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ABSTRACT 
 

 

The ever increasing requirement for high transmission capacity in digital radio systems 

necessitates the need for large bandwidth. As a result, discerning the effect of a radio 

channel on wideband signals is of paramount importance. Multipath propagation is a 

prominent attribute of wideband radio channels. Multipath produces delayed versions of 

a signal. Multipath effects can cause severe problems and, especially in urban areas, is 

generally the most destructive influence on wireless communication systems. In order to 

characterise a mobile radio communication channel, for the mitigation of these multipath 

effects, knowledge of the multipath geometries involved is required. A method that is 

used in practice to characterise the mobile radio channel is known as channel sounding. 

Resolving two or more very closely spaced multipath signals, with a channel sounder, 

calls for channel measurements of extremely large bandwidth. Moreover, the 

requirements for costly hardware systems with a very high resolution, as well as legal 

transmission bandwidth restriction, inhibit the use of such large bandwidths. 

Consequently, the intrinsic time resolution capability of channel sounding equipments is 

more easily enhanced by using high-resolution digital signal processing algorithms. 

However, it has been shown that the model order selection is usually a difficult problem 

in these conventional high-resolution algorithms. 

 

This thesis explores the novel use of wavelet analysis as a high-resolution digital signal 

processing algorithm for estimating the multipath channel parameters. Wavelet analysis 

is a technique for converting a signal into some other form, which then enables certain 

features of the original signal to be more tractable to study. It uses small wave-like 

functions known as wavelets, which have been found to be useful in analysing transient 

signals. There is a plethora of wavelets that can be chosen from for use in signal 

analysis. The best wavelet for a given application hinges upon both the nature of the 

signal to be analysed as well as what is needed from the analysis. Generally, the best one 

to use will be that which matches the shape of the signal to be analysed at a given 

location and scale. 
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The results obtained from this research indicate that this wavelet-based digital signal 

processing algorithm overcomes the resolution limitation in traditional high-resolution 

algorithms such as the multiple signal classification (MUSIC) algorithm. It is shown, 

from computer simulations, that this wavelet-based algorithm can be successfully 

applied to improve the intrinsic resolution of a channel sounder by more than a factor of 

ten.  

 

The original contributions of this thesis are in three major parts; first, the central 

contribution of the thesis is in the development of a wavelet-based digital signal post-

processing algorithm for estimating the number of impinging waves and time-delays in 

mobile radio environments. This procedure uses a novel wavelet family named 

“Pathlet,” designed for this study. This technique may result in a more cost-effective 

means of implementing channel sounding equipments for very high-resolution 

measurements. Second, this thesis presents a new noise reduction scheme that exploits 

the stationary wavelet transform multiscale dependencies. This scheme has been named 

the “stationary wavelet transform multilevel products (SWTMP).” Third, a novel 

amplitude estimation algorithm, used to determine the amplitudes of the individual paths 

in synthetic mobile radio environments, has been derived.   
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CHAPTER 1 

 

 

INTRODUCTION  
 

 

 

1.1 Aim and Scope of the Thesis 

 

The aim of the research described in this thesis is identification and development of a 

novel high-resolution digital signal processing algorithm, based on wavelet analysis, for 

multipath channel parameter estimation. 

 

The ever increasing requirement for high transmission capacity in digital radio systems 

necessitates the need for large bandwidth. Therefore, an understanding of the effect of a 

radio channel on wideband signals is of paramount importance. In a mobile radio 

environment, due to scattering of radiowaves, the transmitted signal reaches the receiver 

by more than one path, causing a phenomenon known as multipath fading. The closely 

spaced paths add vectorially, according to their relative phases and amplitudes, and the 

resultant waveform of their sum is observed. Furthermore, when adjacent multipath 

components have very large differential amplitudes then a strong ray may completely 

mask the weaker ones.  

 

Multipath propagation is a prominent feature of wideband radio channels. Multipath 

produces delayed replicas of an original signal. When the multipath delay spread 

becomes a substantial fraction of the symbol period, then intersymbol interference (ISI) 

results and this may limit the data rates achievable with digital radio systems. In order to 
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characterise the mobile radio communication channel for the mitigation of multipath 

effects, knowledge of the multipath geometries involved is needed. 

 

Wideband channel measurements are often used to provide the propagation data required 

to characterise the mobile radio communication channels. A method which is utilised in 

practice for these wideband channel measurements is that of channel sounding (Parsons 

1992); in which a transmission is made over the radio channel to be characterised and 

the received signal is subsequently analysed (Saleh and Valenzuela 1987; Bultitude, 

Mahmoud et al. 1989). In order to carry out high-resolution measurements with a 

channel sounder, large bandwidth must be used. However, the requirements for costly 

hardware systems to be implemented with a very high-resolution, and legal transmission 

bandwidth restriction, inhibit the usage of such huge measurement bandwidths. As a 

consequence, the intrinsic time resolution of channel sounding equipments is usually 

enhanced through the use of high-resolution digital signal processing algorithms.  

 

Various high-resolution techniques have been proposed in the literature for estimating 

some of the parameters of the impinging waves in mobile radio environments; such as 

their complex amplitudes and relative arrival times (Kay and Marple 1981; Schmidt 

1986; Marple 1987; Kay 1988; Roy and Kailath 1989; Stoica and Moses 1997). The 

review of a number of these signal parameter estimation techniques is presented in 

Section 2.3.  

 

This study explores the novel use of wavelet analysis as a high-resolution digital signal 

processing algorithm for multipath channel parameter estimation. Wavelet analysis is a 

technique of converting a signal into some other form which then makes certain features 

of the original signal more amenable to analyse. Wavelet transforms do not have a 

unique set of basis functions, unlike Fourier-based techniques, which is one of the 

reasons why wavelets are used in diversified fields.  

 

Wavelet transforms can be continuous or discrete types, depending on the application. 

The discrete wavelet transform (DWT) minimises the redundancies that are inherent in 
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the continuous wavelet transform (CWT). Three basic manipulations can be performed 

on a wavelet to make it more flexible; a wavelet can be dilated, contracted, and 

translated (i.e. moved). If the dilation and contraction parameter is denoted by 0a >  

while the shifting of the wavelet along the time axis is denoted by parameter b , then the 

shifted and dilated or contracted versions of the mother wavelet ( )tψ  is represented by  

 

( )at bψ − .                                 (1.1) 

 
The wavelet transform decomposes a discrete or continuous-time signal to produce the 

wavelet transform coefficients. These coefficients are then examined or operated on 

instead of the original signal. The coefficients containing the low-frequency components 

of the signal are known as the approximation coefficients while those containing the 

high-frequency components are known as the detail coefficients. The approximation 

coefficients capture the global feature content of the signal, whereas the detail 

coefficients extract the irregular and transient events such as the signal peaks. A review 

of wavelet analysis, and applications, is discussed further in Section 2.4. 

 

In this research, the wavelet transform coefficients are used to provide information about 

the time-delays and number of propagation paths in a multipath delay profile by 

observing the locations of the positive peaks in the detail coefficients.  
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1.2 Thesis Overview  

 

The thesis has been organised into seven chapters as follows:  

 
Chapter 1 presents the aim, scope and original contributions of the thesis. In Chapter 2, a 

review of wideband channel sounding and a number of conventional signal parameter 

estimation techniques are presented. A survey of various channel sounding experiments 

is first given. Then a review of the conventional signal parameter estimation algorithms 

is carried out, to examine their advantages, limitations, and time resolution capabilities. 

This is followed by a description of wavelet analysis and applications.  

 

Chapter 3 presents the development of the proposed algorithm for multipath channel 

parameter estimation. This chapter starts with the design of customised mother wavelets 

for the current study. This newly derived family of wavelets is named “Pathlet.” Each 

member of this wavelet family is distinguished by the number of coefficients. For 

example, Pathlet with five wavelet coefficients is referred to as Pathlet 5. Next, the 

formulation of noise reduction strategies to be used in extracting the multipath 

components that are immersed in noise is presented. The chapter concludes with the 

derivation of a novel amplitude estimation algorithm, to be used in estimating the 

amplitudes of the individual multipath components in synthetic mobile radio 

environments.  

 

Chapter 4 presents the implementation of the algorithm proposed in Chapter 3, by means 

of computer simulations. Two noise reduction schemes are investigated in this chapter. 

The first noise reduction scheme is based on using hard thresholding and the median 

absolute deviation (MAD) standard deviation estimate (Donoho and Johnstone 1994; 

Donoho 1995; Donoho and Johnstone 1995; Percival and Walden 2000).  While the 

second denoising procedure is based on exploiting the stationary wavelet transform 

multiscale dependencies. 

 

Since the measured signals from channel sounding systems are bandwidth limited in 

order to minimise noise, Chapter 5 therefore presents another series of computer 
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simulations which were carried out to examine the effect on time resolution, caused by 

bandwidth limitations.  

 

In Chapter 6, the algorithm developed in this research is applied to resolve the multipath 

components in measured delay profiles. These delay profiles were obtained by 

connecting the transmitter and receiver units of an experimental sliding correlator 

channel sounder back-to-back. Chapter 7 gives a summary of the main results and 

recommendations for future research. 

 

 

1.3 Summary of Original Contributions 
 

The original contributions made in this thesis are presented as follows: 

 

• The main contribution of this thesis is in the development of a novel high-

resolution digital signal processing algorithm, based on wavelet analysis, for 

resolving the impinging waves that made up the received signal in mobile radio 

environments. The results obtained indicate that this wavelet-based digital signal 

processing algorithm overcomes the resolution limitation in traditional high-

resolution algorithm such as the MUSIC algorithm. This may provide a more 

cost-effective means of implementing channel sounding equipments for very 

high-resolution measurements. 

 

• The design of a novel set of finite filter coefficients having symmetric impulse 

response, resulting in the development of a wavelet family named “Pathlet,” is 

presented in Section 3.2. It is then shown that certain members of this new 

wavelet family named “Pathlet 7” and “Pathlet 9” are more robust to noise when 

compared with conventional Daubechies Symlet 2 wavelet (Daubechies 1992; 

Mallat 1999).  
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• A new means of estimating the number of paths and time-delays in mobile radio 

environments, using the detail coefficients of the wavelet transform, is proposed 

in Sections 3.3.2 and 3.3.3. In practice, the number of impinging waves in mobile 

radio environments is often set through the use of classical information theoretic 

methods for model order selection, such as the Akaike’s information criterion 

(AIC) (Marple 1987) and Rissanen’s minimum description length (MDL) 

(Rissanen 1978; Wax and Kailath 1985). However, it has been shown that the 

AIC gives an inconsistent estimate that gravitates to, asymptotically, 

overestimate the number of multipath signals (Kashyap 1980; Wax and Kailath 

1985).  

 

• A new amplitude estimation algorithm has been derived in Section 3.4 and used 

to determine the amplitudes of the individual paths in synthetic mobile radio 

environments.  

 

• A new denoising technique that exploits the stationary wavelet transform 

multiscale dependencies is proposed in Section 3.3.3. This scheme has been 

named the “stationary wavelet transform multilevel products (SWTMP).”   
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   CHAPTER 2 
 

 

REVIEW OF WIDEBAND CHANNEL SOUNDING   

AND SIGNAL PARAMETER ESTIMATION TECHNIQUES  

 

 

 

2.1 Introduction  
 

The astounding success of wireless communication systems in rendering ubiquitous 

communications at any time, anywhere in the world, has paved the way toward breaking 

the location hindrance in telecommunications. However, the performance of wireless 

communication systems is restricted by the mobile radio channel.  

 

In a typical radio system, the mobile portables communicate with a fixed base-station 

antenna that is installed in an elevated position. Due to the scattering of radiowaves by 

buildings, obstacles, and even people moving around, the transmitted signal is degraded. 

The transmit signal usually reaches a receiver after following more than one path. The 

resulting paths arrive with different delays, attenuations, and phase values due to 

different path lengths. These multipath components then add in accordance to their 

relative amplitudes, arrival times, and phases, and their random envelope sum is that 

observed by the receiver. A typical multipath fading environment is shown in Fig. 2.1. 
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Figure 2.1 An example of multipath propagation in an outdoor environment. 

 

The presence of multiple propagation paths, or multipaths, with different time-delays, 

attenuations, and phases, gives rise to a highly complex radio propagation channel. 

Multipath effects can cause severe problems and, especially in urban areas, is often the 

single most destructive influence on wireless communication systems. The trend in 

wireless communication system design is therefore directed towards the mitigation of 

such multipath effects. The techniques used to mitigate these impairments may take the 

form of channel equalisation, diversity or selective reception. Moreover, these may well 

demand accurate estimation of channel impulse response of high resolution which could 

only be achieved through the use of a large measurement bandwidth. Hence, the multiple 

ray paths that are otherwise not individually identifiable in the presence of noise are 

often separated by using digital signal post-processing algorithms.  

 

This chapter reviews the various signal parameter estimation techniques that are 

published in the literature. It begins with a survey of wideband channel sounding 

techniques in Section 2.2. Next, a review of signal parameter estimation techniques is 

carried out to examine their advantages and limitations. Finally, a description of wavelet 

analysis and a number of applications are presented in Section 2.4. 
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2.2 Wideband Channel Sounding Techniques  

 

2.2.1 Overview 

 
Channel parameters such as the rms delay spread and mean excess delay, provide a 

description of mobile radio channels that are useful for system designers. Such 

information is essential for establishing channel models, the equalisation techniques, as 

well as types of diversity. Measuring equipments that can be used to obtain the 

experimental data, from which these parameters can be derived, are known as channel 

sounders. The choice of channel sounding techniques depends upon the intended 

application; whether a narrowband or wideband radio system is desired and whether a 

time or frequency domain characterisation is needed. In narrowband channels, the 

frequency-dependent feature of each individual ray becomes negligible because all the 

frequency components are affected by the channel in the same way. Once the range of 

frequencies over which a channel is considered to have flat frequency response, i.e. the 

coherence bandwidth, is exceeded the channel is then termed wideband and becomes 

frequency selective. In frequency selective fading, some frequency components undergo 

different degrees of fading from others.  

 

The mean excess delay 
m

τ  and rms delay spread 
rms

τ , are defined as (Rappaport 2002) 

 

2
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while 
iα  

and iτ  
are the amplitude and delay, respectively, of the th

i  path. The rms delay 

spread is a good measure of multipath spread, and provides an indication of the potential 

for intersymbol interference. 

 

In general, wideband channel sounding techniques may be classified as direct radio 

frequency (RF) pulse channel sounding, spread spectrum sliding correlation channel 

sounding (SCCS), and frequency domain measurements. This classification of channel 

sounding techniques is shown in Fig. 2.2. In the literature, spread spectrum sliding 

correlator channel sounding is also referred to as swept time-delay cross-correlation 

(STDCC) channel sounding (Parsons, Demery et al. 1991; Parsons 1992). 

 

 

 

 

           
Figure 2.2 General classification of wideband channel sounding techniques. 
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2.2.2 Direct RF pulse channel sounding technique  

 

2.2.2.1 Principles of operation 

 

In the direct RF pulse channel sounding technique, a short duration periodic pulse 

having a given width of 
bb

T  is used to excite the radio propagation channel. The pulse 

repetition period is usually rapid in order to allow observation of the time-varying 

behaviour of the radio propagation channel. At the receiver, the received signal is 

filtered with a wide bandpass filter of bandwidth  = 2
bb

BW T ; it is then amplified, 

detected with an envelope detector, and displayed on a digital storage oscilloscope 

(Rappaport 2002). The pulse duration 
bb

T  determines the minimum resolvable delay 

between successive echo contributions. Details of the system architecture of this channel 

sounding technique are provided in Rappaport (2002). The advantage and disadvantages 

of this channel sounding technique are presented as follows:  

 

2.2.2.2 Advantage 

 

• A major advantage of this technique is the simplicity of the system architecture. 

 
 

2.2.2.3 Disadvantages 

 

• One drawback of this system is that a high transmitter peak power must be used 

because of the very short duration of the transmitted pulse. This may cause 

regulatory concerns.  

 

• This system is also subjected to noise and interference, as a result of the wide 

bandpass filter needed at the receiver for multipath time resolution. 

 

• Another drawback of this technique is that the phases of each multipath 

component are not received when an envelope detection method is used.  



 

12 

Some applications of this channel sounding technique are presented in the following 

section. 

 

2.2.2.4 Applications 

 

In the first study of the impulse response of mobile radio propagation channel (Young 

and Lacy 1950), a direct RF pulse channel sounder with a pulse duration of 0.5 µs  was 

used to carry out measurements in New York city, at 450 MHz. A further study was 

carried out in San Francisco (Turin, Clapp et al. 1972), using a similar method. In this 

later experiment, simultaneous transmissions of 100 ns duration pulses at frequencies of 

2920 MHz, 1280 MHz, and 488 MHz were made from a fixed site and their reception at 

a mobile van analysed. A statistical analysis of the data from the experiment has shown 

the results for the three frequencies to be almost similar and this has been used as a basis 

for a statistical model of urban multipath propagation.  

 

In a similar experiment carried out in medium-size office building (Saleh and 

Valenzuela 1987), an RF oscillator was used to generate a 1.5 GHz continuous wave 

(CW) signal. This was then modulated by a train of 10 ns radar-like pulses having 600 

ns repetition period. This radar-like signal was amplified and transmitted with a 

vertically polarised discone antenna having omnidirectional radiation pattern. At the 

receiver, the signal was detected with a sensitive square-law envelope detector and 

displayed on a computer-controlled digital storage oscilloscope. A delay spread up to 

about 200 ns and maximum rms values of 50 ns were obtained. 

 

Using a similar technique (Rappaport and McGillem 1988), wideband multipath 

measurements were conducted at 1300 MHz in five operational factories in Indiana, 

United States. The delay profiles were measured by transmitting a 10 ns pulse at a 500 

ns repetition rate, and receiving the attenuated and distorted version of the pulse on a 

digital storage oscilloscope. An rms delay spread in the range of 30 - 300 ns was 

observed. 
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Also using the same method to analyse the statistical characteristics of the indoor radio 

channel, a 910 MHz signal was modulated by a train of 3 ns pulses having 500 ns 

repetition period (Ganesh and Pahlavan 1991). The modulated carrier was then 

amplified and transmitted using a quarter-wave dipole antenna. Similar antenna was 

used at the receiver to capture the radio signal. The received signal was demodulated 

using an envelope detector; whose output was displayed on a computer-controlled digital 

storage oscilloscope. The transmitter was moved to various locations at each 

measurement site. A total of 472 multipath profiles were collected from measurements 

made at different locations in five areas on three different manufacturing floors and two 

office areas in a college campus. The manufacturing floors are characterised by large 

open areas, often with line-of-sight (LOS) paths, having various machinery and 

equipment of different sizes. Areas with a lot of machinery and less LOS paths between 

the transmitter and receiver had higher values of rms delay spread. The statistical 

parameters required for computer simulation of multipath profiles in these indoor radio 

environments are then determined. The results obtained show that the multipath arrivals 

form a modified Poisson process and the amplitude of the paths fit a log-normal 

distribution. The standard deviation and mean of the log-normal distribution were shown 

to fit decaying exponentials.  

 

2.2.3 Frequency domain channel sounding technique 

 

2.2.3.1 Principles of operation 

 

As a result of the duple relationship between the frequency and time domain methods, it 

becomes possible to measure the channel impulse response (CIR) in the frequency 

domain and later convert to the time domain (Rappaport 2002). The most popular 

frequency domain technique is the swept-frequency method that is implemented using a 

vector network analyser (VNA).  

 

Details of the system architecture of this wideband channel sounding technique are also 

provided in Rappaport (2002). The advantages and disadvantages of this channel 

sounding technique are presented as follows: 
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2.2.3.2 Advantages 

 

• When using a VNA for wideband radio channel measurements, the measurement 

bandwidth which governs the multipath resolution can be chosen to be large 

enough so that significant multipath components can be resolved. 

 

• This technique can also be used to provide both amplitude and phase responses. 

 

2.2.3.3 Disadvantages 

 

• The increase in measurement bandwidth required for high-resolution increases 

the measurement time of the channel transfer function. As a consequence, it 

becomes difficult to measure consecutive transfer functions for time varying 

channels. This is because the channel frequency response may change rapidly, 

causing erroneous channel impulse response measurements. This results in 

confinement to static environments when using the swept-frequency method.  

 

• Another limitation of this technique is that the system needs careful 

synchronisation and calibration between the transmitter and receiver. This makes 

it useful for only very close measurements like indoor environments. 

 

2.2.3.4 Applications 

 
A channel sounding performed in the 1.7-2.2 GHz band using swept-frequency channel 

sounding, with 625 kHz frequency steps and sweep time of 400 ms, samples 801 points 

in each sweep (Degli-Esposti, Lombardi et al. 2001). The signal-to-noise ratio (SNR) 

was kept above 30 dB, by averaging on 10 sweeps to reduce noise effects. This has been 

shown to produce a maximum nonambiguous echo delay of 1.6 µs  and theoretical 

resolution of 2 ns. This measurement campaign was carried out in a single-floor building 

having offices and laboratories of a factory, which is located in an open, suburban zone 

without any neighbouring buildings.  
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In a similar experiment (Tholl, Fattouche et al. 1993), it was shown that the results from 

frequency domain measurement are similar to those using a time-domain measurement 

approach, based on a spread spectrum system with a sliding correlator at the receiver. In 

this experiment, a total of 120 impulse response functions were measured in a set order 

with the sliding correlator system, and another 120 transfer functions were measured, in 

the reverse order, using the VNA. The VNA measures the complex transfer function of 

the radio channel at 201 discrete frequency points between 900 and 1000 MHz over a 

time period of 100 ms.  

 

Using a similar technique (Hashemi 1993a), measurements were carried out in two 

dissimilar office buildings with both LOS and NLOS transmissions between the 

transmitter and the receiver using two discone antennas. In this experiment, the network 

analyser swept-frequency band was 900 to 1300 MHz in 500 KHz steps (i.e. 801 points). 

The time interval per sweep was 400 ms, with 10 sweeps being averaged per 

measurement. This makes the actual time for each measurement to be 4 s. Measurements 

were conducted at night, or on weekends, when there were few people moving around in 

the vicinity of the measurement setup. A database of 12000 samples of the channel 

impulse responses was obtained. The time resolution of the channel impulse responses 

was estimated to be 5 ns. The values of the rms delay spread and the mean delay, for 

both dissimilar office buildings, were computed to be in the range of 10 to 50 ns and 20 

to 30 ns respectively.  

 

2.2.4 Spread spectrum sliding correlator channel sounding technique  

 

2.2.4.1 Principles of operation 

 
A well-known time domain channel sounding technique is the sliding correlator channel 

sounding (SCCS). This channel sounder has been utilised as a reference for this study. 

Block diagrams of the transmitter and receiver units, of this channel sounding technique, 

are shown in Figs. 2.3 and 2.4 respectively (Rappaport 2002).  
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Figure 2.3 Transmitter unit of a sliding correlator channel sounding 

technique (Rappaport 2002). 
 

 

 

 

 

Figure 2.4 Receiver unit of a sliding correlator channel sounding 
                                technique (Rappaport 2002). 

 

 

In sliding correlator channel sounding, a carrier signal is spread across a large bandwidth 

by mixing it with a binary pseudo-noise (PN) sequence having a given chip rate TXf . The 

created binary phase shift keyed (BPSK) signal is then transmitted through a multipath 

channel. At the receiver, the spread spectrum signal is received, filtered, and dispread 

using a PN sequence generator identical to that used at the transmitter but runs at a 

somewhat slower rate than the transmitter chip clock. In practice, the difference between 

the receiver and transmitter chip clock rates, i.e.
TX RX

f f− , is of the order of a few kHz.  
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The result is that the transmitter PN sequence seems to slide across the receiver PN 

sequence, and therefore the name “sliding correlator.” Whenever the PN code of the 

faster chip clock meets up with the PN code of the slower chip clock, the two chip 

sequences will be almost identically aligned, resulting in maximum correlation. Since 

the various incoming multipath components have different time-delays, they will hence 

maximally correlate with the receiver PN sequence at different times.  

 

In order to understand how the sliding correlator works, the sliding actions are briefly 

explained. First it is assumed that the transmitted signal is not corrupted by multipath 

effects at the receiver. In this case, when there is maximum correlation between the 

transmitter and receiver PN sequences, then a voltage peak is produced at the output of 

the detector. Conversely, when the transmitter and receiver PN sequences are not 

aligned the correlation of the two sequences is at a minimum, and the output voltage of 

the detector will be low when compared to the peak voltage produced for maximum 

correlation.  

 

Now when the sounding signal is corrupted by multipath effects, then an attenuated and 

delayed replica of the transmitted signal will be produced for each physical propagation 

path. As the receiver sequence aligns with each of the multipath signals, correlation 

peaks are produced at the output of the detector. The output voltage waveform of the 

detector then gives an estimate of the radio channel impulse response.  

 

A sliding factor ν  used in the SCCS is defined by  

 

TX

TX RX

f

f f
ν =

−
.                  (2.4) 

 

This sliding factor relates the measurement observation time, 
observed

t , to the actual 

propagation time 
actual

t , as follows  
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            observed
actual

t
t

ν
= .                                                                                                  (2.5) 

 

This causes time dilation in the sliding correlator system since the propagation delays 

are expanded in time by the sliding correlator. The time interval T∆ , between maximal 

correlations, is given by (Rappaport 2002) 

 

         TXT t Gν∆ = ,                                                                                                    (2.6) 

 
where      

            
TX

t  is the transmitter chip duration (s), 

            ν  is the sliding factor (dimensionless), 

            2 1
n

G = − , where n is the number of shift registers used in the  

                    sequence generator. 

                               

The PN sequence period,
PN TXt Gτ = , gives an estimate of the maximum unambiguous 

multipath signals time-delay range which can be measured with a sliding correlator 

channel sounder.  

 

In this study, the multipath delay resolution is defined to be the minimum relative delay 

between any two paths such that these paths can be resolved by the SCCS system. For a 

channel with only a single path, the detected signal waveform of the channel sounder 

takes the form of a triangle with a base width of 2 TXt  around the correlation peak. That 

is after accounting for the apparent dilation of the horizontal axis time scale caused by 

the sliding factor. In a multipath radio channel, the superposition of such triangular 

pulses, each of which is delayed according to the relative delays of the propagation 

paths, forms the output of the sliding correlator channel sounder system. 

 

For example, given that 2 100 ns.
TX

t =
 
Now if the occurrence of the first correlation 

peak (also used as the time reference) is at 50 ns, while the other correlation peaks are 
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described relative to the arrival time of this first correlation peak; then multipath 

components separated by 50 ns or more are resolved by the sounder system.  

 

The output waveform of the channel sounder, in the absence of noise, can be expressed 

as 

 

       ( ) ( )
1

t - τ
K

ic i

i

x t = α p
=
∑ ,                                                                                      (2.7) 

 

where ( )t - τip  represents the correlation of the pseudo-random binary sequence 

(PRBS) at the transmitter and receiver, delayed by iτ , while ij

ic i
e ϑα α=  denotes the 

complex amplitude of the th
i  path. K  represents the number of multipath components. 

iα
 
and 

iϑ
 
is the amplitude and phase respectively of the th

i  path. The advantages and 

disadvantages of this channel sounding technique are as follows: 

 

2.2.4.2 Advantages 

 

• One advantage of this system is the low transmitter power that is required, when 

compared with the direct RF pulse channel sounding, as a result of the inherent 

processing gain of spread spectrum systems.  

 

• Another advantage of this system is that its sensitivity can be adjusted by 

changing the sliding factor and the post-correlator filter bandwidth. 

  

• Also, the transmitter and receiver PN sequence synchronisation is eliminated by 

the sliding correlator.  

 

 

 

 

 



 

20 

2.2.4.3 Disadvantages 

 

• A drawback of this technique is that the time needed to make power delay profile 

measurements can often be immoderate, because measurements are not made in 

real time but are accumulated as the PN codes slide past one another.  

 

• Also, the phases of individual multipath components cannot be measured with 

this system.  

 

2.2.4.4 Applications 

 

The first published impulse response measurements of a mobile radio environment using 

a spread spectrum sliding correlator channel sounder, were recorded in a vehicle moving 

along several business and residential streets in suburban New Jersey at 910 MHz (Cox 

1972). Similar experiment was also carried out in the heavily built-up urban mobile 

radio environment of New York City (Cox 1973a). In these experiments, a PRBS with a 

length of 511, and clocked at 10 MHz, was used to binary phase modulate a 70 MHz 

carrier. Then the modulated signal was translated to the sounding frequency by mixing it 

with an 840 MHz local oscillator. This modulated signal was amplified to 10 W and 

radiated from a vertical broadside collinear antenna array which has an omnidirectional 

radiation pattern. At the receiver, an identical maximal-sequence to that used in the 

transmitter, but clocked at a slightly slower rate of 9.998 MHz, was used to phase 

modulate a 70 MHz carrier. A resolution of 0.1 µs  was obtained with the measuring 

equipment. The rms delay spreads in the suburban mobile radio environments of New 

Jersey were in the order of 0.25 sµ , while that in urban environment of New York City 

were computed to be in the order of 2 - 2.5 .sµ  

 

A summary of some applications of these channel sounding techniques, published in the 

literature, is presented in the next section. 
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2.2.5 Summary of some channel sounding experiments 

 
Many mobile radio channel measurements have been carried out and published in the 

literature. Table 2.1 presents a summary of some of these measurements (Cox 1973a; 

Devasirvatham 1987; Saleh and Valenzuela 1987; Rappaport and McGillem 1988; 

Pahlavan, Ganesh et al. 1989; Rappaport 1989; Takeuchi, Sako et al. 1990; Davies, 

Bensebti et al. 1991; Devasirvatham 1991; Turkami, Demery et al. 1991; Huang and 

Khayata 1992; Seidel, Rappaport et al. 1992; Bultitude, Melancon et al. 1993; Hashemi 

1993a; Sheikh and Hau 2002; Neves, Matos et al. 2009; Siamarou and Al-Nuaimi 2010; 

Kim, Konishi et al. 2014). 

 

    Table 2.1 Summary of a number of mobile radio channel measurements published in 
           the literature. 

Authors Frequency 

Band 

Channel Sounding 

Technique 

Channel Parameters Environment 

 
Cox D.C., 

1973a 

 
910 MHz 

 

Swept-time delay 
cross correlator 

channel sounding. 

 

rmsτ = 2 – 2.5 .sµ  

Urban location. 
New York City. 

 

 

Devasirvatham 

D.M.J., 1987 

 

 

 

850 MHz 

 

 

Spread spectrum 

sliding correlator 

channel sounding. 

rmsτ  = under  

100 ns, for LOS. 

 

Maximum rmsτ =  

250 ns.
 

 

 

 

Large office 

building. 

 

Saleh A.A.M. 

and Valenzuela 

R.A., 1987 

 

 

1.5 GHz 

 

 

Direct RF pulse 

channel sounding. 

 

Median rmsτ =  

25 ns. 

Maximum rmsτ =  

50 ns. 

 

Medium-size 

office building. 

 

Pahlavan K., 

Ganesh R., 

 et al., 1989 

 

 

910 MHz 

 

 

Direct RF pulse 

channel sounding. 

 

Median rmsτ  =  

15.3 - 52.6 ns. 

Maximum rmsτ  =  

40 – 152 ns. 

 

Factory 

environments. 

 

 

 

Rappaport T.S., 

1989 

 

 

 

1300 MHz 

 

 

Direct RF pulse 

channel sounding. 

 

rmsτ  =  

30 – 300 ns. 

Median rmsτ =  

96 ns, for LOS. 
105 ns, for NLOS. 

 

 

 

Factory 

environments. 

 

Takeuchi T., 

Sako M., 
et al., 1990 

 

 

1.5 GHz 

 

Spread spectrum 

sliding correlator 
channel sounding. 

 

rmsτ = 

under 90 ns. 

Laboratory room 

on the 4th floor 

of a six-storey 
isolated building 

in Japan. 
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Davies R., 

Bensebti M., 

et al., 1991 

 

 

 

 

 

1.7 GHz  

and  

60 GHz 

 

Direct RF pulse 

channel sounding, 

used in the 1.7 GHz. 

Swept-time delay 

cross correlator 

channel sounding, 

used in the  

60 GHz. 

rmsτ = 

 under 50 ns, for the   

RF pulse technique. 

 

     Under 40 ns, for 

  the cross-correlation 

  technique. 

 

 

 

Variety of 

indoor locations 

in and around 

Bristol 

University, UK. 

 

Devasirvatham 

D.M.J., 1991 

 

850 MHz, 1.9 

GHz, 4.0 GHz 

and 5.8 GHz 

 

Spread spectrum 

sliding correlator 

channel sounding. 

 

rmsτ = 

under 120 ns. 

Large 

commercial 

building in  

New York. 
 

Turkmani 

A.M.D., 

Demery D.A., 

et al., 1991 

 

 

900 MHz 

 

Swept-time delay 

cross correlator 

channel sounding. 

 

rmsτ = 

0.1 - 6 s.µ  

 

 

Urban locations. 

City of 

Liverpool. 

 

 

Huang C. and 

Khayata R., 

1992 

 

 

910 MHz, 2.44 

GHz, and  

5.8 GHz  

(ISM Bands) 

 

 

Spread spectrum 

sliding correlator 

channel sounding. 

 

 

rmsτ = 

under 100 ns. 

 

 

Various 

buildings within 

Columbia 

University,  

New York. 
 

 

Seidel S.Y., 

Rappaport T.S. 

et al., 1992 

 

 

915 MHz and 

1900 MHz 

 

 

Direct RF pulse 

channel sounding. 

 

 

Median rmsτ  =  

67 - 94 ns. 

Maximum rmsτ = 
   

112 - 1470 ns. 

 

Three dissimilar 

large office 

buildings. 

 

 

 

Bultitude 

R.J.C.,  

Melancon P.,  

et al., 1993 

 

 

 

 

950 MHz 

and  

900-1100 MHz  

 

Spread spectrum 

sliding correlator 

channel sounding, 

used in the 

950 MHz. 

 

Swept-frequency 

channel sounding,  

used in the 
900-1100 MHz. 

 

static rmsτ =  

69.7 ns, for the 

    cross-correlation 

         technique. 

 

static rmsτ =  

69.2 ns, for the  

swept frequency 

technique.
 

 

 

 

 

Open office  

and 

along a corridor  

in a three-storey 

office building. 

 
 

Hashemi H., 

1993a 

 
 

900-1300 MHz 

 

 
Frequency domain 

channel sounding 

using vector network 

analyser. 

mτ = 

 20 – 30 ns. 

  rmsτ  =
 

   10 – 50 ns. 

 
Two dissimilar 

office buildings. 

Calgary, 

Alberta, Canada. 

 

 

Sheikh A.U.H. 

and 

Hau S.F., 2002 

 

 

 

1.8 GHz 

 

Spread spectrum 

sliding correlator 

channel sounding. 

  
 

rmsτ  =  

0.149 - 0.257 s.µ  

 

 

Urban locations. 

Hung Hom, 

Hong Kong. 
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Neves F.F., 

Matos L.J.,  

et al., 2009 

 

 

 

 

1.88 GHz 

 

 

Swept-time delay 

cross correlator 

channel sounding. 

    

 

mτ = 2.13 s.µ
  

     rmsτ =1.32 s.µ
  

 

Mixed 

vegetated 

environments  

and University 

buildings. 

Rio de Janeiro, 

Brazil. 

 

 

Siamarou A.G. 

and 

Al-Nuaimi M., 

2010 

 

 

 

57-64 GHz  

 

 

 

Swept-frequency 

channel sounding.   

 

 

static rmsτ =
 

under 70 ns. 

 

Various picocell 

environments in 

a University 

campus. 

Corridors and 
teaching rooms.  

 

 

 

Kim M., 

Konishi Y.,  

et al., 2014 

 

 

 

 

11 GHz 

 

MIMO channel 

sounding, transmitting 

an unmodulated 

multitone signal. 

 

 

rmsτ = under  

50 ns, for LOS. 
20 ns, for NLOS. 

 

 

 

Various indoor 

environments in 

a University 

building. 

 
 

 

2.3 Signal Parameter Estimation Techniques 

 

2.3.1 Overview 

 
Parameter estimation algorithms can be classified into two main categories; namely non-

parametric and parametric-based approaches (Kay and Marple 1981; Marple 1987; Kay 

1988; Krim and Viberg 1996; Stoica and Moses 1997).  

 

Non-parametric techniques are Fourier-based methods of providing spectral estimates 

where no prior model is assumed, in the sense that no assumptions are made concerning 

the physical process that generated a given data. They are also known as the classical 

methods of spectral estimation. Generally, these methods require very long sequences of 

stationary data in order to yield the necessary frequency resolution that is needed in 

many applications (Proakis 1990; Therrien 1992). 

 

In this first category, the discrete Fourier transform (DFT) has been reported useful for 

resolving the constituent components in multipath fields (Richter and Al-Nuaimi 1995). 

Their fast Fourier transform (FFT) implementation provides reduced computational 
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time. Although this approach of signal parameter estimation is computationally efficient, 

it however has limited frequency resolution. If the arrival times of the multipath 

components are much closer than the reciprocal of the analysis bandwidth, then this 

Fourier-based technique is ineffective (Lau, Austin et al. 1987). Given a measurement 

bandwidth of 31.25 MHz for example, the shortest delay which could be resolved using 

the Fourier-based approach is 32 ns (Ndzi, Austin et al. 2000). Consequently, the 

Fourier-based methods are unable to resolve closely spaced multipath components that 

might have significant effects in indoor mobile radio channels. These methods also 

suffer from spectral leakage effects that often mask weak signals. Prominent conclusions 

from these non-parametric techniques are that there is always a compromise in the bias-

variance trade-off because both of these errors cannot be minimised simultaneously 

(Kay 1988; Krim and Viberg 1996; Stoica and Moses 1997).  

 

Parametric-based methods can however be very useful in extracting high-resolution 

estimates, especially in applications where short data records are available due to 

transient phenomena, provided the signal structure is known (Kay 1988; Proakis 1990). 

These techniques are also known as model-based methods of spectral estimation, where 

a generating model with known functional form is assumed. The parameters in the 

assumed model are then estimated, and a signal’s spectral characteristics of interest 

derived from the estimated model. Therefore, the estimated spectral characteristics are 

only as good as the underlying model. However, the model order selection is a difficult 

problem in practice. Choosing a model order that is too low can result in poor resolution, 

while the choice of a model order that is too high can give rise to spurious components 

in the parameter estimates. 

 

The parametric-based estimation technique is reviewed in this study. Examples of these 

parametric-based methods includes the autoregressive (AR) process model (comprising 

the Yule-Walker (Walker 1931; Stoica and Moses 1997) and least squares methods 

(Stoica and Moses 1997)), the moving average (MA) process model, as well as the 

combined autoregressive moving average (ARMA) process model (Gersh 1970; Kinkel, 

Perl et al. 1979; Beex and Scharf 1981; Cadzow 1982; Marple 1987; Kay 1988; Stoica 
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and Moses 1997). A further example, of these parametric-based methods, is the space-

alternating generalized expectation-maximization (SAGE) algorithm (Fleury, Tschudin 

et al. 1999). The SAGE algorithm is an elongation of the expectation-maximization 

(EM) algorithm (Feder and Weinstein 1988). The EM algorithm is an iterative procedure 

used to compute a maximum likelihood estimate when an observed data is regarded as 

incomplete (Therrien 1992).  

 

Another class of these parametric-based estimation methods is the subspace-based 

technique. This method, also known as high-resolution or super-resolution techniques, 

generate frequency component estimates of a given signal based on the decomposition 

of an observation vector space into two subspaces; one associated with the signal and 

another associated only with the noise (Marple 1987; Therrien 1992). Each noise vector 

is assumed to be uncorrelated with the signal vectors and among other noise vectors. 

Then the functions corresponding to the vectors in the signal or noise subspaces can be 

used to create frequency estimators which when plotted, indicate sharp peaks at the 

frequency locations of interest. Pisarenko harmonic decomposition (PHD) algorithm 

(Marple 1987; Kay 1988; Stoica and Nehorai 1988; Stoica and Moses 1997) was the 

first of these methods, which consequently spurred many improved methods such as the 

multiple signal classification (MUSIC) algorithm (Schmidt 1981; Schmidt 1986). Other 

examples of these subspace-based techniques include the minimum norm method 

(Kumaresan and Tufts 1983) and estimation of signal parameters by rotational 

invariance techniques (ESPRIT) method (Paulraj, Roy et al. 1985; Paulraj, Roy et al. 

1986; Roy 1987; Roy and Kailath 1989).  

 

In subsequent sections, brief descriptions of a number of these parametric estimators are 

presented. 

 

2.3.2 Prony-based algorithm  
 

The most simplest of the parametric estimation techniques is autoregressive modelling 

of a signal (Therrien 1992; Stoica and Moses 1997). The Prony algorithm is an 

autoregressive parametric estimation technique which models sampled data as a linear 
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combination of exponentials (Marple 1987; Hewitt, Lau et al. 1989). It is a technique 

that can be used for identifying the frequencies, amplitudes, and phases of a signal (Kay 

1988). 

 

For example, given the following multipath channel impulse response model (Hewitt, 

Lau et al. 1989; Hashemi 1993a; Vaughan and Andersen 2003):   

 

( ) ( )
1

K

i i

i

h t = α δ t - τ
=
∑ ,                        (2.8) 

 

where K  is the number of multipath components, iα  is the amplitude of the th
i  path with 

iτ  as the corresponding delay, while ( )δ ⋅
 
is the Dirac delta function.  

 

The Fourier transform of this channel impulse response is given by: 

  

( ) ( )
1

K

i i

i

H ω = α exp -jωτ
=
∑ ,                               (2.9) 

  

where ( )H ω  is the channel transfer function. At discrete frequencies, the sampled 

transfer function is given by (Hewitt, Lau et al. 1989): 

 

( )
1

K

n i n i

i

H = α exp -jω τ
=
∑ ,  0,1, 2, , 1n N= −⋯ ,                               (2.10) 

      

 

 

where n nω = 2πf  is the th
n  sample of the angular frequency ω , and N  is the total 

number of samples. For sampling uniformly in frequency, 0n
nω ω ω= + ∆  where ∆ω  is 

the angular frequency spacing in rad/s, while 0ω
 
is the lowest angular frequency. Hence  

 

( ) ( ){ }0

1

K

n i i i

i

H = α exp jω τ exp jn ωτ
=

− − ∆∑ .                              (2.11) 

 

If ( )0i iα exp jω τ−  is represented as 
i
β  and ( )iexp -j∆ωτ  is represented as 

i
z , then the 
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transfer function samples can be written as 

 

1

K
n

n i i

i

H = β z
=
∑ ,                              (2.12) 

 

where 
i
β

 
are now referred to as the complex amplitudes. If the weighted sums, with 

weights { }mλ , is represented by 
n

S , then (Hewitt, Lau et al. 1989) 

 

0

K

n m n m

m

S Hλ −
=

=∑ .                              (2.13) 

 

 
Equation (2.13) can be expanded as follows: 

 

1 0

K K
n K K m

n i i m i

i m

S z zβ λ− −

= =

 
=  

 
∑ ∑ ,                             (2.14) 

     

( ){ }
1

K
n K

i i K i

i

β z P z−

=

=∑ ,                             (2.15) 

 

where ( )KP z  is a polynomial whose coefficients are the weights { }mλ , and has roots 
i

z , 

that is  

( ) ( )
1

K

K i

i

P z z z
=

= −∏  
0

K
K m

m

m

zλ −

=

=∑ .                        (2.16) 

 

This polynomial is referred to as the predictor polynomial. If 1
0

λ =  and the sums 

0
n

S = , then (2.13) can be rewritten as  

 

1

K

n m n m

m

H Hλ −
=

= −∑ .                                (2.17) 

  

Equation (2.17) shows that the channel transfer function samples 
n

H
 

have an 

autoregressive structure, in which each sample can be expressed as a weighted sum of its 

neighbours. This equation is called the forward predictor and it relates 
n

H
 

to its 

preceding K  components, where K  is the order of this predictor and { }mλ  are called the 
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autoregressive coefficients. 

    

Using similar analysis, a backward predictor which associates 
n

H
 
to its succeeding K  

components can be obtained; by taking the weighted sums of the complex conjugate of 

n
H

 
as follows: 

 

* *

1

K

n m n m

m

H Hλ +
=

= −∑ .                               (2.18) 

 

This procedure, which provides a means of processing 
n

H  in order to derive the 

amplitudes 
i
α  and the respective delays 

i
τ

 
of the multipath components, is known as the 

Prony algorithm.  

 

This algorithm can be summarised as follows: 

 

• The weights { }mλ  are estimated using (2.17) and (2.18).  

• The predictor polynomial ( )KP z  is factorised to obtain the roots 
i

z . 

• The path delays 
i
τ  are obtained from 

i
z . 

• The complex amplitudes 
i
β  are estimated from (2.11) and (2.12). 

• The actual amplitudes 
i
α  are then obtained from 

i
β .                                

 

The Prony algorithm is inherently nonlinear in that the output parameters 
i
α  and 

i
τ  are 

not linear functions of the input samples 
n

H  (Hewitt, Lau et al. 1989).  

 

This algorithm has been reported useful for extracting the delays and amplitudes of 

constituent components in multipath fields (Hewitt, Lau et al. 1989; Lau, Austin et al. 

1991). Hewitt et al. (1989) showed that while the Prony algorithm has the ability to 

resolve rays much closer than the Fourier-based limit, it also has a tendency to yield 

biased estimates of delays and amplitudes. An improved version of the Prony algorithm, 

named “singular value decomposition followed by prony-type root recovery,” and often 
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referred to as singular value decomposition prony (SVDP), has been used to extract the 

delays of constituent components in multipath fields (Ndzi, Austin et al. 2000). This 

SVDP algorithm has been shown to achieve a resolution of better than 5 ns, for a 

measurement bandwidth of 31.25 MHz (Ndzi, Austin et al. 2000). However the SNR 

value, at which the resolution of better than 5 ns was achieved, could not be ascertained 

in this paper. The SVDP algorithm has also been used to provide angle of arrival (AoA) 

information (Street, Lukama et al. 2000; Lukama, Street et al. 2001). 

 

2.3.3 Space-alternating generalized expectation-maximization algorithm   

 
The space-alternating generalized expectation-maximization (SAGE) algorithm is a low-

complexity generalisation of the expectation-maximization algorithm. The SAGE 

algorithm, which iteratively approximates the maximum likelihood estimator, has been 

successfully used to estimate impinging waves’ parameters in mobile radio 

environments (Fleury, Dahlhaus et al. 1996; Pedersen, Fleury et al. 1997). This 

algorithm breaks down a multi-dimensional optimisation process, necessary to compute 

the estimates of the parameters of a wave, into several separate, low-dimensional 

maximisation procedures, which are performed sequentially. This reduces the 

computational cost and is at an advantage when compared to the MUSIC algorithm. 

Rather than estimating all the parameters of a wave simultaneously which might 

predicate a slow convergence and difficult maximisation, as in the case of the EM 

algorithm, the SAGE algorithm estimates the parameters of a wave sequentially (Fessler 

and Hero 1994; Fleury, Tschudin et al. 1999).  

 

The algorithm uses the underlying statistical structure of a problem to replace difficult 

numerical maximizations with simpler maximizations. Details of the theoretical 

framework underlying the derivation of the SAGE algorithm are given in Fessler and 

Hero (1994), and in Fleury, Tschudin et al (1999). 

 

Furthermore, this algorithm overpowers the resolution limitation inherent in the Fourier 

or beam-forming methods (Fleury, Tschudin et al. 1999). However, the SAGE algorithm 
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depends on the assumption that a finite known number of waves characterised by their 

propagation delay, complex amplitude, and azimuthal incidence direction are impinging 

in the neighbourhood of a receiver. Under-estimating the number of impinging waves 

can result in poor resolution, while over-estimation can give rise to spurious components 

in the parameter estimates. As a consequence, the SAGE algorithm makes use of 

classical information theoretic methods for model order selection like Akaike’s and 

Rissanen criteria (Marple 1987; Kay 1988). In the SAGE algorithm, the number of 

impinging waves is often fixed to a value large enough to capture all prominent 

impinging waves before their parameter vectors can be estimated.   

 

This algorithm has been used for joint delay and azimuth estimation in time-invariant 

environments (Fleury, Dahlhaus et al. 1996), as well as for joint delay, azimuth, and 

Doppler frequency estimation in time-variant environments (Pedersen, Fleury et al. 

1997). The high-resolution capability, convergence rate, and accuracy of the scheme 

have been assessed in synthetic and real macro- and pico-cellular channels (Fleury, 

Tschudin et al. 1999). The results obtained indicate that the convergence rate of the 

SAGE algorithm is slightly slower when it is applied to real measurement data than 

when it is used with synthetic data. Additionally, Monte Carlo simulations in synthetic 

environments show that the scheme is able to easily separate impinging waves as soon 

as one of their parameters differ by more than approximately half the intrinsic resolution 

of the measuring equipment.  

 

2.3.4 Multiple signal classification algorithm   
 

The MUSIC algorithm is a noise subspace based frequency estimator. It uses the noise-

subspace eigenvectors of the data correlation matrix to form a null spectrum, the minima 

of which iteratively yield the signal parameter estimates (Wong and Zoltowski 2000). 

The MUSIC sinusoidal frequency estimator and delay pseudo-spectrum algorithm are 

discussed in this section. 

 

Starting with the following weighted spectral estimate (Proakis 1990): 
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( ) ( )
2

1

M
H

k k

k p

P f w f
= +

= ∑ s v  ,                         (2.19) 

 

where { }
1, ,k k p M= + …

v  are the eigenvectors in the noise subspace, M  is the size of these 

eigenvectors, p  is the size of the signal subspace, H  is the Hermitian transpose 

operator, while { }kw  are set of positive weights. ( )fs  is a vector of complex sinusoids 

given as 

 

( ) ( )2 12 41
T

j M fj f j ff e e e
ππ π − =  …s .                       (2.20) 

 

At any of the sinusoidal frequency components, 
i

f = f ,  

 

( ) 0iP f = ,    i = 1,2, , p… .                       (2.21) 

 

It is shown that  

 

( ) ( )
2

1

1 1
M

H

k k

k p

P f
w f

= +

=

∑ s v

                         (2.22) 

 

is a sharply peaked function of frequency and offers a method for estimating the 

frequencies of the sinusoidal components. Theoretically ( )1 P f

 

is infinite at 
i

f = f , in 

practice however, this results in finite values for ( )1 P f

 

at all frequencies. 

 

The MUSIC sinusoidal frequency estimator proposed by Schmidt (1986) equates the 

weights 1
k

w =  for all k , so that 

 

( )
( )

2

1

1
MUSIC M

H

k

k p

P f

f
= +

=

∑ s v

.                                    (2.23) 
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In the same fashion, MUSIC can be used to compute the time delays 
i
τ  by observing the 

locations of the peaks in the MUSIC delay pseudo-spectrum (Lo, Litva et al. 1993); 

 

( )
( )

2

1

1
MUSIC M

H

k

k p

P τ
τ

= +

=

∑ s v

,                        (2.24) 

 

where 

( ) ( )121
T

j Mj je e e
ωτωτ ωττ − − ∆− ∆ − ∆ =  …s .                   (2.25) 

 

This delay searching vector, ( )τs , is akin to the frequency searching vector, ( )fs . 

However, the Dirichlet kernels are functions of the time-delays 
i

τ  and are in conjugate 

form. Hence, the MUSIC delay pseudo-spectrum is plotted as a function of the time-

delays 
i
τ .  

 

The MUSIC algorithm was initially used for azimuth estimation (Schmidt 1986; 

Kowalski, Geffert et al. 1991). The algorithm was later applied to time-delay estimation 

(Lo, Litva et al. 1993). Although MUSIC was the first of the high-resolution algorithms 

to accurately exploit the underlying data model of signals that are buried in noise, the 

algorithm often has several limitations. For example, a complete knowledge of the array 

manifold is needed, and the search over parameter space is computationally expensive. 

The MUSIC algorithm gives better resolution than the autoregressive or Prony methods 

(Marple 1987). A previous study of wideband radio propagation, using the spread 

spectrum sliding correlator channel sounder with an intrinsic delay resolution of 50 ns, 

shows that the MUSIC delay pseudo-spectrum degrades below 16 ns at an SNR of 30 dB 

(Mossammaparast 1999). In another study, the MUSIC algorithm has been shown to 

give acceptable performance at SNRs above 16 dB (Kay 1988). 
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A polynomial-rooting version of the MUSIC technique, known as “root-MUSIC,” is 

known to have similar asymptotic properties as the original MUSIC algorithm (Krim 

and Viberg 1996). Moreover, this root-MUSIC technique is plagued by spurious roots 

which cause problems in identifying the actual roots corresponding to the true signals 

(Therrien 1992). 

 

A new variation of the MUSIC algorithm known as the “gold-MUSIC” has been 

recently proposed for obtaining accurate results in various forms of array geometries 

where the MUSIC algorithm is applied (Rangarao and Venkatanarasimhan 2013). 

Though the results obtained from this new variant of the MUSIC algorithm shows that 

this technique has quick convergence and gives accurate results under different SNR 

conditions, however the gold-MUSIC and conventional MUSIC algorithm requires an 

accurate estimate of the number of signals. 

 

 

2.3.5 Estimation of signal parameters by rotational invariance technique 

 

Estimation of signal parameters by rotational invariance technique (ESPRIT) is an 

extension of the MUSIC algorithm (Roy and Kailath 1989). The ESPRIT algorithm uses 

two or more arrays that bear a translation invariance relationship with respect to each 

other and then exploits the underlying rotational invariance among the signal subspaces 

to solve a generalised eigenvalue equation. This algorithm has two variants; the original 

ESPRIT method (Paulraj, Roy et al. 1985; Roy, Paulraj et al. 1986), and a total least 

squares (TLS) version of the original technique (Roy and Kailath 1989). These two 

variants of ESPRIT are known to give similar asymptotic estimation accuracy (Krim and 

Viberg 1996). However, the TLS version has lower bias in the frequency estimates. 

ESPRIT exhibits significantly low computational complexity over the MUSIC algorithm 

(Roy and Kailath 1989) and produces estimates that are asymptotically unbiased 

(Paulraj, Roy et al. 1985; Therrien 1992; Stoica and Moses 1997). 

 

 



 

34 

2.3.6 Summary of some signal parameter estimation techniques 

 

A number of published results in the literature presented different assumptions and 

simplications to the complexity of signal parameter estimation problems from many 

different points of view. The advantages and disadvantages of some of these signal 

parameter estimation techniques are summarised in Table 2.2 (Kumaresan and Tufts 

1980; Kay and Marple 1981; Kumaresan and Tufts 1983; Sakai 1984; Paulraj, Roy et al. 

1985; Kaveh and Barabell 1986; Roy, Paulraj et al. 1986; Schmidt 1986; Lau, Austin et 

al. 1987; Marple 1987; Kay 1988; Stoica and Nehorai 1988; Hewitt, Lau et al. 1989; 

Roy and Kailath 1989; Therrien 1992; Fleury, Dahlhaus et al. 1996; Krim and Viberg 

1996; Saariiisaari 1997; Stoica and Moses 1997; Fleury, Tschudin et al. 1999; Cristescu, 

Ristaniemi et al. 2000; Pourkhaatoun, Zekavat et al. 2007; Pourkhaatoun and Zekavat 

2011; Rangarao and Venkatanarasimhan 2013).  

 

 

           Table 2.2 A summary of the advantages, and disadvantages, of some signal 

    parameter estimation techniques. 

Method 

 

 

Advantages 
 

 

 

 

Disadvantages 
 

         

   Yule-Walker Algorithm  
(Kay and Marple 1981; 

Marple 1987; Kay 1988; 

Stoica and Nehorai 1988). 

 

(1) Computationally efficient. 

(2) Produces better resolution than 

FFT-based methods. 

 

(1) The model order needs to be 

specified in advance of the 

analysis.  

(2) Performs relatively poorly for 

short data records. 

 

 

 

    Least Squares Method  
(Kay and Marple 1981; 

Marple 1987; Kay 1988; 
Stoica and Moses 1997). 

 (1) Has superior performance than 

the Yule-Walker algorithm.  

(Marple 1987; Kay 1988; Stoica 

and Moses 1997). 
(2) Yield statistically stable 

spectral estimates (Kay 1988). 

 

(1) The model order needs to be 

specified in advance of the 

analysis.  

(2) The resolution for low SNR 
signals is comparable to that 

obtained from FFT-based 

methods. 

 

 

Pisarenko Harmonic 

Decomposition  
(Kay and Marple 1981; 

Sakai 1984; Stoica and 

Nehorai 1988; Therrien 

1992). 

 

Computationally efficient  

(Stoica and Moses 1997). 

 

 

(1) The performance is poor at 

low SNRs (Kay 1988; Stoica and 

Moses 1997). 

(2) The model order needs to be 

specified in advance of the 

analysis. 
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Extended Prony  

Algorithm  
(Kay and Marple 1981; 

Marple 1987; Kay 1988). 

 

(1) Parameter estimates are less 

biased than those obtained from 

the Pisarenko method. 

(2) Can resolve delays to better 

than 

half the Fourier limit (Hewitt, Lau 

et al. 1989). 

 

 

(1) The model order needs to be 

specified in advance of the 

analysis. 

(2) Resolution degrades at low 

SNR scenarios (Kay 1988). 

 

 

 

 

 

MUSIC Algorithm 
(Schmidt 1986). 

 

 

 (1) Has better resolution than 

Prony-based algorithm. 
(2) Yields asymptotically 

unbiased parameter estimates 

(Schmidt 1986; Roy and Kailath 

1989; Krim and Viberg 1996). 

 

 

 

(1) High computational burden. 

(2) The model order needs to be 

specified in advance of the 
analysis. 

(3) Fails to resolve closely spaced 

signals at low SNRs (Kumaresan 

and Tufts 1983; Kay 1988; Krim 

and Viberg 1996).  

 

 

 

 

Minimum Norm 
(Kumaresan and Tufts 

1983). 

 

(1) Has lower computational cost, 

and better resolution, than the 

MUSIC algorithm (Kaveh and 

Barabell 1986; Krim and Viberg 

1996; Stoica and Moses 1997). 
(2) Optimises the separation of the 

spurious roots in the root-MUSIC 

(Therrien 1992). 

 

 

Exhibit spurious peaks, and 

merging of spectral peaks, at low 

SNR values (Kumaresan and 

Tufts 1983). 
 

 

 

 

TLS-ESPRIT  
(Paulraj, Roy et al. 1985; 

Roy and Kailath 1989; 

Therrien 1992; Saariiisaari 

1997). 

 

 (1) Produces less biased estimates 

(Therrien 1992). 

(2) More accurate than 

conventional ESPRIT. 

(3) Manifests superior performance 

than the Pisarenko and Minimum-

Norm methods (Therrien 1992; 

Stoica and Moses 1997). 

 

(1) Requires an accurate estimate 

of the number of impinging 

waves.  

(2) Has higher computational cost 

than conventional ESPRIT. 

 
 

SAGE Algorithm  
(Fleury, Dahlhaus et al. 

1996). 

 

 
(1) Has lower computational cost 

than the MUSIC algorithm. 

(2) Yields better  resolution than 

FFT-based approaches (Fleury, 

Tschudin et al. 1999).  

 

 
 

The number of impinging waves 

needs to be specified in advance 

of the analysis. 

 

 

 

Independent Component 

Analysis  
(Cristescu, Ristaniemi et al. 

2000; Pourkhaatoun, 
Zekavat et al. 2007). 

 

 

(1) Lower sensitivity to SNRs, 

number-of-paths, and bandwidth, 

when compared with the MUSIC 

algorithm (Pourkhaatoun, Zekavat 

et al. 2007). 
(2) Has lower computational cost 

than the MUSIC algorithm 

(Pourkhaatoun, Zekavat et al. 

2007). 

 

 

 

 

Requires proper selection  

of a cost function (Pourkhaatoun, 

Zekavat et al. 2007). 
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gold-MUSIC Algorithm 
(Rangarao and 

Venkatanarasimhan 2013). 

 

 

 

 

(1) Low sensitivity to different 

SNR conditions. 

(2) Has quick convergence. 

 

 

 

 

 gold-MUSIC and conventional 

MUSIC algorithm follows the 

same steps, until the isolation of 

the noise eigenvectors, which 

requires an accurate estimate of 

the number of signals. 

 

 

 

Over the last three decades, the advent of multiscale signal analysis based on wavelets 

has received much attention (Mallat 1989b; Rioul and Vetterli 1991; Daubechies 1992; 

Nason and Silverman 1995; Kyriakopoulos and Parish 2010). Wavelets cannot only be 

used to analyse stationary signals but can also be used to decompose non-stationary, 

time-varying or transient signals.  

 

The next section presents a review of wavelet analysis. It starts with an historical 

overview of wavelets, and then a description of the discrete wavelet transform (DWT) 

and discrete stationary wavelet transform (SWT). This is followed by a discussion on 

wavelet packet analysis. Finally, some applications of wavelet analysis are presented. 

 

2.4 Wavelet Analysis 

 

2.4.1 Overview  

 

Section 2.3 has shown that signal analysts already have at their disposal an efficient 

arsenal of tools for signal processing applications. One of such tool is Fourier analysis. 

Fourier-based methods break down a signal into its constituent sinusoids. Usually, the 

information that cannot be seen in the time-domain can be obtained in the frequency 

domain. Moreover, in transforming a time-domain signal into frequency-domain, the 

time information is lost.  

 

Most signals encountered in practice are time-domain in their raw format. Fourier 

analysis provides the frequency contents of a signal with no indication about the time 

information at which a frequency component occurs. This time information is not 
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required when the time-domain signal is stationary, since the frequency content does not 

change in time. The Fourier transform is however not a desirable technique to analyse 

non-stationary signals. Fourier transform can be used for non-stationary signals, only if 

the spectral components are to be determined. However, if the time interval at which a 

spectral component occurs in non-stationary signals is to be determined, then Fourier 

transform is not the correct transform to use. When the time localisation of the spectral 

components is required, a transform that gives the time-frequency representation (TFR) 

of the signal is needed. 

 

An alteration of the Fourier transform to enable analysis of non-stationary signals is the 

short-time Fourier transform (STFT). The STFT segments a signal into short pieces by 

moving a time-localised window across the signal, and then computing the Fourier 

transform for every windowed (i.e. time-localised) segment of the signal. Consequently, 

the STFT maps a signal into a two-dimensional function of frequency and time, and 

provides a form of compromise between the frequency and time based views of a signal. 

It gives information about the frequency contents of a signal and when the signal event 

occurs. The tilings of the time-frequency plane for STFT (Vetterli and Herley 1992; 

Herley, Kovacevic et al. 1993), is shown in Fig. 2.5.  

 

 

 

Figure 2.5 Tiling of the time-frequency plane for short-time Fourier transform. 
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These TFRs suffered from one major setback; once the size of a time window is chosen, 

this window shape remains the same in the entire analysis. STFT is able to analyse either 

high frequency components using narrow windows, resulting in good time resolution 

and poor frequency resolution, or low frequency components using wide windows 

giving poor time resolution and good frequency resolution. This technique is therefore 

not able to analyse signals that contain both slowly varying spectra and sharp transitions. 

The analysis of signals that exhibit short-duration high-frequency events and long-

duration low-frequency events requires a windowing technique with variable-sized 

regions. The wavelet transform is a windowing technique of this type. These window 

functions are generated by dilation or compression of a prototype function. Many signals 

in practice require such a flexible approach, where the window size can be varied to 

ascertain more accurately either frequency or time. The underlying principles in wavelet 

analysis are presented in Appendix A. 

 

This thesis explores the novel use of wavelet analysis as a post-processing technique to 

parameterise the multipath radio channel with a high-resolution. Wavelet analysis is a 

development of applied mathematics introduced in the 1980s (Mallat 1989a; Mallat 

1989b). It evolved from earlier developments in Harmonic analysis. The tiling of the 

time-frequency plane for wavelet transform is shown in Fig. 2.6 (Vetterli and Herley 

1992; Herley, Kovacevic et al. 1993).  

 

 

Figure 2.6 Tiling of the time-frequency plane for wavelet transform. 
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All the tiles in this case trade-off frequency resolution for time resolution and vice versa. 

Though the widths and heights of these tiles change, their area is constant. Each tile 

constitutes an equal portion of the time-frequency plane, but provides different ratios to 

time and frequency. At low frequencies, the height of the tilings are shorter 

corresponding to better frequency resolution, while their widths are longer 

corresponding to poor time resolution. At high frequencies however, the height of the 

tilings increases corresponding to poor frequency resolution, while their width decreases 

corresponding to good time resolution.  

 

The wavelet transform of discrete-time signals can be discrete wavelet transform (DWT) 

or discrete stationary wavelet transform (SWT). The DWT and SWT procedure are 

discussed in the next section. 

 

2.4.2 DWT versus SWT 

 

In order to obtain the DWT, the parameters a
 
and b  in (1.1) are discretised (Daubechies 

1992). The DWT of a discrete signal can also be obtained by iteratively applying low-

pass and high-pass filters (Mallat 1989b; Mallat 1999), as shown in Fig. 2.7.   

 

 

  Figure 2.7 The discrete wavelet transform procedure. 

 

In Fig. 2.7, the signal ( )x n  to be analysed is passed through a high-pass filter with 

coefficients 
k

g
�  and a low-pass filter with coefficients 

k
h
� , which splits this signal into 

two distinct subbands. The filter output is downsampled by two through discarding of 
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every other sample and therefore eliminating half of the original signal samples. This 

forms one level of decomposition. The output signal at this first level is represented by 

1,kv
�

, the approximation coefficients, and 1,kw
�

, the corresponding detail coefficients. The 

symbol 2↓  represents the downsampling operation. 

 

Each decomposition level halves the time resolution of the input signal, but doubles the 

frequency resolution. The frequencies that are most prominent in the input signal 

appears as high amplitude wavelet coefficients in that region of the DWT that has those 

frequencies. While the frequency bands that are not outstanding in the original signal 

will have small amplitude wavelet coefficients, and this part of the DWT can be 

discarded without any vital loss of information; thus providing data reduction. This 

procedure is also known as subband coding (Ramchandran, Vetterli et al. 1996; Strang 

and Nguyen 1997; Akansu and Haddad 2001). 

 

A well-known setback of the DWT is their sensitivity to translations (Liang and Parks 

1996; Pesquet, Krim et al. 1996). That is, the DWT of a translated version of a signal is 

not the same as the translation of the DWT of the original signal (Percival and Walden 

2000). This is as a result of the downsampling operation in the DWT, since 

downsampling is not a time-invariant operation (Strang and Nguyen 1997). This causes 

misalignments between features in a signal and features in a wavelet basis (Coifman and 

Donoho 1995). In order to reinstate the translation invariance, the stationary wavelet 

transform (SWT) is used (Nason and Silverman 1995).   

 

The discrete stationary wavelet transform has been referred to in the wavelet literature 

under different names such as the shift invariant DWT (Beylkin 1992), the translation 

invariant DWT (Liang and Parks 1996), the time invariant DWT (Pesquet, Krim et al. 

1996), and non-decimated DWT (Bruce and Gao 1996a).  

 

In SWT, appropriate low-pass and high-pass filters are applied on a given signal to 

produce the approximation and detail coefficients, at the next level, without decimation 

such that the two new sequences each have the same length as the original signal. The 
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level 1 approximation coefficients is then applied to the upsampled versions of the level 

1 decomposition filters, to produce the level 2 approximation and detail coefficients. 

This procedure is shown in Fig. 2.8, where ,j k
g  are the decomposition high-pass filter 

coefficients, while ,j k
h  are the decomposition low-pass filter coefficients. The levels of 

the SWT are denoted by j , while k  are the translations of the wavelets at each level. 

The approximation coefficients are represented by
 ,j k

v , and the detail coefficients by 

,j k
w .  

 

Since shift-invariance is a desired property in feature extraction and detection 

applications, therefore the SWT is applied in this study to parameterise the multipath 

radio channel, in order to accurately detect the time-delays and number of multipath 

components.     

 

 

    Figure 2.8 The stationary wavelet transform procedure. 

 

 

2.4.3 Wavelet packet analysis 

 

A well-known extension of wavelets and the DWT is wavelet packets (Wickerhauser 

1994; Ramchandran, Vetterli et al. 1996; Percival and Walden 2000; Jensen and Cour-

Harbo 2001). Wavelet packet analysis is a generalisation of wavelet analysis giving a 

richer decomposition procedure.  
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In the conventional wavelet decomposition paradigm, such as shown in Figs. 2.7 and 

2.8, the generic step is to split the approximation coefficients into two parts. After 

splitting, another set of approximation coefficients and the detail coefficients are 

obtained at a coarser scale. Then, the next step consists in breaking up the new 

approximation coefficients; successive detail coefficients are not re-analysed. In the 

wavelet packet case, the detail coefficients are also decomposed into two parts using 

similar procedure as in the approximation coefficients splitting. 

 

The wavelet packet transform (WPT) decomposition tree is shown in Fig. 2.9, where the 

symbols 2↓ , o

k
g , o

k
h , ,

o

j k
w  and ,

o

j k
v , are as defined in Fig. 2.7. The successive detail and 

approximation coefficients, resulting from splitting the detail coefficients, are denoted 

by 
,j kgw
�  and 

,j kgv
�

 
respectively.  

 

Though this algorithm gives richer signal analysis, it however introduces higher 

complexities when compared with the conventional wavelet decomposition procedure 

(Coifman, Meyer et al. 1990; Coifman and Wickerhauser 1992; Daubechies 1992).  

 

Figure 2.9 The wavelet packet transform decomposition tree. 
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2.4.4 Applications of wavelets 

 

Wavelets have been used in a large number of fields; such as acoustics (Guillemain and 

Kronland-Martinet 1996), speech (Ramchandran, Vetterli et al. 1996), image processing 

(Mallat 1996), communication systems (Hetling, Medley et al. 1994; Wickert and 

Ionescu 1996; Wornell 1996; Ionescu and Wickert 1997; Quinquis and Boulinguez 

1997; Akansu, Duhamel et al. 1998; Newlin 1998), astronomy (Bijaoui, Slezak et al. 

1996), physics (Farge, Kevlahan et al. 1996), and biology (Unser and Aldroubi 1996).  

 

Common utilisation of wavelets are related to data denoising (Donoho and Johnstone 

1994; Coifman and Donoho 1995; Donoho and Johnstone 1995; Ainsleigh and Chui 

1996), compression (Mallat 1989a; Mallat 1989b; Mallat 1996), feature extraction 

(Polikar, Greer et al. 1997), and discontinuity detection (Mallat 1991; Mallat and Hwang 

1992).  

 

Wavelets have been used in biomedical engineering for the analysis of 

electrocardiogram (ECG), i.e. electrical activity of the heart, for diagnosing 

cardiovascular disorders (Unser and Aldroubi 1996). It has also been used in the analysis 

of electroencephalogram (EEG), i.e. electrical activity of the brain, for diagnosing 

neurophysiological disorders such as epileptic seizure detection and Alzheimer disease 

(Unser and Aldroubi 1996; Polikar, Greer et al. 1997). Wavelets have been used, by the 

US Federal Bureau of Investigation (FBI), for digitised fingerprints compressions 

(Bradley and Brislawn 1994). 

 

Wavelet packets have been used to improve the temporal resolution of underwater 

acoustic signals (Quinquis and Boulinguez 1997). In this experiment, arrays of sensors 

that receive PSK signals emitted by several sources were analysed. The transmitter and 

receiver system were situated in the Mediterranean Sea, and the closely-spaced acoustic 

ray paths resolved in order to determine their arrival times. The signals received by the 

sensors were sampled at 1600 Hz. They are then demodulated, filtered by a matched 

filter and subsampled at 400 Hz. A resolution of 10 ms was achieved. The results 

obtained with wavelet packets showed an improvement in resolution over the MUSIC 
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algorithm. However, the improvement in resolution obtained is unclear in this paper. 

Also although the closely spaced rays (i.e. those separated by less than 10 ms) are 

resolved in this experiment, the number of ray arrivals could not be precisely ascertained 

from the paper.  

 

In another experiment, the performance of a wavelet in probing a multipath channel has 

been investigated (Wickert and Ionescu 1996). In this scheme, a properly shaped 

isolated pulse, having sufficient energy, is transmitted through a multipath channel. The 

demodulation process is assumed to be coherent. Wavelet analysis is then applied to 

decompose the noisy superposition of the delayed and attenuated versions of the 

transmitted pulse. The parameters of interest to be estimated are the attenuation factors 

and delay times of the different paths. Although the results obtained in the paper 

demonstrate the use of wavelets in multipath estimation, the resolution obtained is 

unclear in this paper. Also, the problem of translation sensitivity inherent in the 

conventional wavelet decomposition procedure (Liang and Parks 1996; Pesquet, Krim et 

al. 1996) was not adequately tackled. 

 

Some areas of mathematics, science, and engineering that have contributed to the 

development of wavelets are shown in Fig. 2.10.  

            

 

Figure 2.10 Some areas of mathematics, science, and engineering 

   where wavelets have been used. 
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2.5 Summary 
 

In this chapter, a survey of wideband channel sounding techniques and conventional 

signal parameter estimation algorithms has been presented.  

 

The chapter began with a review of the operation, advantages, disadvantages, and 

applications of channel sounders used for wideband channel measurements. The 

wideband channel sounding techniques, surveyed, are generally classified as direct RF 

pulse channel sounding, spread spectrum sliding correlation channel sounding, and 

frequency domain measurements. This is then followed by a review of the conventional 

digital signal processing algorithms that are often used for signal parameter estimations. 

These parameter estimation algorithms are categorised as non-parametric and 

parametric-based techniques. The advantages and limitations of these signal parameter 

estimation algorithms were examined. It has been shown that the parametric-based 

methods can be very useful in extracting high-resolution estimates, especially in 

applications where short data records are available, provided the signal structure is 

known. However, the model order selection is often a difficult problem in most of these 

parametric-based methods.  

 

An alternative high-resolution digital signal processing algorithm, based on wavelet 

analysis, is researched in this study. Therefore, an overview of wavelet analysis, the 

discrete wavelet transform, stationary wavelet transform, and wavelet packet analysis 

have been carried out. The justification for applying the stationary wavelet transform in 

this research, to parameterise the multipath channel, has been shown. Finally, the 

chapter concludes with a review of some applications of wavelet analysis, and the many 

areas of engineering, science, and mathematics that have led to the development of 

wavelets. 
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CHAPTER 3 
 

 

PROPOSED ALGORITHM FOR MULTIPATH CHANNEL 

PARAMETER ESTIMATION 

 

 

 

3.1 Introduction 

  

As discussed in Section 2.1, a digital signal processing algorithm may be used to assist 

in resolving the multiple ray paths that are otherwise not individually identifiable for the 

purpose of mobile radio channel modelling. This chapter presents the development of a 

novel high-resolution digital signal processing algorithm, for use in resolving these 

multiple ray paths. This algorithm incorporates a novel wavelet family matched to the 

triangular output waveforms of the sliding correlator channel sounder, discussed in 

Section 2.2.4.  

 

The chapter starts with the design procedure for customised mother wavelets, for use in 

this study. Since the determination of mobile radio channel parameters is usually 

impaired in the presence of noise, therefore, strategies that can be used in reducing noise 

through the use of wavelet analysis are shown next. These noise reduction schemes start 

with an investigation of how additive white Gaussian noise (AWGN) can influence the 

wavelet transform coefficients. This is followed by a presentation of the proposed noise 

reduction strategies. The SWT procedure, discussed in Section 2.4.2, has been applied in 

these schemes. Finally, this chapter concludes with the derivation of a novel amplitude 
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estimation algorithm, which can be used in estimating the amplitudes of the individual 

multipath components in synthetic mobile radio environments. 

 

 

3.2 Building a Customised Wavelet  
 

3.2.1 Desired signal model 

 

The signal waveform at the receiver of the sliding correlator channel sounder, utilised as 

a reference for this study, can be generally modelled as follows:   

 

( ) ( ) ( )
1

K

ic

i

iy t = α p t-τ + tη
=
∑ ,                    (3.1) 

 

where ( )i
p t -τ  has a triangular shape, delayed by 

i
τ , formed from the correlation of the 

receiver and transmitter pseudo-random binary sequence. K  represents the number of 

paths, 
ic
α  denotes the complex amplitude of the th

i  path, while ( )tη  is the AWGN.  

                                                                     

Now assuming that 1K = , as in LOS transmissions, then the received signal ( )y t  takes 

the form of a single triangle with a base width that is twice the chip clock period of the 

transmit PRBS. In this study, the clock period of the transmit PRBS is taken to be 50 ns. 

Therefore the actual base width of the output signal waveform is 100 ns. That is after 

accounting for the apparent dilation of the horizontal axis time scale caused by the 

sliding factor of the channel sounder. An example of a test signal profile containing a 

single path, without noise, is shown in Fig. 3.1. The peak amplitude of this triangular 

waveform has been assumed to be 1.0 V in this study. This research proposes to make 

use of the stationary wavelet transform to identify the peaks of each triangular 

waveform, thereby separating the individual propagation paths. 
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                         Figure 3.1 Simulated one-path test signal profile without noise. 

 

In wavelet transform domain, the signal ( )
j

y t V∈  is projected into two subspaces 
1j

V +  

and 
1j

W + , where 
j

V
 
and 

j
W

 
are the approximation and detail spaces respectively at the 

thj  resolution level. The nesting of these subspaces is discussed in Section A.3 of 

Appendix A. The detail space 
j

W  has basis functions ( ){ }, ,j k j k
tψ

∈ ∈ℤ ℤ
, called wavelets 

(Debnath 2003). These basis functions are translates and dilates of a prototype function, 

( )tψ , known as the mother wavelet. 

 

Generally, the best mother wavelet to use for a particular application depends on the 

nature of the signal to be analysed, as well as what is required from the analysis. For the 

single-path profile, shown in Fig. 3.1, the triangular waveform has discontinuities in the 

first derivative. A discontinuity in the first derivative can be detected by wavelets having 

at least 4 coefficients (Strang and Nguyen 1997). The discontinuity at time  =t  50 ns , 

i.e. the waveform peak, provides the time-delay information associated with each 

propagation path. A wavelet function is desirable in this study, therefore, if it matches 

the triangular waveform simulated in Fig. 3.1 and has filters with at least 4 coefficients. 

 

The next section presents the design of customised mother wavelets for this research, to 

detect the peaks of the individual paths in a multipath delay profile, by use of finite-
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duration impulse response (FIR) digital filter design technique (Oppenheim and Willsky 

1997; Hayes 1999; Pollock 1999; Smith 1999; Smith 2003). One way of designing such 

a filter is by judicious placement of its zeros on the z-plane (Pollock 1999). 

 

3.2.2 Novel wavelet design 

 

As shown in the previous section, i.e. Section 3.2.1, a wavelet function of interest for 

this study must detect the peak of the triangular waveform shown in Fig. 3.1. Such a 

wavelet must also have linear phase effects (Hayes 1999; Pollock 1999).   

 

A linear-phase condition can be defined as when (McClellan and Parks 1973; Hayes 

1999):  

          

( ) ( )1h n h N n= − − ,   0,1, , 1n N= −… ,                   (3.2)   

     

where ( )h n  is the impulse response of an FIR filter with N  number of coefficients. The 

z-transform of ( )h n
 
becomes 

  

( ) ( )
N -1

n

n=0

H z h n z
−=∑ ,                              (3.3) 

 

where z

 

is the z-transform variable. The transfer function, ( )H z , can be expressed in 

terms of its zeros as  

 

( ) ( )
1

N

ii
H z z z

=
= −∏ ,                (3.4) 

 

where 
i

z  are the zeros of this FIR filter. In polynomial form (Smith 1999; Smith 2003): 

 

( ) 1 2 3

0 1 2 3

N

NH z h h z h z h z h z
− − − −= + + + + +⋯ ,              (3.5) 

 

where 
0 1 2, , , , Nh h h h⋯  are the filter coefficients.  
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The impulse response of the filter can then be written in terms of the following 

transform pair (Oppenheim and Willsky 1997): 

 

( )0δ n n+
 
⇔

 
0n

z ,                (3.6) 

 

where ⇔
 
denotes two way implications of the z-transform pair. Therefore, 

 

( ) ( ) ( ) ( ) ( )0 1 2 Nh n h δ n h δ n -1 h δ n - 2 h δ n - N= + + + +⋯ .                            (3.7) 

 

For positive symmetry ( ) ( )1h n h N n= − − , while for negative symmetry 

( ) ( )1h n h N n= − − −  (McClellan and Parks 1973; Hayes 1999). In this study, an FIR 

filter with odd length and positive symmetry is considered desirable. Three possible 

cases for such a symmetric wavelet filter, with at least 5 coefficients, are considered as 

follows: 

 

Case 1 

 

Starting with a single isolated triangular waveform, such as shown in Fig. 3.1, having 

the following scaling coefficients: 

 

0
0h = , 1 0.5h = , 2 1h = , 

3
0.5h = , 4 0h = . 

 

Substituting these scaling coefficients into (3.5) gives the transfer function of the 

resulting low-pass FIR filter, in polynomial form, as 

 

( ) 1 2 3
0.5 0.5H z z z z

− − −= + + .                       (3.8) 

 

Using (3.7), the impulse response of the low-pass filter is derived as 

 

( ) ( ) ( ) ( )0.5 0.5h n δ n -1 +δ n - 2 δ n - 3= + .                (3.9)                                              

 

The corresponding high-pass filter coefficients are given by 
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( ) 41
k

k kg h −= − ,                (3.10) 

 

where 

 
4

0

0k

k

g
=

=∑ ,          (3.11) 

 

as required for a wavelet. Equation (3.10) is known as the quadrature mirror filter 

relation (Strang and Nguyen 1997). Therefore 

 

0
g  = 0, 1g = -0.5, 2g  = 1.0, 

3
g  = -0.5, 4g  = 0. 

 

The impulse response of the high-pass filter can then be written as 

 

( ) ( ) ( ) ( )-0.5 + - 0.5g n δ n -1 δ n - 2 δ n - 3= .                                (3.12)  

                           

The mother wavelet, corresponding to the derived high-pass filter coefficients, is 

referred to as “Pathlet 5.” This is because the number of coefficients associated with the 

low-pass and high-pass filters is 5. Pathlet 5 scaling function and mother wavelet is 

shown in Fig. 3.2. This scaling function approximates the triangular waveform in Fig. 

3.1.  

 

 

                  Figure 3.2 Plots of Pathlet 5 scaling function and mother wavelet. 
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The low-pass and high-pass filter coefficients satisfy the following single-shift 

orthogonality constraints:
  

 
4

1

0

0
k k

k

h g −
=

=∑ ,                 (3.13) 

 
4

1

0

0
k k

k

g h −
=

=∑ .                 (3.14) 

 

The constraints in (3.13) and (3.14) leads to the single-shift orthogonality of the scaling 

function ( )tϕ  and the generated mother wavelet ( )tψ , defined as follows
  

 

( ) ( )1  = 0t , tϕ ψ − ,                (3.15) 

 

where  ,  ⋅ ⋅
 
denotes inner product operation. The maximum norm 

max
  ⋅ of 

k
h  and 

k
g  

is unity, defined as 
 

  

{ }
{ }

max

max

max : 0, 4

max : 0, 4

k k

k k

h h k

g g k

= =

= =

…

…
.              (3.16)  

     

Case 2 

 

In this case, the kernel function generated in case 1 is dilated to produce a new set of 

symmetric high-pass filter coefficients given by 

 

0
g  = 0, 1g = -0.1667, 2g  = -0.3333, 

3
g  = 1.0, 4g  = -0.3333, 

5
g = -0.1667, 

6
g  = 0. 

 

where  

6

0

0k

k

g
=

=∑ .                  (3.17) 

 

The impulse response of this high-pass filter is then  
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( ) ( ) ( )-0.1667 - 0.3333g n δ n -1 δ n - 2=  

( ) ( ) ( ) - 0.3333 - 0.1667+ δ n - 3 δ n - 4 δ n - 5 .    (3.18) 

 

Using the quadrature mirror filter relation, then the corresponding low-pass filter 

coefficients are given by  

  

( ) 61
k

k kh g −= − .               (3.19) 

 

Therefore 

 

0
h  = 0, 1h = 0.1667, 2h  = -0.3333, 

3
h  = -1.0, 4h  = -0.3333, 

5
h = 0.1667, 

6
h  = 0. 

 

This gives the impulse response of the low-pass filter as  

 

( ) ( ) ( )0.1667 0.3333h n δ n -1 δ n - 2= −  

( ) ( ) ( ) 0.3333 0.1667δ n - 3 δ n - 4 δ n - 5− − + .                         (3.20)               

 

These low-pass and high-pass filter coefficients also satisfy the single-shift 

orthogonality constraints. Therefore  

   

1 0 2 1 3 2 4 3 5 4 6 5
0h g h g h g h g h g h g+ + + + + = ,             (3.21) 

 

and     

{ }
{ }

max

max

max : 0, 6 1

max : 0, 6 1

k k

k k

h h k

g g k

= = =

= = =

…

…
.              (3.22) 

 

The new mother wavelet generated in this case is referred to as “Pathlet 7,” because the 

number of coefficients associated with the low-pass and high-pass filters is 7. Pathlet 7 

scaling function and mother wavelet is shown in Fig. 3.3.  
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                    Figure 3.3 Plots of Pathlet 7 scaling function and mother wavelet. 

 

Case 3 

 

For this 3
rd

 case, the kernel function generated in case 2 is dilated to produce another set 

of symmetric high-pass filter coefficients given by  

 

0
g  = 0, 1g = -0.08333, 2g  = -0.1667, 

3
g  = -0.25, 4g  = 1.0,  

5
g = -0.25, 

6
g  = -0.1667, 7g = -0.08333, 

8
g  = 0, 

 

such that  

 
8

0

0
k

k

g
=

=∑ .                  (3.23) 

 

Now the impulse response of this high-pass filter is then  

 

( ) ( ) ( ) ( ) ( )-0.08333 - 0.1667 - 0.25g n δ n - 1 δ n - 2 δ n - 3 δ n - 4= +  

( ) ( ) ( ) - 0.1667 - 0.08333- 0.25δ n - 5 δ n -6 δ n -7 .              (3.24) 

 

The corresponding low-pass filter coefficients, derived from the quadrature mirror filter 

relation, are  
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0
h  = 0, 1h = 0.08333, 2h  = -0.1667, 

3
h  = 0.25, 4h  = 1.0, 

5
h = 0.25,  

6
h  = -0.1667, 

7
h = 0.08333, 

8
h  = 0. 

 

The impulse response of this low-pass filter is therfore 

 

( ) ( ) ( ) ( ) ( )0.08333 0.1667 + 0.25h n δ n - 1 δ n - 2 δ n - 3 δ n - 4= − +  

( ) ( ) ( ) 0.1667 0.08333+ 0.25δ n - 5 δ n - 6 δ n -7− + .              (3.25) 

                    

The mother wavelet generated is referred to as “Pathlet 9.” Pathlet 9 scaling function and 

mother wavelet is shown in Fig. 3.4. This wavelet system also satisfy the single-shift 

orthogonality constraints, hence  

 

1 0 2 1 3 2 4 3 5 4 6 5 7 6 8 7
0h g h g h g h g h g h g h g h g+ + + + + + + = ,           (3.26) 

     

and 

 

 
{ }
{ }

max

max

max : 0, 8 1

max : 0, 8 1

k k

k k

h h k

g g k

= = =

= = =

…

…
.              (3.27)    

 

 

   

                  Figure 3.4 Plots of Pathlet 9 scaling function and mother wavelet.  
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Wavelets with compact support (in time), for high-resolution time-delay estimation, is 

essential for this study. Therefore, further dilations of the kernel function in case 3 to 

produce new set of high-pass filter coefficients are not considered suitable for use. The 

wavelet family generated, in cases 1-3, is referred to as “Pathlets” in this research. 

 

The Pathlet wavelet family has the following properties: 

 

1. Compact support.  

2. Linear-phase filters.   

3. Triangular (or near triangular) shapes.  

 

Series of computer simulations are presented in Chapter 4, to demonstrate the 

performance of this new wavelet family in resolving the constituent components in 

multipath delay profiles. The stationary wavelet transform has been adopted in these 

simulations. The positive peaks in the SWT detail coefficients are used to provide 

information about the time-delays and number of propagation paths. 

 

 

3.3 Noise Reduction Techniques 

 

3.3.1 Noise analysis 

 

Noise is an undesirable signal that disrupts the processing or communication of an 

information-bearing signal. It is one of the constraining factors in measurement systems. 

The ability to characterise and model the noise process, and also use the noise 

characteristics advantageously to distinguish a wanted signal from noise, is of 

paramount importance in any noise reduction technique. This section investigates how 

AWGN can influence the wavelet transform coefficients, using Pathlets 5, 7, 9, and a 

member of Daubechies’ least-asymmetric wavelet family known as Symlet 2, as the 

analysing wavelets. Symlet 2 has been chosen for comparison with Pathlets, in these 

analyses, because Daubechies’ least-asymmetric wavelets have near linear-phase filters 

and are compactly supported (Daubechies 1992; Mallat 1999; Tang, Yang et al. 2000). 

This wavelet family is more symmetric than the Daubechies’ extremal phase wavelets. 
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The Daubechies’ extremal phase filter coefficients are derived in Appendix B. Linear-

phase filters and wavelets with compact support are some of the desired properties in the 

wavelets derived for use in this research, as discussed in Sections 3.2.1 and 3.2.2. 

 

The decomposition low-pass and high-pass filter coefficients of Pathlets and Symlet 2, 

used in this study, are tabulated in Table 3.1. The maximum norm of Symlet 2 

decomposition filter coefficients has been set to be unity, defined according to (3.16), so 

that a fair comparison can be made with Pathlets.
 

 

           Table 3.1 Decomposition low-pass and high-pass filter coefficients of  

        Pathlets 5, 7, 9, and Symlet 2. 
 

Wavelet type 

 

Low-pass filter coefficients 

 

High-pass filter coefficients 
 

 

Pathlet 5 

 

 

0, 0.5, 1.0, 0.5, 0 

 

0, -0.5, 1.0, -0.5, 0 

 

Pathlet 7 

0, 0.1667, -0.3333, 

-1.0, 

-0.3333, 0.1667, 0 

0, -0.1667, -0.3333, 

1.0, 

-0.3333, -0.1667, 0 

 

Pathlet 9 

0, 0.08333, -0.1667, 

0.25, 1.0, 0.25, 

-0.1667, 0.08333, 0 

0, -0.08333, -0.1667, 

-0.25, 1.0, -0.25, 

-0.1667, -0.08333, 0 

 

Symlet 2 

 

 

0.5774, 1.0, 0.2679, 

-0.1547 

 

-0.1547, -0.2679, 

1.0, -0.5774 

 

 

Expressing the noisy signal, given in (3.1), as 

 

( ) ( ) ( )N N Ny n x n nη= + , 0,1, , 1n N= −… ,                    (3.28)      

  

where ( )Nx n
 
is the noiseless signal of interest, ( )N nη  is additive white Gaussian noise 

with an rms value of ησ , while N  is the length of the signal. This noisy signal ( )Ny n  is 

assumed to be without band-limitations. The signal-to-noise ratio (SNR) is defined by 

 

( )1020 logSNR ρ υ= ,                                      (3.29) 
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where ρ  is the peak amplitude of a single triangular waveform set to be 1.0 V, taken to 

be the reference path in this study, while υ
 
denotes the noise level.  

 

Since the wavelet transform is a linear transformation, therefore the noisy signal ( )Ny n
 

can be decomposed into wavelet transform domain as follows: 

  

,    ,   + , =y g x g gηηηη ,       (3.30) 

      , , ,  j k j k j kd w e= + ,      1, 2, ,j J= … ,  0,1, , 1
j

k N= −… ,  (3.31) 

             

where  ,  ⋅ ⋅
 
is the inner product operation, while j,kd , ,j kw , and ,j ke

 
are used to 

represent the wavelet transform detail coefficients of ( )Ny n , ( )Nx n , and ( )N nη , 

respectively, at the th
k  coordinates and 

th
j  level of wavelet transform. J

 
represents the 

coarsest resolution level, g  is the vector of the decomposition high-pass filter 

coefficients, while y , x , and ηηηη  are vectors of ( )Ny n , ( )Nx n , and ( )N nη  respectively. 

jN  is the total number of samples at the 
th

j  level.  

 

The transform coefficients 
j,k

d , ,j kw , and 
j,k

e
 
are given by (Chidume 2003) 

 

, 0 0 1 1 2 2 1 1j jj k N Nd y g y g y g y g− −= + + + +⋯ ,             (3.32)
 

, 0 0 1 1 2 2 1 1j jj k N Nw x g x g x g x g− −= + + + +⋯ ,             (3.33)
 

, 0 0 1 1 2 2 1 1j jj k N Ne g g g gη η η η − −= + + + +⋯ ,             (3.34)
 

 

where 
0 1 1, ,  ,  

jNy y y −… , 
0 1 1, ,  ,  

jNx x x −… , 
0 1 1, ,  ,  

jNη η η −… , and 
0 1 1, ,  ,  

jNg g g −…
 
are 

elements of y , x , ηηηη , and g  respectively. In (3.34), the wavelet filter coefficients 

0 1 1, ,  ,  
jNg g g −…

 
transform the noise source ( )N nη   into a new equivalent noise. Since 

the wavelet transform of the AWGN is also white and Gaussian distributed in the 

wavelet domain (Mallat and Hwang 1992; Debnath 2003), hence the detail coefficients, 
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j,k
e , are Gaussian random variables with a new standard deviation. When Pathlet 5 is 

used as the analysing wavelet, for example, then (3.34) becomes  

 

1,2 0 0 1 1 2 2 3 3 4 4
e = g + g + g + g + gη η η η η ,     (3.35) 

      1 2 3
= -0.5 + -0.5η η η ,               (3.36) 

 

where 
0

g  = 0, 1g = -0.5, 2g  = 1.0, 
3

g  = -0.5, 4g  = 0, 
1,2

e   is the wavelet transform 

coefficient at 1j =  and k = 2 , while 
1

η , 
2

η , and 
3

η
 
are Gaussian random variables. 

This new noise term can be rewritten as  

 

E = X +Y + Z ,                        (3.37) 

 

where 
1,2

E = e , 
1

X = -0.5η , 
2

Y =η , and 
3

Z = -0.5η
 
are uncorrelated Gaussian random 

variables (Percival and Walden 2000). Their characteristic functions, ( )κ ωΦ , are 

defined as (Papoulis and Pillai 2002; Leon-Garcia 2008): 

 

( ) { }2 2exp 0.5jκ κ κω ξ ω σ ωΦ = − ,                            (3.38)
 

 

where κ
 
can be E , X , Y ,

 
or Z  random variable. κξ

 
and 2

κσ
 
are the mean and 

variance respectively of the random variables. Hence  

        
 

( ) ( )-0.5
1X ηω ωΦ = Φ ,       (3.39) 

{ }2 2exp 0.5 0.125
1 1

j η ηξ ω σ ω= − − .                  (3.40) 

    

( ) ( )
2Y ηω ωΦ = Φ ,        (3.41) 

           { }2 2exp 0.5
2 2

j η ηξ ω σ ω= − .                               (3.42) 

 

( ) ( )-0.5
3Z ηω ωΦ = Φ ,       (3.43) 

                        { }2 2
exp 0.5 0.125

3 3
j η ηξ ω σ ω= − − .                   (3.44) 

 

The joint characteristic function, ( ) ,
E

ωΦ
 

of these random variables is given by 

(Papoulis and Pillai 2002): 
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( ) ( ) ( ) ( )E X Y Zω ω ω ωΦ = Φ ×Φ ×Φ ,                       (3.45) 

                  ( ){ ( )}2 2 2 2exp -0.5 + -0.5 0.5 0.25 + +0.25
1 2 31 2 3

j η η ηη η ηω ξ ξ ξ ω σ σ σ= − .  (3.46) 

 

Comparing (3.38) and (3.46) gives 

 

-0.5 + -0.5
1 2 3E η η ηξ ξ ξ ξ= ,                               (3.47)

 
2 2 2 20.25 + +0.25

1 2 3E η η ησ σ σ σ= .                           (3.48)
 

 

If the original noise source, ( )N nη , has zero mean and variance of 
2

ησ , then (3.47) and 

(3.48) become 

 

0
E

ξ = ,                                                              (3.49) 
2 21.5E ησ σ= .                                                     (3.50) 

 

The probability density function (PDF), ( ) ,Ef e  of the new Gaussian random variable 

,E  is given by (Harris and Ledwidge 1974; Leon-Garcia 2008) 

 

( ) ( )2

2

1
exp

22

E

E

EE

e
f e

ξ

σσ π

 −
= − 

  
,      (3.51) 

          
2

2

1
exp

22 EE

e

σσ π

 
= − 

 
.                           (3.52) 

 

By definition, the cumulative distribution function (CDF) ( )EF e , of ,E  is given by 

(Yates and Goodman 2005; Leon-Garcia 2008)  

 

( ) ( )  
e

E E
-

F e = f dγ γ
∞∫ ,                                     (3.53) 

 

where ( )EF e  = probability that E e≤ ,    e∈ . 

 

Therefore  

 

( )
2

2

1
exp  

22

e

E
-

EE

F e = d
γ

γ
σσ π ∞

 
− 
 

∫ .
                         

(3.54) 
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Let  

E

γ
ϑ

σ
= .                 (3.55) 

 

Then 

  

Ed dγ σ ϑ= .                 (3.56) 

 

Substituting (3.56) into (3.54) gives  

 

( )
( ) 21

exp  
22

Ee

E
-

F e = d
σ ϑ

ϑ
π ∞

 
− 
 

∫ ,      (3.57) 

          

( )2 2
0

0
exp  exp  

2 2

Ee

-
= 0.3989 d d

σϑ ϑ
ϑ ϑ

∞

     
− + −    

     
∫ ∫ ,      (3.58) 

         
1.2533 1.2533 0.7071

E

e
= 0.3989 + erf

σ

    
   

    
,   (3.59) 

         
 0.7071

E

e
= 0.5+0.5 erf

σ

  
  

  
.                            (3.60) 

 

But from (3.50),  

   

1.2248E ησσ = .              (3.61) 

 

Substituting (3.61) into (3.60) gives  

 

( )  0.7071
1.2248

E

e
F e = 0.5+0.5 erf

ησ

  
      

,      (3.62) 

         
 0.5773

e
= 0.5+0.5 erf

ησ

  
      

,                                            (3.63) 

 

where ησ  is the rms of the original AWGN source. Following similar procedure from 

(3.35) to (3.50) for Pathlet 5, but using the high-pass filter coefficients given in Table 

3.1 for Pathlets 7, 9, and Symlet 2, then new equivalent noise variances have been 

derived as follows: 

 
2 21.278Q ησ σ= ,                                             (3.64) 

2 21.1947R ησ σ= ,                (3.65) 
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2 2
1.4292U ησ σ= .                (3.66) 

 

Where 
2

Qσ , 2

R
σ , and 2

U
σ

 
denote the variance of the new equivalent noise, using Pathlets 

7, 9, and Symlet 2 respectively. 
Q

σ , Rσ , and 
U

σ
 
are the corresponding rms values. 

Their CDFs are given by 

 

( )  0.6255
Q

q
F q = 0.5+0.5 erf

ησ

  
      

,   q ∈ .                   (3.67) 

( )  0.6469
R

r
F r = 0.5+0.5 erf

ησ

  
      

,   r ∈ .                  (3.68) 

( ) 0.5 0.5 0.5915
U

u
F u erf

ησ

  
= +       

, u ∈ .    (3.69) 

 

Let  

( ) ( )1
c

S SF s F s= − , s ∈ ,       (3.70) 

 

where S  can be the E , Q , R , or U  random variable. Then, ( )c

SF s  = probability that 

S > s .  

 

Equations (3.50), (3.64), (3.65), and (3.66) indicate that the variance 
2

ησ  of the original 

noise source has been increased by factors of 1.5, 1.3, 1.2, and 1.4 after the wavelet 

analysis. Pathlets 5, 7, 9, and Symlet 2 respectively have been used as the analysing 

wavelets. The change in noise level, in dB, after wavelet transform is given in Table 3.2. 

The results show that Pathlet 5 is the least robust to noise, while Pathlet 9 is the most 

robust to noise, followed by Pathlet 7, and then Symlet 2.  

 

Since the rms of the original AWGN source, i.e. ησ , is usually unknown apriori in 

practice, then the estimates of ησ  can be determined as follows:  

 

{ }1,
ˆ

1.2248

k

E

std d
σ = ,    0,1, , 1k N= −… ,                   (3.71)  
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{ }1,
ˆ

1.1305

k

Q

std d
σ = ,        (3.72) 

{ }1,
ˆ

1.093

k

R

std d
σ = ,        (3.73) 

{ }1,
ˆ

1.1955

k

U

std d
σ = ,        (3.74) 

 

where 
1,k

d  are the SWT level 1 detail coefficients of the signal being analysed, while 

{ }1,k
std d  denotes the standard deviation of 

1,k
d . ˆ

Eσ , ˆ
Qσ , ˆ

Rσ , and ˆ
Uσ  are estimates of 

ησ  using Pathlets 5, 7, 9, and Symlet 2 respectively as the analysing wavelets.  

 

 Table 3.2 Values of the variance of the equivalent noise, and corresponding change in 

              noise level in dB, derived from the wavelet analysis of a given noise source.   

      Pathlets 5, 7, 9, and Symlet 2, are used as the analysing wavelets. 
 

Wavelet type 

 

Original noise 

variance 

 

New equivalent noise 

variance 

 

Change 

in noise level  (dB) 

 
Pathlet 5 

 
2

ησ  

 
2

1.5 ησ  

 
1.8 

 

 

Pathlet 7 
 
2

ησ
 

 
2

1.278 ησ
 

 

 

1.1 

 
Pathlet 9 

 

 
2

ησ
 

 
2

1.1947 ησ  

 
0.8 

 

Symlet 2 

 
2

ησ  

 
2

1.4292 ησ  

 

1.6 

 

 

 

Computer simulation of an AWGN source, but with rms 0.05633ησ = , is shown in Fig. 

3.5 (a). The new equivalent noise after wavelet transform is shown in Figs. 3.5 (b-d); 

these are the level 1 detail coefficients. The results show that the rms ησ  of the original 

noise source has been increased approximately by factors of 1.23, 1.13, 1.09, and 1.20 

after wavelet analysis using Pathlets 5, 7, 9, and Symlet 2 respectively. This increment is 

in agreement with the previous derivations in (3.50), (3.64), (3.65), and (3.66).  
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Figure 3.5 A simulated AWGN source before SWT and the equivalent noise after SWT, 

      using Pathlets 5, 7, 9, and Symlet 2 as analysing wavelets. 

 

The probability plots of the primary noise source and the transformed noise, for input 

SNR in the range 10-30 dB, has been derived in Fig. 3.6. These probability plots were 

derived using (3.70), for ( )0.15
c

SF . These graphs show the probability distribution of 

the Gaussian random variable S , for magnitude greater than a noise threshold of 

0.15ϒ = , and corresponding SNRs. The noise threshold has been arbitrarily chosen as a 

test threshold for use in this study.  

 

These plots show that the probability of S > ϒ  is greatest when the equivalent noise 

derived with Pathlet 5 is used. This is followed by Symlet 2 equivalent noise, Pathlet 7 

equivalent noise, Pathlet 9 equivalent noise, and then the primary noise source. These 

results are again in general agreement with the derivations in (3.50), (3.64), (3.65), and 

(3.66). It shows that Pathlet 9 is the most robust to noise in these analyses.  
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Figure 3.6 Probability plots of the equivalent noise derived with Pathlets 5, 7, 9,  

      and Symlet 2, and the original noise source. For SNR range 10-30 dB. 

 

 

3.3.2 Denoising using wavelet thresholding  

 

In practice, the wavelet analysis of a noise corrupted signal may produce many 

undesirable wavelet transform coefficients attributed to noise, most especially at low 

SNRs, making it difficult to differentiate the wanted coefficients from the spurious ones. 

In order to remove the unwanted coefficients, noise needs to be suppressed.  

 

One way to filter-out noise is through wavelet-based denoising by thresholding (Donoho 

and Johnstone 1994; Coifman and Donoho 1995; Donoho and Johnstone 1995). In this 

scheme, noise is removed from a signal as effectively as possible while preserving the 

signal features of interest. This is accomplished by selecting a wavelet that can be used 

to represent the signal features of interest, and performing a decomposition of the signal 

using the selected wavelet function. The resulting wavelet transform coefficients are 

then thresholded to remove those coefficients associated with noise while preserving 

those that are required to describe the signal of interest. Two well-known thresholding 
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procedures are the hard and soft thresholding techniques (Percival and Walden 2000; 

Jansen 2001). These thresholding schemes are discussed in Appendix C.  

 

Since the noise variance 
2σ  is unknown apriori, as in the case of applications, a 

procedure from the literature used to estimate this is based on the median absolute 

deviation (MAD) standard deviation estimate of noise (Percival and Walden 2000). This 

standard deviation estimator is defined, using the SWT, as follows; 

 

( )

{ }1,0 1,1 1, 1, , ,
ˆ

0.6745

N

mad

median d d d
σ

−
=

…
,                (3.75) 

 

where 1,0 1,1 1, 1, , , Nd d d −…  are used to represent the SWT level 1 detail coefficients of the 

signal to be analysed. N  is the total number of detail coefficients. The factor 0.6745 in 

the denominator rescales the numerator so that ( )ˆ
mad

σ  is a desirable estimator for the 

standard deviation of Gaussian white noise (Percival and Walden 2000).  The level 1 

detail coefficients, 1,0 1,1 1, 1, , , Nd d d −… , are used to determine the noise variance 
2σ  since 

these coefficients are mostly noise dominated, with the exception of few large values 

attributed to the signal of interest. Consequently, the variance of 1,0 1,1 1, 1, , , Nd d d −…
 
would 

be mainly attributed to noise rather than to the wanted signal.  

 

An estimate of the noise threshold, ϒ̂ , is then computed, using the universal noise 

threshold algorithm (Percival and Walden 2000; Jansen 2001), defined as 

 

( )
ˆ ˆ 2 log

mad
Nσϒ = .                                              (3.76) 

 
This noise reduction procedure involves the following steps:  

 

1. The noisy signal ( )Ny n  is transformed into wavelet transform domain, as shown in  

(3.31).   
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2. A noise threshold level ϒ  is estimated by using (3.76). 

 

3. After specifying the noise threshold value ϒ , the noisy detail coefficients
 
with values 

exceeding ϒ
 
in magnitude are left untouched while those coefficients with magnitude 

less than or equal to ϒ
 
are all set to zero. The detail coefficients ,j kO , after thresholding, 

are given by  

 

,

,

, ,

0
j k

j k

j k j k

d
O

d d

 ≤ ϒ
= 

> ϒ

.       (3.77)        

 
This procedure is known as hard thresholding. This thresholding technique is known to 

provide improved signal-to-noise ratio when compared with soft thresholding method 

(Resnikoff and Wells 1998; Ma, Zhou et al. 2002).  

 

4. The denoised detail coefficients, ,j kO , are then used to determine the number of paths 

and time-delays in the noise corrupted signal profile.  

 

3.3.3 Denoising using SWT multilevel products 

 
This section describes a scheme for suppressing noise by exploiting the stationary 

wavelet transform multiscale dependencies. In this scheme, the adjacent stationary 

wavelet transform subbands are multiplied to form multiscale products where the 

features evolving with high magnitude across the SWT decomposition levels are 

amplified while the noise is diluted. This technique is referred to in this study as the 

“stationary wavelet transform multilevel products (SWTMP).”  

 

As shown in the discussions in Sections 2.4.2, 2.4.3, and A.3, there exist dependencies 

between the wavelet transform coefficients. Denoising by wavelet thresholding, 

discussed in Section 3.3.2, describes an efficient way to reduce noise but it takes little or 

no advantage of the multiscale dependencies between the wavelet transform coefficients.  

In Fig. 3.7, the SWT detail coefficients at the first six resolution levels, for a sequence of 
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AWGN source, are illustrated. Pathlet 5 has been used as the analysing wavelet. Note 

that the local maxima in the detail coefficients rapidly decays across these six levels due 

to increased smoothing (Mallat and Zhong 1992; Mallat and Hwang 1992), in 

accordance with the multiscale decomposition given in (A.18). Mallat and Hwang 

(1992) observed that for the Gaussian white noise, the average number of local maxima 

at resolution level 1j +  is half that at level j . The rms value of this AWGN source and 

that of the SWT levels 1-4 detail coefficients are shown in Fig. 3.8. These rms values are 

in general agreement with the previous derivations in Table 3.2. 

 

Given the observations in Fig. 3.7, it is then expected that multiplying these SWT detail 

coefficients across adjacent levels would dilute the noise. Since the positive values of 

the detail coefficients are of interest in this study, therefore the first four resolution 

levels with the negative coefficients discarded are shown in Figs. 3.9 (b-e). The 

multilevel products, for Figs. 3.9 (b-e), are shown in Figs. 3.10 (b-e). The results from 

the multilevel products show that the original noise level in Fig. 3.10 (a) has been 

suppressed. 

 

     Figure 3.7 A simulated AWGN source and the SWT levels 1-6 detail coefficients,  

           using Pathlet 5 as the analysing wavelet. 
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      Figure 3.8 A simulated AWGN source and the SWT levels 1-4 detail coefficients,  

using Pathlet 5 as the analysing wavelet. 
 

 

         Figure 3.9 The simulated noise source in Fig. 3.8 and the SWT levels 1-4 detail 
    coefficients, with the negative values discarded.  
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            Figure 3.10 The stationary wavelet transform multilevel products (SWTMP) for  
                    Fig. 3.9, using Pathlet 5 as the analysing wavelet. 

 
 

In Fig. 3.11, the SWT detail coefficients at the first four resolution levels, for a 

simulated noiseless test signal with four paths, are illustrated. Pathlet 5 has again been 

used as the analysing wavelet. Note that in this case, the local maxima in the detail 

coefficients propagate across the four SWT levels with observable peaks. With this 

evolution in the signal singularities, it is then expected that multiplying the SWT detail 

coefficients across adjacent levels would reinforce the edge structures. The edge 

structures, i.e. the signal singularities, are the transient events in the signal (Tang, Yang 

et al. 2000). These first four resolution levels with the negative coefficients discarded are 

shown in Figs. 3.12 (b-e).  
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Figure 3.11 A simulated noiseless test signal and the SWT levels 1-4 detail coefficients, 

        using Pathlet 5 as the analysing wavelet. 
 

 

Figure 3.12 The simulated noiseless test signal and the SWT levels 1-4 detail 
        coefficients, in Fig. 3.11, with the negative values discarded.  



 

72 

Given a noise corrupted signal, it is therefore expected that multiplying the SWT detail 

coefficients across adjacent levels would amplify the features of interest and suppress 

the noise. The denoised detail coefficients ( )1 2 , r r k
O ×

�

 
from applying the SWTMP, are 

defined by  

( )

2

,1 2 , 

1

r

j kr r k

j r

O d×
=

= ∏
��

,  0,1, , 1
j

k N= −… ,    (3.78) 

 

where 1r
 
and 2r

 
are two different non-negative integers, ,j kd

�

 
are non-negative noisy 

wavelet transform detail coefficients, while jN  represents the number of samples at the 

th
j  level. The denoised detail coefficients, ( )1 2 , r r k

O ×

�
, can then be used to provide 

information on the number of paths and time-delays in the input noise corrupted signal 

profile.  

 

Once the number of paths, K , and relative time-delays iτ , of the delay components have 

been successfully estimated from the denoised detail coefficients, then the amplitudes iα  

of the individual paths can be subsequently determined. The amplitude estimation 

algorithm derived for use in this study is discussed in the next section. 

 
 

3.4 Amplitude Estimation   

 

The impulse response, ( )h t , of a mobile radio channel can be modelled as (Lo, Litva et 

al. 1992; Lo, Litva et al. 1993; Vaughan and Andersen 2003) 

   

( ) ( )
1

K

ic i

i

h t = α δ t - τ
=
∑  ⇔  ( ) ( )

1

K

ic i

i

H ω = α exp jωτ
=

−∑ ,            (3.79)  

 

where ⇔
 
denotes two way implications of the Fourier transform pair. ( )H ω  is the 

channel transfer function while 
icα  is the complex amplitude of the th

i  path. K  is the 

number of multipath components, while ( )δ ⋅
 
is the Dirac delta function. For discrete 
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angular frequencies 
n

ω , the sampled transfer function is given by (Lo, Litva et al. 1992; 

Lo, Litva et al. 1993)  

   

( )
1

K

n ic n i

i

H = α exp jω τ
=

−∑ ,  0,1, 2, , 1n N= −… ,                               (3.80)  

 

where N  is the total number of samples. Assuming uniform sampling in frequency, with 

frequency spacing ∆ω  in rad/s, then the sampled transfer function becomes 

 

( )
1

K

n ic i

i

H = α exp jn ωτ
=

− ∆∑ .                          (3.81)  

 

Taking the complex conjugate of (3.81), gives 

  

( )*

1

K

n ic i

i

H = α exp jn ωτ
=

∆∑ .               (3.82)  

 

In the presence of AWGN, then (3.82) becomes  

 

 *

n n n
M = H + ℜ ,                (3.83)  

 

where 
nM  and 

nℜ
 
denote the discrete signal and noise term, respectively. Equation 

(3.83) can be written in matrix form as  

 

+  M = ΓA ℜℜℜℜ ,                         (3.84)  

 

where  

      

( )T

0 1 1N
M M M −M = ⋯ ,                           (3.85)  

Γ  is N× K  matrix given by               

( )( )
T

12
1 ii i

j Nj j
e e e

ωτωτ ωτ − ∆∆ ∆=Γ ⋯ , i = 1, 2, …K ,           (3.86)  

( )T
=

1c 2c Kc
α α αA ⋯ ,               (3.87)  

( )T

0 1
=

N -1
η η η⋯ℜℜℜℜ .                 (3.88)  
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The superscript T  denotes a transpose operation. Since the number of constituent 

multipath components K , and their delays iτ , have already been determined from the 

denoised detail coefficients, then the amplitudes of the individual paths can be estimated 

by using least squares method as (Therrien 1992; Peracchi 2001) 

 

( )
1

T Tˆ
ic

α
−

= Γ Γ Γ M ,                (3.89)  

 

where ˆ
icα  is an estimate of icα , and ˆ ˆ

i icα α= . 

 
The various steps involved in the proposed post-processing algorithm, required to 

extract the channel parameters, are shown in Fig. 3.13. 

 

 

Figure 3.13 Proposed algorithm for post-processing multipath delay profiles. 
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3.5 Summary 
 

In this chapter, the development of a novel digital signal post-processing algorithm for 

use in multipath channel parameter estimation has been presented. A new wavelet family 

named “Pathlet” has been derived and used in this algorithm. It has been shown that a 

desired wavelet in the current study must be symmetric, have a triangular (or a near 

triangular) shape, and compactly supported.  

 

The probability plots of new equivalent noise sources, obtained after wavelet transform 

of a given original noise source using Pathlets 5, 7, 9, and Symlet 2 wavelets, have then 

been derived. It has been shown that Pathlet 9 is the most robust to noise in these 

analyses, followed by Pathlet 7, and then Symlet 2. Pathlet 5 is the least robust to noise 

amongst these wavelet family members considered.  

 

Two noise reduction procedures are then presented. In the first noise reduction scheme, 

noise is suppressed by hard thresholding using the median absolute deviation standard 

deviation estimate of noise. This is accomplished by thresholding the wavelet transform 

coefficients to remove those coefficients associated with noise while preserving those 

that are required to describe the signal of interest. In the second noise reduction scheme, 

noise is suppressed by exploiting the multiscale dependencies inherent in the wavelet 

transform coefficients. In this denoising method, the adjacent wavelet transform 

subbands are multiplied to form multiscale products where the features evolving with 

high magnitude across different levels are reinforced while the noise is diluted. This 

second denoising technique has been referred to in this study as the “stationary wavelet 

transform multilevel products (SWTMP).” The denoised wavelet transform detail 

coefficients are used to predict the number of multipath components and time-delays. 

The estimated number of paths and relative time-delays are applied in a novel amplitude 

estimation algorithm, derived for use in this study, to determine the amplitudes of the 

individual paths.  
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CHAPTER 4 
 

 

IMPLEMENTATION OF THE PROPOSED ALGORITHM 

IN SYNTHETIC MOBILE RADIO ENVIRONMENTS 

 

 

 

4.1 Introduction 

 

In this chapter, series of computer simulations are presented to demonstrate multipath 

components resolution using the digital signal processing algorithm proposed for this 

study in Chapter 3. In these high-resolution multipath channel parameter estimations, 

channel impulse response profiles similar to the triangular waveform shown in Fig. 3.1 

are simulated. These simulated multipath delay profiles are assumed to be without band-

limitations in this chapter. The effect of band-limitations is investigated in Chapter 5.  

 
The stationary wavelet transform procedure is applied in transforming the simulated 

multipath delay profiles into wavelet transform domain. The novel wavelets named 

Pathlets, derived in Section 3.2.2, and Symlet 2 are used as the analysing wavelets. The 

wavelet transform detail coefficients are then used as an estimate of the number of 

multipath components and time-delays. In the presence of AWGN, the constituent 

multipath components that were not individually identifiable before post-processing are 

estimated from the detail coefficients after discarding the coefficients that are attributed 

to noise. 
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In order to denoise the noisy detail coefficients, performance comparison is made 

between the two noise reduction schemes proposed in Section 3.3; used to filter-out 

noise from the detail coefficients. In the first noise reduction technique, the SWTMP 

method given in (3.78) is applied. In this case, the product of levels 1 and 2 detail 

coefficients of the noisy delay profile are computed to get new coefficients with reduced 

noise. In the second noise reduction method, the wavelet thresholding scheme defined in 

(3.77) is applied. In this method, a denoising procedure that uses the hard thresholding 

technique based on the median absolute deviation standard deviation estimate of noise 

(Donoho and Johnstone 1994; Coifman and Donoho 1995; Donoho and Johnstone 1995; 

Percival and Walden 2000) is applied to remove the noisy detail coefficients. 

 

Finally, the amplitude estimation algorithm, proposed in Section 3.4, is used to 

determine the amplitudes of the individual paths. Once the number of paths, time-delays, 

and amplitudes of the delay components has been successfully determined, then 

multipath delay statistics such as the mean excess delay and rms delay spread are 

calculated using (2.1) and (2.2) respectively.  

 

This chapter starts with simulations of typical multipath radio channel scenarios 

considered in this research. Next, the digital signal post-processing algorithm developed 

in Chapter 3 is applied to resolve the constituent paths in the simulated multipath delay 

profiles. Multipath delay parameters such as the number of paths, time-delays, and 

amplitudes, as well as the mean excess delay, and rms delay spread are estimated in 

these simulations. Analyses are also carried out to determine the achievable multipath 

resolution that can be obtained in this study using the proposed algorithm. This chapter 

concludes, in Section 4.3, with a summary of these simulation results. 
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4.2 Estimation of Multipath Channel Parameters 

 

4.2.1 Simulation model  

 
A general system model of the multipath fading channel utilised in this research, based 

on the sliding correlator channel sounding discussed in Section 2.2.4, is shown in Fig. 

4.1. The received multipath delay profile is as previously described in (3.1), while the 

wavelet-based digital signal processing algorithm is as shown in Fig. 3.13. 

 

 

Figure 4.1 General system model of the multipath fading channel, and the 

      wavelet-based digital signal processing, used in this study. 
 

In the channel sounding simulations, the transmitter chip clock rate is assumed to be 20 

MHz while the receiver chip clock rate is 19.996 MHz. The intrinsic delay resolution of 

the channel sounder is therefore 50 ns. Consequently, multipath components that are 

separated by 50 ns or more are resolved by the channel sounder. Applying (2.4) 

therefore gives the time sliding factor of the channel sounder to be 5000. This sliding 

factor relates the measurement observation time to the actual propagation time, 

according to (2.5).  

                                                                                                                                                                                    

As discussed in Section 3.2.1, the actual base width of the triangular signal waveform, 

formed by the correlation of the receiver and transmitter PRBS, is 100 ns for a single 

path. Also, the amplitudes of the multipath components are described relative to the path 

with the largest magnitude.  

 

Simulated one- and two-path radio channel scenarios, corrupted with AWGN, are shown 

in Figs. 4.2 and 4.3 respectively. The two paths in Fig. 4.3 have equal amplitudes and 
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time-delays of 50 ns and 150 ns, a separation of 100 ns. Consequently, the two 

constituent paths in the radio channel are resolved by the channel sounder.  

 

 

 

Figure 4.2 Simulated delay profile of a noisy one-path propagation channel. 

 

 

 

 

Figure 4.3 Simulated multipath delay profile of a noisy two-path propagation channel, 
        with equal amplitudes and time-delays at 50 ns and 150 ns. 
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A scenario where the constituent multipath components, in the radio channel, are not 

resolved by the measuring equipment is simulated in Fig. 4.4. The two paths, in this 

propagation channel, have equal amplitudes and time-delays of 50 ns and 60 ns; a 

separation of 10 ns. Since this delay separation is less than the intrinsic delay resolution 

of the measuring equipment, i.e. less than 50 ns, therefore the channel sounder fails to 

resolve the two constituent paths in the propagation channel.     

 

A situation where weaker rays are masked by the stronger rays is simulated in the four-

path propagation channel shown in Fig. 4.5. The four paths in this propagation channel 

have differential amplitudes of 0 dB, -2 dB, -4 dB, and -6 dB and corresponding time-

delays of 50 ns, 60 ns, 82 ns, and 256 ns respectively. The 3
rd

 path, in this case, has been 

completely masked by the 1
st
 and 2

nd
 paths. Since the relative delay of the 2

nd
  and 3

rd
  

paths is less than the intrinsic delay resolution of the channel sounder, it is hence 

impossible to identify these paths in the delay profile prior to post-processing. However 

the channel sounder can resolve the 4
th

 path, at a relative delay of 206 ns, since this is 

greater than the intrinsic delay resolution of this measuring equipment. 

 

 

Figure 4.4 Simulated multipath delay profile of a noisy two-path propagation channel, 
        with equal amplitudes and time-delays at 50 ns and 60 ns. 
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Figure 4.5 Simulated multipath delay profile of a noisy four-path propagation channel, 
  with amplitudes of 0 dB, -2 dB, -4 dB, -6 dB, and delays at 50 ns, 60 ns,  

        82 ns, 256 ns respectively. 
 

Multipath delay profiles, similar to the simulated scenarios in Figs. 4.2, 4.3, 4.4, and 4.5, 

have been developed as test signals in this chapter. Several captures of these multipath 

delay profiles, each of which has been corrupted by different noise sequences, have been 

produced and then averaged to obtain test signal waveforms that simulate the average 

output signal waveforms from the experimental SCCS system.  

 

4.2.2 One-path delay profile 

 

The wavelet analysis of a simulated one-path delay profile is discussed in this section. 

Pathlets 5, 7, 9, and Symlet 2 are used as the analysing wavelet to detect the single path 

in this delay profile. 

 

The simulated one-path delay profile, in the absence of noise, is shown in Figs. 4.6 (a) – 

4.9 (a), while the SWT levels 1 and 2 detail coefficients are shown in Figs. 4.6 (b-e) and 

4.8 (b-e) respectively. The corresponding time-expanded views of these coefficients are 

given in Figs. 4.7 (b-e) and 4.9 (b-e). The locations of the positive peaks in these detail 

coefficients provide the arrival time of the multipath components. Table 4.1 shows the 
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magnitudes of the levels 1 and 2 detail coefficients. The magnitudes of these wavelet 

transform coefficients indicate that Pathlet 9 provides the best match with the multipath 

signals, while Pathlet 5 is the least match with this signal waveform. Furthermore, the 

magnitudes of these coefficients are increased as the wavelet transform level increases. 

These results also show that while both Pathlets and Symlet 2 can be successfully 

applied to detect the single peak in this propagation path, however the wavelet transform 

coefficients obtained with Symlet 2 are not exactly symmetric as observed in Figs. 4.7 

(e) and 4.9 (e). As a consequence, the use of Symlet 2 in signal analyses may result in 

misalignments between features in a signal and features extracted by the basis functions.      

 

 

 

   Figure 4.6 Noiseless test signal profile with one path and corresponding SWT level 1 

         detail coefficients using Pathlets 5, 7, 9, and Symlet 2 as the analysing 
         wavelets. 
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Figure 4.7 Time-expanded view of the noiseless SWT level 1 detail coefficients from 
      Fig. 4.6.    

 

 

Figure 4.8 Noiseless test signal profile with one path and corresponding SWT level 2 
          detail coefficients using Pathlets 5, 7, 9, and Symlet 2 as the analysing wavelets. 
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    Figure 4.9 Time-expanded view of the noiseless SWT level 2 detail coefficients from 
          Fig. 4.8. 

 

 

 

Table 4.1 Magnitude of the SWT levels 1 and 2 detail coefficients  

           for a noiseless one-path delay profile. 
 

 

 

 

 

 

 

 

 

 

 

 

Wavelet type 

Magnitude of the  

noiseless detail coefficients 

 

Level 1 

 

Level 2 

 
Pathlet 5 

 
0.020 

 
0.060 

 
Pathlet 7 

 
0.027 

 
0.071 

 

Pathlet 9 

 

0.033 

 

0.084 

 
Symlet 2 

 
0.023 

 
0.065 
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Now in the presence of AWGN, the SWT levels 1 and 2 detail coefficients of this one-

path test signal profile are shown in Figs. 4.10 (b-e) and 4.11 (b-e) respectively. An SNR 

of 30 dB is assumed in these simulations. The dominant peak in these noisy wavelet 

transform coefficients, in this case, indicates the single path in the delay profile. The 

magnitude of this dominant peak increases, while the noise diminishes, as the wavelet 

transform decomposition level increases. This is in agreement with the observations in 

Section 3.3.3.  

 

 

 

 

       Figure 4.10 Noisy test signal profile with one path, at an SNR of 30 dB, and 

             corresponding SWT level 1 detail coefficients using Pathlets 5, 7, 9,  
  and Symlet 2 as the analysing wavelets. 
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        Figure 4.11 Noisy test signal profile with one path, at an SNR of 30 dB, and 
             corresponding SWT level 2 detail coefficients using Pathlets 5, 7, 9,  

             and Symlet 2 as the analysing wavelets. 
 

 
 

4.2.3 Two-path delay profile with equal-amplitude paths 

 

In this section, the algorithm proposed in Fig. 3.13 for post-processing multipath delay 

profiles is applied in a simulated two-path delay profile, having equal-amplitude paths 

and relative delay of 2 ns. Pathlets 5, 7, 9, and Symlet 2 are used as the analysing 

wavelets.  

 

The parameters of this two-path delay profile are tabulated in Table 4.2. The time of 

arrival of the first path at 50 ns is taken to be the time reference, while the second path is 

at a delay of 2 ns relative to the arrival time of the first multipath component. Also, the 

amplitude of this first path is taken to be the reference amplitude. 
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Since the delay separation is less than the intrinsic delay resolution of the measuring 

equipment, i.e. less than 50 ns, therefore the two constituent paths in the propagation 

channel are not resolved. This multipath delay profile, in the absence of noise, is shown 

in Fig. 4.12.      

    
 

Table 4.2 Parameters of a simulated two-path delay profile with equal-amplitude paths. 
 

Paths 

 

Propagation 

time (ns) 

 

Relative  

delay (ns) 

 

 

Relative 

amplitude (dB) 

 

1
st
 50 0 0 

2
nd

 52 2 0 

 

 

 

 

Figure 4.12 Simulated multipath delay profile of a noiseless two-path 
propagation channel, with equal amplitudes and time-delays  

           at 50 ns and 52 ns. 
 

 
The SWT levels 1 and 2 detail coefficients, of this noiseless test signal, are shown in 

Figs. 4.13 (c-f) and 4.15 (c-f) respectively. The actual multipath components are shown, 

for comparison, in Figs. 4.13 (b) and 4.15 (b). The time-expanded views of these detail 

coefficients, containing the two equal-amplitude paths, are given in Figs. 4.14 (c-f) and 
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4.16 (c-f). The time-expanded views of the actual multipath components are also shown, 

in Figs. 4.14 (b) and 4.16 (b). 

 

The results in Figs. 4.14 (c-f) show that the two equal-amplitude paths are resolved after 

wavelet transform, at level 1, when Pathlets 5, 7, 9, and Symlet 2 are used. Pathlet 5 

produces the best resolution of the two equal-amplitude paths when compared with the 

other wavelets used, while Pathlet 9 produces the least resolution of the two paths.       

The results in Figs. 4.16 (c-f) show that these noiseless two equal-amplitude paths are 

not resolved after wavelet transform at level 2, and hence for further higher wavelet 

transform levels, due to increased smoothing.   

 

 

 

 

   Figure 4.13 Noiseless test signal profile with two paths having equal amplitudes and 
             corresponding SWT level 1 detail coefficients. 
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      Figure 4.14 Time-expanded views of the two paths, and the noiseless SWT level 1 

              detail coefficients, from Fig. 4.13. 
 

 

   Figure 4.15 Noiseless test signal profile with two paths having equal amplitudes and 
           corresponding SWT level 2 detail coefficients. 
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 Figure 4.16 Time-expanded view of the two paths, and the noiseless SWT level 2 detail 
         coefficients, from Fig. 4.15. 

 

Next, the simulated two-path delay profile shown in Fig. 4.12 is corrupted with AWGN. 

An SNR of 40 dB is initially assumed. The SWT levels 1 and 2 detail coefficients of this 

test signal profile, in the presence of noise, are shown in Figs. 4.17 (c-f) and 4.19 (c-f) 

respectively. The corresponding time-expanded views of these noisy detail coefficients 

are given in Figs. 4.18 (c-f) and 4.20 (c-f). The actual multipath components are again 

shown, for comparison, in Figs. 4.18 (b) and 4.20 (b).  

 

The results in Figs. 4.18 (c-f) show that though the two equal-amplitude paths have been 

resolved after wavelet transform at level 1, when Pathlets 5, 7, 9, and Symlet 2 are used, 

however the magnitudes of the wavelet transform coefficients observed in Figs. 4.14 (c-

f) have been altered due to the influence of noise. Consequently, these noisy detail 

coefficients do not provide information about the amplitudes of the multipath 

components. These noisy two equal-amplitude paths are not resolved at level 2 of the 

wavelet transform, illustrated in Figs. 4.20 (c-f), and hence for further higher wavelet 

transform levels, as a result of the increased smoothing.  
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Figure 4.17 Noisy test signal profile with two paths having equal amplitudes, at an SNR 

        of 40 dB, and corresponding SWT level 1 detail coefficients. 

 

 

   Figure 4.18 Time-expanded view of the two paths, and the noisy SWT level 1 detail 
           coefficients, in Fig. 4.17. 
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Figure 4.19 Noisy test signal profile with two paths having equal amplitudes, at an SNR 

        of 40 dB, and corresponding SWT level 2 detail coefficients.  
 

 

    Figure 4.20 Time-expanded view of the two paths, and the noisy SWT level 2 detail 

coefficients, in Fig. 4.19. 



 

93 

In Section 3.3.3, it was shown that the local maxima in the detail coefficients, attributed 

to a noiseless signal of interest, propagate into the coarse SWT levels with observable 

peaks whereas the detail coefficients attributed to noise diminishes across these levels. 

This has been previously illustrated in Table 4.1, where the magnitudes of the noiseless 

detail coefficients are increased as the wavelet transform decomposition level increases. 

Since the level 1 detail coefficients are mostly noise dominated and have the greatest 

resolution, consequently the level 1 detail coefficients are multiplied with the detail 

coefficients at the next higher level (i.e. level 2), in order to dilute the noise without 

compromising too much multipath resolution.  

 

In this study, the locations of the positive peaks in the SWT detail coefficients are used 

to provide information on the number of propagation paths, and time-delays of the 

constituent paths in a multipath delay profile. Hence, the negative detail coefficients are 

discarded prior to computing the multilevel products of the wavelet transform detail 

coefficients as discussed in Section 3.3.3 for the SWTMP procedure.  

 

The product of levels 1 and 2 detail coefficients of the noisy delay profile are shown in 

Figs. 4.21 (c-f). These results show that the wavelet transform detail coefficients that 

were attributed to noise, originally observed in Figs. 4.17 (c-f) and 4.19 (c-f), have now 

been suppressed in Figs. 4.21 (c-f). These denoised coefficients are as defined in (3.78). 

The denoised detail coefficients can then be used as an estimate of the number of 

multipath components in the delay profile.  

 

Another way to filter-out noise is through wavelet-based denoising by thresholding, 

using the median absolute deviation standard deviation estimate of noise (Percival and 

Walden 2000). In this method, the detail coefficients that are greater than a given 

threshold value are preserved while the remaining detail coefficients are set to zero. This 

procedure was discussed in Section 3.3.2, and now applied in Figs. 4.22 (c-f) to denoise 

the SWT level 1 detail coefficients. The hard thresholding technique (Percival and 

Walden 2000; Jansen 2001), discussed in Appendix C, has been adopted in this 

denoising scheme. The results obtained show that the wavelet transform detail 
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coefficients that were attributed to noise, in Figs. 4.17 (c-f) and 4.19 (c-f), have again 

been removed as observed in Figs. 4.22 (c-f). The thresholded coefficients are then used 

as estimates of the constituent multipath components. 

 

 

 

 

 

Figure 4.21 Noisy test signal profile with two paths having equal amplitudes, at an SNR 
        of 40 dB, and the denoised SWT detail coefficients. Noise is suppressed by 

        SWTMP using the levels 1 and 2 detail coefficients.  
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Figure 4.22 Noisy test signal profile with two paths having equal amplitudes, at an SNR 

of 40 dB, and the denoised SWT level 1 detail coefficients. Noise is 
removed by wavelet thresholding.  

 
 

This simulated two-path delay profile shown in Fig. 4.12 is then corrupted with AWGN 

at an SNR of 30 dB. The SWT levels 1 and 2 detail coefficients of this noisy test signal 

profile are illustrated in Figs. 4.23 (c-f) and 4.25 (c-f) respectively, while the 

corresponding time-expanded views of these noisy detail coefficients are given in Figs. 

4.24 (c-f) and 4.26 (c-f). The actual multipath components are shown, for comparison, in 

Figs. 4.24 (b) and 4.26 (b).  

 

The results in Figs. 4.23 (c-f) and 4.24 (c-f) shows that only the first path can be 

indentified at level 1 of the wavelet transform, when Pathlets 5, 7, 9, and Symlet 2 are 

used. At level 2, the detail coefficients obtained, shown in the time-expanded view of 

Fig. 4.26 (c-f), suggests that there is at least one dominant path and the likelihood of a 

second path that has been masked by the first path; which is actually as a consequence of 

the effect of noise. 
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Figure 4.23 Noisy test signal profile with two paths having equal amplitudes, at an SNR 

        of 30 dB, and corresponding SWT level 1 detail coefficients.  
 

 

   Figure 4.24 Time-expanded view of the two paths, and the noisy SWT level 1 detail 
           coefficients, in Fig. 4.23. 
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Figure 4.25 Noisy test signal profile with two paths having equal amplitudes, at an SNR 

        of 30 dB, and corresponding SWT level 2 detail coefficients.  
 

 

    Figure 4.26 Time-expanded view of the two paths, and the noisy SWT level 2 detail 

         coefficients, in Fig. 4.25. 
 



 

98 

The product of levels 1 and 2 detail coefficients of this noisy delay profile, defined 

according to (3.78), is shown in Figs. 4.27 (c-f). These results indicate that the wavelet 

transform detail coefficients that were attributed to noise, initially observed in Figs. 4.23 

(c-f) and 4.25 (c-f), have now been suppressed in Figs. 4.27 (c-f).  

 

The denoising scheme by wavelet thresholding, using hard thresholding and the MAD 

standard deviation estimate of noise, is then again applied to denoise the SWT level 1 

detail coefficients of this noisy delay profile. The denoised detail coefficients are shown 

in Figs. 4.28 (c-f). The results obtained in this case show that only the first path can be 

detected at level 1 when Pathlets 7 and 9 are used. Pathlet 5 and Symlet 2 are, however, 

unable to detect either of the two paths due to the influence of noise.  Therefore, at this 

SNR, the denoising method based on SWTMP using the levels 1 and 2 detail 

coefficients outperforms the denoising technique by wavelet thresholding procedure.  

 

 

Figure 4.27 Noisy test signal profile with two paths having equal amplitudes, at an SNR 
of 30 dB, and the denoised SWT detail coefficients. Noise is suppressed by 

SWTMP using the levels 1 and 2 detail coefficients. 
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Figure 4.28 Noisy test signal profile with two paths having equal amplitudes, at an SNR 
of 30 dB, and the denoised SWT level 1 detail coefficients. Noise is 

removed by wavelet thresholding. 
 

Once the number of paths and relative time-delays of the multipath components have 

been successfully estimated from the denoised detail coefficients, then the amplitudes of 

the individual paths can be determined. The amplitude estimation algorithm proposed in 

Section 3.4, has been applied to determine the amplitudes of the individual multipath 

components in the simulated noisy two-path delay profiles.  

 

The actual and estimated delays, and amplitudes, of these two equal-amplitude paths at 

an SNR of 40 dB are shown in Table 4.3. The estimated number of paths and relative 

time-delays are based on the results obtained from using Pathlets 5, 7, 9, and Symlet 2 as 

the analysing wavelets, the denoised level 1 detail coefficients by thresholding, and the 

SWTMP. 

 

These results show that the number of multipath components, as well as the relative 

delay and amplitude, are accurately estimated. Consequently, Pathlets 5, 7, 9, and 
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Symlet 2 can be successfully applied, in this research, to improve the resolution of 

impinging waves in synthetic mobile radio environments by more than a factor of ten. 

 

Table 4.3 Actual and estimated delays, and amplitudes, of a simulated noisy test signal 

    profile with two paths having equal amplitudes at an SNR of 40 dB. 
 

 

 

 

 

 

 

 
 

4.2.4 Four-path delay profile with differential amplitudes 

 

In this section, the algorithm proposed for post-processing multipath delay profiles is 

applied in a test signal profile having four paths with differential amplitudes. 

 

The parameters of this four-path delay profile are tabulated in Table 4.4. The multipath 

delay profile is as previously shown in Fig. 4.5. The amplitude of the first path is taken 

to be the reference amplitude, while the corresponding arrival time of this first path at 50 

ns is taken to be the time reference. Pathlets 5, 7, 9, and Symlet 2 are again used as the 

analysing wavelets. 

 

Table 4.4 Parameters of a simulated four-path delay profile with differential amplitudes. 
 

 

 

 

 

 

 

 

 

 

Paths 

 

 

Relative delay (ns) 

 

Relative 

amplitude (dB) 

 

 

Actual 

 

 

Estimate 

 

Actual 

 

Estimate 

1
st
 0 0 0 0 

2
nd

 2 2 0 0 

 

Paths 
 

Propagation 

time (ns) 

 

 

Relative delay (ns) 

 

 

Relative 

amplitude (dB) 

 

1
st
 50 0 0 

2
nd

 60 10 -2 

3
rd

 82 32 -4 

4
th
 256 206 -6 
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Since the relative delay of the 2
nd

 and 3
rd

 paths is less than the intrinsic delay resolution 

of the measurement system, it is therefore impossible to identify these paths in the delay 

profile. However, the 4
th

 path at a relative delay of 206 ns can be clearly identified 

because this delay is greater than the intrinsic delay resolution of the channel sounder. 

This multipath delay profile, in the absence of noise, is shown in Figs. 4.29 (a) and 4.30 

(a). The SWT levels 1 and 2 detail coefficients, of this noiseless test signal profile, are 

shown in Figs. 4.29 (c-f) and 4.30 (c-f) respectively. The actual multipath components 

are shown, for comparison, in Figs. 4.29 (b) and 4.30 (b).  

 

The results in Figs. 4.29 (c-f) and 4.30 (c-f) shows that Pathlets 5, 7, 9, and Symlet 2 can 

be successfully applied to separate the constituent paths in this simulated four-path delay 

profile.  

 

 

 

Figure 4.29 Noiseless test signal profile with four paths having differential amplitudes 

        and corresponding SWT level 1 detail coefficients.  
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Figure 4.30 Noiseless test signal profile with four paths having differential amplitudes 
        and corresponding SWT level 2 detail coefficients.  

 

 

Next, AWGN is added to this simulated four-path delay profile. An SNR of 40 dB is, 

again, initially assumed. The SWT levels 1 and 2 detail coefficients of this noisy test 

signal profile are shown in Figs. 4.31 (c-f) and 4.32 (c-f) respectively. The dominant 

peaks in these noisy wavelet transform coefficients identify the actual constituent 

multipath components within the four-path delay profile. As expected, the magnitude of 

these dominant peaks is reinforced while the noise diminishes as the wavelet transform 

decomposition level increases.  
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  Figure 4.31 Noisy test signal profile with four paths having differential amplitudes, at 

          an SNR of 40 dB, and corresponding SWT level 1 detail coefficients. 
           

 

Figure 4.32 Noisy test signal profile with four paths having differential amplitudes, at 

        an SNR of 40 dB, and corresponding SWT level 2 detail coefficients.  
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The results obtained from applying the SWTMP denoising strategy, using the levels 1 

and 2 detail coefficients, are given in Figs. 4.33 (c-f). These show that the detail 

coefficients that were attributed to noise, in Figs. 4.31 (c-f) and 4.32 (c-f), have now 

been suppressed in Figs. 4.33 (c-f). As expected, Pathlet 9 is the most robust to noise; 

observed in Fig. 4.33 (e).     

 

 

 

 

Figure 4.33 Noisy test signal profile with four paths having differential amplitudes,  

        at an SNR of 40 dB, and the denoised SWT detail coefficients. Noise is 
          suppressed by SWTMP using the levels 1 and 2 detail coefficients. 

 

 

 

 

 

 



 

105 

The denoising scheme by wavelet thresholding, using hard thresholding and the MAD 

standard deviation estimate of noise, is now applied to denoise the SWT levels 1 and 2 

detail coefficients of this noisy four-path delay profile. The denoised detail coefficients 

are shown in Figs. 4.34 (c-f) and 4.35 (c-f). These results show that all the four 

constituent paths can be successfully extracted at levels 1 and 2 of the wavelet 

transform. The denoised detail coefficients can then be subsequently used as an estimate 

of the number of multipath components and the time-delays. 

 

 

 

     Figure 4.34 Noisy test signal profile with four paths having differential amplitudes, 
             at an SNR of 40 dB, and the denoised SWT level 1 detail coefficients.  

             Noise is removed by wavelet thresholding. 
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    Figure 4.35 Noisy test signal profile with four paths having differential amplitudes, 
            at an SNR of 40 dB, and the denoised SWT level 2 detail coefficients.  

            Noise is removed by wavelet thresholding. 
 

 

The SWT levels 1 and 2 detail coefficients of this noisy four-path delay profile at an 

SNR of 30 dB are shown in Figs. 4.36 (c-f) and 4.37 (c-f) respectively. In this case, the 

four constituent multipath components cannot be identified at level 1 prior to denoising. 

These four constituent paths appear as observable dominant peaks within the level 2 

detail coefficients.  

 

The SWTMP denoising technique, using the levels 1 and 2 detail coefficients, is now 

applied. The results obtained indicate that most of the detail coefficients that were 

attributed to noise, observed in Figs. 4.36 (c-f) and 4.37 (c-f), have been suppressed in 

Figs. 4.38 (c-f). Some spurious coefficients attributed to noise are also observed in Figs. 

4.38 (c-f). Nevertheless, these results, again, demonstrate that Pathlet 9 is the most 

robust to the influence of noise when compared with the other analysing wavelets used 

in this study.   
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   Figure 4.36 Noisy test signal profile with four paths having differential amplitudes,  

          at an SNR of 30 dB, and corresponding SWT level 1 detail coefficients.  
 

 

    Figure 4.37 Noisy test signal profile with four paths having differential amplitudes,  
          at an SNR of 30 dB, and corresponding SWT level 2 detail coefficients. 
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Figure 4.38 Noisy test signal profile with four paths having differential amplitudes,  

        at an SNR of 30 dB, and the denoised SWT detail coefficients. Noise  
        is suppressed by SWTMP using the levels 1 and 2 detail coefficients.  

 

 

The denoised SWT levels 1 and 2 detail coefficients, based on wavelet thresholding, are 

shown in Figs. 4.39 (c-f) and 4.40 (c-f) respectively. The results obtained show that none 

of the constituent paths could be extracted at level 1 after denoising when Pathlet 5 and 

Symlet 2 are used. Only the 1
st
 and 2

nd
 paths were detected, at this level 1, when Pathlet 

9 is used, while just the 1
st
 path was detected when Pathlet 7 is used. Conversely, at level 

2 all the four multipath components in this noisy test signal profile are successfully 

extracted with all the analysing wavelets used.  
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       Figure 4.39 Noisy test signal profile with four paths having differential amplitudes, 
               at an SNR of 30 dB, and the denoised SWT level 1 detail coefficients.  

               Noise is removed by wavelet thresholding. 
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    Figure 4.40 Noisy test signal profile with four paths having differential amplitudes, 

            at an SNR of 30 dB, and the denoised SWT level 2 detail coefficients.  
            Noise is removed by wavelet thresholding. 

 
 

Finally, the SWT levels 1 and 2 detail coefficients of this four-path delay profile at an 

SNR of 25 dB are shown in Figs. 4.41 (c-f) and 4.42 (c-f) respectively. At this SNR, the 

constituent multipath components within the delay profile could not be identified from 

the levels 1 and 2 detail coefficients prior to denoising.  

 

The results from applying the SWTMP denoising technique, using the levels 1 and 2 

detail coefficients, are shown in Figs. 4.43 (c-f). In this case, though most of the detail 

coefficients that were attributed to noise, in Figs. 4.41 (c-f) and 4.42 (c-f), have been 

suppressed in Figs. 4.43 (c-f), however many spurious coefficients attributed to noise are 

also obtained.   
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        Figure 4.41 Noisy test signal profile with four paths having differential amplitudes,  
               at an SNR of 25 dB, and corresponding SWT level 1 detail coefficients.  

 

            

        Figure 4.42 Noisy test signal profile with four paths having differential amplitudes, 

              at an SNR of 25 dB, and corresponding SWT level 2 detail coefficients. 
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       Figure 4.43 Noisy test signal profile with four paths having differential amplitudes, 

             at an SNR of 25 dB, and the denoised SWT detail coefficients. Noise is 
             suppressed by SWTMP using the levels 1 and 2 detail coefficients. 

 
 

The denoised SWT levels 1 and 2 detail coefficients, based on thresholding, are shown 

in Figs. 4.44 (c-f) and 4.45 (c-f) respectively. The results obtained show that none of the 

four constituent paths could be detected at level 1 after denoising for all the wavelets 

used. Though the result from level 2 show an improvement over that of level 1, however 

only Pathlet 9 could extract all the four multipath components of this noisy test signal 

profile as seen in Fig. 4.45 (e). Pathlets 5 and 7, as well as Symlet 2, could only detect 

the 1
st
 and 2

nd
 paths at level 2 after thresholding.  
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Figure 4.44 Noisy test signal profile with four paths having differential amplitudes,  
        at an SNR of 25 dB, and the denoised SWT level 1 detail coefficients.  

        Noise is removed by wavelet thresholding. 
 

 

Figure 4.45 Noisy test signal profile with four paths having differential amplitudes,  

        at an SNR of 25 dB, and the denoised SWT level 2 detail coefficients. 
        Noise is removed by wavelet thresholding.  
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After the number of paths and relative time-delays of the constituent multipath 

components of the four-path test signal profile have been successfully estimated from 

the denoised detail coefficients, then the amplitudes of the individual paths can be 

determined. The amplitude estimation algorithm, derived in Section 3.4, has again been 

applied to determine the amplitudes of the individual multipath components. The actual 

and estimated delays, and amplitudes, of this test signal profile at an SNR of 25 dB are 

shown in Table 4.5. The estimated number of paths and relative time-delays are based 

on the results obtained from using Pathlet 9, and the denoised level 2 detail coefficients 

from thresholding. These results show that the delays and amplitudes of the four 

constituent paths are accurately estimated. These results are in general agreement with 

the conclusions in Section 4.2.3; that the proposed post-processing algorithm in this 

research can be successfully applied to improve the resolution of impinging waves in 

synthetic mobile radio environments by more than a factor of ten. 

 

Then the mean excess delay and rms delay spread, for the synthetic four-path radio 

channel, are now computed using (2.1) and (2.2) respectively. The mean excess delay 

and rms delay spread (actual and estimated), are tabulated in Table 4.6. These results 

show that the estimated mean excess delay and rms delay spread deviates from the 

actual values by10 ps . This illustrates the robustness of the algorithm proposed in Fig 

3.13 in estimating the multipath channel parameters. 

 

 
   Table 4.5 Actual and estimated delays, and amplitudes, of a simulated noisy test signal 

       profile having four paths with differential amplitudes at an SNR of 25 dB. 

 

 

 

 

 

 

 

 

 

 

Paths 

 

Relative delay (ns) 

 

Relative 

amplitude (dB) 

 

 

Actual 

 

Estimate 

 

Actual 

 

Estimate 

 

1
st
 0 0 0 0 

2
nd

 10 10 -2 -2 

3
rd

 32 32 -4 -4 

4
th
 206 206 -6 -6 
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Table 4.6 Mean excess delay and rms delay spread of a simulated noisy test signal 

     profile having four paths with differential amplitudes. The parameters  
     of this test signal are shown in Table 4.5. 

 

 

 

 

 

 

 

 
 

4.3 Summary 

 

The estimation of multipath channel parameters in synthetic mobile radio environment, 

using the algorithm proposed in Chapter 3, has been presented in this chapter. Noisy and 

noiseless synthetic mobile radio channel scenarios were simulated, and used in these 

analyses.  

 

Multipath channel parameters such as the mean excess delay and rms delay spread 

provide a description of the mobile radio channels. One way of deriving these channel 

parameters, in practice, is through the use of a sliding correlator channel sounding 

technique. Consequently, typical multipath delay profiles obtained with this channel 

sounder are simulated as test signals in this study. The intrinsic delay resolution of this 

measurement system is assumed to be 50 ns. 

 

Multipath delay profiles consisting of one, two, and four paths have been simulated. 

Performance comparison was then made between members of the newly derived family 

of wavelets called Pathlet in this study, and the Daubechies near symmetric wavelet 

family member known as Symlet 2, in resolving the constituent multipath components. 

 

The simulation results for the one-path delay profile, in the absence of noise, show that 

Pathlets 5, 7, 9, and Symlet 2 can be successfully applied to detect the single path in the 

 

Mean excess delay (ns) 

 

 

RMS delay spread (ns) 

 

Actual 

 

 

Estimate 

 

Actual 

 

Estimate 

 

31.05 

 

31.04 

 

62.59 

 

62.60 
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delay profile, by observing the SWT detail coefficients. The levels 1 and 2 detail 

coefficients have been used in this case. The results obtained also show that the noiseless 

detail coefficients propagate across to the coarse SWT levels with larger peaks. 

 

When this one-path delay profile is corrupted with AWGN at an SNR of 30 dB, the 

single path in the delay profile is seen as the dominant peak within the noisy SWT levels 

1 and 2 detail coefficients. This dominant peak is reinforced, within the noisy detail 

coefficients, while the noise diminishes as the wavelet transform decomposition level 

increases.    

 

Next, a two-path delay profile with equal-amplitude paths is simulated. The second path 

is at a delay of 2 ns relative to the arrival time of the first path. Since this delay 

separation is less than the intrinsic delay resolution of 50 ns, therefore these two paths 

are not distinguishable as distinct pulses prior to post-processing. The wavelet transform 

of this two-path delay profile, in the absence of noise, show that Pathlets 5, 7, 9, and 

Symlet 2 can be successfully applied to resolve the two equal-amplitude paths at level 1 

by more than a factor of ten. These simulation results further show that Pathlet 9 has the 

best correlation with the multipath signals, since it produces detail coefficients with the 

largest magnitude. Moreover, this Pathlet family member has a lower resolution than the 

other wavelets used, due to its large support (in time). For example Pathlet 9 is unable to 

clearly separate the two peaks in the two equal-amplitude paths, as seen in the time-

expanded view of Fig. 4.14 (e). Pathlet 5 gives the best multipath resolution, since it has 

the most compact support, as seen in the time-expanded view of Fig. 4.14 (c).  

 

This two-path delay profile is now corrupted with AWGN, at SNRs of 40 dB and then 

30 dB. Performance comparison was made between the two noise reduction strategies 

that are used in this study to filter-out noise from the detail coefficients. At an SNR of 

40 dB, the results of the SWTMP denoising technique show that the detail coefficients 

attributed to noise are suppressed and the actual two constituent paths extracted. 

Similarly, when the denoising procedure based on thresholding using the MAD estimate 

is applied at level 1, the results obtained show that the detail coefficients that were 
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attributed to noise are removed and the two multipath components are extracted. 

Consequently 2 ns resolution can be achieved at high SNRs, when all the members of 

Pathlet family and Symlet 2 are used as analysing wavelets in resolving synthetic two 

equal-amplitude paths. These results also show that while both Pathlets and Symlet 2 

can be successfully applied to resolve closely spaced multipath components in noise by 

more than a factor of ten, Pathlet 9 is however the most robust to the noise.  

 

At an SNR of 30 dB, the results from the SWTMP denoising technique show that the 

detail coefficients that were attributed to noise are suppressed and the two constituent 

paths detected. However, when the denoising procedure based on thresholding is applied 

at level 1, the results obtained show that though the noisy detail coefficients have been 

removed, only one of the two closely-spaced paths could be identified after denoising.  

 

Finally, a test signal profile having four paths with differential amplitudes is simulated. 

In this simulation, the arrival time of the first multipath component at 50 ns is taken to 

be the time reference while the other three multipath components are at delays of 10 ns, 

32 ns, and 206 ns relative to the arrival time of the first multipath component. The 

results in the absence of noise show that Pathlets 5, 7, 9, and Symlet 2 can again be 

successfully applied to separate the constituent four paths in the delay profile by at least 

a factor of five. 

 

This four-path delay profile is corrupted with AWGN, at SNRs of 40 dB, 30 dB, and 25 

dB. Performance comparison is then made between the two noise reduction schemes 

used to filter-out noise from the detail coefficients in this research. At an SNR of 40 dB, 

the four constituent multipath components are detected in noise as the dominant peaks 

within the noisy SWT levels 1 and 2 detail coefficients, prior to denoising. These 

dominant peaks are also reinforced as the wavelet transform decomposition level 

increases. The results from the SWTMP denoising method show that the four constituent 

multipath components are extracted, while the wavelet transform detail coefficients that 

were attributed to noise are suppressed. The performance of Symlet 2 at detecting the 

four paths, in this case, is poor when compared with the members of Pathlet family. 
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When the denoising procedure based on thresholding is applied at levels 1 and 2, the 

results obtained shows that the four constituent multipath components are resolved and 

the detail coefficients that were attributed to noise removed after denoising. These 

results are in general agreement with the noiseless case.  

 

At an SNR of 30 dB, the four constituent multipath components could only be identified 

as the dominant peaks within the noisy SWT level 2 detail coefficients prior to 

denoising. These four constituent multipath components are masked in noise at level 1 

of the detail coefficients. The results from the SWTMP denoising scheme show that the 

four constituent multipath components are extracted by Pathlets 5, 7, and 9, while most 

of the detail coefficients that were attributed to noise are suppressed. The performance 

of Symlet 2 at detecting the four paths is again poor when compared with the members 

of Pathlet family. When the denoising procedure based on thresholding is applied, the 

results obtained show that all the four constituent multipath components are extracted at 

level 2 of the detail coefficients for all the wavelets used.  

 

Meanwhile, a comparison with the results obtained from using conventional high-

resolution algorithms such as the multiple signal classification algorithm, reviewed in 

Section 2.3.4, has been made. It shows that the MUSIC delay pseudo-spectrum degrades 

below 16 ns (that is about a factor of three) at an SNR of 30 dB. Consequently, 

multipath components with relative delays less than 16 ns could not be resolved by the 

MUSIC algorithm. This indicates that the wavelet-based approach proposed in this study 

overcomes the resolution limitation in the MUSIC algorithm, since a resolution of at 

least 5 ns can be achieved in this research. 

 

At an SNR of 25 dB, the four constituent multipath components could not be clearly 

identified in noise at level 1 or 2, prior to denoising, because these four paths have been 

masked in noise. The results from the SWTMP denoising technique shows that whilst 

the peaks attributed to the actual multipath components are extracted by the Pathlet 

family, many spurious detail coefficients attributed to noise are also brought out. When 

the denoising scheme based on thresholding is applied, the results obtained show that 
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none of the four paths could be detected at level 1. All the four constituent multipath 

components are however extracted at level 2 of the detail coefficients after denoising, 

only when Pathlet 9 is used.  

 

These results obtained from the wavelet analysis of the noisy one-path, two-path, and 

four-path delay profiles are in general agreement with the conclusions in Section 3.3.1. 

That is, Pathlet 9 is the most robust to noise, followed by Pathlet 7, Symlet 2, and Pathlet 

5 as the least robust to noise. Furthermore, these results show that Pathlets 5, 7, 9, and 

Symlet 2 can be successfully applied, in this study, to improve the resolution of 

impinging waves in synthetic mobile radio environments by more than a factor of ten.  

 

In practical implementations, it is suggested that Pathlets 7 and 9 be applied in the two 

noise reduction schemes; that are used to filter-out noise from the detail coefficients in 

this research. Pathlet 9 is robust to noise, while Pathlet 7 achieves a compromise 

between obtaining acceptable resolution of the multipath components and having a good 

dynamic range. Features that are extracted by both Pathlets 7 and 9 can therefore be 

regarded as the true parameter estimates.  

 

A best paper award based on the results obtained from this research, as well as some 

published research papers on topics related to this study are shown in Appendix D. 
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CHAPTER 5 
 

 

EFFECTS OF BANDWIDTH LIMITATION  

 

 

 

5.1 Introduction 

 
In Chapter 3, a novel wavelet family named “Pathlets” and wavelet-based denoising 

strategies have been developed for use in estimating the number of multipath 

components and time-delays. An amplitude estimation procedure, for the individual 

multipath components, has been subsequently derived. Series of computer simulations 

were then presented in Chapter 4 to show multipath components resolution using the 

stationary wavelet transform and wavelet-based denoising with Pathlets 5, 7, 9, and 

Symlet 2 as the analysing wavelets. The simulated multipath delay profiles, used in these 

analyses, have been assumed to be without band-limitations.  

 

The output signals from the measurement systems in practice, which can be used to 

obtain experimental data for the purpose of channel modelling, are bandwidth limited to 

minimise the influence of noise. Consequently, the digital signal processing algorithm 

proposed in Chapter 3 is applied in this chapter to resolve the constituent multipath 

components in band-limited delay profiles. This is done to examine the effects of band-

limitations in the implementation of the proposed wavelet-based algorithm. 
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The test signal models discussed in Section 4.2 have been initially analysed without 

considering the effect of bandwidth limitations. When band-limitation is incorporated, 

then (3.28) becomes  

 

( ) ( ) ( )( ) ( )N N Ny n x n n nη χ= + ∗ɶ ,                                                            (5.1) 

 

where ( )Ny nɶ  denotes the band-limited replica of ( )Ny n , ∗  denotes the convolution 

operation, while ( )nχ  is the impulse response of the filter used in the band-limitation.  

 

In wavelet transform domain, ( )Ny nɶ
 
becomes       

       

, ,  j kd =ɶ ɶy g ,   1, 2, ,j J= … ,  0,1, , 1
j

k N= −… ,                                    (5.2) 

                

where 
,j kdɶ

 
represents the wavelet transform detail coefficients of the band-limited signal 

ɶy , at the th
k  coordinates and 

th
j  level. jN  is the number of wavelet transform 

coefficients at the 
th

j  level, g  is the vector of the decomposition wavelet filter 

coefficients, ɶy  is the vector of ( )Ny nɶ , while J
 
denotes the coarsest decomposition 

level.  

 

The band-limited versions of the simulated multipath delay profiles in Sections 4.2.2, 

4.2.3, and 4.2.4 have been used as test signals in this chapter, so that a comparison can 

be made with the case without band-limitations. Several captures of these band-limited 

multipath delay profiles, each of which has been corrupted by different noise sequences, 

have again been produced and then averaged to simulate the average output signal 

waveform from the experimental SCCS system.  

 

In denoising the noisy detail coefficients of the band-limited signal, performance 

comparison is made between the two noise reduction strategies used to filter-out noise 

from the detail coefficients. In the first technique, the SWTMP denoising scheme given 

in (3.78) is applied. The levels 1 and 2 detail coefficients are used in this first scheme. In 
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the second noise reduction method, a denoising procedure that uses the hard 

thresholding technique given in (3.77) is applied to remove the noisy detail coefficients 

before extracting the multipath components of interest.  

 

 

5.2 Simulation Results 

 

5.2.1 Band-limited one-path delay profile 

 

The wavelet analysis of a band-limited one-path delay profile is computed in this 

section. Pathlets 5, 7, 9, and Symlet 2 are used in the wavelet analysis to detect the 

single path in this band-limited delay profile. 

 

This delay profile, in the absence of noise, is shown in Figs. 5.1 (a) and 5.2 (a). The 

corresponding SWT levels 1 and 2 detail coefficients of this test signal profile are shown 

in Figs. 5.1 (b-e) and 5.2 (b-e) respectively. Table 5.1 shows the magnitudes of the 

levels 1 and 2 detail coefficients. These results are in general agreement to the case 

without band-limitations given in Table 4.1; that Pathlet 9 provides the best match with 

the multipath signals, while Pathlet 5 is the least match with these waveforms. 

Additionally, the local maxima in these noiseless detail coefficients evolve with larger 

peaks as the SWT decomposition level increases. 

 

Now when this test signal is corrupted with AWGN at an SNR of 30 dB, and then band-

limited, the resulting SWT levels 1 and 2 detail coefficients are shown in Figs. 5.3 (b-e) 

and 5.4 (b-e) respectively. The dominant peak in these noisy wavelet transform 

coefficients identifies the single path within the delay profile. Furthermore, as the 

wavelet transform decomposition level increases this observable peak is amplified. 
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Figure 5.1 Band-limited one-path test signal profile, without noise, and corresponding 
      SWT level 1 detail coefficients.  

 

 

  Figure 5.2 Band-limited one-path test signal profile, without noise, and corresponding 

        SWT level 2 detail coefficients.  
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Table 5.1 Magnitude of the SWT levels 1 and 2 detail coefficients  

               for a band-limited one-path delay profile without noise. 
 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.3 Band-limited one-path test signal profile corrupted with noise, at an SNR of 

       30 dB, and corresponding SWT level 1 detail coefficients.  
 

 

 

 

 

Wavelet type 

Magnitude of the  

noiseless detail coefficients 

 

Level 1 

 

Level 2 

 
Pathlet 5 

 
0.00327 

 
0.0249 

 
Pathlet 7 

 
0.00642 

 
0.0325 

 

Pathlet 9 

 

0.0104 

 

0.0482 

 
Symlet 2 

 
0.00473 

 
0.0304 
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Figure 5.4 Band-limited one-path test signal profile corrupted with noise, at an SNR of 

      30 dB, and corresponding SWT level 2 detail coefficients.  
 

 

5.2.2 Band-limited two-path delay profile with equal-amplitude paths 

 

In this section, the constituent multipath components in a band-limited two-path delay 

profile with equal-amplitude paths and relative delay of 2 ns, are estimated with the 

algorithm proposed in Fig. 3.13 for post-processing multipath delay profiles. The 

parameters of this two-path delay profile have been previously shown in Table 4.2.  

 

This band-limited delay profile, in the absence of noise, is given in Fig. 5.5 (a). It shows 

that the two constituent paths in the propagation channel appears as a single peak and are 

not resolved prior to wavelet decomposition. The SWT level 1 detail coefficients, of this 

band-limited test signal profile, are shown in Figs. 5.5 (b-e). These results show that the 

noiseless two equal-amplitude paths are not resolved at level 1 of the wavelet transform, 

and hence at subsequent higher wavelet transform levels.  
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    Figure 5.5 Band-limited test signal profile with two paths having equal amplitudes, 
          without noise, and corresponding SWT level 1 detail coefficients.  

 

Next, this two-path delay profile is corrupted with the AWGN at an SNR of 30 dB and 

then band-limited. The resulting SWT levels 1 and 2 detail coefficients are shown in 

Figs. 5.6 (b-e) and 5.7 (b-e) respectively. These results show that these noisy two equal-

amplitude paths are again not resolved after wavelet transform at levels 1 and 2, and 

hence at subsequent higher wavelet transform levels. 

 

A comparison of Figs. 4.23 (c-f) and 5.6 (b-e) shows that most of the detail coefficients 

that were attributed to noise, observed in Figs. 4.23 (c-f), have been filtered out in Figs. 

5.6 (b-e) due to band-limitation. This gating of the noise is therefore advantageous in 

that the multipath signals of interest, which could have been otherwise immersed in 

noise, can be better extracted. However, this band-limitation causes the roundness of the 

edges on the triangular correlation functions, as seen in Fig. 5.6 (a), thereby resulting in 

lower resolution. Hence, there is a certain degree of uncertainty in estimating the exact 

relative arrival times of the multipath components.  
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Therefore, in actual practical measurement scenario, it is expected that the wavelet 

transform coefficients of an experimental data would have reduced noise due to the 

band-limitation in the measurement system. This reduction in noise level will be 

dependent on the extent of bandwidth limitations in the measurement system. The 

relative arrival times of the multipath component can then be estimated to a certain 

degree of accuracy.  

 

 

 

     Figure 5.6 Band-limited test signal profile with two paths having equal amplitudes 

           corrupted with noise, at an SNR of 30 dB, and corresponding SWT  
level 1 detail coefficients.  

 



 

128 

 
    Figure 5.7 Band-limited test signal profile with two paths having equal amplitudes 

          corrupted with noise, at an SNR of 30 dB, and corresponding SWT  
          level 2 detail coefficients.  

 

 

The results from applying the SWTMP denoising technique, using the levels 1 and 2 

detail coefficients, are shown in Figs. 5.8 (b-e). The denoised coefficients by wavelet 

thresholding are shown in Figs. 5.9 (b-e).  These results illustrate that the wavelet 

transform coefficients that were attributed to noise have been removed in Figs. 5.8 (b-e) 

and 5.9 (b-e). However the resolution has been degraded by band-limitation and so the 

two constituent paths, at 2 ns delay and SNR of 30 dB, are not separated. 
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     Figure 5.8 Band-limited test signal profile with two paths having equal amplitudes 
             corrupted with noise, at an SNR of 30 dB, and the denoised SWT detail 

           coefficients. Noise is suppressed by SWTMP using the levels 1 and 2 
           detail coefficients. 
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    Figure 5.9 Band-limited test signal profile with two paths having equal amplitudes 

          corrupted with noise, at an SNR of 30 dB, and the denoised SWT level 1 
          detail coefficients. Noise is removed by wavelet thresholding. 

 
 

 

5.2.3 Band-limited four-path delay profile with differential amplitudes  

 
The band-limited replica of the test signal profile having four paths with differential 

amplitudes, discussed in Section 4.2.4, is simulated in this section. The constituent 

multipath components of this band-limited four-path delay profile are then estimated 

with the algorithm proposed for post-processing multipath delay profiles. 

 

The parameters of this four-path delay profile are as previously shown in Table 4.4. This 

band-limited delay profile, in the absence of noise, is shown in Figs. 5.10 (a) and 5.11 

(a). The SWT levels 1 and 2 detail coefficients, of this noiseless test signal profile, are 

shown in Figs. 5.10 (b-e) and 5.11 (b-e) respectively. These noiseless results show that 

Pathlets 5, 7, 9, and Symlet 2 can be successfully applied to separate the constituent 

paths within the band-limited four-path delay profile by at least a factor of five.  
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        Figure 5.10 Band-limited test signal profile with four paths having differential 

             amplitudes, without noise, and the SWT level 1 detail coefficients.  
 

 

       Figure 5.11 Band-limited test signal profile with four paths having differential 

            amplitudes, without noise, and the SWT level 2 detail coefficients.  
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Next, this four-path delay profile is corrupted with AWGN at an SNR of 30 dB and then 

band-limited. The resulting SWT levels 1 and 2 detail coefficients are shown in Figs. 

5.12 (b-e) and 5.13 (b-e) respectively. The dominant peaks in these noisy wavelet 

transform detail coefficients detect the constituent multipath components within the 

band-limited four-path delay profile. As expected, the magnitude of these dominant 

peaks is reinforced as the wavelet transform decomposition level increases. 

 

A comparison of Figs. 4.36 (c-f) and 4.37 (c-f), with Figs. 5.12 (b-e) and 5.13 (b-e), 

respectively, shows that most of the detail coefficients that were attributed to noise have 

been filtered out in Figs. 5.12 (b-e) and 5.13 (b-e), due to the band-limitation. Again, 

suggesting that the band-limitation facilitates the extraction of the multipath signals of 

interest. 

 

 

       Figure 5.12 Band-limited test signal profile with four paths having differential 

               amplitudes corrupted with noise, at an SNR of 30 dB, and 
     corresponding SWT level 1 detail coefficients.  
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       Figure 5.13 Band-limited test signal profile with four paths having differential 

               amplitudes corrupted with noise, at an SNR of 30 dB, and 

     corresponding SWT level 2 detail coefficients.  
 

The results from applying the SWTMP denoising technique, using the levels 1 and 2 

detail coefficients, are shown in Figs. 5.14 (b-e). This denoising technique computes the 

product of the non-negative levels 1 and 2 detail coefficients. These results show that the 

detail coefficients that were attributed to noise in Figs. 5.12 (b-e) and 5.13 (b-e), have 

now been suppressed in Figs. 5.14 (b-e). The results from using Pathlet 9, shown in Fig. 

5.14 (d), is the most robust to noise, while the results from using Pathlet 5, shown in Fig. 

5.14 (b), is the least robust to noise.  

 

Furthermore, a comparison with the results from applying the SWTMP denoising 

technique for the case without band-limitation given in Figs. 4.38 (c-f), shows that the 

results from the band-limited case given in Figs. 5.14 (b-e) suppresses the noise better. 

These denoised detail coefficients can then be used as an estimate of the number of 

multipath components and time-delays. 
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Figure 5.14 Band-limited test signal profile with four paths having differential 

        amplitudes corrupted with noise, at an SNR of 30 dB, and the denoised 
        SWT detail coefficients. Noise is suppressed by SWTMP using the levels  

        1 and 2 detail coefficients. 
 

 
The denoised levels 1 and 2 detail coefficients, using hard thresholding and the median 

absolute deviation standard deviation estimate of noise, are shown in Figs. 5.15 (b-e) 

and 5.16 (b-e) respectively. These results show that all the four constituent paths, in this 

band-limited test signal profile with an SNR of 30 dB, can be detected at levels 1 and 2 

of the wavelet transform for all the analysing wavelets used. These denoised detail 

coefficients is then used as an estimate of the number of multipath components and 

time-delays. 
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Figure 5.15 Band-limited test signal profile with four paths having differential 

         amplitudes corrupted with noise, at an SNR of 30 dB, and the denoised 
         SWT level 1 detail coefficients. Noise is removed by wavelet thresholding. 

 

 
  Figure 5.16 Band-limited test signal profile with four paths having differential 

          amplitudes corrupted with noise, at an SNR of 30 dB, and the denoised 
          SWT level 2 detail coefficients. Noise is removed by wavelet thresholding. 
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Finally, this four-path delay profile is corrupted with AWGN at SNRs of 25 dB and then 

20 dB. The delay profiles are subsequently band-limited. At 25 dB SNR, the resulting 

noisy SWT levels 1 and 2 detail coefficients are shown in Figs. 5.17 (b-e) and 5.18 (b-e) 

respectively. The dominant peaks in these noisy detail coefficients again identify the 

constituent multipath components. As expected, these dominant peaks are increased in 

magnitude as the wavelet transform decomposition level increases. 

 

At an SNR of 20 dB, the resulting SWT levels 1 and 2 detail coefficients are shown in 

Figs. 5.19 (b-e) and 5.20 (b-e) respectively. The dominant peaks within these noisy 

detail coefficients detect the constituent multipath components. Moreover, many 

spurious peaks are also now obtained at this SNR; which may be attributed to the 

correlations in the noise samples after band-limitations.   

 

 

         Figure 5.17 Band-limited test signal profile with four paths having differential 

        amplitudes corrupted with noise, at an SNR of 25 dB, and 
     corresponding SWT level 1 detail coefficients.  
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       Figure 5.18 Band-limited test signal profile with four paths having differential 
               amplitudes corrupted with noise, at an SNR of 25 dB, and 

   corresponding SWT level 2 detail coefficients.  
 

 

       Figure 5.19 Band-limited test signal profile with four paths having differential 

               amplitudes corrupted with noise, at an SNR of 20 dB, and 
   corresponding SWT level 1 detail coefficients.  
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        Figure 5.20 Band-limited test signal profile with four paths having differential  
              amplitudes corrupted with noise, at an SNR of 20 dB, and 

                corresponding SWT level 2 detail coefficients.  
 

 
The results from applying the SWTMP denoising scheme, using the levels 1 and 2 detail 

coefficients, are shown in Figs. 5.21 (b-e) and 5.22 (b-e). These results show that the 

detail coefficients that were attributed to noise have now been suppressed. The results 

from using Pathlet 9, shown in Figs. 5.21 (d) and 5.22 (d), is also the most robust to the 

noise. A comparison with the results obtained from applying the SWTMP denoising 

technique for the case without band-limitation given in Figs. 4.43 (c-f), shows that the 

corresponding results from the band-limited case given in Figs. 5.21 (b-e) suppresses the 

noise better. These denoised detail coefficients can then be used as an estimate of the 

number of multipath components and time-delays. 
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       Figure 5.21 Band-limited test signal profile with four paths having differential 
                amplitudes corrupted with noise, at an SNR of 25 dB, and the denoised 

                SWT detail coefficients. Noise is suppressed by SWTMP using the 
    levels 1 and 2 detail coefficients. 

 
 

 
At an SNR of 25 dB, the denoised levels 1 and 2 detail coefficients by wavelet 

thresholding are shown in Figs. 5.23 (b-e) and 5.24 (b-e) respectively. These results 

show that the four constituent paths, in this band-limited test signal profile, can be 

detected at levels 1 and 2 of the wavelet transform for all the analysing wavelets used. 

Some spurious peaks, attributed to noise, are also obtained in the level 2 denoised 

coefficients. The denoised detail coefficients at level 1, however, contain none of these 

spurious coefficients. Consequently, the denoised level 1 detail coefficients can be used 

as true estimate of the number of multipath components and time-delays. 
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Figure 5.22 Band-limited test signal profile with four paths having differential 
        amplitudes corrupted with noise, at an SNR of 20 dB, and the denoised  

        SWT detail coefficients. Noise is suppressed by SWTMP using the  
        levels 1 and 2 detail coefficients. 

 

 

At an SNR of 20 dB, the denoised levels 1 and 2 detail coefficients by wavelet 

thresholding are shown in Figs. 5.25 (b-e) and 5.26 (b-e) respectively. The results in this 

case show that while all the four constituent paths, in this band-limited test signal 

profile, can be extracted at both levels 1 and 2, many spurious peaks attributed to noise 

are also now obtained at level 2. The presence of these spurious peaks may be attributed 

to the correlations in the noise samples after band-limitations. The denoised detail 

coefficients at level 1, however, do not contain these spurious coefficients. 

Consequently, these coefficients can be used as true estimate of the number of multipath 

components and time-delays. 
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Figure 5.23 Band-limited test signal profile with four paths having differential                               

        amplitudes corrupted with noise, at an SNR of 25 dB, and the denoised 
        SWT level 1 detail coefficients. Noise is removed by wavelet thresholding. 
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 Figure 5.24 Band-limited test signal profile with four paths having differential 
         amplitudes corrupted with noise, at an SNR of 25 dB, and the denoised 

         SWT level 2 detail coefficients. Noise is removed by wavelet thresholding. 
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  Figure 5.25 Band-limited test signal profile with four paths having differential 
          amplitudes corrupted with noise, at an SNR of 20 dB, and the denoised 

          SWT level 1 detail coefficients. Noise is removed by wavelet thresholding. 
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Figure 5.26 Band-limited test signal profile with four paths having differential 
        amplitudes corrupted with noise, at an SNR of 20 dB, and the denoised 

        SWT level 2 detail coefficients. Noise is removed by wavelet thresholding. 
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5.3 Summary 

 

In this chapter, series of computer simulations have been carried out to examine the 

effect on time resolution, caused by bandwidth limitations, in wavelet-based multipath 

channel parameter estimation. The band-limited replica of the simulated multipath delay 

profiles in Sections 4.2.2, 4.2.3, and 4.2.4 have been developed as test signals so that a 

comparison can be made with the results obtained from the delay profiles without band-

limitations. 

 

A comparison of the SWT detail coefficients for the simulated multipath delay profiles 

without band-limitations, with those for the band-limited delay profiles, show that most 

of the noisy detail coefficients are filtered out after band-limitation. It is therefore 

expected that in actual experimental measurement scenario, the wavelet analysis of an 

experimental data would have coefficients with reduced noise level as a consequence of 

the inherent bandwidth limitations.  

 

Performance comparison was also made between the two noise reduction strategies used 

to filter-out noise from the band-limited detail coefficients so that the constituent 

multipath components that are buried in noise can be extracted. In the first technique, the 

product of the non-negative values of levels 1 and 2 detail coefficients are computed so 

as to suppress noise. This denoising procedure has been referred to as the “stationary 

wavelet transform multilevel products (SWTMP)” in Section 3.3.3. In this first scheme, 

the denoised detail coefficients are as defined in (3.78). In the second noise reduction 

scheme, a denoising procedure that uses the hard thresholding technique based on the 

median absolute deviation standard deviation estimate of noise is applied to remove the 

noisy detail coefficients. In this second case, the denoised detail coefficients are as 

defined in (3.77). 

 

The result obtained from the first noise reduction technique is found to be comparable to 

the results obtained for the second method when applied to the SWT level 1 detail 

coefficients, for SNR  20 dB.≥  In these two noise reduction schemes, the use of Pathlet 
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9 is found to be the most robust to noise, followed by Pathlet 7, Symlet 2, and Pathlet 5 

as the least robust to noise. Again, in actual practical implementations, it is suggested 

that both Pathlets 7 and 9 be applied in the two noise reduction strategies that are used to 

filter-out noise from the detail coefficients. Features that are extracted by both Pathlets 7 

and 9, in these two denoising schemes, can then be regarded as the true parameter 

estimates.  

 

Finally, the results in this chapter have shown that though band-limitation reduces the 

effect of noise, however this is at the expense of multipath resolution. For example, 

while the two paths with equal amplitudes and 2 ns delay in Fig. 5.5 (a) could not be 

resolved at the SWT level 1 detail coefficients shown in Figs. 5.5 (b-e) after band-

limitations; these two paths are however separated in the absence of bandwidth 

limitations as seen in Figs. 4.14 (c-f). There is, therefore, a compromise between 

obtaining acceptable resolution of the multipath components and reducing the effect of 

noise. Nevertheless, these results demonstrate that the wavelet-based algorithm proposed 

in this thesis can still be successfully applied to resolve the multipath components, even 

in the presence of band-limitations.  
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CHAPTER 6 
 

 

EXPERIMENTAL RESULTS 

 

 

 

6.1 Introduction 

 

This chapter presents the description, and wavelet analysis, of the channel impulse 

response profiles captured with an experimental portable channel sounder used for 

wideband indoor radio propagation measurements in the 900 MHz band 

(Mossammaparast, Afifi et al. 1997; Mossammaparast 1999). This portable channel 

sounder is based on the sliding correlation technique previously discussed in Section 

2.2.4.  

 

The transmitter unit of this channel sounder uses a pseudorandom binary sequence to 

binary phase modulate a sinusoidal carrier signal at 914 MHz. The output binary phase 

shift keyed signal is subsequently amplified and transmitted through a radio channel. At 

the receiver, an identical PRBS generator similar to that used at the transmitter, but 

clocked at a somewhat slower rate, is utilised. This slower PRBS is used to modulate a 

locally generated sinusoidal carrier. Then the received BPSK signal is mixed with the 

locally generated BPSK to give a crosscorrelated signal at an intermediate frequency 

(IF) of 45 MHz. This crosscorrelated signal is further converted into the in-phase (I) and 

quadrature-phase (Q) components, at zero IF. These baseband I and Q waveforms have a 

maximum output voltage swing of  5V± and bandwidth of 4 kHz. These waveforms are 

captured with a digital oscilloscope for further post-processing to obtain estimates of the 
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multipath delay parameters. The transmitter and receiver units of this channel sounder 

are shown in Fig. 6.1, while a summary of the experimental channel sounder parameters 

is presented in Table 6.1. 

 

 

         

Figure 6.1 The transmitter and receiver units of the sliding correlator  
             channel sounder used in the wideband radio propagation  

             measurements in the 900 MHz band. 
 

 

 

Table 6.1 Summary of the sliding correlator channel sounder parameters, used in the 
                 wideband radio propagation measurements in the 900 MHz band. 

 

Parameter 

 

Value 

 
Transmitter chip clock rate 

 
20 MHz 

 

Receiver chip clock rate 

   

19.996 MHz 

 
Multipath delay resolution 

 
50 ns 

 

Time sliding factor 

 

4500 ~ 5500 

 
Transmit output power 

 
13 dB 

 

RF bandwidth 

 

40 MHz 
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6.2 Data Processing and Analysis 

 

As discussed in Section 1.1, a large bandwidth is required for high-resolution 

measurements with a channel sounder. However, legal transmission bandwidth 

restrictions place an upper bound on such large bandwidth. As a result of this limited 

resolution capability of the experimental channel sounder, the close-in multipath delay 

components with delays less than the intrinsic time resolution overlap each other. 

Consequently, these individual delay components are not resolved. Additionally, when 

adjacent multipath components have very different amplitudes, then a strong ray may 

mask a weaker ray. When this happens, then the output waveform from the channel 

sounder appears as a single pulse which is spread in time. The captured multipath delay 

profiles are hence subjected to post-processing, to resolve the multiple ray paths that 

have been otherwise not individually identifiable.  

 

This section describes the wavelet analysis of measured multipath delay profiles 

obtained by connecting the transmitter and receiver units of an experimental sliding 

correlator channel sounder back-to-back, using RG142 50Ω  coaxial cables. The 

experiment was carried out in a previous wideband indoor radio propagation study at 

Curtin University. A sample of the back-to-back experimental data, containing two 

unresolved propagation paths, is presented in Table 6.2. Further details about this 

experiment are provided in Mossammaparast (1999). The wavelet-based digital signal 

processing algorithm proposed for this study in Chapter 3 is applied in these analyses. 

Pathlets 7 and 9 have been used as the analysing wavelets. 

 

Examples of multipath delay profiles, obtained from these back-to-back measurements, 

are shown in Figs. 6.2 and 6.3. There are two paths in each of these delay profiles. Note 

that the time axis in these plots has not been scaled to take the sliding factor of the 

measurement system into consideration, but rather displayed in terms of the data points 

to show the actual experimental data.  
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            Table 6.2 Sample of the experimental data with two unresolved paths,  

     obtained from back-to-back measurements, using the sliding  
     correlator channel sounder system shown in Fig. 6.1. 
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Two scenarios are illustrated in these examples. In the first scenario, shown in Fig. 6.2, 

the delay difference of the two constituent paths in the measured delay profile is less 

than the intrinsic delay resolution of the experimental channel sounder used; so that the 

two paths could not be individually identified prior to post-processing. A sample of the 

experimental data obtained in this case has been shown in Table 6.2. In the second 

scenario, shown in Fig. 6.3, the delay difference of the two constituent paths is greater 

than the intrinsic delay resolution of the channel sounder so that these two paths can be 

clearly identified prior to post-processing. 

 

 

 

 

Figure 6.2 An example of measured multipath delay profile having two unresolved 
      paths, from back-to-back measurements, obtained using the sliding correlator 

      channel sounder system shown in Fig. 6.1.  
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Figure 6.3 An example of measured multipath delay profile having two resolved 

      paths, from back-to-back measurements, obtained using the sliding correlator 
      channel sounder system shown in Fig. 6.1.  

 

 

In Fig. 6.2, a two-way splitter has been used to split an RF signal from the transmitter 

unit of the channel sounder into two coaxial cables of different lengths. The outputs 

from the two cables, delayed and attenuated, were later combined at the receiver front-

end. The delay difference, formed by these two coaxial cables, is less than the channel 

sounder’s intrinsic delay resolution of 50 ns. These two paths could not therefore be 

individually indentified, prior to post-processing, and appear as a single pulse which is 

spread in time. In Fig. 6.3, however, the delay difference formed by the two coaxial 

cables is greater than the channel sounder’s intrinsic delay resolution. These two paths 

can therefore be individually indentified, prior to post-processing. The wavelet 

transform of these channel impulse response profiles is now computed.  

 

First, the SWT is applied in Fig. 6.2. The SWT levels 1-4 detail coefficients of this 

measured multipath delay profiles are shown in Figs. 6.4 (b-e) and 6.5 (b-e), using 

Pathlets 7 and 9 as the analysing wavelets respectively. These results show that the two 
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constituent multipath components are identified, and separated, at levels 3 and 4.  As 

expected, Pathlet 7 achieves a compromise between obtaining acceptable resolution of 

the multipath components, and having a good dynamic range. Also, in agreement with 

the discussions in Section 3.3.3, the two multipath components of interest evolves with 

high magnitude as the SWT decomposition level increases while the noise decays. 

 

          
 

 

 

       Figure 6.4 Measured multipath delay profile, having two unresolved paths, and 

                   corresponding SWT levels 1-4 detail coefficients. Pathlet 7 is used  
             as the analysing wavelet. 
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Figure 6.5 Measured multipath delay profile, having two unresolved paths, and 

            corresponding SWT levels 1-4 detail coefficients. Pathlet 9 is used  
      as the analysing wavelet. 

 

The results from applying the SWTMP denoising technique given by (3.78), using the 

levels 3 and 4 detail coefficients, are shown in Figs. 6.6 (b & c). These results indicate 

that the detail coefficients that were attributed to noise, observed in Figs. 6.4 (b-e) and 

6.5 (b-e), have been suppressed in Figs. 6.6 (b & c). The two paths which have been 

previously unresolvable in Fig. 6.6 (a) are now separated by both Pathlets 7 and 9. The 

location, in time, of the denoised peaks can then be used as estimates of the relative 

arrival times of the multipath components.  

 

The denoised levels 3 and 4 detail coefficients, using hard thresholding and the median 

absolute deviation standard deviation estimate of noise given in (3.77), are shown in 

Figs. 6.7 (b & c) and 6.8 (b & c) respectively. These results also show that most of the 

noisy detail coefficients have been removed, and the two multipath components which 

have been previously unresolvable are now separated by both Pathlets 7 and 9. 
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These results are in general agreement with the simulation examples, in Chapters 4 and 

5, that Pathlets 7 and 9 can be successfully applied to resolve closely spaced multipath 

components immersed in noise. 

 

 

 

 

Figure 6.6 Measured multipath delay profile, having two unresolved paths, and the 

      denoised SWT detail coefficients. Noise is suppressed by SWTMP using  
      the levels 3 and 4 detail coefficients, with Pathlets 7 and 9 as the analysing 

      wavelets. 
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Figure 6.7 Measured multipath delay profile, having two unresolved paths, and the 

denoised SWT level 3 detail coefficients. Noise is removed by wavelet 
thresholding, with Pathlets 7 and 9 as the analysing wavelets. 

 

 

Figure 6.8 Measured multipath delay profile, having two unresolved paths, and the 

denoised SWT level 4 detail coefficients. Noise is removed by wavelet 
thresholding, with Pathlets 7 and 9 as the analysing wavelets. 
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Next, the SWT is applied in Fig. 6.3. The SWT levels 1-4 detail coefficients of this 

measured multipath delay profiles are shown in Figs. 6.9 (b-e) and 6.10 (b-e), using 

Pathlets 7 and 9 as the analysing wavelets respectively. In this case, the two multipath 

components can be individually indentified prior to wavelet processing as seen in Figs. 

6.9 (a) and 6.10 (a). These results from the SWT again illustrate that the two constituent 

paths are identified as the dominant peaks at levels 3 and 4, in agreement with the 

discussions in Section 3.3.3, since the noise has decayed at these levels.    

 

Finally, the SWTMP denoising technique given by (3.78) is applied using the levels 3 

and 4 detail coefficients. The denoised detail coefficients are shown in Figs. 6.11 (b & 

c). These results show that the detail coefficients that were attributed to noise, observed 

in Figs. 6.9 (b-e) and 610 (b-e), have once more been suppressed in Figs. 6.11 (b & c). 

The location, in time, of the denoised peaks can then be used as estimates of the relative 

arrival times of the multipath components.  

 

 

Figure 6.9 Measured multipath delay profile, having two resolved paths, and 
            corresponding SWT levels 1-4 detail coefficients. Pathlet 7 is used  

      as the analysing wavelet. 
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Figure 6.10 Measured multipath delay profile, having two resolved paths, and 

            corresponding SWT levels 1-4 detail coefficients. Pathlet 9 is used  
      as the analysing wavelet. 

 

 

Figure 6.11 Measured multipath delay profile, having two resolved paths, and the 
        denoised SWT detail coefficients. Noise is suppressed by SWTMP using  

        the levels 3 and 4 detail coefficients, with Pathlets 7 and 9. 
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6.3 Summary 

 

In this chapter, the wavelet analysis of measured channel impulse response profiles has 

been presented. These channel impulse response profiles were obtained by connecting 

the transmitter and receiver units of an experimental sliding correlator channel sounder, 

back-to-back using RG142 50Ω  coaxial cables. 

 

Two scenarios were examined. In the first scenario, the delay difference of the two 

constituent paths in a measured delay profile is less than the intrinsic delay resolution of 

the experimental channel sounder used; so that these two paths could not be identified 

prior to wavelet processing. In the second scenario, however, the delay difference of the 

constituent paths is greater than the intrinsic delay resolution of the channel sounder so 

that these paths can be clearly identified prior to the wavelet processing. The algorithm 

proposed in Chapter 3 for multipath resolution, is then applied to extract the multipath 

components. 

 

The results obtained for the first scenario show agreement with the discussions in 

Section 3.3.3; that the features of interest evolves with high magnitude as the SWT 

decomposition level increases while the noise decays. Additionally, Pathlet 7 achieves a 

compromise between obtaining acceptable resolution of the multipath components and 

having a good dynamic range; in agreement with the simulation examples in Chapters 4 

and 5. 

 

Futhermore, the results from applying the SWTMP denoising scheme in Fig. 6.2, using 

the levels 3 and 4 detail coefficients, show that the wavelet transform detail coefficients 

that were attributed to noise are suppressed and the two constituent paths extracted after 

denoising. When the denoising procedure based on thresholding using the MAD 

estimate is applied, the results obtained show that the detail coefficients that were 

attributed to noise are also removed and the two paths successfully separated at levels 3 

and 4. Pathlet 7 gives a better resolution. 
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Finally, the results obtained in the second scenario as well show that Pathlets 7 and 9 

successfully detected the two paths in the channel impulse response profile at levels 3 

and 4 of the wavelet transform. Moreover, these multipath components of interest are 

reinforced within the detail coefficients as the SWT decomposition level increases while 

the noise diminishes, in accordance with the wavelet transform multiscale dependencies 

given in (A.18). 
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CHAPTER 7 
 

 

CONCLUSIONS AND RECOMMENDATIONS  

FOR FUTURE RESEARCH 

 

 

 

7.1 Summary of Results and Conclusions  
 

The subject of the research described in this thesis has been the identification and 

development of a novel wavelet-based high-resolution digital signal processing 

algorithm, for multipath channel parameter estimation. The thesis has been organised 

into seven chapters. The first chapter presents the introduction and original contributions 

of the thesis. The second chapter reviews various wideband channel sounding and signal 

parameter estimation techniques. This included a description of wavelet analysis and 

some applications. The third chapter presents the design of novel mother wavelets for 

use in this research and the proposed multipath channel parameter estimation procedure. 

The fourth chapter details the implementation of the algorithm developed in the third 

chapter, for multipath channel parameter estimation, through computer simulations. The 

fifth chapter presents series of computer simulations which were carried out to examine 

the effect on time resolution, caused by bandwidth limitations, in the wavelet-based 

multipath channel parameter estimation technique. Finally in Chapter 6, the algorithm 

developed in this research has been applied to resolve the multipath components in 

measured channel impulse response profiles, obtained by connecting the transmitter and 

receiver units of an experimental sliding correlator channel sounder back-to-back. 
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As previously discussed in Section 2.1, a major prerequisite to the design and 

specification of any wideband digital mobile radio system is a complete cognition of the 

multipath geometries of the radio channel. This is achieved by resolving the multipath 

field into its constituent components. Moreover, the resolution of very closely spaced 

multipath components requires channel measurements with huge bandwidth. Hence, the 

intrinsic delay resolution of channel sounding equipments is more easily enhanced 

through the use of digital signal post-processing algorithms. A review of such digital 

signal processing techniques has been given in Section 2.3. It has been shown that the 

model order selection is often the most difficult problem in the parametric-based 

methods of signal parameter estimation. The main contribution of this thesis is, 

therefore, in the development of a novel wavelet-based digital signal post-processing 

algorithm for estimating the number of impinging waves and time-delays in mobile 

radio environments. The results obtained in this research have shown that this wavelet-

based procedure can be successfully applied to improve the intrinsic delay resolution of 

channel sounding equipments by more than a factor of ten.  

 

In Chapter 3, the development of a new wavelet family for resolving the constituent 

components in a multipath channel has been presented. The results obtained have shown 

the desired properties of a wavelet used in this research as symmetry, compact support, 

and triangular (or near triangular) shape. That is, the shape of the wavelet function used 

should reflect the type of features to be extracted. This novel wavelet family has been 

named “Pathlet.” Two noise reduction schemes were then proposed using Pathlets 5, 7, 

9, and a member of Daubechies near symmetric wavelet family called Symlet 2, as the 

analysing wavelets. The probability distributions of the equivalent noise, obtained from 

the wavelet analysis of a Gaussian white noise source using Pathlets 5, 7, 9, and Symlet 

2 as analysing wavelets, have also been derived. Finally, an amplitude estimation 

algorithm was developed. 

 

Chapter 4 investigates the use of the stationary wavelet transform in estimating the 

number, and time-delays, of the impinging waves in synthetic mobile radio 

environments. Two noise reduction schemes are implemented in the SWT. The first 
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noise reduction scheme is based on using hard thresholding and the MAD standard 

deviation estimate (Donoho and Johnstone 1994; Donoho 1995; Donoho and Johnstone 

1995; Percival and Walden 2000). An alternative denoising procedure was also 

proposed, based on exploiting the stationary wavelet transform multiscale dependencies. 

This scheme has been named the “stationary wavelet transform multilevel products 

(SWTMP).” In general, the results obtained from using these two denoising strategies 

have been found to be comparable. The denoised detail coefficients provide information 

about the number of impinging waves, and time-delays, in synthetic mobile radio 

environments. 

 

A measure of multipath resolution of equal-amplitude paths show that 2 ns resolution 

can be obtained at high SNRs, when Pathlet family members and Symlet 2 are used as 

analysing wavelets. The estimated number of paths and arrival times are then used to 

determine the amplitudes of the individual delay components, using the amplitude 

estimation algorithm developed as part of this study. Estimates of multipath delay 

statistics such as mean excess delay and rms delay spread have been subsequently 

determined.  

 

In Chapter 5, series of computer simulations were carried out to examine the effect of 

bandwidth limitations on multipath resolution using the algorithm proposed in this 

study. The results obtained shows that the wavelet-based algorithm proposed in this 

research can still be successfully applied to resolve the multipath components, even after 

band-limitations. Moreover, these results indicate that there is a compromise between 

obtaining acceptable resolution of the multipath components and noise reduction.  

 

Chapter 6 presents the description, and wavelet analysis, of the channel impulse 

response profiles captured with an experimental portable channel sounder used for 

wideband radio propagation measurements.  
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7.2 Study Limitations and Recommendations 

 

7.2.1 Number of impinging waves and time-delay estimation  

 

Throughout this study, a lot of issues have been brought to light. Not all of these issues 

can be considered to have been fully exhausted by the author. One such subject is the 

influence of bandwidth limitations and low SNR conditions in the estimation of the 

number and time-delays of impinging waves. Traditionally, the number of impinging 

waves in mobile radio environments is often set to a value large enough to capture all 

the significant impinging waves before their parameter vectors can be estimated. This 

study has presented a novel algorithm for estimating the time-delays and number of 

these impinging waves. This wavelet-based algorithm, proposed in the study, gives good 

estimates of the multipath delay statistics at high SNRs. However, more studies are 

required to investigate the influence of band-limitation and very low SNRs on such 

estimates of the time-delays and number of impinging waves. 

 

7.2.2 Reduction of noise 

 
This study has also presented a new noise reduction procedure, based on exploiting the 

stationary wavelet transform multiscale dependencies. The performance of this noise 

reduction technique has been found to be comparable, under high SNRs, to that based on 

the conventional wavelet thresholding method. However much lower SNRs may be 

encountered in practice and hence more studies is required to investigate schemes for 

reducing noise at very low SNRs. 

 

7.2.3 Field tests 

 

Another recommendation for further study is the performance, in real mobile radio 

environments, of the algorithm proposed in this thesis through extensive field tests.  
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APPENDIX A 
 

BASIC PRINCIPLES OF WAVELET ANALYSIS 
 

      

A.1 Wavelet Basis Functions 
 

The word “wavelet” essentially means “a small wave” that oscillates with a zero net 

area. Wavelets provide sets of basis functions for function spaces. A wavelet basis 

function is a set of complete and linearly independent functions generated from a 

prototype wavelet. The case where the set is over complete leads to frames. What makes 

wavelet bases especially interesting is their self-similarity; every function in a wavelet 

basis is a dilated and translated replica of a prototype function.  

 

Some important properties of a wavelet system include: 

 

• Orthogonality 

• Compact support 

• Symmetry 

• Smoothness 

 

Orthogonality 
 

A wavelet system is orthogonal if  

 

( ) ( ),  = 0t tϕ ψ ,                             (A.1) 

 

where ( )tϕ  and ( )tψ  are the scaling and wavelet functions respectively, while  ,  ⋅ ⋅  

denotes inner product operation. Orthogonality is a desired property in signal analyses. 
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Compact support 

 

This property is a function of the filter length. If the scaling and wavelet functions are 

compactly supported, then the corresponding low-pass and high-pass filters are finite 

impulse response filters. A compact wavelet (in time) has good time resolution but poor 

frequency resolution, while a broad wavelet function has poor time resolution and good 

frequency resolution. Wavelets with compact support allow reduced computational 

complexities. 

 

Symmetry 

 

When the scaling and wavelet functions are symmetric, then the corresponding filters 

will have generalised linear phase. The absence of symmetry can lead to phase 

distortion, especially in signal processing applications. 

 

Smoothness 

 

This property is determined by the number of vanishing moments in a wavelet. The 

larger the number of vanishing moments, the smoother is the wavelet. This is useful in 

compression applications. 

 

 

A.2 Translation and Dilation of Wavelets 
 

Consider a real-valued function ( )tγ . The translation of ( )tγ  yields a new function

( )0,k tγ , where  

 

  

             ( ) ( )0,k t t kγ γ= − ,                                    t−∞ < < ∞ , k ∈ℤ .                            (A.2) 

 

ℤ
 
denotes the set of all integer values.  

 

Dyadic dilation, i.e. scaling in multiple powers of 2, yields ( ),0j tγ  as  
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       ( ) ( )2

,0 2 2j j

j t tγ γ− −= ,                       t−∞ < < ∞ ,     1, 2,j = … .                   (A.3) 

 

The factor 
2

2
j−

 ensures that if ( )tγ  is a member of ( )2
L ℝ  with a squared norm given 

by  

 

       ( ) ( )
2 2

t t dtγ γ
∞

−∞

= ∫ ,                                                                                       (A.4) 

 

then ( ) ( )
2 2

1,0 t tγ γ= , i.e. the norm is preserved regardless of the scale. ( )2
L ℝ  

denotes a Hilbert space of square integrable functions. 

 

A translation and dilation of ( )tγ
 
is then given by 

 

           ( ) ( )2

, 2 2j j

j k t t kγ γ− −= − ,               t−∞ < < ∞ ,     1, 2,j = … .                       (A.5) 

 

 

A.3 Multiresolution Analysis  
 

Early on in the history of wavelet development, it was a non-trivial task to find a 

function ( )tψ  to ensure that 

 

          ( ) ( ){ }2

,
,

2 2
j j

j k
j k

t t kψ ψ− −

∈ ∈
= −

ℤ ℤ
,                    (A.6) 

 

is an orthonormal basis of ( )2
L ℝ . Such functions were discovered in the 1980s, and 

consequently a standard procedure to construct wavelet bases was developed. 

Multiresolution analysis (MRA) describes a mathematical framework for analysing 

functions at various levels of resolution, and may be likened to a chain of subspaces. It 

provides simultaneous information on time and frequency of the signal characteristics, in 

terms of the projection of a signal at multiple resolutions. From the literature, a sequence 



 

A-4 

of subspaces { }j j
V

∈ℤ
 of ( )2

L ℝ  is said to be a multiresolution analysis when the 

following properties are satisfied: 

 

     ( ) ( )j jf t V f t k V∈ ⇔ − ∈  ,             ,  j k∈ ∈ℤ ℤ .                                            (A.7) 

      
1j j

V V+ ⊂  .                                                                                                           (A.8) 

    ( ) ( )1

12j jf t V f t V
−

+∈ ⇔ ∈ .                                                                                (A.9) 

     { }lim  = 0j j
j j

V V
→+∞ ∈

=
ℤ

∩ .                                                                                      (A.10)                                                

    ( )2lim  =  
j j

j j

V V L
→−∞ ∈

=
ℤ

∪ ℝ .                                                                                  (A.11)                                                                                                 

 

Property (A.7) implies that 
j

V   is invariant by any translation, where ⇔  stands for two  

way implications. 
j

V
 
is known as the approximation subspace.  

 

Property (A.8) is a causality property showing that an approximation at the resolution 

2 j−  bears all information to compute an approximation at a coarser resolution ( )1
2

j− +
. 

The information lost between any two successive approximations is captured in the 

detail subspace, or wavelet space, 
j

W .  

 

Property (A.9) shows that dilating functions in 
j

V  by 2  defines an approximation at a 

coarser resolution ( )1
2

j− +
.  

 

Properties (A.10) and (A.11) define an approximation of a function as a sequence of 

closed and embedded approximation subspaces whose intersection is empty and whose 

closure converges to ( )2
L ℝ . In particular, (A.10) implies that when the resolution 2 j−

 

goes to 0, then all the signal details are lost.  (A.11) shows that when the resolution goes 

to +∞, then the signal approximation converges to the original signal.   

 



 

A-5 

Whenever a collection of closed subspaces fulfils above conditions, then there exists an 

orthonormal wavelet basis { }, ; ,j k j kψ ∈ℤ . At a given resolution, there exists a unique 

scaling function ( )j tϕ  that can be written as  

 

      ( ) ( )22 2j j

j t tϕ ϕ− −= .                                                                                      (A.12) 

 

A scaling function ( )tϕ , such that its entire integer translates form a basis of 
0

V , is 

defined by 

 

       ( ) ( )0 0t V t k Vϕ ϕ∈ ⇔ − ∈ .                                                                             (A.13) 

 

Since the subspace 
1j j

W V −⊂  is the orthogonal complement of 
j

V  in 
1j

V − , then  

 

     1j j j
V V W− = ⊕ .                               (A.14) 

 
By iteration, this means that   

    

            1 1j j j
V V W+ += ⊕ ,                                  (A.15) 

        

            1 2 2j j j
V V W+ + += ⊕ ,                                   (A.16) 

 

        ⋮  
 

            1J J J
V V W− = ⊕ .                                   (A.17) 

 

Therefore 
 

           1 1 2 3   
j j j j j J J

V W W W W W V− + + += ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⋯ ,                                      (A.18) 

    

         
fine scale←

                
coarse scale →  

 

where J
 
denotes the coarsest resolution level, while ⊕  represents a direct sum operator. 
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APPENDIX B 
 

DERIVATION OF THE DAUBECHIES EXTREMAL 

PHASE FILTER COEFFICIENTS 

  

 

The most frequently used orthogonal wavelets are the Daubechies wavelets. The 

Daubechies’ extremal phase low-pass filter and wavelet coefficients are derived in this 

appendix. This wavelet family is commonly abbreviated as dbN where N denotes the 

wavelet order and number of vanishing moments. They are family of orthogonal 

wavelets supported on an interval of length P 1− , where P 2N= .  

 

The low-pass filter and wavelet coefficients are derived, in this appendix, such that 

orthogonality and moment conditions are guaranteed. 

 

Starting with a four-coefficient scaling equation described by  

 

            ( ) ( )
P 1

1 2 1

0

2 2
k

k

t h t kϕ ϕ
−

− −

=

= −∑ ,      P 4= ,                                    (B.1) 

 

where ( )kh t kϕ −  is a replica of the scaling function ( )12 tϕ − , but at a different 

resolution, translated along the time axis by an integer step k  and factored by the scaling 

coefficients 
k

h .   

 

Assume that the coefficients of the scaling function, i.e.
k

h , are normalised such that 

   

            
P 1

0

2k

k

h
−

=

=∑ .                         (B.2) 
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For orthogonality, these scaling coefficients must satisfy the following constraints; 
 

            
P 1

2

0

1 0

0 0
k k

k

h h ζ

ζ

ζ

−

+
=

=
= 

≠
∑ .                        (B.3) 

          

The th
m  moment of the corresponding wavelet function, in terms of the scaling 

coefficients 
k

h , is defined as follows:  

 

            ( ) ( )

P 1

1
0

1 0
k m

P k

k

h k
−

− −
=

− =∑ ,  0, , N 1m = −… ,                                 (B.4) 

 
where N is the number of vanishing wavelet moments. Therefore,  

 

            ( )
3

3

0

1 0
k

k

k

h −
=

− =∑ ,  for 0m = ,                      (B.5)

    

             ( )
3

3

0

1 0
k

k

k

h k−
=

− =∑ ,   for 1m = .                     (B.6) 

 
     

The orthogonality requirement and moment condition, with normalised scaling 

coefficients, results in the following equations: 

         

            0 1 2 3 2h h h h+ + + = ,                     (B.7) 

          0 1 2 3 0h h h h− + − + = ,                     (B.8) 

         0 1 23 2 0h h h− + − = ,                     (B.9) 

            2 2 2 2

0 1 2 3
1h h h h+ + + = .                              (B.10) 

  

Putting (B.7) - (B.9) into matrix of the form 

     

             

0 3

1 3

2

1 1 1 2

1 1 1

3 2 1 0

h h

h h

h

 −  
   − − = −   

    − −    

.                    (B.11) 
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This gives  
 

           0 30.25 2h h= − .         (B.12) 

           1 30.5 2h h= − ,          (B.13) 

           2 30.25 2h h= + .         (B.14) 

        

Substituting (B.12) – (B.14) into (B.10) results in the following two sets of solutions: 

 

0
0.4830h = , 1 0.8365h = , 2 0.2241h = , 

3
0.1294h = − , 

            

 and 

        

0
0.1294h = − , 1 0.2241h = , 2 0.8365h = , 

3
0.4830h = . 

 

The first set leads to ( )tϕ  while the second set leads to ( )tϕ − .      

               

The wavelet filter coefficients associated with the first set of scaling coefficients is given 

by the quadrature mirror filter relation: 

        

            ( ) 11
k

k P kg h − −= − ,                 (B.15) 

   

where P 4= . Hence 
             

0
0.1294g = − , 1 0.2241g = − , 2 0.8365g = , 

3
0.4830g = − . 

 

 
These are the Daubechies 2, i.e. db2, wavelet coefficients. Following the same procedure 

from (B.1) to (B.15), the scaling filter coefficients and the corresponding wavelet filter 

coefficients for a six-coefficient scaling equation can also be obtained. 
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Expressing the wavelet function as a moment condition, described by (B.4) but for P 6=  

gives  

    

( )
5

5

0

1 0
k

k

k

h −
=

− =∑ ,  for 0m = ,               (B.16) 

     

( )
5

5

0

1 0
k

k

k

h k−
=

− =∑ , for 1m = ,              (B.17)

        

( )
5

2

5

0

1 0
k

k

k

h k−
=

− =∑ , for 2m = .              (B.18) 

    

Applying the orthogonality and moment conditions, with normalised scaling 

coefficients, results in the following equations: 

  

0 1 2 3 4 5 2h h h h h h+ + + + + = ,             (B.19) 

0 1 2 3 4 5 0h h h h h h− + − + − + = ,             (B.20) 

0 1 2 3 4
5 4 3 2 0h h h h h− + − + − = ,            (B.21) 

0 1 2 3 4
25 16 9 4 0h h h h h− + − + − = ,            (B.22) 

0 2 1 3 2 4 3 5
0h h h h h h h h+ + + = ,             (B.23) 

2 2 2 2 2 2

0 1 2 3 4 5
1h h h h h h+ + + + + = .            (B.24) 

                  

Putting (B.19) – (B.22) into matrix of the form 

     

0 4 5

1 4 5

2 4

3 4

1 1 1 1 2

1 1 1 1

5 4 3 2

25 16 9 4

h h h

h h h

h h

h h

    − −
   − − −    =
   − −
        − −     

.             (B.25) 

          

Then solving for the scaling coefficients
 k
h  gives the solution of ( )tϕ  as 

 

0 0.3327h = , 1 0.8069h = , 2 0.4599h = , 3 0.1350h = − , 4 0.0854h = − , 5 0.0352h = . 
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The wavelet coefficients associated with these scaling coefficients can be obtained by 

applying (B.15), where P 6= . Therefore 

      

0 0.0352g = , 1 0.0854g = , 2 0.1350g = − , 3 0.4599g = − , 4 0.8069g = , 5 0.3327g = − . 

 

These are the Daubechies 3, i.e. db3, wavelet coefficients. In the same way, the scaling 

and wavelet coefficients can be obtained for db4 through to db10. 

    

The Daubechies wavelets have the following properties: 

1. Compact support. 

2. Asymmetric for length of filter greater than 2. 

3. Orthogonality. 

4. N vanishing moments. 

5. Increasing smoothness as N increases. 

 

These Daubechies low-pass filter coefficients { }kh , for 1 10db db∼  from the literature, 

are listed in Tables B.1 through B.5. The coefficients { }kh  have been normalised such 

that 2kh =∑ , where ( )0, , P -1k = … .  
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      Table B.1 Daubechies low-pass filter coefficients of orders 1 to 4.  

Order  k  Low-pass filter coefficients 
k

h  

 db1 0 0.7071067811865475 

 1 0.7071067811865475 

 db2 0 0.4829629131445341 

 1 0.8365163037378077 

 2 0.2241438680420134 

 3 -0.1294095225512603 

 db3 0 0.3326705529500827 

 1 0.8068915093110928 

 2 0.4598775021184915 

 3 -0.1350110200102546 

 4 -0.0854412738820267 

 5 0.0352262918857096 

 db4 0 0.2303778133074431 

 1 0.7148465705484058 

 2 0.6308807679358788 

 3 -0.0279837694166834 

 4 -0.1870348117179132 

 5 0.0308413818353661 

 6 0.0328830116666778 

 7 -0.0105974017850021 
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Table B.2 Daubechies low-pass filter coefficients of orders 5 to 6.  
Order k  Low-pass filter coefficients 

k
h  

db5 0 0.1601023979741930 

 1 0.6038292697971898 

 2 0.7243085284377729 

 3 0.1384281459013204 

 4 -0.2422948870663824 

 5 -0.0322448695846381 

 6 0.0775714938400459 

 7 -0.0062414902127983 

 8 -0.0125807519990820 

 9 0.0033357252854738 

db6 0 0.1115407433501094 

 1 0.4946238903984530 

 2 0.7511339080210954 

 3 0.3152503517091980 

 4 -0.2262646939654399 

 5 -0.1297668675672624 

 6 0.0975016055873224 

 7 0.0275228655303053 

 8 -0.0315820393174862 

 9 0.0005538422011614 

 10 0.0047772575109455 

 11 -0.0010773010853085 
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Table B.3 Daubechies low-pass filter coefficients of orders 7 to 8.  

Order k  Low-pass filter coefficients 
k

h  

db7 0 0.0778520540850081 

 1 0.3965393194819136 

 2 0.7291320908462368 

 3 0.4697822874052154 

 4 -0.1439060039285293 

 5 -0.2240361849938538 

 6 0.0713092192668312 

 7 0.0806126091510820 

 8 -0.0380299369350125 

 9 -0.0165745416306664 

 10 0.0125509985560993 

 11 0.0004295779729214 

 12 -0.0018016407040474 

 13 0.0003537137999745 

db8 0 0.0544158422431049 

 1 0.3128715909143031 

 2 0.6756307362972904 

 3 0.5853546836541907 

 4 -0.0158291052563816 

 5 -0.2840155429615702 

 6 0.0004724845739124 

 7 0.1287474266204837 

 8 -0.0173693010018083 

 9 -0.0440882539307952 

 10 0.0139810279173995 

 11 0.0087460940474061 

 12 -0.0048703529934518 

 13 -0.0003917403733770 

 14 0.0006754494064506 

 15 -0.0001174767841248 
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Table B.4 Daubechies low-pass filter coefficients of order 9.  

Order k  Low-pass filter coefficients 
k

h  

db9 0 0.0380779473638791 

 1 0.2438346746125939 

 2 0.6048231236901156 

 3 0.6572880780512955 

 4 0.1331973858249927 

 5 -0.2932737832791761 

 6 -0.0968407832229524 

 7 0.1485407493381306 

 8 0.0307256814793395 

 9 -0.0676328290613302 

 10 0.0002509471148340 

 11 0.0223616621236805 

 12 -0.0047232047577520 

 13 -0.0042815036824636 

 14 0.0018476468830564 

 15 0.0002303857635232 

 16 -0.0002519631889427 

 17 0.0000393473203163 
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Table B.5 Daubechies low-pass filter coefficients of order 10.  

Order k  Low-pass filter coefficients 
k

h  

db10 0 0.0266700579005546 

 1 0.1881768000776863 

 2 0.5272011889317202 

 3 0.6884590394536250 

 4 0.2811723436606485 

 5 -0.2498464243272283 

 6 -0.1959462743773399 

 7 0.1273693403357890 

 8 0.0930573646035802 

 9 -0.0713941471663697 

 10 -0.0294575368218480 

 11 0.0332126740593703 

 12 0.0036065535669880 

 13 -0.0107331754833036 

 14 0.0013953517470692 

 15 0.0019924052951930 

 16 -0.0006858566949566 

 17 -0.0001164668551285 

 18 0.0000935886703202 

 19 -0.0000132642028945 
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APPENDIX C 
 

WAVELET THRESHOLDING 

 

 

Thresholding of the wavelet transform coefficients can be used to separate a wanted 

signal from noise. A common formulation of threshold functions is that, if the magnitude 

of the wavelet transform coefficient, say 
n

Q , is less than a given threshold value 0L > , 

then this wavelet transform coefficient is set to zero.  

 

Consider a noisy signal given by 

 

( ) ( ) ( )N N Ny n x n nη= + ,    0,1, , 1n N= −… ,                                  (C.1) 

 

where ( )N
x n  is an unknown signal of interest to be separated from noise, N  is the 

length of the signal, and ( )N
nη

 
is an additive white Gaussian noise term. A thresholding 

scheme for estimating ( )N
x n

 
then consists of three main steps as follows: 

 

(1) Determine the wavelet transform coefficients, 
,j k

W=Q , of ( )N
y n . 

(2) Define the thresholded coefficients to be a vector ( )t
Q  with th

n  element 
( )t

nQ  given  

      by  

 

      
( ) 0

 

t n

n

Q L
Q

nonzero value otherwise

 ≤
= 


,                (C.2)  

 

where L  is the noise threshold level. 

 

(3) Estimate ( )N
x n

 
from the thresholded coefficients ( )t

Q . 
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This form of thresholding is also known as global thresholding. There are several 

possibilities for coefficients that exceed the threshold level L . A common scheme from 

the literature is the hard thresholding, for which the thresholded coefficients ( )t
Q  are 

defined to be a vector ( )ht
Q  with the following elements  

 

      
( ) 0ht n

n

n

Q L
Q

Q otherwise

 ≤
= 


.                                                                              (C.3)  

 

That is the coefficients with magnitudes that exceed L  are unmodified, while those less  

than or equal to L  are thrown away. The mapping from 
n

Q  to 
( )ht

nQ  is known as hard 

thresholding. 

 

Another type of thresholding scheme in common usage is the soft thresholding, for  

which ( )t
Q  is defined to be a vector ( )st

Q , with th
n  element 

( )st

nQ  such that  

 

           
( ) { }( )st

n n n
Q sign Q Q L

+
= − ,                                                                              (C.4)  

 

where  

     { }
1 0

0 0

1 0

n

n n

n

Q

sign Q Q

Q

+ >


≡ =
− <

,                                                                             (C.5)  

 

and  

       ( )
0

0 0+

Λ Λ ≥
Λ ≡ 

Λ <
.                                                                                     (C.6)  

 

 

In this case, coefficients that exceed L  in magnitude are shrink toward zero by L , while 

those less than L  are replaced with zero. The mapping from 
n

Q  to 
( )st

nQ  is known as soft 
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thresholding. Hard thresholding produces an improved signal to noise ratio in 

comparison with soft thresholding. 

 

Finally, a compromise between hard and soft thresholding is the mid thresholding. This 

acts like hard thresholding when 2nQ L≥  and interpolates between hard and soft 

thresholding when 2nL Q L≤ ≤ . Therefore, ( )t
Q  is defined to be a vector ( )mt

Q  with 

elements 

 

      
( ) { }( )mt

n n n
Q sign Q Q L

++
= − ,                                                                            (C.7)  

 

where  

 

      ( ) ( )2 2
n n

n

n

Q L Q L
Q L

Q otherwise

+

++

 − <
− ≡ 


.                                                     (C.8)  

 

That is large coefficients, those exceeding 2L  in magnitude, are left unmodified. Those 

coefficients with magnitude between L  and 2L  are shrunk, while those less than L  are  

replaced with zero.  
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