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Abstract 

 

Malaria remains one of the most common causes of illness and death in developing 

countries.
1
  The development of new drugs to combat the disease is becoming one of 

the fastest growing research areas.  Hydroxypiperaquine (HPQ) is an antimalarial 

bisquinoline compound related to the emerging antimalarial drug Piperaquine (PQ).
2
 

Various research programs are being conducted internationally in efforts to prepare 

PQ for possible clinical use in combination with artemisinin derivatives. The 

hydroxy compound (HPQ) has been described in the Chinese literature but no data 

exists for this compound within the Western literature.
3
  The primary aim of this 

research project was to synthesise Hydroxypiperaquine via alternative synthetic 

pathways to that briefly described by Xu et al
3
 by exploring various synthetic 

strategies based on literature synthetic procedures involving similar compounds.  

HPQ was synthesised through a three step synthetic process.  In the first step, tertiary 

butoxy carbonyl (tBOC) piperazine was coupled with 4,7-dichloroquine (4,7-DCQ) 

to produce the intermediate 7-chloro-4-(tBOC piperazin-1-yl)quinoline.  The second 

synthetic step involved the deprotection of 7-chloro-4-(tBOCpiperazinyl)quinoline to 

remove the tertiary butoxy carbonyl (tBOC) protecting group.  The deprotected 

intermediate, 7-chloro-4-(piperazin-1-yl)quinoline, was subsequently reacted with 

1,3-dichloropropanol in 1-pentanol to yield HPQ in the third step. This three step 

synthetic approach provides an alternative and efficient process to synthesise HPQ.  

The research provides important and specific details for the synthetic methodology 

involved in the synthesis of HPQ for future synthetic and biological research. 
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“Malaria is a disease that is both preventable and curable, yet a child dies of 

malaria every 30 seconds”. 
4 
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1   INTRODUCTION 
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1.1 Malaria 

Malaria is a major global health issue leading to the death of up to 3 million people 

annually.
5
  Almost 40% of the world lives under the constant threat of contracting the 

disease.  In 2003, according to the World Health Organization 350–500 million 

people worldwide became ill with malaria.
6
  Malaria is an infection caused by the 

parasitic protozoan of genera Plasmodium and transmitted into humans via the 

mosquito.  

 

1.1.1 Cause of Malaria 

Malaria is caused by the protozoan Plasmodium (P), four species of which infect 

humans.  These are P. falciparum, P. vivax, P. ovale and P. malariae.  These parasites 

differ in morphology and have different life cycles.  Almost all malaria related deaths 

and disease are caused by P. falciparum.
7
  P. falciparum is the most pathogenic 

species causing malaria in humans; the febrile attacks caused by its infection lasting 

48 hours.  The pathogenicity of P. falciparum combined with its ability to acquire 

resistance to multiple drugs makes it the most dangerous species to humans.  Most 

deaths occur due to a complication of the infection by P. falciparum in which infected 

erythrocytes adhere to the vascular endothelium of the post-capillary venules in the 

brain.
8, 9

  P. vivax is the most globally widespread form of malaria prevailing in 

Central America, the Middle East, India and various countries in South East Asia.
10

 

This infection is rarely fatal but has the ability to form dormant hypnozoites in the 

liver, which can cause relapse (P. ovale can form dormant hypnozoites though relapse 

is very rare 
10

).  Similar to P. falciparum, both P. vivax and P. ovale exhibit a 48-hour 

cycle of fever.  P. malariae causes benign quartan malaria with a febrile cycle of 72 

hours.
9, 10

  Its distribution is similar to P. falciparum but it only causes a very mild 

form of infection.        
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1.1.2 Transmission of Malaria 

The vector responsible for malarial transmission is the female Anophelene mosquito 

(Figure 1).
9
  The mosquito serves as a co-host for the disease and part of the parasitic 

life cycle is completed within its gut.  As the mosquito injects its proboscis into a 

human blood capillary it salivates to dilute the blood and injects both anticoagulants 

and the parasitic sporozoites into the bloodstream. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Female Anopheles mosquito 

 

Malaria can also be transmitted by human blood transfusions and through the use of 

infected hypodermic needles though this is very rare.
7, 9
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1.1.3 Life Cycle of the Malarial Parasite 

Figure 2 illustrates the lifecycle of the malarial parasite which begins in humans when 

an infected female mosquito bites, withdrawing blood and simultaneously injecting 

sporozoite-containing saliva directly into the bloodstream.
7, 9

   

 

 

Figure 2  Life cycle of the malarial parasite 
11

 

 

With each bite the mosquito injects about 20 to 30 sporozoites into the circulatory 

system. The sporozoites multiply in the liver to form numerous merozoites.
7, 9

  Within 

a week the merozoites re-enter the bloodstream where within the red blood cells 

(erythrocytes) they develop through the ring, trophozoite, and schizont stages (as 

shown on the right hand side of Figure 2).  During these stages the infected 

erythrocyte does not come under attack from the immune system thereby shielding the 

parasite.  Parasite growth is supported by the ingestion of the host’s haemoglobin.  

The cycle of asexual division into daughter merozoites, their maturation to schizonts 
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and the release of toxins takes up to 48 hours and is accompanied by fever, which is 

typically cyclic.  At this stage merozoites can invade new erythrocytes and the 

erythrocytic cycle recommences.
7,9

  After several cycles, the intraerythrocytic 

parasites can develop into sexual stage gametocytes.  These gametocytes are ingested 

when a mosquito bites an infected individual and the sexual life cycle commences in 

the mosquito gut where the gametocytes form fused oocytes.  These oocytes can later 

form sporozoites that travel to the mosquito’s salivary glands ready to reinfect another 

human host.
7-9

  

 

1.2 Drugs employed in Malarial Therapy 

The antimalarials drugs used globally are divided into the following five classes.
5
  

• Quinolines (includes quinoline arylaminoalcohols) 

• Antifolates  

• Artemisinin derivatives 

• Hydroxynaphthaquinones 

• Antibacterial Agents  

 

1.2.1 Quinolines  

One of the first agents used for the treatment of malaria was the bark of cinchona tree, 

which was introduced to Europe from South America in the 17
th

 century.
9
  The active 

component contained in the bark is a quinoline based compound, Quinine (Figure 3).   

Quinine acts primarily as a blood schizonticide and it has little effect on sporozoites 

or pre-erythrocytic forms of malarial parasites. 

 

N

N

H3CO

H

HO

H

H

 

Figure 3 Chemical structure of Quinine 
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Quinolines which include for the most part the quinoline-based arylaminoalcohols can 

act on the malarial parasite via various pharmacological mechanisms.   They are able 

to act on different stages of the parasitic life cycle.   Chloroquine (Figure 4A) and 

other 4-aminoquinoline derivatives have been shown to inhibit DNA replication and 

RNA synthesis in the nucleus of the protozoal parasite.
8
 

 

 

 

 

 

 

 

 

Figure 4 Chemical structures of Chloroquine (A) and Mefloquine (B) 

 

Chloroquine is active on those stages of the parasitic life cycle in which the parasite 

actively degrades haemoglobin.  Studies have shown swelling of the parasitic food 

vacuole and undigested haemoglobin in the parasitic endocytic vesicles suggesting 

that the food vacuole is the site of action of the quinoline antimalarials.
8, 12

  The 

parasitic food vacuole is acidic in nature and the accumulation of basic compounds 

such as chloroquine and other aminoquinolines increases vacuole pH forcing 

unfavourable conditions for parasitic development and growth.  The malarial parasite 

resides in the erythrocyte which contains high quantities of haemoglobin.  The 

parasite feeds on the proteinicious globulin but the heme cofactor is very toxic to the 

parasite.   To decrease the toxicity of heme, the parasite polymerises the heme to non-

toxic haemozoin which is also known as malarial pigment.  Chloroquine and most 

other quinoline antimalarials inhibit the heme polymerisation process thereby killing 

the parasite with an accumulation of toxic heme.
8, 13, 14

  Mefloquine (Figure 4B) and 

Quinine are classified as quinolinementhols and have the same mechanism of action 

as chloroquine.  Although mefloquine’s mechanism of action is similar to chloroquine, 

studies suggest that the exact step in the parasite feeding process which it interferes 

with may be different.
8
  The quinoline-based drug Chloroquine (CQ) will be discussed 

in detail in Section 1.3.  

N

CF3

HO
N
H

CF3

 
N

HN
N

Cl  
 

A 
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1.2.2 Antifolates 

Dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) are key 

enzymes in parasitic de novo folate biosynthesis and their inhibition inhibits 

biosynthesis of pyrimidines and purines in the parasite.
1
  Antifolate drugs inhibit 

either dihydrofolate reductase (DHFR) e.g. Pyrimethamine (Figure 5C) and Proguanil 

(Fig 5B), or dihydropteroate synthase (DHPS) e.g. Sulphodoxine.  In P. falciparum, 

DHFR is a key enzyme in the redox cycle for the production of tetrahydrofolate 

which is required for essential parasitic thymidine and metheonine biosynthesis.  The 

drugs Pyrimethamine and Proguanil act by inhibiting DHFR.  Antifolate drugs are 

usually used in combination with other antimalarial agents e.g. 4-Aminoquinolines 

and Atavaquone.  When DHFR or DHPS inhibitors are used alone resistance in 

parasites becomes rapidly evident due to single point mutations in the genes encoding 

for these enzymes.
15

 

 

S

NH2
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NH2
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Figure 5 Chemical structures of Dapsone (A), Proguanil (B) and Pyrimethamine 

(C) 

 

Pyrimethamine acts by inhibiting plasmodial dihydrofolate reductase (DHFR) whilst 

the sulpha drugs, with which it is combined e.g. Sulphodoxine, inhibit 

dihydropteroate synthase (DHPS).  The concomitant blockage of dihydro folate 

synthesis and the inhibition of DHFR make the combination of DHPS and DHFR 

inhibitors synergistic – one inhibitor potentiates the activity of the other.
16

  The new 

combination of Chlorproguanil and Dapsone (Figure 5A) known as the antimalarial 

formulation Lap Dap
17

 was developed to counterbalance the resistance to 
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Sulphodoxine-Pyrimethamine.  These drugs were combined in order to obtain an 

antifolate combination with shorter in vivo residence time than Sulphodoxine -

Pyrimethamine hence lowering the probability of selecting resistant parasites.
18

 

Clinical studies have shown good activity against strains resistant to the previous 

combination of Sulphodoxine–Pyrimethamine.
19

  Resistance to antifolate drugs is due 

to an effective efflux mechanism that the parasite develops.  In order to overcome this, 

new strategies such as the addition of Probenecid to the combination has been 

employed.  This drug in particular serves to inhibit the drug efflux mechanism within 

the parasite.
19

 

 

1.2.3 Artemisinin and its derivatives  

The natural product Artemisinin (Figure 6) also known as Quinghaosu in China, (its 

country of origin) is derived from Artemisia annua, the sweet wormwood plant.  A 

cold water extract of this plant has been used in traditional Chinese medicine for 

many years as a treatment for malarial fever.
1, 5, 20

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Chemical structure of Artemisinin  

 

The active ingredient Artemisinin and its synthetic derivatives (artesunate, artemether, 

and arteether) have been used for the treatment of malaria since 1970 (when 

Artemisinin was first isolated).
1
  Artemisinin reduces overall malaria transmission and 

decrease mortality rate due to rapid parasite clearance and targeting of gametocytes in 

the early developmental stage.
21

  Artemisinin is biotransformed rapidly but does not 

O

O

H

O

O

O

H
H
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form any active metabolites.  Artesunate and artemether are biotransformed to the 

active metabolite dihydroartemisinin (DHA) in vivo which has an elimination half life 

of approximately 1 hour.  This ultra short elimination half life makes artemisinin 

derivatives unsuitable for sole therapy and enhances the opportunity of parasitic 

resistance. Artemisinin-based combination therapies (ACTs) were developed to 

overcome this issue and are currently the best anti-malarial drugs available.
20-22

  

Artemisinins have become very popular in combination therapies and as of 2005 have 

been adopted in national malaria campaigns by 43 countries.
4
  

 

1.2.4 Hydroxynaphthaquinones  

Hydroxynaphthaquinones are potent inhibitors of mitochondrial electron transport 

processes, which compete with the biological electron carrier ubiquinone.
23

  In 

mammalian cells, ubiquinone-linked dehydrogenases are involved in energy 

generation via the synthesis of Adenosine triphosphate (ATP).
65

  Atovaquone (Figure 

7), a ubiquinone analogue binds to the cytochrome bc1 complex of the parasite 

mitochondrial electron transport chain and inhibits cytochrome c reductase activity in 

P. falciparum. 
1, 23

  

 

 

 

 

 

 

 

 

 

Figure 7 Chemical structure of Atovaquone 

 

 Atovaquone acts synergistically with Proguanil to collapse the parasite mitochondrial 

membrane potential.
23

  This drug combination has been used very successfully in both 

malarial treatment and prophylaxis.
15

  The site of action of hydroxynaphthaquinones 

is very different from other antimalarial classes.   In spite of the above, resistance has 

emerged primarily due to point mutations in the cytochrome b gene of the parasite 
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which are much more rapid than the parasite mutations which confer chloroquine 

resistance.
23, 24

  

 

1.2.5 Antibacterial Agents 

Tetracycline (Figure 8) and Doxycycline are the most commonly used antibiotic 

antimalarials.
25

  They have been used in combination mostly with quinine and 

chloroquine.
25-27

  Antimalarial combinations with tetracycline have been shown to 

have good activity against both chloroquine resistant and chloroquine sensitive P. 

falciparum malaria.
25-27

  However, combinations of tetracycline have not been proven 

safe in pregnancy therefore their use has been limited.
15

  Various antibacterial drugs 

such as sulphonamides, clindamycin, rifampin and desferrioxamine have been used 

alone or in combination with quinolines but their activity is not exemplary when 

compared to the first line drugs e.g. Artemisinins.
25

  Recent studies have shown that 

macrolide antibiotics such as erythromycin and azithromycin can also be used in 

combination with quinine and chloroquine.
25

  The rationale for these combinations is 

the safety of macrolides in pregnancy.
28

  Attempts to combine macrolides with 

artemisinin derivatives have not yielded satisfactory clinical results because of the 

marked antagonistic activity of these drugs.
29

 

 

 

 

 

 

 

 

Figure 8 Chemical structure of Tetracycline 
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1.3 Chloroquine 

Chloroquine (CQ, Figure 4A, Page 6) was introduced during the Second World War 

in 1943 by US researchers.
13

  It was originally synthesized in 1934 by the Bayer 

Company (Germany) and was called Resochin.
30

  Resochin was initially thought too 

toxic for clinical use and was ignored by the pharmaceutical establishment for a 

decade.  However, during World War II allied troops captured a supply of the related 

drug Sontaquine, and began a re-evaluation of the two drugs.  Resochin was found to 

be safe at therapeutic concentrations and was renamed chloroquine and underwent 

clinical trials in 1943.  Since that time it has proved to be a highly effective, safe and a 

well tolerated drug for both the treatment and prophylaxis of malaria.
1, 13

 

 

1.3.1 Chemical Properties of Chloroquine  

 CQ or 7-Chloro-4-(4-diethylamino-1-methylbutylamino)quinoline is a 

aminoquinoline alkaloid with potent antimalarial activity.
9
  It is a weak base 

containing amine groups with  pKa (8.1, 9.9) values in the physiological range.
31

  It 

exists in 3 different isoforms, the dextrorotatory d, levorotatory l and a racemic 

mixture of both dl all of which have equal potency.
9
  CQ is slightly soluble in water, 

soluble in chloroform, ether and dilute acids.  CQ is clinically available as 

chloroquine diphosphate, phosphate, hydrochloride and dihydrochloride.
32

  The most 

common form, CQ diphosphate is readily soluble in water but practically insoluble in 

alcohol, methanol, ether and chloroform.  Aqueous solutions for injection 

formulations of CQ often employ chloroquine diphosphate.
31

 

 

1.3.2 Mechanism of Action of Chloroquine 

CQ is a potent schizonticide, active against the erythrocytic forms of all strains of 

plasmodia that cause malaria in humans.
7, 9, 13

  It has some gametocytocidal activity in 

P.vivax, P. ovale and P. malariae, but does not have an effect on sporozoites or 

hypnozoites within the liver.
13

 Despite extensive research, the definitive mechanism 

of action of CQ is still unknown, although a number of facts related to its action are 

now generally accepted.
8, 14

  It is known that CQ accumulates in high concentrations 

in the plasmodium food vacuole via an ion trapping mechanism and inhibits 
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detoxification of heme.
33

  It is therefore believed that this acidic compartment is 

where the compound exerts its antimalarial effect.  A number of hypotheses have been 

raised to explain the mechanism of action of quinoline and related compounds.  It was 

demonstrated that the 4-aminoquinoline antimalarials were able to interact with both 

mammalian and malarial parasite DNA in vitro.
34,35

  It is thought that binding to the 

parasitic DNA prevents both RNA synthesis and DNA replication which leads to cell 

death. However, this does not explain the ability of CQ to kill parasites at 

concentrations much lower than the concentration at which it is toxic to mammalian 

cells.
8
  

 

Another hypothesis relating to its pharmacological activity is the inhibition of parasite 

feeding.  As the parasite matures within the host erythrocyte, it ingests small packets 

of haemoglobin by endocytosis.
13, 36

  These haemoglobin containing vesicles are 

transported to the parasite’s acidic food vacuole where the outer membrane of the 

double membrane is digested by a series of proteases. Ferriprotoporphyrin IX (FP) is 

freed during the breakdown of the haemoglobin.  CQ inhibits the biocrystallization of 

FP to haemozoin and also inhibits the normal degradation of accumulated FP by 

reduced glutathione.
9, 37

  Thus the changes seen shortly after the treatment of malarial 

parasites with pharmacological concentrations of the drug include swelling of the 

parasitic food vacuole and accumulation of undigested haemoglobin in the endocytic 

vesicles.
12

  CQ  is thought to act by selectively targeting the parasite and inhibiting the 

parasite specific process of haemoglobin degradation.
8
  CQ forms complexes with 

free FPIX which cannot be detoxified in the parasite by polymerization.
13

 

 

1.3.3 Pharmacokinetics of Chloroquine 

CQ is well absorbed orally, intramuscularly and subcutaneously in both healthy and 

diseased adults and children.
38

  It has a bioavailability of 70 to 80% when 

administered orally.
39

  Half time of absorption is 0.56 hours and peak plasma 

concentration is reached 1.5 to 3 hours after ingestion.  It is well distributed 

throughout the tissues and becomes concentrated in the infected erythrocytes.  CQ has 

also been shown to exist extensively in kidney, liver, spleen and lung tissue and is 

strongly bound to melanin containing cells.
30

  It has a very high apparent volume of 

distribution (between 100 and 1000 L/kg) and is 50 to 65% protein bound. CQ is 
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extensively metabolised by cytochrome P450 isoenzymes 2C8, 3A4 and 2D6 in the 

liver.
38

  The major metabolite desethylchloroquine retains the antimalarial activity of 

chloroquine.
38, 40, 41

  The major route of CQ excretion is by a relatively slow hepatic 

metabolism combined with renal excretion.  It is excreted very slowly; about 55% is 

excreted in the urine and 19% in the faeces.
30

  CQ has a long, highly variable half life 

between 8 and 58 days.  The long in vivo residual time of CQ is believed to lead to 

drug resistance.
7, 9, 41

  

 

1.3.4 Therapeutic Uses of Chloroquine 

CQ is taken both prophylactically and as a curative treatment for malaria.  For the 

treatment of an adult, 600 mg base is given followed by 300 mg base 6 hours later. 

The regimen is then 300 mg base per day at 24 and 48 hr.  In the treatment of a child, 

10 mg/kg base is given (maximum 600 mg). This is followed by 5 mg/kg base 6 hours 

later (maximum 300 mg) and 5mg/kg per day base at 24 and 48 hours.  For malarial 

prophylaxis in adults 300 mg base is given orally per week beginning one week 

before and continuing for 4 weeks after exposure.
1
 

 

1.3.5 Resistance to Chloroquine 

The most significant problem relating to CQ is parasitic drug resistance.  Its long half 

life and natural selection pressure on the parasite population has contributed 

significantly to CQ resistance.
42, 43

 CQ resistance is caused by increased drug efflux 

from the parasitic food vacuole or altered uptake rate.
8
  There are several potential 

explanations for the altered uptake rate, reflecting changes in the transmembrane pH 

in resistant parasites, altered membrane permeability characteristics, and, 

paradoxically, an efflux pump operating prior to cytosolic appearance of drug.  Two 

mdr like genes (multi drug resistant), pfmdr1 and pfmdr2 have been found in P. 

falciparum.
8
  Some evidence has suggested that mutations in pfmdr1 might be 

associated with resistance.
8
  CQ resistance can also be caused by reduced affinity of 

CQ for heme thereby reducing CQ uptake.  Initially CQ resistance was thought to be 

genetically attributed to cg2, a gene encoding for the polymorphic protein located at 

the periphery of the parasite.
13

  This mechanism may result in an increased drug efflux 

or decreased drug influx leading to a decrease in the accumulation of CQ in drug 
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resistant Plasmodium.
43

  However, this hypothesis has been ruled out by the 

transformation studies performed recently by Fidock et al.
44
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1.4 Piperaquine 

Piperaquine (PQ, Figure 9) is a bisquinoline antimalarial drug that was first 

synthesised independently by both the Shanghai Pharmaceutical Industry Research 

Institute in (China) and the Rhone Poulenc Company (France) in the late 1960s.
45

  It 

is effective against P. vivax and P. falciparum, including strains of P. falciparum 

resistant to chloroquine.  It is available as a free base and a tetraphosphate salt. 

Bisquinolines have been extensively studied in recent years because of their potent 

antimalarial activity against chloroquine resistant strains.
2
  

 

 

 

 

 

 

 

Figure 9 Chemical structure of Piperaquine 

 

1.4.1 Chemical Properties of Piperaquine 

Piperaquine (PQ) or 1, 3-bis [1-(7-chloro-4 quinolyl)-4-piperazinyl] propane (MW 

535.51) is a member of the 4-aminoquinoline group that includes CQ. PQ in the free 

base form is a pale white to yellow crystalline powder with a melting point of 212–

213°C.
46,47

  It is a hexabasic compound (pKa = 8.92) that is only sparingly soluble in 

water at neutral and alkaline pH, but has high lipid solubility (log P = 6.16).
48

  PQ is 

usually formulated as its water soluble tetraphosphate salt (MW 927.48)-a white to 

pale yellow crystalline power, freely soluble in water. It has a slightly bitter taste and 

a melting point of 246–252°C.
2
  The compound is known to be photosensitive in 

aqueous solution turning from yellow to deep orange on prolonged light exposure.
2
 

 

1.4.2 Mechanism of Action of Piperaquine 

Electron microscopy studies undertaken to study the effect of PQ on P. berghei 

ANKA strain have shown that the first morphological changes are swelling of the 
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food vacuole, vesiculation and accumulation of undigested haemoglobin.
49

  This 

suggests that the action of PQ involves blockage of the function of the food vacuole.  

CQ and bisquinolines such as PQ are weakly basic drugs and readily accumulate in 

the acidic parasitic food vacuole by several different mechanisms e.g. active transport 

and diffusion along a pH gradient.  When present in the food vacuole, CQ and the 

bisquinolines compete for the heme substrate. CQ has been shown to interact tightly 

with free heme and is known to induce premature termination of haemozoin polymers.  

Bisquinolines which are essentially two quinoline moieties linked together may 

chelate heme more efficiently and inhibit the catalase activity of heme to an even 

greater extent.
50

  The greater efficacy of the bisquinolines against CQ resistant 

parasites has been explained by the greater number of protonation sites compared with 

CQ which may allow these derivatives to be accumulated in higher concentrations 

within the CQ resistant parasites.
13, 51

  

 

1.4.3 Pharmacokinetics of Piperaquine 

The pharmacokinetic properties of PQ were only studied very recently despite its 

availability as a first line antimalarial agent in China for over three decades.  The first 

pharmacokinetic data for PQ in humans was published by Hung et al in 2004.
52

  They 

reported that the absorption of PQ was slow, with mean absorption half times of 9.1 

and 9.3 hours in adults and children, respectively. Slow absorption can likely be 

attributed to the high lipophilicity of PQ.  A more recent study by Davies and Illet at 

the University of Western Australia has shown the effects of food on absorption of 

PQ.
52

  They concluded that piperaquine absorption is increased in the presence of a 

high fat diet.
53

  They also established that the mean terminal elimination half-life was 

long in both adults (543 hours) and children (324 hours), whilst the mean volume of 

distribution at steady state/bioavailability (Vss/F) was very large in adults (574 L/kg) 

and children (614 L/kg).  Plasma protein binding of PQ has not been measured but is 

estimated to be around 97%.
49

   The metabolism of PQ in humans has not been studied 

in detail.  However, since PQ has no primary functional groups that could generate 

Phase 2 polar metabolites, it seems likely that a Phase I oxidative process occurring 

on either the quinoline or PQ ring structures may occur during its metabolism.
2
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1.4.4 Therapeutic Uses Of Piperaquine 

PQ phosphate was first used for human antimalarial prophylaxis in China in 1978.
2
  

The standard clinical regimen dose employed was; 1.5–3.0 g PQ base given in divided 

doses over 2 or 3 days.  PQ was highly active against both chloroquine sensitive and 

chloroquine resistant species of P. falciparum.
54

  Due to fears related to the 

development of resistance and reports concerning cross-resistance between PQ and 

CQ, combination therapies with artemisinin derivatives were developed.  PQ based 

artemisinin combination therapy was developed in the form of CV8 in Vietnam, a 

formulation containing PQ, dihidroartemisinin, trimethoprim and primaquine.
55

  This 

combination has certain advantages over artesunate- mefloquine but has limited use 

because of lack of safety data in children and pregnancy.  A new combination of 

piperaquine ‘Artekin’ which contained dihidroartemisinin (DHA) and PQ phosphate 

was developed to reduce cost and toxicity.
15, 56

  Studies in children and adults in 

Cambodia showed very good activity and safety for this drug combination.
56

 

 

1.4.5 Resistance to Piperaquine 

Clinical studies have shown some degree of cross resistance between CQ and PQ.
13, 57

  

Resistance to PQ follows the same routes as CQ and is thought to have developed as a 

consequence of decreased drug accumulation.
14

  Processes changing the rate of influx 

of the drug such as changes in pH or a specific transport mechanism may decrease 

drug accumulation.
58

  Another mechanism is the active efflux of the drug from the 

food vacuole. Initially when bisquinolines such as PQ and hydroxypiperaquine (HPQ) 

were developed it was thought that their bulky structure would inhibit the efflux 

mechanisms developed by the parasite.
14, 58

   It has been suggested by Vennerstrom et 

al that the bulky structure may not be recognized by proteins involved in conferring 

quinoline resistance.
50
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1.5 Hydroxypiperaquine 

Hydroxypiperaquine (HPQ, Fig 10) is a bisquinoline antimalarial drug first 

synthesized by the Chinese group led by Xu Dingqiu in 1971.
3
  HPQ displays very 

similar antimalarial activity to its parent compound PQ, both drugs show rapid and 

effective antimalarial activity.
3
 

 

 

 

 

 

 

Figure 10 Chemical structure of Hydroxypiperaquine 

 

1.5.1 Chemical Properties of Hydroxypiperaquine  

 HPQ base is a white or yellowish white crystalline powder, which is both odourless 

and tasteless. It has a melting point of 177-178.5°C. Its water soluble phosphate salt, 

HPQ phosphate is a pale yellow crystalline powder. It is also odourless, but with a 

slightly bitter taste and a melting point 237-238°C.
3
  

 

1.5.2 Mechanism of Action of Hydroxypiperaquine 

Chinese studies have shown HPQ to be highly effective schizonticide with rapid 

action against asexual stages of sensitive strains of P. falciparum and P. vivax.
54

  It 

has also been demonstrated that, HPQ displays very good activity against CQ resistant 

P. falciparum.
54

  The mechanism of action is believed to be similar to that of CQ and 

other bisquinolines although no formal studies have been undertaken.
3, 8, 58, 59

 In vitro 

studies have reported that HPQ displays more rapid action than PQ on P. berghei. 

However, its physiological effect on the parasitic fine structure was found to be 

similar to that of PQ.
59
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1.5.3 Pharmacokinetics of Hydroxypiperaquine 

Pharmacokinetic and pharmacodynamic studies of HPQ have not been published in 

the non-Chinese scientific literature.  All scientific and clinical data available on the 

drug has been published in Chinese scientific literature (mostly written in Chinese).  

Pharmacokinetic data is not available, but it is believed that HPQ unlike PQ would 

possess a shorter biological half life due to its additional hydroxyl group.  By virtue of 

this polar group, HPQ appears to be a prime candidate for Phase 2 metabolic 

conjugation processes e.g. glucuronidation and sulfation, which may significantly 

increase its biological clearance rate thus reducing its biological half life (Figure 11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Phase 2 glucuronidation of HPQ 

 

 

 

1.5.4 Therapeutic Uses of Hydroxypiperaquine   

Initial reports on the clinical application of HPQ were reported in 1973, involving 

field studies undertaken in the South Western Yunnan province of China.
3,60
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June and October 1973, 93 patients infected with acute P. falciparum malaria were 

treated with HPQ at a total dose of 1.5 g over three days. CQ phosphate at the same 

dose was given as a reference drug to some patients.  The study reported that the cure 

rate for hydroxypiperaquine was 98.33%.
60

 HPQ was more effective than CQ with a 

difference in fever and parasite clearance time which was statistically significant.
60

  

Its side-effects were few, and included somnolence, nausea and dizziness.  When 

compared to CQ the intensity of the side-effects experienced were milder.
60

  

Following this study, trials were performed with the drug against P. vivax malaria 

from 1974-1977 in the malaria endemic villages of Central China.
57

  Approximately 

700 patients infected with P. vivax malaria patients were treated with 1.2 g HPQ 

orally, (divided in two doses) and 350 reference patients were given oral chloroquine. 

However, results suggested no difference in mean parasite clearance time for both 

drugs.
3,57

  The toxicity observed with CQ, e.g. retinal toxicity, occurs largely because 

of its long-half life and high plasma concentrations.  It is known that the hydroxylated 

derivative of chloroquine, hydroxychloroquine is 2-3 times less toxic than the parent 

CQ.
61

   The introduction of a hydroxyl group into one of the N-ethyl groups of 

chloroquine gives hydroxychloroquine reduced toxicity by introducing a readily 

available functionality that could undergo glucuronidation leading to detoxification 

and more rapid excretion.
61

  A similar increase in the safety profile would be expected 

in HPQ due to its additional hydroxyl group.   

 

1.5.5 Resistance to Hydroxypiperaquine  

Initial in vitro studies on P. falciparum performed in China and Vietnam reported that 

HPQ showed cross resistance to CQ only at a very low level.
3, 13

 Clinical trials 

undertaken in Yunnan province (1975) showed HPQ cured the CQ resistant cases of P. 

falciparum malaria in the control wing.
60

  A similar trial was performed in Hainan 

Island were CQ resistant P. falciparum malaria is known to be common.  Confirmed 

CQ resistant cases were selected for treatment with HPQ and the study showed a cure 

rate of 90.62%.
3
  This is in contrast with several studies which have shown marked 

cross resistance between CQ and  bisquinolines.
50,58,62,63

  Experimental resistance 

models have been developed in China for resistance studies on chloroquine, 

piperaquine and HPQ.
59

  All three resistant lines developed in ANKA strains of P. 
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berghei exhibited a clear cross resistance to artesunate.
59

 Cross resistance between 

PQ/CQ and HPQ/CQ was not significant.
59

  

 

1.5.6 Synthesis of Hydroxypiperaquine     

The synthesis and chemical properties of HPQ have only been very briefly described 

in a review published by Xu et al in 1988.
3
  This review was published in an obscure 

medical research journal (Journal of Medical College of the People’s Liberation Army) 

and represents the only published synthetic work undertaken on the drug HPQ.  The 

review article briefly describes a three step scheme for the synthesis of HPQ (Figure 

12, reproduced from review published by Xu et al
3
).  Essential details such as molar 

ratios of the reactants, reaction conditions and solvents were not specified for any of 

these steps.  Brief details regarding the chromatographic (TLC and HPLC) and 

spectral (UV, IR, 
1
HNMR) analysis of HPQ are provided in a brief section but with 

virtually no information relating to the analytical procedures.  There have been no 

published reports on the reproducibility of this synthesis or the validity of the 

analytical data.  

 

 

Figure 12 Synthetic scheme for Hydroxypiperaquine (reproduced)
3
  

 

HPQ was synthesised by what appears to be at first glance a simple three step reaction 

process (Figure 12).  In the first step, piperazine was converted to its hydrochloride 

salt using hydrochloric acid.  In the second step, 1,3 dichloropropanol (1,3-DCP, the 

alkyl linker unit) was reacted with the piperazine salt to generate the bispiperazinyl-2-

hydroxypropane intermediate.  For the third and final step, 4,7- dichloroquinoline 
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(4,7-DCQ) was reacted with the bispiperazinyl intermediate in refluxing ethanol for 

20 hours.  Whilst the synthetic process appears to be uncomplicated and 

straightforward, previous attempts at reproducing this approach have failed in our 

laboratories.
64

  The most common problems encountered were the formation of the 

monosubstituted piperazinyl chloropropanol and the presence of inseparable starting 

materials-especially piperazine (in large quantities after the 2
nd

 step). Both by-

products and starting materials were virtually impossible to remove from the reaction 

mixture in some instances, and in various steps resulted in low yields of unacceptable 

impure compounds.
64

  In addition, the method is difficult to monitor from a standard 

chromatographic standpoint e.g. TLC with UV detection, due to a lack of a 

chromophore in reactants and products in the first two synthetic steps. 
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1.6  Aim of the Research Project 

The primary aim of this project was to synthesise the antimalarial drug HPQ via 

alternative pathways to those described previously. The major objectives of the 

research program were to explore various synthetic strategies based on curent 

literature synthetic procedures involving similar compounds. The research was to 

explore various synthetic routes to generate the antimalarial compound HPQ – 

initially via methodology utilising N-monoprotected derivatives of piperazine.  To 

accomplish this, a range of N-monoprotected derivatives of piperazine was to be 

synthesised.  The N-monoprotected derivatives of piperazine were employed in turn to 

synthesize a range of N-monoprotected piperazine bis-adducts containing the 2-

hydroxypropane linker unit.  These bis-adducts should be easy to deprotect (i.e. 

remove the protecting group) using established literature methods. This deprotection 

step would be followed by a coupling reaction (catalysed by base) with 4,7-

dichloroquinoline (4,7-DCQ) to generate HPQ (Figure 13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Proposed synthesis of HPQ using protected piperazine and 1,3-DCP 
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As an alternative approach, the synthesis of HPQ via the coupling of 4,7-DCQ and 

piperazine in the first step was to be considered (Figure 14).  Piperazine, upon 

reaction with 4,7-DCQ has two possible amino reactive sites, which can lead to the 

formation of an array of compounds e.g. unreacted piperazine, mono and disubstituted 

piperazinyl adducts.   To overcome this potential problem, suitably mono N-protected 

derivatives of piperazine could be utilised e.g. tertiarybutoxycarbonyl piperazine 

(tBOC-piperazine), benzylpiperazine and ethoxycarbonylpiperazine. These reagents, 

which already have one end of the piperazine molecule effectively blocked rendering 

it unreactive thus ensuring the reaction with 4,7-DCQ generates a single product 

namely a mono-N-protected piperazinyl quinoline.   This product should then be 

easily deprotected and reacted with a half molar equivalent of 1,3-DCP to yield HPQ. 

 

 

Figure 14 Proposed synthesis of HPQ using protected piperazine and 4,7-DCQ 

 

For a protecting group to find wide application in organic synthesis, it must fulfil 

several criteria.  In particular it must be selectively introduced into the molecule to be 
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during subsequent synthetic steps, including purification steps, until its deprotection is 

necessary. 
65

  It should be introduced and removed with the help of readily available 

reagents and should be easily purified.  Only a few protecting groups meet all of these 

demands, and in most cases a compromise must be found, in which the most 

important criteria are addressed.
66

  Benzyl groups can be commonly used for the 

protection of alcohols, carboxylic acids, amines, and diols.
65

  They can be removed 

under fairly mild conditions e.g. hydrogenolysis.  Ethoxy carbonyl group and tertiary 

butoxy carbonyl (tBOC) group are very commonly used in synthetic reactions to 

protect amines.  However, they are acid labile protecting groups and readily removed 

by acid-mediated hydrolysis using strong acids.
65, 66

  Among a number of protecting 

groups, tBOC is considered to be one of the most useful protecting groups. Its 

popularity is largely due to its ease of addition and removal.
65

  It has several 

advantages such as its stability to hydrolysis in basic conditions and inertness to many 

nucleophilic reagents.
67

  As stated above, reagents required for its removal must be 

acidic. A variety of reagents have been employed which include hydrochloric acid in 

ethyl acetate, sulphuric acid in dioxane, anhydrous hydrogen fluoride, boron 

trifluoride and trifluoroacetic acid.
65

  

 

1.6.1 Significance of the Research  

The research proposed, if successful, will be significant in many respects. Upon future 

publication this research will represent the only detailed synthetic procedure for the 

antimalarial HPQ.  In addition HPQ generated during this program will be 

biologically tested within the School of Pharmacy’s antimalarial research program 

(under the supervision of Dr Kevin Batty) to generate significant biological data 

regarding the compound.  This data will supplement research data acquired from the 

School of Pharmacy’s ongoing PQ research program. HPQ as an antimalarial has 

potentially numerous advantages over piperaquine.  The additional hydroxyl group in 

HPQ appears to make it a prime candidate for Phase 2 metabolic processes which 

should increase its clearance rate thus reducing its biological half life.  Theoretically 

the long half life of PQ is a major issue with regard to possible future malarial 

resistance thus diminishing the drug’s therapeutic use.  In addition to this, hydroxyl 

group present in HPQ should in theory be readily derivatized to afford a range of 

simple ester prodrugs.
68, 69

  Phosphate and succinate prodrugs of HPQ should 



 26 

significantly increase the water solubility of the drug. The issue of low water 

solubility is a recognised problem with both HPQ and PQ. 
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2.1 General Details 

All reagents, starting materials and solvents were purchased from the Sigma-Aldrich 

Chemical Company, unless otherwise stated.  These materials were used without 

further purification. Solvents used were of laboratory grade and reactions were 

performed using Quickfit
TM

 glassware.  Fume hoods were used when necessary, and 

stirrer heating mantles were employed for heating methods.  Propylene glycol oil 

baths were employed for the most part.  
1
H NMR (Nuclear Magnetic Resonance) 

spectroscopy was performed on a Varian Gemini 200 MHz spectrometer (School of 

Applied Chemistry, Curtin University of Technology).  Deuterated solvents including 

methanol (CD3OD), chloroform (CDCl3), dimethyl sulfoxide (DMSO-d6) and 

deuterium oxide (D2O) were employed as NMR solvents.  All chemical shifts (δ) are 

quoted in parts per million (ppm) and referenced against solvent peaks in the sample 

e.g. CHCl3 at δ7.27 for CDCl3.  Thin layer chromatography (TLC) analysis was 

performed on 20 × 20 cm precoated silica gel, aluminium backed plates, impregnated 

with a fluorescent indicator (254 nm).  A Spectroline model CM 10 florescence 

analysis cabin fitted with short and long wavelength UV lamps was used to view the 

TLC plates. Flash column chromatography was performed using silica as an adsorbent.  

Vacuum solvent evaporation was performed using a Buchi R-200 rotary evaporater.  
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2.1.1 Synthetic Approaches to the 1,3-(Bispiperazinyl)-propan-2-ol 

Intermediate using Mono-N-Protected Piperazine Derivatives 

 

The synthetic methods employed in attempts to prepare the intermediate 1,3-(bis 

piperazinyl)-propan-2-ol are described below.  The methodology is similar to that 

outlined in the initial stages of the synthetic process described by Xu et al. 
3
  However, 

our attempts would utilise mono-N-protected piperazine derivatives not piperazine.  

For the first step of our alternate approach, efforts were made to synthesize a range of 

N-mono protected piperazine derivatives.  These derivatives were to be used, in the 

second synthetic coupling step with 1,3-dichloropropanol (1,3-DCP) to generate     

1,3-(bis (N-protected)piperazinyl)-propan-2-ol. Subsequent deprotection of the 

protected adduct using a suitable acidic medium should yield the desired intermediate 

1,3-(bispiperazinyl)-propan-2-ol.  It was initially anticipated that the above approach 

would yield materials relatively free from impurities which would only require minor 

purification by recrystallisation. 

2.1.1.1 Synthesis of 1-benzylpiperazine dihydrochloride 
70

 

1-Benzylpiperazine dihydrochloride was synthesised in a two step reaction based on 

the method as described by Cymerman et al. 
70
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Figure 15 Synthesis of Piperazine Dihydrochloride salt 

 

To a solution of 12.521 g (2.50 mmol) of piperazine hexahydrate in 50 mL of absolute 

ethanol, 16.25 mL (161.2 mmol) of hydrochloric acid (10M) was added dropwise 

using a Pasteur pipette (10M HCl:  piperazine hexahydrate in the molar ratio of 1 : 

2.5).  The reaction flask was cooled in an ice bath to maintain a temperature of 25°C.  

After stirring for 20-30 minutes, the contents of the flask were cooled to about 0°C, 

and the crystalline white solid yielded was collected by vacuum filtration and washed 
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with two 25 mL portions of ice-cold absolute ethanol.  The identity of the solid was 

confirmed as piperazine dihydrochloride salt by 
1
H NMR spectroscopy (D2O).

70
  An 

ethanolic solution (50 mL) of piperazine hexahydrate (3.285 g, 0.65 mmol), was 

warmed to 65°C using a hot water bath.  To this solution, 3 g (0.51 mmol) of 

piperazine dihydrochloride was added with stirring.  The solution was vigorously 

stirred for 5 min during which time benzyl chloride (2.136 g, 0.25 mmol) was added 

via a Pasteur pipette.  

N
H

H
N
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N
H

H
N

.2HCl
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DIHYDROCHLORIDE

Cl
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N
H

N

BENZYL PIPERAZINE  
 

Figure 16 Synthesis of 1-Benzylpiperazine 

 

The separation of white needles started almost immediately.  The solution was stirred 

for an additional 25 minutes at 65° C, and then cooled to room temperature.  The 

solution was allowed to stand in an ice bath for about 30 minutes.  Crystalline 

piperazine dihydrochloride monohydrate was collected by vacuum filtration.  The 

unreacted salt was washed with three 10ml portions of ice-cold absolute ethanol and 

dried.  The combined filtrate and washings from the piperazine dihydrochloride were 

cooled in an ice bath to 0°C and treated with 25 mL of absolute ethanol saturated with 

concentrated hydrochloric acid. After the solution was mixed, it was allowed to stand 

for 10-15 minutes in the ice bath.  The precipitated white plates formed were collected 

via suction filtration, washed with diethyl ether, and dried by rotary evaporation.  

TLC analysis and a 
1
H NMR spectrum (D2O) confirmed that the crystalline plates 

formed were the product required, 1-benzylpiperazine dihydrochloride. 
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2.1.1.2 Attempted Synthesis of 1-ethoxycarbonylpiperazine
71-73

 

 

1-Ethoxycarbonylpiperazine was attempted according to the method described by 

Krys’ko et al. 
72
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Figure 17 Synthesis of 1-ethoxycarbonylpiperazine 
72 

 

An aqueous solution (50 mL) of 5 g piperazine hexahydrate (1 mmol) was acidified 

with acetic acid to pH 4–5 and cooled to 0°C.  To this solution was slowly added a 

solution of 15 mL (185 mmol) ethyl formate in 50 mL of isopropanol. The mixture 

was stirred for 2 h and diluted with water to 150 mL.  The excess of ethyl formate was 

extracted with two portions of 100 mL hexane.  The remaining aqueous solution was 

neutralized with aqueous NaHCO3 to pH 7, and an organic extraction was performed 

with chloroform.  The chloroform extracts were combined, washed sequentially twice 

with water (75 mL) and saturated NaCl (75 mL), then dried over anhydrous sodium 

sulphate (Na2SO4).  The drying agent was separated by filtration, and DCM 

evaporated to give a residue that was further dried in a vacuum oven to yield a golden 

brown oil.  However, TLC analysis of the oil showed multiple spots and comparison 

of 
1
H NMR spectral data from the literature source clearly showed that the reaction 

had failed to generate the desired product (mostly starting materials present). 
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2.1.1.3 Attempted coupling reaction of 1-benzylpiperazine and 1,3-dichloropropanol 
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Figure 18 Synthesis of 1,3–bis(benzyl piperazinyl)propan–2-ol 

 

The product of the procedure 2.1.1.1, 1-benzylpiperazine dihydrochloride 498.366 mg 

(2 mmol) was dissolved in 20 mL of isopropanol.
74

  The solution was stirred with 691 

mg of K2CO3 (5 mmol) and 100 µL of 1,3-dichloropropanol (1 mmol).  The mixture 

was refluxed for 3 hr. TLC was performed at regular intervals but after 3 hrs the TLC 

analysis did not show any new spots for the product.  Therefore, the reaction was 

allowed to run for an additional 24 hrs.  TLC analysis after 24 hr showed a new 

compound spot. The reaction mixture was mixed with DCM (50 mL) and undissolved 

inorganic salts (e.g. K2CO3) were removed via filtration.  The filtrate obtained was 

evaporated to dryness using a rotary evaporater to remove all solvent (isopropanol and 

DCM).  However, 
1
H NMR spectrum (D2O) of the white solid obtained did not show 

the presence of the desired bispiperazinyl product required.  
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2.1.1.4 Attempted coupling reaction of tertiary butoxycarbonyl piperazine(t-BOC-

piperazine) and 1,3-dichloropropanol (1,3-DCP) in ethanol 
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Figure 19 Synthesis of 1,3–Bis(tBOC-piperazinyl)propan 2-ol 

 

The method below describes an attempt to couple 1,3-dichloropropanol with 

commercially acquired tertiary butoxycarbonyl piperazine (tBOC piperazine). 

 

To a solution of 500 mg of tBOC piperazine (2.6 mmol) in 5 mL of absolute ethanol, 

371 mg of K2CO3 (2.6 mmol) and 128 µl of 1,3-dichloropropanol (1.3 mmol) were 

added with stirring.  The reaction mixture was stirred at reflux temperature for 24-48 

hr.
74

  TLC was performed at regular intervals using tBOC piperazine (in DCM) as a 

reference standard. TLC plates from 24 hour onwards showed multiple spots which 

were very close to each other and various mobile phase mixtures failed to separate the 

mixture further.
74,75

  The reaction mixture was suspended in DCM and filtered to 

remove K2CO3.  The filtrate obtained was evaporated to dryness to remove all 

solvents (ethanol and DCM) yielding a dark brown sticky solid. 
1
H NMR spectrum 

(CDCl3) showed peaks pertaining to the tBOC group and the formation of the product.  

However, coupled with the TLC analysis (showing multiple spots), it was evident that 

a complex mixture of compounds was present.  
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2.1.1.5 Attempted coupling reaction of tBOC piperazine and 1,3-dichloropropanol 

in  isopropanol. 
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Figure 20 Synthesis of 1,3-Bis(tBOC piperazinyl)propan-2-ol 

 

To a solution of, 500 mg of tBOC piperazine (2.6 mmol) in 10 mL of isopropanol, 

371 mg of K2CO3 (2.6 mmol) and 128 µl of 1,3-dichloropropanol (1.3 mmol) were 

added with stirring.  The reaction mixture was refluxed  for 24-48 hr.
74

  As in the 

previous attempt, the progress of the reaction was monitored by TLC. The same 

workup procedure was employed as for the previous attempt to yield a similar dark 

brown sticky solid.
  1

H NMR spectral analysis (CDCl3) of this solid yielded a similar 

spectrum to the previous attempt.  
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2.1.2 Approaches to the Synthesis of the 7-Chloro-4-(piperazine-1-yl) 

quinoline Intermediate using 4,7-Dichloroquinoline (4,7-DCQ) 

 

The approaches described in the previous section to synthesise 1,3-(bis piperazinyl)-

propan-2-ol via N-monoprotected derivatives of piperazine did not produce 

intermediates of satisfactory purity.  Hence an alternative approach for the synthesis 

of HPQ was embarked upon.  The following approach involved the synthesis of a               

7-chloro-4-(piperazine-1-yl)quinoline intermediate as described below (Figure 21). 

This intermediate does not possess a conventional protecting group but instead 

contains an essential building block for HPQ synthesis i.e. the 7-chloroquinoline unit.  

This unit also serves to block or protect one of the amino groups present in piperazine, 

thereby only permitting a coupling reaction at the remaining amino group.  The below 

coupling product could then be reacted with 1,3-DCP to give HPQ.
63, 74, 76-81

  The 

below intermediate, 7-chloro-4-(piperazine-1-yl)quinoline, can be synthesised  via 

two different synthetic methods.  Piperazine could be coupled with 4,7-DCQ in the 

presence of organic bases (e.g. triethylamine, diisopropylethylamine) or inorganic 

bases (e.g. K2CO3) to generate 7-chloro-4-(piperazine-1-yl)quinoline as described in 

Figure 21.  
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Figure 21 Coupling reaction of Piperazine and 4,7-DCQ 

 

 

Alternatively tBOC piperazine could be coupled with 4,7-DCQ in the presence of the 

above bases to generate 7-chloro-4-(tBOC-piperazine-1-yl) quinoline as described in 

Figure 22.  This compound on subsequent deprotection in a suitable acidic medium 

would yield 7-chloro-4-(piperazine-1-yl) quinoline. 
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Figure 22 Coupling reaction of Protected Piperazine and 4,7-DCQ 
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2.1.2.1 Attempted coupling reaction of 4,7- DCQ and piperazine in triethylamine 

base
77, 82 
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Figure 23 Coupling reaction of 4,7-DCQ and Piperazine in triethylamine 
 

 

A solution of 500 mg of 4,7-dichloroquinoline (4,7-DCQ) (2.5 mmol) and 1.076 g  of 

piperazine (12.5 mmol) in 10 mL of triethylamine was heated for 48 hr at 80
o
C.  TLC 

analysis was performed at regular intervals (DCM: MeOH: Et3N 8.9:1:0.1 and DCM: 

Ethanol: Ammonia 100:8:1).  The reaction mixture was purified via flash column 

chromatography using silica and DCM: MeOH: Et3N (8.9:1:0.1) as the mobile 

phase.
83-85

 The product fractions obtained were concentrated using a rotary evaporater 

and analysed via 
1
H

 
NMR spectroscopy (CDCl3).  The 

1
H

 
NMR spectrum of the dark 

brown resinous solid obtained showed peaks for the presence of trace amounts of 4,7-

DCQ (starting material) and impurities such as ethanol, water and silicone grease. 

There were no peaks for the formation of the product.  
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2.1.2.2 Attempted coupling reaction of 4,7-DCQ and piperazine in triethylamine 

and N-methyl pyrrolidinone bases 
77, 82 

 

N
H

H
N

80oC/48 hr

PIPERAZINE

NCl

Cl

4,7-DICHLOROQUINOLINE
(4,7-DCQ) NCl

N

H
N

7-CHLORO-4-PIPERAZINYL 
QUINOLINE ADDUCT

Et3N

N-METHYL-
PYRROLIDINONE 

(NMP)

N O

 
 

Figure 24 Coupling reaction of 4,7-DCQ and piperazine in triethylamine and   N-

methyl pyrrolidinone 

 

In a mixture of Et3N (3 mL) and N-methyl pyrrolidinone (NMP,7 mL), 500 mg of 4,7-

DCQ (2.5 mmol) and 1.076 g of  piperazine (12.5 mmol) was dissolved and heated for 

48 hr at 80
o
C. TLC was performed at regular intervals (DCM: Ethanol: Ammonia in 

the ratio 100:8:1).  A solution of 4,7-DCQ in DCM was used as the reference spot to 

assess the progress of the reaction.  TLC analysis after 48 hours showed the presence 

of new spots and the reaction mixture was extracted and purified via a basic work up.  

The work up procedure included extraction with three 50 mL portions of 10% NaOH 

solution and subsequently with three 50 mL portions of saturated NaCl solution.  The 

organic phase was dried using 10 g of sodium sulphate, filtered and concentrated 

using a rotary evaporator.  A shiny chocolate coloured solid free from solvent was 

obtained. Spectral analysis of the solid was performed by 
1
H

 
NMR (CDCl3), but did 

not show peaks for the desired product (only NMP was present).   
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2.1.2.3 Attempted coupling of 4,7-DCQ and piperazine with catalytic amounts of 

KI 
 78, 82
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Figure 25 Attempted coupling of 4,7-DCQ and piperazine with catalytic amounts 

of KI 

 

A solution of 1.980 g of 4,7-DCQ (10 mmol), 4.307 g of piperazine (50 mmol) and 

100 mg of  KI in 20 mL of diisopropyl ethylamine (DIPEA, Hunig’s base) was heated 

for 48 hr at 80°C.  TLC was performed at regular intervals (DCM: Ethanol: Ammonia 

100:8:1). After 48 hr the reaction mixture was extracted via a basic work up.
83, 85

  A 

shiny chocolate coloured solid free from solvent was obtained. However, the 
1
H

 
NMR 

spectrum (CDCl3) of the solid showed peaks for 4,7-DCQ only. 
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2.1.2.4 Attempted coupling reaction of 4,7-DCQ and piperazine 
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Figure 26 Coupling reaction of 4,7-DCQ and piperazine 

 

A mixture of 10.8 g of piperazine (125.37 mmol), 1.047 g of K2CO3(7.58 mmol), 5.28 

mL of triethylamine (37.98 mmol) and 5.00 g of 4,7-DCQ (25.25 mmol) was stirred 

in 17.7 mL of NMP at 135°C for 2h.  TLC analysis was performed at 1 hour interval 

(DCM: Ethanol: Ammonia 100:8:1).  After cooling to room temperature the reaction 

mixture was diluted with 200 mL DCM.   The reaction mixture was washed twice 

with 50 mL brine, dried with MgSO4 and concentrated using a rotary evaporater. 
83, 85

  

The resulting yellow oil was purified by column chromatography on silica using 

CH2Cl2/ MeOH (4:1) as the eluent. The fractions containing the product were 

concentrated using rotary evaporater to give a pale yellow oil which was analysed by 

1
H

 
NMR spectroscopy (CDCl3).  However, the 

1 
H NMR spectrum given showed no 

product peaks and the presence of piperazine only.  
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2.1.2.5 Attempted coupling reaction of 4,7-DCQ and tBOC-piperazine in 

diisopropyl ethylamine base
78, 82 
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Figure 27 Coupling reaction of 4,7-DCQ and tBOC-piperazine in         

diisopropyl ethylamine (DIPEA) 

 

A solution of 1 g of 4,7-DCQ (5 mmol) and 1 g of tBOC-piperazine (5 mmol) in 10 

mL of DIPEA was heated for 48 hr at 80
0 

C.    The TLC (DCM: Ethanol: Ammonia 

100:8:1) performed on the reaction mixture showed the formation of new compounds. 

The reaction mixture was worked up with 10% NaOH and saturated NaCl.
83, 85

  The 

organic phase obtained was dried and concentrated as in the previous attempt (see 

page 40). A shiny chocolate coloured solid free from solvent was obtained.  Flash 

column chromatography purification was performed with DCM: Ethanol: Ammonia 

200:8:1 as the eluent solvent mixture.  Combined fractions with expected spots 

pertaining to the product were dried using a rotary evaporator.  The 
1
H NMR 

spectrum (CDCl3) of the shiny chocolate coloured solid obtained showed peaks for 

the formation of the product but also displayed peaks pertaining to starting materials 

i.e. 4,7-DCQ, tBOC-piperazine and DIPEA (minute quantities of DCM solvent were 

also evident). 
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2.1.2.6 Coupling reaction of 4,7-DCQ and tBOC-piperazine in DIPEA with 

catalytic amounts of KI
78, 82 
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Figure 28 Coupling reaction of 4,7-DCQ and tBOC-piperazine in         

diisopropyl ethylamine with catalytic amounts of KI 

 

A solution of 1.980 g of 4,7-DCQ (10 mmol), 1.86 g of tBOC-piperazine (10 mmol) 

and 100 mg of KI in 20 mL of DIPEA was heated for  48 hr at 80°C. TLC analysis 

was performed at regular intervals (DCM: Ethanol: Ammonia 100:8:1). The mixture 

was purified via basic work up as in the previous reactions.   A shiny chocolate 

coloured solid (free from solvent) was obtained.  Flash column chromatography 

purification was performed with DCM: Ethanol: Ammonia 200:8:1 as the eluent 

solvent mixture.  The 
1
H

 
NMR spectrum (CDCl3) of the chocolate coloured solid 

given showed peaks for the intermediate 7-chloro-4-(tBOC-piperazine-1-yl)quinoline. 

The amount of product obtained was 1.610 g. Based on 10 mmol of 4,7-DCQ and 

tBOC piperazine utilised the reaction yield was 46%. The product was relatively free 

from impurities such as solvent and starting material apart from minute quantities of 

tBOC piperazine, which could be seen from the integration of the 9H singlet (tBOC) 

at δ 1.50 ppm; this is probably due to spinning side bonds.  There also where two 

small multiplets at δ 3.00 and δ 3.60 ppm which could be attributed to the tBOC 

piperazine starting material. 
1
H

 
NMR (200MHz, CDCl3) δ ppm 1.50 (singlet, 9H, 

tBOC), 3.43 (multiplet, 4H, 2 H-2
1
& 6

1
) , 3.72 (doublet, 4H, 2 H-5

1
& 3

1
), 6.95 

(doublet, 1H, H-3), 7.50 (doublet of doublets, 1H, H-6), 7.94 (doublet, 1H, H-5), 8.40 

(doublet, 1H, H-8), 8.61 (doublet, 1H, H-2). 
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2.1.2.7 Deprotection of the tBOC coupling product, 7-chloro-4-(tBOC piperazine-

1-yl) quinoline.
87, 88
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Figure 29 Synthesis of 7-chloro-4-(piperazine-1-yl)quinoline 

 

Deprotection of the coupling product from the last procedure was performed to 

remove the tertiary butoxycarbonyl (tBOC) group and render the secondary amino site 

free for reaction with 1,3- dichloropropanol for the final synthesis of HPQ.  

 

The products from the reactions described in Sections 2.1.2.5 (730 mg) and 2.1.2.6 

(3.0 g) were placed into two separate 100 mL round bottom flasks.  To each flask, 

50% TFA: DCM (10 mL of TFA and 10 mL of DCM) were added and stirred for 15 

mins at room temperature.  By-products and excess TFA were removed via the 

following basic workup procedure. Contents of both the flasks were combined and the 

product mixture was made alkaline using sodium bicarbonate and then washed with 

50 mL 10% NaOH and 50 mL saturated brine.
83, 85

  The organic phase was separated 

and dried using MgSO4.  Upon concentration in a rotary evaporator, a pale brown 

coloured solid (1.720g) was obtained. The reaction yield was 64.7% based on the 

combined mass of the starting materials. 
1
H

 
NMR spectra (CDCl3) of the solids were 

obtained and compared to the literature data.
76, 77

 The spectrum correlated with the 

peaks specified in the literature and showed the presence of the desired deprotected 

product.
 1

H
 
NMR (200MHz, CDCl3) δ ppm 2.18 (singlet, 1H, H-4

1
), 3.43 (singlet, 8H, 

2 H-5
1
& 3

1 
and 2 H-2

1
& 6

1
) , 6.95 (doublet, 1H, H-3), 7.50 (doublet of doublets, 1H, 

H-6), 7.94 (doublet, 1H, H-5), 8.40 (doublet, 1H, H-8), 8.61 (doublet, 1H, H-2).  
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2.1.3 Synthesis of Hydroxypiperaquine (HPQ) 

2.1.3.1 Synthesis of HPQ using an organic base 
77, 82
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Figure 30 Synthesis of HPQ using an organic base 

 

In a solvent and base mixture of 2 mL of DIPEA, 5 mL of TEA and 2 mL of NMP, 

248 mg of 7-Chloro-4-(piperazin-1-yl)quinoline (1 mmol) and 50 µl of 1,3-

dichloropropanol were dissolved.  10 mg of KI was added (as a catalyst) and the 

reaction mixture was continuously refluxed for 24 hr.  TLC was performed in DCM: 

Ethanol: Ammonia (100:8:1) and a DCM solution of 7-chloro-4-(piperazin-1-

yl)quinoline was used as a reference to assess the reaction progress.  TLC after 24 hr 

showed a new spot therefore the reaction mixture was purified via a basic work up as 

described in previous sections (see Page 40).  The pale chocolate coloured solid 

obtained was analysed by 
1
H

 
NMR spectroscopy (CDCl3).  However, the spectrum 

clearly showed that the desired product (HPQ) was not present. Impurities like 

solvents (NMP and DCM) and starting material (1,3-DCP) were present. 
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2.1.3.2 Synthesis of HPQ using an inorganic base in isopropanol 
63, 82
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Figure 31 Synthesis of HPQ using an inorganic base 

 

To a solution of 500 mg of 7-chloro-4-(piperazin-1-yl)quinoline (2.5 mmol) and 128 

µl of 1,3-dichloropropanol (1.3 mmol) in 10 mL of isopropanol, 370 mg of K2CO3 

(2.7 mmol) and 100 mg of KI were added.  The mixture was stirred at reflux for 48 h.  

TLC was performed in DCM: Ethanol: Ammonia 100:8:1.  The reaction mixture was 

purified via a basic workup as described in the previous reactions (see Page 40) to 

yield a pale chocolate coloured solid.  As for the latter attempt, (from the 
1
H

 
NMR 

spectrum) there appeared to be no HPQ present in the solid. (Peaks observed for 

chloroform and water only).  

 

 

 

2 
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2.1.3.3 Synthesis of HPQ  from 7- chloro-4-(piperazin-1-yl) quinoline using 

inorganic base in ethanol 
63
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Figure 32 Synthesis of HPQ from 7-chloro-4-(piperazin-1-yl)quinoline using 

Na2CO3 

 

 

A mixture of 248 mg of 7-chloro-4-(piperazin-1-yl)quinoline (1 mmol) and 50 µL of 

1,3-dichloropropanol (0.5 mmol) were stirred in 1 mL of ethanol.  To this was added 

with stirring 52.5 mg (0.5 mmol) of Na2CO3.  The mixture was stirred at room 

temperature for 5 hr.  To workup the solution, 15 mL of DCM was added and the 

solution was subsequently dried over Na2SO4.  After filtration the solvent was 

removed by rotary evaporation yielding a dark brown oily liquid.  The oil present was 

analysed by 
1
H

 
NMR spectroscopy (CDCl3). As for both previous attempts, the 

spectrum obtained showed no peaks pertaining to HPQ (only 1,3-DCP was present). 

 

2 
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2.1.3.4 Synthesis of HPQ using an inorganic base in amyl alcohol 
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Figure 33 Synthesis of HPQ using an inorganic base in amyl alcohol 

 

To a stirring solution of 0.992g of 7-chloro-4-(piperazin-1-yl)quinoline (4 mmol) in 

10 mL of amyl alcohol (1-pentanol), 0.660 g of K2CO3 was added.  To this solution, 

200 µL of 1,3-dichloropropan-2-ol (2.1 mmol) was added using a Pasteur pipette.  

The solution was heated at a temperature of 120°C overnight (14 hours).  After 14 

hours, a dark solid material suspended in a clear pale yellow solution was produced.  

The material was extracted and purified via a basic work up as described in previous 

sections (see Page 40).  A shiny chocolate coloured solid free from any solvent was 

obtained after the workup.  TLC analysis on this compound showed considerable 

amounts of impurities and the starting material. Flash column chromatography was 

undertaken to purify the solid using an eluent of gradually increasing polarity starting 

with 200:8:1 DCM: Ethanol: Ammonia.   The fractions containing the suspected 

product were concentrated using rotary evaporater to give a brownish yellow coloured 

solid (683mg). Based on the ratio, 2 mmol of 7-chloro-4-(piperazin-1-yl)quinoline 

and 1mmol of 1,3-DCP produce 1mmol of HPQ the reaction yield for 2 mmol of HPQ 

was 59.0% (with solvent impurities).   The 
1
H NMR spectrum of the solid obtained 

showed peaks for the aromatic part of  HPQ consistent with the reference spectral data 

2 
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for HPQ as described by Xu et al 
3
. A few trace impurities such as amyl alcohol seen 

in the non-aromatic region and DCM were present. 
1
H

 
NMR (200MHz, CDCl3) δ ppm 

2.30 (Doublet, 4H, CH2-propanol × 2), 2.80 (Singlet, 8H, 2H-5
1 

and 2H-3
1
piperazine× 

2), 3.40 (Broad singlet, 8H, 2H-2
1 

and 2H-6
1
piperazine × 2), 3.60 (Broad singlet, 1H, 

OH), 4.10 (Pentet, 1H, CHOH), 6.88 (Doublet, 2H, H-3 × 2), 7.49 (Doublet of 

doublets, 2H, H-6 × 2), 7.97 (Doublet, 2H, H-5 × 2), 8.10 (Doublet, 2H, H-8 × 2), 

8.71 (Doublet, 2H, H-2 × 2). 
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3.1 Outline of the Synthetic Approaches to HPQ 

3.1.1 HPQ synthesis described by Xu et al 
3
 

Whilst numerous journal articles and reports have addressed its antimalarial efficacy 

and clinical uses of hydroxypiperaquine (HPQ), the literature regarding its synthesis is 

virtually non-existent.  The sole exception to this is the review published nearly 20 

years ago by Xu et al in the Journal of the Medical  College of the People’s Liberation 

Army (JMCPLA).
3
  The review contains the only published synthetic work relating to 

HPQ but there have been no subsequent reports on its efficiency, reliability and 

reproducibility.  

 

 The synthesis and chemical properties of HPQ were first described very briefly in the 

above review by Xu et al.
3
  They synthesised HPQ via a simple four step reaction 

procedure.  However, the review does not include any specific experimental details 

pertaining to the synthetic procedure and the only information relating to the synthesis 

is in the form of a diagrammatic reaction scheme shown below (Figure 34). 

 

 

 

Figure 34 Reproduced scheme for the synthesis of HPQ described by Xu et al 
3
 

 

In the first step of the synthetic procedure, piperazine was converted to its 

hydrochloride salt using hydrochloric acid (HCl) but no solvent was specified.  For 

the second step, 1,3-dichloropropanol (1,3-DCP) was reacted with the above 

piperazine salt.  A reaction temperature of 110-120°C was specified and the reaction 
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was carried out for 3 hours yielding 1,3-bis-(piperazinyl)-propan-2-ol (70% yield). 

Oddly, no solvent is specified for this second step. In the third step, 4,7-

dichloroquinoline (4,7-DCQ) was coupled with the above bispiperazinyl product by 

refluxing in ethanol for 20 hours to give HPQ (80% yield).  Whilst this approach 

appeared straightforward, previous attempts at reproducing the synthesis in our 

laboratory were unsuccessful.
64

  The lack of experimental details and conditions for 

all the steps significantly hampered its reproduction.  In particular, important 

information relating to the amounts of reagents and reaction solvents for each step 

were not provided.  In earlier efforts to reproduce the synthesis, the reaction 

conditions were varied (in particular relative amounts of reactants) and numerous 

problems were encountered.
64

  The most common problems encountered were the 

formation of monosubstituted piperazinyl chloropropanol and the presence of starting 

materials (especially piperazine) in very large quantities.  Both by-products and 

unreacted starting materials proved very difficult to remove from the reaction mixture 

via conventional means resulting in low and unacceptable yields of products at best 

(at worst crude and pharmaceutically unacceptable product mixtures).  In addition, 

rapid analytical monitoring of the first two steps of the process was particularly 

difficult as both piperazine and 1,3-DCP lack an effective chromophore, making TLC 

plates difficult to visualise using conventional UV detection. TLC analysis previously 

performed using various stains for plate visualisation and compound detection (e.g. 

anisaldehyde, iodine and potassium permanganate) met with very little success. 

 

3.1.2 Summary of synthetic approaches 

The present research explored various synthetic strategies to synthesize HPQ in an 

efficient manner.  The starting compound, piperazine is dibasic and contains two 

secondary amino groups both of which have the same susceptibility to nucleophilic 

substitution reactions using alkyldichlorides. Reaction of piperazine via this process 

can lead to the formation of an array of alkylated compounds - namely 

monosubstituted and disubstituted products (and depending on the conditions possibly 

unreacted piperazine).  To overcome this issue, previous attempts at the synthesis 

utilised an excess of piperazine where in fact piperazine acts as both reactant and base 

catalyst for the substitution reaction.  It has been demonstrated by many studies that 

base catalysts increase nucleophilicity of amino compounds via amino group 
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deprotonation.
89

  An alternative approach which may limit the amount of bis by–

products is to utilise mono-N-protected derivatives of piperazine.  It was intended in 

our initial proposal to synthesize or possibly commercially acquire a selection of these 

protected derivatives namely tertiary butoxy carbonyl piperazine (tBOC piperazine), 

1-benzylpiperazine and 1-ethoxycarbonylpiperazine.  Most of these protecting groups 

have a UV chromophore which would assist in the monitoring of the reactions by 

TLC with UV detection. Also, a protected piperazine should in theory react more 

cleanly with the alkyl dichloride (1,3-DCP), at the unprotected amino group as it 

would be the only site available for  nucleophilic attack.  The protected product 

generated on subsequent removal of the protecting group should provide the desired 

intermediate, 1,3-bis-(piperazinyl)-propan-2-ol, which could then be coupled with two 

molar equivalents of 4,7-DCQ to provide HPQ (Figure 35). 
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Figure 35 Proposed synthesis of Bis-(protected piperazinyl)propan-2-ol 

 

In addition to the above, a second alternative synthetic approach to HPQ is possible, 

involving the direct coupling reaction of 4,7-DCQ and either piperazine or an N-

monoprotected piperazine derivative. This would generate one of the two 
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intermediates, 7-chloro-4-(piperazin-1-yl)quinoline (Figure 36) or 7-chloro-4-(N-

monoprotected piperazin-1-yl)quinoline (Figure 37).  Both intermediates could 

subsequently be reacted with 1,3-DCP to afford HPQ.  
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Figure 36 Proposed synthesis of 7-Chloro-4-(piperazin-1-yl)quinoline 
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Figure 37 Proposed synthesis of 7-Chloro-4-(protected piperazin-1-yl)quinoline 

 

All starting materials, intermediates and products generated via this approach would 

posses a chromophore and hence the above reactions should be easily monitored via 

conventional TLC with UV detection.  A literature review revealed that three different 

methods have been previously published to synthesise 7-chloro-4-[piperazin-1-

yl]quinoline.  The first literature method by Vennerstrom described the synthesis of 

novel bisquinolines and synthesized 7-chloro-4-[piperazin-1-yl]quinoline by reaction 

of 4,7-DCQ and piperazine in a molar ratio of 1:10.
63

  The reactants were refluxed 

under argon atmosphere for 24 hours in 2-ethoxyethanol solvent.  They showed that 

by simply cooling and reheating the reaction mixture the excess unreacted piperazine 
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could be distilled off.  The second approach by Chiyanzu et al described the synthesis 

of 4-aminoquinoline isatin derivatives.
76

 7-chloro-4-[piperazin-1-yl]quinoline was 

synthesized as an intermediate by reacting 4,7-DCQ and piperazine in a 1:5 molar 

ratio.   They used both inorganic (K2CO3) and organic bases (triethylamine) as 

catalysts in N-methyl-2-pyrrolidinone solvent.  The preparation of 7-chloro-4-

[piperazin-1-yl]quinoline was carried out at 135°C for 4 hours under a nitrogen 

atmosphere. The third method described by Clarkson et al coupled 4, 7-DCQ with 

piperazine in a 1:5 molar ratio in the presence of both K2CO3 and triethylamine  under 

nitrogen at 135ºC for 2 hours in N-methyl-2-pyrrolidinone.
77

  It was our intention to 

repeat the latter method (see section 3.3.1) as all the reagents used in this method were 

available in our laboratory and the reaction conditions were easily reproducible. 

However, the reported product yield of 87.5 % was the major reason why this method 

was attempted.  

 

3.2 Synthetic Approaches to HPQ using N-Mono Protected 

Piperazine Derivatives 

 

Three methods using N-mono protected derivatives of piperazine were to be attempted.  

• Coupling of 1-benzylpiperazine with 1,3-dichloropropanol to synthesise bis 

(benzyl)piperazinyl-propan-2-ol. 

• Coupling of tBOC-piperazine with 1,3-dichloropropanol to synthesise bis 

(tBOC)piperazinyl-propan-2-ol. 

• Coupling of 1-ethoxycarbonylpiperazine with 1,3-dichloropropanol to 

synthesise bis(ethoxycarbonyl)piperazinyl-propan-2-ol. 

Each bis-adduct should be easily deprotected and subsequently coupled with two 

molar equivalents of 4,7-DCQ to provide HPQ.  Whilst, tBOC piperazine is a 

commercially available compound from the Sigma-Aldrich Chemical Company,       

1-benzylpiperazine and 1-ethoxycarbonylpiperazine were synthesized in our 

laboratory according to recent literature methods.
70, 72
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3.2.1 Synthesis of 1-Benzylpiperazine Dihydrochloride 

1-Benzylpiperazine dihydrochloride was synthesised according to the literature 

method of Cymerman et al (see page 29).
70

  This method involved the synthesis of              

1-benzylpiperazine via a two step process.  The first step involved the synthesis of 

piperazine dihydrochloride monohydrate.  This in turn was reacted in the second step 

with benzyl chloride in the presence of piperazine hexahydrate (organic base catalyst 

and assists in reagent solvation) to afford 1-benzylpiperazine dihydrochloride. The 

methods described were facile, in comparison to an alternative method described by 

Bergbreiter et al using 1-ethoxycarbonylpiperazine.
90

  By following Cymerman 

method, 1-benzylpiperazine dihydrochloride was successfully quantitatively 

synthesised.
70

  

 

3.2.2 Synthesis of 1-Ethoxycarbonylpiperazine 

The method used to synthesise 1-ethoxycarbonylpiperazine was based on a synthetic 

method published by Krys’ko et al, (see page 31).
72

  They describe the synthesis of    

1-ethoxycarbonylpiperazine by the reaction of an aqueous solution of piperazine with 

ethyl formate in isopropanol.
72

 Alternative literature methods included the reaction of 

piperazine with ethyl chloroformate in xylene described by Kushner et al.
73

  After 

careful scrutiny of the methods available the Krys’ko method appeared to be simpler, 

because of the ready availability of all reagents involved. 

 

However, attempts to reproduce the above synthesis were not successful. Upon closer 

examination of the research article a typographical error was noted in the 

experimental section relating to the reactants employed. Ethyl formate was specified 

in this section but the accompanying reaction scheme featured ethyl chloroformate. 

Clearly the latter reagent should have been employed in the synthesis of the               

1-ethoxycarbonyl piperazine. Further attempts to synthesize ethoxycarbonylpiperazine 

were not pursued because two alternative protected piperazines were now available to 

us - namely 1-benzylpiperazine and commercially available tBOC piperazine. Time 

constraints and reagent unavailability did not permit us to reattempt the above 

synthesis with ethyl chloroformate.  In addition, other errors in the paper relating to 
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the use of incorrect molecular weights and molar amounts of reagents were also noted 

upon further examination. 

 

3.2.3 Coupling reaction of Protected piperazine and                        

1,3-Dichloropropanol  

Three methods for the coupling of 1,3-dichloropropanol with N-protected piperazine 

were attempted.  The first involved the coupling of 1-benzylpiperazine with                    

1,3-dichloropropanol (see page 32).  The second and the third methods involved the 

attempted coupling of tBOC-piperazine with 1,3-dichloropropanol in two different 

solvents (see pages 33 and 34).  The coupling of 1-benzylpiperazine with                

1,3-dichloropropanol was attempted using isopropanol as a solvent.  Isopropanol was 

selected because of results from a solubility assessment performed by Fong. 
64

 This 

earlier work performed in our laboratory showed that both starting materials                

(1-benzylpiperazine and 1,3-dichloropropanol) were very soluble in low molecular 

weight alcohols such as methanol, isopropanol and ethanol. High molecular weight 

alcohols e.g. amyl alcohol were not used inspite of their higher boiling points as they 

showed poor solubility for the reactants.
64

 It was speculated that the use of a higher 

boiling point solvent (isopropanol), allowing a higher reflux temperature, would 

improve the reaction yield.  Potassium carbonate (K2CO3) was used as a catalytic base 

in all of the three coupling methods attempted.  The use of K2CO3 as an inorganic 

base in nucleophilic substitution reactions has been described by various research 

groups.
74,76,77,91

  This inorganic base can be used in a variety of organic solvents. Both 

Clarkson and Chiyanzu et al described the use of K2CO3 in N-methyl-2-pyrrolidinone 

as a solvent.
76, 77

 They have also used an organic base, triethylamine, in combination 

with K2CO3.  It has also been used in dimethyl formamide (DMF) by Ryckebusch et 

al.
92

  Kumar et al have described the use of K2CO3 for the synthesis of 

hydroxychloroquine in the absence of any solvent.
82

  We decided to attempt the 

coupling of 1-benzylpiperazine with 1,3-dichloropropanol under continuous reflux 

conditions for 3 hr using K2CO3 in iPrOH. (see Figure 18, Page 32). 

 

 

However, the TLC analysis of the reaction mixture after 3 hours did not show any 

new compound spots for a product, therefore the reaction was continued for 24 hours. 

Further TLC analysis showed multiple spots after 24 hours. However, 
1
H NMR 
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spectral analysis of the reaction mixture following workup did not indicate the 

presence of the desired product.  

 

The second method attempted the coupling reaction of tBOC-piperazine with 1,3-

dichloropropanol (see Figure 19, Page 33).  The conditions employed for this reaction 

were similar to the previous coupling reaction except for the use of ethanol as the 

solvent.  Again the selection of solvent was primarily based on its boiling point and its 

ability to dissolve tBOC piperazine. However, a mixture of compounds was found to 

be present on 
1
H NMR spectral analysis of the brown solid obtained.   

 

The final method attempted was similar to the latter approach but involved the 

coupling of 1,3-dichloropropanol with tBOC-piperazine in isopropanol (see Figure 20, 

Page 35). The reaction conditions were the same as the previous two reactions i.e. the 

reaction was carried out at reflux for 48 hours. However, TLC analysis of the reaction 

showed various spots which could not be separated even with various combinations of 

mobile phase mixtures e.g. DCM: ethanol: ammonia, DCM: methanol: triethylamine 

and petroleum ether: ethyl acetate.   

 

The failure of all the above methods suggested that aprotic solvents such as 

dimethylformamide, acetone or acetonitrile would have possibly been more suitable 

for these reactions. The above reactions are probably operating via a substitution 

nucleophilic bimolecular (SN2) mechanism. It has been observed that polar aprotic 

solvents can increase the rate of such reactions by up to 10
9 

fold (by increasing the 

reactivity of the nucleophile).  The nucleophile under aprotic conditions is not 

surrounded by a shell of solvent molecule (a nucleophilic solvation envelope) unlike 

in the presence of protic solvents (e.g. methanol) where its nucleophilicity is 

diminished due to hydrogen bonding with the solvent.
93

  Previous attempts in our 

laboratory involving the use of aprotic solvents have been problematic. The use of 

dimethyl formamide (DMF) has met with some success but difficulties have arisen in 

relation to the removal of this high boiling point solvent via conventional rotary 

evaporation.
64 

 Due to time constraints, this solvent and other aprotic solvents such as 

acetone, tetrahydrofuran, dimethyl sulfoxide and dioxane were not trialled   
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3.3 Synthetic Approaches to 7-Chloro-4-(piperazin-1-yl) 

quinoline Using 4,7-Dichloroquinoline 

 

Two synthetic approaches were attempted to synthesise the above intermediate                

7-chloro-4-(piperazin-1-yl)quinoline.  The first approach was a direct method which 

involved the coupling of 4,7-DCQ with piperazine in the presence of either inorganic 

base or organic bases.  The second approach involved the coupling of 4,7-DCQ with 

tBOC protected piperazine to give 7-chloro-4-(tBOC piperazin-1-yl)quinoline.  On 

subsequent deprotection with trifluoroacetic acid (TFA) this product would provide                               

7-chloro-4-(piperazin-1-yl)quinoline.  Numerous methods have been published 

relating to the synthesis of similar compounds by the coupling of 4,7-DCQ with a 

variety of primary, secondary or diamino compounds.  The solvents, bases and 

reaction conditions employed in these published reactions will be discussed in the 

sections below. 

 

3.3.1 Attempted Coupling of 4,7-DCQ and Piperazine 

Four different methods for the coupling reaction of 4,7-DCQ and piperazine utilizing 

a variety of solvents and bases were attempted (see pages 35-40).  The first method 

involved the coupling of 4,7-DCQ with piperazine using triethylamine as an organic 

base (see page 37).  The reaction was carried out by heating the reactants at a 

temperature of 80ºC for 48 hours. This approach was based on similar synthetic 

procedures.
76-78, 81, 82, 91 

 Triethylamine has been employed as a base by Kumar et al in 

the synthesis of hydroxychloroquine.
82

  The use of this base has been further cited in 

methods described by Clarkson et al
77

, Beagley et al
80

 and Chiyanzu et al.
76

 Kumar 

emphasized the use of organic bases such as triethylamine, diisopropylethylamine in 

the absence of any solvents i.e. the base functions as both catalyst and solvent.
82

  

Other published methods employed organic bases in solvents such as N-methyl-2-

pyrrolidinone, isopropanol and ethanol.
50, 63, 76, 77, 91

  The role of base in nucleophilic 

aromatic substitution reactions can be critical to the success of these reactions.  The 

above reaction proceeds via a substitution nucleophilic aromatic (SNAr) mechanism 

(see Fig 38 on the next page).  This involves a two step process in which the first step 
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involves the attack of the nucleophilic amine (in this case the 2
o
 cyclic amine 

piperazine) on the heteroaryl halide (in this case 4,7-DCQ) to give a resonance 

stabilised carbanion intermediate.  The formation of this intermediate is often the rate 

limiting step.  This is followed by the loss of the halide leaving group (chloride) in the 

second step. 
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Figure 38 Proposed SNAr mechanism for the reaction of 4,7-DCQ & piperazine 

 

Bases catalyse the above process by increasing the rate of the second step .
89

  Under 

protic solvent conditions, it is generally believed that base catalysts function by 

deprotonating the quaternary amino group of the intermediate followed by the rapid 

loss of the chloride. The base may also assist the loss of chloride directly via a 

protonated form of the base catalyst (conjugate acid).
89

 

 

Most published methods for the synthesis of similar compounds use an excess of 

piperazine
76,77

 or other diamine when coupling with 4,7-DCQ and therefore the 

unreacted piperazine functions as an organic base. A 4,7-DCQ : piperazine molar ratio 

of 1:5 was employed in our first attempt (Figure 23) as presented for the method 

published by Clarkson et al (synthesis of Totarol amino alcohol derivatives).
77
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However, the quantities of both reactants were relatively high in comparison to the 

second base/solvent (Et3N) used and therefore complete dissolution of the reactants in 

the basic solvent was not achieved. The material obtained after work up was a hard 

dark brown resinous solid soluble in DCM.  TLC analysis on the substance showed 

multiple compound spots. Flash column chromatography was performed but, this 

procedure was not wholly successful. Most of the piperazine originally present in the 

reaction mixture was removed by the chromatographic purification step but 4,7-DCQ 

still remained. The presence of TLC spots of very close proximity meant that the 

amounts of fractions containing the suspect product were also contaminated with 

impurities.  However, the 
1
H

 
NMR spectrum (CDCl3) of these fractions showed 

mostly presence of 4,7-DCQ (trace quantities of water, ethanol and silicone grease 

were also present).  Reference spectra from the literature were compared with the 

spectrum obtained to clarify and confirm the above conclusions.
63, 76,77

. The lack of 

reactant solvation might be one possible reason why this reaction failed.  The lower 

reaction temperature of 80°C was selected (compared to the higher temperatures used 

in other literature methods) to avoid charring and degradation of the reactants because 

they were not in solution.  This lower temperature obviously avoided compound 

degradation but meant the reaction had to be carried out over a longer period (48 

hours). The lower temperature may also have played a significant role in the 

reaction’s failure.   

 

The second attempt at the coupling of 4,7-DCQ with piperazine was similar to the 

above method except for the use of triethylamine base in N-methyl-2-pyrrolidinone 

solvent (see Figure 24, Page 38).  This attempt was based on the method by Beagley 

et al in which triethylamine and N-methyl-2-pyrrolidinone were used in the molar 

ratio 3:7 for a similar synthetic reaction (synthesis of ruthenocene-chloroquine 

analogues).
91

  The same reaction conditions were further cited by Chiyanzu et al using 

triethylamine, K2CO3 and N-methyl-2-pyrrolidinone (for 4 hours at 135ºC).
76

 

 

After 48 hours at 80ºC, TLC analysis performed on the reaction mixture showed the 

formation of a new product which was subsequently purified using a basic work up.  

A basic work up with NaOH was employed as it was believed that the product formed 

was an HCl salt (the reaction produces two molar equivalents of HCl as by-product).  

To generate the free piperazinyl base, a stronger base (NaOH) is added which 
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displaces the weak base product from its salt.  The free amino base can then be 

extracted into an organic solvent i.e. DCM.  Saturated brine was used in the work up 

for two reasons.  Brine is used to dry the organic phase and restricts the dissolution of 

the free base into the aqueous phase.  After work up, the shiny chocolate coloured 

compound afforded was analysed by 
1
H

 
NMR spectroscopy.  However, the spectrum 

showed peaks pertaining to N-methyl-2-pyrrolidinone only. Neither the starting 

materials (4,7-DCQ and piperazine) nor the desired product were present.   

 

The third attempt at the coupling of 4,7-DCQ with piperazine was based (partly) on 

the previously described attempts and the success of a similar reaction with tBOC 

protected piperazine which will be discussed in the later section  (see Figure 25, Page 

39).
82

  The use of diisopropyl ethylamine (DIPEA) as a solvent-base was described in 

two recent literature methods describing the coupling of 4,7-DCQ with aminoheptanes 

and aminopiperidine.
78, 96

  These methods describe the coupling of 4,7-DCQ with 4-

aminopiperidine (Madrid et al 
78

) using DIPEA as a solvent-base (100°C for 20 hours) 

and the synthesis of antiprion polyquinoline derivatives (Klingenstein et al).
96

  In this 

latter method, 4,7-DCQ was coupled with diaminoheptane in the presence of DIPEA 

using 1-pentanol as a solvent.
96

  Piperazine reacts with 4,7-DCQ in a similar fashion 

to the compounds mentioned above, though the molar ratios of the reactants might not 

be similar.  After careful review of the methods it was decided that a ratio of 1:5 (4,7-

DCQ: piperazine) would be used for our reaction.
76,77

  This ratio was selected to 

primarily minimise the formation of bis- substituted by-product.  As has been 

mentioned earlier, most previous research methods describing similar coupling 

reactions of 4,7-DCQ and secondary and tertiary amines have utilized the ratio of 1:3 

or more.
76, 77, 82

  In addition, the use of catalytic amounts of potassium iodide (KI) as 

described by Kumar et al is known to increase the efficiency of nucleophilic 

substitution reactions.
82

 They have claimed that the molar ratio of the reactants can be 

decreased from 1:5 to 1:1 when KI is employed as a catalyst.  Potassium iodide 

catalyses the reaction by substitution of the chorine atom on the quinoline ring (4-

chloro site) with an iodine atom, to form a stable iodide intermediate.  Iodide is 

subsequently displaced more readily than chloride due to the weak carbon-halogen 

bond thus making the nuclear carbon (C-4) more prone to nucleophilic substitution by 

the amine.
93
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 Therefore, in our third attempt at the coupling reaction of piperazine and 4,7-DCQ 

the solvent-base used was DIPEA and catalytic amounts of KI were added.  The 

reaction produced a dark brown substance which was purified via a basic work up.  

However, as in previous attempts the procedure generated a shiny chocolate coloured 

solid with an 
1
H

 
NMR spectrum (CDCl3) that showed the presence of 4,7-DCQ 

only(minute quantities of solvent impurities were also observed).  

 

The fourth and final attempt at the coupling of 4,7-DCQ with piperazine was based 

directly on a published method by Clarkson et al (See Figure 26, Page 40).
77

  As 

mentioned at the beginning of this chapter, three different research groups had 

synthesized 7-chloro-4-[piperazin-1-yl]quinoline previously using fairly similar 

approaches.  The method described by Clarkson et al which coupled 4,7-DCQ with 

piperazine in a 1:5 ratio in presence of K2CO3 and triethylamine was selected for the 

present research.
77

  All the steps in the procedure including the work up with 4:1 

DCM: MeOH and column chromatography were repeated as described in the 

literature method.  However, the 
1
H

 
NMR spectrum (CDCl3) of the pale yellow oil 

that was formed did not show any peaks for the desired product, but indicated the 

presence of piperazine only. The reason for the reaction’s failure could not be 

determined, bearing in mind that the procedure was reproduced exactly. Due to time 

constraints, no further investigation or repeat of this reaction was attempted.  
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3.3.2  Coupling Reaction of 4,7-DCQ and tBOC-Piperazine  

The problems of direct coupling of piperazine with 4,7-DCQ have been discussed in 

the sections above (Section 3.1.1 and 3.1.2).  One of the strategies to overcome these 

issues, as mentioned earlier is to protect piperazine with a suitable protecting group. 

In this section, the attempted coupling reactions of tBOC-piperazine with 4,7-DCQ 

are discussed.  As mentioned earlier, tBOC-piperazine is a commercially available 

substance therefore no attempts were made to synthesise this compound in our 

laboratory.  

 

Two methods were made to couple 4,7-DCQ with tBOC-piperazine (Pages 41 and 42).  

The first method was partly based on a literature method described by Madrid et al.
78

  

They coupled 4,7-DCQ with 4-aminopiperidine using DIPEA as a solvent-base at 

100
0
C for 20 hours.

78
  In our first attempt, DIPEA was used as the solvent and the 

reaction conditions were virtually unchanged except a milder reaction temperature of 

80°C (for 48 hours) was employed(see Figure 27, Page 41).  DIPEA was used for its 

better solubility as reported by Madrid and Klingenstein et al.
78,96

 However, the use of 

tBOC-piperazine in the present research meant that there was very little scope for the 

formation of a bis substituted product unless deprotection occurred in the reaction 

flask.  This later scenario is highly unlikely since strongly acidic conditions are 

required for this to occur. 4,7-DCQ and tBOC-piperazine were mixed in the molar 

ratio of 1:1.  This was based on the assumption that with only one available site on 

tBOC-piperazine for nucleophilic aromatic substitution it would react quantitatively 

with 4,7-DCQ.  This is in contrast to previous literature methods which have reacted 

protected amines in a higher molar ratio while coupling them with 4,7-DCQ. These 

include a method by Solomon et al in which mono-BOC-protected diaminoalkanes 

and 4,7-DCQ were reacted in the molar ratio 1:2.
94

  After completion of the reaction, 

a shiny chocolate coloured solid was obtained.  The 
1
H

 
NMR spectrum (CDCl3) of 

this solid showed peaks for the desired product. But 4,7-DCQ and tBOC-piperazine 

were also evident. The 9H singlet for tBOC at δ 1.45 ppm was larger than expected 

and the 12H isopropyl doublet normally observed for DIPEA (observed at δ 1-2 ppm) 

appeared to be overlapping with the product tBOC singlet.  Another possible reason 

for the extension of this singlet could be the presence of unreacted tBOC-piperazine.  

Flash column chromatography was performed on the crude solid and 
1
H

 
NMR spectral 
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analysis performed on the solid obtained after the purification showed the product was 

present; but that impurities such as 4,7-DCQ, tBOC-piperazine and DIPEA were also 

evident. 

 

 The second attempt was similar to the above reaction except for the use of a catalytic 

amount of KI (see Page 42).  After refluxing for 48 hours at 80°C in DIPEA, TLC 

analysis showed almost no traces of starting material.  A work up procedure based on 

earlier reactions was used to purify the crude product (Section 3.3.1). The 
1
H NMR 

spectrum (CDCl3) on the solid obtained showed that the desired product, 7-chloro-4-

(tBOC piperazin-1-yl)quinoline had been successfully synthesized with only minor 

impurities present.   The reaction yield was approximately 46 % (including minor 

impurities). The following table lists the product peaks that were observed for 7-

chloro-4-(tBOC piperazin-1-yl)quinoline.  

 

Table 1  Peak interpretation results for 7-chloro-4-(tBOC piperazin-1-

yl)quinoline 
 

Chemical shift  (δ) Peak type Proton Assignment 

8.61 Doublet 1H H-2 

8.40 Doublet 1H H-8 

7.94 Doublet 1H H-5 

7.50 Doublet of doublet 1H H-6 

6.95 Doublet 1H H-3 

3.72 Multiplet 4H 2×H-5
1
&3

1
 

3.43 Multiplet 4H 2×H-2
1
&6

1
 

1.50 Singlet 9H tBOC (3×CH3) 
 

 

3.3.2.1 Deprotection of 7-chloro-4-(tBOC piperazin-1-yl) quinoline 

The next step required the deprotection of 7-chloro-4-(tBOC piperazin-1-yl)quinoline 

afforded in the previous coupling reaction, to remove the tertiary butoxy carbonyl 

group (See Page 43).  The deprotected product 7-chloro-4-(piperazin-1-yl)quinoline 

would subsequently be coupled by reacting with 1,3-dichloropropanol (1,3-DCP) for 

the final synthesis of HPQ.  Various methods for the deprotection of the tBOC group 

have been described in the literature.
65,66

  The procedure should be achievable under 

relatively mild conditions using strong acids such as HCl and trifluoroacetic acid 

(TFA) in the presence or absence of DCM as solvent.
67,87

  Fray et al describe a 
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method for the deprotection of N-Boc-piperazine using 50% TFA: DCM at 20ºC for 

30 mins.
67, 87, 88

 The use of HCl and ethyl acetate was described by Stahl et al.
97

  

Solomon et al deprotected the N-Boc-protected derivatives of 4-aminoquinolines 

using 20% HCl in dioxane.
94

  In the present work, a 50% (v/v) TFA: DCM mixture 

was used to deprotect 7-chloro-4-(tBOC piperazin-1-yl)quinoline.  The end products 

from the successful coupling reactions described above (section 3.3.2) were stirred 

separately with 50% (v/v) TFA: DCM at room temperature for 15 mins.  The method 

appeared to be very efficient because 
1
H NMR spectral analysis of the solid after 

work up showed only deprotected product. The reaction yield for the deprotection step 

was 65 %.   Trace quantities of DCM were present along with two broad peaks at   δ 

4.00 ppm and δ 3.90 ppm and a triplet at δ 3.35 ppm. These impurity peaks were also 

common to other spectra obtained in our laboratory using the same source of NMR 

solvent (CDCl3) and represent an inert contaminant in the solvent bottle. The 

following table lists the product peaks that were observed for 7-chloro-4-(piperazin-1-

yl)quinoline.  

 

Table 2 Peak interpretation results for 7-chloro-4-( piperazin-1-yl)quinoline 

 

Chemical shift  (δ) Peak type Proton Assignment 

8.61 Doublet 1H H-2 

8.40 Doublet 1H H-8 

7.94 Doublet 1H H-5 

7.50 Doublet of doublet 1H H-6 

6.95 Doublet 1H H-3 

4.00 Multiplet 8H 2H at 2
1
, 6

1
, 5

1
& 3

1
 

3.2 Multiplet 1H H-4
1
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3.4 Synthesis of Hydroxypiperaquine (HPQ) 

Following on from the successful synthesis of the intermediate 7-chloro-4-(piperazin-

1-yl) quinoline, described in the previous section the next synthetic step planned was 

to couple this compound with 1,3-dichloropropanol to generate HPQ (see Page 24).  

Four separate attempts were made to synthesize HPQ (see Pages 44-48).  Two 

different approaches based on literature methods were initially attempted.
63, 82

  The 

first approach using an organic base; was based on a similar nucleophilic substitution 

reaction discussed in the above section (Section 3.3).  The second approach utilised 

inorganic bases such as potassium carbonate and sodium carbonate in various solvents.  

 

3.4.1 Synthesis of HPQ in organic base 

The first attempted synthesis of HPQ in DIPEA was based on literature methods as 

described by Madrid et al and Klingenstein et al.
78, 96

  The method described by 

Madrid et al did not employ solvent, but instead used large quantities of DIPEA as 

base and solvent.
78

  In the present work, the coupling of 7-chloro-4-(piperazin-1-

yl)quinoline with  1,3-dichloropropanol was performed in N-methylpyrrolidinone  

(NMP) with DIPEA and Et3N as the bases (see Page 44).  Catalytic amounts of KI 

were used according to Kumar’s method.
82

  The reaction was carried out at reflux for 

24 h.  The 
1
H NMR spectrum (CDCl3) of the pale chocolate coloured solid obtained 

was compared to reference data for HPQ from the review published by Xu et al.
3
  

However, the spectrum obtained indicated that the above reaction was not successful. 

The spectrum showed peaks pertaining to NMP, 1,3-DCP and trace quantities of 

DCM only. 

 

3.4.2 Synthesis of HPQ in an inorganic base 

The first attempt using an inorganic base (see Page 45) was based on the synthesis of 

hydroxychloroquine as described by Kumar et al.
82

 The reactants (7-chloro-4-

(piperazin-1-yl)quinoline and 1,3-dichloropropanol)  were refluxed in the presence of 

K2CO3 and KI for 48 hours in isopropanol.
76,77,91

  However, the 
1
H NMR spectrum for 

the crude compound given showed only peaks for solvent and water.  The sample was 

reanalysed after a basic work up procedure but, the spectrum for the obtained residue 

only showed peaks for chloroform and water.  



 67 

 The second attempt using an inorganic base (see Page 46) was based on the synthesis 

of bis (4-(7-chloroquinolin-4-yl) piperazin-1-yl)methane described by Vennerstrom et 

al (Figure 38).  This compound is very similar in structure to HPQ and was 

synthesised by reacting 7-chloro-4-(piperazin-1-yl)quinoline with formaldehyde in 

methanol at room temperature.
63

  

 

N

NN

N

N

Cl

N

Cl  

 

Figure 39 Structure of Bis(4-(7-chloroquinolin-4-yl) piperazin-1-yl)methane 

 

In our attempt to synthesize HPQ from 7-chloro-4-(piperazin-1-yl)quinoline similar 

reaction conditions were employed to that described for the synthesis of the above 

compound.  However, the 
1
HNMR spectrum for the dark brown oily liquid obtained 

did not show any peaks for HPQ and only 1,3-DCP was present.  

  

The third attempt using K2CO3 (see Page 47) was based on a method described by 

Ryckebusch et al.
92

  They synthesized a range of piperazine derivatives via 

nucleophilic substitution reactions of 4,7-DCQ with bis-(3-aminopropyl)piperazine in 

1-pentanol (amyl alcohol).  This solvent has been previously used by Fong in our 

laboratory for the attempted synthesis of HPQ.
64

  The reactants were refluxed for 14 

hours at 120ºC with K2CO3. Following purification of the crude solid obtained by 

column chromatography the reaction yielded a brownish yellow solid which contained 

minute impurities. The 
1
H NMR spectrum (CDCl3) for the brownish yellow solid was 

compared to the spectrum described by Xu et al
3
 and this conformed that HPQ was 

present in a crude form. The partial success of this reaction can possibly be attributed 

to 1-pentanol. Pentanol is a high molecular weight alcohol and is more lipophilic/less 

polar resulting in lower solvation of the nucleophile (similar to aprotic solvents).
93

 

This would allow it to possibly react more efficiently than the previous alcohols used 

in the first two attempts. The following table lists the product peaks that were 
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observed for HPQ. Apart from these peaks, trace amounts of DCM and 1-pentanol 

were observed in the spectrum.  

 

Table 3 Peak interpretation results for HPQ 

 

Chemical shift (δ) Peak type Proton Assignment 

8.71 Doublet 2H H-2 × 2 

8.10 Doublet 2H H-8 × 2 

7.97 Doublet 2H H-5 × 2 

7.49 Doublet of doublet 2H H-6 × 2 

6.88 Doublet 2H H-3 × 2 

4.10 Pentat 1H CH-OH 

3.60 Broad singlet 1H OH 

3.40 Broad singlet 8H 2 × 2H at 2
1 

and 6
1
piperazine 

2.80 Singlet 8H 2 × 2H at 5
1 

and 3
1
piperazine 

2.30 Doublet 4H CH2-propanol × 2 

 

 

Though impurities were present in the final product, future attempts at the synthesis of 

HPQ then using an improved chromatographic purification and recrystallisation 

should yield a product of relatively high purity. It was planned at the start of the 

research program that upon successful completion of each synthetic step, each step 

would be reproduced and possibly modified to further optimize the reactant 

proportions, solvent and base quantities. This would have resulted in a final synthetic 

route with improved product yields. The above optimization process could not be 

undertaken due to time restrictions. However, this research is a part of ongoing work 

at the School of Pharmacy (Curtin University of Technology) to explore the synthesis 

of HPQ and will endeavour to undertake this optimization process.  

 

The final synthetic approach to HPQ synthesis in this research was achieved via a 

three step synthetic process (Figure 39). In the first step, commercially available 

tBOC piperazine was coupled with 4,7-DCQ in a molar ratio of 1:1 in presence of KI 

in DIPEA at reflux for 48 hours. The reaction produced the intermediate compound 7-

chloro-4-(tBOC piperazin-1-yl)quinoline (46 % yield). The introduction of tBOC 

piperazine as the starting material was crucial and prevented the past major 

complication arising from contamination of the product with excess piperazine.   
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Figure 40 Three step synthetic route to HPQ 

 

 

The second synthetic step involved the deprotection of                                                       

7-chloro-4-(tBOC piperazin-1-yl)quinoline to remove the tBOC protecting group and 

render the amine site on the piperazine molecule free for nucleophilic substitution 

reaction with 1,3-DCP. This was achieved cleanly and efficiently by deprotection with 

TFA: DCM mixture (50% (v/v)). (65 % yield)  

 

The deprotected intermediate (7-chloro-4-(piperazin-1-yl)quinoline) was then reacted 

with 1,3-DCP using K2CO3 in 1-pentanol to generate HPQ.  The reaction was 

performed with a 2:1 molar equivalent ratio of the reactants at 120ºC for 14 hours(59 

% yield)  1-Pentanol proved an ideal solvent, dissolving both starting materials with 

ease and permitting the desired high reflux temperature for reaction to occur 

efficiently. However, even after chromatographic purification, the product (HPQ) 

synthesised was not completely free from solvent impurities (DCM and 1-pentanol). 

Unfortunately due to time constraints this step was not optimised and neither was any 

effort made to improve the purification procedure. 
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4  CONCLUSIONS 
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It is estimated that over 40% of the world’s population is exposed to malaria and 270 

million of those exposed are infected with malarial parasites. 
13

  The emergence and 

spread of drug-resistant malarial parasites has become a major global issue because 

chemotherapy remains the most important means of controlling malaria. 
16,18

  

Therefore the development of novel drugs and drug combinations to replace older 

drugs is imperative. 

 

Hydroxypiperaquine (HPQ) is a bisquinoline antimalarial drug which displays very 

similar antimalarial activity to its parent compound piperaquine (PQ).
3
  HPQ as an 

antimalarial has potentially numerous advantages over piperaquine.  The additional 

hydroxyl group in HPQ appears to make it a prime candidate for Phase 2 metabolic 

processes e.g. glucuronidation, which should increase its clearance rate thus reducing 

its biological half life (piperaquine has a very long biological half life).  This may 

lower the probability of drug resistance.  The additional hydroxyl group should also 

be readily derivatized to afford a range of simple ester prodrugs in order to address a 

range of pharmaceutical issues.
68,69

 

 

The primary aim of this research project was to synthesise HPQ via alternative 

synthetic pathways to that briefly described in the literature.
3
  The major objectives of 

the research program were to explore various synthetic strategies based on literature 

synthetic procedures involving similar compounds.  In this study, various synthetic 

approaches, employing a variety of reaction conditions, reactants, catalyst and 

solvents were trailed in attempts to achieve the synthesis of HPQ. The success and 

efficacy of experiments performed were assessed via 
1
H NMR spectroscopy and TLC 

exclusively. 

 

Initial synthetic approaches attempted to synthesize the intermediate 1,3-(bis 

piperazinyl)-propan-2-ol from 1,3-DCP and protected piperazine. Protected 

piperazines such as 1-benzylpiperazine and tBOC piperazine were employed. 

However, this strategy was not successful. After the failure of this approach, the 

synthesis of the intermediate 7-chloro-4-(piperazin-1-yl)quinoline from 4,7-DCQ via 

a tBOC protected piperazine was achieved. The synthesis of HPQ was finally 

achieved by reaction of the deprotected intermediate with 1,3-dichloropropanol using 

K2CO3 in 1-pentanol. 
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The scheme below illustrates the final three step synthetic route for the synthesis of 

hydroxypiperaquine (HPQ). 
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Figure 41 Summary of HPQ synthesis (Three step synthetic route to HPQ) 

 

In conclusion, the above synthetic approach provides a relatively efficient process for 

the synthesis of HPQ from relatively accessible starting materials and reagents.  

However, further refinement and optimization of the reaction conditions and reactant 

proportionalities will be required. The use of time consuming column chromatography 

could possibly be replaced by recrystallisation to afford the compound in a very high 

level of purity. Unlike the previously reported synthesis of HPQ by Xu et al
3
, this 

research provides specific details of the synthetic methodology involved for the 

synthesis of HPQ.   

 

46.0% 

59.0% 
64.7% 
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Figure 42 
1
H NMR spectrum (CDCl3) for the reaction 2.1.2.1 
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Figure 43 
1
H NMR spectrum (CDCl3) for the reaction 2.1.2.2 
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Figure 44 
1
H NMR spectrum (CDCl3) for the reaction 2.1.2.3 
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Figure 45 
1
H NMR spectrum (CDCl3) for the reaction 2.1.2.5 
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Figure 46 
1
H NMR spectrum (CDCl3) for the reaction 2.1.2.6 
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Chemical shift  (δ) Peak type Proton Assignment 

8.61 Doublet 1H H-2 

8.40 Doublet 1H H-8 

7.94 Doublet 1H H-5 

7.50 Doublet of doublet 1H H-6 

6.95 Doublet 1H H-3 

3.72 Multiplet 4H H-5
1
&3

1
 

3.43 Multiplet 4H H-2
1
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1.50 Singlet 9H tBOC (3×CH3) 
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Figure 47 Peak interpretation results and numbered structure of 7-chloro-4-(tBOC piperazin-1-yl)quinoline 
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Figure 48 
1
H NMR spectrum (CDCl3) for the reaction 2.1.2.7 
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Chemical shift  (δ) Peak type Proton Assignment 

8.61 Doublet 1H H-2 

8.40 Doublet 1H H-8 
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Figure 49 Peak interpretation results and numbered structure of 7-chloro-4-( piperazin-1-yl)quinoline 
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Figure 50 
1
H NMR spectrum (CDCl3) for the reaction   2.1.3.1 
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Figure 51
1
H NMR spectrum (CDCl3) for the reaction 2.1.3.2 

 



 97 

Figure 52 
1
H NMR spectrum (CDCl3) for the reaction 2.1.3.3 
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Figure 53 
1
H NMR spectrum (CDCl3) for the reaction 2.1.3.4 
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Chemical shift (δ) Peak type Proton Assignment 

8.71 Doublet 2H H-2 × 2 

8.10 Doublet 2H H-8  ×2 

7.97 Doublet 2H H-5  ×2 

7.49 Doublet of doublet 2H H-6  ×2 

6.88 Doublet 2H H-3  ×2 

4.10 Pentet 1H CHOH 

3.60 Broad singlet 1H OH 

3.40 Broad singlet 8H 2H ×(2
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and 3
1
piperazine) 

2.80 Singlet 8H 2H ×(5
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and 6
1
piperazine) 

2.30 Doublet 4H CH2-propanol  ×2 
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Figure 54 Peak interpretation results and numbered structure of HPQ 

 


