program 

includes setting of tooth crack, tooth spall and assumed stiffness curves. 

 

The program named Mesh Stiffness Output calculates the torsional mesh stiffness for 

the entire mesh period.  

 

7.6. PROGRAM USED FOR CHAPTER 6  
 

7.6.1. TORQUE-SPEED CURVE OF MOTOR 

 

Inputs 
ipdata.m 

Mesh Point stiffness 
calculator  
mstiffr.m, msitffs.m 

Mesh cycle determinator 
ymrr.m, ymss.m 

Mesh stiffness output 
Kmr1.m, Kmr2.m, Kmr3.m 
Kms1.m, Kms2.m, Kms3.m 
 

Mesh stiffness output 
Kmr1.m, Kmr2.m, Kmr3.m 
Kms1.m, Kms2.m, Kms3.m 

Figure 7-4 Flow chart of program used for tooth mesh stiffness 
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Program TorM.m was developed to generate the torque-speed curve of a motor. It 

takes the values listed in ipdata.m as inputs and calculates the motor torque against 

speed with units of rpm.  

 

7.6.2. INERTIA OF CARRIER ARM WITH BUCKET WHEEL AND LOAD 

MATERIAL  

 

Program inertiaC.m was developed to generate the inertia-displacement curve of the 

carrier arm with bucket wheel and load material. It takes the values listed in ipdata.m 

and real time torsional displacement of the carrier arm (result of ODE solver) as 

inputs and calculates the inertia against real time torsional displacement of the carrier 

arm. Cases such as those operating with or without load material, start loading, end 

loading and over load can be simulated by introducing corresponding values into 

ipdata.m. 

 

7.6.3. MASS OF CARRIER ARM WITH BUCKET WHEEL AND LOAD 

MATERIAL  

 

Program massC.m calculates the mass-displacement curve of the carrier arm with 

bucket wheel and load material. It takes the values listed in ipdata.m and real time 

torsional displacement of the carrier arm (result of ODE solver) as inputs and 

calculates the mass against real time torsional displacement of the carrier arm. Cases 

such as those operating with or without load material, start loading, end loading and 

over load can be simulated by introducing corresponding values into ipdata.m. 

 

7.7. PROGRAM USED FOR CHAPTER 8  
 

7.7.1. INPUT TORQUE  

 

Program TorqueS.m was developed to simulate the input torque applied to the sun 

gear. It takes values listed in ipdata.m as inputs and calculates torque against speed 

of the sun gear with units of rpm. 
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7.7.2. OUTPUT TORQUE 

 

Program torqueOUT.m was developed to simulate the output torque (value of torque 

due to load) applied to the carrier arm. It takes values listed in ipdata.m as inputs and 

calculates torque against real time torsional speed and displacement of the carrier 

arm (results of ODE solver). Cases such as those operating with or without load 

material, start loading, end loading and over load can be simulated by introducing 

corresponding values into ipdata.m. 

 

7.7.3. SOLVER 

 

Program vdp1.m was developed as required by the MATLAB solver ode15s. It needs 

the output of cunfangMCKF.m as part of the program and some find-replaces need to 

be done manually using the Edit-Find & Replace command .  

 

7.8. PROGRAM USED FOR CHAPTER 9  
 

7.8.1. RING-PLANET PROFILE ERROR ASSOCIATED WITH SPALLING 

 

Program package (including emr1.m, emr2.m, emr3.m, and emrrr.m) generates the 

ring-planet profile error associated with spalling only. The type of tooth spalling 

simulated in this program package is a simplified case simulating the cutting off of 

material across the entire width of the tooth surface to introduce a platform in the 

mesh. The location of the centre line of the spalling (platform), width of the spalling 

(platform), maximum depth of the spalling, and the specific shape of the cross 

section of spalling can be arbitrarily simulated by introducing corresponding values 

into the program. 

 

This package is also introduced into the Combined Pitch and Profile Excitation 

program as inputs. 

 

7.8.2. SUN-PLANET PROFILE ERROR ASSOCIATED WITH SPALLING 
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Program package (including ems1.m, ems2.m, ems3.m, and emsss.m) was constructed 

to generate the sun-planet profile error associated with spalling only. The type of 

tooth spalling simulated in this program package is a simplified case representing the 

removal of material across the entire width of the tooth surface to introduce a 

platform in the mesh. The location of the centre line of the spalling (platform), width 

of the spalling (platform), maximum depth of the spalling, and the specific shape of 

the cross section of spalling can be arbitrarily simulated by introducing 

corresponding values into the program. 

 

This package is also introduced into the Combined Pitch and Profile Excitation 

program as inputs. 

 

7.9. SUMMARY OF CHAPTER 
 

The MATLAB program was developed using symbolic math in order to generate the 

differential equations of a general model automatically, adjustable for different 

amounts of inputs automatically and was formed to be able to include more details or 

exclude existing details (e.g. interactive forces between mesh teeth, mount errors, 

etc.) with single modification on the inputs. Models with different numbers of planet 

gears with and without torsional/transverse responses can be easily simulated. 

 

Every change on listed inputs can be automatically reflected into the overall 

equations of motion. Every change on the other inputs also can be automatically 

reflected into the overall equations of motion but may require some find-replace 

operations (22 in total, all listed in one m-file) to be done manually. 

 

Practically all major changes or adding/deleting details on the model can be done 

within minutes before the program is ready to run. A one second simulation of a 

normal detailed model required approximately 6 hours computation with a PC 

equipped with Intel Core2Duo 3.0GHz CPU and 4GB RAM. To accelerate the 

computation, the MATLAB Compiler could be used in future work. 

 

The MATLAB software requires the Symbolic Toolbox to run the programs 
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developed in this thesis. This is a major limitation as not all the versions of 

MATLAB include this toolbox (MATLAB version 7.1.0.246 was used in this 

research).  
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8. VIBRATION MODELLING WITH 

UNDAMAGED GEARS 
 

In this chapter, the lumped mass modelling (developed over the former chapters) of 

the overall system including motor, coupling, reduction gearbox, planetary gearbox 

and simulated loading is built and analyzed with no damage on any gear components.  

 

8.1. ASSUMPTIONS AND INPUT 
 

In order to get a more realistic, more detailed and on the other hand a more 

computational efficient model, three groups of assumptions have been made 

respectively. In this section, assumptions which are related to undamaged gear 

models only, rather than matters concerned with input data values will be explained 

and corresponding input data or terms in the program will be specified in Table 8-1. 

 

AN* Explanation  Purpose Value 

1 
Simulation is applied to large planetary gearbox with or 
without coupling and loading under operation condition 
of low speed, high torque (especially with load).  

Ⅱ Variable inputs, mass, 
dimensions, and load 

2 

Due to AN 1, there is no backlash when gear system is 
in operation. Consequently spMD  and rpMD  are zero 
or positive signed all the time. Teeth are assumed not to 
lose contact under any conditions. 

Ⅰ, Ⅲ 
Tooth separation 
phenomenon 

1spSP , 1rpSP  

3 Only coupled torsional-transverse behavior of gear 
bodies is studied in a two dimensional model. Ⅰ 

condition controller 
ipdata(51),  
cd=3 

4 
A single-stage planetary gear system contains one sun 
gear, one ring gear, one carrier arm and three equally 
spaced planet gears 

Ⅲ 

number of planets 
n=3 
planet spacing 
ipdata(201)=0 
ipdata(202)= 34/51*pi 
ipdata(203)= 68/51*pi 

5 
Essential supporting shafts and bearings as well as gear 
casing are simulated on overall scale by introducing 
stiffness and damping terms 

Ⅰ , Ⅱ , 
Ⅲ 

][ sC  and ][ sk  

Table 8-1 Assumptions and values of inputs associated with modelling with undamaged tooth 
(*AN short for Assumption Number; Ⅰ, more realistic; Ⅱ, more detailed; Ⅲ, more 

computational efficient) 
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AN* Explanation  Purpose Value 

6 

Geometric design of bucket wheel and carrier arm is 
kept as simple as possible. The wheel body of bucket 
wheel is simplified and approximately modeled as a 
hollow cylinder, relatively thin in length. Every bucket 
is modeled as a quarter cylinder with hollow centers. 

Ⅲ Dimensions and 
density are chosen. 

7 Tooth mesh friction is negligible. Ⅲ  

8 Gear mesh run out functions are set to zero. Ⅲ 
0 rs EE  

0 rpsp EE  

9 

Fluid coupling is modeled by using extra degree of 
freedom to simulate start up. In some cases (after 
starting up stage), fluid coupling is not modeled to 
simplify the model. 

Ⅰ , Ⅱ , 
Ⅲ 

 

10 Elements other than planetary gears are assumed to be 
perfectly rigid. Ⅲ  

11 
Planetary gear bodies are assumed rigid and connected 
with mesh or supporting stiffness, damping as well as 
combined gear errors along the line of action. 

Ⅲ  

12 

Associated with AN 11, planet gears are mounted on the 
carrier arm through the planet pin-bearing assembly 
which is simulated with introduced stiffness and 
damping features to simplify the equations of motion 

Ⅲ  

13 

The rotational motion of the planet is completely 
uncoupled from the carrier arm‟s motion, as the zero 
friction force condition is the assumption to simplify the 
system (AN 7).  

Ⅰ, Ⅲ  

14 
Output torque is simulated by introducing load applied 
to the outer circle of the carrier arm including bucket 
wheel, buckets and loading material. 

Ⅱ, Ⅲ  

15 Sun gear, ring gear and carrier arm are assumed to be 
perfectly concentric. Ⅲ  

16 
An approximate numerical approach with three 
harmonics is used to simulate pitch and profile errors for 
all the gear pairs.  

Ⅲ  

17 Random pitch and profile errors are ignored. Ⅲ  

18 Supporting structure deformation is ignored for the 
simulation of transmission error in this research.  Ⅲ  

19 Combined transmission error is on a scale of 10 m  Ⅰ  

20 All planet gears have the same pitch and profile error 
patterns. Ⅲ  

Table 8-1 (continued) Assumptions and values of inputs associated with modelling with 
undamaged tooth (*AN short for Assumption Number; Ⅰ, more realistic; Ⅱ, more detailed; Ⅲ, 

more computational efficient) 
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AN* Explanation  Purpose Value 

21 
When more than one pair of teeth are in contact, the 
profile error is the same value as the largest excessive 
material or least lack of material. 

Ⅰ  

22 
The second pair of teeth and the third pair of teeth in 
mesh have equal effect Emeshon changing the mesh 
stiffness. (section 5.1) 

Ⅲ  

23 

The values of mesh stiffness are kept constant so the 
mesh stiffness diagrams have lines instead of curves. 
More realistic simulations can also be obtained by using 
the program (Sec 7.5) developed in this research with a 
modification on the curve simulation equations. 

Ⅰ, Ⅲ  

24 The coupling is assumed to have a slip of 3% at full load 
condition. Ⅰ, Ⅱ S=0.03 

25 Reduction gear box ratio is assumed to ensure the output 
speed of planetary gear stage to be in the range of 6 rpm. Ⅰ 

reduction gear box 
ratio ipdata(35) 

2971.29
Re


ioductionRat  

26 
Sun gear, ring gear, planet gears, and carrier arm are 
assumed to be hollow cylinders in order to calculate the 
mass and inertia.  

Ⅲ  

27 An approximated loading condition is introduced to 
simulate the mass and inertia of loaded ore. Ⅲ 

ore loading condition 
ipdata(92) 

1.3Olcc  
single bucket ore drop 
ipdata(93)=0.8 

28 Overload is simulated by increasing loading by 
overloading rate.  Ⅰ overloading rate  

ipdata(95)=10 

29 Zero torque applied to ring gear from ring gear housing 
except reacting torque. Ⅰ, Ⅲ 

torque from base to 
ring gear ipdata(71) 

0rbT  

30 Zero stiffness applied to sun gear and carrier arm 
support in torsional direction. Ⅲ 

stiffness of sun gear 
support in torsional 
direction ipdata(113) 

0stk  
stiffness of carrier arm 
support in torsional 
direction ipdata(119) 

0ctk  31 Very high damping applied to planet-carrier connection 
in x and y direction. Ⅰ, Ⅲ 

damping of  
planet-carrier 
connection ipdata(63) 
and ipdata(64)  

10^10 pypx cc

Ns/m 
Table 8-1 (continued) Assumptions and values of inputs associated with modelling with 

undamaged tooth (*AN short for Assumption Number; Ⅰ, more realistic; Ⅱ, more detailed; Ⅲ, 
more computational efficient) 
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AN* Explanation  Purpose Value 

32 

Very high damping and stiffness applied to ring gear 
support in torsional direction. Ring gear is assumed to 
be fixed in torsional direction. 
 
Ring gear is assumed to be fixed onto the casing of the 
gear box. 

Ⅰ, Ⅲ 

damping of ring gear 
support in torsional 
direction ipdata(106) 

6^10rtc  Ns/m  
stiffness of ring gear 
support in torsional 
direction ipdata(116) 

10^10rtk   N/m 
Table 8-1 (continued) Assumptions and values of inputs associated with modelling with 

undamaged tooth (*AN short for Assumption Number; Ⅰ, more realistic; Ⅱ, more detailed; Ⅲ, 
more computational efficient) 

 

8.2. SIMULATION RESULTS 
 

In this chapter three modelling cases of the undamaged gearbox are simulated. The 

first case represents the simulation where the bucket wheel, buckets and loading 

material are removed from the operational condition, and there is no combined gear 

error (transmission error) to simplify the model. The second case includes the bucket 

wheel, buckets and loading material (time variable, exists since loading up) to 

simulate the operational condition mainly during starting up and before loading up. 

There is also no combined gear error in order to limit computational time. The third 

case is the same as the second case except it has combined gear error. Results 

corresponding to case-1 are detailed and listed in this section. Differences between 

all three cases are discussed in Section 8.3. 

 

For all the cases simulated in this thesis (including three cases in this chapter and 

case-4 in Chapter 9), synchronous signal averaging was used to analyze the vibration 

signals. After steady state rotational speed of the sun gear has been achieved, 4 

revolutions of the sun gear, 2 revolutions of the planet gears and 1 revolution of the 

ring gear and the carrier arm are simulated for subsequent analysis due to the 

limitation of computational time (excess of 2 days was required for the simulation of 

one carrier arm revolution).  Synchronous signal averaging was used to recover the 

vibration information relating to the components of interest where it is applicable. 

Frequency analysis was also employed. 

 

One revolution of the sun gear was determined as when all sun teeth (in this thesis, 
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19 teeth) have been through the mesh (in this thesis, one of the three sun gear - planet 

gear meshes) once. One revolution of the ring gear was determined as when all ring 

teeth (in this thesis, 83 teeth) have been through the mesh (in this thesis, one of the 

three ring gear - planet gear meshes) once. One revolution of the carrier arm was 

defined as 360 degrees of carrier arm rotation about the ring gear which is assumed 

to be stationary. One revolution of a planet gear was defined as when all of the planet 

gear teeth have been through either one of the sun gear - planet gear meshes or the 

ring gear - planet gear meshes once.  

 

The period of one revolution of each component shown in the figures uses the shaft 

position in degrees on the horizontal axis. For the sun gear, ring gear and planet gears 

signals, the term, shaft position, was defined to be the angular position of the 

shaft/gear about the corresponding mesh point rather than the axis of the shaft/gear. 

Zero degrees at the start corresponds to the start mesh point and 360 degrees denotes 

when the tooth mesh is back to the starting point. For the carrier arm signals, the 

term, shaft position, was defined to be the angular position of the carrier arm shaft 

about its own axis.  

 

The following figures (Figure 8-1 to Figure 8-28) show the simulation results of case 

one from startup.  

 

 
Figure 8-1 Case-1 sun gear time(s)-displacement(m) 
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Figure 8-1 shows the sun gear dynamic vibration signals including start up. The 

transverse signals shows that the steady state speed has been achieved within 0.3s. 

The torsional linear motion of the sun gear represents the circular motion of any 

point of the sun gear pitch circle along the pitch circle, and the linearity of the line 

indicates the steady state rotational speed.  

 
Figure 8-2 Case-1 sun gear averaged shaft position(degree)-velocity(m/s) vibration 

 

There are 19 humps in the period of transverse signals shown in Figure 8-2, which is 

equal to the number of sun gear teeth. There are 57 pulses in the rotation velocity 

signal of sun gear (shown in Figure 8-2 and 8-3), which can be calculated as the 

number of sun gear teeth multiplied by the number of planet gears (19*3=57, 

accuracy is affected by low number of revolutions used for averaging).  

 

 
Figure 8-3 Case-1 sun gear time(s)-torsional velocity(rpm) and averaged shaft position(deg)-

torsional velocity(rpm) vibration 
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Figure 8-4 Case-1 enlarged figure shows starting up of sun gear time(s)-torsional velocity(rpm) 

 

It is shown by Figure 8-3 that starting up can be simulated by the model developed in 

this thesis (enlarged figure shown in Figure 8-4). However, starting up can affect the 

results of signal averaging, frequency spectrum, and other methods used in detecting 

gear faults. In order to avoid the effect of starting up on signal processing, all signal 

processing used the vibration signal after steady state rotational speed had been 

obtained. 

 
Figure 8-5, 8-6, 8-7 show the frequency spectrum from the sun gear x-direction, y-

direction and torsional velocity vibration signals respectively. It can be seen that the 

former two show four harmonic frequencies but with very strong sideband effects. 

The latter one shows harmonic frequencies relatively more clearly. This shows that 

sun gear torsional vibration signal is superior than transverse signals for frequency 

analysis. The four harmonics should indicate the number of sun gear teeth multiplied 

by integers, however, low accuracy is obtained as only a small number of revolutions 

have been used for signal averaging. 
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Figure 8-5 Case-1 Frequency spectrum of sun gear x direction velocity vibration 

 

 

 
Figure 8-6 Case-1 Frequency spectrum of sun gear y direction velocity vibration 
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Figure 8-7 Case-1 Frequency spectrum of sun gear torsional velocity vibration 

 

Figure 8-8 and 8-9 show ring gear vibrations as a function of time and shaft position. 

All signals fluctuate about zero as it is assumed and simulated that the ring gear is 

fixed to the gearbox host structure. However, Figure 8.8 shows that the ring gear 

rotates a small amount (0.1mm) under the action of the gearbox load as expected.  

 
Figure 8-8 Case-1 ring gear time(s)-displacement(m) 
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Figure 8-9 Case-1 ring gear averaged shaft position(degree)-velocity(m/s) vibration 

 

Figure 8-10, 8-11, 8-12 show frequency spectrum from the ring gear x-direction, y-

direction and torsional velocity vibration signals respectively. It can be seen that the 

former two show four harmonic frequencies but with very strong sideband effects. 

The latter one shows harmonic frequencies relatively more clearly. The Ring gear 

torsional vibration signal appears to be superior than transverse signals for frequency 

analysis. The harmonics should indicate the number of ring gear teeth multiplied by 

integers, which are 83, 166, 249, 332 as shown in Figure 8-12; however, low 

accuracy is obtained for transverse signals as only a small number of revolutions are 

used for signal averaging. 
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Figure 8-10 Case-1 Frequency spectrum of ring gear x direction velocity vibration 

 

 

 
Figure 8-11 Case-1 Frequency spectrum of ring gear y direction velocity vibration 
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Figure 8-12 Case-1 Frequency spectrum of ring gear torsional velocity vibration 

 

Figure 8-13 to 8-19 show results corresponding to the carrier arm. The transverse 

signals shows that steady state motion has been achieved within 0.3s in Figure 8-13. 

The torsional linear motion of the carrier arm represents the circular motion of the 

planet gear mount point on the carrier arm, and the linearity of the line indicates the 

steady state rotational speed. Starting up can be seen in Figure 8-15 with enlarged 

figure shown in Figure 8-16 for carrier arm.  

 

There are 83 pulses in the carrier arm torsional velocity signal shown in Figure 8-15, 

which is equal to the number of ring gear teeth.  
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Figure 8-13 Case-1 carrier arm time(s)-displacement(m) 

 
Figure 8-14 Case-1 carrier arm averaged shaft position(degree)-velocity(m/s) vibration 
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Figure 8-15 Case-1 carrier arm time(s)-torsional velocity(rpm) and averaged shaft 

position(deg)-torsional velocity(rpm) vibration 
 

 
Figure 8-16 Case-1 enlarged figure shows starting up of carrier arm time(s)-torsional 

velocity(rpm) 
 
Figure 8-17, 8-18, 8-19 show the frequency spectrum from the carrier arm x-
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direction, y-direction and torsional velocity vibration signals respectively. It can be 

seen that the former two show four harmonic frequencies but with very strong 

sideband effects. The latter one shows harmonic frequencies more clearly. The 

harmonics should indicate the number of ring gear teeth multiplied by integers, 

which are 83, 166, 249, 332 as shown in Figure 8-19; however, low accuracy is 

obtained for transverse signals as only a small number of revolutions are used for 

signal averaging. The carrier arm torsional vibration signal is shown to be superior 

than the corresponding transverse signals for frequency analysis. 

 

 
Figure 8-17 Case-1 Frequency spectrum of carrier arm x direction velocity vibration 
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Figure 8-18 Case-1 Frequency spectrum of carrier arm y direction velocity vibration 

 

 
Figure 8-19 Case-1 Frequency spectrum of carrier arm torsional velocity vibration 
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Figure 8-20 to 8-26 show results corresponding to the planet gears. Figure 8-20, 8-21 

and 8-22 show x direction motion about the sun gear centre, y direction motion about 

the sun gear centre and angular motion about the mount point of three planet gears 

respectively. The linearity of angular motion lines indicates the steady state rotational 

speed of planet gears about their mount points. 

 
Figure 8-20 Case-1 planet gear-1 time(s)-displacement(m) 

 
Figure 8-21 Case-1 planet gear-2 time(s)-displacement(m) 
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Figure 8-22 Case-1 planet gear-3 time(s)-displacement(m) 

 

Figure 8-23 shows the averaged signals for the first planet gear. It can be seen that 

the synchronous signal averaging based on planet gear revolution (rotation about 

planet gears‟ mount points) is not practical on the x and y displacement signals as 

they oscillate about the sun gear centre with the carrier arm motion. 

 
Figure 8-23 Case-1 planet gear-1 averaged shaft position(degree)-velocity(m/s) vibration 

 

Figure 8-24, 8-25, and 8-26 show the frequency spectrum from the first planet gear 
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x-direction, y-direction and torsional velocity vibration signals respectively. The 

frequency spectrum from torsional signal shows four harmonic frequencies more 

clearly, more accurately indicating the number of planet gear teeth and with less 

sideband effects than those from transverse signals. Planet gear torsional vibration 

signal is seen to be superior than transverse signals for frequency analysis. Based on 

similar results on the sun gear, ring gear and carrier arm, a conclusion can be made 

that the torsional vibration signal is far superior than the transverse signals for 

frequency analysis for all rotating components of planetary gearboxes.  

 

 
Figure 8-24 Case-1 Frequency spectrum of planet gear-1 x direction velocity vibration 
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Figure 8-25 Case-1 Frequency spectrum of planet gear-1 y direction velocity vibration 

 

 
Figure 8-26 Case-1 Frequency spectrum of planet gear-1 torsional velocity vibration 
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8.3. COMPARISON OF CASE-1, CASE-2 AND CASE-3 
 

Similar results are obtained in case-2 (Appendix 13.2) and case-3 compared to case-1 

in Section 8.2. Only the major differences are listed and discussed as shown in the 

following figures. 

 
Figure 8-27 (a) (b) Case-1 averaged sun gear shaft position(degree)-torsional velocity(rpm) 

vibration and enlarged figure 
 

 
Figure 8-27 (c) (d) Case-2 averaged sun gear shaft position(degree)-torsional velocity(rpm) 

vibration and enlarged figure 
 

 
Figure 8-27 (e) (f) Case-3 averaged sun gear shaft position(degree)-torsional velocity(rpm) 

vibration and enlarged figure 
 

Figure 8-27 (a) and (b) show averaged sun gear shaft position(degree)-torsional 
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velocity(rpm) vibration and enlarged figure in case-1. Very similar results (Figure 8-

27 c and d) are shown in case-2 which has bucket wheel mass and inertia while case-

1 does not. When combined gear error has been introduced into the simulation (case-

3), the sun gear torsional speed is slightly increased and the tooth mesh cycle 

becomes unclear and the irregularity is increased and enhanced in the vibration 

signal compared to both case-1 and case-2.  

 

Figure 8-28 shows the comparison of carrier arm velocity signals obtained in case-1, 

case-2 and case-3. 

 
Figure 8-28 (a) (b) Case-1 averaged carrier arm shaft position(degree)-torsional velocity(rpm) 

vibration and enlarged figure 
 

 
Figure 8-28 (c) (d) Case-2 averaged carrier arm shaft position(degree)-torsional velocity(rpm) 

vibration and enlarged figure 
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Figure 8-28 (e) (f) Case-3 averaged carrier arm shaft position(degree)-torsional velocity(rpm) 

vibration and enlarged figure 
 

Figure 8-28 (a) and (b) show averaged carrier arm shaft position(degree)-torsional 

velocity(rpm) vibration and enlarged figure in case-1. As there is no bucket wheel 

mass and inertia included, the vibration signal varies in a large range from 

approximately 5 to 6 rpm and the signal is relatively noisy compared to case-2 which 

also has no combined gear error. The signal fluctuation range is reduced by a factor 

of 10 times when the large mass and inertia (bucket wheel) is included as for case-2. 

When the combined gear error has been introduced into the simulation (case-3), the 

carrier arm torsional speed is slightly increased and the signal irregularity is 

increased and enhanced in the vibration signal as compared to that of case-2.  

 

Case-1 simulates the planetary gearbox without accessories (such as bucket wheel, 

buckets and other rotating components with high mass and inertia); the resulting 

signals are noisy and have big fluctuations which increase the difficulties for signal 

processing and fault detection. Case-2 and Case-3 have large mass and inertia terms 

by including bucket wheel and buckets, therefore they can simulate the overall 

system under operational conditions. Case-3 includes combined gear to be more 

realistic; however it requires longer computational time.  

 

In Figure 8-29 it can be seen that even though very few revolutions had been 

averaged, there are 20 humps in the time period for the averaged sun gear x and y 

direction vibration signals in case-2 instead of 19 humps in case-1 while the sun gear 

has 19 teeth for both cases. Both torsional signals have 19*3=57 (number of the sun 

gear teeth multiplied by the number of planet gears) pulses shown in one carrier arm 
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revolution. This is due to the effectiveness of planet phasing and tooth mesh phasing, 

as discussed by several researchers including Parker‟s work56, 68. 

 

 
Figure 8-29 Comparison of sun gear signals of undamaged planetary gear set in case-1 and case-

2 (left graph, case-1; right graph, case-2) 
 

8.4. SUMMARY OF CHAPTER 
 

The major findings in this chapter are summarized below. 

 

Synchronous signal averaging is essential to recover the vibration information from 

time domain signals for further analysis such as frequency analysis. The number of 

revolutions used in the signal averaging process can affect the accuracy of the 

averaged signal and consequently affect the accuracy of further analysis results (as 

the number of revolutions used increases, the more accurate the results).  

 

As shown in both the averaged signal and frequency spectrum figures (the later one 

has more clear information) the sun gear signals, ring gear signals and the planet gear 

signals have a number of pulses or a first mesh harmonic which indicates the number 

of gear teeth respectively. Also the carrier arm signals have a number of pulses or the 

first mesh harmonic indicating the number of ring gear teeth.  

 

It is shown that the frequency spectrum from torsional signals is superior than those 

from transverse signals as it has less side band effects and it indicates the number of 

corresponding gear teeth more clearly.  

 

The resulting signals in Case-1vibrate in a large range and are relatively noisy 
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compared to the other two cases as the system does not include bucket wheel 

mass/inertia components. The signal fluctuation range is reduced by a factor of many 

times, which can be up to a level of tens, when the large mass and inertia 

components are included as for case-2. When the combined gear error has been 

introduced into simulation as for case-3, the signal irregularity is increased and 

enhanced in the vibration signal as compared to that of case-2. In conclusion, the 

addition of large mass and inertia components appears to constrain the vibration 

signals and increase the tooth mesh detectability and the addition of gear 

transmission error improves the realism of the model but also lowers the tooth mesh 

detectability. 
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9. VIBRATION MODELLING WITH GEAR 

FAULTS 
 

Dynamic modelling of the planetary gear system with gear faults is introduced and 

the simulation results are analyzed in this chapter. In this research, single tooth faults 

(cracks and spalling) and also their combinations (Chapter 10) are included.  

 

All three cases (Chapter 8, case-1 is without bucket wheel, buckets and combined 

gear error, case-2 includes bucket wheel and buckets but neglects the combined gear 

error, case-3 includes bucket wheel, buckets and combined gear error) are developed 

for the modelling of tooth faults with the major part based on case-2 for simulation of 

tooth cracks and in case-3 for simulation of spalling. Also comparisons are made 

with corresponding results in case-1. It should be noted that case-3 with tooth 

spalling is named as case-4. 

 

As mentioned in Chapter 8, due to the limitation of computational time, only a small 

number of revolutions are used for signal averaging in this analysis (4 revolutions of 

the sun gear, 2 revolutions of the planet gears and 1 revolution of the ring gear and 

the carrier arm). 

 

Simulation outputs from all models include the displacement and velocity signals of 

all degrees of freedom. Subsequent analysis includes signal averaging, FSA 

(Frequency Spectrum Analysis) and CWTA (Continuous Wavelet Analysis) carried 

out with all output signals except for the degrees of freedom of the second and third 

planet gear.  

 

The calculation of planetary component speed ratios and contact ratios used in this 

chapter can be referred to in Table 3-1 and Table 6-3. One revolution of the sun gear 

is determined as when all sun teeth (in this thesis, 19 teeth) have been through the 

mesh (in this thesis, one of the three sun gear - planet gear meshes) once. One 

revolution of the ring gear is determined as when all ring teeth (in this thesis, 83 teeth) 

have been through the mesh (in this thesis, one of the three ring gear - planet gear 
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meshes) once. One revolution of the carrier arm is defined as 360 degrees of carrier 

arm rotation about the ring gear which is assumed to be stationary. One revolution of 

a planet gear is defined as when all of the planet gear teeth have been through either 

one of the sun gear - planet gear meshes or the ring gear - planet gear meshes once.  

 

The period of one revolution of each component shown in the figures uses the shaft 

position in degrees on the horizontal axis. For the sun gear, ring gear and planet gears 

signals, the term, shaft position, is defined to be the angular position of the shaft/gear 

about the corresponding mesh point rather than the axis of the shaft/gear. Zero 

degrees at the start corresponds to the start mesh point and 360 degrees denotes when 

the tooth mesh is back to the starting point. For the carrier arm signals, the term, 

shaft position, is defined to be the angular position of the carrier arm shaft about its 

own axis.  
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9.1. MODEL WITH A LOCALISED TOOTH CRACK IN 

MESH 
 

The most common method for tooth crack simulation is to introduce a localized 

change of mesh stiffness such as used in Jia‟s work40. The tooth crack introduced in 

this thesis is assumed to be along the root circle only.  A crack with five different 

lengths have been simulated using 5%, 20%, 40%, 60% and 80% of the tooth 

thickness along the root circle for the sun gear, ring gear and the first planet gear 

respectively. Results are listed and analyzed with two methods, FSA and CWTA, in 

this section. 

 

9.1.1. CRACK ON SUN GEAR TOOTH 

 

The tooth crack simulated on the sun gear is a single crack localized on the 19th tooth 

where the 1st tooth is defined to be the first tooth in mesh with the first planet gear at 

time zero.  

 

Simulation outputs after signal averaging with a single 80% crack on the sun gear at 

the 19th tooth are shown in Figure 9-1. It can be seen from the figure that there are 

three humps in the period of one sun gear revolution as there are three planet gears. 

The number of humps shown here should be exactly equal to the number of planet 

gears.   
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Figure 9-1 Simulation outputs after signal averaging with a single 80% crack on the sun gear at 
the  19th tooth 
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Figure 9-1(continued) Simulation outputs after signal averaging with a single 80% crack on the 

sun gear at the 19th tooth 
 

Figure 9-1 also shows that there are 13 humps in the period of one ring gear 
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revolution and also 13 pulses in the period of one carrier arm revolution, which can 

be calculated as sun gear-carrier arm speed ratio minus 1 then multiplied by the 

number of planet gears (in this case, (5.3684-1)*3=13.1052). It should be noticed 

that the carrier arm x and y motions are affected by the transverse motions of the 

planet gears about their mount points rather than about the sun gear centre, so they 

appear to not be useful in indicating sun gear damage. The angular velocity signal of 

the planet gear-1 appears to show five disturbed points which can be calculated using 

Eq 9.1. It should be noted that the phasing of these disturbed points will be different 

for each revolution. After averaging of a large number of revolutions, the sun gear 

damage will not be evident in the planet vibration.  

(9.1)
 

 

It can be seen that the torsional signals are shown to be superior than the transverse 

signals except for those of the planet gears.  

 

A comparison is made with the sun gear crack using results of a 5% crack on the sun 

gear (19th tooth), as well as for the case of the undamaged gear (Case-2, see 

Appendix 13.2), shown in Figure 9-2 (left column, undamaged; middle column, 5% 

crack; right column, 80% crack). It should be noticed that the figures in Figure 9-2 

do not have the same scale as it is not easy to see details in large scale figures of 

signals with the 5% crack. It can be seen that the influence of the sun gear crack is 

clearly reflected on both the transverse and torsional vibration signals of the sun gear 

and ring gear, but only on the torsional vibration signal (especially for small cracks) 

of the planet gear and the carrier arm.  

nGearTeethNumberofSu

ethanetGearTeNumberofPl
anetGearsNumberofPlsturbancesNumberofDi 
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Figure 9-2 Comparison of results, undamaged, 5% cracked and 80% cracked sun gear 19th 

tooth 
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A grade system is introduced here to mark the vibration signals of the 12 degrees of 

freedom (listed as xs, ys, us, xr, yr, ur, xc, yc, uc, xp, yp, and up) from superior to 

weak (1st to 12nd) for detectability of the tooth fault. Based on the averaged signals, 

the grades for the sun gear crack are marked as shown in Table 9-1. 

 

Fault type 
Detectability of tooth fault 

1st 2nd 3rd 4th 

Sun gear tooth 
crack us, uc xr, yr, ur, xs, ys, up xc, yc, xp, yp 

Table 9-1 Detectability of sun gear tooth crack based on averaged signals 
 

The averaged signals can be used to detect large cracks as shown in Figure 9-1 and 9-

2, however it appears difficult to detect early stage cracks. Frequency Spectrum 

Analysis (FSA) can be used to improve the early stage detectability.  

 

FSA applied to Case-2 with the sun gear crack gives the results shown in Figure 9-3 

to 9-14. Each figure shows the frequency range covering the first four mesh 

harmonics.  

 
Figure 9-3 Case-2, FSA, sun gear damage, sun gear x-direction 
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Figure 9-4 Case-2, FSA, sun gear damage, sun gear y-direction 

 

 
Figure 9-5 Case-2, FSA, sun gear damage, sun gear torsional 

 

 
Figure 9-6 Case-2, FSA, sun gear damage, ring gear x-direction 

 

 
Figure 9-7 Case-2, FSA, sun gear damage, ring gear y-direction 
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Figure 9-8 Case-2, FSA, sun gear damage, ring gear torsional 

 

 
Figure 9-9 Case-2, FSA, sun gear damage, carrier arm x-direction 

 

 
Figure 9-10 Case-2, FSA, sun gear damage, carrier arm y-direction 

 

 
Figure 9-11 Case-2, FSA, sun gear damage, carrier arm torsional 
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Figure 9-12 Case-2, FSA, sun gear damage, planet gear-1 x-direction 

 

 
Figure 9-13 Case-2, FSA, sun gear damage, planet gear-1 y-direction 

 

 
Figure 9-14 Case-2, FSA, sun gear damage, planet gear-1 torsional 

 

Based on the FSA figures above, the detectability grades are marked as shown in 

Table 9-2 with discussion.  
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Detectability 
of sun gear 
tooth crack 

Figure 
Discussion 

Low frequency 
lines 

High frequency 
lines Lines in details 

1st uc 9-11 In very good order 

2nd us 9-5 In very good 
 order In good order Little disorder 

3rd ur 9-8 In good order with little disorder 

4th xr, yr 9-6,9-7 In good order Some local disorder 

5th up 9-14 In good order Local disorder appears often 

6th xs, ys 9-3,9-4 Local disorder appears very often 

7th xc, yc 9-9, 
9-10 In wrong order In wrong order In wrong order with local 

Disorder 

8th xp, yp 9-12, 
9-13 In chaos In chaos In chaos 

Table 9-2 Detectability of sun gear tooth crack based on FSA 
 

FSA method can slightly approve early stage detectability of sun gear tooth crack. 

More importantly it creates a way to refine the grade of detectability. This will give a 

big advantage in vibration signal selection for fault detection purposes. However, 

FSA is not able to locate the tooth faults. In order to do so, the CWTA was employed. 

The one dimensional wavelet analysis function using the Morlet wavelet was used 

with a step by step mode from 1 to 2001 with a step size of 50.  

 

Based on the CWTA figures, the detectability grades are marked as shown in Table 9-

3.  

 

Detectability 
of sun gear 
tooth crack 

Sensitive step 
range (total data 
points 2^16) 

Minimum clearly 
detectable crack 

Noise on figure which 
affects detectability 

1st uc 450 to 950 
50 up 

5% 
5%~20% Very clear in all step range 

2nd us 1200 up 20% Very clear in sensitive step 
range 

3rd xc, yc 950 to 1550 20%~40% Clear in sensitive step 
range 

4th ur 50 to 900 20%~40% Noisy 

5th xr, yr 50 to 400 40% Very noisy 
Table 9-3 Detectability of sun gear tooth crack based on CWTA 
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Detectability 
of sun gear 
tooth crack 

Sensitive step 
range (total data 
points 2^16) 

Minimum clearly 
detectable crack 

Noise on figure which 
affects detectability 

6th xs, ys 50 to 900 60% Very noisy 

7th up 50 to 900 60% Extremely noisy 

8th xp, yp -- -- Unable to detect 
Table 9-3(continued)  Detectability of sun gear tooth crack based on CWTA 

 

The CWTA results applied to carrier arm torsional vibration signals are compared 

with different sun gear cracks in Figure 9-15. As the most fault detectable CWTA 

signal, it provides very clear information of the faults‟ location at the very early stage 

which can be starting from 5% damage with confidence.  

 

 
Figure 9-15 Case-2, CWTA, sun gear crack, averaged carrier arm torsional vibration 
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Figure 9-15 (continued)  Case-2, CWTA, sun gear crack, averaged carrier arm torsional 

vibration 
 

The CWTA results applied to sun gear torsional vibration signals are compared with 

different sun gear cracks in Figure 9-16. As the second most fault detectable CWTA 

signal, it provides very clear information of the faults‟ location at the very early stage 

which can be starting from 20% damage with confidence.  

 

 
Figure 9-16 Case-2, CWTA, sun gear crack, averaged sun gear torsional vibration 
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Figure 9-16 (continued) Case-2, CWTA, sun gear crack, averaged sun gear torsional vibration 

 

In conclusion, the CWTA appears to be an efficient method to detect and locate the 

sun gear tooth cracks. It also provides information of fault detectability of vibration 

signals.  
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9.1.2. CRACK ON RING GEAR TOOTH 

 

The tooth crack simulated on the ring gear was a single crack localized on the 83rd 

tooth where the 1st tooth is defined to be the first tooth in mesh with the first planet 

gear at time zero.  

 

Simulation outputs after signal averaging with a single 80% crack on the 83rd tooth 

of the ring gear are shown in Figure 9-17.  

 

It can be seen in Figure 9-17 that the averaged sun gear signals are not able to 

indicate the location of ring gear tooth fault as the disturbed points shown in the 

signals have different phases from different revolutions.  

 

Figure 9-17 shows that there are 3 humps in the period of one ring gear revolution 

and one carrier arm revolution, which is equal to the number of planet gears. It 

should be noticed that the carrier arm x and y direction signals are affected by the 

transverse motions of the planet gears about their mount points rather than about the 

sun gear centre, so they appear to not be useful. The angular velocity signal of the 

planet gear-1 appears insensitive as well. It can be seen that the torsional signals are 

superior to the transverse signals except those of the planet gears. 
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Figure 9-17 Simulation outputs after signal averaging with a single 80% crack on the 83rd tooth 

of the ring gear 
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Figure 9-17(continued) Simulation outputs after signal averaging with a single 80% crack on the 

83rd tooth of the ring gear 
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Figure 9-17(continued) Simulation outputs after signal averaging with a single 80% crack on the 

83rd tooth of the ring gear 
 

A comparison is made with the ring gear crack using results of a 5% crack on the 

ring gear (83rd tooth) as well as for the case of the undamaged gear (Case-2, see 

Appendix 13.2) shown in Figure 9-18 (left column, undamaged; middle column, 5% 

crack; right column, 80% crack). It should be noticed that the figures in Figure 9-18 

do not have the same scale as it is not easy to see details in large scale figures with 

the 5% crack. It can be seen that the influence of the ring gear crack is clearly 

reflected on both the transverse and torsional vibration signals of the sun gear and 

ring gear components, but only on the torsional vibration signal (especially for small 

cracks) for the carrier arm and not at all for the planet gear vibration signals. 

 

Based on the averaged signals, the detectability of the ring gear crack is marked as 

shown in Table 9-4. 
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Figure 9-18 Comparison of results, undamaged, 5% cracked and 80% cracked ring gear 83rd 

tooth 
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Fault type 
Detectability of tooth fault 

1st 2nd 3rd 4th 

Ring gear 
tooth crack us, uc xr, yr, ur, xs, ys xc, yc, xp, yp, 

up 
Table 9-4 Detectability of ring gear tooth crack based on averaged signals 

 

The averaged signal can be used to detect large cracks as shown in Figure 9-17 and 

9-18, but it is hard to detect early stage cracks. Frequency Spectrum Analysis (FSA) 

can be used to improve the early stage detectability.  

 

FSA applied to Case-2 with the ring gear crack gives the results shown in Figure 9-

19 to 9-30. Each figure shows the frequency range covering the first four mesh 

harmonics.  

 

 
Figure 9-19 Case-2, FSA, ring gear damage, sun gear x-direction 

 

 
Figure 9-20 Case-2, FSA, ring gear damage, sun gear y-direction 



 

Page 175 of 278 
 

 
Figure 9-21 Case-2, FSA, ring gear damage, sun gear torsional 

 

 
Figure 9-22 Case-2, FSA, ring gear damage, ring gear x-direction 

 

 
Figure 9-23 Case-2, FSA, ring gear damage, ring gear y-direction 

 

 
Figure 9-24 Case-2, FSA, ring gear damage, ring gear torsional 
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Figure 9-25 Case-2, FSA, ring gear damage, carrier arm x-direction 

 

 
Figure 9-26 Case-2, FSA, ring gear damage, carrier arm y-direction 

 

 
Figure 9-27 Case-2, FSA, ring gear damage, carrier arm torsional 

 

 
Figure 9-28 Case-2, FSA, ring gear damage, planet gear-1 x-direction 
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Figure 9-29 Case-2, FSA, ring gear damage, planet gear-1 y-direction 

 

 
Figure 9-30 Case-2, FSA, ring gear damage, planet gear-1 torsional 

 

Based on the FSA figures above, the detectability grades are marked as shown in 

Table 9-5 with discussion.  

 

Detectability 
of ring gear 
tooth crack 

Figure 
Discussion 

Low frequency 
lines 

High frequency 
lines Lines in details 

1st uc, 
us 9-27,9-21 In very good  

order In good order Little disorder 

2nd ur 9-24 In good order with little disorder 

3rd xr, yr 9-22,9-23 In good order Some local disorder 

4th up 9-30 In good order Local disorder appears often 

5th xs, ys 9-19,9-20 Local disorder appears very often 

6th xc, yc 9-25,9-26 In wrong order In wrong 
order 

In wrong order with 
local disorder 

7th xp, yp 9-28, 
9-29 In chaos In chaos In chaos 

Table 9-5 Detectability of ring gear tooth crack based on FSA 
 

The FSA method can slightly improve early stage detectability of the ring gear tooth 
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crack. More importantly it creates a way to refine the grade of detectability. This will 

give a big advantage in vibration signal selection for fault detection purpose. 

However, FSA was not able to locate the tooth faults. In order to do so, the one 

dimensional wavelet analysis function using the Morlet wavelet was used with a step 

by step mode from 1 to 2001 with a step size of 50.  

 

Based on the CWTA figures, the detectability grades are marked as shown in Table 9-

6. 

  

Detectability 
of ring gear 
tooth crack 

Sensitive step 
range (total data 
points 2^16) 

Minimum clearly 
detectable crack 

Noise on figure which 
affects detectability 

1st uc 450 to 950 Below 40% Very clear in all step range 

2nd ur 1000 to 1600 Below 40% Noisy 

3rd xr, yr 1000 to 1600 Below 40% Very noisy 

4th us 1200 up Below 80% Very clear in sensitive step 
range 

5th xc, yc 1050 to 1550 60%~80% Clear in sensitive step 
range 

6th xs, ys 50 to 300 60% Very noisy 

7th xp,yp, 
up -- -- Unable to detect 

Table 9-6 Detectability of ring gear tooth crack based on CWTA 
 

The CWTA results applied to carrier arm torsional vibration signals are compared 

with different ring gear cracks in Figure 9-31. As it is the most fault detectable 

CWTA signal, it provides very clear information of the faults‟ location in mid-range 

which is below 40% damage.  
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Figure 9-31 Case-2, CWTA, ring gear crack, averaged carrier arm torsional vibration 

 

The CWTA results applied to ring gear torsional vibration signals are compared with 

different ring gear cracks in Figure 9-32. As the second most fault detectable CWTA 

signal, it provides information of the faults‟ location at early stage (20%~40%) 

though the signal is relatively noisy in all step ranges.  
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Figure 9-32 Case-2, CWTA, ring gear crack, averaged sun gear torsional vibration 

 

In conclusion, the CWTA appears to be an efficient method to detect and locate the 

ring gear tooth cracks. It also provides information of fault detectability from the 

vibration signals.  
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9.1.3. CRACK ON PLANET GEAR TOOTH 

 

The tooth crack simulated on the planet gear-1 is a single crack localized on the 32nd 

tooth where the 1st tooth is defined to be the first tooth in mesh with the sun gear at 

time zero.  

 

Simulation outputs after signal averaging with a single 80% crack on the planet gear-

1 at the 32nd tooth are shown in Figure 9-33. Figure 9-33 shows that there are humps 

with the period of one sun gear revolution which can be calculated as in Eq 9.2 

(19/(32/2)=1.1875).  

                                                                                                                                  (9.2) 

 

These humps correspond to the damaged tooth progressing through both the sun gear 

- planet gear mesh and the ring gear - planet gear mesh in order. Due to the fact that 

they have different phases from different revolutions, the averaged signal is 

ineffective.  

 

Figure 9-33 also shows that there are 3 bigger humps and 2 smaller humps in the 

period of one ring gear revolution and one carrier arm revolution, which can be 

calculated as in Eq 9.3 (83/32=2.5938). The bigger humps correspond to the sun gear 

- planet gear mesh and the smaller humps correspond to the ring gear - planet gear 

mesh. 

 

(9.3) 

 

It should be noticed that the carrier arm x and y vibration signals are affected by the 

transverse motions of the planet gears about their mount points rather than about the 

sun gear centre, so they appear to not be useful for planet damage detection.  

ethanetGearTeNumberofPl

hngGearTeetNumberofRi
allerHumpsNumberofSmggerHumpsNumberofBi 

2/ethanetGearTeNumberofPl

nGearTeethNumberofSu
mpsNumberofHu 
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Figure 9-33 Simulation outputs after signal averaging with a single 80% crack on the planet 

gear-1 at the 32nd tooth 
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Figure 9-33(continued) Simulation outputs after signal averaging with a single 80% crack on the 

planet gear-1 at the 32nd tooth 
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Figure 9-33(continued) Simulation outputs after signal averaging with a single 80% crack on the 

planet gear-1 at the 32nd tooth 
 

Figure 9-33 also shows that there is an obvious deviation in the period of one planet 

gear revolution (the first planet gear) corresponding to the sun gear - planet gear 

mesh (where the crack has bigger effect on mesh stiffness change). A contact which 

is hardly noticeable (between 50 to 100 degrees) corresponding to the ring gear - 

planet gear mesh can also be seen. 

 

A conclusion can be made that the torsional signals are superior than the transverse 

signals except those of the planet gears.  

 

A comparison is made with the planet gear crack using results of a 5% crack on the 

planet gear-1 (32nd tooth) as well as for the case of the undamaged gear (Case-2, see 

Appendix 13.2) shown in Figure 9-34 (left column, undamaged; middle column, 5% 

crack; right column, 80% crack).  
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Figure 9-34 Comparison of results, undamaged, 5% cracked and 80% cracked planet gear-1 

32nd tooth 
 

It should be noticed that figures in Figure 9-34 do not have the same scale as it is not 
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easy to see details in large scale figures of the signals with the 5% crack. It can be 

seen that the influence of the planet gear crack is clearly reflected on both the 

transverse and torsional vibration signals of the sun gear, ring gear and planet gear-1, 

but only on the torsional vibration signal (especially for small cracks) for the carrier 

arm and not at all in the  transverse signals of the carrier arm. 

 

Based on the averaged signals, the detectability of planet gear-1 crack is marked as 

shown in Table 9-7. 

 

Fault type 
Detectability of tooth fault 

1st 2nd 3rd 4th 

Planet gear-1 
tooth crack us, ur, uc, up xr, yr xp, yp, xs, ys xc, yc 

Table 9-7 Detectability of planet gear-1 tooth crack based on averaged signals 
 

The visualization of the averaged signal can be used to detect large cracks as shown 

in Figure 9-33 and 9-34. However it is not practicable for early stage detection. 

Frequency Spectrum Analysis (FSA) was used here to improve the early stage 

detectability.  

 

FSA applied to Case-2 with the planet gear-1 crack gives the results shown in Figure 

9-35 to 9-46. Each figure shows the frequency range covering the first four mesh 

harmonics.  

 

 
Figure 9-35 Case-2, FSA, planet gear-1 damage, sun gear x-direction 
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Figure 9-36 Case-2, FSA, planet gear-1 damage, sun gear y-direction 

 

 
Figure 9-37 Case-2, FSA, planet gear-1 damage, sun gear torsional 

 

 
Figure 9-38 Case-2, FSA, planet gear-1 damage, ring gear x-direction 

 

 
Figure 9-39 Case-2, FSA, planet gear-1 damage, ring gear y-direction 
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Figure 9-40 Case-2, FSA, planet gear-1 damage, ring gear torsional 

 

 
Figure 9-41 Case-2, FSA, planet gear-1 damage, carrier arm x-direction 

 

 
Figure 9-42 Case-2, FSA, planet gear-1 damage, carrier arm y-direction 

 

 
Figure 9-43 Case-2, FSA, planet gear-1 damage, carrier arm torsional 
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Figure 9-44 Case-2, FSA, planet gear-1 damage, planet gear-1 x-direction 

 

 
Figure 9-45 Case-2, FSA, planet gear-1 damage, planet gear-1 y-direction 

 

 
Figure 9-46 Case-2, FSA, planet gear-1 damage, planet gear-1 torsional 

 

Based on the FSA figures above, the detectability grades are marked as shown in 

Table 9-8 with discussion.  
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Detectability 
of planet gear-
1 tooth crack 

Figure 
Discussion 

Low frequency 
lines 

High frequency 
lines Lines in details 

1st uc 9-43 In very clear good order 
2nd up 9-46 In good order 
3rd ur 9-40 In good order with little disorder 

4th us 9-37 In good order Some local  
disorder In good order 

5th xr, yr 9-38,9-39 In good order Some local disorder 

6th xp, yp 9-44,9-45 In good order Local disorder  
appears very often 

7th xs, ys 9-35,9-36 Local disorder appears very often 

8th xc, yc 9-41,9-42 In wrong 
 order 

In wrong 
 order 

In wrong order with local 
disorder 

Table 9-8 Detectability of planet gear-1 tooth crack based on FSA 
 

FSA method can slightly improve early stage detectability of the planet gear tooth 

crack. More importantly it creates a way to refine the grade of detectability. This can 

give a big advantage in vibration signal selection for fault detection purpose. 

However, the FSA is not able to locate the tooth faults. In order to do so, CWTA can 

be employed. The one dimensional wavelet analysis function based on the Morlet 

wavelet was used with a step by step mode from 1 to 2001 with a step size of 50.  

 

Based on the CWTA figures, the detectability grades are marked as shown in Table 9-

9. 

  

Detectability 
of planet gear-
1 tooth crack 

Sensitive step 
range (total data 
points 2^16) 

Minimum clearly 
 detectable crack 

Noise on figure which 
 affects detectability 

1st uc 350 to 950 Below 5% Very clear in all step range 

2nd us 2000 up 
1100 to 2000 

20% 
40% 

Very clear in sensitive step 
range 

3rd ur 1000 to 1600 Below 40% Noisy 
4th xr, yr 1000 to 1600 40% Very noisy 

5th xc, yc 1050 to 1550 60%~80% Clear in sensitive step 
range 

6th xs, ys 100 to 600 80% Very noisy 

7th xp,yp, 
up -- -- Unable to detect 

Table 9-9 Detectability of planet gear-1 tooth crack based on CWTA 
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The CWTA results from the carrier arm torsional vibration signals are compared with 

different planet gear cracks in Figure 9-47. As the most fault detectable CWTA signal, 

it provides very clear information of the faults‟ location at the very early stage with 5% 

damage.  

 

 
Figure 9-47 Case-2, CWTA, planet gear-1 crack, averaged carrier arm torsional vibration 

 

The CWTA results for the sun gear torsional vibration signals are compared with 

different planet gear cracks in Figure 9-48. As the second most fault detectable 

CWTA signal, it provides clear information of the faults‟ location at the early stage 

(20%~40%) though the signal is relatively noisy outside the sensitive step range.  



 

Page 192 of 278 
 

 

 
Figure 9-48 Case-2, CWTA, planet gear-1 crack, averaged sun gear torsional vibration 

 

In conclusion, the CWTA is shown to be an efficient method to detect and locate the 

planet gear tooth cracks. It also provides information of fault detectability of 

vibration signals.  
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9.2. MODEL WITH A LOCALISED TOOTH SPALL IN 

MESH 
 

Tooth spalling is simulated using both a change of mesh stiffness and a change of 

tooth profile. Spalling simulated in this thesis is considered to occupy the whole 

tooth width, with a controlled width along the teeth contact line, a controlled location 

along the tooth meshing area, controlled depth and programmed cross section profile. 

All spalls are assumed to be located in the tooth meshing area and the reduction of 

material gives a change of mesh stiffness and when the spall occurs across the whole 

width of the tooth, the tooth profile is changed. To limit the computation time, the 

change of mesh stiffness is based on an assumed function relative to all the 

dimensions of spalling but with low accuracy (high accuracy can be achieved by 

careful FEA analysis). A description of tooth spalling simulated in this thesis is 

shown in Figure 9-49. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9-49 A description of tooth spalling 

 

To simplify the overall model, the change of tooth profile is combined into the tooth 

profile error. Both methods of dealing with the stiffness change and tooth profile 

change have the ability to handle multiple spalls and even arbitrary setting of spalling. 

 

Spalls with four different dimensions have been used namely 5e-5, 10e-5, 20e-5 and 

3D, contact area; 
 2D, contact line; 
spall centre 
located at 60% of 
contact line 

40% 

60% 

width across the  
whole tooth width 

controlled width  
along teeth contact line 

controlled depth and  
programmed cross  
section profile 

controlled location along 
 tooth meshing area 
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w20e-5 (indicate spalling depth in meter). They all have the same location on the 

teeth (center point of spall is at the 60% of contact line, see Figure 9-49) and the 

same cross section profile (based on Cosine function) across the entire tooth width. 

The first three have the same width of 10% of tooth contact line and the last one has 

a doubled width.  

 

Results are listed and analyzed with two methods FSA and CWTA after signal 

averaging. 

 

9.2.1. SPALL ON SUN GEAR TOOTH 

 

The tooth spalling simulated on the sun gear was a single spall on the 19th tooth 

where the 1st tooth was defined to be the first tooth in mesh with the first planet gear 

at time zero.  

 

Simulation outputs after signal averaging with a single w20e-5 spall on the sun gear 

at the 19th tooth are shown in Figure 9-50.  

 

 
Figure 9-50 Simulation outputs after signal averaging with a single w20e-5 spall on the sun gear 

at the 19th tooth 
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Figure 9-50(continued) Simulation outputs after signal averaging with a single w20e-5 spall on 

the sun gear at the 19th tooth 
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Figure 9-50(continued) Simulation outputs after signal averaging with a single w20e-5 spall on 

the sun gear at the 19th tooth 
 

A comparison was made with the sun gear spalling using the results of a 5e-5 spall 

on the sun gear (19th tooth) as well as a 10e-5 spall shown in Figure 9-51 (left 

column, 5e-5 spall; middle column, 10e-5 spall; right column, w20e-5 spall). It can 

be seen that the influence of the sun gear spall is very hard to be seen from the 

averaged transverse and torsional signals. The only noticeable influence of the sun 

gear spall is shown in the figure of the carrier arm torsional velocity signal as there 

are 13 pulses (though they are very hard to notice) in the period of one carrier arm 

revolution (see in Figure 9-50). Based on the averaged signals, detectability grades 

can be marked where the carrier arm torsional signal appears to be superior than all 

other signals. 
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Figure 9-51 Comparison of results, 5e-5 spall, 10e-5 spall and w20e-5 spall on the sun gear 19th 

tooth 
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The averaged signal is expected to detect very large spalls as indicated for the 

detectability of sun gear tooth cracks, however, it is unlikely to be practicable for 

early stage detection of sun gear spalling as shown in Figure 9-51. Frequency 

Spectrum Analysis (FSA) was then used to improve the early stage detectability of 

sun gear tooth spalling.  

 

The FSA applied to Case-4 with the sun gear spalling gives the results shown in 

Figure 9-52 to 9-63. Each figure shows the frequency range covering the first four 

mesh harmonics.  

 

 
Figure 9-52 Case-4, FSA, sun gear damage, sun gear x-direction 

 

 
Figure 9-53 Case-4, FSA, sun gear damage, sun gear y-direction 
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Figure 9-54 Case-4, FSA, sun gear damage, sun gear torsional 

 

 
Figure 9-55 Case-4, FSA, sun gear damage, ring gear x-direction 

 

 
Figure 9-56 Case-4, FSA, sun gear damage, ring gear y-direction 

 

 
Figure 9-57 Case-4, FSA, sun gear damage, ring gear torsional 
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Figure 9-58 Case-4, FSA, sun gear damage, carrier arm x-direction 

 

 
Figure 9-59 Case-4, FSA, sun gear damage, carrier arm y-direction 

 

 
Figure 9-60 Case-4, FSA, sun gear damage, carrier arm torsional 

 

 
Figure 9-61 Case-4, FSA, sun gear damage, planet gear-1 x-direction 
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Figure 9-62 Case-4, FSA, sun gear damage, planet gear-1 y-direction 

 

 
Figure 9-63 Case-4, FSA, sun gear damage, planet gear-1 torsional 

 

Based on the FSA figures above, the detectability grades are marked as shown in 

Table 9-10 with discussion.  

 

Detectability of sun 
gear tooth spalling Figure 

Discussion 

Low frequency 
lines 

High frequency 
lines 

Lines in 
 details 

1st us 9-54 In good order with some local disorder 

2nd 
ur,  
uc,  
up 

9-57, 
9-60, 
9-63 

In order, but distance between lines is small or have 
unexpected disorder often 

3rd xs, 
ys 

9-52, 
9-53 Disorder happens very often 

4th xr,yr, 
xp,yp 

9-55,9-56, 
9-61,9-62 Mostly in disorder 

5th xc,yc 9-58,9-59 In wrong order with local disorder 
Table 9-10 Detectability of sun gear tooth spalling based on FSA 

 

The previous results have shown that the FSA method can slightly improve the early 

stage detectability of the sun gear tooth spalling. More importantly it creates a way to 
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refine the grade of detectability which shows generally that the torsional signal is 

superior to the transverse signal for the sun gear spalling detection. However, the 

FSA was not able to locate the tooth fault. In order to do so, CWTA can be employed. 

The one dimensional wavelet analysis function using the Morlet wavelet can used 

with a step by step mode from 1 to 501 with a step size of 10.  

 

Based on the CWTA figures, the detectability grades are marked as shown in Table 9-

11.  

 

Detectability 
of sun gear 
tooth spalling 

Sensitive step 
range (total data 
points 2^16) 

Minimum clearly 
detectable spall 

Noise on figure which 
affects detectability 

1st uc 500 to 700 20e-5 Very clear in all step range 

2nd us 1200 to 1900 w20e-5 Very clear in sensitive step 
range 

3rd others -- -- Unable to detect 
Table 9-11 Detectability of sun gear tooth spalling based on CWTA 

 

The CWTA results applied to the carrier arm torsional vibration signals are compared 

with different sun gear spalls in Figure 9-64 with a refined step range from 1 to 2001 

(a step size of 50). The CWTA has been demonstrated to be the most fault detectable 

approach. It provides very clear information of the faults‟ location in very early stage 

which for the spall is below the 20e-5 damage level.  

 

 
Figure 9-64 Case-2, CWTA, sun gear spall, averaged carrier arm torsional vibration 
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Figure 9-64(continued)  Case-2, CWTA, sun gear spall, averaged carrier arm torsional 

vibration 
 

The CWTA results from the sun gear torsional vibration signals are shown in Figure 

9-65. As the second most fault detectable CWTA signal, it provides information of 

the faults‟ location starting from the w20e-5 damage level, though on this damage 

level the fault can not be fully detected.  
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Figure 9-65 Case-2, CWTA, sun gear spall, averaged sun gear torsional vibration 

 

In conclusion, the CWTA shows and locates the sun gear tooth spall damage using 

the sun gear and carrier arm torsional signals at an early stage.  
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9.2.2. SPALL ON RING GEAR TOOTH 

 

The tooth spalling simulated on the ring gear was a single spall localized on the 83rd 

tooth where the 1st tooth was defined to be the first tooth in mesh with the first planet 

gear at time zero. 

 

Simulation outputs after signal averaging with a single w20e-5 spall on the ring gear 

at the 83rd tooth are shown in Figure 9-66. 

 

 
Figure 9-66 Simulation outputs after signal averaging with a single w20e-5 spall on the ring gear 

at the 83rd tooth 
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Figure 9-66(continued) Simulation outputs after signal averaging with a single w20e-5 spall on 

the ring gear at the 83rd tooth 
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Figure 9-66(continued) Simulation outputs after signal averaging with a single w20e-5 spall on 

the ring gear at the 83rd tooth 
 

A comparison was made with the ring gear spall using results of a 5e-5 spall on the 

ring gear (83rd tooth) as well as a 10e-5 spall shown in Figure 9-67 (left column, 5e-5 

spall; middle column, 10e-5 spall; right column, w20e-5 spall). It can be seen that the 

influence of the ring gear spall is very hard to be seen from the averaged signals, 

including both transverse and torsional motions except for the carrier arm torsional 

velocity signal, which shows clearly 3 pulses in the period of one carrier arm 

revolution. Based on the averaged signals, detectability grades can be marked as the 

carrier arm torsional signal again appears to be superior than all other signals. 
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Figure 9-67 Comparison of results, 5e-5 spall, 10e-5 spall and w20e-5 spall on the ring gear at 

the 83rd tooth 
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The averaged signal is expected to detect very large spalls as it has already been 

proven to be able to detect ring gear tooth cracks, however, it is seen to not be 

sensitive for early stage ring gear spalling as shown in Figure 9-67. Frequency 

Spectrum Analysis (FSA) was then used to improve the early stage detectability.  

 

The FSA applied to Case-4 with the ring gear spalling gives the results shown in 

Figure 9-68 to 9-79. Each figure shows the frequency range covering the first four 

mesh harmonics.  

 

 
Figure 9-68 Case-4, FSA, ring gear damage, sun gear x-direction 

 

 
Figure 9-69 Case-4, FSA, ring gear damage, sun gear y-direction 

 

 
Figure 9-70 Case-4, FSA, ring gear damage, sun gear torsional 



 

Page 210 of 278 
 

 
Figure 9-71 Case-4, FSA, ring gear damage, ring gear x-direction 

 

 
Figure 9-72 Case-4, FSA, ring gear damage, ring gear y-direction 

 

 
Figure 9-73 Case-4, FSA, ring gear damage, ring gear torsional 

 

 
Figure 9-74 Case-4, FSA, ring gear damage, carrier arm x-direction 
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Figure 9-75 Case-4, FSA, ring gear damage, carrier arm y-direction 

 

 
Figure 9-76 Case-4, FSA, ring gear damage, carrier arm torsional 

 

 
Figure 9-77 Case-4, FSA, ring gear damage, planet gear-1 x-direction 

 

 
Figure 9-78 Case-4, FSA, ring gear damage, planet gear-1 y-direction 
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Figure 9-79 Case-4, FSA, ring gear damage, planet gear-1 torsional 

 

Based on the FSA figures above, the detectability grades are marked as shown in 

Table 9-12 with discussion.  

 

Detectability of ring 
gear tooth spalling Figure 

Discussion 

Low frequency 
lines 

High frequency 
lines 

Lines in 
 details 

1st up 9-79 In good order with some local disorder 

2nd 
ur,  
us,  
uc 

9-73, 
9-70, 
9-76 

In order, but distance between lines is small or have 
unexpected disorder often 

3rd xs,ys 
xp,yp 

9-68,9-69 
9-77,9-78 Disorder happens very often 

4th xr,yr, 9-71,9-72 Mostly in disorder 

5th xc,yc 9-74,9-75 In wrong order with local disorder 
Table 9-12 Detectability of ring gear tooth spalling based on FSA 

 

The FSA method can slightly improve the early stage detectability of the ring gear 

tooth spalling. More importantly it creates a way to refine the grade of detectability 

which shows generally that the torsional signal is superior to the transverse signal for 

the ring gear spalling detection. Also it is somewhat surprising that the planet gear 

transverse and torsional signals have significantly increased detectability. However, 

the FSA was not able to locate the tooth fault. In order to do so, the CWTA was 

further investigated. The one dimensional wavelet analysis function Morlet wavelet 

was used with a step by step mode from 1 to 501 with a step size of 10.  

 

Based on the CWTA figures, the detectability grades are determined as shown in 

Table 9-13.  
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Detectability 
of ring gear 
tooth spalling 

Sensitive step 
range (total data 
points 2^16) 

Minimum clearly 
detectable spall 

Noise on figure which 
affects detectability 

1st uc 300 to 800 10e-5~20e-5 Very clear in all step range 

2nd others -- -- Unable to detect 
Table 9-13 Detectability of ring gear tooth spalling based on CWTA 

 

The CWTA results applied to the carrier arm torsional vibration signals are compared 

with different ring gear spalls in Figure 9-80 with both the original step range and a 

refined step range from 1 to 2001 in steps of 50. As the most fault detectable CWTA 

signal, it provides very clear information of the faults‟ location in the very early stage 

starting from below the 20e-5 damage level with confidence. It can also be seen that 

step size of the CWTA can affect the results as the use of a smaller step size improves 

the analysis. 

 

 
Figure 9-80 Case-2, CWTA, ring gear spall, averaged carrier arm torsional vibration 
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Figure 9-80(continued) Case-2, CWTA, ring gear spall, averaged carrier arm torsional vibration 
 

In conclusion, the CWTA applied to the carrier arm torsional signals appeared to be 

an effective method to detect and locate ring gear tooth spalling at an early damage 

stage. 

 

9.2.3. SPALL ON PLANET GEAR TOOTH 

 

The tooth spalling simulated on the planet gear-1 was a single spall localized on the 

32nd tooth where the 1st tooth was defined to be the first tooth in mesh with the sun 

gear at time zero. 

 

Simulation results after signal averaging with a single w20e-5 spall on the planet 

gear-1 at the 32nd tooth are shown in Figure 9-81. 
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Figure 9-81 Simulation outputs after signal averaging with a single w20e-5 spall on the planet 

gear-1 at the 32nd tooth 



 

Page 216 of 278 
 

 

 
Figure 9-81(continued) Simulation outputs after signal averaging with a single w20e-5 spall on 

the planet gear at the 32nd tooth 
 

A comparison was made with the planet gear spall using results of a 5e-5 spall on the 
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planet gear-1 (32nd tooth) as well as a 10e-5 spall shown in Figure 9-82 (left column, 

5e-5 spall; middle column, 10e-5 spall; right column, w20e-5 spall). It can be seen 

that the influence of the planet gear-1 spall was very hard to be seen from the 

averaged  transverse and torsional signals. From the time domain averaged signals, 

detectability grades can not be obtained due to the poor detectability of all signals. 

 
Figure 9-82 Comparison of results, 5e-5 spall, 10e-5 spall and w20e-5 spall on the planet gear-1 

at the 32nd tooth 
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The averaged signal was expected to detect very large spalls as it was shown 

previously to be capable for detection of planet gear tooth cracks. However, it was 

unable to detect early stage planet gear tooth spalling as shown in Figure 9-82. 

Frequency Spectrum Analysis (FSA) was also used here to improve the early stage 

detectability.  

 

The FSA applied to Case-4 with the planet gear-1 spalling gave the results shown in 

Figure 9-83 to 9-94. Each figure shows the frequency range covering the first four 

mesh harmonics.  

 

 
Figure 9-83 Case-4, FSA, planet gear-1 damage, sun gear x-direction 

 

 
Figure 9-84 Case-4, FSA, planet gear-1 damage, sun gear y-direction 



 

Page 219 of 278 
 

 
Figure 9-85 Case-4, FSA, planet gear-1 damage, sun gear torsional 

 

 
Figure 9-86 Case-4, FSA, planet gear-1 damage, ring gear x-direction 

 

 
Figure 9-87 Case-4, FSA, planet gear-1 damage, ring gear y-direction 

 

 
Figure 9-88 Case-4, FSA, planet gear-1 damage, ring gear torsional 
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Figure 9-89 Case-4, FSA, planet gear-1 damage, carrier arm x-direction 

 

 
Figure 9-90 Case-4, FSA, planet gear-1 damage, carrier arm y-direction 

 

 
Figure 9-91 Case-4, FSA, planet gear-1 damage, carrier arm torsional 

 

 
Figure 9-92 Case-4, FSA, planet gear-1 damage, planet gear-1 x-direction 
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Figure 9-93 Case-4, FSA, planet gear-1 damage, planet gear-1 y-direction 

 

 
Figure 9-94 Case-4, FSA, s planet gear-1 damage, planet gear-1 torsional 

 

Based on the FSA figures above, the detectability grades are marked as shown in 

Table 9-14 with discussion.  

 

Detectability of 
planet gear-1 tooth 
spalling 

Figure 
Discussion 

Low frequency 
lines 

High frequency 
lines 

Lines in 
 details 

1st up 9-94 In good order with some local disorder 

2nd 
ur,  
us,  
uc 

9-88, 
9-85, 
9-91 

In order, but distance between lines is small or have 
unexpected disorder often 

3rd xs,ys 
xp,yp 

9-83,9-84 
9-92,9-93 Disorder happens very often 

4th xr,yr, 9-86,9-87 Mostly in disorder 

5th xc,yc 9-89,9-90 In wrong order with local disorder 
Table 9-14 Detectability of planet gear-1 tooth spalling based on FSA 

 

The results show that the FSA method can improve the early stage detectability of 

the planet gear-1 tooth spalling and refine the grade of detectability, which again 

shows generally that the torsional signal was superior to the transverse signal for the 
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planet gear-1 spalling detection. It is expected that the planet gear transverse and 

torsional signals have high detectability. However, the FSA was not able to locate the 

tooth fault. In order to do so, the CWTA was utilised. The one dimensional wavelet 

analysis function using the Morlet wavelet was used with a step by step mode from 1 

to 501 with a step size of 10.  

 

Based on the CWTA figures, the detectability grades are marked as shown in Table 9-

15.  

 

Detectability of 
planet gear-1 
tooth spalling 

Sensitive step 
range (total data 
points 2^16) 

Minimum clearly 
detectable spall 

Noise on figure which 
affects detectability 

1st uc 300 to 800 20e-5 Very clear in all step range 

2nd others -- -- Unable to detect 
Table 9-15 Detectability of planet gear-1 tooth spalling based on CWTA 

 

The CWTA results applied to the carrier arm torsional vibration signals are compared 

with different planet gear spall sizes in Figure 9-95 with both the original step range 

and a refined step range from 1 to 2001 using step size of 50. As the most fault 

detectable analysis, the CWTA signal provides very clear information of the faults‟ 

location in the very early stage starting from below 20e-5 damage level. It was seen 

that the step size setting of the CWTA can affect the results as the smaller step size 

showed improved results. 

 

 
Figure 9-95 Case-2, CWTA, planet gear-1 spall, averaged carrier arm torsional vibration 
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Figure 9-95(continued) Case-2, CWTA, planet gear-1 spall, averaged carrier arm torsional 

vibration 
 

In conclusion, the CWTA was demonstrated to be an efficient method to show and 

locate the planet gear-1 tooth spall on the carrier arm torsional signals at an early 

stage but not for other signals.  
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9.3. SUMMARY OF CHAPTER 
 

The indication and the detectability of gear tooth faults on both transverse and 

torsional averaged signals, the FSA results and the CWTA results are summarized 

and listed in the following tables. 

 

Damages Components Signals  

Indication of 
Damage on 
averaged 
signals 

Detect 
-ability of 
 averaged  
signals  

Detect 
-ability 
of FSA 

Detectability of 
 CWTA, starting 
 Level 

Sun gear 
cracking 

Sun gear 
xs A* 3rd 6th 6th 60% 
ys A* 3rd 6th 6th 60% 
us A* 1st 2nd 2nd 20% 

Ring gear 
xr B* 2nd 4th 5th 40% 
yr B* 2nd 4th 5th 40% 
ur B* 2nd 3rd 4th 20%~40% 

Carrier arm 
xc -- 4th 7th 3rd 20%~40% 
yc -- 4th 7th 3rd 20%~40% 
uc B* 1st 1st 1st 5% 

Planet  
gear-1 

xp -- 4th 8th 8th -- 
yp -- 4th 8th 8th -- 
up C* 3rd 5th 7th 60% 

Ring 
gear 
cracking 

Sun gear 
xs D* 3rd 5th 6th 60% 
ys D* 3rd 5th 6th 60% 
us D* 1st 1st 4th < 80% 

Ring gear 
xr A* 2nd 3rd 3rd < 40% 
yr A* 2nd 3rd 3rd < 40% 
ur A* 2nd 2nd 2nd < 40% 

Carrier arm 
xc -- 4th 6th 5th 60%~80% 
yc -- 4th 6th 5th 60%~80% 
uc A* 1st 1st 1st < 40% 

Planet  
gear-1 

xp -- 4th 7th 7th -- 
yp -- 4th 7th 7th -- 
up -- 4th 4th 7th -- 

Planet 
gear 
cracking 

Sun gear 
xs E* 3rd 7th 6th 80% 
ys E* 3rd 7th 6th 80% 
us E* 1st 4th 2nd 20% 

Ring gear 
xr F* 2nd 5th 4th 40% 
yr F* 2nd 5th 4th 40% 
ur F* 1st 3rd 3rd < 40% 

Carrier arm 
xc -- 4th 8th 5th 60%~80% 
yc -- 4th 8th 5th 60%~80% 
uc F* 1st 1st 1st < 5% 

Table 9-16 Summary of the indication and detectability of gear tooth faults (*indications of 
damage are listed in Table 9-17 in the case of single tooth damage) 
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Damages Components Signals  

Indication of 
Damage on 
averaged 
signals 

Detect 
-ability of 
 averaged  
signals  

Detect 
-ability 
of FSA 

Detectability of 
 CWTA, starting 
 Level 

Planet 
gear 
cracking 

Planet  
gear-1 

xp G* 3rd 6th 7th -- 
yp G* 3rd 6th 7th -- 
up G* 1st 2nd 7th -- 

Sun gear 
spalling 

Sun gear 
xs H* 2nd 3rd 3rd -- 
ys H* 2nd 3rd 3rd -- 
us H* 2nd 1st 2nd w20e-5 

Ring gear 
xr H* 2nd 4th 3rd -- 
yr H* 2nd 4th 3rd -- 
ur H* 2nd 2nd 3rd -- 

Carrier arm 
xc -- 3rd 5th 3rd -- 
yc -- 3rd 5th 3rd -- 
uc B* 1st 2nd 1st 20e-5 

Planet  
gear-1 

xp -- 3rd 4th 3rd -- 
yp -- 3rd 4th 3rd -- 
up H* 2nd 2nd 3rd -- 

Ring 
gear 
spalling 

Sun gear 
xs H* 2nd 3rd 2nd -- 
ys H* 2nd 3rd 2nd -- 
us H* 2nd 2nd 2nd -- 

Ring gear 
xr H* 2nd 4th 2nd -- 
yr H* 2nd 4th 2nd -- 
ur H* 2nd 2nd 2nd -- 

Carrier arm 

xc -- 3rd 5th 2nd -- 
yc -- 3rd 5th 2nd -- 

uc E* 1st 2nd 1st 10e-5 
~20e-5 

Planet  
gear-1 

xp -- 3rd 3rd 2nd -- 
yp -- 3rd 3rd 2nd -- 
up H* 2nd 1st 2nd -- 

Planet 
gear 
spalling 

Sun gear 
xs -- -- 3rd 2nd -- 
ys -- -- 3rd 2nd -- 
us -- -- 2nd 2nd -- 

Ring gear 
xr -- -- 4th 2nd -- 
yr -- -- 4th 2nd -- 
ur -- -- 2nd 2nd -- 

Carrier arm 
xc -- -- 5th 2nd -- 
yc -- -- 5th 2nd -- 
uc -- -- 2nd 1st 20e-5 

Planet  
gear-1 

xp -- -- 3rd 2nd -- 
yp -- -- 3rd 2nd -- 
up -- -- 1st 2nd -- 

Table 9-16(continued) Summary of the indication and detectability of gear tooth faults 
(*indications of damage are listed in Table 9-17 in the case of single tooth damage) 

 

The types of indications of tooth damage (based on the damage levels simulated in 
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this thesis) used in Table 9-16 are listed in Table 9-17 as shown below.  

 

Indication of 
damage  Meanings and equations 

A* number of humps equals to the number of planet gears 

B* number of humps equals to the sun gear-carrier arm speed ratio minus one then 
multiplied by the number of planet gear teeth 

C* number of humps equals to the number of planet gears multiplied by the 
number of planet gear teeth divided by the number of sun gear teeth 

D* clear humps but unclear links to number of teeth 

E* number of humps equals to the number of sun gear teeth divided by half of the 
number of planet gear teeth 

F* number of smaller/bigger humps equals to the number of ring gear teeth divided 
by the number of planet gear teeth 

G* two humps, obvious one corresponds to the ring gear - planet gear mesh and 
smaller one corresponds to the sun gear - planet gear mesh 

H* not clear 
Table 9-17 Types of indications of tooth damage 

 

In Table 9-16, the most sensitive signal for each type of tooth damage is shown in 

dark grey and the second sensitive signals are shown in light grey colour. In general, 

it is seen that torsional signals are superior than the transverse signals and most 

important of all, the carrier arm torsional signal is the most superior one and appears 

to contain all fault detectability information.  

 

Signal averaging is essential for further analysis such as the FSA and the CWTA, but 

it may not increase sensitivity to detect tooth faults in the early stage. The FSA 

certainly improves the early stage detectability of both tooth cracks and spalls, 

however, it is not capable of locating the tooth faults and is not able to show clear 

and certain results when applied to some signals. The CWTA has been shown to be 

the most superior method among these three. It can provide information to detect as 

well as to locate tooth faults in a much earlier stage.   
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10. DISCUSSION 
 
This chapter includes two sections, the general discussion and the recommendations 

for future work.  

 

The small number of rotations of the components of interest has reduced the 

effectiveness of the signal averaging process in this simulation. This is due to the 

limitation of computational time where an excess of 2 days was required for the 

simulation of one carrier arm revolution. 

 

The definition of revolution of each component and the selection of revolution type 

employed by the signal averaging process have significant effectiveness on both the 

averaged signals, their understanding and their detectability of tooth fault.  

 

The planet phasing and corresponding tooth mesh phasing have a major effect on the 

dynamic vibration signals. This was observed especially for the sun gear signals, 

which appear to have the first harmonic frequency (in shaft order) slightly off that 

indicated by the number of teeth. Further analysis is needed here based on Parker‟s 

work68. 

 

In order to measure torsional vibration, an approach of using equidistant pulses (over 

one shaft revolution or in this case around the gear/carrier circumferences generated 

by dedicated shaft encoders as well as gear tooth pickup transducers) and the use of 

dual-beam laser can be practical. However, more accurate and easy-to-apply methods 

or techniques for measuring and analyzing torsional vibration of gearbox 

components needs to be developed or invented, as these results show that the system 

torsional response is much more sensitive than the transverse response.  

 
The selection of step and step range, which can be related to mesh frequency and 

shaft rotation, in the CWTA method is important to gain satisfied outcome within a 

certain time frame, especially when the capability of computational hardware is also 

critical.  

 

A generalized and automatic software model has been developed using MATLAB. 
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The MATLAB program was developed using symbolic math and was able to 

generate the differential equations of a general model automatically, adjustable for 

different amounts of inputs automatically and was formed to be able to include more 

details or exclude existing details with single modification on the inputs. Every 

change on the other inputs can also be automatically reflected into the overall 

equations of motion but may require some find-replace operations (22 in total, all 

listed in one m-file) to be done manually. Practically all major changes or 

adding/deleting details on the model can be done within minutes before the program 

is ready to run.  

 

This thesis studied many aspects on planetary gearbox vibration with tooth cracking 

and spalling, however, more research is needed to completely understand the 

influence of gear faults on the signature of gearbox vibration.  

 

Further research works on the dynamic modelling are recommended as follows: 

 

 Backlash can be included to simulate contact loss under certain operation 

conditions such as high speed and low torque.  

 Different number of planet gears with different irregulation of planet spacing as 

well as mounting errors can be simulated to study the influence of those factors. 

 Multistage planetary gear set with or without detailed reduction gearbox can be 

modeled to improve the understanding of more complicated transmissions such 

as automotive transmissions, wind turbine transmissions, etc.  

 Friction forces can be included as well as gear mesh run out functions.  

 More complicated loading conditions can be simulated in order to study the 

detectability of tooth faults under realistic operation conditions. 

 Variable pitch and profile error patterns can be included as well as a model 

including random manufacturing effects. 

 FEA models can be employed to provide more accurate simulations of tooth 

mesh stiffness. 

 Multiple tooth damages with different types and parameters can be implanted 

within multiple gears in order to develop a more advanced fault detection 

method. 

 More specific development on phase cancellation of mesh components is needed.  
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Further research works on the development of the simulation program are 

recommended as follows: 

 

 The MATLAB program can be developed to be more general and more open to 

include extra details and sub-systems for future dynamic models. A more user 

friendly interface can be developed. 

 The MATLAB compiler could be employed to convert the MATLAB programs 

into self-contained applications and software components in order to reduce the 

computational time and avoid the limitations of using the MATLAB software. 

 

Further research works on the improvement of fault detection methods are 

recommended as follows: 

 

 Different wavelet functions can be explored to improve the detectability of the 

CWTA. 

 A new technique/program can be developed, based on the findings in Chapter 9 

of this thesis, to separate and locate each fault from multiple faults as well as to 

indicate the damage level. The successful development of such a technique 

would result in a very significant contribution to the current state of the art of 

gear tooth fault detection.  
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11. CONCLUSION 
 

This thesis presents the detailed investigations of dynamic modelling and tooth fault 

detection for a single-stage planetary gearbox in a bucket wheel reclaimer system. 

The planetary gear set model has been developed based on Kahraman‟s work37 with 

major modifications and including more details. The overall model also includes 

components such as input motor torque, drive train parts (a fluid coupling and 

multistage reduction gearbox), and torque output sections (bucket wheel, buckets and 

load).  

 

This chapter summarizes the significant achievements of this research as follows: 

 

 A generalized dynamic model for simulation and fault detection of a drive train 

including detailed planetary gear set has been developed. The model simulates 

the overall drive train of a bucket wheel reclaimer with a focus on the 

generalized planetary gearbox. The model contains time variations of the 

combined gear transmission errors, time variable mesh stiffness and localized 

tooth cracks and spalling.  

 

The model details the separation and data conversion of the two planet gear 

rotational motions (one about the sun gear centre; one about the planet gear 

mount point) very successfully using a new approach. The model has formulated 

the overall equations in a matrix form in order to introduce further details and is 

open to further sub-systems.  

 

 A simulation method for including the combined gear transmission error has 

been developed for the planetary gearbox. This method includes the time 

variable features of gear transmission errors of planetary gears due to planet gear 

phasing. It also includes combined pitch errors, profile errors and random errors 

to model realistic manufacturing conditions.  

 

 An approximate approach to calculate the combined torsional stiffness of 

planetary gear meshes has been conducted and compared to FEA results. This 
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approach is based on Jia‟s work40 with modifications to obtain satisfactory 

results for gear meshes with contact ratio greater than 3. This approach requires 

very short computation time compared to the FEA method and it provides 

reasonable results with the ability to include tooth mesh stiffness irregularities 

caused by tooth faults much easier. This gives the advantage of modelling 

different tooth faults by introducing changes to the tooth mesh stiffness. 

 

 A detailed and effective simulation approach for change of stiffness caused by 

localized tooth cracks has been developed. The change of stiffness was defined 

numerically and linked to the parameters of the tooth for ease of simulation. It 

also allows for the use of assumed stiffness reduction curves based on previous 

FEA results.  

 
 A detailed and effective simulation approach for change of stiffness and change 

of tooth profile caused by localized tooth spalling was developed. The change of 

stiffness was also defined numerically and linked to the parameters of tooth 

spalling for ease of simulation.  

 

The change of tooth profile caused by the localized tooth spalling can be 

introduced into the combined gear transmission error. The change of profile was 

also calculated using the parameters of the spall for accuracy as well as time 

efficient computation.  

 

 Clarification of the different effects of the localized tooth crack and spalling on 

the vibration signals has been obtained. The signal averaging analysis, the FSA 

and the CWTA applied to the dynamic modelling results in this thesis have 

shown the different influence of tooth faults on different component signals. 

These will help the diagnosis of the different tooth faults. 

 

 Detectability of different tooth damage types and levels has been determined. 

The detectability grades were determined across all three signal analysis 

methods used in this thesis. The results show that generally torsional signals are 

superior than transverse signals and the torsional signal of the carrier arm 

appears to be the most sensitive one. This will help to guide further analytical 
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and diagnostic research.  

 

In conclusion, the dynamic equations and software model developed in this research 

work have shown the ability of modelling a detailed complete drive train including a 

highly detailed planetary gearbox. The analysis methods used in this thesis have also 

shown the ability to detect tooth crack and spalling in an early stage. The torsional 

motion has been shown to be superior to transverse motion for the tooth fault 

detection and diagnosis. The CWTA has been shown to be very sensitive and 

efficient to detect and locate the tooth faults at an earlier stage than other methods. 
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13. APPENDIX 
 

13.1.  MATLAB PROGRAM 
 

13.1.1. ipdata.m 
 
function inputdata=ipdata(numberofinput) 
%%The program developed to introduce input values 
%%It includes all inputs needed in the entire programming   
%%except displacement factors of action line of mesh (Sec 
7.3) 
%%except setting for profile and pitch excitation (Sec 7.4) 
%%except settings of tooth faults (Sec 7.5).  
  
in(1)=19; %zs 
in(2)=32; %zp 
in(3)=83; %zr 
in(4)=20; %as 
in(5)=20; %ar 
in(6)=16/1000; %module 
in(7)=3; %number of planet 
in(8)=245/1000; %face width B 
in(9)=in(6)/2*(in(1)+in(2)); % centre distance of sun & planet 
/ rc design radial distance between the centres of planet gear 
and carrier arm  
  
%in(11)=in(201); %planet spacing 1  
%in(12)=in(202); %planet spacing 2 
%in(13)=in(203); %planet spacing 3 
in(14)=82/1000; %sun gear shaft radius 
in(15)=136/1000; %planet gear shaft radius 
in(16)=880/1000; %ring gear host radius 
  
in(21)=210*10^9; % young's modules 
in(22)=7850; % density of gear/arm material 
in(23)=4700; % density of ore 
  
in(31)=6; % number of poles 
in(32)=50; % supply frequency in  Hz 
in(33)=950; % operation speed of motor 
in(34)=450000; % rated power of motor in Watts 
in(35)=65*68*38/21/21/13; % reduction gear box ratio 
in(36)=in(35)*(1+in(3)/in(2)*in(2)/in(1)); % gear box ratio 
in(37)=20; % inertia of motor 
  
in(41)=5; %output torque control ratio. 
          %case 1, simplified high torque, 1.  
          %case 2, simplified mid torque, 1.5.  
          %case 3, simplified low torque, 2.25.  
          %case 4, detailed torque, 5. 
in(42)=12; % number of buckets 
in(43)=5;%3+1+1,corresponding to in(92), number of buckets 
with ore when in operation 
in(44)=in(9)*2*pi/2; %starting up end point/loading up start 
point 
in(45)=in(44)+in(9)*2*pi*in(43)/in(42);%loading up end 
point  
in(46)=in(45)+in(9)*2*pi*1.1;%unloading start point 
in(47)=in(46)+in(9)*2*pi*in(43)/in(42);%unloading end point 
in(48)=in(9)*2*pi/in(42);%single bucket load loading 
up/unloading period  
in(49)=in(45)+in(9)*2*pi*0.5;%overloading start point 

 
in(50)=in(45)+in(9)*2*pi*0.7;%overloading end point 
  
 in(51)=3; % condition controller 
in(53)=1; % SPsp controller  %%%%%%%% can be detailed 
as dependent term  
in(54)=1; % SPrp controller  %%%%%%%% can be detailed 
as dependent term 
in(55)=0.001; % diff step controller 
in(56)=0; % shaft-frequency excitation controller 
  
in(61)=10; % Csp 
in(62)=10; % Crp 
in(63)=10^10; % Cpx 
in(64)=10^10; % Cpy 
in(65)=10^8; % Kpx 
in(66)=10^8; % Kpy 
in(67)=(in(6)/2*(in(1)+in(2))+0.0001); % centre distance of 
sun & planet / rcp real radial distance between the centres of 
planet gear and carrier arm 
  
  
in(71)=0; % torque from base to ring gear 
in(72)=15; % coupling damping coefficient 
  
in(81)=0/1000; % inner radius of carrier arm 
in(82)=1000/1000; % outer radius of carrier arm 
in(83)=150/1000; % average width of carrier arm 
in(84)=1000/1000; % inner radius of wheel 
in(85)=2000/1000; % outer radius of wheel 
in(86)=100/1000; % average width of wheel 
in(87)=in(42); % number of buckets 
in(88)=1; % bucket dimension  
in(89)=1.2; % bucket dimension  
in(90)=0.95; % bucket dimension  
in(91)=1.1; % bucket dimension  
in(92)=3*0.8+1*0.6+1*0.1; % ore loading condition 
in(93)=0.8; %single bucket ore drop 
in(94)=in(48)/4; %ore drop period 
in(95)=10; %overloading rate 
  
  
in(101)=300; % csx 
in(102)=300; % csy 
in(103)=100; % cst 
in(104)=450; % crx 
in(105)=450; % cry 
in(106)=10^6; % crt 
in(107)=500; % ccx 
in(108)=500; % ccy 
in(109)=100; % cct 
  
in(111)=10^7 ; % ksx 
in(112)=10^7 ; % ksy 
in(113)=0 ; % kst 
in(114)=10^8 ; % krx 
in(115)=10^8 ;% kry 
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in(116)=10^10 ; % krt 
in(117)=5*10^7; % kcx 
in(118)=5*10^7 ; % kcy 
in(119)=0 ; % kct 
  
in(201)=0; %planet spacing 1  
in(202)=34/51*pi; %planet spacing 2 
in(203)=68/51*pi; %planet spacing 3 
  

in(301)=0.03; % angular error of planets position on carrier 
arm in degrees   
in(302)=0.05; % angular error of planets position on carrier 
arm in degrees 
in(303)=0.08; % angular error of planets position on carrier 
arm in degrees 
  
inputdata=in(numberofinput); 
 

13.1.2. velocityvector.m 
 
function velo=velocityvector(n,cd,eps) 
%% determine the velocity vector 
%% optionally display each term in the velocity vector  
%% with associated physical meaning respectively (after 
line.26) 
% n, number of planet gears 
% cd, condition controller 
  
%check the number of input 
if margin==3 
    eps=1.0e-6; 
else 
    error('incorrect number of input arguments.'); 
        return 
end 
  
% determine velocity vector: velo 
for j=1:1:(cd*n+3*cd) 
    for i=j 
        y='y'; 
        veloo=sym(strcat(y,'(',int2str(i+cd*n+3*cd),')')); 
    end 
    velo(j,1)=veloo; 
end 
  
velo=velo; 
  
if cd==1 
    convert(1,1)=sym(strcat('d','x/y/u','s')); 
    convert(2,1)=sym(strcat('d','x/y/u','r')); 
    convert(3,1)=sym(strcat('d','x/y/u','c')); 
    for j=4:1:(cd*n+3*cd) 
        convert(j,1)=sym(strcat('d','x/y/u','p',int2str((j-3)))); 
    end 
    for j=1:1:(cd*n+3*cd) 
        convert(j,2)=velo(j,1); 
    end 
end 
  
if cd==2 
    convert(1,1)=sym(strcat('d','x','s')); 
    convert(2,1)=sym(strcat('d','y','s')); 
    convert(3,1)=sym(strcat('d','x','r')); 
    convert(4,1)=sym(strcat('d','y','r')); 
    convert(5,1)=sym(strcat('d','x','c')); 
    convert(6,1)=sym(strcat('d','y','c')); 
 

    
    i=6; 
    for j=7:2:(cd*n+3*cd) 
        convert(j,1)=sym(strcat('d','x','p',int2str((j-i)))); 
        i=i+1; 
    end 
    i=7 
    for j=8:2:(cd*n+3*cd) 
        convert(j,1)=sym(strcat('d','y','p',int2str((j-i)))); 
        i=i+1; 
    end 
    for j=1:1:(cd*n+3*cd) 
        convert(j,2)=velo(j,1); 
    end 
end 
  
if cd==3 
    convert(1,1)=sym(strcat('d','x','s')); 
    convert(2,1)=sym(strcat('d','y','s')); 
    convert(3,1)=sym(strcat('d','u','s')); 
    convert(4,1)=sym(strcat('d','x','r')); 
    convert(5,1)=sym(strcat('d','y','r')); 
    convert(6,1)=sym(strcat('d','u','r')); 
    convert(7,1)=sym(strcat('d','x','c')); 
    convert(8,1)=sym(strcat('d','y','c')); 
    convert(9,1)=sym(strcat('d','u','c')); 
    i=9; 
    for j=10:3:(cd*n+3*cd) 
        convert(j,1)=sym(strcat('d','x','p',int2str((j-i)))); 
        i=i+2; 
    end 
    i=10; 
    for j=11:3:(cd*n+3*cd) 
        convert(j,1)=sym(strcat('d','y','p',int2str((j-i)))); 
        i=i+2; 
    end 
    i=11; 
    for j=12:3:(cd*n+3*cd) 
        convert(j,1)=sym(strcat('d','u','p',int2str((j-i)))); 
        i=i+2; 
    end 
    for j=1:1:(cd*n+3*cd) 
        convert(j,2)=velo(j,1); 
    end 
end 
  
%velo=convert;%display 
 

13.1.3. displacementvector.m 
 
function dism=displacementvector(n,cd,eps) 
%% determine the displacement vector 
%% optionally display each term in the displacement vector  
%% with associated physical meaning respectively (after 
line.26) 
% n, number of planet gears 
% cd, condition controller 
  

 
%check the number of input 
if margin==3 
    eps=1.0e-6; 
else 
    error('incorrect number of input arguments.'); 
        return 
end 
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% determine displacement vector: dism 
for j=1:1:(cd*n+3*cd) 
    for i=j 
        y='y'; 
        diamm=sym(strcat(y,'(',int2str(i),')')); 
    end 
    dism(j,1)=diamm; 
end 
  
dism=dism; 
  
if cd==1 
    convert(1,1)=sym(strcat('x/y/u','s')); 
    convert(2,1)=sym(strcat('x/y/u','r')); 
    convert(3,1)=sym(strcat('x/y/u','c')); 
    for j=4:1:(cd*n+3*cd) 
        convert(j,1)=sym(strcat('x/y/u','p',int2str((j-3)))); 
    end 
    for j=1:1:(cd*n+3*cd) 
        convert(j,2)=dism(j,1); 
    end 
end 
  
if cd==2 
    convert(1,1)=sym(strcat('x','s')); 
    convert(2,1)=sym(strcat('y','s')); 
    convert(3,1)=sym(strcat('x','r')); 
    convert(4,1)=sym(strcat('y','r')); 
    convert(5,1)=sym(strcat('x','c')); 
    convert(6,1)=sym(strcat('y','c')); 
    i=6; 
    for j=7:2:(cd*n+3*cd) 
        convert(j,1)=sym(strcat('x','p',int2str((j-i)))); 
        i=i+1; 
    end 
    i=7 
    for j=8:2:(cd*n+3*cd) 
        convert(j,1)=sym(strcat('y','p',int2str((j-i)))); 
        i=i+1; 
 

 
    end 
    for j=1:1:(cd*n+3*cd) 
        convert(j,2)=dism(j,1); 
    end 
end 
  
if cd==3 
    convert(1,1)=sym(strcat('x','s')); 
    convert(2,1)=sym(strcat('y','s')); 
    convert(3,1)=sym(strcat('u','s')); 
    convert(4,1)=sym(strcat('x','r')); 
    convert(5,1)=sym(strcat('y','r')); 
    convert(6,1)=sym(strcat('u','r')); 
    convert(7,1)=sym(strcat('x','c')); 
    convert(8,1)=sym(strcat('y','c')); 
    convert(9,1)=sym(strcat('u','c')); 
    i=9; 
    for j=10:3:(cd*n+3*cd) 
        convert(j,1)=sym(strcat('x','p',int2str((j-i)))); 
        i=i+2; 
    end 
    i=10; 
    for j=11:3:(cd*n+3*cd) 
        convert(j,1)=sym(strcat('y','p',int2str((j-i)))); 
        i=i+2; 
    end 
    i=11; 
    for j=12:3:(cd*n+3*cd) 
        convert(j,1)=sym(strcat('u','p',int2str((j-i)))); 
        i=i+2; 
    end 
    for j=1:1:(cd*n+3*cd) 
        convert(j,2)=dism(j,1); 
    end 
end 
  
%dism=convert;%display 
 

13.1.4. cunfangMCKF.m 
 
%% Program cunfangMCKF.m is developed to generate ODE 
function It requires ipdata.m, displacementvector.m, 
velocityvector.m  
%% and manual inputs (MDsp and MDrp at line.32, 103, 148, 
173, 472, 543, 588, 614, 905, 939, 964, 1030, 1096, 1130, 
1155, 1221, governing equations at line.277, 285, 293, 301, 
309, 317, 710, 718, 726, 734, 742, 750, 1288, 1296, 1304, 
1312, 1320, 1332, and submission of Eqs3.53-56 at line.1380, 
1394, 1410, 1424, 1440, 1500, 1514, 1533, 1547.) 
  
n=ipdata(7); 
cd=ipdata(51); 
syms t  
syms tt 
syms as % pressure angle of sun gear 
syms ar % pressure angle of ring gear 
syms rs rc rr rp 
%%%%%%%%%%%%%%%%%% 
% part one  
% form every term of MDspi & DMDspi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%-------------------------------------------% 
% form DMDspi 
%--------------------------% 
for j=1:1:(cd*n+3*cd) 
    y(j)=sym(strcat('y','(',int2str(j),')')); 

    y(j)=1; 
end 
for j=1:1:n 
    fae(j)=sym(strcat('Dfae','(',int2str(j),')'))*t; 
end 
for j=1:1:n 
    fesp(j)=sym(strcat('fesp','(',int2str(j),')')); 
    fEs(j)=sym(strcat('fEs','(',int2str(j),')')); 
    fEsp(j)=sym(strcat('fEsp','(',int2str(j),')')); 
end 
for j=1:1:n 
    %@@@@@@@@@@@@@@@@@@@@@@@@@
ENTER MDsp vector 
    transMDDsp=[cos(fae(j)-as)*y(2);-cos(fae(j)-
as)*y(8+3*j);sin(fae(j)-as)*y(1);-sin(fae(j)-
as)*y(7+3*j);y(3);-y(3)/(rr+rs)*rs;y(6)/(rr+rs)*rs;-
y(9+3*j);fesp(j);fEs(j);-fEsp(j)]; 
    sizeofMDDsp=size(transMDDsp); 
    for i=1:1:sizeofMDDsp(1) 
        MDDsp(i,j)=transMDDsp(i); 
    end 
end 
MDDsp; 
sizeMDDsp=size(MDDsp); 
for i=1:1:sizeofMDDsp(1) 
    for j=1:1:sizeMDDsp(2) 
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        DMDsp(i,j)=diff(MDDsp(i,j),'t'); 
    end 
end 
  
for i=1:1:sizeofMDDsp(1) 
    for j=1:1:sizeMDDsp(2) 
        if DMDsp(i,j)==0 
            DMD1(i,j)=DMDsp(i,j); 
        else 
        H=char(DMDsp(i,j)); 
        sizeH=size(H); 
        HH=sym(strcat('Dfae','(',int2str(j),')'))*t; 
        HH=char(HH); 
        HHH=(strcat('fae','(',int2str(j),')')); 
        sizeHHH=size(HHH); 
        sizeHH=size(HH); 
        for ii=1:1:(sizeH(2)-sizeHH(2)+1) 
            if double(H(ii))==double(HH(1)) && 
double(H(ii+sizeHH(2)-1))==double(HH(sizeHH(2))) 
                ii; 
                for jj=1:1:sizeHHH(2) 
                   H(ii+jj-1)=HHH(jj); 
                end 
                for jj=sizeHHH(2):1:(sizeH(2)-
sizeHH(2)+sizeHHH(2)-ii) 
                    H(ii+jj)=H(ii+jj+sizeHH(2)-sizeHHH(2)); 
                end 
            else 
            end 
        end 
        Hf=''; 
        for k=1:1:(sizeH(2)-sizeHH(2)+sizeHHH(2)) 
            Hf(k)=H(k); 
        end 
        doubleHf=double(Hf); 
        sizeHf=size(doubleHf); 
        HF=char(doubleHf(1,1)); 
        for iii=2:1:sizeHf(2) 
            NuHf=doubleHf(1,iii); 
            HF=(strcat(char(HF),char(NuHf))); 
        end 
        A=sym(HF); 
        i; 
        j; 
        DMD1(i,j)=A; 
        end 
    end 
end 
  
for j=1:1:(cd*n+3*cd) 
    y(j)=sym(strcat('y','(',int2str(j+cd*n+3*cd),')'))*tt; 
    y(j)=tt; 
end 
for j=1:1:n 
    fae(j)=sym(strcat('fae','(',int2str(j),')')); 
end 
for j=1:1:n 
    fesp(j)=sym(strcat('Dfesp','(',int2str(j),')'))*tt; 
    fEs(j)=sym(strcat('DfEs','(',int2str(j),')'))*tt; 
    fEsp(j)=sym(strcat('DfEsp','(',int2str(j),')'))*tt; 
end 
for j=1:1:n 
     %@@@@@@@@@@@@@@@@@@@@@@@@E
NTER MDsp vector 
    transMDDsp=[cos(fae(j)-as)*y(2);-cos(fae(j)-
as)*y(8+3*j);sin(fae(j)-as)*y(1);-sin(fae(j)-
as)*y(7+3*j);y(3);-y(3)/(rr+rs)*rs;y(6)/(rr+rs)*rs;-
y(9+3*j);fesp(j);fEs(j);-fEsp(j)]; 
    sizeofMDDsp=size(transMDDsp); 
    for i=1:1:sizeofMDDsp(1) 

        MDDsp(i,j)=transMDDsp(i); 
    end 
end 
MDDsp; 
sizeMDDsp=size(MDDsp); 
for i=1:1:sizeofMDDsp(1) 
    for j=1:1:sizeMDDsp(2) 
        DMD2(i,j)=diff(MDDsp(i,j),'tt'); 
    end 
end 
  
for i=1:1:sizeofMDDsp(1) 
    for j=1:1:sizeMDDsp(2) 
        DMDsp(i,j)=DMD1(i,j); 
    end 
end 
for i=(sizeofMDDsp(1)+1):1:(2*sizeofMDDsp(1)) 
    for j=1:1:sizeMDDsp(2) 
        DMDsp(i,j)=DMD2((i-sizeofMDDsp(1)),j); 
    end 
end 
DMDsp; 
%-------------------------------------------% 
% form MDspi 
%--------------------------% 
for j=1:1:(cd*n+3*cd) 
    y(j)=sym(strcat('y','(',int2str(j),')')); 
    y(j)=1;     
    %define displacement  
end 
for j=1:1:n 
    fae(j)=sym(strcat('fae','(',int2str(j),')')); 
    %define symbol for angular position of each planet gear 
end 
syms force % selection sign for force terms 
for j=1:1:n 
    fesp(j)=sym(strcat('fesp','(',int2str(j),')')); 
    fEs(j)=sym(strcat('fEs','(',int2str(j),')')); 
    fEsp(j)=sym(strcat('fEsp','(',int2str(j),')')); 
end 
for j=1:1:n 
    %@@@@@@@@@@@@@@@@@@@@@@@@@
ENTER MDsp vector 
    transMDsp=[cos(fae(j)-as)*y(2);-cos(fae(j)-
as)*y(8+3*j);sin(fae(j)-as)*y(1);-sin(fae(j)-
as)*y(7+3*j);y(3);-y(3)/(rr+rs)*rs;y(6)/(rr+rs)*rs;-
y(9+3*j);fesp(j);fEs(j);-fEsp(j)]; 
    sizeofMDsp=size(transMDsp); 
    for i=1:1:sizeofMDsp(1) 
        MDsp(i,j)=transMDsp(i); 
    end 
end 
MDsp; 
%%%%%%%%%%%%%%%%%% 
% part two  
% number order every term of MDspi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=1:1:(cd*n+3*cd) 
    y(j)=tt^(j+1);  %define displacement  
end 
for j=1:1:n 
    fae(j)=t^(j+cd*n+3*cd+1);  %define symbol for angular 
position of each planet gear 
end 
syms force % selection sign for force terms 
for j=1:1:n 
    fesp(j)=force*tt^(j+n+cd*n+3*cd+1); 
    fEs(j)=force*tt^(j+n+cd*n+3*cd+1); 
    fEsp(j)=force*tt^(j+n+cd*n+3*cd+1); 
end 
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for j=1:1:n 
    %@@@@@@@@@@@@@@@@@@@@@@@@@
ENTER MDsp vector 
    transMDsp=[cos(fae(j)-as)*y(2);-cos(fae(j)-
as)*y(8+3*j);sin(fae(j)-as)*y(1);-sin(fae(j)-
as)*y(7+3*j);y(3);-y(3)/(rr+rs)*rs;y(6)/(rr+rs)*rs;-
y(9+3*j);fesp(j);fEs(j);-fEsp(j)]; 
    sizeofMDsp=size(transMDsp); 
    for i=1:1:sizeofMDsp(1) 
        MD(i,j)=transMDsp(i); 
    end 
end 
A=diff(MD,'t'); 
B=diff(MD,'tt'); 
sizeA=size(A); 
sizeB=size(B); 
sizeD(1)=sizeA(1)+sizeB(1); 
sizeD(2)=sizeA(2); 
for i=1:1:sizeA(1) 
    for j=1:1:sizeA(2) 
        D(i,j)=A(i,j); 
    end 
end 
for i=(sizeA(1)+1):1:sizeD(1) 
    for j=1:1:sizeA(2) 
        D(i,j)=B((i-sizeA(1)),j); 
    end 
end 
for i=1:1:sizeD(1) 
    for j=1:1:sizeD(2) 
        DD=D(i,j); 
        Nu=char(DD); 
        sizeNu=size(Nu); 
        ii=0;iii=1; 
        if double(Nu(1,1))==45 
            ii=1;iii=2; 
            for jj=2:1:sizeNu(2) 
                if double(Nu(1,jj))<=57 && double(Nu(1,jj))>=48 
                    ii=ii+1; 
                else break 
                end 
            end 
        else 
            for jj=1:1:sizeNu(2) 
                if double(Nu(1,jj))<=57 && double(Nu(1,jj))>=48 
                    ii=ii+1; 
                else break 
                end 
            end 
        end 
        Nub=0; 
        for jj=iii:1:ii 
            Nub=Nub+(double(Nu(jj))-48)*10^(ii-jj); 
        end 
        DNu1(i,j)=Nub; 
    end 
end 
DNu1; 
%---------------------------------------------% 
% DNu1 number original matrix, to tell terms in to two 
different levels of 
% matrices  
% from DNu1 to DNu2 
% DNu2 separates lower level matrix terms into expected 
positions 
%-----------------------% 
sizeDNu1=size(DNu1); 
for i=1:1:sizeDNu1(1) 
    for j=1:1:sizeDNu1(2) 

        if DNu1(i,j)<=(j+cd*n+3*cd+1) && 
DNu1(i,j)>=(1+cd*n+3*cd+1) 
            DNu2(i,j)=DNu1((i+sizeofMDsp(1)),j); 
        else 
            DNu2(i,j)=DNu1(i,j); 
        end 
    end 
end 
DNu2; 
  
%%%%%%%%%%%%%%%%%% 
% part three  
% governing equation  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
for i=1:1:n 
    syms xs ys us xr yr ur xc yc uc xp yp up; 
    syms kk; 
    syms Tss rs; 
    Csp(i)=sym(strcat('Csp','(',int2str(i),')')); 
    Ksp(i)=sym(strcat('Ksp','(',int2str(i),')')); 
    SPsp(i)=sym(strcat('SPsp','(',int2str(i),')')); 
    fae(i)=sym(strcat('fae','(',int2str(i),')')); 
end 
Mmatrix=sym(zeros((cd*n+3*cd),(cd*n+3*cd))); % global 
mass matrix 
C1matrix=sym(zeros((cd*n+3*cd),(cd*n+3*cd)));% global 
damping matrix, higher  
C2matrix=sym(zeros((cd*n+3*cd),(cd*n+3*cd)));% global 
damping matrix, lower 
C3matrix=sym(zeros((cd*n+3*cd),(cd*n+3*cd)));% global 
damping matrix, supporting  
K1matrix=sym(zeros((cd*n+3*cd),(cd*n+3*cd)));% global 
stiffness matrix, higher 
K2matrix=sym(zeros((cd*n+3*cd),(cd*n+3*cd)));% global 
stiffness matrix, lower 
K3matrix=sym(zeros((cd*n+3*cd),(cd*n+3*cd)));% global 
stiffness matrix, supporting 
Fmatrix=sym(zeros((cd*n+3*cd),1));% global force matrix  
  
%@@@@@@@@@@@@@@@@@@@@@@@@@@ 
ENTER gov vector 
%gov1(1,:)=[xs,Csp(j)*sin(fae(j)-
as),SPsp(j)*Ksp(j)*sin(fae(j)-as),0]; 
%gov2(1,:)=[ys,Csp(j)*cos(fae(j)-
as),SPsp(j)*Ksp(j)*cos(fae(j)-as),0]; 
%gov3(1,:)=[us,Csp(j),SPsp(j)*Ksp(j),Tss/rs]; 
%gov4(1,:)=[xp,-Csp(j)*sin(fae(j)-as),-
SPsp(j)*Ksp(j)*sin(fae(j)-as),0]; 
%gov5(1,:)=[yp,-Csp(j)*cos(fae(j)-as),-
SPsp(j)*Ksp(j)*cos(fae(j)-as),0]; 
%gov6(1,:)=[up,-Csp(j),-SPsp(j)*Ksp(j),0]; 
  
for j=1:1:n 
    gov1(1,:)=[xs,Csp(j)*sin(fae(j)-
as),SPsp(j)*Ksp(j)*sin(fae(j)-as),0]; 
    sizegov=size(gov1); 
    sizegovern(1)=sizegov(2); 
    for i=1:1:sizegov(2) 
        governing(1,i+(j-1)*sizegov(2))=gov1(1,i); 
    end 
end 
for j=1:1:n 
    gov2(1,:)=[ys,Csp(j)*cos(fae(j)-
as),SPsp(j)*Ksp(j)*cos(fae(j)-as),0]; 
    sizegov=size(gov2); 
    sizegovern(2)=sizegov(2); 
    for i=1:1:sizegov(2) 
        governing(2,i+(j-1)*sizegov(2))=gov2(1,i); 
    end 
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end 
for j=1:1:n 
    gov3(1,:)=[us,Csp(j),SPsp(j)*Ksp(j),Tss/rs]; 
    sizegov=size(gov3); 
    sizegovern(3)=sizegov(2); 
    for i=1:1:sizegov(2) 
        governing(3,i+(j-1)*sizegov(2))=gov3(1,i); 
    end 
end 
for j=1:1:n 
    gov4(1,:)=[xp,-Csp(j)*sin(fae(j)-as),-
SPsp(j)*Ksp(j)*sin(fae(j)-as),0]; 
    sizegov=size(gov4); 
    sizegovern(4)=sizegov(2); 
    for i=1:1:sizegov(2) 
        governing(4,i+(j-1)*sizegov(2))=gov4(1,i); 
    end 
end 
for j=1:1:n 
    gov5(1,:)=[yp,-Csp(j)*cos(fae(j)-as),-
SPsp(j)*Ksp(j)*cos(fae(j)-as),0]; 
    sizegov=size(gov5); 
    sizegovern(5)=sizegov(2); 
    for i=1:1:sizegov(2) 
        governing(5,i+(j-1)*sizegov(2))=gov5(1,i); 
    end 
end 
for j=1:1:n 
    gov6(1,:)=[up,-Csp(j),-SPsp(j)*Ksp(j),0]; 
    sizegov=size(gov6); 
    sizegovern(6)=sizegov(2); 
    for i=1:1:sizegov(2) 
        governing(6,i+(j-1)*sizegov(2))=gov6(1,i); 
    end 
end 
governing; 
sizegovern; 
sizei=size(sizegovern); 
  
for i=1:1:sizei(2) 
    positionsp=governing(i,:); 
    if positionsp(1)==xs 
        row(1)=1; 
    else if positionsp(1)==ys 
            row(1)=2; 
        else if positionsp(1)==us 
                row(1)=3; 
            else if positionsp(1)==xr 
                    row(1)=4; 
                else if positionsp(1)==yr 
                        row(1)=5; 
                    else if positionsp(1)==ur 
                            row(1)=6; 
                        else if positionsp(1)==xc 
                                row(1)=7; 
                            else if positionsp(1)==yc 
                                    row(1)=8; 
                                else if positionsp(1)==uc 
                                        row(1)=9; 
                                    else if positionsp(1)==xp 
                                            for j=1:1:n 
                                                row(j)=cd*3+j+(j-1)*2; 
                                            end 
                                        else if positionsp(1)==yp 
                                                for j=1:1:n 
                                                    row(j)=cd*3+j+(j-1)*2+1; 
                                                end 
                                            else if positionsp(1)==up 
                                                for j=1:1:n 
                                                    row(j)=cd*3+j+(j-1)*2+2; 

                                                end 
                                                end 
                                            end 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
    if row<=3*cd 
        for k=1:1:(sizeofMDsp(1)*2) 
            for kk=1:1:n 
                % solving DMDsp 
                if DNu1(k,kk)>=(1+cd*n+3*cd+1) && 
DNu1(k,kk)<=(n+cd*n+3*cd+1) 
                   K2matrix(row(1),(DNu2(k,kk)-
1))=DMDsp(k,kk)*positionsp(1,2+(kk-
1)*sizegovern(i))+K2matrix(row(1),(DNu2(k,kk)-1)); 
                else if DNu1(k,kk)>=2 && 
DNu1(k,kk)<=(cd*n+3*cd+1) 
                         C1matrix(row(1),(DNu2(k,kk)-
1))=DMDsp(k,kk)*positionsp(1,2+(kk-
1)*sizegovern(i))+C1matrix(row(1),(DNu2(k,kk)-1)); 
                     else if DNu1(k,kk)>=(n+cd*n+3*cd+2) && 
DNu1(k,kk)<=(2*n+cd*n+3*cd+1) 
                             Fmatrix(row(1),1)=Fmatrix(row(1),1)-
DMDsp(k,kk)*positionsp(1,2+(kk-1)*sizegovern(i)); 
                          else 
                          end 
                     end 
                end 
            end 
        end 
        for k=1:1:sizeofMDsp(1) 
            for kk=1:1:n 
                % solving MDsp 
                if DNu2(k+sizeofMDsp(1),kk)>=2 && 
DNu2(k+sizeofMDsp(1),kk)<=(cd*n+3*cd+1) 
                    K1matrix(row(1),(DNu2(k+sizeofMDsp(1),kk)-
1))=MDsp(k,kk)*positionsp(1,3+(kk-
1)*sizegovern(i))+K1matrix(row(1),(DNu2(k+sizeofMDsp(1)
,kk)-1)); 
                    if DNu2(k+sizeofMDsp(1),kk)==(cd*3+kk*cd-1) 
                        Fmatrix(row(1),1)=Fmatrix(row(1),1)-
sym(strcat('sin(fae(',int2str(kk),')-as)*(-cos((y(',int2str(cd),')-
y(',int2str(2*cd),'))/(rs+rr)+pi-
ipdata(',int2str(200+kk),'))*rc+cos(pi-
ipdata(',int2str(200+kk),'))*rc)'))*positionsp(1,3+(kk-
1)*sizegovern(i)); 
                    else if 
DNu2(k+sizeofMDsp(1),kk)==(cd*3+kk*cd) 
                            Fmatrix(row(1),1)=Fmatrix(row(1),1)-
sym(strcat('cos(fae(',int2str(kk),')-as)*(sin((y(',int2str(cd),')-
y(',int2str(2*cd),'))/(rs+rr)+pi-ipdata(',int2str(200+kk),'))*rc-
sin(pi-ipdata(',int2str(200+kk),'))*rc)'))*positionsp(1,3+(kk-
1)*sizegovern(i)); 
                        end 
                        Fmatrix(row(1),1)=Fmatrix(row(1),1); 
                    end 
                else if 
DNu2(k+sizeofMDsp(1),kk)>=(n+cd*n+3*cd+2) && 
DNu2(k+sizeofMDsp(1),kk)<=(2*n+cd*n+3*cd+1) 
                        Fmatrix(row(1),1)=Fmatrix(row(1),1)-
MDsp(k,kk)*positionsp(1,3+(kk-1)*sizegovern(i));   
                     end 
                end 
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            end 
        end 
        
Fmatrix(row(1),1)=Fmatrix(row(1),1)+positionsp(1,sizegover
n(i)); 
    else 
        for rowi=1:1:n 
            roww=row(rowi); 
            for k=1:1:(sizeofMDsp(1)*2) 
                for kk=rowi:1:rowi 
                    % solving DMDsp 
                    if DNu1(k,kk)>=(1+cd*n+3*cd+1) && 
DNu1(k,kk)<=(n+cd*n+3*cd+1) 
                       K2matrix(roww,(DNu2(k,kk)-
1))=DMDsp(k,kk)*positionsp(1,2+(kk-
1)*sizegovern(i))+K2matrix(roww,(DNu2(k,kk)-1)); 
                    else if DNu1(k,kk)>=2 && 
DNu1(k,kk)<=(cd*n+3*cd+1) 
                             C1matrix(roww,(DNu2(k,kk)-
1))=DMDsp(k,kk)*positionsp(1,2+(kk-
1)*sizegovern(i))+C1matrix(roww,(DNu2(k,kk)-1)); 
                         else if DNu1(k,kk)>=(n+cd*n+3*cd+2) && 
DNu1(k,kk)<=(2*n+cd*n+3*cd+1) 
                                 Fmatrix(roww,1)=Fmatrix(roww,1)-
DMDsp(k,kk)*positionsp(1,2+(kk-1)*sizegovern(i)); 
                              else 
                              end 
                         end 
                    end 
                end 
            end 
            for k=1:1:sizeofMDsp(1) 
                for kk=rowi:1:rowi 
                    % solving MDsp 
                    if DNu2(k+sizeofMDsp(1),kk)>=2 && 
DNu2(k+sizeofMDsp(1),kk)<=(cd*n+3*cd+1) 
                        K1matrix(roww,(DNu2(k+sizeofMDsp(1),kk)-
1))=MDsp(k,kk)*positionsp(1,3+(kk-
1)*sizegovern(i))+K1matrix(roww,(DNu2(k+sizeofMDsp(1),
kk)-1)); 
                        if 
DNu2(k+sizeofMDsp(1),kk)==(cd*3+kk*cd-1) 
                        Fmatrix(roww,1)=Fmatrix(roww,1)-
sym(strcat('sin(fae(',int2str(kk),')-as)*(-cos((y(',int2str(cd),')-
y(',int2str(2*cd),'))/(rs+rr)+pi-
ipdata(',int2str(200+kk),'))*rc+cos(pi-
ipdata(',int2str(200+kk),'))*rc)'))*positionsp(1,3+(kk-
1)*sizegovern(i)); 
                    else if 
DNu2(k+sizeofMDsp(1),kk)==(cd*3+kk*cd) 
                            Fmatrix(roww,1)=Fmatrix(roww,1)-
sym(strcat('cos(fae(',int2str(kk),')-as)*(sin((y(',int2str(cd),')-
y(',int2str(2*cd),'))/(rs+rr)+pi-ipdata(',int2str(200+kk),'))*rc-
sin(pi-ipdata(',int2str(200+kk),'))*rc)'))*positionsp(1,3+(kk-
1)*sizegovern(i)); 
                        end 
                        Fmatrix(roww,1)=Fmatrix(roww,1); 
                    end 
                    else if 
DNu2(k+sizeofMDsp(1),kk)>=(n+cd*n+3*cd+2) && 
DNu2(k+sizeofMDsp(1),kk)<=(2*n+cd*n+3*cd+1) 
                            Fmatrix(roww,1)=Fmatrix(roww,1)-
MDsp(k,kk)*positionsp(1,3+(kk-1)*sizegovern(i));   
                         end 
                    end 
                end 
            end 
            
Fmatrix(roww,1)=Fmatrix(roww,1)+positionsp(1,sizegovern(i
)); 

        end 
    end 
end 
row=[0,0,0]; 
roww=0; 
rowi=0; 
  
%%%%%%%%%%%%%%%%%% 
% part four  
% form every term of MDrpi & DMDrpi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%-------------------------------------------% 
% form DMDrpi 
%--------------------------% 
for j=1:1:(cd*n+3*cd) 
    y(j)=sym(strcat('y','(',int2str(j),')')); 
    y(j)=1; 
end 
for j=1:1:n 
    fae(j)=sym(strcat('Dfae','(',int2str(j),')'))*t; 
end 
for j=1:1:n 
    ferp(j)=sym(strcat('ferp','(',int2str(j),')')); 
    fEr(j)=sym(strcat('fEr','(',int2str(j),')')); 
    fErp(j)=sym(strcat('fErp','(',int2str(j),')')); 
end 
for j=1:1:n 
    %@@@@@@@@@@@@@@@@@@@@@@@@@
ENTER MDrp vector 
    transMDDrp=[cos(fae(j)+ar)*y(5);-
cos(fae(j)+ar)*y(8+3*j);sin(fae(j)+ar)*y(4);-
sin(fae(j)+ar)*y(7+3*j);-y(6);-
y(3)/(rr+rs)*rr;y(6)/(rr+rs)*rr;y(9+3*j);ferp(j);fEr(j);-fErp(j)]; 
    sizeofMDDrp=size(transMDDrp); 
    for i=1:1:sizeofMDDrp(1) 
        MDDrp(i,j)=transMDDrp(i); 
    end 
end 
MDDrp; 
sizeMDDrp=size(MDDrp); 
for i=1:1:sizeofMDDrp(1) 
    for j=1:1:sizeMDDrp(2) 
        DMDrp(i,j)=diff(MDDrp(i,j),'t'); 
    end 
end 
  
for i=1:1:sizeofMDDrp(1) 
    for j=1:1:sizeMDDrp(2) 
        if DMDrp(i,j)==0 
            DMDr1(i,j)=DMDrp(i,j); 
        else 
        H=char(DMDrp(i,j)); 
        sizeH=size(H); 
        HH=sym(strcat('Dfae','(',int2str(j),')'))*t; 
        HH=char(HH); 
        HHH=(strcat('fae','(',int2str(j),')')); 
        sizeHHH=size(HHH); 
        sizeHH=size(HH); 
        for ii=1:1:(sizeH(2)-sizeHH(2)+1) 
            if double(H(ii))==double(HH(1)) && 
double(H(ii+sizeHH(2)-1))==double(HH(sizeHH(2))) 
                ii; 
                for jj=1:1:sizeHHH(2) 
                   H(ii+jj-1)=HHH(jj); 
                end 
                for jj=sizeHHH(2):1:(sizeH(2)-
sizeHH(2)+sizeHHH(2)-ii) 
                    H(ii+jj)=H(ii+jj+sizeHH(2)-sizeHHH(2)); 
                end 
            else 
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            end 
        end 
        Hf=''; 
        for k=1:1:(sizeH(2)-sizeHH(2)+sizeHHH(2)) 
            Hf(k)=H(k); 
        end 
        doubleHf=double(Hf); 
        sizeHf=size(doubleHf); 
        HF=char(doubleHf(1,1)); 
        for iii=2:1:sizeHf(2) 
            NuHf=doubleHf(1,iii); 
            HF=(strcat(char(HF),char(NuHf))); 
        end 
        A=sym(HF); 
        i; 
        j; 
        DMDr1(i,j)=A; 
        end 
    end 
end 
  
for j=1:1:(cd*n+3*cd) 
    y(j)=sym(strcat('y','(',int2str(j+cd*n+3*cd),')'))*tt; 
    y(j)=tt; 
end 
for j=1:1:n 
    fae(j)=sym(strcat('fae','(',int2str(j),')')); 
end 
for j=1:1:n 
    ferp(j)=sym(strcat('Dferp','(',int2str(j),')'))*tt; 
    fEr(j)=sym(strcat('DfEr','(',int2str(j),')'))*tt; 
    fErp(j)=sym(strcat('DfErp','(',int2str(j),')'))*tt; 
end 
for j=1:1:n 
     %@@@@@@@@@@@@@@@@@@@@@@@@ 
ENTER MDrp vector 
    transMDDrp=[cos(fae(j)+ar)*y(5);-
cos(fae(j)+ar)*y(8+3*j);sin(fae(j)+ar)*y(4);-
sin(fae(j)+ar)*y(7+3*j);-y(6);-
y(3)/(rr+rs)*rr;y(6)/(rr+rs)*rr;y(9+3*j);ferp(j);fEr(j);-fErp(j)]; 
    sizeofMDDrp=size(transMDDrp); 
    for i=1:1:sizeofMDDrp(1) 
        MDDrp(i,j)=transMDDrp(i); 
    end 
end 
MDDrp; 
sizeMDDrp=size(MDDrp); 
for i=1:1:sizeofMDDrp(1) 
    for j=1:1:sizeMDDrp(2) 
        DMDr2(i,j)=diff(MDDrp(i,j),'tt'); 
    end 
end 
  
for i=1:1:sizeofMDDrp(1) 
    for j=1:1:sizeMDDrp(2) 
        DMDrp(i,j)=DMDr1(i,j); 
    end 
end 
for i=(sizeofMDDrp(1)+1):1:(2*sizeofMDDrp(1)) 
    for j=1:1:sizeMDDrp(2) 
        DMDrp(i,j)=DMDr2((i-sizeofMDDrp(1)),j); 
    end 
end 
DMDrp; 
%-------------------------------------------% 
% form MDrpi 
%--------------------------% 
for j=1:1:(cd*n+3*cd) 
    y(j)=sym(strcat('y','(',int2str(j),')')); 
    y(j)=1; 

    %define displacement  
end 
for j=1:1:n 
    fae(j)=sym(strcat('fae','(',int2str(j),')')); 
    %define symbol for angular position of each planet gear 
end 
syms force % selection sign for force terms 
for j=1:1:n 
    ferp(j)=sym(strcat('ferp','(',int2str(j),')')); 
    fEr(j)=sym(strcat('fEr','(',int2str(j),')')); 
    fErp(j)=sym(strcat('fErp','(',int2str(j),')')); 
end 
for j=1:1:n 
    %@@@@@@@@@@@@@@@@@@@@@@@@@ 
ENTER MDrp vector 
    transMDrp=[cos(fae(j)+ar)*y(5);-
cos(fae(j)+ar)*y(8+3*j);sin(fae(j)+ar)*y(4);-
sin(fae(j)+ar)*y(7+3*j);-y(6);-
y(3)/(rr+rs)*rr;y(6)/(rr+rs)*rr;y(9+3*j);ferp(j);fEr(j);-fErp(j)]; 
    sizeofMDrp=size(transMDrp); 
    for i=1:1:sizeofMDrp(1) 
        MDrp(i,j)=transMDrp(i); 
    end 
end 
MDrp; 
  
%%%%%%%%%%%%%%%%%% 
% part five  
% number order every term of MDrpi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=1:1:(cd*n+3*cd) 
    y(j)=tt^(j+1);  %define displacement  
end 
for j=1:1:n 
    fae(j)=t^(j+cd*n+3*cd+1);  %define symbol for angular 
position of each planet gear 
end 
syms force % selection sign for force terms 
for j=1:1:n 
    ferp(j)=force*tt^(j+n+cd*n+3*cd+1); 
    fEr(j)=force*tt^(j+n+cd*n+3*cd+1); 
    fErp(j)=force*tt^(j+n+cd*n+3*cd+1); 
end 
for j=1:1:n 
    %@@@@@@@@@@@@@@@@@@@@@@@@@ 
ENTER MDrp vector 
    transMDrp=[cos(fae(j)+ar)*y(5);-
cos(fae(j)+ar)*y(8+3*j);sin(fae(j)+ar)*y(4);-
sin(fae(j)+ar)*y(7+3*j);-y(6);-
y(3)/(rr+rs)*rr;y(6)/(rr+rs)*rr;y(9+3*j);ferp(j);fEr(j);-fErp(j)]; 
    sizeofMDrp=size(transMDrp); 
    for i=1:1:sizeofMDrp(1) 
        MDr(i,j)=transMDrp(i); 
    end 
end 
A=diff(MDr,'t'); 
B=diff(MDr,'tt'); 
sizeA=size(A); 
sizeB=size(B); 
sizeD(1)=sizeA(1)+sizeB(1); 
sizeD(2)=sizeA(2); 
for i=1:1:sizeA(1) 
    for j=1:1:sizeA(2) 
        D(i,j)=A(i,j); 
    end 
end 
for i=(sizeA(1)+1):1:sizeD(1) 
    for j=1:1:sizeA(2) 
        D(i,j)=B((i-sizeA(1)),j); 
    end 
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end 
for i=1:1:sizeD(1) 
    for j=1:1:sizeD(2) 
        DD=D(i,j); 
        Nu=char(DD); 
        sizeNu=size(Nu); 
        ii=0;iii=1; 
        if double(Nu(1,1))==45 
            ii=1;iii=2; 
            for jj=2:1:sizeNu(2) 
                if double(Nu(1,jj))<=57 && double(Nu(1,jj))>=48 
                    ii=ii+1; 
                else break 
                end 
            end 
        else 
            for jj=1:1:sizeNu(2) 
                if double(Nu(1,jj))<=57 && double(Nu(1,jj))>=48 
                    ii=ii+1; 
                else break 
                end 
            end 
        end 
        Nub=0; 
        for jj=iii:1:ii 
            Nub=Nub+(double(Nu(jj))-48)*10^(ii-jj); 
        end 
        DNur1(i,j)=Nub; 
    end 
end 
DNur1; 
%---------------------------------------------% 
% DNur1 number original matrix, to tell terms in to two 
different levels of 
% matrices 
% from DNur1 to DNur2 
% DNur2 separates lower level matrix terms into expected 
positions 
%-----------------------% 
sizeDNur1=size(DNur1); 
for i=1:1:sizeDNur1(1) 
    for j=1:1:sizeDNur1(2) 
        if DNur1(i,j)<=(j+cd*n+3*cd+1) && 
DNur1(i,j)>=(1+cd*n+3*cd+1) 
            DNur2(i,j)=DNur1((i+sizeofMDrp(1)),j); 
        else 
            DNur2(i,j)=DNur1(i,j); 
        end 
    end 
end 
DNur2; 
  
%%%%%%%%%%%%%%%%%% 
% part six  
% governing equation  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
for i=1:1:n 
    syms xs ys us xr yr ur xc yc uc xp yp up; 
    syms kk; 
    syms Trb rr; 
    Crp(i)=sym(strcat('Crp','(',int2str(i),')')); 
    Krp(i)=sym(strcat('Krp','(',int2str(i),')')); 
    SPrp(i)=sym(strcat('SPrp','(',int2str(i),')')); 
    fae(i)=sym(strcat('fae','(',int2str(i),')')); 
end 
  
%@@@@@@@@@@@@@@@@@@@@@@@@@@ 
ENTER gov vector 

%gov1(1,:)=[xr,Crp(j)*sin(fae(j)+ar),SPrp(j)*Krp(j)*sin(fae(j
)+ar),0]; 
%gov2(1,:)=[yr,Crp(j)*cos(fae(j)+ar),SPrp(j)*Krp(j)*cos(fae(
j)+ar),0]; 
%gov3(1,:)=[ur,-Crp(j),-SPrp(j)*Krp(j),Trb/rr]; 
%gov4(1,:)=[xp,-Crp(j)*sin(fae(j)+ar),-
SPrp(j)*Krp(j)*sin(fae(j)+ar),0]; 
%gov5(1,:)=[yp,-Crp(j)*cos(fae(j)+ar),-
SPrp(j)*Krp(j)*cos(fae(j)+ar),0]; 
%gov6(1,:)=[up,Crp(j),SPrp(j)*Krp(j),0]; 
  
for j=1:1:n 
    
gov1(1,:)=[xr,Crp(j)*sin(fae(j)+ar),SPrp(j)*Krp(j)*sin(fae(j)+
ar),0]; 
    sizegov=size(gov1); 
    sizegovern(1)=sizegov(2); 
    for i=1:1:sizegov(2) 
        governing(1,i+(j-1)*sizegov(2))=gov1(1,i); 
    end 
end 
for j=1:1:n 
    
gov2(1,:)=[yr,Crp(j)*cos(fae(j)+ar),SPrp(j)*Krp(j)*cos(fae(j)
+ar),0]; 
    sizegov=size(gov2); 
    sizegovern(2)=sizegov(2); 
    for i=1:1:sizegov(2) 
        governing(2,i+(j-1)*sizegov(2))=gov2(1,i); 
    end 
end 
for j=1:1:n 
    gov3(1,:)=[ur,-Crp(j),-SPrp(j)*Krp(j),Trb/rr]; 
    sizegov=size(gov3); 
    sizegovern(3)=sizegov(2); 
    for i=1:1:sizegov(2) 
        governing(3,i+(j-1)*sizegov(2))=gov3(1,i); 
    end 
end 
for j=1:1:n 
    gov4(1,:)=[xp,-Crp(j)*sin(fae(j)+ar),-
SPrp(j)*Krp(j)*sin(fae(j)+ar),0]; 
    sizegov=size(gov4); 
    sizegovern(4)=sizegov(2); 
    for i=1:1:sizegov(2) 
        governing(4,i+(j-1)*sizegov(2))=gov4(1,i); 
    end 
end 
for j=1:1:n 
    gov5(1,:)=[yp,-Crp(j)*cos(fae(j)+ar),-
SPrp(j)*Krp(j)*cos(fae(j)+ar),0]; 
    sizegov=size(gov5); 
    sizegovern(5)=sizegov(2); 
    for i=1:1:sizegov(2) 
        governing(5,i+(j-1)*sizegov(2))=gov5(1,i); 
    end 
end 
for j=1:1:n 
    gov6(1,:)=[up,Crp(j),SPrp(j)*Krp(j),0]; 
    sizegov=size(gov6); 
    sizegovern(6)=sizegov(2); 
    for i=1:1:sizegov(2) 
        governing(6,i+(j-1)*sizegov(2))=gov6(1,i); 
    end 
end 
governing; 
sizegovern; 
sizei=size(sizegovern); 
  
for i=1:1:sizei(2) 
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    positionrp=governing(i,:); 
    if positionrp(1)==xs 
        row(1)=1; 
    else if positionrp(1)==ys 
            row(1)=2; 
        else if positionrp(1)==us 
                row(1)=3; 
            else if positionrp(1)==xr 
                    row(1)=4; 
                else if positionrp(1)==yr 
                        row(1)=5; 
                    else if positionrp(1)==ur 
                            row(1)=6; 
                        else if positionrp(1)==xc 
                                row(1)=7; 
                            else if positionrp(1)==yc 
                                    row(1)=8; 
                                else if positionrp(1)==uc 
                                        row(1)=9; 
                                    else if positionrp(1)==xp 
                                            for j=1:1:n 
                                                row(j)=cd*3+j+(j-1)*2; 
                                            end 
                                        else if positionrp(1)==yp 
                                                for j=1:1:n 
                                                    row(j)=cd*3+j+(j-1)*2+1; 
                                                end 
                                            else if positionrp(1)==up 
                                                for j=1:1:n 
                                                    row(j)=cd*3+j+(j-1)*2+2; 
                                                end 
                                                end 
                                            end 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
    if row<=3*cd 
        for k=1:1:(sizeofMDrp(1)*2) 
            for kk=1:1:n 
                % solving DMDrp 
                if DNur1(k,kk)>=(1+cd*n+3*cd+1) && 
DNur1(k,kk)<=(n+cd*n+3*cd+1) 
                   K2matrix(row(1),(DNur2(k,kk)-
1))=DMDrp(k,kk)*positionrp(1,2+(kk-
1)*sizegovern(i))+K2matrix(row(1),(DNur2(k,kk)-1)); 
                else if DNur1(k,kk)>=2 && 
DNur1(k,kk)<=(cd*n+3*cd+1) 
                         C1matrix(row(1),(DNur2(k,kk)-
1))=DMDrp(k,kk)*positionrp(1,2+(kk-
1)*sizegovern(i))+C1matrix(row(1),(DNur2(k,kk)-1)); 
                     else if DNur1(k,kk)>=(n+cd*n+3*cd+2) && 
DNur1(k,kk)<=(2*n+cd*n+3*cd+1) 
                             Fmatrix(row(1),1)=Fmatrix(row(1),1)-
DMDrp(k,kk)*positionrp(1,2+(kk-1)*sizegovern(i)); 
                          else 
                          end 
                     end 
                end 
            end 
        end 
        for k=1:1:sizeofMDrp(1) 
            for kk=1:1:n 
                % solving MDrp 

                if DNur2(k+sizeofMDrp(1),kk)>=2 && 
DNur2(k+sizeofMDrp(1),kk)<=(cd*n+3*cd+1) 
                    K1matrix(row(1),(DNur2(k+sizeofMDrp(1),kk)-
1))=MDrp(k,kk)*positionrp(1,3+(kk-
1)*sizegovern(i))+K1matrix(row(1),(DNur2(k+sizeofMDrp(1
),kk)-1)); 
                    if DNur2(k+sizeofMDrp(1),kk)==(cd*3+kk*cd-1) 
                        Fmatrix(row(1),1)=Fmatrix(row(1),1)-
sym(strcat('sin(fae(',int2str(kk),')+ar)*(-cos((y(',int2str(cd),')-
y(',int2str(2*cd),'))/(rs+rr)+pi-
ipdata(',int2str(200+kk),'))*rc+cos(pi-
ipdata(',int2str(200+kk),'))*rc)'))*positionrp(1,3+(kk-
1)*sizegovern(i)); 
                    else if 
DNur2(k+sizeofMDrp(1),kk)==(cd*3+kk*cd) 
                            Fmatrix(row(1),1)=Fmatrix(row(1),1)-
sym(strcat('cos(fae(',int2str(kk),')+ar)*(sin((y(',int2str(cd),')-
y(',int2str(2*cd),'))/(rs+rr)+pi-ipdata(',int2str(200+kk),'))*rc-
sin(pi-ipdata(',int2str(200+kk),'))*rc)'))*positionrp(1,3+(kk-
1)*sizegovern(i)); 
                        end 
                        Fmatrix(row(1),1)=Fmatrix(row(1),1); 
                    end 
                else if 
DNur2(k+sizeofMDrp(1),kk)>=(n+cd*n+3*cd+2) && 
DNur2(k+sizeofMDrp(1),kk)<=(2*n+cd*n+3*cd+1) 
                        Fmatrix(row(1),1)=Fmatrix(row(1),1)-
MDrp(k,kk)*positionrp(1,3+(kk-1)*sizegovern(i));   
                     end 
                end 
            end 
        end 
        
Fmatrix(row(1),1)=Fmatrix(row(1),1)+positionrp(1,sizegover
n(i)); 
    else 
        for rowi=1:1:n 
            roww=row(rowi); 
            for k=1:1:(sizeofMDrp(1)*2) 
                for kk=rowi:1:rowi 
                    % solving DMDrp 
                    if DNur1(k,kk)>=(1+cd*n+3*cd+1) && 
DNur1(k,kk)<=(n+cd*n+3*cd+1) 
                       K2matrix(roww,(DNur2(k,kk)-
1))=DMDrp(k,kk)*positionrp(1,2+(kk-
1)*sizegovern(i))+K2matrix(roww,(DNur2(k,kk)-1)); 
                    else if DNur1(k,kk)>=2 && 
DNur1(k,kk)<=(cd*n+3*cd+1) 
                             C1matrix(roww,(DNur2(k,kk)-
1))=DMDrp(k,kk)*positionrp(1,2+(kk-
1)*sizegovern(i))+C1matrix(roww,(DNur2(k,kk)-1)); 
                         else if DNur1(k,kk)>=(n+cd*n+3*cd+2) && 
DNur1(k,kk)<=(2*n+cd*n+3*cd+1) 
                                 Fmatrix(roww,1)=Fmatrix(roww,1)-
DMDrp(k,kk)*positionrp(1,2+(kk-1)*sizegovern(i)); 
                              else 
                              end 
                         end 
                    end 
                end 
            end 
            for k=1:1:sizeofMDrp(1) 
                for kk=rowi:1:rowi 
                    % solving MDrp 
                    if DNur2(k+sizeofMDrp(1),kk)>=2 && 
DNur2(k+sizeofMDrp(1),kk)<=(cd*n+3*cd+1) 
                        
K1matrix(roww,(DNur2(k+sizeofMDrp(1),kk)-
1))=MDrp(k,kk)*positionrp(1,3+(kk-
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1)*sizegovern(i))+K1matrix(roww,(DNur2(k+sizeofMDrp(1),
kk)-1)); 
                        if 
DNur2(k+sizeofMDrp(1),kk)==(cd*3+kk*cd-1) 
                        Fmatrix(roww,1)=Fmatrix(roww,1)-
sym(strcat('sin(fae(',int2str(kk),')+ar)*(-cos((y(',int2str(cd),')-
y(',int2str(2*cd),'))/(rs+rr)+pi-
ipdata(',int2str(200+kk),'))*rc+cos(pi-
ipdata(',int2str(200+kk),'))*rc)'))*positionrp(1,3+(kk-
1)*sizegovern(i)); 
                    else if 
DNur2(k+sizeofMDrp(1),kk)==(cd*3+kk*cd) 
                            Fmatrix(roww,1)=Fmatrix(roww,1)-
sym(strcat('cos(fae(',int2str(kk),')+ar)*(sin((y(',int2str(cd),')-
y(',int2str(2*cd),'))/(rs+rr)+pi-ipdata(',int2str(200+kk),'))*rc-
sin(pi-ipdata(',int2str(200+kk),'))*rc)'))*positionrp(1,3+(kk-
1)*sizegovern(i)); 
                        end 
                        Fmatrix(roww,1)=Fmatrix(roww,1); 
                    end 
                    else if 
DNur2(k+sizeofMDrp(1),kk)>=(n+cd*n+3*cd+2) && 
DNur2(k+sizeofMDrp(1),kk)<=(2*n+cd*n+3*cd+1) 
                            Fmatrix(roww,1)=Fmatrix(roww,1)-
MDrp(k,kk)*positionrp(1,3+(kk-1)*sizegovern(i));   
                         end 
                    end 
                end 
            end 
            
Fmatrix(roww,1)=Fmatrix(roww,1)+positionrp(1,sizegovern(i
)); 
        end 
    end 
end 
row=[0,0,0]; 
roww=0; 
rowi=0; 
  
%%%%%%%%%%%%%%%%%% 
% part seven  
% form every term of MDxcpi & DMDxcpi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
syms FAEC; % separation factor of fae(i), for sun pair, ring 
pair from carrier arm pair  
%-------------------------------------------% 
% form DMDxcpi 
%--------------------------% 
for j=1:1:(cd*n+3*cd) 
    y(j)=sym(strcat('y','(',int2str(j+cd*n+3*cd),')'))*tt; 
    y(j)=tt; 
end 
for j=1:1:n 
    fae(j)=sym(strcat('fae','(',int2str(j),')')); 
end 
for j=1:1:n 
    Dtcp(j)=sym(strcat('Dtcp','(',int2str(j),')')); 
    Drcp(j)=sym(strcat('Drcp','(',int2str(j),')')); 
end 
for j=1:1:n 
    %@@@@@@@@@@@@@@@@@@@@@@@@@ 
ENTER MDxcp vector 
    transMDDcp=[y(7+3*j);-y(7);-y(9)*sin(fae(j));-
Dtcp(j)*sin(fae(j));Drcp(j)*cos(fae(j))]; 
    sizeofMDDcp=size(transMDDcp); 
    for i=1:1:sizeofMDDcp(1) 
        MDDcp(i,j)=transMDDcp(i); 
    end 
end 
MDDcp; 

sizeMDDcp=size(MDDcp); 
for i=1:1:sizeofMDDcp(1) 
    for j=1:1:sizeMDDcp(2) 
        DMDxcp(i,j)=diff(MDDcp(i,j),'tt'); 
    end 
end 
DMDxcp; 
  
%-------------------------------------------% 
% form MDxcpi 
%--------------------------% 
for j=1:1:(cd*n+3*cd) 
    y(j)=sym(strcat('y','(',int2str(j),')')); 
    y(j)=1;     
    %define displacement  
end 
for j=1:1:n 
    fae(j)=sym(strcat('fae','(',int2str(j),')')); 
    %define symbol for angular position of each planet gear 
end 
syms force % selection sign for force terms 
for j=1:1:n 
    Dtcp(j)=sym(strcat('Dtcp','(',int2str(j),')')); 
    Drcp(j)=sym(strcat('Drcp','(',int2str(j),')')); 
end 
for j=1:1:n 
    %@@@@@@@@@@@@@@@@@@@@@@@@@ 
ENTER MDxcp vector 
    transMDcp=[y(7+3*j);-y(7);-y(9)*sin(fae(j));-
Dtcp(j)*sin(fae(j));Drcp(j)*cos(fae(j))]; 
    sizeofMDcp=size(transMDcp); 
    for i=1:1:sizeofMDcp(1) 
        MDxcp(i,j)=transMDcp(i); 
    end 
end 
MDxcp; 
  
%%%%%%%%%%%%%%%%%% 
% part eight 
% number order every term of MDxcpi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=1:1:(cd*n+3*cd) 
    y(j)=tt^(j+cd*n+3*cd+1);  %define displacement  
end 
for j=1:1:n 
    fae(j)=t^(j+cd*n+3*cd+1);  %define symbol for angular 
position of each planet gear 
end 
syms force % selection sign for force terms 
for j=1:1:n 
    Dtcp(j)=force*tt^(j+n+cd*n+3*cd+1); 
    Drcp(j)=force*tt^(j+n+cd*n+3*cd+1); 
end 
for j=1:1:n 
    %@@@@@@@@@@@@@@@@@@@@@@@@@ 
ENTER MDxcp vector 
    transMDcp=[y(7+3*j);-y(7);-y(9)*sin(fae(j));-
Dtcp(j)*sin(fae(j));Drcp(j)*cos(fae(j))]; 
    sizeofMDcp=size(transMDcp); 
    for i=1:1:sizeofMDcp(1) 
        MDc(i,j)=transMDcp(i); 
    end 
end 
Bc=diff(MDc,'tt'); 
sizeBc=size(Bc); 
sizeDc(1)=sizeBc(1); 
sizeDc(2)=sizeBc(2); 
for i=1:1:sizeBc(1) 
    for j=1:1:sizeBc(2) 
        Dc(i,j)=Bc(i,j); 
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    end 
end 
for i=1:1:sizeDc(1) 
    for j=1:1:sizeDc(2) 
        DDc=Dc(i,j); 
        Nuc=char(DDc); 
        sizeNuc=size(Nuc); 
        ii=0;iii=1; 
        if double(Nuc(1,1))==45 
            ii=1;iii=2; 
            for jj=2:1:sizeNuc(2) 
                if double(Nuc(1,jj))<=57 && 
double(Nuc(1,jj))>=48 
                    ii=ii+1; 
                else break 
                end 
            end 
        else 
            for jj=1:1:sizeNuc(2) 
                if double(Nuc(1,jj))<=57 && 
double(Nuc(1,jj))>=48 
                    ii=ii+1; 
                else break 
                end 
            end 
        end 
        Nubc=0; 
        for jj=iii:1:ii 
            Nubc=Nubc+(double(Nuc(jj))-48)*10^(ii-jj); 
        end 
        DNuxc1(i,j)=Nubc; 
    end 
end 
DNuxc1; 
%---------------------------------------------% 
% DNuxc1 number original matrix, to tell terms in to two 
different levels of 
% matrices 
% from DNuxc1 to DNuxc2 
% DNuxc2 separates lower level matrix terms into expected 
positions 
%-----------------------% 
for j=1:1:(cd*n+3*cd) 
    y(j)=tt^(j+1);  %define displacement  
end 
for j=1:1:n 
    fae(j)=t^(j+cd*n+3*cd+1);  %define symbol for angular 
position of each planet gear 
end 
syms force % selection sign for force terms 
for j=1:1:n 
    Dtcp(j)=force*tt^(j+n+cd*n+3*cd+1); 
    Drcp(j)=force*tt^(j+n+cd*n+3*cd+1); 
end 
for j=1:1:n 
    %@@@@@@@@@@@@@@@@@@@@@@@@@ 
ENTER MDxcp vector 
    transMDcp=[y(7+3*j);-y(7);-y(9)*sin(fae(j));-
Dtcp(j)*sin(fae(j));Drcp(j)*cos(fae(j))]; 
    sizeofMDcp=size(transMDcp); 
    for i=1:1:sizeofMDcp(1) 
        MDc(i,j)=transMDcp(i); 
    end 
end 
Bc=diff(MDc,'tt'); 
sizeBc=size(Bc); 
sizeDc(1)=sizeBc(1); 
sizeDc(2)=sizeBc(2); 
for i=1:1:sizeBc(1) 
    for j=1:1:sizeBc(2) 

        Dc(i,j)=Bc(i,j); 
    end 
end 
for i=1:1:sizeDc(1) 
    for j=1:1:sizeDc(2) 
        DDc=Dc(i,j); 
        Nuc=char(DDc); 
        sizeNuc=size(Nuc); 
        ii=0;iii=1; 
        if double(Nuc(1,1))==45 
            ii=1;iii=2; 
            for jj=2:1:sizeNuc(2) 
                if double(Nuc(1,jj))<=57 && 
double(Nuc(1,jj))>=48 
                    ii=ii+1; 
                else break 
                end 
            end 
        else 
            for jj=1:1:sizeNuc(2) 
                if double(Nuc(1,jj))<=57 && 
double(Nuc(1,jj))>=48 
                    ii=ii+1; 
                else break 
                end 
            end 
        end 
        Nubc=0; 
        for jj=iii:1:ii 
            Nubc=Nubc+(double(Nuc(jj))-48)*10^(ii-jj); 
        end 
        DNuxc2(i,j)=Nubc; 
    end 
end 
DNuxc2; 
  
%%%%%%%%%%%%%%%%%% 
% part nine  
% form every term of MDycpi & DMDycpi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%-------------------------------------------% 
% form DMDycpi 
%--------------------------% 
for j=1:1:(cd*n+3*cd) 
    y(j)=sym(strcat('y','(',int2str(j+cd*n+3*cd),')'))*tt; 
    y(j)=tt; 
end 
for j=1:1:n 
    fae(j)=sym(strcat('fae','(',int2str(j),')')); 
end 
for j=1:1:n 
    Dtcp(j)=sym(strcat('Dtcp','(',int2str(j),')')); 
    Drcp(j)=sym(strcat('Drcp','(',int2str(j),')')); 
end 
for j=1:1:n 
    %@@@@@@@@@@@@@@@@@@@@@@@@@ 
ENTER MDycp vector 
    transMDDcp=[y(8+3*j);-y(8);-y(9)*sin(fae(j));-
Dtcp(j)*sin(fae(j));Drcp(j)*cos(fae(j))]; 
    sizeofMDDcp=size(transMDDcp); 
    for i=1:1:sizeofMDDcp(1) 
        MDDcp(i,j)=transMDDcp(i); 
    end 
end 
MDDcp; 
sizeMDDcp=size(MDDcp); 
for i=1:1:sizeofMDDcp(1) 
    for j=1:1:sizeMDDcp(2) 
        DMDycp(i,j)=diff(MDDcp(i,j),'tt'); 
    end 
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end 
DMDycp; 
  
%-------------------------------------------% 
% form MDycpi 
%--------------------------% 
for j=1:1:(cd*n+3*cd) 
    y(j)=sym(strcat('y','(',int2str(j),')')); 
    y(j)=1;     
    %define displacement  
end 
for j=1:1:n 
    fae(j)=sym(strcat('fae','(',int2str(j),')')); 
    %define symbol for angular position of each planet gear 
end 
syms force % selection sign for force terms 
for j=1:1:n 
    Dtcp(j)=sym(strcat('Dtcp','(',int2str(j),')')); 
    Drcp(j)=sym(strcat('Drcp','(',int2str(j),')')); 
end 
for j=1:1:n 
    %@@@@@@@@@@@@@@@@@@@@@@@@@ 
ENTER MDycp vector 
    transMDcp=[y(8+3*j);-y(8);-y(9)*sin(fae(j));-
Dtcp(j)*sin(fae(j));Drcp(j)*cos(fae(j))]; 
    sizeofMDcp=size(transMDcp); 
    for i=1:1:sizeofMDcp(1) 
        MDycp(i,j)=transMDcp(i); 
    end 
end 
MDycp; 
  
%%%%%%%%%%%%%%%%%% 
% part ten  
% number order every term of MDycpi 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=1:1:(cd*n+3*cd) 
    y(j)=tt^(j+cd*n+3*cd+1);  %define displacement  
end 
for j=1:1:n 
    fae(j)=t^(j+cd*n+3*cd+1);  %define symbol for angular 
position of each planet gear 
end 
syms force % selection sign for force terms 
for j=1:1:n 
    Dtcp(j)=force*tt^(j+n+cd*n+3*cd+1); 
    Drcp(j)=force*tt^(j+n+cd*n+3*cd+1); 
end 
for j=1:1:n 
    %@@@@@@@@@@@@@@@@@@@@@@@@@ 
ENTER MDycp vector 
    transMDcp=[y(8+3*j);-y(8);-y(9)*sin(fae(j));-
Dtcp(j)*sin(fae(j));Drcp(j)*cos(fae(j))]; 
    sizeofMDcp=size(transMDcp); 
    for i=1:1:sizeofMDcp(1) 
        MDc(i,j)=transMDcp(i); 
    end 
end 
Bc=diff(MDc,'tt'); 
sizeBc=size(Bc); 
sizeDc(1)=sizeBc(1); 
sizeDc(2)=sizeBc(2); 
for i=1:1:sizeBc(1) 
    for j=1:1:sizeBc(2) 
        Dc(i,j)=Bc(i,j); 
    end 
end 
for i=1:1:sizeDc(1) 
    for j=1:1:sizeDc(2) 
        DDc=Dc(i,j); 

        Nuc=char(DDc); 
        sizeNuc=size(Nuc); 
        ii=0;iii=1; 
        if double(Nuc(1,1))==45 
            ii=1;iii=2; 
            for jj=2:1:sizeNuc(2) 
                if double(Nuc(1,jj))<=57 && 
double(Nuc(1,jj))>=48 
                    ii=ii+1; 
                else break 
                end 
            end 
        else 
            for jj=1:1:sizeNuc(2) 
                if double(Nuc(1,jj))<=57 && 
double(Nuc(1,jj))>=48 
                    ii=ii+1; 
                else break 
                end 
            end 
        end 
        Nubc=0; 
        for jj=iii:1:ii 
            Nubc=Nubc+(double(Nuc(jj))-48)*10^(ii-jj); 
        end 
        DNuyc1(i,j)=Nubc; 
    end 
end 
DNuyc1; 
%---------------------------------------------% 
% DNuyc1 number original matrix, to tell terms in to two 
different levels of 
% matrices 
% from DNuyc1 to DNuyc2 
% DNuyc2 separates lower level matrix terms into expected 
positions 
%-----------------------% 
for j=1:1:(cd*n+3*cd) 
    y(j)=tt^(j+1);  %define displacement  
end 
for j=1:1:n 
    fae(j)=t^(j+cd*n+3*cd+1);  %define symbol for angular 
position of each planet gear 
end 
syms force % selection sign for force terms 
for j=1:1:n 
    Dtcp(j)=force*tt^(j+n+cd*n+3*cd+1); 
    Drcp(j)=force*tt^(j+n+cd*n+3*cd+1); 
end 
for j=1:1:n 
    %@@@@@@@@@@@@@@@@@@@@@@@@@ 
ENTER MDycp vector 
    transMDcp=[y(8+3*j);-y(8);-y(9)*sin(fae(j));-
Dtcp(j)*sin(fae(j));Drcp(j)*cos(fae(j))]; 
    sizeofMDcp=size(transMDcp); 
    for i=1:1:sizeofMDcp(1) 
        MDc(i,j)=transMDcp(i); 
    end 
end 
Bc=diff(MDc,'tt'); 
sizeBc=size(Bc); 
sizeDc(1)=sizeBc(1); 
sizeDc(2)=sizeBc(2); 
for i=1:1:sizeBc(1) 
    for j=1:1:sizeBc(2) 
        Dc(i,j)=Bc(i,j); 
    end 
end 
for i=1:1:sizeDc(1) 
    for j=1:1:sizeDc(2) 
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        DDc=Dc(i,j); 
        Nuc=char(DDc); 
        sizeNuc=size(Nuc); 
        ii=0;iii=1; 
        if double(Nuc(1,1))==45 
            ii=1;iii=2; 
            for jj=2:1:sizeNuc(2) 
                if double(Nuc(1,jj))<=57 && 
double(Nuc(1,jj))>=48 
                    ii=ii+1; 
                else break 
                end 
            end 
        else 
            for jj=1:1:sizeNuc(2) 
                if double(Nuc(1,jj))<=57 && 
double(Nuc(1,jj))>=48 
                    ii=ii+1; 
                else break 
                end 
            end 
        end 
        Nubc=0; 
        for jj=iii:1:ii 
            Nubc=Nubc+(double(Nuc(jj))-48)*10^(ii-jj); 
        end 
        DNuyc2(i,j)=Nubc; 
    end 
end 
DNuyc2; 
  
%%%%%%%%%%%%%%%%%% 
% part eleven 
% governing equation  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
for i=1:1:n 
    syms xs ys us xr yr ur xc yc uc xp yp up; 
    syms kk; 
    syms Tc rc; 
    syms Cpx Cpy Kpy Kpx; 
    fae(i)=sym(strcat('fae','(',int2str(i),')')); 
end 
  
%@@@@@@@@@@@@@@@@@@@@@@@@@@ 
ENTER gov vector 
%gov1(1,:)=[xc,-Cpx,-Kpx,0]; 
%gov2(1,:)=[yc,-Cpy,-Kpy,0]; 
%gov3(1,:)=[uc,-Cpx*sin(fae(j)),-Cpy*cos(fae(j)),-
Kpx*sin(fae(j)),-Kpy*cos(fae(j)),Tc/rc]; 
%gov4(1,:)=[xp,Cpx,Kpx,0]; 
%gov5(1,:)=[yp,Cpy,Kpy,0]; 
  
for j=1:1:n 
    govc1(1,:)=[xc,-Cpx,-Kpx,0]; 
    sizegovc=size(govc1); 
    sizegovernc(1)=sizegovc(2); 
    for i=1:1:sizegovc(2) 
        governingc(1,i+(j-1)*sizegovc(2))=govc1(1,i); 
    end 
end 
for j=1:1:n 
    govc2(1,:)=[yc,-Cpy,-Kpy,0]; 
    sizegovc=size(govc2); 
    sizegovernc(2)=sizegovc(2); 
    for i=1:1:sizegovc(2) 
        governingc(2,i+(j-1)*sizegovc(2))=govc2(1,i); 
    end 
end 
for j=1:1:n 

    govc3(1,:)=[uc,-Cpx*sin(fae(j)),-Cpy*cos(fae(j)),-
Kpx*sin(fae(j)),-Kpy*cos(fae(j)),-Tc/rc]; 
    sizegovc=size(govc3); 
    sizegovernc(3)=sizegovc(2); 
    for i=1:1:sizegovc(2) 
        governingc(3,i+(j-1)*sizegovc(2))=govc3(1,i); 
    end 
end 
for j=1:1:n 
    govc4(1,:)=[xp,Cpx,Kpx,0]; 
    sizegovc=size(govc4); 
    sizegovernc(4)=sizegovc(2); 
    for i=1:1:sizegovc(2) 
        governingc(4,i+(j-1)*sizegovc(2))=govc4(1,i); 
    end 
end 
for j=1:1:n 
    govc5(1,:)=[yp,Cpy,Kpy,0]; 
    sizegovc=size(govc5); 
    sizegovernc(5)=sizegovc(2); 
    for i=1:1:sizegovc(2) 
        governingc(5,i+(j-1)*sizegovc(2))=govc5(1,i); 
    end 
end 
governingc; 
sizegovernc; 
sizeci=size(sizegovernc); 
  
for i=1:1:sizeci(2) 
    positioncp=governingc(i,:); 
    if positioncp(1)==xs 
        row(1)=1; 
    else if positioncp(1)==ys 
            row(1)=2; 
        else if positioncp(1)==us 
                row(1)=3; 
            else if positioncp(1)==xr 
                    row(1)=4; 
                else if positioncp(1)==yr 
                        row(1)=5; 
                    else if positioncp(1)==ur 
                            row(1)=6; 
                        else if positioncp(1)==xc 
                                row(1)=7; 
                            else if positioncp(1)==yc 
                                    row(1)=8; 
                                else if positioncp(1)==uc 
                                        row(1)=9; 
                                    else if positioncp(1)==xp 
                                            for j=1:1:n 
                                                row(j)=cd*3+j+(j-1)*2; 
                                            end 
                                        else if positioncp(1)==yp 
                                                for j=1:1:n 
                                                    row(j)=cd*3+j+(j-1)*2+1; 
                                                end 
                                            else if positioncp(1)==up 
                                                for j=1:1:n 
                                                    row(j)=cd*3+j+(j-1)*2+2; 
                                                end 
                                                end 
                                            end 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
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        end 
    end 
    if row(1)==(2*cd+1) 
        for k=1:1:sizeofMDcp(1) 
            for kk=1:1:n 
                % solving DMDxcp 
                if DNuxc2(k,kk)==3*cd+1 
                    Fmatrix(row(1),1)=Fmatrix(row(1),1)-
sym(strcat('Cpx','*','y','(',int2str(3*cd+3*cd+n*cd),')','*','(','sin'
,'(','y','(',int2str(3*cd),')','/','ipdata','(','9',')','+','pi','-
','ipdata','(',int2str(200+kk),')',')',')')); 
                else if  DNuxc2(k,kk)>=2 && 
DNuxc2(k,kk)<=(cd*n+3*cd+1) 
                    C1matrix(row(1),(DNuxc2(k,kk)-
1))=DMDxcp(k,kk)*positioncp(1,2+(kk-
1)*sizegovernc(i))+C1matrix(row(1),(DNuxc2(k,kk)-1)); 
                else if  DNuxc2(k,kk)>=(n+cd*n+3*cd+2) && 
DNuxc2(k,kk)<=(2*n+cd*n+3*cd+1) 
                         Fmatrix(row(1),1)=Fmatrix(row(1),1)-
DMDxcp(k,kk)*positioncp(1,2+(kk-1)*sizegovernc(i)); 
                    end 
                    end 
                end 
            end 
        end 
        for k=1:1:sizeofMDcp(1) 
            for kk=1:1:n 
                % solving MDxcp 
                if DNuxc2(k,kk)==3*cd+1 
                    Fmatrix(row(1),1)=Fmatrix(row(1),1)-
sym(strcat('Kpx','*','(','-
','cos','(','y','(',int2str(3*cd),')','/','ipdata','(','9',')','+','pi','-
','ipdata','(',int2str(200+kk),')',')','*','ipdata','(','9',')','+','cos','(','pi
','-','ipdata','(',int2str(200+kk),')',')','*','ipdata','(','9',')',')')); 
                else if DNuxc2(k,kk)>=2 && 
DNuxc2(k,kk)<=(cd*n+3*cd+1) 
                    K1matrix(row(1),(DNuxc2(k,kk)-
1))=MDxcp(k,kk)*positioncp(1,3+(kk-
1)*sizegovernc(i))+K1matrix(row(1),(DNuxc2(k,kk)-1)); 
                else if DNuxc2(k,kk)>=(n+cd*n+3*cd+2) && 
DNuxc2(k,kk)<=(2*n+cd*n+3*cd+1) 
                        Fmatrix(row(1),1)=Fmatrix(row(1),1)-
MDxcp(k,kk)*positioncp(1,3+(kk-1)*sizegovernc(i));   
                    end 
                    end 
                end 
            end 
        end 
        
Fmatrix(row(1),1)=Fmatrix(row(1),1)+positioncp(1,sizegover
nc(i)); 
    else if row(1)==(2*cd+2) 
            for k=1:1:sizeofMDcp(1) 
                for kk=1:1:n 
                    % solving DMDycp 
                    if DNuxc2(k,kk)==3*cd+1 
                    Fmatrix(row(1),1)=Fmatrix(row(1),1)-
sym(strcat('Cpy','*','y','(',int2str(3*cd+3*cd+n*cd),')','*','(','cos
','(','y','(',int2str(3*cd),')','/','ipdata','(','9',')','+','pi','-
','ipdata','(',int2str(200+kk),')',')',')')); 
                    else if DNuyc2(k,kk)>=2 && 
DNuyc2(k,kk)<=(cd*n+3*cd+1) 
                        C1matrix(row(1),(DNuyc2(k,kk)-
1))=DMDycp(k,kk)*positioncp(1,2+(kk-
1)*sizegovernc(i))+C1matrix(row(1),(DNuyc2(k,kk)-1)); 
                    else if DNuyc2(k,kk)>=(n+cd*n+3*cd+2) && 
DNuyc2(k,kk)<=(2*n+cd*n+3*cd+1) 
                            Fmatrix(row(1),1)=Fmatrix(row(1),1)-
DMDycp(k,kk)*positioncp(1,2+(kk-1)*sizegovernc(i)); 
                        end 

                        end 
                    end 
                end 
            end 
            for k=1:1:sizeofMDcp(1) 
                for kk=1:1:n 
                    % solving MDycp 
                    if DNuxc2(k,kk)==3*cd+1 
                    Fmatrix(row(1),1)=Fmatrix(row(1),1)-
sym(strcat('Kpy','*','(','sin','(','y','(',int2str(3*cd),')','/','ipdata','(',
'9',')','+','pi','-
','ipdata','(',int2str(200+kk),')',')','*','ipdata','(','9',')','-
','sin','(','pi','-
','ipdata','(',int2str(200+kk),')',')','*','ipdata','(','9',')',')')); 
                    else if DNuyc2(k,kk)>=2 && 
DNuyc2(k,kk)<=(cd*n+3*cd+1) 
                        K1matrix(row(1),(DNuyc2(k,kk)-
1))=MDycp(k,kk)*positioncp(1,3+(kk-
1)*sizegovernc(i))+K1matrix(row(1),(DNuyc2(k,kk)-1)); 
                    else if DNuyc2(k,kk)>=(n+cd*n+3*cd+2) && 
DNuyc2(k,kk)<=(2*n+cd*n+3*cd+1) 
                            Fmatrix(row(1),1)=Fmatrix(row(1),1)-
MDycp(k,kk)*positioncp(1,3+(kk-1)*sizegovernc(i));   
                        end 
                        end 
                    end 
                end 
            end  
            
Fmatrix(row(1),1)=Fmatrix(row(1),1)+positioncp(1,sizegover
nc(i)); 
        else if row(1)==3*cd 
                for k=1:1:sizeofMDcp(1) 
                    for kk=1:1:n 
                        % solving DMDxcp 
                        if DNuxc2(k,kk)==3*cd+1 
                        
Fmatrix(row(1),1)=Fmatrix(row(1),1)+sym(strcat('Kpx*((y(',i
nt2str(3*cd+cd*kk),')-y(',int2str(2*cd),'))/rr*ipdata(9)-
y(',int2str(cd*3),'))+Cpx*((y(',int2str(3*cd+cd*kk+3*cd+n*c
d),')-y(',int2str(2*cd+3*cd+n*cd),'))/rr*ipdata(9)-
y(',int2str(3*cd+3*cd+n*cd),'))')); 
                        else if  DNuxc2(k,kk)>=2 && 
DNuxc2(k,kk)<=(cd*n+3*cd+1) 
                            C1matrix(row(1),(DNuxc2(k,kk)-
1))=C1matrix(row(1),(DNuxc2(k,kk)-1)); 
                        else if  DNuxc2(k,kk)>=(n+cd*n+3*cd+2) && 
DNuxc2(k,kk)<=(2*n+cd*n+3*cd+1) 
                                Fmatrix(row(1),1)=Fmatrix(row(1),1)-
DMDxcp(k,kk)*positioncp(1,2+(kk-1)*sizegovernc(i)); 
                            end 
                            end 
                        end 
                    end 
                end 
                for k=1:1:sizeofMDcp(1) 
                    for kk=1:1:n 
                        % solving MDxcp 
                        if DNuxc2(k,kk)==3*cd+1 
                        Fmatrix(row(1),1)=Fmatrix(row(1),1)-0; 
                        else if DNuxc2(k,kk)>=2 && 
DNuxc2(k,kk)<=(cd*n+3*cd+1) 
                            K1matrix(row(1),(DNuxc2(k,kk)-
1))=K1matrix(row(1),(DNuxc2(k,kk)-1)); 
                        else if DNuxc2(k,kk)>=(n+cd*n+3*cd+2) && 
DNuxc2(k,kk)<=(2*n+cd*n+3*cd+1) 
                               Fmatrix(row(1),1)=Fmatrix(row(1),1)-
MDxcp(k,kk)*positioncp(1,4+(kk-1)*sizegovernc(i));   
                            end 
                            end 
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                        end 
                    end 
                end  
                for k=1:1:sizeofMDcp(1) 
                    for kk=1:1:n 
                        % solving DMDycp 
                        if DNuxc2(k,kk)==3*cd+1 
                        Fmatrix(row(1),1)=Fmatrix(row(1),1)-0; 
                        else if DNuyc2(k,kk)>=2 && 
DNuyc2(k,kk)<=(cd*n+3*cd+1) 
                            C1matrix(row(1),(DNuyc2(k,kk)-
1))=C1matrix(row(1),(DNuyc2(k,kk)-1)); 
                        else if DNuyc2(k,kk)>=(n+cd*n+3*cd+2) && 
DNuyc2(k,kk)<=(2*n+cd*n+3*cd+1) 
                                Fmatrix(row(1),1)=Fmatrix(row(1),1)-
DMDycp(k,kk)*positioncp(1,3+(kk-1)*sizegovernc(i)); 
                            end 
                            end 
                        end 
                    end 
                end 
                for k=1:1:sizeofMDcp(1) 
                    for kk=1:1:n 
                        % solving MDycp 
                        if DNuxc2(k,kk)==3*cd+1 
                        Fmatrix(row(1),1)=Fmatrix(row(1),1)-0; 
                        else if DNuyc2(k,kk)>=2 && 
DNuyc2(k,kk)<=(cd*n+3*cd+1) 
                            K1matrix(row(1),(DNuyc2(k,kk)-
1))=K1matrix(row(1),(DNuyc2(k,kk)-1)); 
                        else if DNuyc2(k,kk)>=(n+cd*n+3*cd+2) && 
DNuyc2(k,kk)<=(2*n+cd*n+3*cd+1) 
                                Fmatrix(row(1),1)=Fmatrix(row(1),1)-
MDycp(k,kk)*positioncp(1,5+(kk-1)*sizegovernc(i));   
                            end 
                            end 
                        end 
                    end 
                end 
                
Fmatrix(row(1),1)=Fmatrix(row(1),1)+positioncp(1,sizegover
nc(i)); 
            else if row(1)==(3*cd+1) 
                    for rowi=1:1:n 
                        roww=row(rowi); 
                        for k=1:1:sizeofMDcp(1) 
                            for kk=rowi:1:rowi 
                                % solving DMDxcp 
                                if DNuxc2(k,kk)==3*cd+1 
                                
Fmatrix(roww,1)=Fmatrix(roww,1)+sym(strcat('Cpx','*','y','(',
int2str(3*cd+3*cd+n*cd),')','*','(','sin','(','y','(',int2str(3*cd),')','/
','ipdata','(','9',')','+','pi','-','ipdata','(',int2str(200+kk),')',')',')')); 
                                else if DNuxc2(k,kk)>=2 && 
DNuxc2(k,kk)<=(cd*n+3*cd+1) 
                                   C1matrix(roww,(DNuxc2(k,kk)-
1))=DMDxcp(k,kk)*positioncp(1,2+(kk-
1)*sizegovernc(i))+C1matrix(roww,(DNuxc2(k,kk)-1)); 
                                else if DNuxc2(k,kk)>=(n+cd*n+3*cd+2) 
&& DNuxc2(k,kk)<=(2*n+cd*n+3*cd+1) 
                                         Fmatrix(roww,1)=Fmatrix(roww,1)-
DMDxcp(k,kk)*positioncp(1,2+(kk-1)*sizegovernc(i)); 
                                    end 
                                    end 
                               end 
                            end 
                        end 
                        for k=1:1:sizeofMDcp(1) 
                            for kk=rowi:1:rowi 
                                % solving MDxcp 

                                if DNuxc2(k,kk)==3*cd+1 
                                
Fmatrix(roww,1)=Fmatrix(roww,1)+sym(strcat('Kpx','*','(','-
','cos','(','y','(',int2str(3*cd),')','/','ipdata','(','9',')','+','pi','-
','ipdata','(',int2str(200+kk),')',')','*','ipdata','(','9',')','+','cos','(','pi
','-','ipdata','(',int2str(200+kk),')',')','*','ipdata','(','9',')',')')); 
                                else if DNuxc2(k,kk)>=2 && 
DNuxc2(k,kk)<=(cd*n+3*cd+1) 
                                   K1matrix(roww,(DNuxc2(k,kk)-
1))=MDxcp(k,kk)*positioncp(1,3+(kk-
1)*sizegovernc(i))+K1matrix(roww,(DNuxc2(k,kk)-1)); 
                                else if DNuxc2(k,kk)>=(n+cd*n+3*cd+2) 
&& DNuxc2(k,kk)<=(2*n+cd*n+3*cd+1) 
                                        Fmatrix(roww,1)=Fmatrix(roww,1)-
MDxcp(k,kk)*positioncp(1,3+(kk-1)*sizegovernc(i));   
                                    end 
                                    end 
                                end 
                            end 
                        end 
                        
Fmatrix(roww,1)=Fmatrix(roww,1)+positioncp(1,sizegovernc
(i)); 
                    end 
                else if row(1)==(3*cd+2) 
                        for rowi=1:1:n 
                            roww=row(rowi); 
                            for k=1:1:sizeofMDcp(1) 
                                for kk=rowi:1:rowi 
                                    % solving DMDycp 
                                    if DNuxc2(k,kk)==3*cd+1 
                                    
Fmatrix(roww,1)=Fmatrix(roww,1)+sym(strcat('Cpy','*','y','(',
int2str(3*cd+3*cd+n*cd),')','*','(','cos','(','y','(',int2str(3*cd),')','
/','ipdata','(','9',')','+','pi','-','ipdata','(',int2str(200+kk),')',')',')')); 
                                    else if DNuyc2(k,kk)>=2 && 
DNuyc2(k,kk)<=(cd*n+3*cd+1) 
                                       C1matrix(roww,(DNuyc2(k,kk)-
1))=DMDycp(k,kk)*positioncp(1,2+(kk-
1)*sizegovernc(i))+C1matrix(roww,(DNuyc2(k,kk)-1)); 
                                    else if 
DNuyc2(k,kk)>=(n+cd*n+3*cd+2) && 
DNuyc2(k,kk)<=(2*n+cd*n+3*cd+1) 
                                             
Fmatrix(roww,1)=Fmatrix(roww,1)-
DMDycp(k,kk)*positioncp(1,2+(kk-1)*sizegovernc(i)); 
                                        end 
                                        end 
                                   end 
                                end 
                            end 
                           for k=1:1:sizeofMDcp(1) 
                                for kk=rowi:1:rowi 
                                    % solving MDycp 
                                    if DNuxc2(k,kk)==3*cd+1 
                                    
Fmatrix(roww,1)=Fmatrix(roww,1)+sym(strcat('Kpy','*','(','si
n','(','y','(',int2str(3*cd),')','/','ipdata','(','9',')','+','pi','-
','ipdata','(',int2str(200+kk),')',')','*','ipdata','(','9',')','-
','sin','(','pi','-
','ipdata','(',int2str(200+kk),')',')','*','ipdata','(','9',')',')')); 
                                    else if DNuyc2(k,kk)>=2 && 
DNuyc2(k,kk)<=(cd*n+3*cd+1) 
                                       K1matrix(roww,(DNuyc2(k,kk)-
1))=MDycp(k,kk)*positioncp(1,3+(kk-
1)*sizegovernc(i))+K1matrix(roww,(DNuyc2(k,kk)-1)); 
                                    else if 
DNuyc2(k,kk)>=(n+cd*n+3*cd+2) && 
DNuyc2(k,kk)<=(2*n+cd*n+3*cd+1) 
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Fmatrix(roww,1)=Fmatrix(roww,1)-
MDycp(k,kk)*positioncp(1,3+(kk-1)*sizegovernc(i));   
                                        end 
                                        end 
                                    end 
                                end 
                            end 
                            
Fmatrix(roww,1)=Fmatrix(roww,1)+positioncp(1,sizegovernc
(i)); 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
row=[0,0,0]; 
roww=0; 
rowi=0; 
  
%%%%%%%%%%%%%%%%%% 
% Mass matrix 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
mass(1)=sym(strcat('mass','(','1',')')); 
mass(2)=sym(strcat('mass','(','2',')')); 
mass(3)=sym(strcat('mass','(','3',')')); 
mass(4)=sym(strcat('mass','(','4',')')); 
mass(5)=sym(strcat('mass','(','5',')')); 
mass(6)=sym(strcat('mass','(','6',')')); 
mass(7)=sym(strcat('mass','(','7',')')); 
mass(8)=sym(strcat('mass','(','8',')')); 
mass(9)=sym(strcat('mass','(','9',')')); 
for i=1:1:ipdata(7) 
    mass(9+1+(i-1)*3)=sym(strcat('mass','(','10',')')); 
    mass(9+2+(i-1)*3)=sym(strcat('mass','(','11',')')); 
    mass(9+3+(i-1)*3)=sym(strcat('mass','(','12',')')); 
end 
  
if ipdata(51)==1 
    for i=1:1:(3*ipdata(51)+ipdata(7)*ipdata(51)) 
        M(i,i)=mass(i*(4-ipdata(51))); 
    end 
else if ipdata(51)==3 
        for i=1:1:(3*ipdata(51)+ipdata(7)*ipdata(51)) 
            M(i,i)=mass(i*(4-ipdata(51))); 
        end 
    else if ipdata(51)==2 
            for i=1:1:(3*ipdata(51)+ipdata(7)*ipdata(51)) 
                M(i,i)=mass(i-1+int8(i/2)); 
            end 
        end 
    end 
end 
  
%%%%%%%%%%%%%%%%%% 
% OUT put  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
%M 
%C1matrix 
%C2matrix 
%K1matrix 
%K2matrix 
%Fmatrix 
%size(C1matrix) 
%size(C2matrix) 
%size(K1matrix) 

%size(K2matrix) 
%size(Fmatrix) 
%%%%%%%%%%%%%%%%%% 
% dydt 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if ipdata(51)==1 
    for i=1:1:(3*ipdata(51)) 
        cs(i,i)=sym(strcat('ipdata','(',int2str(100+i*(4-
ipdata(51))),')')); 
    end 
else if ipdata(51)==3 
        for i=1:1:(3*ipdata(51)) 
            cs(i,i)=sym(strcat('ipdata','(',int2str(100+i*(4-
ipdata(51))),')')); 
        end 
    else if ipdata(51)==2 
            for i=1:1:(3*ipdata(51)) 
                cs(i,i)=sym(strcat('ipdata','(',int2str(100+i-
1+int8(i/2)),')')); 
            end 
        end 
    end 
end 
for i=(3*ipdata(51)+1):1:(3*ipdata(51)+ipdata(7)*ipdata(51)) 
    for j=1:1:(3*ipdata(51)) 
        cs(i,j)=0; 
        cs(j,i)=0; 
    end 
end 
for i=(3*ipdata(51)+1):1:(3*ipdata(51)+ipdata(7)*ipdata(51)) 
    for 
j=(3*ipdata(51)+1):1:(3*ipdata(51)+ipdata(7)*ipdata(51)) 
        cs(i,j)=0; 
    end 
end 
C=C1matrix+cs; 
  
if ipdata(51)==1 
    for i=1:1:(3*ipdata(51)) 
        ks(i,i)=sym(strcat('ipdata','(',int2str(110+i*(4-
ipdata(51))),')')); 
    end 
else if ipdata(51)==3 
        for i=1:1:(3*ipdata(51)) 
            ks(i,i)=sym(strcat('ipdata','(',int2str(110+i*(4-
ipdata(51))),')')); 
        end 
    else if ipdata(51)==2 
            for i=1:1:(3*ipdata(51)) 
                ks(i,i)=sym(strcat('ipdata','(',int2str(110+i-
1+int8(i/2)),')')); 
            end 
        end 
    end 
end 
for i=(3*ipdata(51)+1):1:(3*ipdata(51)+ipdata(7)*ipdata(51)) 
    for j=1:1:(3*ipdata(51)) 
        ks(i,j)=0; 
        ks(j,i)=0; 
    end 
 
end 
 
for i=(3*ipdata(51)+1):1:(3*ipdata(51)+ipdata(7)*ipdata(51)) 
    for 
j=(3*ipdata(51)+1):1:(3*ipdata(51)+ipdata(7)*ipdata(51)) 
        ks(i,j)=0; 
    end 
end 
  



 

Page 256 of 278 
 

K=K1matrix+ks; 
velo=velocityvector(n,cd,eps); 
disp=displacementvector(n,cd,eps); 
  
DYDT=inv(M)*(Fmatrix-C*velo-K*disp); 
for i=1:1:(3*ipdata(51)+ipdata(51)*ipdata(7)) 
    dydt(i,1)=velo(i,1); 
end 
for i=1:1:(3*ipdata(51)+ipdata(51)*ipdata(7)) 
    dydt(i+(3*ipdata(51)+ipdata(51)*ipdata(7)),1)=DYDT(i,1); 
end 
  
for j=(cd*n+3*cd)*2+1:1:(cd*n+3*cd)*2+1 
    y(j)=sym(strcat('y','(',int2str(j),')')); 
    dydt(j,1)=sym(strcat('y','(',int2str(j+1),')')); 

end 
  
for j=(cd*n+3*cd)*2+2:1:(cd*n+3*cd)*2+2 
    y(j)=sym(strcat('y','(',int2str(j),')')); 
    
dydt(j,1)=(1/sym(strcat('I','m')))*(sym(strcat('TorqueM','(','y','(
',int2str(j),')',')'))-
sym(strcat('q','c','c'))*sym(strcat('y','(',int2str(j),')'))*(y(j)-
sym(strcat('y','(',int2str(cd*n+3*cd+cd),')'))*sym(strcat('ipdata
','(','35',')'))/sym(strcat('r','s')))); 
end 
  
dydt 
     

 

13.1.5. erppp.m & esppp.m 
 
function erppp=erppp(ttt) 
%% Program erppp.m is developed to generate planet gear pitch error for ring-planet pairs. Same pitch error pattern is applied to all 
planet gears with a start at the defined first tooth respectively.  
erppp=-0.0015*sin(ttt*360/180*pi)+0.001*sin(2*ttt*360/180*pi)+0.002*sin(3*ttt*360/180*pi); 
 

13.1.6. erppr.m 
 
function erppr=erppr(ttt) 
%% Program erppr.m is developed to generate ring gear pitch error for ring-planet pairs. 
erppr=-0.0015*sin(ttt*360/180*pi)+0.002*sin(2*ttt*360/180*pi)-0.0015*sin(3*ttt*360/180*pi); 
 

13.1.7. espps.m 
 
function espps=espps(ttt) 
%% Program espps.m is developed to generate sun gear pitch error for sun-planet pairs. 
espps=-0.002*sin(ttt*360/180*pi)+0.0015*sin(2*ttt*360/180*pi)-0.001*sin(3*ttt*360/180*pi); 
 

13.1.8. espp.m 
 
function espp=espp(tt,PBEs) 
%% Program espp.m is developed to generate assumed sun-
planet profile error over the time of mesh for one pair of teeth.  
if  tt>=0 && tt<=PBEs 
    
espp=0.001*sin(tt/PBEs*360/180*pi)+0.0015*sin(2*tt/PBEs*
360/180*pi)+0.002*sin(3*tt/PBEs*360/180*pi); 
else 
    if tt-1>=0 && tt-1<=PBEs 
        tt=tt-1; 
        
espp=0.001*sin(tt/PBEs*360/180*pi)+0.0015*sin(2*tt/PBEs*
360/180*pi)+0.002*sin(3*tt/PBEs*360/180*pi); 
    else 
        if tt-2>=0 && tt-2<=PBEs 
            tt=tt-2; 
            
espp=0.001*sin(tt/PBEs*360/180*pi)+0.0015*sin(2*tt/PBEs*
360/180*pi)+0.002*sin(3*tt/PBEs*360/180*pi); 
        else  
            if tt-3>=0 && tt-3<=PBEs 

 
                tt=tt-3; 
                
espp=0.001*sin(tt/PBEs*360/180*pi)+0.0015*sin(2*tt/PBEs*
360/180*pi)+0.002*sin(3*tt/PBEs*360/180*pi); 
 
            else  
                if tt-4>=0 && tt-4<=PBEs 
 
 
                    tt=tt-4; 
                    
espp=0.001*sin(tt/PBEs*360/180*pi)+0.0015*sin(2*tt/PBEs*
360/180*pi)+0.002*sin(3*tt/PBEs*360/180*pi); 
                else 
                end 
 
            end 
        end 
    end 
end 
 

 

13.1.9. erpp.m 
 
function erpp=erpp(tt,PBEr) 
%% Program erpp.m is developed to generate assumed ring-
planet profile error over the time of mesh for one pair of teeth.   
if  tt>=0 && tt<=PBEr 

 
    erpp=-
0.001*sin(tt/PBEr*360/180*pi)+0.0015*sin(2*tt/PBEr*360/1
80*pi)-0.002*sin(3*tt/PBEr*360/180*pi); 
else 
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    if tt-1>=0 && tt-1<=PBEr 
        tt=tt-1; 
        erpp=-
0.001*sin(tt/PBEr*360/180*pi)+0.0015*sin(2*tt/PBEr*360/1
80*pi)-0.002*sin(3*tt/PBEr*360/180*pi); 
    else 
        if tt-2>=0 && tt-2<=PBEr 
            tt=tt-2; 
            erpp=-
0.001*sin(tt/PBEr*360/180*pi)+0.0015*sin(2*tt/PBEr*360/1
80*pi)-0.002*sin(3*tt/PBEr*360/180*pi); 
 
        else  
            if tt-3>=0 && tt-3<=PBEr 
                tt=tt-3; 

                erpp=-
0.001*sin(tt/PBEr*360/180*pi)+0.0015*sin(2*tt/PBEr*360/1
80*pi)-0.002*sin(3*tt/PBEr*360/180*pi); 
            else  
                if tt-4>=0 && tt-4<=PBEr 
                    tt=tt-4; 
                    erpp=-
0.001*sin(tt/PBEr*360/180*pi)+0.0015*sin(2*tt/PBEr*360/1
80*pi)-0.002*sin(3*tt/PBEr*360/180*pi); 
                else 
                end 
            end 
        end 
    end 
end 

 

13.1.10. esppran.m 
 
function esppran=esppran(xx) 
%% Program esppran.m is developed to generate random 
excitation due to tooth profile error for sun-planet pairs. 
esppran=randint(1,1,[-400 100])/100000; 
if esppran>=0 
 

 
    esppran=esppran; 
else 
    esppran=0; 
end 
esppran; 
 

13.1.11. erppran.m 
 
function erppran=erppran(xx) 
%% Program erppran.m is developed to generate random 
excitation due to tooth profile error for ring-planet pairs. 
erppran=randint(1,1,[-400 100])/100000; 
if erppran>=0 
 

 
    erppran=erppran; 
else 
    erppran=0; 
end 
erppran; 
 

13.1.12. Ymr1.m / Ymr2.m / Ymr3.m 
 
function Ymr1=Ymr1(Xmr) 
%% Program package (including ymr1.m, ymr2.m, ymr3.m, 
ymrr.m, yms1.m, 
%% yms2.m, yms3.m, and ymss.m) is developed to determine 
number of teeth in mesh based on time of meshing for all 
ring-planet and sun-planet pairs.  
%%%%%%%%%%%%%%%%%%% change line 123 the 'i' 
of rrn(i) 
  
  
%% calculation for rrs 
%% input data 
 
zs=ipdata(1); 
 
zp=ipdata(2); 
zr=ipdata(3); 
as=ipdata(4); 
ar=ipdata(5); 
 
module=ipdata(6); 
nofp=ipdata(7); 
  
for i=1:1:ipdata(7) 
    apofps(i)=pi-ipdata(200+i); %angular position of planet 
spacing i 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
ds=zs*module; 
dp=zp*module; 
dr=zr*module; 

 
ha=module; 
hf=1.25*module; 
h=ha+hf; 
dsa=ds+2*ha; 
dpa=dp+2*ha; 
dra=dr+2*ha; 
dsf=ds-2*hf; 
dpf=dp-2*hf; 
drf=dr-2*hf; 
dsb=ds*cos(as/180*pi); 
dpb=dp*cos(as/180*pi); 
drb=dr*cos(ar/180*pi); 
Rsa=dsa/2; 
Rpa=dpa/2; 
Rra=drf/2; 
Rsb=dsb/2; 
Rpb=dpb/2; 
Rrb=drb/2; 
  
%%for sun-planet mesh 
MsEs=sqrt(Rsa^2-Rsb^2); 
BsNs=sqrt(Rpa^2-Rpb^2); 
MsNs=(Rsb+Rpb)*tan(as/180*pi); 
BsEs=MsEs+BsNs-MsNs; 
MsPs=Rsb*tan(as/180*pi); 
MsBs=MsEs-BsEs; 
BsPs=MsPs-MsBs; 
%pb=2*pi*Rsb/zs; 
pb=pi*module*cos(as/180*pi); 
BsCs=BsEs-pb; 
BsDs=pb; 
  
%for ring-planet mesh 
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MrNr=module/2*(zs+zp)*sin(ar/180*pi); 
NrEr=sqrt(Rpa^2-Rpb^2); 
MrBr=sqrt(Rra^2-Rrb^2); 
BrEr=MrNr+NrEr-MrBr; 
MrPr=Rrb*tan(ar/180*pi); 
BrPr=MrPr-MrBr; 
BrCr=BrEr-pb; 
BrDr=pb; 
  
% rrs 
PsPr=Rpb*tan(as/180*pi)+Rpb*(pi-as/180*pi-
ar/180*pi)+Rpb*tan(ar/180*pi); 
tb=module*(pi/2+2*inv(as)); 
Q2Br=PsPr-BrPr-tb; 
dec1=Q2Br/pb; 
dec2=int32(Q2Br/pb); 
dec3=dec1-dec2; 
if dec3>=0 
    dec=dec2; 
else dec=dec2-1; 
end 
BrQ3=pb-pb*(double(dec1)-double(dec)); 
PrQ3=BrQ3-BrPr; 
if PrQ3>=0 
    PrQ3=PrQ3; 
else PrQ3=-PrQ3; 
end 
rrs=PrQ3/pb; 
if rrs>=0 
    rrs=rrs; 
else rrs=-rrs; 
end 
if BrQ3-BrPr<=0 
    rrs=rrs; 
else rrs=-rrs; 
end 
  
PBEs=BsEs/pb; 
PBPs=BsPs/pb; 
PBCs=BsCs/pb; 
PBDs=BsDs/pb; 

  
BrEr; 
BrPr; 
BrCr; 
BrDr; 
  
PBEr=BrEr/pb; 
PBPr=BrPr/pb; 
PBCr=BrCr/pb; 
PBDr=BrDr/pb; 
  
rrs; 
  
%%calculation of spacing difference between ring-planet 
meshes 
for i=1:1:nofp 
    rrn(i)=zr*ipdata(200+i)/2/pi; 
    rrnn=double(int64(rrn(i))); 
    if rrnn>rrn(i) 
        rrnn=rrnn-1; 
    else 
        rrnn=rrnn; 
    end 
    rrn(i)=rrn(i)-rrnn; 
end 
  
Xmr=Xmr+(PBPr-PBDr)-rrn(1)-rrs; 
xx=double(int64(Xmr)); 
if xx<=Xmr; 
    xx=xx; 
else xx=xx-1; 
end 
tt=Xmr-xx; 
Ymr1=0; 
for i=1:1:(double(int8(PBEr))+2) 
    ymrrr(i)=ymrr(tt+i-1,PBEr); 
    Ymr1=Ymr1+ymrrr(i); 
end 
Ymr1=Ymr1; 
 

 

13.1.13. Yms1.m / Yms2.m / Yms3.m 
 
function Yms1=Yms1(Xms) 
 
 
%% Program package (including ymr1.m, ymr2.m, ymr3.m, 
ymrr.m, yms1.m, 
%% yms2.m, yms3.m, and ymss.m) is developed to determine 
number of teeth in mesh based on time of meshing for all 
ring-planet and sun-planet pairs.  
%%%%%%%%%%%%%%%%%%% change line 123 the 'i' 
of rsn(i) 
  
%% calculation for rrs 
 
%% input data 
zs=ipdata(1); 
zp=ipdata(2); 
zr=ipdata(3); 
as=ipdata(4); 
ar=ipdata(5); 
module=ipdata(6); 
nofp=ipdata(7); 
  
for i=1:1:ipdata(7) 
    apofps(i)=pi-ipdata(200+i); %angular position of planet 
spacing i 

 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ds=zs*module; 
dp=zp*module; 
dr=zr*module; 
ha=module; 
hf=1.25*module; 
h=ha+hf; 
dsa=ds+2*ha; 
dpa=dp+2*ha; 
dra=dr+2*ha; 
dsf=ds-2*hf; 
dpf=dp-2*hf; 
drf=dr-2*hf; 
dsb=ds*cos(as/180*pi); 
dpb=dp*cos(as/180*pi); 
drb=dr*cos(ar/180*pi); 
Rsa=dsa/2; 
Rpa=dpa/2; 
Rra=drf/2; 
Rsb=dsb/2; 
Rpb=dpb/2; 
Rrb=drb/2; 
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%%for sun-planet mesh 
MsEs=sqrt(Rsa^2-Rsb^2); 
BsNs=sqrt(Rpa^2-Rpb^2); 
MsNs=(Rsb+Rpb)*tan(as/180*pi); 
BsEs=MsEs+BsNs-MsNs; 
MsPs=Rsb*tan(as/180*pi); 
MsBs=MsEs-BsEs; 
BsPs=MsPs-MsBs; 
%pb=2*pi*Rsb/zs; 
pb=pi*module*cos(as/180*pi); 
BsCs=BsEs-pb; 
BsDs=pb; 
  
%for ring-planet mesh 
MrNr=module/2*(zs+zp)*sin(ar/180*pi); 
NrEr=sqrt(Rpa^2-Rpb^2); 
MrBr=sqrt(Rra^2-Rrb^2); 
BrEr=MrNr+NrEr-MrBr; 
MrPr=Rrb*tan(ar/180*pi); 
BrPr=MrPr-MrBr; 
BrCr=BrEr-pb; 
BrDr=pb; 
  
% rrs 
PsPr=Rpb*tan(as/180*pi)+Rpb*(pi-as/180*pi-
ar/180*pi)+Rpb*tan(ar/180*pi); 
tb=module*(pi/2+2*inv(as)); 
Q2Br=PsPr-BrPr-tb; 
dec1=Q2Br/pb; 
dec2=int32(Q2Br/pb); 
dec3=dec1-dec2; 
if dec3>=0 
    dec=dec2; 
else dec=dec2-1; 
end 
BrQ3=pb-pb*(double(dec1)-double(dec)); 
PrQ3=BrQ3-BrPr; 
if PrQ3>=0 
    PrQ3=PrQ3; 
else PrQ3=-PrQ3; 
end 
rrs=PrQ3/pb; 
if rrs>=0 
    rrs=rrs; 
else rrs=-rrs; 
end 
if BrQ3-BrPr<=0 
    rrs=rrs; 
else rrs=-rrs; 

end 
  
PBEs=BsEs/pb; 
PBPs=BsPs/pb; 
PBCs=BsCs/pb; 
PBDs=BsDs/pb; 
  
BrEr; 
BrPr; 
BrCr; 
BrDr; 
  
PBEr=BrEr/pb; 
PBPr=BrPr/pb; 
PBCr=BrCr/pb; 
PBDr=BrDr/pb; 
  
rrs; 
  
%%calculation of spacing difference between sun-planet 
meshes 
for i=1:1:nofp 
    rsn(i)=zs*ipdata(200+i)/2/pi; 
    rsnn=double(int64(rsn(i))); 
    if rsnn>rsn(i) 
        rsnn=rsnn-1; 
    else 
        rsnn=rsnn; 
    end 
    rsn(i)=rsn(i)-rsnn; 
end 
rsn=-rsn; 
  
Xms=Xms+(PBPs-PBDs); 
xx=double(int64(Xms)); 
if xx<=Xms; 
    xx=xx; 
else xx=xx-1; 
end 
tt=Xms-xx; 
Yms1=0; 
for i=1:1:(double(int8(PBEs))+2) 
    ymsss(i)=ymss(tt+i-1,PBEs); 
    Yms1=Yms1+ymsss(i); 
end 
Yms1=Yms1; 
 
 

 

13.1.14. ymrr.m 
 
function ymr=ymrr(tt,PBEr) 
%% Program package (including ymr1.m, ymr2.m, ymr3.m, 
ymrr.m, yms1.m, 
 
 
%% yms2.m, yms3.m, and ymss.m) is developed to determine 
number of teeth in mesh based on time of meshing for all 
ring-planet and sun-planet pairs.  

 
 
if  tt>=0 && tt<=PBEr 
    ymr=1; 
else 
    ymr=0; 
end 
 

 

13.1.15. ymss.m 
 
function yms=ymss(tt,PBEs) 
%% Program package (including ymr1.m, ymr2.m, ymr3.m, 
ymrr.m, yms1.m, 
 
 

 
%% yms2.m, yms3.m, and ymss.m) is developed to determine 
number of teeth in mesh based on time of meshing for all 
ring-planet and sun-planet pairs.  
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if  tt>=0 && tt<=PBEs 
    yms=1; 
else 
 

    yms=0; 
end 
 

13.1.16. erp1.m / erp2.m / erp3.m 
 
function erp1=erp1(Xmr) 
%% Program package (including erp1.m, erp2.m, erp3.m, 
esp1.m, esp2.m, and 
%% esp3.m) is developed to generate the combined excitation 
due to pitch error, profile error and random features. 
%%%%%%%%%%%%%%%%%%% change line 123 the 'i' 
of rrn(i) 
  
  
%% calculation for rrs 
%% input data 
zs=ipdata(1); 
zp=ipdata(2); 
zr=ipdata(3); 
as=ipdata(4); 
ar=ipdata(5); 
module=ipdata(6); 
nofp=ipdata(7); 
  
for i=1:1:ipdata(7) 
    apofps(i)=ipdata(200+i); %angular position of planet 
spacing i 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ds=zs*module; 
dp=zp*module; 
dr=zr*module; 
ha=module; 
hf=1.25*module; 
h=ha+hf; 
dsa=ds+2*ha; 
dpa=dp+2*ha; 
dra=dr+2*ha; 
dsf=ds-2*hf; 
dpf=dp-2*hf; 
drf=dr-2*hf; 
dsb=ds*cos(as/180*pi); 
dpb=dp*cos(as/180*pi); 
drb=dr*cos(ar/180*pi); 
Rsa=dsa/2; 
Rpa=dpa/2; 
Rra=drf/2; 
Rsb=dsb/2; 
 
Rpb=dpb/2; 
Rrb=drb/2; 
  
%%for sun-planet mesh 
MsEs=sqrt(Rsa^2-Rsb^2); 
BsNs=sqrt(Rpa^2-Rpb^2); 
 
MsNs=(Rsb+Rpb)*tan(as/180*pi); 
BsEs=MsEs+BsNs-MsNs; 
MsPs=Rsb*tan(as/180*pi); 
MsBs=MsEs-BsEs; 
BsPs=MsPs-MsBs; 
%pb=2*pi*Rsb/zs; 
pb=pi*module*cos(as/180*pi); 
BsCs=BsEs-pb; 
BsDs=pb; 
 
%for ring-planet mesh 

 
MrNr=module/2*(zs+zp)*sin(ar/180*pi); 
NrEr=sqrt(Rpa^2-Rpb^2); 
MrBr=sqrt(Rra^2-Rrb^2); 
BrEr=MrNr+NrEr-MrBr; 
MrPr=Rrb*tan(ar/180*pi); 
BrPr=MrPr-MrBr; 
BrCr=BrEr-pb; 
BrDr=pb; 
  
% rrs 
PsPr=Rpb*tan(as/180*pi)+Rpb*(pi-as/180*pi-
ar/180*pi)+Rpb*tan(ar/180*pi); 
tb=module*(pi/2+2*inv(as)); 
Q2Br=PsPr-BrPr-tb; 
dec1=Q2Br/pb; 
dec2=int32(Q2Br/pb); 
dec3=dec1-dec2; 
if dec3>=0 
    dec=dec2; 
else dec=dec2-1; 
end 
BrQ3=pb-pb*(double(dec1)-double(dec)); 
PrQ3=BrQ3-BrPr; 
if PrQ3>=0 
    PrQ3=PrQ3; 
else PrQ3=-PrQ3; 
end 
rrs=PrQ3/pb; 
if rrs>=0 
    rrs=rrs; 
else rrs=-rrs; 
end 
if BrQ3-BrPr<=0 
    rrs=rrs; 
else rrs=-rrs; 
end 
  
PBEs=BsEs/pb; 
PBPs=BsPs/pb; 
PBCs=BsCs/pb; 
PBDs=BsDs/pb; 
 BrEr; 
BrPr; 
BrCr; 
BrDr; 
  
PBEr=BrEr/pb; 
PBPr=BrPr/pb; 
PBCr=BrCr/pb; 
PBDr=BrDr/pb; 
  
rrs; 
  
%%calculation of spacing difference between ring-planet 
meshes 
for i=1:1:nofp 
    rrn(i)=zr*apofps(i)/2/pi; 
    rrnn=double(int64(rrn(i))); 
    if rrnn>rrn(i) 
        rrnn=rrnn-1; 
    else 
        rrnn=rrnn; 
    end 
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    rrn(i)=rrn(i)-rrnn; 
end 
rrn=-rrn; 
  
emr=emr1(Xmr);Xmr=Xmr+(PBPr-PBDr)-rrn(1)-rrs; 
xx=double(int64(Xmr)); 
if xx<=Xmr; 
    xx=xx; 
else xx=xx-1; 
end 
tt=Xmr-xx; 
  
%%% profile error 
Ymr1=0; 
for i=1:1:(double(int8(PBEr))+2) 
    ymrrr(i)=erpp(tt+i-1,PBEr); 
    %Ymr1=Ymr1+ymrrr(i); 
end 
Ymr1=Ymr1; 
YMRRR=-1000; 
for i=1:1:(double(int8(PBEr))+2) 
    if YMRRR>=ymrrr(i) 
        YMRRR=YMRRR; 
    else YMRRR=ymrrr(i); 
    end 
end 
  
%%% random profile error 

ymrrran=erppran(tt); 
  
%%% pitch error of ring 
Xmrring=Xmr/zr; 
xxx=double(int64(Xmrring)); 
if xxx<=Xmrring; 
    xxx=xxx; 
else xxx=xxx-1; 
end 
ttt=Xmrring-xxx; 
ymrring=erppr(ttt); 
  
  
%%% pitch error of planet 
Xmrpla=Xmr/zp; 
xxxx=double(int64(Xmrpla)); 
if xxxx<=Xmrpla; 
    xxxx=xxxx; 
else xxxx=xxxx-1; 
end 
tttt=Xmrpla-xxxx; 
ymrpla=erppp(tttt); 
  
%erp1=YMRRR+ymrrran+ymrring+ymrpla; 
erp1=YMRRR-emr*1000+ymrring+ymrpla; 
erp1=erp1/1000; 
 

 

13.1.17. esp1.m / esp2.m / esp3.m 
 
function esp1=esp1(Xms) 
%% Program package (including erp1.m, erp2.m, erp3.m, 
esp1.m, esp2.m, and 
%% esp3.m) is developed to generate the combined excitation 
due to pitch error, profile error and random features. 
%%%%%%%%%%%%%%%%%%% change line 123 the 'i' 
of rsn(i) 
  
  
%% calculation for rrs 
%% input data 
zs=ipdata(1); 
zp=ipdata(2); 
zr=ipdata(3); 
as=ipdata(4); 
ar=ipdata(5); 
module=ipdata(6); 
nofp=ipdata(7); 
  
for i=1:1:ipdata(7) 
 
    apofps(i)=ipdata(200+i); %angular position of planet 
spacing i 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
 
ds=zs*module; 
dp=zp*module; 
dr=zr*module; 
ha=module; 
hf=1.25*module; 
h=ha+hf; 
dsa=ds+2*ha; 
dpa=dp+2*ha; 
dra=dr+2*ha; 
dsf=ds-2*hf; 

 
dpf=dp-2*hf; 
drf=dr-2*hf; 
dsb=ds*cos(as/180*pi); 
dpb=dp*cos(as/180*pi); 
drb=dr*cos(ar/180*pi); 
Rsa=dsa/2; 
Rpa=dpa/2; 
Rra=drf/2; 
Rsb=dsb/2; 
Rpb=dpb/2; 
Rrb=drb/2; 
  
%%for sun-planet mesh 
MsEs=sqrt(Rsa^2-Rsb^2); 
BsNs=sqrt(Rpa^2-Rpb^2); 
MsNs=(Rsb+Rpb)*tan(as/180*pi); 
BsEs=MsEs+BsNs-MsNs; 
MsPs=Rsb*tan(as/180*pi); 
MsBs=MsEs-BsEs; 
BsPs=MsPs-MsBs; 
%pb=2*pi*Rsb/zs; 
pb=pi*module*cos(as/180*pi); 
BsCs=BsEs-pb; 
BsDs=pb; 
  
%for ring-planet mesh 
MrNr=module/2*(zs+zp)*sin(ar/180*pi); 
NrEr=sqrt(Rpa^2-Rpb^2); 
MrBr=sqrt(Rra^2-Rrb^2); 
BrEr=MrNr+NrEr-MrBr; 
MrPr=Rrb*tan(ar/180*pi); 
BrPr=MrPr-MrBr; 
BrCr=BrEr-pb; 
BrDr=pb; 
  
% rrs 
PsPr=Rpb*tan(as/180*pi)+Rpb*(pi-as/180*pi-
ar/180*pi)+Rpb*tan(ar/180*pi); 
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tb=module*(pi/2+2*inv(as)); 
Q2Br=PsPr-BrPr-tb; 
dec1=Q2Br/pb; 
dec2=int32(Q2Br/pb); 
dec3=dec1-dec2; 
if dec3>=0 
    dec=dec2; 
else dec=dec2-1; 
end 
BrQ3=pb-pb*(double(dec1)-double(dec)); 
PrQ3=BrQ3-BrPr; 
if PrQ3>=0 
    PrQ3=PrQ3; 
else PrQ3=-PrQ3; 
end 
rrs=PrQ3/pb; 
if rrs>=0 
    rrs=rrs; 
else rrs=-rrs; 
end 
if BrQ3-BrPr<=0 
    rrs=rrs; 
else rrs=-rrs; 
end 
  
PBEs=BsEs/pb; 
PBPs=BsPs/pb; 
PBCs=BsCs/pb; 
PBDs=BsDs/pb; 
  
BrEr; 
BrPr; 
BrCr; 
BrDr; 
  
PBEr=BrEr/pb; 
PBPr=BrPr/pb; 
PBCr=BrCr/pb; 
PBDr=BrDr/pb; 
  
rrs; 
 %%calculation of spacing difference between sun-planet 
meshes 
for i=1:1:nofp 
    rsn(i)=zs*apofps(i)/2/pi; 
    rsnn=double(int64(rsn(i))); 
    if rsnn>rsn(i) 
        rsnn=rsnn-1; 
    else 
        rsnn=rsnn; 
    end 
    rsn(i)=rsn(i)-rsnn; 
end 

  
ems=ems1(Xms);Xms=Xms+(PBPs-PBDs)-rsn(1); 
xx=double(int64(Xms)); 
if xx<=Xms; 
    xx=xx; 
else xx=xx-1; 
end 
tt=Xms-xx; 
  
%%% profile error 
Yms1=0; 
for i=1:1:(double(int8(PBEs))+2) 
    ymsss(i)=espp(tt+i-1,PBEs); 
    %Yms1=Yms1+ymsss(i); 
end 
Yms1=Yms1; 
YMSSS=-1000; 
for i=1:1:(double(int8(PBEs))+2) 
    if YMSSS>=ymsss(i) 
        YMSSS=YMSSS; 
    else YMSSS=ymsss(i); 
    end 
end 
  
%%% random profile error 
ymssr=esppran(tt); 
  
%%% pitch error of sun 
Xmssun=Xms/zs; 
xxx=double(int64(Xmssun)); 
if xxx<=Xmssun; 
    xxx=xxx; 
else xxx=xxx-1; 
end 
ttt=Xmssun-xxx; 
ymssun=espps(ttt); 
  
  
%%% pitch error of planet 
Xmspla=Xms/zp; 
xxxx=double(int64(Xmspla)); 
if xxxx<=Xmspla; 
    xxxx=xxxx; 
else xxxx=xxxx-1; 
end 
tttt=Xmspla-xxxx; 
ymspla=esppp(tttt); 
  
%esp1=YMSSS+ymssr+ymssun+ymspla; 
esp1=YMSSS-ems*1000+ymssun+ymspla; 
esp1=esp1/1000; 
 

 

13.1.18. Kmr1.m / Kmr2.m / Kmr3.m 
 
function Kmr1=Kmr1(Xmr) 
 
 
%%%%%%%%%%%%%%%%%%% change the value for 
the number of planet 
Nofplanet=1; 
  
%% calculation for rrs 
%% input data 
zs=ipdata(1);  %% tooth number of sun gear 
zp=ipdata(2);  %% tooth number of planet gear 
zr=ipdata(3);  %% tooth number of ring gear 
as=ipdata(4);  %% pressure angle of sun-planet 

 
ar=ipdata(5);  %% pressure angle of ring-planet 
module=ipdata(6); %% module 
nofp=ipdata(7); %% number of planet gears 
  
for i=1:1:ipdata(7) 
    apofps(i)=pi-ipdata(200+i); %angular position of planet 
spacing i 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
ds=zs*module; 
dp=zp*module; 
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dr=zr*module; 
ha=module; 
hf=1.25*module; 
h=ha+hf; 
dsa=ds+2*ha; 
dpa=dp+2*ha; 
dra=dr+2*ha; 
dsf=ds-2*hf; 
dpf=dp-2*hf; 
drf=dr-2*hf; 
dsb=ds*cos(as/180*pi); 
dpb=dp*cos(as/180*pi); 
drb=dr*cos(ar/180*pi); 
Rsa=dsa/2; 
Rpa=dpa/2; 
Rra=drf/2; 
Rsb=dsb/2; 
Rpb=dpb/2; 
Rrb=drb/2; 
  
%%for sun-planet mesh 
MsEs=sqrt(Rsa^2-Rsb^2); 
BsNs=sqrt(Rpa^2-Rpb^2); 
MsNs=(Rsb+Rpb)*tan(as/180*pi); 
BsEs=MsEs+BsNs-MsNs; 
MsPs=Rsb*tan(as/180*pi); 
MsBs=MsEs-BsEs; 
BsPs=MsPs-MsBs; 
%pb=2*pi*Rsb/zs; 
pb=pi*module*cos(as/180*pi); 
BsCs=BsEs-pb; 
BsDs=pb; 
  
%for ring-planet mesh 
MrNr=module/2*(zs+zp)*sin(ar/180*pi); 
NrEr=sqrt(Rpa^2-Rpb^2); 
MrBr=sqrt(Rra^2-Rrb^2); 
BrEr=MrNr+NrEr-MrBr; 
MrPr=Rrb*tan(ar/180*pi); 
BrPr=MrPr-MrBr; 
BrCr=BrEr-pb; 
 
BrDr=pb; 
  
% rrs 
PsPr=Rpb*tan(as/180*pi)+Rpb*(pi-as/180*pi-
ar/180*pi)+Rpb*tan(ar/180*pi); 
tb=module*(pi/2+2*inv(as)); 
Q2Br=PsPr-BrPr-tb; 
dec1=Q2Br/pb; 
dec2=int32(Q2Br/pb); 
dec3=dec1-dec2; 
if dec3>=0 
    dec=dec2; 
else dec=dec2-1; 
end 
BrQ3=pb-pb*(double(dec1)-double(dec)); 
PrQ3=BrQ3-BrPr; 
if PrQ3>=0 
    PrQ3=PrQ3; 
else PrQ3=-PrQ3; 
end 
rrs=PrQ3/pb; 
if rrs>=0 
    rrs=rrs; 
else rrs=-rrs; 
end 
if BrQ3-BrPr<=0 
    rrs=rrs; 
else rrs=-rrs; 

end 
  
PBEs=BsEs/pb; 
PBPs=BsPs/pb; 
PBCs=BsCs/pb; 
PBDs=BsDs/pb; 
  
BrEr; 
BrPr; 
BrCr; 
BrDr; 
  
PBEr=BrEr/pb; 
PBPr=BrPr/pb; 
PBCr=BrCr/pb; 
PBDr=BrDr/pb; 
  
rrs; 
  
%%calculation of spacing difference between ring-planet 
meshes 
for i=1:1:nofp 
    rrn(i)=zr*ipdata(200+i)/2/pi; 
    rrnn=double(int64(rrn(i))); 
    if rrnn>rrn(i) 
        rrnn=rrnn-1; 
    else 
        rrnn=rrnn; 
    end 
    rrn(i)=rrn(i)-rrnn; 
end 
  
Xmr=Xmr+(PBPr-PBDr)-rrn(Nofplanet)-rrs; 
xx=double(int64(Xmr)); 
if xx<=Xmr; 
    xx=xx; 
else xx=xx-1; 
end 
tt=Xmr-xx; 
Ymr=0; 
for i=1:1:(double(int8(PBEr))+2) 
    ymrrr(i)=ymrr(tt+i-1,PBEr); 
    Ymr=Ymr+ymrrr(i); 
end 
Ymr=Ymr; 
  
for i=1:1:Ymr 
    xxx=xx+i-Ymr+ipdata(2); 
    xxP=xxx/ipdata(2); 
    xxPP=double(int64(xxP)); 
    if  xxPP<=xxP 
        xxPP=xxPP; 
    else xxPP=xxPP-1; 
    end 
    NumofP(i)=Nofplanet*100+xxx-xxPP*ipdata(2)+1; 
end 
for i=1:1:Ymr 
    xxxx=xx+rrn(Nofplanet)+i-
Ymr+ipdata(3)+(2*pi+apofps(Nofplanet)+apofps(1))/2/pi*ipd
ata(3)+1; 
    xxx=double(int64(xxxx)); 
    if xxx<=xxxx 
        xxx=xxx; 
    else xxx=xxx-1; 
    end 
    xxR=xxx/ipdata(3); 
 
    xxRR=double(int64(xxR)); 
    if xxRR<=xxR 
        xxRR=xxRR; 
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    else xxRR=xxRR-1; 
    end 
 
    NumofR(i)=xxx-xxRR*ipdata(3)+1; 
end 
  
fract=Xmr+10; 
fractt=double(int64(fract)); 
if fractt<=fract 
    fractt=fractt; 
else fractt=fractt-1; 
end 

frac=fract-fractt; 
if frac<(PBCr-PBDr) 
    fra=frac/(PBCr-PBDr); 
else fra=(frac-(PBCr-PBDr))/(2*PBDr-PBCr); 
end 
for i=1:1:Ymr 
    posit(i)=(fract-fractt+(Ymr-i))/PBEr; 
end 
Ymr=Ymr+fra; 
  
Kmr1=mstiffr(Ymr,NumofP,NumofR,posit); 
 

 

13.1.19. Kms1.m / Kms2.m / Kms3.m 
 
function Kms1=Kms1(Xms) 
%%%%%%%%%%%%%%%%%%% change the value for 
the number of planet 
Nofplanet=1; 
  
%% calculation for rrs 
%% input data 
zs=ipdata(1); 
zp=ipdata(2); 
zr=ipdata(3); 
as=ipdata(4); 
ar=ipdata(5); 
module=ipdata(6); 
nofp=ipdata(7); 
  
for i=1:1:ipdata(7) 
    apofps(i)=pi-ipdata(200+i); %angular position of planet 
spacing i 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ds=zs*module; 
dp=zp*module; 
dr=zr*module; 
ha=module; 
hf=1.25*module; 
h=ha+hf; 
dsa=ds+2*ha; 
dpa=dp+2*ha; 
dra=dr+2*ha; 
dsf=ds-2*hf; 
dpf=dp-2*hf; 
drf=dr-2*hf; 
dsb=ds*cos(as/180*pi); 
dpb=dp*cos(as/180*pi); 
drb=dr*cos(ar/180*pi); 
Rsa=dsa/2; 
Rpa=dpa/2; 
 
Rra=drf/2; 
Rsb=dsb/2; 
Rpb=dpb/2; 
 
Rrb=drb/2; 
  
%%for sun-planet mesh 
 
MsEs=sqrt(Rsa^2-Rsb^2); 
BsNs=sqrt(Rpa^2-Rpb^2); 
MsNs=(Rsb+Rpb)*tan(as/180*pi); 
BsEs=MsEs+BsNs-MsNs; 
MsPs=Rsb*tan(as/180*pi); 
MsBs=MsEs-BsEs; 
BsPs=MsPs-MsBs; 

 
%pb=2*pi*Rsb/zs; 
pb=pi*module*cos(as/180*pi); 
BsCs=BsEs-pb; 
BsDs=pb; 
  
%for ring-planet mesh 
MrNr=module/2*(zs+zp)*sin(ar/180*pi); 
NrEr=sqrt(Rpa^2-Rpb^2); 
MrBr=sqrt(Rra^2-Rrb^2); 
BrEr=MrNr+NrEr-MrBr; 
MrPr=Rrb*tan(ar/180*pi); 
BrPr=MrPr-MrBr; 
BrCr=BrEr-pb; 
BrDr=pb; 
  
% rrs 
PsPr=Rpb*tan(as/180*pi)+Rpb*(pi-as/180*pi-
ar/180*pi)+Rpb*tan(ar/180*pi); 
tb=module*(pi/2+2*inv(as)); 
Q2Br=PsPr-BrPr-tb; 
dec1=Q2Br/pb; 
dec2=int32(Q2Br/pb); 
dec3=dec1-dec2; 
if dec3>=0 
    dec=dec2; 
else dec=dec2-1; 
end 
BrQ3=pb-pb*(double(dec1)-double(dec)); 
PrQ3=BrQ3-BrPr; 
if PrQ3>=0 
    PrQ3=PrQ3; 
else PrQ3=-PrQ3; 
end 
rrs=PrQ3/pb; 
if rrs>=0 
    rrs=rrs; 
else rrs=-rrs; 
end 
if BrQ3-BrPr<=0 
    rrs=rrs; 
else rrs=-rrs; 
end 
  
PBEs=BsEs/pb; 
PBPs=BsPs/pb; 
PBCs=BsCs/pb; 
PBDs=BsDs/pb; 
  
BrEr; 
BrPr; 
BrCr; 
BrDr; 
  
PBEr=BrEr/pb; 
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PBPr=BrPr/pb; 
PBCr=BrCr/pb; 
PBDr=BrDr/pb; 
  
rrs; 
  
%%calculation of spacing difference between sun-planet 
meshes 
for i=1:1:nofp 
    rsn(i)=zs*ipdata(200+i)/2/pi; 
    rsnn=double(int64(rsn(i))); 
    if rsnn>rsn(i) 
        rsnn=rsnn-1; 
    else 
        rsnn=rsnn; 
    end 
    rsn(i)=rsn(i)-rsnn; 
end 
rsn=-rsn; 
  
  
Xms=Xms+(PBPs-PBDs)-rsn(Nofplanet); 
xx=double(int64(Xms)); 
if xx<=Xms; 
    xx=xx; 
else xx=xx-1; 
 
end 
tt=Xms-xx; 
Yms=0; 
 
for i=1:1:(double(int8(PBEs))+2) 
    ymsss(i)=ymss(tt+i-1,PBEs); 
    Yms=Yms+ymsss(i); 
 
end 
Yms=Yms; 
  
for i=1:1:Yms 
    xxx=xx+i-Yms+ipdata(2)+double(int64(ipdata(2)/2))-1; 
    xxP=xxx/ipdata(2); 
    xxPP=double(int64(xxP)); 

    if  xxPP<=xxP 
        xxPP=xxPP; 
    else xxPP=xxPP-1; 
    end 
    NumofP(i)=Nofplanet*100+xxx-xxPP*ipdata(2)+1; 
end 
for i=1:1:Yms 
    xxxx=xx+rsn(Nofplanet)+i-Yms+ipdata(1)+(2*pi-
apofps(Nofplanet)+apofps(1))/2/pi*ipdata(1); 
    xxx=double(int64(xxxx)); 
    if xxx<=xxxx 
        xxx=xxx; 
    else xxx=xxx-1; 
    end 
    xxS=xxx/ipdata(1); 
    xxSS=double(int64(xxS)); 
    if xxSS<=xxS 
        xxSS=xxSS; 
    else xxSS=xxSS-1; 
    end 
    NumofS(i)=xxx-xxSS*ipdata(1)+1; 
end 
  
fract=Xms+10; 
fractt=double(int64(fract)); 
if fractt<=fract 
    fractt=fractt; 
else fractt=fractt-1; 
end 
frac=fract-fractt; 
if frac<PBCs 
    fra=frac/PBCs; 
else fra=(frac-PBCs)/(PBDs-PBCs); 
end 
for i=1:1:Yms 
    posit(i)=(fract-fractt+(Yms-i))/PBEs; 
end 
Yms=Yms+fra; 
  
Kms1=mstiffs(Yms,NumofP,NumofS,posit); 
 

13.1.20. mstiffr.m 
 
function mstiffr=mstiffr(noft,NumofP,NumofR,posit) 
  
%% input data 
zs=ipdata(1); 
zp=ipdata(2); 
zr=ipdata(3); 
as=ipdata(4); 
ar=ipdata(5); 
module=ipdata(6); 
nofp=ipdata(7); 
B=ipdata(8); 
  
for i=1:1:ipdata(7) 
 
 
apofps(i)=pi-ipdata(200+i); %angular position of planet 
spacing i 
end 
  
Rss=ipdata(14); 
 
Rps=ipdata(15); 
Rrs=ipdata(16); 
  
E=ipdata(21); % young's modules 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ds=zs*module; 
dp=zp*module; 
dr=zr*module; 
ha=module; 
hf=1.25*module; 
h=ha+hf; 
h=h; 
dsa=ds+2*ha; 
dpa=dp+2*ha; 
dra=dr+2*ha; 
dsf=ds-2*hf; 
dpf=dp-2*hf; 
drf=dr-2*hf; 
dsb=ds*cos(as/180*pi); 
dpb=dp*cos(as/180*pi); 
drb=dr*cos(ar/180*pi); 
Rsa=dsa/2; 
Rpa=dpa/2; 
Rra=drf/2; 
Rsb=dsb/2; 
Rpb=dpb/2; 
Rrb=drb/2; 
Rsf=dsf/2; 
Rpf=dpf/2; 
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Rrf=dra/2; 
Rs=ds/2; 
Rp=dp/2; 
Rr=dr/2; 
  
a=[2.7462 1.9479/2 1.7754/3]; 
b=[2.2932 2.2853 2.2771]; 
  
Numoft=int8(noft); 
Numoft=double(Numoft); 
if Numoft-noft<=0 
    Numoft=Numoft; 
else Numoft=Numoft-1; 
end 
stiffAo=0; 
for i=1:1:Numoft 
%if NumofP(i)==132 
%VNumofP(i)=0.05; 
%else 
    VNumofP(i)=0; 
%end 
%if NumofR(i)==83 
%VNumofR(i)=0.05; 
%else 
    VNumofR(i)=0; 
%end 
sR(i)=pi*module/2*(1-VNumofR(i)); 
Ir(i)=B*sR(i)^3/12; 
sP(i)=pi*module/2*(1-VNumofP(i)); 
Ip(i)=B*sP(i)^3/12; 
stiffA(i)=a(Numoft)/Numoft*((h/2)^3/(3*E*Ip(i))+(h/2)^3/(3
*E*Ir(i)))/Rp; 
stiffAo=stiffAo+stiffA(i); 
end 
  
startstiff=Rpb/(stiffAo+b(Numoft)*((Rpf-
Rps)/(E*B*Rps)+(Rrf-Rrs)/(E*B*Rrs))/Rpf); 
  
s=pi*module/2; 
IIp=B*s^3/12; 
IIr=B*s^3/12; 
  
endstiff=Rpb/(a(Numoft)*((h/2)^3/(3*E*IIp)+(h/2)^3/(3*E*II
r))/Rp+b(Numoft)*((Rpf-Rps)/(E*B*Rps)+(Rrf-
Rrs)/(E*B*Rrs))/Rpf); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% simulation of curve shape of undamaged mesh 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
mstiffrr=endstiff; 
dedu=endstiff-startstiff; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% simulation of curve shape of stiffness function 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
if Numoft==2 
    mstiff=mstiffrr-dedu; 
else if Numoft==3  
        if startstiff-endstiff==0 
            mstiff=mstiffrr-dedu; 
        else if VNumofP(2)+VNumofR(2)>0 
                mstiff=mstiffrr-dedu; 
            else if VNumofP(1)+VNumofR(1)>0 && 
VNumofP(3)+VNumofR(3)>0 
                    mstiff=mstiffrr-dedu; 
                else if VNumofP(1)+VNumofR(1)>0 
                     mstiff=mstiffrr-dedu; 
                    else if VNumofP(3)+VNumofR(3)>0 
                            mstiff=mstiffrr-(endstiff-startstiff)*(noft-
Numoft)^3/2; 

                        else  
                            mstiff=mstiffrr-dedu; 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% simulation of spalling 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
stiffAos=0; 
for i=1:1:Numoft 
if NumofP(i)==132 
PNumofP(i)=0; 
WNumofP(i)=0; 
DNumofP(i)=0; 
else 
    PNumofP(i)=0; 
    WNumofP(i)=0; 
    DNumofP(i)=0; 
end 
if NumofR(i)==83 
PNumofR(i)=0.6; 
WNumofR(i)=0.2; 
DNumofR(i)=0;%5e-5/s/sqrt(PNumofR(i)); 
  
else  
    PNumofR(i)=0; 
    WNumofR(i)=0; 
    DNumofR(i)=0; 
end 
sR(i)=pi*module/2*(1-DNumofR(i)); 
Ir(i)=B*sR(i)^3/12; 
sP(i)=pi*module/2*(1-DNumofP(i)); 
Ip(i)=B*sP(i)^3/12; 
stiffAs(i)=a(Numoft)/Numoft*((h/2)^3/(3*E*Ip(i))+(h/2)^3/(3
*E*Ir(i)))/Rp; 
stiffAos=stiffAos+stiffAs(i); 
end 
  
startstiffs=Rpb/(stiffAos+b(Numoft)*((Rpf-
Rps)/(E*B*Rps)+(Rrf-Rrs)/(E*B*Rrs))/Rpf); 
endstiffs=endstiff; 
dedus=endstiffs-startstiffs; 
  
for i=1:1:Numoft 
if posit(i)-PNumofP(i)<WNumofP(i) && posit(i)-
PNumofP(i)>=0 
    mstiff=mstiff-dedus*cos((posit(i)-
PNumofP(i))/WNumofP(i)*pi/2)^(1/5); 
else if posit(i)-PNumofP(i)<0 
 
        mstiff=mstiff-dedus*posit(i)/PNumofP(i); 
    else  
    mstiff=mstiff; 
    end 
end 
if posit(i)-PNumofR(i)<WNumofR(i) && posit(i)-
PNumofR(i)>=0 
    mstiff=mstiff-dedus*cos((posit(i)-
PNumofR(i))/WNumofR(i)*pi/2)^(1/5); 
else if posit(i)-PNumofR(i)<0 
        mstiff=mstiff-dedus*posit(i)/PNumofR(i); 
    else  
    mstiff=mstiff; 
    end 
end 
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end 
mstiffr=mstiff; 

 

 

13.1.21. mstiffs.m 
 
function mstiffs=mstiffs(noft,NumofP,NumofS,posit) 
  
%% input data 
zs=ipdata(1); 
zp=ipdata(2); 
zr=ipdata(3); 
as=ipdata(4); 
ar=ipdata(5); 
module=ipdata(6); 
nofp=ipdata(7); 
B=ipdata(8); 
  
for i=1:1:ipdata(7) 
    apofps(i)=pi-ipdata(200+i); %angular position of planet 
spacing i 
end 
  
Rss=ipdata(14); 
Rps=ipdata(15); 
Rrs=ipdata(16); 
  
E=ipdata(21); % young's modules 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ds=zs*module; 
dp=zp*module; 
dr=zr*module; 
ha=module; 
hf=1.25*module; 
h=ha+hf; 
h=h; 
dsa=ds+2*ha; 
dpa=dp+2*ha; 
dra=dr+2*ha; 
dsf=ds-2*hf; 
dpf=dp-2*hf; 
drf=dr-2*hf; 
dsb=ds*cos(as/180*pi); 
dpb=dp*cos(as/180*pi); 
drb=dr*cos(ar/180*pi); 
Rsa=dsa/2; 
Rpa=dpa/2; 
Rra=drf/2; 
Rsb=dsb/2; 
Rpb=dpb/2; 
Rrb=drb/2; 
Rsf=dsf/2; 
Rpf=dpf/2; 
 
Rrf=dra/2; 
 
Rs=ds/2; 
Rp=dp/2; 
Rr=dr/2; 
  
a=[2.7462 1.9479/2]; 
b=[2.2932 2.2853]; 
  
 
Numoft=int8(noft); 
Numoft=double(Numoft); 
if Numoft-noft<=0 
    Numoft=Numoft; 
else Numoft=Numoft-1; 
end 

 
stiffAo=0; 
for i=1:1:Numoft 
%if NumofP(i)==132 
%VNumofP(i)=0.05; 
%else 
    VNumofP(i)=0; 
%end 
%if NumofS(i)==19 
%VNumofS(i)=0.05; 
%else 
    VNumofS(i)=0; 
%end 
sS(i)=pi*module/2*(1-VNumofS(i)); 
Is(i)=B*sS(i)^3/12; 
sP(i)=pi*module/2*(1-VNumofP(i)); 
Ip(i)=B*sP(i)^3/12; 
stiffA(i)=a(Numoft)/Numoft*((h/2)^3/(3*E*Is(i))+(h/2)^3/(3*
E*Ip(i)))/Rs; 
stiffAo=stiffAo+stiffA(i); 
end 
  
startstiff=Rsb/(stiffAo+b(Numoft)*((Rsf-
Rss)/(E*B*Rss)+(Rpf-Rps)/(E*B*Rps))/Rsf); 
  
s=pi*module/2; 
IIs=B*s^3/12; 
IIp=B*s^3/12; 
  
endstiff=Rsb/(a(Numoft)*((h/2)^3/(3*E*IIs)+(h/2)^3/(3*E*II
p))/Rs+b(Numoft)*((Rsf-Rss)/(E*B*Rss)+(Rpf-
Rps)/(E*B*Rps))/Rsf); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% simulation of curve shape of undamaged mesh 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
mstiffss=endstiff; 
dedu=endstiff-startstiff; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% simulation of curve shape of stiffness function 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
if Numoft==1 
    mstiff=mstiffss-dedu; 
else if Numoft==2  
        if startstiff-endstiff==0 
            mstiff=mstiffss-dedu; 
            else if VNumofP(1)+VNumofS(1)>0 && 
VNumofP(2)+VNumofS(2)>0 
                    mstiff=mstiffss-dedu; 
                else if VNumofP(1)+VNumofS(1)>0  
                     mstiff=mstiffss-dedu; 
                    else if VNumofP(2)+VNumofS(2)>0 
                            mstiff=mstiffss-(endstiff-startstiff)*(noft-
Numoft)^3/2; 
                        else  
                            mstiff=mstiffss-dedu; 
                        end 
                    end 
                end 
        end 
    end 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% simulation of spalling 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
stiffAos=0; 
for i=1:1:Numoft 
if NumofP(i)==132 
PNumofP(i)=0; 
WNumofP(i)=0; 
DNumofP(i)=0; 
else 
    PNumofP(i)=0; 
    WNumofP(i)=0; 
    DNumofP(i)=0; 
end 
if NumofS(i)==19 
PNumofS(i)=0.6; 
WNumofS(i)=0.05; 
DNumofS(i)=20e-5/s/sqrt(PNumofS(i)); 
  
else  
    PNumofS(i)=0; 
    WNumofS(i)=0; 
 
 
    DNumofS(i)=0; 
end 
sS(i)=pi*module/2*(1-DNumofS(i)); 
Is(i)=B*sS(i)^3/12; 
sP(i)=pi*module/2*(1-DNumofP(i)); 
Ip(i)=B*sP(i)^3/12; 
stiffAs(i)=a(Numoft)/Numoft*((h/2)^3/(3*E*Is(i))+(h/2)^3/(3
*E*Ip(i)))/Rs; 

stiffAos=stiffAos+stiffAs(i); 
end 
  
startstiffs=Rsb/(stiffAos+b(Numoft)*((Rsf-
Rss)/(E*B*Rss)+(Rpf-Rps)/(E*B*Rps))/Rsf); 
endstiffs=endstiff; 
dedus=endstiffs-startstiffs; 
  
for i=1:1:Numoft 
if posit(i)-PNumofP(i)<WNumofP(i) && posit(i)-
PNumofP(i)>=0 
    mstiff=mstiff-dedus*cos((posit(i)-
PNumofP(i))/WNumofP(i)*pi/2)^(1/5); 
else if posit(i)-PNumofP(i)<0 
        mstiff=mstiff-dedus*posit(i)/PNumofP(i); 
    else  
    mstiff=mstiff; 
    end 
end 
if posit(i)-PNumofS(i)<WNumofS(i) && posit(i)-
PNumofS(i)>=0 
    mstiff=mstiff-dedus*cos((posit(i)-
PNumofS(i))/WNumofS(i)*pi/2)^(1/5); 
else if posit(i)-PNumofS(i)<0 
        mstiff=mstiff-dedus*posit(i)/PNumofS(i); 
    else  
    mstiff=mstiff; 
    end 
end 
end 
mstiffs=mstiff; 
 

 

13.1.22. TorM.m 
 
function TorqueM=TorqueM(speedM) 
p=ipdata(31); 
f=ipdata(32); 
opspeedM=ipdata(33); 
power=ipdata(34); 
  
topspeedM=120*f/p; 
Tfl=power*60/opspeedM/2/pi*0.96; % full load torque 
Tsu=2.3*Tfl; % start-up torque 
Tm=2.6*Tfl; % maximum torque 
  

 
toploadspeedM=topspeedM-Tm*(topspeedM-opspeedM)/Tfl; 
  
if speedM>=0 && speedM<=toploadspeedM 
    TorqueM=(Tm-Tsu)/(toploadspeedM-0)*speedM+Tsu; 
else if speedM>=toploadspeedM && speedM<=topspeedM 
        TorqueM=(Tfl-0)/(topspeedM-opspeedM)*(-
speedM+topspeedM); 
    else TorqueM=0; 
    end 
end 
 

13.1.23. inertiaC.m 
 
function inertiaC=inertiaC(speedC,dispC) 
 
inertiaore=ipdata(92)*(1/4*1/2*ipdata(23)*pi*ipdata(90)^4*i
pdata(91)+1/4*ipdata(85)^2*ipdata(23)*pi*ipdata(90)^2*ipda
ta(91)); 
inertiawithoutore=1/2*pi*ipdata(22)*(ipdata(82)^4-
ipdata(81)^4)*ipdata(83)+1/2*pi*ipdata(22)*(ipdata(85)^4-
ipdata(84)^4)*ipdata(86)+ipdata(85)^2*ipdata(87)*1/4*pi*ip
data(22)*(ipdata(88)^2*ipdata(89)-
ipdata(90)^2*ipdata(91))+ipdata(87)*1/4*1/2*pi*ipdata(22)*(
ipdata(88)^4*ipdata(89)-ipdata(90)^4*ipdata(91)); 
  
 
if dispC<=ipdata(44) 
   inertia=inertiawithoutore; 
else if dispC<=ipdata(45) 
        inertia=inertiawithoutore+inertiaore*(dispC-
ipdata(44))/(ipdata(45)-ipdata(44)); 

 
    else if dispC<=ipdata(46) 
            Lstep=(dispC-ipdata(45))/ipdata(48); 
            Lstepint=double(int64(Lstep)); 
            if Lstepint<=Lstep 
               Lstepint=Lstepint; 
            else Lstepint=Lstepint-1; 
            end 
            LstepL=ipdata(48)*(Lstep-Lstepint); 
            if LstepL<=ipdata(94) 
               inertia=inertiawithoutore+inertiaore*(ipdata(92)-
ipdata(93)*LstepL/ipdata(94))/ipdata(92); 
            else 
            inertia=inertiawithoutore+inertiaore*(ipdata(92)-
ipdata(93)+ipdata(93)*(LstepL-ipdata(94))/(ipdata(48)-
ipdata(94)))/ipdata(92); 
            end 
        else if dispC<=ipdata(47) 
            Lstep=(ipdata(46)-ipdata(45))/ipdata(48); 
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            Lstepint=double(int64(Lstep)); 
            if Lstepint<=Lstep 
               Lstepint=Lstepint; 
            else Lstepint=Lstepint-1; 
            end 
            LstepL=ipdata(48)*(Lstep-Lstepint); 
 
            if LstepL<=ipdata(94) 
               inertia=inertiawithoutore+inertiaore*(ipdata(92)-
ipdata(93)*LstepL/ipdata(94))/ipdata(92); 
            else 
            inertia=inertiawithoutore+inertiaore*(ipdata(92)-
ipdata(93)+ipdata(93)*(LstepL-ipdata(94))/(ipdata(48)-
ipdata(94)))/ipdata(92); 

            end 
            inertia=(inertia-inertiawithoutore)*(ipdata(47)-
dispC)/(ipdata(47)-ipdata(46))+inertiawithoutore; 
            else inertia=inertiawithoutore; 
            end 
        end 
    end 
end 
  
inertiaC=inertia; 
 

 

13.1.24. massC.m 
 
function massC=massC(speedC,dispC) 
massore=ipdata(92)*(ipdata(23)*pi*ipdata(90)^2*ipdata(91)/
4); 
masswithoutore=pi*ipdata(22)*(ipdata(82)^2-
ipdata(81)^2)*ipdata(83)+pi*ipdata(22)*(ipdata(85)^2-
ipdata(84)^2)*ipdata(86)+ipdata(87)*1/4*pi*ipdata(22)*(ipda
ta(88)^2*ipdata(89)-ipdata(90)^2*ipdata(91)); 
  
  
if dispC<=ipdata(44) 
   mass=masswithoutore; 
else if dispC<=ipdata(45) 
        mass=masswithoutore+massore*(dispC-
ipdata(44))/(ipdata(45)-ipdata(44)); 
    else if dispC<=ipdata(46) 
            Lstep=(dispC-ipdata(45))/ipdata(48); 
            Lstepint=double(int64(Lstep)); 
            if Lstepint<=Lstep 
               Lstepint=Lstepint; 
            else Lstepint=Lstepint-1; 
            end 
            LstepL=ipdata(48)*(Lstep-Lstepint); 
            if LstepL<=ipdata(94) 
               mass=masswithoutore+massore*(ipdata(92)-
ipdata(93)*LstepL/ipdata(94))/ipdata(92); 
            else 
            mass=masswithoutore+massore*(ipdata(92)-
ipdata(93)+ipdata(93)*(LstepL-ipdata(94))/(ipdata(48)-
ipdata(94)))/ipdata(92); 

 
            end 
        else if dispC<=ipdata(47) 
            Lstep=(ipdata(46)-ipdata(45))/ipdata(48); 
            Lstepint=double(int64(Lstep)); 
            if Lstepint<=Lstep 
               Lstepint=Lstepint; 
            else Lstepint=Lstepint-1; 
            end 
            LstepL=ipdata(48)*(Lstep-Lstepint); 
            if LstepL<=ipdata(94) 
               mass=masswithoutore+massore*(ipdata(92)-
ipdata(93)*LstepL/ipdata(94))/ipdata(92); 
            else 
            mass=masswithoutore+massore*(ipdata(92)-
ipdata(93)+ipdata(93)*(LstepL-ipdata(94))/(ipdata(48)-
ipdata(94)))/ipdata(92); 
            end 
            mass=(mass-masswithoutore)*(ipdata(47)-
dispC)/(ipdata(47)-ipdata(46))+masswithoutore; 
            else mass=masswithoutore; 
            end 
        end 
    end 
end 
  
massC=mass; 
 

 

13.1.25. TorqueS.m 
 
function TorqueS=TorqueS(speedS) 
speedM=speedS*ipdata(35); 
 
p=ipdata(31); 
f=ipdata(32); 
 
opspeedM=ipdata(33); 
power=ipdata(34); 
  
topspeedM=120*f/p; 
Tfl=power*60/opspeedM/2/pi; % full load torque 
Tsu=2.3*Tfl; % start-up torque 
Tm=2.6*Tfl; % maximum torque 

  
toploadspeedM=topspeedM-Tm*(topspeedM-opspeedM)/Tfl; 
  
if speedM<=toploadspeedM && speedM>=0 
    TorqueM=(Tm-Tsu)/(toploadspeedM-0)*speedM+Tsu; 
else if speedM>=toploadspeedM && speedM<=topspeedM 
        TorqueM=(Tfl-0)/(topspeedM-opspeedM)*(-
speedM+topspeedM); 
    else TorqueM=0; 
    end 
end 
  
TorqueS=TorqueM*ipdata(35); 
 

 

13.1.26. torqueOUT.m 
 
function torqueOUT4=torqueOUT4(speedC,dispC) 
p=ipdata(31); 

 
f=ipdata(32); 
opspeedM=ipdata(33); 
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power=ipdata(34); 
topspeedM=120*f/p; 
Tfl=power*60/opspeedM/2/pi; % full load torque 
Tsu=2.3*Tfl; % start-up torque 
Tm=2.6*Tfl; % maximum torque 
  
%torqueOUT4=Tfl*ipdata(36)/(ipdata(41)*opspeedM/ipdata(
36))^2*speedC^2+(ipdata(41)^2-
1)*Tfl*ipdata(36)/(ipdata(41)*opspeedM/ipdata(36))^2*speed
C^2; 
  
if dispC<=ipdata(44) 
   
torqueOUT=Tfl*ipdata(36)/(ipdata(41)*opspeedM/ipdata(36)
)^2*speedC^2; 
else if dispC<=ipdata(45) 
        
torqueOUT=Tfl*ipdata(36)/(ipdata(41)*opspeedM/ipdata(36)
)^2*speedC^2+(ipdata(41)^2-
1)*Tfl*ipdata(36)/(ipdata(41)*opspeedM/ipdata(36))^2*speed
C^2*(dispC-ipdata(44))/(ipdata(45)-ipdata(44)); 
    else if dispC<=ipdata(46) 
            Lstep=(dispC-ipdata(45))/ipdata(48); 
            Lstepint=double(int64(Lstep)); 
            if Lstepint<=Lstep 
               Lstepint=Lstepint; 
            else Lstepint=Lstepint-1; 
            end 
            LstepL=ipdata(48)*(Lstep-Lstepint); 
            if LstepL<=ipdata(94) 
               
torqueOUT=Tfl*ipdata(36)/(ipdata(41)*opspeedM/ipdata(36)
)^2*speedC^2+(ipdata(41)^2-
1)*Tfl*ipdata(36)/(ipdata(41)*opspeedM/ipdata(36))^2*speed
C^2*(ipdata(92)-ipdata(93)*LstepL/ipdata(94))/ipdata(92); 
            else 
            
torqueOUT=Tfl*ipdata(36)/(ipdata(41)*opspeedM/ipdata(36)
)^2*speedC^2+(ipdata(41)^2-
1)*Tfl*ipdata(36)/(ipdata(41)*opspeedM/ipdata(36))^2*speed 
 
C^2*(ipdata(92)-ipdata(93)+ipdata(93)*(LstepL-
ipdata(94))/(ipdata(48)-ipdata(94)))/ipdata(92); 

            end 
        else if dispC<=ipdata(47) 
            Lstep=(ipdata(46)-ipdata(45))/ipdata(48); 
            Lstepint=double(int64(Lstep)); 
            if Lstepint<=Lstep 
               Lstepint=Lstepint; 
            else Lstepint=Lstepint-1; 
            end 
            LstepL=ipdata(48)*(Lstep-Lstepint); 
            if LstepL<=ipdata(94) 
               
torqueOUT=Tfl*ipdata(36)/(ipdata(41)*opspeedM/ipdata(36)
)^2*speedC^2+(ipdata(41)^2-
1)*Tfl*ipdata(36)/(ipdata(41)*opspeedM/ipdata(36))^2*speed
C^2*(ipdata(92)-ipdata(93)*LstepL/ipdata(94))/ipdata(92); 
            else 
            
torqueOUT=Tfl*ipdata(36)/(ipdata(41)*opspeedM/ipdata(36)
)^2*speedC^2+(ipdata(41)^2-
1)*Tfl*ipdata(36)/(ipdata(41)*opspeedM/ipdata(36))^2*speed
C^2*(ipdata(92)-ipdata(93)+ipdata(93)*(LstepL-
ipdata(94))/(ipdata(48)-ipdata(94)))/ipdata(92); 
            end 
            torqueOUT=(torqueOUT-
Tfl*ipdata(36)/(ipdata(41)*opspeedM/ipdata(36))^2*speedC^
2)*(ipdata(47)-dispC)/(ipdata(47)-
ipdata(46))+Tfl*ipdata(36)/(ipdata(41)*opspeedM/ipdata(36))
^2*speedC^2; 
            else 
torqueOUT=Tfl*ipdata(36)/(ipdata(41)*opspeedM/ipdata(36)
)^2*speedC^2; 
            end 
        end 
    end 
end 
if dispC<=ipdata(50) && dispC>=ipdata(49) 
    torqueOUT=torqueOUT*ipdata(95); 
end 
if speedC<=0 
    torqueOUT=0; 
end 
torqueOUT4=torqueOUT; 
 

 

13.1.27. Vdp1.m 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%    
dynamic modelling of planetary gear 
system     %%%%%%%%%%%%%%%%%%%%%%%%%% 
%% input  
%% Notice: replace fae(i) with ((y(3)-y(6))/(rr+rs)+pi-
ipdata(20i)) 
 
%% Notice: replace Ksp(i) with 
 
 
%%         (SKmsi((ipdata(36)/ipdata(35)-1)*zs*(y(3)-
y(6))/(rr+rs)/2/pi)) 
%% Notice: replace Krp(i) with 
%%         (SKmri(zr*(y(3)-y(6))/(rr+rs)/2/pi)) 
%% Notice: replace Dfesp(i) with 0 
%%         ((espi((ipdata(36)/ipdata(35)-1)*zs*(y(3)-
y(6))/(rr+rs)/2/pi+ipdata(55))-espi((ipdata(36)/ipdata(35)-
1)*zs*(y(3)-y(6))/(rr+rs)/2/pi-ipdata(55)))/ipdata(55)/2) 
%% Notice: replace Dferp(i) with 0 
%%         ((erpi(zr*(y(3)-y(6))/(rr+rs)/2/pi+ipdata(55))-
erpi(zr*(y(3)-y(6))/(rr+rs)/2/pi-ipdata(55))/ipdata(55)/2)) 
%% Notice: replace fesp(i) with 
 

 
%%         (espi((ipdata(36)/ipdata(35)-1)*zs*(y(3)-
y(6))/(rr+rs)/2/pi)) 
 
%% Notice: replace ferp(i) with 
%%         (erpi(zr*(y(3)-y(6))/(rr+rs)/2/pi)) 
%% Notice: replace Dtcp(i) with 0 
%%         (ipdata(67)*ipdata(30i)/180*pi) 
%% Notice: replace Ts s with 
%%         (qcc*y(38)*(y(38)-y(21)*ipdata(35)/rs)*ipdata(35)) 
%%         (TorqueS(y(21)/rs/2/pi*60)) 
%% Notice: replace T c with 
%%         (torqueOUT(y(27)/rc/2/pi*60,y(9))) 
  
%% Notice: replace options 
%%         mass (1)= 
(pi*ipdata(8)*ipdata(22)*((ipdata(6)*ipdata(1)/2)^2-
ipdata(14)^2)) 
%%         mass (2)= 
(pi*ipdata(8)*ipdata(22)*((ipdata(6)*ipdata(1)/2)^2-
ipdata(14)^2)) 
%%         mass (3)= 
(pi*ipdata(8)*ipdata(22)*((ipdata(6)*ipdata(1)/2)^4-
ipdata(14)^4)/2/rs/rs) 
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%%         mass (4)= (pi*ipdata(8)*ipdata(22)*(-
(ipdata(6)*ipdata(3)/2)^2+ipdata(16)^2)) 
%%         mass (5)= (pi*ipdata(8)*ipdata(22)*(-
(ipdata(6)*ipdata(3)/2)^2+ipdata(16)^2)) 
%%         mass (6)= (pi*ipdata(8)*ipdata(22)*(-
(ipdata(6)*ipdata(3)/2)^4+ipdata(16)^4)/2/rr/rr) 
%%         mass (7)= massC((y(27)/rc/2/pi*60),y(9)) 
%%         mass (8)= massC((y(27)/rc/2/pi*60),y(9)) 
%%         mass (9)= (inertiaC((y(27)/rc/2/pi*60),y(9))/rc/rc) 
%%         mass (10)= 
(pi*ipdata(8)*ipdata(22)*((ipdata(6)*ipdata(2)/2)^2-
ipdata(15)^2)) 
%%         mass (11)= 
(pi*ipdata(8)*ipdata(22)*((ipdata(6)*ipdata(2)/2)^2-
ipdata(15)^2)) 
%%         mass (12)= 
(pi*ipdata(8)*ipdata(22)*((ipdata(6)*ipdata(2)/2)^4-
ipdata(15)^4)/2/rp/rp) 
  
%%%-------------------------------------------------------------------
----- 
function dydt=vdp1(t,y) 
 
as=ipdata(4)/180*pi; 
ar=ipdata(5)/180*pi; 
Csp=[ipdata(61),ipdata(61),ipdata(61)]; 
Crp=[ipdata(62),ipdata(62),ipdata(62)]; 
Cpx=ipdata(63); 
Cpy=ipdata(64); 
Kpx=ipdata(65); 
Kpy=ipdata(66); 
SPsp=[ipdata(53),ipdata(53),ipdata(53)]; 
SPrp=[ipdata(54),ipdata(54),ipdata(54)]; 
zs=ipdata(1); 
zr=ipdata(3); 
zp=ipdata(2); 
 

DfEr=[ipdata(56),ipdata(56),ipdata(56)]; 
DfEs=[ipdata(56),ipdata(56),ipdata(56)]; 
fEr=[ipdata(56),ipdata(56),ipdata(56)]; 
fEs=[ipdata(56),ipdata(56),ipdata(56)]; 
fErp=[ipdata(56),ipdata(56),ipdata(56)]; 
fEsp=[ipdata(56),ipdata(56),ipdata(56)]; 
DfErp=[ipdata(56),ipdata(56),ipdata(56)]; 
DfEsp=[ipdata(56),ipdata(56),ipdata(56)]; 
Drcp=[ipdata(67)-ipdata(9),ipdata(67)-ipdata(9),ipdata(67)-
ipdata(9)]; 
rs=ipdata(1)*ipdata(6)*cos(as)/2; 
rr=ipdata(3)*ipdata(6)*cos(ar)/2; 
rc=ipdata(9); 
Trb=ipdata(71); 
rp=ipdata(2)*ipdata(6)*cos(as)/2; 
qcc=ipdata(72); 
Im=ipdata(37); 
  
t 
S=y(3)  
C=y(9)  
P=y(12) 
R=y(6) 
A=y(21) 
B=y(27) 
%% dydt 
%%%-------------------------------------------------------------------
----- 
dydt=[ 
]; 
%% [t,y]=ode15s(@vdp1,[0 
5],[0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;
0;0;0;0;0;0]); 
%%%-------------------------------------------------------------------
----- 
 

13.1.28. emr1.m / emr2.m / emr3.m 
 
function emr1=emr1(Xmr) 
%%%%%%%%%%%%%%%%%%% change the value for 
the number of planet 
Nofplanet=1; 
  
%% calculation for rrs 
%% input data 
zs=ipdata(1);  %% tooth number of sun gear 
zp=ipdata(2);  %% tooth number of planet gear 
zr=ipdata(3);  %% tooth number of ring gear 
as=ipdata(4);  %% pressure angle of sun-planet 
ar=ipdata(5);  %% pressure angle of ring-planet 
module=ipdata(6); %% module 
nofp=ipdata(7); %% number of planet gears 
  
for i=1:1:ipdata(7) 
 
    apofps(i)=pi-ipdata(200+i); %angular position of planet 
spacing i 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
ds=zs*module; 
dp=zp*module; 
dr=zr*module; 
ha=module; 
hf=1.25*module; 
h=ha+hf; 
dsa=ds+2*ha; 

 
dpa=dp+2*ha; 
 
dra=dr+2*ha; 
dsf=ds-2*hf; 
dpf=dp-2*hf; 
drf=dr-2*hf; 
dsb=ds*cos(as/180*pi); 
dpb=dp*cos(as/180*pi); 
drb=dr*cos(ar/180*pi); 
Rsa=dsa/2; 
Rpa=dpa/2; 
Rra=drf/2; 
Rsb=dsb/2; 
Rpb=dpb/2; 
Rrb=drb/2; 
  
%%for sun-planet mesh 
MsEs=sqrt(Rsa^2-Rsb^2); 
BsNs=sqrt(Rpa^2-Rpb^2); 
MsNs=(Rsb+Rpb)*tan(as/180*pi); 
BsEs=MsEs+BsNs-MsNs; 
MsPs=Rsb*tan(as/180*pi); 
MsBs=MsEs-BsEs; 
BsPs=MsPs-MsBs; 
%pb=2*pi*Rsb/zs; 
pb=pi*module*cos(as/180*pi); 
BsCs=BsEs-pb; 
BsDs=pb; 
  
%for ring-planet mesh 
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MrNr=module/2*(zs+zp)*sin(ar/180*pi); 
NrEr=sqrt(Rpa^2-Rpb^2); 
MrBr=sqrt(Rra^2-Rrb^2); 
BrEr=MrNr+NrEr-MrBr; 
MrPr=Rrb*tan(ar/180*pi); 
BrPr=MrPr-MrBr; 
BrCr=BrEr-pb; 
BrDr=pb; 
  
% rrs 
PsPr=Rpb*tan(as/180*pi)+Rpb*(pi-as/180*pi-
ar/180*pi)+Rpb*tan(ar/180*pi); 
tb=module*(pi/2+2*inv(as)); 
Q2Br=PsPr-BrPr-tb; 
dec1=Q2Br/pb; 
dec2=int32(Q2Br/pb); 
dec3=dec1-dec2; 
if dec3>=0 
    dec=dec2; 
else dec=dec2-1; 
end 
BrQ3=pb-pb*(double(dec1)-double(dec)); 
PrQ3=BrQ3-BrPr; 
if PrQ3>=0 
    PrQ3=PrQ3; 
else PrQ3=-PrQ3; 
end 
rrs=PrQ3/pb; 
if rrs>=0 
    rrs=rrs; 
else rrs=-rrs; 
end 
if BrQ3-BrPr<=0 
    rrs=rrs; 
else rrs=-rrs; 
end 
  
PBEs=BsEs/pb; 
PBPs=BsPs/pb; 
PBCs=BsCs/pb; 
PBDs=BsDs/pb; 
  
BrEr; 
BrPr; 
BrCr; 
BrDr; 
  
PBEr=BrEr/pb; 
PBPr=BrPr/pb; 
PBCr=BrCr/pb; 
PBDr=BrDr/pb; 
  
rrs; 
  
%%calculation of spacing difference between ring-planet 
meshes 
for i=1:1:nofp 
    rrn(i)=zr*apofps(i)/2/pi; 
    rrnn=double(int64(rrn(i))); 
    if rrnn>rrn(i) 
        rrnn=rrnn-1; 
    else 
        rrnn=rrnn; 
    end 

    rrn(i)=rrn(i)-rrnn; 
end 
rrn=rrn-1; 
  
Xmr=Xmr+(PBPr-PBDr)-rrn(Nofplanet)-rrs; 
xx=double(int64(Xmr)); 
if xx<=Xmr; 
    xx=xx; 
else xx=xx-1; 
end 
tt=Xmr-xx; 
Ymr=0; 
for i=1:1:(double(int8(PBEr))+2) 
    ymrrr(i)=ymrr(tt+i-1,PBEr); 
    Ymr=Ymr+ymrrr(i); 
end 
Ymr=Ymr; 
  
for i=1:1:Ymr 
    xxx=xx+i-Ymr+ipdata(2); 
    xxP=xxx/ipdata(2); 
    xxPP=double(int64(xxP)); 
    if  xxPP<=xxP 
        xxPP=xxPP; 
    else xxPP=xxPP-1; 
    end 
    NumofP(i)=Nofplanet*100+xxx-xxPP*ipdata(2)+1; 
end 
for i=1:1:Ymr 
    xxxx=xx+rrn(Nofplanet)+i-Ymr+ipdata(3)+(2*pi-
apofps(Nofplanet)+apofps(1))/2/pi*ipdata(3)+1; 
    xxx=double(int64(xxxx)); 
    if xxx<=xxxx 
        xxx=xxx; 
    else xxx=xxx-1; 
    end 
    xxR=xxx/ipdata(3); 
    xxRR=double(int64(xxR)); 
    if xxRR<=xxR 
        xxRR=xxRR; 
    else xxRR=xxRR-1; 
    end 
    NumofR(i)=xxx-xxRR*ipdata(3)+1; 
end 
  
fract=Xmr+10; 
fractt=double(int64(fract)); 
if fractt<=fract 
    fractt=fractt; 
else fractt=fractt-1; 
end 
frac=fract-fractt; 
if frac<(PBCr-PBDr) 
    fra=frac/(PBCr-PBDr); 
else fra=(frac-(PBCr-PBDr))/(2*PBDr-PBCr); 
end 
for i=1:1:Ymr 
    posit(i)=(fract-fractt+(Ymr-i))/PBEr; 
end 
Ymr=Ymr+fra; 
  
emr1=emrrr(Ymr,NumofP,NumofR,posit); 
 

 

13.1.29. emrrr.m 
 
function emrrr=emrrr(noft,NumofP,NumofR,posit) 
 

  
%% input data 
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zs=ipdata(1); 
zp=ipdata(2); 
zr=ipdata(3); 
as=ipdata(4); 
ar=ipdata(5); 
module=ipdata(6); 
nofp=ipdata(7); 
B=ipdata(8); 
  
for i=1:1:ipdata(7) 
    apofps(i)=pi-ipdata(200+i); %angular position of planet 
spacing i 
end 
  
Rss=ipdata(14); 
Rps=ipdata(15); 
Rrs=ipdata(16); 
  
E=ipdata(21); % young's modules 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
ds=zs*module; 
dp=zp*module; 
dr=zr*module; 
ha=module; 
hf=1.25*module; 
h=ha+hf; 
h=h; 
dsa=ds+2*ha; 
dpa=dp+2*ha; 
dra=dr+2*ha; 
dsf=ds-2*hf; 
dpf=dp-2*hf; 
drf=dr-2*hf; 
dsb=ds*cos(as/180*pi); 
dpb=dp*cos(as/180*pi); 
drb=dr*cos(ar/180*pi); 
Rsa=dsa/2; 
Rpa=dpa/2; 
Rra=drf/2; 
Rsb=dsb/2; 
Rpb=dpb/2; 
Rrb=drb/2; 
Rsf=dsf/2; 
Rpf=dpf/2; 
Rrf=dra/2; 
Rs=ds/2; 
Rp=dp/2; 
Rr=dr/2; 
  
a=[2.7462 1.9479/2 1.7754/3]; 
b=[2.2932 2.2853 2.2771]; 
 
  
Numoft=int8(noft); 
Numoft=double(Numoft); 

if Numoft-noft<=0 
 
    Numoft=Numoft; 
else Numoft=Numoft-1; 
end 
  
  
rrAos=0; 
for i=1:1:Numoft 
if NumofP(i)==132 
PNumofP(i)=0; 
WNumofP(i)=0; 
DNumofP(i)=0; 
else 
    PNumofP(i)=0; 
    WNumofP(i)=0; 
    DNumofP(i)=0; 
end 
if NumofR(i)==83 
PNumofR(i)=0.6; 
WNumofR(i)=0.2; 
DNumofR(i)=0; 
else  
    PNumofR(i)=0; 
    WNumofR(i)=0; 
    DNumofR(i)=0; 
end 
end 
  
startrrs=0; 
  
for i=1:1:Numoft 
    mrr(i)=0; 
if posit(i)-PNumofP(i)<WNumofP(i) && PNumofP(i)-
posit(i)<WNumofP(i) 
    mrr(i)=mrr(i)+DNumofP(i)*cos((posit(i)-
PNumofP(i))/WNumofP(i)*pi/2)^(1/5); 
else 
    mrr(i)=mrr(i)+0; 
end 
if posit(i)-PNumofR(i)<WNumofR(i) && PNumofR(i)-
posit(i)<WNumofR(i) 
    mrr(i)=mrr(i)+DNumofR(i)*cos((posit(i)-
PNumofR(i))/WNumofR(i)*pi/2)^(1/5); 
else 
    mrr(i)=mrr(i)+0; 
end 
if startrrs<=mrr(i) 
    startrrs=mrr(i); 
else startrrs=startrrs; 
end 
end 
  
emrrr=startrrs; 
 

 

13.1.30. ems1.m / ems2.m / ems3.m 
 
function ems1=ems1(Xms) 
%%%%%%%%%%%%%%%%%%% change the value for 
the number of planet 
Nofplanet=1; 
  
%% calculation for rrs 
%% input data 
zs=ipdata(1); 
zp=ipdata(2); 
zr=ipdata(3); 

 
as=ipdata(4); 
ar=ipdata(5); 
module=ipdata(6); 
 
nofp=ipdata(7); 
  
for i=1:1:ipdata(7) 
    apofps(i)=pi-ipdata(200+i); %angular position of planet 
spacing i 
end 
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 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ds=zs*module; 
dp=zp*module; 
dr=zr*module; 
ha=module; 
hf=1.25*module; 
h=ha+hf; 
dsa=ds+2*ha; 
dpa=dp+2*ha; 
dra=dr+2*ha; 
dsf=ds-2*hf; 
dpf=dp-2*hf; 
drf=dr-2*hf; 
dsb=ds*cos(as/180*pi); 
dpb=dp*cos(as/180*pi); 
drb=dr*cos(ar/180*pi); 
Rsa=dsa/2; 
Rpa=dpa/2; 
Rra=drf/2; 
Rsb=dsb/2; 
Rpb=dpb/2; 
Rrb=drb/2; 
  
%%for sun-planet mesh 
MsEs=sqrt(Rsa^2-Rsb^2); 
BsNs=sqrt(Rpa^2-Rpb^2); 
MsNs=(Rsb+Rpb)*tan(as/180*pi); 
BsEs=MsEs+BsNs-MsNs; 
MsPs=Rsb*tan(as/180*pi); 
MsBs=MsEs-BsEs; 
BsPs=MsPs-MsBs; 
%pb=2*pi*Rsb/zs; 
pb=pi*module*cos(as/180*pi); 
BsCs=BsEs-pb; 
BsDs=pb; 
  
%for ring-planet mesh 
MrNr=module/2*(zs+zp)*sin(ar/180*pi); 
NrEr=sqrt(Rpa^2-Rpb^2); 
MrBr=sqrt(Rra^2-Rrb^2); 
BrEr=MrNr+NrEr-MrBr; 
MrPr=Rrb*tan(ar/180*pi); 
BrPr=MrPr-MrBr; 
BrCr=BrEr-pb; 
BrDr=pb; 
  
% rrs 
PsPr=Rpb*tan(as/180*pi)+Rpb*(pi-as/180*pi-
ar/180*pi)+Rpb*tan(ar/180*pi); 
tb=module*(pi/2+2*inv(as)); 
Q2Br=PsPr-BrPr-tb; 
dec1=Q2Br/pb; 
dec2=int32(Q2Br/pb); 
dec3=dec1-dec2; 
if dec3>=0 
    dec=dec2; 
else dec=dec2-1; 
end 
BrQ3=pb-pb*(double(dec1)-double(dec)); 
PrQ3=BrQ3-BrPr; 
if PrQ3>=0 
    PrQ3=PrQ3; 
else PrQ3=-PrQ3; 
end 
rrs=PrQ3/pb; 
if rrs>=0 
    rrs=rrs; 
else rrs=-rrs; 
end 
if BrQ3-BrPr<=0 

    rrs=rrs; 
else rrs=-rrs; 
end 
  
PBEs=BsEs/pb; 
PBPs=BsPs/pb; 
PBCs=BsCs/pb; 
PBDs=BsDs/pb; 
  
BrEr; 
BrPr; 
BrCr; 
BrDr; 
  
PBEr=BrEr/pb; 
PBPr=BrPr/pb; 
PBCr=BrCr/pb; 
PBDr=BrDr/pb; 
  
rrs; 
  
%%calculation of spacing difference between sun-planet 
meshes 
for i=1:1:nofp 
    rsn(i)=zs*apofps(i)/2/pi; 
    rsnn=double(int64(rsn(i))); 
    if rsnn>rsn(i) 
        rsnn=rsnn-1; 
    else 
        rsnn=rsnn; 
    end 
    rsn(i)=rsn(i)-rsnn; 
end 
  
  
Xms=Xms+(PBPs-PBDs)-rsn(Nofplanet); 
xx=double(int64(Xms)); 
if xx<=Xms; 
    xx=xx; 
else xx=xx-1; 
end 
tt=Xms-xx; 
Yms=0; 
for i=1:1:(double(int8(PBEs))+2) 
    ymsss(i)=ymss(tt+i-1,PBEs); 
    Yms=Yms+ymsss(i); 
end 
Yms=Yms; 
  
for i=1:1:Yms 
    xxx=xx+i-Yms+ipdata(2)+double(int64(ipdata(2)/2))-1; 
    xxP=xxx/ipdata(2); 
    xxPP=double(int64(xxP)); 
    if  xxPP<=xxP 
        xxPP=xxPP; 
    else xxPP=xxPP-1; 
    end 
    NumofP(i)=Nofplanet*100+xxx-xxPP*ipdata(2)+1; 
end 
for i=1:1:Yms 
    xxxx=xx+rsn(Nofplanet)+i-Yms+ipdata(1)+(2*pi-
apofps(Nofplanet)+apofps(1))/2/pi*ipdata(1); 
    xxx=double(int64(xxxx)); 
    if xxx<=xxxx 
        xxx=xxx; 
    else xxx=xxx-1; 
    end 
    xxS=xxx/ipdata(1); 
    xxSS=double(int64(xxS)); 
    if xxSS<=xxS 
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        xxSS=xxSS; 
    else xxSS=xxSS-1; 
    end 
    NumofS(i)=xxx-xxSS*ipdata(1)+1; 
end 
  
fract=Xms+10; 
fractt=double(int64(fract)); 
if fractt<=fract 
    fractt=fractt; 
else fractt=fractt-1; 
end 

frac=fract-fractt; 
if frac<PBCs 
    fra=frac/PBCs; 
else fra=(frac-PBCs)/(PBDs-PBCs); 
end 
for i=1:1:Yms 
    posit(i)=(fract-fractt+(Yms-i))/PBEs; 
end 
Yms=Yms+fra; 
  
ems1=emsss(Yms,NumofP,NumofS,posit); 
 

 

13.1.31. emsss.m 
 
function emsss=emsss(noft,NumofP,NumofS,posit) 
  
%% input data 
zs=ipdata(1); 
zp=ipdata(2); 
zr=ipdata(3); 
as=ipdata(4); 
ar=ipdata(5); 
module=ipdata(6); 
nofp=ipdata(7); 
B=ipdata(8); 
  
for i=1:1:ipdata(7) 
    apofps(i)=pi-ipdata(200+i); %angular position of planet 
spacing i 
end 
  
Rss=ipdata(14); 
Rps=ipdata(15); 
Rrs=ipdata(16); 
  
E=ipdata(21); % young's modules 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ds=zs*module; 
dp=zp*module; 
dr=zr*module; 
ha=module; 
hf=1.25*module; 
h=ha+hf; 
h=h; 
dsa=ds+2*ha; 
dpa=dp+2*ha; 
dra=dr+2*ha; 
dsf=ds-2*hf; 
dpf=dp-2*hf; 
drf=dr-2*hf; 
dsb=ds*cos(as/180*pi); 
dpb=dp*cos(as/180*pi); 
drb=dr*cos(ar/180*pi); 
Rsa=dsa/2; 
Rpa=dpa/2; 
Rra=drf/2; 
Rsb=dsb/2; 
Rpb=dpb/2; 
Rrb=drb/2; 
Rsf=dsf/2; 
Rpf=dpf/2; 
Rrf=dra/2; 
Rs=ds/2; 
Rp=dp/2; 
Rr=dr/2; 
a=[2.7462 1.9479/2]; 
b=[2.2932 2.2853]; 
Numoft=int8(noft); 

 
Numoft=double(Numoft); 
if Numoft-noft<=0 
    Numoft=Numoft; 
else Numoft=Numoft-1; 
end 
  
ssAos=0; 
for i=1:1:Numoft 
if NumofP(i)==132 
PNumofP(i)=0; 
WNumofP(i)=0; 
DNumofP(i)=0; 
else 
    PNumofP(i)=0; 
    WNumofP(i)=0; 
    DNumofP(i)=0; 
end 
if NumofS(i)==19 
PNumofS(i)=0.6; 
WNumofS(i)=0.05; 
DNumofS(i)=20e-5; 
else  
    PNumofS(i)=0; 
    WNumofS(i)=0; 
    DNumofS(i)=0; 
end 
end 
  
startsss=0; 
  
for i=1:1:Numoft 
    mss(i)=0; 
if posit(i)-PNumofP(i)<WNumofP(i) && PNumofP(i)-
posit(i)<WNumofP(i) 
    mss(i)=mss(i)+DNumofP(i)*cos((posit(i)-
PNumofP(i))/WNumofP(i)*pi/2)^(1/5); 
else 
    mss(i)=mss(i)+0; 
end 
if posit(i)-PNumofS(i)<WNumofS(i) && PNumofS(i)-
posit(i)<WNumofS(i) 
    mss(i)=mss(i)+DNumofS(i)*cos((posit(i)-
PNumofS(i))/WNumofS(i)*pi/2)^(1/5); 
else 
    mss(i)=mss(i)+0; 
end 
if startsss<=mss(i) 
    startsss=mss(i); 
else startsss=startsss; 
end 
end 
  
emsss=startsss; 
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13.2.  RESULTS OF UNDAMAGED GEARBOX, CASE-2 
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