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ABSTRACT 

The High Water Mark (HWM) is an important cadastral boundary that separates land 

and water. It is also used as a baseline to facilitate coastal hazard management, from 

which land and infrastructure development is offset to ensure the protection of 

property from storm surge and sea level rise. However, the location of the HWM is 

difficult to define accurately due to the ambulatory nature of water and coastal 

morphology variations. Contemporary research has failed to develop an accurate 

method for HWM determination because continual changes in tidal levels, together 

with unimpeded wave runup and the erosion and accretion of shorelines, make it 

difficult to determine a unique position of the HWM. While traditional surveying 

techniques are accurate, they selectively record data at a given point in time, and 

surveying is expensive, not readily repeatable and may not take into account all 

relevant variables such as erosion and accretion. 

In this research, a consistent and robust methodology is developed for the 

determination of the HWM over space and time. The methodology includes two 

main parts: determination of the HWM by integrating both water and land 

information, and assessment of HWM indicators in one evaluation system. It takes 

into account dynamic coastal processes, and the effect of swash or tide probability on 

the HWM. The methodology is validated using two coastal case study sites in 

Western Australia. These sites were selected to test the robustness of the 

methodology in two distinctly different coastal environments. 

At the first stage, this research develops a new model to determine the position of the 

HWM based on the spatial continuity of swash probability (SCSP) or spatial 

continuity of tidal probability (SCTP) for a range of HWM indicators. The indicators 

include tidal datum-based HWMs, such as mean high water spring or mean higher 

high water, and a number of shoreline indicators, such as the dune toe and vegetation 

line. HWM indicators are extracted using object-oriented image analysis or Light 

Detection and Ranging (LiDAR) Digital Elevation Modelling, combined with tidal 

datum information. Field verified survey data are used to determine the swash 

heights and shoreline features, and provide confidence levels against which the 

swash height empirical model and feature extraction methods are validated. 

Calculations of inundation probability for HWM indicators are based solely on tide 
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data for property management purposes; while swash heights are included for coastal 

hazard planning. 

The results show that the accuracy of swash height calculations is compromised due 

to gaps that exist in wave data records. As a consequence, two methods are utilised to 

interpolate for gaps in the wave data records: the wavelet refined cubic spline method 

and the fractal method. The suitability of these data interpolation methods for 

bridging the wave record data gaps is examined. The interpolation results are 

compared to the traditional simple cubic spline interpolation method, which shows 

different interpolation methods should be applied according to the duration of the 

gap in the wave record data.  

At the second stage of this research, all the HWM indicators, including the two new 

HWM indicators, SCSP and SCTP, are evaluated based on three criteria: precision, 

stability and inundation risk. These indicators are integrated into a Multi-Criteria 

Decision Making model to assist in the selection and decision process to define the 

most ideal HWM position. Research results show that the position of the dune toe is 

the most suitable indicator of the HWM for coastal hazards planning, and SCTP is 

the most ideal HWM for coastal property management purposes.  

The results from this research have the potential for significant socio-economic 

benefits in terms of reducing coastal land ownership conflicts and in preventing 

potential damage to properties from poorly located land developments. This is 

because the methodology uses a data-driven model of the environment, which allows 

the HWM to be re-calculated consistently over time and with consideration for 

historical and present day coastal conditions. 
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CHAPTER 1 INTRODUCTION 

1.1 The Definition of the High Water Mark (HWM) 

The determination of the High Water Mark (HWM) is important for coastal 

management and planning, as the HWM is considered as a cadastral boundary to 

separate land and water (Whittal 2011). It is used to denote public and private land, 

and as a reference from which development is offset to limit the exposure of 

properties to potential coastal hazards. 

Generally, the HWM has been defined from two aspects: either a height determined 

using a tidal datum calculated from water level observations or from shoreline 

features in the coastal zone on the landward side. The origin of using tide levels to 

define the HWM can be traced back to the sixteenth century (Cole 1997). In the 

following years, a number of definitions and methods were developed based on the 

tidal datum and legislated in law or for other practical purposes, such as ordinary 

high water mark (OHWM), mean high water spring (MHWS) and mean higher high 

water (MHHW).  

However, when tide information is not available or not sufficient, field evidence is 

preferred as the boundary to accurately delineate the HWM (Morton and Speed 

1998). The water level, which includes the effect of wave runup (swash), is one such 

piece of evidence. Alternatively, shoreline features, which indicate the position of the 

water level in some way, are another type of HWM indicator. They include, but are 

not limited to, the vegetation line (Guy Jr 1999; Priest 1999), frontal dune toe (Coutts 

1989) and high water line (HWL) (Crowell et al. 1991). 

As indicated by Morton and Speed (1998), the actual water level is systematically 

underestimated by nearby tide gauges due to the impact of wave runup. In general, 

wave runup causes an offset which is the difference between tidal datum-based 

HWM indicators and the indicators based on shoreline features. This difference 

(offset) makes it difficult to determine a single discrete line for HWM delineation.  

Nonetheless, a single discrete HWM is often not realistic as its location is influenced 

by the application for which it is used, such as coastal property management or 

coastal hazard planning. Here a single HWM that suits both purposes is not practical.  
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For example, historically, tidal datum-based HWM indicators have their roots in the 

development of common law for property management; while the origin of 

measuring water level and its indicators can be traced back to Roman civil law (Cole 

2007), and the wave runup height is an essential criterion for coastal hazard 

protection  (Hubbert and McLnnes 1999; Short and Hogan 1994).  

There is currently no consistent method for HWM determination and this has led to 

discrepancies in scientific analysis and differences in its application in management 

fields. HWM determination is often complex and results will vary depending on the 

indicators unique to the location. There are also inconsistencies in the definition of 

what constitutes the HWM, no procedural methods for its determination (Cole 1997), 

and inaccuracies in measurement due to the dynamic nature of the coastal 

environment (Hughes et al. 2010; Masselink and Russell 2006). A method to 

consistently determine the HWM line is urgently required by land and coastal 

administrators in order to reduce conflicting findings and time-consuming rework for 

specific purposes. 

This research develops a consistent and robust methodology for HWM determination.  

The method includes two components: determination of the HWM position and 

evaluation of changes in the HWM over time and space. This methodology takes into 

account the dynamic processes of the coastal system, and importantly, integrates the 

land and water system as a whole by calculating the swash or tidal probability of 

each HWM indicator.  

1.2 Problem Formulation 

The HWM is one type of water boundary. The HWM boundary between water and 

land is not explicit, and the definitions of the HWM are ambiguous and can be 

interpreted in different ways (Coutts 1989). For example, in a statutory definition, the 

use of the term ‘ordinary’ in OHWM as applied in tidal waters is not mathematically 

ideal (Horlin 1994) and is not part of the tidal lexicon (R. Mahoney, personal 

communication 5 December 2009). Therefore, the interpretation of the word 

‘ordinary’ has altered since its earliest inception, and the HWM position defined by 

OHWM varies over time and space (see Section 2.2).  
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The HWM, as a natural boundary, is also uncertain. It is not stable and will change 

over time (Burrough and Frank 1996), mainly due to the dynamic coastal 

morphology which can modify the location of the interface between water and land 

(Cole 1997). This can partially explain why there is no standard method for 

determining the position of the HWM in most jurisdictions, including Western 

Australia. 

Current methods for determining the HWM are expensive and only appropriate in 

localised areas. In the main, determinations of the HWM are only conducted for new 

land developments to determine land ownership extent or for potential hazard 

assessments. When there is conflict concerning property boundaries, people are 

concerned with an exact ‘HWM boundary’. However, the HWM line can only be 

determined precisely in areas that are in close proximity to a tidal control station.  

HWM determination was traditionally achieved using medium- to long-term tidal 

records (Cole 2007). However, there is no consensus on the most appropriate tidal 

datum-based HWM indicators to represent the position of the HWM. As a 

consequence, there is a need for critical examination on the tidal datum-based HWM 

indicators.  

Furthermore, the spatial information of shoreline features indicating the position of 

the HWM can be captured by a number of methods. Field surveys using Real-Time 

Kinematic (RTK) based Global Navigation Satellite Systems (GNSS) receivers are 

considered the most accurate determination tool. However the method is labour- and 

time-consuming when collecting high resolution data along long segments of the 

shore. Also, the value of the data, in terms of accuracy, will vary depending on the 

nature and slope of the coast. In contrast, aerial photography interpretation offers 

substantial time and labour savings. However, if the aerial photography is of poor 

quality, precise boundary detection is not possible. High-resolution optical remote 

sensing imagery overcomes this limitation and the precision of the features captured 

is enhanced. However, the process of classifying shoreline features using high 

resolution images may result in overly finely distributed classification results on the 

classified image (Blaschke 2010; Dragut and Blaschke 2006; Marpu 2009; Walter 

2004), which makes identification of shoreline features difficult using traditional 

supervised or unsupervised classification methods. 
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Other factors have impeded HWM determination and require further analysis. These 

relate to the ambiguity of the meaning of the HWM, how to manage data gaps, 

accuracy of imagery, and lack of a multi-criteria decision making perspective for 

HWM determination.  The following questions arise: 

• What is the correct meaning of ‘high water’ or ‘high tide’? This is a key issue 

for HWM determination; however, this has not been definitively addressed 

(Briscoe 1983).  A fundamental question is how to relate HWM indicators to 

the water-land interface?  This requires an understanding of how to integrate 

the water and land information and how to define the water-land interface. 

This aspect is considered in this research.  

• Should the effect of wave runup be considered in HWM determination? The 

tidal datum-based HWM indicators exclude the runup height from the 

determination, while features present on the shoreline usually include the 

height of wave runup in the determination process. However, the effect of 

wave runup on HWM determination has rarely been quantitatively assessed. 

This is often due to limited data because of buoy breakdowns during poor 

weather conditions or computing problems. Many data gaps occur in the 

wave information records and these are not always small (Kalra and Deo 

2007). Data gaps are addressed in this research. 

• When using image analysis to determine the position of HWM indicators, 

how do the classification accuracy, imagery accuracy and random errors 

influence the robustness of HWM determination? Also, how does the 

variation of HWM position over space and time influence the consistency of 

HWM determination? These aspects have not been previously analysed and 

are investigated in this research.  

• What are the methods for quantitative analysis that can be applied to 

systematically incorporate and evaluate multiple HWM indicators into a 

single HWM determination methodology? This research develops a method 

of evaluation from a multi-criteria perspective and for different determination 

purposes. The development of such a method has not been undertaken 

previously.  
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1.3 Research Objectives 

The overall aim of this research is to develop a consistent and robust HWM 

determination methodology. This model will facilitate decision-making processes for 

both property management and for hazard planning in coastal areas. To achieve this 

goal, the primary objectives of the project include:  

• To develop a model integrating both land and water information to determine 

the position of ‘high’ water; 

• To develop a computer model to assess all HWM indicators in the one 

evaluation system. 

 To address these primary objectives the following secondary objectives are applied: 

• To resolve data gaps by interpolating the missing data that are required for 

HWM determination and evaluation processes; 

• To identify the positions of existing HWM indicators using tidal and image 

analysis, including tidal datum-based HWM indicators from the seaward side, 

and shoreline features lying in the coastal zone from the landward side;  

• To determine the spatial continuity distance of swash/tidal probability for a 

range of HWM indicators; 

• To assess the confidence level for image analysis on shoreline feature 

identification and water level modelling; 

• To evaluate the spatial and temporal variation (precision and stability), and 

rank the inundation risk for each HWM indicator using three criteria for 

HWM determination; and 

• To determine the HWM using multi-criteria decision making methods. 
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1.4 Significance and Benefits of the Research 

1.4.1 Social and Economic Benefits 

The determination and representation of the HWM is an important aspect of both 

planning and implementation phases of coastal zone management. After developing a 

statistically reliable method to determine the HWM, not only can surveyors operate 

within guidelines to guarantee consistency and to maintain integrity, regulations and 

legislation on the HWM can also be applied with certainty. Other benefits stemming 

from the ability to consistently and repeatedly determine the HWM include: 

• Ability to locate the HWM cost effectively in the field or on digital maps in 

the cadastral database system;  

• Ability to apply Digital Elevation Modelling (DEM) and image analysis to 

improve the working efficiency of HWM determination; 

• Providing scientific evidence to assist in jurisdictional agreements related to 

HWM boundaries; 

• Supporting research and development into data harmonisation through the 

determination of consistent and robust coastal cadastral boundaries; 

• Supporting decision making particularly in the area of town planning and 

land valuations;  

• Supporting risk assessment studies in relation to the impact of erosion and 

climate change on our coastline and coastal infrastructure; and 

• Provide a baseline to which predictive modelling can be applied and forecasts 

on the effects of sea level rise determined. 

1.4.2 Research Contributions 

In addition to the new methodology for the determination and evaluation of HWM 

position, other contributions of the research include: 
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• Providing a solution to wave record gaps using intelligent interpolation 

algorithms, thus making recorded information more useful through the 

improvement of interpolation accuracy, especially for large data gaps; 

• Extending the application of spatial analysis to the coastal boundary 

determination by addressing the difficulty of applying spatial autocorrelation 

analysis on linear objects, thereby enabling the identification of the ‘high’ 

water position; 

• Providing a new way for assessing the spatial and temporal variation of 

shoreline position from both a ‘precision’ and ‘stability’ point of view; and 

adding depth to the visualisation understanding of shoreline variation by 

applying high resolution imagery in representing the results; 

• Proposing a systematic model that can be applied to evaluate the shoreline 

positions for different purposes. 

1.5 Research Methodology 

The study comprises three major stages—determination, evaluation and decision, in 

which the major applied methods are outlined below: 

• Determination of HWM indicators, through: 

i. Review of relevant literature on the development of HWM determination;  

ii. Constituent analysis for the tidal datum-based HWM indicators; 

iii. Image analysis for shoreline features using object-oriented image analysis 

(OOIA); 

iv. Wave information, including heights and periods, interpolation using 

cubic spline, wavelet refined spline, and fractal method for different sizes 

of recording gaps; 

v. Calculation of the spatial continuity distance of the tidal/swash 

probability on the shore by applying the semi-variogram function. 

• Evaluation of HWM indicators, through: 
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i. Measurement of the stability of HWM indicators using the extended 

Hausdorff distance; 

ii. Identification of the random error in the HWM determination process by 

applying Monte Carlo simulation; 

iii. Assessment of the topographic complexity of HWM indicators by 

calculating the fractal dimension. 

• Decision on the position of the HWM, through: 

i. Determination of the weights for each criterion using survey feedback 

from experts using the pairwise-comparison method (PCM); 

ii. Establishment of a Multi-Criteria Decision Making (MCDM) model to 

integrate the three criteria—precision, stability and inundation risk for 

evaluating HWM indicators in one system. 

Two study areas in Western Australia were chosen to test the evaluation 

methodology. Both sites have distinctive shoreline characteristics (see Section 3.3) 

and were chosen as being representative of many other coastlines with similar shore 

conditions, in terms of tidal types, wave characteristics, coastal morphology and 

coastal types, and therefore pertinent for testing the methods being developed.    

1.6 Thesis Structure 

This thesis comprises eight chapters. The research model and its relationship to the 

chapters in this thesis are depicted in Figure 1.1.  

Chapter 1 briefly introduces the problems and provides relevant background 

information on HWM determination. The objectives of the research and its 

significance are outlined. 

Chapter 2 reviews the development of HWM determination, the existing HWM 

indicators and their determination methods, and investigates the possible factors that 

influence the variation of the HWM position. An overview of the difficulties in 

HWM determination is provided, and the limitations of previous determination 

methods are discussed. 
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Chapter 3 establishes and depicts a theoretical framework for HWM determination, 

in which the main processes for the HWM determination and evaluation are 

discussed. Also included in this chapter are the characteristics of the selected study 

areas, the required data and software for implementing the methodology, and their 

limitations. 

 Chapter 4 develops a method for interpolating the recording gaps in wave 

information, including wave heights and periods, using wavelet refined cubic spline 

and fractal methods. These methods are also evaluated and compared with the cubic 

spline method.  

Chapter 5 illustrates the process for identifying HWM indicators based on tidal 

datum and shoreline features using image analysis. A new method of HWM 

modelling integrating both land and water information is established by applying the 

theory of spatial continuity of tidal/swash probability on the shore. The position of 

shoreline features derived from the image analysis and the swash probability 

calculated from the empirical model are validated against data obtained from a field 

survey. 

Chapter 6 applies the Kriging method to fill in DEM data gaps and evaluates the 

precision and the stability (spatial and temporal variation) of HWM indicators as two 

criteria for HWM determination.   

Chapter 7 presents a Multi-Criteria Decision Making (MCDM) model integrating 

the criteria—precision, stability and inundation risk to evaluate the HWM indicators, 

followed by discussions on the position of the HWM for both coastal property 

management and coastal hazards planning purposes. 

The thesis is concluded in Chapter 8, with a summary of the major findings and the 

limitations of the research in relation to the stated objectives and recommendations 

for future research. 
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Figure 1.1 Research structure and relationship to the chapters of this thesis 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews the legal definition of the HWM based on tidal data. All its 

variations in different jurisdictions, countries, states and even departments, are 

presented. The chapter also identifies the different methods for determining the 

position of the HWM. In addition, a review of the literature concerning factors that 

affect the position of the HWM and problems associated with its determination, is 

presented in order to formulate a new, consistent and robust HWM determination 

methodology.  

2.2 Tidal Datum-based Legal Definition of the HWM 

2.2.1 Development of the Legal Definition of the HWM in Common Law 

The use of tide to delineate the seaward extent of private land is well established in 

common law (Cole 2007; Horlin 1994; Maloney and Ausness 1974b). The origin of 

the law can be traced back to the sixteenth century during the reign of Queen 

Elizabeth I, when Thomas Digges a lawyer, engineer and surveyor, first cited the 

theory of royal ownership of foreshore areas (Cole 1997). According to Digges, the 

land beneath tidal waters and the foreshore, which is the submerged land of the 

kingdom, should be held by the Crown (Maloney and Ausness 1974b). In 

seventeenth century England, Digges’s theory was revived by the treatise of Lord 

Mathew Hale, who declared that the foreshore ‘between the high water mark and the 

low water mark’ belonged to the Crown (Maloney and Ausness 1974b, 199).   

However, in early law, there was no clear definition of the HWM. While Hale’s 

doctrine firmly established ordinary high water mark (OHWM) as the boundary 

between privately-owned property and public beach (Cole 2007; Horlin 1994; 

Maloney and Ausness 1974b); the definition in his doctrine incorrectly equated the 

concept of ‘neap tides’ with ‘ordinary tides’, leaving the definition ambiguous.  

In 1854, the OHWM was clarified in common law by a case in which it was defined 

as ‘the average of the medium tides in each quarter of a lunar evolution during the 

year (in which the line) gives the limit, in the absence of all usage, to the rights of the 

Crown on the seashore’ (Cole 1997, 3). In the following years, this common law 
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model and definition of OHWM was widely adopted by most of the United States 

(U.S.) and commonwealth countries such as Australia, for delineating property 

boundaries (Gay 1965; Hamann and Wade 1990; Humbach and Gale 1975; Landgate 

2009c; Maloney 1977; Simon 1993). The OHWM is also considered synonymous 

with the term ‘the line of mean high water mark (MHWM)’ (Coutts 1989; Horlin 

1994; Land Services 2008; Maloney and Ausness 1974b).  

2.2.2 The Mean and Ordinary High Water Mark 

In areas with tidal variations, Gay (1965) suggested that ordinary or mean high water 

mark should apply as the boundary between privately owned uplands and the 

submerged lands which are subject to public ownership. In order to locate MHWM 

accurately, survey regulations in New Zealand require a record of tide information 

over a period of 370 days ( Kearns 1980). This is particularly important in areas with 

seasonal tidal change, where a mean annual height of high water is appropriate (Cole 

1997). In contrast, Gay (1965) insisted that a period of nineteen years as appropriate 

for the determination of MHWM at any given place, as it takes into account most of 

the significant tide constituent effects (Australian Hydrographic Service 2010; 

Doodson 1921; Pawlowicz et al. 2002). Thus, the time span to calculate mean high 

water (MHW) is not fixed but it is apparent that the more tide information that is 

collected, the more precise the MHW will be. 

Mean high water is defined as the average height of all high water marks over a long 

period of time (The Intergovernmental Committee on Surveying and Mapping 

(ICSM) 2012). It can be interpreted in different ways (Coutts 1989). Interpretations 

are complicated by certain tidal characteristics and conditions. 

There are three possible types of tide (Gill and Schultz 2001): diurnal, semidiurnal 

and mixed. A tide is considered semidiurnal when there are two high and two low 

tides within a single day; whereas a diurnal tide has only one tidal cycle per day. A 

mixed tide is similar to the semidiurnal tide; however the two high waters and low 

waters, occurring daily, have significant differences in height. Thus, technically, the 

term ‘mean high water spring’ (MHWS) applies only to those areas with a 

semidiurnal type; while the term ‘mean higher high water’ (MHHW) applies only to 

diurnal tidal regimes (Pugh 1996). Generally, the definition of MHWS is the average 
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of all high water observations at the time of spring tide over a period of time (The 

Intergovernmental Committee on Surveying and Mapping (ICSM) 2009).  Whereas, 

MHHW is the mean of the higher of the two daily high waters over a period of time 

(The Intergovernmental Committee on Surveying and Mapping (ICSM) 2009). 

Land and property administrative organisations use different interpretations of the 

HWM to define land ownership boundaries. Hicks (1985) points out that both MHW 

and MHHW can be interpreted as property boundaries between privately-owned 

uplands and publicly-owned tidelands. In the U.S., each State has adopted MHW and 

mean lower low water (MLLW) as the boundary delimiting privately and publicly 

owned land. The exceptions here, are the states of Hawaii, Louisiana and Texas, 

which consider that MHHW provides a more reliable datum for surveying and 

engineering purposes (Cole 2007; Fowler and Treml 2001) (Figure 2.1). Similarly in 

Australia, boundaries are defined in two main ways: MHW in South Australia (Land 

Services 2008) and New South Wales (Clerke 2004), and MHWS in Queensland 

(Collier and Quadros 2006; Dunphy 2010) and Western Australia (WA) (Landgate 

2009c).  

 

Figure 2.1 The extents of the U.S. maritime zones (National Oceanic and 

Atmospheric Administration 2012) 

In WA, the statutory definition of the HWM is the ordinary high water (OHW) at 

spring tide. This is generally accepted as equivalent to the definition of MHWS in the 

http://en.wikipedia.org/wiki/Hawaii
http://en.wikipedia.org/wiki/Louisiana
http://en.wikipedia.org/wiki/Texas
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Australian National Tide Tables (Landgate 2009c). The height of MHWS is defined 

as ‘the average, throughout a year when the average maximum declination of the 

moon is 23.5 degrees, of the heights of two successive high waters during those 

periods of 24 hours when the range of the tide is greatest’ (Department of Defence 

2008, xxvii). However, because the WA coast also experiences diurnal and mixed 

tidal characteristics (Pattiaratchi and Sarath Wijeratne 2009), the MHHW is 

correspondingly applied (Figure 2.2).  

 

Figure 2.2 HWM determination concepts (Fenner 2010) 

The HWM using mean or ordinary high water is not consistent even in the same 

location. This is because the OHW, defined as ‘the average of the medium tides in 

each quarter of a lunar evolution during the year’ (Cole 1997, 3), may be lower than 

the mean high water in normal situations. Furthermore, the time span for calculating 

ordinary and mean high water is not necessarily the same.  

As a consequence, authorities who are responsible for defining the coastal 

boundaries have gradually adopted MHW as being equivalent to the OHW, as 

defined under English common law (Horlin 1994). This approach has become widely 

accepted because the definition is less ambiguous. Nevertheless, because the 

category of private property is defined as the land above the position of lands 

beneath tidal waters, there is not yet a consensus as to whether MHW can represent 
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the ‘true’ landward boundary of tide water. This question remains unanswered and 

requires further evaluation. Furthermore, the meaning of ‘high water’ or ‘high tide’ 

has not been definitively addressed (Briscoe 1983). This continues to be a key issue 

and is fundamental to HWM determination. 

The HWM, including the tidal datum-based HWM, should usually be related to a 

recoverable datum (Clerke 2004). Normally, mean sea level is used as such a 

reference point (Gay 1965). In Australia, the Australia Height Datum (AHD) is 

adopted (Landgate 2009c), as the establishment of the AHD is equal to mean sea 

level at its initial establishment (R. Mahoney, personal communication 5 December 

2009).  

2.3 Harmonic Analysis and Tidal Datum Computations 

The development of tidal analysis, especially harmonic analysis, provides a full 

description and sufficient information for tidal datum determination (Pugh 1996). 

Harmonic tidal analysis was introduced by William Thomson in the 1860s (National 

Oceanic and Atmospheric Administration (NOAA) 2010a), and was further 

elaborated by Darwin (1883) and Doodson (1921). Most tidal data analysis is based 

on the harmonic model and was adopted by the Australia National Tidal Centre and 

other agencies in Australia (Australian Hydrographic Service 2010). 

Harmonic tidal analysis considers the tidal datum as a sum of the constituents’ cosine 

waves (Australian Hydrographic Service 2010; Foreman 1977; Phillips 1999; The 

Virginia Institute of Marine Science 2010): 

( ) ( )0
1

cos 2
m

i j j i j
j

H t h A tπ σ φ
=

 = + − ∑                                    (2.1) 

( )iH t represents the tidal height at time i; 0h is the height of mean sea level; m is the 

number of constituents chosen for the particular area; jA , jσ and jφ  represent the 

amplitude, frequency and phase of constituent j, respectively. Since the frequency of 

every constituent is known in advance, the formula demonstrates that the key to 

harmonic analysis and constituent calculation is to calculate the amplitude and phase 

of the individual constituent cosine curves. 
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Figure 2.3 Sum of tidal constituents (Department of Oceanography 2007) 

Two methods are commonly used together to calculate these elements: Fourier 

analysis (Korner 1989; Phillips 1999) and the least squares technique (Foreman 

1977). The summary of the calculation process is (1) to transform the 

( )
1

cos 2
m

j j i j
j
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 − ∑  as ( ) ( )
1
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j j i j j i
j

C t S tπσ πσ
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2 arctan /j j jS Cπφ =                                                 (2.2) 

and ( )1/22 2
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(2) to apply the least squares technique and minimise 

( ) ( ) ( )
2

0
1 1

cos 2 sin 2
n m

i j j i j j i
i j

y t h C t S tπσ πσ
= =

  − − +   
∑ ∑  

where n represents the number of  observed tidal recordings and ( )iy t is the tidal 

height at time it .   

Once the value of jS  and jC  are determined, jφ  and jA  can be calculated by the 

Equations 2.2 and 2.3. 
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In an analysis of 146 constituents, 45 reflect the astronomical arguments while the 

remaining 101 constituents are commonly referred to as the shallow water 

constituents (Cartwright and Edden 1973; Foreman 1977). 

The astronomical constituents are considered the main constituents and represent the 

periodic variation at a certain relative location of sun, earth and moon (National 

Oceanic and Atmospheric Administration (NOAA) 2010b); while the shallow water 

tidal constituents are produced by the interaction of the main tidal constituents when 

the tide enters shallow water and is affected by bottom friction  (Foreman 1977; The 

Intergovernmental Committee on Surveying and Mapping (ICSM) 2010b). The 

shallow water constituents distort the normal tidal profile, and at some sites the 

distortion can be significant (Foreman 1977). Therefore, a long period of tidal 

observation is suggested to take into consideration all the possible shallow water 

effects. 

To determine which constituents are the most significant (each site has its own 

energy signature), the Rayleigh comparison constituent method can be used 

(Foreman 1977), although in general, of 146 constituents, only 37 of them are 

considered major constituents (National Oceanic and Atmospheric Administration 

(NOAA) 2010c). Furthermore, four major constituents are most important: K1 is the 

diurnal principal declination tide; O1 is the diurnal principal lunar tide; M2 is the 

semidiurnal principal lunar tide; and S2 is the semidiurnal principal solar tide. S2 and 

M2 are the basic sun and moon tides, whereas K1 and O1 are the main effects of the 

declination of the sun and the moon (Horlin 1994). 

Besides calculating the tidal datum, the application of these four constituents also 

includes quantitatively analysing the type of tides by calculating their ratio (Dietrich 

and Kalle 1963; Foreman 1977): 

1 1
2 2

K OF
M S

+
=

+
                                                    (2.4) 

F is called the form number.  The tide can be precisely classified as follows:  

i. Semidiurnal if 0 0.25F≤ ≤ , 

ii. Mixed if 0.25 3.00F< ≤ , 
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iii. Diurnal if 3.00F > . 

2.4 Other HWM Indicators 

When tidal information is unavailable or insufficient, land surveyors prefer to use 

field evidence to establish the position of boundaries to separate private from public 

ownership (Morton and Speed 1998). Normally, the area between the vegetation line 

and the berm crest is defined as the beach (Bauer and Allen 1995; Rooney and 

Fletcher 2000). Correspondingly, most features lying on the coast, such as scum or 

an oil line left on the shore and the debris or fine shell continuously deposited on the 

berm or foreshore (Briscoe 1983), can be considered HWM indicators (Pajak and 

Leatherman 2002) and be used to define the HWM. These physical markings indicate 

the general HWM line attained by the runup of high water (Hicks et al. 1989; Simon 

1993; Williams-Wynn 2011). However, these indicators tend to be present only for 

short periods and are not present on every beach, while most physical indicators 

include the impact of wave runup (swash), typical tidal analysis excludes the runup 

factor.  

Previous studies considered several other common types of HWM indicators in 

addition to tidal records, including the boundary between dry and wet sand, referred 

to as the high water line (HWL) (Moore et al. 2006), dune toe (Williams-Wynn 

2011) and the seaward limit of vegetation (Williams-Wynn 2011). These shoreline 

features are good indicators of water level and are therefore sometimes used as 

boundary indicators of land and water (Coutts 1989; Gay 1965; Maiti and 

Bhattacharya 2009; Moore 2000; Morton and Speed 1998). Admittedly, not all of 

these indicators are available on all coasts, and choosing which one to use for a 

specific area generally depends on the physical coastal characteristics and data 

availability (Boak and Turner 2005). 

2.4.1 High Water Line 

Unlike morphological features, the HWL is the intersection of land with a water 

surface at its highest point (Hicks et al. 1989).  It is the best indicator of the water-

land interface (Crowell et al. 1991). HWL is generally located landward of the last 

high tide (Anders and Byrnes 1991; Crowell et al. 1991; Shalowitz 1964; Stockdon 
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et al. 2002) and seaward of the berm during normal weather and tidal conditions 

(Morton and Speed 1998; Pajak and Leatherman 2002).  

In the past, HWL was identified by the visible signs of ‘high tides’ and the 

discoloration of sand or rocks on the shore (Boak and Turner 2005; Shalowitz 1964). 

Nowadays, with the development of remote sensing technology, HWL is defined as 

the line separating dry and wet beach and can be identified in aerial photographs by 

the sudden change of colour  (Moore 2000; Morton and Speed 1998). However, 

Pajak and Leatherman (2002) mentioned that there might be more than one high 

water line left on the beach; the previous days’ marks are sometimes still visible, so 

the most recent high water line needs to be surveyed in the field. Fortunately, the 

previous marks are often not as clear as the recent one and the contrast is different.  

Although, McBeth indicates that even when a HWL is exposed to the sun after the 

tide recedes, it will remain stable on the beach (Boak and Turner 2005; McBeth 

1956).  

In addition to wave runnup, HWL is also affected by a collection of phenomena and 

complex and varying situations. This is because, its position is related to the tidal 

level, geomorphology and wave energy; not just field observation (Morton and 

Speed 1998; Ruggiero et al. 2003), and requires further investigation. 

Shalowitz suggested that the offset between the position of MHW and HWL as 

identified in the field and on aerial photographs was insignificant (Crowell et al. 

1991; Shalowitz 1964). By contrast, other scientists argued that the relationship 

between these two can only be interpreted as being correlated to each other, and that 

HWLs seldom coincide with the MHW or the berm crest (Morton and Speed 1998). 

The MHW is normally seaward of the HWL because of wave runup, (Morton et al. 

2004; Pajak and Leatherman 2002; Ruggiero et al. 2003). This phenomenon is more 

significant on flat beaches, where even the high water lines themselves are likely to 

change significantly day by day (Morton and Speed 1998; Pajak and Leatherman 

2002).  

Although HWL is easily identified on the shore and is convenient to use as an 

indicator, its position is not stable, especially on gently sloping beaches (Pajak and 
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Leatherman 2002). Also, the position of HWL usually corresponds to coastal 

morphology, water level and wave characteristics (Morton and Speed 1998).  

2.4.2 Vegetation Line 

The vegetation line is a biological feature established by either regular floods of 

water or storms that destroys the existing vegetation (Morton and Speed 1998; 

Shalowitz 1964). Therefore, the vegetation line indicates the position of high water 

in some way. Parker (2003) states that the vegetation line and most 

geomorphological indicators are landward, away from the mean high water line. The 

vegetation line was also chosen as an indicator for marine boundaries because it is 

the most stable natural boundary, controlled by the wash associated with extreme 

high water (Guy Jr 1999; Priest 1999). 

Usually, the vegetation line appears in two positions: one is the inland dense 

vegetation, and the other is young and sparse, lying on the back shore. The dense 

vegetation is considered a more stable boundary indicator than the sparse vegetation 

(Morton 1974); most storm surges cannot reach the position beyond it (Morton and 

Speed 1998). This makes the vegetation line the most landward water boundary. 

However, in some wetlands where plants require continuous wash to survive, the 

vegetation line is seaward of the high water line and lower in elevation (Shalowitz 

1964).  

However, there are two disadvantages to using vegetation lines as a marine 

boundary. First, this line is easily subject to artificial manipulation, either 

intentionally or unintentionally. Second, sometimes a vegetation line is irregularly 

and/or indistinctly distributed along the shore and is difficult to identify (Morton and 

Speed 1998). Although drawbacks exist with the vegetation line, it is still an 

important indicator of the HWM location. 

2.4.3 Beach Morphological and Biological Features  

Other coastal features that could indicate the position of the HWM include cliff-top 

edge, berm crest and frontal dune toe. The cliff-top edge is the best evidence of 

where a horizontal HWM should be, and there should be no conflict about land in 

these areas (Crowell et al. 1991). However, cliffs are only one type of shoreline, and 
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an uncommon type as well. Morton (1998) supported this opinion and argued that the 

berm crest is the best physical evidence of the location of OHWM associated with 

wave runup. Pajak and Leatherman (2002) indicate that the HWL will not be highly 

dynamic in its position when a well-defined berm exists, as it stops the landward 

swash to some extent. However, this feature is not very apparent on every coast and 

may disappear in extreme situations (Hsu et al. 1989). Cole even suggested using 

biological indicators as water boundaries (Cole 1997); for example, the top of oysters 

appearing on a pier shows where the MHW is located (Songberg 2004), but the 

accuracy of this has not been proven. Compared with these indicators, the dune toe is 

more common and relatively stable on most coasts, and MHW usually exists to the 

waterside of the frontal dune (Coutts 1989). 

2.4.4 Water Level 

The use of water level to delineate coastal property boundaries has its roots in 

Roman civil law, in which the coastal boundary was not defined in terms of daily 

tide, but rather in terms of water level. This definition might be because the 

Mediterranean Sea, where Roman civil law code developed, has a minimal daily tidal 

range and is dominated by the effect of wave runup (Cole 2007). Such definition has 

been formally adopted by some countries whose legal system is based on Roman 

civil law, such as Puerto Rico, in which the upland limit of public property is 

considered to be reached by the great storm wave (Cole 2007).  

In South Australia, the MHWM contour is sometimes set out by observing the water 

edge and the information from the nearby tide gauge at the appropriate time (Land 

Services 2008). However, as indicated in Morton and Speed’s (1998) study, the 

actual water level is systematically underestimated by the tide gauges due to the 

exclusion of wave runup, and this results in the property boundary position 

increasing the area claimed by the upland owners. Similarly, HWL may represent the 

previous position of high water but may not indicate the most recent maximum runup 

limit (Boak and Turner 2005). Thus, the following questions remain:  

• Should water level that includes the runup be used as a coastal boundary?  

• Can MHW or HWL be equivalent to the water level and if not;  
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• Is there any shoreline feature that can represent the position of the water level? 

2.4.5 The HWM Defined in Different Departments 

Besides the most common definitions of the HWM, the methods of determining the 

position of the HWM varies across both jurisdictions and also between responsible 

authorities within the same jurisdiction. Two heights suggested by the Western 

Australian Land Information Authority (Landgate) and Department of Transport 

(DoT), WA, were obtained from experienced surveyors’ long-term observation of the 

shoreline features as well as tide and wave effects on the coastal area. 

2.4.5.1 The HWM Defined by Landgate 

The statutory definition of the HWM is the MHWS or MHHW, depending on the 

tidal type. These levels have been determined from the Australian National Tide 

Tables, based on which new levels have been adjusted and are available at any part 

of the state with the assistance of long-term field observation of water level and 

coastal features (Landgate 2009c). 

2.4.5.2 The HWM Defined by Department of Transport (DoT) 

Different from the definition from Landgate, Department of Transport (DoT) 

suggests determining the HWM based on the statistics of tide information. Don 

Wallace, the former Chief Hydrographic Surveyor at the DoT, introduced a method 

to calculate lower low water (LLW) following many years of experience as a 

surveyor (Mahoney 2007). He suggested that LLW is equal to the 19th low water 

occurrence from the cumulative frequency in the approved 19-year epoch of tide 

height observations, minus 1.5 times the standard deviation of the residuals 

(Equation 2.5).  

LLW = 19th Low Water Occurrence - 1.5σ                            (2.5) 

Note: 

• A residual value results from the observed tide minus the predicted tide from 

constituents’ analysis method. 

• The ‘- 1.5σ’ lowers the low water occurrence. 
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The higher high water (HHW) can be calculated by using the mirror image of 

Wallace’s formula. This HHW height could be adopted as the position of the HWM 

(Mahoney 2007): 

HHW = 19th high water occurrence + 1.5σ                       (2.6) 

Note: 

• The ‘+ 1.5σ’ raises the high water occurrence. 

This method has the advantage of operating independent of tide types, and it takes 

into account the signal noise caused by factors, such as cyclones (Wood 2005). The 

limitation of this approach is that the method was determined only on the water side 

and ignores the effect of localised geomorphology, thereby isolating the water and 

land for HWM determination. 

Although every HWM indicator has its drawbacks, including those determined based 

on tidal datum, each indicator shows the potential position of the HWM based on one 

particular purpose or viewpoint.  

2.5 The HWM for Different Purposes 

There are two fundamental different functions of the HWM—coastal property 

management and coastal hazard planning. These have always been integrated into 

one, although this is a misunderstanding in most cases. Differences exist among the 

positions of different HWM indicators. These are most significant between 

boundaries based on tidal datums versus high water indicated by water level or its 

feature indicators. The position of HWM indicators varies with the prevailing wind 

and wave conditions in different areas. Crowell et al. (1991) and McBeth (1956) 

pointed out that the difference between MHW and high water indicated by physical 

features is minimal for mapping purposes in moderate weather. However, an 

American case study showed that the MHHW line calculated by tidal signals was 

located many miles seaward of a boundary determined by physical features on the 

beach (Cole 1997). Morton and Speed (1998) also estimated that the actual water 

level reach on the beach was higher than predicted from the nearby tidal gauges. This 

indicates inconsistencies in the different definitions of the HWM, which are mainly 
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due to the wave runup effects. Therefore, the question of whether wave runup should 

be included in HWM determination is left unanswered.  

2.5.1 Extent of Private Ownership of Coastal Zones 

The HWM is recognised as the boundary separating private and public property 

rights under normal water conditions (Gay 1965). Coutts (1989) also acknowledged 

that the HWM can be used to confer ownership of land, where the land stops and the 

sea begins. Such a definition, including OHWM, MHWM, MHHW and MHWS, is 

determined from a land property management point of view, and does not take into 

account the effect of wave runup. Such tidal datum-based HWM determinations, as 

mentioned before, have their roots in the development of common law for property 

boundary delineation.  

2.5.2 Coastal Hazard Planning 

Coastal hazards are any phenomena that threaten coastal structures, property and the 

environment under extreme weather and water conditions. Coastal hazard planning 

aims to minimise these risks or hazard (Short and Hogan 1994). The origin of 

measuring the water level, which includes the effect of wave runup, or the features 

indicating the water level to determine the position of the HWM, can be traced back 

to Roman civil law (Cole 2007). The U.S. Federal Emergency Management Agency 

(FEMA) calls this type of HWM ‘wave runup coastal HWM’. FEMA identified this 

water level to improve disaster preparedness and prevent future hazards (URS Group 

Inc. 2006). The effect of wave runup, which is of particular interest to coastal 

emergency planners (Papathoma and Dominey-Howes 2003), was also analysed for 

coastal hazard protection by Bellomo et al. (1999). Most of the time, coastal 

boundaries are analysed for hazard planning purposes, the wave runup height is one 

of the most important criterion of these studies (Hubbert and McLnnes 1999; Short 

and Hogan 1994). 

Thus, from the view of functionality, the HWM can be divided into two different 

purposes, property management and hazard planning. The difference between the 

two is whether the effect of wave runup on the tidal datum plane is included or 

excluded.  
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However, one of the factors impeding further investigation on the effect of wave 

runup on HWM determination is the many gaps that exist in wave information 

records. Therefore, interpolation on wave record information is required to increase 

the accuracy of HWM calculations. 

2.6 Wave Information Interpolation 

The modelling of significant wave information is important to coastal and ocean 

engineering applications, such as ocean resource management. It is a necessary 

component in the design and planning of coastal structures, harbours, waterways and 

shore protection. Time series analysis of wave information provides long-term 

prerequisite knowledge about the local wave climate and is essential for coastal 

management and environmental impact studies. However, due to the complexity and 

uncertainty of wave generation, it is difficult to interpolate and model wave 

information using deterministic equations.  

Two categories of approaches have been studied previously. Firstly, by using an 

ocean wave model to simulate wave information and secondly, by analysing wave 

data patterns using interpolation methods. The former may provide time-series with 

no gaps. However, this is only accurate enough for site-specific analyses where 

detailed ancillary data are available (Deo et al. 2001). Ancillary data refers to wind 

data and bathymetry around a site (Bouws et al. 1998; Kinsman 2002). However, it is 

often difficult to collect (Altunkaynak and Özger 2004). Moreover, the wave model 

needs to be validated against observations, and significant computing time may be 

required to generate a long time-series.  

The latter technique, wave data analysis, is relatively more reliable and accurate 

(Deo and Kumar 2000); however data gaps can only be filled using historical wave 

data. The time-series extension method is sensitive to the rule that determines the 

correlation pattern (Makarynskyy 2004). Hence it is necessary to develop an 

appropriate model to represent the rule and increase the accuracy of wave 

information interpolation and prediction. In addition, the gaps in data for wave 

recording are often at different scales. While some are relatively small, many breaks 

in data availability can be as large as one month or more, and these data gaps are 

difficult to interpolate with any degree of accuracy. There has been considerable 

research into wave characteristics and information determination. Of the models 
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developed, none accurately fill the data gaps in wave information models at different 

scales. 

The most common wave interpolation methods that have been applied in studies are 

the stochastic models employing the auto-regressive moving average (ARMA) or the 

auto-regressive integrated moving average (ARIMA) (Agrawal and Deo 2002). 

These take into account short-term (Spanos 1983) and long-term period variability 

(Scheffner 1992). Deo and Sridhar Naidu (1998) and Agrawal and Deo (2002) have 

developed an improved model using artificial neural networks (ANNs). These 

techniques improved on the short-term wave information prediction method 

originally developed in Makarynskyy’s studies (Makarynskyy 2004; Makarynskyy et 

al. 2005). In addition, Fuzzy logic methods have been applied in predicting wave 

information using wind speed information (Kazeminezhad et al. 2005; Özger and 

Şen 2007). A comparison of methods shows that ANN interpolation methods are 

more reliable than the genetic programming interpolation method developed by 

Ustoorikar (2008), but the results are still not satisfactory. 

2.7 Vertical and Horizontal HWM 

The HWM, depending on its usage and the way it is measured and defined, can be 

divided into two types: vertical and horizontal HWM. The tidal datum-based HWM 

belongs to the vertical HWM category. However, the HWM is not always tied to a 

specific high water height; sometimes a cadastral boundary that represents the HWM 

is mapped as a horizontal line between buildings or land features (Mahoney 2009). 

Moreover, a vegetation, debris or high water line left on the beach can be viewed as a 

natural representation of horizontal HWM. 

Although the HWM may exist in two different forms (horizontal and vertical), the 

aim of HWM determination coincides with delineating the coastal boundary. When 

the HWM is defined vertically, it is possible to derive its horizontal HWM position 

on the coastal zone or in the imagery with spatial information. This means that, to 

some extent, a transformation can be used to derive one form of HWM from another. 

However, the two may be inconsistent; for instance, the State Cadastral Data Base 

(SCDB) in Western Australia (at certain locations) has large offsets between the 

equivalent horizontal location of HWM defined by height (vertical ‘position’) and 
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the displayed location of HWM defined as a horizontal boundary (horizontal 

position).  

The difference between the tidal datum and its equivalent horizontal location is an 

important topic in marine science (Cole 1997). Even though the tidal datum may be 

constant over years in a certain location, the intersection of this datum with data 

representing the coastal morphology, such as digital elevation model (DEM), might 

be ambulatory (Figure 2.4) as the coastline changes by eroding or accreting (Coutts 

1989). Therefore, the horizontal location of a tidal datum on a beach should be 

related to a specific time (Cole 1997).  

Besides the uncertainty of the tidal plane, the slope of shore land is another factor 

causing significant offsets between the tidal datum and its horizontal location on the 

beach (Center for Operational Oceanographic Products and Services 2003). The 

vertical tidal datum error may lead directly to uncertainty in determining the 

horizontal HWM (Clerke 2004). This situation will be exacerbated on relatively flat 

coastal areas, and a centimetre of difference can cause an extension of many metres 

horizontally (Center for Operational Oceanographic Products and Services 

2003;Morton et al. 2004). Thus, defining a coastal boundary in low lying beach areas 

and quantifying the spatial uncertainty and variation are difficult research issues that 

should be addressed (Quadros and Collier 2008). 

 

Figure 2.4 Illustration of the horizontal variation of the tidal datum on the 

beach (Coutts 1989) 
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2.8 Methods of HWM Determination 

One of the challenges in coastal studies is to develop a methodology and procedure 

to determine the coastal boundaries with available data that is sufficiently repeatable 

and robust (Boak and Turner 2005). The process of determining the HWM can 

involve two approaches:  

• Select a definition of the HWM and choose the appropriate indicators or 

datum to calculate the HWM with the available data; and  

• Detect the location of the HWM on the field or in the imagery with spatial 

information.  

Methods used to determine the HWM can generally be divided into three groups: 

survey methods, remote sensing methods and statistical methods.  

2.8.1 Survey Methods 

Because the HWM is self-evident at particular times, HWMs can be obtained by 

marking the water’s edge, HWL and vegetation line in a field survey (Nunley 2002). 

This is the most convenient method, as the physical line on the ground can be easily 

observed (Cole 1997). Although the HWM location can be observed through these 

physical features, the certainty in its horizontal position is very weak (Hirst and Todd 

2003). It is in the order of metres, or even tens of metres if the terrain is close to 

horizontal. As such, the accuracy of the surveyed position is limited by the 

knowledge of the position of the feature, rather than limited by the survey 

instrumentation and methods used. Modern survey field techniques can rapidly 

determine positions on the ground to a centimetre or less using Real-Time Kinematic 

(RTK) based Global Navigation Satellite Systems (GNSS) or electronic angle and 

distance measuring equipment (total stations). As a boundary or real property, the 

HWM is understood to be an ambulatory (moving) boundary and is temporal. A 

survey today does not determine the extent of rights to land and seashore tomorrow. 

It is also understood that the location of the HWM is not to the order of accuracy that 

other fixed boundaries are located due to the nature of the boundary.   

Field survey work is not limited to determining coastal features. After determining 

the height of the HWM at a tide gauge, the HWM contour value in close proximity to 
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that gauge can be set out by spirit levelling from a nearby benchmark related to a 

recoverable datum—AHD in Australia. Landgate in WA recommend it as good 

survey practise to determine the HWM (Landgate 2009c) based on the assumption 

that MHW is a contour (Cole 1997). Clerke (2004) stated that the mean high water 

boundary levelling from the tidal elevation should follow the contour on the 

foreshore. However, the HWM is only a ‘contour’ when in close proximity to the 

tidal control station (R. Mahoney, personal communication 5 December 2009), since 

the actual elevation of the HWM may vary over longer distances. In WA, a similar 

type of survey method was introduced by Cribb and Horlin (R. Mahoney, personal 

communication 5 December 2009) and is considered a practical and convenient way 

to determine the position of the HWM. Cribb and Horlin (R. Mahoney, personal 

communication 5 December 2009) determined the general height of the HWM 

relative to AHD in major ports based on many years of field observations and 

reviews of hard-copy tide records. Surveyors at Landgate can thus survey the vertical 

HWM directly on the beach.  

However, this is generally a labour- and time-consuming method for getting data of 

long segments along the shore with sufficient resolution and density, and the value 

will also vary depending on the nature and slope of the coast. The popular use of 

GNSS provides rapid measurement of onshore features, and it is moderately 

inexpensive to monitor both the horizontal and vertical positions (Guariglia et al. 

2006; Mitasova et al. 2002; Morton et al. 1993; Uunk et al. 2010). Also, the coast is 

usually a suitable area to conduct GNSS surveys because of the unobstructed view of 

the sky (Morton et al. 1993). However, the point capture method by GNSS cannot 

cover large areas in a short time. 

2.8.2 Remote Sensing Methods 

Since the 1920s, aerial photography and photogrammetric methods have been used to 

determine marine boundaries and document topographic information along coasts 

(Anders and Byrnes 1991; Crowell et al. 1991; Overton et al. 1996; Stockdon et al. 

2002). Surveyors have also used their judgment to accept certain topographic 

features on the photographs as the position of the HWM (Horlin 1994). These works 

often include manual interpretation of photography (Boak and Turner 2005; List and 

Farris 1999) together with field surveys, including shoreline feature analysis, the 
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testimony of eye witnesses and sand colour analysis (Cole 1997; Nunley 2002). For 

instance, Crowell et al (1991) stated that HWL as an indicator of land-water interface 

is a line that can be detected by the change in colour or grey tone in aerial 

photographs caused by differences in the content of the sand. Similarly, Anders and 

Byrnes (1991) asserted that HWL could be recognised by wet/dry contact on a beach 

caused by an abrupt or subtle change in contrast. The wet/dry line on aerial 

photographs was considered as the most prominent feature dividing land and water 

by Cole (1997). One definition that enhanced the edge detection was the zone of 

variance of high-pixel brightness in imagery (Shoshany and Degani 1992). A more 

common and practical method is for the analyst to detect the shore markings on 

photography by the last preceding high water (Pajak and Leatherman 2002; 

Shalowitz 1964) and its accuracy is dependent on photography being taken at high 

tide. Furthermore, the location of salt-resistant marshes and mangroves shown on 

aerial photographs are also used as indicators of the HWM in the U.S. ( Horlin 

1994). 

However, many studies show that interpreting marine boundaries from photography 

introduces significant errors in locating shorelines (Anders and Byrnes 1991; Boak 

and Turner 2005; Moore 2000; Pajak and Leatherman 2002; Stockdon et al. 2002). 

Hirst and Todd (2003) argued that it is difficult to determine the high tide line on a 

beach within a few metres, and even more so from a plane using aerial photographs. 

Crowell et al. (1991) wrote that errors in determining coastal boundaries from aerial 

photography arise from two processes: (1) identification or interpretation of the 

boundary, and (2) mapping the interpreted line as part of topographic information. 

Compared with field surveying, manual interpretation of shoreline features as HWM 

indicators may be less accurate and more subjective because it relies heavily on the 

photogrammetrist’s individual skills and judgement (Anders and Byrnes 1991; Boak 

and Turner 2005; Crowell et al. 1991; McBeth 1956), and so the method cannot 

guarantee precise determination of the HWM. Also, precise boundary detection 

depends on high quality aerial photography (Boak and Turner 2005). When one 

cannot see the water boundary clearly because of poor contrast or a fuzzy transitional 

zone of tonal change, it is difficult to determine the exact location of HWM 

indicators (Crowell et al. 1991).  
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However, this does not mean that even good quality aerial photography will 

necessarily result in a satisfactory boundary. Sometimes large scale high resolution 

data can also make it difficult to obtain a well-defined boundary to delineate objects 

because the overly finely distributed details make it difficult to distinguish the target 

classes from others during the classification process (Burrough and Frank 1996). 

This is called ‘salt-and-pepper effect’ (Blaschke et al. 2008). Therefore, the result of 

traditional pixel-based image analysis is unsatisfactory for shoreline feature detection 

using high-resolution imagery (Antunes et al. 2003). 

Satellite imagery taken by remote sensing techniques is an alternative to aerial 

photography. It has also been widely applied in coastal boundary determination. Both 

MHW and MLW can be located by the satellite imagery using an infrared band 

which can detect wet and dry sand (Horlin 1994), while another potential application 

of satellite imagery is to detect biological profiles (Cole 1997). Because of flooding, 

wind or other effects, vegetation zones can be distinct on the shore and indicate the 

high water level in an extreme situation. Thus, it is helpful to look at vegetation 

information by enhancing the ‘vegetation band’ to help detect vegetation lines 

(Nunley 2002).  

However, the degree of utility is questioned. This is because satellite images such as 

SPOT and Landsat have large ground cell sizes of more than 1 metres; therefore, 

they show no potential for accurately identifying the shoreline features (Nunley 

2002). The identification of shoreline features on both satellite images and aerial 

photography can become more objective when using unsupervised classifications 

such as neural networks that distinguish land and water classes (Boak and Turner 

2005; Kingston et al. 2000). However, there is no unanimous agreement about how 

to make a consistent interpretation of features when applying remote sensing 

techniques (Pajak and Leatherman 2002).  

Airborne Light Detection And Ranging (LiDAR) systems are optical remote sensing 

techniques that are mainly used to measure dense clouds of three dimensional data, 

including topography (Mitasova et al. 2002; Stockdon et al. 2002), while GNSS can 

be used to determine the elevation of discrete points on a corresponding tidal datum 

such as a transect (Nunley 2002). Airborne LiDAR techniques can be used to capture 

onshore features over large areas in a short time frame (Armaroli et al. 2004), thus it 
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is a complementary technique used to fill data gaps between ground profiles. 

Moreover, when applied in a repetitive manner, LiDAR enables three-dimensional 

analysis of temporal beach profile variations.  

With the use of LiDAR topographic data, it is possible to create a DEM of the 

foreshore, with which a tidal datum-based HWM can be easily identified (Boak and 

Turner 2005; Hapke and Richmond 2000; Morton et al. 2004). More potential 

applications of LiDAR-derived DEMs for studying the coastal morphology have 

been illustrated in studies by Hapke and Richmond (2000) and Mitasova et al. 

(2002). Landgate in Western Australia recommend the use of modern survey 

equipment, such as LiDAR (Landgate 2009c), especially when it is necessary to 

obtain data on a broad shore, and quickly obtain data over a large area (Boak and 

Turner 2005). However, this does not mean the HWM position obtained from 

LiDAR is reliable. The nature of the beach, such as its morphology, and the 

resolution of the data captured by this technique also influence the precision of the 

determined HWM indicators (Stockdon et al. 2002). This may contribute to the 

variation in the determined HWM position. 

2.8.3 Statistical Methods 

Statistical methods are well-established approaches often used to determine tidal 

datums using long-term tidal records and are considered objective ways to determine 

coastal boundaries (Boak and Turner 2005). This is because statistical methods 

usually observe the tide over a considerable period of time, thereby taking a number 

of necessary factors into account (Gay 1965). Cole (1997) stated that the method of 

using tidal datum records is the best approach to determining the position of the 

HWM, especially where landform change over a period of time is insignificant. The 

most popular statistical method is to calculate the ‘mean’ tidal datum over a period.  

For surveys to locate the position of tidal datum-based HWM for one site, especially 

at a standard port (also known as a ‘primary port’) for which sufficient tidal data is 

available (The Intergovernmental Committee on Surveying and Mapping (ICSM) 

2009), the tide tables such as Australian National Tide Tables (ANTT) in Australia, 

can be consulted. These tables provide the information of tidal constituents (Land 
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Services 2008), which are essential to calculate the tidal datum-based HWM. The 

relevant tidal datums are derived as follows (Horlin 1994): 

MHWS = Z0 + (M2 + S2)                                          (2.7) 

MHHW = Z0 + (M2 + K1 + O1)                                     (2.8) 

where Z0 represents the mean sea level (MSL). For practical purposes, the MSL is 

equivalent to an AHD value of 0 metres in Australia (Horlin 1994). The equations 

illustrate that the tide is actually the composite sum of factor constituent cycles, 

which usually last 18.6 years (Cole 1997). During this time, all the major tidal 

variations have been taken into account (Gay 1965), excluding only those in extreme 

conditions (Center for Operational Oceanographic Products and Services 2003).  

Early surveyors rarely used statistical methods to determine the HWM based on the 

tide datum, especially those who had no knowledge of tides (Clerke 2004). Recently, 

statistical methods have been widely applied and show that water level can be 

objectively recorded by tide information in some areas. However, offsets still exist 

between the tide gauge records and the actual positions that water reaches on the 

shore because the tide gauge excludes the influence of wave runup. This situation 

will be exaggerated on gently sloping sandy beaches, making it difficult to transform 

a tidal elevation to the horizontal position of MHM (Morton and Speed 1998; Pajak 

and Leatherman 2002). Also, an accurate statistical method is not available when 

distant from tide gauges, as the estimation of tidal information can only be reached 

by interpolation methods (Greenfeld 2002). Furthermore, the tidal datum-based 

statistical method isolates the water from the land, which ignores local spatial 

information, such as geomorphology and variation through time.  

2.9 Variation of the HWM Position 

The HWM is considered ambulatory, that is, it may shift over time both horizontally 

and vertically because of artificial or natural factors. Tide is produced by the 

gravitational forces of the moon and sun, but additional non-astronomical factors 

such as cyclones, air pressure, artificial structures, wind, wave height, types of coast, 

sea level change, and El Nino and La Nina are factors that may influence the position 

of the HWM (Dolan et al. 1980; Hicks et al. 1989; Moore 2000; Morton and Speed 
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1998; Pajak and Leatherman 2002). Furthermore, accretion and erosion of coastal 

morphology will physically move coastal boundaries (Figure 2.5).  

 

Figure 2.5 The factors influencing the position of the HWM and its relation to 

the determination process 

2.9.1 Factors Influencing the Position of the HWM 

Tides are most strongly affected by the gravitational force of the moon and, to a 

lesser degree, the sun (Cole 1997). Rahmstorf (2007) estimated that global warming 

is the main cause of the current rise in the sea level, which by 2100 will be 0.5 to 1.4 

m above the 1990 level.  

Generally, the tidal range in summer is greater than that in winter, since the air 

pressure is lower in summer, and this leads to abnormally high water levels 

(R.Mahoney, personal communication 12 May 2010). Sudden and distinct changes in 

the tidal datum are mainly caused by storm events (Pajak and Leatherman 2002).  

These changes are normally larger than those produced by astronomical tides 

(Morton and Speed 1998).  
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Changing depth, width and the course of estuaries, as well as the distance from the 

ocean, are all relevant to the variation of the tide datum (Cole 1997). The dynamic 

nature of seawater continuously affects the coast in the form of waves and tides, but 

these also act variously on different kinds of coast (Anthony and Orford 2002).  

To determine the unbiased position of the HWM, long-term observation of tides and 

waves can identify most of the above factors and include them in statistical 

calculations. Comparing results from study areas with different coastal features can 

reveal how coastal types may influence the position of the HWM. Even if the vertical 

position of a tidal datum-based HWM is determined by the long-term observation of 

tides and waves, its horizontal position may vary through time as the coastal 

morphology changes. This is similar to most corresponding shoreline features.  

2.9.2 Temporal Variation of the Beach Profile—Stability  

Generally, HWM indicators such as berm crest or vegetation line are located on the 

swash (wave runup) zone, a transitional zone between the subaqueous (below water) 

and subaerial (above water line) zone of the beach, intermittently covered and 

exposed by wave action (Hughes et al. 2010). Both engineers and coastal researchers 

are interested in the swash zone since the process of swash could result in coastal 

inundation. Of particular interest to HWM studies is the variation of coastal 

boundaries due to relatively higher cross-shore sediment transportation rates in the 

swash zone (Hughes et al. 2010; Masselink and Russell 2006). Alsina and Cáceres 

(2011) also indicate that the beach close to the shoreline is a highly dynamic zone 

where coastal sediment transport takes place frequently, and yet this dynamic 

mechanism remains poorly understood (Masselink and Russell 2006). 

A significant number of quantitative analysis studies have been conducted on the 

seasonal changes in beach profiles (Aubrey 1979; Aubrey and Ross 1985; Shepard 

1950; Weishar and Wood 1983; Winant et al. 1975). These studies show that 

seasonal morphology changes cause the most dominant temporal variations 

(Masselink and Pattiaratchi 2001), with large changes of the beach profile often 

occurring between summer and winter. Changes between spring and autumn beach 

profiles are often almost identical (Larson and Kraus 1994). However, the results of 

these temporal variation studies are limited as they are only based on two-
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dimensional parameters (e.g. transection lines), which may result in large data gaps 

between established profiles (Hapke and Richmond 2000). 

The most traditional way to examine changes in coastal morphology is through field 

surveys (Austin and Masselink 2006; da Fontoura Kle and de Menezes 2001; Eliot et 

al. 2006), and the tools to study change have improved over time. Today, the most 

commonly used equipment for GNSS field surveys is based on Real-Time Kinematic 

methods(RTK) with centimetre accuracy (Dail et al. 2000; Travers 2009). However, 

field surveys are very time consuming and labour intensive and cannot cover large 

areas in a short time frame.  

Alternatively, video techniques can be used to monitor the evolution of coastal 

morphology (Lippmann and Holman 1989, 1990). However, video is costly in terms 

of setup and maintenance of the video system. In addition, video techniques are 

highly sensitive to field conditions, such as lighting conditions.  

Another technique for quantifying the variation of spatial objects over time is to use 

time series image analysis. Most recently, time series analysis has been developed to 

detect temporal changes of coastal morphology using a series of remotely sensed 

images. The (periodic) time series is usually analysed in terms of general trends, 

seasonal variations and residual components (Herold 2011; Jacquin et al. 2010; Jong 

et al. 2011). One of the models developed to illustrate this idea is the ‘Breaks For 

Additive Seasonal and Trend’ (BFAST) (Verbesselt et al. 2011; Verbesselt et al. 

2012).  

However, the application of this model depends highly on whether a sufficient 

number of images are available as input data (e.g. more than two per year when 

analysing seasonal variations and annual variation). When image data is limited (e.g. 

only two images), a simplified method can be used to identify temporal variations by 

comparing the two different images (Andrews et al. 2002). While this is a relatively 

simple method, the results may be highly biased due to seasonal and longer-term 

variations.  
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2.9.3 Spatial Variation of Shoreline Features—Precision 

The variation in the position of a shoreline feature between successive monitoring as 

a result of the measurement process can be expressed as spatial precision, thus 

indicating apparent spatial variations. When using remote sensing techniques, 

variations in extracted shoreline features can be expressed by their comparison with 

features on a geographically registered map and the corresponding position on the 

Earth’s surface.  

Spatial variations of shoreline features may arise from data source inaccuracies and 

interpolation errors (Ruggiero and List 2009).  The errors from interpolation 

processes can occur in the pre-processing stages of the determination process, such 

as identification of the shoreline position on aerial photography, and post-processing 

stages when it is represented on the map to display the data (Shi 2009). When image 

analysis is applied in shoreline feature position determination, pre-processed spatial 

variations are mainly determined by the classification accuracy and image 

registration; while if the shoreline position, including the HWM, is calculated from a 

statistical model, the variations are mostly due to the accuracy of the model itself.  

During post-processing, the HWM in Australia is usually determined as a height 

above the AHD. When the HWM is positioned on the ground, as is the horizontal 

cadastre, any inaccuracies (including errors and uncertainties) of the digital elevation 

model (DEM) used to extract beach profiles based on the AHD can lead to spatial 

variations that can affect the position of derived results such as the beach slope and 

contour lines (Hunter and Goodchild 1997; Oksanen and Sarjakoski 2005).  

Traditionally, these errors and uncertainties are categorised into three groups: (1) 

gross errors, (2) systematic errors and (3) random errors (Cooper 1998; Wise 2000). 

Due to their magnitude, gross errors are easily detected and removed prior to data 

processing. These errors are often associated with faulty equipment and errors in the 

data collection process (Wechsler and Kroll 2006). Systematic errors follow a 

consistent pattern and are often inherent in the procedures used to generate the DEM 

(Fisher and Tate 2006), and are normally characterised by the Root Mean Squared 

Error (RMSE).  
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In contrast to systematic errors, random errors can only be quantified through 

repeated experiments. Currently, due to the complexity of processing algorithms, it is 

not well understood how random errors are introduced and propagated through a 

DEM (Wechsler and Kroll 2006). Therefore, the uncertainty present in derived 

products from the DEM cannot be easily determined. Furthermore, due to 

topographic data complexity, the determination of HWM indicators is not 

straightforward, and this may also influence spatial variation in HWM indicators 

(Thompson et al. 2001). Therefore, the effects of the topographic complexity of the 

HWM indicator on the spatial variation in HWM determination require further 

investigation. 

In summary, factors influencing the determination of the position of the HWM are 

usually considered separately and have not been integrated into a single system for 

coastal boundary determination. In this research, factors influencing the spatial and 

temporal variations of the HWM are considered in a holistic or whole system to 

evaluate their effects on HWM determination. 

2.10 Difficulties in HWM Determination 

Due to inconsistencies in the definition, there are no reliable techniques nor generally 

accepted methods to determine the HWM worldwide or even in Australia (Cole 

1997). Therefore, the analysis of various HWM data (called HWM indicators), along 

with analysis of the methods of determination of the horizontal position of the 

HWM, is required. This would inform future data collection (tidal datum, terrain 

morphology, etc.) and data processing (statistical, survey calculations, processing of 

remote sensing) phases of large-scale HWM mapping. It is likely that, from a better 

understanding of data and processing, a formal definition for the HWM can be 

derived for Australia and countries with a similar legal system and understanding of 

the boundaries of coastal rights. 

Indeed, Landgate has been involved in several disputes over the last few years 

involving the need to defend the definition of water boundaries in Western 

Australia’s Spatial Cadastral Database (SCDB). Users need to be fully aware of the 

limitations of the SCDB for precise boundary definition on the one hand, and on the 

other hand, precise and up-to-date land and water boundary information is essential, 
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but may not be easy to obtain for either property management or coastal hazard 

planning purposes. 

Traditionally, MHWM was determined using medium- to long-term tidal records 

(Cole 2007). Although determined with mathematical precision, the MHWM using a 

tidal datum is not suitable as a permanent boundary for property rights (Cole 1997) 

because neither the ocean level nor the coastal geomorphology are stationary over 

long periods. The HWM is difficult to determine accurately due to the ambulatory 

nature of both water and coastal morphology (Whittal and Fisher 2011).  

Contemporary research has failed to develop a robust method of determining the 

HWM because of the continuous changes in tidal levels together with unimpeded 

wave runup, as well as the erosion and accretion of beaches. This explains, in part, 

why there is no official or widely recognised definition of the HWM. It is important 

to identify, evaluate and integrate various factors into the process of determining the 

HWM, yet there is currently no consensus as to how to do so. 

Furthermore, the use of tidal records ignores wave runup and, as such, will always 

underestimate the HWM in coastal regions (Whittal 2011). For example, in areas 

where there is a small tide range and significant wave action, the actual landward 

water level will be further inland than the HWM level determined using only tide 

records due to the effects of setup and wave runup. The effect of wave runup in 

HWM determination has rarely been quantitatively assessed. Yet some studies have 

indicated that the water level (swash or wave runup) is more appropriate for the 

HWM used for coastal hazard planning, while the tide water is suitable for coastal 

property management (Bellomo et al. 1999; Maloney and Ausness 1974a).  

If this is the case, further quantitative analysis is required to evaluate all the 

indicators based on this assumption. However, analysis is often impeded by limited 

data because of either buoy breakdowns during cyclones or computing problems.  As 

a consequence there are many gaps in the wave information records, and these are 

not always small gaps (Kalra and Deo 2007). Moreover, because of the complexity 

and uncertainty of wave generation, it is difficult to interpolate and model wave 

information using deterministic equations. 
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Boak and Turner (2005) suggested that researchers have not considered all indicators 

in their methods for determining shorelines. The same can be said of HWM 

determination, and this has affected results. However, the fundamental question of 

the relationship of each HWM indicator to the water-land interface is still not 

resolved. Further knowledge of how to integrate the water and land system as a 

whole and how to define the water-land interface is required. For instance, MHW has 

been recognised as a concept isolated from the whole coastal system; however, 

besides knowledge of tides, it is also important to understand the geomorphology of 

the coast to locate the HWM (Coutts 1989).  

Although LiDAR DEMs have proven useful in coastal studies, some researchers 

have identified a low accuracy of data in various applications (Bater and Coops 

2009; Hodgson and Bresnahan 2004; Hodgson et al. 2005). This is most significant 

with data captured when the technology was first introduced. Therefore, data 

collection protocols and proper spatial interpolation methods are needed to fill in 

data gaps.  

An acceptable method of determining coastal boundaries should satisfy the following 

criteria: repeatable, consistent and reliable (Leon and Correa 2006; Pajak and 

Leatherman 2002). Moreover, as an administrative boundary, the HWM tends to be 

used as though it has been precisely defined (Burrough and Frank 1996). A cliff edge 

was considered a much more stable boundary than the instantaneous HWL and berm 

crest on a beach (Moore 2000; Morton 1991); and if conditions permit, these stable 

features should be given priority as indicators when determining the HWM.  

Morton and Speed (1998) point out that, although the determination of MHW 

considers most of the factors influencing its position over a long period, it is not as 

stable as a vegetation line, but the higher precision makes it as good an indicator 

option as the vegetation. However, quantitative analysis and comparison of the 

variation for each HWM indicator in one system has not been conducted; thus more 

research on this topic is required. Even if the factors that influence the determination 

of the HWM were identified and quantified, a rule for the criteria to evaluate the 

HWM indicators would also be necessary to make a final decision about the proper 

position of the HWM for different purposes.  
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2.11 Summary 

The determination of the HWM has a long history. Its definition, the mean and even 

the corresponding determination methods have changed through time.  

Nowadays, the definition of the HWM is still ambiguous worldwide, due to the 

diversity of coastal types, different determination purposes and the limitations of 

observation techniques and data. The definition of the HWM is different for different 

countries as their legal systems and the understanding of rights in the coastal zone 

and especially the shoreline are different. Moreover, the land and water systems have 

always been considered separately, which leads to inconsistent results in the 

determination of land/water boundaries from the water-side and land-side.  

Therefore, an improved method to determine the position of the HWM is required. 

This should be an analytical system that integrates all factors. In addition to the 

HWM position determined by the improved methods, all HWM indicators should be 

assessed in one evaluation system that can provide a consistent and robust HWM 

determination methodology.  

Based on the investigation of previous studies explored in this chapter, a 

methodology to solve the HWM determination problems is presented in the next 

chapter. 
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CHAPTER 3 RESEARCH METHODOLOGY FOR HWM 

DETERMINATION 

3.1 Introduction 

The difficulties of determining the HWM have been discussed in the previous 

chapter. Industry requires that a consistent and robust methodology for HWM 

determination is developed and this requires further research.  

The methodology proposed in this chapter provides a solution for consistent and 

robust determination of the HWM. It also includes an overview of the research 

method, and the implementation of the method in the form of a workflow.  

The methodology is evaluated in two case study areas located in Western Australia—

Fremantle and Port Hedland. Finally, this chapter describes the data and the software 

used to implement the new methodology. 

3.2 Research Method 

The research method comprises two major components—the determination and 

evaluation of HWM indicators (Figure 3.1). The research methodology includes the 

following key steps:  

• accurate identification of the shoreline features using remote sensing image 

analysis;  

• exploration on the effect of wave runup in the HWM determination;  

• integration of both land and water information to determine the position of 

the HWM; and  

• evaluation of HWM indicators in one quantitative system.  
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3.2.1 Determination of HWM Indicators 

In this study, the HWM indicators are divided into three primary categories:  

• shoreline features from the landward side, including HWL, vegetation line 

and the position of the dune toe (Section 2.3);  

• tidal datum-based HWM indicators located towards the waters edge, 

including MHWS, MHHW and the HWM suggested by DoT (Section 2.2 and 

2.3); and  

• indicators introduced in this study including the positions of the HWM based 

on the spatial continuity of swash probability (SCSP) or spatial continuity of 

tidal probability (SCTP) for a range of HWM indicators that integrate both 

land and water information into the determination system.  

3.2.1.1 Shoreline Features 

The determinations for landside and waterside HWM indicators are two relatively 

independent processes. The image analysis techniques and classification methods 

were applied to identify the position of landside shoreline features.  

In the process of classification, pixel-level analysis is based on the information 

contained in each pixel; while for the object-oriented image analysis (OOIA), the 

image is partitioned into meaningful regions based on pixel values and region shapes, 

and then the classification process is conducted on these regions. Classification on 

the homogeneous regions avoids the salt-and-pepper effect obtained using traditional 

pixel-level analysis (Blaschke et al. 2008), which results in overly finely distributed 

classification results on the classified image, especially for high-resolution imagery.  

The pixel-based image analysis has not proven satisfactory for high-resolution 

imagery classification and feature detection (Antunes et al. 2003). Therefore, OOIA 

is used in this research for the classification of shoreline features. This method is 

more accurate and effective than pixel-level analysis on high-resolution images 

(Blaschke 2010). Vegetation is considered to be either sparse or dense. It is easy to 

identify the boundary of dense vegetation, but the position of sparse vegetation is 

fuzzy and difficult to differentiate from beach sand in the imagery. However, 
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because the sparse vegetation zone is always further seaward than the dense 

vegetation zone, the most seaward position of vegetation and the average height of 

the sparse vegetation located on the beach are considered as the position of the 

vegetation line.  

In this study, an objective oriented fuzzy logic method was applied to identify the 

position of the vegetation line, due to its efficiency to derive good results where 

feature extraction is necessarily vague as indicated by Benz et al. (2004). The 

position of the dune toe was identified by the OOIA integrated with the morphology 

analysis using DEM. More details are illustrated in the Section 5.4. 

3.2.1.2 Tidal Datum-based HWM Indicators 

The tidal datum-based HWM indicators on the waterside were all determined using a 

series of software and methods developed by the DoT, WA. During the 

determination process, the constituents of tide were extracted from long-term tidal 

information to calculate MHWS and MHHW for the two different tidal types—semi-

diurnal tide and diurnal tide, respectively. The prediction of tidal heights during the 

recording period can also be calculated from the constituents. Residuals between 

predications and recordings, required to calculate the HWM suggested by the DoT 

method, were also derived. More details can be found in the Section 5.3. 

3.2.1.3 The Indicators Introduced in This Study—SCTP and SCSP 

Boak and Turner (2005) suggested that when attempting to determine shorelines 

more accurately, researchers have not considered all the indicators, and this has 

impacted results. Furthermore, the landside and waterside information is always used 

separately to determine the HWM position. This ignores the fact that water and land 

are one integrated system for HWM determination. For example, the spatial 

distribution of swash/tidal probability, which is the chance of inundation on the 

beach face over a specified time period, is a significant criterion for determining 

HWM position and it is commonly ignored. However, one of the factors impeding 

further investigations on the effect of swash on HWM determination is the gaps 

existing in wave recordings. Many gaps exist in the records and they are not 

necessarily small. Although, a number of previous studies have attempted to fill the 
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gaps in wave information (height and period) records, most of the interpreted results 

are not satisfactory.  

Nonetheless, the irregular pattern of the time series of wave information has two 

main features: multi-frequencies and self-similarity. These features enable the 

application of the wavelet and fractal methods. In this research, the wave information 

was interpolated using these two methods: wavelet refined cubic spline and fractal 

models. These were examined to assess their capability of filling various data gaps 

for different size gaps. These methods aim to interpolate missing data in wave 

recordings, particularly where there are lengthy time lapses.  

To start with, the initial hourly interpolation of significant wave information used the 

cubic spline method over 1-1255 hours time intervals. A correction to this 

interpolation was made using the wavelet method, which separates the time series of 

wave information into high and low frequencies for the cubic spline interpolation. 

This method achieved improved interpolation results; however, large data gaps still 

could not be calculated with any degree of confidence. To overcome this problem, 

the fractal method was used to map and simulate the whole time series pattern to 

more accurately portray data where there are large gaps. Next, the effects of two new 

methods on different sized gaps were discussed and compared with the cubic spline 

method. The details of the method are illustrated in Chapter 4. 

Swash/tidal probability at different locations along one beach profile (cross-section) 

tends to be spatially autocorrelated, which means two locations nearby along a 

profile tend to have similar swash probability compared with those that are farther 

apart (Cliff and Ord 1970). However, for two locations, such autocorrelation only 

takes effect within a certain distance. This is called the range or spatial continuity 

distance, which can be estimated by the basic moment of geostatistics—the 

semivariogram (Jian et al. 1996; Oliver and Webster 1990).  

In this research, ten-year hourly swash/tidal heights were fitted into a cumulative 

distribution function. The probability that swash will reach the various HWM 

indicators over a 10 year period is then estimated. The spatial continuity distances of 

the swash/tidal probability of HWM indicators were calculated using semivariogram 

models that measure similarity of swash/tidal probability. The spatial continuity 
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distance was defined as the distance between the lower bound of sampling position 

(the most seaward HWM indicator) and the position where autocorrelation, or the 

similarity of swash/tidal probability of the various HWM indicators, approaches zero. 

The latter is considered as the HWM position.  

The positions of the HWM based on the spatial continuity of swash or tidal 

probability (SCSP or SCTP) are for the purposes of coastal hazard planning and 

coastal property management, respectively in this study. Generally, the processes can 

be described by the following three key steps, which are explained in detail in 

Chapter 5. These are:  

• Fitting swash/tidal heights to a cumulative distribution function; 

• Determining the probability of inundation due to swash/tide of HWM 

indicators by the determined cumulative distribution function; 

• Calculating the spatial continuity distance of swash/tidal probability to 

determine the position of the HWM based on the semivariogram. 

Field verified GNSS survey data from RTK methodswere used to determine the 

position of water level and shoreline features at two study areas. These provided 

confidence levels against which the empirical model and feature extraction methods 

were validated. 

3.2.2 Evaluation of the HWM Indicators 

The determined HWM indicators were evaluated from three perspectives: precision, 

stability, and inundation risk for the coastal hazard planning and coastal property 

management. The importance of precision and stability in HWM determination is 

illustrated in Sections 2.8 and 2.9. The risk for the HWM means the chance of a 

property at risk of inundation from the tidal water and wave runup over a long period 

of time. The inundation risk was estimated by the long-term cumulative distribution 

of water levels in a 10 year period. As illustrated in Section 2.4, the difference 

between the two different functionalities of the HWM is whether the effect of the 

wave runup on the tidal datum plane is included or not.  
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Therefore, the highest tidal level derived from the long-term tidal records was 

adopted as the ‘benchmark’ for the inundation risk of the HWM for the purpose of 

coastal property management; while the swash level derived from the long-term tidal 

and wave records was adopted as the ‘benchmark’ for the inundation risk of the 

HWM for the purpose of coastal hazard planning. The further the HWM indicators 

are away from this level, the lower they were ranked.  For more detail refer to 

Section 7.3.2. 

3.2.2.1 The Precision of HWM Indicators 

The factors influencing the precision of HWM indicators mainly arise from data 

source inaccuracies (pre-process stages) and shoreline interpolation error (post-

process stages) during the HWM determination process (Ruggiero and List 2009). 

Random error and topographic complexity cannot be easily determined and this is 

illustrated in the Section of 2.8.3.  

The classical approach to examine the uncertainty is through error propagation. This 

can be done in two ways: (1) developing analytical error models, and (2) 

constructing stochastic simulation models (Zhang and Goodchild 2002). As indicted 

by Fisher and Tate (2006), the analytical error models are a relatively simple way to 

represent the uncertainty of a land feature from imagery, while stochastic simulation 

models are more realistic for modelling the occurrence of error by introducing 

random functions. These can be divided into two groups: unconditioned and 

conditioned models.  

By considering the observations at the same sample location, the conditional 

simulation model using geostatistical methods, which takes into account the spatial 

autocorrelation of the simulated features, are more widely used  (Fisher 1998; 

Holmes et al. 2000; Kyriakidis et al. 1999). In the stochastic simulation process, 

previous studies mainly focus on the Gaussian error model combined with the Monte 

Carlo method, especially when analysing DEM uncertainties (Davis and Keller 1997; 

Holmes et al. 2000; Oksanen and Sarjakoski 2005; Wechsler and Kroll 2006).  

Therefore, the Monte Carlo method was adopted to evaluate the random errors in 

DEM data for determination of HWM indicators in this study. To determine the 

random error, 100 DEM simulations were carried out, from which the corresponding 
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HWM indicators were re-extracted. Then, the original DEM pixels were compared 

with the simulated values by Root Mean Squared Error (RMSE). This will be further 

discussed in Chapter 6. 

Another factor influencing the precision of HWM indicators is the topographic 

complexity of HWM lines. A way to quantify the topographic complexity is using 

the fractal dimension (FD). The FD method has been extensively applied to 

understand the complexity of spatial patterns and their variation (Burrough 2006; 

Palmer 1988). The fractal concept was first introduced by Mandelbrot (1967) in 

order to illustrate irregular patterns that cannot be analysed by traditional Euclidean 

geometry. Euclidean geometry only allows dimensions with an integer number; 

however the important concept of the FD is that it also allows for non-integer 

dimensions. The FD increases as the complexity of the spatial pattern increases. This 

has been applied in studies such as measurement of plant development (Corbit and 

Garbary 1995) and variation (Palmer 1988), characterising complexity in earthquake 

slip and identifying regressive ecological succession (Alados et al. 2003).   

One of the most commonly used examples to illustrate the fractal concept is to 

measure the length of a coastline (Jiang and Plotnick 1998; Mandelbrot 1967; 

Phillips 1986; Schwimmer 2008). Because all HWM indicators can be considered as 

different representations of the coastline, the FD was considered suitable to capture 

the topographic complexity of the HWM indicators. For more detail refer to  

Chapter 6. 

3.2.2.2 The Stability of HWM Indicators 

In this research, the stability of the HWM indicators refers to the seasonal variation 

of the HWM position on the coast. Studying the spatial variation of complex but 

linear objects such as the horizontal HWM requires the quantification of their spatial 

relationship (e.g. distance).  

Various methods are available to measure the spatial distance between two linear 

objects, such as minimum Euclidean distance (Peuquet 1992) and surface ‘in 

between’ (McMaster 1986). However, neither of these methods are able to determine 

the true mathematical distance (Hangouët 1995). In this regard, the Hausdorff 

distance was introduced as a ‘safe and systematic’ distance to calculate the largest 
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minimum distance (refer to Chapter 6) between two vector polylines (Hangouët 

1995). However, the Hausdorff distance can be rather unstable when there is a local 

sudden change in the shape of the measured objects (Min et al. 2007).  

Therefore, an extended Hausdorff distance was introduced by Min et al. (2007) by 

removing (smoothing) sudden changes before calculation of the Hausdorff distance. 

This is considered as a more accurate measure, and as reflected in Section 2.8.2, will 

accommodate the large changes of the beach profile that often occur between 

summer and winter. This research adopted the extended Hausdorff distance method 

to assess spatial distances between HWM lines captured in summer and winter 

seasons based on different indicators. The input data required to assess the stability 

of HWM indicators were the two DEMs representing the coastal morphology in 

summer and winter. 

Inherent in all the monitoring techniques identified in Section 2.8.2 is the occurrence 

of large data gaps (Bater and Coops 2009; Hodgson and Bresnahan 2004; Hodgson et 

al. 2005). Therefore, spatial interpolation methods are needed to fill in these data 

gaps because the information existing in the data gaps may still be useful for further 

analysis, especially for the DEM.  

The Kriging method can be used to successfully interpolate data gaps in ground 

profiles. Compared to other interpolation methods, such as nearest neighbour, spatial 

averaging and inverse distance weighting, Kriging (Bailey and Gatrell 1995; Griffith 

1988) has been proven to provide more accurate (minimum variance) and produces  

less biased estimates when applied to coastal morphology (Oliver and Webster 1990; 

Wong et al. 2004). Therefore, it was applied in this study to interpolate the data gaps 

in the DEM (Section 6.3), and to predict the missing data by summation of 

surrounding weighted observations (Oliver and Webster 1990).  

The weights were estimated using a semivariogram model based on autocorrelation 

theory. However, Kriging may rely on the smoothness assumption of the interpolated 

surface (Li and Heap 2008) and it is restricted to the first and second order effects in 

spatial analysis (Emery 2006). Nonetheless, Li and Heap (2008) state that when 

observations are insufficient to compute variograms, the gap in sparse data can be 

satisfactorily interpolated using the Kriging method.  
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3.2.2.3 The Multi-Criteria Decision Making (MCDM) Model 

Finally, the Multi-Criteria Decision Making (MCDM) model was adopted to score 

each HWM indicator. This model integrates the three criteria mentioned above to 

assist the selection and decision process for the best HWM indicators for two 

different purposes—coastal property management and coastal hazard planning, 

respectively. The HWM indicator with least score is chosen as the ideal HWM 

position. Survey methods were used to determine the weight for each criterion. 

Experts from different fields were asked to evaluate the criteria using a pairwise-

comparison method (PCM). The inconsistency of the evaluation is adjusted by the 

method introduced by Ergu et al. (2011). Before being applied in the MCDM, all the 

assessed values of the three criteria were normalised. Based on the final evaluation 

results at two study areas, decisions and discussions on the position of the HWM for 

both hazards planning and property management were presented. 

3.3 Characteristics of the Study Areas 

Two study areas in Western Australia were chosen to test the developed method. 

These were Coogee Beach in South Fremantle and Cooke Point in Port Hedland 

(Figures 3.2 and 3.3). Table 3.1 summarises the basic coast features of these study 

areas (Gozzard 2011), which indicate distinctive differences between the two study 

areas and therefore they are considered appropriate for testing the developed methods 

under varying conditions. The two sites for implementing the research method were 

also selected due to the significant difference in their tidal and wave characteristics. 

Both sites had long-term tidal and wave observations available. 

Table 3.1 Beach information on the two study areas (Gozzard 2011) 

 Near 
shore Fore shore 

Back 
shore 

proximal 

Back shore 
distal 

Geology 
substrate 

Coastal 
exposure 

Coogee 
Beach 

sand and 
sea grass 
meadows 

low tide 
terrace 

foredune - 
stable to 

prograding 

prograded 
barrier Unclassified low 

Cooke 
Point 

rock 
pavement 

rock 
platform / 

tempestite / 
segmented 

beach 

low 
calcarenite 

cliff 

transgressive 
dune barrier Calcarenite moderate 

/ high 
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3.3.1 South Fremantle 

The South Fremantle is a wave-dominated reflective straight beach with a diurnal 

tidal feature and a micro tidal range of 0.7 m (Short 2004). The site chosen extends 

approximately 500 m along the coast and is 70 m in cross-shore width. The wave 

breaking types at South Fremantle are either plunging (81.06%) or spilling (18.94%) 

and were estimated as shown below. 

The Iribarren number, ξ0, is an important parameter that indicates the dynamic beach 

steepness and is used to determine the nature of wave breaking on a beach slope 

(Stockdon et al., 2006), which is defined as (Battles 1974): 

0 1/2
0 0

tan
( / )H L

βξ =                                                         (3.1)       

in which β  is the average beach steepness calculated from the digital elevation 

model (DEM) of the study area (Burrough and McDonnell 1998), and 0H and 0L  are 

the deep-water wave height and length, respectively. Based on the value of ξ0, 

Battles (1974) pointed out that different wave-breaking types occur. Due to the fact 

that the wave information applied in this study was recorded from offshore, the 

criteria are slightly different from those of breaking waves (Galvin Jr 1968). Based 

on the 10 year records of wave height and period, the wave-breaking types were 

estimated in the two study areas. 



53 
 

 
 

 

Figure 3.2 Map of the study area (South Fremantle) 

3.3.2 Port Headland 

In contrast, Port Hedland is a tidal-dominated sand-flat headland (Cooke Point), 

where the tide type is semi-diurnal, and the macrotidal range is 6 m (Short 2004). 

The Port Hedland site extends approximately 2300 m along the coast and 200 m in 

cross-shore width. The wave-breaking types, based on an analysis of 10 years of 

historic wave data, are either plunging (92.07%) or spilling (7.93%). 
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Figure 3.3 Map of the study area (Port Hedland) 

3.4 Data and Their Format Requirements 

3.4.1 Tide 

A period of 19 years is usually considered as a standard tidal cycle when research is 

conducted, as it reflects the principle lunar node of 18.6 years. The decision as to 

which years will be the beginning and end of the standard cycle epoch is made, in 

Australia, by the Permanent Committee for Tidal and Mean Sea Level (PCTMSL). 

Their decision conforms to international standards; the current epoch commenced in 

1992 and finishes at the end of 2010 (The Intergovernmental Committee on 

Surveying and Mapping (ICSM) 2010b).  

Therefore, tidal data in the period between 1992 and 2010 were selected for this 

research. Tidal data were regularly recorded using the tide gauges by Department of 

Transport during this period in the form of one specific time with one corresponding 

tidal height. The tide data applied in this research were recorded every 5 minutes at 

Fremantle (about 8 km from the study area at South Fremantle). For the Port Hedland 

region, the tide data were also recorded in a uniform format in terms of tidal datum 

recording period and recording intervals by the Department of Transport (DoT) 

(Department of Transport 2010b). 
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3.4.2 Imagery and Digital Elevation Model (DEM) 

The imagery used in this study to extract HWM indicators was captured by Landgate 

using Leica ADS80 Digital Camera. The South Fremantle region was captured in 

February 2010 with a ground resolution of 0.1 m (Landgate 2010). The DEM for the 

same area, also reflecting the summer coastal morphology, was derived from LiDAR 

data captured in February 2008 and produced by WA Department of Water 

(Department of Water 2008). The DEM has a vertical accuracy of 0.15 m and 

horizontal accuracy of 0.6 m. Another DEM (with a vertical accuracy of 0.3 m and 

horizontal accuracy of 0.5 m), reflecting winter coastal morphology, was generated 

by Landgate (Landgate 2012) from digital aerial photography captured in August 

2011.  

Imagery for the Port Hedland study area was captured in November 2009 at a ground 

resolution of 0.2 m (Landgate 2009b). The DEM, representing the summer coastal 

morphology, was created by Landgate (Landgate 2009a) from airborne LiDAR data 

with a vertical and horizontal accuracy of 0.2 m and 1.0 m, respectively. As the point 

density of LiDAR data captured at South Fremantle (both seasons) and Port Hedland 

(November 2009) is very high, the Inverse Distance Weighting algorithm was used 

to resample the point cloud to a grid.  This is considered sufficient to provide a high 

quality DEM. However, the LiDAR points captured to represent the coastal 

morphology at Port Hedland in winter (July in 1995) were not dense enough (Figure 

3.4) to provide a high quality DEM, so further interpolation is required (Landgate 

1995). 
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Figure 3.4 Original LiDAR points captured at Port Hedland 1995 

3.4.3 Real-Time Kinematic (RTK) Land Survey Data 

A centimetre accuracy RTK GNSS receiver is used in the field to survey the position 

and elevation of shoreline features and the water level. The advantage of RTK, with 

a standard deviation from the mean of about  

10 mm (Cordesses et al. 2000), enables the captured position and elevation 

information of ground reference points to be more reliable. The surveys are tied back 

to control points near each study area to assess the confidence of the whole survey 

process. 

3.4.4 Wave 

The time series of hourly wave information (significant heights and periods) for 

South Fremantle and Port Hedland, Western Australia were recorded by the 

Cottesloe wave rider buoy (approximately 16 km from South Fremantle) and Beacon 

16 (approximately 19 km west of Port Hedland), respectively (Tremarfon Pty Ltd. 

2011). The wave heights and wave period are recorded at the same time. The range 

for the wave heights are from 0.18 m to 3.67 m at Cottesloe and from 0.16 m to  



57 
 

 
 

4.85 m at Port Hedland; while the range for the wave periods are from 2.6 seconds to 

12.5 seconds at Cottesloe and are from 1.8 seconds to 13.9 seconds at Port Hedland. 

There are missing data in the recordings for both locations. This reduces the whole 

wave information records dataset in Cottesloe and in Port Hedland by 2.15% and 

7.91%, respectively. The largest recorded gap for Cottesloe is 835 hours (from 19th 

February 2009 to 25th March 2009) and for Port Hedland it is 1255 hours (from 22rd 

October 2001 to 13th December 2001) (Figures 3.5 and 3.6). 
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Figure 3.5 W
ave height records from

 Sept 1999 to A
pr 2009 at C

ottesloe (above) and at Port H
edland (below

) 
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Figure 3.6 W
ave Period records from

 Sept 1999 to A
pr 2009 at C

ottesloe (above) and at Port H
edland (below
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3.5 Software 

3.5.1 GIS, Remote Sensing and Data Processing Software 

The integrated image analysis solution development environment eCognition 

Developer 8.0.2 (Trimble Germany GmbH 2010) was used as the test-bed 

environment to develop the object-oriented approach for image analysis on shoreline 

identification.  

The geodata stored in a shapefile format are developed by the Environmental 

Systems Research Institute (ESRI). The shapefile data are important input and output 

information that indicates the spatial relationship between different spatial features. 

For example, the classification results of the coastal features and all of the HWM 

indicators are in the format of shapefile, when they are required to be represented on 

digital maps. The LiDAR points and the RTK based GNSS survey data are also 

represented as shapefile to show their spatial positions (ESRI Inc. 2010). 

Most of the data processing and spatial features representation were implemented in 

ArcGIS 10.1 (ESRI Inc. 2010). Tools to automate the analysis processes have been 

developed using Python scripts. These tools were developed specifically for this 

research and to automate the steps for accessing the spatial and temporal variation 

(precision and stability) of HWM indicators.  

3.5.2 Statistical Software 

The Matlab (MathWorks 2010) and R (R Development Core Team 2012) for 

numerical computing and graphics was applied throughout the research to interpolate 

the wave information (Chapter 4), and identify and adjust the inconsistent survey 

feedback in modelling MCDM (Chapter 7).  

The analysis of tide data was conducted using software developed by the Department 

of Transport (DoT), WA (Department of Transport 2010a).  ‘TIDINT’ (TIDe 

INTerpolation), ‘TIDPTU’ (TIDe Packed To Unpacked), and its reverse ‘TIDUTP’ 

were used for pre-processing the tide records. The software ‘TANS’ and ‘TIDSTAT’ 

(TIDe STATistic) were used to calculate the tidal constituents and high water 

statistical occurrences, respectively. Other software used in this research includes the 
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@RISK for Excel (Palisade Corporation 2009), which simulated the cumulative 

distribution of swash and tidal heights, respectively, when determining the SCSP and 

SCTP.  

3.6 Summary 

This chapter describes the methodology to address the difficulties and problems in 

two sequential stages—HWM determination and HWM evaluation. The key steps to 

determine the positions of the HWM based on spatial continuity of swash probability 

(SCSP) or spatial continuity of tidal probability (SCTP) are described. This model 

integrates the information both seaward and landward of the HWM.. A Multi-Criteria 

Decision Making (MCDM) model is developed with consideration to precision, 

stability and inundation risk. This model assists in the selection and evaluation of the 

most accurate positions of the HWM for two different purposes. The distinctive 

features between the two study areas are correspondingly compared in terms of 

beach type, tidal and wave characteristics.  

In addition, the data and their formats required for implementing the methodology 

are identified. It was found that recording gaps in wave information significantly 

limits the ability to derive the HWM indicators. A solution to this problem is 

explored in the next chapter using interpolation methods. 
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CHAPTER 4 WAVE INFORMATION INTERPOLATION WITH WAVELET 

REFINED CUBIC SPLINE AND FRACTAL METHODS 

4.1 Introduction 

Wave information is important for the calculation of wave runup as an input to 

calculate the swash probability for each HWM indicator, which is critical to the 

determination of the HWM. However, gaps often exist in wave recordings, and this 

impacts on the accuracy of HWM determination. Wave information interpolation is 

used to interpolate across gaps in the recorded wave information to provide input to 

the calculation of wave runup. 

This chapter presents two methods for wave information interpolation, namely, 

wavelet refined cubic spline and fractal methods. These methods are then compared 

with the original cubic spline method used for wave information interpolation. The 

methods are implemented and compared at South Fremantle and Port Hedland study 

areas, which have distinct wave types and coastal features. 

Furthermore, this chapter presents conclusions about the effects of recording gap 

sizes on the interpolation process.  

4.2 Outline of Wavelet and Fractal Methods 

The basis of the wavelet method is a ‘small wave’ that essentially decays and grows 

in size over a limited time (Percival and Walden 2006). Some mathematical methods, 

such as Fourier analysis, can decompose general time series data into simpler pieces 

of information in the frequency domain. These methods work on the assumption that 

the underlying process, such as wave information time series, is stationary (Gu and 

Bollen 2000). The wavelet transform provides the localised information in both time 

and frequency domain for the process.  

Broadly speaking, there are two main classes of wavelets: the Continuous Wavelet 

Transform (CWT) and the Discrete Wavelet Transform (DWT). The CWT is usually 

applied when working with time series data over the entire real axis and is ideal for 

feature extraction (Subasi 2007). In contrast, the DWT is designed to deal with time 

series over integer space.  DWT has been applied successfully in the study of noise 

reduction (Borsdorf et al. 2008). DWT enables the separation of high and low 
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frequency signals in a time series and is used in this research to separate the high and 

low frequency of wave information in a time series record. The DWT method is 

discussed in Section 4.4.  

The fractal method has been applied to analyse the correlation of time series data for 

various studies ranging from physiology (Stubsjøen et al. 2010) and economy (Muzy 

et al. 2000), to hydrology (Jayawardena and Lai 1994). For the wave research, 

Reikard (2009) forecasted the wave energy by determining the wave parameter’s 

fractal dimension. However, the concept of fractal was not directly involved in the 

interpolation. In this research, fractal methods are applied to interpolate wave 

information where data gaps occur, and in particular larger gaps where data are 

missing.  

Both wave height and wave period are important wave information, and are required 

by the wave runup (swash) height modelling. Therefore, the interpolation of wave 

height and period is essential to examine the effect of wave runup in the 

determination of the HWM. Since the periods of record gaps are the same and time 

series patterns of the records are similar for wave height and wave period (see 

Chapter 3.4.5), the principle of interpolating record gaps of the wave period is 

essentially the same as the wave height. Therefore, the implementation process was 

only illustrated on the wave height interpolation. In this study, the wave height refers 

to the significant wave height. 

4.3 Stationarity Test and the Feature of the Wave Height Records 

4.3.1 Stationarity Test 

The time series of the wave height records require a stationarity test before 

performing any interpolation. Stationarity of the time series is the basic requirement 

for most interpolation methods. To conduct this test the Least Squares Quadratic 

(LSQ) fit between the wave heights ( ( )Wh t ) and the null model were identified from 

the regression.  This is called the partial sum process of the residuals (Kwiatkowski 

et al. 1992): 

( )
1

t

i
i

S t e
=

=∑ ,     1, 2, ,t T=                                           (4.1) 
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in which te  is defined as the residuals from the regression, and T is the number of 

observed records. The test of the null hypothesis of the level stationary is defined as 

(Kwiatkowski et al. 1992): 

( )( )
( )

2

1
2 2ˆ

T

t

nw

S t

S Tµη =
∑

=                                               (4.2) 

where 2
nwS is the ‘long-run variance’ Newey-West estimator (Newey and West 1987) 

and is used to overcome autocorrelation that could be easily identified in the time 

series (Müller 2007). The statistical significance of the stationary test of the wave 

heights is indicated by the p-value and the critical values with the ˆµη . 

4.3.2 Feature of the Wave Height Records 

The time series of the hourly recorded significant wave height are calculated to be 

non-stationary at the 0.01 significance for both of the study areas (Table 4.1); 

therefore, the commonly used interpolation, such as cubic spline interpolation, 

cannot be successfully applied on the wave height time series, and improved methods 

are required. 

Table 4.1 The test of null-hypothesis of stationary trend  

  Critical value Decision 
Cottesloe 19.34 0.146 Rejected 

Port Hedland 4.86 0.146 Rejected 
 

4.4 Wavelet Adjusting on Cubic Spline Interpolation 

4.4.1 Discrete Wavelet Transform (DWT) 

The DWT of the time series of wave height records is defined as the transformation 

of the wave heights ( )Df t   multiplied by the wavelet (Thyagarajan 2011):  

/ 2

0 0 0
( )( , ) ( )

m m

D D
tWf m n f t nt dtλ λ

− −
∫= Ψ −                             (4.3) 

ˆµη



65 
 

 
 

where 0λ is the fixed dilation step greater than 1,  m  is an incremental step, 0

m
λ  is  a 

magnification, 0t is the initial position of the wavelet, and is moved to another 

location by n . A family of discrete wavelets are defined as: 

0 0
,

00

1( )
m

m n mm

t ntt λ
λλ

 −
Ψ = Ψ 

 
.                                        (4.4) 

4.4.2 Multi Components Analysis on Wave Heights 

In this research, results have shown that the components of the data pattern are in 

some cases more revealing than the data pattern itself. For example, the time series 

of wave heights act like a series of signals composed of a number of sub-level signals 

with different frequencies, which means that both long-term trend and localised 

variation exist in the time series of wave heights.  

However, in a large number of studies using Fourier analysis on time series signals, 

researchers have failed to separate the different frequencies in the series (Kumar and 

Foutoula-Georgiou 1997), and thereby making the interpolation of wave heights 

impossible. However, a wavelet has the property of time-frequency location, which 

is indicated by the time location n  and scale m . This means that the components, 

with different frequencies, can be identified and separated by the wavelet analysis.  

In this research, the linear combination of the wavelet , ( )m n tΨ  was applied to 

approximate any square-integrable function ( )Df t , and is expressed as: 

, ,( ) ( )D m n m n
m n

f t D t
∞ ∞

=−∞ =−∞

= Ψ∑ ∑                                         (4.5) 

where, the ,m nD  is the coefficient and measures the contribution of scale 0
mλ at the 

location 0 0
mnt λ  to the function ( )Df t , and can be obtained as  

, ,( ) ( )m n D m nD f t t dt= Ψ∫ . 

One important application of the wavelet method applied in this research is the 

analysis of the patterns of signals at the different frequencies. This was an important 
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step as the wave height records captured over time are mixed with high frequencies 

(big waves followed by calm water or vice versa and low frequencies (constant big 

wave or constant calm water). This irregular change is a major reason why the wave 

height is ‘impossible’ to interpolate.  

This problem has been resolved by decomposing the irregular changes by 

introducing the wavelet multi-frequencies method:  

( ) ( ) ( )m Am Dmf t f t f t= +                                             (4.6) 

where ( )mf t  is a function that represents how the wave height changes in time, and 

( )Amf t  and ( )Dmf t  are functions representing the approximate trend and the detail 

change of the wave heights in time.  

The ( )Amf t  can be further decomposed into a more detailed function as 1( )Dmf t− and 

approximated as 1( )Amf t−  with a smaller scale filter, and thus higher resolution, so 

that broader trends appear. In such multi-resolution framework, the ( )Amf t  is 

formulated as: 

, ,( ) ( )Am m n m n
n

f t C tφ
∞

=−∞

= ∑                                          (4.7)   

in which , ( )m n tφ  is the smooth function (or scale function) and is defined as  

0 0
,

00

1( )
m

m n mm

t ntt λφ φ
λλ

 −
=  

 
; whereas , , ( ) ( )m n m nC t f t dtφ= ∫  are the coefficients of 

( )f t  at the time location n  and scale m . ( )tφ  is used for scaling, like a sampling 

function, and related to the ( )tΨ , which is defined as: 

, ,( ) ( )Dm m n m n
n

f t D t
∞

=−∞

= Ψ∑ .                                      (4.8)     

In order to improve the interpolation, the time series was separated into high and low 

frequency data using the wavelet method. In this research, the wave height records 

time series were decomposed into three levels in the form of Equation 4.6. This 

process is illustrated in Figure 4.1.   
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Figure 4.1 High and low frequency wave height interpolation using the wavelet 

method 

The cubic spline interpolation can be used to draw the smooth curve through the 

points and is expressed as a combination of a series of third degree polynomials. In 

this research, a pair of wave height records is defined as ( ( ), ( 1))Wh i Wh i + , and the 

third degree polynomial between them is ( )if t  1, 2, , 1, [ , 1)i l t i i= − ∈ + . 

Firstly, the approximate (low frequencies) and detail (high frequencies) function at 

the scale m  are fitted into a piecewise function separately: 

1

1
( ) ( )

l

Am Ami
i

f t f t
−

=

=∑     [ ), 1t i i∈ +                                  (4.9) 

and  

 
1

1
( ) ( )

l

Dm Dmi
i

f t f t
−

=

=∑     [ ), 1t i i∈ +                              (4.10) 

where  ( )Amf t  and ( )Dmf t  are defined as a third degree polynomials:  

3 2( ) ( ) ( ) ( )Ami Ai Ai Ai Ai Ai Ai Aif t a t x b t x c t x d= − + − + − +           (4.11) 

and  

3 2( ) ( ) ( ) ( )Dmi Di Di Di Di Di Di Dif t a t x b t x c t x d= − + − + − +   1, 2, , 1.i n= −    (4.12) 

Therefore, the next step of this interpolation is to calculate the coefficients. These 

have been determined by McKinley and Levine (1998) and are as follows: 

1

6
i i

i
M Ma

h
+ −

=                                                   (4.13) 
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1 2( 1) ( ) ( )
6

i i
i

M MWh i Wh ic h
h

+ ++ −
= −

                                (4.15)        

( )id Wh i=                                                    (4.16)        

in which, iM  denotes the second derivative of ( )mif i  as ( )mif i′′ . The cubic spline 

interpolation was applied on high frequencies and low frequencies of the wave height 

time series separately at different scales m, and then ( )mf t was reconstructed 

according to the Equation 4.6. In this research, the interpolation started from level 

three (m=3).  When m equals one, the ( )f t  is the final cubic spline function refined 

by the wavelet method to interpolate the wave heights in recording gaps. 

4.4.3 Wavelet Selection 

There are a number of wavelets available. The most commonly used are the Haar, 

Symlets, Coiflets, Biorthogonal and Meyer (Zhou and Paul 2005). All of these 

methods satisfy the features of the wavelet, but are different from each other in terms 

of the attributes of the wavelet and scale functions.  

The selection of the wavelet in this research has been determined using a sampling 

test. Of the wave height records, 20% have been used as the test sample, and the 

wave heights have been interpolated using most of the common wavelets. The RMSE 

of the cubic spline interpolation method was calculated for different wavelets: the 

smaller the RMSE, the higher the accuracy of the cubic spline method for a given 

wavelet. 

4.5 Fractal Interpolation on ‘Large’ Record Gaps 

The results of this research proved that the wavelet refined spline method alone 

would not fill the larger wave record gaps accurately. As a consequence, it was 

determined that other interpolation methods were needed.  

As wave height records over time have a pattern of self-similarity, the fractal method 

uses this to interpolate wave heights in the record gaps. One of the most important 
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concepts in the fractal method is the Iterated Function System (IFS), which is a type 

of transformation. The points ( ,  ( ))t Wh t  were used to construct the IFS 
2{ ; , 1, 2, , }jw j Nℜ =  , N stands for the number of randomly selected records. The 

results of a general IFS interpolation are quite variable, rather than smooth and 

continuous (Moore 1999). The general IFS is one type of an affine transformation, 

and defined as: 

0
( ) ( )

j j
j

j j j

a et t
w

c d fWh t Wh t
      

= +      
      

                              (4.17)    

with the following constraints: 

1 1
(1) ( 1)j

j
w

Wh Wh j
−   

=   −   
                                          (4.18)       

and 

( ) ( )j

N j
w

Wh N Wh j
   

=   
   

                                         (4.19)   

As such, the transformation should obey the four linear equations with five 

coefficients , , , ,j j j ja c d e  and jf : 

1j ja e j+ = −                                                 (4.20)   

j ja N e j+ =                                                  (4.21)   

(1) ( 1)j j jc d Wh f Wh j+ + = −                                   (4.22) 

( ) ( )j j jc N d Wh N f Wh N+ + =                                  (4.23) 

where jd stands for the vertical compression ratio and is randomly selected. The 

interpreted heights ( ( ), )Wh t t′ ′ ′  can be determined by: 

( ) ( ) ( )
j j j

j
j j j

a b et t t
w

c d fWh t Wh t Wh t
′         

= = +        ′        
                   (4.24)
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4.6 Interpolation and Test on the Missing Data 

The cubic spline method was used to interpolate the record gaps in the whole dataset 

(Figures 4.2 and 4.3). However, the RMSEs in the two study areas are over 2 m 

(Table 4.3); therefore, the cubic spline method does not satisfy the requirement of 

wave height interpolation in terms of high accuracy, and a more refined approach is 

needed. 

The wavelet method was applied to refine the cubic spline method. It separates high 

frequency and low frequency data in the wave height time series.  As shown in Table 

4.2, the db3 and db8 were selected as the most suitable wavelets at Cottesloe and 

Port Hedland respectively, showing the least RMSE (Table 4.2, Figures 4.4 and 4.6). 

After applying the wavelet method, the results of the cubic interpolation have been 

significantly improved at Cottesloe (Table 4.3 and Figure 4.5), but not that 

significantly at Port Hedland (Table 4.3 and Figure 4.7).  

However, as shown in Figures 4.5 and 4.7, the interpolation for large intervals of the 

wave height record gap are not accurate. Hence, the fractal method was introduced to 

interpolate these larger gaps. The results show that the fractal method is satisfying 

the statistic test (Table 4.3) and there is no extreme and apparent error in the shape of 

the wave height record time series in general (Figures 4.8 and 4.9). In comparison to 

the original cubic spline, the wavelet refined cubic spline and fractal interpolations 

have significantly improved the results for the whole dataset on average (Table 4.3). 

Table 4.2 Wavelet selection for wave height interpolation based on the RMSE 

test (m) 

 db3 db5 db8 sym4 sym5 sym6 sym8 rbio3.3 
Cottesloe 0.60 2.71 1.73 1.13 1.39 1.27 1.37 1.26 

Port 
Hedland 3.57 2.71 2.38 4.28 3.64 3.97 3.75 3.93 

 

Table 4.3 RMSE on the different types of wave height interpolation (m) 

 Cubic spline Wavelet 
refined 

Fractal 
interpolation 

Cottesloe 2.77 0.60 0.578 
Port Hedland 2.47 2.38 0.456 
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The time series of wave period records are also identified as non-stationary ( ˆµη = 

8.86 and 12.23 at Cottesloe and Port Hedland respectively with critical values of 

0.146), and therefore the same methods and processes are conducted on the record 

gaps interpolation. In contrast, rbio3.3, showing the least RMSE, is the ideal wavelet 

for wave period interpolation at both Cottesloe and Port Hedland (Table 4.4). 

Similarly, the interpolation results have been substantially improved using the 

wavelet refined cubic spline and fractal methods (Table 4.5). 

Table 4.4 Wavelet selection for wave period interpolation based on the RMSE 

test (sec) 

 db3 db5 db8 sym4 sym5 sym6 sym8 rbio3.3 
Cottesloe 2.12 2.56 2.21 1.24 1.42 1.23 1.23 1.21 

Port 
Hedland 1.40 1.76 1.62 1.12 1.18 1.07 1.04 0.89 

 

Table 4.5 RMSE on the different types of wave period interpolation (sec) 

 Cubic spline Wavelet 
refined 

Fractal 
interpolation 

Cottesloe 4.13 1.21 1.86 
Port Hedland 8.66 0.89 1.38 

 

4.7 Evaluation and Discussions 

In this research, the evaluation process has been illustrated on the wave height data. 

Table 4.3 depicts the average of the interpolation results, where the cubic spline has 

the largest interpolation error when applied to the wave height interpolation study. 

While the fractal method shows the best results in general for the whole data set 

interpolation, the wavelet refined spline method works better for the Cottesloe wave 

heights than the Port Hedland wave heights.  

Two further questions remain unanswered: (1) Why do different interpolation 

methods have different levels of performance? and (2) How does the size of data gap 

interval influence the interpolation results? As a consequence, further analysis was 

conducted to answer these two questions. 

The difference between cubic spline and fractal interpolation is that when the cubic 

spline is used in interpolating the missing data gap, only the values adjacent to each 
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side of the data gap were used as the known information for the interpolation.  

Therefore, the interpolation model is determined only by data in the near vicinity of 

the data gap. This explains why other similar interpolation methods, like linear and 

polynomial, also fail on wave height interpolation because they are even more 

restrictive in terms of the data used to inform the model parameters.  

In contrast, the fractal method uses the affine transformation, which takes into 

account the entire trend of the time series (not just the points adjacent to the gap) and 

is considered as a simulation process. However, the fractal method may ignore the 

order effects during the interpolation process and importance of neighbourhood 

information close to the interpreted data gaps. Usually, the neighbourhood 

information should be given more weight to inform the interpolation model 

parameters.  

The wavelet refined process separates the main trend and noise in the time series of 

the wave height records, which makes the cubic spline interpolation easier. By 

combining the separate interpolation results from high and low frequency, the final 

interpolation results are more accurate than the pure cubic spline interpolation. 

Table 4.3 presents the average results of interpolating the record gaps in the whole 

dataset. However, the size of the wave record gap influences the interpolation results 

and this requires further analysis and discussion. Figures 4.10 through 4.13 show the 

interpolation for relatively large gaps that may happen one or two times in ten years 

(for example, 224 hours at Cottesloe and 142 hours at Port Hedland) and for medium 

record gaps (24 hours at Cottesloe and 27 hours at Port Hedland). The wavelet 

refined spline interpolation on medium gap intervals shows a better shape than the 

spline interpolation. The spline interpolation fails to fill in the relatively large data 

gaps for both of the study areas.   
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Figure 4.10 Relatively large gap interval interpolation at Cottesloe  

 

 Figure 4.11 Medium gap interval interpolation at Cottesloe 
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 Figure 4.12 Relatively large gap interval interpolation at Port Hedland 

 

 Figure 4.13 Medium gap interval interpolation at Port Hedland 
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Also, the interpolated results by the wavelet refined spline showed both general trend 

and detailed variation for relatively large gaps than the ones at Port Hedland, and this 

is not obvious for the interpolated results at Cottesloe. This might be relevant to the 

difference of the stationarity level of the two time series at the two study areas. From 

Table 4.1, the test statistic of wave height trends ˆµη  shows that the level of non-

stationarity is much higher for the dataset at Cottesloe than those at Port Hedland. 

That is, the higher energy waves at Cottesloe made the interpolation process more 

unpredictable. 

 

 Figure 4.14 Relationship between gap interval and interpolation errors for the 

wave heights at Cottesloe 

 

 Figure 4.15 Relationship between gap interval and interpolation errors for the 

wave heights at Port Hedland 
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The fractal simulation does not represent the time series as a coherent shape, as does 

the recorded wave height time series. However, the dispersed distribution of the 

interpolated heights averages the interpolation error and reduces the interpolation 

risk to some extent (Figures 4.14 and 4.15). 

Figures 4.14 and 4.15 compare the effect of wave record gap size on the RMSE for 

the three interpolation methods. To calculate the RMSE, artificial gaps were created. 

Then, the actual values were compared with the values interpolated by the three 

interpolation methods. The gap size ranges from 20 to 210. For each gap size, thirteen 

groups of test data were used and their RMSE was used as the interpolation level for 

that gap size. The estimated values are sparsely distributed along the true values and 

this reduces the accuracy and potential risk of interpolation at same time. However, 

the gap size does not have a great effect on the fractal interpolation, which can be 

estimated from the two levelled off red lines in the Figures 4.14 and 4.15.  

Although the fractal interpolation is the most stable of the three methods, this method 

is not recommended when the gap is small (less than 20 hours). This is because the 

interpolation results from the cubic spline method are far more accurate at this time 

interval. The fractal method is more suitable for the data set at Cottesloe, where the 

wavelet refined spline did not improve results. This could also be attributed to the 

high non-stationarity of the wave heights at Cottesloe, which also caused the average 

of the wavelet refined spline and fractal interpolation results to be less accurate than 

those at Port Hedland for small gap intervals.  

When the interpolation time interval is larger than 50 hours, the RMSE of the spline 

method significantly increased at both study areas. It shows the wavelet refined 

spline is more suitable for medium and relatively large data gap interpolation. 

However, as the gap size increases to a large interval, this interpolation method is 

less accurate than the fractal method due to stable interpolation outcomes of the 

fractal method, as this is irrelevant to the time gap size.  

In the study by Deo and Kumar (2000), the cubic spline failed to produce satisfactory 

estimates in general. However, in this research the suitability of the mathematical 

function for the interpolation does show that it relates to gap size. Generally, the 

spline interpolation works well on small data gaps, whereas the wavelet refined 
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spline performs better than the other methods on the medium and relatively large 

data gap intervals. The fractal method is shown to be more appropriate for large data 

gap interpolation in extreme situations.   

Finally, in the wavelet refined spline process, the decomposed level is fixed at 3 and 

it is not clear whether the decomposed level would have any influence on the results.  

This requires further analysis. Similarly, the fractal method uses a vertical 

compression ratio, and it is not fully understood if the random selection process of 

vertical compression ratio has any effect on the results. 

4.8 Summary 

The interpolation of data gaps in wave records has always been recognised as a 

challenging task and results are often inaccurate. This is due to the complexity and 

uncertainty of wave generation and the various gap sizes in wave records. The 

wavelet refined spline and fractal methods are implemented in this chapter, and they 

show an improvement on the interpolation accuracy, particularly for large or medium 

gaps.  

After a systematic evaluation of these methods, the cubic spline method was 

identified to be more effective for interpolating wave data with small gaps. 

Therefore, different interpolation methods should be applied to fill in data gaps 

according to the duration of the gap. The next chapter discusses the determination of 

the HWM position based on the spatial continuity of swash or tidal probability 

(SCSP or SCTP) for a range of HWM indicators, where the calculation of swash 

height is based on the wave information interpolated in this chapter.    
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CHAPTER 5 HIGH WATER MARK DETERMINATION BASED ON THE 

PRINCIPLE OF SPATIAL CONTINUITY OF THE SWASH/TIDAL 

PROBABILITY 

5.1 Introduction 

The recording gaps within the wave information, which is one of the important 

components required for wave runup (swash) height modelling, were interpolated in 

the previous chapter. This chapter presents a model that determines the position of 

the HWM indicators based on analysis of tidal constituents, image analysis and the 

spatial continuity model. These indicators include tide datum based HWMs, such as 

MHHW and MHWS, and a number of shoreline features, such as HWL and the 

vegetation line. The methods developed are implemented at two case study areas, 

and a field survey was conducted to evaluate effectiveness of the methods. 

5.2 The Outline of HWM Determination: Integrating both Landward and 
Seaward Information 

The proposed HWM determination methodology is based on the spatial distribution 

of swash/tidal probability for HWM indicators and the spatial continuity distance of 

swash/tidal probability on the beach. It is assumed that the swash/tidal probability of 

the various HWM indicators has a level of spatial autocorrelation. The calculation of 

spatial continuity of swash/tidal probability (SCSP/SCTP) required the following 

steps:  

• Identify the HWM indicator lines.  The mean higher high water (MHHW) for 

the diurnal tide at South Fremantle, mean high water spring (MHWS) for the 

semi-diurnal tide at Port Hedland, and the DoT line (Section 2.4.5.2) can be 

derived from tide data. The height of the HWM suggested by Landgate was 

obtained from long-term observation of the shoreline features by experienced 

surveyors. Identification of another three indicators, HWL, dune toe position 

and vegetation line, required object-oriented image analysis (OOIA), which is 

described in the following sections. 

• Calculate the probability that swash/tide will reach the HWM indicators over 

a 10 year period. In this research, the effect of swash was estimated to 

determine the position of the HWM for coastal hazard planning; while the 
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effect of tide was applied to determine the position of the HWM for coastal 

property management. Swash heights were determined using empirical 

models by taking into account wave and tide records. The swash/tidal heights 

were then fitted to an appropriate distribution and the probability that 

swash/tide would reach each HWM indicator was computed.  

• Determine the spatial continuity distance of swash/tidal probability. The 

boundary between the ocean and land is constantly mobile due to swash/tidal 

motions on the beach face and it is suggested that this motion should be taken 

into account when defining the HWM. The swash/tidal limit can be 

considered as the position where the swash/tidal probability begins to 

discontinuously distribute landward. Such a position can be estimated by the 

semivariogram model.   

The semivariogram model is essential to regionalised variable theory (Burrough 

2001; Oliver and Webster 1990). The semivariogram range, for which the upper 

bound is the level of spatial autocorrelation approaching zero, was used as a 

benchmark to identify the minimum distance between the lower bound of the 

sampling position (the most seaward HWM indicator) and the upper bound of 

swash/tidal probability (i.e. the level at which there is no spatial autocorrelation of 

swash/tidal probability). Such an upper bound could be considered as the HWM 

level.  

The principle of determining SCTP is as essentially the same as the SCSP, but 

without taking into account the effect of wave runup. Therefore, the determination 

model was only illustrated on the SCSP in this chapter (Figure 5.1).  
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Figure 5.1 Method framework for determination of SCSP 

5.3 Tidal Datum-based HWM Indicators Determination 

The main objective of this section is to present the method to calculate the tidal 

datum-based HWM indicators. All of the indicator calculations require, as input, the 

tidal constituents over a standard tidal cycle. However, the DoT’s HWM also 

requires the tidal constituents in each year to identify the annual variation. The 

constituents were used to calculate: (1) the height of MHHW at South Fremantle and 
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MHWS at Port Hedland for a 19 year observation, and (2) 19 years of predicted 15 

minute interval tidal heights, from which residuals from observed values can be 

calculated. To obtain the HWM height using the DoT method, the 19th high water 

occurrence in a 19 year observation was also calculated. 

5.3.1 Standard Tidal Cycle 

A period of 19 years is usually considered as a standard tidal cycle for establishment 

of tidal parameters as it reflects the principle lunar node cycle of 18.6 years. The 

decision as to which years will be the beginning and end of the standard cycle epoch 

was made by the Permanent Committee for Tidal and Mean Sea Level (PCTMSL) in 

Australia. Their decision is aligned with international standards; the current epoch 

commenced in 1992 and ended at the end of 2010 (The Intergovernmental 

Committee on Surveying and Mapping (ICSM) 2010b).  

Therefore, tidal data in the period between 1992 and 2010 were used for this 

research. The tidal data were regularly recorded using the tide gauges by DoT during 

this period in the form of one specific time with one corresponding tidal height. 

However, the data are not in a uniform format in terms of tidal datum and recording 

intervals, and standardization of the tidal data had to be conducted before analysing 

the data. 

5.3.2 MHWS, MHHW and the DoT HWM 

The formulae to calculate MHWS and MHHW using constituents are Z0 + (M2 + S2) 

and Z0 + (M2 + K1 + O1), respectively (Pugh 1996). Z0 represents the height of mean 

sea level. The 19 years MHWS and MHHW were calculated by the constituents 

using the observed tidal data from 1992 to 2010.  

The formula for the DoT method to determine the HWM was presented in Section 

2.3.5.2 (Equation 2.6), which is: 19 times high water occurrence plus standard 

deviation of residuals. The 19 times high water occurrence can be directly calculated 

by statistical methods of tidal recordings, and the residuals were obtained by 

calculating the differences between observed and predicted values. The method to 

predict the tide level is to overlap all the tidal constituents in that area. Because every 

constituent is represented by a curve, the calculated tide is an overlapping curve. 
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Therefore, the HWM indicator suggested by DoT was obtained using these two 

values. The workflow to calculate these three tidal datum-based HWM indicators is 

illustrated in Figure 5.2. The software used to conduct the necessary steps is 

described in Section 3.5.2.   

 

Figure 5.2 Workflow for tidal datum-based HWM indicators determination 
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5.4 Shoreline Feature based HWM Indicators Generation 

5.4.1 Image Classification Using OOIA 

The process of OOIA was conducted using eCognition Developer 8.0 as a test-bed 

environment. Various criteria were applied to complete the classification, including 

contrasts, colours, reflections, shapes, the steps of ‘segmentation,’ ‘brightness,’ 

‘colour,’  ‘relationship,’ and ‘manual modification.’ 

The results of the classification were tested using: 

• Producer Accuracy (PA) (measures the error of omission and exclusion; for 

example, some vegetation and dry sand pixels were omitted from the wet 

sand classification);  

• User Accuracy (UA) (measures the error of commission, inclusion; for 

example, some vegetation and dry sand pixels were erroneously included in 

the wet sand classification);  

• Hellden Accuracy (HA) (takes into account the test of Producer and User 

Accuracy);  

• Short Accuracy (SA) (takes into account the test of Producer and User 

Accuracy);  

• Overall Accuracy (OA) (provides a crude measure of accuracy); and  

• Kappa Index of Agreement (KIA) (a more robust test on the accuracy of 

classification than the OA, which is also known as KHAT accuracy) (Gupta 

et al. 2010; NOAA Coastal Services Center 2011). 

These are defined as: 
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where ic  indicates the column i , mna  indicates the accuracy of classification in the 

column m  and row n , oP  is the observed accuracy , and cP  represents the chance of 

agreement, which is defined as: 
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In this research, all of the methods described here were used to test the classification 

accuracy. 

5.4.2 Identification of the Vegetation Line 

In this analysis vegetation is considered to be either sparse or dense. It is easy to 

identify the boundary of dense vegetation, but the position of sparse vegetation is 

fuzzy and the sparse vegetation zone is always further seaward. Therefore, the 

average elevation of the beach where sparse vegetation starts was considered as the 

elevation of vegetation line. The vegetation line can be positioned on the map like a 

contour line using the DEM of the foreshore. Nonetheless, sparse vegetation is 

difficult to differentiate from beach sand in imagery. Benz et al. (2004) suggest that 

the objective oriented fuzzy logic method is an efficient approach to derive good 

results where feature extraction is necessarily vague. This research applies the Benz 

et al. (2004) method to sparse vegetation identification.  
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5.4.3 Identification of the Frontal Dune Toe Position 

As previous studies have confirmed, coastal morphology is directly influenced by 

waves and water levels (Austin and Masselink 2006). 

The curvature of the beach landform for each pixel in the study area was calculated 

using the DEM. Those pixels with curvature of 2.5 standard deviations less than the 

mean curvature in the dry sand zone, were chosen as identifying the toe of the major 

frontal dune. This step was conducted based on the following principles (Moore et al. 

1991): for each pixel cell, the height zH  is fitted into a bivariate quadratic function 

as a second-degree polynomial of the form given in Equation 5.8 using its x and y 

coordinate with all the parameters from A to I: 

2 2 2 2 2 2
zH Ax y Bx y Cxy Dx Ey Fxy Gx Hy I= + + + + + + + +             (5.8) 

which is fitted to a three-dimensional (3-D) surface composed of 3 × 3 cells around 

the target pixel, in which each x and y has a corresponding height zH . The nine 

points can be exactly fitted into the nine term polynomial. The rate of change of 

slope for the target pixel is calculated as: 

( ) ( )2 2 2 22 .EH DG FGH G Hϕ = − + + +                               (5.9) 

The mean elevation of the dune toe was calculated by averaging the elevations of 

each of the included pixels, which could be used as the elevation of the toe of the 

frontal dune in this particular area. 

5.5 HWM Determination Using the Theory of SCSP 

5.5.1 Calculate Extreme Swash Heights  

Extreme swash or wave runup height is taken as the highest elevation that water 

reaches on a beach. The 2% runup exceedance height ( 2%R ) takes into account the 

effect of both tide and waves (Stockdon et al. 2006). Much research on wave runup 

on beaches has been undertaken by Didenkulova et al. (2010), Hughes et al. (2010) 

and Southgate (1989), and numerous approaches for calculating wave runup are 

available (Holman 1986; Hughes 2004; Mase 1989; Stockdon et al. 2006). These are 

typically based on wave parameters and beach slope.  
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For the current study, the commonly used empirical formula (Equation 5.10) 

developed by Stockdon et al. (2006) for a range of beach types was applied to 

calculate wave runup at the two study sites. Their study is based on measurements at 

10 diverse field sites (as opposed to laboratory experiments) and is one of the most 

comprehensive runup studies available. However, while their model provides a good 

predictor of runup on beaches, there are some variations between estimated and 

measured runup (Root Mean Square Error [RMSE] = 38 cm in the vertical). 

( )
( ) 1/22

0 01/2
2% 0 0

0.563tan 0.004
1.1 0.35 tan

2

H L
R H L

β
β

  +  = + 
  

         (5.10) 

where H0  represents the deepwater wave height, L0 
is the deepwater wavelength 

derived from the wave period and tan β signifies the beach slope.  

To improve the accuracy of estimation on 2%R , when the Iribarren number, ξ0  is less 

than 0.3 (taking 0.019% and 0.015% of total records at South Fremantle and Port 

Hedland, respectively), another formula was adopted (RMSE = 21 cm in the vertical) 

(Stockdon et al., 2006): 

1/2
2% 0 00.043( ) .R H L=                                              (5.11) 

Thus the maximum runup elevation on the beaches is defined as (Ruggiero et al. 

1996; Ruggiero et al. 2001): 

r statTWL Z R= +                                                   (5.12) 

where rZ  is the tidal level, and statR  is the wave runup height as a statistical 

representation. In this research, the hourly swash runup limit was calculated by 

adding the hourly mean tide elevation derived from 15 minute interval tidal records 

using software ‘TIDINT’ to the hourly 2% exceedance wave runup. 

Two of the parameters required by the runup empirical model are the wave height 

and the wave period. Recording gaps of these parameters are interpolated according 

to the approach provided in the previous chapter. However, as the propagation 

mechanism of these two parameters on the runup model is too complex to be 
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estimated, the effect of the interpolation accuracy on the wave runup modelling was 

not provided. This is a limitation of this research (See Section 8.4). 

5.5.2 Fit Significant Swash Heights into the Cumulative Distribution Function 

The cumulative distribution function of swash height can be regarded as the 

probability that the swash height X is less than x,  for any x, denoted as,   

F(x) = P{X ≤ x}.                                             (5.13) 

To try to identify the feature of swash level, the swash heights were fitted into a 

continuous probability distribution model. The selection of swash probability 

distribution function was based on the Chi-squared test statistic, and is defined as: 
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i i
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=

−
= ∑                                            (5.14) 

in which k is the number of bins, and iN and iE are the observed and expected 

number of samples in the ith bin.  

To calculate the Chi-squared statistic, it is necessary to break the x axis domain into 

several bins, the size of which is adjusted based on the fitted distribution, and to 

associate each bin with an equal probability. To test the significance of the fitting 

process, which calculates the likelihood that a set of samples drawn from the original 

data would generate a similar fit statistic, the observed significance level of the test 

p-value was calculated. The parameters of the distribution model were estimated by 

the method of maximum likelihood estimation (MLE). 

5.5.3 Semivariogram Model of the Swash Probability 

Different locations on the beach will be associated with different swash probabilities, 

but such spatial variation should not be wholly erratic, and a spatial structure may 

exist based on spatial autocorrelation theory (Anselin and Getis 1992; Burrough 

2001; Oliver and Webster 1990). This means that two locations (cross-sections 

intersected with indicator lines) that are closer together will usually have a smaller 

difference of swash probability than distant ones. However, autocorrelation should 

only take effect within a certain distance known as the range (Chiles and Delfiner 
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1999). Outside this range, the spatial continuity of the swash probability no longer 

exists, therefore, the range from the lower bound of the sampling position could be 

considered as the highest level that water can reach in a normal situation, and this 

would indicate the HWM position.  

A semivariogram model was applied to calculate the distance of spatial continuity of 

swash probability. In order to simulate the semivariogram model, the semivariogram 

between two positions was calculated (Burrough 2001; Oliver and Webster 1990): 

( ) ( ) ( ){ }1
2 i i hh Var F x F xγ += −                                   (5.15) 

where h  is the distance between two positions. To measure the relationship between 

distance and the variation of swash probability, cross-shore transects were defined 

with spacings to intersect with the different HWM indicators. Each intersected point 

has a swash probability value, which is used to define the semivariogram model. 

5.6 Implementation of the Methods 

5.6.1 Identification of Tidal Datum-based HWM Indicators 

5.6.1.1 Data Preparation 

From the year 2005 onwards, tidal records changed to a new tidal datum at Port 

Hedland. The new tidal datum was 0.239 m higher than the previous datum, so the 

data recorded from 2005 onwards was converted back to the previous datum by 

adding the offset in order to ensure the tidal datum is consistent. 

For converting all of the individual tide observations into consistent 15 minute sets, a 

program titled ‘TIDINT’ (TIDe INTerpolation) (Department of Transport 2010a), 

was used. The principle of interpolating 15 minute tidal records sets is to simulate the 

cosine curve by the observed data in a two-dimensional coordinate system. Along the 

x axis is time, and on the y axis is the tidal height. The next step is to select the 

heights with every 15 minute interval. Because of the large amount of tidal records in 

one year, 15 minute intervals are adequate for this research.  

In order to save valuable computer storage space in the past, all the tidal data were 

compressed into a packed file, in which one row may record several tidal heights at 
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different times. The software ‘TIDINT’ can only work with the unpacked data, 

changing data from packed to unpacked was conducted by using software ‘TIDPTU’ 

(TIDe Packed To Unpacked) (Department of Transport 2010a) and its reverse 

‘TIDUTP’ (Department of Transport 2010a). 

5.6.1.2 Constituents and High Water Occurrences Calculation 

All calculation processes were conducted using the software ‘BLOCKS2’ 

(Department of Transport 2010a) and ‘TANS’ (Department of Transport 2010a). 

‘BLOCKS2’ was used to deal with the raw tidal data, and calculate the main features 

of the tide data, such as the start recording date and finish date, and to identify the 

data gaps (no records). ‘TANS’ was used to calculate the constituents. These two 

software programs were used to analyse the tidal information obtained from the 

National Tidal Facility Australia and the Coastal Data Centre, DoT, WA. Both are 

based on Doodson’s theory (The Intergovernmental Committee on Surveying and 

Mapping (ICSM) 2010a). 

In the 19 years tidal data records, high water height occurrences were ordered from 

the highest level to the lowest level, and the 19 times highest water levels were 

selected and prepared for the next stage. The high water statistical occurrences were 

calculated by the software ‘TIDSTAT’ (TIDe STATistic) (Department of Transport 

2010a). By calculating the constituents and high water occurrences, the position of 

MHWS, MHHW and DoT’s HWM were obtained. 

5.6.2 Identification of Shoreline Feature based HWM Indicators 

Using the images and DEM to identify the HWM shoreline indicators, requires a 

suitable classification approach. In this study, five feature classes at South Fremantle 

and six classes at Port Hedland were identified based on significant HWM features 

on the image (Figure 5.3). The classification of rock could only be found at Port 

Hedland. The classification at South Fremantle is less difficult than for Port Hedland, 

where the presence of rock makes the HWL more difficult to identify (Table 5.1), 

because the features of wet beach and rock are very similar to each other in the 

imagery. The vegetation at Port Hedland is also more irregularly distributed. 

Therefore, the classification performed at Port Hedland is thought to be less accurate 
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than for South Fremantle. Overall, the accuracy of the classification is sufficient to 

identify the HWM indicators (Figures 5.4 and 5.5 and Table 5.1). 

 

Figure 5.3 Concept classification with objects’ hierarchy 

 

Figure 5.4 Shoreline feature classification at South Fremantle (Source image: 

Figure 3.2) 
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Figure 5.5 Shoreline feature classification at Port Hedland (Source image: 

Figure 3.3) 

Table 5.1 Accuracy test for classification 

Accuracy  Ocean  Dry 
sand 

Wet 
sand 

Sparse 
vegetation 

Dense 
vegetation Rock 

South 
Fremantle       

Producer 1 1 1 1 0.917  
User 1 1 1 0.839 1  

Hellden 1 1 1 0.912 0.957  
Short 1 1 1 0.839 0.917  

Overall 
accuracy 0.991 

KIA 0.988 
Port 

Hedland       

Producer 1 0.908 0.946 0.393 0.937 0.946 
User 1 0.782 0.925 0.797 0.931 0.925 

Hellden 1 0.840 0.936 0.527 0.934 0.936 
Short 1 0.725 0.879 0.358 0.876 0.879 

Overall 
accuracy 0.922 

KIA 0.901 
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The HWL position was derived from the interface of wet and dry sand; it is noted 

that this shoreline indicator has been acknowledged as highly variable, but it still 

could indicate the landward limit of the previous high tide (Pajak and Leatherman 

2002). As the HWL at Port Hedland was broken by the rock areas, the average height 

of all the identifiable wet and dry sand interfaces were employed as the HWL height, 

and the corresponding contour line was defined as the horizontal HWL position.  

This also applied to the vegetation line. The average elevation of the sparse 

vegetation was considered as the elevation of the vegetation line. Another HWM 

indicator, the frontal dune toe, which is indicated by coastal morphology change, was 

also identified using image analysis (Figures 5.6 and 5.7). 

 

Figure 5.6 Curvature on dry sand at South Fremantle 
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Figure 5.7 Curvature on dry sand at Port Hedland 

The HWM indicators examined in this study are defined by both their vertical and 

horizontal position. However, indicators were initially determined by their horizontal 

positions and then transposed to their vertical levels. This includes shoreline features, 

such as HWL, frontal dune toe and the seaward limit of vegetation. The vertical 

HWM indicators that need to be positioned on the shoreline include MHWS, MHHW 

and the HWM used by Landgate and suggested by DoT. These indicators can be 

positioned on the shore like a contour line or integrated into the DEM image. Thus, 

all the HWM indicators examined in this research have been identified for the two 

study sites (Figures 5.8 and 5.9). 
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Figure 5.8 HWM indicators at South Fremantle 

 

Figure 5.9 HWM indicators at Port Hedland 
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5.6.3 Comparison of the Swash Probability of HWM Indicators 

The 2% swash runup limit was calculated hourly over a 10 year period. These 

records were fitted using a cumulative distribution function. The top five models, 

with highest chi-square among the most commonly used distribution models, are 

listed in Tables 5.2 and 5.3. However, the significance test, as indicated by p-value, 

shows it is less convincing to accept the hypothesis that the fitted distribution could 

possibly generate the original data set. Therefore, the swash heights could not be 

fitted into any distribution model, and only the cumulative probability distribution of 

the swash heights calculated from the original data could be utilised. Equation 5.13 

was applied in this study (Figures 5.10 and 5.11). 

 

Figure 5.10 Cumulative probability distribution on swash heights at South 

Fremantle  
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Figure 5.11 Cumulative probability distribution on swash heights at Port 

Hedland 

Table 5.2 Chi-Square test on the model choice at South Fremantle 

Model InverseGauss Lognormal Gamma Normal Logistic 
Chi-

Square 217.923 218.274 243.791 1369.351 1707.678 

P-value 0.0133 0.0128 0.0004 0 0 
 

Table 5.3 Chi-Square test on the model choice at Port Hedland 

Model BetaGeneral Normal Logistic Chi square Student 
Chi-

Square 1107.822 3098.539 6259.065 34876.666 50250.064 

P-value 0 0 0 0 0 
 

The swash probability values associated with the various HWM indicators at the two 

study sites are shown in Tables 5.4 and 5.5. These results indicate that over the 10 

year period, the maximum wave runup elevation for South Fremantle is 2.616 m 

above AHD, while the lowest is 0.458 m below AHD. At Port Hedland, the runup 

elevation is between 5.339 m above AHD and 3.447 m below AHD. It is clear that 
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the heights of MHWS, MHHW and the HWM suggested by Landgate are quite 

similar to each other in both study areas, and the swash probabilities of these 

indicators at the individual locations do not vary greatly. However, the swash 

probability of these indicators for Port Hedland is much smaller than that at South 

Fremantle.   

Table 5.4 Compare the swash probability for different HWM indicators at 

South Fremantle 

HWM indicators Average height Swash probability 
HWL 3.87×10-1m 7.59×101% 

MHHW 3.40×10-1m 8.04×101% 
Landgate 4.00×10-1m 7.46×101% 

DoT 7.20×10-1m 3.75×101% 
Dune toe line 2.11×100m 1.89×10-4% 

Vegetation line 2.67×100m 0% 
 

Table 5.5 Compare the swash probability for different HWM indicators at Port 

Hedland 

HWM indicators Average height Swash probability 
HWL 1.18×100m 3.83×101% 

MHWS 2.83×100m 7.00×100% 
Landgate 2.67×100m 9.10×100% 

DoT 3.46×100m 1.40×100% 
Dune toe line 4.48×100m 2.40×10-2% 

Vegetation line 8.35×100m 0% 
 

It is commonly accepted that the position of MHHW/MHWS is close to the HWL, 

but this assumption lacks statistical evidence (Crowell et al. 1991; Pajak and 

Leatherman 2002). In this study, the swash probability at HWL and MHHW are 

comparable for South Fremantle, while at Port Hedland, the HWL is much lower 

than the other indicators. 

The HWL is the boundary between dry and wet sand. However, its position is highly 

reliant on high tide elevation and wave conditions on the day when the imagery was 

taken; thus, while it is a good indicator of maximum runup limit for that particular 

day, it is likely to have little relevance to the HWM over a longer duration.  
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This supports the previous finding that the HWL is highly variable (Crowell et al. 

1991; Pajak and Leatherman 2002) and is not suitable for the robust definition of the 

HWM. The HWM levels suggested by the DoT method are higher, but the swash 

probability was significantly lower than MHWS and the HWM used by Landgate. 

The probability that water can reach the dune toe level in 10 years is very small at 

both sites, and its swash probability is consistent at the two sites. However, further 

analysis is required for a credible determination result on the HWM position. 

5.6.4 HWM Determination based on the SCSP/SCTP 

Tables 5.4 and 5.5 provide an evaluation of the swash probability associated with the 

identified HWM indicators; however it is difficult to give an objective determination 

on where the HWM should be located based on this analysis. To provide further 

insight, a new HWM level was derived from the swash probability of the HWM 

indicators based on spatial continuity theory.  

To identify this position, cross-shore transects were defined at regular intervals along 

the study sites, intersecting with the calculated indicator lines. These transects were 

at 50 m intervals along the shore at South Fremantle, and at varying intervals at Port 

Hedland. These intervals were selected to ensure all shoreline features were captured 

with the minimum number of cross sections (Figures 5.12 and 5.13). The swash 

probability was calculated for each intersection point, and the semivariogram curve 

was fitted to the data to estimate the spatial autocorrelation of the swash probability. 
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Figure 5.12 HWM indicators with cross sections at South Fremantle 

 

 Figure 5.13 HWM indicators with cross sections at Port Hedland 
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Compared with other semivariogram models of spatial continuity distance 

calculation, the Gaussian model best fits the empirical semivariogram model 

(observed values) to the data at the two study sites (Table 5.6). Therefore, the 

Gaussian model was chosen to describe the spatial autocorrelation pattern (Figures 

5.14 and 5.15). The ranges of the semivariogram are 17.2 m and 30.9 m at South 

Fremantle and Port Hedland, respectively, beyond which no spatial autocorrelation 

and continuity of the swash probability exist. The range, which is one parameter of 

the model, was calculated by minimising the RMSE for each model.  

Admittedly, the results are sensitive to sampling and measurement errors, which are 

included in, and estimated by, the nugget effect (0.000290 at South Fremantle and 

0.000265 at Port Hedland) (Jaksa et al. 1997). The baseline for the spatial 

autocorrelation distance calculation was the location of the most seaward HWM 

indicator at which the sampling began to calculate the semivariogram model. Thus, 

the semivariogram indicates that the HWM is located 17.2 m and 30.9 m landward of 

the baseline at South Fremantle and Port Hedland, respectively. The lines with 

0.148% (South Fremantle) and 0.149% (Port Hedland) swash probability were 

suggested as the most appropriate HWM levels for coastal hazards planning 

purposes, and the corresponding elevations on the beach are 1.785 m and 3.990 m for 

the two sites, respectively.  

What should be emphasised here, is that these swash probabilities and heights are 

lower but very close to the frontal dune toe, which indicates that the position of dune 

toe is a reasonable indicator of the position of SCSP for coastal hazards planning 

when insufficient data are available to carry out more complex analysis, such as in 

remote areas. Figure 5.16 depicts an example at South Fremantle and illustrates the 

entire process of SCSP determination. 
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Figure 5.14 Semivariogram Gaussian model to calculate the spatial continuity 

range at South Fremantle 

 

Figure 5.15 Semivariogram Gaussian model to calculate the spatial continuity 

range at Port Hedland 
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Figure 5.16 Model to illustrate the idea and process to calculate the HWM 

position 
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Table 5.6 Compare the different semivariogram models on spatial continuity 

distance calculation 

Model (Optimized range (m)) Mean error Root-Mean-Square 
South Fremantle   
Gaussian (17.2) 0.0167 0.0961 
Circular (17.1) 0.0264 0.1430 
Spherical (16.6) 0.0305 0.1000 

Stable (29.3) 0.0239 0.0972 
Port Hedland   

Gaussian (30.9) 0.0278 0.0811 
Circular (20.5) 0.0330 0.1030 
Spherical (23.5) 0.0334 0.1040 

Stable (29.0) 0.0281 0.0832 
 

For coastal property management, the same process was used to model the HWM 

position by excluding the wave runup parameter regarding the spatial continuity of 

tide probability (SCTP). The ranges of the semivariogram are 4.59 m and 29.89 m at 

South Fremantle and Port Hedland, respectively; therefore, the lines with 0.220% 

and 0.127% tidal probability were suggested as the most appropriate HWM levels for 

coastal management purposes. Correspondingly, the elevations on the beach are 

0.707 m and 3.919 m for South Fremantle and Port Hedland, respectively (Figures 

5.17 and 5.18). 

The key and fundamental step to achieve accurate shoreline feature identification by 

OOIA is the segmentation. In this step, the homogeneous image objects are grouped 

and extracted by the pixel value and object shape. However, the determination on the 

weights for these two criteria is highly dependent on the experiences of the analyst. 

This may lead to variations in the classification results, especially for images 

covering large areas. Furthermore, the interval distance between cross sections is 

another source of uncertainty introduced to this study. When calculating the 

semivariogram based on swash/tidal probability and distance of intersection points, 

the distances between cross sections may have an effect on the calculation of spatial 

continuity distance of swash/tidal probability.  

 



112 
 

 
 

 

Figure 5.17 The positions of SCSP and SCTP and the other HWM indicators in 

Fremantle 

 

Figure 5.18 The positions of SCSP and SCTP and the other HWM indicators at 

Port Hedland 
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5.7 Field Work Evaluation 

Two field surveys were conducted in the two study areas to assess the confidence 

level of shoreline features identified using the image analysis techniques, and the 

swash height calculated from the empirical model. Plans of the field work for the 

surveyors’ reference are illustrated in the Appendix I. The field work was carried out 

from 8:30am to 11:30am on 23 August 2012 at South Fremantle and from 9:30am to 

2:00pm on 8 July 2012 at Port Hedland, respectively (Figures 5.19 and 5.20). Due to 

the environmental factors and the limitation of labour resources, the field work at 

Port Hedland could only be carried out on the south west face of Cooke Point.  

 

Figure 5.19 Field survey at Coogee beach, South Fremantle 

 

Figure 5.20 Field survey at Cooke Point (south west face), Port Hedland 



114 
 

 
 

During the survey process, the highest water levels were recorded for three hours in 

both study areas to validate the hourly 2% significant swash heights calculated from 

the empirical model for the same time in 10 years. In addition, survey points 

representing the HWL and frontal dune toe positions were also collected at both 

study areas. However, since the vegetation zone at Port Hedland was difficult to 

reach (see Figure 5.20), survey points on the position of vegetation line are only 

available at South Fremantle (Figures 5.21 and 5.22).  

 

Figure 5.21 Shoreline features’ position (points from field RTK survey) and 

their relationships to HWM indicators at South Fremantle 
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Figure 5.22 Shoreline features’ position (points from field RTK survey) and 

their relationships to HWM indicators at Port Hedland 

5.7.1 HWL, Vegetation Line, Swash Heights 

To provide a confidence level on the shoreline features and swash height 

determination, one sample t-test (Cressie et al. 1984) was applied. The hypotheses 

are defined as: 

Null Hypothesis: There is no significant difference between the observed and 

estimated mean of data (runup heights determined from the empirical model 

in the last 10 years and HWL height determined by image analysis). 
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Alternative Hypothesis: There is a significant difference between the 

observed and estimated mean of data. 

From Tables 5.7 and 5.8, it can be estimated that there are significant differences 

between the HWL and vegetation positions (not available at Port Hedland) estimated 

from image analysis and the observed positions on the beach. This confirms that 

HWL could be the most dynamic feature over time, because of the highly frequent 

exchange of status between being inundated by water and being exposed to air. Also, 

half of the swash height estimations are acceptable in the sample test in this study, 

while the overall runup modelling is more accurate at Port Hedland than at South 

Fremantle.  

Table 5.7 One sample t-test on the positions of HWL, vegetation line and swash 

heights between observed and estimated values at South Fremantle 

 Mean 
(m)  t  Sig. (2-tailed)  

HWL (0.39m)  0.68  12.59  0.000 
(significant difference)  

Vegetation line (2.67m)  2.22  -9.636  0.000 
(significant difference)  

Water level at 09am 
(0.51m)  0.76  2.24  0.055 

(no significant difference)  

Water level at 10am 
(0.46m)  0.74  2.60  

0.032 
(significant difference at 0.05 

level)  

Water level at 11am 
(0.37m)  0.69  3.56  

0.007 
(significant difference at 0.05 

level)  
 

Table 5.8 One sample t-test on the positions of HWL and swash heights between 

observed and estimated values at Port Hedland 

 Mean 
(m)  t  Sig. (2-tailed)  

HWL (1.18m)  3.41  94.84  0.000 
(significant difference)  

Water level at 11am (0.52m)  1.18  1.430  0.191 
(no significant difference)  

Water level at 12am (1.51m)  1.49  -.041  0.968 
(no significant difference)  

Water level at 1400 (2.54m)  1.43  -2.445  0.040 
(significant difference at 0.05 level) 
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5.7.2 Frontal Dune Toe 

One of the limitations of the t-test is the sample size cannot be over 30 (Ozmutlu et 

al. 2002). Therefore, two sample non-parametric tests were adopted to compare the 

positions of high curvatures obtained using the image analysis with the one collected 

from the field RTK survey. Two of the most well-known non-parametric tests are 

Kolmogorov-Smirnov (K-S) distance and Mann-Whitney U test, while Kolmogorov-

Smirnov (K-S) is more sensitive to differences in shape of the empirical cumulative 

distribution of the compared samples (Lin et al. 2010). 

5.7.2.1 Kolmogorov-Smirnov (K-S) Distance 

As indicated by Rubner et al. (2001), the similarity measure performs well in 

distance detection using K-S distance statistics. The two sample K-S test is to 

compare the distributions of the values in two different datasets, which is defined as 

the maximal discrepancy between two cumulative distributions:  

, 1, 2,= sup ( ) ( )n n n n
x

D F x F x′ ′−                                        (5.16) 

where 1, ( )nF x  and 2, ( )nF x′  are two cumulative distributions of the original samples, 

which need to be compared. In this study, the two datasets are the frontal dune toe 

positions calculated by the image analysis techniques and determined by the field 

survey, respectively. The largest distance on the cumulative probability with the 

same elevation ax  was defined as the K-S distance ,n nD ′ . 

5.7.2.2 Mann-Whitney U Test 

The Mann-Whitney U test is one of the most common non-parametric significance 

tests, which evaluates whether independent observations from one sample tend to 

have a larger value than the other. Also, the distributions of the samples do not 

necessarily need to be a normal distribution. These features of the Mann-Whitney U 

test make it suitable for the analysis in this research. 

To calculate the U statistic, the combined data from the two groups are sorted and 

ranked first, and the rank for each sample is (Rosner and Grove 1999): 
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/i i iR R n=                                                        (5.17) 

in which in is the sample size of the group i. The U statistic for the group 1 is: 

1 1
1 1 2 1

( 1)
2

n nU n n R+
= + −                                             (5.18) 

1 1 2 1U n n U′ = −                                                    (5.19) 

The U statistic is expressed as: 

1 2min( , )U U U=                                                 (5.20) 

Both the Mann-Whitney U test and the K-S test were used to compare these two 

datasets. The results (Tables 5.9 to 5.12) indicate that there is a significant difference 

between the real positions of dune toe and its position determined from the image 

analysis. This is because the asymptotic significance levels (Asymp. Sig.) from both 

tests are below the predetermined statistical threshold of 0.05, which is more 

significant for the shoreline features at South Fremantle.  

Table 5.9 Summary about the dune toe position from field survey and image 

analysis at South Fremantle 

 Dune toe N Mean Std. Deviation 
Field survey 1 28 1.72 0.13 

Image analysis 2 69 2.11 0.29 
 

Table 5.10 Mann-Whitney U and K-S test for dune toe at South Fremantle 

Mann-Whitney U 220.000 
Asymp. Sig. (2-tailed) 0.000 (significant) 

Kolmogorov-Smirnov test 0.652 
Asymp. Sig. (2-tailed) 0.000 (significant) 

 

Table 5.11 Summary about the dune toe position from field survey and image 

analysis at Port Hedland 

 Dune toe N Mean Std. Deviation 
Field survey 1 39 3.93 0.46 

Image analysis 2 91 4.13 0.81 
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Table 5.12 Mann-Whitney U and K-S test for dune toe at Port Hedland 

Mann-Whitney U 1505.000 
Asymp. Sig. (2-tailed) 0.171 (not significant) 

Kolmogorov-Smirnov test 0.293 
Asymp. Sig. (2-tailed)  0.018 (significant at 0.05 level)  

Overall, variations exist in the HWM indicators between the positions calculated by 

image analysis or the empirical model and their corresponding positions on the 

Earth’s surface. Such variations can arise from different scales of the survey on the 

HWM position. They may also be due to the field survey seasons, which are different 

from the seasons when the images were captured. However, in this research, the 

seasonal variation of the position of the HWM indicators, as well as the precision of 

HWM indicators, may have an influence on the determination of the HWM. This will 

be further analysed in the next chapter.  

5.8 Summary 

In this chapter, a new method to determine the location of the HWM was introduced. 

This model was implemented in two study sites with different coastal features and 

tidal ranges. OOIA was used for the classification of HWM indicators interpreted 

from high-resolution images. This was an important step in the determination of the 

HWM.  

The position of the HWM based on the spatial continuity of inundation probability 

due to swash/tide for a range of HWM indicators, SCSP/SCTP, are introduced for 

hazard planning and property management purposes, respectively. However, field 

survey data showed there are variations between the HWM indicators’ position 

calculated by image analysis or empirical model and their corresponding position on 

the Earth’s surface, and indicated that further studies are necessary for assessing the 

effect of HWM indicators’ variations on the determination of the HWM. 
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CHAPTER 6 ASSESSMENT OF SPATIAL AND TEMPORAL VARIATIONS 

OF HIGH WATER MARK INDICATORS 

6.1 Introduction 

Due to the dynamic nature of the coastal environment, the position of the HWM will 

vary over time. This chapter addresses the methods developed to evaluate the spatial 

and temporal variation (precision and stability) of HWM indicators using remote-

sensing image analysis techniques.  

This follows the previous chapter, which focussed on the determination of the 

position of the HWM indicators. For clarity, the framework for the evaluation 

process is outlined in Section 6.2 and the interpolation of DEM data presented in 

Section 6.3. The spatial and temporal variations of HWM indicators are assessed in 

Section 6.4 and 6.5, followed by a discussion on the implementation of the methods 

for two case study areas.   

6.2 Outline of Evaluation of Spatial and Temporal Variations of HWM 
Indicators 

The dynamic nature of the swash zone is explored in the literature review (Chapter 

2). Physical feature markings (or HWM indicators) lying on the swash zone are 

highly variable over time and tend to be at the same location for short periods only. 

In addition, these HWM indicators are not always available on every beach. Analysis 

of tide gauge records show that there is temporal variation of the HWM over 

different time scales. These variations range from short-term daily changes to 

seasonal changes and multi-decadal changes (Pugh 1996).  

To be acceptable as a coastal boundary, the determined the HWM should satisfy the 

following criteria: repeatable, consistent and reliable (Leon and Correa 2006; Pajak 

and Leatherman 2002). These criteria are interpreted as the stability of the HWM. 

In addition, the data source inaccuracies and shoreline interpolation error during the 

HWM determination process may also contribute to the variation of the position of 

HWM indicators. This variation can be expressed as the difference between the 

feature on a geographically registered map and its corresponding position on the 

Earth’s surface. 
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The methodology applied in this study to evaluate the spatial and temporal variation 

of the determined indicators is outlined in Figure 6.1. The evaluation determines the 

precision (spatial perspectives) and the stability (spatial and temporal perspectives) 

of the HWM indicators.  

The seasonal variation of the coastal morphology is the dominant temporal variation. 

As such the position of each HWM indicator in winter and summer are compared 

and then measured using the extended Hausdorff distance.  

The accuracy of the LiDAR points used, while representing the coastal morphology 

at Port Hedland in winter time, was of low resolution and subject to inherent error. 

However, the information in the LiDAR points is still useful, and it is the only 

available data representing the coastal morphology at Port Hedland in winter time. 

Therefore, before assessing the seasonal change of the HWM position, the DEM was 

interpolated using the Kriging method based on these LiDAR points.  

The spatial variation of the HWM was evaluated against the precision of the HWM 

determination process (both pre-process and post-process). This included DEM 

accuracy, random error, model accuracy and classification accuracy. In addition, the 

topographic complexity was also analysed to assess its impact on HWM 

determination (Figure 6.1).  
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Figure 6.1 Framework for assessing spatial and temporal variations of the 

HWM 

6.3 DEM Data Interpolation by Kriging 

The first step of the evaluation process, for spatial and temporal variation of HWM 

indicators, is to interpolate data gaps using the Kriging method. Kriging is used to 

predict the values of the missing DEM data by the sum of the surrounding weighted 

values of the observed DEM data (Oliver and Webster 1990): 
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Z s Z sλ
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=∑                                           (6.1) 

in which, ( )iZ s  is the observed value at location i, iλ is the weight at the location i, 

0s  is the location to be estimated and N is the number of observed data used to 

predict 0
ˆ ( )Z s .  

The weights iλ  were estimated based on spatial autocorrelation theory using 

semivariogram models as follows (Burrough 2001; Oliver and Webster 1990): 

( ) ( ) ( ){ }1
2 i i hh Var F x F xγ += −                                        (6.2) 

where ( )hγ  is the estimated variance between two observed data points, h  is the 

distance between two observed data points and ( )F x  semivariogram function.  

The semivariogram function is derived based on the original data. As shown in the 

Table 6.1, the ‘stable function’ model with smallest RMSE and mean error was 

chosen to represent the spatial dependency of the DEM surface, in which the major 

range is 401.470 metres (where the blue curve begins to level off), and the partial sill 

is 8.803 metres (Figure 6.2).  

Table 6.1 Semivariogram models used for Kriging interpolation 

Model  Mean error (m) Root-Mean-Square (m) 
Rational Quadratic -0.815×10-3 0.151 

Gaussian  -0.100×10-2 0.159 
Circular  -0.242×10-3 0.153 
Spherical  -0.223×10-3 0.153 

Stable  -0.360×10-3 0.151 

The cross-validation shows the results of interpolation of the DEM are accurate 

(Figures 6.3 and 6.4). For example, the points representing the predicted and 

measured values are distributed intensively along the diagonal; with most of the error 

and standardised error points close to 0, and with a small standard deviation. One 

reason that high accuracy interpolation results were achieved is that Port Hedland has 

a low variation of gradient on the sand beach where sparse LiDAR points exist and 

this reduced the magnitude of elevation interpolation errors. 
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Figure 6.2 Semivariogram model representing the autocorrelation of the 

original LiDAR data at Port Hedland  

 

Figure 6.3 Cross-validation on the Kriging interpolation 
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Figure 6.4 Kriging interpolated DEM at Port Hedland  

6.4 Spatial Variation due to Errors Resulting from the HWM Determination 
Process—Precision 

As mentioned in Section 2.8.3, errors or uncertainty arising from the data, pre-

process or post-process, contribute to the variation of extracted HWM indicators and 

influence their location. Errors arising from the pre-processing, include the shoreline 

feature classification and swash height modelling (wave runup model) accuracy. 

These error types are discussed in the previous chapter. However, the random errors 

of the indicators derived from the DEM data and the complexity of the HWM 

indicators, which contribute to the post-process errors, are still unexamined.  

In this research, the influence of random error is studied using the Monte Carlo 

simulation and spatial autocorrelation methods. When the HWM indicators are 

drawn on the map, spatial variation of the location of the HWM indicators may occur 

due to the quality/accuracy of the DEM and the complexity of the indicators 

themselves. Systematic errors in the HWM determination process, such as those 
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relating to accuracy of the DEM, can be directly understood and evaluated. However, 

the effects of random errors on the position of HWM indicators and the process of 

drawing lines on maps have not been sufficiently analysed in previous research. This 

problem is explored in this chapter using the Monte Carlo simulation method. 

6.4.1 Conditional Simulation of DEM Values 

The Monte Carlo simulation method is based on the assumption that only random 

errors are present and that they are normally distributed (Gaussian distribution) with 

a constant mean value and standard deviation. In this research, for each pixel i, the 

mean and the standard deviation are derived from the simulated DEM data and are 

expressed respectively as: 

1
( )

m
SIM SIM

ij ij
j

U p p m
=

= ∑                                              (6.3) 

( )2

1
( ) ( ) 1

m
SIM SIM SIM

U ij ij ij
j

p p U p mσ
=

= − −∑                             (6.4) 

in which m is the total number of simulations (here m=100), and SIM
ijp represents the 

simulated DEM value for pixel i at time j. To obtain more realistic random 

simulation results, the following condition is implicit: that the simulated elevation 

values, on average, are equal to the elevation values of the original DEM with the 

standard deviation equal to the given accuracy (RMSE) of the DEM.  

Furthermore, the SIM
ijp  values are usually dependent on neighbouring values. 

Therefore the elevation simulation model also includes spatial dependency described 

by the spatial autocorrelation of the simulated values (Hunter and Goodchild 1997). 

A number of methods have been developed to model such spatial dependencies 

(Wechsler and Kroll 2006), including neighbourhood autocorrelation, mean spatial 

dependence and weight spatial dependence. In this study, weight spatial dependence 

was chosen and implemented in combination with the semivariogram model, because 

it incorporates the notion of spatial autocorrelation.  

For the Monte Carlo method, 100 DEM simulations were carried out to achieve 

stable results (Heuvelink 2006). The corresponding indicators were re-extracted from 
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the 100 DEM simulates, and compared with the original DEM pixels intersected with 

the position of the HWM indicators by the RMSE. This is one of the most common 

tools to measure the derived simulation differences from the original data (NOAA 

Coastal Services Center 2011).  

6.4.2 The Effects of DEM Random Errors on Derived HWM Indicators   

In comparison to the effect of systematic DEM error on the HWM indicators, the 

random error (expressed as spatial uncertainty) contributed less to the spatial 

variation (Tables 6.2 and 6.3). As indicated in previous studies (Barber and 

Shortridge 2005; Vaze and Teng 2007), uncertainty analysis is not necessary for high 

quality LiDAR DEM data, because of the high accuracy of the data. However, this 

study shows that uncertainty may lead to spatial variations in the derived results—

both large and small.  

The first eight simulated DEMs for both the South Fremantle and Port Headland 

study areas are illustrated and compared with the original DEM in Figures 6.5 and 

6.6. Each map in the figures represents one possibility that the DEM may exist, due 

to the uncertainties, which is not necessarily the same as the original DEM. The 

apparent spatial variation from such uncertainty is not always small, especially at 

Port Hedland (Tables 6.2 and 6.3). For example, the uncertainty for the DoT position 

(0.1140 m) is as large as 57% of the systematic error. This occurs for two reasons: 

firstly, the accuracy of the DEM at Port Hedland is not as high as at South Fremantle, 

and this would increase the variation of the simulation for each pixel; and secondly, 

the coastal land surface at Port Hedland is not as smooth as that at South Fremantle. 
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Table 6.2 Spatial variation of HWM lines based on different indicators from 

determination process (precision) at South Fremantle study area 

HWM 
indicators 

Classification 
accuracy 

Model 
accuracy 

(m) 
DSM error (m) 

Topographic 
complexity 

(FD) 

Precision 
(m) 

    Accuracy Random   
 Pre-process Post-process  

HWL 1.0000 N/A 0.1500 0.0020 1.0032 0.1525 
MHHW N/A N/A 0.1500 0.0020 1.0032 0.1525 
Landgate N/A N/A 0.1500 0.0020 1.0032 0.1525 

DoT N/A N/A 0.1500 0.0010 1.0582 0.1598 
SCTP N/A N/A 0.1500 0.0010 1.0127 0.1529 
SCSP N/A 0.38 0.1500 0.0090 1.0021 0.5401 

Dune toe 
line 1.0000 N/A 0.1500 0.0020 1.0836 0.1647 

Vegetation 
line 1.1370 N/A 0.1500 0.0050 1.1840 0.2087 

Average      0.2105 
 

Table 6.3 Spatial variation of HWM lines based on different indicators from 

determination process (precision) at Port Hedland study area 

HWM 
indicators 

Classification 
accuracy 

Model 
accuracy 

(m) 

DSM error  
(m) 

Topographic 
complexity 

(FD) 

Precision 
(m)  

    Accuracy Random    
 Pre-process Post-process  

HWL 1.1140 N/A 0.2000 0.1040 1.1010 0.3729 
MHWS N/A N/A 0.2000 0.0690 1.0860 0.2921 

Landgate N/A N/A 0.2000 0.0790 1.0860 0.3030 
DoT N/A N/A 0.2000 0.1140 1.0890 0.3419 

SCTP N/A N/A 0.2000 0.0300 1.1840 0.2723 
SCSP N/A 0.3800 0.2000 0.0240 1.1900 0.7188 

Dune toe 
line 1.1860 N/A 0.2000 0.0030 1.1670 0.2810 

Vegetation 
line 1.4810 N/A 0.2000 0.0520 1.1920 0.4449 

Average      0.3784 
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Figure 6.5 M
aps of the D

E
M

 at South Frem
antle (low

er-right) and its first eight conditional sim
ulations 
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Figure 6.6 M
aps of the D

E
M

 at Port H
edland (low

er-right) and its first eight conditional sim
ulations 
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6.4.3 Fractal Dimension (FD) of HWM Indicators 

The FD of the HWM indicators is estimated using the log-log relationship (Theiler 

1990): 

Log(L(s))=(1-D)Log(s)+b                                            (6.5) 

where L(s) = N⋅s is the length of the HWM line along a coast, which equals the 

length of a spatial unit s multiplied by N, the number of units needed to cover the 

complete HWM line. As the spatial unit decreases in length, the length of the HWM 

line increases. D is the fractal dimension and b is the residual. As indicated by 

Mandelbrot (1982), the value (1-D) is assigned to the slope of Equation 6.5, which 

can be estimated using Least Squares regression for the length of the HWM line and 

the combined length of all spatial units used.  

As the FD of the HWM line increases (e.g. close to 2), the line shows less spatial 

dependence and becomes more unpredictable; whereas a value approaching 1 

indicates there exists a direct spatial relation in the distribution of the HWM line 

(Palmer 1988). Tables 6.2 and 6.3 show the FD of the HWM lines corresponding to 

the different indicators selected.  

From the results obtained it can be seen that the FD of the vegetation line in both 

study areas was found to be the largest due to the highly dispersed distribution of the 

vegetation zone, indicating the highest spatial complexity and variability. Although 

widely adopted as the position of the HWM, the results show that the vegetation line 

may not be the most suitable indicator due to its high variability. Figures 6.7 and 6.8 

show that the FD will increase as the elevation of the HWM increases and the 

position located more landward.  

However, the FD of the DoT HWM line at South Fremantle was identified higher 

than the other indicators around it. This does not follow the general trend of the FD. 

This may be due to the fact that the position of the DoT HWM indictor is located 

around the berm. The high variation of the berm elevation causes a larger uncertainty 

of the position of the HWM line around it. The Landgate and DoT HWM lines, as 

well as, MHWS at Port Hedland, also have smaller FD than HWM lines derived 

from the other indicators.  
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Figure 6.7  FD of HWM indicators at South Fremantle 

 

Figure 6.8 FD of HWM indicators at Port Hedland 

After determining and assessing all the factors that govern the precision of an 

extracted HWM line during the determination process, the final spatial variation 

(precision) was obtained by totalling the absolute error and multiplying this with the 

relative errors. 
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It can be concluded that the two most important sources of spatial variation of the 

HWM arise from the accuracy of the model used to estimate the wave runup heights 

and DEM error, which made SCSP more variable over space than the other 

indicators (Tables 6.2 and 6.3).  

Similarly, the high value on the classification accuracy test, topographic complexity 

(e.g. FD), and even uncertainty in the DEM, make the identification of the vegetation 

line on the beach difficult.  

The variation for all the other indicators is less than the average level, and the 

MHWS, MHHW, SCTP and dune toe line resulted in higher levels of precision in the 

determination at both study areas. In general, the variation arising from the 

determination at Port Hedland is larger than that at South Fremantle, due to the 

higher variation of the coastal morphology and onshore feature distribution.  

6.5 Seasonal Variation of the HWM Position—Stability 

In this research, the positions of the lines for each HWM indicator were first derived 

separately from the two DEMs representing summer and winter coastal morphology. 

The seasonal variation (winter and summer) of the corresponding lines representing 

the HWM positions was evaluated by measuring spatial distances between them 

using the extended Hausdorff distance.  

6.5.1 Extended Hausdorff Distance 

The Hausdorff distance is a max-min distance used in image analysis and was 

introduced by Huttenlocher (1993). Subsequently, Hangouët (1995) applied this 

method in the study of spatial variation of vector features in GIS. Given two finite 

point sets { }1, , pA a a=   and { }1, , qB b b=  , defining a vector feature, the 

Hausdorff distance is defined as: 

( ) ( ) ( ){ }, max , , ,H A B h A B h B A=                                (6.6) 

where 

( ) { }, sup inf
ba

a bp Bp A
h A B p p

∈∈
= −                                     (6.7) 
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and 

( ) { }, sup inf
ab

a bp Ap B
h B A p p

∈∈
= −                                     (6.8) 

in which ap  and bp are the points in the point sets A and B, respectively, while  •

represents ‘some underlying metric between points of the sets A and B’ (Min et al. 

2007).  

In this study, the metric used is the classical Euclidean distance. p refers to the 

segment, and A and B are two segment sets. The length of the segment corresponds 

to the horizontal accuracy of the DEMs from which the HWM lines are derived. 

Therefore, the first step to calculate the Hausdorff distance between lines l and n is to 

divide each line into segments, then determine the shortest distance from the segment 

of line l to the closest segment of the line n, and choose the largest value to the 

segment as the distance between the corresponding segments. The same process is 

applied to calculate the distance from line n to line l, and the larger of the two is 

adopted as the Hausdorff distance between the two lines.  

However, sudden changes of the shape of the lines may significantly influence the 

calculation. This is a retreat problem for coastal boundaries as the coastal 

morphology will often protrude and retreat. Thus, the extended Hausdorff distance 

(Min et al. 2007) was applied in this research to mitigate this problem. The extended 

Hausdorff distance is given by Min et al. (2007): 

( ) ( ) ( ){ }1 2 1 2, max , , ,f f f fH A B h A B h B A=                               (6.9) 

where 

( ) ( )( )( ) ( ){ }1
1, min :f

i ih A B f B S A Aε ϑ ε ϑ= = ⊕ ∩                  (6.10) 

and 

( ) ( )( )( ) ( ){ }2
2, min :f

j jh B A f A S B Bε ϑ ε ϑ= = ⊕ ∩                  (6.11) 
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with iε  and jε indicating the buffer width ( ( )S • ) for line B and line A, respectively; 

while ( )ϑ •  is a metric function to measure the length of a line. For example, 

( )( )( )iB S Aϑ ε⊕ ∩  represents the length of line A falling inside the dilated region 

( )( )iB S ε⊕ . For 1f  = 2f = 1, the extended Hausdorff distance equals the Hausdorff 

distance as indicated by Equation 6.6; in contrast, when 1f  = 2f = 0, the extended 

Hausdorff distance measures the shortest distance between the two lines. In this 

study, both 1f  and 2f  are assigned the value of 0.5, thus the so called median 

Hausdorff distance, is obtained. This is recognised as a robust measure by Min et al. 

(2007) and is applied as a metric to evaluate the variation of the position of the 

HWM lines due to the change in coastal morphology over time (in this instance, 

between summer and winter). 

6.5.2 Seasonal Variation of HWM Indicators’ Position 

Tables 6.4 and 6.5 illustrate the seasonal variation of position of the HWM indicators 

at the two study areas. Generally, it can be estimated from the tables that seasonal 

variation of the HWM position is almost one order of magnitude larger than the 

spatial variation due to errors from the determination process. Furthermore, there is a 

larger seasonal variation of the position of the HWM indicators at South Fremantle 

than at Port Hedland. Although, the data used to analyse the variation at Port 

Hedland have a temporal gap of 14 years (1995 to 2009) between the summer and 

winter lines evaluated.  

From Table 6.4 and Figure 6.9, it can also be estimated that at South Fremantle the 

sediment accumulation in the low wave runoff summer months makes the HWM 

lines ‘lower’ (moving seaward) than the ones in the high wave runoff winter months. 

This situation is more apparent on the backshore where indicators of DoT and SCTP 

lie. In contrast, the occurrence of highly irregular morphology at the foreshore, due 

to the high energy swash in the winter season, makes the HWM lines lying in this 

zone not as ‘straight’ as during the summer time. Three indicators, SCSP, dune toe 

line and vegetation line, which are close to the vegetation zone, show least temporal 

variation that is mainly due to the low level of the swash probability.    
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Table 6.4 Seasonal variation of the position of HWM indicators (stability) at 

South Fremantle 

HWM indicators 
Stability 

(Median Hausdorff 
distance; m) 

HWL 5.91 
MHHW 4.61 
Landgate 6.50 

DoT 9.14 
SCTP 8.07 
SCSP 3.00 

Dune toe line 2.16 

Vegetation line 1.70 

Average 5.14 

 

Table 6.5 Seasonal variation of the position of HWM indicators (stability) at 

Port Hedland 

HWM indicators 
Stability 

(Median Hausdorff 
distance; m) 

HWL 9.08 
MHWS 1.11 

Landgate 1.12 
DoT 3.13 

SCTP 2.21 
SCSP 2.17 

Dune toe line 1.47 

Vegetation line 3.38 

Average 2.96 

At Port Hedland, the horizontal position offsets of the HWM lines for all indicators 

are less than 4 m between summer and winter, with the exception of HWL (Table 6.5 

and Figure 6.10). Although, the rocky coastal zone at Port Hedland may stabilise the 

HWM lines, the different effect of tide and wave activity on the coastal morphology 

and sediment transport is another factor explaining the low variation. This has 

already been shown by Davis Jr (1985), who states that tide, compared with wave 
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breaks, plays a passive and indirect role in the beach evolution and its change in 

profile.  

 

Figure 6.9 Zoom in one detailed area for spatial and temporal variation of 

HWM indicators at South Fremantle 

According to Masselink and Pattiaratchi (2001), seasonal beach cycles are mainly 

due to the seasonal variation of the wave energy level. This contrasts with the high 

energy wave-dominated Coogee Beach at South Fremantle, whereas the wave energy 

at the tide-dominated Cooke Point at Port Hedland is much lower (Short 2004). This 

may partly explain why there is less apparent seasonal variation of the HWM at Port 

Hedland. The HWL shows the largest horizontal offset between the two seasons at 
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both study areas. This concurs with the conclusions of Pajak and Leatherman (2002) 

that the ‘HWL position can be highly variable’. In contrast, the position of the dune 

toe shows small variation consistently at both study areas. 

 

Figure 6.10 Zoom in one detailed area for spatial and temporal variation of 

HWM indicators at Port Hedland 

6.6 Summary 

This chapter has evaluated the spatial and temporal variation of HWM lines derived 

from different HWM indicators using image analysis techniques. The study shows 

that the seasonal variation of the HWM position is almost one order of magnitude 

larger than the spatial variation due to errors from the determination process. To 

visually illustrate the variation of the HWM line corresponding to the different 
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indicators for both the spatial and temporal view, the variation maps have been 

presented and analysed.  

Results of the study in this chapter indicate that the dune toe line is the best estimate 

of the HWM position in terms of the small variation over both time and space, while 

SCSP and HWL are more variable than the other indicators from the point of view of 

precision and stability, respectively. 

This chapter only focuses on the position of the HWM in terms of spatial and 

temporal variation. This position reflects the precision and the stability of the HWM. 

Other factors, such as probabilistic estimates (e.g. the risk of inundation), should also 

be included in the process of establishing the HWM. This approach is explained in 

the next chapter.  Probabilistic estimates and other decision factors derived from 

experts from different professional fields, such as coastal management and coastal 

planning, are included in a multi-criteria decision model for HWM determination. 
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CHAPTER 7 DECISION MAKING ON THE POSITION OF THE HWM 

7.1 Introduction 

This chapter applies a Multi-Criteria Decision Making (MCDM) model, specifically 

a pairwise-comparison method (PCM) and weighted sum model (WSM), to evaluate 

the HWM indicators based on relevant criteria including stability and precision, 

assessed in the previous chapter, and inundation risk. The results are significant and 

show that different HWM indicators are suitable for different implementation 

purposes, such as coastal property management and coastal hazards planning.  

7.2 Background 

In Section 2.10, the importance of two criteria for the coastal boundary 

determination—stability and precision, was addressed. In addition, land use, 

population and coastal properties at a risk of inundation have been discussed in a 

number of previous studies (Doukakis 2005; Granger et al. 1999; Marfai and King 

2008). Thus, the inundation risk for the HWM is also an important factor that needs 

to be considered for HWM determination from both a coastal property management 

and a coastal hazards planning point of view. HWM determination is inherently 

complex, involving different decision makers with conflicting priorities and different 

preferences on the criteria of HWM determination; therefore, MCDM can help to 

manage this problem by integrating dynamic information and judgements in a 

systematic framework (Levy et al. 2007), and providing evaluation results on HWM 

indicators as references for the HWM.   

MCDM methods are designed for understanding a process of decision making with a 

number of quantifiable or non-quantifiable decision criteria (Pohekar and 

Ramachandran 2004). One of the most traditional and common examples is single 

criterion decision making, which is designed to maximise the benefits with 

minimisation of cost (Barzilai 1998), but is insufficient when dealing with complex 

problems (Ehrgott and Gandibleux 2002). Furthermore, in most cases, different 

groups with different points of view, which should be resolved within a single 

framework by understanding and compromising, are involved in the decision-making 

process (Pohekar and Ramachandran 2004).  
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MCDM can be divided into two different groups: multi-objective decision making 

(MODM) and multi-attribute decision making (MADM) (Mendoza and Martins 

2006). The most significant difference between the two is the decision space 

associated with research problems; specifically, the former is continuous, while the 

latter is discrete (Triantaphyllou et al. 1998). Determination of the HWM is 

classified as a process of MADM, in which the HWM indicators can be considered 

as a number of alternatives to be evaluated against a set of criteria. The best 

alternative is chosen as the ideal HWM position by comparing the alternatives with 

respect to every criteria. A number of methods have been developed for such a 

decision-making process (Table 7.1), and the Weighted-sum Model (WSM) was used 

in this research because it is a straightforward method that can be easily applied, and 

produces quality results. Furthermore, the evaluation result for the WSM is in the 

form of absolute values for each alternative, which makes it possible for direct 

comparison of the HWM indicators from two different study areas. The drawback of 

inconsistent units in WSM can be overcome by a procedure of normalisation. 
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Table 7.1 Comparison of the most commonly used methods for MADM 

Method Main feature Advantage Disadvantage 

Weighted-sum 
model (WSM) 

This method is based 
on the assumption of 
additive utility 
(Martins et al. 1996).  

The most 
straightforward and 
practical method. 

The additive utility 
assumption does not 
apply when 
combining different 
units of criteria 
(Triantaphyllou et 
al. 1998). 

Weighted-product 
model (WPM) 

Any unit of measure is 
eliminated in the 
calculation 
(Triantaphyllou and 
Lin 1996). 

Dimensionless 
analysis 
(Triantaphyllou et 
al. 1998). 

The final calculation 
does not provide 
absolute evaluation 
values for each 
alternative. 

Analytic hierarchy 
process (AHP) 

This method 
decomposes the 
decision problem into 
a hierarchy system of 
sub-problems, each of 
which is analysed in 
terms of each criterion 
(Mendoza and 
Sprouse 1989; Phua 
and Minowa 2005). 

Hierarchical 
structure analysis of 
the criteria. 

The potential of 
internal 
inconsistency may 
exist in the AHP 
(Hu et al. 2010). 

Preference ranking 
organization method 

for enrichment 
evaluation 

(PROMETHEE) 

It is one type of 
outranking method, 
and requires the 
concordance and 
discordance indices 
(Kangas et al. 2001; 
Schmoldt et al. 2001). 

Flexible selection of 
preference functions 
and indifference 
thresholds (Silva et 
al. 2010). 

The final calculation 
does not provide 
absolute evaluation 
values for each 
alternative. 

Elimination and 
choice translating 

reality (ELECTRE) 

It is one type of 
outranking method, 
and each criterion 
associates a 
preference function 
(Kangas et al. 2001; 
Laukkanen et al. 
2002). 

Good performance 
in the decision 
making problem 
with few criteria, 
but with a large 
number of 
alternatives 
(Goicoecha et al. 
1982). 

The ideal alternative 
sometimes cannot 
be identified 
(Triantaphyllou et 
al. 1998).   

Multi-attribute utility 
theory (MAUT) 

The utility function, 
which indicates the 
decision maker's 
preferences, is defined 
over a number of 
attributes included in 
the method (Pukkala 
1998). 

The transparent 
aggregation 
procedure can be 
easily understood by 
decision makers 
(Von Winterfeldt 
and Fischer 1975). 

The decision makers 
are required to have 
knowledge of 
probability theory  
(Tanadtang et al. 
2005). 
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The MCDM may also integrate with other intelligent algorithms, such as fuzzy sets, 

to estimate the inherent uncertain impacts or preferences (Cheng et al. 2009; 

Kahraman et al. 2003; Opricovic 2011; Shemshadi et al. 2011), but this is not 

necessary and is out of the scope of this study. 

To evaluate the HWM indicators with WSM, two more steps are required after 

establishing the criteria: one is to determine the weights for each criterion, and the 

other is to rank and standardise the HWM indicators for each criterion. 

Determination of the weights of criteria has been recognised as one of the challenges 

in MADM (Jassbi and Khanmohammadi 2010). PCM has shown its advantages in 

ranking and rating the criteria in the decision-making model (Kok and Lootsma 

1985). Compared with the most common ranking and rating method, it is more 

accurate and easier to express one’s judgement on only two criteria rather than on all 

at the same time (Ishizaka and Labib 2011). However, recent studies show 

inconsistency and contradiction may exist in the matrices of the pairwise comparison 

on different criteria (Alonso and Lamata 2006; Kwiesielewicz and van Uden 2004), 

due to the complex nature of the decision process or the limitation of the knowledge 

and experiences of experts (Ergu et al. 2011). A number of improvements on the 

pairwise comparison, such as separating the subset of inconsistent matrices from the 

original (Kwiesielewicz and van Uden 2004) or integrating the theory of fuzzy logic 

with pairwise-comparison matrices (Jaganathan et al. 2007), have been developed to 

refine irrational weights calculation when the comparison matrix is not perfectly 

consistent.  

7.3 Multi-Criteria Decision Making on Evaluation of HWM Indicators 

In this study, the HWM indicators will be evaluated by the MCDM based on three 

criteria—stability, precision and inundation risk, and the HWM indicators are 

considered as the alternatives.  The HWM indicators were evaluated for two different 

purposes—coastal property management and coastal hazards planning in terms of the 

criterion of inundation risk. From a property management point of view, it means 

property at risk of inundation from the tide only; while from a hazards planning point 

of view also takes the wave runup into account (Figure 7.1).     
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Figure 7.1 Illustration on the HWM determination structure 

7.3.1 Criteria Weights Determination by Pairwise-Comparison Method (PCM)  

In this study, criteria weights for HWM determination were assessed by eight experts 

from both industry and academia with a range of backgrounds, including coastal 

planning, land property management, cartography and coastal risk management. The 

information sheet and questionnaire (Appendix II) were designed to collect the 

perspective views of experts on the importance of different criteria for HWM 

determination, which is in the format of PCM: 

[ ]
21 31

21 32

31 32

1 1 1
1 1

1
kl

c c
C c c c

c c

 
 = =  
  

                                          (7.1) 

where klc  indicates the ratio of k lm m , and km  and lm  represent the importance of 

criteria k and l in the view of experts, respectively, which range from 1 to 9 

(Appendix II). According to the Perron-Frobenius Theorem (Perron 1907), a positive 

eigen value maxλ , which is greater than or equal to all the other eigen values, exists to 

ensure there is a corresponding positive eigen vector W  satisfying the equation: 

maxCW Wλ=                                                     (7.2) 

where the positive eigen vector W is equal to the weights vector for the three criteria 

in the WSM, and in the form of [ ]1 2 3, ,w w w ′  in this study. 
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However, as estimated by Jaganathan et al. (2007), in a practical situation, it is 

highly unlikely to expect all the experts can provide consistent answers in their 

pairwise-comparison matrixes; therefore, the consistency check is necessary to 

ensure the judgements of the experts are neither random nor self-illogical 

(Kwiesielewicz and van Uden 2004).  

The method used to assess the consistency of PCM is defined as (Saaty 1980): 

Consistency Ratio (CR) = CI
RI

                                         (7.3) 

where RI refers to the random index, which has been evaluated by a number of 

previous studies (Alonso and Lamata 2006); while CI means the consistency index 

and defined as (Saaty 1980): 

CI = 
( )
max

1
n

n
λ −

−
                                                 (7.4) 

where n indicates the size of the PCM. If CR < 0.10, the ratio indicates a reasonable 

level of consistency in the data in the pairwise-comparison matrices; otherwise, it is 

considered there is inconsistent judgement. In most cases, although some of the 

questionnaire feedback has been shown to be inconsistent, the information in the 

experts’ feedback may still be useful for the evaluation of each criterion; therefore, 

adjustments to the inconsistent pairwise-comparison matrices were conducted to 

ensure all of the feedback can be included in the determination of the criteria weights.  

To improve the consistency of the comparison matrix, a simple method introduced 

by Ergu et al. (2011), which was developed based on the definition of consistency in 

PCM and requires a series of transforms using matrix multiplication and vector dot 

products, was applied in this study. Generally, two steps are involved in the method: 

(1) indentifying the inconsistent element in the comparison matrix, and (2) adjusting 

the inconsistent elements with a slight change of the experts’ logical relationship on 

the criteria. 

In this study, RI is equal to 0.525, as this number has been tested as the most stable 

value under large numbers of random simulations (Aguaron and Moreno-Jiménez 

2003; Alonso and Lamata 2006). For the eight feedback responses, three are 
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identified as inconsistent and adjusted using the method introduced by Ergu et al. 

(2011) without significantly changing the logical relationship between the criteria 

(Table 7.1). After the adjustment, the average of the weights for each criterion from 

the eight experts (ensuring the CRs are less than 0.1) was calculated as the final 

criteria weights in the WSM. 

Table 7.2 Criteria weights determination by PCM and their CR 

  

7.3.2 Ranking and Normalising the Value of Each Criteria for HWM Indicators 

The spatial and temporal variations (precision and stability) have been evaluated for 

each HWM indicator as two criteria for HWM determination in the previous chapter, 

but the inundation risk was left undiscussed. For the two different purposes, the 

interpretation of risk can be dissimilar: when it refers to the coastal property 

management or for hazards planning (Section 2.5). The risk for the HWM means the 

chance of a property at risk of inundation from the tidal water and wave runup, 

respectively, over a long period of time. In this study, due to the availability of wave 

data, the statistics on the wave runup and the corresponding tidal water were 

calculated for approximately 10 years in both study areas. In this period, the highest 

levels that wave runup and tidal water reached were recognised as the ‘benchmark’ 

  Stability Precision Inundation 
risk CR 

Feedback1 original 0.225 0.638 0.137 0.330>0.1 
improved 0.192 0.677 0.131 0.080<0.1 

Feedback2 original 0.106 0.261 0.633 0.040<0.1 
improved     

Feedback3 original 0.072 0.232 0.697 0.180>0.1 
improved 0.078 0.234 0.688 0.070<0.1 

Feedback4 original 0.261 0.633 0.106 0.040<0.1 
improved     

Feedback5 original 0.062 0.701 0.236 0.070<0.1 
improved     

Feedback6 original 0.072 0.697 0.232 0.180>0.1 
improved 0.078 0.688 0.234 0.070<0.1 

Feedback7 original 0.243 0.669 0.088 0.010<0.1 
improved     

Feedback8 original 0.071 0.748 0.180 0.030<0.1 
improved     

Average CR<0.1 0.136 0.576 0.287  
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of the inundation risk for coastal hazard planning and coastal property management, 

respectively. The HWM indicators above this level are considered further from the 

optimum position for minimising the inundation risk and maximising the usage of 

coastal land for management or planning purposes; therefore, the further away from 

this level, the lower they would be ranked. To include the ranking of inundation risk 

as one criterion in the WSM, a normalisation step is required:   

( )
1

1
i

i
i

rIR
r
+

=
+∑

                                                 (7.5) 

where iIR  is the normalised ranking for the inundation risk, and ir  indicates the 

original ranking for the HWM indicator i. The final results for the inundation risk 

ranking for the HWM indicators at the two study areas are presented in Tables 7.3 

and 7.4. Before applying WSM in the calculation, normalisation is also required for 

the spatial and temporal variations (stability and precision) of each HWM indicator, 

which have been calculated in the previous chapter (Table 7.5). 

Table 7.3 Ranks and their normalisation of the inundation risk for each HWM 

indicator at South Fremantle 

HWM 
indicator 

Height 
(m) 

Ranking 
for 

planning 

After 
normalisation 

Ranking for 
management 

After 
normalisation 

No risk 
position  2.62 m  1.20 m  

HWL 0.39 7 0.182 5 0.136 
Landgate 0.40 6 0.159 4 0.114 
MHHW 0.34 8 0.205 6 0.159 

DoT 0.72 4 0.114 1 0.046 
SCTP 0.71 5 0.136 2 0.068 
SCSP 1.79 3 0.091 3 0.091 

Dune toe 2.11 2 0.068 7 0.182 
Vegetation 2.67 1 0.045 8 0.205 
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Table 7.4 Ranks and their normalisations of the inundation risk for each HWM 

indicator at Port Hedland 

HWM 
indicator 

Height 
(m) 

Ranking 
for 

planning 

After 
normalisation 

Ranking for 
management 

After 
normalisation 

No risk 
position  5.34 m  3.85 m  

HWL 1.18 8 0.205 7 0.182 
Landgate 2.67 6 0.159 6 0.159 
MHWS 2.83 5 0.136 5 0.136 

DoT 3.46 4 0.114 3 0.091 
SCTP 3.92 3 0.091 1 0.045 
SCSP 3.99 2 0.068 2 0.068 

Dune toe 4.48 1 0.045 4 0.114 
Vegetation 8.35 7 0.182 8 0.205 
 

Table 7.5 The normalised value for the other two criteria at two study areas 

HWM 
indicator Stability  Precision Stability Precision 

 South Fremantle Port Hedland 
HWL 0.141 0.119 0.318 0.125 

Landgate 0.153 0.119 0.067 0.118 
MHHW or  

MHWS 0.114 0.119 0.067 0.117 

DoT 0.207 0.120 0.130 0.122 
SCTP 0.185 0.119 0.101 0.115 
SCSP 0.081 0.159 0.100 0.156 

Dune toe 0.064 0.120 0.078 0.116 
Vegetation 0.055 0.125 0.138 0.131 

 

7.3.3 Evaluation on the HWM Indicators by WSM 

WSM is one of the most common MCDMs, and has been illustrated in a number of 

previous studies (Triantaphyllou and Lin 1996; Triantaphyllou and Mann 1989). Two 

components—the weights vector for the criteria (Table 7.2) and the value on each 

criterion for the alternatives, which are necessary for the WSM analysis, have been 

calculated. The next step is to evaluate each alternative—HWM indicator—and 

identify the ideal HWM position for hazard planning and property management, 

respectively, at the two study areas. The best HWM should be minimised on the sum 

of the three criteria values—stability, precision and the inundation risk, which can be 

defined as (Fishburn 1967): 
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where ijc indicates the value of alternative i (HWM indicator i in this study) on the 

criterion j, and jw  refers to the weight on the criterion j. M and N are the number of 

alternatives and criteria, respectively. The final evaluations on all the HWM 

indicators are illustrated in Table 7.6. 

Table 7.6 Final evaluations of the HWM indicators from the two study areas 

HWM 
indicator 

Evaluation 
score on 
planning  

Evaluation 
score on 

management 

Evaluation 
score on 
planning 

Evaluation 
score on 

management 
 South Fremantle Port Hedland 

HWL 0.1400 0.1268 0.1741 0.1675 
Landgate 0.1350 0.1221 0.1227 0.1227 

MHHW or  
MHWS 0.1429 0.1297 0.1155 0.1155 

DoT 0.1300 0.1103 0.1207 0.1141 
SCTP 0.1327 0.1133 0.1061 0.0929 
SCSP 0.1287 0.1287 0.1230 0.1230 

Dune toe 0.0973 0.1301 0.0903 0.1101 
Vegetation 0.0924 0.1383 0.1465 0.1531 

* and * represent the best and second best HWM indicators, respectively. 

7.4 Discussion of the Position of the HWM 

HWM determination depends on the implementation purpose. In this study, two 

purposes were considered: property management and hazards planning. The 

difference between them lies in whether the effect of wave runup should be included 

or only the effect of tidal water should be considered, which is reflected in the 

differences in the HWM indicators ranking for the inundation risk. From Table 7.6, it 

can be estimated that such a perspective does have an effect on the variation of the 

HWM position for these different purposes, and such differences are more significant 

at South Fremantle, which is a high energy beach and is dominated by the wave 

effect.  
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7.4.1 For Coastal Property Management 

From the view of consistency, SCTP is the ideal HWM indicator for property 

management purposes, as it was identified to be a good indicator at both of the study 

areas. The SCTP level was calculated as the significant high tide level on the beach 

by applying the theory of spatial continuity of the tide probability on the beach, and 

thereby integrating the characteristics of the land and water system as a whole. 

However, the limitation of using this indicator as the HWM position for coastal 

property management is the data availability, because the calculation of this position 

requires coastal morphology data, such as DEM or field survey data. 

If such morphology data are not available, the HWM indicator developed by DoT is 

another option, as the tide information is sufficient at most standard ports for the 

calculation of this position. Such a level was found to be very close to the position of 

SCTP (Table 7.6), and was identified as a good alternative for the position of the 

HWM in the evaluation, especially at South Fremantle.     

7.4.2 For Coastal Hazards Planning 

In contrast, the most consistent and ideal HWM indicator is the position of dune toe 

for the purpose of coastal hazards planning. As the dune toe feature mostly presents 

itself on undisturbed coasts, the wide availability of methods to define dune toe 

means it does not need a backup or an alternative option as the HWM does for the 

property management. However, the results show that the vegetation, which is more 

apparent on the high energy, narrow and straight beach, can also be used as the 

HWM for hazards planning.  

The results also show that the most commonly used HWM indicators—MHWS or 

MHHW—are acceptable as the position of the HWM, if the wave energy is small in 

that area, but is a less suitable option at the high energy beach, especially for hazard 

planning purposes.  

7.5 Summary 

This chapter presented the final evaluation on the position of the HWM for two 

different purposes—coastal property management and coastal hazards management. 

WSM was one method of MCDM that was used to evaluate the HWM indicators for 
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different purposes, which provided scientific evidence as a reference for the final 

determination of the HWM position. The results showed the position of dune toe is a 

good indicator of the HWM for coastal hazards planning, while the SCTP is more 

suitable for defining the position of the HWM for coastal property management 

purposes. If these two positions were not available due to the lack of availability of 

data or the obscurity of such features, the backup indicators, such as the HWM 

defined by the DoT method for management purposes and the vegetation line for 

planning purposes, can be applied as an alternative HWM position for both. 
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 

8.1 Introduction 

This chapter summarises the achievements of the research into HWM determination 

and gives recommendations for improvements and future research. The research 

objectives and research questions set out for this thesis are reiterated to show how 

these were achieved. 

Research in this thesis dealt with the development of a consistent and robust HWM 

determination methodology over space and time. Two primary objectives and five 

secondary objectives were established at the beginning of the research (Chapter 1). 

These objectives were achieved by a number of successive steps: The clear 

understanding of the HWM, in terms of its definition and difficulties in 

determination were illustrated in Chapter 2. Chapter 3 provided an outline of the 

research methodology for HWM determination. The questions regarding the data 

limitations, in terms of wave information and DEM, were answered in Chapter 4 and 

Section 6.3, respectively. Chapter 5 addressed the question of developing a model 

identifying the position of ‘high’ water by integrating both land and water 

information. To achieve this goal, the spatial continuity distance of swash/tidal 

probability for a range of HWM indicators was identified. The tidal datum-based 

HWM indicators and shoreline features were determined using tidal and image 

analysis, respectively. Also, field survey was applied to assess the confidence level 

for image analysis on shoreline feature identification and water level modelling. 

Chapters 6 and 7 assessed the HWM indicators at two study areas, with varying 

conditions, in a quantitative multi-criteria evaluation system in order to ensure the 

consistency and robustness of the determined HWM. The criteria include precision, 

stability and inundation risk for each HWM indicator.  

8.2 Conclusions 

This section highlights the major findings of the research.   

8.2.1 Interpolation of Wave Data Gaps  

Wave information is a crucial component of swash (wave runup) height calculations 

and is required to model the actual water level on the shore. However, typically there 
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are significant data gaps that occur in the wave records from established recording 

stations and these can be sizeable. These record gaps will reduce the reliability of the 

swash height statistic and the subsequent estimation of inundation risk. However, 

currently there are no wave information interpolation methods that adequately 

provide a solution for accurate interpolation of gaps in wave information records. 

This research introduced and examined three methods for their suitability and 

accuracy to interpolate wave records for the periods where no data exist. These 

methods include, cubic spline, wavelet refined cubic spline and fractal methods. Two 

study areas were chosen as they have distinct wave and coastal features. In this way 

the robustness of the time series interpolation methods for different coastal 

environments could be tested. 

The results of the tests showed that for the whole dataset both wavelet refined cubic 

spline and fractal simulation display are far more accurate than the cubic spline 

method. This is because the application of wavelet and fractal methods enables the 

interpolation process to capture more information from the irregular pattern of the 

time series of wave records by multi-frequency and self-similarity analysis. 

However, different interpolation accuracies were obtained for the three methods 

when they were applied to interpolate data gaps at various scales—small, medium 

and large. In general, the cubic spline is more accurate when data gaps are small. The 

wavelet refined cubic spline method is more accurate for medium and relatively large 

data gap intervals. This phenomenon is more apparent at Port Hedland than at 

Cottesloe where the non-stationary level is higher. The fractal method proved to be a 

stable interpolation method for large data recording gaps. 

Overall, the study demonstrated that the size of the recording gaps in the wave 

information time series influenced the accuracy of interpolation results. Therefore, 

gap size should be considered before choosing an interpolation method. 

8.2.2 Identification of HWM Indicators  

HWM indicators are determined from either a water or land point of view. The land-

based HWM indicators are shoreline features, and were identified using image 

analysis in this research. The image analysis on the shoreline feature position avoids 
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the labour- and time-consuming work by the field survey. Whereas, the water-based 

HWM indicators were determined from tidal data. 

The accurate classification on the high-resolution imagery is difficult to achieve by 

traditional pixel-based image analysis, however the object-oriented image analysis 

(OOIA) adopted in this study aimed to improve the accuracy of the feature 

classification and overcome the impact of high frequency variations in the 

distribution of the classification results usually found using pixel-based approaches. 

Features with fuzzy boundaries, such as the vegetation zone on the beach, can be 

identified more readily by integrating artificial intelligent algorithms, such as fuzzy 

logic, as part of the OOIA. Geomorphological features on the beach, such as the 

calculation of the gradient or curvature from the DEM, can also be incorporated into 

the OOIA image classification. 

The classification of shoreline features at Port Hedland is less accurate than for South 

Fremantle. This is due to the irregularly distributed and the more diverse shoreline 

features present at Port Hedland. The accuracy evaluation also indicated that 

classification of vegetation at both study areas is less satisfactory than the 

classification on the other features. 

Although the overall high accuracy of the OOIA image classification is sufficient to 

identify the shoreline features, investigations from the field surveys revealed that 

variations exist in the shoreline features between the positions calculated through 

image analysis and their corresponding positions on the Earth’s surface. Such 

variation is mainly due to the timing of the field survey seasons, which was 

confirmed by the stability assessment of the position of the HWM indicators. 

Therefore, careful attention needs to be paid to the comparison of shoreline feature 

positions in two seasons, when the image analysis is applied to identify the position 

of the HWM. 

The tidal datum-based HWM indicators on the waterside were all determined using a 

series of software and methods developed by the DoT, WA. Combination of the 

LiDAR DEM and the tidal datum information provided an efficient means of 

identifying the position of tidal datum-based HWM indicators on the coast. 
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8.2.3 Development of a New HWM Determination using the Theory of Spatial 

Continuity of Swash/Tidal Probability 

Two new methods to determine HWM by integrating both land and water 

information were introduced in this research. The methods determine the position of 

the HWM based on the spatial continuity of swash probability (SCSP) or spatial 

continuity of tidal probability (SCTP) for a range of HWM indicators that are either 

land-based or water-based. The water information refers to the cumulative 

distribution of swash (wave runup) and tidal heights abstracted from long-term 

records of wave and tide information; while the land information is indicated by the 

spatial relationship among the HWM indicators derived from image analysis of aerial 

photographs and DEM. 

The locations, indicating ‘significant’ high tide/swash, were determined by 

identifying the SCSP/SCTP between the lower bound sampling position (the most 

seaward HWM indicator) and the position where the autocorrelation of swash or tidal 

probability approaches zero. Compared with other semivariogram models of spatial 

continuity distance calculation, the Gaussian model best fits the empirical 

semivariogram model (observed values) to the data at the two study sites. The 

semivariogram indicates that SCSP is located 17.2 m and 30.9 m landward of the 

baseline at South Fremantle and Port Hedland, respectively; while the ranges of the 

semivariogram for SCTP are 4.59 m and 29.89 m, respectively. 

The swash probabilities and heights of SCSP are lower but very close to the frontal 

dune toe at both study areas, which indicates that the position of dune toe is a 

reasonable indicator of the position of SCSP for coastal hazards planning when 

insufficient data are available to carry out more complex analysis, such as in remote 

areas. The positions of SCTP are very close to the position determined by the DoT’s 

method of determining HWM at both study areas. When the land information, such 

as DEM representing the beach morphology, is not available; DoT’s method can be a 

useful indicator for the position of SCTP. 

8.2.4 Evaluation of the Precision of the Position of HWM Indicators 

The lack of precision when determining HWM indicators may arise from 

uncertainties in the input data, and contributes to the variation of the HWM position. 
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Errors or uncertainty arising from the data, pre-process or post-process, contribute to 

the variation of extracted HWM indicators and influence their location. Compared 

with errors arising from the pre-processing, the random errors of the indicators 

derived from the DEM data and the complexity of the HWM indicators, which 

contribute to the post-process errors, are more difficult to evaluate.  

To counteract this problem, random error and topographic complexity were assessed 

using Monte Carlo simulation and Fractal dimension techniques, respectively. 

Although previous studies (Barber and Shortridge 2005; Vaze and Teng 2007) 

indicated uncertainty analysis is not necessary for high quality LiDAR DEM data, 

because of the high accuracy of the data, this study shows that uncertainty may lead 

to spatial variations in the derived results—both large and small. Such uncertainty is 

more apparent at Port Hedland where the coastal land surface is not as regular as that 

at South Fremantle. In addition, the accuracy of the DEM at Port Hedland is not as 

high as at South Fremantle, and this contributes to the variation of the simulation for 

each pixel. However, in comparison to the effect of systematic DEM error on the 

HWM indicators, the random error contributed less to the spatial variation. 

Although the vegetation line is widely adopted as the position of the HWM, it was 

identified as the HWM indicator with highest spatial complexity and variability. This 

is due to the highly dispersed distribution of the vegetation zone. From the analysis 

result of fractal dimension, this research also demonstrated that the complex beach 

morphology can cause a large uncertainty of the HWM position on the coast. 

However, the two most important sources of spatial variation of the HWM arise from 

the DEM error and the accuracy of the model used to estimate the wave runup 

heights. Close attention needs to be paid to these two sources of errors, when the 

HWM is determined using DEM and wave runup height modelling. 

8.2.5 Evaluation of the Stability of  the Position of the HWM Indicators 

Assessment of the stability of the HWM indicators relies upon a DEM representing 

the ground profiles of the study areas in two different seasons. However, inherent in 

all the monitoring techniques is the occurrence of large data gaps, especially in the 

early 1990s. Therefore, spatial interpolation methods are also needed to fill in these 

data gaps. The results in the research demonstrate that the gaps in sparse DEM data 



157 
 

 
 

can be satisfactorily interpolated using the Kriging method. This effect is more 

apparent when the approach is applied to the DEM representing the beach with a low 

variation of gradient. 

The most significant variation of the HWM over time was identified between the 

summer and winter seasons. Studying the spatial variation of complex but linear 

objects, such as the horizontal HWM, requires the quantification of their spatial 

relationship. The extended Hausdorff distance measurement increases the reliability 

of the estimation of the stability of the HWM position over time, especially for the 

coastal boundaries with sudden changes of the shape. 

There were smaller seasonal variations of the position of the HWM indicators at Port 

Hedland than were identified at South Fremantle, although the data used to analyse 

the variation at Port Hedland has a temporal gap of 14 years (1995 to 2009) between 

the summer and winter lines evaluated. This is because the rocky coastal zone at Port 

Hedland may stabilise the HWM lines, and the tidal-dominated coast at Port Hedland 

has a passive effect on the beach evolution and profile change, compared with the 

high energy wave-dominated beach at South Fremantle. 

The analysis showed that spatial variations of the HWM due to seasonal changes 

were approximately one order of magnitude larger than variations due to 

uncertainties in the input data. This behaviour is more significant on a sandy beach 

with high wave energy. Of all the HWM indicators, the HWL shows the largest 

horizontal offset between the two seasons at both study areas. The highly variable 

nature of the feature makes HWL unsuitable as an indicator of the HWM position. In 

addition, the dune toe line is shown to be the best HWM indicator in terms of the 

small variation over both time and space. 

8.2.6 Decision of the HWM Position 

A Multi-Criteria Decision Making (MCDM) model was developed to make a final 

evaluation of the position of the HWM. The model included the following decision 

making criteria—stability, precision and inundation risk. The MCDM proved to be a 

suitable method for making a decision on the position of the HWM. This is because 

the decision making process for HWM determination is complex and the multi-
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criteria were weighted differently by different authorities and experts according to 

their business perspective. 

Inconsistent answers were identified in the pairwise-comparison matrixes during the 

weights determination process. The method introduced by Ergu et al. (2011) has 

proved to be effective and efficient to identify and adjust the inconsistency in their 

feedback.  

Finally, an objective decision on the position of the HWM was made by providing a 

systematic evaluation model. The position of dune toe and SCTP were identified as 

the ideal HWM for coastal hazards planning and coastal property management 

purposes; while the vegetation line and the HWM defined by the DoT method were 

suggested as the HWM backup approaches for coastal hazards planning and coastal 

property management, respectively.  

8.3 Summary of Contributions and Significances 

This study fills the research gap of how to develop a consistent and robust HWM 

methodology by identifying and integrating the environmental factors from both 

water and land systems that influence the position of the HWM. The advantages of 

this methodology include: (1) all the determination processes and results are based 

on the quantified statistical analysis; (2) the algorithms developed to determine the 

HWM position are capable of providing repeatable results; (3) in the decision 

making stage, experts from different disciplines are involved to enhance the 

objectivity of the results.  

8.4 Recommendations for Future Research 

This section examines the limitations of the HWM determination methods in terms 

of data inadequacies and implementation of the methods. In addition to future 

improvements to the model, recommendations and directions for future research are 

also provided, along with opportunities for strengthening and expanding the current 

approach. 

8.4.1 Research Data 

In this study, tidal and wave records were limited to approximately 10 years.  

Nonetheless, it was possible to extract the variation of water levels during this period, 
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and the most significant tidal constituents. According to Cole (1997), however, the 

tidal variations can only be fully understood in 18.6 year cycles. Therefore, 

investigation of the impact of longer term statistics on the wave runup heights is 

suggested to reduce the uncertainty of results.  

One of the parameters required to estimate the hourly wave runup height is the beach 

gradient. In reality, the coastal morphology is not stable all the time. However, due to 

the limitations on the time-series data representing the coastal morphology, such as 

field survey or DEM, the beach gradient was assumed consistent over the 10 year 

period.  This can cause another uncertainty in the wave runup height calculation.  

Furthermore, it is likely that the analysis of the stability of the HWM position will 

become more accurate when sufficient time series DEM images are available. In this 

study, the most significant component in temporal variation is the seasonal variation. 

Although, the effect of annual variation may not be as significant as seasonal 

variation, the analysis of long-term trends for annual variation, particularly when 

combined with the study of sea level change, is still worth conducting in the future 

(Church et al. 2006; Jones and Hayne 2002; Kay and Alder 1999; Nicholls 2002; 

Titus et al. 1991).  

8.4.2 Research Methods and its Implementation 

In the wave information interpolation process, the decomposed levels of wavelet 

method were fixed at 3, and the vertical compression ratios in the fractal method 

were randomly selected. The effects of the variation of these input parameters on the 

interpolation results require further investigation.  

Furthermore, the effect of the accuracy of interpolated wave information on the wave 

runup modelling was not estimated. This was due to the complexity of the 

uncertainty propagation mechanism of the runup model. 

Uncertainties may also exist in the HWM determination process. In Chapter 5, it has 

been estimated that the variation on the segmentation in OOIA and interval distance 

between cross sections can contribute to the variation on the determined HWM 

position. This requires further investigation. 
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Due to lack of available equipment and high cost of labour, the RTK field survey, 

applied to evaluate the shoreline features classification, was conducted only once in 

each study area. Ideally, the coastal zones should be observed at summer and winter 

times, especially for the season when the image was captured. Furthermore, because 

of the high standing frontal dune zone at Port Hedland, it was not possible to obtain 

the position information of the vegetation line. In addition, a longer time period of 

water level observations from the field survey is suggested, so that the validation of 

the wave runup model can be adequately tested. 

Also, although the selected study areas represent the two most distinctive and typical 

coasts in Western Australia, more sites are recommended to test the consistency and 

the robustness of the HWM determination method. The new research would need to 

account for all factors that may influence the position of the HWM including 

modelling the long and complex coastline with various shore morphologies, weather 

regions, tidal features and wave activities.  

8.5 Summary 

The HWM is an important boundary that separates land and water. However, the 

position of the HWM is subject to many variables and attempts to serve multiple 

purposes because the determination of the HWM can be a scientific question, 

management question, or even a philosophical question. In this research, this 

question was addressed from the perspective of a spatial analysis system that 

integrates both water and land information, and an evaluation system based on 

commonly accepted criteria and under varying coastal conditions. The results of this 

research have significant benefits from both scientific and socio-economic 

perspectives. 
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APPENDIX I  

FIELD WORK PLAN FOR HWM DETERMINATION IN PORT HEDLAND 

The aim of this field survey is to identify the position (X, Y, Z) of HWM indicators 

and the significant swash (wave runup, the maximum horizontal position of water 

that can reach on the shore) heights by RTK methods using GNSS. 

• Scope of the study area 

The site extends approximately 2,300m along the coast at Cooke Point, Port Hedland. 

The Figure 1 shows the extent of the study area with coordinates. 

 

Figure 1 Study area 

• Setup cross-sections 

To identify the position of HWM indicators, which include high water line (long 

term mark of wet and dry sand) (Figure 2), frontal dune toe and vegetation line 

(Figure 3), the cross-shore transects need to be setup at regular intervals (in order to 

interest with the three onshore features). However, in order to obtain more samples, 
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the cross-sections may not have the same and fixed interval and as same position as 

shown in Figure 1.   

 

Figure 2 High water lines 

 

Figure 3 The frontal dune toe and vegetation zone 

• Onshore features identification 

Three types of features’ positions are required to be identified: high water line, 

frontal dune toe and vegetation line. The intersected points of high water line and 

frontal dune toe with cross sections are recorded as their position, and the X, Y, Z of 

these points are recorded by the RTK. 

Because the vegetation is irregularly distributed, the average height of sparse 

vegetation zone was defined as the position of vegetation. The sparse zone was 
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defined as the area where trees are not adjacent, they are scattered and distributed 

with a certain space interval. However, it was not possible to provide the exact space 

interval or distance between the trees for the real field work. However, Figures 4 and 

5 provide a visual for the vegetation colour. Here dark green indicates the density 

vegetation and light green or even grey and brown indicates the sparse vegetation. 

For example, in Figure 5, it can be seen that there are two sparse vegetation zones 

that intersected with the cross-section (indicated by the red pen). In the field, this 

could estimate the average heights of those two zones (maybe it is the middle point 

of those two) and record that position and the height of it. 

 

Figure 4 The vegetation shown on the image 
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Figure 5 The classification results 

• Swash heights observation 

The swash heights (associated with time) are required to be continuously recorded 

for 14 hours along one cross-section of a study area. It is possible to pick up any one 

that is convenient for surveying. The time interval of the recording is 1 hour, and 

within the 1 hour, the maximal swash level needs to be recorded. 
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APPENDIX II   

SURVEY FOR THE EVALUATION OF HWM DETERMINATION 

 

Request to Participate in Research 

Dear Experts,   

I am writing to invite you to take part in the High Water Mark (HWM) indicators 
evaluation survey. You have been selected for the survey because we believe you are 
an expert in the coastal research, land management and cartography areas. Your 
participation in this study will provide valuable information in developing a 
consistent, stable and precise HWM, which is a boundary that separates water and 
land. The questionnaire answers will be used to compare the importance of three 
criteria for HWM determination. 

The three criteria to evaluate the HWM include temporal and spatial variation and 
inundation probability, which could be interpreted as stable, precision and inundation 
risk for the determined HWM (see the following table) and has been calculated in the 
previous studies.  

Your participation in this study is voluntary. The survey is expected to take no more 
than 5-10 minutes of your time. The questionnaire is in the following pages. 

All information collected will be kept strictly confidential and will be used for this 
study only. The survey is completely anonymous, thus information collected from 
the survey will not include names but will include affiliation information, which 
will facilitate in discussion of the survey results. You will be free at any time to 
withdraw consent to further participation without prejudice in any way. You need 
give no reason or justification for such a decision. In such cases, any records of your 
participation in the interview will be destroyed unless you agree otherwise. 

This research has been approved by the Human Research Ethics Committee, 
Research Services, at Curtin University of Technology with approval number RD-
47-12. 

Should you have any queries about the survey, please do not hesitate to contact Xin 
Liu at xin.liu2@postgrad.curtin.edu.au or on 08-9266 4255 or Dr. Jianhong (Cecilia) 
Xia at c.xia@curtin.edu.au or on 08-92667563. 

We look forward to your participation in this study and thank you for your co-
operation.  

Yours sincerely,  

Xin Liu 

mailto:c.xia@curtin.edu.au
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PHD Candidate 

310A, Department of Spatial Sciences 

Curtin University of Technology 

GPO Box U1987 Perth, WA 6845 Australia 

Email: xin.liu2@postgrad.curtin.edu.au 

Tel:+61 8 9266 4255 

 

 Determine method Impact 

Stability 

Compare the difference of two 
DEMs representing summer 
and winter coastal 
morphology that may lead to 
the variation of shorelines. 

The aim of shoreline 
management is to achieve 
the shoreline stability 
(Pethick and Crooks 2000). 

Precision 

Calculate the precision of the 
model and data that derives 
the HWM indicators and the 
complexity of the HWM 
indicators when they are 
identified or levelled off on 
the beach plane. 

A precise method to 
determine the position of 
shoreline has been identified 
as a critical need among 
policy makers and coastal 
researchers (Thieler and 
Danforth 1994). 

Inundation risk 

Inundation probabilities from 
swash were determined using 
empirical models by taking 
into account the wave and tide 
records. These heights were 
then fitted to an appropriate 
distribution and the 
probability that swash would 
reach each HWM indicator 
was computed, taking into 
account the effects of waves 
and tide (Liu et al. 2012).    

Swash probability of HWM    
indicates inundation risk, 
which is an important 
reference for the coastal 
protection system (Mai et al. 
1997).     
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Research title: Determination of the High Water Mark and its location along a 
coastline 

This research has the Curtin Human Research Ethics Committee approval number 
RD-47-12 from 28 August 2012 to 28 August 2013. 

Questionnaire 

1) Criteria evaluation (9 point scale, compare row relative to column, for example, 
“relative to a criterion on the right top, a criterion on the left is very strongly less 
important,” you can put a “1/7” in the table): 

 

 Stability Precision Inundation risk 

Stability 1   

Precision  1  

Inundation risk   1 

 

THE END! 

Thank you for completing our survey!  Your responses and feedback are greatly 
appreciated. 
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