
Department of Environment and Agriculture 
 
 
 
 

 
 
 
 
 
 
 
 
 

Assessment of Occurrence of Indo-Pacific Bottlenose Dolphins 
(Tursiops aduncus) in Response to Pile Driving Noise in the Fremantle 

Inner Harbour (Western Australia) 

 
 
 
 
 
 
 

Estênio Guimarães Paiva 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This thesis is presented for the Degree of 
Master of Philosophy of 

Curtin University 
 
 
 
 
 
 
 
 

February 2015 



Declaration 
 
 
 
 
 
 
To the best of my knowledge and belief this thesis contains no material 

previously published by any other person except where due acknowledgment 

has been made. 

 

This thesis contains no material which has been accepted for the award of 

any other degree or diploma in any university. 

 

 

 

 

 

 

 

 

Estenio Guimaraes Paiva 

 

Date: 11th February 2015 

 



 1 

Abstract 

 

There is limited information on the impacts of anthropogenic noise on 

dolphin behaviour, making assessment and mitigation of impacts from 

anthropogenic noises difficult. Echolocation and vocalizations are of vital 

importance for marine mammals; hence assessing potential impacts of 

underwater noise is necessary.  

The Inner Harbour of the Port of Fremantle, where impact and vibratory 

pile driving occurred during wharf upgrading, is used by a small Indo-Pacific 

bottlenose dolphin (Tursiops aduncus) community that regularly travels 

through the Inner Harbour. Considering that studies involving marine 

mammals often require costly field programs, this research initially assessed 

whether the benefits of using cameras outweighs the implications of having 

personnel performing marine mammal detection in the field; secondly, it 

investigated potential associations of detection of bottlenose dolphins in the 

Inner Harbour with noise from pile driving. The specific aims of the research 

were to evaluate the efficacy of video and still cameras to detect Indo-Pacific 

bottlenose dolphins in the Fremantle Inner Harbour, with consideration on 

how environmental conditions affected detectability; and secondly, to measure 

the noise energy created by pile driving associated with wharf construction 

activities, and determine whether the detection of dolphins within the vicinity 

of the wharf was associated with pile driving activities.  

Dolphin detection in the Inner Harbour was conducted by examination 

of high definition video recordings. The cameras were set on a tower in the 

Fremantle Port channel and videos were perused at 1.75 times the normal 
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speed. Images from the cameras were used to estimate position of dolphins 

at the water’s surface. Dolphin detections ranged from 5.6 m to 463.3 m for 

the video camera, and from 10.8 m to 347.8 m for the still camera.  

The relative effect of environmental conditions on detectability was 

considered by fitting a Generalised Estimation Equations (GEEs) model with 

Beaufort, level of glare and their interactions as predictors and a temporal 

auto-correlation structure. The best fit model indicated level of glare had an 

effect, with more intense periods of glare corresponding to lower occurrences 

of observed dolphins. However this effect was not significant (-0.264) and the 

parameter estimate was associated with a large standard error (0.113). 

Measuring noise was accomplished with noise loggers and a hand-held 

hydrophone and digital acoustic recorder, allowing identification of signals 

produced by impact and vibratory pile drivers and calculating the energy of 

recorded noise.  

The association of pile driving and dolphin detections was also 

assessed using GEEs, which included environmental variables to assess their 

relative effect in dolphin detections. The final model indicated that the largest 

effect on the number of dolphins detected was the presence or absence of 

pile driving, regardless of whether it was impact or vibratory. Most dolphin 

detections were registered when there was no pile driving activity taking place 

(mean ± SE = 0.67 ± 0.04) while there were fewer detections during vibratory 

and impact pile driving (mean ± SE = 0.34 ± 0.13 and 0.19 ± 0.04, 

respectively).  

The limited field of view of cameras was the main constrain in the 

observational methodology in that cameras can be only applied to detections 
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of animals observed rather than counts of individuals because of its limited 

field of view. However, the use of cameras was effective for long term 

monitoring of occurrence of dolphins, and outweighed the costs and reduced 

the health and safety risks of having personnel in the field. This study showed 

that cameras could be effectively implemented at this site for research such 

as studying changes in habitat use in response to construction activities, and 

improves the scientific basis for managing anthropogenic noise and reducing 

impacts on marine mammals. 
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Introduction and Overview  

 

Studies involving Indo-Pacific bottlenose dolphin (Tursiops aduncus) 

and how the species may respond to anthropogenic noise are of interest of 

the scientific community since bottlenose dolphins occur in waters adjacent to 

urban areas (Möller et al. 2002; Wiszniewski et al. 2009) and are therefore 

more accessible for field surveys. However, the conservation status of T. 

aduncus is classified as “data insufficient” under the IUCN listing (IUCN 

2014). Site fidelity is commonly noticed for bottlenose dolphins in estuarine 

ecosystems (Shane et al. 1986; Felix 1997; Möller et al. 2002). Such is the 

case for the Port of Fremantle Inner Harbour, which is used by Indo-Pacific 

bottlenose dolphins from a resident dolphin community, as is the nearby inlet 

of Cockburn Sound  (Finn 2005; Moiler 2008; Lo 2009). 

Current information on the ecology and health of Swan River dolphins 

do not suffice to determine the current and future risk of the community to 

local extinction due to impacting factors (Holyoake et al. 2011). Hence, 

understanding the pressures from anthropogenic activity is critical to their 

conservation. Dolphins that inhabit areas adjacent to ports are subjected to 

intense noise, including noise from pile drivers. In 2010, wharf construction 

was undertaken in the Inner Harbour to increase capacity to accommodate 

larger ships as well as to accommodate more ships filled to their full load 

transport capacity. The construction work required the use of impact and 

vibratory pile drivers that produce high-energy impulse signals that can travel 

great distances underwater (Bailey et al. 2010; Gedamke & Scholik-Schlomer 

2011). Sounds are of vital importance for odontoceti (David 2006; Madsen et 

al. 2006; Gedamke & Scholik-Schlomer 2011). There is a paucity of data 
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regarding behavioural responses of dolphins to anthropogenic noise, however 

there is evidence that high-level effects can occur coincidently to 

anthropogenic noise, such as avoidance of key foraging areas during intense 

anthropogenic noise activities (for grey whales; Southall et al. 2007). Masking 

of dolphin communications, such as whistles produced for group cohesion 

(Janik & Slater 1998; Erbe 2013) or sounds associated with feeding activities 

(Janik 2000) can occur if the noise is within the same frequency band and 

high enough in energy to “drown” out the sounds produced by dolphins. 

To investigate the impact of anthropogenic noise on marine mammals, 

there are a range of techniques to collect information, however most of them 

are costly and weather dependent. Preliminary work by the Centre for Marine 

Science and Technology (Curtin University, Australia) has shown that the use 

of remotely operated cameras is effective in detecting dolphins, yet cameras 

may present some short-comings, including a short depth of field, and a 

narrow field of view. Hence the effectiveness of the various techniques needs 

to be assessed and strengths and limitations quantified. The use of such 

methodology to register dolphin presence and behaviour may lead to new 

perspectives for cetacean studies without introducing observer bias. While 

high definition video cameras allow for long-term remote data collection, 

stereo camera pairs allow for spatial information to be collected (location and 

movements of dolphins). The use of cameras may also reduce limitations 

imposed by variable weather conditions, such as rain and wind, and high sea 

state levels.  

  Given the growing concern about the need for more cost effective 

methods for research involving dolphins in their natural habitat, this thesis 



 10 

presents two manuscripts recently published in scientific journals. The first 

article, published in PLoS ONE, describes research designed to assess the 

use of high definition cameras for dolphin detection, including a cost-benefit 

analysis. This manuscript contains detailed data and full description of 

methods and approaches used. The aim of the second manuscript, published 

in Aquatic Mammals, was to measure the noise energy created by pile driving 

associated with wharf constructions activities in the Fremantle Inner Harbour 

and determine the number of dolphins detected within the Inner Harbour in 

association with pile driving activities. This manuscript is not reproduced in full 

in this thesis due to copyright protection by the journal Aquatic Mammals.     

  This research contributes to current knowledge regarding the 

effectiveness of cameras for observational studies of dolphins and impacts of 

pile driving on dolphin behaviour. By increasing current knowledge, more 

effective monitoring, management, and mitigation of anthropogenic impacts 

can potentially be implemented. 
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Abstract
Research involving marine mammals often requires costly field programs. This paper as-

sessed whether the benefits of using cameras outweighs the implications of having person-

nel performing marine mammal detection in the field. The efficacy of video and still cameras

to detect Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the Fremantle Harbour

(Western Australia) was evaluated, with consideration on how environmental conditions af-

fect detectability. The cameras were set on a tower in the Fremantle Port channel and vid-

eos were perused at 1.75 times the normal speed. Images from the cameras were used to

estimate position of dolphins at the water’s surface. Dolphin detections ranged from 5.6 m

to 463.3 m for the video camera, and from 10.8 m to 347.8 m for the still camera. Detection

range showed to be satisfactory when compared to distances at which dolphins would be

detected by field observers. The relative effect of environmental conditions on detectability

was considered by fitting a Generalised Estimation Equations (GEEs) model with Beaufort,

level of glare and their interactions as predictors and a temporal auto-correlation structure.

The best fit model indicated level of glare had an effect, with more intense periods of glare

corresponding to lower occurrences of observed dolphins. However this effect was not

large (-0.264) and the parameter estimate was associated with a large standard error

(0.113). The limited field of view was the main restraint in that cameras can be only applied

to detections of animals observed rather than counts of individuals. However, the use of

cameras was effective for long term monitoring of occurrence of dolphins, outweighing the

costs and reducing the health and safety risks to field personal. This study showed that

cameras could be effectively implemented onshore for research such as studying changes

in habitat use in response to development and construction activities.
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Introduction
Research on non-captive marine mammals is often challenging and logistically onerous be-
cause the animals are generally difficult to access and detect due to their remoteness, mobility,
and mostly elusive behaviour (e.g. diving for long periods) [1–3]. Field researchers are required
to undertake long field programs that are costly and time consuming. Methods most common-
ly used to collect scientific information on marine mammals involve undertaking visual surveys
from land, vessel, or aircraft either with the naked eye or using visual aids such as binoculars.
The use of remote cameras in place of observers in the field is of increasing interest since this
would decrease the health and safety risks to personel undertaking field work in the marine en-
vironment, and has the potential for collecting large data sets that can be post-processed with
computational aids. High definition photographic and video cameras can also be used in con-
junction with other non-intrusive techniques for use in quantitative and behavioural cetacean
studies, such as passive acoustics [2, 4, 5] and theodolite tracking [6, 7].

Cameras have a long history of being used to measure ecological parameters in the terrestri-
al environment [8, 9]. Many of these studies have involved highly-mobile taxa such as birds
[10, 11], mammals [12, 13], reptiles and amphibians [14]. Camera trapping, for instance, allows
detection of species that are considered hard to record because they are rare or human-shy [9,
15]. This method consists of capturing images or videos of wildlife from a motion sensor or in-
frared activated camera, allowing data collection for animal abundance [16] and population
studies [17], including those of species that move long distances and live in small groups.
When considering a long-term approach, camera trapping is an effective tool for surveying
mammals in the wild [18] which can contribute to more effective management actions.

Some examples of ecological and conservation planning applications using cameras include
abundance and density estimation, species biodiversity, and anthropogenic impacts on fauna.
Costs for fauna density estimates may be reduced by applying camera trap methods in which
individual identification of animals is not necessary [19]. Trapping rate can be associated with
density of terrestrial mammals based on average group size, day range, distance and angle with-
in which the camera detected animals [19]. Using cameras during fishing activities is an effi-
cient way to record and identify marine fauna presence, and to evaluate the fishing impacts
over threatened and protected species [20]. Cameras also allow precise and complete measure-
ments of animal behaviour as images of all the activities displayed by all animals within the
camera’s field of view are recorded and can be reviewed multiple times and in slow motion [8,
21]. Given the onerous and costly nature of observing marine mammals over long periods in
the field [22, 23], new techniques such as long-term implementation of cameras may provide a
innovative approach for studying parameters such as the social structure and group composi-
tion [24] of marine mammals, as well as occurrence and occupancy. Images of cetaceans ob-
tained from boats can be employed to calculate the range to animals at sea from the angle
subtended between the horizon and the waterline of the target [25]. The use of technologies
such as cameras also allows for the collection and storage of data for continued or future stud-
ies that are outside the scope of the initial study [7; 26].

Few studies, however, have tested the efficacy of different technologies, including the imple-
mentation of cameras, for marine mammal field studies [21] and compared their costs with
standard field observations. This lack of information creates difficulty in standardizing meth-
odologies and reducing the uncertainties in the selection of optimal methods. High definition
cameras have methodological limitations which must be addressed if they are to be used to
study free-ranging marine mammals. These limitations include high initial equipment costs
[17, 24] and camera accuracy, which can be limited by biases associated with the field of view,
general environmental conditions and location. Furthermore, the development of research
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technologies such as cameras for marine fauna is still in its early stages. Some techniques used
for terrestrial fauna are not logistically practical for studying marine mammals [18]. The use of
cameras to obtain information about the distribution of wildlife, while common in terrestrial
contexts, has limitations when applied to small cetaceans. For example, land-based cameras
can be used only in areas where the animals come close to the shore [24]. Video surveys are not
commonly used because of the high capacity required for digital storage [8], however recent
advances in information technology offer new opportunities for the use of video and photo re-
cording which can potentially provide long-term data [21].

Thus, the current research aimed to better understand the advantages and limitations of
using video and still cameras to further identify optimum methodologies to detect marine
mammal presence, abundance, and behaviour. This project was conducted with Indo-pacific
bottlenose dolphins (Tursiops aduncus) as a focal species and included the implementation of a
still camera and a high definition video camera. The objectives of this research were: (a) to as-
sess and compare the detection range of dolphins using still and video cameras; (b) to compare
the performance of still and high definition video cameras in overall detection of the presence
of dolphins; (c) to verify how environmental conditions affect detectability using video and still
cameras; and (d) to assess the cost effectiveness of the use of cameras compared to field person-
nel to detect presence of dolphins. In this regard, this paper assesses whether the benefits of
using cameras outweigh the costs and implications of having trained personnel recording ob-
servations in the field. This is an unusual approach for detecting marine mammals in the wild
over long periods and, if considered practical and cost-effective, would also have applications
for research questions, such as coastal marine mammal behaviour in response to anthropogen-
ic disturbance.

Methods

Ethics statement
Observations of dolphins using cameras mounted on a jetty did not require approval by the
Ethics and Safety Committee of Curtin University at the time the data were collected (2010),
and does not require state permits for “taking” animals since the camera is remotely placed
(and on a jetty) and does not cause disturbance to the animals. Data were collected within the
Fremantle Inner Harbour, as part of work done for the Fremantle Port Authority during the
Fremantle Inner Harbour Deepening Project. The methodology consisted of recording occur-
rence of Indo-Pacific bottlenose dolphins using high definition video and still cameras.

Study site
The study site was located within the Fremantle Inner Harbour (32.04°S 115.75°E), in the
southwest region of Western Australia, 23 km south-west of the capital city of Perth. The Fre-
mantle Inner Harbour (Fig 1) is located at the entrance of the Fremantle Port, which is the
main location for import and export activities within Western Australia. The most easterly
area of the Fremantle Inner Harbour is also the mouth of the Swan River system which is in-
habited by several species of fish which a resident community of Indo-Pacific bottlenose
dophins prey upon [27]. Dolphins have been documented to swim upstream and downstream
of the channel on a regular basis [28, 29].

High-definition video and still camera setup
One high definition video camera was strategically set at the top of a purpose-built 3-meter
tower, which was placed at the end of the Fremantle Port small craft jetty on the west side of
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the Fremantle Inner Harbour, between the 16th of April 2010 and the 2nd of August 2010. The
camera was a high-definition Sony HDR-XR520V (1440 x 1020 pixels) powered by two car bat-
teries which required changing every 72 hours. The camera was zoomed out completely and fo-
cused at infinity to have the widest field of view, and was linked to a timer and set to record
between 06:00 and 18:00 daily. The digital still camera was mounted aside the video camera.
The still camera was a Canon PowerShot SX1 IS (3840 x 2160 pixels) set to Custom mode,
manual focus, infinity zoom and safety manual focus off. This camera was also linked to the
timer which was set to trigger the camera’s shutter release once every 20 seconds over the peri-
od betwen 06:00 and 18:00. The digital still camera recorded to 16Gb SD memory cards, which
were capable of storing photos taken over the period of four 12-hour days before downloading
was required. The cameras were mounted inside a water-tight box with windows placed at the
locations of the camera lenses (Fig 2).

High-definition video camera and still camera data acquisition
In order to determine the best playback speed in which to analyze the videos, a “trial” analysis
was performed by four trained observers who watched the same six videos each at four differ-
ent speeds (normal, 1.75 times faster than the normal speed, 2 times and 4 times faster than
normal), and recorded the number of groups of dolphins detected. The speeds specified here
were those available in VLCMedia Player Version 2.1.5 Rincewind [30] for viewing video im-
ages. The videos were strategically chosen to include a range of environmental conditions, in-
cluding rain, glare, sea states and light level conditions. The results were then compared to
quantify dolphin misdetections as a function of video speed.

Misdetections ocurred when videos were watched at speeds greater than 1.75. Furthermore,
some analysts viewing video footage at speeds greater than two times the normal speed re-
ported feeling dizzy when watching the videos for extended periods due to constant changes
and movements in the images. As a result, 1.75 times faster than the normal speed was selected
as the maximum, effective speed for viewing videos.

For the purpose of comparing cameras’ detection ranges and overall effectiveness, 42 days
worth of videos from the high-definition camera and images from the still camera were pe-
rused. Videos were perused at 1.75 times the normal speed until dolphins were detected. When
dolphins were detected the video was then played at normal speed, and the following informa-
tion collected: the time dolphins were observed at (UTC + 8:00), number of dolphins in each
group observed, and the total time that the group stayed within the field of view of the camera.

For the number of dolphins within each group, the minimum, maximum and the best esti-
mate were recorded. The best estimate represents a point estimate determined by the observer,
according to the conditions at the time, taking into account the possibility of double counts
[31]. The term “transit event” was used here to define the time an individual or a group of dol-
phins was first detected within the field of view to the time it left the field of view of the camera.
Given the influence that weather conditions can have on detectability of dolphins during field
observations, qualitative measures of environmental data were collected, including sea state,
rain, glare, haziness, light and cloud cover. Sea state was classified according to the Beaufort
scale (1 to 12) and rain was recorded as “present” or “absent”. The amount of glare was classi-
fied using a scale from 0 to 4, in which “0” represented “no glare” and “4” severe glare (when
most of the field of view was covered by surface glare) [32]. Haziness was recorded as 0 for “no
haze” or, if it was present, it was relative to the far side of the harbor (with “front” equal to haze

Fig 1. Location of the study site within the Fremantle Inner Harbour, Western Australia. The circle indicates the study area and the white box indicates
the place where cameras were located. Source: ESRI ArcGlobe 10.0.

doi:10.1371/journal.pone.0126165.g001
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level 1, “middle” to haze level 2 and “far” to level 3) and the degree of visibility was recorded
based on the area covered. The amount of light was recorded as 1 (dawn and dusk) and 2
(day). The light from lamp posts on the wharf reflected on the water, creating intercalated visi-
ble sections during periods of low sunlight. Cloud cover was quantified by dividing the visible
sky into 8 equal parts and then expressed as a percentage. Even though the shape was not a cir-
cle in the sky divided by 8 pie-shaped partitions as commonly done by personnel working in
the field, this method provided a similar, practical percentage cover estimate approach by split-
ting the visible sky in the field of view of the camera into 8 rectangular partitions. Finally, the
presence of sunspots and droplets on the camera lens was recorded by dividing the field of
view where the inner harbor water surface was visible into four sections and then rating the
percentage of the total obscured by sunspots or droplets according to the sections filled.

Data on numbers of dolphins, group size, transit events, and environmental conditions was
extracted first from the videos recorded. Photographs from the still camera taken during peri-
ods in which dolphins were detected on the video camera were then analyzed to identify misde-
tections by the still camera. The aim was to compare the performance of still and high
definition video cameras in overall detection of the presence of dolphins. An analysis of all still
photographs that coincided with the periods of analysed video was not undertaken due to the
huge amount of time that would have been required for manual perusal of still photos. The ap-
proach for analysing still photographs consisted of manually searching for dolphins in photo-
graphs taken 5 minutes prior to, to 5 minutes after, the first detection of the individual or
group in the video.

Images from the still and video cameras were used to estimate the position of dolphins at
the water’s surface. The positions were calculated by estimating the range and bearing to the
dolphin from the camera tower (Fig 3 shows an example image overlayed with calculated
ranges in meters and bearings in degrees). For both the video and camera images, the bearing
to the dolphin from the camera was calculated by interpolating the bearing from known land
marks, such as the flood lights and buildings. The range was based on the angle down from
where the water met the wharf on the other side of the harbour, i.e. the wharf was used as an ar-
tificial horizon. Firstly, the position of the wharf directly above the dolphin image was deter-
mined from ground control points, then the number of degrees down from this position to the
dolphin was calculated. Converting the dolphin position in pixels to degrees (relative to the far
wharf) could be done using the stored focal length with the images captured by the still camera.
The images extracted from the video camera, however, did not store this information. As a re-
sult, for the video images the number of pixels to degrees was calculated using the heights of
the lights on the opposite wharf that were always in the image. The elevation angle to the dol-
phin and camera height was then used to calculate the range. The bearing and range to the dol-
phin from the camera tower could be then used to calculate the dolphin’s position. The
geometry calculations required accurate height and position of the cameras, which was carried
out using a combination of tape measure and engineering diagrams. The range also required
correction for tide, which was done using measurements recorded by a tide gauge in the Fre-
mantle Port Inner Harbour. All of the calculations were carried out in a program developed in
Matlab R2011b [33] by one of the authors called ‘Dolphin Image Tracker’.

A calibration test was carried out to assess the accuracy of the method. This involved a boat
being photographed and video recorded at different points in the study area. At these points, a
red flag was held up so it could be clearly seen in the images and it also served for indicating

Fig 2. Equipment. Camera box mounted at the top of the camera tower (A); camera tower lowered for equipmemt servicing (B); camera box showing central
window of the video camera and left window used for the still camera (the right window was for an additional camera not used in this study) (C).

doi:10.1371/journal.pone.0126165.g002
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the time positions were recorded using a handheld GPS on the boat. The positions of the boat
taken when the red flag was held up were calculated from the camera and video images and
compared to the GPS. This was carried out at nine locations throughout the survey area. The
difference between the GPS positions and those estimated using the still camera images ranged
between 4 and 29 m, with a mean of 14 m. The difference between the GPS positions and those

Fig 3. An example image taken with the still camera.Ranges and bearings from the camera (top); zoomed
in image to show target (below).

doi:10.1371/journal.pone.0126165.g003
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estimated using the video camera images ranged between 1 and 19 m, with a mean of 12 m. As
to be expected there was an increase in error with range, but it was not found to be significant.

Data analysis
The study area was first described by mapping out the field of view of the cameras. The extent
of the area was determined by identifying the coordinates (latitude and longitude) of the left
and right-most positions of the field of view where the wharf meets the water at the opposite
side of the channel from where the cameras were located. Maps were produced with the aid of
ArcMap 10.0 [34].

Detection as a function of range from the cameras were then assessed by plotting all posi-
tions of transit events upon first detection. Positions were plotted using algorithms developed
in Matlab R2011b [33] described above. Detection as a function of range was then plotted.
Comparisons in detection functions between the two cameras were made.

The influence of environmental variables on detectability was also assessed for the video
and still cameras. Contributions of each variable to the number of transit events recorded to
predicting numbers of transit events recorded was assessed using Generalised Estimation
Equations (GEEs). GEEs were produced in R [35] run through RStudio Version 0.98.501–
2009–2013 RStudio, Inc., with the aid of three packages, being “doBy” [36], stringr [37] and
geepack [38–40]. In this study, the response variable, presence and absence of dolphin group
transit events, is measured repeatedly over time at one-hour intervals between 06:00 to 18:00
during 42 days between April and August at the same locations. Applying a generalised linear
model (GLM) would violate the independence assumption since there is a longitudinal aspect
to the study. Therefore a generalised estimation equations (GEE) was used as a tool to include
a dependence structure [41]. An AR-1 correlation structure was selected since it is used for
data sets in which there is a time order [41]. In specifying the gee in geepack’s [38–40] geeglm
function, correlation structures are created upon specification using the appropriate syntax.

Initially, hours of effort for environmenttal variables at different levels were summarised.
Subsamples were taken so that the first observation period for every hour was included in the
data analysis for testing. The response variable is the presence and absence of transit events,
which was defined by the period from the first detection of a group of dolphins within the cam-
era’s field of view to the time when it was last detected transiting the camera’s field of view. The
response variable would be a single value for a group observed surfacing multiple times during
its transit across the camera’s field of view. Vectors of all dates and times between the start and
end date of field surveys were created to include an autocorrelation structure for observations
over time within the model. Observations for every hour were chosen over observations that
were more distant temporally (every 4 hours, for example) since the latter would result in sig-
nificantly reduced subset of data and lower reliability in the interpretation. Rather than “sites”
being the grouping structure as in other analyses, here “time block” was considered the group-
ing structure due to a large gap between the first time block (April 16th – June 2nd) and the sec-
ond time block (June 29th – August 2nd) in which the data were collected (hence treated
independently).

Autocorrelation tests were carried out. Based on autocorrelation being present and biologi-
cal knowledge, an Ar-1 auto-correlation structure that allowed for dolphin observations in the
Fremantle Port at time “s” to depend on those measured at time “s – 1”, and also, although less
strong, on “s – 2”, etc. was used [41]. In preparing the data for analyses, no outliers could be de-
tected. However, the data was reduced to a subset containing the first observation of every
hour and observations with corresponding explanatory variables with levels having greater
than 20 observations. The final data set had 343 observations after 46 observations were
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removed as a result of this process". Collinearity (high correlation) between explanatory vari-
ables was tested (and one of a collinear pair of explanatory variables removed if collinearity
was found), and the relationships between the response variable and the explanatory variables
was explored. In order to assess collinearity, pairwise scatterplots were produced, and correla-
tion coefficients and variance inflation factors (VIF) calculated (using the AED package [35]).
VIF values below 3 [42] were considered to not be collinear. Binomial distribution was selected
(for presence/absence data). The model was restricted a priori to an acceptable level of com-
plexity, based on a general rule of thumb of>20 samples per covariate level [43]. For this rea-
son, only Beaufort and Glare and their interaction were included in the final model as an
explanatory variable. Explanatory terms were dropped one by one and each time refit the
model, ran validation processes, and compared the model with the previous one using Wald
tests to test the significance of nominal variables. Explanatory terms dropped included those of
no significance. For model validation, residuals were plotted against each individual explanato-
ry variable to ensure there were no obvious patterns (although interpretation of these for a bi-
nomial response variable is limited).

Finally, a cost-benefit analysis was carried out in order to compare the costs of using cam-
eras versus the costs of having trainned observers in the field. Costing parameters used were
based on salary scales for general staff from a typical Western Australian University at the time
of submitting this manuscript, and expressed in Australian Dollars. The exchange rate between
Australian and American Dollars was approximately of equal values (1 USD = 1.07 AUD, aver-
age) over the period in which this manuscript was finalised for submission.

Results
The total sampling effort was 42 days over a period of 3.5 months in 2010, including 9 days in
April, 12 in May, 3 in June, 17 in July and 1 in August. Seven hundred and twenty-seven (727)
video files totaling 493.4 hours of video footage were analysed during 418 hours. For still im-
ages, a total of 3,159 still image files which were taken over 17.6 hours were analysed during
17.5 hours. One or more dolphins were present within the camera’s field of view during 39.8
hours of video recordings, which corresponded to 8.1% of the total period of recordings. For
the still images during the 8.1% of corresponding video time, one or more dolphins were pres-
ent within the camera’s field of view in 346 photos, which corresponded to 11% of the total still
image files analysed.

Area sampled
The area sampled by the video camera comprised approximately 114,000 m2 and that sampled
by the still camera was 193,000 m2, with the largest field of view in the direction of the mouth
of the Fremantle Inner Harbour towards the southeast (Fig 4).

Detection range
Detection of dolphins ranged from 5.6 m (closest detection) to 463.3 m (most distant detec-
tion) for the video camera, and from 10.8 m to 347.8 m for the still camera (Fig 5). The number
of transit event detections reached a peak at 110 m on both cameras and then gradually de-
creased within decreasing range to the cameras (Fig 6). For the still camera, the bearing with
reference to geographical north varied from 244° to 309°. Similar results were obtained from
the video camera, in which dolphins were detected between 245° and 299°. Most dolphins were
observed between the bearings of 280° and 285° on the video camera, and between 265° and
270° on the still camera (Fig 7).
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Effect of environmental conditions on detectability
The observations were not significantly affected by haze or rain (rain obscuring the view and
droplets on the lense window) as these occurred rarely (Fig 8). Percentage of droplet coverage,

Fig 4. Field of view. The area covered by the still (grey and white) and video (white) cameras and the location of the camera tower (black triangle), and
dolphin (black cross).

doi:10.1371/journal.pone.0126165.g004

Fig 5. Position of first detected dolphin within a group in the Fremantle Inner Harbour as a function of range and bearing using both cameras.
White dots correspond to plots obtained from the still camera and red dots correspond to plots obtained from the video camera.

doi:10.1371/journal.pone.0126165.g005

Cameras as Remote Monitoring Tools for Detecting Dolphins

PLOS ONE | DOI:10.1371/journal.pone.0126165 May 12, 2015 11 / 21



haziness, and rain were removed from the analysis because they did not have enough informa-
tion in most levels. Most data were collected during light levels of 2, for the reason that there

Fig 6. Dolphin detection range.Number of dolphin group detections as a function of range from the cameras (range to the group is based on the position of
the first detected dolphin surfacing within the group).

doi:10.1371/journal.pone.0126165.g006

Fig 7. Dolphin detection range versus bearing.Number of dolphin group detections as a function of bearing and range from the cameras (bearing to the
group is based on the position of the first detected dolphin surfacing within the group).

doi:10.1371/journal.pone.0126165.g007
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were more hours between 06:00 and 18:00 with light (Fig 8). The majority of cloud cover condi-
tions were either no cloud cover or 100% (scale of 8, Fig 8). Cloud cover was correlated with
Beaufort, however, so Beaufort was selected as the most important of the two variables to in-
clude in the model.

Fig 8. Effort for each environmental variable. Effort (hours) of data collected under each environmental variable (Beaufort Scale, Light Level, Percentage
of Droplet Coverage, Haze Level, Rain Presence, Cloud Cover and Glare).

doi:10.1371/journal.pone.0126165.g008
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The majority of data were collected during glare conditions of 0, and to a lesser extent 1.
Glare never covered the entire field of view of the cameras so glare levels of 4 were never re-
corded. Data collected during glare levels of 2 and 3 were excluded since the sample size after
subsetting the data to include the first observation periods of every hour was not large enough
to include in the model.

The effect of environmental glare and Beaufort (which had sufficient samples across the
measured levels) on detectability was assessed by finding the best fit GEE. Glare only included
levels of 0 and 1 out of the scale of 0 to 4 since the number of observations were too few in glare
scales 2 to 4 to include. Also, Beaufort scales 0, 4 and 5 were excluded from the model due to
their small sample size. The model including glare only as an explanatory variable was the best
model. Beaufort and its interaction with glare were not significant. The Wald test showed no
difference between the submodel composed of glare, Beaufort, and their interactions as explan-
atory variables and the submodel with only glare and Beaufort included. Glare remained signif-
icant in all models.

The final, best model was given by

Z is ¼ 0:246 þ � 0:177 � Glare

with time block given by i and the time (over the study period) in the autorrelation structure
given by s (Table 1). The correlation of dolphins being observed between two sequential times
was 0.657, which is relatively high. Its standard error (0.036) was small, indicating that the cor-
relation was significant. The estimated correlation parameter indicated the presence of auto-
correlation within periods of observations, justifying the decision of using GEE. The resulting
interpretation for the analysis was that glare was associated with a decrease in dolphin transit
detections (based on the negative sign on the parameter estimate of Glare, -0.177).

To ensure that dolphin transit events (presence/absence) were not influenced by a coinci-
dence of transits having a pattern of occurring in the Fremantle Port area when glare was lower
(even though auto-correlation over time was included in the model), dolphin observations and
glare were plotted over time and a submodel was produced which only included data during
hours when glare could either be present or absent (due to clouds was included). Glare of 0 (no
glare) occurred always during the middle of the day from 09:00 to 15:00, however dolphin tran-
sit events occurred throughout the day, (Fig 9). The submodel which excluded the hours be-
tween 09:00 and 13:00 did not differ in glare being the only significant explanatory variable.

Cost effectiveness of using cameras
The cost effectiveness analysis consisted of a comparison of the total cost of the collection of
the data, including expenses of equipment, labour for data collection, equipment maintenance
and photogrammetry programming (Table 2). The cost of overheads, on-costs (a cost that the
employer incurs, such as the usual benefits, when employing someone in addition to the salary

Table 1. Generalised Estimating Equationsmodel to identify significant predictive variables in detecting transit events.

Parameter Coefficients Estimate Std Err Wald Pr(>|W|)

(Intercept) 0.262 0.118 4.89 0.027 *

Glare -0.264 0.113 5.41 0.020 *

Estimated Scale Parameters (Intercept) 1.04 0.0244 - -

Estimated Correlation Parameters (alpha) 0.385 0.0455 - -

Significance code: 0.01 = ‘*’.

doi:10.1371/journal.pone.0126165.t001
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Fig 9. Presence/absence of dolphins over time (top) and levels of glare (bottom) over time. Values on y axis are “jittered” to facilitate displaying of
overlapping observations.

doi:10.1371/journal.pone.0126165.g009

Table 2. Costs for camera system and personnel in the field (in US Dollars).

Item Cost ($)

Camera system

Gear 5,014

Labour gear preparation 5,900

Labour field servicing 3,471

Labour photogrammetry programming 2,647

Labour video perusing 12,247

Expendables (batteries, hard drives, SD cards) 1,206

Total 30,485

Personnel in the field

Gear 10, 359

Labour 36,280

Expendables 941

Total 47,580

doi:10.1371/journal.pone.0126165.t002
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or wages), administrative support, and statistical analyses were not included. For the camera
method, costs included gear, labour for gear preparation, field servicing, photogrammetry pro-
gramming and video perusing. For the estimate of the more traditional observational methods
undertaken by field personnel, costs included gear and labour related to data collection. Labour
of field personnel was based on a minimum of two people required on site 13 hours per day
(one operating a theodolite for positional information, and the other spotting with binoculars
and inputting all data in a spreadsheet in a computer). Although normally field staff would not
work during poor weather conditions, most days in which cameras-based data were collected
for this study was during reasonable weather conditions for field work. The additional hour per
day (ontop of the 12 hours of observations) was included for general tasks such as equipment
cleaning. The gear would consist of a pair of binoculars, a theodolite, a computer and batteries.
The total estimated cost and time spent for the camera method was USD$30,485 and 490
hours (including all labour costs), and for the field-based observations, USD$47,580 and 588
hours. The largest difference in cost between the methods was in labour, which was total of
USD$24,265 for the camera method and USD$36,280 for the field-based observations.

Discussion
Apart from the high initial cost with camera equipment and set up, the cost effectiveness analy-
sis showed this methodology is financialy advantageous when compared with traditional field
work for the same purposes. The fact that training is required to use a theodolite (trained the-
odolite observers for tracking dolphins are not common) makes it less attractive as specific
knowledge is involved and therefore the salary scale is higher. Furthermore, man-hours re-
quired would be fewer using the camera method compared to the hours required for field-
based data collection due to the possibility of watching the videos at a speed 1.75 times faster
than normal speed. More than 493 hours of video footage were analysed in 418 hours, includ-
ing time taken for rewinding, pausing and watching the videos at normal speed to check for de-
tails on dolphins, which is a significant advantage because it increases the reliability of data
collected. A period of 12 hours of video footage could be analysed in as short of a period as
7-hours if dolphins are not present or if they are not very active. The camera method would
take 84% of the time that it would were it obtained by personnel in the field. Furthmore, at lo-
cations and seasons in which weather conditions are poor, sample size from data collected in
the field could be significantly limited.

The camera method also allows for the images to be stored and accessed for post reference if
needed. Camera trap images support the collection of additional details about target species,
such as individual identification and activity patterns [7]. When using theodolites for cetacean
surveys, there is a larger risk of missing the target or an event than when using cameras since
the target is still in the image and the videos can be rewinded and paused. Also, during field
work, data collection is more subject to obsever bias as the event usually occurs very quickly
and is registered at the time it happens, not allowing time for double checking. The advantage
that observers in the field have is having a wider field of view and because of this being able to
“follow” individuals for longer periods of time in the study area.

Aside from the differences in costs and trade-offs using the two methods, there is also a dif-
ference in the implications for health and safety. There is an increased health and safety risk as-
sociated with having a team of observers in the field for long periods of time. For example,
there is an increased risk of fatigue, heatstroke, heat exhaustion, hyperthermia, or hypothermia.
In remote areas, there can be other risks such as increased chances of snakeites, or falls in rocky
or uneven terrain due to more frequent visitations to the site. The salary scale here considered
for comparisons related to costs for data collection was based on a casual research assistant
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with basic experience in observation of marine mammals. If personnel with more knowledge
and field experience were required, the cost would be considerably higher. The cost effective-
ness analysis did not consider the costs regarding safety equipments such as hat, boots
and sunscreen.

The range at which dolphin groups were detected of up to approximately half a kilometer
from where the cameras were located showed that cameras were able to detect dolphins within
a relatively long range when compared to results that displayed dolphin detectability of up 300
m in areas investigated through standard line-transect survey methods [44]. The use of higher
quality cameras in the current study could mean an improvement in detection range, however
there would be the drawback in that the cost would increase. Furthermore, the improvement in
detection capability of more expensive cameras would need to be ascertained whether they sig-
nificantly improve the outcome of studies using them. Dolphins have been seen using the en-
tire study area regularly (this is currently being quantified and has not been published yet). It is
likely that field observers positioned at the location where the camera tower was placed using
binoculars to aid detection could detect dolphins at greater ranges, however from the authors’
experience at this site, it would likely not be beyond 200 or 300 meters more. Furthermore,
considering observers would not be at the same altitude above sea levels as the cameras, using a
theodolite at this low level would introduce a significant error in positional information due to
the small change in vertical angle from the horizontal plane of the theodolite down to the dol-
phins. For the dolphin detections, a decline in groups detected was expected as the range be-
tween dolphins and cameras increased. This was true, except for within ranges close to the
cameras, where detections declined from their peak within the interval of 100 m to 110 m from
the cameras. This is likely a function of the relatively small area being sampled close to the
camera. In the present study, it is important to consider that the dolphin positions recorded
were documented when dolphins first appeared in the field of view in order to obtain unbiased
results. If dolphins have already been detected within the video, for example, and direction of
travel and behavior have been noted, then the observer has a greater chance of detecting any
subsequent surfacings even if they are at larger distances from the camera than a first detection
might allow.

The area covered by the still camera was slightly larger than that covered by the video cam-
era, which was reflected in the difference between the maximum and minimum bearings in
which dolphins were observed (65° for the still camera and 54° for the video camera). However,
the larger field of view of the still camera did not overcome the main limitation in using cam-
eras which is the limited field of view [23, 24]. The camera system does not provide a wide field
of view, which is of particular interest in studies which require individual identification, track-
ing of groups and subgroups, and/or group composition. Also, improved detection of dolphins
is likely from traditional field-based visual methods. In this study, dolphin detections were re-
corded as transit events in the video images due the difficulty in identifying dolphins individu-
ally, which would have only been possible when they were very close to the camera.

The still camera was more limited than the video camera in that the probability of dolphins
being on the surface of the water when the still images were taken reduced the number of detec-
tions significanctly. If a species occurred rarely in an area, a video camera should be used over a
still camera. If still cameras are to be used, a still camera pair could be useful to obtain informa-
tion on positions of animals in areas where there are no reference points available. Also, in re-
mote areas, solar panels (rather than car batteries which were used in this study) would
advantageous since they require little servicing.

While cameras can operate for long periods under a variety of weather conditions in water
tight boxes, including drizzle and rain, variation in environmental conditions influenced de-
tectability of dolphins. In this study, rain and haze did not occur often, so did not affect
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detectability. However, at locations where there are significant poor weather conditions, their
effects should be considered before implementing cameras for detecting animals since images
and videos taken during heavy rainy periods or during high wind speeds were often partially
obscured by water droplets on the outer windows of the water-tight box. Having said this, the
camera system was still advantageous in that information was collected even in poor weather
conditions when a field team would not operate. Dust on the camera lens combined with the
reflection of the sun also obscured the view of the camera on a number of occasions, hence
cleaning the lenses periodically is important. Also, this work was conducted in a relatively dry
climate. It is unknown whether in humid conditions the windows of the encasing protecting
the cameras would be fog up with condensation.

In terms of glare and Beaufort, moderate levels were considered in statistical analyses. Ex-
treme glare and Beaufort 4 or above were not considered in statistical analyses here due to their
relatively low sample size, but are expected to have an affect on detections using cameras as
they due for observations made directly in the field. Therefore the low sample size did not
allow to investigate the extent of the effects of these variables on detectability at higher glare
levels and sea states. For a camera heigh of 20 m, however, waves and swell with a height of 0.5
m may not represent a significant bias, mainly if the target is present in the field of view for
prolonged periods [25].

At more moderate levels, detections were effected by glare. Potential masking effects caused
by sunlight were also observed in a study using cameras mounted on an unmanned vehicle
when analyzing images of dugongs taken during an aerial survey [45]. The described effect
however was not due to glare, rather it was due to grouping of sun gleams reflecting off ripples
[45]. Despite the drawback of long post-processing time due to assessing the quality of the data
collected, the use of remote video cameras can facilitate studies such as predator-prey relations,
allowing investigations on predatory patterns of killer whales [46].

Given that the most significant cost was labour in perusing the camera images, the authors
suggest that the development and testing of an algorithm for automatic or semi-automatic dol-
phin dection would be invaluable. However, extensive testing and refining the algorithm would
be required since there are constant changes in the background colour of the images. The
amount of light reflected on dolphins and their surface behavior change their appearance. Fur-
thermore, there were occasions during which all that was seen was a splash and/or a point of a
fin, which could be misdetected due to similarities in the way the cues look to splashes from
diving birds such as seagulls or birds in the distance. The regular boat traffic captured by the
cameras and the constant changes in dolphins’ orientations would represent additional aspects
to be considered when developing an effective automated dolphin detection algorithm. The al-
gorithm written for dolphin positioning, however, proved to be of great benefit. The algorithm
effectively allowed relatively accurate calculation of dolphin positions from video grabs and
still images, dispensing the use of a theodolite.

Overall, camera systems can be of great advantage for the collection of long-term data of ac-
tivity and occurrence of animals in an area, and can be especially useful in remote areas if the
system is fitted with solar panels and a remote data acquisition system. They also have the ad-
vantage of operating continuously regardless of weather conditions and still provide useful
data. Furthermore, the use of cameras to detect dolphins is more cost effective than having per-
sonnel in the field, and reduces the health and safety risks to field staff. This study showed that
cameras could be effectively implemented onshore for research such as studying changes in
habitat use in response to development and construction activities.
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Conclusions
This study identified high definition video camera as a valuable tool to study bottlenose dol-
phins in the wild over long periods based on detection performance ability to obtain relatively
accurate positions of dolphins. The limited field of view was the main disadvantage of the
methodology, and this should be carefully considered prior to usingcameras for data collection
before undertaking a research program. Cameras could be used to study abundance of marine
mammals if reliable assumptions can be made about the target study animals such as frequency
of individuals transiting the field of view of the camera and their occupancy of the study area.
Environmental conditions (particularly presence of glare) did show an effect on detectability,
but this bias would likely also exist in data collected by observers in the field. The camera sys-
tem is particulary advantageous over personel in the field in poor weather conditions when
field work could not be undertaken and for studies requiring acquisition or perusal of observa-
tions a repeated number of times since video footage and images can be stored. Finally, the
time saved by watching video footage at faster speeds result in a more cost-effective and practi-
cal approach than field observations for long-term studies, and can be used to address unan-
swered questions for improved management and conservation of cetaceans.
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Abstract 

There is limited information on the impacts of anthropogenic noise on dolphin 

behaviour, making assessment and mitigation of impacts from anthropogenic 

noises difficult. As the use of echolocation and other vocalizations are of vital 

importance for cetaceans, it is important to better understand the potential impact 

of anthropogenic acoustic disturbance. The small Indo-Pacific bottlenose dolphin 

(Tursiops aduncus) community that inhabits the Fremantle Inner Harbour 

regularly travels through an area where impact and vibratory pile driving occurred 

during wharf upgrading. The overall aim of this study was to measure the noise 



energy created by pile driving associated with wharf construction activities in the 

Fremantle Inner Harbour and to determine whether the reduced detection of 

dolphins within the vicinity of the wharf was associated with pile driving 

activities. Measuring noise was accomplished with noise loggers and a hand-held 

digital acoustic recorder, under water, allowing identification of signals produced 

by impact and vibratory pile drivers and calculating the energy of recorded noise. 

Dolphin detections in the Inner Harbour were conducted by examination of high- 

definition video recordings. The association of pile driving and dolphin detections 

was assessed using Generalized Estimating Equations (GEEs), using observations 

before and during pile driving. The final model indicated that there was a 

difference in detections between the two treatments, with more dolphin detections 

observed when there was no pile driving activity taking place (mean = 0.26 ± 0.03 

SE) than during pile driving (mean = 0.18 ± 0.04 SE). Knowledge generated by 

this study on the impact of noise on bottlenose dolphins improves the scientific 

basis for managing anthropogenic noise and reducing impacts on marine 

mammals. 

Key Words: pile driving, underwater noise, port construction, cetacean detection, 

impacts, Indo-Pacific bottlenose dolphin, Tursiops aduncus 
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Discussion and Conclusions 

 

This research demonstrated that high definition video cameras are 

valuable tools to survey dolphins over long periods and can be applied as an 

aid to investigate associations of dolphin occurrence and anthropogenic 

underwater noise in areas inhabited by marine mammals with high human 

activity. When implementing the camera technology to a study on dolphin 

activity in association with pile driving in the Fremantle Inner Harbour, the 

video camera was effective, despite its limitations. The use of remote video 

cameras can also facilitate studies such as predator-prey relations, allowing 

investigations on predatory patterns of killer whales (Maniscalco et al. 2007).  

The cost benefit analysis showed that using cameras to detect dolphins 

is more cost-effective than having personnel in the field. Using cameras also 

offers the possibility of storing images and video files for post-reference or 

extracting additional data. Watching the videos at faster speed allowed 

collecting reliable data efficiently. Using cameras reduced the health and 

safety hazards of having personnel in the field over long periods. 

Detection range showed to be satisfactory when compared to 

distances at which dolphins would be detected by field observers. The range 

at which dolphin groups were detected of up to approximately half a kilometre 

from where the cameras were located showed that cameras were able to 

detect dolphins within a relatively long range when compared to results that 

displayed dolphin detectability of up 300 m in areas investigated through 

standard line-transect survey methods (Mesnick et al. 2002). The use of 

higher quality cameras in the current study could mean an improvement in 
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detection range; however there would be the drawback in that the cost would 

increase. Furthermore, the improvement in detection capability of more 

expensive cameras would need to be ascertained whether they significantly 

improve the outcome of studies using them. 

The decline in number of dolphins detected was expected as the range 

between dolphins and cameras increased. Dolphin occurrences close to the 

camera were less likely to be detected given the small zone being surveyed 

near the camera system. The main drawback identified from this research 

was the notorious restraint in using cameras, which is the restricted field of 

view (Ridoux et al. 1997; Bräger et al. 1999). Distinguishing groups was not 

possible and such limitation did not allow assessing whether dolphins 

transiting the field of view of the camera during pile driving indicated a long-

term absence from the area or temporary movement outside the field of view 

of the camera. Other techniques that can be used to obtain images in the 

field, such as camera trapping, may support collection of additional details 

about target species (e.g. individual identification and activity patterns) (Lyra-

Jorge et al. 2008), but are not applicable to marine mammals.  

Statistical models revealed that detectability was affected by 

environmental conditions; however, these were not deemed to be significantly 

worse than would have occurred for personnel in the field. There were several 

issues associated specifically to cameras, which affect visibility. These include 

presence of lens flare and/or droplets from rain on the lens. These did not 

occur often, thus did not significantly affect observations. The sample size did 

not allow investigating the extent of the effects of variables such as high glare 

and sea state levels on detectability. For a camera height of 20 m, however, 
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waves and swell with a height of 0.5 m may not represent a significant bias, 

mainly if the target is present in the field of view for prolonged periods 

(Gordon 2001). At more moderate levels, detections were effected by glare. 

Potential masking effects caused by sunlight were also observed in a study 

using cameras mounted on an unmanned vehicle when analysing images of 

dugongs taken during an aerial survey (Hodgson et al. 2013). The described 

effect however was not due to glare; rather it was due to grouping of sun 

gleams reflecting off ripples (Hodgson et al. 2013). 

At locations with poor weather conditions and rain occurring regularly, 

droplets on the lens would be liable to contribute to an increase in dolphin 

misdetections. However, during severe weather, personnel in the field are not 

able to conduct surveys either. While visibility is limited with camera systems, 

they can operate in poor weather conditions since they require periodic 

maintenance but otherwise operate autonomously for long periods. Regular 

equipment servicing is necessary as dust on the lenses may obscure 

presence of dolphins. The batteries also required periodic inspection. Solar 

panels would have been more advantageous in this aspect, as they do not 

require servicing as often.  

The still camera was not as effective as the video camera due to the 

higher probability of missing dolphin when on the surface. Still cameras 

however could be used in pairs as a tool to help calculating positions of 

marine mammals in areas where there are no reference points or such points 

are often obscured by changes in the background (e.g. large ships passing).  

The algorithm written for dolphin positioning implemented in this 

research was effective in calculating dolphin positions from video grabs and 
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still images. Dolphin positions are usually obtained using a theodolite, which is 

costly and may be associated with a larger risk of missing the target when 

compared with cameras, since the target is still in the image and the videos 

can be rewound and paused. Developing an algorithm for automatic or semi-

automatic dolphin detection would be of great benefit, however extensive 

testing and refining would be required.  

The number of dolphin transit events detected in the Fremantle Inner 

Harbour was greater when impact and/or vibratory pile driving was not 

occurring than when there was pile driving activity. While pile driving for many 

days for several hours per day could cause temporary changes in or 

disruption of dolphin behavior (Bailey et al. 2010) due to the large fluctuations 

in transit events within days and across days, this study could not distinguish 

between a natural seasonal decrease in detections from an effect of pile 

driving activity over time. 

While bottlenose dolphins using the Inner Harbour are regularly 

exposed to a relatively noisy environment, noise from pile driving elevated the 

level within the range in which behavioral responses have been observed in 

other studies (Southall et al. 2007). In this regard, our observations of reduced 

dolphin transit events during pile driving agree with other published studies. 

Measurements indicated that for dolphins to pass through the Inner Harbour 

channel when pile driving was occurring, they would have been exposed to 

levels above 140 dB re 1 µPa rms during vibratory piling and to sound 

exposure levels above 140 dB re 1 µPa2.s during impact piling. Such levels 

however are not within the range expected to cause physiological damage to 

dolphins (Southall et al. 2007). 
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This research contributes to knowledge regarding effective techniques 

to improve dolphin surveys for long-term studies, and to dolphin activity in 

association with pile driving. Further improvements of video camera 

methodologies for studying dolphins is likely to promote interest from 

businesses and environmental management organisations, since it presents a 

cost-effective alternative for improving management of marine mammals that 

inhabit areas subjected to urban noise. The study also contributes to current 

knowledge on behavioural response of dolphins within the vicinity of pile 

driving for improved management and mitigation practices. 
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