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Abstract 

 

The successful control of reservoir souring by nitrate injection has been well 

documented in the literature. Recent interest has centred on how nitrate application 

can increase the corrosion risk in pipelines and metal equipment. This study was 

conducted to observe the impact of nitrate reducing bacteria (NRB) and sulphate 

reducing bacteria (SRB) on the extent of corrosion on UNS S31603 and ASTM-

A572-50 carbon steel, two commonly used materials in the oil and gas industry. The 

bacteria used in this experimental study were indigenous bacteria, isolated from the 

crude oil and production water samples of an oil field off the northwest of Western 

Australia. The NRB were isolated using nitrate broth, targeting nitrate reducers while 

SRB were isolated using Starkey media, targeting lactate utilizing bacteria 

(Desulfotomaculum and Desulfovibrio). In this study, a mixture of corrosive 

production water which contains a high level of chloride (21000 mg/L) supplemented 

with 10% (v/v) crude oil was used as the testing solution. The crude oil was taken 

into account because in the oil field it serves as the carbon source for the bacterial 

growth and it may also influence the corrosion behaviour of any steel material. 

However, this study has limited its scope to observe the impact of SRB and NRB 

using electrochemical techniques in a closed batch culture system without any 

water/nutrient renewal. 

 

The basic experimental design for the two materials investigated, UNS S31603 and 

the ASTM-A572-50 carbon steel were similar. The experiments were conducted at 

50°C in electrochemical cells containing 10% (v/v) crude oil in 700mL production 

water and purged with filter-sterilized nitrogen to keep the oxygen level as low as 

possible. Each of the two materials were evaluated under four different conditions: 

(1) control cell (no bacteria), (2) NRB inoculated cell, (3) SRB inoculated cell, and 

(4) mixed bacteria (NRB+SRB) inoculated cell. A small amount of 5 mM NaNO3, 

was added as the growth nutrient for the bacteria. The open circuit potential (Ecorr) of 

the corrosion coupons, and the redox potential (Eh) of the solution were monitored 

throughout the experiments. Additionally, the microbial populations were counted by 

Most Probable Number (MPN) method and direct counting method using a Helber 

Counting Chamber Z30000. A production water analytical analysis (nitrate, nitrite, 

sulphate and sulphide) was conducted before and after the experiment.  



Abstract 
 

 

iii 

However, the exposure time in the corrosive media and the electrochemical analysis 

were different for each of the two materials tested. The immersion time for the UNS 

S31603 was 28 days and at the end of the immersion period, Linear Polarization 

Resistance (LPR) and Cyclic Polarization Scan (CPS) were carried out to determine 

the uniform and localized corrosion behaviour, respectively. The immersion time for 

the ASTM-A572-50 carbon steel was 21 days; LPR and electrochemical impedance 

spectroscopy (EIS) were conducted at an interval of every five days to monitor the 

biofilm formation, corrosion product formation and corrosion rate changes.  

 

The results for both UNS S31603 and ASTM-A572-50 carbon steel demonstrated 

that: (1) The addition of nitrate, promoted the growth of NRB and suppressed the 

growth of SRB, hence H2S production can be eliminated; (2) The NRB was able to 

oxidize the sulphide and also maintain a redox potential of above -100 mV, a level 

which inhibits the growth of SRB; (3) An increase in Ecorr was observed in the 

presence and absence of bacteria.  

 

The results from the UNS S31603 investigation show that: (1) NRB forms patchy 

biofilms on the UNS S31603 surfaces that weaken steel passivity and decrease its 

Critical Pitting Potential (CPP) to a greater extent than SRB after 28 days, (2) On the 

contrary, the corrosion rate of the UNS S31603 in the SRB inoculated cell is higher 

than the corrosion rate of the coupons in the NRB inoculated cell. This can be due to 

the formation of metastable pits as observed in the non-polarized corrosion coupon 

of the SRB inoculated cell after 28 days. (3) In order to study the effect of immersion 

time on the NRB and mixed bacteria (NRB+SRB), additional tests were conducted in 

the same manner for a short period of seven days of exposure.  The results show that 

the CPP for the corrosion coupons in both the NRB inoculated cell and the mixed 

bacteria inoculated cell is higher than the corrosion coupons in the control cell. 

Therefore, it is postulated that, in this particular corrosive biochemical environment 

(high chloride level), the NRB and the mixed bacteria (NRB+SRB), may give 

beneficial protection to UNS S31603 for a short immersion time, and may give 

detrimental effects in longer exposure times. 

 

The results from ASTM-A572-50 carbon steel investigation show that: (1) the EIS 

technique can be used to monitor the formation of biofilm and/or corrosion products 
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layers on the steel surface, (2) LPR, EIS and weight loss results show that in the 

tested corrosive environment, the presence of bacteria give lower rate of corrosion of 

ASTM-A572-50 carbon steel coupons compared to the corrosion coupons in the 

control cell. This indicates the corrosion inhibition activity of bacteria in this 

particular environment. (3) However, in the presence of bacteria, localized corrosion 

is inevitable as pits may form underneath bacterial biofilm.  

 

In general, it is important to examine the corrosion impact of nitrate application on 

case by case basis because it is a complex mechanism and cannot be simply 

predicted based on electrochemical techniques alone. Further work is required to 

understand the biological materials that were produced by NRB, especially in the 

presence of other bacteria, which in a real situation in an oil reservoir may not only 

be SRB. Such studies can aid in understanding the fundamentals of the biochemistry 

of nitrate injection, thus resulting in important information for the process and design 

of field applications. 
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CHAPTER 1: Introduction 

 

In the petroleum industry, oil recovery is classified into three phases. The first is 

primary oil recovery; the oil is produced due to the natural drive from the pressure 

inside the reservoir. However, as the pressure rapidly drops, the primary oil 

production also decreases.(1, 2) The second phase is secondary oil recovery which is 

achieved by the injection of another fluid, water or gas, into the reservoir to maintain 

reservoir pressure and push oil towards the producing well. Therefore, there is an 

increase in oil production. The third phase is tertiary oil recovery which includes 

sophisticated techniques aimed at increasing microscopic efficiency or sweep 

efficiency.(2) The present study focuses on the impact of nitrate injection in the 

tertiary oil recovery phase. In tertiary oil recovery, nitrate is injected to promote the 

growth of indigenous microbes that can enhance oil production and control reservoir 

souring problems. However, it is also reported that nitrate injection may increase the 

risk of corrosion in the pipelines and metal equipment. This chapter begins with an 

overview of petroleum microbiology history, followed by an introduction to 

microbial corrosion and the electrochemical tests used for corrosion monitoring. 

 

1.1 History of Petroleum Microbiology 

 

The remarkable history of petroleum microbiology began as early as 1926 when 

Beckman found that microbes were able to release trapped oil in porous rock 

formations(3, 4) and Bastin reported his finding that Sulphate Reducing Bacteria 

(SRB) resided in samples from 67 wells located in California and Illinois.(5, 6) 

Beckman’s discovery developed into new knowledge of enhancement of oil 

production using a microbial community, commonly called Microbial Enhanced Oil 

Recovery (MEOR).(1, 3, 4, 7-9) Bastin’s discovery contributed to the knowledge of 

biodeterioration of materials or corrosion due to the presence and metabolic activities 

of microorganisms, commonly referred to as Microbiologically Influenced Corrosion 

(MIC).(10-12) 
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1.2 History Microbial Enhanced Oil Recovery (MEOR) 

 

After Beckman’s discovery, little was known about MEOR until Zobell and his 

research group carried out a systematic laboratory study in 1947.(3, 4) Thereafter, 

many other researchers made a contribution to the knowledge of MEOR.(3, 4, 13, 14) 

The decade of the 1990’s is noted as a significant year for MEOR development,(13) as 

many well documented field trials were reported and also several meetings on 

MEOR were conducted.(4) By the end of the 1990s, MEOR had become a scientific 

and interdisciplinary method for enhanced oil recovery. 

 

To date, conventional oil recovery approaches used in the oil industry can only 

recover approximately one third of the original-oil-in-place (OOIP), leaving behind a 

large quantity of residual oil which are trapped in the sand grains.(3, 9) The reasons 

behind this phenomenon are the high viscosity of the trapped oil which result in poor 

oil mobility,(7, 8) the high interfacial tension between oil-brine water which makes the 

capillary pressure hold the oil in the reservoir rock,(7, 9) and the strong bond between 

the oil and the surrounding reservoir rock (surface tension)(8) especially in oil wet 

formation. MEOR is believed to be one of the advanced technologies able to recover 

this oil in trapped formation due to the ability of bacteria to produce biosurfactants, 

biopolymers, bioacids, biomass, biosolvents, gases, and enzymes. This technology is 

implemented by the addition of nutrients and/or bacteria into oil reservoirs.(3, 4, 7-9, 13, 

14) 

 

Further investigation revealed that the addition of nitrate-based media into the 

reservoir was not only able to increase oil production but also mitigate reservoir 

souring problems, due to the activity of SRB. This method was known as Bio-

Competitive Exclusion (BCX).(15-17) In BCX technology the microbial community is 

manipulated by introducing nitrate, not only as a microbial nutrient but also as an 

alternate electron acceptor. With the complementary naturally-occurring volatile 

fatty acid (VFA) inside the reservoir, it will selectively promote the growth of Nitrate 

Reducing Bacteria (NRB).(15, 16, 18) NRB will flourish and depress the growth and 

activity of SRB in using VFA.(15, 16, 19) 
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1.3 History of Reservoir Souring and Nitrate Injection 

 

The reservoir souring was discovered after seawater was injected into the reservoir 

during secondary enhanced oil recovery to maintain pressure thus allowing more 

residual oil production.(18, 20, 21) Seawater is widely used in oil reservoirs, especially 

in offshore situations because of its proximity and availability.(22, 23) However, the 

anoxic condition within the reservoir, combined with the high sulphate content of 

seawater creates a favourable condition for SRB growth.(18, 20, 22, 24) The SRB within 

the oil reservoir could be either indigenous(5, 17) or introduced with the injection 

water.(17, 23) 

 

The growth of SRB leads to biogenic hydrogen sulphide (H2S) production. H2S is a 

highly toxic, corrosive and flammable gas with an unpleasant odour.(24, 25) Sulphide 

contaminates produced oil, gas and water, thus decreasing the oil quality, 

representing a safety hazard, and causing corrosion of pipelines, tanks, processing 

and processing equipment.(26, 27) 

 

Strategies for control of souring in oil reservoirs have been widely investigated. To 

mentioned a few: (1) removal of sulphate from injection water (e.g. by membrane 

separation)(22, 25, 28); (2) removal of H2S from sour water by treatment with 

physicochemical methods (e.g. with addition of iron salts)(28, 29); (3) exposure of 

water to microwave and ultrasonic irradiations; (4) application of biocides such as 

glutaraldehyde, cocodiamines, and tetrakis hydroxymethyl phosphonium sulphate 

(THPS)(22, 25, 27, 28, 30); and (5) microbiological sulphide production control by the use 

of nitrate and/or molybdite.(15, 17, 20-28, 30-34) The last two methods have been the most 

widely investigated. 

 

To date, biocide application still has some drawbacks, as it is generally successful in 

controlling SRB in surface facilities but with limited effectiveness in the reservoir. 

This happens because chemical components in the reservoir may scavenge biocides 

through reaction or sorption.(22, 28) Additionally, treatment is often ineffective 

because biocides fail to kill SRB in protected niches (biofilm)(18, 21, 25) and 

inactivation of biocides after reaction with biofilm and minerals.(21) Furthermore, 
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biocides themselves may cause corrosion if applied in high concentrations or even 

kill the microbial community that may offer protection against corrosion; and the use 

of biocides targeting SRB may even lead to the emerge of biocide-resistant SRB.(18, 

25) Another disadvantage of biocides is some recalcitrant biocides may lead to 

environmental problems, while biocides that decompose over exposure time may 

provide additional substrate for SRB growth.(21) 

 

 

 
Figure 1.1 Souring control by nitrate injection in oil reservoir can be achieved 
by (a) biocompetitive exclusion of SRB by hNRB or (b) direct oxidation of 
sulphide couple with nitrate reduction by soNRB, as described in the text. 
Nitrite (indicated by red dashed line) is an important feature in both scenarios 
as it is an inhibitor for enzyme dissimilatory reductase (Dsr) of SRB. Diagrams 
adapted from Voordouw (23) and Hubert.(17) 

 

The application of nitrate injection has drawn a great deal of attention because it 

gives synergistic effects, such as increasing oil production and also replacing 

biocides. Additionally, it is also more efficacious compared to biocides, is low cost 

and is environmentally friendly.(15, 16, 20, 35) Further investigation reveals that there are 

two types of NRB: they are heterotrophic nitrate- or nitrite-reducing bacteria 

(hNRB); and sulphide oxidizing, nitrate- or nitrite-reducing bacteria (soNRB).(17, 18, 

23, 36, 37) 

 

Several mechanisms have been proposed for the containment of souring by nitrate or 

nitrite.(20, 33, 37, 38) A few will be outlined below. First, the competition between SRB 

and hNRB for VFA may result in the competitive exclusion of SRB (BCX), thus 

biogenic formation of sulphide can be eliminated (Figure 1.1a).(17, 18, 23, 24, 35) 

(a) 

(b) 
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However, it is also found that some SRB may switch their energy metabolism to 

reduce nitrate or nitrite instead of sulphate, that is SRB may become hNRB.(18, 24) 

Second, soNRB couple nitrate or nitrite reduction to the oxidation of the produced 

sulphide to elemental sulphur or sulphate, creating a sulphur cycle involving soNRB 

and SRB that results in net removal of sulphide when insufficient organic electron 

donors are present to reduce all nitrate (Figure 1.1b).(18, 29) And third, nitrite inhibits 

the reduction of sulphate to sulphide by the enzyme dissimilatory reductase (Dsr), the 

terminal enzymatic step in the sulphate reduction pathway of SRB. Nevertheless, 

some SRB may have a nitrite reductase (Nrf) that may prevent this inhibition.(18, 38) 

 
It is undisputed that nitrate application as a substitute for biocides in controlling 

Sulphate Reducing Bacteria (SRB) and mitigating reservoir souring has been widely 

used with some successful laboratory and field trials.(18, 20, 32, 36) However, the impact 

of nitrate treatment and the long-term consequences for MIC are poorly understood. 
(35) Additionally, it is revealed that the use of nitrate as the nutrient source that can 

enhance the growth of Nitrate Reducing Bacteria (NRB) still has some drawbacks. 

Voordouw et al.,(34) mentioned that though nitrate is a lower-potential electron 

acceptor than oxygen, it is a higher electron acceptor than sulphate; hence its effect 

on anaerobic MIC should be evaluated. Additionally, their experiments have shown 

that the presence of the NRB strain CVO increases the corrosion rate of ASTM A366 

carbon steel from 0.004 mm/year up to 0.040 mm/year; and in the presence of a 

mixed culture of NRB strain CVO and SRB, the corrosion rate reached 0.075 

mm/year. Hubert et al.(18) indicate that SRB control by nitrate shifted the corrosion 

risk from the bioreactor outlet to the inlet, and that NRB promoted pitting corrosion 

on the bioreactor inlet. They concluded that NRB stimulation may not be a practical 

souring control solution if SRB activity associates with MIC of ferrous metals and 

their alloys. It is also believed that  nitrite, as the intermediate or by-product of the 

nitrate treatment, may itself induce pitting corrosion in a minority of applications.(11, 

39) Therefore, knowledge of SRB and NRB interaction on metal surfaces is essential 

to help understand the nature of these two bacteria in changing the environment of 

metal surfaces.  
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1.4 Microbiologically Influenced Corrosion (MIC) in Steel Materials 

 

Microbiologically influenced corrosion (MIC) is a corrosion process that is triggered, 

alleviated or accelerated by microbial activities and their metabolites, thus changing 

the condition at the metal-solution interface.(11, 40-42) Corrosion occurs when materials 

made of pure metal and/or their mixtures (alloys) undergo a chemical change from a 

ground state to an ionized species.(42) The main types of bacteria associated with 

corrosion on iron, mild and stainless steels are sulphate reducing bacteria (SRB), 

sulphur–oxidizing bacteria,(43) iron oxidizing bacteria (IOB), iron reducing bacteria 

(IRB), manganese oxidizing bacteria (MOB), bacteria secreting organic acids and 

exopolymers or slime.(42) Gu(10) stated that microbial involvement in corrosion of 

metals is a result of adhesion and subsequent metabolic activity on surfaces. To date, 

MIC and the way it affects corrosion have always been a matter of debate.(41) 

Javaherdashti,(41) mentioned that acid production by bacteria is presumed to be one of 

the ways by which corrosion can be enhanced; but other researchers have found 

contradictory evidence that acid production by aerocbic Pseudomonas sp was not a 

major cause of corrosion. Little et al.(44) also mentioned the conflicting opinions 

among researchers that exist where the same organism and mechanism to which MIC 

has been attributed have also reportedly inhibited corrosion. Among these 

contradictory views, interaction of biofilms with metal surfaces is the most 

intensively debated topic that has been investigated by a number of researchers.(45-51) 

 

1.5 Microbial Biofilm and Corrosion 

 
Figure1.2 Progress of bacteria accumulation on steel surface.(52) 
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Microbes can exist in a free floating state (planktonic state) and attached onto a 

substrate surface (sessile state).(11, 41) Due to its nature, microbes have the propensity 

to attach onto surfaces, proliferate and form biofilms - a film layer which consists of 

microbial populations and is surrounded by extracellular polymeric substances (EPS) 

(Figure 1.2).(11, 40, 53, 54) 

 
Figure 1.3 A conceptual model for an open, patchy biofilm structure, the areas 
under the biofilm become anodic sites and outside the biofilm deposit become 
cathodic sites (41). 
 

The general mechanism of biofilm accumulation is agreed upon by researchers 

(Figure 1.2): (52, 55) (1) bacteria attachment on metal surface; (2) biofilm initiation and 

EPS production; (3) biofilm structural development and maturation; (4) biofilm 

detachment, erosion of individual cell and sloughing of large pieces of biofilm; (5) 

bacteria cell attachment in another substratum area. Bacteria produce EPS in order to 

facilitate the adhesion of bacterial cells onto surfaces during their initial 

development,(10) to trap essential nutrient and buffering fluctuations in pH, toxic 

metals, biocides, as well as other purposes.(56) The biofilm is formed in order to 

create a local environment suitable for their growth and to maximize their survival in 

the surrounding environment.(56) Biofilm accumulation on the metal surface is an 

autocatalytic process that increases surface irregularity, and consequently influences 

particle transport and attachment.(54) In such non-uniform structures, establishment of 

local gradients are highly possible; thus “spots” with high and low concentration of 

chemicals and gases are formed.(41) The area under bacterial deposit usually has low 

availability of the cathodic reactant, for example, oxygen and thus is forced to be the 

anode, while the area outside of the deposit becomes the cathode. This leads to 

localized corrosion in the form of pitting and crevice corrosion (Figure 1.3).(41, 54) 
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1.6 Corrosion Inhibition by Biofilm 

 

There are numerous reports(48-51, 57, 58) and reviews demonstrating corrosion inhibition 

by biofilm.(47, 59, 60) There are several mechanisms which most frequently are 

proposed for corrosion inhibition by biofilms, for example: (1) oxygen depletion 

and/or removal at the metal surface by biofilm accumulation and/or respiring cells 

(Figure 1.4)(44, 47, 57); (2) a biofilm forms a diffusion barrier hindering the diffusion of 

corrosion products from the metal surface(44, 60); (3) microorganisms produce 

metabolic products that act as corrosion inhibitors, for example siderophores and γ-

polyglutamate(44, 47, 58); and (4) microorganisms produce specific antimicrobial 

peptides which kill corrosion-causing organisms, for example SRB.(44, 45)           

Little, et al.(44) conclude that the following critical issues must be addressed before 

bacteria can be used to predictably inhibit corrosion: (1) the stochastic nature of 

biofilm, (2) contamination, and (3) natural competition.  

 
Figure 1.4 Oxygen depletion in the metal-biofilm interphase. There is less 
oxygen in area 1 compared to area 2.(41) 
 

1.7 Materials Tested in This Study 

 

Two materials are tested in this study. The first is UNS S31603, and the reason for 

choosing this material is because it is a widely used Corrosion Resistant Alloy 

(CRA) in the petroleum industry. In general, stainless steel (SS) is commonly used as 
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a construction material in petroleum industries due to its resistance to localized 

corrosion in various aggressive environments. According to Moss,(61) SS with a 

content of more than 12% chrome is corrosion resistant due to its spontaneous 

development of an extremely stable chromium-oxide layer on the metal’s surface. 

Though SS can develop a passive film that protects the steel from corrosion, in the 

presence of aggressive anionic species, such as chloride and sulphate ions, localized 

corrosion may occur.(62-64) Additionally, added alloying elements (in order to improve 

their corrosion resistance), such as chromium, nickel and molybdenum, may be 

dissolved during the corrosion process and due to the influence of bacterial adhesion 

and thus biofilm development.(65) Furthermore, Beech et al.(66) also demonstrated that 

the profile of the chemical elements within the passive layer of SS 316 and its 

thickness changed after exposure to Pseudomonas sp.  

 

The second chosen material for this study is carbon steel, because it is still widely 

employed as a construction material for pipe work in the oil and gas industry, despite 

the advanced innovation of corrosion resistant materials. It is commonly employed in 

down-hole tubular flow lines and transmission pipelines.(67)  However, one of the 

consequences of using carbon steel is its low corrosion resistance, especially in the 

presence of water from the external environment.(68) 

 

1.8 Electrochemical Tests 

 

There are many electrochemical tests developed for MIC monitoring.(69-71) The 

electrochemical tests conducted in this experiment are corrosion potential (Ecorr), 

redox potential (Eh), cyclic potentiodynamic polarization scans (CPS), linear 

polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS).  

 

1.8.1 Open Circuit Potential 

 

Ecorr or open circuit potential (OCP) can measure the potential difference between the 

corroding metals and a suitable reference electrode when they are immersed in an 

aqueous solution.(40) Ecorr provides information about the passivation layer formed on 
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the surface and a measure for the thermodynamic risk of the protective layer’s 

integrity.(56)  

 

The application of this technique is simple and can be implemented easily outside 

laboratory conditions. However, this technique does not provide mechanistic 

information and is recommended to be used in addition to other electrochemical 

techniques. In Ecorr measurement, the contribution from the cathodic and the anodic 

are monitored together. For this reason, it is important to implement other techniques 

that can monitor the cathodic and anodic influences of the electrochemical process. 
(71)   

 

1.8.2 Redox Potential (Eh) 

 

Eh or reduction-oxidation shows the oxidative power of an electrolyte.(70) It is usually 

measured using an inert electrode such as Pt and a stable reference electrode.(70, 72) If 

a suitable calibration is provided, it might be used to monitor the changes in the 

corrosivity of the electrolyte as a result of the bacterial metabolism.(70) 

 

1.8.3 Cyclic Potentiodynamic Polarization Scan (CPS) 

 

The CPS technique offers a qualitatively reasonable and rapid method to predict the 

propensity of a passivating alloy to suffer from localized corrosion in the form of 

either pitting or crevice corrosion.(73-75) 

 

In the study of localized corrosion, two critical characteristics of the potential which 

indicate the susceptibility of different metals and alloys to localized corrosion need 

to be noted. These potentials are the pitting potential and repassivation potential.(56, 

76) Because there has been much research into pitting corrosion, different 

terminology has been used and is still being used to define pitting potential and 

repassivation potential. Pitting potential is also known as: Brennert’s breakdown 

potential (Eb), critical pitting potential (Ec), breakthrough potential (Eb), pitting 

initiation, and pit nucleation (En). Repassivation potential (Er) was also called 
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protection potential (Epp).(76) In this study, the term critical pitting potential (Ec) and 

repassivation potential (Er) will be used.  

 

In the CPS test, a potential is applied to the specimens at a continuous and relatively 

slow rate versus a reference electrode using a potentiostat. First, the specimen is 

scanned in the noble (positive) direction on the forward scan until a specific anodic 

current is reached. Then the direction of the scan is reversed to the active (negative) 

direction and terminated at the original starting potential or when the direction of the 

current changes sign, indicating a cathodic current.(73, 77) The result of an ideal CPS 

curve is depicted on Figure 1.5. 

 

 

 

 

 

 

 

 

 

Figure 1.5 Schematic representation of an ideal cyclic potentiodynamic 
polarization curve for a passivating metal (56, 76). Ec - critical pitting potential, Er 
- repassivation and Ecorr – corrosion potential. The red arrows show the scan 
direction. 
 

Some important information from the CPS test which will be discussed in this study 

will be highlighted below: 

 

1.8.3.1 Hysteresis 

 

The first important parameter is the direction of the curve’s hysteresis. According to 

Silverman,(73) the hysteresis is a result of the disruption of the passivation chemistry 

of the surface by the increase in the potential (forward scan) and reflects the ease at 

which that passivation is restored as the potential is decreased back toward the 

corrosion potential (reverse scan). Additionally, the same author also mentions that 

from a practical standpoint, a positive hysteresis (when the reserve scan goes in a left 
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direction on the CPS curve) usually signifies that the alloy will be more resistant to 

localized corrosion than does a negative hysteresis.(73) 

 

1.8.3.2 Critical Pitting Potential (Ec) 

 

The second important parameter is the Ec. In the early literature, Ec is simply defined 

as potential below which pits do not nucleate and above which stable pits are 

growing.(56, 78) In this study, the Ec is best defined as the potential at which passive 

surface layers are broken,(56) or become unstable and cannot repassivate.(76) This is 

indicated by the rapid increase in current density in the forward scan of the 

polarization scan.(56, 77) 

 

1.8.3.3 Metastable Pitting 

 

The third important parameter is the occurrence of metastable pitting. This is 

indicated by an increase in the current density, followed by a rapid decrease in the 

current to the original passive current. Metastable pitting can be simply defined as a 

pit nucleated at the area between Ec and repassivation potential (Er). This pit is small 

in size, grows and repassivates in less than a few seconds.(76) 

 

1.8.3.4 Repassivation Potential (Er) 

 

The fourth important parameter is the Er. In the early literature, Er is defined as the 

potential at which pit growth is arrested or pitting corrosion is prevented.(56, 78) In this 

study, Er  is best defined as the potential below which no metastable pitting and 

stable pitting occurs and above which a metastable pit can form and the already 

nucleated pits can grow.(76) This is indicated by the lowest readable value of current 

density on the reverse portion of the polarization scan.(73) 

 

1.8.4 Linear Polarization Resistance (LPR) 

 

LPR is an electrochemical method, based on a linear relationship between changes in 

the applied current, and resulting in current density. It gives a rapid and easily 
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interpreted result for the corrosion rate, but is not a useful method to observe 

localized corrosion.(41) LPR can be used to continuously monitor the corrosion rate of 

a metal or alloy exposed to a corrosive environment.(79) The polarization resistance 

(Rp) of a material is defined as the slope of a potential-current density (∆E/∆i) curve 

at free corrosion potential. The Rp value is related to the corrosion current with the 

help of Equation 1.1.(75, 79) 

 

 Rp = 
0)(

)(






Ecorr i
E

i
B

 (1.1) 

 

Where Rp = polarization resistance 

 icorr = corrosion current 

 B = empirical polarization resistance constant that can be related to the anodic 

(ba) and cathodic (bc) Tafel slopes with equivalent (2.2) 

 

 B = 
)(3.2 ca

ca

bb
bb
  (1.2) 

 

 
Figure 1. 6 Hypothetical linear polarization plot.(56, 75) 

 

1.8.5 Electrochemical Impedance Spectroscopy (EIS) 

 

The concept of electrical impedance was first introduced by Oliver Heaviside in the 

1880s. Impedance is a more general concept than resistance because it takes phase 

differences into account and has become a fundamental and essential concept in 

electrical engineering.(80) 
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EIS is a specific branch of the tree of electrical measurement.(80) It has become a 

mature technique that has been proven to be extremely effective in the mechanistic 

study of a wide variety of corrosion phenomena.(79) The complications and sources of 

error associated with the polarization resistance method were able to be explained 

and understood after introducing electrical equivalent circuit parameters to represent 

and simulate the corrosion electrochemical interface in EIS.(81) 

 

In EIS, the impedance is usually measured by applying a small perturbation of 

alternating current (AC) potential at low amplitude to the working electrodes at a 

number of discrete frequencies (ω). This is done to allow observation of the system 

in a pseudo-linear state. It is assumed that a sinusoidal potential excitation is applied 

and the response to this potential is an AC current signal. In this system, the current 

response to each one of the discrete frequencies will exhibit a sinusoidal current 

waveform response at the same frequency but shifted in phase (Figure 1.7) 

depending upon the circuit parameters of the corroding interface.(81, 82) 

 

 
Figure1.7 Sinusoidal current responses to the applied AC potential in a linear 
system.(71, 82) 
 
A sinusoidal perturbation E(t) of low amplitude (E0) is imposed over the working 

electrode, at a given radial frequency (ω) 

 

 E(t) = E0 sin(ωt) 1.3 

 ω = 2πf 1.4 

 

The obtained response for each frequency is a sinusoidal current I(t) of phase (θ) and 

amplitude I0 in a system that has a linear behaviour: 
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 I(t) = I0 sin (ωt + θ) 1.5 

 

The impedance which is equal to resistor can be calculated according to Ohm’s Law: 
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The impedance is therefore expressed in terms of a magnitude (Z0) and a phase shift 

(θ).  

 

In EIS, the impedance data are presented in two curves, the Nyquist plot and the 

Bode plot.(71, 81, 82) The Nyquist plot gives the typical characteristic behaviour of 

phenomena occurring on the electrochemical system in the form of semicircles or 

slopes.(71) On the Nyquist plot (Figure 1.8b), the real impedance value (Z) is plotted 

on the X-axis and the imaginary value (Z´) is plotted on the Y-axis, resulting in the 

expressed impedance value as a vector of length ІZІ or Z modulus (Zmod).(71, 82) 

 

2'2Z ZZ   1.7  

Z
Z 'tan 

 1.8 

The semicircle is a characteristic of a single “time constant”.(82) It is important to 

mention that in a real situation, the impedance plot may have more than one 

semicircle, and/or with combination of linear line.(71, 82, 83) Additionally, it is often 

found that only a portion of a semi circle is observed.(71, 82) The Bode Plot (Figure 

1.8c) shows the log frequency value on the X-axis and both the ІZІ and the phase 

angle on the Y-axis.(71, 82) 

 

AC circuit theory in terms of circuit analogues is used to model the electrochemical 

corrosion process. This model facilitates understanding and leads to better 

predictions of corrosion rates and overall corrosion behaviour. The electrochemical 

process is modelled by linear circuit elements such as resistors, capacitors and 

inductors. An example of a simple corroding system is the Randles circuit as 

depicted on Figure 1.8. This equivalent circuit (Figure 1.8a) consist of a solution 
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resistance, a double layer capacitor (Cdl), and a charge transfer/polarization resistance 

(Rct). The Cdl is in parallel with the Rct. The solution resistance (Rs) can be observed 

at the intercept of the real axis value at high frequency (Figure 1.8b).(71, 82-84) Once 

the physical model has been built, computer software is available to allow fitting of 

impedance data to an appropriate equivalent circuit.(79) 

 

EIS has generated much interest in MIC studies(69, 79) because when a reasonably 

small magnitude of sinusoidal potential around Ecorr (usually 5 to 10 mV rms) is 

applied, it does not markedly affect bacterial growth and activity.(58, 79) 

 

 

 

 
Figure 1.8 (a) Electrical circuit model of a Randles circuit, (b) Nyquist plot of a 
Randles circuit, (c) Bode plot of a Randles circuit.(71, 82-84) 
 

 

 

a) b) 

c) 
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1.9 Research Focus in This Study: MIC Study in a Stagnant Control System 

 

There is much research on the impact of nitrate treatment using a bioreactor to mimic 

reservoir conditions(18, 26) or sand packed columns(21, 22, 85) in a laboratory, but only a  

few studies have been conducted to understand the impact of nitrate treatment on the 

corrosion of steel.(18, 27) In addition, some debate continues since the field conditions 

are somewhat different from what is created in laboratory conditions, such as scale 

formation(86, 87); also, in the field it is most likely that oil-in-water emulsion forms in 

the post production stage.(87) 

 

This study will discuss electrochemical experimentation of SRB and NRB using a 

mixture of fresh sample brine and crude oil from the field with a controlled system. 

To the best of the author’s knowledge, this is the first electrochemical experiment 

with a production water and crude oil mixture. Other researchers sharing the same 

interest have used synthetic media(33, 36) and/or a field brine sample(86, 88) without 

mixing it with a crude oil sample. For brevity, this study has limited its scope to a 

batch culture experiment on the impact of SRB and NRB using electrochemical 

techniques, weight loss measurement and steel surface analysis without any material 

renewal during immersion time. 

 

1.10 Research Objectives 

 

1. Bacteria isolation and mechanistic study of oil reservoir souring control by 

sodium nitrate application; 

2. Electrochemical study of nitrate injection impact on UNS S31603 material in 

corrosive production water-oil mixture samples from an oil field; 

3. Electrochemical study of nitrate injection impact on carbon steel material in 

corrosive production water-oil mixture samples from an oil field in pre-sour 

condition.
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CHAPTER 2: Methodology 

 

2.1 Material Preparation 

 

The working electrode specimen was made from a UNS S31603 sheet and a carbon 

steel ASTM A572-50 carbon steel sheet, with the nominal elemental composition 

shown in Tables 2.1 and 2.2. The sample was cut into 1 cm x 1 cm x 0.5 cm coupons, 

connected to a wire, mounted in CaldoFix-2 Resin (Struers) and mechanically 

polished using silicon carbide papers (Struers) in a sequence of 120, 320 and 600. 

They were degreased in ethanol and dried under nitrogen gas flow. Prior to 

electrochemical testing, samples were sterilized by immersion in Decon 90® 

overnight and then immersed in 70% ethanol for one hour.  

 

Table 2.1 Chemical composition of UNS S31603 working electrode (wt%) 
C Cr Mn Mo N Ni P S Si Fe 

0.022 17.4 1.76 2.03 0.046 10.00 0.030 0.001 0.37 balance 

 

Table 2.2 Chemical composition of ASTM A572-50 carbon steel working 
electrode (wt%) 

Al As C Cr Mn Mo N Nb Ni P S Si Sn Fe 

0.027 0.002 0.14 0.023 0.64 0.004 0.008 0.001 0.028 0.018 0.014 0.151 0.005 balance 

 

2.2 Sample Site Description 

 

Production water and crude oil samples were obtained from an offshore oil field off 

the northwest of Western Australia. This oil field, with a reservoir temperature of 

50ºC, and depth of 800 m, has been flooded with seawater to enhance oil production. 

Some wells have had break through which was shown by the high sulphate and 

chloride values. The formation water contains barium, therefore by mixing it with 

seawater, barium sulphate precipitation was formed, causing scale on steel surfaces. 

As a result, a scale inhibitor has been injected to prevent precipitation. The chemical 

composition of the production water sample is provided in Table 2.3. Due to the high 

content of sulphate in the formation water sample, sodium nitrate is chosen instead of 

calcium nitrate to avoid a calcium sulphate scaling problem. 
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Table 2.3 Chemical composition of production water sample 
 

Component* Unit (mg/L) 
Barium (Ba2+) 
Calcium (Ca2+) 
Iron ( as Fe) 
Magnesium (Mg2+) 
Potassium (K+) 
Sodium (Na+) 
Strontium (Sr2+) 
Bicarbonate (HCO3

-) 
Chloride (Cl-) 
Nitrate (NO3

-) 
Sulphate (SO4

2-) 
Volatile Fatty Acid (VFA) 
pH @20.7ºC  
Electrical conductivity @25ºC 
Resistivity @25ºC 

<0.1 
770 
< 0.1 
480 
200 
13000 
28 
150 
22000 
<0.1 
600 
Not detected 
6.9 
48000 µS/cm 
0.21M.Ohm 

*All amounts are in (mg/L) except where stated otherwise 

2.3 Bacteria Isolation, Bacterial Counting and Inoculums 

 

2.3.1. Media Preparation 

 
The media used in this experiment were Starkey broth,(89) Postgate B broth,(89) nitrate 

broth (Fluka®), and Thioglycollate medium (Oxoid). All liquid media were made 

anaerobically by flushing the serum bottles with nitrogen to generate an anaerobic 

condition and then sealed with a butyl rubber stopper and aluminium crimp cap 

(Grace, Australia). The media pH were adjusted to between 7 and 7.5 by adding 5 M 

KOH (Sigma-Aldrich). The media were then autoclaved at 121°C for 15 minutes and 

stored at room temperature until use. 

 

2.3. 2. Bacteria Isolation 

 

The consortium used in this study was isolated from both production water and the 

crude oil sample. SRB was isolated using Starkey broth,(89) while NRB was isolated 

using nitrate broth (Fluka®) supplemented with 5 mM sodium nitrate (NaNO3, 

Chem-Supply, 99%). Approximately 10% (v/v) production water sample and crude 

oil sample were aseptically inoculated into nitrate broth and Starkey broth in 50mL 

serum bottles containing 40 mL media in duplicate. The serum bottle cultures were 
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then incubated at 50ºC for one month. Every week, 1 mL of the samples was taken 

with a sterile syringe, and was grown in Thioglycollate agar in a Petri dish. The agar 

was supplemented with 5 mM NaNO3 (Chem-Supply, 99%) for NRB isolation and 

0.5 g/L FeSO4.7H2O + 0.5% lactic acid solution (C3H5NaO3, Fluka®) for SRB 

isolation. The Petri dishes were then incubated inside an anaerobic jar for three to 

seven days at 50°C. Gas PackTM EZ Anaerobe Container System (BD Scientific) was 

put inside the jar to remove all the oxygen and kept the system anaerobic. 

 

2.3.3 Bacterial Counting 

 

Both SRB and NRB were enumerated by a three-tube most probable number (MPN) 

procedure using 10-fold serial dilutions in selective media.(31, 90) SRB were 

enumerated in Postgate B media,(89) and NRB were enumerated in nitrate broth as 

described above. Both of the SRB and NRB cultures tubes were incubated for four 

weeks at 50°C. The SRB were scored positive when blackening occurred. The NRB 

were scored positive when the media colour change into red after the addition of five 

drops of sulfanilic acid solution and five drops of α-naphthylamine, as per 

manufacturer instructions. 

In addition to the MPN method, bacterial direct counting was performed using a 

Helber Counting Chamber Z30000 (Hawksley, UK). The bacteria in the counting 

chamber were observed under an Olympus Phase Contrast Microscope, at 400x 

magnification. The bacteria were counted in eight small squares from three randomly 

chosen big squares of the counting chamber (Figure 2.1).  

 
Figure 2.1 Helber counting chamber Z30000, red squares indicate randomly 
chosen areas for bacterial counting. 
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Each small square of the Helber counting chamber Z30000 has an area of 1/400 mm2 

and depth of 0.02 mm. This means each single square has the volume of: 

 

            
mLcmmmmmmmV 838352 10.510.510.502.0400

1  
 2.1 

 

The bacteria cell density can be calculated as follow: 

 

                                     Bacteria cell/mL = 810.5 N
x

 2.2 

 

Where x = number of bacteria counted in N square, N = number of squares observed. 

The standard deviation, Sx, was calculated to evaluate the precision of the counting. 
(90) 

 

Due to the fact that the MPN method is based on a Poisson distribution, the standard 

deviation is not defined. Instead, the confidence limits (95%) were calculated using 

Equation 2.3 based on a 10-fold dilution series.(90) 

n
MPN

conf eS
58.02)ln( 


 2.3 

Where n is the number of replicates. For the three tubes MPN, n = 3.(90) 

2.3.4 Inoculum Preparation 

 

The inoculums were prepared in the same media as the test solution, 10% (v/v) crude 

oil in production water. This was conducted in order to minimize the lag phase of the 

bacteria. The NRB inoculums media was supplemented with 5 mM NaNO3 and the 

SRB inoculums media was supplemented with 0.5% lactic acid. 
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2.4 MIC Experiment in Electrochemical Cell 
 

2.4.1 General Test Condition for Both UNS S31603 and ASTM A572-50 Carbon 

Steel 
 

All glass equipment, production water and crude oil were sterilized using an 

autoclave at 121ºC, 15 psi for 15 minutes. All tests were conducted using 700 mL 

production water +10% (v/v) crude oil as the electrolyte. These electrochemical 

experiments were conducted in a closed batch culture system without any 

water/nutrient renewal at 50ºC using 1 L electrochemical cells. There were four test 

condition evaluated in this study: (1) Control cell (no bacteria), (2) SRB inoculated 

cell, (3) NRB inoculated cell, and (4) Mixed bacteria (NRB+SRB) inoculated cell. 

The Control and the mixed bacteria (NRB+SRB) inoculated cells were supplemented 

with 5 mM NaNO3 and 0.5% lactic acid solution. The NRB inoculated cell was 

supplemented with 5 mM NaNO3, and the SRB inoculated cell was supplemented 

with 0.5% lactic acid solution. All experiments were performed in a three-electrode 

system: An Ag/AgCl reference electrode (RE), a platinum coated titanium mesh 

counter electrode (CE) and working electrodes (WE). Triplicate samples of WE 

mounted in resin were put in each cell to compare their electrochemical behaviour in 

exactly the same biochemical conditions. The cells were purged with filtered 

sterilized nitrogen to displace the oxygen and keep the oxygen level as low as 

possible. A condenser was fitted in the cell to prevent evaporation and maintain a 

constant level of the test solution throughout the immersion time. All connecting 

parts in the cells were covered with ParafilmTM to ensure the system was closed and 

as little oxygen as possible from the air could enter the cell. 

 

2.4.2 Long Term Immersion Test of UNS S31603 

 

An Ag/AgCl Reference Electrode (RE) was fitted in the cell using a Luggin 

capillary, which was filled with 1.2% agar/agar. The upper part of the Luggin was 

filled by 3 M KCl. The experiment was run over 28 days. 
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2.4.3 Long Term Immersion Test of ASTM A572-50 Carbon Steel 
 

Two additional steel samples were hung using a nylon string for weight loss 

measurements. An Ag/AgCl RE was fitted in the cell using a Luggin capillary.  The 

Luggin capillary was filled with production water. An O-ring was used to hold the 

RE in the Luggin capillary. The experiment was run over 21 days. 

 

2.4.4 General Test Monitoring for Both UNS S31603 and ASTM A572-50 

Carbon Steel during Immersion Time 

 

Periodic microbiological and electrochemical analyses were conducted during the 

immersion time. At each sample time the pH and oxygen level inside the cells were 

measured. Measurement of the pH was conducted using a Cole Palmer autoclavable 

pH electrode (John Morris Scientific Pty Ltd, Australia) which was connected to an 

Orion 5 Star pH meter (Thermo Fisher Scientific Pty Ltd, Australia). The oxygen 

level inside the cell was measured using an oxygen meter (Orbisphere, UK). 

 

2.5. Electrochemical Analysis 
 

2.5.1 Electrochemical Test for UNS S31603 

 

ECorr was measured every four hours with a Potentiostat 20 (ACM Instruments, UK) 

for 28 days. At the end of the experiment, two of the triplicate samples were 

polarized to measure the general corrosion rate and critical pitting potential (Ec) 

value. The general corrosion rate was estimated by LPR and the Ec was measured by 

CPS. Due to the fact that CPS is a destructive test, one of the samples was not 

polarized for biofilm and pit observation purposes. Both LPR and CPS were 

conducted using a Gamry DC105 (Gamry Instruments, USA).  LPR was conducted 

according to ASTM Standard G 59-97, Standard Test Method for conducting 

potentiodinamic polarization resistance measurement.(91) CPS was conducted 

according to ASTM Standard G-61, Standard test method for conducting cyclic 

potentiodynamic polarization measurement for localized corrosion susceptibility of 

iron-, nickel- or cobalt based alloys.(92) The potential was swept at a constant rate of 



Chapter 2 - Methodology 
 

 

 

24 

0.5 mV/sec and reversed upon attaining a potential apex of 1.5 V or a current density 

of 1.5 mA-cm-2. The scan was terminated at 0.1 mV with respect to the original Ecorr. 

LPR was conducted by applying ±0.5 mV overpotential in respect to ECorr, with a 

scan rate of 0.125 mV/s. 
 

Redox Potential (Eh) was measured at each bacterial sampling time using a platinum 

wire electrode against an Ag/AgCl reference electrode. The test was conducted 

according to the US Geological Survey Reduction-Oxidation Potential, version 1.2 

(9/2005).(72) Prior to use, the platinum electrode was cleaned with aqua regia solution 

(1 concentrated nitric acid : 3 concentrated hydrochloric acid) at 70ºC for one 

minutes and calibrated using Zobell’s solution.(72) 

 

2.5.2 Electrochemical Test for ASTM A572-50 Carbon Steel 
 

ECorr was measured every four hours with a Potentiostat 20 (ACM Instruments, UK) 

for 21 days. LPR and EIS were conducted to estimate corrosion rate every five days. 

LPR was conducted using a Gamry DC105 and EIS was conducted using a Gamry 

EIS300 (Gamry Instruments, USA).  LPR was conducted by applying ±0.5 mV 

overpotential in respect to ECorr, with a scan rate of 0.125 mV/s. EIS was conducted 

by applying a sinusoidal voltage signal of 10 mV in a frequency range of (10-2-104) 

Hz. LPR data was analysed using Echem Analyst computer software (Gamry 

Instruments, USA) and EIS data was analysed by ZSimWin computer software, 

version 2.0 (Princeton Applied Research, USA). The EIS results were fitted to the 

suitable circuit model and the charge transfer resistant (Rct) value obtained from the 

simulation results were used to calculate the corrosion rate according to ASTM 

standard G102-89.(93)  Redox Potential (Eh) was measured at each bacterial sampling 

time as explained in Section 2.4.1  

 

2.5.3 Weight Loss Measurement (ASTM A572-50 Carbon Steel). 

 

At the end of the experiment, the weight loss coupons were immersed in Milli-Q 

water in a separate glass beaker, and sonicated for 2 minutes to remove all attached 

debris. The coupons were dried at 70ºC for 15 minutes, cooled in desiccators for 15 
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minutes, and weighed. The coupons were then cleaned using Clarke’s solution for 10 

seconds, rinsed in Milli-Q water, dried and cooled as described above. This was 

repeated three times until a stable value was observed. The weight loss was then used 

to estimate the corrosion rate using ASTM Standard G1-03, Standard practise for 

preparing, cleaning and evaluating corrosion test specimens.(94) 

 

2.6 Production Water Analytical Analysis 

 

All analytical measurements were conducted based on APHA standard. Sulphate was 

analysed using a Thermo Scientific Aquakem 250 discrete analyser; sulphide in 

water was analysis by methylene blue colourimetric using Shimadzu UV Mini 1240 

spectrometer ; nitrate and nitrite expressed as nitrogen by FIA (APHA 4500NO3-I) 

(95) using Lachat QuikChem 8000 flow injection analyser. All measurement 

replications were conducted according to NATA accreditation no 8 as follows: the 

analytical analysis was run over 20 replications and duplicate readings taken for 

every tenth sample. Statistical analysis was conducted and resulted in approximately 

5% of Regression Point Displacement. 

 

2.7 Examination of Surface Film 

 

Corrosion products, NRB and SRB biofilm analysis on the steel surfaces was 

conducted using Scanning Electron Microscopy (SEM). Prior to observation, the 

biofilm was fixed by immersing the coupons overnight in 4% glutaraldehyde in 

phosphate buffer solution (PBS) at 4°C. The coupons were then soaked in a PBS for 

10 minutes, and dehydrated using serial dilution of ethanol (10%, 30%, 50%, 70%, 

90% and 100%), each for 10 minutes; the final step was repeated. The same 

procedure was also applied to the control corrosion coupons in order to check 

whether contamination had occurred. Afterwards the coupons were dried using 

nitrogen, coated with gold approximately 2 nm and placed in desiccators. Different 

accelerating voltages were used to examine different surface morphologies. It was 

demonstrated that when low accelerating voltage is used, greater surface morphology 

is revealed. Electron Disperse Spectroscopy (EDS) was conducted to observe the 

elemental analysis of the steel surface. The data obtained from the EDS were then 
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analysed using Inca computer software version 4.11 (Oxford Instrument Analytical 

Ltd). 

 

2.8 Steel Surface Analysis 

 

The changes in the steel surface were observed using a light microscope-Infinite 

Focus Microscope (IFM) (Alicona Instruments, Germany). The 2D surface profile, 

3D surface roughness, pit depth, and pit volume were analysed using the Alicona 

IFM computer software. 

 

Prior to the analysis, the steel was cleaned according to the ASTM standard G1-03, 

Standard practice for preparation, cleaning and evaluating corrosion test specimens, 

(94) to remove all corrosion product attached to the steel surface. In brief, the 

procedure was as follows. The UNS S31603 coupons were scrubbed using a sterile 

cotton bud and then soaked in Milli-Q water and sonicated for 5 minutes using an 

ultrasonic water bath. Then, the coupons were soaked in 50 mL nitric acid (sp gr 

1.42) for 20 minutes at 60°C. Later, the coupons were rinsed with Milli-Q water, 

soaked in Milli-Q water again, and sonicated for 5 minutes. Last, the coupons were 

degreased with ethanol and kept in desiccators until microscopic analysis was done. 

If the result of the microscopic analysis shows that there are still some corrosion 

products attached to the surface this cleaning process is repeated. The carbon steel 

coupons were cleaned with Clarke’s solution as described in Section 2.5.3. 
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CHAPTER 3: General Microbiology Results and Test Conditions 

 

3.1 Introduction 

 

This chapter will briefly discuss the microbiological results and also provide an 

introduction to the test conditions in Chapter 4 and Chapter 5. 

 

3.2 Bacteria Isolation and Characterization 

 

The bacteria isolation was conducted using selective media. Starkey broth was used 

for the isolation of lactate utilizing bacteria (Desulfotomaculum and 

Desulfovibrio).(89) The nitrate broth was used for the isolation of nitrate reducing 

bacteria.(89) The samples from both the inoculated broth media were then grown in 

agar media to isolate the bacteria as a single colony. Two NRB bacteria colony 

morphologies were observed in Thioglycollate agar supplemented with 5 mM 

NaNO3 after the samples were incubated in the nitrate broth for one month. One type 

has a flat round shape with an entire margin (NRB1); the second one has a flat 

irregular surface with lobate margin (NRB2) (Figure 3.1). Further testing was 

conducted to ensure that these bacteria were nitrate reducers. Each colony was taken 

by a sterile scalpel and regrown in nitrate broth inside serum bottle vials and flushed 

with nitrogen to keep the vials anaerobic. After three days of incubation, five drops 

of sulfanilic acid solution and five drops of α-naphthylamine solution were added to 

the broth, as per manufacturer instructions. It was revealed that only NRB1 were 

capable of reducing nitrate to nitrite, indicated by the changes of the media colour to 

pink after addition of sulfanilic acid and α-naphthylamine. These bacteria were 

observed to be gram variable, rod shape bacteria (Figure 3.3a). Additionally, further 

investigation revealed that the NRB were able to oxidize sulphide (Appendix 2). 

 

The SRB were unable to grow in Thioglycollate agar. In order to further investigate 

these bacteria characteristics, a sample was taken from the liquid media and gram 

staining was performed. It was revealed that the SRB obtained were gram negative, 

rod shape bacteria (Figure 3.3b). A further molecular method or biochemical tests 

was not employed to prove whether the NRB and SRB were pure culture or not. 
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Therefore, in this experiment, both bacteria are considered as consortia. Both of the 

NRB and SRB consortia are motile, as their movement was observed inside the 

counting chamber under a phase contrast microscope.  

 

 
Figure 3.1 Two different NRB colonies (red arrows) were observed on 
Thioglycollate agar supplemented with 5 mM NaNO3 
 

As mentioned earlier, in this study crude oil was used as the organic carbon needed 

for a microbe’s metabolism and it may also become a limiting factor due to toxic 

water-soluble hydrocarbon.(11) No other carbon source was added for the bacteria 

nutrient. It is evident that the bacteria (both NRB and SRB) were able to utilize the 

crude oil as oil droplets formed in between the crude oil phase and the water phase 

(Figure 3.4). Further investigation into hydrocarbon catabolism by bacteria were not 

conducted. However, the mechanistic stages of hydrocarbon catabolism by bacteria 

according to Ward et al.(96) will occur in the following order: sensing and taxis, 

substrate accession and uptake, and, if toxicity is an issue, efflux to maintain 

tolerable levels within cells. Additionally, it has been proven in numerous 

publications that some NRB and SRB are able to degrade different compounds of 

hydrocarbon.(96-100) 
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Figure 3.2 Light microscopy of gram stained (a) NRB, (b) SRB 

 

 
Figure 3.3 Oil droplets (red arrow) were observed in between the crude oil 
phase and production water phase after bacteria inoculation. 

 

3.3 General Test Condition 

 

This  study is   divided  into  two major sets  of experiments. The first is an 

evaluation  of nitrate injection impact on UNS S31603. The second is an evaluation 

of nitrate injection impact on carbon steel in pre-sour conditions. As mentioned 

earlier, crude oil was used in this experiment as the carbon source for bacteria. 

Furthermore, several authors(101-104) mention that the presence of crude oil will affect 

the corrosion behaviour of the steel. The oily phase may form a protective layer on 

the steel and inhibit corrosion. This happen because crude oil has a very low 

2µm 2µm 

a) b) 
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conductivity and a very low solubility of corrosion products(104) and hence inhibits 

the anodic partial reaction (iron dissolution).(101) The absorbed oil phase is also 

considered to facilitate the cathodic partial reaction as oxygen is more soluble in the 

oil phase.(101, 104) 

 

In order to achieve the prerequisite minimum level of oxygen inside the cells, all 

cells were purged with filter sterilized nitrogen for 3 hours before bacteria 

inoculation. A complete anaerobic condition was not able to be achieved because 

traces of oxygen were still observed throughout the test. However, the upper limit of 

the dissolved oxygen inside the cell will not exceed the value detected in the gas 

phase (Figure 3.4a and 3.4b). Therefore, it is postulated that the NRB and SRB 

isolated in this study are not strict anaerobic bacteria. Both bacteria could be either 

microaerophilic that are able to tolerate 2-10% oxygen exposure(105) or aerotolerant 

anaerobic bacteria.(105, 106) 

 

  
Figure 3.4 Oxygen level inside the electrochemical cell throughout immersion time for 
(a) UNS S31603 at 50°C for 28 days, (b) carbon steel, at 50°C for 21 days. ( ) control, 
( ) inoculated with SRB, ( ) inoculated with NRB, ( ) inoculated with mixed 
bacterial (NRB+SRB). 
 

The schematic figure of the electrochemical test design is shown in Figure 3.5. The 

temperature is maintained at 50±2°C by placing the electrochemical cells inside a 

water bath. 
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Figure 3.5 Electrochemical test design used to evaluate the impact of nitrate 
injection on UNS S31603 and carbon steel. 

 

3.4 Concluding Remarks 

 

Two different colonies of NRB bacteria were isolated from the crude oil and 

injection water samples, but only one was able to reduce nitrate. The SRB was only 

able to grow in liquid media but not in agar, therefore the bacteria colony 

morphology could not be observed. However, any further molecular methods or 

biochemical test was not employed because it is beyond the scope of this study. 

Therefore, no conclusion on the purity of the cultures obtained and also identification 

of the bacteria species could be drawn. Herein both bacteria are considered as 

consortia. Crude oil is taken into account in this experiment as it is an important 

carbon source for the bacteria in petroleum reservoirs and also because it may affect 

the corrosion behaviour of the steel. A complete anaerobic condition could not be 

achieved because traces of oxygen were still found. 
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CHAPTER 4: The Impact of Nitrate Injection on UNS S31603 
 

4.1 Introduction  

 

This chapter will discuss the impact of NRB, SRB and mixed bacteria (NRB+SRB) 

on UNS S31603 for long term exposure (28 days) in a corrosive biochemical mixture 

of production water and crude oil from field samples. Some short-term experiments 

(7 days) were also conducted to provide additional data.  

 

4.2 The Effect of Immersion Time on Sulphate, Nitrate, Nitrite and Levels 

 

  
Figure 4.1 Concentration of (a) sulphate, (b) nitrate, and (c) nitrite before and 
after immersion time. ( ) before immersion time,  ( ) after immersion time. 
Bars represent 5% RPD 
 

The introduction of 5 mM sodium nitrate (equal to approximately 170 mg/L active 

nitrate) can promote the growth of NRB. The sulphate in SRB inoculated cells 

decreased over the period of the experiment (Figure 4.1a), indicating sulphate 

reduction activity. In addition, after the first week of the experiment, H2S gas odour 

was detected from the SRB inoculated cell, and after two weeks, the brine water 

started to blacken (Appendix 1). The sulphate value did not change in the NRB 

680 690 680 680 690 

540 

0

150

300

450

600

750

Mix NRB SRB

co
nc

en
tra

tio
n 

(m
g/

L)
 

169.6 169.6 

76 

110 

0

50

100

150

200

Mix NRB

co
nc

en
tra

tio
n 

(m
g/

L)
 

0 0 

72 

17 

0

20

40

60

80

Mix NRB

co
nc

en
tra

tio
n 

(m
g/

L)
 

a) 

c) b) 



Chapter 4 – The Impact of Nitrate Injection on UNS S31603 
 

 

 

33 

inoculated cell and the mixed bacteria (NRB+SRB) inoculated cell (Figure 4.1a), 

indicating inhibition of sulphate reduction. Furthermore, the mixed bacteria 

inoculated cell did not suffer from blackening until the end of the experiment 

(Appendix 1). These observations are in agreement with SRB cell numbers in Figure 

4.2c that shows SRB growth is suppressed to below the detection limits. This 

confirms that with NRB present, sulphate reduction by SRB is inhibited. The nitrate 

level (figure 4.1b) in the NRB inoculated cell and mix bacteria inoculated cell shows 

a decrease, which indicates that the nitrate is consumed by the NRB. Nitrite 

production in the mix bacteria inoculated cell is higher than in the NRB inoculated 

cell (figure 4.1c). Nitrite, which is produced as an intermediate substance from 

nitrate reduction(107) is an inhibitor for sulphate reduction to sulphide which is 

catalysed by dissimilatory sulphite reductase (Dsr) of the SRB(18, 38). It is predicted 

that, in the presence of SRB, NRB will maintain nitrite as an intermediate substance 

rather than reducing it further to nitrogen gas. 

 

4.3 Bacteria Enumeration, pH and Redox Potential (Eh) 

 

Bacteria growth (Figure 4.2 a,b,c) was observed by the MPN method and also by 

direct counting. MPN may lead to an under estimation of the total numbers as non-

viable bacteria will not grow in the media, therefore bacterial direct counting was 

conducted as confirmation. The numbers of NRB in the NRB inoculated cell (Figure 

4.2a) increased slightly from test-initiation day until day three and then slightly 

decreased until day seven. From day seven, the NRB population was increasing until 

day 21 and decreased from this point forward. The SRB growth in the SRB 

inoculated cell (Figure 4.2b) was relatively stable in the first week, and then the 

numbers started to increase until day 10, after which the numbers declined rapidly. In 

the cell inoculated with the mixture of NRB and SRB, it was demonstrated that, the 

SRB population was suppressed below the detection limit (<0.03) by the NRB, show 

in Figure 4.2c. This is confirmed by the fact that when the NRB population started to 

decline, the SRB started to re-grow (Figure 4.2c). 

 

The pH of the crude oil/brine solution (Figure 4.3a) in the control cell slightly 

decreased from test initiation until day 15 and then remained stable until day 28. This 
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could be due to the lactate added to the cell. The pH in the NRB inoculated cell 

fluctuated in near neutral conditions (pH about 7.5) from test initiation until day 15. 

The pH then decreased and reached the lowest value of 6.5 on day 21, followed by 

an increase. For the mixed bacteria inoculated cell, the pH increased from test 

initiation and reached the highest value of eight on day five, then decreased. The pH 

in SRB inoculated cells was slightly increased on test initiation until day three, 

followed by a decrease until day five and an increase afterwards. 

   

 

Figure 4.2 Bacterial populations throughout immersion time at 50°C for 28 
days: (a) NRB inoculated cell, (b) SRB inoculated cell, (c) mixed bacteria 
(NRB+SRB) inoculated cell. ( ) total bacterial direct counting, ( ) MPN for 
SRB, ( ) MPN for NRB 
 

Eh shows the oxidative power of a solution. At the beginning of the experiment, all 

cells showed decreasing values of Eh (Figure 4.3b) because of the decrease in oxygen 

concentration as the cell was purged with nitrogen. All test cells showed positive 

values of Eh throughout the test with the SRB inoculated cell being an exception. 

 

The Eh for the control cell and the NRB inoculated cell fluctuated in a range between 

150 to 270 mV. This might be due to traces of oxygen in the cells (Figure 3.4a and 

3.4b) and the nitrogen gas tubing was blocked by some salt on a few occasions, 
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allowing traces of oxygen to enter the cell. Therefore, the tubing was changed. After 

the first week, the Eh in the mixed bacteria inoculated cell was quite stable in the 

range between 100 and 140 mV. It is postulated that this is due to the fact that NRB 

prevented sulphate reduction and maintained nitrite at high levels, thus maintaining 

Eh at a positive value.(28) The Eh in the SRB inoculated cell decreased rapidly after 

the second week, and showed a negative value until the end of the immersion time. 

This could be due to the activity of SRB and further production of biogenic 

sulphide.(22) Eh is an important parameter to observe SRB growth because of the SRB 

prerequisite of -100 mV to start its growth.(18, 28, 31) 

 

  

Figure 4.3 (a) pH and (b) redox potential changes during immersion time at 
50°C for 30 days. ( ) control, ( ) SRB inoculated, ( ) NRB inoculated, ( ) 
mixed bacteria (NRB+SRB) inoculated. 
 

4.4 The Effect of Immersion Time on Corrosion Potential (Ecorr) of UNS S31603 

 

The behaviour of Ecorr transient of UNS S31603 during the corrosion test in corrosive 

production water +10% (v/v) crude oil for 28 days is shown in Figure 4.4. The Ecorr 

started at different values for all the coupons in the four cells. The initial Ecorr value 

from the lowest to the highest in sequence was: -323±1 mV (SRB), -313±50 mV 

(NRB), -247±9 mV (mixed bacteria), -222±17 mV (control). The final Ecorr value 

from the lowest to the highest in sequence was: -436±48 mV (SRB), -331±51 mV 

(NRB), -228±23 mV (mixed bacteria), -172±43 mV (control). 

 

Figure 4.4 shows the variation of ECorr as a function of time for all the samples under 

four different conditions. Data presented are average data from a triplicate sample 
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and the bar shows the standard deviation. An Increase Ecorr or ennoblement, increases 

the corrosion risk of stainless steel by elevating Ecorr towards the steel pitting 

potential.(108) 

 

 

 

 

 

 

 

 

 

 
Figure 4.4 Open circuit potential (Ecorr) as a function of time for UNS S31603 
during immersion in production water +10 (v/v) crude oil at 50°C for 28 days. 
Data is based on the average of three samples with a standard deviation bar. 
 

The Ecorr for corrosion coupons in the control cell increased rapidly. The 

ennoblement for corrosion coupons in the control cell lasted for 11 days, and then the 

Ecorr remained stable for four days; this may be attributed to the formation of a stable 

passive layer.(109, 110) A noticeable Ecorr decrease of approximately 81 mV was noted 

from day 15 to day 17. This may indicate a weakening of steel passivity or surface 

activation,(109) which led to pit growth on the surface. This was proven by a 

distinguishable pit which was observed on the non-polarized sample after the 

termination of the test (Figure 4.14a).  From this point forward, the Ecorr shifted again 

towards a positive potential, reached a peak on day 18 and decreased again until day 

22. Thereafter, the Ecorr rapidly increased again until day 28.  

 

Ennoblement happened on the corrosion coupons in the SRB inoculated cell from 

test initiation until day five of exposure, with two spikes noted at 19 hours and 60 

hours of exposure. Thereafter, Ecorr decreased until day 16, followed by an increase 

of 50 mV and remained relatively stable until day 27. However, some spikes were 

noted as the potential increased for a short time on days 23 and 24. On days 27 and 

28 a decrease in the Ecorr of approximately 50 mV was noted. It is postulated that the 
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spikes found were attributed to the formation of small pits and this was confirmed by 

the surface analysis on the non-polarized sample after the termination of the test 

(figure 4.14c). 

 

Fluctuations in the Ecorr of the corrosion coupons in the NRB inoculated cell and in 

the mixed bacteria inoculated cell were observed. However, these fluctuations are not 

significant as they are still within the range of 50 mV. Additionally, no pits were 

found in both non-polarized corrosion coupons of the inoculated cell as well as in the 

mixed bacteria inoculated after the termination of the test (Figure 4.14b and 4.14d) 

 

Ennoblement of corrosion coupons in the SRB inoculated cell may take place 

because of bacteria colonization on the steel surface.(111, 112) This is demonstrated by 

the SEM observation at the end of the experiment (Figure 4.12a-c). Other 

possibilities that may cause steel ennoblement are: (1) enzymes production by 

bacteria(112-114); (2) the changes of the cathodic properties of the stainless steel as a 

result of microbial activity on the surface,(112); (3) the decrease of passive current 

density due to biofilm formation on the surface,(112, 114); (4) production of inhibitors 

by bacteria that are retained in the biofilm matrix,(112); (5) reduction of the chloride 

concentration at the surface that is covered by the biofilm.(112) 

 

Ennoblement of the corrosion coupon in the control cell, might have taken place 

because of: (1) incongruent dissolution of the alloy, or as the result of corrosion 

progress. A simple explanation of the corrosion progress is that the formation of a 

corrosion product deposit may polarize, that is increase the overpotential, for the 

anodic reaction(115); (2) the difference in the semi-conductive properties of the 

passive film(114); (3) the changes of the production water composition after autoclave 

sterilization. As mentioned earlier in Section 2.2, reservoir breakthrough was 

observed in the field as indicated by high level of sulphate and chloride. Therefore, 

the production water is almost similar to seawater. Some authors mentioned that 

autoclaving drives CO2 out of the seawater, causing a shift in the carbonate buffer 

system(116) and may cause precipitation.(117, 118) However, autoclave is still the most 

reliable method for killing bacteria, bacteriophages and bdellovibrios.(118)  
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It was demonstrated that the Ecorr varied for each cell. Interestingly, the Ecorr of 

corrosion coupons in the control cell showed a more positive value compared to the 

corrosion coupons in the bacteria inoculated cell throughout the experiment. The 

graphs for all experiments are not smooth as some small fluctuations were noted. 

This could be attributed to oxygen penetration as shown by the traces of oxygen 

found inside the cells (Table 3.4). Oxygen may have diffused inside the cells when 

the samples were taken for bacterial counting. As mentioned earlier, it was observed 

that there was some salt plugged into the nitrogen tubing a few days after the 

experiment began. This may also have contributed to the disruption of nitrogen 

circulation in the cells. 

 

4.5 Cyclic Polarization Scan (CPS) 

 

At the end of the experiment, CPS was conducted on two of the triplicate samples. 

CPS curves for the coupons immersed for four weeks were compared with the CPS 

curves obtained from the non-exposed coupons (standard). These corrosion coupons 

were allowed to stabilize in the Ecorr for one hour before the CPS was conducted.  

 

As explained above (Section 1.8), CPS offers a qualitatively reasonable prediction of 

the propensity of a passivating alloy to suffer from localized corrosion.(73-75) 

However, in reality, the curve obtained will normally be far from the ideal curve in 

Figure 1.5. The CPS curves obtained from the corrosion coupons after long-term 

immersion in four different conditions and the standard coupon are shown in Figures 

4.5 and 4.6. The key values of the curves are shown in Tables 4.1 and 4.2 

 

4.5.1 Features Useful in the Interpretation of CPS Curve 

 

4.5.1.1 Hysteresis 

 

It can be seen that all the reverse scans of all the corrosion coupons in the four 

different conditions, and also the standard coupons, show negative hysteresis as the 

reverse scans go to the right of the CPS curve (Figure 4.5 and Figure 4.6). This 

means localized corrosion may occur. The size of the loop itself is often related to 
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the amount of pitting: the larger the loop, the higher the surface damage when pitting 

occurs.(73) The order of the size of the hysteresis loop after four weeks of immersion 

time (Figure 4.5 and Figure 4.6) can be summarized in the following order: SRB> 

control > mixed bacteria> standard> NRB. 

 

 

 

 

 

 

 

 

 

Figure 4.5 Cyclic polarization scan (CPS) results of standard corrosion coupon 
and corrosion coupons in control cell after four weeks of immersion time in 
production water +10% crude oil at 50°C. All hysteresis loops are negative 
which indicates localised corrosion may occur. 

 

 
Figure 4.6 Cyclic polarization scan (CPS) results of corrosion coupons in 
bacteria inoculated cells after four weeks of immersion time in production water 
+10% crude oil at 50°C. The purple arrow shows metastable pitting on 
corrosion coupons in SRB inoculated cell. The green arrow shows an example of 
typical two Ec value obtained in the CPS curves. All hysteresis are negative, 
which indicates localised corrosion may occur. 
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4.5.1.2 Critical Pitting Potential (Ec) 

 

The order of the Ec values after four weeks of immersion time (Table 4.1 & Table 

4.2) can be summarized in the following order: SRB > control > standard > mixed 

bacteria > NRB. One important highlight from these results is the NRB decrease the 

in Ec value to a greater extent compared with other conditions. Additional 

experiments were conducted in the same manner for the NRB inoculated cell, the 

mixed bacteria (NRB+SRB) inoculated cell and the control cell for one week of 

immersion time. Surprisingly, the Ec results (figure 4.6) change in the following 

order: mixed bacteria> standard > NRB > control. It is necessary to stress that the 

aim of this study is to evaluate the NRB impact on corrosion of UNS S31603. 

Therefore, evaluation of SRB impact on corrosion of UNS S31603 is not the main 

focus and is not put under scrutiny.  

 

Table 4.1 Key summary value used to interpret cyclic polarization scan results 
(Figure 4.5). Results were obtained from duplicate samples. Scan rate used for 
both forward and reverse scans was 0.5 mV/s against the Ag/AgCl Reference 
Electrode 

 
 

Coupons ID Standard Control 
time 

parameter 
 1 week 4 weeks 

Ec (mV) 305 ± 16 266 ± 35 360 ± 37 
Er (mV) -180 ± 64 > -196 -273 ± 8 

 
Table 4.2 Key summary value used to interpret cyclic polarization results 
(Figure 4.6). Results were obtained from duplicate samples. Scan rate used for 
both forward and reverse scans was 0.5 mV/s against the Ag/AgCl Reference 
Electrode 
 

 

Coupons ID NRB Mixed SRB 
time 

 
parameter 

1 week 4 weeks 1 week 4 weeks 1 week 4 weeks 

Ec (mV) 297 ± 43 117± 12 398  ±  49 281 ± 9 - 367± 68 
Er (mV) -259  ± 10 -257 ± 4 -134 ± 35 -224 ± 39 - -282± 20 

The conclusions that can be drawn from these Ec results, as illustrated in Figure 4.8 

are: (1) the UNS S31603 steel passivity increased with longer exposure time, as 

shown by the increasing Ec value; (2) the UNS S31603 steel passivity decreased with 
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longer exposure time in both the NRB inoculated cell and the mixed bacteria 

(NRB+SRB) inoculated cell, as shown by the decreasing Ec value; (3) it is postulated 

that in this particular corrosive environment, bacteria, in this case the NRB and the 

mixed bacteria (NRB+SRB), may offer a beneficial protection for a short period of 

time, but with longer exposure time it may have detrimental effects. To test this 

prediction, a steel surface analysis was conducted by SEM, and thus revealed that, 

after four weeks, the biofilm grew into a mature biofilm and formed patchy colonies 

on the steel surfaces (Figure 4.11a and Figure 4.13a). 

 

 
Figure 4.7 Cyclic polarization results of corrosion coupons in bacteria 
inoculated cells and control cell after one week of immersion time in production 
water +10% crude oil at 50°C. All hysteresis are negative which indicates 
localised corrosion may occur. 
 

 
 

Figure 4.8 Summary of the critical pitting potential changes after corrosion 
coupons were immersed for one week and four weeks in production water and 
10% (v/v) crude oil at 50°C. (  ) control,  (  ) NRB inoculated, (  ) mixed 
bacteria (NRB+SRB) inoculated 
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One crucial point to mention is that the changes in Ec may be influenced by the 

presence of biofilm on the steel surface or bacterial metabolite in the water chemistry 

environment. As mentioned above (Section 1.5), microbes, in this particular case 

bacteria, have the propensity to attach to surfaces. Once they attach to steel surfaces 

they will proliferate, produce EPS and grow into mature biofilm (Figure 4.11a-c, 

Figure 4.12c and Figure 4.13a-c). The bacteria metabolite scrutinized in this study is 

nitrite, as it has been known as both an oxidizing agent and corrosion inhibitor.(18, 39) 

Insufficient amounts of nitrite promote corrosion, but nitrite serve as a corrosion 

inhibitor at sufficient concentrations.(18) Generally, the effect of nitrite on corrosion is 

a function of its availability and lower concentrations of nitrite have been found to 

increase the corrosion rate.(39) It can be inferred from Figure 4.1c that the nitrite level 

when the CPS test was conducted was 72 mg/L for the four week mixed bacteria 

culture and 17 mg/L for the four week NRB culture.  Additional measurements were 

also conducted to check the nitrite levels of the one week samples. The nitrite level 

was 83 mg/L for the one week mixed bacteria culture and was 1.8 mg/L for the one 

week NRB culture. The fact that the nitrite level for the NRB inoculated cell was 

always lower than the mixed bacteria inoculated cell is in agreement with the Ec 

values obtained; the Ec value for the corrosion coupon in the NRB inoculated cell 

was always lower than the mixed bacteria inoculated cell for the same exposure time. 

However, it is also noticeable that in the one week NRB inoculated cell where the 

nitrite value is as low as 1.8 mg/L, the Ec is higher than the four week mixed bacteria 

inoculated cell (Table 4.2) that contains 72 mg/L nitrite. Therefore, it is deduced that 

the Ec was not influenced by the nitrite concentration alone, but also influenced by 

the biofilm that was attached to the steel surface. This confirms the earlier prediction 

that the biofilm may have detrimental effects in longer exposure times. 

 

Another important point to mention is that some materials show two pitting 

potentials, which can be distinguished from the curves. Figure 4.6 shows an example 

of this phenomenon (the two pitting potentials shown by green arrows). Raetzer-

Scheibe et al.,(78) who also observed this phenomena, proposed that this may happen 

when pitting occurs at the grain boundary regions of the alloy. 
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4.5.1.3 Metastable Pitting 

 

In the CPS curve of the corrosion coupon in the SRB inoculated cell after four weeks 

of immersion time, metastable pitting was observed at a potential of aprroximately -

190 mV. Starosvetsky et al.(119) suggest that metastable pitting passivation in a 

solution containing sulphide is due to ferrous sulphide precipitation, and thus the rate 

of current increase is restrained. This was evident in the microscopic observation 

results on the sample that was not polarized, where some micro pits are observed 

(Figure 4.16a, 4.16b). Additionally, sulphide presence is also evident by the 

blackening of the brine solution (Appendix 1). 

 

4.5.1.4 Repassivation Potential (Er) 

 

As seen in Tables 1 and 2, the Er of the standard corrosion coupon is higher than the 

Er of the corrosion coupons in the control cell and in the bacteria inoculated cells, 

except for the one week mixed bacteria inoculated cell. However, the Er of the mixed 

bacteria corrosion coupons after four weeks of immersion show a lower value 

compared to the standard corrosion coupons. It is also noted that with longer 

immersion time, the Er show a decreasing value, except for corrosion coupons in the 

NRB inoculated cell which show a relatively stable value after one week and four 

weeks of immersion time. From these results it can be concluded that Er decreases 

(becomes more active) after exposure in a corrosive environment or the ability of the 

steel to repassivate after pit forms has been reduced with longer exposure time in a 

corrosive environment. Other researchers noted that Er measurements for stainless 

steel were related only to the conditions necessary to repassivate a growing pit after a 

specific period of pit propagation (dependent on the extent of pit growth).(64, 76, 120) 

This also means that the Er was dependent of the change in Ec value. Another 

important point that has to be kept in mind is that the lower potential of the Er means 

a poorer repassivation ability and its crevice susceptibility may be high.(76) 
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4.5.2 Additional Information from CPS Results 

 

It is important to mention, that in this experiment, the determination of the Ec and Er 

resulted in quite highly scattered results. However, other researchers also found 

similar phenomena with highly scatter results from several samples of the same 

materials.(76, 77) Some authors mention that this dispersion is not due to measurement 

error but to the mechanism of localized corrosion. This high level of dispersion value 

is attributed either to random probabilistic phenomena or to instability and 

deterministic chaos.(76) Additionally, the crude oil may not have formed a uniform 

layer on the steel surfaces. 

 

4.6. Linear Polarization Resistance (LPR) 
 

 
Figure 4.9 Time dependence of Rp obtained from Linear Polarization 
Resistance. Scan rate used was 0.125mV/s against Ag/AgCl reference electrode. 
Data presented are average from duplicate samples and the bar represents 
actual value 
 

To confirm general corrosion rates, LPR was conducted with a low overpotential (5 

mV) in order not to destroy the material. The Rp is inversely proportional to 

corrosion rate, the decrease in Rp reflects the increase in corrosion rate as described 

in Equation 1.1.(93, 121) It can be deduced from Figure 4.9, that there is not much 

change in corrosion rate of standard and control corrosion coupons. There is a slight 

decrease of corrosion rate in mixed bacteria (NRB+SRB) and NRB inoculated cells. 

The high corrosion rate in the standard and control samples could be induced by the 

high chloride content of the brine (approximately 21000 mg/L). Little et al.(114) 
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mention that chloride must be present in a concentration at least comparable to that 

of all other anions otherwise corrosion is inhibited. The lower corrosion rate value of 

the corrosion coupons in the bacteria inoculated cells may be related to balance of 

the anion presence in the brine due to bacteria metabolism such as formation of 

nitrite, organic acid (e.g. acetate); or by biofilm formation. Additionally, 

Mansfeld(112) also mentions that corrosion inhibition by biofilm formation has been 

observed for different materials exposed to corrosive environments. An important 

point to be considered is how long the bacteria biofilm can eventually inhibit 

corrosion before it starts inducing localized corrosion. 

 

The corrosion rate for corrosion coupons in the SRB inoculated cell is higher than 

the corrosion coupons in the NRB inoculated cell, the corrosion coupons in the 

mixed bacteria (NRB+SRB) inoculated cell and also the corrosion coupons in the 

control cell. This may be due to the presence of the metastable pits on the surface. 

Therefore, based on CPS and LPR results, it can be concluded that, in terms of 

localized corrosion, the presence of NRB is worse than SRB, but not in terms of the 

general corrosion rate. 

 

4.7 Film Surface Analysis on UNS S31603 Coupons by SEM and EDS 

 
4.7.1 Representative Corrosion Coupons in the Control Cell 

 

SEM was carried out to validate the corrosion products formation and the adhesion 

of bacteria on the steel surface. EDS was also conducted to verify the corrosion 

product and the bacterial biofilm on the steel surface. Figure 4.10 shows the 

representative SEM images and EDS spectra of the corrosion coupons from the 

control cell after 28 days of immersion in corrosive production water +10% (v/v) 

crude oil. Figure 4.10a shows tiny, round crystals of corrosion products covering the 

steel surface (red arrows) while Figure 4.10b shows a solid spongy film formed on 

the steel surface. EDS analysis shows that this spongy film consists mainly of iron 

(Fe), carbon (C), nickel (Ni) and oxygen (O), and weak signals of silica (Si) and 

sulphur (S). The area inside this layer shows the same results, but with a higher Fe 

and Cr peak and extra weak signals of phosphate (P) and chloride (Cl). However, 

further study on the type of films formed on the surfaces was not conducted. The 
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existence of S and Cl peaks strengthen our earlier prediction (Section 4.6) that 

corrosion attack took place in this particular corrosive brine. Nevertheless, no 

distinguishable pit could be found when the samples were observed under SEM. 

 

  

  
Figure 4.10 Representative SEM images of a corrosion coupon in the control cell 
after 28 days of immersion time in production water +10% (v/v) crude oil. (a) 
steel surface morphology, some small particles of corrosion products were found 
on the surface, no distinguishable pit can be observed (b) a film was observed on 
steel surface (c,d) EDS spectra from representative corrosion products layer in 
two different spots 
 

4.7.2 Representative Corrosion Coupons in the NRB Inoculated Cell 

 

Figure 4.11a shows patchy colonies of bacteria forming biofilm on a steel surface 

(red arrows) and some bacteria were also found to start proliferating and forming a 

colony on the steel surface (yellow arrow). Additionally, a bacteria colony forming a 

biofilm and embedded with corrosion products can also be seen (blue arrow). Figure 

4.11a and figure 4.11b were taken using 5 kV accelerating voltage, so that small 

round crystals of corrosion products can be seen uniformly covering the steel surface.  
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Figure 4.11 Representative SEM images of a corrosion coupon in the NRB 
inoculated cell after 28 days of immersion time in production water +10% (v/v) 
crude oil. (a) most of the bacteria formed patchy bacterial colonies on steel 
surfaces (red arrow), bacteria colonies embedded with corrosion product (blue 
arrow) and bacteria started proliferate and form a colony (yellow arrow); (b) 
bacteria colony and small particles of corrosion products can be observed on the 
steel surface, picture was taken with 5 kV to get more surface morphology; (c) 
bacteria colony on steel surface, picture was taken with 15 kV to get EDS 
spectra from three different spots; (d,e) EDS spectra from bacteria biofilm; (f) 
EDS spectra from steel surface. 
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Figure 4.11c shows mature bacteria biofilm, which was taken using 15kV 

accelerating voltage, and EDS spectra were taken in three different spots (as shown 

by the green arrow). The EDS spectra A that was taken on the biofilm shows only a 

C peak (Figure 4.11d). The EDS spectrum B that was also taken on the biofilm 

shows Fe, Cr and O peaks in addition to the C peak. This means that some corrosion 

products were embedded in the biofilm. The EDS spectra C that was taken in the 

steel area near the biofilm, does not show any O peak. This means no oxide layer 

formed on the area near the biofilm, or that the oxide layer may have been broken by 

the biofilm. 

 

4.7.3 Representative Corrosion Coupons in the SRB Inoculated Cell 

 

Figure 4.12a shows that, in a SRB inoculated cell, most of the bacteria attached and 

spreading as a single cell on the steel surface; however, some bacteria biofilm also 

found (Figure 4.12c). Figure 4.12b shows bacterium starting to produce EPS. The 

EDS spectrum A reveals that some corrosion products embedded in the biofilm. In 

the EDS spectrum B, there is a weak peak of sulphur (S) in addition to other typical 

stainless steel components (Fe, Cr, Mn, Ni, Si). This indicates a very thin ferrous 

sulphide film formed on the surface. EDS spectrum C shows a strong peak of S, and 

also there are barium (Ba), calcium (Ca), phosphorous (P) and O peaks in addition to 

other typical stainless steel components. This may indicate some corrosion products 

and also some inorganic precipitation (e.g. BaSO4) 
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Figure 4.12 Representative SEM images of a corrosion coupon in the SRB 
inoculated cell after 28 days of immersion time in production water +10% (v/v) 
crude oil. (a) most of the bacteria were found as a single cell spreading on the 
steel surface on steel surfaces (red arrow); (b) bacteria start producing EPS 
(blue arrow); (c) mature bacteria biofilm on steel surface; (d) EDS spectra from 
bacteria biofilm; (e) EDS spectra from steel surface; (f) EDS spectra from 
corrosion products 
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4.7.4 Representative Corrosion Coupon in Mixed Bacteria (NRB+SRB) 

Inoculated Cell 

  

 
 

 
 

 
 

Figure 4.13 Representative SEM images of a corrosion coupon in the mixed 
bacteria (NRB+SRB) inoculated cell after 28 days of immersion time in 
production water +10% (v/v) crude oil. (a) patchy bacteria colonies on the steel 
surface (red arrow); (b) bacteria cell entrapped inside EPS (blue arrow); (c) 
bacteria biofilm on steel surface; (d) EDS spectra from bacteria biofilm; (e) 
EDS spectra from steel surface 
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The SEM reveals that the bacteria formed patchy colonies on a steel surface (Figure 

4.13a). When low accelerating voltage was used (5 kV), the corrosion products can 

be seen on the surface (Figures 4.13a and 4.13b). It can be seen that the bacteria cells 

are hidden underneath the EPS (Figures 4.13 b and 4. 13c) as indicated by the blue 

arrow. EDS spectra was taken at two different spots. Spectrum A, which was taken 

on the biofilm, shows a strong C peak and weak Fe peak. This indicated some 

corrosion products embedded inside the biofilm. Spectrum B, which was taken on 

the steel surface, shows typical stainless steel components and an extra weak S peak. 

This may indicate a very thin ferrous sulphide film. 

 

4.8 Steel Surface Analysis by Light Microscopy 
 

4.8.1 Steel Surface Analysis of Non-polarized Corrosion Coupons after 

Corrosion Products Removal 
 

Steel surface morphology was performed on corrosion coupons that were not 

polarized (Figure 4.14a-d) to observe pit formation after immersion in the corrosive 

biochemical solution. One distinguishable pit (Figure 14.4a) was found on the 

control corrosion coupon. This pit was easily observed, even when low magnification 

was used (5x). This is not surprising as based on Ecorr observation in Section 4.4, 

there is a fairly large potential decease from day 15 until day 17. The 3D observation 

was performed on the pit to characterize it (Figure 4.15a-c). It was revealed that the 

pit has a volume of 25,541 µm3 (Figure 4.15a) and a pit depth of 43.51 µm (Figure 

4.15b,c). When higher magnification is used (50x) some micro pits are observed on 

the corrosion coupons from the SRB inoculated cell. The 3D observation was 

performed to characterize these micro pits. Some representative micro pits are shown 

in figure 4.16a-b. The smallest pit found has a pit volume of 94.78 µm3 and a pit 

depth of 1.47 µm; and the biggest pit found has a pit volume of 381.73 µm3 and 

depth of 3.58 µm. 
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Figure 4.14 2D images of non-polarized corrosion coupons surface morphology 
after 28 days immersion (a) control, (b) NRB inoculated, (c) SRB inoculated, (d) 
mixed bacteria inoculated. Red arrow shows a pit which formed on the steel. 
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Pit depth: 43.51 µm  
Pit volume: 25,541 µm3 
 
Figure 4.15 Pit morphology of a corrosion coupon in control cell (a) 3D picture 
of pit volume, (b) pit surface morphology, (c) 3D pit depth measurement 
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Pit depth: 1.47 µm 
Pit volume: 94.78 µm3 

 

 
Pit depth: 1.82 µm                                          Pit depth: 3.58 µm 
Pit volume: 176.35 µm3                                 Pit volume: 381.73 µm3 
 

Figure 4.16 (a,b) Representative micro pits from a corrosion coupon in the SRB 
inoculated cell 
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4.8.2 Steel Surface Analysis of the Polarized Corrosion Coupons after Corrosion 

Products Removal 

 

  
 

 

 

 
Figure 4.17 2D images of corrosion coupons surface morphology after cyclic 
polarization (CPS) was conducted: (a) control; (b) NRB inoculated; (c) SRB 
inoculated; (d) mixed bacteria (NRB+SRB) inoculated. Red arrows show pits 
which formed on the steel. 
 

In order to observe surface damage after the sample was polarized during the CPS 

test, 2D observation was performed on the steel surface using a light microscope 

(Figure 4.17). It can be seen that the most severe surface damage happened on the 

SRB corrosion coupon, followed by the control corrosion coupon, mixed bacteria 

(NRB+SRB) corrosion coupon and NRB corrosion coupon. This result is in 

agreement with the CPS hysteresis results in Section 4.5.1.1.  
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4.9 Concluding Remarks 

 

The following conclusions can be made based on the results found: 

 Addition of nitrate can stimulate the growth of NRB and impose a strong 

inhibition effect on the activity of SRB, thus eliminating biogenic sulphide 

formation or H2S gas production.  

 Bacteria metabolites and biofilm influences the passivity behaviour of UNS 

S31603, as they change both the critical pitting potential and repassivation 

potential of the steel. 

 NRB decreases the critical pitting potential to a greater extent than SRB; 

hence, increasing the risk of localised corrosion. This may be due to the 

formation of patchy bacterial biofilm on the steel surface, thus weakening the 

formation of a homogenous passive film on the steel surface. Additionally, 

NRB consumption of nitrate may also increase the risk of localised corrosion 

as nitrate is generally known as a corrosion inhibitor. 

 It is revealed from the mixed bacteria culture cell that, in the presence of 

SRB, NRB does not grow aggressively; hence, the critical pitting potential 

can still be maintained at a “safe” level.  

 It is also noted that the general corrosion rate of the coupon in the SRB 

inoculated cell is higher than the general corrosion rate of the coupon in the 

NRB inoculated cell.  

 In this particular corrosive biochemical environment (high chloride and 

sulphate levels), NRB, SRB and mixed bacteria (NRB+ SRB), give beneficial 

protection to UNS S31603 for a short time.  

 The underlying principle of nitrate injection cannot be predicted easily, and 

has to be studied on a case by case basis. Further work is required to 

understand the biological materials that were produced by NRB, especially in 

the presence of other bacteria, which in reality may not only be SRB. 
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CHAPTER 5: The Impact of Nitrate Injection on ASTM A572-50 Carbon Steel 

 

5.1 Introduction 

 

This chapter will discuss the impact of NRB, SRB and mixed bacteria (NRB+SRB) 

on carbon steel material after a long term exposure (21 days) in a corrosive 

biochemical mixture of production water and crude oil from field samples. The 

mixed bacteria cell was pre-soured by biogenic sulphide from the SRB inoculated 

solution. This pre-soured condition was chosen as carbon steel is, in reality, widely 

used as a construction material for pipeline. Therefore, it is most likely that sulphides 

are present in the reservoir with souring problems. 

 

5.2 The Effect of Immersion Time on Sulphate, Sulphide Nitrate, and Nitrite 

Levels 

  

  
Figure 5.1 Concentration of (a) sulphate, (b) sulphide, (c) nitrate and (d) nitrite 
before and after immersion. ( ) before immersion, ( ) after immersion time. 
Bars represent 5% RPD. 
 

A significant decrease of the sulphate level was observed inside the SRB inoculated 

cell, but no significant decrease was observed in the mixed bacteria inoculated cell 
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(Figure 5.1a). In this study, it is demonstrated that the NRB is able to oxidize the pre-

existing sulphide (Figure 5.1b). The nitrate level (Figure 5.1c) in the NRB inoculated 

cell and mixed bacteria inoculated cell show a decreasing level, which indicates that 

the nitrate is consumed by the NRB. Nitrite production in the mixed bacteria 

inoculated cell is higher than in the NRB inoculated cell (Figure 5.1d). This result is 

in agreement with the previous experiment (Section 4.1), which shows that in the 

presence of SRB, NRB maintains nitrate as an intermediate substance rather than 

being completely reduced into nitrogen gas. 

 

5.2 Bacterial Enumeration, Redox Potential (Eh) and pH   

 
 

 

 

Figure 5.2 Bacterial population throughout immersion time at 50°C for 28 days: 
(a) NRB inoculated cell, (b) SRB inoculated cell, (c) mixed bacteria (NRB+SRB) 
inoculated cell. ( ) – total bacterial direct counting, ( ) – MPN for SRB, (  ) – 
MPN for NRB 
 

Bacterial growth was measured using the MPN and also by direct counting. As 

mentioned above (Section 4.2) MPN may lead to an under estimate of the numbers, 

therefore, bacterial direct counting was conducted as confirmation. There isn’t much 
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variation of the bacteria growth and pH results obtained from both materials studied, 

the ASTM-A572-50 carbon steel compared to UNS S31603 (see Section 4.2 for 

details). 

 

The growth of NRB in the NRB inoculated cell (Figure 5.2a) increased during the 

first week and then started to decline. The growth of SRB in the SRB inoculated cell 

(Figure 5.2b) was stable in the first week, increased at day seven and declined after 

day 10. In the mixed bacteria inoculated cells, it could be seen that, in the presence of 

NRB, the SRB population was suppressed. Although SRB was still detected in at a 

low level (in the order of one magnitude), the desired effect, removal of sulphide was 

achieved (Figure 5.1b). Additionally, when the NRB population declined it could be 

seen that SRB started to re-grow (Figure 5.2c). 

 

  
Figure 5.3 (a)  pH and (b) redox potential during immersion at 50°C for 21 
days.     (  ) – control, (  ) – inoculated with SRB, (  ) – inoculated with NRB, 
(  ) - inoculated with mixed bacteria (NRB+SRB). 
 

The pH of the production water/crude oil for all cells increased during the first day of 

immersion (Figure 5.3a).  For the control cell, the pH decreased in the 1st week and 

increased rapidly thereafter. The pH in the NRB inoculated cell and in the mixed 

bacteria inoculated cell showed a similar pattern for the first two weeks of immersion 

time, although the pH in the NRB inoculated cell was slightly higher. The pH in both 

cells decreased slightly on days one to three, remained stable until day seven, 

decreased again until day 10 and increased until day 14. After that, the pH for the 

NRB inoculated cell increased slightly while the pH for the mixed bacteria 
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inoculated cell decreased slightly. The pH for the SRB inoculated cell decreased after 

day one until day 10, and increased rapidly afterwards. 

 

Similar to the UNS S31603 results, at the beginning of the experiment, all cells 

showed a rapid decrease in the value of Eh (Figure 5.3b) because of the decrease in 

oxygen concentration as the cell was purged with nitrogen. Both the control and the 

NRB inoculated cells showed positive Eh values throughout the test. The Eh in the 

control cell was stable within 20 mV while the Eh in the NRB inoculated cell 

fluctuated in the range of 20 mV to 70 mV. The Eh in the SRB inoculated cell 

showed a negative value throughout the test. The Eh in the mixed bacteria inoculated 

cell initially showed a negative value below -100 mV. This could be due to the 

sulphide, which was present in the solutions. However, the Eh gradually increased, 

accompanied by a decrease of the SRB population in the cell. After one week, the Eh 

reached a value above -100 mV. This indicated that the NRB inhibited the SRB 

growth, oxidised sulphide and increased the Eh. 

 

5.3 The Effect of Immersion Time on Corrosion Potential (Ecorr) of ASTM A572-

50 Carbon Steel 

 
Figure 5.4 Ecorr as a function of time for carbon steel during immersion at 50°C 
in production water +10% (v/v) crude oil for 21 days. Data is based on the 
average of three samples with a standard deviation bar. 
 

Figure 5.4 shows the variation of Ecorr as a function of time for all the samples under 

four different conditions. Data presented are average data from triplicate samples and 
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the bar shows the standard deviation value. Ecorr initiation values varied for all the 

coupons in the four cells. The initial Ecorr values from the lowest to the highest in the 

sequence were: -760±1mV (control), -751±1 mV (SRB), -735±1 mV (NRB), and -

715±1 mV (mixed bacteria). The final Ecorr values from the lowest to the highest in 

sequence were: -790±1 mV (SRB), 717±1 mV (NRB), -707±3 mV (control), and -

604±70 mV (mixed bacteria). The Ecorr value for all steel samples under four 

different conditions decreased immediately after the test began. This was due to 

oxygen decrease as the cells were purged with nitrogen.  

 

Corrosion coupons in control cell showed an increasing Ecorr value, approximately 42 

mV with respect to the initial value from day two until day 12, and remained stable 

until day 18. After that, the Ecorr increased again approximately 38 mV. As 

mentioned earlier in Section 4.4, the shift towards the positive value of the corrosion 

coupons in control cell could be attributed to incongruent dissolution of the alloy, or 

as the result of corrosion progress.(115) 

 

Ecorr for the corrosion coupons in the NRB inoculated cells increased rapidly after the 

first day. The Ecorr increased approximately 20 mV from day two until day 10 and 

remained stable at -716 ± 2 mV until the end of the exposure time. Ecorr increase 

could be attributed to biofilm and/or corrosion products formation on the steel 

surface. Additionally bacterial enzyme may also contribute to the shift of Ecorr value 

in a positive direction.(113) 

 

Ecorr for the corrosion coupons in the SRB inoculated cell decreased rapidly by 

approximately 87 mV on the first day of immersion then increased rapidly onwards. 

However, spikes of potential decrease were noted on days 9 and 11. As mentioned 

earlier (Section 4.4), this could indicate the surface activation, which led to pit 

growth on the surface.(109) The Ecorr changes in the SRB inoculated cell could be 

attributed to sulphide ion (S2-) produced by SRB metabolism. The sulphide 

precipitation with the Fe2+ ion will form an ion sulphide (FeS) film, which is a good 

electric conductor.(122)  It has a low over voltage for hydrogen evolution,(122) and 

consequently tends to change the Ecorr of the metal where it deposits.(71, 122) However, 

iron sulphide films formed in the absence of oxygen are usually unstable,(71) and 
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have a porous structure.(122) These films relate to unstable protection of the steel as 

they may protect the material initially, but with changes in environmental conditions 

(most importantly iron concentrations) may suffer from breakdown and structural 

transformation, and thus lead to an increase in corrosion rate.(71, 122) The latter relates 

to inhomogeneous film formation on the surface as some parts of the metal surface 

may remain uncovered (become anodic) and some parts may be covered by the iron 

sulphides (become cathodic), and thus result in localized corrosion,(71, 122) if the 

anode to cathode ratio is small. 

 

In the mixed bacteria inoculated cell, a slight decrease in the Ecorr followed by a 

significant increase was noted on day one. The Ecorr fluctuated until day three; this 

could be attributed to dynamic bacterial population changes of the NRB and SRB 

(Figure 3c). The Ecorr then increased until the termination of the test. Additionally, in 

the mixed bacteria inoculated cell, after the third day of immersion the standard 

deviation of the Ecorr was quite high. It is postulated that this could be attributed to 

the different bacterial biofilms which form on the steel surfaces. 

 

The Ecorr results show the behaviour of the corrosion coupons in four different 

conditions as a function of time. This provides information about pit formation as 

indicated by the potential decrease and also the film formation on the steel surfaces, 

as indicated by the increase in potential. 

 

5.4 Corrosion Behaviour of Carbon Steel in a Corrosive, High Chloride and 

Sulphate Production Water.  

 

LPR and EIS were employed to evaluate the corrosion coupons in four different 

conditions. Both techniques are chosen because they are non-destructive 

electrochemical techniques.(41, 75, 79) The Rct value obtained from both LPR and EIS 

equals to Rp value, which can be used to calculate corrosion rate if the Tafel constant 

is known. LPR is used to monitor the instantaneous corrosion rate of the corrosion 

coupons. EIS is used to characterize the changes of electrochemical reaction at the 

metal surface, as well as to study of the formation of corrosion products and 

biofilms.(123) Figure 5.5 and 5.6 show the Nyquist and the Bode plots, respectively, of 
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the carbon steel corrosion coupons in production water +10% (v/v) crude oil for 

different immersion times in the four different conditions. 

 

5.4.1 EIS Spectra 

 

A few important things will be highlighted in this section in order to understand the 

interpretation of the EIS spectra in further discussion. The magnitude of the 

impedance loop in the Nyquist curve corresponds to the capacitive behaviour of the 

electrode. A depressed semi-circle with the centre below the real impedance axis 

shows a typical behaviour of solid metal electrodes that have a frequency dispersion 

of the capacitive properties.(123, 124) The diameter of the semi-circle of the impedance 

loop corresponds to the charge transfer resistance in relation to the formation of the 

films and/or corrosion product layers.(125) The frequency vs. phase angle plot of the 

Bode curve can be used to confirm the time constant related to film formation on the 

electrode. Additionally, the changes in the curve’s peak indicate the transformation 

of the film. The peak in the high and mid frequency region is most probably related 

to the film (e.g. oxide film, biofilm ) and/or corrosion products layer, while the peak 

in the low frequency region is most probably related to the charge transfer resistance 

or the electrical double layer of the electrode. The frequency vs. log ІZІ mod plot of 

the Bode curve shows the stability of the film formed on the surface; the narrower 

the changes in the slope, the more stable is the film on the surface.(123) Additionally, 

the steeper slope denotes a higher resistance value. 

 

5.4.1.1 Control Cell 

 

The Nyquist plot of the corrosion coupon in the control cell (Figure 5.5a) shows a 

depressed semi circle with the centre below the real impedance axis. A marked 

increase in both the impedance magnitude and the impedance diameter of the loop 

observed from 12 hours to 120 hours of exposure time, is indicative of the formation 

of a protective layer on the surface. The diameter of the impedance loop then 

increases slightly from 120 hours to 240 hours of exposure and decreases slightly in 

the 360th hour of exposure. An abrupt decrease of the impedance loop is clearly seen 

in the 480th hour of exposure, which indicates a decrease in the film’s resistance. In 
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the frequency vs. phase angle plot of the Bode curve (Figure 5.6a), a shift in the 

frequency peak from the high frequency region (102 to104) Hz at 12th hour to the mid 

frequency region (1-102) Hz between 120th hour and 360th hour is noted. After 480 

hours of exposure the peak splits into two peaks, one in the mid frequency region (1 

to 102) Hz and the other in the low frequency region (10-2 to 1) Hz. This indicates 

changes in the film formation on the steel surface. The frequency vs. log ІZІ mod plot 

of the Bode curve (Figures 5.6b) shows that the impedance spectra oscillate in a 

narrow range (from the logarithmic values of about 3.6 to 3.8) between 12 hours and 

360 hours of exposure and decreases with a longer exposure time (480 hours). This 

indicates that during the initial exposure time a stable film formed on the surface and 

after a longer exposure time there was a sudden change in the film formation. The 

results obtained from the EIS spectra are in agreement with the Ecorr result (Figure 

5.4) which shows a potential shift in a positive direction after 360 hours of exposure 

time. This confirms that the marked change of the impedance spectra is not an 

artefact of the instrument noise but likely a response of a phase transformation. 

 

5.4.1.2 NRB Inoculated Cell 

 

The Nyquist plot of the corrosion coupon in the NRB inoculated cell (Figure 5.5b) 

shows depressed and incomplete semicircles. The impedance loop increases with 

time from 12 hours until 120 hours of exposure and a rapid decrease in the 

impedance loop is noted after longer exposure time (from 120 hours onwards). In the 

frequency vs. phase angle plot of the Bode curve (Figure 5.6c), on the initial 

exposure of 12 hours, two distinguishable peaks can be seen, one in the high 

frequency region (102 to 104) Hz and the other in the low frequency region (10-2 to1) 

Hz. However, the peak in the low frequency region vanished over time after 12 hours 

and the curve remains relatively stable until 480 hours of exposure. The frequency 

vs. log ІZІ mod plot of the Bode curve (Figures 5.6d) shows that the impedance 

spectra increases after 12 hours of exposure time and oscillate in a narrow range 

(from the logarithmic values of about 3.6 to 3.8) between the 120th  hour and the 

480th hour of exposure time. As mentioned earlier, this may indicate a stable film 

formation on the steel surface. This result is also in accordance with the Ecorr result 

which shows a stable value over time (Figure 5.4). 
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Figure 5.5 Representative Nyquist curves of (a) coupon in control cell (b) 
coupon in NRB inoculated cell (c) coupon in SRB inoculated cell (d) coupon in 
mixed bacteria (NRB+SRB) inoculated cell at 50ºC in production water +10% 
(v/v) crude oil mixture. 
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Figure 5.6 Representative Bode curves of (a, b) coupon in control cell; (c, d) 
coupon in NRB inoculated cell; (e, f) coupon in SRB inoculated cell; (g, h) 
coupon in mixed bacteria (NRB+SRB) inoculated cell at 50ºC in production 
water +10% (v/v) crude oil mixture. 
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5.4.1.3 SRB Inoculated Cell 

 

The Nyquist plot of the corrosion coupon in the SRB inoculated cell (Figure 5.5c) 

also shows depressed and incomplete semicircles. The impedance loop is not stable 

and changes over time for the first 240 hours, and then increases. This may be 

ascribed to the porous corrosion-products layer on the steel surface in the first 240 

hours and a build-up of a stable layer afterwards. Additionally, a straight line, 

corresponding to a second time constant is observed in the high frequency. In the 

frequency vs. phase angle plot of the Bode curve (Figure 5.6e), it is observed that 

from the 12th hour of exposure to the 120th hour of exposure, the curve’s peak shifts 

from the high frequency region (102 -104) Hz to the mid frequency region (1 -102) 

Hz. In the 240th hour of exposure time, the peak splits into two peaks, one in the low 

(10-2 -1) Hz frequency region and the other on the mid frequency region. The peak in 

the low frequency exhibits a weak signal and vanishes overtime. However, the peak 

in the 360th hour and the 480th hour of exposure time are flatter compared to the 

previous peaks; this could indicate two overlay peaks. Therefore, it is predicted that 

the peak in the low frequency region that appears in the 240th hour measurement 

increases and overlays the peak on the mid frequency region on the 360th hour and 

480th hour of exposure plots. This dynamic change in the curve’s peak denotes the 

dynamic change in the biofilm and/or corrosion products layers on the surface. The 

frequency vs. log ІZІ mod plot of the Bode curve (Figure 5.6f) shows an increasing 

value after 12 hours, and oscillates in a narrow range until 480 hours (from the 

logarithmic values of about 3.8 to 3.9). This denotes that though there is a dynamic 

change in the biofilm and/or corrosion products, the total resistance of the film 

remains stable. The dynamic change in the surface film and/or corrosion products 

layer is in accordance with the Ecorr result as few potential shifts are noted throughout 

immersion time (Figure 5.4). 

 

5.4.1.4 Mixed Bacteria (NRB+SRB) Inoculated Cell 

 

The Nyquist plot of the corrosion coupon in the mixed bacteria (NRB+SRB) 

inoculated cell (Figure 5.5d) also shows depressed and incomplete semicircles. The 

impedance loop increases from 12 hours until 360 hours of exposure, and decreases 
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at the 480 hours of exposure. Additionally, a straight line, corresponding to a second 

time constant is observed. The frequency vs. phase angle of the Bode magnitude plot 

(Figure 5.6g), shows that the curve’s peak shifts from high frequency (12 hours) to 

low frequency (between 120 hours and 480 hours). This indicates that the second 

time constant takes the overall response of the electrochemistry process on the 

electrodes. The frequency vs. log ІZІ mod plot of the Bode curve (Figure 5.6h) 

exhibits an increasing value from 12 hours (logarithmic value of about 3.2) to the 

120 hours (logarithmic value of about 3.4), remains stable on the logarithmic value 

of approximately 3.4 on the 120 hours until 360 hours and decreases by 480 hours 

(logarithmic value of about 3.0). 

 

5.4.2 Equivalent Circuit Models 

 

The design of the equivalent circuit model has to take into account each phenomenon 

that may contribute to the electrochemical reaction that may take place on the metal 

interface; for example, an electrical double layer formation, a biofilm formation, and 

corrosion products formations.(123, 126) However, as many other electrochemical 

techniques, EIS records only a general surface response, thus an idealized model is 

unlikely to be able to capture all the essential details of corrosion deposits yielded at 

a specific area.(115) The impedance results are fitted to different circuit models 

(Figure 5.7a-d) and the simulation results are depicted in Table 5.1. The 

determination of the quality of fitting to the equivalent circuit model was first 

evaluated by the chi-square value and second by error distribution vs. frequency, 

comparing experimental with simulated data.(127) A constant phase element (CPE) 

was used in all the equivalent circuits instead of a capacitor to represent the deviation 

from true capacitive behaviour, as it is clearly observed that the impedance loop in 

all of the Nyquist curves for the four different cells exhibit a depressed semi circle. 

This behaviour is possibly due to the presence of the dispersing effects of the 

corrosion products and/or biofilm. The CPE is defined in the following equation(123, 

127): 





Y
jZ

n


)(  5.1 

Where, Z  = impedance of CPE 



Chapter 5 – The Impact of Nitrate Injection on ASTM A572-50 Carbon Steel 
 

 

 

69 

 j  = imaginary number (j2 = -1) 

 ω  = angular frequency (rad/s) 

 n = the CPE power, adjustable between 0 and 1 

 Y° = constant of CPE 

The rest of the circuit elements represent: 

 Rs  = solution resistance 

 Rcp = the resistance of corrosion product 

 Rcp+bf   = the resistance of corrosion product and biofilm 

 Rct = the charge transfer resistance 

 Qcp = the CPE of corrosion product 

 Qcp+bf  = the CPE of corrosion product and biofilm 

 Qct  = the CPE of the Rct 

 O  = the finite diffusion 

 W  = the Warburg or the semi-infinite diffusion 

 

 

 

 

 
 

 

 

 
 

Figure 5.7 The equivalent circuit used for the analysis of impedance spectra of 
carbon steel immersed in different conditions: (a) control, (b) NRB inoculated 
cell, (c) SRB inoculated cell, (d) mixed bacteria (NRB+SRB) inoculated cell 

 

5.4.2.1 Control Cell 

 

The spectra of the corrosion coupons in the control cell can be well fitted to circuit 

model I. The contribution from the corrosion product layer is taken into account as 

the light microscopy result shows a black corrosion layer covering almost all the 

surface area (Figure 5.15). Additionally, SEM results show distinguishable corrosion 

Circuit I Circuit II 

Circuit III Circuit IV 

a) b) 

c) d) 
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product layers on the surface (Figure 5.11a). The Rcp increases from 12 hours to 240 

hours, and decreases afterwards with an abrupt decrease at the 480th hour (Table 5.1). 

This result is in accordance with the early prediction that there is a decrease in the 

film resistance after 240 hour of exposure (Section 5.4.1.1). The Rct initially shows a 

high value and increases with exposure time until 120 hours and then starts 

decreasing, with an abrupt decrease after 360 hours (Table 5.1). The increase in the 

Rct can be ascribed to the build up of an inhibiting layer that slows down and/or 

inhibits the corrosion process while its decrease can be ascribed to the acceleration 

and/or changes in the corrosion phenomena on the steel surface. 

 

5.4.2.2 NRB Inoculated Cell 

 

Circuit model II was designed to fit the impedance spectra obtained from corrosion 

coupons in the NRB inoculated cell. The biofilm contribution was taken into account 

since it could clearly be seen in the SEM results that the bacteria formed biofilm on 

the surface (Figure 5.12a). As most of the bacteria cells were mixed with the 

corrosion products (Figure 5.12b), the resistance of the corrosion products and 

bacteria were considered as a single value (Rcp+bf). The Rcp+bf increases with time 

until 360 hours of immersion and decreases afterwards. The starting value of the Rct 

is similar to results obtained from the control cell. This may indicate that the 

electrochemical reaction (or corrosion reaction) that occurs on the steel samples in 

the initial stage of the experiment is similar for both control cell and NRB inoculated 

cell. The Rct value increased significantly from 12 hours to 120 hours and increased 

slightly on 240 hours of exposure. A rapid decrease took place afterwards (360 hours 

and 480 hours). The Rct increment was comparatively much higher than the corrosion 

coupons in the control cell. This may indicate protective effects from the bacteria, 

which will be explained in Section 5.7. 

 

5.4.2.3 SRB Inoculated Cell 

 

The observed straight line in the high frequency of the Nyquist curve (Figure 5.5c) 

indicates that a diffusion process takes place. Therefore, it was necessary to take into 

consideration the diffusion effect when circuit model III was built. The diffusion 
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effect was considered to be a finite diffusion process (O) as the phase angle of 

diffusion is less than 45º. It is worth mentioning that at high frequency, the O 

impedance element may become indistinguishable from Warburg impedance (W). 

The O diffusion happens when the concentration of the diffusing species in the bulk 

solution is homogenous.(71) In this particular system, it may be influenced by the 

ferrous sulphide and/or the SRB cell and/or biofilm on the steel surface. The O 

diffusion is defined by the following equation (71, 123): 

 

  


jB
jY

Z tanh1

0
0 













  5.2 

Where, 

 
D

B 
  5.3 

 
2

1
0


Y  5.4 

And, 

δ  = the Nernst diffusion layer thickness, 

D  = the average value of the diffusion coefficient species 

σ  = the Warburg coefficient 

The ratio of B divided by Y0 is accepted as a description of the diffusion resistance of 

a protective film of finite length.(123) 

 

The Rcp+bf increases with time from test initiation until test termination. However, a 

marked decrease is noted after 120 hours of exposure. This marked decrease may 

indicate local breakdown of the FeS film. As explained earlier (Section 5.3) the FeS 

film is unstable and may easily break down due to the changes in the environment. 

The initial Rct value is quite low compared to the control cell and the NRB inoculated 

cell; this indicates more corrosive effects of the surrounding environment. This is 

most likely due to the any SRB metabolite which is introduced from the inoculums 

solution. The Rct increases rapidly from test initiation and reaches its maximum value 

at the 360th hour of exposure and then decreases. However, a slight decrease is noted 

after 240 hours of exposure. 
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5.4.2.4 Mixed Bacteria (NRB+SRB) Inoculated Cell 

 

In circuit model IV, the diffusion effect is also taken into consideration when the 

circuit model is built as a distinguishable straight line can be seen in the Nyquist 

curve. However, W is used instead of O, as the phase angle of diffusion is 45º (Figure 

5.5d). The magnitude of the Warburg impedance ІZwІ is inversely proportional to the 

square root of the frequency (1/(ω)0.5), with a slope value of  -0.5, according to the 

so-called “semi-infinite” Warburg impedance equation (71, 125):  

 

 ІZwІ 5.05.0 





 j   5.5 

 

Where, σ is the Warburg coefficient. This impedance can be observed when the 

region available for diffusion is not a limiting one or unrestricted to a large planar 

electrode.(125) This is in accordance with the SEM observation (Figure 5.14c) which 

shows a round, flat biofilm on the steel surface. 

 

The Rcp+bf decreases with time from test initiation until test termination. The Rcp+bf 

values are also lower compared to the other bacteria inoculated cells (NRB 

inoculated cell and SRB inoculated cell). This may denote that the biofilm and/or 

corrosion products in this particular condition provide less protection. The initial Rct 

value is as low as the Rct in the SRB inoculated cell. This confirms the prediction that 

the corrosive effect is caused by any SRB metabolite which is introduced from the 

inoculums solution. The Rct value then increases significantly from the 12th hour and 

reaches its peak in the 360th hour of exposure. However, the Rct value decreases 

sharply afterwards. This may indicate that during the initial stage, the biofilm and/or 

corrosion products are protective, but with longer exposure time they may increase 

corrosion risk. 

 

Interestingly, the diffusion process on the corrosion coupons only happens in the 

cells with SRB. It is predicted that this diffusion process occurs because of the 

porous FeSx structure which is formed by sulphide precipitation on the steel surfaces. 

While the type of the diffusion, O or W, is attributed to the biofilm. 
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Table 5.1 Comparative analysis of the magnitude of equivalent circuit 
parameters obtained from simulation for four different conditions: (a) control, 
(b) NRB inoculated cell, (c) SRB inoculated cell, (d) mixed bacteria (NRB+SRB) 
inoculated cell. The equivalent circuit model is indicated in Figure 5.7.  
 

Time (hours) 12 120 240 360 480 
Rs (Ω) 4.20 4.17 4.46 4.42 4.51 
CPE (S/sn) 1.19E-04 1.42E-04 1.70E-04 1.83E-04 1.47E-03 
n 0.8822 0.9172 0.9198 0.9291 0.7560 
Rcp (Ω) 611.43 1003.73 1134.03 449.00 82.46 
CPE (S/sn) 4.46E-04 2.63E-04 2.53E-04 3.87E-04 4.47E-03 
n 0.4984 0.5735 0.6518 0.6305 0.8661 
Rct (Ω) 4913.33 7041.33 6513.33 5573.33 788.80 

 

Time (hours) 12  120  240  360  480 
Rs (Ω) 3.78 4.31 4.46 4.40 4.08 
CPE (S/sn) 1.81E-04 1.83E-04 1.57E-04 2.12E-04 2.34E-04 
n 0.8702 0.9247 0.9378 0.9310 0.9349 
Rcp+bf (Ω) 280.57 513.80 556.23 946.83 315.47 
CPE (S/sn) 4.81E-04 3.95E-04 2.52E-04 2.54E-04 2.26E-04 
n 0.6521 0.5297 0.5198 0.5526 0.5413 
Rct (Ω) 4715 1.10E+04 1.56E+04 1.32E+04 1.24E+04 

 

Time (hours) 12 120 240 360 480 
Rs (Ω) 2.79 3.07 2.94 3.91 3.47 
CPE (S/sn) 2.00E-04 2.22E-04 3.02E-04 3.82E-04 8.34E-04 
n 0.8692 0.5923 0.7256 0.7455 0.7599 
Rcp+bf (Ω) 184.43 1.52 226.43 1195.20 1350.94 
CPE (S/sn) 3.68E-03 8.86E-04 3.56E-04 5.94E-04 1.58E-03 
n 0.4933 0.9486 0.8175 0.6682 0.9430 
Rct (Ω) 1537.33 2669 2461.33 7.32E+04 1.01E+04 
Y 2.38E-03 3.67E-03 1.01E-03 1.07E-02 3.77E+13 
B 4.96 5.04 27.79 3.97 1.30E+4 

 

Time (hours) 12 120 240 360 480 
Rs (Ω) 3.84 4.30 4.37 4.23 4.19 
CPE (S/sn) 1.65E+04 2.22E+03 1.74E-03 2.00E-03 3.19E-03 
n 0.8829 0.8639 0.8840 0.8523 0.8355 
Rcp+bf(Ω) 576.33 10.32 4.07 4.23 2.34 
CPE (S/sn) 4.72E+04 2.35E+03 3.36E-03 3.57E-03 4.46E-03 
n 0.6192 0.9116 0.8907 0.8656 0.8488 
Rct (Ω) 1280 8282.67 1.28E+04 2.02E+05 4128.3 
W 9.48E-03 8.58E+13 2.25E+11 4.55E+12 6.20E+14 

 

*S= Siemens; s= second 

 

a) 

b) 

c) 

d) 
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5.5 Corrosion Rate Measurement 

 

 
 
Figure 5.8 Time dependence of Rp obtained from Linear Polarization Resistant 
(LPR) measurement. Data presented is an average of the three samples and bar 
represent standard deviation.  (  ) – control, (   ) – corrosion coupons in 
NRB inoculated cell, (  ) – corrosion coupons in SRB inoculated cell, (  ) – 
corrosion coupons in mixed bacteria (NRB+SRB) inoculated cell. 
 

 
Figure 5.9 Time dependence of Rp obtained from Electrochemical Impedance 
Spectroscopy (EIS) measurement. Data presented is an average of the three 
samples and bar represent standard deviation.    (  ) – control, (   ) – 
corrosion coupons in NRB inoculated cell, (  ) – corrosion coupons in SRB 
inoculated cell, (  ) – corrosion coupons in mixed bacteria (NRB+SRB) 
inoculated cell. 
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Figure 5.10 Corrosion rate results obtained from weight loss measurement after 
21 days of immersion time. Data presented are average from duplicate samples 
and the bar represents actual value 
 

 

As mentioned earlier, the Rct obtained from both LPR and EIS equals to Rp. The Rp is 

inversely proportional to corrosion rate, the decrease in Rp reflects the increase in 

corrosion rate as described in Equation 1.1. (93, 121) Therefore, the 1/Rp values in 

Figure 5.8 and 5.9 equal to the changes of corrosion rate throughout the immersion. 

 

LPR was only conducted after 120 hours of exposure. As seen on Figure 5.8, the 1/Rp 

value of the corrosion coupons in the control cell fluctuates in the range of (1.41E-4 

to 1.89E-4) Ω-1 from 120 hours until 360 hours of exposure and an abrupt increase up 

to 1.37E-3 Ω-1 is noted at the 480th hour of exposure. The 1/Rp value of the corrosion 

coupons in the NRB inoculated cell initially decreases from 1.60E-4 Ω-1 (120 hours) 

to 9.87E-5 Ω-1 (240 hours) and thereafter, remains stable in the range of (1.05E-5 to 

1.09E-4) Ω-1 until 480 hours of exposure. The corrosion rate of the corrosion 

coupons in the SRB inoculated cell shows a relatively stable value in the range of 

(1.41E-4 to 1.45E-4) Ω-1 from 120 hours until 360 hours of the exposure time and an 

increase up to 1.78E-4 Ω-1 is noted at the 480th hour of exposure. The 1/Rp value of 

the corrosion coupon in the mixed bacteria inoculated cell was slightly higher than 

single cultures of NRB or SRB. The initial value is 1.92E-4 Ω-1 then decreases to 

1.59E-4 Ω-1 at the 360th hour of exposure and increases to 4.02E-4 Ω-1 at test 

termination (480 hours). 

 

The 1/Rp value obtained from EIS will be discussed below. The 1/Rp value of the 

corrosion coupons in control cell is initially 1.71E-3 Ω-1 then decreases and remains 
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stable in the range of (1.70E-4 to 2.06E-4) Ω-1 from 120 hours until 360 hours of 

exposure. An abrupt increase is noted after 360 hours and reaches 1.11E-3 Ω-1 at the 

480th hour. The 1/Rp value of the corrosion coupons in the NRB inoculated cell is 

initially 8.12E-4 Ω-1 (12 hours) then decreases and remains stable in the range of 

(1.24E-4 to 1.80E-4) Ω-1 from 120 hours until 480 hours. The 1/Rp value of the 

corrosion coupons in the SRB inoculated cell is initially 3.59E-3 Ω-1 (12 hours) then 

decreases and remains stable in the range of (1.75E-4 to 2.29E-4) Ω-1 from 120 hours 

until 360 hours. A noticeable decrease up to 7.83E-5 Ω-1 is noted at the 480th hour of 

exposure. The 1/Rp value of the corrosion coupons in mixed bacteria inoculated cell 

is initially 6.51E-4 Ω-1 (12 hours) followed by a rapid decrease of 1.01E-4 Ω-1, 

4.39E-5 Ω-1, and 2.86E-5 Ω-1 at the 120th hour, the 240th hour and the 360th hour, 

respectively. The 1/Rp value then increases significantly and reaches 1.48E-4 Ω-1 at 

480 hours of exposure. The high initial 1/Rp value in all the four different conditions 

can be attributed to the time taken for the system to attain a steady state.(57) 

 

Weight loss measurements give a more reliable result (Figure 5.10), but cannot 

provide comprehensive data unless the coupons are routinely retrieved from the cells. 

Hence weight loss only provides a historical average corrosion rate over the whole 

exposure period. The general results of the LPR, EIS and weight loss are in 

agreement: control cell show higher corrosion rate values compared to bacterial 

inoculated cells, which indicates corrosion inhibition by bacteria. 

 

5.6 Corrosion inhibition  

 

Bacterial inhibition of corrosion has been previously documented (48-51, 57, 59, 60). The 

proposed corrosion inhibition mechanism could be that bacterial biofilms might 

prevent chloride attack on steel surfaces,(48, 51) the changes of the localised 

environmental chemistry by bacterial metabolites and oxygen depletion at metal 

surfaces by respiring cells.(57) In this experiment, it is proven by SEM that the 

bacteria formed biofilm on the steel surface (Figures 5.12 to 5.14). However, it is 

also mentioned in the literature that after bacteria die, the corrosion rate may 

increase.(48) 
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In the NRB inoculated cell, a low corrosion rate could be associated with the 

presence of nitrate and/or nitrite. Although from the thermodynamic point of view, 

both nitrate and nitrite could enhance corrosion by oxidation of Fe to Fe2+ under 

neutral conditions. However, in practice, nitrate is a less aggressive anion, compared 

to chloride.(39)  In addition, nitrite is known as both oxidizing agent and corrosion 

inhibitor.(18, 39) It is generally believed that corrosion risk with nitrate addition may be 

induced by conversion of nitrate to nitrite by microbial activity.(39) In sufficient 

concentration, nitrite passivates mild steel, thus inhibiting corrosion. Nonetheless, 

insufficient nitrite concentration is believed to be associated with the increase in 

corrosion risk.(18, 39) This could be one of the reasons the corrosion rate increased 

after longer exposure time, because nitrate and nitrite were consumed by bacteria. 

However, nitrate and nitrite were not measured regularly to get enough data to make 

nitrate and nitrite profiles throughout the test. The low corrosion rate in the SRB 

inoculated cell could be related to the formation of FeSx. The corrosion inhibition in 

the mixed bacteria inoculated cell could happen because of the bacterial biofilm. This 

is demonstrated by the SEM result that shows the bacteria form a compact biofilm on 

the steel surface (Figure 5.14c). However, as biofilm became mature, pits may grow 

underneath and promote localized corrosion (figure 5.14d). This localised attack may 

occur as the result of physiological activity of the microbes within the biofilm.(128) 

 

5.7 Films surface analysis on carbon steel coupons by SEM and EDS 
 

In general, the SEM images reveal the corrosion products formed on steel surfaces 

after 21 days of immersion time. Additionally, EDS spectra showed a phosphate (P) 

peak in all corrosion coupons under the four different conditions. This may happen 

because of contamination by the phosphate buffer solution (PBS), specially in the 

control corrosion coupons where a potassium (K) peak was found(129); or 

precipitation from the production after being autoclaved. Figures 5.11a and 5.11b 

show that corrosion products uniformly covered the steel surface of the corrosion 

coupons in the control cell. No distinguishable pit could be found. It could be that the 

pit is covered by the corrosion product layer. The EDS spectra (Figure 5.11c and 

5.11d) show that the corrosion products mainly consist of Fe and O. In the NRB 

inoculated cell, it can be seen that there is a layer formed on the steel surface, with 

corrosion products and bacteria colonies (Figure 5.12c). The bacteria formed a 
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porous biofilm on the surface (Figure 5.12a), and also embedded in the corrosion 

products (Figure 5.12b). There was also no distinguishable pit on the surface. The 

EDS spectra (Figures 5.12d and 5.12e) also show that the corrosion products consist  

mainly of Fe and O.  

Figure 5 .11 Representative SEM images of a corrosion coupon in control cell 
after 21 days of immersion time in production water + 10% (v/v) crude oil. (a, 
b) corrosion products on carbon steel surface, no distinguishable pit can be 
observed (c, d) A and B as seen by green frame represent EDS spectra taken 
from two different spots of corrosion products in (a). 
 

In the SRB inoculated cell, corrosion product layers were found to be partially 

covering the steel surface (Figure 5.13b) and some small pits could be seen (Figure 

5.13a). The bacteria formed patchy colonies on the steel surface (Figure 5.13e). The 

EDS spectra (Figure 5.13c and 5.13d) show the corrosion products consist of Fe and 

O. However S and Barium (Ba) precipitation are also found on the surface (Figure 

5.13c), indicated FeSx and/or barium sulphate, the latter most likely originating from 

the field brine solution.  

 
 

 

 
 

 

a) 
A B 

b) 

A B 
c) d) 
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Figure 5.12 Representative SEM images of a corrosion coupon in the NRB 
inoculated cell after 21 days of immersion time in production water +10% (v/v) 
crude oil. (a) porous bacteria biofilm (b) bacteria cells embedded in corrosion 
products (c) patchy bacteria biofilm formed on carbon steel surface (red 
arrows). A and B as seen by green frame represent EDS spectra taken from 2 
different spots in figure c: (d) corrosion product layer and (e) bacteria biofilm. 
 

A 
B 

a) 

c) 

b) 

d) e) B A 
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Figure 5.13 Representative SEM images of a corrosion coupon in the SRB 
inoculated cell after 21 days of immersion time in production water +10% (v/v) 
crude oil. (a) a small localized pit (red arrow); (b) corrosion product layer; (c, d) 
A and B represent EDS spectra taken from two different spots in  (b); (e) SEM 
images of patchy bacteria biofilm on carbon steel surface; (f) EDS spectra of 
bacteria biofilm. 
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Figure 5.14 Representative SEM images of a corrosion coupon in the mixed 
bacteria (NRB+SRB) inoculated cell after 21 days of immersion time in 
production water +10% (v/v) crude oil. (a) pit formed on carbon steel surface; 
(b) various corrosion products; (c) mature biofilm, the bacterial cells are hidden 
underneath the extrapolymeric substances (EPS); (d) pit formation underneath 
mature biofilm (red arrow); (e) EDS spectra of corrosion product layer, (f) ) 
EDS spectra of bacteria biofilm 
 

steel surface, with 
corrosion product 

mature biofilm 
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In the mixed bacteria inoculated cell some mature biofilm can be seen. The bacterial 

colonies are covered by EPS (Figure 5.14c) and underneath the biofilm a pit formed 

(Figure 5.14d). It is postulated that, after the biofilm detached from the surface, the 

pit is exposed (Figure 5.14a), hence the biofilm induced the localized corrosion. 

Figure 5.14b showed various corrosion products formed on the steel surface. The 

EDS spectra (Figures 5.14e and 5.14f) also show that the corrosion products consist 

mainly of Fe and O. 

 

5.8 Steel Surface Analysis by Visible Light Microscopy 

 

5.8.1 2D Steel Surface Analysis by Visible Light Microscopy Before and After 

Samples Cleaning by Clarke’s Solution 

 

The steel surface before the samples are cleaned with Clarke’s solution (Figures 

5.15a-5.15d) show different corrosion products layers in the four different 

conditions. The control corrosion coupon (Figure 5.15a) shows a uniform black layer 

cover over almost all of the surface area. The NRB inoculated corrosion coupon 

(Figure 5.15b) and SRB inoculated corrosion coupon (Figure 5.15c) show different 

corrosion products as indicated by different colours. The mixed bacteria inoculated 

cell (Figure 5.15d) shows a mixture of green and black rust covering all the surface 

area almost evenly. The steel surfaces after the samples were cleaned with Clarke’s 

solution were also studied (Figure 5.16a-5.16d) and surface 3D measurement was 

also performed. 
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Figure 5.15 Representative images of the corrosion coupon surfaces under 
visible light microscopy  after 21 days of  immersion time in formation water 
and 10%(v/v) crude oil: (a) control cell; (b) NRB inoculated cell; (c) SRB 
inoculated cell; and (d) the mixed bacteria (NRB+SRB) inoculated cell. Pictures 
taken before corrosion products removal by Clarke’s solution. 

 

 

 

a) 

c) 

b) 
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Figure 5.16 Representative images of the corrosion coupon surfaces under light 
microscopy  after 21 days of  immersion time in formation water +10%(v/v) 
crude oil: (a) control cell; (b) NRB inoculated cell; (c) SRB inoculated cell; and 
(d) the mixed bacteria (NRB+SRB) inoculated cell. Pictures taken after 
corrosion products removal by Clarke’s solution. 

 

5.9.1 3D and 2D Steel Surface Analysis by Light Microscopy after Samples 

Cleaning by Clarke’s Solution 

 

Figure 5.17a and 5.17b show 3D and 2D images of the blank or standard coupon (as 

received sample/without immersion). In the 3D images, it can be seen that the 

surface is smooth and the polishing marks can still be seen clearly. The 2D image 

revealed that the surface roughness is in the range of -0.5-1 µm. Uniform corrosion 

can be seen easily in the control corrosion coupon (Figures 5.18a and 5.18b). In both 

of the 3D (Figure 5.18a) and the 2D image (Figure 5.18b), the distribution of the 

surface roughness can be seen.  

a) 

c) 

b) 

d) 
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Figure 5.17 Representative images: (a) 3D and (b) 2D of the blank coupon 
(coupon as received sample/before immersion) under light microscopy. 

  
Figure 5.18 Representative images: (a) 3D and (b) 2D of the corrosion coupon in 
control cell under light microscopy after 21 days of immersion time in 
formation water +10% (v/v) crude oil. 

 

The representative corrosion coupon in the NRB inoculated cell shows a smoother 

surface pattern (Figure 5.19a and 5.19b) compared to the corrosion coupon in the 

control cell. However, localised corrosion is observed in the form of narrow and deep 

pits (figure 5.19c). The pit depth is in the range of 51.17 μm - 144.04 μm and the pit 

volume was in the range of 1,027.40 μm³ -3,748.80 μm³.  

 

The representative corrosion coupon in SRB inoculated cell (Figure 5.20a-5.20c) 

also show a smoother surface pattern compared to the corrosion coupon in the 

control cell. Localised corrosion is also observed. The pit characteristics are a narrow 

and shallow pit; and also a narrow and deep pit (Figure 5.20c). The pit depth is in the 

range of 1.43 μm - 107.83 μm and the pit volume was in the range of 568.06 μm³-

1,028.40 μm³.  

 

 

a) b) 

a) b) 

50µm 

20µm 
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Pit depth: 51.17 μm                                                           Pit depth:  144.04 μm  
Pit volume: 1,027.40 μm³                                                     Pit volume: 3,748.80 μm³ 
 
Figure 5.19 Representative images: (a) 3D and (b) 2D of the corrosion coupon in 
the NRB inoculated cell under light microscopy after 21 days of immersion time 
in formation water +10%(v/v) crude oil; (c) pit which formed on the surface 

 

The representative corrosion coupon in the mixed bacteria inoculated cell also show 

a smoother surface pattern (Figure 5.21a and 5.21b) compared to the corrosion 

coupon in the control cell. Figure 5.21a shows a 3D image of a pit and figure 5.21b 

shows 3D image of corrosion products and/or bacteria biofilm attached to the 

surface. The localised corrosion is observed in the form of wide and deep pits (Figure 

5.21c). The pit depth is in the range of 7.17 μm - 10.67 μm and the pit volume is in 

the range of 7,794.3 μm³ - 89,067 μm³. 

 

a) 

c) 

20µm 
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Pit depth: 3.67 μm                                                             Pit depth:  1.43 μm  
Pit volume: 1,028.40 μm³                                                  Pit volume: 568.06 μm³ 
 

 
Pit depth: 107.83 μm                                                    
Pit volume: 641.95 μm³ 
Figure 5.20 Representative images: (a) 3D and (b) 2D of the corrosion coupon in 
the SRB inoculated cell under light microscopy after 21 days of immersion time 
in formation water and 10%(v/v) crude oil; (c) pits which formed on the 
surface. 
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Pit depth: 9.60 μm and 7.17 μm 
Total Pit volume:7,794.30 μm³ 
 

 
Pit depth: 10.67 μm 
Pit volume: 89,067 μm³ 
Figure 5.21 Representative images: (a, b) 3D and (c) 2D of the corrosion coupon 
in mixed bacteria (NRB+SRB) inoculated cell under light microscopy after 21 
days of immersion time in formation water +10% (v/v) crude oil;  (d) pits which 
formed on the surface. 
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5.9 Concluding Remarks 

 

The following conclusions can be made based on the results found: 

 Addition of nitrate not only stimulates the growth of NRB, but also removes 

pre-existing sulphide. 

 EIS is a useful electrochemical method to study film formation and/or 

corrosion products layer changes on the still surface. However, it will be 

beneficial to employ additional electrochemical tests, such as Ecorr, LPR, and 

Potentiodynamic Tafel extrapolation in order to achieve more accurate 

results. 

 These experiments prove that, in the pre-sour, corrosive (high chloride and 

sulphate) environment, bacteria may offer beneficial protection to carbon 

steel for a short immersion time. This is shown by a higher corrosion rate of 

corrosion coupons in control cell compared to corrosion coupons in the 

bacteria inoculated cell (NRB, SRB and mixed bacteria (NRB+SRB)).  

 Localized corrosion in the presence of bacteria is inevitable. Therefore, the 

impact of bacterial biofilm over a longer time period and also the complex 

system of bacterial colonies and EPS for single cultures and a mixed bacteria 

culture need further study. The emphasis should be on the mixed bacteria 

population as it is the most likely occurring in the actual environment. 
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CHAPTER 6: Conclusions and Future Work 

 

6.1 Conclusions 

 

1. The NRB isolated from the production water and crude oil sample are able to 

suppress the growth of SRB, thus eliminating biogenic sulphide formation or H2S 

gas production.  Additionally, NRB are also able to oxidize the pre-existing 

sulphide. 

2. In general, it is important to examine the corrosion effects of nitrate application on 

case by case basis because it is a complex mechanism and cannot be simply 

predicted based on electrochemical techniques alone.  

3. It is proven that in corrosive, high chloride and sulphate media, bacteria may offer 

beneficial protection to both UNS S31603 and carbon steel for a short period of 

time. However, localized corrosion in the presence of bacteria is inevitable. 

4. NRB decreased the critical pitting potential of the UNS S31603 to a greater extent 

than SRB; hence, increasing the risk of localised corrosion. However, it is also 

noted that the general corrosion rate of the UNS S31603 coupons in the SRB 

inoculated cell is higher than the corrosion rate of the UNS S31603 coupons in the 

NRB inoculated cell. Additionally, metastable pitting is found on the surface of 

the corrosion coupon in the SRB inoculated cell. 

5. It is also noted that, in the presence of SRB, NRB does not grow aggressively on 

the UNS S31603; hence, the critical pitting potential can still be maintained at a 

“safe” level. 

6. The corrosion rate of carbon steel corrosion coupons in this particular corrosive 

environment is more than 3 times higher compared to corrosion coupons in 

bacteria inoculated cell (NRB, SRB and mixed bacteria (NRB+SRB)).  

 

6.2 Future Work 

 

1. Investigations into the nitrate injection impact on steel materials in dynamic 

conditions that mimic the reservoir conditions should be conducted. This can be 

achieved by employing a sand packed bioreactor and placing the corrosion 



Chapter 6 – Conclusion and Future Work 
 

 

 

91 

coupons in the bioreactor inlet and outlet, simulating the injection pipe and the 

production pipe. 

2. Further study on the dynamics of biofilm formation should be conducted to attain 

a better comprehension of the impact of the bacterial biofilm on corrosion, 

especially in the mixed bacteria culture as this is most likely what will naturally 

occur in any real situation. 

3. Studies of the bacterial metabolism pathway and bacterial metabolite (such as 

nitrite and polysulphur) should be conducted to elucidate the uncertainty of the 

impact of nitrate injection on the corrosion of steel materials. Moreover, such 

studies can aid in understanding the fundamental biochemistry of nitrate injection, 

thus resulting in important information about the process and for the design of 

field applications.  

4. A detailed study of the impact of nitrate and nitrite concentrations on the 

corrosion behaviour of UNS S31603 should be conducted in order to find the safe 

concentrations to avoid pitting corrosion. 
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Appendix 1 

  

  

 

SRB inoculated cell (a) after 2 weeks of inoculation and immersion, the brine water 

starts to blacken; and (b) after 4 weeks of inoculation and immersion, sulphide 

precipitation can be easily seen on the bottom of the cell. Mixed bacteria 

(NRB+SRB) inoculated cell (c) after 2 weeks and (d) after 4 weeks of inoculation 

and immersion, no blackening occurs – NRB prevented sulphide formation 

 

 

 

a) b) 

c) d) 
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Appendix 2 

  

  

 

SRB inoculated cell (a) after SRB inoculation, the brine water is black due to 

sulphide precipitation from inoculums, and (b) after 3 weeks of inoculation and 

immersion, the brine water was still black due to sulphide precipitation. Mixed 

bacteria (NRB+SRB) inoculated cell (c) after SRB and NRB inoculation, the brine 

water is black due to sulphide precipitation from the SRB inoculums; and (d) after 3 

weeks of inoculation and immersion, no blackening – NRB oxidizes the sulphide. 

a) b) 

c) d) 
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