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Abstract 
 

Stormwater management has been given far more attention in recent years due to the 

pollution and excessive flows generated by traditional pipe systems. In addition, it is 

being looked to increasingly as a water resource, as population grows. One such 

approach is to store the stormwater underground using Managed Aquifer Recharge 

(MAR). For confined aquifers, Aquifer Storage and Recovery (ASR) is appropriate, 

where it is piped directly into the aquifer, but this requires pre-treatment. Porous 

pavement, a type of pavement that allows stormwater to infiltrate through it, could be 

one way to pre-treat the stormwater. This is being investigated by City of Canning, 

Western Australia, using stormwater for supplementing the local confined 

Leederville aquifer with extraction for later use for irrigation. The aim of this 

research was to find a pervious pavement system that would treat stormwater to a 

level suitable for MAR into the Leederville aquifer and subsequent extraction for 

irrigation. Laboratory testing has determined that modifications to the typical 

construction of pervious pavement will be required to treat the stormwater to an 

acceptable level, with nutrients being the focus of this research. In particular, adding 

a layer of Granular Activated Carbon (GAC) immediately below the bedding layer 

and adding a sand layer to the base were investigated. Both arrangements were 

shown to reduce ammonium from 1.46 mg (N)/L to roughly 0.04 – 0.06 mg (N)/L, at 

times lower than threshold limits for injection to the Leederville aquifer. In addition, 

the test rig with the sand layer was able to reduce phosphate from 0.84 mg (P)/L to 

roughly 0.05 mg (P)/L and at times met the required guideline value of 0.04 mg 

(P)/L. Suspended solids and the sum of nitrite and nitrate were not reduced to 

guideline values and should be the focus of further research. 
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1 INTRODUCTION 

 

1.1 Background 

Regulating authorities are placing emphasis on stormwater management. This is 

because it has been recognised that pollution and damaging flows from stormwater 

runoff pose an environmental risk. Particularly in heavily populated built up areas, 

runoff from impervious areas contains significant pollution (Linforth, Vorreiter, 

Constandopoulos, & Biddulph, 1994; Ports, 2009). Excessive stormwater flows can 

cause damage to water bodies as well as flooding (Fan & Li, 2004). 

Water Sensitive Urban Design (WSUD) is a water management approach to limit 

impact on the environment, including waterways (Donofrio, Kuhn, McWalter, & 

Winsor, 2009). In terms of stormwater, both the contaminants and flows are 

managed. 

Pervious pavement is one such Water Sensitive Urban Design solution, as it both 

reduces runoff (Bean, Hunt, & Bidelspach, 2007) and reduces contaminants (Hatt, 

Fletcher, & Deletic, 2007). It allows rainwater to infiltrate through the pavement, 

which can then be infiltrated into the natural ground (Hunt, Stevens, & Mayes, 2002) 

or collected via subsoil pipes (Watanabe, 1995). 

Concurrently to the problems caused by stormwater, water scarcity is a pressing 

global issue (Barker, Scott, De Fraiture, & Amarasinghe, 2000). Underground 

aquifers can provide useful water storage for supply. These aquifers are often over-

extracted (Nelson, 2012; Rodell, Velicogna, & Famiglietti, 2009; Wada et al., 2010), 

so to balance this, water could be placed back into the aquifer via the scheme of 

Managed Aquifer Recharge (MAR). For confined aquifers the Aquifer Storage and 

Recovery (ASR) system is appropriate, where water is directly pumped into the 

aquifer via a bore and recovered at the same point. Aquifer Storage Transfer and 

Recovery (ASTR) involve recovery at a different point, for additional treatment in 

the aquifer. Treated stormwater can be a water source for MAR and is in fact used in 

an ASTR scheme in South Australia, with the treatment performed by wetlands 

(Page et al., 2010). 

Stormwater treatment requirements for MAR are substantial (Dillon et al., 2010). 

Pervious pavement often struggles to treat stormwater to the required quality. It can 
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reduce ammonium in the order of 80-100% compared to inflow or asphalt runoff 

(Bean et al., 2007; Collins, Hunt, & Hathaway, 2010; Scholz & Grabowiecki, 2009) 

and can be very good at removing motor oil (Brattebo & Booth, 2003). However, the 

ionic oxides of nitrogen from nitrification of ammonium can be an issue (Bean et al., 

2007; Collins et al., 2010) as can metals (Brattebo & Booth, 2003; Fassman & 

Blackbourn, 2010; J. J. Sansalone, 1999) and suspended solids (Bean et al., 2007; 

Fassman & Blackbourn, 2010; Rowe, Borst, O'Connor, & Stander, 2009). In fact, 

metals and suspended solids can leach from the pervious pavement materials 

(Brattebo & Booth, 2003; Fassman & Blackbourn, 2010). 

Additional treatment measures would be needed where MAR requirements are not 

met by a typical pervious pavement design, such as iron oxide coated sand (J. J. 

Sansalone, 1999) or granular activated carbon / charcoal (Kanjo, Yurugi, & Yamada, 

2003). Overall, use of pervious pavement for MAR will require testing to find the 

best system, with reference to investigations of pervious pavement performed by 

others. 

 

1.2 Objectives 

Pervious pavement is being considered for treatment of stormwater for Aquifer 

Storage and Recovery in the City of Canning, Western Australia, using the local 

Leederville aquifer. The ultimate aim is to ensure enough water is in the Leederville 

aquifer so it can be used for irrigation. Multiple objectives stem from this 

consideration: 

• Establish the concentrations of pollutants in the Leederville aquifer as well as 

guideline concentrations (performed by others). 

• Perform laboratory testing to find a pervious pavement that will reduce 

pollutant concentrations to target levels. 

• Validate that this pervious pavement, or pavements, reduce pollutants to the 

required level by performing field testing. 
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1.3 Scope 

Due to time constraints, not all of the objectives in Section 1.2 could be met within a 

Masters by Research degree. Specifically, the scope of this research project was: 

• Find typical concentrations of the pollutants listed in Section 1.2 in 

stormwater and decide what concentrations to use for testing. An 

investigation into end-of-pipe stormwater pollutant concentrations was 

undertaken by GHD (GHD, 2008, 2009), however concentrations in direct 

runoff is more relevant in the case of treatment by pervious pavement. 

• Perform laboratory testing on four pervious pavement rigs, using granular 

activated carbon in one, pavers with gravel filled gaps in at least one and 

porous concrete in at least one to determine how these perform at pollutant 

reduction. A yellow sand layer at the base of one test rig was also trialled. It 

was planned to test porous asphalt and Permecocrete (a porous concrete 

containing magnesium in the cement), but due to availability issues this was 

not possible. 

• Test for reduction of ammonium, phosphate and dissolved organic carbon. 

The dissolved organic carbon was in the form of a single compound (glucose) 

to simplify analysis. 

• Test for nitrate, nitrite and suspended solids, which would be produced or 

come from within the pavements. 

• Add metals aluminium, copper and zinc at a later point to see how they affect 

nutrient reduction performance. 

• Investigate any variations in pollutant reduction over time, attempting to 

determine the cause. 

• Perform a detailed analysis to determine which pervious pavement produces 

the highest quality output and under what conditions. 
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1.4 Significance of Research 

The focus of this research was designing a pervious pavement to treat stormwater for 

MAR, however, it will be useful for determining the applicability of pervious 

pavement for WSUD generally. Most of the literature reviewed was on field testing 

of pollutant reduction by pervious pavement, which by its very nature will be site 

specific. Laboratory test results were also found in the literature, of widely varying 

quality and scope. In particular, this research will: 

• Provide a better understanding of how granular activated carbon within a 

pervious pavement setup will contribute to removal of dissolved organic 

carbon and ammonium, as well as any side effects 

• Give insight into the effects a sand layer on the base of the pavement will 

have on pollutant removal 

• Provide understanding of pollutant reduction performance using local 

aggregates 

• Provide better insight into how easy or difficult it is to design a pervious 

pavement to treat stormwater for a proposed ASR scheme 

• Initiate the process of finding a pervious pavement that will treat stormwater 

to a level suitable for MAR, thus providing an additional water resource. The 

City of Canning in particular requires additional water resources for irrigation 

of open spaces. 

 

1.5 Research Approach 

Laboratory testing was performed to provide a more reliable comparison of 

pavement designs, compared to field testing. Subject to availability constraints, four 

pervious pavement test rigs were designed and constructed. The scale of the testing 

system allowed the collection of sufficient samples for laboratory testing. 

It was intended to protect these test rigs from the weather as much as possible, but 

due to space constraints they were situated outside. Covers were provided to protect 

from natural rain and direct sun as much as possible, but with ventilation provided, to 

mimic cloudy conditions. All four pavements were directly adjacent to each other so 

that they all experienced virtually the same conditions. Other sources of uncontrolled 
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variability were limited where practical. 

It was intended to remove as much clay material from the aggregate as possible 

during construction to reduce variability, but as construction commenced and testing 

progressed this proved difficult. However, as an unintended consequence the 

different extents of washing did provide insight into how the clay contributed to 

pollutant reduction. The hydraulic analysis in Section 4.1.2 gives an indication as to 

how the base conditions varied over time, with outflow becoming slower as more 

fines migrated to the base. 

After a certain period of time it became clear that rigs 1, 2 and 4 were not treating the 

input to the required quality, so rig 1 was modified to include a sand layer, in an 

effort to improve treatment. Emission of nitrification by-products (nitrate and nitrite) 

worsened but ammonium and phosphate reduction performance improved. At the end 

of testing pavement layers were removed before each run to see how they contributed 

to pollutant reduction. 
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2 LITERATURE REVIEW 

 

2.1 Background 

2.1.1 Environmental Impact of Stormwater Runoff 

Regulating authorities are placing emphasis on stormwater management. This is 

because it has been recognised that pollution and damaging flows from stormwater 

runoff pose an environmental risk. This is especially the case in heavily populated 

areas (Linforth et al., 1994; Ports, 2009). These places have large impervious areas 

that cause much higher rates of runoff after rainfall (Boyd, Bufill, & Knee, 1993), 

with higher pollutant transport (Ichiki, Ido, & Minami, 2008). 

Excessive stormwater flows can cause damage to water bodies (Fan & Li, 2004). 

Nutrients can produce algal blooms (Shukla, Misra, & Chandra, 2008) and pollutants 

such as metals can harm biota (El-Nady & Atta, 1996). Even stormwater disposed of 

to the ocean can be a health risk according to University of Western Australia 

(UWA) modelling (Bennett, 2010). With such risks posed by stormwater runoff, 

mitigation is recommended. 

 

2.1.2 Water Sensitive Urban Design 

The main objective of Water Sensitive Urban Design (WSUD) is to maintain as near 

as possible, the pre-development water cycle. This need not purely be a liability. 

There are potential gains to be made by 'streamlining' water management and, say, 

recycling wastewater or utilising stormwater. At a minimum, WSUD is protection of 

waterways and groundwater, with pollution control a significant consideration 

(Chanan, Vigneswaran, & Kandasamy, 2010). 

WSUD is a broad term, covering all types of urban water flows – water supply, 

wastewater and stormwater (Donofrio et al., 2009). 

In addition to the impacts to the natural environment of stormwater runoff, excessive 

runoff within developed areas can be an issue. 
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2.1.3 The Problem of Inadequate Flood Control 

In some cases, the existing infrastructure for controlling floods is inadequate. This is 

largely due to the combined impact of lack of planning, aging infrastructure and 

climate change. 

Particularly in the case of Perth, Western Australia, in past times, most roads were 

unkerbed and water drained to the verge.  In more recent times, local governments 

have kerbed roads mainly for aesthetic purposes, and water that used to infiltrate then 

required draining (C. Leek, personal communication, 2012). 

For reasons unknown, rather than re-establishing soakage systems, pipe systems 

were developed, in many cases to large soaks established on housing lots.  Land 

values rose, and local governments saw the advantage of extending pipe networks to 

rivers, so that the land previously set aside could be sold and developed.  As suburbs 

expanded, pipe systems were extended, often without upgrading existing sections to 

cater for additional impervious areas of runoff (C. Leek, personal communication, 

2012). 

Changes in public acceptance and liability issues have seen changes in the 

stormwater drainage design standards, but even in Perth today, there are differences 

in standards between local governments, and between local governments and the 

Water Corporation (C. Leek, personal communication, 2012). 

Some local governments, for example City of Canning, design for a 1 in 5 year 

recurrent storm, but where flooding of properties cannot be prevented by available 

overland flow paths, will design those sections for a 1 in 100 recurrent storm, whilst 

discharging to a Water Corporation main drain designed for a 1 in 10 year recurrent 

storm (C. Leek, personal communication, 2012). 

Inadequate drainage planning is particularly a problem for poorer countries such as 

Brazil (Soares, Parkinson, & Bernandes, 2005), but developed countries are not 

immune. In places like Hong Kong, where in older areas drainage was designed to 

lesser protection standards and is deteriorating, flooding is an issue (Chan, Mak, 

Tong, & Ip, 2011). Increases in impervious area due to unforeseen development also 

potentially causes problems (Brach & Zeytinci, 2005). 

Usefully, Australia has a rating system for infrastructure. Engineers Australia’s 2010 

Infrastructure Report Card gave Australia a ‘C’ for stormwater, indicating major 
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changes were required. According to the report, a long dry spell had shifted focus 

away from flood management to water supply. Therefore, as urban infill projects 

developed, impervious areas in older suburbs increased without sufficient upgrades 

to stormwater drainage designed for the original developments with less impervious 

area. Problems arising from infrastructure reaching the end of its life were also 

highlighted. Stormwater pipes undergo deterioration and this impacts on hydraulic 

performance. Due to these combined factors, older areas were predicted to 

experience overland flooding with the return to ‘more normal rainfall patterns’ (Tran, 

Perera, & Ng, 2009). 

The report card for Western Australia gave a ‘C’ for stormwater. It stated the 

performance could not be assessed due to lack of data and a drying climate (Yates, 

2010). 

Climate change is known to impose greater flood risk in many cases. This was 

investigated in detail in the United States (Thomas Jr, Kollat, & Kasprzyk, 2010). 

Climate change has already been observed to cause a dramatic change in hydrology 

in the South Western portion of Western Australia (Pitman, Narisma, Pielke, & 

Holbrook, 2004). Despite a notable downwards trend in annual runoff in this region 

(Bari, Berti, Charles, Hauck, & Pearcey, 2005), it is possible that the magnitudes of 

extreme floods may increase due to climate change (Yu & Neil, 1993). Modelling 

indicated that for Perth the 100 year 24 hour storm could increase in rainfall depth 

from 115 mm to 150 mm, under CO2 concentrations twice that of ‘control’ (Evans & 

Schreider, 2002). A revision of Australian Rainfall and Runoff is underway, with a 

preliminary analysis of national hydrological data for trends (Ishak, Rahman, Westra, 

Sharma, & Kuczera, 2010). Any significant increase in design floods could mean an 

upgrade of existing infrastructure is required. 

Stormwater runoff does pose significant issues, but if controlled wisely can actually 

be a resource. 

 

2.1.4 Stormwater Harvesting 

Water shortage is a pressing global issue, in part due to a growing population (Barker 

et al., 2000). In response, desalination is becoming much more common as a means 

of providing potable water (Stover, 2009). Australia is one such country increasingly 
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relying on seawater desalination for water use (Crisp, Swinton, & Palmer, 2010). 

Large scale desalination plants in Australia cost around $0.50-$2.00/m3 of water 

produced (Wittholz, O'Neill, Colby, & Lewis, 2008). 

Wastewater recycling is an alternative to desalination, but public acceptance is a 

major obstacle (Dolnicar & Saunders, 2006). Western Australian Water 

Corporation’s Perth Groundwater Replenishment Trial uses recycled wastewater to 

recharge the Leederville aquifer via managed aquifer recharge (see Section 2.1.4.1), 

which is then proposed as drinking water (Water Corporation, 2009). Their own 

survey on public perception found 31% of respondents requested further information 

before supporting it and 10% were firmly opposed. In 2007, respondents quoted an 

opinion that there were other “safer” sources that should be pursued first. Therefore, 

use of rainfall-originating water could possibly be attractive in terms of cost and 

perceived quality. 

In Perth, the unconfined Gnangara Mound aquifer, providing about 60% of Perth’s 

scheme water (Marsden & Pickering, 2006), is being depleted by reducing rainfall, 

abstraction for water supply and pine plantations (Yesertener, 2008). This has a 

number of environmental impacts, such as water acidification (Silva, 2009), impacts 

on lakes such as Perry Lakes (McFarlane, Smith, Bekele, Simpson, & Tapsuwan, 

2009), cave ecosystems like Yanchep Caves (Yesertner, 2006), wetlands and other 

ecosystems (Arrowsmith & Carew-Hopkins, 1994). Groundwater depletion is a 

significant issue internationally (Nelson, 2012; Rodell et al., 2009; Wada et al., 

2010). 

Stormwater runoff in urban areas is an under-utilised resource. More rain falls on 

many Australian cities than water is used (Prime Minister's Science Engineering and 

Innovation Council, 2007). River systems are significantly drawn on instead, 

typically via dams. However, inflows to these dams from the rivers have been 

decreasing in some cases. In Perth, the average total annual inflow for dams existing 

in 2001 dropped from 338 GL for the period 1911 to 1974 to 177 GL for the period 

1975 to 2000. For the more recent period 2006 to 2010 annual inflow has averaged 

only 57.7 GL (Water Corporation, 2010). In other cases, overdrawing is a significant 

issue. For some rivers, environmental flows are dangerously low. The Murray River 

is a good example, where 74% of the floodplain is at high risk of reduced flood 

frequency, compared to in 1977 when most of the floodplain had a low risk of 
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reduced flood frequency (Overton & Doody, 2009). This flood reduction risk was 

linked to vegetation decline, indicating the effects the reduced flood frequency has 

on ecosystems. 

Using stormwater sustainably can actually be beneficial for the environment, by 

reducing flows to near pre-development levels (T. D. Fletcher, Mitchell, Deletic, 

Ladson, & Seven, 2007). However, enough stormwater should be allowed to enter 

natural watercourses for the benefit of flora and fauna. This allowance should take 

into account upstream water infrastructure, including dams. To an extent, stormwater 

harvesting is already being used residentially on a local level through on-site 

stormwater infiltration and garden bores (Bott & Evangelisti, 2006). There is 

potential for expansion of this approach. In fact, in several cases stormwater is 

deliberately placed into underground aquifers for later use. 

 

2.1.4.1 Managed Aquifer Recharge 

Due to depletion of groundwater reserves, Managed Aquifer Recharge (MAR) is one 

approach currently in use to restore groundwater levels. Water is intentionally 

infiltrated into the aquifer for later use, with the groundwater reserve then acting as a 

large underground storage. Such an approach is the focus of much research (Dillon et 

al., 2010; Wang, Sun, & Xu, 2010). 

There are environmental benefits to MAR, in many cases intentional. For example, 

Perry Lakes in Perth was drying and required pumped groundwater to maintain its 

ecological habitats and social values. A trial was established where treated 

wastewater was infiltrated into the ground as a MAR project. Measurements and 

modelling on groundwater levels and water quality indicated the project is feasible 

with low to medium risk to groundwater quality (McFarlane et al., 2009). 

Using stormwater for MAR can also help restore the hydrology to before 

development. Since the 19th century in Iowa and California, MAR for stormwater has 

been performed via infiltration basins and river diversion, with many other similar 

schemes in existence. In New Mexico, a development making use of unlined 

retention ponds increased the effective recharge from less than 1% of precipitation 

before development, i.e. in natural conditions, to about 40%; due to the removal of 

trees. According to the study, if a predevelopment level of runoff was allowed, this 
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would support downstream native habitat, stream flows, wetlands and estuaries 

without the damage associated with increased flooding from full impervious runoff. 

In addition, if predevelopment effective groundwater recharge were maintained (after 

artificial extraction for water supply) this would also help maintain wetlands and 

lakes (Stephens, Miller, Moore, Umstot, & Salvato, 2012). 

MAR is also used to prevent seawater intrusion and ground subsidence. Increasing 

the hydraulic head relative to the seawater prevents seawater intrusion; ensuring salt 

water cannot intrude back into the aquifer. Subsidence often occurs when 

groundwater is lowered significantly over time, maintaining the long-term water 

table depth prevents this effect (Wang et al., 2010). 

One way to perform aquifer recharge is Aquifer Storage and Recovery, arguably 

suitable for confined aquifers. This involves directly pumping water into the aquifer 

via a bore. The water is later withdrawn from the same site for reuse. Aquifer Storage 

Transfer and Recovery (ASTR) involves recovering the water from a different well 

for additional treatment. An ASTR project using stormwater is already in operation 

in Parafield, South Australia, which makes use of wetland pre-treatment (Page et al., 

2010). For injection of stormwater, pre-treatment is required, with wetland treatment, 

microfiltration or granular activated carbon filtration suggested (Environment 

Protection and Heritage Council, 2009a). Porous pavement is one possible pre-

treatment option and is in fact being pursued by City of Canning, Western Australia, 

for recharging the local confined Leederville aquifer. This is the focus of this 

research. 

 

2.1.5 Pervious Pavement 

There are many ways to deal with stormwater, but arguably, the most elegant is to 

directly replace impervious areas with pervious areas. Not only would this reduce 

runoff (Bean et al., 2007), it would increase stormwater treatment, as infiltration is 

effective at removing pollutants (Hatt et al., 2007). Pavement takes up a considerable 

portion of impervious area; it can be about 67% of the total impervious area in a 

typical urban setting (Zhou & Troy, 2008). Such an area could be made pervious by 

using either porous or permeable paving. Similar in trafficability to conventional 

pavement (depending on construction), these allow the ingress of stormwater directly 
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through the pavement, to be infiltrated into the natural ground (Hunt et al., 2002) 

(Figure 1), stored in-situ (Myers, Sagi, van Leeuwen, & Beecham, 2007) or collected 

via subsoil pipes (Watanabe, 1995). When stored, the stormwater can be used for 

purposes such as irrigation (Oost, 2004). 

Pervious pavement has the dual benefit of reducing runoff and pollution (Ball & 

Rankin, 2010; Brattebo & Booth, 2003). Reducing runoff and either reusing or 

infiltrating the stormwater substantially reduces flash flooding (Collins, Hunt, & 

Hathaway, 2008; Guan, Kong, & Zhang, 2009; Nishiyama, Ohnishi, Yano, 

Yamamoto, & Wada, 2010). Pervious pavement can also cause a significant 

reduction in stormwater pollutant concentrations (Calkins, Kney, Suleiman, & 

Weidner, 2010; Collins et al., 2010; Fassman & Blackbourn, 2010; Scholz & 

Grabowiecki, 2009). This is believed to be through a combination of sorption of 

heavy metals to the media and decomposition by bacteria (Scholz & Grabowiecki, 

2009). The bacteria are in an oxygen rich environment due to the voids in the 

pavement, promoting their activity and growth. 

 

2.1.5.1 Types and Materials 

Pervious paving requires the use of materials that are both load bearing and allow 

rainwater to flow through them. The surface layer is the interface between the 

applied traffic (pedestrian or otherwise) and the pavement. It can be monolithic and 

porous in construction. Porous concrete is a common example (Beecham & Myers, 

2007; Scholz & Grabowiecki, 2007), where the fines are removed from the concrete 

to give it its porosity and hence permeability. Similarly, asphalt can be made in the 

same manner (Brown, 2003; Liu & Cao, 2009). Gravel can also be bound with a 

resin, with its typical use around tree surrounds (Ayton Products, 2005). The 

aggregate does not even have to be stone – materials such as recycled glass or rubber 

can be used (M. B. Chopra, Stuart, & Wanielista, 2010; Meiarashi, 2004; Sandberg, 

1999). Filterpave is an example of a recycled glass product. 

There are other ways to construct pervious pavement. Impervious units (segmental 

paving blocks) can be laid to form gaps, where the gaps can be filled with permeable 

material such as gravel or soil (Bean, Hunt, & Bidelspach, 2004; Collins et al., 2008) 

or plastic grids can reinforce the fill material (Figure 1). These segmental approaches 
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are often termed permeable pavement. Two examples of segmental paving blocks are 

Concrete Grid Pavers (Figure 2), where each typically non-rectangular unit is laid to 

form relatively large square holes, and Permeable Interlocking Concrete Pavers, 

where individual units form relatively smaller gaps when laid in the appropriate 

pattern. Such approaches are typically termed permeable paving. Voids may be filled 

with turf (Oost, 2004; Starke, Gobel, & Coldewey, 2011), which in the case of plastic 

grids can make the pavement into a continuous lawn (Figure 1). 

Loose single sized gravel can also be used as a surface layer, however only in very 

low speed, low traffic situations such as infrequently used parking lots (Yudelson, 

2007, p. 133). 

 

Figure 1: Grass pavers with infiltration to subgrade (Tensar International, 
2011) 
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Figure 2: Concrete Grid Pavers near Canning Bridge, Western Australia 

 

Underlying the surface layer is typically a bedding layer, which can be sand 

(Fassman & Blackbourn, 2011; Hunt et al., 2002) or 3-5 mm gravel (Andersen, 

Foster, & Pratt, 1999; Lucke & Beecham, 2011). Its thickness can be 30-50 mm. 

Geotextile is sometimes placed directly under the bedding layer (Bean et al., 2007; 

Beecham & Myers, 2007) or just above the subgrade (Boving, Stolt, Augenstern, & 

Brosnan, 2008; Rowe, Borst, O'Connor, & Stander, 2010). When placed under the 

bedding layer, it traps fines coming from the stormwater runoff, as well as fines 

coming from the pavement materials above it. When placed above the subgrade, it 

controls erosion that would result from flow of water along the base. The example 

shown in Figure 1 includes both geotextile layers. 

A gravel base is typically used in conjunction with pervious pavements, with its 

thickness depending on structural or hydraulic requirements. This base must be load 

bearing and open graded (Beecham & Myers, 2007; Shackel & Pearson, 2003). 

Figure 1 indicates the location of this gravel base. 

For clarity, pavement that deliberately allows rainwater through it is generally 

termed pervious pavement herein. Pavement consisting of impervious pavers 

arranged to create gaps is termed permeable pavement. Where the paving units 

themselves are porous in nature at the coarse aggregate level, or a monolithic porous 

surface is used, this is termed porous pavement. 

 

2.1.5.2 Design Considerations 

Pervious pavement is a novel technology and there are many aspects to its design. 

Due to its gap-graded nature, it is potentially weaker than conventional pavement. 

This is especially the case with porous pavement (Scholz & Grabowiecki, 2009). An 
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open graded concrete mix design is much more difficult to achieve than a 

conventional dense graded concrete, due to the required balance between porosity 

and adequate inter-bonding of the aggregates (Beecham & Myers, 2007). To mitigate 

this, it has been found that a combination of small aggregate size (4.75 mm) as well 

as the addition of some sand and latex increases the strength considerably (Huang, 

Wu, Shu, & Burdette, 2010), with compressive strengths ranging from 5 to 15 MPa. 

For porous asphalt, the Cantabro loss for new, dry mixes ranged from 1% to 18% 

(Alvarez, Epps-Martin, Estakhri, & Izzo, 2010). The Cantabro loss is an indirect test 

of mixture cohesion, resistance to disintegration and aggregate interlock. This 

involved placing each compacted specimen in a Los Angeles abrasion machine 

without an abrasive load, applying 300 revolutions, then calculating the percentage 

of mass broken away from each specimen. 

As for permeable pavement, the durability can vary according to the system. Plastic 

grid systems can collapse under load, shift around and lift out, while the concrete 

grid pavers and permeable interconnecting concrete pavers are somewhat more 

durable (Brattebo & Booth, 2003). While a tank system, Figure 3 indicates the 

potential vulnerability of plastic load bearing systems. 
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Figure 3: Collapsed Plastic Grid System (courtesy of City of Canning) 

 

The base material typically has aggregate fractions finer than 2 mm removed, with 

cement addition a possibility to improve strength (Shackel & Pearson, 2003). 

Infiltration rate is an important consideration of pervious pavement. The permeability 

of new porous pavement can range between about 162 and 1180 mm/hr (Kuang, 

Sansalone, Ying, & Ranieri, 2011). This is substantial, considering the 100-year 

average occurrence interval 5-minute duration storm for Perth is close to 200 mm/hr 

(Institution of Engineers, Pilgrim, Canterford, & Institution of Engineers, 1987). For 

Permeable Interconnecting Concrete Pavement with gaps between the pavers in the 

‘unblocked’ condition, high infiltration rates of roughly 10 000 mm/hr were reported 

(Lucke & Beecham, 2011). 

Reinforced turf has a much lower infiltration rate, with the design infiltration rate 

determined by taking into account the long term permeability of the turf itself and the 

percentage of impervious cover (Argue, Allen, Stormwater Industry Association, 

University of South Australia: Urban Water Resources Centre, & Australian Water 

Association, 2005). To give an indication, silty sand can have an infiltration rate of 

roughly 200 mm/hr (Chiu, Zhu, & Chen, 2009). Concrete grid pavers typically have 
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much higher impervious cover than plastic reinforcing. Runoff is likely during storm 

events and has in fact been measured. In a hurricane, runoff was produced at about 

30 mm/hr during 40 mm/hr rainfall in one study on a concrete grid paver system 

(Bean et al., 2007). 

The base gravel needs to be designed to have both sufficient permeability and storage 

volume, depending on the native subgrade permeability (Shackel & Pearson, 2003). 

 

2.1.5.3 Maintenance 

An important consideration in terms of the hydraulics of pervious pavement is 

clogging. Clogged pervious pavement can have an infiltration rate as low as 10 

mm/hr after 6 to 18 years of service (M. Chopra, Kakuturu, Ballock, Spence, & 

Wanielista, 2010), with similar results for permeable interconnecting concrete pavers 

after seven years (Lucke & Beecham, 2011). For such deterioration in hydraulic 

performance, maintenance is necessary. 

Several cleaning options are available for pervious pavement, such as vacuuming, 

sweeping, power washing, power blowing and rinsing. In one study it was found that 

using a large diameter hose, like a fire hose, was found to be the most effective 

method to restore the permeability of porous concrete. This was found to restore 

permeability up to 94% of the permeability just after construction. For debris 

gathering on the surface not yet washed into the voids, the other methods were 

indicated to likely be sufficient (Henderson & Tighe, 2011). It is unclear whether the 

pavement has a base course or is permeable concrete constructed directly on 

subgrade. 

A similar study used porous concrete constructed on subgrade (M. Chopra et al., 

2010). In this study, cores were taken from the pavement, tested for permeability 

then the clogged ones were vacuum swept, pressure washed or both and re-tested. 

Results found combining both methods was the most effective approach, with similar 

results to that reported in Henderson and Tighe (2011). It should be noted that 

cleaning was performed on the cores, not the in-situ pavement. Maintenance that 

removes the top layer of loose material was also able to improve the performance of 

concrete grid pavers and permeable interconnecting concrete pavers (Bean et al., 

2004). 
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No study was found in the literature on the use of combination jet vacuum systems to 

clean pervious pavement. These have been used successfully in sewers and are cost 

effective (Anon, 1998). 

Frimokar Pty Ltd offers road authorities, local governments and other owners of road 

and infrastructure assets an environmentally safe process to restore surface texture 

and porosity.  This unit involves a high-pressure unit blasting water onto the 

pavement to remove fines, and vacuums the water and sediment into a recycling 

tank. This may be suitable for permeable pavers, concrete and asphalt, but where 

jointing material is the main media, this material will be dislodged and removed 

("The Frimokar Process: How it works. - Frimokar Home"). 

 

2.1.5.4 Further Research 

As indicated in the previous section, maintenance of pervious pavement may require 

further research and even consideration in the design phase. Research into pollutant 

removal by pervious pavement is covered in the following section, with potential for 

further research indicated. 

 

2.2 Pollutant Reduction by Pervious Pavement 

 

Pervious pavement has varying pollutant reduction rates. Fletcher and others 

performed a review of pervious pavement and found pollutant reduction to be 

roughly in the range of 40 to 90% depending on the pollutant type. The important 

point was made that inflow concentration, hydraulic loading and pavement properties 

are variables to consider. At the time of that review, there was a lack of studies 

reporting performance as related to these variables (T. Fletcher, Duncan, Poelsma, & 

Lloyd, 2004). 

Pervious pavement precipitates out and removes dissolved metals by a combination 

of raising the pH, precipitation by metal carbohydrate complexes, adsorption and co-

precipitation (Bean et al., 2007; Calkins et al., 2010; Myers et al., 2007). Particulate 

bound metals are typically strained out, but it is possible that most of the metals are 

dissolved (J. Sansalone & Teng, 2004). Bacteria also colonise within pervious 
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pavement, with the ability to remove nutrients and hydrocarbons (Collins et al., 

2010; Newman, Nnadi, Duckers, & Cobley, 2011; Scholz & Grabowiecki, 2007). In 

addition, hydrocarbons have a tendency to sorb to the aggregates and geotextile 

(Newman, Nnadi, et al., 2011; Newman et al., 2004). 

In Perth, Western Australia, targeting the 3-month Average Recurrence Interval 

(ARI) storm will cover about 97.7% of rainfall volume. It has been argued that the 

majority of storm events with the potential to mobilise pollutants are of relatively 

low rain intensity (Wong, Wootton, Argue, & Pezzaniti, 1999). The Stormwater 

Management Manual specifies the 1-year ARI storm for pollutant removal purposes, 

covering 99.5% of rainfall volume (Department of Environment, 2004). The 1-year 

ARI, 5-minute duration storm is about 60 mm/hr in intensity (Institution of Engineers 

et al., 1987). 

TKN refers to total Kjeldahl nitrogen in this section. Similarly, NOx-N refers to 

nitrite-N + nitrate-N, for both concentration and total mass. TSS means total 

suspended solids. 

Pollutant removal refers to the case where the influent and effluent concentrations of 

a pollutant were measured or known, and the removal is the difference between the 

two. Pollutant reduction is a more general case, and covers the above, as well as the 

case where the influent concentration is unknown or ambiguous. This is commonly 

the case with field testing. Instead of knowing the influent concentration, the runoff 

from an impervious surface such as conventional asphalt is measured, and the 

pollutant reduction is taken as the difference between the concentration of the 

pollutant in the impervious surface runoff and the concentration of the pollutant in 

the runoff/effluent from the pervious pavement. Generally, the effluent from the 

pervious pavement is measured and not the runoff, unless otherwise stated. All 

removal/reduction percentages are relative to the influent or impervious surface 

concentration. 

 

2.2.1 Pavers with Gravel Filled Gaps 

A common surface construction for pervious pavement is impervious pavers with 

gravel filled gaps. Much literature was found on studies of the pollutant reduction 

capacity of this type of pavement, commonly termed Permeable Interconnecting 
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Concrete Pavers (PICP). These are listed below. 

An experimental test rig using C&M Ecotrihex block pavers was set up at the Royal 

Melbourne Institute of Technology University (Kadurupokune & Jayasuriya, 2009). 

It had construction details as listed in Table 2 and Table 3. Synthetic stormwater with 

141 mg/L TSS, 0.24 mg/L total phosphorus (ortho-phosphate), 2.63 mg/L total 

nitrogen, 0.1 mg/L lead, 0.06 mg/L copper, 0.63 mg/L zinc, 0.007 mg/L cadmium 

and 20 mg/L of used oil from a motor vehicle was used as influent for pollutant 

removal testing. The total nitrogen was said to consist of nitrate and ammonium but 

the proportions were not mentioned. As the purpose of the test was to model long 

term clogging, a simulated rainfall intensity of 90 mm/hr was applied for a 

significant time of 1.5 hours (Table 4), for a total volume of 135 L (simulated rain 

area was 1 m2). Collected volumes ranged from 100 L to about 115 L. 

Over a simulated duration of 17 years, pollutant removal was determined. This was 

calculated based on pollutant load as opposed to concentration. Total nitrogen 

removal efficiency started at 63% and dropped to 12% over the simulation period. 

Similarly, PO4
3- went from 53% removal down to 22% removal, TSS stayed at about 

95% removal, oil increased from 86% to 97% removal and copper increased from 

94% to 96% removal. Zinc results were unreliable, as the galvanised box used to 

hold the pavement test rig seemed to be corroding. Cadmium and lead were 

undetectable in the filtrate. 

In Auckland, New Zealand, a PICP system was constructed in a road reserve then 

monitored over 3 years. It had construction details as listed in Table 2 and Table 3. 

Rainfall intensity varied from 0.3 mm/hr to 79.2 mm/hr overall (Table 4). Compared 

to the asphalt section and by concentration, reductions of about 56% of TSS, 57% of 

total copper and 93% of total zinc were achieved. The bedding sand was found to be 

a significant source of TSS, copper and zinc from wash tests (Fassman & 

Blackbourn, 2010), which is evident from the lower reduction percentages compared 

to Kadurupokune and Jayasuriya (2009) at over 90% TSS removal and over 90% 

copper removal by concentration (calculated). Hydrological information was 

provided but only in aggregate, i.e. no relationship between water quality and rainfall 

(rate or depth) was provided. 

Also to test pollutant reduction, a trial carpark was set up in Washington, United 
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States. Four pervious pavement types were tested. The testing included determination 

of pollutant concentrations in the infiltrate coming from the pervious pavements, as 

well as runoff from an asphalt control. These pavements were constructed in 1996. 

Other than the surface type, no construction details were given (Table 2 and Table 3). 

Details were given for two storm events, including the most intense storm. Overall, 

the maximum rainfall intensity was 7.4 mm/hr (Table 4). Water quality data was 

presented in aggregate only, with the focus being on comparison between the 

pavements studied rather than between storm events. Stormwater samples were taken 

in both 1996 and 2001-2002, giving estimates of both immediate and longer-term (6 

year) reduction rates. One of the four pavements used was UNI Eco-Stone, which is 

permeable interconnecting concrete pavers with about 90% impervious coverage and 

spaces filled with gravel (Brattebo & Booth, 2003). 

The Uni Eco-Stone appeared to perform the best long-term zinc reduction, with an 

infiltrate event mean concentration of 6.8 µg/L compared to the asphalt control’s 

21.6 µg/L, or 69% lower. Copper concentration was 0.86 µg/L compared to 7.98 

µg/L in the asphalt runoff, or 89% better, somewhat lower than Kadurupokune and 

Jayasuriya’s at 96% by concentration after five years (2009). In 1996, the copper 

concentration was 79% higher than the asphalt runoff, suggesting it was a copper 

source. The zinc concentration was 44% lower than from asphalt, suggesting the 

reduction actually improved with age. Motor oil was not tested in 1996, but was 

below the detection limit of 0.1 mg/L for all pervious pavements in 2001-2002. The 

average concentration from the asphalt surface was about 0.164 mg/L. This is 

broadly consistent with Kadurupokune and Jayasuriya’s results (2009). While 

suggesting pervious pavement is good for removing pollutants, the mixed results 

indicate further testing needs to be done to find the ‘best’ pervious pavement. In 

addition, the rainfall intensity in the above tests did not exceed 7.4 mm/hr. The soil 

was ‘permeable’, however clay fractions may have aided with coagulation and hence 

the pollutant reduction rate. 

Pollutant reduction by a PICP setup was also investigated by Bean and others (Bean 

et al., 2007). This was tested in the field in Goldsboro, North Carolina after about 2 

years of completion of construction. It had construction details as listed in Table 2 

and Table 3. Hydrological data was not provided for the Goldsboro site (Table 4). 

Compared to asphalt runoff, total nitrogen was reduced on average by about 42%, 
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total phosphorus by 63%, copper by 62% and zinc by 88%. However, TSS was only 

reduced by 33% relative to asphalt, suggesting loss of fines from the media. The total 

nitrogen result was slightly lower than Kadurupokune and Jayasuriya’s at 53% 

removal by concentration after 2 years of simulation (2009). Whether the measured 

metal concentrations were dissolved or not was not specified. 

Looking in more detail at the nutrients, orthophosphate was reduced by 42%, 

compared to bound phosphate at 72%. Again, this is less than Kadurupokune and 

Jayasuriya’s result at 59% removal by concentration of orthophosphate after 2 years. 

The ammonia was reduced by 84%, compared to 50% for organic nitrogen. The 

NOx-N concentration increased by 47%, because of nitrification of the TKN by 

nitrifying bacteria. Some denitrification would have occurred as well, due to the 

lower total nitrogen concentration in the effluent compared to the influent. 

Water quality was also tested at a site in Swansboro, using pavement of the same 

construction. The concentrations in the exfiltrate were somewhat less, with the 

notable exception of phosphate, but no asphalt control samples were taken at this 

site, obscuring the reasons for the differences. 

Another similar study was performed in Goldsboro, North Carolina, USA. Four 

pervious pavement and two asphalt parking sections were tested for nitrogen 

reduction a year after construction (Collins et al., 2010) (Table 2 and Table 3). This 

provides a valuable comparison with the previously cited article (Bean et al., 2007). 

These six bays were constructed adjacent to each other. Rainfall events varied in 

depth from 3.1 to 88.9 mm (Table 4). Neither intensity nor duration data were 

provided. One of the bays, named PICP1, had 80 mm deep Octabrick permeable 

interlocking concrete pavers, having 12.9% open area and other construction details 

as per Table 2 and Table 3. In addition, PICP2 was constructed with Rima brand 

PICP of 80 mm depth, having 8.5% open area, otherwise the same in construction as 

PICP1. 

All four pavements had about 85% less ammonia by concentration than from runoff 

from the first asphalt bay (two were tested). (See below for pavement with concrete 

grid pavers filled with sand, see Section 2.2.5 for pavement with porous concrete.) 

The investigation by Bean et al. (2007) had almost the same result. Both 

impermeable asphalt sections tested had similar runoff concentrations of measured 
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pollutants. Both PICP’s achieved about 30% reduction in organic nitrogen, while in 

Bean et al.’s study a 50% reduction was achieved, with both a higher concentration 

in asphalt runoff and lower concentration in PICP exfiltrate. 

The NOx-N concentration increased by over 300% for PICP1 and over 200% for 

PICP2, compared to asphalt runoff. However, in Bean et al.’s study it only increased 

on average by 47%, even though in both studies asphalt runoff concentrations of 

NOx-N were about 0.3 mg/L. This is reflected in the effluent total nitrogen results, 

where it was about 40% higher for PICP1, 11% higher for PICP2 and 42% lower in 

Bean et al.’s study compared to asphalt runoff. Collins et al. attribute the increased 

nitrogen to either decaying biomass or algal nitrogen fixation. Their site was in fact 

monitored for water quality from January to July, i.e. mid winter to mid summer, 

with such growth well established, while in Bean et al.’s study it was monitored June 

2003 to December 2004, with a bias towards the summer-to-winter growth phases. 

The pervious pavements performed well at removing ammonium, the results suggest 

this was mostly converted to nitrites and nitrates. The reduction rate relative to 

asphalt was around 85%, and a lower 45% reduction for TKN. One bay was 

constructed of concrete grid pavers; this performed the best total nitrogen reduction. 

It was suggested this was due to ammonium being sorbed into the sand, as it was the 

only pervious pavement constructed with a sand layer. 

Collins et al. also tested concrete grid pavers filled with sand. These were 80 mm 

deep and had 28% void area, with other construction details as per Table 2 and Table 

3. 

Ammonium concentration in the exfiltrate was on average slightly lower than the 

other pavements, at 88% less than in the asphalt runoff. Organic nitrogen was more 

or less the same as from the other pavements, at 28% lower than from asphalt. 

However, the NOx-N concentration was only about 60% higher than from asphalt, at 

0.46 mg/L. In addition, total nitrogen was 23% lower than from asphalt. This was 

suggested to be because of the higher surface area of the sand, allowing more 

microorganism colonisation, as well as possible assimilation of some ammonium 

before it can be nitrified. It is also suggested this could be because of the sand layer 

creating anoxic zones for denitrifying bacteria to colonise. 

To test the pollutant removal of a PICP pavement, an experimental heat pump system 
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was set up in the UK. The heat pump system is expected to be useful in frost-prone 

areas, due to higher temperatures promoting microbial decomposition. Crushed rock 

aggregate with an unsaturated depth of about 400 mm was used in the experimental 

test rigs (Figure 4) (Scholz & Grabowiecki, 2009). On top of this were proposed 

pavers with 3 mm pea gravel between. However, the pavers were omitted in the 

actual test rigs. Geotextile was installed under a 50 mm bedding layer (Table 2 and 

Table 3). 

With an inflow of combined gully pot liquor, tap water and dog faeces, very good 

nutrient removal was observed. A gully pot is a drainage pit with a sealed base, 

constructed in a way to trap sediments and hence protect downstream drainage from 

clogging. It should be noted that this was a laboratory test; therefore, the set flow rate 

is important. It was stated that 2.2 L of solution was ‘slowly’ collected from each 

bin, but the time or method of application was not specified (Table 4). Reductions of 

98 to 100% were observed for biological oxygen demand, 95% for ortho-phosphate 

and 99 to 100% for ammonia. However, nitrate concentration increased by up to four 

times, due to incomplete nitrification-denitrification. Anoxic conditions would be 

needed to remove nitrate; the nitrate concentration in the outflow was up to 3.2 

mg/L. Increases in total dissolved solids and TSS were recorded due to the aggregate. 

Pathogen removal was evident but highly variable. 

Microbes are believed to be chiefly responsible for the removal of nutrients. Carbon 

dioxide concentrations were monitored to qualitatively estimate microbial activity 

levels. The highest CO2 concentration and hence highest microbial activity was near 

the geotextile layer, at this point the carbon dioxide concentration was about 1700 

ppm. Figure 4 indicates carbon dioxide concentrations, the redder the higher the 

concentration. While the concentrations were not entirely clear from the graph in the 

paper, they are believed to be as indicated. 
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Figure 4: Indicative carbon dioxide levels in outside bin 1 for UK heat pump 
testing, February 2007 

 
Another investigation involving test rigs looked at suspended solids in more detail. 

Four rigs with 600 mm by 900 mm bins were used, with 76 mm deep Permeable 

Interconnecting Concrete Pavers clear spaced a maximum of 12.7 mm and with the 

gaps filled with 10 mm crushed stone. The same stone was used for a 25 cm bedding 

layer, on top of 127 mm of 16 mm angular crushed stone and a slotted PVC pipe. 

Two rigs had a woven geotextile immediately below the bedding. Another four boxes 

were tested, but with non-woven geotextile instead of woven geotextile (Rowe et al., 

2009) (Table 2 and Table 3). 

Rain simulation involved 17 L of stormwater being drained onto each pavement in 

less than an hour. This came from holes drilled in a 19 L bucket (Rowe et al., 2009); 

therefore the entire pavement was not covered. The simulated rain depth is stated by 

Rowe et al. as 3 cm, assuming even coverage, but assuming a bucket diameter of 300 

mm it would have been more like 270 mm. In Figure 5 the initial, maximum inflow 

rate is indicated as 1.5 cm/min, or 900 mm/hr (Rowe et al., 2009). This appears 

inconsistent with the stated loading depth of 3 cm. The inflow rate reduced over time 

(Rowe et al., 2009). Application occurred twice every workday for 12 weeks. In 

total, the rain loading was said to be equivalent to 3 years (Rowe et al., 2009), 

however with the concentrated loading area it was likely to be much higher, but over 

a small pavement area (Table 4). 
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The influent contained 18 to 228 mg/L of TSS. TSS removal was strongly correlated 

to the initial concentration, with R2 given as over 0.98. For the bins with woven 

geotextile, this equation was given as 

TSSremoved = 0.95 x TSSinput – 7.4 

For the bins with no geotextile, this was given as 

 TSSremoved = 0.74 x TSSinput – 0.98 

For these equations TSS is the total suspended solids concentration (input and 

removed, removed being input minus output) in mg/L. An increase in removal 

effectiveness was also noticed over time, with clogging taking place (Rowe et al., 

2009). 

Pervious pavement was tested as a stormwater holding medium (Gomez-Ullate, 

Novo, Bayon, Hernandez, & Castro-Fresno, 2011). Forty-five parking bays each of 

dimensions 4.2 m by 2.4 m plan area, with a depth of 0.5 m were installed. Six 

different surfaces were trialled, one of them being Aquaflow concrete blocks of 80 

mm depth. Different types of geotextile were installed, with combinations such that 

there were bays with no geotextile for each surface type. Clean limestone sub-base 

was used for all bays. It was not specified whether a bedding layer was incorporated. 

Preliminary results were given. Chemical oxygen demand varied from about 2 mg/L 

to 28 mg/L, depending on rain input, achieving the lowest of the six surface types in 

many cases. Similarly, total nitrogen varied from about 0.8 mg/L to 1.7 mg/L, 

roughly median performance. Total phosphorus was also about the median value, 

ranging from 0.01 to 0.05 mg/L. TSS was in some cases the best of the six surface 

types, ranging from 15 mg/L to 90 mg/L. Unfortunately these preliminary results 

cannot readily be compared with the laboratory study by Myers et al. (2007) on 

rainwater storage in gravel media, because in Gomez-Ullate et al.’s study there are 

rain events between every testing date that results were given for. 

Stormwater treatment efficiency of pervious pavement has been researched outside 

of Australia; however little has been found applying to Australian conditions. 

Nonetheless, an article was found focussing on runoff from pervious pavement. A 

study performed in Sydney found the water quality of runoff from PICP pavement 

was similar to asphalt, but at the lower end of pollutant levels (Ball & Rankin, 2010). 

This is particularly relevant to Perth, as the site had sandy soils, like Perth. The PICP 
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used was Rocla Ecoloc. Table 1 gives an overview of Event Mean Concentrations 

(EMC’s):  

Table 1: Event mean concentrations for Smith Street, Sydney (Ball & Rankin, 
2010) 

Constituent 

Smith Street 
EMC range 
(µg/L) 

Smith Street 
median EMC 
(µg/L) 

Total phosphorus 102-1800 222 
Copper 2-18 5 
Zinc 19-120 29 
Lead 3-40 9 
pH 6.3-6.7 - 
Conductivity (µS/cm) 29-233 - 
TSS (mg/L) 8-77 - 

 

While these results do not compare readily to the pavements used in the United 

States, due to the different climate, the pollutant concentrations were in fact closer to 

that of asphalt runoff in the US, with the possible exception of copper, which was 

closer to that from PICP pavement exfiltrate. However, comparing to runoff in 

southeast Queensland, only phosphorus was within the range of concentrations for 

impervious runoff, agreeing with Ball and Rankin’s finding that the runoff quality 

was better than from impervious surfaces. 

Runoff hydrology was investigated in detail, it was found that there was an initial 

loss of about 4 mm and at least 20 mm/hr was required to produce runoff. During 

runoff periods, the volumetric runoff coefficient was suggested to be 3% (Ball & 

Rankin, 2010). It is suggested here that the likely reasons for this low result were that 

the permeability of the soil was 145 mm/hr and the PICP pavement was about a year 

old at the time of testing. The pavement was released to traffic early 2002 (Shackel, 

Ball, & Mearing, 2003) and the testing was performed June 2002 to April 2003. A 

runoff coefficient range of 5 to 35% is more typical for pervious surfaces (American 

Society of Civil Engineers, 1969). Runoff is generally significantly lower than 

infiltration for pervious pavement. With higher levels of pollutants expected in 

runoff than infiltrate from pervious pavement, the lower the runoff, the lower the 

total exported pollutants. 

In summary, pollutant removal of TSS (Table 5) was found to vary linearly with the 

input concentration (Rowe et al., 2009), which potentially justifies the use of TSS 

removal percentage as an indicator of performance. Pavements incorporating 
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geotextile fared significantly better at TSS reduction than those without (59-95% 

compared to 33-60%, excluding the study by Scholz and Grabowiecki (2009) with 

the submerged base). A major source of variation between studies is the emission of 

TSS from the pavement itself, typically from the base layers. Reduction varied 

overall from 32% to 94%. For both laboratory studies providing loading rates, the 

removal rates are around 90% (with the use of geotextile in both cases), despite 

Kadurupokune and Jayasuriya (2009) using a loading rate of 90 mm/hr and Rowe et 

al. (2009) using an effective (concentrated) loading rate of roughly 270 mm/hr. With 

such similar removal rates despite such different hydraulic loading rates, this implies 

loading rate has little effect on TSS removal. Rowe et al.’s study demonstrates the 

effectiveness of using a geotextile layer for removing TSS. Wash tests would greatly 

assist in removing uncertainty, which was not done in all cases. 

The studies by Bean et al. (2007) and Collins et al. (2010) on nutrient reduction gave 

similar results, especially for ammonia (Table 6). The main difference was in 

oxidised nitrogen reduction, possibly because of the different testing periods. Sand 

can improve oxidised nitrogen removal by providing more surface area for microbes, 

as indicated by Collins et al’s study. Scholz and Grabowiecki’s study had close to 

100% removal of biological oxygen demand, phosphate and ammonia, suggested to 

be because of highly favourable conditions for bacterial growth in the laboratory 

compared to the above two field studies. Phosphorus removal appeared to be more 

influenced by loading rate than the other nutrients, as reflected by the much lower 

removal rates in Kadurupokune and Jayasuriya’s study using a high 90 mm/hr 

loading rate. Due to the highly variable nature of nutrient reduction, many studies 

would need to be sourced to confirm findings, each of which will need to detail input 

concentration of each species, output concentration, loading duration, loading rate, 

loading history, other inputs, temperature etc. 

Metal reduction rates varied significantly (Table 7). Leaching tests would be useful 

to account for the variation, which Fassman and Blackbourn did provide, but 

different base materials sorb the metals at different rates and this is believed to have 

contributed to the variation as well. 

All reduction percentages in Table 5 through Table 7 are by concentration, with the 

values for the study by Kadurupokune and Jayasuriya (2009) calculated. Field 

reduction rates are relative to asphalt runoff. 



 

 29 

 

Table 2: Surface and General Details of Permeable Pavements with Solid Pavers 

  General Surface 

Author Date Testing Location 
[Simulated] 
Age (years) Case 

Surface 
Type 

Surface 
Thickness 

(mm) 

Bedding 
Gravel 
Size 

(mm) * 

Bedding 
Thickness 

(mm) 

Kadurupokune 
and Jayasuriya 2009 Laboratory 

Melbourne, 
Victoria, 
Australia 1 1 year 

C&M 
Ecotrihex 80 2-5 30 

Kadurupokune 
and Jayasuriya 2009 Laboratory 

Melbourne, 
Victoria, 
Australia 17 17 years 

C&M 
Ecotrihex 80 2-5 30 

Fassman and 
Blackbourn 2010 Field 

Auckland, 
New 
Zealand 3 - 

Stevenson 
PICP 80 2-5 25 

Brattebo and 
Booth 2003 Field 

Washington, 
USA 0 As New 

UNI Eco-
Stone 80 ? ? 

Brattebo and 
Booth 2003 Field 

Washington, 
USA 6 6 years 

UNI Eco-
Stone 80 ? ? 

Bean et al. 2007 Field 

Goldsboro, 
North 
Carolina, 
USA 2 - 

UNI Eco-
Stone 75 

ASTM 
No. “72” 

Pea 
Gravel 75 

Collins et al. 2010 Field 

Goldsboro, 
North 
Carolina, 
USA 1 Octabrick Octabrick 80 

ASTM 
No. 78 
(2.36-
12.5) 100 

Collins et al. 2010 Field 

Goldsboro, 
North 
Carolina, 
USA 1 Rima Rima 80 

ASTM 
No. 78 
(2.36-
12.5) 100 

Collins et al. 2010 Field 
Washington, 
USA 1 CGP 

CGP filled 
with sand 80 

Sand 
over 

ASTM 
No. 78 
(2.36-
12.5) 25, 100 

Scholz and 
Grabowiecki 2009 

Laboratory 
(rig 1, 
inside) 

Edinburgh, 
Scotland, UK 0 - None None 5 50 

Rowe et al. 2009 Laboratory 
Edison, New 
Jersey, USA 0 Geo. PICP 80 10 25 

Rowe et al. 2009 Laboratory 
Edison, New 
Jersey, USA 0 No Geo. PICP 80 10 25 

* Material used to fill gaps in and between pavers is the same as the bedding material in all cases. 
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Table 3: Base and Geotextile Details for Permeable Pavements with Solid 
Pavers 

   Base 

Author Case Geotextile 
Base Gravel 
Size (mm) 

Base  
Thickness 

(mm) 

Sub-base 
Gravel Size 

(mm) 
Sub-base 

Thickness (mm) 
Kadurupokune and 
Jayasuriya 1 year 1000 gauge PE 5-20 200 None None 
Kadurupokune and 
Jayasuriya 17 years 1000 gauge PE 5-20 200 None None 
Fassman and 
Blackbourn - Yes, unspecified ? 150 ? 230 

Brattebo and Booth As New Yes, unspecified ? ? ? ? 

Brattebo and Booth 6 years Yes, unspecified ? ? ? ? 

Bean et al. - None 

ASTM No. 
57 (4.75 to 

25) 200 None None 

Collins et al. Octabrick None 
ASTM No. 5 
(12.5-25.0) 250 None None 

Collins et al. Rima None 
ASTM No. 5 
(12.5-25.0) 250 None None 

Collins et al. CGP None 
ASTM No. 5 
(12.5-25.0) 225 None None 

Scholz and 
Grabowiecki - 

2 mm thick Inbitex + 
impermeable 
composite 5-20 100 10-63 

500 (250 
submerged) 

Rowe et al. Geo. 
Woven, 0.425 mm 
apparent opening size 16 127 None None 

Rowe et al. No Geo. None 16 127 None None 

 

Table 4: Hydraulic Details for Permeable Pavements with Solid Pavers 

Author Case 
[Simulated] Rainfall 

Intensity (mm/hr) 
[Simulated] Rainfall 

Duration (hr) 
[Simulated] Rainfall 

Depth (mm) 
Kadurupokune and 
Jayasuriya 1 year 90 1.5 135 
Kadurupokune and 
Jayasuriya 17 years 90 1.5 135 
Fassman and 
Blackbourn - 0.3-79.2 ? 2-152 

Brattebo and Booth As New 0-7.4 ≤72 13-121 

Brattebo and Booth 6 years 0-7.4 ≤72 13-121 

Bean et al. - ? ? ? 

Collins et al. Octabrick ? ? 3.1-88.9 

Collins et al. Rima ? ? 3.1-88.9 

Collins et al. CGP ? ? 3.1-88.9 

Scholz and Grabowiecki - ? ? 5.2 (calculated) 

Rowe et al. Geo. 
0-900 (1.5 cm/min) 

reducing ~1 
30 (quoted, likely closer 

to 300) 

Rowe et al. No Geo. 
0-900 (1.5 cm/min) 

reducing ~1 
30 (quoted, likely closer 

to 300) 
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Table 5: TSS Reduction Efficiencies of Permeable Pavements with Solid Pavers 

Author Case TSS Reduction 

Kadurupokune and Jayasuriya 1 year 94% 

Kadurupokune and Jayasuriya 17 years 95% 

Fassman and Blackbourn - 59% 

Brattebo and Booth As New - 

Brattebo and Booth 6 years - 

Bean et al. - 33% 

Collins et al. Octabrick - 

Collins et al. Rima - 

Collins et al. CGP - 

Scholz and Grabowiecki - 32% 

Rowe et al. Geo. >90% 

Rowe et al. No Geo. >60% 

 

Table 6: Nutrient Reduction Efficiencies of Permeable Pavements with Solid 
Pavers 

    Nutrient 

Author Case DOC COD BOD 
Motor 

Oil TP TN TKN 
NH4-

N ON 
NO2-

N 
NO3-

N 
NOx-

N 
Kadurupokune and 
Jayasuriya 1 year - - - 86% 53% 63% - - - - - - 
Kadurupokune and 
Jayasuriya 17 years - - - 97% 22% 12% - - - - - - 

Fassman and Blackbourn - - - - - - - - - - - - - 

Brattebo and Booth As New - - - ND - - - - - - - - 

Brattebo and Booth 6 years - - - ND - - - - - - - - 

Bean et al. - - - - - 63% 42% 60% 84% 50% - - -47% 

Collins et al. Octabrick - - - - - 
-

40% 49% 85% 30% - - 
-

331% 

Collins et al. Rima - - - - - 
-

11% 49% 85% 30% - - 
-

210% 

Collins et al. CGP - - - - 
- 

23% 49% 88% 28% - - -59% 

Scholz and Grabowiecki - - - 99% - 99% - - 100% - - - -55% 

Rowe et al. Geo. - - - - - - - - - - - - 

Rowe et al. No Geo. - - - - - - - - - - - - 
ND: Not detected 
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Table 7: Metal Reduction Efficiencies of Permeable Pavements with Solid 
Pavers 

    Metal 

Author Case CdT CdD CdP CuT CuD CuP PbT PbD PbP ZnT ZnD ZnP 

Kadurupokune and Jayasuriya 1 year - ND - - 94% - - ND - - -46% - 

Kadurupokune and Jayasuriya 17 years - ND - - 96% - - ND - - 25% - 

Fassman and Blackbourn - - - - 50% 49% 51% - - - 80% 96% 62% 

Brattebo and Booth As New - - - - -79% - - - - - 44% - 

Brattebo and Booth 6 years - - - - 89% - - ND - - 69% - 

Bean et al. - - - - 62% - - - - - 88% - - 

Collins et al. Octabrick - - - - - - - - - - - - 

Collins et al. Rima - - - - - - - - - - - - 

Collins et al. CGP - - - - - - - - - - - - 

Scholz and Grabowiecki - - - - - - - - - - - - - 

Rowe et al. Geo. - - - - - - - - - - - - 

Rowe et al. No Geo. - - - - - - - - - - - - 
T subscript refers to total concentration, similarly D means dissolved and P means particulate. 

ND: Not detected 

 

2.2.2 Plastic Reinforced Gravel 

One of the four pavements tested by Brattebo and Booth was Gravelpave, a plastic 

grid filled with gravel, with a general setup as described in Table 8. Neither 

geotextile nor base details were reported, but hydraulic details were given (Table 9). 

TSS was not tested for. Motor oil was never detected in the exfiltrate, even though 

0.164 mg/L was detected in the asphalt runoff. The same applied for the other three 

pavements (Section 2.2.1). In 1996, the dissolved copper concentration from the 

exfiltrate was on average 79% lower than the asphalt runoff, but the dissolved zinc 

concentration was 25% higher, suggesting the gravel was a source of zinc (Table 10). 

In 2001-2002, copper was 89% lower than asphalt and zinc 62% (Brattebo & Booth, 

2003). All pollutant reduction percentages are by concentration. 

Table 8: Surface and General Details for Plastic Reinforced Gravel 

  General Surface 

Author Date Testing Location 
[Simulated] 
Age (years) Case 

Surface 
Type 

Surface 
Thickness 

(mm) 

Bedding 
Gravel Size 

(mm) 

Bedding 
Thickness 

(mm) 
Brattebo 
and Booth 2003 Field 

Washington, 
USA 0 

As 
New Gravelpave 25 (manuf.) ? ? 

Brattebo 
and Booth 2003 Field 

Washington, 
USA 6 

6 
years Gravelpave 25 (manuf.) ? ? 
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Table 9: Hydraulic Details for Plastic Reinforced Gravel 

Author Case Rainfall Intensity (mm/hr) Rainfall Duration (hr) Rainfall Depth (mm) 

Brattebo and Booth As New 0-7.4 ≤72 13-121 

Brattebo and Booth 6 years 0-7.4 ≤72 13-121 

 

Table 10: Metal Reduction Efficiencies of Plastic Reinforced Gravel 

  Metal 

Author Case CdT CdD CdP CuT CuD CuP PbT PbD PbP ZnT ZnD ZnP 

Brattebo and Booth As New - - - - 79% - - - - - -25% - 

Brattebo and Booth 6 years - - - - 89% - - ND - - 62% - 
T subscript refers to total concentration, similarly D means dissolved and P means particulate. 

ND: Not detected 

 

2.2.3 Reinforced Turf 

Turf can be used as a pervious pavement surface, as long as it is reinforced by some 

structure. Two of the pavements tested by Brattebo and Booth (2003) were 

Grasspave, which is plastic reinforced turf, and Turfstone, which are concrete grid 

pavers with about 60% impervious area filled with turf. Construction details are 

given in Table 11. No base or geotextile details were reported, but Table 12 gives 

hydraulic details. TSS was not tested for. In 1996, on average the Grasspave 

discharged 138% more dissolved copper by concentration (at 21.4 µg/L) than the 

asphalt, making Grasspave the largest copper source of the four pavements, whereas 

the Turfstone discharged 82% less compared to asphalt. As for zinc, the 

concentration was below the detection limit of 5 µg/L from the Grasspave and 63% 

lower than asphalt for the Turfstone. In 2001-2002, the copper coming from the 

Grasspave was below the detection limit of 1 µg/L, providing the best reduction of 

all four pavements, and from the Turfstone was 83% lower than the asphalt. As for 

zinc, the concentration was 39% lower from the Grasspave than from the asphalt, for 

Turfstone 64% lower. 

A novel approach of creating a structural soil consisting of turf and gravel was 

investigated (Sloan, Hegemann, & George, 2008). Nine combinations of varying 

contents of expanded shale, sand, sphagnum peat moss and zeolites were used. These 

were placed in pots 140 mm diameter, 110 mm depth and functional volume of 1.15 

L. The expanded shale overall was graded 1 to 6 mm; sand 0.25 mm to 1.0 mm. 

Zeolites used were clinoptilolite as Cax(Na, K)6–2x(Al6Si30O72), to retain fertilizers 
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and heavy metals. 

Bermudagrass sprigs were grown in all the pots. Fertiliser was initially added at 0.48, 

0.21 and 0.40 g per pot of nitrogen, phosphorus and potassium respectively, then 

every 175 days with slow release fertiliser at 1.08, 0.16 and 0.60 g per pot of 

nitrogen, phosphorus and potassium respectively. Grass was clipped to 38 mm height 

whenever necessary. After the grass was established, 10 mL of solution containing 

250 µg of each of dissolved cadmium, copper, lead and zinc were added to each pot, 

then 250 mL of deionised water was leached through each pot at 1, 3, 7 and 14 days 

after metal addition. Leached metals were mostly undetected, so 30 mL of solution, 

750 µg of each metal and 375 mL of deionised water were tried, with similar result. 

Two months later, 10 mL of solution containing 10 mg of each metal and 375 mg of 

deionised water was leached through after 1 day and 4 days. 

Phosphorus leaching was the most influenced by peat moss content, where more peat 

moss meant more phosphorus leaching. The widely graded shale (1-6 mm) resulted 

in the least phosphorus leaching, possibly due to the increased particle surface area 

and lower permeability. Zeolites increased phosphorus levels in exfiltrate. Generally, 

phosphorus levels decreased over time, but in some cases increased. After the first 5 

days, concentrations ranged from about 0.2 to 1.3 mg/L but after 162 days ranged 

from about 0.2 to 0.4 mg/L. 

All the mixes performed well at removing metals. After 1 mg total addition of each 

metal the leachate amount of each metal was ‘very low’. After 11 mg addition, the 

most total cadmium collected was about 27 µg. Similarly; at most 28 µg of copper, 

17 µg of lead and 84 µg of zinc was collected. The role of peat moss, zeolites and 

shale particle size distribution are judged to be complex at best. Depending on the 

heavy metal, different combinations performed best. For cadmium, this was no peat 

moss, some zeolites and shale graded 1-6 mm. For copper, this was possibly 10% 

peat moss, 10% zeolites and 1-3 mm graded shale. For lead, 10% peat moss, 10% 

zeolites and 1-6 mm graded shale. Zinc removal worked best at a different 

composition again of some peat moss, no zeolites and 1-6 mm graded shale. It was 

reported that the 1-6 mm graded shale leached the least solution, as well as mixes 

containing peat moss. Analysis on a concentration basis may have yielded clearer 

results. Metal concentrations in grass clippings clearly increased with metal addition, 

but were not significantly different between pot mixes. 
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Two of the surface types tested by Gomez-Ullate et al. (2011) were plastic and 

concrete reinforced turf (see Section 2.2.1). As discussed earlier, the sub-base was 

used to store rainwater. The concrete reinforced turf fared similarly to the concrete 

block pavement in terms of chemical oxygen demand, with concentrations ranging 

between 5 mg/L and 37 mg/L. It also had similar total nitrogen concentrations to the 

concrete block pavement, ranging from about 0.2 mg/L to 3 mg/L, achieving the 

lowest concentration on three occasions. Total phosphorus results were mixed, 

ranging from the lowest recorded value of 0.005 mg/L to 0.045 mg/L. It performed 

fairly average in terms of TSS, ranging from 12 mg/L to 150 mg/L. 

Pollutant performance by the plastic reinforced turf was relatively poor. Chemical 

oxygen demand ranged between 7 mg/L and the second highest recorded value of 46 

mg/L, total nitrogen 1 mg/L and the highest recorded value of 8 mg/L, total 

phosphorus 0.005 mg/L and the highest recorded value of about 0.2 mg/L and TSS 

between 10 mg/L and the highest recorded value of nearly 600 mg/L. These 

substances were reasoned to leach from the turf. 

To summarise, there are no specific results for TSS reduction, but the study by 

Gomez-Ullate et al. (2011) indicates the soil within the surface layer may be a 

significant source of TSS in reinforced soil structures. Additional layers of geotextile 

may be necessary to mitigate this. 

There is insufficient information sourced to compare nutrient reduction between 

studies employing reinforced turf. Nevertheless, motor oil reduction was significant, 

as indicated in the study by Brattebo and Booth (2003). In addition, the results from 

the study by Sloan et al. (2008) on expanded shale reinforced turf are promising, 

with benign concentrations of phosphate in the leachate. Use of a leaching test on the 

fertiliser alone would have clarified whether this is the case. 

Metal reduction results were again highly variable (Table 13). Leaching tests would 

have helped account for the variability, to determine how much was coming from the 

pavement structure. Sloan et al.’s study gave promising results here too, but 

presenting the results by concentration as well as load would have given a clearer 

picture, due to the different water absorption rates. 

All reduction percentages in Table 13 are by concentration. Field reduction rates 

relate to asphalt runoff. 
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Table 11: Surface and General Details for Reinforced Turf 

  General Surface 

Author Date Testing Location 
[Simulated] 
Age (years) Case 

Surface 
Type 

Surface 
Thickness 

(mm) 

Bedding 
Gravel Size 

(mm) 

Bedding 
Thickness 

(mm) 
Brattebo 
and Booth 2003 Field 

Washington, 
USA 0 

As 
New 

Grasspave 
(plastic) 25 (manuf.) ? ? 

Brattebo 
and Booth 2003 Field 

Washington, 
USA 6 

6 
years 

Grasspave 
(plastic) 25 (manuf.) ? ? 

Brattebo 
and Booth 2003 Field 

Washington, 
USA 0 

As 
New 

Turfstone 
(concrete) 90 (manuf.) ? ? 

Brattebo 
and Booth 2003 Field 

Washington, 
USA 6 

6 
years 

Turfstone 
(concrete) 90 (manuf.) ? ? 

 

Table 12: Hydraulic Details for Reinforced Turf 

Author Case Rainfall Intensity (mm/hr) Rainfall Duration (hr) Rainfall Depth (mm) 

Brattebo and Booth As New 0-7.4 ≤72 13-121 

Brattebo and Booth 6 years 0-7.4 ≤72 13-121 

Brattebo and Booth As New 0-7.4 ≤72 13-121 

Brattebo and Booth 6 years 0-7.4 ≤72 13-121 

 

Table 13: Metal Reduction Efficiencies of Reinforced Turf 

  Metal 

Author Case CdT CdD CdP CuT CuD CuP PbT PbD PbP ZnT ZnD ZnP 

Brattebo and Booth As New - - - - -138% - - - - - ND - 

Brattebo and Booth 6 years - - - - ND - - ND - - 39% - 

Brattebo and Booth As New - - - - 82% - - - - - 63% - 

Brattebo and Booth 6 years - - - - 83% - - ND - - 64% - 
T subscript refers to total concentration, similarly D means dissolved and P means particulate. 

ND: Not detected 

 

2.2.4 Porous Concrete 

Porous concrete can remove metals, probably from a combination of precipitation, 

ion exchange and other sorption mechanisms (Calkins et al., 2010). This study found 

that the aggregate, sand and cement contribute, with cement contributing the most. 

They also found that adding about 1.2 kg/m3 of nylon fibre increases the rate of 

sorption of copper, possibly by increasing the surface area available. 

Collins et al. (2010) performed a study on four pervious pavements, including porous 

concrete. Construction details are given in Table 14 and Table 15, hydraulic details 

in Table 16. Like the other three pavements, the concentration of ammonia in the 

exfiltrate was on average about 85% less than in the asphalt runoff. The organic 

nitrogen was only 18% lower compared to around 30% lower for the other 
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pavements, but considering it was 0.5 mg/L compared to around 0.45 mg/L for the 

other pavements, it was deemed insignificant in the discussion. The NOx-N 

concentration increased similarly to the PICP pavements and total nitrogen had about 

the same concentration as from asphalt runoff. 

One of the surface types tested by Gomez-Ullate et al. (2011) was porous concrete 

(see Section 2.2.1). As discussed earlier, the sub-base was used to store rainwater. 

For chemical oxygen demand, it performed the worst out of the six surface types, 

with concentrations ranging from 5 mg/L to over 50 mg/L. This was reasoned to be 

because of an additive in the concrete. Total nitrogen was at about 1.2 mg/L to 4.6 

mg/L. Total phosphorus was at 0.01 mg/L to 0.10 mg/L. TSS was at 30 mg/L to 160 

mg/L. 

In summary, porous concrete is a good surface layer for iron oxide coated sand 

(OCS), an engineered material. This is because the concrete raises the pH of the 

influent and makes the OCS more effective at capturing dissolved metals (J. J. 

Sansalone, 1999) (see Section 2.2.7). The OCS is installed below the porous 

concrete. 

Porous concrete appears to perform similarly to other pavement types in terms of 

nutrient reduction, according to the study by Collins et al. (2010). Pollutant reduction 

percentages in Table 17 are by concentration and are relative to asphalt runoff. 

Cement in porous concrete aids in the removal of heavy metals, as evidenced in the 

study by Calkins et al. (2010). 

Table 14: Surface and General Details for Porous Concrete 

  General Surface 

Author Date Testing Location 
[Simulated] 
Age (years) Case 

Surface 
Type 

Surface 
Thickness 

(mm) 

Bedding 
Gravel Size 

(mm) 

Bedding 
Thickness 

(mm) 

Collins 
et al. 2010 Field 

Washington, 
USA 1 - 

Porous 
concrete 150 

ASTM No. 
78 (2.36-

12.5) 50 

 

Table 15: Base and Geotextile Details for Porous Concrete 

   Base 

Author Case Geotextile 
Base Gravel Size 

(mm) 
Base  Thickness 

(mm) 
Sub-base Gravel Size 

(mm) 
Sub-base Thickness 

(mm) 
Collins et 
al. - None 

ASTM No. 5 
(12.5-25.0) 230 None None 
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Table 16: Hydraulic Details for Porous Concrete 

Author Case Rainfall Intensity (mm/hr) Rainfall Duration (hr) Rainfall Depth (mm) 

Collins et al. - ? ? 3.1-88.9 

 

Table 17: Nutrient Reduction Efficiencies of Porous Concrete 

  Nutrient 

Author Case DOC COD BOD Motor Oil TP TN TKN NH4-N ON NO2-N NO3-N NOx-N 

Collins et al. - - - - - - -2% 42% 85% 18% - - -152% 

 

 

2.2.5 Porous Asphalt 

Asphalt can be constructed in such a way as to provide voids to let rainwater 

through, termed porous asphalt. A porous asphalt parking area was constructed in 

2002 at the University of Rhode Island campus (Boving et al., 2008). On the 

subgrade 50 mm of sand was constructed, followed by geotextile, 600 mm of cobble-

sized crushed granite, 300 mm of pebble-sized gravel then 150 mm of non-polymer 

modified porous asphalt (from bottom to top). Water sampling probes were installed 

in-situ just above the geotextile (shallow) and 600 mm below the geotextile (deep) 

(Table 18 and Table 19). Runoff samples were also collected from a nearby 

impervious asphalt car park. Only monthly rainfall data was given (Table 20). 

A tracer test was performed to determine the actual attenuation of some pollutants. 

About 53.5 L of solution was pumped through over 38 days, during a wet month. 

There was a 27% reduction by mass of nitrate, which had an initial concentration of 

990 mg/L. A 27% reduction of phosphate was also observed, with an initial 

concentration of 382 mg/L. Similarly, copper, zinc and sodium salicylate reduced by 

92.5%, 92.2% and 52.2% respectively, with initial concentrations of 500 mg/L, 1300 

mg/L and 1587 mg/L respectively. 

Unfortunately, insufficient data was collected from the impervious carpark for 

comparison. What was measured was a concentration of 1.4 µg/L of polyaromatic 

hydrocarbons (PAH) in September 2004, compared to about 1.7-1.8 µg/L from the 

shallow probes at about the same time. Insufficient water was collected from the 

deep probes and a probe located outside the car park. 

Porous asphalt was investigated in China (Xie, Xu, & Wang, 2009). Both 
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continuously graded and gap graded asphalt were studied. Cement stabilised, 13.2 

mm single sized bedding was used. Thicknesses were not given and a complete 

pavement setup comprising all the usual layers was not investigated (Table 18 and 

Table 19). Therefore results can only be compared within this one study. Also, 

hydraulic information such as loading rates was not provided (Table 20). 

Individual layers were investigated. Gap graded asphalt removed far more chemical 

oxygen demand (COD) than continuously graded, at 54% removal compared to 22% 

removal. Initial concentrations were not given for the tests on individual layers. Both 

gap graded and continuously graded asphalt performed similarly for TSS, at about 

63-65% removal. Layers were also tested in combination, but not forming a complete 

pavement. Initial pollutant concentrations of 180 mg/L COD and 4000 mg/L TSS 

(both calculated) were used. For the asphalt and bedding layer combination, gap 

graded asphalt performed slightly better at both COD and TSS removal in this test. 

The enhanced COD removal was reasoned to be because of the increase in air voids, 

providing more oxygen to bacteria. 

Porous asphalt samples were tested for TSS removal by Kuang, Sansalone, Gnecco, 

Berretta, and Lanza (2007). Runoff containing both sand and silt from Baton Rouge, 

Louisiana was infiltrated through 97 mm deep samples at an unspecified flow rate. 

The samples removed nearly all the ‘sediment’ sized particles and 50% of the 

suspended particles, at a total rate of 80%. The initial concentrations were not given. 

One of the surface types tested by Gomez-Ullate et al. (2011) was porous asphalt 

(see Section 2.2.1). As discussed earlier, the sub-base was used to store rainwater. 

Chemical oxygen was fairly average at 5 mg/L to 40 mg/L. Total nitrogen was 

probably the best out of the six surface types, at 0.5 mg/L to 1.5 mg/L. Total 

phosphorus ranged from 0.005 mg/L to 0.065 mg/L. TSS ranged from 20 mg/L to the 

second highest recorded value of over 500 mg/L. The reason for this is unknown. 

Permeable friction course (PFC) is similar to porous asphalt pervious pavement, 

except the porous asphalt is constructed atop an impermeable membrane over 

conventional impervious basecourse and subbase. While this compromises the 

additional storage and infiltration capacity of porous asphalt pervious pavement, it 

still provides superior hydraulic performance to conventional impervious asphalt 

(Barrett, Klenzendorf, Eck, & Charbeneau, 2009). 
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A highway with a PFC was investigated in Austin, Texas (Barrett et al., 2009). The 

depth of friction course was not given, neither was hydrological data (Table 18, 

Table 19 and Table 20). Stormwater pollutant concentrations were measured before 

and after the installation of the friction course. TSS was most effectively removed, at 

around 90% less than originally. Sediment bound pollutants were lower as well, at 

over 80% lower for bound phosphorus, about 85% for bound copper, 88% for bound 

lead and over 90% for bound zinc. Dissolved pollutants were not significantly 

reduced; the best example was dissolved zinc at 30-50% reduction. This is expected 

to be because of the flow regime preventing adequate microbe establishment to 

remove nutrients and lack of available calcium from gravel to remove dissolved 

metals, compared to pervious pavement. 

A study in North Carolina found TSS in stormwater exfiltrate from PFC to be lower 

than fully impermeable asphalt (Winston, Hunt, & Wright, 2010). The average TSS 

was 10-31 mg/L depending on testing location, compared to over 100 mg/L from 

impervious highways from other studies. However, TKN, NOx-N, total nitrogen, 

ammonium, organic nitrogen and total phosphorus concentrations were all similar to 

from an impervious carpark in the same state. The depth of friction course was about 

50 mm. 

In summary, not enough information on TSS reduction was found for porous asphalt 

(Table 21), but PFC removed over 90% in the study by Barrett et al. (2009). 

From the limited data collected nutrient reduction ability appeared to be similar to 

pavement with gravel filled gaps, considering the study by Boving et al. (2008) 

looked at pollutant load rather than concentration with a tracer test, but PFC fared 

poorly due to the limited opportunity for bacterial growth from the lateral flow 

(Section 2.2.1 Table 6, Table 22). 

Similarly, metal reduction of porous asphalt is probably comparable to pavement 

with gravel filled gaps. Dissolved metal removal of PFC is poor because of the lack 

of available material for it to sorb to (Section 2.2.1 Table 7, Table 23). 

Pollutant reduction percentages in Table 21 through Table 23 are by concentration. 

Field reduction rates are relative to asphalt runoff. 
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Table 18: Surface and General Details for Porous Asphalt 

  General Surface 

Author Date Testing Location 
[Simulated] 
Age (years) Case Surface Type 

Surface 
Thickness 

(mm) 

Bedding 
Gravel Size 

(mm) 

Bedding 
Thickness 

(mm) 
Boving 
et al. 2008 Field 

Rhode Island, 
USA  - 

Porous 
asphalt 150 None None 

Xie et 
al. 2009 Laboratory 

Harbin, 
Heilongjiang, 
China 0 

Cont. 
HMA 

Porous 
asphalt – 
continuous 
graded ? 

? (Cement 
stabilised) ? 

Xie et 
al. 2009 Laboratory 

Harbin, 
Heilongjiang, 
China 0 

Gap 
HMA 

Porous 
asphalt – gap 
graded ? 

? (Cement 
stabilised) ? 

Barrett 
et al. 2009 Field 

Austin, Texas, 
USA 3 - 

PFC (original 
site) ? NA NA 

 

Table 19: Base and Geotextile Details for Porous Asphalt 

   Base 

Author Case Geotextile 
Base Gravel 
Size (mm) 

Base  
Thickness 

(mm) 

Sub-base 
Gravel Size 

(mm) 
Sub-base 

Thickness (mm) 

Boving 
et al. - 

Below shallow sampler (which 
was below sub-base), 
unspecified 

'Pebble 
sized' 300 'Cobble sized' 600 

Xie et al. 
Cont. 
HMA None None None None None 

Xie et al. 
Gap 
HMA None None None None None 

Barrett 
et al. - NA NA NA NA NA 

 

Table 20: Hydraulic Details for Porous Asphalt 

Author Case 
[Simulated] Rainfall Intensity 

(mm/hr) 
[Simulated] Rainfall Duration 

(hr) 
[Simulated] Rainfall Depth 

(mm) 
Boving et 
al. - ? ? 42-215 (per month) 

Xie et al. 
Cont. 
HMA ? ? ? 

Xie et al. Gap HMA ? ? ? 
Barrett et 
al. - ? ? ? 

 

Table 21: TSS Reduction Efficiencies of Porous Asphalt 

Author Case TSS 

Boving et al. - - 

Xie et al. Cont. HMA 36% 

Xie et al. Gap HMA 40% 

Barrett et al. - 92% 
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Table 22: Nutrient Reduction Efficiencies of Porous Asphalt 

   Nutrient 

Author Case DOC COD BOD Motor Oil TP TN TKN NH4-N ON NO2-N NO3-N NOx-N 

Boving et al. - - - - - 27% - - - - - 27% - 

Xie et al. Cont. HMA - 43% - - - - - - - - - - 

Xie et al. Gap HMA - 56% - - - - - - - - - - 

Barrett et al. - - - - - 40% - 9% - - - - 9% 

 

Table 23: Metal Reduction Efficiencies of Porous Asphalt 

   Metal 

Author Case CdT CdD CdP CuT CuD CuP PbT PbD PbP ZnT ZnD ZnP 

Boving et al. - - - - - 93% - - - - - 92% - 

Xie et al. Cont. HMA - - - - - - - - - - - - 

Xie et al. Gap HMA - - - - - - - - - - - - 

Barrett et al. - - - - 49% -78% 84% 88% ND 88% 82% 51% 93% 
ND: Not detected 

T subscript refers to total concentration, similarly D means dissolved and P means particulate. 

 

2.2.6 Role of Sub-base Aggregate 

The type of sub-base can also influence stormwater pollutant removal performance. 

A laboratory study comparing calcite and dolomite was performed (Myers et al., 

2007). This was performed mainly to investigate the effect of storage in the sub-base, 

so the surface layer was omitted. Bedding of 5 mm dolomite underlain with A34 

Bidim geotextile was provided for all test rigs, followed by sub-base of either calcite 

or dolomite gravel (Table 24 and Table 25). Input solution used had organic material 

from dried leaves, 1.05 mg/L of phosphate (as phosphorus), 0.1825 mg/L copper, 

0.748 mg/L zinc and 0.9432 mg/L lead. A control rig contained only this solution. 

UV absorbance and other parameters were used to qualitatively indicate the organic 

content of the water. The UV absorbance started at 0.3 and decreased to 0.1 for the 

dolomite and just less than 0.2 for the control and calcite after 144 hours. Very little 

change had occurred after 2 hours. Total nitrogen reduced by 18% in the calcite and 

67% in the dolomite rigs, the time period was not clearly specified but taken to be 

144 hours. Similarly, phosphate reduced by 95%. After just 2 hours, zinc dropped to 

around 0.1 mg/L in both types of gravel but slightly lower in the dolomite. Similar 

results were seen for lead and copper. It was demonstrated that dolomite is more 

reactive, but no reason was given for the apparent superior nutrient removal ability of 

dolomite (Myers et al., 2007). 
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An investigation into four different sub-base materials was also performed (Pratt, 

Mantle, & Scholfield, 1995). The base materials tested were 10 mm rounded gravel, 

40 mm blast furnace slag, 5-40 mm granite and 5-40 mm carboniferous limestone. 

Overall, each pavement tested had concrete block pavers filled with gravel. These 

were placed on top of gravel bedding, which was underlain by geotextile, with the 

base beneath this. The base was constructed on an impermeable membrane with a 

subsoil collection pipe. The pavements were installed in 1986. 

Suspended solids were suggested to come almost entirely from the pavement 

structure itself, with solids from stormwater trapped within the upper layers of the 

pavements. Concentrations of lead in the output declined over time, this was said to 

be because it was in fact leaching from the aggregate. The limestone initially emitted 

the most TSS, at 164 to 615 mg/L in April 1987. The other aggregates emitted 11-

370 mg/L. In two storm events following, in August and October, the TSS output 

from all pavements were broadly the same at 4-46 mg/L. Blast furnace slag 

consistently emitted the most lead, initially at 81-120 µg/L. Gravel performed the 

best, with 22-36 µg/L in the exfiltrate for the same storm. An impermeable asphalt 

control surface was not tested. 

Performance of different gravel layers was also investigated by Xie et al. (2009). The 

layers tested included 13.2 mm cement stabilised aggregate, 13.2 mm basecourse and 

a sand-gravel bed course, with 4.75 mm gravel. Unfortunately thicknesses were not 

given (Table 24 and Table 25). Hydraulic loading rates were not provided either. 

Layers were individually tested, with initial concentrations not given. The bedding 

removed 48% of chemical oxygen demand (COD), the basecourse 42% and the sand 

gravel layer 36%. As for suspended solids, the bedding was the only gravel layer to 

achieve a net removal, with the other two layers contributing TSS due to the presence 

of attached fine particles during construction. 

Layers were also tested in combination. The basecourse overlaid the sand-gravel 

layer in one test and in another fibre (taken to mean geotextile) was added, the 

location of this geotextile not specified. With initial concentrations of COD and TSS 

of 180 mg/L and 2000 mg/L respectively (calculated), the combination without 

geotextile removed 46% of COD and increased TSS by 108%, with the gravel layers 

being a source of fines as stated earlier. With geotextile, it performed much better at 

65% removal of COD and a net removal of TSS at 51%. Geotextile acts as a filter 
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and provides significant surface area for microbial growth, explaining the 

improvement. 

In summary, gravel layers in pervious pavement, including the sub-base, can be a 

substantial source of TSS (Xie et al., 2009). Pratt et al. (1995) found that this can be 

particularly the case for limestone (Table 26). 

As for nutrient removal, the type of aggregate used can also have an effect. Myers et 

al. (2007) found that dolomite is substantially better than calcite at aiding the 

reduction of UV absorbance (related to organic carbon), total nitrogen and total 

phosphorus, at least when using the sub-base as a storage layer (Table 27). 

Gravel layers can either be a source of or a sink for metals. Leaching tests are 

required to clarify for each case (Section 2.2.1). Sorption mechanisms can include 

binding to calcium carbonate and precipitation through an increased pH, or 

combinations of the two (Myers et al., 2007). Little information was found for 

individual layers, but when a gravel layer is used as storage, significant reductions 

can be achieved (Table 28). 

Pollutant reductions in Table 26 through Table 28 are by concentration. 

Table 24: Surface and General Details for Different Bases 

  General Surface 

Author Date Testing Location 
[Simulated] 
Age (years) Case Surface Type 

Surface 
Thickness 

(mm) 

Bedding 
Gravel 

Size (mm) 

Bedding 
Thickness 

(mm) 

Myers et al. 2007 

Laboratory 
(as 
reservoir) 

Adelaide, 
South 
Australia 0 

Calci
te None None 

Dolomite, 
5 ? 

Myers et al. 2007 

Laboratory 
(as 
reservoir) 

Adelaide, 
South 
Australia 0 

Dolo
mite None None 

Dolomite, 
5 ? 

Xie et al. 2009 Laboratory 

Harbin, 
Heilongjiang, 
China 0 

No 
Geo. 

Base, sand-
gravel None None None 

Xie et al. 2009 Laboratory 

Harbin, 
Heilongjiang, 
China 0 Geo. 

Base, sand-
gravel, 
geotextile None None None 

 

Table 25: Construction and Geotextile Details for Different Bases 

   Base 

Author Case Geotextile 
Base Gravel 
Size (mm) 

Base  
Thickness (mm) 

Sub-base Gravel 
Size (mm) 

Sub-base 
Thickness (mm) 

Myers et 
al. Calcite A34 Bidim 

? 
(Calcite) ? None None 

Myers et 
al. Dolomite A34 Bidim 

? 
(Dolomite) ? None None 

Xie et al. No Geo. None 13.2 ? 4.75 + sand ? 

Xie et al. Geo. 
Yes, unspecified, 
location unknown 13.2 ? 4.75 + sand ? 
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Table 26: TSS Removal Efficiencies of Different Bases 

Author Case TSS 

Myers et al. Calcite - 

Myers et al. Dolomite - 

Xie et al. No Geotextile -108% 

Xie et al. Geotextile 51% 

 

Table 27: Nutrient Removal Efficiencies of Different Bases 

   Nutrient 

Author Case DOC COD BOD Motor Oil TP TN TKN NH4-N ON NO2-N NO3-N NOx-N 

Myers et al. Calcite - - - - 95% 18% - - - - - - 

Myers et al. Dolomite - - - - 95% 67% - - - - - - 

Xie et al. No Geo. - 46% - - - - - - - - - - 

Xie et al. Geo. - 65% - - - - - - - - - - 

 

Table 28: Metal Removal Efficiencies of Different Bases 

  Metal 

Author Case CdT CdD CdP CuT CuD CuP PbT PbD PbP ZnT ZnD ZnP 

Myers et al. Calcite - - - ~97% - - ~97% - - 97% - - 

Myers et al. Dolomite - - - ~99% - - ~99% - - 99% - - 

Xie et al. No Geo. - - - - - - - - - - - - 

Xie et al. Geo. - - - - - - - - - - - - 
T subscript refers to total concentration, similarly D means dissolved and P means particulate. 

 

2.2.7 Enhancing Treatment Efficiency 

Additives to further enhance treatment efficiency were investigated. Prof. Simon 

Beecham in South Australia is developing pervious pavement systems. Depending on 

requirements, ferrous hydroxide is specified for additional metal removal and 

activated carbon for greater nutrient removal (Salleh, 2006). 

Similar to ferrous hydroxide, oxide coated sand (OCS) – modified silica sand 

prepared by mixing silica sand with ferric nitrate and evaporating the solution to 

dryness was tested (J. J. Sansalone, 1999). The configuration investigated was a 

partial exfiltration trench, a trench along side a road pavement filled with granular 

material, capable of both infiltrating and conveying stormwater. Trench dimensions 

of 300 mm wide by 900 mm deep, with a sand porosity of 0.37 and a road pavement 

width of 20 m and length of 15 m in Cincinnati, Ohio, United States were used 

(Table 29 and Table 30). 

OCS is good at sorbing heavy metals from stormwater. It was found that by raising 
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the pH of the stormwater from 6.5 to 8.0 a pavement design life of about 15 years 

could be achieved. The pH can be raised by using porous pavement as the surface 

layer (J. J. Sansalone, 1999). The design life was defined as the time taken, 

determined by laboratory testing, before a 90% breakthrough of the critical pollutant 

(found to be zinc amongst the metals tested) occurs. Sansalone distinguished 

between metals already sorbed to sediment particles and dissolved metals. The oxide 

coating is specifically added to trap dissolved metals, which is expected to be useful 

for Perth conditions. A partial exfiltration trench with a relatively thin porous 

pavement strip was investigated (J. Sansalone & Teng, 2004); however, it is believed 

by this author the OCS could be used between the sub-base and the subgrade in a 

pervious pavement. 

Pollutant removal during storm events was also investigated for the above partial 

exfiltration trench (J. Sansalone & Teng, 2004). A 600 mm wide by 90 mm deep 

section of porous concrete was underlain by non-woven geotextile, with the oxide 

coated sand section underneath. This had a depth varying linearly from 450 to 600 

mm and a width of 300 mm, with an outflow pipe underlain by in situ clay soil. The 

section investigated had a length of 3.75 m. 

Three storm events were analysed. The first was on 25 November 1996 with a runoff 

volume of 215 L over the full 15 m length and duration of 150 min, for a mean 

loading rate of 19 mm/hr onto the OCS (Table 31). The mass reduction in TSS by 

concentration was 81%, chemical oxygen demand 74% and zinc also 74%. The 

reduction in suspended solids by count (as opposed to mass concentration) was 2 

orders of magnitude (Teng & Sansalone, 2004). On 16 December 1996 a 340 min 

rain event produced a mean loading rate onto the OCS of 10 mm/hr, with 87% by 

mass of TSS removed by concentration, 70% of COD and 64% of zinc. Number 

reduction in suspended solids was also roughly 2-log. Finally, a 20 minute rainfall 

event on 12 June 1997 imposed a significant mean loading rate of 304 mm/hr onto 

the OCS, resulting in a TSS mass removal of just 54% by concentration, COD by 

37% and zinc by 37%. Suspended solids reduction by number concentration was 

only 1-log. It is suspected that suspended solids leached from the pavement, with 

higher loading rates exacerbating the leaching, rather than the higher loading rates 

causing significantly greater pass-through of incoming suspended solids. Leaching 

tests would be required to clarify this. In all three events, all runoff was intercepted. 
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These results further support the significance of hydraulic loading rate on pollutant 

removal. 

Charcoal from waste wood was investigated as a treatment enhancer (Kanjo et al., 

2003). The intended application was in the sub-base. Test cylinders of 150 mm 

diameter, 200 mm height using ‘crusher run’ stone were used (Table 29 and Table 

30). Multiple parameters were tested, with one experiment per parameter. In the 

experiment comparing materials for pollutant removal, a control cylinder with no 

additives, a cylinder with granular activated carbon (GAC), a cylinder containing 

charcoal from crating materials (charcoal 1) and a cylinder containing charcoal from 

crating materials and a mixture of building wastes (charcoal 2) were tested. Where 

charcoal/GAC was added, it was typically at 2% by weight (unless otherwise stated). 

The charcoal had about 1/6th the specific surface area of the GAC. Washing solution 

from a porous pavement highway was used as the influent, with down flow through 

the samples (i.e. the flow was not likely to have been saturated). Hydraulic details are 

given in Table 31. 

Leaching tests indicated that the source of the waste wood is important, as charcoal 2 

leached copper and chromium, reasoned to be because the source contained treated 

wood. The chromium concentration in the leachate was above that permissible for 

soils in Japan. 

Total organic carbon (TOC) in the influent appeared to be 40 mg/L (Figure 5), 

including 37 mg/L of oils and grease. In the control sample tested with no charcoal, 

TOC would momentarily increase before decreasing back down to around 40 mg/L 

over time. This is believed by the author to be because the sample leached organic 

substances, however leaching tests were not conducted on the crushed stone for 

organic carbon. For all samples, the effluent concentration tended towards minimum 

values over time (Figure 5). 

The removal ratio was calculated based on the total organic carbon mass passing 

through a sample over time (the time not explicitly specified, taken to be 48 hours as 

indicated in Figure 5) versus the corresponding mass passing through the control 

sample. GAC performed the best, at just over 60% removal, followed by 50% for 

charcoal from mixed wood sources and 30% for charcoal from used crates, all at 2% 

addition and a flow rate of just over 50 mL/hour (corresponding to a loading rate of 
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about 3 mm/hr). 

 

Figure 5: Change in TOC concentration over time (Kanjo et al., 2003) 

 

Treatment performance with regards to flow rate was provided in a separate 

experiment. Increasing the flow rate reduced the removal rate, in the case of the 

charcoal from mixed sources from 50% to 20% with the flow increased from 50 

mL/hour to about 210 mL/hour (about 12 mm/hr) respectively. Interestingly, when 

1%, 2% and 4% addition of charcoal were tried in another experiment, 2% addition 

was found to be most effective, even when subtracting the TOC leaching from the 

charcoal. 

To improve performance in the event of a catastrophic oil spill, an oil bund built into 

a PICP pavement sub-base was investigated (Newman et al., 2004). This was 

envisaged to perform better than an oil separator associated with a stormwater pipe, 

because of the lower water velocities. Laboratory testing was performed using two 

490 mm barrels containing Formpave concrete blocks bedded on pea gravel 

(thickness not given) in turn placed on Terram 1000 geotextile and 290 mm of 

washed 50 mm granite (Table 29 and Table 30). In the second barrel, a plastic 

container was installed to trap water. A submerged bund was installed just above the 

container to trap the oil (Figure 6). 
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Figure 6: Schematic cross-section of oil bund experiments. (a) Without oil trap; 
(b) with oil trap. (Newman et al., 2004) 

 
Two litres of oil was poured through each test barrel, after rinsing each barrel with 

distilled water. It was reported that over 830 mL of oil came through the barrel 

without the trap. As for the one with the trap, 800 mL of water was displaced, 

containing less than 1 mg/L of oil. Six simulated rainfall events were then applied, at 

15 mm/hr and 50 minutes over 3 weeks (Table 31). From the barrel without the trap, 

oil concentrations were in excess of 4000 mg/L. As for the oil trap model, 

concentrations of less than 30 mg/L were recorded. 

To improve degradation of oil, phosphate-leaching beads were tested in a PICP setup 

(Newman, Nnadi, et al., 2011). Test rigs were constructed with cross sections of 354 

mm square. The pavement construction was similar to that used by Spicer, Lynch, 

Newman, and Coupe (2006), with concrete block pavers underlain by 20 mm of 10 

mm gravel, then modified or unmodified geotextile. However, instead of using 

gravel for the sub-base, a Permavoid polymeric void forming unit was used (Table 

29 and Table 30). Used motor oil was applied at 1.4 mL/m2 every two weeks and 

each followed by 10 mm of simulated rain as well as 0.05 g/m2 of nitrogen in the 

form of ammonium nitrate. The rate of water application was not given (Table 31). 

Oil degradation reached 450 mg/(/m2•week) for the pavement with phosphate 

releasing beads and only about 230 mg/(/m2•week) for the control. Other tests also 

showed that phosphate levels released by the beads did not exceed 0.5 mg/L. 

A further study by Newman, Duckers, Nnadi, and Cobley (2011) was performed, 

using the same rigs and the same testing for the first three months. After that, no 

more oil was added for about five months, but simulated rain continued. Used oil 

loading of 14 mL was then added per pavement, followed by another several months 
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later when bacterial activity had plateaued. 

Carbon dioxide levels were monitored to indicate bacterial activities. With the rigs 

containing the phosphorus pellets, significantly enhanced activity was observed both 

immediately following the cessation of oil addition and after adding the large 

amounts of oil. It should be noted that activity was already rising sharply while the 

initial oil addition stopped. Higher activity in the test rigs containing phosphate 

pellets than in the rigs not containing phosphate pellets indicates superior 

hydrocarbon removal. Testing was ongoing at the time of printing. 

Several materials were tested in the laboratory by Ree-Ho et al. (2006). Materials 

tested were urethane and recycled aggregate (Type A), aggregate with ash from 

wastewater sludge (Type B), recycled aggregate with tourmaline (Type C) and 

recycled aggregate with urethane and chemically modified lignocellulose for 

enhanced nutrient removal (Type D). All pavements are taken to be homogeneous, 

from the figure. They had plan dimensions of 500 mm by 500 mm and a depth of just 

30 mm (Table 29 and Table 30). Rainfall runoff was used as the influent. For water 

quality testing, the simulated rain was taken to be 50 mm/hr, from the value used for 

temperature testing. The duration was 30 minutes (Table 31). 

Parameters tested were turbidity, NOx-N, ammonia, total nitrogen and total 

phosphorus. Turbidity was reduced the most out of the pollutant species, from 35 

NTU down to 30 NTU for pavement type A, 14 NTU for B and 8 for D. Type D 

pavement reduced phosphorus but the final value is unclear (graph). Other 

parameters were not affected noticeably, which is expected because of the shallow 

thickness of the pavement. 

In summary, to enhance removal of pollutants, there are a number of options, 

depending on the pollutant. Geotextile, considered a standard component of pervious 

pavement, improves TSS removal as discussed in Section 2.2.6. With additional 

measures taken such as oxide coating sand, care should be taken to quantify and 

control the washoff of iron oxide particles, or carbon in the case of charcoal or 

activated carbon. This washoff effect appears to be influenced by loading rate (Table 

32). 

For nutrient removal, several solutions are available. Granular activated carbon and 

charcoal are capable of absorbing organic carbon (Table 33). Building in an oil bund 
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or adding phosphate beads enhances the capture or degradation of oil respectively. 

Chemically modified lignocellulose can also improve nutrient removal. 

Oxide coated sand is effective for removing metals, especially when combined with 

porous concrete. While this is not clear from Table 34 in comparison to other field 

studies, due to the varying conditions, the laboratory tests performed confirm this (J. 

J. Sansalone, 1999). 

Pollutant reductions in Table 32 through Table 34 are typically by concentration and 

are all relative to input, including the field testing by Sansalone. For the studies by 

Newman et al. however, the oil removal rates are by pollutant load, not 

concentration. For the oil bund tests the approximate cumulative oil removal rate 

after the third test is given, taking into account any initial leakage of oil. For the 

microbial degradation tests by Newman et al., the input loading and degradation 

during the sixth fortnight – the period when degradation was highest – was used. 

Table 29: Surface and General Details of 'Enhanced' Pervious Pavements 

  General Surface 

Author Date Testing Location 
[Simulated] 
Age (years) Case 

Surface 
Type 

Surface 
Thickness 

(mm) 

Bedding 
Gravel 
Size 
(mm) 

Bedding 
Thickness 

(mm) 
Sansalone 
and Teng 2004 

Field 
(25/11/96) 

Cincinnati, 
Ohio, USA 0 25/11/96 

Porous 
concrete 90 None None 

Sansalone 
and Teng 2004 

Field 
(16/12/96) 

Cincinnati, 
Ohio, USA 0 16/12/96 

Porous 
concrete 90 None None 

Sansalone 
and Teng 2004 

Field 
(12/06/97) 

Cincinnati, 
Ohio, USA 0 12/06/97 

Porous 
concrete 90 None None 

Kanjo et 
al. 2003 Laboratory 

Osaka, 
Japan 0 Charcoal 

Stone and 
charcoal 
(#2) None None None 

Kanjo et 
al. 2003 Laboratory 

Osaka, 
Japan 0 GAC 

Stone and 
GAC None None None 

Newman 
et al. 2004 Laboratory 

Coventry, 
UK 0 No Bund 

Formpave 
PICP 80? 

Pea 
Gravel ? 

Newman 
et al. 2004 Laboratory 

Coventry, 
UK 0 Bund 

Formpave 
PICP 80? 

Pea 
Gravel ? 

Newman 
et al. 2011 Laboratory 

Coventry, 
UK 0 No Osmocote 

Concrete 
PICP 80? 

Pea 
Gravel 20 

Newman 
et al. 2011 Laboratory 

Coventry, 
UK 0 Osmocote 

Concrete 
PICP 80? 

Pea 
Gravel 20 

Ree-Ho et 
al. 2006 Laboratory 

Goyang-Si 
Gyeonggi-
Do, Korea 0 Urethane None None None None 

Ree-Ho et 
al. 2006 Laboratory 

Goyang-Si 
Gyeonggi-
Do, Korea 0 Ash None None None None 

Ree-Ho et 
al. 2006 Laboratory 

Goyang-Si 
Gyeonggi-
Do, Korea 0 

Urethane + 
lignocellulose None None None None 
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Table 30: Base and Geotextile Details of 'Enhanced' Pervious Pavements 

   Base 

Author Case Geotextile 
Base Gravel Size 

(mm) 

Base  
Thickness 

(mm) 

Sub-base 
Gravel Size 

(mm) 

Sub-base 
Thickness 

(mm) 

Sansalone 
and Teng 25/11/96 

Nonwoven, spun-
bonded 
polypropylene @ 
120 g/m2 Oxide coated sand 450-600 None None 

Sansalone 
and Teng 16/12/96 As above Oxide coated sand 450-600 None None 
Sansalone 
and Teng 12/06/97 As above Oxide coated sand 450-600 None None 

Kanjo et al. Charcoal None None None 

'Crusher run' 
stone and 2% 
charcoal (#2) 200 

Kanjo et al. GAC None None None 

'Crusher run' 
stone and 2% 

GAC 200 
Newman et 
al. No Bund Terram 1000 50 

290 (No 
Bund) None None 

Newman et 
al. Bund Terram 1000 50 290 (Bund) None None 
Newman et 
al. No Osmocote 

Inbitex Without 
Osmocote (P) 

Polymeric Void 
Forming Unit ? None None 

Newman et 
al. Osmocote 

Inbitex With 
Osmocote (P) 

Polymeric Void 
Forming Unit ? None None 

Ree-Ho et 
al. Urethane None 

Urethane + 
recycled aggregate 30 None None 

Ree-Ho et 
al. Ash None Aggregate + ash 30 None None 

Ree-Ho et 
al. 

Urethane + 
lignocellulose None 

Urethane + 
recycled aggregate 

+ lignocellulose 30 None None 

 

Table 31: Hydraulic Details for 'Enhanced' Pervious Pavements 

Author Case 
Hydraulic Loading Rate 

(mm/hr) 
Hydraulic Loading 

Duration (hr) 
Hydraulic Loading 

Depth (mm) 
Sansalone and 
Teng 25/11/96 0-131 2.50 47 
Sansalone and 
Teng 16/12/96 0-46 5.67 59 
Sansalone and 
Teng 12/06/97 0-1010 0.33 101 

Kanjo et al. Charcoal 12 48.00 ~600 

Kanjo et al. GAC 12 48.00 ~600 

Newman et al. No Bund 15 0.83 12.5 

Newman et al. Bund 15 0.83 12.5 

Newman et al. No Osmocote ? 336 (storage) 10 

Newman et al. Osmocote ? 336 (storage) 10 

Ree-Ho et al. Urethane 50 0.50 25 

Ree-Ho et al. Ash 50 0.50 25 

Ree-Ho et al. 
Urethane + 
lignocellulose 50 0.50 25 
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Table 32: TSS Removal Efficiencies of ‘Enhanced’ Pervious Pavements 

Author Case TSS 

Sansalone and Teng 25/11/96 75% 

Sansalone and Teng 16/12/96 87% 

Sansalone and Teng 12/06/97 54% 

 

Table 33: Nutrient Removal Efficiencies of ‘Enhanced’ Pervious Pavements 

   Nutrient 

Author Case DOC COD BOD 
Motor 

Oil TP TN TKN 
NH4-

N ON 
NO2-

N 
NO3-

N 
NOx-

N 
Sansalone and 
Teng 25/11/96 - 56% - - - - - - - - - - 
Sansalone and 
Teng 16/12/96 - 70% - - - - - - - - - - 
Sansalone and 
Teng 12/06/97 - 37% - - - - - - - - - - 

Kanjo et al. Charcoal 22% - - - - - - - - - - - 

Kanjo et al. GAC 42% - - - - - - - - - - - 

Newman et al. No Bund - - - 56% - - - - - - - - 

Newman et al. Bund - - - log-4 - - - - - - - - 

Newman et al. No Osmocote - - - 33% - - - - - - - - 

Newman et al. Osmocote - - - 64% - - - - - - - - 

Ree-Ho et al. Urethane - - - - 0% 0% - 0% - - - 0% 

Ree-Ho et al. Ash - - - - 0% 0% - 0% - - - 0% 

Ree-Ho et al. 
Urethane + 
lignocellulose - - - - >50% 0% - 0% - - - 0% 

 

Table 34: Metal Removal Efficiencies of ‘Enhanced’ Pervious Pavements 

  Metal 

Author Case CdT CdD CdP CuT CuD CuP PbT PbD PbP ZnT ZnD ZnP 

Sansalone and Teng 25/11/96 56% 57% 50% 53% 57% 40% 51% 44% 63% 91% 95% 64% 

Sansalone and Teng 16/12/96 33% 33% 63% 60% 58% 67% 14% 0% 61% 91% 95% 64% 

Sansalone and Teng 12/06/97 70% 72% 50% 70% 72% 54% 39% 30% 67% 91% 92% 37% 
T subscript refers to total concentration, similarly D means dissolved and P means particulate. 

 

2.3 Conclusion 

Pervious pavement can be a good device to use for Water Sensitive Urban Design. Its 

ability to remove pollutants is important for protecting the environment or for 

treating water for water supply, as the stormwater contains significant pollution. 

Overall, pollutant reduction rates of pervious pavements in the literature were varied 

due to different conditions, such as input pollutant concentrations, inflow, pavement 

thicknesses, temperature etc. These conditions were not always explicitly stated. 

As for TSS, it is understood that concentrations in the effluent depended mainly on 

the aggregates (gravel and/or sand) used for each layer, with these aggregates often 
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being a significant source, especially for sand. One study found that removal of TSS 

by concentration varied linearly with input concentration. Reduction compared to 

asphalt runoff / influent varied from about -110% (net increase due to fines 

originating from the filter medium) to 94%. 

In situations where stormwater is directly infiltrated to the soil, natural filtration will 

occur in the soil profile, but the soil may become clogged over time.  Thus the 

importance of sediment removal will depend very much on the application and soil 

types. 

Permeable Friction Course (PFC), which is porous asphalt with an impermeable 

surface immediately beneath it, fared similarly to other pavement types for TSS 

removal. Geotextile significantly improves performance. When adding materials 

such as charcoal, granular activated carbon or iron coated sand to the pavement 

structure, care must be taken to control washoff of particles. 

Nutrient reduction is highly complex and depends on many factors, due to the 

reliance on microorganisms. Only one study was found that gave a good comparison 

of nutrient removal between different pavement types and revealed that PICP, sand 

filled concrete grid pavers and porous concrete all performed similarly, with the 

exception of the concrete grid pavers, with the sand apparently enhancing treatment 

of NOx-N. A separate study determined PFC performs insignificant nutrient 

reduction, as opposed to full depth pervious pavement. 

Motor oil was most easily removed, with it below detection limit in exfiltrate 

samples in most cases. No study was found testing for motor oil removal for porous 

asphalt however, which contains hydrocarbons in its structure. Excluding PFC, 

ammonium was easily reduced in concentration, by 84% to 100% compared to 

asphalt runoff / input. 

The most difficult nutrient to remove was NOx-N, at best 9% and at worst -331% 

(i.e. net gain, due to nitrification) compared to asphalt runoff. Storing the stormwater 

in the pavement sub-base over a period of several days using dolomite caused a large 

reduction in total nitrogen of 67%. 

Geotextile contributes significantly to pollutant removal by providing the microbes 

with a high surface area medium to grow on. To improve nutrient removal there are 

many options: adding granular activated carbon, charcoal, phosphate beads, 
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lignocellulose or even an oil bund. 

Metal removal varied significantly, from non-detection in the output to -138% (net 

gain) compared to asphalt runoff concentration / input concentration. This depended 

on the metal species and likely the pavement materials. Particle bound metals are 

strained, while dissolved metals are sorbed to the pavement. A combination of 

porous concrete and iron oxide coated sand enhances the removal of dissolved 

metals. Leaching tests would be useful for identifying pavement materials that are a 

source of metals in the exfiltrate. 

Laboratory testing has been undertaken at Curtin University to develop a greater 

understanding of the impact of different testing conditions and pavement 

constructions on pollutant removal ability. In light of the strong potential for washoff 

of solids from within the pavement structure, it was important to determine how 

much this occurs. Due to the complex nature of nutrient removal, simple, laboratory 

prepared compounds were used for ease of analysis of results. Some enhancement 

options such as granular activated carbon were trialled. 



 

56 

3 MATERIALS AND METHODS 

 

3.1 Construction 

A testing setup was constructed at the civil engineering laboratory of Curtin 

University Western Australia, Bentley campus, outdoors near shipping containers at 

the south end of the yard. Four 160 L plastic boxes from Total Materials Handling of 

internal dimensions 600 mm by 600 mm in plan, 450 mm depth, were used for 

containment of pavement structures, forming test rigs. A photo of one completed 

setup is shown in Figure 7. These test rigs are numbered 1 to 4 and named 

accordingly (Figure 8). Holes of 20 mm diameter were drilled in each box for 

drainage, with slope to each hole. 

For Test Rig 1, a crushed granite base was provided (Figure 8). This granite was 

sourced from BGC Quarries, from a quarry near York. It was sized 7 to 60 mm, with 

17% from the 7-10 mm pile, 16% from the 14 mm pile, 7% from the 20 mm pile and 

60% from the 40-60 mm (ballast) pile to try and achieve optimal grading for density. 

There is deviation from Fuller’s curve (Figure 9) but it is still believed to be a 

satisfactory mix, given adequate mixing. The aggregate was found to have reddish 

fine material adhering to it. This base material was intended to mimic that of Scholz 

and Grabowiecki’s (2009) test rigs, at least in size range. A 300 L mixer was used to 

mix the gravel, as segregation had occurred after pre-mixing by others. Unfortunately 

the mixer did not mix the gravel sufficiently. This was probably because it was 

designed for mixing concrete, not a ballast and coarse aggregate mixture. Sparks 

were in fact observed during mixing, indicating significant resistance. 

 

Figure 7: Test Rig 1 with Dripper Manifold (taken 14 July 2011, before water 
quality testing period began) 
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Figure 8: Cross Sections of Initial Constructions of Test Rigs 
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Figure 9: Grading Curve for Base Aggregate 
 

After placement of the base layer, Rig 1 was hosed down until water leaving the 

outlet was observed to be clear, simply by observing the water as it flowed. 

Bidim geotextile was laid on top of the base gravel for Rig 1. On top of the 

geotextile, a bedding layer was placed. This consisted of 50 mm of 5 mm crushed 

granite from Curtin University’s stockpiles, in turn sourced from Holcim. As this 

material contained substantial fines it was washed with a sieve in batches by 

submerging in water and agitating. 

Brikmakers pavers with gaps filled with 5 mm gravel (same as bedding material) 

were laid on the bedding material for Rig 1. All pavers were a nominal 60 mm thick. 

Test Rig 2 was constructed the same as Rig 1 (Figure 8) as a check. Any differences 

in testing results would be investigated. 

Test Rig 3 was constructed the same as Rig 1 except with the following differences. 

The pre-mixed aggregate had run out so more was sourced directly by the author. It 

was recognised that attempting to mix the aggregate using existing facilities was 

resulting in inadequate mixing and hence variation. Rather than using the mixer for 

the base material this time, small amounts from each aggregate stockpile were added 

at a time to the bins, which is argued to achieve the same effect as thorough mixing. 

The small amounts were carefully proportioned as per the overall mix design. Each 
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amount consisted of 14.5 kg of 40-60 mm ballast, allowing the gaps between 

aggregate particles to be filled successively. To reconstruct the previous rigs in the 

same way would have required either re-sieving or replacing the aggregate. It was 

decided not to do either, considering the aggregate was being supplied gratis, and 

continue as-is. Sieving 250 L of base aggregate using University facilities would 

have been painstaking and time consuming. 

The washing method for rigs 1 and 2 was deemed insufficient, as a cake of fines had 

built up on the base. Therefore, for Test Rig 3 the gravel was washed by hosing 

down the gravel in small batches directly into a drain. The completed test rig was 

also hosed down. Suspended solids tests were performed to see if these different 

washing methods had an effect (see Section 4.2.4). The outflow calculations also 

provide insight. Although suspended solids tests probably should have been 

performed for the first run for all test rigs, from the results and turbid appearance of 

samples it was apparent both sieving and hosing the completed test rigs was 

necessary, with washed sand at the base as well to trap any remaining fines (see 

Section 3.5). This is necessary for satisfactory Aquifer Storage and Recovery, i.e. 

without requiring excessive maintenance of the bore (see Section 3.4). 

The most important feature of Test Rig 3 is that 768 g of granular activated carbon 

was placed in a single layer between two layers of geotextile (Figure 8). 

Test Rig 4 was constructed the same as Rig 1, except the base material was placed in 

the same manner as for Rig 3, without hosing down the completed test rig (by 

mistake). Hydroston porous concrete pavers were laid on the bedding for Test Rig 4 

instead of the Brikmakers pavers with gaps (Figure 8). 

 

3.2 Statistical Analysis 

All data was imported or directly entered into spreadsheets. Statistical analysis was 

performed using the R statistical package (R Development Core Team, 2012) as well 

as using OpenOffice Calc. All errors are to 95% confidence unless otherwise stated. 

Quantile-quantile plots in R, comparing with the normal distribution, were used to 

check for normality and remove outliers where indicated. Number of observations in 

a sample is denoted by ‘n’. 
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3.3 Hydraulics 

A dripper manifold was constructed using garden hose and drippers, with the 

drippers spaced 100 mm both directions and spanning six in each direction (Figure 

7). This was attached to a bucket at a fixed height above the pavement. The elevation 

of the bucket relative to the drippers was typically greater than 500 mm (unlike in 

Figure 7), to minimise flow variation during each test as the water surface in the 

bucket dropped. This flow variation was usually around 2% as a result (calculated). 

Changing the bucket height every few days or so was necessary to compensate for 

different thermal effects on the drippers as the weather changed. Typically, the 

height was 500 – 1000 mm. As a result, the hydraulic loading rate was typically 76±9 

mm/hr (n = 172). The dripper manifold was stored inside to attempt to minimise 

thermal effects on dripper loading rate. 

Adjustment of the dripper heads proved difficult, with creep effects affecting the 

flow rate. Therefore, this was minimised where possible, but was necessary at the 

beginning of testing. 

The volume of solution dripped per pavement per run was typically 2.25 L. 

Application was once every workday. Outflow was collected from each outlet, 

intended to be in 250 mL samples but with the actual volume and time of collection 

recorded. Three samples were taken each time, except in rare cases where not enough 

water came out. 

All four test rigs were given timber spacers to increase the slope towards the outlet, 

detailed in Table 35. This had the unintended effect of causing the bases to sag, 

which was identified after testing had finished. For rigs 1 and 3, this in turn resulted 

in a trapped volume. Trapped volumes and areas given in Table 35 are rough 

calculations only, direct measurement was not possible. 

Table 35: Geometry of Bases of Test Rigs 

  Slope 1 Slope 2 
Deflection 
(mm) 

Ponding 
Area (m2) 

Trapped 
Volume (L) 

Rig 1 2% 2% 21 0.14 0.4 
Rig 2 2% 6% 19 0 0 
Rig 3 4% 1% 17 0.08 0.2 
Rig 4 3% 9% 35 0 0 

 

The start time of inlet flow was roughly judged to be when the flow rate reached half 
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of the typical flow rate for each run. Outflow was judged to begin when two 

consecutive drips occurred in an appropriately short period of time, since water 

would continue to slowly drip out from the previous run. The error of each is 

expected to be in the order of 10 seconds. 

 

3.4 Water Quality 

From the literature review, pollutant concentrations relevant to Australian runoff 

were used as in Table 36 to make a synthetic stormwater. Stock solutions were 

prepared by measuring out the solid masses (salts except for glucose) to an accuracy 

of 1 mg. These were then mixed with 1 L of reverse osmosis water to make 

concentrations of 1 g/L, except for aluminium, which was prepared as 500 mL of 

solution at 2 g/L. These were then diluted to the target concentrations each day 

immediately before testing. Sulphuric acid was added to each of the metal stock 

solutions after preparation to achieve a pH of below 4, with the bottles kept sealed to 

avoid atmospheric contamination from carbon dioxide. The acid was added to avoid 

precipitation caused by carbon dioxide (since the bottles had to be opened during 

use). Nutrient stock solutions were kept in the fridge. Reverse osmosis water used 

was from an Ibis Mini unit. Preparation of each synthetic stormwater solution 

involved adding small amounts of each stock solution to more reverse osmosis water, 

to achieve the target concentrations in Table 36. 

Table 36: Pollutants used for Synthetic Stormwater 

Pollutant 
Concentration 
(mg/L) Source 

Dissolved Organic Carbon 
(DOC) 4.00 

Glucose 
(C6H12O6) 

Phosphorus 0.84 KH2PO4•3H20 
Nitrogen 1.46 NH4Cl 
Aluminium 1.47 Al2(SO4)3•16H20 
Copper (II) 0.34 CuSO4•5H20 
Zinc 1.85 ZnSO4•7H20 

 

For a period of time, only the organic carbon and nutrients (DOC, P, N) were added, 

until a consistent output quality was achieved. The three metals were then added, 

with metal addition starting at different dates, to see the effect on nutrient removal 

(see Section 3.5 for sequence).  

Ultimately the aim of this research is to use pervious pavement to pre-treat 
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stormwater for managed aquifer recharge into the Leederville aquifer, Perth, Western 

Australia. Nutrient levels from the test rigs were compared against guidelines from 

the Australian and New Zealand Environment and Conservation Council (ANZECC 

& ARMCANZ, 2000; Environment Protection and Heritage Council, 2006, 2009a, 

2009b) and existing Leederville aquifer (GHD, 2008) values, with the guidelines 

only considered where the aquifer concentrations were ambiguous. Where guideline 

values were used, the value from the guideline giving the lowest value was adopted. 

These are presented in Table 37. (The ANZECC freshwater guideline for ammonium 

in a lowland river in southwest Australia is 0.08 mg/L.) 

Table 37: Nutrient Concentration Quality Limits 

Nutrient Limit (mg/L) Source 
Ammonium 0.11 Aquifer 
NOx-N (nitrate + nitrite) 0.01-0.06 Irrigation Guideline 
Phosphate 0.04 Freshwater Guideline 
Dissolved Organic Carbon 1-10 MAR Guideline 
Suspended Solids 1-10 MAR Guideline 

 

Samples were stored in the fridge until testing was performed, typically on the same 

day. Testing for DOC was accomplished with a Sievers 5310C Laboratory TOC 

Analyzer with an experimental error for DOC of ±5% and a method detection limit 

of around 0.1 mg/L. This worked by reducing organic substances with ultraviolet 

light and persulphate and measuring the carbon dioxide emitted. 

An Aquakem 200 machine was used to measure ammonium, nitrite, nitrate and 

reactive phosphorus, with nitrate-N being the difference between NOx-N and nitrite-

N. This machine measured ammonium by reacting with hypochlorite to form 

chloramine, then salicylate under certain conditions to form a blue compound 

measurable at light wavelength 660 nm (Thermo Fisher Scientific, 2011a), with a 

method detection limit of 0.002 mg/L. Nitrite was measured by reaction with 

sulfanilamide and N-(1-naphthyl)-ethylenediamine dihydrochloride to form an azo 

dye detectable with the 540 nm wavelength of light (Thermo Fisher Scientific, 

2011b), with a method detection limit of 0.003 mg/L.  The NOx-N concentration was 

determined by reducing the nitrate to nitrite using hydrazine under alkaline 

conditions, then measuring the total nitrite as above (Thermo Fisher Scientific, 

2011d). The method detection limit is reported as 0.001 mg/L despite the detection 

limit for nitrite being 0.003 mg/L. Reactive phosphorus was measured by reacting it 



 

 63 

with ammonium molybdate under acidic and catalytic conditions to form a 12-

molybdophosphoric acid complex, which in turn was reduced with ascorbic acid to 

form a blue compound detectable with the 880 or 660 nm wavelength of light 

(Thermo Fisher Scientific, 2011c) with a method detection limit of 0.001 mg/L. 

Suspended solids was tested using EPA method 160.2 with paper filters, then later 

using the HACH photometric method with a HACH DR2800 meter (Hach, 2010). 

The temperature of the input water was adjusted to 20±2 ˚C until 7 December 

(corresponding to Day 142, see next section), when this was deemed futile due to the 

hot weather. Effort was made to keep the pavements in the shade as much as possible 

and to shelter from rain at all times. 

For statistical analysis the Event Mean Concentration (EMC) was calculated for each 

test run and each pollutant, being: 

 
( 1 ) 

 

Where: 

EMC = event mean concentration 

C2, 3 = concentrations of pollutant of interest from samples 2 and 3 

V2, 3 = volumes of samples 2 and 3. 

For runs with less than three samples, the EMC was simply adopted as the 

concentration of the pollutant in question in sample 2. Similarly, for the start of Rig 1 

testing when only sample 1 was tested, these measured concentrations from sample 1 

are illustrated in graphs as the EMC’s. They are only included in the graphs for 

completeness and this data from the first samples are not used in statistical analysis. 

Sample 1 will normally be rejected from analysis when calculating the Event Mean 

Concentration. Plots of ammonium and phosphate output concentration with respect 

to date for each of samples 1, 2 and 3 indicated that sample 1 had a higher variance. 

In particular, the period Day 72 to Day 115 for Rig 1 had a fairly stable ammonium 

concentration. Samples 1, 2 and 3 had standard deviations in ammonium 

concentrations of 0.08, 0.05 and 0.06 mg/L respectively. Samples 1 and 2 had 
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normally distributed ammonium concentrations, as indicated by normal quantile-

quantile plots, but sample 3 did not. Applying the f-test for equality of variances, 

samples 1 and 2 had significantly different variances (p = 0.04, two-tailed).  

Paired t-tests were used to compare pollutant removal performance of the test rigs, 

unless otherwise stated. The one-tailed t-tests were used to find the minimum 

magnitude of difference in output concentration of a pollutant between two test rigs, 

using a confidence of 95%. Only one test run was performed each time a pavement 

layer was stripped. Therefore, the sample standard deviation before layer stripping 

commenced was adopted as the ‘pooled’ standard deviation, with equal variance 

assumed. A similar approach was used for testing the effect of spiking the 

ammonium concentration, except some test runs after the spike occurred were 

included in the analysis as well. 

Contamination and degradation of samples was somewhat of an issue. All runs that 

produced degraded or contaminated samples were excluded from analysis for the 

pollutant in question. For example, when a sample had a discontinuously high 

concentration of phosphate, the phosphate data for that run was excluded. Also, 

ammonium degradation was noted when longer storage in the fridge was used. 

Therefore, ammonium results for samples kept in the fridge longer than 24 hours 

were excluded. 

There were significant problems with dissolved organic carbon degradation in 

samples, likely due to the use of glucose as the organic carbon input. Bacteria 

consume glucose readily. Only the samples for which the measured input sample was 

over 1 mg (C)/L are counted, reducing the available data set. A stricter limit would 

have reduced the data set too severely. 
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3.5 Sequence of Events 

Multiple changes were undertaken during testing and the pavements were not all 

constructed on the same date. The sequence of events is as below. Day 1 refers to 19 

July 2011 and the day numbers increment for each calendar day. 

• Day 1: Testing began for Rig 1. 

• Day 45: After some difficulties, the inflow was stabilised to 76±9 mm/hr (n = 

172). 

• Day 51: Testing began for Rig 2. 

• Day 85: Testing began for Rig 3. 

• Day 87: Rig 2 had its surface changed to porous concrete pavers, as in Rig 4, 

to directly observe any difference in results. 

• Day 88: Testing begins for Rig 4. 

• Day 98: Install plywood timber supports for the dripper manifold in rigs 2 

and 4, acrylic supports in Rig 3 and one stainless steel plus one fibreboard 

support for Rig 1, for convenience of testing. The timber supports may have 

caused dissolved organic carbon contamination and were observed to have 

microorganisms growing on them. 

• Day 120: In Rig 1 the bottom 50 mm of gravel was replaced with Rocla sand 

overlaid with the same geotextile as under the bedding layer (Figure 10). At 

the same time, the coarse aggregate base was washed using the more 

thorough method for rigs 3 and 4. Before washing, the base was observed to 

have a thick (roughly 50 mm) cake of clay. 

• Day 130: Aluminium addition to input solution started for all four pavement 

rigs. 

• Day 133: Inflow adjusted to 54±7 mm/hr (n = 47) for rigs 2, 3 and 4, similar 

to Perth’s 1 year ARI 5 minute duration storm intensity of 60 mm/hr. This 

inflow was used from then on. 

• Day 134: Inflow adjusted to above value for Rig 1. This inflow was used 

from then on. 
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• Day 137: Zinc addition to input solution started for all four pavement rigs. 

• Day 142: Input solution volume adjusted to 1.8 L for each pavement, which 

corresponds to 60 mm/hr for 5 minutes over one pavement’s 600 mm by 600 

mm area. 

• Day 143: Copper addition to input solution started for all four pavement rigs. 

• Day 155: To test for effects from individual layers, the pavers were removed 

from all four test rigs before testing (retaining any gravel between the 

pavers). 

• Day 156: Bedding gravel removed before testing for all four test rigs. 

• Day 157: Geotextile removed before testing for all four test rigs. This day, 22 

December, is the last run for all four test rigs. 

 

 

Figure 10: Cross Section of Rig 1 with Sand Layer 



 

 67 

4 RESULTS AND DISCUSSION 

 

Four test rigs were analysed for their hydraulic behaviour and treatment efficiency. 

Hydraulic behaviour was analysed in terms of the simulated rainfall intensity (or 

loading rate), outflow start time and outflow rates. To test the water treatment 

efficiency various parameters were analysed including removal of ammonium, 

dissolved organic carbon, nitrite, nitrate and phosphate. 

 

4.1 Hydraulics 

During experimentation a hydraulic loading rate of about 72 mm/hr was intended. 

However, achieving a stable loading rate was somewhat difficult. Even after it was 

stabilised the 95% variation was 9 mm/hr (n = 172). The significant error in loading 

rate probably arose from thermal effects on the plastic drippers, as the range in 

loading durations was nearly 2 minutes. In fact, in some instances the bucket height 

was adjusted (from 520 mm to 580 mm on Day 144 for example) to compensate for 

systematic error as the season progressed. From Day 36 to completion (n = 83), when 

the drippers were kept on the same setting, the multiple R2 for linear correlation 

between bucket height above drippers and loading rate for Rig 1 was only 0.34. 

Normally flow would be expected to increase as in 

          Q ∝ h0.5 ( 2 ) 
 

Q represents flow rate and h represents elevation head. However, after transforming 

the elevation data as above, the R2 was unchanged. From Day 36 to Day 45, for Rig 

1 (n = 8), which covered five different bucket heights, the multiple R2 was an 

improved 0.58, with a weak linear trend evident from a scatter plot. In reality, 

however, the rainfall intensity is never constant and hence the simulated conditions 

are sufficient enough to represent the intended rainfall intensity. 
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4.1.1 Outflow Start Time 

In all cases there was a delay between beginning of inflow and outflow. This delay is 

termed the outflow start time. It is due to the water having to both wet and flow 

downwards through the pavement layers before reaching the outlet. Most of the 

water also had to flow horizontally along the base; this may have contributed to the 

measured outflow start times as well. The time the simulated rainfall takes to 

percolate through the gravel layers is of interest when calculating the time of 

concentration to an Aquifer Storage and Recovery bore and hence storage 

infrastructure. It also gives an indication as to the hydraulic retention time, which is 

relevant to pollutant removal. 

Outflow start times, overall, remained fairly consistent. For Rig 1, outflow seemed to 

stabilise after Day 32, possibly after channel formation in the clay-like sediments on 

the base. Between this date and sand layer placement, the outflow started after 63±26 

seconds. Doing a paired t-test with Rig 2 while it had pavers with gaps, ignoring the 

first two tests, the start times were not significantly different (p = 0.14). 

Immediately after the sand layer was placed in Rig 1, the outflow start time increased 

significantly by over a minute for three days (p = 0.04, unpaired), likely due to the 

sand layer filling with solution. The start time then stabilised to a higher value than 

before (p = 1x10-7, unpaired t-test with 3 outliers removed) of 1 min 36 sec, due to 

the lower permeability of the sand. The outliers corresponded to tests performed after 

the rig was left untested for several hot days, suggesting drying affecting the results. 

After the porous pavers were installed for Rig 2, there was still no significant 

difference in start time with Rig 1 (p = 0.52, paired t-test ignoring first 2 days with 

porous pavers). Interestingly, rigs 2 and 4 had significantly (p = 0.009, paired) 

different outflow start times, likely due to the different sub-base washing methods. 

Rig 3 had a significantly longer start time than Rig 1 (p = 3.4x10-10, paired t-test for 

before sand layer was added), due to the water having to penetrate two layers of 

geotextile as well as granular activated carbon. These are summarised in Table 38: 
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Table 38: Outflow Start Times for Test Rigs 

Situation 
Mean 
(sec) 

Error 
(sec) 

Observations 
(ex. outliers) 

Outliers 
Removed 

Rig 1 Rock Base 63 26 61 13* 

Rig 1 Sand Layer 96 29 18 3 
Rig 2 66 44 68 1 
Rig 3 117 33 44 1 
Rig 4 72 36 39 3 

* Up to and including Day 31, after which the outflow start times were judged to be sufficiently 
stable. 

 

Removing the geotextile for Rig 1 decreased the start time significantly (p = 0.005, 

assuming variance unchanged) by roughly 45 seconds, considering only one data 

point was collected after the geotextile was removed. Surprisingly, there was no 

significant difference for the other pavements, suggesting the geotextile may not 

have actually contributed significantly to the outflow start time. As only one test was 

performed per pavement without either the surface or bedding layers (but with 

geotextile), no significant contribution to start time from these layers was found. No 

hard conclusion can be drawn; in fact, it is entirely plausible the differences in start 

times between rigs (with the exception of adding the sand layer) were mostly due to 

the different placement and washing methods of the base courses. 

For Rig 1, considering the data from commencement until just before the sand layer 

was added (n = 74), outflow start time was not correlated to loading rate, with an R2 

of just 0.06. Similarly, correlations between loading rate and outflow start time were 

not found for the other test rigs, considering the entire testing period for each. Also, 

changing the loading rate from 76 mm/hr to 54 mm/hr was not found to make a 

significant difference to the outflow start time, considering the few days in summer 

when significant drying was believed to take place. 

Since testing was not performed on every single day during the testing period, 

correlation between outflow start times and the number of days since the last test was 

considered. For Rig 1, before adding the sand layer a weak (R2 = 0.22) correlation 

was found (n = 74). Three days after adding the sand layer (when outflow was found 

to become consistent) to just before deconstruction commenced there was no 

correlation (R2 = 0.05, n = 21). Weak correlations were also determined for the other 

test rigs. For longer time periods without running water through the pavement, it is 

envisaged a correlation could be found. 
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No correlation was found between outflow start time and either pan evaporation 

(roughly cumulative between tests) or average temperature, using Bureau of 

Meteorology weather data. 

Typically, outflow start times were in the order of a minute, except for Rig 3, which 

was about 2 minutes. These times could be taken as a rough indicator of hydraulic 

retention time. 

 

4.1.2 Outflow Rate 

Flow of water coming out of each test rig was calculated. Outflow rate is of 

immediate relevance to sizing of Aquifer Storage and Recovery infrastructure but 

also gives insight into the base conditions, which may in turn affect pollutant 

removal performance. For comparison purposes, the 8-minute average outflow was 

calculated in all cases. No instantaneous outflow values are given due to lack of data. 

First, it is useful to understand the flow behaviour. For the period of time when 

inflow is occurring, and when the base consisted of rock (as opposed to sand), a 

power model was used. This is reasoned to be appropriate due to the form of most 

hydraulic flow equations, including the kinematic wave equation (Ragan & Duru, 

1972). In a few cases this equation was directly used to calculate the total volume 

discharged after eight minutes and hence the eight minute average outflow. 

 ( 3 ) 
where: 

V = total volume collected for a run after a specific point in time 

t = time elapsed since outflow started 

A = an index 

B = a coefficient 

C = the y-intercept. 

In reality, the flow regime will change when water from one side of the box opposite 

the outlet reaches the outlet and again when water from the other side opposite the 

outlet reaches the outlet. This change could not be determined accurately, with the 

problem significantly compounded by the sagging bases. A value of 1.2 for A was 

adopted, simply because increasing it to 1.3 for Rig 2 caused one run to have its eight 
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minute flow indeterminable. The y-intercept C was incorporated to take into account 

the changing flow behaviour as a run progressed. Using this crude model, values for 

B and C are given in Table 39. Values for B generally followed the eight-minute 

average outflow, for Rig 2 the R2 was 0.74. Outliers can be explained by the inherent 

error in the model. 

Table 39: Outflow power model factors B and C 

Pavement B (L/day1.2) C (L)     
Observations 
(ex. outliers) Outliers 

Rig 1 Rock Base 673 ± 103 -0.28 ± 0.1 60 6 
Rig 2 699 ± 320 -0.22 ± 0.2 65 3 
Rig 3 490 ± 193 -0.12 ± 0.2 43 1 
Rig 4 697 ± 453 -0.21 ± 0.2 38 2 

 

There are two limits to consider with this power model – when down flow onto the 

box base stops and when the maximum outflow is reached. Rigs 2 and 4 had several 

runs at the beginning of testing when roughly constant outflow was achieved. The 

lag between inflow stopping and outflow being affected was estimated to be about 1 

minute for these runs. For Rig 3, it was found setting the lag time to 1 min 14 sec 

gave the least runs for which the eight-minute outflow could not be determined; 

therefore this was adopted. Using the runs for which the maximum outflow was 

reached, the ‘run through’ coefficient (analogous to the runoff coefficient) was 

determined to be about 55%; the rest was believed to be taken up by the clay 

attached to the aggregate. Varying between 0% and 100% only made on average a 

10% difference to the average outflow for Rig 3, with negligible effects for the other 

rigs. If the average outflow between two sample collection times was greater than the 

calculated maximum outflow, the former was adopted. 

Several runs had all three samples taken within the period covering inflow and lag, 

two each for Rig 1 and Rig 2 and 3 for Rig 4. For these, outflow was taken to stop 

immediately after the lag period ended. For rigs 2 and 4, outflow was observed to 

decrease sharply to almost 0 roughly a minute after the inflow stopped for the first 

few runs. As for Rig 1, for both of these runs the down flow onto the base was 

calculated to stop no earlier than eight minutes after inflow commenced. 

After the lag period after inflow stopped, total volume collected was found to 

increase according to a logarithmic plot, given in equation ( 4 ). 
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 ( 4 ) 

 

where: 

V = total volume collected for a run after a specific point in time 

t = time elapsed since outflow started 

a = multiplier, expected to be related to conditions at the base (among other 

variables); 

b = t – axis shift, believed to be related to the inflow stop time; 

c = V – axis shift, expected to be related to the volume of water in the test rig after 

inflow stops. 

Six samples were collected for the run performed on Day 39 for Rig 1. A log curve 

was fitted with an R2 of about 0.9993 and standard error of 0.02 L. The final sample 

for this run, collected after 74 hours, was excluded from regression as the sample 

was overflowing. The first sample was collected just before inflow stopped and was 

therefore excluded from regression as well. This seemingly logarithmically varying 

volume is believed to be at least partly due to lateral flow occurring within the clay 

cake layer at the base. An exponential model was also trialled, detailed in Appendix 

A, and rejected. 

In the vast majority of cases the log equation was used directly to find the total 

volume discharged after eight minutes and hence the eight-minute average outflow. 

Of these cases, the power model was used to calculate the volume just after down 

flow stopped when required. Again, the log equation was not found to apply to Rig 1 

when it had a sand base. For this situation, and in all cases where a log equation 

could not be fitted, the eight-minute volume was linearly interpolated between two 

sample collection points. Generally, error in linear interpolation for the eight-minute 

outflow was up to 14%, depending on the time between sample collection points. For 

linear extrapolation this was up to 50% (overestimation compared to the power and 

log models). For Rig 1 with the sand layer this was believed to be generally no more 

than 3% for runs terminated after 10 minutes (using the log model as an 

approximation). 

Values of a, b and c are given in Table 40: 
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Table 40: Values of a, b and c for outflow log model 

Pavement a (L/log(day)) b (min) c (L) 
Observations 
(ex. outliers) Outliers 

Rig 1 Rock Base 0.23±0.06 4.7±0.9 2.1±0.4 59 6 
Rig 2 0.07±0.06 5.8±1.2 1.1±0.4 64 2 
Rig 3 0.19±0.06 5.0±1.5 1.7±0.4 45 2 
Rig 4 0.09±0.08 5.5±1.2 1.2±0.4 38 1 

 

For Rig 1, outflow is only considered after the inflow was stabilised as at Day 45 

unless otherwise stated. Average eight-minute outflows are given in Table 41. After 

adding the sand layer, only 13 mL was collected the first day then 6 mL the second 

day, both after 5 minutes, with flow beginning after about 4 min 30 sec each time. 

On subsequent days the flow increased. Only from four days after adding the sand 

layer onwards is the outflow counted for this construction. One outlier was removed 

for Rig 2, which was the first run. This run was performed on the same day as 

washing, producing an eight-minute outflow of 2.5 mL/sec. 

Table 41: Average Eight-Minute Outflow Rates from Each Pavement 

Situation 
Input = 2.25 L 
(mL/sec) n 

Input = 1.8 L 
(mL/sec) n t-test p-value 

Rig 1 Rock Base 1.4 ± 0.3 51 N/A      N/A 
Rig 1 Sand Base 0.9 ± 0.3 12 0.5 ± 0.2 7 5x10-06 
Rig 2 1.4 ± 0.4 58 0.7 ± 0.3 7 3x10-06 
Rig 3 1.1 ± 0.3 38 0.9 ± 0.3 7 1x10-02 

Rig 4 1.4 ± 0.6 35 0.6 ± 0.3 7 7x10-10 
 

As can be seen from Table 41, lowering the input volume from 2.25 L to 1.8 L made 

a significant difference in all cases, applying two-tailed t-tests assuming unequal 

variance. Changing the loading rate but keeping the input volume at 2.25 L only 

made a significant (p = 0.02, n1 = 8, n2 = 3) difference for Rig 1 with the sand layer, 

apparently by 0.2 mL/sec. It also made a significant difference for Rig 3 (p = 0.001, 

n1 = 34, n2 = 4) but it apparently caused an increase in eight-minute outflow of 0.2 

mL/sec. 

For Rig 1, no trend of outflow with calendar time was found. Adding the sand layer 

significantly reduced the average eight-minute outflow by over 0.4 mL/sec (p = 

0.07). 

Rig 2 showed a downward trend in outflow at the beginning. From the second run to 
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Day 79, average eight-minute outflow decreased from 1.9 mL/sec by 0.015±0.002 

mL/(sec•day) (R2 = 0.67, p = 6x10-6). This was possibly due to fine particles 

migrating from the aggregate onto the base, where it would slow the flow down more 

significantly. Such an effect for Rig 1 was likely obscured by the unintentionally 

varying inflow. It remained fairly stable until Day 137 at 1.4±0.3 mL/sec and was 

significantly different to the outflow of Rig 1 (paired t-test, p = 0.05, df = 24), but 

with Rig 1’s apparently higher by 0.06 mL/sec. This is despite the different box 

slopes, likely because of significant clogging at the base and is possibly because Rig 

1 was hosed down for longer. 

No correlations were found for Rig 3, likely with negligible washoff of fine material 

onto the base during testing. Its outflow was significantly lower than Rig 1’s by 0.3 

mL/sec (paired t-test, p = 2x10-4, df = 22), likely due to trapped water at the base 

buffering flow, where for Rig 1 the sag in the base was filled by sediment. 

A correlation was found for Rig 4. A linear model was fitted with an R2 of 0.79, as in 

Figure 11, with outflow reducing at 0.020±0.002 mL/(sec•day) (p = 2x10-11). This 

effect is again likely due to fines migrating from the aggregate onto the base. 

Correlation did not improve with cumulative number of testing days as opposed to 

calendar day, possibly due to migration continuing to occur between tests. As Rig 2 

was only washed as a whole with a hose and Rig 4 only had its aggregate sieved in 

water, the result appeared to be more washable suspended solids in Rig 4. Rig 2’s 

outflow was significantly higher by on average over 0.1 mL/sec (paired t-test 

matching the second and first runs of Rig 2 and 4 respectively, p = 0.02, df = 32). 

This implies that when the solids settled to the base the accumulation was greater for 

Rig 4 than for Rig 2, resulting in lower final outflows. Rig 4 actually had a higher 

slope (3% and 9% each direction) compared to Rig 2 (2% and 6%). 
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Figure 11: Eight-Minute Average Outflow for Rig 4 

 

Stripping layers away produced some significant increases in outflow, as given in 

Table 42. For example, for Rig 2 removing all three layers significantly increased the 

outflow (p = 0.002). Using only the outflow data for when the input volume was 1.8 

L, in all cases n1 = 7, n2 = 1, equal sample variance was assumed and the t-tests were 

one tailed. Surprisingly, stripping the layers away produced no significant increase in 

eight-minute outflow for Rig 3. 

Table 42: Significance p-values for Increase in Flow Resulting from Stripping 
Pavement Layers 

 Cumulative Flow Increase 

Pavement 
No 
Pavers 

No 
Bedding 

No 
Geotextile 

Rig 1 Sand Base 0.055 0.02 0.001 
Rig 2 0.03 0.002 0.002 
Rig 3 0.21 0.4 0.29 
Rig 4 0.06 0.01 0.0002 

 

Rigs 1, 2 and 3 had reasonably stable outflow rates possibly because they were all 

hosed down. Rig 4 had an outflow rate that varied significantly as the days 

progressed, likely because it was not hosed down, therefore the fines would have 

migrated from the aggregate to the base during testing. Formation of a sludge layer at 

the base is believed to affect pollutant removal performance. 
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4.2 Water Quality 

Water quality analysis was undertaken on the samples collected from the four 

pervious pavement test rigs. After dripping through the input solution on each testing 

day, leftover solution was collected from the dripper manifold for testing. 

Ammonium concentration was at 1.3±0.4 mg (N)/L (n = 100) with the exception of 

three outliers when the concentration was over 2 mg/L on 30/8/2011, 12/12/2011 and 

19/12/2011 possibly due to contamination. Phosphate concentration was at 0.78±0.14 

mg (P)/L (n = 102), with the exception of one outlier where the concentration was 

2.64 mg/L on 28/10/2011, possibly due to contamination. None of these outlier input 

concentrations impacted significantly on the output concentration, suggesting the 

input solution samples were contaminated instead of the solution put through the 

pavements. 

First, it is useful to ascertain how water quality varies over time as the samples are 

collected for a single run. For Rig 1 there were two runs for which six samples were 

collected – one on Day 9 and one on Day 39. On Day 9, 9.5 L of solution was 

dripped through over 16 minutes (99 mm/hr) and samples were collected at roughly 1 

L intervals. Maximum outflow was achieved before the first or second sample. 

Figure 12 indicates that the ammonium and phosphate concentrations appeared to 

approach the input concentration over time, while the nitrate and nitrite 

concentrations appeared to decay to zero exponentially (R2 = 0.98). Shown are the 

samples taken before inflow stopped. 
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Figure 12: Nutrient Concentration vs Volume Output for Day 9 
 

On Day 39, a run was performed and six samples were collected, with the sixth 

collected after about three days. The output concentrations decreased over time. 

Figure 13 presents nutrient loads over time, with log curves fitted with varying 

degrees of success. 

 

Figure 13: Nutrient Load vs Time for Day 39 
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collected within 11 minutes are considered for calculating the EMC. In the 

experiments performed, a constant input concentration was used, whereas in the field 

situation the input concentration will start high and decrease as pollutant is washed 

off the surface. This is especially the case after a long dry period, during which 

pollutants accumulate. This effect is commonly referred to as the first flush effect. It 

will affect results and future testing should take this variation in concentration into 

account. 

 

4.2.1 Nitrogen 

Ammonium, nitrite and NOx-N concentrations were measured and compared to 

guideline values. The aquifer concentration requirement of 0.11 mg (N)/L is not met 

by rigs 2 (Figure 15) or 4 (Figure 17); yet it is improved on at times by Rig 1 (Figure 

14) when it had the sand layer and Rig 3 (Figure 16), likely due to its granular 

activated carbon layer. Both needed time for the bacteria to develop. 

 

Figure 14: Rig 1 Ammonium Event Mean Concentration 
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Figure 15: Rig 2 Ammonium Event Mean Concentration 

 

 

Figure 16: Rig 3 Ammonium Event Mean Concentration 
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Figure 17: Rig 4 Ammonium Event Mean Concentration 
 

As indicated in Table 43, Rig 3 and Rig 1 with the sand layer demonstrated the best 

ability to remove ammonium, followed by Rig 1 without the sand layer, Rig 2 and 

finally Rig 4. It should be noted this analysis ignores the first five runs for Rig 3, 

when the bacteria was developing. The poor performance of Rig 4 before the layer of 

fines formed on the base suggests this layer of fines has a significant ammonium 

removal capacity. The spike in ammonium concentration immediately after cleaning 

out the base in Rig 1 and adding the sand layer further demonstrates the ability of the 

fines layer to host microbes to remove/convert ammonium. 

Table 43: Ammonium (N) Performance Comparison 

Rig 1 Rock Base Rig 1 Sand Layer 
Comparison 95% Difference (mg/L) n Comparison 95% Difference (mg/L) n 
Rig 4 – Rig 2 0.2 18 Rig 4 – Rig 2 0.02 22 
Rig 2 – Rig 1 0.25 27 Rig 2 – Rig 1 0.18 19 
Rig 1 – Rig 3 0.02 16 Rig 1 – Rig 3 None 19 

 

Rig 4 shows a notable downwards trend in ammonium output concentration (R2 = 

0.84 before stripping layers, excluding when input was spiked, see next paragraph). 

This suggests that as fines built up on the base over time, a stable media was formed 
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for microbes to grow in. 

From Day 138 to Day 141 inclusive no solution was added to the test rigs. During 

this period, the pavements are likely to have dried out significantly. Hot summer 

conditions also prevailed during December, the month these days were in. These 

conditions are believed to have been favourable for ammonium conversion/removal. 

With 95% confidence and using unpaired t-tests assuming equal population 

variances, the ammonium concentration from Rig 1 dropped by at least 0.1 mg (N)/L 

(n1 = 9, n2 = 6), from Rig 2 by 0.17 mg (N)/L (n1 = 38, n2 = 7) and from Rig 4 by 

0.16 mg (N) /L (n1 = 30, n2 = 7). No significant difference was found for Rig 3 (n1 = 

4 – during aluminium addition, n2 = 7). 

Adding metals to Rig 3 impacted on the ammonium removal performance, as 

indicated by the increase shown in Figure 16. This was only temporary, possibly due 

to the favourable weather conditions in December dominating. In particular, adding 

aluminium alone increased the output concentration by at least 0.04 mg (N)/L 

(unpaired t-test, 95% confidence, n1 = 25 – ignoring first five runs, n2 = 3). 

Due to human error, on Day 133 the input solution concentration of ammonium was 

1.8 mg (N)/L, with the distinct spike in output concentrations visible for Rig 2 

(Figure 15) and Rig 4 (Figure 17). For Rig 2, the increase was at least 0.3 mg (N)/L 

with 95% confidence (unpaired, n1 = 38, n2 = 1), almost the entire increase in input 

concentration. For Rig 4, on Day 133 the 95% prediction interval for the estimated 

linear trend was 0.27 – 0.56 mg (N)/L. The spike exceeded the upper limit by 0.07 

mg (N)/L. 

Rig 1 without the sand layer and Rig 2 demonstrated stable output concentrations. 

Ignoring the period when inflow was unstable (to Day 44) and when the input 

concentration was spiked, Rig 1 had an output ammonium concentration of 

0.16±0.05 mg (N)/L (n = 31). Before Day 142, Rig 2 had an output concentration of 

0.42±0.06 mg (N)/L (n = 38). 

Removing the top layers also caused a large spike in ammonium levels, implying 

these layers were important for ammonium conversion (Table 44). With a confidence 

of 95%, removing the pavers from Rig 2 made a significant difference. It is 

interesting that the porous concrete pavers significantly contributed to ammonium 

removal for Rig 2 but not Rig 4, perhaps because the bedding was less thoroughly 
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washed for Rig 2, giving the bacteria more surface area to grow on. Only after 

removing the geotextile (including any granular activated carbon) from rigs 1 and 3 

was a significant increase in ammonium concentration found, suggesting these layers 

had an important role. 

Table 44: Cumulative Minimum Ammonium (N) Increase Due to Stripping 
Pavement Layers (95% confidence) 

Pavement Strip Pavers (mg/L) Strip Bedding (mg/L) Strip Geotextile (mg/L) n1 n2 
Rig 1 None None 0.071 6 1 
Rig 2 0.084 0.248 0.277 7 1 
Rig 3 None None 0.051 7 1 
Rig 4 None 0.026 0.131 7 1 

 

Overall, ammonium removal is highly variable, with the output varying from 0.04 

mg (N)/L to 0.9 mg (N)/L (40% removal to 97% removal using intended input 

concentration), depending on conditions. 

The NOx-N concentration was even more difficult to manage, with output 

concentrations always higher than the ANZECC irrigation guideline of 0.02 – 0.06 

mg (N)/L, as shown in Figure 18 through Figure 21. With the exception of Rig 1, 

where the varying inflow rate obscured the results (Figure 18), a peak in NOx level is 

reached before it slowly reduces. Adding the sand layer caused two spikes in NOx, 

the first when the layer was first placed and the second when it was left for four days 

in summer. Possibly due to the dry condition of the sand before these spikes, 

nitrifying bacteria would have nitrified ammonium to create the NOx, but the 

required anoxic conditions were not present for denitrifying bacteria to convert the 

NOx to nitrogen gas. 
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Figure 18: Rig 1 NOx-N Event Mean Concentration 

 

Figure 19: Rig 2 NOx-N Event Mean Concentration 
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Figure 20: Rig 3 NOx-N Event Mean Concentration 

 

Figure 21: Rig 4 NOx-N Event Mean Concentration 
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All rigs performed similarly for NOx removal, as indicated in Table 45, with the 

exception of Rig 1 with the sand layer (Figure 18) and a large spike for Rig 3 at the 

start (Figure 20), with the latter due to the negatively charged granular activated 

carbon layer repelling the negative NOx ions, out of the main source of bacteria. 

Again, this analysis ignores the first 11 runs for Rig 3, when the bacteria were 

developing. Removing the top layers did not significantly increase NOx 

concentrations, implying the base was responsible for this role, with relatively anoxic 

conditions at this depth. In fact, concentrations decreased in some cases, possibly due 

to reduced conversion from ammonium to NOx. 

Table 45:  NOx-N Performance Comparison 

Rig 1 Rock Base Rig 1 Sand Layer 
Comparison 95% Difference (mg/L) n Comparison 95% Difference (mg/L) n 
Rig 1 – Rig 3 0.06 13 Rig 1 – Rig 2 0.53 20 
Rig 3 – Rig 2 0.04 13 Rig 2 – Rig 3 0.08 23 
Rig 2 – Rig 4 0.01 20 Rig 3 – Rig 4 None 24 

 

Overall, NOx proved challenging to remove and will require further effort to meet the 

guideline, unless it can be removed within the aquifer. 

 

4.2.2 Phosphorus 

Phosphate was measured from each of the test rigs. Iron in the clay attached to the 

aggregate is believed to be responsible for much of the phosphate removal. Figure 22 

through Figure 25 show that after inflow stabilised, Rig 1 (Figure 22) performed the 

best phosphate removal, with the sand layer dramatically improving performance and 

even meeting the ANZECC freshwater guideline most of the time. Table 46 supports 

the conclusion that Rig 1 performed the best phosphate removal. The iron in the 

yellow sand is believed to be responsible for the substantially improved performance. 

Rig 2 (Figure 23) performed next best, likely due to its higher slope, with Rig 4 

(Figure 25) performing slightly worse, perhaps due to the higher outflows at the 

beginning and the fact more clay was washed from it during construction. The 

granular activated carbon (Figure 24) appeared to be contaminated with phosphate 

and in fact emitted 14 mg (P)/L at the very beginning (sample 1 of the first run), 

eventually performing similarly to Rig 1 without the sand layer. 
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Figure 22: Rig 1 Phosphate Event Mean Concentration 

 

Figure 23: Rig 2 Phosphate Event Mean Concentration 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

0 50 100 150 

C
on

ce
nt

ra
tio

n 
(m

g/
L)

 

Day 

Rig 1 Phosphate (P) 
Event Mean Concentration 

Input 
Output 
Aquifer 

Inflow 
Stabilised 

Sand 
Layer 
Added 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

40 60 80 100 120 140 160 

C
on

ce
nt

ra
tio

n 
(m

g/
L)

 

Day 

Rig 2 Phosphate (P) 
Event Mean Concentration 

Input 
Output 
Aquifer 

Porous 
Concrete 
Pavers 
Installed 

Al3+ Add. 
Began  

Zn2+ Add. 
Began  

Cu2+ Add. 
Began  

Geotextile 
Removed 



 

 87 

 

Figure 24: Rig 3 Phosphate Event Mean Concentration 

 

Figure 25: Rig 4 Phosphate Event Mean Concentration 
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Table 46: Phosphate (P) Performance Comparison 

Rig 1 Rock Base Rig 1 Sand Layer 
Comparison 95% Difference (mg/L) n Comparison 95% Difference (mg/L) n 
Rig 3 – Rig 4 0.33 19 Rig 2 – Rig 4 None 23 
Rig 4 – Rig 2 0.05 19 Rig 4 – Rig 3 0.02 24 
Rig 2 – Rig 1 0.09 42 Rig 3 – Rig 1 0.15 21 

 

Two rigs had periods where output concentration of phosphate was stable. Before the 

sand layer was added and while outflow was stable, Rig 1 had an output 

concentration of 0.48±0.07 mg (P)/L (n = 51). Before adding metals, Rig 4 had an 

output concentration of 0.65±0.08 mg (P)/L. 

Figure 23 indicates two significant low points in phosphate output concentration for 

Rig 2. Before adding metals, the output concentration was generally increasing, 

presumably with the capacity of the clay to absorb phosphate reducing over time. In 

particular, the first two points were lower by at least 0.12 mg (P)/L (95% confidence, 

unpaired t-test, n1 = 2, n2 = 50). 

When the pavers with gravel filled gaps were replaced with porous concrete on Day 

87 for Rig 2, with 95% confidence a one off reduction in phosphate concentration of 

at least 0.15 mg (P)/L occurred (unpaired t-test, n1 = 50, n2 = 1). Figure 23 suggests a 

more sustained reduction in output concentration, with the porous concrete possibly 

continuing to absorb phosphate. This is believed to be due to the calcium from the 

cement precipitating phosphate out, similar to the iron from the clay. Excluding these 

two low points, the output phosphate concentration was 0.59±0.1 mg (P)/L (n = 50). 

The two low points were also excluded from the analysis in Table 47. 

Adding metals to the input solution precipitated some of the phosphate out, 

explaining the drop in output concentration for rigs 2-4 (Figure 23 through Figure 

25). The measured input concentration dropped to roughly 0.7 mg (P)/L. Using 

unpaired t-tests, adding aluminium alone caused a decrease by at least 0.2 mg (P)/L, 

except for in Rig 1 (Table 47). Phosphate will form aluminium phosphate (AlPO4) 

with aluminium, copper phosphate (Cu3(PO4)2) with copper and zinc phosphate 

(Zn3(PO4)2) with zinc, having solubility products of 6.3x10-19, 2.05x10-35 and 

9.0x10-33 respectively, all at 25˚C (California State University; Generalic, 2003) 

(California State University solubility products taking preference). After aluminium 

addition alone, the dissolved phosphate concentration in the input would have been 
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undetectable at 7x10-13 g (P)/L, suggesting that either incomplete precipitation 

occurred or the Aquakem machine was detecting precipitated phosphate. 

 

Table 47: Incremental Minimum Decrease in Phosphate (P) Output from 
Adding Metals (95% Confidence) 

  Add Al3+ Add Zn2+ Add Cu2+ 
Pavement Dec. (mg/L) n1 n2 Dec. (mg/L) n1 n2 Dec. (mg/L) n1 n2 
Rig 1 None 6 5 None 5 2 None 2 5 
Rig 2 0.19 85 4 0.03 4 2 None 2 6 
Rig 3 0.28 7 5 None 5 2 0.01 2 6 
Rig 4 0.44 28 5 None 5 2 None 2 6 

 

Of the layers removed, it was only after removing the geotextile that a significant 

(95% confidence) increase in phosphate was found, implying it likely contributed to 

phosphate removal. This only applied to rigs 2 and 4 (n1 = 7, n2 = 1) (Figure 23 and 

Figure 25). For Rig 1, most of the phosphate removal appeared to be performed in 

the sand layer and for Rig 3 the granular activated carbon must have precluded any 

significant phosphate absorption within the geotextile. 

Overall, phosphate output concentrations ranged from 0.02 to 0.74 mg (P)/L, 

excluding Rig 3 with its contaminated GAC (12% to 98% removal overall assuming 

the intended input concentration). 

 

4.2.3 Dissolved Organic Carbon 

Dissolved Organic Carbon (DOC) was tested for as well and compared to guideline 

values. According to the managed aquifer recharge guideline (Environment 

Protection and Heritage Council, 2009a), a DOC level of 1-10 mg/L would require 

‘moderate’ maintenance. All rigs’ output was generally within this range, according 

to Figure 26 through Figure 29. This is not surprising as the input was only 4 mg/L. 

The lower the DOC, the less bacteria have a chance to grow and therefore less 

maintenance will be required at the injection well performing managed aquifer 

recharge. 

Addition of timber supports for the dripper manifold may have resulted in 

contamination. In fact, for Rig 1 the addition of the timber support seems to have 

caused an increase in DOC of at least 2.8 mg/L after a week (95% confidence, 
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unpaired, n1 = 3, n2 = 3) (Figure 26), using the data after inflow stabilised and 

excluding when the geotextile was removed. The other support was stainless steel 

and would not have affected results noticeably. For the other test rigs there is not 

enough good data for comparison. 

According to Table 48, Rig 3 (Figure 28) appears to have performed the best with its 

granular activated carbon layer, followed by Rig 2 (Figure 27) and Rig 4 (Figure 29). 

However, it is possible that Rig 3 performed well simply because timber supports for 

the dripper manifold were never installed in it (with acrylic ones used instead), while 

they were for the other test rigs. Adding the sand layer to Rig 1 appears to have 

worsened DOC removal (Figure 26), whether due to inadequate time for the bacteria 

to develop or the sand being a carbon source is unclear. When Rig 1 did not have the 

sand layer, no significant differences between rigs were found due to lack of valid 

data. 

 

Figure 26: Rig 1 Dissolved Organic Carbon Event Mean Concentration 
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Figure 27: Rig 2 Dissolved Organic Carbon Event Mean Concentration 

 

Figure 28: Rig 3 Dissolved Organic Carbon Event Mean Concentration 
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Figure 29: Rig 4 Dissolved Organic Carbon Event Mean Concentration 
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Rig 4 – Rig 2 None 4 
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4.2.4 Total Suspended Solids 

Total suspended solids were a significant problem. The managed aquifer recharge 

guidelines (Environment Protection and Heritage Council, 2009a) suggest a 

suspended solids level of 1-10 mg/L will require ‘moderate’ maintenance at the 

injection well. All rigs’ output consistently exceeded 10 mg/L. Nevertheless, Rig 1 

(Figure 30) always emitted the least suspended solids, possibly due to the stability of 

the clay / sand layer at the base and the shallow slope of this base. Rig 3 (Figure 32) 

performed similarly, with the same slope as Rig 1, but the data is inconclusive. No 

significant differences were found between any of the rigs for TSS, due to the lack of 

data. 

Rigs 2 (Figure 31) and 4 (Figure 33) fared poorly, likely due to the high slope of the 

base. More tests were performed for Rig 2 because of its high initial reading. For rigs 

2 and 4, removing the top two layers worsened the TSS output, possibly due to the 

increase in outflow. Washing more thoroughly would have alleviated the suspended 

solids problem. Rig 1 performed considerably better because of the shallow slope 

and because it had been rinsed thoroughly with a hose before testing, despite sieving 

having thought to be a more thorough method. For Rig 1, washing only the sand 

layer may have been adequate, as the suspended solids were observed to be the same 

yellow as the sand rather than the typical reddish orange. This implies the sand was 

trapping clay. 
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Figure 30: Rig 1 Suspended Solids Event Mean Concentration 

 

Figure 31: Rig 2 Suspended Solids Event Mean Concentration 
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Figure 32: Rig 3 Suspended Solids Event Mean Concentration 

 

Figure 33: Rig 4 Suspended Solids Event Mean Concentration 
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Different washing methods and slopes are likely to have affected suspended solids 

concentrations in the output. In no case was it considered acceptable for Aquifer 

Storage and Transfer. There was significant washoff of solids from the aggregate 

within the pavements, with more treatment required. Adding a layer of washed sand 

at the base could provide this treatment, by filtering out the solids from the aggregate 

above it. 
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5 CONCLUSIONS 

 

Stormwater management is seeing increasing attention in recent times. With the 

traditional method of piping stormwater directly to the nearest watercourse no longer 

appropriate, alternatives are being sought. Water Sensitive Urban Design is 

providing new ways of dealing with stormwater, reducing exported pollutants and 

attenuating both runoff volumes and flows. In addition, stormwater is being looked 

to as a resource. Aquifers are commonly drawn on for water supply and these can be 

recharged with stormwater via managed aquifer recharge. Aquifers are commonly 

used for irrigation. When the direct injection approach is taken, as can be the case 

with confined aquifers, stormwater must be treated prior to injection. Pervious 

pavement could possibly be one such treatment method. 

Pervious pavement is a type of pavement that allows rainwater to infiltrate directly 

through it with significantly reduced runoff compared to traditional impermeable 

pavements. The surface can come in many forms, including porous concrete, pavers 

with gravel filled gaps, plastic reinforcing grids enclosing turf or gravel and more. 

Beneath are layers of open graded or gap graded gravel for storage or conveyance, 

often with a geotextile layer included. 

Laboratory testing was undertaken to evaluate the nutrient removal performance of 

four test rigs, using porous concrete and pavers with gravel filled gaps for the 

surfaces. One test rig had granular activated carbon sandwiched between two layers 

of geotextile immediately below the bedding (Rig 3), while the rest had a single layer 

of geotextile at this depth. Another test rig had a sand layer topped with geotextile 

added at the base after a period of time (Rig 1). All had gravel base courses. 

Rig 1 with the sand base and Rig 3 with the activated carbon performed similarly for 

ammonium removal and removed the most ammonium out of the four rigs. For each 

of these two rigs there were periods where the output ammonium concentration was 

better than in the Leederville aquifer in Perth Western Australia. This suggests these 

pavements could treat ammonium to a level suitable for Managed aquifer recharge. 

Ammonium removal was sensitive to many factors including inflow rate, metal 

addition, extent of washing of the gravel layers, input concentration, establishment of 

nitrifying bacteria over time, moisture content and temperature. 
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Products of nitrification, namely nitrite and nitrate, were more difficult to reduce to a 

level acceptable for managed aquifer recharge. If this is not substantially removed in 

the aquifer itself, additional measures will be required to remove it, ideally within the 

pervious pavement. 

Phosphate could be removed to a level suitable for managed aquifer recharge, but 

applying the strict ANZECC guideline for freshwater, this was only achieved by 

adding the sand layer to Rig 1. Overall, phosphate removal was quite stable, but only 

with stable inflow and contamination from the granular activated carbon was an 

exception. 

Results from dissolved organic carbon testing were somewhat inconclusive but 

granular activated carbon gave a clear advantage. The lower DOC is, the less 

maintenance will be required at the injection well for Managed aquifer recharge. The 

same applies for suspended solids. The results from suspended solids testing was also 

inconclusive but if the sand layer were washed, suspended solids coming from the 

pavement may become acceptable, with the sand layer straining solids coming from 

the gravel layers. Evidence of this is that the suspended solids in solution were the 

same yellow as the sand and not the typical reddish orange. 

Using porous pavement for stormwater reuse is somewhat more difficult than simply 

for stormwater disposal, with higher water quality standards required depending on 

the use. However, with the right techniques and construction it could be done. 

Further testing will be required to find a porous pavement that will treat stormwater 

to a level suitable for managed aquifer recharge and subsequent withdrawal for 

irrigation. If such a pavement is found, it could be used to help enhance the security 

of water supplies. In cases where stormwater would have reached water bodies 

untreated, it will also reduce the impact on the environment from polluted and fast 

flowing stormwater. 
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6 RECOMMENDATIONS 

 

With the aim of pre-treating stormwater to a level suitable for aquifer storage and 

recovery in the Leederville aquifer, the following are recommended: 

• Washoff testing by placing concentrated pollutants directly onto the 

pavement surface 5 

• Further laboratory testing on pavement rigs, incorporating the sand layer at 

the base but in winter time 

• Investigation into the use of sawdust in this sand layer to reduce export of 

NOx-N from the pervious pavement 

• Phosphate retention index testing on the sand used, to determine the design 10 

treatment life for effective phosphate removal 

• Testing for removal efficiency of motor oil and related hydrocarbons (e.g. 

polyaromatic hydrocarbons) 

• Testing for metal removal efficiency and determination of design treatment 

life 15 

• Testing for removal of forms of dissolved organic carbon other than glucose, 

closer in chemical properties to rotting leaf matter for example 

• Investigation of the effect of long duration, low intensity simulated storms 

• Field testing at a suitable scale and location, testing for the extent of pollutant 

loading onto the road surface, rainfall patterns and the quality of exfiltrate 20 

from the pervious pavement. 
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APPENDIX A: TRIAL OF EXPONENTIAL HYDRAULIC MODEL 

 

An exponential model was fitted to the hydraulic data for the run on Day 39 for Rig 

1, since this was initially believed to be more appropriate, with down flow reasoned 

to be proportional to the volume still flowing over the aggregate at any given time. 

This was of the form: 495 

 ( 5 ) 

where: 

V = total volume collected after time t 

Vf = total final ouput volume 

Q0 = initial outflow rate, i.e. the instantaneous outflow rate when inflow stops 

k = decay rate 500 

t0 =time when inflow stops 

This had an R2 of about 0.998 and standard error of 0.18 L. The calculated total final 

output volume was 1.54 L, compared to 2.33 L of input solution actually used. 

However, the total volume collected was 2.03 L with some overflow. The 

logarithmic model predicted the total volume output at this time of collection (74 505 

hours after commencement) was 2.15 L, which seems more accurate. Also, the 

exponential model’s implied apparent loss of about 0.8 L cannot be justified, as the 

test rig was washed heavily during construction and evaporation would have been 

minimal due to it being winter at the time. The sample was protected from rain. 

Therefore, the exponential model is rejected in favour of the logarithmic model. 510 

 

 


