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ABSTRACT 
 

Colloidal suspensions are common in everyday experience. Investigating 

crucial interactions between colloidal particles, understanding and controlling 

the diffusion of colloidal particles suspended in fluids and autonomously 

organising colloidal particles into patterns or structures have attracted 

significant interests in both fundamental research and applied science.  

 

The current research work is focused on the development of simulation 

platform for colloidal suspension to study the mechanism of colloid particle 

diffusion and self-assembly behaviour. Based on discrete element method 

(DEM), the model developed takes into account the crucial interactions, i.e. 

the electrostatic repulsion force, van der Waals attraction force, Brownian 

force, hydration force and hydrodynamic force. To investigate diffusion 

behaviour of a particle in confined suspension, the hydration and 

hydrodynamic effect are theoretically analysed. And validated by 

experimental data, the simulation results verify the anisotropic diffusion effect 

caused by hydration and hydrodynamic force. The diffusion model is also 

extended to study the diffusion behaviour of charged particle approaching 

very close (nanoscale) to the confined plane. 

 

Coupled with a simplified fluid flow model, a convective colloidal self-

assembly process is investigated on the simulation platform. A detailed 

insight of the combined influences of fluid flow field, geometrical confinement, 

and the interparticle interactions on the self-assembly process can be 

obtained. In this study, different self-assembled structures are simulated and 

various transition areas are found where a growing crystal transits from n to 

n+1 layer as a function of varied 3 phase contact angle and the velocity and 

direction of fluid flow. The results indicate that the colloidal particles self-

assemble to a more close-packed structure when the fluid flow velocities 

increase; colloidal monolayer forms in the presence of large fluid velocity in 

transverse direction; and the structural transition areas vary following the 

variation of wedge angle. 
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NOMENCLATURE 
 

HA                    Hamaker constant (J) 

B                      Friction coefficient (N s m-1) 
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c                       Viscous damping coefficient 

0c                      Ionic concentration in bulk (mol L-1) 
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tF                      Tangential contact force (N) 
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iG                     Gaussian distribution random sequence 
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n               Refractive index, number of dimension 
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R(τ)                 Autocorrelation function 
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tΔ                   Time step (s) 

( )x tΔ               Displacement (m) 
2 ( )x tΔ            Mean square displacement (m2)   
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CHAPTER ONE  
INTRODUCTION 

 

1.1 BACKGROUND 
 

Colloidal suspensions are complex fluids that consist of mesoscopic particles 

suspended in a solvent (e.g. water). The colloidal particles are significantly 

larger than the solvent molecules, but small enough to show Brownian 

motion. They have recently attracted increasing attention as advanced 

materials with controlled particulate microstructures, such as photonic 

crystals (Weitz and Russel, 2004), textured ceramics (Sakka and Suzuki, 

2005), and electrorheological / magnetorheological fluids (Phule and Ginder, 

1998). Colloidal suspensions play an important role in biology, e.g. blood, 

and also many industrial products are essentially colloidal suspensions and 

are important to our daily life. For example, domestic products such as 

shaving cream, deodorants and weedicide; food processing, preserving and 

packaging industry; harmful effects’ reduction of pollution problems and oil 

extraction from geological deposits. The dynamic behaviour of colloidal 

suspension is important from both scientific and industrial viewpoints (Russel 

et al., 1989, Larson, 1999). It includes many fundamental problems, such as 

diffusion of colloidal particles under Brownian motion, rheological behaviour 

of colloidal systems under shear fields and the kinetics of colloidal 

aggregation, colloidal self-assembly, and crystallization. 

 

Computer simulations serve as adjuncts to theory and real experiments and 

provide otherwise inaccessible (or not easily accessible) information. As we 

have full control over the simulation parameters and can measure every 

conceivable property of a system during a numerical simulation process, 

computer simulations are more than mere attempts to reproduce 

experimental results, but provide us detailed autopsies and diagnostics not 

normally achievable in a laboratory. Over the last several decades, computer 

simulations have been applied to study a wide range of phenomena in 

colloidal systems.  
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1.2 MOTIVATIONS AND CONTRIBUTIONS 
 

The motivations for this study were: 

 

I. To reduce the requirement for physical prototypes and experiments. 

Numerical simulation is able to predict the structural and rheological 

properties of colloidal suspension, and provide more accurate 

information about colloidal suspension without the restrictions of 

experimental conditions. 

 

Although diffusion of spherical colloidal particles has been extensively 

studied experimentally, shortcomings of experimental work are obvious. 

For example, it cannot be realized through experiment to put a particle 

closely enough towards a planar wall, so that the investigation of the 

diffusion behaviour of particle under geometry confinement is 

inaccessible. Also it is experimentally impossible to switch on or off each 

interaction forces separately. 

 

II. To provide more quantitative information about colloidal suspension 

system. Owing to the scarce information related to colloidal suspension 

system at the microscopic level, numerical simulation case studies 

provide vivid view of colloid particle behaviour by three dimensional (3D) 

demonstration of static suspension system and dynamic process. 

In current colloid self-assembly simulation models, the interaction forces 

between particles and between particles and confinement boundaries 

are always neglected, so that detailed formation mechanisms of crystal 

ordered structure and defect are illusive.   

 

III. To establish better understanding of the colloidal particle diffusion 

behaviour and self-assembly performance. With discrete element 

method (DEM), the numerical simulation is able to analyse particle 
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diffusion down to nanoscale distance, and investigate each interaction 

forces individually, which cannot be realized through experimental 

studies. However, current application of DEM method are more related 

to large scale applications, i.e. macro-level behaviour of large particles. 

 

The contributions of this study may be summarized as: 

 

I. The comprehensive descriptions on development of 3D simulation 

platform ‘SimCos’ for colloidal system will serve as a liberal reference 

for future improvement, especially for simulation platform design used in 

colloid science and engineering. The computational methods applied in 

this study examine aspects of colloidal suspension system from a 

variety of different perspectives, which would be difficult to address in 

either pure theory or experiment. 

 

II. The development of colloidal particle diffusion and self-assembly 

models will illuminate microscopic diffusion and self-assembly 

processes to an ultra fine timescale which is difficult to observe during 

experiment. The particle diffusion model developed extends the 

understanding of the particle diffusion coefficient at the nanoscale level 

which is difficult to realize in an experimental system. 

 

III. The computer simulation results would help elucidate the particle 

diffusion and assembly mechanism at the nanoscale level and study 

how the assembly properties are affected by varying system parameters 

during the growth of crystal structure. The knowledge derived from the 

simulation cases will be useful to effectively control the growth of 

colloidal crystal structure. 
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1.3 OBJECTIVES AND SCOPE 
 
The primary objective of this study is to understand the colloidal particle 

system under microscopic scale, by use of an in-house developed simulation 

platform in a manoeuvrable way. The scope of the study is summarized as 

follows: 

 

I. To develop a simulation platform using programming complier Microsoft 

Visual C++ and Open Graphics Library (OpenGL) as the graphical 

representation of the simulation system. 

 

II. To investigate theoretically the interaction forces in the colloid system. 

 

III. To develop suitable mathematical model for colloidal particle diffusing in 

aqueous solution and investigate diffusion coefficient under geometry 

confinement by performing simulation on the in-house developed 

simulation platform. 

 

IV. To develop suitable mathematical model for colloidal self-assembly 

process and investigate growing crystal structure under the influence of 

fluid flow and geometry confinement by performing simulation on the in-

house developed simulation platform. 

 

V. To devise and develop data post-processing software for analysing the 

data generated from the simulation studies. 

 

1.4 STRUCTURE OF THE THESIS 
 

This section provides a brief overview of the thesis, which is organized in four 

main chapters and the flow diagram of the thesis structure is shown in Figure 

1-1.  
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Chapter 2 presents a state-of-the-art overview of different numerical 

simulation methods applied on simulating colloidal suspension system and 

reviews briefly the DEM method used to simulate various granular flows 

behaviour of microscale particles, with its theoretical background and recent 

applications.  

 

Then Chapter 3 presents the development of simulation platform ‘SimCos’ 

based on DEM method for colloidal suspension system, and introduces data 

post-processing technique applied for simulation data analysis. The 

interaction forces taken into account in the model are discussed and the 

program structure of the simulation platform are described in this chapter. 

 

Chapter 4 deals with the diffusion of a spherical colloidal particle suspended 

in aqueous solution. Based on the in-house developed simulation platform 

introduced in Chapter 3, diffusion coefficients of a spherical colloidal particle 

moving in the vicinity of a planar wall are calculated and analysed for 

different particle size and neutral and charged systems.  

 

Chapter 5 presents simulation case studies of a large number of colloid 

particles self-assembling to ordered structure, and the effect of fluid flow field 

and geometry confinement are investigated.    

 

Finally, Chapter 6 draws the conclusions and provides recommendations for 

future studies.  
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Figure 1-1. Thesis flow diagram. 
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CHAPTER TWO  
LITERATURE REVIEW OF DEM & SIMULATION METHODS 

USED IN COLLOIDAL SUSPENSION SYSTEM 

 
2.1 DEM SIMULATION METHOD 
 
Discrete element method (DEM), a discontinuous numerical technique 

analogous to molecular dynamics, was originally developed by Cundall and 

Strace in the early 1970’s to investigate the assembly behaviour of rock mass 

subjected to mechanical loading conditions (Cundall and Strace, 1979). 

During the last three decades, DEM has been extended to simulate various 

granular flows in different processes such as fractured rock masses (Bardet 

and Scott, 1985), vibrated bed (Gallas et al., 1992, Bizon et al., 1998), 

fluidized beds (Tsuji et al., 1993, Hoomans et al., 1996, Link et al., 2007, Link 

et al., 2009), landslides (Cleary and Campbell, 1993, Campbell et al., 1995), 

river ice jams (Hopkins et al., 1996), hopper flow (Ristow, 1992, Zhu and Yu, 

2004), the movement of colloidal particles in ceramic suspensions (Hong, 

1997), and mixing process (Stewart et al., 2001, Kuo et al., 2002, Cleary and 

Sinnott, 2008, Lemieux et al., 2008). Li et al. examined the influence of fluid 

superficial velocity, particle rigidness and initial packing status upon the 

properties of the compressed particle bed by DEM simulations (Li et al., 

2005). Feng et al. presented a numerical study of segregation and mixing of 

binary mixtures of particles in a gas-fluidized bed through DEM simulation, 

where the motion of individual particles is 3D and the flow of continuous gas 

is 2D (Feng et al., 2004). 

 

It has been known as a reliable solution for researchers who want to study 

the behaviour of granular materials in both micro and macro scales, and any 

physical process that involves the disaggregation and movement of material 

is best modelled with DEM rather than continuum methods such as FEM, 

because of its significant potential in solving various geometrical problems 
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and simulating complex behaviour of granular materials compared to the 

analytical and experimental approaches.  

 

2.1.1 Theoretical Background 
 

In DEM, each particle is treated as an individual element, and each element 

has its own specific properties, such as position, velocity, charge and 

dimensions. Furthermore, each particle interacts with its neighbouring 

particles and its surroundings. A particulate assembly is modelled as a 

collection of individual particles. The material properties and the size 

distribution of the particles can be precisely specified as an input to the 

modelling. The particles interactions and the motion of the particles in the 

suspension are modelled on a microscopic scale: the motion of each particle 

is tracked numerically by using a discrete time stepping method. Every time 

step, the forces that act on a particle are summed and the velocity and the 

displacement of the particle are calculated by integration of Newton’s 

equations of motion. Strictly speaking, the movement of the particle at each 

time step is affected not only by the forces from its immediate neighbouring 

particles and vicinal fluid but also the particles and fluids far away. It is of 

great complexity to model such propagation process. However, in DEM 

methodology, an assumption is that by choosing a suitable numerical time 

step so that during a single time step the disturbance from particles and fluids 

far away cannot propagate further than their immediate neighbourhood. Thus 

every time step the forces acting on a particle can be determined exclusively 

from its interaction with the particles in its neighbourhood. Although this 

assumption is considered to be the main defect in DEM (Yuu et al., 1995), in 

a practical situation it is minor compared to other simplifications assumed in 

DEM such as using spherical particles or not modelling breakage or wear of 

particles. The DEM is based on a finite number of discrete, semi-rigid usually 

spherical particles interacting by means of contact or non-contact forces and 

every single particle in a considered system is described by Newton’s 
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equations of motion. The interactions between contiguous particles are 

modelled as a dynamic process and the time evolution of the particles is 

advanced using an explicit finite difference scheme.  

 

The three key aspects of a DEM simulation are (Cleary and Prakash, 2004):  

 

I. A search grid is occasionally used to construct a particle neighbourhood 

interaction list. By using only particle pairs in the neighbourhood list 

reduces the contact detection and force calculation to an O(N) operation, 

where N is the total number of particles. This approach significantly 

reduces the computation cost and in this way, problems with up to a 

million particles are now easily solvable on moderate-speed single-

processor workstations, and even a PC can run the simulation of a 

suspension system composes of large amount of colloidal particles. 

This contact detection solution is of greater help in the 3D simulation.  

 

II. The contact forces for each collision are estimated using the spring-

dashpot model for each pair of particles in the neighbourhood list, as 

shown in Figure 2-1. The contact force is further divided into the normal 

force Fn and tangential force Ft, in the form of 

n
n n n

dxF k x c
dt

= Δ −                                                                            (2-1) 

t
t t t n

t
t

n t
t

dxk x c if F F
dt

F x
nF if F F

x

μ

μ μ

⎧ Δ − ≤⎪⎪= ⎨
⎪ >
⎪⎩

                                                      (2-2) 

where kn and kt are the spring constants in normal and tangitial direction, 

respectively. Δxn and Δxt are the overlapping distances between 

particles or particle and boundary in the normal and tangential directions, 
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respectively. c, μ are the viscous damping coefficient and friction 

coefficient respectively.     

a)  
Figure 2-1. Models of contact forces (Cleary and Prakash, 2004). 

 
III. All the contact and other forces acting on the particles can be 

formulated by Newton’s equations of motion as follows 

i
p i

j

dUm F
dt

= +∑ j if
            

                                                               (2-3)     

i
ij

j

dI M
dt
ω

= ∑
                                                                                   (2-4) 

where mp and I are the mass and moment of inertia of the particle, and U 

and ω are the directional and angular velocities, respectively. The first 

term on the right hand side of these equations, Fij and Mij are the sum of 

the force and moment resulting from the contact between the particles i 

and j. fi is a non-contact force acting on the particle i which comprises 

hydrodynamic drag force, hydration force, buoyancy force, gravitation, 

van der Waals force and electrostatic force. 
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2.1.2 Applications and Recent Advances 
 

DEM can now be routinely applied in the investigation of particles interactions 

and particles packing process. There have been numerous and various 

simulations described in the literature. 

 

DEM simulation offered explanations of material phenomenology and 

suggested possible practical solutions to solve fine powder flow problems: 

the achievement of steady, controllable, reproducible discharge of a fine 

pharmaceutical powder from an intermediate storage vessel to the main 

process reactor (Baxter et al., 2000). However, the simulation scale was 

many orders of magnitude fewer than in the industry. Yang et al. used DEM-

based dynamic simulation, which treated particle packing as a dynamic 

process where interparticle forces were explicitly considered, to depict and 

quantify the 3D chainlike structure of fine particles (Yang et al., 2000). 

However, the simulation case only considered particle packing when the van 

der Waals force dominated, while the influence of suspension medium was 

neglected.   

 

DEM was also used to simulate large-scale particulate flows over large areas 

of specific real terrains, assuming that it was also possible to identify 

unstable masses and model their initial release in a shear failure with an 

appropriate geometry, volume and size distribution (Cleary and Prakash, 

2004). Cordelair and Greil used DEM to simulate solid formation during 

electrophoretic deposition and got an insight into the kinetics determining 

particle packing and density gradient microstructures of colloidal ZrO2 

ceramic powder (Cordelair and Greil, 2004). The micromechanical behaviour 

of Si-based particulate systems subjected to tri-axial compression loading 

was investigated by using DEM simulation. It shows that the single-particle 

properties of the Si based assemblies significantly affect the 

micromechanical behaviour of the assemblies and DEM is a powerful tool to 
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get insights on the internal behaviour of discrete particulates under 

mechanical loading (Amin and Antony, 2006). However, in this study, only 

simple linear normal and tangential spring forces were employed in the 

particle interaction forces model. 

 

The toner behaviour in the development nip of the Océ Direct Imaging (DI) 

print process is of great importance as the print quality of the DI technology is 

primarily determined by the toner flow in the region between the DI-drum and 

the imaging roller. A 2D DEM simulation of toner assembly in the above 

process was developed and shown that by determining the appropriate 

interaction rules and the associated parameters, the print quality could be 

improved (Severens et al., 2006). 2D DEM simulation has been used to 

model bed comminution to understand the crushing mechanism of multiple 

particles at a time, and investigate the failure behaviour of particles around 

the stressing walls and inter-particle breakage and effects of crushing walls 

and velocities on fragmentation of particles during bed comminution (Khanal 

et al., 2007). Morgan carried out 2D DEM simulation to examine the 

dynamics and internal deformation of overlapping volcanoes constructed 

upon a weak devolvement horizon (Morgan, 2006). Compared to the above 

2D DEM simulation studies, 3D DEM simulation is more comprehensive, 

reliable and consequently require more usage of computation processing 

power.  

 

Fast common plane (FCP), a fast contact detection algorithm for 3D DEM, 

was proposed to find the common plane between polygonal particles. By 

limiting the search space for the plane, it could be about 12-40 times faster 

than conventional search algorithm for finding the common-plane (Nezami et 

al., 2004). Although this algorithm improved the contact detection speed 

during particles packing simulation, it had no insights and investigation for the 

algorithm applied to more complicated cases such as particle self-assembly 

or diffusion in suspension. 
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2.1.3 Challenges of DEM 
 

The main disadvantages of the DEM technique are related to computational 

capabilities limited by a huge number of particles and relatively small time 

step used in time integration. However, the capacities of computers are 

growing dramatically making DEM accessible for use on personal computers 

(Balevicius et al., 2006). 

 

A significant challenge in DEM modelling is creation of the model itself. For 

multi-scale modelling that is modelling a colloidal suspension with multiple 

size particles, the contact detection algorithm will vary from the mono-size 

system and be much more complicated. Another challenge with DEM is how 

to specify the micro-properties (particle contact properties) so that the flow on 

macro-level of the thousands of particles behaves in the same way as real 

granular flow. It becomes more difficult to determine the DEM particle 

properties when cohesion is added. 

 

2.2 OTHER SIMULATION METHODS ON COLLOIDAL SYSTEM 
 

As stated above, current research of DEM method are more related to large 

scale applications, i.e. macro-level behaviour of large particles. Since we are 

concerned about the colloidal particle properties of micro and submicro scale, 

and computer simulations have been an integral and efficient tool in the study 

of colloidal system for many years, the review below intends to provide an 

overview of main simulation methods applied to colloidal system. 

 

2.2.1 Brownian Dynamics Simulation 
 

The Brownian dynamics simulation algorithm originates from the work of 

Ermak and McCammon (1978), and is the most simple form of stochastic 

dynamics algorithms for solving the Langevin equations. In Brownian 
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dynamics algorithm, the stochastic Brownian force contains no correlations in 

space or time and the equations are solved with a low-order algorithm 

(Ermak, 1975, Vangunsteren and Berendsen, 1982, Branka and Heyes, 1998, 

Branka and Heyes, 1999, Ricci and Ciccotti, 2003). An individual friction and 

stochastic Brownian force is assigned to each particle of the system as the 

effect of the fluid. The displacement of a particle is proportional to the force 

on it gives the correct dynamics, and the trajectory of a particle is simulated 

stochastically by a series of small displacements chosen from a distribution 

which is the short time solution of the Smoluchowski equation. Brownian 

dynamics simulation is intended to describe colloidal suspensions in time 

scales largely compared to molecular collision times and the macroscopic 

behavior of Brownian dynamics simulation is diffusive.   

 

Aggregation of magnetic colloids at relatively high solids fraction was studied 

(Gunal and Visscher, 1996), and the behavior of clusters of ferromagnetic 

particles in a colloidal dispersion subjected to a simple shear flow was 

investigated (Satoh et al., 1999) through Brownian dynamics simulation. 

Using Brownian dynamics simulation, Hutter (1999) identified the coagulation 

time scales in colloidal suspensions for various solid content ratios. The 

dependence of the time scales on the solid content and the colloidal 

interaction parameters was investigated to achieve a better understanding of 

the coagulation mechanisms. Scholl et al. (2000) performed Brownian 

dynamics simulation to numerically simulate TIRM (total internal reflection 

microscopy) experiment for the mobility of a colloidal particle in a viscous 

fluid in close proximity to a planar wall. Brownian dynamics simulations was 

also used to study the colloidal suspensions of Laponite clay platelets and 

the behavior of the diffusion coefficients as a function of the platelet 

concentration and the Debye length were studied (Odriozola et al., 2004). 

The work of Unni (Unni and Yang, 2005) offer a useful application of 

Brownian dynamics simulation to study the colloidal particle deposition in a 



CHAPTER TWO          Literature Review of DEM & Simulation Methods Used in 
Colloidal Suspension System 

 

 2-9
 

micro-channel flow by computing the particle deposition in terms of the 

surface coverage. 

 

As stated above, the Brownian dynamics algorithm is widely used and has 

been applied to a variety of problems. An advantage of Brownian dynamics is 

that the simulation (and theoretical) problem of the heating up of the system 

in non-equilibrium simulations does not occur, because the velocities of the 

colloidal particles have been eliminated by assuming equilibrium in the 

momentum variables. However, elimination of velocities results in that there 

is no obvious way of dealing with the particles interactions anymore and it is 

not accessible to look into particle’s behavior at specific time step, although 

differentiable potentials such as the Lennard-Jones potential (Heyes, 1988, 

Dickinson, 2000) was used to avoid this problem in most Brownian dynamics 

simulations without hydrodynamic interactions. And in Brownian dynamics 

simulation, very small time step is required to produce accurate 

thermodynamic and short-time dynamical results, and the generation of the 

random displacement is extremely costly regarding computation time when 

many particles are involved, especially in three spatial dimensions.  

 

2.2.2 Monte Carlo Simulation 
 

Monte Carlo simulation method is a class of computational algorithms that 

rely on repeated random sampling to compute their results. It is a stochastic 

approach that offers similar advantages of Brownian dynamics with its 

capability to model processes occurring at rapid time scales. A classical 

method to conducting Monte Carlo simulation is Metropolis method 

(Metropolis et al., 1953), which uses the energy of the system as a criterion 

to evaluate the acceptance or rejection of a Monte Carlo step. Details of 

Monte Carlo simulations are given by Frankel and Eppenga (1982), Frankel 

and Ladd (1984a) and Allen and Tildesley (1987).  
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Monte Carlo simulation was used to study the interaction between two 

uniformly charged colloidal particles carrying absorbed oppositely charged 

polyelectrolytes (Granfeldt et al., 1991). Milchev (2002) studied the depletion 

interaction between a spherical colloidal particle and a planar wall in dilute 

and semidilute monodisperse solutions by means of a Monte Carlo 

simulation. The structure and growth kinetics of homo- and heterocoagulation 

in two dimensions for colloidal particles of equal size were investigated by 

Monte Carlo simulation (Stoll and Pefferkorn, 1996). Colloidal dispersion 

under shear, with DLVO (Derjaguin-Landau-Verwey-Overbeek) potential 

between particles and Brownian motion acting on particles, was modeled by 

Monte Carlo method (Olivi-Tran et al., 1998). Colloidal particle coagulation 

and breakup phenomena under turbulent fluid shear was simulated through a 

Monte Carlo model which was then modified to the form suitable for carrying 

out sectional mass balance in order to alleviate the memory problem arising 

from an enormous number of particles encountered in typical colloidal 

systems (Kim et al., 2003). Chen et al. developed a comprehensive Monte 

Carlo simulation of colloidal membrane filtration to investigate the phase 

transition phenomenon of the particle deposition from a fluid-like polarization 

layer to a solid cake (Chen et al., 2005, Chen and Kim, 2006). More recently, 

Monte Carlo simulation was employed to investigate the ability of a charged 

fluid-like vesicle to adhere to and encapsulate an oppositely charged 

spherical colloidal particle, and a discontinuous wrapping transition of the 

colloid as a function of the number of charges on the vesicle was revealed 

(Fosnaric et al., 2009).  

 

As Monte Carlo simulation incorporates additional step of assessing the 

energy difference in progressing from one time step to the next step, and the 

algorithm presented for implementation is simple, it accurately represents the 

physical attributes of the system. And Monte Carlo simulation is free from the 

restrictions of solving Newton’s equations of motion, which allows for 

cleverness in the proposal of moves that generate trial configurations within 
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the statistical mechanics ensemble of choice. However, because of not 

solving Newton’s equations of motion, no dynamical information can be 

obtained from traditional Monte Carlo simulation. And since Monte Carlo 

simulation is often used in the representation of molecular fluids, it seldom 

represents the flow of colloidal particles, due to the different nature of the 

interactions between particles and molecules.  

 

2.2.3 Lattice Boltzmann Simulation 
 

Lattice Boltzmann simulation methods, a mesoscopic numerical method 

based on the kinetic theory, is a class of computational fluid dynamics (CFD) 

methods for fluid simulation. McNamara and Zanetti (1988) introduced the 

first lattice Boltzmann model in 1988, in which Boolen fields were replaced by 

continuous distributions over the lattices, and the Fermi-Dirac distribution 

was used as the equilibrium distribution function. Instead of solving the 

Navier-Stokes equations, the discrete Boltzmann equation is solved to 

simulate the flow of a Newtonian fluid with collision models (Mcnamara and 

Zanetti, 1988, Succi, 2001). The overviews of fundamentals of the lattice 

Boltzmann simulation method are given by Chen and Doolen (1998), Ladd 

and Verberg (2001), He et al., (2009) and Dunweg and Ladd (2009). 

 

Recently, lattice Boltzmann simulation method has been extended to 

simulate incompressible thermal flows (McNamara and Alder, 1993, Bartoloni 

et al., 1993, Chen et al., 1994, McNamara et al., 1997, He et al., 1998, Tang 

et al., 2005), compressible flows (Kataoka and Tsutahara, 2004), microscale 

gaseous flows (Lim et al., 2002, Nie et al., 2002), etc.. Ladd (2001) 

successfully applied the lattice Boltzmann simulation method to colloidal 

systems and showed that the CPU cost scales linearly with the number of 

particles. Moreover, he showed how fluctuations can be included into the 

model, which is essential in order to investigate Brownian motion. 

Basagaoglu et al. (2008) used a two dimensional lattice Boltzmann model to 
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simulate trajectories of individual inert particles through narrow smooth-

walled and rough-walled channels under relatively low Reynolds number flow 

conditions, and provide a qualitative indication of the behavior of three 

dimensional experimental systems.  

 

In many lattice Boltzmann simulation models of particle-fluid problems stated 

above, the interparticle interactions are either ignored or simply treated to 

collisions between particles. However, more accurate resolutions and a detail 

analysis of particle interactions are required in most practical applications. 

Forces acting discretely on each individual particle while experiencing many-

body interferences from the neighbouring particles should be accurately 

described in order to develop a consummate simulation model of colloidal 

suspension system. To do so, an ideal model should then narrow its scope to 

a microscopic scale and compute each distinct force and displacement more 

actually in three spatial dimensions, thus the DEM method is employed to 

meet this need.  
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CHAPTER THREE  
DEVELOPMENT OF SIMULATION PLATFORM  

 
3.1 MODEL ESTABLISHMENT 
 

As stated in Chapter 2, previous DEM applied simulation works mainly 

include contact forces such as elastic, cohesion and friction force. However, 

in our simulation model, we focus more on non-contact forces such as 

hydration force, DLVO forces, Brownian force and hydrodynamic drag force 

(Li et al., 2008, Fujita and Yamaguchi, 2008). This is because the simulation 

object is of nanoscale and the above mentioned non-contact force play more 

important roles compared to contact forces between colloidal particles. The 

detail of interaction models are discussed as follows. 

 

3.1.1 Hydration Force 
 

In the case of hydrophilic colloidal particles, silica particles in our simulation 

case for example, the hydration forces are believed to arise from strongly H-

bonding surfaces, such as hydrated ions or hydroxyl groups (Israelachvili, 

1992). The boundary layer is termed the hydration layer, which was first 

presented by Derjaguin and his colleagues (Derjaguin and Kussakov, 1939). 

It was experimentally found that hydration forces between hydrophilic silica 

surfaces in water are an order of magnitude larger than the electrostatic 

double-layer repulsive force in a short-range separation (Israelachvili, 1992, 

Yotsumoto and Yoon, 1993). This hydration repulsive force would be helpful 

in preventing the particles from approaching each other, and thus lead to a 

high stabilization of an aqueous colloidal suspension. Empirically, the 

hydration repulsion energy per unit area between two hydrophilic surfaces is 

written as 

/D
Hw C e λ−=                                                                                                    (3-1) 
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where 1λ ≈  nm is the decay length, D is the distance between bare particle 

and plane (Peschel et al., 1982, Israelachvili and Wennerstrom, 1996, Valle-

Delgado et al., 2005, Peng et al., 2006), and CH = 1.2 mN m-1 is the hydration 

constant for quartz (Skvarla and Kmet, 1991). So, with Derjaguin 

approximation, the hydration force between particle and plane is 

/2 2 D
HYD HF R w RC e λπ π −= ⋅ =                                                                           (3-2) 

The hydration layer thickness for both silica particle and silica plane is about 

7 nm (Israelachvili, 1992, Sasaki and Maeda, 1994). 

 

3.1.2 DLVO Forces 
 
DLVO theory was developed by Derjaguin, Landau, Verwey, and Overbeek 

to explain the aggregation of aqueous dispersions quantitatively (Derjaguin, 

Acta Physicochim. URSS 1939, L.D. Landau, 1941). DLVO forces composite 

the attractive van der Waals force and the repulsive electrostatic double-layer 

force. Van der Waals force promotes coagulation while the electrostatic 

double-layer force stabilizes dispersions.   

 

The van der Waals energy per unit area between two identical planar 

surfaces is 

212
HAw
Dπ

= −
                                                                                                  (3-3) 

where AH = 7.65×10-21
 J is Hamaker constant for silica-water-silica system, 

calculated from 

( )
( )

22 2 2
1 21 2

3/ 22 2
1 2 1 2

33
4 16 2

e
H B

n nhvA k T
n n

ε ε
ε ε

−⎛ ⎞−
= +⎜ ⎟+⎝ ⎠ +

                                                        (3-4)          

where kB is the Boltzmann constant, T is the room temperature, ε1 and ε2 are 

the dielectric permittivity of silica and water, respectively, h is the Planck 
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constant, ve is the mean ionization frequency for silica, n1 and n2 are the 

refractive indices of silica and water, respectively (Hunter, 2001, Butt et al., 

2003, Bergna and Roberts, 2006). 

 

With Derjaguin approximation, the van der Waals force between two 

spherical particles is 

vdw 212
HA RF R w
D

π= ⋅ = −                                                                                    (3-5) 

And the van der Waals force between spherical particle and plane is 

vdw 22
6

HA RF R w
D

π= ⋅ = −                                                                                    (3-6) 

The constant potential electric double layer energy per unit area is 

( )
2 2
1 2

0 1 2
1 2

2 2
1 2

0 1 2
1 2

csc 1 coth
2

2 1
2

D D

D D D D

w h D D

e e
e e e e

κ κ

κ κ κ κ

ψ ψεε κψ ψ κ κ
ψ ψ

ψ ψεε κψ ψ
ψ ψ

−

− −

⎡ ⎤+
= + −⎢ ⎥

⎣ ⎦
⎡ ⎤⎛ ⎞+ +

= + −⎢ ⎥⎜ ⎟− ⎝ − ⎠⎣ ⎦                                         (3-7) 

where ε is the dielectric permittivity, ε0 is the vacuum permittivity, ψ1 and ψ2 

are the surface potentials of two particles or particle and plane, respectively, 

and κ is the inverse Debye length. For an aqueous monovalent salt solution 

at room temperature, the inverse Debye length is given by 

0

103.04 10 m
κ −=

×

Lc
mol

                                                                                           (3-8) 

with the ionic concentration c0 in mol L-1. 

 

The constant charge electric double layer energy per unit area is 
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1 2

0

1
sinh

Dew
D

κσ σ
εε κ κ

−⎛ ⎞+
= ⎜

⎝ ⎠
⎟

1

                                                                                       (3-9) 

where σ1 and σ2 are the surface charge densities that relate to the surface 

potential in the form of 1 0σ εε κψ=  and 2 0 2σ εε κψ= , respectively. 

 

Under low potential conditions and small degrees of double layer overlap 

( ), both Equation 3-7 and Equation 3-9 reduce to the approximation 

form as 

1De κ− <<

0 1 22 Dw κεε κψ ψ −= e                                                                                        (3-10) 

 

In the following simulation cases, the surface potential are kept fixed and 

Equation 3-10 is used as an approximation for calculating electrostatic 

double layer force. Because the Equation 3-10 helps to keeps the 

computational effort low, and it is a good approximation for most simulation 

conditions that particles are with small degrees of double layer overlap. Then 

with Derjaguin approximation, the electrostatic double-layer force between 

two spherical particles is 

2 2
1 2

edl 0 1 2
1 2

2 1
2

D D

D D D D

e eF R w R
e e e e

κ κ

κ κ κ κ

ψ ψπ π εε κψ ψ
ψ ψ

−

− −

⎡ ⎤⎛+ +
= ⋅ = + −

⎞
⎢ ⎥⎜− −⎝ ⎠

⎟
⎣ ⎦

                  (3-11) 

 

And its approximation form is 

D
edl 0 1 22F R w R e κπ π εε κψ ψ −= ⋅ =                                                                     (3-12) 

  

The electrostatic double-layer force between spherical particle and plane is 

2 2
1 2

edl 0 1 2
1 2

22 2 1
2

D D

D D D D

e eF R w R
e e e e

κ κ

κ κ κ κ

ψ ψπ π εε κψ ψ
ψ ψ

−

− −

⎡ ⎤⎛ ⎞+ +
= ⋅ = + −⎢ ⎥⎜− −⎝ ⎠

⎟
⎣ ⎦

               (3-13) 

  

And its approximation form is 
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edl 0 1 22 4 DF R w R e κπ π εε κψ ψ −= ⋅ =                                                                   (3-14) 

 

Values of parameters used to calculate the electrostatic double-layer force 

are listed in Table 3-1.  

 
Table 3-1. Parameters for calculating electrostatic double-layer force. 

Variables Base values 

Particle radius (nm), R 100 

Surface potential of particle (mV), ψ1 -30  

Surface potential of wall (mV), ψ2 -50 

Bulk concentration (mol L-1), c0 41.0 10−×  

Dielectric permittivity of water, ε  80 

Vacuum permittivity (A s V-1m-1), ε0 
128.85 10−×  

Temperature (K), T 298 

  
3.1.3 Brownian Force 
 
In this section, a detailed deduction process of Brownian force is presented. 

For colloidal particle suspended in aqueous solution, its Brownian motion is 

described by Langevin equation, 

p
dUm BU
dt

+ = BF                                                                                                  (3-15) 

where mp is the particle mass, U is the particle velocity, 6B Rπη= , is called 

friction coefficient, and FB is the Brownian force. With boundary condition: 

, and the system is in thermodynamic equilibrium, i.e. 0, 0; , 0t r t U= = = −∞ =

21
2 2p

nm U k TB δ=                                                                                               (3-16) 
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where n is the number of dimension.  

  

The solution to Equation 3-15 is  

'( / ) ( / ) '1( ) ( )R R
tt t

B
p

U t e e F t dt
m

τ τ−

−∞
= ∫ '                                                                      (3-17) 

 

The autocorrelation function of velocity is 

' "( 2 / ) [( ) / ] ' " '
2

1( ) [ ( ) ( )] [ ( ) ( )]R R
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U B B
p
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−∞ −∞
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e e R dt dt e e R e
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τ τ τ τ τ τ R dξ ττ τ ξ− + − − −

−∞ −∞ −∞
= =∫ ∫ ∫  

( / )( )
2

RF

p

R e
Bm

τ ττ −=                                                                                                (3-18) 

 

Substituting Equation 3-16, the following equations are given for 

autocorrelation function of Brownian force in one dimension . 

( ) 2 ( )F BR Bk Tτ δ τ= , for 1n =                                                                       (3-19) 

  

On the other hand, the autocorrelation function R(τ), is the inverse Fourier 

transform of the power spectral density (PSD), which describes how the 

power of a signal or time series is distributed with frequency. There are 

various types of PSD, such as PSD of acceleration, PSD of velocity, PSD of 

force (Equation 3-19) (Ounis et al., 1991). And thus the corresponding 

autocorrelation function varies. Generally, 

( )( ) [ ( ) ( )] ( )
2

S fR E n t n tτ τ= − = δ τ ,                                                                     (3-20) 

or  

( ) [ ( ) ( )] ( ) ( )R E n t n t S fτ τ= − = δ τ ,                                                                      (3-21) 
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where  is the single-sided PSD, and ( )S f ( )
2

S f  is the double-sided PSD. 

 

The Gaussian white noise signal can be modelled as 

( )( )
2i i

S fn t G
t

= ⋅
Δ

                                                                                                      (3-22) 

where  is a (0, 1) Gaussian white noise signal sequence, and iG ( )
2

S f
tΔ

 is the 

variance of the noise signal, namely the square value of standard deviation 

(amplitude). ( )
2

S f
tΔ

is the area under the PSD curve in the graph 

(Figure 3-1), is the sampling period, namely time step of Brownian motion. 

PSD f−

tΔ

 

( )
2

S f

( )S f

f1/ (2 )tΔ1/ (2 )t− Δ

( )
2

S f

( )S f

f1/ (2 )tΔ1/ (2 )t− Δ  
Figure 3-1. Relationship between power spectral density (PSD) and amplitude of 

Brownian motion. 

    

And thus, PSD of Brownian force and Force Autocorrelation Function is  

( )( ) [ ( ) ( )] ( )
2

F
F B B

S fR E F t F tτ τ= − = δ τ                                                          (3-23) 

 

Comparing Equation 3-19 with Equation 3-23, it comes 
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( ) 2
2

F
B

S f Bk T= ,                                                                                           (3-24) 

and Brownian force for free particle in bulk suspension is given by 

( ) 2 12
2
F B B

B i i i
S f Bk T k T RF G G G

t t t
π η

= = =
Δ Δ Δ

HYD

RU

                                                  (3-25) 

   

3.1.4 Hydrodynamic Drag Force 
 

When a colloidal particle with a radius of R, suspended in a quiescent 

medium of viscosity η, moves freely with velocity U, it experiences a 

hydrodynamic drag force opposite to its direction of motion, in the case of the 

low Reynolds number, is 

6dF πη= −                                                                                               (3-26) 

 

For a particle moving under geometry confinement, e.g. in the vicinity of a 

planar wall, the hydrodynamic drag force experienced is larger than in the 

bulk, which will be discussed in detail in Chapter 4. 

 

3.2 SIMULATION PLATFORM DEVELOPMENT 
 

3.2.1 Programming Language 
 
The simulation platform is built on a 32 bit windows based platform with 800 x 

600 display resolution. The programming language used to develop this 

platform is C++ and the complier is Microsoft Visual C++, which is a 

commercial integrated development environment (IDE) product engineered 

by Microsoft for programming languages. The version of Visual C++ used 

was Microsoft Visual Studio 2005. Compared to other programming 

languages such as Visual Basic (VB), C++ together with its compiler Visual 

C++ have the following advantages: 
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I. The code is written as a library of routines in object-oriented Visual C++, 

which aims to provide a flexible environment for the general task of 

managing particles in a container.  

 

II. Ability to create windows based graphical user interface (GUI) 

application. 

 

III. Stability and speed. Especially for really large problems, and 

intermediate problems, object-oriented programming is a necessity for 

stable, maintainable code. And through simplifying the loading of 

resources and giving message loop, each iteration will be significantly 

faster.    
 

IV. Great reusability from code through inheritance, that is we do not have 

to throw the prototype away, but just flesh it out with real functionality. In 

other words, it is easy to directly alter the code underneath. However, 

with other programming language, VB for example, we would be stuck 

with the encapsulation provided. The VB statements are too weak to go 

digging underneath. Although the application programming interface 

(APIs), formerly called the Win32 can be accessed by directly opening a 

system dynamic-link library (DLL), we cannot do much in the way of the 

program's structure, because it has already been created by VB.  

 

The graphical representation of the simulation system is Open Graphics 

Library (OpenGL), which is a standard specification for writing applications 

that produce simple and interactive 2D and 3D computer graphics 

applications, from 3D animation, CAD-aided design to visualized simulation. 

Since it came out from 1992, OpenGL has developed as the only open 

graphics standard which is independent of the application platform. A typical 

OpenGL applications can run on any platform, by re-compiling the OpenGL 

library of the target system. 
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Since OpenGL is included in Microsoft windows operation system, it can be 

integrated with Visual C++ compactly, and realize the computing and 

graphics algorithms efficiently. To put it simply, OpenGL has functions of 

model, transformation, colour processing, light processing, texture mapped, 

image processing, animation and object motion blur, and so on. 

 

3.2.2 Program Structure 
 

The basic structure of simulation process is shown in Figure 3-2, and the 

main functions of the simulation platform are listed in Table 3-2. 

   

 
Figure 3-2. Flowchart of simulation process. 
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Table 3-2. Main functions in simulation model. 
Function Name Function 

SphereLoc() Get spheres initial random locations 

SphereVec()  Get spheres initial random velocities 

‘FFF’ Switch() Check if fluid flow field takes effect 

MeshIt() Locate all spheres into their meshes 

MeshIt2() Locate all spheres into their new meshes as geometry 

changed 

InterWedge() Check interaction between spheres and wedge 

InterTBPlane() Check interaction between spheres and top & bottom 

planes 

InterFBPlane() Check interaction between spheres and front & back 

planes 

InterLRPlane() Check interaction between spheres and left & right planes 

SphereInter() Check interaction between spheres 

ReCalc() Calculate new coordinates and velocities of all spheres 

SphereAssemble() Self-assembly process of all spheres 

EndCheck() Check if process finish or not  

KeyPressed() Simulation platform operation keys 

 

 

3.2.2.1 Initialization  

 

In the initialization function, random functions are used to randomly locate all 

particles in suspension with initial velocities. By treating system clock as a 

random seed, srand(time(0)) function is used to generate random number. In 

this way, as time processing, the random seed varied to make sure random 

numbers generated are different. And the distance between every two 
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particles are checked to avoid overlap between them, which makes particles 

suspend evenly. 

 

3.2.2.2 Simulation program cycle  

 

It is important to recalculate and update the size of the 3D mesh xyz array if 

particle radius and container size change. Visual C++ coding of this section is 

located in the MeshIt function. 

 

In the interaction check function, the interaction between particle-particle and 

particle-wall are checked and calculated, under neighbourhood criterion. 

 

The ‘FFF’ switch, MeshIt2, InterWedge and SphereAssemble functions are a 

library of sample routines which can be easily implemented into the 

backbone model, when simulating colloidal self-assembly process which will 

be discussed in Chapter 5.  

         

During each simulation cycle, there’s a simulation process endcheck function 

to check if the process is finished or not. The criterion to determine the end of 

a process is different for different simulation cases. For a particle diffusion 

simulation case which will be discussed in Chapter 4, an overall simulation 

time is preset to determine simulation process ending. For colloidal self-

assembly simulation case, a preset ratio of particles formed ordered structure 

is used to determine simulation process ending.  

 

3.2.2.3 Data output  

 

In the simulation platform, there are two options to output simulation data. 

The first one is to output data with decimal format, which can be directly read 

from any text based program like notepad. The problem with this type of data 

is that it takes up too much computer hard disk space and is difficult to open 

when file is large. The other option used in this simulation program is to 
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output data with binary format, which is a much smaller size data file. For 

simulation data output, a time step called sample time period is set to control 

the frequency of data output, so that the data file size is reduced and data at 

specific time steps can be analysed easily. And data post-processing work 

including data read software development and off-line simulation process 

demonstration technique are used to analyse the simulation data, which will 

be introduced in the following section. 

   

3.2.3 Algorithm Application 
 

The application of DEM to a system includes four basic steps, which are 

discussed in detail as follows: 
 

3.2.3.1 Mesh the system and referencing all particles 

 

During the simulation process, it is important to determine particle’s 

properties at each time step. In this way, all particles need to have a specific 

number to be tracked. And to find particles which have interaction in between, 

the general search procedure is of the size O(N2), where N is the total 

number of particles. To minimize the usage of computation processing power, 

the neighbourhood list is implemented and the system is meshed in 3D grids. 

 

Each particle is spatially sorted into an XMSize x YMSize x ZMSize grid with 

a reference number, and the next step is to find and track each particle 

during simulation process. For the neighbourhood list defined in the 

simulation platform, particles within 3 mesh grids are considered to be 

neighbours, i.e. for a particle of interest, search pattern for other particle is 3 

mesh grids forward and 3 mesh grids backward in all xyz axes. After the 

search process, the distance between particles and then interaction between 

particles are calculated. 
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3.2.3.2 Interaction modelling 

 

The details of calculating the main interaction force are discussed as above. 

For this DEM based simulation platform, other forces such as gravitation, 

buoyancy force are also included as constant linear force vector acting at the 

centre of each particle. 

     

3.2.3.3 Determining each particle’s parameters 

 

Particle motion is determined by applying Newton’s second law as follows.  

F
dt

dUmp =                                                                                                   (3-27) 

where mp is the mass of particle, F is the summation of all forces act on the 

particle, and U is the velocity vector of particle. 

 

With the assumption that the force acting on a particle is constant over one 

time step, td, the velocity vector of each particle is then determined by 

d
p

ttt t
m
FUU

d
+=+                                                                                          (3-28) 

and the coordinates at the end of time step are then determined using an 

explicit numerical integration method, which is given as follows 

)(5.0 tttdttt UUtrr
dd

++= ++                                                                            (3-29) 

where rt is the coordinates of particle at time t. 

 

3.2.3.4 Updating system 

 

Timestamp is recorded, and data of particle’s velocities and coordinates are 

written into specific data files for a completed simulation time step. After that, 

system update working starts, which includes using the velocity and 
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coordinates calculated from last time step as initial values for integration in 

new time step, and sorting all particles into mesh system with new reference 

particle numbers.  

 

3.3 DATA POST-PROCESSING TECHNIQUE 
 

3.3.1 Data Read Software Development 
 

A large number of data such as velocities, coordinates of each single particle 

at every sample time step, and forces acting on each single particle at every 

sample time step are generated during a simulation process, and output into 

different preset data files. As is mentioned above, the simulation data are 

output with binary format and cannot be directly read from text based 

program. And also in order to analyse particle’s movement quantitatively, 

simulation data of any certain time are required. A data read software is 

developed to meet this need. The GUI of the data read software is shown in 

Figure 3-3. Firstly, select a simulation data file of .prn extension as the input 

file, and create a .txt file as output file. Secondly, input the data read 

parameters including the total number of particles in the simulation process, 

the start time T1 and end time T2 of select data read period, and the sample 

data read time step Ts. Thirdly, select objective particles whose simulation 

data are chosen to read into data read output files. At last, click ‘!Start’ button 

to read binary data and write them into decimal .txt file. 

 

There are three options designed to select objective particles: 

  

I. Read all particles’ data. 

  

II. Input the total number of particles, 20 for example, that are required to 

read data, and click ‘randomly select’ button to randomly select 20 

particles, with their particle numbers outputting into a particle number 

file. 
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III. Read the data of certain particle number. For example, input number ‘5’ 

in the box next to ‘Select ONE’, the data of particle number 5 will be 

read and written into .txt data file.  

 

     
Figure 3-3. Data read software GUI. 

 

The flowchart of the data read program is shown in Figure 3-4, and the main 

functions of the data read program are listed in Table 3-3.   

 

 
Figure 3-4 Flowchart of Data read program. 
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Table 3-3. Main functions in data read program. 
Function Name Function 

Timestamp read() Get the current timestamp 

Read all()  Read all particles data into decimal .txt file 

Random() Read randomly selected particles data into 

decimal .txt file 

One() Read one appointed particle data into decimal .txt file 

fseek() Locate the data read point to the following timestamp  

End() End the data read process 

   
By using the data read software, the large volume simulation data which are 

all in binary format can be converted to decimal format and output for data 

analysis. However, the data post-processing method introduced above is not 

direct-viewing for simulation process at particular time step. And thus, off-line 

data 3D demonstration program is developed, as stated in the following 

section. 

 

3.3.2 Off-line Data 3D Demonstration 
 

As mentioned above, the data files created during simulation are with 

configuration of a run-timestamp followed by the particle’s xyz coordinates, 

which are all in binary format. Here to demonstrate simulation off-line data, 

the backbone program of the simulation platform ‘SimCos’ is simplified. Here 

only the environment settings of ‘SimCos’ are used, with particles and 

suspension container through OpenGL drawing. And instead of checking 

interaction between particles, calculating forces acting on particles, particles’ 

velocities and consequently coordinates, the particle coordinates data file is 

used as direct input. There are three different ways for off-line data 3D 

demonstration, as listed below: 
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I. To demonstrate snapshots of simulation process at any particular time 

step. By setting a specific time step, the particles’ coordinates at this 

time step are input and a snapshot of simulation process at this time 

step is displayed.  

 

II. To demonstrate the snapshot of any particular particles. The particles’ 

numbers are displayed on the surface of the particles and particles of no 

interest are set to disappear. In this way, it is much more clear to check 

if two particles interact with each other, through a vivid 3D view. 

 

III. To demonstrate simulation process in a larger time-scale. As the time 

step used in simulation process is very small, it is difficult to observe 

particle movement during each simulation time step. By setting a large 

data sample time step, 10 times simulation time step for example, the 

particle movement can be tracked in an easier and efficient way when 

reading off-line simulation coordinates data file. 
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CHAPTER FOUR  
DIFFUSION COEFFICIENT ANALYSIS OF BROWNIAN 

PARTICLE  

 
4.1 INTRODUCTION 
 

Brownian motion, starting with the seminal work of A. Einstein and M. 

Smoluchowski (Einstein, 1905, Smoluchowski, 1906), has been the subject 

of intense research over 100 years (Chandrasekhar, 1943, Hanggi and 

Marchesoni, 2005), from polymer physics to biophysics (Reimann, 2002, 

Frey and Kroy, 2005, Sokolov and Klafter, 2005), aerodynamics, and 

statistical mechanics. As a simple stochastic process, Brownian motion can 

be modelled to mathematically characterize the random diffusion of free 

colloidal particles suspended in fluids. Understanding and controlling the 

diffusion of colloidal particles in fluids are the main challenges in cell biology 

(Bareford and Swaan, 2007), catalytic reactions occurring in porous media 

(Daniel and Astruc, 2004) and separation techniques of size-dispersed 

particles on micro or nanoscale (Corma, 1997).  

 

Here we focus on the problem of the diffusion of Brownian particles in 

confined geometries (Burada et al., 2009). When a colloidal particle 

suspended in a quiescent fluid approaches a planar wall, the dynamics of the 

particle are different from the bulk dynamics due to hydrodynamic 

interactions between the colloidal particle and the wall. Brenner and Goldman 

et al. (Brenner, 1961, Goldman, 1967) predicted that the hydrodynamic 

mobility of a particle perpendicular and parallel to a planar wall tended to be 

zero as the separation distance between particle and wall became infinitely 

small, and the diffusion coefficients perpendicular and parallel to the wall 

were greatly reduced when the particles were close enough to the wall, i.e. 

within distances comparable to or less than their radius. For decades, 

Brownian motion of spherical colloidal particles in the vicinity of a wall has 

been extensively studied, both theoretically (Faxen, 1923, Brenner, 1961, 
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Brenner, 1962) and experimentally (Feitosa and Mesquita, 1991, Faucheux 

and Libchaber, 1994). An optical trapping (Grier, 1997, Neuman and Block, 

2004) technique has been applied to measure the nanoscale displacements 

of colloidal particles and analyse diffusion coefficient under geometry 

confinement. Combining optical trapping with total internal reflection 

microscopy, Walz and Suresh (1995) studied the sedimentation of spherical 

colloidal particles and results were in very good agreement with Brenner’s 

prediction. Combining optical tweezers with a video microscopy experiment, 

Lin et al. (2000) showed that the particles movement agreed with Brenner’s 

prediction in both perpendicular and parallel directions, when there is no 

electrostatic interaction in the system. A recent study which applied 

fluorescence microscopy in three dimensional particle tracking (Banerjee and 

Kihm, 2005) showed that Brenner’s predictions for particle mobility parallel to 

a planar wall are valid for colloids. In a typical experiment, trajectories of 

tracer particles were recorded and analysed in terms of position correlations 

or mean square displacement. From those data, information on the size of 

the diffusing objects or on their interactions with the surrounding medium can 

be extracted (Gambin et al., 2006). Resonance enhanced dynamic light 

scattering was firstly used to probe the dynamic phenomena of particle 

diffusion in the fluid close to a gold surface, and the possibility to measure 

the diffusion of small, weakly scattering PS colloids (Rh = 20 nm) was 

demonstrated (Plum et al., 2009). However, this experimental study of 

particle diffusion did not include non-hydrodynamic effects such as 

electrostatic interaction and hydration force. 

 

However, there are some shortcomings in the experimental work and 

previous numerical simulations. Firstly, it cannot be realized through 

experiment to put a particle closely enough towards the wall, and previous 

works only consider distances between particle and wall down to 1 μm (Lin et 

al., 2000). Secondly, there is fluctuation of the initial position of the particle 

for each experimental sample and the speed of the image capture is limited 

by the hardware, so that the displacement of the particle for every time step 
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cannot be precisely obtained. Thirdly, many other interaction other than 

hydrodynamic drag force and Brownian force were not included in previous 

numerical models and experiments for simplifying the complexity of the 

system (Carbajal-Tinoco et al., 2007). And it is experimentally impossible to 

switch on or off each interaction force separately. 

 

In this chapter, a series of simulations are set up in a modelled geometry, 

where a spherical colloidal particle is in the vicinity of a solid horizontal wall. 

The Brownian motion either perpendicular or parallel to the wall are studied 

and the diffusion coefficient related to the varying distance between particle 

and wall for different particle size and different charge systems are analysed. 

 

4.2 THEORETICAL BACKGROUND 
 

As stated in Chapter 3, a colloidal particle with a radius of R, moving freely 

with velocity U in a quiescent medium of viscosity η, experiences a 

hydrodynamic drag force opposite to its direction of motion, 

6dF πη= −                                                                                                 (4-1) 

 

The diffusion coefficient D0 of the sphere is given by the Stokes-Einstein 

relation 

0 6
Bk TD

Rπη
=                                                                                                     (4-2) 

where kB is the Boltzmann constant and T is the temperature of the system. 

 

If the colloidal particle moves in the vicinity of a planar wall, the surrounding 

fluid will cause a hydrodynamic interaction with the interface. The drag force 

acting on the particle is larger than in the bulk, and its diffusion is hindered by 

hydrodynamic interaction between particle and wall, and therefore its 

diffusion coefficient is smaller than in the bulk. The motion of the particle 
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becomes anisotropic as the drag force parallel to the wall is less than that 

perpendicular to the wall. The expressions for the parallel and perpendicular 

components of the drag force are conventionally represented by 

incorporating correction factors λ⊥ and //λ . These expressions are 

6dF F RUλ πη λ⊥ ⊥= = − ⊥                                                                                  (4-3) 

and 

// // //6dF F RUλ πη λ= = −                                                                                   (4-4) 

 

Brenner (1961) calculated the exact solution of λ⊥ for a spherical particle 

moving perpendicular to the wall, 

1

0

D
D

λ − ⊥
⊥ =  
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where 
2

arccos ln 1y y yh
R R R

α
⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= = +⎜ ⎟ ⎜ ⎟ −
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

, and y is the shortest distance 

between the particle centre and wall. 

 

However, there is no exact analytical expression for //λ . The commonly 

applied approximation is due to Faxén (1923), including terms of order (R/y)5, 

using the so-called ‘method of reflections’, 

3 4 5
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//
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D
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                          (4-6) 
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Using the same method, the approximation form of λ⊥ is inclusive of terms of 

order (R/y)3, 

3 4
1

0

9 11
8 2

D R R O
D y y

λ − ⊥
⊥

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

R
y

YDU

                                                                (4-7) 

 

Experimental evidence for this wall effect is comparably recent and consists 

mostly in measuring changes in the diffusion coefficient of a micro-sized 

spherical particle moving towards a surface (Carbajal-Tinoco et al., 2007, 

Schaffer et al., 2007). 

 
4.3 MODEL ESTABLISHMENT 
 

Based on the established simulation platform SimCos (Fang and Li, 2009), 

the interaction model is described in Chapter 3. And here hydration force, 

DLVO forces, hydrodynamic drag force and Brownian force are implemented 

to model particle diffusion phenomena. And for a colloid particle suspended 

in an aqueous solution in the vicinity of a planar wall, the hydrodynamic drag 

force is revised as follows.   

 
4.3.1 Hydrodynamic Drag Force Revisited 

 

When a particle is suspended in an aqueous solution, its hydrodynamic drag 

force in the form of Equation 4-1 changes to 

6d HF Rπη= −                                                                                             (4-8) 

where RHYD is the hydrodynamic radius of particle, with 7 nm thickness 

hydration layer. And the expressions for the parallel and perpendicular 

components of the drag force in the vicinity of planar wall are 

6d HYF F R UDλ πη λ⊥ ⊥= = − ⊥                                                                               (4-9) 
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D

and 

// // //6d HYF F R Uλ πη λ= = −                                                                             (4-10) 

 

Here comes the selection of order number in Equation 4-5, Equation 4-6 and 

Equation 4-7 for the correction factors λ⊥  and //λ , respectively, as shown in 

Table 4-1. 

 

Table 4-1. Stokes’ Laws correction factor for a planar wall, Equation 4-5~Equation 4-7. 

α Distance 

ratio  

(y/R) 

Parallel correction factor ( //λ ) Perpendicular correction factor ( ⊥λ ) 

 1st      3rd 4th 5th 1st 3rd n=1 n=3 

(Equation 4-6) (Equation 4-7) (Equation 4-5) 

0 1 2.2857 1.7778 2.5859 3.0843 -8 2.6667 ∞  ∞  

0.5 1.1276 1.9954 1.6997 2.0850 2.2455 429.41 2.8486 8.0122 8.8403 

1 1.5431 1.5736 1.4937 1.5662 1.5839 3.6909 2.4569 2.7696 2.9882 

1.5 2.3524 1.3143 1.2979 1.3076 1.3091 1.9166 1.7852 1.7515 1.8308 

2 3.7622  1.1758 1.1726 1.1738 1.1739 1.4266 1.4077 1.3822 1.4120 

2.5 6.1323 1.1010 1.1003 1.1005 1.1005 1.2247 1.2214 1.2108 1.2219 

3.0 10.068 1.0592 1.0590 1.0591 1.0591 1.1258 1.1252 1.1211 1.1252 

5.0 74.210 1.0076 1.0076 1.0076 1.0076 1.0154 1.0154 1.1211 1.1252 

12 81377 1 1 1 1 1 1 1.1211 1.1252 

 

So, for parallel correction factor, 5th order approximation is used: 

3 4
1 //

//
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R
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                                        (4-11) 

                                                For perpendicular correction factor with the approximation form Equation 4-7, 

with the distance ratio decreasing, the perpendicular correction factor 
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increases non-monotonously and even changes to negative value. While with 

exact solution Equation 4-5, the perpendicular correction factor increases 

monotonously and up to ∞  when the distance ratio decreases to 1, which is 

a perfect boundary condition. Comparing the perpendicular correction factor 

value of 1st (n=1) and 3rd (n=3) order in Equation 4-5, the difference is 

insignificant as shown in Table 4-1. Since the computational effort is lower 

with 1st order equation, the exact solution with 1st order approximation is 

used to calculate perpendicular correction factor: 

1
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⊥ =  
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4 ( 1) 2sinh(2 1) (2 1)sinh 2sinh 113 (2 1)(2 3) 4sinh ( ) (2 1) sinh
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n n n n
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α α

−

∞

=

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥+ + + +⎪ ⎪= −⎨ ⎬⎢ ⎥− +⎪ ⎪⎢ ⎥+ − +
⎪ ⎪⎣ ⎦⎩ ⎭

∑     (4-12) 

where 
2

arccos ln 1y y yh
R R R

α
⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= = +⎜ ⎟ ⎜ ⎟ −
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

, n=1. 

 

When a particle is suspended in an aqueous solution, for the y/R or R/y factor 

used to calculate perpendicular and parallel correction factors, the definitions 

of R and y are still ambiguous, i.e. R is a particle bare radius or hydrodynamic 

radius RHYD, and y is a distance from the centre of the particle to the hydration 

surface or bare surface of the wall. As shown in Figure 4-1, since both 

particle and wall are uncompressible, with boundary condition / 1,y R λ= = ∞  

(Brenner, 1961), R is the particle bare radius and y is the distance from the 

centre of the particle to the wall bare surface. 
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Figure 4-1. Illustrative sketch of relation between y and R. 

                            

4.3.2 Simulation Method 
 

The diffusion coefficient of a free Brownian particle in one dimension, e.g., in 

the x direction, D0-x is defined by (Hunter, 2001)  

2
0( ) 2 xx t D −Δ = t                                                                                           (4-13) 

 

The value of D0-x is obtained as follows. First, particle displacements ( )x tΔ  

corresponding to each sample time step for all samples are recorded. Then 

the mean square displacement in the x direction 2 ( )x tΔ  is derived by 

calculating the variance of ( )x tΔ  at each sample time step. At last D0-x is 

determined from the linear fit of 2 ( )x tΔ  to t (Equation 4-13). The same 

method is used to derive the diffusion coefficients along the y and z 

directions. 

 

For each simulation case, the diffusion coefficient D0 of a free Brownian 

particle in bulk suspension is derived first. And through comparison to 

experiment (Lin et al., 2000) and theory, the simulation model is validated. 

And then investigate the diffusion coefficient by including different interaction 

forces and geometry confinement effect.    
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Data read software and video snapshot (Fang and Li, 2009) are the post-

processing technique used to demonstrate diffusion coefficient real time 

process or display off-line data while preset a sample time step to enlarge the 

microscopic view.  

        

Below the selection of the simulation time step t, total run time tall for a trial 

sample, time step  to calculate Brownian force and the sample number N 

during the simulation process are investigated.   

tΔ

 

As mentioned in Chapter 3, for colloidal particle suspended in aqueous 

solution, its Brownian motion is described by Langevin equation, 

p
dUm BU
dt

+ = BF                                                                                          (4-14) 

where 6B Rπη= . With boundary condition: 0, 0; , 0t r t U= = = −∞ = , and the 

system being in thermodynamic equilibrium, i.e. 

21
2 2p

nm U k TB δ=                                                                                       (4-15) 

 

Taking the Brownian motion in x direction as an example, Equation 4-14 can 

be substituted as 

2

2p
d x d xm x B x x F
dt dt

Δ Δ
Δ ⋅ + Δ ⋅ = Δ ⋅ B                                                                    (4-16)  

As 
2( ) 2d x d xx

dt dt
Δ Δ

= Δ ⋅                                                                                  (4-17)            

2 2 2
2

2 2

( ) 2 2 (d x d x d xx
dt dt dt
Δ Δ

= Δ ⋅ + ⋅ )Δ                                                                   (4-18) 

It comes  
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2 2 2
2

2 2

1 ( ) (
2

d x d x d xx
dt dt dt

Δ Δ
Δ ⋅ = ⋅ − )Δ                                                                     (4-19) 

   

So that Equation 4-15 takes the form: 

2 2 2
2

2

1 ( ) 1 ( ) ( )
2 2p p

d x d x d xm B m
dt dt dt
Δ Δ Δ

Bx F+ − = Δ ⋅                                             (4-20) 

 

Averaging both sides of Equation 4-20 over many particle samples 

(averaging over an ensemble), or over different initial times, it comes 

2
2 2

2

1 1 12
2 2 2p

d dm x B x m U
dt dt

Δ + Δ − =2 0p                                                (4-21) 

 

Combining with Equation 4-15, Equation 4-21 becomes 

 
2

2 2p
d u dum B k
dt dt

+ = BT                                                                                   (4-22) 

where 2xΔ  is denoted by u. 

 

The solution to Equation 4-22 is 

 ( / )2 2 ( RtB
R

k Tx u t e 1)
B

ττ −⎡Δ = = + −⎣ ⎤⎦                                                              (4-23) 

where Rτ  is the relaxation time, with a form of 

6
p

R

m
R

τ
πη

=                                                                                                    (4-24) 

 

At a very short time (this short time t, molecular time << t << Rτ , is of the 

order of the time between successive collisions between the Brownian 

particle and the molecules of the surrounding fluid), relative to times between 

collisions with molecules, the particle velocity is the thermal velocity as 



CHAPTER FOUR  Diffusion Coefficient Analysis of Brownian Particle 

 

 4-11
 

determined at equilibrium (Equation 4-15). In Equation 4-23, at short time, 

Rt τ<< , e.g. 0.1 Rt τ= , it is possible to expand the exponential,  

2
2 2

2

2 (1R 1)
2

B B

R R p

k T k Tt tx t t
B mτ τ

⎡ ⎤
Δ ≈ − + − =⎢ ⎥

⎣ ⎦
τ+                                               (4-25) 

 

Namely, at a short time, relative to times between collisions, the particle 

moves as a free particle with constant velocity.  

 

In Equation 4-23, at long enough time all Rt τ>> , e.g. 310all Rt τ= , the 

exponential decays away, and Rτ  can be neglected compared to tall, so it 

comes to Equation 4-13. The time step Δt used to calculate Brownian force is 

determined through a trial simulation case, where a colloidal particle is 

subject to free Brownian motion in the bulk. The key parameters included in 

the model are listed in Table 4-2, and the simulation results are listed in 

Table 4-3. Comparing the calculated diffusion coefficient got from simulation 

with theoretical value which is 12102.04 −×  m2s-1 got from Equation 4-2, the 

appropriate time step Δt is set to be 0.50 ns to calculate Brownian force. 

 
Table 4-2. Key simulation parameters of particle diffusion model. 

Variables Base values 

Particle radius (nm), R 100 

Particle density (kg m-3), pρ  2200 

Fluid density (kg m-3), fρ  1000 

Fluid viscosity (Pa s), η  0.001 

Time step (ns), td 0.5 
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Table 4-3. Free diffusion coefficient of particle in bulk. 

tΔ  (ns)   0.40 0.43 0.45 0.50 

Diffusion Coefficient D0   

( m2s-2) 
1210−×

2.47 2.21 2.05 2.04 
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Figure 4-2. Mean square displacements 2xΔ , 2yΔ and 2zΔ  as functions of time.  

(Note: (a) for 200 samples, (b) for 500 samples and (c) for 1000 samples.) 

 

Theoretically, for a colloidal particle subjected to free Brownian motion, the 

mean square displacements in x, y and z direction should be the same. This 

criterion is used to determine an appropriate sample number used to 

calculate the diffusion coefficient.   

 

Comparing the results obtained from different samples (Figure 4-2), the 

appropriate sample number N used to calculate the diffusion coefficient is 

chosen to be 1000. 

 
4.4 SIMULATION RESULTS AND DISCUSSIONS 
 
4.4.1 Model Validity 
 

Lin et al. (Lin et al., 2000) used video microscopy combined with optical 

tweezers to measure the Brownian motion of an isolated uncharged PMMA 

sphere suspended in a 30% (by weight) sucrose solution confined between 

two parallel walls. The optical tweezers were used to control the relative 
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distance between a sphere undergoing Brownian motion and the wall, as is 

illustrated in Figure 4-3.  

 

 
Figure 4-3. Schematic diagram of an isolated PMMA sphere confined in a thin glass 
cell.  
(Note: The location of the sphere with respect to the walls is manipulated by optical tweezers. 

The spheres stuck to the wall are used as reference points to determine the cell spacing and 

the location of the moving sphere relative to the cell walls (Lin et al., 2000).) 
 

Table 4-4 lists the key parameters used in the experiment. Figure 4-4 is the 

experimental results of a particle moving near one planar wall. The 

experimental data agree with the theoretical prediction within the 

experimental precision. 

 
Table 4-4. Key parameters used in the experiment (Lin et al., 2000). 

Variables Base values 

Particle radius (nm), R 466 

Particle density (kg m-3), pρ  1200 

Fluid density (kg m-3), fρ  1130 

Fluid viscosity (Pa s), η  0.003 

Time step (ns), td 0.5 
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Figure 4-4. The measured diffusion coefficient D// (solid circles) and D⊥(solid triangles) 

for an isolated sphere near one planar wall, normalized by D0 .  
(Note: The solid line is the theoretical prediction for D// / D0, calculated (not fitted) using 

Equation 4-6, and the dashed line is the theoretical prediction for D⊥ / D0, calculated (not 

fitted) using Equation 4-7 (Lin et al., 2000).) 

  

Since the use of uncharged particle, the DLVO force between particle and 

wall is neglected. However, as this is a sucrose solution, the existence of 

hydration force and hydration layer in this system is still ambiguous. Below 

simulation case studies are carried out to explore if there is a hydration layer 

existing outside the particle in this system. 

 

First, the uncharged particle is treated as bare particle without any hydration 

layer outside (CASE I). In this case, only the Brownian force and 

hydrodynamic drag force take effect. Then, a 7 nm thickness hydration layer 

is included outside the bare particle, and hydration effect is taken into 

account correspondingly (CASE II). Finally, the particle is treated with a 

volume expansion effect, which is an important property of polymer (CASE 

III). The relaxation time Rτ  calculated from Equation 4-24 is 17.3 ns, and the 

theoretical diffusion coefficient calculated from Equation 4-2 is 131.47 10−×  
m2s-1. The simulation time step is set to be 0.5 ns, the data sampling time is 

set to be 10 ns and the simulation is run for 10 μs, The simulation results of 

CASE I to III, compared with theoretical prediction and experimental data are 

shown in Table 4-5. As shown in Table 4-5, the simulation values are smaller 
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than the theoretical prediction values, especially when y/R approaches to 1. 

The reason for this systematic deviation is that the distance of the particle 

from the wall varies with time as a result of Brownian motion of the particle, 

while the calculated diffusion coefficient is a value for initial particle-wall 

separation. 

 
Table 4-5. D/D0 for a particle near a planar wall. Comparison among theoretical 

prediction, experimental data, and simulation CASE I, II and III. 

y/R 
0/ DD⊥  0// / DD  

theory experiment I*  II* III* theory experiment I*  II* III* 

2.3 0.56 0.48 0.31 0.35 0.34 0.76 0.57 0.58 0.59 0.65

4.7  0.78 0.76 0.57 0.66 0.68 0.88 0.81 0.77 0.78 0.85

7.0 0.85 0.84 0.68 0.69 0.81 0.92 0.87 0.91 0.84 0.86

12 0.91 0.88 0.75 0.86 0.87 0.95 0.94 0.90 0.95 0.95

16 0.93 0.91 0.89 0.79 0.98 0.96 0.93 0.92 0.92 0.98

21 0.95 1.0 0.90 1.0 1.0 0.97 0.93 0.95 0.94 1.0

28 0.96 0.91 0.92 0.94 1.0 0.98 1.0 0.97 0.99 0.99

35 0.97 1.0 0.95 0.95 0.98 0.98 1.0 1.0 1.0 1.1

58 0.98 0.95 0.99 0.99 0.99 0.99 1.0 0.99 1.0 1.1

 (Note: I*: CASE I, bare particle without hydration layer outside; II*: CASE II, bare particle 

with a 7 nm thickness hydration layer outside; III*: CASE III, bare particle with a volume 

expansion effect.) 

 

The results data got from the above three cases are fitted with third order 

exponential decay function, as shown in Table 4-6 and Figure 4-5(a). From 

Table 4-6, the fit model parameters between CASE III and experiment match 

the best. In order to compare the match degree between three simulation 

models and the experiment, fit comparison work were done, and the P-value 

testing the statistical significance are 0.8392, 0.9933 and 0.9952, 

respectively. So it comes to the conclusion that by including a volume 
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expansion effect and correspondingly including hydration effect for particle 

suspended in sucrose solution, the results agree the best with the theoretical 

prediction and experiment data, compared to the other two hydration layer 

treatment of particle in this system, as shown in Figure 4-5.   

 
Table 4-6. Explicit function of for a particle near a planar wall.  0/ DD⊥

0/ DD⊥    
)/(1

3

)/(1

2

)/(1

10
321

Ry
a

Ry
a

Ry
a eAeAeAA

−−−

+++  

 

 A0     A1
 

a1  A2 a2 A3 a3 

experiment 0.96739 -1.02363 1.0446 -1.14629 1.04494 -0.33342 7.70815

I 1.04684 -1.75345 0.96051 -0.14523 65.55151 -0.57721 8.24893

II 0.99437 -0.36484 10.84212 -0.1677 10.83819 -15.94559 0.53307

III 0.99834 -1.23936 1.0458 -0.75439 1.04637 -0.64154 6.00151
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Figure 4-5. D/D0 for a particle near a planar wall. Comparison among theoretical 

prediction, experimental data, and simulation CASE I, II and III.  

(Note: (a) The comparison of perpendicular diffusion coefficients D normalized by D0, 

among experimental data (solid circles), simulation CASE I for bare particle (solid triangles), 

simulation CASE II for particle inclusive of hydration layer (solid squares), and simulation 

CASE III for particle inclusive of volume expansion effect (open triangle). The solid line, the 

dot-dash line, the dot line, and the dash line are fitted with third order exponential decay 

function for experimental data, simulation values for bare particle, simulations values for 

particle inclusive of hydration layer, and simulation values for particle inclusive of volume 

⊥



CHAPTER FOUR  Diffusion Coefficient Analysis of Brownian Particle 

 

 4-17
 

expansion effect, respectively. And (b) the simulation value of diffusion coefficients and 

 for an isolated spherical colloidal particle near one horizontal planar wall, normalized by 

D0. For comparison with theoretical prediction value using Equation 4-11 and Equation 4-12 

and the experimental data (Lin et al., 2000).)   

⊥D

//D

 

4.4.2 The Comprehensive Study of Hindered Diffusion 
 

Here we consider the problem of a spherical colloidal particle of radius R 

moving towards a planar surface, y = 0, with its initial velocity U (illustrated in 

Figure 4-6). Both the particle and plane are silica with 7 nm hydration layer 

thickness. Figure 4-7 shows a snapshot of this particle diffusion simulation 

process. 

 

 

 
Figure 4-6. Scheme of the particle diffusion system. 

(Note: A spherical colloidal particle moving in the vicinity of a planar wall at y = 0, with y 

being the particle-wall separation. The diffusion of the particle parallel to the wall D// differs 

from that perpendicular to the wall D⊥. ) 
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Figure 4-7. Snapshot of simulation process for particle diffusion in the vicinity of a 
planar wall. 

 
4.4.2.1 Neutral system 

 

Firstly, we present simulation case where an uncharged particle is 

suspended in aqueous solution, moving near a wall. The parameters used in 

this simulation are the same as shown in Table 4-2. 

 

Before running the simulation system, initialization work is required, which 

are listed as follows: The particle’s initial velocity U is determined by its 

thermodynamic equilibrium (Equation 4-15), the relaxation time Rτ calculated 

from Equation 4-24 is 5.01 ns and the theoretical diffusion coefficient 

calculated from Equation 4-2 is 122.04 10−× m2s-1. The simulation time step is 

set to be 0.5 ns, the data sampling time is 10 ns and the simulation run time 

is 10 μs.  

 

At each simulation time step, the displacements of particle compared to its 

initial coordinates in three axes are calculated and at each data sampling 

time, the displacements data are output to displacements data file. At the end 

of the running time 10 μs, which are computation cycles for a single 42 10×
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sample, the running time and the computation cycle counter are reset to zero, 

and the particle is reset with its initial velocity and position. The simulation 

process is terminated until the 1000 samples are all finished.  

 

The value of diffusion coefficient D// in parallel direction is obtained as follows. 

First, the mean square displacements 2 ( )x tΔ  and 2 ( )z tΔ  are derived 

through calculating average square root summing value over 1000 samples. 

Then Dx and Dz are determined from the linear fit of 2 ( )x tΔ  and 2 ( )z tΔ  to t, 

respectively (Equation 4-13). And D// is the average of Dx and Dz. The same 

method is used to derive the diffusion coefficient D  in perpendicular 

direction. The diffusion coefficient is then normalized by dividing simulated 

free diffusion coefficient in bulk. 

⊥

 

Figures 4-8 shows 2 ( )x tΔ , 2 ( )y tΔ and 2 ( )z tΔ  as functions of t, 

respectively.  
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Figure 4-8. Mean square displacements 2 ( )x tΔ , 2 ( )y tΔ  and 2 ( )z tΔ  as functions of t.  

(Note: The lines are fits of the data to a linear function of t (Equation 4-13).) 

 
Note that the starting points in Figures 4-8 are not the initial coordinates. 

Because the initial coordinates are arbitrarily preset and here we are only 

interested in the relative displacement, so the initial coordinates at t=0 are 
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eliminated. Figure 4-8 indicates that the motion parallel to the confined wall 

(the x-z plane) is isotropic and the motion perpendicular to the wall is 

hindered to some extent. This is because the confined wall is placed 

horizontally which is perpendicular to particle diffusion in vertical y direction, 

and the mean square displacement perpendicular to the wall 2 ( )y tΔ  

increases slower than 2 ( )x tΔ  and 2 ( )z tΔ , which are parallel to the wall. 

 
The results of diffusion coefficients are shown in Table 4-7 and Figure 4-9. 

As expected, both perpendicular and parallel diffusion coefficients and   

decrease as the distance between particle and wall decreases, and for the 

same value of y/R, the perpendicular diffusion coefficient D  is smaller than 

the parallel diffusion coefficient .  

D⊥ //D

⊥

//D

 

Table 4-7. D/D0 for uncharged particle suspended in neutral aqueous system near a 
planar wall. Comparison among theoretical prediction and simulation results. 

y/R 0// / DD  0/ DD⊥  

 theory simulation theory simulation 

1.12 0.44 0.19 0.12 0.01 

1.18 0.48 0.23 0.17 0.03 

1.24 0.52 0.26 0.21 0.04 

1.30 0.55 0.27 0.24 0.06 

1.50 0.62 0.38 0.34 0.12 

2.3 0.76 0.56 0.56 0.30 

4.7  0.88 0.77 0.78 0.59 

7.0 0.92 0.84 0.85 0.77 

12 0.95 0.90 0.91 0.80 

16 0.96 0.90 0.93 0.81 
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Figure 4-9. D/D0 for uncharged particle suspended in aqueous system near a planar 
wall. Comparison between theoretical prediction and simulation 

(Note: The solid and dashed lines are the values of and calculated from the 

approximation given by Equation 4-11 and Equation 4-12, respectively. The inset with log-log 

scales magnifies the difference between the simulated results and theoretical values for 

 and  when y/R ~ 1.) 

// 0/D D 0/D D⊥

// 0/D D 0/D D⊥

  

4.4.2.2 Charged system 

 

Then for particle and wall with -30 mV surface potential, the DLVO forces 

take effect when particle moves near the wall. Table 4-8 and Figure 4-10 

show the comparison of resultant diffusion coefficient among theoretical 

prediction, simulation cases of particle in neutral system and in charged 

system. It shows that the parallel diffusion coefficient for a particle in charged 

system is larger than that in a neutral system, especially as y/R approaches 1. 

For perpendicular diffusion coefficient D⊥ , it shows that D  can be derived 

from linear fit of 

⊥

2 ( )y tΔ  to t (Equation 4-13) when y/R > 2. And compared to 

neutral system, it is larger in charged system as well.  
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Table 4-8. D/D0 for charged particle suspended in aqueous system near a planar wall. 
Comparison among theoretical prediction, simulation cases of particle in neutral 

system and in charged system. 

y/R 
0// / DD  0/ DD⊥  

theory simulation theory simulation 

neutral charged neutral charged 

1.12 0.44 0.19 0.23 0.12 0.01  

1.18 0.48 0.23 0.26 0.17 0.03  

1.24 0.52 0.26 0.29 0.21 0.04  

1.30 0.55 0.27 0.35 0.24 0.06  

1.50 0.62 0.38 0.39 0.34 0.12  

2.3 0.76 0.56 0.59 0.56 0.30 0.33 

4.7 0.88 0.77 0.73 0.78 0.59 0.63 

7.0 0.92 0.84 0.83 0.85 0.77 0.73 

12 0.95 0.90 0.90 0.91 0.80 0.87 

16 0.96 0.90 1.0 0.93 0.81 0.81 
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Figure 4-10. D/D0 for charged particle suspended in aqueous system near a planar wall. 
Comparison among theoretical prediction, simulation cases of particle in neutral 
system and in charged system. 
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(Note: (a) The simulated parallel diffusion coefficients D// (solid square) normalized by D0, for 

particle in charged system near a planar wall, compared with theoretical values (solid line) 

and particle in neutral system (solid up-triangle). The inset with log-log scales magnifies the 

difference of  between charged system and neutral system when y/R ~ 1. And (b) the 

simulated perpendicular diffusion coefficients 

// 0/D D

D⊥  (solid square) normalized by D0, for particle 

in charged system near a planar wall (y/R >2), compared with theoretical values (solid line) 

and particle in neutral system (solid up-triangle). The dash line and the dot line are fitted with 

third order exponential decay function for simulation values in neutral system and charged 

system, respectively. ) 

 
 
The numerical descriptions of diffusion coefficients as explicit functions of the 

distance between the particle and the wall are: 

 

For neutral system,  

)/(345.0)/(847.1

0

//1
// 699.0909.1906.0 RyRy ee

D
D −−− −−==λ                                             (4-26) 

)/(393.0

0

1 290.1819.0 Rye
D
D −⊥−

⊥ −==λ                                                                         (4-27) 

 

For charged system, when y/R > 2, 

)/(037.0)/(910.1)/(680.0

0

//1
// 806.0969.1435.0439.1 RyRyRy eee

D
D −−−− −−−==λ                 (4-28) 

)/(355.0

0

1 163.1844.0 Rye
D
D −⊥−

⊥ −==λ                                                                         (4-29) 

 
    

However, when y/R ~ 1, the mean square displacement 2 ( )y tΔ  increases 

quadratically (Figure 4-11), which means that the perpendicular diffusion 

coefficient D⊥  cannot be derived from linear fit of 2 ( )y tΔ  to t as a constant 

(Equation 4-13). Because the DLVO forces which are perpendicular to the 
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wall dominate when particle is very close to the wall, i.e. y/R ~ 1, the 

perpendicular diffusion coefficient D⊥  varies following the variation of 

distance between particle and the wall. From Figure 4-11, it is shown that as 

the particle approaches to the wall, from y/R=1.5 to y/R=1.18, 2 ( )y tΔ  

increases more and more quickly. And when y/R=1.12, where the hydration 

layers between particle and wall overlap, the hydration force dominates and 

prohibits particle diffusion which results in 2 ( )y tΔ  decrease.  
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Figure 4-11. Mean square displacements 2 ( )y tΔ  as a function of t, for particle of 

radius 100 nm in charged system near a planar wall (y/R ~ 1).  
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Figure 4-12. Long time effect of particle’s diffusion at y/R=1.12. 

(Note: (a) Mean square displacements 2 ( )y tΔ  as a function of t, for particle in charged 

system near a planar wall (y/R = 1.12). And (b) histograms of particle’s final position in y 

direction, over 1000 samples.) 
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By exploring the particle’s diffusion at y/R=1.12 for a long time (1ms), the 

mean square displacement 2 ( )y tΔ  increases towards its equilibrium state 

And the final positions of particle in y direction agree with a normal 

distribution, with an average value of 260 nm, which is 2.6R away from the 

wall (Figure 4-12). 

 

4.4.2.3 Particle size effect 

 

Below we examine the diffusion of particle with different size. The particle 

radius is decreased from 100 nm to 50 nm and 10 nm, respectively, and the 

simulation time step is decreased to 0.1 ns and 0.005 ns accordingly since 

the relaxation time decrease. All the other parameters are kept the same as 

shown in Table 4-2 for a charged particle of radius 100 nm, suspended in an 

aqueous system.  

 

The relaxation time Rτ  calculated from Equation 4-24 for particle of radius 50 

nm and 10 nm are 1.31 ns and −× 27.99 10  ns, respectively. And the 

theoretical diffusion coefficients calculated from Equation 4-2 are . −× 123 83 10

. −× 123 81 10

 
m2s-1 and 1 2  m2s-1, respectively. The simulated free diffusion 

coefficients D0 in bulk for particle of radius 50 nm and 10 nm are  

m2s-1 and 1 2  m2s-1, respectively. The results are shown in Table 4-9 

and Figure 4-13. 

. ×8 1 −110

. −× 116 10
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Table 4-9. D /D0 for charged particle suspended in aqueous system near a planar wall. 
Comparison among theoretical prediction, simulation cases of particle of radius 100 

nm, 50 nm and 10 nm. 

y/R 

0// / DD  0/ DD⊥  
theory simulation theory simulation 

100 nm 50 nm 10 nm 100 nm 50 nm 10 nm 

1.18 0.48 0.26 0.39 0.25 0.17    

1.24 0.52 0.29 0.41 0.29 0.21    

1.30 0.55 0.35 0.45 0.33 0.24    

1.50 0.62 0.39 0.48 0.42 0.34   0.16 

2.3 0.76 0.59 0.67 0.59 0.56 0.33  0.38 

4.7 0.88 0.73 0.85 0.79 0.78 0.63 0.76 0.67 

7.0 0.92 0.83 0.92 0.85 0.85 0.73 0.81 0.74 

12 0.95 0.90 0.94 0.93 0.91 0.87 0.90 0.85 

16 0.96 1.0 0.95 0.99 0.93 0.81 0.94 0.84 
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Figure 4-13. D /D0 for charged particle suspended in aqueous system near a planar 
wall. Comparison among theoretical prediction, simulation cases of particle of radius 
100 nm, 50 nm and 10 nm. 

(Note: (a) Comparison of the simulated parallel diffusion coefficients D// normalized by D0, for 

particle size 100 nm (solid square), 50 nm (solid up-triangle), 10 nm (solid down triangle) and 
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the theoretical prediction (solid line). The inset with log-log scales magnifies the difference of 

 when y/R ~ 1. And (b) comparison of the simulated perpendicular diffusion 

coefficients 

// 0/D D

D⊥  normalized by D0, for particle size 100 nm (solid square), 50 nm (solid up-

triangle), 10 nm (solid down triangle) and the theoretical prediction (solid line).The dash line, 

the dot line and the dash-dot line are fitted with third order exponential decay function for 

simulation values of particle size 100 nm, 50 nm and 10 nm, respectively. ) 

   

With the particle size decreasing from 100 nm to 50 nm, the diffusion 

coefficients in both perpendicular and parallel directions increase (Figure 4-

13). And by comparing the mean square displacements 2 ( )y tΔ  

perpendicular to the planar wall (Figure 4-11, Figure 4-14(a)), smaller 

particles are less hindered when particle moves close to the planar wall.  

 

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 2 4 6 8 10

y/R=1.50

y/R=1.30

y/R=1.24y/R=1.18

<Δ
y2 > 

(1
0-4

 μ
m

2 )

Time (μs)

a

 
0.00 0.02 0.04 0.06 0.08 0.10

-0.0005
0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035
0.0040
0.0045

<Δ
y2 > 

(1
0-4

 μ
m

2 )

y/R=1.50

y/R=1.30

y/R=1.24

Time (μs)

y/R=1.18
b

 
Figure 4-14. Mean square displacements 2 ( )y tΔ  as a function of t during 

simulation time steps, for particle of radius (a) 50 nm, and (b) 10 nm in charged 

system near a planar wall (y/R ~ 1). 

42 10×

 

However, when the particle decreases from 50 nm to even smaller size, i.e. 

10 nm, the diffusion coefficients in both perpendicular and parallel directions 

decrease, especially for very close distance, i.e. y/R~1. This is because for a 

particle of radius 10 nm and with a 7 nm hydration layer, the DLVO forces 

and geometrical confinement effect are negligible compared to hydration 

force which prohibits particle diffusion (Figure 4-13). And it is shown from 

Table 4-9 and Figure 4-13(b) that the starting points of perpendicular 
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diffusion coefficient which can be derived from linear fit of 2 ( )y tΔ  to t as a 

constant are different for different particle sizes, which are y/R=2.3, y/R=4.7 

and y/R=1.5 for particle size of 100 nm, 50 nm, and 10 nm, respectively. It is 

thus confirmed that particle diffusion coefficient in the vicinity of a planar wall 

is influenced by different types of forces for different particle size. That is 

hydrodynamic drag force dominates particle diffusion for particle of radius 

100 nm, DLVO forces dominates particle diffusion for particle of radius 50 nm, 

and hydration force dominates particle diffusion for particle of radius 10 nm. 

 

Moreover, a further comparative simulation case is performed to show the 

effect of charged system on the particle diffusion at nanoscale. As shown in 

Figure 4-15, for the parallel diffusion coefficient for a particle of radius 10 nm, 

the difference between a charged system and a neutral system is negligible, 

especially as y/R approaches 1 (Figure 4-15(a)). And for perpendicular 

diffusion coefficient D , compared to neutral system, it is larger in charged 

system, except for very close distance, e.g. y/R=1.18 (Figure 4-15(b)), where 

the effect of hydration force surpasses the DLVO forces. 

⊥
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Figure 4-15. Effect of charged system on the particle diffusion at the nanoscale level. 

(Note: (a) The simulated parallel diffusion coefficients D// (solid square) normalized by D0, for 

particle of radius 10 nm in charged system near a planar wall, compared with particle in 

neutral system (solid up-triangle). The inset with log-log scales magnifies the difference of 

 between charged system and neutral system when y/R ~ 1. And (b) the simulated // 0/D D
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perpendicular diffusion coefficients D⊥  (solid square) normalized by D0, for particle in 

charged system near a planar wall, compared with particle in neutral system (solid up-

triangle). The inset shows the mean square displacements 2 ( )y tΔ  as a function of t, for 

particle of radius 10 nm in charged system and neutral system near a planar wall (y/R ~ 1). 

The dash line and the dot line are fitted with third order exponential decay function for 

simulation values in neutral system and charged system, respectively.)     
 

The numerical descriptions of diffusion coefficients as explicit functions of the 

distance between the particle and the wall are: 

For particle of  radius 50 nm system,  

)/(122.1) 0−/(396.0

0

//1
// 749.571.0949.0 RyRy ee

D
D −−− −==λ                                             (4-30) 

/(094.0

0

1 434.0038.1 Rye
D
D −⊥−

⊥ −==λ )                                                                         (4-31) 

For particle of radius 10nm system, 

)/(887.2)/(057.0) 0−/(612.0

0

//1
// 835.4451.679.0165.1 RyRyRy eee

D
D −−−− −−==λ                 (4-32) 

)/(900.0) 1−/(252.0

0

1 117.601.0861.0 RyRy ee
D
D −−⊥−

⊥ −==λ                                             (4-33) 

 

4.5 CONCLUSIONS 
 

In this study the diffusion of spherical colloidal particle suspended in aqueous 

solution has been demonstrated at the microscopic level. The simulated 

model was validated using the experimental work done by Lin et al.. And to 

enlarge the model’s applicability, the diffusion of particle at the very close 

distance (less than 100 nm) was explored and the diffusion coefficient under 

different particle size and charged system was analysed. The mobility of 

charged particle was found to be larger than that of uncharged particle, due 

to the DLVO forces between charged surfaces (with the same sign). This was 
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observed through simulation data analysis that the diffusion coefficient of 

spherical colloidal particles in charged suspension was larger than that in 

neutral suspension. In charged system, when the particle moved very close 

to planar wall (less than 100 nm), i.e. y/R ~ 1, the asymmetry effect of particle 

diffusion between perpendicular and parallel directions became more obvious 

and the mean square displacement perpendicular to the wall increased 

quadratically. The results yielded the diffusion coefficients as explicit 

functions of the distance between the particle and the wall.  
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CHAPTER FIVE  
SIMULATION OF COLLOIDAL SELF-ASSEMBLY  

 
5.1 INTRODUCTION 
 

Monodisperse colloidal particles can self-assemble into highly ordered crystal 

structures under both equilibrium and non-equilibrium conditions (Grzybowski 

et al., 2009, Glotzer et al., 2004). The size of the constituent particles 

indicates that they are the ideal building blocks for creating 2D and 3D highly-

ordered structures that can have feature sizes of biological entities, 

macromolecules, and the wave-length of photons (Xia et al., 2001, Vlasov et 

al., 2001, Lόpez, 2003, Weitz and Russel, 2004).   

 

Various techniques developed for facilitating colloidal self-assembly can be 

categorised into two types:  the first one is based on the methods in which 

the ordered structures are formed in a confined suspension, such as the 

sedimentation process (Miguez et al., 1997), while the second one refers to 

evaporation-induced methods, such as the vertical deposition method (Jiang 

et al., 1999) where fluid flow field takes effect. In recent years considerable 

progress has been made to prepare ordered structures by both methods (Xia 

et al., 2000, Wong et al., 2003, Ramsteiner et al., 2009). However, a 

fundamental understanding of the convective self-assembly process still 

requires elucidation. Dimitrov and Nagayama (1996) made the first attempt in 

modelling vertical lifting convective self-assembly. They derived a 

mathematical model based on mass balance at the meniscus drying front, 

which can predict the colloidal crystal thickness as a function of the 

suspension concentration, vertical lifting speed and evaporation rate. 

Because of the over-simplifications of the particle-particle, particle-substrate 

interactions, deviations from the model have been reported (Fustin et al., 

2004). More importantly, such a phenomenological model lacks the ability of 

predicting the detailed microstructures of the crystal formation. Recently, 

computational fluid dynamics (CFD) simulation has been applied on a three-

dimensional face centred cubic (fcc) colloidal array and verified the 
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hypothesis that the fluid convective flow steers the colloidal crystal growth 

and reinforces the tendency of fcc structure formation (Jun et al., 2005, 

Gasperino et al., 2008, Brewer et al., 2008). However, in these models the 

interactions between particles and between particles and boundaries are also 

neglected, limiting the predictive function of the models.   

 

It has been reported from both experimental (Bonissent et al., 1984, Palberg 

and Biehl, 2003, Fontecha et al., 2005) and mathematical (Pansu et al., 1984, 

Meng et al., 2006) analyses that a series of structural transitions occur 

corresponding to the increased crystal thickness of a growing crystal. These 

transitions consist of changes in both layer numbers and structural patterns. 

During this process, the meniscus slope near the crystal boundary influences 

the number of particle layers and the transition structures which typically 

exhibit changing from triangular stacking to square stacking and back to 

triangular stacking, as revealed by the microscopic observation by Norris and 

co-workers (Meng et al., 2006). In their simulation work (Meng et al., 2006), 

the particles were assumed to be non-interacting hard spheres and the 

growth front was maintained as ramp shape, and pre-packed rows of 

particles were added sequentially to the structure during the assembly 

process. Although such a simulation illustrated the structural transition 

phenomenon during particle assembly from the viewpoint of geometrical 

confinement, the strongly imposed simplifications, such as pre-packed rows 

of particles moving as an integrated body, prevents a thorough 

understanding on the detailed formation mechanisms of structural transitions. 

 

In the self-assembly of colloidal crystals, the colloids experience a sequence 

of phases, namely, suspension, migration (towards the crystallization front), 

deposition, and drying/fixation. Various types of interactions take place 

simultaneously and the resultant structure of the colloidal crystal is a complex 

balance of the driving forces, and the attractive or repulsive interactions. In 

the system, each particle has its own fate as a result of its interactions with 

the surrounding medium, boundaries, and neighbouring particles. Since the 
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role of capillary force in the colloidal crystal structure formation has been well 

studied probably due to the relative ease in experimental observation 

(Denkov et al., 1993, Zhou et al., 2006), this numerical study attempts to 

elucidate the effects of the fluid flow and geometry confinement by removing 

the considerations of the capillary forces. The discrete element method (DEM) 

(Cundall and Strack, 1979, Tsuji et al., 1993, Li et al., 2005, Feng et al., 2004) 

was applied to model the colloidal packing under the influences of fluid flow 

and geometry confinement (such as the shape of the liquid meniscus in 

vertical-lifting self-assembly) by taking into account the interparticle 

interactions (Li et al., 2008) and tracking each particle’s motion individually. 

Through the computer simulation, we reveal the assembly mechanism at the 

microscopic level and study how the structure formations are affected by 

geometry confinement and fluid flow during the colloidal crystal growth. 

 
5.2 MODEL ESTABLISHMENT 
 
5.2.1 General Framework 
 

In-house developed software ‘SimCos’ (Fang and Li, 2009), which 

specifically simulates colloidal suspensions, has been used and modified for 

this study. The computer program is developed in Microsoft Visual Studio 

2005 using Visual C++ programming language. Details of the development of 

the simulation platform is introduced in Chapter 3. 

 

The geometrical set-up of the simulation unit is sketched in Figure 5-1. A 

0.84% (v/v) colloidal suspension system is representatively modelled by this 

cubic volume (10 μm ×10 μm ×10 μm). The cube is placed in a Cartesian 

coordinate system, with its centre as the origin of coordinate, and x-z plane at 

y=5 μm as the top plane. On top of the cube, two planes are defined: the 

vertical plane simulates a solid substrate as often used in the 

experimentation, while the inclined plane represents the spatial confinement 

or the free surface of a liquid meniscus. The two planes intersect and form a 
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wedge-shape confinement with a contact angle θ, which represents the 

meniscus contact angle on a vertical substrate. 2000 spherical colloidal 

particles of 200 nm diameter are randomly dispersed in the cube, subject to 

Brownian motions. It is noted that strong simplifications have been applied to 

the treatment of the meniscus free surface. 

 

 
Figure 5-1. Geometrical set-up of the simulated cell of a colloidal suspension system. 

 

 

 
Figure 5-2. Scheme of interpacticle interactions. 

 

Both interparticle and particle-boundary interactions are taken into account in 

the simulation model. The Brownian force and DLVO potential interaction 

forces have been applied to each particle. The Brownian force is modelled as 

a Gaussian distribution random sequence signal. The particles are assigned 
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215 10−×

with a surface potential of -30 mV (Li et al., 2008). The Hamaker constant, AH 

is set as 7.6 J (Bergna and Roberts, 2006, Butt et al., 2003, Hunter, 

2001). The models used to calculate the forces of interparticle and particle-

boundary interactions are listed in Figure 5-2 and Table 5-1. Parameters 

used in the simulation are listed in Table 5-2. 

 
Table 5-1. Forces acting on the particle. 

Forces Symbols Equations 

DLVO force DLVOF  2 2
0 02 /D

HR e A R Dκπ εε ψ − − 12  

Fluid drag force dF  6 RUπη−

Buoyancy force bF  34
3f R gρ π−  

Gravitation force gF  34
3p R gρ π  

Brownian force BF  12 B
i

d

k T R
G

t
π η  

 (Note: 0ψ  is the particle surface potential, κ is the inverse Debye length, ε, ε0 are the 

dielectric permittivity of the suspending medium and vacuum permittivity respectively, AH  is 

the Hamaker constant, R is the particle radius, D is the particle edge-to-edge separation 

distance, η is the fluid viscosity, U is the particle velocity, Gi  is a Gaussian distribution 

random sequence, kB  is the Boltzmann constant, T is the temperature, td  is the simulation 

time step, ρf, ρp are the fluid density and particle density respectively, g is the acceleration 

due to gravity)  

 

The computational time step, td, is set as 0.5 ns after several trial runs being 

conducted. It is a constant value chosen to ensure the stability and accuracy 

of the numerical simulation, particularly for the integration. It was proposed 

that the selection of td should be proportional to the ratio between the 

maximum stiffness and the particle with smallest mass (Asmar et al., 2002, 
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Kruggel-Emden et al., 2008), i.e. d
k
m

∝t . At each calculation time step the 

forces that act on a particle are computed; the velocities and the 

displacements of the particles are calculated by integration of Newton’s 

equations of motion as follows: 

p DLVO b g d
dUm F F F F
dt

= + + + + BF                                                                    (5-1)                    

where mp is the particle mass.   

 
Table 5-2. Key simulation parameters of particles self-assembly model. 

Variables Base values 

Particle shape Spherical 

Number of particles, N 2000 

Particle radius (nm), R 100 

Particle density (kg m-3), pρ  2200 

Fluid density (kg m-3), fρ  1000 

Particle surface potential (mV), oψ  -30  

Hamaker constant (J), AH 217.65 10−×  

Fluid viscosity (Pa s), η  0.001 

Time step (ns), td 0.5 

 

 

5.2.2 Consideration on the Fluid Field 
 

All the particles which are originally dispersed in the cube are driven upward 

by the fluid flow, as illustrated in Figure 5-3. The particles which are driven 

across the rear plane of the cube are set to re-enter the cube from the front 

plane, which represents a periodical boundary condition as in a colloidal 
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2 ⎤
⎦

)i

suspension system. In the wedge section, the particles driven across the rear 

plane are set to deposit on the vertical surface. The fluid flow field is 

modelled 2D in y-z plane, as a function of particle’s xyz coordinates 

(Equations. 5-2, 5-3 and 5-4), which are calculated by dividing its actual 

decimal coordinates by the particle radius.  

0xV =                                                                                                           (5-2) 

( ) ( )2
y i iV a y Y z Z⎡= − + −⎣                                                                           (5-3)                       

( 2 2
z iV b y z= +                                                                                              (5-4)                       

where a and b are the coefficients to control the fluid flow velocity and 

direction, yi and zi are particle’s coordinates, and Y, Z are the cell size in Y 

and Z axes. 

 

yV

zV

VyV

zV

V

 

Figure 5-3. Side sectional view of the simulated fluid flow field in a colloidal 
suspension system. 
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5.2.3 The Rules Set for Particle Deposition 
 

An essential element for simulating the colloidal crystal formation is the 

establishment of a set of rules that prescribes the colloidal particles motion 

and packing based on physical laws. To simplify the simulation, the 1st row 

of the 1st layer of a close-packed structure is assumed to form 

instantaneously. 

 

According to the established stability criterion (Rabideau and Bonnecaze, 

2004, Gray and Bonnecaze, 2001, Gray et al., 2000, Feder, 1980), the rules 

of particle deposition are illustrated in Figure 5-4. For the 1st layer grown on 

the substrate, one particle of interest is set as ‘stationary’ when it forms a 

triangular structure with other two stationary particles above it. All these 

particles are tangent to each other. Particles that fall in the boundary area will 

be set ‘stationary’ as soon as they are in contact with two other stationary 

particles, no matter whether these two particles are above it or not as 

illustrated in Figure 5-4(a). 

 

 
Figure 5-4. General stationary rules for particles deposition. 

(Note: (a) for particles in the 1st layer and (b) for particles in multilayer (particles in upper 

layer have been made transparent in the image).) 
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For multilayer packing, there are two choices for the 2nd layer to build upon, 

namely the up-pointing interstices and the down-pointing interstices as 

indicated in Figure 5-4(a). Theoretical estimations from thermodynamic 

viewpoint (Frenkel and Ladd, 1984b, Bolhuis et al., 1997, Woodcock, 1997, 

Mau and Huse, 1999) and from hydrodynamic analysis (Norris et al., 2004) 

predicted that a particle in multilayer prefers to nestle into an octahedral 

interstice to form an fcc stacking of close-packed structure as illustrated in 

Figure 5-4(b) (particles of grey colour belong to Layer 1; transparent particles 

belong to Layer 2; the 3rd layer particle with black colour nestles into the 

octahedron interstice), which is confirmed by experimental observations 

(Pusey et al., 1989, Miguez et al., 1997, Vlasov et al., 2001, Wang et al., 

2006). For one moving particle of interest, if there are three stationary 

particles being found in the close vicinity to form such an interstice, the 

particle of interest settles down in this position (Figure 5-4(b)). 

 

However, because of the geometry confinement, the available thickness d 

between the inclined plane and vertical solid substrate (Figure 5-5) may not 

allow the fcc stacking mentioned above. In this case, to maximize the 

packing density and lower the free energy, the triangular stacking structure 

can transit to square stacking structure, which depends on the available 

thickness d and in which layer this transition occurs.  

 

 
Figure 5-5. Growing structural transition condition. 
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If the available thickness d is too small, i.e. the centre of a particle in the 

multilayer is over the inclined plane, this particle will start packing from a row 

below. Here we use the distance from the centre of a particle to the inclined 

plane, dM (Figure 5-5), to check if structural transition occurs. The thickness 

of a close-packed triangular structure is given by 

Rndn 2]3/2)1(1[ ⋅−+=Δ                                                                               (5-5)                     

where n is the layer number and R is the radius of a particle. The available 

thickness can be expressed as: 

θ1cos−
Δ ⋅+−= Mn dRdd                                                                                  (5-6)                    

And dM is obtained from 

θcos)( ⋅+−= Δ Rddd nM                                                                                  (5-7) 

                                                                                                 

If , the position is invalid to accommodate a layer addition. If , 

the fcc structure formation is permitted. If 

0<Md RdM >

RdM <  , transition occurs. For 

transitions in a bilayer system, the particles in the 1st layer are pressed to 

rearrange to form a square structure, while the particles in the 2nd layer also 

reorganise in order to be tangent to them. For transitions occuring in a 

multilayer system, i.e. n layers ( ), the particles in the n-1 layer shift to 

the next available interstices to form a square structure with the row above n-

1 layer. Here we assign a transition flag M [i] with an initial value 0 to each 

particle, and it changes to a new value 1 for the particles in a transition area. 

2>n

 

For one moving particle i in monolayer, searching pattern is two mesh grids 

backward to two mesh grids forward in X axis, if two stationary particles 

number i2 and i3 with transition flag M [i2]=1 and M [i3]=1 are found (Figure 5-

6(a), this moving particle is stationary.  
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For one moving particle i in multilayer, searching pattern is one mesh grid 

backward to one mesh grid forward in X axis, two mesh grids backward to 

one mesh grid backward in Y axis, and two mesh grids backward in Z axis. If 

two stationary particles number i2 and i3 with transition flag M [i2]=1 and 

M[i3]=1 are found (Figure 5-6(b)), the particle of interest is set as ‘stationary’. 

 

 
Figure 5-6. Stationary rules for particles in transition row. 

(Note: (a) for particles in the 1st layer (b) for particles in multilayer (particles in upper layer 

has been made transparent in the image)) 

 

The structural transition appears to occur interdependently; when the 

transition is determined to take place at one particular time step, it influences 

not only the packing of the following active particles, but also the formerly 

settled particles in the neighbourhood. For simulating this situation, a 

neighbour list is introduced. For any particle i, when it becomes stationary, it 

is tangent to at least two other particles i2 and i3 when in monolayer, or to 

three other particles j2, j3 and j4 when in multilayer. These neighbouring 

particles form a neighbour list SS (SS [i2, i3] or SS [j2, j3, j4]), for any 

stationary particle i. For any stationary particle, it has a its corresponding and 

specific neighour list. During the simulation, we check the value of these 

neighbour lists in each time step, if the value changes from initial value -1 to 

number i, then we know that particle i is stationary. Then the transition flag M 

[i2], M [i3] and M [i4] are checked, if one of these values, for example M [i2] 
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changes from initial value 0 to 1, it means particle i2 shifts to a new position in 

this time step and consequently particle i is reactivated (Fang and Li, 2009). 

 

5.3 RESULTS AND DISCUSSIONS 
 

Simulated colloidal crystal structures were formed under different wedge 

angle θ and different fluid flow field. For each fluid flow field, we simulated the 

wedge angle of 33.7°, 18.4° and 14.0°, respectively, for investigating the 

influence of wedge angle. The selection of the wedge angles was based on 

our previous experimental data where the meniscus shape was adjusted by 

adding surfactant (Zhou et al., 2006). Due to the small time step used, the 

simulations required substantial computation time. For instance, when 

dealing with 2000 particles on a personal computer with 3.00 GHz Intel Core 

2 CPU, 2.00 G RAM and Windows XP operating system, the computational 

time was 24 h for a 0.5 ms simulated self-assembly time.  

 

5.3.1 Self-assembly under Different Fluid Flow Field 
 

In the simulation, the fluid flow velocity was controlled within the range of 10-

1~101 m/s by adjusting the coefficients a and b in Equation 5-3 and Equation 

5-4. In CASE I (the reference case), a and b were set as and , 

respectively. In CASE II, both of the coefficients were reduced by a factor of 

10; while in CASE III, only coefficient a was reduced by a factor of 10, to the 

value of . The resultant fluid velocity fields under the three conditions 

are shown in Figure 5-7. In general, the particle initial velocity was on the 

order of 10-2 m/s, which was the thermal velocity determined by equilibrium 

equation: 

3101 −× 4102 −×

4101 −×

21 1
2 2 BmU k T=                                                                                               (5-8)                     
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where U  is the particle velocity. We first set the wedge angle θ constant at 

33.7°. 

 

 
Figure 5-7. Side sectional view of fluid flow velocity vector contour in the wedge-
shape confinement and nearby bulk volume.  
(Note: The coefficients a and b in the fluid flow field Equation 5-3 and Equation 5-4 are (a) 

CASE I: , (b) CASE II: and (c) CASE III: 

, respectively.) 

43 102,101 −− ×=×= ba

44 102, −×=b

54 102,101 −− ×=×= ba

101 −×=a

 

The simulated structures at the wedge front under the three different fluid 

flow velocity fields are shown in Figures 5-8(a), 5-8(b), and 5-8(c), 

respectively. When they are driven upward into the meniscus/wedge 

confinement, the particles find their niche positions and become stationary, 

resulting in close-packed crystal structure and increased packing density. It 

can be seen that under a smaller fluid velocity like in CASE II, rather than 

being quickly driven upward into the confined wedge space, particles are 

more broadly dispersed like Brownian particles.  

 



CHAPTER FIVE                     Simulation of Colloidal Self-assembly 

 

5-14 
 

 
Figure 5-8. Growing crystal structures. 

(Note: Different colours represent different layers in the resultant structures, i.e. white, green, 

yellow and grey represent 1st, 2nd, 3rd and 4th layer, respectively. (a2) is the side view of 

(a), (d2) is the backside view of (d), and (g2) is the backside view of (g). The particles 

marked with red star and red triangular will be discussed in the latter section.) 
 

Figure 5-9 shows the snapshots of particles from a selected volume in the 

bulk under different fluid flow field. At 0=t , the colloidal particles are 

completed dispersed. For this dilute and still system, colloidal particles with 

the surface potential of -30 mV hardly aggregate because of the long 

distance repulsive potential between the particles and the displacement of 

particles by the Brownian motion cannot exceed the interpaticle distance. At 

 μs, the particles have moved closer to each other driven by fluid flow 

and the system becomes more concentrated. Compared to the dilute and still 

system at 

7.0=t

0t = , for this concentrated system, in contrast, colloidal particles 

that have relatively high repulsive potential sometimes collide with one 
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another since the displacement of particles by the fluid flow can exceed the 

interparticle distance and free Brownian motion. And the average interparticle 

distance are 2.03 nm and 396 nm respectively, for different fluid flow field in 

the above Cases I and II. 

 

 
Figure 5-9. Snapshots of particles dispersion in the bulk volume. 

(Note: (a) At time step t = 0, initial state without fluid flow field, (b) at time step t = 0.7 μs, in 

CASE I, and (c) at time step t = 0.7 μs, in CASE II. Scale bar is 200 nm. All particles are in 

monosize of 200 nm diameter, while the size difference shown in snapshots is caused by 

perspective projection.)   

 

 
Figure 5-10. Profiles of forces on a randomly selected particle in CASE I and II. 

 

Comparing the forces imposed on a randomly selected particle in the bulk 

volume from time step μs to 5.0=t 0.1=t μs, the absolute values of fluid drag 

force and interparticle interaction forces are much smaller in the mild flow 

field (CASE II) (Figure 5-10). The particles also form looser packing with 

more defects in CASE II as shown in Figure 5-8(b). When comparing the 

DLVO forces experienced by a randomly selected particle, the force curve of 

the particle in Case I shows more drastic variations in the force magnitude as 

oppose to force curve of the particle in CASE II, as shown in Figure 5-10(b). 
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The stronger fluid flow entrains and compacts the particles at a much higher 

speed, which causes the intensive DLVO interactions among the particles. 

For example, at sample time t=827 ns, the examined particle in Case I is very 

close to particles in its neighbourhood (0.2 nm to its nearest neighbourhood 

particle).  

 

Figure 5-8(c) shows the resultant crystal structure at the end of simulated 

time of CASE III when only the fluid flow velocity in the vertical direction is 

reduced by a factor of 10. In this case, the components of fluid drag force 

and interparticle interaction forces in transverse direction are greater than the 

force components in vertical direction, and fluid drag force plays a dominant 

role during the process, as shown in Figure 5-11;  or in other words, the 

particles move much more rapidly in the transverse direction than in vertical 

direction. Under this condition, the resultant structure becomes 2D crystal in 

dominance, with only a few particles sporadically deposited as the 2nd or 3rd 

layer.                                
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Figure 5-11. Profiles of forces on a randomly selected particle in CASE III. 
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5.3.2 Self-assembly under Different Wedge Shape Angle 
 

The influence of wedge angle θ can be observed by comparing the simulated 

crystal structure vertically in Figure 5-8. For example, Figures 5-8(a), 5-8(d) 

and 5-8(g) show that the simulated colloidal crystal structures at the wedge 

angle 33.7°, 18.4°, and 14.0°, respectively, when the fluid velocity field is set 

as in CASE I, i.e. in Equations 5-3 and 5-4. In Figure 5-

8(a), it is shown that with a large wedge angle θ (

43 102,101 −− ×=×= ba

°= 7.33θ ), quadlayer is 

formed from Row 6 (the 1st row in the 1st layer is used as the reference row), 

which is also the position where structural transition occurs when particles 

assemble from a trilayer to a quadlayer, as more clearly shown by the side 

view in Figure 5-8(a2). The transition occurrence is caused by the available 

thickness of the confined geometry and the packing density maximization. 

The available thickness, d, at where a quadlayer formed is 682.7 nm, and dM 

is 76.8 nm, according to Equations 5-5, 5-6 and 5-7. Since dM is less than R 

(100 nm), the particles in the 3rd layer shifted to the next available interstices 

to form a square structure with the above 3rd layer row, in order to allow the 

4th layer addition. As the particle stacking continues, the available wedge 

thickness d between the inclined plane and the vertical plane increases 

continuously. However, due to the lattice mismatching, the immediate 

subsequent packing is disturbed, which causes the line defect formation 

between Row 6 and 8 as shown in Figure 5-8(a). When the wedge shape is 

sufficient to pack 4 layers without deforming the fcc ordered structures, that is 

for the particles in the 4th layer, (Figure 5-5), the triangular stacking 

structure is observed again as shown in the lower part of Figure 5-8a.  

RdM ≥

 

By decreasing the wedge angle θ ( °= 4.18θ ), structural transition occurs at 

Row 3 (shown in Figure 5-8(d2), viewed through the backside of the vertical 

plane) when particles assemble from monolayer to bilayer, which is a 

transition region with square stacking structure (Figure 5-8(d)). This is 

because the available thickness, d, at where a bilayer formed is 282.7 nm, 
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and dM is 18.1 nm. Since RdM < , and the particles in the 1st layer rearrange 

to form a square structure, while the particles in the 2nd layer also reorganise 

in order to be tangent to them. As the particle stacking continues, square 

stacking structure is observed in the transition region from a bilayer to a 

trilayer where  (as illustrated in Figure 5-5) for particles in the 3rd 

layer. With even smaller wedge angle θ (

RdM <

°= 0.14θ ), compared to the structure 

formed under large θ ( °= 4.18θ ), the same square transition region and 

transition procedure with square stacking structure occurs. However, the 

transition position shifted to Row 4 (Figure 5-8(g2), backside view) when 

particles assembled from monolayer to bilayer, because the wedge thickness 

d was too small to allow square stacking in an upper position. 

 

For particle assembly with relatively small wedge angle θ ( °= 4.18θ ), and 

under the fluid flow field in which the components of fluid drag force and 

interparticle interaction force in vertical direction are greater than the 

transverse force components by an order of 100~102, only monolayer 

structure is formed (Figure 5-8(f)). The same structure is formed when the 

wedge angle reduces to 14.0° (Figure 5-8(j)). This result suggests that 

colloidal monolayer formation may be controlled by creating a suitable fluid 

velocity field. 
 

5.3.3 Defect Formation Mechanism 
 

From the resultant ordered structures, some point defects are observed, for 

example, the area above the particle labelled with a red star in Figure 5-8(d) 

is a vacancy defect, while the ‘red triangle’ particle (Figure 5-8(d)) and ‘red 

cross’ particles (Figure 5-8(e), Figure 5-8(g)) are interstitial defects, line 

defects are also observed where structural transition occurred. The 

simulation data were analysed to understand the cause of defects formation. 

The ‘red star’ particle and ‘red triangle’ particle are selected as the examples 

to illustrate the defect formation in the simulation (Figure 5-8(d), Figure 5-
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12(c)). The selected data set is from 1200 time-steps before the defect 

formation till the step when defects are created. Figure 5-12 shows the 

trajectories of these two particles moving to a stable position under the 

coupling effect of fluid flow and geometry confinement.  

 

      

Figure 5-12. Trajectories of two particles during self-assembly process. 
(Note: (a) Two particles marked in Figure 5-8(d), (b) close-up view of the rectangular area in 

Figure 5-12(a), the arrows denote direction of particle movement, and (c) close-up view of 

the rectangular area in Figure 5-8(d).) 

 

It is shown that both particles move dramatically under fluid flow in the cubic 

bulk suspension (x-z plane at y=5 is the top plane of the cube). And after the 

particles being driven to the wedge-shape confinement on top of the cube, 

both particles move mildly since the equilibrium of interaction forces drives 

the particles to settle down and point defects are formed because of the fluid 

flow and geometry confinement. As shown in Figure 5-12(b), compared to the 

‘red triangle’ particle, the ‘red star’ particle settles down at a higher position 

first. 

 

The settle-down time for ‘red star’ and ‘red triangle’ particle are 0.875 sμ  and 

0.885 sμ , respectively. The force profile of the ‘red star’ particle is shown in 

Figure 5-13. It demonstrates that fluid drag force has dominated during the 

whole self-assembly process (Figure 5-13(a), Figure 5-13(b)) and thus drives 

the ‘red star’ particle to the wedge-shape confinement to form a point defect.  
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Figure 5-13. The force profile of the ‘red star’ particle. 

(Note: (a)-(b) Profiles of forces on ‘red star’ particle in Y and Z axes, (c) resultant force on 

‘red star’ particle, and (d) close-up view of the shadow area in Figure 5-13(c).) 

 

The resultant forces in vertical y and transverse z directions are examined for 

understanding the defect formation process. During the self-assembly 

process, the resultant forces in vertical y and transverse z directions are of 

the same magnitude (Figure 5-13(c)), and thus drives the particle closely 

towards the substrate rather than deposits the particle on the plane of the 

cube. Before particle settles down, e.g. from 5 time-steps before the vacancy 

defect formation, the resultant force in vertical y direction are -2.69 nN, -1.67 

nN, -3.03 nN, -5.52 nN and -10.90 nN, respectively (Figure 5-13(d)). All these 

forces are in negative y direction, and thus prohibit the ‘red star’ particle from 

moving upwards. Meanwhile, the resultant force in negative z direction is 

larger than its component in negative y direction, as shown in Figure 5-13(d). 

So that the resultant force drives the ‘red star’ particle towards the 1st layer 

particles which are assembled on the substrate, and ‘red star’ particle settles 

down at interstice A which is an up-pointing interstice to form a stable 

stacking, while the ‘red triangle’ particle firstly settles down at interstice B 
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which is an up-pointing interstice. By calculating from Equations 5-5, 5-6 and 

5-7, the available thickness for the 3rd layer particle stacking is nm, 

and nm, as 

435.4d =

7.9Md = Md R< (100 nm), structural transition occurs and the 

‘red triangle’ particle shifts to its new stable position in interstice C which is a 

down-pointing interstice (Figure 5-12(c)). In this case, the point defects are 

formed. 

 

Below the line defect appearing between the 2nd and 3rd rows of the 2nd 

layer in Figure 5-8(g) is investigated. In the beginning of 2nd layer formation, 

a transition occurred and square structure was formed as shown by row 1 

and 2 of the 2nd layer. If the particles at row 3 of the 2nd layer reside in the 

up-pointing interstices following the square transition structure, interparticle 

overlapping would then occur between particles at row 2 and row 3. If the 

particles at row 3 of the 2nd layer reside in the down-pointing interstices 

following the square transition structure, the following particles in the 2nd 

layer would follow the suite and also stabilize into the down-pointing 

interstices to form triangular structure, as shown in Figure 5-14(b). Then 

particles in the 3rd layer would occupy the octahedral interstices (as black 

dashed arrow pointed in Figure 5-14(b)), to form fcc structure. By calculating 

from Equations 5-5, 5-6 and 5-7, the available thickness where this 3rd layer 

formed is 447.9d = nm, and 20.2Md = nm. Since Md R< (100 nm), structural 

transition would occur. The particles at row 3 of the 2nd layer would move 

into the up-pointing interstices following the square transition structure, and 

the interparticle overlapping occurred between particles at row 2 and row 3. 

In order to avoid interparticle overlapping during structure transition, the 

particles in the 1st layer would be reorganized, which means the formation 

energy for this structure would be higher than those for defects in Figure 5-

14(a). Therefore, such a transition is less favourable from the thermodynamic 

principles. If instead of nestling into the position as black dashed arrow 

pointed in Figure 5-14(b), and to avoid structure transition, because of 

thickness constraint, the 3rd layer would only start to pack at the octahedral 
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interstice formed by row 8 and row 9 of the 1st layer and two tangent rows of 

2nd layer (as red arrow pointed in Figure 5-14(b)), where the available 

thickness 534.6d = nm and 104.3Md = nm R> (200 nm). And the local 

density of the structure, between row 1 and row 8 of the 1st layer, is 16.2% 

(v/v), while the structure density in Figure 5-14(a) is 15.2% (v/v). So, the 

resultant structure shown in Figure 5-14(b) is another packing option. Here 

the up-pointing interstices of 1st layer were chosen to cover when packing 

particles of 2nd layer. And in order to avoid interparticle overlapping between 

particles at row 2 and row 3 of the 2nd layer, line defect occurred after 

square stacking transition area (Figure 5-14(a)). As the particle stacking 

continued, rectangular transition area occurred when particles in the 3rd layer 

settled down (Figure 5-14(a)).  

      

 
Figure 5-14. Structures comparison for two different packing options. 

(Note: (a) Resultant crystal structure with rectangular transition area, and (b) hypothetic 

packing option for crystal structure without rectangular transition area.) 

 
5.4 CONCLUSIONS 
 

In this study a DEM-based computer model has been established to simulate 

the colloidal self-assembly process for revealing the information that are 

inaccessible by experimental means. The interparticle interactions, particle-

boundary interactions, particle movement and packing of particles have been 

built in the simulation platform based on the physical laws. A set of rules and 

their corresponding numerical schemes have been established to describe 

the movement of the particles under the influence of fluid flow field and 
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geometrical confinement. It was found that the growing crystal structure 

became more close-packed when the fluid flow velocity increased, and that 

the structural transitions occurred in different areas when the wedge angle θ 

varied. By solely increasing the fluid velocity in the transverse direction, large 

area of colloidal monolayer may be formed. The knowledge derived from the 

simulations will be useful to effectively control the growth of colloidal crystal 

structure. The simulation platform can be further extended as a versatile 

virtual tool for studying binary crystal formation and epitaxial crystal growth.  
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CHAPTER SIX  
CONCLUSIONS AND FUTURE WORK 

 

6.1 CONCLUSIONS 
 
The objectives of this study as outlined in Chapter 1 have been achieved, 

with a particular attention paid to the development of simulation platform 

‘SimCos’ for the colloidal suspension system. 

 

A state-of-the-art review of DEM simulation methods used to simulate various 

granular flows behaviour of microscale particles and different numerical 

simulation methods used to simulate submicro to nanoscale colloidal 

particles have been presented, pointing out the shortcomings of other 

simulation studies on colloidal particles and the lack of applications of DEM 

simulation on colloidal particles system, which have therefore been the 

motivation of this study. 

 

6.1.1 Development of Simulation Platform 
  
As currently there is no specific commercial software suitable for simulating 

submicro to nanoscale particles behaviour in colloidal suspensions, the 

simulation platform ‘SimCos’ was developed. With DEM simulation method, 

the main interaction forces involved in the model were hydration force, DLVO 

forces, Brownian force, and hydrodynamic drag force, which could be 

implemented separately to study and compare the effect of each force on 

particles behaviour. The system was divided into cubic cells as a mesh 

system and the neighbourhood list was implemented during particles 

searching process to minimize the usage of computation processing power.  

 

Data read software was developed to read out data samples at specific time 

steps from large volume simulation results data and convert the binary data 

to decimal data which were then easier to output for data analysis. 
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Off-line data 3D demonstration was developed to present snapshots through 

a vivid 3D view of simulation process for any particular particles at any 

particular time step, so as to clearly track trajectories of particles and check 

interaction between particles. And with a preset large data sample time step 

during reading off-line simulation data, the nanoscale invisible simulation 

process was presented in a larger visible time scale, and the movements of 

particles were tracked in a easier and efficient way.   

 

6.1.2 Diffusion Coefficient Analysis of Brownian Particle 
 

The diffusion of spherical colloidal particle suspended in aqueous solution 

was simulated and the simulation model was validated by comparing to the 

experimental work done by Lin et al.. The diffusion coefficient analysis of 

colloidal particle was extended to the very close distance (less than 100 nm) 

to the planar wall, and studied for different particle size and charged system.  

 

Calculated from simulation results data, the mobility of particle as the 

diffusion coefficient of spherical colloidal particles in charged suspension was 

found to be larger than that in neutral suspension, due to the effect of DLVO 

forces between charged particles and wall. And as the particle moved very 

close to the planar wall, i.e. y/R ~ 1, the asymmetry effect of particle diffusion 

between perpendicular and parallel directions became more obvious, which 

were confirmed from the simulation data that the diffusion coefficient in 

perpendicular direction increased exponentially with second power while the 

diffusion coefficient in parallel direction decreased.  

 

6.1.3 Simulation of Colloidal Self-assembly 
 

The interparticle interactions, particle-boundary interactions, movement and 

packing of particles were built in the colloidal self-assembly model based on 

the physical laws. The motion of the particles and the growing crystal 
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structure under the influence of fluid flow and geometrical confinement were 

presented. The increase of fluid flow made more close-packed growing 

crystal structure, and the increase of fluid flow velocity solely in the 

transverse direction resulted in formation of large area of colloidal monolayer. 

Following the variation of wedge angle θ, the structural transitions occurred in 

different areas. The knowledge derived from the simulations which are 

inaccessible by experimental means will be useful to effectively control the 

growth of colloidal crystal structure.  

 
6.2 IDENTIFIED PROBLEMS AND FUTURE WORK 

  

The problems encountered during the modelling and simulation work have 

been outlined below, together with the recommendations for future work and 

improvement. 

 

6.2.1 Improvement on Diversity of Geometrical Confinement 
 

During the analysis of diffusion coefficient of Brownian particle in this study, 

the simulation processed was for a colloidal particle in the vicinity of a planar 

wall, and one main problem encountered was that the interactions between 

particle and planar wall varied evenly and monotonically as particle moved 

towards the plane. Therefore, in order to apply the interaction model and 

extend the diffusion coefficient analysis influenced by different geometry 

confinement, diffusion of particle under different geometry confinement, such 

as cylindrical and spherical confinement can be investigated.  

 

6.2.2 Improvement on Particle Packing Rules 

 

The major problem in the simulation of colloidal self-assembly was the 

assumption of choosing the up-pointing interstices of 1st layer as settling 

points for packing of particles in 2nd layer, which was one of the two options 

for particles packing during self-assembly. And as our simulation study was 
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mainly interested in the effect of fluid flow and wedge shape angle, the 

packing rules was simplified. However, in order to study the crystal structure 

and especially crystal defect completely, the colloid particle packing rules 

should be polished, by implementing an equilibrium energy calculation and 

comparison algorithm into the backbone model.  

 

6.2.3 Applications of Simulation Platform ‘SimCos’ 
 

The simulation platform ‘SimCos’ developed was a backbone 3D colloid 

particles simulation environment which can be implemented with different 

desired interaction models for varying industrial particle handling simulation 

cases, so as to be further extended as a versatile virtual tool for studying 

crystal formation of binary particle size, epitaxial crystal growth, and the 

aggregation of particles. These further applications can be done by changing 

particle size and accordingly the system mesh size and treating the 

aggregated particles as a whole body. 

 

 



 

R-1 
 

REFERENCES 
 

ALLEN, M. P. & TILDESLEY, D. J. 1987. Computer Simulation of Liquids, Oxford, UK, 
Clarendon Press. 

AMIN, M. & ANTONY, S. J. 2006. Micromechanical behaviour of Si-based particulate 
assemblies: A comparative study using DEM and atomistic simulations. 
Computational Materials Science, 36, 381-385. 

ASMAR, B. N., LANGSTON, P. A., MATCHETT, A. J. & WALTERS, J. K. 2002. Validation 
tests on a distinct element model of vibrating cohesive particle systems. Computers 
& Chemical Engineering, 26, 785-802. 

BALEVICIUS, R., DZIUGYS, A., KACIANAUSKAS, R., MAKNICKAS, A. & VISLAVICIUS, K. 
2006. Investigation of performance of programming approaches and languages used 
for numerical simulation of granular material by the discrete element method. 
Computer Physics Communications, 175, 404-415. 

BANERJEE, A. & KIHM, K. D. 2005. Experimental verification of near-wall hindered diffusion 
for the Brownian motion of nanoparticles using evanescent wave microscopy. 
Physical Review E, 72, 4. 

BARDET, J. P. & SCOTT, R. F. 1985. Seismic stability of fractured rock masses with the 
distinct element method. Proceedings of the 26th US Symposium on Rock 
Mechanics Rapid City, SD. 

BAREFORD, L. A. & SWAAN, P. W. 2007. Endocytic mechanisms for targeted drug delivery. 
Advanced Drug Delivery Reviews, 59, 748-758. 

BARTOLONI, A., BATTISTA, C., CABASINO, S., PAOLUCCI, P. S., PECH, J., SARNO, R., 
TODESCO, G. M., TORELLI, M., TROSS, W., VICINI, P., BENZI, R., CABIBBO, N., 
MASSAIOLI, F. & TRIPICCIONE, R. 1993. Lbe Simulations of Rayleigh-Benard 
Convection on the Ape100 Parallel Processor. International Journal of Modern 
Physics C-Physics and Computers, 4, 993-1006. 

BASAGAOGLU, H., MEAKIN, P., SUCCI, S., REDDEN, G. R. & GINN, T. R. 2008. Two-
dimensional lattice Boltzmann simulation of colloid migration in rough-walled narrow 
flow channels. Physical Review E, 77, -. 

BAXTER, J., BOU-CHAKRA, H., TUZUN, U. & LAMPTEY, B. M. 2000. A DEM simulation 
and experimental strategy for solving fine powder flow problems. Chemical 
Engineering Research & Design, 78, 1019-1025. 

BERGNA, H. E. & ROBERTS, W. O. 2006. Colloidal Silica Fundamentals and Applications, 
Boca Raton, CRC Press. 

BIZON, C., SHATTUCK, M. D., SWIFT, J. B., MCCORMICK, W. D. & SWINNEY, H. L. 1998. 
Patterns in 3D vertically oscillated granular layers: Simulation and experiment. 
Physical Review Letters, 80, 57-60. 



 

R-2 
 

BOLHUIS, P. G., FRENKEL, D., MAU, S. C. & HUSE, D. A. 1997. Entropy difference 
between crystal phases. Nature, 388, 235-236. 

BONISSENT, A., PIERANSKI, P. & PIERANSKI, P. 1984. Solid-solid phase transitions in a 
low-dimensionality system. Philosophical Magazine A, 50, 57-64. 

BRANKA, A. C. & HEYES, D. M. 1998. Algorithms for Brownian dynamics simulation. 
Physical Review E, 58, 2611-2615. 

BRANKA, A. C. & HEYES, D. M. 1999. Algorithms for Brownian dynamics computer 
simulations: Multivariable case. Physical Review E, 60, 2381-2387. 

BRENNER, H. 1961. The slow motion of a sphere through a viscous fluid towards a plane 
surface. Chemical Engineering Science, 16, 242-251. 

BRENNER, H. 1962. Effect of finite boundaries on the Stokes resistance of an arbitrary 
particle. Journal of Fluid Mechanics, 12, 144-158. 

BREWER, D. D., ALLEN, J., MILLER, M. R., DE SANTOS, J. M., KUMAR, S., NORRIS, D. 
J., TSAPATSIS, M. & SCRIVEN, L. E. 2008. Mechanistic principles of colloidal 
crystal growth by evaporation-induced convective steering. Langmuir, 24, 13683-
13693. 

BURADA, P. S., HANGGI, P., MARCHESONI, F., SCHMID, G. & TALKNER, P. 2009. 
Diffusion in Confined Geometries. Chemphyschem, 10, 45-54. 

BUTT, H. J., GRAF, K. & KAPPL, M. 2003. Physics and chemistry of interfaces. Weinheim: 
Wiley-VCH Verlag GmbH & Co. KGaA. 

CAMPBELL, C. S., CLEARY, P. W. & HOPKINS, M. 1995. Large-Scale Landslide 
Simulations - Global Deformation, Velocities and Basal Friction. Journal of 
Geophysical Research-Solid Earth, 100, 8267-8283. 

CARBAJAL-TINOCO, M. D., LOPEZ-FERNANDEZ, R. & ARAUZ-LARA, J. L. 2007. 
Asymmetry in colloidal diffusion near a rigid wall. Physical Review Letters, 99, 4. 

CHANDRASEKHAR, S. 1943. Stochastic problems in physics and astronomy. Reviews of 
Modern Physics, 15, 0001-0089. 

CHEN, J. C., ELIMELECH, M. & KIM, A. S. 2005. Monte Carlo simulation of colloidal 
membrane tiltration: Model development with application to characterization of 
colloid phase transition. Journal of Membrane Science, 255, 291-305. 

CHEN, J. C. & KIM, A. S. 2006. Monte Carlo simulation of colloidal membrane filtration: 
Principal issues for modeling. Advances in Colloid and Interface Science, 119, 35-53. 

CHEN, S. & DOOLEN, G. D. 1998. Lattice Boltzmann method for fluid flows. Annual Review 
of Fluid Mechanics, 30, 329-364. 



 

R-3 
 

CHEN, Y., OHASHI, H. & AKIYAMA, M. 1994. THERMAL LATTICE BHATNAGAR-GROSS-
KROOK MODEL WITHOUT NONLINEAR DEVIATIONS IN MACRODYNAMIC 
EQUATIONS. Physical Review E, 50, 2776-2783. 

CLEARY, P. W. & CAMPBELL, C. S. 1993. Self-Lubrication for Long Runout Landslides - 
Examination by Computer-Simulation. Journal of Geophysical Research-Solid Earth, 
98, 21911-21924. 

CLEARY, P. W. & PRAKASH, N. 2004. Discrete-element modelling and smoothed particle 
hydrodynamics: potential in the environmental sciences. Philosophical Transactions 
of the Royal Society of London Series A-Mathematical Physical and Engineering 
Sciences, 362, 2003-2030. 

CLEARY, P. W. & SINNOTT, M. D. 2008. Assessing mixing characteristics of particle-mixing 
and granulation devices. Particuology, 6, 419-444. 

CORDELAIR, J. & GREIL, P. 2004. Discrete element modeling of solid formation during 
electrophoretic deposition. Journal of Materials Science, 39, 1017-1021. 

CORMA, A. 1997. From microporous to mesoporous molecular sieve materials and their use 
in catalysis. Chemical Reviews, 97, 2373-2419. 

CUNDALL, P. A. & STRACE, O. D. L. 1979. A discrete numerical model for granular 
assemblies. Geotechnique, 29, 47-65. 

DANIEL, M. C. & ASTRUC, D. 2004. Gold nanoparticles: Assembly, supramolecular 
chemistry, quantum-size-related properties, and applications toward biology, 
catalysis, and nanotechnology. Chemical Reviews, 104, 293-346. 

DENKOV, N. D., VELEV, O. D., KRALCHEVSKY, P. A., IVANOV, I. B., YOSHIMURA, H. & 
NAGAYAMA, K. 1993. Two-dimensional crystallization. Nature, 361, 26-26. 

DERJAGUIN, B. V. & KUSSAKOV, M. M. 1939. Anomalous Properties of Thin Polymolecular 
Films. Acta Phys. Chim. URSS 10. 

DICKINSON, E. 2000. Structure and rheology of simulated gels formed from aggregated 
colloidal particles. Journal of Colloid and Interface Science, 225, 2-15. 

DIMITROV, A. S. & NAGAYAMA, K. 1996. Continuous convective assembling of fine 
particles into two-dimensional arrays on solid surfaces. Langmuir, 12, 1303-1311. 

DUNWEG, B. & LADD, A. J. C. 2009. Lattice Boltzmann Simulations of Soft Matter Systems. 
Advanced Computer Simulation Approaches for Soft Matter Sciences Iii, 221, 89-
166. 

EINSTEIN, A. 1905. The motion of elements suspended in static liquids as claimed in the 
molecular kinetic theory of heat. ANNALEN DER PHYSIK 17. 

ERMAK, D. L. 1975. Computer-Simulation of Charged-Particles in Solution .1. Technique 
and Equilibrium Properties. Journal of Chemical Physics, 62, 4189-4196. 



 

R-4 
 

ERMAK, D. L. & MCCAMMON, J. A. 1978. Brownian Dynamics with Hydrodynamic 
Interactions. Journal of Chemical Physics, 69, 1352-1360. 

FANG, H. F. & LI, Q. 2009. SimCos software documentation. Internal Report. 

FAUCHEUX, L. P. & LIBCHABER, A. J. 1994. Confined Brownian-Motion. Physical Review 
E, 49, 5158-5163. 

FAXEN, H. 1923. Die Bewegun einer starren Küge längs der Achse eines mit zäher 
Flüssigkeit gefüllten Rohres. Ark. Mat. Astron. Fys., 27. 

FEDER, J. 1980. Random Sequential Adsorption. Journal of Theoretical Biology, 87, 237-
254. 

FEITOSA, M. I. M. & MESQUITA, O. N. 1991. WALL-DRAG EFFECT ON DIFFUSION OF 
COLLOIDAL PARTICLES NEAR SURFACES - A PHOTON-CORRELATION 
STUDY. Physical Review A, 44, 6677-6685. 

FENG, Y. Q., XU, B. H., ZHANG, S. J., YU, A. B. & ZULLI, P. 2004. Discrete particle 
simulation of gas fluidization of particle mixtures. Aiche Journal, 50, 1713-1728. 

FONTECHA, A. B., SCHOPE, H. J., KONIG, H., PALBERG, T., MESSINA, R. & LOWEN, H. 
2005. A comparative study on the phase behaviour of highly charged colloidal 
spheres in a confining wedge geometry. Journal of Physics: Condensed Matter, 17, 
S2779-S2786. 

FOSNARIC, M., IGLIC, A., KROLL, D. M. & MAY, S. 2009. Monte Carlo simulations of 
complex formation between a mixed fluid vesicle and a charged colloid. Journal of 
Chemical Physics, 131, -. 

FRENKEL, D. & EPPENGA, R. 1982. Monte-Carlo Study of the Isotropic-Nematic Transition 
in a Fluid of Thin Hard Disks. Physical Review Letters, 49, 1089-1092. 

FRENKEL, D. & LADD, A. J. C. 1984a. New Monte-Carlo Method to Compute the Free-
Energy of Arbitrary Solids - Application to the Fcc and Hcp Phases of Hard-Spheres. 
Journal of Chemical Physics, 81, 3188-3193. 

FRENKEL, D. & LADD, A. J. C. 1984b. New Monte Carlo method to compute the free energy 
of arbitrary solids - application to the fcc and hcp phases of hard spheres. Journal of 
Chemical Physics, 81, 3188-3193. 

FREY, E. & KROY, K. 2005. Brownian motion: a paradigm of soft matter and biological 
physics. Annalen Der Physik, 14, 20-50. 

FUJITA, M. & YAMAGUCHI, Y. 2008. Simulation model of concentrated colloidal 
nanoparticulate flows. Physical Review E, 77, -. 

FUSTIN, C. A., GLASSER, G., SPIESS, H. W. & JONAS, U. 2004. Parameters influencing 
the templated growth of colloidal crystals on chemically patterned surfaces. 
Langmuir, 20, 9114-9123. 



 

R-5 
 

GALLAS, J. A. C., HERRMANN, H. J. & SOKOLOWSKI, S. 1992. Convection Cells in 
Vibrating Granular Media. Physical Review Letters, 69, 1371-1374. 

GAMBIN, Y., LOPEZ-ESPARZA, R., REFFAY, M., SIERECKI, E., GOV, N. S., GENEST, M., 
HODGES, R. S. & URBACH, W. 2006. Lateral mobility of proteins in liquid 
membranes revisited. Proceedings of the National Academy of Sciences of the 
United States of America, 103, 2098-2102. 

GASPERINO, D., MENG, L. L., NORRIS, D. J. & DERBY, J. J. 2008. The role of fluid flow 
and convective steering during the assembly of colloidal crystals. Journal of Crystal 
Growth, 310, 131-139. 

GLOTZER, S. C., SOLOMON, M. J. & KOTOV, N. A. 2004. Self-assembly: From nanoscale 
to microscale colloids. Aiche Journal, 50, 2978-2985. 

GOLDMAN, A. 1967. Slow viscous motion of a sphere parallel to a plane wall 鈥擨 Motion 
through a quiescent fluid. Chemical Engineering Science, 22, 637-651. 

GRANFELDT, M. K., JONSSON, B. & WOODWARD, C. E. 1991. A Monte-Carlo Simulation 
Study of the Interaction between Charged Colloids Carrying Adsorbed 
Polyelectrolytes. Journal of Physical Chemistry, 95, 4819-4826. 

GRAY, J. J. & BONNECAZE, R. T. 2001. Adsorption of colloidal particles by Brownian 
dynamics simulation: Kinetics and surface structures. Journal of Chemical Physics, 
114, 1366-1381. 

GRAY, J. J., KLEIN, D. H., BONNECAZE, R. T. & KORGEL, B. A. 2000. Nonequilibrium 
phase behavior during the random sequential adsorption of tethered hard disks. 
Physical Review Letters, 85, 4430-4433. 

GRIER, D. G. 1997. Optical tweezers in colloid and interface science. Current Opinion in 
Colloid & Interface Science, 2, 264-270. 

GRZYBOWSKI, B. A., WILMER, C. E., KIM, J., BROWNE, K. P. & BISHOP, K. J. M. 2009. 
Self-assembly: from crystals to cells. Soft Matter, 5, 1110-1128. 

GUNAL, Y. & VISSCHER, P. B. 1996. Brownian dynamics simulation of magnetic colloid 
aggregation. Ieee Transactions on Magnetics, 32, 4049-4051. 

HANGGI, P. & MARCHESONI, F. 2005. Introduction: 100 years of Brownian motion. Chaos, 
15, 5. 

HE, X., CHEN, S. & DOOLEN, G. D. 1998. A novel thermal model for the lattice Boltzmann 
method in incompressible limit. Journal of Computational Physics, 146, 282-300. 

HE, Y. L., LI, Q., WANG, Y. & TANG, G. H. 2009. Lattice Boltzmann method and its 
applications in engineering thermophysics. Chinese Science Bulletin, 54, 4117-4134. 



 

R-6 
 

HEYES, D. M. 1988. Rheology of Molecular Liquids and Concentrated Suspensions by 
Microscopic Dynamical Simulations. Journal of Non-Newtonian Fluid Mechanics, 27, 
47-85. 

HONG, C. W. 1997. New concept for simulating particle packing in colloidal forming 
processes. Journal of the American Ceramic Society, 80, 2517-2524. 

HOOMANS, B. P. B., KUIPERS, J. A. M., BRIELS, W. J. & VANSWAAIJ, W. P. M. 1996. 
Discrete particle simulation of bubble and slug formation in a two-dimensional gas-
fluidised bed: A hard-sphere approach. Chemical Engineering Science, 51, 99-118. 

HOPKINS, M. A., DALY, S. F. & LEVER, J. H. 1996. Three-dimensional simulation of river 
ice jams. Proceedings of the 8th International Specialty Conference on Cold Regions 
Engineering. Fairbanks, AK. 

HUNTER, R. J. 2001. Foundations of colloid science. New York: Oxford University Press. 

HUTTER, M. 1999. Brownian Dynamics Simulation of Stable and Coagulating Suspensions. 
Ph.D Ph.D. dissertation, University of Zurich. 

ISRAELACHVILI, J. & WENNERSTROM, H. 1996. Role of hydration and water structure in 
biological and colloidal interactions. Nature, 379, 219-225. 

ISRAELACHVILI, J. N. 1992. Intermolecular and Surface Forces, London, Academic Press 
Limited. 

JIANG, P., BERTONE, J. F., HWANG, K. S. & COLVIN, V. L. 1999. Single-crystal colloidal 
multilayers of controlled thickness. Chemistry of Materials, 11, 2132-2140. 

JUN, Y., LEATHERDALE, C. A. & NORRIS, D. J. 2005. Tailoring air defects in self-
assembled photonic bandgap crystals. Advanced Materials, 17, 1908-1911. 

KATAOKA, T. & TSUTAHARA, M. 2004. Lattice Boltzmann method for the compressible 
Euler equations. Physical Review E, 69, 14. 

KHANAL, M., SCHUBERT, W. & TOMAS, J. 2007. Discrete element method simulation of 
bed comminution. Minerals Engineering, 20, 179-187. 

KIM, J. P., HAN, I. S. & CHUNG, C. B. 2003. Monte Carlo simulations of colloidal particle 
coagulation and breakup under turbulent shear. Korean Journal of Chemical 
Engineering, 20, 580-586. 

KRUGGEL-EMDEN, H., STURM, M., WIRTZ, S. & SCHERER, V. 2008. Selection of an 
appropriate time integration scheme for the discrete element method (DEM). 
Computers & Chemical Engineering, 32, 2263-2279. 

KUO, H. P., KNIGHT, P. C., PARKER, D. J., TSUJI, Y., ADAMS, M. J. & SEVILLE, J. P. K. 
2002. The influence of DEM simulation parameters on the particle behaviour in a V-
mixer. Chemical Engineering Science, 57, 3621-3638. 



 

R-7 
 

LADD, A. J. C. & VERBERG, R. 2001. Lattice-Boltzmann simulations of particle-fluid 
suspensions. Journal of Statistical Physics, 104, 1191-1251. 

LARSON, R. G. 1999. The Structure and Rheology of Complex Fluids, Oxford, Oxford 
University Press. 

LEMIEUX, A., LEONARD, G., DOUCET, J., LECLAIRE, L. A., VIENS, F., CHAOUKI, J. & 
BERTRAND, F. 2008. Large-scale numerical investigation of solids mixing in a V-
blender using the discrete element method. Powder Technology, 181, 205-216. 

LI, Q., JONAS, U., ZHAO, X. S. & KAPPL, M. 2008. The forces at work in colloidal self-
assembly: a review on fundamental interactions between colloidal particles. Asia-
Pacific Journal of Chemical Engineering 3, 255-268. 

LI, Q., RUDOLPH, V., WANG, F. Y. & HORIO, M. 2005. A study of particle packing 
compression under fluid drag force by DEM simulations. Developments in Chemical 
Engineering and Mineral Processing, 13, 693-708. 

LIM, C. Y., SHU, C., NIU, X. D. & CHEW, Y. T. 2002. Application of lattice Boltzmann 
method to simulate microchannel flows. Physics of Fluids, 14, 2299-2308. 

LIN, B. H., YU, J. & RICE, S. A. 2000. Direct measurements of constrained Brownian motion 
of an isolated sphere between two walls. Physical Review E, 62, 3909-3919. 

LINK, J. M., GODLIEB, W., DEEN, N. G. & KUIPERS, J. A. M. 2007. Discrete element study 
of granulation in a spout-fluidized bed. Chemical Engineering Science, 62, 195-207. 

LINK, J. M., GODLIEB, W., TRIPP, P., DEEN, N. G., HEINRICH, S., KUIPERS, J. A. M., 
SCHONHERR, M. & PEGLOW, M. 2009. Comparison of fibre optical measurements 
and discrete element simulations for the study of granulation in a spout fluidized bed. 
Powder Technology, 189, 202-217. 

LΌPEZ, C. 2003. Materials aspects of photonic crystals. Advanced Materials, 15, 1679-1704. 

MAU, S. C. & HUSE, D. A. 1999. Stacking entropy of hard-sphere crystals. Physical Review 
E, 59, 4396-4401. 

MCNAMARA, G. & ALDER, B. 1993. ANALYSIS OF THE LATTICE BOLTZMANN 
TREATMENT OF HYDRODYNAMICS. Physica A, 194, 218-228. 

MCNAMARA, G. R., GARCIA, A. L. & ALDER, B. J. 1997. A hydrodynamically correct 
thermal lattice Boltzmann model. Journal of Statistical Physics, 87, 1111-1121. 

MCNAMARA, G. R. & ZANETTI, G. 1988. Use of the Boltzmann-Equation to Simulate 
Lattice-Gas Automata. Physical Review Letters, 61, 2332-2335. 

MENG, L. L., WEI, H., NAGEL, A., WILEY, B. J., SCRIVEN, L. E. & NORRIS, D. J. 2006. 
The role of thickness transitions in convective assembly. Nano Letters, 6, 2249-2253. 



 

R-8 
 

METROPOLIS, N., ROSENBLUTH, A. W., ROSENBLUTH, M. N., TELLER, A. H. & TELLER, 
E. 1953. Equation of State Calculations by Fast Computing Machines. The Journal 
of Chemical Physics, 21, 1087-1092. 

MIGUEZ, H., MESEGUER, F., LΌPEZ, C., MIFSUD, A., MOYA, J. S. & VAZQUEZ, L. 1997. 
Evidence of FCC crystallization of SiO2 nanospheres. Langmuir, 13, 6009-6011. 

MILCHEV, A. & BHATTACHARYA, A. 2002. Polymer depletion interaction between a colloid 
particle and a wall: A Monte Carlo study. Journal of Chemical Physics, 117, 5415-
5420. 

MORGAN, J. K. 2006. Volcanotectonic interactions between Mauna Loa and Kilauea: 
Insights from 2-D discrete element simulations. Journal of Volcanology and 
Geothermal Research, 151, 109-131. 

NEUMAN, K. C. & BLOCK, S. M. 2004. Optical trapping. Review of Scientific Instruments, 75, 
2787-2809. 

NEZAMI, E. G., HASHASH, Y. M. A., ZHAO, D. W. & GHABOUSSI, J. 2004. A fast contact 
detection algorithm for 3-D discrete element method. Computers and Geotechnics, 
31, 575-587. 

NIE, X. B., DOOLEN, G. D. & CHEN, S. Y. 2002. Lattice-Boltzmann simulations of fluid flows 
in MEMS. Journal of Statistical Physics, 107, 279-289. 

NORRIS, D. J., ARLINGHAUS, E. G., MENG, L. L., HEINY, R. & SCRIVEN, L. E. 2004. 
Opaline photonic crystals: How does self-assembly work? Advanced Materials, 16, 
1393-1399. 

ODRIOZOLA, G., ROMERO-BASTIDA, M. & GUEVARA-RODRIGUEZ, F. D. 2004. 
Brownian dynamics simulations of Laponite colloid suspensions. Physical Review E, 
70, -. 

OLIVI-TRAN, N., BOTET, R. & CABANE, B. 1998. Monte Carlo simulations of colloidal 
dispersions under shear. Physical Review E, 57, 1997-2003. 

OUNIS, H., AHMADI, G. & MCLAUGHLIN, J. B. 1991. Brownian Diffusion of Submicrometer 
Particles in the Viscous Sublayer. Journal of Colloid and Interface Science, 143, 
266-277. 

PALBERG, T. & BIEHL, R. 2003. Sheared colloidal crystals in confined geometry: a real 
space study on stationary structures under shear. Faraday Discussions, 123, 133-
143. 

PANSU, B., PIERANSKI, P. & PIERANSKI, P. 1984. Structures of thin layers of hard 
spheres: high pressure limit. Journal De Physique, 45, 331-339. 

PENG, C. S., SONG, S. X. & FORT, T. 2006. Study of hydration layers near a hydrophilic 
surface in water through AFM imaging. Surface and Interface Analysis, 38, 975-980. 



 

R-9 
 

PESCHEL, G., BELOUSCHEK, P., MULLER, M. M., MULLER, M. R. & KONIG, R. 1982. 
The Interaction of Solid-Surfaces in Aqueous Systems. Colloid and Polymer Science, 
260, 444-451. 

PHULE, P. P. & GINDER, J. M. 1998. The materials science of field-responsive fluids. MRS 
Bulletin, 23, 19-21. 

PLUM, M. A., STEFFEN, W., FYTAS, G., KNOLL, W. & MENGES, B. 2009. Probing 
dynamics at interfaces: resonance enhanced dynamic light scattering. Optics 
Express, 17, 10364-10371. 

PUSEY, P. N., VANMEGEN, W., BARTLETT, P., ACKERSON, B. J., RARITY, J. G. & 
UNDERWOOD, S. M. 1989. Structure of crystals of hard colloidal spheres. Physical 
Review Letters, 63, 2753-2756. 

RABIDEAU, B. D. & BONNECAZE, R. T. 2004. Computational study of the self-organization 
of bidisperse nanoparticles. Langmuir, 20, 9408-9414. 

RAMSTEINER, I. B., JENSEN, K. E., WEITZ, D. A. & SPAEPEN, F. 2009. Experimental 
observation of the crystallization of hard-sphere colloidal particles by sedimentation 
onto flat and patterned surfaces. Physical Review E, 79, 011403. 

REIMANN, P. 2002. Brownian motors: noisy transport far from equilibrium. Physics Reports-
Review Section of Physics Letters, 361, 57-265. 

RICCI, A. & CICCOTTI, G. 2003. Algorithms for Brownian dynamics. Molecular Physics, 101, 
1927-1931. 

RISTOW, G. H. 1992. Simulating Granular Flow with Molecular-Dynamics. Journal de 
Physique I, 2, 649-662. 

RUSSEL, W. B., SAVILLE, D. A. & SCHOWALTER, W. R. 1989. Colloidal Suspensions, 
Cambridge, Cambridge University Press. 

SAKKA, Y. & SUZUKI, T. S. 2005. New processing of textured ceramics by colloidal 
processing under high magnetic field. In: PAN, W., GONG, J. H., GE, C. C. & LI, J. F. 
(eds.) High-Performance Ceramics Iii, Pts 1 and 2. Zurich-Uetikon: Trans Tech 
Publications Ltd. 

SASAKI, S. & MAEDA, H. 1994. Electrostatic Effect on the Hydration Layer of Colloidal Silica 
Particles. Journal of Colloid and Interface Science, 167, 146-149. 

SATOH, A., CHANTRELL, R. W. & COVERDALE, G. N. 1999. Brownian dynamics 
simulations of ferromagnetic colloidal dispersions in a simple shear flow. Journal of 
Colloid and Interface Science, 209, 44-59. 

SCHAFFER, E., NORRELYKKE, S. F. & HOWARD, J. 2007. Surface forces and drag 
coefficients of microspheres near a plane surface measured with optical tweezers. 
Langmuir, 23, 3654-3665. 



 

R-10 
 

SEVERENS, I. E. M., DE VEN, A. A. F. V., WOLF, D. E. & MATTHEIJ, R. M. M. 2006. 
Discrete element method simulations of toner behavior in the development nip of the 
Oce Direct Imaging print process. Granular Matter, 8, 137-150. 

SHOLL, D. S., FENWICK, M. K., ATMAN, E. & PRIEVE, D. C. 2000. Brownian dynamics 
simulation of the motion of a rigid sphere in a viscous fluid very near a wall. Journal 
of Chemical Physics, 113, 9268-9278. 

SKVARLA, J. & KMET, S. 1991. Influence of Wettability on the Aggregation of Fine Minerals. 
International Journal of Mineral Processing, 32, 111-131. 

SMOLUCHOWSKI, M. V. 1906. Zur kinetischen Theorie der Brownschen 
Molekularbewegung und der Suspensionen. Annalen der Physik, 326, 756-780. 

SOKOLOV, I. M. & KLAFTER, J. 2005. From diffusion to anomalous diffusion: A century 
after Einstein's Brownian motion. Chaos, 15, -. 

STEWART, R. L., BRIDGWATER, J., ZHOU, Y. C. & YU, A. B. 2001. Simulated and 
measured flow of granules in a bladed mixer - a detailed comparison. Chemical 
Engineering Science, 56, 5457-5471. 

STOLL, S. & PEFFERKORN, E. 1996. Monte Carlo simulation of controlled colloid growth by 
homo- and heterocoagulation in two dimensions. Journal of Colloid and Interface 
Science, 177, 192-197. 

SUCCI, S. 2001. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford, 
Clarendon Press. 

TANG, G. H., TAO, W. Q. & HE, Y. L. 2005. Gas slippage effect on microscale porous flow 
using the lattice Boltzmann method. Physical Review E, 72, 8. 

TSUJI, Y., KAWAGUCHI, T. & TANAKA, T. 1993. Discrete particle simulation of two-
dimensional fluidized bed. Powder Technology, 77, 79-87. 

UNNI, H. N. & YANG, C. 2005. Brownian dynamics simulation and experimental study of 
colloidal particle deposition in a microchannel flow. Journal of Colloid and Interface 
Science, 291, 28-36. 

VALLE-DELGADO, J. J., MOLINA-BOLIVAR, J. A., GALISTEO-GONZALEZ, F., GALVEZ-
RUIZ, M. J., FEILER, A. & RUTLAND, M. W. 2005. Existence of hydration forces in 
the interaction between apoferritin molecules adsorbed on silica surfaces. Langmuir, 
21, 9544-9554. 

VANGUNSTEREN, W. F. & BERENDSEN, H. J. C. 1982. Algorithms for Brownian Dynamics. 
Molecular Physics, 45, 637-647. 

VLASOV, Y. A., BO, X. Z., STURM, J. C. & NORRIS, D. J. 2001. On-chip natural assembly 
of silicon photonic bandgap crystals. Nature, 414, 289-293. 



 

R-11 
 

WALZ, J. Y. & SURESH, L. 1995. Study of the sedimentation of a single particle toward a flat 
plate. Journal of Chemical Physics, 103, 10714-10725. 

WANG, J. J., LI, Q., KNOLL, W. & JONAS, U. 2006. Preparation of multilayered trimodal 
colloid crystals and binary inverse opals. Journal of the American Chemical Society, 
128, 15606-15607. 

WEITZ, D. A. & RUSSEL, W. B. 2004. New developments in colloid science. MRS Bulletin, 
29, 82-83. 

WONG, S., KITAEV, V. & OZIN, G. A. 2003. Colloidal crystal films: Advances in universality 
and perfection. Journal of the American Chemical Society, 125, 15589-15598. 

WOODCOCK, L. V. 1997. Entropy difference between the face-centred cubic and hexagonal 
close-packed crystal structures. Nature, 385, 141-143. 

XIA, Y. N., GATES, B. & LI, Z. Y. 2001. Self-assembly approaches to three-dimensional 
photonic crystals. Advanced Materials, 13, 409-413. 

XIA, Y. N., GATES, B., YIN, Y. D. & LU, Y. 2000. Monodispersed colloidal spheres: Old 
materials with new applications. Advanced Materials, 12, 693-713. 

YANG, R. Y., ZOU, R. P. & YU, A. B. 2000. Computer simulation of the packing of fine 
particles. Physical Review E, 62, 3900-3908. 

YOTSUMOTO, H. & YOON, R. H. 1993. Application of Extended Dlvo Theory .2. Stability of 
Silica Suspensions. Journal of Colloid and Interface Science, 157, 434-441. 

YUU, S., ABE, T., SAITOH, T. & UMEKAGE, T. 1995. Three-dimensional numerical 
simulation of the motion of particles discharging from a rectangular hopper using 
distinct element method and comparison with experimental data (effects of time 
steps and material properties). Advanced Powder Technology, 6, 259-269. 

ZHOU, Z. C., LI, Q. & ZHAO, X. S. 2006. Evolution of interparticle capillary forces during 
drying of colloidal crystals. Langmuir, 22, 3692-3697. 

ZHU, H. P. & YU, A. B. 2004. Steady-state granular flow in a three-dimensional cylindrical 
hopper with flat bottom: microscopic analysis. Journal of Physics D-Applied Physics, 
37, 1497-1508. 

 
 

Every reasonable effort has been made to acknowledge the owners of 
copyright material. I would be pleased to hear from any copyright 
owner who has been omitted or incorrectly acknowledged. 


	1.1 BACKGROUND
	1.2 MOTIVATIONS AND CONTRIBUTIONS
	1.3 OBJECTIVES AND SCOPE
	1.4 STRUCTURE OF THE THESIS
	2.1 DEM SIMULATION METHOD
	2.1.1 Theoretical Background
	2.1.2 Applications and Recent Advances
	2.1.3 Challenges of DEM

	2.2 OTHER SIMULATION METHODS ON COLLOIDAL SYSTEM
	2.2.1 Brownian Dynamics Simulation
	2.2.2 Monte Carlo Simulation
	2.2.3 Lattice Boltzmann Simulation

	3.1 MODEL ESTABLISHMENT
	3.2 SIMULATION PLATFORM DEVELOPMENT
	3.2.1 Programming Language
	3.2.2 Program Structure
	3.2.2.1 Initialization 
	3.2.2.2 Simulation program cycle 
	3.2.2.3 Data output 

	3.2.3 Algorithm Application

	3.3 DATA POST-PROCESSING TECHNIQUE
	4.1 INTRODUCTION
	4.2 THEORETICAL BACKGROUND
	4.3 MODEL ESTABLISHMENT
	4.3.1 Hydrodynamic Drag Force Revisited
	4.3.2 Simulation Method

	4.4 SIMULATION RESULTS AND DISCUSSIONS
	4.4.1 Model Validity
	4.4.2 The Comprehensive Study of Hindered Diffusion

	4.5 CONCLUSIONS
	5.2.1 General Framework
	5.2.2 Consideration on the Fluid Field
	5.2.3 The Rules Set for Particle Deposition
	5.3.1 Self-assembly under Different Fluid Flow Field
	5.3.2 Self-assembly under Different Wedge Shape Angle
	5.3.3 Defect Formation Mechanism




