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ABSTRACT 
 

Early research into the stable hydrogen isotopic compositions (δD) of petroleum 

involved bulk deuterium/hydrogen (D/H) measurements which, while providing 

some useful information, had to contend with the analysis of complex mixtures of 

hydrocarbons, and alteration resulting from the rapid exchange of nitrogen-, oxygen- 

and sulphur-bound hydrogen. The use of gas chromatography-isotope ratio mass 

spectrometry (GC-irMS) overcomes these problems by allowing the analysis of 

individual compounds containing only the most isotopically conservative aliphatic 

carbon-bound (C-bound) hydrogen. This project investigates the geochemical utility 

and reliability of compound-specific δD values, with the aim to better understand and 

exploit this analytical capability. 

To demonstrate the source diagnostic potential of compound-specific δD values, 

normal and branched alkanes extracted from series of immature bog-head coals 

(torbanites) were analysed. The torbanites contain immature organic matter 

predominantly from a single, freshwater algal source, i.e. Botryococcus braunii (B. 

braunii). The δD values of n-alkanes reflect the climate regime at the time of 

deposition of the torbanites, and vary mainly in response to the δD values of the 

source meteoric waters in their depositional environments. n-Alkanes from torbanites 

deposited at high latitude in a glacial climate are depleted in D by up to 70‰ relative 

to those from a torbanite deposited at low latitude under a tropical climate regime. 

Torbanites deposited in a mid-latitude region under cool-temperate conditions 

contain n-alkanes with δD values falling in between those of n-alkanes from tropical 

and glacial torbanites. The δD values of the n-alkanes also reflect their multiple 

source inputs. For example, a saw-toothed profile of n-alkane δD values in 

Australian torbanites is attributed to a dual-source system: a predominant B. braunii 

input, with a minor terrestrial plant input to odd-carbon-numbered n-alkanes in the 

range n-C20 to n-C29. The δD values of n-alkanes and isoprenoids (pristane and 

phytane) differ significantly in two Permian torbanites from Australia, thought to be 

reflective of the offset between the δD values of their precursors in extant organisms. 

The torbanite data indicate that a biological δD signal has been preserved for at least 

260–280 million years, extending the utility of δD values for palaeoclimate studies. 
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To elucidate the effect of sedimentary processes on the δD values of petroleum 

hydrocarbons, three sedimentary sequences have been studied. These comprise one 

from the Perth Basin (Western Australia) and two from the Vulcan Sub-basin 

(northern Australia) covering a wide range of maturities, i.e. 0.53–1.6% vitrinite 

reflectance (Ro). The δD values of n-alkanes extracted from immature-early mature 

sediments (marine shales/siltstones and mudstones) are consistent with that expected 

of marine-derived n-alkyl lipids. The hydrocarbons become enriched in D with 

increasing maturity. The large (ca. 115‰) biologically-derived offset between the 

δD values of n-alkanes and acyclic isoprenoids from immature sediments gradually 

decreases with increasing maturity, as the isoprenoids become enriched in D more 

rapidly than the n-alkanes. The D-enrichment in isoprenoids correlates strongly with 

Ro and traditional molecular maturity parameters. This suggests that H/D exchange 

during maturation occurs via a mechanism involving carbocation-like intermediates, 

which proceeds more rapidly with compounds containing tertiary carbon centres. 

Significant epimerisation of pristane and phytane coincides with their D-enrichment, 

suggesting that hydrogen exchange occurs at their tertiary carbons. A mechanism is 

proposed which can account for both H/D exchange and the epimerisation of pristane 

and phytane in the sedimentary environment. Pristane and phytane extracted from a 

post-mature sediment from the Paqualin-1 sequence are significantly enriched in D 

(ca. 40‰) relative to the n-alkanes, indicating that D-enrichment persists at very high 

maturity, and is more pronounced for the regular isoprenoids than the n-alkanes. This 

supports the notion that H/D exchange causes the observed shift in δD values, rather 

than free-radical hydrogen transfer. The differences between the δD values of 

pristane and phytane show opposite trends in the Perth Basin and Vulcan Sub-basin 

sediments. In the Perth Basin, phytane is enriched in D relative to pristane, likely due 

to a dominant algal source. In the Vulcan Sub-basin, pristane is enriched in D 

relative to phytane, and thus is attributed to a lower relative input of algal organic 

matter. The variance of the δD values of pristane and phytane is generally consistent 

throughout the maturity range and provides evidence that pristane and phytane 

exchange hydrogen at similar rates.  

δD analysis of crude oils and condensates reservoired in the Perth Basin and 

Vulcan Sub-basin has been carried out to evaluate potential applications in oil-source 

correlation. The n-alkanes from crude oils and condensates are often more enriched 
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in D than n-alkanes extracted from their supposed source rocks, and the oils also 

show relatively small differences between the δD values of n-alkanes and 

isoprenoids. These results suggest significant H/D exchange has occurred, implying 

that the liquids were generated from mature source rocks. A Perth Basin crude oil 

(Gage Roads-1) thought to be derived from a lacustrine/terrestrial source contains 

hydrocarbons that are significantly depleted in D relative to Perth Basin oils derived 

from a marine source, attributed to variability in the isotopic composition of marine 

and terrestrial source waters. δD values of n-alkanes from Vulcan Sub-basin crude 

oils and condensates are largely consistent with their prior classification into two 

groups: Group A, having a marine source affinity; and Group B, having a terrigenous 

source affinity. Some oils and condensates are suggested to be mixtures of Group A 

and Group B hydrocarbons, or Group A hydrocarbons and other as yet unknown 

sources. An exception is a former Group A oil (Tenacious-1) containing n-alkanes 

that are enriched in D relative to those from other Group A oils and condensates, 

attributed to mixing with another source of more mature hydrocarbons. The n-alkane 

δD profile appears to be indicative of source and sedimentary processes. One Perth 

Basin crude oil (Dongara-14) contains lower-molecular-weight n-alkanes that are 

depleted in D relative to higher-molecular-weight n-alkanes, attributed to a mixed 

marine/terrestrial source. Group A crude oils and condensates from the Vulcan Sub-

basin display a ‘bowl-shaped’ profile of n-alkane δD values. An upward inflection in 

the n-alkane δD profile from n-C11 to n-C15 is suggested to represent the addition of 

D-enriched lower-molecular-weight n-alkanes from a more mature wet 

gas/condensate to an initial charge of lower maturity oil. 

Ultimately, this project has demonstrated that the δD values of individual 

petroleum hydrocarbons can be used to elucidate the nature of source organic matter 

and depositional environments. The preservation potential of lipid δD values is 

greater than previously thought, although it is clear that H/D exchange 

accompanying maturation can have a significant effect on the δD values of certain 

hydrocarbons. Thus, great care must be taken when interpreting δD values of 

individual hydrocarbons, particularly those derived from sediments of high thermal 

maturity. 
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PREFACE 

 
 

The purpose of this preface is to provide an overview of the layout of this thesis. 

The introduction chapter (Chapter 1) is a brief description of the basic principles of 

petroleum and stable isotope geochemistry. Chapter 1 also describes the scope and 

significance of this project. More detailed introductory and background information 

is included in the individual introduction sections of Chapters 4, 5 and 6, which also 

discuss the results obtained from each part of this study. The summary and 

conclusions sections of Chapters 4, 5 and 6 are presented in point-form detailing the 

specific findings, while Chapter 7 summarises the overall conclusions of these 

individual chapters and the project.  Chapters 2 and 3 describe experimental and 

analytical techniques, as well as the geological samples used for this study. 

Chapter 4 of this thesis includes details that were originally published as Dawson 

et al. (2004). Chapter 5 comprises the results published as Dawson et al. (2005a; 

2005b) and, in part, as Dawson et al. (2006). Selected information in Chapter 6 has 

been accepted for publication, in part, as Dawson et al. (2006). For full publication 

details, see the following page. 
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  Chapter 1 

1 INTRODUCTION 
 

 

1.1 PETROLEUM GEOCHEMISTRY 

 

Petroleum geochemistry is concerned with the processes involving sedimentary 

organic matter that lead to the formation and accumulation of crude oil and natural 

gas. These processes include the production, accumulation and preservation of 

organic matter in depositional environments, its senescence and burial in the 

sediment (Sec. 1.1.1), and finally its alteration under thermal stress (maturation) in 

the subsurface which can lead to the formation of liquid and gaseous hydrocarbons 

(petroleum, Sec. 1.1.2). Certain hydrocarbons can be related to natural products of 

living organisms which are the precursors of sedimentary organic matter, and thus 

can provide information about the depositional palaeoenvironment in which the 

precursor organism lived. Relating sedimentary hydrocarbons to their biological 

precursors is often done via structural correlation and/or via the use of stable isotopes 

(Sec. 1.2). The following sections describe the basic principles of petroleum 

geochemistry. 

 

1.1.1 Sediments 

Sediment is defined as unconsolidated grains of minerals, organic matter or pre-

existing rocks that can be transported by water, ice or wind, and deposited in various 

environments (e.g. Figure 1.1). The organic matter in sediments derives from the 

remains of extant organisms including algae, bacteria and higher plants. Sedimentary 

rocks result from the accumulation and lithification of sediment in the subsurface. 

Fine-grained sedimentary rocks (sediments) containing ≥1% organic matter and ≥0.5 

wt.% total organic carbon (TOC) are potential petroleum source rocks. If buried and 

heated (matured) sufficiently, source rocks can generate petroleum (Sec. 1.1.2) 

which may (or may not) be trapped in a reservoir. 

Maturation is the chemical change in sedimentary organic matter, induced by 

burial and the action of temperature and pressure. Thermally-driven chemical 

reactions may convert the organic matter into petroleum. The extent of maturation 

1 



  Chapter 1 

can be determined using a combination of non-biomarker (e.g. vitrinite reflectance, 

Rock Eval pyrolysis; Appendix 1) and biomarker/molecular parameters, most of 

which are described in detail by Peters and Moldowan (1993) and Peters et al. 

(2005). 

 

 
Figure 1.1 Depositional environments 

 

 

Sedimentary organic matter comprises two general fractions: (i) bitumen (Sec. 

1.1.2), a low-molecular-weight component which can be extracted from a source 

rock using common organic solvents; and (ii) kerogen, a high-molecular-weight 

component which is insoluble in these solvents. The degradation and alteration 

(biological, physical and chemical) of the organic material during transport, burial 

and early maturation can lead to stable, complex macromolecules (kerogen) which 

can be preserved in sedimentary horizons. This process is known as diagenesis, and 

occurs up to an equivalent vitrinite reflectance of 0.6% (Peters and Moldowan, 

1993). Kerogens can be classified into three main types: I, II (II-S) and III. Type I 

kerogen is typically formed from algal organic matter deposited in a lake (lacustrine 

setting), and is highly oil-prone. Type II kerogen is usually derived from a mixture of 

terrestrial and marine organic matter deposited in a marine environment, and is oil-

prone. Type II-S is similar to type II except it has high sulfur content. Type III 
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kerogen is formed mainly from terrestrial/woody matter typically deposited in a 

deltaic/paralic marine setting, and is gas-prone. 

Deep in the subsurface and with increasing temperatures, a process known as 

catagenesis thermally decomposes part of the macromolecular structure of kerogen to 

form petroleum (Sec. 1.1.2). Catagenesis occurs at a maturity level equivalent to the 

vitrinite reflectance range of 0.6–2.0%, which includes the oil-generative window 

(Peters and Moldowan, 1993). A schematic diagram showing the relationship of 

diagenesis, catagenesis and metagenesis (gas production at high thermal stress) is 

shown in Figure 1.2. 

 

 
 
Figure 1.2 The origin and maturation of petroleum (Hunt, 1996) 
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1.1.2 Petroleum 

Petroleum is a complex mixture of hydrocarbons found in the Earth. It includes 

hydrocarbon gases, bitumen, migrated crude oil and pyrobitumen, but not kerogen. 

Bitumen is free organic matter within a source rock which is compositionally similar 

to crude oil. However, unlike crude oil which has migrated out of the source rock, 

bitumen is indigenous to the rock in which it is found. 

The hydrocarbons in petroleum can be divided into a number of polarity-based 

fractions. These include saturated hydrocarbons (aliphatic and cycloaliphatic); 

aromatic hydrocarbons; more polar compounds containing nitrogen, sulfur and 

oxygen (NSO); and (in some cases) metal porphyrin complexes containing 

vanadium, nickel and occasionally iron (Hunt, 1996). The aliphatic hydrocarbon 

fraction consists primarily of normal and branched alkanes, which are mainly derived 

from biological precursors. Cycloaliphatic hydrocarbons comprising monocyclic 

(e.g. alkylcyclopentanes, alkylcyclohexanes) and multi-ring compounds (e.g. 

hopanes, steranes) also occur in this fraction. The aromatic hydrocarbons range from 

benzene to polycyclic aromatic hydrocarbons (e.g. phenanthrenes). Examples of 

NSO compounds are aliphatic and aromatic carboxylic acids, carbazoles, phenols, 

and complex structures derived from sterols. Within the myriad of compound 

structures, hydrogen can be bound a number of different ways, i.e. either to primary, 

secondary or tertiary carbon atoms in alkyl moieties (aliphatic C-bound hydrogen); to 

carbon atoms in aromatic rings (aromatic C-bound hydrogen); and to nitrogen, 

oxygen or sulfur atoms in polar compounds (N, O, S-bound hydrogen). The way 

hydrogen is bound has implications in terms of its reactivity, e.g. towards hydrogen 

exchange as is discussed in more detail in Chapter 5 of this thesis. 

The majority of compounds in petroleum are formed synthetically in the 

subsurface. Commonly referred to as geosynthetic products, these include many 

aromatic hydrocarbons and several saturated hydrocarbons (e.g. monomethylalkanes) 

and NSO compounds (e.g. carbazoles). The geosynthetic formation process results in 

a host of alkylated, dealkylated and isomerised aromatic components (e.g. Radke et 

al., 1982; van Aarssen et al., 1999; Bastow et al., 2000) with non-isoprenoidal 

carbon skeletons, and hence cannot be directly related to natural product precursors 

of algae, bacteria and higher plants. Geosynthetic compounds generally have no 

structural similarities to any biological precursors, however their distributions can 
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give insights into the types of chemical processes that occur in the subsurface during 

petroleum generation (e.g. Radke et al., 1982; Bastow et al., 2000). 

Some petroleum hydrocarbons formed via degradation of the macromolecular 

structure of kerogen, with minimal alteration of their carbon skeletons, can be 

directly related to their biological precursors. These compounds are commonly 

referred to as ‘biomarkers’, and have useful applications in petroleum geochemistry. 

The carbon skeleton of a biomarker is often a diagenetically altered (e.g. dehydrated 

or aromatised) analogue of the precursor. Likewise its isotopic composition may be 

diagnostic of a supposed precursor or sedimentary process. The diagenetic processes 

which convert biochemicals to biomarkers do not fractionate the stable isotopes of 

carbon to any significant extent (Freeman et al., 1990). Biomarkers can be source-

specific or non-specific. For example isorenieratane (Appendix 2, I) and some 

related aromatic compounds are biomarkers derived from isorenieratene (II), found 

in Chlorobiaceae (green sulfur bacteria). Thus isorenieratane is a specific biomarker 

for green sulfur bacteria, and therefore photic zone euxinic (presence of hydrogen 

sulfide, anoxic) depositional conditions for geological samples (e.g. Grice et al., 

2005a). Other biomarkers can have multiple origins in which case they are of more 

limited diagnostic value, for example the C20 isoprenoid phytane (III), which can 

derive from the lipids of archaea, bacteria and chlorophyll a (IV) in algae and/or 

higher plants, and from bacteriochlorophylls (V) a and b of purple sulfur bacteria. 

Biomarkers are present in both sediments/source rocks and crude oils, and are quite 

often used in petroleum geochemistry for oil-oil and oil-source correlations (e.g. see 

Chapter 6). They are used to provide an indication of alteration events such as 

maturation (e.g. see Chapter 5) and biodegradation, as well as to provide information 

about depositional environments. A range of parameters are typically used, based on 

the distributions of both saturated and aromatic compounds. The stable isotopic 

compositions of biomarkers and other compounds are also useful for geochemical 

applications (Sec. 1.2). A comprehensive review of biomarker science and its 

applications in petroleum geochemistry is presented in Peters and Moldowan (1993) 

and Peters et al. (2005). 

. 
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1.2 STABLE ISOTOPE GEOCHEMISTRY 

 

Stable isotope geochemistry is based upon the relative and absolute concentrations 

of the elements and their stable isotopes in the Earth. There are a number of stable 

isotopes of interest to organic geochemists (e.g. Table 1.1). The stable isotopes of 

carbon and hydrogen are the most useful natural tracers in sedimentary organic 

matter because they are usually the most abundant elements. Thus the stable isotopes 

of carbon and hydrogen will be discussed exclusively in this thesis. 

 
Table 1.1 Natural abundances (atom %) of stable isotopes 
 

Carbon Hydrogen Oxygen Sulfur Nitrogen 
12C (98.899) 1H (99.985) 16O (99.759) 32S (95.018) 14N (99.9634) 

17O (0.0374) 13C (1.111) 2D (0.0105) 
18O (0.2039) 

34S (4.215) 15N (0.3663) 

 

 

1.2.1 Stable isotopes 

Stable isotopes as opposed to radiogenic (unstable) isotopes do not decay, thus 

their natural abundances (e.g. see Table 1.1) remain relatively constant, even over 

geological timescales. However, variations in stable isotopic composition, or 

‘isotopic fractionations’, occur in nature as a result of chemical and physical 

processes, due to different isotopes of an element having subtly different chemical 

and physical properties. Equilibrium processes (Sec. 1.2.2) and kinetic processes 

(Sec. 1.2.3) can lead to stable isotopic fractionation. 

 

1.2.2 Equilibrium isotope effects 

Equilibrium isotope effects occur as a result of temperature-dependent 

equilibrium isotope-exchange reactions. These reactions result in a change of the 

isotope distribution between different chemical substances, between different phases, 

or between individual molecules (Hoefs, 1987). For example, the equilibrium 

reaction: 
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A1 + B2 A2 + B1 
 

where subscripts indicate that species A and B contain either the light (1) or heavy 

(2) isotope. 

 

In these cases, there is no net change in the chemical system, i.e. the products are 

chemically identical to the reactants, with the exception being that the stable isotopes 

are distributed differently between them. A real example is the 

evaporation/condensation cycle of water, where: 

 

H2Ovapour + D2Oliquid HDOvapour + HDOliquid D2Ovapour + H2Oliquid  
 

This physical process results in a change in the distribution of hydrogen (and 

oxygen) isotopes between the liquid and vapour phases (see Chapter 4). Kinetic 

fractionation occurs when the water vapour is removed before condensation can 

occur (see Sec. 1.2.3). 

 

1.2.3 Kinetic isotope effects 

Kinetic isotope effects occur when an irreversible chemical reaction takes place 

resulting in a change in the chemical system. As a simple example, a unidirectional 

chemical reaction always shows a depletion of the heavy isotope in the reaction 

products relative to the reactants. This occurs due to the slower reaction rate of the 

heavier isotopic species. For example, in a reaction of reactant A to product B, there 

may be two (or more) competing unidirectional isotopic reactions: 

 

A1 B
k1

   
A2 B

k2

 
 

where k is the rate constant. 

 

In this theoretical example, say the rate determining step involves the breakage of a 

bond. It is generally easier to break the bonds of molecules that contain the lighter 
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isotopes, because the vibrational frequency of such bonds tends to be higher. Thus, in 

this case, k1 > k2, and therefore more of the lighter isotope will be incorporated into 

the product. A real example is when water evaporates and the water vapour is 

removed immediately, e.g. three competing unidirectional isotopic reactions: 

 

H2Oliquid H2Ovapour
k1

D2Oliquid D2Ovapour
k3

HDOliquid HDOvapour
k2

 
 

where in this case k1 > k2 > k3 because the lighter isotopic species of water evaporate 

preferentially (see Chapter 4). Thus the net process results in water vapour that is 

enriched in protium (1H). 

 

1.2.4 Standards and notation 

Stable carbon and hydrogen isotopic compositions are determined not as absolute 

isotopic abundances, but as ratios of a heavy isotope to a light isotope relative to a 

standard. For example, stable carbon isotopic compositions are determined as a ratio 

of carbon-13 (13C) to carbon-12 (12C) relative to the international standard Pee Dee 

Belemnite (PDB), a marine limestone from the Pee Dee formation in South Carolina 

(USA). For stable hydrogen isotopic composition, the ratio is deuterium (2H or D) to 

protium relative to Standard Mean Ocean Water (SMOW). Stable isotopic 

compositions are expressed as a delta (δ) value (e.g. δ13C for carbon, δD for 

hydrogen) in units of per mil (‰) or parts per thousand, as calculated using equation 

1. 

 

‰ 1000 x 
R

R - R  δ
standard

standardsample
sample =

  (Equation 1) 

 

where R is the ratio of heavy to light isotope. 
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The PDB and SMOW international standards are assigned an arbitrary δ value of 

0‰. It should be noted that PDB was exhausted several years ago, and has been 

replaced by calibrating another carbonate (NBS-19) relative to PDB (Urey et al., 

1951; Craig, 1957). The new calibration scale is termed ‘VPDB’ (Vienna PDB). 

SMOW was believed to represent (isotopically) an average isotopic composition of 

the world’s oceans (being the largest reservoir of hydrogen and oxygen) based on 

data accumulated over time (Werner and Brand, 2001). However the standard was 

not available as a reference material, and therefore was defined relative to another 

water standard (NBS-1, also now exhausted) which deviated by 47.6‰ from the 

current δD scale (Werner and Brand, 2001). Thus a new reference material was 

developed with an isotopic composition equivalent to that of SMOW, which led to 

the current ‘VSMOW’ (Vienna SMOW) scale. Another primary international 

standard for δD determinations is Standard Light Antarctic Precipitation (SLAP), 

which is strongly depleted in D (δD = -428‰). 

Throughout the text and figures in this thesis, stable isotopic compositions will be 

referred to as δ values, or as an expression of heavy/light isotope (e.g. D/H or 
13C/12C), with the suffix of compositions or signatures. When making comparisons 

between the isotopic compositions of two materials, or describing changes in isotopic 

composition, the following terms are used: (i) higher and lower δ values (e.g. higher 

indicating more of the heavy isotope); (ii) isotopically heavier and lighter (e.g. 

heavier meaning more of the heavy isotope); (iii) more/less positive (e.g. more 

positive meaning more of the heavy isotope) and more/less negative δ values; and 

(iv) enriched and depleted in a particular isotope (e.g. for hydrogen, enriched or 

depleted in D). 

 

1.2.5 Stable isotope analysis 

Stable isotopic compositions are most effectively determined using mass 

spectrometric methods (Hoefs, 1987). The two general methods of analysis are bulk 

isotope analysis, and compound-specific isotope analysis. 
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Bulk isotope analysis 

 

Bulk isotope analysis involves measurement of the stable isotopic composition of 

the total carbon, hydrogen, oxygen, nitrogen or sulfur within a sample, thus it 

represents the average of all compounds in complex mixtures. The entire sample, for 

example a whole crude oil, undergoes quantitative combustion, oxidation, reduction 

and/or pyrolysis to convert the element of interest into a gaseous analyte (e.g. see 

Chapter 3) which is amenable to high-precision isotopic analysis by an isotope ratio 

mass spectrometer (irMS). The process also converts by-products into a form that 

will not interfere isobarically with the analyte of interest (e.g. see Chapter 3). 

 

Compound-specific isotope analysis 

 

Compound-specific isotope analysis (CSIA) involves measurement of the stable 

isotopic composition of individual compounds in a complex mixture. The original 

method for determining the discrete isotopic value of an individual compound 

required lengthy offline laboratory procedures to isolate components of interest for 

analysis via the bulk method, taking great care to avoid isotopic fractionation. 

Furthermore, complete offline separation is often not possible for such complex 

mixtures such as petroleum. However, the development of gas chromatography-

isotope ratio mass spectrometry (GC-irMS) has allowed online GC separation of 

components of a complex mixture prior to combustion/pyrolysis (see above) and 

analysis by the irMS (Matthews and Hayes, 1978). GC-irMS instruments have been 

developed with the capability of measuring 13C/12C (Matthews and Hayes, 1978), 
18O/16O and 15N/14N (Brand et al., 1994), and recently D/H (Burgoyne and Hayes, 

1998).  

CSIA offers numerous advantages over the bulk isotope analysis method. The 

δ13C analysis of individual sedimentary hydrocarbons can provide evidence for their 

diverse origins (e.g. Freeman et al., 1990; Hayes et al., 1990; Rieley et al., 1991). 

This level of detail can not be obtained via bulk analysis, which provides the average 

value of all of the constituents present in the material analysed. Secondary processes 

(e.g. migration contamination, biodegradation; see Sec. 1.2.6 and 1.2.7) may alter the 

isotopic compositions of certain compound classes. Some processes will affect this to 

a greater extent than others, thus the bulk isotopic composition of the sample 
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averages both source and altered signatures. For example, bulk isotope analysis of 

hydrogen in petroleum samples has to contend with the rapid exchange of aromatic, 

O-, N- and S-bound hydrogen. The analysis of individual petroleum hydrocarbons 

such as n-alkanes by CSIA allows the measurement of the most isotopically 

conservative aliphatic C-bound hydrogen. This often allows source isotopic 

signatures to be identified, as well as recognition of secondary alteration effects by 

comparing the isotopic signatures of compounds with low and high resistance to 

secondary alteration. 

 

1.2.6 Stable carbon isotopes in organic matter 

Carbon is the fundamental element of organic compounds. It is an essential 

element for plants and animals, ultimately derived from atmospheric carbon dioxide 

assimilated by plants during photosynthesis. Carbon has two stable isotopes, 12C and 
13C. Photosynthetic carbon fixation favours the lighter 12C isotope, therefore 

biosynthesised organic compounds are depleted in 13C relative to their carbon source. 

The present day environmental distributions of stable carbon isotopes are controlled 

by several factors, including (see Hayes, 1993): (i) δ13C of the carbon source, and its 

availability; (ii) the photosynthetic pathway (and the associated complex 

fractionations) involved in the uptake of carbon dioxide; (iii) isotopic fractionations 

associated with biosynthesis (e.g. lipids versus protein and sugar biosynthesis); and 

(iv) other physiological factors including cell size and geometry (Goericke et al., 

1994; Popp et al., 1998), growth rates of phytoplankton (Laws et al., 1995), and the 

plant-water use efficiency of terrestrial plants (i.e. C3, C4 and CAM) (Ehleringer et 

al., 1993). The measurement of δ13C values is useful in petroleum geochemistry 

because it can enable the reconstruction of ancient biogeochemical processes relating 

to the carbon cycle in ancient depositional environments (Freeman et al., 1990), 

which would have played a major role in the production of the source organic matter 

for present-day reservoired crude oils. 

The δ13C values of petroleum components, including whole crude oils or 

bitumens, their fractions, and individual compounds, have been used to determine the 

geological age of source rocks, as well as the nature of their depositional 

environment and source organic matter (e.g. Gilmour et al., 1984; Sofer, 1984; 

Bjorøy et al., 1991; Chung et al., 1992; Murray et al., 1994; Andrusevich et al., 
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1998; Santos Neto and Hayes, 1999). A summary of previous work is described in 

the introduction of Chapter 6. In the subsurface, maturation has been reported to 

affect the stable carbon isotopic composition of petroleum (Clayton, 1991; Clayton 

and Bjorøy, 1994). δ13C values of kerogen, source rock extracts and crude oils and 

their associated fractions, and individual compounds (e.g. n-alkanes) have been 

found to generally increase with thermal maturity (e.g. see Chapter 5). The 

enrichment of 13C in kerogen is thought to be a result of the thermal release of 

isotopically light products (Clayton, 1991). For crude oils, the 13C enrichment is 

probably due to mixing of isotopically light bitumen with isotopically heavier 

generated products (Clayton, 1991). Other secondary processes such as 

biodegradation have been reported to alter δ13C values. It is widely accepted that the 

δ13C values of natural gas components (C1–C5) are significantly altered by 

biodegradation (e.g. Pallasser, 2000). Slight to moderate biodegradation has been 

shown to affect the δ13C values of light hydrocarbons (C5–C9) (George et al., 2002). 

There is no evidence of any significant fractionation of carbon isotopes in higher 

molecular weight n-alkanes (C14–C29) with biodegradation (Sun et al., 2005). In the 

majority of cases, biodegradation leads to an enrichment of 13C in residual 

compounds, with the level of enrichment gradually decreasing with increasing 

molecular weight (e.g. George et al., 2002; Sun et al., 2005). This is thought to be a 

result of kinetic isotope fractionation (Sec. 1.2.3), where molecules containing more 

of the lighter isotope are preferentially degraded. A sequential loss of n-alkanes with 

ongoing biodegradation leads to a depletion of 13C in residual saturated fractions, 

while residual aromatic and NSO hydrocarbon fractions become relatively enriched 

in 13C (Sun et al., 2005). 

 

1.2.7 Stable hydrogen isotopes in organic matter 

Hydrogen is the lightest chemical element and the most abundant in the universe, 

and is present in water and all organic compounds. Hydrogen consists of two 

naturally-occurring stable isotopes, 1H and D. The water in the world’s oceans 

constitutes the largest natural reservoir of hydrogen, and is fundamental in the global 

hydrological cycle. In marine and terrestrial environments, ocean water, and/or 

meteoric water produced via operation of the hydrological cycle, is used by 

inhabiting organisms. Thus, the distribution of stable hydrogen isotopes in present 
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day environments is predominantly controlled by a variety of naturally occurring 

processes in the global hydrological cycle (see Chapter 4), and the hydrogen bound 

in the biosynthetic products of photoautotrophs will (isotopically) reflect the source 

water (see Chapter 4). Hydrogen has the largest mass difference (2:1) between its 

two stable isotopes and thus, the largest natural variation in stable isotope ratios. This 

makes the measurement of δD values an attractively sensitive technique for 

geochemical applications. 

To date there has been relatively limited research into the D/H composition of 

petroleum, particularly using a compound-specific approach. The reports that exist 

have investigated the relationships between δD values of whole crude oils and 

bitumens, and their source (including organic matter type and depositional 

conditions), thermal maturity, as well as the effects of secondary processes such as 

biodegradation, mixing and migration (e.g. Hoering, 1977; Rigby et al., 1981; Yeh 

and Epstein, 1981; Smith et al., 1982; Santos Neto and Hayes, 1999; Li et al., 2001; 

Schimmelmann et al., 2004; Radke et al., 2005; Sun et al., 2005; Xiong et al., 2005; 

Pedentchouk et al., 2006). For a more comprehensive review of this work, see 

Chapters 5 and 6. 

Depending on the extent of the chemical reactions during petroleum formation, 

the distribution of stable hydrogen isotopes in petroleum hydrocarbons may be 

representative of the source waters present in their precursors’ depositional 

environment (e.g. see Chapter 4). Indeed, maturation has been reported to affect the 

distribution of stable hydrogen isotopes in organic matter, with a gradual D-

enrichment with ongoing maturation based on bulk δD measurements (e.g. Rigby et 

al., 1981; for a review see Chapter 5). Published research on the effects of other 

secondary processes on the distribution of stable hydrogen isotopes in petroleum 

samples appears to be limited to one report on the in vitro biodegradation of a North 

Sea crude oil (Pond et al., 2002), and another on a selection of Liaohe Basin (NE 

China) crude oils representing a natural sequence of increasing degree of in-reservoir 

biodegradation (Sun et al., 2005). Pond et al. (2002) studied the effect of slight-

moderate aerobic biodegradation on the δD values of individual n-alkanes in a crude 

oil, and found that shorter chain n-alkanes (n-C15 to n-C18) degrade fastest, and show 

the largest D-enrichment (~12–25‰). The δD values of longer chain n-alkanes (n-

C19 to n-C27) only showed a 5‰ D-enrichment with ongoing biodegradation. Sun et 
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al. (2005) found that stable hydrogen isotopes in n-alkanes are significantly 

fractionated with moderate-heavy biodegradation, resulting in enrichment in D of up 

to 35‰. The D-enrichment was evident throughout the range n-C16 to n-C27, 

indicating that in-reservoir biodegradation fractionates hydrogen isotopes in longer 

chain n-alkanes to a larger extent than in-vitro (laboratory) biodegradation (e.g. Pond 

et al., 2002). 

 

 

1.3 SCOPE AND SIGNIFICANCE OF THIS STUDY 

 

The scope of the present study is to determine the source and 

palaeoenvironmental (i.e. depositional environment) information that can be obtained 

from the distributions of stable hydrogen isotopes in individual hydrocarbons of 

sedimentary organic matter. Limited work in this area in the past has been based on 

bulk D/H compositions which, while providing some useful information, has to 

contend with the analysis of complex mixtures and the rapid exchange of N, O and 

S-bound hydrogen (see Chapter 5). δD CSIA of isotopically conservative aliphatic 

C-bound hydrogen avoids these problems. This allows for generation of a whole host 

of new results, hence the requirement of extensive knowledge about the various 

processes that determine the D/H composition of individual hydrocarbons in 

petroleum. 

In order to demonstrate the information attainable from the distribution of C-

bound stable hydrogen isotopes, the δD values of normal and branched alkanes 

extracted from a series of immature bog-head coals (torbanites) were measured. The 

well-preserved organic matter in these samples has a predominant algal source 

(Botryococcus braunii). This and their thermal immaturity make these samples ideal 

for δD analysis and interpretation. The δD values of hydrocarbons in the coals were 

interpreted in terms of their palaeolatitude (palaeoclimate) of deposition, which 

varied from equatorial (tropical) to mid-latitude (cool-temperate) to high-latitude 

(glacial). This research is detailed in Chapter 4 of this thesis. 

Implicit in the interpretation of δD values of sedimentary organic matter is an 

understanding of the effect of sedimentary processes, such as maturation, on the δD 
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values of individual petroleum hydrocarbons. To this end, three sedimentary 

sequences from Australia covering a wide range of maturity have been studied as 

described in Chapter 5. The effect of maturation, via hydrogen exchange reactions, 

on the δD values of individual compounds containing only aliphatic C-bound 

hydrogen (i.e. normal and branched alkanes) was assessed. Hydrogen can be bound 

to either primary, secondary or tertiary carbon in alkyl moieties, and the relative 

exchange rates of these different types of bound hydrogen with ongoing maturation 

(geological timescales) was studied in terms of the rate of change of δD values of 

normal versus branched hydrocarbons. Aromatic C-bound hydrogen and N, O and S-

bound hydrogen were not studied considering the relatively rapid rate of exchange of 

this hydrogen, even on laboratory timescales. Potential mechanisms of hydrogen 

exchange have been discussed based on previously published work. In addition, an 

analysis of the diastereomers (stereoisomers of a compound with more than one 

chiral centre where only one of the chiral centres has a different configuration) of 

two regular isoprenoids, pristane and phytane, was undertaken in order to elucidate 

the usefulness of stereochemical changes as a proxy for hydrogen exchange, and to 

provide insight into potential mechanisms. A new mechanism of hydrogen exchange 

has been proposed, extending on previous work. The thermally-induced changes in 

the novel parameters determined in this study were compared to traditional maturity 

parameters. 

Finally, in Chapter 6 a series of crude oils and condensates generated from the 

sequences mentioned above were analysed for oil-source correlation purposes. The 

results are compared with previously published work based on comprehensive 

molecular and stable carbon isotope analysis. Compound-specific δD results were 

validated using the more traditional bulk δD analysis. The δD values of n-alkanes 

and regular isoprenoids from the crude oils and condensates were compared to that 

obtained from their supposed source rocks, and interpreted in terms of source and 

maturity. 

The ability to understand and track the origin, generation and maturity of 

petroleum is critical to the exploration and production of oil and gas reserves. 

Hydrogen processes are fundamental to the understanding of petroleum formation 

and generation. The capability of measuring the δD values of individual compounds 

in petroleum provides a new method of monitoring hydrogen processes in the 
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subsurface, and allows insights into the potential chemical mechanisms that form this 

complex mixture of hydrocarbons. This project aims to better understand and exploit 

this analytical capability. 
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2 GEOLOGICAL SAMPLES 
 
 
 

2.1 TORBANITES 

 

Torbanites are organic-matter-rich sediments containing high amounts of organic 

matter, with high petroleum potential. Their total organic carbon (TOC) contents 

range from 30 to 70 wt.% (Boreham, 1994). The organic matter in torbanites is 

largely derived from the Chlorophyceae Botryococcus braunii (B. braunii) (Hutton et 

al., 1980; Largeau et al., 1984; Derenne et al., 1988; Gatellier et al., 1993; Boreham, 

1994; Audino et al., 2001a; Grice et al., 2001), with some torbanites being composed 

of up to 90% of B. braunii remains (Derenne et al., 1988). B. braunii is a colonial 

unicellular organism that can flourish in most climates, including temperate, tropical 

and arctic zones, and has been reported to occur exclusively in fresh and brackish 

waters (Tyson, 1995). There is, however, one report of B. Braunii occurring in a 

sulfide-rich hypersaline deposit (Grice et al., 1998b), attributed to periodic 

freshwater incursions (containing B. braunii) into a marine, sulfide-rich environment, 

leading to the preservation of its lipids via early diagenetic sulfurisation. 

Five torbanites from Australia and Scotland covering the Late Carboniferous to 

the Late Permian were analysed (Table 2.1). The torbanites were deposited in inland 

lakes, each under a different climate regime including glacial, cool-temperate and 

tropical. The torbanite from Torbane Hill, Scotland (Figure 2.1d) was deposited 

during the Late Carboniferous when Laurasia (the ancient super-continent in the 

northern hemisphere) was located in low latitudes (Figure 2.1a). Climate conditions 

in Scotland at this time were tropical with extensive plant growth. Two torbanites 

from the southern hemisphere (Temi, Eastern Australia; Figure 2.1e) were deposited 

during the Early Permian under glacial conditions. Gondwana (the ancient super-

continent in the southern hemisphere) was located in high latitudes (Figure 2.1b) as a 

result of a southward migration that began during the Early Carboniferous (White, 

1993). At the Carboniferous–Permian boundary it is believed that a vast sheet of ice 

covered almost half of the Australian continent (Frakes, 1979; White, 1993). The 

Gondwana ice sheet receded towards the Middle Permian as the climate became 
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warmer, and there was a rapid rise in sea level during the Late Permian as the ice 

sheet melted (White, 1993). During the Late Permian Gondwana was located in 

lower latitudes (Figure 2.1c) and experienced a cool-temperate climate, when two 

other torbanites from the southern hemisphere (Newnes, Eastern Australia; Figure 

2.1e) were deposited. 

The torbanite from Scotland is from the Carboniferous Lower Coal Measures 

found at Boghead on the Torbane Hill estate, close to Bathgate (Figure 2.1d) 

(Beveridge et al., 1991). The torbanites from Temi came from what is commonly 

called the Murrurundi deposit which is located due north of Murrurundi in the 

Liverpool Ranges on the northern margin of the Sydney Basin (Figure 2.1e). The 

deposit occurs in the Temi Formation which, in the Temi area, is approximately 30 m 

thick and comprises mostly sandstone, shale, conglomerate, carbonaceous shale and 

coal. The Newnes torbanites come from the contiguous Newnes-Glen Davis deposit 

that is located on the western margin of the Sydney Basin, 40 km north of Lithgow 

(Figure 2.1e). The torbanite occurs in a seam, associated with bituminous coal and 

shale, approximately 60 m below the top of the Illawarra Coal Measures. 

 

Table 2.1 Torbanites used in this study 
 

Sample # Location Age Climate 

3733 Newnes, Australia Late Permian Cool-Temperate 

3736 Newnes, Australia Late Permian Cool-Temperate 

3740 Temi, Australia Early Permian Glacial 

3742 Temi, Australia Early Permian Glacial 

3755 Torbane Hill, Scotland Late Carboniferous Tropical 
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Figure 2.1 Palaeogeographic world maps (Scotese, 1997), (a) Late Carboniferous, 310 Ma.; (b) Early 
Permian, 280 Ma.; and (c) Late Permian, 260 Ma; and present day maps showing the location of 
torbanite deposits in (d) Scotland (Beveridge et al., 1991), and (e) Eastern Australia (Hutton et al., 
1980) 
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2.2 PERTH BASIN SEDIMENTS AND CRUDE OILS 

 

The Perth Basin is located in southwest Western Australia (WA). It is a deep and 

linear north-south trending trough extending over 1,000 km from Geraldton in the 

north to the south coast of WA (Figure 2.2). The basin covers an area of 

approximately 45,000 km2 onshore, and 98,000 km2 offshore. 

Perth Basin sediments comprise rocks of Permian to Early Cretaceous age. The 

main depocentre is the Dandaragan Trough, where up to 15 km of Permian and 

Mesozoic sediments were deposited. The Dandaragan Trough is bound by the Beagle 

Ridge to the north and west, and by the Harvey Ridge to the south. Offshore and 

west of the city of Perth is the Vlaming Sub-basin which contains about 10 km of 

Cretaceous and Tertiary sediments. The regional stratigraphy of the study area is 

summarised in Figure 2.2. 
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Figure 2.2 A map and stratigraphic column of the Perth Basin (Boreham et al., 2001). The 
hydrocarbon discoveries, and wells in bold on the map, are the samples used in Chapter 6. 
 

The Perth Basin sediments used in this study (Table 2.2) are all from the Lower 

Triassic Hovea Member (Sapropelic Interval) of the Kockatea Shale (Thomas and 

Barber, 2004; Thomas et al., 2004). The Kockatea Shale is a marine sequence of 

20 



  Chapter 2  

shale and siltstone, with a low amount of coaly material making the determination of 

maturity by vitrinite reflectance difficult (Kantsler and Cook, 1979). The Sapropelic 

Interval of the Hovea Member is believed to be a source from which much of the oil 

and gas in the northern Perth Basin originates (Thomas and Barber, 2004), and has 

recently been suggested to have been deposited under photic zone euxinic conditions 

(Grice et al., 2005a; 2005b). Photic zone euxinia may occur in anaerobic zones of 

stratified water columns (in lake or marine environments) with restricted water 

circulation. Here, conditions are favourable for the growth of sulphate-reducing 

bacteria, and considerable sulphide accumulation may occur. At a depth where there 

is enough light for photosynthesis to take place, and where the upper sulphide limit 

coincides with a lower oxygen limit (the chemocline), anoxygenic green sulfur 

bacteria can thrive. The depositional conditions are therefore anoxic and restricted, 

and free H2S is prevalent in the water column. 

The Perth Basin crude oils used in this study (Table 2.3) are reservoired in 

various geological units, ranging from Late Permian to Late Jurassic in age. There is 

geochemical evidence (see Chapter 6) indicating that the East Lake Logue-1 

condensate, and the Dongara-14 and Woodada-3 crude oils are sourced primarily 

from the Early Triassic Hovea Member (Sapropelic Interval) of the Kockatea Shale, 

a source from which much of the oil and gas in the northern Perth Basin is thought to 

originate (Thomas and Barber, 2004). Another potentially significant source is the 

Early Permian Irwin River Coal Measures (Summons et al., 1995; Volk et al., 2004). 

 
Table 2.2 Perth Basin sediment samples used in this study 
 
Well Depth/m (ft) Maturity 

BMR-10 973-976 (3193-3203) Immature 

BMR-10 989-991 (3245-3250) Immature 

Dongara-4 1674 (5491) Early mature 

Dongara-4 1675 (5495.5) Early mature 

Dongara-4 1678 (5505) Early mature 

Yardarino-2 2289 (7509) Mature 

Yardarino-2 2290 (7512.5) Mature 

Arrowsmith-1 2494 (8181) Late mature 

Arrowsmith-1 2678 (8187) Late mature 
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Table 2.3 Perth Basin crude oil and condensate samples used in this study 
 
Well Sample Type Reservoir Unit Reservoir Age 

Whicher Range-1 Yellow-brown 
condensate 
 

Sue Coal 
Measuresb

Late Permian 

Woodada-3 Crude oil Beekeeper Fma Late Permian 
 

East Lake Logue-1 Yellow condensate Beekeeper Fma Late Permian 
 

Dongara-14 Brown, heavy oil Dongara Ssta Late Permian 
 

Gingin-1 Yellow condensate Cattamarra Coal 
Measuresb,c,d

 

Early Jurassic 

Walyering-2 Yellow-brown 
condensate 

Cattamarra Coal 
Measuresb,c,d

 

Early Jurassic 

Gage Roads-1* Brown, heavy oil Yarragade Fmb,c Late Jurassic 
 

aThomas and Barber (2004); bSummons et al. (1995); cKantsler and Cook (1979); dThomas and Brown 
(1983); *Vlaming Sub-basin, southern offshore Perth Basin; Fm, Formation; Sst, Sandstone 
 

 

2.3 VULCAN SUB-BASIN SEDIMENTS AND CRUDE OILS 

 

The Vulcan Sub-basin is a northeast-southwest-trending Mesozoic extensional 

depocentre in the western Bonaparte Basin (Figure 2.3) and comprises a complex 

series of horsts, grabens and terraces. The major grabens are the Swan and Paqualin, 

which contain up to 3 km of Late Jurassic marine mudstones (Vulcan Formation) 

some of which are the most organic matter-rich sediments in the sub-basin. 

Widespread fluvial-deltaic sedimentation occurred in the Early and Middle Jurassic 

(Plover Formation), including organic matter-rich marine mudstones and coaly 

coastal plain facies. The regional stratigraphy of the study area is summarised in 

Figure 2.4. The Vulcan Sub-basin sediment samples used in this study (Table 2.4) 

consisted of eight sediments each from the Paqualin-1 well (Paqualin Graben, Figure 

2.3) and the Vulcan-1B well (Swan Graben, Figure 2.3), all from the lower Vulcan 

Formation (Figure 2.4). Eleven crude oils and condensates reservoired in various 

geological units in the Vulcan Sub-basin (Table 2.5), ranging from Middle Jurassic 

to Late Cretaceous in age, were used in this study. 
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Figure 2.3 A map of the Vulcan Sub-basin (Edwards et al., 2004) showing the location of Paqualin-1 
and Vulcan-1B wells, and other petroleum exploration wells. The wells shown in bold are the samples 
used in Chapter 6. 
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Figure 2.4 A stratigraphic column for the Vulcan Sub-basin (Edwards et al., 2004). The hydrocarbon 
discoveries are the samples used in Chapter 6. 
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Table 2.4 Vulcan Sub-basin sediment samples 
 

Well, Depth (m) Maturity*

Paqualin-1  

3159 Early mature 

3354 Mature 

3402 Mature 

3444 Mature 

3504 Mature 

3594 Late mature 

3654 Late mature 

3864 Post mature 

Vulcan-1B  

3014 Early mature 

3155 Mature 

3240 Mature 

3292 Mature 

3380 Mature 

3444 Late mature 

3624 Late mature 

3679 Post mature 
*See Chapter 5 
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Table 2.5 Vulcan Sub-basin crude oils and condensates 
 
Well name Sample Type Reservoir Unita Reservoir Age 

Birch-1 
 

Brown, light oil Puffin Fm Late Cretaceous 

Cassini-1 
 

Brown, light oil Challis Fm Late Triassic 

Jabiru-2 
 

Brown, light oil Montara Fm Middle Jurassic 

Tenacious-1 
 

Brown, light oil Lower Vulcan Fm Late Jurassic 

Challis-1 
 

Brown, light oil Challis Fm Late Triassic 

Oliver-1 Yellow-brown, 
medium-light oil 

Plover Fm 
 

Middle Jurassic 

Montara-1 
 

Yellow-brown, 
medium-light oil 

Montara Fm Late Jurassic 

Bilyara-1 
 

Yellow-brown, 
medium-light oil 

Montara Fm Late Jurassic 

Tahbilk-1 
 

Yellow-brown 
condensate 

Montara Fm Late Jurassic 

Puffin-2 
 

Brown, light oil Puffin Fm Late Cretaceous 

Audacious-1 
 

Yellow, light oil Plover Fm Middle Jurassic 

a Edwards et al. (2004); Fm, Formation 
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3 EXPERIMENTAL 
 

 

3.1 MATERIALS AND REAGENTS 

 

Solvents 

n-Pentane (AR grade, APS chemicals) and dichloromethane (AR grade, 

Chemsupply) were purified via distillation using a fractionating column. n-Hexane, 

methanol (ChromAR grade, Mallinckrodt Chemicals) and cyclohexane (Nanograde, 

Mallinckrodt Chemicals) were used without further purification. 

 

Drying and neutralising agents 

Anhydrous magnesium sulphate (AR grade, Unilab) was pre-rinsed with solvent 

before use as a drying agent. For use as a neutralising agent, sodium bicarbonate (AR 

grade, Chemsupply) was dissolved in milli-Q water until saturated. 

 

Silica gel 

Silica gel 60 (0.063–0.200 mm, MERCK) for column chromatography was 

activated at 120ºC for 8 hours, and pre-rinsed with solvent prior to use. 

 

Molecular sieves 

Type 5A (MERCK) and ZSM-5 (PQ Zeolites) molecular sieves were activated at 

250ºC for 8 hours prior to use. 

 

Copper (precipitated) 

Precipitated copper powder (BDH chemicals) was activated by rinsing with 3M 

hydrochloric acid (2 mL), and then sequentially rinsing with milli-Q water (2 mL), 

methanol (2 mL) and dichloromethane (2 mL) before use. 

 

Hydrofluoric acid 

For digestion of molecular sieves, hydrofluoric acid (50% w/v, MERCK) was 

used without further purification. 
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Compressed gases 

High purity nitrogen (BOC Gases Australia Ltd.) was used for solvent removal, 

without further purification. 

 

 

 

3.2 GEOCHEMICAL TECHNIQUES 

 

3.2.1 Sample preparation 

 

Sediments and crude oils 

The sediment samples were surface-extracted with a solution of dichloromethane 

and methanol (9:1 v/v, respectively) covering the sample (2 x 30 minutes), and dried 

prior to grinding. The sediment samples were ground to a particle size of 150 µm or 

less using a ring-mill (Rocklabs). Bulk crude oil samples were sub-sampled 

appropriately to ensure homogeneity. 

 

3.2.2 Extraction of soluble organic matter from sediments 

 

Soxhlet extraction 

 

In a typical extraction, the ground sediment was accurately weighed into a pre-

extracted (9:1 v/v dichloromethane/methanol) cellulose thimble. The top of the 

thimble was plugged with pre-extracted glass wool. The extraction was performed 

using a Soxhlet apparatus, with a mixture of dichloromethane and methanol (9:1 v/v, 

respectively). Fresh solvent was introduced as required, and the extraction was 

allowed to proceed for at least 72 hours or until the solvent became colourless. 
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Accelerated solvent extraction 

 

Accelerated solvent extractions (ASE) were performed at Geoscience Australia 

(Canberra, ACT, Australia) using a method optimised by Calvo et al. (2003). In a 

typical extraction, the ground sediment was accurately weighed into a pre-extracted 

stainless steel extraction cell containing a glass-fiber filter paper. The cell was loaded 

into the turret of a Dionex ASE 200 (Dionex, Sunnyvale, CA, USA). Extraction was 

carried out as follows: (1) the cell was preheated at 100ºC for 2 min; (2) a mixture of 

dichloromethane and methanol (9:1 v/v, respectively) was pumped into the cell up to 

a pressure of 6895 kPa (1000 p.s.i.) with 5 min thermal equilibration; (3) 6895 kPa 

was maintained for 2 min (static time) after which the solvent residue was purged 

with high-purity (HP) compressed nitrogen (BOC Gases Australia Ltd.), flushing the 

solvent-extract from the cell into a 60 mL collection vial; and (4) the solvent residue 

was purged with HP compressed nitrogen. Step 3 was repeated 5 times for each cell 

with the introduction of fresh solvent after each static phase. A final volume of 

approximately 30 mL of solvent-extract was obtained in the collection vial. The 

majority of solvent was removed using a ThermoSavant SC210A SpeedVac Plus 

concentrator with a ThermoSavant RVT400 Refrigerated Vapour Trap (Thermo 

Electron, Waltham, MA, USA), and a Büchi 168 Vacuum/Distillation Controller 

(Büchi, Flawil, Switzerland) with a diaphragm vacuum pump. Remaining solvent 

was removed carefully under HP nitrogen. 

 

3.2.3 Fractionation of crude oils and sediment extracts using column 

chromatography and molecular sieves 

 

Small-scale column chromatography 

 

In a typical small-scale fractionation (Bastow et al., 2006), the sample (up to 20 

mg) was applied to the top of a small column (5.5 x 0.5 cm i.d.) of activated silica 

gel (pre-rinsed with n-pentane). The aliphatic hydrocarbon (saturated) fraction was 

eluted with pentane (2 mL); the aromatic fraction with a solution of dichloromethane 

and pentane (2 mL, 3:7, respectively); and the NSO fraction with a solution of equal 

parts of dichloromethane and methanol (2 mL). 
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Large-scale column chromatography 

 

In a typical large-scale fractionation, the sample (up to 100 mg) was applied to 

the top of a large column (20 x 0.9 cm i.d.) of activated silica gel which was packed 

as a slurry in n-pentane. The aliphatic hydrocarbon (saturate) fraction was eluted 

with pentane (35 mL); the aromatic fraction with a solution of dichloromethane and 

pentane (40 mL, 3:7, respectively); and the polar fraction with a solution of equal 

parts of dichloromethane and methanol (40 mL). 

 

Type 5A molecular sieving 

 

In a typical separation, a saturated fraction was obtained using the small-scale 

silica-gel chromatographic method (see above) using cyclohexane in place of 

pentane. Alternatively, for an existing saturate fraction in pentane, the solvent was 

removed carefully using a heated sand bath (60ºC), and the resulting dry fraction 

made up in cyclohexane (2 mL). A portion of the resulting saturate fraction in 

cyclohexane (~ 1750 µL) was added to a 2 mL autosampler vial half-filled with 

activated 5A molecular sieves. The autosampler vial was capped and placed into a 

pre-heated aluminium block (85ºC) for at least 8 hours. The resulting cool solution 

was then filtered through a small column of silica (0.5 x 0.5 cm i.d., pre-rinsed with 

cyclohexane), and the sieves rinsed thoroughly with cyclohexane (approx. 3 x 1 mL), 

yielding the branched/cyclic fraction (5A excluded). Excess cyclohexane was 

removed under a slow stream of nitrogen. 

 

ZSM-5 molecular sieving 

 

In a typical separation, the branched/cyclic (5A excluded) hydrocarbon fraction 

was transferred (in a minimum amount of pentane) onto a small column (7–8 cm x 

0.5 cm i.d.) of activated ZSM-5 molecular sieves (pre-rinsed with pentane), and 

allowed to stand (1–5 minutes). The sieves were rinsed with pentane (approx. 2 mL) 

yielding the branched/cyclic fraction (ZSM-5 excluded). 
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Recovery of included hydrocarbons from molecular sieves 

 

The dry sieves were transferred to a 15 mL Teflon test-tube. Hydrofluoric acid 

(HF, 20–30 drops) was added along with pentane (2–3 mL) to cover the mixture. The 

solution was stirred magnetically in an ice bath until the sieves had dissolved (45–60 

minutes), and the HF was neutralised with a saturated sodium bicarbonate solution. 

The remaining pentane was filtered through a small column of anhydrous magnesium 

sulfate. The aqueous solution was further extracted with pentane (approx. 5 x 1 mL). 

Excess pentane was removed carefully using a heated sand bath (60ºC). 

 

 

3.3 ANALYTICAL METHODS AND INSTRUMENTATION 

 

3.3.1 Gas chromatography-mass spectrometry 

 

Acquire (full-scan) mode for compound identification 

 

Gas chromatography-mass spectrometry (GC-MS) was performed using a HP 

5973 mass-selective detector (MSD) interfaced to HP 6890 gas chromatograph (GC) 

fitted with a 60 m x 0.25 mm i.d. fused silica open tubular capillary column coated 

with a 0.25 µm (5%-phenyl)-methylpolysiloxane stationary phase (HP-5MS, Agilent 

J&W). For routine analysis the GC oven was programmed from 40 to 310ºC at 

3ºC/minute with initial and final hold times of 1 and 30 minutes, respectively. 

Samples (dissolved in n-pentane or n-hexane) were injected (split/splitless injector) 

by a HP 6890 series auto-sampler using pulsed-splitless mode. Ultra-high purity 

(UHP) helium (further purified using an in-line OMITM Indicating Purifier, Supelco, 

Bellefonte, PA) was used as the carrier gas at a flow rate of 1.1 mL/min with the 

injector operating at constant flow. In full-scan mode, the MS was typically 

operating at an ionisation energy of 70 eV, a source temperature of 180ºC, an 

electron multiplier voltage of 1800 V and a mass range of 50 to 550 AMU. 
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Selected-ion monitoring mode for the analysis of the diastereomers of pristane and 

phytane 

 

GC-MS analysis for the determination of pristane and phytane diastereomer 

ratios was carried out under two sets of conditions: (i) an initial set of conditions 

developed by Hansen et al. (2003), and (ii) an improved set of conditions (G. 

Chidlow, pers. comm.) developed during this study. The chromatographic separation 

characteristics of each set of conditions are presented in Chapter 5. Both sets of 

conditions use the same MSD and GC equipment described above. 

 

(i) Under the initial conditions (Hansen et al., 2003), the GC was fitted with a 50 m x 

0.15 mm i.d. fused-silica open tubular narrow-bore column coated with a 0.25 µm 

5% phenyl/95% dimethylpolysiloxane stationary phase (BP-5, SGE). The GC oven 

was programmed from 50 to 145ºC at 1ºC/minute, held isothermally for 60 minutes 

and then programmed from 145 to 290ºC at 5ºC/minute, with initial and final hold 

times of 1 and 15 minutes, respectively. Samples (dissolved in n-hexane) were 

injected (split/splitless injector) by a HP 6890 series auto-sampler using splitless 

mode. The same carrier gas described above was used at an initial flow rate of 1 

mL/min with the injector operating at constant pressure of 414 kPa (60 psi). The MS 

conditions were identical to those described above (full-scan mode), with the 

exception that the MSD was operated in selected ion monitoring (SIM) mode 

(monitoring m/z 169, 183 and 197). 

 

(ii) Under the improved conditions (G. Chidlow, pers. comm.), the GC was fitted 

with a 60 m x 0.25 mm i.d. WCOT fused silica capillary column coated with a 0.25 

µm phenyl arylene polymer stationary phase (DB-5MS, Agilent J&W). The GC oven 

was programmed from 50 to 145ºC at 1ºC/minute, held isothermally for 60 minutes 

and then programmed from 145 to 300ºC at 5ºC/minute, with initial and final hold 

times of 1 and 40 minutes, respectively. The injection conditions, carrier gas type 

and flow rate were identical to that described in (i) above, with the injector operating 

at a constant pressure of 117 kPa (16.9 psi). The MS conditions were identical to 

those described in (i) above. 
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3.3.2 Gas chromatography-isotope ratio mass spectrometry 

Gas chromatography-isotope ratio mass spectrometry (GC-irMS) was performed 

on a Micromass IsoPrime mass spectrometer interfaced to a HP 6890 GC for 

determination of compound-specific stable carbon isotopic compositions (δ13C), or 

an Agilent Technologies 6890N GC for stable hydrogen isotopic compositions (δD). 

In both cases, the GC was fitted with the same column used for GC-MS analysis 

(acquire mode). During the analysis of samples, the GC oven, carrier gas and 

injection conditions were identical to those described above for GC-MS analysis 

(acquire mode). During the analysis of a mixture of organic reference compounds 

(decane, undecane, dodecane and methyldecanoate), the GC oven was programmed 

from 50 to 310ºC at 10ºC/min with initial and final hold times of 1 and 10 minutes, 

respectively. 

δ13C values were calculated by integration of the m/z 44, 45 and 46 ion currents 

of the CO2 peaks produced by combustion of the chromatographically separated 

compounds using copper oxide pellets (4 mm x 0.5 mm, isotope grade, Elemental 

Microanalysis Ltd.) at 850ºC. The compositions are reported relative to CO2 

reference gas pulses (Coleman Instrument grade, BOC Gases Australia Ltd.) of 

known 13C/12C content into the mass spectrometer. The 13C/12C content of the CO2 

reference gas was monitored daily via analysis of the mixture of reference 

compounds (see above). Average values of at least three analyses and standard 

deviations are reported. Isotopic compositions are given in the delta notation relative 

to Vienna Peedee belemnite (VPDB). 

δD values were calculated by integration of the m/z 2 and 3 ion currents of the H2 

peaks produced by pyrolysis of the chromatographically separated compounds using 

chromium powder (350–400 µm, IsoScience Australia Pty. Ltd.) at 1050ºC. An 

interfering species, H3
+ is formed in the ion source of the mass spectrometer as a 

result of H2
+ ion and H2 molecule collisions (Coplen, 1988). The amount of H3

+ 

formed depends on the partial pressure of hydrogen, and the species interferes 

isobarically at m/z 3. Thus, contributions from H3
+ produced in the ion source are 

corrected by performing m/z 3 measurements at two different pressures of the H2 

reference gas to determine the H3
+ factor. An electrostatic sector is used to separate 

HD+ from the leading edge of the large signal produced at m/z 4 by the constant flow 

of helium (carrier gas) into the mass spectrometer. δD values are reported relative to 
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that of H2 reference gas pulses produced by allowing hydrogen (UHP, BOC Gases 

Australia Ltd.) of a known D/H content into the mass spectrometer. The D/H content 

of the H2 reference gas was monitored daily via analysis of the mixture of reference 

compounds (see above). Average values of at least four analyses and standard 

deviations are reported. An internal standard (squalane) with a predetermined δD 

value of -167‰ was added to samples to monitor accuracy and precision of δD 

measurements. Isotopic compositions are given in the delta notation relative to 

Vienna Standard Mean Ocean Water (VSMOW). 

 

3.3.3 Elemental analysis-isotope ratio mass spectrometry 

Bulk isotope analyses were performed on a Micromass IsoPrime isotope ratio 

mass spectrometer interfaced to a EuroVector EuroEA3000 elemental analyser. For 

bulk δ13C analysis, the sample was accurately weighed into a small tin capsule which 

was then folded and compressed thoroughly to remove atmospheric gases. The 

capsule is dropped by an autosampler into a combustion reactor at 1025ºC. The 

sample and capsule melt in an atmosphere temporarily enriched with oxygen, where 

the tin promotes flash combustion. The combustion products, entrained in a constant 

flow of helium, pass through an oxidation catalyst (chromium oxide). The oxidation 

products then pass through a reduction reactor at 650ºC containing copper granules, 

where any oxides of nitrogen (NO, N2O and N2O2) are reduced to N2 and excess 

oxygen is removed. The resulting gas species then pass through a magnesium 

perchlorate filter to remove water. The remaining CO2, along with N2 and SO2 (if 

present) are separated on a 3 m chromatographic column (PoropakQ) at ambient 

temperature, before passing through a thermal conductivity detector (TCD), then into 

the irMS. The isotopic compositions are calculated and reported as above for GC-

irMS analysis. 

 For bulk δD analysis, the sample is accurately weighed into a small silver 

capsule which is then folded and dropped into a pyrolysis reactor containing glassy 

carbon chips held at 1260ºC. The sample is pyrolysed to form H2 and CO, along with 

N2 if applicable. The pyrolysis products are separated on a 1 m 5A molecular sieve 

packed chromatographic column held in an oven at 80ºC (isothermal), before passing 

through a TCD, then into the irMS. δD values are calculated and reported as above 

for GC-irMS analysis. 
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4 STABLE HYDROGEN ISOTOPIC COMPOSITION OF 
HYDROCARBONS IN TORBANITES DEPOSITED 
UNDER DIFFERENT CLIMATIC CONDITIONS 

 

 

4.1 INTRODUCTION 

 

Stable hydrogen isotopic compositions (δD) of organic compounds preserved in 

sediments are of interest to organic geochemists and palaeoclimatologists because 

they can reflect the isotopic composition of water that existed in the depositional 

environment. The transport of water and the energy exchanged as it is converted 

from one physical state to another are important drivers in weather and climate, thus 

hydrogen isotopic fractionations are thought to be related to a wide variety of 

naturally occurring processes associated with the hydrological cycle (e.g. Craig, 

1961; Craig et al., 1963; Dansgaard, 1964; Craig and Gordon, 1965) (Sec. 4.1.1). 

Most photoautotrophs utilize water as a hydrogen source, and the D concentration in 

the source water is reflected in the D/H composition of the photoautotrophic 

organism (e.g. Sessions et al., 1999). The magnitude of the isotopic fractionation 

between water and lipids biosynthesised by the organisms can vary significantly, 

depending on environmental conditions (physical processes), and biosynthetic 

pathways (chemical processes). The remains of previously-living organisms 

ultimately become incorporated in sediments and constitute a source of organic 

matter for petroleum (see Chapter 1). 

Compound-specific D/H analysis has been used only recently in the 

reconstruction of palaeoenvironments. δD values of lipid biomarkers from peat 

deposits (Xie et al., 2000) and sediments (Sauer et al., 2001) have been used as a 

proxy for palaeoenvironmental and palaeoclimatic conditions. Andersen et al. (2001) 

reported δD values of individual n-alkanes and isoprenoids as evidence of large and 

rapid climate variability during the Messinian salinity crisis. Li et al. (2001) analysed 

crude oils from the Western Canada sedimentary basin to assess the usefulness of the 

technique for petroleum correlation and palaeoenvironmental reconstruction. 
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The study of palaeoenvironments is important in the understanding of present day 

changing climates and environments. Understanding past events (e.g. mass 

extinctions) can give insights into the potential effects of significant climate change 

on life as it exists today. In terms of petroleum geochemistry, an understanding of the 

palaeoenvironment where a petroleum source rock was deposited can contribute to 

the current understanding of petroleum formation and generation, and assist in future 

petroleum exploration strategies. This chapter comprises the results of a study 

involving the D/H analysis of individual hydrocarbons from a selection of well-

characterised torbanites (commonly referred to as bog-head coals; see Chapter 2) 

with similar biological inputs and of similar thermal maturity, but from various 

palaeogeographical locations and deposited under different climatic conditions. The 

present study was carried out in order to elucidate the potential of compound-specific 

D/H analysis for palaeoenvironment reconstruction, and to further investigate the 

preservation potential of indigenous δD signatures in ancient sedimentary organic 

matter.  

 

4.1.1 Hydrogen isotopic fractionations in the hydrological cycle 

Water is ubiquitous on the Earth’s surface, and is the main source of hydrogen in 

the natural environment. In the hydrological cycle, water undergoes numerous 

physical processes, mainly relating to phase transitions, and the isotopes of hydrogen 

undergo considerable fractionations during these processes. Isotopic fractionations 

occur as a result of changes in isotope distribution between the different phases. For 

example, evaporation-condensation processes involve the changing of the physical 

state of water between the liquid and gaseous (vapour) phases, and fractionations 

occur due to differences in the vapour pressures of the different isotopic species of 

water (Hoefs, 1987). Evaporation is a process whereby water changes from liquid to 

vapour. It has been shown that water vapour formed due to evaporation is depleted in 

the heavy isotopes D and 18O (Craig and Gordon, 1965; Hoefs, 1987), and therefore 

the remaining liquid is enriched in these species. This occurs due to the vapour 

pressure of the heavier isotopic species of water, e.g. HD18O and H2
18O, being 

slightly lower than that of the light isotopic species, e.g. H2
16O. Condensation is a 

process whereby water vapour changes to the liquid phase. The heavier isotopic 

species of water condense preferentially because their saturation vapour pressures are 
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lower than that of the lighter isotopic species; therefore the heavier isotopes D and 
18O concentrate in the liquid phase (Craig and Gordon, 1965 and references therein). 

A simple model that can be used to describe isotopic behaviour in the hydrological 

cycle is the Rayleigh distillation process (Sec. 4.1.1.1). All water in the hydrological 

cycle originates from ocean water which, as a result of the operation of the 

hydrological cycle, leads to meteoric waters initially in the form of atmospheric 

precipitation (e.g. rain, snow). 

 

4.1.1.1 Ocean water 

The oceans constitute 97.25% of the hydrosphere, covering 70% of the Earth’s 

surface with a total volume of 1.37 x 109 km3 of water (Criss, 1999). Ocean water 

generally has a uniform isotopic composition of 0±5‰ relative to VSMOW (Craig 

and Gordon, 1965), with values outside this range being confined to surface waters 

which have been affected by evaporation, formation of sea ice, or addition of 

meteoric waters (Criss, 1999). The evaporation of ocean water resulting in the 

formation of water vapour (in the form of clouds) is the first stage of the hydrological 

cycle. The Rayleigh process assumes that the majority of ocean water evaporates in 

tropical regions. The vapour formed as a result of evaporation is isotopically lighter 

than the ocean water. Subsequently, the water vapour is transported to higher 

latitudes, and due to the prevailing low temperatures, condensation takes place 

resulting in precipitation. During rain out there is further isotopic fractionation, 

which in turn affects the isotopic composition of the resulting meteoric waters (Sec. 

4.1.1.2). 

 

4.1.1.2 Meteoric waters 

Meteoric waters are waters that are produced through operation of the 

hydrological cycle. Meteoric waters include rain and snow, and its derivative forms 

of streamflow, lake water, soil water, glacier ice, and shallow groundwater (Criss, 

1999). The δD values of meteoric waters are almost always more negative than 

ocean water. The isotopic values of meteoric waters vary principally with 

temperature, but also with other factors including altitude, latitude and proximity to 

the ocean (Craig, 1961; Dansgaard, 1964; Kehew, 2001). When evaporated water 
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condenses in a cloud and produces raindrops, isotopic depletion of the cloud takes 

place through concentration of the heavy stable isotopes in the liquid phase (see 

above). Studies of the isotopic effects associated with precipitation have been 

undertaken previously by Craig (1961) and Dansgaard (1964). 

In terms of the global hydrological cycle, as clouds move to higher latitudes (i.e. 

from the equator towards the poles), the rain out of heavy isotopes causes the cloud 

to become isotopically lighter. Consequently, precipitation in regions of high latitude 

(e.g. polar, glacial regions) is depleted in the heavy stable isotopes relative to 

precipitation in areas of low latitude (equatorial, tropical regions). The isotopic 

values of meteoric waters around the world vary in a highly characteristic manner, 

and conform closely to an empirical relationship known as the “meteoric water line”, 

or MWL (Figure 3.1; Criss, 1999).  

In terms of terrestrial (localised) hydrological cycles (e.g. Figure 4.2), the D/H 

composition of precipitated water can also vary with elevation (altitude), and 

distance from the ocean (continentality). With increasing altitude, meteoric 

precipitation becomes progressively depleted in heavy isotopes (Craig, 1961; 

Dansgaard, 1964; Kehew, 2001), although the reason for this behaviour is not well 

understood. With increasing distance from the ocean, meteoric precipitation also 

becomes progressively depleted in heavy isotopes as a result of raining out (see 

above and Figure 4.2), although this effect is highly variable (Criss, 1999 and 

references therein). In localised areas, these effects lead to a large variation in δD 

values of meteoric waters produced from the terrestrial hydrological cycle.
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Figure 4.1 Meteoric water line indicating the change in δD and δ18O during the progression from the 
tropics to temperate zones to high-latitude regions, and the positions of the SMOW (Standard Mean 
Ocean Water) and SLAP (Standard Light Antarctic Precipitation) isotopic standards (Criss, 1999) 
 

 

 

 

 

Figure 4.2 Variation of the stable hydrogen isotopic composition of water in the terrestrial 
hydrological cycle. The quoted values are what can be expected at mid-latitudes; values in parentheses 
are ranges reported in the literature and depend upon latitude and time of year (Dawson, 1993 and 
references therein) 
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4.1.2 Biological fractionation of hydrogen isotopes 

Hydrogen isotopic studies of present-day organisms have shown that 

biosynthetically produced lipids are depleted in D relative to the total biomass (e.g. 

Estep and Hoering, 1981). Furthermore, different classes of biologically produced 

lipids within organisms vary significantly in δD (e.g. Sessions, 2001). For example, 

polyisoprenoid lipids are generally found to be depleted in D relative to acetogenic 

(n-alkyl) lipids (Estep and Hoering, 1980; Sessions et al., 1999). The magnitude of 

the D/H fractionation between growth water and n-alkyl lipids is ca. -150‰, while 

the fractionation between water and isoprenoid lipids is ca. -235‰ (e.g. Smith and 

Epstein, 1970; e.g. Estep and Hoering, 1980; Sessions et al., 1999). The reason for 

this difference is not well understood, although it is probably a result of isotope 

effects during biosynthesis of the different lipid classes. Assuming that biosynthetic 

processes have always produced lipids that are depleted in D relative to biomass, and 

n-alkyl and isoprenoid lipids with different δD values, this so-called ‘biological 

signature’ may be reflected in their diagenetic products in the sedimentary 

environment. 

As well as variations in lipid δD values within organisms, there are also 

variations between different organisms, for example between algae (aquatic plants) 

and terrestrial plants. Algae have lipid δD values which are directly related to the δD 

of their growth water (Sternberg, 1988; Sessions et al., 1999; Andersen et al., 2001). 

Terrestrial plants are more exposed to the external environment, and use water 

produced by the complex terrestrial hydrological cycle (Sec. 4.1.1.2). An additional 

source of isotopic fractionation associated with terrestrial plants is 

evapotranspiration, which is the evaporative loss of the light isotopic species of water 

on leaf surfaces, resulting in an enrichment of D (see Sec. 4.1.1) in the remaining 

water (Dongmann et al., 1974). Of course, freshwater algae are also associated with a 

terrestrial environment, and their lipid δD values can therefore be influenced by 

processes such as surface evaporation of lake water. 
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4.1.3 Preservation of biological hydrogen isotopic signatures in the 

sedimentary environment 

Biological D/H signatures have been shown to be preserved in ancient, immature 

sediments. Hoering (1977), Rigby et al. (1981) and Smith et al. (1982) measured the 

δD values of bulk organic matter, and individual fractions from a series of crude oils, 

and coal and shale extracts ranging in geological age from Late Tertiary to 

Precambrian. Extracts of geologically young (Late Tertiary), immature samples had a 

wide variation in δD between fractions, with the saturated hydrocarbon fraction (i.e. 

lipid fraction) being significantly depleted in D relative to the bulk organic matter. 

Andersen et al. (2001) reported δD values of individual n-alkanes and 

isoprenoids as evidence of large and rapid climate variability during the Messinian 

salinity crisis. They found that the isotopic data tracked climatically driven 

hydrologic changes in response to extreme evaporation. The isotopic signatures 

reported by Anderson et al. (2001) were most likely primary signatures (i.e. not 

diagenetically altered), as the depletion of D in the isoprenoid 5α-cholestane relative 

to the C22 n-alkane was consistent with that found in modern biological samples 

(Estep and Hoering, 1980; Sessions et al., 1999). In this case, it was shown that 

primary δD signatures were preserved for approximately 6 million years (Ma). More 

recently, Yang and Huang (2003) demonstrated the preservation potential of lipid δD 

values in Miocene lacustrine sediments and plant fossils at Clarkia, northern Idaho, 

USA. They reported the δD values of individual lipids isolated from plant fossils and 

water-lain sediments. At that time, the Clarkia sediments they studied comprised the 

oldest reported samples (15–20 Ma) where original compound-specific δD values 

appear to have been preserved. 

 

4.1.4 Aims of this study 

The specific aims of the present study include: 

 

(i) The evaluation of established fractionation procedures (silica gel 

chromatography combined with molecular sieving) for GC-MS 

characterisation, to determine their suitability for preparation of samples for 

CSIA of C-bound hydrogen. A particular focus is the evaluation of a molecular 
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sieving method using a series of model compounds to ensure there was no 

isotopic fractionation. 

 

(ii) Applying fractionation procedures to extractable organic matter from a suite of 

torbanites, with the aim of obtaining baseline resolution of n-alkanes and 

selected branched alkanes. 

 

(iii) Measurement of δD values of n-alkanes, pristane and phytane (containing only 

C-bound hydrogen), with use of both external and internal standards to monitor 

accuracy and precision of measurements. 

 

(iv) Interpretation of results based on previous work relating to the depositional 

characteristics (primarily palaeoclimate of deposition) of the torbanites, and 

their specific source organic matter inputs. Establishing the extent of 

preservation of lipid δD values. 

 

 

4.2 RESULTS AND DISCUSSION 

 

4.2.1 Geochemistry 

Comprehensive organic geochemical analyses of the torbanites used in this study, 

including thorough biomarker studies, have been done previously by Boreham et al. 

(1994), Audino et al. (2001a; 2001b; 2002) and Grice et al. (2001). In summary, the 

saturated hydrocarbons present in these samples comprise the common regular 

isoprenoids, pristane (VI) and phytane (III), n-alkanes ranging from n-C14 to around 

n-C30, a high relative abundance of hopanes maximising at the C30 αβ-hopane (VII), 

and other less ubiquitous hydrocarbons (e.g. drimanes). The torbanites lack the 

traditional B. braunii biomarkers, e.g. botryococcane (VIII), lycopane (IX) and 

cyclobotryococcanes (e.g. C34: X), derived from the recognised lipids of two distinct 

races, B and L, although it has been suggested the algal biomass may have been 

subjected to reworking by heterotrophic bacteria (Derenne et al., 1988; Audino et al., 

2001a). A feature common to all torbanites is the presence of n-alkanes mainly 
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attributed to the highly aliphatic, non-hydrolysable and insoluble biomacromolecule 

(algaenan) found in their outer cell walls (Berkaloff et al., 1983; Largeau et al., 

1984; Kadouri et al., 1988; Derenne et al., 1989; 1992; Gelin et al., 1994; Berthéas et 

al., 1997). Furthermore, the A race of B. braunii produce long chain n-alkadienes 

and n-alkatrienes (Metzger et al., 1986) which may contribute to the long chain n-

alkanes in torbanites. In addition a new class of biomarkers, the macrocyclic alkanes 

(e.g. XI), have been reported in all torbanites examined from various geographical 

locations, ranging in age from the Late Carboniferous to the Late Permian (Audino et 

al., 2001b; Grice et al., 2001). The macrocyclic alkanes are thought to be formed 

from the algaenan of B. braunii via an olefin metathesis reaction (Audino et al., 

2002). 

The torbanites used in this study have TOC contents of 52 to 59 wt.% (Table 

4.1). The sediments do not differ significantly in maturity, and are relatively 

immature (i.e. before the onset of oil generation) with C31-homohopane 22S/(22S + 

22R) ratios (Ensminger et al., 1977, see Appendix 1) ranging between 0.37 and 0.55 

(Table 4.1), and Tmax values from Rock-Eval pyrolysis (Appendix 1) between 446 to 

460ºC (Table 4.1). The torbanites contain type I organic-matter based on hydrogen 

and oxygen indices (HI, OI; Table 4.1; Appendix 1) from Rock-Eval pyrolysis. 

 

Table 4.1 Geochemical parameters of the torbanites 
 

Sample # TOC 
(wt.%)a

Tmax 
(ºC)a

HI (mg HC/g 
TOC)a

OI (mg CO2/g 
TOC)a

C31αβ22S/ 
(C31αβ22S+C31αβ22R) 

3733 59 460 974 51 0.39 

3736 59 460 997 10 0.39 

3740 52 446 1150 8 0.39b

3742 56 446 1145 6 0.37b

3755 52 455 1174 4 0.55b

aDetermined by Boreham et al. (1994);  bDetermined by Audino et al. (2001a); TOC, total organic 
carbon; HI, hydrogen index; OI, oxygen index 
 

4.2.2 Stable carbon isotopic analysis 

Previous studies of organic-matter with large contributions from B. braunii have 

shown the organic carbon to be significantly enriched in 13C relative to that derived 
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from other aquatic plants (Boreham, 1994; Grice et al., 2001). Measurement of the 

δ13C of individual n-alkanes (predominantly from B. Braunii, see Sec. 2.1) in some 

Australian torbanites revealed a ‘saw-toothed’ δ13C profile in the higher-molecular-

weight range (n-C20 to n-C30) (Grice et al., 2001). The odd-carbon-numbered n-

alkanes from n-C21 to n-C29 are depleted in 13C relative to even-carbon-numbered n-

alkanes from n-C20 to n-C30. This is consistent with a predominant source from the 

algenan of B. braunii (see Sec. 2.1), while the 13C-depletion in odd n-alkanes >n-C21 

is attributed to a contribution from terrestrial plant waxes (Boreham, 1994; Grice et 

al., 2001). The δ13C values of n-alkanes in these samples showed no apparent 

relationship with palaeolatitude/palaeotemperature. 

 

4.2.3 Stable hydrogen isotopic analysis 

The δD values of individual n-alkanes from the five torbanites were measured. 

The δD values of pristane and phytane were measured in two Australian (Temi) 

torbanites. n-Alkanes were separated from the branched and cyclic compounds by 

treating the saturated hydrocarbon fractions with 5A molecular sieves (see Chapter 3 

and Sec. 4.2.3.1). Standard deviations for at least three replicate analyses are mostly 

within 5‰. In a minimal number of cases, for peaks of relatively low intensity or 

where minor co-elution was evident, standard deviations are as high as 15‰. 

 

4.2.3.1 Evidence against isotopic fractionation during separation procedures 

A brief experiment was performed to ensure that isotopic fractionation did not 

occur during separations on silica gel or during 5A molecular sieving. A mixture of 

six individual n-alkanes (undecane, n-C11; tridecane, n-C13; tetradecane, n-C14; 

heptadecane, n-C17; nonadecane, n-C19; and pentacosane, n-C25) was analysed by gas 

chromatography-isotope ratio mass spectrometry (GC-irMS; Figure 4.3). The 

mixture was then subjected to the separation procedures, which included silica gel 

chromatography, adduction into 5A molecular sieves, recovery from 5A molecular 

sieves via digestion with hydrofluoric acid, and finally careful evaporative-removal 

of solvent (concentration) using a heated sand bath (Chapter 3). The recovered n-

alkanes were then re-analysed by GC-irMS. Table 4.2 summarises the results of 

these analyses, and Figure 4.4 is a plot of δD values versus carbon number for each 
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of the n-alkanes. The precision of GC-irMS analysis is 5‰ or better (e.g. Table 4.2) 

for peaks of suitable intensity, and in the case of GC-irMS, for peaks that are 

resolved to the baseline. The δD values obtained from each analyses are precise with 

standard deviations being less than 4‰. The δD values from the two analyses are in 

relatively good agreement with the spread of data ranging from 4–13‰ (Figure 4.4). 

Therefore, it was concluded that there is no evidence for significant fractionation of 

hydrogen isotopes during the separation procedures. 
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Figure 4.3 GC-irMS chromatogram (m/z 2) of a mixture of n-alkanes, including undecane (n-C11), 
tridecane (n-C13), tetradecane (n-C14), heptadecane (n-C17), nonadecane (n-C19) and pentacosane (n-
C25). Ref is the hydrogen reference gas peak. Concentration is approx. 200–250 ng µL-1 per 
component (1 µL injection, pulsed-splitless). 
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Table 4.2 δD values of six n-alkanes obtained from compound-specific isotope analysis (CSIA δD) 
before and after treatment of the mixture with 5A molecular sieves* 
 
Compound CSIA δD (‰) CSIA δD after 

molecular sieving 
(‰) 

∆δD (‰) 

Undecane -214 (2)5 -205 (3)3 7 

Tridecane -48 (2)5 -54 (1)3 -6 

Tetradecane -120 (1)5 -124 (0)3 -4 

Heptadecane -229 (1)5 -222 (1)3 7 

Nonadecane -258 (1)5 -245 (2)3 13 

Pentacosane -121 (1)5 -113 (4)3 8 

*Numbers in parentheses are standard deviations, superscript numbers are number of replicate 
analyses; ∆δD, difference between the δD value after molecular sieving and the δD value before 
molecular sieving (relative to VSMOW) 
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Figure 4.4 Plot of δD values versus carbon number for six n-alkanes, comparing δD values measured 
by compound-specific isotope analysis (CSIA) before and after treatment with 5A molecular sieves. 
The spread of data is indicated by curly brackets and labels. Error bars indicate the standard deviation 
of at least 3 replicate analyses. Where error bars are not visible, the error is smaller than the size of the 
symbol. 
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4.2.3.2 n-Alkanes 

δD values of individual n-alkanes from the torbanites are plotted in Figure 4.5. 

The error bars indicate the standard deviation for at least three replicate 

measurements. Where error bars are not visible, the error is smaller than the size of 

the symbol. The n-alkanes from the Scottish torbanite (Torbane Hill, #3755) have δD 

values between -140 and -160‰. The n-alkanes from two Eastern Australian 

torbanites (Newnes, #3733 and #3736) have δD values between -150 and -200‰. 

The n-alkanes from two other Eastern Australian torbanites (Temi, #3740 and #3742) 

have δD values between -180 and -230‰. Hydrogen isotopic measurements of n-

alkanes from the two Newnes torbanites were limited to between three and five 

compounds due to their low relative abundance in these samples (e.g. Figure 4.6a). 

The δD values of n-alkanes in the various torbanites appear to correlate with the 

palaeolatitude/palaeoclimate at the time the samples were deposited. The n-alkanes 

in the two torbanites deposited under glacial conditions (#3740 and #3742) are 

significantly depleted in D (ca. 40 to 70‰) relative to the n-alkanes in a torbanite 

deposited under tropical conditions (#3755). The n-alkanes in torbanites deposited 

under cool to temperate conditions (#3733 and #3736) have δD values that generally 

fall in between those of the n-alkanes from tropical and glacial samples. The 

difference in δD values of the n-alkanes from samples deposited under different 

climate regimes is consistent with the variation in the δD of precipitation with 

latitude, which contributes to meteoric waters that are used by photosynthetic 

organisms. The isotopic effects associated with precipitation have previously been 

studied by Craig (1961) and Dansgaard (1964) (see Sec. 4.1.1.2). Areas of the plot 

shown in Figure 4.5 have been assigned a depositional climate based on the δD 

composition of the n-alkanes in the various sediments. 
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Figure 4.6 GC-MS total-ion chromatograms of the saturate fractions of torbanites (a) #3733, (b) 
#3755 and (c) #3740 
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Since the torbanites were deposited in freshwater, inland lakes, it is important to 

also consider the effect of surface evaporation of the lake-water when interpreting 

the differences seen in the δD values of the n-alkanes in torbanites deposited at 

different palaeolatitudes. The δD values of lake-waters predictably indicate their 

meteoric parentage (Criss, 1999), however surface evaporation is an important 

process which affects all surface waters, especially shallow lakes. Of course, such 

effects are most pronounced in windy, hot, or arid areas (Criss, 1999). Surface waters 

become enriched in heavy isotopes as a result of evaporation (see Sec. 4.1.1 and 

4.1.2). Although the δD composition of the water in the lake will be affected by 

evaporation to some extent, meteoric precipitation is most likely the dominant 

process in determining the isotopic composition of the lake-water in this case, 

considering the significant difference in the depositional latitude of each torbanite. 

However, the fact that the δD values of n-alkanes from the two torbanites deposited 

under cool-temperate conditions are spread over a wider range than the δD values of 

n-alkanes from the two torbanites deposited under glacial conditions, is possibly a 

result of an evaporation effect, where the δD values of n-alkanes from torbanite 

#3736 (-150 to -175‰) are indicative of a more evaporative environment in 

comparison to the δD values of n-alkanes from torbanite #3733 (-170 to -200‰). 

It cannot be completely excluded that δD composition of the organic matter has 

been altered to some extent by diagenetic transformations in the subsurface, even 

considering that these sediments are relatively immature (pre-oil generation based on 

homohopane distributions, Sec. 2.1). It has been shown that exchange between C-

bound hydrogen and water-derived hydrogen occurs during artificial maturation of 

organic matter (see Chapter 5), and consequently, the δD values of n-alkanes in the 

samples investigated might have been affected by hydrogen exchange reactions 

between organic-matter and formation waters during natural maturation. However, 

there is evidence that hydrogen exchange processes have not altered the indigenous 

isotopic signatures to a large extent (see below). 

A feature of the results obtained from this study is a saw-toothed profile of δD 

values for the n-alkanes (C20–C29) in the Australian torbanites (#3733, #3736, #3740 

and #3742, Figure 4.5). This type of profile has previously been identified with the 

δ13C values of C20 to C30 n-alkanes in these samples (Sec. 4.2.2), with approximately 

a 3–5‰ shift in δ13C between odd and even n-alkanes. However, the odd-even trend 
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in δ13C values is opposite to that seen here with the δD values, where the odd-

carbon-numbered n-alkanes are enriched in D relative to the even-carbon-numbered 

n-alkanes. The saw-toothed profile of δ13C values was explained by a dual-source 

system with contributions from both B. braunii and terrestrial plants (Boreham, 

1994; Grice et al., 2001). The same explanation can be applied to the profile of δD 

values, where the even-carbon-numbered n-alkanes are ascribed a predominant B. 

braunii source (i.e. algaenan), while the D-enriched odd-carbon-numbered n-alkanes 

are probably related to a dominant terrestrial plant source of these compounds. The 

terrestrial plant contribution causes a relative enrichment in D due to isotopic effects 

during evaporation of water from leaf surfaces and by transpiration in the plants 

(Dongmann et al., 1974; Estep and Hoering, 1980 and references therein; Farquhar 

and Gan, 2003; Gan et al., 2003). Further evidence of a terrestrial plant contribution 

to higher-molecular-weight odd-carbon-numbered n-alkanes is seen in the GC-MS 

total-ion-chromatograms for the saturate fractions of the Australian sediment 

extracts. There is an odd-over-even preference for n-alkanes in the higher-molecular-

weight region (e.g. n-C22 to n-C29, Figure 4.6c). It is likely that hydrogen exchange 

processes brought about by maturation have had only a minor effect (if any) on the 

δD values of odd n-alkanes in the Australian torbanites, since predominant odd n-

alkanes >n-C21 can be considered as preserved genuine biological lipids. Hydrogen 

exchange reactions between organic-matter and formation waters might essentially 

affect hydrocarbons generated during maturation, and would probably result in a 

more homogeneous profile of δD values. 

 

4.2.3.3 Acyclic isoprenoids 

δD values of the acyclic isoprenoids pristane and phytane from the branched and 

cyclic fractions of two Australian torbanites (Temi, Early Permian) were measured. 

Pristane and phytane from torbanite #3740 have δD values of -283±2‰ and 

-259±2‰ respectively (Figure 4.7). Pristane and phytane from torbanite #3742 have 

δD values of -277±2‰ and -268±3‰, respectively (Figure 4.7).  Pristane and 

phytane in the Temi torbanites (#3740 and #3742) are strongly depleted in D (ca. 60 

to 80‰) compared to the n-alkanes in the same sample (Figure 4.7). The offset 

between the δD values of isoprenoids and n-alkanes is similar to the offset seen in 
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modern biological samples (e.g. Estep and Hoering, 1980; Sessions et al., 1999), 

indicating that an apparent biological signal has been preserved for at least 260–280 

million years. Significant diagenetic effects would more likely result in a more 

homogeneous distribution of δD values (see Chapter 5). Unfortunately the δD values 

of pristane and phytane in the other torbanites could not be measured due to the low 

relative abundance of these compounds (e.g. Figure 4.6a, b). However, because the 

torbanites appear to have had a similar thermal history (based on various maturity 

parameters, Sec. 2.1), and similar source inputs (Berkaloff et al., 1983; Largeau et 

al., 1984; Kadouri et al., 1988; Derenne et al., 1989; Derenne et al., 1992; Gelin et 

al., 1994; Berthéas et al., 1997), it is assumed that indigenous signals are also 

preserved in these samples. This lends credence to the interpretation given for the 

observed differences between δD values of n-alkanes present in the torbanites (Sec. 

4.2.3.2). 
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There is a significant difference between the δD values of pristane and phytane of 

the Temi torbanites, phytane being enriched in D ca. 24‰ relative to pristane. Li et 

al. (2001) reported that phytane is mostly enriched in D relative to pristane, and 

suggested this to be consistent with different origins of pristane and phytane or 

different isotope effects for their derivation from a common precursor (e.g. phytol, 

XII). Further evidence for different origins of pristane and phytane in the Temi 

torbanites is apparent from their δ13C values, where phytane is ca. 2–3‰ depleted in 
13C relative to pristane (Grice et al., 2001). While pristane was speculated to be 

attributed mainly to the phytyl side chain of chlorophyll a of cyanobacteria, the 13C-

depleted phytane was attributed to a contribution from a 13C-depleted source such as 

glyceroldiether lipids (e.g. XIII) of methylotrophic bacteria (Grice et al., 2001). 

 

 

4.3 SIGNIFICANCE 

 

The n-alkanes from the low-maturity torbanites appear to preserve δD values that 

correlate with the palaeolatitude at the time of deposition. This, along with the 

observed offset between the δD values of isoprenoids and n-alkanes in the torbanites 

(similar to that observed in modern biological samples) is significant. The fact that 

primary hydrogen isotopic signatures appear to have been preserved for at least 260–

280 million years indicates that the preservation potential of lipid δD values is much 

greater than previously thought. This clearly demonstrates how the measurement of 

δD values of individual compounds in sedimentary organic matter can be very useful 

for palaeoenvironmental reconstructions, providing diagenetic and catagenetic 

processes (e.g. maturation, see Chapter 5) have not played a significant role. 

 

 

4.4 SUMMARY AND CONCLUSIONS 

 

1. The separation procedures performed on the torbanite solvent extracts, including 

silica gel chromatography and 5A molecular sieving, do not fractionate hydrogen 

isotopes to any significant extent. 
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2. δD values of n-alkanes in the torbanites analysed in this study appear to reflect 

the depositional palaeolatitude/palaeoclimate of the sediments, attributed to the 

δD composition of meteoric waters in the environment where the sediments were 

deposited. 

 

3. A saw-toothed profile of δD values identified for the n-alkanes in the Australian 

torbanites is attributed to a dual-source system with predominant B. braunii 

input, and terrestrial plant input to the odd-carbon-numbered n-alkanes. 

 

4. The significant depletion of deuterium in two acyclic isoprenoids (pristane and 

phytane) relative to the n-alkanes in two Australian torbanites is similar to the 

offset seen in modern biological samples, indicating that an apparent biological 

signal has been preserved for at least 260–280 million years. There is no 

evidence that diagenetic and catagenetic have affected the δD values of the 

compounds analysed. 

 

5. A smaller but distinct difference observed between the δD values of pristane and 

phytane of the Temi torbanites is suggested to be caused by either different 

sources for the two isoprenoids, or isotope effects associated with their derivation 

from a common precursor (e.g. phytol). There is additional evidence for different 

origins of pristane and phytane from the δ13C values of these compounds. 
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5 EFFECT OF MATURATION ON THE INDIGENOUS 
δD SIGNATURES OF INDIVIDUAL 
HYDROCARBONS 

 

 

5.1 INTRODUCTION 

 

For the δD values of sedimentary hydrocarbons to reflect that of their biosynthetic 

precursors (e.g. see Chapter 3), the δD signature of the precursor must be preserved 

throughout sedimentation, burial and the diagenetic and catagenetic processes that 

can lead to the formation of petroleum. It is believed that diagenetic and catagenetic 

effects over extended periods of geological time (millions of years) promote 

significant hydrogen exchange (Sec. 5.1.1) between organic hydrogen and hydrogen 

species in the surrounding environment (Rigby et al., 1981; Alexander et al., 1984; 

Schimmelmann et al., 1999; Leif and Simoneit, 2000; Schimmelmann et al., 2001; 

Sessions et al., 2004). Thermal maturation in particular has been found to play a 

significant role in the alteration of indigenous δD signatures (Rigby et al., 1981). 

Until recently, the ability to study the distribution of stable hydrogen isotopes in 

sedimentary organic matter has been limited to δD measurements of bulk organic 

matter or whole fractions from crude oils or sediment extracts. Aside from the fact 

that bulk isotopic measurements of sedimentary organic matter do not reflect the 

diverse origins of individual compounds, another major disadvantage in terms of 

bulk D/H analysis of complex mixtures of hydrocarbons in petroleum is the variation 

in reactivity of different organic compounds towards hydrogen exchange. For 

example, N, O, S-bound hydrogen will exchange relatively quickly (see Sec. 5.1.1), 

and the presence of these moieties in complex mixtures can result in rapid alteration 

of any indigenous D/H signature. On the other hand, aliphatic C-bound hydrogen is 

less prone to exchange (see Sec. 5.1.1). The isotopic analysis of individual aliphatic 

compounds containing only C-bound hydrogen (e.g. n-alkanes) is attractive, because 

aliphatic C-bound hydrogen is probably the most isotopically conservative (Sessions 

et al., 2004). The recent advent of compound specific hydrogen isotope analysis has 
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allowed the measurement of the D/H composition of individual compounds in 

complex mixtures (Burgoyne and Hayes, 1998; Hilkert et al., 1999). 

An understanding of the effect of diagenetic and catagenetic processes (e.g. 

maturation) on indigenous hydrogen isotopic compositions is important in the 

interpretation of δD values of sedimentary hydrocarbons. Previous work based on 

bulk D/H analysis provides evidence of homogenistation and gradual D-enrichment 

of sedimentary organic matter with increasing thermal maturity (Hoering, 1977; 

Rigby et al., 1981; Smith et al., 1982), resulting in a progressive loss of the 

indigenous (source) D/H signature. The ability to gauge the extent of secondary 

alteration is therefore essential before source interpretation of δD values is carried 

out. The work presented here extends the previous work based on bulk 

measurements, via the analysis of individual hydrocarbons in petroleum, to assess the 

effect of subsurface processes on the δD values of compounds with different 

reactivity’s towards hydrogen exchange (Sec. 5.1.1). In addition, the ability to use 

δD values of individual hydrocarbons to determine the level of maturity of 

sedimentary organic matter is assessed. To achieve this, the δD values of n-alkanes, 

pristane and phytane from sedimentary sequences covering a range of maturity (%Ro 

0.53–1.6) from the northern Perth Basin (on-shore, Western Australia), and Paqualin-

1 and Vulcan-1B from the Vulcan Sub-basin (offshore, northern Australia) were 

investigated. 

 

5.1.1 Hydrogen exchange in organic compounds 

Hydrocarbons contain hydrogen atoms which occupy a range of molecular 

positions. For example, hydrogen can be bound either to primary, secondary or 

tertiary carbon atoms in alkyl moieties (aliphatic C-bound hydrogen); to carbon 

atoms in aromatic rings (aromatic C-bound hydrogen); and to nitrogen, oxygen or 

sulfur atoms in polar compounds (N, O, S-bound hydrogen). The hydrogen bond 

strength varies significantly for different types of bonds, which is an important factor 

in determining exchangeability and therefore the rate of hydrogen exchange at 

various positions in organic molecules. For example, aliphatic C-bound hydrogen is 

linked via a strong covalent bond, and is often referred to as ‘non-exchangeable 

hydrogen’ (e.g. Epstein et al., 1976; Schimmelmann, 1991). In contrast, aromatic C-

bound hydrogen is more prone to exchange due to the enhanced stability of aromatic 
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systems and their ability to stabilize charged transition states; while N, O, S-bound 

hydrogen is linked via weaker hydrogen bonds making exchange even more 

favourable. 

The rate of exchange of bound hydrogen in alkyl moieties is dependent on the 

extent of substitution of carbon atoms within the alkyl chain. For example, molecules 

containing tertiary (3º) carbon atoms, i.e. those substituted with three other carbon 

atoms or alkyl groups (tri-substituted), will exchange their hydrogen more easily and 

more rapidly compared to molecules containing only secondary (2º, di-substituted) or 

primary (1º, mono-substituted) carbon atoms. This is chemically explicit in terms of 

heterolytic and homolytic cleavage processes, and occurs due to the ability of 

additional alkyl groups to stabilize charged transition states (e.g. carbocations or 

radicals) via inductive and resonance effects. 

Although aliphatic C-bound hydrogen is often considered as non-exchangeable 

hydrogen, it may well be exchangeable under certain physical and chemical 

conditions during petroleum generation in the subsurface over geological time. These 

conditions have been reproduced in the laboratory in order to simulate sedimentary 

processes. The following sections comprise a review of previous studies on the 

exchange of C-bound hydrogen in model compounds (Sec. 5.1.1.1), and in 

sedimentary organic matter during artificial (Sec. 5.1.1.2) and natural (Sec. 5.1.1.3) 

maturation. 

 

 

5.1.1.1 Exchange of carbon-bound hydrogen in model compounds 

There have been few publications relating to alkyl hydrogen exchange of model 

aliphatic compounds under laboratory conditions. Those that exist generally 

investigate the exchange of C-bound hydrogen in the presence and absence of 

catalysts (e.g. clay), and discuss exchange rates, and potential mechanisms of 

hydrogen exchange. 

Alexander et al. (1984) heated meso-pristane (VI) with a deuterated clay 

(montmorillonite) at 160ºC for 670 h, and found that 63% of the total pristane (based 

on GC-MS analysis) was deuterated. They also found that 40% of methyl hydrogen, 

and 40% of methylene (2º carbon) and methine (3º carbon) hydrogen were replaced 

by deuterium based on 1H NMR spectroscopic analysis. Estimated exchange half-
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times were 2.1 and 1.5 years for primary and secondary hydrogen respectively, 

which are much slower than those determined for naphthalene (XIV) under similar 

conditions (Alexander et al., 1982; Alexander et al., 1983; Sessions et al., 2004). 

Sessions et al. (2004) used compound-specific isotope-ratio mass spectrometry to 

analyse n-icosane (n-C20) which was incubated with heavy water (D2O) on 

montmorillonite or silica at various temperatures. They reported exchange half-times 

ranging from ~10,000 years at 60ºC to ~100,000 years at 7ºC. These exchange half-

times were faster than that reported for n-hexane (n-C6) without a catalyst by Koepp 

(1978). The higher exchange rate was attributed to the presence of a mineral catalyst. 

Larcher et al. (1986) studied alkyl hydrogen exchange in a series of acyclic 

isoprenoid acids when heated at 160ºC in the presence of deuterated montmorillonite. 

Analysis of the methyl ester derivatives by GC-MS indicated that all of the 

isoprenoid acids had undergone hydrogen exchange with water adsorbed on the clay 

surface, and exchange was most rapid at the carbon adjacent to the carboxyl group 

(Larcher et al., 1986). 

The laboratory conditions under which alkyl hydrogen exchange has been 

observed in model compounds suggests that similar processes could occur in 

sedimentary organic matter and during petroleum generation. 

 

 

5.1.1.2 Exchange of carbon-bound hydrogen during artificial maturation of 

sedimentary organic matter 

A number of techniques have been used to artificially mature sedimentary 

organic matter. The techniques involve heating a sample in either an open or closed 

system. Open systems allow the generated reaction products to continuously exit the 

system, while closed systems trap evolved products meaning they continue to be 

exposed to, and involved in, the maturation process. Artificial maturation 

experiments can also be performed under anhydrous or hydrous conditions. Hydrous 

experiments appear to more accurately reproduce the natural maturation process, and 

thus have been used more widely. The following examples from the literature use the 

closed-system hydrous pyrolysis technique. As for the model compound research 

described above, these reports discuss the exchange of C-bound hydrogen in the 
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presence and absence of catalysts, and discuss exchange rates, and potential 

mechanisms of hydrogen exchange (Sec. 5.2.5). 

Koepp (1978) used isotope-ratio mass spectrometry to measure the bulk D/H 

composition of petroleum fractions and individual model compounds incubated with 

D2O without a catalyst. They reported exchange half-times for saturated and 

aromatic fractions which were 3 to 4 orders of magnitude faster than model saturated 

and aromatic compounds (Koepp, 1978; Sessions et al., 2004), which was most 

likely due to the presence of more reactive compounds in the complex fractions 

(Sessions et al., 2004). Hoering (1984) subjected pre-extracted Messel Shale to 

pyrolysis at 330ºC for 3 days in the presence of excess water (H2O and D2O). When 

the reaction was performed in heavy water, extensive deuteration of a variety of 

hydrocarbon types (including n-alkanes) was evident. More recently, Leif and 

Simoneit (2000) conducted an additional series of pyrolysis experiments on Messel 

Shale using model aliphatic compounds (n-alkanes and n-alkenes) as ‘probe’ 

molecules. They pyrolysed the compounds in both D2O and shale/D2O (and 

shale/H2O), and found that in the absence of shale only the n-alkenes incorporated 

deuterium from D2O. The presence of shale resulted in more deuterium incorporation 

into the n-alkenes, a minor amount of deuterium incorporation into n-alkanes, and 

hydrogenation of n-alkenes to n-alkanes. Schimmelmann et al. (1999) artificially 

matured immature source rock chips in isotopically distinct waters using hydrous 

pyrolysis, and found that at temperatures ≥300ºC significant hydrogen exchange 

occurred between the water and the organic hydrogen. Furthermore, depending on 

temperature, time and kerogen type, it was shown that 45–79% of C-bound hydrogen 

in matured kerogen was derived from water, while bitumen and expelled oil had a 

slightly lower percentage (36–78%) of water-derived hydrogen (Schimmelmann et 

al., 1999). 

From the work described above, it is clear that water-derived hydrogen can 

exchange with aliphatic C-bound hydrogen during artificial maturation of 

sedimentary organic matter. 
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5.1.1.3 Exchange of carbon-bound hydrogen during natural maturation of 

sedimentary organic matter 

Hydrogen exchange processes occurring during diagenesis and maturation will 

result in D/H changes of the organic matter as a result of isotope exchange with H 

and D in the surrounding environment. Published work on maturation in natural 

systems provides evidence of gradual D-enrichment of organic matter with 

increasing thermal maturity (Hoering, 1977; Rigby et al., 1981; Smith et al., 1982; Li 

et al., 2001). 

In the past, bulk hydrogen isotopic analysis has been used to study the effect of 

maturation on the D/H composition of sedimentary organic matter. Hoering (1977) 

measured the bulk δD values of three fractions (saturated, aromatic and NSO) from a 

suite of crude oils and sediment extracts from various locations in the United States, 

Iran, Finland and Australia. The samples ranged in geological age from Pilocene to 

Precambrian. He reported that older samples, having experienced a longer and higher 

thermal history, contained organic matter with a relatively homogeneous and D-

enriched D/H composition. The extract of an immature shale had a wider variation in 

the δD values of its individual fractions, with the saturated hydrocarbon fraction 

being depleted in D relative to the aromatic and NSO fractions. Furthermore, the 

NSO fraction was significantly enriched in D relative to the aromatic fraction 

(Hoering, 1977), reflecting the presence of hydrogen which is more reactive towards 

hydrogen exchange. Rigby et al. (1981) reported bulk δD values of crude oils and 

coals (and their saturated fractions) from the Gippsland and Bass Basins of Australia. 

Vitrinite reflectance measurements of the coals ranged from 0.45 to 1.04% with 

increasing depth. In all cases, the saturated fractions were depleted in deuterium 

relative to their parent coals, with the magnitude of depletion being larger in less 

mature samples. The deuterium content of the saturated fractions was shown to 

increase with increasing maturity. Further work on Australian coals was carried out 

by Smith et al. (1982), who also found that original hydrogen isotopic differences 

between the parent coals and their fractions were progressively lost with increasing 

maturity. More recently, Lis et al. (2005) investigated the D/H composition of type-II 

kerogens from the New Albany Shale (Illinois Basin, USA) and the Exshaw 

Formation (Alberta Basin, Canada). In both suites, the δD values of non-
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exchangeable (i.e. aliphatic) hydrogen increase with maturation from immature 

through to post mature. 

A significant finding of the pioneering work in the 1970’s and 1980’s 

(summarised above) was the apparent preservation of biosynthetic D/H signatures in 

aliphatic fractions of immature sedimentary organic matter, evidenced by the relative 

depletion of deuterium in these fractions, relative to the aromatic and NSO fractions 

which would have exchanged hydrogen to a large extent. Indeed, aliphatic C-bound 

hydrogen is the most isotopically conservative hydrogen moiety (Sessions et al., 

2004; see Sec. 5.1.1). 

The recent advent of compound specific hydrogen isotope analysis (see Chapter 

1) has allowed investigations of the effect of maturation on the D/H composition of 

individual compounds. Li et al. (2001) measured the isotopic composition of carbon-

bound hydrogen in individual n-alkanes and acylic isoprenoids from a series of crude 

oils from the Western Canada Sedimentary Basin. They observed a significant 

enrichment in deuterium in n-alkanes (ca. 40‰) from highly mature crude oils 

relative to those from marginally mature crude oils. 

 

5.1.1.4 Summary 

The laboratory conditions under which alkyl hydrogen exchange has been 

observed in model compounds suggests that these processes could occur in the 

sedimentary environment at subsurface temperatures and in the presence of mineral 

catalysts (i.e. in the source rock matrix). In addition, it is clear that water-derived 

hydrogen can exchange with aliphatic C-bound hydrogen during artificial maturation 

of sedimentary organic matter. There is a gradual D-enrichment of sedimentary 

organic matter in geological samples with increasing thermal maturity, a trend 

evident in various geological locations worldwide (Hoering, 1977; Rigby et al., 

1981; Smith et al., 1982; Li et al., 2001). The D-enrichment is likely to be due to 

hydrogen exchange between the organic matter and D-rich formation waters in the 

subsurface. Figure 5.1 shows the range of chemical moieties of a hypothetical 

kerogen structure, highlighting the different types of bound hydrogen discussed 

above. 

 

62 



  Chapter 5 

 

 

Figure 5.1 Hypothetical kerogen structure containing various types of organic moieties and bound 
hydrogen including primary, secondary or tertiary aliphatic C-bound hydrogen; aromatic C-bound 
hydrogen; and N, O, S-bound hydrogen (after Schimmelmann et al., 2006) 
 

 

5.1.2 Aims of this study 

The specific aims of the present study include: 

 

(i) Fractionation of the extractable organic matter from immature to post mature 

Perth Basin (WA) and Vulcan Sub-basin (Timor Sea) sediments to obtain 

baseline resolution of n-alkanes, pristane and phytane, followed by 

measurement of their δD values. 

(ii) Interpretation of the results based on the source, and thermal maturity of the 

hydrocarbons, with comparison to molecular and stable carbon isotopic 

results. 

(iii) Investigating whether a mechanism of hydrogen exchange can be proposed, 

extending previous studies, and based on the analysis in this study of 

stereochemical conversions of the diastereomers of pristane (VI) and phytane 

(III). 

63 



  Chapter 5 

5.2 RESULTS AND DISCUSSION 

 

5.2.1 Geochemistry 

 

5.2.1.1 Perth Basin sediments 

Detailed organic geochemical analyses of sediments from the Kockatea shale 

have been carried out previously by Thomas and Barber (2004), including Rock-Eval 

pyrolysis, thermal maturity estimates and biomarker distributions. The Hovea 

member of the Kockatea shale is characterised by fossiliferous, Type II organic-

matter-rich shales (typically 1–5 wt.% TOC) (Thomas and Barber, 2004). Due to the 

difficulties associated with the direct measurement of vitrinite reflectance of 

sediments from the Kockatea Shale (Kantsler and Cook, 1979), Thomas and Barber 

(2004) used basin-wide burial history modelling to calculate equivalent vitrinite 

reflectance values (Re) for the samples. The Perth Basin sediments range in maturity 

from immature through to late mature (%Re = 0.53 to 1.13, Table 5.1). The saturated 

hydrocarbons comprise n-alkanes ranging from n-C8 to around n-C35, the common 

regular isoprenoids pristane and phytane, and a high relative abundance of hopanes 

and steranes in the samples of lower relative maturity. 
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Table 5.1 Geochemical parameters of the Perth Basin sediment extracts. 
 
Well, Depth m (ft) Re (%)a Ts/(Ts+Tm) 

BMR 10 973–976 (3193–3203) 0.53 0.30 

BMR 10 989–991 (3245–3250) 0.53 0.25 

Dongara 4 1674 (5491) 0.60 0.32 

Dongara 4 1675 (5495.5) 0.60 0.34 

Dongara 4 1678 (5505) 0.60 0.38 

Yardarino 2 2289 (7509) 0.78 0.76 

Yardarino 2 2290 (7512.5) 0.78 0.79 

Arrowsmith 1 2494 (8781) 1.13 0.89 

Arrowsmith 1 2678 (8787) 1.13 0.80 

Re, equivalent vitrinite reflectance 
Ts/(Ts+Tm), maturity parameter based on the 18α(H)- and 17α(H)-trisnorhopanes (Appendix 1) 
a Determined by Thomas and Barber (2004) 
 

 

5.2.1.2 Vulcan Sub-basin sediments 

Previous organic geochemical studies on Paqualin-1 sediments include work 

carried out by Smith and Sutherland (1991), van Aarssen et al. (1998a; 1998b) and 

Edwards et al. (2004). Smith and Sutherland (1991) published Rock-Eval and 

vitrinite reflectance data, and performed pyrolysis gas chromatography on samples 

from the sequence for organic matter characterisation. van Aarssen et al. (1998a; 

1998b) analysed aromatic biomarkers from thirteen sediment extracts from 

Paqualin-1 for stratigraphic correlation and palaeoclimate reconstruction purposes. 

Edwards et al. (2004) also published Rock-Eval and vitrinite reflectance data, and 

calculated some biomarker parameters for oil-source correlations (see Chapter 6). All 

of the data in the above studies indicate that the Paqualin-1 sequence contains Type 

II/III kerogen. Source rocks within the Paqualin-1 well in the Paqualin Graben 

(Figure 2.3) have been identified within the lower Vuclan Formation (Caroll and 
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Syme, 1994; Edwards et al., 2004). In that part of the sequence, TOC averages 

around 2 wt.% and hydrogen indices range from 40 to 300 mg HC/g TOC (e.g. Table 

5.2). The Paqualin-1 sediments used in this study range in maturity from early 

mature through to post mature based on vitrinite reflectance measurements (%Ro = 

0.62 to 1.6), while Tmax ranges from 441 to 455ºC (Table 5.2). The saturated 

hydrocarbons in Paqualin-1 comprise n-alkanes ranging from n-C11 to around n-C34 

and the common, regular isoprenoids pristane and phytane. Hopanes and steranes are 

present in relatively high abundance in the immature samples, and in lower 

abundance in the more mature samples. 

Geochemical analyses of Vulcan-1B sediments in the Vulcan-1B well, located in 

the Swan Graben (Chapter 2), have been carried out previously by Edwards et al. 

(2004), and included Rock-Eval pyrolysis and molecular characterisation. The lower 

Vulcan Formation in the Swan Graben comprises organic matter-rich mudstones 

(average TOC = 2 wt.%) that, like Paqualin-1, contain predominately type II/III 

kerogen. Hydrogen indices range from 150 to 400 mg HC/g TOC (Edwards et al., 

2004; e.g. Table 5.3). The Vulcan-1B sediments used in this study range in maturity 

from early mature to post mature (%Ro = 0.69 to 1.3; Table 5.3). The Ro data 

available throughout the Vulcan-1B well have been measured by three separate 

laboratories, and there are large discrepancies in the measurements. This is possibly 

due to (Kennard et al., 1999; D. Edwards, pers. comm.): (i) the occurrence of 

perhydrous vitrinite which suppresses Ro, a likely explanation because it is well 

documented in the North West Shelf using the fluorescence alteration of multiple 

macerals (FAMM) technique (e.g. Wilkins et al., 1992); (ii) overheating of the 

samples during collection and drying of drill chips on the drilling rig resulting in 

overestimated Ro, which is unlikely because there is no evidence of unusually high 

maturities from the geochemical analysis; and/or (iii) operator biases. The saturated 

hydrocarbons in Vulcan-1B comprise n-alkanes ranging from C11 to C33 and the 

regular isoprenoids pristane and phytane. Hopanes and steranes are present in high 

relative abundance in the less mature samples, and in low relative abundance in more 

mature samples. Source-specific saturated biomarker ratios (e.g. C29/(C29+C27) 

steranes, C19/(C19+C23) tricyclic terpanes; Appendix 1) indicate that the Vulcan-1B 

sediments contain a mixture of marine-algal organic matter and varying amounts of 

terrestrial plant debris which has been reworked by bacteria (Edwards et al., 2004).  
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Figure 5.2 Observed vs. computed maturity plot (geohistory model) for Vulcan-1B (Kennard et al., 
1999). 
 
 
Table 5.2 Geochemical parameters of the Paqualin-1 sediment extracts used in this study. 
 
Well, Depth 
(m) 

Ro (%)a TOC 
(wt.%)a

Tmax (ºC)a HI (mg HC/g 
TOC)a

OI (mg 
CO2/g TOC)a

Paqualin-1      

3159 0.62 1.91 441 286 109 

3354 0.80 1.69 441 167 n/a 

3402 0.82 n.d. n.d. n.d. n.d. 

3444 0.82 1.91 445 150 170 

3504 0.83 1.97 441 122 93 

3594 1.0 2.43 450 101 43 

3654 1.2 1.85 448 98 90 

3864 1.6 1.78 455 75 125 

Ro, vitrinite reflectance; TOC, total organic carbon; HI, hydrogen index; OI, oxygen index; n.d., not 
determined; a Geoscience Australia Petroleum Wells Database, 
http://dbforms.ga.gov.au/www/npm.well.search 
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Table 5.3 Geochemical parameters of the Vulcan-1B sediment extracts used in this study. 
 
Well, 
Depth (m) 

Ro (%)a TOC 
(wt.%) 

Tmax (ºC) HI (mg 
HC/g TOC) 

OI (mg 
CO2/g TOC) 

3014 0.69 1.39 439 243 133 

3155 0.77 1.54 439 197 122 

3240 0.83 1.74 439 183 82 

3292 0.86 1.59 440 156 102 

3380 0.93 1.80 441 122 151 

3444 1.0 1.92 431 215 170 

3624 1.17 2.40 430 174 172 

3679 1.3 n.d n.d. n.d. n.d. 

Ro, vitrinite reflectance; TOC, total organic carbon; HI, hydrogen index; OI, oxygen index; n.d., not 
determined; a Data extrapolated from a thermal geohistory model (Kennard et al., 1999) 
 

 

5.2.2 Stable carbon isotopic analysis 

The stable carbon isotopic compositions (δ13C) of individual n-alkanes (ca. n-C12 

to n-C33), pristane and phytane were measured in extracts of the Perth Basin and 

Vulcan Sub-basin sediments. Standard deviations for at least three replicate analyses 

were ≤0.4‰. 

 

5.2.2.1 Perth Basin sediments 

The δ13C values of n-alkanes, pristane and phytane from the nine sediments range 

from -30 to -35‰ (isotopically depleted in 13C), characteristic of Early Triassic 

sedimentary organic matter (Morante et al., 1994; Summons et al., 1995). 

Isotopically light organic carbon during the Permian/Triassic geological period has 

been reported previously in sedimentary organic matter from the Bonaparte, Bowen, 

Canning, Canarvon and Perth Basins of Australia (Summons et al., 1995; Foster et 

al., 1997), and globally in marine limestones and terrestrial organic carbon (Morante 

et al., 1994; Wignall and Twitchett, 1996; Krull et al., 2000). This worldwide 
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negative δ13C excursion is believed to be related to a global event at the 

Permian/Triassic boundary which caused the most severe mass-extinction of the past 

500 million years (Erwin, 1994; Benton, 2003). 

Pristane and phytane derive from the phytyl side-chain of chlorophyll a and/or b 

(XV) of algae and cyanobacteria, therefore the δ13C values of these isoprenoids are 

robust indicators of the isotopic composition of photosynthetic organisms (Schouten 

et al., 1998). Conversely, n-C14 to n-C18 alkyl carbon chains can be derived from 

both autotrophic and heterotrophic organisms, and therefore the δ13C values of these 

straight-chain compounds may represent the average isotopic composition of 

multiple sources. If derived from primary producers via the classical mevalonate 

pathway, pristane and phytane should be enriched in 13C relative to n-C14 to n-C18 by 

ca. 1.5‰ (Hayes, 1993). The difference (∆δ13C) between the average δ13C value of 

n-C17 and n-C18 alkanes and the average δ13C value of pristane and phytane 

calculated for the Perth Basin samples used in this study falls between 0 and -3.3‰, 

i.e. pristane and phytane are generally enriched in 13C relative to n-C17 and n-C18 

alkanes which is consistent with a relatively high input from primary producers 

(algae) to the organic matter. Grice et al. (2005a) compared the δ13C values of 

pristane and phytane to those of the n-C17 and n-C18 alkanes extracted from a drill 

core (Hovea-3) covering the Permian-Triassic boundary from the onshore Perth 

Basin. A plot of the ∆δ13C values versus depth (Figure 5.3) showed that the n-C17 

and n-C18 were depleted in 13C relative to pristane and phytane by up to 1.6‰ (on 

average) in the Triassic, providing evidence of high primary productivity (Grice et 

al., 2005a). This was supported by other independent evidence such as an abundance 

of metalloporphyrins from chlorophylls and bacteriochlorophylls (Grice et al., 

2005a). The fact that pristane and phytane in the Perth Basin samples used for this 

study are in some cases markedly more enriched in 13C than n-C17 and n-C18 (by up 

to 3.3‰) may be attributed to their derivation via the pyruvate/glyceraldehyde-3-

phosphate biosynthetic pathway. When derived via this pathway, pristane and 

phytane have been found to be enriched in 13C by 2–5‰ relative to n-C17 and n-C18 

(Schouten et al., 1998). 
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Figure 5.3 Plot of ∆δ13C (see above for definition) versus depth for a series of Late Permian-Early 
Triassic Perth Basin sediment extracts (Hovea-3) (Grice et al., 2005a). 

 

Although the Perth Basin sample set used in this study represents a substantial 

maturity range of %Re 0.53 to 1.13, there is no indication that increasing thermal 

maturity has significantly affected the δ13C values of n-alkanes, pristane or phytane. 

Note that other studies have shown that thermal maturation can significantly affect 

the 13C/12C composition of petroleum hydrocarbons (Clayton, 1991; Clayton and 

Bjorøy, 1994). 

 

5.2.2.2 Vulcan Sub-basin sediments 

The δ13C values of n-alkanes (Figure 5.4a), pristane and phytane from the eight 

Paqualin-1 sediments (obtained from K. Grice) generally fall within a narrow range, 

from -26 to -31‰, while the δ13C values of the same compounds from the eight 

Vulcan-1B sediments (n-alkanes: Figure 5.4b) range from -26 to -30‰. Two 

Paqualin-1 samples however, from depths 3444 m and 3864 m, have δ13C values of 

normal and branched alkanes that are significantly heavier, ranging from -24 to 

-26‰ (average -24.9‰) and -23 to -25‰ (average -24.2‰), respectively. Paqualin-1 
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3864m is significantly more thermally mature (post-mature, %Ro = 1.6), and this 

may have affected the δ13C values. The effect of maturity leads to an enrichment in 
13C, thought to be a result of the release of 13C-depleted components (Clayton, 1991). 

In the case of Paqualin-1 (3444 and 3864 m), the significant differences in δ13C 

values cannot be explained by maturity differences alone. In addition, Paqualin-1 

3444 m is mature (%Ro = 0.82), but contains normal and branched alkanes that are 

more enriched in 13C than those from two late mature samples (3594 and 3654 m, 

%Ro = 1.0 and 1.2, respectively). At present it is unclear why this is the case, 

although this is one of a number of inconsistencies that occur in this part of the 

Paqualin-1 sequence, including a reversal of molecular maturity parameters (van 

Aarssen et al., 2004). The δ13C values of n-alkanes extracted from sediments from 

the Vulcan-1B well also appear to have been affected by maturation. Notably, the 

deepest sample analysed (3624 m) has n-alkanes which are significantly enriched in 
13C (by ca. 1.2–1.6‰) relative to those from the other samples. The data also have 

interesting implications in terms of the δ13C compositions of Vulcan Sub-basin crude 

oil and condensate components (see Chapter 6). 

The ∆δ13C values (see Sec. 5.2.2.1) calculated for the Paqualin-1 samples used in 

this study fall between 0.2 and 2.6‰, and for the Vulcan-1B samples (where δ13C 

measurements were made) between 1.5 and 2.7‰, i.e. n-C17 and n-C18 alkanes are 

generally enriched in 13C relative to pristane and phytane. These results are in 

contrast to those reported by Grice et al. (2005a) for the Triassic samples from the 

Perth Basin (Sec. 5.2.2.1), and thus are probably attributed to a lower relative algal 

input to the organic matter in the Vulcan Sub-basin samples. Indeed, the Permian 

core samples analysed by Grice et al. (2005a) (see Sec. 5.2.2.1 and Figure 5.3) also 

showed an enrichment of 13C in n-C17 and n-C18 hydrocarbons relative to pristane and 

phytane, attributed to heterotrophic processing of primary photosynthate or a high 

input of 13C-enriched bacterial biomass (Summons et al., 1994; Grice et al., 2005a). 
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Figure 5.4 Plots of carbon number versus δ13C value for n-alkanes extracted from Vulcan Sub-basin 
sediments from the (a) Paqualin-1 well (obtained from K. Grice); and (b) Vulcan-1B well. 
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5.2.3 Stable hydrogen isotopic analysis 

The δD values of the n-alkanes (ca. n-C12 to n-C32), pristane and phytane were 

measured in extracts of nine sediments from four wells in the Perth Basin, and 

sixteen from two wells in the Vulcan Sub-basin. Standard deviations for at least three 

replicate analyses were mostly within 5‰, but for peaks of relatively low intensity or 

where minor co-elution was evident, standard deviations were as high as 16‰ (e.g. 

Table 5.4). 

 

5.2.3.1 Perth Basin sediments 

The range of δD values of n-alkanes (ca. C12 to C32), and the δD values of 

pristane and phytane from extracts of the Perth Basin sediments are summarized in 

Table 5.4. The ∆δD values, determined by subtracting the average δD value of the n-

alkanes from the average δD value of pristane and phytane, are also shown in Table 

5.4. The δD values of the n-alkanes, pristane and phytane from four extracts, each 

representing a particular level of maturity (immature, early mature, mature and late 

mature) are plotted in Figure 5.5 (NB. the plots for the samples of corresponding 

maturities are virtually identical). 
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Table 5.4 δD values of n-alkanes, pristane (Pr) and phytane (Ph), and corresponding ∆δD values (see 
below for definition) for the Perth Basin sediment extracts 
 
Well, Depth m (ft) n-Alkanes 

δD Range (‰)*

δD Pr (‰)* δD Ph (‰)* ∆δD (‰) 

BMR 10 973–976 
(3193–3203) 

-183 to -128 (13)4 -267 (7)5 -249 (4)5 -115 

BMR 10 989–991 
(3245–3250) 

-188 to -130 (8)5 -278 (3)3 -266 (1)3 -116 

Dongara 4 1674 
(5491) 

-175 to -140 (8)5 -217 (3)5 -185 (0)3 -43 

Dongara 4 1675 
(5495.5) 

-157 to -112 (6)5 -208 (6)5 -166 (7)5 -55 

Dongara 4 1678 
(5505) 

-165 to -116 (5)4 -175 (6)5 -168 (2)3 -29 

Yardarino 2 2289 
(7509) 

-146 to -109 (8)3 -153 (3)3 -144 (1)3 -23 

Yardarino 2 2290 
(7512.5) 

-166 to -123 (7)3 -159 (7)3 -141 (3)3 -6 

Arrowsmith 1 2494 
(8781) 

-145 to -80 (4)3 -102 (16)3 -97 (16)3 3 (0) 

Arrowsmith 2678 
(8787) 

-123 to -73 (3)3 -121 (4)3 -108 (4)3 -19 

∆δD, difference between the average δD value of Pr and Ph and the average δD value of the n-alkanes 
(relative to VSMOW); * Numbers in parenthesis are standard deviations (average is shown for n-
alkanes), superscript numbers are number of replicate analyses.
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  Chapter 5 

The δD values of pristane and phytane in the Perth Basin samples average 

between -272 and -99‰, with the isoprenoids in the more mature samples being 

more enriched in D. Phytane in the immature sediments is enriched in D by ca. 12 to 

18‰ relative to pristane (Table 5.4). This is consistent with previous research by Li 

et al. (2001), who attribute the difference between the δD values of pristane and 

phytane to either different origins of these isoprenoids or different isotopic effects 

during their derivation from a common precursor, e.g. phytol. Interestingly, a similar 

difference between the δD values of pristane and phytane is retained with increasing 

maturity, although the magnitude of the difference varies between 5 and 42‰ (see 

Table 5.4). This indicates that both pristane and phytane exchange hydrogen at 

similar rates, thus retaining the difference between their δD values, even though 

source signatures are progressively lost with ongoing isotope exchange.  

Extracts from the two immature sediments from the BMR 10 well contain 

pristane and phytane that are significantly depleted in D by ca. 114 to 116‰ (Table 

5.4) relative to the n-alkanes in the same sample (e.g. Figure 5.5). Extracts from three 

early mature sediments from the Dongara 4 well contain pristane and phytane that 

are ca. 30 to 55‰ depleted in D (Table 5.4) relative to the n-alkanes (e.g. Figure 

5.5). Extracts from two mature sediments from the Yardarino 2 well contain pristane 

and phytane that are depleted in D by ca. 6 to 23‰ (Table 5.4) relative to n-alkanes 

of this sample (e.g. Figure 5.5). Extracts from two late mature sediments from the 

Arrowsmith 1 well contain pristane and phytane that are ca. 0 to 19‰ depleted in D 

(Table 5.4) relative to the n-alkanes (e.g. Figure 5.5). 

The large offset between the δD values of pristane and phytane relative to those 

of the n-alkanes (ca. -114 to -116‰) from the immature sediments appears to reflect 

the isotopic compositions of their precursors (i.e. biosynthesized n-alkyl and 

isoprenoid lipids), where the isoprenoid components are depleted in deuterium 

relative to the n-alkyl components (see Chapter 4). In fact, the average δD value of 

the n-alkanes (-143 and -156‰), and the average δD value of pristane and phytane (-

258 and -272‰) in the two immature sediments are in good agreement with the 

range of reported δD values of precursor n-alkyl lipids (-250 to -150‰) and phytol 

(-357 to -278‰), respectively (e.g. Estep and Hoering, 1980; Sessions et al., 1999). 

With increasing maturity, the difference between the δD values of n-alkanes and 
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isoprenoids gradually decreases (Figure 5.5). Pristane and phytane become more 

enriched in D with increasing maturity, while the n-alkanes generally remain at a 

constant composition, until late maturity (%Ro = 1.13) where there is a significant 

enrichment of D (ca. 42‰) in n-alkanes. This indicates that primary n-alkane D/H 

signatures are probably best preserved in immature sediments, with enrichment in D 

occurring at higher maturities attributed to isotopic exchange associated with 

maturation reactions (Sec. 5.1.1.3). Thus the biological δD signature is lost at high 

maturity levels. It is evident that the isoprenoids become enriched in D more rapidly 

than the n-alkanes, suggesting that isotopic enrichment (hydrogen isotopic exchange) 

occurs via a mechanism that proceeds faster with compounds containing tertiary 

carbon centres. One could envisage a mechanism involving carbocation-like 

intermediates, since carbocation formation is more favourable with molecules 

containing tertiary carbon centres compared to straight-chain molecules with only 

primary and secondary carbons. Further discussion of potential mechanisms is 

provided in Section 5.2.5. 

The δD values of n-alkanes from the nine extracts average between -158 and 

-96‰ (range of δD values of n-alkanes for each sample is shown in Table 5.4). 

Based on bulk isotopic measurements of crude oils generated from marine source 

rocks, Santos Neto and Hayes (1999) suggested that marine-derived n-alkanes are 

likely to have δD values near -150‰ if no significant isotopic exchange has occurred 

as a result of secondary reactions. Indeed, the natural hydrogen isotopic fractionation 

between environmental water and n-alkyl lipids biosynthesized by autotrophs is 

approximately -147±5‰ (Smith and Epstein, 1970), and the isotopic composition of 

ocean water is near 0‰ (see Chapter 4). The δD values measured for n-alkanes from 

the immature-early mature sediments analysed in this study average -158 to -132‰, 

respectively, consistent with that expected for marine-derived organic matter. The 

samples of higher maturity, however, contain n-alkanes that are somewhat more 

enriched in D (mature-late mature, averaging -126 to -96‰, respectively), with the 

exception of Yardarino 2 7512.5 ft (averaging -144‰).  

There is compelling evidence that hydrogen exchange significantly alters the D/H 

composition of sedimentary organic matter during thermal maturation (e.g. Hoering, 

1977; Rigby et al., 1981; Smith et al., 1982; Li et al., 2001; this study). However, 

kinetic isotope effects associated with thermal cracking of hydrocarbons might also 
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play a role. Tang et al. (2005) proposed a quantitative kinetic model to simulate the 

large D (and 13C) enrichments observed in n-alkanes during artificial thermal 

maturation of a North Sea crude oil under anhydrous, closed-system conditions. 

Under the conditions used, the average n-alkane δD values increased by ~50‰ at an 

Re of 1.5%. In addition, the amount of D-enrichment increased with increasing n-

alkane carbon number, thought to be a combined result of greater thermal cracking of 

longer-chain n-alkanes, and the generation of isotopically lighter, shorter-chain 

compounds (Tang et al., 2005). While the data reported by Tang et al. (2005) are 

consistent with changes in D/H compositions observed during the natural maturation 

of sedimentary organic matter, it is difficult to envisage how a process such as 

thermal cracking could produce consistent δD values in n-alkanes and isoprenoids in 

samples (regardless of age and maturity) from various geological locations 

worldwide (e.g. see above). Therefore, it is suggested that hydrogen exchange, and 

the associated equilibrium isotope effects, is the primary process in determining the 

D/H composition of mature sedimentary organic matter. 

Figure 5.6 is a depth profile of the average δD value of the n-alkanes, and the δD 

values of pristane and phytane from the Perth Basin sediments. The general trend of 

D-enrichment with depth/maturity is clearly evident in both compound classes, with 

the rate of enrichment being more rapid in isoprenoids relative to n-alkanes. The 

figure also clearly shows that the δD values of pristane and phytane change in a 

similar fashion with maturation, suggesting they exchange hydrogen at similar rates. 
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Figure 5.6 A depth profile of the average δD value of n-alkanes, and the δD value of pristane and 
phytane from the Perth Basin sediments (Table 5.4). 
 
 

 

Of course, it is possible (although unlikely) that the n-alkanes and isoprenoids 

exchange hydrogen at the same rate. In such a case, the observed change in the δD 

values of the n-alkanes and the isoprenoids would be consistent with the extent to 

which the compounds are out of isotopic equilibrium (A.L. Sessions, personal 

communication). For example, if the equilibrium fractionation between 

pristane/phytane and the matrix of exchangeable hydrogen was, say -110‰, then we 

might expect the δD values of pristane and phytane to change markedly from the 

initial δD value of around -250‰ with ongoing exchange. However, the δD values of 

the n-alkanes would probably change only by a small amount (relative to the change 

in δD values of pristane and phytane) with ongoing exchange, considering that the 
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average initial δD value of the n-alkanes is around -150‰. In other words, for a 

given increment in hydrogen exchange, there is a larger change in the δD value of 

the isoprenoids compared to that of the n-alkanes, even though the two compound 

classes hypothetically exchange hydrogen at the same rate. This notion is depicted in 

Figure 5.7. 

 

 

(a) (b) 

Figure 5.7 Plot of hypothetical data for (a) δD value versus fraction of total hydrogen exchanged, and 
(b) δD value versus elapsed time (half-lives) for an n-alkane and an isoprenoid (A.L. Sessions, pers. 
comm.). 
 

 

5.2.3.2 Vulcan Sub-basin sediments 

The range of δD values of n-alkanes (ca. C13 to C31), and the δD values of 

pristane and phytane from extracts of the Vulcan Sub-basin sediments are 

summarized in Table 5.5. The δD values of n-alkanes from the eight Paqualin-1 

extracts average between -136 and -108‰, and the n-alkanes from the eight 

Vulcan-1B extracts average between -146 and -110‰ (Figure 5.8). The δD values of 

n-alkanes extracted from the sediments of lowest maturity are consistent with a 

marine source, i.e. marine mudstones of the lower Vulcan Formation, while the 

samples of higher maturity contain n-alkanes that are somewhat more enriched in D. 

The δD values of pristane and phytane in the Paqualin-1 samples average between 

-165 and -68‰, and in Vulcan-1B between -166 and -105‰ (Table 5.5). The 
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difference between the δD values of the n-alkanes and regular isoprenoids decreases 

with increasing maturity. Pristane and phytane are more rapidly enriched in D with 

ongoing maturation, similar to that observed in the Perth Basin. The enrichment of D 

in hydrocarbons from Paqualin-1 appears to occur at lower maturity (based on Ro) 

compared to Vulcan-1B and Perth Basin sediments. In particular, from the shallowest 

Paqualin-1 sample (3159m, %Ro = 0.62) to the sample immediately below (3354m, 

%Ro = 0.8), there is a significant enrichment of D in pristane and phytane (ca. 60‰), 

resulting in a change in ∆δD value from -29 to +21‰. This is not consistent with 

samples of corresponding maturity (i.e. similar Ro) from Vulcan-1B and the Perth 

Basin. The significantly positive ∆δD values are maintained in the deeper, more 

mature Paqualin-1 samples. It appears that the Paqualin-1 sediments below ~3159 m 

are more mature than indicated by Ro values, suggesting that the available Ro data do 

not accurately reflect maturity in this case. Although maturity is the most likely 

explanation for the observed differences between the δD values of isoprenoids and 

n-alkanes from Paqualin-1, alternatively the isoprenoids from the least mature 

Paqualin-1 sample may be derived from a different or additional relatively 

D-depleted source. Pristane and phytane extracted from a post-mature Paqualin-1 

sediment (%Ro = 1.6) are significantly enriched in D (ca. 40‰) relative to the 

n-alkanes. This indicates that D-enrichment persists at very high maturity, and 

continues to be more rapid for regular isoprenoids than n-alkanes. Published 

equilibrium fractionation factors between C-bound hydrogen and water for primary, 

secondary and tertiary C-H (Sessions et al., 2004 and references therein) do not 

allow for more positive δD values for isoprenoids relative to n-alkanes. However 

uncertainties in these data are very large, and the approach used to calculate the 

factors did not take into account the isotope effects associated with solubility and 

adsorption processes, which could be important factors to consider in sedimentary 

organic matter (Sessions et al., 2004). Furthermore, the experiments performed to 

measure equilibrium fractionations were exchange reactions catalysed by enzymes at 

35ºC, with no data available to extrapolate the results to other temperatures (Sessions 

et al., 2004). The field data presented herein indicate that the δD values of 

isoprenoids can be more positive than n-alkanes, however there is a need for further 

experimental and more comprehensive field data to support this finding. The data 

presented herein also provide further evidence that free-radical hydrogen transfer is 

81 



  Chapter 5 

unlikely to have caused the observed shift in δD values of isoprenoids and n-alkanes. 

The current understanding of free-radical hydrogen transfer suggests that n-alkanes 

could be affected to a larger extent than regular isoprenoids by such a process 

(Pedentchouk et al., 2006). Thus, significant D-enrichment in regular isoprenoids is 

more likely to be a result of H/D exchange reactions which favour the primary and 

secondary carbons adjacent to tertiary carbon centres (see also Sec. 5.2.5 and 5.2.6). 

Pristane is enriched in D relative to phytane by up to 22‰ throughout the 

Paqualin-1 sequence, while a similar trend is evident in Vulcan-1B where pristane is 

enriched by up to 26‰ relative to phytane (Table 5.5). This is opposite to the trend 

observed for the Perth Basin samples, where pristane is consistently depleted in D 

relative to phytane, but again indicates that pristane and phytane exchange hydrogen 

at similar rates during maturation. The enrichment of D in pristane relative to 

phytane in the Vulcan Sub-basin sediments could be attributed to a lower relative 

algal input to the isoprenoids in these samples. This is opposite to that observed in 

the Perth Basin samples (see Sec. 5.2.2.1 and 5.2.2.2), where they are considered to 

be from a dominant algal source. Indeed, a significant terrestrial (higher plant) source 

may have contributed to the pristane of Paqualin-1, considering that tocopherol 

(XVI) of higher plants is another natural product precursor of pristane (Goosens et 

al., 1984). This higher plant source of pristane could be relatively enriched in D as a 

result of the evapotranspiration isotope effects that occur in plants (see Chapter 4). 

Figure 5.8 shows two depth profiles of the δD values of the n-alkanes (average), 

pristane and phytane from the Paqualin-1 (a), and Vulcan-1B (b) sediment extracts. 

Again, the general trend of D-enrichment with depth/maturity is clearly evident, with 

the enrichment being more marked in isoprenoids relative to n-alkanes. The figure 

also shows that the δD values of pristane and phytane change in a similar fashion 

with maturation, suggesting they exchange hydrogen at similar rates. 
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Table 5.5 δD values of n-alkanes (range), pristane (Pr) and phytane (Ph), and ∆δD values (see below 
for definition). 
 
Well, Depth (m) n-Alkanes 

δD Range (‰)*

δD Pr (‰)* δD Ph (‰)* ∆δD (‰) 

     

Paqualin-1     

3159 -145 to -129 (6)3 -158 (5)4 -172 (4)4 -29 

3354 -143 to -92 (6)3 -105 (6)5 -109 (4)5 21 

3402 -129 to -112 (5)3 -110 (3)5 -112 (5)5 11 

3444 -138 to -109 (8)5 -112 (5)3 -114 (3)3 13 

3504 -129 to -106 (9)4 -89 (5)3 -97 (5)3 27 

3594 -125 to -106 (3)4 -88 (3)3 -94 (5)3 27 

3654 -115 to -96 (5)3 -87 (2)3 -99 (1)3 13 

3864 -117 to -92 (8)3 -57 (4)5 -79 (5)5 40 

     

Vulcan-1B     

3014 -154 to -125 (5)3 -168 (9)3 -165 (7)3 -21 

3155 -150 to -123 (6)3 -169 (9)3 -178 (11)3 -34 

3240 -142 to -119 (5)3 -125 (5)3 -129 (3)3 8 

3292 -141 to -124 (3)3 -136 (8)3 -148 (8)3 -9 

3380 -130 to -105 (3)3 -119 (8)3 -126 (3)3 -1 (0) 

3444 -123 to -104 (3)3 -100 (3)4 -126 (8)3 3 (0) 

3624 -117 to -101 (8)3 -110 (15)4 -116 (3)4 -3 (0) 

3679 -120 to -107 (6)3 -102 (4)3 -108 (7)3 9 

∆δD, difference between the average δD value of Pr and Ph and the average δD value of the n-alkanes 
(relative to VSMOW); * Numbers in parentheses are standard deviations (average is shown for n-
alkanes), superscript numbers are number of replicate analyses. 
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Figure 5.8 Depth profiles of the δD values of n-alkanes (average), pristane and phytane from (a) 
Paqualin-1 and (b) Vulcan-1B sediment extracts. * Ro data extrapolated from a thermal geohistory 
model (Kennard et al., 1999). 
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5.2.3.3 Other sedimentary sequences 

Since publication of the δD analysis of samples from the Perth Basin described 

above (Dawson et al., 2005a, 2005b), similar research outcomes have been reported 

and published on other samples from various locations worldwide (Radke et al., 

2005; Pedentchouk et al., 2006). 

Radke et al. (2005) investigated the influence of thermal maturity on the δD 

values of saturated hydrocarbons (n-alkanes and isoprenoids) from two sediment 

sections from Poland (Kupferschiefer) and Germany (Posidonia Shale). The Early 

Permian Kupferschiefer (KS) samples covered a maturity range from early mature to 

late mature (%Ro = 0.65 – 1.3), and the Jurassic Posidonia Shale (PS) samples from 

immature to late mature (%Ro = 0.48 – 1.06). The δD values of n-alkanes from the 

KS samples average between -136 and -72‰, while the n-alkanes from the PS 

samples average between -167 and -100‰. The n-alkanes in the most mature KS 

sample were enriched in D by 37‰ relative to an early mature sample, while the 

n-alkanes in the most mature PS sample were enriched in D by ca. 67‰ relative to 

those from the immature sample. The δD values of pristane and phytane in the KS 

samples average between -275 and -81‰, and in PS samples between -317 and 

-123‰, the isoprenoids in the more mature samples being enriched in D. The 

n-alkanes and isoprenoids all become enriched in D with increasing maturity, with 

D-enrichment being more rapid for the isoprenoids compared to the n-alkanes. 

A similar trend of enrichment of deuterium in n-alkanes and isoprenoids was 

seen by Pedentchouk et al. (2006), who studied a continuous 450 m core of Early 

Cretaceous, lacustrine sediments from West Africa. The sediments covered a 

maturity range from immature to early mature (%Ro ~ 0.55 – 0.7). The δD value of 

the C17 n-alkane ranges between -135 and -90‰, and is most enriched in D in the 

samples of highest maturity. The δD values of pristane and phytane fall between 

-230 and -110‰ over the maturity range. 

 

5.2.4 Comparison of δD values to traditional molecular maturity parameters 

A comparison of δD values of individual compounds to traditional maturity 

parameters, such as Ro and various molecular parameters was undertaken in order to 

further assess whether changes in D/H composition are related to maturation. The 
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parameters were calculated using the areas under relevant peaks in a GC-MS total-

ion chromatogram (or extracted ion chromatograms where applicable). 

 

5.2.4.1 Perth Basin 

For reasons unknown, the majority of commonly used molecular maturity 

parameters calculated for the Perth Basin sediments were anomalous, evident from 

their lack of correlation with equivalent vitrinite reflectance (Re). The anomalous 

parameters included the saturated molecular parameters based on the C31–C35 17α-

hopanes [22S/(22S+22R)], and C29 5α,14α,17α(H)-steranes [20S/(20S+20R)]; and 

the aromatic molecular parameters such as those based on the distribution of 

phenanthrene and the methylphenanthrene isomers (e.g. MPI-1; Appendix 1), and the 

distributions of dimethylnaphthalenes (e.g. DNR-1; Appendix 1) and 

trimethylnaphthalenes (e.g. TNR-1; Appendix 1). However, the maturity parameter 

based on the 18α(H)- and 17α(H)-trisnorhopanes (Ts/(Ts+Tm); Appendix 1) (Seifert 

and Moldowan, 1978) was calculated and appeared to reflect the relative maturities 

of the samples (Table 5.1). This traditional biomarker maturity parameter has been 

plotted against the Re values in Figure 5.9a, for each of the Perth Basin sediments. 

Ts/(Ts+Tm) correlates well with the Re values (R2 = 0.8). Figure 5.9b displays a plot 

of the average δD value of pristane and phytane versus the Re values for each of the 

nine sediments. The average δD values of pristane and phytane also correlate well 

with the Re values (R2 = 0.76; Fig. Figure 5.9b), clearly showing that the isotopic 

enrichment in the isoprenoids is proportional to maturation. 
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Figure 5.9 Plot of (a) Ts/(Ts+Tm), and (b) average δD value of pristane (Pr) and phytane (Ph), versus 
the equivalent vitrinite reflectance (Re) values for the Perth Basin sediments. 
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5.2.4.2 Vulcan Sub-basin 

Various molecular maturity parameters were calculated for the Paqualin-1 and 

Vulcan-1B sediment extracts. The saturated hydrocarbon parameters were not useful 

in this case because many of the required components (e.g. hopanes and steranes) 

were not detected in the more mature samples. However, the aromatic molecular 

parameters MPI-1 (Radke and Welte, 1983) and TNR-1 (Alexander et al., 1985) 

appear to reflect the relative maturities of the Paqualin-1 sediments, and correlate 

strongly with Ro (R2 = 0.81 and 0.87, respectively; see Figure 5.10).  
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Figure 5.10 Plot of (a) trimethylnaphthalene ratio (TNR-1), and (b) methylphenanthrene index (MPI-
1), versus vitrinite reflectance (Ro) values for the Paqualin-1 sediment extracts. The direction of the 
arrow indicates increasing maturity. 
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Figure 5.11 displays plots of Ro (a), TNR-1 (b) and MPI-1 (c), versus the average 

δD value of pristane and phytane for the Paqualin-1 sediment extracts. The least 

mature Paqualin-1 sample (3159m, Ro = 0.62) plots as an outlier on all three due to a 

marked depletion of D in pristane and phytane, which could be attributed to an 

additional or different input to the isoprenoids in this sample. Excluding this outlier, 

the average δD values of pristane and phytane correlate strongly with Ro, TNR-1 and 

MPI-1 (R2 = 0.79, 0.75 and 0.86, respectively). 
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Figure 5.11 Plot of (a) vitrinite reflectance (Ro), (b) trimethylnaphthalene ratio (TNR-1), and (c) 
methylphenanthrene index (MPI-1), versus the average δD value of pristane and phytane for the 
Paqualin-1 sediment extracts. The direction of the arrow indicates increasing maturity. 
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The aromatic molecular parameter MPI-1 appears to reflect the relative 

maturities of the Vulcan-1B sediments. Figure 5.12 displays plots of Ro and MPI-1 

versus the average δD value of pristane and phytane for the Vulcan-1B sediment 

extracts. The two least mature Vulcan-1B samples (3014 m and 3155m, Ro = 0.69 

and 0.77, respectively) plot as outliers due to a marked depletion of D in pristane and 

phytane. This is similar to the least mature sample in the Paqualin-1 well (see above), 

and could also be attributed to an additional or different input to the isoprenoids. The 

average δD values of pristane and phytane correlate strongly with Ro and MPI-1 (R2 

= 0.70 and 0.76, respectively). These data provide further evidence that the isotopic 

enrichment in isoprenoids is proportional to maturation within the investigated range 

of maturity. 
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Figure 5.12 Plot of (a) vitrinite reflectance (Ro), and (b) methylphenanthrene index (MPI-1), versus 
the average δD value of pristane and phytane for the Vulcan-1B sediment extracts. The direction of 
the arrow indicates increasing maturity. 
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5.2.5 Possible mechanisms of hydrogen exchange during maturation 

A number of simple mechanisms of hydrogen exchange (and associated 

D-enrichment) have been put forward based on artificial maturation experiments. 

Hoering (1984) suggested thermal generation of organic free radicals from the 

kerogen (e.g. see (2) below), followed by successive, multiple exchange with D2O. In 

summary, organic (alkyl) free radicals and hydrogen atoms can be formed via 

thermal cleavage of bonds in the kerogen. Free radical reactions can then propagate 

to yield hydrocarbons with multiple deuterated sites. The suggested source of 

deuterium for organic deuteration is heavy water (HDO, D2O), which could 

exchange with a hydrogen radical (1). Propagation steps could involve the generation 

of an alkene and a hydrogen atom from an alkyl free radical (2), with the alkene then 

being susceptible to attack by a deuterium atom (3). This would result in migration of 

the radical site to form a secondary free radical, which could in turn form an 

isomerised alkene (4) for further deuteration. Alkene isomerisation and free radical 

site migration could continue (5) until termination of the free radical reaction via e.g. 

radical recombination. The net process is summarised in (6). 

 

 

91 



  Chapter 5 

H2
C

H2
C C

.
R

H2
C

H
C CH2R

H

H

+ H
.

H2
C

H
C CH2R + D

. H2
C C CR + H

.
H

.

H2
C C CR

H

.
H
C

H
C CR + H

.

H
C

H
C CR + D

.

H
.

+ D2O D
.

HDO+

CHmDn CHm-1Dn+1

[D]

(1)

(2)

(3)

(4)

H

H

D

H

H

D

[D]

H

H

D

H

H

D

(Formed via thermal
destruction of kerogen)

 

Ross (1992) re-evaluated the mechan

suggested that the initial propagation ste

D2O occurs (1) is an unlikely process. In

such as phenols, carboxylic acids or H2S

resulting deuterated species can take pa

radicals formed from the thermal destruc

the mechanism put forward by Hoering (

the position and relative amount of deute
.

C C CR

H

D

H

. (5)

H

H

D

.

CHm-2Dn+2

[D]
etc. (6)

 

 (Hoering, 1984) 

ism proposed by Hoering (1984). Firstly, he 

p where radical displacement of D· by H· in 

stead, Ross (1992) suggests that substances 

 can exchange ionically with D2O, and the 

rt in free radical H/D exchange with alkyl 

tion of kerogen. A numerical simulation of 

1984) produced a series of profiles showing 

rium substitution in n-alkanes. It was shown 

92 



  Chapter 5 

that there were marked differences between the natural and simulated profiles, the 

statistically derived distributions being much narrower than the natural distributions. 

This provided statistical evidence against homogeneous, single-site, sequential H/D 

exchange. Instead, Ross (1992) suggested that the deuterated n-alkanes are generated 

by a series of multiple exchanges taking place simultaneously at various sites along 

the carbon chain, possibly occurring at the organic-mineral interface. The 

mechanistic details are not discussed, however hydrogen exchange at clay mineral 

surfaces has been studied previously by Alexander et al. (1984). The mechanism 

they propose for a branched alkyl moiety (Figure 5.13) is firstly, interaction of the 

moiety with a Lewis acid site on the clay surface which polarises a carbon-hydrogen 

bond, generating a carbocation-like species. Hydrogen attached to a tertiary carbon 

will interact preferentially with the clay to form a carbocation-like species of higher 

stability than one formed at a secondary or primary carbon. This interaction results in 

enhanced acidity of the hydrogen attached to carbons that are adjacent to tertiary 

carbon centres, making them susceptible to exchange with other hydrogen present in 

the system. Exchange is thought to occur via an adsorbed alkene-like intermediate 

(e.g. Figure 5.13), which is stabilised by conjugated substituents (Morrison and 

Boyd, 1992). Pristane contains four tertiary carbon atoms, each with hydrogen that 

could preferentially interact with Lewis acid sites on clay surfaces, and therefore 

promote hydrogen exchange at various positions in the pristane molecule (e.g. Figure 

5.14). 
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Figure 5.13 Reaction mechanism for clay-catalysed hydrogen exchange in a branched alkyl moiety 
(Alexander et al., 1984). 
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Figure 5.14 Adsorption of the tertiary C-bound hydrogen atoms in pristane onto a clay surface. The 
hydrogen in red is susceptible to exchange via the mechanism shown in Figure 5.13. 

 

 

The possibility of hydrogen exchange occurring at various positions in the 

pristane molecule is supported by Hoering (1984), who reported a bimodal 

D-substitution profile with maxima at D0 (no deuterium substitution) and D7 (7 

atoms of deuterium substituting for hydrogen), indicating there is different rates of 

exchange at two different sites in the molecule.

An overall hydrogen exchange mechanism suggested by Leif and Simoneit 

(2000) involved breakdown of kerogen via free radical hydrocarbon cracking to form 

n-alkanes and terminal n-alkenes, followed by rapid isomerisation of the terminal 

n-alkenes to internal n-alkenes via ionic acid-catalyzed isomerisation. The latter 

provides a mechanism for exchange taking place simultaneously at various sites 

along a carbon chain as suggested by Ross (1992) (see above). Upon saturation of the 

internal n-alkenes, n-alkanes with water-derived deuterium would be formed, 

preventing further exchange via isomerisation. A range of potential mechanisms of 

hydrogen exchange in moieties derived from a hypothetical kerogen molecule is 

displayed in Figure 5.15. 
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Figure 5.15 Potential mechanisms of hydrogen exchange in chemical moieties derived from kerogen 
including primary, secondary or tertiary aliphatic C-bound hydrogen; aromatic C-bound hydrogen; 
and N, O, S-bound hydrogen (Schimmelmann et al., 2006). 
 

5.2.6 Stereochemistry as a proxy for hydrogen exchange 

Structural changes of molecules, such as stereochemical inversion or 

rearrangement of chiral compounds, could provide insight into the mechanism of 

hydrogen exchange in natural samples. The work by Alexander et al. (1984) 

proposes a mechanism for clay-catalysed alkyl hydrogen exchange (summarised 

above, Figure 5.13) where it is implicit that the clay-adsorbed intermediate is alkene-

like and planar, but not free of the surface. This implies that, if the adsorbed 

hydrogen was attached to an asymmetric carbon, isomerisation of this chiral centre 

would not be possible. Indeed, Alexander et al. (1984) have shown that hydrogen 

exchange in pristane is most rapid at positions adjacent to tertiary carbon centres, 

indicating that the carbocation-like intermediate forms preferentially at the tertiary 

carbon and exchange is facilitated at the primary and secondary carbon atoms. No 

detectable exchange was observed at the tertiary carbons in pristane under the 

conditions used (see Sec. 5.1.1.1). To support the lack of exchange at tertiary 

carbons, Alexander et al. (1984) analysed the diastereomers of pristane using high-
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resolution GC and found that there was no change in their relative abundance, 

indicating that no significant isomerisation had occurred at the two chiral carbons. 

However, pristane and phytane epimerisation appears to occur in sediments at a 

relatively fast rate (Patience et al., 1978; Hansen et al., 2003; this study). In order to 

study this further in natural systems, measurement of the ratios of the diastereomers 

of pristane and phytane in the Perth Basin and Vulcan Sub-basin sediment extracts 

was undertaken. 

The pristane molecule is symmetrical, with two chiral centres at C-6 and C-10 

giving rise to three diastereomers (VI), 6(R),10(R)-pristane (RR); 6(S),10(S)-pristane 

(SS) and 6(R),10(S)-pristane (RS, meso). All three can be found in sedimentary 

organic matter, but only meso-pristane retains the configuration of the precursor and 

the RR and SS enantiomers are suggested to form from the isomerisation of the meso 

compound during maturation (Patience et al., 1978). For example, the immature 

Messel shale (Eocene, Germany) contains only meso-pristane, while the thermally 

mature Irati shale (Permian, Brazil) contains a 1:1 mixture of the meso and RR/SS 

isomers respectively (Patience et al., 1978). Isomerisation of the chiral centres of 

pristane would inherently involve a hydrogen exchange process, and possible 

mechanisms are discussed in other sections (Sec. 5.2.5 and 5.2.6.3). Phytane has 

three chiral centres at C-6, C-10 and C-14, giving rise to eight diastereomers (III), 

with the eight possible configurations at the chiral centres being RRR, SSS, RRS, SSR, 

RSR, SRS, SRR and RSS, respectively. All eight have been reported to occur in 

sedimentary organic matter (Patience et al., 1980). The diastereomers of pristane and 

phytane co-elute on GC columns using conventional techniques. The GC method 

used in this study (see Chapter 3) allowed partial separation of the diastereomers 

(Hansen et al., 2003). This method was developed from the work of Cox et al. 

(1974), who similarly achieved partial peak separation of the diastereomers of 

pristane, and found that the two enantiomers RR and SS co-elute as the first peak and 

the RS isomer (meso compound) as the second (e.g. Figure 5.16a). Under the GC 

conditions used for this study, all eight diastereomers of phytane elute as two 

partially resolved peaks (e.g. Figure 5.16a), each presumably containing four 

diastereomers. 

Hansen et al. (2003) studied the effects of maturation and biodegradation on the 

diastereomers of pristane and phytane. They introduced the parameters PrDR 

97 



  Chapter 5 

(pristane diastereomer ratio) and PhDR (phytane diastereomer ratio). The former is 

calculated by dividing the area under the meso-pristane peak of the doublet by the 

area under the peak representing the RR and SS enantiomers formula (i.e. 

RS/(RR+SS). However, for the purpose of this study and for easier comparison to 

PhDR, we will represent PrDR as the area under the peak representing the RR and SS 

enantiomers divided by the area under the meso-pristane peak, i.e. (RR+SS)/RS 

(denoted as PrDR’). PhDR is calculated by dividing the area under the left peak by 

the area under the right peak of the phytane doublet (Hansen et al., 2003). 

It would be most suitable to use pristane rather than phytane for the purpose of 

monitoring relative abundances of diastereomers, since pristane has a lower number 

of isomers and their elution characteristics have been established. The diastereomer 

analysis of Perth Basin samples presented in Dawson et al. (2005a) denoted that the 

calculated PrDRs were anomalous, attributed partially to the lower chromatographic 

resolution of the pristane diastereomers relative to those of phytane (e.g. Figure 

5.16a). The method of analysis has since been refined (see Chapter 3) resulting in an 

improvement of separation of the pristane (and phytane) diastereomers (compare 

Figure 5.16a and Figure 5.16b), therefore the samples have been re-analysed and the 

new data are presented herein. 
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Figure 5.16 Separation of the diastereomers of pristane and phytane using gas chromatography. The 
conditions (also see Chapter 3) were (a) Column: SGE BP-5, 50 m x 0.15 mm i.d., 0.25 µm film 
thickness (f.t.); Temperature program: 50 to 145ºC at 1ºC min-1, isothermal (60 min), then 145 to 
290ºC at 5ºC min-1, isothermal (15 min) (initial conditions); and (b) Column: J&W Scientific DB-
5MS, 60 m x 0.25 mm i.d., 0.25 µm f.t.; Temperature program: 50 to 145ºC at 1ºC min-1, isothermal 
(60 min), then 145 to 300ºC at 5ºC min-1, isothermal (40 min) (improved conditions). Conventional 
chromatographic resolution (R) is calculated using the equation R = [2(tR,X – tR,Y)]/(Wb,X + Wb,Y), 
where tR is the retention time, and Wb is the peak width at baseline, of components X and Y. 

 

 

Crocetane (XVII) is present in some sediment extracts and crude oils and has 

been shown to coelute with phytane (Barber et al., 2001), and can therefore interfere 

with the calculation of PhDR. The Perth Basin sediments used for this study are 

known not to contain crocetane (K. Grice, pers. comm.), despite its previous 

identification in shallower (681.2–681.5m and 856.7–856.8m) BMR-10 (Perth 

Basin) bitumen (Greenwood and Summons, 2003), and several Perth Basin crude oils 

(Barber et al., 2001; Greenwood and Summons, 2003). The Vulcan Sub-basin 

sediments are also known not to contain crocetane (K. Grice, pers. comm.). 
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5.2.6.1 Perth Basin sediments 

The plots in Figure 5.17 show (a) PrDR’ versus the δD value of pristane, and (b) 

PhDR versus the δD value of phytane, for each of the Perth Basin samples. With a 

progressive enrichment of D in pristane and phytane, PrDR’ and PhDR increase and 

approach value of 1 from initial values of 0.71 and 0.77 respectively. The values 

increase in a linear fashion with a moderate-strong relationship (R2 = 0.74 and 0.95 

for PrDR’ and PhDR respectively) up to PrDR’ and PhDR values of 0.93 and 0.95, 

respectively for two late-mature samples. Patience et al. (1978) suggested that an 

equilibrium mixture of approximately 1:1 of the RS and RR/SS diastereomers of 

pristane would be reached as a result of conversion due to maturation. They 

suggested this loss of stereospecificity with increasing maturity to be analogous to 

that observed with hopanes. Using pristane as a model, an equilibrium mixture of the 

diastereomers of phytane can be expected in crude oils and mature sediments. In fact, 

Patience et al. (1980) separated the diastereomers of phytane in a crude oil into two 

partially resolved peaks with a 1:1 ratio, and Mackenzie et al. (1980) found that the 

extent of isomerisation of phytane with maturation appeared to be virtually identical 

to that of pristane. 

The values of PrDR’ and PhDR obtained from the immature Perth Basin 

sediments (0.71 and 0.77 respectively) suggest that significant epimerisation has 

already occurred. For example, a PrDR’ of 0.71 indicates that the diastereomer 

mixture consists of approximately 40% of the RR and SS isomers and 60% of the 

meso isomer. Hence, there has been approximately 70% conversion of meso-pristane 

to RR- and SS-pristane in these immature samples, even though pristane appears to 

have largely retained the isotopic composition of its precursor (see Sec. 5.2.3.1). The 

degree of conversion approaches 85–90% at an early mature level. Indeed, the extent 

of isomerisation would suggest significant hydrogen exchange has occurred and thus 

significant scrambling of indigenous δD signatures would be expected. This is not 

the case with immature and early mature Perth Basin samples (Sec. 5.2.3.1). 
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Figure 5.17 Plot of (a) the δD value of pristane versus the pristane diastereomer ratio (PrDR’) and (b) 
the δD value of phytane versus the phytane diastereomer ratio (PhDR) for the Perth Basin samples. 
 
 
 

5.2.6.2 Vulcan Sub-basin sediments 

The plots in Figure 5.18 show (a) PrDR’ versus the δD value of pristane, and (b) 

PhDR versus the δD value of phytane, for the Paqualin-1 and Vulcan-1B sediment 

extracts, superimposed on the data obtained from the Perth Basin sediment extracts. 

It is evident that both PrDR’ and PhDR for the Vulcan Sub-basin sediments plot in 

the top right-hand area of the chart, indicating significant epimerisation of pristane 

and phytane in these samples. Indeed, 85–90% epimerisation of pristane and phytane 

is evident in the least mature sample in the Vulcan Sub-basin set (early mature, %Ro 
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= 0.62). This is consistent with results obtained from the Perth Basin samples (Sec. 

5.2.6.1), where 85–90% epimerisation had also occurred in early mature samples. 
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Figure 5.18 Plot of (a) the δD value of pristane versus the pristane diastereomer ratio (PrDR’) and (b) 
the δD value of phytane versus the phytane diastereomer ratio (PhDR) for the Vulcan Sub-basin 
sediment extracts, superimposed on the data obtained from the Perth Basin sediment extracts. 
 

5.2.6.3 Mechanism 

The analysis of the diastereomers of pristane and phytane described above 

confirms that significant epimerisation of the natural pristane and phytane 

diastereomers occurs relatively early in the maturation process. However, the δD 
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values of pristane and phytane in immature samples suggest that they retain the 

isotopic composition of their precursors (Sec. 5.2.3). 

Isomerisation of the chiral centres of optically active compounds inherently 

involves a hydrogen exchange process. A mechanism proposed by Patience et al. 

(1978) for the isomerisation of pristane, similar to that suggested by Ensminger 

(1977) for the loss of stereospecificity of hopanes, involves abstraction by a 

carbocation of a hydride ion at the chiral carbon, with the carbocation being formed 

in the presence of a Lewis acid catalyst (e.g. clay mineral) and a proton donor. The 

resulting tertiary carbocation could then isomerise and abstract a hydride ion from a 

donor molecule to form a different diastereomer. Alternatively, the isomerised 

carbocation could lose H+ to form an alkene, and then reduction at the appropriate 

position would give the same net result (Patience et al., 1978). Presumably, the same 

mechanism would be applicable to the isomerisation of phytane. The experiments 

performed by Alexander et al. (1984) indicated that a free carbocation was not 

formed and there was no increase in the abundance of the RR or SS diastereomers 

relative to the meso isomer. This clearly showed that under the conditions where 

appreciable exchange was shown to occur at both primary and secondary carbons, no 

significant isomerisation had occurred at the two chiral centres. The absence of 

epimerisation, and therefore (presumably) hydrogen exchange at the tertiary carbons 

in pristane, is not consistent with observations from the natural geochemical 

maturation of sedimentary organic matter (Patience et al., 1978; Hansen et al., 2003; 

this study). Thus, a mechanism is proposed which can account for both hydrogen 

exchange and epimerisation in the sedimentary environment (Figure 5.19), extending 

on the work by Alexander et al. (1984). 
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Figure 5.19 Mechanism of hydrogen exchange (after Alexander et al., 1984), and epimerisation of a 
chiral centre, where R’ ≥ R in terms of substituent priority, and R ≠ CH3. * denotes a chiral centre. 
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In the proposed mechanism (refer to Figure 5.19), a chiral compound approaches 

the clay surface (1) and one of the hydrogen atoms bound to the tertiary (chiral) 

carbon adsorbs to the positively-charged clay surface (2). This permits a positive 

charge to develop at the tertiary carbon, facilitating the formation of an intermittent 

alkene structure (3). The hydrogen attached to the carbon adjacent to the tertiary 

carbon may then detach, and exchange with other 1H or D atoms in the system (4). 

The resulting sp2 hybridised tertiary carbocation (5) may then undergo 1H (or D) 

reattachment resulting in additional hydrogen exchange along with epimerisation of 

the chiral centre (6). 

In summary, while significant epimerisation of pristane (e.g. 70–75% conversion 

of meso-pristane to RR/SS-pristane) and phytane appears to occur early in 

maturation, continuing epimerisation (from 80–95% conversion) has been shown to 

be directly related to a progressive enrichment of D in pristane and phytane with 

increasing maturity (from immature to late mature). However, the epimerisation 

mechanism appears not to be a significant process in altering the δD values of 

pristane and phytane during early maturation. Two immature Perth Basin samples 

(%Ro = 0.53), after 70–75% epimerisation, contain pristane with a δD value 

indicative of the precursor. Perhaps H/D exchange and epimerisation proceed via 

different mechanisms during the early stages of maturation. 

 

5.3 SIGNIFICANCE 

 

The δD values of the n-alkanes, pristane and phytane (and presumably other 

hydrocarbons) are affected by thermal maturation. The hydrocarbons become 

enriched in D (via hydrogen exchange) with increasing maturity, with the 

isoprenoids becoming enriched more rapidly than the n-alkanes. The results provide 

an insight into chemical processes which may occur in the subsurface during 

petroleum formation and generation. In addition, the results suggest that δD values of 

individual hydrocarbons may be used to assess the thermal maturity of sedimentary 

organic matter. Finally, the results further emphasize the care needed when 

interpreting δD values of hydrocarbons in sediments of high thermal maturity, 

particularly those hydrocarbons with a high reactivity towards H-exchange. It is 
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suggested that samples retaining an offset between the δD values of n-alkanes and 

isoprenoids will have relatively well preserved D/H compositions. 

 

5.4 SUMMARY AND CONCLUSIONS 

 

1. The δD values of n-alkanes from low maturity sediments (immature-early 

mature) are consistent with that expected for predominantly marine-derived 

organic matter, i.e. the Kockatea Shale, a marine sequence of shale and siltstone 

of the Perth Basin, and marine mudstones of the lower Vulcan Formation in the 

Vulcan Sub-basin. 

2. The n-alkanes, pristane and phytane of immature sediments have δD values that 

represent the expected isotopic composition of their precursors, i.e. 

biosynthesised n-alkyl and isoprenoid lipids. With increasing maturity, pristane 

and phytane become rapidly enriched in D while the n-alkanes generally remain 

at a constant isotopic composition, until a mature-late mature level is reached 

where there is a significant enrichment of D in n-alkanes. The enrichment of D in 

hydrocarbons from Paqualin-1 appears to occur at lower maturity (based on Ro) 

compared to Vulcan-1B and Perth Basin sediments. In particular, the shallowest 

to the next Paqualin-1 sample shows a significant enrichment of D in isoprenoids. 

This is not consistent with the results obtained for samples of corresponding 

maturity from Vulcan-1B and the Perth Basin, thus it appears that the deeper 

Paqualin-1 sediments are more mature than suggested by Ro values. 

Alternatively, the isoprenoids from the least mature Paqualin-1 sample may 

derive from an additional, relatively D-depleted source. Pristane and phytane 

extracted from a post-mature Paqualin-1 sediment are significantly enriched in D 

relative to the n-alkanes, indicating that rapid D-enrichment in regular 

isoprenoids continues at very high maturity. This is not consistent with published 

equilibrium fractionation factors between C-bound hydrogen and water for 

primary, secondary and tertiary C-H. It also suggests that free-radical hydrogen 

transfer is unlikely to have caused the observed shift in δD values of isoprenoids 
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and n-alkanes, and instead supports a hydrogen exchange process which occurs 

preferentially at primary and secondary carbons in isoprenoids. 

3. Phytane is enriched relative to pristane in extracts of immature Perth Basin 

sediments, and this signature is retained with ongoing maturation, indicating the 

two isoprenoids exchange hydrogen at similar rates. In the Vulcan Sub-basin, 

pristane is enriched in D relative to phytane throughout the maturity range, 

opposite to that observed in the Perth Basin. The differences in δD values of 

pristane and phytane are suggested to be due to different isotopic effects during 

their derivation from a common precursor, or different sources for the 

isoprenoids. The differences observed between the basins may be attributed to a 

dominant algal source for organic matter in the Perth Basin, with the Vulcan Sub-

basin having a lower relative algal input. 

4. The enrichment of D in pristane and phytane with increasing maturity correlates 

strongly with changes in traditional maturity parameters, providing further 

evidence that D-enrichment is associated with thermal maturation.  

5. Significant epimerisation of pristane and phytane during early maturation 

suggests that hydrogen exchange occurs at the tertiary carbons of these 

hydrocarbons, and that a free carbocation is formed in the process. However, the 

epimerisation mechanism does not appear to be a significant process in altering 

the δD values of pristane and phytane during early maturation, since immature 

samples contain pristane and phytane with δD values which are thought to 

represent isotopic composition of their precursor(s). In the studied range of 

maturity in the Perth Basin, the pristane and phytane diastereomer ratios (PrDR’ 

and PhDR, respectively) correlate linearly with the progressive enrichment of D 

in pristane and phytane. The evidently more mature Vulcan Sub-basin sediments 

have PrDRs and PhDRs which were all close to equilibrium values.  

6. A mechanism has been proposed which can account for both H/D exchange, and 

epimerisation of pristane and phytane in the sedimentary environment. Upon 

interaction with a clay surface, a chiral compound forms an intermittent alkene 

structure via a tertiary carbocation-like species. The hydrogen attached to the 

carbon adjacent to the tertiary carbon may then detach, and exchange with other 
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1H or D atoms. Then the resulting sp2 hybridised tertiary carbocation undergoes 
1H (or D) reattachment resulting in additional hydrogen exchange along with 

epimerisation of the chiral centre. 
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6 STABLE HYDROGEN ISOTOPIC COMPOSITIONS 
OF HYDROCARBONS FOR OIL-SOURCE 
CORRELATION IN AUSTRALIAN PETROLEUM 
SYSTEMS 

 

 

6.1 INTRODUCTION 

 

Oil-source rock correlations are based on the principle that certain compositional 

parameters of migrated crude oils are comparable to those of the bitumen remaining 

in their source rocks (Peters and Moldowan, 1993). To achieve a robust correlation, a 

combination of geochemical parameters are commonly used (e.g. Sec. 6.1.1 and 

6.1.2). Typically, molecular distributions, and/or stable carbon isotopic compositions 

(δ13C) of n-alkanes, have been used to determine whether a genetic relationship 

exists between crude oils and potential source rocks (e.g. Seifert and Moldowan, 

1978; Seifert and Moldowan, 1981; Mackenzie et al., 1982; Summons et al., 1995; 

Boreham et al., 2001; Edwards et al., 2004; Thomas and Barber, 2004). 

The ability to accurately correlate a crude oil to its source rock is important in 

petroleum exploration and production. Oil-source correlations can be used to 

establish and constrain petroleum systems, and in turn improve exploration success. 

There have been only a few reported cases where hydrogen isotopic compositions of 

individual compounds have been used for oil-source correlation purposes, thus the 

robustness of the technique has not been rigorously tested. The present study aims to 

further investigate the potential of δD values of individual compounds in crude oils 

and source rock extracts as an oil-source correlation tool. In this chapter, the 

application of δD values of individual petroleum hydrocarbons for oil-source 

correlation purposes is presented. Crude oils from the Perth Basin (Western 

Australia) and the Vulcan Sub-basin (offshore, Northern Australia) were analysed to 

evaluate their source and thermal maturity and complement previous reported work 

based on molecular distributions and stable carbon isotopic analysis (Summons et al., 

1995; Boreham et al., 2000; Boreham et al., 2001; Edwards et al., 2004). 
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6.1.1 Correlation based on molecular distributions 

Oil-source correlation based on molecular distributions is commonly achieved 

using gas chromatography-mass spectrometry to analyse hydrocarbon fractions from 

crude oils and source rock extracts (e.g. Seifert and Moldowan, 1978; Seifert and 

Moldowan, 1981; Mackenzie et al., 1982; Peters and Moldowan, 1993; Peters et al., 

2005). The distributions of compound classes such as n-alkanes, hopanes, steranes 

and alkylaromatics (e.g. naphthalenes and phenanthrenes), and specific biomarker 

compounds (e.g. isorenieratane; see Chapter 1) can be used for correlation purposes. 

Molecular parameters are routinely used for oil-oil and oil-source correlations, but 

also as indicators for maturation, biodegradation and depositional environments. 

Oil-prone, lacustrine and marine source rocks (Type I and II, respectively) 

generate crude oils containing an abundance of biomarkers useful for oil-source 

correlation. However gas-prone, coaly source rocks (Type III) generate gases and/or 

condensates consisting of mainly gasoline-rage hydrocarbons. Biomarkers and other 

high-molecular-weight components are commonly present in low quantities or absent 

in condensates, making oil-source correlation using molecular parameters difficult or 

impossible. In these cases the δ13C values of n-alkanes are often useful for oil-source 

correlation (Sec. 6.1.2). 

 

6.1.2 Correlation based on stable carbon isotopic composition 

The δ13C of sedimentary organic matter has been used to study secular change in 

the global carbon cycle (e.g. Chung et al., 1992; Summons et al., 1995; Andrusevich 

et al., 1998). These secular changes in the geological past have resulted in changes in 

the δ13C of inorganic carbon sources (e.g. CO2) available for photosynthesis. Indeed, 

the δ13C of sedimentary organic matter is dependent on the δ13C of atmospheric CO2 

(Hayes, 1993) and other factors (see Chapter 1). Therefore, δ13C values of petroleum 

hydrocarbons often relate to the age (time of deposition) of their source rock (e.g. 

Chung et al., 1992; Summons et al., 1995; Andrusevich et al., 1998). 

Isotopic compositions can be determined using either bulk isotope analysis or 

compound-specific isotope analysis (see Chapter 1). Bulk isotopic analysis of 

organic carbon has been used to classify marine and non-marine (terrestrial) crude 

oils by plotting the bulk δ13C values of the C15+ saturate fractions versus those of 
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their aromatic fractions (e.g. Figure 6.1; AGSO and GEOMARK Research Inc., 

2001), and to infer genetic relationships between lipids in living organisms and their 

diagenetic products (Sofer, 1984). Chung et al. (1992) classified 621 post-Ordovician 

marine crude oils into four groups, in terms of their depositional environment and the 

geological age of their source, on the basis of δ13C values (in conjunction with 

pristane/phytane ratios and sulfur contents). More recently, Andrusevich et al. (1998) 

reported bulk δ13C values of the C15+ saturate and aromatic hydrocarbon fractions of 

514 crude oils, and found that both fractions become enriched in 13C with decreasing 

geological age including three major shifts at the Cambrian/Ordovician, 

Triassic/Jurassic and Paleogene/Neogene boundaries. 
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Figure 6.1 Plot of the δ13C value of C15+ aromatic fractions versus the δ13C value of C15+ saturated 
fractions (Sofer plot) for several hundred crude oils from various Australian sedimentary basins 
(AGSO and GEOMARK Research Inc., 2001) 

 

 

Although bulk δ13C analysis can be useful in oil-source correlations, it does not 

allow the isotope signature of specific source components to be identified. Isotopic 

analysis of organic carbon in individual compounds (CSIA, see Chapter 1) is a more 

powerful tool in the analysis of petroleum, because the δ13C values of individual 
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sedimentary hydrocarbons provide evidence for their diverse origins (e.g. Freeman et 

al., 1990; Hayes et al., 1990; Grice et al., 1996; Schouten et al., 1998). The δ13C 

values of n-alkanes (together with biomarker distributions) have been used on 

numerous occasions for oil-source correlations. For example, a suite of crude oils 

from the Perth Basin (Western Australia) have been classified based on the age of 

their source (see Sec. 6.2.2.1), with the majority of oils from the northern on-shore 

part of the basin having been attributed to an Early Triassic source rock (Summons et 

al., 1995; Thomas and Barber, 2004). Edwards et al. (2004) categorised a series of 

Vulcan Sub-basin crude oils and condensates into two end-member groups, based on 

different relative inputs of marine and terrestrial organic matter to the oils (see Sec. 

6.2.2.2).  

The average δ13C value of the n-alkanes in some cases may be indicative of the 

δ13C value of the bulk crude oil, considering they are (generally) a quantitatively 

important component of oils. In these cases, compound-specific n-alkane data may 

not provide any additional information than bulk isotopic analysis. However in many 

cases, certain n-alkanes in crude oils vary significantly in δ13C as a result of their 

derivation from a diverse range of isotopically-distinct precursors. Thus, the profile 

of δ13C values of n-alkanes within oils can vary in response to variations in source 

inputs, which can be very useful in oil-source correlations. δ13C analysis has been 

used effectively in the past to study the origin of n-alkanes in source rocks and crude 

oils. Murray et al. (1994) stated that the shape of n-alkane δ13C profiles in crude oils 

is primarily determined by their source rock’s depositional setting. For example, 

negatively-sloping n-alkane δ13C profiles are characteristic of crude oils derived 

from fluvio-deltaic and freshwater transitional depositional environments, attributed 

to an abundance of terrestrial plant matter in the source (Murray et al., 1994). 

Relatively flat or positively-sloping profiles are typical of marine and lacustrine-

sourced crude oils (Murray et al., 1994; Summons et al., 1995; Xiong et al., 2005). 

Variations in the n-alkane δ13C profiles of oils can indicate contributions from 

multiple source-types. The profile of n-alkane δ13C values can also be affected by 

secondary processes such as thermally-induced hydrocarbon cracking (e.g. Tang et 

al., 2005), in-reservoir mixing of different oils (e.g. Rooney et al., 1998) and 

migration contamination, and these factors must be taken into account when 

interpreting n-alkane δ13C profiles in crude oils. 
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6.1.3 Aims of this study 

The specific aims of the present study include: 

 

(i) Fractionation of the Perth Basin and Vulcan Sub-basin crude oils and 

condensates, including isolation of n-alkanes from branched and cyclic 

compounds. Measurement of the δD values of n-alkanes, pristane and 

phytane. 

(ii) Measurement of the bulk δD values of the whole crude oils and condensates, 

for comparison to the compound-specific isotopic results. 

(iii) Interpretation of results based on the source (e.g. depositional environment, 

facies), maturity, and the effect of other secondary processes (e.g. in-reservoir 

mixing) on the Perth Basin and Vulcan Sub-basin crude oils and condensates. 

(iv) Comparison of results obtained from the crude oils to those obtained from 

their supposed source rocks. 

 

 

6.2 RESULTS AND DISCUSSION 

 

6.2.1 Geochemistry 

 

6.2.1.1 Perth Basin crude oils 

The Perth Basin crude oils and condensates used in this study have been analysed 

previously by Summons et al. (1995), Boreham et al. (2000), Thomas and Barber 

(2004) and Grice et al. (2005b). Summons et al. (1995) used the δ13C values of n-

alkanes in combination with the distributions of diagnostic biomarkers in a suite of 

Perth Basin crude oils for oil-source correlation in the northern on-shore Perth Basin. 

These parameters allowed classification of the Perth Basin oils according to the 

geological age of their source. The marine-derived Dongara-14 crude oil and East 

Lake Logue-1 condensate from the Early Triassic Kockatea Shale have relatively low 

Pr/Ph ratios (Table 6.1; Appendix 1) consistent with deposition of their source rock 

in an anoxic setting. The Perth Basin crude oils have varying quantities of rearranged 
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steranes (diasteranes) and rearranged hopanes (diahopanes), attributed to local 

lithological and maturity differences (Summons et al., 1995). 

A C33 n-alkylcyclohexane (C33ACH) is present in the Woodada-3 and Dongara-

14 crude oils. This compound was formally identified by McIldowie and Alexander 

(2005) as n-heptacosylcyclohexane (XVIII). This biomarker has been found in high 

relative abundance in a lower Triassic source rock (Hovea Member, Kockatea Shale) 

and associated crude oils from the northern onshore Perth Basin (Jefferies, 1984; 

Summons et al., 1995; Thomas and Barber, 2004), and in a Permian-Triassic marine 

section from Eastern Greenland (Grice et al., 2005c). A specific source of the 

C33ACH has not been identified, although it has been suggested to be a biomarker for 

the Permian-Triassic mass extinction, possibly derived from a phytoplankton source 

that first bloomed during the extinction interval, and thrived in the aftermath (Grice 

et al., 2005c). In the Perth Basin, the C33ACH is thought to be characteristic of 

organic matter derived from the Kockatea Shale, although its absence is equivocal 

(Boreham et al., 2000). The biomarker was not found in any significant amounts in 

the East Lake Logue-1 condensate, also thought to be derived from organic matter in 

the Kockatea Shale. 

Boreham et al. (2000) plotted three aromatic maturity ratios for the Perth Basin 

crude oils: TMNr (trimethylnaphthalene ratio), TeMNr (tetramethylnaphthalene 

ratio) and PMNr (pentamethylnaphthalene ratio) in a ternary diagram (van Aarssen et 

al., 1999) (Figure 6.2; Appendix 1) All crude oils plot near the centre of the diagram, 

within the so-called ‘maturity centre’ (van Aarssen et al., 1999). The maturity centre 

is defined as the area within a 10% margin around a single point on the diagram 

representing a case where TMNr, TeMNr and PMNr are determined only by thermal 

stress. Samples that deviate from the maturity centre are affected by additional 

secondary processes (see Appendix 1). Based on the ternary plot of the naphthalene 

parameters (Figure 6.2), it was determined that the Perth Basin crude oils had not 

been affected to any large extent by in-reservoir mixing of oils of different 

maturities, by biodegradation, or by migration contamination (Boreham et al., 2000). 
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‘maturity centre’ 

Figure 6.2 Ternary plot of the trimethylnaphthalene ratio (TMNr), tetramethylnaphthalene ratio 
(TeMNr), and pentamethylnaphthalene ratio (PMNr) for a suite of Perth Basin crude oils including 
those used for this study (Boreham et al., 2000). All oils are inside the ‘maturity centre’ 
 

 

Thomas and Barber (2004) performed a comprehensive oil-source correlation in 

the northern Perth Basin, based on biomarker distributions, and stable carbon 

isotopic analyses. A series of discriminating features included n-alkane profiles 

(Appendix 1), Pr/Ph ratios, sterane distributions, tricyclic and tetracyclic terpane 

distributions, n-alkane δ13C profiles, the presence of C33ACH, and the occurrence of 

a series of rare aromatic biomarkers including phytanyltoluene and long-chain 

alkylnaphthalenes (Thomas and Barber, 2004). It was concluded that the majority of 

crude oils and condensates from the northern Perth Basin were sourced from the 

Hovea Member (Sapropelic Interval) of the Kockatea Shale, with an exception being 

the Woodada-3 crude oil which was believed to be derived from a mixture of 

Triassic and Permian sources. The presence of the C33ACH, together with a distinct 

sterane distribution and waxy n-alkane distribution (Summons et al., 1995) for 

Woodada-3 indicate a contribution from the Early Triassic Hovea Member (Thomas 

and Barber, 2004). However the n-alkane δ13C profile (Sec. 6.2.2.1) and relatively 

high Pr/Ph ratio (2.5) suggest a contribution from a Permian source.  

Grice et al. (2005b) established an oil-source correlation for the northern onshore 

Perth Basin based on unusual aromatic and polar biomarkers, which were attributed 

ultimately to a green sulfur bacterial (GSB) source. The GSB biomarkers were 
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identified in Early Triassic sediments from a drill core (Hovea-3) in this part of the 

basin (Grice et al., 2005a). Crude oils (e.g. Dongara) and condensates previously 

associated with the Early Triassic source rock in the northern onshore Perth Basin 

(Summons et al., 1995; Boreham et al., 2000; Thomas and Barber, 2004) were also 

found to contain GSB biomarkers (Grice et al., 2005a; 2005b). This provided 

additional evidence for photic zone euxinic depositional conditions for the Early 

Triassic source rock. Other crude oils and condensates, including Gage Roads-1 

(crude oil), contained no trace of GSB biomarkers (Grice et al., 2005a; 2005b). 

Indeed, Gage Roads-1 is reservoired in a different geological province (Vlaming 

Sub-basin, southern offshore Perth Basin), and is thought to be derived from sources 

in the Jurassic Yarragadee Formation and Cattamarra Coal Measures (Summons et 

al., 1995).  

 
Table 6.1 Various geochemical parameters for the Perth Basin crude oils and condensates used in this 
study 
 
Well HPI Pr/Ph C33ACH 

Whicher Range-1 0.13 3.3 absent 

Woodada-3 0.72 2.5 present 

East Lake Logue-1 0.12 1.7 absent 

Dongara-14 n.d. 1.3 present 

Gingin-1 0.18 2.6 absent 

Walyering-2 0.13 2.9 absent 

Gage Roads-1 0.67 2.9 absent 

HPI, Higher plant index (Appendix 1); Pr/Ph, pristane to phytane ratio; C33ACH, C33 n-
alkylcyclohexane; n.d., not determined 
 

 

6.2.1.2 Vulcan Sub-basin crude oils 

Organic geochemical analysis of the Vulcan Sub-basin crude oils has been 

carried out previously by Edwards et al. (2004) and Liu et al. (2005). Based on 

molecular analysis (Edwards et al., 2004), and total scanning fluorescence spectral 

signatures (Liu et al., 2005), the Vulcan Sub-basin crude oils and condensates were 

separated into two end member groups (A and B). Group A oils are characterised by 

a high proportion of lower-molecular-weight compounds where the n-C7+ alkanes 
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maximise at around n-C10 (e.g. Challis, Jabiru, Tenacious). Group B oils have a high 

proportion of waxy (>C22) n-alkanes maximising at n-C17 or higher (e.g. Montara, 

Bilyara; Edwards et al., 2004). Oils possibly derived from multiple sources were 

thought to be those at Audacious, Oliver, Puffin and Tahbilk (Edwards et al., 2004). 

Group A oils were correlated with Late Jurassic marine mudstones of the Lower 

Vulcan formation, while Group B oils were suggested to be sourced from the Middle 

Jurassic fluvio-deltaic mudstones of the Plover Formation, and have a significant 

component of terrestrially-derived organic matter. 

Group A and B oils have also been discriminated using some source-specific 

terpane and sterane biomarker parameters (Edwards et al., 2004). For example, the 

Group A oils have lower C19/C23 tricyclic terpane ratios relative to Group B oils, 

indicative of a stronger marine influence. In addition, there is a greater abundance of 

the algal-derived C27 sterane within the Group A oils compared to the Group B oils. 

The Group A and B oils and condensates are all characterised by dominant C30 

hopanes, and minor differences in the C27–C35 hopane series are evident between 

Groups A and B. The classification of Group A and B oils is largely supported by 

Total Scanning Fluorescence spectral signatures (Liu et al., 2005). 

The ratios of C27 diasterane/C27 sterane versus C30 diahopane/C30 hopane for the 

Vulcan Sub-basin oils and condensates used in this study (or samples from 

representative wells) are listed in Table 6.2 and plotted in Figure 6.3. 

Diasterane/sterane and diahopane/hopane ratios (Appendix 1) generally increase with 

increasing maturity. The Group A oils show a trend of increasing maturity in the 

order of Birch, Challis, Cassini, Tenacious and Jabiru (Figure 6.3). There is also a 

trend of increasing maturity in Group B oils from Montara to Bilyara. Audacious-1 

(mixed oil) appears to be the most mature, while Tahbilk-1 (mixed oil) appears to be 

the least mature. The relatively high abundance of rearranged steranes and 

rearranged hopanes in general in the Vulcan Sub-basin oils and condensates 

(Edwards et al., 2004) is indicative of their derivation from a clay-rich source rock 

(Peters and Moldowan, 1993). 

The naphthalene parameters TMNr, TeMNr and PMNr (van Aarssen et al., 1999) 

for selected Vulcan Sub-basin crude oils and condensates (or samples from 

representative wells) are listed in Table 6.2, and a ternary plot of the parameters is 

shown in Figure 6.4. The majority of the Vulcan Sub-basin oils plot within the 

maturity centre (Edwards et al., 2004). However, Tenacious-1 plots slightly away 
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from the centre towards the TMNr corner, indicating mixing with more mature 

hydrocarbons (Edwards et al., 2004). In a 1:1 mixture of a high maturity and low 

maturity oil, the distribution of TMNs will largely reflect the larger relative 

contribution of TMNs from the high maturity oil to the mixture (van Aarssen et al., 

1999). The TMNr, TeMNr and PMNr values generally indicate medium to high 

levels of maturity. 

 
Table 6.2 Various geochemical parameters for the Vulcan Sub-basin crude oils and condensates used 
in this study (Edwards et al., 2004). 
 
Well name 
(classification*) 

19T/23
T 

27diaS/
27S 

30diaH/ 
30H 

TMNr TeMNr PMNr 

Birch-1 (A) 
 

0.83 1.89 0.17 n/a n/a n/a 

Cassini-1 (A) 
 

0.96 1.97 0.21 n/a n/a n/a 

Jabiru-2/1A# (A) 
 

0.98 4.11 0.41 0.77 0.70 0.47 

Tenacious-1 (A) 
 

0.66 3.50 0.33 0.70 0.60 0.39 

Challis-1/2A# (A) 
 

1.04 2.14 0.20 0.73 0.62 0.43 

Oliver-1 (A+B) 
 

1.08 5.38 0.39 n/a n/a n/a 

Montara-1/2# (B) 
 

2.14 2.91 0.21 0.82 0.78 0.55 

Bilyara-1 (B) 
 

1.79 5.30 0.38 0.82 0.78 0.55 

Tahbilk-1 (A+?) 
 

0.66 1.27 0.06 0.79 0.74 0.59 

Puffin-2 (A+?) 
 

0.69 2.16 0.26 0.71 0.62 0.43 

Audacious-1 
(A+?) 

1.29 6.93 0.49 n/a n/a n/a 

* Classification based on work by Edwards et al. (2004) where A = high marine influence, B = high 
terrestrial-plant influence, and ? = an unknown source; # Data from a different but representative well; 
19T/23T, ratio of C19 to C23 tricyclic terpanes; 27diaS/27S, ratio of C27βα-diasterane (20S) to 
C27ααα-sterane (20R); 30diaH/30H, ratio of C30 diahopane to C30αβ-hopane; TMNr, 
trimethylnaphthalene ratio; TeMNr, tetramethylnaphthalene ratio; PMNr, pentamethylnaphthalene 
ratio (see Appendix 1). 
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Figure 6.3 Plot of C27 diasterane 20S/C27 sterane 20R versus C30 diahopane/C30 hopane for most of the 
Vulcan Sub-basin crude oils and condensates (or representative samples) analysed in this study 
(Edwards et al., 2004), demonstrating their relative maturities. Data for multiple wells are displayed 
for several samples. 
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Figure 6.4 Ternary plot of the trimethylnaphthalene ratio (TMNr), tetramethylnaphthalene ratio 
(TeMNr), and pentamethylnaphthalene ratio (PMNr) for selected Vulcan Sub-basin crude oils and 
condensates (or representative samples) used for this study (Edwards et al., 2004) 
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6.2.2.1 Perth Basin crude oils 

The results of δ13C analysis of the Perth Basin crude oils used in this study have 

been published previously by Summons et al. (1995) and Boreham et al. (2000) and 

Boreham et al. (2001). δ13C analysis was also carried out as part of this study, the 

results of which have been published previously by Thomas and Barber (2004). The 

pertinent results are discussed below. 

Summons et al. (1995) used the δ13C values of n-alkanes (together with 

biomarker distributions, see Sec. 6.2.1.1) to classify a suite of Perth Basin crude oils 

based on the age of their source (Permian, Early Triassic and Jurassic). The δ13C data 

obtained in the present study were consistent with that obtained by Summons et al. 

(1995). The δ13C values of n-alkanes for the Perth Basin oils and condensates 

analysed in this study are shown in Figure 6.5. The oil and condensate from an Early 

Triassic source (Dongara-14, East Lake Logue-1) have n-alkanes which are 

isotopically very light (ca. -34‰) in comparison to those from Jurassic-sourced oils 

and condensates (Gage Roads-1, Gingin-1; ca. -24‰), and a Permian-sourced 

condensate (Whicher Range-1; ca. -25‰). Isotopically light organic (and inorganic) 

carbon is a global feature of the Early Triassic (see Chapter 5), and the δ13C values of 

hydrocarbons from the Early Triassic-sourced oils and condensates are consistent 

with those from Early Triassic Perth Basin sediments (Hovea Member, Kockatea 

Shale) reported in Chapter 5. Another Early Triassic-sourced oil (Woodada-3), and a 

Jurassic-sourced condensate (Walyering-2) have n-alkanes with intermediate δ13C 

values (ca. -30‰). 

6.2.2 Stable carbon isotopic analysis 

The stable carbon isotopic compositions (δ13C) of individual n-alkanes were 

measured in the Perth Basin and Vulcan Sub-basin crude oils and condensates. The 

δ13C values of the two regular isoprenoids pristane and phytane were measured in the 

Perth Basin crude oils and condensates only. Standard deviations for at least three 

replicate analyses are within 0.4‰. 
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It is unusual that the n-alkanes from Woodada-3 (Early Triassic) are enriched in 
13C (by ca. 4‰) relative to the other Early Triassic-sourced oil and condensate 

analysed in this study (Figure 6.5). This phenomenon was also identified in several 

bitumens and kerogen from the Woodada-2 section (Summons et al., 1995), and has 

been attributed to the possible incorporation of reworked, 13C-enriched organic 

matter of Permian age (Jefferies, 1984; Thomas and Barber, 2004), or can also be 

attributed to a change in the organofacies type, i.e. from wood-charcoal-dominated to 

algal-dominated (Summons et al., 1995; Foster et al., 1997). In addition, a trend 

towards heavier δ13C values for shorter-chain n-alkanes in Woodada-3 has been 

attributed to a contribution from an isotopically heavier Permian condensate 

(Summons et al., 1995; Thomas and Barber, 2004). Work by Boreham et al. (2000) 

suggested that Woodada-3 was indeed a ‘vagrant’ oil. Using statistical principle-

component cluster analysis of molecular parameters and bulk carbon isotopes, the oil 

was quite different to other northern onshore Perth Basin oils (Boreham et al., 2000). 

Furthermore, Thomas and Barber (2004) identified a series of features which 

correlate Perth Basin crude oils to a particular source, and these features in 

Woodada-3 were consistent with a mixture of Permian and Triassic sources (see Sec. 

6.2.1.1). Another possibility is that the Woodada-3 oil has been affected by higher 

thermal maturity in the Woodada area (Thomas and Barber, 2004). Higher thermal 

maturity can result in an enrichment of 13C in n-alkanes (Clayton, 1991; Clayton and 

Bjorøy, 1994; see Chapter 5). However condensate recovered from the nearby East 

Lake Logue-1 well has a typical Early Triassic isotopic signature of approximately 

-35‰, which is clearly not affected by maturity to any significant extent (Thomas 

and Barber, 2004). 

The profile of δ13C values of n-C8 to n-C27 from Gage Roads-1 oil is relatively 

flat, indicative of a lacustrine source, but can also be a characteristic of marine-

derived crude oils (Murray et al., 1994; Summons et al., 1995) (see Sec. 6.1.2). 

However, a higher plant index (HPI, Appendix 1) of 0.67, and a high relative 

abundance of n-C23 to n-C29 indicates a significant terrestrial input. Furthermore, 

Volk et al. (2004) reported a strong terrestrial signature for a Gage Roads-2 fluid 

inclusion (FI) oil, based on an odd-over-even preference of n-alkanes in the n-C25 to 

n-C31 range, high C29 sterane content, high HPI and other evidence based on source-

specific aromatic hydrocarbons. 
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The profile of δ13C values of n-alkanes from Dongara-14 displays an interesting 

trend. The lower molecular weight n-alkanes (n-C8 to n-C26) are depleted in 13C 

relative to the higher molecular weight n-alkanes (n-C27 to n-C33) by about 2‰. 

Potential reasons for this trend include possible in-reservoir mixing of different oils, 

migration contamination, or a single mixed marine/terrestrial source rock for this oil. 

The molecular analysis (Sec. 6.2.1.1) showed no evidence of significant in-reservoir 

mixing of oils of different maturities or migration contamination. In addition, a high 

relative abundance of both lower and higher molecular weight n-alkanes in the 

Dongara-14 crude oil suggests both series are indigenous to the oil. Therefore, a 

single mixed marine/terrestrial source rock is suggested to have caused the observed 

profile of δ13C values of n-alkanes in Dongara-14. 

The δ13C values of pristane and phytane in the Perth Basin crude oils were also 

measured as part of this study, and range between -32.3 and -25.1‰. The δ13C values 

of pristane and phytane, like the δ13C values of the n-alkanes, reflect the age of the 

source rock. For example, pristane and phytane from Early Triassic-sourced oils and 

condensates are depleted in 13C (δ13C ca. -32‰) relative to that from Jurassic-

sourced oils and condensates (δ13C ca. -26‰). The difference between the average 

δ13C value of n-C17 and n-C18 alkanes and the average δ13C value of pristane and 

phytane, respectively (∆δ13C values) for the Early Triassic-sourced oils and 

condensates range between -0.7 and -3.5‰. Thus pristane and phytane are enriched 

in 13C relative to n-C17 and n-C18 alkanes indicating a relatively high algal input, 

consistent with that observed for the Early Triassic source rock in the northern Perth 

Basin (see Chapter 5). The ∆δ13C value for Woodada-3 (-0.7‰) is more positive than 

those for other Early Triassic-sourced oils and condensates (Dongara-14, -2.2‰; 

East Lake Logue-1, -3.5‰), further evidence for a contribution from a Permian 

source (see above). The Permian-sourced Whicher Range-1 condensate has a ∆δ13C 

value of 2.2‰, i.e. n-C17 and n-C18 alkanes are enriched in 13C relative to pristane 

and phytane, indicating a relatively lower algal input to this condensate. These 

results are consistent with that observed in some Permian sediments from the Perth 

Basin (Grice et al., 2005a; see Chapter 5). 
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6.2.2.2 Vulcan Sub-basin crude oils 

δ13C analysis of the Vulcan Sub-basin crude oils used in this study has been 

carried out previously by Edwards et al. (2004), and the δ13C values of the n-alkanes 

again classified the Vulcan Sub-basin crude oils and condensates into two groups 

(see also Sec. 6.2.1.2). The δ13C values of the n-alkanes in the Vulcan Sub-basin oils 

(Edwards et al., 2004) are plotted in Figure 6.6. The δ13C values of n-alkanes from 

Group B oils (Montara-1, Bilyara-1) range between -25 and -27‰ (average -26.1‰), 

in the Group A oils (Jabiru, Birch, Challis, Puffin, Tenacious) between -25 and -31‰ 

(average -27.9‰), and the mixed oils (Oliver, Audacious) between -25 and -28‰ 

(average -26.9‰). The n-alkanes in the Group B oils are significantly more enriched 

in 13C (by ca. 1.8‰). The relatively less mature Vulcan Sub-basin sediments 

(Chapter 5) have n-alkane δ13C values which are similar to those of the Group A oils, 

i.e. a marine signature. In contrast, the more mature sediments contain n-alkanes 

which are more enriched in 13C (see Chapter 5), having similar δ13C values to 

n-alkanes from Group B oils. However, based on maturity-dependent hopane (e.g. 

Ts/Ts+Tm, 22S/22S+22R) and sterane (e.g. C29ααα 20S/C29ααα 20S+20R, C29αββ 

20S+20R/C29ααα+αββ 20S+20R) parameters (Edwards et al., 2004), the Group B 

oils were not generated at higher thermal maturities than the Group A oils (see also 

Figure 6.3). Consequently, the enrichment of 13C in n-alkanes in Group B oils was 

attributed to an increased input of terrestrial-plant organic matter to the source rock 

(Edwards et al., 2004). The compound-specific data were supported by bulk δ13C 

analysis of the saturated hydrocarbon fractions of the crude oils and condensates 

(Edwards et al., 2004). 
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6.2.3 Bulk stable hydrogen isotopic analysis of Perth Basin and Vulcan Sub-

basin crude oils and condensates 

Bulk δD values of the Perth Basin and Vulcan Sub-basin crude oils and 

condensates were determined using elemental analysis-isotope ratio mass 

spectrometry (Chapter 2). The results are summarised in Table 6.3 and Table 6.4. 

Standard deviations for at least two replicate analyses are within 4‰. The bulk δD 

values of the Perth Basin crude oils and condensates range from -179 to -121‰, and 

in most cases vary quite significantly (up to 32‰) from the average δD values of the 

n-alkanes (Table 6.3) obtained from CSIA (Sec. 6.2.4). The bulk δD values of the 

Vulcan Sub-basin crude oils and condensates range from -127 to -103‰, and are 

consistent with average δD values of the n-alkanes, which range from -133 to -102‰ 

(Table 6.4). Indeed, n-alkanes are a quantitatively important component of crude oils 

that have not been affected by secondary processes (e.g. biodegradation) to any 

significant extent. 

Small differences in δD between whole oils and individual fractions have been 

observed in previously reported data sets. Rigby et al. (1981) analysed twelve crude 

oils from the Gippsland Basin, south-eastern Australia. The δD values of the 

saturated fractions differed from the bulk oil by less than 5‰ on average, and in a 

small number of cases up to 10 to 14‰. Yeh and Epstein (1981) published δD values 

of whole oils and individual fractions, for two crude oils from Saskatchewan 

(Canada) and Utah (USA). The difference in δD values between the whole oils and 

their fractions was less than 2‰. Santos Neto and Hayes (1999) reported bulk δD 

values of whole oils, and their saturated fractions, from twenty-one marine-

evaporitic, lacustrine and mixed oils from the onshore Potiguar Basin, northeastern 

Brazil. The differences between the δD values of the bulk oil and saturated fractions 

were mostly less than 5‰, and in two or three samples up to 8 to 10‰. 

Schimmelmann et al. (2004) reported δD values of seventy-five Australian 

terrestrially-sourced oils and their fractions, and individual compounds in twenty 

eight of them. They found that in most cases, sub-fractions had similar δD values to 

their parent whole oils. δD values of saturated and n-alkane fractions were generally 

within 5‰ of the whole oil δD values. Crude oils from the Otway Basin (south-

eastern Australia) were an exception, with saturated fractions being depleted in D by 
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22‰ or more relative to the whole oil and other fractions (Schimmelmann et al., 

2004). These data reported in the literature are consistent with the data obtained for 

the Perth Basin crude oils and condensates analysed in this study, where the 

n-alkanes are depleted in D relative to the bulk oil by up to 32‰ (on average), with 

an exception being Gage Roads-1 where the n-alkanes are enriched in D by 19‰ (on 

average) relative to the bulk oil (Table 6.3). 

 

 
Table 6.3 Bulk δD values and average n-alkane δD values of Perth Basin crude oils and condensates 
determined by elemental analysis-isotope ratio mass spectrometry 
 
Well name Bulk δDoil (‰)* Average δDn-alkanes 

(‰)*
∆δD (‰) 

Whicher Range-1 -141 (1)2 -116 (3)4 -25 

Woodada-3 -121 (1)3 -89 (3)5 -32 

East Lake Logue-1 -129 (1)3 -117 (4)4 -12 

Dongara-14 -130 (4)2 -125 (2)3 -5 

Gingin-1 -143 (3)2 -125 (3)4 -18 

Walyering-2 -131 (2)2 -104 (3)5 -27 

Gage Roads-1 -179 (1)2 -198 (2)4 19 

* Numbers in parentheses are standard deviations (average is shown for n-alkanes), superscript 
number are number of replicate analyses; ∆δD, difference between the bulk δD value of the oil and 
the average δD value of the n-alkanes (relative to VSMOW) 

 
 

6.2.4 Compound-specific stable hydrogen isotopic analysis 

The stable hydrogen isotopic compositions (δD) of individual n-alkanes (ca. 

n-C11 to n-C29) and (in most oils) the regular isoprenoids pristane and phytane, were 

measured in the Perth Basin and Vulcan Sub-basin crude oils and condensates. 

Standard deviations for at least three replicate analyses are mostly within 5‰. In a 

minimal number of cases, standard deviations are as high as 12‰, but only for peaks 

of relatively low intensity or where minor co-elution was evident. 
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6.2.4.1 Perth Basin crude oils 

The range of δD values of n-alkanes (ca. n-C8 to n-C27), and the δD values of 

pristane and phytane from the Perth Basin crude oils are summarised in Table 6.5. 

The δD values of the n-alkanes are plotted in Figure 6.7. The δD values of n-alkanes 

from the crude oils and condensates average between -125 and -89‰ (excluding 

Gage Roads-1, -198‰, attributed to a different source facies, see below), which are 

significantly more positive than that expected (~150‰) from marine-derived 

sedimentary organic matter (Smith and Epstein, 1970; Santos Neto and Hayes, 

1999), indicating they were generated from mature source rocks. 

 

 
Table 6.4 Bulk δD values and average n-alkane δD values of Vulcan Sub-basin crude oils and 
condensates determined by elemental analysis-isotope ratio mass spectrometry 
 
Well name Bulk δDoil (‰)* Average δDn-alkanes 

(‰)*
∆δD (‰) 

Birch-1 -127 (3)5 -133 (3)3 6 

Tahbilk-1 -112 (3)4 -110 (4)3 -2 

Cassini-1 -122 (2)3 -125 (4)3 3 

Jabiru-2 -115 (2)5 -120 (3)3 5 

Tenacious-1 -117 (1)4 -113 (3)3 -4 

Challis-1 -125 (1)5 -127 (3)3

*Numbers in parentheses are standard deviations (average is shown for n-alkanes), superscript 
numbers are number of replicate analyses; ∆δD, difference between the bulk δD value of the oil and 
the average δD value of the n-alkanes (relative to VSMOW); n.d., not determined.

Oliver-1 -110 (2)4 -108 (4)3 -2 

Montara-1 -103 (2)5 -102 (4)3 -1 

Bilyara-1 -103 (2)3 n.d. n.d 

Puffin-2 -118 (2)3 -116 (5)3 -2 

Audacious-1 -110 (2)4 -110 (4)3 0 

2 
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The n-alkanes and pristane from Gage Roads-1 (Jurassic) are significantly 

depleted in D (ca. 80‰) relative to the n-alkanes, pristane and phytane from the 

other crude oils analysed, including the two Jurassic-sourced condensates (Gingin-1, 

Walyering-2; Figure 6.7). This light isotopic signature is consistent with a source 

environment for Gage Roads-1 where meteoric waters were significantly depleted in 

D. Considering all crude oils and condensates analysed in this study are from the 

same geographical location, it is likely the D-depleted isotopic values are associated 

with the source rock for Gage Roads-1 having been deposited inland (i.e. lacustrine/ 

terrestrial source facies). In these regions, precipitation is typically depleted in D 

(due to the ‘continentality’ effect, see Chapter 4) relative to that nearer to the ocean, 

although this is highly variable. Indeed, such D-depleted n-alkanes have been 

reported for terrestrially-sourced crude oils from Australia (Schimmelmann et al., 

2004), and terrestrial source rocks from China (Xiong et al., 2005). In addition, a flat 

δ13C profile for the n-alkanes in Gage Roads-1 (Sec. 6.2.2.1) is also characteristic of 

a lacustrine source. Other evidence includes a high relative abundance of n-alkanes 

in the n-C23 to n-C29 carbon number range and a higher plant index of 0.67, both 

pointing to a significant terrestrial plant contribution to Gage Roads-1 (Eglinton and 

Hamilton, 1963; Boreham et al., 2000). 

The profile of δD values of n-alkanes from Dongara-14 (Early Triassic) displays 

a similar trend to that observed with their δ13C values. The lower molecular weight 

n-alkanes (n-C9 to n-C17, Figure 6.8) are depleted in D relative to the higher 

molecular weight n-alkanes (n-C18 to n-C27, Figure 6.8). Interestingly, the D-

enrichment occurs earlier in the carbon number range with hydrogen compared to 

carbon. This profile of n-alkane δD values can also be explained in terms of a single 

mixed marine/terrestrial source rock for Dongara-14, with other possible reasons 

such as in-reservoir mixing of different oils or migration contamination being 

improbable based on the molecular analysis (Sec. 6.2.1.2). A comparison of the n-

alkane δD profiles of two Early Triassic-sourced oils (Figure 6.8) suggests that the n-

alkanes from East Lake Logue-1 have a predominant marine signature (i.e. relatively 

enriched in D), with the higher molecular weight n-alkanes (n-C21 to n-C27) from 

Dongara-14 having a similar signature (Figure 6.8). 
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Figure 6.8 Plot of carbon number versus δD value for n-alkanes in Dongara-14 crude oil and East 
Lake Logue-1 condensate 

 

 

The n-alkanes from the Woodada-3 crude oil are the most enriched in D (-95 to 

-75‰) in comparison to those from the other marine Perth Basin crude oils analysed 

(Figure 6.7). This is possibly due to the Woodada-3 oil having been affected by the 

high thermal maturity in the Woodada area (Thomas and Barber, 2004), supported to 

some extent by the δ13C values of the n-alkanes (Sec. 6.2.2.1). Furthermore, 

Woodada-3 has been identified as a ‘vagrant’ in the northern Perth Basin, based on 

molecular and isotopic parameters (Boreham et al., 2000). 

The crude oils and condensates all contain pristane, and phytane where measured, 

with δD values that are similar (within ca. 14‰) to the δD values of their associated 

n-alkanes. For the Early Triassic crude oils and condensates, in particular, this is 

consistent with the results obtained from the supposed source rocks (Hovea Member, 

Kockatea Shale) for these Perth Basin oils (see Chapter 5), where the biological δD 

signature (i.e. the large δD offset between isoprenoids and n-alkanes, see Chapters 4 

and 5) is lost at Re values of 0.78–1.13% representing the peak oil-generative 

window. The δD value of pristane in Gage Roads-1 is significantly depleted in D (by 

60 to 100‰) relative to pristane and phytane from the other Perth Basin oils, 
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consistent with what was observed with the n-alkanes and again attributed to a 

lacustrine/terrestrial depositional environment for the source rock. In Early Triassic-

sourced crude oils and condensates (e.g. Dongara-14 and East Lake Logue-1), 

phytane is enriched in D relative to pristane by up to 17‰ which is consistent with 

the results obtained from their supposed Early Triassic source rocks (Chapter 5). The 

opposite is observed in Permian and Jurassic condensates (Whicher Range-1 and 

Gingin-1, respectively), where pristane is enriched in D relative to phytane. 

Li et al. (2001) measured the δD values of individual n-alkanes and acyclic 

isoprenoids from a number of crude oils from the Western Canada Sedimentary 

Basin. The n-alkanes from a marginally mature crude oil ranged from -155 to -120‰ 

(averaging -134‰), while pristane and phytane had δD values of -188 and -168‰, 

respectively (average -178‰). The n-alkanes from a mature crude oil ranged from 

-131 to -97‰ (averaging -110‰), and pristane and phytane from these oils had δD 

values of -144 and -136‰, respectively (average -140‰). The n-alkanes, pristane 

and phytane were enriched in D in the more mature crude oil (generated from a more 

mature source rock) relative to respective δD values from the less mature crude oil. 

These data show trends consistent with the results obtained in this study. 

 
 
Table 6.5 Range of δD values of n-alkanes, δD values of pristane (Pr) and phytane (Ph), and ∆δD 
values (see below for definition) for the Perth Basin crude oils and condensates 
 

Well, Depth (m) n-Alkanes 

δD Range (‰) 

δD Pr (‰) δD Ph (‰) ∆δD (‰) 

Whicher Range-1 -121 to -108 (3)5 -126 (2)3 -127 (0)3 -11 

Woodada-3 -96 to -76 (3)5 n.d. n.d. n.d. 

East Lake Logue-1 -114 to -111 (4)4 -112 (2)3 -95 (0)3 +13 

Dongara-14 -136 to -113 (2)3 -119 (2)3 -104 (4)3 +14 

Gingin-1 -128 to -123 (3)4 -111 (2)3 -132 (5)3 +3 (0) 

Walyering-2 -112 to -93 (3)4 n.d. n.d. n.d. 

Gage Roads-1 -207 to -188 (2)4 -191 (0)3 n.d. +6 

∆δD, difference between the average δD value of Pr and Ph and the average δD value of the n-alkanes 
(relative to VSMOW); * Numbers in parentheses are standard deviations (average is shown for n-
alkanes), superscript number are number of replicate analyses; n.d., not determined. 
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6.2.4.2 Vulcan Sub-basin crude oils 

The range of δD values of n-alkanes (ca. n-C11 to n-C28), and the δD values of 

pristane and phytane from the crude oils are summarised in Table 6.6. Figure 6.9 is a 

plot of δD versus number of carbons for the n-alkanes in the Vulcan Sub-basin crude 

oils. The δD values of n-alkanes average between -133 and -102‰, which are again 

significantly more positive than δD values that are expected (~ -150‰) for marine-

derived n-alkanes (Smith and Epstein, 1970; Santos Neto and Hayes, 1999). 

Edwards et al. (2004) divided a series of Vulcan Sub-basin crude oils (including 

those analysed in this study) into two broad groups (A and B) based on molecular 

and carbon isotope analysis (see Sections 6.2.1.2 and 6.2.2.2, respectively). With the 

Group A and Group B classifications being based on different relative inputs of 

marine versus terrigenous organic matter, the δD values of individual hydrocarbons 

in the crude oils appear to reflect this based on differences in the isotopic 

composition of marine and terrestrial source waters (see Chapter 4). The majority of 

Group A crude oils (excluding Tenacious-1, see below) plot in a similar region in 

Figure 6.9, with a typical marine signature, depleted in D in comparison to the Group 

B and mixed crude oils. Birch-1 (Group A oil) is the most negative end-member, 

with δD values of the n-alkanes ranging between -141 and -122‰; while Montara-1 

(Group B oil) is the most positive end-member, with δD values of the n-alkanes 

ranging between -108 and -94‰. The oils thought to be of mixed origin plot in a 

region between the Group A oils and the Group B oil. Based on these results, the 

terrigenous input to Group B crude oils appears to cause the n-alkanes to become 

enriched in D. Typically, terrestrially-derived organic matter is depleted in D relative 

to marine-derived organic matter, because the δD values of meteoric source waters 

are almost always more negative than ocean water (Craig, 1961; Dansgaard, 1964). 

In some cases, significant D-enrichment of meteoric waters can take place in hot, 

arid environments so that the biosynthetic products of aquatic organisms (due to 

evaporation) and terrestrial plants (due to evapotranspiration) are significantly 

enriched in D. In general, terrestrially-derived organic matter has been shown to 

display a wide variation in δD values (e.g. Schimmelmann et al., 2004; Xiong et al., 

2005). While temperature and latitude are the most important determining factors, 

the D/H composition of meteoric waters in the terrestrial hydrological cycle are 

additionally affected by altitude and continentality (see Chapter 4). These additional 
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effects are highly variable, leading to the large isotopic variations observed in 

terrigenous organic matter. For example, Schimmelmann et al. (2004) measured the 

D/H composition of the individual fractions of 75 terrestrially-derived crude oils and 

found that the bulk δD values of saturated fractions spanned a large range, from -245 

to -62‰. Xiong et al. (2005) measured the δD values of individual n-alkanes in 

terrestrial source rocks from the Liaohe and Turpan Basins (China), which ranged 

from -250 to -140‰. Furthermore, the bulk δD values of saturated hydrocarbon 

fractions of representative marine-evaporitic, lacustrine and mixed oils reported by 

Santos Neto and Hayes (1999) showed that the lacustrine oils were enriched in D (by 

10–26‰) relative to other oils in the basin. 

As mentioned above, the δD values of the n-alkanes from Tenacious-1 crude oil 

(Group A) are more positive than those for other Group A oils (Figure 6.9). In fact, 

the n-alkane δD values for Tenacious-1 are similar to those of mixed oils (Table 6.6). 

The bulk δD value of Tenacious-1 is also similar to those other mixed oils, and is 

within 4‰ of the average δD value of the n-alkanes (Table 6.4). One possible 

explanation for this is that Tenacious-1 is more mature than other Group A oils, or 

has been mixed with more mature hydrocarbons. On a ternary plot of TMNr, TeMNr 

and PMNr (Figure 6.4), Tenacious-1 plots outside the ‘maturity centre’, towards the 

TMNr corner indicating mixing with more mature hydrocarbons (see Sec. 6.2.1.2). 

The majority of Group A oils (i.e. Birch-1, Cassini-1, Challis-1, Jabiru-2) are 

believed to have been generated from the Lower Vulcan formation in the Swan 

Graben and to have migrated over varying distances within the Vulcan Sub-basin 

(Chen et al., 2002; Liu et al., 2005). However, it is conceivable that the 

hydrocarbons in Tenacious-1 may have originated from the Paqualin Graben, which 

may also account for the differences observed in both the n-alkane δ13C (Figure 6.6; 

Edwards et al., 2004) and δD (Figure 6.9) isotopic profiles relative to those of other 

Group A oils. 

The Group A crude oils and condensates have a ‘bowl-shaped’ profile of 

n-alkane δD values (Figure 6.9). Edwards et al. (2004) observed a ‘lazy-S’ shaped 

profile of n-alkane δ13C values in the same samples, a common occurrence in many 

marine-sourced oils in the North West Shelf of Australia. This is thought to represent 

an addition of a more mature wet gas/condensate to the initial oil charge, resulting in 

an upward inflection of the δ13C profile in the n-C7 to n-C12 range (Edwards et al., 
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2004). An upward inflection of the n-alkane δD profile occurs in the n-C11 to n-C15 

range (Figure 6.9), and presumably this trend continues to lower-molecular-weights 

(< n-C11 were not measured due to their low abundance). This could also be 

attributed to contribution from a more mature wet gas/condensate, which would 

result in the addition of D-enriched lower molecular weight n-alkanes to the initial 

charge. 

The Vulcan Sub-basin crude oils all contain pristane and phytane with δD values 

that are similar (within ca. 15‰) to the δD values of their associated n-alkanes (∆δD 

values range from -15 to +13‰). This is consistent with the results obtained from the 

more mature Lower Vulcan formation sediments (see Chapter 5). It suggests that 

significant H/D exchange (D-enrichment) has occurred, implying that the crude oils 

and condensates were generated from mature source rocks. As indicated in Chapter 

5, the Paqualin-1 sediments appear to be more mature than their Ro data suggest. 

Based on ∆δD values, the majority of the Vulcan Sub-basin crude oils have less 

mature isotopic signatures compared to most of the Paqualin-1 sediments, including 

those with Ro values representing the peak oil-generative window (i.e. ~ 0.7–1.1%). 

This is further evidence that the Paqualin-1 sediments are more mature than indicated 

by their Ro data if significant quantities of oil have been generated from the 

Paqualin-1 sequence. In the Vulcan Sub-basin crude oils and condensates, pristane is 

generally enriched in D relative to phytane by up to 25‰, consistent with the Vulcan 

Sub-basin sediments analysed in Chapter 5. 
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Table 6.6 Range of δD values of n-alkanes, δD values of pristane (Pr) and phytane (Ph), and ∆δD 
values (see below for definition) for the Vulcan Sub-basin crude oils and condensates 
 
Well, Depth (m) n-Alkanes 

δD Range (‰)*

δD Pr (‰)* δD Ph (‰)* ∆δD (‰) 

Birch-1 -141 to -122 (3)3 -135 (4)3 -155 (7)3 -13 

Tahbilk-1 -115 to -103 (4)3 -97 (0)4 -114 (2)4 +5 

Cassini-1 -134 to -115 (4)3 -124 (1)3 -125 (7)3 0 

Jabiru-2 -127 to -107 (3)3 -113 (0)3 -138 (5)3 -5 

Tenacious-1 -118 to -107 (3)3 -101 (3)3 -100 (12)3 +13 

Challis-1 -136 to -119 (3)3 -132 (2)3 -150 (9)3 -15 

Oliver-1 -111 to -102 (4)3 n.d. n.d. n.d. 

Montara-1 -108 to -94 (4)3 -84 (10)3 -112 (12)3 +8 

Puffin-2 -118 to -112 (5)3 n.d. n.d. n.d. 

Audacious-1 -116 to -99 (4)3 -94 (2)3 -108 (3)3 +9 

∆δD, difference between the average δD value of Pr and Ph and the average δD value of the n-alkanes 
(relative to VSMOW); * Numbers in parentheses are standard deviations (average is shown for n-
alkanes), superscript number are number of replicate analyses; n.d., not determined.
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6.3 SUMMARY AND CONCLUSIONS 

 

1. The bulk δD values of the Perth Basin crude oils and condensates vary quite 

significantly from the average δD value of the n-alkanes determined by CSIA. 

However in the Vulcan Sub-basin, bulk δD values of crude oils and condensates 

are similar in most cases to the average δD value of the n-alkanes. 

 

2. The δD values of n-alkanes in crude oils and condensates derived from a marine 

source are more positive than that expected for marine-derived organic matter, 

indicating they were generated from mature source rocks. 

 

3. A Perth Basin crude oil (Gage Roads-1) derived from a lacustrine/terrestrial 

source contains n-alkanes and pristane which are significantly depleted in D 

relative to those from predominantly marine-derived crude oils. This is attributed 

to isotopic variability of marine versus terrestrial source waters. 

 

4. The n-alkane δD profile for a marine-derived Perth Basin crude oil (Dongara-14) 

suggests that the oil is derived from a mixed marine/terrestrial source rock. The 

lower molecular weight n-alkanes are depleted in D relative to the higher 

molecular weight n-alkanes. 

 

5. The n-alkanes from the Woodada-3 crude oil are the most enriched in D in 

comparison to those from the other marine Perth Basin crude oils, possibly due to 

the Woodada-3 oil having been affected by the high thermal maturity in the 

Woodada area. Furthermore, Woodada-3 has been identified as a ‘vagrant’ in the 

northern Perth Basin, based on molecular and isotopic parameters. 

 

6. The relatively small differences between the δD values of n-alkanes and 

isoprenoids in the crude oils and condensates indicate they were generated from 
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mature source rocks. The biosynthetic δD differences between n-alkanes and 

isoprenoids would have probably been altered via hydrogen exchange reactions 

associated with thermal maturation. 

 

7. The differences between the δD values of pristane and phytane in the crude oils 

and condensates are consistent with the differences seen in their supposed source 

rocks. Opposing trends between the Perth Basin and Vulcan Sub-basin are 

suggested to be due to quantitatively different algal inputs to the source organic 

matter for the crude oils and condensates in each basin.  

 

8. In the Vulcan Sub-basin, the δD values of n-alkanes in the crude oils and 

condensates support their prior classification into two end-member groups based 

on molecular and stable carbon isotopic analyses: Group A, having a marine 

source affinity; and Group B, having a terrigenous source affinity. Some are 

suggested to be mixtures of sources A and B, or A and other as yet unknown 

sources. An exception was Tenacious-1 crude oil (Group A), which contained n-

alkanes with more positive δD values compared to other Group A oils, and thus 

is suggested to have been mixed with another source of more mature 

hydrocarbons. 

 

9. The Group A crude oils and condensates have a ‘bowl shaped’ profile of n-alkane 

δD values which is thought to represent an addition of a more mature wet 

gas/condensate to an initial oil charge, resulting in a upward inflection of the n-

alkane δD profile in the n-C11 to n-C15 range. 

 

10. Based on ∆δD values, the majority of the Vulcan Sub-basin crude oils have less 

mature isotopic signatures compared to most of the Paqualin-1 sediments. Thus it 

can be speculated that the Paqualin-1 sediments appear to be more mature than 

their Ro data suggest. 
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7 CONCLUSIONS AND SUGGESTIONS FOR FUTURE 
WORK 

 
 

 

7.1 CONCLUSIONS 

 

This study aimed to establish the usefulness and reliability of stable hydrogen 

isotopic compositions of individual compounds for geochemical applications. The 

overall conclusions are summarised below. 

 

7.1.1 Stable hydrogen isotopic compositions of petroleum hydrocarbons 

reflecting source and palaeoclimate 

Based on the work presented in Chapter 4, the stable hydrogen isotopic 

compositions (δD) of individual saturated hydrocarbons extracted from thermally 

immature torbanites (bog-head coals) have been shown to reflect the main source of 

hydrogen (i.e. meteoric waters) in their depositional environments. A series of 

torbanites reflecting similar organic matter inputs, but deposited under different 

climate regimes, were chosen for this study. Previous biomarker studies on torbanites 

attest to the occurrence of well-preserved organic matter derived predominantly from 

Botryococcus braunii remains. Thus, the δD values of n-alkanes are representative of 

the different climate conditions under which the torbanites were deposited, varying 

from tropical (equatorial) to cool-temperate (mid-latitude) to glacial (high latitude). 

The reflection of climate is based primarily on the δD values of source meteoric 

waters produced from the global hydrological cycle, which vary significantly with 

latitude/temperature. The photosynthetic incorporation of the source water’s D/H 

signature and subsequent biosynthesis leads to precursor lipids with δD values 

representative of the environmental waters. 

The δD values of n-alkanes are also indicative of multiple source inputs. For 

example, the n-alkanes extracted from the Australian torbanites have been attributed 

to a dual-source system with predominant Botryococcus braunii input, and a 

terrestrial plant input favouring odd-carbon-numbered n-alkanes in the range n-C20 to 
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n-C29. This interpretation is based on a saw-toothed profile of n-alkane δD values, 

with the odd-carbon-numbered n-alkanes being enriched in deuterium (D) relative to 

those with even-carbon-numbers attributed to the evapotranspiration effect in plants. 

There is a significant disparity between the δD values of n-alkanes and acyclic 

isoprenoids (pristane and phytane) in two Permian torbanites from Australia. This 

offset is similar to that observed in extant organisms, suggesting that an apparent 

biological δD signal has been preserved for at least 260–280 million years. This 

preservation potential is appreciably greater than previously thought. There is no 

evidence that diagenetic and catagenetic processes have affected the δD values of the 

hydrocarbons to any significant extent. 

In summary, it is apparent that important source and palaeoenvironmental 

information can be obtained from the δD values of individual hydrocarbons 

preserved in thermally immature sedimentary organic matter. 

 

7.1.2 Alteration of stable hydrogen isotopic compositions of petroleum 

hydrocarbons in the subsurface 

Based on the work presented in Chapters 4 and 5, the δD values of n-alkanes 

from immature sediments are representative of their source. In Chapter 5, it is shown 

that the δD values of n-alkanes and isoprenoids (pristane and phytane) extracted 

from immature-early mature Perth Basin sediments (marine shale/siltstone) and 

Vulcan Sub-basin sediments (marine mudstones) are consistent with that expected of 

marine-derived n-alkyl and isoprenoid lipids. With increasing thermal maturity, 

pristane and phytane are rapidly enriched in D, compared to slower D-enrichment of 

the n-alkanes. Over the studied range of maturity (%Ro= 0.53–1.6), the enrichment of 

D in isoprenoids is shown to correlate strongly with several traditional maturity 

parameters such as vitrinite reflectance (Ro) and the molecular parameters 

Ts/(Ts+Tm), MPI-1 and TNR-1 (see Appendix 1). Based on fundamental chemical 

principles, the more rapid enrichment of D in isoprenoids relative to n-alkanes 

suggests that H/D exchange occurs via a mechanism that proceeds faster with 

compounds containing tertiary carbon centres, i.e. one involving carbocation-like 

intermediates. Significant epimerisation of pristane and phytane coincides with their 

D-enrichment, suggesting that hydrogen exchange occurs at the tertiary carbons. 
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Pristane and phytane are significantly enriched in D (ca. 40‰) relative to the n-

alkanes in the most mature Paqualin-1 sample (post-mature; %Ro = 1.6). This 

indicates that D-enrichment persists at very high maturity, and more so for regular 

isoprenoids than n-alkanes. This supports the notion that the observed shift in δD 

values is due to H/D exchange, and not free-radical hydrogen transfer which would 

more likely affect the n-alkanes to a larger extent than the regular isoprenoids. On the 

basis of this work, a mechanism is proposed which could occur on a reactive clay 

surface, involving the formation of an intermittent alkene structure via a tertiary 

carbocation-like species, which then promotes H/D exchange at the adjacent carbon. 

The resulting sp2 hybridised tertiary carbocation then undergoes 1H (or D) 

reattachment resulting in additional H/D exchange along with epimerisation of the 

chiral centre. This process would account for both H/D exchange, and the 

epimerisation of pristane and phytane in the sedimentary environment. However, the 

fact that pristane and phytane appear to retain the isotopic composition of their 

precursors in immature sediments indicates that the epimerisation mechanism does 

not alter their δD values to any significant extent during early maturation. 

The enrichment of D in hydrocarbons from Paqualin-1 appears to occur at lower 

maturity (based on Ro) compared to Vulcan-1B and Perth Basin sediments. Notably, 

from the least mature sample at 3159 m to the one at 3354 m, there is a significant 

enrichment of D in pristane and phytane. Thus, it appears that the Paqualin-1 

sediments may be more mature than suggested by their Ro values. Alternatively, the 

isoprenoids from the least mature Paqualin-1 sample could be derived from a 

different or additional D-depleted source. 

In the Perth Basin, phytane is shown to be enriched in D relative to pristane, 

similar to that observed in the torbanites (Chapter 4), and thus is suggested to be a 

result of a dominant algal source contributing to the organic matter. In the Vulcan 

Sub-basin, however, pristane is enriched in D relative to phytane, and thus is 

suggested to have a lower relative input of algal organic matter. In both cases, the 

difference between the δD values of pristane and phytane is generally constant 

throughout the maturity range providing evidence that pristane and phytane exchange 

hydrogen at similar rates. 

An understanding of the effect of sedimentary processes on δD values of 

individual petroleum hydrocarbons is implicit in their interpretation. This study 
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shows that the δD values of certain compound types is largely dependent on their 

reactivity towards hydrogen exchange, thus caution is required when interpreting δD 

values of hydrocarbons, particularly in sediments of high thermal maturity. It is 

suggested that samples retaining an offset between the δD values of n-alkanes and 

isoprenoids will have relatively well preserved D/H compositions. The results also 

suggest that δD values of individual hydrocarbons may be used to assess the thermal 

maturity of sedimentary organic matter, which will be particularly valuable for 

samples lacking vitrinite, or where traditional molecular maturity parameters are 

anomalous. 

 

7.1.3 Stable hydrogen isotopic compositions of petroleum hydrocarbons for 

oil-source correlation 

Based on the work presented in Chapter 6, it is shown that the δD values of 

individual hydrocarbons in crude oils and condensates can provide source and 

depositional information which is useful for oil-source correlation purposes. For 

example, it is shown in Chapter 5 that the δD values of n-alkanes in marine 

petroleum source rocks are indicative of marine-derived n-alkyl lipids. While this is 

somewhat true for marine-derived crude oils, the δD values of n-alkanes in crude oils 

and condensates are often more positive than their supposed source rock 

counterparts. The D-enriched n-alkanes are thought to be indicative of generation 

from mature source rocks. A mature source rock is supported by the relatively small 

difference between the δD values of n-alkanes and isoprenoids in the crude oils and 

condensates, which implies that significant H/D exchange has occurred. 

A crude oil (Gage Roads-1, off-shore, southern Perth Basin), thought to be 

derived from a lacustrine/terrestrial source, contains hydrocarbons that are 

significantly depleted in D relative to those from marine-derived crude oils and 

condensates of the Perth Basin. This was attributed to terrestrial meteoric source 

waters being depleted in D relative to ocean water. Prior classification of Vulcan 

Sub-basin crude oils and condensates into separate marine-influenced (A) and 

terrestrially-influenced (B) groups is supported by the δD values of n-alkanes. One 

exception is Tenacious-1, previously classified as Group A, which contains n-alkanes 

that are more enriched in D relative to those from other Group A oils and 

143 



  Chapter 7 

condensates. This discrepancy was attributed to mixing with another source 

containing relatively more mature hydrocarbons. Overall, the δD values of individual 

hydrocarbons are generally indicative of source rock depositional environments. 

The profile of n-alkane δD values of crude oils have been shown to possibly 

relate to source and sedimentary processes. Dongara-14 crude oil (on-shore, northern 

Perth Basin) contains lower-molecular-weight n-alkanes that are depleted in D 

relative to higher-molecular-weight n-alkanes, which may be attributed to a mixed 

marine/terrestrial source rock for this oil. Group A crude oils and condensates from 

the Vulcan Sub-basin display a ‘bowl-shaped’ profile of n-alkane δD values, which 

is suggested to represent the addition of a more mature wet gas/condensate to a less 

mature initial oil charge. This would result in the addition of D-enriched lower-

molecular-weight n-alkanes, thus causing the upward inflection observed in the 

n-alkane δD profile from n-C11 to n-C15. 

Woodada-3 crude oil (on-shore, northern Perth Basin), previously identified as a 

‘vagrant’ in the northern Perth Basin, is also shown to contain n-alkanes which are 

the most enriched in D in comparison to those from the other northern Perth Basin 

crude oils. Thus, the vagrant nature of this oil is reflected in the δD values of its n-

alkanes.  

The above examples all demonstrate how the δD values of individual 

hydrocarbons in crude oils and condensates can assist in oil-source correlation 

studies. 

 

7.2 SUGGESTIONS FOR FUTURE WORK 

 
General suggestions for future development of compound-specific δD analysis of 

petroleum and other complex organic mixtures using gas chromatography-isotope 

ratio mass spectrometry (GC-irMS) follow. An improvement in the resolution of 

chromatographic separation of organic compounds would facilitate compound-

specific δD analysis of a wider range of petroleum hydrocarbons (e.g. hopanes, 

steranes). Developments could include either the use of more advanced gas 

chromatographic (online separation) techniques such as GC-GC-irMS; or a more 
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comprehensive series of offline separation methods, e.g. advanced liquid 

chromatographic and molecular sieving techniques. 

Suggestions for extension of the specific research areas (source, alteration and 

correlation) of this thesis are outlined below. Recent funding of an Australian 

Research Council Discovery grant (Grice and Greenwood, DP0662839) will allow an 

investigation of several of these. 

 

7.2.1 Source 

Although there has been some research into the biosynthetic fractionations of 

hydrogen isotopes in extant organisms (e.g. Estep and Hoering, 1980; 1981; Sessions 

et al., 1999), there is a need for further work to better understand the complex 

fractionations that occur in specific biosynthetic pathways. This would allow for 

more comprehensive interpretation of the δD values of hydrocarbons derived from 

biological precursors via specific biosynthetic routes. 

Future work could aim to achieve a more comprehensive understanding of 

source-derived δD values in a larger variety of depositional settings. For example, 

research into (hyper)saline depositional environments could give insights into the 

relationship of D/H with palaeosalinity. This research could involve the δD analysis 

of biomarkers derived from halophilic archaea, which include a series of extended 

acyclic isoprenoids (C21 to C25). These compounds have been previously identified in 

sediments deposited in (hyper)saline environments (Grice et al., 1998a; 1998c). 

 

7.2.2 Alteration 

It is clear that sedimentary processes such as thermal maturation alter the δD 

values of certain compound types to a greater extent than others; however the 

investigation of a wider range of compounds is necessary to confirm these findings. 

Although there is abundant evidence to suggest that hydrogen exchange is a 

fundamental process in altering the δD values of hydrocarbons during thermal 

maturation, δD analysis of a more diverse range of carbon-skeletons will serve to 

better understand the chemical mechanisms that lead to the alteration of δD values. 

Furthermore, additional field data showing evidence of more positive δD values of 
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isoprenoids than n-alkanes (as discussed in Chapter 5 of this thesis) would provide 

further evidence that the observed changes in δD values are due to H/D exchange, 

and not free-radical hydrogen transfer. δD analysis of model compounds before and 

after artificial maturation experiments could provide additional insight into the 

mechanisms altering δD values during maturation. In addition, the extent to which 

the δD values of hydrocarbons in hydrothermal systems are altered could provide 

another avenue to elucidate the incorporation of water-derived hydrogen into 

sedimentary hydrocarbons. 

The potential of δD values of individual hydrocarbons to assess the thermal 

maturity of sedimentary organic matter also warrants further investigation. A 

maturity indicator based on compound-specific δD values may prove useful in cases 

where traditional biomarker maturity parameters are ineffective, for example at high 

maturity levels (i.e. %Ro >1) or where their associated reactants and products either 

equilibrate, or are thermally degraded. In addition, such a maturity measurement 

could be applicable to pre-Devonian sediments, where vitrinite reflectance 

measurements cannot be made because the higher-plant precursors of vitrinite had 

not yet evolved. 

There has been little research into the effect that other alteration events such as 

in-reservoir biodegradation and water washing have on the δD values of individual 

petroleum hydrocarbons. Further work in this area would allow a more confident and 

comprehensive interpretation of the δD values of hydrocarbons present in samples 

exposed to these secondary processes. 

 

7.2.3 Correlation 

The δD values of individual hydrocarbons, in combination with other molecular 

and δ13C parameters, have useful applications in oil-source correlation. However, 

further delineation of the factors determining n-alkane δD profiles is required. While 

the effects of in-reservoir biodegradation and water washing on the δD values of 

petroleum hydrocarbons are not well understood, there is some evidence that in-

reservoir mixing of oils of different maturities affects n-alkane δD profiles. 

Presumably, migration contamination would have the same effect. 
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Further work could also focus on the δD analysis of a wider range of crude oils 

derived from source rocks deposited in various types of depositional environments, 

e.g. fluvio-deltaic, freshwater transitional, marine, lacustrine and (hyper)saline 

settings. An understanding of the effects of different depositional environments on 

the δD values of individual hydrocarbons, and particularly on n-alkane δD profiles, 

could prove to be useful when using these measurements for oil-source correlation. 
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APPENDIX 1 
Glossary of geochemical parameters used in this study 

 
BULK PARAMETERS 

 

Vitrinite Reflectance 

A maturity parameter for sedimentary organic matter. Vitrinite is a group of 

macerals derived from land plant tissues. Vitrinite particles are used for vitrinite 

reflectance (Ro) determinations of thermal maturity. The reflectance of vitrinite 

depends on its chemical composition. Irreversible chemical changes in vitrinite (e.g. 

increase in aromaticity) occur with ongoing maturaton, resulting in increased 

reflectance. Ro values are determined from the average reflectance of a specific 

number of vitrinite particles (typically 50–100; Peters and Moldowan, 1993) in a 

polished slide of kerogen. The term %Ro refers to the percentage of incident light 

(546 nm) reflected from the particles back through a microscope using an oil-

immersion objective. 

 

Tmax, hydrogen index and oxygen index from Rock-Eval pyrolysis 

Rock-Eval pyrolysis (Espitalié et al., 1977) is a programmed temperature 

pyrolysis technique used for source rock assessment. The crushed sediment is heated 

in an inert atmosphere over a programmed temperature range from 300 to 550ºC. 

Free or adsorbed hydrocarbons (S1) are thermally distilled at 300ºC and measured 

with a flame ionisation detector (FID). Hydrocarbons bound within the kerogen (S2) 

are then thermally cracked during the temperature increase from 300 to 550ºC and 

also measured with the FID. CO2 released during the cracking process (S3) is trapped 

and subsequently measured by a thermal conductivity detector. Figure A.1a shows a 

typical Rock-Eval pyrolysis pyrogram and the related parameters. Tmax is the 

temperature which corresponds to the maximum hydrocarbon generation during 

pyrolysis (S2; see Figure A.1a), and is a maturity indicator, e.g. Tmax values below ~ 

430ºC are characteristic of immature samples, while values in excess of 460ºC are 

typical of overmature samples. Tmax also varies with the type of organic matter, e.g. 
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in oil-prone Type I kerogen the generation of hydrocarbons will commence later, i.e. 

at higher temperatures, than in Type III kerogen. Hydrogen index (HI) and oxygen 

index (OI) are used as measures of source rock quality. HI ((S2/TOC)x100), 

expressed as mg hydrocarbons/g total organic carbon (mg HC/g TOC); and OI 

((S3/TOC)x100), expressed as mg CO2/g TOC, are used in combination to determine 

the type of organic matter present in a source rock. For example, high HI and low OI 

is indicative of oil-prone Type I kerogen, while low HI and high OI is characteristic 

of gas-prone Type III kerogen. HI and OI are often plotted together in van Krevelen 

diagrams (e.g. Figure A.1b). 

 

 
(a) (b)

 

 

 

 

 

 

 

 

 

 

Figure A.1. (a) Cycle of analysis and example of record obtained by Rock-Eval pyrolysis (Espitalié et 
al., 1977); and (b) a typical van Krevelen diagram. 

 

MOLECULAR SOURCE AND DEPOSITIONAL PARAMETERS 

 

n-Alkane profile 

The distribution patterns of n-alkanes can be indicative of their origin. For 

example, a predominance of n-alkanes in the C23 to C30 range with an odd-over-even 

carbon number preference is associated with a terrestrial higher plant source (e.g. see 
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Chapter 3), while an even-over-odd carbon number preference can be associated with 

carbonate-evaporite source rocks (Peters and Moldowan, 1993). These 

interpretations can be complicated by the fact that secondary processes such as 

maturation, biodegradation, in-reservoir mixing of different oils and migration 

contamination can alter n-alkane distributions. 

 

Pristane/Phytane ratio 

The ratio of pristane (Appendix 2, VI) to phytane (III) (Pr/Ph) has been used as 

an indicator of the oxicity of depositional environments (e.g. Brooks et al., 1969; 

Powell and McKirdy, 1973; Didyk et al., 1978). This is based on the assumption that 

both pristane and phytane originate from the phytol side chain of chlorophyll a (IV). 

Early work suggested that low Pr/Ph (i.e. less than 1) were indicative of anoxic 

depositional environments while higher Pr/Ph (greater than 1) were ascribed to oxic 

depositional environments (Didyk et al., 1978). However two main problems with 

this interpretation are, (i) there are other sources of pristane and phytane which 

include archaebacterial lipids (Rowland, 1990), while pristane is also derived from 

tocopherol (XVI) of higher plants (Goosens et al., 1984); (ii) crocetane (XVII) co-

elutes with phytane under typical GC conditions (Barber et al., 2001; Greenwood 

and Summons, 2003), thus its presence can ambiguously alter Pr/Ph; (iii) thermal 

stress has been shown to alter Pr/Ph during both artificial and natural maturation (e.g. 

Brooks et al., 1969; Lewan et al., 1979; Evans and Felbeck, 1983; Huizinga et al., 

1987); and (iv) sulfur-bound Ph is abundant in NSO, asphaltene and kerogen 

fractions of immature sediments, which may be released upon breakage of relatively 

weak carbon-sulfur bonds during thermal maturation, and thus alter Pr/Ph 

(Koopmans et al., 1999 and references therein). Peters and Moldowan (1993) 

summarised that Pr/Ph greater than 3.0 indicate terrestrial organic matter input under 

oxic conditions, and Pr/Ph less than 0.6 indicate anoxic, often hypersaline 

environments. They suggested that Pr/Ph in the range 0.8 to 2.5 should not be 

interpreted in terms of depositional conditions, and that Pr/Ph should not be used to 

describe the depositional environment of samples of low thermal maturity. 
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C29/(C29+C27) sterane ratio 

Steranes (e.g. cholestane, XIX) in petroleum are derived from sterols (e.g. 

cholesterol, XX) in eukaryotic organisms (Mackenzie et al., 1982). The steranes 

commonly utilised in petroleum geochemical studies are the C27 to C30 homologues. 

There are three structural types of steranes, which include regular steranes, 

diasteranes (rearranged steranes, see below) and methyl steranes. One parameter is 

based on the abundance of the algal-derived C27 steranes with respect to C29 steranes 

derived from terrestrial higher plants (but see Volkman, 1986), i.e. C29/(C29+C27). 

For example a dominance of C27 steranes with respect to C29 steranes, i.e. a low 

C29/(C29+C27) sterane ratio, is characteristic of a predominant marine source.  

 

C19/(C19+C23) tricyclic terpane ratio 

Tricyclic terpanes (e.g. XXI) ranging from C19 to C30 are common in petroleum, 

with the C23 homologue typically being the most prominent (Aquino Neto et al., 

1983). A parameter based on the distribution of tricyclic terpanes is the C19/(C19+C23) 

tricyclic terpane ratio, which can be used to differentiate between marine and 

terrestrial source inputs. For example, a high abundance of the C23 tricyclic terpane 

relative to the terrestrial higher plant-derived (Peters et al., 2005) C19 homologue, i.e. 

a low C19/(C19+C23) tricyclic terpane ratio, is indicative of a predominant marine 

input. 

 

Higher Plant Index 

Higher plant index (HPI) is a parameter based on the distributions of various 

aromatic hydrocarbons. The higher plant input is represented by the abundance of the 

higher plant markers cadalene (XXII), retene (XXIII) and 6-isopropyl-1-isohexyl-2-

methylnaphthalene (iP-iHMN; XXIV), relative to the bacterially-derived 1,3,6,7-

tetramethylnaphthalene (1,3,6,7-TeMN; e.g. XIV). HPI is calculated using the 

equation (retene + cadalene + iP-iHMN)/1,3,6,7-TeMN (van Aarssen et al., 1996), 

and increases with increasing higher plant input to sediments. 
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MOLECULAR MATURITY PARAMETERS 

 

22S/(22S+22R) 17α(H),21β(H)-hopanes 

Hopanes are pentacyclic triterpanes derived from a range of sources including 

bacteria, blue-green algae (cyanobacteria) and terrestrial higher plants. Hopanes are 

commonly present in petroleum as a homologous series ranging from C29 to C35. The 

C31 to C35 homologues, often referred to as extended hopanes, contain an asymmetric 

centre at the C-22 position giving rise to two diastereomers: 22R and 22S (e.g. 

Appendix 2, XXV). In the sedimentary environment, hopanes initially retain the 22R 

configuration of the biologically-produced hopanoid precursor. With ongoing 

maturation, the relative abundance of the 22S hopane increases relative to the 22R 

hopane, resulting in an increase in the ratio of 22S/(22S+22R). Thus, the ratio of 

22S/(22S+22R) 17α(H) 21β(H)-hopanes (Ensminger et al., 1977) is often used to 

assess the thermal maturity of sedimentary organic matter. 

 

Ts/(Ts+Tm), diahopanes/regular hopanes and diasteranes/regular steranes 

Some hopane maturity parameters include those based on the rearrangement of 

hopane structures. These include the parameter based on the 18α(H)/17α(H)-

trisnorhopane (XXVI) ratio, or Ts/Tm, calculated as Ts/(Ts+Tm), and that based on 

the ratio of diahopanes to regular hopanes. During catagenesis, Ts is more resistant to 

degradation than Tm (Seifert and Moldowan, 1978), thus Ts/(Ts+Tm) generally 

increases with ongoing maturation. Diahopanes are formed in clay-rich source rocks 

via carbocation-rearrangement of regular hopanes, where the methyl group attached 

to C-14 is ‘rearranged’ to C-15. The rearrangement of regular steranes to diasteranes 

also occurs in clay-rich source rocks (e.g. Sieskind et al., 1979; van Kaam-Peters et 

al., 1998). Diahopanes and diasteranes are considered to be more stable than their 

regular counterparts, therefore diahopane/hopane (e.g. C30-diahopane/C30αβ-hopane) 

and diasterane/sterane (e.g. C27βα-diasterane (20S)/C27ααα-sterane (20R)) ratios 

generally increase with increasing maturity. 
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Methylphenanthrene index 

The methylphenanthrene index (e.g. MPI-1; Radke and Welte, 1983) is a 

maturity parameter based on the distributions of methylphenanthrene (MP) isomers, 

relative to the presumed parent compound phenanthrene (P, XXVII). MPI-1 is based 

on the presumption that the MP isomers with methyl groups in the α-position of the 

phenanthrene structure (e.g. 1-MP, 9-MP) are less stable than those with methyl 

groups in the β-position (e.g. 2-MP, 3-MP), and thus are more susceptible to change 

with increasing thermal maturity. The parameter MPI-1 is calculated using the 

equation (1.5 x (2MP + 3MP))/(P + 9MP + 1MP), and increases with increasing 

thermal maturity. 

 

Trimethylnaphthalene ratio 

The trimethylnaphthalene ratio (e.g. TNR-1; Alexander et al., 1985) is a maturity 

parameter based on the distribution of methylated naphthalenes. TNR-1, like MPI-1, 

relies on a shift with maturity in the trimethylnaphthalene (TMN) distributions 

towards predominance of the more stable β-substituted (XIV) isomers (Alexander et 

al., 1985). The more stable β,β,β-substituted TMN isomer (2,3,6-TMN) increases in 

abundance relative to the α,α,β-substituted TMN isomers (1,4,6- and 1,3,5-TMN) 

with increasing thermal maturity. Thus, TNR-1 is calculated using the formula 2,3,6-

TMN/(1,4,6-TMN + 1,3,5-TMN) (Alexander et al., 1985). 

 

Trimethylnaphthalene ratio, tetramethylnaphthalene ratio and 

pentamethylnaphthalene ratio in a ternary diagram 

The three parameters TMNr (trimethylnaphthalene ratio), TeMNr 

(tetramethylnaphthalene ratio) and PMNr (pentamethylnaphthalene ratio), when 

plotted in a ternary diagram (van Aarssen et al., 1999), can be used as an indicator 

for secondary alteration. Maturation leads to an increase in the abundance of the 

more stable methylnaphthalene isomers (e.g. 1, 3, 7-trimethylnaphthalene; 1, 3, 6, 7-

tetramethylnaphthalene; 1, 2, 4, 6, 7-pentamethylnaphthalene) relative to the less 

stable isomers (e.g. 1, 2, 5-trimethylnaphthalene; 1, 2, 5, 6-tetramethylnaphthalene; 

1, 2, 3, 5, 6-pentamethylnaphthalene), and the three parameters appear to be linearly 
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related when determined by thermal stress alone (van Aarssen et al., 1999). 

Therefore, when plotted on a ternary diagram, crude oils with parameters that are 

determined only by thermal stress locate inside the ‘maturity centre’ (Figure A.2). 

The maturity centre (e.g. see Chapter 6) is defined as the area within a 10% margin 

around a mathematically-determined centre which, in theory, is a single point on the 

diagram representing a case where TMNr, TeMNr and PMNr are perfectly linearly 

related (van Aarssen et al., 1999). Samples that deviate from the maturity centre are 

affected by additional secondary processes, such as in-reservoir mixing of oils of 

different maturities, by biodegradation, or by migration contamination (van Aarssen 

et al., 1999). 

 

 

Figure A.2. A ternary plot displaying the linear relationships between TMNr, TeMNr and PMNr as 
dashed lines. The crosspoint of these lines is where samples that fit all three equations plot (van 
Aarssen et al., 1999). 
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APPENDIX 2 
Structures referred to in text 
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 C30 Hopanes
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Tm Ts

22,29,30-Trisnorhopanes (C27)
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