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Abstract

In this thesis, we develop new computational methods for three classes of dynamic opti-

mization problems: (i) A parameter identification problem for a general nonlinear time-

delay system; (ii) an optimal control problem involving systems with both input and

output delays, and subject to continuous inequality state constraints; and (iii) a max-min

optimal control problem arising in gradient elution chromatography.

In the first problem, we consider a parameter identification problem involving a gen-

eral nonlinear time-delay system, where the unknown time delays and system parameters

are to be identified. This problem is posed as a dynamic optimization problem, where

its cost function is to measure the discrepancy between predicted output and observed

system output. The aim is to find unknown time-delays and system parameters such

that the cost function is minimized. We develop a gradient-based computational method

for solving this dynamic optimization problem. We show that the gradients of the cost

function with respect to these unknown parameters can be obtained via solving a set of

auxiliary time-delay differential systems from 𝑡 = 0 to 𝑡 = 𝑇 . On this basis, the parame-

ter identification problem can be solved as a nonlinear optimization problem and existing

optimization techniques can be used. Two numerical examples are solved using the pro-

posed computational method. Simulation results show that the proposed computational

method is highly effective. In particular, the convergence is very fast even when the initial

guess of the parameter values is far away from the optimal values.

Unlike the first problem, in the second problem, we consider a time delay identifica-

tion problem, where the input function for the nonlinear time-delay system is piecewise-

constant. We assume that the time-delays—one involving the state variables and the

other involving the input variables—are unknown and need to be estimated using ex-

perimental data. We also formulate the problem of estimating the unknown delays as

a nonlinear optimization problem in which the cost function measures the least-squares

error between predicted output and measured system output. This estimation problem

can be viewed as a switched system optimal control problem with time-delays. We show

that the gradient of the cost function with respect to the unknown state delay can be

obtained via solving a auxiliary time-delay differential system. Furthermore, the gradient

of the cost function with respect to the unknown input delay can be obtained via solving

an auxiliary time-delay differential system with jump conditions at the delayed control

switching time points. On this basis, we develop a heuristic computational algorithm for
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solving this problem using gradient based optimization algorithms. Time-delays in two

industrial processes are estimated using the proposed computational method. Simulation

results show that the proposed computational method is highly effective.

For the third problem, we consider a general optimal control problem governed by a

system with input and output delays, and subject to continuous inequality constraints

on the state and control. We focus on developing an effective computational method

for solving this constrained time delay optimal control problem. For this, the control

parameterization technique is used to approximate the time planning horizon [0, 𝑇 ] into

𝑁 subintervals. Then, the control is approximated by a piecewise constant function

with possible discontinuities at the pre-assigned partition points, which are also called

the switching time points. The heights of the piecewise constant function are decision

variables which are to be chosen such that a given cost function is minimized. For the

continuous inequality constraints on the state, we construct approximating smooth func-

tions in integral form. Then, the summation of these approximating smooth functions in

integral form, which is called the constraint violation, is appended to the cost function to

form a new augmented cost function. In this way, we obtain a sequence of approximate

optimization problems subject to only boundedness constraints on the decision variables.

Then, the gradient of the augmented cost function is derived. On this basis, we develop

an effective computational method for solving the time-delay optimal control problem

with continuous inequality constraints on the state and control via solving a sequence of

approximate optimization problems, each of which can be solved as a nonlinear optimiza-

tion problem by using existing gradient-based optimization techniques. This proposed

method is then used to solve a practical optimal control problem arising in the study of

a real evaporation process. The results obtained are highly satisfactory, showing that the

proposed method is highly effective.

The fourth problem that we consider is a max-min optimal control problem arising

in the study of gradient elution chromatography, where the manipulative variables in the

chromatographic process are to be chosen such that the separation efficiency is maximized.

This problem has three non-standard characteristics: (i) The objective function is non-

smooth; (ii) each state variable is defined over a different time horizon; and (iii) the order

of the final times for the state variable, the so-called retention times, are not fixed. To solve

this problem, we first introduce a set of auxiliary decision variables to govern the ordering

of the retention times. The integer constraints on these auxiliary decision variables are

approximated by continuous boundedness constraints. Then, we approximate the control

by a piecewise constant function, and apply a novel time-scaling transformation to map the

retention times and control switching times to fixed points in a new time horizon. The

retention times and control switching times become decision variables in the new time

horizon. In addition, the max-min objective function is approximated by a minimization

problem subject to an additional constraint. On this basis, the optimal control problem is
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reduced to an approximate nonlinear optimization problem subject to smooth constraints,

which is then solved using a recently developed exact penalty function method. Numerical

results obtained show that this approach is highly effective.

Finally, some concluding remarks and suggestions for further study are made in the

conclusion chapter.
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CHAPTER 1

Introduction

1.1 Motivation and background

In an optimal control problem, there is a governing dynamic system whose trajectory,

called the state, is influenced by an adjustable variable, called the control. Its aim is

to find a control such that a performance index is optimized subject to some specified

constraints. The performance index, which is also called the cost function, could repre-

sent energy consumption, wastage of consumable materials, or the time taken to achieve

a given task, just to name a few examples. The specified constraints could arise due to

design specifications, safety operation conditions or engineering requirements. Optimal

control has many successful real world applications in areas ranging from engineering to

economics. Many of these real world problems are too complicated to admit analyti-

cal solutions. Thus, it is unavoidable to rely on numerical methods to deal with these

problems. There are now many computational methods available in the literature for

solving various classes of optimal control problems. Most of these methods are for control

problems in which the governing dynamic system does not involve time-delay. However,

time-delays arise in many real world applications, such as chemical tank reactors [86],

aerospace engineering [143], chromatography [107], and power converters [153]. The ef-

fects of time-delays must not be ignored, because it is known [28,123] that time-delays in

a dynamic system could cause instability in the system concerned. However, techniques,

theory and methods for optimal control problems without time-delay are often not ap-

plicable to optimal control problems with time-delays. Consequently, it has attracted a

considerable interest amongst mathematicians and engineers, especially process engineers,

to develop effective computational methods for solving optimal control problems involving

nonlinear time-delay systems [25,74,77,131].

In this thesis, we will formulate several optimal control problems arising in practical

industrial processes. Then, we will develop effective computational methods for solving

these real world optimal control problems.
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1.2 Nonlinear programming problems 2

1.2 Nonlinear programming problems

Nonlinear programming (NLP) problem is an optimization problem with nonlinear ob-

jective function and/or nonlinear constraints. NLP problems arise in many real world

applications. A general NLP problem can be stated as follows:

Problem (𝑃1).

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝒙)

𝑠.𝑡. 𝑔𝑖(𝒙) = 0, 𝑖 = 1, . . . ,𝑚1,

𝑔𝑖(𝒙) ≤ 0, 𝑖 = 𝑚1 + 1, . . . ,𝑚1 +𝑚2.

where 𝒙 ∈ ℝ𝑟 is the decision vector; 𝑓(𝒙) is the objective function; 𝑔𝑖(𝒙), 𝑖 = 1, . . . ,𝑚1,

are given equality constraint functions; and 𝑔𝑖(𝒙), 𝑖 = 𝑚1 + 1, . . . ,𝑚1 + 𝑚2, are given

inequality constraint functions. Assume that the objective function and the constraint

functions are twice continuously differentiable.

For NLP problem, a vector 𝒙 is called a feasible solution if it satisfies all the constraint

functions of Problem (𝑃1). The set containing all the feasible solutions is called the feasible

region. It is denoted by ℱ . Furthermore, the 𝑗th inequality constraint is said to be active

at the point 𝒙 if 𝑔𝑗(𝒙) = 0.

Definition 1.1. (Active set.) The active set 𝒜(𝒙) at point 𝒙 is the set of indices defined

by

𝒜(𝒙) = {𝑗 ∈ {𝑚1 + 1, . . . ,𝑚1 +𝑚2}∣𝑔𝑗(𝒙) = 0}.

Let 𝒜(𝒙) = 𝒜(𝒙)∪ {1, . . . ,𝑚1} denote the set of indices of the active constraints and

the equality constraints at 𝒙.

A feasible point 𝒙∗ ∈ ℱ is called a global minimum if 𝑓(𝒙∗) ≤ 𝑓(𝒙), ∀𝒙 ∈ ℱ .

Moreover, a feasible point 𝒙∗ ∈ ℱ is called a local minimum if there exists an 𝜀 > 0 such

that

𝑓(𝒙∗) ≤ 𝑓(𝒙), ∀𝒙 ∈ 𝒩𝜀(𝒙
∗) = {𝒙∗ ∈ ℱ∣ ∥ 𝒙∗ − 𝒙 ∥≤ 𝜀}.

We say that the linearly independent constraint qualification (LICQ) holds at a point

�̂� ∈ ℱ if the following set at point �̂� is linearly independent:

{∇𝑔𝑗(�̂�)∣𝑗 ∈ 𝒜(�̂�)},

where ∇𝒈𝑗(�̂�) denotes the partial derivative (i.e., gradient) of 𝑔𝑗(𝒙) evaluated at 𝒙 = �̂�.

In addition, a point at which the LICQ holds is called a regular point.
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Consider Problem (𝑃1). The Lagrangian is:

𝐿(𝒙,𝝀) = 𝑓(𝒙) +

𝑚1+𝑚2∑
𝑖=1

𝜆𝑖𝑔𝑖(𝒙),

where 𝝀 = [𝜆1, . . . , 𝜆𝑚1+𝑚2 ]
⊤ is the vector of Lagrange multipliers.

Let ∇𝒉(𝒙) be the partial derivatives of function ℎ with respect to 𝒙 and let ∇2𝒉(𝒙)

be the second partial derivatives (Hessian matrix) of ℎ with respect to 𝒙, i.e.,

∇𝒇(𝒙) = [
∂𝑓(𝒙)

∂𝑥1
,
∂𝑓(𝒙)

∂𝑥2
, . . . ,

∂𝑓(𝒙)

∂𝑥𝑛
]⊤,

∇2𝒇(𝒙) =

⎡⎢⎢⎢⎢⎢⎣
∂2𝑓(𝒙)

∂𝑥2
1

. . . ∂2𝑓(𝒙)
∂𝑥1∂𝑥𝑛

∂2𝑓(𝒙)
∂𝑥2∂𝑥1

. . . ∂2𝑓(𝒙)
∂𝑥2∂𝑥𝑛

...
...

...
∂2𝑓(𝒙)
∂𝑥𝑛∂𝑥1

. . . ∂2𝑓(𝒙)
∂𝑥𝑛∂𝑥𝑛

⎤⎥⎥⎥⎥⎥⎦ .
Similarly, ∇𝑳(𝒙) and ∇2𝑳(𝒙,𝝀) denote, respectively, the partial derivatives and the

second partial derivatives (Hessian matrix) of 𝐿 with respect to 𝒙.

The first-order optimality conditions, called the Karush-Kuhn-Tucker (KKT) condi-

tions, for local optimal solutions are given below.

Theorem 1.1. (KKT conditions). Suppose that 𝒙∗ ∈ ℱ is a local optimal solution of

Problem (𝑃1) and that the LICQ holds at 𝒙∗. Then, there exists a non trivial vector 𝝀∗

such that the following conditions are satisfied

∇𝑳(𝒙∗,𝝀∗) = 0,

𝑔𝑖(𝒙
∗) = 0, 𝑖 = 1, . . . ,𝑚1,

𝑔𝑖(𝒙
∗) ≤ 0, 𝑖 = 𝑚1 + 1, . . . ,𝑚1 +𝑚2,

𝜆∗𝑖 ≥ 0, 𝑖 = 𝑚1 + 1, . . . ,𝑚1 +𝑚2,

𝜆∗𝑖 𝑔𝑖(𝒙
∗) = 0, 𝑖 = 1, . . . ,𝑚1 +𝑚2.

For NLP problem, the global optimal solution is difficult to find, and hence the focus is

on finding a local optimal solution. There are many methods available for solving various

NLP problems. Examples include convex programming [71], separable programming [49],

fractional programming [22], quadratic programming [23], and sequential quadratic pro-

gramming [54]. In real word applications, the optimization problems are usually nonlinear,

where both the objective function and constraint functions are nonlinear. For such prob-

lems, sequential quadratic programming (SQP) method is known to be effective. For more

details on theory and computational algorithms, see, for example, [73,104].

The main idea of SQP method is to solve a sequence of quadratic programming (QP)
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subproblems, each of which is a quadratic model with quadratic objective function and

linearized constraints. A QP subproblem is solved in each iteration step, giving rise

to a search direction for the NLP for the current iterate 𝒙(𝑘), where 𝑘 denotes the 𝑘th

iteration. More specifically, the objective function 𝑓 is approximated by its local quadratic

approximation

𝑓(𝒙(𝑘) + 𝑑(𝒙)) ≈ 𝑓(𝒙(𝑘)) +∇𝑓(𝒙(𝑘))𝑑(𝒙) + 1

2
𝑑(𝒙)⊤∇2𝐿(𝒙(𝑘),𝝀(𝑘))𝑑(𝒙(𝑘)),

where 𝑑(𝒙) = 𝒙− 𝒙(𝑘), and the constraint functions 𝑔𝑖, 𝑖 = 1, . . . ,𝑚1 +𝑚2, are approxi-

mated by their local affine approximations

𝑔𝑖(𝒙(𝑘) + 𝑑(𝒙)) ≈ 𝑔𝑖(𝒙(𝑘)) +∇𝑔𝑖(𝒙(𝑘))⊤𝑑(𝒙), 𝑖 = 1, . . . ,𝑚1 +𝑚2.

Let 𝑩(𝑘) = ∇2𝐿(𝒙(𝑘),𝝀(𝑘)). The QP subproblem is:

Problem (𝑃2).

min 𝑓(𝒙(𝑘)) + (∇𝑓(𝒙(𝑘),𝝀(𝑘)))⊤𝑑(𝒙) + 1

2
𝑑(𝒙)⊤𝑩(𝑘)𝑑(𝒙),

𝑠.𝑡. 𝑔𝑖(𝒙(𝑘)) + (∇𝑔(𝒙(𝑘)))⊤𝑑(𝒙) = 0, 𝑖 = 1, . . . ,𝑚1,

𝑔𝑖(𝒙(𝑘)) + (∇𝑔(𝒙(𝑘)))⊤𝑑(𝒙) ≤ 0, 𝑖 = 𝑚1 + 1, . . . ,𝑚1 +𝑚2.

Problem (𝑃2) is solved as a quadratic programming problem with the active set strat-

egy. For further details, see [62,80].

To summarize, the SQP method is an iterative method for solving nonlinear optimiza-

tion problems. It has been implemented in many software packages, such as NPSOL,

NLPQL, OPSYC, OPTIMA, and SQP in MATLAB. It is important to note that the

gradients of the cost function and constraint functions are essential information needed

in the optimization process. Thus, this thesis pertains to the development of theory and

methods for computing gradients of the cost function and the constraint functions. These

gradients are then used in conjunction with the SQP iterative method for solving the

optimization problems under condiserations.

1.3 Numerical techniques for optimal control prob-

lems

In engineering, a mathematical model is commonly used to describe the behavior of a

dynamic process. This mathematical model is often expressed in terms of a system of
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ordinary differential equations as given below:

�̇�(𝑡) = 𝒇(𝑡,𝒙(𝑡),𝒖(𝑡)), 𝑡 ∈ [0, 𝑇 ], (1.1)

𝒙(0) = 𝒙0, (1.2)

where 𝑇 > 0 is the given terminal time of the time planning horizon [0, 𝑇 ]; 𝒙 ∈ ℝ𝑛 is

the state vector; 𝒖 ∈ ℝ𝑟 is the control vector; 𝒇 ∈ ℝ𝑛 is a given function describing the

evolution of the states; and 𝒙0 is the initial state vector at the initial time 𝑡 = 0. Note

that here, the value of a function 𝜔 at time 𝑡 is denoted by 𝜔(𝑡). The control can change

its values from 𝑡 = 0 to 𝑡 = 𝑇 . For a given control, the state evolves according to the

system of ordinary differential equations (1.1) with initial condition (1.2) over the time

planning horizon [0, 𝑇 ].

In practice, the control strategy for (1.1)-(1.2) cannot be completely arbitrary, because

the control strategy is limited by the capacity of the equipment used. For example, the

feed flow rate into a 30 m3 reactor tank must be less than or equal to 30
𝑇

m3. In other

words, the control is subject to physical limitations, often expressed mathematically as

the following control restraint set:

𝑼 = {𝒗 = [𝑣1, . . . , 𝑣𝑟]
⊤ : 𝑎𝑖 ≤ 𝑣𝑖 ≤ 𝑏𝑖, 𝑖 = 1, . . . , 𝑟},

where 𝑎𝑖 and 𝑏𝑖, 𝑖 = 1, . . . , 𝑟 are given constants; and the superscript ⊤ denotes the

transpose. A measurable function 𝒖 such that 𝒖(𝑡) ∈ 𝑼 for almost all 𝑡 ∈ [0, 𝑇 ] is called

an admissible control. Let 𝒰 be the set which consists of all such admissible controls. It

is called the set of admissible controls.

Note that the state is influenced by the control through system (1.1). For an optimal

control problem, it is required to choose an admissible control such that a performance

measure, which could be energy consumption, wastage of consumable materials, etc., is

optimized. This performance measure is also called an objective function or a cost func-

tion. In general, there are two terms in a cost function—a terminal cost and an integral

cost. For example, in an evaporation process, the energy usage should be minimized while

the solution level in each of the evaporators must be as close as possible to specific given

values at the terminal time. Let 𝑥𝑗, 𝑗 = 1, . . . , 7, be the states describing the levels; and

let �̂�𝑗, 𝑗 = 1, . . . , 7, be the target levels at terminal time. Furthermore, let 𝑢 be the control

representing the flow rate of the high temperature steam, and let 𝑊 be a function of 𝑢

and 𝒙 = [𝑥1, . . . , 𝑥7]
⊤ representing the water evaporated from the process. A typical cost

function of the form is given below:

𝐽 =
7∑

𝑗=1

(𝑥𝑗(𝑇 )− �̂�𝑗)
2 +

∫ 𝑇

0

𝑢(𝑡)2

𝑊 (𝑢(𝑡),𝒙(𝑡))2
𝑑𝑡. (1.3)
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The first term on the right hand side of (1.3) measures the differences between the real

levels and the target levels at the terminal time. It is the terminal cost. The second term

on the right hand side of (1.3) evaluates the energy usage during the whole period of the

time horizon.

The cost function given by (1.3) is a special case of a general cost function given as

follows:

𝐽(𝒖) = Φ(𝒙(𝑇 )) +

∫ 𝑇

0

ℒ(𝑡,𝒙(𝑡),𝒖(𝑡))𝑑𝑡, (1.4)

where Φ : ℝ𝑛 → ℝ is given function measuring the terminal cost, and ℒ : ℝ×ℝ𝑛×ℝ𝑟 → ℝ
measures the cost during the whole time horizon. An admissible control which minimizes

the cost function (1.4) is called an optimal control. Note that the cost function 𝐽 depends

entirely on 𝒖, as 𝒙 is implicitly determined by 𝒖 through the system of ordinary differential

equations (1.1)-(1.2).

We may now state formally a simple optimal control problem in the following.

Problem (𝑃3). Given the dynamic system (1.1)-(1.2), find a control 𝒖 ∈ 𝒰 such that the

cost function (1.4) is minimized.

Problem (𝑃3) is called a Bolza problem. It can, in principle, be solved by using

Pontryagin Minimum Principle or Bellman’s Principle of Optimality.

Let us look at how the Pontryagin Minimum Principle is used to solve Problem (𝑃3).

For this, we introduce the Hamiltonian function for Problem (𝑃3) given below:

𝐻(𝑡,𝒙(𝑡),𝒖(𝑡),𝝀(𝑡)) = ℒ(𝑡,𝒙(𝑡),𝒖(𝑡)) + 𝝀⊤(𝑡)𝒇(𝑡,𝒙(𝑡),𝒖(𝑡)), (1.5)

where 𝝀 is called the co-state, which satisfies the following system of differential equations:

�̇�(𝑡) = −
[∂𝐻(𝑡,𝒙(𝑡),𝒖(𝑡),𝝀(𝑡))

∂𝒙

]⊤
, 𝑡 ∈ [0, 𝑇 ], (1.6)

with boundary condition

𝝀(𝑇 ) =
[∂Φ(𝒙(𝑇 ))

∂𝒙

]⊤
. (1.7)

System (1.6)-(1.7) is called the co-state system. If 𝒖∗ is an optimal control, and 𝒙∗

and 𝝀∗ are the corresponding state and co-state, respectively, then it can be shown [110]

that

𝐻(𝑡,𝒙∗(𝑡),𝒖∗(𝑡),𝝀∗(𝑡)) = min
𝒗∈𝑈

𝐻(𝑡,𝒙∗(𝑡),𝒗,𝝀∗(𝑡)), (1.8)

for all 𝑡 ∈ [0, 𝑇 ], except possibly on a finite subset of [0, 𝑇 ]. This condition is known as

the Pontryagin Minimum Principle. By solving the Pontryagin Minimum Principle, the

optimal control can, in principle, be obtained as a function of time, state, and co-state. If
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such a control is obtained, we can substitute it into the state system (1.1)-(1.2) and the

co-state system (1.6)-(1.7), yielding a two-point boundary-value (TPBV) problem. The

optimal control can be obtained through solving this TPBV problem. This is, however,

a very difficult task (even solving it numerically is difficult, let alone analytically).

We now look at Bellman’s Principle of Optimality. Let the system (1.1) be evolved

starting at time point 𝑡 ∈ [0, 𝑇 ] from a given state 𝒙, and let the corresponding solution

of the system be denoted as 𝒚(𝑠∣𝑡,𝒙), where 𝑠 ∈ [𝑡, 𝑇 ]. Then, define the value function

𝑉 : [0, 𝑇 ]× ℝ𝑛 → ℝ as follows:

𝑉 (𝑡,𝒙) = inf
𝒖∈𝒰

{
Φ(𝒚(𝑇 ∣𝑡,𝒙)) +

∫ 𝑇

𝑡

ℒ(𝑠,𝒚(𝑠∣𝑡,𝒙),𝒖(𝑠))𝑑𝑠
}
, (𝑡,𝒙) ∈ [0, 𝑇 ]× ℝ𝑛.

By Bellman’s Principle of Optimality, it can be shown that the following partial differential

equation is satisfied:

∂𝑉 (𝑡,𝒙)

∂𝑡
+ inf

𝒗∈𝑈

{∂𝑉 (𝑡,𝒙)

∂𝒙
𝒇(𝑡,𝒙(𝑡),𝒗) + ℒ(𝑡,𝒙(𝑡),𝒗)

}
= 0, (𝑡,𝒙) ∈ [0, 𝑇 ]× ℝ𝑛, (1.9)

with the boundary condition

𝑉 (𝑇,𝒙) = Φ(𝒙(𝑇 )), 𝒙 ∈ ℝ𝑛. (1.10)

Equation (1.9) is known as the Hamilton-Jacobi-Bellman (HJB) equation. The solu-

tion of the HJB equation (1.9) with boundary condition (1.10) can be used to construct

an optimal feedback control to Problem (𝑃3). However, the HJB equation can only be

solved analytically for problems involving linear dynamics and quadratic cost function.

Furthermore, to solve it numerically, the dimension of the problem must be small, because

the numerical solution of HJB equation is computationally very demanding.

In view of the difficulties involved in the direct application of the Pontryagin Mini-

mum Principle and Bellman’s Principle of Optimality, even for a simple class of optimal

control problems, it is inevitable to rely on computational algorithms to solve optimal

control problems, especially for real world problems which are often very complicated and

subject to various constraints arising from engineering limitations and design specifica-

tions. Consequently, numerous families of computational approaches have been developed,

such as the direct collocation approach [30,75], the iterative dynamic programming tech-

nique [130], the leap-frog algorithm [36], the switching time computation method [35], the

sequential gradient-restoration methods [135], the multiple shooting methods [44,59], and

the control parameterization methods [80].

The direct collocation approach is to approximate a constrained optimal control prob-

lem by a finite dimensional nonlinearly constrained optimization problem (NLP), where

the entire time horizon is divided into a finite number of subintervals. In each subinter-
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val, the controls are approximated by a continuous and piecewise linear function, and the

state variables are approximated by a continuously differentiable piecewise cubic function.

Clearly, the dimension of the discretised problem is directly related to the number of par-

tition points of the time horizon. A sequence of refinement steps is applied resulting in a

sequence of NLPs of increasing size. Each of these NLPs is solved by standard sequential

quadratic programming (SQP) methods (see, for example, [29, 48]). This approach (see,

for example, [114] and [113]) is applicable to solve optimal control problems with nonlin-

ear dynamical equations subject to nonlinear constraints. Some convergence properties

are derived in [138], which are further used to obtain reliable estimates of the co-state

variables. Various applications of the method are demonstrated in [56, 102]. Although it

can readily solve small scale problems, the discretization of both control and state vari-

ables in the direct collocation approach can lead to excessive computation cost for large

scale optimal control problems, especially if a reasonably accuracy is required to be met.

The iterative dynamic programming (IDP) technique is derived in [130] based on the

Dynamic Programming Principle. It is refined in [128] and [96] to improve the efficiency

of the computational procedure. This technique constructs a grid structure for the dis-

cretization of both the state and the control. The grid of the state defines accessible

points in the state trajectory, while the grid of the control defines admissible control val-

ues. The grids are refined iteratively until a satisfactory control policy is obtained. Initial

development employed piecewise-constant controls and this was later extended to piece-

wise linear control policies [129]. Constraints are handled by using a penalty function

approach to incorporate them into the objective function. The IDP technique has been

successfully applied to a wide range of optimal control problems in chemical engineering,

see, for example, [12, 154]. However, as mentioned in [129], there exist many algorithmic

parameters, which include the region contraction factor, the number of allowable val-

ues for each control variable, the number of grid points, the initial region size and the

restoration factor. Proper determination of these parameters is not an easy task.

The leap-frog algorithm is initially developed in [36], where it is used to solve a special

type of Two Point Boundary Value Problem arising in geodesics. In [108] and [37], the

algorithm is further developed and implemented to handle general nonlinear systems with

unbounded and bounded controls. A description of the algorithm is presented in [34],

while some theoretical analysis of the algorithm is presented in [37] for a class of optimal

control problems with bounded controls in the plane.

The switching time computation (STC) method, proposed in [35], is a computational

procedure to find optimal locations of switching points for single-input nonlinear systems.

A concatenation of constant-input arcs is used to take the system from a given initial

point to the target. In [137] and [39], the STC method is used in the development of a

time optimal bang-bang control algorithm. However, this approach is rather restrictive.

It is not directly applicable to many types of constraints which appear in practice.
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The sequential gradient-restoration algorithms [5,6] are applicable to optimal control

problems involving differentiable constraints, non-differentiable constraints, and terminal

constraints. This family of algorithms involves a sequence of two-phase cycles, where

each cycle includes a gradient phase and a restoration phase. There is a function, called

the augmented function, that consists of the original cost function and the constraints

violations. In the gradient phase, the value of the augmented function is decreased; in

the restoration phase, the constraint error is decreased, while avoiding excessive change

in the value of the cost function. In the complete gradient-restoration cycle, the value

of the cost function is decreased, while the constraints are satisfied to a predetermined

accuracy. Hence a succession of suboptimal solutions is obtained. It is further enhanced

by the dual version [7] of the algorithm.

The multiple shooting approach is proposed in [59]. It divides the time horizon into

many subintervals. Then, at each subinterval, the shooting method is used to solve the

co-state dynamic system based on an initial guess of the solution of the co-state system.

Re-estimating the co-states is continued based on the mismatches until the conditions of

the minimum principle are satisfied. This approach is rather sensitive [142] to the initial

guess of the co-states at the initial time point.

For the control parameterization method, it is done by partitioning the time horizon

of an optimal control problem into several subintervals such that each control can be

approximated by a piecewise-constant function (or piecewise linear function or piecewise

smooth function) which is consistent with the corresponding partition. The partition

points are often referred to as control switching times. The heights of the approximating

piecewise-constant function are decision variables, known as control parameters. For the

continuous inequality constraints on the state and/or control, the constraint transcription

method was first proposed in [82] to approximate the continuous inequality constraints

on the state by constraints in integral form, called constraints in canonical form. The

constraint transcription method is later extended in [80] to handle continuous inequality

constraints on the state and control. Thus, by using the control parameterization method

together with the constraint transcription technique, an optimal control problem subject

to continuous inequality constraints on the state and/or control is approximated by a

sequence of optimal parameter selection problems subject to canonical constraints, where

the cost function is to be minimized with respect to the control parameters subject to the

constraints being satisfied. Each of the resulting optimal parameter selection problems

can be regarded as a mathematical programming problem solvable by gradient-based

optimization techniques, and hence many existing optimization software packages can be

readily used. The control parameterization technique is used extensively in the literature

(see [45, 93, 149]). In [146], a survey on developments of the technique is presented. It is

observed that the technique is applicable to a wide range of optimal control problems. In

particular, several computational algorithms supported by sound theoretical convergence
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analysis are presented in [127] and [16] for dealing with a variety of different classes of

optimal control problems.

It is intuitively clear that the switching times of the control should also be taken

as decision variables. However, it is numerically sensitive if the gradients of the cost

function and the canonical constraints with respect to these switching times are used

in the optimization process (see Chapter 5 of [80]). Thus, a time-scaling transform is

introduced in [66,81], where it is called the control parameterization enhancing transform

(CPET), to map these switching times to fixed knot points in a new time horizon via

introducing a new control variable, called the time-scaling control, and an additional

differential equation describing the relationship between the original time variable and the

new one. Thus, under the time-scaling transform, the optimal control problem subject to

continuous inequality constraints on the state and/or control is also approximated by a

sequence of optimal parameter selection problems subject to canonical constraints. Each

of these problems can be solved as a nonlinear mathematical programming problem.

The optimal control software package MISER [91] is an implementation of algorithms

based on the control parameterization technique [80] and the constraint transcription

method [89]. It can be used in conjunction with the time-scaling transform [81]. NUDOC-

CCS [19] is another optimal control software based on the control parameterization ap-

proach. It is used for both the simulation and the optimization of dynamical systems.

While it lacks some of the flexibility of the MISER 3.3 package, it has some additional

features such as an adaptive grid refinement strategy and efficient posterior sensitivity

analysis.

1.4 Parameter identification for time-delay systems

For a given practical process, it is required to construct a mathematical model to describe

the interactions between various factors so as to behave as a whole unit. In practice,

there are delay effects on the process of the system. For example, in an imperfectly mixed

system [63,64], it takes some time for the changes of mass and energy in particular parts

of the vessel to reach the rest of the vessel. Time-delays do arise in many real world

situations, including chemical tank reactors [86], aerospace engineering [143], chromatog-

raphy [107], and power converters and batteries [153]. For such systems, the mathematical

model is often expressed as a system of ordinary differential equations involving time-delay

arguments.
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A typical nonlinear time-delay system is given below:

�̇�(𝑡) = 𝒇
(
𝑡,𝒙(𝑡),𝒙(𝑡− 𝛼1), . . . ,𝒙(𝑡− 𝛼𝑚),𝒖(𝑡),𝒖(𝑡− 𝛽1), . . . ,𝒖(𝑡− 𝛽𝑝), 𝜻

)
,

𝑡 ∈ (0, 𝑇 ], (1.11)

𝒙(𝑡) = 𝝓(𝑡), 𝑡 ≤ 0, (1.12)

where 𝑇 > 0 is the terminal time; 𝜻 ∈ ℝ𝑞 is a vector of system parameters; 𝒙(𝑡) ∈ ℝ𝑛 is

the state of the system; 𝒙(𝑡 − 𝛼𝑖) ∈ ℝ𝑛, 𝑖 = 1, . . . ,𝑚, are delayed states, meaning that

if 𝒙(𝑡) is the value of 𝒙 at the time point 𝑡, then 𝒙(𝑡 − 𝛼𝑖) denotes the value of 𝒙 at

the time point 𝑡 − 𝛼𝑖; 𝒖(𝑡) ∈ ℝ𝑟 is the control; 𝒖(𝑡 − 𝛽𝑘) ∈ ℝ𝑟, 𝑘 = 1, . . . , 𝑝, are the

delayed controls. Let all the state time-delays and all the control time-delays be referred

to collectively as 𝜶 = [𝛼1, . . . , 𝛼𝑚]
⊤ and 𝜷 = [𝛽1, . . . , 𝛽𝑝]

⊤, respectively. Furthermore,

𝒇 : ℝ× ℝ𝑛 × ℝ𝑛𝑚 × ℝ𝑟 × ℝ𝑝𝑟 × ℝ𝑞 → ℝ𝑛 is a given function, and 𝝓 : ℝ → ℝ𝑛 is a given

function representing the state before the time 𝑡 = 0. In practice, the state of the system

may not be available for observation. Instead, what we can observe is some function of

the state variables given by

𝒚(𝑡) = Ψ(𝒙(𝑡)), (1.13)

where 𝒚(𝑡) ∈ ℝ𝑚 with 𝑚 < 𝑛.

In a practical process, the system parameters and the time-delays are often not known.

However, once suitable values for the system parameters and time-delays are chosen,

the time-delay system (1.11) can be solved and hence the corresponding output can be

computed from the output system (1.13). On the other hand, the output of the real

process can be measured at certain time points over the time horizon. The sum of the

differences between the computed output and real output at these time points is called the

mismatch. To identify the system parameters and time-delays, it amounts to minimize

the mismatch with respect to the system parameters and time-delays. This is, in fact, an

optimal parameter selection problem.

We now return to the time-delay system (1.11)-(1.12). Once the system parameters

and the time-delays are identified, then the mathematical model is completely specified.

It is then possible to construct optimal control algorithms based on the control param-

eterization method to synthesize an optimal control for the system (e.g. [79, 94]). The

problem of identifying the system parameters and the time-delays based on a given time

series data is a key problem in the study of time-delay systems [74]. Such problems are

known as parameter identification problems.

There are many results available in the literature pertaining to parameter identification

problems. An exact least squares algorithm for single time-delay estimation is studied

in [116]. Algebraic techniques [85] and the steepest descent algorithm [134] are proposed

to determine the input delays. In [95], information theory is used to identify multiple time-
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delays from a time series. In [95], it is assumed that each nonlinear term in the dynamical

system contains at most one unknown delay. In [57], a genetic algorithm is utilized for

the identification of multiple time-delays. However, this method depends critically on the

initial guess of the parameters that are to be identified. Lyapunov functions are used to

design delay estimators in [141], where it is shown that for an appropriately chosen guess

for each of the delays, the approximate delays will converge to the real ones after a finite

number of iterations. In [125], a class of systems is considered, where the system dynamics

are expressed as the sum of a finite number of nonlinear terms and each nonlinear term

involves only one unknown state delay. There is no unknown system parameters involved.

The gradient formula of the objective function with respect to the time-delays is derived.

This gradient formula is expressed in terms of the solutions of the dynamical system and

an auxiliary delay-differential system, both of which are to be solved forward in time

over the time horizon. With this gradient formula, existing gradient-based optimization

techniques can be incorporated to solve the parameter identification problem for this

time-delay system.

1.5 Control methods for time-delay systems

1.5.1 Optimal control for time-delay systems

Consider the process evolving according to system (1.11)-(1.12) over the time horizon

[0, 𝑇 ], where system parameters 𝜻 and time-delays 𝜶 and 𝜷 are assumed to be given. Let

𝑼 be a given compact and convex subset of ℝ𝑟, and let 𝜸 : [−𝛽, 0) → ℝ𝑟. A function

𝒖 : [−𝛽, 𝑇 ] → ℝ𝑟 such that 𝒖(𝑡) = 𝜸(𝑡) on [−𝛽, 0) and 𝒖(𝑡) ∈ 𝑼 for almost all 𝑡 ∈ [0, 𝑇 ] is

called an admissible control. Let 𝒰 be the class of all such admissible controls. A simple

optimal control problem for time-delay systems may now be stated as follows:

Problem (𝑃4). Consider system (1.11)-(1.12), find a control 𝒖 ∈ 𝒰 such that the cost

function (1.4) is minimized.

1.5.2 Model predictive control for time-delay systems

Model predictive control (MPC) is also called the receding horizon control. It was first

introduced in 1960s [50], and has since become popular in areas such as chemical processes

and paper industries. This is because the MPC algorithm is simple and intuitive. The

main structure of MPC is show in Figure 1.1. In Figure 1.1, 𝑇𝑠 is the sample time; 𝑡𝑘

is the present time; 𝑛𝑐𝑇𝑠 and 𝑛𝑝𝑇𝑠 are, respectively, the length of the control horizon

and the prediction horizon, where 𝑛𝑐 ≤ 𝑛𝑝 are positive integers. We can see that, in

each sample time preriod, MPC involves the prediction of the system output over a finite

prediction period [𝑡𝑘, 𝑡𝑘 + 𝑛𝑝𝑇𝑠] by using process model based on empirical data fitting
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Figure 1.1: Structure of MPC

or dynamic model based on fundamental mass and energy balances. The optimal control

is obtained through solving the following open-loop constrained optimal control problem

over the prediction period [𝑡𝑘, 𝑡𝑘 + 𝑛𝑝𝑇𝑠].

Problem (𝑃5). Consider system (1.11) over the time horizon [𝑡𝑘, 𝑡𝑘 + 𝑛𝑝𝑇𝑠] with given

system parameters 𝜻 and time-delays 𝜶 and 𝜷, the following optimal control problem is

minimized

min 𝐽𝒖(𝑡𝑘),...,𝒖(𝑡𝑘+𝑛𝑐𝑇𝑠) =

𝑛𝑝∑
𝑖=1

{
𝒚(𝑡𝑘 + 𝑖𝑇𝑠)− 𝒚∗}2

+
𝑛𝑐∑
𝑖=1

Δ𝒖(𝑡𝑘 + 𝑖𝑇𝑠)
⊤𝑹Δ𝒖(𝑡𝑘 + 𝑖𝑇𝑠)

𝑠.𝑡. �̇�(𝑡) = 𝒇(𝑡,𝒙(𝑡),𝒖(𝑡)), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑛𝑝𝑇𝑠],

𝜶 ≤ Δ𝒖(𝑡) ≤ �̄�,
𝜷 ≤ 𝒖(𝑡) ≤ 𝜷,
𝒈(𝑡,𝒙,𝒖) ≦ 0,

with initial conditions

𝒖(𝑡) = 𝜸(𝑡), 𝒙(𝑡) = 𝝓(𝑡), 𝑡 ≤ 𝑡𝑘,

and the output function

𝒚(𝑡) = Ψ(𝒙(𝑡)), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑛𝑝𝑇𝑠],

where 𝒙 = [𝑥1, . . . , 𝑥𝑛]
⊤ ∈ ℝ𝑛 is the state vector and 𝝓 = [𝜙1, . . . , 𝜙𝑛]

⊤ ∈ ℝ𝑛 is its
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initial condition; 𝒖 = [𝑢1, . . . , 𝑢𝑟]
⊤ ∈ ℝ𝑟 is the control vector and 𝜸 = [𝛾1, . . . , 𝛾𝑟]

⊤ ∈ ℝ𝑟

is its initial condition; 𝒇 = [𝑓1, . . . , 𝑓𝑛]
⊤ ∈ ℝ𝑛 is the dynamic system function; Δ𝒖 =

[Δ𝑢1, . . . ,Δ𝑢𝑟]
⊤ ∈ ℝ𝑟 is the change rate of the control at time 𝑡𝑘 + 𝑖𝑇𝑠, 𝑖 = 1, . . . , 𝑛𝑐,

with Δ𝒖(𝑡𝑘 + 𝑖𝑇𝑠) = 𝒖(𝑡𝑘 + 𝑖𝑇𝑠) − 𝒖(𝑡𝑘 + (𝑖 − 1)𝑇𝑠); 𝑹 ∈ ℝ𝑟𝑟 is a given weighting

matrix; 𝒈 = [𝑔1, . . . , 𝑔𝑛𝑔 ]
⊤ ∈ ℝ𝑛𝑔 denotes the constraint function; 𝜷 = [𝛽

1
, . . . , 𝛽

𝑟
]⊤ ∈ ℝ𝑟

and 𝜷 = [𝛽1, . . . , 𝛽𝑟]
⊤ ∈ ℝ𝑟 are the lower and upper bounds of the control, respectively;

𝜶 = [𝛼1, . . . , 𝛼𝑟]
⊤ ∈ ℝ𝑟 and �̄� = [�̄�1, . . . , �̄�𝑟]

⊤ ∈ ℝ𝑟 are the lower and upper bounds of

the change rate of the control, respectively; 𝒚 = [𝑦1, . . . , 𝑦𝑚]
⊤ ∈ ℝ𝑚 is the system output;

Ψ = [Ψ1, . . . ,Ψ𝑚]
⊤ ∈ ℝ𝑚 is the given output function; 𝒚∗ = [𝑦∗1, . . . , 𝑦

∗
𝑚]

⊤ ∈ ℝ𝑚 is the

given reference trajectory. Moreover, 𝒖(𝑡) = 𝒖(𝑡𝑘 + 𝑛𝑐𝑇𝑠) if 𝑡 > 𝑡𝑘 + 𝑛𝑐𝑇𝑠.

Problem (𝑃5) is solvable by gradient based algorithms. Note that for MPC, only the

control adjustments for the next instant 𝑡𝑘 + 𝑇𝑠 of the optimal control over [𝑡𝑘, 𝑡𝑘 + 𝑇𝑠]

is used. Then, the time is moved forwards to 𝑡𝑘 := 𝑡𝑘 + 𝑇𝑠 and a new optimal control

problem in the form of Problem (𝑃5) is solved for subsequent sampling periods. This

process is repeated.

Amongst the existing literature, the MPC can be divided into two categories: (i)

Linear MPC; and (ii) nonlinear MPC. For the linear MPC, it involves solving a sequence

of open-loop optimal control problems, each of which contains a linear system dynamics,

a quadratic cost function and linear constraints over a future time horizon. It has been

widely used in practice (see, for example, [1, 68]). In the linear MPC, the resulting

optimal control problems can be solved as quadratic programming problems involving

linear dynamical systems. Since the control to be applied over the next instant is to be

calculated online, the MPC can only be used for systems with slow dynamics and long

sampling time. The linear MPC is extended to nonlinear systems in [15], where the process

model is approximately linear over a small operating range. Then, the linearization of

the nonlinear process model in a small operating range can be carried out. However, it

achieves poor performance when the process model could not be approximated accurately

by linear model.

This problem is overcome in the nonlinear model predictive control (NMPC) [136].

The NMPC is characterized by nonlinear system model, nonlinear constraints, and non-

quadratic cost function. The NMPC techniques have been successfully implemented in

many large scale industrial processes since 1980s (see, for example, [31, 61, 139] for time-

delay industrial processes). However, it may not yet be suitable for on-line implementa-

tion. To be more specific, let us mention an example, where the NMPC is applied to an

evaporation process in [61]. In this example, it takes nearly one hour of computational

time to compute the control by using the NMPC on a workstation with dual Pentium III

Xeon processors for one hour of simulation of the evaporation process using the control

obtained. The computational time grows as the prediction horizon is increased. Since

many practical processes have large time-delays [32, 61], a short prediction horizon may
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not be able to capture the effect on the changes of the state for such processes. Thus, a

long prediction horizon is required, but then the consequent computational burden will be

much increased so that it will become impractical for on-line implementation. Other stud-

ies also show that for optimal control problems involving nonlinear dynamics with high

dimension and state constraints, especially continuous state constraints, NMPC requires

a large computation time in each sampling period. Indeed, the computation time needed

for NMPC is much more than that of the linear MPC. The high computational burden

has limited its application to optimal control problems involving nonlinear dynamics and

subject to constraints on the state and control [144].

To overcome the drawback of requiring a large computation time, many improved

methods have been proposed. The most important one is the linear matrix inequalities

based MPC [106,158]. As the linear matrix inequalities based optimization can be solved

in polynomial time, the computation time for MPC is reduced. However, this approach

is only applicable to problems involving linear dynamics and linear constraints, while

the cost function is quadratic. A decreasing horizon MPC is introduced in [87]. As the

control horizon decreases from one iteration to the next, the computation time will clearly

be decreased. In [17], the off-time calculation is carried on a discrete set of constraints

and terminal costs. The results are then utilized in the implementation of the MPC.

However, this method can only be used for systems with lower dimension. Some on-

line optimization methods, such as swarm-staring method and grid method, have been

proposed to speed-up the computation time for MPC [156]. However, they are yet to be

realized in practice.

1.6 Max-Min optimal control problems

A max-min optimal control problem involves finding a control such that the minimum of

a set of objectives is maximized. Thus, its cost function is a max-min function which is

non-smooth and non-differentiable. This problem has extensive real world applications in

engineering optimality design [115], electronic circuit design [21], robust control design [4],

economics [18], and the staffing problems in call centers [9]. Let us look at an example

arising in the study of a separation process, where several different kinds of products are

drained from a single outlet. It is required to ensure the purification of each product. For

this, it is required that one product is totally drained at one time. Thus, the duration

time between two successive outlet times should be maximized. However, large duration

times will increase the total operation time and decrease the productivity. In practice, the

total operation time should be as short as possible. Thus, the optimal control problem

for this separation process can be formulated as: find a control such that the minimum

ratio of the duration time between each pair of two successive outlet times to the total

operation time is maximized subject to some constraints due to engineering specifications.
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As solving a max-min optimal control problem basically involves solving a sequence of

approximate max-min optimization problems, we will mention some approaches proposed

for solving max-min optimization problems. One way of solving a max-min optimization

problem is to view the max-min objective as multiple objectives. Then, the aim is to find

an efficient solution over a set of possible solutions, which is called the Pareto set. Thus,

it is required to first find the Pareto solution set. Then, a sorting procedure is applied to

evaluate the solutions. The Pareto solutions could, in principle, be found by Pareto-set

based optimization methods, such as genetic algorithm [3], evolution algorithm [4, 10]

and particle warm optimization algorithm [155]. However, these methods are heuristic

methods.

It is known that max-min problems and min-max problems are equivalent. For closely

related minmax problems, smoothing techniques are proposed to convert min-max prob-

lems into simple, smooth, unconstrained or constrained optimization problems. Then,

standard unconstrained or constrained minimization techniques can be used to solve these

converted problems. More specifically, the smoothing technique [53] is used to approxi-

mate a max function by a smooth function, while the maximum entropy function is used

in [72] to approximate the inner maximum objective function by a continuous smooth

function. However, if the accuracy requirement on the approximation is high, then the

smooth approximating problems will become ill-conditioned. Hence, when applied to these

problems, the unconstrained optimization techniques may experience numerical difficul-

ties, leading to slow convergence—and in some cases no convergence at all. In addition to

this, two distinct search directions based algorithms are proposed in [21] to solve min-max

problems directly, while interior-point method is used in [43,52].

For max-min optimal control problems, we wish to mention the following two methods.

For the first method reported in [8], the max-min optimal control problem is first converted

to min-max optimal control problem, then a smoothing technique is used to transform the

min-max optimal control problem into a standard optimal control problem in the form

of Bolza with additional inequality constraints on the state/or control variables. This

standard optimal control problem can be solved by existing methods and theories. This

idea has been widely adopted, see, for example, [16,88,97]. For another method reported

in [90], the parametrization technique is used to approximate the max-min optimal control

problem by a sequence of max-min optimal parameter selection problems. Then, each of

these approximate problems is shown to be equivalent to a standard min-max optimization

problem. Hence, it is solvable by existing optimization software for solving minmax

optimization problems, such as FFSQP 3.7 [76] and CONSOL-OPTCAD [99].
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1.7 Overview of the thesis

In previous sections, we presented brief surveys on computational methods for solving

optimal control problems, time-delay optimal control problems and maxmin optimal con-

trol problems. Furthermore, a brief introduction to MPC for time-delay optimal control

problems is also given.

The purpose of this thesis is to present new computational methods for several classes

of practical optimal control problems. They are briefly mentioned below.

In Chapter 2, we consider a general nonlinear time-delay system described by (1.11)-

(1.12), where not only the unknown system parameters, but also the unknown time-

delays need to be identified. Furthermore, the input is smooth function. Let 𝜶 ∈ 𝒯 ,

𝜷 ∈ ℬ, and 𝜻 ∈ 𝒵 denote, respectively, the state time-delays, input time-delays and

system parameters, where 𝒯 , ℬ and 𝒵 are the set of candidate parameter vectors for the

corresponding variables. Our parameter identification problem for time-delay system can

be described as follows:

Problem (𝑃6). Choose 𝜶 ∈ 𝒯 , 𝜷 ∈ ℬ, and 𝜻 ∈ 𝒵 such that the cost function

𝐽(𝜶,𝜷, 𝜻) =
𝑀∑
𝑙=1

∣∣𝒚(𝑡𝑙∣𝝉 ,𝜷, 𝜻)− 𝒚𝑙
∣∣2. (1.14)

is minimized, where ∣ ⋅ ∣ denotes the usual Euclidean norm. Here, 𝒚𝑙 denotes the value of

the output function (1.13) at the sample time 𝑡𝑙, 𝑙 = 1, . . . ,𝑀 . The cost function measures

the discrepancy between predicted and observed system output.

We develop a unified gradient-based computational approach that involves solving

Problem (𝑃6). Since the delays and parameters influence the cost function implicitly

through the dynamic system, in this computational method, the gradients of the cost func-

tion with respect to the delays and system parameters are derived. They are obtained by

solving a set of auxiliary delay-differential systems from 𝑡 = 0 to 𝑡 = 𝑇 . Then, the delays

and parameters are determined simultaneously through solving a dynamic optimization

problem using existing optimization techniques. Two nonlinear parameter identification

problems involving time-delay systems are solved by using the method proposed. From

numerical simulations, it is clearly indicated that this algorithm is effective.

In Chapter 3, we consider a more difficult time-delay identification problem, where the

input function of the nonlinear time-delay system is piecewise-constant. The main difficul-

ties with this problem are: i) Since the input function is discontinuous, the dynamics are

clearly discontinuous with respect to the input delay. Thus, the results obtained in Chap-

ter 2 cannot be used to determine the state variation with respect to input time-delay; and

ii) Problem (𝑃6) in this case can be restated as a switched system optimal control prob-

lem. Unfortunately, the well-known time-scaling transform technique for solving optimal
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control problems involving switched systems (see [118, 124, 132, 151]) is not applicable to

time-delay systems such as system (1.11)-(1.12) defined above (see the discussion in [33]).

Thus, we propose a new computational approach, which is based on a novel derivation

of the cost function’s gradient. We then apply this approach to estimate the time-delays

in two industrial chemical processes—a zinc sulphate purification process and a sodium

aluminate evaporation process. Numerical simulations demonstrate the effectiveness of

this algorithm.

In Chapter 4, we consider a general class of optimal control problems for time-delay

systems subject to continuous inequality constraints on states and controls. In other

words, these constraints must be satisfied for each 𝑡 ∈ [0, 𝑇 ]. This problem can be stated

as follows.

Problem (𝑃7). Given system (1.11)-(1.12) with given 𝜶, 𝜷, 𝜻, find a control 𝒖 ∈ 𝒰 such

that the cost function (1.4) is minimized subject to the following constraints:

𝑔𝑖(𝑡,𝒙(𝑡),𝒖(𝑡)) ≤ 0, 𝑖 = 1, . . . , 𝑁𝑐, ∀𝑡 ∈ [0, 𝑇 ].

An efficient gradient-based computational method is devised for solving this opti-

mal control problem. In this method, the control parameterization technique is used to

approximate the control by a piecewise-constant function (it could also be approximated

by a piecewise linear or piecewise smooth function) with possible discontinuities at the

𝑁 − 1 pre-assigned partition points. The heights of the piecewise-constant function are

regarded as decision variables, which are referred to collectively as the control parame-

ter vector. Then, the constrained time-delay optimal control problem is approximated

by a sequence of optimal parameter selection problems involving time-delay dynamical

system and subject to continuous inequality constraints on the state and boundedness con-

straints on the control parameter vector. For the continuous inequality constraints, they

are transformed, by using the constraint transcription method, into equivalent equality

constraints in integral form. However, the integrands of these equality constraints are non-

linear and nonsmooth. Thus, a local smoothing technique is used to approximate these

nonsmooth integrands by smooth functions. Then, the equality constraints in integral

form are approximated by inequality constraints in integral form, where their integrands

are approximating smooth functions. There are two parameters involved in the inequal-

ity constraints in integral form—one controls the accuracy of the approximation and

the other controls the feasibility of the original constraints satisfaction. Now, by using

penalty function ideas, the summation of these inequality constraints in integral form

is appended to the cost function to form an augmented cost function. In this way, the

constrained time-delay optimal control problem is approximated by a sequence of op-

timal parameter selection problems involving time-delay dynamical system and subject

to only boundedness constraints on the control parameter vector. The gradient of the
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augmented cost function with respect to the control parameter vector is derived. On

this basis, an effective gradient-based optimization method is developed for solving each

of these optimal parameter selection problems with simple boundedness constraints on

the control parameter vector. The optimal control parameter vector obtained can then

be used to construct a piecewise-constant control for the original constrained time-delay

optimal control problem. Supporting convergence results are established. In particular,

it is shown that when the penalty factor is sufficiently large, then the optimal piecewise-

constant control obtained will satisfy the continuous inequality constraints of the original

problem. Furthermore, when the number of partition points is increased, the cost cor-

responding to the optimal piecewise-constant control will converge to the true optimal

cost. The computational method proposed is applied to an optimal control problem for

an industrial-scale evaporation process with long time-delays, where the mass units of

live steam consumption used for evaporating one unit of water is minimized subject to

the requirements for the product concentrations and the levels in the evaporators being

satisfied.

In Chapter 5, we consider the following set of differential equations:

�̇�1(𝑡) = 𝑓1(𝑡,𝒙(𝑡),𝒖(𝑡)), 𝑡 ∈ [0, 𝑡1],

...

�̇�𝑛(𝑡) = 𝑓𝑛(𝑡,𝒙(𝑡),𝒖(𝑡)), 𝑡 ∈ [0, 𝑡𝑛].

where 𝑡𝑖 > 0, 𝑖 = 1, . . . , 𝑛, are the unknown final times for the 𝑖th state dynamic function,

respectively; and if 𝑖 ∕= 𝑗, then 𝑡𝑖 ∕= 𝑡𝑗.

This problem arises in the study of gradient elution chromatography, which is used to

separate different kinds of components in a solution. A typical chromatography system

consists of a column containing an absorbent (called the stationary phase) and a liquid

that flows through the column (called the mobile phase). The mixture to be separated is

injected into the mobile phase and flows through the column. Since different components

are attracted to the adsorbent at different grades, they exit the gradient elution column

at different times. The main concern of this process is to maximize separation efficiency

so as to ensure the purification of each component. Thus, our goal is to find a control such

that the minimum duration between successive final times is maximized. This max-min

problem has three non-standard characteristics: (i) The objective function is non-smooth;

(ii) each state variable is defined over a different time horizon; and (iii) the ordering of

the final times is unknown. In this max-min optimal control problem, there are multiple

characteristics times, max-min objective function, and binary decision variables. We

will propose an efficient gradient-based computational method to solve this complicated

optimal control problem. To demonstrate the effectiveness of the computational method

proposed, two numerical examples are solved. One of these two examples is an optimal
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control problem involving a real chromatography process. The results obtained are highly

promising.

Finally, in Chapter 6, we summarize the main contributions of the thesis and discuss

some interesting directions for future research.



CHAPTER 2

Identification of time-delays and parameters

for nonlinear systems

2.1 Introduction

In this chapter, we consider a general nonlinear delay-differential system with unknown

time-delays and unknown system parameters. We formulate the problem of identifying

these unknown quantities as a nonlinear optimization problem in which the cost function

measures the least-square error between predicted output and observed system output.

This type of parameter identification problem is previously considered in [125] for a sim-

ple class of systems in which each nonlinear component contains at most one unknown

delay with no unknown system parameters. However, in many real-world systems, such

as the purification process of zinc sulphate solution [93], the nonlinear terms contain

both delays and parameters that need to be identified. Our goal in this chapter is to

develop an efficient method to identify the unknown delays and the unknown parameters

in a complicated time-delay dynamical system. We will introduce a set of auxiliary delay-

differential systems. Then, we will show that the gradient of the least-square cost function

can be expressed in terms of the solutions of these auxiliary systems. A numerical inte-

gration is used to solve the auxiliary systems, and thereby we obtain the gradient of the

cost function, which is the main information needed to solve the parameter identification

problem as a nonlinear optimization problem by using numerical optimization techniques.

Based on this idea, a computational algorithm is developed for identifying the unknown

time-delays and system parameters in a general nonlinear system. We demonstrate the ef-

fectiveness of the proposed algorithm on two nonlinear parameter identification problems,

one of which is the parameter identification problem for the zinc sulphate purification

process.

21
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2.2 Problem formulation

Consider the following nonlinear time-delay system:

�̇�(𝑡) = 𝒇(𝑡,𝒙(𝑡), �̃�(𝑡), 𝜻), 𝑡 ∈ [0, 𝑇 ], (2.1)

𝒙(𝑡) = 𝝓(𝑡), 𝑡 ≤ 0, (2.2)

where 𝑇 > 0 is a given terminal time; 𝒙(𝑡) = [𝑥1(𝑡), . . . , 𝑥𝑛(𝑡)]
⊤ ∈ ℝ𝑛 is the state;

�̃�(𝑡) = [𝒙(𝑡−𝜏1)⊤, . . . ,𝒙(𝑡−𝜏𝑚)⊤]⊤ ∈ ℝ𝑛𝑚 is the delayed state; and 𝜻 = [𝜁1, . . . , 𝜁𝑟]
⊤ ∈ ℝ𝑟

is a vector of unknown system parameters. Furthermore, 𝒇 : ℝ × ℝ𝑛 × ℝ𝑛𝑚 × ℝ𝑟 → ℝ𝑛

and 𝝓 : ℝ → ℝ𝑛 are given functions.

The time-delays in (2.1)-(2.2) are unknown quantities that need to be determined.

We assume that the 𝑖th time-delay is in the interval [𝑎𝑖, 𝑏𝑖], where 𝑎𝑖 and 𝑏𝑖 are given

constants such that 0 ≤ 𝑎𝑖 < 𝑏𝑖. Hence, the unknown time-delays satisfy the following

bound constraints:

𝑎𝑖 ≤ 𝜏𝑖 ≤ 𝑏𝑖, 𝑖 = 1, . . . ,𝑚. (2.3)

Any vector 𝝉 = [𝜏1, . . . , 𝜏𝑚]
⊤ ∈ ℝ𝑚 that satisfies (2.3) is called a candidate time-delay

vector. Let 𝒯 denote the set of all such candidate time-delay vectors.

In addition to the time-delays, the system parameters in (2.1)-(2.2) are also unknown

quantities that need to be determined. We suppose that

𝑐𝑗 ≤ 𝜁𝑗 ≤ 𝑑𝑗, 𝑗 = 1, . . . , 𝑟, (2.4)

where 𝑐𝑗 and 𝑑𝑗 are given real numbers such that 0 ≤ 𝑐𝑗 < 𝑑𝑗. Note that there is no loss

of generality in assuming that 𝑐𝑗 ≥ 0; if 𝑐𝑗 < 0, then we may replace 𝜁𝑗 with 𝜁𝑗 + 𝑐𝑗. Any

vector 𝜻 = [𝜁1, . . . , 𝜁𝑟]
⊤ ∈ ℝ𝑟 that satisfies (2.4) is called a candidate parameter vector.

Let 𝒵 denote the set of all such candidate parameter vectors.

The output of system (2.1)-(2.2) is given by

𝒚(𝑡) = 𝒈(𝒙(𝑡), 𝜻), 𝑡 ∈ [0, 𝑇 ], (2.5)

where 𝒈 : ℝ𝑛 × ℝ𝑟 → ℝ𝑝 is a given function.

We assume that the following conditions are satisfied.

(2.A.1). The given functions 𝒇 and 𝒈 are continuously differentiable, and 𝝓 is twice

continuously differentiable.

(2.A.2). There exists a real number 𝐿1 > 0 such that

∣𝒇(𝑡,𝒙, �̃�, 𝜻)∣ ≤ 𝐿1(1 + ∣𝒙∣+ ∣�̃�∣+ ∣𝜻∣), (𝑡,𝒙, �̃�, 𝜻) ∈ ℝ× ℝ𝑛 × ℝ𝑛𝑚 × ℝ𝑟,
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where ∣ ⋅ ∣ denotes the Euclidean norm.

On the basis of assumptions (2.A.1) and (2.A.2), the dynamic system (2.1)-(2.2) admits

a unique solution corresponding to each pair (𝝉 , 𝜻) ∈ 𝒯 ×𝒵 [111]. We denote this solution

by 𝒙(⋅∣𝝉 , 𝜻). Substituting 𝒙(⋅∣𝝉 , 𝜻) into (2.5) gives 𝒚(⋅∣𝝉 , 𝜻), the predicted system output

corresponding to (𝝉 , 𝜻) ∈ 𝒯 × 𝒵. More formally,

𝒚(𝑡∣𝝉 , 𝜻) = 𝒈(𝒙(𝑡∣𝝉 , 𝜻), 𝜻), 𝑡 ≤ 𝑇. (2.6)

Suppose that the output from system (2.1)-(2.2) has been measured experimentally at

times 𝑡 = 𝑡𝑙, 𝑙 = 1, . . . , 𝑞, where each 𝑡𝑙 ∈ [0, 𝑇 ]. Let 𝒚𝑙 ∈ ℝ𝑝 denote the measured output

at time 𝑡 = 𝑡𝑙. Then the problem of identifying the unknown time-delays and system

parameters can be formulated mathematically as follows.

Problem (P). Choose 𝝉 ∈ 𝒯 and 𝜻 ∈ 𝒵 such that the following cost function:

𝐽(𝝉 , 𝜻) =

𝑞∑
𝑙=1

∣∣𝒚(𝑡𝑙∣𝝉 , 𝜻)− 𝒚𝑙
∣∣2 (2.7)

is minimized, where ∣ ⋅ ∣ denotes the usual Euclidean norm.

Problem (P) is a nonlinear dynamic optimization problem whose decision variables

are the delays and system parameters in system (2.1)-(2.2). We need to select optimal

values for these delays and parameters so that the predicted system output best fits the

experimental data. There are very few optimization techniques available in the literature

for time-delay systems. In the existing literature, the delays are often assumed to be fixed

and known (see, for example, [79, 119, 150]). Problem (P) is unique in that the delays

are not fixed, but are decision variables to be chosen optimally. The cost function in

Problem (P) is also highly non-standard, as it depends on the system’s state at a set

of discrete time points, not just at the terminal time. Such cost functions have been

considered in [120, 121] for non-delay systems, and in [93] for systems with fixed delays.

However, the computational techniques developed in these references are not applicable

to Problem (P) because the time-delays in system (2.1)-(2.2) are decision variables to be

identified.

2.3 Preliminaries

Throughout this subsection, let 𝑘 ∈ {1, . . . ,𝑚} and (𝝉 , 𝜻) ∈ 𝒯 ×𝒵 be arbitrary but fixed.

For simplicity, we write 𝒙(𝑡) instead of 𝒙(𝑡∣𝝉 , 𝜻), and 𝒙𝜖(𝑡) instead of 𝒙(𝑡∣𝝉+𝜖𝒆𝑘, 𝜻), where
𝒆𝑘 denotes the 𝑘th unit basis vector in ℝ𝑚.

Define

𝐼 = [𝑎𝑘 − 𝜏𝑘, 𝑏𝑘 − 𝜏𝑘].
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Note that 𝐼 ∕= ∅ and 0 ∈ 𝐼. Clearly,

𝜖 ∈ 𝐼 ⇐⇒ 𝝉 + 𝜖𝒆𝑘 ∈ 𝒯 .

For each 𝜖 ∈ 𝐼, define

𝝋𝜖(𝑡) = 𝒙𝜖(𝑡)− 𝒙(𝑡), 𝑡 ≤ 𝑇,

and

𝜽𝜖,𝑖(𝑡) = 𝒙𝜖(𝑡− 𝜏𝑖 − 𝜖𝛿𝑘𝑖)− 𝒙(𝑡− 𝜏𝑖), 𝑡 ≤ 𝑇, 𝑖 = 1, . . . ,𝑚,

where 𝛿𝑘𝑖 denotes the Kronecker delta function. Furthermore, let

𝜽𝜖(𝑡) = [(𝜽𝜖,1(𝑡))⊤, . . . , (𝜽𝜖,𝑚(𝑡))⊤]⊤ ∈ ℝ𝑛𝑚, 𝑡 ≤ 𝑇.

Clearly,

𝜽𝜖,𝑖(𝑡) = 𝝋𝜖(𝑡− 𝜏𝑖), 𝑡 ≤ 𝑇, 𝑖 ∕= 𝑘, (2.8)

𝝋𝜖(𝑡) = 0, 𝑡 ≤ 0. (2.9)

In the sequel, we will use the notation ∂
∂�̃�𝑖 to denote partial differentiation with respect

to the 𝑖th delayed state in �̃�(𝑡) (i.e. partial differentiation with respect to 𝒙(𝑡− 𝜏𝑖)).

Now, define

𝝌𝜖(𝑡) =

⎧⎨⎩�̇�(𝑡), if 𝑡 ≤ 0,

𝒇(𝑡,𝒙𝜖(𝑡),𝒙𝜖(𝑡− 𝜏1 − 𝜖𝛿𝑘1), . . . ,𝒙
𝜖(𝑡− 𝜏𝑚 − 𝜖𝛿𝑘𝑚), 𝜻), if 𝑡 ∈ (0, 𝑇 ].

(2.10)

We immediately see that for almost all 𝑡 ∈ (−∞, 𝑇 ],

�̇�𝜖(𝑡) = 𝝌𝜖(𝑡). (2.11)

Let �̄� > 0 be a fixed constant such that

�̄� = max
𝑖=1,...,𝑚

{𝑏𝑖}.

We have the following lemma.

Lemma 2.1. There exists a a positive real number 𝐿2 > 0 such that for each 𝜖 ∈ 𝐼,

∣𝒙𝜖(𝑡)∣, ∣𝝌𝜖(𝑡)∣ ≤ 𝐿2, 𝑡 ∈ [−�̄�, 𝑇 ], (2.12)
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Proof. Recall that 𝒙(𝑠) = 𝝓(𝑠) is given for all 𝑠 ≤ 0. By (2.A.1), 𝝓(𝑠) is twice differen-

tiable. Clearly, there exist positive numbers 𝛼1 and 𝛼2 such that

∣𝝓(𝑠)∣ ≤ 𝛼1, 𝑠 ∈ [−�̄�, 0], (2.13)

∣�̇�(𝑠)∣ ≤ 𝛼2, 𝑠 ∈ [−�̄�, 0]. (2.14)

For brevity, we denote

�̃�𝜖(𝑡) = [𝒙𝜖(𝑡− 𝜏1 − 𝜖𝛿𝑘1)
⊤, . . . ,𝒙𝜖(𝑡− 𝜏𝑚 − 𝜖𝛿𝑘𝑚)

⊤]⊤.

For each 𝑠 ∈ [0, 𝑇 ], we have

𝒙𝜖(𝑡) = 𝒙(0) +

∫ 𝑡

0

𝒇(𝑠,𝒙𝜖(𝑠), �̃�𝜖(𝑠), 𝜻)𝑑𝑠, 𝑡 ∈ [0, 𝑇 ]. (2.15)

Since 𝜻 is bounded in 𝒵, applying (2.A.2) to (2.15) it follows that

∣𝒙𝜖(𝑡)∣ ≤ 𝛼1 +

∫ 𝑡

0

𝐿1(1 + ∣𝒙𝜖(𝑠)∣+ ∣�̃�𝜖(𝑠)∣+ ∣𝜻∣)𝑑𝑠

≤ 𝛼1 + 𝐿1𝑇 +

∫ 𝑡

0

𝐿1(∣𝒙𝜖(𝑠)∣+ ∣�̃�𝜖(𝑠)∣+ ∣𝜻∣)𝑑𝑠

≤ 𝛼1 + 𝐿1𝑇 +

∫ 𝑡

0

𝐿1(∣𝒙𝜖(𝑠)∣+ ∣𝜻∣)𝑑𝑠+
𝑚∑
𝑖=1

∫ 𝑡−𝜏𝑖

−𝜏𝑖

𝐿1∣𝒙𝜖(𝑠)∣𝑑𝑠

≤ 𝐿0 +

∫ 𝑡

0

𝐿1∣𝒙𝜖(𝑠)∣𝑑𝑠+
𝑚∑
𝑖=1

∫ 𝑡

−�̄�

𝐿1∣𝒙𝜖(𝑠)∣𝑑𝑠, 𝑡 ∈ [0, 𝑇 ],

where 𝐿0 = 𝛼1 + 𝐿1𝑇 + 𝑟𝐿1𝑑𝑇 and 𝑑 = max𝑗=1,...,𝑟{𝜁𝑗}. Therefore, by using (2.13),

∣𝒙𝜖(𝑡)∣ ≤ 𝐿0 +𝑚𝛼1�̄�+ (𝑚+ 1)𝐿1

∫ 𝑡

0

∣𝒙𝜖(𝑠)∣𝑑𝑠, 𝑡 ∈ [0, 𝑇 ].

Then, by using (2.10) and Gronwall-Bellman’s lemma [111], we obtain

∣𝒙𝜖(𝑡)∣ ≤ 𝜌1 exp
(
(𝑚+ 1)𝐿1𝑇

)
, 𝑡 ∈ [0, 𝑇 ], (2.16)

where 𝜌1 = 𝐿0 +𝑚𝛼1�̄�.

In addition, for each 𝑠 ∈ [0, 𝑇 ], consider (2.10)-(2.11), then by using (2.A.2),

∣𝝌𝜖(𝑡)∣ ≤ 𝐿1(1 + ∣𝒙𝜖(𝑡)∣+ ∣�̃�𝜖(𝑡)∣+ ∣𝜻∣), 𝑡 ∈ [0, 𝑇 ],
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Clearly,

∣𝝌𝜖(𝑡)∣ ≤ 𝐿1 + 𝑟𝐿1𝑑+ 𝐿1∣𝒙𝜖(𝑡)∣+ 𝐿1

𝑚∑
𝑖=1

∣𝒙𝜖(𝑠− 𝜏𝑖 − 𝜖𝛿𝑘𝑖)∣. (2.17)

Thus, by applying (2.16) to (2.17), we obtain

∣𝝌𝜖(𝑡)∣ ≤ 𝐿2, (2.18)

where 𝐿2 = 𝐿1 + 𝑟𝐿1𝑑+ (𝑚+ 1)𝜌1𝐿1 exp
(
(𝑚+ 1)𝐿1𝑇

)
. Combining (2.13), (2.14), (2.16)

and (2.18), the conclusion of the lemma follows readily.

Define

Ξ = {𝝎 ∈ ℝ𝑛 : ∣𝝎∣ ≤ 𝐿2}. (2.19)

Then, it follows form Lemma 2.1 that 𝒙𝜖(𝑡) ∈ Ξ for all 𝑡 ∈ [−�̄�, 𝑇 ] and 𝜖 ∈ 𝐼. We have

the following lemma.

Lemma 2.2. There exists a positive real number 𝐿3 > 0 such that for all 𝜖 ∈ 𝐼,

∣𝝋𝜖(𝑡)∣, ∣𝝌𝜖(𝑡)− 𝝌0(𝑡)∣, max
𝑖=1,...,𝑚

∣𝜽𝜖,𝑖(𝑡)∣ ≤ 𝐿3∣𝜖∣, 𝑡 ∈ [0, 𝑇 ]. (2.20)

Proof. For each 𝑡 ∈ [0, 𝑇 ], we have

∣𝝋𝜖(𝑡)∣ = ∣𝒙𝜖(𝑡)− 𝒙(𝑡)∣ ≤
∫ 𝑡

0

∣𝝌𝜖(𝑠)− 𝝌0(𝑠)∣𝑑𝑠, 𝑡 ∈ [0, 𝑇 ]. (2.21)

By using (2.A.1), the function 𝒇 is Lipschitz continuous on Ξ×Ξ. Hence, there exists a

real number 𝜌 > 0 such that

∣𝝌𝜖(𝑠)− 𝝌0(𝑠)∣ ≤ 𝜌∣𝝋𝜖(𝑠)∣+ 𝜌

𝑚∑
𝑖=1

∣𝜽𝜖,𝑖(𝑠)∣, 𝑠 ∈ [0, 𝑇 ]. (2.22)

Let 𝜖 ∈ 𝐼 be arbitrary but fixed. For each 𝑠 ∈ [0, 𝑇 ],

∣𝜽𝜖,𝑘(𝑠)∣ = ∣𝒙𝜖(𝑠− 𝜏𝑘 − 𝜖)− 𝒙(𝑠− 𝜏𝑘)∣
≤ ∣𝒙𝜖(𝑠− 𝜏𝑘 − 𝜖)− 𝒙𝜖(𝑠− 𝜏𝑘)∣+ ∣𝒙𝜖(𝑠− 𝜏𝑘)− 𝒙(𝑠− 𝜏𝑘)∣.

Hence, by (2.11),

∣𝜽𝜖,𝑘(𝑠)∣ ≤
∫ 𝛽(𝑠)

𝛼(𝑠)

∣𝝌𝜖(𝜂)∣𝑑𝜂 + ∣𝝋𝜖(𝑡− 𝜏𝑘)∣, 𝑠 ∈ [0, 𝑇 ], (2.23)



2.3 Preliminaries 27

where

𝛼(𝑠) = min{𝑠− 𝜏𝑘, 𝑠− 𝜏𝑘 − 𝜖}, 𝛽(𝑠) = max{𝑠− 𝜏𝑘, 𝑠− 𝜏𝑘 − 𝜖}.

Clearly,

∣𝛽(𝑠)− 𝛼(𝑠)∣ = 𝜖, 𝑠 ∈ [0, 𝑇 ], (2.24)

and

[𝛼(𝑠), 𝛽(𝑠)] ⊂ [−�̄�, 𝑇 ], 𝑠 ∈ [0, 𝑇 ]. (2.25)

Substituting (2.24)-(2.25) into (2.23), and using Lemma 2.1, it yields

∣𝜽𝜖,𝑘(𝑠)∣ ≤ 𝐿2∣𝜖∣+ ∣𝝋𝜖(𝑠− 𝜏𝑘)∣, 𝑠 ∈ [0, 𝑇 ]. (2.26)

Substituting (2.26) into (2.22) gives

∣𝝌𝜖(𝑠)− 𝝌0(𝑠)∣ ≤ 𝜌∣𝝋𝜖(𝑠)∣+𝑚𝜌𝐿2∣𝜖∣+ 𝜌

𝑚∑
𝑖=1

∣𝝋𝜖(𝑠− 𝜏𝑖)∣, 𝑠 ∈ [0, 𝑇 ]. (2.27)

Substituting (2.27) into (2.21), it follows that

∣𝝋𝜖(𝑡)∣ ≤ 𝑚𝜌𝐿2∣𝜖∣𝑇 +

∫ 𝑡

0

𝜌∣𝝋𝜖(𝑠)∣𝑑𝑠+ 𝜌
𝑚∑
𝑖=1

∫ 𝑡

0

∣𝝋𝜖(𝑠− 𝜏𝑖)∣𝑑𝑠

≤ 𝑚𝜌𝐿2∣𝜖∣𝑇 +

∫ 𝑡

0

𝜌∣𝝋𝜖(𝑠)∣𝑑𝑠+ 𝜌

𝑚∑
𝑖=1

∫ 𝑡−𝜏𝑖

−𝜏𝑖

∣𝝋𝜖(𝑠)∣𝑑𝑠

≤ 𝑚𝜌𝐿2∣𝜖∣𝑇 + 𝜌

∫ 𝑡

0

∣𝝋𝜖(𝑠)∣𝑑𝑠+ 𝜌𝑚

∫ 𝑡

−�̄�

∣𝝋𝜖(𝑠)∣𝑑𝑠, 𝑡 ∈ [0, 𝑇 ].

Recall that 𝝋𝜖(𝑠) = 0 for all 𝑠 ≤ 0. Therefore,

∣𝝋𝜖(𝑡)∣ ≤ 𝑚𝜌𝐿2∣𝜖∣𝑇 + (𝑚+ 1)𝜌

∫ 𝑡

0

∣𝝋𝜖(𝑠)∣𝑑𝑠, 𝑡 ∈ [0, 𝑇 ].

Thus, by Gronwall-Bellman’s lemma,

∣𝝋𝜖(𝑡)∣ ≤ 𝜌2∣𝜖∣, 𝑡 ∈ [0, 𝑇 ],

where 𝜌2 = 𝑚𝜌𝐿2𝑇 exp{(𝑚+ 1)𝜌𝑇}. Since 𝝋𝜖(𝑠) = 0 for all 𝑠 ≤ 0, it follows that

∣𝝋𝜖(𝑡)∣ ≤ 𝜌2∣𝜖∣, 𝑡 ≤ 𝑇. (2.28)
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Substituting (2.28) into (2.26) yields

∣𝜽𝜖,𝑘(𝑠)∣ ≤ (𝐿2 + 𝜌2)∣𝜖∣, 𝑠 ∈ [0, 𝑇 ].

Substituting (2.28) into (2.27), we obtain

∣𝝌𝜖(𝑠)− 𝝌0(𝑠)∣ ≤ 𝑚𝜌𝐿2∣𝜖∣+ 𝜌𝜌2∣𝜖∣+ 𝜌
𝑚∑
𝑖=1

𝜌2∣𝜖∣ = (𝑚𝜌𝐿2 + (𝑚+ 1)𝜌𝜌2)∣𝜖∣, 𝑠 ∈ [0, 𝑇 ].

Choose 𝐿3 = max{𝑚𝜌𝐿2 + (𝑚+ 1)𝜌𝜌2, 𝐿2 + 𝜌2, 𝜌2}. The proof is completed.

To proceed further, we need the following lemma.

Lemma 2.3. For almost all 𝑡 ∈ [0, 𝑇 ], it holds that

lim
𝜖→0

𝜽𝜖,𝑘(𝑡)−𝝋𝜖(𝑡− 𝜏𝑘)

𝜖
= −𝝌0(𝑡− 𝜏𝑘). (2.29)

Proof. Let 𝑡 ∈ [0, 𝑇 ] ∖ 𝜏𝑘 be arbitrary but fixed. Then, for each 𝜖 ∈ 𝐼 ∖ 0,

𝜽𝜖,𝑘(𝑡)−𝝋𝜖(𝑡− 𝜏𝑘) = 𝒙
𝜖(𝑡− 𝜏𝑘 − 𝜖)− 𝒙𝜖(𝑡− 𝜏𝑘).

Hence, by (2.11),
𝜽𝜖,𝑘(𝑡)−𝝋𝜖(𝑡− 𝜏𝑘)

𝜖
=

1

𝜖

∫ 𝑡−𝜏𝑘−𝜖

𝑡−𝜏𝑘

𝝌𝜖(𝑠)𝑑𝑠.

We can write this equation as follows:

𝜽𝜖,𝑘(𝑡)−𝝋𝜖(𝑡− 𝜏𝑘)

𝜖
= −𝝌0(𝑡− 𝜏𝑘) + 𝝌

0(𝑡− 𝜏𝑘) +
1

𝜖

∫ 𝑡−𝜏𝑘−𝜖

𝑡−𝜏𝑘

𝝌𝜖(𝑠)𝑑𝑠

= −𝝌0(𝑡− 𝜏𝑘) + 𝜌(𝜖), (2.30)

where

𝜌(𝜖) =
1

𝜖

∫ 𝑡−𝜏𝑘−𝜖

𝑡−𝜏𝑘

{
𝝌𝜖(𝑠)− 𝝌0(𝑡− 𝜏𝑘)

}
𝑑𝑠.

Then, by using triangle inequality,

∣𝜌(𝜖)∣ ≤ 1

∣𝜖∣
∫ 𝛽1

𝛼1

∣𝝌𝜖(𝑠)− 𝝌0(𝑠)∣𝑑𝑠+ 1

∣𝜖∣
∫ 𝛽1

𝛼1

∣𝝌0(𝑠)− 𝝌0(𝑡− 𝜏𝑘)∣𝑑𝑠, (2.31)

where

𝛼1 = min{𝑡− 𝜏𝑘, 𝑡− 𝜏𝑘 − 𝜖}, 𝛽1 = max{𝑡− 𝜏𝑘, 𝑡− 𝜏𝑘 − 𝜖}.
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Clearly, 𝛽1 − 𝛼1 = ∣𝜖∣. Thus, by Lemma 2.2 and (2.31), it follows that, for each 𝜖 ∈ 𝐼,

∣𝜌(𝜖)∣ ≤ 𝐿3∣𝜖∣+ 1

∣𝜖∣
∫ 𝛽1

𝛼1

∣𝝌0(𝑠)− 𝝌0(𝑡− 𝜏𝑘)∣𝑑𝑠. (2.32)

Since 𝑡 ∕= 𝜏𝑘, we need to consider the following two cases. Case 1: 𝑡 < 𝜏𝑘 and Case 2:

𝑡 > 𝜏𝑘.

Case 1: 𝑡 < 𝜏𝑘. Clearly,

𝜖 ∈ 𝐼, ∣𝜖∣ < 𝜏𝑘 − 𝑡 ⇒ [𝛼1, 𝛽1] ⊂ [−�̄�, 0]. (2.33)

Now, since 𝒇 is continuously differentiable (recall (2.A.1)), and 𝜻 and 𝒙 are bounded on

[−�̄�, 𝑇 ] (recall (2.4) and (2.12)), we can show that 𝝌0 is Lipschitz continuous on [−�̄�, 0].
Hence, there exists a real number 𝜂1 > 0 such that

∣𝝌0(𝑠)− 𝝌0(𝑡− 𝜏𝑘)∣ ≤ 𝜂1∣𝑠− 𝑡+ 𝜏𝑘∣, 𝑠 ∈ [−�̄�, 0] (2.34)

It follows from (2.33) and (2.34) that

∣𝝌0(𝑠)− 𝝌0(𝑡− 𝜏𝑘)∣ ≤ 𝜂1∣𝑠− 𝑡+ 𝜏𝑘∣ ≤ 𝜂1(𝛽1 − 𝛼1) = 𝜂1∣𝜖∣, 𝑠 ∈ [𝛼1, 𝛽1],

when 𝜖 ∈ 𝐼 is sufficiently small. Substituting this inequality into (2.32) gives

∣𝜌(𝜖)∣ ≤ (𝐿3 + 𝜂1)∣𝜖∣.

This shows that

lim
𝜖→0

𝜌(𝜖) = 0, 𝜖 ∈ 𝐼 ∖ 0, 𝑠 ∈ [−�̄�, 0] (2.35)

Case 2: 𝑡 > 𝜏𝑘

Suppose 𝑡 > 𝜏𝑘. Clearly,

𝜖 ∈ 𝐼, ∣𝜖∣ < 𝑡− 𝜏𝑘 ⇒ [𝛼1, 𝛽1] ⊂ (0, 𝑇 ]. (2.36)

Similarly, since 𝒇 is continuously differentiable (recall (2.A.1)), and 𝜻 and 𝒙 are bounded

on [−�̄�, 𝑇 ] (recall (2.4) and (2.12)), we can show that 𝝌0 is Lipschitz continuous on (0, 𝑇 ].

Hence, there exists a real number 𝜂2 > 0 such that

∣𝝌0(𝑠)− 𝝌0(𝑡− 𝜏𝑘)∣ ≤ 𝜂2∣𝑠− 𝑡+ 𝜏𝑘∣, 𝑠 ∈ (0, 𝑇 ] (2.37)



2.4 Gradient computation 30

It follows form (2.36) and (2.37) that

∣𝝌0(𝑠)− 𝝌0(𝑡− 𝜏𝑘)∣ ≤ 𝜂2∣𝑠− 𝑡+ 𝜏𝑘∣ ≤ 𝜂2(𝛽1 − 𝛼1) = 𝜂2∣𝜖∣, 𝑠 ∈ [𝛼1, 𝛽1],

when 𝜖 ∈ 𝐼 is sufficiently small.

Substituting this inequality into (2.32) gives

∣𝜌(𝜖)∣ ≤ (𝐿3 + 𝜂2)∣𝜖∣, 𝑠 ∈ (0, 𝑇 ].

This shows that

lim
𝜖→0

𝜌(𝜖) = 0, 𝜖 ∈ 𝐼 ∖ 0, 𝑠 ∈ (0, 𝑇 ] (2.38)

Applying (2.35) and (2.38) to (2.30) completes the proof.

2.4 Gradient computation

Problem (P) involves choosing a finite number of decision variables to minimize the cost

function (2.7). Thus, in principle, Problem (P) can be viewed as a nonlinear programming

problem. Standard algorithms for solving nonlinear programming problems—for example,

sequential quadratic programming or interior-point methods [79]—typically require the

gradient of the cost function, which is difficult to determine in Problem (P) because the

delays and parameters influence (2.7) implicitly through the dynamic system (2.1)-(2.2).

The aim of this section is to develop an efficient computational method for computing

the gradient of the cost function in Problem (P). This method, which is inspired by

earlier works in [117,125,126], can be integrated with a standard nonlinear programming

algorithm to solve Problem (P).

2.4.1 State variation with respect to time-delays

The solution of system (2.1)-(2.2) is normally viewed as a function of time, with 𝝉 and

𝜻 being fixed vectors. By fixing 𝑡 ∈ (−∞, 𝑇 ] while allowing 𝝉 and 𝜻 to vary, we obtain

a new function 𝒙(𝑡∣⋅, ⋅) : 𝒯 × 𝒵 → ℝ𝑛 whose value at (𝝉 , 𝜻) ∈ 𝒯 × 𝒵 is 𝒙(𝑡∣𝝉 , 𝜻). In

the following theorem, we show that 𝒙(𝑡∣⋅, ⋅) is differentiable with respect to the time-

delays. This result is central to the development of a computational procedure for solving

Problem (P).

Theorem 2.1. Let 𝑡 ∈ (0, 𝑇 ] be a fixed time point. Then, 𝒙(𝑡∣⋅, ⋅) is differentiable with

respect to 𝜏𝑘 on 𝒯 × 𝒵. In fact, for each (𝝉 , 𝜻) ∈ 𝒯 × 𝒵,

∂𝒙(𝑡∣𝝉 , 𝜻)
∂𝜏𝑘

= Λ𝑘(𝑡∣𝝉 , 𝜻), 𝑘 = 1, . . . ,𝑚, (2.39)
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where Λ𝑘(⋅∣𝝉 , 𝜻) satisfies the auxiliary time-delay system

Λ̇𝑘(𝑡) =
∂𝒇(𝑡,𝒙(𝑡), �̃�(𝑡), 𝜻)

∂𝒙
Λ𝑘(𝑡) +

𝑚∑
𝑖=1

∂𝒇(𝑡,𝒙(𝑡), �̃�(𝑡), 𝜻)

∂�̃�𝑖
Λ𝑘(𝑡− 𝜏𝑖)

− ∂𝒇(𝑡,𝒙(𝑡), �̃�(𝑡), 𝜻)

∂�̃�𝑘
𝝌(𝑡− 𝜏𝑘)

(2.40)

with initial condition

Λ𝑘(𝑡) = 0, 𝑡 ≤ 0. (2.41)

Proof. Let 𝑘 ∈ {1, . . . ,𝑚} and (𝝉 , 𝜻) ∈ 𝒯 × 𝒵 be arbitrary but fixed. As in Section 2.3,

we write 𝒙𝜖(𝑡) instead of 𝒙(𝑡∣𝝉 + 𝜖𝒆𝑘, 𝜻), and 𝒙(𝑡) instead of 𝒙(𝑡∣𝝉 , 𝜻).
For each 𝜖 ∈ 𝐼 ∖ {0}, define

𝜌(𝜖) =

∫ 𝑇

0

∣∣𝜖−1𝜽𝜖,𝑘(𝑠)− 𝜖−1𝝋𝜖(𝑠− 𝜏𝑘) + 𝝌(𝑠− 𝜏𝑘)
∣∣𝑑𝑠. (2.42)

It follows from (2.9), (2.12), and (2.20) that for each 𝜖 ∈ 𝐼 ∖ {0},
∣∣𝜖−1𝜽𝜖,𝑘(𝑠)− 𝜖−1𝝋𝜖(𝑠− 𝜏𝑘) + 𝝌(𝑠− 𝜏𝑘)

∣∣ ≤ 𝐿2 + 2𝐿3, 𝑠 ∈ [0, 𝑇 ].

Hence, the integrand in (2.42) is uniformly bounded with respect to 𝜖 ∈ 𝐼 ∖ {0}. Further-
more, it follows from (2.29) that 𝜖−1𝜽𝜖,𝑘(𝑠)− 𝜖−1𝝋𝜖(𝑠− 𝜏𝑘) +𝝌(𝑠− 𝜏𝑘) converges to zero

almost everywhere on [0, 𝑇 ] as 𝜖 → 0. Thus, from the Lebesgue dominated convergence

theorem,

lim
𝜖→0

𝜌(𝜖) = lim
𝜖→0

∫ 𝑇

0

∣∣𝜖−1𝜽𝜖,𝑘(𝑠)− 𝜖−1𝝋𝜖(𝑠− 𝜏𝑘) + 𝝌(𝑠− 𝜏𝑘)
∣∣𝑑𝑠 = 0.

Now, keeping 𝜖 ∈ 𝐼 ∖ {0} fixed for the time being, we define

𝒇(𝑠, 𝛼) = 𝒇
(
𝑠,𝒙(𝑠) + 𝛼𝝋𝜖(𝑠), �̃�(𝑠) + 𝛼𝜽𝜖(𝑠), 𝜻

)
, (𝑠, 𝛼) ∈ [0, 𝑇 ]× [0, 1].

Then, by the chain rule,

∂𝒇(𝑠, 𝛼)

∂𝛼
=
∂𝒇(𝑠, 𝛼)

∂𝒙
𝝋𝜖(𝑠) +

𝑚∑
𝑖=1

∂𝒇(𝑠, 𝛼)

∂�̃�𝑖
𝜽𝜖,𝑖(𝑠), (2.43)

where

∂𝒇(𝑠, 𝛼)

∂𝒙
=
∂𝒇

(
𝑠,𝒙(𝑠) + 𝛼𝝋𝜖(𝑠), �̃�(𝑠) + 𝛼𝜽𝜖(𝑠), 𝜻

)
∂𝒙

, (2.44)

∂𝒇(𝑠, 𝛼)

∂�̃�𝑖
=
∂𝒇

(
𝑠,𝒙(𝑠) + 𝛼𝝋𝜖(𝑠), �̃�(𝑠) + 𝛼𝜽𝜖(𝑠), 𝜻

)
∂�̃�𝑖

. (2.45)
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We can rewrite (2.43) as follows:

∂𝒇(𝑠, 𝛼)

∂𝛼
= Δ1(𝑠, 𝛼) + Δ2(𝑠, 𝛼) +

∂𝒇(𝑠, 0)

∂𝒙
𝝋𝜖(𝑠) +

𝑚∑
𝑖=1

∂𝒇(𝑠, 0)

∂�̃�𝑖
𝝋𝜖(𝑠− 𝜏𝑖)

+
𝑚∑
𝑖=1

∂𝒇(𝑠, 0)

∂�̃�𝑖

{
𝜽𝜖,𝑖(𝑠)−𝝋𝜖(𝑠− 𝜏𝑖)

}
,

where

Δ1(𝑠, 𝛼) =
{∂𝒇(𝑠, 𝛼)

∂𝒙
− ∂𝒇(𝑠, 0)

∂𝒙

}
𝝋𝜖(𝑠), (2.46)

Δ2(𝑠, 𝛼) =
𝑚∑
𝑖=1

{∂𝒇(𝑠, 𝛼)
∂�̃�𝑖

− ∂𝒇(𝑠, 0)

∂�̃�𝑖

}
𝜽𝜖,𝑖(𝑠). (2.47)

Applying (2.8) gives

∂𝒇(𝑠, 𝛼)

∂𝛼
= Δ1(𝑠, 𝛼) + Δ2(𝑠, 𝛼) +

∂𝒇(𝑠, 0)

∂𝒙
𝝋𝜖(𝑠)

+
𝑚∑
𝑖=1

∂𝒇(𝑠, 0)

∂�̃�𝑖
𝝋𝜖(𝑠− 𝜏𝑖) +

∂𝒇(𝑠, 0)

∂�̃�𝑘

{
𝜽𝜖,𝑘(𝑠)−𝝋𝜖(𝑠− 𝜏𝑘)

}
.

(2.48)

Now,

𝝋𝜖(𝑡) = 𝒙𝜖(𝑡)− 𝒙(𝑡) =
∫ 𝑡

0

{
𝒇(𝑠, 1)− 𝒇(𝑠, 0)}𝑑𝑠.

Thus, by the fundamental theorem of calculus,

𝝋𝜖(𝑡) =

∫ 𝑡

0

{
𝒇(𝑠, 1)− 𝒇(𝑠, 0)}𝑑𝑠 = ∫ 𝑡

0

∫ 1

0

∂𝒇(𝑠, 𝛼)

∂𝛼
𝑑𝛼𝑑𝑠. (2.49)

Substituting (2.48) into (2.49) yields

𝝋𝜖(𝑡) =

∫ 𝑡

0

∫ 1

0

{
Δ1(𝑠, 𝛼) + Δ2(𝑠, 𝛼)

}
𝑑𝛼𝑑𝑠+

∫ 𝑡

0

∂𝒇(𝑠, 0)

∂𝒙
𝝋𝜖(𝑠)𝑑𝑠

+

∫ 𝑡

0

∂𝒇(𝑠, 0)

∂�̃�𝑘

{
𝜽𝜖,𝑘(𝑠)−𝝋𝜖(𝑠− 𝜏𝑘)

}
𝑑𝑠+

𝑚∑
𝑖=1

∫ 𝑡

0

∂𝒇(𝑠, 0)

∂�̃�𝑖
𝝋𝜖(𝑠− 𝜏𝑖)𝑑𝑠.

(2.50)

Now, by using (2.44) and (2.45), we can write the auxiliary system (2.40) as follows:

Λ̇𝑘(𝑠) =
∂𝒇(𝑠, 0)

∂𝒙
Λ𝑘(𝑠) +

𝑚∑
𝑖=1

∂𝒇(𝑠, 0)

∂�̃�𝑖
Λ𝑘(𝑠− 𝜏𝑖)− ∂𝒇(𝑠, 0)

∂�̃�𝑘
𝝌(𝑠− 𝜏𝑘).
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Hence,

Λ𝑘(𝑡) =

∫ 𝑡

0

∂𝒇(𝑠, 0)

∂𝒙
Λ𝑘(𝑠)𝑑𝑠+

𝑚∑
𝑖=1

∫ 𝑡

0

∂𝒇(𝑠, 0)

∂�̃�𝑖
Λ𝑘(𝑠− 𝜏𝑖)𝑑𝑠

−
∫ 𝑡

0

∂𝒇(𝑠, 0)

∂�̃�𝑘
𝝌(𝑠− 𝜏𝑘)𝑑𝑠.

(2.51)

Now, since 𝒇 is continuously differentiable (recall (2.A.1)), and 𝒙 is bounded on [−�̄�, 𝑇 ]
(recall (2.12)), there exists constants 𝑀1 > 0 and 𝑀2 > 0 such that

∣∣∣∂𝒇(𝑠, 0)
∂𝒙

∣∣∣ ≤𝑀1,
∣∣∣∂𝒇(𝑠, 0)

∂�̃�𝑖

∣∣∣ ≤𝑀2, 𝑠 ∈ [0, 𝑇 ],

where ∣ ⋅ ∣ denotes the usual Euclidean norm on ℝ𝑛×𝑛. Thus, by multiplying (2.50) by 𝜖−1,

subtracting (2.51), and then finally taking the norm of both sides, we obtain

∣∣𝜖−1𝝋𝜖(𝑡)−Λ𝑘(𝑡)
∣∣ ≤𝑀2𝜌(𝜖) +

∫ 𝑡

0

𝑀1

∣∣𝜖−1𝝋𝜖(𝑠)−Λ𝑘(𝑠)
∣∣𝑑𝑠

+
𝑚∑
𝑖=1

∫ 𝑡

0

𝑀2

∣∣𝜖−1𝝋𝜖(𝑠− 𝜏𝑖)−Λ𝑘(𝑠− 𝜏𝑖)
∣∣𝑑𝑠

+ ∣𝜖∣−1

∫ 𝑡

0

∫ 1

0

{∣Δ1(𝑠, 𝛼)∣+ ∣Δ2(𝑠, 𝛼)∣
}
𝑑𝛼𝑑𝑠,

(2.52)

where 𝜌(𝜖) is as defined in (2.42). The second integral term on the right-hand side of

(2.52) can be simplified as follows:

𝑚∑
𝑖=1

∫ 𝑡

0

𝑀2

∣∣𝜖−1𝝋𝜖(𝑠− 𝜏𝑖)−Λ𝑘(𝑠− 𝜏𝑖)
∣∣𝑑𝑠 = 𝑚∑

𝑖=1

∫ 𝑡−𝜏𝑖

−𝜏𝑖

𝑀2

∣∣𝜖−1𝝋𝜖(𝑠)−Λ𝑘(𝑠)
∣∣𝑑𝑠

≤
𝑚∑
𝑖=1

∫ 𝑡

0

𝑀2

∣∣𝜖−1𝝋𝜖(𝑠)−Λ𝑘(𝑠)
∣∣𝑑𝑠

=

∫ 𝑡

0

𝑚𝑀2

∣∣𝜖−1𝝋𝜖(𝑠)−Λ𝑘(𝑠)
∣∣𝑑𝑠.

Hence, (2.52) becomes

∣∣𝜖−1𝝋𝜖(𝑡)−Λ𝑘(𝑡)
∣∣ ≤𝑀2𝜌(𝜖) +

∫ 𝑡

0

�̄�
∣∣𝜖−1𝝋𝜖(𝑠)−Λ𝑘(𝑠)

∣∣𝑑𝑠
+ ∣𝜖∣−1

∫ 𝑡

0

∫ 1

0

{∣Δ1(𝑠, 𝛼)∣+ ∣Δ2(𝑠, 𝛼)∣
}
𝑑𝛼𝑑𝑠,

(2.53)

where �̄� =𝑀1+𝑚𝑀2. Since 𝒇 is continuously differentiable and 𝒙𝜖 is uniformly bounded

with respect to 𝜖, both ∂𝒇
∂𝒙

and ∂𝒇
∂�̃�𝑖 are uniformly continuous on [0, 𝑇 ]×[0, 1]. Furthermore,

by (2.20), 𝒙(𝑠) + 𝛼𝝋𝜖(𝑠) → 𝒙(𝑠) and �̃�(𝑠) + 𝛼𝜽𝜖(𝑠) → �̃�(𝑠) uniformly on [0, 𝑇 ]× [0, 1] as
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𝜖→ 0. Thus, for each 𝛿 > 0, there exists an 𝜖′ > 0 such that for all 𝜖 satisfying ∣𝜖∣ < 𝜖′,

∣∣∣∂𝒇(𝑠, 𝛼)
∂𝒙

− ∂𝒇(𝑠, 0)

∂𝒙

∣∣∣ < 𝛿, (𝑠, 𝛼) ∈ [0, 𝑇 ]× [0, 1],∣∣∣∂𝒇(𝑠, 𝛼)
∂�̃�𝑖

− ∂𝒇(𝑠, 𝛼)

∂�̃�𝑖

∣∣∣ < 𝛿, (𝑠, 𝛼) ∈ [0, 𝑇 ]× [0, 1].

By taking the norm of (2.46) and (2.47), and then using these inequalities together with

(2.20), we obtain

∣Δ1(𝑠, 𝛼)∣ ≤ 𝛿𝐿3∣𝜖∣, ∣Δ2(𝑠, 𝛼)∣ ≤ 𝛿𝑚𝐿3∣𝜖∣,

where ∣𝜖∣ < 𝜖′. Substituting these inequalities into (2.53) yields,

∣∣𝜖−1𝝋𝜖(𝑡)−Λ𝑘(𝑡)
∣∣ ≤𝑀2𝜌(𝜖) + (𝐿3𝑇 +𝑚𝐿3𝑇 )𝛿 +

∫ 𝑡

0

�̄�
∣∣𝜖−1𝝋𝜖(𝑠)−Λ𝑘(𝑠)

∣∣𝑑𝑠.
Now, recall that 𝜌(𝜖) → 0 as 𝜖 → 0. Hence, there exists an 𝜖′′ > 0 such that 𝜌(𝜖) < 𝛿

whenever ∣𝜖∣ < 𝜖′′. Thus, for all 𝜖 such that ∣𝜖∣ < min{𝜖′, 𝜖′′},

∣∣𝜖−1𝝋𝜖(𝑡)−Λ𝑘(𝑡)
∣∣ ≤𝑀2𝛿 + (𝐿3𝑇 +𝑚𝐿3𝑇 )𝛿 +

∫ 𝑡

0

�̄�
∣∣𝜖−1𝝋𝜖(𝑠)−Λ𝑘(𝑠)

∣∣𝑑𝑠.
Applying the Gronwall-Bellman Lemma [111] gives

∣∣𝜖−1𝝋𝜖(𝑡)−Λ𝑘(𝑡)
∣∣ ≤ 𝛿(𝑀2 + 𝐿3𝑇 +𝑚𝐿3𝑇 ) exp{�̄�𝑇},

where ∣𝜖∣ < min{𝜖′, 𝜖′′}. Since 𝛿 is arbitrary, this shows that 𝜖−1𝝋𝜖(𝑡) → Λ𝑘(𝑡) as 𝜖 → 0.

It follows that

∂𝒙(𝑡∣𝝉 , 𝜻)
∂𝜏𝑘

= lim
𝜖→0

𝒙𝜖(𝑡)− 𝒙(𝑡)
𝜖

= lim
𝜖→0

𝜖−1𝝋𝜖(𝑡) = Λ𝑘(𝑡),

as required.

2.4.2 State variation with respect to system parameters

In Theorem 2.1, we derive formulae for the gradient of the state with respect to the time-

delays. We now turn our attention to the gradient of the state with respect to the system

parameters.

Let 𝑤 be a new state variable with dynamics

�̇�(𝑡) = 1, 𝑡 ∈ [0, 𝑇 ], (2.54)

𝑤(𝑡) = 𝑡, 𝑡 ≤ 0. (2.55)
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Clearly, 𝑤(𝑡) = 𝑡 for all 𝑡 ∈ (−∞, 𝑇 ]. Thus, we can express the system parameters in

(2.1)-(2.2) in terms of the new state 𝑤 as follows:

𝜁𝑗 = 𝑡− 𝑤(𝑡− 𝜁𝑗), 𝑗 = 1, . . . , 𝑟. (2.56)

Substituting (2.56) into the original system (2.1)-(2.2) gives

�̇�(𝑡) = 𝒇(𝑡,𝒙(𝑡), �̃�(𝑡), 𝑡− 𝑤(𝑡− 𝜁1), . . . , 𝑡− 𝑤(𝑡− 𝜁𝑟)), 𝑡 ∈ [0, 𝑇 ], (2.57)

𝒙(𝑡) = 𝝓(𝑡), 𝑡 ≤ 0. (2.58)

The system parameters 𝜁𝑗, 𝑗 = 1, . . . , 𝑟, are now time-delays in the enlarged system

consisting of (2.54)-(2.55) and (2.57)-(2.58). Thus, to determine the state variation with

respect to the system parameters in system (2.1)-(2.2), we just need to apply Theorem 2.1

to the enlarged system consisting of (2.54)-(2.55) and (2.57)-(2.58). It is important to

note that each system parameter is bounded below by zero (see the problem formulation

in Section 2.2). Thus, the enlarged system considered here is a valid time-delay system

with all time-delays being non-negative.

Let 𝒛(𝑡) ∈ ℝ𝑛+1 and 𝒛(𝑡) ∈ ℝ(𝑛+1)(𝑚+𝑟) denote, respectively, the state and delayed

state vectors for the enlarged system, where

𝒛(𝑡) =
[
𝑥1(𝑡), . . . , 𝑥𝑛(𝑡), 𝑤(𝑡)

]⊤
and

𝒛(𝑡) =
[
𝒛(𝑡− 𝜏1)

⊤, . . . , 𝒛(𝑡− 𝜏𝑚)
⊤,𝒛(𝑡− 𝜁1)

⊤, . . . , 𝒛(𝑡− 𝜁𝑟)
⊤]⊤.

The enlarged system consisting of (2.54)-(2.55) and (2.57)-(2.58) can be written as follows:

�̇�(𝑡) = 𝒇(𝑡,𝒛(𝑡),𝒛(𝑡)), 𝑡 ∈ [0, 𝑇 ], (2.59)

𝒛(𝑡) = �̂�(𝑡), 𝑡 ≤ 0, (2.60)

where

𝒇(𝑡,𝒛(𝑡),𝒛(𝑡)) =

[
𝒇(𝑡,𝒙(𝑡), �̃�(𝑡), 𝑡− 𝑤(𝑡− 𝜁1), . . . , 𝑡− 𝑤(𝑡− 𝜁𝑟))

1

]
and

�̂�(𝑡) =

[
𝝓(𝑡)

𝑡

]
.

Define

�̂�(𝑡) =

⎧⎨⎩
˙̂
𝝓(𝑡), if 𝑡 ≤ 0,

𝒇(𝑡,𝒛(𝑡), 𝒛(𝑡)), if 𝑡 ∈ (0, 𝑇 ].
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Let 𝑗 ∈ {1, . . . , 𝑟} and (𝝉 , 𝜻) ∈ 𝒯 × 𝒵. Then the auxiliary system for (2.59)-(2.60) corre-

sponding to the system parameter 𝜁𝑗 is[
Γ̇𝑗(𝑡)

�̇�𝑗(𝑡)

]
=
∂𝒇(𝑡, 𝒛(𝑡),𝒛(𝑡))

∂𝒛

[
Γ𝑗(𝑡)

𝛾𝑗(𝑡)

]
+

𝑚∑
𝑖=1

∂𝒇(𝑡, 𝒛(𝑡),𝒛(𝑡))

∂𝒛𝑖

[
Γ𝑗(𝑡− 𝜏𝑖)

𝛾𝑗(𝑡− 𝜏𝑖)

]

+
𝑟∑

𝑖=1

∂𝒇(𝑡,𝒛(𝑡),𝒛(𝑡))

∂𝒛𝑚+𝑖

[
Γ𝑗(𝑡− 𝜁𝑖)

𝛾𝑗(𝑡− 𝜁𝑖)

]
− ∂𝒇(𝑡,𝒛(𝑡), 𝒛(𝑡))

∂𝒛𝑚+𝑗
�̂�(𝑡− 𝜁𝑗)

(2.61)

with the initial conditions [
Γ𝑗(𝑡)

𝛾𝑗(𝑡)

]
=

[
0

0

]
, 𝑡 ≤ 0. (2.62)

Here, Γ𝑗(𝑡) : (−∞, 𝑇 ] → ℝ𝑛 is the variation of the original state 𝒙 with respect to 𝜁𝑗 and

𝛾𝑗(𝑡) : (−∞, 𝑇 ] → ℝ𝑛 is the variation of the new state 𝑤 with respect to 𝜁𝑗. Note that

∂𝒇(𝑡,𝒛(𝑡),𝒛(𝑡))

∂𝒛
=

[
∂𝒇(𝑡,𝒙(𝑡),�̃�(𝑡),𝜻)

∂𝒙
0

0 0

]
,

∂𝒇(𝑡,𝒛(𝑡),𝒛(𝑡))

∂𝒛𝑖
=

[
∂𝒇(𝑡,𝒙(𝑡),�̃�(𝑡),𝜻)

∂�̃�𝑖 0

0 0

]
, 𝑖 = 1, . . . ,𝑚,

∂𝒇(𝑡,𝒛(𝑡),𝒛(𝑡))

∂𝒛𝑖
=

[
0 −∂𝒇(𝑡,𝒙(𝑡),�̃�(𝑡),𝜻)

∂𝜁𝑖+𝑚

0 0

]
, 𝑖 = 1, . . . , 𝑟.

Furthermore, it is clear that 𝛾𝑗(𝑡) = 0 for all 𝑡 ∈ (−∞, 𝑇 ]. Thus, the auxiliary system

(2.61)-(2.62) becomes

Γ̇𝑗(𝑡) =
∂𝒇(𝑡,𝒙(𝑡), �̃�(𝑡), 𝜻)

∂𝒙
Γ𝑗(𝑡) +

𝑚∑
𝑖=1

∂𝒇(𝑡,𝒙(𝑡), �̃�(𝑡), 𝜻)

∂�̃�𝑖
Γ𝑗(𝑡− 𝜏𝑖)

+
∂𝒇(𝑡,𝒙(𝑡), �̃�(𝑡), 𝜻)

∂𝜁𝑗

(2.63)

with initial conditions

Γ𝑗(𝑡) = 0, 𝑡 ≤ 0. (2.64)

Applying Theorem 2.1 to the enlarged system consisting of (2.54)-(2.55) and (2.57)-(2.58)

yields the following result.

Theorem 2.2. Let 𝑡 ∈ (0, 𝑇 ] be a fixed time point. Then 𝒙(𝑡∣⋅, ⋅) is differentiable with

respect to 𝜁𝑗 on 𝒯 × 𝒵. In fact, for each (𝝉 , 𝜻) ∈ 𝒯 × 𝒵,

∂𝒙(𝑡∣𝝉 , 𝜻)
∂𝜁𝑗

= Γ𝑗(𝑡∣𝝉 , 𝜻), 𝑗 = 1, . . . , 𝑟, (2.65)
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where Γ𝑗(⋅∣𝝉 , 𝜻) satisfies the auxiliary time-delay system (2.63)-(2.64).

2.4.3 Gradient computation algorithm

We are now ready to derive formulae for the gradients of the cost function in Problem (P).

By using Theorems 2.1 and 2.2 and the chain rule of differentiation, we obtain

∂𝐽(𝝉 , 𝜻)

∂𝜏𝑘
= 2

𝑞∑
𝑙=1

(
𝒚(𝑡𝑙∣𝝉 , 𝜻)− 𝒚𝑙

)⊤∂𝒈(𝒙(𝑡𝑙∣𝝉 , 𝜻), 𝜻)
∂𝒙

Λ𝑘(𝑡𝑙∣𝝉 , 𝜻), (2.66)

∂𝐽(𝝉 , 𝜻)

∂𝜁𝑗
= 2

𝑞∑
𝑙=1

(
𝒚(𝑡𝑙∣𝝉 , 𝜻)− 𝒚𝑙

)⊤∂𝒈(𝒙(𝑡𝑙∣𝝉 , 𝜻), 𝜻)
∂𝒙

Γ𝑗(𝑡𝑙∣𝝉 , 𝜻)

+ 2

𝑞∑
𝑙=1

(
𝒚(𝑡𝑙∣𝝉 , 𝜻)− 𝒚𝑙

)⊤∂𝒈(𝒙(𝑡𝑙∣𝝉 , 𝜻), 𝜻)
∂𝜁𝑗

.

(2.67)

We now present the following algorithm for computing the cost function (2.7) and its

gradient at a given pair (𝝉 , 𝜻) ∈ 𝒯 × 𝒵.

Algorithm 2.1.

Step 1. Obtain 𝒙(⋅∣𝝉 , 𝜻), Λ𝑘(⋅∣𝝉 , 𝜻), 𝑘 = 1, . . . ,𝑚, and Γ𝑗(⋅∣𝝉 , 𝜻), 𝑗 = 1, . . . , 𝑟, by solving

the enlarged time-delay system consisting of the original system (2.1)-(2.2) and the

auxiliary systems (2.40)-(2.41) and (2.63)-(2.64).

Step 2. Use the state values 𝒙(𝑡𝑙∣𝝉 , 𝜻), 𝑙 = 1, . . . , 𝑞, to compute 𝒚(𝑡𝑙∣𝝉 , 𝜻) through equation

(2.6).

Step 3. Use 𝒚(𝑡𝑙∣𝝉 , 𝜻), 𝑙 = 1, . . . , 𝑞, to compute 𝐽(𝝉 , 𝜻) through equation (2.7).

Step 4. Use 𝒙(𝑡𝑙∣𝝉 , 𝜻), 𝒚(𝑡𝑙∣𝝉 , 𝜻), Λ𝑘(𝑡𝑙∣𝝉 , 𝜻), and Γ𝑗(𝑡𝑙∣𝝉 , 𝜻), 𝑙 = 1, . . . , 𝑞, to compute
∂𝐽(𝝉 ,𝜻)

∂𝜏𝑘
, 𝑘 = 1, . . . ,𝑚, and ∂𝐽(𝝉 ,𝜻)

∂𝜁𝑗
, 𝑗 = 1, . . . , 𝑟, through equations (2.66) and (2.67).

This gradient computation algorithm can be integrated with a standard gradient-based

optimization method (e.g. sequential quadratic programming ) to solve Problem (P) as a

nonlinear programming problem.

In some applications, the governing dynamic system includes input-delays as well as

state-delays. For example, consider the following system:

�̇�(𝑡) = 𝒇(𝑡,𝒙(𝑡), �̃�(𝑡),𝒖(𝑡), �̃�(𝑡), 𝜻), 𝑡 ∈ [0, 𝑇 ], (2.68)

𝒙(𝑡) = 𝝓(𝑡), 𝑡 ≤ 0, (2.69)
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where 𝒖(𝑡) = [𝑢1(𝑡), . . . , 𝑢𝑣(𝑡)]
⊤ ∈ ℝ𝑣 is the control input of system (2.68)-(2.69); �̃�(𝑡) =

[𝒖(𝑡−𝜆1)⊤, . . . ,𝒖(𝑡−𝜆𝑑)⊤]⊤ ∈ ℝ𝑣𝑑 is the delayed control ; and 𝜆𝑖, 𝑖 = 1, . . . , 𝑑 are unknown

control delays. The other symbols are as defined in Section 2.2.

In (2.68)-(2.69), �̃� is assumed to be a known input function. Thus, we can write

(2.68)-(2.69) in the form of (2.1)-(2.2) as follows:

�̇�(𝑡) = 𝒇(𝑡,𝒙(𝑡), �̃�(𝑡), 𝜻,𝝀), 𝑡 ∈ [0, 𝑇 ], (2.70)

where 𝝀 = [𝜆1, . . . , 𝜆𝑑]
⊤ is a parameter vector containing the control delays. If the input

function 𝒖 is continuously differentiable, then 𝒇 is also continuously differentiable, and

thus the approach outlined above for solving Problem (P) is applicable. Hence, our

identification method can also be applied to systems with input delay (assuming that the

input is smooth).

2.5 Numerical examples

2.5.1 Example 2.1

We now apply the solution method developed in Section 2.4 to the industrial purification

process described in [93,94]. The purpose of this process is to remove harmful cobalt and

cadmium ions from a zinc sulphate electrolyte by adding zinc powder to induce deposition.

This is a key step in the production of zinc.

The changes in concentrations of cobalt and cadmium ions in the electrolyte are de-

scribed by the following differential equations:

𝑉 �̇�1(𝑡) = 𝑄𝑥01 −𝑄𝑥1(𝑡− 𝜏)− 𝛼𝑢(𝑡)𝑥1(𝑡− 𝜏) + 𝑐𝑥2(𝑡− 𝜏), (2.71)

𝑉 �̇�2(𝑡) = 𝑄𝑥02 −𝑄𝑥2(𝑡− 𝜏)− 𝛽𝑣(𝑡)𝑥2(𝑡− 𝜏) + 𝑑𝑥1(𝑡− 𝜏), (2.72)

and

𝑥1(𝑡) = 3.3× 10−4, 𝑥2(𝑡) = 4.0× 10−3 𝑡 ≤ 0, (2.73)

where 𝑥1 is the concentration of cobalt ions; 𝑥2 is the concentration of cadmium ions;

and 𝑢 and 𝑣 are control variables representing the zinc powder reaction surface areas for

two metallic impurities ions which depend on the amount of zinc powder added to the

reaction tank.

Furthermore, 𝑉 is the volume of the reaction tank (𝑉 = 400); 𝑄 is the flux of solution

(𝑄 = 200); 𝛼, 𝛽, 𝑐, 𝑑, are system parameters; and 𝑥01 and 𝑥02 are the concentrations of

cobalt and cadmium ions at the inlet of the reaction tank, respectively (𝑥01 = 6 × 10−4,

𝑥02 = 9× 10−3). Reference [94] considers the parameter identification problem for system
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(2.71)-(2.73) with a given time-delay of 𝜏 = 2. Here, we consider the problem of identifying

the time-delay. We assume that 𝛽, 𝑐, and 𝑑 are equal to the optimal values reported in [94]:

𝛽 = 2.823× 10−4, 𝑐 = 16.67, 𝑑 = 7.107× 102. (2.74)

These values were obtained using data from a real zinc production factory in China. We

assume that the terminal time is 𝑇 = 8. We set the input variables 𝑢 and 𝑣 as equal to

the optimal control functions obtained in [94].

𝑢(𝑡) =
8∑

𝑘=1

𝜎𝑘𝜓[𝑡𝑘−1,𝑡𝑘)(𝑡), 𝑡 ∈ [0, 8], (2.75)

𝑣(𝑡) =
8∑

𝑘=1

�̄�𝑘𝜓[𝑡𝑘−1,𝑡𝑘)(𝑡), 𝑡 ∈ [0, 8], (2.76)

where the values of 𝑡𝑘, 𝜎
𝑘, and �̄�𝑘, 𝑘 = 1, . . . , 8, are listed in Table 2.1, and

𝜓[𝑡𝑘−1,𝑡𝑘)(𝑡) =

⎧⎨⎩1, if 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘),

0, otherwise.

The output of the system is the concentration of cadmium ions, 𝑦(𝑡) = 𝑥2(𝑡).

Given system (2.71)-(2.73), with data (2.74)-(2.76), our goal is to identify the system

parameter 𝛼 and the delay 𝜏 .

Table 2.1: Control values for Example 2.1.

𝑘 1 2 3 4 5 6 7 8

𝑡𝑘 1 2 3 4 5 6 7 8
𝜎𝑘 × 10−5 1.08 1.57 1.24 1.56 1.59 1.43 1.25 1.25
�̄�𝑘 × 10−5 5.20 4.70 4.97 4.60 4.53 4.64 4.74 4.62

We simulate system (2.71)-(2.73) with 𝜏 = 𝜏 = 2 and 𝛼 = �̂� = 7.828×10−4 to generate

the observed data in Problem (P). The sample times are 𝑡𝑙 = 𝑙/2, 𝑙 = 1, . . . , 16, and

𝑦𝑙 = 𝑥2(𝑡𝑙∣𝜏 , �̂�).

Our identification problem is: choose 𝜏 and 𝛼 to minimize

𝐽(𝜏, 𝛼) =
16∑
𝑙=1

∣∣𝑦(𝑡𝑙∣𝜏, 𝛼)− 𝑦𝑙
∣∣2 = 16∑

𝑙=1

∣∣𝑥2(𝑡𝑙∣𝜏, 𝛼)− 𝑥2(𝑡𝑙∣𝜏 , �̂�)
∣∣2

subject to the dynamic system (2.71)-(2.73).
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Note that this problem cannot be solved using the identification method in [125], as the

third term on the right-hand side of (2.71) is a nonlinear term containing both an unknown

parameter and an unknown delay. The identification method in [125] is only applicable

when each nonlinear term contains a single delay and no unknown parameters. We instead

solve this problem using a Matlab program that integrates the SQP optimization method

with the gradient computation algorithm described in Section 2.4.3.

Computational results for different initial guesses are shown in Table 2.2. The con-

vergence of the output trajectory for the initial guess 𝜏 = 3 and 𝛼 = 0 is displayed

in Figure 2.1. This figure shows the output trajectory at intermediate iterations of the

algorithm, as well as the final (converged) trajectory. In Table 2.2 and Figure 2.1, 𝜏 𝑖 and

𝛼𝑖 are the values of 𝜏 and 𝛼 at the 𝑖th iteration during the optimization process (𝑖 = 0

signifies the initial guess). We can see from Table 2.2 and Figure 2.1 that the optimal

trajectory converges to the observed data well, regardless of the initial guess. Thus, the

algorithm easily recovers the true values of the delay and parameter for this problem.

Table 2.2: Convergence of the cost values in Example 2.1.

Initial guess Cost value at 𝑖th iteration

No. 𝜏 0 𝛼0 𝑖 = 0 𝑖 = 5 𝑖 = 10 𝑖 = 70

1 0.5 0.5 9.111×1033 5.392×10−6 5.157×10−9 7.751×10−15

2 1.0 1.0 4.558×1020 5.106×10−6 7.709×10−10 1.088×10−13

3 1.5 0.5 3.346×1010 1.722×10−6 1.496×10−6 1.700×10−13

4 3.0 0.0 7.094×10−5 2.536×10−5 2.209×10−5 3.341×10−14

5 3.0 1.0 8.533×103 2.589×10−5 2.180×10−5 2.050×10−14

For comparison, we also solve this problem using the genetic algorithm (GA) in [57].

The parameters of GA are: the size of population is 20, the crossover probability is

0.8, the selection rate is 0.9, the mutation probability is 0.01, the number of bits for each

individual is 14, and the maximum number of iterations is 1000. It takes about 40 minutes

for GA to solve this problem, which is more than 20 times longer than the computation

time taken by our method. Moreover, the cost value obtained by GA is 1.3787×10−9 with

corresponding parameter estimates 𝜏 = 2.0026 and 𝛼 = 7.9351×10−4. Clearly, the results

obtained by our new method are better than those from GA. This is not surprising, as

our method exploits the gradient of the cost function to achieve fast convergence.

2.5.2 Example 2.2

We now demonstrate the applicability of our approach to systems with multiple delays.

Consider the dynamic system given below:
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τ5=2.974;    α5=1.602× 10−3

τ10=2.821;  α10=1.020× 10−3

τ70=2.000;  α70=7.828× 10−4

τ0=3.0;       α0=0.0

observed data

Figure 2.1: Convergence of the output trajectory in Example 2.1 for initial guess No.4.

�̇�1(𝑡) = −2𝑥1(𝑡) + 0.1(1− 𝑥1(𝑡− 𝜏1)) exp
{ 20𝑥2(𝑡)

20 + 𝑥2(𝑡)

}
+ 0.1𝑥1(𝑡− 𝜏1)𝑥2(𝑡− 𝜏2) + 𝑢(𝑡− 𝜏3), (2.77)

�̇�2(𝑡) = −2.5𝑥2(𝑡) + 0.8(1− 𝑥1(𝑡− 𝜏1)) exp
{ 20𝑥2(𝑡)

20 + 𝑥2(𝑡)

}
+ 0.1𝑥2(𝑡− 𝜏1)𝑥2(𝑡− 𝜏2) + 𝑢(𝑡− 𝜏3), (2.78)

with initial condition

𝑥1(𝑡) = 1, 𝑥2(𝑡) = 1, 𝑡 ≤ 0. (2.79)

Here, 𝜏1 and 𝜏2 are unknown state-delays, and 𝜏3 is an unknown input delay. Assume that

the terminal time of this system is 𝑇 = 10. The input function is given by

𝑢(𝑡) = 0.1 sin(𝑡), 𝑡 ≤ 10.

Furthermore, the output is

𝑦(𝑡) = 𝑥2(𝑡), 𝑡 ≤ 10.
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We use the output trajectory of (2.77)-(2.79) with [𝜏1, 𝜏2, 𝜏3] = [2.4, 1.8, 1.1]⊤ to generate

the observed data for Problem (P). We set

𝑦𝑙 = 𝑥2(𝑡𝑙∣𝜏1, 𝜏2, 𝜏3), 𝑙 = 1, . . . , 20,

where 𝑡𝑙 = 𝑙/2, 𝑙 = 1, . . . , 20. Thus, our identification problem is: choose 𝜏1, 𝜏2, and 𝜏3 to

minimize

𝐽(𝝉 ) =
20∑
𝑙=1

∣𝑦(𝑡𝑙∣𝜏1, 𝜏2, 𝜏3)− 𝑦𝑙∣2 =
20∑
𝑙=1

∣𝑥2(𝑡𝑙∣𝜏1, 𝜏2, 𝜏3)− 𝑥2(𝑡𝑙∣𝜏1, 𝜏2, 𝜏3)∣2

subject to the dynamics (2.77)-(2.79).

We solved this problem using the same Matlab program that was used to solve Exam-

ple 2.1. The convergence process of the program is shown in Table 2.3 for four sets of initial

guesses. The convergence of the output trajectory for the initial guess 𝝉 0 = [3.0, 3.0, 3.0]⊤

is shown in Figure 2.2. In Table 2.3 and Figure 2.2, 𝝉 𝑖 = [𝜏 𝑖1, 𝜏
𝑖
2, 𝜏

𝑖
3]

⊤ is the values of 𝝉 at

the 𝑖th iteration, while 𝑖 = 0 signifies the initial guess. We also solve this problem using

GA with the same parameters as in Example 2.1. The optimal cost obtained by GA is

1.3 × 10−4. Moreover, the computation time is much longer than our new method. As

with Example 2.1, we see that the optimization results converge from all initial guesses

to the optimal solution.

Table 2.3: Convergence of the cost values in Example 2.2.

Initial guess Cost value at 𝑖th iteration

No. 𝜏 01 𝜏 02 𝜏 03 𝑖 = 0 𝑖 = 5 𝑖 = 10 𝑖 = 30

1 0.5 0.5 0.5 0.4922 0.0188 5.667×10−3 6.661×10−15

2 1.5 1.5 1.5 0.1386 0.0035 3.357×10−6 6.618×10−15

3 2.5 2.5 2.5 0.0747 0.0083 4.405×10−4 1.534×10−14

4 3.0 3.0 3.0 0.1710 0.0298 2.780×10−3 6.656×10−15

2.6 Conclusion

In this chapter, we have developed a gradient-based computational method for determin-

ing unknown time-delays and unknown parameters in a general nonlinear system. This

method is unified in the sense that the delays and parameters are determined simulta-

neously by solving a dynamic optimization problem. The gradient of the cost function

in this problem is obtained by solving a set of auxiliary delay-differential systems from

𝑡 = 0 to 𝑡 = 𝑇 . The numerical simulations in Section 2.5 demonstrate that this approach
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Figure 2.2: Convergence of the output trajectory in Example 2.2 for initial guess No.4.

is highly effective. In particular, it converges quickly even when the initial estimates for

the delays and parameters are far away from the optimal values.



CHAPTER 3

Identification of time-delays for nonlinear

systems with piecewise-constant input

3.1 Introduction

The optimization-based approach developed in Chapter 2 is designed for nonlinear de-

layed systems with smooth inputs. For systems with input-delays, if the input function

is smooth, then the system dynamics will be continuously differentiable with respect to

the input-delays, and thus the approach proposed in Chapter 2 can be easily modified

to estimate the input-delays in this case. Unfortunately, the input function is often

non-smooth in practical applications. Examples include biodiesel production [58], evap-

oration process [119], chromatography process [133], quadruple-tank process [55], batch

reactor [105], and distillation column [60]. Since flow rate transmission, sensors, trans-

fer delays of sensor-to-controller that are involved in control loops unavoidably introduce

input-delays. As such, the estimation method in Chapter 2 and [125] is not applicable in

such situations.

Time-delays identification for nonlinear delay systems with input-delays has been an

interest research topic. However, the vast majority of delay estimation methods for de-

layed systems with piecewise inputs are only applicable to simple systems with linear

dynamics and a single delay, see for example, step input and system parameters iden-

tification method [103], annihilation and integration based identification method [103].

In this chapter, we consider the time-delay estimation problem for nonlinear systems in

which the input function is piecewise-constant. Such estimation problems arise, for ex-

ample, in evaporation and purification processes [94,119]. We assume that the governing

system contains one state-delay and one input-delay, both of which are unknown and

need to be estimated using experimental data. As with Chapter 2, we formulate the

delay estimation problem as a dynamic optimization problem in which the cost function

measures the least-squares error between predicted output and observed system output.

The main difficulties in solving this problem are: i) The delays are decision variables to

be optimized, rather than fixed values. Thus, conventional optimization techniques are

44
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not directly applicable; and ii) since the input function is discontinuous, thus the dynam-

ics are clearly discontinuous with respect to input delays. Hence, the results obtained

in Chapter 2 can not be used to determine this state variation with respect to input

time-delays. In this chapter, we focus on the derivation of a computational procedure for

determining the gradient of the cost function for this problem. This procedure, which

involves integrating an auxiliary impulsive system with instantaneous jumps forward in

time, is far more complex than the procedure given in Chapter 2, which does not involve

any jumps. Moreover, because of the discontinuous nature of the input function, the cost

function’s gradient does not exist at certain points. We propose a heuristic strategy for

dealing this complication. Subsequently, this heuristic strategy can be combined with our

gradient computation procedure to solve the estimation problem using standard nonlin-

ear programming algorithms. We then apply this approach to estimate the time-delays in

two large-scale industrial engineering systems. The purpose of this chapter is to develop

a new method for estimating the time-delays.

3.2 Problem formulation

Consider the following nonlinear time-delay system:

�̇�(𝑡) = 𝒇(𝒙(𝑡),𝒙(𝑡− 𝛼),𝒖(𝑡),𝒖(𝑡− 𝛽)), 𝑡 ∈ [0, 𝑇 ], (3.1)

𝒙(𝑡) = 𝝓(𝑡), 𝑡 ≤ 0, (3.2)

where 𝑇 > 0 is a given terminal time; 𝒙(𝑡) = [𝑥1(𝑡), . . . , 𝑥𝑛(𝑡)]
⊤ ∈ ℝ𝑛 is the state vector ;

𝒖(𝑡) = [𝑢1(𝑡), . . . , 𝑢𝑟(𝑡)]
⊤ ∈ ℝ𝑟 is the input vector ; 𝛼 and 𝛽 are unknown time-delays that

need to be determined; and 𝒇 : ℝ𝑛 × ℝ𝑛 × ℝ𝑟 × ℝ𝑟 → ℝ𝑛 and 𝝓 : ℝ → ℝ𝑛 are given

functions. Many dynamic processes in chemical engineering—for example, the distillation

process described in [60]—can be modeled by equations (3.1) and (3.2). We assume that

𝒇 , 𝒈, and 𝝓 are continuously differentiable. We also assume that there exists a positive

real number 𝐿1 > 0 such that for all 𝒙′,𝒙′′ ∈ ℝ𝑛 and 𝒖′,𝒖′′ ∈ ℝ𝑟,

∣𝒇(𝒙′,𝒙′′,𝒖′,𝒖′′)∣ ≤ 𝐿1(1 + ∣𝒙′∣+ ∣𝒙′′∣+ ∣𝒖′∣+ ∣𝒖′′∣), (3.3)

where ∣ ⋅ ∣ denotes the Euclidean norm. This assumption is standard in the control systems

literature [93,111,118,122,124].

The output 𝒚(𝑡) of system (3.1)-(3.2) is defined by

𝒚(𝑡) = 𝒈(𝒙(𝑡)), 𝑡 ∈ [0, 𝑇 ], (3.4)

where 𝒈 : ℝ𝑛 → ℝ𝑞 is a given continuously differentiable function.

We refer to 𝛼 as the state-delay and 𝛽 as the input-delay. The exact values of these
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delays are unknown; the only information we are given is that 𝛼 lies within the interval

[𝛼min, 𝛼max] and 𝛽 lies within the interval [𝛽min, 𝛽max], where 𝛼min ≥ 0 and 𝛽min > 0. Thus,

we have the following bound constraints:

𝛼min ≤ 𝛼 ≤ 𝛼max, (3.5)

𝛽min ≤ 𝛽 ≤ 𝛽max. (3.6)

We assume that the input signal 𝒖 is a given piecewise-constant function (this is the case

in many engineering systems). Hence, 𝒖 can be expressed as follows:

𝒖(𝑡) = 𝝈𝑖, 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖), 𝑖 = 1, . . . , 𝑝, (3.7)

where 𝝈𝑖 ∈ ℝ𝑟, 𝑖 = 1, . . . , 𝑝, are given vectors and 𝑡𝑖, 𝑖 = 0, . . . , 𝑝, are given time points

such that −𝛽max = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑝 = 𝑇 . Equation (3.7) can be rewritten as

𝒖(𝑡) =

𝑝∑
𝑖=1

𝝈𝑖𝜒[𝑡𝑖−1,𝑡𝑖)(𝑡), 𝑡 ∈ [−𝛽max, 𝑇 ], (3.8)

where the characteristic function 𝜒[𝑡𝑖−1,𝑡𝑖) : ℝ → ℝ is defined by

𝜒[𝑡𝑖−1,𝑡𝑖)(𝑡) =

⎧⎨⎩1, if 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖),

0, otherwise.

For each pair (𝛼, 𝛽) ∈ [𝛼min, 𝛼max] × [𝛽min, 𝛽max], let 𝒙(⋅∣𝛼, 𝛽) denote the corresponding

solution of system (3.1)-(3.2). Substituting 𝒙(⋅∣𝛼, 𝛽) into equation (3.4) gives 𝒚(⋅∣𝛼, 𝛽),
the predicted system output corresponding to (𝛼, 𝛽). Mathematically,

𝒚(𝑡∣𝛼, 𝛽) = 𝒈(𝒙(𝑡∣𝛼, 𝛽)), 𝑡 ≤ 𝑇. (3.9)

Suppose that the output from system (3.1)-(3.2) has been measured experimentally at

a set of sample times {𝜏𝑗}𝑚𝑗=1 ⊂ [0, 𝑇 ]. Let 𝒚𝑗 ∈ ℝ𝑞 denote the measured output at the

𝑗th sample time. Our goal is to use the experimental data {(𝜏𝑗,𝒚𝑗)}𝑚𝑗=1 to identify the

time-delays 𝛼 and 𝛽. We formulate this problem mathematically as follows.

Problem (P). Choose the state-delay 𝛼 and the input-delay 𝛽 to minimize the cost func-

tion

𝐽(𝛼, 𝛽) =
𝑚∑
𝑗=1

∣∣𝒚(𝜏𝑗∣𝛼, 𝛽)− 𝒚𝑗
∣∣2 (3.10)

subject to the dynamic system (3.1)-(3.2) and the bound constraints (3.5)-(3.6).

Problem (P) is a dynamic optimization problem governed by the time-delay system

(3.1)-(3.2). The most interesting aspect of Problem (P) is that the time-delays in (3.1)-
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(3.2) are actually decision variables to be chosen optimally. This is highly unusual; in

most optimization problems involving time-delay systems, the delays are fixed and known,

and the control input function is the decision variable to be chosen optimally [74,93,119].

In Problem (P), the input function is known, and the delays are the variables that need

to be optimized.

We now conclude this section by showing that Problem (P) can be transformed into

a switched system optimal control problem.

First, from (3.8),

𝒖(𝑡− 𝛽) =

𝑝∑
𝑖=1

𝝈𝑖𝜒[𝑡𝑖−1,𝑡𝑖)(𝑡− 𝛽) =

𝑝∑
𝑖=1

𝝈𝑖𝜒[𝑡𝑖−1+𝛽,𝑡𝑖+𝛽)(𝑡) =

𝑝∑
𝑖=1

𝝈𝑖𝜒[𝑣𝑖−1,𝑣𝑖)(𝑡), (3.11)

where 𝑣𝑖, 𝑖 = 0, . . . , 𝑝 are new decision variables defined by

𝑣𝑖 = 𝑡𝑖 + 𝛽, 𝑖 = 0, . . . , 𝑝. (3.12)

It follows from (3.12) that

𝑣𝑖 − 𝑡𝑖 = 𝑣𝑖−1 − 𝑡𝑖−1, 𝑖 = 1, . . . , 𝑝. (3.13)

Substituting (3.11) into (3.1) gives

�̇�(𝑡) = 𝒇 𝑖(𝒙(𝑡),𝒙(𝑡− 𝛼),𝒖(𝑡)), 𝑡 ∈ [𝑣𝑖−1, 𝑣𝑖) ∩ [0, 𝑇 ], 𝑖 = 1, . . . , 𝑝, (3.14)

where

𝒇 𝑖(𝒙(𝑡),𝒙(𝑡− 𝛼),𝒖(𝑡)) = 𝒇(𝒙(𝑡),𝒙(𝑡− 𝛼),𝒖(𝑡),𝝈𝑖).

System (3.14) is a switched system in which the dynamics change instantaneously at the

switching times 𝑣𝑖, 𝑖 = 1, . . . , 𝑝.

Problem (P) can now be restated as follows: Choose the state-delay 𝛼 and the switch-

ing times 𝑣𝑖, 𝑖 = 1, . . . , 𝑝 to minimize (3.10) subject to the switched system (3.14), the

initial condition (3.2), and the constraints (3.5)-(3.6) and (3.13). This is an example of a

switched system optimal control problem. Such problems have been the subject of active

research over the last decade (see, for example, [24, 26, 69, 100] and the references cited

therein). In particular, the well-known time-scaling transformation is a powerful tool for

solving switched system optimal control problems (see [118,124,132,151]). Unfortunately,

the time-scaling transformation is not applicable to time-delay systems such as system

(3.14) defined above. Thus, a new method is needed to solve Problem (P).
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3.3 State variation

Our goal is to solve Problem (P) using nonlinear optimization techniques. To do this,

we need the partial derivatives of 𝐽 with respect to the decision variables 𝛼 and 𝛽.

However, since 𝐽 is not an explicit function of 𝛼 and 𝛽, these partial derivatives cannot

be determined using standard differentiation rules. To derive formulae for the partial

derivatives of 𝐽 , we first need to consider the state variation with respect to 𝛼 and 𝛽.

3.3.1 State variation with respect to the state-delay

Define

𝝍(𝑡) =

⎧⎨⎩�̇�(𝑡), if 𝑡 ≤ 0,

𝒇(𝒙(𝑡),𝒙(𝑡− 𝛼),𝒖(𝑡),𝒖(𝑡− 𝛽)), if 𝑡 ∈ (0, 𝑇 ].

Furthermore, let ∂
∂�̃�

denote differentiation with respect to the delayed state argument.

We will use this notation frequently throughout this chapter.

The solution 𝒙(⋅∣𝛼, 𝛽) of system (3.1)-(3.2) is normally viewed as a function of time,

with 𝛼 and 𝛽 being fixed values. By instead of fixing 𝑡 ∈ (−∞, 𝑇 ], while allowing 𝛼 and 𝛽

to vary, we obtain function 𝒙(𝑡∣⋅, ⋅) : [𝛼min, 𝛼max]× [𝛽min, 𝛽max] → ℝ𝑛 whose value at (𝛼, 𝛽)

is 𝒙(𝑡∣𝛼, 𝛽). The partial derivative of 𝒙(𝑡∣⋅, ⋅) with respect to 𝛼 is called the state variation

with respect to 𝛼. The following result, which can be proved in a similar manner to the

proof of Theorem 2.1 in Chapter 2, gives a method for determining this state variation.

Theorem 3.1. Let 𝑡 ∈ (0, 𝑇 ] be a fixed time point. Then 𝒙(𝑡∣⋅, ⋅) is differentiable with

respect to the state-delay 𝛼. In fact, for each (𝛼, 𝛽) ∈ [𝛼min, 𝛼max]× [𝛽min, 𝛽max],

∂𝒙(𝑡∣𝛼, 𝛽)
∂𝛼

= Λ(𝑡∣𝛼, 𝛽), (3.15)

where Λ(⋅∣𝛼, 𝛽) satisfies the auxiliary time-delay system

Λ̇(𝑡) =
∂𝒇(𝒙(𝑡),𝒙(𝑡− 𝛼),𝒖(𝑡),𝒖(𝑡− 𝛽))

∂𝒙
Λ(𝑡)

+
∂𝒇(𝒙(𝑡),𝒙(𝑡− 𝛼),𝒖(𝑡),𝒖(𝑡− 𝛽))

∂�̃�
Λ(𝑡− 𝛼)

− ∂𝒇(𝒙(𝑡),𝒙(𝑡− 𝛼),𝒖(𝑡),𝒖(𝑡− 𝛽))

∂�̃�
𝝍(𝑡− 𝛼)

(3.16)

with initial condition

Λ(𝑡) = 0, 𝑡 ≤ 0. (3.17)

According to Theorem 3.1, the state variation with respect to 𝛼 can be computed by

solving the auxiliary time-delay system (3.16)-(3.17). This result is a simple extension of
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the main result in Chapter 2, which pertains to systems with multiple state-delays but

no input delays. To solve Problem (P), we also need the state variation with respect

to 𝛽. Unfortunately, the results in Chapter 2, which are based on the assumption that

the system dynamics are continuous with respect to the time-delays, cannot be used to

determine this state variation. Indeed, since the input function 𝒖 is discontinuous, the

dynamics (3.1) are clearly discontinuous with respect to 𝛽. In the next subsection, we

describe a new method for computing the state variation with respect to 𝛽.

3.3.2 State variation with respect to the input-delay

A Preliminaries

Before deriving the state variation with respect to 𝛽, we first need to derive several

preliminary results. Let (𝛼, 𝛽) ∈ [𝛼min, 𝛼max]× [𝛽min, 𝛽max] be a fixed pair. Define

𝒮 = [𝛽min − 𝛽, 𝛽max − 𝛽].

Note that 𝒮 is a non-empty closed interval of positive measure. Clearly,

𝜖 ∈ 𝒮 ⇐⇒ 𝛽 + 𝜖 ∈ [𝛽min, 𝛽max].

Now, for each 𝜖 ∈ 𝒮, define

𝝋𝜖(𝑡) = 𝒙(𝑡∣𝛼, 𝛽 + 𝜖)− 𝒙(𝑡∣𝛼, 𝛽), 𝑡 ≤ 𝑇, (3.18)

𝒙𝜖 = 𝒙(𝑡∣𝛼, 𝛽 + 𝜖).

By (3.2),

𝝋𝜖(𝑡) = 0, 𝑡 ≤ 0. (3.19)

Since the system dynamics satisfy the linear growth condition (3.3), it can be shown

(see [80]) that there exists a positive real number 𝐿2 > 0 such that

∣∣𝒙(𝑡∣𝛼, 𝛽 + 𝜖)
∣∣ ≤ 𝐿2, 𝑡 ∈ [−𝛼max, 𝑇 ], 𝜖 ∈ 𝒮. (3.20)

Our first preliminary result is stated and proved below.

Lemma 3.1. There exists a positive real number 𝐿3 > 0 such that for all 𝜖 ∈ 𝒮 of

sufficiently small magnitude,

∣𝝋𝜖(𝑡)∣ ≤ 𝐿3∣𝜖∣, 𝑡 ∈ (−∞, 𝑇 ]. (3.21)
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Proof. Let 𝜖 ∈ 𝒮 be such that

∣𝜖∣ < 1
2
min

{
𝑡𝑖 − 𝑡𝑖−1

}𝑝

𝑖=1
.

For each 𝑖 = 1, . . . , 𝑝, define 𝐼𝑖 = (𝑡𝑖−1 + ∣𝜖∣, 𝑡𝑖 − ∣𝜖∣). Furthermore, for each 𝑖 = 0, . . . , 𝑝,

define

𝐽𝑖 =

⎧⎨⎩
[𝑡0, 𝑡0 + ∣𝜖∣], 𝑖 = 0,

[𝑡𝑖 − ∣𝜖∣, 𝑡𝑖 + ∣𝜖∣], 𝑖 = 1, . . . , 𝑝− 1,

[𝑡𝑝 − ∣𝜖∣, 𝑡𝑝], 𝑖 = 𝑝.

Note that {𝐼𝑖}𝑝𝑖=1 and {𝐽𝑖}𝑝𝑖=0 form a partition of [−𝛽max, 𝑇 ]. Also, ∣𝐽𝑖∣ ≤ 2∣𝜖∣, 𝑖 = 0, . . . , 𝑝,

and

𝒖(𝑠) = 𝒖(𝑠− 𝜖) = 𝝈𝑖, 𝑠 ∈ 𝐼𝑖, 𝑖 = 1, . . . , 𝑝. (3.22)

Now, if 𝑡 ≤ 0, then 𝝋𝜖(𝑡) = 0 and the proof is complete. Thus, assume that 𝑡 > 0. Then

∣𝝋𝜖(𝑡)∣ ≤ ∣𝒙𝜖(𝑡)− 𝒙(𝑡)∣

≤
∫ 𝑡

0

∣∣∣𝒇(𝒙𝜖(𝑠),𝒙𝜖(𝑠− 𝛼),𝒖(𝑠),𝒖(𝑠− 𝛽 − 𝜖))− 𝒇(𝒙(𝑠),𝒙(𝑠− 𝛼),𝒖(𝑠),𝒖(𝑠− 𝛽))
∣∣∣𝑑𝑠,

where 𝒙𝜖(𝑠) = 𝒙(𝑠∣𝛼, 𝛽 + 𝜖) and 𝒙(𝑠) = 𝒙(𝑠∣𝛼, 𝛽).
Thus, since 𝒙𝜖 is uniformly bounded with respect to 𝜖 ∈ 𝒮 (recall (3.20)) and 𝒇 is

continuously differentiable, there exists a constant 𝑀1 > 0 such that

∣𝝋𝜖(𝑡)∣ ≤𝑀1

∫ 𝑡

0

∣𝝋𝜖(𝑠)∣𝑑𝑠+𝑀1

∫ 𝑡

0

∣𝝋𝜖(𝑠− 𝛼)∣𝑑𝑠+𝑀1

∫ 𝑡

0

∣𝒖(𝑠− 𝛽 − 𝜖)− 𝒖(𝑠− 𝛽)∣𝑑𝑠.

By shifting the time variable in the second and third integrals and then using (3.19), we

obtain

∣𝝋𝜖(𝑡)∣ ≤𝑀1

∫ 𝑡

0

∣𝝋𝜖(𝑠)∣𝑑𝑠+𝑀1

∫ 𝑡−𝛼

−𝛼

∣𝝋𝜖(𝑠)∣𝑑𝑠+𝑀1

∫ 𝑡−𝛽

−𝛽

∣𝒖(𝑠− 𝜖)− 𝒖(𝑠)∣𝑑𝑠

≤ 2𝑀1

∫ 𝑡

0

∣𝝋𝜖(𝑠)∣𝑑𝑠+𝑀1

∫ 𝑡−𝛽

−𝛽

∣𝒖(𝑠− 𝜖)− 𝒖(𝑠)∣𝑑𝑠

= 2𝑀1

∫ 𝑡

0

∣𝝋𝜖(𝑠)∣𝑑𝑠+𝑀1

𝑝∑
𝑖=1

∫
𝐼𝑖∩(−𝛽,𝑡−𝛽)

∣𝒖(𝑠− 𝜖)− 𝒖(𝑠)∣𝑑𝑠

+𝑀1

𝑝∑
𝑖=0

∫
𝐽𝑖∩(−𝛽,𝑡−𝛽)

∣𝒖(𝑠− 𝜖)− 𝒖(𝑠)∣𝑑𝑠.
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Hence, by (3.22),

∣𝝋𝜖(𝑡)∣ ≤ 2𝑀1

∫ 𝑡

0

∣𝝋𝜖(𝑠)∣𝑑𝑠+𝑀1𝑀2

𝑝∑
𝑖=0

∣𝐽𝑖∣,

where 𝑀2 = max𝑗 ∕=𝑘 ∣𝝈𝑗 − 𝝈𝑘∣. Since ∣𝐽𝑖∣ ≤ 2∣𝜖∣, we have

∣𝝋𝜖(𝑡)∣ ≤ 2𝑀1

∫ 𝑡

0

∣𝝋𝜖(𝑠)∣𝑑𝑠+ 2(𝑝+ 1)𝑀1𝑀2∣𝜖∣.

Finally, applying the Gronwall-Bellman Lemma [111] yields

∣𝝋𝜖(𝑡)∣ ≤ 2(𝑝+ 1)𝑀1𝑀2 exp{2𝑀1𝑇}∣𝜖∣.

This completes the proof.

For each 𝜖 ∈ 𝒮, define

𝒇 𝜖(𝑠, 𝜂,𝝈) = 𝒇
(
𝒙(𝑠) + 𝜂𝝋𝜖(𝑠),𝒙(𝑠− 𝛼) + 𝜂𝝋𝜖(𝑠− 𝛼),𝒖(𝑠),𝝈

)
,

where, as in the proof of Lemma 3.1, let 𝒙(𝑡) = 𝒙(𝑡∣𝛼, 𝛽). Then by the chain rule,

∂𝒇 𝜖(𝑠, 𝜂,𝝈)

∂𝜂
=
∂𝒇 𝜖(𝑠, 𝜂,𝝈)

∂𝒙
𝝋𝜖(𝑠) +

∂𝒇 𝜖(𝑠, 𝜂,𝝈)

∂�̃�
𝝋𝜖(𝑠− 𝛼), (3.23)

where

∂𝒇 𝜖(𝑠, 𝜂,𝝈)

∂𝒙
=
∂𝒇

(
𝒙(𝑠) + 𝜂𝝋𝜖(𝑠),𝒙(𝑠− 𝛼) + 𝜂𝝋𝜖(𝑠− 𝛼),𝒖(𝑠),𝝈

)
∂𝒙

, (3.24)

∂𝒇 𝜖(𝑠, 𝜂,𝝈)

∂�̃�
=
∂𝒇

(
𝒙(𝑠) + 𝜂𝝋𝜖(𝑠),𝒙(𝑠− 𝛼) + 𝜂𝝋𝜖(𝑠− 𝛼),𝒖(𝑠),𝝈

)
∂�̃�

. (3.25)

We can rewrite (3.23) as follows:

∂𝒇 𝜖(𝑠, 𝜂,𝝈)

∂𝜂
=
∂𝒇 𝜖(𝑠, 0,𝝈)

∂𝒙
𝝋𝜖(𝑠) +

∂𝒇 𝜖(𝑠, 0,𝝈)

∂�̃�
𝝋𝜖(𝑠− 𝛼)

+ Δ1(𝑠, 𝜂,𝝈) + Δ2(𝑠, 𝜂,𝝈),

(3.26)

where

Δ1(𝑠, 𝜂,𝝈) =
{∂𝒇 𝜖(𝑠, 𝜂,𝝈)

∂𝒙
− ∂𝒇 𝜖(𝑠, 0,𝝈)

∂𝒙

}
𝝋𝜖(𝑠), (3.27)

Δ2(𝑠, 𝜂,𝝈) =
{∂𝒇 𝜖(𝑠, 𝜂,𝝈)

∂�̃�
− ∂𝒇 𝜖(𝑠, 0,𝝈)

∂�̃�

}
𝝋𝜖(𝑠− 𝛼). (3.28)

Since 𝒇 is continuously differentiable and 𝒙 and 𝒖 are bounded, the following result is

easily established.
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Lemma 3.2. For each 𝝈 ∈ ℝ𝑟, there exists a corresponding 𝐿4 > 0 such that∣∣∣∣∂𝒇 𝜖(𝑠, 0,𝝈)

∂𝒙

∣∣∣∣ ≤ 𝐿4,

∣∣∣∣∂𝒇 𝜖(𝑠, 0,𝝈)

∂�̃�

∣∣∣∣ ≤ 𝐿4, 𝑠 ∈ [0, 𝑇 ], (3.29)

where ∣ ⋅ ∣ denotes the Euclidean norm on ℝ𝑛×𝑛.

We now show that the functions Δ1 (defined by (3.27)) and Δ2 (defined by (3.28)) are

of order 𝜖.

Lemma 3.3. Let 𝛿 > 0 and 𝝈 ∈ ℝ𝑟 be arbitrary. Then for any 𝜖 ∈ 𝒮 of sufficiently small

magnitude,

∣Δ1(𝑠, 𝜂,𝝈)∣ ≤ 𝐿3𝛿∣𝜖∣, ∣Δ2(𝑠, 𝜂,𝝈)∣ ≤ 𝐿3𝛿∣𝜖∣,

where 𝐿3 > 0 is as defined in Lemma 3.1.

Proof. By (3.21), 𝒙(𝑠)+𝜂𝝋𝜖(𝑠) → 𝒙(𝑠) and 𝒙(𝑠−𝛼)+𝜂𝝋𝜖(𝑠−𝛼) → 𝒙(𝑠−𝛼) uniformly on

[0, 𝑇 ] as 𝜖→ 0. Hence, since 𝒇 is continuously differentiable and 𝒙𝜖 is uniformly bounded

with respect to 𝜖, there exists an 𝜖′ > 0 such that for any 𝜖 ∈ 𝒮 satisfying ∣𝜖∣ < 𝜖′,∣∣∣∣∂𝒇 𝜖(𝑠, 𝜂,𝝈)

∂𝒙
− ∂𝒇 𝜖(𝑠, 0,𝝈)

∂𝒙

∣∣∣∣ < 𝛿,∣∣∣∣∂𝒇 𝜖(𝑠, 𝜂,𝝈)

∂�̃�
− ∂𝒇 𝜖(𝑠, 0,𝝈)

∂�̃�

∣∣∣∣ < 𝛿.

By taking the norm of (3.27)-(3.28), and then using the above inequalities together with

(3.21), we obtain the desired result.

Let 𝑎 and 𝑏 be given constants such that 𝑎, 𝑏 ∈ [0, 𝑇 ]. Define

𝜌𝜖(𝑎, 𝑏,𝝈) =

∫ 𝑏

𝑎

{
𝒇 𝜖(𝑠, 1,𝝈)− 𝒇 𝜖(𝑎, 0,𝝈)

}
𝑑𝑠. (3.30)

Our final preliminary result is stated and proved below.

Lemma 3.4. For each 𝝈 ∈ ℝ𝑟, there exists a corresponding 𝐿5 > 0 such that for all 𝜖 ∈ 𝒮
of sufficiently small magnitude,

∣∣𝜌𝜖(𝑎, 𝑏,𝝈)∣∣ ≤ 𝐿5∣𝑏− 𝑎∣ ⋅ ∣𝜖∣+ 𝐿5(𝑏− 𝑎)2 + 𝐿5

∫ max{𝑎,𝑏}

min{𝑎,𝑏}

∣∣𝒖(𝑠)− 𝒖(𝑎)∣∣𝑑𝑠.
Proof. From (3.30),

𝜌𝜖(𝑎, 𝑏,𝝈) =

∫ 𝑏

𝑎

{
𝒇 𝜖(𝑠, 1,𝝈)− 𝒇 𝜖(𝑠, 0,𝝈)

}
𝑑𝑠+

∫ 𝑏

𝑎

{
𝒇 𝜖(𝑠, 0,𝝈)− 𝒇 𝜖(𝑎, 0,𝝈)

}
𝑑𝑠.
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Thus,

∣∣𝜌𝜖(𝑎, 𝑏,𝝈)∣∣ ≤ ∫ max{𝑎,𝑏}

min{𝑎,𝑏}

∣∣𝒇 𝜖(𝑠, 1,𝝈)− 𝒇 𝜖(𝑠, 0,𝝈)
∣∣𝑑𝑠

+

∫ max{𝑎,𝑏}

min{𝑎,𝑏}

∣∣𝒇 𝜖(𝑠, 0,𝝈)− 𝒇 𝜖(𝑎, 0,𝝈)
∣∣𝑑𝑠. (3.31)

Consider the first integrand on the right-hand side of (3.31). Using (3.26) and (3.29)

yields

∣∣𝒇 𝜖(𝑠, 1,𝝈)− 𝒇 𝜖(𝑠, 0,𝝈)
∣∣ ≤ ∫ 1

0

∣∣∣∣∂𝒇 𝜖(𝑠, 𝜂,𝝈)

∂𝜂

∣∣∣∣𝑑𝜂
≤

∫ 1

0

{∣Δ1(𝑠, 𝜂,𝝈)∣+ ∣Δ2(𝑠, 𝜂,𝝈)∣
}
𝑑𝜂

+ 𝐿4∣𝝋𝜖(𝑠)∣+ 𝐿4∣𝝋𝜖(𝑠− 𝛼)∣.

By Lemma 3.1 and Lemma 3.3 with 𝛿 = 1, we see that for any 𝜖 ∈ 𝒮 of sufficiently small

magnitude,

∣∣𝒇 𝜖(𝑠, 1,𝝈)− 𝒇 𝜖(𝑠, 0,𝝈)
∣∣ ≤ 2𝐿3∣𝜖∣+ 2𝐿3𝐿4∣𝜖∣. (3.32)

Now, consider the second integrand on the right-hand side of (3.31). Since 𝒇 is contin-

uously differentiable and 𝒙𝜖 is uniformly bounded with respect to 𝜖 (recall (3.20)), there

exists a constant 𝑀3 > 0 such that

∣∣𝒇 𝜖(𝑠, 0,𝝈)− 𝒇 𝜖(𝑎, 0,𝝈)
∣∣ ≤𝑀3∣𝒙(𝑠)− 𝒙(𝑎)∣+𝑀3∣𝒙(𝑠− 𝛼)− 𝒙(𝑎− 𝛼)∣+𝑀3∣𝒖(𝑠)− 𝒖(𝑎)∣.

Note that �̇�(𝑠) = 𝝍(𝑠) for almost all 𝑠 ∈ (−∞, 𝑇 ], where 𝝍 is as defined in Subsec-

tion 3.3.1. Thus,

∣∣𝒇 𝜖(𝑠, 0,𝝈)− 𝒇 𝜖(𝑎, 0,𝝈)
∣∣ ≤𝑀3

∫ max{𝑎,𝑠}

min{𝑎,𝑠}
∣𝝍(𝜂)∣𝑑𝜂 +𝑀3

∫ max{𝑎,𝑠}−𝛼

min{𝑎,𝑠}−𝛼

∣𝝍(𝜂)∣𝑑𝜂

+𝑀3∣𝒖(𝑠)− 𝒖(𝑎)∣
≤𝑀3𝑀4∣𝑠− 𝑎∣+𝑀3𝑀4∣𝑠− 𝑎∣+𝑀3∣𝒖(𝑠)− 𝒖(𝑎)∣, (3.33)

where 𝑀4 = max𝜂∈[−𝛼max,𝑇 ] ∣𝝍(𝜂)∣. Substituting (3.32) and (3.33) into (3.31) gives

∣𝜌𝜖(𝑎, 𝑏,𝝈)∣ ≤ (2𝐿3 + 2𝐿3𝐿4)∣𝑏− 𝑎∣ ⋅ ∣𝜖∣+ 2𝑀3𝑀4(𝑏− 𝑎)2 +𝑀3

∫ max{𝑎,𝑏}

min{𝑎,𝑏}
∣𝒖(𝑠)− 𝒖(𝑎)∣𝑑𝑠.

Taking 𝐿5 = max{2𝐿3 + 2𝐿3𝐿4, 2𝑀3𝑀4,𝑀3} completes the proof.
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B Main result

Equipped with Lemmas 3.1-3.4, we are now ready to derive the state variation with respect

to the input-delay 𝛽. First, define

ℐ = {𝑡𝑖 + 𝛽, 𝑖 = 0, . . . , 𝑝}.

Consider the following auxiliary system:

Γ̇(𝑡) =
∂𝒇(𝒙(𝑡),𝒙(𝑡− 𝛼),𝒖(𝑡),𝒖(𝑡− 𝛽))

∂𝒙
Γ(𝑡)

+
∂𝒇(𝒙(𝑡),𝒙(𝑡− 𝛼),𝒖(𝑡),𝒖(𝑡− 𝛽))

∂�̃�
Γ(𝑡− 𝛼),

(3.34)

where, for each 𝑡 ∈ ℐ ∩ (0, 𝑇 ],

lim
𝑡→(𝑡𝑖+𝛽)+

Γ(𝑡) = lim
𝑡→(𝑡𝑖+𝛽)−

Γ(𝑡) + 𝒇 𝜖(𝑡𝑖 + 𝛽, 0,𝝈𝑖)− 𝒇 𝜖(𝑡𝑖 + 𝛽, 0,𝝈𝑖+1), (3.35)

and

Γ(𝑡) = 0, 𝑡 ≤ 0. (3.36)

Let Γ(⋅∣𝛼, 𝛽) denote the unique right continuous solution of (3.34)-(3.36). We have the

following important result.

Theorem 3.2. Let (𝛼, 𝛽) ∈ [𝛼min, 𝛼max]× [𝛽min, 𝛽max) be a fixed pair such that

𝑡𝑖 + 𝛽 /∈ {0} ∪ {𝑡𝑗, 𝑗 = 0, . . . , 𝑝}, 𝑖 = 0, . . . , 𝑝.

Furthermore, consider a fixed time point 𝑡 ∈ (𝑡𝑖−1+𝛽, 𝑡𝑖+𝛽)∩(0, 𝑇 ], where 𝑖 ∈ {1, . . . , 𝑝}.
Then

lim
𝜖→0+

𝜖−1𝝋𝜖(𝑡) = Γ(𝑡∣𝛼, 𝛽), (3.37)

where 𝝋𝜖 is as defined in (3.18).

Proof. Let

𝑎𝑖 = max{𝑡𝑖−1 + 𝛽, 0}.

Then

𝒙(𝑡) = 𝒙(𝑎𝑖) +

∫ 𝑡

𝑎𝑖

𝒇 𝜖(𝑠, 0,𝝈𝑖)𝑑𝑠. (3.38)

Let 𝜖 ∈ 𝒮 be sufficiently small so that 0 < 𝜖 < min{𝑡𝑗 − 𝑡𝑗−1}𝑝𝑗=1 and 𝑡 > 𝑡𝑖−1 + 𝛽 + 𝜖.
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Define

𝑎𝜖𝑖 = max{𝑡𝑖−1 + 𝛽 + 𝜖, 0}.

Then

𝒙𝜖(𝑡) = 𝒙𝜖(𝑎𝜖𝑖) +

∫ 𝑡

𝑎𝜖𝑖

𝒇 𝜖(𝑠, 1,𝝈𝑖)𝑑𝑠. (3.39)

We can write (3.39) as follows:

𝒙𝜖(𝑡) = 𝒙𝜖(𝑎𝑖) +

∫ 𝑎𝜖𝑖

𝑎𝑖

𝒇 𝜖(𝑠, 1,𝝈𝑖−1)𝑑𝑠+

∫ 𝑡

𝑎𝜖𝑖

𝒇 𝜖(𝑠, 1,𝝈𝑖)𝑑𝑠

= 𝒙𝜖(𝑎𝑖) +

∫ 𝑎𝜖𝑖

𝑎𝑖

{
𝒇 𝜖(𝑠, 1,𝝈𝑖−1)− 𝒇 𝜖(𝑠, 1,𝝈𝑖)

}
𝑑𝑠+

∫ 𝑡

𝑎𝑖

𝒇 𝜖(𝑠, 1,𝝈𝑖)𝑑𝑠, (3.40)

where 𝝈𝑖−1 is arbitrary if 𝑖 = 1 (in this case, we must have 𝑎𝜖𝑖 = 𝑎𝑖 = 0 when 𝜖 is

sufficiently small, because 𝛽 < 𝛽max). From (3.38) and (3.40), we have

𝝋𝜖(𝑡) = 𝒙𝜖(𝑡)− 𝒙(𝑡)

= 𝝋𝜖(𝑎𝑖) +

∫ 𝑡

𝑎𝑖

{
𝒇 𝜖(𝑠, 1,𝝈𝑖)− 𝒇 𝜖(𝑠, 0,𝝈𝑖)

}
𝑑𝑠+

∫ 𝑎𝜖𝑖

𝑎𝑖

{
𝒇 𝜖(𝑠, 1,𝝈𝑖−1)− 𝒇 𝜖(𝑠, 1,𝝈𝑖)

}
𝑑𝑠.

Thus,

𝝋𝜖(𝑡) = 𝝋𝜖(𝑎𝑖) +

∫ 𝑡

𝑎𝑖

{
𝒇 𝜖(𝑠, 1,𝝈𝑖)− 𝒇 𝜖(𝑠, 0,𝝈𝑖)

}
𝑑𝑠− 𝜌𝜖(𝑎𝑖, 𝑎

𝜖
𝑖 ,𝝈

𝑖) + 𝜌𝜖(𝑎𝑖, 𝑎
𝜖
𝑖 ,𝝈

𝑖−1)

+ (𝑎𝜖𝑖 − 𝑎𝑖)
{
𝒇 𝜖(𝑎𝑖, 0,𝝈

𝑖−1)− 𝒇 𝜖(𝑎𝑖, 0,𝝈
𝑖)
}
,

where 𝜌𝜖 is as defined in (3.30). By the fundamental theorem of calculus,

𝝋𝜖(𝑡) = 𝝋𝜖(𝑎𝑖) +

∫ 𝑡

𝑎𝑖

∫ 1

0

∂𝒇 𝜖(𝑠, 𝜂,𝝈𝑖)

∂𝜂
𝑑𝜂𝑑𝑠− 𝜌𝜖(𝑎𝑖, 𝑎

𝜖
𝑖 ,𝝈

𝑖) + 𝜌𝜖(𝑎𝑖, 𝑎
𝜖
𝑖 ,𝝈

𝑖−1)

+ (𝑎𝜖𝑖 − 𝑎𝑖)
{
𝒇 𝜖(𝑎𝑖, 0,𝝈

𝑖−1)− 𝒇 𝜖(𝑎𝑖, 0,𝝈
𝑖)
}
.

Using (3.26),

𝝋𝜖(𝑡) = 𝝋𝜖(𝑎𝑖) +

∫ 𝑡

𝑎𝑖

∫ 1

0

{
Δ1(𝑠, 𝜂,𝝈

𝑖) + Δ2(𝑠, 𝜂,𝝈
𝑖)
}
𝑑𝜂𝑑𝑠

+

∫ 𝑡

𝑎𝑖

∂𝒇 𝜖(𝑠, 0,𝝈𝑖)

∂𝒙
𝝋𝜖(𝑠)𝑑𝑠+

∫ 𝑡

𝑎𝑖

∂𝒇 𝜖(𝑠, 0,𝝈𝑖)

∂�̃�
𝝋𝜖(𝑠− 𝛼)𝑑𝑠− 𝜌𝜖(𝑎𝑖, 𝑎

𝜖
𝑖 ,𝝈

𝑖)

+ 𝜌𝜖(𝑎𝑖, 𝑎
𝜖
𝑖 ,𝝈

𝑖−1) + (𝑎𝜖𝑖 − 𝑎𝑖)
{
𝒇 𝜖(𝑎𝑖, 0,𝝈

𝑖−1)− 𝒇 𝜖(𝑎𝑖, 0,𝝈
𝑖)
}
.

(3.41)
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We can express the solution of the auxiliary system as follows:

Γ(𝑡) = Γ(𝑎+𝑖 ) +

∫ 𝑡

𝑎𝑖

∂𝒇 𝜖(𝑠, 0,𝝈𝑖)

∂𝒙
Γ(𝑠)𝑑𝑠+

∫ 𝑡

𝑎𝑖

∂𝒇 𝜖(𝑠, 0,𝝈𝑖)

∂�̃�
Γ(𝑠− 𝛼)𝑑𝑠. (3.42)

Thus, from Lemma 3.2 and equations (3.41) and (3.42),

∣∣𝜖−1𝝋𝜖(𝑡)− Γ(𝑡)
∣∣ ≤ ∣∣𝜸𝑖(𝜖)∣∣+ 𝜖−1

∫ 𝑡

𝑎𝑖

∫ 1

0

{∣Δ1(𝑠, 𝜂,𝝈
𝑖)∣+ ∣Δ2(𝑠, 𝜂,𝝈

𝑖)∣}𝑑𝜂𝑑𝑠
+

∫ 𝑡

𝑎𝑖

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠+ ∫ 𝑡

𝑎𝑖

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠− 𝛼)− Γ(𝑠− 𝛼)
∣∣𝑑𝑠

+ 𝜖−1
∣∣𝜌𝜖(𝑎𝑖, 𝑎𝜖𝑖 ,𝝈𝑖)

∣∣+ 𝜖−1
∣∣𝜌𝜖(𝑎𝑖, 𝑎𝜖𝑖 ,𝝈𝑖−1)

∣∣,
where 𝐿4 is the constant defined in Lemma 3.2 and

𝜸𝑖(𝜖) = 𝜖−1𝝋𝜖(𝑎𝑖)− Γ(𝑎+𝑖 ) + 𝜖−1(𝑎𝜖𝑖 − 𝑎𝑖)
{
𝒇 𝜖(𝑎𝑖, 0,𝝈

𝑖−1)− 𝒇 𝜖(𝑎𝑖, 0,𝝈
𝑖)
}
. (3.43)

Recall that 𝑎𝜖𝑖 − 𝑎𝑖 ≤ 𝜖 and 𝑡𝑖−1 + 𝛽 ∕= 𝑡𝑗 for all 𝑗. Thus, we may assume that 𝜖 is

sufficiently small so that 𝒖(𝑠) = 𝒖(𝑎𝑖) for all 𝑠 ∈ [𝑎𝑖, 𝑎
𝜖
𝑖 ]. It then follows from Lemma 3.4

that ∣∣𝜌𝜖(𝑎𝑖, 𝑎𝜖𝑖 ,𝝈𝑖−1)
∣∣ ≤ 2𝐿′

5𝜖
2,

∣∣𝜌𝜖(𝑎𝑖, 𝑎𝜖𝑖 ,𝝈𝑖)
∣∣ ≤ 2𝐿′′

5𝜖
2,

where 𝐿′
5 and 𝐿′′

5 are the constants in Lemma 3.4 corresponding to 𝝈𝑖−1 and 𝝈𝑖, respec-

tively. By the above inequalities and Lemma 3.3, assuming that 𝜖 is sufficiently small,

∣∣𝜖−1𝝋𝜖(𝑡)− Γ(𝑡)
∣∣ ≤ 2𝑇𝐿3𝛿 + 2𝐿′

5𝜖+ 2𝐿′′
5𝜖+

∣∣𝜸𝑖(𝜖)∣∣+ ∫ 𝑡

𝑎𝑖

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠

+

∫ 𝑡

𝑎𝑖

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠− 𝛼)− Γ(𝑠− 𝛼)
∣∣𝑑𝑠, (3.44)

where 𝛿 > 0 is arbitrary and 𝐿3 is the constant defined in Lemma 3.1. Performing a

change of variable in the second integral on the right-hand side of (3.44) yields

∣∣𝜖−1𝝋𝜖(𝑡)− Γ(𝑡)
∣∣ ≤ 2𝑇𝐿3𝛿 + 4𝐿5𝜖+

∣∣𝜸𝑖(𝜖)∣∣+ ∫ 𝑡

𝑎𝑖

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠

+

∫ 𝑡−𝛼

𝑎𝑖−𝛼

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠

≤ 2𝑇𝐿3𝛿 + 4𝐿5𝜖+
∣∣𝜸𝑖(𝜖)∣∣+ 𝜇𝑖(𝜖) +

∫ 𝑡

𝑎𝑖

2𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠,

where 𝐿5 = max{𝐿′
5, 𝐿

′′
5} and

𝜇𝑖(𝜖) =

∫ 𝑎𝑖

𝑎𝑖−𝛼

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠.
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Assuming that 𝛿 is sufficiently small so that 𝑎𝑖 + 𝛿 ≤ 𝑡,

∣∣𝜖−1𝝋𝜖(𝑡)− Γ(𝑡)
∣∣ ≤ 2𝑇𝐿3𝛿 + 4𝐿5𝜖+

∫ 𝑎𝑖+𝛿

𝑎𝑖

2𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠

+
∣∣𝜸𝑖(𝜖)∣∣+ 𝜇𝑖(𝜖) +

∫ 𝑡

𝑎𝑖+𝛿

2𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠. (3.45)

Now, since Γ is a piecewise continuous function, there exists a constant 𝑀1 > 0 such that

∣Γ(𝑠)∣ ≤𝑀1, 𝑠 ∈ (−∞, 𝑇 ].

Therefore, it follows from Lemma 3.1 that for all sufficiently small 𝜖 > 0,

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣ ≤ 𝐿3 +𝑀1, 𝑠 ∈ (−∞, 𝑇 ]. (3.46)

Substituting (3.46) into (3.45) gives∣∣𝜖−1𝝋𝜖(𝑡)− Γ(𝑡)
∣∣ ≤ 2𝑇𝐿3𝛿 + 4𝐿5𝜖+

∣∣𝜸𝑖(𝜖)∣∣+ 𝜇𝑖(𝜖) + 2𝐿4(𝐿3 +𝑀1)𝛿

+

∫ 𝑡

𝑎𝑖+𝛿

2𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠. (3.47)

Note that this inequality holds for all 𝑡 ∈ [𝑎𝑖 + 𝛿, 𝑡𝑖+ 𝛽) and 𝑡 = (𝑡𝑖 + 𝛽)−, uniformly with

respect to 𝜖 ≤ 𝛿. Thus, by the Gronwall-Bellman Lemma [111],

∣∣𝜖−1𝝋𝜖(𝑡)−Γ(𝑡)
∣∣ ≤ (

2𝑇𝐿3𝛿+4𝐿5𝜖+ ∣𝜸𝑖(𝜖)∣+𝜇𝑖(𝜖)+ 2𝐿4(𝐿3+𝑀1)𝛿
)
exp{2𝐿4𝑇}. (3.48)

This inequality holds for all 𝜖 of sufficiently small magnitude.

Now, suppose that 𝑡 ∈ (𝑡𝑖−1 + 𝛽, 𝑡𝑖 + 𝛽) ∩ (0, 𝑇 ] for 𝑖 = min{𝑗 : 𝑡𝑗 + 𝛽 > 0}. Then

𝑎𝑖 = 0, and thus by (3.2) and (3.36),

𝜇𝑖(𝜖) =

∫ 0

−𝛼

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠 = 0.

Since by assumption 𝑡𝑖−1 + 𝛽 < 0, 𝑎𝜖𝑖 = 𝑎𝑖 = 0 for all sufficiently small 𝜖. Thus,

𝜸𝑖(𝜖) = 𝜖−1𝝋𝜖(0)− Γ(0+) = 0.

Substituting 𝜇𝑖(𝜖) = 0 and 𝜸𝑖(𝜖) = 0 into (3.48) gives

∣∣𝜖−1𝝋𝜖(𝑡)− Γ(𝑡)
∣∣ ≤ (2𝑇𝐿3𝛿 + 4𝐿5𝜖+ 2𝐿4(𝐿3 +𝑀1)𝛿) exp{2𝐿4𝑇}. (3.49)

Since 𝛿 > 0 was chosen arbitrarily and 𝜖 can be made arbitrarily small, this shows that

(3.37) holds for 𝑖 = min{𝑗 : 𝑡𝑗 + 𝛽 > 0}. Moreover, the derivation leading to (3.49) shows



3.3 State variation 58

that (3.37) also holds for 𝑡 = (𝑡𝑖+𝛽)
−. It is also clear that (3.37) holds for all 𝑡 ∈ (−∞, 0].

Now, suppose that (3.37) holds for all 𝑡 ∈ (−∞, 𝑡𝑘+𝛽)∖{𝑡𝑗 +𝛽}𝑘𝑗=0 and 𝑡 = (𝑡𝑘+𝛽)
−,

where

min{𝑗 : 𝑡𝑗 + 𝛽 > 0} ≤ 𝑘 ≤ 𝑝− 1. (3.50)

We will show that (3.37) holds for all 𝑡 ∈ (𝑡𝑘 + 𝛽, 𝑡𝑘+1 + 𝛽) and 𝑡 = (𝑡𝑘+1 + 𝛽)−. The

result will then follow by induction.

Let 𝑡 ∈ (𝑡𝑘 + 𝛽, 𝑡𝑘+1 + 𝛽), where 𝑘 satisfies (3.50). By our inductive hypothesis, for

almost all 𝑠 ∈ (−∞, 𝑡𝑘 + 𝛽),

lim
𝜖→0+

𝜖−1𝝋𝜖(𝑠) = Γ(𝑠). (3.51)

In view of (3.46) and (3.51), applying Lebesgue’s dominated convergence theorem gives

lim
𝜖→0+

𝜇𝑘+1(𝜖) = lim
𝜖→0+

∫ 𝑡𝑘+𝛽

𝑡𝑘+𝛽−𝛼

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠 = 0. (3.52)

Furthermore,

𝜸𝑘+1(𝜖) = 𝜖−1𝝋𝜖(𝑡𝑘 + 𝛽)− Γ((𝑡𝑘 + 𝛽)+) + 𝒇 𝜖(𝑡𝑘 + 𝛽, 0,𝝈𝑘)− 𝒇 𝜖(𝑡𝑘 + 𝛽, 0,𝝈𝑘+1)

= 𝜖−1𝝋𝜖(𝑡𝑘 + 𝛽)− Γ((𝑡𝑘 + 𝛽)−).

Thus, by our inductive hypothesis,

lim
𝜖→0+

𝜸𝑘+1(𝜖) = 0. (3.53)

By combining equations (3.52) and (3.53) with (3.48) for 𝑖 = 𝑘+1, we see that (3.37) holds

for 𝑡 ∈ (𝑡𝑘+𝛽, 𝑡𝑘+1+𝛽). Similar arguments show that (3.37) also holds for 𝑡 = (𝑡𝑘+1+𝛽)
−.

The proof then follows by induction.

Theorem 3.2 shows that 𝜖−1𝝋𝜖 → Γ(⋅∣𝛼, 𝛽) as 𝜖 → 0+. We now derive the analogous

result for 𝜖→ 0−.

Theorem 3.3. Let (𝛼, 𝛽) ∈ [𝛼min, 𝛼max]× (𝛽min, 𝛽max] be a fixed pair such that

𝑡𝑖 + 𝛽 /∈ {0} ∪ {𝑡𝑗, 𝑗 = 0, . . . , 𝑝}, 𝑖 = 0, . . . , 𝑝.

Furthermore, consider a fixed time point 𝑡 ∈ (𝑡𝑖−1+𝛽, 𝑡𝑖+𝛽)∩(0, 𝑇 ], where 𝑖 ∈ {1, . . . , 𝑝}.
Then

lim
𝜖→0−

𝜖−1𝝋𝜖(𝑡) = Γ(𝑡∣𝛼, 𝛽). (3.54)

Proof. Let 𝑎𝑖 and 𝑎
𝜖
𝑖 be as defined in the proof of Theorem 3.2. Furthermore, let 𝜖 ∈ 𝒮
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be such that min{𝑡𝑗−1 − 𝑡𝑗}𝑝𝑗=1 < 𝜖 < 0 and 𝑡 < 𝑡𝑖 + 𝛽 + 𝜖. Then

𝒙(𝑡) = 𝒙(𝑎𝜖𝑖) +

∫ 𝑎𝑖

𝑎𝜖𝑖

𝒇 𝜖(𝑠, 0,𝝈𝑖−1)𝑑𝑠+

∫ 𝑡

𝑎𝑖

𝒇 𝜖(𝑠, 0,𝝈𝑖)𝑑𝑠,

where 𝝈𝑖−1 is arbitrary if 𝑖 = 1 (in this case, we must have 𝑎𝑖 = 𝑎𝜖𝑖 = 0). Moreover,

𝒙𝜖(𝑡) = 𝒙𝜖(𝑎𝜖𝑖) +

∫ 𝑎𝑖

𝑎𝜖𝑖

𝒇 𝜖(𝑠, 1,𝝈𝑖)𝑑𝑠+

∫ 𝑡

𝑎𝑖

𝒇 𝜖(𝑠, 1,𝝈𝑖)𝑑𝑠.

Thus,

𝝋𝜖(𝑡) = 𝒙𝜖(𝑡)− 𝒙(𝑡)

= 𝝋𝜖(𝑎𝜖𝑖) +

∫ 𝑎𝑖

𝑎𝜖𝑖

{
𝒇 𝜖(𝑠, 1,𝝈𝑖)− 𝒇 𝜖(𝑠, 0,𝝈𝑖−1)

}
𝑑𝑠+

∫ 𝑡

𝑎𝑖

{
𝒇 𝜖(𝑠, 1,𝝈𝑖)− 𝒇 𝜖(𝑠, 0,𝝈𝑖)

}
𝑑𝑠.

This equation can be rewritten as follows:

𝝋𝜖(𝑡) = 𝝋𝜖(𝑎𝜖𝑖)− 𝜌𝜖(𝑎𝑖, 𝑎
𝜖
𝑖 ,𝝈

𝑖) + (𝑎𝑖 − 𝑎𝜖𝑖)
{
𝒇 𝜖(𝑎𝑖, 0,𝝈

𝑖)− 𝒇 𝜖(𝑎𝑖, 0,𝝈
𝑖−1)

}
+

∫ 𝑎𝑖

𝑎𝜖𝑖

{
𝒇 𝜖(𝑎𝑖, 0,𝝈

𝑖−1)− 𝒇 𝜖(𝑠, 0,𝝈𝑖−1)
}
𝑑𝑠+

∫ 𝑡

𝑎𝑖

{
𝒇 𝜖(𝑠, 1,𝝈𝑖)− 𝒇 𝜖(𝑠, 0,𝝈𝑖)

}
𝑑𝑠,

where 𝜌𝜖 is as defined in (3.30). Using the fundamental theorem of calculus and (3.26),

𝝋𝜖(𝑡) = 𝝋𝜖(𝑎𝜖𝑖)− 𝜌𝜖(𝑎𝑖, 𝑎
𝜖
𝑖 ,𝝈

𝑖) +

∫ 𝑎𝑖

𝑎𝜖𝑖

{
𝒇 𝜖(𝑎𝑖, 0,𝝈

𝑖−1)− 𝒇 𝜖(𝑠, 0,𝝈𝑖−1)
}
𝑑𝑠

+ (𝑎𝑖 − 𝑎𝜖𝑖)
{
𝒇 𝜖(𝑎𝑖, 0,𝝈

𝑖)− 𝒇 𝜖(𝑎𝑖, 0,𝝈
𝑖−1)

}
+

∫ 𝑡

𝑎𝑖

∂𝒇 𝜖(𝑠, 0,𝝈𝑖)

∂𝒙
𝝋𝜖(𝑠)𝑑𝑠

+

∫ 𝑡

𝑎𝑖

∂𝒇 𝜖(𝑠, 0,𝝈𝑖)

∂�̃�
𝝋𝜖(𝑠− 𝛼)𝑑𝑠+

∫ 𝑡

𝑎𝑖

∫ 1

0

{
Δ1(𝑠, 𝜂,𝝈

𝑖) + Δ2(𝑠, 𝜂,𝝈
𝑖)
}
𝑑𝜂𝑑𝑠.

Note that 𝑡𝑖−1 + 𝛽 ∕= 𝑡𝑗 for all 𝑗. Thus, we may assume that 𝜖 is sufficiently small so that

𝒖(𝑠) = 𝒖(𝑎𝑖) for all 𝑠 ∈ [𝑎𝜖𝑖 , 𝑎𝑖]. It then follows from Lemma 3.4 that

∣∣𝜌𝜖(𝑎𝑖, 𝑎𝜖𝑖 ,𝝈𝑖−1)
∣∣ ≤ 2𝐿5𝜖

2.

Furthermore, assuming that 𝜖 is sufficiently small, by using a similar arguments to those

in the proof of Lemma 3.4, one can show that there exists a constant 𝑀5 > 0 such that∫ 𝑎𝑖

𝑎𝜖𝑖

∣∣𝒇 𝜖(𝑎𝑖, 0,𝝈
𝑖−1)− 𝒇 𝜖(𝑠, 0,𝝈𝑖−1)

∣∣𝑑𝑠 ≤𝑀5𝜖
2.
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Hence, as in the proof of Theorem 3.2,

∣∣𝜖−1𝝋𝜖(𝑡)− Γ(𝑡)
∣∣ ≤𝑀5∣𝜖∣+ 2𝐿5∣𝜖∣+ 2𝐿3𝑇𝛿 +

∫ 𝑡

𝑎𝑖

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠

+
∣∣𝜸𝑖(𝜖)∣∣+ ∫ 𝑡

𝑎𝑖

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠− 𝛼)− Γ(𝑠− 𝛼)
∣∣𝑑𝑠, (3.55)

where 𝛿 > 0 is arbitrary and

𝜸𝑖(𝜖) = 𝜖−1𝝋𝜖(𝑎𝜖𝑖)− Γ(𝑎+𝑖 ) + 𝜖−1(𝑎𝑖 − 𝑎𝜖𝑖)
{
𝒇 𝜖(𝑎𝑖, 0,𝝈

𝑖)− 𝒇 𝜖(𝑎𝑖, 0,𝝈
𝑖−1)

}
.

Simplifying (3.55) gives

∣∣𝜖−1𝝋𝜖(𝑡)− Γ(𝑡)
∣∣ ≤𝑀5∣𝜖∣+ 2𝐿5∣𝜖∣+ 2𝐿3𝑇𝛿 +

∣∣𝜸𝑖(𝜖)∣∣+ 𝜇𝑖(𝜖) +

∫ 𝑡

𝑎𝑖

2𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠,

where

𝜇𝑖(𝜖) =

∫ 𝑎𝑖

𝑎𝑖−𝛼

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠.

Finally, by applying Gronwall’s Lemma [111] yields

∣∣𝜖−1𝝋𝜖(𝑡)− Γ(𝑡)
∣∣ ≤ (

𝑀5∣𝜖∣+ 2𝐿5∣𝜖∣+ 2𝐿3𝑇𝛿 +
∣∣𝜸𝑖(𝜖)∣∣+ 𝜇𝑖(𝜖)

)
exp{2𝐿4𝑇}. (3.56)

In particular, this inequality also holds for all 𝑡 = 𝑎+𝑖 , assuming that 𝜖 is of sufficiently

small magnitude.

Now, suppose 𝑡 ∈ (𝑡𝑖−1 + 𝛽, 𝑡𝑖 + 𝛽) ∩ (0, 𝑇 ] for 𝑖 = min{𝑗 : 𝑡𝑗 + 𝛽 > 0}. Then 𝑎𝑖 = 0,

and thus by (3.2) and (3.36),

𝜇𝑖(𝜖) =

∫ 0

−𝛼

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠 = 0.

Also, since 𝑎𝜖𝑖 = 𝑎𝑖 = 0, 𝜸𝑖(𝜖) = 𝜖−1𝝋𝜖(0) − Γ(0+) = 0. Substituting 𝜇𝑖(𝜖) = 0 and

𝜸𝑖(𝜖) = 0 into (3.56) gives

∣∣𝜖−1𝝋𝜖(𝑡)− Γ(𝑡)
∣∣ ≤ (𝑀5∣𝜖∣+ 2𝐿5∣𝜖∣+ 2𝐿3𝑇𝛿) exp{2𝐿4𝑇}.

Since 𝛿 > 0 was chosen arbitrarily and 𝜖 can be made arbitrarily small, it follows that

(3.54) holds for 𝑖 = min{𝑗 : 𝑡𝑗+𝛽 > 0}. It is clear that (3.54) also holds for all 𝑡 ∈ (−∞, 0],

and for 𝑡 = 𝑎+𝑖 .

Now, suppose that (3.54) holds for all 𝑡 ∈ (−∞, 𝑡𝑘+𝛽)∖{𝑡𝑗+𝛽}𝑘𝑗=0 and 𝑡 = 𝑎+𝑘 , where

min{𝑗 : 𝑡𝑗 + 𝛽 > 0} ≤ 𝑘 ≤ 𝑝− 1. (3.57)
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We will show that (3.54) holds for all 𝑡 ∈ (𝑡𝑘 + 𝛽, 𝑡𝑘+1 + 𝛽) and 𝑡 = 𝑎+𝑘+1. The result will

then follow by induction.

Let 𝑡 ∈ (𝑡𝑘 + 𝛽, 𝑡𝑘+1 + 𝛽), where 𝑘 satisfies (3.57) above. By our inductive hypothesis,

for almost all 𝑠 ∈ (−∞, 𝑡𝑘 + 𝛽),

lim
𝜖→0−

𝜖−1𝝋𝜖(𝑠) = Γ(𝑠). (3.58)

Thus, as in the proof of Theorem 3.2, we can apply Lebesgue’s dominated convergence

theorem to obtain

lim
𝜖→0+

𝜇𝑘+1(𝜖) =

∫ 𝑡𝑘+𝛽

𝑡𝑘+𝛽−𝛼

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠 = 0. (3.59)

We have

𝜸𝑘+1(𝜖) = 𝜖−1𝝋𝜖(𝑡𝑘 + 𝛽 + 𝜖)− Γ((𝑡𝑘 + 𝛽)+) + 𝒇 𝜖(𝑡𝑘 + 𝛽, 0,𝝈𝑘)− 𝒇 𝜖(𝑡𝑘 + 𝛽, 0,𝝈𝑘+1)

= 𝜖−1𝝋𝜖(𝑡𝑘 + 𝛽 + 𝜖)− Γ((𝑡𝑘 + 𝛽)−).

Hence,

𝜸𝑘+1(𝜖) = 𝜖−1𝝋𝜖(𝑎𝑘)− Γ(𝑎+𝑘 ) + 𝜖−1

∫ 𝑡𝑘+𝛽+𝜖

𝑎𝑘

{
𝒇 𝜖(𝑠, 1,𝝈𝑘)− 𝒇 𝜖(𝑠, 0,𝝈𝑘)

}
𝑑𝑠

−
∫ 𝑡𝑘+𝛽

𝑎𝑘

∂𝒇 𝜖(𝑠, 0,𝝈𝑘)

∂𝒙
Γ(𝑠)𝑑𝑠−

∫ 𝑡𝑘+𝛽

𝑎𝑘

∂𝒇 𝜖(𝑠, 0,𝝈𝑘)

∂�̃�
Γ(𝑠− 𝛼)𝑑𝑠

= 𝜖−1𝝋𝜖(𝑎𝑘)− Γ(𝑎+𝑘 ) + 𝜖−1

∫ 𝑡𝑘+𝛽+𝜖

𝑎𝑘

∫ 1

0

∂𝒇 𝜖(𝑠, 𝜂,𝝈𝑘)

∂𝜂
𝑑𝜂𝑑𝑠

−
∫ 𝑡𝑘+𝛽

𝑎𝑘

∂𝒇 𝜖(𝑠, 0,𝝈𝑘)

∂𝒙
Γ(𝑠)𝑑𝑠−

∫ 𝑡𝑘+𝛽

𝑎𝑘

∂𝒇 𝜖(𝑠, 0,𝝈𝑘)

∂�̃�
Γ(𝑠− 𝛼)𝑑𝑠.

Using (3.26), we obtain

𝜸𝑘+1(𝜖) = 𝜖−1𝝋𝜖(𝑎𝑘)− Γ(𝑎+𝑘 ) + 𝜖−1

∫ 𝑡𝑘+𝛽+𝜖

𝑎𝑘

∫ 1

0

{
Δ1(𝑠, 𝜂,𝝈

𝑘) + Δ2(𝑠, 𝜂,𝝈
𝑘)
}
𝑑𝜂𝑑𝑠

+

∫ 𝑡𝑘+𝛽+𝜖

𝑎𝑘

∂𝒇 𝜖(𝑠, 0,𝝈𝑘)

∂𝒙

{
𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)

}
𝑑𝑠

+

∫ 𝑡𝑘+𝛽+𝜖

𝑎𝑘

∂𝒇 𝜖(𝑠, 0,𝝈𝑘)

∂�̃�

{
𝜖−1𝝋𝜖(𝑠− 𝛼)− Γ(𝑠− 𝛼)

}
𝑑𝑠

−
∫ 𝑡𝑘+𝛽

𝑡𝑘+𝛽+𝜖

∂𝒇 𝜖(𝑠, 0,𝝈𝑘)

∂𝒙
Γ(𝑠)𝑑𝑠−

∫ 𝑡𝑘+𝛽

𝑡𝑘+𝛽+𝜖

∂𝒇 𝜖(𝑠, 0,𝝈𝑘)

∂�̃�
Γ(𝑠− 𝛼)𝑑𝑠.
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Thus, using Lemma 3.2 and Lemma 3.3,

∣∣𝜸𝑘+1(𝜖)
∣∣ = ∣∣𝜖−1𝝋𝜖(𝑎𝑘)− Γ(𝑎+𝑘 )

∣∣+ 2𝐿3𝑇𝛿 +

∫ 𝑡𝑘+𝛽+𝜖

𝑎𝑘

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠

+

∫ 𝑡𝑘+𝛽+𝜖

𝑎𝑘

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠− 𝛼)− Γ(𝑠− 𝛼)
∣∣𝑑𝑠+ 𝐿4𝑀1∣𝜖∣+ 𝐿4𝑀1∣𝜖∣

≤ ∣∣𝜖−1𝝋𝜖(𝑎𝑘)− Γ(𝑎+𝑘 )
∣∣+ 2𝐿3𝑇𝛿 + 2𝐿4𝑀1∣𝜖∣

+

∫ 𝑡𝑘+𝛽

𝑎𝑘

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠)− Γ(𝑠)
∣∣𝑑𝑠+ ∫ 𝑡𝑘+𝛽

𝑎𝑘

𝐿4

∣∣𝜖−1𝝋𝜖(𝑠− 𝛼)− Γ(𝑠− 𝛼)
∣∣𝑑𝑠,

where 𝑀1 is as defined in the proof of Theorem 3.2. Using the Lebesgue’s dominated

convergence theorem and the induction hypothesis, the two integrals converge to zero as

𝜖 → 0−. It follows also from the induction hypothesis that the first term converges to

zero as 𝜖→ 0−. Thus,

lim
𝜖→0−

∣∣𝜸𝑘+1(𝜖)
∣∣ = 0. (3.60)

Combining equations (3.59) and (3.60) with (3.56), for 𝑖 = 𝑘+1, we see that (3.54) holds

for all 𝑡 ∈ (𝑡𝑘 + 𝛽, 𝑡𝑘+1 + 𝛽) and 𝑡 = (𝑡𝑘 + 𝛽)+. The proof then follows by induction.

Together, Theorems 3.2 and 3.3 show that the state variation with respect to 𝛽 is

given by Γ(⋅∣𝛼, 𝛽). This is stated formally in the following theorem.

Theorem 3.4. Let (𝛼, 𝛽) ∈ [𝛼min, 𝛼max]× [𝛽min, 𝛽max] be a fixed pair such that

𝑡𝑖 + 𝛽 /∈ {0} ∪ {𝑡𝑗, 𝑗 = 0, . . . , 𝑝}, 𝑖 = 0, . . . , 𝑝.

Furthermore, consider a fixed time point 𝑡 ∈ (𝑡𝑖−1+𝛽, 𝑡𝑖+𝛽)∩(0, 𝑇 ], where 𝑖 ∈ {1, . . . , 𝑝}.
Then

∂𝒙(𝑡∣𝛼, 𝛽)
∂𝛽

= Γ(𝑡∣𝛼, 𝛽). (3.61)

3.4 Computation algorithm

In this section, based on the results in Section 3.3, we develop a computational algorithm

for solving Problem (P). Our approach is to view Problem (P) as a nonlinear programming

problem in which 𝛼 and 𝛽 are decision variables to be chosen optimally. On this basis,

Problem (P) can, in principle, be solved using standard nonlinear programming algorithms

such as the SQP method, which relies on the partial derivatives of the cost function to

compute search directions leading to profitable areas of the search space. Thus, to solve

Problem (P) as a nonlinear programming problem, we need to derive the partial derivatives

of 𝐽 with respect to both 𝛼 and 𝛽.
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By using the state variation formulae in Theorems 3.1 and 3.4, we can differentiate 𝐽

using the chain rule. However, the state variation with respect to 𝛽 does not exist for all

values of 𝛽 (recall that Theorem 3.4 is only valid when 𝑡𝑖 + 𝛽 /∈ {0} ∪ {𝑡𝑗, 𝑗 = 0, . . . , 𝑝}
for each 𝑖 = 0, . . . , 𝑝). Thus, at each stage of the optimization process, we need to check

the condition 𝑡𝑖 + 𝛽 /∈ {0} ∪ {𝑡𝑗, 𝑗 = 0, . . . , 𝑝}, and if this condition is not satisfied, then

we perturb 𝛽 by a small amount 𝜖. More precisely, we first check to see whether (𝛼, 𝛽) is

an optimal pair of delay estimates for Problem (P) (i.e. if the value of 𝐽 , which measures

the discrepancy between predicted output and observed system output, is below a desired

tolerance). If it is, then we stop. Otherwise, we calculate the following modified value of

𝛽:

𝛽 =

⎧⎨⎩𝛽, if 𝑡𝑖 + 𝛽 /∈ {0} ∪ {𝑡𝑗, 𝑗 = 0, . . . , 𝑝} for each 𝑖 = 0, . . . , 𝑝,

𝛽 + 𝜖, otherwise,
(3.62)

where 𝜖 is a small number chosen to ensure that 𝑡𝑖 + 𝛽 + 𝜖 /∈ {0} ∪ {𝑡𝑗, 𝑗 = 0, . . . , 𝑝} for

each 𝑖 = 0, . . . , 𝑝, and 𝛽 + 𝜖 ∈ [𝛽min, 𝛽max].

Note that the state variation formula in Theorem 3.4 is not applicable at the time

points 𝑡 = 𝑡𝑖 + 𝛽, 𝑖 = 0, . . . , 𝑝. Thus, if 𝜏𝑗 ∈ {𝑡𝑖 + 𝛽}𝑝𝑖=0 for some 𝑗, where 𝜏𝑗 is the 𝑗th

sample time, then we will not be able to compute the state variation of 𝒙(𝜏𝑗∣𝛼, 𝛽) with
respect to the input-delay. In this case, we need to consider a modified cost function

in which the experimental data are slightly perturbed. The perturbation procedure is

designed to ensure that none of the new sample times coincide with points in {𝑡𝑖 + 𝛽}𝑝𝑖=0.

Details are given below.

After arriving at a new delay pair (𝛼, 𝛽) at some point during the optimization process,

we define the 𝑗th perturbed sample time as follows:

𝜏𝑗 =

⎧⎨⎩𝜏𝑗, if 𝜏𝑗 /∈ {𝑡𝑖 + 𝛽}𝑝𝑖=0,

𝜏𝑗 + 𝛿𝑗, if 𝜏𝑗 ∈ {𝑡𝑖 + 𝛽}𝑝𝑖=0,
(3.63)

where 𝛿𝑗 is a small number chosen such that 𝜏𝑗+𝛿𝑗 ∈ [0, 𝑇 ]∖{𝑡𝑖+𝛽}𝑝𝑖=0. The corresponding

output vector is defined as follows:

𝒚𝑗 =

⎧⎨⎩𝒚𝑗, if 𝜏𝑗 /∈ {𝑡𝑖 + 𝛽}𝑝𝑖=0,

𝒚𝑗 + 𝜸𝑗, if 𝜏𝑗 ∈ {𝑡𝑖 + 𝛽}𝑝𝑖=0,
(3.64)

where 𝜸𝑗 is computed using the original experimental data together with an appropriate

interpolation technique. Our new objective function is

𝐽(𝛼, 𝛽) =
𝑚∑
𝑗=1

∣∣𝒚(𝜏𝑗∣𝛼, 𝛽)− 𝒚𝑗
∣∣2 ≈ 𝑚∑

𝑗=1

∣∣𝒚(𝜏𝑗∣𝛼, 𝛽)− 𝒚𝑗
∣∣2 = 𝐽(𝛼, 𝛽). (3.65)
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Using Theorem 3.1, the partial derivative of 𝐽 with respect to the state delay is given by

∂𝐽(𝛼, 𝛽)

∂𝛼
= 2

𝑚∑
𝑗=1

(
𝒈(𝒙(𝜏𝑗∣𝛼, 𝛽))− 𝒚𝑗

)⊤∂𝒈(𝒙(𝜏𝑗∣𝛼, 𝛽))
∂𝒙

∂𝒙(𝜏𝑗∣𝛼, 𝛽)
∂𝛼

= 2
𝑚∑
𝑗=1

(
𝒈(𝒙(𝜏𝑗∣𝛼, 𝛽))− 𝒚𝑗

)⊤∂𝒈(𝒙(𝜏𝑗∣𝛼, 𝛽))
∂𝒙

Λ(𝜏𝑗∣𝛼, 𝛽). (3.66)

The partial derivative of 𝐽 with respect to the input delay can be determined in a similar

manner to the derivation of ∂𝐽
∂𝛼

given above:

∂𝐽(𝛼, 𝛽)

∂𝛽
= 2

𝑚∑
𝑗=1

(
𝒈(𝒙(𝜏𝑗∣𝛼, 𝛽))− 𝒚𝑗

)⊤∂𝒈(𝒙(𝜏𝑗∣𝛼, 𝛽))
∂𝒙

Γ(𝜏𝑗∣𝛼, 𝛽). (3.67)

Since it is unlikely that many of the sample times will lie in the set {𝑡𝑖 + 𝛽}𝑝𝑖=0, there

should be no noticeable difference between minimizing 𝐽 and minimizing 𝐽 . Indeed, our

numerical results in the next section indicate that this is precisely the case. Also, the

input function can be chosen judiciously during experimentation to minimize the chance

of one of the sample times lying in the set {𝑡𝑖+𝛽}𝑝𝑖=0. Our heuristic optimization strategy

for descending from a point (𝛼, 𝛽) is described below.

Step 1. Compute the modified input-delay 𝛽 according to (3.62).

Step 2. Compute the new experimental data {(𝜏𝑗,𝒚𝑗)}𝑚𝑗=1 using (3.63) and (3.64).

Step 3. Obtain 𝒙(⋅∣𝛼, 𝛽), Λ(⋅∣𝛼, 𝛽), and Γ(⋅∣𝛼, 𝛽) by solving the enlarged time-delay system

consisting of the original system (3.1)-(3.2) and the auxiliary systems (3.16)-(3.17)

and (3.34)-(3.36).

Step 4. Use 𝒙(𝜏𝑗∣𝛼, 𝛽), 𝑗 = 1, . . . ,𝑚 to compute 𝒚(𝜏𝑗∣𝛼, 𝛽) through equation (3.9).

Step 5. Use 𝒚(𝜏𝑗∣𝛼, 𝛽), 𝑗 = 1, . . . ,𝑚 to compute 𝐽(𝛼, 𝛽) through equation (3.65).

Step 6. Use 𝒙(𝜏𝑗∣𝛼, 𝛽), 𝒚(𝜏𝑗∣𝛼, 𝛽), Λ(𝜏𝑗∣𝛼, 𝛽) and Γ(𝜏𝑗∣𝛼, 𝛽), 𝑗 = 1, . . . ,𝑚 to compute ∂𝐽(𝛼,𝛽)
∂𝛼

and ∂𝐽(𝛼,𝛽)
∂𝛽

through equations (3.66) and (3.67).

This procedure can be combined with a standard nonlinear programming software to solve

Problem (P) and determine optimal estimates for the time-delays.

3.5 Numerical examples

3.5.1 Example 1: Zinc sulphate purification

For our first example, we consider the industrial zinc sulphate purification process de-

scribed in [94]. In this process, zinc powder is added to a zinc sulphate electrolyte to
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induce deposition of harmful cobalt and cadmium ions. This is a key step in the produc-

tion of zinc.

The rates of change of cobalt and cadmium ion concentrations in the electrolyte are

described by the following differential equations:

𝑉 �̇�1(𝑡) = 𝑄𝑥01 −𝑄𝑥1(𝑡− 𝛼)− 𝑐1𝑢(𝑡− 𝛽)𝑥1(𝑡− 𝛼) + 𝑐2𝑥2(𝑡− 𝛼), (3.68)

𝑉 �̇�2(𝑡) = 𝑄𝑥02 −𝑄𝑥2(𝑡− 𝛼)− 𝑐3𝑣(𝑡)𝑥2(𝑡− 𝛼) + 𝑐4𝑥1(𝑡− 𝛼), (3.69)

and

𝑥1(𝑡) = 3.3× 10−4, 𝑥2(𝑡) = 4.0× 10−3, 𝑡 ≤ 0, (3.70)

where 𝑥1 is the concentration of cobalt ions; 𝑥2 is the concentration of cadmium ions; and

𝑢 and 𝑣 are control variables that correspond to the zinc powder reaction surface areas

(proportional to the amount of zinc powder added to the reaction tank).

Furthermore, 𝑉 is the volume of the reaction tank (𝑉 = 400 m3); 𝑄 is the flux of

solution (𝑄 = 200 m3/h); 𝑐1, 𝑐2, 𝑐3, 𝑐4, are model parameters; and 𝑥01 and 𝑥02 are the

concentrations of cobalt and cadmium ions at the inlet of the reaction tank, respectively

(𝑥01 = 6×10−4g/L, 𝑥02 = 9×10−3g/L). Reference [94] considers the parameter identification

problem for system (3.68)-(3.70) with a given state-delay of 𝛼 = 2 and no input delay

(i.e. 𝛽 = 0). Here, we assume that there is a non-negligible delay in the addition of zinc

powder to the tank. We also assume that the model parameters are equal to the optimal

values reported in [94]:

𝑐1 = 7.828× 10−4, 𝑐2 = 16.67, 𝑐3 = 2.823× 10−4, 𝑐4 = 7.107× 102. (3.71)

These values were obtained using data from a real zinc production factory in China. We

assume that the terminal time is 𝑇 = 8, and we set the input variables 𝑢 and 𝑣 as equal

to the optimal control functions obtained in [94]:

𝑢(𝑡) = 𝜎𝑖, 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖), 𝑖 = 1, . . . , 8, (3.72)

𝑣(𝑡) = �̄�𝑖, 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖), 𝑖 = 1, . . . , 8, (3.73)

where the values of 𝑡𝑖, 𝜎
𝑖, and �̄�𝑖, 𝑖 = 1, . . . , 8, are given in Table 2.1. The output of the

system is the concentration of cadmium ions:

𝑦(𝑡) = 𝑥2(𝑡). (3.74)

Given system (3.68)-(3.70) with data (3.71) and piecewise-constant inputs (3.72)-(3.73),

our goal is to identify the delays 𝛼 and 𝛽. We simulate system (3.68)-(3.70) with [�̂�, 𝛽]⊤ =
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[2, 0.25] to generate the observed data in Problem (P). The observed data 𝑦𝑗 = 𝑥2(𝜏𝑗∣�̂�, 𝛽)
is sampled at 𝜏𝑗 = 𝑗/5, 𝑗 = 1, . . . , 40. Thus, our identification problem is: choose 𝛼 and

𝛽 to minimize

𝐽(𝛼, 𝛽) =
40∑
𝑗=1

∣∣𝑦(𝜏𝑗∣𝛼, 𝛽)− 𝑦𝑗
∣∣2 = 40∑

𝑗=1

∣∣𝑥2(𝜏𝑗∣𝛼, 𝛽)− 𝑥2(𝜏𝑗∣�̂�, 𝛽)
∣∣2 (3.75)

subject to the dynamic system (3.68)-(3.70).

To solve this problem, we wrote a Matlab program that integrates the SQP optimiza-

tion method with the gradient computation algorithm described in Section 3.4.

Computational results for different initial guesses are shown in Table 3.1. The output

trajectory for the initial guess (𝛼, 𝛽) = (3, 3) is displayed in Figure 3.1. In Table 3.1 and

Table 3.1: Numerical convergence of the cost values in Example 3.1.

Initial guess Cost value at the 𝑘th iteration

No. 𝛼0 𝛽0 𝑘 = 0 𝑘 = 5 𝑘 = 10 𝑘 = 20 𝑁1 𝑁2

1 0.5 0.5 5.865×10−5 9.001×10−8 8.396×10−25 1.151×10−27 0 0
2 1.0 1.0 4.171×10−5 6.265×10−8 2.218×10−21 2.287×10−34 3 0
3 3.0 2.0 9.169×10−5 2.007×10−5 6.624×10−7 8.209×10−27 3 0
4 3.0 3.0 7.828×10−5 2.122×10−6 2.318×10−8 1.141×10−26 6 0
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α5=2.005,  β5=2.307

α10=1.983,  β10=0.183

α20=2.000,  β20=0.250

α0=3,  β0=3

observed data

Figure 3.1: Numerical convergence of the output trajectory in Example 3.1 for initial
guess No.4.
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Figure 3.1, 𝛼𝑘 and 𝛽𝑘 are the values of 𝛼 and 𝛽 at the 𝑘th iteration during the optimization

process, where 𝛼0 and 𝛽0 (i.e. 𝑘 = 0) denote the initial guesses for the values of 𝛼 and

𝛽. Furthermore, 𝑁1 denotes the number of optimization iterations in which the condition

𝑡𝑖 + 𝛽 ∈ {0} ∪ {𝑡𝑗, 𝑗 = 0, . . . , 8} occurs, and 𝑁2 denotes the number of optimization

iterations in which one of the sample times lies in the set ℐ = {𝑡𝑗 + 𝛽, 𝑗 = 0, . . . , 8}.
We can see from Table 3.1 and Figure 3.1 that the optimal trajectory converges to the

observed data for any initial guess. Note that, at each iteration, 𝜏𝑗 ∈ ℐ occurs at most 𝑚

times (the worst case scenario is when every sample time is in ℐ). However, as expected,
𝑁1 and 𝑁2 are small, and thus the conditions for Theorem 3.4 are satisfied most of the

time.

3.5.2 Example 2: Sodium aluminate evaporation

We now consider another industrial chemical process—specifically, the evaporation process

described in [119]. This process, which takes place in a series of evaporators, is used to

process a mother liquor consisting of sodium carbonate, sodium hydroxide, and alumina.

The purpose of this process is to improve the concentration of the mother liquor to

reach a specific concentration requirement, so that the sodium hydroxide and alumina

components can be re-used. Since it takes time for the solution to flow from one reaction

vessel to another, changes in the input variables do not cause changes in the evaporation

vessel instantaneously—there are delays in the process. For simplicity, we just consider

the case where there are two evaporators. The variables that are of interest are the

sodium hydroxide concentration, temperature, and level of solution in each evaporation

vessel. The dynamics in these two evaporation vessels can be described by the following

differential equations:

𝑑ℎ1(𝑡)

𝑑𝑡
=
𝐹01(𝑡− 𝛽)𝜌0(𝑡− 𝛼) + 𝐹2(𝑡− 𝛽)𝜌2(𝑡− 𝛼)− 𝐹1(𝑡)𝜌1(𝑡) + 𝑉0

𝐴1𝜌1(𝑡)
, (3.76)

𝑑ℎ2(𝑡)

𝑑𝑡
=
𝐹0(𝑡− 𝛽)𝜌0(𝑡− 𝛼)− 𝐹2(𝑡)𝜌2(𝑡)

𝐴1𝜌2(𝑡)
, (3.77)

𝑑𝐶1(𝑡)

𝑑𝑡
=
𝐹01(𝑡− 𝛽)𝐶0(𝑡− 𝛼) + 𝐹2(𝑡− 𝛽)𝐶2(𝑡− 𝛼)− 𝐹1(𝑡)𝐶1(𝑡)

𝐴1ℎ1(𝑡)
− 𝑑ℎ1(𝑡)

𝑑𝑡

𝐶1(𝑡)

ℎ1(𝑡)
, (3.78)

𝑑𝐶2(𝑡)

𝑑𝑡
=
𝐹0(𝑡− 𝛽)𝐶0(𝑡− 𝛼)− 𝐹2(𝑡)𝐶2(𝑡)

𝐴2ℎ2(𝑡)
− 𝑑ℎ2(𝑡)

𝑑𝑡

𝐶2(𝑡)

ℎ2(𝑡)
, (3.79)

𝑑𝑇𝑖(𝑡)

𝑑𝑡
=

Δ𝑄𝑖(𝑡)

𝐴𝑖ℎ𝑖(𝑡)𝑐
𝑝
𝑖 (𝑡)

− 𝑇𝑖(𝑡)

𝑐𝑝𝑖 (𝑡)

𝑑𝑐𝑝𝑖
𝑑𝑡

− 𝑇𝑖(𝑡)𝜌𝑖(𝑡)

ℎ𝑖(𝑡)

𝑑ℎ𝑖(𝑡)

𝑑𝑡
, 𝑖 = 1, 2, (3.80)

where 𝑖, 𝑖 = 1, 2, refers to the 𝑖th evaporator; ℎ𝑖, 𝑇𝑖, and 𝐶𝑖 are the state variables rep-

resenting the level, temperature, and concentration of the solution in the 𝑖th evaporation

vessel, respectively; 𝐴𝑖 is the cross-sectional area of the 𝑖th evaporation vessel; 𝐹𝑖 is the

flow rate of the solution output from the 𝑖th evaporator; 𝑉0 is the amount of vapor from
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other heat sources mixed with the solution; 𝐹0 is the flow rate of the feed; 𝐶0 is the

concentration of the feed; Δ𝑄𝑖 is the heat change in the 𝑖th evaporation vessel (depends

on the live steam flow rate); 𝑐𝑝𝑖 and 𝜌𝑖 are the specific heat capacity and the density of

the solution in the 𝑖th evaporation vessel, respectively, and depend on the concentration

and temperature. Note that 𝑐𝑝, 𝜌, and Δ𝑄 are calculated by using the formulae given

in [119].

The state vector for this system is 𝒙(𝑡) = [ℎ1(𝑡), ℎ2(𝑡), 𝐶1(𝑡), 𝐶2(𝑡), 𝑇1(𝑡), 𝑇2(𝑡)]
⊤. The

initial condition is

𝒙(𝑡) = [1.91, 110.6, 73.0, 1.91, 97.2, 54.5]⊤, 𝑡 ≤ 0. (3.81)

Here, the inputs are 𝒖 = [𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5]
⊤ = [𝐹1, 𝐹2, 𝐹0, 𝐹01, 𝑉 ]⊤, where 𝑉 denotes the

live steam flow rate. Also, 𝛼 is an unknown state-delay, and 𝛽 is an unknown input-delay.

Assume that the terminal time of this system is 𝑇 = 240 minutes. The input functions

are

𝑢𝑙(𝑡) = 𝜎𝑖
𝑙 , 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖), 𝑙 = 1, 2, 3, 5, 𝑖 = 1, . . . , 24, (3.82)

and

𝑢4(𝑡) = 0.165, 𝑡 ∈ [0, 240], (3.83)

where 𝜎𝑖
𝑙 , 𝑖 = 1, . . . , 24, are given control heights shown in Figure 3.2. The output is

𝒚(𝑡) = [𝐶1(𝑡), 𝐶2(𝑡)]
⊤. We use the output trajectory of (3.76)-(3.81) with [�̂�, 𝛽] = [15, 6]⊤

to generate the observed data for Problem (P). We set

𝒚𝑗 = [𝑥3(𝜏𝑗∣�̂�, 𝛽), 𝑥4(𝜏𝑗∣�̂�, 𝛽)]⊤, 𝑗 = 1, . . . , 24,

where 𝜏𝑗+1 − 𝜏𝑗 = 10, Thus, our identification problem is: choose 𝛼 and 𝛽 to minimize

𝐽(𝛼, 𝛽) =
24∑
𝑗=1

∣𝒚(𝜏𝑗∣𝛼, 𝛽)− 𝒚𝑗∣2

=
24∑
𝑗=1

∣𝑥3(𝜏𝑗∣𝛼, 𝛽)− 𝑥3(𝜏𝑗∣�̂�, 𝛽)∣2 +
24∑
𝑗=1

∣𝑥4(𝜏𝑗∣𝛼, 𝛽)− 𝑥4(𝜏𝑗∣�̂�, 𝛽)∣2 (3.84)

subject to the dynamics (3.76)-(3.81).

As with Example 1, we solve this problem using a Matlab program that integrates

the SQP optimization method with the gradient computation algorithm described in

Section 3.4. The convergence process of the program is shown in Table 3.2 for four

sets of initial guesses. The convergence process corresponding to the initial guess of
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Figure 3.2: Control input variables for Example 3.2

(𝛼, 𝛽) = (36, 36) is shown in Figure 3.3. In Table 3.2 and Figure 3.3, 𝛼𝑘 and 𝛽𝑘 are the

values of 𝛼 and 𝛽 at the 𝑘th iteration, where 𝑘 = 0 indicates the initial guess of (𝛼, 𝛽).

Furthermore, 𝑁1 denotes the number of optimization iterations in which the condition

𝑡𝑖 + 𝛽 ∈ {0} ∪ {𝑡𝑗, 𝑗 = 0, . . . , 24} occurs, and 𝑁2 denotes the number of optimization

iterations in which one of the sample times lies in the set {𝑡𝑗 + 𝛽, 𝑗 = 0, . . . , 24}. We

observe that excellent convergence results are achieved for all the initial guesses.

Table 3.2: Numerical convergence of the cost values in Example 3.2.

Initial guess Cost value at the 𝑘th iteration

No. 𝛼0 𝛽0 𝑘 = 0 𝑘 = 5 𝑘 = 10 𝑘 = 20 𝑁1 𝑁2

1 12 12 0.077 4.462×10−3 2.782×10−8 2.446×10−8 1 0
2 24 24 0.559 4.496×10−4 3.259×10−7 4.684×10−8 2 0
3 30 30 0.939 5.300×10−3 3.259×10−7 4.524×10−8 1 0
4 36 36 1.170 8.751×10−1 1.728×10−4 8.455×10−8 0 0
5 48 48 1.628 8.862×10−4 6.432×10−7 4.802×10−8 0 0
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Figure 3.3: Numerical convergence of the output trajectory in Example 3.2 for initial

guess No.4.

3.6 Conclusions

In this chapter, we have developed a gradient-based computational method for solving

a time-delay identification problem for nonlinear systems in which the input function is

piecewise-constant. We assume that there are two unknown time-delays in the system—

a state-delay and an input-delay. The problem of determining optimal delay estimates

is formulated as a dynamic optimization problem. The gradient of the cost function in

this problem is obtained by solving two auxiliary delay-differential systems from 𝑡 = 0

to 𝑡 = 𝑇 . The auxiliary system corresponding to the input-delay is more complicated

and involves jump conditions at the delayed control switching time points. The industrial

examples demonstrate that our approach is highly effective. In particular, it converges

to optimal delay estimates even when the initial estimates are far away from the optimal

values.



CHAPTER 4

Time-delay optimal control application

problem: an industrial evaporation process

4.1 Introduction

Time-delay dynamics are encountered in many real-world systems ranging from engineer-

ing to economics, such as those reported in [93, 143, 153]. As time-delays will influence

the interaction between various system components, control theory and methods devel-

oped for dynamical systems without time-delays are not applicable. Thus, new theory

and methods have been active research areas over the years and some fundamental and

interesting results are now available in the literature (see, for example, [51, 74]). For

optimal control problems involving time-delay systems, they have also been extensively

studied in the literature such as in [70,84,86,140]. However, most of the results obtained

(see, for example, [47, 83, 101]) are for linear dynamical systems. On the computational

issues, computational methods are proposed in [78] for optimal control problems with

single time-delay. Note that there is no constraint on the state variables in the problem

formulation considered in [78], while constraints on the state variables are included in the

problem formulation in [119].

In this chapter, we consider a class of optimal control problems involving dynamical

systems with multiple time-delays and subject to constraints on the state and/or control

variables. Some of these constraints, which are expressed in the form of inequalities, are

to be satisfied for all time point over the time planning horizon [0, 𝑡𝑓 ]. These constraints

are called the continuous inequality constraints. The objective is to find a control such

that a cost function is minimized subject to the given constrains. The focus of this chap-

ter is to develop an effective computational method for solving this difficult constrained

time-delay optimal control problem. To begin, the control paremeterization technique is

used to subdivide the time planning horizon [0, 𝑡𝑓 ] into 𝑁 subintervals. Then, the control

is approximated by a piecewise-constant function with possible discontinuities at these

partition points. The time-delay optimal control problem is thus approximated by a se-

quence of time-delay optimal parameter selection problems subject to constraints on the

71
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state and control variables. Amongst these various constraints, the continuous inequal-

ity constraints, often involving only state variables, are very difficult to handle directly.

Thus, the constraint transcription technique introduced in [80] is used to convert each

of them into an equivalent equality constraint in integral form. However, the integrand

of each of these equality constraints is non-smooth. Thus, a local smoothing method is

used to approximate the non-smooth functions by smooth functions. Consequently, each

of these continuous inequality constraints is approximated by a sequence of inequality

constraints in integral form, where the integrands are smooth approximating functions.

These inequality constraints are known as the inequality constraints in canonical form,

as they appear in the same form as the cost function. Then, by using the idea of the

penalty function, these inequality constraints are appended to the cost function, forming

an augmented cost function. Thus, the constrained time-delay optimal control problem is

approximated by a sequence of time-delay optimal parameter selection problems subject

to simple bounds on the control parameter vector. Each of them is to be solved as a

nonlinear programming problem by using a gradient-based optimization technique, such

as the sequential quadratic programming approximation scheme with active set strategy

(see, for example, [80,147]). For this, the gradient formula of the augmented cost function

with respect to the control parameter vector is derived. On this basis, an effective com-

putational algorithm is developed for the time-delay constrained optimal control problem

through solving a sequence of optimal parameter selection problems subject to simple

bounds, each of which is regarded as a nonlinear programming problem.

The rest of the chapter is organized as follows. The problem formulation is given

in Section 4.2. For the solution method, which consists of constraint transformation,

problem approximation, convergence analysis, and computation method, is presented in

Section 4.3. For real world application, we consider an optimal control problem of practical

alumina evaporation process in Section 4.4, where the objective is to find a control such

that the specific requirements of the industrial sodium aluminate solution are met and

the solution level for each effect is maintained to within its operation limits with the least

energy consumption. In Section 4.5, some concluding remarks are made.

4.2 Problem statement

Consider a process that evolves over the time horizon [0, 𝑡𝑓 ] as described below:

�̇�(𝑡) = 𝒇
(
𝑡,𝒙(𝑡), �̃�(𝑡),𝒖(𝑡), �̃�(𝑡)

)
, 𝑡 ∈ [0, 𝑡𝑓 ], (4.1)

where 𝑡𝑓 > 0 is the terminal time; 𝒙(𝑡) = [𝑥1(𝑡), . . . , 𝑥𝑛(𝑡)]
⊤ ∈ ℝ𝑛 is called the state;

�̃�(𝑡) = [(𝒙(𝑡 − 𝛼1))
⊤, . . . , (𝒙(𝑡 − 𝛼𝑚))

⊤]⊤ ∈ ℝ𝑛𝑚 is called the delayed state. 𝒖(𝑡) =

[𝑢1(𝑡), . . . , 𝑢𝑟(𝑡)]
⊤ ∈ ℝ𝑟 is the control ; and �̃�(𝑡) = [(𝒖(𝑡− 𝛽1))

⊤, . . . , (𝒖(𝑡− 𝛽𝑝))
⊤]⊤ ∈ ℝ𝑝𝑟
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is the delayed control. Furthermore, 𝒇 : ℝ × ℝ𝑛 × ℝ𝑛𝑚 × ℝ𝑟 × ℝ𝑝𝑟 → ℝ𝑛 is a given

function. 𝛼𝑖, 𝑖 = 1, . . . ,𝑚, are given state-delays satisfying 0 < 𝛼1 < ⋅ ⋅ ⋅ < 𝛼𝑚 < 𝑡𝑓 ; 𝛽𝑗,

𝑗 = 1, . . . , 𝑝, are given control-delays satisfying 0 < 𝛽1 < ⋅ ⋅ ⋅ < 𝛽𝑝 < 𝑡𝑓 . For brevity, let

these time-delays, which are sorted in ascending order, be referred to as 𝜏𝑘, 𝑘 = 1, . . . ,𝑀 .

Note that 𝜏𝑘, 𝑘 = 1, . . . ,𝑀 , are not necessarily equal.

The initial functions for the time-delayed differential equations (4.1) are:

𝒙(𝑡) = 𝝓(𝑡), 𝑡 ∈ [−𝜏𝑀 , 0), (4.2)

𝒙(0) = 𝒙0, (4.3)

where 𝝓(𝑡) = [𝜙1(𝑡), . . . , 𝜙𝑛(𝑡)]
⊤ is a given continuously differentiable function from

[−𝜏𝑀 , 0) into ℝ𝑛; and 𝒙0 ∈ ℝ𝑛 is a given vector. In addition, the initial condition for the

control is:

𝒖(𝑡) = 𝝍(𝑡), 𝑡 ∈ [−𝜏𝑀 , 0), (4.4)

where 𝝍(𝑡) = [𝜓1(𝑡), . . . , 𝜓𝑟(𝑡)]
⊤ is a given piecewise continuous function from [−𝜏𝑀 , 0)

into ℝ𝑟.

Define

𝑼 = {𝒖 = [𝑢1, . . . , 𝑢𝑟]
⊤ ∈ ℝ𝑟 : 𝑎𝑙 ≤ 𝑢𝑙 ≤ 𝑏𝑙, 𝑙 = 1, . . . , 𝑟}, (4.5)

where 𝑎𝑙 and 𝑏𝑙, 𝑙 = 1, . . . , 𝑟, are given constants. Clearly, 𝑼 is a compact and convex

subset of ℝ𝑟. Any measurable function 𝒖 = [𝑢1, . . . , 𝑢𝑟]
⊤ : [−𝜏𝑀 , 𝑡𝑓 ] → ℝ𝑟 such that

𝒖(𝑡) = 𝝍(𝑡),∀𝑡 ∈ [−𝜏𝑀 , 0) and 𝒖(𝑡) ∈ 𝑼 for almost all 𝑡 ∈ [0, 𝑡𝑓 ], is called an admissible

control. Let 𝒰 be the set which consists of all such admissible controls.

We assume that the following conditions are satisfied.

(4.A.1). The function 𝒇 is continuously differentiable with respect to 𝒙 and 𝒖 for each

𝑡 ∈ [0, 𝑡𝑓 ], while it is piecewise differentiable with respect to 𝑡 for each (𝒙,𝒖) ∈ ℝ𝑛 × ℝ𝑟.

(4.A.2). The function 𝝓 is twice continuously differentiable.

(4.A.3). There exists a real number 𝐿1 > 0 such that

∣𝒇(𝑡,𝒙, �̃�,𝒖, �̃�)∣ ≤ 𝐿1(1 + ∣𝒙∣+ ∣�̃�∣+ ∣𝒖∣+ ∣�̃�∣),
(𝑡,𝒙, �̃�,𝒖, �̃�) ∈ ℝ× ℝ𝑛 × ℝ𝑛𝑚 × ℝ𝑟 × ℝ𝑝𝑟,

where ∣ ⋅ ∣ denotes the usual Euclidean norm.

On the basis of assumptions (4.A.1)-(4.A.3), the dynamic system (4.1)-(4.4) admits

a unique solution corresponding to each control 𝒖 ∈ 𝒰 [111]. Let 𝒙(⋅∣𝒖) denote the

corresponding solution of system (4.1) with initial conditions (4.2)-(4.4).
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Assume that the following continuous state inequality constraints are to be satisfied:

ℎ𝑖(𝑡,𝒙(𝑡∣𝒖)) ≤ 0, 𝑖 = 1, . . . , 𝑁𝑐, ∀𝑡 ∈ [0, 𝑡𝑓 ]. (4.6)

Now, a general class of time-delay optimal control problems with continuous state

inequality constraints may be described as follows:

Problem (Q). Given system (4.1) with initial conditions (4.2)-(4.4), find a control 𝒖 ∈ 𝒰
such that the cost function

𝐽0(𝒖) = Φ0

(
𝒙(𝑡𝑓 ∣𝒖)

)
+

∫ 𝑡𝑓

0

ℒ0

(
𝑡,𝒙(𝑡∣𝒖), �̃�(𝑡∣𝒖),𝒖(𝑡), �̃�(𝑡))𝑑𝑡, (4.7)

is minimized subject to the continuous state inequality constraints (4.6), where Φ0 is the

terminal cost.

We assume that the following conditions are satisfied.

(4.A.4). For each 𝑖 = 1, . . . , 𝑁𝑐, the function ℎ𝑖 is continuously differentiable with respect

to (𝑡,𝒙) ∈ [0, 𝑡𝑓 ]× ℝ𝑛.

(4.A.5). The function Φ0 satisfies the assumption (4.A.2), while the function ℒ0 satisfies

the assumption (4.A.1).

4.3 Solution method

4.3.1 Control parameterization

To solve Problem (Q), we apply the control parametrization scheme to approximate the

control 𝒖 ∈ 𝒰 by a piecewise-constant function with possible discontinuities at the parti-

tion points called the switching times. The heights of the piecewise-constant function are

decision variables. More specifically, for each 𝑙 = 1, . . . , 𝑟,

𝑢𝑁𝑙 (𝑡) =
𝑁∑
𝑞=1

𝜎𝑁,𝑞
𝑙 𝜒𝐼𝑞(𝑡), 𝑡 ∈ [0, 𝑡𝑓 ], (4.8)

where

𝜒𝐼𝑞(𝑡) =

⎧⎨⎩1, if 𝑡 ∈ 𝐼𝑞,

0, otherwise,
(4.9)

and

𝐼𝑞 =

⎧⎨⎩[𝑡𝑞−1, 𝑡𝑞), if 𝑞 ∈ {1, 2, . . . , 𝑁 − 1},
[𝑡𝑞−1, 𝑡𝑞], if 𝑞 = 𝑁.

(4.10)
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Here, 𝑡𝑞, 𝑞 = 1, . . . , 𝑁 , are pre-assigned such that 𝑡𝑞−1 < 𝑡𝑞 with 𝑡0 = 0 and 𝑡𝑁 = 𝑡𝑓 .

For each 𝑙 = 1, . . . , 𝑟, 𝜎𝑞
𝑙 , 𝑞 = 1, . . . , 𝑁 , are the heights of the piecewise-constant control

component 𝑢𝑁𝑙 .

Let

𝝈𝑁,𝑞 = [𝜎𝑁,𝑞
1 , . . . , 𝜎𝑁,𝑞

𝑟 ]⊤, 𝑞 = 1, . . . , 𝑁,

and let

𝝈𝑁 = [(𝝈𝑁,1)⊤, . . . , (𝝈𝑁,𝑁)⊤]⊤.

A function 𝒖𝑁 = [𝑢𝑁1 , . . . , 𝑢
𝑁
𝑟 )]

⊤ with 𝑢𝑁𝑙 , 𝑙 = 1, . . . , 𝑟, given by (4.8) and 𝝈𝑁,𝑞 ∈ 𝑼 , is

called an admissible piecewise-constant control. Let 𝒰𝑁 be the set of all such admissible

piecewise-constant controls, and let Ξ𝑁 be the set containing all the corresponding 𝝈𝑁 ,

i.e.,

Ξ𝑁 = {𝝈𝑁 = [(𝝈𝑁,1)⊤, . . . , (𝝈𝑁,𝑁)⊤]⊤ ∈ ℝ𝑁×𝑟 : 𝝈𝑁,𝑞 ∈ 𝑼 , 𝑞 = 1, . . . , 𝑁}. (4.11)

Clearly, each 𝒖 ∈ 𝒰𝑁 corresponds to a unique 𝝈𝑁 ∈ Ξ𝑁 and vice versa. For a

𝝈𝑁 ∈ Ξ𝑁 , let 𝒖
𝑁(⋅∣𝝈𝑁) denote the corresponding piecewise-constant control in 𝒰𝑁 . For

each 𝒖 = 𝒖𝑁 ∈ 𝒰𝑁 , let 𝒙(⋅∣𝒖𝑁) be the corresponding solution of system (4.1) with initial

conditions (4.3) and (4.4). Furthermore, let �̃�(⋅∣𝒖𝑁) be the corresponding delayed state.

For convenience, 𝒙(⋅∣𝒖𝑁) and �̃�(⋅∣𝒖𝑁) are written as 𝒙(⋅∣𝝈𝑁) and �̃�(⋅∣𝝈𝑁), respectively.

From (4.8), we have

𝑢𝑁𝑙 (𝑡− 𝛽𝑗) =
𝑁∑
𝑞=1

𝜎𝑁,𝑞
𝑙 𝜒𝐼𝑞(𝑡− 𝛽𝑗), 𝑡 ∈ 𝐼𝑘, 𝑗 = 1, . . . , 𝑝, 𝑙 = 1, . . . , 𝑟. (4.12)

For brevity, define

�̃�𝑁(𝑡∣𝝈𝑁) = [𝒖𝑁(𝑡− 𝛽1∣𝝈𝑁)⊤, . . . ,𝒖𝑁(𝑡− 𝛽𝑗∣𝝈𝑁)⊤]⊤,

where 𝒖𝑁(𝑡 − 𝛽𝑗∣𝝈𝑁) = [𝑢𝑁1 (𝑡 − 𝛽𝑗∣𝝈𝑁), . . . , 𝑢𝑁𝑟 (𝑡 − 𝛽𝑗∣𝝈𝑁)]⊤, 𝑗 = 1, . . . , 𝑝. Thus, by

applying the control parametrization technique, system (4.1)-(4.3) becomes

�̇�(𝑡) = 𝒇
(
𝑡,𝒙(𝑡∣𝝈𝑁), �̃�(𝑡∣𝝈𝑁),𝒖𝑁(𝑡∣𝝈𝑁), �̃�𝑁(𝑡∣𝝈𝑁)

)
, 𝑡 ∈ [0, 𝑡𝑓 ], (4.13)

with initial conditions

𝒙(𝑡) = 𝝓(𝑡), 𝑡 ∈ [−𝜏𝑀 , 0), (4.14)

𝒙(0) = 𝒙0. (4.15)
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With 𝒖 ∈ 𝒰𝑁 , the continuous state inequality constraints (4.6) become:

ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁)) ≤ 0, 𝑖 = 1, . . . , 𝑁𝑐. (4.16)

We may now state an approximate problem of Problem (Q) as follows:

Problem (𝑄𝑁). Given system (4.13) with initial conditions (4.14) and (4.15), find a

control vector 𝝈𝑁 ∈ Ξ𝑁 such that the following cost function

𝐽0(𝝈
𝑁) = Φ0

(
𝒙(𝑡𝑓 ∣𝝈𝑁)

)
+

∫ 𝑡𝑓

0

ℒ0

(
𝑡,𝒙(𝑡∣𝝈𝑁), �̃�(𝑡∣𝝈𝑁),𝒖𝑁(𝑡∣𝝈𝑁), �̃�𝑁(𝑡∣𝝈𝑁)

)
𝑑𝑡 (4.17)

is minimized over Ξ𝑁 subject to constraints (4.16).

4.3.2 Constraints transformation

For each of the continuous inequality constraints, it contains infinite number of constraints

and hence these continuous inequality constraints are difficult to handle directly. Note

that each of these continuous inequality constraints (4.16) is equivalent to the following

equality constraint in integral form:

𝑔𝑖(𝝈
𝑁) =

∫ 𝑡𝑓

0

max
{
ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁)), 0

}
= 0, 𝑖 = 1, . . . , 𝑁𝑐. (4.18)

Let ℬ𝑁 be the feasible region defined by

ℬ𝑁 = {𝝈𝑁 ∈ Ξ𝑁 : ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁)) ≤ 0, ∀𝑡 ∈ [0, 𝑡𝑓 ], 𝑖 = 1, . . . , 𝑁𝑐}
= {𝝈𝑁 ∈ Ξ𝑁 : 𝑔𝑖(𝝈

𝑁) = 0, 𝑖 = 1, . . . , 𝑁𝑐}.

Furthermore, let ℬ0
𝑁 denote the interior of ℬ𝑁 , i.e.,

ℬ0
𝑁 = {𝝈𝑁 ∈ Ξ𝑁 : ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁)) < 0, ∀𝑡 ∈ [0, 𝑡𝑓 ], 𝑖 = 1, . . . , 𝑁𝑐}.

Note that the sets ℬ𝑁 and ℬ0
𝑁 are defined for the control parameter vectors in Ξ𝑁 . The

corresponding subsets in 𝒰𝑁 are denoted by ℱ𝑁 and ℱ0
𝑁 , respectively.

We assume that the following assumptions are satisfied.

(4.A.6). ℬ0
𝑁 ∕= ∅.

(4.A.7). Suppose that 𝝈𝑁 ∈ ℬ𝑁 . Then, there exists a control vector �̄� ∈ ℬ0
𝑁 such that

𝛼�̄� + (1− 𝛼)𝝈𝑁 ∈ ℬ0
𝑁 for all 𝛼 ∈ (0, 1].

Since max
{
ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁)), 0

}
, 𝑖 = 1, . . . , 𝑁𝑐, are non-smooth, they are approximated
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by the following smooth functions (see Chapter 8 of [80])

ℒ𝑖,𝜀(𝑡,𝒙(𝑡∣𝝈𝑁)) =

⎧⎨⎩
ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁)), if ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁)) > 𝜀,{

ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁 ))−𝜀
}2

4𝜀
, if − 𝜀 ≤ ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁)) ≤ 𝜀,

0, if ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁)) < −𝜀,
(4.19)

where 𝜀 > 0 is a smoothing parameter controlling the accuracy of the approximation.

Thus, constraints (4.18) are approximated by

𝑔𝑖,𝜀(𝝈
𝑁) =

∫ 𝑡𝑓

0

ℒ𝑖,𝜀(𝑡,𝒙(𝑡∣𝝈𝑁)) = 0, 𝑖 = 1, . . . , 𝑁𝑐, (4.20)

Let ℬ𝑁,𝜀 be the feasible region defined by

ℬ𝑁,𝜀 = {𝝈𝑁 ∈ Ξ𝑁 : 𝑔𝑖,𝜀(𝝈
𝑁) = 0, 𝑖 = 1, . . . , 𝑁𝑐}

= {𝝈𝑁 ∈ Ξ𝑁 : ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁)) ≤ −𝜀, 𝑡 ∈ [0, 𝑡𝑓 ], 𝑖 = 1, . . . , 𝑁𝑐}.

Clearly, ℬ𝑁,𝜀 ⊂ ℬ𝑁 for each 𝜀 > 0.

However, it can be shown that constraints (4.20) fail to satisfy the usual constraint

qualification (see [82, 89]) because when any of the constraints is satisfied as an equality,

its gradient is a zero vector (see Chapter 6 of [80]). It is well-known in the optimization

literature that any gradient-based optimization technique will not work well for optimiza-

tion problems with constraints which fail to satisfy the usual constraint qualification.

Here, the concept of the penalty function approach is used to append the approximate

constraints to the cost function, forming an augmented cost function given below:

𝐽𝜀,𝛾(𝝈
𝑁) = Φ0

(
𝒙(𝑡𝑓 ∣𝝈𝑁)

)
+

∫ 𝑡𝑓

0

ℒ0

(
𝑡,𝒙(𝑡∣𝝈𝑁), �̃�(𝑡∣𝝈𝑁),𝒖𝑁(𝑡∣𝝈𝑁), �̃�𝑁(𝑡∣𝝈𝑁)

)
𝑑𝑡

+ 𝛾
𝑁𝑐∑
𝑖=1

∫ 𝑡𝑓

0

ℒ𝑖,𝜀

(
𝑡,𝒙(𝑡∣𝝈𝑁)

)
𝑑𝑡,

(4.21)

where 𝛾 > 0 is the penalty factor of the continuous state inequality constraints.

In this way, Problem (𝑄𝑁) is approximated by a sequence of approximate problems

given below:

Problem (Q𝑁,𝜀,𝛾). Given system (4.13) with initial conditions (4.14) and (4.15), find a

control vector 𝝈𝑁 ∈ Ξ𝑁 such that the augmented cost function (4.21) is minimized.

Problem (𝑄𝑁,𝜀,𝛾) can be regarded as a nonlinear optimization problem subject to

simple bounds on the decision variables specified by (4.5). It can be solved by a gradient-

based optimization technique, such as the sequential quadratic approximate scheme with

an active set strategy.
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4.3.3 Convergence analysis

In this subsection, we shall show that the optimal cost of Problem (𝑄𝑁,𝜀,𝛾) converges to

the optimal cost of the original problem (Q).

For each 𝑁 ∈ {2, 3, . . .}, let 𝑆𝑁 denote the set containing the partition points 𝑡𝑞,

𝑞 = 1, . . . , 𝑁 . It is chosen such that 𝑆𝑁+1 ⊃ 𝑆𝑁 and lim𝑁→∞ 𝑆𝑁 is dense in [0, 𝑡𝑓 ]. Let

𝝈𝑁,∗ be an optimal control vector to Problem (𝑄𝑁) and let 𝒖𝑁,∗ be the corresponding

piecewise-constant control in 𝒰 , (in fact, it is in 𝒰𝑁). Thus, for each integer 𝑁 ≥ 2, 𝒖𝑁,∗

is a suboptimal control to Problem (𝑄) such that 𝐽0(𝒖
𝑁+1,∗) ≤ 𝐽0(𝒖

𝑁,∗) for all 𝑁 ≥ 2.

We have the following result. Its proof is similar to that given for Theorem 6.4.2 in

Chapter 6 of [80].

Lemma 4.1. Let {𝒖𝑁}∞𝑁=1 be a bounded sequence of functions in 𝐿𝑟
∞. Then, the se-

quence {𝒙(⋅∣𝒖𝑁)}∞𝑁=1 of the corresponding solutions of system (4.13) with initial condi-

tions (4.14)-(4.15) is also bounded in 𝐿𝑟
∞.

We now relate the solutions of Problem (𝑄) and Problem (𝑄𝑁,𝜀,𝛾) in the following

theorems.

Theorem 4.1. For any 𝜀 > 0, there exists a 𝜌(𝜀) > 0 such that for any 𝜌, 0 < 𝜌 < 𝜌(𝜀),

if 𝑔𝑖,𝜀(𝝈
𝑁) ≤ 𝜌, 𝑖 = 1, . . . , 𝑁𝑐, then 𝝈

𝑁 ∈ ℬ𝑁 .

Proof. Since ℎ𝑖, 𝑖 = 1, . . . , 𝑁𝑐, are continuously differentiable in [0, 𝑡𝑓 ] × ℝ𝑛 (recall as-

sumption (4.A.4)), it follows that for each 𝑖, 𝑖 = 1, . . . , 𝑁𝑐, and any 𝝈𝑁 ∈ Ξ𝑁 , we have

𝑑ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁))

𝑑𝑡
=
∂ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁))

∂𝒙
�̇�(𝑡) +

∂ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁))

∂𝑡
.

By (4.A.3) and the fact that 𝒙(𝑡∣𝝈𝑁) ∈ 𝑿 all 𝑡 ∈ [0, 𝑡𝑓 ], where 𝑿 is a bounded set (see

Lemma 4.1), there exists a positive constant 𝑚𝑖 such that

∣∣∣𝑑ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁))

𝑑𝑡

∣∣∣ ≤ 𝑚𝑖, ∀𝑡 ∈ [0, 𝑡𝑓 ]. (4.22)

For any 𝜀 > 0, define

𝜅𝑖,𝜀 =
𝜀

16
min

{
𝑡𝑓 ,

𝜀

2𝑚𝑖

}
.

Let

ℬ𝑁,𝑖 = {𝝈𝑁 ∈ Ξ𝑁 : 𝑔𝑖(𝝈
𝑁) = 0},

and

ℬ𝑁,𝑖,𝜀,𝜌 = {𝝈𝑁 ∈ Ξ𝑁 : 𝑔𝑖,𝜀(𝝈
𝑁) ≤ 𝜌},
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where 𝜌 is a positive real number. It suffices to show that ℬ𝑁,𝑖,𝜀,𝜌 ⊂ ℬ𝑁,𝑖 for any 𝜌 such

that 0 < 𝜌 < 𝜅𝑖,𝜀. We assume the contrary. Then there exists a 𝝈𝑁 ∈ Ξ𝑁 such that

𝑔𝑖,𝜀(𝝈
𝑁) ≤ 𝜌 < 𝜅𝑖,𝜀, (4.23)

but

𝑔𝑖(𝝈
𝑁) > 0. (4.24)

Again by the continuity of ℎ𝑖, it follows from (4.24) that there exists a 𝜄 ∈ [0, 𝑡𝑓 ] such that

ℎ𝑖(𝜄,𝒙(𝜄∣𝝈𝑁)) > 0,

and there exists an interval ℐ𝑖 ⊂ [0, 𝑡𝑓 ] such that

ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁)) > −𝜀
2
, ∀𝑡 ∈ ℐ𝑖. (4.25)

Using (4.22), it is clear from (4.25) that

∣ℐ𝑖∣ ≥ min
{
𝑡𝑓 ,

𝜀

2𝑚𝑖

}
,

where ∣ℐ𝑖∣ denotes the length of the interval ℐ𝑖. From the definition of 𝑔𝑖,𝜀, we have

𝑔𝑖,𝜀(𝝈
𝑁) =

∫ 𝑡𝑓

0

ℎ𝑖,𝜀(𝑡,𝒙(𝑡∣𝝈𝑁))𝑑𝑡 ≥
∫
ℐ𝑖
ℎ𝑖,𝜀(𝑡,𝒙(𝑡∣𝝈𝑁))𝑑𝑡 ≥

∫
ℐ𝑖
min
𝑡∈ℐ𝑖

ℎ𝑖,𝜀(𝑡,𝒙(𝑡∣𝝈𝑁))𝑑𝑡

≥ min
𝑡∈ℐ𝑖

{(ℎ𝑖,𝜀(𝑡,𝒙(𝑡∣𝝈𝑁)) + 𝜀)2/4𝜀}∣ℐ𝑖∣ ≥ 𝜀

16
min

{
𝑡𝑓 ,

𝜀

2𝑚𝑖

}
= 𝜅𝑖,𝜀.

This is a contradiction to (4.23). Thus, the proof is completed.

Theorem 4.2. For any 𝜀 > 0, there exists a 𝛾(𝜀) > 0 such that for any 𝛾 > 𝛾(𝜀),

if 𝝈𝑁,∗
𝜀,𝛾 is an optimal control vector of Problem (𝑄𝑁,𝜀,𝛾), then it satisfies the continuous

inequalities constraints (4.16) of Problem (𝑄𝑁).

Proof. Let 𝝈𝑁,∗
𝜀,𝛾 bet an optimal control vector of Problem (𝑄𝑁,𝜀,𝛾). Then, for any 𝝈𝑁 ∈

Ξ𝑁 ,

𝐽𝜀,𝜂(𝝈
𝑁,∗
𝜀,𝛾 ) = 𝐽0(𝝈

𝑁,∗
𝜀,𝛾 ) + 𝛾

𝑁𝑐∑
𝑖=1

𝑔𝑖,𝜀(𝝈
𝑁,∗
𝜀,𝛾 ) ≤ 𝐽0(𝝈

𝑁) + 𝛾

𝑁𝑐∑
𝑖=1

𝑔𝑖,𝜀(𝝈
𝑁).

Let 𝝈𝑁
𝜀 ∈ ℬ𝑁,𝜀 be fixed. Then, by the definition of 𝑔𝑖,𝜀 given in (4.20), we have

𝛾

𝑁𝑐∑
𝑖=1

𝑔𝑖,𝜀(𝝈
𝑁
𝜀 ) = 0.
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Thus,

𝐽0(𝝈
𝑁,∗
𝜀,𝛾 ) + 𝛾

𝑁𝑐∑
𝑖=1

𝑔𝑖,𝜀(𝝈
𝑁,∗
𝜀,𝛾 ) ≤ 𝐽0(𝝈

𝑁
𝜀 ) + 𝛾

𝑁𝑐∑
𝑖=1

𝑔𝑖,𝜀(𝝈
𝑁
𝜀 ) = 𝐽0(𝝈

𝑁
𝜀 ). (4.26)

Since Ξ𝑁 is a compact set, there exists, by (4.A.1)-(4.A.3) and (4.A.4)-(4.A.5), a �̄�𝑁 ∈ Ξ𝑁

such that 𝐽0(�̄�
𝑁) ≤ 𝐽0(𝝈

𝑁) for all 𝝈𝑁 ∈ Ξ𝑁 . Clearly,

𝐽0(�̄�
𝑁) ≤ 𝐽0(𝝈

𝑁,∗
𝜀,𝛾 ). (4.27)

Then, adding the penalty term 𝛾
∑𝑁𝑐

𝑖=1 𝑔𝑖,𝜀(𝝈
𝑁,∗
𝜀,𝛾 ) to each side of (4.27), we have

𝐽0(�̄�
𝑁) + 𝛾

𝑁𝑐∑
𝑖=1

𝑔𝑖,𝜀(𝝈
𝑁,∗
𝜀,𝛾 ) ≤ 𝐽0(𝝈

𝑁,∗
𝜀,𝛾 ) + 𝛾

𝑁𝑐∑
𝑖=1

𝑔𝑖,𝜀(𝝈
𝑁,∗
𝜀,𝛾 ).

Using (4.26) gives

𝐽0(�̄�
𝑁) + 𝛾

𝑁𝑐∑
𝑖=1

𝑔𝑖,𝜀(𝝈
𝑁,∗
𝜀,𝛾 ) ≤ 𝐽0(𝝈

𝑁
𝜀 ). (4.28)

Rearranging (4.28),

𝛾
𝑁𝑐∑
𝑖=1

𝑔𝑖,𝜀(𝝈
𝑁,∗
𝜀,𝛾 ) ≤ 𝐽0(𝝈

𝑁
𝜀 )− 𝐽0(�̄�

𝑁). (4.29)

Letting 𝑧 = 𝐽0(𝝈
𝑁
𝜀 )− 𝐽0(�̄�

𝑁), we obtain

𝑁𝑐∑
𝑖=1

𝑔𝑖,𝜀(𝝈
𝑁,∗
𝜀,𝛾 ) ≤

𝑧

𝛾
.

By choosing 𝜌(𝜀) = 𝑧
𝛾(𝜀)

, it follows that for any 𝛾 > 𝛾(𝜀),

0 < 𝜌 < 𝜌(𝜀)

and
𝑁𝑐∑
𝑖=1

𝑔𝑖,𝜀(𝝈
𝑁,∗
𝜀,𝛾 ) ≤ 𝜌.

Consequently, 𝑔𝑖,𝜀(𝝈
𝑁,∗
𝜀,𝛾 ) ≤ 𝜌, 𝑖 = 1, . . . , 𝑁𝑐. Hence, it follows from Theorem 4.1 that

𝝈𝑁,∗
𝜀,𝛾 ∈ ℬ𝑁 . This completes the proof.

Theorem 4.3. Let 𝝈𝑁,∗ be an optimal control vector of Problem (𝑄𝑁) and let 𝝈𝑁,∗
𝜀,𝛾 be an

optimal control vector of Problem (𝑄𝑁,𝜀,𝛾), where 𝛾(𝜀) is chosen such that 𝝈𝑁,∗
𝜀,𝛾(𝜀) ∈ ℬ𝑁 .

Then,

lim
𝜀→0

𝐽𝜀,𝛾(𝜀)(𝝈
𝑁,∗
𝜀,𝛾(𝜀)) = 𝐽0(𝝈

𝑁,∗).
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Proof. By (4.A.7), there exists a �̄�𝑁 ∈ ℬ0
𝑁 such that

𝝈𝑁
𝛼 = (1− 𝛼)𝝈𝑁,∗ + 𝛼�̄�𝑁 ∈ ℬ0

𝑁 , 𝛼 ∈ (0, 1].

Now, for any 𝛿1 > 0, there exists an 𝛼1 ∈ (0, 1] such that

𝐽0(𝝈
𝑁
𝛼 ) ≤ 𝐽0(𝝈

𝑁,∗) + 𝛿1, ∀𝛼 ∈ (0, 𝛼1). (4.30)

Choose 𝛼2 = 𝛼1/2. Then it is clear that 𝝈𝑁
𝛼2

∈ ℬ0
𝑁 . Thus, there exists a 𝛿2 > 0 such that

max
(
ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁

𝛼2
))
)
< −𝛿2, 𝑖 = 1, . . . , 𝑁𝑐.

Choosing 𝜀 = 𝛿2, thus 𝝈
𝑁
𝛼2

satisfies (4.20). Since, 𝝈𝑁,∗
𝜀,𝛾 is an optimal control vector of

Problem (𝑄𝑁,𝜀,𝛾), it follows that

𝐽𝜀,𝛾(𝝈
𝑁,∗
𝜀,𝛾 ) = 𝐽0(𝝈

𝑁,∗
𝜀,𝛾 ) + 𝛾

𝑁𝑐∑
𝑖=1

𝑔𝑖,𝜀(𝝈
𝑁,∗
𝜀,𝛾 ) ≤ 𝐽0(𝝈

𝑁
𝛼2
) + 𝛾

𝑁𝑐∑
𝑖=1

𝑔𝑖,𝜀(𝝈
𝑁
𝛼2
) = 𝐽0(𝝈

𝑁
𝛼2
).

Noting that the penalty term is non-negative, we have

𝐽𝜀,𝛾(𝝈
𝑁,∗
𝜀,𝛾 ) ≤ 𝐽0(𝝈

𝑁
𝛼2
). (4.31)

Since, by Theorem 4.2, 𝝈𝑁,∗
𝜀,𝛾 is a feasible point of Problem (𝑄𝑁), it follows from (4.30)

and (4.31) that

𝐽0(𝝈
𝑁,∗) ≤ 𝐽𝜀,𝛾(𝝈

𝑁,∗
𝜀,𝛾 ) ≤ 𝐽0(𝝈

𝑁,∗) + 𝛿1.

Since 𝛿1 > 0 is arbitrary, letting 𝜀→ 0, the results follows.

To proceed, we need the following lemmas. The first is quoted from Lemma 6.4.1

in [80].

Lemma 4.2. For each 𝒖 ∈ 𝒰 , let

𝒖𝑁(𝑡) =
𝑁∑
𝑞=1

𝝈𝑁,𝑞𝜒𝐼𝑞(𝑡), 𝑡 ∈ [0, 𝑡𝑓 ], (4.32)

where 𝐼𝑞 = [𝑡𝑞−1, 𝑡𝑞), 𝑞 = 1, . . . , 𝑁 ,

𝝈𝑞 =
1

∣𝐼𝑞∣
∫
𝐼𝑞

𝒖(𝑠)𝑑𝑠, (4.33)

and ∣𝐼𝑞∣ = 𝑡𝑞 − 𝑡𝑞−1. Then, 𝒖𝑁 → 𝒖 almost everywhere in [0, 𝑡𝑓 ] as 𝑁 → ∞; and

furthermore,

lim
𝑁→∞

∫ 𝑡𝑓

0

∣𝒖𝑁(𝑡)− 𝒖(𝑡)∣𝑑𝑡 = 0,
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where, ∣ ⋅ ∣ denotes the usual Euclidean norm.

Lemma 4.3. Let {𝒖𝑁}∞𝑁=2 be a bounded sequence of functions in ℒ𝑟
∞. Suppose that

𝒖𝑁 → 𝒖 almost everywhere in [0, 𝑡𝑓 ] as 𝑁 → ∞. Then,

lim
𝑁→∞

∣𝒙(𝑡∣𝒖𝑁)− 𝒙(𝑡∣𝒖)∣ = 0,

lim
𝑁→∞

𝐽0(𝒖
𝑁) = 𝐽0(𝒖).

Proof. The proof is similar to that given for Lemma 6.4.3 and Lemma 6.4.4 in [80].

Define

Ω = {𝒖 ∈ 𝒰 : ℎ𝑖(𝑡,𝒙(𝑡∣𝒖)) ≤ 0, 𝑡 ∈ [0, 𝑡𝑓 ], 𝑖 = 1, . . . , 𝑁𝑐}.

Furthermore, let Ω0 denote the interior of Ω, i.e.,

Ω0 = {𝒖 ∈ 𝒰 : ℎ𝑖(𝑡,𝒙(𝑡∣𝒖)) < 0, 𝑡 ∈ [0, 𝑡𝑓 ], 𝑖 = 1, . . . , 𝑁𝑐}.

We assume that the following assumptions are satisfied.

(4.A.8). Ω0 ∕= ∅.
(4.A.9). Suppose that 𝒖 ∈ Ω. Then, there exists a control �̄� ∈ Ω0 such that

𝛼�̄�+ (1− 𝛼)𝒖 ∈ Ω0, ∀𝛼 ∈ (0, 1].

Theorem 4.4. Suppose 𝒖∗ be an optimal control of the original problem (Q). Further-

more, for each 𝑁 ≥ 2, let 𝒖𝑁,∗ be an optimal piecewise-constant control of Problem (𝑄𝑁).

Then,

lim
𝑁→∞

𝐽0(𝒖
𝑁,∗) = 𝐽0(𝒖

∗).

Proof. By (4.A.9), there exists a �̄� ∈ Ω0 such that

�̄�𝛼 = 𝛼�̄�+ (1− 𝛼)𝒖∗ ∈ Ω0, 𝛼 ∈ (0, 1]. (4.34)

Equation (4.34) implies that �̄�𝛼 → 𝒖∗ as 𝛼 → 0 for almost all 𝑡 ∈ [0, 𝑡𝑓 ]. Hence, for any

real number 𝛿 > 0, there exists, by Lemma 4.3, an 𝛼1 ∈ (0, 1) such that

∣𝐽0(�̄�𝛼)− 𝐽0(𝒖
∗)∣ < 𝛿

2
, ∀ 0 < 𝛼 ≤ 𝛼1. (4.35)
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Since �̄�𝛼 ∈ Ω0, it is clear that for any 𝛼, there is a corresponding real number 𝜌 > 0 such

that

ℎ𝑖(𝑡,𝒙(𝑡∣�̄�𝛼)) < −𝜌, 𝑖 = 1, . . . , 𝑁𝑐, 𝑡 ∈ [0, 𝑡𝑓 ). (4.36)

We now fix 𝛼. Let {�̄�𝑁
𝛼 }∞𝑁=2 denote the sequence of piecewise-constant controls con-

structed form �̄�𝛼 according to (4.32)-(4.33). Thus, by Lemma 4.2, {�̄�𝑁
𝛼 }∞𝑁=2 → �̄�𝛼

almost everywhere in [0, 𝑡𝑓 ] as 𝑁 → ∞. By using (4.A.1) and (4.A.2) and Lemma 4.3,

there exists an integer 𝑁0 ≥ 2, such that for all 𝑁 > 𝑁0

∣ℎ𝑖(𝑡,𝒙(𝑡∣�̄�𝑁
𝛼 ))− ℎ𝑖(𝑡,𝒙(𝑡∣�̄�𝛼))∣ < 𝜌

2
, 𝑖 = 1, . . . , 𝑁𝑐, 𝑡 ∈ [0, 𝑡𝑓 ). (4.37)

From (4.36)-(4.37), it follows that

ℎ𝑖(𝑡,𝒙(𝑡∣�̄�𝑁
𝛼 )) < −𝜌

2
, 𝑖 = 1, . . . , 𝑁𝑐, 𝑡 ∈ [0, 𝑡𝑓 ),

for all 𝑁 ≥ 𝑁0. This implies that �̄�𝑁
𝛼 ∈ ℬ0

𝑁 . Furthermore, by Lemma 4.3, there exists an

𝑁1 ≥ 2 such that for all 𝑁 > 𝑁1,

∣𝐽0(�̄�𝑁
𝛼 )− 𝐽0(�̄�𝛼)∣ < 𝛿

2
. (4.38)

Set 𝑁2 = max{𝑁0, 𝑁1}. Then, it follows from (4.35) and (4.38) that

∣𝐽0(�̄�𝑁
𝛼 )− 𝐽0(𝒖

∗)∣ ≤ ∣𝐽0(�̄�𝑁
𝛼 )− 𝐽0(�̄�𝛼)∣+ ∣𝐽0(�̄�𝛼)− 𝐽0(𝒖

∗)∣ < 𝛿, (4.39)

for all 𝑁 > 𝑁2. Since 𝒖
∗ is the optimal control of Problem (𝑄), it follows that

𝐽0(𝒖
∗) ≤ 𝐽0(𝒖

𝑁,∗).

Furthermore, 𝒖𝑁,∗ is an optimal control of Problem (𝑄𝑁). Thus,

𝐽0(𝒖
𝑁,∗) ≤ 𝐽0(�̄�

𝑁
𝛼 ).

On the other hand, 𝒖𝑁,∗ is a suboptimal control of Problem (𝑄). It follows that, for all

𝑁 > 𝑁2,

𝐽0(𝒖
∗) ≤ 𝐽0(𝒖

𝑁,∗) ≤ 𝐽0(�̄�
𝑁
𝛼 ). (4.40)

Combining (4.39) and (4.40) gives

𝐽0(𝒖
∗) ≤ 𝐽0(𝒖

𝑁,∗) ≤ 𝐽0(�̄�
𝑁
𝛼 ) ≤ 𝐽0(𝒖

∗) + 𝛿.

Since 𝛿 > 0 can be chosen arbitrarily, and �̄�𝑁
𝛼 ∈ ℬ0

𝑁 , it is clear that 𝐽0(𝒖
𝑁,∗) → 𝐽0(𝒖

∗) as

𝑁 → ∞.
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Theorem 4.4 indicates that the optimal cost of Problem (𝑄𝑁) will converge to the

optimal cost of Problem (𝑄) as 𝑁 → ∞. However, there is no guarantee that the

optimal control of Problem (𝑄𝑁) itself will converge to the optimal control of Problem (𝑄).

However, we have the following result.

Theorem 4.5. let 𝒖𝑁,∗ be a piecewise-constant control constructed from the optimal con-

trol vector 𝝈𝑁,∗ of Problem (𝑄𝑁). Let 𝒖
∗ be an optimal control of the original problem (Q).

If {𝒖𝑁,∗}∞𝑁=2 converges to �̄� ∈ 𝒰 almost everywhere on [0, 𝑡𝑓 ] as 𝑁 → ∞, then �̄� is also

an optimal control of Problem (Q).

Proof. First, by Lemma 4.3, we have

lim
𝑁→∞

𝐽0(𝒖
𝑁,∗) → 𝐽0(�̄�).

From Theorem 4.4, we recall that

lim
𝑁→∞

𝐽0(𝒖
𝑁,∗) → 𝐽0(𝒖

∗).

Since the limit of a convergence sequence is unique, we have

𝐽0(�̄�) = 𝐽0(𝒖
∗).

It remains to show that �̄� is a feasible control of Problem (Q). On the contrary, suppose

that it is not true. Then, there exists an integer 𝑖 ∈ {1, . . . , 𝑁𝑐} and a non-zero interval

ℐ ⊂ [0, 𝑡𝑓 ] such that

ℎ𝑖(𝑡,𝒙(𝑡∣�̄�)) > 0, ∀𝑡 ∈ ℐ. (4.41)

Since, by (4.A.4), ℎ𝑖 is continuous, it follows from Lemma 4.3 that

lim
𝑁→∞

∣𝒙(𝑡∣𝒖𝑁,∗)− 𝒙(𝑡∣�̄�)∣ = 0,

for each 𝑡 ∈ [0, 𝑡𝑓 ]. Furthermore, 𝒙(𝑡∣𝒖𝑁,∗) ∈ 𝑿 for all 𝑡 ∈ [0, 𝑡𝑓 ], where 𝑿 is a bounded

set (see Lemma 4.1). Thus,

lim
𝑁→∞

∫
ℐ
∣ℎ𝑖(𝑡,𝒙(𝑡∣𝒖𝑁,∗))− ℎ𝑖(𝑡,𝒙(𝑡∣�̄�))∣𝑑𝑡 = 0.

Therefore, if (4.41) is valid, then∫
ℐ
ℎ𝑖(𝑡,𝒙(𝑡∣�̄�))𝑑𝑡 =

∫
ℐ
{ℎ𝑖(𝑡,𝒙(𝑡∣�̄�)− ℎ𝑖(𝑡,𝒙(𝑡∣𝒖𝑁,∗))}𝑑𝑡+

∫
ℐ
ℎ𝑖(𝑡,𝒙(𝑡∣𝒖𝑁,∗))𝑑𝑡 > 0.

Since 𝒖𝑁∗ is an optimal control of Problem (𝑄𝑁), we have

ℎ𝑖(𝑡,𝒙(𝑡∣𝒖𝑁,∗)) ≤ 0, ∀𝑡 ∈ [0, 𝑡𝑓 ].
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Thus,

0 <

∫
ℐ
ℎ𝑖(𝑡,𝒙(𝑡∣�̄�))𝑑𝑡 = lim

𝑁→∞

∫
ℐ
{ℎ𝑖(𝑡,𝒙(𝑡∣�̄�)− ℎ𝑖(𝑡,𝒙(𝑡∣𝒖𝑁,∗))}𝑑𝑡 = 0. (4.42)

This is a contradiction. Thus, �̄� is feasible as required.

4.3.4 Computational method

To solve Problem (𝑄𝑁,𝜀,𝛾), the gradient formula of the augmented cost function (4.21)

with respect to the control vector 𝝈𝑁 is needed. It is derived, although rather involved,

via variational formulae given below. Let 𝐻𝜀,𝛾 be the Hamiltonian function defined by

𝐻𝜀,𝛾 = ℒ0(𝑡) + 𝝀(𝑡)
⊤𝒇(𝑡) + 𝛾

𝑁𝑐∑
𝑖=1

ℒ𝑖,𝜀

(
𝑡,𝒙(𝑡∣𝒖))+ 𝑀∑

𝑘=1

ℒ0(𝑡+ 𝜏𝑘)

+
𝑀∑
𝑘=1

(�̄�𝑘)⊤(𝑡)𝒇𝑘(𝑡)𝑒(𝑡𝑓 − 𝑡− 𝜏𝑘),

(4.43)

where the following abbreviations are used

𝒇(𝑡) = 𝒇
(
𝑡,𝒙(𝑡∣𝒖), �̃�(𝑡∣𝒖),𝒖(𝑡), �̃�(𝑡))

ℒ0

(
𝑡) = ℒ0

(
𝑡,𝒙(𝑡∣𝒖), �̃�(𝑡∣𝒖),𝒖(𝑡), �̃�(𝑡)),

and for each 𝑘, 𝑘 = 1, . . . ,𝑀 ,

�̄�𝑘(𝑡) = 𝝀(𝑡+ 𝜏𝑘), (4.44)

𝒇𝑘(𝑡) = 𝒇
(
𝑡+ 𝜏𝑘,𝒙(𝑡+ 𝜏𝑘∣𝒖), �̃�(𝑡+ 𝜏𝑘∣𝒖),𝒖(𝑡+ 𝜏𝑘), �̃�(𝑡+ 𝜏𝑘)

)
, (4.45)

ℒ0

(
𝑡+ 𝜏𝑘) = ℒ0

(
𝑡+ 𝜏𝑘,𝒙(𝑡+ 𝜏𝑘∣𝒖), �̃�(𝑡+ 𝜏𝑘∣𝒖),𝒖(𝑡+ 𝜏𝑘), �̃�(𝑡+ 𝜏𝑘)

)
,

while 𝑒(⋅) is the unit step function defined by

𝑒(⋅) =
⎧⎨⎩1, if 𝑡 ≥ 0,

0, if 𝑡 < 0

and

ℒ𝑖,𝜀(𝑡,𝒙(𝑡∣𝒖)) =

⎧⎨⎩
ℎ𝑖(𝑡,𝒙(𝑡∣𝒖)), if ℎ𝑖(𝑡,𝒙(𝑡∣𝒖)) > 𝜀,{

ℎ𝑖(𝑡,𝒙(𝑡∣𝒖))−𝜀
}2

4𝜀
, if − 𝜀 ≤ ℎ𝑖(𝑡,𝒙(𝑡∣𝒖)) ≤ 𝜀,

0, if ℎ𝑖(𝑡,𝒙(𝑡∣𝒖)) < −𝜀.
(4.46)
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Let 𝝀(𝑡) be the corresponding solution of the co-state system defined by

�̇�(𝑡) = −∂𝐻𝜀,𝛾

∂𝒙
, (4.47)

with boundary conditions

𝝀(𝑡𝑓 ) =
∂Φ0(𝒙(𝑡𝑓 ∣𝒖))

∂𝒙
, (4.48)

𝝀(𝑡) = 0, 𝑡 > 𝑡𝑓 . (4.49)

Then, for each pair of 𝜀 and 𝛾, we have the following result.

Theorem 4.6. Let 𝒖 be any control in 𝒰 and let Δ𝒖(𝑡) ∈ ℝ𝑟 be any bounded measurable

function defined in [−𝜏𝑀 , 𝑡𝑓 ] with Δ𝒖(𝑡) = 0 for all 𝑡 ∈ [−𝜏𝑀 , 0]. Then, the directional

derivative of the function 𝐽𝜀,𝛾 given by (4.21) is:

Δ𝐽𝜀,𝛾(𝒖) =

∫ 𝑡𝑓

0

∂𝐻𝜀,𝛾

∂𝒖
Δ𝒖(𝑡)𝑑𝑡,

where

𝐽𝜀,𝛾(𝒖) = Φ0

(
𝒙(𝑡𝑓 ∣𝒖)

)
+

∫ 𝑡𝑓

0

ℒ0

(
𝑡,𝒙(𝑡∣𝒖), �̃�(𝑡∣𝒖),𝒖(𝑡), �̃�(𝑡))𝑑𝑡

+ 𝛾
𝑁𝑐∑
𝑖=1

∫ 𝑡𝑓

0

ℒ𝑖,𝜀

(
𝑡,𝒙(𝑡∣𝒖))𝑑𝑡. (4.50)

Proof. Let 𝒖(𝑡) ∈ 𝒰 be arbitrary but fixed. Let the control vector 𝒖(𝑡) be perturbed

by 𝜖Δ𝒖(𝑡), where 𝜖 > 0 is a small real number and Δ𝒖(𝑡) is an arbitrary but fixed

perturbation of 𝒖(𝑡) given by

Δ𝒖(𝑡) = [Δ𝑢1(𝑡),Δ𝑢2(𝑡), . . . ,Δ𝑢𝑟(𝑡)]
⊤, 𝑡 ∈ [0, 𝑡𝑓 ]

Δ𝒖(𝑡) = 0, 𝑡 < 0.

where Δ𝑢𝑗(𝑡), 𝑗 = 1, . . . , 𝑟, are arbitrary but given functions. Let,

𝒖𝜖(𝑡) = 𝒖(𝑡) + 𝜖Δ𝒖(𝑡). (4.51)

Furthermore, let

�̃�𝑘
𝜖 (𝑡) = 𝒖𝜖(𝑡− 𝜏𝑘) = 𝒖(𝑡− 𝜏𝑘) + 𝜖Δ𝒖(𝑡− 𝜏𝑘), 𝑘 = 1, . . . ,𝑀,

and

�̃�𝜖(𝑡) = [�̃�1
𝜖(𝑡)

⊤, . . . , �̃�𝑀
𝜖 (𝑡)⊤]⊤.



4.3 Solution method 87

For brevity, let 𝒙(⋅) denote the solution of system (4.1)-(4.3) with the control 𝒖, and 𝒙𝜖(⋅)
denote the solution of system (4.1)-(4.3) with the control 𝒖𝜖. Clearly,

𝒙(𝑡) = 𝒙(0) +

∫ 𝑡

0

𝒇
(
𝑠,𝒙(𝑠∣𝒖), �̃�(𝑠∣𝒖),𝒖(𝑠), �̃�(𝑡))𝑑𝑠,

𝒙𝜖(𝑡) = 𝒙(0) +

∫ 𝑡

0

𝒇
(
𝑠,𝒙(𝑠∣𝒖𝜖), �̃�(𝑠∣𝒖𝜖),𝒖𝜖, �̃�𝜖(𝑠)

)
𝑑𝑠.

We will use the notation ∂
∂�̃�𝑘 to denote the partial differentiation with respect to the 𝑘th

delayed state in �̃�(𝑡) (i.e. the partial differentiation with respect to 𝒙(𝑡 − 𝜏𝑘)), and the

notation ∂
∂�̃�𝑘 to denote the partial differentiation with respect to the 𝑘th delayed control

in �̃�(𝑡) (i.e. the partial differentiation with respect to 𝒖(𝑡− 𝜏𝑘)). Then, by the chain rule,

we have

Δ𝒙(𝑡) =
𝑑𝒙𝜖(𝑡)

𝑑𝜖

∣∣∣
𝜖=0

=

∫ 𝑡

0

{∂𝒇(𝑠)
∂𝒙

Δ𝒙(𝑠) +
∂𝒇(𝑠)

∂𝒖
Δ𝒖(𝑠) +

𝑀∑
𝑘=1

∂𝒇(𝑠)

∂�̃�𝑘
Δ𝒙(𝑠− 𝜏𝑘)

}
𝑑𝑠

+
𝑀∑
𝑘=1

∫ 𝑡

0

∂𝒇(𝑠)

∂�̃�𝑘
Δ𝒖(𝑠− 𝜏𝑘)𝑑𝑠.

Clearly,

𝑑(Δ𝒙(𝑡))

𝑑𝑡
=
∂𝒇(𝑡)

∂𝒙
Δ𝒙(𝑡) +

∂𝒇(𝑡)

∂𝒖
Δ𝒖(𝑡) +

𝑀∑
𝑘=1

∂𝒇(𝑡)

∂�̃�𝑘
Δ𝒙(𝑡− 𝜏𝑘)

+
𝑀∑
𝑘=1

∂𝒇(𝑡)

∂�̃�𝑘
Δ𝒖(𝑡− 𝜏𝑘).

(4.52)

Then, by the chain rule,

Δ𝐽𝜀,𝛾(𝒖) =
𝑑𝐽𝜀,𝛾(𝒖𝜖)

𝑑𝜖

∣∣∣
𝜖=0

=
∂Φ0

(
𝒙(𝑡𝑓 ∣𝒖)

)
∂𝒙(𝑡𝑓 )

Δ𝒙(𝑡𝑓 ) +

∫ 𝑡𝑓

0

{
∂ℒ0(𝑡)

∂𝒙
Δ𝒙(𝑡) +

∂ℒ0(𝑡)

∂𝒖
Δ𝒖(𝑡)

}
𝑑𝑡

+

∫ 𝑡𝑓

0

{ 𝑀∑
𝑘=1

∂ℒ0(𝑡)

∂�̃�𝑘
Δ𝒙(𝑡− 𝜏𝑘) +

𝑀∑
𝑘=1

∂ℒ0(𝑡)

∂�̃�𝑘
Δ𝒖(𝑡− 𝜏𝑘)

}
𝑑𝑡

+ 𝛾

𝑁𝑐∑
𝑖=1

∫ 𝑡𝑓

0

∂ℒ𝑖,𝜀

(
𝑡,𝒙(𝑡∣𝒖))
∂𝒙

Δ𝒙(𝑡)𝑑𝑡.

(4.53)



4.3 Solution method 88

Consider the definition of 𝒇𝑘(𝑡) in (4.45), we have

𝑀∑
𝑘=1

∂ℒ0(𝑡)

∂�̃�𝑘
Δ𝒙(𝑡− 𝜏𝑘) =

𝑀∑
𝑘=1

𝑒(𝑡𝑓 − 𝑡− 𝜏𝑘)
∂ℒ0(𝑡+ 𝜏𝑘)

∂𝒙
Δ𝒙(𝑡), (4.54)

𝑀∑
𝑘=1

∂ℒ0(𝑡)

∂�̃�𝑘
Δ𝒖(𝑡− 𝜏𝑘) =

𝑀∑
𝑘=1

𝑒(𝑡𝑓 − 𝑡− 𝜏𝑘)
∂ℒ0(𝑡+ 𝜏𝑘)

∂𝒖
Δ𝒖(𝑡). (4.55)

Substituting (4.54)-(4.55) into (4.56) yields,

Δ𝐽𝜀,𝛾(𝒖) =
∂Φ0

(
𝒙(𝑡𝑓 ∣𝒖)

)
∂𝒙(𝑡𝑓 )

Δ𝒙(𝑡𝑓 ) +

∫ 𝑡𝑓

0

∂ℒ0(𝑡)

∂𝒖
Δ𝒖(𝑡)𝑑𝑡

+
𝑀∑
𝑘=1

∫ 𝑡𝑓

0

∂ℒ0(𝑡+ 𝜏𝑘)

∂𝒖
𝑒(𝑡𝑓 − 𝑡− 𝜏𝑘)Δ𝒖(𝑡)𝑑𝑡+

∫ 𝑡𝑓

0

∂ℒ0(𝑡)

∂𝒙
Δ𝒙(𝑡)𝑑𝑡

+

∫ 𝑡𝑓

0

{ 𝑀∑
𝑘=1

∂ℒ0(𝑡+ 𝜏𝑘)

∂𝒙
𝑒(𝑡𝑓 − 𝑡− 𝜏𝑘) + 𝛾

𝑁𝑐∑
𝑖=1

∂ℒ𝑖,𝜀

(
𝑡,𝒙(𝑡∣𝒖))
∂𝒙

}
Δ𝒙(𝑡)𝑑𝑡.

(4.56)

By using the definition of the Hamiltonian function 𝐻𝜀,𝛾, we have

ℒ0(𝑡) +
𝑀∑
𝑘=1

ℒ0(𝑡+ 𝜏𝑘)𝑒(𝑡𝑓 − 𝑡− 𝜏𝑘) + 𝛾
𝑁𝑐∑
𝑖=1

ℒ𝑖,𝜀

(
𝑡,𝒙(𝑡∣𝒖))

= 𝐻𝜀,𝛾 − 𝝀(𝑡)⊤𝒇(𝑡) +
𝑀∑
𝑘=1

(�̄�𝑘)⊤(𝑡)𝒇𝑘(𝑡)𝑒(𝑡𝑓 − 𝑡− 𝜏𝑘).

Thus,

Δ𝐽𝜀,𝛾(𝒖) =
∂Φ0

(
𝒙(𝑡𝑓 ∣𝒖)

)
∂𝒙(𝑡𝑓 )

Δ𝒙(𝑡𝑓 ) +

∫ 𝑡𝑓

0

{∂𝐻𝜀,𝛾

∂𝒙
Δ𝒙(𝑡) +

∂𝐻𝜀,𝛾

∂𝒖
Δ𝒖(𝑡)

}
𝑑𝑡

−
∫ 𝑡𝑓

0

𝝀(𝑡)⊤
{∂𝒇(𝑡)
∂𝒙

Δ𝒙(𝑡) +
∂𝒇(𝑡)

∂𝒖
Δ𝒖(𝑡)

}
𝑑𝑡

−
𝑀∑
𝑘=1

∫ 𝑡𝑓

0

(�̄�𝑘)⊤(𝑡)𝑒(𝑡𝑓 − 𝑡− 𝜏𝑘)
{∂𝒇𝑘(𝑡)

∂𝒙
Δ𝒙(𝑡) +

∂𝒇𝑘(𝑡)

∂𝒖
Δ𝒖(𝑡)

}
𝑑𝑡.

(4.57)

By (4.43)-(4.45), and the definition of 𝑒(⋅), it follows that
𝑀∑
𝑘=1

∫ 𝑡𝑓

0

(�̄�𝑘)⊤(𝑡)𝑒(𝑡𝑓 − 𝑡− 𝜏𝑘)
{∂𝒇𝑘(𝑡)

∂𝒙
Δ𝒙(𝑡) +

∂𝒇𝑘(𝑡)

∂𝒖
Δ𝒖(𝑡)

}
=

𝑀∑
𝑘=1

∫ 𝑡𝑓−𝜏𝑘

0

(�̄�𝑘)⊤(𝑡)𝑒(𝑡𝑓 − 𝑡− 𝜏𝑘)
{∂𝒇𝑘(𝑡)

∂𝒙
Δ𝒙(𝑡) +

∂𝒇𝑘(𝑡)

∂𝒖
Δ𝒖(𝑡)

}
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=
𝑀∑
𝑘=1

∫ 𝑡𝑓

𝜏𝑘

(𝝀𝑘)⊤(𝑡)
{∂𝒇(𝑡)

∂�̃�
Δ𝒙(𝑡− 𝜏𝑘) +

∂𝒇𝑘(𝑡)

∂�̃�
Δ𝒖(𝑡− 𝜏𝑘)

}
. (4.58)

Since Δ𝒙(𝑡− 𝜏𝑘) = 0, for 0 ≤ 𝑡 ≤ 𝜏𝑘, and Δ𝒖(𝑡− 𝜏𝑘) = 0, for 0 ≤ 𝑡 < 𝜏𝑘, we have

𝑀∑
𝑘=1

∫ 𝑡𝑓

𝜏𝑘

(𝝀𝑘)⊤(𝑡)
{∂𝒇(𝑡)

∂�̃�
Δ𝒙(𝑡− 𝜏𝑘) +

∂𝒇(𝑡)

∂�̃�
Δ𝒖(𝑡− 𝜏𝑘)

}
=

𝑀∑
𝑘=1

∫ 𝑡𝑓

0

(𝝀𝑘)⊤(𝑡)
{∂𝒇(𝑡)

∂�̃�
Δ𝒙(𝑡− 𝜏𝑘) +

∂𝒇(𝑡)

∂�̃�
Δ𝒖(𝑡− 𝜏𝑘)

}
. (4.59)

Substituting (4.59) and (4.58) into (4.57), and then combining with (4.58), it gives

Δ𝐽𝜀,𝛾(𝒖) =
∂Φ0

(
𝒙(𝑡𝑓 ∣𝒖)

)
∂𝒙(𝑡𝑓 )

Δ𝒙(𝑡𝑓 ) +

∫ 𝑡𝑓

0

∂𝐻𝜀,𝛾

∂𝒖
Δ𝒖(𝑡)𝑑𝑡∫ 𝑡𝑓

0

{∂𝐻𝜀,𝛾

∂𝒙
Δ𝒙(𝑡)− 𝝀(𝑡)⊤𝑑(Δ𝒙(𝑡))

𝑑𝑡

}
𝑑𝑡.

(4.60)

Integrating the last term of (4.60) by parts gives

Δ𝐽𝜀,𝛾(𝒖) =
∂Φ0

(
𝒙(𝑡𝑓 ∣𝒖)

)
∂𝒙(𝑡𝑓 )

Δ𝒙(𝑡𝑓 )− 𝝀(𝑡)⊤Δ𝒙(𝑡)
∣∣∣𝑡𝑓
0

+

∫ 𝑡𝑓

0

{∂𝐻𝜀,𝛾

∂𝒙
Δ𝒙(𝑡) +

∂𝐻𝜀,𝛾

∂𝒖
Δ𝒖(𝑡) +

𝑑(𝝀(𝑡))⊤

𝑑𝑡
Δ𝒙(𝑡)

}
𝑑𝑡.

(4.61)

Since 𝒙(0) is a given constant, it is clear that Δ𝒙(0) = 0. Hence, 𝝀(0)⊤Δ𝒙(0) = 0. Since

Δ𝒖(𝑡) is arbitrary on [0, 𝑡𝑓 ], substituting (4.47), (4.48), and (4.49) into (4.61) yields

Δ𝐽𝜀,𝛾(𝒖) =

∫ 𝑡𝑓

0

∂𝐻𝜀,𝛾

∂𝒖
Δ𝒖(𝑡)𝑑𝑡. (4.62)

This completes the proof.

Theorem 4.7. For each 𝑞 = 1, . . . , 𝑁 , the gradient of the augmented cost function 𝐽𝜀,𝛾

with respect to 𝝈𝑁,𝑞 is
∂𝐽𝜀,𝛾(𝝈

𝑁)

∂𝝈𝑁,𝑞
=

∫ 𝑡𝑞

𝑡𝑞−1

∂𝐻𝜀,𝛾

∂𝒖
𝑑𝑡. (4.63)

Proof. Let 𝒖𝜖(𝑡) be defined as (4.51), where

Δ𝒖(𝑡) = Δ𝝈𝑁𝜒[𝑡𝑞−1,𝑡𝑞)(𝑡), (4.64)

Δ𝒖(𝑡) = 0, 𝑡 < 0, (4.65)
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and

Δ𝝈𝑁 = [0⊤, . . . ,0⊤, (Δ𝝈𝑁,𝑞)⊤,0⊤, . . . ,0⊤]⊤.

Substitute (4.64) into (4.62), it is clear that

Δ𝐽𝜀,𝛾(𝒖) =

∫ 𝑡𝑞

𝑡𝑞−1

∂𝐻𝜀,𝛾

∂𝒖
Δ𝝈𝑁,𝑞𝑑𝑡. (4.66)

Restricting the controls to 𝒰𝑁 yields

𝐽𝜀,𝛾(𝒖
𝑁) = 𝐽𝜀,𝛾(𝝈

𝑁).

Using Theorem 4.6, it is clear that

Δ𝐽𝜀,𝛾(𝒖
𝑁) = lim

𝜖→0

{∂𝐽𝜀,𝛾(𝒖𝑁 + 𝜖Δ𝒖)− 𝐽𝜀,𝛾(𝒖
𝑁)

∂𝜖

}
= lim

𝜖→0

{∂𝐽𝜀,𝛾(𝝈𝑁 + 𝜖Δ𝝈𝑁)− 𝐽𝜀,𝛾(𝝈
𝑁)

∂𝜖

}
=

〈∂𝐽𝜀,𝛾(𝝈𝑁)

∂𝝈𝑁
,Δ𝝈𝑁

〉
=

〈∂𝐽𝜀,𝛾(𝝈𝑁)

∂𝝈𝑁,𝑞
,Δ𝝈𝑁,𝑞

〉
. (4.67)

Combining (4.66) and (4.67), and noting that Δ𝝈𝑁,𝑞 is arbitrary, the theorem follows

readily.

With the gradient formula given in Theorem 4.7, Problem (𝑄𝑁,𝜀,𝛾), for each 𝜀 > 0

and 𝛾 > 0, can be solved by using a gradient-based optimization technique, such as

the sequential quadratic programming approximation method. We propose the following

algorithm.

Algorithm 4.1.

Step 1. Set 𝜀 = 0.01 and 𝛾 = 10.

Step 2. Solve the state differential equation (4.1) with the initial conditions (4.3) forward

in time from 𝑡 = 0 to 𝑡 = 𝑡𝑓 . Let the solution obtained be denoted by 𝒙(⋅∣𝝈𝑁).

Step 3. Compute the value of the augmented cost function given by (4.21).

Step 4. Solve the co-state system (4.47) backward in time from 𝑡 = 𝑡𝑓 to 𝑡 = 0 with the

boundary condition (4.48) and (4.49), where 𝒙(⋅∣𝝈𝑁) is from Step 2. Let the solution

obtained be referred to as 𝝀(⋅∣𝝈𝑁).
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Step 5. Compute the gradient of the augmented cost function (4.21) with respect to 𝝈𝑁

according to (4.63).

Step 6. Solve the approximate Problem (𝑄𝑁,𝜀,𝛾) by using the sequential quadratic program-

ming approximation scheme with active set strategy. Let the optimal control vector

obtained be denoted as 𝝈𝑁,∗
𝜀,𝛾 .

Step 7. Check the feasibility of the continuous state inequality constraints for all 𝑡 ∈ [0, 𝑡𝑓 ].

If 𝝈𝑁,∗
𝜀,𝛾 is feasible, go to Step 8; otherwise, set 𝛾 := 10× 𝛾 and go to Step 2.

Step 8. Set 𝜀 := 𝜀/10. If 𝜀 > 𝜀𝑚𝑖𝑛, go to Step 2, else successfully exist.

Remark 4.1. Problem (𝑄𝑁,𝜀,𝛾) with 𝜀 > 0 and 𝜂𝑧 > 0, 𝑧 = 1, . . . , 𝑁𝑔, chosen as de-

tailed in Step 7 of Algorithm 4.1 is an approximate problem of Problem (Q). By using

arguments similar to that given for Theorem 4.4, it can be shown that the approximate

optimal cost will converge to the true optimal cost as 𝑁 → ∞. In practice, we could

start with a small integer 𝑁 , and obtain the optimal control vector of the corresponding

Problem (𝑄𝑁,𝜀,𝛾). We then double the value of 𝑁 and re-calculate the optimal control

vector of the corresponding Problem (𝑄𝑁,𝜀,𝛾) with the previous optimal control vector

taken as the initial guess in the optimization process. We repeat this process until the

reduction in the cost value is negligible. From extensive simulation studies, it is observed

that 𝑁 does not need to be very large, certainly the one used in our simulation study is

more than sufficient. In fact, the approximation of the control by a piecewise-constant

function should also be followed in some real applications. The extension to the case

where the control is approximated by piecewise linear or piecewise smooth function is

straightforward. The switching times will affect the cost value but is insignificant. The

main advantage of taking the switching times as decision variables is that the number of

switching times could be reduced for achieving the same cost value. However, the price

to pay is a significant increase in the computational burden.

Remark 4.2. Theorem 4.2 ensures that for each 𝜀 > 0, a suitable 𝛾(𝜀) can be obtained

in finite number of iterations. This is due to the special structure of the penalty function

used.

4.4 Application: optimal control of an evaporation

process

We now demonstrate the applicability of our approach to a realistic optimal control prob-

lem arising in evaporation process. Specifically, we consider the industrial evaporation

process described in [119]. The alumina production process mainly includes aluminium
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hydroxide solution preparing process, clarifying process, dissolving process, decomposing

process, evaporation process, and roasting process. The main contents of the mother

liquor discharged from the decomposing process are sodium hydroxide and aluminum ox-

ide which are valuable materials needed in the recycling. However, the concentration of

the mother liquor is lower than the required concentration needed for the leaching process

or the grinding process. Thus, it cannot be used directly, and hence the evaporation

process is needed to improve the concentration of the mother liquor, such that the acid

and caustic materials can be re-used.

The returned lye discharged from the evaporation process is one of the main raw ma-

terials needed for converting the bauxite to aluminium hydroxide solution (which is also

called the raw slurry). It is known [157] that the quality of raw slurry has a direct influ-

ence on the quality of the final product. Unacceptable fluctuation in the composition of

the returned lye can lead to instability of the blending process during the preparation of

the raw slurry. Consequently, the quality of the product obtained cannot be guaranteed.

Usually, only the solution concentration at the outlet of the evaporation process is mea-

sured at every two-hour interval, but it takes about one hour for the feed flowing though

the evaporation process. Clearly, inappropriate control of the evaporation process will

lead to unacceptable output solution, yet with high steam consumption. Hence, optimal

control is needed.

In this section, the control method proposed in Section 4.3 is applied to study the

optimal control of a practical alumina evaporation process, in which the objective is to

find a control such that the specific quality of the sodium aluminate solution control is

met with the least energy usage, while the constraints on the state and the control are

satisfied.

4.4.1 The evaporation system

In a typical alumina production factory in China, the objective of the evaporation pro-

cess is to increase the concentration of the industrial sodium aluminate solution (the

sodium hydroxide content of the solution is to be increased to about 160∼170g/L for

Bayer process). The industrial sodium aluminate solution is highly viscous. It contains

many impurities, such as sodium carbonate and sodium sulfate, which can easily emit

from the solution due to the increase of caustic alkali concentration or the decrease of

temperature. Crystallization of the impurities will cause serious pipe plug problem. To

avoid the forming of high viscosity fluid at low temperature, the alumina production fac-

tory employs multiple falling film evaporators for the evaporation process as shown in

Figure 4.1. It consists of four falling film tube evaporators, three direct pre-heaters, three

flash evaporators, four flash tanks and a condenser.

The four falling film tube evaporators are connected in series with reference to their
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vapor and liquor lines. Heat is supplied to the first evaporator by live steam generated in

the power plant after the pressure is reduced to about 0.5Mpa. The vapor, produced by

each of the first three evaporators, is used as the heating source for the next evaporators

in series. The vapor produced by the fourth evaporator is condensed and then discharged

from the process through the condenser installed in the water circuit.

Between each of the two adjacent evaporators there is a preheater, which is used to

preheat the solution fed into the previous (with respect to the vapor lines) evaporator.

The heating source of each preheater comes from the vapor produced by the previous

(with respect to the vapor lines) evaporator and flash evaporator.

The feed enters the system at the third and the fourth evaporators, and flows backward.

Finally the solution leaves from the first evaporator and is fed into the flash evaporators

where the final product is drained. The structure of a falling tube evaporator is as shown
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Figure 4.1: Flow sheet of alumina evaporation process

in Figure 4.2. It consists of an evaporation vessel (A), a heat exchanger (B), a number

of pumps that realizes the transfer of solution in and out the evaporator, and valves that

control the steam in and out of the evaporator.

The liquor, i.e. the industrial sodium aluminate solution, is injected at the bottom of

the evaporation vessel through Pump 1. It is then pumped to the top of the evaporator,

where a distributor is used to provide a uniformly distributed falling liquid film inside

each heating tube. The effect of the distribution depends on the viscosity of the solution

and the cycling rate. Because the broken up of the falling film will cause serious scaring

problem [109], the change of the cycling rate should only be slight such that the change

in the surface tension force of the film is mild.

The liquor flows through the inside of the heating tubes, and the heating steam fills

the outside of the heating tubes. It leads to a heat transfer from the steam to the liquor.

The heating steam is governed by Valve 1. As the liquor goes through the heating tube, it

reaches its boiling temperature, causing water within the liquor to evaporate. A separator

is used to split the vapor from the solution at the top of the evaporator vessel. The vapor

is drained through Valve 2 which is used to connect the two adjacent evaporators, and
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Figure 4.2: Structure of a vertical tube falling film evaporator

hence cannot be adjusted. Finally, the liquor is drained through Pump 2.

In practice, once the control variables are set, they must be used for at least 5 minutes.

In other words, the control variables (i.e. flow rate of live steam) are to be adjusted in a

piecewise-constant manner. Thus, the control variables can be approximated by piecewise-

constant functions with possible discontinuities at the preset switching points. Hence, the

optimal control approach introduced in Section 4.3 can be used to deal with the optimal

control for the evaporation process.

4.4.2 Mathematical model of the evaporation system

A Dynamic system for the evaporation process

Three types of dynamical process models have been developed for a falling-film evapora-

tor [46,145]. In this chapter, a pilot-scale evaporation process is considered. As the direct

preheaters are used to mix the solution and vapor, there is litter change in its level. Thus,

the dynamics of the preheaters are omitted; and the evaporator and the corresponding

preheater are taken as a whole. Also, we neglect the dynamics of the distributor and the

separator. Only the dynamics involved in the evaporation vessel is considered.

A fundamental model that describes the multi-effect falling film evaporation process

can be derived under the following assumptions:
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∙ Perfect mixing in each phase in each vessel;

∙ The absence of any non-condensable gases and the process is adiabatic;

∙ No transportation lags associated with the movement of steam;

∙ The cross-sectional area of the evaporator and the specific heat capacity of water

are constant;

∙ All pipes are full.

According to experienced engineers in the factory, the changes of the input solution, for

the evaporator, take about 15 minutes to cause an effect on the changes in the evaporation

vessel. This is due to the hysteresis during the solution flowing to the evaporation vessel,

such as in the distributor and the place where the input solution is injected. Similarly,

the time-delays for the flash evaporators are about 5 minutes. From simulation studies,

it appears that the values for these delays are acceptable in practice. The variables that

are of interest are product temperature in the effect, solution level in the evaporation

vessel and product concentration of each effect. In particular, sodium carbonate, sodium

hydroxide, and alumina are the three components of the industrial sodium aluminate

solution which are measured at every two-hour interval. Thus, under the aforementioned

assumptions, the alumina evaporation process model is built based on the principles of

heat balance and material balance in unit operations (evaporator and flash evaporator).

They are described by the following differential equations with multiple time-delays [119]:

(a) The time variations of the solution levels are:

𝑑ℎ𝑖(𝑡)

𝑑𝑡
=

1

𝐴𝑖𝜌𝑖(𝑡)
Δ𝑀𝑖(𝑡), 𝑖 = 1, . . . , 7. (4.68)

(b) The concentration of the solution in the evaporation vessel is assumed to be equal

to that of the output solution. For each 𝑖, 𝑖 = 1, . . . , 7, the three ingredients of the solution,

i.e. sodium carbonate, sodium hydroxide, and alumina, are denoted by 𝐶𝑗
𝑖 , 𝑗 = 1, 2, 3.

For each 𝑗, 𝑗 = 1, 2, 3, the time variations of the concentrations can be expressed as:

𝑑𝐶𝑗
𝑖 (𝑡)

𝑑𝑡
=

1

𝐴𝑖ℎ𝑖(𝑡)

[
𝐹𝑖+1(𝑡− 𝜏1)𝐶

𝑗
𝑖+1(𝑡− 𝜏1)− 𝐹𝑖(𝑡)𝐶

𝑗
𝑖 (𝑡)−

𝑑ℎ𝑖(𝑡)

𝑑𝑡
𝐴𝑖𝐶

𝑗
𝑖 (𝑡)

]
, 𝑖 = 1, 2, 3,

(4.69a)

𝑑𝐶𝑗
𝑖 (𝑡)

𝑑𝑡
=

1

𝐴𝑖ℎ𝑖(𝑡)

[
𝐹𝑖+1(𝑡− 𝜏2)𝐶

𝑗
𝑖+1(𝑡− 𝜏2)− 𝐹𝑖(𝑡)𝐶

𝑗
𝑖 (𝑡)−

𝑑ℎ𝑖(𝑡)

𝑑𝑡
𝐴𝑖𝐶

𝑗
𝑖 (𝑡)

]
, 𝑖 = 4, 5,

(4.69b)

𝑑𝐶𝑗
𝑖 (𝑡)

𝑑𝑡
=

1

𝐴𝑖ℎ𝑖(𝑡)

[
𝐹𝑖+1(𝑡− 𝜏2)𝐶

𝑗
𝑖+1(𝑡− 𝜏2) + 𝐹01(𝑡− 𝜏2)𝐶

𝑗
0(𝑡− 𝜏2)− 𝐹𝑖(𝑡)𝐶

𝑗
𝑖 (𝑡)

− 𝑑ℎ𝑖(𝑡)

𝑑𝑡
𝐴𝑖𝐶

𝑗
𝑖 (𝑡)

]
, 𝑖 = 6, (4.69c)
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𝑑𝐶𝑗
𝑖 (𝑡)

𝑑𝑡
=

1

𝐴𝑖ℎ𝑖(𝑡)

[
𝐹0(𝑡− 𝜏2)𝐶

𝑗
0(𝑡− 𝜏2)− 𝐹𝑖(𝑡)𝐶

𝑗
𝑖 (𝑡)−

𝑑ℎ𝑖(𝑡)

𝑑𝑡
𝐴𝑖𝐶

𝑗
𝑖 (𝑡)

]
, 𝑖 = 7. (4.69d)

(c) The time variations of the solution temperatures are:

𝑑𝑇𝑖(𝑡)

𝑑𝑡
=

Δ𝑄𝑖(𝑡)

𝑑𝑡

1

𝐴𝑖ℎ𝑖(𝑡)𝑐𝑝𝑖(𝑡)
− 𝑇𝑖(𝑡)

𝑐𝑝𝑖(𝑡)

𝑑𝑐𝑝𝑖
𝑑𝑡

− 𝑇𝑖(𝑡)𝜌𝑖(𝑡)

ℎ𝑖(𝑡)

𝑑ℎ𝑖(𝑡)

𝑑𝑡
, 𝑖 = 1, . . . , 7. (4.70)

Here, 𝐶𝑗
𝑖 , for each 𝑖 = 1, 2, 3; 𝑗 = 1, 2, 3, denotes the concentration of the 𝑗th ingredient

of the 𝑖th flash evaporator; 𝐶𝑗
𝑖 , for each 𝑖 = 4, . . . , 7; 𝑗 = 1, 2, 3, denotes the concentration

of the 𝑗th ingredient of the (𝑖− 3)th evaporator; ℎ is the solution level of the evaporation

vessel; 𝐴 is the cross-sectional area of the evaporation vessel; 𝑐𝑝 and 𝜌 are, respectively, the

specific heat capacity and the density of the output solution; Δ𝑄𝑖 and Δ𝑀𝑖, 𝑖 = 1, . . . , 7,

are the heat changes and the mass changes in the evaporation vessel, respectively; 𝑇

is the product temperature; 𝐹 is the flow rate of the output solution; 𝐹0 and 𝐹01 are,

respectively, the feed inputs into the third and fourth evaporators; 𝐶0 is the condensation

of the feed injected to the process; 𝜏1 and 𝜏2 are the time-delays, where 𝜏1 = 5 minutes

and 𝜏1 = 15 minutes.

The mass changes in the evaporation vessels can be calculated by using the following

formulas:

Δ𝑀𝑖(𝑡) = 𝐹𝑖+1(𝑡− 𝜏1)𝜌𝑖+1(𝑡− 𝜏1)− 𝑉𝑖(𝑡)− 𝐹𝑖(𝑡)𝜌𝑖(𝑡), 𝑖 = 1, 2, 3, (4.71)

Δ𝑀4(𝑡) = 𝐹5(𝑡− 𝜏2)𝜌5(𝑡− 𝜏2)− 𝑉4(𝑡)− 𝐹4(𝑡)𝜌4(𝑡) + 𝑉3(𝑡), (4.72)

Δ𝑀5(𝑡) = 𝐹6(𝑡− 𝜏2)𝜌6(𝑡− 𝜏2)− 𝑉5(𝑡)− 𝐹5(𝑡)𝜌5(𝑡) + 𝑉2(𝑡), (4.73)

Δ𝑀6(𝑡) = 𝐹7(𝑡− 𝜏2)𝜌7(𝑡− 𝜏2)− 𝑉6(𝑡)− 𝐹6(𝑡)𝜌6(𝑡) + 𝑉1(𝑡) + 𝐹01(𝑡− 𝜏2)𝜌0(𝑡− 𝜏2),

(4.74)

Δ𝑀7(𝑡) = 𝐹0(𝑡− 𝜏2)𝜌0(𝑡− 𝜏2)− 𝑉7(𝑡)− 𝐹7(𝑡)𝜌7(𝑡), (4.75)

where 𝑉𝑖, for each 𝑖 = 1, 2, 3, is the vapor produced by the 𝑖th flash evaporator; 𝑉𝑖, for

each 𝑖 = 4, . . . , 7, is the vapor produced by the (𝑖− 3)th evaporator. They are calculated

as follows:

𝑉𝑖(𝑡) =
𝐹𝑖+1(𝑡− 𝜏1)𝜌𝑖+1(𝑡− 𝜏1)[𝑐𝑝𝑖+1(𝑡− 𝜏1)𝑇𝑖+1(𝑡− 𝜏1)− 𝑐𝑝𝑖(𝑡)𝑇𝑖(𝑡)]

𝐻𝑖(𝑡)− 𝑐𝑝𝑖(𝑡)𝑇𝑖(𝑡)
, (4.76a)

𝑉4(𝑡) =
𝑉0(𝑡)𝑟0(𝑡) + 𝑉3(𝑡)(𝐻3(𝑡)− 𝑐𝑝4(𝑡)𝑇4(𝑡))− 𝑐𝑝4(𝑡)𝑇4(𝑡)]

𝐻4(𝑡)− 𝑐𝑝4(𝑡)𝑇4(𝑡)
(4.76b)

+
𝐹5(𝑡− 𝜏2)𝜌5(𝑡− 𝜏2)[𝑐𝑝5(𝑡− 𝜏2)𝑇5(𝑡− 𝜏2)

𝐻4(𝑡)− 𝑐𝑝4(𝑡)𝑇4(𝑡)
, (4.76c)

𝑉5(𝑡) =
𝑉4(𝑡)𝑟4(𝑡) + 𝑉2(𝑡)(𝐻2(𝑡)− 𝑐𝑝5(𝑡)𝑇5(𝑡))

𝐻5(𝑡)− 𝑐𝑝5(𝑡)𝑇5(𝑡)
(4.76d)

+
𝐹6(𝑡− 𝜏2)𝜌6(𝑡− 𝜏2)[𝑐𝑝6(𝑡− 𝜏2)𝑇6(𝑡− 𝜏2)− 𝑐𝑝5(𝑡)𝑇5(𝑡)]

𝐻5(𝑡)− 𝑐𝑝5(𝑡)𝑇5(𝑡)
, (4.76e)
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𝑉6(𝑡) =
𝑉1(𝑡)(𝐻1(𝑡)− 𝑐𝑝6(𝑡)𝑇6(𝑡)) + 𝑉5(𝑡)𝑟5(𝑡)

𝐻6(𝑡)− 𝑐𝑝6(𝑡)𝑇6(𝑡)

+
𝐹7(𝑡− 𝜏2)𝜌7(𝑡− 𝜏2)[𝑐𝑝7(𝑡− 𝜏2)𝑇7(𝑡− 𝜏2)− 𝑐𝑝6(𝑡)𝑇6(𝑡)]

𝐻6(𝑡)− 𝑐𝑝6(𝑡)𝑇6(𝑡)

+
𝑉5(𝑡)𝑟5(𝑡) + 𝐹01(𝑡− 𝜏2)𝜌0(𝑡− 𝜏2)[𝑐𝑝0(𝑡− 𝜏2)𝑇0(𝑡− 𝜏2)− 𝑐𝑝6(𝑡)𝑇6(𝑡)]

𝐻6(𝑡)− 𝑐𝑝6(𝑡)𝑇6(𝑡)
, (4.76f)

𝑉7(𝑡) =
𝑉6(𝑡)𝑟6(𝑡) + 𝐹0(𝑡− 𝜏2)𝜌0(𝑡− 𝜏2)[𝑐𝑝0(𝑡− 𝜏2)𝑇0(𝑡− 𝜏2)− 𝑐𝑝7(𝑡)𝑇7(𝑡)]

𝐻7(𝑡)− 𝑐𝑝7(𝑡)𝑇7(𝑡)
, (4.76g)

where 𝐻 and 𝑟 are, respectively, the enthalpy and the latent heat of the output vapor; 𝑉0

is the flow rate of the live steam; 𝑟0 is the latent heat of the live steam; and 𝜌0, 𝑐𝑝0, 𝑇0

are, respectively, the density, specific heat capacity, and temperature of the feed injected

to the process. It is assumed that the vapor is saturated. The relationships between the

latent heat and the enthalpy are obtained in [21] as given below:

𝑟𝑖 = 2495.0− 2.219𝑇𝑣𝑖 − 0.002128(𝑇𝑣𝑖)
2, 𝑖 = 1, . . . , 7, (4.77)

𝐻𝑖 = 𝑟𝑖 + 4.18𝑇𝑣𝑖, 𝑖 = 1, . . . , 7, (4.78)

where

𝑇𝑣𝑖 = 𝑇𝑖 −Δ𝑇𝑖, 𝑖 = 1, . . . , 7. (4.79)

The density and the boiling point rise are important properties that must be specified

in a multiple-effect evaporator [46], especially, when the soluble solid concentration is

high. In order to obtain their relationships, several thermal balance tests were carried

out during the whole acid cycle of the evaporation process. Correlations describing the

relations between the boiling point rise and the density are determined by the regression

method using the experimental data. For each 𝑖, 𝑖 = 1, . . . , 7, they are obtained as follows:

𝜌𝑖 = 1045 + 1.2𝐶1
𝑖 + 𝐶2

𝑖 + 0.8𝐶3
𝑖 , (4.80)

Δ𝑇𝑖 =
0.0162(𝑇𝑖 + 273)2(75.77𝐶2

𝑖 𝜌
−1 − 3.608)

𝑟𝑖

− 0.23𝐶1
𝑖 − 0.073𝐶2

𝑖 − 0.1094𝐶3
𝑖 + 0.3206𝑇𝑖,

(4.81)

where Δ𝑇𝑖, for each 𝑖 = 1, 2, 3, is the boiling point rise of the solution output from the 𝑖th

flash evaporator; and Δ𝑇𝑖, for each 𝑖 = 4, . . . , 7, is the boiling point rise of the solution

output from the (𝑖− 3)th evaporator.

The specific heat of the solution at each of these evaporators can be calculated from

its component concentration as follows:

𝑐𝑝𝑖 = 4.18− 𝜌−1(2.994𝐶1
𝑖 + 2.923𝐶2

𝑖 + 3.266𝐶3
𝑖 ), 𝑖 = 1, . . . , 7 (4.82)
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Furthermore, the heat changes in the evaporation vessels are:

Δ𝑄𝑖(𝑡) = 𝐹𝑖+1(𝑡− 𝜏1)𝜌𝑖+1(𝑡− 𝜏1)𝑐𝑝𝑖+1(𝑡− 𝜏1)𝑇𝑖+1(𝑡− 𝜏1)

− 𝑉𝑖(𝑡)𝐻𝑖(𝑡)− 𝐹𝑖(𝑡)𝜌𝑖(𝑡)𝑐𝑝𝑖(𝑡)𝑇𝑖(𝑡), 𝑖 = 1, 2, 3, (4.83a)

Δ𝑄4(𝑡) = 𝑉0(𝑡)𝑟0(𝑡) + 𝑉3(𝑡)𝐻3(𝑡) + 𝐹5(𝑡− 𝜏2)𝜌5(𝑡− 𝜏2)𝑐𝑝5(𝑡− 𝜏2)𝑇5(𝑡− 𝜏2)

− 𝑉4(𝑡)𝐻4(𝑡)− 𝐹4(𝑡)𝜌4(𝑡)𝑐𝑝4(𝑡)𝑇4(𝑡), (4.83b)

Δ𝑄5(𝑡) = 𝑉4(𝑡)𝑟4(𝑡) + 𝑉2(𝑡)𝐻2(𝑡) + 𝐹6(𝑡− 𝜏2)𝜌6(𝑡− 𝜏2)𝑐𝑝6(𝑡− 𝜏2)𝑇6(𝑡− 𝜏2)

− 𝑉5(𝑡)𝐻5(𝑡)− 𝐹5(𝑡)𝜌5(𝑡)𝑐𝑝5(𝑡)𝑇5(𝑡), (4.83c)

Δ𝑄6(𝑡) = 𝑉5(𝑡)𝑟5(𝑡) + 𝑉1(𝑡)𝐻1(𝑡) + 𝐹7(𝑡− 𝜏2)𝜌7(𝑡− 𝜏2)𝑐𝑝7(𝑡− 𝜏2)𝑇7(𝑡− 𝜏2)

− 𝑉6(𝑡)𝐻6(𝑡)− 𝐹6(𝑡)𝜌6(𝑡)𝑐𝑝6(𝑡)𝑇6(𝑡)

+ 𝐹01(𝑡− 𝜏2)𝜌0(𝑡− 𝜏2)𝑐𝑝0(𝑡− 𝜏2)𝑇0(𝑡− 𝜏2), (4.83d)

Δ𝑄7(𝑡) = 𝑉6(𝑡)𝑟6(𝑡) + 𝐹0(𝑡− 𝜏2)𝜌0(𝑡− 𝜏2)𝑐𝑝0(𝑡− 𝜏2)𝑇0(𝑡− 𝜏2)

− 𝑉7(𝑡)𝐻7(𝑡)− 𝐹7(𝑡)𝜌7(𝑡)𝑐𝑝7(𝑡)𝑇7(𝑡). (4.83e)

Let

𝒙 = [𝑥1, . . . , 𝑥35]
⊤ = [ℎ1, . . . , ℎ7, 𝐶

1
1 , . . . , 𝐶

1
7 , 𝐶

2
1 , . . . , 𝐶

2
7 , 𝐶

3
1 , . . . , 𝐶

3
7 , 𝑇1, . . . , 𝑇7]

⊤ ∈ ℝ35,

denote the state with 35 variables. Taking into account the thermophysical proper-

ties of the solution and vapor, and substituting (4.71)-(4.83e) into (4.68) to (4.70),

the evaporation system model can be expressed as a system of 35 differential equa-

tions. The split flow rate of feed, product flow rates of each of the evaporators and

flash evaporators, and the live steam flow rate are the control variables denoted as

𝒖 = [𝑢1, . . . , 𝑢9]
⊤ = [𝐹1, . . . , 𝐹7, 𝐹01, 𝑉0]

⊤ ∈ ℝ9. Let 𝒇 = [𝑓1, . . . , 𝑓35]
⊤, where 𝑓𝑖,

𝑖 = 1, . . . , 35, denote the functions appeared on the right-hand sides of (4.68)-(4.70).

Let this system model be referred to as System (S1).

B Initial conditions for the evaporation system

For System (S1), the initial values for the state and the control variables at and prior to

𝑡 = 0 are obtained from a real-life evaporation process of an alumina production factory

in China. Specifically, for each of the temperature 𝑇𝑖, 𝑖 = 1, . . . , 7, it has relatively

little fluctuation. However, the values of the seven temperatures 𝑇𝑖, 𝑖 = 1, . . . , 7, are

quit different. Thus, we shall minus each of the temperature 𝑇𝑖, 𝑖 = 1, . . . , 7, by 97.7,

106.15, 116.1, 131.2, 105.6, 75, 54.5, respectively. Then, mark the values after treatments

in Figure 4.3(a). The values of the levels are marked in Figure 4.3(b). Let {𝜁𝑘}𝐾𝑘=1 with

𝜁𝑘 < 𝜁𝑘+1, 𝑘 = 1, . . . , 𝐾−1, be the set of the observed time points on the interval [−15, 0].

The value of the 𝑖th state variable 𝑥𝑖 at the observed time point 𝜁𝑘 is denoted as 𝜙𝑘
𝑖 . The
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temperatures and the liquor levels at and prior to 𝑡 = 0 are calculated according to

𝑥𝑖(𝑡) = 𝜙𝑘
𝑖 +

𝜙𝑘
𝑖 − 𝜙𝑘+1

𝑖

𝜁𝑘 − 𝜁𝑘+1

(𝑡− 𝜁𝑘),

𝑡 ∈ [𝜁𝑘, 𝜁𝑘+1], 𝑘 = 1, . . . , 𝐾 − 1; 𝑖 = 1, . . . , 7, 29, . . . , 35.

(4.84)

In addition, the concentrations of the solution 𝑥𝑖, 𝑖 = 8, . . . , 28, can only be accessed every

two hours through analyzing sample solution collected from the practical evaporation

process in the factory. It is assumed that the concentrations do not change during the

time interval [−15, 0]. They are list below.

[𝑥8(𝑡), . . . , 𝑥14(𝑡)]
⊤ = [74.85, 73.27, 71.75, 66.39, 54.86, 47.39, 44.83]⊤, 𝑡 ∈ [−15, 0],

[𝑥15(𝑡), . . . , 𝑥21(𝑡)]
⊤ = [163.94, 161.07, 157.70, 145.94, 120.57, 104.17, 98.54]⊤, 𝑡 ∈ [−15, 0],

[𝑥22(𝑡), . . . , 𝑥28(𝑡)]
⊤ = [75.61, 74.29, 72.73, 67.31, 55.61, 48.04, 45.45]⊤, 𝑡 ∈ [−15, 0].

The control in time horizon 𝑡 ∈ [−15, 0) for System (S1) are given by

𝝍(𝑡) = [𝜓1(𝑡), . . . , 𝜓9(𝑡)]
⊤ = [2.54, 2.59, 2.64, 2.76, 3.44, 3.99, 4.22, 0.165, 986.5]⊤. (4.85)

Let these initial state and control conditions obtained over the time interval [−15, 0)

be referred to as Initial Condition (IC).

4.4.3 Optimal control problem formulation

The optimal control of the evaporation process is to find a control such that the tasks

listed below are accomplished.

(i) The energy usage is minimized.

(ii) The specific requirements of the industrial sodium aluminate solution are met.

(iii) The solution level for each effect is maintained to within its operation limits.

The energy usage is measured in terms of the mass units of live steam used for evap-

orating one mass unit of water. It is defined by the following equation:

𝐽0 = 𝑉0(𝑡)/𝑊 (𝑡) = 𝑢9(𝑡)/𝑊 (𝑡),

where 𝑊 (𝑡) is the total water evaporated for the evaporation process at time 𝑡. It is the

difference between the mass flow rate of the feed and the final product, and is calculated
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Figure 4.3: The variations of temperatures and liquor levels at observed time points

as given below:

𝑊 (𝑡) = (𝐹0(𝑡) + 𝐹01(𝑡))𝜌0(𝑡)− 𝐹1(𝑡)𝜌1(𝑡)

= (𝐹0(𝑡) + 𝐹01(𝑡))𝜌0(𝑡)− 𝑢1(𝑡)(1045 + 1.2𝑥8(𝑡) + 𝑥15(𝑡) + 0.8𝑥22(𝑡)).

Thus, the cost function to be minimized is

𝐽 = Φ0(𝒙(𝑡𝑓 ∣𝒖))

+

∫ 𝑡𝑓

0

{
𝑢9(𝑡)

(𝐹0(𝑡) + 𝐹01(𝑡))𝜌0(𝑡)− 𝑢1(𝑡)(1045 + 1.2𝑥8(𝑡) + 𝑥15(𝑡) + 0.8𝑥22(𝑡))

}2

𝑑𝑡,

(4.86)

where 𝑡𝑓 is the final time of the time horizon [0, 𝑡𝑓 ]. Note that the change of the cost

function value caused by the change of the product concentration takes about 75 minutes

to be evaluated. Thus, the final time 𝑡𝑓 should be much larger than 75. Φ0 is the terminal

cost given by

Φ0(𝒙(𝑡𝑓 ∣𝒖)) =
7∑

𝑖=1

(�̂�𝑖 − 𝑥𝑖(𝑡𝑓 ∣𝒖))2, (4.87)
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where �̂�𝑖, 𝑖 = 1, . . . , 7, are specified desired solution levels, which can be determined

according to experience. One way to specify these desired solution levels is to solve the

optimal control problem with Φ0 deleted initially. Then, the time when the concentration

of the product solution has become stable is identified. The values of the solution levels at

this particular time instant are chosen as these specified desired solution levels. We then

re-solve the optimal problem with Φ0 being included. The inclusion of Φ0 is for regulating

the solution levels toward the end of the time horizon.

To proceed further, the bounds on the state and control variables are specified through

analyzing the production data as well as utilizing the experience of the operators from

the evaporation process of an alumina production factory in China. It is found that the

solution levels of the flash evaporators are less important than those of the evaporators.

Moreover, according to the production data, the solution levels of the flash evaporators

must be in the range of 1.5∼2.5 m; the solution level of the first evaporator is limited

to 1.8∼2.3 m; and the solution levels of the last three evaporators are constrained to lie

between 1.9 m and 2.1 m; and the sodium hydroxide concentration of the final product

must reach 160∼170 g/L. For the control variables, the flow rate of the solution should

be operated within 1.6∼5.3 m3/min; the split flow rate of the feed input into the third

evaporator is allowed to vary between 0 m3/min to 0.6 m3/min. The live steam supplied

to the process can be adjusted within 566 kg/min to 1230 kg/min. Let us write down

explicitly the bounds for these variables as follows:

𝒂 = [𝑎1, . . . , 𝑎8]
⊤ = [2.5, 2.5, 2.5, 2.3, 2.1, 2.1, 2.1, 170]⊤, (4.88a)

𝒃 = [𝑏1, . . . , 𝑏8]
⊤ = [1.5, 1.5, 1.5, 1.8, 1.9, 1.9, 1.9, 160]⊤, (4.88b)

𝒄 = [𝑐1, . . . , 𝑐9]
⊤ = [5.3, 5.3, 5.3, 5.3, 5.3, 5.3, 5.3, 0.6, 1230]⊤, (4.88c)

𝒅 = [𝑑1, . . . , 𝑑8]
⊤ = [1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 0, 566]⊤, (4.88d)

where 𝑎𝑖 and 𝑏𝑖, for each 𝑖 = 1, . . . , 7, are the upper and lower bounds for the level of the

𝑖th equipment, respectively; 𝑎8 and 𝑏8 are the upper and lower bounds for the product

concentration, respectively; 𝑑𝑙 and 𝑐𝑙, for each 𝑙 = 1, . . . , 9, are the lower and upper bounds

for the level of the 𝑙th control, respectively. The continuous inequality constraints on the

states and controls may now be stated explicitly as follows:

𝑏𝑖 ≤ 𝑥𝑖(𝑡) ≤ 𝑎𝑖, 𝑖 = 1, . . . , 7, 𝑡 ∈ [0, 𝑡𝑓 ], (4.89a)

𝑏8 ≤ 𝑥15(𝑡) ≤ 𝑎8, 𝑡 ∈ [0, 𝑡𝑓 ], (4.89b)

𝑑𝑖 ≤ 𝑢𝑙(𝑡) ≤ 𝑐𝑖, 𝑙 = 1, . . . , 9, 𝑡 ∈ [0, 𝑡𝑓 ]. (4.89c)

Any measurable function 𝒖 = [𝑢1, . . . , 𝑢9]
⊤ : [0, 𝑡𝑓 ] → ℝ9 such that the constraints (4.89c)

are satisfied is called an admissible control. Let 퓤 be the set which consists of all such

admissible controls.
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The optimal control problem may now be stated formally below.

Problem (Q1). Given System (S1) with Initial Conditions (IC), find a control 𝒖 ∈ 퓤
such that the cost functional (4.86) is minimized subject to the continuous inequality

constraints on the states given by (4.89a)-(4.89b).

For Problem (Q1), the dimension of the state variables is 35 and the differential equa-

tions of the dynamics are nonlinear with multiple delays. Furthermore, there are eight

continuous inequality constraints on the state variables which are not allowed to be vio-

lated at any time point during the time horizon. The final time 𝑡𝑓 is taken as 8 hours,

which is rather long. It does not appear that the nonlinear model predictive control

(NMPC) technique could be applied directly due to the complexity of Problem (Q1).

Nonetheless, Problem (Q1) will be solved by using the NMPC. As expected, the compu-

tational time is much too long for it to used in real operation. Thus, we shall make use of

the control parameterization method and apply the proposed optimal control method to

solve Problem (Q1). We shall also check the robustness of the optimal control obtained.

Furthermore, the results will be compared with the data collected from the real plant

to ensure proper operation of the process and those obtained by NMPC. Under normal

operation, the problem will be re-solved 3 hours before the end of the 8 hours period so

that a new optimal control can be obtained and used for the next 8 hours period.

4.4.4 Numerical results

A Numerical calculation

Consider Problem (Q1), i.e., the optimal control problem with its dynamical system,

initial condition, and the cost function described by System (S1), Initial Condition (IC)

and (4.86), respectively. Clearly,

ℒ0(𝑡,𝒙(𝑡),𝒖) =

[
𝑢9(𝑡)

(𝐹0(𝑡) + 𝐹01(𝑡))𝜌0(𝑡)− 𝑢1(𝑡)(1045 + 0.8𝑥22(𝑡) + 1.2𝑥8(𝑡) + 𝑥15(𝑡))

]2
,

Φ0(𝒙(𝑡𝑓 ∣𝒖)) =
7∑

𝑖=1

(�̂�𝑖 − 𝑥𝑖(𝑡𝑓 ∣𝒖))2.

By using the control parameterization technique and the constraints transformation

method described in Sections 4.3.1 and 4.3.2, the augmented cost function is:

𝐽𝜀,𝛾(𝝈
𝑁) = Φ0(𝒙(𝑡𝑓 ∣𝝈𝑁)) +

∫ 𝑡𝑓

0

{
ℒ0(𝑡) + 𝛾

16∑
𝑖=1

[ℒ𝑖,𝜀(𝑡,𝒙(𝑡∣𝝈𝑁))
]}
𝑑𝑡 (4.90)
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Here, ℒ𝑖,𝜀(𝑡,𝒙(𝑡∣𝝈𝑁)), 𝑖 = 1, . . . , 16, are specified in (4.19), where ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁)) are:

ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁)) = 𝑥𝑖(𝑡∣𝝈𝑁)− 𝑎𝑖, 𝑖 = 1, . . . , 7,

ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁)) = 𝑏𝑖−7 − 𝑥𝑖−7(𝑡∣𝝈𝑁), 𝑖 = 8, . . . , 14,

ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁)) = 𝑥15(𝑡∣𝝈𝑁)− 𝑎𝑖−7, 𝑖 = 15,

ℎ𝑖(𝑡,𝒙(𝑡∣𝝈𝑁)) = 𝑏𝑖−8 − 𝑥15(𝑡∣𝝈𝑁), 𝑖 = 16,

where 𝑎𝑖 and 𝑏𝑖, 𝑖 = 1, . . . , 8, are given in (4.88a)-(4.88b).

Define the Hamiltonian function as:

𝐻𝜀,𝛾 = ℒ0(𝑡,𝒙(𝑡),𝒖
𝑁(𝑡))

+
2∑

𝑘=1

[
(�̄�𝑘(𝑡))⊤𝒇𝑘𝑒(𝑡𝑓 − 𝑡+ 𝜏𝑘)

]
+ 𝛾

16∑
𝑖=1

[ℒ𝑖,𝜀(𝑡,𝒙(𝑡∣𝒖𝑁))
]
+ (𝝀(𝑡))⊤𝒇(𝑡),

where �̄�𝑘 and 𝒇𝑘, 𝑘 = 1, 2, are defined by (4.44) and (4.45), and 𝝀 = [𝜆1, . . . , 𝜆35]
⊤ ∈ ℝ35

is the solution of the co-state system defined by

𝑑𝝀(𝑡)⊤

𝑑𝑡
= −∂{ℒ0(𝑡) + 𝛾

∑16
𝑖=1 ℒ𝑖,𝜀(𝑡,𝒙(𝑡∣𝒖𝑁))}
∂𝒙

+ (𝝀(𝑡))⊤
∂𝒇

∂𝒙
+

2∑
𝑘=1

(�̄�𝑘(𝑡))⊤
∂𝒇𝑘
∂𝒙

𝑒(𝑡𝑓 − 𝑡+ 𝜏𝑘),

with terminal conditions

𝝀(𝑡𝑓 ) =
∂Φ0(𝒙(𝑡𝑓 ∣𝝈𝑁))

⊤

∂𝒙
,

𝝀(𝑡) = 0, 𝑡 > 𝑡𝑓 .

The gradient formula of the augmented cost function with respect to each component

of the control parameter vector can be calculated by using Theorem 4.7, where

∂𝐻𝜀,𝛾

∂𝑢1
=

2𝑢9(𝑡)
2(1045 + 0.8𝑥22(𝑡) + 1.2𝑥8(𝑡) + 𝑥15(𝑡))[

(𝐹0(𝑡) + 𝐹01(𝑡))𝜌0(𝑡)− 𝑢1(𝑡)(1045 + 0.8𝑥22(𝑡) + 1.2𝑥8(𝑡) + 𝑥15(𝑡))
]3

+ (𝝀(𝑡))⊤
∂𝒇

∂𝑢1
+

2∑
𝑘=1

(�̄�𝑘(𝑡))⊤
∂𝒇𝑘
∂𝑢1

𝑒(𝑡𝑓 − 𝑡+ 𝜏𝑘),

∂𝐻𝜀,𝛾

∂𝑢𝑙
= (𝝀(𝑡))⊤

∂𝒇

∂𝑢𝑙
+

2∑
𝑘=1

(�̄�𝑘(𝑡))⊤
∂𝒇𝑘
∂𝑢𝑙

𝑒(𝑡𝑓 − 𝑡+ 𝜏𝑘), 𝑙 = 2, . . . , 8,

∂𝐻𝜀,𝛾

∂𝑢9
=

2𝑢9(𝑡)[
(𝐹0(𝑡) + 𝐹01(𝑡))𝜌0(𝑡)− 𝑢1(𝑡)(1045 + 0.8𝑥22(𝑡) + 1.2𝑥8(𝑡) + 𝑥15(𝑡))

]2
+ (𝝀(𝑡))⊤

∂𝒇

∂𝑢9
+

2∑
𝑘=1

(�̄�𝑘(𝑡))⊤
∂𝒇𝑘
∂𝑢9

𝑒(𝑡𝑓 − 𝑡+ 𝜏𝑘),
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and the partial derivatives of the functions 𝐻𝜀,𝛾, 𝒇 , 𝒇1, and 𝒇2, with respect to 𝑥𝑖, 𝑖 =

1, . . . , 35, are calculated by using Maple software. Now, by using Algorithm 4.1, the

optimal control problem can be solved using any gradient-based optimization algorithm,

where the gradient of 𝐽𝜀,𝛾(𝝈
𝑁) with respect to 𝝈𝑁 are normalized at each iteration of the

optimization process.

B Result and discussion

Simulation studies are performed using MATLAB on a computer with Intel Core 2 Quad

Q9400 processor, where the final time 𝑡𝑓 is taken as 480 minutes.

The optimal control problem is solved with the penalty factor taken as 𝛾 = 105.

According to Remark 4.1, we choose 𝑁 = 80, which means that the control is allowed

to switch its value at every 6 minutes. Furthermore, the desired solution levels �̂�𝑖, 𝑖 =

1, . . . , 7, are chosen as 1.73, 2.25, 2.22, 2.14, 1.98, 2.03, and 1.98, respectively.

The disturbances that commonly affect the evaporation process are: disturbances due

to the changes of the concentrations of feed; and the disturbances on the flow rate of the

live steam. We now consider the same optimal control problem under the optimal control

obtained. However, we assume that the feed concentration and the flow rate of the live

steam are perturbed by a Gaussian noise with standard deviation of ±5%.

For comparison, we shall use the model predictive control (MPC) [61,136] to construct

the controller for the problem considered, where the objective function for MPC is given

below:

𝐽𝑀 = 100
𝑀∑
𝑘=1

{
𝑢9(𝑡𝑘)

(𝐹0(𝑡𝜄) + 𝐹01(𝑡𝜄))𝜌0(𝑡𝑘)− 𝑢1(𝑡𝑘)(1045 + 0.8𝑥22(𝑡𝑘) + 1.2𝑥8(𝑡𝑘) + 𝑥15(𝑡𝑘))

}2

+ 10
𝑃∑

𝑘=1

(𝑥15(𝑡𝑘)− 𝑥𝑟𝑒𝑓 )
2 +

𝑀∑
𝑘=1

Δ𝒖(𝑡𝑘)
⊤𝑹Δ𝒖(𝑡𝑘)

where 𝑹 = 𝑑𝑖𝑎𝑔[1, 1, 1, 1, 1, 1, 1, 0.1, 1]. 𝑡𝑘, 𝑘 = 1, . . . , 𝑃 , are 𝑘th sampling time. It is

0.1 hours. Δ𝒖(𝑡𝑘) is the change rate of the control at time 𝑡𝑘. 𝑀 = 10 is the control

horizon, 𝑃 = 13 is the predict horizon. 𝑥𝑟𝑒𝑓 is the reference trajectory, which is taken

as 162.5—the concentration of the sodium hydroxide achieved by the optimal control at

the end of the simulation time. Furthermore, the states and the controls are required to

satisfy constraints (4.89a)-(4.89b).

Consider the problem with disturbance as described above. Figure 4.4 shows the

results for this problem under the optimal control, the level controller used in the current

practice, and the MPC. These controls are depicted in Figure 4.5. It takes about 3 hours

to accomplish the optimal control calculation. The computational time of MPC for each

predicted horizon is about 20 minute, which is significantly larger than the sampling time

6 minutes. The total computational time of MPC is over 5 times longer when compared

with the optimal control method proposed in this chapter. Detailed comparisons between
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the results obtained by MPC, the level controller and those obtained by the optimal

control method are as follows.
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Figure 4.4: State of the evaporation process under the disturbances of the feed concen-
tration and the live steam flow rate

The energy usage value (the mass units of live steam used for evaporating one mass

unit of water) obtained by the proposed optimal control is 0.368. With disturbances, the

energy usage is 0.369. The energy usage obtained by the MPC controller is 0.371. It is

0.38 under the level controller used in current actual operation.

Figures 4.4(a)-4.4(g) show the changes of the solution levels. Although the solution

levels touch the permitted bounds at certain time points, both the optimal control and

the MPC drive the solution levels towards inside of the permitted ranges as the simulation

time increases. The results obtained by the optimal control have much less oscillations in

the solution levels when compared with those obtained using the level controller in the
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Figure 4.5: Control of the evaporation process

current practice.

In Figure 4.4(h), the plot of the product concentrations shows that the solution con-

centration is above 160g/L and below 170g/L during the whole time horizon. It means

that the optimal control achieves disturbance rejection while maintaining the quality of

product concentrations when disturbances occur in the feed concentration and live steam.

Furthermore, we can see that only slight fluctuation in the concentration of the final prod-

uct is observed after 250 minutes. The concentration obtained by using the MPC takes

more than 8 hours to approach the desired value.

The live steam flow rate is as shown in Figure 4.5(h). By using the optimal control,

the total live steam consumption is 466.96T. Under disturbances, it is 468.50T. On the

other hand, by using the level controller in the current practice, the total live steam

consumption is 481.76T. By using MPC, the live steam consumption is 471.5T. This

represents a significant reduction of live steam consumption being achieved by using the

optimal control, even in the presence of disturbances. The two main reasons are: (i) The

optimal control improves the performance of the flash evaporator, and (ii) the live steam

consumption and the final concentration are involved in the objective function which
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is being minimized. Thus, unnecessary live steam usage is reduced while achieving the

quality of the final product concentration.

As shown in Figure 4.5, the changes of all the variables of the optimal control and

MPC vary strictly inside their bounds. This is due to the imposed continuous inequality

constraints on the levers. It is a useful feature in practice, as there are rooms for adjusting

the pumps or valves with dead-zone of the alumina evaporation process. The variations

of the optimal control variables are much less when compared with those of the MPC.

4.5 Conclusion

In this chapter, we consider a time-delayed optimal control problem subject to continuous

state inequality constraints and control constraints. This optimal control problem arises

from practical production processes, where the systems are time-delayed dynamic sys-

tems. The objective is to find an admissible control such that the energy consumption or

the material consumption are minimized, while practical limitations and engineering spec-

ifications, which are expressed as continuous inequality constraints on the state variables

and the control constants, are satisfied. An efficient numerical algorithm is developed

based on the control parameterization technique for solving this constrained time-delayed

optimal problem. From solving an optimal control problem in a practical evaporation

process, it is observed that the results obtained by the optimal control are superior to

those obtained by MPC controller and the controller used in the current practice.



CHAPTER 5

A max-min control problem arising in

gradient elution chromatography

5.1 Introduction

Chromatography plays an important role as a separation and purification process in many

industrial settings, especially in the preparation of biochemical and pharmaceutical prod-

ucts. A typical chromatographic system shown in Figure 5.1 consists of a column contain-

ing an absorbent called the stationary phase, and a liquid that flows through the column

called the mobile phase. The absorbent is fixed in the column. The mixture to be sepa-

rated is injected into the mobile phase and flows through the column. Because different

components in the mixture are attracted to the stationary phase at varying degrees, they

travel through the column at different speeds, and thus they exit the column at different

times (called peak times or retention times). Therefore, the mixture is gradually sepa-

rated while moving through the column. The separated components are analyzed by a

detector at the outlet of the column. The chromatography signal is shown in Figure 5.2.

In practice, chromatography is time-consuming, and the purity of the final product

must satisfy strict conditions. Thus, it is essential that the chromatographic process

be controlled judiciously by varying mobile phase conditions such as pH value, ionic

strength, and flow rate. To achieve a high-quality separation and improve productivity,

the minimum duration between successive retention times should be maximized.

In this chapter, we consider an optimal control problem in which manipulative vari-

ables in the chromatographic process need to be determined to maximize separation effi-

ciency and achieve optimum separation. This problem has been formulated as a max-min

optimal control problem in [90]. It has two non-standard characteristics: (i) The objective

function is non-smooth; and (ii) each state variable is defined over a different time hori-

zon. The final time for each state variable, the so-called retention time, is not fixed and

actually depends on the control variables. A computational method for solving this prob-

lem, based on the control parameterization technique is proposed in [80]. This method

involves reformulating the max-min objective function into a more convenient form, then

108
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Figure 5.1: Basic chromatography and the reaction principle

approximating the control by a piecewise-constant function, before finally transforming

the time horizon into the fixed interval [0, 1]. This yields an approximate mathematical

programming problem that can be solved using existing optimization algorithms.

The time transformation method used in [90] is based on the substitution 𝑡 = 𝑠𝑡𝑓 ,

where 𝑡 ∈ [0, 𝑡𝑓 ] is the original time variable, 𝑠 ∈ [0, 1] is the new time variable, and 𝑡𝑓

is the final time of the process. The same transformation has been successfully applied

to solve time-optimal control problems in [13, 67]. When applied to the chromatography

optimal control problem, this transformation does not map the retention times to fixed

points, only the final time. Furthermore, the retention times do not necessarily coincide

with the control switching times in the new time horizon. In fact, the retention times

remain variable under this transformation, which makes them very difficult to compute

numerically. This is a major disadvantage, as studies show that the productivity of

a chromatographic process is highly sensitive to the retention times [11, 98]. However,

although difficult, accurate determination of the retention times is crucial for industrial

applications [152].

In the chromatography optimal control problem, an equality state constraint is im-

posed at each retention time. Such constraints are called characteristic - time constraints

in the optimal control literature [120, 121]. Computational methods for solving optimal

control problems with characteristic-time constraints is developed in [120, 121]. These

methods, however, assume that the ordering of the characteristic times is fixed and known.

In the chromatography optimal control problem, the characteristic times are the retention

times, and their ordering depends on the control variables. One approach that can be
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Figure 5.2: The chromatography signal

used to deal with this situation is the bilevel optimization approach [14], whereby the

ordering is optimized in the outer level, and the control variables and retention times are

optimized in the inner level. Another possible approach is the grid search algorithm [152],

whereby the ordering of the retention times is determined after the controls are chosen.

However, both the bilevel approach and the grid search algorithm are inefficient because

they involve solving a computationally-intensive discrete optimization problem.

In this chapter, we consider the same chromatography optimal control problem for-

mulated in [90]. We propose a new method for reformulating this problem that facilitates

accurate determination of the retention times. First, a set of auxiliary decision variables

are introduced to govern the ordering of the retention times. Then, after approximating

the control variables by piecewise-constant functions, a novel time-scaling transforma-

tion is used to map the retention times to fixed points in a new time horizon. We then

show that the max-min optimal control problem under consideration is equivalent to a

minimization problem subject to additional inequality constraints. This minimization

problem can be solved using an exact penalty method [41]. This method is then applied

to solve two real world problems. The results show that the approach is both accurate

and efficient.
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5.2 Problem statement

A gradient elution chromatographic process with 𝑁 components can be described by the

following dynamical system of differential equations [90]:

�̇�𝑘(𝑡) = 𝑓𝑘(𝑡, 𝑥𝑘(𝑡),𝒖(𝑡)), 𝑡 > 0, 𝑘 = 1, . . . , 𝑁, (5.1)

with initial conditions

𝑥𝑘(0) = 0, 𝑘 = 1, . . . , 𝑁, (5.2)

where 𝑥𝑘 is the chromatography signal corresponding to the 𝑘th component, 𝑓𝑘 is the

signal velocity corresponding to the 𝑘th component, and 𝒖 is a vector representing

mobile phase conditions such as pH value, ionic strength, temperature, and flow rate.

In the language of control theory, 𝒙 = [𝑥1, . . . , 𝑥𝑁 ]
⊤ ∈ ℝ𝑁 is called the state, and

𝒖 = [𝑢1, . . . , 𝑢𝑝]
⊤ ∈ ℝ𝑝 is called the control. Each 𝑓𝑘 : ℝ × ℝ × ℝ𝑝 → ℝ is assumed

to be a given continuously differentiable function.

For each 𝑘 = 1, . . . , 𝑁 , the retention time 𝜏𝑘 for the 𝑘th component is defined by the

following equality constraint:

𝑥𝑘(𝜏𝑘) =

∫ 𝜏𝑘

0

𝑓𝑘(𝑡, 𝑥𝑘(𝑡),𝒖(𝑡))d𝑡 = 𝐿𝑘, 𝑘 = 1, . . . , 𝑁, (5.3)

where 𝐿𝑘 is the peak height of the chromatography signal 𝑥𝑘. Thus, the state variable 𝑥𝑘

is defined on the time horizon [0, 𝜏𝑘].

We assume that the 𝑝 control variables in the chromatographic process are bounded:

𝑎𝑗 ≤ 𝑢𝑗(𝑡) ≤ 𝑏𝑗, 𝑡 ≥ 0, 𝑗 = 1, . . . , 𝑝, (5.4)

where 𝑎𝑗 and 𝑏𝑗 are the lower and upper bounds of the 𝑗th control variable, respectively.

Given a piecewise continuous function 𝒖 : [0,∞) → ℝ𝑝 satisfying (5.4), we can solve the

system defined by (5.1) and (5.2) to yield a corresponding state trajectory.

To ensure that the gradient elution process is effective, the control variables should be

chosen so that the minimum duration between successive retention times is maximized.

Hence, we introduce the following objective function:

𝐽(𝒖) = min
𝑖∕=𝑗

{
(𝜏𝑗 − 𝜏𝑖)

2

𝜏𝑓

}
, (5.5)

where 𝜏𝑓 is the terminal time for the chromatographic process defined by

𝜏𝑓 = max
𝑘=1,...,𝑁

{𝜏𝑘}.
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We now introduce the following optimal control problem.

Problem (P). Given the system defined by (5.1) and (5.2), choose a control 𝒖 : [0,∞) →
ℝ𝑝 and the corresponding retention times 𝜏𝑘, 𝑘 = 1, . . . , 𝑁 , such that the objective function

(5.5) is maximized subject to the terminal constraints (5.3) and the control constraints

(5.4).

Compared with standard optimal control problems, Problem (P) has several unusual

characteristics:

(i) The max-min objective function is non-smooth.

(ii) Each state variable is defined over a different time horizon.

(iii) The retention times and the ordering of the retention times are not fixed, but instead

depend on the control through (5.3).

Thus, Problem (P) is a highly non-standard optimal control problem and cannot be solved

directly using standard methods such as the Pontryagin minimum principle [92] or state

discretization [38,148].

5.3 Problem transformation

Let 𝝉 = [𝜏1, . . . , 𝜏𝑁 ]
⊤ be a vector containing the retention times. Furthermore, let 𝑣𝑖𝑗,

𝑖 = 1, . . . , 𝑁 ; 𝑗 = 1, . . . , 𝑁 , be a set of auxiliary decision variables controlling the order

of the retention times, where

𝑣𝑖𝑗 =

⎧⎨⎩1, if component 𝑗 has the 𝑖th earliest retention time,

0, otherwise.
(5.6)

Clearly,
𝑁∑
𝑗=1

𝑣𝑖𝑗 = 1, 𝑖 = 1, . . . , 𝑁, (5.7)

and

𝑁∑
𝑖=1

𝑣𝑖𝑗 = 1, 𝑗 = 1, . . . , 𝑁. (5.8)

We collect the auxiliary variables into a vector 𝒗 = [𝒗⊤1 , . . . ,𝒗
⊤
𝑁 ]

⊤ ∈ ℝ𝑁𝑁 , where 𝒗𝑖 =

[𝑣𝑖1, . . . , 𝑣𝑖𝑁 ]
⊤. As an example, consider a 3-component mixture in which component 2 is

the first component to exit the chromatography column, component 1 is the second, and

component 3 is the last. Then 𝜏2 < 𝜏1 < 𝜏3, and thus 𝒗1 = [0, 1, 0]⊤, 𝒗2 = [1, 0, 0]⊤, and

𝒗3 = [0, 0, 1]⊤.
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Standard gradient-based optimization techniques cannot handle binary constraints

such as (5.6). Thus, we replace the 0-1 constraints on 𝑣𝑖𝑗 by the following constraints:

𝑁∑
𝑗=1

𝑣𝑖𝑗(𝑗
2 − 𝑗 + 1

3
)−

{ 𝑁∑
𝑗=1

𝑣𝑖𝑗(𝑗 − 1
2
)

}2

=
1

12
, 𝑖 = 1, . . . , 𝑁, (5.9)

and

0 ≤ 𝑣𝑖𝑗 ≤ 1, 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝑁. (5.10)

The following result shows that (5.9) and (5.10) imply 𝑣𝑖𝑗 ∈ {0, 1}.

Theorem 5.1. Suppose that 𝑣𝑖𝑗, 𝑖 = 1, . . . , 𝑁 ; 𝑗 = 1, . . . , 𝑁 , satisfy (5.7) and (5.10).

Then, for each 𝑖 = 1, . . . , 𝑁 , (5.9) holds if and only if there exists a 𝑘 ∈ {1, . . . , 𝑁} such

that 𝑣𝑖𝑘 = 1 and 𝑣𝑖𝑗 = 0 for all 𝑗 ∕= 𝑘.

Proof. Let 𝑖 ∈ {1, . . . , 𝑁} be fixed but arbitrary, and assume that 𝑣𝑖𝑘 = 1 and 𝑣𝑖𝑗 = 0 for

all 𝑗 ∕= 𝑘. Then

𝑁∑
𝑗=1

𝑣𝑖𝑗(𝑗
2 − 𝑗 + 1

3
)−

{ 𝑁∑
𝑗=1

𝑣𝑖𝑗(𝑗 − 1
2
)

}2

= 𝑘2 − 𝑘 + 1
3
− (𝑘 − 1

2
)2 =

1

12
. (5.11)

To prove the opposite implication, we use similar arguments to those used in the proof

of Lemma 3.1 in [65]. First, consider the following optimization problem, which we call

Problem (Q):

min
𝑣𝑖1,...,𝑣𝑖𝑁

𝑁∑
𝑗=1

𝑣𝑖𝑗(𝑗
2 − 𝑗 + 1

3
)−

{ 𝑁∑
𝑗=1

𝑣𝑖𝑗(𝑗 − 1
2
)

}2

(5.12)

s.t.
𝑁∑
𝑗=1

𝑣𝑖𝑗 = 1, (5.13)

𝑣𝑖𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑁. (5.14)

Note that Problem (Q) has a continuous objective function and a compact feasible region.

Hence, it admits at least one optimal solution. The Lagrangian for Problem (Q) is defined

by

ℒ =
𝑁∑
𝑗=1

𝑣𝑖𝑗(𝑗
2 − 𝑗 + 1

3
)−

{ 𝑁∑
𝑗=1

𝑣𝑖𝑗(𝑗 − 1
2
)

}2

− 𝜌

{ 𝑁∑
𝑗=1

𝑣𝑖𝑗 − 1

}
−

𝑁∑
𝑗=1

𝜂𝑗𝑣𝑖𝑗,

where 𝜌 is the Lagrange multiplier for the equality constraint, and 𝜂𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑁 ,

are the Lagrange multipliers for the inequality constraints.

Since the linear independence constraint qualification is clearly satisfied in Prob-
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lem (Q), any optimal solution must satisfy the following Kuhn-Tucker conditions [73]:

∂ℒ
∂𝑣𝑖𝑘

= 𝑘2 − 𝑘 + 1
3
− 2

{ 𝑁∑
𝑗=1

𝑣𝑖𝑗(𝑗 − 1
2
)

}
(𝑘 − 1

2
)− 𝜌− 𝜂𝑘 = 0,

𝑘 = 1, . . . , 𝑁,

(5.15)

and

𝜂𝑘𝑣𝑖𝑘 = 0, 𝑘 = 1, . . . , 𝑁. (5.16)

From (5.15), we obtain

𝑔(𝑘)− 𝜂𝑘 = 0, 𝑘 = 1, . . . , 𝑁,

where 𝑔 : ℝ → ℝ is a quadratic function defined by

𝑔(𝑦) = 𝑦2 − 𝑦 + 1
3
− 2

{ 𝑁∑
𝑗=1

𝑣𝑖𝑗(𝑗 − 1
2
)

}
(𝑦 − 1

2
)− 𝜌

= 𝑦2 −
[
1 + 2

{ 𝑁∑
𝑗=1

𝑣𝑖𝑗(𝑗 − 1
2
)

}]
𝑦 +

[
1
3
+

𝑁∑
𝑗=1

𝑣𝑖𝑗(𝑗 − 1
2
)− 𝜌

]
.

Clearly 𝑔(𝑘) = 0 if and only if 𝜂𝑘 = 0. Since 𝑔(𝑦) is a quadratic function with at

most two real roots, no more than two of the multipliers for the inequality constraints in

Problem (Q) are zero.

Suppose that 𝜂𝑘 > 0 for all 𝑘 = 1, . . . , 𝑁 . Then, by (5.16), 𝑣𝑖𝑘 = 0 for all 𝑘 = 1, . . . , 𝑁 ,

contradicting (5.13) in Problem (Q). Thus, it suffices to consider the following two cases:

(a) There exist an integer 𝑘1 such that 𝜂𝑘1 = 0 and 𝜂𝑘 > 0 for all 𝑘 ∕= 𝑘1 (exactly one

of the multipliers is zero).

(b) There exists integers 𝑘1 and 𝑘2 such that 𝜂𝑘1 = 𝜂𝑘2 = 0 and 𝜂𝑘 > 0 for all 𝑘 ∕= 𝑘1, 𝑘2

(exactly two of the multipliers are zero).

Consider Case (a). In this case, (5.16) and the equality constraint (5.13) in Prob-

lem (Q) imply that 𝑣𝑖𝑘1 = 1 and 𝑣𝑖𝑘 = 0 for all 𝑘 ∕= 𝑘1. Thus, as shown in (5.11), the

optimal cost of Problem (Q) is equal to 1
12
.

We now consider Case (b). In this case, (5.16) implies that 𝑣𝑖𝑘 = 0 for all 𝑘 ∕= 𝑘1, 𝑘2.

Hence, from the equality constraint (5.13) in Problem (Q), we have 𝑣𝑖𝑘2 = 1− 𝑣𝑖𝑘1 . Thus,
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the optimal cost of Problem (Q) is

𝑁∑
𝑗=1

𝑣𝑖𝑗(𝑗
2 − 𝑗 + 1

3
)−

{ 𝑁∑
𝑗=1

𝑣𝑖𝑗(𝑗 − 1
2
)
}2

= 𝑣𝑖𝑘1(𝑘
2
1 − 𝑘1 +

1
3
) + 𝑣𝑖𝑘2(𝑘

2
2 − 𝑘2 +

1
3
)−

{
𝑣𝑖𝑘1(𝑘1 − 1

2
) + 𝑣𝑖𝑘2(𝑘2 − 1

2
)
}2

= 𝑣𝑖𝑘1(𝑘
2
1 − 𝑘1 +

1
3
) + (1− 𝑣𝑖𝑘1)(𝑘

2
2 − 𝑘2 +

1
3
)

−
{
𝑣𝑖𝑘1(𝑘1 − 1

2
) + (1− 𝑣𝑖𝑘1)(𝑘2 − 1

2
)
}2

= 1
12

+ (𝑣𝑖𝑘1 − 𝑣2𝑖𝑘1)(𝑘1 − 𝑘2)
2 ≥ 1

12
,

where the last inequality follows from 0 ≤ 𝑣𝑖𝑗 ≤ 1. Clearly, from Cases (a) and (b), the

minimum value of the cost function in Problem (Q) is 1
12
. Furthermore, this minimum is

achieved only when there exists a 𝑘 ∈ {1, . . . , 𝑁} such that 𝑣𝑖𝑘 = 1 and 𝑣𝑖𝑗 = 0, 𝑗 ∕= 𝑘.

This completes the proof.

On the basis of Theorem 5.1, we can replace the binary constraints (5.6) by the non-

discrete constraints (5.7), (5.9), and (5.10). As we will see later, this reformulation enables

us to determine the optimal retention time ordering by using an exact penalty function

method.

To proceed, we now use the control parameterization technique [80] to approximate

Problem (P) by a finite-dimensional optimization problem. This is done by approximating

the control 𝒖 by a piecewise-constant function that switches value at each retention time

and at 𝑞−1 times between each pair of successive retention times. Thus, the time horizon is

divided into 𝑞𝑁 subintervals, with 𝑞 subintervals between each pair of successive retention

times, and the control is approximated by a constant value on each subinterval.

For each 𝑗 = 1, . . . , 𝑝, the control 𝑢𝑗 is approximated as follows:

𝑢𝑗(𝑡) =

𝑞𝑁∑
𝑖=1

𝜎𝑖
𝑗𝜒[𝑡𝑖−1,𝑡𝑖)(𝑡), 𝑡 ∈ [0, 𝜏𝑓 ], (5.17)

where 𝑡𝑖, 𝑖 = 0, . . . , 𝑞𝑁 , are the control switching times; 𝜎𝑖
𝑗, 𝑖 = 1, . . . , 𝑞𝑁 ; 𝑗 = 1, . . . , 𝑝,

are the control heights; and 𝜒[𝑡𝑖−1,𝑡𝑖) is the indicator function for the subinterval [𝑡𝑖−1, 𝑡𝑖)

defined by

𝜒[𝑡𝑖−1,𝑡𝑖)(𝑡) =

⎧⎨⎩1, if 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖),

0, otherwise.
(5.18)

Here, 0 ≤ 𝑡0 ≤ 𝑡1 ≤ ⋅ ⋅ ⋅ ≤ 𝑡𝑞𝑁 = 𝜏𝑓 . Furthermore, for each 𝑘 = 1, . . . , 𝑁 , the switching

time 𝑡𝑘𝑞 (the right end-point of subinterval [𝑡𝑘𝑞−1, 𝑡𝑘𝑞]) coincides with one of the retention

times. Our objective is to choose the control heights and control switching times in (5.17)

appropriately so that the objective function (5.5) is maximized. Note that the control
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approximation scheme used in (5.17) is more flexible than the one used in [90], which does

not allow the switching times to be determined optimally (instead they are pre-fixed).

It is well-known that treating the control switching times as decision variables causes

major problems in numerical computation, see [67, 121]. Hence, we will use the so-called

time-scaling transformation [81] to map the switching times to fixed points in a new time

horizon. This involves introducing a new time variable 𝑠 ∈ [0, 𝑞𝑁 ], and then relating 𝑠 to

𝑡 through the following differential equation:

𝑑𝑡(𝑠)

𝑑𝑠
= 𝜔(𝑠),

𝑡(0) = 0,

(5.19)

where 𝜔 : [0, 𝑞𝑁 ] → [0,∞) is a piecewise-constant function with switching points at the

fixed locations 𝑠 = 𝑖, 𝑖 = 1, . . . , 𝑞𝑁 − 1. We express 𝜔 mathematically as follows:

𝜔(𝑠) =

𝑞𝑁∑
𝑖=1

𝜃𝑖𝜒[𝑖−1,𝑖)(𝑠), (5.20)

where

𝜃𝑖 = 𝑡𝑖 − 𝑡𝑖−1 ≥ 0, 𝑖 = 1, . . . , 𝑞𝑁. (5.21)

It follows from (5.19) that for 𝑠 ∈ [𝑙 − 1, 𝑙], we have

𝑡(𝑠) =

∫ 𝑠

0

𝜔(𝜂)𝑑𝜂 =
𝑙−1∑
𝑗=1

𝜃𝑗 + 𝜃𝑙(𝑠− 𝑙 + 1).

Furthermore, for each 𝑙 = 1, . . . , 𝑞𝑁 ,

𝑡(𝑙) =
𝑙∑

𝑗=1

𝜃𝑗 =
𝑙∑

𝑗=1

(𝑡𝑗 − 𝑡𝑗−1) = 𝑡𝑙.

This shows that the time-scaling transformation defined by (5.19) and (5.20) maps the

control switching times to fixed integers.

After applying the time-scaling transformation, the control variables defined in (5.17)

are written as:

�̃�𝑗(𝑠) = 𝑢𝑗(𝑡(𝑠)) =

𝑞𝑁∑
𝑖=1

𝜎𝑖
𝑗𝜒[𝑖−1,𝑖)(𝑠), 𝑗 = 1, . . . , 𝑝, (5.22)

where the control heights satisfy the following constraints:

𝑎𝑗 ≤ 𝜎𝑖
𝑗 ≤ 𝑏𝑗, 𝑗 = 1, . . . , 𝑝, 𝑖 = 1, . . . , 𝑞𝑁. (5.23)

Define 𝝈 = [(𝝈1)⊤, . . . , (𝝈𝑞𝑁)⊤]⊤ ∈ ℝ𝑞𝑁𝑝, where 𝝈𝑖 = [𝜎𝑖
1, . . . , 𝜎

𝑖
𝑝]

⊤ ∈ ℝ𝑝, 𝑖 = 1, . . . , 𝑞𝑁 .
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Furthermore, let 𝜽 = [𝜃1, . . . , 𝜃𝑞𝑁 ]
⊤.

Under the time-scaling transformation, the system defined by (5.1) and (5.2) becomes

𝑑�̃�𝑘(𝑠)

𝑑𝑠
=

𝑞𝑁∑
𝑖=1

𝜃𝑖𝑓𝑘(𝑡(𝑠), �̃�𝑘(𝑠),𝝈
𝑖)𝜒[𝑖−1,𝑖)(𝑠), 𝑘 = 1, . . . , 𝑁,

𝑑𝑡(𝑠)

𝑑𝑠
= 𝜔(𝑠),

(5.24)

with initial conditions
�̃�𝑘(0) = 0, 𝑘 = 1, . . . , 𝑁,

𝑡(0) = 0.
(5.25)

The objective function (5.5) becomes

𝐽(𝝈,𝜽,𝒗) = min
𝑖=1,...,𝑁−1

{
(𝑡(𝑖+1)𝑞 − 𝑡𝑖𝑞)

2

𝑡𝑞𝑁

}
= min

𝑖=1,...,𝑁−1

(𝜃𝑖𝑞+1 + 𝜃𝑖𝑞+2 + ⋅ ⋅ ⋅+ 𝜃𝑖𝑞+𝑞)
2

𝜃1 + 𝜃2 + ⋅ ⋅ ⋅+ 𝜃𝑞𝑁
. (5.26)

For each 𝑖 = 1, . . . , 𝑁 , exactly one component in the chromatography system will have

its retention time at 𝑡 = 𝑡𝑖𝑞. Hence, we have the following interior point constraints:

𝑁∑
𝑘=1

𝑣𝑖𝑘(�̃�𝑘(𝑖𝑞)− 𝐿𝑘) = 0, 𝑖 = 1, . . . , 𝑁. (5.27)

In view of our discussion above, Problem (P) can be approximated by the following

optimization problem.

Problem (P1). Given the system defined by (5.24) and (5.25), find vectors 𝝈 ∈ ℝ𝑞𝑁𝑝,

𝜽 ∈ ℝ𝑞𝑁 , and 𝒗 ∈ ℝ𝑁𝑁 , such that the objective function (5.26) is maximized subject to

(5.7)-(5.10), (5.21), (5.23) and interior point constraints (5.27).

Although Problem (P1) is a finite-dimensional optimization problem, it is still difficult

to solve because the objective function (5.26) is non-smooth. Thus, we introduce a new

decision parameter 𝜉, where

𝜉 = min
𝑖=1,...,𝑁−1

(𝜃𝑖𝑞+1 + 𝜃𝑖𝑞+2 + ⋅ ⋅ ⋅+ 𝜃𝑖𝑞+𝑞)
2

𝜃1 + 𝜃2 + ⋅ ⋅ ⋅+ 𝜃𝑞𝑁
.

Clearly, for each 𝑖 = 1, . . . , 𝑁 − 1, the following inequality is satisfied:

(𝜃𝑖𝑞+1 + 𝜃𝑖𝑞+2 + ⋅ ⋅ ⋅+ 𝜃𝑖𝑞+𝑞)
2

𝜃1 + 𝜃2 + ⋅ ⋅ ⋅+ 𝜃𝑞𝑁
≥ 𝜉.
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Since 𝜃1 + ⋅ ⋅ ⋅+ 𝜃𝑞𝑁 > 0, this inequality can be rewritten as:

𝜉

𝑞𝑁∑
𝑘=1

𝜃𝑘 −
{ 𝑖𝑞+𝑞∑

𝑙=𝑖𝑞+1

𝜃𝑙

}2

≤ 0, 𝑖 = 1, . . . , 𝑁 − 1. (5.28)

Thus, Problem (P1) is equivalent to the following problem.

Problem (P2). Given the system defined by (5.24) and (5.25), find vectors 𝝈 ∈ ℝ𝑞𝑁𝑝,

𝜽 ∈ ℝ𝑞𝑁 , and 𝒗 ∈ ℝ𝑁𝑁 , and the parameter 𝜉, to minimize the cost function

𝐽(𝝈,𝜽,𝒗, 𝜉) = −𝜉 (5.29)

subject to (5.7)-(5.10), (5.21), (5.23), (5.27) and (5.28).

5.4 A computational method

Problem (P2) is a finite-dimensional optimization problem with nonlinear equality and

nonlinear inequality constraints. The major difficulty with solving this problem is that

the constraints (5.7) - (5.10) force 𝑣𝑖𝑗 to be binary decision variables, and thus the feasible

region for Problem (P2) is disjoint. Standard gradient-based optimization methods usually

fail miserably when applied to problems with disjoint feasible regions. In this section, we

will show how to solve Problem (P2) using an exact penalty function method.

First, let

𝑔𝑚(𝜽, 𝜉) = 𝜉

𝑞𝑁∑
𝑘=1

𝜃𝑘 −
{ 𝑚𝑞+𝑞∑

𝑙=𝑚𝑞+1

𝜃𝑙

}2

, 𝑚 = 1, . . . , 𝑁 − 1.

Furthermore, for each 𝑚 = 1, . . . , 𝑁 , let

ℎ𝑚(𝒗) =
𝑁∑
𝑗=1

𝑣𝑚𝑗 − 1,

ℎ̂𝑚(𝒗) =
𝑁∑
𝑖=1

𝑣𝑖𝑚 − 1,

ℎ̃𝑚(𝒗) =
𝑁∑
𝑗=1

𝑣𝑚𝑗(𝑗
2 − 𝑗 + 1

3
)−

{ 𝑁∑
𝑗=1

𝑣𝑚𝑗(𝑗 − 1
2
)

}2

− 1

12
.

We will use an exact penalty function approach, recently developed in [41], to handle the

equality constraints (5.7)- (5.9), and the inequality constraints (5.28). This approach has

been successively used to solve semi-infinite and discrete optimization problems [40–42].
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Consider the following penalty function:

𝐽𝜂(𝝈,𝜽,𝒗, 𝜉, 𝜀) = −𝜉 + 𝜀−𝛼(Δ1(𝜽, 𝜉, 𝜀) + Δ2(𝒗)) + 𝜂𝜀𝛽, (5.30)

where 𝜀 > 0 is a new decision variable and

Δ1(𝜽, 𝜉, 𝜀) =
𝑁−1∑
𝑚=1

{
max{0, 𝑔𝑚(𝜽, 𝜉)− 𝜀𝛾𝜅𝑚}

}2

,

Δ2(𝒗) =
𝑁∑

𝑚=1

{
(ℎ𝑚(𝒗))

2 + (ℎ̂𝑚(𝒗))
2 + (ℎ̃𝑚(𝒗))

2

}
.

Here, 𝛼 > 0, 𝛽 > 2, 𝛾 > 0, and 𝜅𝑚 ∈ (0, 1), 𝑚 = 1, . . . , 𝑁 − 1, are fixed constants, and

𝜂 > 0 is the penalty parameter. Note that Δ1(𝜽, 𝜉, 𝜀) measures violations in (5.28), while

Δ2(𝒗) measures violations in (5.7) - (5.9). The idea is that when the penalty parameter 𝜂

is large, the final term in (5.30) forces 𝜀 to be small, which in turn causes the middle term

in (5.30) to penalize constraint violations very severely. Hence, minimizing the penalty

function will lead to a feasible point of Problem (P2). With this in mind, we introduce

the following exact penalty function problem for Problem (P2).

Problem (P3). Given the system defined by (5.24) and (5.25), find vectors 𝝈 ∈ ℝ𝑞𝑁𝑝,

𝜽 ∈ ℝ𝑞𝑁 , 𝒗 ∈ ℝ𝑁𝑁 , and the parameters 𝜉 and 𝜀, such that the penalty function (5.30)

is minimized subject to the bound constraints (5.10), (5.21), and (5.23), and the interior

point constraints (5.27).

Problem (P3) is an optimal parameter selection problem with bound constraints on

decision parameters 𝝈, 𝜽, 𝒗, 𝜉, 𝜀 and interior point constraints (5.27). Unlike the non-

smooth approximate problem derived in [90], Problem (P3) can be solved using standard

computational methods such as those developed in Chapter 5 of [80]. These computational

methods have been implemented in the optimal control software package MISER [91].

To solve Problem (P3), MISER requires gradient formulae for both the objective

function and the constraint functions. The gradients of 𝐽𝜂 are given below:

∂𝐽𝜂
∂𝜃𝑖

= 2𝜀−𝛼

𝑁−1∑
𝑚=1

[
max{0, 𝑔𝑚(𝜽, 𝜉)− 𝜀𝛾𝜅𝑚}

][
𝜉 − 2

{ 𝑚𝑞+𝑞∑
𝑘=𝑚𝑞+1

𝜃𝑘

}
𝜒[𝑚𝑞+1,𝑚𝑞+𝑞](𝑖)

]
,

∂𝐽𝜂
∂𝑣𝑖𝑗

= 2𝜀−𝛼

𝑁∑
𝑚=1

{
ℎ𝑚(𝒗)

∂ℎ𝑚(𝒗)

∂𝑣𝑖𝑗
+ ℎ̂𝑚(𝒗)

∂ℎ̂𝑚(𝒗)

∂𝑣𝑖𝑗
+ ℎ̃𝑚(𝒗)

∂ℎ̃𝑚(𝒗)

∂𝑣𝑖𝑗

}
,

∂𝐽𝜂
∂𝜉

= −1 + 2𝜀−𝛼

𝑁−1∑
𝑚=1

{[
max{0, 𝑔𝑚(𝜽, 𝜉)− 𝜀𝛾𝜅𝑚}

] 𝑞𝑁∑
𝑘=1

𝜃𝑘

}
,
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∂𝐽𝜂
∂𝜀

= 2𝜀−𝛼

𝑁−1∑
𝑚=1

{
− 𝛾𝜅𝑚𝜀

𝛾−1

[
max{0, 𝑔𝑚(𝜽, 𝜉)− 𝜀𝛾𝜅𝑚}

]}
− 𝛼𝜀−𝛼−1(Δ1(𝜽, 𝜉, 𝜀) + Δ2(𝒗)) + 𝛽𝜂𝜀𝛽−1,

∂𝐽𝜂
∂𝜎𝑖

𝑗

= 0,

where

∂ℎ̃𝑚(𝒗)

∂𝑣𝑖𝑗
=

⎧⎨⎩(𝑗2 − 𝑗 + 1
3
)− 2(𝑗 − 1

2
)

{∑𝑁
𝑗=1 𝑣𝑖𝑗(𝑗 − 1

2
)

}
, if 𝑖 = 𝑚,

0, if 𝑖 ∕= 𝑚,

and

∂ℎ𝑚(𝒗)

∂𝑣𝑖𝑗
=

⎧⎨⎩1, if 𝑖 = 𝑚,

0, if 𝑖 ∕= 𝑚,

∂ℎ̂𝑚(𝒗)

∂𝑣𝑖𝑗
=

⎧⎨⎩1, if 𝑗 = 𝑚,

0, if 𝑗 ∕= 𝑚.

We now consider the gradient of the interior point constraints (5.27). First, define

Φ𝑚(�̃�(𝑚𝑞),𝒗) =
𝑁∑
𝑘=1

𝑣𝑚𝑘(�̃�𝑘(𝑚𝑞)− 𝐿𝑘), 𝑚 = 1, . . . , 𝑁. (5.31)

That is, Φ𝑚 is the left-hand side of the interior point constraints (5.27) (with index

𝑖 replaced by 𝑚). The partial derivatives of Φ𝑚 with respect to 𝜉, 𝜀, and 𝑣𝑖𝑗 can be

computed directly:
∂Φ𝑚

∂𝜀
=
∂Φ𝑚

∂𝜉
= 0,

and

∂Φ𝑚

∂𝑣𝑖𝑗
=

⎧⎨⎩�̃�𝑗(𝑚𝑞)− 𝐿𝑗, if 𝑖 = 𝑚,

0, if 𝑖 ∕= 𝑚.

The partial derivatives with respect to 𝝈 and 𝜽, however, are more difficult because 𝝈

and 𝜽 influence Φ𝑚 implicitly through the dynamic system defined by (5.24) and (5.25).

They are derived via formulas given below. Define the Hamiltonian function

𝐻𝑚 =
𝑁∑
𝑘=1

𝜆𝑚𝑘 (𝑠)𝜔(𝑠)𝑓𝑘(𝑡(𝑠), �̃�𝑘(𝑠), �̃�(𝑠)) + 𝜆𝑚𝑁+1(𝑠)𝜔(𝑠), (5.32)

where the costate functions 𝜆𝑚𝑘 : ℝ → ℝ satisfy the dynamic systems

�̇�𝑚𝑘 (𝑠) = −∂𝐻𝑚

∂�̃�𝑘
, 𝑠 ∈ [0,𝑚𝑞], 𝑘 = 1, . . . , 𝑁, (5.33)

𝜆𝑚𝑘 (𝑚𝑞) = 𝑣𝑚𝑘, (5.34)
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and

�̇�𝑚𝑁+1(𝑠) = −∂𝐻𝑚

∂𝑡
, 𝑠 ∈ [0,𝑚𝑞], (5.35)

𝜆𝑚𝑁+1(𝑚𝑞) = 0. (5.36)

For each 𝑚, 𝑚 = 1, . . . , 𝑁 , we have the following results.

Theorem 5.2. The partial derivatives of Φ𝑚 with respect to 𝝈 is

∂Φ𝑚(�̃�(𝑚𝑞),𝒗)

∂𝜎𝑖
𝑗

=

⎧⎨⎩
∫ 𝑖

𝑖−1
∂𝐻𝑚

∂𝜎𝑗
d𝑠, if 𝑖 ≤ 𝑚𝑞,

0, if 𝑖 > 𝑚𝑞,
(5.37)

Proof. Let the control parameter vector 𝝈 be perturbed by 𝜖𝝆, where 𝜖 > 0 is a small

real number and 𝝆 is an arbitrary fixed perturbation of 𝝈. Then, we have

𝝈(𝜖) = 𝝈 + 𝜖𝝆,

where 𝝆 = [(𝝆1)⊤, . . . , (𝝆𝑞𝑁)⊤]⊤, and 𝝈(𝜖) = [(𝝈1(𝜖))⊤, . . . , (𝝈𝑞𝑁(𝜖))⊤]⊤. Consequently,

the system state �̃� as well as the function Φ𝑚 will be perturbed. Let

�̃�𝑘(𝑠, 𝜖) = �̃�𝑘(𝑠∣𝝈(𝜖)), 𝑘 = 1, . . . , 𝑁.

Clearly,

�̃�𝑘(𝑠, 𝜖) = �̃�𝑘(0) +

𝑞𝑁∑
𝑖=1

∫ 𝑠

0

𝜃𝑖𝑓𝑘(𝑡(𝑙), �̃�𝑘(𝑙),𝝈
𝑖(𝜖))(𝑙)𝑑𝑙.

Let 𝑓𝑘(𝑡(⋅), �̃�𝑘(⋅),𝝈𝑖(𝜖))(⋅) be written as 𝑓𝑘(⋅) for brevity. Then, by the chain rule, we have

Δ�̃�𝑘(𝑠) =
𝑑�̃�𝑘(𝑠, 𝜖)

𝑑𝜖

∣∣∣
𝜖=0

=

𝑞𝑁∑
𝑖=1

∫ 𝑠

0

𝜃𝑖

{∂𝑓𝑘(𝑙)
∂�̃�𝑘

Δ�̃�𝑘(𝑙) +
∂𝑓𝑘(𝑙)

∂𝝈𝑖
𝝆𝑖
}
𝑑𝑙.

Clearly,

𝑑Δ�̃�𝑘(𝑠)

𝑑𝑠
=

𝑞𝑁∑
𝑖=1

𝜃𝑖

{∂𝑓𝑘(𝑠)
∂�̃�𝑘

Δ�̃�𝑘(𝑠) +
∂𝑓𝑘(𝑠)

∂𝝈𝑖
𝝆𝑖
}
. (5.38)

By using (5.32), we have

Δ𝐻𝑚 =
∂𝐻𝑚

∂𝝈
𝝆+

𝑁∑
𝑘=1

∂𝐻𝑚

∂�̃�𝑘
Δ�̃�𝑘(𝑠) =

𝑁∑
𝑘=1

𝜆𝑚𝑘 (𝑠)𝜔(𝑠)
{∂𝑓𝑘(𝑠)

∂�̃�𝑘
Δ�̃�𝑘(𝑠) +

∂𝑓𝑘(𝑠)

∂𝝈
𝝆
}
.
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Using the definition of 𝜔(𝑠) in (5.20), it is clear that

∂𝐻𝑚

∂𝝈
𝝆+

𝑁∑
𝑘=1

∂𝐻𝑚

∂�̃�𝑘
Δ�̃�𝑘(𝑠) =

𝑞𝑁∑
𝑖=1

𝑁∑
𝑘=1

𝜆𝑚𝑘 (𝑠)𝜃𝑖

{∂𝑓𝑘(𝑠)
∂�̃�𝑘

Δ�̃�𝑘(𝑠) +
∂𝑓𝑘(𝑠)

∂𝝈𝑖
𝝆𝑖
}
. (5.39)

Substituting (5.38) into (5.39) yields

∂𝐻𝑚

∂𝝈
𝝆+

𝑁∑
𝑘=1

∂𝐻𝑚

∂�̃�𝑘
Δ�̃�𝑘(𝑠)−

𝑁∑
𝑘=1

𝜆𝑚𝑘 (𝑠)
𝑑Δ�̃�𝑘(𝑠)

𝑑𝑠
= 0. (5.40)

Then, by the chain rule, we obtain

ΔΦ𝑚(�̃�(𝑚𝑞),𝒗) =
𝑑Φ𝑚(�̃�(𝑚𝑞),𝒗)

𝑑𝜖

∣∣∣
𝜖=0

=
∂Φ𝑚(�̃�(𝑚𝑞),𝒗)

∂�̃�𝑘
Δ�̃�𝑘(𝑚𝑞). (5.41)

Adding (5.40) to the right hand side of (5.41), gives

ΔΦ𝑚(�̃�(𝑚𝑞),𝒗) =
𝑁∑
𝑘=1

∂Φ𝑚(�̃�(𝑚𝑞),𝒗)

∂�̃�𝑘
Δ�̃�𝑘(𝑚𝑞) +

∫ 𝑚𝑞

0

∂𝐻𝑚

∂𝝈
𝝆𝑑𝑙

+
𝑁∑
𝑘=1

∫ 𝑚𝑞

0

{∂𝐻𝑚

∂�̃�𝑘
Δ�̃�𝑘(𝑙)− 𝜆𝑚𝑘 (𝑙)

𝑑Δ�̃�𝑘(𝑙)

𝑑𝑙

}
𝑑𝑙

(5.42)

Integrating the last term of (5.42) by parts gives

ΔΦ𝑚(�̃�(𝑚𝑞),𝒗) =
𝑁∑
𝑘=1

∂Φ𝑚(�̃�(𝑚𝑞),𝒗)

∂�̃�𝑘
Δ�̃�𝑘(𝑚𝑞)−

𝑁∑
𝑘=1

𝜆𝑚𝑘 (𝑙)Δ�̃�𝑘(𝑙)
∣∣∣𝑚𝑞

0

+

∫ 𝑚𝑞

0

∂𝐻𝑚

∂𝝈
𝝆𝑑𝑙 +

𝑁∑
𝑘=1

∫ 𝑚𝑞

0

{∂𝐻𝑚

∂�̃�𝑘
Δ�̃�𝑘(𝑙) +

𝑑𝜆𝑚𝑘 (𝑙)

𝑑𝑙
Δ�̃�𝑘(𝑙)

}
𝑑𝑙.

(5.43)

Since �̃�𝑘(0) = 0, 𝑘 = 1, . . . , 𝑁 , it follows that 𝜆𝑚𝑘 (0)Δ�̃�𝑘(0) = 0, 𝑘 = 1, . . . , 𝑁 . Substitut-

ing (5.33)-(5.34) into (5.43) yields

ΔΦ𝑚(�̃�(𝑚𝑞),𝒗) =

∫ 𝑚𝑞

0

∂𝐻𝑚

∂𝝈
𝝆𝑑𝑙.

Since 𝝆 is chosen arbitrary, using the definition of 𝝈, the result follows directly.

Theorem 5.3. For each 𝑚, 𝑚 = 1, . . . , 𝑁 , the partial derivatives of Φ𝑚 with respect to

𝜽 is

∂Φ𝑚(�̃�(𝑚𝑞),𝒗)

∂𝜃𝑖
=

⎧⎨⎩
∫ 𝑖

𝑖−1
∂𝐻𝑚

∂𝜃𝑖
d𝑠, if 𝑖 ≤ 𝑚𝑞,

0, if 𝑖 > 𝑚𝑞.
(5.44)

Proof. Let the time scaling parameter vector 𝜽 be perturbed by 𝜖𝝆, where 𝜖 > 0 is a small
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real number and 𝝆 is an arbitrary fixed perturbation of 𝜽. Then, we have

𝜽(𝜖) = 𝜽 + 𝜖𝝆.

where 𝝆 = [𝜌1, . . . , 𝜌𝑞𝑁 ]
⊤, and 𝜽(𝜖) = [𝜃1(𝜖), . . . , 𝜃𝑞𝑁(𝜖)]

⊤. Consequently, the system state

�̃� as well as the function Φ𝑚 will be perturbed. Let

�̃�𝑘(𝑠, 𝜖) = �̃�𝑘(𝑠∣𝜽(𝜖)), 𝑘 = 1, . . . , 𝑁.

Clearly,

�̃�𝑘(𝑠, 𝜖) = �̃�𝑘(0) +

𝑞𝑁∑
𝑖=1

∫ 𝑠

0

𝜃𝑖(𝜖)𝑓𝑘(𝑡(𝑙), �̃�𝑘(𝑙),𝝈
𝑖)(𝑙)𝑑𝑙.

Let 𝑓𝑘(𝑡(⋅), �̃�𝑘(⋅),𝝈𝑖)(⋅) be written as 𝑓𝑘(⋅) for brevity. Then, by the chain rule, we have

Δ�̃�𝑘(𝑠) =
𝑑�̃�𝑘(𝑠, 𝜖)

𝑑𝜖

∣∣∣
𝜖=0

=

𝑞𝑁∑
𝑖=1

∫ 𝑠

0

{
𝜌𝑖𝑓𝑘(𝑙) + 𝜃𝑖

∂𝑓𝑘(𝑙)

∂�̃�𝑘
Δ�̃�𝑘(𝑙) + 𝜃𝑖

∂𝑓𝑘(𝑙)

∂𝑡
Δ𝑡(𝑙)

}
𝑑𝑙.

Clearly,

𝑑Δ�̃�𝑘(𝑠)

𝑑𝑠
=

𝑞𝑁∑
𝑖=1

{
𝜌𝑖𝑓𝑘(𝑠) + 𝜃𝑖

∂𝑓𝑘(𝑠)

∂�̃�𝑘
Δ�̃�𝑘(𝑠) + 𝜃𝑖

∂𝑓𝑘(𝑠)

∂𝑡
Δ𝑡(𝑠)

}
. (5.45)

By (5.32), we have

Δ𝐻𝑚 =
∂𝐻𝑚

∂𝜽
𝝆+

𝑁∑
𝑘=1

∂𝐻𝑚

∂�̃�𝑘
Δ�̃�𝑘(𝑠) +

∂𝐻𝑚

∂𝑡
Δ𝑡(𝑠)

=
𝑁∑
𝑘=1

𝜆𝑚𝑘 (𝑠)
{
𝝆𝑓𝑘(𝑠) + 𝜔(𝑠)

∂𝑓𝑘(𝑠)

∂�̃�𝑘
Δ�̃�𝑘(𝑠) + 𝜔(𝑠)

∂𝑓𝑘(𝑠)

∂𝑡
Δ𝑡(𝑠)

}
+ 𝜆𝑚𝑁+1(𝑠)

𝑑𝜔(𝑠)

𝑑𝑠
.

Using the definition of 𝜔(𝑠) in (5.20), it is clear that

∂𝐻𝑚

∂𝜽
𝝆+

𝑁∑
𝑘=1

∂𝐻𝑚

∂�̃�𝑘
Δ�̃�𝑘(𝑠) +

∂𝐻𝑚

∂𝑡
Δ𝑡(𝑠)

=

𝑞𝑁∑
𝑖=1

𝑁∑
𝑘=1

𝜆𝑚𝑘 (𝑠)
{
𝝆𝑖𝑓𝑘(𝑠) + 𝜃𝑖

∂𝑓𝑘(𝑠)

∂�̃�𝑘
Δ�̃�𝑘(𝑠) + 𝜃𝑖

∂𝑓𝑘(𝑠)

∂𝑡
Δ𝑡(𝑠)

}
+ 𝜆𝑚𝑁+1(𝑠)

𝑑𝜔(𝑠)

𝑑𝑠
.

(5.46)

Substituting (5.45) into (5.46) yields

∂𝐻𝑚

∂𝜽
𝝆+

∂𝐻𝑚

∂𝑡
Δ𝑡(𝑠)−𝜆𝑚𝑁+1(𝑠)

𝑑𝜔(𝑠)

𝑑𝑠
+

𝑁∑
𝑘=1

∂𝐻𝑚

∂�̃�𝑘
Δ�̃�𝑘(𝑠)−

𝑁∑
𝑘=1

𝜆𝑚𝑘 (𝑠)
𝑑Δ�̃�𝑘(𝑠)

𝑑𝑠
= 0. (5.47)
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Then, by the chain rule, we obtain

ΔΦ𝑚(�̃�(𝑚𝑞),𝒗) =
𝑑Φ𝑚(�̃�(𝑚𝑞),𝒗)

𝑑𝜖

∣∣∣
𝜖=0

=
∂Φ𝑚(�̃�(𝑚𝑞),𝒗)

∂𝑡
Δ𝑡(𝑚𝑞) +

∂Φ𝑚(�̃�(𝑚𝑞),𝒗)

∂�̃�𝑘
Δ�̃�𝑘(𝑚𝑞). (5.48)

Adding (5.47) to the right hand side of (5.48), we obtain

ΔΦ𝑚(�̃�(𝑚𝑞),𝒗) =
∂Φ𝑚(�̃�(𝑚𝑞),𝒗)

∂𝑡
Δ𝑡(𝑚𝑞) +

𝑁∑
𝑘=1

∂Φ𝑚(�̃�(𝑚𝑞),𝒗)

∂�̃�𝑘
Δ�̃�𝑘(𝑚𝑞)

+

∫ 𝑚𝑞

0

∂𝐻𝑚

∂𝜽
𝝆𝑑𝑙 +

∫ 𝑚𝑞

0

∂𝐻𝑚

∂𝑡
Δ𝑡(𝑙)𝑑𝑙 −

∫ 𝑚𝑞

0

𝜆𝑚𝑁+1(𝑙)
𝑑𝜔(𝑙)

𝑑𝑙
𝑑𝑙

+
𝑁∑
𝑘=1

∫ 𝑚𝑞

0

{∂𝐻𝑚

∂�̃�𝑘
Δ�̃�𝑘(𝑙)− 𝜆𝑚𝑘 (𝑙)

𝑑Δ�̃�𝑘(𝑙)

𝑑𝑙

}
𝑑𝑙

(5.49)

Integrating the last term of (5.49) by parts gives

ΔΦ𝑚(�̃�(𝑚𝑞),𝒗) =
∂Φ𝑚(�̃�(𝑚𝑞),𝒗)

∂𝑡
Δ𝑡(𝑚𝑞) +

𝑁∑
𝑘=1

∂Φ𝑚(�̃�(𝑚𝑞),𝒗)

∂�̃�𝑘
Δ�̃�𝑘(𝑚𝑞)

+

∫ 𝑚𝑞

0

∂𝐻𝑚

∂𝜽
𝝆𝑑𝑙 +

∫ 𝑚𝑞

0

∂𝐻𝑚

∂𝑡
Δ𝑡(𝑙)𝑑𝑙 −

∫ 𝑚𝑞

0

𝜆𝑚𝑁+1(𝑙)
𝑑𝜔(𝑙)

𝑑𝑙
𝑑𝑙

−
𝑁∑
𝑘=1

𝜆𝑚𝑘 (𝑙)Δ�̃�𝑘(𝑙)
∣∣∣𝑚𝑞

0
+

𝑁∑
𝑘=1

∫ 𝑚𝑞

0

{∂𝐻𝑚

∂�̃�𝑘
− 𝑑𝜆𝑚𝑘 (𝑙)

𝑑𝑙

}
Δ�̃�𝑘(𝑙)𝑑𝑙

(5.50)

Since �̃�𝑘(0) = 0, 𝑘 = 1, . . . , 𝑁 , it follows that 𝜆𝑚𝑘 (0)Δ�̃�𝑘(0) = 0, 𝑘 = 1, . . . , 𝑁 . Substitut-

ing (5.33)-(5.34) into (5.50) yields

ΔΦ𝑚(�̃�(𝑚𝑞),𝒗) =
∂Φ𝑚(�̃�(𝑚𝑞),𝒗)

∂𝑡
Δ𝑡(𝑚𝑞) +

∫ 𝑚𝑞

0

∂𝐻𝑚

∂𝜽
𝝆𝑑𝑙

+

∫ 𝑚𝑞

0

{∂𝐻𝑚

∂𝑡
Δ𝑡(𝑙)− 𝜆𝑚𝑁+1(𝑠)

𝑑𝜔(𝑙)

𝑑𝑙

}
𝑑𝑙

(5.51)

Integrating the last term of (5.51) by parts gives

ΔΦ𝑚(�̃�(𝑚𝑞),𝒗) =
∂Φ𝑚(�̃�(𝑚𝑞),𝒗)

∂𝑡
Δ𝑡(𝑚𝑞)− 𝜆𝑚𝑁+1(𝑠)𝜔(𝑙)

∣∣𝑚𝑞

0
+

∫ 𝑚𝑞

0

∂𝐻𝑚

∂𝜽
𝝆𝑑𝑙

+

∫ 𝑚𝑞

0

{∂𝐻𝑚

∂𝑡
Δ𝑡(𝑙) +

𝑑𝜆𝑚𝑁+1(𝑠)

𝑑𝑠
𝜔(𝑙)

}
𝑑𝑙

(5.52)

By (5.19), clearly, 𝜔(𝑙) = Δ𝑡(𝑙). By (5.31), we have

∂Φ𝑚(�̃�(𝑚𝑞),𝒗)

∂𝑡
= 0. (5.53)
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Substituting (5.35)-(5.36) and (5.53) into (5.52) yields

ΔΦ𝑚(�̃�(𝑚𝑞),𝒗) =

∫ 𝑚𝑞

0

∂𝐻𝑚

∂𝜽
𝝆𝑑𝑙.

Since 𝝆 is chosen arbitrary, using the definition of 𝜽, the result follows directly.

The gradient formula given above for the penalty and constraint functions can be

combined with a standard optimization algorithm—for example, a conjugate gradient

method or sequential quadratic programming [48]—to solve Problem (P3) as a nonlinear

programming problem. The optimal control software MISER does this automatically.

It can be shown that a local solution of Problem (P3) converges to a local solution of

Problem (P2) as the penalty parameter becomes sufficiently large [41,42]. Hence, we can

obtain an approximate solution of Problem (P2) by solving Problem (P3) for large 𝜂. A

corresponding suboptimal control for Problem (P) can then be constructed according to

(5.17). In the next section, we use this approach to solve two examples.

5.5 Numerical examples

5.5.1 Example 5.1

In [90], a linear gradient elution chromatographic process for separating four protein so-

lutes is described. The retention time for each protein solute is controlled by adjusting

the ionic strength of the mobile phase composition. The rate of change of each chro-

matography signal is given by the following system functions:

𝑓1(𝑢(𝑡)) =
(𝑢(𝑡))2

1.4(𝑢(𝑡))2 + 3.6
,

𝑓2(𝑢(𝑡)) =
𝑢(𝑡)

1.4𝑢(𝑡) + 5.4
,

𝑓3(𝑢(𝑡)) =
𝑢(𝑡)

1.4𝑢(𝑡) + 7.2
,

𝑓4(𝑢(𝑡)) =
(𝑢(𝑡))2

1.4(𝑢(𝑡))2 + 9
,

where the control is subject to the bound constraints 0.5 ≤ 𝑢(𝑡) ≤ 2. A chromatography

signal of 1 indicates that the protein solute has left the chromatography column. Thus,

the state variables must satisfy the following interior point constraints at the retention

times:

𝑥𝑘(𝜏𝑘) = 1, 𝑘 = 1, 2, 3, 4. (5.54)

We consider the problem of maximizing the objective function (5.5) with𝑁 = 4 subject
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to the interior point constraints (5.54). This problem is in the form of Problem (P). We

use the method outlined in Sections 5.3 and 5.4 with 𝑞 = 1 to approximate Problem (P) by

Problem (P3). Problem (P3), the exact penalty function problem, can be solved by using

the software package MISER 3. The parameters in the penalty function for Problem (P3)

are set as follows:

𝛼 = 1.5; 𝛽 = 2.2; 𝛾 = 3; 𝜅1 = 𝜅2 = 𝜅3 = 0.3.

We start by solving Problem (P3) using MISER 3 with 𝜂 = 10. Then we increase 𝜂

and re-solve Problem (P3), using the previous solution as the initial guess. We continue

to increase 𝜂 until 𝜂 = 30, at which point the objective function value is 0.8205 with

𝜀 = 0.0024. The objective function value is slightly better than the result reported

in [90]. The largest violation of the interior point constraints (5.27) is 6× 10−4, which is

smaller than the violation of 1.07× 10−3 reported in [90].

We next consider Problem (P3) with 𝑞 = 3. Then, the time horizon is divided into 12

sub-intervals. We again use MISER 3 to solve Problem (P3). The optimal trajectories and

optimal control computed by MISER 3 are shown in Figure 5.3. The optimal control values

and the corresponding time-scaling transformation parameters are given in Tables 5.1 and

5.2, respectively. The optimal objective function value is 0.8276 when 𝜀 = 0.001, 𝜂 = 300,

and 𝝉 = [2.7507, 5.9795, 9.1807, 12.3820]. As expected, the optimal value for 𝑞 = 3 is

higher than the optimal value for 𝑞 = 1.
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Figure 5.3: Optimal controls and states for Example 5.1.

The equality and inequality constraints (5.7)-(5.10), (5.21), (5.23), and 5.28 in Prob-

lem (P2) are all satisfied. Compared with the results obtained in [90], our optimal ob-
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Table 5.1: Optimal control values for Example 5.1.

𝜎1 𝜎2 𝜎3 𝜎4 𝜎5 𝜎6

1.6314 1.6324 1.6326 0.8729 0.8730 0.7901

𝜎7 𝜎8 𝜎9 𝜎10 𝜎11 𝜎12

0.5000 0.5000 0.5000 0.5644 0.5645 0.5645

Table 5.2: Optimal interval durations for Example 5.1.

𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6

0.9347 0.9153 0.9007 1.0740 1.0777 1.0770

𝜎7 𝜎8 𝜎9 𝜎10 𝜎11 𝜎12

1.0801 1.0608 1.0603 1.0541 1.0728 1.0743

jective function value is better. Moreover, the largest violation of the interior point

constraints (5.27) is 8× 10−4 which is slightly smaller than the violation achieved in [90].

5.5.2 Example 5.2

We now apply our optimal control method to a more complicated system with multiple

inputs. Consider the ion-exchange chromatographic process for separating three protein

species described in [112]. The peak time for each protein solute is controlled by adjusting

the ionic strength (𝐼) and the pH value (𝑧) of the mobile phase composition. The rate of

change of each chromatography signal is given by the following system functions:

𝑓𝑘(𝐼(𝑡), 𝑧(𝑡)) =
[
1 + (1−𝜀𝑏)𝜀𝑚

𝜀𝑏
+ (1−𝜀𝑏)(1−𝜀𝑚)

𝜀𝑏
𝐾𝑘(𝐼(𝑡), 𝑧(𝑡))

]−1
, 𝑘 = 1, 2, 3

where 𝜀𝑏 = 0.25, 𝜀𝑚 = 0.8, and the affinity distribution coefficients are given by

𝐾1(𝐼(𝑡), 𝑧(𝑡)) = 0.49× 106(0.1867𝐼−1)−18.5+9.9𝑧−0.77𝑧2 ,

𝐾2(𝐼(𝑡), 𝑧(𝑡)) = 5.48× 106(0.1867𝐼−1)−26.9+13.8𝑧−1.15𝑧2 ,

𝐾3(𝐼(𝑡), 𝑧(𝑡)) = 2.21× 106(0.1867𝐼−1)−24.7+12.9𝑧−1.1𝑧2 .

The controls are bounded by

0.405 ≤ 𝐼(𝑡) ≤ 0.495, 4.8 ≤ 𝑧(𝑡) ≤ 5.2.
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A protein species is considered to be separated when its corresponding chromatography

signal reaches 1. That is, the state variables must satisfy the following interior point

constraints:

𝑥𝑘(𝜏𝑘) = 1, 𝑘 = 1, 2, 3.

Our aim is to solve Problem (P), which involves maximizing the objective function

(5.5) for the system with 𝑁 = 3 subject to the interior point constraints given above.

Using the process outlined in Section 5.3 and Section 5.4 with 𝑞 = 3, we approximate

Problem (P) by Problem (P3). The parameters for the exact penalty function are the

same as in Example 5.1. Using MISER 3 to solve Problem (P3), we obtain the optimal
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Figure 5.4: Optimal results for Example 5.2

trajectories and optimal controls shown in Figure 5.4. The optimal objective function

value is 1.8673, when 𝜂 = 200, 𝜀 = 2.24895 × 10−4, and 𝝉 = [5.3029, 10.8293, 16.3557].

The largest violation of the interior point constraints (5.27) is 1× 10−5. All of the other

constraints in Problem (P2) are satisfied.

5.6 Conclusions

In this chapter, we have presented a new computational method for solving a challenging

max-min optimal control problem arising in gradient elution chromatography. The state
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variables in this problem represent the chromatography signals of the mixture compo-

nents, and each signal is required to reach its desired target at a different retention time.

Our method is based on an approximation scheme whereby the control is approximated

by a piecewise-constant function. We use a novel time-scaling transformation to map the

retention times to fixed points, and another transformation to convert the max-min objec-

tive function into a smooth function. An exact penalty method is then used to solve the

resulting approximate optimization problem. The numerical simulations in Section 5.5

show that our new method gives better results than those obtained by using the previous

method proposed in [90]. More importantly, our new method is capable of accurately

computing the retention times, and it can also be applied to more general problems of

larger dimension.



CHAPTER 6

Summary and future research directions

6.1 Main contributions of the thesis

In this thesis, we considered two parameter identification problems and two nonstan-

dard optimal control problems. We developed new methods for solving these problems as

nonlinear programming problems, which are based on gradient-based optimization algo-

rithms. This involved combining a variety of novel techniques, including the time-scaling

transformation, constraint transcription, control parameterization, as well as complicated

derivation of gradient formulas and detailed convergence analysis. We summarize our

main contributions below.

In Chapter 2, we considered the problem of identifying unknown delays and unknown

system parameters in a general nonlinear delay-differential system with smooth inputs.

This problem was formulated as an optimization problem in which the decision variables

are the time-delays and the system parameters. We showed that the gradient of the cost

function in this optimization problem can be computed by solving a set of auxiliary delay-

differential systems. On this basis, the optimization problem can be solved as a nonlinear

programming problem using a gradient-based optimization algorithms. Most other meth-

ods for delay identification are only applicable to systems containing only a single delay,

or to linear systems. The novelties of our approach are: (i) It is applicable to general non-

linear delay-differential systems; and (ii) it makes use of efficient nonlinear programming

techniques, and hence it has excellent potential for real-time implementation.

In Chapter 3, we considered a general nonlinear time-delay system in which the delay

is involved in a piecewise constant input. We formulated the problem of identifying the

unknown state delay and control delay as a nonlinear optimization problem in which the

cost function measures the least-squares error between predicted output and observed

system output. Since the input function is discontinuous, the dynamics are clearly dis-

continuous with respect to 𝛽. Thus, the gradient of the cost function with respect to

input delay does not exist at those time points which lie in the set of the control switch-

ing time points. We then showed that, except at those special time points, the gradient

of the cost function with respect to the input delay can be computed by integrating

130
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an auxiliary impulsive system with instantaneous jumps forward in time. To solve the

identification problem, we propose a heuristic strategy which can be combined with our

gradient computation procedure. Then, a computation method is developed based on any

standard nonlinear programming algorithm. Two industrial examples are solved by using

the proposed method. The results obtained show that this approach is highly effective.

In Chapter 4, we developed a computational method for solving optimal control prob-

lems with multiple time-delay systems and subject to continuous state inequality con-

straints. In this method, the control is approximated by a piecewise constant function

whose heights are decision variables to be determined optimally. The approximate control

is allowed to change its value at 𝑁 − 1 switching times in the time horizon. By novel

application of the transformation method used in conjunction with a local smoothing tech-

nique, the continuous state inequality constraints are approximated by smooth canonical

constraints, which are then appended to the cost function forming an augmented cost

function. On this basis, the optimal control problem is approximated by a sequence of

optimal parameter selection problems involving time-delay systems and subject to bound

constraints on the control vector. Furthermore, we proved under some mild assumptions

that the cost of the optimal control vector of the approximate problem converges to the

optimal cost of the original problem. Finally, a computational algorithm is developed

to solve each of the optimal parameter selection problems. This algorithm involves in-

tegrating the time-delay system forward in time and a set of time-delay costate systems

backward in time. Then, the gradient of the augmented cost function is calculated. This

approach is then applied to solve a control problem arising in a practical evaporation

process. The results obtained are highly satisfactory.

In Chapter 5, we considered the problem of determining an optimal operating schedule

for a chromatography process. The optimal control problem is formulated as a max-min

optimal control problem with multiple characteristic-time equality constraints, which is

similar to the one considered in [90]—it involves choosing the retention time for each

component so that the minimum time interval between each two successive components

is maximized. However, the problem considered in [90] assumes that the order of the

retention times is known and fixed, whereas we considered a general problem where the

ordering of the retention times is not fixed, but instead needs to be determined optimally.

We then developed a new computational method for solving this max-min optimal control

problem. The main idea of this method is to approximate the control by a piecewise

constant function whose values and switching times are decision variables to be determined

optimally. The approximate control is allowed to change its value at each switching

time, and also at 𝑁 − 1 times between consecutive characteristic times (𝑁 is a fixed

integer). Then a new time scaling transformation method is used to map these switching

times to fixed points in a new time horizon. Note that the method used in [90] only

maps the terminal time to a fixed point, but the intermediate retention times remain
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as variables which change with the control. Thus, in the numerical computation, it is

very difficult to determine accurately the values for these retention times. In our new

method, we introduce a superior time-scaling transformation that maps both the control

switching times and the retention times to fixed points. The retention times and the

control switching times in the original time horizon become optimization variables in the

new time horizon. This allows us to simultaneously determine accurate values for the

retention times and the optimal control switching times. In Chapter 5, we use a set of

auxiliary decision variables to explicitly keep track of the retention time ordering which

involves approximating the integer constraints by a set of linear constraints and continuous

quadratic constraints. The final approximate problem is solved by a recently developed

exact penalty function method.

6.2 Future research directions

The work in this thesis has opened several interesting new areas for future research. We

discuss some of them below.

The computational methods developed in Chapter 2 and Chapter 3 are only applicable

to the delay system with time-invariant (constant) delays. In some practical applications,

the delays are time varying. For example, the chemical reactor recycle system [20], cooling

system [2], and the anesthesia control during intensive care [27]. For these systems with

time varying delays, the methods developed in Chapters 2 and 3 are not applicable.

Thus, considerable effort is needed to extend these methods to delay systems with time

varying delays. It is a mathematically challenging and practically significant task to do

the parameter identification on-line for systems with uncertainties, where multiple time

delays and system parameters are to be identified.

The computational method developed in Chapter 4 involves integrating the time-delay

system forward in time and integrating the corresponding time-delay co-state system

backward in time. The computational burden is heavy. For example, it takes more than

3 hours to obtain an optimal control for eight hours of simulation time for the optimal

control of the evaporation process considered in Section 4.4. In practice, the computation

time is required to be light. Since many real practical processes involve complex dynamics,

an interesting future research direction is to develop computational methods for which

the computational load is light so that they are suitable for online implementation.

In the field of chromatography, the simulated moving bed (SMB) chromatography is

becoming more and more popular. The model of the dynamic system for SMB chromatog-

raphy is usually described by partial differential equations with position and time as the

independent variables. Clearly, our method is not directly applicable to SMB chromatog-

raphy. Thus, it presents an interesting and challenging task to extend our approach to

SMB chromatography.
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