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ABSTRACT 

 

The aim of this study was to develop and examine the use of backscatter data 

collected with multibeam sonar (MBS) systems for benthic habitat mapping. 

Backscatter data were collected from six sites around the Australian coastal zone 

using the Reson SeaBat 8125 MBS system operating at 455 kHz. Benthic habitats 

surveyed in this study included: seagrass meadows, rhodolith beds, coral reef, rock, 

gravel, sand, muddy sand, and mixtures of those habitats.  

 

Methods for processing MBS backscatter data were developed for the Coastal Water 

Habitat Mapping (CWHM) project by a team from the Centre for Marine Science 

and Technology (CMST). The CMST algorithm calculates the seafloor backscatter 

strength derived from the peak and integral (or average) intensity of backscattered 

signals for each beam. The seafloor backscatter strength estimated from the mean 

value of the integral backscatter intensity was shown in this study to provide an 

accurate measurement of the actual backscatter strength of the seafloor and its 

angular dependence. However, the seafloor backscatter strength derived from the 

peak intensity was found to be overestimated when the sonar insonification area is 

significantly smaller than the footprint of receive beams, which occurs primarily at 

oblique angles.  

 

The angular dependence of the mean backscatter strength showed distinct differences 

between hard rough substrates (such as rock and coral reef), seagrass, coarse 

sediments and fine sediments. The highest backscatter strength was observed not 

only for the hard and rough substrate, but also for marine vegetation, such as 

rhodolith and seagrass. The main difference in acoustic backscatter from the different 

habitats was the mean level, or angle-average backscatter strength. However, 

additional information can also be obtained from the slope of the angular dependence 

of backscatter strength. 

 

It was shown that the distribution of the backscatter strength derived from the 

integral intensity can be accurately approximated by the gamma distribution model. 

Both scale and shape parameters of the gamma model were found to be dependent on 
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incidence angle. The scale parameter changes with the angle of incidence in 

accordance with the angular dependence of backscatter. The shape parameter was 

shown to relate to the ratio of the insonification area (which can be interpreted as an 

elementary scattering cell) to the footprint size rather than to the angular dependence 

of backscatter strength. When this ratio is less than 5, the gamma shape parameter is 

very similar for different habitats and is nearly linearly proportional to the ratio. 

Above a ratio of 5, the gamma shape parameter is not significantly dependent on the 

ratio and there is a noticeable difference in this parameter between different seafloor 

types.  

 

A new approach to producing images of backscatter properties, introduced and 

referred to as the angle cube method, was developed. The angle cube method uses 

spatial interpolation to construct a three-dimensional array of backscatter data that is 

a function of X-Y coordinates and the incidence angle. This allows the spatial 

visualisation of backscatter properties to be free from artefacts of the angular 

dependence and provides satisfactory estimates of the backscatter characteristics. 

Using the angle-average backscatter strength and slope of the angular dependence, 

derived by the angle cube method, in addition to seafloor terrain parameters, habitat 

probability and classification maps were produced to show distributions of sand, 

marine vegetation (e.g. seagrass and rhodolith) and hard substrate (e.g. coral and 

bedrock) for five different survey areas.  

 

Ultimately, this study demonstrated that the combination of high-resolution 

bathymetry and backscatter strength data, as collected by MBS, is an efficient and 

cost-effective tool for benthic habitat mapping in costal zones. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The aims of this chapter are to introduce and give an overview of the thesis, and 

to put the work in context. The chapter begins with the motivation for the study and 

provides details of the Coastal Water Habitat Mapping (CWHM) project, of which this 

work was a part, then the definition of habitat used, followed by the objectives of the 

study, and concludes with an outline of the thesis.  

 

1.2 The need for acoustic remote sensing tools 

The motivation behind this study into benthic habitat mapping using multibeam 

sonar (MBS) systems came from the need to further develop acoustic remote sensing 

tools. This is a result of the increasing pressure on the marine environment, which 

requires a greater need for effective coastal zone management (Holdgate 1994; Reichelt 

& McEwan 1999). In particular, successful management of coastal seafloor habitats is of 

great social, economic and environmental importance (Turner et al. 2004). Hence, there is 

an increasing need for a greater understanding of the natural resources present in the 

coastal zone and an ability to subsequently monitor changes over time or measure the 

effect of anthropogenic and natural impacts (Reichelt & McEwan 1999). These issues can 

only be addressed fully using survey methods and equipment that can produce high-

resolution maps of biological resources. However, due to the economic and technical 

difficulties in mapping benthic habitats (compared with their terrestrial counterparts) 

many areas of coastal zone remain poorly investigated. 

 

Remote sensing techniques are one of the most cost-effective methods of resource 

mapping, particularly in the coastal zone (Malthus & Mumby 2003). The use of acoustic 

remote sensing techniques in seabed mapping and monitoring has proven to be a useful 

tool in contemporary marine resource management (Kenny et al. 2003; Pickrill & Todd 

2003), particularly in turbid and deep water areas, where aerial and satellite remote 

sensing based on measuring the electromagnetic spectra is of limited use.  
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Sonar systems (including MBS) have been used for many years to help map the seafloor, 

however, it is the recent (in the last decade) advancement and widespread use of MBS 

mapping technology, in combination with traditional survey techniques, that has provided 

the ability to map relatively large areas of seafloor at a resolution comparable to that of 

terrestrial maps (Augustin et al. 1996; Hughes-Clarke, Mayer & Wells 1996; Pickrill & 

Todd 2003). Nevertheless, benthic habitat mapping is still an underdeveloped field and 

requires further research work to realise the potential of the currently available 

technology, particularly MBS systems. This was the reason that further development of 

acoustic remote sensing tools was part of the Coastal Water Habitat Mapping project’s 

objectives. 

 

1.3 Coastal Water Habitat Mapping project 

The Coastal Water Habitat Mapping (CWHM) project was an initiative of the 

Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management 

(Coastal CRC) and its partner organizations. To date it has been the largest single 

program related to shallow water benthic habitat mapping in Australia (Penrose 2007). A 

joint venture between universities, government agencies and private enterprise, the 

CWHM project aimed to develop and examine technologies, including sonar tools, for 

rapid and cost effective assessment of shallow water marine habitats. Acoustic and 

ground-truth data have been collected from 10 sites around the Australian coast. Data 

from Owen Anchorage, Marmion Marine Park and Esperance Bay in Western Australia 

and Moreton Bay, Keppel Bay and Morinda Shoal in Queensland (Figure 1.1) were 

primarily used in this study. These sites represent a wide range of the coastal-benthic 

habitats found in Australia, including coral reefs, seagrass, rocky reefs and various grades 

of sediment. This thesis presents the results of the development of acoustic techniques for 

mapping based, in particular on using MBS systems. The primary MBS system used for 

this study was the Reson SeaBat 8125, which operates at 455 kHz. The Matlab® toolbox 

used to process MBS data was developed by a team at the Centre for Marine Science and 

Technology (CMST), Curtin University of Technology. This team included the 

candidate, Prof. Alexander Gavrilov, Dr Alec Duncan and Dr. Paulus Siwabessy. The 

calibration of the Reson SeaBat 8125 was conducted by the candidate, Prof. Alexander 
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Gavrilov and Dr. Paulus Siwabessy. All other work reported in this thesis was carried out 

by the candidate. 

 

 
Figure 1.1: Location of study areas involved in this study and as part of the CWHM 

project. 
 

1.4 Benthic habitats  

The term “habitat” is defined for the purposes of this study as the combination of 

physical, geomorphological and biological properties of the seafloor. Specifically, the 

substrate, morphology and (if present) epi-benthic formations of the seafloor. This study 

is focused on broad-scale mapping over large areas (~10-1000 km2) using MBS, as such, 

it is large-scale changes in habitat type that are of the most interest.  

 

1.5 Aim and objectives of the study  

MBS systems are recognised as one of the most effective tools available to map 

and characterise the seafloor as they can provide co-located high-resolution bathymetry 

and acoustic backscatter characteristics from a wide swath across a vessel’s track. 

Bathymetry gives the relief of the seafloor and acoustic backscatter imagery can relate to 

morphological and composition characteristics of the seabed surface. Combined, these 
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two different sets of data can effectively describe the spatial variations of physical 

seafloor properties. While the production of bathymetry maps from MBS is well 

developed, processing and analysis of MBS backscatter data has not yet reached its full 

potential (Diaz 1999; Kostylev et al. 2001; Lurton 2002; Mayer 2006; Whitmore 2003). 

Hence, the need for enhanced techniques of MBS backscatter analysis was evident. This 

called forth the primary aim of this study, which was to examine and develop new 

methodologies for using MBS backscatter data for benthic habitat mapping.  

 

This study had the following objectives:  

1. Collect MBS backscatter data from a variety of shallow water habitats around the 

Australian coast. 

2. Develop methods for processing backscatter data collected with high-frequency 

MBS systems.  

3. Examine any MBS system effects on collection of backscatter data. 

4. Investigate the relationship between seafloor backscatter characteristics and the 

angle of incidence in high-frequency MBS systems. 

5. Evaluate the ability of various backscatter characteristics to discriminate between 

different seafloor types and identify key backscatter parameters that characterize 

the seafloor at high frequencies of hundreds of kHz. 

6. Create methods to visualise the spatial distribution of seafloor backscatter 

properties (i.e. backscatter intensity images). 

7. Demonstrate the use of MBS data in seafloor classification.  

 

The results achieved towards fulfilling these objectives are presented in this thesis. 

 
1.6 Outline of the thesis 

The thesis is divided into 7 chapters, a summary of which is given in Table 1.1. 

The next chapter (2) gives some key elements of relevant theory and a review of 

literature in the field of acoustic seafloor classification. Chapter 3 aims to fulfil 

Objectives 2 and 3 by presenting the results of the calibration experiments and an outline 

of processing methods used in the work. Objective 4 is the focus of Chapter 4, where the 

effects of incidence angle on high-frequency backscatter from various seafloor types are 
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analysed. Chapter 5 is devoted to the methods for visualising and classifying MBS data 

(Objectives 5 and 6). Chapter 6 demonstrates and assesses the capabilities of the methods 

developed in Chapters 3 and 5 using a variety of case studies. The thesis ends with a 

discussion of the key findings and makes recommendations for future work in this 

research area. 

 
Table 1.1: Summary of thesis chapters. 

 
Chapter Title Summary 

1 Introduction Introduction to the study and to put the 
work in context. 

2 Theoretical and experimental 
background 

Gives key elements of background 
theory relevant to the subject and a 
review of progress made and problems 
encountered with using MBS for 
seafloor mapping. 

3 Multibeam sonar backscatter 
measurements 

Describes MBS system used in this 
study, the Reson SeaBat 8125, the 
results from a calibration experiment 
the method developed for processing 
MBS backscatter and some system 
effects. 

4 The effects of incidence 
angle on the intensity and 
statistics of seafloor 
backscatter data collected 
with high-frequency 
multibeam sonar  

Examines the effects of incidence angle 
on high-frequency backscatter and the 
implications of those effects for habitat 
mapping. 

5 Techniques for visualisation 
and classification of the 
seafloor using multibeam 
sonar data 

Describes an algorithm developed for 
visualising the spatial distribution of 
backscatter properties, and 
demonstrates the application of 
classification methods on MBS data. 

6 Analysis of MBS data from 
different seafloor habitats 

Applies the methods considered in the 
previous chapters to case studies in 
order to examine the capabilities of 
MBS data in benthic habitat mapping. 

7 Discussion Discussion of findings and 
recommendations 
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CHAPTER 2 

THEORETICAL AND EXPERIMENTAL BACKGROUND 

2.1 Overview 

The aim of this chapter is to describe the theoretical and experimental 

background of this study and to review relevant work in the field of benthic habitat 

mapping using high-frequency multibeam sonar (MBS) systems. The chapter is divided 

into 4 main sections. Section 2.2 outlines theory and studies on the scattering of sound 

from the seafloor. This is followed by a description of the operation of MBS systems 

and processing of bathymetry and backscatter measurements (Section 2.3). How the 

bathymetry and backscatter measurements are used for the classification of the seafloor 

is the focus of Section 2.4. The chapter concludes with implications of the theoretical 

predictions and results of previous works for this study (Section 2.5). The literature in 

the field of bottom-interacting ocean acoustics is substantial, and the author is indebted 

to the many useful texts, including: Brekhovskikh & Lysanov (2001); J.E. Hughes 

Clarke et al. (2004); Lurton (2002); Medwin & Clay (1998); and Oglivy (1991).  

 

2.2 Scattering of sound from the seafloor 

2.2.1 Wave scattering from rough surfaces 

 The seafloor is a highly complex boundary, and is considered a rough surface for 

acoustic wavelengths used for the purposes of seafloor mapping. When sound waves 

encounter a rough boundary between two media with different impedances, waves are 

reflected, transmitted and scattered (Figure 2.1). This study is primarily concerned with 

the portion of energy scattered back towards the source, i.e. monostatic scattering, 

referred to in this study as backscatter. The proportion of energy backscattered from a 

rough surface is determined by the impedance contrast, sometimes referred to as 

‘hardness’ and apparent surface roughness scale (i.e. roughness scale relative to the 

acoustic wave length. In general, as the impedance contrast or roughness of a surface 

increases so does the intensity of backscatter (Figure 2.1). 

 

Typical values of density, sound speed and resulting acoustic impedance for selected 

sediment types are given in Table 2.1. The reflection coefficient from the different 
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sediment types at vertical incidence is also given in this table. In general, as the 

logarithmic parameter Φ of grain size decreases the acoustic impedance increases and, 

consequently, the scattering strength increases.  

 
Figure 2.1: Schematic representation of the reflection, transmission and scattering of 

acoustic energy at a rough boundary and the effect of impedance contrast and apparent 

surface roughness scale on the scattered field (after Urick (1983)).  

 

Sound waves scattered from a stochastically rough surface of the seafloor contain both 

coherent (scoh) and incoherent (sinc) components (Equation 2.1). The coherent component 

represents the backscatter signal averaged over the ensemble of statistically independent 

realisations of the rough surfaces. This component usually corresponds to specular 

reflection from the mean surface derived from spatial averaging of the roughness. The 

incoherent component represents waves scattered from the surface roughness and 

inhomogeneities within the volume of the seafloor, which have randomly varying 

amplitudes and phases. 

inccohtotal sss +=  (2.1)
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Table 2.1: Typical values of density, sound speed and resulting acoustic impedance for 

various grades of sediment (APL 1994; Lurton 2002). 

Media Grain size 
(Φ)

Density   
(kg m-3)

Sound Speed 
(m s-1)

Acoustic 
Impedence 

(rayls)

Reflection 
coefficient 

(R 0 )
Seawater N/A 1000 1500 1.5 x106 N/A

Clay 9 1200 1470 1.764 x106 0.0809
Clayey silt 7 1500 1515 2.496 x106 0.2492
Very fine 

sand 3 1900 1680 3.192 x106 0.3606

Course 
Sand 1 2000 1800 3.6 x106 0.4118

Rock N/A 2500 3750 9.375 x106 0.7241  
 

The relative contribution of coherent and incoherent components depends on the 

incidence angle and apparent surface roughness scale. The Rayleigh parameter Г 

(Equation 2.2) is commonly used to quantify the vertical scale of surface roughness. It 

characterises the root mean square (RMS) variation of the phase of a plane wave 

reflected from a surface with Gaussian distributed elevation differences: 

 

Ik θσ cos2=Γ  (2.2) 

 

where: k = 2π/λ is the wave number, σ is the root mean square value of the surface 

elevation, and θI is the incidence angle. A surface that appears smooth relative to the 

wavelength (i.e. kσ << 1) will impart the same phase shift and so the normal incidence 

wave is reflected coherently. When the surface is rough (i.e. kσ >> 1), sound waves are 

highly scattered because the elevation differences impart random phase shifts on the 

reflected wave causing constructive and destructive interference between the waves 

returning from the surface. The cos θ1 term accounts for the effect of the incidence angle 

on the vertical component of the wavenumber. For a homogeneous surface at small 

incidence angles, Г is nearly 2kσ, whereas at small grazing angles, Г tends to zero. 
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2.2.2 Seafloor backscatter strength 

According to Medwin and Clay (1998), the surface scattering coefficient can be 

defined by Equation 2.3, which is illustrated in Figure 2.2: 

 

ARI
RRI

fi

s
bs 2

Re

2
2

2
1=σ         (2.3) 

where: Ii is source intensity at a reference distance Rref (usually 1m), Is = <psps*> /ρc is 

the mean intensity of the scattered signal at the receiver (ps is the acoustic pressure in the 

received signal), R1 is the range from the source to the seafloor, R2 is the range from the 

seafloor to the receiver, and A is the area of the scattering surface (<… > means 

statistical averaging). In this study, the scattering coefficient is measured in a monostatic 

arrangement, and thus R1=R2. Loss of energy through absorption in the water column 

must be taken into consideration at high frequencies. The absorption loss is usually 

defined as βR (dB), where β  is the absorption coefficient (dB/m). Consequently, for this 

study the surface scattering coefficient is calculated as: 

 

( ) ( )e
AI

RRI

i

s
bs log20,2exp4

βαασ == . (2.4) 

 

The surface scattering coefficient is a dimensionless quantity that accounts for the 

intensity (power) ratio of the incident and scattered waves determined per unit area at a 

reference distance of 1m. When expressed in dB, it is commonly called the backscatter 

strength (BS): 

 

)(log10 10 bsBS σ=  (2.5) 
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Figure 2.2: Geometric arrangement for measuring backscatter strength. 

 

2.2.3 Modelling seafloor backscatter strength 

The modelling of seafloor backscatter strength has been the subject of numerous 

papers and studies over the last 40 years. Models developed are either empirical, based 

on physical models, or a composite of the two. Physical models of acoustic scattering 

are usually based on methods of small perturbation, Kirchhoff theory or small slope 

approximation. One of the empirical models is the well-known Lambert’s law 

commonly used to describe backscatter strength as a function of incidence angle θI 

(Urick 1983): 

 

Ibs θµσ 2cos=  ,      (2.6) 

 

where µ is the Lambert constant. For example, Mackenzie (1961) estimated µ = –27. For 

seafloor surfaces, Lambert’s law appears to be a good approximation of backscatter data 

for incidence angles of 50-85º (Urick 1983). For incidence angles less than 50º, 

backscattering strength values show a significant rise with decreasing angle, which is in 

accordance with perturbation theory, but not with Lambert’s law (Essen 1994).Various 

modifications to Equation 2.6 have been developed, such as combinations with near-

specular and/or volume scattering components (Hellequin, Boucher & Lurton 2003; 
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Novarini & Caruthers 1998). Although some models based on Lambert’s law have had 

success for specific applications (e.g. sonar signal processing), the lack of a physical 

premise is its shortcoming.  

 

The method of small perturbation (MSP) is based on formulating the scattering 

mechanism as a boundary value problem expressed via partial differential equations. 

This involves finding a solution in terms of plane waves that match the surface boundary 

conditions, which state that the tangent component of the acoustic field must be 

continuous across the boundary. The boundary conditions at a rough surface z = ζ(r) can 

be transferred to the mean surface by expanding them in a power series of ζ 

(Brekhovskikh & Lysanov 2001; Oglivy 1991). The main drawback of the MSP is that it 

is only valid for surfaces with small slopes and roughness heights much smaller than the 

wavelength. It has also been shown that the MSP approach is not satisfactorily accurate 

at near-specular angles (Jackson, Winebrenner & Ishimaru 1986).   

 

Conversely to the MSP, the Kirchhoff theory is valid for large roughness, when the 

RMS slope of roughness is small, and provides a more accurate prediction of scattering 

at near-specular angles than the MSP approximation. The Kirchhoff theory approximates 

the scattered field at the interface by assuming the scattering to be a result of a series of 

reflections from facets with random tilt angles. The Kirchhoff approximation assumes 

that: 1) the coherent reflection coefficient is valid at each point of these facets, 2) the 

radius of curvature is much larger than the wavelength and 3) effects of shadowing and 

contribution from multiple scattering are negligible. The Kirchhoff approximation is 

robust at modelling backscattering close to the vertical incidence on smooth sediment 

surfaces at sufficiently high frequencies (Brekhovskikh & Lysanov 2001; Oglivy 1991). 

Talukdar et al. (1995) developed a model specifically for backscatter intensity measured 

by an MBS system based on the Kirchhoff theory. This model provides a reasonably 

accurate prediction of backscatter from the seafloor for incidence angle less than 20º at 

relatively low frequencies.  
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To overcome the shortcomings of both the MSP and the Kirchhoff approximation, there 

have been a variety of compositions of these models developed by various authors, e.g. 

Kur’yanov (1962), Brekhovskikh and Lysanov (2001), which are referred to as 

composite (or two scale) roughness models. The general approach is to calculate the 

total scatter coefficient as the summation of the scattering coefficient ( MSPσ ) from 

small-scale roughness as calculated by the MSP and the scattering coefficient ( Kirchσ ) 

from large-scale roughness calculated using the Kirchhoff approximation:  

 

MSPKirchbs σσσ +=         2.7 

 

Equation 2.7 only considers scattering from the interface. The composite roughness 

model developed by Jackson et al. (1986) and further developed at the Applied Physical 

Laboratory at the University of Washington (USA) (APL 1994), hereafter referred to as 

the ‘APL model’, considers the scattering coefficient to be the sum of the surface 

( Surfaceσ ) and volume ( Volumeσ ) components (Equation 2.8): 

 

VolumeSurfacebs σσσ +=         2.8 

 

The APL model uses six input parameters, which are listed along with their limitations 

for use in the model in Table 2.2. The first 5 of the parameters listed in Table 2.2 are 

used for estimating Surfaceσ  and only the volume parameter is used to model Volumeσ . The 

APL model is intended for backscatter prediction between 10 and100 kHz. However, 

Anstee (2001) obtained reasonable results for backscatter strength from different 

seafloor types at 455 kHz, using the APL model. 

 

The APL model distinguishes three domains (Figure 2.3):  

• Near-vertical incidence; 

• Moderate incidence angles; 

• Small Grazing angles. 
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At near vertical incidence, backscattering from slowly varying large-scale roughness 

dominates backscattering from small-scale roughness and the volume scattering. At 

moderate incidence angles, scattering from small-scale roughness and volume 

inhomogeneities are the primary mechanisms. At small grazing angles below the critical 

angle, the volume scattering becomes negligible, which reduces the backscatter intensity 

especially at lower frequencies. For smooth and moderately rough surfaces (e.g. clay, 

silt and sand), Surfaceσ  is modelled using the Kirchhoff approximation for near vertical 

incidence, and the MSP approach is used for all other angles. For rough bottoms (e.g. 

gravel and rock), an empirical expression is used to calculate Surfaceσ  (APL 1994). The 

main challenge in the composite models is determining the boundaries between different 

angular domains for different approximation methods to be applied. 

 

Table 2.2: Input parameters used in the APL model (APL 1994).  

Symbol Definition Short name Limitations

ρ Ratio of sediment mass density to water mass
density Density ratio 1-3

ν Ratio of sediment sound speed to water sound
speed Sound speed ratio 0.8-3

δ Ratio of imaginary wavenumber to real wave
number for the sediment Loss parameter 0-0.1

γ Exponent of the bottom relief spectrum Spectral exponent 2.4-3.9

W2 Strength of bottom relief spectrum (cm4) at a
wavenumber 2π/λ/ of 1 cm-1 Spectral strength 0-1

σ2 Ratio of sediment volume scattering coefficient
to  sediment attenuation coefficient Volume parameter 0-1

 
 

Lyons et al. (1994) extended the APL model to include interfaces within the sediment 

body. However, as the system used for this study operates at 455 kHz, the penetration of 

acoustic waves into the sediment is limited to a few centimeters due to high absorption 

in the sediment. Therefore, the underlying interfaces between different layers of the 

sediment are unlikely to influence the seafloor backscatter strength. Moreover, the 

majority of seafloor backscatter models, including those by the APL (1994) and 

Talukdar et al. (1995), are intended for backscatter measured at much lower frequencies 

(and Rayleigh numbers) than those used in this study.  
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Figure 2.3: Generic representation of backscatter strength versus incidence angle (after 

Augustin et al. (1996)).  
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Some studies have tried to predict backscatter strength at high Rayleigh numbers (Γ >> 

1) using high order small slope approximation (SSA) introduced by Voronovich (1985), 

and further developed in various studies (Broschat & Thorsos 1997; Gragg, Wurmser & 

Gauss 2001). The SSA is based on the assumptions that the scattered field can be 

represented by a superposition of plane waves propagating away from the surface, and 

that the acoustic field can be represented as a series in powers of the surface slope 

(Brekhovskikh & Lysanov 2001). The SSA overcomes the problem of determining 

boundaries between angular domains. It is limited, however, to situations in which 

shadowing and multiple scattering are unimportant, and does not include contributions 

from volume inhomogeneities.  

 

There are some problems with applying current theoretical models to seafloor 

backscatter collected with MBS. For instance, most of the models discussed above, 

except for that by Talukdar et al. (1995) and some other methods based on the Kirchhoff 

approximation, are developed for plane wave scattering, and it appears to be very 

difficult to develop them into a model of backscatter measured by high-frequency MBS 

systems, especially in shallow water conditions where the plane wave approximation is 

no longer valid. In addition, there is a lack of models suitable for backscatter from 

seafloor habitats surveyed in this study, such as marine vegetation.  

 

2.2.4 Statistics of seafloor backscatter 

Acoustic backscattering from the seafloor is a stochastic process. The scattered 

acoustic field (ψ ) is the sum of many elementary waves scattered by facets (‘scattering 

cells’) along the seafloor surface, which can be expressed as:  

 

∑
=

=
N

j

i
j

jeA
1

φψ          (2.9) 

 

where: Aj represents the amplitudes of the elementary scattered waves and фj their 

phases. When N tends to infinity and variations of Aj and фj are statistically independent, 

the complex amplitude of the scattered field ψ  tends to be a Gaussian process in 
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accordance with the central limit theorem (CLT) (Oglivy 1991). If coherent scattering 

dominates in ψ , i.e. there is a constant term in Equation 2.9 much larger than the other 

randomly varying terms, then the distribution of the instantaneous absolute amplitudes 

|ψ | will tend to Gaussian. When incoherent scattering dominates, the distribution of the 

instantaneous amplitude will tend to the Rayleigh distribution. The Ricean distribution, 

sometimes referred to as a generalised Rayleigh distribution, can be used to describe 

both these situations (Lurton 2002). In this study, the peak and average backscatter 

intensity were used to calculate the backscatter strength. The distribution of squared 

instantaneous amplitudes (i.e. intensity) of a Gaussian process is an exponential 

distribution. For a Gaussian scattering process, the statistical distribution of the average 

backscatter intensity was demonstrated theoretically by Middleton (1999) to follow a 

gamma distribution. Middleton (1999) used an approach different from the standard 

statistical models of scattering, which was based on an equivalent statistical structure 

instead of the explicit physical one.  

 

When the number N of statistically independent scattering elements is small, the CLT is 

not applicable. In that case, the scattering process is not Gaussian, leading the 

amplitudes to exhibit non-Rayleigh statistics (Oglivy 1991). The study of non-Gaussian 

scattering is an active research area. Various aspects of non-Gaussian scattering are 

considered in papers of the special edition of the IEEE Journal of Oceanic Engineering 

(vol. 29(2), 2004). Recent studies have noted a non-Rayleigh character of backscatter 

statistics for shallow water seafloors and suggested different models, such as the 

Rayleigh mixture and K-distribution models (Dunlop 1997; Gallaudet & de Moustier 

2003; Hellequin, Boucher & Lurton 2003; Jakeman 1988; Lyons & Abraham 1999; 

Stewart et al. 1994), and log-normal distribution models (Gensane 1989; Stanic & 

Kennedy 1992; Trevorrow 2004)  

 

The Rayleigh mixture distribution model is a multimodal Rayleigh distribution, which is 

considered to be a result of a superposition of a number of independent Rayleigh 

scattering processes originating from different types of scattering mechanism (Gallaudet 

& de Moustier 2003; Stewart et al. 1994). The Rayleigh mixture model has been shown 
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to be robust at fitting backscatter amplitude data from a variety of seafloor habitats 

(Gallaudet & de Moustier 2003; Lyons & Abraham 1999; Stewart et al. 1994). Although 

a 2-3 component Rayleigh mixture model could be considered a logical choice for 

modelling seafloor backscatter, higher component models have many parameters so that 

they could fit experimental backscatter data no matter whether there is a physical 

premise or not.  

 

The K-distribution, first used to describe the statistics of sea surface clutter in radar by 

Jakeman and Pusey (1976), is the product of a rapidly-fluctuating Rayleigh distributed 

component and a slowly-varying chi-distributed component (Lyons & Abraham 1999). 

The K-distribution has been shown to fit instantaneous seafloor backscatter amplitude 

and intensity data (Hellequin, Boucher & Lurton 2003; Le Chenadec et al. 2005; Lyons 

& Abraham 1999). The theoretical basis for the K-distribution representing the 

instantaneous seafloor backscatter amplitude and intensity data has been developed by 

Abraham and Lyons (2002) and Middleton (1999) respectively. According to Hellequin 

et al. (2003), the average backscatter intensity can be approximated by a “generalized K-

distribution” which represents a product of two independent gamma-distributed 

processes. Similar to the logic behind multimodal Rayleigh distributions for backscatter 

amplitudes, if a gamma distribution does not fit the average backscatter intensity, then a 

multimodal gamma model could be a better approximation. 

 

While the Rayleigh-mixture and K-distributions may be related to certain physical 

scattering mechanisms through their association with the Rayleigh models, the log-

normal distribution model has not yet been analytically related to physical scattering 

processes. Many studies of seafloor acoustic backscatter, however, have observed a 

good fit of the log-normal distribution to variations of backscatter intensity data e.g. 

(Chotiros et al. 1985; Stanic & Kennedy 1992; Trevorrow 2004). Possible reasons why 

seafloor backscatter variations could be approximated by the log-normal distribution 

were considered by Gallaudet and de Moustier (2003).  
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2.3 Multibeam sonar systems 

2.3.1 Operation of multibeam sonar systems 

Some general design principles of modern MBS systems beam geometry are 

illustrated in Figure 2.4. MBS are mounted on a vessel (or AUV/ROV) and emit 

acoustic pulses with a beam pattern that is wide across-track and narrow along-track 

(shown in blue in Figure 2.4). The receive array is directed perpendicularly to the 

transmit array and forms a large number of receive beams that are narrow across track 

and steered simultaneously in different across-track directions by a beamforming 

process (shown in red in Figure 2.4). Thus the system performs spatial filtration of 

acoustic signals backscattered from different portions of the seafloor along the swath, 

referred to as beams footprints. From each beam, a co-located bathymetry and 

backscatter measurement can be made. Modern shallow-water MBS systems, such as 

Simrad EM 3000 and Reson SeaBat 8125, operate at hundreds of kHz, transmit short 

pulses of several tens of microseconds, and form hundreds of beams about 0.5 to 1 

degree wide. Because they employ short transmit pulses and narrow-beams, such 

systems are capable of resolving small features a few decimetres wide in the seafloor 

relief. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Schematic representation of the operation of MBS systems. Blue represents 

the transmit beam, red the receive array and green the footprint formed by the 

intersection of the two.  

Ship, AUV 
or ROV 
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The typical beam geometry of a MBS system is shown in Figure 2.5. The area Ainsonif of 

the seafloor insonified by the sonar is usually approximated using Equation 2.10 (Lurton 

2002): 

 

)sin(2
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ϕ=        (2.10) 

 

where: ϕ  is the along-track beam width, R is the range to the seafloor, c is the sound 

speed, Tw is duration of the transmit pulse, and θI is the incidence angle. The problem 

with using Equation 2.10, is that the insonified area tends to infinity as θI tends to 0º, 

which is not true. A more accurate equation for the insonification area can be easily 

derived from beam geometry for all incidence angles, which gives: 
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and which was used in this study. Equation (2.10) is a good approximation for (2.11) 

when θI  > > 0. Intersection of the insonified area and the footprint of the receive beam 

results in the seafloor area for which the bathymetry measurement is made. This will be 

referred to as the footprint area (Afpa) and is calculated using the following equation:  

 

)cos(
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θ

ϕ Φ
=         (2.12) 

 

where: Φ is the across track beam width of receive beams. The acoustic signals received 

within each beam of a MBS system are backscattered from the insonified area limited by 

the beam footprint. This area will be referred to as the insonification area for simplicity. 
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Figure 2.5: Typical beam geometry of multibeam sonar systems (a) sideview, (b) plan 

view and (c) graphical representation of the beam areas versus incidence angle/across 

track distance. 



 21  

When the sonar signal returns to the receive array, the range along each beam to the 

bottom is calculated from the travel time and the sound speed. There are two basic ways 

in which the bottom is detected. At near vertical incidence, where the footprint is small 

and consequently the echo signal is short and has a single prominent peak, the travel 

time is measured by the maximum backscatter amplitude. At oblique angles, the 

footprint increases and the echo signal may have several peaks of comparable 

amplitudes. In this regime, phase detection of the bottom is commonly applied. To 

determine the signal travel time in this regime, a MBS system forms pairs of nearly 

coincident beams using receive subarrays formed, for example, from odd and even 

elements of the whole array, and then calculates the phase difference between the signals 

received along beams of each pair. The moment of time at zero phase difference is 

assumed to correspond to the two-way signal travel time. The bathymetry is calculated 

from the range, beam launch angle and the sound speed. 

 

The operational principles of MBS systems give evident advantages for seafloor 

mapping. However, they require much stricter requirements for ship’s navigation and 

motion compensation than that for single-beam systems. If ignored, ship’s roll, pitch, 

heave and yaw may distort the bathymetry and backscatter images. Therefore MBS 

surveys must be accompanied with simultaneous tracking of ship’s attitude. The 

procedure for compensating for a ship’s attitude for swath seafloor mapping is well 

developed and described in the literature (US Army Corps of Engineers 2002). 

 

Another serious problem specific to MBS seafloor mapping is acoustic refraction in the 

water column due to a depth dependent sound speed, which distorts the acoustic ray 

trajectories and hence the footprint location and depth cannot be accurately calculated 

using a simple triangulation model. If the sound speed profile is known, however, then 

swath data can be corrected using the ray approximation for sound propagation (Lurton, 

Dugelay & Augustin 1994).  
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 2.3.2 Processing of multibeam sonar backscatter data  

 The initial purpose of MBS systems was to obtain high-resolution bathymetry 

maps, but recent research, including this study, has focused on utilising MBS backscatter 

data for benthic habitat mapping. de Moustier (1986) was one of the first to demonstrate 

the potential of MBS systems as a seafloor characterisation tool. He used backscatter 

data collected from a Sea Beam system to calculate and map the seafloor backscatter 

strength. Research works by Talukdar et al. (1995), Mitchell (1996), Augustin et al. 

(1996), and Hughes-Clarke et al. (1996) have further developed the methods for 

processing MBS backscatter data. These methods were developed for and examined 

primarily with low-frequency systems most common at that time. The basic principles of 

measuring the seafloor backscatter strength are similar for low and high frequency 

systems. However, the measurement geometry and physical conditions, such as the 

insonification and footprint areas relative to the seafloor roughness scale, Rayleigh 

parameter, etc., are significantly different. More recently, processing and analysis 

methods purposely designed for modern high-frequency narrow-beam MBS systems 

have been proposed (Beaudoin et al. 2002; Hellequin, Boucher & Lurton 2003). 

 

At present, there are a limited number of software products available to process MBS 

backscatter data. Some of the most notable software packages are: SwathEd (J.E. 

Hughes Clarke et al. 1993), MB systems (Caress & Chayes 1995), SonarScope (J.-M. 

Augustin & Lurton 2005) and Geocoder (Fonseca & Calder 2005). Of these packages 

only, MB systems, developed by Caress and Chayes (1995), is a free and open source 

software. Moreover, of the software available at the start of this study, none were 

considered appropriate to achieve the objectives of this work, which involved examining 

different approaches to the processing and analysis of backscatter data collected from 

MBS. Hence, Matlab® was used by the acoustics research group at the Centre for 

Marine Science and Technology (CMST) to develop a toolbox which would implement 

various processing and analysis algorithms for MBS data. Matlab® was considered the 

most appropriate programming platform as it allowed building open-source codes, which 

gives much more flexibility in designing, modifying, and examining different algorithms 

for processing backscatter data. Moreover, a number of powerful and useful analysis 
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tools, such as the Signal Processing, Statistics, and Mapping toolboxes, are implemented 

in Matlab®, which simplified considerably the development of special programs for 

MBS data processing.    

 

2.3.3 Correcting multibeam sonar backscatter images for angular dependence 

As backscatter strength is dependent on the incidence angle, trying to mosaic 

seafloor backscatter images from multi-swath backscatter datasets requires correcting for 

angular dependence. An improper correction will result in artefacts in backscatter 

mosaics. Some of the main approaches used for angular correction are described below. 

 

Models based on the Lambert’s law have been used to correct backscatter strength 

images for angular dependence. For instance, Hellequin et al. (2003) employed a simple 

composite model that treated the angular dependence of backscattering using the 

Kirchhoff approximation term dominating at near-nadir incidence angles and a Lambert-

like term dominating at off-specular angles (Equation 2.13): 

 

( )[ ]IBABS θαθθ βcosexplog10)( 2 +−= ,     (2.13) 

 

where BS is the backscattering strength and θI is the angle of incidence. The coefficients 

A, B, α and β are estimated by least-mean-square fitting of the model function to the 

average angular dependence of backscatter intensity observed across representative (or 

training) areas. As discussed previously (Section 2.2.3), the Lambert law is not robust 

enough for accurate numerical prediction of the angular dependence for all seafloor 

types. For instance, this model considers no contribution from volume inhomogeneities 

which, even at high-frequency, can influence the angular dependence (Jackson & Briggs 

1992). 

 

Other approaches include removing the mean angular dependence based on a series of 

pings from a homogeneous area (Beaudoin et al. 2002). A similar approach is taken by 

QTC’s Multiview software for MBS data processing. The QTC algorithm for correction 
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of the angular dependence of backscatter intensity data consists basically of two steps 

(Preston & Christney 2003):   

1. The mean angular dependence of the backscatter level is calculated for all sonar 

pings, i.e. for the entire seafloor area observed by the sonar system, and then this 

mean angular dependence is subtracted from the backscatter data obtained with 

each ping. 

2. Standard deviation of the backscatter level relative to the mean angular 

dependence is calculated for each angle using all pings, and then the backscatter 

data corrected for the mean angular dependence are normalized (divided) by the 

angular dependence of standard deviation. 

 

Both these approaches assume the slope of the angular dependence of backscatter 

strength for all seafloor types is uniform, although this has been found to not be the case 

(Urick 1983). However, these methods used to correct for angular dependence will be 

investigated to determine the best way to produce backscatter images. 

 

2.4 Acoustic seafloor classification 

2.4.1 Classification methodologies 

 Acoustic seafloor classification (ASC) segments the seafloor into discrete classes 

based on sonar data. The motivation for such work has been outlined in Chapter 1. There 

are two main methodologies in ASC: 

1. Geoacoustic modelling or inversion of sonar data   

2. Phenomenological approach  

 

Geoacoustic modelling transforms the acoustic data to actual physical properties of the 

seafloor, such as grain size, porosity, etc. (Bentrem, Avera & Sample 2006; 

Chakraborty, Kodagali & Baracho 2003; Fonseca, Mayer & Kraft 2005; Talukdar, Tyce 

& Clay 1995). This requires an adequate model of backscatter and usually the input of 

additional geoacoustic parameters and a calibrated sonar system. For example, Bentrem 

et al. (2006) employed the APL model where the backscatter data and input parameters 

are used to estimate the mean-grain size.  
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A phenomenological approach assumes a correlation between morphological and 

physical properties of the seafloor and acoustic data, but divides data into acoustically 

different regions without inverting backscatter data into actual physical properties of the 

seafloor. Ground-truth information should then be used to infer how those regions relate 

to different seafloor types. For example, the commercial software QTC-Multiview 

derives 132 features from MBS bathymetry and backscatter images, then performs 

principal component analysis (PCA) and clusters the first three principal components 

into acoustic classes (Preston 2004; Preston et al. 2004; Preston et al. 2001). 

 

The classification process can be broken down into three steps: 

1. Feature extraction 

2. Feature selection or reduction 

3. Segmentation 

 

Feature extraction is the determination of univariant descriptors of acoustic data that can 

be used to discriminate between seafloor classes or to infer geoacoustic parameters. 

Features can be either individual measures, such as the peak intensity, or more 

sophisticated descriptors, such as results of statistical and spectral analyses. Determining 

what features are useful for classification is an important objective of this study. 

 

If the number of features extracted is very large, some sort of feature selection or 

reduction is recommended before segmenting data (Duda, Hart & Stork 2001). Feature 

selection ranks features through some discrimination criteria, e.g. Fishers’ criterion 

(Duda, Hart & Stork 2001) and the most effective features are used in the segmentation 

routine. Feature reduction involves combining all original features into a smaller number 

of their combinations which are used as new features. This can be done, for example, 

through PCA and linear discriminate analysis (LDA) (Duda, Hart & Stork 2001).  

 

With geoacoustic modelling, the features that characterise the backscatter model are 

fitted to those derived from backscatter measurements, which is usually performed using 
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various least mean squares algorithms. In a phenomenological approach, after features 

have been derived, they are segmented using either supervised or unsupervised 

classification algorithms. Supervised classification is where ground-truth information is 

used to train a classifier with a certain number of known classes, which is then applied to 

all of the dataset. Unsupervised classification involves clustering data of unknown 

classes into statistically similar groups. The number of groups to classify can be either 

specified before clustering or determined after clustering.  

 

There are various algorithms for segmentation of data described in the pattern 

recognition literature. The main ones that have been applied to acoustic seafloor 

classification include k-means clustering (Diaz 1999; Preston 2004; Siwabessy 2001), 

decision trees (Dartnell & Gardner 2004; Ierodiaconou et al. 2006), statistical-

distance/maximum-likelihood (J.M. Augustin et al. 1997; Canepa & Pace 2000; Foster-

Smith & Sotheran 2003) and neural-networks (Chakraborty, Kodagali & Baracho 2003; 

Stewart 1994).  

 

2.4.2 Classification of multibeam sonar data 

Of the different steps in seafloor classification using MBS data, this study is 

most interested in determining the best features to extract from MBS data in order to 

realise the maximum potential of MBS data in seafloor discrimination. Features 

extracted from MBS data for seafloor classification can be in general divided into three 

types: 

1. Seafloor terrain characteristics (i.e. bathymetry and derivatives) 

2. Backscatter characteristics corrected for the angular dependence (i.e. analysis of 

backscatter mosaics) 

3. Angular dependence of backscatter.  

There have also been combinations of these features examined in some studies. The 

following highlights some of the most interesting and relevant works. 
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2.4.2.1 Seafloor terrain characteristics 

From analysis of bathymetry, it is possible to identify many geomorphologic 

features of the seafloor, such as sand waves, bioturbation, rocky outcrops, etc. 

Moreover, depth is an important factor influencing the distribution of benthic 

communities, both through affecting the amount of light that reaches the seafloor and 

governing wave exposure. However, using depth alone as a feature is not sufficient for 

seafloor classification as it produces depth contours rather than habitat boundaries. 

Derivatives of depth, e.g. standard deviation, slope, etc., are measures of large-scale 

roughness of the seafloor surface and are useful for identifying areas of high or rapidly 

changing relief. However, care must be taken when using terrain derivatives, because 

these parameters suffer considerably from ship motion artefacts. There are a variety of 

terrain analysis tools employing bathymetry derivatives described in the literature 

(Rinehart et al. 2004). It has been shown that applying ecological principles to seafloor 

terrain features can be successful in predicting the presence of some benthic organisms 

through modelling (Holmes et al. 2005). Although terrain analysis is effective in 

identifying geomorphologic features, it does not help in discriminating between different 

habitat classes, if there is no significant difference in the topography of those habitats.  

 

2.4.2.2 Analysis of backscatter mosaics  

The analysis of MBS backscatter mosaics/images for seafloor classification 

follows on from classification of sidescan sonar images. For example, the use of grey-

level co-occurrence matrices (GLCMs) (Blondel, Parson & Robigou 1998; Reed & 

Hussong 1989) based on work by Haralick et al. (1973), Fourier analysis (Pace & Gao 

1988) and wavelet analysis (Atallah, Smith & Bates 2002) have been shown to be 

successful in the classification of sidescan sonar images. The aim of these image 

analysis algorithms is to recreate recognition principles in human vision which 

distinguish and quantify different tones and texture. As a result, the features derived can 

often be hard to relate to physical features of the seafloor, but for the purposes of 

classification this may not be critical. Of the few software products commercially 

available for seafloor classification using MBS data, most use image analysis 

techniques. For example, QTC-Multiview utilises both GLCMs and the spectral features 
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described by Pace and Gao (1988) along with some other parameters derived from 

image analysis (Preston & Christney 2003).  

 

To apply image analysis to MBS backscatter data for classification, the backscatter 

values and their statistical characteristics derived from MBS data must be only 

dependent on seafloor type, and hence be adequately corrected for the incidence angle 

and the method of backscatter measurements. Methods for angular correction were 

reviewed in Section 2.3.3, but at present there is no universally accepted method. 

Seafloor classification based on analysis of MBS backscatter images often contains 

artefacts due to inadequate correction for angular dependence (Dartnell & Gardner 2004; 

Houziaux et al. 2007; Whitmore 2003). For the purposes of spatial visualisation of 

backscatter strength (backscatter mosaicing), correcting for incidence angle is 

worthwhile, whereas for seafloor classification, analysis of the relationship of 

backscatter intensity with the incidence angle offers an additional means not just to 

discriminate between different seafloor classes, but also to determine some seafloor 

properties. 

 

2.4.2.3 Angular dependence of backscatter  

Exploiting curves of the backscatter angular dependence for seafloor 

classification can be done using either model-based (Bentrem, Avera & Sample 2006; 

Fonseca, Mayer & Kraft 2005) or empirical approaches (Canepa & Pace 2000). The 

advantage of model-based approaches is that they can be used with little or no ground-

truth information. The end goal of model-based methods is geoacoustic inversion. For 

example, the amplitude versus offset (AVO) model developed by Fonseca et al. (2005) 

extracts features from mean backscatter curves (derived from a series of stacked pings), 

which are correlated to seafloor properties, such as the acoustic impedance and grain 

size, by comparison with the model prediction. For sedimentary habitats, the AVO 

model shows some promising results. However, there are some problems with using 

MBS backscatter data for geoacoustic inversion. At present, there is not a universal 

high-frequency model available that can adequately describe the backscatter angular 

response from all seafloor habitats, such as those investigated in this study (e.g. seagrass, 



 29  

coral reef, etc). Also, most MBS systems are not calibrated and hence do not give 

absolute values of seafloor backscattering strength. Moreover, the beam pattern of some 

systems (e.g. the Reson Seabat 8101) is not uniform across track, so that the measured 

angular dependence must be corrected for the actual beam pattern of both transmit and 

receive beams (Foote et al. 2003).  

 

The relationship between backscatter strength and incidence angle can be exploited 

empirically, i.e. using the relative difference between angular responses to distinguish 

seafloor types. Hughes Clarke (1994) identified and used ten features of angular 

dependence curves, including the mean and slope from 3 different angular domains, that 

could be used for seafloor classification. Canepa and Pace (2000) empirically derived 

the median backscatter strength versus incidence angle curves for all known seafloor 

types in the survey area. Data from unknown areas were then compared to each 

reference curve and the shortest statistical distance for each beam and ping was used as 

the criterion for classification. The main problem with using the angular dependence 

curves for seafloor classification is segmentation of heterogeneous areas of seafloor and 

around boundaries between habitats (J. E. Hughes Clarke 1994).  

 

Utilising the angular dependence of backscatter in addition to the mean backscatter 

strength (or backscatter level at a reference angle) is a better approach to seafloor 

classification, because it provides more information about morphological and physical 

properties of the seafloor. This was also concluded in the study by Diaz (1999), where 

the seafloor classes determined from the textural analysis (using GLCMs) of a 

backscatter mosaic did not always distinguish sediments of different grain sizes. 

However, using the method developed by Hughes Clarke (1994) that exploits the 

angular dependence of backscatter strength, Diaz (1999) was able to distinguish those 

seafloor classes.  

 



 30 

2.5 Implications for the approach of this study 

Scattering models  

• In the absence of fully adequate high-frequency (i.e. > 100kHz) seafloor 

backscatter models, theoretical predictions made by Anstee (2001) using the 

APL model for backscatter strength from different seafloor types at 455 kHz 

will be used for general comparison.  

• Statistical variations of backscatter should first be compared to the simplest 

model based on Gaussian mechanism for backscatter. For instance, the 

applicability of the gamma model to approximate the distribution and statistics 

of variations of the average backscatter intensity from different seafloor habitats 

will be examined. If the gamma distribution is not a sufficiently accurate 

approximation, then non-Rayleigh statistical models, such as the generalised K-

distribution, should be investigated. 

 

Processing MBS data  

• Methods to determine seafloor backscatter strength data from MBS data 

developed at the Centre for Marine Science and Technology (CMST), Curtin 

University of Technology will be presented. Backscatter strength data will be 

assessed for adequate correction for system settings, beam geometry and oceanic 

conditions. 

• When investigating the production of backscatter mosaics from multiple swaths, 

consideration will be given to previous methods used to correct backscatter 

strength images for incidence angle. 

 

Seafloor classification 

• Based on previous studies, a phenomenological approach will be used when 

developing an acoustic seafloor classification system based on MBS data, as this 

was considered to be the most robust. 

• Features of MBS backscatter to be investigated for their ability to discriminate 

between different seafloor types include: statistical distributions of backscatter 
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and properties of the angular dependence of backscatter strength on different 

seafloor habitats found in different coastal shelf areas around Australia. 

• Seafloor terrain analysis will be used to identify areas of high-relief. 

• Established methods for feature reduction and selection, and unsupervised and 

supervised segmentation routines will be used. 
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CHAPTER 3 

MULTIBEAM SONAR BACKSCATTER MEASUREMENTS 

3.1 Overview 

Multibeam sonar (MBS) systems are one of the most effective tools available to 

map the seafloor (Kenny et al. 2003). This is because MBS systems are capable of 

collecting data from a wide swath of the seafloor. The MBS backscatter signals are 

primarily used to derive high-resolution bathymetry, however, in recent years research 

has concentrated on utilising the backscatter intensity to infer certain physical properties 

of the seafloor (Augustin et al. 1996; de Moustier 1986; Hughes Clarke, Mayer & Wells 

1996; Talukdar, Tyce & Clay 1995). The general operation of MBS systems was 

outlined in Chapter 2. The aim of this chapter is to describe in more detail the principal 

MBS system used for this study, the Reson SeaBat 8125 (referred to as the Reson 8125), 

and the methods used for backscatter measurements and processing. The methods for 

data processing and analysis developed are also applicable to many other MBS systems. 

 

This chapter is broken into a further five sections. First a description of the Reson 

SeaBat 8125 system is given (Section 3.2), which is important for understanding the 

geometry and scheme of measurements, including signal transmission, reception and 

preliminary processing. This is followed by a description of the different methods 

available in the Reson 8125 to log backscatter data (Section 3.3), which provides the 

rationale for the further data analysis. Section 3.4 details a calibration experiment that 

aimed to verify known and estimate unknown system parameters. Section 3.5 gives a 

step-by-step explanation of a program developed to calculate the backscatter strength 

from the data collected with the Reson 8125, which could also be applied to other 

systems. The final section (3.6) examines the effects system configuration and settings 

have on backscatter data. Where appropriate, the implications for benthic habitat 

mapping are outlined. 
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3.2 Reson SeaBat 8125 system description 

3.2.1 General description 

The Reson SeaBat 8125 is a 455-kHz high-resolution MBS system with dynamic 

focusing of receiving beams. Figure 3.1 shows a picture of the sonar head out of the 

water and a diagram showing the orientation in the water. The Reson 8125 system 

insonifies a swath on the seafloor that is 120º across track by 1º along track. The receive 

array forms 240 individual beams with 0.5° spacing of the beam centres across track. 

The along-track width of the receive beams is 20°. Because the receive array is flat, the 

across-track beamwidth varies with the steering angle from 0.5° for the innermost beams 

to 1.0° for the outermost beams. As a result, the sonar beams formed by the intersection 

of the transmitted and received beams are 0.5 x 1° wide in the centre and 1 x 1° wide at 

the outer edges. The Reson 8125 has a 16-bit dynamic range and a sampling rate of 

28437.5 samples per second, which provides approximately one amplitude measurement 

for every 2.5 centimetres in terms of transmission range (RESON Inc. 2002b). The 

amplitude measurements are proportional to the acoustic pressure (Bridge1, pers. 

comm.). 

 

Although information on the actual beamforming scheme realised in the Reson 8125 

receive array was not available, it was assumed, based on the calibration results (see 

below) that a Chebyshev shading filter was applied to the amplification factor of array 

elements in order to reduce the level of side-lobes to about –30 dB relative to the main 

lobe.    

 

3.2.2 System settings 

3.2.2.1 Transmit signal  

The Reson 8125 system allows control of signal power emitted into the water. 

The selections of power settings are 1 through 14, with each increment being 3 dB. The 

full power setting yields a source level of 220 dB re 1 µPa at 1 m. The system also 

allows various settings of the pulse duration of the transmitted signal. The pulse 

                                                 
A1.  1 Burr Bridge was a Reson Engineer during the period of study 
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durations available for the Reson 8125 system are from 11 to 292 µs in increments of 2 

µs. 

 

 

Figure 3.1: Reson SeaBat 8125 sonar head mounted on a side pole: (a) photograph of it 

out of the water, and (b) diagram of its position in the water. 

 

3.2.2.2 Receive signal  

The Reson 8125 system allows for the receiver gain to be controlled and applied 

in two modes: Fixed and Time Varied Gain (TVG). For all of the surveys performed 

during this study, the TVG mode was chosen. This means that the total receiver gain 

(Gtotal) applied by the system had 3 components (in linear scale): 

 

Gtotal = Gp Go GTVG (3.1) 

 

where: Gp is a fixed processor gain and Go is extra gain selected by the operator (in the 

log scale) from 1 to 45 dB. TVG is introduced to correct for transmission loss: 

 

TVG = 10logGTVG = 2αR + SpLog10R (3.2) 

 

where: α is the absorption loss coefficient in dB/m, R is the along-beam range in m, and 

Sp is the spreading loss coefficient. Both α and Sp are set by the operator. Also the 
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AutoGain mode is available to allow the receive system to automatically adjust the 

variable gain Go based on the amplitude of the returned signal. The Go values selected 

by the processor are automatically stored in the data files. The fixed system gain (Gp) is 

usually unknown for end-users, and hence, unless the sonar is fully calibrated (see 

Section 3.4), backscatter values can only be measured in relative units.  

 

3.2.3 Dynamic focusing 

Dynamic focusing is implemented in the beamforming scheme of the Reson 8125 

to reduce distortion of the array beam pattern in the near field, i.e. when the sea depth is 

relatively small.  The algorithm of beamforming with dynamic focusing can be 

expressed as follows (Lurton 2002): 

 

{ } { }∑ −=
n

nnnna cTikxikxApP /)2cos(exp)sin(exp 2 θθ    (3.1) 

 

where Pa is the output signal of the array, pn are acoustic signals on the array elements, 

xn are distances from the receive elements to the centre of the linear array, An are 

coefficients of the side-lobe shading window, k is the wavenumber, θ is the beam 

steering angle, c is the sound speed, and T is the time elapsed from the transmission 

moment. The first exponential term in Equation 3.1 denotes conventional beamforming 

for the far field, while the second exponential term implements time varying, i.e. 

dynamic focusing of the array. Figure 3.2 demonstrates the effect of dynamic focusing 

for different sea depths and steering angles of the Reson 8125 receive array. The 

modelled beam patterns are shown projected onto the seafloor, which is assumed to be 

flat. At small sea depths and steep steering angles, the beam pattern without dynamic 

focusing is noticeably distorted (Figure 3.2), so that the actual footprint size measured at 

the –3 dB level is considerably larger than that predicted for the far field (shown by red 

lines). Dynamic focusing corrects the beam pattern, making it similar to that expected 

for the far field. At oblique angles and in deeper water, when the array length becomes 

negligibly small compared to the slant range to the bottom, the beam patterns and the 

footprint size with and without dynamic focusing are similar.        
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Figure 3.2: Beam patterns of the Reson 8125 receive array modelled with (green) and 

without (blue) dynamic focusing and shown projected onto the seafloor for different sea 

depths and steering angles. Red vertical lines show the footprint edges determined at the 

–3 dB level for the far field. 

 

3.3 Logging multibeam sonar backscatter data 

3.3.1 Introduction 

At present, there are four main methods for logging backscatter data in the Reson 

8125 and the majority of modern MBS systems: 

• the complete backscatter waveform from each beam (referred to here as 

snapshots); 

• a sidescan-like time series of amplitudes derived from snapshots by combining 

the backscatter signals from all beams (referred to here as sidescan);   

• a fragment of the full backscatter envelope around the bottom return signal from 

each beam (referred to here as snippets); 

• the maximum amplitude from within each snippet (i.e. one value per beam). 
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To demonstrate the relationships between the different backscatter logging methods, 

backscatter data were logged using simultaneously the snapshot, sidescan and snippet 

logging modes. The aim of this section is to assess the relative merits of each of the 

logging methods.  

 

3.3.2 Data description 
The data come from a survey over a coral reef system called Morinda Shoal 

located off Cape Bowling Green. Appendix A lists the sonar settings and shows the 

locations of track lines from the survey. The track line used for this analysis was BGB 

57. At the time of this study, sidescan and snippets data could be simultaneously logged 

with the same software (Navisoft®), but snapshots required additional data acquisition 

software (SnapSaver®). Backscatter data are presented as outputted from the Reson 

8125 with no additional processing (i.e. with system TVG applied to backscatter data). 

 

3.3.3 Complete acoustic waveforms (snapshots) 

In the Reson 8125 the snapshots mode logs the whole echo signal along each 

beam, including both the amplitude (Figure 3.3) and phase. This can be useful for water 

column investigations, such as fisheries acoustics (Parsons et al. 2006) and for 

investigation of the system operation in detail, such as in calibration exercises (see 

Section 3.4). However, for seafloor mapping it is not necessary to log the whole of the 

backscatter return. Moreover, the amount of data to be logged increases significantly 

when collecting the snapshot data, which may result in a considerable reduction of the 

ping rate. For instance, in this experiment the system was capable of logging snapshot 

data only from one of every five sonar pings. Although improvements in processing 

speed are starting to negate this problem (Parsons et al. 2007), it is advantageous to 

reduce the amount of data logged to maintain the highest possible ping rate and hence 

maximum along-track resolution. For seafloor investigations, there are two main 

methods for reducing the data logged from MBS systems. These are collecting a 

sidescan sonar-like output, or fragments of signals along individual beams (which Reson 

call snippets). MBS backscatter data collected by these two methods and their relation to 

the snapshot data are illustrated in Figure 3.4. 
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Figure 3.3: An example ping of snapshot signal level (relative dB) from BGB 57: (a) all 

beams and (b) some selected beams - 5 (red), 60 (pink) and 121 (black). Vertical dotted 

lines in plot (b) represent the snippet locations. 

Si
gn

al
 le

ve
l (

dB
) 

Sample number 



 39  

3.3.4 Sidescan logging mode 

When recording in the “sidescan” mode, the system combines backscatter signals 

received along adjacent beams by stitching them together in the time domain with 

averaging within the overlapping sections, and as a result, it forms two sidescan beams 

(i.e. port and starboard). The combined beams produce a sidescan-like time-series of 

amplitudes (Figure 3.4(a)). The operator can choose whether to log all the data or to 

compress the data either with an “RMS” or “average” process (RESON Inc. 2002b). 

Here sidescan data were logged using the RMS compression mode, which resampled 

data to 1024 samples per side. The appearance of sidescan samples is rescaled so that the 

time scales of snapshot and sidescan signals are consistent with each other. The sidescan 

approach gives good across track resolution, as seen by the identification of the coral 

bommies2 in the sidescan image from the first 275 pings of line BGB 57 (Figure 3.5(b)). 

However, combining all data from adjacent beams can add noise to the overall image, 

especially at nadir.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.4: Comparison of snapshot, with (a) sidescan and (b) snippet data.   

                                                 
A2.  2 Coral bommies are relatively large reef structures. 
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Figure 3.5: Multibeam sonar data collected from line BGB 57: (a) bathymetry (m), (b) 

sidescan simulated from full water column data, (c) snippets - peak beam intensity and 

(d) sidescan simulated from snippets.  

 

3.3.5 Seafloor backscatter envelopes (snippets) 

Snippets are fragments of the complete signal envelope that aim to contain the 

seafloor backscatter from each beam (Figure 3.4(b)). The start position of each snippet, 

known as the fragment offset, and the length (or number of samples) of each snippet is 

predetermined by the sonar processor based on the estimate of slant range to the edge of 

the beam footprint on the seafloor (Figure 3.6).  
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Figure 3.6: Location of the snippet fragments extracted from the signal envelope as 

recorded in snapshots for beams 21 and 22. 

 

Collection of snippet data can be programmed in two different operational modes: 

uniform range and flat bottom. In the uniform range mode, the snippet window has a 

length of around 1/16 of the slant range to the bottom detect point and the centre 

coincides with that point. This mode is useful where the bottom slope significantly 

varies throughout the swath and it is impossible to accurately calculate the size of the 

footprint. However, in this mode there are more likely to be large gaps in the spatial 

coverage of the snippets, depending on the topography. In the flat bottom mode, the 

length and offset of each snippet are calculated from the seafloor depth and individual 

beam angle assuming a flat bottom model. The resulting backscatter information from 

the two modes was not significantly different; the flat bottom mode was chosen for 

collecting data in this study. 
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In the Reson 8125, the snippet fragment’s start position and length are determined using 

stepwise functions. The automatic selection of the snippet location and length based on 

the flat bottom model is occasionally inadequate to include the full extent of the 

scatterers within the beam footprint. Figure 3.7 shows an example where the maximum 

amplitude of backscatter from the seafloor (as seen in the snapshot record) for beam 136 

is not found within the snippet window. It could be argued that the seafloor surface 

patch of intense backscattering is located within the footprint of the adjacent beam 

(137); however, the adjacent beam does not return a higher value at this point.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Example of inadequate snippet location, solid lines are the waveforms and 

dashed lines are the start and finish positions of the snippets. Beams 135 and 136 start 

at same position. 

 

An approximate way to quantify the number of misaligned snippets is to examine if the 

maximum in the snippet corresponds to the maximum within the corresponding snapshot 

record. For this section, there was 99.3% match of snippet and snapshot peak amplitudes 

on average for all beams (Figure 3.8). The actual percentage of mismatches between 

snippets and snapshots cannot be an accurate measure of correct location of the snippets, 

as there could be backscatter sources other than the seafloor that produce higher 
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backscatter levels in the snapshot signals (e.g. fish schools). However, the trend of more 

inadequate snippet locations in the outer beams than the inner beams (seen in Figure 3.8) 

is plausible. Overall, though, the snippet data adequately reflect the seafloor backscatter 

signals received by MBS.  

 
Figure 3.8: Percentage of matches in maximum amplitude between snippets and 

snapshots for each beam of the Reson SeaBat 8125 along line BGB 57. 

 

There are two main approaches to processing snippets: 

1. Determine one backscatter intensity value for each snippet; 

2. Use a series of intensity values from each beam. 

 

In the first approach usually either the maximum or average intensity values are 

calculated for each snippet. If the Reson 8125 system is set in the RI-Theta (range, 

intensity, beam angle) mode, the sonar processor finds the maximum value of each 

snippet and stores it in a separate backscatter intensity dataset. The backscatter image in 

Figure 3.5(c) is constructed using the maximum intensity values. However, it is 

advisable to log the snippets, as they have the advantage of allowing other values within 

the beam, such as the average intensity, to be measured. The average intensity is 
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calculated from the integral of the squared signal envelope, i.e. the sum of squared 

snippet samples, and is a robust estimate of backscatter intensity from within the beam. 

The seafloor backscatter strength can be found from the average backscatter intensity 

based on the energy conservation law and estimates of the transmission loss. Such an 

approach reduces noise due to stochastic variations of backscatter. However, using one 

backscatter value for each snippet does not allow resolution of useful backscatter 

features that may be present within the footprint of individual beams.  

 

Using a series of amplitude values within the beam will offer finer spatial resolution. If 

all the values in the beam are used, then an image similar to sidescan can be created, 

which is shown in Figure 3.5(d), but with a reduction in noise from sidelobes and the 

water column compared to the actual sidescan recorded. However, synthesising adequate 

sidescan images or deriving a series of true backscatter intensity values from the snippet 

fragments collected along each beam of a MBS system requires proper correction for the 

individual beam patterns. Correcting for the beam pattern is not a trivial problem. 

Attempts have been made empirically (Beaudoin et al. 2002) and using models 

(Augustin & Lurton 2005), but beam pattern artefacts can persist. Whereas, analysis has 

shown (see Appendix B for details) the influence of beam pattern on the calculation of 

average backscatter per beam is almost insignificant with the total error about 0.3 dB for 

incident angles 5-60º. 
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3.3.6 Choice of backscatter logging method  

 Deciding which method to use to log backscatter data depends on the objectives 

of the study. For instance, if you are investigating objects in the water column then using 

the full backscatter signals (snapshots) is the most appropriate option. This was also the 

method chosen for the calibration experiment (Section 3.4). For benthic habitat mapping 

studies, reducing the backscatter data to either sidescan or snippets is a more practical 

option. The issues that were considered in this study when deciding which of these two 

logging method to use for this study, were:  

• Spatial resolution 

• Aim of study 

• Processing of backscatter data 

 

If high spatial resolution had been the main objective, e.g. for object detection, then 

sidescan data either as recorded by the system or synthesised from snippets might have 

been more applicable. However, it was decided that the relationship between backscatter 

strength and incidence angle was the main focus of this study. Therefore, the ability to 

produce backscatter strength that was solely dependent on only seafloor properties and 

incidence angle was one of the most important objectives. As discussed previously, 

using a series of amplitudes within each beam requires proper correction for the 

individual beam patterns. Although the beam pattern can be corrected through 

theoretical modelling or empirical methods, it often leaves imperfect results (Beaudoin 

et al. 2002). Alternatively, using physically meaningful parameters, such as the peak and 

integral value from each beam to derive the scattering coefficient, provides a more 

accurate solution. Furthermore, a one value per beam approach is much easier to 

implement than using a series of amplitudes from each beam. Therefore, for this study 

an algorithm to calculate the backscatter strength from the peak and integral of snippets 

was developed and is detailed in Section 3.5.  
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3.4 Calibration of the Reson SeaBat 8125 system 

3.4.1 Introduction 

To further understand the operation of a MBS system and produce backscatter 

characteristics that are system invariant, it is necessary to know the parameters of the 

system’s transmit and receive beams. This involves calibrating the MBS system with a 

hydrophone for the transmit beam and recording backscatter from a target with known 

acoustic properties to calibrate the receive array. There has been little previous work on 

calibration of MBS. Foote et al. (2003) developed protocols for calibrating MBS 

systems, which is a good starting point for work of this kind. Also, a calibration of a 

Reson SeaBat 8125 performed by Trevorrow (2005) provided a useful comparison. The 

major difference between this study, and the work done by Foote et al. (2003) and 

Trevorrow (2005) is that they both used a volume scatterer, whereas, here a surface 

reflector  is used. The important issue with using a surface reflector is that the target has 

to be bigger than the insonified area.  

 

The objectives of this work were to: 

1. Measure the transmit beam pattern both across and along track; 

2. Estimate the system’s processor gain Gp; 

3. Evaluate the relative sensitivity across the swath (across beams); 

4. Examine scattering strength from specular reflection and micro-scale 

roughness. 

 

Measuring the transmit beam gave an opportunity to verify the quoted source level and 

the beam width at a –3 dB level, which is 1º along-track and 120º across-track. 

Estimating the system’s processor gain Gp allowed us to determine absolute backscatter 

characteristics, such as the surface backscatter coefficient. It was also important to test 

the relative sensitivity of the system response across the swath. Finally, the controlled 

experiment allowed some preliminary examination of the scattering strength from 

specular reflection. Although this experiment was performed using the Reson 8125, the 

methods are thought to be applicable to other high-frequency multibeam systems. 
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3.4.2 Equipment and set-up 

The experiment was performed in a swimming pool with the sonar head at one 

end of the pool orientated to transmit horizontally through the water column. At the 

other end of the pool at a distance of 6.44 m, a hydrophone was deployed to measure the 

transmit beam pattern and then a flat target was used to calibrate the receive beams 

(Figure 3.9). The set-up geometry and pulse duration used were such that the direct 

signal could be fully separated from the reflections from the pool walls. The transmit 

beam was measured using a Reson TC4034 hydrophone, which has a bandwidth from 1 

Hz to 470 kHz and a sensitivity (re 1V/µPa) of –222 dB ±3 dB (at 450 kHz). The along-

track beam width (at nadir) was estimated by vertically moving the hydrophone.  The 

across-track beam geometry was measured by using the turntable to rotate the sonar 

head. The receive beams were characterised by recording in the snapshots mode the 

response from three surface targets: a flat aluminium sheet of about 10 mm thick, the 

same aluminium sheet with coarse sand paper on it, and a flat but rough concrete slab of 

about the same size and 20 mm thick. 

 

3.4.3 Transmit beam 

As the measurements were made at a relatively short distance from the sonar 

head, the transmit signal level was determined by comparing the amplitude of received 

signals to the numerical prediction made for the acoustic transmission loss in the near 

field of the transmit array. The acoustic field was calculated assuming that the transmit 

array is a semicylindrical piston of 210 mm long, which corresponds to the physical 

length of the projector. The transmission loss, as a function of range along the normal to 

the array, is shown in Figure 3.10. The transmit beam pattern as measured by the 

hydrophone and corrected for the actual transmission loss as a function of the along and 

across track angles is shown in Figures 3.11 and 3.12 respectively. The source level 

measured for the different power level settings was in agreement with the quoted levels. 

The along-track beam width measured at nadir (at the -3 dB level) is 1.2º, which is in 

good agreement with the 1º beam width quoted by Reson (2002b) and as measured by 

Trevorrow (2005). The across track beam was measured as 140º, which is in agreement 

with Trevorrow (2005) but slightly higher than the 130º width quoted by Reson (2002b).  
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Figure 3.9: Experimental set-up for calibration experiment. 
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Figure 3.10: Transmission loss modelled along beam axis in the near field of the Reson 

SeaBat 8125 transmit array (blue) compared to spherical spreading loss (red).  
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Figure 3.11: Along-track transmit beam pattern measured at 6.4 m from the transmit 

array (stars) and modelled for the same distance for a transmit power of 220 dB re 1 

µPa at 1m. 
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Figure 3.12: The across-track directivity pattern of the transmit beam (-*) of the Reson 

SeaBat 8125. The -3 dB limit is indicated by the black dashed line. 

 

3.4.4 Receive Beams 

3.4.4.1 Theoretical predictions 

The main purposes of the receive system calibration were 1) to determine 

overall invariant system gain, Gp, which includes the sensitivity of the array’s receive 

elements, the constant preamp gain, the ADC conversion rate, and gain of the 

beamforming processor; and 2) to examine the variation of system response with beam 

number. In order to determine the system gain and assess inter-beam variations, the flat 

aluminium plate was chosen as a target to measure the reflection coefficient at vertical 

incidence for different beams. The system gain was derived by comparing results of the 

measurement with modelling prediction for the target of known parameters. Reflection 

of the sonar signal from a flat target can be modelled using the Helmholtz-Kirchhoff 

method (Medwin & Clay 1998), according to which the sound field P of acoustic waves 

reflected from a finite surface S can be found from Equation 3.4: 
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where: K is the local reflection coefficient depending in general on the incidence angle, 

PS is the sound field of the incident wave on the surface S and R’ is the slant range from 

a point on the surface S to a receiver at point R. The sound field PS on the target surface 

can be modelled using known parameters of the sonar transmit array.   

 

The reflection coefficient (for a plane wave) from a solid layer can be calculated using 

the exact analytical solution derived in Brekhovskikh and Lysanov (2001). Figure 3.13 

shows the reflection and transmission coefficients calculated for an infinite aluminium 

plate of 10 mm thickness at 455 kHz. Notice that the reflection coefficient stays close to 

unity (about 0.98) for incidence angles less than 5º. In the measurement scheme realised 

for sonar calibration, the distance to the target was about 6 m and the target size was 0.4 

m2, hence the incidence angle did not exceed 2.5o and the reflection coefficient could be 

assumed to be nearly constant.      

 

Figure 3.13: Modulus of the reflection and transmission coefficients from a 10 mm thick 

aluminium plate at 455 kHz (acoustic characteristics of aluminium: density 2700 kg m-3; 

compressional wave speed 6320 m s-1; shear wave speed 3130 m s-1; compressional 

wave attenuation 0.01 dB wavelength-1; shear wave attenuation 0.02 dB wavelength-1).



 52 

 

The amplitude and phase of the reflected signal along the sonar receive array were 

calculated (using Equation 3.4) assuming the amplitude of the transmit signal to be unity 

at 1 m from the source (projected from the far field). The calculated results compared 

with spherical spreading are shown in Figure 3.14. For the acoustic waves radiated by 

the sonar, the size of the reflecting surface is limited to the target size in the horizontal 

direction and to the transmit beam footprint on the plate in the vertical direction, which 

is considerably smaller than the target width at 6 m from the sonar head. The limitation 

of the reflecting area causes a small reduction in the received amplitude, and amplitude 

and phase variations across the array due to edge effects.  However, the amplitude 

variation is relatively small and the phase variation generally follows the spherical 

wavefront geometry (Figure 3.14). In the near field of receive arrays, such phase non-

uniformity across the array is inevitable and can be compensated by dynamic focusing of 

the receive system realized in some sonar systems, including the Reson 8125. Thus, 

assuming that the Reson dynamic focusing compensates the spherical wavefront 

sufficiently, we can estimate the system response to the signal reflected from the 

aluminium plate, as follows: 

 

Arec = AtranK Gtotal /2R        (3.5) 

 

Where Arec is the received signal amplitude (in ADC units), Atran is the transmitted signal 

amplitude, R = 6.4 m is the distance to the target, K = 0.98 is the acoustic reflection 

coefficient of the target, and Gtotal is the total system gain. If Atran is known and Arec is 

measured, the system gain can be determined from Equation 3.5. 
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Figure 3.14: (a) Amplitude and (b) phase of the Reson transmit signal along the receive 

array, after reflection from an aluminium plate 40 by 40 cm wide and 10 mm thick. The 

amplitude is shown corrected for spherical spreading. The blue line is the result of 

numerical modelling using the Kirchhoff approximation. The red line shows a simple 

spherical spreading approximation for reflection from an infinite surface.   

 

3.4.4.2 Measurements 

For sonar calibration with the aluminium plate, the target was placed 

perpendicular to the direction of the sonar head, with the latter being slowly rotated in 

the horizontal plane with a small angular increment. Thus the target was always 

insonified by the transmit beam, but observed along different receive beams at different 

 

0.8 

0.85 

0.9 

0.95 

1 

1.05 

1.1 

A
co

us
tic

 p
re

ss
ur

e 
(r

el
. u

ni
t)

 actual
spherical

 

-200 -100 0 100 200-6 

-5 

-4 

-3 

-2 

-1 

0 

1 
2 

Distance from array centre (mm)

Ph
as

e 
(r

ad
.) 

(a) 

(b) 



 54 

times. The beam exhibiting the maximum signal amplitude among all other beams was 

assumed to receive the specular reflection from each sonar ping. The black line in Figure 

3.15 shows the maximum signal level (in dB re system ADC unit) versus the 

corresponding beam number. The beam response is nearly uniform with a gradual 

decrease from the inner beams to the outer ones. The total decrease is approximately 3 

dB. A possible reason for such change across beams maybe that the rotation axis of the 

sonar head was not exactly perpendicular, so that the transmit beam axis might deviate 

from vertical incidence on the target in the course of rotation. Bearing in mind that the 

transmit beam width is 1-1.2o at –3 dB level, a misalignment of the sonar rotation axis of 

0.5o relative to the vertical might lead to such a decrease of the reflected signal 

amplitude. This differs with the findings of Trevorrow (2005), who found that at ranges 

less than 15 m there was a more significant decrease in received amplitude away from 

the centre beams than that measured in our calibration experiment.  

 

The initial position of the sonar head, when the receive array was parallel to the target 

and the target was seen along the innermost beams, was accurately set up by aligning the 

sonar and target vertical orientation in order to get the maximum response. Therefore it 

is believed that the system response along the innermost beams corresponds to the 

specular reflection conditions, so that the system gain can be derived from the signal 

amplitude measured for those beams. The invariant system gain (Gp) was determined 

from the calibration results using Equation 3.5 to be 1.84 x 10-5 ± 0.08 x 10-5 ADC unit 

per µPa, i.e. -94.7 ± 0.4 dB re 1 ADC unit per µPa. 

 

The measurement of the scattering strength from the sandpaper-covered aluminium plate 

and the concrete slab were performed by synchronous rotation of the sonar head and the 

target by the same angular increment in opposite directions, which was assumed to 

simulate backscattering from a flat bottom at different angles of incidence. Not all 

beams were measured in this experiment. The angular dependence of backscatter 

strength from the sandpaper-covered plate and concrete slab in Figure 3.15 exhibit a 

sharp peak at nadir, where the level of backscatter intensity from the sandpaper-covered 

plate is similar to the intensity of signals reflected from the bare aluminium plate. This 
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was expected because the thickness of sandpaper was smaller than the acoustic 

wavelength and hence the specular reflection strength was governed primarily by the 

acoustic impedance of the aluminium plate. At oblique angles, the estimates of 

backscatter strength vary from –30 to -40 dB relative to the peak value at nadir, which is 

comparable with the side-lobe level of the Reson 8125 receive array. This means that the 

roughness of sandpaper was too small to produce backscattered signals with the level 

detectable on the Reson array. Specular reflection from the concrete slab was about 5 dB 

weaker than that from the aluminium plate, which is likely due to a lower acoustic 

impedance of concrete (for a density of 2240 - 2400 kg m-3 and a sound speed of 3200 – 

3600 m s-1, the reflection coefficient from concrete in water varies from 0.6 to 0.7 at 

vertical incidence). The backscatter strength from the concrete slab measured at oblique 

angles was also weak and did not exceed the side-lobe level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Average backscatter level (dB) of sonar signals reflected from the 

aluminium plate (-) and backscattered from the sand paper plate (--) and concrete slab 

(-) for each beam expressed in dB relative system ADC units. 
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3.5 Algorithm development for processing Reson SeaBat 8125 data 

3.5.1 Introduction 

An algorithm for processing MBS data was developed for the CWHM project by 

a team at the CMST (Gavrilov et al. 2005; Gavrilov, Siwabessy & Parnum 2005). The 

CMST team included the candidate, Prof. Gavrilov, Dr. Alec Duncan and Dr. Paulus 

Siwabessy. The algorithm calculates the backscatter coefficient from both the peak and 

integral values of the snippets corrected for system settings, transmission loss and 

insonification areas (see Equations 2.11 and 2.12 in Chapter 2), and is based on the 

equation given in Talukdar et al. (1995). With these measurements, the corresponding 

incidence angle and coordinates on the seafloor: X-Y and depth (z) are calculated. The 

full processing algorithm was developed into Matlab® code and is referred to as the 

MBS toolbox, it contains the following main steps: 

1. Conversion from the XTF data format imported from Reson’s NaviSoft® MBS 

processing software into the Matlab data format;  

2. Calculation of X, Y, Z position and the incidence angle θ for each beam and each 

ping; 

3. Calculation of the peak and average intensity of backscatter derived from the 

squared amplitude of the peak and integral of the snippets and correction for 

system settings, including  the transmit power and receive gain for both values, 

and the transmitted pulse length for the integral value; 

4. Removal of the system Time Varied Gain (TVG); 

5. Calculation of the surface backscattering strength, which involves correction for 

transmission loss and area. 

 

Although the methods were developed for the Reson 8125 system, they are applicable to 

other multibeam systems. For instance, data collected using the Reson SeaBat 8101 

system were also processed with the developed algorithm and examples of this can be 

seen in the next section and in Chapter 5. 
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3.5.2 Conversion of data from the XTF format to Matlab 

The Reson 8125, like most MBS systems, logs raw data in a proprietary binary 

format. However, this file format can be converted into an industry standard format 

known as eXtended Triton Format, or XTF (Clark 2002). A Matlab® library for 

converting binary files with MBS data in the XTF data format into Matlab® data files 

was developed. The data in the Matlab® format are saved in 5 data structures, which are 

listed in Table 3.1. As the MBS data files are usually large (of the order of 100MB), they 

are broken into approximately 20MB sections to speed up processing of bathymetry and 

backscatter data (these sections are recombined later).  

Table 3.1: List of data structures created after conversion of XTF to Matlab data 

format. 

Structure Description 
Attitude Contains heave, roll, pitch and yaw data from motion sensor and gyro 

Bathymetry Two way travel time, GPS record and associated system settings and 
timing 

Header Contains information from the XTF header file 
Sidescan Sidescan and GPS record, and system settings and timing 
Snippets Snippet and GPS record, and system settings and timing 

 

3.5.3 Calculation of X, Y, Z position and incidence angle (θ) 

 As part of the primary processing, the (X, Y, Z) position of the footprint centres 

relative to the sonar location and in absolute coordinates is calculated for each beam and 

each ping using the slant range, attitude and GPS data. This includes correcting for the 

measured static offsets of the sensors and the dynamic offsets calculated from the patch 

test (see Chapter 2). Figure 3.16 shows an example of bathymetry with and without 

correction for the ship motion. After a corrected (X, Y, Z) position is determined, the 

incidence angle θ is calculated for each beam and ping based on the relative footprint 

position. 

 

Correction of swath data for the sound speed variation in the presence of 3-D motion of 

the surveying vessel has a well developed procedure (Lurton, Dugelay & Augustin 

1994). However, the water in the areas surveyed as part of this work was shallow and 

well mixed so that changes in the sound speed with depth were small enough to be 
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neglected in the swath data processing for this study (Figure 3.17). Nevertheless, in 

other studies where there is a strong variation in sound speed through the water column, 

correcting footprint position and signal travel times along beams for sound refraction 

needs to be considered. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Bathymetry (m) images (a) before and (b) after compensation for ship’s 

motion (data collected from Esperance Bay). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Typical sound velocity profiles from the different sites surveyed. 

(a) (b) 
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3.5.4 Calculation of peak and average intensity corrected for system settings 

 There are two physically meaningful characteristics of the backscatter intensity 

that are usually determined from the backscatter echo signal for each beam, i.e. for each 

snippet. They are the peak (Î) and integral (Ī) intensity of the snippet. The peak intensity 

is proportional to the squared maximum amplitude in a snippet. The integral intensity is 

derived from the total snippet energy, i.e. the integral of the squared amplitude, which 

should then be normalized to the length of the transmitted pulse in order to comply with 

the energy conservation condition and make the measured parameter independent of 

system settings. The integral intensity can also be referred to as an average intensity, 

bearing in mind that the signal energy is divided by the transmitted pulse duration rather 

than the snippet length, which is generally larger. In order to estimate the seafloor 

backscatter coefficient, it is necessary to know the intensities of the transmitted and 

received signals. The latter is derived from the snippet amplitudes, corrected for the 

variable system gain selected by the operator and the constant system gain estimated 

from the calibration experiment (see Section 3.4) as 1.86 x 10-5 ADC unit per µPa for the 

Reson 8125 system. If TVG is applied, it also has to be compensated in order to obtain 

the actual intensity of the received signals, which is discussed in the next section (3.5.5). 

Before correction for TVG, the equation for calculating the received peak intensity 

normalized to the transmitted intensity and system receive gain can be expressed as 

follows: 
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where Amp is the snippet amplitude and P is the source level in µPa2. The equation for 

calculating the integral intensity, i.e. the received signal energy normalised to the 

transmitted energy and received gain, is:  

 

swpo

n
n

norm FTGPG

Amp

22

2 )(
I

∑
=  (3.7) 



 60 

where Fs is the sampling rate (s-1) and Tw is the transmitted pulse duration (s).  

 

The effectiveness of the normalisation procedure for changeable transmit power is 

demonstrated in Figure 3.18. During the transect shown in Figure 3.18, the power was 

increased in 3 dB steps and the operator gain was constant. After correction, the abrupt 

changes in the intensity of received signals due to changes in the system power 

disappeared in the backscatter image. However, there are certain situations where the 

changes in the systems settings are more difficult to effectively correct for, which is 

discussed in Section 3.6.  

 

 

Figure 3.18: Backscatter images not corrected (top) and corrected (bottom) for changes 

in power (middle). 
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3.5.5 Removal of system Time Varied Gain 

A TVG mode is available in the system to roughly correct the backscatter 

amplitude for the transmission loss which includes spreading and absorption losses. 

Equation 3.2, used by the system in the TVG mode, is a robust approximation to the 

transmission loss that aids in bottom detection in the real-time processing by equalizing, 

to some extent, the amplitude of signals received by the system at different angles and 

distances to the bottom. However, Equation 3.2 is not adequate for an accurate estimate 

of seafloor backscatter strength, even if the spreading and absorption loss coefficients 

are properly chosen. Hence the received intensity with system TVG applied ( withTVGI ) is 

normalised by the TVG, using Equation 3.8, and then the resulting intensity values 

( noTVGI ) need to be corrected for the actual transmission loss, which is detailed in the 

next section.  

 

10/10TVG
withTVG

noTVG
II =  (3.8) 

 

3.5.6 Calculation of surface scattering strength 

 The surface scattering coefficient can be determined for both peak and integral 

intensity values by correcting the backscatter intensity for the actual transmission loss 

and normalizing the resulting values to the seafloor area from which the backscattered 

signal was received. The transmission loss is the energy lost due to spherical spreading 

of acoustic energy and acoustic absorption in the water column. Spherical spreading loss 

is a function of range R and for two-way travel is equal to 40log10R (dB). Absorption 

loss is also a function of range and the acoustic absorption coefficient α, so for two-way 

travel is 2αR (dB). The areas that control the peak and integral intensity of backscatter 

are different and are outlined below. 

 

The intensity of backscatter is governed by the seafloor area insonified instantaneously 

by the sonar transmit array and observed within each receive beam. All scattering 

elements of the surface within the insonified area contribute simultaneously to the 

backscattered signal and hence the peak intensity has to be normalized to the insonified 
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area in order to estimate the surface scattering coefficient (Medwin & Clay 1998). 

Equation (3.9) gives an expression for the surface backscattering coefficient SSCpeak 

derived from the peak intensity:  

 

insonifreceive

R
noTVGnorm

peak AA
R

SSC
∩

=
10/24

_ 10Î α

  (3.9) 

 

where: Ainsonif is the insonified area (Equation 2.11), Areceive is the receive beam footprint 

area, and sign ∩ denotes intersection of sets. Hereinafter this intersection area will be 

simply referred to as the insonification area. R is the slant range from the sonar head to 

the centre of the insonification area. 

 

The total energy of signals backscattered from the seafloor along each receive beam is 

made up of the contribution from all scattering elements within the beam footprint on 

the seafloor.  Hence the estimate of the scattering coefficient derived from the integral 

intensity has to be normalized to the intersection area of the transmit and receive beam 

footprints, which for simplicity will be referred to as the footprint area (Afpa) (Equation 

2.12). An expression for the surface backscattering coefficient derived from the integral 

intensity (or signal average intensity) is given in Equation (3.10): 

 

SSCintegral
fpa

R
noTVGnorm

A
R 10/24

_ 10I α

=   (3.10) 

 

The Backscatter Strength derived from the peak (BSpeak) and integral (BSintegral) values of 

each snippet are the scattering strength coefficients in dBs (Equations 3.11 and 3.12).  

 

BSpeak = 10Log10 SSCpeak  (3.11) 

BSintegral = 10Log10 SSCintegral (3.12)  

 

The seafloor backscatter strength should theoretically be only dependent on seafloor 

properties, acoustic frequency and the incidence angle. However, Appendix B shows 
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analysis on the effect of beam pattern on SSCpeak and SSCintegral versus incident angle. 

The estimates of backscatter strength from the peak intensity contain noticeable errors 

due to beam pattern effects. These errors are angle-dependent and result from the finite 

width of insonification area limited also by the shape of the beam pattern. The estimates 

of backscatter strength, derived from the backscatter energy normalized by the transmit 

pulse width and the footprint area, do not suffer from such angle dependent errors. An 

error of about 0.3 dB, resulting from the approximation of the beam pattern by a 

rectangular shape, is nearly constant for all angles and at all values of the pulse width. 

 

The effect of the corrections for the transmission loss and footprint area in comparison 

with the backscatter intensity measured with the system TVG and after TVG removal is 

demonstrated in Figure 3.19. Here the mean backscatter strength collected at an 

incidence angle of 30º from a single transect over a sloping sandy seafloor is plotted 

versus range to the bottom (Figure 3.19(a)) and footprint size (Figure 3.19 (b)). As range 

and footprint size increase, the mean backscatter strength with no corrections applied 

rapidly decreases. The TVG correction improves the range and area dependence, but is 

not adequate as the relative mean backscatter strength actually increases, whereas 

BSintegral shows very little dependence on range and footprint size. 
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Figure 3.19: Backscatter intensity collected at an incidence angle of 30º with and 

without system TVG and the backscatter strength BSintegral derived after all corrections 

versus (a) range and (b) footprint size. 



 65  

3.6 Multibeam sonar system effects on backscatter data 

3.6.1 Introduction 

The previous section detailed the calculation of backscatter strength from the 

beam time series data stored in snippets. This showed backscatter beam time series data 

can be corrected for system settings, such as power, gain and pulse duration (for the 

integral value). However, there are some factors and situations that considerably 

complicate correcting backscatter data in full for system settings and experimental set-

up. Specifically, this section shows the effects of the following: 

• Beam pattern 

• Saturation 

• Pulse duration 

 

The aim is to explain where system artefacts can appear in data and how best to avoid 

and overcome these situations. This advice is summarised at the end of this section as a 

quick reference guide for collecting backscatter data for benthic habitat mapping. 

 

3.6.2 Effect of beam pattern on backscatter 

The Reson 8125 used for this study was calibrated and found to have a 

relatively uniform beam pattern or sensitivity (see Section 3.4). However, some MBS 

systems do not have such a uniform beam pattern. One such system is the Reson SeaBat 

8101, which is a 240-kHz MBS and insonifies a swath on the sea floor that is 150º 

across track by 1.5º along track and consists of 101 individual 1.5º by 1.5º beams 

(RESON Inc. 2002a). The relative across-track sensitivity of a Reson SeaBat 8101 from 

a known target as measured by Foote et al. (2003) is redrawn in Figure 3.20(a), where 

the reduction in sensitivity at nadir is about –5 dB relative to the maximum power at 

oblique angles. For comparison, Figure 3.20(b) shows the relative mean BSintegral 

measured using a (different) Reson 8101 over a flat, homogeneous area of sand. 

Although the data were collect with different Reson 8101s, the artefacts due to the non-

uniformity of the beam pattern identified in Figure 3.20(a) are clearly seen in the 

backscatter intensity measurements in Figure 3.20(b). If the actual beam pattern is not 

compensated for, then the angular dependence of backscatter is distorted, so that it 
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cannot be directly related to physical properties of the seafloor. However, if backscatter 

values are not corrected for beam pattern they could still be used by comparing 

backscatter levels from different habitats at the same angles of incidence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: The Reson SeaBat 8101 (a) relative across-track sensitivity as measured by 

Foote et al. (2003), (b) the relative mean backscatter strength from a flat sandy seafloor 

(different 8101 system). 
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3.6.3 Effect of saturation on backscatter strength 

The process of normalising data for changes in gain and power, as outlined in 

Equations 3.6 and 3.7, is relatively straightforward. However, backscatter data can only 

be normalised effectively if the received signals are not truncated by saturation of the 

receive system. If either the transmitted power or gain or both chosen by the operator are 

too high, saturation of the receive system will occur. This problem is demonstrated by 

Figure 3.21, where backscatter data was recorded over an area of flat sand and the gain 

was systematically increased along the transect, while all other settings were kept 

constant. At the start of the transect in Figure 3.21 the correction for gain works wells. 

From a gain setting of 20 (for this example) the signal starts to become truncated in the 

nadir beams and then, with the further gain increase to 30 dB gain, the system becomes 

completely saturated in the inner beams (90-150). The deformation of the signal is first 

seen at nadir, as this is the incidence angle of the highest return. Backscatter data 

distorted by saturation are problematic to use for benthic habitat mapping.  

 

Figure 3.21: Backscatter image (top) corrected for changes in gain (middle) and the 

mean beam response (bottom) for fixed operator gain (dB) of 5 (blue), 11 (red), 20 

(black) and 30 (green).  
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3.6.4 Effect of pulse duration on backscatter 

The duration of the transmitted pulse theoretically influences only the 

insonification area, but not the estimates of the backscatter strength corrected either for 

the insonification area for the peak value, as outlined in Equation 3.9, or for the footprint 

area for the integral intensity, as in Equations 3.7 and 3.10. However, in a series of 

experiments with Reson SeaBat 8111 and 8160 MBS systems by Fonseca et al. (2006), 

it was found that for short pulses the correction was not adequate, and the backscatter 

strength corrected for the transmitted pulse width increased monotonically with the pulse 

duration.  

 

To examine the effect of pulse duration on backscatter collected with the Reson 8125, a 

series of transects over the same area of flat sand were performed with different pulse 

durations. The mean BSintegral and BSpeak values versus incidence angle are shown in 

Figure 3.22 for the different pulse widths. When the pulse duration was longer than 73 

µs, the BSintegral was adequately corrected for the pulse length, but when shorter than this 

the mean BSintegral was underestimated. A similar trend was apparent in BSpeak, but the 

shortest pulse duration to adequately correct was 101 µs. Even above 101 µs there was 

some dependence on the pulse length seen in the mean BSpeak at smaller angles of 

incidence.  
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Figure 3.22: Mean (a) BSintegral and (b) BSpeak versus incidence angle from an area of 

flat sand for a range of pulse durations 31-292µs. 

Pulse duration (µs) 



 70 

To understand the reason for this observed pulse duration dependence, the pulse form of 

the signals reflected from the aluminium plate (as part of the calibration experiment 

(Section 3.4)) at different transmit pulse durations were examined (Figure 3.23). The 

peak amplitude for the pulse durations of 151 and 292 µs were nearly the same and were 

generally consistent with the signal level expected for the power and gain settings and 

experimental setup. At 101 µs, the peak is slightly lower and at 51 µs the peak has 

dropped almost by half. This is the result of a limited frequency bandwidth of the MBS 

system, which causes the front slope of received pulses to be finite. For a rectangular 

pulse generated by the transmit system, the front slope of received pulses governed by 

the system bandwidth remains approximately the same for different pulse widths. 

However, if the width of transmitted pulses is shorter than the front transition time, then 

the amplitude does not reach its maximum. This is evident in Figure 3.23, where the 

peak amplitude of the snippet (and hence its energy) decreases with the decrease of the 

pulse width starting from approximately 100 µs. Furthermore, the Reson 8125’s 

sampling interval is about 35 µs and thus the estimates of peak and integral intensity 

would be very inaccurate if the pulse width is shorter than 70 µs. 
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Figure 3.23: Pulses reflected from an aluminum plate for different pulse durations of the 

Reson SeaBat 8125. 
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The effect of pulse duration on backscatter measurements is an important finding, as 

shorter pulse durations are usually preferred for bathymetric surveys to increase the 

resolution. For instance, the Reson 8125 manual recommends a pulse width of 51 µs. 

However, based on Figures 3.22 and 3.23, a pulse duration greater than 100 µs is 

recommended when recording backscatter with the Reson 8125. Similarly, a pulse 

duration greater than 150µs is recommended for collecting backscatter data with the 

Reson 8101. An alternative is to correct the transmit power level for pulse distortion due 

to the limited frequency band of the sonar system. However, this will require knowing in 

detail the frequency characteristics of both transmit and receive arrays. Using a shorter 

pulse duration than recommended without proper correction for the system’s frequency 

characteristics will lead to: 

• Underestimation of the peak and average backscatter intensity;  

• Lower Signal to Noise Ratio (SNR) of backscatter recordings; and 

• Inconsistency of backscatter measurements made at different pulse durations.  

 

In the next chapters, quantitative analysis is only performed on the data collected within 

this study with a pulse duration equal to or longer than that recommended. 
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3.6.5 Guidelines for collecting backscatter data for benthic habitat mapping 

It has been shown that although backscatter data collected with MBS systems 

under different experimental conditions can be corrected for most system settings, there 

can still be residual artefacts persisting due to either inappropriate selection of system 

settings or inadequate understanding of the system’s technical characteristics, such as 

the frequency band and dynamic range. Therefore, it is important to consider possible 

effects of system settings on the measurements of backscatter strength, especially when 

collecting data. In particular, the following should be considered: 

 

1. Calibration of the MBS system is desirable, especially to determine the overall 

system’s gain and frequency band and the shape of transmit and receive beam 

patterns. Ideally calibration is to be performed in a controlled environment with 

known targets and an accurate and well-controlled alignment of the sonar head 

and targets. 

2. Power and gain should be set to provide a strong, but not saturated signal. 

3. Consideration should be given to selecting an appropriate pulse duration when 

collecting backscatter. A pulse duration greater than 100 µs is recommended 

when recording backscatter with the Reson SeaBat 8125. Similarly, a pulse 

duration greater than 150 µs is recommended for collecting backscatter data with 

the Reson SeaBat 8101. 

 

If these recommendations are followed, measurements of backscatter strength should 

only be dependent on the seafloor properties and the incidence angle. 
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CHAPTER 4 

THE EFFECTS OF INCIDENCE ANGLE ON THE INTENSITY 
AND STATISTICS OF SEAFLOOR BACKSCATTER DATA 
COLLECTED WITH HIGH-FREQUENCY MULTIBEAM SONAR  

4.1 Overview 
It is well known from various theoretical models and experimental observations 

that acoustic backscatter from the seafloor is dependent on incidence angle (APL 1994; 

de Moustier & Alexandrou 1991; Hughes Clarke 1994; Jackson et al. 1996; Jackson, 

Winebrenner & Ishimaru 1986; Lyons, Anderson & Dwan 1994; Novarini & Caruthers 

1998; Talukdar, Tyce & Clay 1995; Williams et al. 2002). In addition, the backscatter 

intensity and its statistical properties measured with multibeam sonar systems depend on 

the insonification area and footprint size of the receive beams (Hellequin, Boucher & 

Lurton 2003). The aim of this chapter is to examine the relationship between the seafloor 

backscatter strength measured with high frequency MBS and:  

• Incidence angle;  

• The insonification area and the footprint size; and 

• Different seafloor properties (or different habitats) 

 

As the overall aim of the study was to develop MBS for benthic habitat mapping, the 

analysis of this chapter was more focused on the implications for processing backscatter 

data rather than developing theoretical models. The chapter starts with an examination of 

the effect of incidence angle, insonification area, footprint size and seafloor properties 

on the individual beam backscatter envelopes (snippets). Section 4.2 highlights that the 

key parameters derived from snippets are the seafloor backscatter strength values 

determined from the peak and integral (also referred to as the average) intensities. 

However, Section 4.3 shows that the mean value of the backscattering strength derived 

from the peak intensity is expected to be overestimated relative to the actual backscatter 

strength, especially at oblique angles. Hence, backscatter strength derived from the 

integral intensity values was primarily used for this study. Section 4.4 compares the 

angular dependence of backscatter strength derived from a theoretical model with field 

measurements from a wide variety of the benthic habitats from around the Australian 
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coast. This is followed by a more comprehensive analysis of statistical properties of the 

average backscatter intensity. Examination of various statistical characteristics, 

including higher order moments and distribution function shapes is done with respect to 

their effectiveness in seafloor classification. Some initial results from this work have 

been published in several conference papers (Parnum, Gavrilov & Siwabessy 2007; 

Parnum et al. 2005; Parnum et al. 2006; Siwabessy et al. 2006).  

 

4.2 Dependence of backscatter envelopes on incidence angle and seafloor type  
The aim of this section is to demonstrate the effect of incidence angle, 

insonification area and seafloor type on the shape and properties of backscatter 

envelopes collected by high-frequency MBS. Figure 4.1 shows representative snippets 

(with system TVG) collected using a Reson Seabat 8125 from nadir (beam 120), 

moderate (beam 60) and oblique (beam 5) beams from areas of flat sand (black) and 

sand covered in dense rhodolith (grey). Both sets of data are from the same transect 

(Esperance 361) performed in between Thomas and Woody Islands in Esperance Bay in 

2005. The location of the line and system settings is given in Appendix A. These 

backscatter envelopes serve a useful comparison because they represent different kinds 

of scattering surface, but are found at the same water depth. Rhodolith (sometimes in the 

literature referred to as maerl) is a hard, unattached, red coralline algae encrustation that 

can range in size from a few millimetres to a few centimetres, and can form a dense 

cover over sand. This means that rhodolith form a much rougher scattering surface than 

flat sand, which results in the higher backscatter amplitudes recorded across all the 

beams, especially for the outer beams at oblique angles.  

 

While sand and rhodolith are characterized by different levels of backscatter amplitude, 

these and other seafloor types surveyed by the author exhibit similar changes in the 

snippet shape with change in incidence angle. At nadir (Figure 4.1(a)), the backscatter 

envelopes have a sharp well-defined, single-peak pulse form. As the incidence angle 

increases, additional peaks appear in the backscatter envelope (Figure 4.1(b)). At 

oblique angles, the backscatter envelope comprises a series of peaks of comparable 

amplitudes (Figure 4.1(c)). The changes observed are related to the relationship between 
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the insonification and footprint areas and scattering mechanisms within different angular 

domains.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Backscatter envelopes from sand (black) and rhodolith (grey) for beams (a) 

120, (b) 60 and (c) 5 of the Reson 8125. 

 

As the incidence angle increases so does the footprint size, while the insonification area 

decreases. For the inner beams (beam 120), the footprint is smaller than the 

insonification area, so that the backscatter signal consists of a single prominent peak. As 

the footprint increases and the size of the insonification area decreases with the increase 

of the incidence angle, the footprint of the receive beams contains more and more 

different areas of the seafloor insonified at different times, which results in a series of 

peaks observed in the backscatter envelope. In addition, there are different scattering 
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mechanisms dominating in different angular domains. At nadir, scattering is dominated 

by specular reflection affected by random variations of the local slope of large-scale 

roughness, whereas at oblique angles high-frequency scattering is predominately 

governed by small-scale roughness. Therefore, backscatter characteristics and their 

statistics derived from the backscatter envelopes collected with MBS should be 

dependent on the incidence angle.  

 

As discussed in Chapter 3, the seafloor backscatter strengths derived from the peak and 

integral backscatter intensities for each snippet were chosen as the principal parameters 

for seafloor discrimination. However, in the multi-peak backscatter signal at oblique 

angles, the maximum backscatter amplitude, and hence the peak intensity, does not 

always adequately characterise the average backscatter strength across the beam 

footprint on the seafloor. This is because it is affected by interference of waves scattered 

from different parts of the insonification area. The integral intensity, however, provides 

an estimate of the seafloor backscatter strength based on the energy conservation 

principle, which are less noisy. Moreover, it is shown in the next section (4.3) that the 

mean value of the backscatter strength derived from the peak intensity is dependent on 

the envelope length.  

 

4.3 Dependence of the peak backscatter intensity on incidence angle  
The peak backscatter intensity data is commonly used for producing backscatter 

imagery of the seafloor and for mapping benthic habitats. As discussed in Chapter 3, the 

Reson 8125 and 8101 along with the majority of MBS systems have an option to collect 

backscatter intensity data, as one value per beam and ping, instead of, or in addition to, 

the snippet data. This value is the maximum amplitude of the backscatter return, from 

which the peak intensity Î  (Equation 3.6) can be calculated. However, it will be shown 

in this section that the mean values of the backscattering strength derived from the peak 

intensity are expected to be overestimated relative to the actual backscatter strength, 

especially at oblique angles.  
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The backscatter return along oblique beams is usually created from the signals 

backscattered from different insonification areas or scattering cells, which can be 

referred to as elementary backscatter returns, clearly seen in Figure 4.1(c). Variations of 

each elementary return from a single insonification area within the footprint of any 

particular beam with time (or with the ping number) can be considered as a stochastic 

process with a certain distribution function. Let the number of elementary returns from 

the footprint of an individual beam be M, so that the full backscatter signal comprises a 

series of M stochastic process. If these processes are independent and identically 

distributed, then, according to the extreme value theorem by Fisher-Tippett (Embrechts 

et al., 1997), the distribution of extreme values in each series tends to one of the three 

known families of distributions: type I (Gumbel), type II (Frechet) or type III (Weilbull), 

as M tends to infinity. The type of extreme value distribution depends on the fall off rate 

in the tail of the PDF of individual processes. If the fall off rate is exponential or nearly 

exponential, such as that of the exponential, Gamma, Rayleigh and K distributions, the 

maximum value distribution is of type I (Johnson, Kotz & Balakrishnan 1995), which 

can be approximated by a generalized Gumbel (Fisher-Tippett) distribution for finite M. 

Its PDF is:  
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where α is the scale parameter and β is the location parameter.  

The mean µ and standard deviation σ of the Fisher-Tippett distribution are: 

 

µ = β + ζα         (4.2) 

 

σ = 6-1/2πα ,         (4.3) 

 

whereζ ≈ 0.57721 is the Euler-Mascheroni constant. 

 

If backscatter from different insonification areas is statistically independent and has a 

Gaussian distribution, then the instantaneous intensity has the exponential distribution 
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and hence the peak value distribution is of type I. A type I distribution is also expected 

for the peak values, if the instantaneous backscatter amplitude is K-distributed. 

The scale parameter in 4.1 depends on the mean value of individual processes, i.e. on the 

average value of instantaneous backscatter intensity, while the location parameter and, 

consequently, the mean of the maximum value distribution depends on the number M 

and the PDF of individual processes. This means that the average value of peak intensity 

depends on the number of statistically independent scattering cells within the beam 

footprint. No exact analytical expression is known for the location parameter as a 

function of the number of statistically independent samples. However, this relationship 

can be modelled numerically for stochastic processes of certain PDFs with exponential 

tails. Figure 4.2 shows the variation of the mean value of peak intensity with the number 

of statistically independent samples used to determine the maximum, which was 

modelled assuming that complex backscatter amplitudes have a Gaussian distribution 

and the mean value of their absolute amplitude is unity. 

 

It is evident from Figure.4.2 that the mean value of the peak intensity increases with the 

number of scattering cells contained in the beam footprint. The mean of the peak 

intensity equals the mean intensity only when the footprint contains one scattering cell. 

For five cells in the footprint, the mean of peak intensity is about double the mean 

intensity, and the ratio of these quantities grows further with the number of scattering 

cells. Consequently the measurements of the seafloor backscatter coefficient based on 

the peak intensity give overestimated values, especially for oblique beams. The degree 

of overestimation depends on a number of parameters, including: the incidence angle, 

transmit pulse length and sea depth; and is a complicated non-linear function of the 

incidence angle. 

 



 79  

0 5 10 15 20 25 30
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of samples

M
ea

n 
of

 p
ea

k 
in

te
ns

ity

 

Figure 4.2: Numerically modelled mean value of the peak intensity versus the number of 

samples (scattering cells) for a mean intensity assumed to be unity. 

 

Figure 4.3 demonstrates the effect of the number of scattering cells in the footprint on 

the estimates of the seafloor backscattering strength using the peak intensity values. In 

the given example, the insonification area is limited to the beam footprint up to an 

incidence angle of 35°. Within this angular domain, the backscattering strength estimates 

from the peak and integral intensity values are consistent with each other. At oblique 

angles beyond 35°, the insonification area becomes smaller than the footprint, which 

results in rapid divergence of the peak intensity estimates from those based on the 

integral intensity. At 60°, the footprint contains about six non-overlapping insonification 

areas and the peak intensity estimates are about 4 dB, i.e. almost 2.5 times higher than 

those based on the integral intensity. This is consistent with the prediction shown in 

Figure 4.2. Such an inconsistency of backscatter strength estimates determined through 

the peak intensity values was one of the key reasons for choosing the integral intensity 

as the principal parameter for further analysis of MBS backscatter data. 

 



 80 

       

Figure 4.3: Mean backscatter strength (determined from the peak and integral 

intensity), sonar receive footprint and transmit insonification areas versus incidence 

angle. 
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4.4 Dependence of the mean backscatter strength on incidence angle and seafloor 
habitat 

4.4.1 Model predictions 

Comprehensive seafloor backscatter models valid at high frequencies, such as 

455 kHz, when the Rayleigh number (Equation 2.2) is much larger than unity, have not 

been well developed to date. This means that a comparison of the experimental results 

obtained within this study and theoretical predictions, even based on the most advanced 

models, is not fully adequate. This is unfortunately a problem for many researchers 

working with modern high-frequency MBS systems. Faced with the same problem, 

Anstee (2001) decided to use the Applied Physics Laboratory (APL) model (APL 1994) 

to derive the backscatter strength versus incidence angle for some generic seafloor types 

at different frequencies including 455 kHz. Details of the APL model, developed at the 

University of Washington (USA), were given in Chapter 2. Although the APL model is 

primarily intended for much lower Rayleigh numbers, Anstee (2001) chose to use the 

APL model and recommended input parameters as it was physically based and expected 

to give reasonable predictions even if the absolute values of backscatter strength were 

incorrect.  

 

Anstee’s (2001) results are redrawn in Figure 4.4. Backscatter strength from rock was 

predicted to be at least 10 dB greater than that from medium sand over incidence angles 

of 0 to 60º. For oblique angles, backscatter from medium sand was predicted to be 10-12 

dB stronger than that from clay. The angular dependence of backscatter strength 

becomes flatter as the surface becomes rougher, especially at oblique angles. More 

recent models based on a high order small-slope approximation predict the angular 

dependence of backscatter to be nearly uniform when the Rayleigh number is much 

larger than unity (Broschat & Thorsos 1997). Although these models for surface 

scattering are suitable for large Rayleigh numbers (Equation 2.2) of an order of ten, 

these Rayleigh numbers are still smaller than those expected for real seafloor surfaces at 

455 kHz. In addition to the lack of models valid for seafloor backscatter at very high 

frequencies, there is also inadequate information regarding the theoretical prediction of 

acoustic scattering from marine vegetation and corals.  
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Figure 4.4: APL model (APL 1994) predictions  as determined for generic sediment 

types at 455kHz by Anstee (2001). 

 

4.4.2 Field measurements  

Mean backscatter strength (BSintegral) versus incidence angle measurements 

collected with the Reson 8125 for a variety of seafloor habitats are shown in Figure 4.51. 

The data represent a wide variety of seafloor types typical for the shallow coastal waters 

of Australia. The mean backscatter strength was lowest for the fine sediments (e.g. mud 

and flat sand) and, in general, as the sediment grain size and surface roughness increased 

so did the backscatter strength. The highest backscatter strength values were recorded 

not only from hard and rough substrates such as rock, coral reef and gravel, but also 

from marine vegetation, such as rhodolith and some seagrasses. The reasons for higher 

backscatter strength from hard substrates are apparent, and are large roughness and high 

acoustic impedance. These are also the most likely reasons for stronger backscatter from 

rhodolith. The reasons for the stronger scattering recorded from seagrass, however, are 

less obvious. 

 
                                                 
1  Data comes from a variety of multibeam surveys performed 2004-2006. Seafloor habitat was confirmed 
with grab sample and/or underwater video recordings. 
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Figure 4.5: Mean backscatter strength (BSintegral) (dB) versus incidence angle (deg.) for 

a variety of benthic habitats from around the Australian coast measured using a Reson 

SeaBat 8125 MBS system. 
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The mean values of backscatter strength measured from seagrass  were found to be 

generally much higher than those from areas of bare sand observed in the same survey 

area (Figure 4.5). Also, the backscatter strength from temperate seagrasses (e.g. 

Posidonia sinuuosa in Cockburn Sound) was found to be, in general, higher than that 

from the shorter and less dense tropical seagrasses (e.g. Halophila ovalis in Moreton 

Bay). This could imply that the size and density of canopy influences the amount of 

acoustic energy scattered back to the sonar, which is supported by laboratory 

experiments (Wilson & Dunton 2007). It is unknown to what degree gas filled channels 

within the seagrass and gas bubbles generated by the plants during photosynthesis 

dominate the acoustic behaviour (Wilson & Dunton 2007). Gas content and production 

in rhodolith should also be considered as a possible reason for stronger scattering. 

Further study of the relative contribution of acoustic energy that is scattered from gas 

micro-bubbles produced by both seagrass and rhodolith would be useful, especially to 

determine temporal changes in backscatter level due to changes in gas production, as 

well as the effect of epiphytes.  

 

The field measurements compare well with the theoretical predictions, but also show 

some discrepancies. For instance, at nadir where backscatter is dominated by 

contributions from specular reflection, the APL model predicts quite accurately the 

values measured for rock and fine sediment. However, the values of backscatter 

measured at nadir for some sandy beds were noticeably higher than predicted. For the 

majority of seafloor types surveyed, the mean slope of the angular dependence at angles 

from 20 to 60˚ was not significantly different, revealing a decrease of the order of 6-8 

dB over this angular sector. This is small compared to that measured with low-frequency 

systems which is typically 2-3 times larger (de Moustier & Alexandrou 1991; Talukdar, 

Tyce & Clay 1995). This is consistent with the theoretical models that predict levelling 

of the angular dependence of backscatter as the Rayleigh number increases (Broschat & 

Thorsos 1997). However, some areas of sand and mixed sand did show noticeably 

different slopes of the angular dependence, which could be due to variations in 

geomorphological features of the seafloor surface (e.g. presence of sand ripples) and 

actual sediment content (e.g. presence of seashell debris, gas content, etc). Also, for 
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some areas of rock, gravel and rhodolith, the backscatter strength exhibited a small 

decrease towards nadir. Such dips in backscatter strength at nadir have been observed 

previously for some other highly rough gravely /pebble-like surfaces (Beaudoin et al. 

2002), They could be either real or due to measurement artefacts, such as the beam 

pattern effect in combination with a low sampling rate (as discussed in Appendix B). 

Further work is required to determine the reasons behind these features in the angular 

dependence curves. 

 

It is evident from Figure 4.5, that the key property of backscatter with respect to 

discriminating different habitats is the mean backscatter strength, especially at the 

oblique angles. However, there are also some changes in slope, which might be 

exploited. Statistical distributions and higher order moments of the average backscatter 

intensity will be examined in more detail in the next section.  

 

4.5 Statistical distribution of the average backscatter intensity 

4.5.1 Introduction 

The statistical distribution of backscatter values has been previously identified as 

a potential characteristic for classifying the seafloor. Exploiting the variation in 

backscatter measurements for seafloor classification has been achieved mainly through 

texture analysis (Blondel, Parson & Robigou 1998; Milvang et al. 1993), probability 

density distributions (PDF) (Stewart et al. 1994) or high order moments (Le Chenadec et 

al. 2005). The aim of this section is to examine the effect of incidence angle, 

insonfication area and seafloor habitat on the statistical characteristics of backscatter 

values. First, the theoretical model for the distribution of the average backscatter 

intensity (derived from the integral of the snippet) is detailed, namely the gamma model. 

The gamma model is then compared with field measurements from different seafloor 

habitats. The potential of the gamma model parameters for seafloor classification is 

discussed.  
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4.5.2 Theoretical predictions  

Middleton (1999) demonstrated theoretically that the statistical distribution of the 

average backscatter intensity for a Gaussian scattering process should follow a gamma 

distribution. The gamma distribution (Γ-pdf) is a 2-parameter model characterized by 

the scale λ and shape β parameters. For β = 1, the Γ-pdf reduces to an exponential 

distribution with the rate parameter 1/β, which describes statistical variations of the 

instantaneous intensity of a complex Gaussian process. When λ = 2, the Γ-pdf simplifies 

to the chi-squared distribution with the degrees of freedom 2β. If the backscattering 

process is Gaussian (or nearly Gaussian), i.e. the number of statistically independent 

scatterers (or scattering facets) that contribute instantaneously to the backscatter signal is 

large enough to satisfy the central limit theorem (CLT), then according to Middleton 

(1999), the shape parameter represents the number of statistically independent scattering 

cells observed at different times and the Γ-pdf tends to the Gaussian distribution when 

the number of scattering cells becomes large (β >> 1). 

 

If the instantaneous complex backscatter amplitude p is Gaussian distributed. Then the 

average backscatter intensity Ī: 
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where: c is the sound speed (m s-1), ρ is density (kg m-3), is gamma distributed, i.e. its 
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The mean value µ ≡ 〈 I 〉 of a gamma-distributed process is a product of the shape and 

scale parameters: µ = β λ = 〈 p p’〉 , where 〈 〉 denotes ensemble average. Thus the mean 

value of I is a consistent estimate of the mean backscatter intensity. In the algorithm for 

calculating the seafloor backscatter coefficient through the integral intensity, the 

measured backscatter energy is divided by the footprint size, which is equivalent to 

calculating the time-average intensity. As a result, the estimate of the mean backscatter 
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coefficients is also consistent. On the other hand, the variance (σ 2), Equation 4.6, of a 

gamma-distributed process depends on the shape factor β and, hence, the footprint size 

and incidence angle. 

 

σ 2=βλ2 = µ2 /β         (4.6) 

 

The variance can therefore vary with incidence angle, even if the mean backscatter 

coefficient is independent of incidence angle. When the insonification area is not large 

enough for the number of statistically independent scatterers within that area to satisfy 

the CLT, the K-distribution has been shown to fit instantaneous backscatter intensity 

collected with MBS (Hellequin, Boucher & Lurton 2003). If the instantaneous intensity 

values are to be averaged, e.g. when calculating the integral intensity or gridding 

backscatter images, then according to Hellequin et al. (2003), the distribution of the 

average backscatter values can be approximated by a “generalized K-distribution”, 

which represents a product of two independent gamma-distributed processes. The shape 

parameter of the K-distribution related to the number of elementary scatterers has been 

used in addition to the mean backscatter to discriminate between different seafloor 

habitats (Hellequin, Boucher & Lurton 2003; Le Chenadec et al. 2005). However, the 

shape parameter of the K-distribution is dependent on the incidence angle due to the 

change in the insonification area with the incidence angle.  

 

In the next sections, statistical moments and distributions of backscatter data from 

different habitats in different angular domains are examined. The suitability of the 

gamma model as an approximation for the statistics of seafloor backscatter strength 

derived from the integral intensity data is considered. It will be demonstrated that the 

gamma distribution model based on an assumption of CLT validity is a simple but quite 

accurate approximation for statistical features of the seafloor backscatter strength 

derived from the integral intensity collected from incidence angles 5-60º. This 

observation is used to assess the usefulness of the Γ-pdf shape parameter and higher 

moments as a means to discriminate between different habitats. 
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4.5.3 Data description 

This study uses two transects (swath lines) from different areas, each of which 

cover three different habitats. The first transect (Esperance 309) was made during the 

survey of Esperance Bay and was recorded over rhodolith, sand and temperate seagrass. 

The second transect (BGB 11) comes from the survey of Morinda Shoal and was 

recorded over a coral material (rubble/debris), sand and tropical seagrass. These 

transects were chosen because changes in insonfication and footprint areas for the 

different incidence angles were very similar for all data (Figure 4.6). The bathymetry 

and backscatter strength for the two transects were calculated using the methods 

described in Section 3.5 and are shown in Figure 4.7. The location of the lines and the 

system settings are given in the Appendix A. The gamma shape parameter β shown in 

Table 4.1 was estimated using the maximum likelihood method in Matlab®.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: The mean footprint and insonification areas versus incidence angle for the 

different seafloor habitats analysed in this section. 

0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Incidence angle (deg.)

A
re

a 
(m

2)

0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Incidence angle (deg.)

A
re

a 
(m

2)



 89  

 

Figure 4.7: Transects used for statistical analysis (Backscatter images are not corrected 

for angular dependence). 
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4.5.4 Results 
The angular dependence of the seafloor backscatter strength averaged over areas 

of homogeneous habitats, and the coefficient of variation of backscatter intensity for the 

main habitats observed along the transects in Esperance Bay and Morinda Shoal are 

shown in Figure 4.8. The highest mean backscatter strength for these sets of habitats was 

obtained from coral rubble and rhodolith, which had similar angular responses of 

backscatter strength. After the areas of coral and rhodolith, the seagrass regions yielded 

the next highest mean backscatter strength. Although the temperate and tropical 

seagrasses are different species, they exhibited similar angular response of backscatter. 

The lowest mean backscatter strength came from the two areas of sand, but they had 

different angular dependences. Sediment grab data are available only for the Esperance 

Bay sand area, which reveals the sediment composition to be 93% sand, 5% gravel and 

1% mud. It is likely that sand content, including grain size, different intrusions (e.g. 

coral material), etc., at Morinda Shoal differs from that in Esperance Bay resulting in the 

different angular response. 

 

The trend in the coefficient of variation (CV) of the average backscatter intensity with 

incidence angle is the same for all of the six habitats examined here (Figure 4.8(b)). The 

CV at normal incidence for all habitats is just below unity, as the incidence angle 

increases the CV of all data decreases almost linearly. At angles greater than 45-50º, the 

trend in CV with incidence angle starts to become more uniform. Overall, the 

backscatter variations about the mean value appear to relate to the incidence angle either 

directly or through changes in the insonfication area and footprint size rather than 

seafloor properties.  

 

CV=σ/µ         (4.7) 
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Figure 4.8: (a) Mean backscatter strength and (b) coefficient of variation versus 

incidence angle for the different habitats. 
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One of the ways to examine the suitability of the gamma distribution to model the actual 

backscatter intensity data is to analyse the relationship between the skewness squared 

and kurtosis of measured PDFs (Figure 4.9). For the gamma model, this relationship is a 

function of the shape parameter β and is shown as a black line in Figure 4.9. The 

backscatter intensity data from all habitats are well approximated by the gamma model. 

When β=1, the gamma distribution simplifies to an exponential distribution and as β 

tends to infinity the distribution tends to a Gaussian distribution. The majority of the 

data fits well with the gamma model, although the relationship between incidence angle 

and the model parameters is not clear from Figure 4.9. There are, however, some outliers 

that correspond to a kurtosis greater than 9 and are below the gamma model prediction. 

This implies that for these outliers β is less than 1, a reason for this is not evident. 

 

The probability density distributions of the backscatter intensity (normalised by the 

standard deviation) for all habitats at 5º, 30º and 55º incidence angles are shown in 

Figure 4.10 and 4.11. The gamma distribution model provided a very good visual fit for 

all habitats over all angles of incidence (Figure 4.10). Estimates of the shape parameter 

β for all the distributions shown in Figure 4.10 are given in Table 4.1. As the incidence 

angle increases so does the shape factor. Moreover, the shape factor and distributions are 

very similar for all habitats at incidence angles 5º and 30º (Table 4.1 and Figure 4.11. 

However, at 55º there are some significant differences in the shape parameter between 

habitats, notably Rhodolith from Esperance Bay and Sand from Morinda Shoal.  

Table 4.1: Gamma scale (λ) and shape (β) parameters for the distributions shown in 

Figure4.10. 

β λ β λ β λ
Rhodolith (Esperance Bay) 1.9 0.7 5.3 0.4 16.8 0.2
Seagrass (Esperance Bay) 1.6 0.7 4.4 0.5 10.1 0.3
Sand (Esperance Bay) 1.5 0.8 4.7 0.5 12.1 0.3
Coral Reef (Morinda Shoal) 1.8 0.7 5.6 0.4 13.8 0.3
Seagrass (Morinda Shoal) 1.9 0.7 5.1 0.4 10.3 0.3
Sand (Morinda Shoal) 1.8 0.7 4.8 0.4 7.1 0.4

Habitat 5º 30º 55º
Angle domain
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Figure 4.9: Skewness squared versus kurtosis of backscatter intensity in different 

angular domains for the different habitats. The dependence predicted from the gamma 

model is shown as a black line along with the positions of a Gaussian (●) and 

exponential (●) distribution. 
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Figure 4.10: Probability density for normalised backscatter intensity for a variety of 

habitats for incidence angles 5 º (- solid lines), 30 º (-- lines) and 55º (…lines). Black line 

shows the gamma model fit. 
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Figure 4.11: Probability density for normalised backscatter intensity for a variety of 

habitats for incidence angles (a) 5 º, (b) 30 º and (c) 55º. Black dashed line shows the 

gamma model fit for sand (Esperance Bay). 
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The value of β (as estimated from Equation 4.6) for the different habitats as a function of 

incidence angle is shown in Figure 4.12(a). As indicated by Table 4.1, as the incidence 

angle increases so does β. Following arguments put forward by Middleton (1999), if 

backscattering from the adjacent insonification areas can be regarded as statistically 

independent processes, then it is most likely that the change in β relates more to the 

number of insonfication areas contained within the footprint of receive beams rather 

than to the incidence angle itself. The shape parameter β versus the ratio of insonfication 

area to the footprint size (for each incidence angle) is shown in Figure 4.12(b), which 

reveals two scattering regimes.  

 

The first scattering regime occurs when the ratio of insonification area to footprint size 

is less than 5, which corresponds to incidence angles below approximately 40°. In this 

regime the shape factor is linearly proportional to the ratio of insonification area to 

footprint size. This regime corresponds to a nearly Gaussian scattering process and the 

shape factor is not significantly different between different habitats. However, it is 

necessary to note that the experimental estimates of the shape parameter β are about one 

unit higher than those expected for the estimated number of statistically independent 

scattering cells. This is likely a result of the real backscatter process not being purely 

Gaussian but rather a superposition of two or more processes of different spatial scale.      

 

The second scattering regime is for an insonification area to footprint size ratio greater 

than 5, which, for this dataset, equates to an incidence angle greater than 45°. In the 

second scattering regime the dependence of shape factor β on the ratio of insonfication 

area to footprint size almost vanishes and some degree of separation appears between 

habitats. At large area ratios, the hard and rough substrates of coral and rhodolith have 

the highest values of β, followed by the seagrasses and the sand in the Esperance data 

and the lowest values of β come from the sand from the Morinda Shoal data.  
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Figure 4.12: The gamma shape parameter β versus (a) incidence angle (deg.) and (b) 

the ratio of the insonfication area to footprint size. 

(a) 

(b) 
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At present, the statistical principles and physics controlling this second regime are not 

apparent. One possibility is that the decrease in insonfication area may have reached a 

threshold after which the roughness scale becomes comparable or larger than one of the 

area dimensions. In that case, the CLT is invalid and the shape parameter does not 

depend on the ratio. If the differences between values of β for different seafloor habitats 

can be attributed to different properties of the seafloor, then β might be a useful 

parameter in seafloor classification. However, until this scattering regime is better 

understood, it is problematic to implement any classification procedure based on the 

shape parameter. Also, this second regime represents a small percentage of the data 

across the swath for the Reson 8125, e.g. for this dataset the second regime represents 

about 10% of the beams. Therefore, for this study, the mean backscatter strength was 

used as a the major parameter to characterize the acoustic properties of the seafloor, but 

with the recommendation for further research into the use of some other statistical 

characteristics of backscatter, such as the gamma shape parameter, as additional features 

to help distinguish different habitats.  

 

4.6 Implications for benthic habitat mapping  

 This chapter has examined some of the effects of incidence angle, insonificaiton 

area and seafloor habitat on seafloor backscatter strength measured with high-frequency 

MBS. The implications of these findings for benthic habitat mapping are as follows: 

1. The peak and the integral intensity derived from the backscatter waveform are 

useful parameters in discriminating between different seafloor habitats. Changes 

in waveform shape relate more to changes in the footprint size and insonification 

area with the beam angle rather than to changes in seafloor properties. 

2. Mean backscatter strength derived from the peak intensity will be overestimated, 

especially at oblique angles. Therefore, backscatter strength derived from the 

integral intensity was primarily used for this study. 

3. Mean backscatter strength derived from the intergral intensity is a good 

descriptor of changes in benthic habitats and distinct angular responses are 

observed for hard rough substrate, seagrass, coarse sediment and fine sediment. 
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4. Acoustic backscatter models are generally in agreement with the mean 

backscatter angular responses measured in this study, but at present are not 

significantly accurate for high frequencies, such as that of the Reson 8125, to aid 

in benthic habitat mapping. 

5. The gamma distribution adequately describes the variation of the average 

backscatter intensity at 455 kHz for a range of seafloor habitats for incidence 

angles 5-60º. 

6. The scale parameter of a gamma-distributed backscatter intensity is dependent on 

the incidence angle and the seafloor properties. 

7. The shape parameter β of a gamma-distributed backscatter intensity reveals two 

regimes of backscattering. The first regime corresponds to a Gaussian scattering 

process where the shape parameter is approximately proportional to the ratio of 

the insonification area to the footprint size. Hence, the shape parameter increases 

with incidence angle in this regime, but there is no significant difference in its 

value between different habitats. Therefore, this regime is not useful for seafloor 

classification. The second regime corresponds to small grazing angles and here 

the shape parameter can be different for different seafloors, and can potentially 

be used for discriminating different benthic habitats. However, this observation 

requires further research to provide a practical means for seafloor classification. 

8. The key property of the backscatter angular dependence appears to be the mean 

level, although additional information can be obtained from the slope. Exploiting 

the mean backscatter angular response is explored more in the next Chapter (5). 
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CHAPTER 5 

PROCESSING TECHNIQUES FOR VISUALISATION AND 
CLASSIFICATION OF BACKSCATTER STRENGTH DATA 
COLLECTED WITH MULTIBEAM SONAR  

5.1 Overview 
Two principal objectives of this part of the study were to improve methods for 

spatial visualisation of backscatter properties and to develop seafloor classification 

techniques using MBS data. The previous chapter (4) showed that the mean backscatter 

strength could discriminate between different seafloor habitats, such as sand, seagrass 

and rock. However, because the backscatter strength is also dependent on incidence 

angle, backscatter images can be difficult to interpret. Moreover, combining several 

overlapping MBS swath lines to produce a backscatter mosaic is not a trivial problem 

because of the angular (i.e. beam) dependence of the measured backscatter strength. The 

traditional approach has been to correct backscatter images for the angular dependence 

through removing either an empirical (Beaudoin et al. 2002; Preston & Christney 2003) 

or model-based (Augustin & Lurton 2005) prediction of the underlying angular 

variation. It will be shown in this chapter, however, that even after an angular correction 

has been applied, backscatter images can still be dependent on incidence angle. The aim 

of this chapter is to present a new method developed by the candidate to visualise 

backscatter properties, and to demonstrate how it can be utilised for seafloor 

classification.  

 

This chapter starts by presenting the algorithms examined and developed by the 

candidate for removing the angular trend from backscatter images to enable mosaicing 

of multi-swath backscatter data (Section 5.2). It was through this investigation that a 

new approach for visualising backscatter properties was developed. This new method 

puts all backscatter data collected from the survey into a 3-dimensional sparse matrix. 

Two dimensions of the matrix are geographic coordinates (x, y) and the third dimension 

is the incidence angle. Through interpolation in the spatial domain, an estimation of the 

backscatter strength collected at each grid node at each incidence angle is obtained. The 

resulting solid matrix is referred to as an angle cube. The method and considerations for 
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constructing angle cubes are discussed in more detail in Section 5.3. Section 5.4 then 

demonstrates the use of angle cubes in seafloor classification. The design of new pattern 

recognition tools was beyond the scope of this study, and therefore established 

classification methods were applied to the various backscatter properties derived from 

the angle cubes. However, it is likely that new techniques based on more sophisticated 

methods of classification will provide a more accurate classification and mapping of the 

seafloor. The implications of the results of this chapter to benthic habitat mapping are 

summarised at the end of the chapter in Section 5.5. Initial results related to this chapter 

have been presented by the author at various conferences (Gavrilov et al. 2005; Parnum, 

Gavrilov & Siwabessy 2007; Parnum et al. 2005; Parnum et al. 2006; Parnum, 

Siwabessy & Gavrilov 2004). 

 

5.2 Correcting backscatter images for angular dependence 

5.2.1 Methodology 

  There is a desire to produce MBS backscatter intensity images similar to other 

remotely sensed images, such as from satellite and aerial photography. This has lead to 

the development of various methods to correct multibeam backscatter for its dependence 

on incidence angle. Hence, during this study different methods were examined and 

developed to correct backscatter images for angular dependence. The aim of this section 

is to show the advantages and shortcomings of the different methods examined by the 

author.  

 

The first approach used in the course of this study (Parnum, Siwabessy & Gavrilov 

2004) was to correct backscatter images by predicting the angular backscatter trend 

using a Lambertian-based model similar to the one proposed by Hellequin et al. (2003). 

It was concluded that this model was not adequate for all habitat types, hence, it was not 

effective at correcting backscatter images derived from high-frequency MBS data 

(Parnum, Siwabessy & Gavrilov 2004). Moreover, as discussed in the previous chapter, 

there are as yet no adequate theoretical models of the backscatter angular dependence 

that are fully suitable for high frequencies of hundreds of kHz. Therefore, it was 
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concluded that an empirical correction (i.e. deriving the angular trend from the data) 

would be a more appropriate way to proceed.  

The effectiveness of the different incidence angle correction approaches examined is 

demonstrated using the backscatter strength data from Esperance line 309, which was 

used in the previous chapter. The backscatter strength data before correction is compared 

to the results of different corrections for angular dependence in Figure 5.1. An area of 

sand, which is indicated by a rectangular window in Figure 5.1, is used to examine the 

mean and standard deviation of backscatter data across track before and after the 

different corrections have been applied.  

 

5.2.2 Results of different angular corrections 

  Four empirical corrections for angular dependence of backscatter strength were 

examined, which applied correction for (removal of) the following values: 

(a) global or track-mean angular trend, similar to Beaudoin et al. (2002); 

(b) global track-mean and standard deviation angular trends, similar to Preston and 

Christney (2003); 

(c) local mean angular trend, which was described in Gavrilov et al. (2005); 

(d) local mean and standard deviation angular trends, which was described in Parnum et 

al. (2006). 

 

Correction (a) is similar to that proposed by Beaudoin et al. (2002), which obtains the 

mean backscatter strength angular trend over the whole data set, or in the example 

shown in Figure 5.1(b) - the track mean. The mean values at each angle are then 

removed from the data collected with each sonar ping. The algorithm can be expressed 

as follows:  

 

)30()()()( °+−= BSBSBSBScor θθθ      (5.1) 

 

where BScor(θ) is the corrected backscatter strength, BS(θ) are backscatter data before 

correction collected at angle θ, )(θBS  is the mean backscatter strength for all data 

collected at angle θ . )30( °BS  is the mean backscatter at 30º for the whole data set 
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which is added to the whole dataset to make the result more comparable with the other 

methods of correction. Any moderate angle of incidence between approximately 20-50º 

can be used as a reference point for backscatter level to characterize seafloor properties. 

In this study, a reference angle of 30º was chosen because 1) it is also half way across 

the Reson 8125’s swath and 2) backscatter level around this incidence angle is a robust 

characteristic for detecting change in seafloor properties, as demonstrated in Chapter 4.. 

The results of applying correction (a) are shown in Figure 5.1(b). Although there is a 

visible improvement in the data appearance in the outer beams (Figure 5.1(b)), it is 

evident that the mean backscatter strength at nadir is still dependent on incidence angle 

(Figure 5.2(a)). Moreover, the standard deviation of backscatter strength after correction 

(a) is identical to that of the original data (Figure 5.2(b)).  

 

Correction (b) is similar to that proposed by Preston and Christney (2003), which in 

addition to correcting for the global mean, as implemented in correction (a), also 

normalises the residual data by the global standard deviation measured for each angle. 

The algorithm can be expressed in the following form:  

 

)30(
)(

)()()( °+
−

= BS
BS

BSBSBScor
std θ

θθθ      (5.2) 

 

where )(θstdBS  is the standard deviation of backscatter strength data for all data 

collected at angle θ. Similarly to correction (a), the mean backscatter strength for all data 

at 30º is added to the whole dataset to provide comparable absolute values derived after 

all corrections. The results of correction (b) are shown in Figure 5.1(c). Correction (b) 

provides better results than correction (a), both in terms of the quality of the image (i.e. 

reduction of angular dependence artefacts) and the dependence of the track-mean and 

standard deviation of backscatter strength on incidence angle. However, there is still a 

noticeable local dependence on incidence angle in the backscatter images. The reason 

for this is that corrections (a) and (b) assume all habitat types found within the surveyed 

area to have the same angular dependence, which is usually not the case, as seen in 

Figure 4.5 from the previous chapter. 
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Figure 5.1: Backscatter strength (dB) from line Esperance 309 with the results of 

various corrections for angular dependence. 
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Figure 5.2: (a) Mean and (b) standard deviation of backscatter strength versus beam 

number for sand before and after various angular corrections. Plot (b) also shows the 

effects of gridding (blue lines) on the results of correction (c) as a function of across 

track distance. 
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To try to overcome the problem of corrections (a) and (b), the angular trend of a local 

mean value of backscatter strength was derived using a sliding spatial window of an 

appropriate length which could be adjusted to the scale of spatial changes in habitat 

types. This algorithm of correction (c) was described in detail in Gavrilov et al. (2005). 

Removing the local mean angular trend also filters out large-scale variations due to 

change, either sharp or gradual, in the habitats along the swath line. To recover this 

useful information and obtain absolute values of backscatter strength, the angularly 

equalized backscatter strength within each spatial window is to be increased by adding 

the window-mean level at a reference angle (a moderate angle of 30º was used for these 

examples). The algorithm is formulated by equation 5.3:  

 

)º30,,(),,(),,(),,( YXBSYXBSYXBSYXBScor +−= θθθ   (5.3) 

 

where ),,( θYXBS  is all the backscatter data within the sampling window (X, Y) at 

angle θ, ),,( θYXBS  is the mean backscatter strength within the sampling window (X, 

Y) at angle θ, and )º30,,( YXBS  is the mean backscatter strength measured within the 

sampling window at the reference angle of 30º. The results of this method are seen in 

Figure 5.1(d). 

 

Correction (c) removes the mean angular trend from homogenous areas quite well as 

seen in the mean backscatter strength over the sand area (Figure 5.2(a)). However, the 

variation of the corrected backscatter strength around the mean value is still dependent 

on the incidence angle, especially around the nadir. As discussed in the previous chapter, 

this is due to the relationship between the variance, parameters of the gamma 

distribution and the ratio of the insonification and footprint areas. This remaining 

angular dependence can be suppressed after gridding the resulting backscatter strength 

data, which is similar to low-pass spatial filtration and demonstrated in Figure 5.2(b). 

Data after correction (c) had been applied were gridded to 1, 2 and 5m and the median 

value in each cell was used. The standard deviation of the gridded backscatter strength 

across track for the area of sand is shown in Figure 5.2(b). The increase in grid size 
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suppresses the angular dependence. A grid size of 5m is large enough to completely 

suppress all remaining trends in data. However, gridding data at large cell size smooths 

backscatter images and hence fine features of the seafloor can disappear from 

backscatter images.  

 

The final approach considered, correction (d), was developed by the candiadate and was 

first presented in Parnum et al. (2006). It is similar to correction (c) as it uses a moving 

window to derive the mean angular trend and remove it from the data. In addition, 

correction (d) normalises the residuals by the standard deviation of backscatter strength 

within the sampling window measured at the same angle as the data being corrected. 

Then, like correction (c), the mean backscatter strength measured within the sampling 

window at 30º is added to the angularly equalized backscatter strength. This is shown by 

Equation (5.4): 

 

)º30,,(
),,(

),,(),,(),,( YXBS
YXBSstd

YXBSYXBSYXBScor +






 −
=

θ
θθθ   (5.4) 

 

where: ),,( θYXBSstd  is the standard deviation of backscatter collected at angle θ in the 

sampling window. Correction (d) removes all angular dependence of backscatter 

strength in the image (Figure 5.1(e) and 5.2). However, this algorithm has problems at 

boundaries between habitats.  
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5.3 Visualising backscatter properties: Angle cubes 

5.3.1 Methodology 

The aim of producing backscatter strength mosaics and maps is to represent the 

changes in backscatter properties in the spatial domain. When surveying the seafloor 

with a MBS system, data is collected from parallel overlapping tracks from different 

incidence angles. Ideally data from each point in the grid would have been sampled 

within a range of incidence angles, but this is logistically uneconomical. However, using 

spatial interpolation, the angular dependence of backscatter can be approximately 

reconstructed at each point of the grid, which can then be visualized as an angular cube 

and used for seafloor segmentation. This is the principle behind the method presented in 

this section, the result of which is referred to as an angle cube. An angle cube can be 

thought of as analogous to a hyperspectral cube (Richards & Jia 1999). 

 

The overall process of creating an angle cube is shown in Figure 5.3, using 4 MBS lines 

from north of Thomas Island in Esperance Bay, Western Australia. In the first step, all 

the MBS backscatter strength data from the survey area are represented as a function of 

3 dimensions: spatial coordinates X and Y, and the incidence angle, which produces a 3-

dimensional sparse array of data. The amount of overlap between survey lines and grid 

cell size will determine how sparse the array will be. A larger overlap between lines will 

produce a less sparse array and hence more accurate interpolation. Then data in each 

angle layer are interpolated into each node of the X-Y spatial grid, producing a 3-

dimensional matrix, or angle cube. Of the commonly used interpolation techniques, 

kriging (Burroughs & McDonnell 1998) was found to give satisfactory results; as the 

predicted values did not reveal any unrealistic values.  
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Figure 5.3: The production of an angle cube (2m x 2m x 1˚), and the resulting angle-average backscatter strength over 5-60° (dB) compared to 

the bathymetry (m). Data from a MBS survey north of Thomas Island in Esperance Bay, Western Australia. 
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The angle cubes can be used to extract and visualise spatial trends in the angular 

dependence properties for either the entire angular range or for different angular 

regions. The example in Figure 5.3 shows the angle-average backscatter strength 

over 5-60˚. The resulting backscatter image shows the spatial distribution of the 

seafloor habitats (sand, rhodolith and rock) not observed in the bathymetry alone. 

The mean backscatter image shown in Figure 5.3 can be compared with the results of 

using the methods described in the previous section. Corrections (a)-(d) were applied 

to the same dataset used in Figure 5.3, then data were gridded to 2m (Figure 5.4). 

Using the angle cube method, the resulting backscatter image (Figure 5.3) is free of 

the angular artefacts present in the original tracks. Whereas, the imperfections of the 

angular dependence corrections are noticeable, especially in corrections (a) and (b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: The results of applying four methods of angular correction to 4 lines of 

backscatter strength data (dB) with subsequent gridding to 2m. Data were collected 

north of Thomas Island in Esperance Bay, Western Australia.  
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Any properties derived from the angle cube will represent general trends and could 

possibly miss or smooth some small features due to spatial interpolation. However, 

benthic habitat mapping is usually concerned with changes in the seascape on a 

relatively large scale (~km2). Small features are better examined by direct 

observations, such as underwater video. To examine the appropriateness (or 

accuracy) of backscatter strength data represented by the angle cube, it is worth 

examining the effect of track spacing, grid size and interpolation algorithm on the 

results. This is the subject of the next section (5.3.2).   

 

5.3.2 Track spacing, grid size, and interpolation algorithm 

Increasing the overlap between track lines will improve results. This can be 

examined by removing tracks from a dataset and reprocessing as shown in Figure 

5.5. Figure 5.5 also highlights the performance of triangular interpolation compared 

with the kriging algorithm. The triangular-based linear interpolation used here 

suffered problems at the edges of this dataset; some of the predicted values were 

unreasonable or in some cases values could not be predicted. As the edges usually 

make up a small percentage of a survey area, triangulation could be used with the 

edges trimmed appropriately. For the datasets analysed in this study, the kriging 

algorithm provided more accurate interpolation and better representation of seafloor 

backscatter properties, although some other methods of spatial interpolation would 

also be worth examining for different datasets.  

 

The spacing of the spatial X-Y grid used to build the angle cube should reflect the 

resolution or density of the dataset. The minimum grid size is determined by various 

factors, including: the track spacing, vessel speed, depth, resolution of the system, 

etc. The distribution of the footprints over the survey areas is a useful starting point 

for estimating the minimum grid size. For instance, in the dataset shown in Figures 

5.3-5.5 the footprint size ranged from about 0.4 m to 1.3 m with a median of about 

0.7 m and the maximum separation between footprints was smaller than the 

maximum footprint size. Figure 5.6 shows the same dataset reprocessed for grid sizes 

1, 5 and 10 m all with an angle bin size of 1°. The histograms of the number of 

samples for the angle layer at 30° are shown to give an indication of the number of 

samples used to estimate the mean value. Cells with no samples present are excluded 

from the graphs. Although the image of 1 m resolution looks reasonable, in the 
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majority of the cells the mean value was calculated from only 1 sample. While 

increasing the grid size allows statistics to be calculated from a greater sample 

number, large grid sizes can blur boundaries and smooth features, as seen for the grid 

size of 10 m (Figure 5.6).  

 

Figure 5.5: The effect of track spacing (ship’s tracks shown in black) and 

interpolation algorithm on the angle-average backscatter strength over 5-60° (dB) 

for a 5 m grid size. 
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Figure 5.6: The effect of spatial grid size on the angle-average backscatter strength 

over 5-60° (dB) and the distribution of the number of samples in the 30° grid cells 

for (a) 1 m, (b) 5 m and (c) 10 m grid sizes (all for 1° angle bins). Cells with no 

values are omitted from the histograms. 
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In addition to the spatial grid size, selection of the angle bin size is also important. 

The resolution of the system will normally determine the minimum angle bin size, as 

it is irrational to choose an angle bin size less than the across-track beam width. So, a 

useful starting point is the maximum across-track beam width, e.g. for the Reson 

8125 this is 1˚. Increasing the angle bin size will eventually add more angular 

artefacts to the image (Figure 5.7). For most of the examples used in this study, 

either 1˚ or 2˚ angle bin sizes were used. 

 

 

 

Figure 5.7: The effect of angle bin size used to create an image of angle-average 

backscatter strength over 5-60° (dB): data gridded to a 2 m grid and angle bin size 

of (a) 5, (b) 10, (c) 15 and (d) 20 degrees. 
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To demonstrate the usefulness and adaptability of the angle cubes, two case studies 

are presented. The first demonstrates the different useful acoustic properties that can 

be visualised. In the second case study, the angle cube method is applied to a dataset 

obtained with a different MBS system.  

 

5.3.3 Case Study 1: Keppel Bay, Queensland 

 The usefulness of the angle cube method is further demonstrated on 

backscatter data collected from part of a survey of the Centre Banks region in Keppel 

Bay, Queensland. The MBS settings used and the map of track lines are shown in 

Appendix A. Using the methods described in Section 3.5, depth, seafloor coordinates 

X and Y, incidence angle and backscatter strength were derived for each beam and 

an angle cube was generated using a cell size of 2m x 2m x 1˚. The bathymetry of the 

study area is shown in Figure 5.8(a), which reveals the presence of large dunes. From 

the grab sample data there are three dominant sediment types: coarse sand that 

contains shell debris, muddy sand, and mud.  

 

From the bathymetry alone it is not evident how the different sediment types are 

spatially distributed. This can be done by examining the backscatter properties. 

Firstly by plotting a two-dimensional histogram of mean backscatter strength versus 

incidence angle (i.e. a density plot) for the angle cube data, three distinct backscatter 

curves are revealed (Figure 5.8(d)) corresponding to the three sediment types. To 

visualise backscatter properties of these areas, either the average backscatter strength 

(Figure 5.8(b)) or the (linear) slope of its angular dependence (Figure 5.8(c)) at the 

oblique incidence angles can be used. The addition of these backscatter images 

allows further understanding of the sediment transport occurring in this area. For 

instance, the low average and steep slope of the mean backscatter strength show the 

deposition of mud to the left of the image, mainly on the shallow bank, and the 

accumulation of coarser sediment to the right side of the sand waves. The average 

and slope of the mean backscatter strength are strongly correlated, which agrees with 

the physical model for backscatter from sediments of different grain size. 
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Figure 5.8: (a) Bathymetry, (b) average backscatter strength and (c) slope of its 

angular dependence with corresponding grab samples of sediment and (d) density 

plot of mean backscatter strength versus incidence angle using data collected in the 

Centre Banks area of Keppel Bay, Queensland.  
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5.3.4 Case Study 2: Marmion Marine Park, Western Australia 

  To test the robustness of the angle cube method as a means for backscatter 

analysis, a dataset obtained with a different MBS system was used. During 2004 and 

2005, part of Marmion Marine Park (Western Australia) was surveyed by Fugro 

Survey Pty. Ltd. using a variety of MBS systems including a Reson Seabat 8101 

(Kennedy 2005). The Reson 8101 system was not calibrated, so neither the system 

fixed gain was determined nor the relative sensitivity of the beams across track. 

Figure 5.9(a) shows an aerial photograph of the study area with the location of the 

track lines. Using the methods described in Chapter 3, seafloor coordinates X and Y, 

incidence angle and backscatter strength were derived for each beam and a angle 

cube was generated using a cell size of 2m x 2m x 2˚. The mean backscatter strength 

averaged over 5-80˚ is shown in Figure 5.9(b). Comparing the mean backscatter 

strength with the aerial photograph shows a good agreement with respect to the 

location of the rocky outcrops and bare sand as areas which are characterized by high 

and low backscatter strength respectively.  
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Figure 5.9: Marmion Marine Park, Western Australia survey: (a) aerial photo with 

MBS survey lines, (b) angle-average backscatter strength from 5 to 80˚ collected 

with Reson SeaBat 8101 (relative dB). UTM zone 50 south. 
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5.4 Seafloor classification using multibeam sonar data  

5.4.1 Methodology 

The overall classification methodology that was used in this study is shown in 

Figure 5.10. There are two main data products from a MBS survey: depth and 

backscatter strength. This study has focused on the development of utilising 

backscatter for seafloor classification. In this section, the angle cube method 

presented in the previous section will be used to classify the seafloor. Extracting key 

features from the angle cube can be done through either feature selection or feature 

reduction and is considered in the first part of this section. These key backscatter 

features combined with terrain feature(s) derived from the bathymetry data (where 

appropriate) can then be segmented through either unsupervised or supervised 

classification. In this section, these methods are described and applied to a case study 

from Esperance Bay, Western Australia.  

 

Figure 5.10: The process used in this study for seafloor classification using 

multibeam sonar data. 
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5.4.1.1 Extracting useful features of the backscatter strength versus incidence angle  

 Using the angle cube method gives an estimation of the mean backscatter 

strength at different angles of incidence for each X-Y location. Each of the angle 

layers in the angle cube can be considered as a feature. The majority of the datasets 

used for this study were collected with the Reson Seabat 8125 and were gridded 

within an angle range of 5-60º with 1º spacing, giving a total of 55 features. These 55 

features could be directly segmented into statistically similar groups or used to 

determine the best fit to those features derived for known homogeneous seafloor 

areas (i.e. curve fitting). However, classification of data in high-dimension space has 

various problems (Duda, Hart & Stork. 2001). Hence, it was decided to reduce the 

number of features to the key properties, which can be done through feature selection 

or feature reduction. 

 

Feature selection is the selection of individual features that characterise the 

backscatter properties of specific seafloor types in the most unambiguous way, e.g. 

the backscatter strength at 30º. Feature reduction is using a combination of features, 

e.g. the average value over 5-60º has already been shown in this chapter to be a 

useful property. Due to high correlation between the mean backscatter strength at 

different angles, feature reduction methods are recommended.  

 

Feature reduction can either be based on physical parameters, such as the average 

value, intercept (at normal incidence) and slope of the angular dependence 

determined from linear regression, etc. or performed through multivariate statistics. 

Specifically, using linear orthogonal transformations can remove the redundancy in 

the dataset. Here two linear orthogonal transformations are examined (Duda, Hart & 

Stork. 2001): 

• Principal component analysis (PCA) 

• Linear discriminate analysis (LDA) 

 

PCA transforms the data into a new coordinate system such that the greatest variance 

of the data is represented by the first coordinate (called the first principal 

component), the second greatest variance is along the second coordinate (called the 

second principal component), and so on. LDA finds the linear combinations of 

features that maximises the Fisher criterion (FC) (Equation 5.5) for each pair of 
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classes. Hence, the number of linear combinations will be equal to the number of 

classes minus 1. The resulting combinations may be used as a linear classifier or, 

more commonly, for dimensionality reduction before later used in classification. The 

main difference between the two methods is that PCA is an unsupervised method as 

it requires no knowledge about the dataset, whereas LDA requires data to be 

assigned classes to determine the linear combination that best separates pairs of 

classes. After reducing multiple features of the backscatter response at different 

angles to one or two feature combinations, those combinations can be used to 

segment the seafloor. Additionally, plotting the loading coefficients of each 

combination against the incidence angle can help determine the key acoustic 

properties.  

 

21

21

σσ
µµ

+
−

=FC         (5.5) 

 

where 1µ  and 1σ  are the mean and standard deviation of the feature for class 1, and 

2µ  and 2σ  are the mean and standard deviation of the feature for class 2. The FC 

was used to assess the discrimination ability of the different features or feature 

combinations in classification. A FC less than 2 means that values of this feature are 

not significantly different between the two classes being compared, whereas FC 

values greater than two indicate that the feature can be used to discriminate between 

the two classes. In this study, only backscatter feature combinations or derivatives 

were used, and are referred to simply as features. Ideally, the features being used for 

classification should not be correlated with each other. So the correlation coefficient 

was calculated for the set of features considered for classification.  

 

5.4.1.2 Unsupervised and supervised classification  

In supervised classification data from areas of known seafloor classes are 

used to derive statistics that represent those particular classes, and then either a 

probability or statistical distance to each class is calculated for all unknown seafloor 

areas. Unsupervised classification does not use any prior knowledge except the 

number of classes and segments data into statistically similar groups. The classify 

and k-means functions in the Matlab® Statistics Toolbox were used for supervised 
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and unsupervised classification respectively. The function classify fits a multivariate 

normal distribution function to the training data for each habitat class and then 

posterior probabilities of each class for each data point are calculated. The posterior 

probability is defined as the probability that the training group of habitat class j was 

the source of the ith sample observation, i.e. Pr(training group j|obs i). The highest 

posterior probability is used to assign the ith observation to a habitat class. The k-

means algorithm partitions the data into k clusters (i.e. number of classes determined 

by the user). The clusters are derived through an iterative partitioning that minimises 

the sum, over all clusters, of the within-cluster sums of point-to-cluster-centroid 

distances. The Mahalanobis distance measure (Duda, Hart & Stork. 2001) would 

have been preferred, but it was computationally too expensive, so the squared 

Euclidean distance (Duda, Hart & Stork. 2001) was used instead with feature data 

normalised by its standard deviation.  

 

After data has been classified, contextual editing is usually beneficial to improve the 

overall classification accuracy (Mumby et al. 1998). Contextual editing is where 

areas that are obviously misclassified are reclassified into what class they are more 

likely to be based on knowledge of the area or habitat type. As contextual editing can 

be subjective, it is often better to follow a general rule that is based on certain prior 

assumptions and applied to the whole dataset. For example, depth thresholds can be 

established for seagrass and other types of marine vegetation.   

 

Assessing the accuracy of classification of remotely sensed classes of objects is 

commonly done through a confusion matrix (Tso & Mather 2001). A confusion 

matrix is a table n x n, where n is the number of classes. The columns in a confusion 

matrix represent the test data and the rows represent the labels assigned by the 

classifier. The main diagonal entries of the confusion matrix represent the number of 

data given the same habitat class as the test and classifier, and these are considered to 

be correctly classified. The overall classification accuracy is calculated as the sum of 

the entries in the diagonal divided by the total number of samples (multiplied by 

100). Other indices that can be obtained from the confusion matrix include the 

producer and user accuracy. For each habitat class j, the producer’s accuracy is 

calculated by dividing the entry (j,j) by the sum of column j (multiplied by 100). The 

producer’s accuracy is the proportion of the pixels in the test data that are correctly 
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recognised by the classifier. The user’s accuracy is calculated by dividing the entry 

(j,j) by the sum of row j (multiplied by 100). The user’s accuracy is the proportion of 

pixels identified by the classifier as belonging to class j that agree with the test data. 

 

5.4.2 Case Study: Esperance Bay, Western Australia 

5.4.2.1 Study area and methods 

The methods discussed above are demonstrated on part of the dataset 

collected from the survey in Esperance Bay. The data comprise 12 transects between 

Woody and Thomas Islands. The details of the MBS settings and location of the 

track lines are given in Appendix A. Bathymetry and backscatter strength were 

calculated using the methods described in Chapter 3. An angle cube (as described in 

section 5.3) was produced using a grid size of 5m x 5m x 1º for the angle range 5 to 

60º as there was insufficient data less than 5º and greater than 60º. Grab samples 

reveal two habitats, sand and rhodolith. Bedrock, referred to as rock, off both 

Thomas Island (lower left) and Woody Island (right) can be clearly identified from 

the bathymetry (Figure 5.11).  

 

5.4.2.2 Analysis of backscatter features  

 The mean backscatter strength versus incidence angle is shown in two 

different ways in Figure 5.12. Figure 5.12(a) is a two-dimensional histogram, which 

identifies three distinct curves in the angular domain. The mean backscatter angular 

response for the three habitat classes, sand, rhodolith and rock, were extracted from 

the angle cube based on the locations of the grab samples (for sand and rhodolith) 

and terrain analysis of the bathymetry data for rock (Figure 5.11). It is evident from 

Figure 5.12 that these habitats constitute the three main acoustic classes in the 

dataset. Examination of the angular dependence curves shows they are well 

discriminated by their slope at angles from 5-40º and the mean value within 40-60 º. 

These backscatter features are shown with the bathymetry and terrain slope in Figure 

5.11. 
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Figure 5.11: (a) Bathymetry, (b) terrain slope (deg.), (c) angle-average backscatter 

strength over 40-60º (dB) and (d) slope of the backscatter angular dependence over 

5-40º (dB/deg.). Data comes from a MBS survey between Thomas and Woody Island 

in Esperance Bay, Western Australia. 
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Figure 5.12: Mean backscatter strength (dB) versus incidence angle (deg.) for: (a) 

all data in the angle cube shown as a density plot (colour represents number of data 

points), and (b) areas of sand, rhodolith and rock habitats (error bars represent +/- 

one standard deviation). Data were gathered from part of a MBS survey between 

Thomas and Woody Islands in Esperance Bay, Western Australia. 
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. 

Although the bathymetry (Figure 5.11(a)) and its slope (Figure 5.11(b)) can be used 

to identify areas of rock from the islands, neither parameter reflects the relative 

distributions of sand and rhodolith, whereas both the average backscatter strength 

(Figure 5.11 (c)) and slope of its angular dependence (Figure 5.11 (d)) clearly 

identify areas of sand, rhodolith and rock. As can be seen from the angular response 

curves (Figure 5.12), sand has the lowest average and steepest angular slope of mean 

backscatter strength and is readily distinguished from rhodolith and rock. The 

difference between rhodolith and rock is less clear, with rhodolith generally giving a 

higher average and flatter slope than rock. The mean value of the backscatter 

strength and slope of its angular dependence are correlated with each other. 

However, the mean backscatter strength provides a slightly better image, because the 

slope-based images are slightly noisier. This is an artefact of the interpolation 

process. It should be noted that the average and slope over all angles in the angle 

cube (5-60º) are just as useful as the selected angle ranges (Figure 5.13(a) and (b)).  

 

PCA and LDA were applied to the angular dependence curves obtained through 

interpolation in the angle cube. The first and second principal components (PCs) 

derived from PCA of the interpolated angular dependences are shown on the area 

maps in Figure 5.13(c) and (d) respectively. In LDA, a training dataset was used to 

determine the linear combinations of parameters that best separates the three classes. 

The two combinations (LDA1 and LDA2) were applied to the whole angle cube and 

the sum of these combinations is shown in Figure 5.13(e) and (f). The loading 

coefficients for each incidence angle of the angle cube from LDA and for the first 

two PCs from PCA are shown in Figure 5.14.  

 

 



 127  

 
Figure 5.13: Results of analysis of the angle cube produced from backscatter data 

obtained from a MBS survey between Thomas and Woody Islands in Esperance Bay, 

Western Australia. 

 

The 1st PC of PCA (Figure 5.13(c)) correlates strongly with the angle-average 

backscatter level (Table 5.1). The loading coefficients shown in Figure 5.14, indicate 

the 1st PC is equivalent to the angle-average backscatter level but with a slight 

weighting to the more oblique angles. The 1st PC represents about 90% of the 

variation. The loading coefficients versus incidence angle of the 2nd PC show it is the 

difference between the nadir and oblique angles (Figure 5.14). This would suggest 

the 2nd PC is similar to the slope of the mean angular response. This is supported by 
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examination of the images (Figure 5.13(e) and the correlation coefficient of 0.44 

(Table 5.1). The 2nd PC represents about 3% of the variance in the data.  

 
 

Figure 5.14: Loading coefficients from PCA and LDA of mean backscatter strength 

from MBS data collected between Thomas and Woody Islands in Esperance Bay, 

Western Australia. 

 

As there were three classes identified, LDA gives two combinations (Figure 5.14). 

For the mean backscatter strength, the first LDA combination (LDA1) correlates 

with the angle-average value (Table 5.1). However, the variation in the loading 

coefficient (Figure 5.14(a)) results in the image being a little noisier than that of the 

average value or the 1st PC (Figure 5.13(e)). The second combination derived from 

LDA seems to correlate mainly with the slope (Table 5.1). However, like the 1st 

combination, the variation in the 2nd combination of coefficients with incidence angle 

(Figure 5.14) makes the image appear noisier than that derived directly from the 

slope (Figure 5.13(f)). 
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5.4.2.3 Classification of features 

Table 5.2 shows the FC calculated using the training data for all the features 

shown in Figures 5.11 and 5.13. In terms of separating the seafloor classes for the 

whole survey area, the most robust feature for this dataset is the angle-average 

backscatter strength (BSmean). This can be either as the average over all angles 

(Figure 5.13(a)), a selected angle range (Figure 5.11(c)), or with specific loadings to 

certain angles (1st PC and LDA1). As sand was found to be relatively easily 

separated from rhodolith and rock, more consideration was given to maximising the 

separation between rock and rhodolith. Unsurprisingly the FC was greatest for the 

LDA linear combinations. However, the loading coefficients derived by LDA do not 

necessarily produce the most effective combination. This is because LDA is trying to 

optimise the separation of classes in the training data and can produce a combination 

that can be optimum for a specific dataset, but may not always be applicable to the 

whole survey area. This is apparent from the images resulting from LDA shown in 

Figure 5.13(e)-(f). Therefore, the mean backscatter strength averaged over 40-60° 

was chosen as the primary feature for classification. 

 

The correlation coefficient calculated for different pairs of backscatter and terrain 

features (Table 5.1) was also examined in order to determine additional features that 

could be used. There were only two features that were not highly correlated with the 

angle-average backscatter strength over 40-60°, the 2nd PC of PCA and the terrain 

slope. The 2nd PC provides very little discrimination ability between the different 

habitat classes (Table 5.2), whereas, the terrain slope provided some reasonable 

discrimination of the rock from the sand and rhodolith classes (Table 5.2). Therefore, 

the angle-average backscatter strength over 40-60° and the terrain slope were finally 

used to classify and map the seafloor assuming these three classes to comprise the 

main habitats in the surveyed area. These two parameters are shown in feature space 

by a two dimensional histogram shown as a density plot in Figure 5.15. The different 

clusters of the sand, rhodolith and rock classes can be clearly identified. 
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Table 5.1: Matrix of correlation coefficients for different features derived from data collected from a MBS survey between Thomas and Woody 

Islands collected from of Esperance Bay, Western Australia. Where: Average is angle-average backscatter strength (dB); Slope is the angular 

dependence of backscatter strength (dB/deg.); PC1 and PC2 are the first and second principal components; LDA1 and LDA2 are first a second 

features derived from LDA; and, terrain slope (deg.). 

 

Feature Average 5-60° Average 40-60° Slope 5-60° Slope 5-40° PC1 PC2 LDA1 LDA2 Terrain slope
Average 5-60° 1.00 0.99 0.85 0.89 -1.00 0.04 -0.99 0.73 -0.06

Average 40-60° 0.99 1.00 0.90 0.90 -1.00 -0.05 -0.99 0.77 -0.08
Slope 5-60° 0.85 0.90 1.00 0.91 -0.86 -0.44 -0.86 0.85 -0.14
Slope 5-40° 0.89 0.90 0.91 1.00 -0.90 -0.35 -0.90 0.81 -0.08

PC1 -1.00 -1.00 -0.86 -0.90 1.00 -0.01 0.99 -0.74 0.06
PC2 0.04 -0.05 -0.44 -0.35 -0.01 1.00 -0.01 -0.38 0.11

LDA1 -0.99 -0.99 -0.86 -0.90 0.99 -0.01 1.00 -0.72 0.06
LDA2 0.73 0.77 0.85 0.81 -0.74 -0.38 -0.72 1.00 -0.19

Terrain slope -0.06 -0.08 -0.14 -0.08 0.06 0.11 0.06 -0.19 1.00  
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Table 5.2: Fisher criterion for a variety of features derived from the angle cubes and 

the seafloor (terrain) slope from MBS data collected between Thomas and Woody 

Islands in Esperance Bay, Western Australia. See Table 5.1 for abbreviations. 

Highest values for each combination of habitat are shown in bold. 

Rhodolith-Sand Rock-Sand Rhodolith-Rock
Average 5-60° 33.0 20.9 8.0
Average 40-60° 41.8 19.6 11.6

Slope 5-60° 11.9 1.9 5.5
Slope 5-40° 21.3 4.3 3.4

PC1 36.1 22.0 10.1
PC2 0.4 0.1 2.3

LDA1 102.7 65.1 12.2
LDA2 17.4 0.0 13.8

Terrain slope 3.1 3.8 4.7

Fisher criterionFeature

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15: Two-dimensional histogram (colour displays number of samples) of the 

terrain slope (deg.) versus the angle-average backscatter strength over 40-60° (dB). 

Features derived from data collected from a MBS survey between Thomas and 

Woody Islands, Esperance Bay, Western Australia. 
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The results of supervised classification are shown in Figures 5.16-18. Figure 5.16 

shows the scatter plot of data in feature space, highlighting the different classes and 

location of training data. Figure 5.17 shows the posterior probabilities of the sand, 

rhodolith and rock classes derived from the supervised classification. Figure 5.18 

shows the hard classification maps resulting from supervised and unsupervised 

classification with and without contextual editing applied.  

 

Overall the MBS data collected in this area have been well segmented by both 

classification methods, but there is still some misclassification between the rhodolith 

and rock classes. Unfortunately, there was insufficient ground-truth information for a 

comprehensive accuracy assessment. In the absence of ground-truth information for 

the whole area, confusion matrices of classification have been derived using the 

training data (shown in Tables 5.3 and 5.4). Supervised and unsupervised 

classification for the training data had an overall accuracy of 100% and 90% 

respectively. For the supervised classification (Figure 5.18 (a)), there appeared to be 

some misclassification along the boundaries between sand and rhodolith which were 

being classed as rock. However, this occurs to a lesser extent in the results of the k-

means clustering. In contrast to supervised classification, the shallow water areas 

classified by the k-means clustering as rhodolith are more likely to be rock (Figure 

5.18(c)). These results can be improved through contextual editing, using the rules 

that 1) the areas classified as rock and being deeper than 30m are to be identified as 

rhodolith and 2) the areas shallower than 30m and classified as rhodolith are to be 

identified as rock (Figures 5.18(b) and (d)). However, this is not a universal approach 

because contextual editing is somewhat subjective and should be applied with 

caution. Nevertheless, results of both the supervised and unsupervised methods 

demonstrate reasonable capability of classification. 

 



 133  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: The terrain slope (deg.) versus the mean backscatter strength averaged 

over 40-60° (dB) for all data, segmented through (a) supervised and (b) 

unsupervised classification. Features derived from data collected from a MBS survey 

between Thomas and Woody Islands, Esperance Bay, Western Australia. 

 

(a)  

(b)  
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Figure 5.17: Posterior probabilities for (a) sand, (b) rock and (c) rhodolith classes 

determined through the multivariate probability density model derived from the 

training data. Based on features derived from data collected from a MBS survey 

between Thomas and Woody Islands, Esperance Bay, Western Australia. 
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Figure 5.18: Results of seafloor classification based on features derived from data 

collected from a MBS survey between Thomas and Woody Islands, Esperance Bay, 

Western Australia. Sand (blue), rhodolith (red) and rock (black) classes. Data 

segmented with (a) supervised classification; (b) same as (a) but after contextual 

editing, (c) k-means clustering and (d) same as (c) but after contextual editing. 
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Table 5.3: Confusion matrix for the training dataset from results of supervised 

classification. Based on data collected from a MBS survey between Thomas and 

Woody Islands, Esperance Bay, Western Australia. 

Sand Rhodolith Rock Total User Accuracy (%)
Sand 103 0 0 103 100

Rhodolith 0 441 0 441 100
Rock 0 0 180 180 100
Total 103 441 180 724

Producer 
accuracy (%) 100 100 100

Training data

C
la

ss
ifi

er

 
 

Table 5.4: Confusion matrix for training data from results of unsupervised 

classification. Based on data collected from a MBS survey between Thomas and 

Woody Islands, Esperance Bay, Western Australia. 

Sand Rhodolith Rock Total User Accuracy (%)
Sand 103 0 0 103 100

Rhodolith 0 180 0 180 100
Rock 0 75 366 441 83
Total 103 255 366 724

Producer 
accuracy (%) 100 71 100

Training data

C
la

ss
ifi

er
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5.5 Implications for benthic habitat mapping 

 This chapter has demonstrated new methods developed to analyse and 

visualise seafloor backscatter strength data collected by MBS systems and to use the 

backscatter data for seafloor classification. The process of benthic habitat assessment 

and mapping based on these methods of backscatter analysis involves the following 

steps: 

 

1. Constructing an angle cube for the mean backscatter strength; 

2. Using the angle cube to produce angular dependence curves for any known 

habitats and a two-dimensional histogram of all the data in the study area. 

This helps establish the likely number of acoustic classes and the key 

properties of the angular dependence curve. 

3. Visualisation of useful backscatter properties in the spatial domain using the 

interpolated data (i.e. the angle cube), e.g. the mean backscatter strength. 

4. Determination of useful classification features through Fisher’s criterion and 

correlation analysis. 

5. Segmentation of data through either supervised or unsupervised classification 

methods, with the application of contextual editing where appropriate. 

6. Visualisation of results in the feature space and as classification maps. 

7. Assessment of misclassification through a confusion matrix for survey areas 

where ground-truth data are available.  

 

In the next chapter, these methods will be applied to the MBS data collected from 

different seafloor environments in four case studies conducted around the Australian 

coast. 
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CHAPTER 6 

ANALYSIS OF MULTIBEAM SONAR DATA FROM DIFFERENT 
SEAFLOOR HABITATS 

6.1 Overview 

This chapter applies the methods developed in the previous chapters to four case 

studies from sites within the CWHM project. In addition to the analysis of backscatter 

data collected from different habitats, each site had specific questions to be addressed. 

For each case study, maps of acoustic backscatter properties are produced, which are 

independent of MBS system settings, environmental parameters and incidence angle. 

These maps are used to classify the seafloor into distinct habitat classes determined from 

ground-truth information. The overall aim of this chapter is to examine the ability and 

limitations of MBS in benthic habitat mapping studies, which is discussed at the end of 

the chapter. Some of the preliminary results have been presented by the author at 

conferences (Parnum, Gavrilov & Siwabessy 2007; Parnum et al. 2006). 

 

6.2 Data description 

The case studies include two temperate (Owen Anchorage and Esperance Bay) 

and two tropical (Moreton Bay and Morinda Shoal) sites, and cover a range of different 

benthic habitats (Table 6.1). The habitat classes were identified through either grab 

samples or towed video. This chapter starts with the simplest case of two classes (Owen 

Anchorage) before progressing to more complex examples, such as the environments 

found at Esperance Bay and Morinda Shoal.  

Table 6.1: The case studies, their benthic habitats and angle cube cell size used in 

Chapter 6. 

Angle cube
 dimensions

Owen Anchorage Seagrass (Temperate), Muddy sand 2m x 2m x 1º
Moreton Bay Seagrass (Tropical), Sand, Muddy sand 4m x 4m x 1º

Morinda Shoal Coral Reef, Seagrass (Tropical), Sand, 4m x 4m x 1º
Esperance Bay Rhodolith, Rock, Seagrass (Temperate), Sand 5m x 5m x 1º

Site Name Classes
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All MBS data was obtained using the Reson SeaBat 8125. Location of track lines and 

system settings can be found in Appendix A. The X-Y coordinates, incidence angle 

(deg.), depth (m) and backscatter strength (dB) were calculated using the methods 

outlined in Chapter 3. Angle cubes were generated for each site using the method 

outlined in Chapter 5. The cell sizes used to build the angle cubes were based on the 

density of MBS data collected and are listed in Table 6.1.  

 

Analysis and classification of MBS data follows the process outlined in Sections 5.4 and 

5.5. The slope of the angular dependence derived from linear regression, and angle-

average backscatter strength were examined for their effectiveness in classification. The 

terrain slope was used to aid in discriminating high relief, such as rock. The Fisher 

criterion (FC) (Equation 5.5) was used to evaluate the discrimination ability of features. 

The FC values greater than 2 were considered to be large enough to discriminate 

between habitats. The chosen features were classified using supervised classification 

based on linear discriminate analysis and implemented in the Matlab classify routine. 

The algorithm produces posterior probabilities of each class and a hard classification. 

For the data collected in Owen Anchorage, unsupervised classification using the k-

means clustering algorithm was also used for classification. Classification accuracy was 

assessed with the training areas using a confusion matrix. Contextual editing was 

employed to improve the accuracy of classification, where necessary. See Chapter 5 for 

more details on classification procedures. 

 

6.3 Owen Anchorage, Western Australia 

6.3.1 Site description 

Owen Anchorage is a shallow coastal region located between the Perth mainland 

and Garden Island. Quantifying the change in distribution of seagrass is an important 

environmental management issue. From aerial photography, Kendrick et al. (2002) 

determined that seagrass coverage in the Perth region had declined by 77% since 1967, 

citing algal blooms related to nutrient loading from industries as the main possible 

reason. The study found that benthic features were difficult to resolve from aerial 

photographs at sea depths greater than 10m. Therefore, this case study was used to test 
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the ability of MBS to distinguish seagrass meadows from the surrounding bare 

sediment, muddy sand, in water deeper than 10m. The bare sediment was concluded to 

be muddy sand from nearby sediment samples (Skene et al. 2005). 

 

6.3.2 Results 

The plots of mean backscatter strength versus incidence angle in Figure 6.1 

reveal three acoustically distinct classes of which the most abundant was identified as 

muddy sand. This class was characterised by significantly lower mean backscatter 

strength than the other, much sparser class identified as seagrass. The difference in the 

mean backscatter strength between muddy sand and seagrass was around 5 dB at 10º 

and 7 dB at 60º. The angle-average value and slope of the angular dependence are shown 

along with the bathymetry of the area in Figure 6.2. The angle-average backscatter 

strength over 5-60º (Figure 6.2(b)) clearly identifies seagrass patches on the bare 

sediment. This is also indicated by the FC values of 125 determined from the training 

data. The slope of the angular dependence of backscatter strength (Figure 6.2(c)) does 

not identify the seagrass patches as distinctively as the angle-average backscatter 

strength. For this parameter, the Fisher criterion for the training data was only 3. 

However, the slope of backscatter angular dependence adds some additional information 

regarding the presence of another acoustic class. This third acoustic class has a lower 

average and a steeper slope than both the muddy sand and seagrass classes. This can be 

seen more clearly in the density plot of the angle-average backscatter strength versus the 

slope of angular dependence (Figure 6.3). However, without further ground-truth 

information it is not possible to determine what type of seafloor this class represents. 
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Figure 6.1: Mean backscatter strength (dB) versus incidence angle (deg.): (a) two- 

dimensional histogram for all of the data; and (b) the mean value for sand and seagrass 

found in Owen Anchorage (error bars show the standard deviation measured at different 

angles). 
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Figure 6.2: (a) Bathymetry (m), (b) angle-average (dB) and (c) slope of angular 

dependence (dB/deg.) of backscatter strength for incidence angles from 5 to 60º. Data 

from a MBS survey in Owen Anchorage, Western Australia. Representative still images 

from the towed video transects are also shown.
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Figure 6.3: Two-dimension histogram of slope of the angular dependence (dB/deg.) 

versus angle-average backscatter strength (dB) over 5-60º incidence angles. Data from 

a MBS survey in Owen Anchorage, Western Australia. 

 

Classification of the survey area in Owen Anchorage was done in two ways. Firstly, 

supervised classification using the linear multivariate model was used to produce a map 

of the distribution of muddy sand and seagrass. Secondly, an unsupervised classification 

was performed using the k-means clustering routine to segment the seafloor into three 

regions that aimed to represent the muddy sand, seagrass and the unknown acoustic 

class. For comparison, both classification routines were performed using the angle-

average and slope of the backscatter strength. The results of classification are shown in 

feature space in Figure 6.4 and as maps in Figure 6.5. It is evident from Figure 6.4 that 

based on the training data the classification accuracy was 100%. Both the supervised and 

unsupervised classification maps clearly identify the seagrass patches (Figure 6.5). The 

unknown acoustic class is likely to be sediment of finer grain size or smoother surface 

than the muddy sand class, as it has a lower angle-average backscatter strength and 

steeper angular dependence. 
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Figure 6.4: Slope of angular dependence (dB/deg.) versus angle-average (dB) of the 

mean backscatter strength over 5-60º incidence angles: (a) sand (●) and seagrass (●) 

classes determined by supervised classification (sand (●) and seagrass (●) training data 

also shown); (b) sand, seagrass and an unknown acoustic class (●) determined by k-

means clustering. Data from a MBS survey in Owen Anchorage, Western Australia. 
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Figure 6.5: Results of seafloor classification from the MBS survey in Owen Anchorage, 

Western Australia: (a) seagrass and (b) sand class posterior probabilities; (c) class map 

derived from supervised classification using a linear multivariate normal density model; 

and (d) classification assigned by the k-means algorithm assuming the presence of an 

additional unknown class. 
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6.4 Moreton Bay, Queensland 

6.4.1 Site description 

 Moreton Bay is one of the largest estuarine bays in Australia and was designated 

a Marine Park in 1993. Part of the conservation interest includes the large populations of 

turtles and dugongs. These populations feed on the seagrass meadows found in the bay, 

particularly on the pastures located in the Moreton Banks region on the east of the bay 

(Turner et al. 2004). Previous studies have shown that these meadows do not usually 

grow in areas where the water depth is greater than 12m (Udy & Levy 2002). 

Monitoring the extent of the seagrass meadows is an important aspect of the 

management of the Marine Park. Similar to Owen Anchorage, the objective of the 

survey in Moreton Bay was to examine whether seagrass could be distinguished from 

the surrounding bare sediment. It should be noted, that the tropical seagrass found in the 

Moreton Bay is much shorter and sparser than the temperate seagrass seen in Owen 

Anchorage. Also, in Owen Anchorage the bare sediment surrounding the seagrass was 

predominantly muddy sand, whereas around the Moreton Banks site there are two 

distinctive types of sediment present: muddy sand and a coarser medium sand (Harris et 

al. 1992). In this study, these two sediment classes were distinguished by their 

appearance on the video and by the ability of sediments to adhere to the towed video 

camera when it was dug into the seafloor. Sediment was classified as (cohesive) muddy 

sand, if it adhered to the video camera, and as (uncohesive) sand, if it did not adhere. 

The sand class also contained some intrusions of large particle size. The effect of an 

additional class of a coarser sediment (i.e. sand) on the effectiveness of distinguishing 

seagrass was also a focus of this case study.  

 

6.4.2 Results 

 The backscatter strength versus incidence angle for the whole dataset (as a two-

dimensional histogram represented by a density plot) and the angular dependence of the 

mean values for the different habitat classes are shown on the top and bottom panels of 

Figure 6.6 respectively. The sand class exhibits the strongest backscatter response, but it 

is only slightly higher than that from seagrass, which in turn is slightly higher than 

backscatter from the muddy sand sediment. The angle-average and slope of backscatter 
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strength within incidence angles from 5 to 60º were considered to be the most 

informative parameters. These parameters are shown alongside the bathymetry and 

towed video classification in Figure 6.7. Representative fragments of the along track 

video recordings with the respective values of depth and the angle-average and slope of 

the mean backscatter strength are shown in Figure 6.8. The transitions in the video 

classification between muddy sand and sand and seagrass correlate well with changes in 

the angle-average backscatter strength. The correlation is less strong with the slope of 

backscatter strength versus incidence angle. Muddy sand has the steepest slope among 

those classes. There are notable fluctuations in the value of the slope of backscatter 

angular dependence at transitions between habitats. This was likely a result of the 

interpolation process when creating the angle cube. 

 

The FC values for the angle-average and angular slope of mean backscatter strength are 

shown in Table 6.2. The angle-average backscatter strength is the most robust parameter 

to discriminate between the different habitats. Although not as effective as the angle-

average backscatter strength, the slope of the backscatter strength does discriminate the 

seagrass from the muddy sand (Figure 6.9(a)). As these two parameters were not 

correlated (correlation coefficient = 0.6), they were both used in supervised 

classification. The results of supervised classification are shown as separate clusters in 

feature space in Figure 6.9(b), as posterior probabilities maps for the sand, seagrass and 

muddy sand classes in Figure 6.10, and as class maps in Figure 6.11.  
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Figure 6.6: Mean backscatter strength (dB) versus incidence angle (deg.): (a) a two-

dimensional histogram for all of the data and (b) for muddy sand, sand and seagrass 

found in Moreton Bay, Queensland (error bars show the standard deviation measured at 

different angles). 
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Figure 6.7: (a) Bathymetry (m), (b) angle-average (dB) and (c) slope of the angular 

dependence (dB/deg.) of backscatter strength over 5-60º from the MBS survey in 

Moreton Bay, Queensland. Circles represent seafloor classification based on towed 

video: muddy sand (●), sand (●) and seagrass (o).  

 

 

(a) (b) (c) 



 150 

 

 
 

Figure 6.8: Seafloor acoustic features from MBS data along towed video tracks: (a) 

Depth (m); (b) angle-average (dB) and the (c) slope of angular dependence (dB/deg.) of 

backscatter strength (dB) over 5-60º from the MBS survey in Moreton Bay, Queensland. 

Video classification shown: muddy sand (●), sand (●) and seagrass (●). Still images 

from the underwater video labelled with record number and class assigned. 
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Figure 6.9: Feature space of the slope of angular dependence (dB/deg.) versus angle-

average backscatter strength (dB): (a) two dimensional histogram and (b) scatter plot 

segmented by supervised classification into sand, seagrass and muddy sand classes with 

the training areas shown by darker dots. Data from a MBS survey in Moreton Bay, 

Queensland. 
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Figure 6.10: The posterior probabilities of the (a) sand, (b) seagrass and (c) muddy 

sand classes. Data from a MBS survey in Moreton Bay, Queensland. 
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Figure 6.11: The results of supervised classification without (a) and with (b) contextual 

editing. Data from a MBS survey in Moreton Bay, Queensland. 
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Table 6.2: FC values for different backscatter parameters of the seagrass, muddy sand 

and sand classes. Data from the MBS survey in Moreton Bay, Queensland.  

Seagrass Coarse sand Muddy sand
Muddy sand Seagrass Coarse sand

Average 5-60 ° 26.0 16.7 75.4
Slope 5-60° 5.9 0.9 1.6

Feature
Fisher Criterion

 
 

The confusion matrix for the training data is given in Table 6.3. The overall 

classification accuracy was 99.4%. However, this high accuracy obtained for the training 

dataset could be misleading when classification is applied to the whole area. This is 

because some areas classified as seagrass were located in water deeper than expected for 

significant seagrass coverage in Moreton Bay, from observations in this survey and 

other studies (Udy & Levy 2002) (i.e. >15 m). This misclassification could have been 

caused by the similarity in the mean backscatter strength of the sand and seagrass 

classes. The distribution of depth values within the area classified as the seagrass class 

reveals three somewhat distinct depth ranges for this class (Figure 6.12). The k-means 

algorithm was used to subjectively segment the seagrass class into these three 

subclasses based on depth. The three subclasses discriminated by the different colours 

on the histogram in Figure 6.12 are indicated in the same colours in a modified class 

map in Figure 6.11(b). The first subclass of seagrass (green) corresponds to depths less 

than 16 m. From the video classification this class appears to represent the dense 

seagrass meadows that were found all along the edge of the survey area. The second 

subclass represents depths from 16m to 24 m (cyan) which, according to the towed 

video, are most likely areas of sand as no seagrass was observed. The third subclass 

classified as seagrass lies below 24 m (yellow). There is no video coverage of this area, 

however seagrass is not considered likely to be present, as previous studies have shown 

that seagrasses at a depth of 12 m in Moreton Bay are close to their minimum light 

requirements (Udy & Levy 2002). As the subclasses represent different depth bands of 

the seagrass class, further ground-truthing is required to establish if these subclasses 

correspond to distinctive habitats and why such subclasses had a backscatter response 

similar to seagrass. 



 155  

Table 6.3: Confusion matrix for the coarse sand, seagrass and muddy sand classes. Data 

from a MBS survey in Moreton Bay, Queensland. 

Coarse sand Seagrass Muddy sand Total User Accuracy (%)
Coarse sand 462 0 0 462 100
Seagrass 6 206 0 212 97
Muddy sand 0 0 389 389 100
Total 468 206 389 1063
Producer 
accuracy (%) 99 100 100

Training data

C
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Figure 6.12: Distribution of depth values for the seagrass class segmented into 3 

subclasses as shown in Figure 6.11(b). Data from a MBS survey in Moreton Bay, 

Queensland. 

 

6.5 Esperance Bay, Western Australia 

6.5.1 Site description 

Esperance Bay is located off the south-east coastal town of Esperance in Western 

Australia. Esperance Bay is a temperate, high wave energy environment. The area used 

for this case study is a section of the MBS survey east of Woody Island (see Appendix A 

for details). Grab samples and towed video used to ground-truth acoustic measurements, 

identified four main seafloor types in this area: sand, seagrass, rhodolith and rock. 
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Seagrass in Esperance Bay is of typical temperate morphology forming dense covers 

with long shoots. Rhodolith is a calcareous red algae that range from a few mm to a few 

cm in diameter as described in Section 4.2. The high profile rock bed was found 

predominately in the area of the shoal called ‘Time Rock’. The focus of this case study 

was to assess the ability of MBS measurements to discriminate two different types of 

marine vegetation: rhodolith and seagrass. 

 

6.5.2 Results 

The backscatter strength versus incidence angle for the dataset (two-dimensional 

histogram) and the angular dependence curves for sand, seagrass, rock and rhodolith 

from the training areas identified by grab samples and underwater video are shown in 

Figure 6.13. The mean level of backscatter strength was lowest for sand. The backscatter 

strength from seagrass was 3-4dB higher than from sand at the oblique angles of 20-

60°. The highest backscatter strength came from rock and rhodolith, with the latter being 

on average slightly higher. The angle-average and slope of the angular dependence of 

the backscatter strength over 5-60º are shown alongside the bathymetry and terrain slope 

in Figure 6.14. The terrain slope clearly identifies areas of rock, but it does not 

characterise other habitats, whereas the backscatter parameters identify the spatial 

distributions of all habitats in the survey area.  

 

The FC values for the different parameters for different pairs of habitats are shown in 

Table 6.4. The angle-average backscatter strength has the highest FC values for each 

compared habitat pair (Table 6.4). As the two backscatter parameters were highly 

correlated (Table 6.5), only the angle-average backscatter strength was used for 

classification with the addition of terrain slope to aid the separation of rock from the 

other habitats. The different acoustic classes are seen in a two-dimensional histogram of 

the angle-average backscatter strength versus terrain slope (Figure 6.15(a)). 
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Figure 6.13: Mean backscatter strength (dB) versus incidence angle (deg.): (a) a two 

dimensional histogram for all of the data and (b) mean value from sand, seagrass, 

rhodolith and rock from east of Woody Island in Esperance Bay, Western Australia 

(error bars show the standard deviation measured at different angles). 
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Figure 6.14: (a) Bathymetry (m), (b) terrain slope (deg.), (c) angle-average (dB) and (d) 

slope of the angular dependence (dB/deg.) of backscatter strength over 5-60º for MBS 

data collected east of Woody Island in Esperance Bay, Western Australia. Grab sample 

data and underwater video images of: rhodolith (●), sand (●), seagrass (●) and rock (●) 

are also shown. 
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Figure 6.15: Terrain slope (deg.) versus the angle-average backscatter scatter (dB): (a) 

two dimensional histogram and (b) scatter plot segmented by supervised classification 

into sand, seagrass, rhodolith and rock classes. Data from a MBS survey east of Woody 

Island in Esperance Bay, Western Australia. 
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The results of supervised classification are shown in feature space in Figures 6.15(b), 

and as posterior probabilities and class maps in Figure 6.16. The training dataset was 

used to calculate a confusion matrix shown in Table 6.6. An overall accuracy of 

supervised classification for the training set was 99%. Misclassification of the training 

data occurred with some areas of rock being classified as either rhodolith or seagrass. 

Moreover, almost all the areas around the boundary between rhodolith and sand were 

classified as seagrass. Although it is possible for there to be seagrass in some of the 

transition areas, it is more likely to be a sparse cover of rhodolith. 

Table 6.4: The FC calculated for different pairs of habitat classes and compared for 

different backscatter properties and terrain slope. The highest value for each habitat 

pair is shown in bold. Data from a MBS survey east of Woody Island in Esperance Bay, 

Western Australia. 

Seagrass Seagrass Rhodolith Seagrass Rock Rhodolith
Rhodolith Sand Sand Rock Sand Rock

Average 27.1 35.8 197.8 9.5 99.6 3.4
Slope 4.9 11.9 32.1 0.6 2.8 5.0

Terrain slope 0.1 0.4 0.6 3.8 4.0 3.6

Fisher criterion
Feature

Table 6.5: The correlation coefficient for the backscatter parameters and terrain slope. 

Data from a MBS survey east of Woody Island in Esperance Bay, Western Australia. 

Average Slope Terrain slope
Average 1 0.85 0.17

Slope 0.85 1 -0.03
Terrain slope 0.17 -0.03 1  

Table 6.6: Confusion matrix for the training data from a MBS survey east of Woody 

Island in Esperance Bay, Western Australia. 

Sand Seagrass Rock Rhodoltih Total User Accuracy (%)
Sand 4941 0 0 0 4941 100
Seagrass 0 651 121 0 772 84.3
Rock 0 0 2314 0 2314 100.0
Rhodoltih 0 0 66 9174 9240 99.3
Total 4941 651 2501 9174 17267
Producer 
Accuracy (%) 100 100 92.5 100

Training data
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Figure 6.16: Results of supervised classification of MBS data collected east of Woody 

Island in Esperance Bay, Western Australia: posterior probabilities of (a) sand, (b) 

seagrass, (c) rock and (d) rhodolith classes, and resulting class map without (e) and 

with (f) contextual editing of the seagrass class using the k-means algorithm. 
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 Contextual editing can be employed to amend these two problems of misclassification. 

As rhodolith usually forms on sand and not rock (Perry 2005), areas classified as 

rhodolith when surrounded by rock were reclassified as rock. As depth is an important 

determinant to the distribution of seagrass, this was used to apply contextual editing to 

the classification and the result is shown in Figure 6.16(f). Figure 6.17 shows the depth 

distribution of the seagrass class, which reveals two distinct subclasses. Similarly to the 

previous section (6.4), the k-means method was used to segment the seagrass class into 

two subclasses based on the difference in depth. The subclass of lower depth distribution 

(<37m) was assigned to the actual seagrass class as it was identified by the grab 

samples, while the subclass of larger depth (>37m) was assigned as ”other”. This ”other” 

class is likely to be a low-cover of rhodolith, but without ground-truthing by either video 

observation or grab samples this cannot be verified. 

 

 

Figure 6.17: Distribution of depth values of the seagrass class east of Woody Island in 

Esperance Bay. The two colours represent subclasses segmented by depth using k-means 

clustering. The spatial distribution of these subclasses can be seen in Figure 6.16(f). 
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6.6 Morinda Shoal, Queensland 

6.6.1 Site description 

The reef-capped Morinda Shoal is located north-east of Cape Bowling Green 

(Queensland) and is situated in the central section of the Great Barrier Reef Marine Park. 

A video survey of the area found hard standing coral reef and coral rubble, tropical 

seagrass and bare sediment. Although there were distinct homogeneous areas, there 

were also complex heterogeneous areas. In addition to mapping the distribution of 

seagrass, distinguishing hard standing coral reef from coral rubble was also an objective 

of this case study, which would be useful in monitoring the health of reef ecosystems as 

well as understanding the physical processes occurring.  

 

6.6.2 Results  

An analysis of the towed video recordings in the survey area identified six 

distinct benthic classes:  

1. Coral reef – a mixture of hard standing coral features of morphologically 

different structure with some coral rubble; 

2. Coral rubble - coral rubble and debris typically covered in algae growth; 

3. Dense seagrass – greater than 50% seagrass cover from the video analysis; 

4. Sparse seagrass – less than 50% seagrass cover from the video analysis; 

5. Mixed sparse coral and seagrass – a complex and heterogeneous area which 

is a mixture of sparse seagrass and sparse coral cover; 

6. Bare sediment – Sand, predominately flat, occasionally containing coral 

material or patches of seagrass or algae; 

 

The backscatter strength versus incidence angle is shown in Figure 6.18 for the entire 

dataset as a two-dimensional histogram (Figure 6.18(a)) and as the mean angular 

dependence curves for each particular habitat identified by the video (Figure 6.18(b)). 

The histogram shows classes containing coral to be the most abundant. The mean 

angular dependence curves indicated that the angle-average backscatter strength was the 

most effective backscatter property to discriminate between the different habitats.  
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Figure 6.18: Mean backscatter strength (dB) versus incidence angle (deg.): (a) a two-

dimensional histogram for all of the data and (b) the mean angular dependence with 

standard deviation (error bars) for different habitats. Data from a MBS survey of 

Morinda Shoal, Queensland. 
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The depth, terrain slope, angle-average backscatter strength and slope of its angular 

dependence were mapped for the whole survey area, and are shown with the classified 

video transects in Figure 6.19. Values of these features are also shown along the two 

video transects with classified habitats in Figure 6.20 and 6.21. Although areas of high 

relief are clearly seen in the bathymetry and terrain slope, the transitions between areas 

of coral (reef and rubble), seagrass and bare sand are more distinct in the angle-average 

backscatter strength. However, subclasses within those groups were difficult to 

distinguish by using any single feature shown in Figures 6.20 and 6.21. For instance, 

there was little difference in the backscatter parameters between coral reef and coral 

rubble. This is also indicated by the FC values as no feature was shown to discriminate 

between coral reef and coral rubble and between dense seagrass and sparse seagrass 

(Table 6.7). Therefore, it was decided to combine those classes for the purposes of 

acoustic classification. This gives 4 acoustic classes: coral, seagrass, mixed coral and 

seagrass, and sand. As relief is an important physical attribute of a coral reef system, it 

was decided to subdivide the coral class into high and low relief classes using the terrain 

slope. Based on the data shown in Figures 6.20 and 6.21, a terrain slope of 20º was 

selected as the boundary between high and low relief classes. This gave 5 acoustic 

classes: 

1. High relief coral –this is coral material with a slope higher than 20º, which 

represents high relief coral features, such as bommies, reef slope, etc; 

2. Low relief coral – this is coral material with a slope lower than 20º, which 

likely represents dense coral cover, but may include rubble;  

3. Seagrass – areas of seagrass dense enough to acoustically contrast from bare 

sediment; 

4. Mixed coral and seagrass; 

5. Sand – bare sediment. 

 

These acoustic classes can be identified as clusters in a density plot of the terrain slope 

versus the angle-average backscatter strength (Figure 6.22).  
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Figure 6.19: (a) Bathymetry (m), (b) terrain slope (deg.), (c) angle-average (dB) and (d) 

slope of the angular dependence (dB/deg.) of backscatter strength with video tracks 

colour-coded according to the following classification: Coral Reef (●), Coral Rubble 

(●), Seagrass – dense (●), Seagrass – sparse (●), Sand (●) and Mixed coral and 

seagrass (●). Data from a MBS survey of Morinda Shoal, Queensland. 
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Figure 6.20: Seafloor acoustic features from MBS data along the northern Morinda 

Shoal towed underwater video: (a) Depth (m), (b) terrain slope (deg.), (c) angle-average 

(dB) and (d) slope of angular dependence (dB/deg.) of backscatter strength. Video 

classification: Coral Reef (●) and Mixed coral and seagrass (●).  
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Figure 6.21: Seafloor acoustic features from MBS data along the southern Morinda 

Shoal towed underwater video: (a) Depth (m), (b) terrain slope (deg.), (c) angle-average 

(dB) and (d) slope of angular dependence (dB/deg.) of backscatter strength. Video 

classification: Coral Reef (●), Coral Rubble (●), Seagrass – dense (●), Seagrass – 

sparse (●), Sand (●).  
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Table 6.7: Fisher criterion values for the different acoustic properties of the habitat 

classes identified by analysis of video recordings. Data collected from a MBS survey of 

Morinda Shoal, Queensland. 

Average 5-60 ° Slope 5-60° Terrain slope
Dense Seagrass Coral Reef 10.7 3.0 0.7
Dense Seagrass Coral Rubble 14.4 0.7 1.2
Dense Seagrass Sand 8.1 0.3 0.6
Dense Seagrass Coral & seagrass 3.9 1.1 0.1
Dense Seagrass Sparse seagrass 1.4 0.4 0.8

Coral Reef Coral Rubble 0.1 1.0 0.2
Coral Reef Sand 54.2 4.7 1.1
Coral Reef Coral & seagrass 3.5 0.7 0.3
Coral Reef Sparse seagrass 73.7 1.7 3.1

Coral Rubble Sand 6.4 0.0 0.0
Coral Rubble Coral & seagrass 60.4 0.1 3.5
Coral Rubble Sparse seagrass 37.9 2.5 0.5

Sand Coral & seagrass 6.2 1.5 0.0
Coral & seagrass Sparse seagrass 22.3 0.4 0.5

Habitat comparison

 
 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 6.22: (a) Two- dimensional histogram of terrain slope (deg.) versus angle-

average backscatter strength over 5-60º (dB). Data collected from a MBS survey of 

Morinda Shoal, Queensland. 
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For classification purposes the terrain slope, angle-average backscatter strength and 

slope of backscatter angular dependence were used to segment the survey area into areas 

of: coral, seagrass, mixed coral and seagrass, and sand. The features used for 

classification were not significantly correlated (Table 6.8). The classification results 

obtained for the training areas are plotted in feature space in Figure 6.23. The posterior 

probability maps for the different classes are shown in Figure 6.24. These probability 

maps were used to produce the four class map shown in Figure 6.25(a). Using the terrain 

slope feature to subdivide the coral class resulted in the 5-class map shown in Figure 

6.25(b). The classification accuracy was assessed using the training dataset for the four 

main classes: coral, seagrass, mixed coral and seagrass and sand. The confusion matrix 

of classification is shown in Table 6.9. The overall classification accuracy was 93%. 

This is a good result considering the level of complexity of the survey area. The main 

misclassification rate occurred with the mixture class, which was unsurprising as this 

class represented a heterogeneous area combining features of both the coral and 

seagrass classes. 

 

Table 6.8: Correlation matrix of the different properties derived from the MBS data 

collected over Morinda Shoal, Queensland. 

Average 5-60 ° Slope 5-60° Terrain slope
Average 5-60 ° 1.00 0.63 0.24

Slope 5-60° 0.63 1.00 0.17
Terrain slope 0.24 0.17 1.00  
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Figure 6.23: Plot of slope of angular dependence of backscatter strength (dB/deg.) 

versus angle-average backscatter strength (dB) (both over 5-60º) versus terrain slope 

(deg.) for training data used for supervised classification of Morinda Shoal, 

Queensland. Coral (●), coral and seagrass (●), seagrass (●) and sand (●).  

 

Table 6.9: Confusion matrix for the training datasets from the classification of acoustic 

data collected from a MBS survey of Morinda Shoal, Queensland. 

 

Sand Seagrass Coral Mixture Total User Accuracy
(%)

Sand 128 4 0 0 132 97
Seagrass 0 808 0 37 845 96

Coral 0 0 1577 79 1656 95
Mixture 0 57 83 956 1096 87

Total 128 869 1660 1072 3729

Producer 
accuracy (%) 100 93 95 89
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Figure 6.24: Posterior probabilities for the four acoustic classes Morinda Shoal: (a) 

Sand, (b) Seagrass (c) Coral and (d) Mixed coral and seagrass.  
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Figure 6.25: Class maps of Morinda Shoal using (a) supervised classification and (b) 

the addition of two subclasses determined by terrain slope.  
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6.7 Implications for benthic habitat mapping 

 The case studies shown in this chapter have highlighted both the potential and 

limitations of using MBS in benthic habitat mapping. Also, these case studies have 

tested the algorithms and methods developed in the previous chapters. It is evident from 

all these examples that the angle cube method developed in this study is capable of 

producing backscatter images of the seafloor which distinguish different habitats, mirror 

their spatial distribution on the seafloor and are free of artefacts due to the specificity of 

MBS measurements. From the case studies the following can be concluded:  

• Angle-average backscatter strength derived from the angle cube is a robust 

discriminator between different benthic habitats. 

• Slope of the angular dependence of backscatter strength provides additional 

information that may be useful for distinguishing certain habitats which are 

characterised by similar values of the angle-average backscatter strength. However, 

the slope of angular dependence is a much noisier parameter than the angle-average 

backscatter strength 

• Features generated from the angle cubes can suffer from boundary effects, 

especially over highly heterogeneous areas. For the angle-average feature this 

generally results in a smoothing of transition areas, whereas, for the slope of 

backscatter angular dependence this can result in extreme values. Future work could 

use this information to discriminate habitat boundaries.  

• Further understanding of the correlation of these acoustic properties with the 

physical and morphological properties of the seafloor is needed. 

• Increasing the number of classes and complexity of the seafloor environment 

decreases the accuracy of classification of certain, less distinct classes.  

 

Figure 6.26 shows the relationship between the slope of angular dependence and the 

angle-average backscatter strength measured within some of the selected training areas 

representing different habitats from the different case studies. An analysis of such 

relationships between different backscatter characteristics is useful for identifying the 

similarity and difference of habitats acoustically observed in different regions. For 

instance, in Moreton Bay the class labelled sand has a much higher angle-average 
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backscatter strength than other soft sediment classes and is similar to the values obtained 

from rock (in Esperance Bay) and coral (in Morinda Shoal). This could be due to a 

number of reasons, such as hard intrusions of larger particle size or gas content present 

in the sediment. These hard intrusions could be of different origin, including shell 

debris, eroded bedrock or exposed bedrock underlying a thin layer of sand. Further 

investigation of habitats in such areas by means of direct probes would be necessary to 

establish the actual reasons for anomalous backscatter. 

 

From the results of this chapter and those illustrated by Figure 6.26 in particular, it 

appears that there are principally four acoustic classes that can be distinguished through 

an analysis of MBS data: classes of high (e.g. rough and hard substrate), medium (e.g. 

seagrass) and low (e.g. bare sediment) backscatter levels and a high-relief class (usually 

high backscatter strength), which can be additionally separated using terrain analysis. 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.26: Slope of angular dependence 

of backscatter strength (dB/deg.) versus 

angle-average backscatter strength (dB) 

over 5-60º for selected training areas used 

in Chapter 6.176 
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CHAPTER 7 

DISCUSSION 

7.1 Overview 
The aim of this chapter is to discuss the results and findings of this study in 

relation to the original objectives. It ends with a summary of recommendations for future 

work and conclusions related to benthic habitat mapping using MBS systems. 

 

7.2 Achievements of the study 
The primary aim of this study was to examine and develop new methodologies 

for using MBS backscatter data for benthic habitat mapping. This aim was broken down 

into seven objectives, which were outlined in Chapter 1. The results achieved towards 

fulfilling these objectives are discussed below.  

 
1. Collection of MBS backscatter data from a variety of shallow water habitats around 

the Australian coast.  

This objective was achieved through the fieldwork program set out by the 

Coastal CRC (Penrose 2007). Data from six sites from around the Australian coastal 

zone were primarily used in this study. The results are summarised in Figure 4.5 in the 

form of the measured backscatter strength of the seafloor versus incidence angle for a 

wide variety of benthic habitats found around the Australian coast. Benthic habitats 

surveyed in this study included: seagrass meadows, rhodolith beds, coral reef, rock, 

gravel, sand, muddy sand, and mixtures of those habitats. Habitats that were not 

included in this study that might be of interest for future work are sponge gardens, fine 

sediments, such as clay and silt, and bedrock with kelp compared to bare bedrock. Also, 

comparing backscatter characteristics collected from the same set of habitats but with 

different MBS systems would be of interest. 

 

2. Development of methods for processing backscatter data collected with high-

frequency MBS systems.  

Methods for processing MBS backscatter data developed for the CWHM project 

by the CMST are detailed in Section 3.5 of Chapter 3. The CMST algorithm calculates 
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the seafloor backscatter strength derived from the peak and integral intensity of 

backscattered signals for each beam. The algorithm was shown to adequately correct for 

changes in transmit power, pulse length and receive gain, and provide seafloor 

backscatter strength measurements independent of range and footprint and insonification 

areas. The CMST algorithm has been implemented into a standalone PC program 

available from the CMST (Gavrilov, Siwabessy & Parnum 2005). Other studies, such as 

those by Beaudoin et al. (2002) and Augustin et al. (2005), have used a sidescan like 

approach to maximise the resolution of backscatter imagery produced by MBS system. 

This can provide a better spatial resolution and more information about seafloor 

properties when the insonification area is significantly smaller than the footprint. 

However, implementation of such an approach is not trivial because it requires adequate 

correction for the beam pattern. The angle cube method developed by the candidate for 

producing images of backscatter properties free from angular dependence artefacts is 

discussed under Objective 6. 

 

3. Examination of system settings effects on collection of MBS backscatter data.  

Although the CMST algorithm used to measure seafloor backscatter strength was 

shown to adequately correct for power, gain and, to some extent, the transmit pulse 

length, there were still some system effects found to persist. Three such system effects 

were considered in Section 3.6: signal saturation (truncation), non-uniformity of across-

track beam patterns and the effect of pulse duration. Signal saturation can be easily 

prevented through selecting the appropriate power and gain settings. The across-track 

relative beam sensitivity was assessed for the Reson 8125 through a calibration exercise 

(Section 3.4). It was concluded that the Reson 8125 system has a small difference in the 

sensitivity between beams, which could be ignored, unlike the Reson 8101 system 

(Foote et al. 2003) which has a transmit beam with a significantly non-uniform beam 

pattern. When using a MBS system for backscatter strength measurements, it is 

recommended that the transmit beam pattern and sensitivity of receive beams are 

measured in order to make adequate corrections of the angular response. 
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For the Reson 8125, when the pulse is shorter than 100µs, the backscatter strength 

derived from both the peak and integral intensity is dependent on the pulse duration. 

Based on the results of the calibration experiment discussed in Section 3.4, it was 

concluded that this was a result of the limited frequency bandwidth of the MBS system. 

Consequently, an appropriate pulse duration should be selected when collecting 

backscatter data. A pulse duration of greater than 100 µs is recommended when 

recording backscatter with the Reson 8125. Similarly, a pulse duration greater than 

150µs is recommended for collecting backscatter data with the Reson 8101. Otherwise, 

the backscatter strength measurements should also be corrected for the transfer function 

of the transmit and receive systems of the MBS, which is not trivial to implement 

without thorough calibration. This is an important finding as a pulse duration shorter 

than these recommendations is often used to achieve the maximum range resolution for 

bathymetry measurements (RESON Inc. 2002). Consideration should, therefore, be 

given to the MBS system bandwidth before selecting the transmit pulse length for 

backscatter measurements.  

 

4. Investigation of the relationship between seafloor backscatter characteristics and the 

angle of incidence in high-frequency MBS systems. 

This objective was the focus of Chapter 4, which examined the effects of 

incidence angle on backscatter waveforms, mean backscatter strength and the 

distribution of backscatter intensity. The backscatter waveforms were shown to be 

different in shape and amplitude in different beams. Changes in waveform shape relate 

more to changes in the footprint size and insonification area with the beam angle rather 

than to changes in seafloor properties. The peak and the integral intensity derived from 

the backscatter waveform are dependent on incidence angle. The mean value of 

backscatter strength estimated from the integral backscatter intensity was shown to 

correspond to the actual backscatter strength of the seafloor and its angular dependence. 

However, the mean backscatter strength derived from the peak intensity was found to be 

overestimated at oblique angles where the insonification area is much smaller than the 

footprint size. This is a property of the extreme value distribution for multiple samples. 

Some systems, such as the Reson 8125 and 8101, offer an option to store only the peak 
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values in each beam. If this option is selected, the effect of extreme value statistics must 

be taken into account. Hence, collection and processing of backscatter waveform 

(snippet) data is recommended where it is possible.   

 

The mean backscatter angular dependence collected with the Reson 8125 at 455 kHz 

showed distinct differences between hard rough substrates, seagrass, coarse sediments 

and fine sediments (Figure 4.5). The highest backscatter strength was observed not only 

for the hard and rough substrate, but also for marine vegetation, such as rhodolith and 

seagrass. The main difference in acoustic backscatter from the different habitats was the 

mean level, or angle-average backscatter strength. However, additional information can 

also be obtained from the rate of change of backscatter strength with incidence angle. 

 

The measured backscatter angular responses were compared with predictions from the 

APL model. Although the observed and predicted results were generally in agreement, 

they were not considered accurate enough to aid in benthic habitat mapping. There are 

three particular issues that need to be considered when implementing the existing 

backscatter models in order to carry out model based classification of the seafloor:  

• Inadequacy of existing models for surface roughness of high Rayleigh 

numbers 

• Complex effects of beam geometry (e.g. small insonification area, near-

field effects, etc.) 

• Lack of models of backscatter from epi-benthic structure 

 

Some previous studies suggested using statistical features of backscatter variations as a 

useful discriminator of different habitats (Le Chenadec et al. 2005; Milvang et al. 1993; 

Preston et al. 2001). The simplest statistical models based on a Gaussian mechanism of 

backscatter were examined in this study. It was shown that the gamma distribution 

model for variation of the signal average backscatter intensity is a sufficiently accurate 

approximation, which is in agreement with the theoretical prediction by Middleton 

(1999) for Gaussian-like backscatter processes. The gamma model is a two parameter 

model characterized by scale (λ) and shape (β) parameters. Both λ and β were found to 
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be dependent on incidence angle. The scale parameter changes with the angle of 

incidence in accordance with the angular dependence of backscatter. The shape 

parameter, β, was shown to relate to the ratio of the insonification area (which can be 

interpreted as a scattering cell) to the footprint size rather than to the backscatter 

strength. The parameter β is nearly linearly proportional to the ratio of the insonification 

area to footprint size, when this ratio is less than 5. Although the variation of the average 

backscatter strength in this regime corresponds to a Gaussian scattering process, the 

experimental estimates of the shape parameter are about one unit higher than those 

expected from the number of independent scattering cells estimated from the 

insonification area and the footprint size. This is likely to be a result of the backscatter 

process not being purely Gaussian. Above a ratio of 5, the gamma shape parameter β is 

not significantly dependent on the ratio and there is a noticeable difference in β between 

different seafloor types. Further research and theoretical consideration are needed to 

better understand statistical characteristics of backscatter measured in this regime.  

 

5. Evaluation of the ability of various backscatter characteristics to discriminate 

between different seafloor types and identification of key backscatter parameters that 

characterize the seafloor at high frequencies of hundreds of kHz. 

In this study, backscatter strength derived from the average intensity has been 

shown to be a robust parameter to discriminate between different seafloor habitats. Due 

to the stochastic nature of backscatter, the seafloor backscatter properties cannot be 

adequately estimated using individual samples of backscatter strength. Statistics of the 

average backscatter intensity were examined in Chapter 4, where it was found that the 

most useful statistical descriptor for seafloor discrimination is the average value and its 

angular dependence. As discussed in Chapter 4, higher order moments of the backscatter 

data collected at 455 kHz for the majority of data measured at incidence angles between 

5º and 60º were similar for different habitats. It was only data from far oblique angles 

where a noticeable difference in the gamma shape factor was observed for different 

habitats. This angular domain (angles greater than about 45º) contained a very small 

proportion of the data collected for this study. It would be valuable to carry out a further 
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investigation of backscatter statistics using datasets with a higher proportion of the data 

collected in this regime. 

 

Different properties of the angular dependence of mean backscatter strength were 

investigated in Chapters 4, 5 and 6 and it was evident that the key backscatter parameter 

to discriminate between different seafloor habitats was the angle-average backscatter 

strength. This was primarily because at such high frequencies the slope of the angular 

dependence was similar for the majority of different seafloor habitats surveyed in this 

study. However, the slope of angular dependence was useful when the angle-average 

backscatter strength was similar between habitats. Further understanding of the 

correlation of these acoustic properties with the actual physical and morphological 

properties of the seafloor would improve seafloor classification accuracy, when ground-

truthing observations are not possible or limited. 

 

6. Development of methods to visualise the spatial distribution of seafloor backscatter 

properties (i.e. backscatter intensity images). 

The angle cube method presented in Chapter 5 provided a new approach to 

producing images of backscatter properties. Previous approaches corrected backscatter 

data for angular dependence before mosaicing them together, but were found to have 

certain problems. One of the main issues is that it is not just the mean backscatter 

strength that is dependent on incidence angle, but as discussed previously, the variance 

of backscatter strength is also dependent on incidence angle. Thus, when the mean 

angular trend is removed, the remaining residuals are still dependent on incidence angle. 

This is usually seen most prominently as persistent speckle noise around nadir. Another 

issue is that some corrections assume that the slope of angular dependence of backscatter 

is nearly the same for all habitats, whereas this is not the case for some seafloor types 

and, moreover, the angular response depends on sonar frequency.  

 

A method was developed in this study that overcame these problems by applying a 

correction for the angular dependence of both the mean value and standard deviation 

within relatively small areas along the survey tracks (Parnum et al. 2006). This method, 
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however, suffered from artefacts in backscatter images due to effects of the averaging 

window crossing boundaries between different habitats. Moreover, it was apparent from 

the statistical analysis in Section 4.5, that the variations observed about the mean values 

were similar for different habitats. Therefore, in most cases there was no benefit to 

preserving those variations, which were considered as noise. Since the distribution of 

variation can be modelled by the gamma distribution and these variations can be 

regarded as noise, it is worth examining maximum a posteriori (MAP) noise filtration 

based on the gamma distribution, such as that used in the radar community (Isar et al. 

2005; Tso & Mather 2001), for MBS backscatter data. 

 

The angle cube method uses interpolation to predict the mean backscatter strength for 

each angle at each grid node of the survey area. This allows the spatial visualisation of 

backscatter properties to be free from artefacts of the angular dependence and provides 

accurate estimates of the backscatter strength, when the overlap of swath tracks is 

sufficiently large. However, as data are interpolated, some boundaries in the angle-

average backscatter images become smoother and estimates of the angular dependence 

slope may be unrealistic. These problems are not unique and are also faced by previous 

methods discussed.  Ultimately, the angle-average backscatter strength provides a useful 

way to visualise the physical nature of the seafloor. This notion is further demonstrated 

in Figure 7.1, where the backscatter strength is draped over the bathymetry measured in 

the Morinda Shoal survey. 
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Figure 7.1: Backscatter strength (dB) draped over bathymetry (m) from a MBS survey of 

Morinda Shoal, Queensland. Representative still images from the underwater video 

show major habitats found. 

 

 

7. Demonstration of the use of MBS data in seafloor classification. 

In Chapters 5 and 6, habitat probability and classification maps based on MBS 

data showed distributions of sand, marine vegetation (e.g. seagrass and rhodolith) and 

hard substrate (e.g. coral and bedrock) in different survey areas. There was not enough 

ground-truth information to comprehensively assess the classification accuracy for every 

seafloor type at all sites. However the distance between major habitat classes in feature 

space showed that discrimination of classes was generally adequate enough for the 

purposes of broad scale mapping. Moreover, compared to the results of seafloor 

classification from MBS backscatter images that have been obtained in many previous 

studies (Dartnell & Gardner 2004; Diaz 1999; Houziaux et al. 2007; Whitmore 2003), 
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the angle cube approach to deriving the backscatter characteristics substantially reduces 

artefacts due to angular dependence. Therefore, the angle cube method provides 

backscatter datasets more suitable for automatic (either supervised or unsupervised) 

segmentation, which are likely to have a noticeably lower rate of misclassification and 

require less contextual editing. Nonetheless, there are a number of issues that could be 

investigated to further improve work in this area, which are discussed below.  

 

Collection of additional ground-truth data after the initial processing of acoustic data 

would have improved the classification results and the confidence of the accuracy 

assessment. For instance, sampling areas of habitats that were discriminated by 

backscatter analysis but not identified through ground-truthing may help determine if the 

acoustic class correspond to a different habitat class. Also, sampling with a vibrocore 

would allow preservation of the top layer of the seafloor to help correlate seafloor 

properties with the acoustic parameters. In planning future benthic habitat mapping 

projects, it is recommended that collection of ground-truth information should be 

scheduled after initial classification maps are produced from MBS data to optimise 

ground-truthing sampling arrangement, as considered by Holmes et al. (2006). However, 

it is recognised that the financial and time limitations of projects do not always allow 

this to happen, as was the case with the CWHM project. 

 

More sophisticated pattern recognition tools, such as neural networks, decision trees, 

etc., could be investigated to see if they improve the results shown in this study. 

Although the use of non-linear approaches might improve the classification accuracy, 

they must be used with caution as they can be over specific to training data. Another 

way to use MBS data for seafloor mapping and classification is to utilise physical and 

ecological models, where available, for the surveyed area. For example, the AVO model 

developed by Fonseca et al. (2005) shows potential to predict seafloor properties based 

on correlation between various characteristics of the sediment and MBS backscatter 

measurements. Applying physical models to backscatter strength data obtained using the 

angle cube approach might not only improve seafloor classification results, but also help 

with the validation of the model. Ecological models have previously used bathymetry 
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and derivatives of it (e.g. slope, aspect) to predict presence of benthic species (K.W. 

Holmes et al. 2005). Incorporating seafloor segmentation based on backscatter 

characteristics such as the angle-average backscatter strength, may help improve the 

results of these models. 

 

Despite the improvements that can be made to seafloor classification work, there are 

some inherent issues that will always be present. For instance, increasing the number of 

classes and complexity of the seafloor environment decreases the accuracy of 

classification, which was evident from the results discussed in Chapter 6. As the number 

of classes increases, the probability of overlap between different classes in feature space 

increases. Increasing the dimensions of feature space by adding new effective and 

statistically independent backscatter parameters is expected to improve classification 

results to a greater extent than using different pattern recognition algorithms. Ultimately, 

seafloor habitat maps provide predictive distribution of habitats based on the maximum 

probability. Furthermore, marine environments are dynamic, thus, the distribution of 

different habitats may change over time. There is, therefore, a need for further research 

into optimising monitoring strategies using MBS surveys, which would need to assess 

the minimum change in the habitat distribution that can be detected in the presence of 

the habitat map errors.  

 

7.3 Summary of recommendations for further work  
 Considering the results and findings of this study, the following 

recommendations for future work can be made to further develop the methods of benthic 

habitat mapping using MBS systems. 

 

Modelling seafloor backscatter and statistical analysis 

• Studies aimed at further understanding of acoustic scattering from epi-benthic 

covers of the seafloor, such as marine vegetation, including examination  of 

temporal and species variations. 

• Further examination of the appropriateness and limitations of Gaussian statistics 

to describe variations of backscatter characteristics derived from MBS data. 
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Specifically, further investigation is needed to understand the relationship 

between the system parameters and measurement geometry resulting in the 

insonification area and footprint size, the seafloor roughness scale (height and 

correlation length) and the distribution of backscatter variations. In particular, it 

is worthwhile to investigate using other MBS systems in different environmental 

conditions (different sea depth and habitat types), whether the gamma 

distribution is a good approximation for variations of the average backscatter 

intensity, and what situations more complex distribution models, such as the 

“generalized K-distribution”, are needed.  

 

Processing multibeam sonar backscatter  

• Develop a method to utilise more backscatter intensity values within the beams, 

where the insonification area is significantly smaller than the footprint, which 

will adequately correct the instantaneous amplitude of backscatter signals for the 

beam pattern.  

• Examination of the potential of gamma noise filtration in order to reduce noise in 

seafloor backscatter images derived from the average backscatter intensity.  

 

Seafloor classification using multibeam sonar data 

• Application of more sophisticated pattern recognition and classification 

algorithms, such as neural networks and decision trees to the backscatter data 

represented in the form of the angle cubes 

• Introduction of seafloor segmentation by backscatter parameters, such as the 

angle-average backscatter strength, to ecological modelling to predict the 

presence of benthic species. 

• Carry out repetitive MBS surveys over the same area to examine errors of habitat 

mapping for efficient planning of future monitoring of seafloor habitat 

distributions and their changes over time. 

 

Of these recommendations, the areas that are likely to yield the most in terms of cost-

benefit are the further statistical analysis of backscatter data, implementation of 
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ecological models and optimized ground-truthing. Further investigation of the statistical 

distributions of the average and instantaneous intensity could help determine if there are 

other parameters that could be derived for seafloor classification and could aid 

processing of backscatter through noise filtration. Overall, a multidiscipline approach to 

habitat mapping would help realise the full potential of MBS systems in mapping and 

monitoring the seafloor. 

 

7.4 Conclusions  
 This study into benthic habitat mapping using MBS systems has fulfilled its aim 

and objectives. It has developed techniques to process MBS backscatter, improved 

methods for spatial visualisation of seafloor backscatter characteristics and examined the 

effectiveness of MBS backscatter data in seafloor classification. The study has 

demonstrated that the combination of high-resolution bathymetry and backscatter 

strength data, as collected by MBS, is an effective tool for benthic habitat mapping in 

coastal zones. 
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APPENDIX A 

DATA DESCRIPTION 

A1. Morinda Shoal, Queensland 

Table A1.1: Lines and rotation used for gridding data along with the settings of 
the Reson Seabat 8125 for Morinda Shoal survey. 

Line numbers BGB 7-16,30-37
Survey date 19/08/2004
Rotation of data
for gridding 

40º

Transmit power 205 dB re 1 µPa
Pulse length 101 µs
Receiver gain 9 dB  

 

 

Figure A1.1: Track lines from the Morinda Shoal survey. UTM zone 55 south. 
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A2. Esperance Bay, Western Australia 
A2.1 East of Woody Island (Data used in Chapters 4-6) 

Table A2.1: Lines and rotation used for gridding data along with the settings of 
the Reson Seabat 8125 for east of Woody Island survey. 

Line numbers Esperance 291-310

Survey date 11/05/2005

Rotation of data
for gridding 

330º

Transmit power 205 dB re 1 µPa
Pulse length 101 ms
Receiver gain 9 dB  

 

 

 

Figure A2.1: Track lines from east of Woody Island survey. UTM zone 51 south. 
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A2.2 North Thomas Island (Data used in Chapter 5 for angle cube explanation) 

Table A2.2: Lines and rotation used for gridding data along with the settings of 
the Reson Seabat 8125 for north Thomas Island survey. 

Line numbers Woody 38-41
Survey date 1/11/2003

Rotation of data 
for gridding None

Transmit power 205 dB re 1 µPa
Pulse length 51 ms
Receiver gain 16 dB  

 

 

 

Figure A2.2: Track lines from north Thomas Island survey. UTM zone 51 south. 
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A2.3 Between Woody and Thomas Island (data from Chapter 4 and 5) 

Table A2.3: Lines and rotation used for gridding data along with the settings of 
the Reson Seabat 8125 for the survey between Thomas and Woody Islands. 

Line numbers Esperance 350-361
Survey date 12/05/2005
Rotation of data
for gridding 

34º

Transmit power 205 dB re 1 µPa
Pulse length 101 ms
Receiver gain 7 dB  

 

 

Figure A2.3: Track lines for the survey between Thomas and Woody Islands. 
UTM zone 51 south. 
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A3. Owen Anchorage, Western Australia 

Table A3.1: Lines and rotation used for gridding data along with the settings of 
the Reson Seabat 8125 for Owen Anchorage survey. 

Line numbers Cockburn Sound 146-150
Survey date 13/07/2004

Rotation of data
for gridding None

Transmit power  205 dB re 1 µPa
Pulse length 73 ms
Receiver gain 4 dB  

 

 

Figure A3.1: Track lines from the Owen Anchorage survey. UTM zone 50 south. 
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A4. Moreton Bay, Queensland 

Table A4.1: Lines and rotation used for gridding data along with the settings of 
the Reson Seabat 8125 for Moreton Bay survey. 

Line numbers MB 92,93,95-100,102-114,121-125
Survey date 2/09/2004
Rotation of data
for gridding 

21º

Transmit power 205 dB re 1 µPa
Pulse length 101 ms
Receiver gain 9 dB  

 

 
 

Figure A4.1: Track lines from the Owen Anchorage survey. UTM zone 56 south. 
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A5. Keppel Bay, Queensland 

Table A5.1: Lines and rotation used for gridding data along with the settings of 
the Reson Seabat 8125 for Keppel Bay survey. 

Line numbers Fitzroy 71-88, 90-143, 223-225, 225-237
Survey date 24/09/2004
Rotation of data
for gridding 7º

Transmit power 205 dB re 1 µPa
Pulse length 101 ms
Receiver gain 9 dB  

 

 

Figure A5.1: Track lines from the Keppel Bay survey. UTM zone 56 south. 
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APPENDIX B: THE EFFECT OF BEAM PATTERN ON 
BACKSCATTER INTENSITY MEASUREMENTS 

The intensity of backscatter signals is proportional to the surface integral of 

the product of sonar transmit and receive beam patterns projected onto the seafloor 

surface (Clay and Medwin, 1998). For rectangular transducers, the beam patterns are 

commonly expressed in terms of the elevation angles in the two perpendicular 

directions. For multibeam sonar systems, the insonification area is limited in the 

along-track direction by the transmit beam width. For calculating the insonification 

area of narrow transmit beams, it is commonly assumed, including this study (see 

Chapter 2), that the spatial widow for integration is rectangular with width of Rs*∆ϕ, 

where Rs is the slant distance from the sonar head to the bottom and ∆ϕ  is the –3-dB 

full width of the beam pattern. However, the actual beam pattern is not uniform 

within the 3-dB beam width and is not zero outside it. For rectangular transducers, 

the beam pattern is a sinc function of angle, if side-lobe shading is not applied. A 

Gaussian shape is frequently used to approximate the main lobe of beam patterns 

with the same width at the –3-dB level: 

( )







−= 2

2

2
exp

σ
ϕϕΨ ,                                                                              (B1.1) 

Where: ( )[ ] ϕ∆σ 21510log12 −= . Because ψ(ϕ) is rapidly decreasing with ϕ when 

∆ϕ is small, integration of Equation B.1.1 can formally be extended to ∞± , which 

gives ( )[ ] ϕ∆ϕ∆π 066.110log65 21 ≈ , or a value of about 0.3 dB higher than that 

obtained for a rectangular window. A similar value of the error in the insonification 

area affected by the beam pattern was obtained by Jackson and Richardson (2007). 

This error can be neglected, because it is small comparing to other possible errors of 

measurements.  

 

The effect of the across-track beam pattern of MBS receive beams on the backscatter 

energy and instantaneous intensity is much more complex, because the insonification 

area, from which the sonar receives the backscatter signal within any particular 

beam, is limited by the transmit pulse width and the footprint area of the receive 

beam. At small and moderate angles of incidence, the width of insonification area 

can be much larger than the across-track width of the receive beam footprint. At 
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large angles of incidence, the insonification area can be much smaller than the 

footprint. The relationship between the insonification area and the receive beam 

footprint depends on the incidence angle, pulse width and sea depth, as discussed in 

Chapter 2. A number of different approaches have been suggested to model the 

influence of insonification area on the backscatter intensity at small and moderate 

incidence angles, when the insonification area is larger than or comparable to the 

across-track width of the beam footprint (for example, see Hellequin et. al, 2003 and 

Jackson and Richardson, 2007). 

 

To model effects of the receive beam pattern on the backscatter energy and 

instantaneous intensity, we will employ an approach similar to time-domain models 

(e.g. Jackson and Richardson, 2007), but formulated in a simplified way. For 

simplicity and without loss of generality, let us assume that the seafloor backscatter 

coefficient is unity and independent of incidence angle, and the seafloor is 

horizontal. In further calculation, we also ignore the transmission (spreading and 

absorption loss), which can be added later in the model.  

The backscatter intensity is proportional to the integral 

( ) ( ) ( ) ( )∫ ∫
−

′′=
1

2

2

2

ΦΘ
r

r
r rdrdStI

π

π

ϕϕθθ , where ϕ is azimuth, r is distance from the nadir, 

r1 and r2 are external and internal radii of the insonification area respectively, 

( )ϕθϕ tansintan 1 ′=′ −  is the longitudinal elevation angle, θ ′  is the transversal 

elevation angle, ( )ϕΦ ′  is the longitudinal directivity pattern of the transmit beam, 

and ( )θΘ ′  is the transversal directivity pattern of the receive beams. The beam 

patterns are approximated by a Gaussian shape: 

( ) ( ) ( ) ( ){ } { }∫ ∫
−

′−−′−=
1

2

2222 2exp2exp
r

r
SSr rdrdStI

π

π
ϕθ ϕσϕθσθθθ ,                                    

where Sθ  is a beam steering angle, ( ) ( )[ ] ( ) 23lg5 21
SS e θθ∆θσθ = , ( )Sθθ∆  is the –

3-dB full width of the receive beams, ( )[ ] 23lg5 21 ϕ∆σϕ e= , and ϕ∆  is the –3-dB 

full width of the transmit beam. After changing the integration variable to ϕ′  and 

expressing r through ϕ′  , θ ′  and sea depth D, the integral over ϕ′  can be 

approximately evaluated for  small ϕ∆ and θ ′  > ϕ∆ :  
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( ) ( ) ( ) ( ){ }∫ ′−′−≈
1

2

cos2exp2 22
r

r
SSr drSDtI θθσθθθσπ θϕ                            (B1.2)                        

For θ ′  > ϕ∆ , one can use an approximation ( )Dr1tan−=≈′ θθ . The transmitted 

pulse front reaches the bottom at t0 = D/c and then propagates along r with time t as 

( )[ ] 2/122
1 Dctr −= . The trailing edge of the insonification area propagates as 

( )[ ] 2/122
2 2Re Dcctr −−= τ , i.e. r2 = 0, when 200 τ+≤≤ ttt . The backscatter 

signal returns to the sonar at time tr = 2t, so that we can express r1 and r2 as a 

function of tr: ( )[ ] 2/122
1 2 Dctr r −= and ( )[ ] 2/122

2 22Re DCTctr r −−= .  For 

small θ∆ , we can use only the first two terms in the power series expansion for 

( )Dr1tan−  around Sθ , and integrate Eq.B1.2 after replacing r with 

( )
θσ

θθ
D

Drr SS
2/1

2

2
costan−

=′ , which gives: 

( ) ( ) ( ){ }
21

erferfcos 32
rrSr rrDtI ′−′= − θσσπ ϕθ .                                               (B1.3)                    

Equation B1.3.  includes only half of the whole insonification area on either port or 

starboard side. At near-nadir angles of beam steering, the opposite side also 

contributes to the backscatter signal. To include the contribution of the opposite side, 

we change the sign of sθ  in the expression for r′ and add the second integral to 

Eq.B1.3, which gives: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
SSSS rrrrSr rrrrDtI θθθθϕθ θσσπ

−−
− ′−′+′−′=

2121
erferferferfcos 32 . (B1.4)        

 

Figure B1(a) shows the amplitude distortion of the backscatter signal envelope due to 

the influence of the receive beam pattern and insonification area for the odd beams 

(121 – 239) of the Reson 8125 system at sea depth of 20 m and pulse length of 100 

µs. The right panel (b) shows the envelopes only for the near-nadir beams.  
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Figure B1: Distortion of backscatter signal envelope due to receive beam pattern 

shown for odd beams 121 – 239 (a) and 121 – 141 (b) for sea depth of 20 m and 

pulse width of 100 µs.  

 

The variation of the peak backscatter intensity in each beam with the angle of 

incidence is shown in Figure B2 after correction for the insonification area limited by 

the beam footprint, as it was suggested in Chapter 2 using an ideal rectangular model 

for the beam pattern. As before, we ignore the transmission loss (or assume that it 

was fully compensated) and assume that the backscattering strength is 0 dB and 

independent of the incidence angle.   
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Figure B2: Angular dependence of the backscatter strength estimates derived from 

the peak intensity (a) and energy (b) for sea depth of 20 m and different pulse width.  

 

As one can expect, the estimate of backscatter strength derived from the peak 

intensity tends to 0 dB at large incidence angles, where the across-track width of the 

insonification area becomes much smaller than the footprint and hence the variation 

of the beam pattern at its maximum within the insonification area is negligible. At 

small angles (but not too close to the nadir), where the footprint is much smaller than 

the insonification area, the estimate tends to a value of about 0.3 dB, which is the 

error resulted from approximation of the Gaussian beam pattern with an ideal 

rectangular shape. At moderate angles, where the width of insonification area is 

comparable to the width of the footprint, the backscatter strength obtained from the 

peak intensity is underestimated with the maximum error of about –0.8 dB, which 



 211

occurs because the beam pattern in this transition zone changes significantly within 

the insonification area. 

 

The estimates of backscatter strength, derived from the backscatter energy 

normalized by the transmit pulse width and the footprint area (Figure B3), do not 

suffer from such angle dependent errors. An error of about 0.3 dB, resulting from the 

Gaussian shape of the beam pattern, is nearly constant for all angles and at all values 

of the pulse width. It is necessary to note, that the estimate of backscatter strength 

from the backscatter signal energy must be normalized by half of the transmit pulse 

energy, because the energy is spread on both sides.   The variations of estimates at 

very small near-nadir angles are due to errors of numerical integration of short 

signals and rapidly decrease as the sampling frequency increases. In MBS systems, 

the signal sampling frequency is usually chosen based on a tradeoff between the 

spatial resolution needed and the maximum data transfer rate allowed. The sampling 

rate in the Reson 8125 system is about 28.5 kHz, i.e. just one or two samples for the 

transmit pulse of 30-ms long. This results in significant errors of integration when 

calculating the backscatter energy, especially at near-nadir angles, where the 

backscatter signals are the shortest ones. The errors of energy estimates due to 

discrete sampling at 28 kHz, averaged for a random timing offset (or small random 

fluctuations of sea depth) are shown in FigureB3 for different values of the pulse 

width. It’s clearly seen that the backscatter strength is considerably underestimated at 

small angles below approximately 5 degrees, and the error of estimates increases as 

the pulse width decreases. Such a decrease in the estimates of backscatter strength at 

near-nadir angles was also observed in experimental measurements (for example, see 

Figure 4.5 in Chapter 4). 

 

At a low sampling frequency, the backscatter strength derived from the peak 

intensity value is even more underestimated, especially at shorter transmit pulses and 

moderate angles of incidence, which is seen from comparing Figure B3(a) with 

Figure B2(a).  
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Figure B3: Angular dependence of the backscatter strength estimates derived from 

the peak intensity (a) and energy (b) measured at the sampling frequency of 28 kHz 

and different pulse width and sea depth of 20 m.  

 
Summarising the results obtained from this analysis, one can conclude that the effect 

of the beam pattern on the backscatter strength estimates derived from backscatter 

energy and normalized by the footprint area is fairly small and similar for all angles. 

The total error of estimates is expected to be about 0.6 dB resulting from both along-

track and across-track shapes of the transmit and receive beam patterns. The main 

source of errors appearing significant at near-nadir angles of incidence is a relatively 

slow sampling rate. The only way to reduce such errors is to operate the sonar at 

wider transmit pulses. The estimates of backscatter strength from the peak intensity 

contain larger errors. These errors are substantially angle-dependent and result from 

both the finite width of insonification area and finite sampling rate. 
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APPENDIX C: ACRONYMS 

To assist the reader this appendix contains a list of the different acronyms used 

throughout the thesis.  

 
ADC Analogue to Digital Conversion 

APL  Applied Physics Laboratory 

ASC Acoustic Seabed Classification 

AUV Autonomous Underwater Vehicle 

AVO Angle Versus Offset 

CLT Central Limit Theorem 

CMST Centre for Marine Science and Technology 

CRC  Cooperative Research Centre  

CWHM  Coastal Water Habitat Mapping 

CV Coefficient of Variation 

FC Fisher Criterion  

GLCM Grey-Level Co-occurrence Matrix 

LDA Linear Discriminate Analysis 

MAP Maximum A Posteriori 

MBS  Multibeam Sonar  

MSP Method of Small Peturbation 

PCA Principal Component Analysis 

RMS  Root Mean Square 

ROV Remotely Operated Vehicle 

SNR  Signal to Noise Ratio 

SSA Small Slope Approximation 

TVG  Time Varied Gain  
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