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Abstract 
 

In modelling and optimizing real world systems and processes, one usually ends up 

with a linear or nonlinear programming problem, namely maximizing one or more 

objective functions subject to a set of constraint equations or inequalities. For many 

cases, the constraints do not need to be satisfied exactly, and the coefficients 

involved in the model are imprecise in nature and have to be described by fuzzy 

numbers to reflect the real world nature. The resulting mathematical programming 

problem is referred to as a fuzzy mathematical programming problem. 

 

Over the past decades, a great deal of work has been conducted to study fuzzy 

mathematical programming problems and a large volume of results have been 

obtained. However, many issues have not been resolved. This research is thus 

undertaken to study two types of fuzzy mathematical programming problems. The 

first type of problems is fuzzy linear programming in which the objective function 

contains fuzzy numbers. To solve this type of problems, we firstly introduce the 

concept of fuzzy max order and non-dominated optimal solution to fuzzy 

mathematical programming problems within the framework of fuzzy mathematics. 

Then, based on the new concept introduced, various theorems are developed, which 

involve converting the fuzzy linear programming problem to a four objective linear 

programming problem of non-fuzzy members. The theoretical results and methods 

developed are then validated and their applications for solving fuzzy linear problems 

are demonstrated through examples. 

 

The second type of problems which we tackle in this research is fuzzy linear 

programming in which the constraint equations or inequalities contain fuzzy 

numbers. For this work, we first introduce a new concept, the α-fuzzy max order. 

Based on this concept, the general framework of an α-fuzzy max order method is 

developed for solving fuzzy linear programming problems with fuzzy parameters in 

the constraints. For the special cases in which the constraints consist of inequalities 

containing fuzzy numbers with isosceles triangle or trapezoidal membership 

functions, we prove that the feasible solution space can be determined by the 

respective 3n or 4n non-fuzzy inequalities. For the general cases in which the 
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constraints contain fuzzy numbers with any other form of membership functions, 

robust numerical algorithms have been developed for the determination of the 

feasible solution space and the optimal solution to the fuzzy linear programming 

problem in which the constraints contain fuzzy parameters. Further, by using the 

results for both the first and second types of problems, general algorithms have also 

been developed for the general fuzzy linear programming problems in which both the 

objective function and the constraint inequalities contain fuzzy numbers with any 

forms of membership functions. Some examples are then presented to validate the 

theoretical results and the algorithms developed, and to demonstrate their 

applications. 
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Chapter 1 

 
 

Introduction 

 
 

1.1 Background 
 

 

In optimizing real world systems, one usually ends up with a linear and nonlinear 

programming problem. For many cases, the coefficients involved in the objective and 

constraint functions are imprecise in nature and have to be interpreted as fuzzy 

numbers to reflect the real world situation. The resulting mathematical programming 

problem is therefore referred to as a fuzzy mathematical programming problem 

(Furukawa (1994), Sakawa (1993), Sakawa et al (1991)). 

 

Applications of fuzzy linear and nonlinear programming problems in practical 

applications are widespread. Economic and financial systems are particularly prone 

to the utilization of vague or fuzzy data. Ponsard (1988) conducted a survey of fuzzy 

mathematical models in economics and concluded that the use of fuzzy analysis led 

to results that could not be obtained by classical methods. Gutierrez and Carmona 

(1988) applied a fuzzy set approach to financial ratio analysis. Sanches, Pamplona 

and Montevechi (2005) investigated capital budgeting using triangle fuzzy numbers, 

because of the uncertainty of future cash flows. They found that the visualization of 

the various membership functions contributed to improving the decision making 

resources. Ostermark (1989) investigated the application of fuzzy methodology in the 

Capital Asset Pricing Model and the management of financial portfolios.  Tanaka, 

Guo and Turksen (2000) examined the selection of portfolios based on fuzzy 

probabilities and possibility distributions, and attempted to incorporate the authors’ 

judgement. Following on his earlier work, Ostermark (1996) developed a fuzzy 

control model for dynamic portfolio management, using risk measurement and future 

expected prices as fuzzy values. Vercher, Bermudez and Segura (2007) presented 

two fuzzy portfolio selection models under downside risk measures (i.e. aiming at 
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minimizing the risk of negative financial outcomes on the portfolio), using 

trapezoidal membership functions. Many other application areas for fuzzy 

programming problems exist in finance (Gupta, Mehlawat and Saxena, (2008); 

Huang (2007); Tiryaki and Ahlatcioglu (2009); Chrysafis, Papadopoulos and 

Papaschinopoulos (2008)) as well as areas as diverse as pharmacology (Lilic, 

Sproule, Turksen and Naranjo (2002)) and water management (Slowinski, (1986)). 

 

In recent years, various attempts have been made to study the solution of fuzzy 

mathematical programming problems with objective functions involving fuzzy 

numbers, either from a theoretical or computational point of view. Hannan (1981) 

examined linear programming equations with multiple fuzzy goals. Luhandjula 

(1984) formulated fuzzy linear programming (FLP) problems  as semi-infinite linear 

programming problems with infinitely many objective functions. Buckley (1988) 

considered linear programming problems where all the parameters may be triangle 

fuzzy numbers. Delgado and Verdegay (1989) considered the general structure of the 

FLP problem and examined solutions to it. Buckley (1990) investigated two 

solutions to multi-objective linear programs where all the parameters are fuzzy 

variables. Buckley and Qu (1990) explored the use of α-cuts to solve fuzzy 

equations. They showed that one can obtain an incorrect result by evaluating a fuzzy 

equation by this method. Buckley and Qu (1991) introduced new solutions for fuzzy 

equations based on the unified extension and possibility theories. They showed that a 

fuzzy quadratic equation with real fuzzy number coefficients always has a solution. 

Buckley (1992) conducted a review of the classical methods (extension principle, α-

cuts) developed for solving fuzzy equations. He then proposed a number of areas for 

further research. Buckley (1992) applied his earlier developed solutions to linear, 

nonlinear and differential fuzzy equations. Tanaka, Ichihashi and Asai (1991), 

formulated the fuzzy linear programming (FLP) problem as a parametric linear 

programming problem, while Luhandjura (1987) formulated the (FLP) problem as a 

semi-finite linear programming problem with infinitely many objective functions. 

More recently, Maeda (2001) formulated the (FLP) problem as a two-objective linear 

programming problem. However, Maeda’s work is only applicable to fuzzy numbers 

with triangle membership functions. Przybylski, Gandibleux and Ehrgott (2010) 

investigated a two phase solution to multi-objective integer programming problems 

with three objective functions. Nasseri and Gholami (2011) examined linear systems 

file:///F:/Maths/GOOD/FINAL%20THESIS/Hannan%20-%20Linear%20programming%20with%20multiple%20fuzzy%20goals%20(1981).pdf
file:///F:/Maths/GOOD/FINAL%20THESIS/Luhandjula%20-%20Fuzzy%20approached%20for%20multiple%20objective%20linear%20fractional%20optimization%20(1984).pdf
file:///F:/Maths/GOOD/FINAL%20THESIS/Buckley%20-%20Possibilistic%20linear%20programming%20with%20triangular%20fuzzy%20numbers%20(1988).pdf
file:///F:/Maths/GOOD/FINAL%20THESIS/Delgado%20&%20Verdegay%20-%20A%20general%20model%20for%20fuzzy%20linear%20programming%20(1989).pdf
file:///F:/Maths/GOOD/FINAL%20THESIS/Buckley%20-%20Multiobjective%20possibilistic%20linear%20programming%20(1990).pdf
file:///F:/Maths/GOOD/FINAL%20THESIS/Buckley%20&%20Qu%20-%20On%20using%20alpha%20cuts%20to%20evaluate%20fuzzy%20equations%20(1990).pdf
file:///F:/Maths/GOOD/FINAL%20THESIS/Buckley%20&%20Qu%20-%20Solving%20fuzy%20equations%20(1991).pdf
file:///F:/Maths/GOOD/FINAL%20THESIS/Buckley%20-%20Solving%20fuzzy%20equations%20(1992).pdf
file:///F:/Maths/GOOD/FINAL%20THESIS/Buckley%20-%20Solving%20problems%20in%20finance%20(1992).pdf
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of equations with trapezoidal fuzzy numbers. Kuwano (1996) used the goal 

programming approach to solve fuzzy multi-objective linear programming problems. 

Li, Xu and Gen (2006) investigated multi-objective linear programming problems 

with random coefficients and developed a generic algorithm designed to solve multi-

objective non-linear programming problems. Lu, Ruan, Wu and Zhang (2007) 

developed an α-fuzzy goal approximate algorithm to assist in obtaining satisfactory 

solutions for fuzzy multi-objective linear programming problems. 

 

Although previous work has led to a theoretical basis for the solution of fuzzy 

mathematical programming problems, many issues have not been resolved, and 

further development is required. In this thesis, we will study two fuzzy mathematical 

problems. 

 

1.2 Objectives 

 

The objective of the thesis is to develop new robust methods for solving fuzzy linear 

programming problems. Based on existing theories and previous work in this field, 

the specific objectives of the thesis are as follows: 

 

(1) Develop a robust theory and method to solve fuzzy linear programming 

problems with objective functions involving fuzzy numbers, and demonstrate 

its applications. 

(2) Develop a robust method and algorithms to solve fuzzy linear programming 

problems in which the constraints involve fuzzy numbers and demonstrate its 

application. 

(3) Develop a robust method and algorithms to solve fuzzy linear programming 

problems in which both the constraints and objective function involve fuzzy 

coefficients for various forms of membership functions.  
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1.3 Outline of the thesis 

 

This thesis focuses on the study of two fuzzy mathematics problems including the 

fuzzy linear programming problem with fuzzy parameters in the objective function, 

and the fuzzy linear programming problem involving fuzzy parameters in the 

constraints. 

 

The thesis consists of five chapters. Chapter 1 introduces the background of the 

research and the objective of the research.  

 

Chapter 2 reviews the basic theories of fuzzy mathematics, including basic concepts, 

definitions and operations. Particular focus is on the existing theories and literature 

on fuzzy linear programming and fuzzy nonlinear programming. 

 

Chapter 3 presents a new method for solving fuzzy linear programming problems 

with fuzzy parameters in the objective function. Various theorems are established to 

convert the fuzzy linear programming problem to a four objective linear 

programming problem. Two examples are then given to illustrate the procedure for 

solving this type of fuzzy linear programming problem by the developed method. 

 

Chapter 4 introduces a new concept, the α-fuzzy max order, for the study of fuzzy 

linear programming problems with fuzzy parameters in the constraints. Then, by 

utilizing the results in Chapter 3, the general case of linear programming problems 

involving fuzzy parameters in both the objective function and the constraints is 

investigated. Analytical results corresponding to two special cases of fuzzy number 

membership functions are derived. For the general case of fuzzy number membership 

functions, three numerical algorithms are developed. They are the determination of 

the feasible solution space, the fuzzy optimization problem with fuzzy parameters in 

the constraints and the fuzzy optimization problem with fuzzy parameters in both the 

objective function and the constraints. 

 

Chapter 5 presents a summary of the thesis together with areas for further research. 
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Chapter 2 

 
Literature Review 

 
2.1 General 
 

 

This thesis is focussed on the study of fuzzy linear programming which involves 

fuzzy parameters. The field of study involves the complex interaction of various 

subjects including fuzzy set theories, mathematical programming, multi-objective 

mathematical programming and fuzzy mathematical programming. Hence, in this 

chapter, we review the existing theories and methods in these fields relevant to this 

research. 

 

The rest of this chapter is organised as follows. Section 2.2 presents the basic 

concepts, operations and theories of fuzzy sets. Section 2.3 introduces the standard 

form of linear programming followed by the formulation of fuzzy linear 

programming and the method of solution. Section 2.4 gives the general form of 

multi-objective linear programming and various existing methods for the solution 

including the weighting method and the weighted minmax method. Section 2.5 

presents the general form of fuzzy multi-objective linear programming and a solution 

method. Section 2.6 reviews some basic concepts, theories and methods for nonlinear 

programming and fuzzy nonlinear programming, followed by brief concluding 

remarks in section 2.7.  

 

2.2 Fuzzy sets, fuzzy numbers and fuzzy operations 
 

In this section, we will review the basic definitions and results on fuzzy sets and 

fuzzy numbers. 
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(a) Fuzzy Sets 

Definition 2.1. (Fuzzy Sets): Let X be a universal set. Then a fuzzy set  ̃ is defined 

as the set of elements x equipped with a membership function   ̃   , namely: 

     ̃        ̃                 (2.1) 

where   ̃             is the grade of membership of x in  ̃ with the larger 

  ̃   value representing a higher grade of membership of  x in  ̃. 

Remark  2.1. 

If X is a countable or a finite set with elements             namely: 

                

then a fuzzy set  ̃ on X can also be expressed by: 

    ̃   (     ̃    ) (     ̃    )  (     ̃    )     (2.2) 

or 

                                  ̃  ∑  ̃     

 

   

                                                                         

 

If X is infinite or not countable, a fuzzy set  ̃ on X may be expressed as: 

    ̃   ∫   ̃     
 

         (2.4) 

Example 2.1. Let  ̃ be a fuzzy set representing integers approximately equal to 10. 

Then  ̃ can be subjectively defined as: 

    ̃                                             

Example 2.2. Consider the fuzzy set  ̃ for old houses. 

                                 

{
 
 

 
 

                                        

 (
   

   
)
 

                      
   

 

   (
   

   
)
 

 
   

 
    

                                         

                

which is shown in Figure 2.1. 
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   Figure 2.1 : The S(x; a,b)  membership function 

Then the fuzzy set   ̃ for old houses can be expressed by: 

    ∫             
 

 , 

that is, a house that is more than 50 years old is known as an old house, while those 

houses in the range 30 – 49 years are called old to some degree. 

 

Remark 2.2. When the membership function has only two values 0 and 1. i.e.: 

          {
                
               

 

then  ̃ becomes an ordinary set instead of a fuzzy set, i.e.: 

                              

Remark 2.3. Different membership functions can be used to represent different types 

of fuzzy concepts/quantities, such as low temperature, comfortable temperature and 

high temperature. Except for the S-type membership function as given in (2.5), some 

other typical types of membership functions are listed below: 

 

(i) Z function :  

  Z = 1 – S(x; a,b)        (2.6) 

where S is as defined in (2.5)  

(ii)   function : 

             {
              
              

         (2.7) 
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(iii) Triangle function :  

                             

{
 
 

 
 

                             
      

   
     

   

 
      

   
 

   

 
    

                             

                    

 

(iv) Trapezoidal function : 

 

            

{
 
 
 

 
 
 

                                                                
      

     
      

     

 
                       

                 
     

 
   

      

 
    

      

     
 

     

 
                          

                                                              

                        

 

 

The above functions are shown graphically in figures 2.2 – 2.5.  
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Definition 2.2. (Support of a Fuzzy Set) [Sakawa, 1993] 

Let  ̃ be a fuzzy set of X. The support of  ̃  is the set of points in X at which 

  ̃     : 

     ( ̃)         ̃      . 

 

Definition 2.3. (Height of a Fuzzy Set) [Sakawa, 1993] 

The height of a fuzzy set  ̃  on X is the least upper bound of   ̃   , that is: 

 

 ( ̃)     
   

  ̃     

     

Definition 2.4. (Normal Fuzzy Set) [Sakawa, 1993] 

A fuzzy set is said to be normal if its height has unity. If it is not normal, it can be 

normalized by redefining the membership function as    ̃     ( ̃). 

 

In the following, some basic set theoretic operations for fuzzy set are presented. 

 

(i) Equality: The fuzzy sets   and   are equal if and only if their 

membership functions are identically equal, namely: 

 

A = B  if and only if                      . 

 

(ii) Containment: The fuzzy set A is contained in B if and only if its 

membership function is less than or equal to that of B everywhere on X, 

namely: 

 

                                           . 

 

(iii) Complementation: The complement of   on X is given by  ̅ with 

membership function: 

 

     ̅                  . 
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(iv) Union: The union of two fuzzy sets  ̃ and  ̃ is a fuzzy set  ̃   ̃ with 

membership function: 

 

                                      . 

 

(v) Intersection: The intersection of two fuzzy sets  ̃ and  ̃ on X is a fuzzy 

set  ̃   ̃ with membership function: 

 

                                    . 

 

Remark 2.4.  Obviously, the union      is the smallest fuzzy set containing 

both A and B, as shown in Figure 2.6(a), while the intersection      is the 

largest fuzzy set contained in both A and B as shown in Figure 2.6(b). 

 

                   

 

Figure 2.6 : Diagrams showing (a)    ;  (b)     



19 

 

It has also been shown that many properties/identities for ordinary (crisp) sets are 

valid for fuzzy sets, particularly the following properties: 

(i)        Community law 

           . 

(ii)        Associativity law 

                  . 

(iii)       De Morgan’s laws 

 

      ̅̅ ̅̅ ̅̅ ̅    ̅   ̅   

      ̅̅ ̅̅ ̅̅ ̅   ̅   ̅. 

 

(iv)        Distributivity laws 

 

                     , 

                     . 

 

Some algebraic operations for fuzzy sets are given below: 

 

(i) Algebraic product 

                        . 

 

(ii) Algebraic Sum 

                            -          . 

 

Definition 2.5. The  α-cut of a fuzzy set A is a crisp set Aα given by: 

 

                              . 

 

From the definition, it is clear that: 

                        , 

which is illustrated in Figure 2.7. 
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       Figure 2.7: Examples of α-cuts 

 

Now with the concept of α-cut, a fuzzy set A can be decomposed into a series of α-

cuts, as stated by the following theorem. 

 

Theorem 2.1. (Decomposition Theorem) [Sakawa, 1993] 

A fuzzy set A can be represented by: 

  ⋃  

       

   

 

where     is the algebraic product of a scalar α with the α-cut,   . 

 

Example 2.3. Let A = 0.2/2 + 0.4/1 + 0.6/7 + 0.8/6 +1/8. Then we can represent A 

by: 

   A = 0.2 A0.2  0.4 A0.4  0.6A0.6  0.8A0.8   1A1 

 

where: 

  A0.2 = (2,1,7,6,8) 

  A0.4 = (1, 7, 6, 8) 

  A0.6 = (7, 6, 8) 

  A0.8 = (6, 8) 

  A1   = (8)  
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(b)  Fuzzy numbers and fuzzy operations 

A fuzzy set is said to be a convex set if its α-level sets are convex, i.e.: 

 

                   (             )                       

 

Figure 2.8 shows a convex fuzzy set A. 

 

 

Figure 2.8 : Diagram showing a convex fuzzy set 

 

Definition 2.6. (Fuzzy numbers) 

A fuzzy number  ̃ is a convex normalized fuzzy set whose membership function is  

piecewise continuous. 

 

Remark 2.5.  From the definition of fuzzy number, the α-cut can be represented by 

the closed interval: 

 

                       
    

  . 

 

Two different approaches may be used for the arithmetic calculation of fuzzy 

numbers, including the approach based on the interval arithmetic on the α-cuts of the 

fuzzy numbers and the approach based on the extension principle of Zadeh (1965, 

1975). In the following, we will review the first approach. 
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Let A and B be two fuzzy numbers respectively with the following α-cuts: 

         
    

         
    

           . 

 

Let * denote any of the arithmetic operations (+), (-), (.), (/).  The operation of fuzzy 

numbers is defined by: 

    ⋃       

 

 

with 

                                , 

where                  are closed intervals. Obviously        can be 

obtained by the interval arithmetic applying on           . More specifically: 

 

              
    

    
  +   

  , 

              
    

    
    

 ],  

                
   

    
   

                           

                                       [
  

 

  
 
 
  

 

  
 
]                       

                     
     

          . 

 

Example 2.4. (Arithmetic for fuzzy numbers with triangle membership function 

                       ). From (2.8), the α-cut of the triangle fuzzy number   

        is the closed interval: 

 

      
    

   [
        

 
       

       

 
 ]          

 

Let B=[bl, bR] be another fuzzy number, then by using the α-cuts of A and B, one can 

calculate A*B where * refers to (+), (-), ( ), (/),                     For example, 

we have: 
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      ⋃        

 

 

      ⋃        

 

 

    ⋃    

 

           

          ⋃    

 

       

where: 

                  

                                 
 

 
                 

                                   
 

 
                ,  

              

                                 
 

 
                 

                                   
 

 
               . 

 

2.3 Linear programming and fuzzy linear programming 

 

Let                         , 

                                                               , 

                                                               , 

                                                   [   ]                   . 

 

Then a typical linear programming problem can be written as: 

 

                                  (2.10) 

     subject to       

                                                                        . 
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To soften the rigid requirements of strictly minimizing the objective function and 

strictly satisfying the constraints, Zimmerman (1978) proposed the fuzzy linear 

programming problem in the form of: 

      

     subject to          ,      (2.11) 

                                                                           , 

  

where the first formula states that the objective cx should be essentially smaller than 

or equal to an aspiration level z0 of the z, while the second formula says that Ax 

should be essentially smaller than or equal to b. Combining the fuzzy goal and the 

fuzzy constraints together, the fuzzy linear programming problem (2.11) was 

expressed by Zimmerman (1978) as: 

 

         ,       (2.12) 

                                             , 

where: 

                                                 , 

                                                   . 

 

The author then proposed the following membership function for the ith fuzzy 

inequality         
 ,  namely: 

 

          

{
 
 

 
                                                  

 

  
        

 

  
             

          
    

                                               
              

 

 

where di denotes the limit of the admissible violation of the inequality. It is obvious 

that the membership function takes the value 1 if the constraint is completely 

satisfied and the value 0 if the constraint is violated. 

 

From the above membership function, it is clear that maximizing the degree of 

satisfaction of the constraints is equivalent to maximizing the membership function 
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         . That is, the problem of finding the solution of (2.12) is to determine    

that maximizes the minimum membership function value, namely: 

 

          
   

   
       

            

or 

          
   

   
       

   
  

 

  
 

 

  

       

 

which can also be formulated as: 

 

                        (2.13)  

                                                           
  

  
 

 

  
                           

                                                                    . 

 

2.4 Multi-objective linear programming 

 

Let      (   )                                                      

                                                        , 

                                                                 , 

                                           [   ]                                                       

                                                          . 

 

Then, a typical multi-objective linear programming problem is expressed by the 

vector optimization problem: 

 

                                

                                                                        

                                                                                  . 

 

Solutions to the above problem may be defined in different senses, as detailed in the 

following: 
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Definition 2.7. [Complete Optimal Solution] (Sakawa, 1993) 

 

   is said to be a compete optimal solution, if and only if there exists      such 

that     
                                .

 

 

Definition 2.8. [Pareto Optimal Solution] (Sakawa, 1993) 

 

   is said to be a Pareto optimal solution, if and only if there does not exist another 

    such that,            
                          

   for at least one j. 

 

Definition 2.9. [Weak Pareto Optimal Solution] (Sakawa, 1993) 

 

   is said to be a Weak Pareto optimal solution, if and only if there does not exist 

another     such that           
           . 

 

Various methods have been established to solve the multi-objective linear 

programming problem, including the weighting method, the constraint method and 

the weighted minmax method. 

 

In the weighting method, the MOLP problem is formulated as: 

                  ∑       

 

   

 

                                  , 

 

where              is the vector weighting coefficients. If x
*
 is an optimal 

solution of the weighting problem for some w>0, then x
*
 is a Pareto optimal solution 

of the MOLP problem. 

 

In the constraint method, only one objective function is kept as an objective function, 

all others are taken as irregularity constraints (Haimes 1971, 1974). The constraint 

problem is defined as: 
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                                                                                    . 

 

It has been proposed that if x
*
 is a unique optimal solution to the constraint problem 

for some                 , then x
*
 is a Pareto optimal solution to the MOLP 

problem. 

 

In the weighted minmax method, the linear MOLP problem is formulated by: 

 

                                                                  
     

         

                                                               , 

 

or by using an auxiliary variable, namely: 

 

                         

                                                                                          

                                  . 

 

It has been proved that if x
*
 is a unique optimal solution of the weighted problem for 

some                         is a Pareto optimal solution of the MOLP 

problem. 

 

2.5 Fuzzy multi-objective linear programming 

 

Let                     

                                                         

                                                           

                                                    

                                            [   ]                        

 

Then the typical fuzzy multi-objective linear programming problem can be written 

as: 
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in the sense that each       is substantially less 

than or equal to some value 

                                                                    

It has been established that the corresponding linear membership function for the 

above fuzzy goal can be defined by: 

 

  
 (     )  

{
 

 
                    

        
 

  
    

  

                   

               
 

             
          

 

        
 

 

 

where   
  and   

  are respectively the objective function       such that the degree of 

membership is 0 and 1. 

 

Using the above membership function, the fuzzy multi-objective programming 

problem can be formulated as: 

 

                              
                             (2.14) 

                                                                          

 

which is equivalent to: 

 

                                          (2.15) 

                                                                  
 (     )                 

                                                                                                

                                                                          . 

 

2.6 Nonlinear programming and Fuzzy nonlinear 

programming 

 

(a) Nonlinear programming 
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Let               be an n-dimensional vector of decision variable, 

              be a nonlinear function, 

                        , be nonlinear inequality constraints, 

then the nonlinear programming problem can be written as: 

                            

                                                                                  

                                                                              

 

Various notations and definitions used in nonlinear programming are listed below. 

 

Local minimum. A point x
*
 is a local minimum if there exists a real δ>0 such that 

                                  ‖    ‖   . 

 

Global minimum. A point x
*
 is a global minimum if and only if            for 

all    . 

 

Convex function. A function f(x), defined on a non empty convex set, is convex if  

 

                                                             

 

Active constraint. An inequality constraint           is called an active constraint 

at x* if     
    . 

 

The Kuhn-Tucker conditions have been established for the determination of the local 

minimum, namely: 

                              
  

   
 ∑  

 

   

   

   
                                                        

                                                                   , 

                                                                     , 

                                                                     . 

 

When the nonlinear programming problem involves equality constraints, namely: 
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                                    (2.17) 

                                                                                 , 

                                                         

 

then the Kuhn-Tucker conditions become: 

 

                                 ∑      

 

   

∑  

 

   

                                                          

                                                                        

                                                                   , 

                                                                   , 

                                                                   . 

 

(a) Fuzzy nonlinear programming  

 

Zimmerman (1978) proposed the fuzzy version of the nonlinear programming 

problem, namely: 

 

     ̃                            (2.19) 

                                                                                  

 

 

where    ̃ means that the objective function should be minimized as much as 

possible, while   states that the constraints should be satisfied as much as possible. 

 

As for the linear programming, the objective function can be replaced by the 

following fuzzy constraint: 

                                                    

 

or for notation convenience as: 

                                                    
 . 
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As for the fuzzy linear programming, the membership function for the typical ith 

fuzzy constraints         is: 

 

  (     )  {
         
      
         

           
  

       
          

 

        
     

 

 

where       is a strictly monotone decreasing function with respect to  . 

 

Using the above membership functions, based on Bellman and Zadeh (1970), finding 

the solution of the fuzzy nonlinear programming problem is to determine x
*
 such 

that: 

             
       

   (     )    

    

or 

 

                             (2.20) 

                                                                (     )                   

 

Hence, existing numerical algorithms of nonlinear programming can be used to solve 

the above problem. 

 

 

2.7 Concluding Remarks 
 

Fuzzy mathematical programming problems involving fuzzy parameters have not yet 

been fully investigated and thus are the focus of this PhD research. The basic 

concepts, definitions, theories and solution methods relevant to the PhD research 

have been reviewed and presented, and will form the basis for the PhD research. The 

main research development will be presented in Chapters 3 and 4. 
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Chapter 3 

 

Solution of fuzzy linear programming as 

constrained optimisation problems 
 

3.1 General 

 

Attempts to optimize real world systems usually end up with a linear or nonlinear 

programming problem. In many cases, because of their imprecise nature, the 

coefficients involved in the objective and constraint functions have to be interpreted 

as fuzzy numbers to reflect the real world situation. This mathematical problem is 

known as a fuzzy mathematical programming problem. 

 

In recent years efforts have been made to study the solution to fuzzy mathematical 

programming problems from both a theoretical and computational point of view. The 

fuzzy linear programming (FLP) problem was formulated by Tanaka et al (1991) as a 

parametric linear programming problem. The FLP problem was formulated as a 

semi-finite linear programming problem with infinitely many objective functions by 

Luhandjura (1984). Maeda (2001) recently formulated the FLP problem as a two-

objective linear programming problem but this work is only applicable to problems 

which involve fuzzy numbers with triangle membership functions. 

 

In this chapter we formulated the FLP problem as a multi-objective linear 

programming (MOLP) problem with four-objective functions. This work is in line 

with Maeda’s (2001) development. In comparison, our work is applicable to 

problems involving fuzzy numbers with any form of membership functions. The rest 

of the thesis is organized as follows. In Section 3.2, we give some basic definitions 

and theorems fundamental to the development are described in Section 3.3. In 

Section 3.3, we firstly give the concepts of the optimal solution to a FLP problem. 

Then a number of theorems are developed to convert the FLP problem to a MOLP 

problem with four-objective functions. In Section 3.4, two illustrative examples are 

given to demonstrate the procedure for solving FLP problems. 
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3.2 Preliminary 

 

In this section, we describe and develop some fundamental theorems and definitions 

required in the thesis. 

 

Let R be the set of all real numbers, R
n
 be an n-dimensional Euclidean space and x = 

(x1, x2,....,xn)
T
, y = (y1, y2,.....,yn)

T      be any two vectors, where xi , yi     , i = 1, 

2,...., n, and T denotes the transpose of the vector. Then we denote the inner product 

of x and y by 〈   〉. For any two vectors x, y     , we write x   y if and only if xi   

yi ,                                                                    

                

 

Definition 3.1. As defined in Chapter 2, a fuzzy number  ̃ is defined as a fuzzy set 

on R, whose membership function   ̃ satisfies the following conditions: 

(i)   ̃ is a mapping from R to the closed interval [0, 1]; 

(ii) it is normal. i.e., there exists x     such that   ̃       

(iii) whenever         ,         ̃        is a closed interval, denoted by    
    

  . 

 

Let F(R) be the set of all fuzzy numbers. By the decomposition theorem of fuzzy set, 

we have: 

 ̃  ⋃     
    

  

       

 

 ̃  ⋃     
    

  

    

 

for every  ̃      , where R0 is all rational numbers in      . 

 

For any real number    , we define         : 

      {
                      
                      

 

Then          
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Definition 3.2. If for every positive real number M, there exists          such that 

      
  or     

     , then the fuzzy number  ̃ is said to belong to fuzzy infinity, 

written as  ̃. If  ̃   ̃, then the fuzzy number  ̃ is said to be a finite fuzzy number. 

 

Let F
*
(R) be the set of all finite fuzzy numbers in R. 

 

Theorem 3.1.  

Let  ̃ be a fuzzy set on R, then  ̃      if and only if   ̃ satisfies: 

  ̃    {

        
     
     

                
     
    

 

where L(x) is the right continuous monotone increasing function,          and  

   
    

                                                                 

                 
   

        

 

Corollary 3.1.  

If  ̃       , then there exists              such that              . i.e., 

the support of  ̃ is a bounded set. 

 

Corollary 3.2.            ̃                         if                 
      

 

Definition 3.3. 

For any  ̃  ̃       and   λ   , the sum of two fuzzy numbers  ̃   ̃ and the 

scalar product of   and   ̃ are defined by the membership functions: 

 

  ̃  ̃          
     

   ̃      ̃      

 

                                         ̃       
    

        ̃       

 

where we set  sup{ϕ}=   . 

 

 

Theorem 3.2. For any   ̃  ̃                   
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 ̃   ̃  ⋃   

       

  
     

    
     

    

  ̃   ⋃   

       

   
     

    

 

Definition 3.4.  Let  ̃                             ̃    ̃   ̃     ̃   

  ̃             

  ⋀  ̃ 
     

 

   

 

where                     

Then  ̃ is called an n-dimensional fuzzy number on R
n
. If  ̃          

         ̃ is called an n-dimensional finite fuzzy number on R
n
. 

Let F(R
n
) and F

*
(R

n
) be the set of all n-dimensional fuzzy numbers and the set of all 

n-dimensional finite fuzzy numbers on R
n
 respectively. 

Proposition 3.1. For every   ̃        ̃            

Proof. Since  ̃       , there exist  ̃                 such that  ̃  

  ̃   ̃     ̃  . As  ̃              is normal, it follows that there exists    

              
such that   ̃ 

                  . Let                

  , then: 

  ̃        
    ̃ 

          

which implies that  ̃ is normal. 

Proposition 3.2. For every  ̃      , the λ-section of   ̃ is an n-dimensional closed 

rectangular region for any λ        
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Proof. Since  ̃       , there exist  ̃                 such that  ̃  

  ̃   ̃     ̃  . As the λ-section of  ̃  (           is a closed interval     
     

   

(          , we have: 

          ̃       

       {       
 

 
  ̃ 

      } 

                       ̃ 
                     

                 = {                                            

                 = {                                 
     

              

for any        . This implies that the λ-section of  ̃ is an n-dimensional closed 

rectangular region for any        . 

Proposition 3.3. For every  ̃       ,  ̃ is a complex fuzzy set. i.e.: 

             ̃(λx + (1 – λ)y)     ̃       ̃   , 

whenever  λ                                       . 

Proof. For every λ       ,                                 , from 

 ̃       , there exist  ̃                  such that  ̃    ̃   ̃     ̃  . It 

follows, by the fact that  ̃                , are convex fuzzy sets, that: 

             ̃ 
(λxi + (1 – λ)yi)     ̃ 

       ̃ 
      i = 1, 2, ....,n. 

Therefore: 

              ̃(λx + (1 – λ)y) =      
   ̃ 

                 

                                              
    ̃ 

       ̃ 
     

                                              
   ̃ 

          
   ̃ 

      

                                                ̃       ̃   , 

which implies that  ̃ is a convex fuzzy set. 
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Proposition 3.4. For every  ̃         and λ1, λ2       , if        then    
     

  

Proof. Obvious. 

Definition 3.5.  For any n-dimensional fuzzy numbers  ̃  ̃       , we define: 

1.  ̃   ̃ iff    
     

  and    
     

 , i = 1,2,...,n, λ       , 

2.  ̃   ̃ iff    
     

  and    
     

 , i = 1,2,...,n, λ       , 

3.  ̃   ̃ iff    
     

  and    
     

 , i = 1,2,...,n, λ       . 

We call the binary relations  ,   and   a fuzzy max order, a strict fuzzy max order 

and a strong fuzzy max order, respectively. 

 

3.3 Fuzzy linear programming with fuzzy max order 

 

In this section, we study the solutions to fuzzy linear programming problems. Firstly, 

we define the concepts of optimal solutions to fuzzy linear programming problems 

and then investigate their properties. 

 

Let us consider the following problem: 

             

{
 
 

 
 

            〈 ̃  〉  ∑ ̃   

 

   

                           0,  xbAx                     

 

             (3.1) 

Where  ̃    ̃   ̃    ̃            and A is an m  n matrix and b  R
m
 whose 

elements are given by aij and bj, respectively. 

 

For the sake of simplicity, we set                    and assume that X is 

compact. In a fuzzy linear programming problem, for each x  X, the value of the 

objective function 〈 ̃  〉 is a fuzzy number. Thus, we shall introduce the following 

concepts of optimal solutions to fuzzy linear programming problems. 

 

Definition 3.6. A point      is said to be an optimal solution to the FLP problem 

if it holds that 〈 ̃   〉  〈 ̃  〉   for all x  X. 
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Definition 3.7. A point      is said to be a non-dominated solution to the FLP 

problem if there does not exist x  X such that 〈 ̃  〉  〈 ̃   〉  holds. 

 

Definition 3.8. A point      is said to be a weak non-dominated solution to the 

FLP problem if there is no x  X such that 〈 ̃  〉  〈 ̃   〉  holds. 

 

We denote the sets of all non-dominated solutions and all weak non-dominated 

solutions to the fuzzy linear programming problem by X
F
 and X

wF
, respectively. 

Then, by definition, it holds that .
wFF

XX   

 

Associated with the fuzzy linear programming (FLP) problem, we consider the 

following multi-objective linear programming (MOLP) problem: 

 

                         {
              〈  

   〉 〈  
   〉 〈  

   〉 〈  
   〉    

               0,  xbAx                                     
                  

 

where   
      

     
       

      
      

     
       

                

 

In the following, we introduce the concepts of optimal solutions of the multi-

objective linear programming (MOLP) problem.  

 

Definition 3.9. A point      is said to be a complete optimal solution to the 

MOLP problem if it holds that: 

  〈  
    〉 〈  

    〉 〈  
    〉 〈  

    〉    〈  
   〉 〈  

   〉 〈  
   〉 〈  

   〉    

for all    . 

Definition 3.10. A point      is said to be a Pareto optimal solution to the MOLP 

problem if there is no x  X such that: 

 

 〈  
    〉 〈  

    〉 〈  
    〉 〈  

    〉    〈  
   〉 〈  

   〉 〈  
   〉 〈  

   〉   

 

holds. 
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Definition 3.11. A point      is said to be a weak Pareto optimal solution to the 

MOLP problem if there is no x X such that: 

 

 〈  
    〉 〈  

    〉 〈  
    〉 〈  

    〉    〈  
   〉 〈  

   〉 〈  
   〉 〈  

   〉   

 

holds. 

 

Lemma 3.1. For any a, b, c  R
n
 and        if there exist x

*
, x R

n
 such that: 

 

〈   〉  〈    〉     〈   〉  〈    〉      〈   〉  〈    〉. 

 

Proof. 

If: 

 

   〈   〉  〈    〉 and 〈   〉  〈    〉 

 

we have: 

 

     〈        〉 and   〈        〉. 

 

Further, from ,cba   we have: 

 

             〈        〉  〈        〉  〈            〉 

                          〈            〉 

                          〈        〉  〈        〉 

Therefore: 

 

〈        〉  〈        〉    

 

and hence: 

 

〈   〉  〈    〉. 
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Theorem 3.3. Let a point       be a feasible solution to the FLP problem. Then x
*
 

is an optimal solution to the problem if and only if x
*
 is a complete optimal solution 

to the MOLP problem. 

 

Proof. If x
*
 is an optimal solution to the FLP problem, then for any x   X, we have: 

〈 ̃   〉  〈 ̃  〉 . 

  

Therefore, for any   [0, 1], we have: 

 

(∑ ̃   
 

 

   

)

 

 

 (∑ ̃   

 

   

)

 

 

    

(∑ ̃   
 

 

   

)

 

 

 (∑ ̃   

 

   

)

 

 

   

 

that is: 

∑   
   

 

 

   

 ∑   
   

 

   

        

∑   
   

 

 

   

 ∑   
           

 

   

 

 

Hence x
*
 is a complete optimal solution to the MOLP problem by Definition 3.4. 

 

If x
*
 is a complete optimal solution to the MOLP problem, then for all xX, we have: 

 

 〈  
    〉 〈  

    〉 〈  
    〉 〈  

    〉    〈  
   〉 〈  

   〉 〈  
   〉 〈  

   〉   

 

that is: 

∑   
   

 

 

   

 ∑   
   

 

   

 ∑   
   

 

 

   

 ∑   
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∑   
   

 

 

   

 ∑   
   

 

   

         ∑   
   

 

 

   

 ∑   
   

 

   

   

 

As ),(
~ * n

RFc   for any   [0, 1], we have:  

 

  
    

    
     

    
    

  

 

From Lemma 3.1, we have: 

 

 ∑   
   

 

 

   

 ∑   
   

 

   

  ∑   
   

 

 

   

 ∑   
   

 

   

 

 

for any   [0, 1]. Therefore x
*
 is an optimal solution to the FLP problem. 

 

Theorem 3.4. Let a point       be any feasible solution to the FLP problem. Then 

x
*
 is a non-dominated solution to the problem if and only if x

*
 is a Pareto optimal 

solution to the MOLP problem. 

 

Proof. Let      be a non-dominated solution to the FLP problem. On the contrary, 

we suppose that there exists a  ̅    such that: 

 

 〈  
    〉 〈  

    〉 〈  
    〉 〈  

    〉    〈  
   ̅〉 〈  

   ̅〉 〈  
   ̅〉 〈  

   ̅〉  . 

              (3.3) 

Therefore: 

 

   〈  
   ̅〉  〈  

    〉 〈  
   ̅〉  〈  

    〉 〈  
   ̅〉  〈  

    〉 〈  
   ̅〉  〈  

    〉   . 

             (3.4) 

Hence: 

 

  〈  
   ̅〉  〈  

    〉           〈  
   ̅〉  〈  

    〉, 

 

   〈  
   ̅〉  〈  

    〉    〈  
   ̅〉  〈  

    〉  
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That is: 

〈  
   ̅〉  〈  

    〉 〈  
   ̅〉  〈  

    〉, 

 

〈  
   ̅〉  〈  

    〉 〈  
   ̅〉  〈  

    〉. 

 

By using Lemma 3.1, for any   [0, 1], we have: 

 

                          〈  
    〉  〈  

   ̅〉 ,   〈  
    〉  〈  

   ̅〉 

 

that is, 〈 ̃  ̅〉  〈 ̃   〉 . However, this contradicts the assumption that      is a 

non-dominated solution to the FLP problem. 

 

Let      be a Pareto optimal solution to the MOLP problem. If x
*
 is not a non-

dominated solution to the problem, then there exists  ̅    such that 〈 ̃  ̅〉  

〈 ̃   〉 . Therefore, for any   [0, 1], we have: 

 

( ∑  ̃   
 

 

   

)

 

 

 ( ∑ ̃  ̅ 

 

   

)

 

 

  ( ∑  ̃   
 

 

   

)

 

 

 ( ∑ ̃  ̅ 

 

   

)

 

 

   

 

that is:  

                            〈  
    〉  〈  

   ̅〉 ,   〈  
    〉  〈  

   ̅〉. 

 

Hence, for  = 0 and  = 1, we have: 

 

〈  
   ̅〉  〈  

    〉       〈  
   ̅〉  〈  

    〉, 

 

〈  
   ̅〉  〈  

    〉      〈  
   ̅〉  〈  

    〉, 

 

Which contradicts the assumption that      is a Pareto optimal solution to the 

MOLP problem. 
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Theorem 3.5. Let a point      be a feasible solution to the FLP problem. Then x
*
 

is a weak non-dominated solution to the problem if and only if x
*
 is a weak Pareto 

optimal solution to the MOLP problem. 

 

Proof. Similar to that of Theorem 3.4. 

 

From Theorems 3.3, 3.4 and 3.5, in order to find all optimal or non-dominated or all 

weak non-dominated solutions to the FLP problem, it suffices to find all complete or 

Pareto or weak Pareto optimal solutions to the MOLP problem. Now, associated with 

the MOLP problem, we consider the following weighted linear programming 

problem defined by Kuhn and Tucker (1951) and Zadeh (1963): 

 

       {

                           〈   ̃  〉    
 〈  

   〉    
 〈  

   〉

                                                           
 〈  

   〉    
 〈  

   〉

                                                               

 

 

where:   

    
      

     
       

       
      

     
       

                

                     
    

    
    

    .  

 

Theorem 3.6. Let a point      be a feasible solution to the FLP problem. If it is an 

optimal solution of the MOLPw problem for some w > 0, then it is a non-dominated 

solution to the FLP problem. 

 

Proof. If an optimal solution x
*
 to the MOLPw problem is not a non-dominated 

solution to the FLP problem, from Theorem 3.4, it is not a Pareto optimal solution to 

the MOLP problem, thus there exists a Xx  such that: 

 

 〈  
    〉 〈  

    〉 〈  
    〉 〈  

    〉    〈  
   ̅〉 〈  

   ̅〉 〈  
   ̅〉 〈  

   ̅〉  . 

             (3.5) 

 



44 

 

Hence, there exists at least a R

i

L

i
cc or , i = 1, 2 such that “ < “ holds. Noting that:  

     
    

    
    

   , 

this implies: 

〈   ̃   〉    
 〈  

    〉    
 〈  

    〉    
 〈  

    〉    
 〈  

    〉 

       〈  
   ̅〉    

 〈  
   ̅〉    

 〈  
   ̅〉    

 〈  
   ̅〉 

            〈   ̃  ̅〉. 

 

However, this contradicts the assumption that x
*
 is an optimal solution to the MOLPw 

problem for some w > 0. 

 

Theorem 3.7. Let a point      be any feasible solution to the FLP problem. If it is 

a non-dominated solution to the problem, then it is an optimal solution to the MOLPw 

problem for some w   0. 

 

Proof. If  x
*
 is a non-dominated solution to the FLP problem, then it is a Pareto 

optimal solution to the MOLP problem from Theorem 3.4. By using Theorem 4.2 of 

Maeda (2001), it is an optimal solution to the MOLPw problem for some w   0. 

 

Theorem 3.8. Let a point      be a feasible solution to the FLP problem, then it is 

an optimal solution of the MOLPw  problem for some w  0 if and only if it is a weak 

non-dominated solution to the FLP problem. 

 

Proof. Similar to the proofs for Theorems 3.6 and 3.7. 

 

Now, associated with the MOLP problem, we consider the following constrained 

multi-objective linear programming (CMOLP) problem defined by Haimes et al. 

(1971) and Haimes and Hall (1974): 

 

             

{
 
 

 
 
              〈    〉

                〈    〉                     

               

 

             (3.6) 
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where        
     

       
           

     
       

           
     

       
       

    
     

       
      , and    is the minimum acceptable values for objectives 

corresponding to j  i. 

 

Theorem 3.9. Let a point      be any feasible solution to the FLP problem. If it is 

a unique optimal solution of the CMOLP problem for some j,  j = 1, 2, 3, 4 and j  i, 

then it is a non-dominated solution to the FLP problem. 

 

Proof. If a unique optimal solution x
*
 to the CMOLP problem is not a non-

dominated solution to the FLP problem, then it is not a Pareto optimal solution to the 

MOLP problem from Theorem 3.4, therefore there exists a Xx  such that: 

 

 〈  
    〉 〈  

    〉 〈  
    〉 〈  

    〉    〈  
   ̅〉 〈  

   ̅〉 〈  
   ̅〉 〈  

   ̅〉  . 

             (3.7) 

This means:  

 

   〈    
 〉  〈    ̅〉                    〈    

 〉  〈    ̅〉, 

 

which contradicts the assumption that x
*
 is a unique optimal solution of the CMOLP 

problem for some j,  j = 1, 2, 3, 4; j  i. 

 

Theorem 3.10. Let a point      be any feasible solution to the FLP problem. If it 

is a non-dominated solution to the problem, then it is an optimal solution of the 

CMOLP problem for some j,  j = 1, 2, 3, 4 and j  i. 

 

Proof. If x
*
 is a non-dominated solution to the FLP problem, then it is a Pareto 

optimal solution to the MOLP problem from Theorem 3.4. Suppose x
*
 is not an 

optimal solution of the CMOLP problem for some j, j = 1, 2, 3, 4; j  i, then there 

exists a      such that: 

 

〈    
 〉     〈    ̅〉                    〈    

 〉  〈    ̅〉, 
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which contradicts the fact that x
*
 is a Pareto optimal solution to the MOLP problem. 

 

Theorem 3.11. Let a point      be any feasible solution to the FLP problem. If it 

is an optimal solution of the CMOLP problem for some j, j = 1, 2, 3, 4; j  i, then it 

is a weak non-dominated solution to the FLP problem. 

 

Proof. If an optimal solution x
*
 to the CMOLP problem is not a weak non-dominated 

solution to the FLP problem, then it is not a weak Pareto optimal solution to the 

MOLP problem from Theorem 3.5. Therefore, there exists a      such that: 

 

 〈  
    〉 〈  

    〉 〈  
    〉 〈  

    〉    〈  
   ̅〉 〈  

   ̅〉 〈  
   ̅〉 〈  

   ̅〉   .  (3.8) 

 

This means:  

 

   〈    
 〉  〈    ̅〉                    〈    

 〉  〈    ̅〉, 

 

which contradicts the assumption that x
*
 is an optimal solution of the CMOLP 

problem for some j, j = 1, 2, 3, 4; j  i. 

 

Now, associated with the MOLP problem, we consider the following weighted 

maximum linear programming problem defined by (Bowman 1976): 

 

                           {

                        
         

  〈    〉

                                  

                                  

 

Where: 

                  
     

       
           

     
       

      

       
     

       
           

     
       

                  

                                         . 
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Theorem 3.12. Let a point      be a feasible solution to the FLP problem. If it is a 

unique optimal solution of the MOLPwm problem for some    , then it is a non-

dominated solution to the FLP problem. 

 

Proof. If a unique optimal solution x
*
 to the MOLPwm problem for some     is not 

a non-dominated solution to the FLP problem, then it is not a Pareto optimal solution 

to the MOLP problem from Theorem 3.4. Therefore there exists a      such that: 

 

 〈  
    〉 〈  

    〉 〈  
    〉 〈  

    〉    〈  
   ̅〉 〈  

   ̅〉 〈  
   ̅〉 〈  

   ̅〉  . 

           (3.10) 

 

 

In view of                  , it follows: 

 

  〈    
 〉    〈    ̅〉               

 

Hence: 

  

   
         

  〈    
 〉     

         
  〈    ̅〉 

  

which contradicts the assumption that x
*
 is a unique optimal solution of the MOLPwm 

problem for some                  . 

 

Theorem 3.13. Let a point      be any feasible solution to the FLP problem. If it 

is a non-dominated solution to the problem, then it is an optimal solution of the 

MOLPwm problem for some                  . 

 

Proof. If x
*
 is a non-dominated solution to the FLP problem then it is a Pareto 

optimal solution to the MOLP problem from Theorem 3.4. Here, without loss of 

generality, we assume that 〈    〉              for all     and choose 

     
    

    
    

     such that   
 〈    

 〉                  Now, we assume 
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that x
*
 is not an optimal solution of the MOLPwm problem for 

     
    

    
    

    , then there exists a Xx  such that: 

 

  〈    
 〉    

 〈    ̅〉               

 

Noting       
    

    
    

    , this implies: 

 

〈    
 〉  〈    ̅〉               

 

which contradicts the fact that x
*
 is a Pareto optimal solution to the MOLP problem. 

 

Theorem 3.14. Let a point      be a feasible solution to the FLP problem. If it is 

an optimal solution of the MOLPwm  problem for some w  0, then it is a weak non-

dominated solution to the FLP problem. 

 

Proof. If an optimal solution x
*
 to the MOLPwm problem for some w   0 is not a 

weak non-dominated solution to the FLP problem, then it is not a weak Pareto 

optimal solution to the MOLP problem from Theorem 3.5. Therefore, there exists a 

     such that:  

 

 〈  
    〉 〈  

    〉 〈  
    〉 〈  

    〉    〈  
   ̅〉 〈  

   ̅〉 〈  
   ̅〉 〈  

   ̅〉  . 

           (3.11) 

 

In view of                  , it follows: 

 

  〈    
 〉    〈    ̅〉               

 

Hence: 

 

   
         

  〈    
 〉     

         
  〈    ̅〉 
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which contradicts the assumption that x
*
 is a unique optimal solution of the MOLPwm 

problem for some                  . 

 

Theorem 3.15. Let a point      be a feasible solution to the FLP problem. If it is a 

weak non-dominated solution to the problem, then it is an optimal solution of the 

MOLPwm problem for some                  . 

 

Proof. If x
*
 is a weak non-dominated solution to the FLP problem then it is a weak 

Pareto optimal solution to the MOLP problem from Theorem 3.5. Here, without loss 

of generality, we can assume that 〈    〉              for all     and choose 

     
    

    
    

     such that   
 〈    

 〉                  Now, we assume 

x
*
 is not an optimal solution of the MOLPwm problem for      

    
    

    
    , 

then there exists a  ̅    such that: 

 

  
 〈    

 〉    
 〈    ̅〉               

 

Noting       
    

    
    

    , this implies: 

 

〈    
 〉  〈    ̅〉               

 

which contradicts the fact that x
*
 is a Pareto optimal solution to the MOLP problem. 

 

3.4 Examples 

 

To conclude this section, we give two numerical examples in this section. 

 

Example 3.1. 
 

                       

{
  
 

  
 

                 (     )   ̃    ̃                                           
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where the membership functions of  ̃ and  ̃  are: 

 

  ̃ 
    

{
 
 

 
 
                   
             
                   
    

  
       

                  

    
              
              

                  

        

 

 

  ̃ 
    

{
 
 

 
 

               
        
               
    

  
     

               

      
                   
                   
                   

      

 

 

 

Associated with the (FLP) problem, consider the following multi-objective linear 

programming problem: 

 

  m axim ize 5 16 , 6 17 , 7 18 , 20 40
(M O LP) .

subject to (3.13)

x y x y x y x y    



 

According to Theorem 3.3, the optimal solution to the (MOLP) problem is an 

optimal solution to the (FLP) problem. To solve the (MOLP) problem, we consider 

the following weighted maximization problem: 

 

1 2 3

w max 4

(5 16 ) (6 17 ) (7 18 )
 m axim ize

(M O LP ) .(20 40 )

subject to (3.13)

w x y w x y w x y

w x y

    


 




 

From Theorem 3.12, if (x*, y*) is a unique optimal non-dominated solution to the 

(MOLPwmax) problem for some w  0, then it is a non-dominated solution to the 

(FLP) problem. Standard optimization techniques can then be used to solve the 

problem. Obviously, the solution of the problem depends on the choice of the 

weighting for the objective functions. For example, for w1 = w4 = 0, w2 = w3 = 1, the 

solution is (x*, y*) = )3,2(  and then the membership function of:  
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 (       )   (     )    ̃    ̃  

 

is: 

 
        

    

{
 
 
 

 
 
 
                   
    

 
       

                   
     

  
     

                 

      
                   

                   
                      

         

  

 

 

While, for w1 = 0, w2 = w3 = 1, w4 = ½, the solution is (x*, y*) = (2.5, 2.8) and then 

the membership function of: 

 

 (       )   (         )      ̃      ̃  

 

is: 

                 

{
  
 

  
 
                      
      

   
       

                      
     

    
        

                     

         
                            

                             
                           

        

   

 

 

 

Example 3.2. 

In this example, we consider the same (FLP) problem as given in Maeda (2001) and 

we will show that our method will include Maeda’s method as a special case. The 

following is the (FLP) problem under consideration: 
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{
  
 

  
 
              ̃     ̃                                                                        

                                                                                                

                                                                                             
                                                                                                 

                                                                              

                                                                              

 

 

where the membership functions of   ̃ and   ̃ are: 

 

   ̃ 
    

{
  
 

  
 

                      
   

 
             

                      
    

 
           

                     

                   
                                 

                      
                                   

                     

         

 

   ̃     

{
  
 

  
 

                         
    

 
             

                         
    

 
              

                        

                     
                                  

                      
                                   

                     

         

 

 

Following the same procedure as used in Example 3.1, the problem of finding the 

solution of the (FLP) problem becomes the problem of finding the solution of the 

following (MOLPwmax) problem: 

 

          {
                                              

                                                                                                              
    

           (3.16) 

By choosing w1 + w2 + w3 = 1 and w3 – w1 =  with  varying from –1 to 1, the 

(MOLPwmax) problem becomes: 
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                   {
                              
                                                               

                                    

 

which is exactly the same as the parametric linear programming derived by Maeda 

(2001) using his bi-criteria method. An application of a standard optimization 

technique to the above problem will then lead to the same solution as that given by 

Maeda (2001). This example clearly indicates that our solution method includes 

Maeda’s method as a special case. 

 

A further analysis shows that if all the fuzzy coefficients  ̃  in the objective function 

have triangle membership functions and the weightings for   
  and   

  are chosen to 

be equal (i.e., w1 = w3), then the solution of the fuzzy linear programming problem 

is the same as the solution to the normal non-fuzzy linear programming problem with 

the coefficients  ̃  replaced by a non-fuzzy value    satisfying   ̃ 
      . 

 

3.5 Concluding Remarks 

 

In this chapter, we consider the solution to fuzzy linear programming problems 

which involve fuzzy numbers in the coefficients of objective functions. Firstly we 

introduce and investigate various concepts of optimal solutions to fuzzy linear 

programming problems. Consequently a number of theorems have been developed to 

convert the fuzzy linear programming problem to a multi-objective optimization 

problem with four objective functions. Finally, we successfully demonstrated the 

validity of our methods through two examples. We have shown in Example 3.2 that 

our method of solution has included an existing method as a special case. 
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Chapter 4 

 
Solution of fuzzy linear optimisation 

problems by the α-fuzzy max order 
 

 
4.1 General 

In Chapter 3, we study the solution to fuzzy mathematical programming problems 

with objective functions involving fuzzy numbers, and various theorems and 

methods have been developed to deal with the problems. In this chapter, we focus on 

another aspect of fuzzy mathematical programming problems, namely dealing with 

constraints involving fuzzy numbers. 

 

The rest of this chapter is organized as follows. In Section 4.2, we firstly introduce 

the concept of α-fuzzy max order and use the concept to define a fuzzy optimization 

problem with constraints involving fuzzy numbers. Then, two important theorems 

are developed concerning the determination of the feasible solution spaces defined 

by the constraint inequalities involving only fuzzy numbers respectively with 

isosceles triangle membership functions and trapezoidal membership functions. In 

Section 4.3, by utilizing the results in Chapter 3 and Section 4.2, we develop the α-

fuzzy max order method for solving the mathematical programming problems where 

both the objective function and the constraint equations/inequalities contain fuzzy 

coefficients, and some theoretical results are obtained for problems involving fuzzy 

coefficients with trapezoidal membership functions. In Section 4.4, various 

numerical algorithms are developed for the solution to various fuzzy mathematical 

programming problems involving fuzzy coefficients with any form of membership 

functions. Finally in Section 4.5, three illustrative examples are given to demonstrate 

the validity of the methods and the algorithms developed. 
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4.2 The α-fuzzy max order for problems with fuzzy 

constraints 

 

In this section, we consider the following fuzzy linear programming (FLP) problem 

in which the constraint equation and/or inequalities involve fuzzy coefficients:                

     

{
 
 

 
 
           〈   〉  ∑    

 

   

              ̃   ̃         

                                                         

where: 

                        ̃    ̃   ̃     ̃               ̃  ( ̃  )  

in which  ̃                             . 

 

Associated with the (FLP) problem, consider the following )(FLP


problem: 

      {
                   〈   〉  ∑    

 

   

                                          

                       
     

    
     

              

      

                                     

Theorem 4.1. If    is the solution of the (FLP) problem, it is also the solution to the 

(FLP) problem. 

 

Proof. The proof is obvious from Definition 3.5. 

 

Obviously, a feasible solution must satisfy the constraints for all    [0, 1]. However, 

in general, this requirement is too strong. Now consider a typical coefficient ci 

represented by a fuzzy number  ̃ . The possibility of such a parameter ci taking a 

value in the range     
     

   is  or above, while the possibility of ci taking a value 

beyond     
     

   is less than . Thus, one would generally be more interested in 

solutions obtained using coefficients ci taking values in     
     

   with    > 0. As a 

special case, if the coefficients involved are either real numbers or fuzzy numbers 

with triangle membership functions, then, we will have the usual non-fuzzy 
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optimization problem, supposing we choose  = 1. To formulate this idea, we 

introduce the following definitions. 

 

Definition 4.1. For any n-dimensional fuzzy numbers  ̃  ̃         we define: 

 

 ̃

 ̃ if and only if    

     
  and    

     
                       

 

 ̃

 ̃ if and only if     

     
  and    

     
                       

 

 ̃

 ̃ if and only if     

     
  and     

     
                       

 

We call the binary relations 
 ,  and   an -fuzzy max order, a strict -fuzzy 

max order and a strong -fuzzy max order, respectively. 

 

With Definition 4.1, we turn our interest to the solution of the following problem:  

 

                             

{
 
 

 
 
           〈   〉  ∑    

 

   

        

              ̃ 

 ̃           

                                      

                         

Associated with the (FLP) problem, we now consider the following problem:  

       {
           〈   〉  ∑    

 

   

                                             

               
     

     
     

                 

                      

                                                 

Where: 

           

  
       

        
       

         
      

            
      

     . 

Theorem 4.2. Let    be the solution of the (FLP) problem (4.4). Then it is also a 

solution of the (FLP) problem defined by (4.3). 
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Proof. The proof is obvious from Definition 4.1. 

 

Theorem 4.3. If all the fuzzy coefficients  ̃   and  ̃  have isosceles triangle 

membership functions: 

                  

  ̃    

{
  
 

  
 

                    ̃                                                                       
      ̃

  ̃
       ̃     

       ̃

  ̃
         ̃

                    ̃     

                                                             
 

             

where  ̃ denotes ija
~  or ib

~
, z and zh~ are the centre and the deviation parameter of   ̃ 

respectively, then, the space of feasible solutions X is defined by the set of x  R
n
 

with xi, for i = 1,2,…,n, satisfying: 

 

{
 
 
 
 

 
 
 
 ∑                                                                                                                     

 

   

∑[           ̃  
]              ̃ 

                                                

 

   

∑[           ̃  
]              ̃ 

                                                    

 

   

                                                                                                                               

 

 

Proof.  

From Theorem 4.1, X is defined by: 

                 {    |∑    
       

  

 

   

 

            ∑    
       

                

 

   

              }                  
 

 

That is, X is the set of x  R
n
 with 0x  and satisfying: 
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    ∑    
       

       

 

   

 

                   ∑    
       

                                        

 

   

 

 

For fuzzy numbers with isosceles triangle membership functions, we have: 

 

    
        ̃  

         

                                                    
         ̃  

                                                    

                                                         
        ̃ 

       

                                                     
         ̃ 

                                                        

 

Substituting (4.9) and (4.10) into (4.8), we have: 

                                  

                      ∑[       ̃  
     ]    [      ̃ 

     ]                           

 

   

 

                      ∑[       ̃  
     ]    [      ̃ 

     ]                             

 

   

 

 

Now, our problem is to show that       ,       ,                        if 

(4.6) is satisfied. From (4.6)1, we have: 

 

                                             ∑        

 

   

                                                                 

From (4.6)2,3, we obtain: 

   ∑     (  ̃  
     ̃ 

)   ∑        

 

   

 

 

   

                                                        

   ∑     (  ̃  
     ̃ 

)    ∑        
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Thus, from (4.11) and (4.12) and using (4.13) - (4.15), we have, for any   [, 1] 

and i = 1,2,…,m: 

 

      (∑        

 

   

)  (∑        ̃ 

 

   

)                                         

                  (∑        

 

   

)  (∑        ̃ 

 

   

)
     

     
                                       

                     (∑        

 

   

)
     

     
                                   

                                                         

 

     (∑        

 

   

)  (∑        ̃ 

 

   

)                                          

                (∑        

 

   

)  (∑        ̃ 

 

   

)
     

     
                                       

                   (∑        

 

   

)
     

     
                                   

                                                       

 

The proof is complete. 

 

Theorem 4.4. If all the fuzzy coefficients  ̃   and  ̃  have trapezoidal triangle 

membership functions: 

 

            ̃    

{
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where  ̃ denotes ija
~  or ib

~
,             are the parameters of the  ̃ membership 

function, then, the space of feasible solutions X is defined by the set of x   R
n
 with xi, 

for i = 1,2,…,n, satisfying: 

 

 

{
 
 
 
 

 
 
 
 ∑          ∑                                                                                                                                   

 

   

 

 

   

∑             ̃  
                ̃ 

 

   

                                                                                          

∑             ̃  
                ̃ 

                                                                                                

 

   

                                                                                                                                                                             

 

                                  

Proof.  

 

From Theorem 4.2, X is defined by: 

  {    |∑    
       

      
       

                        

 

   

}  

                       (4.20)  

That is, X is the set of x  R
n
 with 0x  satisfying: 

    ∑    
       

       

 

   

 

               ∑    
       

                                         

 

   

 

 

For fuzzy numbers with trapezoidal membership functions, we have: 

 

    
         ̃  

             
         ̃  

            (4.22) 

   
        ̃ 

                 
        ̃ 

              (4.23) 

 

Substituting (4.22) and (4.23) into (4.21), we have: 
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    ∑[       ̃  
     ]         

 

   

   ̃ 
                                                

       ∑[       ̃  
     ]         

 

   

   ̃ 
                                                 

                                           

Now, our problem is to show that                                     if 

(4.19) is satisfied. From (4.19)1, we have: 

                                              ∑       

 

   

                                                               

          

                                             ∑       

 

   

                                                               

From (4.19)2,3, we obtain: 

                             ∑      

 

   

  ̃  
     ̃ 

  ∑       

 

   

                                      

                             ∑      

 

   

  ̃  
     ̃ 

   (∑       

 

   

   )                       

Thus, from (4.24) and (4.25) and using (4.28)-(4.29), we have, for any         and  

i = 1, 2,…m: 

 

        (∑          

 

   

)  (∑  ̃  
     ̃ 

 

   

)                                         

               (∑          

 

   

)  (∑          

 

   

)
     

     
                                

                    (∑          

 

   

)
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        (∑          

 

   

)  (∑  ̃  
     ̃ 

 

   

)                                         

               (∑           

 

   

)  (∑          

 

   

)
     

     
                                 

                   (∑          

 

   

)
     

     
                                   

                                                      

The proof is complete. 

 

4.3 The α-fuzzy max order for problems with fuzzy 

coefficients in both objective functions and constraints 

 

In this section, we are concerned with the following fuzzy linear programming 

problem: 

                              {
             〈 ̃  〉  ∑  ̃     

 

   

               ̃   ̃    

                                                

where  ̃    ̃   ̃     ̃            ̃  ( ̃   ̃     ̃ )
 
       , 

  ̃  ( ̃  )              , 

in which  ̃     
     . 

 

Associated with the FLP problem, we consider the following multi-objective linear 

programming (MOLPαλ) problem: 

 

         {
           〈  

   〉 〈  
   〉 〈  

   〉 〈  
   〉          

                  
    

    
    

              
                      

 

  
      

     
      

   and   
      

     
      

   are the left and right limits of the 

α-cut of  ̃;   
      

     
      

   and   
      

     
      

   are the left and right 

limits of the fuzzy number  ̃ corresponding to the membership function value one. 
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Theorem 4.5. Let    be the solution of the        with α=0, then it is also a 

solution to the (FLP) problem. 

 

Proof. The proof is obvious from Theorem 3.3 and Theorem 4.1 

 

As stated in Section 4.2, a feasible solution must satisfy the constraints for all 

       . Also, for the solution to FLP, the α value in the coefficients of the objective 

function must be equal to 0. However, as discussed in Section 4.2, one usually is 

more interested in the solutions obtained using coefficients taking values in [   
     

 ] 

where        Combining the results in Chapter 3 and Section 4.2, we can obtain 

the following two theorems. 

 

Theorem 4.6. If all the fuzzy coefficients  ̃ and  ̃ have isosceles triangle 

membership functions:  

 

  ̃    

{
  
 

  
 

       ̃

      ̃

  ̃
    ̃     

       ̃

  ̃
        ̃

     ̃   

  

 

where  ̃ denotes ija
~

 or ib
~

, z and zh~ are the centre and the deviation parameters of   ̃ 

respectively, then the solutions to the        problem can be obtained by solving 

the following problem: 

 

                          〈  
   〉 〈  

   〉 〈  
   〉, 〈  

   〉      

                       

{
 
 
 
 

 
 
 
 ∑                                                                                          

 

   

∑[           ̃  
]              ̃ 

                    

 

   

∑[           ̃  
]              ̃ 
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Proof. From Theorem 4.3. 

 

Theorem 4.7. If all the fuzzy coefficients  ̃ and  ̃ have trapezoidal membership 

functions in the form of: 

  ̃    

{
 
 
 

 
 
 

                          
      

 
                  

                           

      

 
                 

                           

 

 

then the solution to the        problem can be obtained by solving the following 

problem: 

 

                       〈  
   〉 〈  

   〉 〈  
   〉, 〈  

   〉  

 

                        

{
 
 
 
 
 
 

 
 
 
 
 
 ∑                                          

 

   

                                                           

∑                                                                                                    

 

   

∑             ̃  
                ̃ 

 

   

                           

∑             ̃  
                ̃ 

                                  

 

   

                                                                                                               

 

 

Proof. From Theorem 4.4. 

 

4.4 Numerical algorithms 

 

It should be emphasized that for problems involving fuzzy numbers with nonlinear 

membership functions, the results in Section 4.3 will not be applicable. However, 

based on Theorem 4.2, we can derive a numerical algorithm for the determination of 



65 

 

the space of feasible solutions, an algorithm for the numerical solution to the (FLP) 

problem defined by (4.4), and an algorithm for the numerical solution to the 

(MOLP) problem defined by (4.33). For simplicity in presentation, we define: 

 

           
     

     
     

               . 

 

Algorithm for the space of feasible solutions X: 

 

Let the interval [, 1] be divided into m sub-intervals with (m+1) nodes i (i = 0, m) 

arranged in the order α = 0 < 1 < 2 <  < m = 1. 

 

 

Step 1:  Set m = 2, then determine 

   ⋂     
 

 

   

 

Step 2:  Determine 

    ⋂     
 

  

   

 

 

Step 3:  If (    ~   ), then X     . Otherwise, set m to 2m and go to Step 2 

where     ~    
means that the space     is close to   , namely 

   
    

        
    

                    

 

  in which    
    

    
 represents the interval of xi obtained by using  

  2m sub-intervals. 

 

Algorithm for the (FLP) problem defined by (4.4): 

 

Let the interval [, 1] be divided into m sub-intervals with (m+1) nodes i  (i = 0, m) 

arranged in the order   = 0 < 1 < 2 <  < m = 1 and denoted by: 
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          {
        〈   〉     

              
                               (4.36) 

 

Step 1:   Set m = 2, then solve the           problem for (x)m, where (x)m = 

(x1, x2,…, xn)m and the subscript m indicates that the result is obtained 

subject to constraint     
 ;  

 

Step 2:   Solve the           problem for (x)2m;   

 

Step 3:   If ‖          ‖      the solution of the         problem is 

           Otherwise, update m to 2m and go to Step 2. 

 

Algorithm for the (MOLP) problem defined by (4.33): 

 

Let the interval [, 1] be divided into m sub-intervals with (m+1) nodes i  (i = 0, 1, 

2, …,m) arranged in the order   = 0 < 1 < 2 <  < m = 1 and denoted by: 

                            

                 {
         〈  

   〉 〈  
   〉 〈  

   〉 〈  
   〉 

                                                         
                 (4.37)        

 

 

Step 1:   Set m = 2, then solve the (MOLP)m problem for (x)m, where (x)m = 

(x1, x2,…, xn)m and the subscript m indicates that the result is obtained 

subject to constraint xX
m

 ;  

 

Step 2:   Solve the (MOLP)2m problem for (x)2m;   
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Step 3:   If ‖          ‖     , the solution of the (MOLP) problem 

defined by (4.33)  is           or otherwise, update m = 2m and go 

to Step 2. 

 

4.5 Examples 

 

To conclude this paper, we give several examples in this section. 

 

Example 4.1. [Fuzzy constraints with triangle membership function] 

 

     

{
  
 

  
 
                              

           ̃   ̃  

   ̃

 ̃   ̃  

  ̃

              

                  

           (4.38) 

 

where      ̃  ̃  ̃   ̃      ̃ are fuzzy numbers with membership functions given 

by: 

  

      ̃    {

       
             
             

       

                                                              

 

where c denotes a non-fuzzy value satisfying 1)(~ cc , while,   ̃       ̃ are fuzzy 

numbers with membership functions given by: 

 

  ̃    

{
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If all fuzzy numbers  ̃  are replaced by non-fuzzy values    satisfying   ̃ 
      , 

then the (FLP) problem becomes the normal linear mathematical programming 

problem. The solution in this case is         ( 
 

  
  

 

  
) with objective function 

value –104.000. If fuzziness has to be considered, by Theorem 4.2, the problem 

becomes a usual linear programming problem subject to eleven constraint 

inequalities, namely: 

 

                        

   Subject to                 

                                                                      

                                                                        

                                                                     

                                                                     

              

                                                                     

                                                                     

              

                                                                              

                                                                             . 

 

 

The solution in this case is                         with objective function 

value –100.143. As a validation of the algorithms presented in Section 4.4, the 

feasible solution space X and the (FLP)αλ problem are also solved by the algorithm 

for X and the algorithm for the (FLP)αλ problem respectively. The solutions obtained 

are the same as those from Theorem 4.2. 

 

Example 4.2. [fuzzy constraints with trapezoidal membership function] 

     

{
 
 

 
 
                               

           ̃   ̃ 

  ̃

                ̃   ̃ 

  ̃
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where      ̃  ̃  ̃   ̃      ̃ are fuzzy numbers with membership functions given 

by:  

                               ̃    

{
 
 
 

 
 
 

                          
      

 
                  

                           

      

 
                 

                           

 

 

where         for  ̃  ̃  ̃      ̃ are respectively [2.5, 3.5], [4.5, 5.5], [7.5, 8.5] and 

[8.5, 9.5], while,   ̃       ̃ are fuzzy numbers with membership functions given by: 

 

                               ̃    

{
 
 
 

 
 
 

        
      

 
          

                                   
      

 
          

        

                                   

 

where the         for   ̃       ̃ are respectively [34, 36] and [45, 47].             

 

If all fuzzy numbers  ̃  are replaced by non-fuzzy values    
     

 
 satisfying 

  ̃ 
      , then the (FLP) problem becomes the normal linear mathematical 

programming problem and the solution in this case is x = (4.614, 1.491) with 

objective function value 81.1404. If fuzziness has to be considered, by Theorem 4.4, 

the problem becomes a usual linear programming problem subject to ten constraint 

inequalities, namely: 

   max   f(x,y)=15x + 8y 

     subject to  4.5x + 7.5y ≤ 34 

     8.5x + 2.5y ≤ 45 

     5.5x + 8.5y ≤ 36 

     9.5x + 3.5y ≤ 47 
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     3.7x + 6.7y ≤ 32.4 

     7.7x + 1.7y ≤ 43.4 

     6.3x + 9.3y ≤ 37.6 

     10.3x + 4.3y ≤ 48.6 

     x ≥ 0 

     y ≥ 0. 

 

The solution to this is x = (4.2256, 1.1805) with objective function value 72.8282. 

 

 

Example 4.3. [Both objective function and constraints involve fuzzy numbers] 

{
 
 

 
                     ̃̃  

              ̃    ̃     ̃    

               ̃    ̃     ̃

               ̃    ̃     ̃

                        

 

 

where the membership functions for the fuzzy numbers  ̃  ̃  ̃  ̃   ̃   ̃ and   ̃ are 

respectively: 

  ̃̃
    

{
 
 

 
 

      
               
              
        

    

 

 

  ̃    {

      
               
        

    

 

 

  ̃    {
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   ̃    
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For this problem, if the fuzzy numbers  ̃  are replaced by non-fuzzy values    

 

 
    

     
   where    

  and    
  are the left and right values of  ̃  and where the 

membership function is equal to one, then the problem has the solution         

    and the number value of f is 10. If fuzziness is to be considered with α = 0.5, by 

Theorems 4.3 and 4.4, the problem becomes a multi-objective linear programming 

problem subject to eleven constraints, namely: 
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  subject to                  

                                                 

                                                

                                                

                                                 

                                                     

                                                 

                                                 

                                                   

                                          

                                          

 

which is a multi-objective linear programming problem. Various methods can be 

used to solve the problem, such as the weighting method and the weighted minmax 

method. Here the weighting method is used and thus the new objective function to 

maximize is: 

 

                                                               

                                               

                                                                           

 

Choose          ,          . Then, by maximizing             subject to 

the constraints, we obtain the solution              . The membership function 

of the corresponding objective function                             ̃̃ is: 

 

                                 

{
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4.6 Concluding Remarks 

 

In this chapter, we introduce a new concept, the α-fuzzy max order, and then apply 

the concept in the study of fuzzy linear constrained optimization problems. For 

optimization problems with constraints given by n inequalities involving fuzzy 

numbers with isosceles triangle membership functions, we have successfully proved 

that the feasible solution space is determined by 3n non fuzzy inequalities. For 

optimization problems with constraints involving fuzzy numbers with other forms of 

membership functions, we develop three numerical algorithms respectively for the 

determination of the feasible solution space and the solutions to two types of fuzzy 

optimization problems. Through three illustrative examples, we have successfully 

demonstrated the validity of the methods and the numerical algorithms developed in 

the work. 
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Chapter 5 

 
Summary and further research 

 

 
5.1 Summary 

 

In this thesis, we study the theoretical and computational aspects of fuzzy 

mathematical programming problems involving fuzzy parameters. The research 

consists mainly of two parts. The first part focuses on fuzzy linear programming 

problems with fuzzy parameters in the objective function, namely:  

     {
              〈  ̃  〉  ∑ ̃   

 

   

                   

 

where   ̃    ̃   ̃     ̃          , A is an m  n matrix and b  R
m
 whose 

elements are given by aij and bj, respectively. The key results achieved for this part 

include various aspects: 

 

(i) The concepts of fuzzy max order, non-dominated optimal solution to 

fuzzy linear programming, complete optimal solution and Pareto optimal 

solution are introduced within the framework for fuzzy mathematical 

programming. 

 

(ii) Based on the concepts introduced in (i), various theorems have been 

developed addressing various theoretical and computational aspects of the 

problem, including the relationship between the optimal solution to the 

fuzzy linear programming problem with the complete optimal solution to 

a normal multi-objective linear programming problem (Theorem 3.3), the 

relationship between the non-dominated solution to the FLP with the 

Pareto optimal solution to a MOLP problem (Theorem 3.4), the relation 

between the non-dominated solution to the FLP problem with the optimal 

solution of a weighted multi-objective linear programming problem 
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(Theorems 3.6 – 3.8), the relation between the non-dominated solution to 

the FLP problem with the constrained linear programming problem 

(Theorems 3.9 – 3.11), and the relation between the non-dominated 

solution to the FLP problems with the optimal solution of a weighted 

maximum linear programming problem (Theorems 3.12 – 3.15). 

 

 

(iii) The results achieved in (ii) have formed a theoretical basis for solving 

fuzzy linear programming problems with objective functions involving 

fuzzy parameters by converting the problems into multi-objective linear 

mathematical programming problems of real numbers. The validation and 

application of the results achieved in (ii) for solving FLP problems have 

been demonstrated successfully through two examples. 

 

The second part studies fuzzy linear programming problems in which the constraints 

involve fuzzy parameters. For this part, the key results achieved include the 

following aspects: 

 

(i) A new concept, the α-fuzzy max order, has been developed for the study 

of fuzzy mathematical programming problems in which both the objective 

function and the constraint equations/inequalities contain fuzzy 

coefficients. 

 

(ii) Based on the α-fuzzy max order, an α-fuzzy max order method has been 

developed for solving fuzzy mathematical problems with fuzzy 

parameters in both the objective function and the constraints. 

 

 

(iii) For constraints given by inequalities involving fuzzy numbers with 

isosceles triangle membership functions, we prove that the feasible 

solution space can be defined by 3n non-fuzzy inequalities; while for 

constraints consisting of n inequalities with fuzzy numbers of trapezoidal 
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membership functions, we proved that the feasible solution space can be 

determined by 4n non-fuzzy inequalities. 

 

(iv) For constraints involving fuzzy numbers with any nonlinear forms of 

membership functions, numerical algorithms have been developed for the 

determination of the feasible solution space and the optimal solution of 

the general fuzzy linear programming problem where both the objective 

function and the constraints contain fuzzy numbers. 

 

 

(v) The methods developed in (iii) and (iv) have been validated and 

demonstrated successfully through three examples.  

 

Two research papers have been produced from the research during my PhD 

 

enrolment including:  

 

(1) Zhang, G.Q., Wu, Y.H., Remias, M. and Lu, J. An α-Fuzzy Max Order and 

Solution of Linear Constrained Fuzzy Optimization Problems. East-West J. of 

Mathematics, Special Volume. 

 

(2) Zhang, G.Q., Wu, Y.H., Remias, M. and Lu, J. Formulation of Fuzzy Linear 

Programming Problems as Four-objective Constrained Optimization 

Problems, Applied Mathematics and Computation, 139, 383-399. 

 

 

5.2 Further Research 

 
 

Further research work includes extending the theories and methods developed to 

more complex fuzzy mathematical programming problems, such as fuzzy quadratic 

programming and fuzzy nonlinear programming where both the objective function 

and the constraint equations or inequalities contain fuzzy numbers with nonlinear 

membership functions. Other further research is to apply the theories and methods to 

real world problems, such as economics, finance, facility location design, logistics 

planning and portfolio selection. 
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